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Nomenc lature

a Speed of sound

Cf Local coefficient of friction

C, Specific heat at constant pressure

F Velocity ratio,
• e

H,h Enthalpies, defined In the expression H = h + T
Thermal conductivity

ic1. Eddy conductivity

L Characteristic problem dimension , length of the model In
question

Defined in Eq (19—1)

M Mach number

Pr Prandt1 number

p Pressure

q Heat flux or heat flow per unit area

R Gas constant, 1716 ft2/sec2R for air

Re Reynolds number

r(r0) Radial coordinate (body radius) for the case of the axi-
symetric cone, measured perpendicularly from the longitudinal
centerline, fig 3

S Viscosity constant of Sutherland (198.6 R)

s Nondimensional position, x/L

St Stanton number, 
~ -h

~e e ’ e w
I Temperature

t Transverse curvature term equal to

u(v) Velocity component along (perpendicular to) the streamwlse
direction

V Transformed velocity expression defined in Eq (18-3)

X Defined in Eq (27)
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x,y Body surface oriented coordinate system In which x runs
a parallel to the stream direction , pointing downstream, and

y is perpendicular to x and is directed into the external
flow

Greek Symbols

Defined in Eq (19-2) 
-

B Defined In Eq (19—3)

F Streamwise intermittency distribution or probability factor

y The gas constant, ratio of specific heats

The intermlttency factor of Kiebanoff

A Change in variable quantity

6 Boundary layer thickness

6* Displacement thickness

e Eddy viscosity

3 1 Eddy viscosity function defined following Eq (22)
A

e Eddy viscosity function defined following Eq (22)
(pv )

A A nondimensional mass transfer rate ,
~oo or e

Transformed perpendicular boundary layer coordinate and non-
dimensional distance along this coordinate

O Static temperature ratio,

o Momentum thickness

p Molecular viscosity

v KinematIc viscosity,

Transformed streainwise boundary layer coordinate and nondi-
mensional length along this coordinate

p Density

Shear Stress

Exponent Of the viscosity law of Sutherland
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Subscripts and Superscripts

e Condition at the edge of the boundary layer , also indicative
of the inpu t or environmental conditions for Itract in the
cone study

Free stream or unperturbed condition

Flow Index, j = 1 for con ical flow , j = 0 for flow over a
flat surface -

6*(9) When used with Re, denotes Reynolds number based on displace-
ment thickness (momentum thickness)

o Total or stagnation condition except for

Primed quantities indicate instantaneous departures from a
mean state or condition in the turbulence model . The accom-
panying bars over the primed symbols denote a time averaged
quantity.

ref Reference

t Turbulent condition

3 w Condition at the surface of the plate or cone

x Denotes a particular real x station along the surface of the
model
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Abstract

This study followed the work of Dr J. Shang, Flight Dynamics Labor-

atory, Wright Patterson Air Force Base, Ohio. Given a Fortran code

written by Dr Shang that solved for the characteristics of a laminar ,

transitional, and turbulent boundary layer, the problem was to modify

the existing program to predict the boundary layer over a flat plate and

sharp nosed axisymmetric cone wi th mass transfer as a boundary condition

at the surface of the model . The surface of the model was mainta ined at

a constant temperature, and only the cases in which air was the trans-

ferred gas were studied.

To solve this problem the boundary layer was described by the

standard boundary layer equations for continuity , momentum , and energy.

Incorporating mass transfer as a boundary condition , the governing equa-

tions underwent the transformation of Probstein-Elliott and Levy-Lees.

The resulting equations and boundary conditions were solved by finite

differenc1~g techniques for nondimensionalized velocity components and

temperature ata finite number of nodes in the boundary layer field of flow.

To verify the modified code, three studies were performed. First,

the code was verified using analytical and some experimental data from

Schlichting for laminar , subsonic flow over a flat surface with constant

suction. Second, the code was verified for turbulent, subsonic flow over

a flat surface with constant suction to the asymptotic suction limit and

for small rates of blowing , using experimental results from Hoffat and

Keys. Finally, the code was verified with mixed success for hypersonic

laminar, transitional , and turbulent flow over an axisyninetric cone for

small rates of blowing using the experimental results of Martellucci ,

Laganelli, and Hahn.
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AN ANALYTICAL STUDY OF THE EFFECTS OF MASS TRANSFER

ON A COMPRESSIBLE TURBULENT BOUNDARY

LAYER

I. Introduction, a Problem Analysis

Calculating the effects on boundary layer flows subjected to mass

transfer perpendicular to the surface has provided engineers a rela-

tively inexpensive model to study ablative effects. This model has

provided a means by which to study the heating effects at the surface,

skin friction, and the effects on the boundary layer profiles. The

purpose of this paper was to investigate the effects of this mass

transfer at the solid boundary by means of a numerical code.

Definition of the Problem and Purpose of the Study

The Flight Dynamics Laboratory (FDL) possessed a digita l computer

code, called Itract, which computed the characteristics of laminar and

turbulent boundary layers over flat plates and axisyia~ietr1c, conical

bodies for the case with no mass transfer at the surface. To initiate

this computation the following quantities were specified as Inputs:

ganmia, the gas constant; the Prandtl numbers, both laminar and turbulent;

free stream mach number, static temperature, and density; the exponent

of the viscosity law of Sutherland; a temperature ratio, wall tempera-

ture to free stream stagnation temperature; a point of transition from

laminar to turbulent flow along the surface; and a flagged quantity

which specified eddy model zero or eddy model one for computation of

f the eddy viscosity. With these inputs, Itract provided a description

j of boundary layer features. Some of the output of Interest in this

1 1 _
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~l5 
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study incl uded the following : the local mach number for any poin t in

the field , boundary layer thickness , displacement thickness , momen tum

thickness , the coeff icient of fric tion , eddy v iscosity, a Stanton number

descriptive of heat transfer at the surface, and boundary layer profiles

for velocity, static tempera ture , and density.

Starting with the original code of FDL this study was divided into

three sequential steps. - The first step was to learn as much about the

computer code as possible. This step included a study of the key

equations of motion , energy, and continuity needed for boundary layer

solution. The second step was to Incorporate the needed changes into

the code that would include the new boundary condition 0f mass transfer

at the surface of the body exposed to an environment of fluid flow. The

last step was to verify the change by comparing key output predictions
( of the computer code with the results of analytical expressions presented

in Schlichting and laboratory experiments for studies of flow over a

flat plate and flow over a slender , axisynmietric cone. Completing these

three steps, the purpose of this study was to extend the usefulness of

a turbulent boundary layer code by incorporating a change that would

allow consideration of mass transfer as a boundary ccndition , and

thereby, study its effect on boundary layer characteristics.

ScoPe. and Assumptions

In defining the area of study the topic was l imited and the

following assumptions were made. First, boundary layer computations

and comparisons were performed on flat surfaces and axisyninetric cones

with sharp leading edges or tips. For both models there were negligible

effects due to the stagnation region at the leading edges, and in the

a
2
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case of the plate , the shocking phenomena was neglected . Shapiro

alluded to the val idity of this assumption of free stream conditions

existing some distance downstream of the leading edge of a plate in

fig 28-21(c) and subsequent text (Ref 1:1149-1150). Eckert discussed

this idea further as mach numbers reached supersonic and higher (Ref 2:

10-il). Thus, free stream conditions were assumed to exist downstream

of the shock wave. Further, the angle of incidence of the models was

assumed to be zero with respect to the flow in the free stream. Second ,

consideration was given only to the cases of air , at surface temperature ,

being blown through the surface Into the boundary layer, or the boundary

layer of air flow being sucked through the porous surface into the

model . Thus,this study did not include the effects of chemical reactions

that might occur by mixing nonsimilar gases In the boundary layer.

Taking the transferred gas to be at the temperature of the wall , which

was assumed constant, helped to limit and simplify the problem and the

transfer model. This was a realistic limit as many experiments in wind

tunnels were performed under these constant temperature conditions.

Third, only small rates of injection or suction were compared with

experimental results, although the limiting transfer rates of the code

were investigated. It was assumed that mass transfer effects were con-

fined to the boundary layer (Ref 3:1,5-6). The solution of this

problem was based partially on the boundary layer equation of motion of

I Prandtl. To have considered massive transfer rates would have violated

the proposition of Prandtl that 6 was much less than the characteristic

length of the model. Thus, a fourth stipulation was that 6 would be

much less than L. Further, the pressure change across this boundary

layer thickness was neglibibl e, and considered zero in the analytical3



solution. Fifth, the problem was limited to experimental cases where

pressure change along the stream was also negligible. This was con-

sistent with the two models studied . Numerically, dp/dx was considered

zero. Finally, in the studies of both the flat plate and the conical

flow, the mass transfer rate was considered constant over the region

of transfer unless Indicated otherwise in the experiment. Al so, the

flow was considered fully turbulent throughout the length of the model

unless another transition point was clearly indicated in the experi-

menta l results. This list of items provided the limi ts and scope of

this study. The following chapter presents a background of information

relevant to this study.

4 
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II. A Background of Information

Interest in boundary layers perturbed by mass transfer at the sur-

face has been evident from numerous laboratory experiments in which a

model equipped with a surface blowing apparatus was exposed to the free

stream environment of a wind tunnel . More recently, computer codes have

been designed to compute the same fluid characteristics as measured in

the experimental efforts. In both these studies those features of the

boundary layer that were of greatest interest included the following:

a) Boundary layer velocity profile shape,

b) Energy (temperature) profile shape,

c) Thicknesses - boundary layer, displacement, and momentum,

d) Skin friction reduction for the blowing case, and

e) Heat transfer blockage for the blowing case.

In the experimental study these features have been obtained by

measuring a restricted number of quantities.

The devices used to measure these quantities in experiments on

boundary layers have included heat transfer gages, pressure sensors,

temperature probes, and mass Injection concentration probes (Ref 4:

1—10, 32-35, 46-51). The same quantities measured by these devices

have been computed by analytical methods. Such a method or computer

code was written for the Flight Dynamics Laboratory, Wright Patterson

Air Force Base, Ohio.

This code was written to obtain numerical solutions of the

governing turbulent boundary layer equations. Because of limited

c understanding of turbulent processes, completely general solutions to

these equations have not been possible. By use of an empirical eddy

5
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viscosity model of these processes, however , the system of governing

equations was solved directly. The basic eddy model used in this study

was that of Cebeci , Smith , and Mosinskis. The model assumed an inner

and an outer viscous layer within the boundary layer. The expression

for e in the i nner region was based on the mixing length theory of

Prandtl as follows :

~ ~
2 ~~ (1)

where £ was equal to K1y. To account for the region close to the wall ,

Van Driest offered a modification to the mixing length of Prandtl . The

new expression for I was

I K1y (1 - exp(-y/A)) (2)

( where A was equal to 26v (r
~
/p
~
y”2. The shear stress close to the wall

was written

•t
~~

•tw + 
(~ Jy (3)

If A were redefined to 26v (t/p~~l’2, then expanded

A = 26v {Tw~~~~~
}_l/2 (4)

Finally then,

lnner K~y
2 

{l 
- exp 

[
~~~ 

[
~~ 

+ 
~~ ~jl/2]}

2 

~~ (5)

The expression for e in the outer region was

outer J (u
~
-u)dy (6)

6
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This became eddy model zero in the code and differed from eddy model

one which was formed by multiplyin g 6outer or eddy model zero by the

intermittency factor of Kiebanoff,

I
I 

= [
~ 

+ 5.5 (7)

For 6 defined as the distance from the surface to a point in the f ield

at which u was equal to .995u~, studies have shown that the value for

was .4 and the value for 1(2 was .0168 (Ref 5:1975-1976). Having

selected the model of Cebeci to describe turbulent activity within th~
boundary layer, there remained the problem of solving the system of

governing equations for laminar , transitional , and turbulent compressible

boundary layers (Ref 6).

Finite differencing techniques were incorporated to obtain solu-

tions of the governing system for both flat plate and axisynu~etric

conical flows. The numerical technique invol ved a simultaneous solution

of the equations of momentum, energy, and continuity by a tridiagonal

matrix inversion routine. Through an iterative procedure, the solutions

of all three were brought into convergent harmony yielding results

which, otherwise, would have been gained only through laboratory experi-

ments. Some of the mathematical modeling incorporated with these three

governing equations included a two-layer concept within the turbulent

boundary layer with appropriate eddy viscosity models used for the Inner

and outer regions. These models were considered In addition to the

U molecularviscosity term appl icable in laminar flow. Further, a speci-

fled turbulent Prandtl number related turbulent heat flux to the Reynolds

( stress. Finally, mean properties within the transition region between

laminar and turbulent flow were computed by multiplying the eddy

t .

7
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viscosity by an intermittency factor that characterized the growth rate

or production of turbulence within a flow whose origin was laminar (Ref

7; Ref 8:1-4). With these models incorporated, the solution followed .

The Equations to be Solved

The flow of compressible, viscous, heat conducting fluid was

described by the equations of continuity, Navier—Stokes, and energy,

together with a supporting equation of state, a heat conductivity law,

and the viscosity law of Sutherland. To arrive at such a description

was to accept the propositions of Prandtl. Osborne Reynolds was the

first to study turbulent flow in 1883. He said that the instantaneous

fluid velocity satisfied the Navier-Stokes equations, and that this

velocity was comprised of a mean velocity and a fluctuating component.

He modified the Navier-Stokes expressions with these fluctuating

components, called Reynolds Stresses, and by making boundary layer

approximations he presented the governing equations as follows (Ref 8:

11—12):

Continuity

~
j (ripu) + ~~ [r

i 
P(v + ____ = 0 (8)

Momentum

~~~~~~~~~~~~~~~~~~~~~~~~~~ [ri [UP+Pu
Ivs)](9)

Energy

?~ 
(c
D
T) + (v + 

~~~ T} ~~ (cpT)
] 

u + 
.4 

~ 
[ri ~4 ~ (c~T~

+4

~

!.)2 +_ !

~

.

