AD-A094	298 SIFIED	SENERAL HIGH VI Mar 79 R79AE6	L ELECT ELOCITY P R G 290	RIC CO JET NO LIEBE,	CINCIN ISE SOL R E MOT	INATI OF	AIRCR	NFT ENGINE REDI IND REDI IKMAN 76-79-6/	INE GRO UCTION. DOT-OS	UP F TASK 6 -30034	/6 20/1 •ETC	ເທ		
<u> </u>	40 A 39 A 249	L 5.9	۰											
1.2				_	_								AF	

	PHOTOGRAPH THIS SHEET
) 9 4 2 9 8	LEVEL GENERAL ELECTRIC CO CINCINNATE OHIO AIRCRAFT ENGINE GROUP HIGH VELOCITY JEP NOISE SOURCE LOCATION AND REDUCTION. TASK 6. SUPPLEMENT - COMPUTER PROGRAMS: ENGINEERING CORRELATION(M*S) JET NOISE PREDICATION METHOD and UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) FOR NOZZLES OF ARBITRARY SHAPE. FINAL REPT. MAR. '79 REPT NO. R79AEG290 CONTRACT DOT-OS-30034 FAA_RD_76_79_64
	DISTRIBUTION STATEMENT A
10	Approved for public release
A	Distribution Unlimited
	DISTRIBUTION STATEMENT
JNANNOUNCED	ES AND/OR SPECIAL TION STAMP
	81 1 27 007
····	DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
IC FORM 70A	DOCUMENT PROCESSING SHEE

٢.

- 2.

REPORT NO. FAA-RD-76-79, Via

R79AEG290

HIGH VELOCITY JET NOISE SOURCE LOCATION AND REDUCTION

TASK & SUPPLEMENT - COMPUTER PROGRAMS: ENGINEERING CORRELATION (M*S) JET NOISE PREDICTION METHOD and UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) FOR NOZZLES OF ARBITRARY SHAPE

TECHNICAL CONTRIBUTORS:

P.R. Gliebe R.E. Motsinger A. Sieckman

GENERAL ELECTRIC COMPANY AIRCRAFT ENGINE GROUP CINCINNATI, OHIO 45215

MARCH 1979

FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590

• ...

an same in

NOTICE

The contents of this report reflect the views of the General Electric Company which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

a se se de

;

			-
19. Security Classif (of this report)	20. Security Classif. (of this page)	21. No. of Pages 206	22. Price*
7. Key Words (Suggested by Author(s)) M*G*B, M*S Jet Noise, Suppressors, Ejector Turbulence, Acoustics, In-Fligh Prediction Method(s).	18. Distribution Statem s, Jet Flows, it Effects, through th Service, S	went .s available to the .e National Technica .pringfield, Virgini	U.S. public 1 Information a 22161.
The programs presented herein are (1500-2900 feet per second) for an any observer location. Static as the "flight" data base and subsequ	primarily directed toward predicti rbitrary nozzle shapes, including s well as in-flight capability is in Junt verification are quite limited	on of high-velocit ound pressure leve cluded in be th mod	y jet noise il spectra at dels, albeit
A unified aerodynamic/acoustic pro- the noise characteristics of suppo- method so as to provide prediction mixing regions of the jet are asso Theories of Jet Noise. The altera- propagates through the jet to the based on Lilley's equation. These volume-element formulation. The so other, so that the total contribute element contributions.	ediction technique has also been de ressor nozzles. The technique util hs of the jet plume flow field. The umed to be the primary source of no ation of the generated noise by the farfield is modeled utilizing the basic modeling elements have been individual volume elements are assu- tion to the farfield is simply the	veloped (M*G*B) for izes an extension e turbulent fluctu- ise generation, as jet plume itself high-frequency shi coupled together med to be uncorrel sum of the individ	or assessing of Reichardt's lations in the in Classical as it ledding theory in a discrete lated with each lual volume
The comprehensive, empirical, jet extensive data from this program a correlated by means of basic engir prediction method includes unsupp flow suppressed nozzles; and multi	noise prediction method (M*S) has and avai'able data from other publi neering principles and physical par ressed conical no>zles; multitube a tube/multichute nozzles with hardw	been developed by shed scarces. The ameters. The resu nd multichute sing all and treated se	correlating data were diting (M*S) gle- and dual- ectors.
5. Abstract This General Supplement Report door ingineering Method (M*S) and the L ion of the computer programs is p lus a listing of the FORTRAN comp	cuments two (2) Computerized Jet No Jnified Aeroacoustic Prediction Mod provided, including examples of inp pouter code.	ise Prediction Tec el (M*G*B). A com ut preparation and	chniques the plete descrip- l output cases,
5. Supplementary Notes This report is be issued in the course of the Activation of Facilities and Va fication of the General Electri Basic Experiments; Task 2 Suppl istics of Jets from Nozzles of Principles; Task 4 - Developmen Investigation of In-Flight Aero FAA Program Manager, Mr. R.S. Z	in partial fillment of the Subje program incluse Final Reports of the lidation of Source Location Technic c Jet Noise Anechoic Facility; Task ement - Computer Program for Calcul Arbitrary Shape; Task 3 - Experiment t/Evaluation of Techniques for In- acoustic Effects; Task 6 - Noise Aluckerman	ect Program. Relation to following tasks ques; Task 1 Supplex 2 - Theoretical 1 lating the Aeroacon tal Investigation flight/Investigation batement Nozzle Des	ted documents to : Task 1 - ement - Certi- Developments and ustic Character- of Suppression on; Task 5 - sign Guide.
Federal Aviation Administration Systems Research and Developmen Washington, D.C. 20590	t Service	14. Sponsoring Agence	code
2. Sponsoring Agency Name and Address	·····	13. Type of Report a July 1973 -	and Period Covered July 1978
 Performing Organization Name and Address General Electric Company Group Advanced Engineering Divi Aircraft Engine Group Cincinnati, Ohio 45215 	sion	11. Contract or Gran DOT-OS-3003	t No. 4
P.R. Gliebe, R.E. Motsinger, an	d A. Sieckman	R79AEG290 10. Work Unit No.	
Noise Prediction Method and Uni (M*G*B) for Nozzles of Arbitrar	fied Aeroacoustic Prediction Model y Shape	8. Performing Organi	ization Report No.
I. Title and Subtitle HIGH VELOCITY JET NOISE SOURCE SUPPLEMENT - Computer Programs:	LOCATION AND REDUCTION, TASK 6 Engineering Correlation (M*S) Je	5. Report Date March 1979	ization Code

NASA-C-168 (Rev. 6-71)

2.1.2

•

•

7

÷....

• 👬 ingrating

• ...

•

Ś
<u> </u>
0
Ē
Ċ
æ
ų,
æ
0
=
2
-
<
=
8
0
Ξ.
œ
F
-
5
_

.....

۲

.

: †

þ. }

İ,

シアー

	Symbol			5 9	= =	P,	Ē			~	Ϋ́,	mi ²				8	e				fi oz	E 1	5	8 73	. 7				.*						
: Mesures	To Find			inches	feet	yards	mites			square inches	square yards	square miles	acres			ounces	pounds				fluid ounces	pints	guerrs	gations achie feet	cubic verds				Estrenheit	temper ature			22 - 000		.
rsions from Metric	Multiply by	LENGTH		0.04	3.3	1.1	0.6		AREA	6 16	1.2	0.4	2.5		tASS (weight)	0.035	2.2	2	VOLUME		0.03	2.1	1.06	0.25	5			ENATURE (exect)	9/5 (then	add 32)			98.6 20 1 100		37
Approximate Conve	When Yee Know	ļ	:	milimeters centimeters	meters	meters	k i lometer s		1	souare centimeters	square meters	square kilometers	nectares (10,000 m ⁻)		2	grams	kilograms]	milfiliters	itters .	liters	litters Autor meters	cubic meters				Calcius	temperature			37- 7- 7-		*
	Symbol			E E	E	£	Ę			۲ <mark>س</mark>	~ ຍີ	25	2			6	5°.	-			Ē			-7	: ⁻ E				J,	2			8		
1 53 1	52	12	50	61		81		21	91		ST		• 1	ء	•	51	n		n ,	6		•		2		9		s 1	•		3		2	י ין	
				ini	1111	111			1)((1))				01100		 			unto		118		WÈ	11	HE		HUI	u Ír	ulu	ulu						دس
9 .1.1,1 .1.1,1		 		, t. 1, t.	1. L.				uuluu (* *{		•	4. I.	3.1. WIM	11111 11111	 	1. 1. 1 1. 1. 1	 	, 1, 1, , 1, 1, , 1, 1,	.)). 11.11	119 1*1*	11		118 ` 3) , J ,).) 	,) ,)		11111 	n) T	4111 111	.,,	11	.].1		195
- - - - - - - -		• •	1.1. Infin		, (, (,	 ' 7	ни • Г • Е	5 5	udun 1) 	іній {' {' {'	ווווו זיוי זין	2	5	- 	. 2		, i . i . Muni) 	() () E)' 3 E .	 ' '	 `}	 .,1,,) 	111111 1 2 7 E		, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , ,	 		וווווווו יייייי יחסי אַ	111 111
Messures 6 11 1	C El C		1.1. 111111	. r .			meters a	kulometers kan the transferred to the transferred t	100 AC		square centimeters cm ²	Square meters m ²	square kulometers hun ²	hectares ha	 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	kilograms kg	tonnes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.	allificers a			 			cubic meters m ²	cubic maters au 2 2	, I, J 1, J	ריי ויוי	Cetaius °c Li	temperature transfer in the second se		lables, see NBS Ansc. Publ. 296. un	111 111
rersions to Metric Measures	Multiply by To Find Symbol		LENGTH LENGTH			S centimeters cm 2	0.9 meters m	1.6 kilometers km			6.5 square centimeters cm ²	0.09 square meters m ²	2.6 square kilometers hun ²	0.4 hectares ha	ASS (weight)	28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	0.45 kilograms kg	0.9 tonnes	VOLUME	1 1 1	allititets al					3.8 iters	0.03 cubic meters m ²	0.76 cubic maters m ³ 7	ERATURE (exact)	. .	5/9 (after Celsius °c	subtracting temperature	, 1 , 1	ersions and more detailed, see NBS Misc. Pub., 236, unit of catalicos Na., C13 (1) 286, See NBS Misc. Pub., 236, Catalicos Na., C13 (1) 286, See See See See See See See See See Se	
Approximate Conversions to Metric Measures	When Yes Know Multiply by To Field Symbol		LENGTH				yards 0.9 meters m	miles 1.6 kilometers km			square inches 6.5 square centimeters cm ²	Aquate test U.09 Square meters m ²	square miles 2.6 square kilometers kun ²	acres 0.4 hectares ha	MASS (weight)	ounces 28 grams g 1	pounds 0.45 kilograms kg	Stort tons 0.9 tonnes t + + + + + + + + + + + + + + + + + +	AOLUME		teaspoons 5 milliliters m	Labiespoors 15 milliliters mil			ments 0.95 hiters	galitons 3.8 litters -	cubic feet 0.03 cubic meters m ³	cubic yards 0.76 cubic maters m ² ²	TEMPERATURE (exact)		Fahrenheit 5/9 (after Celsius °c	temperature subtracting temperature		activi. Fu offer exact conversions and more data red tables, see NBS Misc. Pub., 296.	

۰..

PREFACE

This report describes the work performed under the DOT/FAA High-Velocity Jet Noise Source Location and Reduction Program (Contract DOT-OS-30034).

- Investigation, including scaling effects, of the aerodynamic and acoustic mechanisms of various jet noise suppressors.
- Analytical and experimental studies of the acoustic source distribution in such suppressors, including identification of source location, nature, and strength and noise reduction potential.
- Investigation of in-flight effects on the aerodynamic and acoustic performance of these suppressors.

The results of these investigations led to the preparation of a design guide report for predicting the overall characteristics of suppressor concepts, from models to full scale, from static to in-flight conditions, as well as a quantitative and qualitative prediction of the phenomena involved.

The work effort in this program was organized under the following major Tasks, each of which is reported in a separate Final Report:

- Task 1 Activation of Facilities and Validation of Source Location Techniques.
- Task 2 Theoretical Developments and Basic Experiments.
- Task 3 Experimental Investigation of Suppression Principles.
- Task 4 Development and Evaluation of Techniques for In-Flight Investigation.
- Task 5 Investigation of In-Flight Aeroacoustic Effects on Suppressed Exhausts.
- Task 6 Preparation of Noise Abatement Nozzle Design Guide Report.

Task 1 was an investigative and survey effort designed to identify acoustic facilities and test methods best suited to jet noise studies.

Task 2 was a theoretical effort complemented by theory verification experiments which extended across the entire contract period of performance.

Task 3 represented a substantial contract effort to gather various test data on a wide range of high-velocity jet noise suppressors. These data, intended to help identify five optimum nozzles for in-flight testing in Task 5, provided an extensive high quality data bank useful to the preparation of the Task 6 design guide as well as for future studies.

and the second stand

Task 4 was similar to Task 1, except that it dealt with the specific test facility requirements, measurement techniques, and analytical methods necessary to evaluate the in-flight noise characteristics of simple and complex suppressor nozzles. This effort provided the capability to conduct the flight effects test program of Task 5.

Task 6 embodies the salient results of Task 2, 3, 4 and 5, and combines them with other contractor results into a noise abatement nozzle design guide which permits acoustic and performance prediction of future high-speed engine-suppressor installations.

The present volume, a supplement to the design guide, documents two jet noise prediction methods developed under the contract: the engineering correlation of (M*S) model and the unified aeroacoustic model (M*G*B) (each capable of accounting for flight effects). The objective of this report is to provide users with a description of the methods and associated computational procedures in sufficient detail that either method can be implemented and utilized as a useful engineering tool. The empirical M*S method is capable of predicting static and in-flight acoustic characteristics of multielement suppressors applicable to both advanced turbojet and variable-cycle engines. The theoretically based M*G*B method is capable of predicting static and in-flight aerodynamic and acoustic characteristics of jets from nozzles of arbitrary shape, and as such provides more insight into the fundamental mechanisms involved in a given configuration's noise signature.

TABLE OF CONTENTS

Section		Page
1.0	SUMMARY	1
	1.1 The Engineering Correlation (M*S) Method 1.2 The Unified Aeroacoustic Prediction (M*G*B) Method	1 0d 1
2.0	INTRODUCTION	3
3.0	ENGINEERING CORRELATION (M*S) JET NOISE PREDICTION COMPUTER PROGRAM	4
	 3.1 Introduction 3.2 Program Nomenclature 3.3 Description of Program and Subroutines 3.4 Input Description 3.5 Output Description 3.6 Sample Cases 3.7 Program Source Code Listing Section 3 References 	4 4 37 38 54 71
4.0	UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) COMPUTE PROGRAM	R 96
	4.1 Introduction4.2 Program Nomenclature and Symbol Convention4.3 Description of Program and Subroutines	96 97 100
	 4.3.1 Main 4.3.2 ARCCOS(X) 4.3.3 ERF(X) 4.3.4 LSPFIT 4.3.5 SLICE 4.3.6 CRD 4.3.7 OUTPUT 4.3.8 SHOCK 4.3.9 ATMOS 4.3.10 PNLC 	100 100 112 112 113 113 115 115 115
	4.4 Program Usage and Logic4.5 Description of Input	116 118
	4.5.1 Notes on Input 4.5.2 Example Case Input Selection	126 132
	 4.6 Output Description 4.7 Sample Output Listing 4.8 Program Source Code Listing 	134 136
	Section 4 References	170
5.0	CONCLUDING REMARKS	206

v

......

į

. e

.

LIST OF ILLUSTRATIONS

Figure		Page
3-1.	Computer Program Flow Chart.	12
3-2.	Nozzle Types Included in the Correlation.	50
3-3.	FORTRAN Symbol Convention for Acoustic Arena Variables.	51
3-4.	Definition of Cant Angles for Multielement Nozzles.	52
4-1.	FORTRAN Symbol Convention for Coordinates and Geometric Variables.	98
4-2.	FORTRAN Symbol Convention for Acoustic Arena Variables.	9 9
4-3.	Computer Program Flow Chart.	109
4-4.	Possible Solution Types for a Maximum of Two Turning Points.	114
4-5.	Examples of How Boundary Parameters are Specified.	128
4-6.	Centerbody Input Coordinate Examples.	129
4-7.	Example Demonstration of Nozzle Geometry Specification with a Generalized Nozzle Exit Configuration.	130

vi

.....

•

LIST OF TABLES

Table		Page
3-1.	Definition of FORTRAN Symbols.	5
3-2.	Overall Flow of Program Input Format.	11
3-3.	Input Format.	39
3-4.	Input Variable Descriptions.	45
3-5.	Output Symbol Descriptions.	53
3-6.	Input Data Card Listing Sample Case.	54
4-1.	List of FORTRAN Symbols.	101
4-2.	Suggested Input Format.	119
4-3.	Input Variable Definitions.	121
4-4.	Preset Input Values.	125
4-5.	Input Data Card Listing Sample Case.	137

vii

1.0 SUMMARY

This supplement to the Task 6, Noise Abatement Nozzle Design Guide documents two computerized jet noise prediction techniques: the engineering correlation method, and the unified aeroacoustic prediction model. A complete description of the computer programs are provided, including examples of input preparation and output cases, plus a listing of the FORTRAN computer code.

1.1 THE ENGINEERING CORRELATION (M*S) METHOD

A comprehensive, empirical, jet-noise-prediction method has been developed by correlating extensive data from this program with available data from other published sources. This engineering correlation prediction model has been designated as the M*S model (after the authors: Motsinger and Sieckman) for ease of reference, as well as to distinguish it from the more theoretical prediction model (M*G*B) developed by authors Mani, Gliebe and Balsa.

The data were correlated by means of basic engineering principles and physical parameters. The resulting M*S prediction methods includes unsuppressed conical nozzles; multitube and multichute, single and dual-flow, suppressed nozzles; and multitube/chute nozzles with hardwall and treated ejectors.

1.2 THE UNIFIED AEROACOUSTIC PREDICTION (M*G*B) METHOD

A unified aerodynamic/acoustic prediction technique has been developed for assessing the noise characteristics of suppressor nozzles. The technique utilizes an extension of Reichardt's method so as to provide predictions of the jet plume flow field (velocity, temperature and turbulence intensity distributions). The turbulent fluctuations produced in the mixing regions of the jet are assumed to be the primary source of noise generation, as in the classical theories of jet noise. The altering of the generated noise by the jet plume itself as it propagates through the jet to the farfield observer (sound/flow interaction or fluid shielding) is modeled utilizing the highfrequency shielding theory based on Lilley's equation.

These basic modeling elements (flow field prediction, turbulent mixing noise generation, and sound/flow interaction) have been coupled together in a discrete volume-element formulation. The jet plume is divided into elemental volumes, each roughly the size of a representative turbulence correlation volume appropriate to that particular location in the plume. Each volume element is assigned its own characteristic frequency, spectrum, and acoustic intensity. The sound/flow interaction effects for each volume element are evaluated from the flow environment of the element. The individual

volume elements are assumed to be uncorrelated with each other, so that the total contribution $t \in$ the farfield is simply the sum of the individual volume element contributions.

The programs presented herein are primarily directed toward prediction of high-velocity jet noise (1500-2900 feet per second) for arbitrary nozzle shapes, including sound pressure level spectra at any observer location. Static as well as in-flight capability is included in both models; however, the flight data base and subsequent verifications are somewhat limited at the time of this program's conclusion.

. . .

2.0 INTRODUCTION

Many jet noise suppressor nozzles have been designed utilizing intuitive notions of how to suppress jet noise which have demonstrated substantial noise reduction, but often at the expense of considerable thrust loss as well as increased engine weight, manufacturing cost, and complexity. Seemingly minor changes in suppressor nozzle design, for the purpose of improving thrust performance, often result in substantial loss of noise suppression. It is therefore highly desirable to have available a quantitative prediction technique for estimating the aerodynamic flow field and acoustic characteristics of suppressor-type nozzle configurations, so that design and optimization studies can be made prior to construction and testing in order to minimize the time and cost of development. Ideally, any technique should be sensitive to the controllable design variables and contain a little empiricism as possible. When empiricism is necessary, it should be based more or less on physical characteristics (flow, acoustic propagation, etc.) engineering principles rather than on geometric parameters.

The computer programs included herein represent a conventional engineering correlation technique and a more theoretical approach derived from engineering principles. The design engineer can exercise either or both models, depending on the type of results required. The correlation method provides a preliminary design prediction of aerodynamic and acoustic performance; the theoretical M*G*B method provides a means of assessing the relative importance of various jet noise mechanisms.

Section 3.0 describes the computer program for the engineering correlation jet noise prediction method (M*S model); Section 4.0 presents the computer program for the unified aeroacoustic prediction method (M*G*B model).

3.0 ENGINEERING CORRELATION (M*S) JET NOISE PREDICTION COMPUTER PROGRAM

3.1 INTRODUCTION

This section documents the computer program for the prediction of jet noise by the engineering correlation method (M*S). The mathematical model appears in detail in Reference 1. A description of the computer program is provided herein including examples of input preparation and output cases, plus a listing of the FORTRAN computer code.

The computer program is written in FORTRAN Y language. It has been programmed for use on both the GE/Honeywell 6080 and the CDC 7600 computers.

The range of valid application of the program, the limiting assumptions, and documentation of the data base used for developing the correlation can be found in both the Task 3 (Reference 1) and Task 6 (Reference 2) reports.

3.2 PROGRAM NOMENCLATURE

Table 3-1 defines the FORTRAN symbols used in the program. The listing and descriptions of input variables are given in the Input Description section.

3.3 DESCRIPTION OF PROGRAM AND SUBROUTINES

Table 3-2 gives a description of the overall flow of the computer program including all routines used in each step. Figure 3-1 gives a detailed flow chart of the computer program logic. A description of the main program and each of the subroutines is given in the following paragraphs.

<u>M*S Routine</u> - This routine reads the input curves needed for the various prediction routines. Depending on nozzle type it reads the nozzle input, initializes variables, and computes flow parameters and flow and physical geometries. The computation of gamma (ratio of specific heats) involves an iteration using input temperature and pressure ratio. The output and use of prediction subroutines are controlled by this routine.

Following the preliminary calculations, control is routed through the multielement, conical, or dual-flow section of the program. In the multielement part, calculations are first made for the postmerged noise. The coefficients for the Potter and Crocker equation are set up, and, because it is a third-order equation (after simplification), a Newtonian convergence routine is used to determine the first root. Density and diameter are then calculated and a check is made for other possible roots. Static and total

Table 3-1. Definition of FORTRAN Symbols.

FORTRAN		Related
Symbol	Meaning	Subroutines
A	Ejector treatment parameters	MS, EJECTS
AA8, A8	Inner nozzle flow area	MS, SHKSUB
AJ	Acoustic angle, degrees	MS, SUB3, SUB5
		EXTP, SHKSUB, EJECTS
AJA	Jet plume spreading angle, radians	
AJR	Acoustic angle, radians	MS, EXTP, EJECTS
ALT	Input altitude or arc distance	MS, EXTP
AN	Noy Weighting	PNLPT
AN1	Number of elements	MS
ASK	Intermediate variable	PNTT8
A0	Ambient speed of sound	MS, SUB1
		SHKSUB, PNTT8
A1	Intermediate variable	MS, EJECTS
A1	Ratio of merged to exit area	MS
A2	Ratio of merged to exit area	EJECTS
A3	Single-flow nozzle total exit area	MS
A3	Intermediate variable	EJECTS
A4	Intermediate variable	MS
A4	Ejector treatment PWL Insertion loss	EJECTS
A5	Area of multielement merged stream	MS
A5	Ejector treatment SPL insertion loss at	
	given acoustic angle	EJECTS
A6	Ratio of ejector inlet area to nozzle	
	total area	MS, EJECTS
A7	Multielement nozzle area ratio	MS
A9	Outer nozzle flow area	MS
В	Shock strength parameter, β	SHKSUB
B1	Intermediate variable	EXTP
B2	Intermediate variable	EXTP
B3	Intermediate variable	EATP
B8	Tube or chute/spoke cant angle, radians	MS
B9	Tube or chute/spoke cant angle, degrees	MS
С	Normalized OASPL jet mixing noise curve-fit	
	coefficients	MS, SUB1
CJ	Ten dB down value for EPNL	PNTT8
CMAX	Intermediate tone correction	TPNLC
C1	Jet mixing noise OASPL corrections	MS, SUB1
C1J	Intermediate variable	EXTP, SHKSUB
C2	Jet mixing noise relative velocity	
	exponents	MS, SUB1
C3	Inner stream specific heat	MS
C4	Outer stream specific heat	MS
C9	Local speed of sound	MS, SHKSUB

2

•

.

•

3

5

· · ...

FORTRAN Symbol	Meaning	Related Subroutines
D	Intermediate variable	MS, PNTT8
DE	Hard-wall ejector reference effect at θ_T	EJECTS
DEK	Flight Effect at 90° on Shock Cell Noise	SHKSUB
DEN	Density correction $(\rho_1/\rho_0)^{\omega}$	SUB 1
DIS	Intermediate variable	EXTP
DJ	Characteristic element dimension	MS
DN	Nozzle outer diameter	MS
DOP	Doppler Factor	EXTP
DT	Tube diameter	MS
DUM	Intermediate variable	SUB1
DO	Shock-noise normalization parameter	SHKSUB
D1	Reference far-field distance	MS, EXTP, SHKSUB
D2	Hard-wall ejector reference effect	EJECTS
D3	Ejector radius or diameter	EJECTS
D4 D5	Equivalent area diameter	MS, EJECTS
כע	Merged flow diameter	MS Dominia
D7 D9	Initial time for EPNL Neggle characteristic dimension for chark	PNTT8
Do	Nozzle characteristic dimension for snock	MC CHIVEND
מח	Roise Final time for FRNI	MD, SHKOUD
र स	Int mixing poice spectral distribution at A	
E F	Intermediate Variable	SUBI
15 17 1		EXTP
E1 E2	Ejector effect	
E J FO	ErnL ECA indicator	INIIO MC EVTD DNTTQ
E 7 F	Center frequency	MS FYTP SHESUR
1	center rrequency	PNTT8 FJECTS
F	Intermediate variable	TPNLC
FP	Peak frequency	EJECTS
FO	Critical frequency for effective number of	
	elements	MS
F1	Intermediate variable	MS, SHKSUB
F2	Intermediate variable	MS, SHKSUB
F3	Intermediate variable	SHKSUB
G	Shock-cell noise prediction input curve	MS, SHKSUB
GJ	Critical refraction angle indicator	MS
G1	Intermediate variable	SHKSUB
G2	Outer stream ratio of specific heats, γ	MS
G3	EGA at output distance	EXTP
G8	Intermediate y	MS
G9	Inner stream ratio of specific heats, γ	MS
н	Output sideline or arc distance	MS, EXTP, PNTT8
HT HT	Intermediate variable	SHKSUB
I	Index	MS, SUB1, SUB5, SUB4, SUB2, SUB6, EXTP, SHKSUB, TPNLC, PNTT8, EJECTS

2 L X

٩

4

6

and the second

FORTRAN		Related
Symbol	Meaning	Subroutines
IDCASE	Case Description	MS
IDENT	Run Description	MS
IM	Intermediate variable	MS
IP	Intermediate variable	EJECTS
11	Indicator	TPNLC
IIAS	Noise component identification	MS, PNTT8
IICASE	Case Description	MS, PNTT8
IIP	Intermediate variable	MS
1 SPLF	Intermediate variable	TPNLC
J	Index	All Subroutines
JJ	Index	PNTT8, EJECTS
к	Index	SUB1, SUB3
KK	Jet mixing noise spectral distribution	
	curve-fit coefficients	MS, SUB1
KSTART	Index	SHKSUB
КT	Intermediate variable	PNTT8
к 0	Intermediate variable	MS
K1	Extrapolation indicator	MS, SUB3
к2	Intermediate variable	MS
K6	Intermediate variable	SUB1, EJECTS
K7	Shock-noise case indicator	MS
K8	Index	SHKSUB, EJECTS
к9	Print Indicator	MS
L	PNL calculation coefficients	MS, PNLPT
Ll	Output acoustic range	EXTP
L2	Reflected axial source location	EJECTS
L3	Ejector length	EJECTS
L8	Ejector length effect	EJECTS
L9	Ejector length to suppressor nozzle	
	equivalent diameter	
М	Mach number	MS, EJECTS
MP	Maximum PNL	PNTT8
MM	Intermediate variable	MS
N	Number of elements in nozzle	MS
NFLT	Flight Effects Exponent Indicator	MS, SUB1
N1	Angle indicator	MS, SUB1
0	OASPL	SUB1, SUB3, PNTT8
OJ	Critical refraction angle	MS, EJECTS
09	OAPWL	SUB5, SUB6, PNTT8
Р	PNL	SUB3, PNTT8
PA	Air attenuation	EXTP
PJ	Intermediate variable	MS
PTCOR	Tone correction	TPNLC
PO	Ambient static pressure	MS

×.

} 1 ≯

١

?

4

•

7

4

FORTRAN		Related
Symbol	Meaning	Subroutines
P1	π (3.14159)	EXTP, SHKSUB
P3	Frequency	EXTP, EJECTS
P4	Inner nozzle total to ambient pressure	·
	ratio	MS
P5	Outer nozzle total to ambient pressure ratio	MS
P9	Nozzle total to ambient pressure ratio	MS
Q	Spherical spreading effect	EXTP
Q1	Intermediate variable	MS, PNTT8
Q2	Jet mixing noise normalization parameter	SUB1
R	Intermediate storage variable	SUB4, SUB6
RJ	Ambient density	MS, SUB1
RJ1	Intermediate variable	SUB1, PNTT8
RP	Centerbody plug radius	MS
RS, RR	Specific resistance	EJECTS
RVE	Flight Effects	SUB1
RX	Specific reactance	EJECTS
R1	Tube equivalent radius	MS
R2	Nozzle outer diameter	MS
R 3	Inner flow density	MS
R4	Chute/spoke outer flow width	MS
R5 R6	Outer flow density	MS
K0 D7	Chute/spoke inner i low wigth	MC CURL
K/ 100	Outer nozzle duct neight	MS, SUBI
RO DO	Conterhody plug radius	rd MC
R7 C	Producted SPI	мо сирі сира
5	rieulcied SrL	CIIES CIIE/ CIIE?
		SUB6 SHKSUB
		PNTT8
SBAR	Intermediate variable	TPNLC
SC	Intermediate variable	TPNLC
SJ	Intermediate variable	MS. PNTT8
SL	Input sideline distance	MS. EXTP
SP	Intermediate variable	TPNLC
SPI.	Intermediate variable	TPNLC
SPLP	Intermediate variable	TPNLC
SPLPP	Intermediate variable	TPNLC
SS	Outer chute/spoke width	MS
SX	Source location	MS
S1	Shock-cell noise prediction input curves	MS, SHKSUB
SIJ	Outer element spacing to characteristic	
	diameter ratio	MS
S2J	Relative source strength	EJECTS

•

FORTRAN		Related
Symbol	Meaning	Subroutines
S 6	Nozzle outer radius	MS. EJECTS
Т	Temperature	SUB1
T	PNL	SUB3
T	Flyover time	PNTT8
тс	Cutoff effect	MS
TC2	Intermediate variable	TPNLC
TC3	Intermediate variable	TPNLC
TJ	Intermediate variable	PNLPT, PNTT8
TT	Intermediate variable	PNTT8
ттз, тз	Nozzle total temperature	MS
TT4, T4	Inner nozzle total temperature	MS
TT5, T5	Outer nozzle total temperature	MS, SUB1
TZ	Initial time for EPNL	PNTT8
TO	Ambient temperature	MS, SUB1, PNTT8
T1	Intermediate variable	PNTT8, EJECTS
т2	Intermediate variable	MS
Т8	Total temperature	MS, SUB1
U	Arc or sideline indicator	MS, EXTP, PNTT8
U 3	Nozzle fully expanded velocity	MS
05	Outer nozzle fully expanded velocity	MS
V	Intermediate variable	SUB3, PNLPT
VJ	Suppressor merged velocity	MS NG CUTPI
VO	Aircraft velocity	MS, SUBL, SHKSUB, PNTT8
V1	Ratio of merged velocity to exit velocity	MS
V6	Intermediate variable	MS
V7	Intermediate variable	MS
V8	Fully expanded jet velocity input to jet	
	mixing noise routine	MS, SUB1
V9	Fully expanded jet velocity input to	
	shock-cell noise routine	MS, SHKSUB
W	Density exponent curve-fit coefficients	MS, SUB1
WE	Density exponent	SUB1
WJ	Intermediate variable	SUB1, PNTT8
W 4	Inner stream weight flow	MS
W5	Outer stream weight flow	MS
W8	Weight flow	MS, SUB1
Х	Source location	MS, EJECTS
X	SPL	SUB3, EXTP, PNLPT
XJ	Intermediate variable	SUB1, EJECTS
XM	Point of merging	MS
XO	Potter and Crocker equation coefficient	MS
X1	Potter and Crocker equation coefficient	MS
X2	Potter and Crocker equation coefficient	MS

3

•

7

9

·• •

	Related
Meaning	Subroutines
Potter and Crocker equation coefficient	MS
Specific reactance	EJECTS
PWL	SUB5, SUB4, SUB6, PNTT8
Intermediate variable	SUB5, EJECTS
Intermediate variable	MS, SUB4, SUB6
Intermediate variable	MS
Intermediate variable	MS
Nozzle type indicator	MS, SUB1
Intermediate variable	SHKSUB
Intermediate variable	EXTP, EJECTS
Intermediate variable	SHKSUB
Effective number of elements effect	MS
Intermediate variable	SUB1, PNTT8
Intermediate variable	MS
Intermediate variable	MS, PNTT8
Number of rows of tubes	MS
Effective number of elements adder	MS
Total number of elements adder	MS
Constant	MS, SUB2
	<u>Meaning</u> Potter and Crocker equation coefficient Specific reactance PWL Intermediate variable Intermediate variable Intermediate variable Nozzle type indicator Intermediate variable Intermediate variable Intermediate variable Effective number of elements effect Intermediate variable Intermediate variable Intermediate variable Effective number of elements adder Effective number of elements adder Constant

) | |

١

• •

7

4

£

10

· · · · · ·

Table 3-2. Overall Flow of Program.

1. Read Input Curves (M*S).

2. Read Input and Calculate Flow Parameters for each Stream (M*S).

The Following through 11 are used or Skipped as Necessary.

- 3. Determine Postmerged Noise (M*S, SUB1, SUB5).
- 4. Determine Premerged Noise (M*S, SUB1).
- 5. Determine Premerged Cutoff and Shielding Effects (M*S).
- Calculate Ejector Effects and Correct the Premerged Noise (M*S, ZJECTS, SUB5).
- 7. Sum the Premerged and Postmerged Noise (SUB6).
- 8. Calculate Shock Noise for Outer Stream and Apply Cutoff, Shielding, and Ejector Effects (M*S, SHKSUB, EJECTS, SUB5).
- 9. Add to the Sum of Premerged and Postmerged (SUB6).
- 10. Calculate Shock Noise for Inner Stream (M*S, SHKSUB, SUB5).
- 11. Add to the Sum of Premerged and Postmerged and Outer Stream Shock (SUB6).
- 12. Extrapolate and Calculate OASPL, PNL and PNLT (this may be done after each Component is Calculated for Print Purposes) (SUB3).
- 13. Print Output and Calculate EPNL (PNTT8).

. . . .

.

13

5

;

2

~

 \tilde{c}

Figure 3-1. Computer Program Flow Chart (Continued).

..... J

.

Figure 3-1. Computer Program Flow Chart (Continued).

4

2

.

.... . . . **...**

.

· ·

h

.4

Figure 3-1. Computer Program Flow Chart (Continued).

16

. . ..

-- 2

. •

3

٩

}

Figure 3-1. Computer Program Flow Chart (Continued).

J

.

5

)

}

(

2

•

Figure 3-1. Computer Program Flow Chart (Continued).

;

. إمر

ì

19

• • ••

Figure 3-1. Computer Program Flow Chart (Continued).

Å

ļ

2

Ä

j

Figure 3-1. Computer Program Flow Chart (Continued).

Ì

١

7

Å

1

21

٩

3

4

j

-

Figure 3-1. Computer Program Flow Chart (Continued).

22

۰.,

· · · · · · · ·

4

28

PRINT ?

> CALL SUB3

CALL PNTT8

29

YES

NO

2 <u>. .</u>

J

;

Figure 3-1. Computer Program Flow Chart (Continued).

and the second states

24

b) SUBROUTINE SUB3

ς.

3

?

Figure 3-1. Computer Program Flowchart (Continued).

5

J

Flowpath (Continued).

ő

. .

Figure 3-1. Computer Program Flowchart (Continued).

. . . . J

2

۰.

.4

2

e,

١

ť

Figure 3-1. Computer Program Flowchart (Continued).

. . . . **1**

g) SUBROUTINE EXTP

Figure 3-1. Computer Program Flowchart (Continued).

h) SUBROUTINE PNTT8

.

30

. .

Ą

٠

. .

ι.

32

MARCH.

Aures . 10000 - 100 - 1-1-

• T.

5

4

1

NO FLOW CHART IS SUPPLIED FOR THE FOLLOWING ROUTINES BECAUSE OF THE COMPLETE NATURE OF THEIR DOCUMENTATION IN PUBLISHED LITERATURE

- SHKSUB
- PNLPT
- TPNLC

14 A. L. N. J.

- .

Figure 3-1. Computer Program Flow Chart (Concluded).

34

•

.....

temperature are determined, the input variables to the conical nozzle noise routine are set, the noise is calculated, and flight effects are applied if necessary. This component is then extrapolated and (if desired) printed.

The premerged noise is then calculated. The effective number of tubes and the critical angle are determined. Then the length of the potential core, X_c , the point of merging (used for cutoff only), and the radius ratio are determined. The axial location of the beginning of peak noise generation, X_p , and the critical frequency for absorption are calculated before entering the frequency loop to calculate source locations, absorption effects, and cutoff effects. These are then applied to all angles forward of critical with angles aft of critical set equal to critical angle SPL. Ejector effects are determined and applied before extrapolation and (if desired) printed. Shock-cell noise (if applicable) is determined after summing the premerged and postmerged components. It is then corrected for ejector effects and flight effects, whereupon multielement corrections are applied, extrapolated, printed, and added to the other components. The total is then extrapolated (if required) and printed, and a return is made for the next case.

The conical part of the routine calculates the conical mixing noise and shock noise, applies flight effects, extrapolates and prints them separately if desired, sums them, and prints the total; after which, a return is made for the next case.

The coannular part uses the premerged and postmerged routines of the multielement part if a suppressor is involved. Variables are set, and, if a suppressor is involved, the postmerged routine of the multielement part is entered to calculate merged flow conditions. Mixed conditions are then determined and the merged noise is calculated, extrapolated, and printed (if desired).

The premerged noise is now calculated in accordance with whether a suppressor is present or not. This component is extrapolated, printed if desired, and added to the postmerged. Outer-stream, shock-cell noise is determined, depending on whether a suppressor is present or not, extrapolated, printed (if desired), and added to the other components. Finally, the inner stream shock is computed, extrapolated, printed (if desired), and added to the other components. The total is then extrapolated as required, and printed; and control is returned for the next case.

SUB1 Subroutine - This subroutine provides SAE ARP 876 (1975 revision) conical nozzle noise predictions and determines and applies mixing noise flight effects. Use and limitations are as described in the aforementioned documents. Output from this routine is on a one-foot arc. Basically, polynominal curve fits of the data in SAE ARP 876 (1975 revision) were used. A correction was made to the predicted OASPL to increase the accuracy of the routine based on available data on suppressor nozzles. This correction amounts to +1 dB at all angles and frequencies.

<u>SUB3 Subroutine</u> - This routine resets the variables for input into the extrapolation and PNL calculation subroutines. It determines whether extrapolation is required and calls EXTP. PNLPT is called to determine PNL and OASPL. TPNLC is called from PNLPT to determine PNLT. The variables are then reset maintaining the newly calculated values.

<u>SUB5</u> Subroutine - This routine calculates sound power level from sound pressure level for each one-third-octave band, and then antilogarithmically sums them to obtain the overall levels.

<u>SUB4 Subroutine</u> - This routine places previously calculated sound pressure level and sound power level in other variable name storage for future use in the program.

<u>SUB2</u> Subroutine - This routine adds a constant value to the one-thirdoctave band SPL at all angles and frequencies.

SUB6 Subroutine - This routine antilogarithmically sums different SPL and PWL spectra to obtain a total spectra, and then sums the total PWL spectrum to obtain OAPWL.

<u>EXTP Subroutine</u> - This routine extrapolates an input spectrum to a desired acoustic range using the inverse-square law (spherical spreading), air attenuation per SAE ARP 866 (Reference 3), and, if desired, extra ground attenuation (EGA) per the routine presented in SAE AIR 923 (Reference 4). A curve fit of the 59° F, 70% relative humidity, standard-day-air attenuation is used, as well as curve fits for EGA. The routine automatically accounts for range changes from angle to angle on a sideline and includes the option of a 100-ft layer of EGA, full EGA, or no EGA as per SAE AIR 923.

SHKSUB Subroutine - This routine predicts shock-cell noise by the procedure defined in SAE ARP 876 (1976 proposed revision). Output from this routine is on a one-foot arc. The definition of D8 was varied to allow calculations for nonround nozzles. Shock-cell noise flight effects are determined and applied in this section.

<u>PNLPT Subroutine</u> - This routine sums the SPL in a given sp.ctrum antilogarithmically to obtain OASPL and uses the procedure defined in SAE ARP 865A (Reference 31) to calculate PNL.

<u>TPNLC Subroutine</u> - This routine calculated tone-corrected PNL via Section B36.3 of the FAA Noise Certification Document (Nov. 17, 1969) as a function of the uncorrected one-third-octave spectrum SPL.

<u>PNTT8 Subroutine</u> - This routine sets the format and prints the noise output from the main program. It prints the identification of the noise output and one-third-octave band SPL and PWL for 24 frequencies and 15 angles (20° to 160° to the inlet) as well as OASPL, PNL, and PNLT for each angle.

The second part of the routine calculates EPNL (if required) according to the procedure described in FAR Part 36, using PNL rather than PNLT. Times associated with given acoustic angles for a level flyover (assuming the engine centerline is parallel to the ground) are determined first. Peak PNL,

· · · ·

the associated time, and the 10-dB down levels are determined. Initial and final times are then determined by linear interpolation (using, when necessary, extrapolation using the first or last two points). The PNL history is then integrated between the 10-dB down points by summing half-second increments (determined by linear interpolation) to obtain the duration correction. This is added to the maximum PNL to obtain EPNL; the EPNL is then printed. It should also be noted that the program automatically calculates an EPNL for static sideline cases assuming a 300 ft/sec flyover velocity.

EJECTS Subroutine - This routine first determines the effect of a hardwall ejector of given geometry in terms of the reference SPL. Directivity and spectral effects are then determined. If no treatment is present in the ejector, control is returned to the main program. If treatment is present, an impedance prediction routine for SDOF treatment (single degree of freedom) is entered. The resistance and reactance of the treatment panel is determined; this yields a coefficient of absorption. The location of a given source and the strength relative to the peak are then calculated. The coefficient of absorption multiplied by the number of reflections for a given acoustic angle plus the relative source strength when summed over all sources yields an SPL reduction. This, when integrated over all angles, gives a sound power insertion loss. This reduction is log-averaged over the lower limiting, center, and upper limiting frequencies for the given one-third-octave band. The sound power insertion loss is then converted into a delta SPL for each acoustic angle and added to the hard-wall effect. Control is then returned to the main program.

3.4 INPUT DESCRIPTION

The input data are supplied through NAMELIST input format. Any number of successive cases can be run consecutively, limited only by the users execution time available. Each successive case requires only the INPUT NAMELIST. The data from preceding cases remain in storage; thus, only those variables which are to be changed from the preceding case input value need be included in the INPUT file of succeeding cases.

The input format is given in Table 3-3. The definitions of each of the input variables given in Table A-3 are given in Table 3-4. All variables are preset to zero before the first-case input is read. Only the input variables listed under a nozzle type in Table 3-3 need be input for any case. Notes on the input follow the tables. Further descriptions of input variables are given in Figures 3-2 and 3-3.

3.4.1 Notes on Input

1. The ALT variable is used as the main distance indicator; therefore, for ground static arc or sideline cases the distance of interest is input through this variable, and the SL variable is set to zero. In flyover cases, ALT is used as the altitude indicator, and SL is used as the sideline distance.

2. EGA is "Extra Ground Attenuation" as defined in SAE AIR 923 "Method for Calculating the Attenuation of Aircraft Ground to Ground Noise Propagation During Takeoff and Landing." The "100-ft layer" is defined in Figure 3 of the above-mentioned document.

.... J

3. Major nozzle dimensions are input in feet; element or ejector-treatment dimensions are input in inches. This alleviates inputting very small numbers (i.e., 0.1 inch versus 0.0083 foot).

4. Cant angles for multitube and multichute/spoke nozzles are defined in Figure 3-4.

5. The "A" variables are input as 10 if treatment other than SDOF is used. In this case RR and RX must be input.

6. The specific resistances and reactances of the treatment used in the ejector are input through the RR and RX variables. Values at the lower limiting, upper limiting, and midpoint frequencies are used. For ease of input, the program assumes the value at the upper limiting frequency of one one-thirdoctave band to be equal to the value at the lower limiting frequency of the next highest band. Therefore, only 49 values must be input.

3.5 OUTPUT DESCRIPTION

The output format is generally self-explanatory. The input is printed out using the nomenclature defined in Table 3-5. Output flow conditions follow. Finally, SPL and PWL spectra, OASPL, OAPWL, PNL, PNLT, and EPNL are printed as required.

A warning flag is built into the iterations for gamma and merged velocity. The flag message for either iteration is: DID NOT CONVERGE; and when it appears the run terminates. Gross input errors have been the only cause of this message encountered in the development of the program.

At the beginning of each run, an unlimited number of cards can be input for the run identification. (A case identification card is available before each case also). The format for each card is:

60 - Character Title Card, Columns 1-60

To enter the case section of the input the following card is required:

CASES (Starting in Column 2)

The run or case identification cards may be omitted but the "CASES" card must be present. The case identification is saved and will be printed on succeeding cases unless another case identification card is read.

Table 3-3. Input Format.

(FOR CONICAL NOZZLES)

Column (60-Character Identification Card, Columns 1-60) \$ INPUT Y9 = 1, P9 = _____, TT3 = _____, A9 = _____, K9 = _____, ALT = _____, SL = _____, U = _____, E9 = _____, V0 = _____, NFLT = _____, \$

39

• . ..

Table 3-3. Input Format (Continued).

(FOR SINGLE-FLOW, MULTITUBE NOZZLES)

Column 2 (60-Character Identification Card, Columns 1-60) \$ INPUT Y9 = 2, N = _____, RP = _____, B9 = _____, DT = _____, A7 = _____, Z5 = ____, S1J = _____, TT3 = _____, P9 = _____, K9 = _____, ALT = _____, SL = ____, U = _____, E9 = _____, V0 = ____, A6 = _____, L9 = _____, NFLT = ____, A = _____, ____, ____, ___, ___,

40

. . ..

\$

إم

41

· · · · · J

Table 3-3. Input Format (Continued).

(FOR SINGLE-FLOW, MULTICHUTE/SPOKE NOZZLES)

Column (60-Character Identification Card, Columns 1-60) \$ INPUT Y9 = 3, N = _____, RP = ____, B9 = ____, R4 = ____, R6 = ____, SS = ____, A7 = ____, TT3 = ____, P9 = ____, NFLT = ____, K9 = ____, ALT = ____, SL = ____, U = ____, E9 = ____, V0 = ____, A6 = ____, L9 = ____, A = ____, ___, ___, ___, RR and RX as per the multitube nozzle case. \$

Table 3-3. Input Format (Continued).

(FOR DUAL-FLOW NOZZLES WITH MULTITUBE SUPPRESSORS ON THE OUTER STREAM)

\$

Table 3-3. Input Format (Concluded).

(FOR DUAL-FLOW NOZZLES WITH MULTICHUTE/SPOKE SUPPRESSOR ON THE OUTER STREAM)

Column 2 (60-Character Identification Card, Columns 1-60) \$ INPUT Y9 = 6, RP = _____, DN = _____, AA8 = _____, A9 = _____, TT4 = _____, P4 = _____, TT5 = _____, P5 = _____, N = _____, B9 = _____, NFLT = _____, R4 = _____, R6 = _____, SS = _____, A7 = _____, R4 = _____, ALT = _____, SL = _____, U = _____, E9 = _____, V0 = _____, A6 = _____, L9 = _____, A = _____, ____, ____, ____, RR and RX as per multitube case.

\$

Table 3-4. Input Variable Descriptions.

.

(FOR CONICAL NOZZLES)

Variable	Note	Description
Р9		Nozzle Total to Ambient Pressure Ratio
TT3		Nozzle Exit Total Temperature, ° R
А9		Nozzle Exit Flow Area, ft ²
К9		Print Indicator: 0 = Total Nozzle Noise Only 1 = Nozzle Component and Total Noise
ALT	1	Altitude, Ground Sideline, or Arc Dis- tance at which Prediction is to be made, ft
SL	1	Sideline Distance at Which Prediction is to be made, ft (Used for Flyover Cases Only)
U		Arc or Sideline Indicator 1 = Predictions to be made on an Arc 2 = Predictions to be made on a Sideline (or Flyover)
E9	2	EGA Indicator 0 = No EGA 1 = Full EGA 2 = 100-ft Layer of EGA
vo		Aircraft Flight Velocity
NFLT		Flight Effects Indicator 1 = "Free Jet" 2 = "True Flight"

Table 3-4. Input Variable Descriptions (Continued).

Ľ

.

\$

(FOR SINGLE-FLOW, MULTITUBE NOZZLES)

Variable	Note	Description
N		Number of Tubes
RP	3	Centerbody Plug Radius, ft
B9	4	Tube Centerline Cant Angle, degrees
DT	3	Tube Diameter, in.
Α7		Nozzle Area Ratio
Z 5		Number of Rows of Tubes Counting Center Tube (if Present) as zero
S1J		Tube Centerline Spacing to Tube Diameter Ratio
TT3, P9, 1 SL, U, E9	K9, ALT, , VO	Same as Conical Nozzle
A6		Ratio of Ejector Inlet Area to Nozzle Total (or Annulus) Area (Input Zero for no Ejector)
L9		Ratio of Ejector Length to Suppressor Nozzle Equivalent Diameter
A(1)	3,5	Ejector Treatment Faceplate Thickness, in.
A(2)	3,5	Ejector Treatment Hole Diameter, in.
A(3)	3,5	Ejector Treatment Cavity Depth, in.
A(4)	3,5	Ejector Treatment Open Area Ratio
RR	6	Ejector Treatment Specific Resistance, Rayls (49 Values Required)
RX	6	Ejector Treatment Specific Reactance, Ravis (49 Values Required)

Table 3-4. Input Variable Descriptions (Continued).

(FOR SINGLE-FLOW, MULTICHUTE/SPOKE NOZZLES)

Variable	Note	Description
N		Number of Elements
RP	3	Centerbody Plug Radius, ft
В9	4	Chute/Spoke Exit Cant Angle, degrees
R4		Outer Circumferential Flow Dimension, in.
R6		Inner Circumferential Flow Dimension, in.
SS		Outer Circumferential Element Dimension, in.
А7		Nozzle Area Ratio
TT3, P9, SL, V, E9	K9, ALT, , VO,	Same as Conical Nozzle
A6, L9, A	, RR, RX	Same as Multitube Nozzle

47

Table 3-4. Input Variable Descriptions (Continued).

(FOR DUAL-FLOW NOZZLES WITH A MULTITUBE SUPPRESSOR ON THE OUTER STREAM)

Variable	Note	Description
RP		Centerbody Plug Radius, ft
DN		Nozzle Outer Diameter, ft
AA8		Inner Nozzle Flow Area, ft ²
А9		Outer Nozzle Flow Area, ft ²
TT4		Inner Nozzle Exit Total Temperature, ° R
P4		Inner Nozzle Total to Ambient Pressure Ratio
TT5		Outer Nozzle Exit Total Temperature, ° R
Р5		Outer Nozzle Total to Ambient Pressure Ratio
N, DT, A7 Z5, S1J, A, RR, RX	, B9, A6, L9,	Same as Multitube Nozzle
K9, ALT,	SL, U, E9, VO	Same as Conical Nozzle

48

3

(

Table 3-4. Input Variable Descriptions (Concluded).

(FOR DUAL-FLOW NOZZLES WITH MULTICHUTE/SPOKE SUPPRESSORS ON THE OUTER STREAM)

VariableNoteDescriptionRP, DN, AA8, A9,
TT4, P4, TT5, P5Same as Dual-Flow/MultitubeN, B9, R4, R6, SS, A7Same as Multichute/SpokeK9, ALT, SL, U, E9, VOSame as ConicalA6, L9, A, RR, RXSame as Multitube

Figure 3-2. Nozzle Types Included in the Correlation.

?

ì

>

52

÷

Table 3-5. Output Symbol Descriptions.

Symbol

Description

ARD	Suppressor Nozzle Area Ratio
AT	Area of an Individual Flow Element
A5	Merged Flow Area
A6	Mixed Flow Area
A8	Inner Nozzle Flow Area
A28	Outer Nozzle Flow Area
DUCT H	Outer Nozzle Duct Height
D5	Diameter of the Merged Flow Stream
PO	Ambient Pressure
PT8/P0	Inner Nozzle Pressure Ratio
PT28/P0	Outer Nozzle Pressure Ratio
RHO5	Density of the Merged Stream
RHO8	Density of the Inner Stream
RHO28	Density of the Outer Stream
то	Ambient Temperature
TT5	Total Temperature of the Merged Stream
TT6	Total Temperature of the Mixed Stream
TT8	Total Temperature of the Inner Stream
TT28	Total Temperature of the Outer Stream
U5	Fully Expanded Merged Velocity
U6	Fully Expanded Mixed Velocity
U8	Fully Expanded Inner Stream Velocity
U28	Fully Expanded Outer Stream Velocity
W6	Mixed Stream Weight Flow
	13
PWL	Sound Power Level, dB re: 10 watts
OASPL	Overall Sound Pressure Level re: 2 dynes/m ²
OAPWL	Overall PWL
PNL	Perceived Noise Level, PNdB
PNLT	Tone-Corrected PNL, PNdB
EPNL	Static Effective Perceived Noise Level EPNdB

3.6 SAMPLE CASES

.1

Example cases for a conical nozzle with and without EGA, a dual-flow nozzle with a multitube suppressor and a treated ejector, and a dual-flow nozzle with a multichute suppressor are given. The input data cards are listed in Table 3-6 as per the format given in Table 3-3.

Table 3-6. Input Data Card Listing Sample Case.

