

$\stackrel{7}{7}$

FIELD TESTS OF IN-SERVICE MODIFICATIONS TO IMPROVE PERFORMANCE OF AN ICEBREAKER MAIN DIESEL ENGINE

E.A. Kasel
C.L. Newton
R.A. Walter (DOT/TSC)
/ Colt Industries
, Fairbanks Morse Engine Division 701 Lawton Avenue Beloit WI 53511

AUGUST 1977

FINAL REPORT
AD No.
DDC FILE COPY

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC
THROUGH THE NATIONAL TECHNICAL
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

```
            Prepared for
U,S, DEPARTMENT OF TRANSPORTATION
            U.S. COAST GUARD
Office of Research and Development
    Washington DC 20590
```


NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The engine modifications were newer style pintle type fuel inf tor nozzles, shimmed injection pumps and advanced injection timing. These modifications decreased fuel consumption 1% to 3% depending on speed and load, reduced CO and THC up to 43% and 88% respectively and increased NO x up to 38%. Smoke emissions decreased 50% at low-load engine conditions and 5% at high-loads.

Form DOT F 1700.7 (8-72)
Reproduction of completed page authorized
in
410453

PREFACE

As part of a Coast Guard program to improve efficiency and reduce the emissions of diesel engines, field tests of proposed modifications to the FM $38081 / 8$ engine were performed on the USCGC Mackinaw (WAGB-83). Fuel economy and emissions of an unmodified and modified engine were measured while the ship performed routine maneuvers.

This work was performed under contract to the Department of Transportation, Transportation Systems Center for the U.S. Coast Guard, Office of Research and Development. The Coast Guard project officers for R\&D and Engineering were Lcdr. J. Sherrard, Lt. T Marchevko and Lt. R. Gulick. The TSC technical monitor was R. Walter. The efforts of Scott Environmental Technology Inc., and the crew of the USCGC Mackinaw especially Captain Garnett, CO, and Lcdr. Scott Duncan, EO, are greatfully acknowledged.

metric conversion factors

TABLE OF CONTENTS

Section Page

1. SUMMARY AND CONCLUSIONS 1
2. RECOMMENDATIONS 2
3. INTRODUCTION 3
4. EXPERIMENTAL TESTS 3
4.1 Exhaust Gas Emissions Measurement 3
4.2 Smoke Measurements 6
4.3 Fuel-Flow Measurement 6
4.4 Other Measurements 6
5. TEST RESULTS 11
5.1 Baseline Engine Test 11
5.2 Engine Modification 12
5.3 Modified Engine Tests 12
6. TEST RESULTS AND DISCUSSION 13
6.1 Smoke Measurements 17
6.2 Fuel Consumption Measurements 19
APPENDIX A - FH REPORT ON WEAR EFFECTS WITH 3-HOLE AND PINTLE NOZLES 21
APPENDIX B - DESCRIPTION OF THE EXHAUST GAS ANALYSIS SYSTEM AND INSTRUMENTATION FOR THC, CO, NO/NOX, O_{2} AND CO_{2} 43
APPENDIX C - EXHAUST SMOKE MEASUREMENTS 47
APPENDIX D - SAMPLE RAW DATA FROM 8-26-76 TEST CRUISE NUMBER 2 50
APPENDIX E - TEST SHIP DESCRIPTION AND ENGINE TEST PROCEDURE. 73
APPENDIX F - TABLE OF TEST RESULTS OF THE FOUR CRUISES AND THE CALCULATED EMISSIONS OF THESE CRUISES 77
APPENDIX G - REPORT OF IIVENTIONS 90

LIST OF ILLUSTRATIONS

Figure Page

1. Emissions Measurements Instrumentation 4
2. Exhaust Gas Sample Instrumentation 5
3. Opacity Meter 7
4. Opacity Meter - Extension 8
5. Smoke Meter Controls 9
6. Fuel-Flow Measuring Device 10
7. Diesel Engine Carbon Monoxide Emissions - USGC Mackinaw (WAGB-83) 14
8. Diese1 Engine Hydrocarbon Emissions - USGC Mackinaw (WAGB-83) 15
9. Diesel Engine Nitrogen Oxide Emissions - USCG :Aackinaw (WAGB-83) 16
10. Diesel Engine Smoke Emissions - USCG Mackinaw (WAGB-83) 18
11. Diesel Engine Fuel Consumption - USCG Mackinaw (WAGB-83) 20
LIST OF TABLES
Table Page
12. EXHAUST EMISSIONS CO, THC AND NOx \% CHANGE AND MASS CHANGEFROM UNMODIFIED ENGINE VERSUS MODIFIED ENGINE WITH PINTLENOZZLES13

LIST OF SYMBOLS

AIDC	After Inner Dead Center
AIDC LC	After Inner Dead Center of Lower Crankshaft
Alt. Resh.	Atlantic Research
ARC	Atlantic Research Corporation
C	At
B1.	Blower
B.M.C.V.	Before Minimum Clearance Volume
BMEP	Brake Mean Effective Pressure
BMV	Brake Specific Fuel Consumption Minimum Volume
BSFC	Carbon Monoxide
CO	Carbon Dioxide
CO 2	Cylinder
Cyl.	Degrees
Deg.	Degrees Fahrenheit
of	Department of Transportation
DOT	Engine
Eng.	Flame Ionization Detector
F.I.D.	Fairbanks Morse
FM	Inches Per Hour Per Brake Horsepower Hour
g/bhp-hr	HC

Indiv.	Individual
INJ.	Injection
J.W. Temp.	Jacket Water Temperature
KW	Kilowatts
Ltd.	Limited
L.0. Temp.	Lube 0il Temperature
MAX.	Maximum
Min.	Minute
min./in.	Minutes Per Inch
Mod.	Modified
M.S.A.	Mine Safety Appliances Company
N.D.I.R.	Non-Dispersive Infrared
	Number
	Nitrogen Oxide
2	Oxygen
P.C.	Port Closure
\%	Percent
\#/bhp-hr	Pounds Per Brake Horsepower Hour
\#/hr	Pounds Per Hour
P.0.	Port Opening
PPM	Parts Per Million
PSI	Pounds Per Square Inch
R. Bosch	Robert Bosch
rpm	Revolutions Per Minute
RTV	Room Temperature Volcanizing
SRI	Southwest Research Institute
TECO	Thermo Electron Corporation

Temp.	Temperature
THC	Total Hydrocarbons
TSC	Transportation Systems Center
USPHS	United States Public Health Service
V.B.	Variable Beginning
V.E	Variable Ending

ix/x

1. SUMMAARY AND CONCLUSIONS

The bjective of these tests was to verify, through actual field tests, the effectiveness of proposed engine modifications to improve engine efficiency and reduce exhaust emissions of the 38D8-1/8 Fairbanks-Morse opposed-piston engine. These modifications, which had previously been tested in the laboratory, consisted of newer style pintle-type nozzles, shimmed injection pumps and advanced injection timing.

These tests were conducted on the \#3 Main Diesel Engine of the USCGC Mackinaw (WAGB-83). Baseline (unmodified) and modified tests were completed while the ship performed routine maneuvers of engine start-up, idle, undocking, docking, and steady-steaming. Gaseous and smoke emissions, fuel consumption, and other important engine parameters were measured as a function of engine speed and load.

Based upon the results of these tests, we have reached the following conclusions:
-1- Gaseous emissions of carbon monoxide (CO) and total hydrocarbons (THC) were reduced up to 43% and 88% respectively with the modified engine. Oxides of nitrogen (NOX) increased up to 38% after the modifications.
-2- Smoke emissions, already low, decreased 50\% at low loads and 5\% at high loads with no significant change through the midpower ranges. /
-3- Fuel consumption with the modified engine decreased 1% to 3% depending on speed and load conditions.
-4- For the Mackinaw, these fuel economy improvements would save $\$ 1,050$ to $\$ 3,150$ per year for all main engines based on a main engine fuel usage of 300,000 gallons per year at $35 \$$ per gallon.