~~~~~~ [r
i (-cr P~~1T1

)] 
- PU’V U

~~~ (10)
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Appendix A was inc l uded for further clarification of the above system

(Ref 9:145-150).

Eqs (8), (9), and (10), val id descriptions for laminar and turbu-

lent flow, were the laminar governing equations with the addition of

turbulent fluctuating quantities which represented the apparent turbu-

lent mass , shear , and heat flux terms. These turbulent additions were

incorporated, again , through mathematical model ing. The apparent mass

flux, p’v’, was Incorporated by-the new variable , ~; the apparent shear

stress, pu v ’, became part of the eddy model ; and the apparent heat flux,

C~PV ’T’. was modeled through an eddy conductivity term, 1(T• These

relationships were defined by the following equations:

e = - 
~~ 

(11)

With these quantities incorporated, the perfect gas law and the viscosity

relation of Sutherland were also added :

Perfect gas law

p c~ (12)

Viscosity law 3 +

~ (tJie 
+ s (air only) (13)

Thus, the system of governing equations to be solved consisted of three

t (. nonlinear partial differential equations and two algebraic expressions.



But in the present form this system had a singularity at x equal to zero,

the leading edge. To alleviate this singularity , and to reduce the

growth of the boundary layer as the solution proceeded downstream for

numerical efficiency, a variable transformation was made (Ref 8:13-15).

The Transformed Plane

The transformation of Probstein-Elllott and Levy-Lees was used in

this analytic study. The transformation was written as follows :

~ x) = J Peue~e
ro
2
~
dx (14)

~(x,y) = ~
eYo t1 ~~ dy (15)

0

Next, the relation between derivatives In the real (x,y) plane and the

transformed plane (~,r~) followed:

= 

~e
ue1Ae~

i (
~J~ 

+ (16)

I _ ~e’~e’o
1t1 i~j  r ~

~~Jx 1~eJt~~J~ 
(17)

Then, the three parameters, F, 9, and V were defined as follows:

F_ ~
U
~ue

F + 
p~r0

3t3 
(18)

PeUeMet’o 
3x

U

- 
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With this , the final working form of the governing system, prior to

lineariza tion , was reached. Further definitions included

= ____

~e~e

u 2
(19)

p e

Ue d~

Finally, the solvable form of the governing system was obtained as

follows:

Continuity

(20)

Momentum

2~F ~~~
.+  V ~~~~~~

- ~~ [t
2iei~~J 

+ B(F2 -9) = 0 (21)

Energy

2~F + V - 

~~ [t
2i 

~~~~~. 

~ 
- ~~~~~ 

~ [
~J~ 

0 (22)

where 1+ and ~~~= 1 +U u Prt
Casting Eqs (20), (21), and (22) into a finite difference form, this

system represented a means by which a boundary layer could be studied

numerically. With the inclusion of boundary conditions, this system

was solvable. For purposes of this study the boundary conditions were

as follows: F(~,0) 0

V(~,0) ~~~
( g(~,o) • ~~~~, a constant (23)

a 1

• 1 (Ref 8:13-18; Ref 10)
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This chapter has introduced the boundary layer problem , and methods

by which this problem has been rtudjed and solved . The methods presented ,

experimental and analytical , represen ted the techniques employed by those

in the engineering comunity who have studied boundary layer flow exten-

sively. The numerical solution ultimately depended on the boundary

conditions imposed on the differential equations . Further, the boundar y

condi tion , Eq (23-2), was to become the primary area of study for th is

thesis. This quantity , V
~
(
~
j, would ultimately provide Itract with the

capability to investigate the effects of mass transfer on a boundary

layer. The original FDL code solved the boundary layer problem for no

mass transfer, or V
~
(
~
) equal to zero. With a V

~
(
~
) model incorporated

to simulate the mass transfer of air , the code would solve the boundary

layer problem such as that investigated by the experimental study men-

( tioned at the beginning of this chapter. To better understand this

numerical solution it was necessary to incl ude a program description ,

Chapter III.

~~~~ 

- 
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-
,
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III. A Program Description

The computer code. Itract, solved the system of nonlinear para-

bolic partial differential equations , Eqs (20), (21), and (22), by

casting this system Into a series of linear finite difference expres-

sions. Coincidentally, the transformation from the real (x,y) plane to

the (~~,i~) plane cast the boundary layer into a rectangular grid of nodes

with the surface of the model located at the level j= l , as shown in

fig 1.

j+1 
- 

~r1
- 

~~~~~~~~~~~~~~~~~~~~~~~ 
~~ (i,j)

j—l - - ~~~~~ ~~(i ,j—l)

1=11_A _________________

V 1—2 
— 

1— 1 1

-

~~~ 

‘
~~~i-2 ‘

Fig. 1. FInite Difference Grid for BoundaYy Layer (From Ref 8:33)

The solution of this system of finite difference equations was approxi-

mated by computing values of F, 9, and V at each of the nodes within

the grid. With values for these variables at stations 1-2 and 1-1 the

( va lues of F, 9, and V were solved at station I from the surface to the

edge of the boundary layer using a three-point differencing scheme and

J 13 
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a tridiagonal matrix inversion routine. Wi th the boundary layer solu-

tion completed at station I the problem was stepped in the streamwlse

direction, E , to station 1+1 and the node by node computation was per-

formed again from the surface to the edge of the boundary layer. The

entire program was, therefore , a sequential solution of a series of

columns of nodes from the leading edge to the trailing edge of the sur-

face or model . For the particular problem considered in this study,

the program followed the step-by-step procedure depicted in fig 2, with

a program listing included in Appendix B.

(

(
~
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- - - _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ _ __ _ _ _ _

r

Inputs inclu d in g 1, Pr , Pr , M~, T , stepping data
In transformed plane , w, TJT0, tur~ulen t trans it ion I

and interm i ttency cons idera tion , L, p~, and mass I
transfer cond i tions - I

Compute Re ,]

~1.I Nondimensionalize 1
the key working variables I

~1-I 1ni tial~ze the
I grid profile I

_ _ _  _ ‘I.
Do to labe1T11 —~ I En ter the Ma in Loop
for each nodal
point in a ver-
tical direction 1 Compute nondimensiona l I

properties at edgeat station sj of boundary layer I
_ _ _ _ _  

‘I.
return from label ~ Compute 

~~~~~~~ 
Re,~, 1

hl5 to recompute I step length functions, Ilat station s1~1 ~ 
a, and 

~-1.
Label 6998

Set the total number
.— of nodal points in

one column of the grid

-- 4
• Compute

Return coefficients A ,B,C, and D
from for finite difference

label 7005 equatIons
4

Compute
current station s4 values

- 
o f F ,Q , ana V 

-

+
Continued on following

page
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+

Compu te t =current

Return to
label 6998 If I previous step 

- 

iJ 
< convergence criterion ,

Itcurrent .0015

Note: If convergence
700 criterion not met In False — 

100 successive checks ,

Tr~ie 
program was aborted.

+
I Compute 6, 6*, and 0 1

+
I If iteratfon has reached I
I transition, compute e

+
lIf AF between the 15th and 16th nodal points
below the edge of the boundary layer > .oooi,1

add one more point In ri grid
+

Compute Ste, 1
Re6,~ and Re9 ~

4.

in ,~~~ as in F1 2  = F1 1 ,  and ]shifted back one station

- F1 1 = F j

+Return to I Print profile data I
beginning of 1 for selected stations jmain loop

+ + 
I Label 115 ContInue I

+
I Stop]

I

Fig. 2. Flow Diagram of the Logical Steps to Solution within Itract

( -
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Key portions of the foregoing logic required further explanation. There-

fore, Appendix C was included to discuss four important subsystems of

the original code. These subsystems included nondimensionalization of

the working variables and initialization of the grid , generation of the

f ini te  difference system , the computation of e, and the compu tion of

Ste and cf . A Fortran computer code key was also included in Appendix
e

D. With an understanding of these features of the code, the boundary

condi tion of mass transfer was considered . Including this boundary con-

dition represented the major modification to the original code, and the

remainder of this chapter was devoted to an explanation of this addition .

Mass Transfer

Mass transfer at the surface was defined by the expression (pv)
~
.

Consistent with the nondImensionalized variabl es used in this probl em a( (pv)
mass transfer factor, , was defined and used to express the

m or e
amounts of mass transfer being considered in any particular problem. This

transfer model was Incorporated through the variable transformation

r p r 1tfl
V • IF ~ + I (18-3)

‘~e’~e”e”o 
L ~ /2~ J

and expressed in the equation of continuity

a

where, V appeared explicitly in the finite difference expression for

continuity.

Considering Eq (18—3) in detail , the following points were noted:

First, at the surface F or U/tie was zero. Second, t1, where t was the

(1 ratIo r/r0, was set equal to one. This assumption was made following

‘ T5T~T--- 

1~

__ ._ __ _ 
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the proposition that 6 was much less than the radius of the cone. Fioure

3, though the boundary layer was shown out of proportion , depicted the

pictorial justification for this assumption.

Fig. 3. Radial Measurements on a Cone

Third , from an earlier definition restated, ~ was equal to v +

It was noted that was equal to v~ at the wall or surface as the appar-

ent mass flux, p’v ’, was zero. With these three propositions Eq (18-3)

was expressed for the wall condition as follows:

~~~~ ~~V,~ 
= V(~~,O) or V(i ,1) in the grid notation (24)

Peuellero

Returning to the entire equation of continuity, integration yielded an

expression for V at any grid point at station 51: 
-

V(i,j) • V(i,l) — J (2~ ~t
+F)i dii (25)

0

where V(i,I) was the boundary condition of mass transfer. To include

or Y(i,)1, further substitution within Eq (24) was performed. From

fIg 3, to was equal to x sin •,, and it could be shown that



= p~uji~ L
2
~~ [1~ref} si~

2j 
(c~~~) 

~
‘ref 

~
1

2i 

[~
j (26)

Letting
f X P  ue Ile~X = I —

~~~~
— s ‘~ ds (27)

P
~, 

Ui,, 11ref

and with one additional intermediate step it was shown that

= 
[p~ u0 ~~ L 

ref] 1/2 L
~
(s1n

~c
)
~ 

(2X ) L’2 (28)

and , finally,

= 

[[P
co :
~ Lj,

~~/
/’
[h1refJ

’h 1’2] .J_ 
[2 x

1/2 J {::::J (29)

co~~~~ref

Now in terms of quantities imediately available in the program , this

expression was cast into an equivalent form using nondimensional program

variables (Ref 8:18,35; Ref 10). WIth Eq (29) including the effects of

mass transfer, the equation of continuity was considered next.

Cast into a form of finite differences, continuity was expressed as

follows:

C3(l,3)V(i,j+l) + C3(l,2)V(i,j) + C3(l ,l )V( i ,j—l ) + A3(l,2)F(i,j)= P3(l)

(30)

At the surface this expression simplified to

C3(l,l)V(i,j—l) • P3(l) (31 )

• Setting C3(l,l) equal to one and D3(1) equal to the right side of Eq

(29) the mass transfer boundary condition had been set and was included

(‘ with the other boundary conditions in solving the system of finite

difference equations.
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In ordcr to set an appropriate boundary condition at each station

along E during the computation , two subroutines were added to the pro-

gram. For the case In which a constant mass transfer rate was specified

In a real sense along the surface from some Initial longitudinal station

to a second station where mass transfer was terminated , su brou tine

Conblw provided an appropriate transformed value for the transfer at

each station computed. A second subroutine , Genblw , provided the same

information, but for a generally varying mass transfer rate. Using a

linear Interpolation between stations of known mass transferring strength,

the boundary condition was computed for each streamwise station within

the specified region of mass transfer. Finally, al though not incorpor-

ated into the code, an approximation using a cubic spline description

between known or specified points of transfer rate was devised during

this study. It was thought that this technique would have prov ided a

better description of a generally varying mass transfer rate,--and the

theory of the proposed modification was included in Appendix E (Ref Il).

However , with the other modifications completed , numerical solutions

with mass transfer were compared with analytical and actual experimental

results, and the results of those comparisons were included In Chapter

IV.

20



IV. Results and Discussion of the Study, Flat Plate and Cone

I — 
_ 

_ — _

The modified program was compared with theory and data from three

primary sources. First, using mostly analytical expressions and some

experimental data presented In Schlichting (Ref 12) a study was made of

laminar , subsonic flow over a flat plate for the cases of no mass trans-

fer and a constant rate of suction throughout the length of the model.

Second, from the results of an experiment performed by Moffat and Kays

(Ref 13) a compari son was made for fully turbulent, subsonic flow over

a flat plate. The comparison was made for the cases of no mass transfer,

constant blowing, and constant suction over a specified region of the

model . Finally , from an experiment performed for flow over a sharp nosed,

axisyninetrlc cone by Martellucci , Laganelli , and Hahn (Ref 14; Ref 15),

data was obtained to test the computer code for the case of hypersonic

flow. For this case of hypersonic, conical flow, the numerical results

were compared In laminar, transitional , and turbulent environments for

the cases of no mass transfer and positive mass transfer or blowing.