AR SIECKMAN TASK 3 HIGH VELOCITY JET NOISE PROGRAM GENERAL ELECTRIC CO. BLDG 300 BIN 79 M.D. H77 X2261 MS -- ENGINEERING CORRELATION MODEL -- CDC VERSICN CASES CONICAL NOZZLE CHECK CASE \$INPUT Y9#1, P9#3.247, TT3#1380, A9#2.346, RP#0, K9#1, ALT#2400, U#2, F9#0, V0#350, A6#0, 19#0, A#4±0, \$ \$INPUT E9#2\$ DUAL FLOW MULTI-TUBF CHECK CASE SINPUT Y9#5, RP#1.423, DN#6.687, AA8#7.649, A9#5.083, TT4#1010, P4#1.567, TT5#1632, P5#3.278, K9#1, N#69, DT#3.672, A7#2.75, B9#0, Z5#3, S1J#2.818, ALT#320, U#1, E9#0, V0#0. A6#0, L9#0, A#4+0, A6#1.303,L9#3.952,A#4+10, RR#49*0.311, RX#-R7,135,-77,549,-69,239,-61,153,-54,949,-48,463, -43.269,-38.767,-34,611,-31.008,-27,683,-24.219,-21.620, -19.367,-17.287,-15.484,-13.819,-12.277,-10.954,-9.652,-8.608, -7.702,-6.864,-6.088,-5.370,-4.762,-4.232,-3.771,-3.342, -2.968, -2.619, -2.251, -1.970, -1.722, -1.487, -1.278, -1.077, -.882, -.704,-.515,-.347,-.185,-.010,.185,.401,.703,1.1,1.794,4.097, S DUAL FLOW MULTI-CHUTE CHECK CASE \$INPUT Y9#6, RP#.624, DN#2.671, AA8#.811, A9#1.555, TT4#1470, P4#1_490, TT5#1750, P5#3.97, K9#0, N#20, 89#0, R4#2.874, R6#2.060, SS#2.155, A7#1_75, ALT#2400, 11#2, E9#0, V0#350, A6#0, L9#0, A#4+0, \$

NOTE: The symbol # indicates an equal sign (=).

хx	ХX	XXXXXX
XXX _	XXX	XXXXXX
XXXX	XXXX	XX
XX XX	XX XX	×χ
XX X	X XX	XXXXXX
XX	XX	****
ХX	XX	××
XX	XX	. XX
хх	ХX	* * * * * *
хX	XX	$\mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X}$

. ...

يعاقب والمراج

- -

and the second
•

4

ŧ

X	x x	X X X X X	X	*****	X	X
X	X X	X	×	X	XX 2	X X
XXX	ХX	XXX	x	Х	XXX	X
XXX	×	XXX	X	XXXX	X	X
X	×	X	X	X)	X
X X X X X	X	x	x	*****	X	X

HIGH VELOCITY JET NOISE PROGRAM (CONTRACT DOT-OS-30034) 14543 -- ENGINEERING CORRELATION

AR SIECKMAN TASK 3 HIGH VELOCITY JET NOISE PROGRAM GENERAL ELECTRIC CO. REDG 300 RIN 79 M.D. H77 X2261 MS -- ENGINEERING CORRELATION MODEL -- CDC VERSION

...... HIGH VELOCITY JET WOISE PROGRAM - ENGINEEPING CORRELATION A 6 = 0°755. 1.72H 1 + 1 i 2.346 *** 11d1104** 1 OULV ARCA NIA= AT= 000.0 *** INdNI *** 1967. 14.7.5 1.726 COMICAL NOZZLE CHECK CASE -19= 2124.0001110NS JIA OF JUTER ROME <u>TA = 510</u>

ł

i

ļ

1

;

Ì

2.346

HOH4

• .

. >

3

56

ر

		 					janes a	1001 - 1 - 1001 -	LUC NOL							
							NO FO	. F 00T 9	S I NE L I A	E CAY _						-
	i			ı			νζημςΤτα	ANGLE	t what	4L F T						
Ept	5	61	43	5	60	1	64	00	100	611	0 < 1	1.36	140	150	160	Pert.
c. Ir			ດ ອີບ	50°5	40 . 4	- - - - - -	44 ° 0	65. ₽3	64 .]	56°7	7.67	θC•3	5.44	86.2	83.1 82	158.4
					99 C 4	1.44	55.64	1 2 2 4				- Pre-	1 0 1 0 1 0		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0-141-
• • •	· · · ·		بر ان ان	5 • • • •	2		7.6	5 17	· · ·	12.6	5.64	н С. С. 4 Ч	1 -6н	6 6 H	H. D	164.4
المراجع	-1	н • 9 -	F. F. 7	61.8	68.4	2.01.9	12.1	13-61	12.5	74.5	BLAD	H7.6	54.3	-90-0-	E+43	-165.2
د بن • الح ن •	4 2 • F	0.4. 0.4	0.44	5.94	70.4	2.12	73.62	14.5	74.3	74.4	82.9	ан . С	9.06	89.5	83.1	165.8
- - - - - - - - - - - - - - - - - - -	5 - 7 - 7 - 1			71.6	1 1 1		75.7	16.1	0.77	1.67	7 	89.4	005 1005		79.4	166.0
	66.1	7	- r · · /	12.4	1.1	14.5	76.5	11.5	74.1	× 0.4	P.5.	R9.3	4.04	нс. н	76.8	165.8
	54.2	і. 1	1.7	9.27	74.1	2.42	71.1	0.41	79.47	5 • CH	в с •2	C. HR	5.89	в3. н	6.67	165.4
		с т ч	3.1.		14.1	1.05		2	70	7 L				- 41 - 2	4 0 7 7	19291
AC 7	, , , , ,		70.4	72.6	14.4	5.04	6.4 F	6-11	64 64			8.24 8	9 2 4 8 2 4	5	67 . 5	163.9
1993.	r 	, 5 , E	40.4	71.1	13.7	14.9	76.2	77.2	7A. A	90.5	42.3	84.1	BOA	12.2	58.1	163.2
12:00	۲. ۲. ۲		4.7.4	10.5	12.4	13.0	1.51	16.1	77.8	74.3	80 . 5	я.[ч	17.2	68°]	52.6	162.4
167.		~ ·	۶. ۲.	τ.α	'0. '	1.41		14.3	76.1	71.5	78.1	2H 0	29.62	63°3	44°-	1×1 1
2500	10 41		4 C 4 C 4	к н	A H A				14-0	12.1	2252	494	63 P	8-14 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		150.5
1151	6.12		51.7	5.0		62.7		64 B	5 - 5 - 5 - 5 - 5	67.1	5° 54	54 B	56.5	617	16.8	158.2
4001	15.3	11.4	42.4	107	53.4	56.1	5.75	5 × 5	60.2	eu -	58.3	56.3	46.5	29.3	-1-0	156-9
5.25.3	~ 1	3		4.1.7	4.8.5	1.1.7	52.4	2.44	4°55	ر ، د	C•[5	ປ ເ ປ	34.6	P.0.5	-12.5	154.5
• 4 - A •	5.67-	¥•	2.00	۲. ۲		45	42.7	4].5	44.4	0.64	4.0.3	14.1	23°0	2 . -	45.4	154.1
H C C	- 14 5	H. 1.	-4		- L'	21.2	25.4		ر ب ر بر	20-22		-1-51	2-2-	-1-25-	2.48-	2.251
1.50	0°451-			н. Н. н. с.			~ • •		- 3 c 5		ſ,					
Put Put	11.1								9-96	0.46	100.7	103.9	6.41	4.00	E 15	
1.149	17.1		17.6	RC. J				5	4		100.7	103.9	104.0	100.7	6.19	

The VELOCITY JET WILSE PROPARM - ENGINEERING CORPERATION

i

ţ

FPNL= 102.9

-25---21-0 -1133-R -21-2 -21-2 -21-2 -21-2 -21-2 . . . -33.9 -33.9 100.5 104.4 519 OF GREE STANDARD DAY ACOUSTIC ANGLE FROM INLET CONTEAL TOTAL NOISE 6.0 FOOT SIDELINDE 1:0 FGA į . c ۔ ر € 10 L

ימיוועל ארביים יישראלעריים – אסאיוויסט פגוווא בארבאינואי בייסר מיווער ארבאינואינעריים אוווער אוואין ארבאינעריים אווויא

EPNI = 1(+.5

4.66 00.7

4.0.5 2. 5

A R = 36 S = 1 1**.**728 2.346 # ;> · QUJV APEA (·IA= 000 • 000 ∆ T = *** [IIdN] *** *** ! 11/11/1-5** • • 397
 T:
 514.
 2
 14.7.2

 T:
 13.4.
 214.6.7.2

 T:
 13.4.
 214.6.7.2

 T:
 14.6.7.2
 24.7.2

 D:
 14.7.2
 24.7.2

</tab 1.72A CONTEAL MOZZLE CHECK CASE ヨエロエロ JIA OF OUTER HOWE

HIGH VELOCITY JET ADISE PROGRAM - ENGLATION

5

) ١

•. .

2.346 JA= 21P4.1 CONDITIONS

.

i 1

+

.

4Ì

60

ر

FPF 70 FPF 70 FPF 70 FPF FPF 70 51 51 51 51 51 FPF 51 51 51 51 51 51 FPF 51 51 51 51 51 51 FPF 51 52 50 51 51 51 FPF 51 52 50 51 51 51 FPF 51 51 51 51 51 51	2215 (HI CK CASE 2215 (HI CK CASE 0 COULD 0 C								
FF 20 FF	2.001 2.002 2.005 2.								ļ
FPF 20 30 40 5 50 0.0 FPF 20 30 40 5 60 70 90 FPF 20 30 40 5 60 70 90 FPF 55.4 55.4 50.4 50.4 50.4 60.4 FPF 55.4 57.4 50.4 50.4 50.4 FJ 55.4 50.4 50.4 50.4 50.4 FF 70.4 70.4 70.4 70.4 FF 70.4 70.4	2-100, € - 100, € - 100, € - 100, €								1
FPF 70 510 FPF 70 57 FPF 70 57 FPF 70 57 FPF 70 57 FPF 57 73 FPF 57 73 FPF 57 73 FPF 73 73 FPF 73 73 FPF 73 74 FPF 73 74 FPF 74 74 FPF 74 74 <		ישר הן אן זינפ דיי							
FPF 20 30 40 519 60 70 80 FPF 53.6 -6.3 54.6 56.3 70 80 FJ 55.4 59.2 60.4 52.8 60.4 66.3 FJ 55.4 59.2 60.4 62.8 64.3 66.3 FJ 56.4 59.2 60.4 62.8 64.3 66.3 FJ 56.4 59.2 60.4 62.8 64.3 66.3 FJ 56.4 57.1 62.8 64.3 66.3 FL 67.3 63.4 67.1 64.2 66.3 FL 67.4 57.1 64.2 66.3 74.9 FL 67.3 67.4 69.8 71.4 74.9 FL 67.3 71.4 71.7 74.7 74.9 FL 67.3 71.4 71.7 74.7 74.7 FL 67.3 71.4 71.7 74.7 74.7 FL 67.3 71.4 71.7 74.7 74.7 FL 67.4 71.4 71.7 74.7 74.7 FL 67.4 71.7 71.7 74.7 74.7 <td></td> <td>001 LAYER E</td> <td>INE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		001 LAYER E	INE						
FFF 20 35 40 F1 51 51 5 6 70 80 F1 51 56 5 6 70 80 F1 56 52 60 51 6 70 80 F1 56 52 60 51 6 70 80 10 58 52 60 51 6 70 80 10 50 72 52 6 71 6 6 10 50 72 52 70 70 70 10 50 72 52 70 71 70 10 50 6 71 6 71 70 76 67 70 70 70 70 70 76 67 70 70 70 70 70 76 67 70 70 70 70 70 76 67 70 70 70 70 70 76 67 70 70 70 70 70 76 70 70 70 70 70 70	* 519•l	JEGREE SIAM	APD_DAY			с 1 1			
FPF 23 30 40 5 60 40 5 60 40 FU 55.5 59.5 50.5 50.4 51.5 52.8 51.5 56.3 FU 58.0 70.2 50.4 51.9 52.8 51.4 56.3 FU 58.5 50.5 50.4 51.9 52.8 51.4 56.3 FU 57.6 52.8 51.4 51.4 51.4 56.3 FU 57.6 52.8 57.6 57.7 54.4 FU 57.6 57.8 57.1 57.7 72.9 FU 77.7 77.4 77.7 74.1 75.7 FU 77.7 77.7 77.7 74.1 75.7 FU 57.0 77.4 74.1 75.7 75.4 FU 77.7 77.7 74.7 75.7 75.4 FU 77.7 77.7 74.7 75.7 FU 77.7 77.7 74.7 75.7 FU 77.7 77.7 74.7 75.4 FU 77.7 77.7 74.7 75.7 FU 77.7 77.7 74.7 74.7	ACOUST (ALGE FROM	11.1.5 T						
E. S1. -5.3	0H VL	90 100	011	120	13-1	140	۲ŋ I6	D PWL	
1 5 7 1 <td>FG.5 F4.3</td> <td>45.2 53.</td> <td>ς 65.ε ε</td> <td>73.2</td> <td>79.8</td> <td>73.7 7</td> <td>.г., н2 1 н2 1 н2</td> <td>-151 - 5 - 151 - H</td> <td>3 0</td>	FG.5 F4.3	45.2 53.	ς 65.ε ε	73.2	79.8	73.7 7	.г., н2 1 н2 1 н2	-151 - 5 - 151 - H	3 0
15: 53.5 53.5 54.4 55.5 57.1 54.5	Flet DDel				84 U	1.6	н 6 н4) C
146 61.4 62.4 67.4 64.5 60.4 71.4 75.6 61.6 61.6 67.7 69.5 70.1 72.9 75.7 67.8 66.8 70.4 71.1 71.1 72.9 75.7 67.8 66.9 71.1 71.1 71.1 72.9 75.7 67.8 76.9 71.4 71.1 71.1 75.1 75.7 67.8 70.9 71.1 71.1 71.1 75.1 75.7 75.8 71.6 71.6 71.1 75.1 74.7 75.7 71.4 71.5 71.4 75.1 75.7 71.4 71.6 71.4 74.1 75.1 74.7 71.4 71.5 71.4 74.7 75.4 75.6 60.9 71.5 71.4 74.7 74.5 75.9 71.5 71.5 71.5 72.9 74.5 75.9 71.5 71.5 71.5 74.5 75.9 75.9 71.5 71.5 71.5 74.5 75.9 75.9 71.5 71.5 71.5 74.5 75.9 75.6 51.4 51.5 51.5 51.7<	1.7.2 54.4	7(8 70	0 72 0	19.3	85.K	1 1.90	9.1 H4	·1 164.	4.
166 61.6 67.2 67.5 69.6 70.1 72.9 750 67.4 76.5 69.4 71.1 71.1 75.0 750 67.8 76.9 57.4 75.1 75.1 750 67.8 76.9 71.5 77.1 75.1 750 77.8 77.4 77.1 75.1 75.7 71.4 70.5 71.6 75.1 75.7 71.4 70.5 71.6 75.1 75.7 71.4 70.5 71.4 74.1 75.7 71.4 71.6 71.6 74.1 75.7 71.4 71.6 71.4 74.1 75.6 70.9 71.6 74.1 75.4 75.6 56.9 74.1 74.1 74.5 75.6 56.9 74.5 74.5 74.5 75.7 71.4 71.5 71.6 74.5 75.6 56.9 56.9 56.9 56.9 75.7 71.5 71.5 71.5 72.9 75.7 71.5 71.5 71.5 74.5 75.7 71.5 71.5 71.5 74.5 75.7 71.5	- PE-9 11-4	17 E.SI	H-11-H	H.O.	B6.9 E	3 5 61	<u> 64 - 5-9</u>	<u>.291</u> L.	~
700 62.6 76.0 58.4 69.4 71.1 71.1 71.1 74.1 3150 67.8 76.9 59.4 70.6 71.6 71.1 71.1 75.1 3151 67.0 71.1 71.6 71.6 71.1 71.1 75.1 3151 67.0 71.1 71.6 71.6 71.1 75.1 57.1 71.1 71.1 71.6 71.6 75.1 57.1 71.1 71.6 71.6 75.1 57.1 71.1 71.6 71.6 74.1 57.1 51.8 71.6 71.6 74.1 56.9 56.5 56.3 71.5 71.6 70.0 71.6 71.6 71.6 74.1 71.6 71.6 71.6 71.6 72.9 71.6 71.6 71.5 72.9 74.1 71.6 71.6 71.6 71.6 72.9 75.9 41.4 74.5 56.5 57.9 75.9 41.4 74.5 56.5 57.9 75.9 71.7 72.9 71.7 72.9 75.9 74.5 74.5 74.5 74.5	10.1 72.9	13.8 73.	15.6	82.2	R1.7 R	8.0	85 1 82	•0 165. 2 165	د د
315 60 71.3 71.5 73.4 73.7 75.1 510 60.9 66.7 70.0 73.1 74.1 75.1 510 60.9 66.7 70.0 73.1 74.1 75.1 55.9 55.5 69.3 71.6 73.4 74.7 74.1 1003 56.9 55.5 69.3 71.6 73.4 74.7 1203 56.9 54.7 70.0 73.4 74.7 74.5 1203 56.9 54.7 70.4 71.5 72.9 74.5 1203 56.9 54.1 70.7 73.4 74.5 75.9 1203 56.9 54.1 71.5 77.4 74.5 75.9 1203 56.5 54.7 70.4 71.5 77.9 72.9 7233 41.4 56.5 57.1 57.9 57.9 57.9 7350 25.4 41.6 77.7 50.4 74.5 77.9 750 25.7 57.9 57.6 57.9 57.9 57.9 750 74.7 57.4 41.6 74.7 57.9 57.9 750.6 74.9 57.4 57.7 <td>72.8 75.0</td> <td>75.0 75.1</td> <td></td> <td>нј. Г 83. г 8</td> <td></td> <td></td> <td>6.4 78</td> <td>J I É É</td> <td>20</td>	72.8 75.0	75.0 75.1		н ј. Г 83. г 8			6.4 78	J I É É	20
4(1, 5, 7) 7(1, 4) 7(2, 7) 7(4, 1) <td>13.7 75.1</td> <td>16.6 71.</td> <td>19.2</td> <td>H4 .3</td> <td>нн . 2</td> <td>R.4</td> <td>4.7 75</td> <td>4 16.5.</td> <td>α</td>	13.7 75.1	16.6 71.	19.2	H4 .3	нн . 2	R.4	4.7 75	4 16.5.	α
5.2. 47.1 71.3 71.3 71.3 71.4 74.7 74.7 5.10 56.9 56.5 56.9 75.5 71.4 73.7 74.8 75.4 1203 56.9 56.5 56.3 71.6 73.4 74.3 75.4 1203 56.9 56.5 56.5 56.3 71.6 73.4 74.5 1203 56.9 56.1 64.3 71.6 73.4 74.5 1575 51.8 71.4 75.7 73.9 75.2 1575 51.8 71.4 75.7 73.9 72.9 7579 47.4 74.7 74.5 74.5 74.7 7593 47.4 74.7 74.5 74.7 72.9 7593 75.4 71.5 77.4 74.7 72.9 7593 75.4 54.5 67.4 71.7 72.9 7593 75.4 41.7 55.6 55.0 55.1 7593 75.4 41.4 72.4 51.4 54.5 7593 75.7 75.9 75.9 55.6 55.1 7504 71.4 72.4 47.4 51.4 7504 72.5	74.1 76.2	77.2 78.1	л ни . 1	A4.3	4 U.44	7.7	2.6 72	.4 165.	3
530 56.9 56.5 59.4 70.0 77.1 73.4 74.5 1203 56.9 56.5 59.4 71.7 73.4 74.5 1203 56.9 56.5 59.4 71.5 73.4 74.5 1203 56.9 54.1 54.5 54.4 71.5 72.4 74.5 155.4 57.1 50.4 71.5 72.4 74.5 2337 41.4 54.5 54.5 54.5 54.5 2337 41.4 54.5 54.5 54.5 54.5 2350 24.7 41.5 72.8 72.9 3501 35.4 54.5 54.5 57.6 55.9 5501 35.4 41.0 47.5 57.6 57.6 5307 -11.7 1.4 14.2 54.6 54.6	74.7 74.4	11.4 74.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R4 . 1	4 (• 7 ¥	12.1	3-2 64		
1303 56.9 54.1 74.1 73.7 73.9 75.2 155. 53.4 1.4 1.4 65.6 64.5 63.4 71.5 72.9 155. 53.4 1.4 74.7 64.5 64.4 71.5 72.9 233.4 41.4 64.5 64.5 67.1 56.7 72.9 74.5 233.5 41.4 64.5 67.1 56.5 67.4 72.9 3150 24.7 61.5 72.5 55.0 56.1 4300 8.6 74.6 74.6 57.6 57.6 5301 17.7 12.4 42.4 57.6 56.7 54.6 54.6 54.6 54.7 55.0 56.1 54.7 52.6 55.7 55.0 56.1 54.7 52.4 57.7 57.6 57.4 55.6 55.7 55.7 55.1 56.4 55.6 57.7 12.4 47.4 57.4 57.4 55.7 57.7 12.4 47.4 57.4 57.4 55.6 57.7 14.7 74.7 57.4 57.4 55.7 57.7 57.4 57.4 57.4 </td <td>76.57 75 C</td> <td>76 0 78 0</td> <td>1.02 1.02 1.02</td> <td>2.58 2.68</td> <td></td> <td></td> <td></td> <td>. В 163.</td> <td></td>	76.57 75 C	76 0 78 0	1.02 1.02 1.02	2.58 2.68				. В 163.	
12*: 51.8 11.4 54.5 59.4 71.5 72.9 74.5 16:5: 49.2 24.7 54.6 64.5 51.6 72.5 233: 41.4 44.5 54.5 54.5 54.5 54.5 2503 25.4 44.5 54.5 54.5 54.5 54.5 2150 24.7 41.6 47.5 55.6 55.6 55.5 400 8.6 24.6 41.6 47.5 55.6 55.1 510: -7.6 70.1 70.4 47.5 55.6 55.1 510: -7.6 70.1 70.4 47.5 57.6 51.4 510: -7.6 70.1 70.4 70.4 56.4	73.9 75.2	76.2 77	19.5	81.3	82.9	1.6	0.8 56	1.163	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.45 74.1	75.1 76.	г. ч.	74.5	87.6 1	15.9 F	τ.	•6 162•	J L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.2 72.2	73. J 75.	1 76.4	0.11	1.11	2.0	1. C A		្រែ
3159. 24.7 41.5 50.3 55.6 59.3 61.5 62.5 4900. 8.6 29.8 41.0 47.7 52.2 55.0 56.1 58002.6 20.2 34.4 42.4 47.5 50.6 51.4 530011.7 1.4 14.9 24.9 35.4 34.1 45.4	65.9 66.9	68.0 69.	3.70.6	70.1	69.7	2.4	9.4 27	1 159	5
400° 8.6 79.8 41.0 47.7 52.2 55.0 56.1 580° -2.6 72.2 35.4 42.4 47.5 57.5 51.4 530° -11.7 1.4 14.9 24.9 35.4 34.1 45.9	61.5 62.5	63.7 65.	5 55.9	64.7	63.6 52.6	1.5.1 4	41 E.0	•5 158•	~ <
	55+7 56+1	57.1 59.	2065 1	1 8 15	2 1 - CC			9 155	l v
		42.4	4 4 7 T	39.1	35.1		55- 6°I	.4 154.	
	22.1 24.1	24.0 27.	5.25 1	20.1	- B.EL	3.6 -	3-8-50	<u> </u>	2
19000134.2 -71.7 -38.9 -21.0 -8.2 -1.0 2.2	-1.9 2.2	4.3 5.	0 1.0	- - -	-15.9 -	1	7.7 -153	• • • • • • • • • • • • • • • • • • •	c •
0145PL 72,2 76,9 79,8 81.7 81,1 84,4 86,1	84.4 86.1	87.1 AH.	C 80.0	6° 60	0.44	5 0 X	16 9°/		
PNL 75.7 -1. 75.4 H5.4 H4.1 90.4 91.7	91. 4 93.2	94.0 544	0 × 1 × 0	9448					
		- CF - F - 76		r		1.•C		•	
1447 1477 14777 1477 1477 1477 1477 14777 1477 1477 1477 1477 1477 ۲hd 12.4.51 1 33.4 4.9 40.44 92.29 2.25 2.55 7.55 26.5 ŝ • 2401.65 FORT ALTITUDE • 6.0 FORT STOLETE • 100 FOUT LAYER FOA • 519.0E4PEE STAMDAFD DAX ACOUSTIC ANGLE FROM PULLI ינייונער איתו.ו 00 99.5 ÷ o n a de conna - Non de concerte de la constante 75 1 50 5 62 1 62 4 1.1.1 н н 90-1...1 ر ج ł 5°.1 e gig T. 1 3 4 U M **، د** 2°2 а -.* ∼ • رن م ا <u>ي</u> 5 125. ROCO. ICCO. JASEL JASEL ĩ

- FRINFERIG COUNTLATOR

UF L NUTSE FRANCHAN

VEL 0.0 11-X

нJ

1

1

ţ

i

רייללוב נארוא נגיב

12.71.4

62

FDN1 = 101.0

, > بانتدافا باللا فالحالين ويشوقهم الانطالية التر فتقعلا والتر

Γ +](Δ) - 0)+221 + - 0)+1 (K - GΔ' F

ACOUSTIC ANGLE FOON THEFT

T

۲.er	5.001		1 - 1 - 1	164.5	. t65.5	144.2	166.7	1.121	1+4.2	1-9.1	170.0	16.4.3	164 . 5	157.R	167.0	166.l	165.2	164.]	162.A	161.1	144.9	158.6		155.7	179.7	
ن ۲	ж ? •5		P4.3	ч ч - 2	2-63	R2.3	1.1.	1.61	70.4	16.5	73.8	70.2	66.1	61.9	57.4	54.4	1-24	41.5	29.1	121	1.4	-27.4	2-2-2	-136.0	92.3	
ነዳሳ	Я с , /	8. 7. 5	нн 6	40°5	-L-68	9. ня	чв. 2	P7.3	7°.7¤	R4.7	A2.7	A0.0	17.0	72.6	6.9.5	6.44	60.2	54.6	46.6	- 4.4	54.3	н Ч	-25-8	-69.7	98.l	
140	H.J. 7	. Ph. 0	47.6	н₽. н	-1-P4	90.1	90.2	- 00 - T	a • 0 1	0.04	P7.79	45 . 8	P3.7	81.2	74.2	74.6	6.07	64.8	57.5	47.5	40.9	24.5		-35-3	99.6	
130	74.8	- F2-J.	2.44	н. чя	_E.1A_	н, , ны	С°, 2 н	0.04	4 no	91		R7.9	н6. ≥	<u> </u>	я, в	7.45	1.5.1	79.65	44°4	56.3	۲. . ۲	36.5	15.3	- 14.4	66.1	
120	73.67		79.3	80 .4	82.6	4° 78	84.0	87.3	нч.0	H7.1	Pr. 1	H5.3	н3.н	R2.2	д . ря	7н°н2	76.2	12.0	Υ . Υ	58.9	57	41.1	22.2	7 • 7 -	94.4	
11	55.5	-2-59-	0.11	74.6	16.3	79.6	н•Iв	H3.4	H4.5	H • 7 1	1.24	H.2.H	а . Г ч	A. LH	1.14	40.2	17.1	73.4	€. [₽] €	61.5	56.4	45.3	27.1	4.6	91.5	
100	65 . 3	<u> </u>	73.8	13.4	75.9	78.5	HO.4	A1.5	P2.1	9 . 14	61. 3	R1.5	A3 . 2	в] , 9	€•сн	3.91	76.4	73.6	68.9	52.2	1.1.1	4.72	30.1	6.1	32.5	
c: プ	64.5	64.9		1.5	75.7	77.8	1.61	7.67	6.61		я].4	6.48	85.3	5 3 .4	н. Т	7H.R	76.5	73.1	4°.4	51.7	51.3	46.5	31	ч.,	4.56	
51	いっしん	5 8 9 9 8	71.5	13.2	75.1	74.9	77.8	78.2	14.1	н, "ч	24.94	47.2	45 ° 2	82 . 5	1°1	79.3	74.5	73.4	68 . 5	61.7	57.1	46.0	2.4.5	7.4	93.2	
	• • • •	1. 1.		7. 4	12.5	74.2	75.5	14.3	11.7	14.3	н л.	5.18	л.7н	83.5	47 i	74.6	77.5	14.0	54.4	4.54	515	46.61	н • т с	ي. د	43.2	
۴ () ۲	62.3	5.54		20.4	71.	11.1	74.4	75.1	74.	1.01	5°01	AP.1	າ 1 1	Р. Г	1.	70.1	74.15	1.11	A B A	1.03	1.55	1. J	74.6	۲. ۱	93 . 4	
٦	i.l.	5.4.5	H	5.63	1.1	72.0	0.61	a. C1	1.0.1	F.14	н с . 1	R7.7	1.4.4	H2.7	5.3	74.5	75.7	71.4	45 . 9	57.5	51.4	0 * HZ	17.1	0.11-	93.6	
0 4 5	60.6	63 . 5	65.7	F1.4	 	76.4	71.3	72.3	1	6° 2a	96.3P	15.3	د ر ،	1.12	79.3	Ú•→2	1.51	68.0	61.5	51.9	40.4	~ * e c	4.6	T.HC-	91.7	
۲ ۲	б "н-	~1.7	0	۰.5 . ۲	. 7.1	1.1.1	. . 	20.02	14.2	2. - 1		0.04	19.65	17.8	14.11	۲ ۰ ۱/	-1.5	6 14	9,1 ,0	ч . Г.	3	13.44	-17.0	2.0.1-	1.6.	
<u>ر</u>	56.5	5°.5	F . 1 . 7	42.4	÷ , , ,	6.44	ر . ۲	7.73	71.1	17.1	79.1	1.11	14.]	6.17	1 a 4	5 ° E4	51.2	49.5	19. 1	21.2	< 01	-19.7	<" 74-	-125.4	1,42	
FLT >	• 11 17	·).	- - - -	• •	12:	160.	20.0	25.0				×30.	BCC.	1000	1750	1600.	-000	2500	3150.	4000	501%	。こうヒチ	- C 2 2 H	10000	JASPI.	

EDNL - 164.4

HIGH VELOCITY JET LOTSE PLOGPIM - ENGLIFERING CORRELATION

>

.

ļ

Double Elign of Literations one Ch. CAS

*** (DdNI ***

ා • ද :: > 107.4 1.333 · J. J. 3.212 =.)av £ 40 € S 1.567 CANT= EUFOTOR AREA JATIO CANANETER= 5.6H7 067.21 = 29 =Ca/821c . . =.d/~lc ヨントヨ 7.44 40716 - 11166 - 111= 18= 7.649 רי ע JIA OF TURFS= 20 OF TURES= TT28= 1632. TS= 519. TTR: 101. רוה הו∆=

641. ULICI HE ļ *** (I)d1(I)*** . ۲. OUTER NOZZLE EXTL CONDITIONS HIDSOHA 2. P4F5 1201

į . 7750. INNER NOZZLE FXII CONDITIONS JA= 1209.4 PHOM=

COANTHLAR MOZZLE FLOW PARAMETERS

:

,

.

29.978 A5= 6.178 ມ ເມ • 6 5 5 -₽НОЧЯ MERGED FLOW CONDITIONS 15= 1r24.5 RHOS

11XFC FLOW CONDITORS 16= 1269.4 116= 1016. WA=

37.627

A 6 =

2427.74

į

	1	, i				i t T	Put	155.1	154.9	154 ° D.			152.5	151.8	150.9	149.9				143.6	142.0	140.5	- 2-911	137.7	136.3	- 1-471	2°661			163.4		
	1 1 1						160	102.9	101.7	- 7 • 00 F		44.3	2 26	89.9	87.5	н4 . 9		8/1 e l	0 ° °	73.0	70.5	64.3	66.1	63 . 9	61 . 7	ר לאצין	5 ° 4	ς Γ.	474	104.0	106.2	
1							150	102.5	101.8	100.8		96.6	6 76		1.19	0.64	0.14	H4 • 4		7 . a L	75.1	74.0	71-9	6 9 6	67.1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28	54-0	108.7	10P.7.	
							140	100.2	100.1	H 66	າ ສຸດ ສຸດ ເ	9.79	4 40	95.1	1.69	0.59	4°06	HH C			с I d	19.1	77-0	74.8	72.4	2001	67.7	5 6 6 9	E o C y	108.2	110.5	
NO11							130	0.10	4.19	91.0	3 ° 6	96.7	04		94.2	6.56	4.16			20. 20. 20.		C •14	74.4	77.3	75.0	-2.67	7	67.3	61.	106.9	6°011	
		,					120	93.7	94.5	- 1- 36	4 U C	ې م	05.1	5.5	93.H	6°26	a 16	406		1. 18 1. 18	H4.3	R2.6	R0.8	78.8	76.6	14.9	12.4	6.9	65.4	105.4	110.7	
4F F U Lt: C					YAU C	111	110	90°H	d.19	-92.6	د. 102	2 	010		92.7	61.9	.16	0.00	1.8H		94.	82°3	. A0.5	78.5	76.3	74.5	71.9	н ъ .н	65.2	103.7	109.8 109.8	
				JAC	STANDARI	F DUM IN	001	2.45	6°6H	20.1	2°16			v 16	6.06	90.2	4° 68	1 HH 4	L.18	20 20 20	8 3 - 1	A LA	H0.0	79.3	76.3	7427	72.5	69 . 6	60 e4	102.0	104.4 168.4	
w⊄d•)∩ai	CASE		IS I ON R	1001 0	3A JEGREE 1	ANGLE	49	R7.H	84 . 6	H5 -2	ר בי הי מי	- 1		001	84.7	H7.4	A7.1	HA C	84°B	6 C C C C C C C C C C C C C C C C C C C		1.67	2.17	75.7	73.7	72.1	н 69	r7.0	h3.7	100.0	106.1	
1 15 LON			NFPG	921 e	519-1	COUST 10	Ĩ	6.48	н7.3	H7.9	С. нн	х а х а			A7.4	X6.5	дс. д	R4 . 7	н, С. Н	60 00 00 00 00 00		H 11	76.2	74.4	12.4	7.0.8	ът . 5	45.7	45.4	94.7	H 401	
1 J T T T T	11 - 1 1 i		Ŧ	-			- 7	A5 5	80.3	R6 9	1.	υ 1 α			H5.4	H. F.	a• 58	H 3.7	ڻ ۽ ح		2	л н Н	5.11	73.4	71.4	69.H	67.E	64.7	41.4	1.10	103.A	
	FL.Ow ref						4	R4.H	н5.6	<u>R6.</u>	ж Т С				85.6	1, 911	• 7 H	۰L م	1.14	30 20 20		15.	74.4	72.6	70.5	59. L	65.5	5 . 54	60.5	97.	103.1	
۲	₩ vi						U	R4.1	84.99	×5.5	ת ני	н6. С		1. 1 1. 1 1. 1	84.9	H4.]	2.14	2.54	91.6	7.97	1 1	75.2	73.6	71.8	69 . R	6.8.3	65.0	5.54	59.9	96.2	102.3	
							04	A.1.4	84 4	H4.4	บ ช บ	ປູ ເ ປີ ເ ຊີ 3			84.3	н 7. 5	1.54	4.19	A0.4	1.67	10.72	74.5	6-12	71.2	69.2	67.7	50°4	42°4	59.3	95.7	101.7	
							U ł	2 ° ° F	С Н	14.5	H 7.	1 1 1 1 1 1		1. J J J J J J J	н Э в	13.0	.2.1		14°8	78.6	15. 6	14	12.5	10.1	6A.7	5.74	0.44	1 ,5,7	а• <i>ч</i> ,	95.2		
							-	A2.7	A.] 4	84.0	R. JA	ດ ເ 			83.2	P 2.5	4.[H	ປີ ເກ	19.3	78.0	0.0	73.5	6-12	1.1	69.1	66 6 6	44.4	6 1. 5	54 .]	1.49	100.5	
			-				6 10 1	50.		90 -	• 00 I	ריי יייי ייי		200	315	4 3 6 4	- - 	÷.;-	60G	1030.	1227	2002	25.25	3150.	4000	5000	6305	A.JUL.	13064	OASPL	PNL PNI 1	

• .

When WISCHIN SET BUISE PROCHAM - ENGINEERING CORFETATION

,

5

\$

١

?

đ

ι •

Ļ

• •

> 1 . L

> > t

į

is at flow the Harton Cherk Cash

1 · · · · · · iii ł İ

 Dury March P. 17156
 <u>3.25.0 ± 001 AFC</u>
 ± 0.0 FCA
 ± 10.0 FGA
 ± 510.0 FGA
 DAY •

l i

4

:

1

ļ

i.

1

ļ

.....

i

Ì

ł 1

ACAUSTIC ANGLE FOUN INFT

i 2

ł

i

!	ۍ	•	~	۲.	L.	نت	~	~ ,	<u> </u>	a	~	-	~	۰.	£	t	1	d	~	~	ა თ	÷.	J	: 5	2		•
- PHL	132	133	135.	137.	139.	142	144.	146 .	τ 1 τ μ	• }{	- - - -	154.	156.	157.	T-b	15.	154	156.	154.	151	-149-	147.	147.	150-	167.		
1-0-1	71.7	12.7	74.2	75.A	17.7	14.4	82.0	2.21	יי אי י	x . 11	α•:?	x . 27	0 4 . P	94.6	2425		4.7.4	444	5.56	6°51	- H7.4.	F4.3	н.н	41.5	105.7	117.4	117.4
150	12.2	73.3	1.45	74.4	7.41	-12.5	P2.6	8 . 4 a	A7+0	Е. рн	6.19		95.1	94.6	1.19	94 °	i'an	34.5	7°16	90.5	B. 0.	H . 4A	R2.4	82.4	104.2	11.0.0	119.0
140	72.A	73.8	75.3_	74.9	1.14		F3.1	P5.3	P7.5	а•6л	615	9 . 6	95.7	97.1	96.3	5.60	9A.7	96.5	0.46	0.16	- 88 S	₽5 . 3	9 . 54	2.5	106.7	118.5	118.5
122	13.6	74.7	76.1	a.11	7.4	7 • -	84.0	P6.1	P. 4	41.7	1.56	44.7	94.5	94.0	1.99	100.0	94 ° 2	416	94.8	¥° 15	F944	F6.2	я].в	93.4	107.6	119.3	119.1
120	75.6	76.6	78.1	79.7	4.[a	н 6а	A5.9	R. I	90.3	92.6	94.7	96.6	98.5	6°66	101.1	9.101	101.4	99.3	94.46	43.H	61.3	нн. 1	¥5.7	85.3	109.5	6.141	121.2
	77.4	10.4	19.9	2. 2. 2.	43.4	A13.F	47.7	6.69	1.54	7*75	96.44	94.2	66.9	101.2	192.0	102.4	1=1.3	98.6	95.3	9.19	9.64	х•1т Т	C • 7 H	HG .5 -	110.1	121.3	121.2
100	73.4	15.2	76.9	14.1	A0.F	а 	84.9	A7.0	1.64	5.1c	4 3. 2	6 • 45	96.5	7.16	98.5	6° HD	97.A	95.1	6.16	88 . 5	85 . 8	н", н	41.2	в, ся	106.6	117.9	11.9
Û9	1.01	12.6	74.2	1.1	0.18	4.7.1	H4.9	87.1	89.3		43.1	74.6	96.0	96.9	4.79	5.16	96.1	1.64	R9.7	86.0	H3.I	6.41	14.2	19 A	1.15.6	116.4	116.4
C 7	64.0	70.5	1	ر ر	7 4 5	4°.45	6.04	AC. 74	H7.2	C. U.H.	0.19	92.6	93.8	94.7	95.2	6.00	93.9	6°0	A7.5	А] . В	9 . A	1.17	76.0	71.6	103.4	114.2	5.2[
7	45.4	6.7.9	70.5		2.04	74.3	с (н	4.44	14°5	2.54	1 1	4 0 77	1.16	92.0	92.5	52.5	2.10	н н 1	44.7	C. [x	74.1	74.5	1.1.1	14.7	100 7	111.5	111.5
	1.	61.5	1.1	12.02	14.1	17.	101	47	P.4. 1	- 5 H	H7.4	्र • रुभ	90.4	. 26	H. 56		10.00	• 45	97.2	74	4.[A	72.1	15.1	15.4	101.2	112.5	112.0
L	14.5	67.7		12.	74.4	J	19.2	а.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5.52	ч7.2	1 . 1 1	C. 00		6.19	C . C	4.16	C. P.4	1.61	0.02	F 1 • 2	74.0	74.6	14.1	1.6.1	111.6	9.111
4.5	54.7	. 7 .	0		7 7	5.11	19.4	и. И	r z	K R	97.2	1 a a	94.0		1.19			υ 1 α	45.6	47.5	79.5	76.2	7.17		1001		111.3
		a - 1 - 1	7		1.51	17.6	14.0	1	0 ° r	12	7.4	ц. Т	5	0 	۰ ۱	1			т С	7.1.7	74.4	14. 6	12.0	12.4	0	1.1.1	1.1.1
2	66.1	6.8.6	c 11		75.0	7	5.04	8 ° C 8	4 . 4 H	0 4 2	1.14	0.0	9.00	0.12	91.6	4	9.00	н7. г	44.7	A1.7	1.1	74.2	12.1	71 5	1001	0.011	117.9
(idu	115		• • •		,		200	255		1 2 7	יל די פי רנ		- UH	1000	1250	141		75.55	3150	4020	5520				14500	inc	JULT

יעלוויא אוליי ארודי ארוואר ארייאראינין ארייאר אוויין אוויאיין אוויאיין אוויאיין אוויאיין אוויאיין אוויאיין אווי

,

÷ ; ;

١

? ...

1

) .

•

1

n vi elem and Ll-long Coetta vi

i

		I	J - T	2°5° U	7 43.2	£ 47.0
			140	40.	, <u>(</u> ,	47.
i		•	- 1 <u>1</u>	6.11	400	41.4
		ţ	120-	ч° < 7	1 1 1	າ ເປັນ ທີ
	CAY		114	44.6	4 T . C	52.25
4015F	TANDAG	FEQ. 11	100	44.6	4H.)	52.2
(M-F) Full /	A FGFFE	ALCLE	c J	44.5	с.• 17	52.2
10042 2435	519.11	<u>con 11</u> 0	e r	44.1	47.H	51.7
r o		<	7	42.3	44.5	9 e 9 e
i		+ + +	J ¥	45.5	44.1	1.05
			ſ	42.5	46.42	50.1
			, 1	42.5	44.2	50.0
			-	5.5	1.74	6 ' h t
			20	42.5	45.1	49.9
			c 1a	50 .	ڊ ،	L a

i T

1

ļ

ייייייייייייייייייייייייייייייייייייי	۲ ۰۲ ۰۲	107.2	1.11.1	114.5	<"+[]	122.1	125.5	0.021	132.5	0.000	1.66.1	1-2-1	1 4 C • C	147.5	1.00×1	151.2	152.2	159.4	147.8	141.9	140.7	1.46	< • 1 • •	140-0	154.7		
110	9° -6	4 ~ 4	46.5	- - -	1.1.1	51.5	4122	64.7	τ. υ. 4	1.1	5.00		ม 	4.31	4 ° 1 °	1	t.	14 14 14	۱۰ /۹	1)	11.2	4. 4.	a• 	2.1.2	96.7	1.6.F	105.P
150	۲.05	43.2	47.f		τ. 4 . .	5.42	1.14	F. 74	7 • E 4	1.01	1	1.1	∕. La	1. • •	0°31	, , ,		1 • 1	J • 7 I	10°.	5. 11		·.	•	1.10	1.18.4	104.4
140	40.0	43.7	47.5	د ا ، ک	(* *)	1.1.1	12.7	а. С. А	£9.5	· · ·		- - -	۲. ر ۱		1. 2.		•		~ • • • •		1 1	•	•	1.1	۰. ب	3 * 5 1 1	3-211
115	6.1	40.22	41.4	5 • • • • •	4.13	с ч		4.4.7	7 4	71		• • •	1 1 1	́	1		••		۹.'	••••			•			111	111.2
120	ч ~ 7 ч	1 • 1 • 1	- 50.4	:	· / · ·	2-1-2-	54	ر. م	12.3				4). (1	4.00				4	3 .		•	•	•	1	1.2.1	112.1
11 -	44.65	4°-4	-52.22-	ז ש נ	5°71		T L L	70.4	74.1	11.1	•	1 .	47.4	ي. د	92.2	•	•	, I 1 I	۰ ۲	7			•			2 	, .
ر ۲ ۲	44.5	4H.3	-52.2	ي ن		51.1	τ τ α	70.3	23.9	71.4	1.04	,	Rt. 0	6 • • • •		•	1 1		74.4	1.5.1	2. 1 1 1				1.10	1.17.4	107.*
с У	44.5	с.• щ т	52.2	5. 7	د ع د	- 2014	1.52	70.2	13.7	11.2	~ .			×7.7	г.			- T • 2	ں - ب	C ° c 7	/ a /	11.4	3.7.4			л. , ,	LIF.7 -
C X	44.1	47.H	-51-7	6. • 5 5	ະ ເ ເ	£2.7	64 I	5.0.5	73.5				H	10°1	ر . د	1.11	1.1	1.2-	1.40	ч . Гч	7.4	71.	۲. ۲.	11.3	1.1.1	1 55.0] . به الارد ا
7	42.3	4-45	50.06	5 . 1.5	·`) • c	1.1.1	a 44		71.4	7 7	11.3	1 7	5.15		71.4		1		.	14.7	1 1	~	F. 1.4		5	1-5.7	1:5.2
٦ч	42.5	44.1	50.1	•		5 La	56.4	67.7	.1.	1.1.1	1	4.41	70.56	1. CH		, .	-1.1	•	~ a a	· la	,	11	1	1.17	1.56	ਸ ੈ ਗ∨ੀ	2
ŗ	42.5	46.42	(°°) (°		57.5	1.1.4	1 2 4	6.7.4	7.55	71.1	17	11.4	10.41	6° a1	14.5		^ • • • •		17.7	۲۰۱ ۲	74.5		. 17	71.2	σ•13	1. G. J	1.70.1
., 17	42.5	44.7	56.0	ر م	57.5	· · ·	- 44	< 1 ×	10.3		70	74.5	C.11	77.4	79.5	- v.	э . Го	1.10	E a	л. Т.	14.4	ر• ، <i>ا</i>	11.4	1.17	94.3	100.4	11.12
-	12.5	1-45	0" 5 3	•	о ч		1.4	+ 7 . I	(/		14.5	1.51	15.4	5.11	ບ •0 ເ	1.1.	1.1.	ر.۱۰	-5.5	6 . I -	7 • F		·1.	11.	1. 14	r 7 -	113.4
20	42.5	46.1	0 67	53.4	າ. ເ	4 4 4 4	61.9	5. 44	54.A	1.41	74.1	د•11	75. 9	74.9	40.7	С 4 1	1.10	40.4	F	с. [а	18.4	7.0.7	71	71.5	6. AP	107.4	119.5
L 10 J	50 .	ڊ، ۲۹	ja La	1	125.	16.1	260	2 U U U	115.	4	ون∙	• • •	• U V to	1605.	1250.	16.5	· 554	25.2	151.	•050•	5000	• `「」		• : 5 : •	1956(1	1:4c	UNL 1

ı

67

J

; :					L'EL	155 . 1	154.1	1 44 . 3	0°631	1521	152.9	152.9	153.5	155.6	157.0	158.2	160.0	154.7	127.12	157.5	150.2	148.3	144.0	151.0	
				1	051	102°9	101	с . н.2	96.7 36.7	4.00	91.0	90.0	- - - -	43.2	6* 76	96.4	10 H5	с • н5	200	00°C	87.5	H4.3	с • С ч	4 TH	1.011
					150	102.5	3.001	1.60	6 8 9 0	027	1.69	92.6	2°20	94.9	95.6	1.10	00	9.ap	96.4	0 • 0 0 1 • 0	AB. 2	44.4	к ? •Л	82.1	1-11-1
					140	100.2	1.001 59.8	2.69	ດສຸ ເ	0 40	- 55 - 56	94.6	94 °]	95.2	96.5	97.P	109.0	49.69	97.6	54°55	69.0	H5.7	2°C d	22.1	121.3
HOLLY					130	01.0	4.10	97.6	E • 2 5		95.7	-25.22-	ວ ໍ ນອ	1.06	4.16	6 4 6	100.9	5°01	4 HO	- 1 - 1 - 1	A9 9		2.44	1.18	0.121
13:400				-	120	4 . Co	95.2	0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95 × 20	45.4	95.4	ت ر ت ر	L 1 5	5.99	100.5	102.7	102.3	100.1	1 N 30	91.6	44.4	6°.14	F. 5	123.2
1001 P			101	111	110	• 16		11.4	о. С		1 0 1 1 1 0	95.5	6 F .		100.5	101.7	103.6	101.9	1-55	0.00	R9.2	HALI	F. 4 4.3	H5.8	111.5
4[5N] -		U A	TANUART.	L HUOL	5	0°59	0 ° 0 ° 0 °	5.10	3 C - C - C		1.59	5.66			91.4	а. С. с. С. с.		∿° ∺€,	91. 2.	5.88 5.88	86.5	R3.7	7. IA	H Je	104.5
WVRSON	C ASE	101 SE	A EtipFE S	4J-547A	() -,	α. [Σ		a . C 1	5 • 0 ° •		E.16	42,1		,	96.1	91.5	0.41	96.5	5.6	1.7A	у т н	1.18	1.01	8.05	117.R
451(.4	4 U 4 H U 4	10101 10101	513°U	<u>olinene</u>)	e I	86.F	10.11		н н н н		1 T. OK	9. 44			94.6	42.4 4	91, 7	34.40	1.10	1	82.6	1.11	2.11	19.27	ر الم
			* ¥	<u>v</u>	-	200 200 200 200 200 200 200 200 200 200	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	17.4	1.1.		• • •	AH.F	େ - ଅନ୍ତି ଅନ୍ତି	- - - - - - - - - - -	1.56	92.a	43.0	6.19		0 F. 	0.0	70.4	14.0	1	10. ° C
VFL (ł			÷,	1	 		н7.	X - X - X	87.5	яд.	ин./		1.19	45° 4	1.1.	1.10	~ ~ ~	0 (1) 	A3.3	- 6 H	5.11	7 4	
	v -				, L	94.1	2	I. I.			5 • 4 a	P7.3	c .		6.19	1.19		5.40	63.3	1 A • • • •	5 . C 4	19.1	76.5	16.	1.2.1
				• • •	•	1. Ca		۲. ۲	i i			P.1	a •		1.00	91 . 5		3**6	- 1 - 2	1 1 1 1 1 1 1 1	42.2	F. 41	76.0	75.5	
				 	•	5. 5. 5.			4 * 			6.91		•••	4.14		-	0.4	н.	4 0 • 4 • 4 • 7	• 1 ₋	14.4	رة. م ا	0	
) } ; 1				~ ~	1	(~ • • • •	R. 7	ເ .			0°28	л . 7н л	 	90.7	4°60		ະ•ີ ນີ້:	5 • C = 1	1.12	51.7	11.1	76.2	74.6	
				1	171	2	• • • •		125		• • • • •	315,	• • •		AUC.	1010		• . jud	76.00		1000 1000	6.340	•ູ່,ບິສ	• (((((DNL

•

.

-1 - FEISCITZ SET SUISE DROGRAM - ENGLOFENING CORRELATION

1

.

ase juding ase

. ۲ ". > 1.750 1.503 0.000 3.97. 1005 ן • יררי. 1 • 4 C HUPPTCH ANER HAT, WAHAMSTENE ニートイン 1244 D =]4.745 `` = 0/-21-キュハイ 0.11/1 l) T 1 • . / ... llr. · · . . . TT24= 1765. **ئار** FT-- 1-7 -JL141 DIA≡ ۹. भ त न H C H

***(111)(1 ***

5 4 111 V J אינדי ינצערב אני

37F. , #H []100 90.... **ニ**オペ ゴロ 26.3C ... 11 1 1

UNER NOZZLE EXT. COMPTIONS

; *** 520 *** JH= 1387.6

CONFICIENCE NOTZE FLOR PAURITES

;

.....

