Reproduced by AIR DOCUMENTS DIVISION

HEADQUARTERS AIR MATERIEL COMMAND WRIGHT FIELD, DAYTON, OHIO

IS ABSOLVED

FROM ANY LITIGATION WHICH MAY

ENSUE FROM THE CONTRACTORS IN.
fRINGING ON THE FOREIGN PATENT RIGHTS WHICH MAY BE INVOLVED.

WRIGHT FIELD, DAYTON, OHIO

$$
\begin{gathered}
\text { REEL-C } \\
402 \\
\text { A. 1.1. } \\
11366
\end{gathered}
$$

UNCLASSIFIED

U.S. ARMY AIR FORCES
 AIR MATERIEL COMMAND

 CONTRACT W33-038 AC5238
HELICOPTER BLADE ANALYSIS

PRINCETON UNIVERSITY

AERONAUTICAL ENGINEERING LABORATORY

REPORT NO. 100

The U.S. Government is absolved from any litigation Which may ensue from the contractor's infringing on the foreign patent rights which may be involved.

THE ANALYSIS OF HELICOPTER BLADES

REPORT NO. 100
A.A.F. Contract $\mathbf{W} 33-038$ ac 5238

January 31, 1947

Prepared by:
A. A. Nicoluky.
A. A. Nikolsky

Esikel

E. Seckel
$\frac{\text { A. ON. Nikoloug. }}{\substack{\text { Ar Ar Nikolsky } \\ \text { Director of Project }}}$

PREFACE

This report has been prepared at the request of the Army Air Forces Air Materiel Command at Wright field as one phase of its program to determine a reliable and practical set of design criteria for helicopters.

An attempt has been made to make the report as self-contained as possible for use in the structural analysis of helicopter rotor blades in any steady forward flight condition. The material can easily
be extended to accelerated filght conditions.
The actual establishment of a set of design criteria has not been undertaken. It is, however, thought that the material here presented may prove to be of such general nature and completeness that, by its applications to design problems, it mey help toward the establishment of such design criteria.

Summary, Description, and Discussion of
Material
Part I - General Material
General Assumptions I-I
Nomenclature I-5
Numerical Solution of Linear Differential
Equations by the Method of Approximation
to Functions
The Geometry of Rotor Blade Hinges I-26
Part II - Fully Articulated Blades
Applied Blade Loads:
Dynamic II-1
Gravity
II-8
Air Loads (in z direction) II-9
Fourier Coefficients of Flapping Motion II-25
Air Loads (in Y direction) II-33
Solution for Inflow Factor, λ, \quad (Equation of Torque)
Fourier Coefificients of Hunting Hotion II-57
Calculation of 2 Direction Bending
Moments and Blade Deflections
Solution by Collocation of the Equation
for Z Direction Bending Moments and Blade Deflections

II-80
Tabular Method of Finding Z Direction
Bending Moments and Blade Deflections II-90
Calculations of Y Direction Bending
Moments and Blade Deflections
Solution by Collocation of the Equation
for Y Direction Bending Moments and Blade II-116
Tabular Method of Finding Y Direction
Bending Moments and Blade Deflections
Torsion on the Blades II-121

TABLE OF CONTENTS

Effect of Blade Flexure
Physics l
Solution for λ
Flapping coefficients
z Direction Air Loses
Adjustment of z Direction Air Loads
z Direction Bending Moments and
Deflections by Collocation
Z Direction Bending Moments and
Deflections by Tabular Method
Discussion of Y Direction Air Io
Bending Moments, and Deflections
Bending Moments, - Center-Hinged Blades, Rigid in the
part III - Plane of Rotation
part IV - Single Bladed Rotors
Part V - Rigidly Attached Blades
Part V - Rigidly Attach er Considerations
Part VI - Design Criteria Cons

List of References.

1) Colemen, Fiengold and Stempin
"Evaluation of the Induced Velocity Fiela of an Ideallzed Helicopter Rotor". NACA Memorandum Report L5C12 for the AAF, ATSC. March 19, 1945
2) Wheatley, John B.
"An Aerodynamic Anelysis of the Autogiro Rotor with a Comparison between Celculated and Experimentel Results". NACA Technical Report 487. 1934
3) Glauert, H.
"On the Horizontal Flight of a Helicopter". British Report end Memorenda 1157. March, 1928.
4) Balley, F. J., Jr.
"A Simplified Theoretical Hethod of Determining the Characteristics of a Iifting Rotor in Forward Fiight". NACA Technicel Report 716. 1941.
5) Sissingh, G.
"Contribution to the Aerodynamics of Roteting-Wing Aircraft - Fart II ". NACA Technicel Memorendum 990. october, 1941.
6) Durand, W. F.
"Aerodynamic Theory" - Vol. IV, p. 261.
7) Wald, Q.
"The Effect of Planform on Static Thrust Performence". Sikorsky Aircraft, SER 442. November, 1944.
8) Talkin, H. W.
"Cherts for Hellcopter Performence Estimation". NACA Memorandum Report L5013 for the AAF, ATSC.
9) Seely and Ensign
"Analytical Mechanics for Engineers" - 3rd Edition.
10) Coleman, Fiengold and Stempin
"Evaluation of the Induced Velocity Fleld of an Idealized Helicopter Rotor". NACA Auvance Restricted Report L5E10: June, 1945.
11) Stuart, Joseph, III
"A Tabular Method of Propeller Blade Stress Analysis". Journal of the Aeronautical Sciences. April, 1943 (Vol. 10, no. 4)
12) owen, J. B. B.
"The Stressing of Gyroplane Blades in Steady Flight". British Reports and Memorande 1875. April, 1938.
13) Frazer, Jones and Skan
"Approximations to Functions and to the Solutions of Differential Equations ${ }^{11}$. British Reports and Memoranda 1799. March, 1937
14) Hufton, Nutt, Big, and Beavan the Characterisiics of "General Investigation into the Charactand Memoranda the C. 30 Mutogiro 1939°.

Analysis of Helicopter Rotor Blades.
Summary:
The purpose of this report is to give all the theory and derivations necessary for the structural analysis of helicopter rotor blades in steady forward flight. These data can easily be made applicable to accelerated flight.

Description and Discussion of Material.
Four different types of blade attachment of the rotor hub are considered:
a) Feathered, articulated blades equipped with mechanical damping devices.
b) Feathered blades, center-hinged, rigid in the plane of rotation (see-saw type).
c) Single blade (for type of attachments see discussion, Part IV.)
d) Feathered blades with completely rigid attachment.
The description of the report, which is divided into six parts, is as follows:

Part I

This part contains material of general nature appilcable to all types of rotors:

1) Description of the assumptions used in this report which are applicable to all four rotor types.
2) General symbols, reference axes and definition of the initial position of the blades.
3) Discussion of methods for solving the linear differential equations with variable coefficients by use of approximations to functions. Demonstrations
of collocation, Least square, and Calerkin!s methods, are given by a simple example.
4) Geometry of angular displacement of blades - change of blade incidence due to blade angular displacement about the alpha and delta hinges. The most general cases are considered separately for articulated and see-saw types. Working charts are also presented for the case when $\alpha_{3}=0$ and the hinges are mutually perpendicular.