In these studies a number of important assumptions were made, some

of which were mentioned earlier in introductory coments. The boundary

layer thickness , 6 , was minutely small compared to the characteristic

length, 1. The velocity gradient, ~~~~~~, was large In this region, and

the shear stress, 4~
, assumed large values. Beyond the boundary layer

no large velocity gradients existed and viscosity was negligible. The

flow was considered inviscid and potential beyond the edge of the

boundary layer. Finally, the Navier-Stokes equations were simplifi ed

to the boundary layer equations to describe flow characteristics for y

( less than 6(Ref 12:117—121). 
- -
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Schlichting, Primarili an Analytical Verification for Laminar Flow Over

a Flat Plate

For purposes of this study , a hypothetical model and some flow con-

ditions were needed to make the comparison between analytic results and

the predictions of the code. A comparison for the case of no mass trans-

fer was followed by a study wi th a constant rate of suction over a flat

plate. -

Beginning with the case of lamina r subsonic flow wi th no mass

transfer at the surface, working variables were assigned the following

values. Re~ was adjusted to about l.(lO)
6 in keeping with the laminar

propositions of Blasius. Further, I~ was selected equal to T~, to be

consistent with the environment for which Eq (33) would be valid. It

was also consistent with the results of Eq (32);

u2
Tw - 1,, ~ 2 : Heat wall gas (32)

The right side of this inequality for the test under investigation pro-

duced an extremely small difference between T
~ 

and T,, and hence, there

was zero heat transfer or the adiabatic case. Finally, a length of three

ft was chosen for the hypothetical model of the flat plate In order to

specify Re. The remaining inputs for this first test for program veri-

fication included an2M, equal to .01, a T~ of 533.1 R, and a p , equal
., lb ,sec

to 1.12(10) . For verification in at least this case of steady
ft

laminar flow over a flat plate without mass transfer, the resulting

computations at station s equal to .155 and station s equal to .750 were

— 
chosen for comparison with the calculations of the exact expressions

j~ (• listed in Schllchting. The quantities chosen for comparison were 6*,

~~~ 
Cf~ and 6*/9. Al so included was a comparison of velbcity
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and temperature profiles with data presented in Schlichting from the

work of Hantzsche and Wendt (Ref 12:323). F~om Schl ich tln g , the

followi ng expressions of Blasius were used for computation:

u 1/2
1.721 = 6* ~~ -

.332 = ~j—. ~~~~~ 

1/2

(33)

cf ‘r (x) / 
332

~
1. = _____ = .332 = 

(Re
~
)”2

2.59 = 6*/0

The results of a comparison between computations performed by the

use of the above expressions and by calculations performed by the coin-

puter code, Itract, were suninarized in Table I.

Table I

A Comparison of Methods for Boundary Layer Calculations

Station $ = .155 Station s = .750
Quantity for
Comparison Schlichtlng Itract Schlichting Itract

5*(ft) 2.03 (bY 3 2.00 (lOy~ 4.47 (l0)~~ 4.40 (l0i~

tw(lb/ft
2) 1.21 (lOY 3 1.21 (bY 3 5.52 (bY 4 5.52 (l0~~

4

Cf 1.68 (loy~ 1.70 (boy~ 7.66 (bY 4 7.71 (bOY 4

6*/0 2.59 2.61 2.59 2.62

To quantify the difference noted between the predictions of Itract and

the analytical or experimental data, an error was defined as the quotient

t of the absolute difference between the quantities compared and the larger

23 
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of the two quantities. Thus, the results of Table I demonstrated a close-

ness to within the following percentage errors. At station s equal to

.155 the calculations of 6* were within 1.5 percent, 
~ 

results were

nearly identical , the calculations of C
f 
were within 1.1 percent, arid

the computations of d*/0 were within .8 percent of one another. A similar

trend was noted at station s equal to .750. The calculations of 6* were

within 1.5 percent, ‘rw results were again equivalent, the calculations

of Cf were within .6 percent, and the computations for 6*19 were within

1.1 percent of one another.

Further tests for verification of the program in this first case

study were accomplished by comparing velocity and temperature profiles

calculated by Hantzsche and Wendt with the predictions of Itract (Ref

12:323, fig 13-11). It was noted that 5(y/6) In the code was equivalent

to the n of Blaslus. Further, the ~~~~
— of Blasius was equivalent to

.995 -~~
— in Itract. With these relationships plus the computationalUe

equivalence of Te in Itract to T~ in Schlichting , the results of the com-

parison were listed in Table II with a graphical presentation of the

velocity profiles presented in fig 4. Concerning the velocity profile,

the data of station s equal to .731 was used for comparison, but with

similari ty of solution for this particular investigation and the non-

t dimensionalized nature of the data, another station would have been

equally valid for comparison.

A 
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5(1.0) -

Hantzsche and Wendt /
Itract

4(.8) . /
(~~ ) //

3(.6)

/
/

2(.4) /
V

V
l(.2) 

,

~,.._._.

0 I

.2 .4 .6 .8 1.0

u/u0, (.995 u/Ue)

Fig. 4. A Comparison of the Predictions of
Hantzsche and Wendt Versus Itract (Ref 12)
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Table II
-I

A Comparison of Veloci ty and Temperature Profiles

Blasius Itrac t H an d W Itract H and 14 I trac t
y/& ufu~ .995 U/U

s 
T/T~ T/le

1 .2 .35 .36 1.0 1.0

2 .4 .64 .65 1.0 1.0

3 .6 
- 

.84 .85 1.0 1.0

4 .8 .95 .96 1.0 1.0

5 1.0 .99+ .99+ 1.0 1.0

The greatest error In this comparison was less than 2.8 percent within

the velocity profile study. Wi th these profile comparisons the investi-

gation for the first case was completed. Case two added mass transfer

to the problem.

InItial testing of the actual modification to the program began with

the addition of a smal l mass transfer condition , constant suction . Kays

also presented the method of Rubesin for analytically studying large

mass transfer rates (Ref 16:324—325). To complete the study for small

constant suction the experimental and analytical work of Head and lgl Isch,

as published in Schb ichting , was used to verify the results of Itract

(Ref 12:373 , Fig 14.11.1). Tw remained equal to T0, for this second test.

was then shown to be equal to p0, by the equation of state, and from
_____ 

-4fig 14.11.1 , therefore, (pu) was equal to -1.6(10) in Itract. Data

was collected at the nondimensional streamwlse position
u0,) 2

.077
w (34)

( e~
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This implied that the profile data of Head was recorded along the flat
6

surface at a station where Re~ 
was approxImately 3.00(10) . For this

compar i son , then , the hypothetical length of the model was extended from

3 ft to 30 ft, where Reynolds numbers of this size would be encountered .

Laminar conditions were still assumed to exist. Assuming in fig 14.11.1

of Schllchting that 6 was approximately 1.8 nm~, a gra ph ical compar i son

for this test was presented In fig 5.

To show the effect on the shape of the velocity profile by the addi-

tion of suction , fi g 6 portra yed the results of Itract for the boundary

layer flows wi th and without suction. These results agreed with the

resul ts presented in Sch l lch ting (Ref 12: 369, fIg 14.6).

Now , as wi th the first case study, there existed an exact solution

for flow over a flat plate with continuous , constant suction . The

following equation represented an exact solution of the complete Navier-

Stokes equations :

u(y) = - ex~
[
~~
}
~ (35)

for v(x y) = vw <O

From this expression came the following equations:

- _ _

(36)

tw p(-vw)u0,, and hence,

~~~~~ 

_2v
~Cq 

1/2pu~ ~

4 ___ 
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1.0

.8

.6 -

.4

.2

0

0 .2 .4 , .6 .8 1.0
0,

Fig. 5. ExperImental Data with Suction

Compared to the ?rediction of Itract (Ref 12)
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1.

Without Suction

.8 Wi th Suction /
I

.6

/
‘

.4 - /

.2 -

0 I

.2 u’u 
.6 .~~ 

‘1.

Fig. 6. Matching the Profiles Presented In Schlichting , Fig 14.6 (Ref 12)
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It was noted that in each case, 5*, 0, and c were constant. This solu-

tion was realized only at some distance from the leading edge. The

boundary layer grew from zero at the leading edge and continued down-

stream asymptotically to the values predicted by Eq (36). These values

were reached at what was termed the asymptotic suction layer limit.

Iglisch has shown that the asymptotic state was reached after a length

of abou t
u 2

x = (37)

To simulate this asymptotic solution the length of the hypothetical

model was extended still further to 3000 ft and the remaining input con-

ditions were held constant. Iglisch then predicted an asymptotic solution

by station s equal to .156. Itract had come within 2.3 percent of the

final asymptote by s equal to .155. Table III sumarized the results from

the equations of the exact solution above, and compared those calculations

with the corresponding predictions of Itract at an s of .347, the point of

closest approach to the analytical asymptotic values.

Table III

A Laminar Flat Plate Study with Suction

Quantity Exact Itr ~ 
Percen t

Solution ac Error
- 

6*/I 6.25(lO) 6 6.04(lOY6 3.3

OIL 3.12(1016 2•97(101T 4.9

Cf 3.20(l0y~ 3.24(10y~ 1.2
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Finally, all testing thus far that included mass transfer had been

accomplished using the routine that incorporated constant mass transfer

rates at the surface. Before investigating other experiments with flat

plates, the variabl e mass transfer routine was verified. First, using

the three f t model , Itract computed a boundary l ayer perturbed by a con-

stant rate of suction from a point one ft from the b eading edge to a point

two ft from the leading edge. The computation was repeated with the same

Inputs with the exception that the variable mass transfer routine was

called to compute the boundary condition in lieu of the constant mass

transfer routine. Identical results were noted for the two tests.

With this final check the verification process departed from the

laminar flow study and considered turbulent flow over a flat surface.

For this study the results of experiments performed by Moffat and Kays

( were used.

Moffat and Kays, A VerifIcation for Turbulent Flow Over a Flat Plate

Using Experimental Results

R. J. Moffat and W. M. Kays of Stanford University performed an

experiment in which they were primarily concerned with heat transfer

through a turbulent boundary layer over a flat plate which was perturbed

by both positive and negative mass transfer at the solid boundary. The

results of their wind tunnel study provided a criterion for evaluating

the heat transfer model of Itract under turbulent conditions. Heat

transfer in the experiment was quantified in the form of a Stanton number,

St. The accuracy of the apparatus used allowed determination of the

Stanton numbers to within l0~~ units over most of the range of mass

C transfer. The experiment was performed on a transfer range from the
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asymptotic suction layer limi t discussed earlier to the appa rent blow off

or separation of the boundary layer. Presented in this section are

results of testing and a discussion of a parameter study performed to

minimi ze the effects of higher order terms not included and , hopefully,

match this numerical model with the experimental environment for the no

transfer case. With accurate predictions for this case, the results for

small amounts of blowing and suction were given next. Finally, the range

of accurate prediction of the computer code was tested, with these results

included last.

To begin , a wind tunnel run was chosen with the following conditions:

is,, was equal to 44.5 ft/sec1 T,, was 524.0 R, and was 556.6 R. The

experimental data collected was listed In Table V. The len gth of the

model was given as 8 ft. It was assumed that the last value of Rex was

taken from the end of the plate, and could be considered a close approxi-

mation to Re. Further, Itwasassiuned that the flow was turbulent over

the entire length of the wind tunnel model . A parameter study was then

begun to find the best combination of those variables which described the

grid to minimize error caused by the truncation of higher order terms, and

- pick two parameters which helped describe the characteristics of the flow.

These two classes of variables included thefollowi ng: XXK I the constant

ratio of any two successive &i spaces; PRT, the turbulent Prandtl number

taken to be 1. or .9 in the literature; XINTER set to 1. or 0. depending

on whether eddy model one or eddy model zero was to be used; DYW, the size

chosen for An1;and lEDGE, the total number of divisions in~ to be used in

the computation of the grid. The objective was to closely predict the
— Stanton number for a corresponding Re

~ 
that ranged from 4. 55(b O)~~, where

measurements of heat transfer began, to the end of the p1~te at an Rex of
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2.14(10)6. Table IV of Appendix F suninarized the combinations of vari-

ables wi th Table V of that same appendix actually presenting the results

of those variable combinations. The figures of column 4 produced the

best match with the experimental results. Excluding the readings at an

Re
~ 

of 4.55(l0)~ the greatest error was recorded at an Rex of 2.27(l0)~
with an error of 5.7 percent. Column 3 had produced nearly Identical

results, but had incorporated inefficiently small stepping i ncrements

into the numerical scheme. A graphical presentation of the experimental

results with the analytical predictions of coluirn 4 and column 1 was

included in fig 7. In a final note, with the exception of readings at

Re
~ 

values of 4.55(lO)~, 2.27(lO)~, and 3.18(l0)~, the remaining errors

were less than or equal to 3.9 percent.

With the case for zero mass transfer recorded, two more experimental

runs were investigated . First, an experiment which included a blowing

_____ 
-3rate, (pu) , of l.(lO) was run under the following conditions : u,, was

equal to 44.1 ft/sec, T was 525.7 R, and Tw was 557.7 R. In a simula-

tion by Itract the results were presented in Table VI of Appendix F with

a graphical presentation Included in fig 8. From Table VI It was noted

that in setting XINTER equal to 0., and thereby using eddy model zero in

the calculation of a, more accurate Stanton numbers resulted. Next, an
(pv) 3experiment which included a rate of suction, 
~j~u)” 

equal to -l.15(l0~
was run under the following conditions: u,, was equal to 42.5 ft/sec, T,,

was 524.3 R, and Tw was 349.7 R. Again, the results of a simulation by

Itract were presented in Table VII of Appendix F wi th the graphical

equivalent Included in fig 8. Unlike the case with blowing the tabular

results for this case with suction showed that the more accurate pre—

dictions of Stanton numbers came by setting XINTER equal to l.~ and

A



C.,

I .c .J

A)! ‘4-
0

?1c 1 a,

~~~~
, I1._ i#-~ I

~~, I a,
(_

~ 
I ~ a,

~~~~ l. I
~J I  4.’

0! a

I 0
1\I I 

(4-
‘—‘I I ~0

O ~ ‘I,

I I I
~~
•

0 / I  . o
~

b
I I  

.

~~C

‘-I I 40

#.,.I I ~~ 
.t •.. 4.’

4!
I I C C ‘I-

0/ I 40 10

I I ~~
. >.

I I ‘•—‘ ~ -I

P~~I I 4.)
‘4~I I I ~~ • U) .i— —
I I ~ a,
/ I r— r— I—.

I I .0 .0 4.)

1~t! / 40 (0 0 ’4—,..JI / (0
I / 4, ‘4- ‘4-
1 /  ~~~~~~~~0 0  —

I.

