Ventilation Of Fallout Shelters

 By Induced DraftPrepared For Office Of Civil Defense

20050901020 Best Available Copy

Prepared By
DEPARTMENT OF MECHANICAL ENGINEERING MONTANA STATE UNIVERSITY BOZENAN, MONTANA

ABSTRACT

Occupants of family-type fallout shelters require fresh ventilation air at the minsmum survival rate of 3 cfm per person. Because cost limitations exclude the use of auxiliary power plants (diesel or gasoline engines) to operate ventilaring fans or blowers, an ineapensive, simple, and effactive methot of supplying fresh air to home shelters is needed. It is demonstrated that a minimum air rate can be obtained in hoze shelters by inducing draft in the exhaust stack by means of a flame from a kerosene burner which can similtaneously provide illumination.

The ventilation test procedure included inducing air to flow through the shelter, determining the actual cubic feet per minute of air flowing, measuring air temperatures at inlet, room, and stack, masuring the pressure drop or restriction to air flow at the shelter inlet, and finding the effects of various stack sizes and configurations upon air flow rates. Data were also taken to determine the effect of various stack sizes and configuraiions on the fuel consumption of the heating devices.

Although not origiaally intended to be a large part of the research work, a considerable amount of time was spent in finding a sensitive and reliable means of measuring low velocity air flows. This work led to the conclusion (incidental cs far as shelter ventilation is conceined) that bead-type thermistors are not reliable sir measuring devices when used in a temperature-compensating Wheatstone-bridge circuit.

Ventilation of family-type sheltars by the induced draft method is effective and reliable if the following conditions are observed:

1. Wind velocities around the stack outlet are kept to a minimum or a good ventilator stack cap is used.
2. Filters are not used at the shelter inlet (air taken from body of house).
3. The intake area of shelter is much larger than the cross-sectional area, of the stack.

TABLE OF CONTENTS
Page
Abstract 11
List of Pigures iv
List of Tables vi
Forewurd ?
Theory 2
Stack Configurations 2
Inlet Restrictions 4
Fuel and Burners 6
Flow Equation 7
Description of Shelter 14
Instrumentation and Calibration 28
Air Fiow Measurements 18
Temperature Measurements 29
Pressure Measurements 34
Heat Generating Equipment 39
Hood Configurations 43
Procedure 45
Results and Conclusions 47
Sample Design Prohtam 69
Summary 82
Appendix 85
A. Thermistor Anemometry 86
B. Data (Experimental) 100
C. Iiterature Consulted 123
D. Data (Thecretical) 124

LIST OF FIGURES

Figure Page
Elbowed Stack Configuration and Bntrance Hood 1 3
Shelter Air Intake Ducts 2 5
Fallout Shelter Test Facility 15
Stack Extending from Shelter 16
Special Thermocouple Anemometer $5 a$ 20
Resistor and Thermocouple Wiring Diagram 5b 20
Control Equipment for Thermocouple Anemometer 6
Calbration Curve for Thermocouple Anemometer 7
Propeller-Type Anemometer 8 26
Calibration Curve for Propeller Anemometer 28
Thermocouple Probe Designs 10 31
Pressure Measuring Device (Micromanometer) 11
Comparison of Micromanometer Pressure Readings with Theoretical Values 12
"Three-Holer" Kerosene Lamp 13
Dual Space-Heater Bquipment 14
Air Flow vs Temperature Difference for 6" Diameter Stack Closed Door Test - Straight Stack 15 48
Air Flow vs Temperature Difference for 6" Diameter Stack Closed Door Test - Slbowed Stack 16 49
Air Flow vs Temperature Difference for 6" Diameter Stack Open Door Tests - Straight Stack 17 51
Air Flow vs Temperature Difference for 6" Diameter Stack Open Door Test - Elbowed Stack 18 52
Air Flow vs Temperature Difference for 8" Diameter Stack $^{\circ}$ Closed Door Tests - Straight Stack 19 53
Air Flow vs Temperature Difference for ${ }^{\prime \prime}$ Diameter Stack Closed Door Test - Elbowed Stack 20 54

-
 LIST OF FIGURPS (continued)

Figure Page
Air Flow vs Temperature Difference for 8" Diameter Stack Cpen Door Test - Straight Stack 21 55
Air Flow vs Temperature Difference for 8" Diameter Stack $^{\prime \prime}$ Open Door Tests - Blbowed Stack 56
Comparison of Air Flows for Open and Closed Door Conditions to Illustrate Effect of Intake Restriction $\left(\Delta P_{r m}\right)$. . 23 58
Effect of Inlet Restriction on Rate of Air Fiow - 8 Diameter 20 ft eq. Length Stack 59
Gffect of Altitude on Air Flow 25 61
Bffect of Ventilator Caps on Air Flow 26
Fuel Rate vs Air Flow - Closed Door Test 27
Fuel Consumption Rate vs Temperature Difference for $6^{\prime \prime}$ and $8^{\circ \prime}$ Diameter Stacks 28 68
Air Flow vs Temperature Difference fc. 4 " Diameter Straight Stack 29 70
Flow Correction Factors vs Equivalent Length of Stack for 4^{*} Diameter Stack 30 71
Air Flow vs Temperature Difference for 6" Diameter Straight Stack 31 72
Flow Correction Factor vs Equivalent Length of Stack for $6^{6 \prime}$ Diameter Stack 32
Air Flow vs Temperature Difference for 8° Diameter Straight Stack 33 74
Flow Correction Factor vs Equivalent Length of Stack for ${ }^{8 *}$ Diameter Stack 34 75
Air Flow vs Iemperature Difference for 10" Diameter Straight Stack 35 76
Flow Correction Factor vs Equifalent Length of Stack for 10" Diameter Stack 36 77
Thermistor Bridge Circuit 37 88
Equipment Used with Thermistor Anemometer 38 90
Comparison of Aillivolt Output from Themistor at Low and High Flows 39 97
-vi.

LIST OF TABLES

Table Page

$$
\begin{aligned}
& \text { Maximum Temperature Difference Obtainable for } 6 \text { and } 8 \text { in. } \\
& \text { Diameter Straight Stacks of Various Lengths with } \\
& \text { Different Types of Burners } 1
\end{aligned}
$$

Flow Correction Factors to be Applied to Zero Equivalent Length cfm Curve for Effects of Added Stick Resistance . 2 78

FOREWORD

The experimental information contained ia this report was obtained under Contract No. OCD-PS-64-211 by the Montana State University department of Mechanical Engineering, Dr. H. F. Mullikin, head, and was completed on June 30, 1965. The study was under direction of Prof. C. P. Whitehill. Project leader was O. A. Kubal. N. A. Quintero and M. P. Wambach assisted in the investigation.

The main objective of this contract is to study the ventilation of a family-type fallout shelter, made on the premise that there will be no comercial electricity or natural gas available to provide heat, light, or ventilation. 'Therefore these items must be obtained by other means.

This study determines the feasibility of ventilating a family fallout shelter using a flame in a chimey. Stack configuration and size studies, fuel and burner studies, and the effects of inlat air restriction on the air flow were investigated. From the data obtained, a ventilation system fur a family-type shelter can be designed. Heat and 11 ght are incidental to the ventilation method.

Stack Configurations

To determine the effects of various stack configurations on air flow, 6 and 8 in. diameter stacks were used having vertical heights of $5,10,15$, and 20, feut. Two elbors spaced by a two foot horizontal length of pipe at the bottom of the stack were also used on varic , iests. See Figure 1 page 3. The elbows and horizontal run permit about 2 ft 9 in , between the centeriine of the original vertical stack and the centerline of the second elbow. It is anticipated that about $2 \frac{1}{2} \mathrm{ft}$ of horizontal length is all that will be required in the majority of shelter situations to provide adequate shielding from fallout radiations.

In a prototype basement shelter, the elbows and horizontal length would permit running the stack out of the shelter near the ceiling, through the concrete wall into surrounding earth or adjicent basement space, and then vertically.

It should be mentioned that all tests conducted for purposes of this investigation utilized circular cross-sectioned "Metal-Bestos" stack. Metal-Bestos stack has about a quarter inch air space between an alumirum inside liner and a glavanized sheet metal outside. Thus, it is a type of self-insulated stack. When a stack diameter is mentioned, it always refers to the insido diameter of the aluminum liner.

The vertical portions of the stack can be partially enclosed in stud spaces or run upward through a hallway and can exhaust directly to the atmosphere or to a ventilated attic. If the stack exhausts directly to the at-osphere, a ventilator stack cap should be used, not only to utilize

Figure 1. Eloowed Stach Cenfiguration and Entrance Hood
-4-
the "suction" forces of prevailing winf. 3 to aid ventilation, but also to keep fallout radiation particles and other debris from entering the shelter. If the stack exhausts to an attic containing louvers or other vent openings, a ventilator cap is not needed at the stack outlet because the roof will keep out fallout particles, rain, etc., and will limit wind effects. Intake air can be drawn from the main part of the house. Outside air will enter the house in the normal infiltration method. B. H. Jennings in Heating and Air Conditioning indicates that for the average residence the probable air change rate is about $1-1 / 2$ air changes per hour by natrual infiltration. If the average residence is considered to have a floor area of 1200 sq ft and an 8 ft high ceiling (9600 cu ft of space), this means that normal air infiltration is about 240 cfm . This is more than enough intake air for most basement shelters. Used as the intake air "plemu*, the house itself would act as the principal filter for keeping fallout particles from entering the shelter intake. Little additional filtering, if any, would be needed at the intake. Thus a minimum restriction to air flow at the shelter inlet may be obtained. Inlet Restrictions

The effects of various inlet restrictions were studied in two general ways-with closed door and open door tests. A closed door test is one in which the door to the shelter is closed and sealed. All air coming into the shelter passes through 8 in. intake ducts. See Figure 2 page 5. In this type of test, the flow rate may or may not be greatly reduced by the restriction offered by the intake duct, deperding upon the stack length, diameter, and temperature (or the amount of air trying to flow). This type of test is also designated as closed door in order to distinguish it from an "open door" test which, as the term implies, is

Figure 2. Shelter Air Intake Ducte
conducted with the shelter door open. In this case there is no measurable pressure drop at the intake and thus flow rate is not limited by any intake restriction. The limiting factor for flow is the stack itslef. Thus air flow for an open door test is sometimes called "unrestricted flow" and that for a closed door test is called "restricted flow". In botn cases, the restriction or absence of restriction refers to intake conditions only.

Fuel and Burners

To obtain the required ventilation air through the test shelter, a safe, inexpensive, and easily operated combustion unit is needed to generate heat in the stack bottom. Liquefied potroleum gases such as propane and butane were excluded because of their high specific gravities. Being heavier than air, these fuels would ccllect in the shelter if leaks developed and would be inherently dangerous from an explosion and fire standpoint. They also present a problem of storage because pressurized containers must be used. Agein, this would be dangerous if punctures or leaks developed.

Natural gas would be an ideal fuel to use in the shelter, but it, like electricity, cannot be assumed to be available through nomal commercial charnels during shelter occupancy.

Gasoline would be unsafe in a shelter situation because of its high volatility and flamability. It would require special and perhaps expensive combustion equipment. When held in storage over relatively long periods of time, gasoline sometimes has a temdency to form gums. Their presence in the fuel could lead to combustion equipment plugging.

At a first consideration it appears that coal, being inexpensive and relatively easy to burn, would be a good fuel. However, coal presents
problems from the standpoint of storage space and ash removal. Coal burning devices would be complicated and require more draft than those for ofl or gas because of the resistance of the fuel bed. For these reasons coal was deemed undesirable as a test fuel.

It was decidel that kerosene (No. 1 diesel oil) would best serve the purpose. This fuel burns with a relatively clean flame, burners need not be complex or expensive, and storage in cans or other ordinary containers is relatively safe. It is also suitable as an illuminant when burned in a wick hap or wick-type burner.

Flow Equation

To predict air flow through the shelter for stacks and conditions in addition to those tested, an equation which can be applied to various inlet and outlet configurations and conditions is herein developed and discussed.

The following equates the positive buoyant force of a column of hot gases with the force of friction required to establish and maintain flow.

$$
\begin{equation*}
\frac{H}{62.4}\left(e_{\mathrm{rm}}-\ell_{\mathrm{ch}}\right)=\left(h_{\nabla}\right)+\left(h_{I}\right)=K\left(\frac{\nabla^{2}}{2 \mathrm{~g}}\right)+1 \frac{\mathrm{~L}}{\mathrm{D}}\left(\frac{\nabla^{2}}{2 \mathrm{~g}}\right) \tag{1}
\end{equation*}
$$

where H is vertical stack height, it; and 62.4 is the density of water at $70^{\circ} \mathrm{F}$ in $\mathrm{lb} / \mathrm{cu} \mathrm{ft}$, included so that both sides of the equation are expressed in the common "feet of fluid flowing" units. In the case of air, it is more convenient to deal with the velocity head $\left(h_{v}\right)$ and the friction loss head (h_{l}) in "inches of water" units rather than "feet of air" units. The transformation can be made by again using the fundamental buoyancy relation,
(2)

$$
h_{a} \rho_{a}=\frac{h}{12} \rho_{w}
$$

where $h_{a}=$ feet of air; $e_{a}=$ density of air in $\mathrm{lb} / \mathrm{cu} \mathrm{ft} ; \mathrm{h}=$ inches of water (gage); and $f_{w}=$ density of water at $70^{\circ} \mathrm{F}$ in $\mathrm{lb} / \mathrm{cu} \mathrm{ft}$. Thus, it is seen that,
(3)

$$
h_{a}=\frac{h}{12}\left(\frac{62.4}{e a}\right)=5.2 \frac{h}{e_{a}}
$$

For the velocity head trim, h_{v}, in inches of water,
(4)

$$
K \frac{\nabla^{2}}{2 g}=5.2 \frac{h_{V}}{2 \mathrm{a}}
$$

or

$$
n_{\nabla}=x \frac{\nabla^{2} \rho_{a}}{5.2(2 g)}
$$

Wt stack air velocity, V, as feet per minute,

$$
\begin{equation*}
h_{\nabla}=K \frac{\nabla^{2} e_{a}}{(5.2)(2)(32.2)(3600)}=K \frac{\nabla^{2} \rho_{a}}{1,202,000}=K\left(\frac{\nabla}{1096}\right)^{2} \rho_{a} \tag{5}
\end{equation*}
$$

By substituting equation (5) into equation (1), we obtain the driving force r^{\prime} 'ationship expressed in inches of water. Hence,

$$
\begin{align*}
\frac{H}{62.4}(12)\left(\rho_{\mathrm{rm}}-\rho_{\mathrm{ch}}\right)=\frac{H}{5.2}\left(\rho_{\mathrm{rm}}-\rho_{\mathrm{ch}}\right) & =K\left(\frac{\mathrm{~V}}{1096}\right)^{2} \rho_{a} \tag{6}\\
& +\mathrm{f} \frac{L}{D}\left(\frac{V}{1096}\right)^{2} \rho_{a}
\end{align*}
$$

Equation (6) applies to shelter air flow in general if terms with the appropriate subscripts are used. Thus,

$$
\begin{align*}
\frac{\mathrm{A}}{5.2}\left(\rho_{\mathrm{rm}}-\rho_{\mathrm{ch}}\right) & =\mathrm{K}_{1}\left(\frac{\nabla_{1}}{1096}\right)^{2} \rho_{\mathrm{in}}+I_{1} \frac{\mathrm{I}_{1}}{D_{1}}\left(\frac{\nabla_{1}}{1096}\right)^{2} \rho_{\mathrm{in}} \tag{7}\\
& +\mathrm{K}_{2}\left(\frac{\nabla_{2}}{1096}\right)^{2} \rho_{\mathrm{ch}}+I_{2}\left(\frac{\nabla_{2}}{1096}\right)^{2} \rho_{\mathrm{ch}}
\end{align*}
$$

Where: $\mathrm{H}=$ vertical height of stack, ft C - air density, $\mathrm{lb} / \mathrm{cu}$ ft K - duct or stack entrance loss coefficient $\nabla=$ air velocity, $\mathrm{ft} / \mathrm{min}$ $\mathrm{L}=$ duct or stack equivalent length, ft $\mathrm{D}=$ duct or stack diameter, ft $\mathrm{f}=$ duct or stack friction factor
rm = conditions of space surrounding the stack, usually ambient air conditions

1, in $=$ conditions at shelter intake
2, ch $=$ conditions at stack or shelter exhaust
For the purpose of using equation (7) to predict shifter ventilation rates that can be compared to test results, the constants and coefficients had to be evaluated for conditions that existed during experimentation. All closed door test were made with the air passing into the shelter through an 8 in. diameter duct. This allows the D and L terms of equation (7) to be fixed at 0.667 ft and 3.834 ft , respectively. Values for both of the entrance loss coefficients, K_{1} and K_{2}, are assumed for the poorest entrance conditions, ie., $K_{1}=K_{2}=1$. This assumption is bused on several facts and conditions. The intake duct is a re-entrant type of pipe entrance for which the nominal value of loss coefficient is 0.8 . In the end of the duct, however, is an aluminum-foil tubular grid which offers not only
additional entrance loss, but also additional friction loss. Entrance to the stack, for all test conditions, is made through the rectangular hood described on page 43. It represents a hood condition similar to that described by W. C. L. Hemeon in Plant \& Process Ventilation. He states that for a hood with low face velocity and relatively low stack temperatures, the entry coefficient is 0.9. This coefficient is further increased in the test case because the heat generating equipment extends into the hood a short distance and thus disturbs the flow. For these reasons it is believed that the assumption of $K_{1}=K_{2}=1$ is very reasonable.

In considering the friction factors for the intake duct and the stack, it is believed that the standard tabulated values of f, given as a function of Reynolds number and pipe relative roughness, are not entirely applicable. Both the intake duct and the stack contain obstructions not normally found in pipes or duct. The intake duct houses the tubular grid near the entrance, a special thermocouple anemometer, a propeller anemometer, and a thermocouple probe. The stack contains pressure taps, thermocouple probes, and, in the case of the 6 in. diameter stack, a layer of soot on the wall surfaces. The friction factors were thus obtained experimentally from a test performed with a 6 in. diameter 15 ft long straight stack. A flow was induced in the system and the room entrance pressure drop, the flow at inlet conditions, and the necessary temperatures were measured. The friction factor ε inlet, f_{1}, was then $c a l c u l a t e d ~ b y ~$ equating the measured $\Delta P_{r m}$ to the first two terms on the right-hand side of the equations (7) and solving for f_{1}. The value arrived at in this manner is $f_{1}=0.415$. When this is compared to tabulated friction values
it appsars to be extremely high. But when the resistance offered by all of the equipement in the duct is considered, this value of f_{1} seems reasonable. With f_{1} thus establiched, equation (7) was solved for the remairing unknown quanity, f_{2}. The value of f_{2} determined in this manner is 0.064 . Ancther assumption made at this point was that the friction factors would remain constant for all diameters and lengths of stack considered. It is shown in a latter section of this report that this assumption is conservative.

The constants and coefficients thus determined can be inserted into equation (7) to field a somewhat refined flow equation. Performing the substitutions we obtain.

$$
\begin{align*}
\frac{H}{5.2}\left(\int_{\mathrm{rm}}-C_{\mathrm{ch}}\right) & =1\left(\frac{\nabla_{1}}{1096}\right)^{2} \rho_{\text {in }}+\frac{(0.415)(3.834)}{0.667}\left(\frac{\nabla_{1}}{1096}\right)^{2} \rho_{\text {in }} \tag{8}\\
& +1\left(\frac{\nabla_{2}}{1096}\right)^{2} \rho_{\mathrm{ch}}+0.064 \frac{L_{2}}{D_{2}}\left(\frac{\nabla_{2}}{1096}\right)^{2} \rho_{\mathrm{ch}}
\end{align*}
$$

which, when simplified, yields,

$$
\begin{equation*}
\frac{H}{5.2}\left(\rho_{\mathrm{rm}}-\rho_{\mathrm{ch}}\right)=3.385\left(\frac{\nabla_{1}}{1096}\right)^{2} \rho_{\mathrm{in}}+\left(\frac{\mathrm{V}_{2}}{1096}\right)^{2} \rho_{\mathrm{ch}}\left[1+0.064 \frac{L_{2}}{D_{2}}\right] \tag{9}
\end{equation*}
$$

Inspection of this last equation shows the variables to be: barometric pressure; and ambient, stack, and inlet temperatures (all from density considerations, 1.e., $\rho=P_{B}(0.491)(144) / R(T+460)$); intake and stack air velocities; stack diameter D_{2}; stack vertical height H; and stack equivalent length L_{2}.

The equivalent stack length (L_{c}) warrants further discussion. For a stack without elbows or bends, $H=L_{2}$. Additionally the stack may contain
two 90° elbows and a 2 ft section of horizontal pipe. In a manner similar to that for finding the friction factors, an equivalent pipe length for one $6 \mathrm{in} .90^{\circ}$ elbow was calculated to be 4.2 ft . The total equivalent length of both elbows and the horizontal run is thus 10.4 ft . Reference to the 1963 ASHRAB Guide and Data Book indicates that the equivalent length of such an elbow is 8 ft . This latter value, however, is based on a relatively long duct system containing "full" flow, 1.e. forced circulation. When used in this sense, it is not extremely critical. In the test stack the equivalent length has a considerable influence on $170 w$ as shown by the equation. The use of the lower value of 4.2 ft per eltow is justified because of the vary shart duct arrangement and because "full" flow around the elbow is never realized.

The final assumption for use with equation (9) is that the equivalent length for all diameter elbows is constant at 4.2 ft per elbow. This is again a conservative estimate.

A digital computer program of equation (9) was written in order to predict flows for many different conditions of stack diameters, stack lengths, temperatures, pressure, etc. Values from the computer program are termed "theoretical" values. It should be mentioned that for opendoor test predictions, the first term on the right-hand side of equation (9) vanishes. This mears that there is essentially no restriction to flow at the shelter inlet.

All tests were conducted at approximately 5000 ft altil ie (Bozeman, Montana) and thus the experimental results are in terms of actual conditions, i.e., barometric pressure ($\mathrm{P}_{\mathrm{B}}=25 \mathrm{in} . \mathrm{Hg}$) and temperatures at 5000 ft . The computer equation was also solved using standard or sea level conditions
-13-
($P_{B}=29.92$ in. H and $\mathrm{T}_{\text {ambient }}=70^{\circ} \mathrm{F}$) to determine the effect of altitude on flow.

The shelter used for conducting ventilation test is located on the Montana State Oniversity campus in Bozeman, Montana. The shelter was adapted from an underground blind tannel incated beneath the floor of the Mechanical Engineering Department's porer Laboratory. The original tunnel structure was rectangular in shape with internal dimensions of 37 ft by 6 ft. The celling is Mat and approximately 6 ft high. Adjacent to the east end of the room is a 6 by 7 ft open entryway. Modifications were made to the original tunnel to the extent of adding a partition and a door at a distance of 7 ft from the east end. Thus the space used as a test shelter was 30 ft by 6 ft dimensions. The walls, floor, and ceiling or the shelter are all 8 in. thick concrete.

The partition, with 2×4 framing consists of 6 mil polyethylene sheet fastened to the frame with duct tape. Caulking compound and duct tape were used to close all cracks between the partition framing and concrete. A $2 \frac{1}{2} \mathrm{ft}$ by 6 ft particle-board door was installed in the center of the partition and sealed with weather stripping.

An 8 in. diameter 3.8 ft long sheet metal duct was installed in the polyethylene partition about 2 ft from the floor and sealed with tape. This duct was used as the air intake to the shelter. To assure streamline flow in the intake, 1 in. diameter aluminum foil tubes, 12 in. long, were nested in the upstream end of the 8 in. duct.

At the west end of the shelteralft 9 in . square section of concrete was removed from the ceiling through which the outlet stacks were installed. Figure 3 ion page 15 is a line sketch of the shelter test facility showing intake duct and stack locations. See also Figure 4 on page 16 for picture
-15-

Figure 4. Stack Extending from Shelter
of stack extending from shelter.
Minimums established by the Civil Defense other than the 3 cin ventilation ate include 60 to 65 cu ft of space per person and 10 sq ft of floor space per person. The test shelter, with a floor area of 180 sq ft and a 6 ft ceiling, provider 60 cu ft of space for each of 18 people. Based on the minimum air rate, at least 5 ofm of outside air is required.

With a rated capacity of 18 people, the test sholter is in the category of family-type shelters. It also represents an ideal family basement shelter in other ways. The stack is completely contained within the power laboratory which has a ceiling approximately 30 ft high. Intake air is drawn at the floor level of and exhausted near the ceiling of the laboratory. Skylight windows in the la boratory ceiling may be opened to permit the hot stack gases to escape into the atmosphere.

INSTRUMENTATION AND CALIBRATION

Air Flow Measurements

For use with ventilation tests a reliable and sensitive method for measuring low velocity air flows was needed. Because tine pressure available to cause air flow is very small, the method of measuring the air that flows into the shelter has to be such that their is little or no pressure drop. This eifinates an orifice which, by its nature, requires a pressure drop.

Personnel from Electronics Research, Montana State University, were consulted concerning the possibility of measuring air flow in a duct using a thermistor probe. Since this group had previously conducted apparently successful research on thermistors, they agreed to design and build the necessary circuitry and thermistor probe.

The thermistor circuit used was a temperature-compensating Wheatstone-bridge circuit using transistors to maintain constant current. Several bead-type thermistors were tried in this circuit without success. Much time was spent trying to develop a reliable anemometer from the themistors but the problem of temperature compensation was not completely solved. Details of the thermistor anemometry, including calibration procedures, can be found in Appendix A.

Another unsuccessful attempt to measure air flow was made using a hot-wire anemometer. The instrument was neither sensitive enough nor accurate enough at low air velocities.

In search of an instrument or method to measure air flow through the shelter, a special thermoccuple device consisting of two thermocouples wired in series set one behind the other in the air flow stream was
constructed. Between the thermocouples is a common resistor giving off a constant quantity of heat. The thermocouples sense the increage in air temperature caused by heating the resistor and produce a voltage output which depends on air velocity. A sketch of the simple anemometer is shown in Figurs 5a on page 20. Figure 5 shows in part the theracouple and reaistor wiring diagrams. Assumptions concerning the design paramenters of the meter are:

1. Flow rate range expected to be measured in one 8 in. intake duct is 10 to 150 cfm at actual conditions ($70^{\circ} \mathrm{F}$ and $25 \mathrm{in} . \mathrm{Hg}$).
2. Anemometer will be installed in one of the 1 in. alumimum foil tubes and placed in the center of the intake duct.
3. Accuracy in measurement of air temperature difference at the highest anticipated flow is limited to $1^{\circ} \mathrm{F}$ using iron-constantan thermocouples.
4. A minimum input of 40 volts d.c. is available as supply voltage.
5. The specific heat of air throughout the expected flow range is constant at $0.24 \mathrm{Btu} / \mathrm{Lb}^{\circ} \mathrm{F}$.

Calculations for the required size of resistor are given below. The reader is referred to any standard text on thermodynamics or heat transfer if a more complete explanation of the basic equations is desired.

The weight of air per mimute flowing through the 8 in. intake duct (wg) is given by the perfect gas law as:

$$
w_{8}=\frac{P_{B}(\mathrm{in} . \mathrm{Hg}) \times \nabla\left(\mathrm{ft}^{3} / \mathrm{min}\right) \times 0.491(\mathrm{psi} / \mathrm{in} . \mathrm{Hg}) \times 14 山\left(\mathrm{in}^{2} / \mathrm{ft}^{2}\right)}{\mathrm{H}\left(\mathrm{ft}-\mathrm{lb} / \mathrm{lb} \mathrm{~F}_{\mathrm{F}} \mathrm{abs}\right) \times \mathrm{Ta}(\mathrm{Fabs})}
$$

$=\frac{25(0.491)(144) V}{53.3(530)}=0.0625 \nabla$
-20

Figure ga. Special Thermocouple Anemometer

Firure 50. Resistor \& Thermocouple Wiring Diagram

At the lowest flow (V) of 10 cfm ,

$$
\left(w_{8}\right)_{l}=0.625 \times 10=0.625 \mathrm{lb} / \mathrm{min}
$$

At the highest flow of 150 cfm ,

$$
(w 8)_{h}=0.0625 \times 150=9.37 \mathrm{lb} / \mathrm{min}
$$

Area of the 1 in. foil tube,

$$
\mathrm{A}_{1} \quad-\pi \mathrm{d}_{1}^{2} / 4=0.785 \mathrm{in}^{2}
$$

Area of the 8 in . duct,
$A_{8}=\pi d_{8}^{2} / 4=50.2 \mathrm{In}^{2}$
The weight flow of air in the 1 in. tube is givn by multi. lying the weight flow in the 8 in duct by the area ratio. Hence,

$$
\left(w_{1}\right)_{\ell}=\left(w_{8}\right)_{\ell} \times \Lambda_{1} / \Lambda_{8}=0.625 \times 0.785 / 50.2=0.00977 \mathrm{lb} / \mathrm{min}
$$

and $\left(v_{1}\right)_{h}=\left(w_{8}\right)_{h} \times A_{1} / A_{8}=9.37 \times 0.785 / 50.2=0.1465 \mathrm{lb} / \mathrm{min}$
Heat from the resistor ($Q, B t u / m i n$) supplied to the air is given by the specific heat equation for constant pressure, $Q=w c_{p} \Delta T$. At the highest flow with a temperature difference (ΔT) of $1^{\circ} \mathrm{F}$,

$$
\begin{aligned}
Q_{h}=\left(w_{1}\right)_{h} c_{p} \Delta T & =0.14 \mathrm{Lr} \times 0.24 \times 1 \\
& =0.0351 \mathrm{Btu} / \mathrm{min}
\end{aligned}
$$

If heat from the resistor is held constant at O_{h}, then ΔT for any flow is given by,

$$
\Delta T=a_{h} / w c_{p}=0.0351 / C .24 w=0.1452 / w .
$$

Thus the madmum ΔT, at the lowest weight flow ($\left.w_{2}\right)_{l}$, should bes

$$
\Delta T_{\max }=0.1452 / 0.00977=14.87^{\circ} \mathrm{F}
$$

In order tr hold constant the heat from the resistor at Q_{h}, the power (P) supplied to the resistor should be:

$$
\begin{aligned}
P= & 0.351(B t u / \mathrm{min}) \times 778(f t-1 \mathrm{~b} / \text { Btu }) \\
& \times 1 / 33.000(\text { ft-1b } / \mathrm{min} \mathrm{hp}) \times 746(\text { watts } / \mathrm{hp})=0.517 \text { watts. }
\end{aligned}
$$

Because $P=I^{2}=\nabla I$, the current (I) required to maintain the above power (assuming v is constant at 40 volts) is:

$$
I=P / \nabla=0.617 / 40=0.0154 \mathrm{amps} .
$$

The maximum resistance for the anemometer is:

$$
R_{\max }=\nabla / I=40 / 0.0154=2595 \text { chms. }
$$

The thermocouple anemometer was constructed according to the original Ideas and assumptions except that the resistor used was one rated at 1 watt and 1500 ohms. This resistor, rather than one of 2595 chms was decided upon because of availability and its small physical size.

The one-inch foil tube with the meter installed in its center was placed in the center of the tubular grid at the end of the 8 in . intaire duct. Appropriate leads were connected to the resistor and thermocouplis. A vacuum tube voltmeter was used to read the generated voltage from the thermocouples. A preliminary test run was conducted with about 38 volts input to resistor. This voltage was used instead of 40 volts to keep the power near but less than one watt. The output of the instrument appeared stable over the entire range of flow from 10 to 150 cfm , but the change in output voltage over this flow range was limited to about 0.25 millivolts. To extend the output range scale at the vacuum tube voltmeter (VTVM), a 180 K ohm resistor and a small adjustable resistor were added to the circuit. To obtain a permanent record of output, a $0-10$ millivolt recorder was indirectly connected to the 0-1 volt output scale of the VTVM through a voltage divider (two arbitrarily chosen resistances) whose purpose was to again extend the scale range. Arrargement of the equipment is shown in Figure 6 on page 23. The 20.1 K ohm resistor in series with the voltmeter permits close control of input voltage to the anemometer resistor.

