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r(ro)

Nomenclature
Speed of sound
Local coefficient of friction
Specific heat at constant pressure

Velocity ratio, e 2

u
e 2
Enthalpies, defined in the expression H = h + %T

Thermal conductivity
Eddy conductivity

Characteristic problem dimension, length of the model in
question

Defined in Eq (19-1)

Mach number

Prandtl number

Pressure

Heat flux or heat flow per unit area

Gas constant, 1716 ftzlseczk for air

Reynolds number

Radial coordinate (body radius) for the case of the axi-
symmetric cone, measured perpendicularly from the longitudinal
centerline, fig 3

Viscosity constant of Sutherland (198.6 R)
Nondimensional pos1t1?n, x/L

Stanton number, E;E;Tﬂ::F;T

Temperature

Transverse curvature term equal to ;.r—

(]
Velocity component along (perpendicular to) the streamwise
direction

Transformed velocity expression defined in Eq (18-3)
Defined in Eq (27)
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X,y Body surface oriented coordinate system in which x runs
parallel to the stream direction, pointing downstream, and
¥115 perpendicular to x and is directed into the external

ow

Greek Symbols

a Defined in Eq (19-2)

B8 Defined in Eq (19-3)

r Streamwise intermittency distribution or probability factor

Y The gas constant, ratio of specific heats

Y The intermittency factor of Klebanoff

A Change in variable quantity

8 Boundary Tayer thickness

§* Displacement thickness

€ Eddy viscosity

) Eddy viscosity function defined following Eq (22)

; Eddy viscosity function defined fol]ngc? Eq (22)

A A nondimensional mass transfer rate, 153753:;::;

n Transformed perpendicular boundary layer coordinate and non-
dimensional distance along this coordinate

) Static temperature ratio, TT;

e Momentum thickness

M Molecular viscosity

v Kinematic viscosity, }pi

4 Transformed streamwise boundary layer coordinate and nondi-
mensional length along this coordinate

P Density

L Shear Stress

w Exponent of the viscosity law of Sutherland
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Subscripts and Superscripts

e

Condition at the edge of the boundary layer, also indicative
of the input or environmental conditions for Itract in the
cone study

Free stream or unperturbed condition

Flow index, j = 1 for conical flow, j = 0 for flow over a
flat surface .

When used with Re, denotes Reynolds number based on displace-
ment thickness (momentum thickness)

Total or stagnation condition except for o

Primed quantities indicate instantaneous departures from a
mean state or condition in the turbulence model. The accom-
panying bars over the primed symbols denote a time averaged
quantity.

Reference

Turbulent condition

Condition at the surface of the plate or cone

Denotes a particular real x station along the surface of the
model
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Abstract

This study followed the work of Dr J. Shang, Flight Dynamics Labor-
atory, Wright Patterson Air Force Base, Ohio. Given a Fortran code
written by Dr Shang that solved for the characteristics of a Laminar,
transitional, and turbulent boundary 1ayer. the problem was to modify
the existing program to predict the boundary layer over a flat plate and
sharp nosed axisymmetric cone with mass transfer as a boundary condition
at the surface of the model. The surface of the model was maintained at
a constant temperature, and only the cases in which air was the trans-
ferred gas were studied.

To solve this problem the boundary layer was described by the
standard boundary layer equations for continuity, momentum, and energy.
Incorporating mass transfer as a boundary condition, the governing equa-
tions underwent the transformation of Probstein-El1liott and Levy-Lees.
The resulting equations and boundary conditions were solved by finite
differencing techniques for nondimensionalized velocity components and
temperature at a finite number of nodes in the boundary layer field of flow.

To verify the modified code, three studies were performed. First,
the code was verified using analytical and some experimental data from
Schlichting for laminar, subsonic flow over a flat surface with constant
suction. Second, the code was verified for turbulent, subsonic flow over
a flat surface with constant suction to the asymptotic suction 1imit and
for small rates of blowing, using experimental results from Moffat and
Kays. Finally, the code was verified with mixed success for hypersonic
laminar, transitional, and turbulent flow over an axisymmetric cone for
small rates of blowing using the experimental results of Martellucci,

Laganell1,and Hahn.
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AN ANALYTICAL STUDY OF THE EFFECTS OF MASS TRANSFER
ON A COMPRESSIBLE TURBULENT BOUNDARY
LAYER

I. Introduction, a Problem Analysis

Calculating the effects on boundary layer flows subjected to mass
transfer perpendicular to the surface has provided engineers a rela-
tively inexpensive model to study ablative effects. This model has
provided a means by which to study the heating effects at the surface,
skin friction, and the effects on the boundary layer profiles. The
purpose of this paper was to investigate the effects of this mass

transfer at the solid boundary by means of a numerical code.

Definition of the Problem and Purpose of the Study

The Flight Dynamics Laboratory (FDL) possessed a digital computer
code, called Itract, which computed the characteristics of laminar and
turbulent boundary layers over flat plates and axisymmetric, conical
bodies for the case with no mass transfer at the surface. To initiate
this computation the following quantities were specified as inputs:
gamma, the gas constant; the Prandtl numbers, both laminar and turbulent;
free stream mach number, static temperature, and density; the exponent
of the viscosity law of Sutherland; a temperature ratio, wall tempera-
ture to free stream stagnation temperature; a point of transition from
laminar to turbulent flow along the surface; and a flagged quantity
which specified eddy model zero or eddy model one for computation of
the eddy viscosity. With these inputs, Itract provided a description

of boundary layer features. Some of the output of interest in this

r R s




study included the following: the local mach number for any point in
the field, boundary layer thickness, displacement thickness, momentum
thickness, the coefficient of friction, eddy viscosity, a Stanton number
descriptive of heat transfer at the surface, and boundary layer profiles
for velocity, static temperature, and density.

Starting with the original code of FDL this study was divided into
three sequential steps. The first step was to learn as much about the
computer code as possible. This step included a study of the key
equations of motion, energy, and continuity needed for boundary layer
solution. The second step was to incorporate the needed changes into
the code that would include the new boundary condition of mass transfer
at the surface of the body exposed to an environment of fluid flow. The
last step was to verify the change by comparing key output predictions
of the computer code with the results of analytical expressions presented
in Schlichting and laboratory experiments for studies of flow over a
flat plate and flow over a slender, axisymmetric cone. Completing these
three steps, the purpose of this study was to extend the usefulness of
a turbulent boundary layer code by incorporating a change that would
allow consideration of mass transfer as a boundary condition, and

thereby, study its effect on boundary layer characteristics.

Scope and Assumptions

In defining the area of study the topic was limited and the
following assumptions were made. First, boundary layer computations
and comparisons were performed on flat surfaces and axisymmetric cones
with sharp leading edges or tips. For both models there were negligible
effects due to the stagnation region at the leading edge§. and in the




case of the plate, the shocking phenomena was neglected. Shapiro
alluded to the validity of this assumption of free stream conditions
existing some distance downstream of the leading edge of a plate in

fig 28-21(c) and subsequent text (Ref 1:1149-1150). Eckert discussed
this idea further as mach numbers reached supersonic and higher (Ref 2:
10-11). Thus, free stream conditions were assumed to exist downstream
of the shock wave. Further, the angle of incidence of the models was
assumed to be zero with respect to the flow in the free stream. Second,
consideration was given only to the cases of air, at surface temperature,
being blown through the surface into the boundary layer, or the boundary
layer of air flow being sucked through the porous surface into the
model. Thus, this study did not include the effects of chemical reactions
that might occur by mixing nonsimilar gases in the boundary layer.
Taking the transferred gas to be at the temperature of the wall, which
was assumed constant, helped to 1imit and simplify the problem and the
transfer modei. This was a realistic 1imit as many experiments in wind
tunnels were performed under these constant temperature conditions.
Third, only small rates of injection or suction were compared with
experimental results, although the 1imiting transfer rates of the code
were investigated. It was assumed that mass transfer effects were con-
fined to the boundary layer (Ref 3:1,5-6). The solution of this

problem was based partially on the boundary layer equation of motion of
Prandtl. To have considered massive transfer rates would have violated
the proposition of Prandtl that & was much less than the characteristic
length of the model. Thus, a fourth stipulation was that & would be
much less than L. Further, the pressure change across this boundary

layer thickness was neglibible, and considered zero in the analytical
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solution. Fifth, the problem was 1imited to experimental cases where
pressure change along the stream was also negligible. This was con-
sistent with the two models studied. Numerically, dp/dx was considered
zero. Finally, in the studies of both the flat plate and the conical
flow, the mass transfer rate was considered constant over the region
of transfer unless indicated otherwise in the experiment. Also, the
flow was considered fully turbulent throughout the length of the model
unless another transition point was clearly indicated in the experi-
mental results. This 1ist of items provided the 1imits and scope of

this study. The following chapter presents a background of information

relevant to this study.
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II. A Background of Information

Interest in boundary layers perturbed by mass transfer at the sur-
face has been evident from numerous laboratory experiments in which a
model equipped with a surface blowing apparatus wa§ exposed to the free
stream environment of a wind tunnel. More recently, computer codes have
been designed to compute the same fluid characteristics as measured in
the experimental efforts. In both these studies those features of the
boundary layer that were of greatest interest included the following:

aj Boundary layer velocity profile shape,

b) Energy (temperature) profile shape,

c¢) Thicknesses - boundary layer, displacement, and momentuimn,

d) Skin friction reduction for the blowing case, and

e) Heat transfer blockage for the blowing case.

In the experimental study these features have been obtained by
measuring a restricted number of quantities.

The devices used to measure these quantities in experiments on
boundary layers have included heat transfer gages, pressure sensors,
temperature probes, and mass injection concentration probes (Ref 4:
1-10, 32-35, 46-51). The same quantities measured by these devices
have been computed by analytical methods. Such a method or computer
code was written for the Flight Dynamics Laboratory, Wright Patterson
Air Force Base, Ohfo.

This code was written to obtain numerical solutions of the
governing turbulent boundary layer equations. Because of 1imited
understanding of turbulent processes, completely general solutions to

these equations have not been possible. By use of an empirical eddy
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viscosity mode) of these processes, however, the system of governing
equations was solved directly. The basic eddy model used in this study
was that of Cebeci, Smith, and Mosinskis. The model assumed an inner
and an outer viscous layer within the boundary layer. The expression
for ¢ in the inner region was based on the mixing length theory of

Prandtl as follows:
= p2 |3u
e = & |2 (1)

where £ was equal to K]y. To account for the region close to the wall,
Van Driest offered a modification to the mixing length of Prandtl. The

new expression for £ was

L= Ky (1 - exp(-y/n)) (2)

)-1/2

where A was equal to 26v (Tw/p" . The shear stress close to the wall

was written

L Bk Ve [%%]y (3)

If A were redefined to 26v (T/p)-]lz, then expanded

T" d ']/2
A-26v{7+a%§} (8

Finally then,

2
.22 T, dp y|V au
€inner = MY {] n- ['2%\3' [T+B‘E%} TJ} '59" ()
The expression for e in the outer region was
Couter = X2 I: (ug-u)dy (6)
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This became eddy model zero in the code and differed from eddy model

one which was formed by multiplying e or eddy model zero by the

outer
intermittency factor of Klebanoff,

Y= E + 5.5 [-GZ]T] (7)

For & defined as the distance from the surface to a point in the field

at which u was equal to .995u,, studies have shown that the value for

K] was .4 and the value for K2 vas .0168 (Ref 5:1975-1976). Having
selected the model of Cebeci to describe turbulent activity within the
boundary layer, there remained the problem of solving the system of
governing equations for laminar, transitional, and turbulent compressible
boundary layers (Ref 6).

Finite differencing techniques were incorporated to obtain solu-
tions of the governing system for both flat plate and axisymmetric
conical flows. The numerical technique involved a simultaneous solution
of the equations of momentum, energy, and continuity by a tridiagonal
matrix inversion routine. Through an iterative procedure, the solutions
of all three were brought into convergent harmony yielding results
which, otherwise, would have been gained only through laboratory experi-
ments. Some of the mathematical modeling incorporated with these three
governing equations included a two-layer concept within the turbulent
boundary layer with appropriate eddy viscosity models used for the inner
and outer regions. These models were considered in addition to the
molecularviscosity term applicable in laminar flow. Further, a speci-
fied turbulent Prandtl number related turbulent heat flux to the Reynolds
stress. Finally, mean properties within the transition region between
laminar and turbulent flow were computed by multiplying the eddy

N R o
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viscosity by an intermittency factor that characterized the growth rate
or production of turbulence within a flow whose origin was laminar (Ref

7; Ref 8:1-4). With these models incorporated, the solution followed.

The Equations to be Solved

The flow of compressible, viscous, heat conducting fluid was
described by the equations of continuity, Navier-Stokes, and energy,
together with a supportiﬁg equation of state, a heat conductivity law,
and the viscosity law of Sutherland. To arrive at such a description
was to accept the propositions of Prandtl. Osborne Reynolds was the
first to study turbulent flow in 1883. He said that the instantaneous
fluid velocity satisfied the Navier-Stokes equations, and that this
velocity was comprised of a mean velocity and a fluctuating component.
He modified the Navier-Stokes expressions with these fluctuating
components, called Reynolds Stresses, and by making boundary layer
approximations he presented the governing equations as follows (Ref 8:

11-12):

Continuity
(ripu) + =— rj » £ =0 (8)
ax s y 7 i e
Momentum

Energy
pE: -:7 (cpT) [v + Lp"— (CPT)] = aP- e & - E’ £ (cpT)]
+;{%;-"- z Ej ( < p'i""l"'):l - pi"—"g-;'; (10)




Appendix A was included for further clarification of the above system
(Ref 9:145-150).

Eqs (8), (9), and (10), valid descriptions for laminar and turbu-
lent flow, were the laminar governing equations with the addition of
turbulent fluctuating quantities which represented the apparent turbu-
lent mass, shear, and heat flux terms. These turbulent additions were
incorporated, again, through mathematical modeling. The apparent mass
flux, p'v', was incorporated by the new variable, V; the apparent shear
stress, pu'v', became part of the eddy model; and the apparent heat flux,
cpdVFTr, was modeled through an eddy conductivity temrm, KT. These
relationships were defined by the following equations:

“Tutl
v=v+.pTv.

e= - pL (1)
au/ay

P vV
Kr = =% ¢ 3173y

With these quantities incorporated, the perfect gas law and the viscosity

relation of Sutherland were also added:

Perfect gas law

Viscosity law 5 . 3Te +s
m = [T b G 3 1 (air on‘ly) (]3)
e

Thus, the system of governing equations to be solved consisted of three

nonlinear partial differential equations and two algebraic expressions.
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But in the present form this system had a singularity at x equal to zero,
the leading edge. To alleviate this singularity, and to reduce the
growth of the boundary layer as the solution proceeded downstream for

numerical efficiency, a variable transformation was made (Ref 8:13-15).

The Transformed Plane

The transformation of Probstein-Elliott and Levy-Lees was used in

this analytic study. The transformation was written as follows:

(x) = ¢ r 24 (14)
E(x A PelaHely ~dX
(x,y) ety Jy t} £ (15)
MK Y] & === y
V2 Jo Pe

Next, the relation between derivatives in the real (x,y) plane and the

transformed plane (£,n) followed:

B, et B, BIE, 0o
[é%)x g peuj;g?tj [gi}[g%}a i

Then, the three parameters, F, 8, and V were defined as follows:

ve—Brirfl, oy e (18)
upr ax VZE

¥
¥
2
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With this, the final working form of the governing system, prior to

4
F linearization, was reached. Further definitions included
la_.ey__
PeHe
ue2
a= (19)
cple
Bz.z_g.iu_e
Uo dé¢

Finally, the solvable form of the governing system was obtained as

follows:
Continuity
oV oF o
E + 2¢ 3% F=0 (20)
{ Momentum
3F , 3F _ 3 (.20 oF L.
25r e v -2 (Wi o2 - 9) 0 (21)
Energy
2
39 , v 30 _ 3 (420 £ o30) _ 02 ¢ [2F)°,
2tF 3E +V n - N t ﬁ;-e 3n alt™ ¥ n 0 (22)

where € =1+Srande=1+ g_gﬂ:r.
u u rt
Casting Eqs (20), (21), and (22) into a finite difference form, this
system represented a means by which a boundary layer could be studied
numerically. With the inclusion of boundary conditions, this system
was solvable. For purposes of this study the boundary conditions were
as follows: F(£,0) = 0
V(E,0) = v, (€)
'S 9(,0) = 6., a constant (23)
F(E.ne) = ] X
0(E.ng) = 1 (Ref 8:13-18; Ref 10)
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This chapter has introduced the boundary layer problem, and methods

by which this problem has been <tudied and solved. The methods presented,

experimental and analytical, represented the techniques employed by those

in the engineering community who have studied boundary layer flow exten-
sively. The numerical solution ultimately depended on the boundary
conditions imposed on the differential equations. Further, the boundary
condition, Eq (23-2), was to become the primary area of study for this
thesis. This quantity, Vw(g), would ultimately provide Itract with the
capability to investigate the effects of mass transfer on a boundary
layer. The original FDL code solved the boundary layer problem for no
mass transfer, or Vw(g) equal to zero. With a Vw(a) model incorporated
to simulate the mass transfer of air, the code would solve the boundary
layer problem such as that investigated by the experimental study men-
tioned at the beginning of this chapter. To better understand this
numerical solution it was necessary to include a program description,

Chapter III.
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IIT. A Program Description

The computer code, Itract, solved the system of nonlinear para-
bolic partial differential equations, Eqs (20), (21), and (22), by
casting this system into a series of linear finite difference expres-
sions. Coincidentally, the transformation from the real (x,y) plane to
the (£,n) plane cast the boundary layer into a rectangular grid of nodes
with the surface of the model located at the level j=1, as shown in

fig 1.

n
» L
A (1,3+1)
Anj I
(i-2,5)
Pt el ﬂ[ (1,d)
A
ot (1,3-1)

-2 he i
LA51-2 _L_“M—l

Fig. 1. Finite Difference Grid for Boundary Layer (From Ref 8:33)

The solution of this system of finite difference equations was approxi-
mated by computing values of F, 9, and V at each of the nodes within

the grid. With values for these variables at stations i1-2 and i-1 the
values of F, 8, and V were solved at station 1 from the surface to the

edge of the boundary layer using a three-point differenéing scheme and

13
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a tridiagonal matrix inversion routine. With the boundary layer solu-
tion completed at station i the problem was stepped in the streamwise
direction, &, to station i+1 and the node by node computation was per-
formed again from the surface to the edge of the boundary layer. The
entire program was, therefore, a sequential so]utidn of a series of
columns of nodes from the leading edge to the trailing edge of the sur-
face or model. For the particular problem considered in this study,
the program followed the step-by-step procedure depicted in fig 2, with
a program listing included in Appendix B.