I ~~~
• I.— a~~~w

r~~~, I = 4 -
>) C C .r- (I)

I / _ ~~ g • ( ~, • =C
0 4 0

1/
r~~~~

/ 1  4 , 4) 43

~.11 / (0 0 U -

I I  ‘I-~~~~~~~~~~~ . 0
.Q 4) 4) C~J a s -

‘-4 ‘-4 II- QI
“- p.4

U)
I 0

C(
~ 

P..
C~J

$ 
8 8

4,

34

-~~~~~~~~~~~~~~~ -~~~~~~~
-- - —-—.—.——----~~~ 

—.— ~~~~~~~~~ 
- -

A



lO .2

O—o-OO-O~~~~~~~

St

6
o -.00777

() -.00115

0 .0000 :
2 .0010

.0019

i i a

2 4 6 8 106 2 4 6 8 10~

Re
~

Fig. 8. A Comparison of Itract and tioffat and
Kays for the Cases of Blowing and Suction (Ref 13)

C
35

___  
_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _- r - - 
_ _ _ _ _ _ _  



thereby using eddy model one. Finally, with simulations performed for

both the small positive and negative mass transfer cases, i t was then

appropriate to find the limits of accurate simulation by Itract.

In this final phase of flat plate testing Itract was simulated at

the extreme limits of the Moffat and Kays experiment. In the limiting

case for suction , termed the as~inptotic suction layer limit , Itract was

able to predict Stanton numbers to wi thin 5.3 percent, exclu di ng one

reading taken at a station where Re
~ 

was equal to 4.3(l0)~. The wind

tunnel conditions for this test Included the following: u was equal to

41.8 ft/sec, I was 523.8 R, and I was 552. R. The rate of suction was
(pv)

~ 
w

(pu ),, 
equal to -7.77(10) . The tabular results of this test were

included in Table VIII with the graphical suninary included in fig 8.

Again , as with lower suction rates, more accurate results were noted

when eddy model one was used. However, unl i ke the case for suction , In

the testing of positive mass transfer or blowing , Itract was unable to

predict heat transfer to the l imi ting point of blow off or boundary layer
(pv) 3separation, which occurred experimentally near (u)’~ 

equal to 9.6(101

The results of the predictions of Itract for rates of blowing equal to

l . (lO~~~ have already been presented. For the code, the limiting trans-

fer rate for which there existed experimental data was 1.9l(l01~. At

this transfer rate the numerical scheme could compute the boundary layer

problem without an error finish. The results of this test were included

in Table- IX with a graphical suninary included in fig 8. It was noted

that with the finer mesh of nodal points Itract was able to predict

consistently the Stanton numbers for various Re
~ 

up to a point where the

numerical scheme failed. While the scheme was able to compute, Itract

consistently predicted Stanton numbers 3.(10)~~ less than the experimental
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resul ts from an Rex of 2.28(l0)~ to 1.23(10)
6 where the program exper-

lenced an error finish. Wi th a coarser mesh of nodal points Itract was

able to complete the numerical computation , but wi th predictions of

Stanton number that were not as close as previous tests. Rather than a

nearl y cons tan t d if ference of predic tion as prev iousl y seen , the resul ts

of this test showed Itract to predict Stanton numbers lower than experi-

mental by about 22.8 percent. From an Re
~ 
of 2.28(10)~ through the end

of the computation the greatest deviation from this figure was to 25.7

percent. Finally, in a test case for a mass transfer of 3.8(1O~
3, using

~f l • ’  A
a coarse grid of ‘~~~~ equal to 1.15, ~ at 5.(10)~ ’, and 100 div i sions

~nJ 1
in the ~ grid , Itract was able to successfully compute the boundary

layer without error finish. However, experimen tal values of Stan ton

number ranged from 2.36(l0y~ to 6.2(l0y~ , and with Itract predicting

values consistingly greater than 5.(l0y~ below the experiment, the

results were not incl uded.

The results for blowing equal to 1.(l0y~ displ ayed the l imit of

positive mass transfer rate with which Itract could compute accurately.

Beyond a transfer rate of 3.8(l0y~ Itract was neither able to predict

Stanton numbers nor successfully complete the computations without an

error finish. This completed the comparison wi th the experiment by

lioffat and Kays.

Nartellucci, Laganelli, and Hahn, A Study of Turbulent Flow Over an

Axisyninetric Cone with Experimental Results

A. Ilartellucci , A. L. Laganelli , and J. Hahn of the General Elec—

tric Reentry and Environmental Systems Division performed an experiment

t over a two year period in which they were concerned with heat transfer
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behavior and boundary layer profile characteristics for hypersonic flow

over a sharp nosed , slender , axisymmetric cone. Their experimental

results of heat transfer and profile data provided numerous quantities

by which to evaluate the modified code.

In the experiment, data was collected for nominal , positive mass

transfer rates as follows : 0., 5.(1OY4, 1.(l0y~, and l.5(l0Y~. All

four transfer rates were investigated in this study, w i th compar isons

between data and numerical predictions made for the heat transfer at

the surface , the velocity profile , and the static temperature profile.

In making this comparison there was a problem in describing the flow

environment downstream of the leading oblique shock wave.

Unl ike the study of flow over a flat plate , the oblique shockin g

effect on the cone was great enough to significantly change the fluid

state downstream of the shock wave. Therefore, for purposes of computa-

tion, the actual free stream conditions were not of direct use to the

computer code. Rather, the environment downstream of the shock wave was

the needed condition for input into Itract. Computing these conditions

for input would have been a time consuming problem in itsel f, and the

needed additions to the existing code to perform this computation were

not pursued. In order to provide the conditions at the edge of the

boundary layer, graphs of characteristics of flow over a cone, such as

those found in MACA 1135, were considered. Not only did the resolution

of the graphical information seem inadequate for the range of mach

number being considered, but the data presented was for an inviscid ,

compressible solution. Tabulated data such as that included in reference

17 was consiGered, and though accurate, it still posed data for an

t Inviscid solution. Investigations were made using the data of the
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inviscid solu tion in reference 17 as inputs to Itract. It was judged

that this method did not yield results close enough to the physical

situation at hand to be considered a valid approximation. To obtain

viscous inputs for Itract, the decision was made to use data presented

with the results of the experiment performed at General Electric.

A review of the experimental technique was appropriate . As stated

previousl y, the data collected in the experiment was of two categories.

These two categories of data were collected in separate runs of the wind

tunnel . Initially, the model of the cone was exposed to flow at an

equal to eight for a few seconds. The heat transfer data was collected

and flow wi thin the tunnel was stopped . After the surface data had been

taken , flow, again at an H,, equal to eight, was started. The inter-

action of the flow over the model of the cone was allowed to reach an

equilibrium state, and the second category of data profile information

was collected (Ref 4:11). Within this profile data, the following mea-

surements or computations were taken for various stations along the cone:

Me~ 
Te~ ‘~e’ ~e’ 

(pv)
~
, (PU)ei and TITO. The above quantities , mostly

representative of conditions at the edge of the boundary layer, became

the new conditions at infinity to be used as inputs to Itract. These

inputs were used by Itract to predict surface as well as the field data

of the boundary layer. With this assumption , the following approxima-

tions were made for computational purposes: - First , where data from

multipl e stations, both longitudinal and azimuthal , along the model was

catalogued for the same wind tunnel environment, an arithmetic average

of quantities such as Me~ 
Te~ 

and 
~e 

at these stations was used to com-

pute a new, constant K,, 1,,. and p,, for Itract. Further it was approxi-
(

- - mated that lIT0 was a constant ratio equal to an aritIwn~tic average of
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the readings taken along the surface in a streamwlse direction. In fact,

wall temperature did vary in the experiment and the temperature ratio

was seen to vary plus or minus th ree or four percen t from the f ig ure use d
, In computation . It was noted that one term in the denominator of the

expression used to compute Stanton numbers was (1 _ T
~

/T0)~ an d va lues for

T,/T0 of .5 to .8 were common (Ref 14; Ref 15). Also , since the def in-

i tion of the Stan ton num ber of Mar tellucci was actuall y an St,,, it was
Pellenecessary to multiply the Itract figure by the factor prior to com-

parison with the experimental data . Finally, there were three descr ipti ons

for mass transfer rate: First , a nom inal fi gure for blowin g was presen ted

such as 5.(lOY4, l.(lQY 3, and l.5(lOY 3. Second , an actual measurement

of th is blow ing rate would be found by performi ng the divis ion (p v)
~
I (p u),,.

This was designated as A,,. In like manner , (PV)I(PU)e was computed and

defined as Xe• All three had different actual values , and all three
I 

- 
figures were tested in the modified code. Though all were describing the

same mass transfer activity , Xe was final ly selected as the appropriate

boundary condition for this code.

Using the assumptions and approximations listed above, the cases

tested and presented were of four categories: First, a study of the

case for no mass transfer was considered. After this , three investiga-

tions followed with nominal mass transfer rates of 1.5(lO)~~, 1.(l0i~ ,

and 5.(l0)~~~. These four cases comprised the entire study of flow over

the sharp nosed, axisymetric cone.

Beginning the study of flow over a cone with a nonblowing case, an

experimental test case, data group 132, was chosen from the results of

Piartellucci, Laganelli, and Hahn. This was a data group depicting heat

transfer at the surface of the cone in the form of St,, for numerous
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longitud lr~l positions along the surface. Connected wi th this heat trans—

fer data group were data groups 74 through 79 that presented prof i le or

fie ld daL and were the product of the same free stream con d i tions as

data group 132. The free stream conditions included an ~~ equal to 7.87,
5 lb~sec’~T,, equal to about 92.9 R, and a p,, of 2.59 (10) . Using data

ft
grou ps 74 throug h 79, the actual inpu t condi tions to Itract were an Me
equal ~o 6.84, a Te equal to 121 . R , an d a 

~e 
equal to 3.66(l0y~1 bfsec~ The len gth of the model was f ive ft, the point of transi tion

ft
was approximated from the experimental Stanton number curve to be about

1.33 ft from the tip of the cone, and an average TWITO was found to be

approximately .68. Using this information a tabulated comparison of

the heat transfer results was listed in Table X of Appendix G with a

graphical depiction included in fig 9. This graph not only showed the

results of Itract In comparison with the experimental data but provided

theoretical boundaries for heat transfer as predicted by Bell Aircraft

Corporation (Ref 18). The lower Bell curve predicted heat transfer

assuming the flow was laminar throughout the length of the model . The

upper Bell curve predicted the heat transfer assuming fully turbulent

flow for the entire length of the m~del . Concerning the prediction of

Itract, It was noted that the curve continually overpredicted the experi-

mental heat transfer, followed similar heat transfer trends as the flow

proceeded along the surface, and settled to within 2.3 to 8.4 percent

of the data for the last 1.5 ft of the cone. It was further found that,

unl ike the flat plate study with blowing, eddy model one yielded the

better results in predicting heat transfer for the cone. Some of the

disparity of heat transfer prediction in the region of transition was
• due to an approximated turbulent transition point. The first departure

41

A



D

I 0

0 I
I S- --.
I (I O~~~~I
I

I
I D
I r) c cv,

01 I
I •
I .

~~ ~~I
I I— 5-

~~~~

D 

I .Lt)I C

II
I -J VI

I
I ~1~~ I—

I
I 4.’
f *0 C i —  *0
I r 01
Irr~ I 1) 4.’

w I .~~~ 1~~~ C 5—
/ 10 0 ( 0  5-.
, ., X 01
I 4.’ “i-

I *0 .C VI
t I .4.’ ’.) C

I *0 V) .r *01 0
I — c~ I—
I •‘- 4.’
I ‘— U In
I >~ *0 VII @1 S_ 5 - 4 0
I C O
I 1 0 W  C IC) —

/ ~~~~~

I -J .Jt ~I — t._. •1~~

H I
i u u s -  0
j  ~ I_ a. _

c’J ~~f ‘~ Pt VI

J )J

t I I
, ,..( ~~ W 4~1 • .~~~

I U ~~ ‘‘ LI) ~~) 4.’

1/ o H~~
p • I I P I I

(‘) ~~ ~~ (0 u~, ~~ c.J

S

42

4 ___________________________



from a linear trend in the Stanton number data plotted on a logarithmic

scale was used as the point of transition (Ref 10). To further inves-

tigate this case for no mass transfer two more cases were considered .

It was thought at General Electric that the results of two partic-

ular cases offered excellent references or test cases by which to

compare the predictions of Itract (Ref 19). The first case was termed

a hot wall ex per iment , a nearly adiabatic wall , an d was similar  to each

of the succeeding cases with mass transfer that would be studied. The

free stream conditions for this test, data group 150, included an M,, of
1 bfsec2

8.0, a 1,, of 97.6 R, and a p,, of 7.53(lO) . For ac tual inpu ts

to Itract the edge conditions of data groups 148, 149, 207, and 208 were

used to simulate conditions downstream of the shock wave of group 150.

This led to an Me of approximately 7.1, a Te of 123.1 R, and a of
lb sec2

1.17(10r4 ~ A The results of Itract were included with those of
ft’

General Electric in fig 10 with tabulated results In Table XI of Append ix

G. Again , the results showed Itract passing through the field of laminar

data points and settling high in the fully turbulent region. In the

fully laminar region Itract was within 2.6 percent of the data , and with

the exception of one point, Itract settled wi thin 9.3 percent of the

data in the ful1y turbulent region for the last 1.5 ft of the cone. For

the second test a cold wall experiment was considered, data group 1.

The same free stream and edge conditions existed, and only the Tw was

changed. The wall was cooled from 1060 R to 580 R and the experiment

was repeated. The results of this comparison were included in fig 11

with a tabular s~minary in Table XII of Appendix G. Near identical

( results were noted among the three theoretical codes: Itract, t4sbl, and

Vlzaad. Nsbl and Vlzaad were codes used by General Electric to check
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their experimental results. In this test Itract was within 8.9 percent

of the data over the laminar region and maintained a consistent 13 to 15

percent hi gh prediction over the entire turbulent region . Consistent

with the results of data 132, these last two test cases were predicted

best using eddy model one . Having noted the consistent trend set in these

three heat transfer cases, attention was directed back to profile data

groups 74 through 79.

Having used the output of these groups for the investigation of

data group 132, the profile data group 74 was again used by Itract to

predict the profile shape of velocity and temperature versus for

station s equal to .466. The results were included in fig 12. Due to

the questionabl e data points for less than .4 no percentage error was

included.

These results represented the best predictions for heat transfer

obtained during the study of the cases for no mass transfer. As with the

flat plate study, numerous combinations of grid size, Pr
~ 

and eddy

models were attempted in order to minimize the error in neglecting higher

order finite differencing terms and best describe the flow behavior.

Having completed the cases with no mass transfer, study began in those

cases with transfer. 
-

Beginning with the greatest blowing rate of l.5(l0)~~, data groups

66, 68, and 73 were chosen for consideration. It was found that Itract

was neither able to predict the heat transfer of data group 66 nor the

nondlmensional profiles of data groups 68 and 73. Various grid sizes

were attempted, ‘~hich In the extreme cases included a ~~ equal to

250 divisIons in the grid along the streamwise d’rection, and

150 dIvisions in the grid along the r~ direction. The ratio, ‘
~~ , wasTlJ
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decreased to a value of 1.05. Even wi th the finer mesh size the tempera-

ture chan ge at the f irs t two stations at which mass transfer was occurr i ng

was so great that the numerical scheme failed due to attempting undefined

arithmetic operations related to these temperature differences. One step

prior to failure , the coefficient of skin fr iction and hea t transfer were

seen to be decreasing rapidly. This was indicative of a numerical separ-

ation of the boundary layer and the inrinent failure of the computer code.

A smaller transfer rate of l.(l0~~
3 nominally was attempted next.

Data group 60, depicting heat transfer, and da ta group 59, depicting

profile data, were chosen as test cases for investigating a mass transfer

rate of l.(l0i~. This was the first case Involving mass transfer in

which Itract was able to complete the calculation of the boundary layer

wi thout terminating in an error finish. This did not imply the accuracy

( 
of the predictions, only that the finite differencing scheme was able to

proceed through a complete computation of the grid of nodal points.

As the profile data group 59 was the only field data associated with

data group 60 for heat transfer, the information from group 59 alone was

used to determine the inputs to Itract. For computation purposes Itract

was provided the following pseudo-infinity conditions: Me was approxi-
5 lb~sec’mately equal to 6.7, Te was 1l2.4R, and ~e 

was 1.26(10) 
- ~ . From

P ft~the graphical presentation of St, versus station along the surface of the

cone an initial transition point was chosen to be over two ft from the

tip of the cone. Also, from tabular and graphical presentations, the

ratio, TW/TO, was approximately .57. Related to the blowing rate, the

supposed actual rates of transfer, ~~~ , were 8.3(l0i~ from 9.5 In. to

22. In., 8.(l0)~~ from 22. in. to 34.5 in., 9.6(10Y
4 from 34.5 in. to

47. in., and 9. (iO)~~ from 47. in, to the end of the model. This

~



(pv 
~~~