FIGURE 6. CONTROL EQUIPMENT FOR THERMOCOUPLE ANEMOMETER

The 0-1.15 ohm adjustable resistor is used to adjust the recorder scale to zero when the anemometer is in still air. This circuit, with divider resistances chosen by trial and error, allows nearly a 9 millivolt output range at the recorder over thie 150 cfm flow range.

Calibration of the thermocouple anemometer indicates that the instrument provides fairly reliable method of measuring air flows above abous 40 acfm. See Figure 7 for the calibration curve. Between flows of 40 and 20 cfm , the millivolt output does not change enough to sufficiently describe a particular point on the circular portion of the curve.

Although the use of the thermocouple anemometer is somewhat limited at low air flows, it was one of the two methods finally used in the shelter ventilation tests. It is believed that flow measurements taken with this device above 40 acfm can be trusted.

The second method of air flow measurement finally adopted employs an all-mechanical propeller anemometer, sometimes referred to in this report as the "rindmill". The instrument consists of an eight-bladed fan, each blade being about l-3/16 inches long. Motion of the fan shaft is transmitted to a set of indicating dials through a network of ting gears. Figure 8 in page 26 shows the windmill, its position at the outlet end of the intake duct, anc the clamping arrangement for its support.

A stop watch is used with the windmill when a reading is taken because the dials indicate lineal feet of air rather than air velocity. Windmill operation is somewhat maladroit because the dials must be correctly read and the readings recorded each time the watch is started and stopped. Also there is no permanent record from which to later recheck a velocity reading. Despite these drawbacks, the propeller anemometer provides a
-25-

Figure 7. Calibration Curve for Thermocouple Anenometer

Figure 8. Propeller-Type Anemometer
reasonably accurate and reliable means for measurine air flow.
During calibration of the anemometers, a laminar flow element, mamfactured bv the Meriam Instrument Company, was used with an accompanying centrifugal blower as the air flow standars. This laminar flow device, applicable to air flows from 0 to 200 standard cfm (at 29.92 in. Hg and $70^{\circ} \mathrm{F}$), consists of parallel, capillary-size tubes through which the air flows. The pressure drop across the tubes has a straight-line relationship with the mass air flow. A calibration curve of this relationship, showing pressure drop across the tubes (in. of water) versus standard air flow (lb per min) is supplied with the element.

To calibrate the windmill and the thermocouple anemometers the laminar flow element uas connected to a small 4 in. connection on stack roof jack shown in Figure 4 on page 16. This 4 in. connection was used only for pulling air from shelter during calibration. Except for this connection and the air intake duct, the test room was supposedly air tight, but because of imperfections in the construction of the shelter it is conceivable that air leaks existed in the system. Since the total amount of air coming into the shelter (including leakage air) went out through the 4 in. connection, thus intc the lamirar flow element, the readings obtained from the laminar flow element included the total amount of air drawn into the rocm. Therefore any leakage air is accounted for in the calibration curve.

Tests covering the entire expected flow range were conducted at Air intake temperature intervals of two degrees from $62^{\circ} \mathrm{F}$ to $90^{\circ} \mathrm{F}$. Humidity of the intake air was varied during several of the runs by spraying steam into the stairwell entrance of the sheltor. Calibration of
I -28.

Figure 9. Calibration Curve for Propeller Anemometer
neither instrument is affected uy changes in intake air temperature or humidity.

The callbration curve for the propeller anemometer, showing apparent or instrument air velocity (calculated from instrument and stop watch readings) versus actual cim, is nearly a linear relationship. A representation of this curve is shown in Figure 9. (Below an instrument air velocity of 18 ft per min the anemometer vanes do not rotate.) All calibration points, a total of 87 , for all temperatures and humidities lie within +3.5 and -3.3 percent of the points dictated by the calibration curve drawn.

Test points for the calbration curve described earlier for the thermocouple anemometer are all within +4.9 and -7.6 percent (these being the two most erratic points) of the values read from the curve drawn.

Although the windmill and the thermocouple anemometer do not extend to extremely low flows, they do permit reliable air flow measurement from 19 to 143 acfm. Both methods are independent of ambient air temperature and humidity changes, and either method provides results within good engineering accuracy. Because the thermocouple anemometer is the least accurate and the least comprehensive of the two instruments, it is used only to confirm the readings obtained by the propeller anemometer. The two instruments are used simultaneously when testing.

Temperature Measurements

To properly evaluate the effect of the flame in the chimney, stack as well as room and ambient temperatures must be determined. The first attempt to measure temperature in a straight 6 in. diameter, 15 ft long stack involved placing copper-constantan thermocouples every few feet. Tine thermcouple wires, with original insulation only, were inserted through small holes in the stack wall. The thermocouple junctions were
located at about the center of the gas stream. This arrangement proved to be inadequate because representative temperatures along the stack could not be obtained. Wide variations in temperatures at different locations along the stack were caused by thermocouples "seeing" the flame at the stack bottom and because of temperature and gas velocity profiles across the stack cross section.

To improve the accuracy of temperature readings and to provide a means of taking a traverse across the stack, movable thermocouple probes were built. The first probes built, shown in Figure 10a on page 31, consist of 20 gage iron-constantan thermocouple wires inside steel tubes about 11 in. leng. The tubes pass through brass cinch adapter tubing fittings soldered into the stack wall. The angled end of the probes permits the themmocouple to be exposed to the gases, yet provides shielding against direct radiation from flame.

A temperature traverse was taken with these probes at an average stack temperature of about 5000 F . Some very umsual results were obtained, especially with the probe nearest the combustion chamber. A temperature difference as high as $175^{\circ} \mathrm{F}$ occurred between two points, each point being about $1 / 2$ inch from the stack wall but on opposite sides. The higher of the two temperatures was at the "far wall" point, i.e., with the probe exterding all the way across the stack. Similar temperature differences were found at all points along the stack length.

It appeared that heat was being rapidly conducted away from the couple junction by the steel tubing and the large 20 gage wires. The highest conduction rate was when the probe was fully extended, i.e., when the thermocouple junction was at the "near wall" point. The higher rate is due to the cool air surrounding the outside of the stack.

Figure 10. Thermocouple Probe Designs

To reduce heat conduction to a minimum, the probe design was changed. The tules were cut off "square" on the end, the 20 gage thermocouple wires replaced by staller 30 gage wire, and porcelain insulators placed inside the tubes around the wires over nearly the full length of the tube. As a type of heat sink for the thermocouples, brass balls about $3 / 16$ inch in diameter were fused onto the couple junctions. This probe design is shown in Figure 10 b on page 31.

Temperature traverses with this type probe gave good results at stack heights of 5 ft and above. Temperature readings at the near and far points all agree within eight rercent of each other for these heights. This arrangement permits the determination of representative stack temperatures at points 5 ft or more from the flame.

The brass ball temperature probe is not satisfactory for points close to the flame. The probe at the bottom of the stack eliminated because it received heat directiy from flame and thus gave a reading more representative of combustion chamber temperature rather than stack gas temperature. This readjing was of no value in determining the mean or average stack temperature.

It was decided that the first temperature along the stack would be read at a point $2-1 / 2 \mathrm{ft}$ from the bottom. A third type of probe was used for this point. See Figure 10c on page 31. This probe, similar to the ones discussed above, uses a 30 gage junction with no additional heat sink. The thermocouple is in the center of a $5 / 32$ inch hole drilled through the tube at about one-half inch from its end. The probe, used with the small hole in the tube perpendicular to gas flow, reduces radiation and turbulence effects and gives fairly reliable and stable temperature readings.

In order to obtain the average temperature at any stack cross section, plots of temperature versus distance across stack were made. From these plots it was determined that the average cross-sectional temperature for all stack heights is given when the probe thermocouples are at 2 in. from the near wall. (This location applies only for a 6 in. diameter stack.) In an article entitled Measurement of Mean Temperature in a Duct", appearing in the September, 1961 issue of Instruments and Control Systems, it is stated that when only one temperature sensor is used at a particular stack cross section, it should be placed at 0.58 times the radius away from the center. This is in relatively close agreement with the results obtained through temperature traverse readings. This samu procedure for locating temperature probes was used each time the stack diameter was changed.

The final locations decided upon for thernocouple probes along the stack length include the shielded probe at $2-1 / 2 \mathrm{ft}$ and brass ball probes at 5 ft and every 5 ft interval thereafter. Thus for a stack 15 ft high, four stack temperatures were read and recorded.

The mean staci temperature for a particular test was det:rmined by plotting a curve of temperature versus stack height (a linear relationship) anc then selecting the temperature at the mid-height of the stack. Thus for a 15 ft stack, the mean stack temperature (Tm or Tch) is taken from the curve at the $7-1 / 2 \mathrm{ft}$ point. It is estimated that this method of determining the mean stack temperature is accurate to within 4 percent. Other temperatures determined and rncorded during testing included those of the shelter space, the room above the shelter, and intake air temperature. These three temperatures were taken by using copper-constantan thermocourles. Stack temperatures were read from a $0-1000^{\circ} \mathrm{F}$ recorder and
the remainder from a $0-100^{\circ} \mathrm{F}$ recorder. Both recorders, Honeywell models using type J couples, were periodically calibrated by inserting one thermocouple in $32^{\circ} \mathrm{F}$ ice water and adjusting the indicators as required. Pressure Measurements

At the outset of the project, the need to measure the pressure drop at the inlet to the shelter in relation to air fluw was anticipated. This relationship was needed in order to determine the permissible restriction for shelters in terms of filters and still obtain the required ventilation air.

A type "C" micromanometer, made by E. Vernon Hill \& Co., Chicago, was cleaned and filled with a special gage fluif having a specific gravity of 0.797. Although the fluid is not water, the manometer reads in inches of water, the smallest dial division being 0.001 in. of water. The micromometar is shown in Figure 11 on page 35.

The instrument was located inside the shelter near the stack. The main reason for locating it near the stack is because a pitot tube, used to measure exhaust gas velocity, was installed in the stack and it appeared desirable to have its connection hose as short.as possible. Also a pressure probe was instilled at the bottom of the stack for measurement of stack entrance pressure drop. To measure the entrance or room pressure drup $\left(\Delta P_{r m}\right)$, one tube from the manometer extended through the ceiling to measure ambient pressure and the other tube was open to measure the shelter pressure. All pressure tubes from the pitot tube, the room pressure drop arrangement, and the stack bottom converge at a manifold consisting of glass tees and short pieces of Tygon tubing. Only two hoses run from the manifold to the micromanometer. With the use of screw clamps in the appropriate places, measurement of any desired pressure drop is relatively simple.

Figure 11. Pressure Measuring Device (micromanometer)

-36-

An equation for air flow through the shelter was developed in an earlier section. Indicated in this equation, written in terms of inches of water, are two terms, the sum of which accounts for the total pressure drop $\Delta P_{r m}$ at the shelter entrance. The individual terms account for the friction $10 s s$ and the velocity head loss in the intake duct. Theoretical values of $\Delta P_{\text {rm }}$, taken from a computer program of the flow equations, are plotted in Figure 12 on page 37 along with experimental $\Delta P_{r m}$ values as measured with the micromanometer. Pressures are plotted versus temperature difference, i.e., mean stack temperature ($T_{c h}$) minus ambient temperature around stack $\left(T_{m m}\right)$. Although this graph is for only two different stack configurations, it is representative and shows the relative accuracy and reliability of the micromanometer readings.

The pressure probe at the bottom of the stack consists of a straight piece of $3 / 16$ in. steel tubing, closed at one end, with $3 / 64$ in. d'ameter holes drilled completely through and spaced about every half inch along the tube length. The small holes are perpendicular to the air flow. Used in conjuction with the micromanometer, the pressure probe permits measurement of the difference in pressure between the shelter space and the bottom of the stack, i.e., the stack entrance loss.

Because the air was not forced to pass through the intake duct during open door tests, neither the propeller anemometer nor the thermocouple anemometer could be used to measure the air flow. Instead, a pitot tube, installed in the stack at mid-height, was used to measure the air flow. To do this the tube was calibrated during the previous closed door test. Further explanation of calibration follows.

The difference between the static and the stagnation pressures ($p s$ - po) in the stack is measured using the micromanometer. The apparent

stack air velocity is then calcuiated using the basic pitot tube equation.

$$
\begin{equation*}
\nabla_{0}=\sqrt{2 g\left(p_{s}-p_{0}\right) / \sigma} \quad \text { (\&t per sec) } \tag{10}
\end{equation*}
$$

In which γ is the air density. Equation (10) can be simplified by letting $\Delta p^{=}\left(p_{s}-p_{0}\right) ; \nabla_{s p}-\nabla_{0}=$ stack velocity as determined from the pitot tube readings; and solving for the air density from the perfect gas law. Clearly,

$$
\begin{equation*}
\gamma=\frac{W}{\nabla}=\frac{P_{B}}{\mathrm{~B}\left(\mathrm{~T}_{\mathrm{ch}}+460\right)}=\frac{\mathrm{P}_{\mathrm{B}}(0.491)(144)}{(53.3)\left(T_{\mathrm{ch}}+460\right)}=\frac{1.327 P_{B}}{\left(T_{\mathrm{ch}}+460\right)} \tag{11}
\end{equation*}
$$

and by substituting these and the conversion factor, $1 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}=5.203 \mathrm{psf}$, into equation (10), we obtain,

$$
\begin{equation*}
\nabla_{s p}=\sqrt{2 g \Delta p / \gamma}=\sqrt{2(32.2)(\Delta p)(5.203)\left(T_{c h}+460\right) / 1.327 P_{B}} \tag{12}
\end{equation*}
$$

or

$$
\nabla_{\mathrm{sp}}=\sqrt{252.2(\Delta \mathrm{p})\left(\mathrm{T}_{\mathrm{ch}}+L 60\right) / \mathrm{P}_{\mathrm{B}}}
$$

where $\quad \nabla_{s p}=$ stack gas velocity as determined from the pitot tube readings, ft per sec
$\Delta p=$ pitot tube pressure reading, in. of $\mathrm{H}_{2} \mathrm{O}$
$T_{c h}=$ mean stack or chimney temperatire, of
$P_{B}=$ barometric pressure, in. of Hg
To find the uctual cim of air flowing in the stack, we can write,

$$
\frac{\left(P_{i}\right)(A C F M)_{i}}{\left(P_{S}\right)(A C F M)_{S}} \quad \frac{W_{i} R_{i}\left(T_{i}+460\right)}{W_{S} R_{S}\left(T_{c h}-L 60\right)}
$$

and because the weight of air flowing per minute and the gas constants are the same at inlet and stack conditions, we may write, if we assume that the barometric pressures are the same,

$$
\begin{equation*}
(A C F M)_{s}=(A C F M)_{i} \frac{\left(T_{c h}+460\right)}{\left(T_{i}+460\right)} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{c h} & =\text { mean stack temperature, } O_{F} \\
T_{i} & =\text { inlet air temperature, } o_{F} \\
(A C F M)_{1} & =\text { actual air flow at inlet, cu ft par min } \\
(A C F M)_{3} & =\text { actual air flow in stack, cu it per min }
\end{aligned}
$$

The terms on the right side of equation (13) are determined from the closed door test. The air flow in the stack is also given by multiplying the cross sectional stack area (A_{s}) by the true stack velccity ($\nabla_{s, t}$). Hence, (14)

$$
A C F M_{S}=A_{s} \nabla_{s t}
$$

or

$$
\nabla_{s t}=A C F M_{s} / \Lambda_{s}
$$

where A_{s} is in sa ft. $\nabla_{s t}$ is then compared with $V_{s p}$ and a constant or correction factor (C_{1}) determined from the relationship,

$$
\begin{equation*}
v_{s t}=c_{1} \nabla_{s p} \tag{15}
\end{equation*}
$$

Equation (10) is normally used only for incompressible fluids. It can be used for air with little error if the pitot tube is calibrated for each change in stack configuration over a wide range in air velocities. Heat Generating Bquipment

Because it is assumed that no electricity will be availatle in the shelter, which precludes the use of electrically driven fans for supplying
ventilation air, consideration was not given to combustion equipment requiring electricity for operation or control.

A first thought was that a small pot turner using fuel oil would be ideal, but a test proved differently. Maximum flow obtainable in a 6 in. diameter 15 ft straight stack with the pot burner was about 30 acfm at a stack temperature of nearly $400^{\circ} \mathrm{F}$ and a heat output of about 36,000 Btuh. The reason for such a low flow is that most of the pressure drop generated Whs used to induce proper combustion in the pot burner which uses a barometric damper. Little pressure drop was left to induce air to flow through the shelter. It was concluded that a pot burner which requires a large pressure drop for combustion will not suffice as proper heat generating equipment for shelters.

The next attempt to induce a draft by a flame in the chimney was to Utilize a small fuel-oil space heater of the wick-type. Because of the configuration of the hood and to conserve space, it was necessary to remove ithe tank and wick assembly from the space heater body. (In this report the tank and wick assembly are referred to as the space heater.) When using the tank and wick assembly by itself, it was found that it failed to burn correctly due to improper draft. Therefore a small chimney was built out of sheet metal and placed around the flame. See Figure 14 on page 41. With this burner the full benefit of combustion is realized in generating a pressure differential which causes air to flow through the shelter. The range of air flow obtainable with the wick-type space heater in the 6 in . ft high stack is about 35 to 60 acfm . Maximum mean stack temperature is around $160^{\circ} \mathrm{F}$.

As ancther heat source, a single kerosene lamp of the type cormon a few years back was tried. About 25 acfm of air can be drawn through the

Figure 13. "Three-Holer" Kerosene Lamp

Figure 14. Dual Space-Heater Equipment
shelter when the lamp is operated at "full" flame. A "three-holer" 1 : burner was developed whereby the wicks and glass chimineys of three dif kerosene lamps were put on one fuel tank. The rectangular fuel tank nearly one gallon of kerosene. The "three-holer" burner is show in F 13 on page 41. With this arrangement it is possible to burn one, two, three lamps at a time to obtain increased heat output and air flow. T. draft generated by burning the three lamps simultaneously is nearly eq: alent to that produced by the small wick-type space heater.

In an endeavor to produce air flows greater than 60 acfm, a seconc wick-type space heater was obtained. A portable stand, consisting of a piece of $1 / 2$ in. plywood with two 2×4 legs, supports the two burners. Two 2 in. holes were cut in the plywood to supply primary combustion ai to the burners which set flat on the plywood. With this "dual-burner" arrangement at the bottom of a 6 in. 15 ft high straight stack, a maxim flow of 80 acfm is obtained at a mean stack temperature of about $230^{\circ} \mathrm{F}$. The dual-space-heater unit is shown in Figure 44 on page 4 as it appeal during cperation. In the same figure are shown the bottom of the intake hood and a scale balance which is used to determine the weight of fuel burned.

As explained earlier, it cannot be assumed that natural gas will be available during shelter occupancy. However, for the purpose of testing two natural gas burners were utilized in order to reach temperatures and flows considerably abuve those obtainable by the other methods. Mean stack temperatures of nearly $650^{\circ} \mathrm{F}$ can be obtained by using the natural gas burners.

Hood Configurations

At the beginning of ventilation tests, a 6 in. diameter vertical stack was used. The stack entrance loss was measured at a flow of 50 acfm using a wick-type kerosene burner as the heat generator with no entrance hood at the stack. In order to minimize the stack entrance loss, the most economical and practical hood type had to be determined. Tests were conducted, all at air flows of 50 acfm , with various hood configurations. The first hood, conical in shape, was made from heary aluminum foil. The top diameter of the hood was 6 in., bottom diameter was 24 in., and height was 16 in. Stack entrance loss was measured and recorded at a flow of 50 acfm.

The second hood, also of a conical shape and made from aluminum foil, was 5.5 in. high with top and bottom diameters of 6 and 12 in., respectively. Again the entrance pressure drop at 50 acfm flow was measured.

The third and final hood tested was made of galvanized sheet metal in a rectangular shape of dimensions: height, 13 in.; width, 10 in ; and length, 17 in. The pressure drop was measured as before. Stack entrance losses for the four conditions previously described were compared. Results showed that all readings were within 3.5 percent of each other, a negligible difference. From these results it was concluded that air flow by the induced draft method is nearly independent of hood shape and size. Consequently, all further ventilation tests were conducted using the rectangular hood. A rectangular hood is easier to build than a conical one, is cheaper, and better accommodates the various types of combustion equipment discussed in the last section. The rectangular hood is shown in Figures 1 and 14 on pages 3 and 41.

Several tests were conducted with a one-inch layer of fiberglass insulation on the stack intake hood and stack within the shelter to
-44-
determine the amount of heat added to the shelter in the absence of insulation. A prototype shelter in which the horizontal portion of the stack runs through a concrete wall into adjacent earth or space may or may not be similar to the test insulated condition depending upon conductive qualities of the surroundings. However comparisons could only be made on the basis of what was available. Results shown later clearly indicated the value of insulation.

The original model for conducting tests of ventilation air flow caused by a flame in a chimney was set up with the intent of having a simple installation in order to reduce the variables to a minimum. To accomplish this, the stack was installed vertically out of the shelter --no bends or elbows--to minimize friction and velocity loss effects. Intake air was brought into the shelter through a straight length of 8 in. galvanized sheet metal duct--no bends, no elbows, or ifiters. Because the stack was completely within the surrounding building, the effects of wind, for testing purposes, were eliminated. This is the simplest set up, though perhaps not the most desirable from the standpoint of fallout radiation elimination, that can be achieved in any home shelter. The stack is vertical, there are no variables induced by wind, and inlet air is not restricted by conditions other than the intake duct itself.

A group or tests were conducted using various lengths of 6 in. diameter straight stack. "Straight stack" means one that is completely vertical and contains no elbows, bends, or horizontal lengths. Pressure, temperature, fuel rate, and air fiow-rate data were recorded for the heating methods of kerosene lamps and wick-type space heaters. Similar data, excluding the fuel rate, were taken for the natural gas heating method.

The above data were collected in what is termed a "closed door" test. Open door tests for 6 in . diameter stacks followed the close door tests. For an open door test, then, the pitot tube Δp and the mean stack temperature (T_{ch}) are read, the apparent stack velocity is calculated from equation (12), correction factor C_{1} is applied, and the actual flow at inlet conditions is found from equations (13) and (14).
ـ

After tests had been completed with 6 in. diameter straight stacks, two 90° four-piece elbows and a 2 ft long horizontal length of singlewalled duct were added to the stack bottom. See Figure 1 on page 3.

Both open door and closed door tests were run with this "elbowed" stack arrangement. This condition is often referred to as an "equivalent length" stack. The equivalent length applies to the elbows and is discussed in detail in a later section.

To find the shelter heat-addition difference, tests were conducted with and without insulation at constant mean stack temperatures. Fuel rates for the insulated and the uninsulated stacks were determined by weighing the amount of fuel used over a period of time. From this data the heat saved by insulation can be calculated.

Fuel rate data was also taken for several stack configurations (various lengths and diameters) to determine the relationship between fuel consumption and temperature difference.

Similar tests, with the exclusion of insulation tests, were also conducted with 8 in. diameter stacks ranging in vertical heights from 5 ft to 15 ft . It was deemed unnecessary to conduct insulation tests for the 8 in. stacks because a percentage value, determined in the 6 in. tests, can be applied to the other diameters if fuel saving figures are desired.

To determine the effect on air flow from the use of ventilator caps, tests with 8 in. stacks were mide using two types of caps at the stack outlet-a two-directional Artis cap and an all-directional Belmont cap. (Directional refers to wind conditions.)

RESILTS AND CONCLUSIONS

Much of the data collected from experiments and from the computer programs are presented in this section in the form of graphs. The first eight figures of air flow versus temperature difference compare experimental results with theoretical results in order to indicate the relative accuracy of the flow equation with its associated assumptions. The remaining figures supply information on inlet pressure drop, fuel rates, and the effect of altitude and ventilator caps on flow. A group of curves for designing a ventilation system are also included.

Figures 15 and 16 show ΔT, 1.e., mean chinney temperature $\left(T_{c h}\right)$ minus ambient temperature around stack ($T_{r m}$), versus rate of air flow for 6 in. diameter stacks. The friction factors, f_{1} and f_{2} in equation (7), were determined from the experimental curve for the straight stack closed door test, Figure 15. Theoretical values are within 2-1/2 percent or less of the experimental values at all points.

The 25 ft equivalent length experimental curve in Figure 16 was used to determine the equivalent length of the two 90° elbows. Experimental values are again about 2-1/2 percent from theoretical ones. The theoretical values for the other curves in this figure, as well as for all other curves of all diameters, were determined with fixed values of friction factors and equivalent elbow length. These fixed values are $f_{1}=0.415$, $f_{2}=0.064$, and equivalent length $=4.2 \mathrm{ft} /$ elbow. It should be mentioned that an equivalent lengtn stack of, say 40 ft , means one with a vertical height of 30 ft . That is, $(30 \mathrm{ft}$ vertical $)+(2 \mathrm{ells})\left(4.2 \frac{\mathrm{eg} . \mathrm{ft}}{\mathrm{ell}}\right)+$ (2 ft horizontal) $=40.4$ total equivalent stack length. The total
-49-

equivalent length is rounded off to the nearest whole number when presented in the graphs.

The open door comparison for the 6 in. stacks are shown in Figures 17 and 18. Experimental values are again in close agreement with theoretical values. This indicates that the choice of f_{z} and of elbow equivalents is appropriate, at least for the 6 in. diameter stack of 15 ft length since the intake terms in equation (7) become zero with an open door. The result10n thacretical values are therefore not influenced by the inlet friction factor.

Air flow-tenperature relations for 8 in. diameter stacks with closed door are shown in Figures 19 and 20. Because experimental values are somewhat higher than the theoretical ones, it appears that in equations (7) one or more of the factors, perhaps the entrance coefficients, friction factors, os elbow equivalents, are not constant as assumed. It is believed that the principal factur contributing to the higher experimental values is the stack friction factor, f_{2}. Original determination of f_{2} was for a 6 in. stack which had been in place for nearly five months. Over this period of time heavy layer of soot collected on the stack walls to which inherently offers more restriction to flow than clean walls. The 8 in. stack, however, had no soot on the walls when tested. The aluminum iiner was shing, smooth, and clean and consequently offered less restriction to flow than a sooted stack. The assumption of a constant friction factor is thus conservative. As a result, theoretical curves include a margin of safety for predicting air flow.

Results of open door tests on 8 in. stacks appear in Figures 21 and 22. Agreement between experimental and theoretical values in again within

-51-

-53-

qコTUI 7 स WJV'əZEY MOTS ITV

-56

tolerable limits. There are several wild points on the graph in Figure 21, espoctaly at flow nown Them. Thratic behavior of the pitot
...: fosdings is attributed to location of the pitot tuke in the F" F ik, only seven feet directly above the flame or point where the air velocity was established and thus, at high fluws, in the path of very turbulent air. With the elbowed arrangement, the points of Figure 22.again follow a smooth curve above 150 acfm air flow. The elbows and short horizontal lengths of stack tend to straighten the flow by the time it reached the pitot tube.

Figure 23 on page 58 illustrates the effect of inlet restriction given by an 8 in. diameter intake duct on air flow in 6 and 8 in. stacks of 15 ft height. At a temperature difference of only $100^{\circ} \mathrm{F}$, unrestricted flow for the 6 in. stack is reduced by 18 percent by an inlet restriction of only 0.0064 inches of water. Under the same conditions, unrestricted flow for the 8 in . stack is reduced by 32 percent by an inlet restriction of 0.0145 in . of water. It appears from this comparison that in actual shelter situations, if an intake duct is to be used, its cross-sectional area should be at least double that of the stack area in order to nearly eliminate ary effect from inlet restriction. This "double the area". rule should be used as a rule-of-thumb for estinating purposes only.

To further investigate the effects of room ΔP in relation to ΔT and air flow, a test was conducted in which a piece of cardboard with several small holes through it was taped over the inlet end of the intake duct. This arrangement simulated an air rilter, at least in its effect upon restraining flow. Pressure drop, temperatures, and air flow were measured. Results of the test appear in Figure 24. The curves show that a small piessure dorp causes a severe reduction in flow from that of the
-58-

unrestricted condition. At a ΔT of $590^{\circ} \mathrm{F}$, for example, air flow is 154 acfm with an open door and 48 acfm with the restrictel condition. The decrease in flow, almost 70 percent at a ΔT of $500^{\circ} \mathrm{F}$, is caused by a $\Delta P_{\text {m }}$ of only 0.0577 inches of water. This indicates that filters cannot be used with the induced draft method of shelter ventilation because there are very few, if any, filters available that offer less than 0.1 inch of water restriction and retain reasonable efficiency at the dir flow rates being considered. Thus it is recomnended that only cpen door shelter situations be considered when designing with this system of ventilation.

The effect of altitude on air flow for any given temperare difference is neglizitle as shown in Figure 25. Values for these three sets of curves were taken from the computer results. Actural conditions for the 5000 ft altitude curves varied as follows; barometric pressure--24.59 to 25.22 in. Hg ; inlet temperature- -72 to $82^{\circ} \mathrm{F}$. The sea le vel curres are for the standard conditions of 29.92 in . Ig barometer and $70^{\circ} \mathrm{F}$ temperature.

The decrease of standard air flow at 5000 ft altitude is less than 1.4 percent for any given temperature difference. This means that negligible error is introduced when air flow-temperature difference values from the curves are used for altitudes of zero to 500 Jft .

The curvos in Figure 26 illustrate the effect on air flow of two types of ventilator stack caps. The Artis cap, from which air emerges herizontally at two sides only, does not profuce any noticable change in air flow from that of the uncapped-stack condition. With the Belmont stack cap, air emerges from all sides in a downard direction, l.e., air flowing up the stack must reverse directions in order to leave t., p . This motion reduces the uncapped-stack flow by about 8 percent as down in the curve.

-62-

clan
$100 \quad 200$
Temperatare Difference $\left(T_{c h}-T_{r m}\right), O_{F}$
Figure 26. Effect of Ventilator Caps on Mir Flow

The flow resistance offered by the Belmont cap amount.e to approrimately 5.5 ft equivalent length as calculated from the equation (9). Similar results were obtained from a straight stack test (not shown).

It should be remembered that the ventilator cap tests were conducted in the absence of wind. In actual shelter applications where wind conditions are present, the use of a Belmont cap or a type I Breidert Air-X-Hauster cap (built specifically for fallout shelters) will have less dampening effect on air flow than that shown by the curves. These caps are built so that the outflow of air, is actually increased ty an aspirating effect of the wind regardless of the wind direction, i.e., the wind produces a suction at the cap outlet. Thus, in general, a good ventilator stack cap can be considered to offer little restriction to air flow at a shelter exhaust when used with the induced method of ventilation. To add a factor of safety, however; it is recommended that the cap equivalent length be accounted for in the shelter design.

Surface temperatures of the stack inside the shelter and of the hood were observed with and without insulation. At a mean stack temperature of $200^{\circ} \mathrm{F}$, the surface of the top of the hood approached 4000 F with no insulation. With one inch of fiberglass insulation and the same mean stack temperature, the surface temperature of the insulation on the hood was reduced to less than $100^{\circ} \mathrm{F}$. This surface temperature reduction is important when trying to minimize heat addition by radiation.