The Glacier's engines would also be expected to show an improvement in fuel consumption after modification. However, since the Glacier's engines are configured slightly different from the Mackinaw's, the magnitude of the savings cannot be demonstrated from the tests reported herein.
-5- It has been previously demonstrated (Appendix A) that the pintle nozzle will increase cylinder liner life up to 25% because of the decreased "washing" of lubricating oil from the liner wall with excess unburned fuel. Fuel oil dilution of the lubricating oil should also be significantly reduced.
-6- The pintle nozzle maintenance costs are lower because of reduced parts costs ($\$ 11.80$ vs $\$ 78.50$ for the needle and sleeve plus gaskets of the old style nozzle) and 25% less rebuilding time.
-7- The lower smoke (particulate) and THC emissions will decrease the buildup of stack deposits resulting in fewer stack fires.
-8- The engine jacket water and lube oil keep warm temperatures are important and were considered adequate on the test engine. The higher temperatures help reduce white smoke at start-up and during warm up idle. High keep warm temperatures will reduce total engine smoke emission during start-up and initial engine loading. Engine warm up idle of more than several minutes serves no useful purpose other than convenience when the keep warm temperatures are adequate.
-9- Although no cost savings can be placed on the air quality improvements, the pintle nozzles will reduce white smoke at low load tperations and black smoke during load acceptance. This will reduce the likelihood of smoke problems in air pollution-sensitive areas.
-10- The costs for modification of a ten-cylinder engine are $\$ 6,111.32$ for hardware, tools and spare parts. If the complete modifications were performed by FM personnel, it would take them approximately 10 man days at a cost of $\$ 250.00$ per day or $\$ 2,500.00$ per engine. These figures are as of the date of this report.
-11- All gaseous emission measurement instruments performed nominally
-12- Accurate smoke data were difficult to obtain because of smoke interference from other stacks and thermal-distortions of the smokemeters.
-13- The volumetric (3.5 gallons) fuel measuring device was adequate for these tests, but required long measuring times at low-speed and load conditions.
-14- The engine load and speed test conditions were difficult to reproduce and hold steady over the time required for data collection, especially at the low-speed and load conditions that required long fuel-flow sampling times.
2. RECO:IMENDATIONS

The following recommendations are made:
The 38D8-1/8 engines in the fleet be modified with the pintle nozzle, injector pump shims, and changed injection timing. These modifications could be accomplished as part of normal engine maintenance. (However, this will require ships to maintain duplicate stocks of injectors until all engines are modified.) The shims and timing changes apply only to engines having the .625" lift camshaft.

Improved instrumentation should be developed to measure and record engine speed, load and instantaneous fuel consumption.

Abstract

A follow-up effort with the Mackinaw should be maintained to assure the modified engine is performing adequately and determine any long term improvements in smoke, injector maintenance and lubricating oil condition.

3. INTRODUCTION

The FM 38D8-1/8 engine in various configurations provides main propulsion on some icebreakers and coastal buoy-tenders. This engine has been identified as emitting, in some instances, unacceptably high levels of white and black smoke. Prior to the tests reported here, laboratory tests of a ten cylinder engine (2000 hp at 810 rpm) configured similar to an icebreaker engine, were conducted at Colt Industries. These tests identified methods of controlling the smoke emissions while improving engine efficiency (Ref. 1). From the results of these laboratory tests, certain engine modifications were selected for field testing to verify their effectiveness under actual operating conditions. The USCGC Mackinaw (WAGB-83) was selected as the test cutter. Baseline (unmodified) and modified tests were performed on the \#3 main diesel engine while the ship was performing routine operations of start-up, idle, undocking, docking, and steady-steaming.

4. EXPERIMENTAL TESTS

Carbon monoxide (CO), carbon dioxide $\left(\mathrm{CO}_{2}\right)$, total hydrocarbons (THC), oxides of nitrogen (NOX) and oxygen $\left(\mathrm{O}_{2}\right)$ as well as smoke opacity, were measured in the exhaust of the USCGC Mackinaw \#3 main diesel engine. Fuel consumption was determined by timing the usage of a known volume of fuel. The ship motor room power meter (generator KW) and tachometer (engine rpm) were used for logging engine load and speed. Engine speed was verified by hand-tachometer in the engine room. Other logged engine room data included; jacket water and scavenging air temperature and pressure, exhaust temperatures (individual cylinder and combined), and injection pumps rack-readings.

4.1 EXHAUST GAS EMISSIONS MEASUREMENT

The emissions measurements performed by Scott Environmental Technology Inc. were continuous in real-time. The instrumentation for these measurements was located in the ship's log office (Fig. 1). An exhaust gas sample was drawn from the \#3 engine stack at a point approximately ten feet above the main deck (Fig. 2). A detailed description of the exhaust gas analysis system and associated instrumentation is given in Appendix B. Instrument readouts were on strip-chart recorders also located in the \log office.

FIGURE 2. EXHAUST GAS SAMPLE INSTRUMENTATION

4.2 SMOKE MEASUREMENTS

Two smoke meters were used for these tests. The first, the USPHS smoke meter, attaches to the top of the stack and is the recommended EPA diesel smoke measuring device. The second, an Atlantic Research Inc. in-line opacity meter measures the smoke density in the stack. Both of these meters work on the principle that light can be attenuated due to the absorption and scattering of the light by particulate matter in an optical medium such as stack gas. These meters have a light source, appropriate optics and a photo-detector. The stack gas is made to flow between the light source and detector. The major difference between the two smoke meters used here is that the USPHS meter has an incandescent bulb for a light source whereas the Atlantic meter uses a light-emitting diode (LED) for its source.

In order to adapt these two meters to the \#3 main engine, a stack extension was fabricated and bolted to the top of the stack (Appendix C). This extension served two purposes:
-1- provided a housing for the in-line meter;
-2- raised the level of the top-of-the-stack meter (USPHS) so that smoke from other engines would not drift through the USPHS smoke meter optical path and give erroneous readings

The smoke meter and extension are pictured in Figures 3 and 4. The controls for these meters were located in the passageway between the upstack area and the log office (Fig. 5). Readout was by strip chart recorder also located in the \log office. A sample strip chart recording is included in Appendix C. The smoke readings are in \% opacity (\% opacity $=100 \%$ \% transmittance).

4.3 FUEL-FLOW MEASUREMENT

The fuel-flow measuring device fabricated for these tests held 25 pounds of fuel (Fig. 6). Fuel consumption was measured with this device by timing the usage of the 25 pounds. In operation, when the engine was stabilized at the test speed and load, valves were turned such that fuel usage was from the 25 pound tank. Sight tubes with reference marks were located at the top and bottom of the fuel-flow measuring device (25 pounds between marks). A stopwatch was started and stopped as the fuel level passed these reference marks.

4.4 OTHER MEASUREMENTS

Previously mentioned measurements (Section 4) of engine speed, load, and engine operating conditions were hand-recorded on sheets by test personnel in the motor room and engine room (Appendix D). These measurements were recorded as a function of time-of-day for later correlation to other experimental data.

FIGURE 3. OPACITY METER

FIGURE 5. SMOKE METER CONTROLS

FIGURE 6. FUEL-FLOW MEASURING DEVICE

5. TEST RESULTS

Baseline unmodified engine tests were performed during two cruises on August 25 and August 26, 1976. The engine was modified from August 27th through August 30th. Modified engine tests were conducted on September 1 and 2. For all engine tests, the instrumentation was warmed-up for approximately one hour before engine light-off. (Some instrumentation was left on continuously). Calibration gases were used to periodically calibrate the gaseous instrumentation. The USPHS and in-line smoke meter were zeroed and full-scaled before each test run. In addition, the USPHS smoke meter was calibrated with neutral density filters after its installation. (The in-line meter was not accessible for a test with the filters). Each engine speed and load condition was maintained a sufficient time to allow engine operating conditions to stabilize and a representative record of emissions to be obtained. The slower fuel-flow readings determined the time spent at each speed/ load test point. The readings in the motor room of speed and load were at five minute intervals or when speed and load changed. (During docking and undocking, rapid changes in speed and load precluded reliable engine data and any fuel measurements.) Detailed test procedures can be found in Appendix E.

5.1 BASELINE ENGINE TEST

The baseline engine tests were performed on August 25 and August 26. The \#3 main engine used for the tests was reported by the crew to be in the best operating condition of all the main engines. This engine had acquired 980 hours of operating time since overhaul the previous summer. The operating condition was verified by the relatively low smoke readings. No changes or adjustments were made to the engine for the baseline tests, aside from adding the fuel measuring device and stack extension. The unmodified engine condition and settings were as follows:

- Engine: Number 3 main diesel engine S/N 833861 per contract TCG24101, right hand engine with right hand rotation, rated 2000 horsepower at 810 rpm, built in 1943 by Fairbanks-Morse.
- Engine had operated 25,020 hours.
- The engine had acquired 980 hours since the last overhaul. This overhaul consisted of replacing compression rings, all main bearings, one cylinder liner and connecting rod, two pistons, the fuel and oil pump, governor, and six bearing caps and rebuilding injection nozzles.
- Injection timing was found to be different on the two sides of the engine at 31.3 and 33.7 degrees after inner dead center of the lower crankshaft.
- Lube oil consumption since overhaul was 1345 gallons during 980 hours. The majority of this oil was believed lost by leakage in the engine external oil system.
- Engine keep warm temperatures:

```
Jacket water - 160'F
Lubricating oil - 120}\mp@subsup{}{}{\circ}\textrm{F
```

The unmodified engine power components of this engine consisted of:

- Blower-scavenged engine cylinder liners.
- Mexican-hat pistons with 13.6:1 compression ratio at a cranklead of 12 degrees.
- Camshaft with .625 inch lift.
- Injection pumps with $1 / 2$ inch plunger having variable ending helixes.
- FM 3-hole injection nozzles with . 0225 inch diameter orifices.
- Blower with 27 inch long rotors.
- Blower drive gear ratio of 2.0125:1.
- Compression rings with crown face (FM part No. 16704845).