14



m\y«wﬂrx P —

Inputs including Y, Pr, Pr , stepping data
in transformed plane, wy T }To, turgulent transition
and intermittency cons1derat1on, L, p,» and mass
transfer conditions

[Compute Res )

Nondimensionalize
the key working variables

Initialize the
grid profile

!
Do to label 115«———IEnter the Main Loop |
for each nodal

point in a ver- s
tical direction Compute nondimensional

properties at edge
at station si of boundary layer

eturn from label Compute £,AE, Rey,
115 to recompute step length funct1ons,
at station Si4] a, and B

|
Label 6998
Set the total number
.- of nodal points in
L one column 3f the grid
: Tompute
Return coefficients A,B,C, and D
from for finite difference
label 7005 equations

!

Compute
current station s; values
of FLjLAané

+
Continued on following

page
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F.=2-Fi=]

Compute Teurrent - An]

{

Return'to
If[

label ?998 < convergence criterion,

Tprevious step _ 4
.0015

Teurrent

]
]
[}
]
]
i
AT R Labe Note: If convergence
: False criterion not met in
100 successive checks,

| program was aborted.
True

+
| Compute 8, &*, and © |

+
If iteration has reached
transition, compute e

+
1f AF between the 15th and 16th nodal points
below the edge of the boundary layer > .0001,

add one more point in n grid
+
‘Compute Ste,
Cf,» Regy, and Rey

¥
Profiles shifted back one station
in &, as in Fy_2 = F4_4, and
" oL " R
: 4
Return to Print profile data

beng:innnilr:’go: i for selected stations

¥
e —— [Label 175 Continue |
¥

Fig. 2. Flow Diagram of the Logical Steps to Solution within Itract
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Key portions of the foregoing logic required further explanation. There-
fore, Appendix C was included to discuss four important subsystems of

the original code. These subsystems included nondimensionalization of
the working variables and initialization of the grid, generation of the
finite difference system, the computation of e, and the compution of

Ste and cfe. A Fortran computer code key was also included in Appendix
D. With an understanding of these features of the code, the boundary
condition of mass transfer was considered. Including this boundary con-
dition represented the major modification to the original code, and the

remainder of this chapter was devoted to an explanation of this addition.

Mass Transfer

Mass transfer at the surface was defined by the expression (pv)w.

Consistent with the no?diyensionalized variables used in this problem a
pv

mass transfer factor, TBETE'or e, was defined and used to express the

amounts of mass transfer being considered in any particular problem. This

transfer model was incorporated through the variable transformation

<
3 2 9 Dvro t
v ——g——a‘ [} BJX. + 75 (18-3)

PeYete’o

and expressed in the equation of continuity

Nad+r=o (20)

where, V appeared explicitly in the finite difference expression for
continuity.

Considering Eq (18-3) in detail, the following points were noted:
First, at the surface F or u/u, was zero. Second, tJ. where t was the

ratio r/rys was set equal to one. This assumption was made following

17




the proposition that & was much less than the radius of the cone. Figure
3, though the boundary layer was shown out of proportion, depicted the

pictorial justification for this assumption.

Fig. 3. Radial Measurements on a Cone

Third, from an earlier definition restated, v was equal to v +

p'v'

5
It was noted that v, Was equal to Vi at the wall or surface as the appar-
ent mass flux, p'v', was zero. With these three propositions Eq (18-3)

was expressed for the wall condition as follows:

(ov), Y2E
Vw R V(£,0) or V(i,1) in the grid notation (24)
Pelete"o
Returning to the entire equation of continuity, integration yielded an

expression for V at any grid point at station T
Mj oF
VL) = V) - [ (26 BEF), an (25)
0

where V(1,1) was the boundary condition of mass transfer. To include
Vw or V(4,1), further substitution within Eq (24) was performed. From

fig 3, ro, as equal to x sin ¢c’ and it could be shown that

18
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Ue Yo ()4 (x
kD Y =

; M ;
£ = pu, LAY [-Esf] sin (4,) J
Letting

MY (27)

¥ o Jx Pe Up Ve
T W
0 "o " Ypref

and with one additional intermediate step it was shown that

© o0 "™ um

u 1/2
/2E = [% u p L ~1351 g Lj(sin¢c)j (2X)”2 (28)

and, finally,

v o= [Pt L)V72/ (vt 12| 1 [ (202 ] [Pu] (29)
W W, J o J sJ Pe e Ve
Poo uco ul"&fJ

e Pooloo

Now in terms of quantities immediately available in the program, this
expression was cast into an equivalent form using nondimensional program
variables (Ref 8:18,35; Ref 10). With Eq (29) including the effects of
mass transfer, the equation of continuity was considered next.

Cast into a form of finite differences, continuity was expressed as

follows:

C3(1,3)V(1,3+1) + €3(1,2)v(1,3) + €3(1,1)Vv(i,§-1) + A3(1,2)F(i,§) = D3(1)
(30)
At the surface this expression simplified to

€3(1,1)v(1,3-1) = 03(1) (31)

Setting C3(1,1) equal to one and D3(1) equal to the right side of Eq
(29) the mass transfer boundary condition had been set and was included
with the other boundary conditions in solving the system of finite

difference equations.
19




In order to set an appropriate boundary condition at each station
along £ during the computation, two subroutines were added to the pro-
gram. For the case in which a constant mass transfer rate was specified
in a real sense along the surface from some initial longitudinal station
to a second station where mass transfer was terminated, subroutine
Conblw provided an appropriate transformed value for the transfer at
each station computed. A second subroutine, Genblw, provided the same
information, but for a generally varying mass transfer rate. Using a
linear interpolation between stations of known mass transferring strength,
the boundary condition was computed for each streamwise station within
the specified region of mass transfer. Finally, although not incorpor-
ated into the code, an approximation using a cubic spline description
between known or specified points of transfer rate was devised during
this study. It was thought that this technique would have provided a
better description of a generally varying mass transfer rate,-and the
theory of the proposed modification was included in Appendix E (Ref 11).
However, with the other modifications completed, numerical solutions
with mass transfer were compared with analytical and actual experimental
results, and the results of those comparisons were included in Chapter

Iv.
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IV. Results and Discussion of the Study, Flat Plate and Cone

The modified program was compared with theory and data from three
primary sources. First, using mostly analytical expressions and some
experimental data presented in Schlichting (Ref 12) a study was made of
laminar, subsonic flow over a flat plate for the cases of no mass trans-
fer and a constant rate of suction throughout the length of the model.
Second, from the results of an experiment performed by Moffat and Kays
(Ref 13) a comparison was made for fully turbulent, subsonic flow over
a flat plate. The comparison was made for the cases of no mass transfer,
constant blowing, and constant suction over a specified region of the
model. Finally, from an experiment performed for flow over a sharp nosed,
axisymmetric cone by Martellucci, Laganelli, and Hahn (Ref 14; Ref 15),
data was obtained to test the computer code for the case of hypersonic
flow. For this case of hypersonic, conical flow, the numerical results
were compared in laminar, transitional, and turbulent environments for
the cases of no mass transfer and positive mass transfer or blowing.

In these studies a number of important assumptions were made, scme
of which were mentioned earlier in introductory comments. The boundary
layer thickness, §, was minutely small compared to the characteristic
length, L. The velocity gradient, g%w was large in this region, and
a“. assumed large values. Beyond the boundary layer

ay
no large velocity gradients existed and viscosity was negligible. The

the shear stress,

flow was considered inviscid and potential beyond the edge of the
boundary layer. Finally, the Navier-Stokes equations were simplified
to the boundary layer equations to describe flow characteristics for y
less than &(Ref 12:117-121).
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Schlichting, Primarily an Analytical Verification for Laminar Flow Over

a Flat Plate

For purposes of this study, a hypothetical model and some flow con-
ditions were needed to make the comparison between analytic results and
the predictions of the code. A comparison for the case of no mass trans-
fer was followed by a study with a constant rate of suction over a flat
plate.

Beginning with the case of laminar subsonic flow with no mass
transfer at the surface, working variables were assigned the following
values. Re_ was adjusted to about 1.(10)6 in keeping with the laminar
propositions of Blasius. Further, T was selected equal to T, to be
consistent with the environment for which Eq (33) would be valid. It

was also consistent with the resuits of Eq (32);
2

uﬂ
Wl : /FF'Z-E; : Heat wall : gas (32)

The right side of this inequality for the test under investigation pro-
duced an extremely small difference between T" and T_, and hence, there
was zero heat transfer or the adiabatic case. Finally, a length of three
ft was chosen for the hypothetical model of the flat plate in order to
specify Re_. The remaining inputs for this first test for program veri-
fication 1nclug§dszzzﬂ. equal to .01, a T_ of §33.1 R, and a p_ equal

to 1.12(10)'2 ——%;t—-. For verification in at least this case of steady
laminar flow over a flat plate without mass transfer, the resulting
computations at station s equal to .155 and station s equal to .750 were
chosen for comparison with the calculations of the exact expressions
1isted in Schlichting. The quantities chosen for comparison were &*,

T, Cp and §*/0. Aiso included was a comparison of velocity
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and temperature profiles with data presented in Schlichting from the
work of Hantzsche and Wendt (Ref 12:323). F-om Schlichting, the

following expressions of Blasius were used for computation:

B 172

1.72] = §* ‘GEJ

w
332 = oo |
\

T 'yl]]/z

1/2 i
Ty(X) st . .

s
—2— .—-—2-= .332 [uwXJ i (Rex)1/2

(x
pug
2.59 = §*/0

The results of a comparison between computations performed by the
use of the above expressions and by calculations performed by the com-

puter code, Itract, were summarized in Table I.

Table I

A Comparison of Methods for Boundary Layer Calculations
Quanbity fo Station s = .155 Station s = .750
Comparison Schlichting Itract Schlichting Itract
s*(ft) 2.03 (10073 | 2.00 (10073 | 4.47 (10073 | 4.40 (10)73
rw(lbf/fti) 1.21 10073 | 1.21 (10)°3 | s.52 (10)7* | 5.52 (10)7*
¢ 1.68 (10)73 | 1.70 (10)3 | 7.66 (10)* | 7.1 (10)7*
§*/0 2.59 2.61 2.59 2.62

To quantify the difference noted between the predictions of Itract and
the analytical or experimental data, an error was defined as the quotient

of the absolute difference between the quantities compared and the larger
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of the two quantities. Thus, the results of Table I demonstrated a close-
ness to within the following percentage errors. At station s equal to
.155 the calculations of &* were within 1.5 percent, ¥ results were
nearly identical, the calculations of Cq were within 1.1 percent, and

the computations of §*/8 were within .8 percent of one another. A similar
trend was noted at station s equal to .750. The calculations of &* were
within 1.5 percent, results were again equivalent, the calculations

of cg were within .6 percent, and the computations for §*/8 were within
1.1 percent of one another.

Further tests for verification of the program in this first case
study were accomplished by comparing velocity and temperature profiles
calculated by Hantzsche and Wendt with the predictions of Itract (Ref
12:323, fig 13-11). It was noted that 5(y/8) in the code was equivalent
to the n of Blasius. Further, the ﬁi-of Blasjus was equivalent to

L]

.995 ﬁt in Itract. With these relationships plus the computational
equivalence of Te in Itract to T in Schlichting, the resuits of the com-
parison were listed in Table II with a graphical presentation of the
velocity profiles presented in fig 4. Concerning the velocity profile,
the data of station s equal to .731 was used for comparison, but with
similarity of solution for this particular investigation and the non-
dimensionalized nature of the data, another station would have been

equally valid for comparison.
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Fig. 4. A Comparison of the Predictions of
Hantzsche and Wendt Versus Itract (Ref 12)
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Table I1I

A Comparison of Velocity and Temperature Profiles

Blasius Itract H and W Itract H and W Itract
n y/$ u/u .995 u/u, /T LA
1 i .35 .36 1.0 1.0
2 .4 .64 .65 1.0 1.0
3 .6 - .84 .85 1.0 3.0
4 .8 .95 .96 1.0 1.0
5 1.0 .99+ .99+ 1.0 1.0

The greatest error in this comparison was less than 2.8 percent within
the velocity profile study. With these profile comparisons the investi-
gation for the first case was completed. Case two added mass transfer
to the problem.

Initial testing of the actual modification to the program began with
the addition of a small mass transfer condition, constant suction. Kays
also presented the method of Rubesin for analytically studying large
mass transfer rates (ﬁef 16:324-325). To complete the study for small
constant suction the experimental and analytical work of Head and Iglisch,
as published in Schlichting, was used to verify the results of Itract
(Ref 12:373, Fig 14.11.1). T remained equal to T, for this second test.
Py Was then shown to be %gsgl to p, by the equation of state, and from
fig 14.11.1, therefore, TBETf'was equal to -1.6(10)'4 in Itract. Data

was collected at the nondimensional streawgise position

(34)
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This implied that the profile data of Head was recorded along the flat

4 surface at a station where Rex was approximately 3.00(10)6. For this
comparison, then, the hypothetical length of the model was extended from
3 ft to 30 ft, where Reynolds numbers of this size would be encountered.
Laminar conditions were still assumed to exist. Aséuming in fig 14.11.1
of Schlichting that § was approximately 1.8 mm, a graphical comparison
for this test was presented in fig 5.

To show the effect on the shape of the velocity profile by the addi-
tion of suction, fig 6 portrayed the results of Itract for the boundary
layer flows with and without suction. These results agreed with the
results presented in Schlichting (Ref 12:369, fig 14.6).

Now, as with the first case study, there existed an exact solution
for flow over a flat plate with continuous, constant suction. The
following equation represented an exact solution of the complete Navier-

Stokes equations:
v
uly) = um[l - exp[—%z}} (35)
for v(x,y) = vw<°

From this expression came the following equations:

(36)

i tnz : -2v"
f 1/2pu, U
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Fig. 5. Experimental Data with Suction
Compared to the Prediction of Itract (Ref 12)
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Fig. 6. Matching the Profiles Presented in Schlichting, Fig 14.6 (Ref'IZ)
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It was noted that in each case, §*, @, and c; were constant. This solu-
tion was realized only at some distance from the leading edge. The
boundary layer grew from zero at the leading edge and continued down-
stream asymptotically to the values predicted by Eq (36). These values
wgre reached at what was termed the asymptotic suction layer limit.

Iglisch has shown that the asymptotic state was reached after a length

of about

U@ -'-Vw

g 12

x = ﬂit-ﬁﬂ (37)

To simulate this asymptotic solution the length of the hypothetical
model was extended still further to 3000 ft, and the remaining input con-
ditions were held constant. Iglisch then predicted an asymptotic solution
by station s equal to .156. Itract had come within 2.3 percent of the
final asymptote by s equal to .155. Table III summarized the results from
the equations of the exact solution above, and compared those calculations

with the corresponding predictions of Itract at an s of .347, the point of

closest approach to the analytical asymptotic values.

Table III
A Laminar Flat Plate Study with Suction

Quantity Exact Percent
Solution Itract Error
§*/L 6.25(10)° | 6.04(10)7® 3.3
o/L 3.12(10)°° | 2.97010)°6 4.9
ce 3.20010)°% | 3.24(10)"% 1.2
30
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Finally, all testing thus far that included mass transfer had been
accomplished using the routine that incorporated constant mass transfer
rates at the surface. Before investigating other experiments with flat
plates, the variable mass transfer routine was verified. First, using
the three ft model, Itract computed a boundary layer perturbed by a con-
stant rate of suction from a point one ft from the leading edge to a point
two ft from the leading edge. The computation was repeated with the same
inputs with the exception that the variable mass transfer routine was
called to compute the boundary condition in lieu of the constant mass
transfer routine. Identical results were noted for the two tests.

With this final check the verification process departed from the
laminar flow study and considered turbulent flow over a flat surface.
For this study the results of experiments performed by Moffat and Kays

were used.

Moffat and Kays, A Verification for Turbulent Flow Over a Flat Plate

Using Experimental Results

R. J. Moffat and W. M. Kays of Stanford University performed an
experiment in which they were primarily concerned with heat transfer
through a turbulent boundary layer over a flat plate which was perturbed
by both positive and negative mass transfer at the solid boundiry. The
results of their wind tunnel study provided a criterion for evaluating
the heat transfer model of Itract under turbulent conditions. Heat
transfer in the experiment was quantified in the form of a Stanton number,
St. The accuracy of the apparatus used allowed determination of the

4

Stanton numbers to within 10 units over most of the range of mass

transfer. The experiment was performed on a transfer range from the
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asymptotic suction layer limit discussed earlier to the apparent blow off
or separation of the boundary layer. Presented in this section are
results of testing and a discussion of a parameter study performed to
minimize the effects of higher order terms not included and, hopefully,
match this numerical model with the experimental environment for the no
transfer case. With accurate predictions for this case, the results for
small amounts of blowing and suction were given next. Finally, the range
of accurate prediction of the computer code was tested, with these results
included last.

To begin, a wind tunnel run was chosen with the following conditions:
u, was equal to 44.5 ft/sec, T was 524.0 R, and T was 556.6 R. The
experimental data collected was 1isted in Table V. The length of the
model was given as 8 ft. It was assumed that the last value of Re, was
taken from the end of the plate, and could bz considered a close approxi-
mation to Re_. Further, itwasassumed that the flow was turbulent over
the entire length of the wind tunnel model. A parameter study was then
begun to find the best combination of those variables which described the

grid to minimize error caused by the truncation of higher order terms, and

. pick two parameters which helped describe the characteristics of the flow.