5.612 A5= • ¹54 <u>1</u>5= 2 • 173 上口に НЕК6ЕD FLOW CONDITIONS= 15= 1475.7 РН05=

AIXED FLOW COUNTINES

6.423 D C H TTA= 94A. 1469.2 л Т

1445 445.354

69

i T

$ \begin{array}{c} \text{ roll at utst} \\ \text{ constraints} \\ $	$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th> F01AL F01AL P0050 P0050 P1070 <</th> <th>нстя 1001 Al 1001 Al 1001 SI 1001 SI 1000</th> <th>111100E 0ELTEE 0ELTEE ANDAPD FOM INL FOM INTER FOM /th> <th>2011 2012 2012 2012 2012 2012 2012 2012</th> <th>0 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>11.1.2 </th> <th>1400 1400 1400 1400 1400 1900 1900</th> <th>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th>044 044 044 04 04 04 04 04 04 04 04 04 0</th> <th>PAKL 155.4 155.4 155.4 155.4 155.4 155.4 155.4 155.4 155.4</th>	 F01AL F01AL P0050 P0050 P1070 <	нстя 1001 Al 1001 Al 1001 SI 1001 SI 1000	111100E 0ELTEE 0ELTEE ANDAPD FOM INL FOM INTER FOM	2011 2012 2012 2012 2012 2012 2012 2012	0 1 1 1 1 1 1 1 1 1 1 1 1 1	11.1.2 	1400 1400 1400 1400 1400 1900 1900	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	044 044 044 04 04 04 04 04 04 04 04 04 0	PAKL 155.4 155.4 155.4 155.4 155.4 155.4 155.4 155.4 155.4
$ \begin{array}{c} \mbox{Fight} \mathbf{r} = r \left[r \left(r \right) \left[r \left(r \right) \right] \left[r \left(r \right) \left[r \left(r \right) \right] \left[r \left$	$ \begin{array}{c} \text{FUTUL ICLV} \\ \textbf{s} \ \text{FORM ICLTON} \\ \textbf{s} \ \text{Subscript function} \\ \textbf{s} \ \text{Subscript function} \\ \textbf{s} \ \text{Subscript form Initial} \\ \textbf{s} \ Subscript form Initial Ini$	42 5 5 5 58.1 59.5 5 5 58.1 50.5 5 5 57.5 57.1 5 5 57.5 57.1 5 5 57.5 57.1 5 5 57.5 57.1 5 5 57.5 57.1 5 5 57.5 57.1 5 5 70.1 7 7 5 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7 70.1 7 7 7	 r0111 r0111 r0111 r0111 r0111 r1111 r11111 r1111 r1111 r1111 r1111	101155 101155 101151	111105 DELTRE DELTRE POM INL F5.5 F5.5 F5.5 F5.5 F5.5 F5.5 F5.5 F5.	111 111 1110 1110 1110 1110 1110 1110	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111 111 111 111 111 111 111 111 111 11	140 174 140 194 194 194 194 194	150 150 10.55 10.5	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	PWL PWL 155.04 155.04 155.04 155.04 155.04 155.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \text{ port} \left(\begin{array}{c} \text{ port} \left(\text{ f f onl All 1001} \right) \\ \text{ constraints} \\ $	600 600 600 600 610 600 600 600 610 600 600 600 610 600 600 600 610 600 600 600 610 600 600 600 610 600 700 600 610 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700	 > 2400-00 > 10 >	F001 51 F001 51 F001 51 F601 51 F69EE 51 P401 F F69 6 F69 6 F69 6 F69 6 F69 6 F69 6 F69 7 F60 7 F70 7	111101 0ELTHE AMPAPD POM 14L 160 160 160 160 160 170 0 1720 0 1720 0 1720 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	661 8.67 5.77 5.77 5.77 7.77	140 140 14.4 14.4 19.3 19.3 19.3	150 150 150 15.0 10.0 10.5 10.5 10.5 10.	14 14 14 14 14 14 14 14 14 14 14 14 14 1	PML 155.4 155.4 155.0 155.0 155.0 155.0 155.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58.2 5.8.2 5.8.2 5.8.2 5.8.5 5.7.5 7.7	0.0 219.0 210.0 20.0	F001 51 669 FF 51 669 FF 51 694 62 654 62 654 62 654 64 674 64 71 66 71 66 71 66 71 66 71 66 71 66 71 66 71 66 72 60	0ELTEE ANDAPD ANDAPD FOM TeL F535 F535 F535 F535 F535 F535 F535 F53	111 1110 1110 1110 1110 1110 1110 1110	40 m s s s s s s s s s s s s s s s s s s	6 E E E E E E E E E E E E E E E E E E E	140 140 140 19-1 19-3 19-3 19-3 19-0	150 150 80.55 80.55 70.55 78.55 78.55	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	2 4 4 C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
• 519 District And L FOM Tall α_{33} ζ_{33} κ_{34}	4.319 Grout IF SIMON	43 5 5 6 58.1 59.2 6 6 6.1.0 6.2.1 6.2.4 6.1.0 6.2.1 6.2.4 6.1.0 6.2.1 6.2.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.1 7.1.1 7.1.4 7.1.4 7.1.4 7.1.4 7.1.4 7.1.4 7.1.4 7.4.5 7.4.5 7.4.4 7.4.6 7.4.4 7.4.4 7.4.6 7.4.4 7.4.4 7.4.6 7.4.4 7.4.4 7.4.6 7.4.4 7.4.4	• 519 0 • 5	С. С. С. С. С. С. С. С. С. С. С. С. С. С	AND APD POM INL 160 1360 150 120 1720 1720 1720 1720 1720 1720 1720	111 111 111 111 111 111 111 111 111 11	725-5 775-7 77575-7 7757	137 137 137 137 137 137 137 137 137 137	140 140 140 140 140 190 190 190	150 150 80.4 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5	160 178.3 178.3 177.4 177.9 177.9 177.9 177.9	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Λ_{23} G_{21} Λ_{21} G_{22} G_{21} G_{21} G_{21} G_{22} G_{21} <t< td=""><td>ACOUNTIC ANGLEFON TALET 673 6. 7. 9. 100 110 170</td><td>6.1 6.2 5.4 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 7.1 6.1 7.1 7.1 7.1 7.1</td><td>ACOUNTIC ACOUNTIC ACC ACC ACC ACC A</td><td>ANGLE F 900 554-82 554-82 554-82 71-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 72-0000000000</td><td>POM 12L 555-2 555-2 555-2 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-7 725-9 725-7</td><td>1110 666.5 700 7110 710 710 710 710 710 710 710 71</td><td>122 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2</td><td>13. 13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14</td><td>140 140 140 140 140 140 140 140 140 140</td><td>150 19.9 80.5 19.5 79.5 79.5</td><td>0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	ACOUNTIC ANGLEFON TALET 673 6. 7. 9. 100 110 170	6.1 6.2 5.4 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 7.1 6.1 7.1 7.1 7.1 7.1	ACOUNTIC ACOUNTIC ACC ACC ACC ACC A	ANGLE F 900 554-82 554-82 554-82 71-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 712-00 72-0000000000	POM 12L 555-2 555-2 555-2 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-9 725-7 725-9 725-7	1110 666.5 700 7110 710 710 710 710 710 710 710 71	122 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	13. 13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	140 140 140 140 140 140 140 140 140 140	150 19.9 80.5 19.5 79.5 79.5	0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02	1 1 1 1 1 1 1 1 1 1 1 1 1 1
q_1 q_2 q_1 q_1 q_2 q_1 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>42 5 5 5 58.1 52.1 52.1 52.1 57.5 57.1 55.5 57.5 56.6 57.1 55.5 57.5 57.0 58.0 50.5 77.5 70 73.0 70.0 70.0 71.1 72.1 73.6 71.5 73.1 73.1 70.1 71.5 73.1 73.1 73.4 74.7 73.1 74.6 74.6 75.5 73.1 74.6 75.6 75.5 73.1 74.6 75.6 75.6 73.1 74.6 75.6 75.6 75.5 75.6 75.6 75.6 75.5 75.6 75.6 75.6 75.5 75.6 75.6 75.6</td><td>A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>90 10 10 10 10 10 10 10 10 10 1</td><td>140 140 140 140 140 140 140 140 140 140</td><td>1110 1110 110 110 110 110 110 11</td><td>120 120 120 120 120 120 120 120 120 120</td><td>6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td><td>140 140 140 140 140 140 140 140 140 140</td><td>150 79.9 80.5 80.5 79.5 78.5</td><td>0.44 8.44 8.44 8.44 7.44 8.44 7.44 7.44 7</td><td>9 9 9 9 9 9 9 9 9 9 9 9 9 9</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42 5 5 5 58.1 52.1 52.1 52.1 57.5 57.1 55.5 57.5 56.6 57.1 55.5 57.5 57.0 58.0 50.5 77.5 70 73.0 70.0 70.0 71.1 72.1 73.6 71.5 73.1 73.1 70.1 71.5 73.1 73.1 73.4 74.7 73.1 74.6 74.6 75.5 73.1 74.6 75.6 75.5 73.1 74.6 75.6 75.6 73.1 74.6 75.6 75.6 75.5 75.6 75.6 75.6 75.5 75.6 75.6 75.6 75.5 75.6 75.6 75.6	A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	90 10 10 10 10 10 10 10 10 10 1	140 140 140 140 140 140 140 140 140 140	1110 1110 110 110 110 110 110 11	120 120 120 120 120 120 120 120 120 120	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	140 140 140 140 140 140 140 140 140 140	150 79.9 80.5 80.5 79.5 78.5	0.44 8.44 8.44 8.44 7.44 8.44 7.44 7.44 7	9 9 9 9 9 9 9 9 9 9 9 9 9 9
7_{44} 5_{44} 5_{44} 5_{44} 5_{44} 5_{44} 5_{44} 7_{44} <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>58.1 60.2 60.2 61.0 67.1 60.2 64.1 67.1 60.2 65.4 67.1 60.2 65.4 67.2 60.2 65.4 67.1 66.4 76.1 71.1 71.1 70.1 71.1 71.4 70.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.4 71.1 71.4 71.4 71.1 71.4 71.4 71.1 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.5 71.4 71.4 71.5 71.4 71.4</td><td>50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70</td><td>4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>442 442 442 442 442 442 442 442 442 442</td><td>444 444 444 444 444 444 444 444 444 44</td><td>4 0 m s s s s s s s s s s s s s s s s s s</td><td>8 - 51 </td><td>4 81 4 81 7 91 7 91 7 91 7 91 7 91 7 97 0 97</td><td>79.9 80.5 80.5 79.5 78.5</td><td>12.5.5 12.5 12.5 12.5 12.5 12.5 12.5 12.</td><td>1554.4 1554.4 1554.4 1554.4 1554.4 1554.4</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58.1 60.2 60.2 61.0 67.1 60.2 64.1 67.1 60.2 65.4 67.1 60.2 65.4 67.2 60.2 65.4 67.1 66.4 76.1 71.1 71.1 70.1 71.1 71.4 70.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.1 71.1 71.4 71.4 71.1 71.4 71.4 71.1 71.4 71.4 71.1 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.5 71.4 71.4 71.5 71.4 71.4	50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	442 442 442 442 442 442 442 442 442 442	444 444 444 444 444 444 444 444 444 44	4 0 m s s s s s s s s s s s s s s s s s s	8 - 51 	4 81 4 81 7 91 7 91 7 91 7 91 7 91 7 97 0 97	79.9 80.5 80.5 79.5 78.5	12.5.5 12.5 12.5 12.5 12.5 12.5 12.5 12.	1554.4 1554.4 1554.4 1554.4 1554.4 1554.4
$6_{1,0}$ $6_{2,1}$ $6_{3,1}$ $6_{3,2}$ $6_{3,4}$ $6_{3,2}$ $6_{3,4}$ $6_{3,2}$ $6_{3,4}$ $6_{3,2}$ $6_{3,4}$ $6_{3,2}$ $6_{3,3}$ $1_{1,2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.0 62.1 62.1 61.0 63.1 63.2 61.1 61.1 64.6 61.2 61.2 64.6 61.2 61.2 64.6 61.2 61.2 64.6 61.2 61.2 64.6 61.2 61.2 64.6 61.1 7.1 7.1 70.1 71.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1 71.1 7.1 7.1	63.5 65.5 61.1 61.1 61.1 61.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65.2 44.4 44.4 70.6 770.6 770.6 770.6 770.6 770.6 770.6 770.6 770.6 770.6 7	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		23.41 2.41 2.41 2.41 2.41	18.4 79.3 79.3 79.0	80.5 80.5 80.5 79.5 78.5	74.0 75.0 75.0 74.0	155.0 155.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.0 61.0 61.0 61.0 61.0 61.0 61.0 60.0 67.0 68.0 69.0 60.0 67.0 68.0 70.0 70.0 70.1 71.1 71.1 71.1 70.1 71.1 71.1 71.1 70.1 71.1 71.1 71.1 70.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1	1000 100 100 100 100 100 100 100 100 10	х х х х х х х х х х х х х х	444 44 40 40 40 40 40 40 40 40 40 40 40	51.0 71.0 71.0 71.0 71.0 7		14.0 14.0 11.5 11.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 11	C. 97 E. 97 E. 97	са 19.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7	4 - 17 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
6_{-1} 6_{-1} 6_{-1} 6_{-1} 1_{-1} <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>74.1 74.1 74.1 64.5 64.5 64.5 67.0 68.0 69.5 67.0 68.0 69.5 70.1 71.1 71.1 71.1 71.1</td><td>70.0 70.7 70.7 70.7 70.7 70.7 70.7 70.7</td><td>1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>70.00 70.00 70.00 70.00</td><td></td><td></td><td>2.11</td><td>C 61</td><td>79.51 78.5</td><td>74.0</td><td></td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74.1 74.1 74.1 64.5 64.5 64.5 67.0 68.0 69.5 67.0 68.0 69.5 70.1 71.1 71.1 71.1 71.1	70.0 70.7 70.7 70.7 70.7 70.7 70.7 70.7	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70.00 70.00 70.00 70.00			2.11	C 61	79.51 78.5	74.0	
67.7 67.7 75.7 71.6 75.7 77.6 77.3 72.1 55.3 72.1 55.3 72.1 55.3 72.1 55.3 72.1 55.7 77.6 75.6	$6_{1,7}$ $6_{1,1}$ $6_{1,1}$ $6_{1,2}$ $7_{1,1}$ $7_{1,2}$	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70.70 70.70 71.7 70.7 71.7 70.7 71.7 70.7 70	71-0	72.9 72.9	73.0	75.27	1.17	79.0	7A.5	14.0	156.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67.0 68.0 63.1 70.1 79.0 70.1 71.1 77.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1	71.2 72.8 71.2 72.8 7.1 75.9 7.4 75.9 7.4 77.1 75.7 77.1	75.0	72.9	73.0	75.7	2			111	156.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7 7 1 7 7 7 7 7 1 7 7 8 7 7 1 7 7 8 7 7 1 7 7 7 7 7 1 7 7 7 7 7 7 1 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	14.1					78.5	75.8	12.1	154.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.1 12.1 12.1 12.1 13.1 13.2 12.1 13.1 13.1 13.1 13.2 12.1 12.1 13.1 13.1 13.2 13.1 14.3 74.3 75.5 13.1 14.3 74.5 75.4 13.1 74.5 74.5 74.7 13.1 74.5 74.6 74.7 14.5 74.6 74.6 74.7 15.4 74.6 74.6 74.6 14.6 74.6 74.6 74.6	74.1 75.0 74.2 76.1 75.6 77.1 75.7 77.7	75.3 26.5	74.0	75.0	14.9	77.6	17.0	74.3	6.1.9	156.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	75.6 17.1	74.0	75.1	74.1	77.6	77.6	16.3	73.0	66.4	156.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 71.1 74.9 75.5 7 71.1 74.9 75.5 1 71.9 74.6 75.5 1 71.4 74.6 75.5 2 75.6 76.6 75.4 2 75.6 76.7 74.4			75.4	77.4	6.41	7H • 1	16.2	12.5	66.0	15/01
713 74.6 75.6 77.9 78.7 79.5 80.7 77.0 71.4 65.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	713374.675.6 71.117175.75.6 75.5717.175.75.7 75.871.717175.1		74.4	7. P. 42	20.4	41.4	0.61	2.17	22.8	62°6	160.5
71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4 72.6 62.6 62.8 66.0 75.6 71.4 75.1 75.5 74.1 75.1 75.1 51.1 55.6 51.1 55.6 51.1 55.6 51.1 55.6 75.6 74.1 75.1 75.5 74.9 75.5 75.4 51.1 155.4 75.6 74.4 75.7 75.7 75.3 75.3 75.4 51.1 155.4 65.6 74.6 75.7 75.3 75.3 75.3 75.4 51.1 155.4 65.6 64.0 71.6 71.6 70.1 65.6 67.6 51.1 155.4 65.6 64.0 71.6 71.6 70.1 65.6 67.6 51.1 155.4 65.7 61.1 52.7 51.9 51.6 56.7 56.8 47.5 31.6 65.7 61.1 57.7 54.5 56.8 47.5 31.6 167.1 7 67.1 57.7 54.5 56.8 47.7 4.7 56.7 7 67.1 57.7 54.5 57.7 4.7 56.7 55.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 11, H 71, I 75, H 1 75, 6 75, 4 76, 4 1 75, 8 74, 6 74, 1 1 75, 8 74, 6 74, 1	76.0 77.4	7.81	79.5	R1.2	H2.3	R() 7	17.6	72.1	65,1	162.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 15.6 15.4 75.5 9 15.8 74.7 74.5 3 75.5 75.1 75 1	11. 11.2	7H.F	1.01	4 . 14	6°2н	4. 14	17.0	71.4	62.8	164.2
7.5 7.1 7.5 7.5 7.5 7.5 7.6 7.7 4.7 1.6 1.6 7 4.5 1 5.7 5.6 5.6 5.6 7.7 5.5 15.6 7.7 4.7 1.6 1.6 1.6 7 4.5 1 5.7 5.6 5.6 5.6 7.7 4.7 1.6 1.6 7 4.5 1 5.7 5.4 5.6 7.7 4.7 7.7 2.5 156.8 7 4.7 1 7.7 4.7 7.7 4.7 7.7 2.5 156.8 7 7 1 7.7 4.7 7.7 2.5 156.8 7 1 1 7.7 4.7 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>71. a 77. u</td> <td>11.9</td> <td>1</td> <td>81.2</td> <td></td> <td>C . HL</td> <td>14.1</td> <td>1.19</td> <td>x•/5</td> <td>146.0 146.0</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71. a 77. u	11.9	1	81 . 2		C . HL	14.1	1.19	x•/5	146.0 146.0
1 67.6 63.7 56.8 67.5 31.6 16.1 1 57.8 58.7 51.9 52.8 52.9 53.7 56.7 54.5 35.5 15.1 100.4 1 57.8 58.7 51.9 52.8 57.9 53.7 56.8 47.5 31.6 167.1 1 57.1 54.1 57.7 54.5 36.7 35.5 15.1 100.4 24.1 17.1 51.7 54.1 57.7 4.7 7.7 4.7 155.7 24.1 17.1 57.1 57.1 57.7 4.7 59.9 57.6 7.7 4.7 7.7 57.7 4.7 155.6 7.7 4.7 7.7 57.7 4.7 155.6 155.6 17.7 4.7 7.7 57.7 4.7 155.6 155.6 155.6 155.6 155.6 155.6 155.6 155.6 155.6 155.6 17.4 16.9 155.6 17.4 16.9 155.6 17.4 16.9 16.9 155.6 17.4 16.9 155.6 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>16.4 75.1</td> <td>11.6</td> <td>73.2</td> <td>75.1</td> <td>5.57</td> <td>и 69</td> <td>64.0</td> <td>5.0.45</td> <td>42.R</td> <td>163.7</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16.4 75.1	11.6	73.2	75.1	5.57	и 69	64.0	5.0.45	42.R	163.7
3 52,8 58,7 54,5 56,7 35,5 15,1 160,4 46,1 52,1 51,1 57,4 57,1 4,7 4,6 17,4,0 1 1 1 1 1 1 1 1 4,7 4,7 1 1,4 4,7 1 1,4,4 4,9 1 4,4 4,4 1 1 4,4 4,4 1 1 4,4 1 4,4 1 4,4 1 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.6 61.6 69.0	71.2 69.9	69.B	69.0	10.1	54.5	63.2	56.8	47.5	31.6	162.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 52.8 54.2 h].1	62.7 41.9	6.2.A	65.9	63.5	58.7	54.5	46.7	3.5	15.1	.160.4.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 46.1 52.1 44.1	1.1.4 1.1.4	۰۲.4	5ו5	с. ч.	دي . ا	44.3	39.9	1.15	4.2	158.7
1,7 1,1 71,7 24,1 29,9 3,45 23,45 23,42 13,22 15,45 7, -5,4,5 -11,4 -1,2 4,4 7,7 8,9 9,5 7,7 -3,7 -15,5 -3,4,7 -67,1 -13,5 15,5 -11,4 -1,2 4,4 7,7 15,5 -3,4,7 -67,1 -13,5,7 15,4,9 7 23,6 17,4,0 9,5 17,7 18,9 9,6 9,6 9,6 17,4,0 7 24,0 9,5 17,7 18,9 9,6 19,6 9,1 13,6 174,0 7 94,0 9,6 9,7 99,1 99,1 99,1 98,4 92,5 15,1 7 4,7 4,7 3,7 17,4 7,7 37,3 99,1 98,4 97,7 91,4 15,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.12 H.11 1.00 1	45.66 A4.5	44.1	47.0	46.7	40.9	34.5	54.0	1.1	-25.2	156.A
с -24,5 -11.9 -1.2 4,4 7.7 8,9 9,5 7.2 -3.7 -15,5 -34,7 -67,1 -132,7 154,9 2 81,8 85,1 84,1 84,1 87,5 87,7 88,1 89,8 90,6 90,1 89,8 89,1 85,6 174,0 2 94,0 94,1 94,9 97,1 97,4 97,0 97,3 99,1 98,8 97,7 95,1 91,1 85,0 2 94,0 94,1 94,4 97,1 97,4 97,0 17 3 99,1 98,8 97,7 98,4 92,5 м5,0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1. 1. 1 23.h	1.1.2 7.15	29.9	3.05	39.62	22.9	20%		-212-	-04-0	3-25
υ 81,6 85,1 86,1 96,1 97,5 87,7 88,1 89,8 90,6 90,1 89,8 97,1 95,0 174,0 94,0 94,0 94,1 97,4 97,1 97,4 97,0 97,3 99,1 98,8 91,7 95,1 91,1 85,0 1 94,0 94,1 04,4 97,1 97,4 97,0 17,3 99,1 94,8 97,7 98,4 97,5 0	U 83.8 85.3 86.1 86.1 87.5 87.7 88.1 89.8 90.6 90.3 89.8 49.1 85.0 174.0 9 9 <u>4.0 94.1 96.4 97.1 97.4 97.0 97.3 99.1 98.8 97.7 95.1 91.1 85.0</u> 2 95.2 96.1 96.4 97.1 97.4 97.0 17.3 90.1 98.8 97.7 98.4 97.5 85.0	0 -24.5 -11.4 -1.2	4.4 7.7	6°4	6°	2.2	-3.7	-15.5	- 34 . 7		-132.7	154.4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{1}{2} \frac{1}{2} \frac{1}$	∪ β]_Β β5.] β6.[∪ 06.5 δ2.1 02.0	HA.1 H7.5	87.7	н н.]	ж. 	4°05	06	80 B		85.6 6	174.0
		1 40 1 40 1 40 A	71.1 57.4	41.0		105	U.H. H.	97.7	98.4	92.5	10.24	

• • •

† † ! !

70

J

3.7 PROGRAM SOURCE CODE LISTING

This section contains the FORTRAN IV source code listing for the engineering correlation computer program, suitable for running on the CDC 7600 computer. The listing of subroutines is as follows:

- (1) Main Program (MS)
- (2) SUB1 (Contains SUB1 through SUB6)
- (3) EXTP
- (4) SHKSUB
- (5) PNLPT
- (6) TPNLC
- (7) PNTT8
- (8) A block data listing
- (9) EJECTS

,

1 5.0% - BAX XX - XX - XX - XX - XX - XX - XX	23 25 12 24 25 26 27 26 27 26 27 26 27 26 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27 2	a
45 1 524.04X xx xxxxxxxx 45 1 5 xx0xx xx xxxxxxxxx 1 5 xx0xx xx xxxxxxxxxx xy40x401 xxxx xxxxxxxxxxx xxxxx xy40x401 xx x x x xy40x401 x x x x y40101 x x x x y401101 x x x </td <td>45 \$0 \$1</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	45 \$0 \$1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

7 //. 7 //. 7 //. 10. 4.64430 14.6477 14.64 14 CONTINU 1777 536000000000000000000000000000000000000	16 10 1 18 ACK-PA(E + 24 20 21 1210 + 110 A (1) -160 23 CONTROL 24 CONTROL	15 COMTRUM. 15 ((1)) (5((1), 6*0, 777)) (0) (0) (0) (0) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	21 Τρ=514 τ ι μ=14.7 + μ Γ-υ,7λα75 τ μ=3.14154 × t=1 ×	T4=TT4 % T5=TT5 % A.J=5 PUPIT 52 PUPIT 52 1 * C2PPCLATIONS//) 1 * C2PPCLATIONS//) 2 * PUPIT 50 2 * PUPIT 50	60 F0(295+370+320+415+425+425)+Y9 (0111-AL MOTSE F214-Y 245 B1=500F1(AUXP1) * AT=A + R2=500F1(AUXP1+49**2) * ANT=1 * P9=0 N=1	GOTO 10.99 MULTI-CHUTE/SPOKE ANTSE FUTRY 22:0.0.114+(104+45)/(2961) D1=50.0114+(104+00.)/218(E2+04*12)/411/24 D2=02/2 511=54/44+1 511=54/44+1	 PETNI 20200000000 PENNAL 2020000000000000000000000000000000000
	12	75 C C 17 C 17	100	¹ 25) 25) 2 ¹	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t C 329	2:27 2:27 17 17 17

		1:1:1:1 1/ 1	F 11. 4.6.4 13A	2670457P	14.J.****	t vov i	I
115		117 UTA.P9*2.499 DAME 12 NO DE TUELS= 41142544		;			1 1
			≡ੋਰੋਖੋ∕ ਖ <mark>ੀ</mark> ਤੋਕ • X < • ਭ • ਭ • • = ਭ ±	•			
		11	•×554/1/F				i i
	60 615 615 615 615	10.225 C.42,014,34,194,34,54,1197 P.15,044,104,791,347,121 C.453,145,645,647,647					1
-	4.15 4.15	MILTI-TUP: COANNULAP FNTRY COUTTINUE					
~		11 200 201 201 201 201 201 201 201 201 2					. 1
	G C 4 Fij	TO 445 MULTI-CHUTEZSPUKE CGANNULAH ENTRY CONTINUE					
3 c L			72				
	1 * 1	14 0F CHUTE FOULV ANEA TUBE=*,F10.31					ł
		DFINI 2014.42.42.42.45.15.405.10.400.14.424 F. WART(0.1.07.11.000120000000000000000000000000	лнаа. F 1 5. 3. 5X. * A2H=4. Tu=6. F 6. 0. 5X.				i
ר זי ד ני		15%29=65 (P2-50#1(P2**2-4*A9*A7/P1))/2 (A2-50#1(P2**2-4*A9*A7/P1))/2					
	5 = H	- (1) - 11 (1) (1) - 11 (1) (1) (1) (1) (1) (1) (1) (1) (1)					
15ñ	С РА=	PAUTUS PATIO CALCULATTON 1-4/*43/(P1°P2°*2)*IF(P8.LT.0) GO TO 0 5.5	550\$H8=50PT (PA)				
1÷5	بردیا جردیا ر	₩ = 0 # = 1 % +					
	100 13= 69=	бас J=1.57 Та/(р900((бН-1)/бр)) 1.4					1
.	547 F.9=	7.24704/1385,412) 40 10 540 2.24704/1385,310271 154 245646-640,615,401) 60 10 615					
	6-1) 6-1) 6-1	69 COST [PUF TO -16					
7.1	- Lui - Lui	<u>САГСИ АТТО ПЕЕТОР ЕЛИАЧЕТЕИS</u> С 1 : С. 4 :					1
17.	0 3= 0 4= 1 7 (2.7303/11 2053011/17/11) You.11.64) at 10 4.75 Tu.10.14) of 10 4.45					

• . .

|--|

V + + + + + + + + + + + + + + + + + + +	Cuttore A to-mation (Cuss (A Jud / S + Jud 24)	1120 1120 1120 1120 1120 1120 1120 1120	774451 LCULATION FOP ABSOEPTION		220 1224 961016 (J) / 501+29	60 TO 1765\$X(J)*73 65\$IF(5J.66.44) 60 TO 1265	.43,#24,24387,222,24449185,1883 64344445,9895,,103945785,Jeef 5	(1)	MANER 415 (K7, F0, 2) GO 10 130040ALL FJFCTS 304 1=1+15	1165%CALL SIJAS	1630\$CALL Sune\$CALL Sub4 NOLSE 05\$Y9=U3\$C9=q1,41857H1(19913)\$NA=2*P1 1175	
	22-50 (4.0-1, 10 64), 45,06,302) A J2-61 (1742972/1111) 1 E0161 1 -6 1112 (1742972) 	1 1	72=61 (1 (1 (1 (1 (1 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	F = A & (290,1) F = A & (290, 51) S = A & ((F () 190, 120, 200) A & 000 That if F (1 77=74	If (f(1), (1, (r)), (n) (n) (n) 77=78 If (f(1), (n), (n), (n) If (f(2), (n), (n), (n) 77=7(1, (n), (n), (n) 77=7(1, (n), (n), (n) 77=7(1, (n), (n))	J=xx//3 TC=rx(J)=0515(r7, g4, 2) TC=rx(J)=0515(r7, g4, 2) TF(PR-G1, -65) 60 T0 12	T(=22, -5, 22, 22, 22, 23, 24, 23, 24, 25, 25, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	IF ((1,+1) • 10, -1, 1, -0, 1) = 60 S(1,-J) = > (0, 1, -1) + F VE (0, J) - HVE (0, J) -	EJECTOR FFFECTS UP LEW F (A5.FU.0) 100 20 110 0 1104 J=1.241 00 11 S(1, 0) = S(1, 0) + S(1, 0) CONTRUE	ТСКР, КТ, 60, 70, 1335 ТЕ (К9, со, 6), 60, 10, 1335 САЦ, 5, 41 ТАS(1)°=1 очнов и, расти, ТАS(2)°=1 очнов си, расти,	CALL SHEARTH F(Y9461.1) 60 10 F(Y9461.1) 60 10 F(Y941.1.1.4) 60 10 F(Y941.1.1.4) 60 10 F(Y941.1.1.1.4) 60 10 F(Y941.1.1.1.4) 10 F(Y941.1.1.1.4) 10 F(Y941.1.1.1.4) 10 F(Y941.1.1.1.4) 10 F(Y941.1.1.4) 10 F(Y941.1.4) 10 F	74=2000 74=20000 74=20000 74=20000 74=20000 74=20000 74=20000 74=2000000000000000000000000000000000000
		H45		2/11 2/11	<u>17.51</u>	316 C	1]5 1265	3621 2621	325 1310 1328	33-	1135 C 1135 C 1455	5921

22 22 22 22 22 22 22 22 22 22 22 22 22
--

	7. 9. 9. 9. 9. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	0 1319 0 1319 СН СК F 00 01JFR STHFAM SHACK TH PS_LI.129 J 60 IO 15855CALL SUH6SCALL SUB4
۲۹۹۱، ۱۴۲۲۹، ۱۴۶۵ ۱۴۶۶	ут 9=4].4 № скРТ (к.2°2.7°00/А5)%ПА=2.5°07 -5) <u>1 клут165511456</u> П = [Бакек)/12460 ТО 1355 D°=2201460 ТО 1355 САЦ _SHYSUBA20=1C*ALOG19.LSDR114°A92P1JZDB13CALL SUB2
	қтар. 19.40.0.1 тал Тал Тал 511-1 1) = 1044011£К SMOC 1) = 1044011£К SMOC 1) = 1044011£К SMOC
0 1645 1F(1) (ALL DA=S0	ГН.СК FOD 1141,P STVFAM SHOCK P4.(T.1.9) 60 TO 1725\$C9=41.43*SOPT(69*2.7*Pg/K3)\$V9=U3 SvP6*CALL SHOA DPT(4*A3/P1)\$JF(Y9.E0.4)60 TO 1700 PT(09*A3/P1)\$JF(Y9.E0.4)60 TO 1700 PT(09*A3/P1)\$JF(Y9.E0.4)60 TO 1700
7 17 17 17 17 17 17 17 17 17 17 17 17 17	UNEL 201 201 10 10 1710529=+35CALL SUR2 DOLL SURS CALL SURS CA
0 11755 1775 CALL 1779 11755	2)=1)+K NOISE 2)=1)+K NOISE PATT)+ CALL SURATET K9.FG.) GO TO 173641=3 CALL SURA CALL SURA 1)=10HTOTAL NOIS
CALL 1 CALL 1 CALL 1 CALL 1	2)=10HE PNT18 0.445

	7 // 1=1 5 6 6 6 6 6 13 1 6 / 14 14 3 6 4 1 1 6 7 1 1 1 4 2 4 1 1 4 2 4 1 1 4 2 4 1 1 4 2 4 1 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4 1 4 1	Call FATP D0_22J=1+26455[K+J]=X(J] CONTPUD Control Control Control + Fillon.	ENTRY SURAS PWL CALCULATION	09=541/ 1207 [=1,245A#=1\$NO 3204 J=1,154A,1=(J+1)010 YJ=1,54010(COS((A1-5)04)7180)-COS((AJ-5104)7180)) A2=A2+(2,22751-1041-487J01000(25(J+1)716))	CUNTINUF Y(1)=1 *ALOGI9(A2)+130+1*24939 09=09+10*81Y(1)/101	Contificie 09=1;00:0 (0.3) DE TUDA.	ENTRY SURA PESET YANIALES	DO 340/)=1、2410 1401 [=1・1548(1・J)=5(1・J) てんけけいたをチモロコーデモロ CONTINUE SMETURU	ENTRY SURP DELTA SPL COPRECTION PO 34/* J=1,24500 34/6 1=1,1545(1,J)=5(1,J)+79 CONTINUESMETURY	ENTRY SINAA Spl. Amid Pwl. Addition 09=0	D0_350*_J=1,24E00_35_J_1=1,15 S(1,J)=10*AL0619(10**(S(1,J)/10)+10**(R(1,J)/10)) CUNTINUE	۲ (J) = [c = 4 [OG] O (] O + = (X] (J) / IO) + I O + = (X (J) / IO))
--	---	---	--------------------------------	--	---	---	------------------------------	---	---	--	--	---

Statements of the second statements of the second s						
Summer of a start of a						
Studientra () () () () () () () () () () () () ()	AILO2. SUFROUTINE AILO2. SUFROUTINE CP. 1. (15.24) ** (15.24) ** (24.5) *C (15.5) CP. 1. (15.24) ** (12.4) ** (24) ** (115) ** (24) CP. 1. (15.24) ** (24) ** (24) ** (24) CP. 1. (15.24) ** (24) ** (24) ** (24) AILO25 (5) * 10CASE (6) ** (0ENT (6))	1/1801) 1-P1/180) 1-P1/180) 1-P1/180	196151667630356-16 196-12 196-12 196-12 196-15 196-15 11461529346-20 11461529346-20 196-15 196-13 196-13	146-95 146-43 1473 1473 1513	URVE FIT °ГЗ)+, 36618630E-10 ? ?	01.0
	Successing a structure str	F0P=1/(1-V2/AC*COS(AJ*P L1=H IF (U*E*2*)L1=H/SIA(AJ n=2n (U+U+1)(1)(1)(1)(1) n=2n (U+U+1)(1)(1)(1)(1) 1= F(P(2+1)*2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	Clue Clue FIT Clue Clue Clue FIT Clue Clue (Clue (S) • 7245467 Clue (Clue (S) • 7245467 Clue (Clue (S) • • 4961529 Clue (Clue (S) • • 4961529 Clue (Clue (S) • • 49661425 Clue (Clue (S) • • 49661425 Clue (Clue (S) • • 491159 Clue (Clue (S) • • 3911897 Clue (Clue (S) • • 3911897 Clue (Clue (S) • • 3911897 Clue (Clue (S) • • 1066649	ClJ=(ClJ=(LJ=(LJ=(2)), 29(1243) ClJ=(ClJ=(1)=(15), 59(61)2 (2=(ClJ=(15), 595(61)2 (7=(ClJ=(15, 40000)) (6) TO (7=5, 94241, 40000) (6) TO (1=15, 44241, 40000) (1=15, 44241, 40000) (6) T P3=5(J)	60 F0 220 F3=,89%F(J) AIR AITENUALION C M1=(-,19973809F-14 M2=(H1*P3), 1299487F- P3=(H2*P1)+1764677F- PA=(H2*P1)+1764677F-	IF (F9, E0, 2) 60 T0 6E 1 IF (P3, E0, 53) 50 IC 51C IF (P3, F, 250a) 60 IC 50 71 = 203/255 71 = 203/255 71 = 6 71 = 6 71 = 6

.

. 5 • ١ ? . t

ţ

•.

ς. ļ , ı. 1-20-1 į 1 ţ 74/34/7H 14.33.543 1 FIN. 4.6+433A
 A#P
 61=(7J*(61-62)).65

 659_COR=0.45A*f(11-011/10.01)

 F
 Dor P(1 + 0.50)
 E

 F
 Dor P(1 + 0.50)
 60
 E

 F
 Dor P(1 + 0.49)
 60
 10.542

 F
 Dor P(1 - 0.49)
 60
 10.542

 F
 Dor P(1 - 0.49)
 60
 10.542

 F
 Dor P(1 - 0.40)
 E
 E
 Dor P(1 - 0.40)

 F
 Dor P(1 - 0.40)
 D
 A
 D
 A
 D
 A

 F
 Dor P(1 - 0.40)
 D
 A
 D
 A
 D
 A

 F
 Dor P(1 - 0.40)
 D
 A
 D
 A
 D
 A

 F
 Dor P(1 - 0.40)
 D
 A
 D
 A
 D
 A

 F
 D
 A
 D
 D
 A
 1=1.40 11/16 class following ¢ 59 ĩ

83

END 10

1 (), 1	no na serie de la companya de la companya de la companya de la companya de la companya de la companya de la com	f(t) = f(t) +	33•549 • 618 	-
· • ·		Sementary (1987) Sementary (1987) Serve B SAL Sement (1986, PREDICTICLE SUPPOLITIE (1988) Serve 1980, 1980, (1980) Serve (1980) Serve (1986) (1986)		
		1. 3.C. J., M. C. M. A. C. M. C. M. Z. C. S. M. C. Z. M. C. Z. M. C. C. M. M. V. C. D. M. C. M. M. C. M. S. M. Z. M. S. M S. M. S.		
		ζοσυσκιζζόλΑ Τιάδ(2)+ΙΙζάδΕ(Δ)-ΙΨζάδΕξ61-ΙΡΕΝΤΑΔΙ		
		ΝΕΚΞΖΑδίδος[US] ((VU+12.)/10.9] ΝΙΞΙ&ΘΞζωϊτ((VU/C9)882-1) ΝΣΞΙΔΘΙΔυτικ((D382)808/N1)882)		
		00_392_53415		
		5.1=AL01 1)(1)(1)=1,00,×04,×1) (10 25; x=2,24		
27	212	. [F(<u>SJa</u> SI(K)], 69 .[0, 242]. C11=.(2,x=1)+(5,)=S1(K=[1))*(6(2,K)+6(2,k=1))/(5(1(K)+5)(K=1)) G1=6(1,k=1)+(5,)=S1(K=1))*(6(1,K)=6(1,K=1))/(S1(K)+5)(K=1)) 60 T0 - 64		
25	240	15(Y_1)24) 60 10 210 CONTINUE H1=5		, , ,
		F1=(2011) (1) 01, 11 00000 (, 7003)) 0 (1. (, 7009/AG) 0 (05 (AJR)) DA 760 1=1.5 F2=0	· · · · · · · · · · · · · · · · · · ·	1
34		KEND=A-(1+1) KSTAPT=0400 33 HEKSTAPT+KEND 71=1 & 22=K		
75		F]=F]e(/]*(],0-,0^*((7[+1,3]/2,0,7K))) F2=F2+(Cu5(F3)*5]H(,1]5*F3)/(,1[5*F3)) Cu TIME		
	096	IF(ClJ+LT+01) CO TO 360 H1=H1+((ClJ+01) CO TO 360 CO.TTOUE		
4.5		Server 11 End 2011 NOTSE FLIGHT FFFCTS Stree 11 End 61 01 (10 10 10 10 10 10 10 10 10 10 10 10 10 1		
	C 8 F	S (MA.J) = S (MA.J) + 4 MAL (1516 (1700M) CONT TMUF CO.T TMUE		1
1		PETIDA PETIDA		I

ر

e TBNLC	TO THE AND THE			
	TOTE PROFEMENTS A SPECTAR IPPEGIA 	ИПТ С.ПСТ. 435.4 17.19691 А5 ТР.194.5РL.	 	!
	S. PPOULTAL TPALC (SPL-PTCAP) [MENSION: SPL (24) + SPLF (24) + SPC(24) + SPLP (24) + SPLF	241.50(25).		
C +1N1	1714.125 SPL FLAG* UV 1 1=1.24 TUPF (1) = 9			
ر 5 <mark>511</mark>	P]: 5((1)=5PL([) - 5PL(]-1) 5(1)=5PL([) - 5PL(]-1)			
1415°	(b) 2 λ(µ) 3 (b) 10 1-5+24 0.0 10	l = {		
ر محلاد د	P 4. P 4. D 25 1=1.24 F(15PLF(1).E(4.0) 60 TO 20			
D C	I' (1.6.0.24) 60 TO 15 STEP 48 MODIFIEU SUCH THAT PRECEDING AND FOLL Num-Flacken Sound PPFSSUPE LEVELS EMPLOYED IN 11 = 1 D.1 1.1.20	OWING AVERAGE.		
1	11 = 11-1 1 ⁶ (15PLF(11).40.0) 60 TO 12 CONTINUE			
4	SML = 5PL(11) [V] = 1+1 ()2 13 J=1P1+24			
13	IF (ISPLF(J).EQ.0) GO TO 14 CUNTINIE 1 = 24			
14	5/10 = 5P(10) 5/10 = 5P(1+5P(0)/2), 6/10 2			
15 20 7 25	S-LP(24) = SPL(21)+SC(2)) 6.0 TO 25 S-LP(L) = SPL(1) C ANTINUE			
33761	2 50 2 11 = 58LP(1)-58LP(1-1) 5 (11) = 58LP(1)-58LP(1-1) 5 (21) = 58[4] (21) = 10(24)			

.

ι

AD-A09	4 298 SIFIED	SENERA High V Mar 79 R79Aeg	L ELECT ELOCITY P R 6 290	RIC CO JET NO LIEBE,	CINCIN ISE SOL R E MOT	INATI OF	AIRCRA ATION A A SIE	AFT ENG AND RED CKMAN 76-79-6	INE GRO UCTION. DOT-OS	UP P TASK 6 -30034	/6 20/1 •ETC	ເບາ		
	2 (F 3 40 A 394/99													
														6.01
													Barrie	

U					
U	+STEP	•9			
	35	Pri 15 T=3+23 SnAR(T) = (SP(T)+SP(T+1)+SP(T+2))/3.			
	+STEP	7+			
		5 ⁴ Lpp(1) = 5pl(1) 5 ⁶ Lpp(2) = 5pl(2)			
		(f) ldS = (f) dd ldS			
	40	17 40 1=4+/4 SFLPP(1) = SPLPP(1-1)+SBAR(1-1)			
υu	+STEP	¢.			
	45	0 ¹ 45 1=1+24 F(1) = su(1)-suppe(1)			
01					
	21152	CAAK FO.D			
		Du 65 1=1+24			
	eFof o	IF (LaGE all AND a La E 21) 60 10 50			
;		10.1 = 10			
		60 TO 55			
υ	50 +500	=FrEn #500JH2# IC2 # F(1)/3.			
	ŞS	T(1 = 6,646]F(F(1),L[,3,0) GU TO 65]F(F(1),L[,3,0) GU TO 65			
		CMAX = AMAX1 (CMAX+TC2)			
	60	GU FU 65 Cmax = Amax1(CMAX+TC3)	:		
	65	CUNTINIE Dicos-curv			
	500	Pt TURN			
		Ev0			

·- N.

87

...

?

(

SUHROUIINE PNTIR C PNTTR PRINT'AND EPNL CALC SUBROUTINE	
COMMION/CH1/L(9+24)+X(24)+F(24)+5(15+24)+5(15+24)+K(24+5)+C(15+5)+ 1 n(201++ P(49)+P(20)+X(15+24)+Y1(24)+Y(24)+C1(151+RVE(20)+	
] 51(24)+6(2,24)+C2(15+2)+1(20)+D(20)+V(5)+4(4)+V(3)+E1(15+24) CONMON /CM2/ VA+AD+VB+V1+Y9+TA+T5+X7+P1+29+D3+AJ+H+U+E9 1 544-VO-C9-D8-D1+V009+A8+O+19+A5+A7+56+D9-A11+51+AN1+NE17	
COMMON /CVJ/ IIAS(2)+IICASE(6)+IDCASE(A)+IDENT(A) RFAL L+KK+K1 DEAL W-KT	
C 100 FORMAT(////50X+3M* +2410)	
1001 FURMAT(50A.MH*F7.1.* FONT ALTITUDE*) 10.02 FURMAT(50A.MH*F7.1.* FOOT SIDELINE*) 10.04 FURMAT(50A.MH*F7.1.* FOOT ARC*) 10.04 FURMAT(50A.MH*F7.1.* FOOT ARC*)	
1004 FURMATIONATIONALUA FULLEGA) 1009 FURMATIONALUH* FULLEGA) 1009 FURMATIONALUH* 100 LAYER EGA) 1010 FORMATIONALUH*EGOPE STANDARD DAY#//SOX.**ACOUSTIC ANGLE*.	
1* FROM INLETTE/F FREID 20 30 40 50 60 70*. 1* 50 9. 100 113 120 130 140 150*. 1* 100 PML*)	
1012 FORMAT(F7.0)16F7.1) 1014 FORMAT(1X.46.16F7.1) 1014 FURMAT(A.FOML=#.F6.1)	
1/17 FORMAT(1)H1///.33X.*HIGH VELOCITY JET NOISE PROGRAM - * 1 +FNGINF FRING CORPELATION*//) 1018 FORMAT(1)X.6A10)	
C PRINT 1-17 WDIF(A-10)H)(11CASE(1).1=1.6)	
999 PPINT 10000([[AS(1]).1]=1.2) If (!L.E(1.) 60 TO 160 IF (SL.NE.0.0) 60 TO 159 5 IF (VO.NE.0.0) 60 TO 159	
PRINT 1002.4 \$ 60 TO 170 159 PRINT 1001.ALT PRINT 1002.51	
60 T0 176 160 PRINT 1004.H 170 16/69-11 171-172-173	
171 PRINT 1006 \$ 60 TO 200 172 PRINT 1009 \$ 60 TO 200 173 PRINT 1009 \$ 60 TO 200	•
240 PRINT 1010+T0 D0 32r J=1.24 PRINT 1012+F(J)+(5(1+J)+15)+Y(J)	:
320 CONTINUE 11AS (1)=SHOASPL PPINT 1 14-11AS (1)-(9(1)-(=1-)S)-09	
A\$(1)=3HPNL PPTHT 14.[[A\$(1).([(]).]=1.]5) TIAs(1)=4HPNT T	
PRINT 1. 14.1145(1).(P(1).1=1.15) PRINT 1.5	

40	1015 P	(1)=1(1) (1)=1(1) xr=vn > 1F (vn.gr.n.) 6C 10 8825				
	Ú 5248	-(of =0) -(or 10) 				
	U	IF (1. E.4. 1.) GO TO 1080 EPAL CALCULATION				
60		L120.4 MP=1.n				
		Z1=0. Z3=0.				
7.0	υ	SJ=0. FLYOVER TIME CALCULATION				
		00 590 JI=1+15 A ={ (11+11+10				
	7670	T(J))=(H/S]V(AJ=P /]A0。))/A0 T(J))=(H/S]V(AJ=P /]A0。)/A0 H/J=H/(S]N(AJ=P /]A0_)/C()S(AJ=P /]	180.1)			
54		ASK=(AJ-10)+P1/140.				
	1685	IF(JLEFAL) GO TO 490				
		D(J1)=f(J1)+D(J1-1)+KT-T(J1-1) 60 TA ⇒00				
BO	490	01-J1)=1(L1)+KI				
•	200	CONT 1 NUE KT=D (R)				
		00 540 J#1,15				-
RS	540	1(J)=D(J)-KT CO:11NUE Tiut Control				
		00 610 Jel.15 1r(P(J).01.MP) 60 T0 490				
96	690	() 1=1 ()				
	610	CO'+TINUE				
. 2		CJ=MP-10. Initial and final time determinat do 640 j≤1.15	NOL	•		
		F (P(J) &L1 &CJ) 60 T0 680 F ((J-1) < &1) 60 T0 750 D7=1(J)-(1(J)-1(J-1))*(F(J)-CJ) /(P(J)-	P(1-1-1)			
ÛQ	589 689	50 10 690 CONTINUE DO 74 0 44515				
		J=16-JJ 16 [9(J) [1.CJ] 60 10 740				
5		09=f(J)+(T(J+1)-1(J))+(P(J)-CJ)/(P(J)- 80 T0 H20	l(l+f)a-			
	051	71 = (2) - (1) 71 = (2) - (2) - (1) 71 = (1) - (1) - (1) - (1 (2) - 1 (1)				
5		60 1095			ŀ	
	180	Z1=P(14)-P(15) 09=T(15)+((P(15)+CJ)/23)#(T(15)+T(14)) F(16)=U9				

ł

· · · · · · ·

04/04/78 14.33.54 PAGE 3											
FTN 4.4.433A	кт 10.880		(1))) 60 TO 1626	10.950	(1) (1(1+2)-1(1+1))	-1)		000 10 01 01	(5J))-13. (10.•E3.•5)		
1=1-0 91701 E	14156PATION STA 14156PATION STA 15(21,50,04).60	T1=FF1×(2.*TJ-07) T=1 G0 T0 -200	TI=JFIX(?.*(1J=1 T=1 TJ=LJ-TJ/2 T(11)	TT=T(1) IE(1.E ⁻⁶ ,0) IT=U7 IE(T1.E0.T(1+1)) G0	01=(1,1-11)/(1(1(+1))-1 60_10_60 01=(1,1-1(1))/(R.J=P.(1)+01*(P(1) <u>F.(P.J.L1.C.J) 60 10 5</u> S.J=S.J+10.**(RJ/10.)	TJ=TJ+5 60 TO 210 T=T+1	IF (71, 10, 15) 60 10 IF (1, 61, -15) 60 10 1 60 10 410	E 10.*AL0510 PPIUT 1015. 1*1FIX	END	
LING ATTROUGHTS	115 C		170 RAN 960	125	450	130 460	066		14) [14]		

......

to βα

?

Ş.

77.5

Mary and services

,		
-	HL QCK - 441 A CONHOM JCM 14 (9.24) - 41241 - 61241 - 61241 - 5115 - 241 - 44124	5, .f (15,5) .
 	1 0(20) + P (-42) + P (-40) + P (-20) + P (-20) + V (-20) + V (-20) + C (-1 (-1 (-1 (-1 (-1 (-1 (-1 (-1 (-1 (-1	5).evf (29). 1(15.24) NJINC.INFNT PEAL
JENG NOPVE FIT ICIE 10324+684+-11+5844	= • • •	1 134.0671.78.13.5721.8584482891.5827.78.14.7
. ~	1070-784 [.1]194224 [13778.27.2443]008645. 1070-784 [.1]194224 [13778.27.2443]008645. 1113-214.66.20.122217771211.4441114.9454.	
	40.77 5.45.7721.21.1344434.5145119.4429. 42.74 6.45.50571.52.4911733.24900111.0132.	
75	44 <u>4</u> 4873 <u>+92</u> *7222 <u>0+24+</u> 027 <u>26</u> ± <u>47+2220</u> 4±120±33594 47_14>04+101_6591+555+91311++40+36287+-754+0784+ 44+54*22+115_66684444+44+44+034+-108*3696+-762,8191+	
	1 1599.107.0227.32.5691150.7574323.1343.	
	UATA (KKK([+N]+N=1+5]+[=1+12]/ 1_=16+58*02+18771008++68×731992++101391++8636305+	
<i>.</i> د	1 -10.477722.343449.375424.1.117183.94469618. 1 -10.427 332.9575469.846431.1.269424.2043903.	
	1 -10.040221.11494.0-00.2935511-47.11891.0-0449. 1 -10.040221.149910.2935511-4076779611449.	
35	1 -10.607001.0104-1.000001.0100000000000000000000	
	1 -123-151.28668511.13199.1.076159.1.066819. 1 -19.644443.34354611.9358.1.695872.1.549694.	
	1 -1: -52/71.2.1(57048.99326549742957882992. 1 -11.01.523.66537612.5132.1.7844957993335.	
4.2	-1 .682/936. 3487 10. 743.1.9939655740519/ 0414.4074.40.13487[10.1743.1.9939655740519/	
	1 -11.20301.4232828.568622-1.369792.5003525.	
	- 7.465;257. P995;29.58915;2.2.50898].4.4032442. - 3.19 089.2522057.828305.3.0049992370745.	
+5.	1 -11.4Acl3+-5.22407+-8.7A2326+1.981059+.3970906+	
	- 4.~^^44 1.^730949.1515044.3.550726424]3976. - 6.53+994 5.39885,-5.69525844.6550829454673.	
	[-12,96~41[0,743588,530573.3,445636195912.	
ςr	• PICCATH* 035000.000.0000000000000000000000000000	
	1 -14.20 7314.898557.363175.4.301735494157.	
	- 9*/ 43+-//*94389+-1*963/2/40*094624-1*1034334 -222.784464-26.4934641.355867.6.7496324-2.499507/	
ر. ع	Pril Calculation CUFFFICIENTS	
	.1 490195201550587984.64 <u>40643478491.01036103.55</u>	
	1 44 n'Alcuste058094.60040570.85.88030103.51	••

.....

· .

į

2

1

Ĩ

•

HICE E IV	ULKIAT 7 /// (/ [#]	FIA. 4.64443A	16/10/131	*+2.5.54	
] 391 Flevy.46(52288.569)AtM1 1 34530.46627288.559	. 47. 12. 030103.49. . 74. 85. 030103.47.			İ
		•74.76030163.46.			
	55557*********************************	•			 ł
	1 21 3013, 30037344.44037651	•74 91 • 030103 • 45 •			
۶.s		•94.63•.030103•41.• •100.0•.030103•40.•			ł
	1 16 171 1. 25 74459-46 6 301 U3	•160.0•.030103.40		Į	
	1 14 301 1. 25 0 34454 . 45 0 30103	•100.0.030103.40.7			
	DATA ((((J,1), J=1,9), L=13,24)/				l
	1 14 1-3013.25034859.46030101	+100.0+.030103+40.+			
7:	1-1403013.25034859.40030103	<pre>+ 100.0.0003030340.0.</pre>			
	1 15 379640.23034H59.38030103	<u> </u>			
	1 12	•160.0.°r29960.34.			
	1 30	•160.0.029960.32.			
	1 05029950	•100-0.•029960.30.•			l
75	1 04	•100.0.0029960.29.			
	1 05023013,14034859,29029960	•100-0-079960-29.			
	1 0602413.15034659.30029960	<u>•100.0.029960.30.</u>			
	1 10J.AIF0.17037349.3102940	•100.002994C.11.			
	1 172/9520.23037344.37042285	•44.29.029960.34.			
ι.a	1 21	•50.12.029960.31.Z			ļ
	FHD				

|--|

÷					
	¢	Free rule NCY DF TERMINATION			
: •		10 755 AUF1+3 & IE (KH-2) 520+530+540			 1
	5.75	Plate(1) *4. 24314 * A4 \$ 40 TO 550			
	5 T C	D]=F(.))#6.29318 F (6 T0 550	-		
	246	P3-F(J) 46.2431441.12			
	5 L L L	X4={b;42]/(∀)44(2))-1/7AN((P344(4)	121/40)		
		IF(A(1).NF.10) GO T() 590			
25		ID=KA+, #J-2			-
		HS=FU(1P)			
		X4=DX(1D)			
	593	A3=0 1 NO 736 1=9.15 5 K6=0 5 AJP=((1+1)*10-9C)*P1/180		
		A1=4*P3*C05(AUK)/(()+P5*C05(AUR))**2+(X	4*COS(AJR))**2)		
0	U	A-SOUDTION PER REFIECTION			
	,	A2=1~**! 0(10(1-A1)			
		NU 60- KEL-26 & Y H-1 (2. 58Y 1) / 25 8K			
	¢				
		Sandt Foculture			
		ZJ=X1/A(J)			
ų.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5+53*54502626		
		S2J=52J+19.115712#7J#84+2.4045214#2J#85.	23576959#7J##6		
		S2J=52J-11.6			
		FLEFT FOR ALL REFLECTIONS			
	-		- 10372-561*[ANJA 181+X 1		
÷					İ
	019	LC=LC+U3#1A4(A,K) 15(1 2, C1,1 1) GO TO KR1			
	675				Ì
	6 H G	K6=K6+1080(((,)+-1)+22+52,1)/1()			
ſ	690	CO.TTENE			
	ت	DUMERS IEVEL REDUCTION			
		A.)=(1+1)+10 & KA=10+A10610(K6)			
		Y 1=1 5 5018 (705 (7 1-5) 501 / 1801 - COS (7 1 + 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Al=Ala (0, 2275255-6845-884 (#10#9 (#6/10))			
	611				
		へ 2 m 1 m 4 m 4 m 4 m 1 m 1 m 1 m 1 m 1 m 1			
		A 1			
	755				
		DECEMBER 1 REFERENCES VALUES			
	j,	00 915 1-1 15 5 1-11 112 0 915 1-1 15 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-			
		HULL A LITTLE A AUTITUTE A MACHINE A	60 10 01 0		1
	008	LINGELING SCIENCE SCIENCELINGELINGELINGELINGELINGELINGELINGELING			
		+1+1+1+1=+1+1+1++(N+2+1+C1			
	212	C01411440E			
E,	628	RETURN S END			

Ç Şi

3.0 REFERENCES

- Clapper, W.S., Sieckman, A., Motsinger, R.E., et al., "High Velocity Jet Noise Source Location and Reduction: Task 3 - Experimental Investigation of Suppression Principles," General Electric Company, FAA-RD-76-79, 111-1, (to be published).
- Stringas, E.J., Sieckman, A., Whittaker, R., Wolf, J., et al, "High Velocity Jet Noise Source Location and Reduction: Task 6 - Noise Abatement Nozzle Design Guide," General Electric Company, FAA-RD-76-79, V1, (to be published).
- 3. "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," SAE, ARP 866, August 1964.
- 4. "Method of Calculating the Attenuation of Aircraft Ground-to-Ground Noise Propagation During Takeoff and Landing," SAE, AIR 923, August 1965.

a series sad

4.0 UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) COMPUTER PROGRAM

4.1 INTRODUCTION

This section describes the computational algorithims and associated computer program that provide the necessary link between the symbolic representation of the M*G*B model and the actual numerical results of the prediction method.