disa greed expectedl y with the figure for ,. -‘~~~ from data group 59 which

was 6.3(10) . InItially, the blowing rates for x were chosen for

testing.

Ini tial testing wi th the aforementioned Inputs led to a series of

error finishes. Itract was able to compute for the first 3.5 ft of the

cone at which point the coefficient of friction and Stanton numbers had

decreased rapidly to values of 1O~ or io .6 . At this point Itract simul-

ated boundary layer separation with an error finish. Again , many

combinatlons of grid spacing were attempted. The transfer rate seemed

clearly too great. With the lack of clarity of a transition point , an

attempt was made to run the program assuming turbul ent conditions from

the tip of the -i-one. With this one change, Itract was then able to

successfully solve the boundary layer problem, but with two conditions

at input still in question. First, further scrutiny of the heat trans-

fer curve showed justification for choosing a transition at 1.5 ft from

the tip of the cone. Then, to be consistent with the newly defined

pseudo-infinity conditions downstream of the shock wave , the proper mass
(pv ) (pv)

transfer rate was thought to be 
~ 

In lieu of r • From the
‘~~

transfer reading of data group 59 a scaling factor was used to adj ust

the blowing rates from 8.3(l0)~~, 8.(lOY
4, 9.6(lOY 4, and 9.(lO)~~ to

5.4(lOi~, 5.3(l0y~ , 6.3(10Y
4, and 5.9(lOY’4 for the four sections of

the cone previously mentioned. With these adjustments, Itract was again

- 

- 

run for the final test of data groups 59 and 60. The results of the

heat transfer study were included in Table XIII of Appendix G with a

graphical depiction In fig 13. In the turbulent region Itract over-

predicted the experimental heat transfer data by about 70 percent with

a 30 percent average In the laminar region. In the pr&flle results of
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fig 14 there were identical te~~ex~at’ire Qredictions near the wall wi th

a disparity greater than 46 percent near the center depth of the boundary

layer. ~~~~~~~~~~~~~~~~~~~~~~~~~ the General Electric data

depicted a near separated condition at station s equal to .658, and the

dispari ty betwt~ ~~~~~~
‘-

~~~ -~~~~~~~ ~~~~t ~~~~~~~~~ ~~~~~~~~~~~ ~~~ the middle
- - 

~~~~. .._ o e _  
~~~~~~~~~~~~~~

of the boundary layer thickness with a 58 percent error. Observ ing the

near ~~~~~~~ ~~~~~~~ ~~~~~~~~~~ - •
~~

-
~~ ~~ ~~~~~~ ‘tO~l heat

transfer data results. This concluded the final investigation of data

groups 59 and 60. One final case with a. ~cxn1na1 mass transfer of 5.(10Y4

was then selected.

From experimental results , data group 203 was chosen to study heat

transfer, and data groups 200, 201, and 202 were chosen to study the

profile characteristics of the boundary layer for this lowest mass trans-

fer case. Free stream conditions included an M~ equal to 8.0, a T~ equal
~ 3b~sec

2
to 98.1 R, and a p

~, of 7.48(lO)
’ ~~~~ . From groups 200, 201 , and

ft
202, the inputs to Itract for the study of group 203 and the heat trans-

fer consisted of an Me equal to.,approximately 7.1, a Te equal to 120.6
4 lb~sec’ (pv)

R, and a p,, of 1.18(10) 4 . T,/T0 was .78 and a constant (pu )
equal to 3.l(lOY was used as the transfer rates computed at the

three profile data stations were nearly equal . The results of the corn—

parison between Itract and the experimental data of group 203 were

sinnarized in Table XIV with a graphical presentation in fig 15. There

were no laminar data points with which to compare, but in the turbulent

zone Itract underpredicted the heat transfer by a 30 to 50 percent

margin. Noting the sensitivity of the code to even small changes in

mass transfer rates, data group 203 was retested for possible actual

mass transfer rates of 1.(10Y4 and 2.(10Y4. The numerical predictions
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were shown to pass through the region of turbulent data points , also

shown In fig 15. The study of data group 203 provided theclosest

resul ts of Itract for the Investigations that included mass transfer,

and the corresponding profile results of data group 201 were, l ikewise ,

the best. A comparison of ltract with the profile data of station s

equal to .646, data grou p 201, was included in f ig  16. Near a ~~of .1

the temperature profile was 33 percent in error with a 20 percent error

in the velocity profile for a similar boundary layer depth. Both

error figures represented the extremes in error between the numerical

results and the experimental data .

With this test , the investigation of the cone, both wi th and with-

out mass transfer had been completed. A sumation of the investigations

of the cone, as well as the plate, followed.
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V. Sumation

Ori g inal l y, the computer program , Itract, incorpora ted a boun dary

condition of zero mass transfer at the surface in calculating the

boundary layer. With the program modified to accept the condition of

mass trans fer at the surface , boun dary layer flows perturbed by this

mass transfer could be solved. The purpose of this study, then , was to

modify the basic code and verify this modification through comparison of

the numerical results with analytical expressions and with published

experimental data. Data was chosen from experiments on both a flat sur-

face and an axisymetric cone.

From the study of flow over a flat plate four results were out-

standing . First, the grid size was of fundamental importance in solvir .ç

the problem. A finer mesh of nodal pot nts yielded better results to a

point where the effects of truncating higher order terms in the finite

difference expressions became insignificant. Second , the cases i nvesti-

gated with suction were clearly more stable In computation. Further,

these cases were more accurate predictors of the experimental results to

the extreme of the asymptotic suction l imit. Third , the results for

the blowing cases were less accurate, and the error did not show regular

trends insofar as a fixed error amount or a fixed percentage error. The

heat transfer predictions were low. Fourth, for the case of blowi ng,

the best resul ts were obtained by using eddy model zero. However , for

the cases wi th suction , eddy model one provided the best results.

Overal l, the modified code was verified for flow at an M, much less than

one over a flat plate. For both laminar and turbulent flow , the code

was proven to be accurate for the case of the blowing parameter to a

56

A - - -- _ _ _ _ _ _ _ _- 



strength of 1.(lOY 3. For the suction case, the code was accurate to

the suction asymptotic limit.

From the study of flow over an axisyn~ietric cone four resul ts

were noted as outstanding. First, the grid size, again , rema ined an

important factor in the success of the numerical predictions. The

finer lattice of nodes yielded better and better results. Second , the

case of suction was not studied but for the case of blowi ng , the pre-

dictions became erratic as the blowing parameter was increased. The

resulting errors did not show a systematic trend. Third , the best

results for the cases of positive mass transfer occurred when eddy

model one was used, unlike the results of the flat plate study. Fourth,

the results of these blowing cases were shown in fig 15 to be extremely

sensitive to the blowing parameter, and the precision with which the

I 

- 

( blowing rate was measured would have to be considered in completely

evaluating the validity of the modified code. Overall , the modified

code provided reasonably predictive results in the case of laminar and

turbulent hypersonic flow over a slender cone. Specifically, for a

mach number of eight the code provided reasonable results for mass

transfer rates, defined as (pv)w/(pu)e. up to 3.l(lOy~. To verif~ the

code within an acceptible limit, the precision of the measurement of

the blowing rate would have to be quantified. Assuming a measurement

error between l.(lOy~ and 2.(10Y 4 was possible , the code was verified

for turbulent, hypersonic flow over the cone for mass transfer rates up

to a strength of 3.1(10)~~.

With the limits of the code specified for the particular cases

studied, factors that contributed to the obvious limi ts of the code for

the positive mass transfer case included the following: First, at the
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initiation of blowing , sharp temperature gradients in the streamwise

direction resulted in numerical problems for the code. Second, wi th

this temperature change in the streamwise direction normally considered

insignificant as a boundary layer assumption , the effect of blowing may

have violated a basic proposi tion in derivation of the boundary layer

equations. Third , if the flow were separating from the solid boundary ,

as it seemed to do in some of the veloci ty profiles , another basic

proposition of boundary layer theory was violated , and the in~nin en t

arithmetic mode failure of the code was to be expected. The success of

this code ul timately depended on the condition that the classical

boundary layer assumptions were not violated . Finally, in at least the

study of the conical flow It has been found from previous study that

though it was valid to use experimental data to describe the flow envir-

onment downstream of the oblique shock wave, this could have misrepresented

the needed inputs of this code . Further , it has been found that the near

adiabatic condition of a wall has been a most di fficult probl em for a

finite difference scheme to compute accurately, more so than in the cold

wall case as was shown in the favorable results of fig 11 (Ref 19).
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Appendix A

A Background and Derivation of

Some ~~ Exoressions Used in

the Analytical Solution

The differential equations which described two-dimensional laminar

boundary layer flow in a cartesian coordinate system were

Continuity

(38)

Momentum
~~~~~~~~~~~~~~~~~~~~~~ (39)

p + pu + pv = +

Energy

p .~~~~ (cUT) + pu .~~~~ (c1,T) + pv ~~ (cDT)

(40)

~~~~~~~~~~~~~~~~~~~~~
~
y ~x ~

y

+ + (~~+~) ~~ + Tyx P1 
+

where
p = -1/3

. +[}IL+ 

~
.) + 24~.

p~+p - [
~
. + + 2p~~ (41)

i_

c 

- 

- 
_



+ — 2 fau~~~vpz p -  
~F’[ ~~i ~~~~

t = r  =~1!!J.+~!:1 (41 )yx xy ~ay ~xj

= k and 
~y 

= k

From Reynolds the following definitions were made to describe a turbu-

lent boundary layer:

U = LI + U ’. ~ ~~+ ~~~, Ty~ 
= T~~~ + Ty~~

’

(42)
Pu = ~~~i~~+ 

~pu~’, pv = 
~~~~~

•

+ (pv)’ , px 
= 

~~~
+ p~

where bars indicated mean values and the primes designated instantaneous
fluctuations. Finally, the definition of time averaging was necessary

and was explained by the following example:

— 1 ~T+T/2u = T udt  (43)
JT-T /2

where T was used in this example to represen t time, not temperature.

Wi th these basic definitions and assuming s eady state conditions , the

laminar equations could be transformed into descriptions of turbulent
boundary layer flow.

To ultimately reach the form of the equations listed in Eqs (8),

(9), and (10), the steps were included for the simplest case, continuity.
- - Time averaging and substituting from the abcve definitions yielded:

~~~~~

. (~~+p ’u~) + 
~~ (~~

+p’
~~) 

* 0 (44)

~~~~~~~~~~~~~~~~~~~ 
,

.

~~~~~~~~~~~
- 

_ .
~ _ 



It has been accepted that the p ’u ’ term was strongl y uncorrelated , and

( - this term was eliminated from further consideration . Then, follow i ng

two coordinate transformations the final form of Eq (8) was reached.

An assumption of this study was that flow could be considered two-

dimensional . Further, a body oriented axis system was employed for both

the flat plate and axisyninetric cone. Finally, a cyl indrical coordinate

frame was chosen to describe both of the flows. Performing the cylin-

drical transforma tion ,it was found , first, that in cartesian coord ina tes

_____ ~p1v 
+

- a(pu)~~ ~ = o  (45

having dropped the time averaging symbol from the mean quantities . Then,

by defining

pu as 
Eu

, o, P[v +

and employing the definition of the divergence of pu or V pu , continuity

in a cylindrical frame was shown to be

+ 
af r~[v + ;~jJ = (46)

By Including an exponent with the r term to yield r3, it was noted that

by setting j equal to zero or one would yield the expressions for contin-

uity related to the flat plate and to the cone, respectively. Then

having demonstrated a transformation to cylindrical coordinates, it was

reassuring to show also that a body oriented axis system x ’, y’ could be

used in the case of the conical flow as an x ,y system had been used for

the flat plate. Figure llwas included as a pictorial description of this

situation, with the prime symbols serving here only to differentiate

direction.
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\y’

Fig. 17. Showing the Equivalence
of Expressions in Rotated Coordinates

First, it was recognized that

y = x’ sin$c + y’ cos+~
x = x’ cos+’. 