These two classes of variables included the following: XXK, the constant
ratio of any two successive An spaces; PRT, the turbulent Prandtl number
taken to be 1. or .9 in the literature; XINTER set to 1. or 0. depending
on whether eddy model one or eddy model zero was to be used; DYW, the size
chosen for An,;andIEDGE. the total number of divisions in n to be used in
the computation of the grid. The objective was to closely predict the
Stanton number for a corresponding Re, that ranged from 4.55(10)4. where

measurements of heat transfer began, to the end of the plate at an Rex of
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2.14(10)6. Table IV of Appendix F summarized the combinations of vari-
ables with Table V of that same appendix actually presenting the results
of those variable combinations. The figures of column 4 produced the
best match with the experimental results. Excluding the readings at an
Re, of 4.55(10)4 the greatest error was recorded at an Rex of 2.27(10)5
with an error of 5.7 percent. Column 3 had produced nearly identical
results, but had incorporated inefficiently small stepping increments
into the numerical scheme. A graphical presentation of the experimental
results with the analytical predictions of colurn 4 and column 1 was
included in fig 7. In a final note, with the exception of readings at
Re, values of 4.55(10)%, 2.27(10)°, and 3.18(10)°, the remaining errors
were less than or equal to 3.9 percent.

With the case for zero mass transfer recorded, two more experimental
runs were investigated. First, an experiment which included a blowing
rate, r;;ﬁi. of 1.(10)'3 was run under the following conditions: wu_ was
equal to 44.1 ft/sec, T was 525.7 R, and Tw was 557.7 R. In a simula-
tion by Itract the results were presented in Table VI of Appendix F with
a graphical presentation included in fig 8. From Table VI it was noted
that in setting XINTER equal to 0., and thereby using eddy model zero in
the calculation of e, more accurate Stanton numbers resulted. Next, an
experiment which included a rate of suction, ;g;;fa equal to -1.'IS(10)"3
was run under the following conditions: u_ was equal to 42.5 ft/sec, T
was 524.3 R, and Tw was 549.7 R. Again, the results of a simulation by
Itract were presented in Table VII of Appendix F with the graphical
equivalent included in fig 8. Unlike the case with blowing the tabular
results for this case with suction showed that the more accurate pre-

dictions of Stanton numbers came by setting XINTER equal to 1., and
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thereby using eddy model one. Finally, with simulations performed for
both the small positive and negative mass transfer cases, it was then
appropriate to find the 1imits of accurate simulation by Itract.

In this final phase of flat plate testing Itract was simulated at
the extreme limits of the Moffat and Kays experimeht. In the limiting
case for suction, termed the asymptotic suction layer limit, Itract was
able to predict Stanton numbers to within 5.3 percent, excluding one
reading taken at a station where Re, was equal to 4.3(10)4. The wind
tunnel conditions for this test included the following: u_ was equal to
41.8 ft/sec, T_was 523.8 R, and Tw was 552. R. The rate of suction was
%%;;f-equal to -7.77(10)'3. The tabular results of this test were
included in Table VIII with the graphical summary included in fig 8.
Again, as with lower suction rates, more accurate results were noted
when eddy model one was used. However, unlike the case for suction, in
the testing of positive mass transfer or blowing, Itract was unable to
predict heat transfer to the limiting point of blow off or boundary layer
separation, which occurred experimentally near Tgéyf-equa] to 9.6(10)'3.
The results of the predictions of Itract for rates of blowing equal to
l.('IO)'3 have already been presented. For the code, the limiting trans-
fer rate for which there existed experimental data was 1.91(10)'3. At
this transfer rate the numerical scheme could compute the boundary layer
problem without an error finish. The results of this test were included
in Table. IX with a graphical summary included in fig 8. It was noted
that with the finer mesh of nodal points Itract was able to predict
consistently the Stanton numbers for various Rex up to a point where the
numerical scheme failed. While the scheme was able to compute, Itract
consistently predicted Stanton numbers 3.(10)'4 less than the experimental
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results from an Rex of 2.28(10)5 to 1.23(10)6 where the program exper-
ienced an error finish. With a coarser mesh of nodal points Itract was
able to complete the numerical computation, but with predictions of
Stanton number that were not as close as previous tests. Rather than a
nearly constant difference of prediction as previously seen, the results
of this test showed Itract to predict Stanton numbers lower than experi-
mental by about 22.8 percent. From an Rex of 2.28(10)S through the end
of the computation the greatest deviation from this figure was to 25.7
percent. Finally, in a test case for a mass transfer of 3.8(1073, using
a coarse grid of eg%;l equal to 1.15, An, at 5.(10)'4, and 100 divisions
in the n grid, Itract was able to successfully compute the boundary
layer without error finish. However, experimental values of Stanton
number ranged from 2.36(10)"3 to 6.2(10)'4, and with Itract predicting
values consistingly greater than 5.(10)'4 below the experiment, the

results were not included.

The results for blowing equal to 1.(10)'3 displayed the limit of
positive mass transfer rate with which Itract could compute accurately.
Beyond a transfer rate of 3.8(10)'3 Itract was neither able to predict
Stanton numbers nor successfully complete the computations without an
error finish. This completed the comparison with the experiment by

Moffat and Kays.

Martellucci, Laganelli, and Hahn, A Study of Turbulent Flow Over an

Axisymmetric Cone with Experimental Results

A. Martellucci, A. L. Laganelli, and J. Hahn of the General Elec-
tric Reentry and Environmental Systems Division performed an experiment

over a two year period in which they were concerned with heat transfer

37




o —————— e

B fE

behavior and boundary layer profile characteristics for hypersonic flow
over a sharp nosed, slender, axisymmetric cone. Their experimental
results of heat transfer and profile data provided numercus quantities
by which to evaluate the modified code.

In the experiment, data was collected for nominal, positive mass
transfer rates as follows: O., 5.(10)'4, 1.(10)'3, and 1.5(10)'3. All
four transfer rates were investigated in this study, with comparisons
between data and numerical predictions made for the heat transfer at
the surface, the velocity profile, and the static temperature profile.
In making this comparison there was a problem in describing the flow
environment downstream of the leading oblique shock wave.

Unlike the study of flow over a flat plate, the oblique shocking
effect on the cone was great enough to significantly change the fluid
state downstream of the shock wave. Therefore, for purposes of computa-
tion, the actual free stream conditions were not of direct use to the
computer code. Rather, the environment downstream of the shock wave was
the needed condition for input into Itract. Computing these conditions
for input would have been a time consuming problem in itself, and the
needed additions to the existing code to perform this computaticn were
not pursued. In order to provide the conditions at the edge of the
boundary layer, graphs of characteristics of flow over a cone, such as
those found in NACA 1135, were considered. Not only did the resolution
of the graphical information seem inadequate for the range of mach
number being considered, but the data presented was for an inviscid,
compressible solution. Tabulated data such as tkat included in reference
17 was consicered, and though accurate, it still posed data for an

inviscid solution. Investigations were made using the data of the
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inviscid solution in reference 17 as inputs to Itract. It was judged
that this method did not yield results close enough to the physical
situation at hand to be considered a valid approximation. To obtain
viscous inputs for Itract, the decision was made to use data presented
with the results of the experiment performed at General Electric.

A review of the experimental technique was appropriate. As stated
previously, the data collected in the experiment was of two categories.
These two categories of data were collected in separate runs of the wind
tunnel. Initially, the model of the cone was exposed to flow at an M_
equal to eight for a few seconds. The heat transfer data was collected
and flow within the tunnel was stopped. After the surface data had been
taken, flow, again at an M_ equal to eight, was started. The inter-
action of the flow over the model of the cone was allowed to reach an
equilibrium state, and the second category of data profile information

was collected (Ref 4:11). Within this profile data, the following mea-

surements or computations were taken for various stations along the cone:

Me' Te’ Ugs Pgs (pv)w, (pu)e, and Tw/To' The above quantities, mostly
representative of conditions at the edge of the boundary layer, became
the new conditions at infinity to be used as inputs to Itract. These
inputs were used by Itract to predict surface as well as the field data
of the boundary layer. With this assumption, the following approxima-
tions were made for computational purposes: First, where data from
multiple stations, both longitudinal and azimuthal, along the model was
catalogued for the same wind tunnel environment, an arithmetic average
of quantities such as Me. Te' and Pe at these stations was used to com-
pute a new, constant M_, T, and p_ for Itract. Further it was approxi-

mated that T“/T° was a constant ratio equal to an arithmetic average of
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the readings taken along the surface in a streamwise direction. In fact,
wall temperature did vary in the experiment and the temperature ratio

was seen to vary plus or minus three or four percent from the figure used

3 in computation. It was noted that one term in the denominator of the

expression used to compute Stanton numbers was (1-Tw/T0), and values for
Tw/To of .5 to .8 were common (Ref 14; Ref 15). Also, since the defin-

ition of the Stanton number of Martellucci was actually an St_, it was

Pelle

poouoo
parison with the experimental data. Finally, there were three descriptions

necessary to multiply the Itract figure by the factor

prior to com-

for mass transfer rate: First, a nominal figure for blowing was presented
such as 5.(10)'4, 1.(10)'3, and 1.5(10)-3. Second, an actual measurement
of this blowing rate would be found by performing the division (pv)w/(pu)w.
This was designated as A_,. In 1ike manner, (pv)w/(pu)e was computed and
defined as A,. All-three had different actual values, and all three
figures were tested in the modified code. Though all were describing the
same mass transfer activity, Ae was finally selected as the appropriate
boundary condition for this code.

Using the assumptions and approximations listed above, the cases
tested and presented were of four categories: First, a study of the
case for no mass transfer was considered. After this, three investiga-
tions followed with nominal mass transfer rates of 1.5(10)'3. 1.(10)'3,
and 5.(10)'4. These four cases comprised the entire study of flow over
the sharp nosed, axisymmetric cone.

Beginning the study of flow over a cone with a nonblowing case, an
experimental test case, data group 132, was chosen from the results of
Martellucci, Laganelli, and Hahn. This was a data group depicting heat

transfer at the surface of the cone in the form of St_ for numerous
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longitudinal positions along the surface. Connected with this heat trans-
fer data group were data groups 74 through 79 that presented profile or
field datc and were the product of the same free stream conditions as
data group 132. The free stream conditions included an equal to 7.87,
5 Tbesec
Using data
ft

groups 74 through 79, the actual input conditions to Itract were an Me

T, equal to about 92.9 R, and a p_ of 2.59 (10)"

?qual Eo 6.84, a T, equal to 121. R, and a o equal to 3.66(10)'5
besec
5 The length of the model was five ft, the point of transition

ft
was approximated from the experimental Stanton number curve to be about

1.33 ft from the tip of the cone, and an average Tw/To was found to be
approximately .68. Using this information a tabulated comparison of

the heat transfer results was listed in Table X of Appendix G with a
graphical depiction included in fig 9. This graph not only showed the
results of Itract in comparison with the experimental data but provided
theoretical boundaries for heat transfer as predicted by Bell Aircraft
Corporation (Ref 18). The lower Bell curve predicted heat transfer
assuming the flow was laminar throughout the length of the model. The
upper Bell curve predicted the heat transfer assuming fully turbulent
flow for the entire length of the model. Concerning the prediction of
Itract, it was noted that the curve continually overpredicted the experi-
mental heat transfer, followed similar heat transfer trends as the flow
proceeded along the surface, and settled to within 2.3 to 8.4 percent

of the data for the last 1.5 ft of the cone. It was further found that,
unlike the flat plate study with blowing, eddy model one yielded the
better results in predicting heat transfer for the cone. Some of the
disparity of heat transfer prediction in the region of transition was

due to an approximated turbulent transition point. The first departure
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from a linear trend in the Stanton number data plotted on a logarithmic
scale was used as the point of transition (Ref 10). To further inves-
tigate this case for no mass transfer two more cases were ;onsidered.
It was thought at General Electric that the results of two partic-
ular cases offered excellent references or test cases by which to
compare the predictions of Itract (Ref 19). The first case was termed
a hot wall experiment, a nearly adiabatic wall, and was similar to each
of the succeeding cases with mass transfer that would be studied. The

free stream conditions for this test, data group 150, included an M_ of
_5 1bgsec?

ft
to Itract the edge conditions of data groups 148, 149, 207, and 208 were

8.0, a T_ of 97.6 R, and a p_ of 7.53(10) For actual inputs

used to simulate conditions downstream of the shock wave of group 150.

This led to an Mg of approximately 7.1, a Te of 123.1 R, and a Pe of

-4 lbfsec2
1.17(10) - 7 The results of Itract were included with those of
t

General Electric in fig 10 with tabulated results in Table XI of Appendix
G. Again, the results showed Itract passing through the field of laminar
data points and settling high in the fully turbulent region. In the
fully laminar region Itract was within 2.6 percent of the data, and with
the exception of one point, Itract settled within 9.3 percent of the

data in the fully turbulent region for the last 1.5 ft of the cone. For
the second test a cold wall experiment was considered, data group 1.

The same free stream and edge conditions existed, and only the Tw was
changed. The wall was cooled from 1060 R to 580 R and the experiment

was repeated. The results of this comparison were included in fig 11
with a tabular summary in Table XII of Appendix G. Near identical
results were noted among the three theoretical codes: Itract, Nsbl, and

Vizaad. Nsbl and Vizaad were codes used by General Electric to check
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Fig. 11. Comparison with a Cold Wall Reference
Test Case, Heat Transfer Group 1 (Ref 15)

45



their experimental results. In this test Itract was within 8.9 percent
of the data over the laminar region and maintained a consistent 13 to 15
percent high prediction over the entire turbulent region. Consistent
with the results of data 132, these last two test cases were predicted
best using eddy model one. Having noted the consistent trend set in these
three heat transfer cases, attention was directed back to profile data
groups 74 through 79.

Having used the output of these groups for the investigation of
data group 132, the profile data group 74 was again used by Itract to
predict the profile shape of velocity and temperature versus %-for
station s equal to .466. The results were included in fig 12. Due to
the questionable data pointé for %-1ess than .4 no percentage error was
included.

These results represented the best predictions for heat transfer
obtained during the study of the cases for no mass transfer. As with the
flat plate study, numerous combinations of grid size, Prt, and eddy
models were attempted in order to minimize the error in neglecting higher
order finite differencing terms and best describe the flow behavior.
Having completed the cases with no mass transfer, study began in those
cases with transfer. :

Beginning with the greatest blowing rate of 1.5(10)°3, data groups
66, 68, and 73 were chosen for consideration. It was found that Itract
was neither able to predict the heat transfer of data group 66 nor the
nondimensiohal\ profiles of data groups 68 and 73. Various grid sizes
were attempted.‘ihich in the extreme cases included a any equal to
1.25(10)". 250 divisions in the grid along the streamwise d‘rection, and

An
150 divisions in the grid along the n direction. The ratio, —Zﬁiln was
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decreased to a value of 1.05. Even with the finer mesh size the tempera-

ture change at the first two stations at which mass transfer was occurring
was so great that the numerical scheme failed due to attempting undefined

arithmetic operations related to these temperature differences. One step

prior to failure, the coefficient of skin friction and heat transfer were

seen to be decreasing rapidly. This was indicative of a numerical separ-

ation of the boundary layer and the imminent failure of the computer code.
A smaller transfer rate of 1.(10)'3 nominally was attempted next.

Data group 60, depicting heat transfer, and data group 59, depicting
profile data, were chosen as test cases for investigating a mass transfer
rate of 1.(10)'3. This was the first case involving mass transfer in
which Itract was able to complete the calculation of the boundary layer
without terminating in an error finish. This did not imply the accuracy
of the predictions, only that the finite differencing scheme was able to
proceed through a complete computation of the grid of nodal points.

As the profile data group 59 was the only field data associated with
data group 60 for heat transfer, the information from group 59 alone was

used to determine the inputs to Itract. For computation purposes Itract

se lbfsec

—'_—_. Frm
£t
the graphical presentation of St_ versus station along the surface of the

was provided the following pseudo-infinity conditions: M_ was apgroxi-

mately equal to 6.7, T, was 112.4R, and Pe Was 1.26(10)

cone an initial transition point was chosen to be over two ft from the
tip of the cone. Also, from tabular and graphical presentations, the

ratio, Tu/To’ was approximately .57. Related to the blowing rate, the
supposed actual rates of'transfer. A,s Were 8.3(10)"4 from 9.5 in. to

22. in., 8.(10)™* from 22. in. to 34.5 in., 9.6(10)™* from 34.5 in. to
47. in., and 9.(10)"* from 47. in. to the end of the model. This
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disagreed expectedly with the figure for ;;;;f—from data oroup 59 which
was 6.3(10)-4. Initially, the blowing rates for A, Were chosen for
testing.