The computer program is written in FORTRAN IV language. It has been run on both the GE/Honeywell 6080 and CDC 7600 computers, and can easily be modified for running on other systems. The program subdivides the jet plume utilizing a built-in grid system which requires minimal input for specification. This grid system can be superseded by the user through more complex input if desired. The nozzle geometry is input through discrete point coordinates for each nozzle element boundary, and up to 109 elements can be input for a given case. A maximum of 24 axial stations along the jet plume is permitted, and up to 200 radial points per axial station can be accommodated. These limits can be changed if so desired by modifying the appropriate DIMENSION and COMMON statements in the program logic.

The limiting assumptions made in developing the method have been discussed in Reference 1, but it is appropriate to summarize them here to warn against indiscriminate violation of these limitations. They are as follows:

- 1. The exhaust nozzle elements should be coplanar; that is, each tube or chute of a multielement configuration should exhaust at the same axial plane. However, nozzle element exit planes can be staggered, provided that the mixing layer of a given element does not impinge on the wall of another element.
- The jet exhaust gases must all be of the same constituent, for the calculation cannot accommodate gas mixtures or species concentrations.
- 3. Within any nozzle element, the flow is assumed to be uniform at the exit plane.
- 4. The time-averaged static pressure is assumed to be constant and uniform throughout the jet flow field and surrounding ambient field.
- 5. The exhaust nozzle elements must discharge axially, radial mean flow and swirl are neglected in the model.
6. The effects of shock formations on mixing and turbulence levels are neglected.

These assumptions and limitations are those which pertain to the types of problems which can be analyzed. There are, of course, additional assumptions that went into the formulation of the model itself which may restrict the accuracy of the model, but which do not restrict the type of problem which can be analyzed. The user is advised to consult Reference 2 for the details of the model formulation.

4.2 PROGRAM NOMENCLATURE AND SYMBOL CONVENTION

The jet plume and nozzle geometry coordinates are computed in the MAIN routine. The jet plume is divided into KX axial slices, specified by KA $(1 \leq KA \leq KX)$. The FORTRAN symbol variables for the various coordinate parameters and indices are shown in Figure 4-1. Note that the radial subdivision, specified by index M $(1 \leq M \leq NR)$, proceeds in increments DSIG(KA), from SIC = RMIN(KA) to the maximum value set by NR. The value of NR is determined during the calculation from the location where the axial momentum flux is within a certain tolerance of being equal to the ambient level, i.e.,

|RU2 - RU2E(1)| < RU2M

where RU2M is a specified input tolerance. The maximum allowable value of NR can be specified by the input variable IQUIT. The program dimension sizes limit KX and IQUIT to the following maximum values:

KX < 24 IQUIT < 200

The nozzle geometry itself is input as a number (NEST) of boundary elements. Each element is specified by coordinate pairs RA(I,J) and DALP(I,J), where RA(I,J) denotes the radius and DALP(I,J) denotes the angular increment, as shown in Figure 4-1. The index I denotes the boundary contour point number, and the index J denotes the boundary number. The reference angular location for each boundary is given by ALPO(J). For each boundary, the exit-plane values of total pressure PT(J) and total temperature TT(J) are also specified. Boundary Number One (J=1) is always considered to be the ambient field.

The farfield acoustic calculations are performed on either a constantradius arc or a sideline parallel to the jet axis, according to whether the input variable NUMANG is set equal to 1 or 2, respectively. For NUMANG = 1, the input DIST is the arc radius; for NUMANG = 2, DIST is the sideline distance. The acoustic arena geometry specification in terms of FORTRAN variables is shown in Figure 4-2. Note that a distinction is made between the source-to-observer distance RSTAR and the nozzle-to-observer distance RADIUS. The observer angle relative to the jet axis THETA is always in units of radians, while the observer angle relative to the inlet axis THETD is in units of degrees. The farfield sound pressure level SPL(I,J) is computed at

.. .

Figure 4-1. FORTRAN Symbol Convention for Coordinates and Geometric Variables.

98

· · · · · ·

every 1/3-octave frequency from FMIN to FMAX, at ten-degree increments from THETD = 20° to 160°.

A list of the important FORTRAN symbols used in the computer program is given in Table 4-1, along with their algebraic equivalents where possible. A complete description of all of the input variables and examples of input preparation are given in Section 4.5.

4.3 DESCRIPTION OF PROGRAM AND SUBROUTINES

A flow chart of the computer program logic is shown in Figure 4-3. It indicates the sequence of operations, the interconnections of various portions of the program, and their functions. A description of the main program and each of the subroutines is given in the following paragraphs.

4.3.1 MAIN

The main program initiates the computation and controls the sequence of operations. It reads the input data, computes the grid system for the aerodynamic flow field, and computes the various required nozzle exit plane flow parameters such as velocities, Mach numbers, momentum and enthalpy fluxes, etc. The main program prints out all input data, nozzle exit conditions, nozzle geometry, and coordinate system parameters.

The main program controls and executes the jet plume flow field computation. After each axial slice has been evaluated, the MAIN program calls subroutine SLICE to perform the requested acoustic calculations. Upon completing the calculations at all axial slices, MAIN then calls OUTPUT to perform some final calculations and print out the farfield noise levels. If additional cases are requested, the entire procedure is repeated, beginning with reading of input data; otherwise the execution is halted.

4.3.2 ARCCOS(X)

This is a function subroutine which computes the principal value of the arc cosine of the variable X. It is used in MAIN in evaluating certain angles relating boundary coordinate points and flow field location points.

4.3.3 ERF(X)

This function subroutine evaluates the error function of argument X using polynomial approximations as given in Reference 3. It is used in MAIN for evaluating flow field integrands.

Table 4-1. List of FORTRAN Symbols.

FORTRAN

Symbol Meaning **Related Subroutines** AΛ Air attenuation factor ATMOS ΛΑΑ Intermediate variable LSPFIT, MAIN $|\Delta \Phi|$ ABDTH MAIN Intermediate variable ABLE MAIN ABPA $|\phi - \alpha|$ MAIN ACH Mach number M MAIN ACHM Average mach number MAIN м2 ACH2 MAIN AK Sound level constant MAIN, OUTPUT Lighthill parameter AL MAIN ALFA Frequency constant MAIN ALP Angle MAIN ALPHT Convection constant α_t SLICE ALPØ Reference boundary angle MAIN Input turbulence constant µt AMUIN MAIN AMULT Intermediate value for μ_{+} MAIN AO Speed of sound Ca MAIN ATOTAL Total flow area MAIN Intermediate variable B LSPFIT BETA Shock strength parameter β SHOCK BETAIN Input turbulence constant β_{t} MAIN Convection constant β_{MC} MAIN, SLICE BETAMC ΒK Intermediate variable SLICE BKR Intermediate variable MAIN BOT Intermediate variable LSPFIT BUG Intermediate variable MAIN С Constant LSPFIT CH Spreading parameter C_h/C_m MAIN CHX Spreading parameter Chx MAIN SLICE CJOCO Ratio of C_{i}/C_{a} Spreading parameter Cm CM MAIN CMAX Intermediate variable TPNLC CMC Intermediate variable MAIN CMMC Spreading constant C1 MAIN CMVR Spreading constant C2 MAIN SLICE CNST Constant MAIN, SLICE, SHOCK Ambient speed of sound Ca CO OUTPUT COEF Conversion factor CONV Convection factor SHOCK Flight dynamic factor SLICE CONVF CONVO Convection factor SLICE Modified convection factor C SLICE CONV2 SLICE CONT Constant

· · · · · ·

Related Subroutines

FORTRAN Symbol

~

١

.

K

7

Meaning

CON2	Constant	SLICE
COST	Cos Φ	MAIN
COSTO	Cos ¢	MAIN
СР	Specific heat Cp	MAIN
СТ	Cost	SLICE, CKD
CTSQ	Cos ² θ	SLICE
CTH		SHUCK
CVR	Intermediate variable	MAIN
DALP	Boundary coordinate $\Delta \alpha$	MAIN
DDTHE	Tolerance on A0, radians	SLICE
DDTHED	Tolerance on $\Delta \theta$, degrees	SLICE
DELRA	Transformed boundary radius Av	MAIN
DELSIG	Transformed radius Ar	MAIN
DELIA	Iurbulence constant of	MATN
DELIIN	Input array of ot	MAIN SITCE SHOCK
DEQ	Equivalent diameter Deq	MAIN, SLICE, SHOCK
DIA	Reference D _{eq}	SITCE
DIRECI	Directivity factor	MAIN SLICE
DIST	Sideline of arc distance	MAIN, SLICE
DJEI	Reference diameter	MAIN
DPHI		MAIN SIICE
DRMIN	$\Delta r - \min \min value$	SLICE
DS	Source strength amplitude	SLICE MAIN SLICE
DSIG	Δr Mining spins space	MAIN, SLICE
DSPL	Mixing noise pressure	SLICE, OUIPUI
DSPLI	Intermediate variable	SHOCK
DSPL2		SHOCK
DTHED	AU, degrees	SLICE
DTHM	Maximum increment of φ	MAIN
DU		MAIN SITCE
DUDK	du/dr	MAIN, BLICE
DV	Eddy Volume dv	MAIN CLICE
DX	Axiai step size Δx	MAIN, SLICE
EF	Enthalpy flux	MATN MATN
EFE	Anthalpy flux	MAIN
EM	Mach number	SLICE OUTDUT
EMACH	Exit Mach number	MAIN, SLICE, OUIPUI
F	Intermediate variable	
FAC		
どし たてののでい	Elight volgotty II	DLLUE MAIN SITCE
FIKSIU	riight velocity U _a	MAIN, SLIGE
F15	Intermediate variable	MATN MATN
гM	Mass Ilow	MAIN

102

-

FORTRAN Symbol Meaning Related Subroutines FMAX Maximum observed frequency MAIN, OUTPUT FMIN Minimum observed frequency MAIN, OUTPUT FO Observed frequency SLICE, SHOCK, OUTPUT FP Peak frequency SHOCK FR Frequency ratio SLICE FRSO Intermediate variable SLICE SLICE FS Source frequency GAM MAIN, SHOCK Specific heat ratio y GAMA Gas constant parameter MAIN GEXP Gas constant parameter SHOCK GM Shielding function CRD GOSO Shielding function CRD G2 Shielding function SLICE, CRD HF Spectrum function SLICE HPSI Intermediate variable MAIN HTR Stagnation enthalpy MAIN Index I ALL IC Index LSPFIT I DENT Title (80-characters) MAIN Index TPNLC II IMH Index MAIN Maximum number of points MAIN IQUIT 15 MAIN Index ISSY Index MAIN I SAVE Index LSPFIT I SYM Symmetry indicator MAIN Symmetry indicator IT MAIN J Index ALL JMAX Maximum band number OUTPUT, SHOCK, SLICE Minimum band number JMIN OUTPUT, SHOCK, SLICE Index $\mathbf{J1}$ CRD J11 Index CRD J2 Index CRD J21 Index CRD J211 Index CRD Κ Index, also wave number MAIN, SLICE, PNLC KN Surrounding boundary index MAIN KNCAS Case counter MAIN KNK Surrounding boundary index MAIN KΧ Number of axial slices MAIN Index L. MAIN LAVG Shock spacing SHOCK LEAF Number of boundary leaves MAIN

103

· · · · · · · ·

FORTRAN Meaning **Related** Subroutines Symbol LEAV Number of boundary leaves MAIN LINE Printout counter MAIN LPHI Number of flow field leaves MAIN MAIN LQ Index MAIN, SLICE М Index MACH Mach number SLICE MAXNOY Maximum noy value PNLC SLICE, SHOCK, CRD MC Convection Mach number MCIN Input array of M_c SLICE Input array of Mo MIN CRD Jet exit Mach number SHOCK MJ Index, also number of shocks MAIN, SHOCK, LSPFIT Ν NBREF Reference boundary number MAIN MAIN NCASE Number of cases NCBDY Number of centerbody points MAIN Number of shock cells MAIN, SHOCK NCELL NCOUNT Counter LSPFIT NN Acoustic calculation selector MAIN, SLICE Intermediate variable MAIN NODE NOV Minimum number of points MAIN NOY PNLC Noy value Page counter MAIN NPAGE NPR Printout counter MAIN NPRINT Printout selector MAIN, SLICE NPTS Number of points LSPFIT NR Number of points SLICE, CRD NRI Index SLICE NTP SLICE, CRD Number of turning points NUM Number of boundary points MAIN MAIN, SLICE NUMANG Arena selector NUMK Number of boundary points MAIN NXC Index LSPFIT OAPWL Overall power level OUTPUT OASPL. Overall sound pressure level OUTPUT, PNLC OBSTN Observed Strouhal number OUTPUT Source radian frequency OMEGR SLICE ΡΛΑ Ambient static pressure MAIN PC Intermediate variable PNLC PGC Gas constant parameter MAIN PHI Angle ϕ MAIN ΡI Constant # MAIN, SLICE, OUTPUT $\pi/2$ P102 CRD 2 11 PI2 MAIN

104

· · · · · ·

FORTRAN		
Symbol	Meaning	Related Subroutines
PNDB	PNdB	PNLC
PNL	PNL	OUTPUT, PNLC
PNLT	PNL _t , tone-corrected PNL	OUTPUT
POWER	Exponent	MAIN
PS	Ambient static pressure	MAIN, SHOCK
PSQ	Square of acoustic pressure	OUTPUT
PSQM	Mixing noise $\overline{p^2}$	SHOCK
PSQS	Shock noise p ²	SHOCK
PSQT	Total noise p ²	SHOCK
РТ	Stagnation pressure	MAIN, SHOCK
PWL	Power level	OUTPUT
PWR	Sound power, watts	OUTPUT
Q	Intermediate variable	MAIN
RA	Boundary coordinate radius	MAIN
RAD	Flow integration variable R _o	MAIN
RADO	Flow integration variable R _o	MAIN
RADIUS	Nozzle-to-observer radius R	SLICE, OUTPUT, ATMOS
RADX	Argument R _o /C _m x	MAIN
RCBDY	Centerbody radial cooordinate	MAIN
PRCRIT	Critical pressure ratio	SHOCK
RCRC	Intermediate variable	MAIN
RFO	Intermediate variable	OUTPUT
RHO	Density p	MAIN
RHOE	Ambient density $ ho_{\mathbf{a}}$	MAIN, SLICE
RHOESQ	ρ^2	SLICE
RHOR	Azimuthally-averaged ρ	MAIN, SLICE
RIN	Input radius	SLICE, CRD
RJET	Reference jet density ratio	MAIN
RMIN	Minimum value of r	MAIN
RMINEX	Exit plane value of RMIN	MAIN
RMINSQ	Square of RMIN	MAIN
RMNSQE	Square of RMINEX	MAIN
RMP	Dummy variable	MAIN
RND	Normalized radius r/D _{eq}	MAIN
ROOT	Root (zero) of g^2	SLICE
ROOT2	√2	SLICE
RO	Source radius r _o	CRD
RSIG	Turning point radius ${f r}_\sigma$	SLICE, CRD
RSIG1	$\mathbf{r}_{\sigma 1}$	CRD
RSIG2	r _{o2}	CRD
RSORSQ	Source location correction $(R*/R)^2$	SLICE
RSTAR	Source-to-observer radius R*	SLICE

105

and the second

FORTRAN Symbol Meaning **Related Subroutines** RU Mass flux oU MAIN Momentum flux ρU^2 RU2 MAIN RU2E Exit plane value of ρU^2 MAIN RU2M Minimum value of ρU^2 MAIN RU2REF Reference value of pU2 MAIN R1 Intermediate variable CRD R2 Intermediate variable CRD S Intermediate variable TPNLC SA Intermediate variable MAIN SAC Intermediate value of τ_{ϕ} MAIN Intermediate value of τ_{ϕ} SACO MAIN Intermediate value of $\tau_{r}^{'}$ SAR MAIN Intermediate value of τ_r SARO MAIN Intermediate value of $\tau_{\mathbf{x}}$ SAX MAIN Intermediate value of τ_x SAX0 MAIN SBAR Intermediate variable TPNLC SDU Intermediate value of $\partial U/\partial r$ MAIN SEFE Integral of enthalpy flux MAIN SGN Sign LSPFIT SGN1 Sign CRD SGN2 Sign CRD SG1 Intermediate variable CRD SG2 Intermediate variable CRD SHIELD Shielding integral SLICE, CRD SIC Intermediate value of τ_{ϕ} MAIN SIC Radius r MAIN Sign r² SIGN ERF SIGSQ MAIN MAIN, SLICE SIGR Radius r SINT Sin θ MAIN Sin θ_0 SINTO MAIN SIR Intermediate value of Tr MATN SIX Intermediate value of τ_x MAIN SPL SPL array ALL SPLL Intermediate variable TPNLC SPLMAX Maximum SPL SHOCK SPLP Intermediate variable TPNLC SPLPP Intermediate variable TPNLC SPLU Intermediate variable TPNLC SRU Mass flux integral MAIN SRUM Mass flux integral MAIN SRU2 Momentum flux integral MAIN SRU2M Momentum flux integral MAIN

106

Table 4-1.	List	of	FORTRAN	Symbols	(Continued).
------------	------	----	---------	---------	--------------

Related Subroutines

FEBTHAN Symbol

>

4

;

4

Meaning

SSSPL arrayPNLCSSPLShock noise SPL arraySHOCKSTCAzlmuthal shear stress τ_{ϕ} MAINSTRRadial coordinate stretching factorMAINSTRFRRadial coordinate stretching factorMAINSTRFXAxial coordinate stretching factorMAINSUMSumOUTPUTSUMSPLSum of noy valuePNLCSUMSPLSum of SPLPNLCSUM1SumCRDSUB3Integral of source strengthMAINSU8Integral of source strengthMAINSU8Integral of source strengthMAINSU8Intermediate variableLSPFITTTemperatureMAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAUTotal shear stress tMAINTAUTotal shear stress tMAIN <t< th=""><th></th><th></th><th></th></t<>			
SSPLShock noise SPL arraySHOCKSTCAzimuthal shear stress τ_{ϕ} MAINSTRRadial shear stress τ_{ϕ} MAINSTRFRRadial coordinate stretching factorMAINSTRFRAxial coordinate stretching factorMAINSTRFRAxial shear stress τ_{χ} MAINSUMSumOUTPUTSUMNOSum of noy valuePNLCSUMSPLSum of splPNLCSUM2Sum of source strengthMAINSUM3SumCRDSUM4Sum of source strengthMAINSUM4Sum of velocityMAINSUM4Integral of source strengthMAINSUM4Integral of source strengthMAINSUM5Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAUIntermediate variableMAINTAUIntermediate variableTPNLCTC2Intermediate variableTPNLCTEExit static temperature T/TaSLICETEExit static temperature T/TaSLICETERMNormalized temperature T/TaSLICETERMDirectivity factor	SS	SPL array	PNLC
STCAzimuthal shear stress τφMAINSTRRadial coordinate stretching factorMAINSTRFRRadial coordinate stretching factorMAINSTRFXAxial coordinate stretching factorMAINSTXAxial shear stress txMAINSTXAxial shear stress txMAINSUKReference velocityMAINSUMSumOUTPUTSUMNOYSum of noy valuePNLCSUMNISumCRDSUM2SumCRDSUM3Integral of source strengthMAINSU8Integral of source strengthMAINTTemperatureKF, MAINTAIntermediate variableMAINTAIntermediate variableTPNLCTC2Intermediate va	SSPL	Shock noise SPL array	SHOCK
STRRadial shear stress τ_r MAINSTRFRRadial coordinate stretching factorMAINSTRFXAxial coordinate stretching factorMAINSTRAxial coordinate stretching factorMAINSTRAxial shear stress τ_x MAINSUEReference velocityMAINSUEReference velocityMAINSUM SumSum of noy valuePNLCSUMSPLSum of SPLPNLCSUMSPLSum of SPLPNLCSUM2SumCRDSUM2SumCRDSUM4Integral of source strengthMAINSU8Integral of source strengthMAINSU8Intermediate variableLSPFITTTemperatureMAINTAUIntermediate variableMAINTAUTotal shear stress TMAINTAUTotal	STC	Azimuthal shear stress $\tau_{m{\phi}}$	MAIN
STRFR Radial coordinate stretching factor MAIN STRFX Axial coordinate stretching factor MAIN STRFX Axial coordinate stretching factor MAIN STX Axial coordinate stretching factor MAIN SUE Reference velocity MAIN SUE Reference velocity MAIN SUM Sum OUTPUT SUMSPL Sum of noy value PNLC SUMSPL Sum of SPL PNLC SUM1 Sum CRD SUM2 Sum CRD SUM4 Integral of source strength MAIN SUS Integral of source strength MAIN SUS Square of velocity MAIN SV2 Square of velocity MAIN SV3 Intermediate variable LSPFIT T Temperature ERF, MAIN TA Antermediate variable MAIN TAA Antermediate variable MAIN TAU Total shear stress t MAIN TAU Total shear stress <t td=""> MAIN TC2 Intermediat</t>	STR	Radial shear stress $ au_{\mathbf{r}}$	MAIN
STRXAxial coordinate stretching factorMAINSTXAxial shear stress τ_X MAINSTXAxial shear stress τ_X MAINSTXAxial shear stress τ_X MAINSTXReference velocityMAINSUMSum of noy valuePNLCSUMSPLSum of SPLPNLCSUMSPLSum of SPLCRDSUM2SumCRDSUMIntegral of source strengthMAINSUBIntegral of velocityMAINSUSquare of velocityMAINSUSquare of velocityMAINSUIntermediate variableLSPFITTTemperatureMAINTAIntermediate variableMAINTAUTotal shear stress τ MAINTAUAzimuthal average of τ MAINTAUAzimuthal average of τ MAINTAUAzimuthal average of τ MAINTAUAzimuthal average of τ MAINTAUAzimuthal average of τ MAINTEMNormalized temperatureMAINTEMNor	STRFR	Radial coordinate stretching factor	MAIN
STXAxial shear stress t_x MAINSUEReference velocityMAINSUEReference velocityMAINSUMSum of noy valuePNLCSUMNOYSum of noy valuePNLCSUMNSPLSum of SPLPNLCSUM1SumCRDSUM2SumCRDSUM2SumCRDSUM1Integral of source strengthMAINSUSSquare of velocityMAINSV2Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAIntermediate variableMAINTAUTotal shear stress τ MAINTAUTotal shear stress τ MAINTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETEMPNormalized temperature T/TaSLICETHANDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ_1 , adiansSLICE, OUTPUTTHETDObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHTObserver angle θ_1 , radiansSLICE, OUTP	STRFX	Axial coordinate stretching factor	MAIN
SUEReference velocityMAINSUMSumOUTPUTSUMNOYSum of noy valuePNLCSUMSPLSum of SPLPNLCSUM1SumCRDSUM2SumCRDSUM2SumCRDSUM4Integral of source strengthMAINSU8Integral of source strengthMAINTTemperatureMAINTAIntermediate variableMAINTAUTotal shear stress τ MAINTAUTotal shear stress τ MAINTAUTotal shear stress τ MAINTC2Intermediate variableTPNLCTEExit static temperatureMAINTEMDirectivity factorSLICETHAngle ϑ MAINTHCRCritical angle ϑ_{cr} SHOCKTHEAObserver angle ϑ_{1} , radiansSLICE, OUTPUT, SHOCKTHO ϑ_{0} MAIN <td>STX</td> <td>Axial shear stress t_x</td> <td>MAIN</td>	STX	Axial shear stress t _x	MAIN
SUMSumOUTPUTSUMNOYSum of noy valuePNLCSUMNOYSum of sPLPNLCSUMSPLSum of SPLPNLCSUM1SumCRDSUM2SumCRDSUM3Integral of source strengthMAINSU8MIntegral of source strengthMAINSU8Intermediate variableLSPFITTTemperatureMAINTAIntermediate variableMAINTAUTotal shear stress τ MAINAUTotal shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle θ SLICE, CRDTHETAObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHEAngle θ SLICE, OUTPUT, SHOCKTHIntermediate variableMAINTOPIntermediate variableSHOCKTERMDirectivity factorSLICE, OUTPUT, SHOCKTHEAngle θ_1 , radiansSHOCKTHIntermediate variableSHOCKTHObserver angle $\theta_$	SUE	Reference velocity	MAIN
SUMNOYSum of noy valuePNLCSUMNOYSum of SPLPNLCSUM1SumCRDSUM2SumCRDSUM4Integral of source strengthMAINSU84Integral of source strengthMAINSU85Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAIntermediate variableMAINTAIntermediate variableMAINTA0Intermediate variableMAINTA1Total shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTE4Exit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϑ MAINTHCKCritical angle θ_{CT} SHOCKTHEAngle ϑ SLICE, OUTPUT, SHOCKTH0 ϑ_0 MAINTHTObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTH0 ϑ_0 MAINTOPIntermediate variableLSPFITTHSStatic temperatureMAINTHCCircumferential asymmetry test parameterMAINTG50411Circumferential asymmetry test parameterMAINTACircumferential asymmetry test parameterMAINTACircumferential asymmetry test parameterMAIN	SUM	Sum	OUTPUT
SUMSPLSum of SPLPNLCSUM1SumCRDSUM2SumCRDSUM4Integral of source strengthMAINSU8Integral of source strengthMAINSU8Integral of source strengthMAINSU8Integral of source strengthMAINSU8Integral of source strengthMAINSU8Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTA0Intermediate variableMAINTA1Total shear stress τ MAINTA2Total shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTC4Intermediate variableTPNLCTC5Intermediate variableTPNLCTC6Intermediate variableTPNLCTC7Intermediate variableTPNLCTC3Intermediate variableTPNLCTC4Intermediate variableTPNLCTE4Exit static temperatureMAINTEMNormalized temperature T/TaSLICETERMDirectivity factorSLICETERMDirectivity factorSLICETHAAngle θ SLICE, OUTPUT, SHOCKTHEAngle θ SLICE, OUTPUT, SHOCKTHEObserver angle θ_1 , radiansSHOCKTHTObserver angle θ_1 , radiansSHOCKTHIntermediate variableLSPFITTSTDCircumf	SUMNOY	Sum of noy value	PNLC
SUM1SumCRDSUM2SumCRDSUM2SumCRDSUBIntegral of source strengthMAINSUSMIntegral of source strengthMAINSUVSquare of velocityMAINS1Intermediate variableLSPFITTTemperatureEFF, MAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAUTotal shear stress τ MAINTAUTotal shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTC4Intermediate variableTPNLCTC5Intermediate variableTPNLCTC6Intermediate variableTPNLCTC7Intermediate variableTPNLCTC8Exit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHEAngle ϕ SLICETHERDirectivity factorSLICE, OUTPUTTHETDObserver angle θ_1 , adiansSLICE, OUTPUT, SHOCKTH0 ϕ_0 MAINTHObserver angle θ_1 , radiansSHOCKT1Intermediate variableLSPFITTSTDCircumferential asymmetry test parameterMAINTSTDCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	SUMSPL	Sum of SPL	PNLC
SUM2SumCRDSU8Integral of source strengthMAINSU8MIntegral of source strengthMAINSU8MIntegral of source strengthMAINSU8MIntegral of source strengthMAINSU8MIntegral of source strengthMAINSV2Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAOIntermediate variableMAINTAUTotal shear stress tMAINTAUTotal shear stress tMAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAAngle ϕ SLICETHEAAngle ϕ SLICE, CNDTHETAObserver angle θ_1 , radiansSHOCKTHTObserver angle θ_1 , radiansSHOCKTIIntermediate variableLSPFITTSTDCircumferential asymmetry test parameterMAINTHTObserver tal asymmetry test parameterMAINTHAStatic temperature test parameterMAIN	SUM1	Sum	CRD
SU8Integral of source strengthMAINSU8MIntegral of source strengthMAINSU8MIntegral of source strengthMAINSV2Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETHAngle ϕ MAINTHCRCritical angle θ_{Cr} SHOCKTHETObserver angle θ_1 , radiansSLICE, OUTPUTTHETDObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHIntermediate variableLSPFITTSTDCircumferential asymmetry test parameterMAINTSTICircumferential asymmetry test parameterMAIN	SUM2	Sum	CRD
SUBMIntegral of source strengthMAINSV2Square of velocityMAINSV2Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTHERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETDObserver angle θ_1 , radiansSLICE, OUTPUTTHETDObserver angle θ_1 , radiansSHOCKT1Intermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTHETACircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAIN	SU8	Integral of source strength	MAIN
SV2Square of velocityMAINS1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTC4Exit static temperatureMAINTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKTHIntermediate variableLSPFITTKRStatic temperatureMAINTHCTObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAIN	SU8M	Integral of source strength	MAIN
S1Intermediate variableLSPFITTTemperatureERF, MAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTAUTotal shear stress τ MAINTC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{Cr} SHOCKTHEAngle θ SLICE, OUTPUTTHETAObserver angle θ_{I} , adjansSLICE, OUTPUT, SHOCKTH0 ϕ_0 MAINTHTObserver angle θ_{I} , radiansSHOCKT1Intermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAIN	SV2	Square of velocity	MAIN
TTemperatureERF, MAINTAIntermediate variableMAINTAAAmbient static temperatureMAINTAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{Cr} SHOCKTHEAngle θ SLICE, OUTPUTTHETAObserver angle θ_1 , adgressSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKTIIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTICircumferential asymmetry test parameterMAIN	S1	Intermediate variable	LSPFIT
TAIntermediate variableMAINTAAAmbient static temperatureMAINTAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTHETAObserver angle θ , radiansSLICE, OUTPUTTHETAObserver angle θ_1 , degreesSLICE, OUTPUT, SHOCKTHIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAIN	Т	Temperature	ERF, MAIN
TAAAmbient static temperatureMAINTAOIntermediate variableMAINTAUTotal shear stress τ MAINTAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTHETAObserver angle θ , radiansSLICE, OUTPUTTHETAObserver angle θ_1 , degreesSLICE, OUTPUT, SHOCKTIIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAIN	ТА	Intermediate variable	MAIN
TAOIntermediate variableMAINTAUTotal shear stress τ MAINTAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICE, CRDTHEAngle θ SLICE, OUTPUTTHETAObserver angle θ , radiansSLICE, OUTPUT, SHOCKTH0 ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAIN	ТАЛ	Ambient static temperature	MAIN
TAUTotal shear stress τ MAINTAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle ϕ SLICE, CRDTHETAObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAIN	TAO	Intermediate variable	MAIN
TAURAzimuthal average of τ MAIN, SLICETC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHEAngle θ SLICE, OUTPUTTHETAObserver angle θ , radiansSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ I, radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAIN	TAU	Total shear stress T	MAIN
TC2Intermediate variableTPNLCTC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ_1 , radiansSLICE, OUTPUTTHETDObserver angle θ_1 , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKT1Intermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTICircumferential asymmetry test parameterMAINTSTICircumferential asymmetry test parameterMAIN	TAUR	Azimuthal average of τ	MAIN, SLICE
TC3Intermediate variableTPNLCTEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ_1 , radiansSLICE, OUTPUTTHETDObserver angle θ_1 , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKT1Intermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	TC2	Intermediate variable	TPNLC
TEExit static temperatureMAINTEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHEAngle θ SLICE, OUTPUTTHETAObserver angle θ_1 , radiansSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_1 , radiansSHOCKT1Intermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	тс3	Intermediate variable	TPNLC
TEMPNormalized temperature T/TaSLICETERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ , radiansSLICE, OUTPUTTHETDObserver angle θ_{I} , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_{I} , radiansSHOCKT1Intermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAIN	TE	Exit static temperature	MAIN
TERMDirectivity factorSLICETHAngle ϕ MAINTHCRCritical angle θ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ , radiansSLICE, OUTPUTTHETDObserver angle θ_I , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_I , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	TEMP	Normalized temperature T/Ta	SLICE
THAngle ϕ MAINTHCRCritical angle ϕ_{CT} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ , radiansSLICE, OUTPUTTHETDObserver angle θ_I , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_I , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTILCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	TERM	Directivity factor	SLICE
THCRCritical angle θ_{cr} SHOCKTERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ , radiansSLICE, OUTPUTTHETDObserver angle θ_I , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_I , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTILCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	ТН	Angle o	MAIN
TERMDirectivity factorSLICETHEAngle θ SLICE, CRDTHETAObserver angle θ , radiansSLICE, OUTPUTTHETDObserver angle θ I, degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ I, radiansSHOCKT1Intermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	THCR	Critical angle θ_{cr}	SHOCK
THEAngle θ SLICE, CRDTHETAObserver angle θ , radiansSLICE, OUTPUTTHETDObserver angle θ I, degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ I, radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTILCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	TERM	Directivity factor	SLICE
THETAObserver angle θ_i , radiansSLICE, OUTPUTTHETDObserver angle θ_i , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_i , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	THE	Angle θ	SLICE. CRD
THETDObserver angle θ_I , degreesSLICE, OUTPUT, SHOCKTHO ϕ_0 MAINTHTObserver angle θ_I , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	THETA	Observer angle θ , radians	SLICE. OUTPUT
THO ϕ_0 MAINTHTObserver angle θ_I , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	THETD	Observer angle θ_1 , degrees	SLICE, OUTPUT, SHOCK
THTObserver angle θ _I , radiansSHOCKTIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	тно		MAIN
TIIntermediate value of enthalpy fluxMAINTOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	ТНТ	Observer angle θ_1 , radians	SHOCK
TOPIntermediate variableLSPFITTSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTWCircumferential asymmetry test parameterMAINTSTWCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAINTSTUCircumferential asymmetry test parameterMAIN	TI	Intermediate value of enthalpy flux	MATN
TSRStatic temperatureMAINTSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHLCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	тор	Intermediate variable	LSPFIT
TSTDCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTHCircumferential asymmetry test parameterMAINTSTLCircumferential asymmetry test parameterMAIN	TSR	Static temperature	MAIN
TSTH Circumferential asymmetry test parameter MAIN TSTH Circumferential asymmetry test parameter MAIN TSTL Circumferential asymmetry test parameter MAIN	TSTD	Circumferential asymmetry test parameter	MAIN
TSAM, Circumferential asymmetry test parameter MAIN TSTL Circumferential asymmetry test parameter MAIN	TSTH	Circumferential asymmetry test parameter	MAIN
TSTL Circumferential asymmetry test parameter MAIN	US OF	Clreamforont [1] asymmetry tost naramotar	MAIN
	TSTL	Circumferential asymmetry test parameter	MAIN

107

. *. .*

FORTRAN Symbol Meaning **Related** Subroutines ΤT Stagnation temperature MAIN TTR Stagnation temperature MAIN TURBIN Turbulence intensity, u' MAIN U Mean velocity MAIN UAP Intermediate variable MAIN UAVG Mass-average of U at x MAIN UC Convection velocity U_C SHOCK Exit plane velocity Ui UE MAIN, SHOCK UGLY Intermediate variable MAIN UJET Reference exit velocity MATN UMAX Maximum local value of U at x MAIN UND Normalized value of U, U/UREF MAIN UNITS Constant for units conversion MAIN, OUTPUT UR Azimuthal average of U MAIN, SLICE UREF Reference exit velocity MAIN U8 Intermediate value of source strength MAIN **U8I** Integral of source strength MAIN VA Intermediate value of momentum MATN VAO Intermediate value of momentum MAIN VI Intermediate value of momentum MAIN VMAX Maximum of velocities inside and outside MAIN VMIN Minimum of velocities inside and outside MAIN VO Flight velocity Ua SHOCK VR Velocity ratio VMIN/VMAX MAIN WITHIN Dummy variable LSPFIT Х Axial distance x MAIN, SLICE X CBDY Centerbody axial coordinate MAIN XD Intermediate variable LSPFIT XE Exit plane axial coordinate MAIN XND Normalized axial coordinate X/Deg MAIN XOR Variable x/R SLICE X1 Intermediate variable for curve fitting LSPFIT X13 Intermediate variable for curve fitting LSPFIT X4 Intermediate variable for curve fitting LSPFIT X43 Intermediate variable for curve fitting LSPFIT Y Intermediate variable for curve fitting LSPFIT YC Intermediate variable for curve fitting LSPFIT ΥI Intermediate variable for curve fitting LSPFIT ¥3 Intermediate variable for curve fitting LSPFIT

108

Figure 4-3. Computer Program Flow Chart.

.... J

-

\$

Figure 4-3. Computer Program Flow Chart (Continued).

(c) Subroutine OUTPUT

4.3.4 LSPFIT

Subroutine LSPFIT is a curve-fitting routine which utilizes leastsquares polynomial fits of second order to perform interpolation, differentiation and integration of input discrete-point data. The calling statement is:

CALL LSPFIT(X, Y, N, XC, YC, NC, NF, A)

where (X, Y) are the input data coordinates (N values of each), XC are the values of X where output is requested, YC are the output functions, NC is the number of output data points, and NF indicates the type of output desired. The coding for NF is as follows:

NF = 0, YC are interpolated values of Y NF = 1, YC are derivatives of Y NF = -1, YC is the integral of Y from XC(1) to XC(J), $1 \le J \le NC$.

The parameter A is the second derivative of Y. Subroutine LSPFIT is used in MAIN to interpolate input plug/centerbody geometry coordinates at various axial stations in the flow field, and to obtain radial gradients of density from the computed density profiles.

4.3.5 SLICE

Subroutine SLICE directs the mixing noise calculation for each axial slice. The calling sequence is as follows:

CALL SLICE (X(KA), DSIG(KA), DX, M)

where X(KA) is the axial location, DSIG(KA) is the radial step size, DX is the axial slice thickness, and M is the number of radial points in the slice. The flow parameters (which are circumferentially mass-averaged values) are transferred through labeled COMMON statements. Subroutine SLICE computes the acoustic arena geometry parameters THETA, THETD, RADIUS and initializes SPL (I,J) to zero during the first call, skipping this calculation on succeeding calls. The normalized radial profiles of velocity (MACH) and temperature (TEMP) are evaluated, followed by a calculation of source strength amplitude DS and characteristic frequency FS for each radial volume element.

Subroutine SLICE computes the acoustic shielding function profiles G2(J), the number of turning points NTP, and their locations RSIG. Subroutine CRD is then called to calculate the acoustic shielding exponentials and quadrupole directivity functions. Subroutine SLICE then sums up the mixing noise contributions from each radial volume element, factoring in their individual source strengths, characteristic frequencies, spectrum shapes, directivities, and shielding factors. The resulting noise spectrum from each slice is stored as the variable DSPL(I,J), where I denotes the observer angle index and J is the 1/3-octave frequency band index. Upon completing the calculation for a given slice, SLICE returns control to MAIN.

4.3.6 CRD

Subroutine CRD computes the shielding function integrals and quadrupole directivity factors for a given axial slice as a function of radial source location. The radial distributions of normalized velocity (MACH) and temperatures (TEMP) and shielding function (G2) are transferred to CRD through labeled COMMON statements. The calling statement is:

CALL CRD

At each source radius, subroutine CRD interrogates the data to determine which of the six shielding conditions in Figure 4-4 applies, and computes the appropriate shielding integral (β_{01} , β_{02} , or β_{12}) and the appropriate directivity factors. After all radial source volumes have been evaluated, CRD returns control to SLICE.

4.3.7 OUTPUT

Subroutine OUTPUT performs the final acoustic calculations and prints out the far field SPL spectra, OASPL, PNL and PNLT directivities. The calling sequence is as follows:

CALL OUTPUT (EMACH, DJET, RJET, UJET, UNITS)

where EMACH, DJET, RJET, and UJET are the characteristic (usually reference) jet Mach number, diameter, density ratio and velocity, respectively. The parameter UNITS is a conversion factor for converting from lb_f/ft^2 to dynes/cm² relative to 0.0002 dynes/cm². Subroutine OUTPUT converts the narrowband spectra from SLICE into 1/3-octave levels. Subroutine SLICE then calls SHOCK to compute SSPL spectra (shock noise) and adds these to the turbulent mixing noise spectra to obtain the total-noise spectra. The corresponding power spectrum (PWL) is then computed, and subroutine ATMOS is then called to correct all SPL spectra for atmospheric attenuation. Sub-routines PNLC and TPNLC are then called to calculate perceived noise level

114

• • • •

PNL and tone-corrected noise level PNLT. Finally, overall sound pressure level OASPL is computed, and all of these acoustic parameters are then printed out. Subroutine OUTPUT then returns control to MAIN.

4.3.8 SHOCK

Subroutine SHOCK computes the broadband shock-associated noise spectra at each observer angle. The calling statement is as follows:

CALL SHOCK

All parameters are transferred into and out of this subroutine through labeled COMMON statements. Subroutine SHOCK computes the 1/3-octave SPL spectra for each nozzle boundary element which has a non-zero shock cell number input, NCELL > 0. The individual boundary contributions are summed on a mean-square pressure basis and added to the mixing noise spectra.

4.3.9 ATMOS

Subroutine ATMOS corrects the input SPL spectra for atmospheric attenuation effects using standard-day atmospheric absorption factors for 70% relative humidity and 59° F ambient conditions. The calling sequence is as follows:

CALL ATMOS (SPL, RADIUS)

where SPL(1,J) is the sound pressure spectrum array, I denotes the index for observer angle, J denotes the index on frequency, and RADIUS(I) is the nozzle-to-observer distance array. The atmospheric absorption in dB per 1000 ft, from Reference 4, is corrected to the proper distance RADIUS(J), and the result is subtracted from SPL(I,J). The array of SPL(I,J) returned to OUTPUT is the corrected array.

4.3.10 PNLC

Subroutine PNLC computes the perceived noise level in PNdB at each observer angle from the input 1/3-octave spectra. The calling sequence is as follows:

CALL PNLC (SS, FAC, PNDB, OASPL)

where SS is the input array of either 1/3-octave or octave SPL values, FAC is a constant equal to 0.15 for 1/3-octave and 0.3 for octave levels, PNDB is the output PNL, and OASPL is the conventional overall level. The method used to calculate PNL is taken from Reference 5. The OASPL output from subroutine PNLC is discarded because it only computes the summation for the first 24 values of SS. This is sometimes insufficient for scale model condition, where the frequency range of interest can cover as many as thirtythree 1/3-octave frequency bands.

4.3.11 TPNLC

Subroutine TPNLC determines a pure-tone correction factor to the PNL value as a function of the 1/3-octave SPL spectrum. The calling sequence is as follows:

CALL TPNLC (SPL, PTCOR)

where SPL is the input 1/3-octave spectrum and PTCOR is the correction to be applied to PNL to account for the presence of tones in the spectrum. Subroutine TPNLC reads in SPL and returns PTCOR. The tone correction and detection procedure is based on the method proposed in Reference 7.

4.4 PROGRAM USAGE AND LOGIC

A complete description of the program input variables and input format is given in Section 4.5. A list of notes and suggestions on running the program is also included. A description of program output format, including warning flags and diagnostics, is given in Section 4.6. A sample case listing (including input data card images) is given in Section 4.7 for a 7-tube suppressor nozzle, one of the data-theory comparison cases presented in Reference 2. A complete FORTRAN source listing of the program logic is given in Section 4.8.

Program users should be completely familiar with Appendix A, since there are many pitfalls which can be avoided by giving attention to the recommendations presented therein. The program flexibility permits analysis of nozzle planforms of any imaginable shape, so long as certain input rules and guidelines are followed. When non-axisymmetric nozzles are run, a completely three-dimensional, turbulent, compressible flow field analysis is performed, and input mistakes can be costly in terms of computer processor time. The user should make initial checkout runs for complex nozzles, running just one or two axial slices at first, to ensure that all input is as desired, before running a complete jet plume.

The program is designed to serve as a diagnostic tool, in addition to functioning in the standard jet noise prediction mode. Individual slice calculations can be made by suitable input selection, running each slice (or axial station) as a separate case. This mode permits evaluation of the relative contributions of each slice at each frequency and observer angle. Various components of the acoustic model can be bypassed to assess, for example, the separate effects of convection, acoustic shielding, etc. The program can also be used to predict only the jet flow field, if desired.

4

4.5 DESCRIPTION OF INPUT

The input data is supplied through NAMELIST input format, with the exception of the alphanumeric title data card, which precedes the input NAMELIST data. Any number of successive cases can be run consecutively, limited only by the user's execution time available. Each successive case requires a title card (80 - character label in columns 1 - 80), followed by the INPUT NAMELIST. The data from preceding cases remain in storage, so only those variables which are to be changed from the preceding cases input value need be included in the INPUT file of succeeding cases.

A suggested input preparation format is given in Table 4-2. Those variables marked by an asterisk (*) have preset values built into the program, and need not be input unless the user desires to override the preset values with a different one. The definitions of each of the input variables given in Table 4-2 are listed in Table 4-3. Again, preset variables are marked by an asterisk (*). The values of those variables which are preset are given in Table 4-4. The format of Table 4-3 is such that a note number (where appropriate) is given for each variable which corresponds to the note number in Section 4.5.1 ("Notes on Input"). These notes give further elaboration on how to specify and prepare the input data.

Table 4-2. Suggested Input Format.

Column 2 (80 - CHARACTER TITLE CARD, COLUMNS 1-80) \$INPUT $KX^* =$, NEST = , LPHI^{*} = , ISYM = , IQUIT^{*} = _____, NN^{*} = _____, NCASE^{*} = ____, NBREF^{*} = ____, NPRINT^{*} = ____, NCBDY = _____, NØV = X = ____, ____, ____, ____, ____, ____, ____, ____, DSIG = DELTIN* = _____, ____, ____, ____, ____, ____, ____, AMUIN* = _____, ____, ____, ____, ____, ____, RMIN , XE = $ALP\phi =$ _ , _1____, _____, ____, _____, _____, _____, _____, _____, LEAV = ____ _____, _____, _____, _____, _____, _____, NUM = _____, ____, ____, ____, ____, ____, ____, ____, ΚN = DEQ = DS = NCELL = _____, ____, ____, ____, ____, ____, РТ TΤ

119

· · · · · · · ·

Table 4-2. Suggested Input Format (Concluded).

Column 2		
DALP(1,2) =,	·,,,	,,
DALP(1,3) =,	·,,	
(etc., for boundary 4, 5, 6,	NEST)	
RA(1, 2) = ,	·,	,,
RA(1, 3) =,,	,,,,,	;;
(etc., for boundary 4, 5, 6,	Nest)	
CM* =, CH* =	, CMVR* =	, CMMC * =,
GAM =, CP =	, PS =	_, ALFA* =,
DTHM* =, RU2M* =	, AK* =	, BK* =,
STRFR* =, STRFX* =	, ATØTAL =	
ALPHMC* =, BETAMC* =	y	
NUMANG =, DIST =	, FMIN * =	, FMAX* =,
ALPHT* =,,	,,	,,,
XCBDY =,,	······································	
RCBDY =,,		,,,
S		

(NEXT CASE, IF ANY)

2

•

•

7

4

120

.....

Table 4-3. Input Variable Definitions.

Variable	Note	Description
кх *		Number of axial stations to be analyzed; a maximum of 24 stations is permitted.
NEST	1	Number of closed boundary contours defining the nozzle exit geometry; a maximum of 110 is permitted.
LPHI	7	Number of symmetric leaves (repeating seg- ments in the nozzle exit planform.
ISYM		Nozzle symmetry indicator; ISYM = 1 for ax- symmetric nozzles or completely asymmetric nozzles, = 0 otherwise.
IQUIT		Maximum number of radii at which flow field is calculated (≤ 200).
NN *	12	Acoustic Calculation option indicator.
NCASE*		Number of cases to be run consecutively.
NBREF*		Reference condition boundary number.
NPRINT*	13	Aerodynamic station printout indicator.
NCBDY	9	Number of centerbody input coordinate points. A maximum of 40 is permitted.
NØV		Minimum number of radii at which flow field is to be calculated, for each axial station (KX values required).
х	11	Axial location of each axial station, ft. (KX values' required).
DSIG	11	Radial step size to be taken for flow field calculation at each axial station, ft. (KX values required).
BETAIN*	15	Axial shear stress turbulence constant (KX values required).
DELTIN*		Azimuthal shear stress turbulence constant (KX values required).

121

1

Ļ

Table 4-3. Input Variable Definitions. (Continued)

-

Variable	Note	Description
AMUIN*		Azimuthal velocity gradient turbulence fre- quency constant (KX values required).
RMIN	9	Minimum radius for flow field calculation at each axial station (KC values required).
XE	8	Axial location of exit plane of each boundary, ft. (NEST values required).
ALPØ	2	Reference angle α_0 from which the coordinates of each boundary point are specified, radians (NEST values required).
LEAV	1,4	Number of symmetric leaves (repeating seg- ments) of each boundary (NEST values required).
NUM	1,5	Number of input points (coordinate pairs) to be supplied for each boun ary (NEST values required).
KN	1	The number of the boundary which encloses a given boundary (NEST values required).
DEQ	16	Equivalent flow area diameter of each boundary, ft. (NEST values required).
DS	16	Shock-cell spacing characteristic dimension, usually hydraulic diameter, of each boun- dary, ft. (NEST values required).
NCELL	16	Number of shock cells for each boundary element (NEST values required).
РТ	6	Stagnation pressure inside each boundary, lb _f /ft ² (NEST values required).
TT	6	Stagnation temperature inside each boun- dary ° R (NEST values required).
DALP(I,J)	2,3,5	Angular increment $\Delta \alpha$ from preceding boun- dary point which locates the given boun- dary point I on boundary J, radians (omit boundary number 1, ambient field).

122

· · · · ·

.

7

j J

÷.

3

٩.

3

5

, 1

Variable	Note	Description
RA (I,J)	2,3,5	Radial coordinates of boundary point I on boundary J, ft. (omit boundary number 1, ambient field).
см*	10	Empirical jet momentum diffusion rate spreading parameter C _m .
сн*	10	Ratio of enthalpy-to-momentum spreading parameters $C_{\rm h}/C_{\rm m}$.
CMVR*	10	Momentum spreading parameter velocity ratio influence coefficient.
CMMC*	10	Momentum spreading parameter Mach number influence coefficient.
GAM		Specific heat ratio $\gamma = C_p/C_v$.
СР		Specific heat at constant pressure C_p , in (ft-lb _f)/(slug - ° R)
PS		Ambient static pressure, lb_f/ft^2 .
ALFA*		Turbulence characteristic frequency con- stant.
DTHM *	7	Maximum allowable increment in angular coordinate, $(d\phi)_{max}$, for flow field calcula-tion.
ru2m *		Minimum value of jet momentum flux, $(\rho U^2)_{min}$, below which the flow is not calculated.
АК *		Sound pressure level proportionality con- stant for mixing noise calculation.
вк *		Sound pressure level proportionality con- for dipole density-gradient noise calcula- tion.
STRFR *	11	Radial coordinate stretching factor for use of automatic mesh calculation.
strfx *	11	Axial coordinate stretching factor for use of automatic mesh calculation.

Table 4-3. Input Variable Definitions (Concluded).

Variable	Note	Description
ATØTAL		Nozzle Total exit flow area, ft ² .
ALPHMC*	14	Convection Mach number weighting factor.
BETAMC *	14	Convection Mach number weighting factor.
NUMANG		Arena selection indicator; NUMANG = 1 indi- cates constant radius arc, NUMANG = 2 indicates sideline parallel to the jet axis.
DIST		Arc or sideline distance, ft.
FMIN*		Minimum frequency for which acoustic cal- culations are required, Hz (>50); an integer variable.
FMAX *		Maximum frequency for which acoustic calcu- lations are required, Hz (<100,000); an integer variable.
ALPHT*		Convective amplification factor turbulence constant α_t ; 15 values required, one for each observer angle θ_I from θ_I = 20° to 160° in 10° increments.
XCBDY	9	Centerbody input point axial coordinate, NCBDY values required.
RCBDY	9	Centerbody input point radial coordinate, NCBDT values required.

Table 4-4. Preset Input Value	s	
-------------------------------	---	--

Value
0.08
1.0
15* 0.5
0.5
24* 0.2
24* 4.0
0.325
0.0
1.15
0.075
0.08
0.25
24* 4.0
0.1
100000
50
50
15
9999
2
1
0
1
3.0
0.01
1.259921

4.5.1 Notes on Input

- 1. The jet nozzle geometry is specified by input of the number of component boundaries, NEST, along with pairs of coordinates, RA and DALP, for each boundary element. The ambient field is always treated as the first boundary in the input arrays for UE, PT, TT, LEAV, NUM, KN, XE, and ALPO. This is why some numbers have already been filled in on Table 4-2 in the first column for these arrays. A nozzle with N elements has NEST = N + 1 boundaries.
- The steps to specifying nozzle geometry input are as follows, referring to Figure 4-1:
 - a. Obtain sketch or drawing of nozzle exit cross section and select a coordinate origin which is optimum from the standpoint of symmetry and boundary point specification.
 - b. Number each boundary, reserving boundary Number 1 for the ambient field.
 - c. With respect to the coordinate origin, select a reference angular location for each boundary, $ALP\emptyset$.
 - d. For each boundary, select points represented by pairs of coordinates. The coordinates used as input are radius, RA(I,J), and angular increment from the preceding point, DALP(I,J). For the first point, DALP(I,J) is the angular increment from the reference angle ALPØ. The index I is the boundary point number, and the index J is the boundary number. Both ALPØ and DALP are to be input in radians, and RA is input in feet.
- 3. The last point on a given boundary should be located at ALPØ if the boundary has only one leaf. The sum of all DALP(I,J) should equal zero if the boundary has only one leaf.
- 4. If the boundary is a circle about the origin, only one point on the boundary need be supplied, and the value of LEAV for that boundary is set equal to the number of boundary points desired on the circle.
- 5. The program uses linear interpolation between input boundary points. If a boundary is made up of or contains straight line segments, only the end-points of the straight line segments need be input.
- 6. The variables PT and TT refer to stagnation pressure and temperature at the exit plane <u>inside</u> the boundary of interest. Setting the first value of PT equal to PS gives a static ambient field. The tirst value of PT greater than PS simulates non-zero flight velocity.

- 7. The variable LPHI determines what angular extent of the flow field needs to be calculated. If the nozzle geometry is axisymmetric, setting LPHI equal to a large number (such that $2\pi/LPHI$ is less than DTHM) torces the program to calculate the thow tield at only one angular location. The flow field for a nozzle containing two adjacent circular jets, for example, has LPHI = 4, since the flow is the same each quadrant. Several examples of how boundary parameters are specified are shown in Figure 4-5.
- 8. The program can currently only handle coplanar nozzles; that is, every nozzle element must terminate at the same axial location. Therefore XE must be the same for all input boundaries.
- 9. The centerbody, if any, is input through coordinates pairs XCBDY(J), RCBDY(J), where $1 \le J \le NCBDY$. A maximum of 40 points can be input. The LSPFIT subroutine uses this input to interpolate for finding the values of RMIN at each axial location X. The LSPFIT routine can treat line segments, both straight and curved. Typical examples of centerbody coordinate input are shown in Figure 4-6. If there is no centerbody, the user can avoid automatic computation of the potential core of axisymmetric nozzles (which has no impact on mixing noise) by specifying RMIN as input, but with NCBDY = 0. This option causes the computation to begin at r = RMIN(KA), where KA is the axial station number.
- 10. The input value of CM is modified for velocity ratio and Mach number effects by the relation

$$DBDX = \frac{CM}{(1 + CMVR*VR)(1 + CMMC*ACH)}$$

where DBDX is the modified value of C_m , and VR and ACH are the velocity ratio and Mach number, respectively, of a given boundary. The heat transport spreading parameter is then calculated from the relation

 $C_h = CH * DBDX$

The values of CM, CMMC, CMVR and CH recommended and preset in the program are given in Table 4-4. These values can be changed by the user to reflect experimental evidence if so desired.