Part II
This part covers the theory and derivations necessary for the structural analysis of articulated blades equipped with mechanical damping devices:

1) Dynamic loads acting on a blade elenent. Accelerations imposed on a mass particle of a blade element are first derived. The load acting on a blade element is obtained by integrating over the total mass of the element. The expressions derived are applicable to any type of attachment. The assumption is made that both hinges are in the same plane, their intersection coinciding with the center of the rotor hub.
2) Gravity loads
3) Aerodynamic loads. This chapter is subdivided into several sections:
a) Discussion of the effect of blade deformation on eerodynamic loads.
b) Angle of attack of a blade element on an infinitely stiff blade; the change of incidence due to angular motion of a blade about its hinges and due to application of cyclic pitch control (the variations of incidence due to small periodic osoillation of the blade in the plane of rotation
and due to second harmonic flapping are neglected.)
The distribution of induced velocity is assumed to be triangular along fore and aft diameter of the rotor.
c) The distribution of the Z component of air load along a stiff blade is given in terms of the "flapping" coofficients and parameters λ and μ_{0} The first two harmonics are considered.
d) The "flapping" coefficients are determined, taking into consideration the mechanical damping of the blade motion at the "flapping" hinge. Two sets of expressions are given: In the first set the effect of change of incidence due to motion of the blade is combined with the effect of change due to cyclic pitch control. The second set of expressions considers these effects separately.
e) The distribution of Y components of air load along a stiff blade. The load is given in terms of the "flapping" coefficients, λ and μ. The first two harmonics are considered. The expression for the profile drag coefficient is taken from ref. (4) and is $C_{D_{0}}=\delta_{0}+\delta_{1} \cdot \theta_{r}+\delta_{2} \theta_{r}{ }^{2}$, where θ_{r} is the angle of attack of the element under consideration.
f) Aerodynamic torque equation. This equation is obtained by integrating from tip to root the moment about the alpha hinge of the Y components of air forces acting on the blade. The mean value of torque is obtained by integrating the torque from 0 to 2π.
g) Extension of ref. (4) to account for the variation of pitch due to angular motion of the blade and due to cyclic pitch control; and also to account for

the blade, including mechanical damping moment at the "flapping" hinge. A five point solution is put into convenient tabular form. Explanations are given for the constant and harmonic parts. First and second harmonics are considered.
e) Step-by-step tabular method of finding the bending moments in the Z direction. The complete physical picture is given in deriving and explaining this method. The solution is set into tabular form for ten points. Tables are given for the constant and harmonic parts. The first and second harmonics are considered. The effect of blade flexibility on air losds is neglected.
4) Calculetion of bending moments and deflection curve in the I direction.
a) Loads on a blade element. The effect of eccentricity of the alpha hinge is taken into consideration in evaluating the load components acting on a blade element.
Complete expressions for the external Y loads are aiso given in this chapter.
b) The equations of equilibrium (motion) of an element are given for flexible and stiff blades.
c) Solution of the differential equation for deflection by "collocation" method is given. The assumed solution 18 of the same form es for bending in the Z direction. The tables derived for the Z direction bending are applicable for the Y airection bending.
d) Step-by-step tabular method for finding the bending moments in the I direction. The theory and tables are the same as for the Z direction bending.
5) Torsion on the blades.
a) Torsion due to dynamic forces on stiff blades. Expressions are derived for distributed and concentrated weights.
In deriving these expressions, it. was assumed that the elastic center and the center of gravity of any blade section lay on the zero lift chord line of that section. Periodic torsion includes the second hermonic.
b) Torsion due to aerodynamic forces.
c) Torsion due to Z and Y deflections. Expressions are derived to account for the torsional deformations due to bending of the blede in the Z and Y directions.
d) Total torsion is calculated as the sum of torsions found in sections a, b, and c.
6) The effect of blade flexure on the distribution of load along the blade in the Z direction; the "flapping" coefficients ere corrected to account for the deflection of the blade.
7) Sample calculation.

A sample calculation of bending and deflection in the Z direction is given by both "collocation" and "tabular" methods.
Calculations of all the necessary parameters, such as the "flapping" coefficients, λ, air and dynamic loads, are also given. The eonstent and harmonic parts of the moments and deflections are calculated and plotted. The complete procedure (in all detail) is explained for all calculations.
Many practical points are outlined. For example: use of faired curves for EI; adjustment of the air loads to satisfy the actual boundary conditions of the blede, which may not be quite satisfied due to approximations

involved in deriving our expressions for the "flapping" coefficients; slow convergence of solutions of the deflection differential equations, by "collocation" method, in cases when the slope of the deflection curve is known at $X_{r}=0$. Discussion of Y direction air loads, bending moments and deflections, is also given in this chapter.

Part III
Center-hinged blades rigid in the plane of rotation (see-sav type) are considered in this part. The blades are assumed to have a " δ " hinge and builtin coning.

1) "Flapping " coefficients are determined in a manner similar to the one used for the articulated blades by writing the equation of motion about the flapping hinge.
2) Solution for λ; it is assumed for all practical purposes that sufficient accuracy is obtained if λ is determined by the use of the charts given in Part II for articulated blades.
3) "Hunting" coefficients are found in terms of "flapping" coefficients, builtin coning and δ_{3}.
4) Calculation of the Z and Y direction bending moments and deflections for the "seesaw" type blades. Only the "tabular" method is given, since the "collocation" method becomes not practical because of the boundary conditions. All tables prepared in Part II are applicable.
5) Torsion and the effect of flexibility. All expressions derived in Part II are applicable for the "see-sav" type.

Part IV
Single blade rotors are considered, with five types of blade sttrchment to the hubs

1) Fully articulsted with countervelght rigidly attached to hub (figII-1p. [8-7). This case is treated in every detail as a special case of the fully articulated multi-bladed rotors of Part II.
2) Fully articulated with counterweight rigidiy attached to the blade (fig II-1 p. II-7). This case is also treated as a special case of the fully articulated, multi-bladed, rotors of Part II, except that some of the equations therein must be modified to account for the inertia of the counterreight. These modifin cations are given in detail. The air loads on the countervelght are neglected.
3) Single hinge attachment with counterweight attached to hub, (fig IX-1 p. Tr-7). This case is treated in a manner similar to that for the "see-sah" type blades of Part III. Deviations therefrom are noted and given in detail.
4) Single hinge attachment with counterveight rigidly attached to the blade ($\mathrm{fig} \mathbb{Z}-1 \mathrm{p} . \mathrm{Z}-7$) 。 This case is treated the same as case 3, except that the modis fications to account for the inertia of the counterweight are inailuded.
5) Rigid blade attachment. This is in every detail covered by the analysis of Part V for multi-bladed rigid motors.

Part V
Rotons with the blades rigidly attached to the hub. "Builtin" coning and lag angles are considered. The solution for λ of Part II is considered adequate. The equations and theory of Part II are generally applicable, upon substitution of the proper flapping and hunting coefficients, which are, of course, known at the outsot. The method recomended for finding tho

5
bending moments and deflections is the tabular method, and its application to rigid blades is discussed in detail. If the theory and methods of this report be extended to accelerated filght conditions, the gyroscopic forces, on blades rigialy attached, must be considered. Therefore, expressions for the accelerations on the blades are given, for a maneuver involving angular velocity in roll.