There can be a substantial fuel savings with the use of insulation as Indicated by the data presented in Figure 27 on page 64. Although this data is for a closed door arrangement which was ruled out in previous discussions and it represents savings realized from irsulating two elbows,

Figure 27. Fuel Rate vs. Air Flow -- Closed Door Test
horizontal stack and hood (not just hood and one elbow as would be nomal), it is still significant.

The two curves for 6 in. stacks illustrate the effectiveness of insulation placed on the hood, elbows, and horizontal length of stack. For any given air flow covered by the two curves, the fuel (kerosene) consumption for the uninsulated stack is decreased by about 15 percent by the addition of 1 in, of fiberglass insulation. This 15 percent may not be realized in a normal installation because some of the horizontal piece and one elbow may be in soil or space that is much betfer conductor than the fiberglass. The percentage decrease in fuel rate is seen to apply over the entire flow range for the 6 in. stack condition described. Over an extended shelter occupancy, this savings could mean a considerable decrease in amount of fuel, and fuel cost. Also seen from Figure 27 is the relative effectiveness of the "three-holer" lamp and the dual space-heater burner.

This simple test indicates that stack insulation is very important. If a single walled stack is to be used, it should be insulated with a minimum of I in. of fiberglass in order to obtain maximum efficiency. Due to the high cost of insulation, an insulated single-wali stack would cost about the same as self-insulated Metal-Bestos stack. Metal-Bestos stack is easier to handle, install and requires less maintenance than an insulated singlewall stack.

A few tests were conducted using a white gas camp cook stove and a two mantle gas lantern. With both types of heaters it was observed that as the gas burned from the tanks, the tank pressure decreased. As a result the stack temperature and air flow decreased. Thus, gas stoves and gas lanterns are not recommended as heat generating equipment for shelters. This equipment
requires frequent tank pressurizing to maintain constant air flow; the flame must be turned off to refuel the tank; and the fuel is inherently dangerous because of the possibility of explosion and fire in the shelter. In extreme emergency 3ituations, however, gasoline-type heaters could be used if proper precautions are observed. A two mantie gas lantern will produce flows approximately equal to that of two kerosene lamps. A two-gas-burner camp stove will produce ilows about equal to the two space heater unit.

Table 1 on page 67 indicates the relative merit of the kerosene burners used in this investigation. The column headed maximum temperature difference gives the minimum of the maxinum values, i.e., the lowest values of maximum temperature difference that could be reached day after day without trimming the wicks. In some tests, higher maximum values were obtained but these were always shortly after the wicks were trimmed or new ones installed.

Figure 28 gives the relation between temperature difference and expected fuel rate in gallons of kerosene per hour for several stack arrangements.

Curves on the following pages are to be used for the design of induced draft ventilation systems. The four graphs of temperature difference versus flow rate are for $4,6,8$, and 10 in. diameter zero equivalent length stacks, i.e., straight stacks-no elbows or caps, and for verifical heights of 5, 10 , $15,20,25$, and 30 ft . The values used in plotting these graphs were obtained from the computer program of the flow equation for the open door condition. The validity of the equation was previously established. The plots are for standard atmospheric conditions ($29.92 \mathrm{in} . \mathrm{Hg}$ and $70^{\circ} \mathrm{F}$) and straight stacks. Effects of barouetric changes for altitudes between 0 and

TABLB 1

Maximum Temperature Difference Obtainable for 6 and 8 in.
Diameter Straight Stacks of Various Lengths with Different
Types of Burners

Diameter Inches	Vertical Height Feet	Max. Terperature Difference, ${ }^{\circ} \mathrm{F}$	Type of Burner
6	5	$\begin{array}{r} 42 \\ 81 \\ 167 \end{array}$	3 Kerosene Larps 1 Space Heater 2 Space Heaters
	10	34 78 143	3 Kerosene Lamps 1 Soace Heater 2 Space Heaters
	15	$\begin{array}{r} 32 \\ 70 \\ 112 \end{array}$	3 Kerosene Lamps 1 Space Heater 2 Space Heaters
8	5	$\begin{array}{r} 24 \\ 42 \\ 55 \\ 120 \end{array}$	2 Kerosene Lamps 3 Kerosene Lamps 1 Space Heater 2 Space Heaters
	10	$\begin{aligned} & 21 \\ & 34 \\ & 39 \\ & 83 \end{aligned}$	2 Kerosene Lamps 3 Kerosene Lamps 1 Space Heater 2 Space Heaters
	15	$\begin{aligned} & 32 \\ & 35 \\ & 71 \end{aligned}$	3 Kerosene Lamps 1 Space Heater 2 Space Heaters
	20	60	2 Space Heaters

\qquad

5000 ft are so small that pressure corrections do not need to be applied to these graphs.

Because it is recommended that at least two elbows and a short length of horizontal stack be used, corrsctions to the straight stack curves must be made according to the equivalent length of the added restriction. The effect of adding elbows, horizontal lengths, and vent caps to the vertical stack can be taken into account by use of the correction iacireg giyen in Figures 29, 31, 33, and 35 or in Table 2. These correction factors were obtained by dividing the theoretical air flow rates obtained with a straight stack by the theoretical flow rate obtained with a stack system containing 0 to 21 equivalent feet of added restriction.

These factors are to be applied to the required cfm value before entering the graphs for straight stacks. The required cfm of air flow is known from the size of an actual shelter in wich a ventilation stack is to be installed. The stack diameter, vertical height, number of elbows, length of horizontal run, and type of vent cap (if used) must be assumed as a starting point in the design.

A more complete explanation of the design curres, tables, and method of design is given by an example.

Sample Design Problem

It' is desired to design a ventilation system for a shelter which requires a total of 100 cfm of fresh air. Assume that the shelter is such that it will conveniently accomodate an 8 in. diameter, 15 ft high stack with two 90° elbows and 3 ft of horizontal run. A Belmont cap is desired at stack outlet.
。

500 300

${ }^{\circ} \mathrm{F}$

Flow Corrsction Factora

-714-

i

\qquad

.

Figure 34. Flow Correction Factors vs Bquivalent Length of Stack For 8m Dia. Stack
都
Flow Correction Fact

Flow Correction Fa

f

\square
- -
-
\qquad

-78-

TABLS 2
Flow Correction Factors to be Applied to Zero Equivalent Length Cfm Curve for Bffects of Added Stack Resistance

Vertical Stack Height	Added Bq. Ft	4*	Stack 6	8^{81}	10"
	0	1.000	1.000	1.000	1.000
	5	1.180	1.153	1.131	1.115
51	9	1.271	1.234	1.205	1.184
5	13	1.336	1.296	1.264	1.238
	17	1.387	1.345	1.309	1.285
	21	1.428	1.384	1.348	1.322
	0	1.000	1.000	1.000	1.000
	5	1.133	1.117	1.104	1.095
10^{\prime}	9	1.208	1.185	1.166	1.152
10	13	1.264	1.240	1.217	1.201
	17	1.312	1.285	1.262	1.242
	21	1.352	1.323	1.297	1.278
	0	1.000	1.000	1.000	1.000
	5	1.104	1.091	1.085	1.078
15'	9	1.169	1.150	1.141	1.130
	13	1.221	1.199	1.186	1.174
	17	1.264	1.240	1.227	1.212
	21	1.300	1.276	1.261	1.245
	0	1.000	1.000	1.000	1.000
	5	1.087	1.080	1.174	1.068
20^{\prime}	9	1.144	1.130	1.122	1.114
	13	1.189	1.193	1.163	1.152
	17	1.228	1.211	1.199	1.188
	21	1.264	1.244	1.232	1.219
	0	1.000	1.000	1.000	1.000
	5	1.074	1.070	1.063	1.059
251	9	1.122	1.114	1.107	1.099
	13	1.165	1.153	1.144	1.135
	17	1.201	1.188	1.182	1.168
	21	1.233	1.219	1.207	1.198
	0	1.000	1.000	1.000	1.000
	5	1.064	1.061	1.057	1.053
30^{1}	9	1.107	1.100	1.094	1.091
	13	1.146	1.137	1.130	1.124
	17	1.179	1.169	1.161	1.153
	21	1.209	1.197	1.190	1.181

Step (1) Calculate equivalent length of added restriction. From prefious discussion it is known that:

1900 elbow $=4.2 \mathrm{eq} . \mathrm{ft}$
1 Belmont cap $=5.5$ eq. ft
3 ft horizontal run $=3.0$ eq. ft
Therefore, the total equivalent length of the added restrictions $=2 \times 4.2+2 \times 5.5+3=16.9$ eq. it added restriction.

Step (2) Figure 34 which gives tha correction factor to be applied to an 8 in. diameter straight stack to account for the equivalent length of added restrictions. From this graph at an equivalent length of 16.9 ft and a vertical height of 15 ft , read a correction factor of 1.225.

Step (3) Multiply the desired air flow by this correction factor. $100 \times 1.225=122.5 \mathrm{cfm}$.

Step (4) Enter Figure 33 which gives the desired temperature difference to obtain 122.5 cfm with an 8 in . straight stack of 15 ft vertical height (already corrected for elbows, etc.). At 122.5 cfm we read a temperature difference of $57^{\circ} \mathrm{F}$. (This means that if ambient air is at $80^{\circ} \mathrm{F}$, the mean stack temperature must be $57+80$ or 137° F.)

Step (5) From Figure 28 the fuel rate at a temperature difference $57^{\circ} \mathrm{F}$ for a 15 ft 8 in . diameter stack is about 0.04 gal per hour.

Step (6) Table 1 indicates that two space heaters will provide the required temperature difference and thus the desired 100 cfm of ventilation air.

When using this design procedure the designer should be aware that more than one set of conditions will provide the desired ventilation rate.

A thorough invertigation of several of the possible sets of conditions should result in the most economical design. In considering the most economical design, the cost of the stack-system, fuel, and type of burner for each of the possible systems should be compared.

When deciding upon the type of burner and the fuel rates, the designer should remember that the values given in Figure 28 and Table 1 are approximate. This approximation results from laboratory results because of the difference in performance of the various available burners. The "golden ruiel of over-designing should be observed in the last two design steps. As no fuel data is available for 4 and 10 in . diameter stacks the designer must reach a decision on the type of burner and the fuel rate without actual values. Figure 28 for 6 and 8 in. diameter stacks should be of some help in reaching this decision because it shows the trend followed by the fuel rate as it varies temperature and stack parameters.

As a sample shelter cost analysis, consider the system discussed in the design problem above. The following is a list of representative prices of equipment and materials.
15 ft le ngth 8 in. Metal-Bestos stack $\$ 13.00$
18 in. 90° elbow 1.00
12 ft length 8 in . duct 1.00
18 in. Belmont cap 7.50
1 Space Heater 14.00
1 sq ft fiberglass insulation 1 in. thick 40
Kerosene per gal 18
Rectangular Hood 7.50

The cost of equipment and materials for the sample shelter is thus,

15 ft stack	$\$ 39.00$
2 elbows	2.00
3 ft horizontal run	1.50
8 in. Belmont cap	7.50
2 Space Heaters	28.00
Kerosene ($13.5 \mathrm{gal} / 2$ weeks)	2.80
Hood	7.50
10 sq ft insulation	
	Total

This total price is for the conditions described by one set of shelter parameters. Smaller diameter stacks lower the total cost larger diameter stack increase the total cost. This analysis should be helpful in estimating the cost of any shelter ventilating system of this type.

SUMMARY

As stated previously, the fallout shelter tested has an occupant capacity of 18 people and requires, as a bare minimum, at least 54 cfm of fresh ventilating air. It is concluded that this minimum ventilation rate can be obtained by burning kerosene in the base of a chimney or stack.

Results of this ventilation investigation indicate that the maximum air temperature difference between the inside and outside of the stack (T_{ch} - T_{rm}) that is of benefit for home shelter is around 3000 F . With an ambient temperature of $70^{\circ} \mathrm{F}$, this means that the maximum mean stack temperature of benefit is about $370^{\circ} \mathrm{F}$. The return for higher stack gas temperatures is insignificant.

The highest stack temperature obtainable with the kercsene wicktype burners used in the test is about $230^{\circ} \mathrm{F}$, depending upon stack r 'ameters, length, mumber of elbows, etc. It is feasible that a wicktype burner could be designed to produce a maximum stack temperature of $370^{\circ} \mathrm{F}$. Wick-type burners are desirable because they require essentially no pressure drop for efficient combustion and they can be used to light the shelter.

The lowest fuel comsumption rate is obtainable when the intake hood and the portion of the stach that is within the shelter is insulated. A minimum of one inch of common fiberglass insulation is recommended. For high efficiency and low maintenance cost, Metal-Bestos stack is recommended for that portion of the stack that is outside the shelter.

Family-type shelters in general can be adequately ventilated by the induced draft method if certain qualifications are observed. The shelter
should be located in the basement of the house so tiat air can be draw from the main part of the house. In this manner the house will serve as the radiation-particle filter for the shelter inlet. Outside air will infiltrate naturally into the house through window cracks, under doors, etc. in sufficient quantities to be available to ventilate the shelter. Filters should not be used at the shelter inlet because in general they offer too large of restriction to air flow and reduce ventilation rates to below minimum values. If an intake duct is used, its cross-sectional area should be at least twice that of the stack. An open door is recommended. The stack should contain at least two elbows and a short horizontal length of duct. This is essential for providing shielding from fallout radiation rays. A good ventilator stack cap should be used if the stack echausts directly to the atmosphere to insure that fallout particles, rain, snow, and other dejris do not enter the shelter through the stack. If a stack cap is not used, the stack should exhaust to a ventilated attic. The attic will mindmize wind effects, eliminate fallout particles from entering stack, and prevent Vitiated air from recirculating through the house and shelter. Although kerosene wick-type burners are reconmenied for induced draft ventilation, it seems feasible that in an extreme emergency situation any flame from whatever equipment is available-such as a gasoline camp-cook stove-could be used to induce the draft. Ventilation efficiency and safety aspects would be reduced but perhaps, and most important, human lives could be saved.

An impingement-type filter which could possibly be used in some shelters was discovered at a date too late to investigate completely. The filter is produced by the Air-Maze Corporation and it offers less than 0.1 in $\mathrm{H}_{2} \mathrm{O}$
-84-
restriction at alr velocities down to about 70 fpm . The efficiency is low at minimum velccities but perhaps it could be used to advantage. Further research is required to determine its feasibility.

Some aspects of family-type shelter ventilation by the induced draft method warrant further investigation. Future research should center around the following objectives:

1. Investigation of kerosene wick-type burner design with the intent of reaching $370^{\circ} \mathrm{F}$ stack temperatures.
2. Fuel investigation including storage and safety controls.
3. Economic analysis of all phases of the induced draft method of shelter ventilation.
4. Investigation of the possible use of a low restriction filtering system.

THEFMISTOR ANEMOMSTRY

Extensive investigation was conducted concerning the possibility of using a bead-type thermistor as an air anemometer. The attempts were unsuccessful and the results useless as far as ventilation was concerned, but the research work was important and warrants recording.

Although nearly four and one-half months were spent investigating thermistors with no apparent useful results, it is felt that the time was justified for three principal renscns. First, thermistors, if applicable, would allow measurement of extremely low velocity air flows (starting at zero velocity) as well as high flows. No other method of flow measurement known pernits, with sufficient accuracy, measurement of flows with a velocity lower than about 40 ft per min (nearly 15 cfm in an 8 in. duct). Thermistors would have allowed measurement oi the natural ventilation through the shelter. Secondly, a permanent record of output voltage and thus of flow would be available with this method. This is desirable because it establishes a reference and affords one the opportunity to recheck measurements later on if the need arises. Thirdly, it is possible that thermistors other than the bead-type and circuits other than the bridge-type may be used successfully in air flow measurements. No more time could be spent on thermistor investigatior. but the knowledge gained from this experience should be useful as a starting point in further thermistor research.

For use as an air measuring device, the thermistor was built into probe form. Two small parallel holes were drilled through the length of a two-inch long $1 / 2 \mathrm{in}$. diameter rylon rod which is pointed on one end. The fine wires of the bnad thermistor were inserted through the
holes in the rod and cemented in place. Unly the bead protruded from the pointed end of the rylon rod. After wire leads were soldered to the bead wires, the rod was fastened into the end of 5 in . long plece of $9 / 16 \mathrm{in}$. diameter stiff cardboard cylinder, the bead remaining exposed. The entire probe was stuck through a cne-inch ciameter rubber cork. When the assembly was inserted into a hole in the side of the 8 inch intake duct, the bead was positioned in the air stream by adJusting the length of probe extending beyond the cork. The probe was held rigidly in place due to a tight fit between the rubber cork and the hole in the side of the intake duct.

Figure 36 on page 88 shows the original bridge circuit designed and build for the thermistor air anemometer. The circuit consists basically of a Wheatstone-bridge with the thermistor as one resistance leg. In a leg adjacent to the thernistor is a decacie resistance which permits compensating for thennistor bead temperature changes caused by intake air temperature changes. In the leg opposite to the thermistor is an adjustable resistance used to zero the voltage output of the bridge. Two transistors, connected together thermally, are included to provide a constant current through the thermistor when a constant 40 volts is supplied to the bridge circut.

Output from the thermistcr bridge was connected to a Leeds \& Northrup Speedomax 0-10 millivolt recorder. Thermistor output is sensitive to air velocity, and because the cubic feet per minute of air flowing in a fixedsize duct depends directly on the velocity, the output can be plotted against air flow rate. Thus, the recorder provided a direct indication and a permanent record of air flow.
Figure 37. Thermistor bridge circuit

During calibration of the thermistor, a laminar flow element, produced by the Meriam Instrument Company, was used with an accompanying centrifugal blower as the air flow standard. This laminar flow device, applicable to air flows from 0 to 200 standard cfm (at 29.92 in. Hg and 700 F), consists of parallel, capillary-size tubes through which the air flows. The pressure drop across the tubes has a straight-line relationship with the mass air flow. A linear calibration curve of this relationship, showing pressure drop across the tubes (in. of water) versus standard air flow (lb per min) is supplied with the element.

Equipment required to operate the thermistor included a 40 volt d.c. power supply, a voltmeter, two decade resistances for use in the bridge circuit, a millivolt recorder for recording thermistor output, and a thermocouple temperature recorder for cetermining temperature of air in the vicinity of the thermistor probe. This equipment, with the exception of the temperature recorder, is shown in Figure 37 on page 90 as arranged and used in the shelter.

To calibrate the thermistor, the blower and laminar flow element were connected at the exhaust of the shelter to draw air through the intake and shelter space. This permitted accurate calibration because it included any air leaks in the shelter. The calibration procedure for the thermistor probe located at the center of the eight-inch intake duct follows:

1. With probe in still air (cap ends of the 8 in. duct), set the output zero adjust on the bridge box until the millivolt output on recorder is zero.
2. Note temperature of air in duct, read the milliamps and volts through prote, and calculate by Ohms Law the resistance to be set on the temperature compensation decade box.

3. Uncap duct and set laminar. flow element at a manometer reading which corresponds to the maximum flow desired. Set output span adjust on bridge box until about 10 mv show on recorder. Once output adjust is initially set, do not change.
4. Take readings at various points between zero and maximum flow. At each flow setting repeat step 2 and reset the temperature compensation decade resistance if temperature changes. At each reading record inches of water at manometer, duct temperature, and millivolt output. The barometric pressure should be recorded at start of calibration.
5. From the calibration curve supplied with the Meriam Instruction manual, read the standard air flow (pounds per minute at standard conditions of 29.92 in. Hg and $70^{\circ} \mathrm{F}$) corresponding to manometer reading. Multiply standard pounds per minute by the barometric pressure correction factor and temperature-riscosity correction factor from instruction mamal to obtain the real pounds per mimute flowing at actual conditions of pressure and temperature. Find the actual cubic feet per minute (acfm) by applying the perfect gas law.

For a more complete description of the calibration procedure and related calculations, the reader is referred to the Meriam Instruction Manual A-28836" published ty the Meriam Instrument Company and supplied with their laminar flow instruments.

After collecting data as outlined above, a thermistor cilibration curve of probe output (millivolts) versus flow (actual cubic feet per minute - acfm) was plotted. The curve, nearly linear and also approaching verticality, accommoded flows from zeri to 150 acfim. Also drawn was a curve of resistance (ohms) versus intake temperature ($\mathrm{OF}_{\text {) }}$) for use with the temperature compensation decade resistance box.

Two months were spent in conducting preliminary ventilation tests and becoming acquinted with the operation of various combustion equipment, temperature and pressure equipment, and the thermistor flow device. During this period of time results of low measurement had been fairly consistent and reproducible. Then for several days the zero setting of the themistor In still air seemed to drift from conditions dictated by the temperature versus resistance calibration curve. Previous examination of literature on thermistors and comments by Slectronics Research personnel indicated the possibility that thermistors may lose their reliability with use and time due to loss of calibration. No definite reasons for a possible calibration loss were cited except that perhaps the thermistor bead deteriorates enough to change the heat transfer characteristics of its surface.

To check out the above theory, it was decided to recalibrate the thermistor device. Two or three calibration runs, conducted according to the procedure outlined previously, covering the entire flow range from $0-150$ acfm produced completely different and disassociated thermistor output readines. No sensible relationship between output and flow could be found. At this point we decided that the thermistor was completely deteriorated or "burned up". The surfice of the bead appeared brown and somewhat charred.

Another themistor bead similar to the first was acquired from the electronics laboratory. The only difference in the two thermistors was in the so-called response time. The second bead had a response of 25 seconds as compared to 2 seconds for the original bead. It was anticipated that the longer response time wculd decrease sensitivity enough to provide a
more constant recording of output on the millivolt recorder, thus, making output easier to read.

In probe form, the second thermistor had an alumimum shield around the bead. The bead was located in the path of a diametral hole which ran through the hollow cylindrical shield. With the hole parallel to the air flow path, straighter flow lines around the bead than previously obtained were expected at all rates of flow.

Several calibration runs were conducted with the shielded probe installed in the intake duct. The millivolt recording deriated from a straight line by as much as three-fourths of a millivolt but readings were averaged with a polar planimeter. 'the flow-millivolt curve had many erratic points; enough that the results were unreliable.

It was again decided to use another thermistcr. The third thermistor bead chosen required the same design voltage and current and had the same response time (2 seconds) as the original one. In order to retard the response time slightly, epoxy was added to the thermistor in the form of a thin coating over the bead.

Before starting to calibrate the new thermistor, further investigation of Bridge circuits and instruments was carried out. It was discovered that current through the probe was not constant as had been originally planned during circuit design. It was strongly believed that this was the main cause for the wide variations in millivolt output from thermistor.

The designer of the original circuit was again contacted and the problems were discussed. As a possible solution, a sew circuit which completely eliminated the thermistor bridge box was attempted. A number of decade resistances replaced the bridge, the idea being to obtain closer
control of probe current. A callbration run proved, however, that the contrary was true. Current and voltage control through the probe was not only difficult to control but, also unwieldy and inconvenient. Due to this fact, the third thermistor was overloaded with a power surge and burned out,

The train of thought returned to the original thermistor bridge circuit. After lengthy counseling with Professor Drummond of the Mechanical Sngineering Department, it was agreed that the bridge should work satisfactorily if a few minor changes in operational methods were made. According to Fenwal Electronics, Inc., Framingham, Massachusetts, in their "Thermistor Manual" brochure, bead thermistors should be able to dissipate a maximum of about 850 milliwatts of power at a maximum safe continuous current of nearly 18 milliamps. With the first three thermistors operating with 40 volts at the supply, the probe current (about $12 \mathrm{~m} . \mathrm{a}_{\mathrm{o}}$) was well under the maximum allowable value. This indicated that previous burn-outs were caused either by power surges or by allowing the thermistor to set too long in still air with full power applied.

For the fourth thermistor probe the bridge supply voltage was increased to 47 volts which allowed nearly 15 milliamps through probe. This increased the possibility of bead "burn-out", but according to the thermistor characteristic curves, these power and current levels were tolerable. The main object of the power increase was to try to produce a more nearly horizontal calibration curve than was obtained originally.

Previous experience indicated that the method for calibrating the temperature compensation resistance or so-called zeroing of the millivclt output scale was deficient. The still air method originally used was changed somewhat by sealing the probe and a thermocouple in a pyrex
beaker which in turn was immersed in a larger container of water. The temperature inside the beaker containing the thermistor was varied by changing the temperature of the water in the outer container. Readings of temperaturc and thermistor resistance were taken when conditions in the flask repched equilibrium. In this manner a calibration curve for temperature compensation was obtained for air temperatures ranging between $60^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{F}$. Results of later spot checks revealed that points were reproducible within two percent of those on the curve.

Calibration of the thermistor for air flow measurement was again accomplished using the laminar flow element as before. Flow tests were again resumed using a flame in the stack. After one day of testing, the compensation resistance required to zero the output scale had drifted to the point where it was 30 ohms (about 20 percent) above what the calibration curve dictated. A check of the thermistcr bead indicated it too had burned up or at least disintegrated beyond useful purposes.

In an attempt to resolve the thermistor burn-out problem, it was discovered that the epoxy being used to coat the thermistor beads begins to deteriorate above a temperature of about $270^{\circ} \mathrm{F}$. The thermistors had been operating at a temperature of nearly 350° F. Perhaps as the epoxy d ays, the heat transfer characterintics of the unit change enough to adversely affect the resistance-temperature relationship of the thermistor. This phenomenon may account for the zero shift in output and add to the deterioration rate of the thermistor itself.

It was believed that the only way to check this theory was to try another thermistor without an epoxy coating. A probe of this type was built and installed in the intake duct. In order to decrease the
possibility of further burn-up, the power through the bead was limited to 100 milliwatts which was 30 persent below the maximum tolerable level. A resistance of 2550 ohms, found by trial and error and connected in parallel with the thermistor, allowed operation at about 83 milliwatts with the original 40 volt bridge supply.

A temperature compensation calibration curve was again obtained by the previously described water immersion method. A flow check revealed, as had been anticipated, that the bare thermistor bead was too sensitive to ain velocity changes. This was apparent from the millivolt output recording. Recorded millivolt values at flows above 80 cfm deviated as much as 15 percent from a straight line when plotted. Figure 39 b on page 97 shows the degree and rapidity of millivolt output deviation. The chart speed during this particular run was six inches per minute.

In an attempt to reduce the sensitivity of the probe to the higher velocity air flows, two more 8 in. intake ducts, also about 4 ft long, were installea immediately above and below the first one. Still using only the single probe in the original duct, a complete calibration run with all ducts open was started. With the triple intake arrangement, the velocity past the probe should have been about one-third of the value previously obtained with a single duct. A spot tect at about 100 acfm revealed that the output recording was as erratic with three ducts as with one. This is still not understood.

Another attempt to linearize the thermistor output consisted of fillIng the end of the center duct with one inch diameter alumimum foil tubes, twelve inches long, placed with their longitudinal axis parallel to the longitudinal axis of the main duct. The tubular "grid" ends about four

A. Low Flow. Output reading is 0.65 mv at 18.5 acfm .

B. High Zlow. Cutput reading is about 5.8 mv at 86 acfm .

Figure 39. Comparison of Millivolt uitput from Thernistor at Low and High Flows
inches from the themistor. We found that the tube arrangement straightened the air flow path before it passed by the probe to the extent that the maximum millivolt output variation was under 7 percent at the highest air flow rates of 150 acfm. This was within tolerable limits because the output readings were averaged anyway by taking planimeter readings.

With some hope in the thermistor method of low measurement restored, calibration was continued. These hopes were again shattered near the end of the run when the temperature compensation resistance setting began drifting as it had with the epoxy-covered beads. From this behavior it was concluded that temperature compensation is not practical with this type of thermistor bridge circuit. A possible explanation is that the rate of heat transfer fron the thermistor differs at different air temperatures and thus the thermistor resistance is perhaps not a constant for any particular temperature.

Bndeavoring to find a solution, the compensating resistor of the bridge was arbitrarily fixed at 725 ohrms and calibration tests conducted at several different but constant intake air temperatures. The final result was a family of linear calibration curves of millivolts versus flow, one curve for each temperature. Nearly all points for each curve were reproducible within $\pm 5 \%$ which amounts to a maximum flow deviation of about 7 cfm. It was decided to preceed with ventilating lests and rely on this arrangement of air flow measurements, keeping in mind the accuracy of calibration.

After several days of testing, using kerosene lamps as the heat source at the stack, the milifvolt recorder failed to operated. Several parts including tubes, fuses, a rectifier, and transformer had burned out.

Another recorder was borrowed from the Physics Departisent, Montana State University, which necessitated another calibration rai. After this had been done, more test data collected, and graphs plotted of flow versus stack temperature, it was very evident that the thermistor method of measuring air flow, as it was arranged, was not accurate enough for practical purposes. The points on the experimental flcw-temperature graph were so widely scattered that no reasonable curve could be drawn through them. Because stack temperature measurements were reasonably accurate, the major difficulty was assumed to arise from the thermistor and its related circuitry. Thus, at this point it was decided to abandon the idea of measuring air flow with bead thermistors.

The difficulties and problems encountered as outined in this section caused additional people to investigate the possibility of themistor air flow measurement. Further information on thermistors, their applications, and factors influencing flow measurement via themistors, is given in a thesis by Mr. Bill Cousineau, "Thermistor Anemometry Including affects of Ambient Pressure and Humidity", Montana State Oniversity, June 1965.

EXPERTIENTAL DATA

The dats tabulated on the following 23 pages constitute the experimental values used in preparing the various curves presented earlier. A list of symbols and their meaning are given for quick reference.
$T_{\text {in }}$ air temperature entering shelter, ${ }^{{ }^{\circ} F}$
$\mathrm{T}_{\mathrm{ch}}=$ mean stack air temperature, F
$\mathrm{T}_{\mathrm{rm}}=$ air temperature surrounding the stack, ${ }_{\mathrm{F}}^{\mathrm{F}}$
$\Delta T=$ temperature difference, $\left(T_{c h}-T_{m}\right)$, b_{F}
$\Delta P_{r m}=$ shelter iniet pressure drop, in. $\mathrm{H}_{2} \mathrm{O}$
$\Delta P($ pitot $)=$ static and stagnation pressure difference as measured with pitot tube, in. $\mathrm{H}_{2} \mathrm{O}$
Acfm = actual cubic feet per minute of air flowing at inlet conditions $P_{B}=$ barometric pressure, in. Hg

Date: 1/7/65
$P_{B}=24.59$ in. Hg
Heaters: Natural Gas
Conditions: Closed Door, 15 ft Straight Stack, 6 in. Dia.

Run No.	\underline{T}	$\underline{\mathrm{Tch}}{ }^{\text {OF }}$	$\mathrm{T}_{\text {rm, }} \mathrm{OF}^{\mathrm{F}}$	$\triangle T,{ }^{\text {F }}$	$\begin{aligned} & \Delta P_{r_{1}} \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { Acfm } \\ & \mathrm{ft}^{3} / \mathrm{min} \end{aligned}$	$\begin{aligned} & \Delta P\left(\text { n }_{2}^{i t c}\right. \\ & \text { in. } \\ & \hline \end{aligned}$
1	74.5	253	79	174	. 0093	82.0	. 0138
2	75.0	253	79	214	. 0110	88.5	. 0178
3	75.5	340	79	261	. 0114	92.5	. 0196
4	75.5	370	79	291	. 0116	94.0	. 0223
5	75.5	227	82	145	. 0088	78.5	. 0122
6	75.5	200	79	121	. 0077	74.5	. 0107
7	74.5	167	79	88	. 0052	66.5	. 0079
8	74.0	257	79	178	. 0098	84.0	. 0150
9	74.0	284	78	206	. 0105	88.5	. 0170
10	74.5	351	79	272	. 0118	94.5	- - -
11	74.5	434	80	354	. 0121	97.0	. 0259

Date: $1 / 9 / 65$ $P_{B}=25.18 \mathrm{in} . \mathrm{Hg}$ Heaters: Natural Gas Conditions: Closed Door, 15 ft Straight Stack, 6 in. Dia.