Initial testing with the aforementioned inputs led to a series of
error finishes. Itract was able to compute for the first 3.5 ft of the
cone at which point the coefficient of friction and Stanton numbers had
decreased rapidly to values of 10'5 or 10'6. At this point Itract simul-
ated boundary layer separation with an error finish. Again, many
combinations of grid spacing were attempted. The transfer rate seemed
clearly too great. With the lack of clarity of a transition point, an
attempt was made to run the program assuming turbulent conditions from
the tip of the cone. MWith this one change, Itract was then able to
successfully solve the boundary layer problem, but with two conditions
at input still in question. First, further scrutiny of the heat trans-
fer curve showed justification for choosing a transition at 1.5 ft from
the tip of the cone. Then, to be consistent with the newly defined
pseudo-infinity conditions downstream of the shock wave, the proper mass
transfer rate was thought to be 1;;;3 in lieu of %;;f% . From the
transfer reading of data group 59 a scaling factor was used to adjust
the blowing rates from 8.3(10)°%, 8.(10)74, 9.6(10)7%, and 9.(10)"% to
5.4(10)'4. 5.3(10)'4, 6.3(10)'4. and 5.9(10)'4 for the four sections of
the cone previously mentioned. With these édjustments, Itract was again
run for the final test of data groups 59 and 60. The results of the
heat transfer study were included in Table XIII of Appendix G with a
graphical depiction in fig 13. In the turbulent region Itract over-

t predicted the experimental heat transfer data by about 70 percent with

a 30 percent average in the laminar region. In the profile results of
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fig 14 there were identical temperature gredictions near the wall with
a disparity greater than 46 percent near the center depth of the boundary
layer. Concerndss *te vglagdie neafila  the General Electric data
depicted 2 near separated condition at station s equal to .658, and the
disparity betwees Threass st thq Aot os, ~oadn qreatest near the middie
of the 6:::Aa;;.;;y;;v:;;ckness with a 58 percent error. Observing the
near SeQArateld copd;lia7, Pra2e ZonSISLEY Y S50 thoerve low heat
transfer data results. This concluded the final investigation of data
groups 59-and 60. One final case with a naminal mass transfer of 5.(10)'4
was then selected.

from experimental results, data group 203 was chosen to study heat
transfer, and data groups 200, 201, and 202 were chosen to study the
profile characteristics of the boundary layer for this lowest mass trans-
fer case. Free stream conditions }gcludgd an M_ equal to 8.0, a T_ equal
to 98.1 R, and a p_ of 7.48(10)" -6 __ff;E_. From groups 200, 201, and
202, the inputs to Itract for the stzgy of group 203 and the heat trans-
fer consisted of an Me equal to
R, and a p_ of 1.18(10)

Zapproximate'ly 7.1, a T equal to 120.6
-4 e T/To was .78 and a constant éﬂ!;ﬁ
equal to 3.1(10)” s was used :: the transfer rates computed at the

three profile data stations were nearly equal. The results of the com-
parison between Itract and the experimental data of group 203 were
sumarized in Table XIV with a graphical presentation in fig 15. There
were no laminar data points with which to compare, but in the turbulent
zone Itract underpredicted the heat transfer by a 30 to 50 percent
margin. Noting the sensitivity of the code to even small changes in
mass transfer rates, data group 203 was retested for possible actual

mass transfer rates of 1.(10)" and 2.(10)'4. The numerical predictions
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were shown to pass through the region of turbulent data points, also
shown in fig 15. The study of data group 203 provided theclosest
results of [tract for the investigations that included mass transfer,
and the corresponding profile results of data group 201 were, likewise,
the best. A comparison of Itract with the profile data of station s
equal to .646, data group 201, was included in fig 16. Near a %-of N
the temperature profile was 33 percent in error with a 20 percent error
in the velocity profile for a similar boundary layer depth. Both
error figures represented the extremes in error between the numerical
results and the experimental data.

With this test, the investigation of the cone, both with and with-

out mass transfer had been completed. A summation of the investigations

of the cone, as well as the plate, followed.
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V. Summation

Originally, thecomputer program, Itract, incorporated a boundary
condition of zero mass transfer at the surface in calculating the
boundary layer. With the program modified to accept the condition of
mass transfer at the surface, boundary layer flows perturbed by this
mass transfer could be solved. The purpose of this study, then, was to
modify the basic code and verify this modification through comparison of
the numerical results with analytical expressions and with published
experimental data. Data was chosen from experiments on both a flat sur-
face and an axisymmetric cone.

From the study of flow over a flat plate four results were out-
standing. First, the grid size was of fundamental importance in solving
the problem. A finer mesh of nodal points yielded better results to a
point where the effects of truncating higher order terms in the finite
difference expressions became insignificant. Second, the cases investi-
gated with suction were clearly more stable in computation. Further,
these cases were more accurate predictors of the experimental results to
the extreme of the asymptotic suction limit. Third, the results for
the blowing cases were less accurate, and the error did not show regular
trends insofar as a fixed error amount or a fixed percentage error. The
heat transfer predictions were low. Fourth, for the case of blowing,
the best results were obtained by using eddy model zero. However, for
the cases with suction, eddy model one provided the best results.
Overall, the modified code was verified for flow at an M_ much less than
one over a flat plate. For both laminar and turbulent flow, the code

was proven to be accurate for the case of the blowing parameter to a
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strength of ].(10)'3. For the suction case, the code was accurate to
the suction asymptotic limit.

From the study of flow over an axisymmetric cone four results
were noted as outstanding. First, the grid size, again, remained an
important factor in the success of the numerical predictions. The
finer lattice of nodes yielded better and better results. Second, the
case of suction was not studied but for the case of blowing, the pre-
dictions became erratic as the blowing parameter was increased. The
resulting errors did not show a systematic trend. Third, the best
results for the cases of positive mass transfer occurred when eddy
model one was used, unlike the results of the flat plate study. Fourth,
the results of these blowing cases were shown in fig 15 to be extremely
sensitive to the blowing parameter, and the precision with which the
blowing rate was measured would have to be considered in completely
evaluating the validity of the modified code. Overall, the modified
code provided reasonably predictive results in the case of laminar and
turbulent hypersonic flow over a slender cone. Specifically, for a
mach number of eight the code provided reasonable results for mass
transfer rates, defined as (pv)w/(pu)e, up to 3.1(10)-4. To verify the
code within an acceptible limit, the precision of the measurement of
the blowing rate would have to be quantified. Assuming a measurement
error between 1.(10)'4 and 2.(10)'4 was possible, the code was verified
for turbulent, hypersonic flow over the cone for mass transfer rates up
to a strength of 3.1(10)'4.

With the 1imits of the code specified for the particular cases
studied, factors that contributed to the obvious 1imits of the code for

the positive mass transfer case included the following: First, at the
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initiation of blowing, sharp temperature gradients in the streamwise
direction resulted in numerical problems for the code. Second, with

this temperature change in the streamwise direction normaily considered
insignificant as a boundary layer assumption, the effect of blowing may
have violated a basic proposition inderivationof the boundary layer
equations. Third, if the flow were separating from the solid boundary,
as it seemed to do in some of the velocity profiles, another basic
proposition of boundary layer theory was violated, and the imminent
arithmetic mede failure of the code was to be expected. The success of
this code ultimately depended on the condition that the classical
boundary layer assumptions were not violated. Finally, in at least the
study of the conical flow it has been found from previous study that
though it was valid to use experimental data to describe the flow envir-
onment downstream of the oblique shock wave, this could have misrepresented
the needed inputs of this code. Further, it has been found that the near
adiabatic condition of a wall has been a most difficult problem for a
finite difference scheme to compute accurately, more so than in the cold

wall case as was shown in the favorable results of fig 11 (Ref 19).
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Appendix A

A Background and Derivation of

Some Key Expressions Used in

the Analytical Solution

The differential equations which described two-dimensional laminar

boundary layer flow in a cartesian cobrcﬁnate system were

Continuity

_g_tq+ a(ap:) + 3%';/) =0 (38)

Momentum .
9T
u R
Pttty T T Ty (39)

ap 9T
v av o T Xy
°at+""ax pvay ay+3x

Energy
D—E(CT) +pu——(cT)+pv (cT)
(40)
aqx

-gﬁ-ugﬂ-vgﬂg__+_l
ot X ay X ay

ou u v

. where
f P = -1/3 (p*py*p,)

£
i
3
!
t
3
g

p+p__§u[au+av] zu_g_g_

_%u[au A Zu% (41)
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2 fu, v
PP -3“[3x+ay}

du . 9v

yx  Txy © “[ay §§J (41)

-
n

3T WL
q, k X and qy = k 3y

From Reynolds the following definitions were made to describe a turbu-

lent boundary layer:

=y ' =p ' =T
u ut+tu, p p+poTyx Tyx+1yx

(42)
pu = pu + (pu)', pv = pv + (pv)*, Py = Py * P,

where bars indicated mean values and the primes designated instantaneous
fluctuations. Finally, the definition of time averaging was necessary
and was explained by the following example:

IT+T/2
T-T/2

i-q udt (43)

where T was used in this example to represent time, not temperature.
With these basic definitions and assuming s eady state conditions, the
laminar equations could be transformed into descriptions of turbulent
boundary layer flow.

To ultimately reach the form of the equgtions listed in Eqs (8),
(9), and (10), the steps were included for the simplest case, continuity.

‘Time averaging and substituting from the abcve definitions yielded:

a5 (PU+5TU) + 2 (V+5™V) = 0 (44)
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It has been accepted that the p'u' term was strongly uncorrelated, and
this term was eliminated from further consideration. Then, following
two coordinate transformations the final form of Eq (8) was reached.

An assumption of this study was that flow could be considered two-
dimensional. Further, a body oriented axis system was employed for both
the flat plate and axisymmetric cone. Finally, a cylindrical coordinate
frame was chosen to describe both of the flows. Performing the cylin-

drical transformation,it was found, first, that in cartesian coordinates

3 g
3(pu) p[" % 5
X ki oy 0 (45)

having dropped the time averaging symbol from the mean quantities. Then,

g
Pu as Eu, 0, p[v + &:—J

and employing the definition of the divergence of pu or V:pu, continuity

by defining

in a cylindrical frame was shown to be
[]
arpv+2__.v__
3(rpu) [[___—I_D]
A + 5y 0 (46)

By including an exponent with the r term to yield rj, it was noted that
by setting j equal to zero or one would yield the expressions for contin-
uity related to the flat plate and to the cone, respectively. Then
having demonstrated a transformation to cylindrical coordinates, it was
reassuring to show also that a body oriented axis system x', y' could be
used in the case of the conical flow as an x,y system had been used for
the flat plate. Figure 17was included as apictorial description of this
situation, with the prime symbols serving here only to differentiate

direction.
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Fig. 17. Showing the Equivalence
of Expressions in Rotated Coordinates

First, it was recognized that

y=x' sin¢c +y' cos¢c

X =x' cosé. - y' sin¢c

y'=y cos, - X sin¢c (47)
x'=y s1n¢c + X cosoc

vy = Uy, sin¢c + vy. cos¢c

Uy, = Uy cos¢c - vy. sin¢c

Then, from fig 17, it was true that

a(rpux) f a(rpvy) .
X oy

(48)

If F were equal to (rpux) and G were equal to (rpvy). it was demonstrated

that the chain rule could be used to ultimately produce expressions for

%E and aF such that the following equality was true:

alrpu,)  alrgvy) dlrou,,) = alrovy.)

oxX oy X’ ay' (49)

Thus, through two transformations the immerging expression for continuity




i
1
o

.a_(!__pl‘l * P
ax a9y

which matched Eq (8).

(50)

In the same manner, but with increased complexity of expression,
the equations of momentum were written as follows using the equation of

continuity:

8(pu2) 3(puv) ap ot

yX
X i ) ax * oy
(51)
a(puv) a(pv ap at
X y

Employing the equation of continuity, and with the substitutions of Eq
(42), it was noted in the final form that v was much less than u and
that Eq (51-2) became a negligible expression. Eq (51-1) was dominant
by an order of magnitude analysis, and after dropping the bar symbol over

mean quantities, reduced in the steady state case to

au p'v'] u _ 9 Tou)u"
PU 3% B p[v i 9y  ox [px + pu u']
(52)
2 ¥
+ Yy Tyx + (pvi u')

Then, using Eqs (41) and (42), discarding negligible terms, and trans-
forming to the cylindrical coordinates, Eq (52) reduced to

au 'Y'l ou . 4 1 9 u
mipe ol - R FSPDE )

which was the momentum equatfon in Eq (9).
Fin21ly, and with still greater complexity, the rules of substitu-
tion of Eqs (41) and (42) along with the idea of time averaging and
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o coordinate transformation could have been employed with Eq (40). Then,
following steps similar to those of Van Driest, the energy equation could

also have been simplified to the form shown in Eq (10) (Ref 9:145-150).
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Appendix B

A Program Listing

29)GR4 M TTIAST (INOUT, NMITOYT, TADES2TNOYT, TADZ5299TIYT) 990100
oMoy A y 2TY, YMIvE, O4IF4, 33, TW, 210, T17, AN, VIS, TI, 109119

22
A

1 P 0T T VTSI IF (81T 02 NS )Yy ST Z0202,7C,TAy ITIGILIINDL, INTACT, 1700129
2 OOT XYY ,QTDY, ¥LAM, /20037 XTUTED,S5I2N, ITUS(8), I (3),Z0(210), 000130
3 EN(20 M L,E2(290),TTI(21M),ITH(219) 4,572 (211),572(290) ,EN(200),J20%, 107160
W FO(20 %) ,TH(20R) ,TN(217) 4 XMN(20M) , 74 (2031 ,VI(2T1) ,vP(2819),T2¢(207), 100150
8 M (200 ,22(267),7%(21") 390160
ATMSMI TN ¥ (237) ,4L(27%, ) ,42(200,3) ,83(277,3),31(213,3), 230171
1 82(209,3),83(207,3),C1(227, 3),C2(292,M,23(297,3) 000180
COMMON/TIVATA/ CD(24) ,¥2(24) 4,70 (24) , TO2ZS 2010199
COMMONMZ W ADATAZNYMDE Ty XO0S( 2L) 4RY4IYRAT(24) 4 TRP,TRIF, (NUZ,5,55,57,239219
& TILW, YLATHYT, oyPAT 000210
0aATA 2/71715./ : 100220
TOIAAT (LHNG 10X TN /L , 15X 4 2HC D41 5X 4 3HD/DINE) 000230
EOPMAT (L (3 (=X ,T15,3)) 000260
TORMAT (L ¢, *PONFILE FATLEN T) RELAX AT M = &,15) 010250
FAYA 7 (4315.9) 010250
TORIT (3585.7) 009270
EORVAT (115 000280
SOAOMAT (191, L X *TNTIALCTING 3QUNNARY LAYER SILITINN®) 000290
FOMAT (THMORAMMAZFS,3 % PR=Fh, 434 MES=F5,T,74 23T¢7FS=210.4,3H4 7739100300
1(R) =F7 1,114 30=TYs/T19=F3,L,5KH Z7S=F3,5) 000319
TOAIMAT (S4NP1T=,210,%, T4 PHNL D=, E10, 4,54 T10=,31), 4,74 VISL10=,310,4302329
1,6H ST=,T10,x) 3001330
TOIMAT (7HNIMEG A= yF7, 4 432X JSHPOT = (T7,4L42Y,THATIX = ,77,4) N91340
ENIMAT (19X, *HITH TUTIRUITTENLY CORRECTION®) 000350
TOIMAT (11X, *WAITHOUT THMTTMITTENSY ZIRECTION®) nno3sn
EORAT (1%, *TWHN=ATUINSIONAL 3CUNDARY LAYER*) 00037¢C
STOOMAT (1IN *AX ISYMITATZAL FWUNDARY LAYEIR®) 9093819
009390
INSYT T™TTTIAL CONDITIONS 000600
5 101410
2EINI5,3701) G, P, XMTNE, TA LU Y4 ]
Q€8N (5,2302) IS, €I, 047GA, ZRRNR, XK ' NCco&30
CAN(3,4792) an,373X, OT, XINTER, OYW 099440
EAN(3 ,3703) IZDGE, IN"ACT, IOTFF, 1IIMO1, M39, 1294 , IPRSS nNnesy
OEAN(5,3703) (TCHS(IN, T = 1, 8) 0004E2
QEAN(3 8INTY (I22M(T), T = 1, 3) 000470
PTANCE, ") XLGTHMD,ITN"8,IBLW 000430
IF (IALY) 1,2,3 000630
REATCE,*) STRT,NONT, A/2A4T 800500
SS=ST OT/XLGTHM) 000510
SN=NN M= /XLGTHMO 000520
G) ™) 2 0005390
PZANLT,%) MIMPAT,(XPOS(Y),I=1,NUMDAT) , (2HOYRAT(I),I=1,NUNAT) nn9suo
SS=XPAS (1) /XL GTHYN 0005523
SN=YINS (NUMIAT) /XLGT 4D - 100S56R0
AzSN3IT(R=I8T]) 909579
UTNFA =yuINEs A ' 000580
AMUTNCA=((2,27%T18%1 ,5) /7 (TA+1903,58)) *(1,2=8) 0005919
REY=(OTUFAS I MFASYL S T4vN) /Y MUTMFA 000600
. TRR=(T8+138.6)2.((TA® (5=-1,)* XMINT**2)+138,.6) AR IV SUNR N -
XLAM=, 5% IT2X 000620
TF(IP37C,£9,0) 50 ™) 21 000630
EAN(3 ,A02) DPMAX 000540
AEAN(3 ,9792) (P (IJ), Th=1,I7RET) 0006559,
ERL(5,2102) (XP(TIJ),IJ=1, IPRES) 000550
WRITZ (&, 1100) ; 000670
AMG Q= UTHE S XMT S 900580 -
70 10 TJU=1,IPRES 000630
OO INT =1, NsN,525*X4SI422(T)) 000700
MRITE(E,1101) XP(IJ),CP(1J),PNOINF ne0710
GPITY) =29PINT 000720
CALL SMTYPR(IT AIX,I0ME X, Gy XMS) 000730
« 000740
TOMOUTE YOMNIMINCIINALIZING QANTITIZS 000750
000760
iz 1, ¢ (G = 1o)/2, " XMINFas2 0oo779
D0 = (1, /7(GOYMINE®S2)) 0 (Z %% ((/(5=14))) 000780
TIA = (1./70((5 = L, )y NTNFea2) )82y 000730
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MO F AVDLALLTLIZLN = £4)) 090329