11. The axial locations of the axial stations can be input by the array X(KA), where $1 \le KA \le KX$. The radial mesh step size can also be input by the array DSIG(KA). An automatic grid selection procedure has been devised to obviate the need for supplying all values of X(KA) and DSIG(KA). The only input required is the first axial station X(1), and the grid stretching factors STRFR and STRFX. The grid is then calculated from the following relations:

(a) Circular Jet

J = 1 J = J = 3 I = 1 (b) Coannular Jet

NEST = 3LPHI = 999ISYM = 1LEAV = 1, 36, 36,NUM = 1, 1, 1, $ALP_{\phi} = 0, 0, 0, 0$ KN = 1, 1, 2,

1

1,1,

4

Figure 4-7. Example Demonstration of Nozzle Geometry Specification with a Generalized Nozzle Exit Configuration.

4

7

130

an an an an S

X(KA) = STRFX * X(KA-1)

 $DSIG(KA) = STRFR \star X(KA)$

This provides a grid which exhibits larger and larger step sizes as the plume is developed downstream. Recommended value of STRFR and STRFX are preset and listed in Table 4-4.

12. The variable NN determines the type of acoustic calculation desired. Normal (preset) operation is with NN = 0, which give the complete acoustic calculation. The user may desire to perform diagnostic computations to assess the relative importance of convection, shielding, etc. By selecting the appropriate value of NN, the various components of the acoustic calculation can be switched on and off in various combinations. Setting NN = 4 gives only the aerodynamic calculation, and the acoustic calculations are bypassed. The various options for NN are listed below:

- NN = 0 complete acoustic calculation.
- NN = 1 convective amplification, no shielding.
- NN = 2 no convective amplification, no shielding.
- NN = 3 no convective amplification, with shielding.
- NN = 4 no acoustic calculation, aerodynamics only.
- 13. The printout of aerodynamic flow field data is controlled by NPRINT. When NPRINT = 0, no aerodyanmic printout is provided. If NPRINT = 1, aerodynamic printout is provided at every axial station. If NPRINT = 2, aerodynamic printout is provided at every <u>second</u> axial station (i.e., KA = 1, 3, 5, 7, etc). For PRINT = 3, printout is provided at every third station, etc.
- 14. For dual flow nozzles, if the inner stream has a higher velocity than the outer stream, use ALPHMC = 0.5 and BETAMC = 0.325 (preset values). These variables are weighting factors in the convection Mach number calculation, which is computed from the relation

MC = ALPHMC * MACH + BETAMC * EMACH

where MACH is the local acoustic Mach number U/C_a and EMACH is the exit plane reference Mach number U_j/C_a . If the outer stream has a higher velocity than the inner stream, use ALPHMC = 0.5 and BETAMC = 0.325/VR, where VR = $(U_{outer}/U_{inner})_j$. For multielement suppressor nozzles, VR = U_j/U_m , where U_m is the postmerged potential core velocity. If U_m is not known, BETAMC = 0.2 to 0.25 is usually a good approximation.

131

· . ..

- 15. For dual flow nozzles, input BETAIN = 4.0 (preset) for all values of X, provided the inner stream velocity is higher than the outer stream velocity at the exit plane. If the outer stream velocity is higher than the inner stream velocity at the exit plane, input BETAIN = 0 for all axial stations where $X \le 10$ *DEQ(NBREF), and BETAIN = 4.0 thereafter, where NBREF is the outer stream boundary number. For multielement nozzles, input BETAIN = 0 for axial distances less than 10*DEQ(1), where DEQ(1) is the equivalent diameter based on total flow area at the exit plane.
- 16. For each boundary element DEQ, DS and NCELL are input. The first value of DEQ is the total flow area equivalent diameter. The first value of NCELL determines whether or not the shock cell noise is computed. If NCELL(1) is input zero, no shock noise is computed; for NCELL(1)>0, the shock cell noise routine is called. The shock noise of each boundary element is computed separately and added to the total noise. If any boundary has a value of NCELL = 0, that boundary element is bypassed in the shock noise calculation. It is recommended that NCELL = 8 be used for each element unless the actual number is known.

4.5.2 Example Case Input Selection

To illustrate how geometric input parameters are selected for a complex nozzle geometry, an example is presented, taken from Reference 6. The example nozzle exit geometry is shown in Figure 4-7. Consideration of this figure indicates that information over a 45° sector of the flow field will be sufficient to describe the complete flow field. This is one-eighth of a circle, thus LPHI = 8. Neither axial total similarity or dissimilarity exists so ISYM is 0. Counting the number of closed contours indicates a value of NEST of 12, where one is included for the ambient or external field. Values of PT and TT must be provided for the exit state existing just within each of these contours. Values of XE, ALPO, LEAV, NUM, KN, DEQ, DS, and NCELL must be provided for all the contours except the first which is the boundary at infinity. Values of these parameters for the contours shown in Figure A-3 are now considered in the following discussion.

Boundary 2: Description of this boundary starting at 45° to the system baseline is convenient. Thus ALPO = $\pi/4$ radians. Since each 90° sector of the contour is identical with the proceeding one, LEAV = 4. Since the program assumes straight lines to exist between successive boundary points, description of this boundary is possible with only three points for each quadrant. These are P(1,2), P(2,2), and P(3,2). Each point is described by (1) its distance from the system origin and (2) the angle between (a) the line joining it with the origin and (b) the line joining the preceding point with the origin. Note that no value of RA is given for the point P(0,2) since it will be identical to RA(3,2). The value of NUM for boundary 2 will therefore be 3.

Boundary 3: This contour has eight symmetric leaves; thus LEAV = 8. ALPO of 0.0 is as convenient as any other value. The eight points indicated, P(1,3) through P(8,3), probably are sufficient to describe the boundary. Thus NUM = 8.

· · · · ·
Boundary 4: Since this is a circle about the origin, it can be divided into a convenient number of leaves and only one point need be given for each (NUM = 1). If a hundred boundary points are desired, set LEAV = 100, DALP(1,4)= $\pi/50$ and RA(1,4) equal to the circle radius.

Boundary 5 through 12: Each of these contours must be described individually unless certain artifical changes are made in the arrangement. A partial representation of Boundary 9 is shown in Figure 4-7. Note that successive points on the boundary are obtained by progressing around the boundary in a counter-clockwise fashion. In order to reduce the labor of representing each circle separately, a straight line can be drawn connecting each circle. Two contours can then be visualized, one consisting of the outer halves of the circles and the lines, the other consisting of the inner halves of the circles and the lines. Each contour has eight leaves and only one need be represented by the programmer. Since this technique requires the computer to integrate along each straight line twice in the course of computation, it will definitely increase the computational time over the method in which each contour is represented separately.

.

4.6 OUTPUT DESCRIPTION

.

The output format is generally self-explanatory. The input data are first printed out, using the same nomenclature previously defined in Table 4-1. Nozzle exit plane flow conditions (static temperature, velocity, Mach number, momentum flux, and enthalpy flux) are then printed out for each boundary contour.

At each axial location specified, the radial and tangential distributions of flow field properties are printed out. After the flow field information, the noise characteristics of that particular axial station are then listed.

Following all of the axial station flow field data, a summary table of the noise characteristics (SPL spectra, PNL, PWL, OASPL) is given.

Section 4.7 contains an input deck card listing and output printout for a sample case run. This particular case is for a 7-tube nozzle presented in Reference 2. For brevity, only a portion of the total output is shown; but the formats of the various output data are all included.

Two warning flags are built into the program. The first is a case termination flag, which occurs whenever an input total pressure (P_T) is less than the input static pressure (P_S) . The flag message is as follows:

****ERROR - MACH NO. SQUARE IS NOT GREATER THAN ZERO - CASE WILL TERMINATE****

The second flag is a warning detected in subroutine SLICE, which occurs whenever the number of turning points (NTP) is found to be greater than 2. The flag message is as follows:

WARNING - NO. OF TURNING POINTS IS GREATER THAN 2 AT

KA =____, X =____, ITH =____, THETA =____, NTP =_____

where KA is the axial station number, X is the axial location, ITH is the observer angle index, THETA is the observer angle in degrees (θ_I), and NTP is the number of turning points found. The two outermost turning points are used and those inboard of these two are discarded in such cases, since the acoustic shielding model can only accommodate up to 2 turning points. The noise output at those values of θ_I where this warning appears should be

٩

1

ų

;

. . . .

treated as suspect, since the acoustic shielding effects are not properly modeled. This is most likely to occur in the initial mixing regions of multitube nozzles, where multiple peaks in the azimuthally averaged velocity profiles are likely to occur.

4.7 SAMPLE OUTPUT LISTING

An example case of a 7-tube multielement nozzle is described here, selected from one of the data/theory comparison cases presented in Reference 2. The nozzle consists of a hexagonal array of 0.875-inch-diameter tubes, with a spacing/diameter ratio of 3. The acoustic arena is a 9-ft-radius arc. The geometry is illustrated in the sketch below.

D = 3.0 in.

*

The input data cards for this case are listed in Table 4-5. Note that all geometry input lengths are in feet, and all input geometry angles are in radians. The output listing for this case follows Table 4-5.

• • • • •

Table 4-5. Input Data Card Listing Sample Case.

5R329 01 10-06-77 16.471 *** INPUT DATA CARD LISTING -- M*G*8 *** CRD 7-TURE AR#2.3 Nn7ZLE - VJ#2200 FPS - TTJ#1600 DEG-R SINPUT NEST=8, LPHI=12, ISYM=0, IQUIT=100, RU2M=3, DTHM=0.1, PS=2116, ATOTAL=0.029231, DE2=8+0.0729167, DS=8+0.0729167, NCELL=8+8, KN=8+1, XE=8+0, GAM=1.35, CP=6619, ALPJ=0.0,5.96144,0.725447,1.77264,2.8198,3.8670,4.9142,0.0, LEAV=0,6+1,24, NUM=1,6+24,1, KN=8+1, XE=8+3, DALP(1,2)= .033596,.045590,.354084,.059862,.063450,.065168, .065168..063450..057862..054084..045590..033596. .017039,-.005317,-.034336,-.068984,-.103591,-.126562, - 126562,- 103591,- 068984,- 034336,- 005317, 017039, DALP(1,3) =.033595.045590.054084.059862.063450.065168. .065168.063450.057862.054084.045590.033596. .017039,-.005317,-.)34336,-.068984,-.103591,-.126562, - . 126562, - . 103591, - . 068984, - . 034336, - . 005317, . 017039, DALP(1,4)= .033595..045590..054084..059862..063450..065168. .065163..063450..057802..054084..045590..033596. .017039,-.005317,-.034336,-.068984,-.103591,-.126562, - . 126562 / - . 103591 / - . 068984 / - . 034336 / - . 005 31 7 / . 017039 / DALP(1,5)= .033596...[45590...054084...059862...063450...065168. .065163,.063450,.059862,.054084,.045590,.033596, .017039,-.005317,-.034336,-.068984,-.103591,-.126562, .126552, -. 103591, -. 068984, -. 034336, -. 005317, . 017039, DALP(1,6) = .033596,.045590,.054084,.059862,.063450,.065168, .065168,.063450,.059862,.054084,.045590,.033596, .017037,-.005317,-.034336,-.068984,-.103591,-.126562, -.126552,-.103591,-.068984,-.034336,-.005317,.017039, DALP(1,7)= .033595..045590..054084..059862..063450..065168. .065163.063450.059862.054084.045590.033596. .017039,-.005317,-.034336,-.068984,-.103591,-.126562, -.126552,-.103591,-.068984,-.034536,-.005317,.017039, RA(1,2) =.12392..13145..13759..14212..14489..14583. .14489, 14212, 13759, 13145, 12392, 11529, .07476..07991.08748.09646.10596.11529. RA(1,3) =.12392..13145..13759..14212..14489..14583. .14489,.14212,.13759,.13145,.12392,.11529, .10596..39646..08748..07991..07476..07292. .07476..37991..08748..09645..10596..11529. RA(1,4) =.12392,.13145,.13759,.14212,.14489,.14583, .14489.14212.13759.13145.12392.11529. .10596+.09646+.08748+.07991+.07476+.07292+

1

• • •

Table 4-5. Input Data Card Listing Sample Case (Concluded).

٠

\$

.

```
5R329 01 10-06-77
                     16.471
                              *** INPUT DATA CARD LISTING -- M*G*B ***
 .07476,.07991,.08748,.09646,.10596,.11529,
RA(1,5)=
.12392,.13145,.13759,.14212,.14489,.14583,
.14489, 14212, 13759, 13145, 12392, 11529,
.10596,.39646,.03748,.07991,.07476,.37292,
 RA(1,6) =
 .12392..13145..13759..14212..14489..14583.
.14489,.14212,.13759,.13145,.12392,.11529,
.10596..09646..08748..07991..07476..07292.
 .07476..37991..08748..09646..10596..11529.
RA(1,7) =
.12392,.13145,.13759,.14212,.14489,.14583,
.14489,.14212,.13759,.13145,.12392,.11529,
.10596..09646..08748..07991..07476..07292.
.07476,.07991,.08748,.09646,.10596,.11529,
DALP(1,8)=0.2618, RA(1,8)=0.036458,
ALPHMC=0.5, BETAMC=0.25,
FMIN=100, FMAX=80000, NUMANG=1, DIST=9.0,
KX=24, X=(1.0729167, STRFR=0.01,
DSIG=10+0.00729167, 14+0, NOV=10+20,14+0,
BETAIN=15+0.C.
NPRINT=
NCASE=1,
PJ=2116,7+5732, TT#540,7+1605,
.
```

	*** 4 G R	• • •	ç	49E 1			
CONDUT		~ · ·	NATES OF SHADE				
Cura 1	ALT: NO ALTO A		RTILD DF 10000		÷ ·		
CASE NO.	1 -	CHA 7-104	E 49=2.3 50776	e - VJ=2200	FPS - TTJ=160	DEG-P	
······ · ·							
			TEPHT DATA				
		-					
KX= 2	NEST=	8 LPH1	= 12 1	54M= 1	NPHINT= 6	CM= .07	5
CH=]	-150 GAM= 1	.351 CP=	6619.0 DTH	M= .1000	RU2M= 3.0000	PS= 2116	• 0
tear 1			-				
.							****
	COMPUTATION	I MESH CONTROL	PARAMETERS	*****	••••••• 106	BULLILL LUNS	1AP 15
~	SLICE NO.	X .	- 0SIG	- PMIN	- NOV	RETADE	LTA
••••••			.06729	c.cooo3		0.00 4	.0020
	. 2	04187	.05729	0.00000	20 _	0.00 4	.0020 _
	3	.11575	• 1 • 729 • 7 • 729	0.00000	20	0.00 4	•00 •20
-	4 5	.16374	00729	0.00000	20	0.00 4	•00 •20
~	6	23160	.01729	0.00000	20	0.00 4	.00
	7	.29167	· 11724	0.00000	50	0.00 4	•00 •20
	4	. 36748	• 31-72-4 0 - 72-4	0.00000	20	0.00 4	•00 _ •20
	11	-46.291	.0.729	5.0000	20	0.00 4	-00 -20
	ii	73495	01730	0.30000		0.00 4	.00 .20
	12	47544	• 1 · · · · ·	- C+ 10090	· · · · · · · · · · · · · · · · · · ·	_0.004	.00
	13	1.1++7	• 911-7	0.0000		0.00 4	• 00 • 20
	1 ** 1 C	1.4+3+1	• 147	0.0000	3	0.00 4	.00 .20.
	14	2. 13333	• • • • • • •	(), ((), ()) (), (), (), (), (), (), (), (), (), (),	0	4.06 4	.00 .20
	17	2.43442	0246	0.10100	ý	4.00 4	.90 .20
				£.0000.	°	_4.004	.0220.
	19	4.56657	.04667	0.00000	õ	4.00 4	.00 .20
	21	5.87903 7.4°787	±05040 -0740H	0.00000		. 4.00 <u></u> 4	.00 .20
	22	9.33333	.09333	0.00000	Ğ	4.00 4	.00
	23	11.75426	.11759	0.00300	0	4.00 4	•00 •20
	24	14.81574	14616	0.00000	Q	4.00 4	_0000_
J	(E(.2)=,0.00	_ALPO(21=_5	9614 LEAVE 21	= 1 NUM.(2	12 24 KN1	2)=_1	
	DALP(1	2)= .1336	RA(1.1.2)=	.1239 DALP(2: 21= .0456	RA (2, 2)	=1315
	DALP()	_21=2541	PAL_3+_21=	.1376_ DALP(4. 21= .0599	RA1 4. 2)	= .1421
	DALPE 5.	2)= .9635	PA(5+ 2)=	.1449 DALP1	6. 2)= .0652	RA1.61.2)	= .1458
	DALPE 7.	2)= .0652	. BA(7+2)=	.1449 DALP(8. 21= .0635	RAL.8+ 2)	=
-	DALP(9	21= .1599	PA(9+ 2)=	.1376 DALP(1	0 + 21= .0541	RA110+ 21	<u>* 1315</u>
	DALP(11.	2)= .3456	RA(11+ 2)=	.1239 DALP11	2, 2)= .0336	RAL12. 2)	=1153
	DALP(13	21= .4170	_RA(13+ 2)=	1060. DALP (1	4+. 2)=0053.	RA(14+ 2)	.0965
	DALP(15			.0275 PALP (1	51 21= - 0690	RA(16, 2)	= .0799
	DALP (17	2)=103f	RA(17+ 2)=	.0748 DALP(1	81.21=1266	RA(18+ 2)	=0729
	GALP(10	21=1244	H5(19+ 2)=	.0748 DALP (2	0, 2)=1036	- PA(20, 2)	= .a799
	DALP(21)	21=0690.		.0875 PALP12	21. 2) = 0.343	RA_122+_2)	=0965
	DALP (23)	2)=0053	PA(23+ 2)=	.1060 DALP(2	4. 21= .0170	RA (24, 2)	= .1153

	• • •	MGR	* * 4	•			PAGE	2					
COMPI	STATION I	DF AERD-AD	OUST	LC PROP	ERTIES OF	SUPF	PRESSOR	NOZZLES				-	
CASE NO.	, 1		CF	20 7- TU	RE AR=2.3	N072	'LE -	A7=5520	FPS -	1TJ=1600	DEG-R		
	XE(3)=	0.00	ALPO	(3) =	.7254 LE	AV	9) = 1	NUM (3)	= 24	KN(3)	= 1		
	-	DALP().	31=	.0336	PA(1	3)=	.1239	DALP(2	• 3)=	.0456	PAL 2+ 3	3) =	.1315
	·	DALP(3.	3)=	.0541	RA(J	3)=	. 1376	DALPE 4	+ 3)=	.0549	RA(4+ 3	3)=	.1471
	-	DALP(5.	3)=	.0635	RAC 5	3)=	.1449	DALPI 6	• 3)=	• 0652	RAL 61	3)=^	.1458
		DALPE 7.	3)=	•0655	PAT 7	3)=	.1449	DALPIA	• 3)=	.0635	RAL B.	3) =	•1421
		DALP(9.	3)=	.0599	RAL 9	3)=	.1376	DAt P(10	• 3)=	.0541	RA(10+ 3	3) =	.1315
		DALP(11,	3)=	.0456	RA (11)	, 3)=	1239	DALP (17	• 3)=	.0.336	RA (12+ 3	3)=	•1153
		DALP(13+	3)=	.0170	RA(13	3)=	.1060	DALP (14	• 31=	0053	RA(14+ 3	3) =	.0965
		DALP(15.	3)= .	0343	RA(15	31=	.0875	DALPTIE	• 3)=	0690	RA (16+	3) =	.0799
		DALP(17.	3)=	1036	RA(17)	, 3)=	.0748	UALP(1P	• 3)=	1266	RACIH+ 1	3)=	.0729
		DALP(19.	3)= -	1266	RA(19	• 3)=	.074P	DALP (20), 3)=	- .1636	RA (20+ 3	3)=	.0799
		DALP(21.	3)=	0690	RA(21	3)=	.0875	DALP(22	• 3)=	0343	RA122+	3)=	.0965
		DALP(23.	3)= -	0053	RA (23	3)=	.1960	DALP(24	• 3)=	•0170	RA(24+ 3	31=	.1153
	XE(4)=	0.00	ALPO	(4)=1	•7726 L	EAV(4)= 1	NUM (41	= 24	KN(4)	= 1		
		DALPI 1.	4)=	.0336	HAI 1	• 4)=	. 1234	DALPE	P• 4)≂	.0456	RA(2.	4) z	.1315
		DALPE 3.	4)=	.0541	RAC 3	• 4)=	.1376	DALP(4	•• 4)=	.0599	RAL 4.	4)=	.1421
	-	DALP(5.	4)=	.0635	PA(5	• 4}=	•1449	DALPI	5. 4)=	• 1652	RAC 6.	4)=	•1458
		DALPI 7.	4)=	.0652	PAL 7	• 4)=	•1449	OALP(F	4, 41=	.0635	RA(8.	4) =	.1471
		DALPEN	41=	.0599	RA(9	. 41=	.1376	DALPII). 4)=	.0541	RA(10+	4)=	.1315
		DALP(11.	4)≈	.0456	RA (11	• 4)=	•1239	DALPCI	2, 4)=	.0336	RA(12+	4)=	.1153
		DALP(17.	4)=	.0170	HA(13	• 4) =	.1060	PALP ()4	4, 4)=	0053	RA(14.	4)=	.0965
		DALP(15+	4)=	0343	RA (15	• 4)=	.0875	DALPIN	5. 4)=	0690	RA (16+ -	4)=	.0799
		DALP(17.	4)=	1036	#A(17	, 4)=	.0748	DALPCIP	9. 41 =	-,1266	RA(18.	41=	.0729
		0ALP(19.	41=	1266	RA(19	• 4)=	.0748	DALPIZ	0.4)=	-,1036	RA120+	4)=	.0799
		DALP(2).	4)=	0690	PA(7)	. 4)=	.0875	DALP (22	2. 4)=	0343	RA (22+ -	4)=	.0965
		04LP(23.	4}=	1053	PA (23	, 4)≃	.1060	DALP(24	4, 4)=	.0170	PA (24+	4)=	•1153

•

• • • M G R • • •

PAGE 3

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TUHE AR=2.3 NOZZLE - VJ=2200 FPS - TTJ=1600 DEG-R KN(5)= 1 XE(5)= 0.00 ALPO(5)= 2.8198 LEAV(5)= 1 NUM(5)= 24 DALP(1. 5)= .0336 RA(1+ 51= .1234 DALP(2+ 5)= .0456 RA(2+ 5)= .1315 DALP(3+ 5)= .0541 RA(3. 5)= .1376 DALP(4. 5)= .0599 RA(4+ 5)= .1421 DALP(5. 5)= .0635 RA(5, 5)= .1449 DALP(6, 5)= .0652 RA(6. 5)= .1458 DALP(7. 5)= .0652 RA(7. 5)= .1449 DALP(8. 5)= .0635 RA(H+ 5)= .1421 DALP(9. 5)= .0599 PA(9. 5)= .1376 DALP(10. 5)= .0541 RA(10, 5)= .1315 DALP(11. 5)= .0456 RA(11+ 5)= .1239 DALP(12+ 5)= .0336 PA(12+ 5)= .1153 DALP(13, 5)= .0170 RA(13, 5)= .1060 DALP(14, 5)= -.0053 RA(14+ 5)= .0965 DALP(15. 5)= -.0343 RA(15, 5)= .0875 DALP(16, 5)= -.0640 RA(16, 5)= .0799 DALP(17, 5) = -.1036RA(17, 5)= .0748 DALP(18, 5)= -.1266 RA(18, 5)= .0729 DALP(19, 5)= -.1266 RA(19, 5)= .074H DALP(20, 5)= -.1036 RA(20+ 5)= .0799 DALP(21, 5) = -.0690 RA(21, 5)= .0875 DALP(22, 5)= -.0343 RA (22. 5)= .0965 - DA(P(23, 5) = -.0053)RA(23. 5)= .1060 DALP(24. 5)= .0170 PA(24+ 5)= .1153 XE(6)= 0.00 ALPO(6)= 3.8670 LEAV(6)= 1 NUM(6) = 24 KN(6)= 1 RA(2+ 6)= +1315 DALP(1. 6)= .0336 RA(1+ 6)= .1239 DALP(2+ 6)= .0456 DALP(3. 6)= .0541 RA(3, 6)= .1376 DALP(4, 6)= .0599 RA(4+ 6)= +1421 DALP(5+ 6)= .0635 RA(5+ 6)= .1449 (ALP(6+ 6)= .0652 RA(6+ 6)= .1458 DALP(7. 6)= .0652 PA(7. 61= .1449 DALP(H. 6)= .0635 RA(8+ 6)= .1421 DALP(9. 6)= .0599 RA(9. 6)= .1376 DALP(10. 6)= .0541 PA(10, 6)= .1315 DALP(11. 6)= .0456 RA(11, 6)= .1239 DALP(12, 6)= .0336 RA(12. 6)= .1153 DALP(13, 6)= .0170 FA(13, 6)= .1060 DALP(14. 6)= -.0053 RA(14, 6)= .0965 DALP(15, 6) = -.0343 RA(15, 6)= .0875 DALP(16, 6)= -.0690 RA(16. 6)= .0799 DALP(17, 6)= -.1036 RA(18. 6)= .0729 RA(17. 6)= .0748 DALP(18. 6)= -.1266 DALP(19. 6)= -.1266 RA(19. 6)= .0748 DALP(20. 6)= +.1036 RA(20+ 6)= .0799 DALP(21+ 6)= -.0690 RA(21, 6)= .0875 DALP(22, 6)= -.0343 RA(22+ 6)= .0965 DALP(23+ 6)= -.0053 RA(23+ 6)= +1060 DALP(24+ 6)= +0170 RA124+ 61= +1153

DALP (.0365 RA(1, H)= al92. DALP(1. R)=

.1315 .1153 1421. .1458 .1315 .1153 • 0965 •0199 •0729 .0799 .0965 1421 PA(2.7)= RA(24+ 7)= RA(4. 7)= RA(6. 7)= RA(8. 7)= RA(10. 7)= PA(20. 7)= PA(22+ 7)= RA(12. 7)= PA(14. 7)= FA(16. 7)= PA(18. 7)= KN(8)= .0456 .0599 .0635 0210. .0652 .0541 •0336 DALP(22. 7)= -.(343 DALP(14. 7)= -.0653 DALP(16. 7)= -.0690 -.1266 -.1r36 DALP(24, 7)= DALP(12, 7)= DALP(18. 7)= 04LP(20+ 7)= DALP(10. 7)= DALP(2. 7)= DALP(4, 7)= DALP(6. 7)= MLP(8. 7)= --NUM (P)= ,1239 .0875 •1376 •1449 .1376 9551. .1046 .074A .C74A .0A75 .1060 .1449 ALPO(8)= 6.9600 LEAV(8)= 24 ±(1 · 7) = 44(23·7)= PA(3. 7)= ±(19. 7)= P4(21. 7)= ሥል(ዓ**. 7)**= PA(13. 7)= HD(17. 7)= HA(7. 7)= =(2 °6)VA 4A(11. 7)= RA(15. 7)= •1336 -.1636 (IALP(23. 7)= -.0053 .1526. • 6635 .1652 555J. • • • 5 6 -.1343 0210. -.1266 0ALP(21. 7)= -.3693 uALP(1. 7)= DALP(19. 7)= 1.4LP(3. 7)= DALP(13, 7)= DALP(17. 7)= [ALP(5.7)= UALP(11. 7)= 0ALP(15, 7)= [ALP(7, 7)= 1vlp(9. 7)= 60.3 XE(H)=

COMPLITETION OF AFAD-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

4

P∆6£

ŵ

1 Ċ

¢

>

?

ξ

VJ=2200 FPS - TTJ=1600 nEG-P ł CPD 7-TURE AR=2.3 MOZZLE CASE NO.

ALPO(7)= 4.9142 LFAV(7)= 1

C•10

xF(7)=

KN(7)= 1

NUM(7)= 24

و کا که ده و ۲ کا ۲ و ۲ ح

þ

>

١

?

3

. .

COMPUTATION OF AFRO-ACOUSTIC PHOPERTIES OF SUPPRESSON NOZZLES

CPN 7-TURE AR=2.3 NO7ZLE - VJ=2200 FPS - TTJ=1600 DEG-P ---CASE NO.

EXIT CONDITIONS

ENTHALPY FLUX (LK/S9+FT)	0. 154235.08 154235.08 154235.08 154235.08 154235.08 154235.08 154235.08 154235.08 154235.08
MOMENTUM FLUX (LR/SQ-FT)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MACH NUMHER	2007 2007 2007 2007 2007 2007 2007 2007
VFLOCITY (FFS)	2199.45 2199.45 2199.45 2199.45 2199.45 2199.45 2199.45 2199.45 2199.45
STATIC TFMP. (DEG P)	540.00 1239.57 1239.57 1239.57 1239.57 1239.57 1239.57 1239.57
ТЛТАL ТЕМР. (реб. 2)	1 4 4 4 4 4 4 4 4 4 4 4 4 4
TOTAL Press. (PSF)	2114.00 5732.00 5732.00 5732.00 5732.00 5732.00 5732.00 5732.00 5732.00 5732.00
C0N- T0UP	~~~~ *****

DUNDERY ID. 2 HAS REFN DESTRIATED AS THE REFERENCE

AL = .7	18865+0 8	ALFA =	1.00000	AK = .300	0.05-01	۳ ۳	•	
AT07AL=	82420*	DE0 =	26220°	10UIT= 10	= NN 0	0	UREF =	2199.45
STRFX=	1.25942	STRFP=	00010.					
≠Смна]а	•50CJ	RETAMC=	•250U					
CMWC=	000040.	CMVP=	.250020					

~

* * * W G H * * *

è

4

ŧ

7

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

PAGE 6

CASE	NO,	1			09 0	7-TURE	AF	2=2.3 NO72LE	- VJ=2	200 FPS -	TTJ=1600	DEG-P
AXIAL	LOCATIO	N	= •0	7292	(X70	0 =	۱.	.00000)				
м	q		ANGLE	υ		DENST	ŢΥ	ТЕМР.	UZUKEF	TURB.INT.	RIDEQ	
1	.00001		0.00	2199	•45	.0009	94 F	1239,57	1.00000	.00037	.0010	
1	.00001		15.00	2199	.45	.0009	948	1239,57	1.00000	.00038	.00010	
1	.00001		29.00	2199.	.45	•0009	948	1239.57	1.00000	.00040	.00010	
1	.00001		30.00	2199	•45	.0009	948	1239,57	1.00000	.00043	.00010	
2	.^0729)	0.00	2199	.46	.0009	948	1239.57	1.00000	.00156	.10000	
2	.10729	•	13.00	2199	.46	.0009	948	1239.57	1.00000	.00189	.10000	
2	.00729)	20.00	5199	46	.6009	948	1239,57	1.00000	.00186	.10000	
2	.00729	•	30.00	2199	•46	•0009	948	1239,57	1.00000	.00180	.10000	
3	.1458		0.00	2199	.46	. 1009	948	1239,57	1.00000	.00044	.20000	
3	.01458		7.50	2199	46	.0009	948	1239.57	1.00990	.00079	.20000	
3	-C1458		15.00	2199	46	.0009	948	1219.57	1.00100	00122	20000	
3	•:1458		22.50	2199	• 46	•0004	948	1239.57	1.00000	•00090	00005	
3	• J145H		11.00	5100	46	• 1009	948	1239.57	1.00000	•00049	.20000	
4	• 35 1 88		0.00	2199.	•SC	•0009	450	1538*31	•99788	.00289	.30000	
4	• 1218A		7.50	2199	•59	•00.9	950	1239.31	•99988	.00303	.30000	
4	•02188	•	15.00	2199	•5¢	■ 0009	95Ç) 1239.31	• 3 9948	•002H8	.30000	
4	• 121PH		22.50	2104	.20	•0009	950) 1239•31	•9998A	.00298	.30000	
4	• 15188		30.00	5100	.19	.2009	950	1239.31	.99988	.00293	.30000	
5	•02917	•	0.00	2145	• 44	•0010	190	5 1209.46	.97562	. 15247	.40000	
5	.12917	,	6.00	2145	.76	.0010	195	1204.52	.97559	.05261	.40000	
5	.12917	,	12.00	2145	• P C	.0010	140	5 1209.48	97561	.05253	.40000	
5	.12917	,	18.90	2145	14.	.0010	199	5 1209.48	.97560	.05253	.40000	
5	.02917	•	24.00	2145	.75	.0010	190	1209.52	97558	.05261	.40000	
5	. 12917	,	30.00	2145	, H 3	.3012	195	1209.46	.97562	.05247	.40000	
6	• 3646	•	2.00	1378	•61	.0011	597	1063.24	.62680	.13781	.50000	
6	.13646		6.00	1371	4 8	•0011	ςÿε	1063.44	.62355	.13785	.50000	
6	.:3646	1	12.00	1373	• 67	.0011	647	2 1462.79	62428	.13785	.50000	
6	• 13646	,	18.00	1373	.07	.0011	602	P 1(62,79	62428	.13785	.50000	
6	.13646	`	24.00	1371	48	.0011	590	5 1063.44	62355	.13785	.50000	
6	.13646	•	30.00	1378	•61	.0011	597	1663.24	62680	.13781	50000	
7	.04375	;	0.00	203	•54	.0016	98-	3 726.97	.09254	.04225	.60000	
7	.:4375	5	5.00	202	.12	.3016	972	726.54	09189	.04202	.60000	
7	. 4375		10.00	505	.14	.0016	972	726.54	09190	.04202	.60000	
7	.04375	Š.	15.00	263	.59	.0016	9H.	3 726.06	09257	.04224	.+0000	
7	· 4375		20.00	202	.17	.016	972	726.53	09192	.04200	.60000	
7	. 04375		25.00	202	.17	.0016	972	726.53	09192	.04200	.00000	
7	. 0437 ^c		39.00	203	61	.0016	98.	726.06	09257	04223	.60000	
R	.05104	,	0.00	2	52	.0021	214	581.26	.00114	.00253	.70000	
R	.05104	,	5.06	2	53	.1021	241	581 51	.00115	.00292	.70000	
н	.05104		10.00	2	.94	.0021	451	574 R3	.00134	.00294	.70000	
я	. 15104	,	15.30	3	.47	. 021	627	7 570.17	.00158	00284	.70000	
Ĥ	.(5104	,	23.00	3	.+4	.0021	647	568.44	.00166	.00287	.70000	
R	. 5104	,	25.94	3	. 86	. 021	741	3 566.98	.00175	.002H7	.70000	
я	. 15104	,	30.00	4	12	. 021	794	565.79	.CO1H7	.00278	.70000	
9	-5833	ł	.00	3	24	. 021	հ հն	5 572.06	. 00147	.00145	80000	
4	5433	3	4.29	ĩ	35	. 1020	752	594.21	.00062	.00191	.80000	
9	5933	1	4.57				930	54.00	0.00000	0.00000	.80000	
9	5833	1	12.86	0	. 6.0	5506	8 30	546.00	0.00000	0.00606	.80000	

* * M G R * *

₹.

.

•

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE	NO. 1		CRD	7-TURE AR=2.	3 NOZZLE	- VJ=22	00 FPS -	N 00AL=LTT	FG-P
AXIAL	LOCATION	67	292 (X/N	EQ = 1.000	100)				
м	R	ANGLE	U	DENSITY	TEMP.	UZUREF	TURB.INT.	RIDEU	
		17 14	00	.0022835	543.04	6.00000	0.00000	•H000U	
9	• 5833	21 / 7	0.00	.0022835	540.00	0.00000	0.00000	* 80000	
9	• ('583) • ('333)	25 71	6.00	2645500	54.00	0.00000	0.00000	.80000	
9	• • • • • • • •	73.00	0 (0	2022835	540.00	9.00000	0.00000	.80000	
	• 277 33	1 0.	203.37	6016986	725.94	.09246	.04216	.90000	
10	+ L D T D T	6 20	168 10	. 2017420	707.84	.07638	.03710	.90000	
10	• • • • • • • • • • • • • • • • • • • •		95 14	1018676	663.25	.04335	.02447	.90000	
10	14563	12.86	33.49	(020323	666.73	.01523	.01067	.90000	
10	16553	17.14	5,94	0021636	569.91	•00266	.00325	.96000	
10		21 63	0.00	-022835	546.04	0.00000	0.00000	90000	
12	14567	25 71	0.00	9922835	54 . 6 .	0.00000	0.00000	.90000	
10	• · · · · · · · · · · · · · · · · · · ·	33.36	0.10	. 1022H35	54 . (0	0.00000	0.00000	.90300	
19	67242	3.60	1378.45	1011548	1163.19	.62672	.13779	1.00000	
11	37292	3.75	1282.13	.0011754	1049.07	•208+30	.13990	1.00000	
11	17292	7.50	1015.37	.0012396	994.75	.46165	.13664	1.00000	
11	17292	11.25	618.69	.0013846	894 . 58	.27674	.10947	1.0000	
11	07292	15.00	242.76	.0016504	747.13	.11037	.05941	1.00000	
1 1	07292	18.75	57.25	.019585	629.66	.02600	.01884	1.00000	
11	17292	22.50	6.44	.0021637	564.90	.00543	.003/9	1.00000	
11	7292	26.25	0.00	.U022835	540.00	0.00000	0.00000	1.00000	
11	07292	30.60	0.10	.0022835	540.00	0.00000	6.00000	1,00000	
12	19021	0.03	2145.74	.1010196	1209.42	.97558	.05248	1,10000	
12	18021	3.75	2124.54	.0010266	1201.14	.96594	.05481	1,10000	
12	08021	7.50	2025.14	.0010525	1171.60	.92075	.10460	1.10000	
12	18921	11.25	1717.49	.0011052	1115,68	.78387	.15852	1.10000	
12	08021	15.04	1059.47	.0012270	1004.97	.48188	.16340	1.10000	
12	08021	18.75	343.54	.0015447	798,27	.16074	.08533	1.10000	
12	18021	22.52	53.79	.0019665	627.03	.02441	.01HH0	1.10000	
12	08021	26.25	2.21	.9021721	567.69	.00100	.003.34	1.10000	
12	18021	39.90	0.00	•0022835	540.05	0.0000	0.00000	1.10090	
13	08750	6.01	2149.14	.0009950	1536.3	-9948H	.00213	1.20000	
11	19750	3.33	2198.94	• 2009952	1534.07	.99977	.00.150	1.20000	
13	18750	6.67	2196.64	.0009967	1532.15	.49872	+01140	1 20000	
13	04750	15.00	2175.80	.0010076	1223-83	.98925	.04213	1 26000	
13	09750	13.33	2032.46	.0 010 508	1173.47	.92408	.11890	1 20000	
13	08750	16.67	1500.16	.0011379	1083.61	•68236	10010	1 20000	
13		20.00	616.35	•0013H2B	891.74	•28u23	.13029	1 20000	
13	.08750	23.33	110.21	.(018367	671.34	•05911	0.000	1 20000	
13	08750	26.67	7.85	. 021552	572,14	.00357	.00463	1 20000	
13	.08750	30.00	0.40	•∷122835	549.00	0.00000	0.00000	1 30000	
14	1.9479	9.90	2199.45	·000994H	1239.57	1.00000	+UU14U	1 40000	
14	. (9479	3.33	2199.45	• 1009948	1239-57	1.00000	10100	1.30000	
14	.19479	6.67	2109.44	•(00994A	1239.55	•44444	•UUUUU/	1.30000	
14	19479	10.60	2198.75	•1009953	1538.90	* 444PH	•UU303	1.30000	
14	.19479	13.33	2175.18	.0010078	1223.48	.48841	-64004 15×01	1.30000	
14	. 19479	16.67	1911.43	.1010745	1147.62	• 46495	17404	1 30000	
14	• 19479	20.00	1025.14	.0012373	496.57	• 45459	06070	1.30000	
14	. 19479	27.17	208.74	.0016920	728.79	*114444	• 00070	• • • • • • • • •	

CASE	NO. 1		CRD	7-TURE AR=2	.3 NO7ZLE	- VJ=2	200 FPS -	TTJ=1600	DEG-R
AXIAL	LOCATION	= •·	7292 (X/D	EQ = 1.00	0000				
м	R	ANGLE	U	DENSITY	TEMP.	UZUREF	TURB.INT.	PIDEQ	
14	• 0 9479	26.67	14.75	• 021165	582.59	.00671	.00707	1.30000	
14	. 19479	35.00	0.20	.0022835	540.00	0.00000	C.00000	1.30000	
15	80501.	2.00	2199.45	.0009948	1239.57	1.00000	.00031	1.40000	
15	.10208	3.00	2199.45	0009948	1239.57	1.00000	.00186	1.40000	
15	-102CB	6.00	2199.45	.1994448	1239.57	1.00000	.00140	1.40000	
15	+1020B	9.00	2199.45	.0009948	1239.56	1.00000	.00159	1.40000	
15	-1020B	12.00	2198.55	.0009954	1238.72	99959	.00723	1.40000	
15	+1020A	15.00	2161.63	·u010135	1216.62	.98280	.06166	1.40000	
15	-10208	15.00	1801.51	.1010421	1129.12	81907	.17685	1.40000	
15	.10208	21.00	834.46		454.61	37939	16055	1.40000	
iś	10208	24.00	146.71	.0617738	695.16	06670	.04583	1.40900	
15	.10208	27.00	9.45	.0021459	574.63	.00430	.00516	1.40000	
15	.1020H	33.00	0.00	.0022835	54(.00	0.00000	0.00000	1.40000	
16	.10938	0.00	2199.45	•UU09948	1239.57	1.00000	.00104	1.50000	
16	.10938	3.00	2199.45	• ^00994A	1239,57	1.00000	.06222	1.50000	
16	10938	6.00	2199.45	. 200494A	1234.57	1.00000	.00272	1.50000	
16	10938	4.01	2199.45	. 100994R	1224 56	1.00000	.00182	1.50000	
16	.10938	12.00	2198.81	. 1069953	1218.95	. 99971	00629	1.50000	
16	.10938	15.00	2161.18	.0010137	1216.41	98260	06199	1.50000	
16	.10938	18.00	1752.04	.010996	1121.40	79560	18152	1.50000	
16	10938	21.00	710.45	.0013394	926-63	. 32 301	14531	1.50000	
16	10939	24.01	98.25	.0018615	662.41	04468	03259	1.50000	
16	10938	27.00	4.2)	1021836	564.70	50192	.00363	1.50000	
16	10938	32.00	0.00	(022835	546.00	0.00000	0.00000	1.50000	
17	.11667	9.00	2199.45	0009948	1239.57	1.00000	.00206	1.60000	
17	.11667	2.73	2199.45	0009948	1239.57	1.00000	.00239	1.60000	
17	11667	5.45	2199.45	0009948	1239.57	1.00000	.06178	1.60000	
17	.11667	8.18	2199.45	1009948	1239.56	1.00000	.00157	1.60000	
17	.11667	12.41	2198.91	1009952	1234.14	.99975	.00557	1.60000	
17	.11667	13.64	2174.93	.0010080	1223.34	98885	.04751	1.60000	
17	.11667	16.36	1916.35	-1010753	1146.71	.86674	-15670	1.60000	
17	.11667	14.09	1039.03	.0012332	499.94	47241	.17474	1.60000	
17	11667	21.82	275.17	.0016698	742.44	10687	06531	1.60000	
17	.11667	24.55	20.71		591.22	00942	.00875	1.60000	
17	.11667	27.27	0.00	.0022835	540.00	0.00000	00000.0	1.60000	
17	.11667	30.00	0	.0022835	540.00	0.00000	0.00000	1.60000	
18	12396	0.00	2199.45	.0009948	1239.57	1.00000	.00154	1.70000	
18	.12396	2.73	2199.45	0009948	1239.57	1.00000	.00141	1.70000	
18	12396	5.45	2199.45	.0009948	1239.56	1.00000	06162	1.70000	
18	12396	8.18	2199.13	.0009950	1239.25	99985	-00436	1.70000	
18	12396	10.91	2188.71	.0010013	1231.46	.99512	.02817	1.70000	
18	12396	13.64	2051-20	.0010465	1178.33	93250	.11403	1.70000	
18	12396	16.36	1433-87	.3011478	1174-26	65192	18468	1.70000	
18	12196	14.14	478.5r	.0014574	846 . 9	21756	.10756	1.70000	
18	12396	21.92	62.84	.0019461	635.56	12857	.02146	1.70000	
18	12196	24 55	2.86	.0021965	561.37	.00127	.00342	1.70000	
18	12196	27.27	0.00	1022535	540.01	0.00000	0.00000	1.70000	
18	12396	33.03	n .	. 1022835	541.00	0.60660	0.00000	1.70000	
• •			- '						

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NO7ZLES

PAGE 8

ааа м С н ааа

3

7

146

.

* * * * M G R * * *

PAGE 9

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TURE AR=2.3 NOZ7LE - VJ=2200 FPS - TTJ=1600 DEG-R

м	P	ANGLE	U	DENSITY	TEMP.	UZUREF	TURB.INT	 RZDEQ
• •	12125		3100 10	0000550	1330 3	00000	0.0.2.25	1 90600
19	•13125		2199.19	• · · · · · · · · · · · · · · · · · · ·	1219.3	.99944	• 0 0 1 2 3	1 80000
19	•13125	2 • L A	2148.44	. 1009951	1239.12	.99979	.00412	1.0000
19	•13125	<u> </u>	2197.42	. 1009462	1237.75	-9990H	.00926	1.80000
19	.13125	1.50	2145.40	• 30106.33	1229.37	•99361	.02954	1.80000
19	1 3125	19+66	2166.46	•010321	1194.73	.95772	.08446	1.80000
19	.13125	12.50	1776.53	.0010963	1124.80	.R0771	15885	1.80000
19	.13125	15.90	1038.20	.0012327	1000.33	.47203	.16182	1.80000
19	+13125	17.50	318.73	.0015743	/81.25	.14491	.07710	1.80000
14	•13125	50 • 00	41.64	• 019859	620.91	•02166	•61638	1.80000
19	.13125	22.51	2.44	• J051988	5679	.00131	.00320	1.80000
19	.13125	52.00	0.10	.022835	540.00	0.06000	0.00000	1.80000
19	.13125	27.50	0 • J C	• 0022835	545.09	0.00000	0.00000	1.80000
19	.13125	33+35	0.0	+U022835	541.00	0.00000	0.00000	1.800.00
20	•13854	0.00	2145.64	• 1010196	1209.39	• 9 / 5 5 5	•05255	1.90000
20	•13854	2.50	2129.45	. 1010244	1263.69	.46835	.06116	1.90000
20	·13854	5.00	2061.96	• 101043B	1181.31	.93749	.08886	1.90000
20	. 13854	7.51	1867.77	•0010H20	1139.60	•H4450	.13235	1.40000
20	.13854	10.00	1436.12	•€0114H3	1073.86	•65295	.16159	1.90000
20	.13854	12.51	756.51	.0013215	433.33	. 34 395	.12913	1.90000
20	.13454	15.00	231.75	.1016626	741.66	<u>10537</u>	.05730	1.90000
50	.13854	17.50	77.77	·2020145	6190	.(1717	.01295	1.90000
20	.13854	20.00	2.50	.0055001	560.32	.00114	.00315	1.40000
20	.13854	22.51	0.00	.022835	54,400	0.00000	u.00000	1.90000
20	.13854	25.00	0.00	.0022E35	540.)(0.00000	0.00000	1.90000
23	. 13854	27.52	0.00	•0022835	540.00	0.00000	0.00000	1.90000
23	.13854	34.00	0.00	.0022835	544.00	V.00000	0.00000	1.90000
21	.14583	3.00	1378.11	• 0011599	1963.15	.62657	. 13781	2.00000
21	.14583	16.5	303.27	.1011715	1052.52	.59281	.13796	5.00000
21	.14583	4.62	1100.68	.0012170	1913.17	.50043	.13495	2.00000
21	.14583	6.92	773.47	.0013145	438.05	.35189	.11671	2.00000
21	.14583	9.23	414.00	.0015002	821.91	.1HH23	.08055	2.00000
21	.14583	11.54	154.16	.0017639	694.28	.07004	.03861	2.00000
21	.14581	13.85	37.12	.020204	614.32	.01688	.01201	2.00000
21	.14583	16.15	4.97	·0021826	564.95	.00226	.00328	2.00000
21	.14583	18.46	0.00	. 022835	541.00	0.000000	0.00000	2.00000
21	.14583	20.77	0.00	. 1022435	541.03	0.00000	0.00000	2.00000
21	.14593	23.24	0.00	. 022835	540.00	0.00000	0.00000	2.00000
21	.14587	25.34	0.00	···022835	544.00	0.00000		2.00000
21	.14583	27.14	0.00	. 4072835	5.44.00	0.00000	0.00000	2.10000
21	14583	30.00	0.00	.1022835	540.00	0.00000	9.00000	2.00000
22	.15713	2.00	203.27	. 1016984	725.85	. 39242	.04220	2.10000
22	.15313	2.14	181.15	. 017236	715.40	.08236	.03875	2.10000
22	.15313	4.29	111.99	.0018019	684.65	.06001	.03049	2.10000
22	15313	6.43	73.29	.0019140	+44.25	.03332	.01912	2.10000
22	15313	5.57	31.17	1020427	613.66	.(1417	00955	2.10000
22	.15313	10.71	9.13	.021524	572.88	.00410	.00396	2.10000
22	15313	17.86	1.10	. 021463	561.44	.00050	.00274	2.10000
22	15717	15.00	0.00	1022835	54: 01	0.0000	0.00000	2.10000
	••••	• • •				• • • •		

• • • M G H • • • PAGE 10

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZES

CASE NO. 1 CPD 7-TURE AR=2.3 NOZZLE - VJ=2200 FPS - TTJ=1600 DEG-P

Μ	P	ANGLE	U	DENSITY	TEMP.	UZUREF	TURA.INT	 RADER
22	.15313	17.14	3.40	.3022835	545.00	0.00000	0.00000	5.19000
22	.15313	14.24	0.15	.0022835	541.04	0.00000	0.00000	2.10000
22	.15313	21.43	0.00	1022835	54.10	0.00000	0.00000	5.10000
22	15313	23.57	0.00	.0022835	540 . 04	0.00000	0.00000	5.10000
22	.15313	25 .71	0.10	•0022835	540.00	0.00000	0.00000	2.10000
22	.15313	27.86	0.00	.J022835	540.00	0.0000	6.00000	2.10000
22	.15313	32.93	0.11	· 022H35	549.19	0.00000	6.00000	5.10000
23	.16042	0.00	4.61	• JOSI8A0	563.29	.00210	·00280	5.50000
23	.16042	2.14	3.77	.021944	561.43	.00172	.00285	5.50000
23	.16042	4.29	2.16	.0022076	558,56	.00248	.00276	5.20000
23	16042	6.43	3.0	.0022A35	540.00	2.0000	0.00000	5.20000
23	.16042	⇒ •57	0. (€022835	54:00	v.00v60	0.00000	5.50000
23	.1 6042	1.0.71	0.11	•J022H35	541.50	0.000000	9.00000	5.50000
23	.16042	12.46	0.00	 022835 	541.00	9.60000	0.0000	2.20000
23	.16042	15.00	0• f	.:022435	54%.20	0.00000	Ú.00000	2.20000
53	.16942	17.14	0.00	• JP22835	543.90	0.00000	0.00000	5.50000
23	.16042	1+.24	0.00	· U22H35	549.00	0.00000	0.00000	5.50000
23	.14942	21.43	0. 51	.022835	540.00	0.00000	U.0 0000	S.50600
23	.16042	23.57	0.110	· 022H35	54%.00	0.00000	9.00000	5.50000
23	.16042	25.71	0.10	·0022H35	541.30	0.00000	0.00000	5.50000
23	.16042	27.86	0.00	• ⁰ 622835	543.01	0.00000	2.00000	5.50000
23	.16.342	3.00	G _ +C	·(122835	544.00	0,00000	0.00000	5.50000

NP	RADIUS	MACH NO.	ТЕМР₊	INTENSITY	FREQUENCY
1	.0001	1.9662	2.2955	•66006E-12	0.
2	-1000	1.9662	2.2955	24773E-06	3.
3	.2000	1.9662	2.2955	.95416E-08	C.
4	.3000	1.9660	2.2951	.21384E-04	7.
5	.4000	1.9182	2.2398	.16103F+05	2416.
6	.5000	1.2278	1.9688	.17198E+08	25958
7	•6000	•1809	1.3452	.51043E+04	16407.
8	.7000	.0028	1.0583	.39885E-04	4377.
9	.8000	.0019	1.6777	•41234E-06	524.
10	.9200	.1277	1.2755	10304E+04	5139.
11	1.0000	.8929	1.8257	•11824E+08	12312
12	1.1000	1.5573	2.1133	.29016E+08	5707.
13	1.2000	1.7232	2.2014	.42213E+08	2595.
14	1.3000	1.7745	2.2247	.41008E+08	1676.
15	1.4000	1.7964	2.2343	+41582E+08	1326.
16	1.5000	1.8024	2.2367	.42918E+08	1313.
17	1.6000	1.7963	2.2339	• 38624F+0H	1513.
18	1.7000	1.7761	2.2255	•43543E+08	1888.
19	1.8000	1.7236	2.2014	•30032F+08	2593.
20	1.9000	1.5589	2 • 1139	•54184E+08	4755.
21	5.000	• 4929	1.8257	•14303E+UR	R933.
22	5.1000	.1275	1.2751	•15J46E+04	3436.
23	2.5000	•0058	1.6397	•19514E − 04	733.
	NO 05 5 10				
	NO. OF TUR	NING POINTS I	S GREATER T	HAN: 2 AT	
KA= 1	x= • U7	292 []#=	16 THET	A = 110.00	NTP= 3
WARNING -	NO. OF THR	NING POINTS I	S GREATER T	HAN 2 AT	
KA= 1	X= .07	292 ITH=	11 THET	A= 120.00	
-		· · · · · · · · · · · · · · · · · · ·		H- 100.00	N/P= 3
WARNING -	NO. OF THR	NING POINTS I	S GREATER T	HAN 2 AT	
κA= 1	x= .07	292 ITH=	12 THET	A= 130.00	NTD- 3
-		• •		- 170.00	NIF- J
WARNING -	NO. OF TUP	NING POINTS I	S GREATER T	HAN 2 AT	
KA= 1	X= .07	292 ITH=	13 THET	A= 140.00	NTP= 3
					N()/-)
WARNING -	NO. OF TUP	NING POINTS I	S GREATER T	HAN 2 AT	
KA= 1	x= •67.	242 [TH=	14 THET	A= 156.60	NTP= 3
-				1 2 3 4 0 0	
	NO. OF THP	VING POINTS I	5 GREATER T	HAN 2 AT	
¥A=]	x= .07.	92 ITH=	15 THET	A= 160.00	NTP= 1
				-	

CIPCHMFERENTIALLY-AVEPAGED PARAMETERS

.