Run No.	$\mathrm{T}_{\text {in }},{ }^{\circ} \mathrm{F}$	$\mathrm{T}_{\mathrm{ch}},{ }^{\circ} \mathrm{F}$	$\mathrm{T}_{\mathrm{rm}}, \mathrm{O}^{\mathrm{O}}$	$\Delta T,{ }^{\circ} \mathrm{F}$	$\begin{aligned} & \Delta P_{\mathrm{rm}} \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	$\begin{aligned} & \Delta P \text { (pitot) } \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \end{aligned}$
1	74.0	185	79	106	. 0078	72.0	. 0100
2	75.5	242	79	163	. 0092	81.6	. 0141
3	76.0	274	81	193	. 0100	85.5	. 0158
4	76.0	310	82	228	. 0106	88.7	. 0184
5	76.0	333	82	251	. 0118	91.3	. 0204
6	76.0	359	82	277	. 0119	92.5	. 0210
7	76.0	407	83	324	. 0125	95.0	. 0222
8	76.0	213	87	126	. 0087	74.8	. 0112

Date: 1/12/65

$$
P_{B}=25.01 \text { in. } \mathrm{Hg}
$$

Heaters: I Space Heater Conditions: Closed Door, 15 ft Straight Stack, 6 in. Dia.

1	76.5	122	78	44	.0036	47.0	.0046
2	77.0	140	79	61	.0045	54.6	.0059
3	77.0	156	79	77	.0051	59.4	.0072
4	77.0	172	79	93	.0060	63.7	.0078

Date: $1 / 13 / 65 \quad P_{B}=25.15 \mathrm{in} . \mathrm{Hg} \quad$ Heaters: 2 Space Heaters Conditions: Open Door, 15 ft Straight Stack, 6 in. Dia.

1	77.0	118	78	40	\ldots	69.5	.0083
2	77.0	136	78	58	\ldots	66.9	.0079
3	77.0	154	78	76	\ldots	71.5	.0093
4	77.5	174	78	96	\ldots	79.5	.0118

Date: 1/14/65
$P_{B}=25.22$ in. Hg
Heaters: 2 Space Heate
Conditions: Open Door, 15 ft Straight Strok, 6 in. Dia.
Pa No $\quad \Delta P_{r m} \quad$ Acfm $\quad \Delta P_{\text {(pitct) }}$

1	77	128	78	50	\ldots	60.9	.0065
2	77	142	77	65	\ldots	66.5	.0079
3	78	159	79	80	\ldots	72.1	.0096
4	78	210	80	130	\ldots	84.6	.0142

Same Conditions except Natural Gas Heaters

5	78	155	80	75	\ldots	70.3	.0090
6	79	119	79	40	\ldots	54.5	.0051
7	79	139	79	60	\ldots	67.3	.0080
8	79	165	80	85	\ldots	71.5	.0095

Date: $1 / 14 / 65 \quad P_{B}=25.22$ in. Hg Heaters: 2 Space Heate Conditions: Glosed Door, 15 ft Straight Stack, 6 in. Dia.

I.	1	77	133	78	55.0	.0042	51.8	.0057
I.	2	77	151	77	84.0	.0050	58.8	.0069
I.	3	78	175	77	98.0	.0071	65.0	.0091
	4	78	230	79	151.0	.0084	76.0	.0123

Same Conditions except Natural Gas Heaters

5	79	122	79	43	.0042	47.7	.0047
6	78	150	78	72	.0058	60.5	.0069
7	79	186	79	107	.0068	69.5	.0091

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Date:

Run No.} \& $1 / 19 / 65$ \& ns: \& \[
25.19

\] \& \[

n. \mathrm{Hg}
\] \& ht Sta \& Heaters: \& Natural Gas

\hline \& $\mathrm{T}_{1 \mathrm{n}},{ }^{\circ} \mathrm{F}$ \& $\mathrm{T}_{\text {ch, }}{ }^{\mathrm{O}_{\mathrm{F}}}$ \& $\mathrm{Trm}^{\text {r }}$, ${ }^{\text {c }}$ \& $\triangle T,{ }^{\text {F }}$ \& \[
$$
\begin{aligned}
& \Delta P_{r m} \\
& \text { in. } H_{2} \mathrm{O}
\end{aligned}
$$

\] \& Acfm $\mathrm{ft}^{3} / \mathrm{min}$ \& \[

$$
\begin{aligned}
& \Delta P(\text { pitot }) \\
& \text { in. } \mathrm{H}_{2} \mathrm{O} \\
& \hline
\end{aligned}
$$
\]

\hline 1 \& 74 \& 181 \& 67 \& 114 \& - - - \& 81.4 \& . 0128

\hline 2 \& 75 \& 206 \& 68 \& 138 \& - - - \& 89.7 \& . 0159

\hline 3 \& 75 \& 238 \& 69 \& 169 \& - \& 91.8 \& . 0177

\hline 4 \& 75 \& 256 \& 70 \& 186 \& - - - \& 95.6 \& . 0197

\hline 5 \& 75 \& 282 \& 71 \& 221 \& - \& 95.2 \& . 0202

\hline 6 \& 75 \& 302 \& 72 \& 230 \& - - - \& 97.3 \& .0218

\hline 7 \& 75 \& 339 \& 72 \& 267 \& - \& 101.7 \& .0247

\hline 8 \& 76 \& 264 \& 76 \& 188 \& - - - \& 94.3 \& . 0190

\hline 9 \& 76 \& 287 \& 77 \& 210 \& - - - \& 95.5 \& . 0202

\hline 10 \& 77 \& 322 \& 77 \& 245 \& - - \& 98.2 \& . 0223

\hline 11 \& 76 \& 347 \& 78 \& 269 \& - - - \& 100.0 \& . 0240

\hline 12 \& 77 \& 390 \& 78 \& 312 \& - - - \& 102.5 \& . 0263

\hline 13 \& 77 \& 413 \& 78 \& 335 \& - - - \& 103.8 \& . 0277

\hline
\end{tabular}

Date:	$\begin{array}{r} 1 / 20 / 65 \\ \text { Condi } \end{array}$	Op	24.	Hg Stra	It Stac	Heaters: Natural	
1	76	201	76	125	- - -	85.3	.0142
2	76	247	77	170	- - -	92.1	. 0176
3	76	293	80	213	- - -	97.6	. 0211
4	76	378	79	299	- - -	102.0	. 0257
5	76	405	79	326	- - -	104.3	. 0259
6	76	460	79	381	- - -	109.0	. 0296

Da

Date: 1/27/65
$P_{B}=24.91$ in. Hg
Heaters: 2 Space Heater
Conditions: Closed Door, 15 ft High Elbowed Stack, 6 in. Dia.

Run No.	Tin, ${ }^{\text {OF }}$	$\mathrm{T}_{\mathrm{ch}},{ }^{\mathrm{O}}$	$\mathrm{T}_{\mathrm{rm},}{ }^{\circ} \mathrm{F}$	$\triangle \mathrm{T}, \mathrm{O}_{\mathrm{F}}$	$\begin{aligned} & \Delta P_{r m} \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	$\begin{aligned} & \Delta P \text { (pitot) } \\ & \text { in. } H_{2} \mathrm{O} \end{aligned}$	Fuel Rat $\mathrm{lb} / \mathrm{min}$
1	71.5	118	71	47	. 0025	42.8	. 0040	. 00228
2	71.5	138	71	67	. 0038	49.7	. 0060	. 00389
3	72.0	175	73	102	. 0047	51.7	. 0068	. 00654
4	72.0	253	75	178	. 0059	68.3	. 0103	. 01372
5	72.0	225	76	149	. 0050	65.2	.0084	. 01010
6	72.5	187	77	110	. 0047	58.8	. 0079	. 00688

Date: $1 / 28 / 65$
$P_{B}=24.90$ in. Hg
Heaters: 2 Space Heater
Conditions: Closed Door, 15 ft High Elbowed Stack, 6 in. Dia.

Date: $2 / 3 / 65$

$$
P_{B}=25.07 \text { in. } \mathrm{Hg}
$$

Heaters: Natural Gas Conditions: Closed Door, 15 ft High Elbowed Stack, 6 in. Dia.

Run No.	$\mathrm{T}_{\text {in }},{ }^{\circ} \mathrm{F}$	$\mathrm{T}_{\text {ch }},{ }^{\text {OF }}$	$\mathrm{T}_{\text {rm }},{ }^{\circ} \mathrm{F}$	$\Delta T,{ }^{(1)}$	$\begin{aligned} & \Delta P_{\mathrm{rm}} \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta P \text { (pitot) } \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$
1	76.5	320	82	238	. 0073	. 0180	74.0
2	76.5	395	82	313	. 0076	. 0183	77.8
3	77.0	442	83	359	. 0077	.0187	79.8
4	77.5	476	83	393	. 0078	.01:4	80.3
5	77.5	503	83	420	. 0078	. 0201	80.3

Date: $2 / 4 / 65$ $P_{B}=24.94$ in. Hg Heaters: Natural Gis Conditions: Open Door, 15 ft High Elbowed Stack, 6 in. Dia.

1	78.0	175	82	93	\ldots	.0080	63.6
2	78.0	212	81	131	\ldots	.0107	71.4
3	78.5	245	82	163	\ldots	.0124	75.3
4	78.5	272	82	190	\ldots	.	.0137
5	79.0	300	84	216	\ldots	.0153	80.6
6	79.0	318	85	233	\ldots	.0	.0162
7	79.5	373	86	287	\ldots	81.8	
8	79.5	399	85	314	\ldots	.0185	84.6
9	78.5	435	81	354	\ldots	.0194	85.5
10	79.0	502	79	4.23	\ldots	.0212	86.9

Date: 2/9/65

$$
P_{B}=24.95 \mathrm{in} . \mathrm{Hg}
$$

Heaters: 2 Space Heaters
Conditions: Closed Door, 15 High Elbowed Stack, 6 in. Dia.

Bun No.	$\mathrm{Tin}_{\text {in }}{ }^{\text {F }}$	${ }^{\text {T }}$ ch, ${ }^{\text {or }}$	$\mathrm{T}_{\mathrm{rm}},{ }^{\text {F }}$	$\Delta \mathrm{T}, \mathrm{O}_{\mathrm{F}}$	$\begin{aligned} & \Delta \mathrm{P}_{\mathrm{rm}_{\mathrm{r}}} \\ & \mathrm{in}, \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	Acfm $\mathrm{ft} 3 / \mathrm{min}$	Full Rate $\mathrm{lb} / \mathrm{min}$
1	74.0	267	75	192	.0071	70.0	. 0159
2	75.5	268	76	192	. 0072	70.0	. 0160
3	75.0	264	76	188	. 0070	69.5	. 0143
4	75.0	262	76	186	. 0070	70.0	. 0152
5	75.0	261	76	185	. 0070	69.5	. 0162
6	75.0	259	77	182	. 0068	68.5	. 0158
7	75.5	251	77	174	. 0062	68.2	. 0149
8	76.0	246	77	169	. 0062	68.0 .	. 0125

Date: $2 / 11 / 65 \quad P_{B}=25.11$ in. Hg Heaters: 2 Space Heaters
Conditions: Closed Door, 15 ft High Elbowed Stack, 6 in. Dia.

Fun No.	$\mathrm{T}_{1 \mathrm{n}},{ }^{\text {F }}$	$\underline{\mathrm{T}_{\text {ch }},{ }^{\text {of }}}$	$\mathrm{T}_{\mathrm{rm}}, \mathrm{OF}^{\text {r }}$	$\triangle \mathrm{T}, \mathrm{F}$	Acfm$\mathrm{ft} 3 / \mathrm{min}$	Fuel Rate		$\underline{\mathrm{T}_{\mathrm{B}}, \mathrm{OF}^{* *}}$
						$\underline{1 b / m i n}$	$\underline{\mathrm{T}_{\mathrm{A}}, \mathrm{OFF}^{*}}$	
1	75.0	268	73	195	70.5	. 0156	450	225
2	75.0	262	73	189	69.5	. 0159	460	221

Same conditions as above except 1 in. of fiber glass insulation was added to surface of hood, elbows, and horizontal length.

3	74.0	259	70	189	69.5	.01352	140	104
4	74.0	266	72	194	70.0	101364	157	108
5	77.5	263	77	186	70.0	.01353	146	103

[^0]Date: 2/18/65
$P_{B}=25.34 \mathrm{in} . \mathrm{Hg}$
Heaters: Natural Gas
Conditions: Closed Door, 10 ft High Elbowed Stack, 6 in. Dia.

Run No.	\underline{T} in, ${ }^{\text {F }}$	$\underline{\mathrm{T}} \mathrm{ch},{ }^{\mathrm{F}}$	$\mathrm{Trm}_{\mathrm{rm}},{ }^{\mathrm{F}}$	$\Delta T,{ }^{\text {O }}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	$\begin{aligned} & \Delta P_{r m} \\ & \text { in. } H_{2} O \end{aligned}$
1	77.0	120	79	41	34.5	.00. 5
2	77.0	176	79	97	49.5	. 0040
3	77.5	149	80	69	43.0	.0025
4	75.0	196	74	122	53.5	. 0047
5	76.5	238	74	164	59.0	. 0052
6	77.0	291	77	214	63.7	. 0063
7	77.5	350	77	273	66.5	. 0062
8	73.5	382	76	306	68.0	. 0063
9	78.0	470	78	392	70.0	. 0067
10	78.0	574	79	495	71.5	. 0065

Date: 2/22/65
$P_{B}=24.86 \mathrm{in} . \mathrm{Hg}$
Heaters: Natural Gas
Conditions: Closed Door, 5 ft High Blbowed Stack, Sin. Dia.

1	78.5	118	77	41	26.0	.0011
2	78.5	146	70	68	33.5	.0013
3	70.0	182	70	112	39.0	.0020
4	70.0	239	72	167	46.3	.0028
5	69.5	287	72	215	49.0	.0032
6	70.5	362	72	290	52.0	.0035
7	70.5	412	72	340	53.5	.0035
8	70.5	491	72	419	54.7	.0035
9	70.5	570	72	498	55.7	.0035

Date: 2/25/65
$P_{\mathrm{B}}=25.15$ in. Hg
Heaters: Kerosene Lamps
Conditions: Closed Door, 15 ft Straight Stack, 8 in. Dia.

Date f $3 / 2 / 65 \quad P_{B}=25.21 \mathrm{in}$. Hg Heaters: Natural Gas
Conditions: Open Door, 10 ft Straight Stack, 8 in. Dis.

Date: 3/3/65
$P_{B}=25.24$ in. Hg
Heaters: Natural Gas
Conditions: Same as above.

10	71.0	90	76	14	58.0	.0019
11	71.5	126	76	50	103.5	$.006 \%$
12	72.0	156	78	78	118.5	.0084
13	72.0	202	79	123	138.0	.0125
14	72.0	230	80	150	153.0	.0159
15	72.5	295	82	213	169.0	.0213
16	72.5	340	83	257	170.5	.0229
17	73.0	381	84	297	178.0	.0262
18	73.5	425	87	338	179.0	.0278

Date: $3 / 4 / 65$
Conditions: Closed Door, 5 ft Straight Stack, 6 in. Dia.

Date: 3/6/65
$P_{B}=25.32$ in. Hg
Heaters: Natural Gas Conditions: Closed Door, 10 ft Straight Stack, 8 in . Diag. Filter Restriction

Date: $3 / 9 / 65 \quad P_{B}=25.16 \mathrm{in} . \mathrm{Hg} \quad$ Heaters: K.L.*, S.H.**,
Conditions: Closed Door, 10 ft High Elbowed Stack, 8 in. Dia.

Run.Nc.	No. of Heaters	$\underline{\mathrm{T}} \mathrm{in}$, FF	$\underline{\mathrm{T}} \mathrm{Ch},{ }^{\text {OF }}$	$\mathrm{Trm}^{\text {rm }}$	$\Delta T,{ }^{\text {F }}$	Acfm $\mathrm{ft} 3 / \mathrm{min}$	$\begin{aligned} & \Delta \mathrm{P} \text { (pitot) } \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Fuel Ra } \\ & \mathrm{lb} / \mathrm{min} \end{aligned}$
1	1 K.L.	74.0	97	74	23	38.8	.0508	- - -
2	2 K.L.	75.0	110	78	32	48.0	. 0015	- - -
3	3 K.L.	75.0	120	76	44	55.5	. 0019	. 00334
4	1 S.H.	76.0	157	82	75	73.0	. 0031	- - -
5	2 S.H.	76.0	198	82	116	84.5	. 0051	. 00910
6	2 S.H.	77.0	228	85	143	90.5	. 0058	. 01330
7	N.G.	77.5	240	88	152	91.8	. 0055	- - -
8	N.G.	79.0	310	88	222	105.0	. 0070	- *
9	N.G.	70.0	382	89	293	113.5	. 0091	- - -
10	N.G.	79.0	420	89	331	116.3	. 0150	- - -
11	N.G.	79.0	559	89	470	125.0	. 0134	- -
12	N.G.	76.0	250	81	169	97.7	. 0059	-

Date: $3 / 11 / 65 \quad P_{B}=25.03 \mathrm{in} . \mathrm{Hg}$ Heaters: Natural Gas
Conditions: Open Door, 10 ft High Elbowed Stack, 8 in. Dia.

Run No.	$\underline{T}{ }_{\text {in }},{ }^{\circ}$	$\mathrm{T}_{\text {ch }}{ }^{\circ}{ }^{\mathrm{F}}$	$\mathrm{T}_{\mathrm{rm}},{ }^{\circ} \mathrm{F}$	$\Delta T,{ }^{\circ}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	$\begin{aligned} & \Delta P(\text { pitot }) \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \end{aligned}$
1	78.0	116	E1	35	78.0	. 0031
2	78.0	154	81	73	97.1	. 0051
3	79.5	178	83	95	106.5	. 0064
*K.L. - Kerosene Lamps						
**S.H. = Space Heater						
**N.G. = Natural Gas						

Dater 3/11/65 (contimued)

Run No.	$\mathrm{T}_{\text {in }}, \mathrm{OF}^{\text {r }}$	$\underline{\text { Th, }{ }^{\text {OF }}}$	$\underline{T r m}$,	$\underline{\Delta T, ~}{ }^{\prime}$	Acfm $\mathrm{ft} 3 / \mathrm{min}$	$\begin{aligned} & \Delta P \text { (pitot) } \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$
4	78.0	185	81	104	118.0	. 0079
5	78.5	206	83	123	119.0	. 0078
6	78.0	238	81	157	124.0	. 0097
7	78.0	273	81	192	131.0	. 0112
8	78.0	300	81	219	136.8	. 0125
9	78.0	340	81	259	140.5	. 0139
10	78.0	385	80	305	146.6	. 0160
11	78.0	435	81	354	151.0	. 0180
12	78.5	508	81	429	152.5	. 0200
13	79.0	560	81	479	153.5	. 0212

Dates $3 / 11 / 65 \quad P_{B}=25.03 \mathrm{in} . \mathrm{Hg} \quad$ Heaters: Natural Gas Conditions: Closed Door, 15 ft High Blbowed Stack, 8 in. Dia.

1	79.0	120	83	37	59.5	.0023
2	79.0	144	82	62	77.0	.0040
3	79.0	184	82	102	95.0	.0055
4	79.0	228	82	146	110.2	.0072
5	79.0	265	83	182	118.0	.0083
6	78.0	321	83	238	128.5	.0107
7	78.5	353	83	270	133.0	.0118

Date: 3/12/65 $P_{B}=25.12$ in. Hg

Heaters: Natural Gas
Conditions: Closed Door, 15 ft High Slbowed Stack, 8 In. Dia.

Run No.	$\underline{\mathrm{T}} \mathrm{in}$, OF	$\underline{\mathrm{T}}{ }^{\text {ch, }} \mathrm{OF}$	$\underline{\mathrm{Trm}, \mathrm{OF}}$	AT, OF	Acfim $\mathrm{ft} 3 / \mathrm{min}$	$\begin{aligned} & \Delta P(\text { pitot }) \\ & \text { in. } H_{2} \mathrm{O} \\ & \hline \end{aligned}$
8	74.0	379	78	301	138.0	. 0127
9	75.5	417	77	340	137.7	. 0152
10	75.5	450	78	372	138.5	.0159
11	75.5	469	77	392	141.5	. 0183
12	75.5	572	78	494	149.0	. 0193
13	75.5	392	78	314	139.2	. 0139
14	74.0	448	78	370	143.7	. 0162
15	75.0	491	78	413	246.6	. 0175

Date: $3 / 13 / 65 \quad P_{B}=25.09$ in. $\mathrm{Hg} \quad$ Heaters: Natural Gas Conditions: Open Door, 15 ft High Slbowed Stack, 8 in. Dia.

1	72.0	102	67	35	85.4	.0036
2	73.0	143	68	75	115.0	.0070
3	73.5	187	70	117	132.5	.0100
4	73.5	240	71	169	150.2	.0138
5	73.5	287	71	216	159.0	.0166
6	73.5	367	75	292	170.0	.0210
7	74.0	413	77	336	172.7	.0229
8	74.0	464	78	386	175.8	.0250
9	74.5	551	80	471	179.2	.0283
10	75.0	498	80	418	176.0	.0259

Date: 3/15/65
$P_{B}=24.80$ in. Hg
Heaters: Natural Gas Conditions: Closed Door, 5 fit High Elbowed Stack, 8 in. Bia.

Date: $4 / 7 / 65 \quad P_{B}=24.82$ in. $\mathrm{Hg} \quad$ Hesters: Natural Gas
Conditions: Closed Door, 10 ft Straight Stack, 8 in. Dia., Belmont Vent Cap at Stack Outlet

Pam No.	$\mathrm{T}_{\text {in }}, \mathrm{OF}^{\text {r }}$	\underline{T}	$\mathrm{Trm}_{\mathrm{m}},{ }^{\text {OF }}$	$\Delta T,{ }^{\text {O }}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	$\begin{aligned} & \Delta P_{r_{m}} \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \end{aligned}$
1	71.0	134	77	57	67.5	. 0065
2	71.5	210	78	132	92.5	. 0116
3	71.5	160	80	80	77.0	. 0084
4	71.5	250	80	270	100.0	. 0137
5	72.0	310	80	230	109.0	. 0160
6	72.0	370	80	290	116.5	. 0173
7	72.0	458	80	378	122.5	. 0180
8	72.0	540	80	460	126.0	. 0192

Date: $4 / 8 / 65 \quad P_{B}=24.79$ in. $\mathrm{Hg} \quad$ Heaters: Natural Gas
Conditions: Closed-Door, 10 ft High Elbowed Stack, 8 in. Dia., Belmont Vent Cap

1	73.0	141	83	58	60.0	.0055
2	73.5	202	83	119	78.0	.0092
3	74.0	252	83	169	89.0	.0111
4	74.0	311	83	228	96.8	.0129
5	74.0	350	83	267	100.5	.0133
6	74.0	464	83	381	108.0	.0155
7	74.5	527	83	444	111.5	.0155
8	73.5	170	83	87	70.5	.0077

Run No.	Tin, ${ }^{\text {Pr }}$	$\underline{\text { Th, }{ }^{\text {ch }} \text { (}}$	$\underline{T m}$	$\triangle T, \sigma$	Acfm $\mathrm{ft} 3 / \mathrm{min}$	$\begin{aligned} & \Delta P_{\mathrm{rmi}_{2}} \\ & \text { in. } \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$
1	64.0	112	62	50	58.0	. 0057
2	65.0	145	62	83	73.8	. 0078
3	65.5	180	62	118	84.0	. 0100
4	65.5	214	62	152	92.0	. 0109
5	66.0	268	63	205	101.0	. 0134
6	66.0	336	64	272	109.5	. 0150
7	66.5	415	64	351	116.5	. 0169
8	66.5	492	65	427	119.5	. 0173

Date: $4 / 13 / 65 \quad P_{B}=24.79 \mathrm{in} . \mathrm{Hg} \quad$ Heaters: Natural Gas

Same Conditions except Belmont Cap replaced Artis Cap

1	69.0	112	72	40	50.0	.0045
2	70.0	165	73	92	73.0	.0075
3	70.5	227	74	153	81.8	.0112
4	70.5	281	74	207	93.7	.0127
5	70.5	352	76	276	104.0	.0142
6	7.0	417	78	339	108.3	.0149
7	7.0	522	79	443	112.2	.0158
8	7.0	266	79	187	95.3	.0113

Conditions: Closed Door, 10 ft Straight Stack, 8 in. Dia., Belmont Cap

1	71.0	136	80	56	66.5	.0068
2	71.0	173	80	93	80.5	.0112
3	71.5	236	80	156	98.0	.0146
4	71.5	309	80	229	108.0	.0168
5	71.5	363	80	293	117.5	.0200
6	72.0	438	80	358	123.0	.0210

Dates $4 / 21 / 65$
$P_{B}=24.81 \mathrm{in}, \mathrm{Hg}$
Fuel Data
Conditions: Open Door, Various Lengths of 8 in. Dia., Straight Stack

Pan No.	$\mathrm{T}_{\text {in, }} \mathrm{OF}_{\mathrm{F}}$	$\mathrm{T}_{\text {ch, }}{ }^{\text {OF }}$	$\mathrm{T}_{\mathrm{rm}}, \mathrm{O}_{\mathrm{F}}$	$\Delta T,{ }^{\circ} \mathrm{F}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	Fuel Rate $\mathrm{lb} / \mathrm{hr}$	Stack Height, ft	Heaters
1	69.0	110	77	33	72	. 2015	5	3 K .1.
2	69.0	109	76	33	72	. 2105	5	3 K .1.
3	69.0	104	77	27	82	. 2060	10	3 K.L.
4	69.5	103	78	25	80	. 2080	10	3 K.L.
5	70.0	101	78	23	83	. 2075	15	$3 \mathrm{~K} . \mathrm{L}$.
6	71.0	133	73	60	114	. 5190	20	2 S.H.
7	71.0	131	72	59	113	. 5280	20	2 S.H.
8	71.5	140	73	67	131	. 5400	15	2 S.H.
9	71.5	140	75	65	130	. 5260	15	2 SaH .
10	71.5	140	75	65	130	. 5310	15	2 S.H.
11	71.5	155	75	80	127	. 6670	10	2 S.H.

Date: $4 / 23 / 55$

12	69.5	132	69	63	128	.5350	15	2 S.H.
13	70.0	132	69	63	128	.5550	15	2 S.H.
14	69.0	158	72	86	131	.6720	10	2 S.H.
15	70.5	150	72	78	126	.6660	10	2 S.H.
16	70.5	190	71	119	120	.7250	5	2 S.H.
17	70.5	190	71	119	120	.7380	5	2 S.H.

Date: $4 / 26 / 65$

$$
P_{B}=25.30 \mathrm{in} . \mathrm{Hg}
$$

Fuel Jata (Kerosene)
Conditions: Cnen Door, Various Lengths of 8 in. Dia., Slbowed Stack

Pun Mo.	$\underline{\mathrm{T}_{1 n}, \mathrm{OF}}$	$\underline{\text { Th }}$, OF	$\underline{T m,}$	$\Delta T,{ }^{\text {F }}$	Acfm $\mathrm{ft} 3 / \mathrm{min}$	Fuel Rate 1b/hr	Stack Height, ft	Heaters
1	68.5	105	63	42	64.5	.2150	5	3 K.L.
$\underline{2}$	69.0	101	67	34	76.0	. 2035	10	3 K.L.
3	69.0	101	69	32	83.1	. 2085	15	3 K .1.
4	69.0	167	63	98	12:.6	. 6450	15	2 ¢.\#.
5	59.0	179	69	110	220.2	. 6840	10	2 S.3.
ϵ	69.0	202	69	133	101.0	. 7520	5	2 S.H.

Date: $27 / 65 \quad P_{B}=25.16$ in. $\mathrm{Hg} \quad$ Fuel Data (White Sascli:e)
Conditions: Open Door, Various Lensth of 8 in. Jia. Slbowed Stack

1	69.5	96	72	24	51.4	. 1038	5	2 i., ${ }^{\text {O.L. }}$ *
2	70.0	91	70	21	59.9	. 0998	10	2 M.G.L.
3	71.5	178	85	93	113.0	. 5400	10	2 G.E.C.S.th
4	7.5	157	86	71	115.0	. 5090	15	2 U.E.C.E.
5	71.5	167	91	76	83.2	. 4510	5	2 3. O . 2.

Date: $4 / 28 / 65 \quad P_{B}=25.15 \mathrm{in} . \mathrm{Hg} \quad$ Same Conditions
$6 \quad 71.5 \quad 201 \quad 73 \quad 128 \quad 99.5 \quad .7180 \quad 5 \quad 2$ G.B.C.S.
$\begin{array}{llllllllll}7 & 70.5 & 185 & 75 & 110 & 119.8 & .7530 & 10 & 2 G . B . C . S .\end{array}$
$8 \quad 71.0 \quad 188 \quad 75 \quad 113 \quad 121.5 \quad .8060 \quad 10 \quad 2$ G.R.C.S.
*2 M.G.L. $=2$ - Mantle Gasoline Lantern
*2 G.B.C.S. - 2 - Gas-Burner Camp Stove

Dates L	4/28/65 Condit	Ions:	$P_{B}=25$ Open Door	15 in. Darious	g Lengths	Fuel of 8 in .	Data (Kerose a., SIbowed	e) Stack
Run No.	$\mathrm{T}_{\text {in }},{ }^{\circ} \mathrm{F}$	${ }^{\text {T }{ }_{\text {ch, }}{ }^{\text {cF }}}$	$\mathrm{T}_{\mathrm{rm},}{ }^{\circ} \mathrm{F}$	$\Delta T,{ }^{\text {F }}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	Fuel Rate $\mathrm{lb} / \mathrm{hr}$	Stack Height, ft	Heaters
1	71.0	145	75	70	115.0	. 4720	15	2 S.H.
2	71.0	160	77	83	122.8	. 5880	15	2 S.H.
3	71.0	173	79	94	128.0	. 6770	25	2 S.H.
4	71.0	177	79	98	129.5	. 6810	15	$2 \mathrm{S.H}$.
5	71.0	135	80	55	104.7	.3480	15	2 S.H.
6	73.5	109	79	30	71.8	. 1363	10	1 S.H.
7	73.5	123	79	44	85.4	. 2280	10	1 S.H.
8	73.5	140	78	62	97.2	. 3190	10	1 S.H.
9	73.5	169	76	93	112.2	. 5220	10	2 S.H.
10	74.0	181	74	107	119.1	. 6200	10	2 S.H.
11	74.0	189	72	117	123.2	. 6960	10	2 S.H.
12	69.5	133	62	71	102.0	. 3420	10	I S.H.