. TIE 2 TLIRLMY 703211
T ow FETLY n19820

TFLAMINA 20, 0,0 5D T2 104 000830

YISin = Ti0**Q =GR 00N441d

TPS = (((G = 14)2XMIMF"*2)e» (OMSGA/2,) )/SART(ITY) nnossn

VISENE s TDIFSSQuE5Y 900360

20 TO 1972 090870

191 "0=123 ., 3/7((hG=1,) *XMINT 82eTy) 000480

YIS10 = (T10%% ¢, 5)%(1e ¢ TC) /(T 10¢TC)H ; 99n8919
TPS = (LUl +(193,8/TM)IR(((5G = 1,)SXMINT®®2)82(,56))/7(((G = 1s)°%Y 732999

qUTIFSe D) 4(132,5/TA))) /3TY) 8e 5 000910
WISTHS = (TINE®S1,3)% (1, & TO)/ (TINETD) 000320
112 U=199.5 009930
¢ 000940
¢ AUTONT THITIAL CONIITINND 090950
¢ 900969
WOT T~ ( ~, ING ?) 090979
WRITI(%,3I02%) G, O3, XVINF, oFfy, Ti, 80, S°PS 100930
NOTTI( A, MWL) P13, 219, “19, VIS19, SI n00331
UOT T (R, I00R) MT34,097,379Y 091109
TE(XINTTO,%0,1,) A2ITEZ(%,3019) 101010
TRIXTHTT3,37,0,) W3I72(%,3021) n01020
TFCJU208,70,0) WRITI(5,3024) 001330
TE(J202,4%,3) WOITI(5,7n22) 001060
¢ 001050
. TNOUT THTITIAL FRPCSILEI £01050
. 001070
12 4STAQT = 001039
c INTTIALIYE THE STITAMWISES LOCAT ION 101030
S=31 0011090
n$229314=1S 0011190
Nx20S= "Y 1NS=NXNS=0, < 501120
; <Sgen=1, 001130
{ A INITTALT?S T4Z STRIAMWISE LOCATION 901140
Y(1)=0 0 0011590
1M 291 LL=2,200 001160
AYz XX *® (LL=2) “NYd 001170
201 Y(LL)=Y(LL~1) 40V 0n1130
00 799 LL = &, 270 001190
DL0LL) =N2(LL) =N (LL) =X IN(LL) =0, 001200
YPLLL) =V I(LL) = YO (LL) ==Y (LL) 001210
EOCLLY =ECLLY = AIILL) = T2(LL)=TNCLL) = TOCLL) =52CLL )= 3(LL) =EN(LL) = 191229
1 ETO(LLY=ZTO(LL)I=STNILL) =1,0 001230
700 SONTINUT 001260
no 774 J = 1, 290 001251
90 *04 T = 1, 3 N012%0
7AL A1(J,T)1=12(J,T)=2300, 1 =31 (J,1)=232(J,1)=33(JyT)=01(J, 1) 001270
1 =C2(J,1)=330J4,1)=0, 001280
OO =3 A UINFeS 2 101290
TOSF 2 (5 = 14)*XMINF*22 001300
(- 001319
[ TINITTALI?Z S0UMTERS 001320
c ! 001330
TONN= MSTART 001340
m=16067 - 001350
T6=1 001360
IP=1 0013790
TOCHE 0 001380
: TTONTL = 8 001399
i TIN=0 001400
i c 001610
c sss  3THIN FTIIST-DAODZR TOIOI AGONAL MATRIX SOLJTINN  sew 001620
[ . . 001430
N0 115 Y=vSTART,TEND1 001440
TR(M, TN YSTAST) “O=4STIOD™ 001450
TFEMLE M TENDL) Pz 001460
TF(M TN, (M/9YSP)BNED) YfamM 001470
{: S=5+0S? « 001%%0
X235 = LIS 001490
68




(3 Ne Xe ]

20D

POO

o

',

6994

TANOOD ad

L s

1

XIS = IX0S
AOMIYT T 1LOSAL BRESSUST £4D PRESSYIT 5AIITMT
ALL POTSSM(S XMINF,3,7251,02861, TITHF , XHE)
AOMPYT 7 LACAL E£06GS 220°23TIZS

A= 2NOALOIER

20 = )51 /P2%F

TE = FEENS2T20R

UE = FRT(2.%( 710 = TE))
RE=6G¥3T/((G=140)473)
TR=SI/ (TITNE*T Q)

TF (0MT(A) 542,675,5L2
XNYEST =R 2nuEsA

G0T9052 8

XNUSST ER4, 5% (1, 4138, 6/ (TARTREF)) /(TI4198,6/(TLSTIF))
CONTIN"T

SOMPYTE LOTAL XTI AND STE® LINGTHS

INDS=REXTEXNY T

IF(J2)2. 95, 0) OXNS=Qx NSeS*=2

TF(M.Z N 2) IX1NS=I%X2)S=0¥XNS

NX2=,53%N52% ((1,+NS52/0S1) *0X10S+0S1*0XDS/ (D0S1+152) =0S52%DS2%0¢20S/
(2S1°* ("51+052)))

EYNNZ =R T2 &S /XN

REYTAT =22 SVIS IMFREYNIE

IF(Y.2r 2) OX1=0x2

TF(Ma2M2) X=DXDS*SI

X=Y +NX ?

GOMOUTE STEP LENGTH SUNTTIONS

Y12, % (L 42,52 2) 7 (DXL +0X2)
TFCTIOLFE sEQe 1) W1 = 2,

Y2z ((DY1+NX2)/NX1)*2, 10

Y3z (X 222/ (DXL* (DXL +IX2) ) *2, 0
Ya= (0K 1+3X2) /N X1

¥5=Jx%x2 /7Y

TWTS = TY/TZ

SOMPUTE ALPHL, 3ETA, AYI7 LAMS0A

1

XAL=UZ *T/TE
XRZ=2, N*X*0UZDX/"IE

ASSTIAN THE MATOIX ELEMIMTS FQo THE FINITE QIFFSENIE SQUATTIINS

CALL TLVATX( My OX24X yXALZXIE, TR, INIFF,Y1,Y2,Y3,Y4%,Y5, TWTS,ITCNTL,

11,42,143,31,32,8%,71,C2,2%
ASSINN THE MATOIX ZSLIMINTS FOR T4Z FINITE OIFTEIENIZ ZQUATIINS

ATIX TVIRSIOM, SOLVEI FOP F, THETEZA ANO V

001579
001519
201529
201531
001540
001550
091560
001579
001580
001530
001600
001510
001620
001530
001640
001650
001650
0016710
001680
101690
go1700
001710
901729
001730
001760
001750
001760
001770
001730
001730
101800
0018190
001820
00183C
0018340
001350
0013€0
001870
n018380
001830
0019019
901910
001920
001930,
801940
0019510
901950
0019790
001380
001990
002700
002010
0029290
702020
0020u0
802050
0020610
0020730

ML MATTINI(FP,TO,YP,71,02,33,081,7%,01,42,32,C2,43,33,C3,3,LENGTH002080

27M
wAr ALY TWEISION, SOL YT FO® F, T4ZTEA ANV

AT AT INT et

wof T Ta

bt b R Bt S 1]

WS LR TR ST (L LAY SO (TENGT L) (Lo =L 7 XXL) *UXK-
PATTRELR ta (L, e ), TR ) Y
LR R B L A R B L N

——

002030
002100
002110
002120
002130
002140
002151
102160
002179
002180
002139
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e

OO0 Nn

OO0

OO0 00

129

3149

3018

79n0s

57

53

72
73
7h

732

ﬁr\g;f1=u..{j-‘

Sz IV EYYUES (Nal) eV

SPEIM =TI 21,9

MO TNY) =YI(TTVNGT= 1) 4+ YL *DY
TITTATTAN 3T STMTLA2 IJLUTIIMS
TF(M.T%2) &0 TO 8020

50 TN 2043 "

a0 4118 T=1,4ION

VOCTI= VM(T) =vO (1)
TO(IV=TN(T)=FO(T)
TC(DY="(T) =72 (])

INITIATTIIN OF SIVILA® SOLUTIONS
TN=1"NFT sy

U AND “HEITA POOFTILES ITERATEONS
TAY2=(F2(2)=FP (1)) /IYH
TR(ITONTY,32.2) TAUL=19,*TAU2
3TI2=T ")L/TA2 =1,

TAYL=T AN

TF(ITAMTL L% 100) 50 TN 7015
NRTTI( %y 2008) M

CALL E¥TT

IF(AS (9742),6T,720A) 70 TI 69938
U &Y THSETA PROFILES ITIZRATIONS

AOMPNTE LT, AOT(ISLTA STAR) AND MT(THEITA)
S0=T2(1)

Ter=1,

AALT=3.NT=3L4T=9,

XN (L) =0,

10 57 M=2,40%

NY=NYY42XXK*® (N=2)

f=zro (M)

TOI=T2 T+, ,3°0Y% (CO+2)

c0=C .

XM (N) =TITBSIOT(2,%X) /(2€*1Z)
TFCI2D A NZ D) XN =X IN(N) /S

AWATEILITH(2,=FO(N) /7 D( ) =FO(Mal) /TP(M=1)) % (X NI =XNN(N=1)) 72,
AWMT=ILMTL (FOI(N) 2 (L, =F2C D)/ TPIM) +5P (N=1)* (1. -FO(N=1))/TP(N=1))

1 20X (D =XNY(N=1)) 72,
TF(3LT.5Teds) 6O TO 57

TFIFP( M) 4400 395) 3L T=XMHIN) =(FP (M) =4395) ® (XNN (N) =XNN(N=1))

1 /(S9(M «FB(N=1))
AONTIMIUT
aAr=3, TE50S
ANT=31.N7eI0S
ILMT=3LMT2E3S
A0MOUTT 3LT, BOT(OSLTA STAR) AND 3MT(THETA)

TCYPYTT THE TOOY VISCOSITY COEFFICIENT
TF(S,LT,ITX) GO T) &2

CALL RFYST2 (KOMyTIyX ¢ 2ZF yXMUE 4X9E 4 Sy ITCNTL, TR
GOMONTE THE ZDOY VISCOSITY COEFFICIENMT

TTONTL =1
ASSTSUENT OF GRID PONITS IM =ZTA

TF(INNCYY 71, 71, 732
OONTINUT
TF(M = 29) 732, 732, 72
TF(A3S (FO(TZIGE-15)="2(T506E-15))=0,0001) 73,73,76
TF(AAS (T2 (IENGE-15) - T2(IENGE~-16)) = .0001) 732, 732, 70
160672 ISI6Z 1
IN=1N+ 14
Ay=IYWEY XK (TENGE-?)
Y(ISNGF) = Y(IENGE-1) & OY
1IN = 1IN « ¢
ASSESYTNT OF GRID PONITS IN ETA
4

70

002200
9022119
9022210
002230
002240
102259
002260
002270
002289
002290
1902300
002310
002329
002330
00220
9023510
002361
002370
002380
092290
002400
0026410
002629
002430
002440
002450
002460
002470
002630
002430
1025019
002510
002520
002530
1992540
002550
002560
902570
no2s580
13253¢
002509
0026110
0026219
002530
002640
002559
002550
002670
002680
002690
002700
002710
002720
002730
002740
002750
002760
002770
002730
002790
002800
002810
002820
002830
002840
002850
002860
002570
002880
002890
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111
115

199
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300
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20
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AAMOIITE 4ALL ST27ST 2:Y 4TAT TRANSTTO AN AUTSHT STATION

’5'.'. ."-“,'q‘_‘ ( 3~
XM T M0

ACMIMTE HALL STORSS 24N “ZAT TRANSFIR AND QUT2UT STATION

SHIF~T POIFILTS B42¢ ONT XTI STATION

NN = I0 & 5

10 118 Nz, NN

EN(N) = FAIN)

TO(N)I=TE (')

TN =T (N

TO(MY= "2 ()

yHCY = )

VACNY = VR ()

ST =770 ()

ST =79 (V)

TH(NY=TALY)

EONY =T (M) -

ACNTINYS

IXL=IX?

IS1=382

TR(M#L =TT4S(I5)) 114, 113,115

JSs2=2, 1*7S1¢

16 = [+t

TNICH = 1

IF (M, T, IZNNL) GO T2 22>

60 To 11

7S2=75 1

INCH = 1

TF (Mg FY,TIZND1) GO T) 237

50 TN 111

BN R el oy ey R et s
CALL P ONEMS (I200MN, I, IG I, ¥START ,IINyM,3,Y,3LT
TONTIN!F

sSm>

Eda]

SURROUTINE B2ESSM(S,X4,5,P,3PNX,T,Y4)
COMMON /S70ATA/ CP(24) 4X2(26) 4, M2 (26) , IPPES

TR NNNT Yy Sy YT A DT ALY LT, 251402351, 7IXT,

002390
102919
0329217
302330
192949
31024350
002960
102979
102980
002990
003009
0030190
003921
003030
003040
an 3050
003150
003070
003080
003039
103100
003110
103120
003130
003160
003150
003160
003170
003180
0031990
003200
003210
003220
003230
003260
1032519
003280
003270
003280
0032390
003300
003310

COOMAT ( SX,*WAMINGes oo CALCULATION TS OUTSINS OF THE 2RESCRIIED PRNON3I2H

1ESIPI NATA, S IS LISS THAN XP(1)*)

003330

FORMAT ( SX,*HAPNIN ., TALCYLATION TS OUTSIDI OF THE IESTRIIED PROO3IIuD

TSSYRT NATA, S IS SRRTATIO THAN XP(INDY*)
CLIVAT (1X,5215.9)

Iez0

TPML=] 0TS

TF(IP2FS(F2,N) GO TO 40

70 29 T={,IP3€ES

TF(S.LTeXP(1)) WRITZ(A,119)
IF(S.5T.XP(IPRFS)) WRAITZI(5,200)
TF(S.LTeXP(1)) I°P=1

TF(INTA) 50 TO 30
IF(S.5F.XP(IPM41)) 2= IOQES

IF(Io, 4C,0) 50 TN 30

TFU(Se FELXP(T) ) ANNL (S LTeXP (I+1))) IR=T
TF(IP, 1.0) 50 TO 20

SEIKTVG THEI EST FIT

S (S Y2 (L)) /7 (XO(I+1) =X2(I))

TF(RS, (TN, %) IR=I¢t

SEZKINM T4 3EST FIT

IF(I% t¥,9) GO TO 30

OONTIN'S

IFCIP, AT, IPML) IR=IPMY

IRP=TI3 41

IM=I-y

TE(IO, F1.1) [24=T22

COMPUTE Tus CUSIC SPLIME COIFFITINTS

n

e

903350
003360
003370
003340
003330
003400
003410
003420
003430
003440
0034519
003460
003470
003680
003L30
003500
003510
0035290
003530
003540
003550
003560
003570
903530
003530




O.

19

49

5C

11

2n

X12 (XD (T70) 6XD ([PMU) =2,18YD (T3)) *(XP(IPP) =X (T2¥))

72

n92510

X2z (Y2 (TIM) XD (T )€ X7 (TIM) «XO(T2)) NN3s10
€32 (X2 (TOD) =D (TI) )2 (YT (I2°) «XP (I2)) N036217
Yoz XO( TOY) -x2(I22) 13639
XYS=X2( T2 1) =0 (T2) 0035L0
X6=X02( "PD)=x2(IR) 003550
NETS=(Re(qe Yy 1036610
2= (22 (I2)%*X1+0P(I37) 3¥2=-NB( TPM)8YT) /NZTS 006710
53 (D2 (TN *xXL=3P (I2°) 2¥E+ND(IOM)8X5) /DETS 10681
gsoMeyT S Tus SYSTC SOLINT COSEFIAENTS 003690
AY?2=2%= YO (T?) 003700
IO2z=) YD 442 0037110
AX3€=z1¥2 720, 1037219
1PIXL="2(I2) 003730
o="09(109) 003760
N0 49 Ts1.29 0337510
X=Isx Pe 193750
X2=X*X 003770
IPNY 22 N0 (TI) +C 284230 (2 003730
22540, €= (1301 +1PI(2) *IXOF 003796
RLak SERalint &4 N03309
IPIN=J O(T2) +7240XDTT VYRR 903810
T=2%2( (R=1,0)/0) 903329
VM= GART(2, N ((2,04(5=1.0)%XM2XM)/(2,N%T)=1,0)7(%5=1,0)) 103939
WRITE( A, 300) S,4PH020X 4,7, Y 003840
50 T0 S0 00138590
321,90 003860
3PIX=0, 103870
TIoRE( (Gt M)/ 6) 003880
YMESOR (2,05 ((2, N6 (5=1, 0)*X4S XM/ (2,0%T)=1,0) /7 (G=1,9)) 003399
TTU3Y 103309
L a n93910
SUINY TTHI SHTHOR(ATIX, IPMAX , 5y XMST) 003920
TOMAON /2208 TA/Z CP(2%) ,XO(2L) ,0P (2%) , IPOES 003330
FOPMAT 11V, *FIRST £O DATA PAINT YISLNS ANYERSE SIILSSURAT GRAOTIINT TI003940
10 STEZO 209 CALCULATIOM "0 COMTINUZ*®) 203952
FOIMAT (1Y, 11X gINS/L, 17X, 2HC O, 1 IXy342/OT IF, 154X, 3HD2IX) 0039610
FORMAT (14,6 (2X 4215430 ) 203970
neTaL=Novax*1, 21 1039319
AOMOUTS TWT TRATLING E33T 090X 003930
TPMY=1®23C=y 006300
TPM2=T PO TS.2 904010
IXL =XO (TOM1) =X P(IPAZ3I) 0046921
AX22X0 (T742) =X P( I93Z3) 006039
XL 2=0¥1%*0¥%1 00w0bLn
Nx22=0v2*0x2 104050
NP(I9RES)= (£ (IPU2) *IXL2=CP(IPM1) ¥IX 226 (IPRTS) * (IXL12=0X22) ) / 204050
4 ONL*™YIS (N1 =OX2)) ¥ 0904070
AMMPUTE TYZ TRAILING Z06E 090X 004339
T™A X =0 Q04090
AEMOYUT S TUE LEADING I 0PIX 0064100
XL =X (2)=xD (1) 004110
N2=XP (W)=xP(}) 004120
0X1220 Y191 004139
0X2220¥2%0x2 006160
AP(1)= (53(F) *OX12-52(2) *IX22-CP (1) * (OX12-0%22)) Z(OX1%IX 2% (IX1=~ 194150
1 0X?)) 004160
TF(NO( 1) ,GT,NOMAX) WITITE (6,100) 006170
TFEI9( 1) 3T, 0PMAX) CALL TxTT 004189
* BOMOYTE “MEZ LEADING 937 0POX 004190
70 20 T22,1P41 0042090
M =T-1 006210
IP1sTs 006220
X1 =X® (T4L) =XP (1) 004230
NX2=X2 (T21) -XP (]) 006240
INL 220 ¥149x1 006250
NX2220¥2%0x 2 _ 004260
AP(T)= (“3(TP1) *OX12=3D(IM1 ) 0X2 2=CP (1) *(0X12-0X22)) /(IX1%0X2* 006270
1 (OX1-rY™)) 006280
TFE(NP () 57 0PTOL) o AN 4 (XP(T) e LE¢3TA)) IMAX=T 004290




o000 OO0

&1

31

2919
29101

2902

21703

355

8551
855

TEITMA ¥, T, ) RO T 59

IMAATH TS THT 0D JATEL TN THI LEANTYG IOGT OT5I0M

'wl:! uj‘(-q.