Part VI. Design Criteria Considerations.
A brief discussion is given of some factors which will influence the establishment of a set of design criteria for helicopter rotor blades.

The significance of the material in this report toward such a task is briefly evaluated.

PART I
GENERAL MATERIAL APPLICABLE
TO ALL TYPES OF BLADES

Part I

1. General Assumptions

The assumptions used in this report, which are applicable to all rotor types investigated, are as follows:
A.1. The approximated distribution of induced velocity along a blade is given by expression
$(r-1) \quad V_{1}=\bar{V}_{1}\left(1+x_{r} \cos \theta_{z_{a}}\right)$
Ref. 1, 2
A.2. The magnitude of mean induced velocity $\overline{\mathrm{V}}_{1}$ is given by
$(r-2) \quad \bar{V}_{1}=-\frac{T}{2 \pi R^{2} \rho V_{A}}$
Ref. 3
A.3. The radial component of the resultant air velocity at a blade element may be neglected.

Ref. 2
A.4. It is assumed that in a steady flight, any satisfactory design will avoid stalling of the tips.
A.5. It will be assumed that compressibility shock wave on the advancing blades is avoided. The limiting maximum speed given by Briley is
$(I-3)$
$\left(V_{A}\right)_{\max }=573 \frac{\mu}{\mu+I}$
Ref. 4

$$
\text { I }--2
$$

A.6. The calculation of the tip loss factor, B, is based on the Prandtl theory (ref. 5 and 6) modified to account for the induced losses due to the necessarily large deviation from a constant induced velocity in a practical design. The additional correction was calculated on the basis of several existing designs by Quentin Wald and presented in the Sikorsky Report, ref. 7

$$
B=1-\frac{\sqrt{2 c_{T}}}{b}-.6\left(x_{T}\right)_{t} \sqrt{2 c_{T}}
$$

where $\left(x_{r}\right)_{t}$ is x_{r} where the taper of the blade begins.
This expression is only valid for
$\left(x_{r}\right)_{t}>.5$
for $\left(x_{r}\right)_{t} \leq .5, .6\left(x_{r}\right)_{t}$ is replaced by .3 and
the expression for the tip loss factor becomes
for $\left(x_{r}\right)_{t} \leqslant .5$
$(1-4 a) \quad B=1-\sqrt{2 c_{T}}\left(\frac{1}{b}+.3\right)$
A.7. The slope of the blade section lift coefficient is a straight line.

Ref. 2
A.8. All harmonics above the second one are neglected (the effect of higher harmonics on lower ones is taken into account).

Ref. 2

$$
I=-3
$$

A.9. The reversed flow region is treated in a manner similar to ref. 2 , i.e., the trailing edge of each blade element in that region is treated as the leading edge and vice versa, the effect of stall disregarded.
A.10. In calculating the inflow coefficient and harmonic coefficients of the blade motion, the blade is infinitely stiff.
A.11. In calculating the inflow coefficient and harmonic coefficients of the blade motion, the blade chord is constant, equal to the mean chord defined as
$(I-5)$

$$
\overline{\mathrm{c}}=4 \int_{0}^{1} \operatorname{cx}_{r}^{3} d x_{r}
$$

Ref. 8
A.12. For all calculations except when it is specified, all rotor hinges intersect at the center of the hub 0^{\prime}.
A.13. The. root chord is assumed to be extended to the center of the hub.
A.14. All angles except azimuth $\theta_{z_{a}}$ are small, so that

$$
\begin{aligned}
& \sin \theta=\tan \theta=\theta \\
& \cos \theta=1.0
\end{aligned}
$$

A.15. The blade drag contributes a negligible amount to the thrust of both the blade element and the rotor.
A. 16 As far as the flow through the rotor is concerned, the number of blades is infinite. Among other things, this implies that the inertia of the air is negligible.

$$
: \quad \text {; }
$$

ㅍ․

The Reversed FIow Region

In the region of reversed flow, the air loads are negative relative to the region of straight flow, and the equations for the airloads are discontinuous at $x_{r}=-\mu \sin \theta_{z_{a}}$. Unless discontinuity can be eliminated, the bending moments and deflections of the blades must be found separately at each azimuth angle. This eliminates the possibility of finding the harmonic parts of the deflections and bending moments, which prevents solving the second approximation for the effect of blade flexibility on the air loads, and even prevents accounting for the inertia loads due to deflections of the blade (the term $\mathrm{Rma}_{\mathrm{r}}$, equation II-93). In this case the step-by-step tabular solution for the bending moments is recommended since it appears to be shorter than the "collocation" method.

Mathematical means of avoiding this impasse may exist, but it is felt that the problem is not of sufficient importance to warrant investigations of these means, considering their complexities.

In any case, it is well to bear in mind these further limitations of the theory presented herein, when it is applied to a blade in the reversed flow region, $\pi<\theta_{z_{a}}<2 \pi$. Although not strictly justifiable, it is thought that a good compromise solution for the bending moments of a blade in reversed flow might be obtained by considering that the air loads inboard of $X_{r}=\mu$ are zero at any azimuth angle. This assumption at least would permit an approximate calculation of the effect of the inertia loads due to bending (see pp. II-6 to III-/f).

$$
I=5
$$

2. Nomenclature.

Forvard:
Nomenciature adopted in this report is based on the so-called "rational" system. Since many references mentioned here use the "classical" system, that system is also presented, when possible, side by side with the "rational".

I. Coordinate Axes

FIG. I-1
a. The X_{a}, Y_{a} and Z_{a} axes are fixed to alrciraft as shown above.
X_{a} axis is horizontal when the aircraft is on the ground.
b. The X^{\prime}, Y^{\prime} and Z^{\prime} axes are also fixed to the aircraft but Z^{\dagger} the origin passing through the center of the rotor hub. Z^{\dagger} axis coincides with the rotor shaft.

FIG. I-2
c. The X, Y and Z axes are rotating axes with their origin, 0 , at the drag hinge. The X axis is coincident with the pitch changing axis (feathering axis) of the blade when tine blade is essumed to be infinitely stiff. The Y exis is perpendicuiar to
r
$\because 1$.

$$
I-8
$$

X axis and coincides with extended zero lift root chord
of the blade (extended to "O") when the blade is in its
initial position. The Z axis is perpendicular to both
the Y and X axes, as shown.
II. Initial position of X Y Z axes.

FlG.I-3. Three-view of
ANITIAL LIADE POSITION

The inftial position of the blade is defined as follows: The X X plane is paraliel to $\mathrm{X}^{\prime} Y^{\prime}$ plane, the projection of X axis on $X^{\prime} Y^{\prime}$ plane lies along X^{\prime} axis.
III.

Linear Dimensions.