5.2 ENGINE MODIFICATION

Engine modifications were made during August 27 th through August 30th with the help of the Mackinaw crew and three service repairmen from FairbanksMorse.

The FM 3-hole injection nozzles and fuel oil drain headers were removed from the engine and pintle 10° gasketless type nozzles (P / N 16705663) along with mounting hardware (catalog No, 201.14) and new fuel drain headers were installed in the engine. All fuel injection pumps were removed from the engine and shimmed to make the barrel . 03 inch above the plunger height. The injection timing was checked and set to give high-cam 27 degrees after inner dead center of the lower crank. Aside from these changes all other engine operating conditions and settings were as for the unmodified engine.

The pintle nozzle has historically and during the laboratory tests (Ref. 1) demonstrated better fuel injection characteristics, especially at low speed and load conditions. This nozzle minimizes post-injection fuel dribble that contributes to high hydrocarbon and smoke levels. This unburned fuel can also dilute the lube oil. The laboratory tests also indicated that the shimmed injection pumps and adjusted injection timing increased the rate of fuel injection (decreased fuel injection time) and gave better performance in variable speed, variable torque applications.

5.3 MODIFIED ENGINE TESTS

Modified engine tests were performed during two cruises on September 1 and 2, 1976. All test instrumentation and procedures were the same as the unmodified tests.

6. TEST RESULTS AND DISCUSSION

Gaseous emissions concentrations of $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{O}_{2}$, NOx and THC at the various test points along with the printout data from the emissions computations for each point of the four test runs are in Appendix F. Of these data, the most accurate are the emissions concentrations and the engine rpm. The gaseous emissions readings and smoke readings in Tables $\mathrm{F}-1$ through $\mathrm{F}-4$ started after the clock time with the test point number. The engine rpm readings are within ± 2 percent and, therefore, an air flow computation was used to determine the accuracy of the engine load and/or fuel flow. The air flow was calculated by using the percent of carbon dioxide and oxygen in the exhaust gas in combination with the fuel-flow. If this computed air flow agreed with the engine-driven scavenging air blower capacity at the measured engine rpm, the data was considered relatively accurate. When the air flow data did not agree, the load and/or fuel flow were adjusted. The adjustment was determined by the measured percent carbon dioxide at that test point compared to other test points that did cross-check within ± 2.5 percent.

The specific emissions (Tables F-5 to F-8) are reported in grams per kilowatt hour as the generator efficiency curves at various shaft speeds are not known. Since test results of two engine configurations are being compared to each other and the loading equipment was the same for both test configurations, leaving the engine load in kilowatts and emissions in gm/kw-hr is convenient and most accurate. However, the computer format used for the data reduction in these tables is based on engine brake horsepower. In these tables where brake horsepower occurs, kilowatts are to be substituted. The calculated BMEP in the Appendix F must be multiplied by the horsepower to kilowatt conversion factor of 1.341 and divided by the generator efficiency, if known, at the generator output and speed. For instance, at a load of $1060 \mathrm{kw}, 735 \mathrm{rpm}$ and an assumed generator efficiency of .943 , the bmep would be $(55.07 \times 1.341) \div .943=78.31$ psi. The percent torque then would be 78.31 psi divided by the engine rated bmep of 84.8 psi , which equals 92.3%.

The gaseous emissions of CO, THC and NOX are showr in plotted form (Figures 7, 8 and 9), in grams per kilowatt hour versus engine generator load in kilowatts for the modified and unmodified engine. The percent change and mass change in emissions at no load and each 200 kilowatt increment are tabulated below.

TABLE 1
EXHAUST EMISSIONS CO, THC AND NOX
\% CHANGE AND MASS CHANGE FROM UNMODIFIED ENGINE VERSUS MODIFIED ENGINE WITH PINTLE NOZZLES

Kw	0		200		400		600		800		1000	
GAS	$\%$	$\mathrm{gm} / \mathrm{hr}$										
C0	-43	-1560	-38	-600	-25	-280	-15	-150	0		0	
THC	-88	-4054	-75	-1280	-83	-1200	-72	-960	-66	-960	-58	-960
N0X	+21	+213	+38	+1500	+17	+1480	+8.5	+1080	+8.9	+1360	+8.6	+1500

$$
\text { Legend: } \begin{aligned}
& \triangle \text { Unmodified Tests } \\
& \bigcirc \text { Modified Tests }
\end{aligned}
$$

Con

FIGURE 7. DIESEL ENGINE CARBON MONOXIDE EMISSIONS - USCG MACKINAW (WAGB-83)

FIGURE 8. DIESEL ENGINE HYDROCARBON EMISSIONS - USCG MACKINAW (WAGB-83)

FIGURE 9. DIESEL ENGINE NITROGEN OXIDE EMISSIONS - USCG MACKINAW (WAGB-83)

The modified engine shows a significant reduction of $C O$ at the lawer engine loads and speeds, Figure 7. This reduction is due to the better atomization of the fuel oil with the pintle nozzle and the faster rate of injection at the beginning of injection, particularly at low engine speeds. The reduction in CO at no load, idle speed was from 3610 to 2050 grams per hour.

The THC emissions show a drastic improvement throughout the engine load and speed range with the modified engine, Figure 8. The change in THC varied from an 8 fold improvement at idle-no load, to a 3 fold improvement at 1000 kilowatts. This is a reduction of over 4000 grams per hour ($8.8 \mathrm{lbs} / \mathrm{hrs}$.) at no load and 960 grams per hour (2.1 lbs/hr.) at 1000 kilowatt load. The reduction can be attributed to the faster rate of injection, better fuel atomization and absence of injection nozzle dribble.

At the higher loads the THC with the pintle nozzles is the same as that obtained during simulated laboratory test (Ref. 1). The $.6 \mathrm{gm} / \mathrm{kw}$-hour is about $.4 \mathrm{gm} / \mathrm{bhp}-\mathrm{hr}$. The specific THC emissions start increasing with reduced load below 40 psi bmep, the same as the lab test. Above 40 psi bmep, the specific emissions of THC are flat with the pintle nozzles.

The NOx specific emissions are higher for all comparable test points as shown in Figure 9. The higher NOx readings are generally indicative of a better performing engine. The faster rate of injection at pump port-closure shows up as a larger increase in NOx at low engine speed and loads. The laboratory tests showed a 10% to 30% increase in NOx with a constant speed, variable load test. Part of the increase reported here may be due to the unmodified engine injection timing being 2.7 degrees late on one side of the engine (33.7° instead of 31°).

6.1 SMOKE MEASUREMENTS

The exhaust smoke measurement during the test are shown in Appendix D. The smoke numbers on the computer printout sheets are \% opacity. Figure 10 is a comparative plot of the smoke versus kilowatts recorded by USPHS smoke meter during the four test runs. The in-line meter results were not reliable because of thermal distortions. The idle and light load is about one-half with the modified engine, while no significant difference was noted above 400 kw load. It should be pointed out that under some circumstances the measuring arrangements allowed smoke from other engine stacks to pass through the opacity rings. The stack was 16 inches in diameter while the opacity ring was 30 inches in diameter. Therefore, the smoke reading may be lower than recorded. It is doubtful that the smoke readings will exceed 10% opacity, except following load changes and overloaded conditions. The idea? condition for collecting smoke data would be all engines stopped except the test unit. (However, this ideal condition would not be representative of actual ship operation.) Laboratory tests gave full torque, variable speed smoke readings of less than 7% opacity.

It was noted that the stack turned blue as the load increased, indicating lube oil vapor. This vapor could be coming from the engine or from the heating of the long exhaust stack. Every attempt should be made to determine exact lube oil consumption rates of the various engines. One gallon of oil should be sufficient for 2 to 4 hours of operation. If more than one gallon of oil per 2 hours is being used by the engine, we suspect that one of the following is at fault.

- Worn oil rings or flat-faced type compression rings. Replace with latest style barrel face rings.
- Oil leakage past the upper liner to cylinder block fit. Replace liner to block seal ring.
- Tappet oil drain lines plugged or broken allowing oil to drain into fuel oil or get in engine air manifold.
- External oil leaks.
- Start and stop operation where lube oil leaks past upper pistons. Bar the engine over with air five minutes after each engine shutdown.

The subject test engine had lube oil leaking past the upper liner to block seals. Early FM engines had no seal ring between the upper cylinder liner and block fit. Later engines had an "0" ring which hardened with time. Present production engines have an improved "0" ring compound. This "0" ring is furnished for all service orders of liner to block "0" ring seals. The latest " 0 " ring is light in color while the earlier ring, which should not be used, is black.

6.2 FUEL CONSUMPTION MEASUREMENTS

The test results gave an improvement in fuel consumption of 1 to 3 percent with the modified engine as shown in Figure 11. These results are as expected considering the increase in the NOx gaseous emissions. Part of the improvement may be due to the late injection timing of the unmodified engine mentioned previously. The laboratory simulated engine (constant speed, variable load) tests gave fuel consumption improvements of less than 1% when all adjustments and settings were as required.