- y’ sin+c

= y cos+~ - X Sifl$~ (47)

x’ = y 
~~~ 

+ x COs4~

Vy = ~~~ 5th$c + Vy l cos~c

u,~ 
u~’. cos$~ 

- V
y s 

~~~

Then, from fig 17, it was true that

a(rpu ) a(rpv )
+ py

Y 0 (48)

If F were equal to (rpu
~

) and G were equal to (rPv~)~ it was demonstrated

that the chain rule could be used to ultimately produce expressions for

and such that the following equality was true:

a(rpu~
) 

+ 
a(rpvy) ~

(rpu
~
s) 

+ 
a(r~v~1) 

—_______ = ax ’ a? 0 (49)

Thus, through two transformations the limnerging expression for continuity

was
64 
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fr ( - 3 f i  I +~T~T11
_____ + ~r 

= 0 (50)

which matched Eq (8).

In the same manner , but with increased complexity of expression,

the equations of momentum were written as follows using the equation of

continuity : 2a(pu ) 9(puv) 3p at
+ = ___.x.+ Yx

ax ay ax ay
(51 )

a(puv) 3(pv’) ap at
ax + 3y t~~~ ax~ 

-

Employing the equation of continuity , and with the substitutions of Eq

(42), it was noted in the final form that ~ was much less than 11 and

that Eq (51-2) became a negligible expression. Eq (51-1) was dominant
( by an order of magnitude analysis, and after dropping the bar symbol over

mean quantities, reduced in the steady state case to

Pu ~~~~~
. + + = 

~~ ipx + (~u)h ii 1J

(52)
+ 

~~ 
+ (pv)l u~)

Then, using Eqs (41) and (42), dIscarding negligible terms, and trans-

forming to the cylindrical coordinates, Eq (52) reduced to

-

‘ 

Pu 
~~~

+ ~(v+ ’~~”J ~~~
. = - ~2..+ .4

~
_ 
[ri [iiP1+ ~~~~~

which was the momentum equation in Eq (9).
Finally, and with still greater complexity, the rules of substitu-

tion of Eqs (41 ) and (42) along with the idea of time averaging and
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coordinate transformation could have been employed with Eq (40). Then ,

followin g steps sim i lar to those of Van Dr iest , the energy equation could

also have been simplified to the form shown in Eq (10) (Ref 9:145-150).
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Appendix C

Four ~~ Subsystems Within Itract

Nondimens ionalizlv~g the Variables and Initializin g the Grid

Prior to entering the computational loop the working variables were

nondimenslonal ized or normalized. These variables were listed below

along with a definition of each. The format selected was to present the

coded variable on the left side of the equal sign and the real or

physical definition on the right side of the equal sign. No explanation

was Included as to choice of normalizing factors.

2a I
l~~ 

0 _ 0  +~~~ M~

I
( T 
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p
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I T
T10 2 ~r 

= ° 
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~l p l

~~ ~J‘VM , p
RlO *

( )  0

I
~~~ 1

o

I
Tw~ 

w
I (r—l )t42

I s

_ 
_  _  

85

- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~~ 



With Eq (54) defIned for all cases, some others depended on the value of

w. If w were not equal to zero, then

T
vISIo = ° -.

~~~~= —  
I

~
‘o~ (Y-l)M2

f(Y_ l ) , 1210312
EPS = 

‘R 
(55)

~ 
I w

VISINF =
(I-l)M~J 

‘ref

where the reference temperature was taken as T,,,(Y-l)M~. However, for

the case where w was equal to zero, the quantities of Eq (55) plus one

were defined as follows:

TC= S 198.6
I (I-t)M2 Tref

— 1+ _ _ _ _ _ _  

—

= 
~~~ 21 — 

~~T~(I-l)M1J ° + S
T,,,,(Y-1)M~, T~,,(I-l)M~,

1 .5 Tref + 198.6 
- 

p0
Treq + 198.6 - 

~ref

1/2

(T~(I-1)M~+198.6)£PS Re,, 
(56)

I
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I.

~4
i~

_ _  _ _ _ _

Ilref 1.5 [‘
l•,
~ +198.61 1/2

[T,~ LTref+19L~J ~ref’~oo 1/2 (56)
Re,,, Re,,,

1 1.5 1
U T C Y , J r  _ _ _ _ _ _  

re
- I + 198.6ref

These quantities were frequently used in the grid computation and pro-

vided a suninary of the nondimensionalizing techniques used throughout

the code. Before beginning this computation within the grid, however ,
there had to be an ini tialization of the profile.

Initialization began by defining V in the code as the distance

~~K+’ ~~~~~
measured along the r~ axis. Any An.~ was defined as A &~ wh ich

yielded a fine mesh of nodal points near the surface and an adequate

spacing toward the edge. V values were assigned by successively adding

all ~~ values from the surface, to the point in question. Ihen, three

hypothetical successive columns of nodes were created by the following

statements:

Dl = D2 = D3 = 0., from the surface to the edge of the boundary layer.

-

• 
Incorporating the notation of fig 1,

V1 V 1 2 -Y .1, for all j from the surface to the edge of
•~) I

~~~

I

~~J 
I~~

the boundary layer.

In a similar manner, three successive stations of F, 0, i, and 8 were

assigned values of 1.0. FInally, all coefficients of the system of

finite difference equations were set equal to 0.

Ihis initialization provided the primer to begin the backward

C differencing along the ~ direction and the central diffePencing along

I 
~

••

~~~~~~~~~~~~~~~~~~~~~~~



1:

the r~ direction. The finite differencing system was unconditionally

stable for increments of ~ and ~~~~, and the Iterative stepping procedure

along ~ damped the error due to the grid initialization within a few

steps (Ref 6).

The Finite Difference System

Coefficients of the finite difference equations were computed for

the matrix equations which would be solved in a succeeding step. These

— equations were derived starting with the concept of a grid as in fig 1 ,

and the stipulation that a function could be described at a point by a

Taylor series expansion about another point. For Itract the approxima-

tion was made that for any functional value , F,

F(i,j+l) = F(ij) +~ f~ ~~
(57)

2
F(i,j-1) F(1,j) — 

~~ + ~ F 
_____

Then, for
2Y6= r ~~~~~~~

_

-

,

~~ 
~~~~ 

•

(58)
2YB - ________________

1 
_____1 + 

•

2

L -_ _  _  _



~1 C
YlO = 1 - — i (58)

-1

the second and first partial derivatives of Eq (57) were expressed by

central differencing as follows:

_______  
Y6F(i ,,j+lI 2Y7F(i,fl ,. Y8F(i ,J-l)

________ ____________ -

(59)

3F(i,jI ,, Y9F(i,j+1I _ Y 1OF(i ,j) 
— 
Y8Fç1 ,j-1j

~fl 2hn~

The same format of expression was used for ~~~~, ~~~~, and !~4. For a
streamwlse series of nodal points along ~ the backward differencing

system was written from

I
F(1-l ,j ) F(1,j ) -g 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
2F

I— ~ 2 t (60)

F (~~ 2+g 1)
2 2F

F(1-2,j) = F(i ,j) - ~12 +g11) 5~~ 
— 

2! 
L2.

Only expressions for the first derivative with respect to ~ were required

and this equation was as follows:

aF(i 1 1~~~~j  1 h~1 2’~~i 1
_______ — 1_2 j:2+~~1jj T F(1-2 ,j) +- F(1 1,j)

g1 1 
(61)

+ 
~ 1:1~~ 1~;+~~11 J F(1,j)
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Again the same format of expression was used for ~~~~, and all derivative

1.. forms of Eqs (20), (21), and (22) had been derived . Then , due to their

recurr ing use , the following definitions were made for computational con-

venience and efficiency:

g +g
FM1 = 

1-1 F(i-l ,j) — ~~~~~~~~~~~~~ F(i-2,j)

~i-2

g1 +g 1Thl = 
i— l T( i — l,j) — — 1(1—2 ,3)

(62)
2(g ,+g ) 2g2

FM2 = ~~ 1— 1 F(i-l ,j) — ~~ f( i -2 ,j )
~‘i-2 1-2 1-1

2(g1 2÷g1 l~ 1 1 i1142 = 
- 1(1-1,3) 

~~i_2 d i_2 Ft
~i_O 

( -2 ,3)

Through Taylor series expansions about F(I,j) and T(i,j) and neglecting

terms with second order partial derivatives and higher, then nil and Ni

were actually expressions for F(i j) and 1(1,3), respectIvely.

Returning to Eqs (20), (21), and (22) and the construction of

linearized finite difference equations, there were tI~ree types of non-

linear terms with which to be dealt. Using F and G to represent any two

general function symbols the nonlinear terms were of the types:

(F)(~~}. II~
)
~ 

and (F)(G), where F could have been equal to 6.

Returning to the notation of the problem variables It was shown that

F(1,j) ~~~~~ — flil {[~ ~~~~~~~~~ ~
) nil [2g )F142} (63)

[aF(IJ))
2 

— 2FY [3~~i)J - FY2 (64)
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where FY was equal to ~~~~~~ a known, and was unknown, and

that

F2 = 2F(i,j) f(i—1 ,j) — F (1—l ,j) (65)

where only F(i ,j) was unknown. All terms had been represented in finite

difference form, and the final step Incorporated these linearized models

into Eqs (20), (21), and (22) to derive the overall system of finite

difference equations (Ref 8:67-71).

From this system, the coefficients of F(1 ,j—l), F(i,j), F(I,j+l),

and I and V at these stations were col lected, computed, and passed to

the matrix inversion routine resulting in solutions for F, V , and 9 from

the surface to the edge of the boundary layer at the current station, s~•

Subroutine Reystr

This routine was called from the main program at each station, 5j~

at and beyond the point of transition to turbulence. The purpose of this

subroutine was to calculate an eddy viscosity for the inner and outer

regions of the two-layer turbulent boundary layer model .

Computation within Reystr began with Taylor series expansions of F

to the third order partial term about the first station at the wall.

With values for F3 1 , F3_2, F3 3  and F31 4, a four-point finite difference

expression was formed for 

~ 
and the coefficients of the F terms at

each node, one through four, were represented by Vii, Y12, Y13, and Y14

in the code. Next, a nondimenslonal molecular viscosity-density term

was calculated for the wall with a shear stress term that followed:

T )l/2 1 +198.6 (pp)

• 
XLM1W - 1T

!

j  
T:

+i
~~~