Date:	5/5/65 Condit	ions:	$P_{B}=21$ Open Doo	$80 \mathrm{in}$. Various	Hg Length	$\begin{array}{r} \text { Fuel } \\ \text { of } 8 \mathrm{in} . \mathrm{D} \end{array}$	Data (Kerose Dia, Straight	ne) Stack
Run No.	$T_{\text {in }},{ }^{\text {Pr }}$	$\mathrm{T}_{\mathrm{ch}},{ }^{\circ} \mathrm{F}$	$\mathrm{T}_{\mathrm{rm}},{ }^{\circ} \mathrm{F}$	$\Delta T,{ }^{\text {F }}$	Acfm $\mathrm{ft}^{3} / \mathrm{min}$	Fuel Rate $\mathrm{lb} / \mathrm{hr}$	Stack Height, ft	Heater
1	71.5	115	75	40	78.0	. 1926	5	1 S.H.
2	71.0	129	74	55	90.0	.3200	5	1 S.H.
3	71.0	172	75	97	112.0	. 6470	5	2 S.H.
Date:	5/6/65		$P_{B}=24$	98 in.	Hg	Same	Conditions	
4	67.5	160	60	100	113.0	. 6400	5	2 S.H.
5	67.5	181	61	120	120.0	. 7630	5	2 S.H.
6	68.0	42	60	82	127.0	.6110	10	2 S.H.
7	68.0	131	61	70	121.0	. 4280	10	2 S.H.
8	68.0	100	61	39	96.5	. 2200	10	I S.H.
9	68.0	96	61	35	100.0	. 2160	15	1 S.H.
10	68.5	125	62	63	128.1	. 5140	15	2 S.H.
12	68.0	133	62	71	133.0	. 5460	15	2 S.H.
12	68.5	113	62	51	117.5	. 3330	15	2 S.H.

Date: 5/10/65 $\quad P_{B}=25.14 \mathrm{in} . \mathrm{Hg} \quad$ Fuel Data (Kerosene)

Conditions: Open Door, Various Length of 6 in. Dia., Straight Stack

1	72.0	120	85	35	40.0	.1329	5	1 S.H,
2	72.0	163	82	81	56.2	.3445	5	1 S.H.
3	72.5	220	82	138	67.0	.7850	5	2 S.H.
4	73.0	248	81	167	70.0	.8360	5	2 S.H.
5	74.0	202	84	118	63.5	.5420	5	2 S.H.

Conditions: Open Door, Various Length of 5 in. Dia., Straight Stack

Mun No.	$\underline{\mathrm{T}_{\text {1n }},}$	$\underline{\mathrm{T}}{ }_{\text {ch }},{ }^{\circ} \mathrm{F}$	$\mathrm{T}_{\mathrm{rm}},{ }^{\circ} \mathrm{F}$	$\triangle T,{ }^{\circ}$	Acfm $\mathrm{ft} 3 / \mathrm{min}$	Fuel Rate lb/min	Stack Height, ft	Heater
1	75.0	126	93	33	46.0	. 1630	10	1 S.H
2	75.0	270	92	78	66.0	. 4200	10	1 S.H
3	75.5	215	90	125.	77.5	. 8020	10	2 S.H
4	76.0	233	90	143	81.0	. 8140	10	2 S.H
5	76.0	130	89	41	54.5	. 2300	15	1 S.H

Dave: 5/12/65

$$
P_{B}=25.03 \mathrm{ir.} \mathrm{Hg}
$$

Same Conditions

T | 6 | 76.0 | 155 | 87 | 78 | 71.0 | .4610 | 15 | 1 S.H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 76.5 | 203 | 91 | 112 | 81.5 | .8210 | 15 | 2 S.H |

ASHRAB Guide and Date Book, 1953 Sdition, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., New York, New York.

Brabbee, C. W., Heating and Ventilation, First Edition, McGraw-Hill Book Company, Inc., Now Ycrk, 1927.

Hemeon, W. C. L., Plant and Progress Ventilation, Second Edition, Industrial Press, New York 13, New York, 1963

Jennings, Burgess H., Heating and Air Conditioning, International Textbook Co., Scranton, Pennsylvania, 1956

Measurement of Natural Draft, Office of Civil Defense, Contract No. CCD-OS-62-64, December 1963.

Samuel, J. A., Bnviromental Engineering for Fallout Shelters, Orfice of Defense, Cortract No CCD-CS-63-111, November 1963.

Vennard, John K., Elementary Fluid Mechanics, Fourth Edition, John Wiley \& Sons, Inc., New York, January 1962.

Magazines
Deleo, R. V., Hagen, F. W., \& Werner, F. D., Measurement of Mean Temperature in a Duct", Instrumen's and Control Systems, Volume 34, No. 9, September 1961.

Faul, Juseph C., "Thermocouple Performance in Gas Stream", Instruments and Controi Systems, Volume 35, No. 12, December 1962.

Severinghaus, W. L., "Gas Temperature Measurement", Mechanical Engineering, Mav in?

Pamphlets
"Mhermistor Marual", Fenwal Blectronics, Inc., Framingham, Massachusetts. ENC-5.
 theoretical resulis for oreiv omor at staiscaico conditiuns NOTATION FCN The FOLLOWING OATA NODRUN NIJMBER
L－STACK DJAMETER．IHCHES

K＝ADDITICNAL EQUIVALENT SiACK LENGTH：PT
Ge：Ip．FLOT，LB／HIN

OEEAIR FLY THPOUGH SHCLTER IH．ET，L．FM

ivalir velccity in stack，fi／hia．

HO	L	1	k	0	OCH	QE	ro	iv
1	4	3		1－：77E－00	$1.521 E+\sim 1$	$1.4392+01$	$3.0002+01$	17
1	4	10	1	1．266E－J0	1．789i－ 1	1．693Et01	$36000 c+01$	135
1	4	15	1	1．3365－00	1．915E＋01	$1.813 E+01$	$3.0308+01$	220
1	4	20	1	1．404万ー30	$1.989 E+-1$	1．8E3E＋01	$3.0008+01$	228
1	4	25	1	1．449E－0	$2.098 E+$ 1	1．929E＋．）1	$3.0006+01$	234
1	4	30		：－407E－0U	$2.073 E+\cup 1$	1．962E＋01	3．UUOE＋01	<30
，	4	5	5	9．246E－01	$1.306 E+01$	1．236E＋01	$3.000 E+01$	150
1	4	10		1．134E－0J	$1.602 E+\sim 1$	$1.316 E+C 1$	$3.000 \varepsilon+01$	184
	4	15	5	1．243E－0U	$1.757 \mathrm{E}+21$	$1.662 \mathrm{E}+01$	$3.0006+01$	201
1	4	20	5	1．312E－OU	1．6S3E＋6i	$1.754 E+51$	$3.00 C E+02$	212
1	4	25	5	1．338E－0 J	$1.919 E+\cdots 1$	1．816E＋01	$3.000 \cdot+C 1$	220
1	4	30		1．392E－00	$1.967 E+C 1$	1．862E＋01	$3.000 E+01$	226
1	4	5	9	8．227E－01	$1.162 E+01$	1.0 フ习E +01	$3.000 z+01$	133
2	4	io	9	1．U36E－0	1．464Ctid	$1.385 E+31$	$3.000 E+C 1$	168
1	4.	13	9	$1.155 \mathrm{E}-00$	$1.632 \mathrm{E}+\mathrm{C}$	$1.344 E+01$	3．0COE4O1	187
1	4	20	9	1.233 E －Cu	$1.741 E+01$	$1.648 E+31$	$3.000 E+01$	200
1	4	25	9	1．287E－0	$1.818[+i 1$	1．721c＋01	$3.000 E+01$	209
1	4	36	9	1．328E－O～	$1.876 E+J 1$	1．775E＋01	3．0CUt＋01	215
1	4	5	13	7－484E－01	1－0ップ゙が1	$\therefore \cdot \cup 005+31$	3.000641	121
1	4	12	13	yor $12 E-01$	2．356E＋U1	1－＜6SE +31	$3.000 \mathrm{E}+01$	153
1	4	15	13	1．083E－0	1－530E＋ن゙1	$1.448 E+31$	$3.000 E+01$	176
1	4	20	13	$1.166 \mathrm{E}=00$	$1.648 \mathrm{E}+1$	1．S3SE゙＋01	$3.000 E+01$	189
1	4	25	13	1．226E－02	$1.732 \mathrm{E}+\mathrm{u} 1$	$1.639 \mathrm{E}+01$	$3.000 t+01$	199
1	4	30	is	1．272E－00	$1.7965+01$	$1.700 \mathrm{E}+31$	$3.000 t+01$	206
1	4	3	17	6．712E－01	7．764E－00	9． $2415-00$	$3.000 E+01$	112
1	4	10	17	$8.985 \mathrm{E}-01$	？ $2698+21$	$1.201 \mathrm{E}+01$	$3.000 E+01$	146
1	4	15	17	$1.023 E-00$	$1.446 t+01$	$1.3685+01$	$3.0008+01$	166
1	4	20	17	1.110 －00	1．S68E＊01	$1.484 E+01$	$3.000 \mathrm{ENO1}$	180
1	4	25	17	1．173E－00	$1.857 E+11$	1－9EeE＋01	$3.000 t+01$	190
1	4	30	17	1．222t－00	1．726E＋．1	1．634E＋OJ	$3.0002+01$	198
1	4	3	21	6，454E－01	y．117E－is	0.82 yE－00	$3.000 \mathrm{t}+01$	105
	4	10	21	6．4．74E－01	$1.197 E+51$	L． $132 \mathrm{E}+01$	$3.000 t+01$	137
1	4	15	21	9．72 บE－01		1．JUOE + O1	3．0OOE +01	138
1	4	20	21	1－0゙60E－00	$1.498 \mathrm{E}+\mathrm{U}^{1}$	1．428E＋0i	$3.000 E+01$	172
1	4	25	？ 1	$1.1265-20$	1．591E＋01	1．30sE＋01	3．DOOE＋01	182
1	4	30	21	$1.174 \mathrm{E}-0$.	$1.644 E+11$	1．374E＋ 1	3．000E＋01	131
1	6	3	1	$2.673 E-00$	3．7765＋01	$3.574 E+01$	$3.000 E+01$	192
	6	10	1	3．239E－00	4．376E＋01	$4.331 E+1) 1$	$3.000 E+01$	233
1	6	15	1	$3.526 E-00$	$4.9 t 1 E+01$	$4.715 E+01$	$3.000 E+C 1$	294
1	6	20	1	3．702E－00	$5.229 E+01$	4.94 ¢E＋J！	3．00NE +01	268
1	6	23	1	3．821E－OU	$5.3472+01$	$5.108 \mathrm{E}+31$	3．00uE＋01	275
1	6	30	1	3．906Eく0う	S．S18E＋j1	3． $223 \mathrm{E}+01$	$3.360 t+01$	＜ 81
1	6	，	3	2．134E－3．	S．3く5Ë＋u1	3．147L－0i	$3.200 t+01$	169

NO	$!$	1	\bigcirc	0	2611	OE	TV	1v
1	6	10	5	2．842E－ر 0	4．155E＋U1	3． $333 E+01$	$3.000 t+01$	212
2	8	15	3	3． 263 ［－？	$4 \cdot$ bivp $+J 1$	$4.362 E+3!$	$3.000 t+01$	235
1	6	23	5	$3.468 \mathrm{EWj心}$	4．800E4？	$4.638 \mathrm{E}+\mathrm{Jl}$	$3.0 C O L+01$	250
1	6	25	5	3．613Eー50	$5.103 E+01$	$4.630 \mathrm{C}+01$	$3.000 E+01$	260
1	8	30	5	3．717E－0¢	5．234E＋ن1	$4.973 E+11$	3.0 cet +01	268
1	6	b	y	2，127E－59	30．03F＋－ 1	$2.844 \mathrm{~F}+01$	$3.0008+01$	153
1	6	10	9	2，713Em（V）	1．833E＋コ1	？ 5 ？ $5(5+31$	$3=1500 t+01$	195
1	6	15	7	3．US1E－OU	4．31UEt．1		$3.0 \cup 06+01$	？ 20
1	6	20	9	3－c75E－JU	$\rightarrow 0426 \mathrm{C}+.11$	4－JフdE＋ら゙	3．0cot +01	231
1	5	25	y	3．436E－00	$4.053 E+\cup 1$	$4.393 E+01$	$3.000 t+01$	241
1	6	30	\％	$3.557 E-C u$	3：025E＋C1	4．753E＋01	$3.000 \mathrm{c}+01$	256
1	6	3	13	1－S5SE－00	2．762E＋C）	$2.614 E+01$	$3.300 t+01$	141
1	6	10	13	2．531E－0．）	1－375E＋ij	3． $584 \mathrm{E}+01$	$3.0008+01$	182
1	6	13	13	2．675E－0	$4.062 E+.11$	3．844E＋01	$3.000 E+C 1$	207
1	6	20	13	3－110E－30	$4.384 E+\sim 1$	4．158E＋01	$3.0005+01$	224
1	6	25	13	3．282E－0u	$4.636 E+01$	$4.388 E+01$	3.0 OOE 41	236
1	6	30	13	3．414E－DJ	$4.623 E+\sim 1$	$4.364 E+01$	$3.000 E+C 1$	246
1	6	5	17	－© \％\％－O	$2.570 t+J 1$	2．432E4U1	$3.000 E+C 2$	131
1	6	15	17	$2 \cdot 381 \mathrm{E}-0 \mathrm{~J}$	）36めE＋U1	3．104E＋01	3．000t：01	171
1	6	13	17	＜．727E－0j	$3.452 E+21$	$3.6466+01$	$3.000 L+01$	496
1	6	2	17	20.060 － 3		2．968E＋J1	$3.030 t+01$	214
1	6	23	17	3．140さーいい	$4.446 E+0]$	$4 .<08 E+51$	$3.000 t+01$	227
1	6	30	17	3－2 2 7E－0．	$4.641[+\cup .1$	4．395E＋01	$3.000 t+01$	237
1	6	5	21	1－708E－0う	2．413E＋ن1	$2 \cdot 234 E+01$	$3.000 E+01$	123
1	6	10	21	2．255E－0）	$3.1005+W 1$	$3.0155+$ O1	3．O00z＋01	162
1	6	is	21	2．6UJE－0゙	3．672E＋i1	$3.470[+01$	3．000E＊01	187
1	6	20	21	2．844E－0゙	4．017E＋心1	3．802 $5+1) 1$	$3.050 E+01$	203
1	6	25	21	3.028 c－00	－ $278 \pm+31$	$4.049 t+01$	$3.300 \underset{z}{ }+01$	＜13
1	6	$? J$	21	3．173E－0U	4．483E＋．， 1	$4.242 E+31$	$3.0002+01$	228
2	8	5	1	5．034F－00	7－111E＋C1	$6.730 E+01$	$3.0004+6.1$	204
1	8	10	1	$6.233 \mathrm{~L}-\mathrm{JU}$	6．004C＋J1	$6.333 E+3 i$	$3.000 t+01$	452
1	8	15	1	6．37jE－S	Y． $704 E+11$	9．14DE＋J	$3.000 t+01$	278
1	8	20	1	7－く7女Eーす心	1．J2dE＋J2	9．732E＋01	$3.0002+01$	295
1	4	25	1	1．550E－02	1．067E＋以？	1．U19E＋02	$3.00 c t+02$	104
－	3	30	1	7．763［－0	100y6－＊2	1．Ustt＋ul	3．OCUE＋02	214
1	8	5	5	4．514E－00	$6.376[41$	$6.035 t+01$	3．JOCE＋O1	183
1	8	10	5	5．721E－0U	$8.082 E+\mathcal{L}$	7．649C＋01	$3.000 E+01$	232
1	8	15	5	$8.435[-0]$	y＊u48E¢01	1． $364 \mathrm{E}+01$	$3.000 t+01$	259
1	8	20	5	6．654E－00	7－6d3E＋01	$9.164 E+11$	3．JOOE +02	278
1	8	23	5	7．174E－OJ	1．013E402	2．591EヤO1	$3.0006+01$	293
1	8	3.$)$	5	7．413E－00	1．047E＋V2	9．911E＋01	3.000 ¢ 41	300
1	8	5	5	4．127E－00	$5.831 E+\cup 1$	S． $318 \mathrm{f}+01$	$3.0006+01$	167
1	8	10	9	5．318E－0U	$7.512 E+11$	$7 \cdot 110 E+01$	$3.1500 E+C 1$	213
1	8	19	y	6．J22E－0う	8．306E＋1／	$0.051 E+21$	$3.0002+01$	24
1	8	20	y	6－4y7E－J	Y． 178 C +1	8．606E +01	3．OCOE 01	263
1	3	25	9	6．845E－00	\％．667E ${ }^{\text {coi }}$	4．147E＋01	3.0005401	277
1	8	30	4	7．107E－00	1．003E＋02	9．502E＋02	$3.0006+01$	<88
1	8	5	13	3．826E－0U	3．403E＋U1	$5.115 E+01$	$3.0 \cup 0 E+01$	155
1	8	10	13	4．99JE－CN	7.048 （tiv	6．671E＋01	1．000E＋01	202
1	8	15	13	3．70つ -00	－． $551 E+.1$	7．620E＋01	3．000E＊01	231
1	8	23	13	6．141E－00	8．745t＋21	$8.277 E+01$	$3.000 t+01$	251
1	3	23	13	－． $554 \mathrm{E}-00$	Y－2SYE＋い1	8．76jE＋01	$3.000 E+01$	263
1	8	30	13	6． $336 \mathrm{E}-00$	\％．656E +11	$9.139 E+01$	$3.0005+01$	277
1	8	3	17	3．582E－00	3．063Et－1	－ $439 E+U 1$	$3.0001+01$	143
1	0	10	17	4．71SE－DJ	6．661E＋．1	$0.304 E+21$	$3.000 E+01$	241
1	8	13	17	3．424と一04	7．662E＋U1	7．－32E＋U1	3．0VOE＋C1	220
1	8	20	17	5．：24E－JJ	b． $368 \mathrm{~F}+\mathrm{Cl}$	7．920［＋01	3．00JE\＄0：	240
1	3	25	17	6． 29 ¢E－0．	t．syaltul	8．422i＋01	$3.000 t+01$	235

Nij	L	1	n	0	OCH	QE	10	IV
1	8	30	17	6．593E－00	9．3145＋01	8． $215 t+01$	$3.200 t+01$	267
2	8	5	21.	3．380E－OC	4．774F＋01	4．318E＋01	$3.0002+01$	137
1	8	10	21	$4.482 E-0 J$	8．331E＋U1	5．992E＋01	$3.000 E+01$	181
1	3	15	21	S． $185 E-00$	7．325E＋C1	6．932E＋01	$3.000 E+01$	210
1	8	20	21	5．689E－0J	B．036E＋U1	$7.605 E+01$	$3.000 E+02$	230
1	5	23	21	$6.172 E-0 v$	$8.377 E+.1$	E．128E＋il	$3.00 \text { CE }+01$	246
1	8	30	21	6． 175 E －u	Y．00SE +1	$8.523 E+01$	$3.0 .20 t+01$	258
2	10	5	1	8．17UE－0	1．154E＋ 2	1．082E＋C2	3.000 E－01	212
1	10	10	1	1－U28E＋01	1．432E＋U2	$1.374 E+02$	$3.000 E+01$	266
1	10	13	1	1－14SE＋01	1．618E＋02	$1.531 E+02$	$3.0002+02$	297
1	10	20	1	1．221E＋01	1．725Etu2	$1.633 E+02$	$3.0005+01$	317
1	10	25	1	1－279E＋01	1．8：1Eか）2	1．705E＋02	$3.0002+01$	331
1	10	30	8	$1.315 E+01$	1．858E－1）2	$\text { J. } 758 \mathrm{E}+02$	$3.000 \mathrm{E}+01$	341
1	10	5	5	$7.426 E-00$	$1.0495+02$	$=0928 E+01$	$3.000 E+01$	192
1	10	10	5	$9.519 \mathrm{E}=0 \mathrm{~J}$	$1.344 E+\cup 2$	$1.272 \mathrm{E}+02 .$	$3.000 t+01$	247
i	10	15	5	1－ざてくせ01	$1.017 \varepsilon+\cup 2$	$1.435 t+02$	$3 c 000 t+01$	278
1	10	20	5	$b=153 e+01$	$1.63<F+u 2$	$1.5 A 5 t+02$	$3.00 u ́ ̃-\dot{1} 1$	＜ 87
1	10	25	5	$1.214 \varepsilon+01$	$1.725 E+52$	$1.624 E+02$	$3.000 E+01$	325
i	10	30	5	$1.35 \div E+01$	1．77YE．U2	$2.663 E+32$	$3.0001+01$	$3<6$
i	10	5	9	$6.854 E-30$	$3.6835+11$	$9.164 E+01$	$3.0002+01$	178
1	10	10	4	$8.905 E-00$	$1.257 E+02$	$1.1 y 0 \varepsilon+02$	$3.000 t+01$	231
1	10	15	9	$10 J 14 E+01$	$1.432 E+02$	$1.356 c+02$	$3.000 E+01$	263
2	10	25	9	$1.049 E+01$	$j .552 E+32$	$1.467 E+02$	$3.000 t+02$	285
1	10	25	9	$1.161 E+01$	$1.641 E+02$	$1.533 E+02$	$3.000 E+01$	301
i	10	32	3	$1.210 c+02$	$\text { 1. } 709 E+ن 2$	$1.617 E+52$	$3.000 E+01$	314
1	10	5	13	$6.347 E-00$	$40: 37 E+18$	$0.5532+01$	$3.0005+01$	166
i	10	10	13	$8 \cdot 396 \varepsilon-00$	$1.186 E+.2$	$1.122 E+02$	$3.000 \varepsilon+0 i$	218
1	10	15	13	$9.636 \mathrm{E}-00$	$1.361 E+02$	$1.288 E+02$	$3.000 E+01$	250
1	10	20	13	$1.050 E+01$	$1.483 E+v 2$	$1.404 E+12$	$3.000 E+01$	272
1	10	25	13	$1.115 E+01$	$1.575 E+12$	$1.491 E+02$	$3.6,00 t+01$	289
1	10	$3 J$	13	$1.166 E+01$	$1.647[+\cup 2$	$1.539 i+32$	$3.000 t+0 i$	302
i	10	5	17	$6.021 E-00$	$5.30 .5 E+01$	$d .049 i+0 i$	$3.000 \varepsilon \leqslant 01$	156
1	10	10	17	7.yロ5E-Jo	$\text { j. } 123 E+12$	1．0S4E＋02		208
1	10	15	17	$9.198 E-0$	$1.2 y \cdot 35+: 2$	$1.229 E+02$	$3.000 \varepsilon+01$	236
1	10	20	17	$2.007 E+01$	$1.425 E+J 2$	$1.347 \mathrm{C}+02$	$3.000 t+01$	261
1	10	25	17	1－U74E＋01	1－317E ${ }^{\text {d }}$ 2	$1.436 E+C 2$	$3.0 \cup O L+01$	278
i	10	30	41	－＊iくoEからi	1．5yite iz	$1.506 E+02$	$3.000 t+01$	292
1	10	5	21	5．7U4E－00	8．557E＋U1	$7.626 E+C 1$	$3.000 E+01$	148
1	10	10	21	7．595E－00	1－U72E＋J2	$1.015 E+02$	$3.0005+01$	197
1	10	15	21	8．015E－0J	1． $245 \mathrm{E}+102$	1．178E－32	$3.000 E+01$	228
1	10	20	21	\％．696E－0u	1．3EJE＋W	$1.2968+02$	$3.000 t+01$	251
1	10	25	21	1．037E＋01	1．463t＋132	$1.3865+02$	$3.0004+61$	269
1	10	30	21	1－U90E＋01	1．540E＋U2	1－45AC＋02	$3.000 t+01$	213
2	4	5	1	1．396E－00	2．039E＋U1	1．868E－01	5．SUUE 01	236
2	4	10	1	1－6415－0u	$2.422 E+01$	2．194E－01	5．500E +01	278
2	4	13	1	1．757E－00	$2.593 E+1,1$	2．349E＋01	5．500E＋01	297
2	4	20	1	1．825E－0U	2．694Eか1	$2.440 E+31$	3－300E +01	309
2	4	25	1	1－8TOE－OC	$2.760 E+01$	$2.500 E \rightarrow 01$	3．500E＋01	316
2	4	315	1	1．802E－0u	$2.8075+31$	$2.543 E+01$	S．500t＋01	322
2	4	5	5	1．198E－ 00	$1.766 E+1) 1$	1．602E＋1）	$5.5008+01$	203
2	4	10	5	1．47UE－JO	$2 \cdot 169 E+01$	1．763E＋01	$3.500 \mathrm{E}+01$	249
2	4	15	5	1．612E－0：	2．379E＋U1	2．155E＋01	$5.500 E+01$	273
2	4	23	5	1．70JE－00	$2.509 E+i 1$	$2.273 E+01$	$5.500 E+01$	288
2	4	25	5	1．761E－00	$2.598 E+J 1$	$2.354 E+01$	$5.500 E+02$	298
2	4	30	5	1－8USE－0う	$2.684 E+01$	2．423t－01	$5 \cdot 500 t+01$	303
2	4	5	9	1－066E－00	1－573E＋J1	$1.425 E+01$	$5.500 E+C 1$	180
2	4	10	9	1．343E－JU	1－7＊くE＋い1	1．795E＋i：1	$5.500 t+01$	2＜7
2	4	is	3	1－¢フ7E－0゙	cosbuEtijl	2． $202 \mathrm{~L}+01$	5．300t＋01	253

MO	L	1	x	0	OCH	OE	80	IV
2	4	20	9	1．398E－00		$2.136 E+01$	3．500E＋0i	270
2	4	25	ν	1．668E－00	2．462E＋31	$2.231 E+01$	5． $500 E+01$	282
2	4	30	3	1．721E－00	C－541）E＋Cl	2．101E＋01	5．50CE +01	291
2	4	5	：1	7－7パごご	1．43iEtij	i． $296 E-11$	$5.500 t+01$	164
2	4	10	13	1．244E－2v	i． $836 E+\cup 1$	－．663E＋J1	30500E＋01	211
2	4	15	13	1．404tiou	2．072E＋J1	1．677E＋01	5．500t＋01	238
2	4	20	13	1．312E－CU	－ 2 SiE +11	$2.021 E+01$	S．300t＋61	256
2	4	25	13	1－ $289 \mathrm{E}-00$	＜．346E＋．J1	2．125E＋31	S． $500 \mathrm{E}+91$	269
2	4	30	13	1.648 c－00	＜－433E＋J1	$2.204 E+01$	3．500t＋01	279
2	4	5	17	$8.35 \pm[-01$	1．3＜2F：4 21	1－147E＋01	S．500t +01	152
2	4	10	27	1．184E－iuv	1．718［＋21	$1.3568+31$	5．500E +01	197
2	4	15	17	1．327E－0J	1． $958 E+01$	1．774C＋01	$5 \cdot 500 E+01$	223
2	4	20	17	$1-438 E-00$	2．123E401	1．923E ${ }^{1}$ O1	$5 \cdot 500 E+61$	243
2	4	25	17	$1-321 E-O V$	$2.244 E+31$	$2.033 E+01$	$5-500 \mathrm{E}+01$	257
2	4	30	17	1－544E－0J	$2.337 \mathrm{E}+\mathrm{C} 1$	2．118E＋02	5．5u0t +01	466
2	4	5	21	8． $366 E-01$		$1.118 E+01$	5．500e +101	142
2	4	10	21	1．U98E－CU	$1.620 E+11$	1．468E＋01	$5.300 t+01$	186
2	4	15	21	1．261E－JU	$1.860 E+\cup 1$	1．885E＋01	3．5UOE +01	213
2	4	20	21	$1.375 E-U 0$	＜．027E＋U1		S．300t +01	231
2	4	23	21	1－46JE－OU	2．155E＋U1	$1.952 E+02$	$5.500 E+01$	247
2	4	30	21	1－526E－ON	2．253［＋0！	$2.041 E+01$	5．3COE＋01	258
2	6	5	1	3－46SE－C．	30113ttw	$4.632 E+01$	$3.300 t+01$	261
2	6	19	1	4．199	$6.196 E+v i$	5．614E＋01	$5 \cdot 5002+01$	316
2	6	15	1	4．571E－2！	E．74EE＋O1	$5 .: 185+0:$		$3 \div 4$
2	6	20	1	$4.798 \mathrm{E}-00$	7－U81E＋Cl	$6.415 E+01$	$3 \cdot 300 E+01$	361
2	6	23	1	$4.952 E-00$	7．306E＋D1	$6.621 E+01$	5．500Et01	372
2	6	30	1	5．063（－9）	7．472E＋C1	$6.764 E+01$	$5.500 E+01$	381
2	6	5	5	3．Jら1E－OU	4．502E＋，1	4．1） $79 E+21$	5．500t＋01	229
2	6	10	5	$3.413 E-00$	2．627E゙＋U1	$5.098 \mathrm{E}+01$	5．500t +01	287
2	6	15	5	4.22 E E－1）	0．241［＋51	$3.654 E+01$	$5.500 E+01$	318
2	6	2%	3	$4.496 E-0 U$	$0.63 j E+U 1$	$6.011 E+01$	S．500E +02	338
2	6	25	5	$4 \cdot 6 \pm 3 E-00$	$6 . y 10 \bar{t}+1$	3．261E＊01	5．500t＋01	354
2	6	30	5	4．021E－CU	7－114E＋J1	$6 \cdot 443 E+01$	$3.3000+01$	363
2	6	5	y	2．757E－0	4．065t＋j1	$3.666 E+01$	j－500E＋is	207
2	6	10	y	3．317E－0J	5.1 yce +1	$4 \cdot 702 E+01$	3．5U0t＋01	264
2	6	13	9	3． $4555-00$	$5.8362+01$	5．287E＋08	3．SUUE +01	297
2	6	20	y	$4 \cdot 245 E=00$	$6.264 E+01$	5．675E＋01	S． $5000+01$	319
2	6	25	9	$4.453 E-00$	$6.571 E+31$	5．954E＋01	3．300E＋01	339
2	6	36	3	4．61JE－00	$0.873 \hat{c}+61$	6．164E＋U1	5－300E＋01	347
2	6	4	13	$2.534(-1) 0$	$3.740 \mathrm{~F}+01$	3．3SAE401	S．soot 0 cl	191
2	6	10	13	3．281E－OU	$4 \cdot 841 E+51$	$4.343 C+21$	$3.5002+01$	247
2	6	15	13	3．727E－0U	3．300E＋01	4－y 3 S 02	S．Scottol	280
2	6	20	13	4－U31E－OJ	S．949E＋U1	S．390E ${ }^{\text {S }}$ J1	S．500t＋01	303
2	6	23	13	4．254E－00	6．278E＋J1	5．688E 01	S．300L 401	$3<0$
2	6	30	13	4．425E－00	6． $330 E+1$	5．916E＋01	$3.5001+01$	333
2	6	5	17	$2.358 E-00$	3．440（4） 1	$3.133 E+01$	3．300t＋01	177
2	6	10	17	$3 . J 86 E-00$	$4.555 C+01$	$4 \cdot 126 E+01$	5．300k＋01	232
2	5	15	17	$3.533 \mathrm{E}-00$	3．216E＊O1	4．726E＋51	5－300t＋01	266
2	6	20	17	3．347E－OU	5．677E＋j1	$5 \cdot 144 E+01$	S．SOOE +01	289
2	6	25	17	4－J6つE－0．j	$6.021 E+01$	5．453E＋01	$5.500 t+01$	307
2	6	30	17	－． $2016-00$	$6.287 \Sigma 4 J 1$	3．676E401	3．300E－01	320
2	6	3	22	$2.214(-0)$		$2.9616+01$	3．500t＋01	167
2	6	10	21	2－y23E－6J	4．314E＋J1	3．408E＋01	5．500t＋01	220
2	\checkmark	i：	こ：	3．370E世G	terisetul	4．305E＋01	3．$=055+01$	233
6	6	$2 J$	21	3．606E－60	S．4AUETJd	$4.428 E+01$	$3.5005+01$	＜77
2	6	25	21	3．Y2SE－OU	5．7y3E＋i1	$30448 t+01$	S．5006＋01	235
2	6	30	21	4．113E－0J	6－i）70E＋11	5．489［41］	S． $500 t+01$	309
2	8	5	1	を．523E－CJ	$9.820 E+01$	8．723E゙＊ 1	S． $500 t+01$	276