We noticed a reduction in injection pump racks for the same engine load on the modified engine. This is mainly due to the decrease in injection pressures associated with the pintle type nozzles as compared to the holetype injector.

FIGURE 11. DIESEL ENGINE FUEL CONSUMPTION - USCG MACKINAW (WAGB-83)

APPENDIX A

FM REPORT ON WEAR EFFECTS WITH
3-HOLE AND PINTLE NOZZLES

COLT INDUSTRIES
FAIRBANKS MORSE INC. - BELOIT, WISCONSIN

INSPECTION REPORT

ON THE 38D8-1/8 ENGINE INVESTIGATION
FOR CANADA STEAMSHIP LINES, LTD.
1966 SEASON

Circulation:
W. Johnson, Canada Steamship Lines Ltd.
R. Harrison, " "
L. P. Beaulieu, Robert Morse Corp.
J. H. McClure, "
L. F. Collier " " "
J. W. Stewart, " " "
C. I. Allen, Fairbanks Morse (Canada) Ltd.
D. R. G. Smith, " " "
J. C. Huntington, Fairbanks Morse Inc. (Beloit)
W. M. Fowden,
C. L. Newton,
F. K. Troughton,
P. H. Brown,
R. O. Montenero,
R. H. Beadle,
E. L. Dahlund,
C. P. Shaughnessy,
E. A. Kasel,

Date: May 1, 1967

INTRODUCTION

An inspection of some of the model $3808-1 / 8$ Main Propulsion Diesel Engines in vessels of the Canada Steamship Lines was made at the end of the 1966 seaway season. This inspection was to study the effect of changes in components and operating conditions on cylinder, piston, and injection nozzle conditions. These changes were agreed on at the beginning of the 1966 season by representatives of CSL, FM Beloit, FM Canada, Robert Morse Corporation and Imperial Oil Company of Canada.

The findings indicate that while no improvement has been experienced in cylinder liner wear rate with standard iron liners, including the pocket, the projected wear life requirements of CSL (20,000 hours) can be obtained with chrome plated liners, standard pistons and rings. However, it is significant to note that there has not been a single engine failure due to main power components in any of the vessels with $38 \mathrm{D} 8-1 / 8$ engines. In fact, engines have been in operation for some 6000 hours with no more than a top ring replacement on the lower pistons. There has been no significant contamination of the lube oil inspite of a pocket in the liner bore now up to maximum of . 057 inches in one cylinder.

Fuel injection nozzle tips applied with modified adapters show none of the tip face errosion evident in the previous seasons.

The general condition of the engincs was somewhat carbonaceous, particularly the pistons. Although there was no evidence that this effect had caused rouble or caused any of the piston rings to be stuck or gummy, it was considered unfortunate that another brand of lubricating oil had not been used to provide comparative results as had been planned. Analysis of the lube oil showed no significant contamination nor treds in wear rate. Table i shows lube oil consumption, viscosity, and iron or chrome content as determined from the lube oil sample analysis.

Fuel oil analysis showed a better control of sulfur content; this being half of the value of samples taken in 1965.

While it can not be claimed that the problem of abnormal cylinder liner wear as shown by engines in the CSL vessels has been solved, it is considered that the program, as set out at the beginning of the season, has been fully accomplished, and has provided valuable information for the continued development of the 38D8-1/8 engino, and other engines of our manufacture.

ANALYSIS OF INSPECTION

Ships Inspected: The ships inspected at the end of the 1966 seaway season included the following:

1. M/V Manitoulin at Nindsor
2. M/V Fort Chambly at windsor
3. M / V Fort $S t$. Louis at llamilton
4. M/V Saguenay at Contre' Coueur
5. M/V Simcoe at Montreal
6. M/V Iroquois at Kingston

Enginc Operation: It appears from the ships logs that throughout the season, loading, exhaust temperature, jacket water outlet temperature, and lube oil temperature have been within the limits specified in the program. Port plugging has been evident in some vessels as shown by the high exhaust temperatures and scavenging pressures recorded on the logs. Load sharing appears to have improved since our visit to the M/V Saguenay in May.

CYLINDI:R LINER WEAR RATE

A comparison of average liner wear rates has been made to show the trends under the various combinations of liners, rings, and nozzles. This data is shown in Table II and in Figure l.

In some engines, readings were taken in liners which had becn charted last year to note trends in wear rates. These showed a gauge datum discrepancy. This was corrected by splitting the average difference between readings taken in the unworn part of the liner.

Iron Liners with Ferrox Rings: On the M/V Saguenay, readings from the original liners have been compared with those from liners fitted at the beginning of the 1966 season. In the pocket, there is no reduction in wear. At 006 in. per thousand hours, it must be considered as heavy. Readings from No. 3 engine, opened for the first time this year, did not show any variation in wear pattern from that on the No. 1 and 2 engines. It is therefore concluded that the nozzle holder modifications have not been significant in eliminating the pocket.

	ENGINEERING REPORT FAIRBANKS MORSE INC.		sheer 3 or	Psoze	3
			FILE numien		
	aefzaence NUMEEER		${ }^{\text {date }}$ May ${ }^{\text {a }}$ - 1967		
			$\begin{array}{\|c\|} \text { Pacpaned } \\ \text { Iy } \\ \text { V.T. Stone } \end{array}$		
	sualect	CANADA STEAMSHIP LINES	APPRoved		

In the fort $S t$. Louis, No. 2 engine, the readings taken at the end of the 1965 and 1966 scasons show an increase in wear rate in the area above and below the combustion chamber but not in the pocket. The readings from No. 4 engine appear to show less wear in all areas except the pocket.

In the fort Chambly, the wear rate in the athwart ships combustion chamber is as high as that in the pocket on the engines with Bosch type nozzles.

Iron Liners with Chrome Rings: With this combination, there appears to be a 50 percent reduction in wear rate in all areas except the pocket where the reduction is only about 25 percent. This combination has not been considered successful because of the condition of the rings at the time of disassmbly.

Chrome Liners with Ferrox Rings: Wcar rates with this combination in the engines of the Fort $S t$. Louis and Fort Chambly comparc very closely, but show a somewhat higher rate in the upper end of the cylinder when compared with similar readings from engines in the M / V IroQuois having oil bath filters while the fort Chambly and Fort St. Louis have mesh pancl filters.

On engincs on which filter dog houses had a considerable amount of dirt inside them, the lower cylinder wear rate was approximately 35 percent of the rate of the upper end. The chrome plated cylinders showed far less wear than the black iron liners and showed less tendency to form the pocket. Wear rates for the two seasons on the fort $S t$. Louis engine were not significantly different.
Gencral Condition of lincrs: Scuff marks, in some cascs covered
by dark brownsh varnish, appeared in quite a number of both the
iron and chrome liners. There was no patern to the patches nor
any reason to cxplaintheir presence. As the rings did not have
any scuff marks, or evidence of blow-by, it was not considered
that the scuff marks on the liners had produced any adverse
affect on the cylinder efficiency.

PISTONS ANO PISTON RINGS

A comparison of the condition of the pistons, piston rings and cylinder liner surfaces is given in Table III.

Pistons and rings were generally in good condition. Crowns were clean but had a pattern of red ash down stream of the injection slot on the edge of the crown. No significance has been attached to this, although analysis of the ash indicated that it was essentially a sodium salt. Number 1, 2 , and 3 piston ring, grooves showed a considerable build up of hard carbon in the bach of the rings. The No. 4 groove was gencrally clean. There was no evidence to show that this carbon had interfered with the freedom of the rings and their seating. The piston skirts had large areas of a hard lacquered carbon with only a small area of relicf on the thrust side. The more lightly coated pistons showed port marks indicating that this lacquer could be caused by blowdown of adjacent cylinders.

Piston ring groove wear was fairly gencrally evident, but in no case did it indicate that it had becn the cause of bad seating, blow-by or ring failure. Piston ring scat witness was quite varied, in many cases showing an inncr and outer annular mark. This may be duc to deflection of the piston groove ledge and the normal way in which this seat wears. It was particularly noticable where the ring had been replaced without piston groove reconditioning. It was noted that the ring seat witness on some rings was at the inside corner, indicating that the tool used to regroove the piston had too much radius at the tip. This condition resulted in the wearing of a heavy taper at the top corner of the ring (. 006 inches deep at an angle of 4-1/2 degrees) indicating that the ring had becn twisting about this narrow scat.

Several top rings were broken on both upper and lower pistons. However, none of these were in the same liner. In most cases the break was at least onc third the way around from the gap and had occurcd carly in its life. This has been attributed to over-stressing at assembly or a material defoct. The vendors have corroborated this view point on an inspection of some of the rings. In one case, the broken ring had gouged out two of the airport bridges on the fort St. Louis No. 2 engine in cylinder No. 3.