6 
- 

~~~~~~~~~ 

(66)

91



., t ____P12 = 
TP
~J: ~~iw (67)

An iterative loop was begun to generate the nondimensional ized inner

eddy viscosity model , inner of Cebeci-Srnlth-Moslnskis for each node in

the ri direction for the current s1. In the actual code and following the

calculation of a number of interim quantities that did not necessarily

represent any real boundary layer characteristic , three important coraputa-

tions were made. First, 6/1 was calculated . Next, an intermediate

quantity, DD, to be used later in the outer eddy model , was calcula ted.

Finally, P11 , another intermediate quantity used in the inner model , was

computed: fu .,
.995 

[~
XNNJ..(J_i)}

6/L XNN — e

~

edge of the

DO 
boundary ia~er~~ ~j J[~j J + 

[~ ~~
]) [T

~~l]1 ~~~~ 
(68)

2XRe,,, 
edfe 

~~ ~ 
+

P11 = 1 +198.6 
- 

p T 3
_____________  

e ,.l1. s

L T1,(I-l)M~0+i98.6J ~ref

where the $ was Included for the case of conical flow only. Again, a

term was generated, but using only a three—point central differencing
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scheme on this occasion. The final step of the loop was the actual com-

~inneputation of —-~~~--~~~ at the current node j:

€inflerl = .16(PIl)(l - exp(-[(PIl)(P12)]1’
12/(26 J )) ) 2 (69)

F(1 ,j+1) — YlO F(i ,j) — .~~~~~ F(1 ,i_1 )J

(~>1’).

~

where Y8, Y9, and YlO were coefficients obtained through Taylor series

expansions of F(i,j—l) and F(i ,j+l) about a point F(i,j). As the calcula-

tion of ~-‘“~~~~~~~~~ progressed from the wall out into the field of flow,
nner

3+1 retained its own computed value or that of whichever
p p

was greater.

The outer law, 
Couter was computed through an iterative loop

similar to that of the inner model . It culminated with the expression

eouter - 

2XRe,, 1/2
- .0168 

2 1 r L.j~~i98.6 ] [~i (pp)
3 

T~~2
[(y—1)M ,,) 

[T 1~~~~~ 198 6J [~ef ~‘~e 
~~ S

(70)

where the s was included only for the case of conical flow. In order that

a compatible combination of computed viscosities were retained, the values

of eddy viscosity from the outer law replaced th~’ ~ of the inner law from

the point of Intersection of the graphs to the edge of the boundary layer.

Graphically, this was depicted in Fig 18.

93

-.— - -- •-•••~-,—-• -.——.. 

---— -



- -

$~4# T 1

-— outer law

Anner law

ii

Fig. 18. Matching the Inner and Outer Eddy
Viscosity Model s (From Ref 8:21 )

Having calcula ted the initial eddy values for the inner and outer

viscous regions of the boundary layer, it was appropriate to subject this

model to two more factors. Both were factors of degradation and were

included to better describe the character of turbulent activity within the

boundary layer.

t Objections have been raised to the use of an eddy viscosity term, e,

in place of , or in addition to the molecular viscosity , ii, of a fluid. p

Is a real property of a fluid. e is only an effective description when a

fluid is in motion , and it is clearly not a property of the fluid. But,

with reservat ion, it has been used to express the behavior of turbulent

stresses In terms of mean velocity gradients of a flowing fluid. It has

been possible to obtain a satisfactory description of mean properties

within turbulent flows by assuming this flow to behave as a Newtonian

fluid , incorporating an eddy viscosity model along with p, and including

two factors of intermi ttency when appropriate (Ref 20:25-26). A laminar

and irrotational flow became turbulent as it passed through a region of

transition in which only a fraction of the time was spent in a turbulent

state. During that time in laminar motion, the Reynolds stress, hence a,

would have been zero. Then, to adequately describe the effects of e at

94

— S



any point by the relative fraction of time that that point would be

engulfed in turbulent flow (Ref 21:117). Therefore, the first multiplica-

tive factor , called an intermittency factor, was applied to e to more

accurately describe the € within the transition region . The Intermittency

or probability factor of Dhawan and Narasimha was used for this program .

The factor was computed as follows (Ref 8:28-29):

F(s) = [l - exp -.412 ~ current~~ transition pointl2 (71 )

[ L transition point j

Then, the computed jdoriginal was replaced by

= (r(s ” (72p modIfied ‘‘ p 1 orig inal

P 
The second factor was then considered. It was observed by Kiebanoff

.that in a turbulent boundary layer with a free boundary, as the free

stream was approached the turbulence became intermittent. This inter-

mittent nature was observed first at y/6 greater than .4 with less

turbulent intensity as y/6 grew larger. It was thought that a good

prediction of turbulent intensity probably depended on a correct weighting

of the probability density for the turbulence of the free stream with that

within the boundary. It was found that a good description of y’ was a

Gaussian integral curve given by

i
s 

~ (1 - erf(~’)) (73)

where

— (i! 
~
j-l [~- 

.78] • s[f
_ .78] (74)
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These expressions indicated that the edge of the boundary layer had a

random character with a mean position at y/6 equal to .78. The edge

vacilla ted from y/tS equal to .4 to y/i5 equal to 1.2. Finally, if it were

assumed that the free stream contributed little to the measured turbulent

quantities of the boundary layer, an allowance could be made for the

effect of Intermi ttency by dividing by the factor y ’ (Ref 22:15-18).

Cebeci used the approximate expression for Eq (73) to give a multi-

plicative version:

= 
[i +5.5[

~.}6} (Ref 7:1679) (75)

which led to the coding for this second factor. If y’ were not included ,

then a newly defined viscosity was

1 = 1  +~ .F(s) (76)

$ Including y’, Shang formed the following model :

~ + 

[[l+5.S

1
~g J6J + i][~ J 

(77)

For purposes of this study Eq (76) became eddy model zero, and Eq (77)
became eddy model one. Then, whether or not i’ was included, the quantity
was defined by

— ~ + 
~~

_ (1-1) (78)
t

In a final note, the decision of whether to use eddy model zero or eddy

model one depended on the original assunptlon that either the free stream

turbulence had an effect on the a of the boundary layer, or It did not.

This factor, y’, was to have a definite effect on the analytical results,
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and this entire subroutine was included with the program listing of

~
- ‘ I Appendix B.

Subroutine Cfstno

Like Reystr this routine was called from the main program. But

unlike Reystr, Cfstno performed its computation throughout the laminar,

transition, and turbul ent regions of flow. The purpose of this routine

was to calculate a Stanton number, a measure of heat transfer; the local

coefficient of friction, indicati ve of shear stress at the surface; ~nd

Reynolds numbers based on displacement thickness and momentum thickness.

Computation began with 
~ ~ 

, coded XIM1 in the program. The formula
e

by which XLM1 was computed depended on the value of the exponent in the

viscosity law of Sutherland, the value of this exponent being specified

by the programer. If the exponent were zero, then

T 1/2 1 +198.6
X M l —  W e 79T

~
+l98.6

If this exponent were one, then XLM1 was one. Otherwise,

I w-i
XLM1 = (80)

Next to be calculated were transformed quantities similar to 4 or heat

flux and 
~ 
or shear stress. First, the same four-point finite differ-

ence scheme used in Reystr for was repeated at this point to calcu-

late an d 
~~fw~ 

Then the transformed r, coded TAU, was computed:

~~~ ~ _ _ _  

U 2 3F 
_ _ _ _ _TAU (p~z)~ ~~~~~~ 

~~, (2x)112 
(81)

or,



~~~~~~ IUel2TAU = 

~‘J~ref 
1•
~
:j (2xY~~

2 
~~~ 

(81)

Following r, the transformed q, coded QS, was replaced by the followi ng

expression:
1 ~‘~~w ~e ~e 

ue TeQS 
(2X ) ”~

2Pr ~~~ ~o ‘ref ~ T,,,(y-1 )M~ ~ 1w
- (82)or,

QS = ~~~~~~~~~~~ — 

Te 
2 P~

1(2XY1”2 ~9.1
I w“co~ref ° T~(y-l)M,,,

For the case of the axisyninetric flow, both TAU and QS were div ided by

the nondimensional station , s~. Wi th this, preliminary calculations

were completed.

A Stanton number and coefficient of friction followed next in the

computation. If I,~ equaled T~, there was no heat transfer and St, coded

STNO , was zero. Otherwise,

[IPref~
1/21PcI,I1r

~
’) 1/2 

~~~~~~ 
Ue Te Pr

1 
(2XY 1”2 ~~~~~ 1

STNO = L( J t ~~~ 
j 

~J~ref 
~o, To~(y-1)M.~ ~nIwj

- 
T
w1 

[ 

Te + 11 u 1211
“ T~(y-i~~~ ~1~i ii (83)

- e 1j

The model from whIch this expression came was

St — (84)e

For the calculation of Cftlocai station’ coded CFNO,

frrefl1~’2IP .Jl~~
2 
~~~ 1ue12 )

_l/2 3F1 (85)
~1wCFNO 2[ 

~ J ~ ~
. J ~J’ref [ ‘J

With St and Cflecal computed, only the transformed expressions for Re6~
and Re~ r i~e1ned. Coded as RE YDI and REYMT , these quantities were corn-

puted fro. the following statments:
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-

— I
REYDT = 

[
~e~Je

Xreai} [~J
(86)

REYMT = 
PeUeXrea l 

~

This completed calculations within this routine, and further, com-

pleted the formal description of four important subsystems within Itract.

Again , this subroutine was included with the program listing of Appendix

B. In this appendix consideration was given to the important conceDts of

the nondimensionalizatlon of working quantities , Initialization of the

grid, and the generation of finite difference coefficients. Also

Included was a brief description of the two subroutines used in the compu-

tation of eddy viscosity , heat transfer, and skin friction. The theory

presented in this appendix should provide a better understanding of the

code in general, and the modification for mass transfer specifically.
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Appendix D

_ _ _ __ _
Fortran Computer Code ~~

Coded Symbol Represented Quantity (Values Included for those quantities
remain ing constant throughout this project)

Inputs (In order read by computer)

G

PR Pr .73

XMINF

TA

DS Stepping increment in Sj  along the streamwise direction ,
DS = .0004

SI Initial stat ion, 
~i’ 

began computation within the grid ,
SI = .0006

OMEGA Exponent in the viscosity law of Sutherlano , OMEGA = 0

ERROR A convergence criterion, the acceptable difference between
the quantity calculated in two successive calls of
the ma trix inversion routine at the same station

+1XXK , a constant ratio from surface to the edge of the
‘~J boundary layer

Iw

BTRX Station 5 4 at which transitIon from laminar to turbulent
flow began

PRT Prt = .9 (exceptions noted)

XINTER A flagged quantity; XINTER - 0., eddy model zero was
used; XINTER = 1., eddy model one was used In the compu-
tation of a

DYW the first increment In n

lEDGE Total number of nodal points or divisions In the n direc-
tion within the grid

INTACT Not used in this study
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IDIFF A flagged quantity ; IDIFF 0, a three-point differencing
scheme was to be used; 101FF = 1 , a two-point differen-
cing scheme was to be used; IDIFF was set equal to 0 for
this project.

IEND1 Total number of nodal points or divisions in the ~ direc-tion within the grid

MSP A flagged quantity ; MSP = 1 , program printed abbreviated
data from each station computed ; MSP = 5, program printed
every fifth station ; MSP was set equal to 1 for this pro-
ject.

J2DA A flagged quantity ; J2DA = 0, designated a flat plate
calculat ion, J2DA 1, designated an axlsynmetric cone
calcula tion

IPRES A flagged quantity; IPRES = 0, indicated that dp/dx was
zero; IPRES = 1, Indicated that dp/dx was not zero; IPRES
was set equal to zero for this project.

ICHS An array of integers which designated stations where a
double step was to be taken between computations of a
column of nodal points

IPRN An array of integers which designated stations where a

• 
full profile of boundary layer data was to be printed

XLGTHMD Length of the model , I

RINFA

IBIW A flagged quantity; IBLW = 0, no mass transfer consid-
ered; IBLW = -1, mass transferred at a constant rate;
181W = 1, mass transfer varied along the length of the
model

STRT, DONE, If IBLW = -1, mass transfer began at some number of feet
RVRAT from the leading edge or tip and continued to- some other

position downstream, transferring at a constant rate,
(pv) (pv)
fpu)~ 

for the plate or (PU)” for the cone

NUMDAT, If 181W = 1 , thIs stipulated a varying transfer rate
XpOS, Pv 1
RHOVRAT beginning at X sl at a strength of ~~~ or

(pv) po Us.j posl
and continuing to X 

~~
, ., at a correspond-

~PUeJposl pos .,na ,
Ingly specified strength. Varying transfer rates were

-: $ designated In between.
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Outputs and Miscellaneous Working Quantities ~~ flcable in ThIS Study

(alp habetical)

BCVW V(i ,l), defined in Eq (29)

BLDT 6*/I

BLMT OIL

BIT 6/I

CFNO Cflocal

EO Eddy Viscosity, either -from eddy model zero or eddy
model one

ETA n
Fl U/Ue (in the output listing only)

H/HE H/He (In the output listing only)

MACH Mach number (in the output listing only)

$ N, XNN y/L (listed as N In the output)
RE

REV

REYEXT Re
~

REYDT Re6~
REYMT Re0
RO/ROE 

~
)‘
~
)
e (in the output listing only)

RVRAT(VRVRAT) (pv ) _____

(pu)_ current station e current station

STNO Ste
Ti 111e (In the output listing only)

TRR (T_+198.6)/(ç(y-l )M~+198.6)

N/TE T,/T~ (In the output listing only)

UE U/Ue
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- .— sa_at.n~~~%t~gfls .s ,.d~an4w.. - --

VI V/U
e 

(in the output listing only)

X Defined in Eq (27)

XBE B

x/L station s1
XME Me

Ii
XNUE e

Uref
V/BIT y/6 (in the output listing only)

I

4

I
S
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Appendix E

A Cubic Spline ~~proximation for the

Description of General 1y Varyinq Mass

Transfer 1~ te

In modeling or mathematically describing a varying mass transfer

rate it was assumed that through some means , there would be knowl edge

of the strength of mass transfer at a finite number of stations along

the model . So, there was information of the form 
~
xj,fi ) for i values

from 1 to n. The objective was to construct a function, f(x) , such that

f1 was equal to f(x1) and that f(x) was twice differentiable over [x 1~x~].

This f(x) would provide the value of mass transfer for any station , s.f,

along the surface of the model . Figure 19 depicted the curve to be

specified.

f(x)

xl xi xI+l xn

Fig. 19. Building a Cubic Polynomial
Between Any X i and ~~~ 

—

The function, f(x), was speci fied as a different cubic polynomial

In each Interval , x1 to x1,1. It was required that the function be con-

tinuous, together with Its fIrst two derivatives, at each junct ion 

—5------ — - - - - -



between two polynomials. Thus, for each [xj,xj+1], an f(x) was constructed

5 equal to ~ C~x t. The function was formed recursively. Supposing that
1=0

f(x) had been generated to an x equal to x1 , it was necessary to choose
C
~JeO to 3 

such that f(x), f’(x), and f”(x) were continuous at x1, and it

was left to find f(x) over the interval (x1,x1~1]. This led to four linear

algebraic equations with four unknowns, 

~~ to 3• These equations were

as follows: 3
f(x1) = 

~ 4 x~1=0

3
f’(x ) - ~ C1 ~ t~ll ~ i

(87)

f”(x 1) = 

~ 4 £(1—l)x~~1=2

3
~ 4xa 1=0 +

This system was solved up to x1.1 at which point the process was repeated

from x1~1 to xi+2 (Ref 11).

Returning to the initiation of this recursive procedure, values were

known for (x i,fi) for i equal from 1 to n. Then, 19 was approximated byf —f V-f’2 1 and f
~ 
was approximated by the expression 2 ~• The initial condi-X

2 1
tions were then f1, 9, f’~, and 2~ 

The four equations initially to be
solved were, then, given by

C~ +C~ x1 +4x~ +C~~x~~=f 1

• 

0 

C~ + 24 x1 + 34 x~ — 9
(88)

2C~ +6C~~x1 
fH

$ C~ +C~~x2 +44+44.f2
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Solving for C~ yielded a cubic polynomial expression

f1 (x ) = C~ + C~ x + 4 x2 + 4 x3 (89)

which was descriptive of an appropriate curve connecting points one and

two. Then, having specified the polynomial -for this first Interval , the

successive polynomials and their Intervals were recursively computed to

X
n 
as previously discussed , though now a polynomial expression existed

for finding f’(x) and f”(x).

Finally, then, for any position, s’, along the surface of the model ,

the interval Sj to s1~.1 in which the position was contained could be found.

knowing the interval was to also know the corresponding cubic polynomial

that described that increment, and hence, the value of mass transfer rate,

f(s’).