MC	1	1	K	0	CHH	OF	10	IV
2	8	10	1	8．0781－00	1．192：＋02	－ 0080 E －02	$3.500 E+01$	342
2	8	15	1	8．909E－00	$1.314 E+U 2$	1－191E＋02	5．500E +01	377
2	3	90	1	9．433E－00	$1.392 E+02$	1．261E＋02	5．500E＋01	399
2	6	25	1	9，796E－00	1．443E＋～2	1．309E＋02	5．500t＋01	414
2	8	30	1	1．006E＋01	1．464E＋02	1．345E ${ }^{\text {－}}$－ 22	$5.500 E+01$	426
2	8	5	5	$5 \cdot 851 E-00$	8．634E＋以1	$7.622 E+01$	$3.5 \cup 0 E+01$	247
2	8	10	3	7－416E－00	1． $2 y 4 E+02$	9．914E＋O1	5．500t＋01	314
2	8	15	5	9．303E－00	$1.225 E+02$	1．110E＋02	$3.500 t+01$	151
2	8	20	5	6．885E－0才	$1.311 E+\cup 2$	$1.187 E+02$	3．500E＋01	376
2	8	23	5	9．299E－0．	$1.372 E+32$	$1.243 E+02$	$5.500 L+01$	393
2		30	5	9．609E－00	$1 \cdot 410 E+02$	1．284E＋J2	$5.500 E+01$	406
2	－	5	9	S．350E－00	7．893E 01	7．152E＋01	$5.5 \cot +01$	226
2	3	10	9	$6.893 E-30$	1．617E＋02	9．126E＋01	$5.500 t+01$	292
2	8	13	9	7．805E－00	1．151E＋02	1．043E＋02	$5.500 \mathrm{c}+01$	330
2	8	20	9	8．422E－00	1．342Fti	1．125E＋02	5．500t 01	356
2	8	23	9	8．a70E－0U	1．308Et： 2	1．185E＋02	$3.500 k+01$	375
2	a	30	y	Y．21くE－00	2．359E＋しく	1．$\angle 31 E+02$	$3.500 t+01$	390
2	，	5	13	4．y59E－OU	7．31UE＋こ1	6．630cto	$5.500 \mathrm{E}+01$	11210
2	8	10	13	6．467E－こん	y． $344 \mathrm{Lt-1}$	d．646（ 0.01	$5.5006+0$.	1 274
2	8	23	13	7．388E－0＂	1．JソUE＋1．2	9．677E＋01	S． $5 C O E+01$	312
2	8	20	13	8．J24E－0．J	1．184E＋い2	1．072E＋02	$3.500 E+01$	339
2	0	25	13	8．4．76E－00	1．253E＋ن2	1．135F．012	5．5COE＋ 01	359
2		31	： 2		1．3S7F＋ 2	1．184E＋：72	\＆．500t＋01	$=75$
2	8	5	17	－．64yE－0C	6．892E＋J1	$6.207 E+01$	$3.502 \mathrm{CH}+01$	186
2	．	13	17	6．112E－03	3－617E＋－	8．171E＋01	$5.500 t+01$	259
2	－	15	17	7－231E－0゙	1．1037E +32	Y．399E＋01	$5.5006+01$	297
2		20	17	7．678E－03	$1.133 E+02$	$1.328 \mathrm{C}+02$	$5.5005+01$	325
2	8	25	17	8．165Eーロう	$1.204 E+32$	1．391E＋32	3．3 JOE +01	145
2	c	30	17	8．546E－0J	1．261E＋．2	$1.142 E+02$	$3.300 k+01$	361
2	8	5	21	4．381E－OJ	$6.4645+131$	3．857E +01	$5.500 c+01$	185
2	，	$8 C$	21	5．8USE－0．j	$6.573 t+1.1$	7．787r＋01	$3.300 t+C 1$	246
2	，	15	21	6．721E－OU	？ $0182+: 1$	$0.983 L+01$	3．300t＋01	284
2		20	\cdots	7．27：－ 0	1．088Et02	$9.858 t+01$	5．5UOL＋U1	312
2	，	25	21	7．870E－00	$1.161 E+J 2$	1－052E＋U2	5．50cc +08	i 333
2	8	30	21	8．263E－00	$1.212 E+12$	1．104E＋02	$3.50 C E+C 2$	1,352
2	10	5	1	1．C58C＋C1	1．362E＋02	1．415E＋02	3．500E＋01	－ 287
2	10	10	1	$1 \cdot 332[+51$	1．966E＋C2	1．701L＋02	5．560L +01	361
2	10	13	1	$1.484 E+01$	$2.191 E+\cup 2$	1．985E＋． 32	$5.520 E+C 1$	402
2	10	20	1	1－SA3E＋01	$2 \cdot 336 E+: j 2$	$2.117 E+02$	$5.500 t+02$	429
2	10	25	1	$1.653 E+01$	2－439E＋ 2	$2 \cdot 210 \mathrm{~F}+02$	5．300E +01	448
$\overline{2}$	10	30	1	1－70SESD1	2．516E +6	$2.279 \mathrm{e}+02$	3．300E＋01	462
2	10	3	5	9．626E－0．	1．4iOE＋U2	$1.486[+02$	5．500t＋01	461
2	10	10	5	1．233E＋01	1．820Et．j2	1．649E＊02	3． $300 \mathrm{c}+01$	334
2	10	13	5	1．352E゙ 01	2． $354 E \cdot$ U2	1．851E＋02	$3.500 t+01$	177
2	10	20	5	1.49 dE 01	2．210E＋心2	2．002k＊ 22	5．SuCEtO1	406
2	10	25	5	$1.374 E+01$	2．323E402	$2.104 \pm+02$	5．300t＋01	426
2	10	30	5	1．632E＋01	2．40：E＋」2	2．182E＋J2	3．300t＋01	442
2	10	5	9	8．885E－JU	1．311［42	1．187E ${ }^{\text {coi }}$	3．30ittol	241
2	10	$1 J$	9	$1 \cdot 154 E+01$	1．7C3E＋J2	1．543E＋0？	3．300t＋01	312
2	10	15	9	$1-314 E+01$	1．940E＋U2	1．757E＋02	S．300E 01	356
2	10	23	9	1－424ctol	$2.102 C+02$	1．905E．02	5．300E＋01	386
2	10	25	9	1－506E＋01	2．222E＊02	$2 \cdot 3135+02$	$3.500 k+01$	40
2	10	30	9	1．568E＋C．1	$2.314 t+12$	$2 \cdot 0364+02$	5．30UE 401	425
2	10	5	13	4． 4 \％2E－0U	1．223E＋U2	1．108E + （2	3．500t 401	244
2	10	10	13	1．0 $006+01$	$1.605 E+.2$	1．434E＋02	$5.500 \mathrm{c}+01$	295
2	10	15	13	$1.24) E+01$	1．843E＋U2	1．669E +02	5．500t +01	138
2	10	20	13	1－361E＋01	20．JU7c＊ 2	$1.820 ¢+0.6$	$5.500 E+01$	389
2	10	23	13	$1.445 E+01$	$2 \cdot 1335+2$	$1.932 E+02$	$3.300 t+01$	391

NO	L	1	K	0	QCH	$D E$	Tis	IV
2	10	30	13	$1 \cdot 511 E+01$	$2.230 ¢+02$	2．020 002	5．50CE＋01	409
2	10	5	17	7－804E－0）	1．151E゙せに2	$1.043 E+02$	5－5COE401	211
2	10	10	17	1．032E＋01	1．523E＋こ2	1．380E＋02	5．5J0t＋01	279
2	10	15	17	1－192E＋01	1．75yE＋U2	1．5．3E＋J2	$5.500 \varepsilon+01$	323
4	10	20	17	$1.306 E+01$	$1.967 \mathrm{E}+02$	$1.746 E+32$	5．3uut＋01	354
2	1%	25	17	$1 \cdot 39<E+01$	2．U54E＋．12	1－tb1E＋ 12	3．500t +01	377
4	10	30	17	1．46．5E＋31	$2.134 E+U 2$	1．952ctoz	3．300t＋C1	145
2	10	5	21	7－373E－OU	1．0\％1E＋J2	$9.884 \mathrm{E}+31$	S． $500 \mathrm{t}+01$	230
2	10	10	21	9．444E－OC	$1.452 E+32$	$1 \cdot 316 E+32$	3．500t＋01	266
2	10	15	21	1－142E＋31	$1.835 c+1.2$	$1.527 E+02$	5．SCOL 1 O1	309
2	10	20	21	$1 * 256 E+31$	1．6S4E＋02	$1.680 E+02$	5．500t－01	340
2	10	25	21	1．344E＋01	1－583E4\％2	1．797E＋， 2	5． $200 E+01$	364
2	10	30	21	$1.413 E+01$	2．086E゙＋V2	1．890E＋${ }^{\text {c }}$－ 2	$5.500 E+1$	383
3	4	5	1	1．\＃55E－UJ	$3.042 E+J 1$	$2 \cdot 481 t+51$	1．20UE +02	349
3	4	10	1	2．182E－0J	$3.378 E+J 1$	2．917E＋01	1．200E 202	410
3	4	15	1	$2.336 \mathrm{~L}-00$	$3.551 E+01$	3． $124 E+01$	$1.2006+02$	434
3	4	20	1	2．427E－0U	3．979E＋い1	3．245E＋01	$1.200 k+02$	456
3	4	23	1	2．486E－JU	$4.077 E+J 2$	3．324E，01	1．200k＋02	167
3	4	30	1	2．523E－0j	$4 \cdot \$ 46 E+11$	3．301E＋O1	$1.200 \mathrm{~L}+02$	475
3	4	5	5	10：33E－3）	2．612E＋U1	$2.129 E+01$	1． $200 \mathrm{E}+02$	299
3	4	10	5	1－y54E－00	$3.204 \mathrm{E}+21$	$2.613 E+J 1$	$1.200 t+02$	367
3	4	15	5	$2.143 E-00$	$3.3145+01$	$2.865 I+01$	$2.200 E+02$	403
3	4	20	5	$2.2605-00$	$\text { 3. } 706 E+111$	$3.022 \mathrm{E}+0 \mathrm{i}$	$1.200 E+02$	425
3	4	25	5	$2.3+1[-0 u$	$3.33 \mathrm{BE}+11$	$3.130 E+J 2$	$1.200 E+02$	440
3	4	30	5	$2.40 .3 E-3.0$	$3.935 E+21$	$3.208 E+01$	$1.200 E+02$	451
3	4	5	4	$1.417 E-20$	$2.324 E+1: 1$	$1.899 E+01$	$1.200 E+02$	266
，	4	10	y	1.7.55c-0u	$2 \cdot \Rightarrow<U E+\cup 1$	$2 e 387 E+31$	$1.200 L+02$	336
3	4	15	y	$1.491 E-01$	$3.264 E+01$	$2.662 E+21$	$1.200 t+02$	374
3	4	20	4	$2.12+E-0 u$	$3.483 E+\ldots 1$	$2.040 E+31$	$1.200 t+02$	149
3	4	25	y	$2.218 E-50$	$3.637 E+31$	$2.966 E+01$	$1.2006+02$	417
3	4	30	9	2：288E－0	3－7，2E＋2，	$3.060 E+01$	$1.20 c E+02$	430
3	4	3	13	1．287E－0心	$2.114 E+11$	1．724t＋01	$1.200 E+02$	242
3	4	10	13	1． $63+E=0 . j$	$\therefore .712 \mathrm{ctud}$	$2.211 E+01$	$1.200 \varepsilon+02$	311
3	4	15	13	$1.667 E-0 \cup$	$3.061 \%-1$	2．496E＋01	$1.200 E+02$	351
2	$\stackrel{ }{4}$	23	13	$2.110 E-00$	$3.2985+21$	$2.687 E+01$	$1.200 E+02$	378
3	4	23	13	$2.113 E-0 J$	$3.465 E+01$	$2.825 C+08$	$1.200 E+02$	397
3	4	30	13	$2.1915-00$	$3.3935+11$	2．430E＋01	$1.2000+02$	412
3	4	5	17	1．1915－0，	$1.952 E+.1$	2．392E＋01	$1.2002+02$	224
3	4	10	17	$1.546 E-0$	$2.533 E+j 1$	$2 . c 69 E+01$	$1.200 E+02$	291
3	4	25	17	1．764E－OU	$2.8 y 2 E+31$	$2.358 E+01$	$1.200 t+02$	332
3	4	20	17	1－y12E－00	3．136E＋1．1	$2.5575+61$	$1.200 E+C 2$	$36 .$
\underline{x}	4	25	17	$2 \cdot u 22 \varepsilon=0 J$	$3.315 E+111$	$2.773 L+01$	$1.200 E+02$	360
3	4	30	17	$2 \cdot 108 E-00$	$3.453 E+J 1$	$2.013 E+01$	$1.200 k+02$	396
3	4	3	21	$1.112 \mathrm{E}-00$	$1.8235+.12$	$1.486 E+01$	$1.200 x+02$	209
3	4	10	21	$1.460 \varepsilon=00$	$2.394 E+11$	$1.852 E+01$	$1.200 t+02$	274
，	4	13	21	$1.876=-0$	$2.74 d[401$	$2.241 E+01$	$1.200 E+02$	315
3	4	20	28	$1.826 \mathrm{E}-50$	$209 y 7+02$	$7.443 E+31$	$1.200 \mathrm{E}+\mathrm{C}, 2$	344
3	4	25	21	$1.8416 \cdot 00$	$3.183[+02$	$2.393 E+121$	$1.200 \mathrm{E}+02$	365
3	4	30	21	$2.029 E=00$	$3.848 E+51$	$2.713 E+01$	$1.200 E+02$	382
3	6	5	1	$.0608 E-10$	7．553E＋U1	$0.15 \Delta E+01$	$1.2005+02$	365
3	6	20	15	$5.20<E-0 u$	$401532+31$	$7.463 E+01$	$1.200 t+02$	466
3	6	－3	1	$6.077 E-00$	$4.3632+1$	$\text { a. } 12 \cos +0 i$	$1.200 t+c 2$	508
3	6	22	1	4．374Eー00	1．0545ct＋2	$8.5286+01$	1．200t +02	533
3	6	23	10	6．5さサビーが	1．074E－2	6．bO2L 01	1.3006402	550
3	6	3.3	1	6．731EーGu	1．103E＋U2	0．YY9E＊01	1．200t＋02	502
3	6	3	5	4－us6E－0u	b－tsict－1	$3.423{ }^{\circ}+01$	1．200e +02	339
3	6	11	55	S．JoyE－00	$6.111 E+J 1$	6．777E＋－ 1	1.2 OOE＋ 22	424
3	6	15			¢．214t＋01		$1.200+02$	470

NO	L	1	k	0	OCH	OE	TD	IV
3	6	20	5	S．977c－0U	9．601E＋01	7．991E＋01	1．200E +02	499
3	6	25	5	6．225E－00	1．020E＋22	8．323E＋01	1．2UnE +02	320
3	6	30	5	$6.40 y E-00$	$1.050 \mathrm{E}+\cup 2$	8．568E－ 51	$1.200 t+02$	535
3	6	5	9	$3.665 E-00$	C．OLOE＋：1	4．900E＋01	$1.200 E+02$	366
3	6	10	9	4．676E－OU	7．66B［＋J］	$6 .<31 E+01$	$1 \cdot 200 t+C 2$	341
，	6	13	9	$5.257 E-00$	4．620Et $\because 1$	$7.0295+31$	$1.2 \operatorname{coc} t+02$	439
3	6	20	9	$5.643 E-00$	Y． $233 E+U 1$	7－545 5 － 01	$1.200 \mathrm{t}+02$	472
3	6	23	9	5．920E－0U	$9 . Y \cup 7 E+\ldots 1$	7．915E＋21	1－2NOE＋C2	495
3	6	30	9	6．129E－0U	1．OCSE－02	8．194E ${ }^{\text {c }}$（ 1	$1.200 E+02$	512
3	6	3	13	3．369E－00	$5.325 E+11$	$4 \cdot 505 E+51$	$1.200 x+02$	282
3	6	10	13	4．362E－00	7．1s1E＋J1	$5 . d 31 E \leftrightarrow 01$	$9.200 E+02$	364
3	6	13	13	4．YSSE－0U	8．124E＋31	6．624E401	$1.200 t+02$	414
3	6	20	13	$5.580 \mathrm{C}-0.0$	0．788E＋01	$7.165 E+01$	$1.200 t+02$	448
	6	28	13	5．656E－OU	9．273E＋ij	7．361 +31	$1.200 t+02$	471
	6	30	13	$5.083 E-0$	$9.64 E E+51$	$7.169 E+01$	$1.230 t+02$	492
3	6	3	17	$3.133 E-00$	3．141E＋31	－－192E＊O1	$1.200 t+02$	452
3	6	10	17	$4.1035-00$	6．728E＊－1	5．466 $4+0)$	$1.200 t+i 2$	343
3	6	15	17	4．69\％シーJu	1．733E＋U1	6． $283 E+3$	1．20ct＋02	373
3	6	20	17	3．123E－0．	6．308E＋U1	6． 3 3 AE +01	1．200E＋02	427
3	6	23	17	3．424E－00		$7.251 E+02$	$1.200 t+02$	453
3	6	36	17	5．664E－OU	9．2a7E＋ 1	7．573E401	$1.200 t+02$	473
3	． 6	5	21	2．844E－3．3	$4.8275+3:$	3．936E＋j1	$1.200 E+02$	248
3	8	10	21	3．8日6E－3i	C．372E＋U1	$5.1958+01$	$1.200 t+02$	323
3	6	13	21	404EJE－OJ	7．345E＋01	3．989E＋51	$1.20 \mathrm{CE}+02$	374
3	6	20	21	$40>01[-30$	douSSEG-1	$6.552(+1) 1$	1．200t 402	439
，	6	25	21	$502182-10$	$8.536 E+1$	$6.977 E+01$	$1.200 E+02$	436
3	6	30	21	$5.46 \mathrm{E}-00$		$7.311 E+. j 1$	$1.200 E+02$	457
	8	5	1	0．674E－00	$1.422 E+2$	1－139E＋02	$1.200 E+02$	408
	8	13	1	$1 \cdot 074 E+01$	$1.760 E+34$	$1.435 E+02$	$1.200 t+02$	305
3	8	15	1	$1 \cdot 134 E+J 1$	$1 . y 41 E+02$	$1.583 t+02$	$1.200 t+02$	557
3	－	20	1	$1 \cdot 254 E+31$	$20056 \varepsilon+32$	$1.676[+02$	$1.2004+02$	509
3	8	25	1	1．3C2E＋01	$2.135 E+\sqrt{2}$	$1.7415+02$	$1.260 t+02$	612
3	8	3.	1	1．337E＋J1	$2.1935+2$	1．7ABE＋02	1． 2 UOE +02	629
3	8	3	5	7．778E－00	1．275t＋心2	：030E＋ら2	1．2OOE +02	368
3	8	10	5	9．859E－00	1．61CE＊：12	1．310L +02	$1.200 k+c 2$	483
3	－	25	3	1．103E＋01	1．89yを＊：2	1．$\because 73 E+C 2$	$1.200 E+02$	519
3	8	20	5	1．181E＋01	1．Y46E＋i．2	1．579E＋02	1．200E 102	353
3	0	23	5	$1 \cdot 235 E+21$	2．U46Et：2	$1.63<E+02$	1－200K＋02	301
3	8	30	5	1－277E＋01	$2.10 \times 4 E+12$	1．727cti2	1－200t＋す2	602
3	8	3	9	$7.112 \mathrm{E}-0 \mathrm{~J}$	1．166E＋J2	$9.509 E+31$	1．200E +02	334
3	－	10	9	9．164E－0U	$1.502 E+i 2$	$1.225 E+02$	$1.200 \tilde{c}+02$	431
3	8	13	9	1－U37E +01	1．701E＋U2	$10387 E+02$	$1.200 t+c 2$	488
3	8	20	4	1．119E＋01	1．835t＋32	1－496E402	1． $200 t+02$	526
3	－	25	9	1．178E＋01	$1.933 \mathrm{E}+1,2$	$1.576 E+32$	1．200t＋02	554
3	－	30	4	$1 \cdot 224 c+01$	$20.075+\sim 2$	$1.637 \pi+ら 2$	$1.200 t+02$	576
3	－	5	13	6．593E－n0	1．081E 02	8．814Ft01	1．20JE +02	310
3	6	10	13	－0．598E－00	1：4n9E＋U2	1．149E＋02	$1 \cdot 200 E+02$	4u゙ 4
3	a	15	13	9．821E－00	1.61 CE＋以2	1． $313 E+02$	$1.200 E+02$	462
3	6	20	$+3$	1－U66E＊O1	1．749Etid	$1.426 t+32$	1．20） $1+02$	301
3	8	25	．．${ }^{\text {a }}$	$1.128 E+01$	1－851E＋U2	$1.509 E+02$	1．200t＋02	531
3	8	30	13	1．1778＋01	$1.931 E+02$	1－574E＋J2	1． $200 E+02$	534
3	8	5	17	6．173E－0v	$1.012 \div 042$	8．252E＊01	1．2UOE +02	29
3	8	10	17	6．123E－0	1． $132 E+02$	$1.046 E+02$	$1 \cdot 200 E+62$	382
3	8	15	17	Ye347E－0．	1． 3 －$E+12$	1．249E＋32	$1.200 \mathrm{E}+\mathrm{C} 2$	439
3	8	20	17	1．020E 01	$1.673 \mathrm{c}+2$	$1.364 t+02$	$1.200 \mathrm{t}+12$	480
1	6	25	17	1－U8SE＋O1	1．77）E4．12	$1.4515+02$	1－26OL +02	513
3	B	30	17	1．136E＊01	1．862E＋1．2	1．518E＋02	$1 \cdot 200 E+02$	534
3	0	5	21	5．824E－0	9．549E＋01	7．74；E＋O1	$1.200 E+C 2$	274

NO	L	1	R	2	CCH	at	TO	； 4
3	8	10	21	7．123E－3u	1． $266 E+.2$	1－032E＊O2	$1.2002+02$	365
3	8	14	21	d．y35E－つj	$1.465 E+12$	$1.194 E+32$	$1.200 t+C 2$	420
3	8	2	21	Y．6U，E－J	1．6）7E＋Ud	1．310E +32	1－200t＋02	401
3	t	25	21	1－J46E＋01	1－715E＋」2	1－398E +02	1－200k＋02	492
3	8	30	21	1－U95E＋01	1．801t＋12	$1.468 E+02$	1．200t＋02	516
3	13	5	1	1－427E＋し	2．30山t－J2	1．002E＋）？	$1+200 E+C 2$	$4<1$
3	10	10	1	1－771E＋U1	2．404E＊）2	$2.368 E+22$	1．2COE +2	335
3	10	1.5	1	$1.974 E+j 1$	$3.236 E+$ U2	$2.635 E+02$	$10200 E+02$	
3	10	20	1	2．105E＋01	3．451E 02	$2.8145+02$	$1.200 E+02$	63 3
3	10	7.5	1	2．197E＋il	3． 0 O3E＋j2	$2.93 x[+02$	$1 \cdot 200 E+02$	631
3	10	3	1	2． $26000+2 i$	3．716E＋22	3．03OE＋ 32	1－200t +02	682
3	10	5	5		2.0585402	1．710E＋32	$1.200 t+02$	105
3	10	13	5	$1.84 う E+01$	2.60% ¢ + ？	2．122E＊02	1．200t＋02	493
3	10	15	5	$1 \cdot 33 \cup E+01$	$3.034 E+$ ， 2	2．474E＋02	$1.200 t+02$	357
3	10	2j	5	1－YY1E－う1	$3.263 E+\cup 2$	2．662E＋ 22	1．200c +02	399
3	10	25	5	2－6y3E＋01	$3.4315+42$	2．730t＊）2	$1 \cdot 200 \dot{+}+6$	630
3	10	3.	3	$2.17 \cup[+01$	3，53dE＋J2	2．901E＋02	1．200t＋02	653
3	10	5	9	1．101E＋01	1－SSE＋ 2	1．379E＋J2	1．204t +02	353
3	10	10	9	$1.534 E+01$	2．\therefore S SE＋，12	$2 \cdot 031 E+32$	$1.2046+62$	462
3	10	15	9	1．74\％E＋01	$2.865 E+\sim 2$	$2.336 E+02$	1．20CL－02．	526
3	10	20	9	1－8）4Etい1	1．1いSE＋U2	2．532E 02	1．200E＋C2	579
3	10	25	9	20．022E－01	3．282E＋12	$2.676 C+02$	1．200t＋02	662
3	10	30	9	2．0655＋01	$3.418 E+02$	2．707E＋02	1．200E +02	327
3	10	5	13	1．102E＋01	1．807E＋1．2	$1.473 \mathrm{E}+02$	1．200Ete2	± 32
3	10	10	13	$1.446 E+01$	4－372E＋U2	$1.934 E+02$	1．200t 102	435
3	10	15	11	1．660E＋O1	2．742E＋J2	20＜19E＋02	$1 \cdot 200 E+02$	498
3	10	20	13	1－4ductul	$2.967 E+\cup 2$	$2.418 E+02$	$1 \cdot 200 t+02$	346
，	10	25	13	1－＊2＜č01	$3.151 E+\mathcal{L}$	2．569E＋02	1－2COt＋02	578
3	10	3%	13	$2 \cdot 0 .+6+01$	3．23AE＋U2	$2.666 \pm+02$	1－200E +02	0.74
3	10	5	17	$1.037 t+02$	1．751E＋心2	$1.387 E+22$	$1.2002+02$	312
3	10	10	17	1－37＜［ +1	$2 \cdot 250 E+02$	$1.834 E+02$	$1.200 E+02$	419
3	10	15	17	1．334［＋01	$2.548 E+J 2$	2．118E＋02	1．200t +02	477
3	10	20	17	1．73eE＋01	2．846E402	$2.321 E+02$	$1.200 E+C 2$	522
3	10	25	17	$\therefore 85 \cup E+51$	$3 \cdot u 34 E+\cdots 2$	$2.474 E+C 2$	$1.200 E+02$	557
\pm	10	30	17	1．$\$ 41 E+01$	1．18LE＋U2	$2.595 E+32$	$1.200 E+04$	584
3	10	5	21	Y－d2JE－OJ	$1 \cdot 611 \hat{c}+02$	1．3：AEかV2	1． $200 \mathrm{E}+02$	296
3	10	10	21	1－308C＋01	＜－145E＋． 2	1．749E +02	$1 \cdot 200 t+02$	394
3	10	15	21	1． $318 \bar{c}+01$	2－4YUE＋j2	2．03UL +02	$1.200 t+02$	1）37
3	11）	20	21	1．67UE＊01	2．73＞t＊J2	$2.233 E+02$	1－20cet02	303
3	10	23	21	1．767E＋01	2．930E＋J 2	2．389E＊O2	1－200E＋02	337
3	$1{ }^{1}$	30	21	1．87：E＋01	3．00」Et． 4	2．512E＋J2	1．200t＋02	505
4	4	5	1	2．139E－00	$3.928 E+-1$	2．832E＋01	2．000t＋02	450
4	4	10	1	2．536E－0」	$4.619 E+\sim 1$	3.3 －E＋J	$2.0006+02$	330
4	4	15	1	2．68EE－0U	4．946E＋C1	3．391E＋01	$2 \cdot 000 t+c 2$	367
4	4	23	1	2．78JE～in	$3.137 E+J 1$	$3.730 E+01$	$2.000 c+02$	589
4	4	23	1	2．458E－Cu	$3.264 E+11$	$3.822 E+01$	$2.0008+02$	604
4	4	3	1	2．417E－0才	3．353E＋U1	3．656E＊）	2．000E＋C2	614
4	4	5	5	$1.831 \mathrm{E}-0 \mathrm{O}$	3．3721．+1	$2 \cdot 4+8 E+C 1$	2．DOCE 02	387
4	4	13	5	$2.246 E-C U$	$4.137 E+: 1$	$3.003 \mathrm{CtO1}$	2．COOE＋ 02	474
4	4	13	5	2．66）E－OU	$4 \cdot 336 E+J 1$	$3 .<438+31$	$2 \cdot 20 \mathrm{ctc}+3$	340
4	4	2v	5	2．570E－ju	$4 \cdot 765 E+61$	$3.474 \mathrm{E}+1.1$	2．300＋C2	549
4	4	25	5	＜．6）1E－0u	$4 . y 56 E+L 1$	$3.598 t \cdot 1$	$2.0002+C 2$	568
4	4	3	5	2．75cic－Ju	5．00JE＋J1	3．6d8Lツ1	2－0．00t＋02	${ }^{5182}$
4	4	5	$\dot{\square}$	1．62．E－00	3．0DUE＊1	2.178101	$2 \cdot 0002+02$	34，4
4	4	10	9	2．い52E－）	3．78つE＊：1	$207441+01$	$2 \cdot 0006+02$	433
4	4	15	4	2．24女E－0才	4.214 CH	3．06．1t＋31	2．000t＋02	483
4	4	2	\rangle	2．442E－0．	4.497 E゙＊	3－く3りご，	2．300． $2+02$	316
4	4	23	9	2．350E－20	4．846E＊V1	3．40）［＋0］	$2 \cdot 3006+02$	518