The chromium plated piston rings performed poorly. Most of the chrome had been worn off, and rings werc collapsed to some extent, and showed partial blow-by marks. Their manufacturcr considered these rings had a rather short life. Their effect on the cylinder wear rate was to reduce it slightly but not significantly in the pocket. Nonc of these conditions were evident in the ferrox (black) rings and it has been concluded that the high temperatures

which would induce ring collapsing may have been caused by poor ring seating, partial blow-by and by possibly scuffing. As the chrome ring does not provide any real improvement unde: these operating conditions, it is felt that it bhould not be used in the future.

Fuel 0il \& Lube 0il Analysis

The main difficulty experienced in carrying out the program set out at the start of the 1966 season was that of getting the necessary data forwarded to FM Beloit. This was particularly true with respect to the lube oil and fuel oil analysis and the ships logs and operating information. Fuel oil sample data was very sparce. The predominance of sample analysis received by FM Beloit were from the M/V Fort William, which was not inspected at the end of the 1966 season. The remaining samples were primarily from the M / V Saguenay. There was one sample analysis from each of the Fort St. Louis, Manitoulin, and Fort Chambly.

Figure 2 shows typical fuel distillation curves from the 1966 season compared to the "normal" diesel fuel destiliation curve. It is interesting to note that the fuels used on the fort william, procured, from B/A, were very near the "normal" distillation curve. Imperial oil samples 14 and 16 , used on the Saguenay, are typical of fucls containing catalytically andor thermally cracked fuel stocks. Most of the rest of the samples of Imperial fuel oils indicate a predominence of heavy ends typical of the "economy" fuels.

One sample from the Saguenay showed. 76 percent Sulfur content. Other samples riged between. 25 and .40 percent Suflur. The fuel oil was not specifically analyzed for sodium and vanadium content. Future sample should be so analyzed.

With the small number of fuel oil samples from the other ships, no real conclusions can be drawn with regard to the affect of the fuel oils. It is felt that the fuel oil quality can be questioned, and one oil company has made the statement that if the fuesl available in Canada continue to get worse, they are not certain they can provide oils properly compounded to cope with the fuel.

In comparing 1966 and 1965 lube oil analysis, it was anticipated. in the mid 1966 discussions, that at the time of inspection, we would see up to 50\% reduction in wear rates. This has not been true and it is pointed out that the spectrographic analysis of wear metals in the lube oil samples is not a reliable method of monitoring wear in the engine.

	ENGINEERING REPORT FAIRBANKS MORSE INC		SHEET 6 or	PKGE	6
			file NUMBER		
	REFERENCE NUMBER		Date May	967	
			\qquad		
	susiect	CANADA STEAMSIIIP LINES	$\begin{array}{\|c\|c\|} \hline \text { APPROVED } \\ \hline \end{array}$		

Again, it is considered unfortunate that another brand or type of lube oil had not been tried in one of the ships to provide a comparison, as had been planned in the program outlined at the beginning of the season. The following laboratory analyses are an attempt to provide some comparative information.

LUBE OIL COMPARATIVE TESTS

One gallun samples of Imperial 0il 2054 and our Test 0il were sent to a Laboratory in Chicago for comparative analysis. The test results are tabulated below. Sample "A" is the Imperial 2054 Oil being used by CSL. Sample"B" is a comparable oil of another manufacture and is the normal test oil used in our laboratory engines and on our production test floor.

Oil Detergency Test
Again quoting from the laboratory reports, "The detergency characteristics of Sample A were not as great as those of Sample B. If the characteristics for Sample B were expressed as excellent, then those of Sample A would be expressed as fair to Good."
The results of these tests are tabulated below:

$$
\text { Detergency Tests }\left(500^{\circ} \mathrm{F}\right)
$$

Sample	A	B
Insoluble in Naphtha (mg) Insoluble in Naphtha but soluble in Chloroform (mg)	77.3	8.5
Insoluble in Naphtha and Chloroform but removable by wiping (mg)	9.3	3.9

Infrared Absorbtion Test:

The infrared absorbtion tests on the new oils showed the oil to be quite similar. However, the tests on oxidized oil samples (48 hrs.e 347°) show the sample "A" to have a much greater tendency to oxidize. The following data is quoted directly from the Chemical laboratory report: "The infrared spectra of both oxidized oils were similar in their general characteristics. Each exhibited a band at $1700 \mathrm{~cm}^{-1}$ which did not appear in the spectra of the new samples. A band at this location is due to carbonyl and might represent the presence of ester ketone, or carboxylic acid groups which are produced as a result of oxidation. The intensity of the carbonyl band is much greater for Sample A than for Sample B, indicating more extensive oxidation in the case of Sample A."

Comments on Analysis:

In most values, these oils seem quite comparable. However, the 2054 appears to have a greater tendency to instability, oxidation and corrosion. While the oil company has stated that with the organic additives used in compounding this oil the normal parameters of TAN, TBN, Pentane and Bensene insolubles, can not be relied upon, it is our feeling that the above data does indicate and inadequacy in this oil. We believe that the oil is not capable of proper lubrication at temperatures, in the environment that does exist in the ring belt area and compression ring travel in this engine.

The oil company has suggested the use of a heavy weight of oil (SAE 40) as a means of reducing upper cylinder wear. The sample

submitted was supposedly SAE 30 and was compared to our SAE 30 weight test oil. In reality, the 2054 oil is near a SAE 38 if oils were so graded. In as much as some problems with oil dis tribution could be anticipated with even heavier weights, without concurrently raising lube oil system temperatures, this epproech is not recommended, as an adequate solution.

CONCLUSIONS

1. Our investigation indicates that a cylinder liner life of twenty thousand hours between major engine overhauls can be oftained, on present fuel and lube oils, by using chrome plated cylinder liners with "standard" piston compression rings and conformable oil control ring in the middle oil ring groove.
2. We believe that an even longer cylinder life is obtainable on better grades of fuel oil and/or by changing to higher additive level lube oils.
3. Better air filtration on those engines with the screen panel type air filters would enhance, particularly, the air end cylinder wear.
4. Comparison of piston ring groove wear showed a trend to indicate that reducing liner wear rates also reduces tho ring groove wear rate.
5. The Imperial 2054 Iubc oil shows a tendency to break down at temperatures that do exist in the ring bend and upper ring travel areas in this engine design.'
6. It will be noticed that the Imperial lube oil has a much greater tendency to corroston of copper. This was evidene in a piston assembly inspected on the Ft. St. Louis in that the piston pin has a discoloration indicating a metalic transfer of material had occured between the pin and the piston insert bushing - which is bronze. This tecuency has been ovident in at least one other Canadian Ship u:ing an Imperial lube oil. This was not evident on the oil previously used.

7. Some of the fuel oil analysis indicated the possible use of cracked fuel stocks.
8. Technical data indicates that a comparison of the wear rates between a bad liner material and a good liner material might vary up to a maximum of 4 to 1 , in wear rate. The fact thet wear rates in the CSL engines of 10 to 12 times that expected of good material points to there being factors other than material contributing to the wear rates experienced in these engines. It is the contention of this report, based on past experience, with great similarity to the CSL engine problem that the fuel oil and lube oil are not compatible. One or the other of these needs to be changed.
9. It is again suggested, that for comparative purposes, a lube oil of another type and manufacture be tried in one of the CSL Vessels.
10. Nozzle tip errosion, as experienced in past years, can be overcome by adopting the type B modification nozzle holder.
11. The Bosch type injection nozzle is superior to the FM nozzle from at least two standpoints:
a. Crankcase dilution
b. General engine wear pattern
12. Engine operation is safe up to and beyond the cylinder wear dimensions found in the CSL engines (.057" pockets and . $030^{\prime \prime}$ athward ships) without adversely affecting the operation of the engine, or the lube oil life and without compression ring breakage.
13. Better surveillance of the engines by the operating crews this year has resulted in many less calls for assistance in engine, governor and associated problems.
14. If the customer continues to use the "economy" grades of fuel, he must concurrently expect and be willing to pay the increased cost of maintenance of his engines.

Bhamannmations

The following are the recomancations of this report and are intended to insure the best possible engine life and operation for CSL.