Distance from the origin " O " (drag hinge) to a blade element
"Rational" System x

Chordwise distance of a particle on a blade from the pitch changing axis (X axis) y
Distance of a particle from the $X Y$ plane exis when the blade is in the initial position. r
Blade radius--Distance of the tip of the blade from Z^{\prime} axis when the blade is in the inftial position.
DeIta link length is equal to $0^{\prime} 0_{f}$ (Fig I-3) e_{I}
Alphe Ink length is equel to $O_{f} 0$ (FIgI-3)
Chord of a blade element
Mean chord
Extended root chord
Extended tip chord
Blade structural deflection parallel to $X Y Z$ axes respectively
"Classicel" System
r

R
2
r
r

R
c
$\overline{\mathrm{c}}$
c_{0}
c_{1}
x, \quad, z
IV. Angular Dimensions.

Total arienlar displacement about the X aris of the $X Y$ plane from its Initial position-Total blade incidence at the drag hinge

Total angular displacement about the Y axis of the $\mathrm{Y} X$ plane from its initial position-Flapping angle
Total angular displacement about the Z axis of $Z X$ plane from its initial position.

Angular displacement about the Z axis of the $Z X$ plane from its initial position due to the rotation of the drive shaft

Angular displacement about the Z exis of the $Z X$ plane from its initial position due to the motion about drag hinge

Absolute angle of attack of a blade element

Induced angle of attack of a blade element
Total twist of the blade--between the extended root chord and the tip

Blade incidence at the drag hinge due to collective pitch control

Maximum (minimum) blade incidence at the drag hinge due to cyclic pitch control
Control phase azimuth angle
Effective blade incidence
Angle of incidence of a particle on a blade element

Angular displacement about the X^{\prime} axis of the $X^{\prime} Y^{\prime}$ plane from its initial position--Roll

Angular displacement about the
Y^{\prime} axis of the $X^{\prime} Y^{\prime}$ plane from
its initial position－－Pitch

Angular displacement about the Z^{\prime} axis of $Z^{\prime} X^{\prime}$ plane from its initisl position－－Yew
Angular dimensions of Delta
（Flapping）axis and Alpha （Drag）axis respectively as shown in Fig．（ $x-3$ ）
Measured in $Z X$ plane from X Measured in $Z Y$ plane from Z Moasured in X Y plane from Y

V．Linear Velocities．
Resultant air velocity at Rotor
Absolute velocity of aircraft
Resultant velocity at a blade element
Components of velocity at a blade element due to motion of the blade Component of V_{R} parallel to $X^{\prime} Y^{\prime} Z^{\prime}$ axes respectively

Components of V_{A} parallel to the $X^{\prime} Y^{\prime} Z^{\prime}$ axes respectively

Components of V parallel to the XY Z axes respectively

Induced velocity at any point of the Rotor

Mean induced velocity of Rotor

＂Rational＂ System	＂Classical＂ Systom
$\theta^{\prime}{ }^{\prime}$	\propto
$\theta_{z}{ }^{\prime}$	
$\begin{aligned} & \delta_{1}, \alpha_{1} \\ & \delta_{2}, \alpha_{2} \\ & \delta_{3}, \alpha_{3} \end{aligned}$	$\begin{aligned} & \delta_{1}, \alpha_{1} \\ & \delta_{2}, \alpha_{2} \\ & \delta_{3}, \alpha_{3} \end{aligned}$
V_{R}	V
V_{A}	V
V	
$\dot{x}, \dot{y}, \dot{z}$	
$V_{R x^{\prime}} V_{R X^{\prime}}$	$V_{R z}{ }^{\prime}$
$V_{A X^{\prime}} V_{A y^{\prime}} V^{\prime}{ }^{\prime}$	
V_{x}, V_{y}, V_{z}	
V_{1}	$v+v_{1}$
$\overline{\bar{V}_{1}}$	V

VI. Angular Velocities.
"Rations" System
"Classical" System

Angular velocities are designoted by dotting corresponding anguish displacement

$$
\left(1, \theta \cdot \dot{\theta}_{z}, \dot{\theta}_{z b}, \dot{\theta}_{x}\right.
$$

VII. Ir near Accelerations:

Linear accelerations are designated by double dotting the corvesbonding linear dimensions

$$
(i, 0 ., \ddot{x}, \ddot{y}
$$

VII. Angular Accelerations.

Angular accelera dotting the corvesnested by doubler displacements bonding angular display

$$
\left(1.0 ., \ddot{\theta}_{z}, \ddot{\theta}_{z_{B}}, \ddot{\theta}_{z_{b}}\right.
$$

IX. Forces.

Force acting on Rotor
Force acting on a blade
Components of F_{R} parallel to the
components of F parallel

$$
\begin{aligned}
& \text { mponents of } F \text { parent } \\
& X I Z \text { axes respectively }
\end{aligned}
$$

X. Moments.

Total moment
Moments about $X^{\prime} X^{\prime} Z^{\prime}$ axes respectively
Moments about X I 2 axes respectively
Moments about axes parallel to pectively.
ants about axes parallel to
the $X^{\prime} Y^{\prime} Z^{\prime}$ exes respectively $M_{X}^{\prime}, M_{y} y_{1} ; M_{Z^{\prime} 1}$

$$
I=13
$$

Moments about axes parallel to

$$
\begin{array}{cc}
\begin{array}{c}
\text { Rational" } \\
\text { System }^{\text {Si }}, M_{y \pm}, M_{z 1}
\end{array} & \text { "Classical" } \\
\text { System }
\end{array}
$$

XI. Series Expansions.

Flapping Angle:

$$
\begin{aligned}
\text { "Rational" } \theta_{y} & =a_{0}-a_{1} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}}-a_{2} \cos 2 \theta_{z_{a}}- \\
& -b_{2} \sin 2 \theta_{z_{a}} \\
\text { "Classical" } \beta & =a_{0}-a_{1} \cos \psi-b_{1} \sin \Psi-a_{2} \cos 2 \psi- \\
& -b_{2} \sin 2 \psi
\end{aligned}
$$

Feathering Angle:

"Rational" $\theta_{x}=c_{0}-c_{1} \cos \theta_{z_{a}}-d_{1} \sin \theta_{z_{a}}-c_{2} \cos 2 \theta_{z_{a}}-$
$-d_{2} \sin 2 \theta_{z}$
"Classical" $\theta=\theta_{0}-A_{1} \cos \psi-B_{1} \sin \psi-A_{2} \cos 2 \psi-$

$$
-B_{2} \sin 2 \Psi
$$

Lag Angle:

$$
\begin{aligned}
\text { "Rational" } \theta_{z_{b}} & =e_{0}-e_{I} \cos \theta_{z_{a}}-f_{I} \sin \theta_{z_{a}}-e_{2} \cos 2 \theta_{z_{a}}- \\
& -f_{2} \sin 2 \theta_{z_{a}} \\
\text { "Classical" } F & =E_{0}-E_{1} \cos \Psi-F_{1} \sin \Psi-E_{2} \cos 2 \psi- \\
& -F_{2} \sin 2 \Psi
\end{aligned}
$$