149

. . . . **.**

×())=	.0729	081(1)=	25899E+21	FM(1)= +3	2419E+01	UAVG(1)=	1847.59	UMAX	1)= 2199.46
VARNING - KA= 2	NO. OF X=	TUPNING PC .09187)1615 15 GPF)TH= 10	ATEP THAN THETA=	2 AT 119.00	NTP= 3			
WARNING - KA= 2	NO.OF x=	TURNING PC .09187	DINTS IS GRE	ATER THAN THETA=	2 AT 120.00	NTP= 3			
NARNING - KA= 2	NO. OF X=	TURNING PC .09187	DINTS IS GPE	ATER THAN THE TA=	2 AT 130.00	NTP= _3			
NARMING Ka= 2	NO OE x=	TUPNING PC •09187	DINTS IS GPE ITH= 13	ГАТЕР ТНАМ ТНЕТА=	.2 AT 140.00	NTP= 3		· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
¥AFNING - KA= _2	NO. OF X=	TURNING PC • 09187	01715 IS GRE 	ATEP THAN THETA=	2 AT 150.09	NIP= 3	··· • • • •		
x(2)=	•0414	081(-2)= .	21 3H5E+21	EM(5)= •1	2524F+01	UAVG(2)=	-1767-58-	UNAXC	2)=_2199 _46
VARNING KA= 3	NO. OF X=	TURMING_PC •11575)JたTS IS GRE = 10	ΔΤΕΡ ΤΗΔΗ ΤΗΕΤΑ=	2 AT 110.00	NTP= 3	· · · · · · · · ·		
NAPN ING - KA= _3	NO. OF . X=	TURNING P(DELTS IS GEE 	атер тнар тнета=	751-50 5 VI	NTP= 3	<u></u> <u>-</u>		
WARNING - MA= 3	NO. OF	TUPNING PC +11575	01015 15 GPE 1104= 12	ATER THAN THETA=	2 AT 133.00	NTP= 3	······		
WARNING - Ka= 3	NO. OF X=	TURNING P(+11575	01015 IS GRE 11H= 13	атық тнам тнета=	2 AT 140.00	NTP= 3	·		<u></u>
WARNING - Ka= 3	NO. OF	TUPNING PC +11575	DIMTS IS GRE 1TH# 14	THE THAN	2 AT 15(.90	NTP= 3			
×(3)=	•1157	HAT(3)=	261926+31	FM(3)= .	2664 <u>F</u> +01	11AVG(3)=	1674.56	UMAX	3)= 2199.45
WARNING + KA= 4	NO. OF X=	TUPNING PO •14583	DINTS 15 GRE 1TH= 10	ATER THAN THETA=	> AT 110.00	NTP= 3	·		
WARNING - KA= 4	NO. OF	TURNING P(+14583	DINTS IS GRE	ATER THAN THETA=	TA 5	NTP= 3	- =	· · ·	

3. . . **.**

١

۲ ۱

í

7

m

MARNING - NO. OF TURYING POINTS IS GREATER THAM 2 AT KA= 4 X= .14583 ITH= 13 THETA= 140.00 NTP=

m

.1454 UM1(4)= .2577225+21 FM(4)= .24435+01 UAV6(4)= 1572.60 UMAX(4)= 2199.41 =(7)X

WAPNING - NO. OF TUPMING POINTS IS GPEATED THAM 2 AT XA= 5 x= .18374 ITH= 13 THETA= 116.06 NTP= 3

e,

#ARNIMG - NO. OF TURMING POINTS IS GREATER THAN: 2 AT KA= 5 x= .018374 ITH= 12 THEIA= 130.00 NTP=

m

UAVG(5)= 1467.27 UMAX(5)= 2197.57 URI(5)= .24966E+21 FM(5)= .3047E+Ul .1837 X(5)=

n

-2315 1141(6)= -23294E+21 FM(6)= -3277E+01 UAVG(6)= 1364-33 UMAX(4)= 2179-00 ¥(∀)=

151

...

ы а э н (, ,**, а а а а**

PAGE 11

COMPUTATE & OF AERO-ACOUSTIC PROFERTIES OF SUPPRESSOR NOZZLES

?

3

CASE 1.1. 1 CRD 7-TUHE AR=2.3 M077LE - VJ=2200 FPS - TTJ=1600 DEG-R

.

AXIAL LOCATION = .09167 (X70E0 = 4.00060)

۴ ۹	i .	A LOLE	11	NF NSITY	TENP.	UNUREE	TURE.INT.	FIDEO
1	• • • • • • •		21.16.11	•010468	1177.99	• 95756	.0JIAH	.00010
l	. 10001	1.00	2166.11	• 1010464	1177.99	• 45 / 56	.00168	.00019
1	• < 0 0 0 1	C ● 1 0	2196.11	•101046H	11//.91	• 45 / 56	.00168	.69010
1	.50001	1 ∨ • 0	2126.11	• 4015455	1177,90	• 95756	.00168	.03010
2		• 6 5	2079.72	• 010551	1168.73	• 94555	·05657	.10000
2	• 63724	1.0.00	2079.72	• 1010550	1158.73	.94556	· 0565H	•10000
2	• 2 3 7 2 4	- <u>-</u>	2079.72	•)010220	1168.73	•94556	·05658	.10000
2	• 02724	10.000	2179.11	• 010551	1168.73	• 44555	·05658	.19090
3	• 1454	°•40	1994.74	• 1910776	1144.29	.9(694	•0H724	• 50000
7	• 1455	./•5^	1994 74	. 010775	1144.27	.40642	.08729	.50000
3	• 1454	15.00	1994 77	.0010775	11.44.28	. 93694	-0H730	.20000
,	• * 145#	•	1994.74	• 010775	1144.27	• 40642	• UH 7 30	.20000
.9	• 1455	<	1994 . //	•2013776	1144.78	- 406.94	• UH 7 3U	.20000
4	• 721 44	1. UC	1448.18	• 011.99	1111.71	• 4571	•11429	.30000
4	• 12148	(• 5 S	1838.13	•011044	1111.02	. 1572	•11430	.30000
4	• 151 88	15.07	1 H 3H - 4	• 1011644	1111.97	•H356H	•11431	.30000
4	• 2144	22.5	1 4 3 4 . 6	• 911044	111:495	• 4 1564	.114.32	.30000
4	• 12184	30.00	1437.00	.0011100	1116.92	• 43566	.114.32	. 30000
5	• 12917	°•0≏	1501.57	• 1011489	1073.31	•72817	. 13158	•40000
5	.: 2917	5.00	1511.44	•011489	1173.23	•15911	.13160	.40000
5,	·19917	16.69	16(1.3)	• 1011491	1.73.07	. 728(4	.13166	•40000
5	. 2917	14.ÚJ	1601.42	•°011443	1:72,85	.12142	•13172	. 40000
۲,	. 72917	24.20	1600.72	.0011496	1.72.64	•7277H	.13176	•40000
5	• 12917	44.60	1470.64	. 011496	1072 , 58	.72776	. 13178	.40000
6	• 13646	t. . 30	1508.10	•v011459	1031.04	- 59:46	.1 3255	•20000
4	•:3646	たましじ	1248.51	 €011963 	1030.74	.59:43	-1326H	.50000
6	.: 3646	12.00	1246.97	. 011975	1 29,74	•28368	. 13295	.50000
6	· n 3646	18.00	1295.16	• 30 11 468	1028,56	•28885	. 13329	•20000
4	• 13546	24 . 94	1294.41	· 0011040	1927.64	<u>•28821</u>	·13355	•20000
6	·^ 3545	30.00	1293.49	•^012u94	11.27 . 2J	•28410	.13363	.50000
7	• * 4 375	3.00	980 . 18	.\012487	987.46	•44565	.11324	.60000
7	• i14 375	5.00	978.21	.0012592	784°58	.44475	. 11362	•+C000
7	• 4375	10.00	973.63	€012537	981,54	.44267	.11462	•60000
7	• : 4 3 7 5	15.00	967.62	. 012544	979,85	•43994	.11590	•00000
7	• ~ 4 375	55 . 66	0K1.3H	• 1012636	975.87	.43710	.117 03	•0000
7	•)4375	22.00	956.95	.012673	972.99	•4350 <u>8</u>	.117 82	•+0000
7	. 14 375	33*00	ݖݷ <i>ݙ</i> ݙݙݱݱ	·/012685	972.08	•43445	.11812	•0000
Ą	.05104	6.00	758.99	.2012799	963.41	.34467	•06855	.70000
н	135104	5.00	741.56	·(012434	74, °81	.34170	.07114	.70000
я	. 15104	10.00	733.43	•001292A	953.81	• 33369	•07705	• 70000
я	· 15104	15.00	710.19	. 1013364	463.44	.32285	• 38252	.70100
н	.15104	21. US	646 ° H	.0013216	433 . 04	.31193	.08631	.70000
н	• (5104	°∽•0¢	669.47	• 2013335	424.72	• 31:343	• 48843	./0000
۴	•35104	3। • 0 छ	642.1	• +013379	921.69	.36161	•08911	.70000
9	. 05833	U∩	754.15	.1012749	463.41	.34465	• 06817	• 90000
9	•15833	4.29	745.01	015436	465.44	.33930	.07124	.H0000
9	• (SR11	H . 57	710.47	• 1012950	452.16	. 32302	.07635	 F0000
9	. 5411	12.86	154.19	.1013121	434.74	.29434	. 07855	. 80000

88 M (, 11 888

PAGE 12

COMPUTATION OF AFRU-ACOUSTIC PROPERTIES OF SUPPRESSOR NUZZLES

CASE NO. 1 CRD 7-TURE AR=2.3 NOZZLE - VJ=2200 FPS - TTJ=1600 DEG-R

AXIAL LOCATION = .29167 (X/DED = 4.0000)

м	q	ANGLE	11	DENSITY	TEMP.	UZUREF	TURB.INT.	. KZDEŬ
9	• 15833	17.14	59 7 .48	• (0] 3330	425.00	.27183	• ປ 7 582	.80000
9	. 5833	21.43	5411. 75	.013531	411.29	24567	.06819	.80000
Q	•5837	25.71	494.47	.(013676	9(1.61	22682	C5718	.80000
ý,	(5933	30.00	483.64	.0013728	898.19	21991	.05027	.80000
10	. 16567	0.00	A96°4A	.0124H7	4R7.45	44561	.11321	.90000
1.0	. 16563	4.24	954.94	.1012541	483.25	.43599	.11533	.96000
10	• * 6567	H 57	898.45	.1012692	971.57	40849	.11892	.90000
10	. 16563	12.86	865.40	.001293P	453.09	36618	.11906	.90000
19	• 16563	17.14	692.79	.0013244	53L.C1	.31498	.11248	.90000
1 -	• 16563	21.43	579 <u>4</u> 8	. 1013541	41. 63	24369	.09745	. 90000
10	. 6563	25.71	492.43	.6013716	444.13	22389	C7158	.96000
10	• 16563	30.00	45×.44	• `013755	~°~~ 1 8	•50861	.03069	• 40000
11	• * 7 2 9 2	- • 76	1298.64	· 011960	1+31.04	.54144	.13 253	1.06060
11	• 7792	3.75	127ו47	• <u>011997</u>	1∵27.81	•28120	·13588	1.00000
11	•* 7292	7.50	1513.17	• 015150	1-17-42	<u>•55158</u>	.14287	1.0000
11	.:7292	11+25	11:9.42	• 1012334	494.73	•5(459	.14800	1.0000
11	•≓ 7 292	15.00	477.73	· 012630	476.32	.44453	. 14727	1.00000
11	• ~7292	14.75	229 <u>4</u> 6	 0129%) 	951 . 05	. 37712	.1 3834	1.0000
11	• 7242	55.65	AHA . C	.0013309	426 5 0	•3119c	.11965	1.00000
11	• 17242	25.25	576. 2	· 10135 16	712.95	.26149	•08882	1.00000
11	. 7.292	31.00	573.54	• +0] 355 R	404.85	.2425H	.(4985	1.00000
12	• 08021	5.05	1501.50	•:0]1 489	1373.30	•72813	. 13157	1.10000
12	•(8021	1.75	1577.02	.0011528	1664.60	•717e1	13788	1.10000
12	•URC21	7.50	15:3.79	• 1011649	1.54.63	•68367	1 5133	1.10000
12	· 18021	11.25	1343.35	• <u>≙011</u> 848	1640.71	62895	. 16335	1.10000
12	• 98921	15.02	1219.62	··012135	1016.11	•55451	. 16798	1.10000
12	• 18031	18.75	1028.14	 .:0125€7 	985,89	.46745	. 16135	1.10000
12	• LP021	22.50	H3H.13	.00 1 2885	956.97	.38102	. 14139	1.10000
12	·*8921	26.25	KHH 35	• 1013137	43ו41	•31546	.10494	1.10000
15	.08021	31.00	629.41	.0013201	934 <u>,</u> 09	.28617	•0505C	1.10000
13	• 3875A	!• ?^	1838.4	• 1011-140	1111.01	•H356P	•1142A	1.50000
13	• **750	1.31	1817.98	• 5011135	1107.37	• 42656	12246	1.20000
13		6.67	1756.96	• 1011241	1096.90	•79882 •79882	.14180	1.20000
13	• LA759	10.00	1653.43	.)011412	1686+52	.75174	.16114	1.20000
11	•08750	14.34	1507.73	• 1011642	1059.16	•08550 	•17533	1.20000
13	· ···· 750	16.57	1326.82	.2011932	11145	• 60.325	.18014	1.20000
1.3	• 1 H / C R	21.00	1116.41	.012287	1.03.54	-5077B	.17240	1.20000
1.4		23.34	015. SH	• 0912641	475.46	•41619	•150.31	1.20000
14	• <u>1475</u>	75.67	750.19	• 1012869	958.27	. 14 7 0 3	• LL(59	1.20000
13	•	1.00	644•78	• 112926	953.93	• 31515	.(3942	1.25000
14	• 19479 • 07 7 0		1994 . 74	.1010//6	1144.78	• 43643	.08729	1.30000
14	• · · · · · · · · · · · · · · · · · · ·	1. II	1974,99	• JUI0H22	1139.44	• MY (YS	• 10155 • 10155	1.30000
14	• 1 44 14 • 01 70	F.F./	1914 . 12	• • • • • • • • • • • •	1125+15	-87024 63193	• 1 2 8 5 5 1 4 5 5	1.30000
14	• 19479 	15.00	1407.55	• 3011154	1115.57	+#2182 20155	15554	1.30000
14	+ 19479	1 1 . 1 1	1057.47	• JE[4]()	11 MJ . 7 L	. / 5 L 11	.1/661	1.39090
14	. 14474		1451.76	• 1011771	1057.05	• NOUDS	•18673	1.30900
14			1418.14	-2012089 	1014446	• 77.361	.18205	1.30000
14	.19414	Z 1. 11	141.56	• * 9 • 2485	4×/.51	+44r/1	. 15999	1.10000

688 M G R 688

•.

PAGE 13

.

. war at

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NUZZLES

CASE	N0.	1	Ct	PD 7-TURE AR=	2.3 NO77LE	- VJ=2	200 FPS -	TTJ=1600 DE	9-6
AXIAL	LOCATIO	s = .2	9167 (X)	1)EQ = 4.0	0000)				
M	P	ANGLE	υ	DENSITY	темр.	UZUREF	TURP.INT	• PZDEQ	
14	.19479	24.67	798.24	.(012757	<u> ৬৬</u> ৬ • ৮৸	.36291	.11775	1.30000	
14	.10474	30.60	725.24	•012831	961.98	. 32973	•00455	1.30000	
15	+102C8	ે 🗤 છે 🖻	2079.68	• e010551	1168.72	•94554	 JS655 	1.40000	
15	•10508	3.00	2064.03	·A010596	1163.69	<u>-93843</u>	• 07855	1.40000	
15	-1020F	6 . Ju	2015.26	•f010726	1149.60	.91626	.10976	1.46000	
15	.1020P	9.05	1928,64	• 010923	1128.86	.87687	.14000	1.40000	
15	-1020H	12.00	1799.20	• 1011168	1164.08	*818CS	.16625	1.40000	
15	.16274	15.00	1624.99	•0011454	1676.54	•73881	-18425	1.4000	
15	•10208	18.00	1411.04	• 1011788	1.46.01	.54181	•19610	1.40000	
15	-1020H	51.00	1172,55	.1012181	1/12.27	.53311	.18135	1.40000	
15	-1020H	24 .00	942 14	.(312592	474.23	.42865	.15690	1.40060	
	.10235	21.00		• 1012872	957.97	- 1485H	• F1452	1.40000	
17	102 18		11.0400 11.0400	. 1012947	957.41	- 31/47 OF 71 F	.04002	1.40000	
	.10935	7 • J.	21(0.17	+ 010469 6010530	1177.88	• · · · · · · · · · · ·	• 90131	1.50000	
12	10039	2 • 9 V	2049.47	• 510569	11// 10	.95120	.00902	1.50000	
10	10915	•	10/9.01	CONVERT		• 72714 UNE 73	•10010 •10770	1.50000	
10	10930	1.2	1990.17	0011161			+13117	1.56000	
16	10416	16.400	1610.10	• 011464	1100.00	•/231. 736.7	• 1037 1 16444	1.50000	
16	10938	1 / • (1333 64	0011937	1 1 5 • 0 5	63363	18680	1.50000	
16	10938	21 10	1115 88	.(0)23:0	1 02 5	51644	17462	1.50000	
16	-10934	24.00	H4H 64	.00128:8	962.75	404.13	15401	1 50000	
16	.10934	27.00	698.70	. 1013180	435.53	- 31767	.11212	1.50000	
16	.10938	3 .00	624.17	-10132ax	427.94	28 178	. 05158	1 50000	
17	.11667	0.40	2079.04	- 2010551	1168.69	94551	. 05661	1.0000	
17	11667	2.73	2064 .86	.10105-4	1163.93	-93681	07639	1.60000	
17	.11567	5.45	2018.58	.0010712	1154.53	91790	10564	1.60000	
17	.11667	- 19	1937.32	2010926	1130.61	88182	13436	1.60000	
17	.11667	11.91	1815.35	.0011144	1106.47	82536	15985	1.60000	
17	.11667	13.64	1650.35	.0011426	1579.16	75034	17834	1.60000	
17	.11667	16.36	1445.30	.0011768	1)47 82	65716	18636	1.00000	
17	.11667	19.09	1210.33	.1012213	1,10,61	55029	18208	1.00000	
17	.11667	21.82	465.46	.0012752	466.93	.43895	.16525	1.60000	
17	.11667	24 sc	743.54	.0013331	474.94	.33606	.13778	1.60000	
17	.11667	27.27	578 . HH	.0013749	896.83	.26319	.09931	1.60000	
17	.11667	34.00	515.41	.0013875	588.71	.23434	.05403	1.60000	
1 8	.12394	+ . P C	1994 . 5.4	.€010777	1144.15	.9(685	.0H734	1.70000	
18	.12391	2.73	1977.24	.C010×19	1119.85	•808A0	.09823	1.70000	
18	.12396	5.45	1924.1	. 010935	1127.67	.N7477	.12066	1.70000	
18	.12396	4.1 4	1831-52	· 1011116	1109.29	•×3259	.]4455	1.70000	
18	+15304	1.41	1646.34	•0011354	1086.06	.77 080	.16479	1.70000	
۱۹	.123.96	17.64	1516.33	•0011654	1158.07	• F8941	.17735	1.70900	
19	.12396	15.36	1302.89	•0012043	1123.87	-54237	.17931	1.70000	
ļн	.15304	19.34	1057.75	012582	974,00	•48+91	.16949	1.70000	
1 1	•12396	רא.וי	អ]អ ្ ទម	.1013262	424.74	• 3721H	•1441K	1.7000	
14	.12344	24.5	606.74	•°013991	881.32	·27586	. 12197	1.70000	
14	•12395	27.27	452.02	.(014549	H4H 04	•26551	• <u>0 א</u> קטק	1.70000	
19	-12395	11.10	342.42	. 0014709	434.30	.17842	- 64472	1.70660	

8 9 9 M G H 8 8 9

•

)) ? PAGE 14

•

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE	NO. 1		140) 7-TURE AR=2	.3 NOZZLE	- vJ=2	200 FPS -	TTJ=1500 DEG-	۴
ΔΧΤΔΙ		= 2	9167 (XZI	VE(0) = 4.03	10(ca)				
	2	•••							
м	R	ANGLE	11	DENSITY	TEMP.	UNDREF	JURH.JNT.	• H/DF()	
19	•13125	`• 00	1837.39	•6011105	1114.42	•H3539	•11439	1.80600	
1 %	•13125	2.50	1823.44	• 011135	1107.30	• 42768	.12007	1.80000	
19	•13125	5.00	176.8. #9	• • • • • • • • • •	1398.22	.15.424	.13454	1.80000	
19	•131.25	1.59	1681.42	• 9011379	1083.77	.16441	.14907	1.80000	
14	•13125	16.36	1546.40	• C011587	1054 . 21	·/(/H/	.16204	1.80000	
10	•13125	12.50	1397.48	.0011866	1034.14	.5.15.17	•16931	1.80000	
19	•13125	<u>17.66</u>	1206.75	• 4012245	1 06.97	•54×64	-1686P	I. HA000	
19	•13125	17.51	997.54	.012764	966.03	• 45 154	•15935	1.80000	
19	•13125	2″ • €ŭ	141.42	• 01 1474	914,24	• 15419	•14749	1.50000	
14	•13125	22.50	503.76	• <u>2014217</u>	867.34	• 26496	•12005	1.80000	
19	•13125	25.17	431.72	• 0015617	421.12	.196.16	• 69427	1.80060	
14	. 1 11 25	21.51	110.09	• (· V] ~ 7 Y 7	761 04	•14458 17473	• 06097	1.80000	
19	1305	30.00	1000 7/	. 015771		1,411	• 34067	1.00000	
	• 1 30054 • 1 3057	5 • 4 ·	1.345,14	• . • 1 1 7 1 9	1:47 70	• / (000	+[3]74	1.00000	
20	1 105/	A • 7 ()	1677.09	•:011545	1.52.00	+/1001 64066	14277	1.90000	
20	1305/	7 1	170.27	+0011044 10110 0	1.44 22	• 11 4 2 3 11 • 11 4 2 3 11	+14CTT 15:000	1.96000	
20	1 3 3 5 7 4	1.2.20	14/9./1	• 011000	1044+61	•0470) Kolon	15622	1.50000	
20	+13014	1.50	1101.00	• 1012636		• 7 9 1 7 U	+ L 3027		
20	+ 1 30004 1 30E/	16.00		012606	3930A4 UEL 17	• 71004 / 7100	14944	1 46040	
5	• L 10-74	1.7.6.9	744.94	•. 01/070	2000L7	•43399 36436	+14044 134EE		
20	• 1 3054	20.00	750.10 106.0	• (1133)(2110.20	• 34034	+L3433 1167.0	1.90000	
20	• 1 10 74 1 10 E /	33.64		• 1014.371	1100 65	103.2	• L 1 34 7 14 7 5 5	1 90000	
20	+11774 13957	26.7	346 25	• 013730	767 30	17246	• 17.376	1.50000	
20	1385/	27.5A	208 / 1	001678N	736 68	• 1 34 50 6 0 4 5 7	04826		
20	13254	3. 1	174 26	1116987	725-87	17923	.03019	1.96060	
21	14593	1.00	1287.46	0012.79	1 2 84	.58535	-13417	2.(0000	
21	-14583	2.31	1273.23	.0012109	1.18.35	57588	13532	2.00000	
21	.145-3	4.62	1221.46	2012216	1:09.39	55535	-13771	2.00000	
21	14583	6.42	1147.20	0012400	994.44	.51840	.13956	2.00000	
21	145.43	9.23	1:133.51	012672	473.08	46989	1 1924	2.00000	
21	.14583	11.54	915.48	1013048	444.99	41169	13506	2.00000	
21	14587	11.25	764.63	013539	41 .74	34764	12545	2.00000	
21	145-13	16.15	619.74	-0014161	471.74	.28127	.11370	2.00000	
21	14543	1-46	421.43	.:014913	826.87	21889	04777	2.00000	
21	14587	20.77	357.91	.0015764	782.20	.16273	08012	2.00000	
21	14543	23.04	254.57	.0016664	730.96	.11574	.06236	2.00000	
21	14543	25.38	175.01	.00175(1	714.58	07957	045R4	2.00000	
21	14542	27.60	121.64	.0019079	682.13	.05530	.03092	2.00000	
21	.14543	23.00	101.49	. 1019249	675.70	. 74614	.02011	2.00000	
22	.15313	3 - 581	437.77	.012946	452.48	.42637	.11983	2.10000	
22	.15313	2.14	924.95	.0012987	444.49	.42053	.11979	2.10000	
22	.15313	4.24	HH7.H1	.2013113	941.(4	.46365	.11943	2.10000	
22	•15313	1.43	H28.CB	■1013338	426.59	.37549	.11795	2.10000	
22	.15313	ו•57	749.54	.6 0135 98	996.80	.34679	.11460	5.10000	
22	•15 11 3	1.71	456.44	1013991	····································	.24610	.10476	2.10000	
22	.15314	12.06	546.37	. 2014486	851.20	.25296	.10008	2.10000	
22	.15313	11.15	454.44	.015083	817.51	.20667	.08910	2.10000	

155

ر

156

ו

22	.15313	17.14	357.45	• 1015777	781.57	1 6252	.07634	2.10000
22	.15313	14.29	270.54	.0016543	745.39	.12301	.06280	2.10000
22	.15313	21.43	147.22	. 1017346	719.86	.08967	.04961	2.10000
22	15313	23.57	137.95	.)018142	679.67	\$6272	.03736	2.10000
22	.15313	25.71	93.70	0018844	654.37	-04260	02675	2.10000
22	15313	27 26	64.47		638.46	02931	01786	2.10000
22	.15313	30 00	53.60	.0019445	634.12	02437	61197	2.14000
27	16042	r . n .	613.13	014195	868.70	.27876	.09412	2.20000
23	.16042	2.14	N.) 3. 2H	-0014242	865 BC	27429	.09360	2.20000
22	160/2	 	676 %	616387	157 .4	26145	14144	2 20000
22	16042	4 . · · ·	610 30	101450	HAD 01	-26145	0.8886	2 20000
22	16642	4 57	472 73	- 01407 -	823 72	21493	.08603	2 20000
21	16042	1 71	406 74	•0015700	800 25	18465	07730	2 20000
27	16042	12 86	170.15	0159474	773.46	15320	16987	2 20000
22	16047	16 00	760 77	1 01 3 747	744 60	17766	• 00007	2 20000
2.1	16047	17.17	764 73	• (21 7 7 7 0	716 30	• 1 C C 411	• 13929	2.20000
5	• 10047	1/014	153 31	017659	1 1 3 e 11	.04399	• 04 904	2.20000
23	.10042	14.74	174.471	• (0) / 9 5 4	040.04	• 6420	• U3MA7	2.20000
23	• Int 42	21.43	1 / • / /	• UIR681	000.08	.04900	•02451	2.20000
23	.16042	23.57	13.44	.0019367	5 16 . 19	•03339	•07149	2.20000
23	•16842	25.0	48.77	.(019964	637.6F	• 0219.4	•01484	2.20000
23	.16042	27.86	41.74	· 1026.167	h05+42	•01443	+0092B	5.50000
23	.16042	47.03	25+54	• · 626484	691.96	•(1161	•00650	2.20000
24	•16771	.) . 60	357.30	•001e779	781.48	.16245	•06487	2.30000
24	•16771	5.30	351.61	· 1015424	779.25	15986	+06431	5.30000
24	.16771	4.ባለ	335.59	• 1015957	772.74	15258	•0627ú	5.30000
24	•16771	6.00	310,48	.2016176	165.56	.1 4∂98	•05941	5.36000
24	•16771	H.CO	277.97	•0016481	748.17	12597	• 05592	2.30000
24	.16771	10.00	240.04	·(0]6H6]	731.32	•16915	• 25046	5*30000
24	.16771	15.00	200.67	.4017312	712.27	.09123	•04505	5.30000
24	.16771	14.00	161.87	.0017820	691.95	•07360	.03854	5.30000
24	.16771	16.00	126.11	.1018367	671.37	. 057.14	•03189	5.30000
24	.16771	18.00	44,96	.€018929	f 1.41	•94314	•02550	2.30000
24	.16771	21.00	+8.n7	. 1019496	632.46	•03155	.01954	5.30000
24	.14771	25.30	47.91	· 1020939	615.35	.02178	.01446	2.30000
24	.14771	24 • Cu	32.27	• 1020531	600.60	. 11467	•01031	2.30000
24	.16771	24.00	50.07	. 1026947	588.65	.06954	.00709	2.30000
24	.1+771	24.32	13.73	·1021219	LH1+12	.00624	.00464	2.30000
24	.15771	31.20	10.44	• 6651549	578.95	.00499	.00327	2.30000
36	.17500	1.00	146.12	.4017.95	704.81	.08462	. 13924	2.43000
25	.17500	2.01	192.55	. /017534	713.08	.083.94	-03H73	2.40060
54	175	4.6.5	173.41	. 017661	15434 2.3	.07884	.03741	2.40000
25	17500		159.16	· V178+0	696 19	.07236	63532	2.40000
λι,	.1750	4.07	140.63	.0018134	674.99	.06394	.13232	2.40000
٦٢.	.1750	10.00	120-08	-C018468	667.68	.05460	-02878	2.40060
2E	17500	12.00	94.15	1618851	654 15	.04513	02488	2.40000
55	1750	14.0	78.44	.019274	1.39.77	1.3566	.02070	2.40000
25	175.00	14	59.51	. 010714	625.49	0.27.24	-01663	2.40000
51	.17513	18.01	44-11	• 1620153	611.86	.0.2006	-11290	2.40000
		• •					•	

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

O O O N G R * * *

CASE NO, 1

ф

м

PAGE 15

CRN 7-TURE AP=2.3 NO77LE - VJ=2200 FPS - TTJ=1600 DEG-R

 $4 \times 14 = 0.0000 = -29167 (X/DE0 = -4.00000)$

ANGLE U DENSITY TEMP. UZUREF TURB.INT. RZDED

* * * M G R * * * PAGE 16

• •

>

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE	NO 1		CRD	7-TURE AN=2	.3 NO7ZLE	- VJ=2	200 FPS -	TTJ=1600	DE G-R
4×IAL	LOCATION	= .2	9167 (XZD	FQ = 4.00	059)				
м	R	ANGLE	U	DENSITY	TEMP.	UZUREF	TUR8.INT	• P/DEQ	
25	.17500	27.50	31.18	.1020543	599.09	.01418	.00964	2.40000	
25	.17520	22.00	21.12	·00209H7	597.55	00960	.00694	2.40000	
25	.17500	24.03	13.77	. 021344	577.71	. 0626	.00481	2.40000	
25	.17500	26.00	8.66	.0021636	569.92	.00394	.00334	2.40000	
25	.17500	24.00	5.41	.0021826	564.96	.00246	.00232	2.40000	
25	.17500	30.00	4.18	0021877	563.64	.00190	.00192	2.40000	
26	18229	0,00	46.65	.0019698	645.67	03940	.02081	2.50000	
26	18229	1.87	45 4	.0019131	n44 56	13869	02052	2.50000	
26	18229	3.75	80.94	.019217	641.64	63680	01974	2.50000	
26	18229	5.62	74 69	(019357	637 02	03396	61860	2.56000	
26	14229	7.50	66.41	1019552	63(67	03/19	01697	2.50000	
26	18220	4 . 37	57.15	.CC197+6	623.19	02598	.01510	2.50000	
26	.14229	11.25	47.65	.0020043	615.05	.(2166	.01303	2.50000	
26	18229	11.12	38.24	. 020337	606.33	.01741	.01087	2.50000	
26	18229	15.33	24.65	.1.020641	597.41	01348	.00879	2.50000	
26	18229	16.87	22.17	\$020942	548.81	.01008	.00693	2.50000	
26	18229	13.75	16.13	.021229	581.84	.00729	.00534	2.50000	
26	18229	2: 62	11.14	.0021501	573.50	.00507	.00396	2.50000	
26	18229	22.52	7.44	.(021746	567.25	.00338	.00293	2.50000	
26	18229	24.37	4.76	021955	561.63	.10216	.00224	2.50000	
26	.18229	26.25	2.88	. 2022116	557.56	-06131	.00172	2.50000	
26	18229	24.12	1.66	1022189	55 72	96376	00151	2.50000	
26	18229	30.00	1.19		556.78	10.54	.00132	2.50000	
27	18958	0.00	36 06	620411	6.64 12	01640	00971	2.60000	
27	18958	1 87	35 36	0020436	603 37	01608	06957	2 60000	
27	18958	3.75	11.52	- 0205: 0	501.50	. 61524	.00917	2.60000	
27	18958	5.62	31.72	. 1020610	594.59	-01397	-0.858	2.60000	
27	18958	7.50	27.12	.021736	594 64	.01233	.00776	2.60000	
27	18958	4.37	23.+2		589 84	.01046	00681	2.60000	
27	18958	11.25	18.91	.021087	584.75	- 20861	-00587	2.50000	
27	18958	13.12	14.96	-0021285	579.32	- 20680	.00485	2.60000	
27	18958	15.60	11.39	1021486	573.91	-00518	.06392	2.60000	
27	18958	15 87	8 36	0021685	568.62	- U037H	00304	2.60000	
27	18958	14.75	5.84	. 1021868	563.87	00265	06246	2.60000	
27	18958	21.62	7,40	. 1622033	559.65	.00177	.00192	2.60000	
27	18958	22.50	2.47	-0022167	556.26	.00111	.01165	2.60000	
27	. 12958	24.27	1.34	.9022241	554.42	.00061	.00160	2.60000	
27	18069	26.25	. 34	021745	567.36	.00(15	-00168	2.60000	
27	• 199590 .19959	24.12	0 ^	• (1022835	546-00	0.00010	0.00000	2.66000	
27	12052	30.30	0 · · ·		541 5.	0.00000	0.00000	2.60000	
~ 1	• • • • • • • •	• • · · ·	U •	• VCCDJ)				F # C C C C C C C	

157

(1)=	1150.	• =(1)]e:	ld+Jchthl	F''(7)=	10+31655.	14VG(7)=	1266.63	()MAX(7)= 2106.11
= (J) ¥	, 74 75,	• = (r) [H	131136+51	=(ĭ):J	• J×27E+41	=(н_)57б <u>∪</u>	1170.16	UMAX(8)= 1951.26
=(5))	58 4 7 5	• =(f)le	1.2+3=8-5.1	= (6) - 1	4151F+01	= (A,) 9AVH	1077.16	UMAX(9)= 1731.67
=(11))	•5al]	• =(*[)]Hi	175246 +25	=((1))=	•45326+91	UAV6(1()=	86°46	UMAX(10)= 1504.P5
=([]);	0 J J L U	• =([[)] m.	61+3+12a2	= ([]) v. J	•4472E+61	114VG(11)=	16.224	UMAX(]])=]347.75
=(2[)x	じょくち.	・ = (といしすい	+1+j-222T	F (121=		UAVG(12)=	HUK.47	UMAX(12)= 1276.87

	≓л1.ч
2 AT	121.00
FATES THA'.	En£Tā=
POLTE IS AN	11 = H 1 1
5* I - 2911	• 2'+1 •'7
- 10° OL	 X
APP. ING.	× ∆= 7

m

.

1. 722. 3336.	マント 	4335 2275 2189		447 447 7347 737 737 737 737 737 737 737
		- 242115+29 - 431575+39 - 431575+39 - 425595+29 - 1111+5+29	スペート 、 、 、 、 、 、 、 、 、 、 、 、 、	
0 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 0 0 0 0 0 0			2	• • • • • • • • • • • • • • • • • • •
1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000 1000 1000 1000 1000 1000 1000 100	1 21 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	· · · · · · · · · · · · · · · · · · ·
	0 * 0 * 7 7 8 8 0 * 0 * 2 * 0 * 6 0 * 0 * 0 * 0 * 0 * 0 * 1 * 1 * * *			• • • • • • • • • • • • • • • • • • •
- (, m 4)	к < р а ф с — — — — — — — — — — — — — — — — — — —	~~ 10	222222	~~~~~~~

 $\mathcal{L}_{\mathcal{T}}$ is the state of

5

)

)

đ

7

.

.

FUE OUE NCY

Y T T Z, Y Z Y Y

1 e 42 e -

MA(H 144

St Leves

ц ž

•

м υ ANGLE. 11 DEDISTRY TEMP. UZUREF TURH.INT. HZDEU .1012299 .00079 1.20 1238.43 1 (1.62 .56306 .00016 ł . .012249 .563Ch 1234.43 1162.62 .01079 .00016 11.34 1 .1012249 .56306 .00016 .00001 1234.43 .00079 2...00 1.02.62 1 . 1012299 .563.6 .00079 .00016 .:0001 30.00 1238.43 1-62.62 1 .1012310 .16000 1236.43 1.01.65 .56215 .01959 .1167 2 . 012311 .56215 .01960 .16000 2 . 1167 1..00 1236.43 1:01.65 1236.44 .3012310 .56216 .01961 .1+050 2 .:1167 20.00 1001.66 .1012310 .56216 . 1960 .16000 31.01 1236.44 .1167 1101.66 2 .02794 3 . . 2737 2. 34 1236,90 . 012345 YON HA .55464 .32006 .02794 .02797 - 1012345 - 1012345 55963 55964 . * 2 3 3 3 448.R7 .32000 ٦ 7.5 1276.44 32000 15.00 1230.41 ٦ -2113 ӌӵҥ҅҈ӊӿ . 2333 .32000 3 22.51 1230.42 . 1012345 44**4** 84 \$55965 . 32797 . 12748 . 7711 . 1017344 444.4. 55967 3 31.05 1230.44 .32000 .55529 1221.14 . 0124.5 .03476 .48000 .13500 444.(4 1.00 4 4 .13507 7.5.1 1221.47 . .174.4 1446.17 .44535 .03477 .48000 • -35 Jr 1221.34 . 0124-4 .55532 .0 1482 .48000 15.00 494.17 4 -55532 1221.41 . 35() 994.18 .43489 .48000 ,?,? . 5.: . 10124 14 4 . 3500 37.01 1221.12 . 10124-4 994.27 .55528 .43491 4 .48000 .04115 . 4667 ...012443 54872 .64000 441.99 ς, 1216.84 ្រួតខ **.**54H75 . 4667 ٤ . 1012443 947.02 .04119 .64000 5.51 12-6.94 . 4667 12.10 . 012493 54476 .04135 .64000 5 1206.98 487.US . 01-2442 54871 ς 1216.84 987.97 . 4667 14.31 .04154 .64000 . (012492 . 4667 .14169 ς 24 • n 1266.74 487.1% .54865 .64000 .54870 . 4667 ₹**.**0≏ 1246.84 .: 012492 191.12 .04170 .64000 ۶ .15833 ۴ - • C 1147.62 .012613 977.66 **.**53996 .3476B .40000 • 012612 -5833 .53996 -047H3 .80000 n.) 11-7.62 477.69 6 539KI .1912611 977.75 .04814 .80000 1147.26 6 12.00 .0012610 6 -5833 18.01 1167.,6 477.86 .53971 .64350 10000 . "5873 24 11 \$3972 • 0487H . HIONO 1107.14 . 0126 /R 977.94 4 . 10126 R .53971 478.03 1187.17 **.**0488H . 5833 .80000 32.00 . 31 .52843 . 05460 7 . 1719-.1012765 11+2.27 966.1 .96000 5. III .)012764 .52845 .0547H .96000 ...7chr 7 1162.31 466. JH . . 70 30 .0012762 .52830 .96000 7 10.00 1161.97 466.24 .05520 .0012759 •52H18 7 15.00 1161.48 466.44 .05571 . 96000 .52799 -0561H 23. H •n12755 7 466.7 : .07901 1161.28 .96000 .52784 .96000 7 25.00 1162.97 .6012753 966.86 .05648 .05655 . 17001 37.00 .0012752 .527H2 .94000 1160.42 466.94 7 • 66 . 012946 452.48 .51386 μ . 18167 1130.21 .36181 1.15000 .19167 5.20 1130.15 .0012944 952.61 .5137R .06208 1.12000 .51358 .1012940 452.92 . 16272 . 14167 19.00 1129.59 1.12000 н .1.012935 н -1H167 15.00 1128.75 953.32 .51.320 .06347 1.12000 .: 4167 453.79 .51289 .06411 1.12000 20.66 1128.07 β 51258 . 012924 954.15 .)6453 . 9167 25.31 1.12000 1127.39 ы 454.2 1127.07 . 012923 ,51243 1.12000 ۴ . 18167 3...60 . 1013155 .44570 .66894 1.24000 . . 4771 977.34 •00 1040.28 G .1013153 .49561 4.19 .u6919 1.28000 937.51 a 1690. 08 . . 4331 1- 44 36 .: 013147 917.91 .49529 .16947 1.24000 9 - 11119 12.46 1088.33 434.49 .49482 . 1.7.172 1.28010

1.16567 (X/OFO = AXIAL LOCATION = 15,499441

CASE NO, 1

PAGE 17

CHD 7-TURE AR=2.3 NOZZEE - VJ=2200 FPS - TTJ=1600 DEG-R

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOF NO72LES

a 4 мданны

1.16667 (X/DEO = 15,99999) AXIAL LOCATION = UZUREF THRR. INT. KZDEU TEMP. DENSITY υ At:GLE R М .07151 .49436 1.28000 .013129 934.17 1387.31 .19337 17.14 .07268 q 1.2~000 939.73 .4437H .0013122 1086.24 .19333 1.28900 21.43 .07242 .49342 Q .1013115 94:17 25.71 1645.25 +:0133 .07253 Q .49325 1.24000 940.31 .1013113 31.00 1044.84 . 19337 9 .07553 1,44000 .47394 .0013387 421.08 1042.41 1.44000 .10500 0.60 .07585 .47369 10 . 1013385 421.26 .10555 1041.47 4.24 .07667 47317 1,44000 10 .:013376 921.88 .10500 1040.72 H.57 .(7767 1.44000 10 .47237 .0913363 422.76 1034.96 .10500 12.46 .07854 1.44300 10 423.78 .47154 .1013348 17.14 1037.13 .11502 .07414 1.44000 1.0 .47:(65 . 013336 474.64 1.15.17 .1950. 21.47 .07946 1.44000 12 925 39 925 51 67:107 .013326 1:33,91 .1051 25.71 .17454 1.44000 10 46978 1233.26 .013323 .10500 31.00 1. +0000 16 .04105 963.86 .44524 ...613042 F • 30 445.49 .11667 . 34133 1.50000 11 .44815 .1013634 4114.08 3.75 485.47 .04206 1.60000 .11667 11 414.73 .44742 7.50 444. 4 1013679 .11647 .58298 1.40000 11 .44544 483<u>-</u>62 .1013615 965.71 .11667 11.25 1.0000 . OH 3H4 11 .44526 .:..... 44+ **.** 44 1---5 474.34 .11667 .0844H 1.0000 11 .44419 968.5 .1013586 476.76 .11667 14.75 1.00000 .(84HH 11 464.49 .44299 - 117565 .11647 22°PG 974.14 .085/14 1.00000 11 .44225 - 13444 41.9.65 24.25 472.75 .11667 • U8514 1.00000 11 .44217 . 613551 4,19,95 972.11 .11667 .08510 1.76000 11 419"9 HA5 44 . 913417 121.74 .12433 . . 61 1.76000 .41873 12 .68538 RR6.74 420.97 .013414 .12837 1.75 12 .08610 1.76000 .41779 .013961 HH7.12 918.91 .12433 7.50 .08701 12 1.76000 .41640 HHH .21 · UI 1843 915.45 1.76000 12433 11.25 12 .41475 .08781 412.22 10H1163. 204.63 .12411 15.00 **URR35** 12 .41297 1.76000 491.05 •+013H3A 14.75 908.30 .12917 1.76600 12 .08861 .41140 892.27 404.86 . 613450 .12813 22.55 1.76010 . 68866 12 .41.36 897.19 412.56 .1013H-17 .12833 24.25 .08866 12 1.76000 .41997 . 101 34. 2 K93.3A 35.00 901.71 .12833 .04730 1.42000 12 867.36 .38651 ...014216 45(.11 1.42000 .140.90 ۲۱ . 11.1 .08750 .3+617 .014212 46.7.64 .14000 449.37 3.33 .38523 1.92000 .02805 13 NF-H 33 .14000 847.30 +.+7 .04976 1.92000 17 .38363 HF4.34 ...614183 10.00 H43.77 1.42110 ٢١ .140)^ .08943 .38166 571.72 .0014161 219.44 .14600 11.33 +UP4HR .37454 1.92000 13 172.18 .1314138 15.47 A14.79 .14001 1.92000 .09009 13 .37753 H73.58 H 10.35 .14000 21.491 .04009 1.92000 .37593 13 ×74.76 .1014596 826.9E .14001 21.33 . 37484 1,92009 17 .09001 875.51 .0014084 ¥24,45 26.67 .140.20 13 .14498 1.92000 H75.8 . . 37452 .0014:79 H23.73 .14900 34.01 .08750 2.04000 17 .35122 447.97 . 014541 .15167 772.44 ວ່ມແຕ່ .08767 .35.72 14 5.04000 848**.1**9 . 1614538 771.34 .15167 3.33 5.08000 14 .0881a - 014525 444.91 . 34947 768.55 .15167 5.67 .0HH71 2.08000 14 11.00 .34152 451.16 . 3014516 764.35 .15167 . 145 14 .08918 2.04000 14 851.47 . 0144H2 .15167 759.1 14.33 2.08000 .08943 14 . 34257 · · 14455 HS 3. 5 10.67 743.47 .15167 .05941 2.04070 14 .34308 454.52 . 014430 747.99 2.1.10 .15167 CORO27 2.08000 14 455.74 . 17814 1.0144.9 743.72 .15167 21.11 14

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR HOZZLES

CASE NO.

1

PAGE 18

CPD 7-TUBE AR=2.3 MOZZLE - VJ=2200 FPS - TTJ=1600 DEG-H

• µ G H **• • •**

PAGE 19

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1

CPD 7-TURE AR=2.3 MOZZLE - VJ=2200 FPS - TTJ=1600 0FG-4

XIAL LOCATION = 1.16667 (X/DEQ = 15.99999)

м	r,	ANGLE	U	DENSITY	TEMP.	UZUREF	INDH • I MI	 RADE0
	16147	76 47	740 75	7.617.396	NE4 EU	22570	68403	2 (14004)
14	15167	20.01	736 45	• 014373 SC16391	956 94	• 33677 33620	• UC 702	2
14	+17171		400 40	.01/000	500 64 507 40	• 3027	+(1173) UE4/	2.0000
17	• 10 3 3 3		540.47	• 914675		131351		2 24000
15	.10333	3.0	044.04	014694		• 1 1 2 3 • 1 1 2 3	• 100 () 0	2.74900
15		n • 90	140 B	• 914885	028,41	• 31270	-00003	2.24000
15	• [0 1 1 3	4.65	582.71	.0014464	······································	.31041	• <u>98538</u>	2.74000
15	.10111	16.00	677 69 671 JE	• 914845 • 914845	ີ່ ເພື່ອງ	-36817	• Unnn /	2.24000
15	.10.33	17.00	0/1.00	• 1014577	631,99	.30340	.000//	2.24000
15	.10333	1 M • 1971	000.44	• 49 4794	H33,74	. 19212	• 1:00nh	2.246/10
15	.16333	21.19	h69.62	• 014/15	834,56	.30235	.02640	2.24000
15		24.01	55 6 - 77	·(14/5/		.79834	• UPP 115	2.24000
17	• [• • • • •		1003.00 403.00	• 014745		- C911C	• JOD / C	2.241100
17	175.10	31.41.0	CD/ • CP	• • • • • • • • • •	0 10 g 7 f	▲ < 9010	•1010A	2.60000
	• 1 / 7 ()	7.00	0000-01 - 000-00	• 2015C59		■ C (つ つ づ > つ づ に に つ	• UD 104 6 5 103	2.40000
10		•		• 919200		57(1)	• 00193	2.49000
10	• 1 / 5 (* *	• • •	r 172 • 911	•• 015775	107.70	-27411	.00708	2.40000
10	• 1 / 5	4 • 1:	598 • 56	• 4915254	HP2: 00	.27214	.08227	2.40000
16	• 17560		542.00	• 615240	AUG IG	•26946	• ()H234	2.400.00
15	.17533	12.00	5 M h . 4'	• 1915216	H1 .35	.26661	• 1.4225	2.40000
16	•1/500	124,022	579.84	• 015192	811.65	•26362	•08193	2.40000
16	•17501	21.10	574.0	• 1015169	812.93	•26097	.08149	2.40040
16	.17500	24))	7+9.29	• 015150	H13.97	•25EH3	.34101	2.40000
16	.17500	21.00	566.13	•· 015138	814.55	.25/40	.08065	2.40000
16	·17500	3 € -}	555.13	. 15133	H14.81	•25694	• <u>0 4049</u>	2.400.10
17	.18667	<u>'</u> •01	524.23	-015714	784.69	•236.34	.07644	2.56000
17	.19667	2.73	523.45	. 015711	784.83	.23/99	.07647	5.24400
17	.18667	5 <u>•</u> 4 ^C	52C.84	• 10157.5	785,15	•53680	• 07651	2.56000
17	·14667	전 📲 1 전	516.92	. +015693	785,74	.235r2	· U7455	5.24000
17	.18667	1.41	511.73	• <u>1915678</u>	786.51	•23266	.07649	2.54000
17	.18667	13.64	5.15.65	.0015661	7H7.3R	.22993	.01627	2.56000
17	.18667	16.36	449,45	015647	788.42	•257.0H	.07592	2.56000
17	.14667	19.63	443.33	•0015619	789.45	.22430	.07540	5.24000
17	.18667	51.85	447.93	. 1015610	79: 42	.22184	•07483	2.54060
17	.19667	,24 . 55	447.46	•<015685	791.2	•51430	.)7429	2.56600
17	.14667	21.27	4H1.12	• 015574	791.74	-2187)	.17392	2.56000
17	.18667	30.00	4×3.13	• 3 91557 0	791.94	.21659	.07378	2.56000
16	.19833		444.49	. 016173	162.41	 €v226 	.06978	5.15000
18	.19477	2.73	41+4 . 46	.016171	762.53	•50160	. 16978	5.15000
18	.19813	5.45	441.44	.(016166	762.75	.20170	.06974	5.15(in)
18	.19833	H*18	437.39	•€016157	763.17	.1 9886	.66964	5.15000
18	.19833	14.91	472.15	· CO16145	763.74	1964H	.06942	5.12000
18	.19833	13.64	426.13	.0016130	164 46	.19373	.06406	5.15000
۱۹	.19833	14.36	419.72	.0016113	765.27	.19UH3	.06954	5.15000
18	•10433	19.0	413.45	·(016695	766.1	18798	.06790	5.15000
14	.19933	21.85	407.yu	 • 016078 	766.94	·18550	.06755	5.15000
18	.10413	24 .55	4/3.63	€16064	767.62	.18352	. (たわたし	5.15000
18	.19431	27.27	400.90	 4016054 	764.08	18551	.06616	5.15000
1.8	- 19277	34.00	104.40	.0016251	768.21	- 18182	66600	2.12000

өөө м (, ц өөө

PAGE 24

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

• . ` -

CASE NO. 1 CHO 7-TURE AR=2.3 NO7ZLE - VJ=2200 FP5 - TTJ=1600 PEG-H

AXIAL LOCATION = 1.16667 (X/DED = 15.99999)

м	a	ANGLE	U .	OFNETTY	TEMP.	UZUREE	THPR.INT	. HIDEW
					_			
19	•51000	しょいい	37).73	• 1016665	740.05	16855	•06228	2.44000
19	.21000	2.50	370.11	•1016601	74,13	.16823	•06225	~. 84040
19	-51000	5.0f	367.92	•001665A	74:23	1 6728	.06217	5.4H0J0
19	•51000	7.50	364.54	.0016653	74:45	. 16576	.06200	5°68900
19	•21000	19.00	360.11	.(016647	74. 74	. 16373	.06172	5°44000
19	.21000	12.52	354.93	.:016637	741.15	. 16137	.06133	5°HHU00
19	.51000	15.00	349,74	· 1016625	741.68	. 15883	.060H1	2°44090
19	.21000	17.5	343.54	•+016613	742.23	. 15621	.06017	5.44900
19	•51000	21.445	378.14	• `Cł6599	742.84	.15376	· U544H	2.02000
19	.21060	22.51	333.44	. ∩16587	743.41	.15166	.05879	2. FROCO
19	.21000	25.0	754,74	• (16576	743,89	.14494	•°5821	5.44040
19	.21000	27.5-	327.48	. 016565	744.21	.14+94	•057×1	2.48000
19	.21000	30.00	326.64	 016566 	144.32	<u>.</u> 14853	.05767	2.44000
26	.22167	n. - €∩	313.31	• (017173	718.03	•1379 <i>a</i>	.05476	3,04000
20	.22167	2.5	302.65	•<017173	118.05	.13758	.05431	3.04000
20	.22147	5.00	152.64	. 017172	718.06	.13669	•0541P	3.04000
20	.22167	7 <u>.</u> C	297.45	•C017171	718.13	.13524	. 15, 394	3.04000
20	.22147	1.00	243°34	·017167	/18 . 3 \	₊1 333∺	.05359	3.04000
20	.22167	12.53	548°44	• 017151	71ו52	. 13116	.05312	3.04000
50	.22167	15.31	243.14	. 017155	714.80	. 12873	• 05252	3.04000
20	.22167	17.5	277.14	.017145	719.18	.12624	.05183	3.04000
20	.22167	20.011	272.+4	•017136	719.6	.12394	.(5109	3.04000
50	.22167	22.52	264.15	.0017125	721.13	.15145	• <u>1563</u> ₽	3.04000
20	.22167	27.04	264.66	• 017117	72:41	·15:33	.04977	3.04000
20	.22157	27.5	242.47	. 017115	72 44	. 11433	.04937	3.04000
20	.22167	31.00	261.72	• 0171 9	721.75	•11896	.04922	3.04000
21	• 23333	`• (++)	243,44	.0017699	696 <u>.</u> 64	. 11273	.04640	0.0005.8
21	.23333	2.31	243.12	·0017740	696.67	.11 049	.04635	3.20000
21	.23333	4.62	241.46	•00177 <i>5</i> 1	696.63	.10978	.04621	3.20000
21	.23333	6.92	239.)6	.vú17761	696.62	.16869	.04548	3.20000
21	.23333	4.23	235.80	• 10177c1	696.61	.10721	.04564	3.20000
21	.23777	11.54	231.86	. 017731	696.62	.10542	.04520	3.20000
21	. 23333	13,25	227.52	.0017649	696.7 -	.10344	·144+h	3.40000
21	.23333	16.15	222.44	.:017695	696 8 3	.1(136	.04404	3.20000
21	. > 3 3 3 3	14.44	218.46	. 1017640	+97.14	. €9932	.14376	3.20000
21	.23133	2 77	214.31	· 0176F3	697 . 31	• 94744	<u>.</u> 64268	3.20000
21	. 21111	23.08	219,74	. 017676	697.58	• 19582	.64264	3.2(000
21	.23333	25.38	208.00	.0017670	697.83	• J9457	.04152	3.50000
21	.21131	27.64	206.28	.1017666	►98•0C	.19379	•04118	3.20060
21	.23333	30.00	215.64	.:017664	69H.07	•C9352	.04106	3.20000
22	•245AA	• • •	191.94	• 01455A	676.44	• ¹⁹ 727	.63874	3.36000
22	·24590	2.14	141.56	•(018235	676.41	•GH7(9	.03869	3.36000
22	·245)6	4.29	190.41	•€018231	676.35	.48657	•03457	3.36000
22	.245j∩	6.43	188.54	•~01×234	676.25	.08572	•03H35	3.36000
22	.24570	4.57	196. 4	. (014237	676.15	• 1H454	.03H64	3.36960
22	• 74500	12.71	183.76	· 3018245	676.04	•08350	.03765	3.36000
22	• 24520	12.86	179.59	·+018242	175.97	·08165	.03718	3.16000
22	.245rn	15.07	175.41	. 018242	675.94	.1799H	.13664	3.36000

м	ч	ANGLE	Ð	DENSITY	TEMP.	UZUPEF	TUPB.INT.	KZDEW
	_	_						
22	.24500	1/.14	172.15	•C018241	675.97	•07H2H	■03605	3.36000
22	.24500	14.29	168.57	 -618534 	676.07	• 07664	•03544	3.34000
22	.24510	21.47	165.24	·0018235	676,21	•17515	. (3484	3. 16010
22	.24531	23.57	145.49	•0018231	676.37	•07388	•0343C	3.34040
22	.245ji	25.71	160.36	•0018226	676.53	•17291	• 03386	3,36000
22	.24500	27.86	190.00	•0918553	676.64	.17231	• C3358	3.36000
22	.24500	30.00	154,54	• 1018222	f76.68	•C2510	.03348	3.36000
23	• 24667	 ● 0.0 	144.67	• 019751	657.61	.€6755	•03165	3.52000
23	• 25667	2.14	144,24	€018752	£57,5H	•(6740	.0316ú	3.52000
23	.25667	4.23	147.26	·018754	457.4A	. 6695	.03147	3.52000
23	.25667	r.47	145.47	• 018759	657.34	.26623	.03126	3.52010
23	•25667	r≓ • 5 7	143.53	• 1018754	657.16	•66526	.03046	3.52000
23	• 25667	11.71	140,44	• 018769	+56.97	.064UH	. (13058	3.52000
23	.25667	12.84	1 18.1	. 619774	456.79	.96275	.0.1013	3.52000
27	• 25667	15.0	134 . 37	• 018778	655.66	•06132	.02962	3.52000
23	.25667	17.14	131.67	• ·· 0197FG	556 5 58	• 25987	.02466	3.52000
27	• 25667	19.29	124.57	• 1018780	+56.57	• 6846	. 67849	3.52000
23	.25647	21.43	125,74	•°115779	h56.62	•(5717	.02794	3.52030
27	.25667	21.57	123,43	 ■018776 	656.71	.65607	•02744	3.52000
23	.25667	25.71	121.49	• 0(18774	£56.81	.05524	.02704	3.52000
23	.25667	27.86	124.34	• 018771	F.5.6. H.4	• 65471	• 0267B	3.52000
23	.25667	3.407	119.95	• 014771	556.92	• 5453	• 12669	3.52000
24	.24433	j•0^	112.14	• 019255	H4' . 14	• 351 32	.02529	3.68060
24	• 26833	•	112.64	• .019256	F.4: • 14	• 25121	• 92526	3.68000
24	• 26434	4 • P .		• 1019263	+41.24	• (·S·(·R·9	• 02515	3.68000
24	• 26433	** • -) ¹	110.78	•019264	N44, IH	.050.37	.02497	1.08000
24	.26411	- • ()	100.22	• (019271	F 14 . H /	. 34966	.02474	1.68000
24	• 258 11	1.00	1.7.32	• 019278	F 14.64	• (4H79	02442	3.68000
24	• 24 4 3 4	12.1	1:5.11	• 019285	6 49 4 1	• 04780	• 62466	3.58000
24	• 268 34	14.00	1 2 . 7	• 019291	614.14	.24672	• 07 364	3.68000
24	. 254 ()	10.00	103.27	010230	5 19 . 02	• 04779	. (2.119	3.58000
24	• / • • • • •	17 • 24	41.14	• • • • • • • •	N 10 94	• U444n	.00010	1.58000
24	• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	•	6 1 2 1		C10+04	· J4 3 39	000004	3.58000
24			93. NI 01 L1		5 10 e 0 1	.04/47	02179	3.50000
24	• < = = 1.1	36 14		• (193.)	6 1 4 0 1	• 24101	•)2134	3.60000
24	• 100 33		4 1 • 1 ·	•5.91.96.99 6.0.0.0004	634 67	a J4099	02108	3.59070
20	•		רייטע ריטע	• • • • • • • • • •	634 00	04300	• 02000	3.64060
26	+ COC 11	••••	······································	+2019/9/	6.24 84	* 36.24	+ UK UC1	3.940000
5.	240.5	•	-4.14		624 8 1	• J 102 0 A 1 4 1 4	•91970	3.84000
25	2806	4 1		• · · · · · · · · · · · · · · · · · · ·	674.69	0.1791	1966	3 84000
26	. 287.46	- • ·	3.7 K.A	- 119745	524.51	.63751	01950	3.84000
ς		1 • 1, 1 • 1	41 24	• 1019797	524.28	. 113694	000000 00000	3.24000
26	• · · · · · ·	•	74 7	• • • • • • • • •	624 01	. 636.24	•11401	3.86000
25	291.5	1 • 1 ·	77 40	614761	623.74	.03544	•\17V1 /1460	3 84000
25	• / · · · · · · · · · · · · · · · · · ·	14	16 1	· ····································	623 49	0.1454	+01000 /1430	3 84000
25	. 24000	1 * .	74	• 019785	623.25	. 63365	• VIT 16 . (1742	3.84000
כר		1	71.99	119791	623.64	103273	- 1751	3.84000
	• • • • •	•••	• • •					

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NUZZLES

* * * M G R * * * PAGE 21

AXIAL LOCATION = 1.16667 (X/DEO = 15.99999)

.