1. The chrome plated cyliader iiners, as plated by Union Screen Plating Co., Ltc, Leanoxville, should be adopted as the standard for these ensines.
2. Air filtration on all cagines should not be less than the felt panel type filtcrs.
3. Enginc operating jerancters as follows should be adopted:
a. Ensinc J.K. Temperature - out 170-180 ${ }^{\circ} \mathrm{F}$
b. Engine L.O. Tenterature - out $190^{\circ} \mathrm{F}$ maximum
c. Fuel oil analysis shoulc 大it $\mathrm{F} . \mathrm{A}_{\mathrm{A}}$ specifications
d. Lube oil to be to tid $: 3$ specified oils as a minimam and if Fucl oil sulfar contents are allowed to exceed .5y (as specificu) a scoics III adoitive level must be adopted, and if heavy oils are used, eve: with low sulfur, higher additive levels äe recomacnded.
4. If fuel oils not ficctin. our specifications are to continue to je uscu, it is recomachace that a fuel oil acoitive be tried. Dur suecific recomenadation is to investigate the usc of Perolin Fucl Oi: Truathent No. 6S7-So (icrolin Conpany, Inc., Lmpire state ill.,., New York, New York) in dosage of 1 part of ircotment to 3000 gallons of fucl oil. At this dosage, estimated cost would be s.0us per gal. (US).
5. In regrooving piston riags tor over width compression riags, the groove seat should be very carcfully machined and inspece ted before putting the new :rings in. Radius at the inside of the grooves must not be too large.
6. It is recommended that tiac shif crows contimuc to heco daily logs on the engines, loging all important temperatures and pressures in order to detect engine problems before such problems grow out of proportion.
－LEGEND TO FIGURE I．
Liner－N． D ．$=$ No Data；N．C．＝not replaced but charter
Liner type－C．I．＝Cast Iron，C．P．＝Chrome Plated

	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & -1 \end{aligned}$		$\underset{\sim}{M} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N} M$		
	$\begin{aligned} & \circ \\ & \text { min } \\ & \text { min } \end{aligned}$		が心が心ご		
$\begin{aligned} & 0 \stackrel{a}{2} \\ & \underset{\alpha}{a} \end{aligned}$	いま	＝＝＝	u：＝：	$n=$ ：$=$ ：	$n=$ ：$=$ ：
	$\vec{u}=$	＝＝＝	$\dot{\dot{c}}====$	$\stackrel{\sim}{\dot{j}}====$	$\stackrel{\sim}{\dot{\sim}}====$
$$	$\dot{j}=$	＝＝	${ }_{z}^{\mathbf{w}}=:=:=$	$\dot{\dot{z}}====$	$\dot{\dot{q}}===z=$
	$\begin{aligned} & N \\ & \underset{\sim}{N} \underset{\sim}{n}: \end{aligned}$	$\begin{gathered} N \infty N 0 \\ \dot{T} \dot{\sim} \dot{0} 0 \\ \hline 0 \end{gathered}$		$\underset{\sim}{m}:{\underset{\sim}{m}}_{\infty}^{n}: \underset{\sim}{n}$	

I－ON 378甘1
3WIL SNIL甘甘3dO OL BAII甘TBy $\forall I \forall O$ TIO 3NIDNG
TABLE 1
TABLE No．I
GWIL ONILVYBdo OL GMILVTBy VLVG TIO BNIONG

			－！べッべ	
				こNさN゙Nさミご
$\sum_{2}^{0}{ }_{\alpha}^{u} \underset{\sim}{a}$	$\dot{\dot{u}}=====$	$n=$ ：：＝	$\dot{\dot{s}} \dot{\dot{s}}===$	$\dot{0}====$
号号号号	$\dot{\dot{j}} \dot{=}====$	$\vec{\sim}=$＝＝＝	$\underset{u}{\underline{u}}====$	$\dot{\vec{j}}====$
艾へ	$\underline{\dot{z}} \dot{\underline{z}}=====$	$\dot{\dot{z}} \dot{\underline{z}}=====$		$\underset{\text { ¢ }}{\text { z }}$ ：$=:=:$
	いのMロローに 		n: 몽뭉	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned} \dot{0} \dot{0} \dot{0}$
		Nuñon in in ミニニヘmmi	ㅇunへuno	
			inn in $\operatorname{con}_{N}^{\infty}{ }_{\infty}^{\infty}$ \rightarrow Mincin －	がいにのこ
			べッららす	
			Minco	
$\stackrel{\square}{\square}$	$\stackrel{n}{3}$ \rightarrow～0「出出			

bF3010n ＇or Use of form soe
Stas．We．Bfjo10a）

FAIREANKS NONGE INC．	SHEET ．\therefore Of	
acfeamence NUMBER	DATE	
	Pacpaned ar	
SUBiECt （ $1 \therefore$ 人， 1	$\underset{B Y}{\substack{\text { APPROVED }}}$	

13i $\because 12: \because \because 20621!$

As a ？art of our loñ－raine wevelonncat roaran，several ，rojucts are of interest in conscetion wit．the cSL rogran．These are enumerated and discussed here below．
Miston Rin！s：The barre：Aacec，inper land jiston ria bss iocn
 has becn tested in our lanor：tiony Eest engines as well as in a number of field ap川lications．bota ving wear and liacy wear results with this inew ring configuration are very encoura．ing． This ring was ？ut into prowiction auring August o． 1.06 ang wil． be available for engine rcinilus．
Chis new ring uesign was testec for sone ：ime in engiacs on unio Barge Lines＂push boats＂aho，wible we have not hau ai opportion－ ity to chart the cylinc，bores，visual insjections of tinc ：inys and liners incicate that the rings anc liners are in cxcellent condition．Tinis ring is aiso o：test in otr o cylinder turio－ charged test enginc，on 心．arom，！aica cylinders，and initial results are excellent．Both of thesc tests，bBi，anc the lab enginc，show a phenoninal reduction in lube oil consumbion re－ quircments along with this iadrovencnt in wear in tac cylincor system．
Cylinder Linces：The investiñtion of new lincr materiais，succ－ fically a Titanium－Vanaciun alioying，is continuing．one acta－ lurgy is presently bei．n evaluaten intac 38120 test＂rosram． Foundry ，roblens in conncetion wiit．tio s－1／S cylinder lince of this allow nave not yut becn resoived．
Investigation into beticr produciion and quality control rictiods on our prescnt lincr natcrial is also continuing．Ncw or beitur cquipment to monitor narbacss，nicrostructurc and surface tinish are being obtaincd or investigaicd．Other metnods of finisinin： the lincr bore surface are uncice study．
A change was made to relieve the fits at tio encs of the line：
jachet，to resuce the residual stäess level in the area arounc
the intake and exhaust prots，thereby reducing the port distor－
tion duc to temperature changes in engine oncration．

	ENGINEERING JジンORT FAIREANKS MORSE INC．		sheet $\mathrm{E}^{\text {S }}$ of	page No． Nos
			$\underset{\text { NUMEER }}{\text { FHE }}$	
	REfERENCE numbea		Date \quad.	1．
			$\left.\begin{array}{\|c} \hline \text { PREPARED } \\ B Y \\ V \end{array}\right] \text { Stonction }$	
	subiect		$\begin{gathered} \text { APPROVED } \\ \text { BY } \end{gathered}$	

Pistons：A nev piston uesind is ahuer test in the laboratory cnginc．Aany hore nours of icsting ire requireu to fully evalu－ ate this new design in cvery possillo situation．The now design does appear to influcnce piston rins and cylinder difc in a posi－ tive direction．

The basic piston desiga incormoraced less＂bull ring＂taper， onission of the cata growin cleartace ot，the＂hall rin．＂，tarce compression rinys（ratacr th．．．．i）a．．．．mobifice piston shizt tapers．A piston asscmbly desila incorvorating the above uesign with a rotating piston and a si：gifice wrist hearing is also being investigated．It has also wewa susgestoc that in the design of a new piston，the Eirst riadianc（riag groove leuge） be increascu in wítif（ucpti：）to wot．．strongthen it and to allow for the weakening that occurs Exo：．regrooving for over－wict． compression rings．

BEST AVAMLABE COPY

V'APOR PRESSURE CHART
1SOTENISCOPE METHOO
Figure 3.
TABLE II．AVERAGE WEAR RATE－THOUSANDS INCHES PER THOUSANDS HOURS
$=\underbrace{m}_{i=0}$

－

	？	¢					シテun sion noo dix
	$\left\|\begin{array}{c} \tilde{n} \\ \vdots \\ \vdots \\ \end{array}\right\|$				n		
	$\left\|\begin{array}{c} \tilde{\sim} \\ \vdots \\ \dot{a} \end{array}\right\|$	꾼 율					？蠋
		융					
	!	号槵			$\dot{\sim}$		
	$\begin{aligned} & \overrightarrow{\mathrm{b}} \\ & \stackrel{\rightharpoonup}{d} \end{aligned}$	궁	（1）		\％		
	$\left.\begin{aligned} & \overrightarrow{\hat{a}} \\ & \dot{\partial} \end{aligned} \right\rvert\,$	$\stackrel{\circ}{7}$			$\stackrel{*}{*}$		
	$\stackrel{6}{\circ}$	ㄹ		\because	$\stackrel{\sim}{5}$		
	\％	$\stackrel{2}{\sim}$	$\stackrel{y}{4}{ }_{3}^{\circ}$		$\stackrel{*}{\sim}$		害
	\％	\approx					
$\stackrel{3}{4}$	O	哃			\square		
	\％	$\stackrel{\sim}{\sim}$			$\stackrel{3}{3}$		
	\％	E		－¢ ¢－－	\bar{z}		
¢	F	佥			云		
$\stackrel{\square}{6}$							

pistom and piston rine cimeafitive data
table III
taste al

figure 2.