XII. Coefficients Rotor lift $I=C_{I} \frac{\text { RRatiotem }}{\text { System }} \pi R^{2} \frac{I}{2} \rho V_{A}^{2} \quad I_{2}=C_{I_{2}} \frac{\text { System }}{\pi R^{2} \frac{1}{2} \rho V^{2}}$ Rotor drag $D=C_{D} \pi R^{2} \frac{1}{2} \rho \nabla_{A}^{2} \quad D_{2}=C_{D_{2}} \pi R^{2} \frac{1}{2} \rho V^{2}$ Rotor lateral $F_{R Y^{\prime}}=C_{J^{\prime}} \pi R^{2} \frac{1}{2} \rho V_{A}^{2} \quad Y=C_{Y} \pi R^{2} \frac{1}{2} \rho V^{2}$ force
Rotor thrust $T=C_{T} \rho \dot{\theta}_{z_{a}}^{2} \pi R^{4} \quad T=C_{T} \rho \Omega^{2} \pi R^{4}$

Mean inflow
$\lambda=\frac{V_{A z^{\prime}}+\overline{\nabla_{i}}}{R \dot{\theta}_{z_{a}}}$ $\lambda=\frac{V \sin \alpha-V}{\Omega R}$ factor

Mean induced
inflow fac- $\quad \lambda_{1}=\frac{\bar{\nabla}_{i}}{R \dot{\theta}_{z_{8}}}$
tor

Tip speed
ratio
$\mu=\frac{\nabla_{A x^{\prime}}}{R \dot{\theta}_{\mathbf{z}_{a}}}$
$\mu=\frac{V \cos \alpha}{\Omega R}$

Solidity ratio $\sigma=\frac{b \tau}{\pi R}$
$\sigma=\frac{b \tau}{\pi R}$

Rotor torque $=M_{z}=C_{Q} \rho \dot{\theta}_{z_{Q}}^{2} \pi R^{5} \quad Q=C_{Q} \rho \Omega^{2} \pi R^{5}$
$\begin{aligned} \text { Rotor roiling } \\ \text { moment }\end{aligned}=M_{X^{\prime}}=C_{\zeta} \pi R^{3} \frac{1}{2} p V_{A}^{2} ; I^{\prime}=C_{\xi} \pi R^{3} \frac{1}{2} p V^{2}$
"Classical"
System

$$
\begin{aligned}
& \text { Rotor pitching } \\
& \quad \text { moment }=M_{Y^{\prime}}=C_{m} \pi R^{3} \frac{1}{2} \rho V_{A}^{2} \quad M=C_{m} \pi R^{3} \frac{1}{2} \rho V^{2}
\end{aligned}
$$

Ratio of V com-

ponents to ro-
tational tip

$$
u_{x}, u_{y}, u_{z}
$$

u_{R}, u_{T}, u_{p}

Ratio of dis-
tance of an
element from
origin, 0 , to

$$
X_{P}=\frac{x}{R}
$$

blade radius

XIII. Miscellaneous

```
Number of blades
b
```

b
B
I_{I}
I_{2}

```
\(Z\) axes respectively \(I_{Y 1}, I_{z 1}\)
```


"Rational" System

$$
\begin{aligned}
& \text { Mass constent of } \\
& \text { rotor blade } \\
& \text { (Flapping hinge) } \\
& \gamma_{F}=\frac{\bar{c} \rho a R^{4}}{I_{F}} \\
& \gamma_{D}=\frac{\bar{c} \rho a R^{4}}{I_{D}} \\
& \text { rotor blade } \\
& \text { (drag hinge) } \\
& \text { Mass constant of } \\
& \text { Slope of lift } \\
& \text { curve per } \\
& \text { radian } \\
& \text { Mean profile } \\
& \text { drag coef- } \\
& \text { ficient } \\
& \text { Subscript used in } \\
& \text { connection } \\
& \text { with a flex- } \\
& \text { ible blade } \\
& ()_{\mathrm{e}} \\
& \text { Mass per foot } \\
& \text { length of } \\
& \text { blade } \\
& \text { Weight per foot } \\
& \text { length of the } \\
& \text { blade } \\
& \text { Total weight of } \\
& \text { each blade } \\
& =W_{b} \\
& =\frac{c \rho a R^{4}}{I_{1}}
\end{aligned}
$$

"Classical"
System

Mumerical Solucion of Linear Differential Equations of

Higher Order

Since the calculation of blede deflections involve the solution of linear differential equations of fourth order, the outline of several known methods for solving that type of equation is given in the following.

Three methods listed below are considered:
Collocation
Least square
Galerkin The type of differential equation considered is of the form
(I-6) $\quad G_{n}(x) \frac{d^{n} z}{d x^{n}}+G_{n-1}(x) \frac{d^{n-1} z}{d x_{n}^{n-1}}+\cdots G_{1}(x) \frac{d z}{d x}+G_{0}(x) z=f(x)$
or in a more brief form

$$
(x-6 a) \quad G(p) z-f(x)=0
$$

where $\quad p \equiv \frac{d}{d x}$

$$
\begin{aligned}
& \text { (I-6b) } G(p)=G_{n} p^{n}+G_{n-1} p^{n-1}+\cdots G_{1} p+G_{0} \\
& \text { and } x \text { is an independent variable. }
\end{aligned}
$$

and x is an independent variable.
The problem consists in finding the unique solution in one interval of $a \leq x \leq b$.

The solution can be assumed to be given by a polynomial which can be written in a form
$(\Gamma-7) \quad Z(x)=X_{0}(x)+\sum_{j=1}^{S} X_{j}(x) a_{j}$
where $X_{0}(x)$ and $X_{j}(x)$ are functions of x which are chosen in such a way as to satisfy as many boundary conditions for $Z(x)$ and its derivatives es possible, inherently, i.e., independently of the values of the coefficients θ_{j}. Sometimes it is not possible to satisfy all the boundary conditions without introducing difficulties in the subsequent integrations. In such cases it is better not to satisfy a boundary condition then to satisfy a false one.

The constents a_{j} must be such as to get the assumed solution $Z(x)$ to fit the actual one z as closely as possible. The main difference between methods of solving the equation is the wey the constents a_{j} ere determined.

It ie obvious that for a given differential equation and boundary conditions there may be a number of polynomials which can be chosen. Some of them may satisfy all the conditions, others may satisfy them only partially, but may be preferred because of their simplicity in integrating.

Once a polynomial is chosen, the problem is then reduced to determination of constants \mathbf{a}_{j}.