TVUO{ =T “iyey

XL =XO (T AML) =X O(THAX)

AY2=X2 (T401) =X P (TMAX)

X1 2=)¥120x1

AX22=NY24NX2

CRITMY L) = (P (TMPL)*NX12=CP (T MAX)*(IX12=-0X22)=IX1*0X2* (DX 1=0X2)
1 *NouAY) /NX??2

50 TO 1

SVMINTHTNS TWI AP JATAE IV THE LEADIUG E£N6GZ RISION

WRITZ(F,200)

70 397 I={,IPRES

CC=2.,0%("0(I)=1,M/(5%*XMSN)

WRTTE (A, 2N0) XP(T),2C,02(1),IP(D)

WTUN

N

SPRAGHETTINT CESTHO (TF gXMYUT X Sy XAC,M,BLOT,3LMT , L T,P351,0°351,
1 OIVIX T, YMI G40

LeuvNy A, o9, oFY, XY INT, OMICA, 317, TW, °10, T17, R13, VIS19, T%,
1 BT, 2T )T Y TISINF,,SU,I0S,78,)YW,1,2202,7T0,T4,I3362,IIN01,INTACT,
2 PATHX YV, ATV, XLAM, /AP02 7  XINTZ2,SIP0, ICHS(2),T224(3),22(209),
T FN(29M ,E2(299),3TN(200),STN(200),3TP(270),53(™0),~N(270),J204,
G FI(29M ,TH(20M) 4TI(299) 4 XNN(207),VN(200),V0(270),VvP(29]),T>(20D),
S 01(20M,72(290) ,33(21M)

CORMAT (140, 19X 4SHX/L =4715.3)

EORMAT (PN 7HYME . =,217,3,2X,74PE 2,515,8,2X,74)00TINF=,3153,8,
1 2% ,y74V¥2T 297156342 THTW/TE =,%15,.3)

FOMAT (2% 748L T  2,31%43,2¢, 74T =,215,3,2X,7H3LIT  =,315.3,

1 22X THOIYMT =, F15,3,2X, 7THEYDT =,215.9)

TOPMAT (2, 7HZFMO0 =5 T1748,2X,THTTING =,21543,2X,74STN) =,215.8,

: ! ?K.’“<TE‘I-‘J =yT1548,2X, 7“9_?YEX'=,31503)
THTE=TD(})

TFIOMZR3,2).04) GO T2 255

IFIOMIRA ,20. 14} 50 71 3554

XLMY = 1./(TATEe2(1, = 24Z6GA))

GO TN As5

YLML = (1,NeTR)*SAOT(TITI) /(THT Z4T2)

A0 T ezg

Ly = 1,

CONTINUS .

YAL2 002, #XXK)® (1, YXK 6OXKEE2) 41 o+ XXK)/ (1o +XX<) * (14 #XXK+XXK**2))

Y122 (1 + XK$ XX K 82) /X XCBED
VAT (1 o 4 XXKENXKS22) /(XX T® (1, $XXK))
Yib=1, /7(XXK=4T4(1, XX LaXY"*2))

TAU=XL VO 3QICXMNUTEYTHUI® («Y 1L 8F2 (1) +V12%FD(2) =YL ED(3) ¢ YL14*FP (L))

1 Z(IVA5SIAT (2, *X))

IS = ALMLSRTSXNUZPUZ TI®(Y112TP (1) =Y 12%TO(2)+Y13°T2(3) =Y14eT2(L))

1 /Z(NYHSIAT (2, *X) *PR)

TF( )20 4,45, 0) TAUsTAy=*T

TF(J274,45.,0) NS=2S*S

ST™O = 0,

TFEIN M3, 1.) STNO = IPS8NS/((1e = C0)*(TE & ,S*UI®**2))
STINO = STNJ/(2S*)%)

ARNN = 2,820S8 TAU

CFZMO0 = TFENN/ (PE¥UT*US)

FEYOT=PIVEXTHILOT

QEYMT=2PTYIXT LT

SELEST ™AM O0F THE OQUTOUT
IF(M.NT,4P) GO TO 1000
SELECT TOY IF THE 2JUTOYT

OUTOUT STATION NATA
HRITZ(6,2000) S
WRITT(€,72001) X4%,9351,0P9G1,¥8%,THTE

WPTTZ(FA,2002) LT,3LYT,2NT,REYHT,RTYNT
WRITE(A,2003) CFNO,CFEND,STNO,STEZND, L YEXT .

73

004300
0NLILn
004329
004320
004340
0041350
104360
10463719
004380
004330
004400
004410
0046429
004439
004440
006450
004460
004479
00430
0044630
704500
nus13
206521
006530
INL5L0
004550
994560
106570
094580
004530
004631
nNus1
004620
004639
0045410
0964650
00456560
006579
0066819
004630
004700
N0L710
nouz29
094730
104749
n0s750
904760
N04&779
104780
004790
094800
006810
004320
004830
006840
004850
004860
004370
004,880
006830
804900
004910
004920
006930
004940
004950
006960
0046970
0046939
0049990




{ 1998 2ETY2N 705000
. -n 105910
UMINYTTINE TUMATY( 4,2, %, XAL ,X3T,TR,T1ICC, v1,7Y2,Y3,Y4,Y3,THTI, 105029

g ITRMT Y, A1,42,17,21,32,3%,351,32,C7 005230

SOMMON %, 23, 33Ty, (wIuF, AvEfA, ), TW, 219, T, AI, JIS10, I, 705060

1 °?,*’.ﬂ’.vr=zw=.<1,=°f.*s.)vw.s:.:aqoo,'C.rn,'?*:z.tzuot,rwrarr, 9051950

2 POT, MW TR, YL AV, JA D327 YT 4TE3,35229, ICHS(8),I228(9),59(200), 1759861

3 SN(PA M ,TI(2m, ")(’ﬂn),ffw(°nﬂ)."0(’19), I0200) ,TN(299),J29%, 005070

& FR(200) TP M 4 T0(277) 448U (20 0) 4 4M(299),¥0(207),vP(200),T3(299), 705989

S 01IE29M,N2(20M ,N3(2 M) 0n5090

TIMIMTTON A1(200,3),42(2170,7),43(290,%),31(209, 1,32(290,3), 105100

1 AT(200,7) 4310 200,21 43070200, 31,63(271, ) 005119
cnwwovlaLa~sr~/uuw)cr,xﬂjS(*h).=w7v=nr(’u»,TQO,T25F.‘uu€.s.ss.sw.aus:zn

6 ISLW, YL3THMA, OyoAT 005130

c 705140

c THI TNMTO IDTT AINUNNARY CoMIITICM 00515¢

> 105159

N0 8011 T=1,3 005171

8911 1108,T)=12(1,19=83(L, N =31(1,1)=32(1,1)=23(1,1)=01(1,1)=C2(1,1) N95180

1 =:1(1.:)=n. 005190

81(1,1)=2.9 005290

°2(1,1)=1 9 095211

J1)=n, 005220

n201)=Td"2 195239

TF(ST2M,T%.0.) (0 T 3012 005240

£3(1,1)=1.0 105250

Acyn= N, 105260

IF (TeLd.LT, 0.AMO.S.G'.S§ ANDe SelI.SD) 005270

6 CALL "OMALW(8MYW,X,dSY, J2PA,£0S,33, ) 005289

IF tI*Lw.Gr.n.Ann.s.ﬁ?.ss.:uo.s.Lz.soa' 005239

6 CALL FSMALW(RCYM,X %Y 4 U204 ,EPSyR3,15) 005300

03(1) =3°Vd 005310

30 7Y 2913 005329

B8N12 XL=0X2/(7,0%0YW) 005330

{ 801,122+ YY 005340
30191 )==2,5XL2(2,6XXK) /(1q¢XXK) 005350

£301,2)=2, $XL® (1, 4XXC) /XK 0053510

SRLy3)==2, XL/ IXXKF( L. 4XXK) ) 005370

: 1)Y= 1, 0105380

¢ 005390

c THE INMED Z0GZ SO0UNDASY COMOITION 005400

c 005410

3 c THE FIFLY POINTS SVALUSTION 00546290

c 005430

8013 MM =TZN57-1 005440

00 801L ‘1=2,NM1 005450

Yz XXK = (N=1) * YW 005460

VML =0V XXK 005470

4 XL=N2 /(2,00N0Y) 005480
! Y622,/ (1. 40Y4L/0Y) 0054639
Y7z0Y7 "Y' 005500

£ Y822,/ ((IYML/0Y) 2 (1, +YML/0Y)) 005510
! Y922,/ (1,4NY/DYMY) 005529
; Yi0=1, =NY/0Y41 005531
q SEe=q, N 005540
TF(FO(M JLEsT.) SZP=0, x 005550

TF(ITSHTL 4GTe 1) 30 TY 7000 0055560

TFIINIFT B2, 1) GO T4 75014 1055790

M 2VL BEN(Y) =Y SEEN(N) 005549

TML =YL ETI(N) =Y 5* TN (YY) ¥ 005590

VML =Yh 2N (N) =Y 6% V(D) 005600

tﬂss"‘.eﬁ.ﬂ.) vML=vo ' 005610

EML = (YLR(SO(M=1)+Z0 (M) «Z0(41))=YSH(EN(N=1) +EM(N) +IN(N+1))) /3, 005620

ETML =(YLP (ETO(NeL) ¢ ST MISZTO(NSL) )=YSH (STN(M=L) SETN(M)+ETN(MNeL 005630

1 N3, 3 005h40

GO TO 7nI1 005650

7501 €M = FA(M) 005660

™ML = TO(N) 005670

yML = un (M) 005680
IMLE(SON=1) +EA(N) +30 (N*1) )22y . 905630

74




TTML= (T (M) #ITO(N) +TA(MS 1)) /T, 105700

30 T2 "nt 005719

799n cuy = £3(1)) 005720
T™™L = "9 () 005730

Mg = w9 () 005740
THML(TO(N=1) +EI(N) ST (M1e1)) /3, 005751
TTML=( T (N=1) +ETO(N) +-T2(M+ 1)) /3, 05760

7701 IT(AM73) 437 0.) 59 °7 KaL 005779
IFLOMZ A (27 1.) G0 TY 5841 005780
YLML=] o/ (THL%® (1.=04252)) 005730
YLOML= (0 4T53=1,) *XLM“L1 /vy n05800
50TNS2 € 0058119

6361 XLvi=t, 0058219
Yevi=r, 005830
AOTNER2 B 005449

SAL (LML= 11, +T2)*SAIT(TYL) 7 (THML+72)) 005359
XLPML= YL 44 (TR=TM1) /(2. *TH1% (TH14T2)Y) 0053610

§28 TRIITON 4.67,1) 50 7O 52§ 005370
FYz (YASEY(N+ L) /2,=Y 1N T2 (N)=YR¥EY(*=1) 12,) /0 105380
TY=(YARTA(NSL) /2,=Y 0573 (*)=YE*TA(N=1)/2,)/0Y ’ 005391
TYMLS(VAITI (1) /2,=Y 110 TM1e YRS (N=1)/2,)/DY 005901
STYML= (YASSTI(MN+1) /72, =¥ 1907 M1=Y38ITO(N=1)/2)V /W 005310

50 T) &2>7 005920

62hH CY (YIETI(N41) /2,=YINATD(N)=YE*FI(Y=1)/2,) /Y 005931
TYS(YI=2TO(Ne1) /2,=Y10 "D (N)=Y8*TO(Y=1)/2,) /Y 0053410

TYMLS (VA SIO (M4 1) /2, =Y 1N TML1-YERED(N=1)/2,) /0¥ 005351
TTYML= (YIS ITO(%41) /2, =V10%ETML=Y3ETP(N=1)/2,) /7 005560

627 TIFCINIFT,23.1) 6O TI 7302 005370
FM22Y2 5C(N) =Y I*CN(Y) 105980
TM2zY¥28TA(N) =Y 3ETN(N) 005990

GO TN “=15 006000

7502 £M2 =2 ,°T0(N) 0ns010
T™M2 =22,470(V) 006029

7505 CONTINUT 106030
V170 V=YBO LS (2,0(L 1T VL/DYa(XLML®TYMLeEMLISXLAML*TY =V L)) 096061

AL P2 )2 (a S XL YLMLBTHL 2Y 2/ V4 2, B2 (XL L7 e2ML %X _PYL*Tr VY1) * 005050

1 Y1047 SXRCENY IEPYLeSERS SEOE (2, %YLV EVL «FY2) XY 005060
ALCN,3ISYL® (2, *XLVLISTHIOVE/TVYS(XLYLEIYML eSO XL ML TY VML) *YI) 306070
MMyl V==X L ®IM1* X PY] sTYsYR 1060810
B1(N92)8IX2°XYE=2,2XL 7 oy DUy sTysyY 10 005030
A1(M,3)=XL 214X L FvVeYg 006100
S1(M,1)=01(N,3)=0, 006110
PL(Ny2)==NY2*FY 006120
12(My1)==2, oL OYAL XL M1 *EM1®FYS VS 005130
A2(Ny2 )= (% *XLOYALSY LML SSMLSFYSY104SEPOX(YL*TVL=TY2)) 0965140
jz(&‘.‘)g’..'LlyAL.‘LMl‘?M!lEV.VQ 006‘53

A2(M 1 I=(LOY RS (2,0 LM ISITML/ (POS)Y) = (XLMLSETYVL $2,*XLIMLSETHL®*TY N06160

1 =228ywMq)/209) 006179
A2(N2)==(a *XLEXLML® TTULEY7 /7 (PROIY) $(XLMLICETYM 142, XL PM1®ZTL*TY 006189

1 -=.Pvl“1)‘!=.'¥16'?.9/030';£P‘X"1"‘41) 006130
F2(Ny3)=XL O (2, *XLMLOETMLAYA/ DY+ (XLMLETYML#2, 5 XLPML*ITML*TY PR 105200

1 w™1)*vI) /o2 ; 006210
T2(Ny2)==0x2eTY 3 006220
S2ANG1)=222(Ne 3021, 006230
A3(M,1)=43(N,3)=0, 006240
AX(N,2)=IN2e X2 YL 006250
93(‘4.1):11(?4'2)833(‘0.'“tﬂ. 006260
03(My1)==-XL*Y8 0062790
CI(Ny2)==2,%YL *Y 10 006290
CI(MNy3)=XL* Y] 005290
DUUNIZ YO FYS (ML *XLOMLETY Y M) T 2828 (XBESOX24X* YY) *SEP 006300

D20 =NA2® (XLOML*ZTMLETY/PP=yYML )OTY 40X2® XAL XL MI*TMLoFY S22y 006310

1 *THieFMleSED 0063290
N3(*) = ye£u2 006330

8016 CONTIN'® v 006340
c 006350
c THE FTTLY S0INTS ZVALUATION 006360
c = 006370
c ' 0063890
(] THEZ NUTIQ INGE AQUMIARY FONDITION 006390

75




» . 105400
"n 81T oty 106611

BN18 A10ITYIAT, 1) 222 (TTI3T, I s AB(T IS, 1) s M 2055, T) 292( 1355, 1) 2000 096429
L IEA%7 TV Rt (ITIRT, 1) =" 2 (25968, =23 (1996, 1) =0, 196430
VTN A a0 005447
11TV, ety 0 006459
MITTIFT Ve, 95640

IR ELI I PRI 106470
TRISTON, “Y,0.) GN T 8015 7064310
LMD /07, $AV SR (2 NG00 ) : 006430
TW2E¥3 8T (TENGT) ey e N(TIIRT ) 006500
TR(TAIFE, T3, 1) Fw223, 270 (15956) 006510
1YICINT, ) 20X 2e 0%V 006521
AIIFIAT 41) =2, oYX YKSBT 8y /(4, «XXY) 006531
AIIEVET 1 2) 23 0 ¥XKe (L, 4VXK) S XL 006547
ARTENAT, D) 22, SYVKSXL 02, 8NN KL o) /(L 4o XXQ) 0055519
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SN2 FOOMAT (a4 39/305=15F3,% ) i 006430
S10 FOIMAT (24 vASH=  (5F8 ) 006347
511 FOAMAT (84 2T/0NP=18F8 L ) 106850
€12 TNIVAT (a4 2T/PE= 1379, ) n96861
S1X FORMAT (44 W/uE =  (5F8 L ) 0064870
TF(ICO'™=I2R4(I2)) 51,79,51 . 0064880
c 006430
i c JUTOYT 79T TLE NATA 006900
! c 906910
38 KONT=l ey 006920
i J2=90 006930
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T3, )X)=THLD)

FT(Ty NV /TD

BT (51,08 TE2TILL)

TR (OTOCTY) . PR, TPV, T

°T23I9= 1.

Ve g JXIZITCT(2 )XY/ (PTITN) 88,6
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ITIT2( (361,01 20TIT/2, ") 28 (5/(G=1e2) 1) 20 {U5+140)/((2,0%562PTIE) (5=~
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VIT= (1 o XX XXWE22) /(XY LO8Te (1, 4XXL))
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[ ATATAT «SUTTHSMONSINKTS TO0Y VISZOSITY MODEIL
c
c TPUMAATT THT IMNZIR 2IGI0M CALCULATION
TFR(EO(M JLELIP (N=1)) “TFO =T (M=)
c TOYNCATT THI THMA? 2T5704 CALCULATION
¢
1 SONTIN'T

50 ? N=,K0M
LML= ( (1 4T212370T(TS D) /Z(TP(N)+T) )
0L =N 16325727 (242X R IV/{TRIFBE1,53T32))#ND/(XNIZPXLML*TRP(N) **2)
IF( U2V 8,45, M) 201=)"1 /7
TFCIDL L Ze 7PN ZD(N)=NDY
IF (A0S(3T3X) (LSslle3=5)) GO YN I3
SISNAOz (= L124((S=IT X)) /XLAY) S #2)
IF (SMOSRD LT (=535,)) 60 7O 93
EO(M) =T2(N) % (1, ~SXC(SI'SCROY )
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c
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008151
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0 11T J=K,L 2 n08621
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4z 003720
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UEY 008760

e 008770

T=) 008780

113 SONTINMT . 008790

TR(T.TN.X) 53C TO 115 008800

TF(M.NT. 1) 60 TO 115 008510

70 118 J=1,LC . 198820
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N=A12( ¢ )) 023860

112 (¥, J) =212 (1 ,J) 0088710

112 (T, D= 0038819

YA LT Y, D) 108399
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¥ 116 SONTINUE 008920
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111 (g ) 3431 (1 4J) . 009160
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122 (K, J) =A2(1,J)
AR (T, N =Y
Uy=a23(¢, )

422 (Ky J)=A23(T,J)
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CONTIN'E
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Appendix C
Four Key Subsystems Within Itract

Nondimensionalizing the Variables and Initializing the Grid

Prior to entering the computational loop the working variables were
nondimensionalized or normalized. These variables were Tisted below
along with a definition of each. The format selected was to present the
coded variable on the left side of the equal sign and the real or
physical definition on the right side of the equal sign. No explanation

was included as to choice of normalizing factors.