$$
\text { FIGURE } 1
$$

TABLE No．I
3WII 9NILV甘ヨdO OL BAIIVTB甘 $\forall I \forall C T I O$ BNIJNB

	in:mo			얘ํ	¢：MN
	ざささべへ	ざささえ		ござべへ	ごさごべ
$\begin{aligned} & \text { zu } \\ & \sim \\ & \underset{\alpha}{\alpha} \end{aligned}$	$\dot{\dot{u}}===$	$\begin{aligned} & \dot{u}== \\ & \dot{s} \end{aligned}$		$n=$ ：	$n=:$
$\begin{aligned} & \stackrel{\sim}{山} \\ & \stackrel{\rightharpoonup}{z} \underset{\sim}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\dot{i}===$	$\dot{u}===$		$m==$	$\ddot{\dot{u}}==$
	$\underset{\sim}{\text { z }}=:=$	$\underset{\sim}{\underset{z}{\sim}}==$		$\begin{aligned} & \dot{0}=== \\ & \dot{z} \end{aligned}$	$\begin{aligned} & \dot{0}=== \\ & \dot{z} \end{aligned}$
	$\begin{array}{lll} 0 & \sim & \sim \\ \infty \\ \infty & \sim \\ 0 & 0 & \infty \\ 0 & 0 \end{array}$	$\begin{aligned} & \text { No~ } \\ & \text { amo } \end{aligned}$			$\begin{aligned} & n: \dot{\sim} \\ & 0 \dot{0} \dot{0} \\ & 0 \rightarrow 0 \end{aligned}$
	$\left.\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & a \\ \underset{\sim}{c} & \boxed{a} & \underset{\sim}{n} \end{array} \right\rvert\,$	$\left.\begin{array}{lll} 0 & 0 & 0 \\ \tilde{n} & 0 & 0 \\ - & \infty & \underset{N}{n} \end{array} \right\rvert\,$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \text { iे } \end{aligned}$	0 0 0 \sim 0 0 \sim ∞ 0 \sim -1	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & \cdots \\ & \mathrm{~N} \end{array}$
	$\begin{array}{l:cc} n \\ N & \sim \\ N & 0 \\ 0 & 0 \end{array}$	\cdots			$\begin{aligned} & N \\ & \underset{N}{N}: M \text { M } \end{aligned}$
		ㄴ，パ		只：	$\begin{array}{lll} N, & 0 \\ \underset{N}{N} & 0 & 0 \\ N & 0 \end{array}$
	$\begin{array}{l:l} \infty & \infty \\ 0 \\ 0 & \stackrel{N}{N} \\ \end{array}$	N：\sim_{\sim}^{\sim}			$$
는쏘	$\begin{array}{l:cc} \infty & 0 & n \\ 0 & 0 & 0 \\ 0 & \sim \\ N \end{array}$				
$\stackrel{a}{\text { a }}$					

？Hours Questionable

APPENDIX B

DESCRIPTION OF THE EXHAUST GAS ANALYSIS SYSTEM AND

$$
\text { INSTRUMENTATION FOR THC, CO, NO/NOx, } \mathrm{O}_{2} \text { AND } \mathrm{CO}_{2} .
$$

The exhaust emissions analysis system was located in the Mackinaw log office. This room is located adjacent to the engine stack area at main deck level. The instrumentation was placed on and under a table in the log office.

A twenty foot $3 / 8$ inch diameter stainless steel sample line heated to $300^{\circ} \mathrm{F}$ connected the exhaust sample probe to the heated filter and heated stainless steel bellows pump. A second twenty feet of similar heated line conducted the exhaust sample to the emissions analysis system. The filter, pump and first section of sample line were located in the exhaust stack area. The second sample line passed out of the exhaust stack area through a small bulkhead door through a corridor and then into the log office.

B. 1 EXHAUST ANALYSIS SYSTEM

The analytical system was configured in three parallel "legs" as shown in Figure 1. As the sample entered the analytical system, it was filtered through a heated $\left(300^{\circ} \mathrm{F}\right) 7 \mathrm{~cm}$ clamshell filter and distributed to the three legs of the system.

The first leg was maintained at $300^{\circ} \mathrm{F}$ up to the total hydrocarbon analyzer, to prevent high molecular weight hydrocarbons from condensing. sample was then allowed to cool to ambient temperature (excess water was removed through a combination of traps) and continuously supplied to the gas chromatograph for methane analyses.

The second leg of the system passed the sample through an ice bathrefrigeration coil to remove the water of combustion and then supplied the gas sample to the CO , the CO_{2} and the oxygen analyzers.

The third sample leg contained the oxides of nitrogen analyzer. The hot sample was first passed through the NO_{2} converter (when in the NOx mode) to convert all the NO_{2} to NO . Then the sample was dried using another ice bath-refrigeration coil and transported to the NO analyzer.

Each analyzer was connected to a strip chart recorder in order to provide a permanent record of all the emission data collected.

SET 1578010976

FIGURE B-1 MACKINAH EXHAUST ANALYSIS SYSTEM

B. 2 INSTRUMENT DESCRIPTION

Total Hydrocarbons (THC)

Total hydrocarbons were continuously monitored using a Scott Model 215 heated total hydrocarbon analyzer. This instrument utilized a flame ionization detector and heated sample train, maintained at $300^{\circ} \mathrm{F}$ to prevent the condensation of high molecular weight hydrocarbons. The detector was fueled with a 40 percent blend of hydrogen in helium using blended air as the oxidant. The instrument was spanned using a Scott "close tolerance" ($\pm 2.0 \%$ analysis) blend of 331 ppm propane in air and zeroed with a Scott blend of hydrocarbon free air (less than $0.1 \mathrm{ppm}-\mathrm{C}$).

Carbon Monoxide (CO)

Carbon monoxide was continuously monitored using a Beckman Model 315A non-dispersive infrared analyzer with $0-500$ and $0-1000 \mathrm{ppm}$ ranges. This instrument was spanned with Scott "close tolerance" blends of CO in nitrogen (494 and 924 ppm CO in N_{2}) and zeroed with zero-grade nitrogen.

Oxides of Nitrogen (NO/NOX)

A Scott Model 125 chemiluminescence analyzer with a thermal converter was used for the analysis of nitric oxide (NO) and total oxides of nitrogen (NOX). The instrument was operated in the ranges of $0-1000$ and $0-5000 \mathrm{ppm}$. The thermal converter was used to convert nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ to nitric oxide (NO) so that total oxides of nitrogen (NOX) could be measured. The converter was switched in and out of the system using solenoid valves to permit the selective operation of NO and NOx modes. Calibration of the instrument was provided by a scott "close tolerance" blend of 981.2 ppm NO in nitrogen.

Oxygen $\left(\mathrm{O}_{2}\right)$

Oxygen was continuously monitored using a Scott Model 150 paramagnetic oxygen analyzer. This instrument was operated in the $0-25 \%$ range and spanned with a Scott "close tolerance" blend of $9.89 \% \mathrm{O}_{2}$ in nitrogen and zeroed with zero-grade nitrogen.

Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$
An MSA Model Lira 300 non-dispersive infrared analyzer was used to measure CO_{2} levels in the exhaust stream. The instrument was operated in the $0-15.0 \%$ range and spanned with a Scott "close tolerance" blend of $13.1 \% \mathrm{CO}_{2}$ in nitrogen. The instrument was zeroed with Scott zero-grade nitrogen.

The NO/NOX analyzer and the CO analyzer were mounted in instrument stands which sit on the floor under the instrument table. The NOx converter, refrigerator dryer and NO/NOX instrument vacuum pump were also located under the instrument table. The heated hydrocarbon instrument, the CO_{2} analyzer and the oxygen analyzer were placed on the instrument table. Two strip chart recorders, a Texas Instrument 4 channel model and an Esterline Angus single channel model were also located on the top of the instrument table. The calibration/sample selector valves were grouped on the instrument stands for easy access to the instrument operator.

The operating environment for the instruments was typical of marine operation with the attendant mechanical vibrations from the engines and propellers and fluctuating power voltage levels due to load changes on the ship's generators. In general, the effects of the operating environment on the instruments was minimal. A pronounced ship resonance at 120 shaft RPM did cause a broadened signal trace from the oxygen analyzer due to mechanical vibration of its detector assembly. This, however, did not materially affect the instrument's performance.

In order to minimize the effect of the environment on the instrument readings, the instruments were zeroed and spanned at frequent intervals during each test run providing reference checks on instrument spans and zeros.

APPENDIX C

EXHAUST SMOKE MEASUREMENTS

1. EXhAust stack extension drawing 16204296.
2. SMOKE OPACITY CHART FROM 8-26-76 TEST RUN NUMBER 2.

BEST AVAILABEE COPY

APPENDIX D

SAMPLE RAW TEST DATA FROM 8-26-76 TEST CRUISE NUMBER 2.

.51-
BEST AVALABIE COPY

11111111111111

BEST AVAMABLE COPY

beSt avalabie copy

1

BEST AVAILABLE COPY

bIST AVALDBIE COPY

-67-

-68-
BEST AVAMABEE COPY

-70-
BEST AVALLABIE COPY

-71-
BEST AVALLABIE COPY

-72-

COPY
Lutod
\rightarrow cim
=者 BEST

APPENDIX E

TEST SHIP DESCRIPTION AND ENGINE TEST PROCEDURE.