If the essumed solution heppened to be the exact solution of the given differential equation we would have

$$
(I-8) \quad G(p) Z(x)-f(x)=0
$$

but since it is only an approximate solution we have

$$
(I-8 a) \quad G(p) Z(x)-f(x) \neq 0 \equiv \in(x)
$$

where $\epsilon(x)$ is a function obtained when $Z(x)$ is substituted for z in the left hand side of the differential equation ($I-6$). The above equation can also be written in the form

$$
(I-B b) \quad \in(x)=\sum_{j=1}^{S} A_{j}(x) a_{j}+X_{0}(x)-f(x)
$$

where $A_{j}(x)=G(p) X_{j}(x)$ for $j=0,1,2$....S (I-8c)
The three methods now can be outlined
Collocation
The constants a_{j} are chosen so that $Z(x)$ satisfies the differential equation exactly at S selected points $X_{1}, X_{2} \ldots . X_{S}$, i.e., $\epsilon(x)=0$ at those selected points.

$$
\begin{equation*}
\sum_{j=1}^{S} A_{j}\left(x_{i}\right) a_{j}+X_{0}\left(x_{i}\right)=f\left(x_{i}\right) \tag{I-9}
\end{equation*}
$$

for $1=1,2,3$. . S .
To illustrate the method, consider, for example, a simple cantilever beam uniformly loaded and constant EI

FIG.I-4

The equation for the moment at each point distant y from the root will be

$$
E I \frac{d^{2} z}{d y^{2}}=\frac{W}{2}(e-y)^{2} \quad(I-10)
$$

if we let $\frac{Y}{e}=x$ and $\frac{e^{4} W}{2 E I}=I \quad(I-11)$
the equation becomes

$$
\frac{d^{2} z}{d x^{2}}=(1-x)^{2} \quad(I-10 a)
$$

With the boundary conditions

$$
\begin{aligned}
& z=\frac{d z}{d x}=0 \text { at } x=0 \\
& \frac{d^{2} z}{d x^{2}}=\frac{d^{3} z}{d x^{3}}=0 \quad \text { at } x=1 \quad(I-12 a)
\end{aligned}
$$

The exact solution of the equation is

$$
\begin{equation*}
z=\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{12} \tag{I-13}
\end{equation*}
$$

Assume the solution to be given by a polynomial

$$
\text { (I-14) } z(x)=a_{1}\left[\frac{x^{2}}{2}-\frac{2 x}{\pi}+\left(\frac{2}{\pi}\right)^{2} \sin \frac{\pi}{2} x\right]+a_{2}\left[\frac{x^{2}}{2}-\frac{2 x}{5 \pi}+\left(\frac{2}{5 \pi}\right)^{2} \sin \frac{5 \pi}{2 \pi}\right]
$$

$$
+\ldots+\theta_{8}\left[\frac{x^{2}}{2}-\frac{2}{(45-3) \pi}+\frac{1}{(4 S-3)^{2}}\left(\frac{2}{\pi}\right)^{2} \sin \frac{(4 S-3)}{2} \pi x\right.
$$

$(x-14 a) X_{0}(x)=0$
$(I-14 b) \quad X_{j}(x)=\left[\frac{x^{2}}{2}-\frac{2 x}{(4 j-3) \pi}+\frac{1}{(4 j-3)^{2}}\left(\frac{2}{\pi}\right)^{2} \sin \frac{(4 j-3)}{2} \pi x\right]$
Retaining first three terms we have $S=3$ and

$$
(I-14 c) z(x)=a_{1}\left[\frac{x^{2}}{2}-\frac{2 x}{\pi}+\left(\frac{2}{\pi}\right)^{2} \sin \frac{\pi}{2} x\right]+a_{2}\left[\frac{x^{2}}{2}-\frac{2 x}{5 \pi}+\left(\frac{2}{5 \pi}\right)^{2} \sin \frac{5 \pi}{2} x\right]
$$

$$
+a_{3}\left[\frac{x^{2}}{2}-\frac{2 x}{9 \pi}+\left(\frac{2}{9 \pi}\right)^{2} \sin \frac{9}{2} \pi x\right]
$$

$$
\text { for } x=0, \quad z(x)=0
$$

Chosing three points where $\epsilon_{(x)}=0$, we have at points (chosen at random)

$$
x_{1}=0 \quad x_{2}=1 / 2 \quad x_{3}=2 / 3
$$

$$
(I-16 a) \quad a_{1}+a_{2}+a_{3}-1=0 \quad(x=0)
$$

$$
\text { (b) } \quad .293 a_{1}+1.707 a_{2}+.293 a_{3}-.25=0 \quad(x=1 / 2)
$$

$$
\text { (c) } \quad .134 a_{1}+1.866 a_{2}+a_{3}-.1109=0 \quad(x=2 / 3)
$$

$$
\begin{aligned}
& (I-14 d) \dot{Z}(x)=a_{1}\left[x-\frac{2}{\pi}+\frac{2}{\pi} \cos \frac{\pi}{2} x\right]+a_{2}\left[x-\frac{2}{5 \pi}+\frac{2}{5 \pi} \cos \frac{5 \pi}{2} x\right] \\
& +a_{3}\left[x-\frac{2}{9 \pi}+\frac{2}{9 \pi} \cos \frac{9}{2} \pi x\right] \\
& \text { for } x=0, \dot{z}(x)=0 \\
& (I-14 e) \quad \ddot{Z}(x)=a_{1}\left(1-\sin \frac{\pi}{2} x\right)+a_{2}\left(1+\sin \frac{5 \pi}{2} x\right)+a_{3}\left(1-\sin \frac{9 \pi}{2} x\right) ; \\
& \text { for } x=1, \ddot{Z}(x)=0 \\
& \text { (I-14f) } \quad \ddot{Z}(x)=-a_{1} \frac{\pi}{2} \cos \frac{\pi}{2} x-a_{2} \frac{5 \pi}{2} \cos \frac{5 \pi}{2} x-a_{3} \frac{9 \pi}{2} \cos \frac{9 \pi}{2} x \\
& \text { for } x=1, \quad \stackrel{Z}{Z}(x)=0 \\
& \text { Substituting } \ddot{Z}(x) \text { into the differential equation, } \\
& \text { we have } \\
& (I-15) \quad a_{1}\left(1-\sin \frac{\pi}{2} x\right)+a_{2}\left(1-\sin \frac{5 \pi}{2} x\right)+\varepsilon_{3}\left(1-\sin \frac{9 \pi}{2} x\right) \\
& -(1-x)^{2}=\epsilon_{(x)}
\end{aligned}
$$

Solving, we have

$$
\begin{aligned}
& a_{1}=.9963 \\
& a_{2}=-.0304 \\
& a_{3}=.0341
\end{aligned}
$$

Therefore, the equation for deflection becomes:
$(I-17) Z(x)=.9963\left[\frac{x^{2}}{2}-\frac{2 x}{\pi}+\left(\frac{2}{\pi}\right)^{2} \sin \frac{\pi}{2} x\right]-.0304\left[\frac{x^{2}}{2}-\frac{2 x}{5 \pi}\right.$

$$
\left.+\left(\frac{2}{5 \pi}\right)^{2} \sin \frac{5 \pi}{2} x\right]+.0341\left[\frac{x^{2}}{2}-\frac{2 x}{9 \pi}+\left(\frac{2}{9 \pi}\right)^{2} \sin \frac{9 \pi}{2} x\right]
$$

Calculating at several points and comparing with the exact solution, we have,

\boldsymbol{x}	z	collooation	z exact
0	0	0	
.25	.02386	.0264	
.50	.089	.0887	
.75	.1801	.1665	
1.0	.2716	.25	

If more terms are taken, the approximation will be even closer than above.