°§ Y To Y-1 u2
11 = ;—2- il =1+ > M
=
‘Y—
P10 = TQ . 22
e Te) 2 Pe
T k 2
] 0 0
T10 = | = (54)
(v-1)M2 [Te» (-1

R]O' T -

p“
gt~ (ronnf

b T/ -0
(|°J|,§ (Y-l)nz




With Eq (54) defined for all cases, some others depended on the value of

w, If w were not equal to zero, then

T (Y-1)H,

(v-1)n2|w/2
EPS = g (55)
VISINF = [ J [
ref

where the reference temperature was taken as TQ(Y-I)Mi. However, for

VISIO = ———-—2- [(Y J

the case where w was equal to zero, the quantities of Eq (55) plus one

were defined as follows:

M S Y
k.
T (-1ME Tref

S
14—
Shiia To L T (Y-1)M]

T“(Y-I)MEJ io + S
Lr,,(m e T_(v-1ME

1.5 + 198 6
ref uref

((T,+198.6) [(m )Mg]l 501/2

(T_(Y-1)Z +198.6)
EPS = ¢ Res : (56)




[Tref’l.S [Ym +193.5] 1/2
> Tref+]98.6_‘ 3 uref/uw ]/2 (56)
T

Re

T, )1-5 (Tof *+ 198.6
VAN RS TR

e

'

These quantities were frequently used in the grid computation and pro-
vided a summary of the nondimensionalizing techniques used throughout
the code. Before beginning this computation within the grid, however,
there had to be an initialization of the profile.

Initialization begaﬁ by defining Y in the code as the distance
Angyy]3-1
AnK

yielded a fine mesh of nodal points near the surface and an adequate

meashred along the n axis. Any Anj was defined as An] which
spacing toward the edge. Y values were assigned by successively adding
all An values from the surface, to the point in question. Then, three
hypothetical successive columns of nodes were created by the following
statements:
D1 = D2 = D3 = 0., from the surface to the edge of the boundary layer.
Incorporating the notation of fig 1,
V”J . Vi_].J . v1-2, B =Tye for all j from the surface to the edge of
the boundary layer.

In a similar manner, three successive stations of F, 8, €, and & were
assigned values of 1.0. Finally, all coefficients of the system of
finite difference equations were set equal to 0.

This initialization provided the primer to begin the backward
differencing along the £ directfon and the central diffetrencing along
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the n direction. The finite differencing system was unconditionally
stable for increments of An and AE, and the iterative stepping procedure
along £ damped the error due to the grid initialization within a few
steps (Ref 6).

The Finite Difference System

Coefficients of the finite difference equations were computed for
the matrix equations which would be solved in a succeeding step. These
equations were derived starting with the concept of a grid as in fig 1,
and the stipulation that a function could be described at a point by a
Taylor series expansion about another point. For Itract the approxima-

tion was made that for any functional value, F,

2
2. An;
F(1,441) = F(1.3) + 3= an, + 25
an . (57)
2 Mn
F(1,3-1) = F(1,) - 3 ang_; + 2—5—511
n
Then, for
Y6 = zn
1+ —J—-An"
J
An
Y7 = By
(58)
Y8 =
Anj l‘ A ln1
Anj
& 2
Y9 ‘ Bn
+
Anj_]




A
Y10 = [1 < 2’_%7] (58)

the second and first partial derivatives of Eq (57) were expressed by

central differencing as follows:

2 : ;
°F(1,3) . Y6F(i,j+1) 2Y7F(1,3) + Y8F§1!%-12
% =
on~ An? Anj Anj

(59)
3F(1,J4) - Y9F§1,1+1) _ YI0F(i,J) _ Y8F(i,j-1)
oan Anj AnJ 2Anj
The same format of expression was used for N 8 and 329 For a
P agg an! ;;]7.
streamwise series of nodal points along £ the backward differencing
‘ system was written from
2
Ag 2
oF i-1 5°F
F(1-1,3) = F(1,3) -86; 1 3¢ * —57—
i-1 3¢ 2! EZ (60)

2
: oF , (8Ej2*8850)" %
F("-Z’j) F(‘I,j) b (AE.‘_z"'AEi_]) fé"" 2! aEZ

Only expressions for the first derivative with respect to & were required

and this equation was as follows:

(

Ag AE, *AE
aF(4 R g R o 0 s 2 1 T

1

(A, _,*208, ) (61)

| £(1,
RELLITLIEY i
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Again the same format of expression was used for %gu and all derivative
forms of Eqs (20), (21), and (22) had been derived. Then, due to their
recurring use, the following definitions were made for computational con-

venience and efficiency:

R . s | F(i-1.5) ’Agi-‘] F(i-2,5)
= 1-1, = | —— =CsJ
Ty 5.
[AE; ,+AE, ) (AE
™ = 1A§ i-1 T(i-1,3) - A€1 = T(i-2,3)
| -2 | [ i-2 (62)
2(88;_p*8E, 1)) ' e, )
FM2 = —| F(1-1,j) - f(i-2,3)
o B54-218845%084 1))
r 2
Ri-Z J tKEi‘Z(AEi-2+A£1-]§J

Through Taylor series expansions about F(i,j) and T(i,j) and neglecting
terms with second order partial derivatives and higher, then FM1 and TMI]
were actually expressions for F(i,j) and T(i,j), respectively.

Returning to Eqs (20), (21), and (22) and the construction of
1inearized finite difference equations, there were three types of non-
linear terms with which to be dealt. Using F and G to represent any two
general function symbols the nonlinear terms were of the types:

(F){%%-. {%%]{%% , and (F)(G), where F could have been equal to G.
Returning to the notation of the problem variables it was shown that

A +2A
F(1,5) 20 . pg [ = e B =} ] M - [ ~jwe (63)
o (11" %1-2 LRGP

[’ﬂ-;-;-ﬂ]z - 2ry ()] . gy (64)
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where FY was equal to of 15; ] , a known, and §££%ﬁll was unknown, and
that
F2 = 2F(1,5) f(i-1,3) - F(i-1,3)  (65)

where only F(i,j) was unknown. A1l terms had been represented in finite
difference form, and the final step incorporated these linearized models
into Eqs (20), (21), and (22) to derive the overall system of finite
difference equations (Ref 8:67-71).

From this system, the coefficients of F(i,j-1), F(i,j), F(i,j+1),
and T and V at these stations were collected, computed, and passed to
the matrix inversion routine resulting in solutions for F, V, and 8 from

the surface to the edge of the boundary layer at the current station, S

Subroutine Reystr

This routine was called from the main program at each station, Sy
at and beyond the point of transition to turbulence. The purpose of this
subroutine was to calculate an eddy viscosity for the inner and outer
regions of the two-layer turbulent boundary layer model.

Computation within Reystr began with Taylor series expansions of F
to the third order partial term about the first station at the wall.

With values for Fj_]. F j=2° Fj=3 and FJ=4, a four-point finite difference

expression was formed for — 2 » and the coefficients of the F terms at

n|w
each node, one through four, were represented by Y11, Y12, Y13, and Y14
in the code. Next, a nondimensional molecular viscosity-density term

was calculated for the wall with a shear stress term that followed:

[r_]l/z {T o198 6] (o),
XLMIW = (66)
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(p)l)w oF (6
PI2 = Tm;‘ nlw 7)

An iterative loop was begun to generate the nondimensionalized inner
eddy viscosity model, 51%995, of Cebeci-Smith-Mosinskis for each node in
the n direction for the current S In the actual code and following the
calculation of a number of interim quantities that didnot necessarily
represent any real boundary layer characteristic, three important computa-
tions were made. First, §/L was calculated. Next, an intermediate
quantity, DD, to be used later in the outer eddy model, was calculated.

Finally, PI1, another intermediate quantity used in the inner model, was

computed: 5
Gt os] o )

§/L = XNNj -
u
Aa—]
€ 5-(3-1)
Ko oAl 1 T
undary layer u u; An.
0D = R | "o | e b _J:JJ —=1 (68)
2 [ %H‘ﬂ [ "e”’e -
2XRe,,
PI} = 19,6 )

[(y-1)m37"+5 [

T_(y-1)M%+198.6)

where the s was fncluded for the case of conical flow only. Again, a

%% term was generated, but using only a three-point central differencing
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scheme on this occasion. The final step of the loop was the actual com-

1nner

putation of — at the current node j:

€inner| _ 1/2 (ou); 12
—_i_lj J6(P11) (1 - exp(-[ (P11)(P12)] /(ZGTM‘?)) (69)

l'zg-r(i.jﬂ) - Y10 F(i,j§) - Xza-r(m-nj
(pu)
" [(pu7e]

where Y8, Y9, and Y10 were coefficients obtained through Taylor series

expansions of F(i,j-1) and F(i,j+1) about a point F(i,j). As the calcula-
]
tion of 1n:er progressed from the wall out into the f1e1d of flow,
nnerJ 1 retained its own computed value or that of 1nnerJ whichever

was greater.
€outer

The outer law, , was computed through an iterative loop

similar to that of the inner model. It culminated with the expression

S 2XRe,, /2 D%) .
—outer . 215 [ T+198.6 Me | (ouly IT512
[(y-1)M] l"[“(y-])MiHQB.GJ u_.;}J Pl (Te :

(70)
where the s was included only for the case of conical flow. In order that
a compatible combination of computed v1scositjes were retained, the values
of eddy viscosity from the outer law replaced th 2 of the inner law from
the point of intersection of the graphs to the edge of the boundary layer.
Graphically, this was depicted in Fig 18.
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z — outer law

- _inner law

N

Fig. 18. Matching the Inner and Outer Eddy
Viscosity Models (From Ref 8:21)

Having calculated the initial eddy values for the inner and outer
viscous regions of the boundary layer, it was appropriate to subject this
model to two more factors. Both were factors of degradation and were
included to better describe the character of turbulent activity within the
boundary layer.

Objections have been raised to the use of an eddy viscosity term, e,
in place of, or in addition to the molecular viscosity, u, of a fluid. u
is a real property of a fluid. e is only an effective description when a
fluid is in motion, and it is clearly not a property of the fluid. But,
with reservation, it has been used to express the behavior of turbulent
stresses in terms of mean velocity gradients of a flowing fluid. It has
been possible to obtain a satisfactory description of mean properties
within turbulent flows by assuming this flow to behave as a Newtonian
fluid, incorporating an eddy viscosity model along with u, and including
two factors of intermittency when appropriate (Ref 20:25-26). A laminar
and irrotational flow became turbulent as it passed through a region of
transition in which only a fraction of the time was spent in a turbulent
state. During that time in laminar motion, the Reynolds stress, hence e,

would have been zero. Then, to adequately describe the effects of e at
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any point by the relative fraction of time that that point would be

' ' engulfed in turbulent flow (Ref 21:117). Therefore, the first multiplica-
tive factor, called an intermittency factor, was applied to € to more
accurately describe the e within the transition region. The intermittency
or probability factor of Dhawan and Narasimha was used for this program.

The factor was computed as follows (Ref 8:28-29):

I(s) =| 1-exp |-.412 [%current"stransition point]2 (71)
(’S)Stransition point j
€
Then, the computed Elorigina] was replaced by
€ 4 el
ilmodiﬁed (F(s)) fioriginal (72)

The second factor was then considered. It was observed by Kletanoff
.that in a turbulent boundary layer with a free boundary, as the free
stream was approached the turbulence became intermittent. This inter-
mittent nature was observed first at y/6 greater than .4 with less
turbulent intensity as y/§ grew larger. It was thought that a good
prediction of turbulent intensity probably depended on a correct weighting
of the probability density for the turbulence of the free stre§m with that
within the boundary. It was found that a good description of v' was a

Gaussian integral curve given by

y' =3 (1-erf(g")) (73)

where

e (2 g7 [ - s[t- 79 (74)




These expressions indicated that the edge of the boundary layer had a
random character with a mean position at y/é equal to .78. The edge
vacillated from y/8 equal to .4 to y/8 equal to 1.2. Finally, if it were
assumed that the free stream contributed little to the measured turbulent
quantities of the boundary layer, an allowance could be made for the
effect of intermittency by dividing by the factor y' (Ref 22:15-18).
Cebeci used the approximate expression for Eq (73) to give a multi-

plicative version:

-1 i
y' = []4-5,5[%}6] (Ref 7:1679) (75)

which led to the coding for this second factor. If y'werenot included,

then a newly defined viscosity was
e=1+ ﬁ-r(s) (76)

Including y', Shang formed the following model:

T=14 1.75 +1[£] (77)
5

145.5 T

For purposes of this study Eq (76) became eddy model zero, and Eq (77)
became eddy model one. Then, whether or not Y' was included, the quantity
€ was defined by

3-1+5'3r"—t(?-1)' (78)

In a final note, the decision of whether to use eddy model zero or eddy
model one depended on the original assﬁmption that either the free stream
turbulence had an effect on the ¢ of the boundary layer, or it did not.
This factor, v', was to have a definite effect on the analytical results,




and this entire subroutine was included with the program listing of

Appendix B.

Subroutine Cfstno

Like Reystr this routine was called from the main program. But
unlike Reystr, Cfstno performed its computation throughout the laminar,
transition, and turbulent regions of flow. The purpose of this routine
was to calculate a Stanton number, a measure of heat transfer; the local
coefficient of friction, indicative of shear stress at the surface; and
Reynolds numbers based on displacement thickness and momentum thickness.

Computation began with Tg;’fb coded XLM1 in the program. The formula
by which XLM1 was computed depended on the value of the exponent in the
viscosity law of Sutherland, the value of this exponent being specified

by the programmer. If the exponent were zero, then

1/2 (T,+198.6
XLM) = [—-] [ J (79)

If this exponent were one, then XLM1 was one. Otherwise,

Tw w=-1
XM = T (80)
e

Next to be calculated were transformed quantities similar to § or heat

flux and ¢ or shear stress. First, the same four-point finite differ-

ence scheme used in Reystr for g: was repeéted at this point to calcu-
late %—E and %ﬁ' W Then the transformed t, coded TAU, was computed:
(pu), P, w
TAU = w e e aFI (81)
[T (ZX)

or,




.
4

(ouly, -1/2 3F
™ e [ ] (20712 3E (81)

Following T, the transformed q, coded QS, was replaced by the following

expression: ;
1 (pu)w Pe He Yo Te 30
or (82)

(ou) ue Te A -1/2 9
> Pr (2x) 52
TP oM pef Uy Te(Y- I)M "Iw

For the case of the axisymmetric flow, both TAU and QS were divided by
the nondimensional station, S With this, preliminary calculations
were completed.

A Stanton number and coefficient of friction followed next in the
computation. If T equaled T,, there was no heat transfer and St, coded

STNO, was zero. Otherwise,

Vo P uref u, Tw(y-l)hjm

[[‘ 'r] [T_({T)_nf 2l ]z‘l] (83)

The model from which this expression came was

Ste * Gt 5

For the calculation of cfllocal station® coded CFNO,

3 uref]l/Z p“u“L] 1/2 (pu) ue _]/2 8F
Sl s M s e 5

With St and flocal computed, only the transformed expressions for Rea*
and Rco remained. Coded as REYDT and REYMT, these quantities were com-

puted from the following statments:
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Pl X
REYDT = [ e'e rea]][gj)
He L

(86)

pu_X
REYMT = [————e e "ea‘“ﬂ]
e L

This completed calculations within this routine, and further, com-
pleted the formal description of four important subsystems within Itract.
Again, this subroutine was included with the program 1isting of Appendix
B. In this appendix consideration was given to the important concepts of
the nondimengionalization of working quantities, initialization of the
grid, and the generation of finite pifference coefficients. Also
included was a brief description of the two subroutines used in the compu-
tation of eddy viscosity, heat transfer, and skin friction. The theory
presented in this appendix should provide a better understanding of the

code in general, and the modification for mass transfer specifically.
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Coded Symbol

Appendix D

Fortran Computer Code Key

Represented Quantity (Values included for those quantities

Inputs
G

PR
XMINF
TA
DS

SI

OMEGA
ERROR

XXK

BO
BTRX

PRT
XINTER
DYW

1EDGE

INTACT

remaining constant throughout this project)

(in order read by computer)

y=1.4
Pr= .2
Mw

T

Stepping increment in S5 along the streamwise direction,
DS = .0004

Initial station, Sy began computation within the grid,
SI = .0006

Exponent in the viscosity law of Sutherland, OMEGA = 0

A convergence criterion, the acceptable difference between
the quantity %%'w calculated in two successive calls of
the matrix inversion routine at the same station 51

An
—Z%:l, a constant ratio from surface to the edge of the
J  boundary layer

Tw

To

Station s; at which transition from laminar to turbulent
flow begaﬁ

Pry = .9 (exceptions noted)

A flagged quantity; XINTER = 0., eddy model zero was
used; XINTER = 1., eddy model one was used in the compu-
tation of e

An]. the first increment in n

Total number of nodal points or divisions in the n direc-
tion within the grid

Not used in this study
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IDIFF

IENDY

MSP

J2DA

IPRES

ICHS

IPRN

XLGTHMD
RINFA
IBLW

STRT, DONE,
RVRAT

NUMDAT,
XPOS,
RHOVRAT

A flagged quantity; IDIFF = 0, a three-point differencing
scheme was to be used; IDIFF = 1, a two-point differen-
cing scheme was to be used; IDIFF was set equal to O for
this project.

Total number of nodal points or divisions in the £ direc-
tion within the grid

A flagged quantity; MSP = 1, program printed abbreviated
data from each station computed; MSP = 5, program printed
every fifth station; MSP was set equal to 1 for this pro-
Ject.