NO	1	1	Σ	0	QCH	$0 E$	T0	IV
4	4	30	9	2．631E－OU	4．844E＋U1	3．517E＋01	$2.000 E+02$	353
4	4	3	13	1－4a2E－0J	2－729E＋J1	$1.9816+01$	$2.000 E+02$	313
4	4	10	13	1．901E－0」	$3.501 E+01$	$2.342 E+01$	$2.000 E+02$	401
4	4	15	13	2．146E－0J	3－y $22 \mathrm{C}+31$	2．869E＋01	$2.000 E+02$	453
4	4	20	13	$2 \cdot 310 E-00$	$4.255 E+J 1$	$3.0871+01$	$2.000 E+02$	488
4	4	23	13	2－429E－00	4．473E＋01	$3.248 E+01$	$2.000 E+02$	513
4	4	30	13	$2.519 E-00$	4．639E＊${ }^{\text {c }}$	$3.368 E+01$	$2.000 E+02$	532
4	4	5	17	1．369E－00	2．321E＋01	1．030E＋08	$2.000 E+02$	289
4	4	10	17	1．779E－00	$3.277 E+01$	$2.379 E+01$	$2.000 t+02$	376
4	4	15	17	$2.027 E-00$	$3.734 E+01$	$2.711 E+01$	$2.000 E+02$	428
－	4	20	17	2．198E－00	4－048E＋J1	2．937E＋01	$2.000 E+02$	464
－	4	23	17	2．324E－00	$4 \cdot 280 E+0 i$	$3.107 E+01$	$2.000 E+02$	491
4	4	30	17	2．421E－00	$4.458 E+C l$	$3.2365+01$	$2.000 E+02$	511
4	4	5	21	1．279E－OU	2．354E +1	1．709E＋01	$2.000 t+02$	270
4	4	10	21	1．67dE－0u	3.0% OE +1	$2 \cdot 244 E+01$	2．000E＋02	354
4	4	15	21	1．927E－00	3．548E＋U1	$2.376 E+51$	$2.000 k+02$	407
4	4	20	21	$2.102 E-00$	3．869E＋U1	2．809E＋U1	$2.000 E+02$	444
4	4	25	21	$2.231 E-00$	4．109E＋U1	2．983E＋01	2 20UOE＋ 02	472
4	4	30	21	$2.333 E-00$	$4 \cdot 296 E+C 1$	3．119E＋61	$2.0005+02$	493
4	6	5	1	5．295E－00	9．751E＋01	7．079E＋01	$2.0006+02$	497
4	6	10	2	$6 \cdot 417[-00$	1．181E＋1）2	8．579E＋01	$2.0005+02$	602
4	3	1\％	1	6．985E－0う	1．286E＋j2	$9.337 E+01$	2．000E +02	655
4	． 6	20	1	$7.333 \mathrm{c}-00$	$1.330 E+02$	9．803E＋01	$2.0001+02$	688
4	6	25	1	7．368E－0J	1．3V3E＋نく	$2.011 E+02$	2．000E +02	710
4	6	30	1	7．738E－OJ	1．424E＋id2	$1.0334+02$	2．000E＋02	726
4	6	5	3	$4.665 E-J J$	d． $366 E+01$	$6.234 E+01$	$2.0001+02$	438
4	6	10	5	5．827E－CO	1．073E＋J2	7．740¢ +01	$2.000 k+02$	547
4	6	13	3	6．463E－00	$1.140 E+C 2$	d． $641 L+01$	$2.000 \varepsilon+02$	606
4	6	20	5	$6.871 E \sim \sim 0$	$1.265 E+J 2$	9．186L＋01	2．COOE +02	645
4	6	25	5	7．136E－00	$1.317 \mathrm{E}+02$	9．567E＋01	$2.000 E+02$	672
4	6	30	5	7．367E－30	$1.356 E+\dot{\text { c }}$ 2	9．650E +1$) 1$	2．OUOE 02	691
4	6	5	4	$4.214 \mathrm{E}-00$	7．759E＋U1	5．633E＋ 01	$2.000 E+02$	395
4	6	10	9	3．375E－OU	9．647E＋： 12	7－186E＊O1	$2.000 k+02$	504
4	6	15	9	6．043E－00	$1.112 E+J 2$	8．080E＋01	$2.0001+02$	367
4	6	20	9	6．487E－00	$1.144 E+02$	8．673E＋01	$2.000 E+02$	609
4	6	25	9	6．805E－00	1．253E＋C2	9． $298 \mathrm{E}+01$	$2.000 E+02$	639
4	6	36	9	7．046E－00	1．297E4U2	9．419E＋01	$2.0006+02$	681
4	6	3	13	3．873E～0こ	7．133E＋U1	9．178E＋01	2．000E＋02	363
4	6	10	12	3．v14E－0．	7．233E＊ 1	$6.703 E+02$	2．000t +02	470
4	6	13	13	$3.696 E-00$	1．04HE＋U2	$7.615 E+01$	2．000E +02	534
4	6	20	13	6．161E－J0	$1.134 E+.12$	6．237E＋01	$2.000 E+02$	578
4	6	25	13	6．301E -00	$1.197 E+C 2$	8．692E＋01	$2.0002+02$	610
4	6	30	13	6．763E－05	1－24SE4C2	9．041E＋01	$2.000 E+02$	633
4	6	3	17	$3.604 E-00$	6．637E 01	$4 \cdot 818 E+01$	$2.000 E+02$	338
4	6	10	27	4．717E－00	8．686E＊U1	6．306E＋01	$2.000 E+02$	4.3
4	6	15	17	5．402E－CO	9．948E401	7．222E＋01	2．OOOE＋02	507
4	6	23	17	5．88こE－00	1－C82E +02	7．361E＋01	$2.0001+02$	552
4	6	25	17	$6.235 E-00$	1．14aE＊O2	$8 \cdot 3368+01$	2.000 E 402	385
4	6	30	17	6．S11E－OU	1－199E ${ }^{\text {－}} 2$	8．703E＋01	2 －UVOE＋Uく	611
4	6	5	＜1	3．384E＝00	$6+む \leq 2 E+u 1$	4．524E＋01	$2.000 E+02$	314
4	6	10	21	$4.467 E \sim 00$	6． $226 E+01$	S．972E＊O1	$2 \cdot 000 t+0<$	419
4	6	15	21	3－150E－00	$y \cdot 483 E+C 1$		$2.000 E+02$	483
4	6	20	21	$5.633 \mathrm{E}-0 \mathrm{~J}$	1．037E 02	7．532E＋01	$2.0004+02$	529
4	6	25	21	$5.929 \mathrm{E}-00$	1－104E4J2	O．O20E + O1	$2.000 t+02$	563
4	6	30	21	6．286E－00	1．157E＋U2	6．404E 01	$2 \cdot 0001+02$	590
4	8	5	1	9．971E－00	$1.836 E+02$	1．333E＋02	$2 \cdot 0005+02$	526
4	8	10	1	1．234E＋01	$2 \cdot 273 E+02$	1．35OE +02	2.0 OCE +02	652
4	8	15	1	1－361E¢01	2．507E＊． 2	1．820E＋02	$2 \cdot 000 E+02$	719

NO	L	1	K	0	OC： 4	OE	10	17
4	8	20	1	1．441E＋01	$2.6545+62$	1．927E゙＋02	2．000t－02	761
4	8	25	1	1－4\％7E＋01	2．756E4：2	2．001と＋02	$2.000 t+02$	790
4	8	30	1	$1.537 E+U 2$	2．831［ +32	2－U55E＋02	$2.000 t+02$	612
4	8	5	5	4．Y41E－0う	1．846E4－2	$1.193 i+02$	2.00 UE＋02	472
4	8	10	5	$1 \cdot 133 E \rightarrow 01$	2．086E4U2	1．515E＋02	$2.000 E+02$	598
4	8	15	5	1．268E＋01	2．336E4う	1．696E＋i）2	$2.000 t+02$	670
4	8	23	5	$1.357 E+01$	2．300E＋02	1－815E＋02	$2.0008+02$	717
4	8	－3	5	$1 \cdot 421 \varepsilon+01$	$2.616 E+$ L2	1－699E＋22	$2.000 E+02$	750
4	8	30	5	1．488E＋01	2．704C＋ 2	1．463E402	$2.000 t+02$	773
4	8	5	9	8．176E－0J	1．505E＋U2	$10093 E+02$	$2.000 t+02$	412
4	6	10	$\dot{4}$	1．US3E＋01	1．439E＋02	1－408E＋02	$2.000 E+02$	556
4	θ	13	＊	$1 \cdot 14<E+01$	＜． $1 \times 6 E+\sim 2$	1．5Y4E＋02	$2.000 E+02$	830
4	6	20	y	1－287E＊O1	2．3645＋U2	1．720E +02	2．NOOE +02	479
4	6	23	y	1－35St＋01	2.4 yectu2	1．512E＋02	$2.000-102$	715
4	8	30	9	1－t］7［＋01	$2.542 E+$ 2	1．852E＋02	$2 \cdot 000 t+02$	743
4	8	3	13	7．57ッEー0U	1． 3 YSE +32	1．019E＋02	$2.000 E+02$	400
4	8	10	13	Y． $483 \mathrm{E}-00$	1．620E +52	1．321E +02	$2.000 t+02$	522
4	8	13	13	1－129E＋01	2．07aE＋U2	1．309E＋02	$2.000 E+02$	596
4	8	20	13	$1 \cdot 226 E+01$	$2.258 E+\cup 2$	$1.639 E+02$	$2.200 E+02$	647
4	8	25	13	1．298E＋01	$2 \cdot 39 D E+.2$	1．735E＋22	$2.0 C O E+02$	685
4	8	30	13	$1 \cdot 354[+01$	$2.493 E+02$	1． $810 \mathrm{E}+02$	$2.000 E+02$	715
4	8	5	17	$7.0965-50$	$1 \cdot 306 E+02$	$9.486 E+31$	2.0 vot +02	375
4	8	10	17	\％3AUEROJ	1．719E＋U2	1．く4＊ESN2	2．OOOE゙＋02	493
4	8	15	17	$1 \cdot 074 E+01$	1－778E＋ 2	$1 \cdot 435 E+y^{2}$	$2 \cdot 0004+02$	567
4	8	20	17	1．173E＋01	2．160t＋u2	1．568E＋02	$2 . J O 0 E+02$	619
4	8	25	17	1．247E＋01	2． $2 \times 7 \mathrm{~L}+\dot{ }$	$1.668 \mathrm{C}+02$	$2.000 k+02$	859
4	8	30	17	1．3U6E＋01	2．424E＊：2	1．746E＋02	$2.000 t+02$	689
4	3	3	21	$0.674 E-00$	$1.232 E+\cup 2$	$8.950 E+\mathcal{L}$	$2.000 t+02$	353
4	8	10	21	6．37aE－0U	$1.634 E+\cup 2$	1．186E＋U2	$2.000 E+02$	41.9
4	8	15	21	1－U27E＋01	$1.871 E+6.2$	1．373E＋D2	2．000E＋02	542
4	8	20	21	$1 \cdot 126 E+C 1$	2．075E＋02	1．5U6E＋C2	2．COOE +02	595
4	8	25	1	1－202E＋01	$2.214 c+12$	1．607E +32	$2.000 E+02$	635
4	8	30	21	1．262E +21	2．325E4：J2	1．6885 02	$2.000 t+02$	666
4	10	3	1	1061 EE 01	2．975E－J2	$2.163 E+02$	2．00CE＋02	547
4	10	13	1	2．U36E＋01	3－750E＋ 22	2．722E＋02	$2.000 E+02$	688
4	1.3	15	1	$2 \cdot 26>E+01$	$4.178 E+32$	3．033E＋02	$2 \cdot 000 E+12$	767
4	10	20	1	$2 \cdot 420 E+01$	$4.456 E+\sim 2$	$3.235 E+02$	$2.000 t+02$	817
4	10	25	1	$2 \cdot 326 E+01$	4．652E＋J2	3－377E＋02	$2.000 t+02$	835
4	1.0	30	1	$2 \cdot 603 E+01$	4．788E－C3	3．4E3E +02	$2.000 E+02$	880
4	10	5	5	1－471E＋01	2．708E＋ن2	1．966E＋02	$2.000 t+02$	497
4	10	10	5	1．883E＋01	3．472E＋U2	$2.520 E+02$	2．000E－02	637
4	10	15	5	2．127E＋01	3．917E＋ 2	$2.844 E+02$	$2.000 E+02$	719
4	10	20	5	2－289E＋01	1．215E＋02	3．060E＋02	$2.000 E+02$	773
4	10	25	5	2．406E＋01	$4 \cdot 430 E+02$	$3.216 \mathrm{E}+02$	2．000E +02	813
4	10	30	5	2．494E＋01	$4.543 E+02$	3．335E＋ 52	$2.000 E+02$	643
4	10	3	8	1－337E－01	2．SUJE4U2	1．813E＋02	$2.000 \mathrm{E}+02$	459
4	10	10	4	1．763E＋01	$3.248 \mathrm{E}+62$	2．358E＊O2	$2.000 E+02$	396
4	10	15	4	2－60yE＋01	$3.649 E+02$	$2 \cdot 68 i 5+02$	$2.000 \mathrm{C}+02$	679
4	10	20	9	2－177E＋01	4．009E＋ら2	2．911E＋02	$2.0004+02$	736
4	10	25	9	2．3つ1E＋01	$4.237 E+U 2$	$3.076 E+02$	$2.0006+02$	777
4	10	30	9	2．396E＋02	$4 \cdot 413 E+12$	3．204E 02	$2.000 E+02$	010
4	10	5	13	1．267E＋01	2．333E＋i2	$1.694 E+02$	$2.000 E+02$	420
4	30	10	13	1．663E＋01	$3.062 E+\cup 2$	2．223E＋02	$2 \cdot 0 \cup O E+62$	562
4	10	25	23	1，Y28E＋01	$3,314 E+U 2$	$2.551 E+02$	$2.000 E+02$	645
4	10	23	13	$2.080 E+0:$	3．831［4じ2	2．711E＋02	$2.000 E+02$	703
4	10	25	13	$2.20 y E+01$		$2.953 E+02$	2．000E＋02	746
4	10	$3 J$	132	2－30YE＋5！	4．233E4い2	1．087E +02	2．00．JE＋02	780
4	10	5	17	1－192E＋01	2.1 YEE＋V2	1． $594 \mathrm{E}+\mathrm{J} 2$	$2.000 t+02$	403

NO	L	1	χ	0	CC：1	OE	Tis	IV
4	10	10	17	1．577Et01	2． yose－U2	$2.109 E+02$	$2 \cdot 000 t+n 2$	533
4	10	13	17	1．821E 02	3．354E＋02	2．435E＋02	$2.0001+02$	615
4	10	20	17	1－y95E＋01	$3.673 E+02$	$2.668 E+02$	$2.000 t+c 2$	674
4	10	25	17	2．127E＋01	3．y17EヤO2	$2 \cdot 84 \Delta E+02$	2 －000セ－92	719
4	10	30	17	$2 \cdot 231 E+01$	$4.109 \mathrm{E}+\mathrm{U}^{2}$	2．783E＋G2	$2.000 E+02$	754
4	10	5	21	$1.1295+01$	2．080E＋ 2	$1.310 \mathrm{E}+02$	$2.0005+$（12	382
4	10	10	21	$1.3 \cup 4 E+01$	$2 \cdot 770 E+52$	$2.011 E+02$	$2.000 E+02$	303
4	10	15	71	1．746E＊01	$3.215 E+02$	$2 \cdot 334 E+02$	$2.000 t+02$	390
4	10	20	21	1．920E＋0：	$3.536 E+02$	$2.567 E+02$	$2 \cdot 000 E+02$	649
4	10	25	21	2－034E＋01	$3.762 E+\cup 2$	$2 \cdot 746 E+02$	$2.000 \varepsilon+02$	694
4	10	30	21	$2.160 \Sigma+01$	$3.978 E+\dot{ } 2$	$2.868 \varepsilon+02$	$2.000 E+02$	730
5	4	3	1	$2.247 E-00$	$4.478 E+v 1$	$3.004 t+01$	$2 \cdot 6 C O L+02$	314
5	4	13	1	2．643E－00	$5.267 E+01$	$3.533 E+01$	$2 . A O O E+02$	604
5	4	15	1	$2 \cdot 830 E-0 .$	$3.639 \varepsilon+01$	$3.783 E+01$	$2.6-3 E+02$	647
5	4	20	1	$2.939 \mathrm{E}-00$	$5.858 \varepsilon+12$	$3.930 \varepsilon+01$	$2 \cdot 6.00 t+02$	672
5	4	25	3	$3.011[-00$	6．نO1E＋U1	$40 \cup 26 E+01$	$2.600 E+02$	688
5	4	30	1	$3.0635-30$	6．103E＋U1	$4.095(+1) 1$	$2.6004+02$	700
5	4	5	5	$1.929 E-30$	$3.845 E+i l$	$2.579 E+151$	$2.600 E+02$	441
5	4	10	5	$2.367 E-00$	$4.717 E+31$	$3.164 E+01$	$2 \cdot 600 E+02$	$54 i$
5	4	15	5	$2.395 E-30$	$3.173 E+j 1$	$3.470 E+31$	$2.600 \mathrm{E}+02$	593
5	4	20	5	$2.738 E-00$	$5 \cdot 456 E+j 1$	$3.060 \varepsilon+01$	$2.600 E+02$	626
5	4	25	5	$2 \cdot d 35 E-0=$	$5.850 E+1$	$3.790 E+31$	$2.800 E+02$	648
5	4	30	5	$20901, E-00$	$5.792 \varepsilon+0 i$	$3.836 \xi+01$	$2.600 t+0<$	684
5	4	5	8	$1.716[-0]$	$3.4 \alpha 1 E+31$	$2 .<95 E+01$	$2.600 t+02$	392
5	4	10	9	$2.162 E-20$	$4.309 E+01$	$2.891 E+01$	$2.600 \mathrm{E}+02$	484
5	4	25	9	$2.411 E-0 u$	$4.803 E+01$	$3.224 E+01$	$2.600 E^{\prime}+02$	551
5	4	20	9	$2.573 E-0)$	$5.127 E+\cup 1$	$3.43 y t+01$	$2 \cdot 600[+02$	588
5	4	25	9	$2.087 \varepsilon-00$	$S .354 E+01$	$3.592 E+21$	$2.600 E+02$	614
3	4	30	9	$2.772 E-00$	$3.524 E+\ldots 1$	$3.706 E+01$	$2 \cdot 600 k+02$	633
5	4	5	13	1．561E－0．	$3.112 E+01$	$2.088 E+01$	$2 \cdot 600 t+02$	357
3	4	10	13	$2.003 E-00$	$3.592 \pi+01$	$2.678 E+31$	$2.60 C E+02$	458
5	4	15	13	$2.261 E-00$	$4.306 \vec{z}+31$	$3.023[+01$	$2.600 t+02$	517
3	4	20	13	$2.434 E-03$	$4.651 E+111$	$3.254 E+01$	$2.600 t+02$	356
5	4	23	13	$2.33 \times E-00$	$3.100 E+51$	$3.422[+31$	$2.600 t+02$	535
5	4	30	13	$2.65+E-00$	$3.290 E+11$	$3.548 E+01$	$2.800 E+02$	606
5	4	5	17	1．442E－0u	$2.874 E+U 1$	$1 . y<a t+01$	$2.000 E+02$	330
5	4	10	17	$1.875 E-00$	$3.736 E+31$	$2.538[+01$	$2.600 E+02$	428
5	4	15	17	2．136E－00	4.257 E゙ + －	$208565+01$	$2.600 E+02$	488
5	4	20	17	$2.316 E-C O$	$4.616 E+11$	$3.096 c+01$	$2.600 E+02$	529
5	4	25	17	$2 \cdot 448 E-0 J$	$4.879 E+1 / 2$	$3.273 E+21$	$2.600 E+C 2$	559
5	4	30	17	$2.55 \cdot \mathrm{~J}-0 \mathrm{~J}$	$3.063 E+01$	$3 .+10 \varepsilon+01$	$2.600 \mathrm{E}+02$	583
5	4	5	21	$1.346 E-30$	$2.684 E+31$	$1.800 E+01$	$2.600 \mathrm{E}+02$	308
5	4	10	21	$1.768 \mathrm{E}-00$	$3.524 E+C 1$	$2.364 E+01$	$2.800 E+02$	404
5	4	15	21	$2.030 E-00$	$4.045 E+21$	$2 \cdot 71 A E+01$	$2.600 E+02$	464
5	4	20	21	$2.213 \mathrm{E}-\mathrm{co}$	$4.411 E+01$	$2.8505+01$	$2.6005+02$	306
3	4	25	21	2．331E－00	4．685E＋D1	3．143E＋01	$2.60 u t+02$	537
5	4	30	21	$2 \cdot 453 \mathrm{E}-0 \mathrm{O}$	¢ ¢ ¢ ¢ ¢E＋－ 1	$3 \cdot 206 E+01$	$2.600 t+02$	562
5	8	3	1	3．579E－OJ	1．111E＋J2	7．459E＊01	$2.800 t+02$	567
5	6	10	1	6．761E－0U	1．347E＋U2	$9.0381+01$	$2.800 t+02$	687
5	6	13	1	7．360E－0U	1．466E＋U2	9．639E＋01	$2.600 E+02$	747
3	6	20	1	7．726E－0U	$1 \cdot 339 t+02$	1．0．32E＋52	$2.60 C E+02$	785
5	6	23	1	7． $773 \mathrm{E}-00$	1．588E＋U2	1．066L＋02	$2.600 t+02$	810
5	6	30	1	A．132E－00	1－624E＋U2	1．089E＋02	$2.600 E+C 2$	828
5	6	5	5	4．913E－0才	\％．770E $+J 1$	6 － $368 E+01$	$2 \cdot 6008+02$	499
5	6	10	5	6.13 （1）－30	$1.223 E+J 2$	－． $2 \cup 8 \mathrm{BC+01}$	$2.600 t+02$	623
5	6	15	5	6． $010 \mathrm{E}-00$	1．357E－U2	$9.104 E+11$	$2.800 E+02$	692
3	6	20	5	7－23yE－0U	1．442E4i2	$9.678 E+01$	2．600E +02	735
5	6	25	5	7－540E－0才	1－3U2E＋U2	1．0J8E＋02	$2.600 L+172$	766

110	L	1	K	0	QCA	at	10	IV
5	6	30	5	7．762E－0才	1．546E＋22	1．）うごく＋02	$2 \cdot 600 E+02$	789
5	6	5	9	4．439E－0U	8－847E ${ }^{\text {¢ }} 1$	$5.9 .35 E+01$	$2 \cdot 600 E+02$	451
5	6	10	y	5．663E－00	1．128E402	7．571E＋01	$2.8004+02$	575
5	6	13	9	6．367E－03	$1.268 E+02$	8．512E＋01	$2.6008+02$	617
5	6	20	9	6．835E－00	1．362E＋J2	9．137E＊O1	$2 \cdot 6008+02$	694
3	6	25	9	7．170E－00	1．428E＋C̈2	9．566E +01	$2.6008+02$	728
5	6	30	y	$7.423 E-00$	1．470 + ＋ 2	？－Y＜AE＊01	$2 \cdot 600 E+02$	754
，	6	3	13	$4.301[-10]$	－．133E＋U1	$3.456 E+01$	$2 \cdot 6001+02$	414
5	6	10	13	$3 \cdot<82 E-0 \cup$	1．OS2E＋02	$7.064 \mathrm{E}+01$	$2 \cdot 600 \varepsilon+02$	536
5	6	15	13	6．JO1E－O心	1．145ctu2	8．0¢3E＊01	$2 \cdot 600 E+02$	608
5	6	20	13	6－491E－0C	1－293E＋U2．	8．678E＋01	$2 \cdot t 00 E+02$	659
5	6	25	13	$6.650 k-0.0$	1．363E＋U2	9－158E＋01	$2,6006+02$	686
5	6	$3 i 5$	13	7－1258－0U	1－419E＋い2	9．525E401	$2.600 E+02$	724
5	8	5	17	3．7ソ7Eーこ	7．567C＋J1	$3.077 \mathrm{E}+01$	$2.600 E+02$	386
5	6	10	17	4．970EーCU	9．904E＋心1	6．644E401	$2.600 E+02$	30\％
5	6	15	17	3．692E－00	$1 \cdot 1345.42$	7－6：9E＋01	$2.600 E+02$	578
5	6	20	17	6．195E－00	$1.234 E+J 2$	8．262E＋01	$2.600 E+02$	629
5	6	25	17	6．569E－00	1．309E＋ن2	8．782E＋01	$2.600 E+02$	667
5	6	30	17	6．860E－JC	1．367E＋N2	Y． $171 E+01$	$2.600 E+02$	697
5	6	5	21	$3.565 E-00$	7．106E + U1	4．r67E＋01	$2.600 ¢ 402$	362
5	0	10	41	t． $707 \mathrm{E}-10$	Y．379E＋U！	$6.2725+01$	$2.600 E+02$	476
5	6	15	21	5－426E－OU	$1.381 E+J 2$	7．254E＋01	$2.600 E+02$	531
5	6	20	21	3．735E－0J	$1.182 E+02$	7．93SE＊O1	$2.600 E+02$	603
5	6	25	21	6－32UE－DU	1025¢E＋．22	8．43CE＋01	$2.600 k+02$	642
5	6	30	21	6.62 SE－0J	1－31YE＋32	8．854E＋01	$2.600 E+02$	673
5	8	5	1	1－U5JE 01	2．じ3Eta？	1．404E＋02	$2.600 E+02$	600
5	8	10	2	1．300E +01	2．542E＋02	1．739E＋02	$2.600 E+02$	743
5	8	15	1	$1.434 E+01$	2．ay $\mathrm{E}+32$	1．917E＋02	$2.600 E+02$	819
5	8	20	1	1．518c＋01	3．U26E 52	$2.0305+02$	$2.600 E+02$	868
5	8	25	1	$1.577 \mathrm{E}+01$	$3.243 E+\cup 2$	$2.108 E+02$	$2.600 E+02$	901
5	8	30	1	$1.620 E+01$	3．228E＋J2	$2.163 E+02$	$2.600 E+02$	923
5	8	5	5	$9.420 E-00$	1．877E＋：j2	$1.238 E+02$	$2.600 E+02$	538
5	8	10	5	1．1Y4E＋01	2．37yE＋U2	1．596E＋02	$2.600 E+02$	682
3	8	15	5	$1.336 E+01$	$2.66 .3 E+J 2$	1．787E＋02	$2.600 E+02$	764
5	8	20	5	$1.430 E+01$	$2.850 E+\mathcal{L}$	1．912E＊02	$2 \cdot 600 E+02$	817
5	8	25	5	1－47，E＋01	$2.983 E+02$	$2.001 t+02$	$2.600 t+02$	853
5	8	30	5	L－547E＋U1	$3.083 E+02$	2．C60E＋02	$2 \cdot 0002+02$	884
5	8	5	9	8．614［－0］	1．716E＋ن2	1．151E＋02	$2.600 E+02$	492
5	8	10	9	1．118E＋01	$2.2118+J 2$	1．433E＋02	$2 \cdot 600 E+02$	C34
5	8	13	9	1．256E＋01	$2.304 E+02$	1．680E＋02	$2.600 E+02$	718
5	8	20	9	1．3SSE＋01	2．702E＋02	1－612E＋02	$2.600 E+02$	774
5	6	23	9	1．428E＋01	$2.845 E \div 02$	1．909E＋02	$2.600 t+02$	816
5	6	30	8	1．483E＋01	$2.455 E+\cup 2$	1．982E＋02	$2 \cdot 6001+02$	847
5	8	3	13	7．465E－0J	1．591E＋32	1．067E402	$2 \cdot 600 E+02$	456
3	8	10	13	1．041E＋01	2．075E＋U2	1．392E＋02	$2.600 t+02$	595
5	8	13	13	1－18yE＋01	2．370t＋U2	1．590E＋02	$2 \cdot 600 E+02$	679
5	8	20	13	2－292E＋01	2．574E－02	1．727E＊02	$2.600 E+02$	738
5	8	25	13	1－367E＋01	$2.723 E+02$	1．828E＋02	$2.60 \supset E+02$	781
5	8	30	13	1－426E＋01	2．342E4U2	1．907E＋02	$2.600 t+02$	815
5	8	3	17	7．476E－0	1－489E＋U2	9．994E＋01	$2 \cdot 600 E+02$	427
5	8	10	17	9．841E－00	1．961E＋U2	1．315E＋02	2.6 UUE402	562
5	8	13	17	1－132E＊C1	$2.255 E+02$	1．313E＋1）	$2.600 E+02$	647
5	8	20	17	1．23EF＋：	2：463E＋02	1．6525＋02	$2 \cdot 600 E+02$	706
5	8	23	17	1－314E＋O1	$2.619 E+02$	1．757E＋02	$2 \cdot 600 E+02$	751
3	8	30	17	1－37KE＋0L	2．742E＋U2	1．839E4 22	$2.800 t+02$	786
5	8	5	21	7－J53E－00	1．403E＋ن2	9．430E＋01	$2.600 t+02$	403
5	8	14	21	9．353E－00	1． $863 E+62$	$1.850 E+J 2$	$2.600 \mathrm{~L}+02$	534
5	8	15	21	1－U 4 ＜E＋01	2．156E＋02	1．446L＋02	$2.600 L+02$	618

NO	L	1	K	0	C6：	QE	T0	Iv
5	8	20	21	1．187Eャリ」	2．365ct02	1．347E＋02	2．600E +02	7
3	8	25	21	$1.267 E+01$	$2.523 E+02$	$1.694 E+02$	$2.600 \pm+02$	72
5	8	30	21	$1.310 \varepsilon+01$	2．631E＋02	$1.778 \mathrm{E}+02$	$2.600 t+02$	760
3	10	3	1	1．705E＋01	$3.397 E+02$	$2.279 E+02$	2．600E＋02	623
5	10	10	1	2．145E＋01	4．275E＋02	$2.868 E+02$	$2.600 E+02$	78
5	10	15	，	2．390E＋01	$4.764 E+02$	$3.196 E+02$	$2.600 E+02$	674
5	10	20	1	2.54 YE＋O1	$3 . ⿹ 8$ UE＋U2	$3.498 \mathrm{E}+02$	$2.6002+C 2$	832
5	10	25	1	2．661E＋01	S． $304 \mathrm{E}+\mathrm{L} 2$	$3.558 \mathrm{E}+02$	2．6COE＋0 2	973
5	10	30	1	$2.745 E+01$	5．470E＋92	3．670E +02	2．600E + C 2	1004
5	10	5	3	$1.549 E+01$	3．UdGE＋U2	$2.071 L+02$	$2.600 \mathrm{E}+02$	367
5	10	10	3	$1.9865+01$	$3.933 E+02$	$2.635 t+02$	2．600t＋02	726
5	10	15	5	2．241E＋01	4．466E＋U2	2．996E＋02	$2.600 \mathrm{E}+02$	819
3	10	20	5	2．411E＋01	4．8U6E＋U2	3．224E＋02	$2.800 E+02$	882
5	10	25	5	$2.535 E+01$	$3.051 \mathrm{E}+02$	3．389E +12	$2.800 E+02$	27
3	10	30	5	2．626E＋01	5．237E＋02	3．313E＋02	2．60CE＋ 02	961
5	10	3	9	1.43 ？$E+01$	$2.850 E+$ i2	$1.9125+02$	2.60 CE +02	523
5	10	10	9	$1.858 \mathrm{E}+01$	3．703E +02	$2.404 E+02$	$2.600 \mathrm{E}+02$	679
5	10	15	9	$2.116 E+01$	$4.216 E+2$	$2.829 E+32$	2．6C0E +03	774
5	10	20	9	$2.294 E+01$	$4.571 E+\cup 2$	3．367E＋02	$2.600 E+02$	839
5	10	23	3	$2.424 E+01$	$4.032 E+\cup 2$	$3.241 E+02$	$2.600 E+02$	86
3	10	30	9	$2.525 E+C 1$	5．032E＋u2	$3.3765+32$	$2.600 \mathrm{E}+0<$	923
5	10	3	13	$1.335 \mathrm{E}+01$	$2.660 E+32$	1．764E＋02	$2.600 E+02$	488
5	10	10	13	1．752E＋01	3．4y1E＋32	$2.342 E+02$	2．600E＋0．	641
5	10	13	13	2．U10E＋01	4．007E＊．，2	$2.683 E+52$	$2.600 \mathrm{E}+02$	735
5	10	20	13	2．192E＋01	4．364E＋32	$2.930 E+02$	$2.600 \mathrm{E}+\mathrm{C} 2$	801
5	10	23	13	$2 \cdot 327 E+01$	$4.638 \mathrm{E}+\mathrm{c}^{2}$	3．112t＋02	2．800t +02	851
5	10	30	13	$2.43 د E+01$	4．849C＋02	$3 .<53 E+)$.	2．600E＋02	890
5	10	5	17	1．2S6E＋O1	2．303E＋ふ2	1．679［til2	2．600E $+0 \%$	459
3	10	10	17	1．662E 01	3．312E＋ن2	$2.222 E+32$	2．600t +02	608
5	10	15	17	1．919E＋O1	103くらE＋U2	2．368E＋02	2．6UOE＋142	7.92
3	10	20	17	$2 \cdot 1 \cup 2 E+01$	4．190E＋22	2．811E＋02	$2.600 t+02$	76
5	20	25	17	$2.241 E+01$	4．466E＋ 2 2	d．94tEか02	$2.600 \mathrm{~L}+02$	819
3	10	30	17	2．351E＋01	$4.685 \mathrm{E}+02$	3．143E 02	2－600E＋02	859
3	10	5	21	$1.1 \pm J E+01$	$2.372 E+j 2$	1．591E＋02	2．600k 102	435
5	10	10	21	$1.534 E+01$	3．153E＋J2	2．118E＋02	$2.600 \mathrm{c}+02$	579
5	10	13	21	10d39E＋01	3．663E＋ن̇2	$2.459 E+02$	$2.600 t+02$	672
5	10	20	21	$2.023 E+.21$	$4.032 \mathrm{E}+\mathrm{U}^{2}$	$2.705 \mathrm{E}+02$	$2.600 E+02$	740
5	10	25	21	2．164E＋01	＋．312E＋02	2．a93E＋02	$2.600 \mathrm{E}+02$	791
－	10	30	21	$2 \cdot 276 E+01$	＋．536E＋02	$3 \cdot J 43 E+02$	$2.500 k+02$	832
6	4	5	1	2.368 ECOJ	S．S5SEtU1	$3.16^{*} \bar{c}+01$	4．000E＋02	637
6	4	10	1	2．784E－0才	$6.533 E+J 1$	$3.723 E+01$	$4.000 E+02$	749
6	4	15	1	2．981E－00	6．985E＋01	$3.986 E+01$	$4.000 E+02$	802
6	4	20	1	3．097E－00	7．285E＋01	$4.140 \varepsilon+01$	4．000E +02	S33
6	4	25		$3.173 \mathrm{E}-0 \mathrm{~J}$	7．444E＋02	$4 \cdot 242 E+01$	4．000E＋02	434
6	4	30	，	3．227E－00	7．571E＋U1	4．314E＋01	＋．000k +02	\＄68
6	4	5	5	$2 . J 33 E-00$	4．769E＊Ul	$2.117 E+J 1$	4．000E－02	947
6	4	10	5	2．494E－00	S．851E＋01	$3.334 E+01$	$4.000 E+02$	671
6	4	15	3	$2.735 \mathrm{E}-0 \cup$	6．416E401	$3.636 E+01$	$4.000 E+02$	736
6	4	20	5	2．884E－00	6．767E U $^{\text {i }}$	$3.856 E+01$	4．000E＋02	776
	4	25	5	2．987E－00	7．0ロ8E＋31	$3.994 E+31$	4．00：5E＋02	804
6	4	30	5	3．062E－0U	7．184E＋ 1	$4.094 E+21$	$4.000 E+02$	824
6	4	3	9	1．80هE－DO	4．2A3E＋C1	$2.418 E+01$	$4.000 E+02$	487
	4	10	9	$2.278 E-00$	3．345EかJ	$3.046 E+01$	4．0U0E＋02	613
6	4	15	9	2．540E－0U	5．960E＋61	$3.396 \mathrm{E}+01$	A．VOCE +02	683
6	4	20	9	2．711E－DU	6．359E＋U1	$3.624 E+01$	$4.000 \varepsilon+02$	729
6	4	25	y	2．831E－OU	$6.641 E+C 1$	3．78SE＋01	$4.000 E+02$	761
6	4	30	8	2．920EーC心	6．051E＋01	$3 \cdot 4 \cdot 54 t+31$	4 －000t +02	786
6	4	5	13	$1.645 \mathrm{E}-00$	3．860E＋	2.2	4.	449