Least Square

In this method each constant, a_{j}, is determined in such a way that the mean squared error ϵ^{2}, In the interval from a to b in the differential equation is minimum; or

$$
(I-18) \quad \frac{\partial}{\partial a_{j}} \int_{a}^{e} \epsilon^{2} d x=2 \int_{a}^{e} \leqslant \frac{\partial \epsilon}{\partial a_{j}} d x=0
$$

Using the same example as in collocation

$$
(I-10 a) \quad \frac{d^{2} z}{d x^{2}}=(1-x)^{2}
$$

we had,

$$
\begin{aligned}
(I-15) \in= & a_{1}\left(1-\sin \frac{\pi}{2} x\right)+a_{2}\left(1-\sin \frac{5 \pi}{2} x\right) \\
& +a_{3}\left(1-\sin \frac{9 \pi}{2} x\right)-(1-x)^{2}
\end{aligned}
$$

The least square equations are

$$
\begin{aligned}
(I-19) \quad 0 & =\int_{0}^{1} \epsilon\left(1-\sin \frac{\pi}{2} x\right) d x^{0}=\int_{0}^{1} \epsilon\left(1-\sin \frac{5 \pi}{2} x\right) d x \\
& =\int_{0}^{1} \epsilon\left(1-\sin \frac{9 \pi}{2} x\right) d x
\end{aligned}
$$

or, evaluating these integrals

$$
\begin{aligned}
& \quad .226 a_{1}+.235 a_{2}+.291 a_{3}-.2133=0 \\
& (\tau-20) \quad .235 a_{1}+1.245 a_{2}+.802 a_{3}-.2118=0 \\
& \\
& \\
& .291 a_{1}+.802 a_{3}+1.358 a_{3}-.2631
\end{aligned}
$$

Solving

$$
\begin{aligned}
& a_{1}=.95 \\
& a_{2}=-.0339 \\
& a_{3}=-.00268
\end{aligned}
$$

$$
I=24
$$

Galerkin's Method

In Galerkin's method the constants,
$(x-21)$
such a way as to sati constants,

$$
\int_{a}^{b} \in X_{j}(x) d x=0
$$

$X(x)$ is obtained from equation $I-14$
arbitrary multiplier can be used instead of In general, any provided the number of terms taken is large. $X_{j}(x)$,
example as in the previous two methods we have. Using the same $(I-15) \quad \epsilon=a_{1}\left(1-\sin \frac{\pi}{2} x\right)+a_{2}\left(1-\sin \frac{5 \pi}{2} x\right)+$

$$
a_{3}\left(1-\sin \frac{9 \pi}{2} x\right)-(1-x)^{2} ;
$$

($I-22$) Therefore, the equations which determine the coefficients a_{j} are

$$
x_{j}(x)=\frac{x^{2}}{2}-\frac{2 x}{(4 s-3) \pi}+\frac{1}{(4 \pi-3)^{2}}\left(\frac{2}{\pi}\right)^{2} \sin \frac{(4 s-3)}{2} \pi x
$$

$$
\int_{0}^{2} \in\left[\frac{x^{2}}{2}-\frac{2 x}{\pi}+\left(\frac{2}{\pi}\right)^{2} \sin \frac{\pi}{2} x\right] d x=0
$$

(b)

$$
\int_{0}^{1} \in\left[\frac{x^{2}}{2}-\frac{2 x}{5 \pi}+\left(\frac{2}{5 \pi}\right)^{2} \sin \frac{5 \pi}{2} x\right] d x=0
$$

(c)

$$
\int_{0}^{1} \in\left[\frac{x^{2}}{2}-\frac{2 x}{9 \pi}+\left(\frac{2}{9 \pi}\right)^{2} \sin \frac{9 \pi}{2} x\right] d x=0
$$

Again, these integrals can be evaluated and result in three In ear simultaneous equations in a_{1}, and result in three can be solved in a straightforward a_{1}, a_{2}, and a_{3} which

Trials of the three methods have shown that the first, collocation, requires the least computation to find the coofficients for a given approximation, and since neither of the other methods appears to have any advantage in rate of convergence, collocation is the one chosen for the solution of the differential equations for the harmonic parts of the blade deflections.

$$
\text { I - } 26
$$

Geometry of the Rotor Blade Hinges.

On helicopters which have blades attached to the hub by one or two hinges) generally called the " δ ", or flapping hinge and/or the " x " , or drag hinge) it is desirable to interrelate the flapping angle, lag angle, and incidence ($\theta_{y}, \theta_{z_{y}}, \theta_{x}$) analytically by means of expressions involving only th8se variables and constants which depend only on the geometry of the hinges. In this chapter, a method of obtaining these expressions is given, and graphs showing the relation between the variables for some typical hinge configurations are given.

There are at least three methods of obtaining the desired expressions:

1. Descriptive geometry
2. Analytic geometry
3. Spherical trigonometry

It is believed that the third, spherical trigonometry, is best suited to this particular problem.

The analysis is in two parts: The first deals with the case of only one (the " δ ", or flapping) hinge. The second deals with the more general case where both " 6 " and "t " hinges are used. The results of the first part could be obtained as a particular solution to the second part. Consideration of the case of only one hinge as a separate problem is, however, simpler and clearer.

Special notation for this chapter is the following;
Q8 The angle between the flapping, or " δ ", hinge and the $X^{\prime} Y^{\prime}$ plane.
θ_{α} The angle between the arag, or " α ", hinge, in its initial position, and the $X^{\prime} Y^{\prime}$ plane.
θ_{x} in this chapter means only the change in blade angle of attack due to flapping or lagging from the initial position.
$\underline{a}, \underline{a}^{\prime}, \underline{b}, \underline{b}^{\prime}, \underline{c}$ are arcs constructed on the surface of the sphere to form the spherical triangles on which the solution depends - (see fig. reS and TC)
D, E, F are angles in the spherical triangles on which the solution depends. (see fig. $7-5$ and $I=6$) In the text, $\Delta \underline{a}, \underline{b}, \underline{c}$ is the spherical triangle whose sides are $\underline{a}, \underline{b}$ and \underline{c}.

Single hinged rotor.
Fig. I-5 shows the X axis and the δ hinge starting at 0^{\prime}, origin of $X^{\prime} Y^{\prime} Z^{\prime}$ axes and projecting out thru the surface of a sphere whose center is at O^{\prime}. The initial positions of the XYZ axes are coincident with the ' $X^{\prime} ' Y^{\prime} Z$ ' axes shown in the figure. The angle θ_{δ} is the angle between the δ hinge and the $X^{\prime} Y^{\prime}$ plane. δ_{3} is the angle between the Y^{\prime} axis and the $X^{\prime} Y^{\prime}$ projection of the hinge.

Construct great circle arcs a and \underline{e}^{\prime} on the surface of the sphere thru the X axis and the δ hinge. It should not require proof that $\underline{a}=\underline{a}^{\prime}$ and that the change in the angle between the arc a and the meridian thru the X axis, is the variable, $-\theta_{x}$. Thus the angle in the lover left corner of $\Delta\left(90-\theta_{y}\right),\left(90-\theta_{\delta}\right), \underline{a}^{\prime}$, is marked $90-F-\theta_{x}$.