A flagged quantity; J2DA = 0, designated a flat plate
calculation, J2DA = 1, designated an axisymmetric cone
calculation

A flagged quantity; IPRES = 0, indicated that dp/dx was
zero; IPRES = 1, indicated that dp/dx was not zero; IPRES
was set equal to zero for this project.

An array of integers which designated stations where a
double step was to be taken between computations of a
column of nodal points

An array of integers which designated stations where a
full profile of boundary layer data was to be printed

Length of the model, L
Pes

A flagged quantity; IBLW = 0, no mass transfer consid-
ered; IBLW = -1, mass transferred at a constant rate;
IB%N = 1, mass transfer varied along the length of the
model

If IBLW = -1, mass transfer began at some number of feet
from the leading edge or tip and continued to. some other
?os;tion downstream, trans;erring at a constant rate,
pv pv
w W
f
W; or the plate or -(a‘-)—e— for the cone

If IBLW = 1, this stipulated a varying transfer rate
pv

beginning at X at a strength of X or

(ov),, posi Pl pos1

135;7 s and continuing to xpos final at a correspond-

ingly specified strength. Varying transfer rates were

designated in between.
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Outputs and Miscellaneous Working Quantities Applicable in This Study

BCVW
BLDT
BLMT
BLT
CFNO
EO

ETA

F1
H/HE
MACH
N, XNN
RE

REY
REYEXT
REYDT
REYMT
RO/ROE
RVRAT (VRVRAT)

STNO
n
TRR
TW/TE
UE

(alphabetical)

V(i,1), defined in Eq (29)
5*/L :

e/L

/L

€f1ocal

Eddy Viscosity, either from eddy model zero or eddy
model one

n

u/ug (in the output listing only)

H/Hg (in the output listing only)

Mach number (in the output 1isting only)
y/L (listed as N in the output)

plpg

Re

Rex

REG*
Re9
p/Pg (in the output 1isting only)
(ov),,

(pv)y, or
{ou)_(current station (oTg|current station
Ste

T/T, (in the output 1isting only)
(T,#198.6)/ (T, (v-1)M2+198.6)
T"/Te (in the output 1isting only)

u/ue

102



V1 v/ug (in the output listing only)

X Defined in Eq (27)
XBE B
x/L station S5
XME Me

: u
XNUE .

Ypef

Y/BLT y/8 (in the output listing only)
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Appendix E

A Cubic Spline Approximation for the

Description of Generally Varying Mass

Transfer Pate

In modeling or mathematically describing a varying mass transfer
rate it was assumed that through some means, there would be knowledge
of the strength of mass transfer at a finite number of stations along
the model. So, there was information of the form fxi,fi) for i values
from 1 to n. The objective was to construct a function, f(x), such that
f; was equal to f(xi) and that f(x) was twice differentiable over [x],xn].
This f(x) would provide the value of mass transfer for any station, Sy
along the surface of the model. Figure 19 depicted the curve to be

specified.

f(x)

Fig. 19. Building a Cubic Polynomial
Between Any x, and x4,

The function, f(x), was specified as a different cubic polynomial
in each interval, x; to x4,;. It was required that the function be con-
‘l tinuous, together with 1ts first two derivatives, at each junction
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between two polynomials. Thus, for each [x1 ’xi+1]’ an f(x) was constructed

3
. equal to L)‘, C}xt. The function was formed recursively. Supposing that
=0

f(x) had been generated to an x equal to x;» it was necessary to choose

CHbO to 3 Such that f(x), f'(x), and f"(x) were continuous at Xj> and it
was left to find f(x) over the interval [x;,x;,;]. ‘This led to four linear

algebraic equations with four unknowns, Czlz___o to 3* These equations were

as follows: f o
f(xi) = ko Cp X5

3
¥ i, 2L-1
f'(xi) LZ] CL in
(87)
" i i o -2
f (xi) zgz Cp L(L ])x1
3
s y S0 4
. f1+‘I LZO cz X341
This system was solved up to Xj47 at which point the process was repeated
from X471 10 X440 (Ref 11).

Returning to the initiation of this recursive procedure, values were

Ifmovfm for (xi'fi) for i equal from 1 to n. Th:n.fﬁ was approximated by
x2_x1 and fi’ was approximated by the expression 2 1. The initial condi-
Bt X27%y

tions were then f.‘. fi’ f']'. and f2° The four equations initially to te

solved were, then, given by

¥ i X

“ Co + C1 x‘ + Cz X] + C3 x.l fl

L e e

? (88)
i‘ 265 + 6C3 x, =

33 Yy 5.0 .3
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Solving for C1 yielded a cubic polynomial expression

1 1 % 1.3

f'l(X)=cO+c~l X + CZ x'+C3X (89)

which was descriptive of an appropriate curve connecting points one and
two. Then, having specified the polynomial for this first interval, the
successive polynomials and their intervals were recursively computed to
X, as previously discussed, though now a polynomial expression existed
for finding f'(x) and f"(x).

Finally, then, for any position, s', along the surface of the model,
the interval S to Si+] in which the position was contained could be found.
Knowing the interval was to also know the corresponding cubic polynomial

that described that increment, and hence, the value of mass transfer rate,

f(s').
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Appendix F

e

Flat Plate Heat Transfer Data

Table IV

The Combinations of Variables for the

Parameter Study,

the Flat Plate Case

St_, Itract Prediction
Col 1 Col 2 Col 3 Col 4 Col 5
XXK 1.1 1.1 1:18 1.15 1.15
PRT 1. .9 9 .9 .9
XINTER| 1. 0. 0. 0. [ P
DYW .0005 .0005 .00025 .0005 .0005
IEDGE 120 120 120 100 100._-
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Table V

Heat Transfer Results of the Parameter Study,

Zero Mass Transfer

Rexao)-s E"Egg‘ga Itract Predictions, Stm(lo)3
mental Col 1 Col 2 Col 3 Col 4 Col 5
.455 4.13 3.45 3.59 3.63 3.63 3.57
1.36 3.08 2.3 2.97 2.99 2.99 2.94
2.27 2.79 2.46 2.60 2.63 2.63 2.58
3.18 2.59 2.29 2.44 2.46 2.46 2.42
4.09 2.44 2.19 2.33 2.35 2.35 2.31
5.00 ) 23} e | 2 ] 2.y | 227 | 2.23 |
5.91 2.29 2.05 2.18 2.20 2.20 2.17
6.82 2.22 1.99 2.12 2.15 2.15 2.11
7.73 2.13 1.95 2.08 2.10 2.10 2.07
8.64 2.10 1.92 2.04 2.06 2.06 2.03
9.55 2.07 1.88 2.01 2.03 2.03 2.00
10.5 2.07 1.85 1.97 2.00 2.00 1.97
11.4 2.02 1.83 1.95 1.97 1.97 1.94
12.3 1.91 1.80 1.92 1.95 1.95 1.92
13.2 1.93 1.78 1.90 1.92 1.92 1.89
14.1 1.90 1.76 1.88 1.90 1.90 1.87
15.0 1.90 1.75 1.86 1.88 1.88 1.86
15.9 1.87 1.73 1.84 1.87 1.87 1.84
16.8 1.88 1.7 1.83 1.85 1.85 1.82
17.7 1.83 1.70 1.81 1.83 1.84 1.81
18.6 1.80 1.68 1.80 1.82 1.82 1.79
19.5 1.85 1.67 1.78 1.81 1.81 1.78
20.5 1.81 1.66 1.77 149 1.79 1.77
21.4 1.82 am-- e ———- e ———-
(Ref 13)
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Table VI

A Heat Transfer Comparison with Moffat
and Kays, Mass Transfer Factor of .001

Itract Predigtion, Pﬁ;ﬁ:ﬂf
; 5t,(10) with
_s Pt (10) Eddy Eddy Eddy
Rex(IO) Experi- Model Model Model
nental One Zero Zero
.453 3.53 3.44 3.50 .8
1.36 2.58 2.41 2.46 4.6
2.26 2.33 2.05 2.10 9.8
3.17 2.13 1.89 1.93 9.3
4.08 1.99 1.78 1.83 8.0
4,98 1.02 1.1 1.74 8.3
5.89 1.85 1.65 1.68 9.2
6.79 Votl 1.60 1.63 7.9
7.70 1.69 1.55 1.58 6.5
8.60 1.68 1.52 1.54 8.3
9.51 1.61 1.48 1.51 6.2
10.4 1.59 1.45 1.48 6.9
11.3 1.53 1.43 1.46 4.6
12.2 1.50 1.4 1.43 4.7
13.1 1.47 1.39 1.41 4.1
14.0 1.44 1.37 1.39 3.5
14.9 1.46 1.35 1.38 8.5
15.8 1.41 1.33 1.36 3.5
16.8 1.39 1.31 1.34 3.6
17.7 1.41 1.30 1.32 6.4
18.6 1.36 1.29 1.31 3.7
19.5 1.36 1.87 1.30 4.4
20.4 1.32 1.26 1.29 2.3
21.3 1.31 el ———— -
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Table VII

A Heat Transfer Comparison with Moffat
an¢ Kays, Mass Transfer Factor of 00115

Itract Prediction, Percent
s b stt0)? iy
o st_(10) Eddy Eddy Eddy
Re, (107> | Experi- Model Mode] Model
mental One Zero One
.439 4.53 3.29 3.35 27.4
1.32 3.64 3.62 3.66 D
2.19 3.24 3.27 3.32 .9
3.07 3.10 3.10 3.15 0
3.95 2.97 2.99 3.03 .6
4.83 2.92 2.9N 2.95 3
5.70 2.78 2.85 2.88 2.5
6.58 2.83 2.79 2.83 1.4
7.46 2.66 2.75 2.78 3.3
8.34 2.67 2.7 2.74 1.5
9.21 2.61 2.67 2.7 2.2
10.1 2.56 2.64 2.68 3.0
11.0 2.58 2.62 2.65 1.5
11.8 2.57 2.59 2.63 ™ |
12.7 2.51 2.57 2.60 2.3
13.6 2.47 2.55 2.58 3.1
14.5 2.44 2.53 2.56 3.6
15.4 2.47 2.51 2.56 1.6
16.2 2.42 2.50 2.53 .
17.1 2.38 2.48 2.51 4.0
18.0 2.36 2.47 2.50 4.4
18.9 2.36 2.45 2.48 3.7
19.7 2.32 2.44 2.47 4.9
20.6 2.32 2.43 2.46 4.5
(Ref 13)
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Table VIII
bb { :
A Heat Transfer Comparison with Moffat
and Kays at the Suction Asymptotic Limit

Itract Prediction, Percent

; Sta(10)3 Error

-5 Ste(10 Eddy Eddy Eddy

Rex(IO) Experi- Model Model Model

mental One Zero One

.430 9.33 4.90 5.00 47.5

1.29 8.07 8.34 8.38 3.2

2.15 7.75 8.17 8.20 5.1

3.01 7.82 8.09 8.12 3.3

3.87 7.64 8.04 8.06 5.0

4.72 7.99 8.00 8.03 .1

5.58 fudl 7.98 8.00 3.4

h { 6.44 7.85 7.96 7.98 1.4

: 7.30 7.82 7.95 7.96 1.6

8.16 7.95 7.94 7.96 a3

9.02 7.94 7.93 7.95 v}

9.88 7.9 7.93 7.94 %

10.7 8.24 7.92 7.93 3.9

11.6 8.17 7.92 7.93 3.0

12.5 7.82 7.92 7.92 §.3

13.3 7.97 7.91 7.92 if

14.2 7.88 7.91 7.92 .4

15.0 8.35 7.9 7.92 5.3

15.9 7.76 7.9 7.92 1.9

16.8 7.97 7.91 7.9 .8

17.6 7.75 7.9 7.9 2.0

18.5 1.79 7.91 7.91 2.0

19.3 8.08 7.91 7.91 2.1

' 20.2 7.85 cem- ———- ~——-
(Ref 13)
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Table IX

A Heat Transfer Comparison with Moffat
and Kays, Mass Transfer Factor of .CO019

5t.,(10)°,
N P e N

Experimental Fine Mesh Coarse Mesh

with £ Error |with % Error
.457 3.31 3.94| 16.013.36 { 1.5
1.37 2.36 .27 3.811.97 |16.5
2.28 2.06 - 1.78 | 13.6 | 1.62 |21.4
3.20 1.89 1.57 | 16.9 |1.46 |22.7
4. 1.74 1.44 | 17.2(1.36 |21.8
5.03 1.65 1.34 ] 18.8 |1.28 |22.4
5.94 1.57 1.27 | 19.1]1.22 |22.3
6.85 1.50 1.2 B3I 1T182.0
7.77 1.46 1.16 | 20.5 {1.13 [22.6
8.68 1.45 1.12 | 22.8 [1.10 | 24.1
9.60 1.3 1.08 | 21.2 |1.06 |22.6
10.5 1.39 1.06 | 23.7 |1.04 |25.2
11.4 1.36 1.03 | 24.2 {1.01 {25.7
12.3 1.26 1.00 | 20.6 | .99 |21.4
13.3 1.24 Error Finish| .97 |21.8
14.2 1.23 .95 | 22.8
15.1 1.23 .93 (24.4

16.0 1.19 .92 122.7
16.9 1.20 .90 |25.0
17.8 1.13 .89 |21.2
18.7 1.18 .88 125.4
19.6 1.12 .87 |22.3
20.6 1.09 .85 |22.0
21.5 1.09 ceme | ceee

(Ref 13)
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Appendix G

Cone Heat Transfer Data

Table X
A Heat Transfer Comparison with Martellucci,

:
1
:
!

Laganelli, and Hahn, Data Group 132

Percent
st,(10)° st “eleq gt with
heoretical Theoreticall “"ep U, Eddy
Fully Experi- Fully Model
Station, s | Laminar mental Turbulent Itract One
191 4.0 4.77 % | 4.63 2.9
.262 3.5 3.50 7.3 3.96 11.6
.315 3.0 2.4,3.1 7.0 3.78 18.0
& .399 2.8 3.93 6.8 5.33 26.3
e .470 2.6 5.67 6.5 6.86 17.3
.542 2.4 5.68 6.3 7.55 24.8
.589 2.3 6.91,6.61 6.0 7.67 9.9
.607 2.2 6.18 6.0 7.70 19.7
T30 2.0 6.79,6.84 5.9 7.47 €.3
6.23,7.30
.750 2.0 7.19 5.9 7.4 3.0
.816 1.9 7.67 5.8 7.23 5.7
.958 1.8 6.31 5.6 6.89 8.4
(Ref 14)
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Table XI

A Heat Transfer Comparison with Martellucci,

Laganelli, and Hahn, Reference Data 150

Percent
bele . Error
st (10)4 Ste m;(w) wi %l:)d?]dy
Station, s Expe:imental Itract One
191 2.10 2.06 1.9
ol 2.78 2.63 2.6
.263 2.14 3.76 43,
.317 B.91,4.03,3.86 5.00 19.4
« 393 6.48 5.33 17.7
.400 5.31 5.42 2.0
.544 4.90 5.08 3.5
.592 4.30 4,97 13.5
.610 3.94 4.93 20.1
.645 3.80 4.87 22.0
.681 3.53 4.80 26.4
J17 g1t 4.74 5.3
.735 4,27,3.98 4.73 6.9
4.10,5.08
.819 4.19 4.62 9.3
.890 5.99 4,54 24,2
.962 4.69 4.46 4.9
(Ref 15)
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Table XII

A Heat Transfer Comparison with Martellucci,

Laganelli, and Hahn, Reference Data 1

Percent
"t
p U w

s, (10! (e r:"f(wﬁ Mode!

Station, s Experimental Itract One

173 3.73 3.97 6.0

19 3.85 3.92 1.8

.227 4.58 5.03 8.9

.263 5.33 7.03 24,2

.317 8.84,7.90, 8.79 .6
7.18,7.53

.353 9.68 9,22 4.8

.400 9.12 9.30 1.9

.472 8.15 8.99 9.3

.544 7.69 8.64 11.0

.592 7.19 8.43 14.7

.610 6.89 8.36 17.6

.645 7.49 8.25 9.2

.681 7.04 8.13 13.4

17 6.99 8.04 13.1

.735 6.94,6.84, 7.99 13.1
6.75,6.86

.753 6.84 7.94 13.9

.819 6.64 7.80 14.9

.890 6.79 7.67 11.5

.962 6.34 7.54 15.9

(Ref 15)
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Table XIII

A Heat Transfer Comparison with Martellucci,
Laganelli, and Hahn, Data Group 60

Percent
e, | with Ead
st (10)* Ste 2210yt With Ead
Station, s Experimental Itract One
.226 3.80 5.57 31.8
.262 3.09 4,72 34.5
«315 2.45,2.49,2.54 3.85 34.0
.399 1.99 3.77 47.2
.542 1.78 6.94 74.3
.589 1.98 7.32 73.0
.607 2.17 7.40 70.7
.648 2.46 7.48 67.1
732 1.87 7.43 74.8
.750 1.76 7.40 76.2
.816 2.00 7.28 72.5
.958 2.31 6.84 66.2
(Ref 14)
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Table XIV

A Heat Transfer Comparison with Martellucci,

Laganelli, and Hahn, Data Group 203

Pele . 4 Pg:ﬁsct
st (10)} T B with Eddy
) odel
Station, s Experimental Itract One
.263 1.00(10)"2 5.15(10)"] 43.5
317 3.42 1.68 50.9
.353 4,72 2.16 54.2
.400 5.13 2.52 50.9
.472 3.7 2.60 29.9
.544 4.02 2.52 37.3
.592 4.15 2.44 41.2
.610 3.74 2.41 35.6
.645 4.05 2.35 42.0
.681 3.65 2.30 37.0
.735 3.99,3.88 2.24 42.3
3.98,6.41
.753 3.02 2.21 26.8
.819 3.96 2.15 45.7
.890 5.35 2.09 61.0
.962 4,33 2.02 53.3
(Ref 15)
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Capt A. J. Beauregard received his undergraduate training in the
engineering sciences, and upon graduation and commissioning, he entered
pilot training. Following this training Capt Beauregard primarily flew
the C-130 in roles of armed reconnaissance and intelligence gathering.
Following these flying assignments Capt Beauregard entered the Air Force

Institute of Technology in June of 1975.
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