The USCGC Mackinaw (WAGB-83) has six 2000 horsepower main diesel engines manufactured by Fairbanks Morse in 1943. Each main diesel engine drives a DC electric generator. The generator outputs of the main engines are connected to DC electric $10,000 \mathrm{hp}$ propulsion motors. Two stern propulsion motors drive the two stern propellers, 14 feet diameter and 10.7 tons each; and a third propulsion motor drives the bow propeller, 12 feet diameter and 4.2 tons. The ship is 290 feet long, has a beam of 74.5 feet and a full load draft of 19 feet $2 \frac{1}{4}$ inches. The displacement is 5,252 tons and has a maximum speed of 18.7 mph . The Mackinaw personnel allowance consisted of 10 officers and 97 enlisted men.

The Mackinaw sailed from its home port of Cheboygan, Michigan during the reported engine tests. Two test runs each were made before and after engine modifications during the period of August 23, 1976 and September 2, 1976. The tests were conducted on the main diesel engine \#3 before and after modifications to reduce smoke and emissions from that engine. In normal ship operation, the outputs of anywhere from one to three main diesel engines are connected to one stern propulsion motor. It was in the two engine configuration that the main diesel \#3 was tested.

Two test runs were made on the unmodified engine and two test runs were made on the modified engine. Each test run consisted of normal engine operation prior to leaving the mooring (approximately 30 minute idle warm-up) and underway at various steady loads. The power settings tested corresponded to the following ship operating modes.

Ship Operating Mode	Shaft RPM	Approximate Engine \#3 RPM	Approx. \% Load	
Engine Start - Slow Idle	-		440	0
Fast Idle	-	500	0	
Slow Ahead	30	440	3	
One-Third	40	440	5	
Half	60	440	10	
Two-Thirds	80	440	20	
Cruise Range	100	520	40	
Cruise Range	110	600	50	
Cruise Range - Full	120	700	70	

In order to coordinate the emissions data, engine data, operating data and smoke data which were taken simultaneously but in different parts of the ship, a unique reference number was used to indicate each engine operating mode during a test. The numbers were serially marked in chronological order of test point occurrence along with the time of the clock. Table 1 outlines the test schedule and includes the sample time and data point reference number along with the approximate engine RPM and ship's motor shaft RPM.

TABLE E-1
MACKINAW ENGINE \#3 TEST SCHEDULE

	$\begin{aligned} & \text { Time } \\ & \text { (EDT) } \end{aligned}$	$\begin{aligned} & \text { Reading } \\ & \text { No. } \\ & \hline \end{aligned}$	Log Office		Remarks
			Shaft RPM	Engine RPM	
Cruise 1$8 / 25 / 76$	0831	1	0	500	Start
	0918	2	V*	420	Getting Underway
	0934	3	50	440	Slow Ahead
	0955	4	100	620	
	1026	10	120	750	Full
	1035	11	-	-	Turn
	1045	12	120	700	Full
	1110	13	85	520	Slow Cruise
	1116	14	50	440	Slow
	1207	16		440	Slow
$\begin{aligned} & \text { Cruise }{ }^{2} \\ & 8 / 26 / 76 \end{aligned}$	0828	1	0	440	Start Engine
	0841	2	0	550	Fast Idle
	0849	3	0	440	Slow Idle
	0859	5	35	440	Slow Ahead
	0929	6	80	450	2/3
	0947	7	100	550	
	1011	8	115	600	
	1030	10	120	650	
	1109	11	70	400	
	1117	12	40	400	
	1120	13		400	Slow
	1207	16	0	440	Idle
Cruise 3 9/1/76	0809	1	0	500	Fast Idle
	0821	2	0	440	
	0835	4	45	420	Slow Ahead (Engine 3 only on STBD Motor)
	0905	5	40	440	Slow
	0933	6	60	440	1/2
	0956	7	80	440	
	1012	8	100	520	
	1042	9	110	600	
	1109	10	120	700	Full

TABLE E-1 (Continued)
MACKINAW ENGINE \#3 TEST SCHEDULE

			Log Office		Remarks
	$\begin{aligned} & \text { Time } \\ & \text { (EDT) } \end{aligned}$	Reading No.	Shaft RPM	Engine RPM	
Cruise 4	0805	1	0	500	Fast Idle
9/2/76	0816	2	0	440	Slow Idle
	0834	3	0	500	
	0845	5	30	410	Slow Ahead
	0855	6	40	420	Slow Ahead
	0921	7	60	420	1/2
	0947	8	80	430	
	1012	9	100	540	
	1038	10	110	610	
	1100	11	120	660	Full

APPENDIX F

TABLE OF TEST RESULTS OF THE FOUR CRUISES AND
THE CALCULATED EMISSIONS OF THESE CRUISES
TABLE F-1
DIESEL ENGINE EXHAUST EMISSION CONCENTRATIONS
USCGC MACKINAW (WAGB-83)
CHEBOYGAN, MICHIGAN
敬

Conc. Wet
THC
(ppm-C)
924.2
894.0
992.3
910.4
474.3
452.4
397.8
346.5
485.1
923.4
973.5
1144.5

Seconds
For $25 \#$
Fuel
1391.3
1240.5^{*}
1391.5
1211.6
550.6
320.4
224.5
158.3
575.0^{\star}
924.7
1260.0^{\star}
1391.5

든춧
둥 둗

TABLE FF

DIESEL ENGINE EXHAUST EMISSION CONCENTRATIONS USCGC MACKINAW (WAGB-83) CHEBOYGAN, MICHIGAN

PROGRAM EGREM－VERSION 2126174
FIXED INPUT DATA

完 VARDAELE INOUTOATA－

言

AVMILABIE

－䠉

홍
 峖
 品

best Avalabie copy

2/26/74

定

APPENDIX G
 REPORT OF INVENTIONS

The work performed under this contract produced no new inventions; nowever, methods are described, using modifications of existing technology, that will reduce emissions and improve the fuel economy of Coast Guard icebreaker diesel engines and other similar engines in the Coast Guard fleet. The modifications described on page 12 would also be applicable to other FM $38081 / 8$ engines used as stationary or mobile sources.

AD-A046 241 COLT INDUSTRIES BELOIT WI FAIRBANKS MORSE ENGINE DIV F/G 21/7 FIELD TESTS OF IN-SERVICE MODIFICATIONS TO IMPROVE PERFORMANCE --ETC(U) AUG 77 E A KASEL, C L NEWTON, R A WALTER DOT-TSC-905
UNCLASSIFIED $\underbrace{}_{\substack{A D \\ A O 46241}}$ 통

SUPPLEmentaR wformation

END
DATE
FLMED
$7-78$
NL
USCG-D-8-77

DDC

SUPPLEMENTARY

$$
4.8
$$

$$
\because
$$

(

DEPARTMENT OF TRANSPORTATION

 UNITED STATES COAST GUARD- From: Commandant

To : Mr. J.E. Cundiff, Defense Documentation Center/TCA, Cameron Station, Alexandria, Va. 22314

Subj: Proprietary Information
Ref : (a) U.s. Coast Guard letter dated 24 Jan 1978, file 3918, Serial 084 to Chief, Accessions Division, Defense Logistics Agency DDC.
(b) Your phone conversation with LT T.J. Marhevko, USCG, On 8 Mar 1978.

1. A draft and smooth copy of the final report entitled "Field Tests of In-Service Modifications to Improve Performance of an Icebreaker Main Diesel Engine" (CG-D-8-77) was sent to you as the enclosures to reference (a).
2. In reference (b) you questioned the use of information on page 48 of the above named study due to its proprietary nature. Please be advised that this information is not considered proprietary to our contractor, Colt Industries, as explained in enclosure (1).
3. I understand that the accession number of this report will remain AD-A046 241/6WO.

Enclosures: (1) Copy of Colt Industries letter dated 16 March 1978 to Commandant (G-DSA-3) U.S. Coast Guard

Colit industries

Falrbanks Morse

Engine Division

701 Lawton Avenue Belolt, Wisconsin 63511 608/364-4411

Emamana

March 16. 1978

Cemmolat
Censt Guand Moedquarters
Trans Point Building
(1) 2100 Second Southwest
(1) Room 4402

Washington, D.C. 20590
(0)

Attention: 6-DSA3
Lt. Comdr. Tom Marherko
(D)

Subject: DOT-TSC-905
F.N. $\$ 938642$

Enclosurn: (1) Colt Industries Drawing Wo. 1629296 - Exhamst Stack

emotlemen:

The attached drewing is formardad for your we and is mot censidered proprictary to Colt Industries; therefore, wo hav ramoved the statemant from apeles (1).

This is in respense to your telephone requant to Mr. Gene kimel.
Vours very truly.
COLT INBASTRIES OPERATINS COMP Whrantis morse enctis OTvision

Supervisor, Contrace arministration

Mas: inh

ec: G. Rasel