CASE NO, 1 CRD 7-TURE AR=2.3 NO77LE - VJ=2200 FPS - TTJ=1600 DE6-K

PAGE 22

.

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NO7ZLES

CASE	NO, 1		nan	7-TUNE AR=2	.3 MO77LE	- VJ=2	200 FPS -	111=1600 DEG-R
ΔΧΤΔΙ	LUCATION	= 1.16	667 (XZD	FQ = 15.99	999)			
M		ALCIE		DENCYTY	TEND	11711066		67667.
101	٣	ar and r	0		7 E ''' E •	(VOPE)	1080.101	• •/010
25	. 28110	21	79.17	.0019794	622.97	.03186	.01710	3.84000
25	28600	22.05	68.37	0019795	622.91	.03107	01671	3.54000
25	.28300	24.00	66.57	1019795	622.91	3146	.01637	3.84000
26	28636	26.00	65.76	010745	622.43	12490	61611	3.86000
25	28001	28	K5 K	119744	622.96	02958	61593	3.84000
24	28000	3	64.13	019743	622.97	0.2447	01587	3.84000
26	29167		61.61	020180	611.04	02802		4.0000
26	.24167	1.87	61.59	-0020181	111.00	02796	.01512	4.60000
26	29167	3.75	61.11	020145	n1 91	02778	01505	4.00000
26	36167	5 62	61.46	120101	61 77	02749	01/63	4 00000
26	26167	2 5	RO RO	· 020192	b) 52	027.19	01076	4 60000
26	29167	4.17	58.51	- 1020216	61 26		01455	4.00000
24	29167	11.35	57.75	- 020215	614.99	67613	(143)	4.63000
26	29167	14.17	55.44	11.26.276	6.14.71	02540	01403	4.00000
26	. 24167	15.11	54.41		A14.46	.112474	.01373	4.00000
26	29167	16.47	52.11	579749	669.24		01341	4 - (0000
26	24167	15 . 74.	41 64		5.4 C6	17330	.1368	4 00000
26	29167	2 62	50 5	021244	614.05	62276	61277	4 90000
26	29167	52 C	4.8 - 1	120262	614 29	17210	71247	4 60000
26	29167	24 37	47 74	• 07 07 - 7 6252-52	HTR BA	10170	1222	4 40000
26	29167	24 25	46 96	620242	ATH HA	07136	61202	4 00000
24	20167	24 12	46.00	· ~ ~ ~ ~ ~	619 97	12110	- UICI / - 1190	4 00000
26	24167	31	46 12	1020253	674 88	02116	61186	4 60000
27		• • , /	(1) Ju	0.266.40	600 07	00010	61126	4 16000
27		1 17		07.644	604 0.	62010	. 1122	A 16330
27		76	44.j.	• 1200004	570.79 660.0.	02009 0106E	-11133	4 14600
27		5 6 7	43.74	• 020092 020500	504 67		a01167	4 16060
27		7 5.	4.3 73	• • • • • • • • • • • • • • • • • • • •	509 47		• • • • • • • •	4 16000
27	• • • • • • •	· • · ·	4 C A 1 C	• 1 117 110 10 6.1 2 8 6 1	506 16	+VU79C ⊡1566	01(84	4 14000
27	•••••	1 1 25	41.54	• 102 1 0 1 4 50 2 56 3 6	່ ນາກ ະ ເຕ ພ ດກ່ວ ຍ	.01904	61066	4 16009
27	• • • • • • •	1 4 1 3	34 37	• 11 2 1012 4 10 3 3 4 3 4	507 67	A1910	.91000	4 16000
77	• 1(1 1 1	1 1 + 1 *	34 74	10 2 56 / 2	597 600			4.16000
27		1.50	37 6.4	- 02461	507 1 1	01700	00000	4 16000
27	- C 2 2 2	1 . 75	76.45	1024652	546 01	01657	00966	4 16000
27	, , . ,	30	36 27	1020663	606 77	01659	.00400	4 16000
27	10111	3 60	30.41	6.324666	506 60	.01564	00940	A 16000
27		3	1 - • • • •	• V UZ 1995 3 00 36 6 8	604 AC	01504	0.09710 0.000E	4.1000
27		26 22	33.65	• • • • • • • • • • • •	504 53	• U L J C D 6 1 E 3 6	• 000 70	4.16000
27	• 10 1 1 1 1 2 2 3 2 3	2	37 63	0.24607	504 61	•0100	.00019	4.10050
27		1 C • 1 C	10 + 11 11 - 20	• JUZI BET	140 04 140 04	1140C	, 90369 00465	
2 A	336.33	•	16.447	• 107 mm /	390654 684 AC	471977	•00000	4 33060
20	• 16 M	1 2 4	11.15	• 17,975 (A2 (06)	300 0047 666 / 7	**1419	+ () (M37 0 () M37	4 32000
24	• • • • • • • • • • • • • • • • • • • •	1 4 7 5	11.17	 ・・ ピアリタング ・・ ピアリタング 	500 3/	+ 2141D	.00431	4+37UUU 4-33346
20	• • • • • • • • • • • • • • • • • • •	1.0	30.43	 1020954 1020064 	000+34 603-16	*1102	+ CUB27	4. 33000
24	• • • • • • () • • • • • ()	7.74	10.10	+ COZOVE 4	500 19 600 11	. 11 376	• 96214	4.37000
20	• 11700 - 1150	f • . f	10 4 2	• 2076 979 • 2076 979	507 901 607 90	+11377	•00510	4.37900
20	• 117.7	***** * * E.S	274 BC 24 67	• . 07 1478 • . 636083		at 1 347	+UL/9M	4 • > <uuu 4 • >>04 •</uuu
20	• 1753	1 1 g 4 4 4	20.91	• 977987 537007	507 6 54	• (1317	.00784	4.37000 - 33000
14	• 41500	1 / a 1m	2 F . 25	• 0072 49K	24 I . 23	*****	-00767	4.373111

164

.•

 ¢

PAGF 23

•

COMPUTATING OF AFRONTSTIC PRODERTIES OF SUPPRESSOR NOZZLES

- VJ=2200 FPS - TTJ=1600 DEG-P C4D 7-TURE AR=2.3 M077LE . CASE FO

 $axIaL \ locatIm = 1.1 + 4 + 7 \quad (x/nEq = 15.99999)$

R/DE4	4.32000 4.32000 4.32000 4.32000 4.32000 4.32000 4.32000 4.32000
INI • HALL	000749 00730 00730 006573 006557 006557 006557 006557 006557 006557 00619
UZUREF	01249 01175 01175 01175 01139 01050 01050 01020 01016
TE WD.	
UENSTTY	0021014 0021014 0021022 0021032 0021035 0021035 0021035 0021035
Û	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
۷∾۵Ļ۶	0 0 0 0 0 0 0 0 0 0 0 0 0 0
a	
ž	τατταταττα Λ Λ Λ Λ Λ Λ Λ Λ Λ

165

ر

UMAX(18)= 595.63	362,27	1) AVG (1A) =	= .1471F+C2	(H()»4 -	[+]~bd7[• =	: (+{) [dia	6197.r	=(JL)¥
UMAX(17)= 737.45	366.21	1) AVG (17) =	= .1217F+02	EN(17)	- •42769F+1	1217141	N054.5	=(21);
UMAX(16)= 892.50	446.90	UAVG(16)=	= .0976F+01	- FW(16)	1+369816* :	141(JE)=	5.3333	x (]¢) =
UMAX(15)= 1043.p3	537.77	UAVG(15)=	[j+∃Ebde• ≈	и Fa(15)	- • 35723F • 1	1) I du	1.452	≭('_c) =
U ⁴ Ax(141= 1165.93	623.99	1)AVG(14)=	= .715AF+01	- Fr(]4)	+348882 - =	(71)I80	6ny7°1	x (] u) =
UMAX(13)= 1238.43	715.30	(1AVG(13)=	≈ •6247E+61	- FW(13)	- 764],F+]	: (E [)] all	1.1667	x (13) =
		231.	• ⁶ 5651F+01	1•(·⊬74	12261	-	166.4	7
		306.		1.1768	, 1346		4.150	27
		346	. 37173E+(-3	1.1243	1447		C	*~
		501.	• 243595 • 34	1•1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	124	: -	1 1 1 1 3 1 4 1 7 1 7 7 7 7	
		743.	• 6.6704F+05	1.2167	12.1		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53
		R72.	•27AN4E+CF	1.2523	,1574		3.45	~~
		.466	• 99454E+PP	4542°I	-102	ç	3.210	12
		1113.	1+36440F . 7	1.3316	252		177. 177. 177.	, . • .
		-6121	• 1 7 × 1 E + C ×	1.41+7	3742		241.2	r (
		1317.	*32414E+VH	1.4594	4494		2.55	17
		1314.	• ⁶ 4403E+08	1.5014	5242	•	2.44.0	16
		1242.	+1+3444F5.	1.54.5	ۍ ۱		2.24	u C
		1204		1.57×3	+ 74	 ر		<u>1</u>
		- 215- 1 1 0 2		1.54/5 1.5130	[5]2 (3/2			~ ^
		-12H	•42299F+CA	1 • 1 7 4 4	1743	č	1.4.1	Ξ
		• C a 4	.23371F+CH	1.7044	4625	ç	544.1	-
		54(.	•10442E+UH	1.73×6.	22122		. a	3
		4	424725+07	1.755	740	 	1.12	- n
		23C			. 61 .	·		£ 1
		167.	·12514F+95	1.4274	. 7	-		U.
		117.	27742F+05	۱. ۳۲ ۲		,	T t	. 7
		- 52 - 52		- T J J J J J J J J J J J J J J J J J J				\ <i>~</i>
		•		1.4541	101			
		-	•	•	•		-	
	*	FRECOFNC	T 4FEN STTY	- 14 - 1	• ()-ч - ч ,) V M	- V. 1	<u>1</u> •

CIPUTARERUTIALLY-AVENAGED FANAMETERS

5 , }

١

)

• . .

166

ر

¢ \$ \$ đ ÷t

5

\$

\$

\$

5 ` **`**

١

>

PAGE 24

• .

COMPUTATION OF AFRO-ACOUSTIC PRODERTIES OF SUPPRESSON NUZZLES

CWD 7-THAF AME2.3 4072LF - VJ=2206 FPS - TTJ=1600 0EG-P ----CASE NO.

4.06667 (X/0E0 = 63.99995) AXIAL LOCATION =

RZDEQ	.00064	.64600	1.2A000	1.92000	2.56000	3.20000	3.64060	4.48000	5.12000	5.76000	6.40000	7.69999	7.67999	4.31999	н . 95999	9,59999	00055.0
TURH.INT.	.08242	• C H I V 9	.07720	•I170.	.06377	.05599	.0492A	.04473	.04208	.04001	.03750	. 63426	•0334I	.02621	79150.	16216.	1 62410.
UZUREF	.21573	.21356	.20708	.19677	.1E317	.16736	,1492R	.13,71	e1311.	.0426	. 07766	.04272	.04966	.03854	• 62433	0×120.	.01662
TERP.	7:1.27	7/58	F.94 • 44	£94 . 92	649 . 95	643 . 64	676.36	6.67,39	647.R2	547 . 65	637,15	h26.63	616.34	£36.53	597 . 29	5x8°x2	51.12P
0E11517Y	• f0175×3	• • 0176-1	. C17695	•(017745	572701.	• 014C37	05 5×105.	• <u> </u>	.~01A745	919194 - 19	-761925.	. tu]av Za	· 102011	• \$629331	• - C 2 C F 4 5	[++420°.	•0021217
2	474 55	449.72	455.47	432.74	402.85	367.44	324 34	747.48	246.62	FE.7.5	17 J.H.2	137.95	22.911	R4.77	54 ° 52	48.15	35.23
Angle	ن • رو ن	ن د ب	د. • ت •	00°0		ວມ•ເ		00000	بين ا	50° 0			رې د 1	$1 \bullet 0$		ر ، د • ا	00°0
ſ	-000°-	. 34667	19333	.14350	.18667	EFFF5.	-280Jr	72667	٤٤٤٦٤.	63027	44447	.51333	• ちたらでい	. 40547		.7000f	.74667
Σ	-1	٨	e.	t	ഗ	¢	7	α.	σ	۱ ر	[]	12	13	14	1 S	16	17

23)= 182.0) MAX (1 n 2 . K	(1)AVG (23) =	4244F+62	F⊳(23)≍	•ا،5دەت•اد	= (EZ) 1 HII	11.7503	23)=
22)= 232.4	UMAX (126.19	1)AVG(22)=	-3491E+C2	Ем (25) ≍	ਦੀ+ਤੋਸਰΣਾਤ•	=(22)160	6.313	= (ረ
21)= 295.5	UMAX (1×0•31	UAVG(21)=	• 2746F + G2	EN(2])=	• 736 7E + 16	1121)=	6207-2	=(10
201= 375.1	1 UMAX (147.74	= (CZ) UVU	20+38E22.	⊧"(20) =	•1^4 .7t +17	=(、2)180	5. u79r	= [.]
191= 474.5	UMAX (244.56	1JAVG(19)=	•1515F+C2	=(5l),4J	4215a5+17	= (6]) ist:	4.6667	= (6]
			66.	. ¤(]4F+¢5	· 17+ 3	1 216	•	1-•246	17
			В ч .	-H4690E+05	+20c+	424 1	•	- としょ き	<u>c</u>
			103.	.32955F+06	.1361	574 1	•	x • (17.9)	1,
			124.	.1:5426+17	.1232	רכים 1	•	, <i>د</i> ۲ , ۱	14
			145.	57496F+07	.1414	474	•••	1° 4 4 1	
			182.	• - 44575 • 17	-1/0r	5,2%	•	· · · · ·	
			145.	•] 4 f 7 9 f + f 4	.1934	۲- I		· · · · · ·	01
			203 .	.]742]E+04	<-1<	2.22	•	5 1 2 C	Ţ
			-2(4	-<3995E+3⊬	• 2 35 4	ן 1	~•	1 1 1	α
			147.	-41375F+4	• 252	1 210	•		2
			- [x] -	*C+325661*	.2445	2a.4		3. n • t	¥
			157.	• 1 f. 3 c. 3 f. + 11 4	1124.		· ·	2.54.5	v.
			126.	¥0+3552943.	レンエイ・	۲۰۰۷ ا	•	1. 12	. †
			• ữ H	•31172E+39	→ £ セイ•	1 .1.0	3.	vrd•l	-
			4 C .	•2192/E+09	4644	1 1 1 1			۰.
			•				•	•	•

375.14 295.51 232.49 182.92 144.02

כבאנו ואר בהריך בער הייעל אימויב וייאי מאר דפאס

) ١

ι

• .

168

J
	VELOCITY	د ۲		JET	E -111 V - 1			621).					:		
				9 °0	1. AHC								I		
ANGLE - 23.	30.0	0.04	د. س	6.04	1	а С 1	•	162.5	110.0	126.6	130.0	140.0	150.0	166.0	13.4
100 72.	4 73.7	74.1	74.7	75.5	75.4	77.4	1.4.1	• • 1. <i>.</i> .	r 5.1	بر، و	лх . Т	52.7	91.6	102.1	114.6
125 74.	2 76.3	.76.8	77.4	7H • 2	1.41	r • 5 r	•	·] • ·	₩. 	С•нч	91.4	99.7	100.6	1:4.9	۲ <i>۵</i> ۵۰۵
140 74.	a a c	10.4	с . Сч	90°08	J (· ·		•	¢-		1.	0.65	103.7	1. / t	125.4
								-			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 7-121-	- 184 - 1 184 - E		
315 43.	7 44.2	5.45	85 . 6	86.7	6.15 .	1.	· • • •	, , , , , , , ,	5 ·	5° - 15	162.C	107.0	111.1	114.1	132.4
100 HU	4 FS 0	ч6.5	a7.3	6°79	تا دو هار تا	- ;	, .	1.55	· / ··	100.3	164.4	104.4	113.3	114.9	134.'>
11 654	7. H7.2	A7.9		x • 5 x ·	-		•	1	~	1.2.1	ارومی	111.4	115.1	11 	130.2
			55		ר ע קיי ז פ			•					0.211 1.7.7		1.461
10201	3 37 6	5	8 10	01.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1.1.1	,	100.5	111.2		114.3	, .	1 34.5
1250 91.	5°15 4	. [92 . 4	93.9	ر•). ا	11.4.4			1 1	107.44	112.4	11/11	11ו3	111.2	134.7
1 + 20 43.	1.46 4	04.30	1.16	95 . 2	c	+1.7+	/ • · · ·	· · · · ·		11.4.7	1 1 4.4	116.4	117.4	~	137
2000 OK.	1 - 55 - 1 	4 U U U U U U U U U U U U U U U U U U U		د ، ۲۰ ۵۰	د . 	1		· ·			1	11. 5	117.4	117.4	139.6
		100.2	7.1									117.4			140.5
100 ICO	- 1)0.9	101.4	102.0	-102.H		1.4.1	``. 	 		- 111-5	116.6	112.6	119.2	11-44	141.5
5000 101.	4 101 +.	152.1	152.5	1:1:3.7	1:7	1.5.1	ч • • , П	1	1 /.7	116.7	117.3	120.2	120.3	t11	142 . R
+360 163.	· 1)3.3	< 101	ເ ເ	104.3	1.5°4	1.4.1	~ ~ -	/ · · · /	• •••••••••••••••••••••••••••••••••••	ъ•с П	c • 7 = -	121.4	121.1	114	144.1
10.00 10%.		104.2	1.5.1	10/01	1.0°°	<u> </u>						1414	*•171		145. 145.
- 12509 - 113-	5 - 1 6 - C	114.3	114.7	112.2	1 I						122.4	124.4	120.5		147.2
1+300 112.	5 112.7	113.2	113.4	114.3	114.1	111.2	\··			111	123.0	1.24.1	11.4.2	T	141.4
20070 111	3 111.5	111.8	112.2	112.7	113.4	114.3	1.11.		5 .		122.5	5.51	117.4	11	141.0
75,200 110.		5.011 1.10		111.4						11 / • (122.0			1
	1.001 C	0.701		7		1 1 1 -		· · ·		v. v. 11	· · · · · ·	140.4	1100		147.0
	3 1 15 0	105.2		1.661	1.6.9	1.7.5	L L L		111.7		114.2		011	107.3	14.2.1
- 451 002Ey	3 1:2.5	102.8		101.7	1.4.3		1-4-1	1.7.1	5	1(7.9	112.0		104.0	165.0	142.0
-99 LOUUM	2 94.4	1.69	1.201	195.6	1:1.2	162.6	1 3.0	1:4.5	1.1.¢	164.2	167.6	159.9	104.0	101.1	141.0
0164VFF 151.	.C 129.8	120.7	120.4	127.7	0-121	1.151	ς•ι2Ι	122.3	123.3	127.2	• 1 61	j.1.1	9.1F1	1 10.6	2.721
- P'IL 126.	2125.6	-124 F	124.3	124.9	-1-521	124.7	المعا	1,4,3	.136.6 °	1 <u>14</u> . H	-7,9EL	- 142.6	143.0	142.6.	
PRLT 129.	6 . 128 . 9	129-1	127.7	128.2	124.9	1.051	6.111	112.6	134.0	134.2	143.9	146.0	146.3	145.9	

מאא להיואה ממלצליומב רבעור הואנרוועווא מאיי

,

, >

١ , • .

JET MACH NU. = 1.44442 JET FERGETY RATIO = JET VELOCITY = 2199,16 JET ENDIAV. =

•43464 6610.

169

י

4.8 PROGRAM SOURCE CODE LISTING

This section contains the FORTRAN IV source code listing for the aeroacoustic prediction model, suitable for running on the CDC 7600 computer. The listing of subroutines is in alphabetical order, as follows:

- 1. MAIN Program (MGB)
- 2. ARRCCOS
- 3. ATMOS
- 4. CRD
- 5. ERF
- 6. LSPFIT
- 7. OUTPUT
- 9. PNLC
- 9. SHOCK
- 10. SLICE
- 11. TPNLC

FTR 4.5+410

10/10/77 14.30.05%

•

75/75 1,41=1 956 Atobèna

,

)

ξ

J

	* AMFLISTVICHATZ ************************************	V.FU2M, MGH	÷
۲ ۲	1 95.***!51C**F*&LP0*LF3V**!:M****D4LP*P4*PT*	MGP	-
	2TT+1CUTT+2FF+4+4K+H++2T0TAL+DEC+NN+NUMA46+01ST+	MGP	
	Ar-CASF+1-F	₩GB	-
	4 STRF # #1C207 * PC207 * XC207 * XC207 * ALPHT * BETAIN * DELTIN *	MGR	-
	Samuly, + μΙν, + Κάχ + ΔΕρμής, ήΕΙΔΜς + ΠS + NCFLL	MGB	
ۍ. ۲	Ų,	MGR	-
		MGR	
	U	MGB	_
		MGB	-
	۲×۳×۲ ۲	MGB	•
5 L	100112=20	MGH	
	NPP INT = 1	мбв	
	Lph]=9999	MGB	
	NCASF=]	MGR	-
	× NC A S = 2	MGB	
¢ 4	*2D40E=0	MGH	-
	Pick FF = 2	MGP	-
	FM14550	MGB	
	FMAX=1 30600	MGB	-
	DI=3,1415927	MGR	
65	DI2=4.2431853	MGR	-
1	POUT2=SORT(2.)	MGR	-
17:	DTHM=0.	MGR	-
2	0 = ∞211a	MGH	-
	CM=0 275	MGP	
7.5	CH=1,150	MGR	
	C≪ C# ≡ C ● S C	MGR	•
	CMMCIII 0 0 D	MGR	
	STFFx=1.259921	MGR	
	STPF4=.01	MGR	
75	ALPTMC=0.5	MGR	
	HETAMC=C.325	MGR	
	Δ L F Δ =] • ()	MGR	
		MGR	-
		MGB	
ίθ	υ	MGB	
	1 KNCAS=KNCAS+1	MGR	
	FEAC (5,554) (ICE41 (K) + K=1 + K)	MGB	
	PEAD (5.1NPUT)	мGн	
	NPAGE=NPAG€ ◆1	MGB	
ц ц	[f=]	MGB	
	<pre>#FITE(4.500) NPAGE.KNCAS.(IDFNT(K).K=1.4)</pre>	MGB	
	ι, c	MGB	
	C WRITE INPUT DATA	MGB	
	U	MGB	

•.

t

	•	

5 \$

?

• •

42 11 (CV-LE- 42 11 (CV-CV- 42 11 (CV-CV- 42 11 (CV-CV-CV- 12 (CV-LV-CV- 12 (CV-LV-CV- 23 XA: 17 (YXA)- 17 (DSIG (YAA)- 17 (DS	•••• (Pertito - Frank Normalia) 	MGR MGR	26 89
PATHE (6: PATHE (6:	- OD. MAR. WARNER WARNER - TOWARD	MGR	69
10144 (0.104 15 (0.104 15 (0.104 15 (0.104 00 20 KA 15 (0.104 20 (1.104) 20 (
IF (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)		MGR	94
TF (3516) TF (3516) DO 25 KA: TF (7 (84) TF (9516) Z0 C0 TRUE		MGR	95
20 CONTRACTOR		MGR	96
PO COLLER EF (x (x A)) FF (0515 (1 FF (0515 (1 FF (0515 (1 FF (0515 (1))) FF (0515 (1)) FF		MGR	16
TE (X (Ka), TE (OSTTANE 20.00000000000000000000000000000000000	(#// # X X 	MGP	98
70 CONTINUE 20 CONTINUE		MGR	66
20 CONTINUE		MCR	100
		MGR	101
		MGB	102
CALL LSP	DETT (XCHDX+HCHDX+VCHDX+V4+Hatev+C+ HH	MGB	103
IS CONFINATE		MGB	104
	,506) савут: утл. пстстт. Вмтигт). мйутт). КЕТАТМ(Т). DELTIN(Т).	MGP	105
		мбн	106
		MGR	107
	A=1.0	MG8	108
		MGB	109
,		щGВ	110
		MGR	111
		мбр	112
	= 2, •1, i F S T	мбя	611
2011FE (C.	5]2)K,XF(K),F,ALPO(K),K,LEAV(K),	MGH	114
[K . 'JUM (K)) • K • K N (K)	MGR	511
WINN=XMINT	4 (K)	MGB	116
NRITE (4.	•5]2) (N+F+DALP(N+K)+№+K+FA(N+K)+№=I+№UMK)	MGR	117
		MGB	118
1F (1 1 NF	11.50) 60 TO 160	MGR	611
	MESTI 60 TO 100	ж СЭм	120
PAGE=NP	ک⊈ر∳5′ → ا	HON MCH	121
WPITE (6.	•53C) NPAGE •KNCAS+(IDFNT(N)•N≖1+R)	R C R	122
L INE=4		HOH	521
IPC CONTINUE		HGH HOH	471 101
J		HOM MON	
DO 200 K	<pre><=1.NEST</pre>	MGH	
ACH2=2.2	00(01(k)/12)04(1.001.001)0)/0000	80 H	121
TF (x)=TT	T(x)/(].0+.5*GAMA*ACH2)	MGH	120
5V2 =6A	Ø & ≠ D G C ≠ T C (×)	MGH	521
PU2F (K) =	≈ ACH2¢6AM*PS	MGB	061
- التي (x) = ك •		HGH	151
FF (K) = J.	0.	MGR	132
IF (ACH2.	• E Q • C • C) G () T () 203	MGP	
11E (K) = 20	0PT (ACH2*SV2)	MGH MGH	1.04
()d=(x)=b()	U2E (x) \$CD\$ (11 (x) -11 ()) /) /)E (x)	MGH	551

ړ

١) 4

7

• .

1 35	IF(ACH2-GI-A-A) 6(IO 200	MGH	136
	WRITE (4.51n) ACH2	MGR	137
	STOP	MGR	138
	2-30 ACH (x) = 2081 (ACH2)	MGB	139
	11KF F =11E (NHKEF)	MGR	140
147	FU2MEF=M12F(MAMEF)	MGR	141
	F PST+1=UE (])	MGR	142
	Sufference	MGB	143
	<pre>1 A Δ = T Γ (1)</pre>	MGR	144
	PAA=PS	MGB	145
145	6405=P46/(1716.)*1A4)	MGR	146
	CO=SORT(1714,0%0AM*TAA)	MGB	147
	AGECO	MGB	148
	AL=RH0F\$ (S:1F/C() **54\$1F **3*AT()TAL	MC R	149
	428=DS+64M++76C+S341(r4M+P6C+1E(1))+TE(1)	MGB	150
15.0	8. JFT = TAA/TE(NHFEF)	мдд	151
	□1 A = D F G (1)	MGB	152
	DJF T=DT A	MGR	153
		MGR	154
	EMACH=UJET/CO	MGB	155
155	111112=478,84478,248,258,848H05 &CO	MGR	156
	0	MGR	157
	C WRITE FXIT CONDITIONS	MGB	158
	0	MGB	159
	NPAGE=NPAGE +1	MGR	160
140	WPITE(6,50) 11PAGF(KNCAS,(INFNT(K),K=1,P))	MGB	161
	MRITE(<.51×)	MGB	162
	¥₽17E(6+52C)(K+PT(K)+11(K)+1E(K)+0E(K)+ACH(K)+RU2E(K)+EE(K)+	MGB	163
	1×≈1•NEST)	MGR	164
	WPITF(A.540) NAREF	MGR	165
165	U	MGB	165
	C WATTE ADDITIONAL INPUT	MGR	167
	U	MGH	168
	RETALN(1)	MGR	169
	AMULT=AMUT0(1)	MGH	170
170	WPITF(6+522) AL+ALFA+AK+PK+ATOTAL+DIA+IGUIT+NN+UREF	MGB	171
	WPITE(5.544) STFFX,STPFP	MGR	172
	#PITE(6+550) ALPHMC+RETAMC	MGR	173
	47115(6.542) CMMC+CMVV	MGP	174
	U	MGB	175
175		MGB	176
	C HEGINNING OF X LOOP (KA = INDEX ON X)	MGR	177
	ن ل	MGR	178
	205=202 [1]	MGB	179
	IF (NPPTNT.LF.0) WRITF (4.552)	MGB	180

٠,

	1 au	スペート・スペート・メス (100) (10) (10) (10) (10) (10) (10) (10	MGR	181
			A G P	182
		$I_{\rm I} I_{\rm I} f = 60$	MGR	143
		SIG=••0180SIG(KA)	MGH	184
		916=516	MGR	185
	1 A S	SIG=SIG+DWIN(KA)	MGB MGB	186
		5RU2M=) • C	MGB	187
			MGB	168
		SUBMED	MGB	189
		TSTD=0.5	MGR	190
	001			101
	541		MGR	261
		UX=X FX A % STRFX=] * 0) / (STFFX+] * 0)	HOW WCH	193
				100
				201
	195		M GH	061
		υ	AGE .	141
		U U	MGB	198
		C INTEGMATION, WITH RESPECT TO MANIUS (M=INUFX ON P)	MGB	199
		υ	MGB	200
	200	00 1500 W=1+16UIT	MGB	201
		TSTHL=C.C	MGB	202
			MGR	203
		$SR(t) = C \cdot t$	MGB	204
1			MGB	205
17	200		E C M	206
5			MGB	202
			MGR	208
			MGB	209
			MGR	210
	215		MGB	
	2		NCB.	
				212
			191 1	
		PH1=0.0	WGB	215
	215	U	MGB	216
			MGB	217
		C INTEGRATION WITH RESPECT TO ANGLE (I = INDEX ON PHI)	MGR	218
		υ	MGB	219
		D0 1200 1=1.155Y	MGB	220
	220	PHID=143•*PHI/PI	MGR	221
		PU2 = PU2F(1)	MGB	222
		<pre>EFF =].0</pre>	MGB	223
		STR =0.0	MGR	224
			MGP	225
	224		MCB	226
	;	TAU = 5.0	MCF	227
			MGB	228
			MGP	229
			;	

.

		с N С В	10
		MCB 20	2
	C INITIALIZATION AND HUNDARY INTEGRATION (K = INDEX ON HOUNDARY)	WGP	, n n
			24
	00 1115 K=2-NFS1	MGH 2	50
235	10DF = 2	MGB 2	36
-	51C=0.0	MGB 2	37
	S I D=0.	MGR 2	38
	51x=0.0	MGR 2	66
		MGB 2	40
745		MGB 2	41
	NUM SAFETY (K)	MGB 2	42
	LEAF=LFAV(x)	MCB 2	64
	K 11 X 11 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X	MGP 2	44
		MGR 2	42 1
245	IF(x(KA).LE.xE(K)) 60 10 1100	MGB 2	46
	IF((UE(K),F0.0.5),AND.(UF(KUK),F0.00)) GO IO 1100	MGB 2	47
	VMAX=AMAX](UF(K)+UE(KUK))	MGR 2	48
	VMIP=4MIN1()F(K)•0F(KNK))	MGB 2	49
	VP=VM1r1vVmdx	MGB 2	20
250	CVR=1 • / (1 • + CMVP*VR)	MGB 2	51
	CMC=1 • • CMMC * 4CH (x)	MGB 2	25
		MGB 2	53
	PHDx=CH\$DH".X	MGR 2	54
	If (UHDX FU, OHDX) IMH=2	MGB 2	ŝ
255	CMX=DHDX#(X(KA)-XE(K))	MGR 2	56
	CIX=DHDX+(X(KV)-XE(K))	MGB 2	57
	PHAL=PH1-ALPO(K)	MGB 2	58
	560 ARPA=AHS(PHAL)	MGB 2	59
	IF(AHPA.LE.PI)60 TC 575	MGB 2	60
260	PHAL=PHAL-516N(P12+PHAL)	MGB 2	61
	GO TO 540	MGB 2	62
	υ	MGB 2	63
	575 COSP4=C0S(AHPA)	MGR 2	64
	nELSIG≖SIG	MGB 2	65
245	CELX4=K4(SJMK+K)	MGR 2	66
	IF (MCHDY+LE+C) GO TO 605	MGB 2	67
	CALL LSPFIT(XC9DY+PCHUY+NC4DY+XE(K)+RMINEX+1+0+AAA)	MGB 2	68
	amnsaf = am 1/15 x + am 1 n 5 x	MGR 2	69
	SIUS0=SIU6*SIU	MGB 2	20
272	CMINSO=DMIn(KA)*CMIN(KA)	MGB 2	12
	BASG=FA(NUMK+K) & RA(NUMK+K)	MGH 2	22
	DELSIG=SORT(SIGSO-RWINSO)	MGB 2	5
	DEL PA=SORT (PASO-RMNSOF)	MGB 2	14
	615 CONTINUE	MGR 2	75

275	PADIESONT (DELWADTELSIG) * (DELWADTELSIG)	MGP MGP	276
	1+2, 3*0f [PA*07] 51 (5* (1, (3+C(1) PA))	MGR	277
	U	MGB	278
	IF(#ADA.GT.(.0045*0ELSI4) GO TO 690	мбв	279
	1:006	A G P	280
243	G0 TV +53	NCR	281
	£ → 0 , COSTO= (DEL STG=DEL & 4 & COSPA) / FADO	MCH	282
		ACM MCR	283
	IF (ABS(COSTO).LT.1.0)00 TO 510	MGF	284
			205
775			2960
•		001	
		MGB	182
	U	MGH	288
	AIR SIMTRESIGN(SOPT(1,0+CUST0+COST0),PHAL)	MGR	289
	TH0=PI-SI6N(PI-ARCCOS(CUSTO),PHAL)	MGR	290
29¢	Û	MGP	291
	620 PANX=PADN/CMX	MGB	292
	POWFW=PADX+FADX	MGB	E 6 2
	IF(POWER_GT_25.0) (0 TO 625	MGB	594
	V AO=] • J - F × P (- POWEP)	MGB	295
295	GO TO (A30+640) + [MH	MGB	296
	6 30 TAGE1 . 0-FXP (- (RADD/CHX) * (RADD/CHX))	MGR	297
	640 SA≡1PD1×*(**88523*EPE(PAD)×+000×*(********************************	MGR	298
		NGR NGR	000
900			
305		L D L D L D L D L D L D L D L D L D L D	105
	CO 10 435	MGB	302
	625 CONTINUE	MGB	303
	VA0=1.0	MGB	304
	TAO=1.0	MGR	305
305	SA =0, #8623*DHDX	MGB	306
	SAP0=SA*C05T0	MGR	307
	54C0=54*SIvT0	MGB	308
	SAXO=v-C	MGR	309
	635 CONTINUE	MGB	310
316	U	MGR	311
	C LEAF INTEGRATION	MGR	312
	C J = LEAF NUMMER OF BOUNDARY K	MGR	313
	C N = POINT NUMBER OF ROUNDAPY K	MGB	314
		MGB	315
315	650 DO 1007 J≈1•LEAF	MGB	316
	DO 1005 M=1.NUMK	MGB	317
	PHAL=PHAL=CALP(N+K)	MGB	318
	660 AHP2=245 (PH2L)	MGB	319
	IF(ABPA.LE.PI)GO TO 670	MGP	320
321)	PHAL=PHAL~5IGN(PI2+PHAL)	MGB	321
	GO TO 460	MGR	322
		MGB	323
	673 СО5РАЕСОS (АНРА)	MGB	324
	DEL PA=PA ('.ek')	MGR	325

375	76 (2004DY_67_0) - 1)FL PA=SQUT (PA (11+K) #PA (11+K) - PMNSQE)	MGP	326
	24D =5621(()F(20-DELSIG)*()E(24-0ELSIG)	MGR	327
	+2 →+00FLP4×0FL5IC*(+(→+C0SP4))	MGB	328
	IF (24), 61, (, 0065*DELSIG)) 60 TO 640	MGR	329
	► ODF = 1	MGB	330
655		MGR	331
		NGR	332
	446 COST=(1)ELS1C+DEL846C()S94)/DAD	MGP	333
	IF(ARS(COST).LT.1.0)50 TO 490	MGP	334
	TH=(PI-VI(V)-COST))/2°	MGB	335
335	51N1=0.0	MGR	336
		MGR	337
	υ. U	MGH	338
	699 51+1=S164(5081(1.0-C051+C051)+PHAL)	MGR	339
	TH=P1-S1GH(P1-AVCCOS(COS1) • PH4()	¥GR	340
345	C0 T0(700+710)+R0DF	MGR	341
	7rg +00F=2	MGR	342
		MGR	343
	60 TO 400	MGB	344
	c	MGR	345
345	210 D1==11=H2	MGB	346
	APD7H=APS (DTH)	MGR	347
	IF(AHDTH.LE.UTHM) GO TO 800	MGR	348
	IF(&RDIH.LF,PT)60 T0 730	MGB	349
	ι c	MGB	350
350	C CORPECTION0-360	MGB	351
	υ	MGB	352
	720_TH0=TH0+SIGN(PI2+DTH)	MGR	353
	GO TO 719	MGR	354
	υ	MGP	355
ی ۲.5 ا	C INITIATION OF AUXILIARY INTEGRATION	MGR	356
	C	MGB	357
	736 L0=ARDTH/DTHM+1.6	MGP	358
	0=r()	MGP	359
	014=014/0	MGB	360
369	₽C₽C≈₽⊅D0*C0ST0-₽AD*C0ST	MGR	361
	ECFC=PCPC+SIGN(•000000901+PCRC)	MGR	362
	ABLE=(PADO*SINTO-PAD*SINT)/RCRC	MGB	363
	RKP=PAD0*51vT0-AALE*RAD0*C05T0	MGR	364
	U	MGR	365
345	C AUXILIAPY INTEGHATION	MGB	366
		MGR	367
	00 793 L=1.LQ	MGR	368
	TH=TH0+DTH	MGR	369
	C05T=C05(TH)	MGP	370

Ċ,

1

.

37.5

5

)

)

į

IF(PUWER.6I.25.0) 60 IO 725 ϷΔΩ=ϤϒΫΖ (STħT-ΔΗLE*C0ST) ϷΔΓχ=ΡΔD/CMX POPLREADX FHADX (H1) = 51 = 1 = 1 = 5379

.

.

5A=()4DX* (0.88623*[PF (HAI)X)+PAUX* (VA+1.01) VA =], C - F XP (-POWFR)

SAP=SA*COST

54x=((PRDX*PADX)**2)*(].-VA) SAC=SA#SINT GO TO 735

CONT INNE v.1=∆v 725

380

SA=0.88623*DRDX SAR=SA*COST TA=1.0

395

SAC=SA*SINT CONTINUE SAX=0.C 735

vI=v1+(va+vA0)*DTH SIP=SIP+(SAP+SAR0)*UTH SIC=SIC+(SAC+SAC0)*DTH SIX=SIX+(SAX+SAX0)*DTH

390

IF(POWFP.61.25.0) 60 TA 745
TA=-EXP(-(PAD/CHX)*(FAD/CHX))+1.0 G0 T0(740+750)+IMH JUNITAON 740 L

395

179

ړ

T1=T1+(TA+TAO)*DTH TAO=TA υ

400

CONTINUE

745

SACO=SAC SAPO=SAP VA0=VA 750

4 0 U

SAX0=SAX CONTINUE H1=0H1 662

GO TO 900 ပပ

410

008

IF(POWEP.61.25.0) 60 TO A25

÷

POWER=PADX*PADX PADA = PAD/CMX

MAIN LINE INTEGRATION

υ

1.00

v А = 1 S Ан≡иК S А № = S S A € = S
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
A + (VA+ VAO) + 0T
IP+ (SAP+SAPO IC+ (SAC+SACO IX+ (SAX+SAXO) (A10+220) + IM
MUE WERG(1,25,5) XP(-(RANZCHX) NUE +(TA+[A0)&DTH
2 4 6 5 5 4 6 5 4 6
SAX H FAD T=COST TSINT
NUE SIJ#MATTONS J(1020,1010),11
NUE •• 67957747* (PU2

•

			0.7.7
			404
Ĺ		101	
1 1 1			
	: : : : : : : : : : : : : :	L0E	
	ני אושען (מנורעדווטו) ל	H CM	404 770
		M C H	470
47.4		MGB	471
•		MGB	472
	J0Hq≡UHq	MGF	473
		MGF	474
		мбв	475
475	TUP4IN=0.0	MGB	416
	buize0.5	MGR	477
		MGB	478
	TAUE0.0	MGB	479
		мбр	480
592	11H = 0 + 3	MGB	481
	FFE = 3 • 0	MGB	482
	<pre>FF(MPPINT_LE_0) 60 T0 1116</pre>	MGR	684
	IF (*)PP_LT_*)PPINT) 60 TO 1116	MGR	484
	50 TO 1117	MGB	485
485	U	мGР	486
	1110 FWD=RU2*PGC/PS	MGB	487
	140=SORT(WWP* TT(1))	MGR	488
	PM=HMP/(2.0*CD)	MGR	489
	HM=FFF¢8M/([Ap\$+1]2)	MGR	490
694	₽S1=bU2/2+0+CP+₽S/PGC	MGR	491
	нр51=€ff/(3*0*р1)	MGB	492
	(ISd/(I)J&CD+Z++2S+b12++2++2S+H)ISd++ISd+=0	MGB	493
	IF(1)_GT_11MAX(KA)) 11MAX(KA)=()	MGB	464
	U	мбв	495
495	1117 T=UsU/PAMP	MGB	496
	TAUESOPT(STPASTP + UELTA*STC*STC + HETA*STX*STX)	MGP	497
	ACHV=1//SOPT(GAM&PGC&T)	MGF	498
	811=81127U	MGB	499
		MGB	500
500		MGB MCD	501
	101-100-100-100 11-0004 Time Time Time Time Time Time Time Time		
		MGR	1 1 1 1 1
	5 (NPPINI-LE-0) 60 TO 1115	MGR	505
505	JF (VDP.LT.NPKINT) GO TO 1116	MGR	506
		MGH	507
	TURHINSSAPT(TAU)/UNEF	MGB	508
	1117 COMTINUE	MGR	509
	PND=SIG/DIA	мсв	510
510]]]5 _]NF=L]NF+]	MGR	511
	IF(LINE-LE-55) GO TO 1120	MGB	512
	UPAGE=MPAGE +1	мбР	513
	WPITF(4.500) NPAGE,W4CAS,(IUF4T(K),K=1.8)	HOM	514

÷

. .

١

Ł

181

J

	20115(5.534) X(NA).X15	HUW M	515
ت ا د	1 like 2	н См	516
•	1120 CONTINUE	НÚМ	517
	044-114011+0111+1+040+1+0410+1+0401+0401	d UW	516
		MGR	513
		MGF	520
520		MGB	521
	T 5 T H = P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2 P U 2	MGF	525
	TSTL=TSTH	MGF	523
	CO TO 1140	MGR	524
	1136 TSTH=MAX1(TSTH,(RU2-RU2E(1)))	MGA	525
525	TSTE=MIN1(TSTE+(kU2-kU2E(1)))	ыср	526
	IF(1,nE,1557)60 T01145	MGB	521
	1149 Ff (15YM.E2.1160 T01145	MGP	528
	U	MGR	525
	STR=SU9+U2/2•0	MGP	530
533	SF1≡SP1/2•0	KGT KGT	531
	Skii2=Ski2+Fi2/2 • 0	はじる	532
	SPU=SPU+DU/2.0	MGB	533
	S E F F = S F F F F F F F Z → 0	MGP	534
	60 tú 1150	MGR	535
535		MGR	5
		Ξ Ú	537
	SPII≡SPII=SPII	MGF	μ Γ
	SUMESUR+UR	MGF	539
	2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m - 2 m	MGR	540
540	SDIT=SDIT+DIT	MGR	541
	S FFE = S E FE + F F F F	MGR	545
	1150 CONTINUE	мGP	543
		ж С Я	544
	І най+ І на= I на	MGR	545
545	1236 COMTINUE	とい	54
	FISEIS	чс М	547
	TST0=MAX (TST0+AAS(TSTH-TSTL))	MGR	548
	SUBM-SUB/FIS*SIG+SUBM	MGR	543
	2811M=58U/FT54516+5813M	MGR	550
0 5 7 0	SP112M=SP1127F154517+SP12M	Ч С М	551
	TAIN (M) = (SUPYF1S) **0 ~2957143	MGR	555
	0.000 € (w) ≠ 20.0×E I S	MGP	553
	IF(SRU+LE+0+0) 60 T0 1210	MGB	554
	IF (SPUZ-LE.0.0) GO TO 1210	MGP	555
ንጉና	118 (M) = SR1)27 SR1	HU W	556
	HTP=SFFF/SPU	MGA	551
	TTD=HTP/CP+T1(])	MGF	558
	TSF=TTP-0.5%Up (M) %UP (M) /CP	Ч C M	553
	PHCP (M) = P5 / PGC #15 P	MGR	560

60 10 1220

2

?

えた

1210 CONTINUE	11P (M) =0.6	30H4= (M) =PH0E	TAUR (M) =0.0	0 • 0 = 0 • 0	1220 CONTINUE

fSTHL=AMAX1(TSTHL,ABS(TSTH),ABS(TSTL)) 5168 (M) =516

565

570

IF (M.LE.NOV (KA)) 60 T0 1260 IF (TSTHL.LE.RU2M)60 T0 1510 SIG=SIG+DSIG(KA)-BUG CONTINUE RUG=0.0 1260

IF (TSTD.61.2.0*RU2M) G0 T0 1600 1510

575

T=2 [= S]

[F(TSTD.61.RU2M)60 T0 1600 ISYM=1

1600 υu

580

585

183

CONTINUE

CALL LSPFIT(SIGR,RHOR,M,SIGR,DRDP,M,1,D2RDR2) (KA)=PI2*SRUM*DSIG(KA)*32.17405 DUDR (IR) =DUDR (IR) / (UR (IR) *CM*CMX) IF (UR(IR) .LE.0.0) GO TO 1605 NO 1605 IH=1.M CMX=CM+X(KA) CONTINUE ΜL 1615

IJAVG (KA) = SPU2M/SRUM

•

WFITE (6+526) K4+X (K4) +K4+URI (K4) +K4+FM (K4) +K4+UAVG (K4) +K4+UMAX (K4) 1181 (KA)=PI2*SUBM*DSIG(KA)*UMAX(KA)/X(KA) IF(NN.FD.4) GO TO 1809 Call Stice(x(ka).DSIG(ka).fx.M) comtinue [F(NPR.GE.NPRINT) NPP=0 WRITE(6+524) CONTINUE 2000 1890 υ 590 595

IF(NN_E0.4) G0 T0 4000 Call Output(Emach+DJET+RJET+UJET+UNITS)

FIKNCAS.LT.NCASE) 60 TU

STOP

CONTINUE

4000

609

605

FORMAT SECTION

υυυ

FOPMAT(1H1.10X.21H* * * M G R * * *.20X.4HPAGE14///5X.61HCOMPU ITATION OF AERO-ACRUSTIC PROPERTIES OF SUPPRESSOR NOZZLES///2X. 24HCASF NO. I5+5X+8A10//)

500

2

592 FORMAT(1H5.40X.10HINPUT DATA//)

609

MGR

MGR

610

611

613

615 612 616 617 618 619 614 620 621 622 623 624 MGR MGB MGR MGB MGB MGB MGB MGB MGB MGR MGR MGB ALPO DTH LPHI= KNCI RA(12.1H. RA(I2.1H.12.2H)=F7.4) CM=F6.3// ۲ NUM (I2.2H) = I3.7H CP=F7.1.10H NEST=13.12H DALP(I2+1H+12+2H)=F7+4+7H DALP(I2+1H+12+2H)=F7+4+7H RA(I2+1H+ 114 GAM=F6.3.RH NPRINT=13. PS=F7.1/) 7H LEAV(12+2H)=13+ 7H KX=I3•13H XF (12+2H)=F8.2+ 508 FORMAT([20+3F]5+5+110+3F10+2) R112M=F7.4+8H CH=F6.3.9H ISYM=12.14H OH0 112,2H)=F7.4,7H 1(12,2H)=F7.4, 512 FOPMAT (23H0 510 FORMAT(13H0 Ŧ 3M=F7.4.10H 22+2H)=13) 5J4 FORMAT(115.12H 615 620

625 626 628 628 629 630 631 632 634 634 635 635 635 635 MGB MGB MGB MGB MGB MGB MGB MGB MGB 23X+4HTOUR+2X+6HPRESS++5X+5HTEMP+5X+5HTEMP++4X+5H(FPS)+6X+6HNUMBER =F10.5 518 FORMAT(1H0.35X+15HEXIT CONDITIONS//3X+4HCON-+2X+5HT0TAL+6X+5HT0TAL 516 FOPMAT(//RUH**** EPPUP - MACH NO. SOUARF IS NOT GPEATEP THAN ZEPO].5X.6HSTATIC.2X.8HVELOCITY.5X.4HMACH.5X.8HMOMENTUM.6X.8HENTHALPY/ 3.6X.4HFLUX.10X.4HFLUX/9X.5H(PSF).5X.7H(DEG R).3X.7H(DEG R).23X. 522 FORMAT(1H0, 5X,5H AL =F11.5, 5X,6HALFA =F10.5, 15X,4HAK =E12,5,5X,4HHK =E12,5// 6X,7HATOTAL=F 9,5,5X,6HDEQ 410H(LR/S0-FT),4X,10H(LR/S0-FT)//) 520 FORMAT(16+4F10.2+F10.4+2E14.5)]- CASE WILL TERMINATE ****)

U&I(12,2H)=E11.5,5H FM(12,2H)=E10.4, 5X+6HUREF =F10.2) 2. 5X.6HIQUIT=15. 5X.4HNN =13. 526 FOPMAT(3H X(I2,2H)=F9.4.6H 524 FORMAT(1H) 635

N C B B W N C B W N C B W MGB MGB MGB MGB 13X+1HM+5X+1HR+7X+5HA2GLE+5X+1HU+7X+7HDENSITY+6X+5HTEMP++3X+HU/UREF 534 FORMAT(17H AXIAL LOCATION =F10.5.11H (X/DE0 = F10.5.1H)// 17H UAVG(I2+2H)=F8+2+7H UMAX(T2+2H)=F8+2) 2+2X+9HTURH+INT+2X+5HR/DE9//1 528 FOPMAT (6E12.5)

049

638 639 640

MGB

641 643 644 545 646 548 649 650 651

642

647

MGB MGB MGB MGB

536 FORMAT(14.F10.5.F8.2.F9.2.F12.7.F10.2.3F9.5)

MGB MGB MGB MGB α 543 FOPMAT(1HG+//12HROUNDAPY NO. 105+38H HAS REEN DESIGNATED AS THE **IEFERENCE//)**

542 FORMAT(1H0. 5x.5HCMMC=F11.6+05X+5HCMVR=F11.6//) 548 FOPMAT(1H0. 5x.6HSTRFX=F10.5+5X+6HSTRFR=F10.5 645

550 FORMAT(1H0.5X.7HALPHMC=F9.4.5X.7HBETAMC=F9.4)

FORMAT([H]) FOPMAT(8A1)) 525

END

650

184

630

10/10/77 14.30.05\$

FTN 4.5+410

76/76 GPT=1

FUNCTION ARCCOS

1

2

. . . .