NO	L	1	K	0	OCH	00^{-}	10	12
6	4	1.0	13	2．111E－0U	$4.952 E+01$	4．822E＊01	$4.000 c+02$	368
6	4	15	13	2．382E－OJ	5．590E＊U1	3．185E＋51	$4.000 E+02$	641
6	4	20	13	2．563E－JO	$6.017 E+01$	$3.4295+31$	$4.0006+02$	690
6	4	25	13	2．696E－00	$6.326 E+\cup 1$	3．605c＋21	$4.700 E+02$	725
6	4	30	13	$2.797 \mathrm{E}-00$	$6.561 E+01$	$3.739 E+01$	$4.300 E+02$	752
6	4	5	17	$1.513 \mathrm{E}-00$	3．565E＋01	$2.032 E+01$	4.0 OCE +02	409
6	4	10	17	1．775E－0J	4.6345431	2．641E＋0：	$4.0 \cot 402$	531
6	4	15	17	2．＜51E－OU	5．281E＋11	3．009E＊01	$4.000 E+02$	603
6	4	20	17	$2.440 \mathrm{E}-00$	5．725E＋U1	3．262E＋U1	$4.0006+02$	638
6	4	25	17	$2.5805-00$	6．052Et ${ }^{\text {col }}$	$3.409 E+01$	＋．000E＋02	694
6	4	30	17	2．687E－0才	$6.305 E+J 1$	$3.393 E+D 1$	$4.0004+02$	723
6	4	5	21	1.418 － 00	$3.329 E+01$	1．897E 2 $^{\text {2 }}$	$4.000 t+02$	382
6	4	20	21	$1.863 E-00$	4．371E＋01	$2.491 \mathrm{E}+02$	$4.0 \cup 0 E+02$	501
6	4	13	21	2．139E－00	9．01bEtid	2．859E＋01	4．000E＋02	575
6	4	20	21	2．332E－00	3．472E +01	3．118E +01	$4.000 E+02$	627
6	4	25	21	2．477E－0う	S． $611 \mathrm{E}+\mathrm{J}$ ！	3．312E＋O1	$4.000 E+02$	666
6	4	30	21	$2.590 E-00$	$6.076 E+21$	$3 \cdot 463 E+01$	$4.000 E+02$	637
6	6	5	1	5．d78E－CO	1－377E＋ 2	7．859E +01	$4.000 E+6.2$	703
6	6	10	1	7．123E－00	1．671E＋02	9．323E＋01	$4.0005+02$	8 ± 2
6	6	15	1	7．754E－0U	$1.619:+32$	1．036E＋02	$4.000 E+02$	927
6	6	20	1	8．14UE－00	1．909E＋42	1．088E 0.2	$4.000 \mathrm{E}+02$	973
6	6	25	1	8．401さ～0v	$1.9705+02$	1．123E402	$4.600 L+02$	1004
6	6	30	1	8．3）UE－0う	$2.015 E+32$	1．148E＋02	$4.00 \mathrm{CE}+02$	1027
6	6	5	5	5－176E－0	$1.214 t+32$	6．920ft01	$4.000 E+02$	619
6	6	13	5	6．408E－OJ	1．517E＋02	8．648E＊O1	$4.000 E+02$	773
6	6	15	5	7．175E－OU	1．663E＋．，2	P－5y2E＋01	$4.000 E+02$	858
8	6	20	5	7．628E－00	1．789E＋02	1．019E＋02	$4.000 E+02$	912
6	6	25	5	7．944E－0U	$1.863 E+02$	1．062E＋02	$4.000 E+02$	950
6	6	3.3	5	4．178E－00	1．918E＋i2	1．093E＋02	$4.000 E+02$	978
6	6	5	9	4－677E－OU	1．097E＋ن2	$6.253 E+21$	$4.000 E+02$	539
6	8	13	9	5．966E－00	1．399E＋ن2	7．977E．01	$4.0006+02$	713
6	6	13	9	6．705E－OV	1．313E＋U2	8．869E＋01	$4.000 t+02$	002
6	6	20	y	7．201E－00	1．089E＋U2	$9.628 E+01$	$4.00 C E+02$	861
6	6	25	9	$7.535 E-O U$	1．772E＋J2	$1.010 E+02$	$4.0008+02$	903
6	6	30	y	7．a21E－OU	1． $834 E+02$	$1.045 E+32$	＋．00OE＋02	935
6	6	5	13	4．3nOE－UU	1．008E＋ 12	$5.749 E+01$	$4.000 E+02$	514
6	6	10	13	$5.366 E \sim 00$	1－3OSE＋02	7．441E＋51	$4.0002+02$	665
6	6	15	13	6．323E－00	$1 \cdot 483 E+J 2$	－ 4 S3E＋01	$4.000 t+02$	756
6	6	20	13	6．837E－00	$1.804 E+02$	$9.144 \mathrm{C}+01$	$4.000 E+02$	818
6	6	23	13	7．217E－00	1．643E +02	$9.649 E+01$	＋000E +02	863
6	6	30	13	7．507E－00	1．761E＋02	1．003E＋02	$4.000 E+C 2$	897
6	6	5	17	4－001E－0U	9．346E＋U1	5．349E＋01	4，000E＋02	478
6	6	10	17	S． $236 \mathrm{E}-00$	1．228E＋U2	7．000E＋01	$4.0008+02$	626
6	6	15	17	5．897E－00	1．406E＋ن2	－．017E＋01	$4.0006+02$	717
6	6	20	17	6．327E－00	$1 \cdot 531 E+J 2$	8．726Et01	\cdots ．000E＋02	780
6	6	25	17	6．921E－00	$1.623 E+\cup 2$	$9.253 E+01$	$4.0002+02$	127
6	6	30	17	7．228E－00	$1.693 E+02$	$9.66 ; E+01$	$4.000 E+02$	864
6	6	5	21	3．737E－00	d． $814 E+21$	5．J23E＋J1	4．OOOE＋02	449
6	6	10	21	4．859E－00	$1.163 E+J 2$	$6.630 E+01$	$4.000 \mathrm{E}+02$	593
6	6	15	215	5．717E－00	1－341E＋02	$7.643 E+01$	$4.000 E+02$	－d3
6	6	20	218	6．254E－00	1．467E 4 － 2	8． $361 E+01$	$4.000 E+02$	748
6	6	23	21	6．699E－00	$1.362 E+32$	8．803E＋01	$4.0008+02$	796
6	6	30	216	6．478E－00	$1.637 E+\cup 2$	$9.329 E+01$	$4.000 E+02$	834
6	0	3	11	$1.106 E+01$	$2 \cdot 5985+22$	1．479E＋02	4．000 02	744
6	8	10	1.1	1－37UE＋01	3．215E＋U2	1．032E 022	4．000E－ 02	922
6	8	15	11	1－311E＋01	3． $345 E+J 2$	2 －020E +022	4－JOOE＋02	1016
6	8	20	11	1．，600E＋01	$3.754 \mathrm{E}+\cup 2$	＜． $339[402$	4． 0 OOECO2	1076
6	0	25	12	2．661E＋01 3	$3 \cdot d 58 E+C<2$	$2.221 E+02$	4．000E＊02	1217

HO	L	1	K	0	OCH	OE	TD	IV
6	－	30	1	1．701Et01	4．094E＋02	$2.282 E+22$	4．000E＋02	1148
6	8	5	5	9．925E－0心	$2.328 E+J 2$	$1.326 E+02$	4．0UOE +02	867
6	8	10	5	$1.258 E+01$	$2.951 E+02$	$1.081 E+02$	4．000E＋02	846
6	8	15	5	$1.408 E+21$	$3.304 E+U 2$	$1.883 \mathrm{E}+02$	$4.000 t+02$	947
6	8	20		$1.507 E+01$	3．335E＋U2	$2.0158+02$	－000E＋02	1013
8	8	23		$1.577 E+08$	$3.700 \mathrm{E}+\mathrm{J} 2$	$2.108 E+02$	4．000E＋02	1061
6	8	30		$1.630 E+01$	$3.82+E+U 2$	$2.179 E+02$	$4.090 t+02$	1096
6	－	5	9	$9.076 \mathrm{z}-00$	2．1く9E＋C2	1．213E＋02	4．000t＋02	610
6	8	10	9	$1.1695+01$	$2.743 E+U 2$	$1.563 \mathrm{c}+02$	4．000e +02	786
6	8	15	9	$1.324 E+01$	3．106E＋こ2	1．770E＋02	$4.000 \mathrm{t}+02$	890
6	8	20	9	$1.428 E \rightarrow 01$	$3.351 E+02$	1．510etU2	4．000R +02	961
6		25	y	1．504E＋01	$3.3295+02$	$2.011 E+02$	4．OUOE +02	1012
6	8	30	9	$1.562 E+01$	3．666Eti）2	2．089E＋0？	$4.000 t+02$	1051
6	8	5	13	8.013 E－00	$1.973 E+02$	1．12tE＋02	$4.000 E+02$	366
6	8	10	13	1．097E＋01	$2.573 \mathrm{E}+02$	$1.486 E+22$	$4.000 E+C 2$	738
6	8	15	13	1－3 S3E＋U1	$2.840 E+02$	$1.675 E+02$	t．OUnE＋02	843
6	8	20	13	$1.361 E+01$	3．193E＋ن2	$1.819 E+02$	$4.000 E+02$	915
6	8	23	23	$1.441 E+01$	$3.301 E+02$	1．926E＋02	4．000t +02	969
6	8	30	13	1．303E＋01	3．526Eから2	2． $10 \div 5+02$	＋． $1.000 t+62$	1021
6	8	3	17	7．877E－0	$1.847 \mathrm{~F}+32$	$1.0335+02$	$4.000 \leq+02$	530
6	－	10	17	$1 . J 36 E+01$	$2.412 E+U 2$	$1.386 E+02$	＋．000E＋02	697
6	8	15	17	1．192E＋01	2．79EE 02	$1.594 E+02$	$4.000 t+02$	802
6	8	20	17	$1.302 E+01$	$3.035 E+02$	1．741E＋U2	$4.000 k+02$	876
6	8	25	17	$1.335 E+02$	$3.243 E+02$	1．0515＋02	$4.0001+02$	931
6	8	35	17	$1.449 E+01$	3．401E＋02	1．938E＋02	$4.000 t+02$	975
6	8	5	21	7．431E－00	$1.743 E+02$	9．935E＋01	＋．000E＋02	500
6	8	10	21	9．853E－00	$2 \cdot 311 E+02$	1．317E＋02	4．000E +02	663
6	8	15	21	$1.140 E+01$	$2.674 E+\hat{2} 2$	1．524E＋02	$4.000 E+02$	767
6	8	20	21	$1.250 \varepsilon+01$	$2.934 E+02$	1．672E＋02	$4 . C O O E+02$	842
6	8	25	21	$1.333 E+01$	$3.13<E+12$	1－784E＋U2	4．VOOE＋02	898
6	8	30	21	$1.401 E+01$	$3.288 E+\cup 2$	1．a74E＋ 22	$4 . J 00 t+02$	843
6	10	5	1	1．796E＊O1	$4.214 E+\cup 2$	$2.4011+02$	$4.0005+C 2$	773
6	10	10	1	$2 \cdot 26$ UE＋01	$5.303 E+\sim 2$	$3.022 E+02$	＋．OCOE +02	973
6	10	15	1	$2.519 E+31$	S．409Etu2	$3.967 E+02$	4．0UVE +02	1084
6	10	20	1	2．6805＋01	6．302E＋02	3．591E＋02	$4.000 E+02$	1156
6	10	25	1	$2.804 E+01$	$6.579 E+0.2$	3．749E＋02	4．000t＋02	1207
6	10	30	1	2．892E＋01	6．735E＋32	$3.466 E+02$	4．000E 402	1245
6	10	5		$1.632 \mathrm{E}+01$	3．830E＋U2	$2.183 E+02$	4．000E＋02	703
6	10	10	3	$2.293 E+01$	$4.910 E+C 2$	$2.798 E+02$	4.0 OOE＋02	901
6	10	15		$2 \cdot 361 E+01$	5．539E＋U2	$3.137 E+02$	$4.000 \varepsilon+02$	1016
6	10	20	5	$2.5418+01$	5．961E4U2	$3.397 E+02$	$4.000 z+02$	1094
6	10	23	5	2．671E＋01	$6.263 E+02$	$3.570 E+02$	$4.0001+02$	1149
${ }_{6}$	10	30		$2.769 E+01$	6．4yロE＊ 2	3．702E＋02	＋．000t +02	1192
6	10	3	9	1．301E＋01	3．335E＋02	$2.015 E+32$	$4.000 t+02$	649
6	10	10	9	$1.95 \pm E+01$	$4.5>3 \mathrm{E}+02$	$2.617 E+32$	$4.000 t+02$	843
6	10	15	9	$2.230 E+02$	$5.232 E+02$	$2.981 E+02$	$4.000 \mathrm{t}+02$	965
6	10	2u	9	$2.417 E+01$	3．670Et52	$3.231 E+02$	4.0 OOE +02	1040
6	10	23	9	$2.354 E+01$	3．893E＋02	3．415E＋02	$4.0008+02$	1099
6	10	30		$2 \cdot 660 E+21$	6．241E＋J2	3．557E＋02	$4.000 E+0$ ？	1145
6	10	3	13	$1.406 E+01$	$3.299 E+02$	$1.880 E+02$	－．OVOE + C2	605
3	10	10	13	$1.846 E+01$	$4.330 E+U 2$	$2.468 \mathrm{E}+02$	4．200t +02	794
6	10	15	13	$2 \cdot 116 E+21$	$4.970 E+32$	$2.832 \mathrm{E}+02$	$4.000 E+02$	912
6	10	20	13	2．107E＋Cl	$5.418 E+02$	$3.088 \mathrm{E}+02$	$3.000 E+02$	994
6	10	25	13	$2.452 E+01$	3．733E＋C2	$3.278 E+02$	$4.0008+02$	1035
6	10	30	13	$2.564 E+U 1$	6．014E＋02	3．427E＋02	4．0COE +02	1103
6	10	a	17	1－323E＋D1	$3.105 \mathrm{E}+.12$	$1.769 \mathrm{E}+02$	4．00nE 402	570
6	10	10	17	1．751E＋01	$4 \cdot 106 \mathrm{E}+02$	$2.341 E+32$	$4.000 i+02$	754
6	10	15	17	2－う 2 くビ＋J	$4.7445+2$	2．703E＋02	$4.000 t+02$	870

 \(172.215 E+01\)
 3.197E4 12
 2.961E+02 4.000E+02
 | NO | L | 1 | K | 0 | OCH | Ct | 10 | iv |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 10 | 9 | 6．023E－0J | 1．564E＋U2 | E．032E－01 | $5.000 E+02$ | 797 |
| 7 | 6 | 15 | 9 | 6．772E－30 | 1．739E＋02 | $9.054{ }^{\text {c }}+01$ | $5.000 E+02$ | 847 |
| 7 | 6 | 20 | 9 | 7．270E－0J | 1．888E＋：32 | $9.717 E+01$ | $5.000 E+02$ | 962 |
| 7 | 6 | 23 | 9 | 7．626E－30 | 1．981E＋02 | $1.019 E+02$ | 5.000 c 202 | 1013 |
| 7 | 6 | 30 | y | 7．893E－0U | $2.0515+02$ | 10053Ër！2 | 5．0Vut＋0＜ | 1045 |
| 7 | 6 | 5 | 13 | 4．341E－0J | 1．127E＋02 | 3．003E＋01 | S．0UOE＋ 62 | 375 |
| 7 | 6 | 10 | 13 | \＄．619E－00 | $1.4595+02$ | 7．312E＋01 | 5．000 $5+04$ | 744 |
| 7 | 6 | 15 | 13 | 6．383E－OL | $1.639 E+\cup 2$ | $8.533 \mathrm{E}+\mathrm{U}^{\text {d }}$ | 5．JUCt＋02 | 845 |
| 7 | 6 | 20 | 13 | 6．904E－00 | 2．793E + ）＜ | $9.230 E+01$ | 3．000t＋02 | S14 |
| 7 | 6 | 25 | 13 | 7．286E－00 | 1－853E＋02 | 9．740E＋ji | 5．JUCL＋C2 | 965 |
| \％ | 6 | 30 | 13 | 7．578E－00 | $1.969 E+\mathcal{2}$ | 1．J13E＋02 | C．000E +02 | 11203 |
| 7 | 6 | s | 17 | 4．039E－20 | －．049E＋ 2 | 5．400E＋01 | 5．000E＋62 | 335 |
| 7 | 6 | 10 | 17 | 5．286E－30 | 1．373E＋C2 | 7．967E＋01 | S．000Et 2 | 700 |
| 7 | 6 | 15 | 17 | 6．034E－00 | 1．372E＋02 | 8．0935＋01 | $5.0 .00 t+02$ | 802 |
| 7 | 6 | 20 | 17 | 6．349E－90 | 1．711E＋U2 | $8.8 .09 E+C 1$ | 3．000E +02 | 872 |
| 7 | 6 | 23 | 17 | 6．981E－00 | 1．815E＋c2 | F．341E＋01 | S．OUDE＋0： | 93 |
| 7 | 6 | 30 | 17 | 7．290t－30 | 1．8ysE゙－ 2 | 9．755E＋01 | 5．000t +02 | 966 |
| 7 | 6 | 5 | 21 | 3．792E－0U | Y．034E＋i2 | 2．07CE＋U1 | $3.000 \mathrm{t}+02$ | 504 |
| 7 | 6 | 10 | 21 | 5．J．J6E－iou | 1．300Et 2 | $6.693 E+131$ | 5，000Etc．2 | 663 |
| 7 | 6 | 13 | 21 | 3．171E－0 | 1．454E＋．32 | 7．115E＋J1 | $5.000 t+02$ | 764 |
| 7 | 6 | 20 | 21 | $6.313 E-00$ | $1.640 E+32$ | 8．440i＋01 | $3.000 t+02$ | 836 |
| 7 | 6 | 25 | 21 | 6．72：E－0C | $1.746 E+32$ | 8．987E401 | 5.000 Et 02 | 890 |
| 7 | 6 | 30 | 21 | 7．044E－0U | $1.830 E+32$ | 9．417E＋J1 | S．000t＋02 | 831 |
| 7 | 8 | 5 | | 1．117E＋01 | $2.903 E+32$ | $1.4932+02$ | 5．000E＋02 | 832 |
| 7 | 8 | 10 | 1 | $1.389 E+01$ | $3.394 E+U 2$ | $1.849 E+02$ | 3．000t +02 | 1030 |
| 7 | 8 | 15 | 1 | $1.525 E+01$ | $3.484 E+J 2$ | $2.039 E+02$ | $5.000 k+02$ | 1136 |
| 7 | 8 | 20 | 1 | $1.615 E+01$ | $4.147 E+C 2$ | $2.159 E+C 2$ | $3.000 E+02$ | 1203 |
| 7 | 8 | 25 | 1 | $1.677 E+21$ | 4．350 E＋C 2 | $2.242 E+02$ | 5，000t＋02 | 1249 |
| 7 | 8 | 30 | 1 | $1.723 E+01$ | 4．477E＋．． 2 | $2.303 E+02$ | 5．000t +02 | 1283 |
| 7 | 8 | 5 | 5 | $1003 i c+01$ | $2.803 E+$ U 2 | $1.334 E+02$ | 5．0．0t $+0<$ | 746 |
| 7 | 8 | 10 | 9 | $1.270 E+01$ | 3．249E＋52 | $1.697 E+02$ | $5.000 t+02$ | 946 |
| 7 | 8 | 13 | 5 | $1.421 E+01$ | 3．694E＋ 2 | $1.900 E+02$ | 3．000t +02 | 1059 |
| 7 | 8 | 20 | 5 | $2.921 E+31$ | $3.8536+42$ | $2.234 E+02$ | 5．00UE＋C． 2 | 1133 |
| 7 | 0 | 25 | 5 | 1．592E＋01 | 4．117E＋02 | $2.128 E+02$ | $5.000 t+02$ | 1186 |
| 7 | 8 | 30 | 2 | $1.645 E+31$ | $4.275 \mathrm{E}+02$ | 2．199E＋02 | 3．000E + C2 | 1225 |
| 7 | 8 | \％ | 9 | Y．162E－00 | $2.380 \mathrm{E}+02$ | 1．224E＋02 | $5.000 E+C 2$ | 682 |
| 7 | 8 | 10 | 9 | $1.180 E+01$ | 3．067E 02 | 1．37aE＋02 | $3.000 E+02$ | 879 |
| 7 | 8 | 15 | 9 | $1 \cdot 336 E+31$ | $3.472 E+U 2$ | $1.787 E+02$ | 5．000t＋02 | 995 |
| 7 | 8 | 20 | 9 | $10442 E+01$ | 3．747E $+\cup 2$ | 1．928E＋02 | 5．JCOE＋02 | 1074 |
| 7 | 8 | 23 | 9 | $1.319 E+01$ | 3．946E＋こ2 | $2.030 L+02$ | 5．0VUE＋CO2 | 1131 |
| | － | 3.3 | y | 2．577E＋01 | 4－Jy8E＋コス | 2．109E＋02 | 5．000E +02 | 1175 |
| 7 | $?$ | 5 | 13 | 8．493E－0J | $12 .<46 E+U 2$ | 1．133E＋02 | $3.000 E+02$ | 632 |
| 7 | 8 | 10 | 13 | 1－107E401 | 2．871E＋J2 | 1．400E 102 | 5．00Ct＋C2 | 825 |
| 7 | 8 | 15 | 13 | $1.265 E+01$ | 3．287E＋－2 | $1.641 E+02$ | 5．000E 02 | 942 |
| 7 | － | 20 | 13 | $1.374 E+01$ | 3．57UE +32 | $1.8 .37 \mathrm{~F}+02$ | $5.000 \mathrm{e}+\mathrm{C} 2$ | 1023 |
| 7 | 8 | 25 | 13 | $10454 E+01$ | 3．780E +32 | 1．743E＋02 | S．000E＋02 | 1083 |
| 7 | 8 | 30 | 13 | $1.317 E+01$ | 3－y42E＋u2 | 2．0285＊02 | 5．000E＋02 | 1130 |
| 7 | 8 | 5 | 17 | 7．931E－0． | $2.066 E+02$ | $1.063 E+02$ | 5．0nOE +02 | 592 |
| | 8 | 10 | 17 | $1 . U 46 E+01$ | $2 \cdot 719 \mathrm{E}+02$ | $1.399 \mathrm{E}+02$ | 3．000t 002 | 779 |
| 7 | 8 | 15 | 17 | $1 \cdot 204 E+01$ | 1．128E＋J2 | 1．609E＋02 | $5.000 t+02$ | 897 |
| 7 | 8 | 20 | 17 | $1 \cdot 314 E+01$ | 3．416E＋02 | $1.757 E+02$ | 5．000t＋02 | 979 |
| 7 | 8 | 25 | 17 | $1.398 E+01$ | 3．632E＋Uく | 1－869E＋02 | S．000E＋02 | 1041 |
| 7 | 8 | 3.5 | 17 | 1．463E＋01 | 3．d02E＋32 | $1.956 E+02$ | $3 . \cup U U E+02$ | 1090 |
| 7 | 8 | 5 | 21 | 7．S1J2E－OC | $1.949 E+J 2$ | 1．CO3E＋02 | 3．0rjoE＋02 | 359 |
| | － | 10 | 21 | YO947E－00 | $2.584 E+J 2$ | $1.330 \mathrm{E}+02$ | 3.000 E +02 | 741 |
| | ， | 15 | 21 | 1．131E＋01 | $2.580 \mathrm{C}+\mathrm{L} 2$ | $1.338 \mathrm{E}+02$ | 5．000k +02 | 857 |
| 7 | 8 | 2.5 | 21 | $1.282 E+01$ | 3，28idetu2 | $1 . t \subset 8 E+J 2$ | 3．0．00E＋02 | 940 |
| 7 | 8 | 25 | 21 | $1.947 \mathrm{E}+01$ | 3．501E＋U2 | 1．8）1E＋02 | 3．000t 402 | 1004 |

190	1	1	K	0	LCH	OE	10	IV
7	2	3；	21	$1.415 E+31$	$3.676 L+02$	1－3） 5 E +32	$3.0002+02$	1034
7	16	5	1	1－013 $4+21$	4．711E＋．j2	2．424Et02	3．00ハt＋02	364
7	10	10	1	$20<8<5+01$		3．こう1Etいて	5．50nt 02	1008
7	10	15	1	$2.5425+01$	6． $6,6 E+\mathcal{L}$	3．3y\％t＋32	S．びOUt＋02	1212
7	10	2 J	1	2．111E＋01	7．j46E＋＂）	3．6255＋22	3．0NUE +02	1293
7	10	＜3	1	2－以ら1E4	7．353E＋－2	3．704 $2+$	5－000E＋02	1349
7	1.3	33	，	$2 \cdot y 1, f+: 1$	7．566E＋．2	3．4．） $\mathrm{H}+32$	50．00t +0 2	1392
7	13	3	5	1．640：＋01	$\therefore .6 B<E+12$	＜． $203 i+112$	S．Jocttol	7 d 6
7	10	1：	3	20113E＋1．1	$30+0 y+4$	$\therefore 04<4 L+02$	5－juet +02	1007
7	1.3	13	5	2．3535＋01	$6.1+3 E+.2$	3．1ヶ7E＋2	5．000t +02	1136
7	10	2 J	2	$2.563 E+C 1$	$6.665 E+J 2$	30tay	5．000ctul	1223
7	1．）	25	5	$2.616 \mathrm{E}+\mathrm{C} 1$	7．UU5E＋12	3．604L＋32	Souvet＋0＜	$1<d s$
7	10	30	5	2．7＋5k＋111	7．2も3E +.2	3．731L＋j2	5．00：st +02	1332
7	10	5	y	$1.571 E+31$	3－3リアE゙＋」	$2.03+i+02$	$5.000 \pm+02$	725
7	1.	1 1	7	$1-\geq 76 E+31$	5．133E＊：2	$2 \cdot 642 \mathrm{t}+2$	3．00．Jt＋12	842
7	13	15	3	2．＜51：471	3．84\％E＋ن2	1．3．92［＋．）2	3．vont tu2	1073
7	10	\％	1	2.44 jt＋01	6．334E＋ 22	3．2B2E＋02	5．0nnt－v2	．163
7	1）	25	y	2－57汒 31	6．70うをが过	3．443［．${ }^{\text {3 }}$ 2	Sounut +02	1229
7	1.	$3 \cdots$	y	く－U66 $5+01$	4．870 +1.2	3．5ソつビャ うく	3．ひ心uで＋02	1285
7	1.	3	13	1．420t＋01	3．66jE＋UC	1．830L゙ +02	5．000t＋04	677
7	1	11	11	1－bGStib	$4 \cdot 042 E+2$	＜－4ylE＊）2	S．JUUt＋02	888
7	1%	15	i）	＜－1دctol	コ－らうフE＋， 2	2．05りE゙ャJ2	S．iJuct＋i）2	1019
7	13	20	13	2．3511＋．31	かくらりくも＋いく	3．117L＋v2	S．U0ut＋02	1111
7	10	23	$1)$	$2.47 \dot{c}+01$	$6.41<[+i く$	S． $110 \dot{L}+$＋2	5．0v0t +32	1180
7	10	30	13	2．20－E＋0	$6.7<4-12$	3．4605＋ 0 2	5．UJUt＋ 02	1234
7	2）	2	17	1．3365＋01	1047：E＋12	1．706 7 ＋02	5．0vot +02	637
7	13	1,1	17	1．70st +01	－－SY SE＋32	\％．163E＋0．2	S．000t＋02	843
7	1．）	15	17	$20.41 t+01$	$3.304(+) 2$	2．729E＋ 22	3．000t +02	971
7	11	23	17	2．＜3：F＋）1	3．813 $5+2$	2．byi）$+\therefore 2$	S． $3 \cdot 145+02$	1066
7	13	25	$i 7$	$203 \sin +61$	$6.194 E+\cdots 2$	3．107E＋C	5－JつcL＋02	1136
7	13	30	17	2－30Jtal	$604 \times 7 E+2$	3．34： $5+72$	S－0uOt +02	1192
7	13	5	21	－<6 bl +1	－－＜J ¢ $5+J<$	1．692L＋ 62	5．J00k +02	603
7	10	1.	21	1－60勺c゙＋i1	4－30uct． 6	20く5）	5．jcot＋02	803
7	1－	15	21	1e＞ら3L＋01	5．003It． 2	2．615L＋Uく	$3.000 t+02$	933
7	1.1	＜ 6	21	2－15＜+ ＋ 1	2． $3+1[+\ldots 2$	＜． $577 \dot{4}+j 2$	$5.000 t+0<$	$10<6$
7	16	$2 \cdot$	21	2－3JJE＋：）	5－サいいどご2	3．）？7 +32	5．J00t 502	1097
7	1%	3	21	$2 \cdot 42 i t+01$	C－C才OE＋．i2	$3.847 E+02$	5．000t +02	1154

[^0]: ${ }^{*} T_{A}=$ surface temperature of top of entrance hood.
 **TB $=$ surface temperature of top side of horizontal length.