~~ -

~~~

- - 1 ~~~~~~~ 
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Appendix F

Flat Plate Heat Trans fer Data

Table IV

The Combinations of Variables for the

Parameter Study , the Flat Plate Case

_______ 

St~, Itract Prediction

Col 1 Col 2 Col 3 Ccl 4 Co1 5

XXK 1.1 1.1 1.15 1.15 1.15

PRT 1. .9 .9 .9 .9

XINTER 1. 0. 0. 0. 1.

C DYW .0005 .0005 .OOO2~ .0005 .0005

lEDGE 120 120 120 100 100

i
t

~~~~ 5W~~~~5_~  
0 
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Table V

Heat Transfer Results of the Parameter Study ,

Zero Mass Trans fer

Re
~

(I
~
5 

~~~~ 
_______ 

Itract Predictions ,_St~( 1O) 3

________ mental Ccl 1 Col 2 Ccl 3 Col 4 Cal 5
.455 4.13 3.45 3.59 3.63 3.63 3.57

1.36 3.08 2.31 2.97 2.99 2.99 2.94
2.27 2.79 2.46 2.60 2.63 2.63 2.58
3.18 2.59 2.29 2.44 2.46 2.46 2.42

- 
4.09 2.44 2.19 2.33 2.35 2.35 2.31
5.00 2.36 2.11 2.24 2.27 

— 
2.27 2.?3

5.91 2.29 2.05 2.18 2.20 2.20 2.17

C 6.82 
- 
2.22 1.99 2.12 2.15 2.15 

~iL...7.73 2.13 1.95 2.08 2.10 2.10 2.07
8.64 2.10 1.92 2.04 2.06 2.06 

- 
2.03

9.55 2.07 1.88 2.01 2.03 2.03 
- 
2.00

10.5 2.07 1.85 1.97 2.00 2.00 1.97
11.4 2.02 1.83 1.95 1 .97 1.97 1.94
12.3 1.91 1.80 1.92 1.95 1.95 1.92
13.2 1.93 1.78 1.90 1.92 1.92 1.89

O 

14.1 1.90 1.76 1.88 1.90 1.90 1 ,87
15.0 1.90 1.75 1.86 1.88 1.88 1.86
15.9 1.87 1.73 1.84 1.87 1.87 1 .84
16.8 1.88 1.71 1.83 1.85 1.85 1.82
17.7 1.83 1.70 1.81 1.83 1.84 1.81
18.6 1.80 1.68 1.80 1.82 1.82 

- 
1.79

19.5 1.85 1.67 1.78 1.81 1.81 1.78
20.5 1.81 1.66 1.77 1.79 1.79 1.77 

—
21.4 

- 
1.82 -——— -—— - --—- — ———

0 (Ref 13)
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Table VI

A Heat Transfer Compar i son wi th Moffat
and Kays , Mass Transfer Factor of .001

Itract PrediStion , ~~~~~~~~

wi th
Eddy Eddy Eddy

Re
~
(lO) ” :xperi- Model Model Model

riental One Zero Zero
.453 3.53 3.44 3.50 .8

1.36 2.58 2.41 2.46 4.6
2.26 2.33 2.05 2.10 9.8
3.17 2.13 1.89 1.93 9.3
4.08 1.99 1.78 1.83 8.0
4.98 1.92 1 .71 1.74 8.3 

-

5.89 1.85 1.65 1.68 9.2
6.79 1.77 1.60 1.63 7.9
7.70 1.69 1.55 1.58 6.5 

—
8.60 1.68 1.52 1.54 8.3
9.51 1.61 1.48 1.51 6.2
10.4 1.59 1.45 1.48 

— 
6.9

11.3 1.53 1.43 1.46 4.6
12.2 1.50 1.41 1.43 4.7
13.1 1.47 1.39 1.41 4.1
14.0 1.44 1.37 1.39 3.5

O 14.9 1.46 1.35 1.38 5.5
15.8 1.41 1.33 1.36 3.5

- 
16.8 1.39 1.31 1.34 3.6

- 

17.7 1.41 1.30 1.32 6.4
18.6 1.36 1.29 1.31 3.7
19.5 1.36 1.27 1.30 4.4
20.4 1.32 1.26 1.29 2.3
21.3 1.31 - ——— 0  _________
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C Table V II
0 A Heat Transfer Comparison with Moffat

anci Kays, Mass Transfer Factor of :00115

Itract Prediction , Percent
st ~l0’~ 

Error
— ~~~~ ___________ with

...r St~,(lO)~ Eddy Eddy Eddy
Re
~O~ ~ 

Experi- Model Model Model
mental One Zero One

.439 4.53 3.29 3.35 27.4
1.32 3.64 3.62 3.66 .5
2.19 3.24 3.27 3.32 .9
3.07 3.10 3.10 3.15 0
3.95 2.97 2.99 3.03 .6
4.83 2.92 2.91 2.95 .3
5.70 2.78 2.85 2.88 2.5
6.58 2.83 2.79 

- 
2.83 1.4

7.46 2.66 
- 

2.75 2.78 3.3
( 8.34 2.67 2.71 2.74 1.5

9.21 2.61 
— 

2.67 2.71 2.2
10.1 2.56 2.64 2.68 3.0
11.0 2.58 2.62 2.65 1.5

_ll.8 2.57 2.59 2.63 .7
12.7 2.51 2.57 2.60 2.3
13.6 2.47 2.55 2.58 3.1
14.5 2.44 2.53 2.56 3.6
15.4 2.47 2.51 2.55 1.6 -

16.2 2.42 2.50 2.53 3.2

— 
17.1 2.38 2.48 2.51 

— 
4.0

18.0 2.36 2.47 2.50 4.4
18.9 2.36 2.45 2.48 3.7 

—

19.7 2.32 2.44 
— 

2.47 4.9
20.6 2.32 2.43 2.46 4.5

I (Ref 13)
110

- . - -~~~~~~~ - -- - —- - _ _ _ _

~~~~~~~



Table VIII

A Heat Transfer Comparison with Moffat

and Kays at the Suction Asymptotic Limit

Itract Prediction , Percent
~
.e. Error

__________ ‘ with
St~,(1c~’ Eddy Eddy Eddy

Re (I~~ ” Experi- Model Model Model
X mental One Zero One

.430 9.33 
- 

4.90 5.00 47.5

1.29 8.07 8.34 8.38 3.2

— 
2.15 7.75 8.17 8.20 5.1

3.01 7.82 8.09 8.12 3.3

3.87 7.64 8.04 8.06 
— 

5.0

4.72 7.99 8.00 8.03 .1

5.58 7.71 7.98 8.00 3.4 
—

6.44 7.85 7.96 7.98 1.4 
—

7.30 7.82 7.95 
— 

7.96 1.6 
—

8.16 7.95 7.94 7.96 .1

9.02 7.94 7.93 7.95 .1

9.88 7.91 7.93 7.94 .2

- 
10.7 8.24 7.92 7.93 3.9
11.6 8.17 7.92 7.93 3.0

_ l2.5 7.82 _7.92 7.92 1.3

_ 13.3 7.97 7.91 7.92 .7

_14.2 7.88 7.91 7.92 .4
15.0 8.35 7.91 7.92 5.3
115.9 7.76 7.91 7.92 1.9
16.8 7.97_ 7.91 7.91 .8 

—

17.6 7.75 7.91 7.91 2.0
18.5 7.75 7.91 7.91 2.0
19.3 8.08 7.91 7.91 2.1
20.2 7.85 — ——- -———

$
(Ref 13)
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Table IX

A Heat Transfer Comparison with t~offat

and Kays, Mass Transfer Factor of .0019

0 St~(l0)3,

~ 1 Itract Predi ctionsRe
~

(lO) 
ExnerLe~ta1 with Eddij~ode1 Zero

F ine Mesh Coarse Mesh
____________ ____________ 

with % Error with ~ Err or
.457 3.31 3.9~ 16.0 3.36 1.5

1.37 2.36 2.27 3.8 1.97 16.5
2.28 2.06 1.78 13.6 1.62 21.4

3.20 1.89 1.57 16.9 1.46 22.7
4.11 1.74 1.44 17.2 1.36 21.8
5.03 1.65 1.34 18.8 1.28 22.4

5.94 1.57 1.27 19.1 1.22 ?2.3 
—

6.85 1.50 1.21 19.3 1.17 22.0

7.77 1.46 1.16 20.5 1.13 22.6

8.68 1.45 1.12 22.8 1.10 24.1

9.60 1.37 1.08 21.2 1.06 22.6

10.5 1.39 1.06 23.7 1.04 25.2

11.4 1.36 1.03 24.2 1.01 25.7

12.3 1.26 1.00 20.6 .99 21.4
13.3 1.24 Error Finish .97 21.8

14.2 1.23 
____________ 

.95 22.8
15.1 1.23 

___________ - 
.93 24.4

16.0 1.19 
___________  

.92 22.7
16.9 1.20 

___________  

.90 25.0

0 
17.8 1.13 

___________ 

.89 21.2 
-

18.7 1.18 
___________ 

.88 25.4

19.6 1.12 
___________ 

.87 22.3
20.6 1.09 

____________ 

.85 22.0

21.5 1.09 
___________

(Ref 13)
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Append ix G

Cone Heat Transfer Data

Table X
A Heat Transfer Compari son with Martellucci ,

Laganelli ,and Hahn , Data Group 132

Percent
e Error

_________ 
~t~~~ u uj PeUe,i,t4 with

heoretical Theoretical Step u ’~’1 Eddy
Fully Experi- Fully Model

Station, s 
- 
Laminar mental Turbulent Itract One

.191 4.0 4.77 7.7 4.63 2.9

.262 3.5 3.50 7.3 3.96 11.6

.315 3.0 2.4,3.1 7.0 3.78 18.0

r .399 2.8 3.93 6.8 
— 

5.33 26.3
O - .470 2.6 5.67 6.5 6.86 

- 
17.3

O .542 2.4 5.68 6.3 7.55 
- 

24.8
.589 2.3 6.91,6.61 6.0 7.67 9.9

.607 2.2 6.18 6.0 7.70 19.7

.732 2.0 6.79,6.84 5.9 7.47 2.3

__________ _________ 

6.23,7.30 
__________ __________ __________

.750 2.0 7.19 5.9 7.41 3.0

.816 1.9 7.67 5.8 7.23 5.7

_________  

1.8 6.31 5.6 6.89 8.4

(Ref 14)
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Table XI

A Heat Transfer Comparison with Martellucci ,
Laganelli , and Hahn, Reference Data 150

Percent
Error

St (10)~ 
Ste ~~~ (10)~ with Eddy

Station , s Experimental 
— 

Itrac t One
.191 2.10 2.06 1.9
.227 2.70 2.63 2.6
.263 2.14 3.76 43.
.317 .91,4.03,3.86 5.00 19.4
.353 6.48 5.33 17.7
.400 5.31 5.42 2.0
.544 4.90 5.08 3.5( .592 4.30 4.97 13.5
.610 3.94 4.93 20.1
.645 3.80 4.87 22.0
.681 3.53 4.80 26.4
.717 2.12 4.74 55.3
.735 4.27,3.98 4.73 6.9

O 
______________ 4.10,5.08 

_____________ _____________

• .819 4.19 4.62 9.3
.890 5.99 4.54 24.2
.962 4.69 4.46 4.9

(Ref 15)
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~~0 Table XII

A Heat Transfer Comparison with Martellucci,
Laganell i , and Hahn, Reference Data 1

Percent
Error

P u  with

S 10 St e e(10)4 Eddyt( ) e p U  Model
Station, s Experimental Itract One

.173 3.73 3.97 6.0

— 
.191 3.85 3.92 1.8
.227 4.58 5.03 8.9

— 
.263 5.33 7.03 24.2
.317 8.84,7.90, 8.79 .6

______________ 

7.18,7.53 
_____________-- ______________

.353 9.68 9.22 4.8
1. .400 9.12 9.30 1.9

— 
.472 8.15 8.99 9.3
.544 7.69 8.64 11.0
.592 7.19 8.43 14.7
.610 6.89 8.36 17.6
.645 

— 
7.49 8.25 9.2 

—

.681 7.04 8.13 13.4

.717 6.99 8.04 13.1

.735 6.94,6.84, 7.99 13.1

______________ 

6.75,6.86 
_____________ ______________

.753 6.84 7.94 13.9

.819 
— 

6.U 7.80 14.9
.890 6.79 

— — 
7.67 11.5

— 

.962 6.34 7.54 15.9

(Ref 15)
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Tabl e XIII

A Heat Transfer Comparison with Martellucci ,
Laganell i , and Hahn, Data Group 60

Percent
Error

, ~4 St ~~~~~~~ wi th EddySt~,t1O, e Model
Station , s Experimental Itract One

.226 3.80 5.57 31.8

.262 3.09 4.72 34.5

.315 2.45,2.49,2.54 3.85 34.0

.399 1.99 3.77 47.2

.542 1.78 6.94 74.3

.589 1.98 7.32 73.0

.607 2.17 7.40 70.7

.648 2.46 7.48 67.1

.732 1.87 7.43 74.8

.750 1.76 7.40 76.2

.816 2.00 7.28 72.5

.958 2.31 6.84 66.2

(Ref 14)
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C Table X IV

A Heat Transfer Comparison wi th Martellucci ,
Laganelli , and Hahn , Data Group 203

Percent
~~~~. 

Pe”e,,~~4 Error
,, ~4 “e p ~~~~ with Eddy

~t tiO , Model
Station, s Experimental Itract One

.263 1.OO(1O)
_2 

5.15(lO)~ 48.5
.317 3.42 1.68 50.9
.353 4.72 2.16 54.2
.400 5.13 2.52 50.9
.472 3.71 2.60 29.9
.544 4.02 2.52 37.3
.592 4.15 2.44 41.2
.610 3.74 2.41 35.6
.645 4.05 2.35 42.0
.681 3.65 2.30 37.0
.735 3.99,3.88 2.24 42.3

_______________ 

3.98,6.41 
______________ _____________

.753 3.02 2.21 26.8

.819 3.96 2.15 45.7

.890 5.35 2.09 61.0

.962 4.33 2.02 53.3

(Ref 15)
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VITA

Capt A. J. Beauregard received his undergraduate training in the

engineering sciences, and upon graduation and comissioning, he entered

pilot training. Following this training Capt Beauregard primarily flew

the C—130 in roles of armed reconnaissance and intelligence gathering.

Following these flying assignments Capt Beauregard entered the Air Force

Institute of Technology In June of 1975.
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