3

i.

LUE) ARCCI ARCCI ARCCI ARCCI ARCCI ARCCI ARCCI ARCCI	KC COSTNE (PRINCIPAL VALUE) N 4PCCOS(X) 0.0) 60 T0 5 1.5707953 ARCCI = 1.5707953 ARCCI = ATAN(SOPT(1,-X++?)/X) = ATAN(SOPT(1,-X++?)/X) ARCCI = ATAN(SOPT(1,-X++?)/X) ARCCI = ATAN(SOPT(1,-X++?)/X) ARCCI = ATAN(SOPT(1,-X++?)/X) ARCCI = ATAN(SOPT(1,-X++?)/X) ARCCI = ATAN(SOPT(1,-X++?)/X) ARCCI = ATAN(SOPT(1,-X++?)/X) ARCCI AR	CARCCOS ARC COSINE (PRINCIPAL VALUE) FUNCTION AFCCOS(X) IF(X.6T.0.0) 60 T0 5 IF(X.LT.0.0) 60 T0 5 ARCCI ARCCI ARCCI ARCCIS = 1.5707953 60 T0 15 ARCCIS = ATAN(SOPT(1X**?)/X) + 3.1415927 10 ARCCOS = ATAN(SORT(1X**?)/X) + 3.1415927 ARCCI ARCCI ARCCI ARCCI ARCCIS
LUE) 3.1415927	KC COSINE (PRINCIPAL VALUE) N AFCCOS(X) •0•0) GO TO 5 •0•0) GO TO 5 •1.5707953 = atan(SOPT(1X**?)/X) = atan(SOPT(1X**?)/X).3.1415927 = atan(SOPT(1X**?)/X).3.1415927	CARCCOS ARC COSINE (PRINCIPAL VALUE) FUNCTION AFCCOS(X) IF(X.GT.0.0) GO TO 5 IF(X.LT.0.0) GO TO 10 AFCCOS = 1.5707953 GO TO 15 GO TO 15 ARCCOS = ATAN(SOPT(1,-X**?)/X).3.1415927 10 ARCCOS = ATAN(SORT(1,-X**?)/X).3.1415927 FURN FND
	KC COSINE (PRINCIPAL VA N AFCCOS(X) •0•0) GO TO 5 •0•0) GO TO 10 = 1.5707953 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CARCCO5 ARC COSINE (PRINCIPAL VA FUNCTION AFCCO5(X) IF(X.GT.0.0) G0 T0 5 IF(X.LT.0.0) G0 T0 10 APCCO5 = 1.5707953 G0 T0 15 5 ARCCO5 = ATAN(SOPT(1X++?)/X) G0 T0 15 10 ARCCO5 = ATAN(SOPT(1X++?)/X) 15 PETURN FND FND

DABUS	UTINE ATMOS	76/76 0PT=1	TN 4.5+410	10/10/77	14.30.055
~	U	ATMOSPHERIC ATTENUATION SUBROUTINE		ATMOS	~
ı	J			ATMOS	. m
	U			ATMOS	4
	C ATH	MOSPHERIC ALR ATTENUATION CORRECTIONS FOR STAP	NDARD DAY	ATMOS	ŝ
r	C (55	9 DEG. F AND 70 PCT. REL. HUM.) FROM SAE ARP	866 (1964)	ATMOS	Ŷ
	C ARE	E ADDED TO LOSSLESS SPECTRA		ATMOS	7
	U			ATMOS	80
	J			ATMOS	¢
	SUF	BROUTINE ATMOS (SPL + RADIUS)		ATMOS	10
10	U			ATMOS	11
	J			ATMOS	12
	410	MENSION SPL (19,34), RADIUS (19), AA (34)		ATMOS	13
	DAT	TA AA/.0709111414182329364558	7292.	ATMOS	14
	1.11	17•1.47•1.A5•2.39•3.03.3.97.5.47•7.73.9.03.12.	.87.18.76.26.97.	ATMOS	15
15	238.	. 98.58.67.84.58.121.56.175.77.256.39.363.19.51	19.95.752.16	ATMOS	16
	1016	15.A2/		ATMOS	17
	U			ATMOS	18
	U			ATMOS	19
	ç] [=],]9		ATMOS	20
20	8	1 J=1,34		ATMOS	21
	15 ((SPL(I,J),LE,U,O) 60 TO 1		ATMOS	22
	SPL	L (1.J)=SPL (1.J)-RADIUS(1)+AA(J)/1000.0		ATMOS	23
	1 CON	VT I NUE		ATMOS	24
	138	10PN		ATHOS	25
ž	END	0		ATHOS	26

•

185

·• •-

10/10/77 14.30.055 FTN 4.5+410 76/76 0PT=1 SURPOUTIVE CPD

1

:

!

.....

-	SURROUTINE CPD	CRD	2
	• •		m 4
	COMMON/SHLD/ 62(200).RIN(200).MACH(200).TEMP(200).FSIG(19.5).	CRD	r un
ŝ	1TEPM(290),5HIELD(200),MCIN(200),THE,CT,NTP,NP,ALPHT(19),1TH	CRD	чо I
	REAL MACH+MCIN+MC+KIN+K+MO		~ a
	• CALCH ATTON OF DIRECTIVITY	CRD	o o
		CRD	10
10	•	CRD	11
	PI=3.1415926	CRD	12
	PI02=PI/2•	CRD	13
	DO 11 IR=1.NR	CRD	14
	R0=RIV(IR)	CRD	15
15	MC=MCIN(IR)	CRD	16
	SHIFLD(IP)=0.0	CRD	17
	********	CRD	18
	IF (THE.GT.PIO2) GO TO 260	CRD	19
	94844444	CRU	02
20	•	CRD	21
	FINDING RELATIONSHIP RETWEEN R0 AND TURNING PTS.	CRD	22
			2
	IF NIP EQUAL 60 TO 200 IF NIPE ED 11 60 TO 200		* v
ĸ		CR0	2
	RSIG(ITH+1)=RSIG(ITH+NTP+1)	CRD	27
	PSI6(ITH.2)=RSI6(ITH.NTP)	CRD	28
	NTP=2	CRD	29
	60 TO 250	CRD	30
90	230 CONTINUE	CRD	31
	•	CRD	32
	* ONE TURNING POINT	CRD	6 6
		CRD	4 I M
	RSIG1=RSIG(ITH+1)	CRD	35
35	IF(R0.6E.RSIGI) 60 TU 240	CRO	36
	R1=R0	CRD	37
	P2=RSIG]	CRD	38
	G0 T0 261	CRD	96
	250 CONTINUE	CRD	40
40	•	CRD	41
	+ TWO TUPNING POINTS	CRD	45
	•	CRD	64
	PSIG1=RSIG([TH+])	CRD	44
	PSIG2=PSIG(ITH+2)	CRD	¢ 10

×

186

.....

0

•

R (R0.LE R1=R0 R2=RS162 G0 T0 261 CONTINUE		262
--	--	-----

•

ţ i

į

.

1

.

ŝ

- R1=RS161 P2=RS162
- CONTINUE 261 ۵
- CALCULATION OF EXP. SHIELDING ٠

55

- FINDING INTERVAL INTO WHICH RI AND R2 FALL . 4
 - DO 265 J=1.NR 4
 - IF (RIN(J).GT.RI) GO TO 266 CONTINUE CONTINUE 265

60

- - 11=1
- JII=JI-I NO 267 J=1.NR IF(RIN(J).61.R2) GO TO 268

ŝ

- CONT INUE 268 268
 - CONTINUE 12=1

1-21=126

20

187

- EVALUATION OF INTEGRAL OF * ۵
 - 4

c

IF(J1.EQ.J2) G0 T0 269 IF(J1.EQ.J21) G0 T0 270 J211=J21-1 SUM=9.

13

- D0 281 J=J1,J211 GM=.5*(SQRT(ABS(G2(J)))+SQRT(ABS(G2(J+1))) SUM=SUM+GM*(RIN(J+1)-RIN(J)) CONTINUE
 - - 2A1
 - 60 TO 284 CONTINUE 269
 - *
 - J1=J2 .

83

- .
- SGN1=1.
- 56N2=1.
- IF (62(J11).LT.0.) SGH1=-1. IF (62(J1).LT.0.) SGN2=-1. SG1=SGRT(A9S(G2(J1)))+SGN1 SG2=SGRT(A9S(G2(J1)))+SGN2

6

l

..... ł

2

ŝ

7

\$LOPE=(SG2-SG1)/(RIN(J1)-RIN(J11)) SUM=SG1*R2+SLOPE*(.5*R2**2-RIN(J11)*R2) A-SG1*P1-SLOPE*(.5*R1**2-RIN(J11)*R1) GO TO 286 SUM=-SIJM

ŝ

- CONTINUE SUM=0. 515
 - CONTINUE 294

100

CALCULATION OF END CONTRIBUTIONS . . .

- 56N1=1. 56N2=1. 105
- IF (62(J]).LT.0.) SGA2=-1. SG1=SGRT(A4S(G2(J])))*SGN1 SG2=SGPT(A4S(G2(J])))*SGN2 [F(G2(J11).LT.0.) SGN1=-1.
- SUM]=S6]*4[N(J])+SLOPE*(*5*P[N(J])**2 SLOPE= (562-561) / (PIN(J1)-PIN(J1)) A-RIN(J]])+RIN(J]))-56]+R]

110

11251

115

- H-SLOPE*(_5*R]**2-RIN(J])*R]) IMUS-=[MUS
 - SGN1=1.

115

- IF (62(J21).LT.0.) SGN1=-1. IF (62(J2).LT.0.) SGN2=-1. SG1=SQPT(A95(62(J21)))*SGN1 SGN2=1.
- SLOPE= (562-561) / (PIN(J2)-RIN(J21)) S62=S0PT (APS (52 (.12))) *S6N2 120
- H-SLOPE+(.5*RIN(J2])++2-FIN(J2])+RIN(J2])) SUMP=SG1+R2+SLOPE+(.5+R2++2 4-PIN(J2])#R2)-56]#PI4(J2])
 - SUM=SUM1+SUM2+SUM SUM2=-SUM2 125

- SHIELD(IR)=SUM CONTINUE دومح
 - CONTINUE
 - . جو:)
- CALC'ILATION OF UNSHIELDED SOLUTION .

130

- [F(G2(IH).LT.0.C) 6050=0.0 6050=ARS (62 (1R)) .
 - 135
- TAPH (19) = (CT+CT+G0S0) ++2/Th (HI) dwji=01
 - CONT INUE CONTINUE 2 =

PETURN FND

140

1

<u>.</u>

t

	FUNCTION FHE	74/75	0PT=1 6.5	5.410	10/10/22	14.30.05\$
~	75 25	せいちょう	FURCTION APPPORTMUN		EPF	¢,
		SHIP NULLING	(x)		EDE	•
		い [=れっぱら			EPF	•
		1512.1.2.0.5)	i - ۱۰۵۲ کا در ا		EHE	ŝ
u r		IF (ABS(X).67.	5.3) GO TO 50		ERF	•0
		1=1.0/(1.0.0)	-470474445(X1)		EPF	2
		FPF = 1. U- (0. 34	1486242+1-0.095H79H#1#1+0.7478556#1#1#1#E	E XP (-X+X)	EAF	æ
	-	FPF=FUF=SIGN			ERF	đ
	501	RETURN			ERF	10
c	20	EPF=516N			EPF	11
		60 TO 100			ERF	12
		END			ERF	13

14.30.05\$	~ ~	1 📲	Ś	¢	٢	æ	σ	10	11	12	61	*1	15	16	17	81	61	20	21	22	23	54	25
10/10/77	LSPFIT	E LSPFIT	O LSPFIT	LSPFIT	LSPF17	LSPFIT	LSPF17	LSPFIT	LSPF17	LSPF17	L SPF I T	LSPF17	LSPF17	LSPFIT	LSPF1T	LSPFIT	LSPEIT	LIJOSJ	LSPFIT	LSPF17	LSPFIT	LSPF11	LSPFIT
		NU16H TH	THEY B	NOTE									CALL ING										
FTN 4=5+410		H PASSED TH	I POINTS (11	S A MINIMUM.									EE WITH THE								71VE •		
-		PAPABOLA WHIC	1-11 AND (1-2	E DEVIATION I	CH THAT			5++(1)X-X).		NXC . ND . AAA)		101	IT NEED TU AGR					U BE DONE	ND=-1		ET IST DERIVA		
_	THEPPOLATE	POLATE USING A	IT MISSES THE	E SOUAPE OF TH	LY SELECTED SU	C.LT.X(I+1)	HE PAHAROLA IS	3* (X-X1)) • C.		K+Y+NPTS+XC+YC		101 · xC(101 · YC	ON FICE DOES NO			AVE		AT WHICH CALC 1	V CONSTANT IF		COORP. =1 TO C	FEGPATION	
=140	FATE OR	P INTEPI	OINTS H	THAT TH	GENERAL	1) -LE .X	N FOF T	Y(1) = (•	LSPFIT ()	(0,1) 4	101.101	DIMENSI			ON CUI	OF X	TOFX	EGRATIO	OF XC	TO GET (FOR IN	
76/75	1NTE6	GRATE 0	d (1+1)	T) SUCH		X	EQUATIO	,		ROUTINE	NSTON A	x NOISN	F. THE		2	r P15	0N 0	L15	INI ("UN	0=	 -=	
SPF I T	SPF1T	INT	GND	FXI	THA		THE			SUP	DIME	MIC	CN		LINDNI	**	NPT	UX X	VC (]	NXC	QN		
טטדריאב ר	ټ (י ר) ن		υ Ο		U V)				U		U	U			U U	U	υ	U	I
SUPP	-			¥					10					15					20				

189

· · · · · · ·

•

.

25	C 0117011 C0081	DINATE OR DEPIVATIVE AT XC OP	LSPFIT	26
	c yc(1(C)= INTEGPAL(Y*UX) FROM XC(1) TO XC(IC) WHERE IC≈2+NXC	LSPFIT	8 0 N N
	C NOTES-		LSPF17	200
ЭĊ	C #X# MAY BE IN C FOR INTEGRATI	N EITHER ASCENDING OR DESCENDING ORDER. Ion ≠xc≠ must bf in the Same order as ≠x≠. For interp	LSPFIT	- 20
	C NO SPECTAL	L ORDER IS REGULAED.	LSPFIT	5
			LSPFIT	*
36	COMMON /CLSPF	F / T	LSPFIT	5.5
ĥ	LOGICAL WITH	NI	LSPFIT	3.5
		_	LSPF17	38
			LSPFIT	6 6 M 4
40	$\mathbf{I} \mathbf{F} (\mathbf{N}) \cdot \mathbf{F} \mathbf{D} \cdot (\mathbf{-1})$		LSPFIT	7
2	ISAVE = 0		LSPF17	4
	SGN = SIGN	((1)×-((+1))-×(1))	LSPFIT	4
			LSPFIT	41
U Y	C BEGIN INTERPOL	LATION LOUP FUP AG(IC) IC=1+NAC	LSPFIT	1 1 1
r.			LSPFIT	5 7
	C LOCATE APPROPR	RIATE INTEPVAL	LSPFIT	-4
	ICO WITHIN= "FALS	SE.	LSPFIT	49
I	NCOUNT= N		LSPFIT	ິ ເ
50	ICS IF (NCOUNT) 11	19,103,103	LSPFIT	5
	163 NCOUNT= NCOUN		LSPFIT	23
	<pre><1 < < < < < < < < < < < < < < < < < <</pre>			ה ה נו ה
	(1) = 1	C1=X1	LSPFIT	ים יו עיר
55	IF (N) 104.120	0.134	LSPFIT	26
	114 IF (SGN#XD) 10	05,107,110	LSPFIT	57
			LSPFIT	58 80
		IS THE FRACTIONAL POSITION IN THE INTERVAL)	LSPFIT	5.5
¢ y	TEAND FO (-))			2
5			LSPF I I	
	60 TO 162		LSPFIT	59
			LSPFIT	40
ţ	C F.E0.0		LSPFIT	65
65	107 IF(X(I+1), NE.	•XI) 60 TO 120	LSPFIT	99
	01 01 09		LSPFIT	5
	C F.GT.A.		LSPF 11	00
	110 IF (SGN+ (XC())	C)-X(1+1))) 120+112+114	LSPFIT	6 6
76			LSPFIT	12
	C F.EQ.1.0. (CHECK FOR INTEGRATION AND DOUBLE POINT REFORE INCREMEN	LSPFIT	72
	112 IF (ND.ED. (-)	1)) .OR. (I.NE.N .AND. X(I+1).E0.X(I+2))) GO TO 120	LSPFIT	5

		LSPFIT	74
	C F.GT.1.0	LSPFIT	75
75	114 IF(I.FC.N) 60 TO 120	LSPFIT	76
	IF(ND.EO.(-1)) GO TO 122	LSPFIT	207
		LSPFIT	91
	50 TO 102	LSPFIT	79
		LSPFIT	80
θŪ	119 CONTINUE	LSPFIT	81
		LSPFIT	82
	C PRFI IMINARY CALCULATIONS FOR INTERPOLATION OF INTEGRATION	LSPFIT	83
		I SDETT	44
l			
L. I	124 ISAVE = 1		
	$(1) \lambda = 1 \lambda$	LSPFIT	18
	1x - (1 + 1)x = 0	L SPF I T	88
	$I = \{I \in I \}$	LSPFIT	89
	C # 3.	LSPFIT	06
90	10P = j.	LSPFIT	16
	ROT = 0.	LSPFIT	92
	IF([.LE.]) GO TO 127	LSPFIT	69
	x = x(1-1) - xI	LSPFIT	94
	$x_{13} = x(1-1)-x(1+1)$	LSPFIT	95
95	10b = X1+ (Y3+X] - (Y(I-1) - Y1) + X3) + X [3]	LSPFIT	96
•	ROT = X1+X1+X13+X3	LSPFIT	19
	127 1511 GE N. OD. (YD. 60 ANN. BOT.NE.6.)) 60 TO 128	I SDETT	80
	IN TRADUCTOR AND AND AND AND AND AND AND AND AND AND	I SPETT	0
		I SDETT	001
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
0.01			
	11 (1.96) 80 AANO AGENEAUAN H (1.111+1)-170 - C470		
C01			
	C ND1. INTEGDATE	LSPT 11	
	C WUNCT INTERVISED		
		L SPETT	
110	TELETHIN, GO TO 135	I SPETT)
	C AIX IS BEING INCREMENTED TO FIND APPROPRIATE INTERVAL HENCE.	I SPETT	
	C TE TO TELEVISION ENTRY OF THE THE THEORY IN CAMPLE TENES		
	C CUMULATE INICOVAL UT INE INICOVAL.		711
		L SPETT	511
116	C ADDODDIATE INTERVAL FOLIND. X(1)-XC(1C)-X(1+))	1 SDE 1	
		I SPF I T	211
	IF(IC_NE_1) YC(IC)=SA+SI	LSPFIT	118
		LSPFIT	611
		LSPFIT	120
		• • • • •	•

-.

120	C ND=0+ INTEMPOLATE FOR COORDINATES 14:3 YC(IC)= YI + (B + C#XD)#XD	L SPF I T L SPF I T	121 122
	60 TO 150	LSPFIT	123
		LSPFIT	124
	C ND=1. FIRST DERIVATIVE	LSPF11	125
125	141 YC([C)= R + 2.*C*XD	LSPFIT	126
	G0 10 150	LSPFIT	127
		LSPFIT	128
	Sn C = C+	LSPF11	129
	AAA (IC-1)=2.**C	LSPF17	130
130	IF (NXC-IC) 960+160+16J	LSPFIT	161
	160	LSPFIT	132
	GO TO 100	LSPFIT	133
		LSPFIT	134
	4JA PETURN	LSPFIT	135
135	E Vi) .	LSPFIT	136

:

2 ٤

١

アー

- Y ..

1104AU2	INE OUTP	04	76/76	=1d0	FTN 40	5+410	10/10/11	14.30.055
-		UDAROU SUBROU	TINE OU	1 TPUT (LEMACH+DJET+RJET+UJET+UNITS)		OUTPUT	2
		NOWNOU	FANFLD.		05 (414 474 477 471 4 4 4 4 4 4 4 4 4 4 4 4	• (61) SNI 01	OUTPUT	n 4
ſ		1THETA (19) . THE	51101	19) +DSPL (19+34) +SPL (19+34) +PWL (34) +D	ASPL (19)	OUTPUT	nu ve
	-	DIMENS	TON AAA	(61)			OUTPUT	~
		DIMENS	ION TSP	L (33)	3•19) •PNL (19) •PNL 7 (19)		TUTPUT	œ (
	J	INIE (3F	X + C + X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	XAX		TURINO	10
10	υ						OUTPUT	11
		l°€=1a	415926				OUTPUT	12
		DEL TH=	:PI/18.				DUTPUT	E 1
		00 34	J=1+34				OUTPUT	14
		IF (FD)	J. J. LE.F	(NIH)			001PU1	15
15		[F (F0(J. J. LE.F.	(XVW.	UMAX=J		OUTPUT	16
		OHSTNO	J)=FLOA	T(F0()(J))*PJET/UJET		DUTPUT	17
	7°C	CONTIN	IUE				TUATUO	18
	υ						DUTPUT	19
	υ						OUTPUT	20
いご	J	CONV	FRSION	FROM	4 NAPPOW-BAND TO 1/3-OCTAVE		OUTPUT	21
	ပ						DUTPUT	22
		COFF=U	NITSOAK	112.0	.0*P]*A5R*PAD1US(!)**2)		TUTPUT	242
		D0 5 J	IC . NINC=	MAX			OUTPUT	25

192

a second and

•

.

	1E(DSb1(1+^))"[E*0*0) @U_10_2	OUTPUT	26
	TE(DRSTN(L),6T_30_0) 60 TO 7	OUTPUT	27
	SPL (T. 1) = 10 * 44 (06) 0 (COFF * 05PL (T. 1))	OUTPUT	28
		TUTPUT	0
	COLTT 11-CCLTT 11-10 441 0C101DE01-4 3536		
			2
	7 CONTINUE	Indino	25
	SPL([)=0.0	001PU1	Ē
		OUTPUT	46
د			
ر			2
,	CALL SHOCK		51
J		104100	2
U	OVEPALL POWER LEVEL CALCULATION	007PUT	38
L		001PUT	39
•		OUTPUT	40
		THATHO	41
			- 1
			t U
	PWR=0.0	OUTPUT	4
	DO 60 1=1.15	OUTPUT	55
	PSO=10-**(SPI(1.)/)C.)	001PUT	45
	0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UITPUT	46
			- (
	PWP=2.0 c+p1/JN112+DEL1F+PWR	104100	10 ·
	PWL(J)=]30.+10.*AL06]0(].3558*PWR)	001PU1	49
	SUM=SUM+DWP	001PU1	50
	70 CONTINUE	001PU1	51
	0APW1 =139.0+10.*AL0610(1.3558*SUM)	DUTPUT	52
	CALL ATMOS(SPL - PADTUS)	OUTPUT	, L
ſ			
،ر			ร เ กเ
U	COMPLITE PNL AND PNLT	INTINO	55
U		001PU1	56
	DO 55 I=1.19	001PUT	57
	00 54 J=1.33	007PU7	58
	TSP1 (1-1) = 5D1 (1-1)	DITPUT	95
			10
		104100	20
	DNF1(1)=DNF1(1)+DNF(1)	Indino	63
	55 CONTINUE	DUTPUT	64
J		DUTPUT	65
ບ	OVERALL SOUND PRESSURE LEVEL CALCULATION	OUTPUT	66
U	-	001PU1	67
	DO Br 1=1.15	007PU7	68
	SUM=0.0	OUTPUT	69
		DUTPUT	20
	TE (0 BSIN (1) (1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	UITPUT	
			- 6
			2;
	UASPL (1) = [0, * ALUG[0 (5UM)	Indino	47
	BA CONTINUE	001PUT	22

j

0UTPUT 76	0UTPUT 77	0UTPUT 78	0UTPUT 79	0UTPUT 80	OUTPUT 81			00TPUT 82	001PUT 82 001PUT 83 001PUT 84	001P01 82 001PUT 83 001PUT 84 001PUT 85	001701 82 0017011 83 0017011 84 0017011 85 0017011 86	0017001 82 0017001 85 0017001 85 0017001 85 0017001 87	0017001 82 0017001 85 0017001 85 0017001 86 0017001 88 0017001 88	0017001 82 0017001 83 0017001 84 0017001 86 0017001 88 0017001 89 0017001 89	0017001 82 0017001 84 0017001 84 0017001 86 0017001 88 0017001 89 0017001 89	0017001 82 0017001 83 0017001 85 0017001 86 0017001 88 0017001 89 0017001 89 0017001 90	001PUT 82 001PUT 83 001PUT 84 001PUT 86 001PUT 87 001PUT 88 001PUT 89 01PUT 90 01PUT 92	0017PUT 82 0017PUT 84 0017PUT 84 0017PUT 85 0017PUT 88 0017PUT 88 0017PUT 91 0017PUT 93	0017001 82 0017001 85 0017001 85 0017001 85 0017001 86 0017001 88 0017001 99 0017001 92	0017001 82 0017001 85 0017001 85 0017001 85 0017001 86 0017001 88 0017001 91 0017001 92 0017001 92	0017001 85 0017001 85 0017001 85 0017001 85 0017001 86 0017001 88 0017001 92 0017001 92 0017001 92 0017001 92	0017001 85 0017001 85 0017001 85 0017001 85 0017001 86 0017001 88 0017001 92 0017001 92 0017001 95 0017001 95	0017001 82 0017001 83 0017001 84 0017001 86 0017001 86 0017001 88 0017001 92 0017001 92 0017001 92 0017001 92	0017PUT 82 0017PUT 84 0017PUT 84 0017PUT 84 0017PUT 86 0017PUT 88 0017PUT 94 0017PUT 92 0017PUT 95 0017PUT 95 0017PUT 95 0017PUT 95	0017PUT 82 0017PUT 85 0017PUT 85 0017PUT 85 0017PUT 86 0017PUT 88 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92	0017PUT 82 0017PUT 85 0017PUT 85 0017PUT 85 0017PUT 86 0017PUT 88 0017PUT 91 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92 0017PUT 92	0017001 85 0017001 85 0017001 85 0017001 85 0017001 86 0017001 88 0017001 92 0017001 92 0001001 92 0001001 92 0001001 92 0001001 92 0001001 92 0001001 92 0001001 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 0001000 92 00000000 92 000000000000000000000	0017001 85 0017001 85 0017001 85 0017001 85 0017001 86 0017001 88 0017001 92 0017001 92 0017001 92 0017001 92 0017001 92 0017001 92 0017001 92 0017001 101
	C PHINT ORSEAVED SOUND PRESSURE LEVEL SPECTPA	U	WRITE(6+103) EMACH+RJET+UJET+DJET	IF (NUMANG.[E.]) WPITE (K.]]4) RADIUS (8)	IF (NIIMANG.GE.2) WRITE (6.116) PADIUS (8)	WPITE(4+104)(THETD(I)+1=1+15)	DO 40 JML+01ML+0	IF(0R51N(J),6T,30,0) 60 TO 40	WRITE(64]10) F0(J)+(5PL(1+J)+1=1+15)+PWL(J)	4.9 CONTINUE	WRITE(4,112)(0ASPL(1),1=1,15)+0APWL	WRITE(6,124) (PNL(1),1=1,15)	WRITE(6+130) (PNLT(1)+1=1+15)	RETURN	U	C FORMAT SECTION	ن U	100 FOPMAT(1H1//20X,40H*** SOUND PRESSURE LEVEL DIRECTIVITY ***//	110X+154JET MACH NO. = F10.4+5X+20HJET DEMSITY RATIO = F10.4//	210×+15HJET VELOCITY = F10.2+5X+20HJET EQUIV. DIAM. = F10.4//)	106 FORMAT(1H0,7HANGLE =15F7,1,3X,7HPWL/8H FREG.)	IIO FORMAT(IN+IKF7.)	112 FOPMAT(8400VERALL.+16F7.)	114 FOPMAT(1H9+30x+F10+1+2x+7HFT+ ARC//)	116 FORMAT(1H0+27X+F10+1+2X+12HFT. SIDELINE//)	IZA FOPMAT (843 PNL +15F7.1)	130 FORMAT (RH9 PNLT •15F7.1)	
75					90 9					85					90					с С					100			

þ

.

ł

7

1

194

10/10/77 14.30.05\$

FTN 4.5+410

. .

נ=140 אורע ג'יער ג'יער נייער (1=1

,

) | |

したい、アンドレイト

¢ لا	SUHFUITINE PMLC(SS+FAC+PNDR+OASPL)		•
\$	DEEL 44407404704		4 UN 4
	DATA FUOM SAF AUD 4554 (1969 REVISION)	PNLC	0~0
	∩ATA ((PC(I・))・I=1・4)・.)=1・121/	PNLC	1 0 00
	1490.279520,55.0058098.64.00043478.91.01.0.030103.52.	PNLC	10
1	144.+F.J&R1F9+51.+0.058R94+60.+0.040570+85.88+0.030103+51.+	PNLC	11
	139.0° JAH140.46.0° 052789.56.00.036431.87.32.0003049.	PNLC	12
	174.00.759440.42.00.047534.53.00.036831.79.85.00.030103.47.0	PNLC	E I
	1300.(53013.39.00.043573.510.035336.79.76.0.030103.46	PNLC	4
Ļ	1276.J53513.360.043573.480.033333.75.96.0.030103.45	PNLC	5
<u>.</u>	/4************************************		01
	118	PNL C	- 8
	116.16.03485945945945040.034859440.0000000000000000000000000000000000	PNLC	61
	1160.053013.250.034859.400.030103.100.00.0.030103.40	PNLC	20
25	116ĉ.^53313.250.034859.4cc.030103.l00.00.0.030103.40./	PNLC	21
	NATA ((PC(I+J)+I=1+9)+J=13+24)/	PNLC	22
	1160.653013.250.034P59.400.030103.100.00.0.030103.40	PNLC	53
	••0+•501050•0.001+501050•0.6+6565650•0•6575705050•0+656•3+•01	PNLC	4 L
	1150.759646.730.034559.380.630103.100.00.00.030103.38	PNLC	52
ب ر		PNLC	8 f
	14.00.001010101000000000000000000000000		
	1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		00
	14 C. ACTALT 1 L L C C C C C C		, c
3.	14	PNLC	200
a 1	1100.668150.17.00.037349.310.029960.100.00.029960.31.	PNLC	32
	117.0.079520.23.0.637349.37.00042285.44.29.00029960.34.	PNLC	E.E
	1210.059640.290.043573.410.042285.50.72.0.029960.37./	PNLC	9¢
		PNLC	35
35	SUMSPL = C.	PNLC	36
		PNLC	37
	MAXNDY=0.	PNLC	98 90
	•	PNLC:	2
لم به د	THE MAXIMEN NOT VALUE AND SUM OF NOT VALUES AND SUMSPL	PNLC	0 4 4
			- (
	00 50 KEI+/4		v r 4 4
			7 4
		PNLC	45

E,

195

. • ..

Ŵ

~ ~

(;;; •

マノロ

•

45	IF(I.6T.23) GO IO 55	PNLC
	1; EXPSet=10.44(.1455(I))	PNLC
	SUMSPL = SUMSPL + EXPSPL	PNLC
	IF(SS(I),6F,PC(7+I)) 60 TO 306	PNLC
	IF(SS(I),6E,PC(S+I)) 60 TO 280	PNLC
¢. Ľ	1E(SS(1)°dF+PC(3+1)) dn TO 260	PNLC
	IF(SS(I).665,PC(1,1)) GO TO 240	PNLC
	202 = 5 -	PNLC
	60 TO 30	PNLC
	24) W0X= . * 0.** (PC(2+1)*(SS(1)-PC(1+1))	PNLC
55	60 TO 30	PNLC
	200 NOY=10.***(PC(4.1)*(SS(1)-PC(5.1)))	PNLC
	G0 T0 30	PNLC
	240 NOY=13.**(PC(6.1)*(SS(I)=PC(5.1)))	PNLC
	60 TO 30	PNLC
6C	333 POY=1C.**(PC(A.1)*(SS(1)-PC(9.1)))	PNLC
	3C SUMPTOY=SUMNOY+NOY	PNLC
	IF (MAXNOY-6T_NOY) GO TO 50	PNLC
	MAXNDY=NDY	PNLC
	50 CONTINUE	PNLC
65		PNLC
	CALCULATE 0ASPL, PNDH, TPNL	PNLC
		PNLC
	<pre>22 UASPL=10.**ALO610(SUMSPL)</pre>	PNLC
	PNL=MAXNOY+FAC* (SUMNOY-MAXNOY)	PNLC
70	IF(PNL_6T_6052) 60 TO 50	PNLC
	on Dha the state of the state	PNLC
	RETURN	PNLC
	60 PNDB=40.+33.22*AL0G16(PNL)	PNLC
	PETURN	PNLC
75	FND	PNLC

1/77 14.30.05)CK 2	DCK 3	20X 4	SCK 5	DCK 6	CK 7	DCK B	0 0 0 0	DCK 10
10/1(SHC	SHC	SHC	SHC	SHC	SHC	SHC	SHC	SHC
:+410				CORRELATION					
* * Z				INE CMP					
E	Z			S NO					
CPT=1	ICAL SHOCK-CELL NOISE CORMELATIC			OCK CELL NOISE PREDICTION HASED	TIONS HY GLIERE (GE TH 76-673)			HOCK	
76/76	EMPJR			MPIRICAL SH	ND MODIFICA			URROUTINE S	
SHOCK	сноск			L,	٩			S	
SURPOUT INE	Ü	U	υ	U	J	U	U		U

ŝ

....

196

	•		

•

1

7

- **m**

COMMON/FAPFLD/ SSTN(34).0HSTN(34).FO(34 1THETA(19).THETD(19).DSPL(19.34).SPL(19. 2.FMIN.FMAX
PEAL MJ.MC.LAVG.LA INTERED FO.EMEN.FMAX
J
C IF (NCELL(1) LE.() PETURN
₩C + C=C 2 DU
IT (FO-U) & FE FEIN) UMINHU IT (FO-U) & FEAN) UMAXHU
2 CONTINUE
C INDEX OVER ROUNDARY NUMPER - NR
55×7×(55×4-1。0)/55× DRCRTT=(5.5×152×1.0))**(52×1/55×1.5
DO 1 NA=2.VEST
N=NCFLE [NA)
IF (N.LF.0) GO TO I
<pre>[f(PW.[E.PMCR]]) G0 10] w !~SADT(/2.0 //6AN_) .)) # PD##65YD_}</pre>
HETA=SORT (* Je+2) 1.00
PSPL1=40.0#AL0610(RETA)
1 • 10.2*ALOGID (FLOAT (N) / 8.0)
3 + 10.0*ALOGIO(DS(NA)/DEO(NA))
LAV:=7。2422.)4=)50.000 11C=7.74 (11F(NB)=11F(2))
#C=IJC/CO
v0=UE(1)
C TNDEX OVEN FACH DRSEWVER ANGLE
DO 10 1=1.15
DO 14 JMINI JMAX
55PL { { · J } = 0 · 0
14 CONTINUE
THCR=3.1415926
IF (.AC.LE.1.0) GO TO 12
THCH=THCP-ATAN (SORT (HC++2-1.0))
IN CONTINUE TEVILLEGE THEOL GO TO LO

197

······

•

	Û	SHOCK	56
	C COMPLITE PEAK FREDUENCY AND MAXIMUM SPL	SHOCK	60
60	U	SHOCK	61
		SHOCK	62
		SHOCK	63
	∩SPL?=2n°¢4L0619(DE~(\\)/HA0IUS(I))	SHOCK	64
	5PL 4Ax=151.65+D5PL1+D5PL2	SHOCK	65
65 2	V - 43.67420510(1.0.00)	SHOCK	66
	Û	SHOCK	67
	C COMPUTE SPECTRA	SHOCK	68
	U	SHOCK	69
	XVMD *VJWD =D +1 OG	SHOCK	70
7.9	FR=FLOPT(F())/FP	SHOCK	12
	IF (FR. GT. 1.0) GO TO 19	SHOCK	72
	55PL(I.+))=5PLMAX+ 7C_?=AL0610(FR)	SHOCK	73
	60 TO 19	SHOCK	74
	IR CONTINUE	SHOCK	75
75	SSPL(1,))=SPLMAX-1C.(*AL061)(FP)	SHOCK	76
	19 CONTINUE	SHOCK	17
	IA CONTINUE	SHOCK	78
	IO COMTINUE	SHOCK	79
	Ĺ	SHOCK	80
C A	C ADD SHACK FOLSE TO TOTAL NOISE	SHOCK	81
	0	SHOCK	82
	DO 40 I=1.15	SHOCK	83
	NU 44 OC	SHOCK	84
	IF(SSPL(I),LT.0.6) GO TO 40	SHOCK	85
85	PSOM=1 0.0040 (0.01) (1.0.0)	SHOCK	86
	PSQS=10.00+(SSPL(1.())))	SHOCK	87
	PS01=PS0M+PS0S	SHOCK	88
	SPL(1.)=10.0+AL0610(PS0T)	SHOCK	68
	40 CONTINUE	SHOCK	0 6
90	I CONTINUE	SHOCK	16
	RETURN	SHOCK	92
	FND	SHOCK	66

Ś

3111

ID dHIIS	HINE SELICE	76/74 0PT=1 FIN 4.5+410	10/10/37	14.30.055
-	ČSL ICE	PADIAL PRIFILE PAMAMETER CALCULATION	SLICE	N r
	ی ا	Internetine Stitcf (x+DSIC+DX+M)	SLICE SLICE	n ∢ L
υ	5	0000-7001574LFa+5FTA+AK+5K+0E0+A5P+AL+NUMANG+015T	SLICE SLICE	נסח
)***0%/AE ***/>SIFE * F 3*51***********************************	SLICE	~ œ
	ŭ	MWON/PROFL / 115 (200) + TAUP (200) + PHOP (200) + 5169 (200)	SLICE	0
:)PDR (230) • DPPM-2 (200) • DUDR (200) Manon - Antis D = 6674 - 234 - 28674 - 234 - 62424 - 524 - 524 - 544 - 544 - 544 - 544 - 544 - 544 - 544 - 544	SLICE	01
c 1)*************************************	SLICE	12
		HINE REAL	SL ICE	:
	č	MURN/SHLU/ 62(266)+41+(203)+MACH(200)+1EMP(200)+RS16(19+5)+	SL ICE	14
	111	544(239) • SHIFL6(260) • 40 [N1206) • THE • CT • NTP • NP • AL PHT (19) • ITH	SLICE	15
15	C	WENSTOP	SLICE	16
	ฉี			
	Ē.	VTEGEP FOOFMINOFMAX		
			St ICE	20
20	1 0	VITIALIZE CONSTANTS AND AREMA GEOMETRY	SLICE	21
	U		SLICE	22
	1 1	[KA.GT.]] GO TO IC	SL ICE	23
		[= 3, 14]542A	SLICE	42
26	Ĩ	10=1/180° 11-1003-11-1		6 3
{	50			57
	5 Ċ			8
	Ë	JET = SUJE - E IPSTU	SLICE	00
3.0		ACH=UJFT/CO	SLICE	31
	z	JTHE(:=.01	SL ICE	32
	5	r#E0=13•J	SL ICE	66
	č	JTHE = DDTHE() = RAD)	SL ICE	đ.
	-	4ETD(1)=20°0	SLICE	35
3 5	F	+€TA(])=]hŋ,P=PAD	SLICE	36
	2		SLICE	16
		([.En.]) 60 TO 12	SLICE	88
	- 1			5 0
				0.
сч 4				4 I 4
				4 F 4
			SLICE	n 4
		Dur I Nite	SLICE	45
4 U	1		SL ICE	4 4

ŝ

,
2
5
•
١.
,
•

7

SLICE SLICE SLICE		SLICE SLICE SLICE SLICE	2125 2125 2125 2125 2125 2125 2125 2125	22222222222222222222222222222222222222	2115 2115 2115 2115 2115 2115 2115 2115	2112 2112 2112 2112 2112 2112 2112 211	22125222 221252222222222222222222222222	SL 1CE SL 1CE SL 1CE SL 1CE	AP SLICE SLICE
5,0 × 1=1+15 240705715572516(×40)+74670(1)) 8 CORTERE	50 10 2 7 соктрыб Тецималбаст.Ст со то 4 Мејте (4.110) 116 бормат(49монне дос райтик оміттес — 160 ет. дрс дSSume() ене)	4 CONTINUE 6 CONTINUE 7 1=1.15 PADTUS(1)=[15T 3 CONTINUE	1) CONTINUE C CALCULATION OF WIMENSIMMLESS HAPIAL PHOFILES	С ПС 1 NR=].* FTN(PP)=SIGP(PP)/DFO Wach(NF)=f100(PF)-FIPS[1]/CO WCTN(PP)=ALPHMC=WACM(NR).AETAMC•EWACH FENOLADI-PONG(NUV)	I CONTINUE C SOUNCE STRENGTH EVALUATION	C DV=.250PT0(DSTG002)0Ux NPMIN=DSTG/2.0 D0 5 NH=1.* TF(NP.ER.MON.STGF(1).LE.DRMIN) G0 T0 6 DV=2.0PT051GP(ND).GFSTG01x	<pre>6 CONTINUE DS(PD1=)_D OMEGP=ARS(!/UDP(P)R)) FF(OMEGR_LE_0_0) GC TU S IPU=SOPT(TAUP(NP))</pre>	ns(rri=RHUESGenveudree7 Fs(nd)=r.5ealfaenme(r/p] 5 contlnuf 1f(hdRlnt.le.n) go fu 135 1f(hdd.lat.le.n) go fu 135 1f(hdd.ge.udu1nt) wplif(r.120)	120 FOF4AT(1H1///PAx,37HC14CUMFFPENT]ALLY-AVE4AFFD PAKAMFTF45//4x,2H 14x,4H94D145,5x,4HMACH MO,45x,5HTEMP,45x,9H1NTENSITY+5x,9HFREQUEN 2//)
	د ع	S.	64	6 2	70	75	3 4	۹. ۲	J6

. . **.**

Ą.

200

1 · · · --

SL ICE SL ICE SL ICE FF("PP", CE", "PUTVI) WEITF(A.]25)(NA.PIN(", P), MACH(LA).TEMP(NR).05(NP)
].FS(NP).FN=1.M)
125.FOCMAT(1A.3F12.4.F14.2.F13.5)

à •

٩

1

•

7

	11 (10	00 ~ (1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~	SLICE	40
	1.55(1)	(w • [= 2:4.4 • [4]	SLICE	95
ĥ	125 FOF4A	1T ([6 + 3F] 2 + 6 + E] 4 + 5 + F] 9 + 6]	SL ICE	96
	135 CONTI	3114	SLICE	16
	J		SLICE	86
	Ū		SLICE	66
	C INDEX	C OF THETA FOR SHIFLDING/DIRECTIVITY	SLICE	100
100	ں ا		SL ICE	101
	NR=4		SL ICE	102
	n=laii	(P-1)	SLICE	103
	P0 15	5 [[H=1.]5	SL ICE	104
	•		SLICE	105
105	• CALCI	MATION OF G AND ITS ZE40S	SL ICE	106
	•		SL ICE	107
	T= 3HT	THETA(11H)	SLICE	108
	43 CONTI	INUE	SLICE	109
	C1=C0)S (THE)	SL ICE	110
115	CTS0=	sc1 + C T	SL ICE	111
	•		SLICE	112
	• CALCU	JLATIUM OF G-SOUAPE	SLICE	113
	•		SL ICE	114
	62 04	Av•[=C (SLICE	115
115	に) とう	={ _6=₩ACH()) =CT) ==?/TEMP(J) =CTS@	SL ICE	116
	1F (62	5(7) "EU"() CU 10 75	SLICE	117
	20 CONTI	Juli B	SL I CE	118
	60 10) 44	SL ICE	119
	42 CONTI	INUE	SL ICE	120
126			SLICE	121
	20 10		SL ICE	122
	44 CONTI	[14UE	SLICE	123
	•		SLICE	124
		LATTOR OF ZEPOS OF G	SLICE	125
125	•		SLICE	126
	bSIG	[[TH•]] = G.	SL ICE	127
	USIS d	(11H.2)=0.	SL ICE	128
	19154	(111)=(0	SL ICE	129
,	HSI CI	[[TH.4)=0.	SLICE	130
130	991Sa	(j11.65) = 0.0	SL ICE	131
	C=41N		SL ICE	132
	12 00		SLICE	[3]
	SL OPE	7=(62(J+1)-62(J))/(FIN(J+1)-FIN(J)) Adf fi a 1 co to 31	SLICE SLICE	1.04
55.	=100d	se [N(J+])-62(J+])/SLOPE	SLICE	136
	IF (AC	DAT.GE.PIN(J).AND.POAT.LE.PIN(J.I)) GO TO 4r	SLICE	137
				HC 1
			2011CC	701
	28172		SLICE	140

201

- --

•

	210(11++VIP)=6001	SLICE	141
-	21 CONTINUE	SL ICE	142
	IF (CIP.GT.C) GO TO 4]	SLICE	641
	IF(G2(NPI),GT.4.0) GC TO 41	SL ICE	4 4 1 4 4
		SL ICE	145
]45	psic(lt+.l)=bic(i+.)	SLICE	146
	41 COBJTINUE	SLICE	147
	If ("TP-GT-2) WITE(4+12")KA+K+TH+THETC(ITH)+NTP	SL ICE	148
	150 FORMATISAMWANNING - NO. OF TURNING POINTS IS GREATER THAN 2 AT /	SLICE	149
	14H FA=13+5x+2HX=F10+1+Ex+6H1H=13+5x+6H1HE1A=F4+2+5X+4HNTP=13//)	SL ICE	150
15.		SLICE	151
-	U	SL ICE	152
	C CALCULATION OF DIPECTIVITY	SL ICE	153
-		SL ICE	154
	XOP=X/RADIUS(17H)	SL ICE	155
155	pS0FS0=1。C-S。G*X0#+C1+X0#+2	SLICE	156
	0578254811(5(114) + 5021 (+ 50850)	SL ICE	157
	CONVF=APS(1_n+FPSFU+CT/CO)	SLICE	158
	CALL CRP	SLICE	159
	0 30 IP=1 0 0	SLICE	160
140	IF (FS(IP) + LE + 0 + V) 50 TO 30	SLICE	161
		SLICE	162
		SLICE	163
	CONV2=CONV0=+2+TAUF(1F)+(ALPHT(1TH)/CO)++2	SLICE	164
	IF (****6T*1) CONV2=1.5	SLICE	165
165	IF("!!+	SL ICE	166
	D0 45 J=1•34	SLICE	167
	FC=FLOAT(F0(J))	SLICE	168
	K ≡ Ct J Z T € F C € I) E 0 / C 0	SL ICE	169
	FR=FC/FS(IP)	SL ICE	170
170		SL I CE	171
	POWFFE;.]25+FRSG+CCAv2	SL ICE	172
	IF (POWEM.GT.20.4) GO TO 45	SLICE	173
	F X DONE E X P (- POWF P)	SL ICE	174
		SLICE	175
51		SLICE	176
	1 (SHIELD(1H), 61.00) 60 10 46	SLICE	177
		SLICE	178
		SLICE	6/1
		SLICE	180
	フロードド・1 コードロードロード マンド・トロード マンド・トロード マンド・トロード マンド・トロード・トロード・トロード・トロード・トロード・トロード	SLICE	281
	TURNER AND AND AND AND AND AND AND AND AND AND	SLICE	183
	1001 - 1100		4 L C
145	45 CONTINUE		185
	3. COnstants		
		51105	
	ef Tudki	SI ICE	1 89
	E N.J	SLICE	190

:

202

- - --

10/10/77 14.30.055

;

٢.

-11000015	ור דטיון כ	74/24 OF 1=1 OF 1=2 0 0 0 1=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10/10/11	14.30.05\$
-	• 1 + 1 - 1	THIS SECTION CALCUMATES TONE CONFECTED PN	TPNI C	2
-		CDECTDAL TREFAILEDTTY CODMYCTION	TPNI C	
	, ر		1 MAL	
	د	THIS PUNCERUPE NETERMINES & SPECIPAL IMPEGNEAULTY	TPNLC	ŝ
J	ں. ر	(E.S. PURE TONE) CORRECTION FACTOR ECE VIA SECTION WIG. 3	TPNEC	÷
	ر ہ	OF THE FAA NOISE (FETTEICATION DOCUMENT INCV 17.1949) AS	TPNLC	~
		A FUNCTION OF THE UNCORPECTED 1/3 OCTAVE SUECTRUM.SPL.	TPNLC	Œ
	Ļ		TPNLC	σ
	SUP	UNITINE TPALCISPLATEOR)	TPNLC	10
	3mLu	ENSTON SPL (241+1541 F (24)+5124)+5PLP(24)+5PLPP(24)+5P(25)+	TPNLC	11
	I SH	80 (24) • f (24)	TPNLC	12
	J		TPNL C	61
	- Ini - U	114L17F SPL FLAG*	TPNLC	14
	2	1 1=1.24	TPNL C	15
15	1451 1	<pre>_ F(1) = 0</pre>	TPNLC	16
	U		TPNLC	17
	C +STEF	•••	TPNLC	18
	02	5 1=4.24	TPNLC	6
	5 S (1)	1=5PL(1) = 5PL(1-1)	TPNLC	20
26	ں ر		TPNLC	21
	C +STEF	●E (1)+1 C C	TPNLC	22
	r Cú	l∩]=5.74	TPNLC	5
	1F (1	4451511)-511-111.445.5.1 60 TO 10	TPNLC	54
		\$(1) °C1 °C1 °C1 °C1 °C1 °C1 °C1 °C1 °C1 °C1	TPNLC	52
22	;) 31	S(1).LF.0.C.AVC.S(1-1).GT.0.3) ISPLF(1-1)≖1	TPNLC	56
	IL CONT		TPNLC	27
	υ		TPNLC	82
	ر •515ء	0 4.8	TPNLC	52
	ę	25 [=].24	TPNLC	00
J.	151	SPLF(),E0,C1 60 10 20	TPNLC	ĩ
	151	1.50.24) GO TO 15	TPNLC	32
	ι	STEP 48 MUNIFILD SUCH THAT PRECEDING AND FOLLOWING	TPNLC	Ē
	U	NON-FLAGGED SOUTH PRESSURE LEVELS EMPLOYED IN AVEMAGE.	TPNLC	4 M
	- 11	r –	TPNLC	35
35	00	11 J=1.20	TPNLC	36
	- 11	z [[-]	TPNLC	16
	IF (]	[SPLF([]],E0.0) 60 TO 12	TPNLC	38
	11 201	1 I NUE	TPNLC	39
	12 SPLI	• = SPL([1])	TPNLC	04
6 L)	ldi	= [•]	TPNLC	[7
	00	13 J=[4].24	TPNLC	42
	1 E ()	[SPLF(J],EQ.A) 66 IN 14	TPNLC	6 4
	13 CONT	31 N 1	TPNLC	4
	H	24	TPNLC	4 0

.

203

÷.
4 N	14 2b1() = 2b7()	TPNLC	46
	SPLP(I) = (SPLL+SPUU)/2	TPNLC	47
	G0 10 25	TPNLC	48
	15 SPIP(24) = SPI(23)+S(23)	TPNLC	0 7
		TPNLC	50
•		TPNIC	S
÷			
	C	J JNAI	ים היו
	C *STEP 5*	TPNLC	54
		TPNLC	52 2
ŭ		TPNLC	56
5		TPNIC	57
	SP(24) = SP(24)		
	υ	TPNLC	59
	C #STEP 6#	TPNLC	60
60	D0 35 I=3+23	TPNLC	61
	35 SHAR(I) = (SP(I)+SP(I+1)+SP(I+2))/3.	TPNLC	62
	Ŭ	TPNLC	63
		TPNI C	4
L			
5	(2) = (2) = (2)		01
	SPLPP(3) = SPL(3)	TPNLC	67
	DO 40 I=4.24	TPNLC	68
	40 SPLPP(I) = SPLPP(I-1)+SHAP(I-1)	TPNLC	69
	υ	TPNLC	70
70	C +STFD R+	LINGT	12
			: -
			u r - r
			2;
		I PNL C	*
	C *STEP 9 AND 10*	TPNLC	75
75	CMAX = V.O	TPNLC	76
	D0 65 J=1.24	TPNLC	17
	IF(1.6F-11.AND.1.4E-21) 60 TO 50	TPNLC	18
	C 4FREN SAAHT NO FREG&SSAAHT#	L INGL	79
			.0
80		TPNLC	8
	60 10 55	TPNI C	82
	C *500 ×FRFQ =5000HZ*	TPNLC	83
	50 TC2 = F(1)/3-	TPNLC	8 4
	TC3 = 6-666	TPNL C	85
AC	55 TE(E(1), 1 T, 3, 0) GO T() AS	LINUT	99
		TPNIC	69
		TPNI C	88
		TPNI C	đ
	6. CMAX = AMAX1 (CMAX.1C3)	TPNI C	06
0.0	AS CONTINUE	T INGI	16
2	() () () () () () () () () () () () () (L INGT	60
			:5
		1 DNI C	40

4.0 REFERENCES

- Gliebe, P.R., "High Velocity Jet Noise Source Location and Reduction: Task 2 Supplement - Computer Program for Calculating the Aeroacoustic Characteristics of Jets From Nozzles of Arbitrary Shapes," General Electric Company, FAA-RD-76-79, 11a, May, 1978.
- Mani, R. (Ed.), "High Velocity Jet Noise Source Location and Reduction: Task 2 - Theoretical Developments and Basic Experiments," General Electric Company, FAA-RD-76-79-II, May, 1978.
- 3. Abramowitz, M., and Stegun, I.A. (Ed.), <u>Handbook of Mathematical Func-</u> <u>tions</u>, National Bureau of Standards Applied Mathematics Series 55, June 1964 (1972 printing).
- 4. Anon, "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," SAE ARP 866, 1964.
- 5. Anon, "Definitions and Procedures for Computing the Perceived Noise Level of Aircraft Noise," SAE ARP 865A, August 15, 1969 Revision.
- 6. Lee, R., Kendal, R.M., et al, "Research Investigation of the Generation and Suppression of Jet Noise," <u>General Electric Company</u> Contractor Report No. NOAS 59-6160-C, January 1961.
- Anon, "Noise Standards: Aircraft Type Certification," FAA Part 36, Vol. III, Appendix B, 1969.

5.0 CONCLUDING REMARKS

1 2

Two computer programs capable of predicting the jet noise of high velocity exhausts from nozzles of arbitrary geometry are presented. The computerized procedures presented herein provide reasonably accurate methods of predicting maximum sideline PNL as well as EPNL (with and without flight effects) over the range of flow conditions and observer angles of interest.

206

a same in

3