From $\Delta \underline{\varepsilon},\left(90-\delta_{3}\right), \theta_{\delta}$:
(I-24) $\cos \underline{a}=\cos \left(90-\delta_{3}\right) \cos \theta_{\delta}=\sin \delta_{3} \cos \theta_{\delta}$
From $\Delta \underline{a}^{\prime},\left(90-\theta_{y}\right),\left(90-\theta_{\delta}\right):$
$\cos \left(90-\theta_{z_{b}}-\delta_{3}\right) \sin \left(90-\theta_{\delta}\right) \sin \left(90-\theta_{y}\right)=$
$\cos a-\cos \left(90-\theta_{\delta}\right) \cos \left(90-\theta_{\gamma}\right)$
$(I-25) \sin \left(\delta_{3}+\theta_{z_{b}}\right) \cos \theta_{\delta} \cos \theta_{y}=\sin \delta_{3} \cos \theta_{\delta}-\sin \theta_{\delta} \sin \theta_{y}$
$(I-26) \therefore \sin \left(\delta_{3}+\theta_{z_{b}}\right)=\frac{\sin \delta_{3}}{\cos \theta_{y}}-\tan \theta_{\delta} \tan \theta_{y}$
Solving for $\sin \theta_{z_{b}}$:
(I-27) $\begin{aligned} & \sin \theta_{z}=\frac{\cos \delta_{3}{ }_{b}}{\cos \theta_{y}}\left(\sin \delta_{3}-\tan \theta_{\delta} \sin \theta_{y}\right) \\ & \Theta_{y} \sin \delta_{3} \\ & \cos \theta_{y} \cos ^{2} \delta_{3}-\sin ^{2} \theta_{y}-\tan ^{2} \theta_{\delta} \sin ^{2} \theta_{y}+2 \sin \delta_{3} \tan \theta_{\delta} \operatorname{shn} \theta_{y}\end{aligned}$
Since $\theta_{z_{b}}=0$ when $\theta_{y}=0$, the minus $(-) \operatorname{sign}$ in
the above is correct.

$$
\text { If } \delta_{3}=0:
$$

$(r-28) \sin \theta_{z_{b}}=-\tan \theta_{y} \tan \theta_{\delta}$

$$
\text { or, if } \theta_{\delta}=0:
$$

(I-29) $\sin \theta_{z_{b}}=\frac{\sin \delta_{3} \cos \delta_{3}}{\cos \theta_{y}}\left(1-\sqrt{1-\left(\frac{\left.\sin \theta_{y}\right)^{2}}{\cos \delta_{3}}\right.} \approx 0\right.$
From $\Delta\left(90-\theta_{y}\right),\left(90-\theta_{\delta}\right), \underline{a}^{\prime}:$
$\frac{\sin \left(90-F-\theta_{x}\right)}{\sin \left(90-\theta_{\delta}\right)}=\frac{\sin \left(90-\sigma_{3}-\theta_{z_{b}}\right)}{\sin \underline{a}}$
$0 r$
$(I-30)\left\{\begin{array}{l}\cos \left(F+\theta_{x}\right)=\frac{\cos \theta_{\delta} \cos \left(\delta_{z}+\theta_{z_{b}}\right)}{\sin \underline{a_{0}}} \\ \sin \left(F+\theta_{x}\right)=\sqrt{1-\frac{\cos ^{2} \theta_{\delta} \cos ^{2}\left(\delta_{3}+\theta_{z_{b}}\right)}{\sin ^{2} \underline{a}}}\end{array}\right.$
From Δ a $,\left(90-\delta_{3}\right), \theta_{\delta}$:
$(I-31) \sin F=\frac{\sin \theta_{\delta}}{\sin \underline{\theta}}, \cos F=\sqrt{1-\frac{\sin ^{2} \theta_{\delta}}{\sin ^{2} \underline{\theta}}}$
From (1-24):
(I-32) $\sin ^{2} a=1-\sin ^{2} \delta_{3} \cos ^{2} \theta_{\delta}$

From (T-26):
$(I-33) \cos \left(\delta_{3}+\theta_{z_{b}}\right)=\sqrt{1-\left(\frac{\sin \delta_{3}}{\cos \theta_{y}}-\tan \theta_{\delta} \tan \theta_{y}\right)^{2} .}$
Now, $\theta_{X}=\left(F+\theta_{X}\right)-F$
$(I-34) \sin \theta_{x}=\sin \left(F+\theta_{X}\right) \cos F-\sin F \cos \left(F+\theta_{X}\right)$
Substituting $(I-30),(I-31),(x-32),(I-33)$ in $(X-34)$ and reducing, we find
$(I-35) \quad \sin \theta_{x}=\frac{-\cos \theta_{6} / \cos \theta_{y}}{1-\sin ^{2} \delta_{3} \cos ^{2} \theta_{\delta}}\left\{\cos \sigma_{3} \sin \theta_{y} \sin \delta_{3} \cos \theta_{\delta}\right.$
$-\sin \theta_{\delta}\left[\cos \delta_{3}-\sqrt{\cos ^{2} \theta_{y}-\left(\sin \delta_{3}-\tan \theta_{\delta} \sin \theta_{y}\right)^{2}}\right]$ If $\theta_{\delta}=0:$
$(I-36) \quad \sin \theta_{x}=-\tan \delta_{3} \tan \theta_{y}$

If $\delta_{3}=0:$
(I-37)
$\sin \theta_{x}=\sin \theta_{\delta} \cos \theta_{\delta}\left\{\frac{1}{\cos \theta_{y}}-\sqrt{1-\tan ^{2} \theta_{y} \tan ^{2} \theta_{\delta}}\right\} \div 0$

Double Hinged Blades.
The analysis for the case of both " α " and " δ " hinges may proceed in a manner similar to that for the singly hinged blades.

Figure $5-6$ shows the X axis, δ hinge, and a hinge all starting at O^{\prime}, origin of the $X^{\prime} Y^{\prime} z^{\prime}$ axes and projecting out thru the surface of a sphere whose center is at 0^{\prime}. The inftiai positions are shown as solid lines.

The angle θ_{δ} is the angle between the δ hinge and the $X^{\prime} Y^{\prime}$ plane. θ_{α} is the angle between the α hinge and the $X^{\prime} y^{\prime}$ plane before any rotation has occurred about the δ hinge. Similarly, the angles δ_{3} and α_{3} are the angles between the Y^{\prime} axis and the $X^{3} Y^{\prime}$ projections of the hinge, and the initial position of the a hinge, respectively. The necessary constructions are as follows:

1. Construct great-circle-arc a on the sphere thru the δ hinge and inftial position of the a hinge.
2. Construct great-cirsie-arc b on the sphere thru the X^{\prime} axis and the initial position of α hinge.
3. Construct the great-circle-arc $\underset{c}{ }$ on the sphere thru the δ hinge and the final, or general, position of the X axis.
4. Swing small circies on the sphere of radii \underline{b} and \underline{a} about the X axis and δ hinge axis respectively; and from their intersection draw radii \underline{b}^{\prime} and \underline{a}^{\prime} to the X axis and δ hinge.

It may now be supposed that the way in which the X axis arrived at its general position from the initial one was as follows:

1. The blade and the a hinge, maintaining their initial angle to one another, rotated together about the δ hinge, so that the ara a rotated to the position \underline{a}^{\prime}, and the arc b moved to some new position not shown.
2. Finally the blade rotated about the $a^{\text {a }}$ hinge sufficiently to move arc \underline{b} down to its position b^{\prime} when the X axis vas at the general position shown.

It is now apparent that the change in the angle between the arc b and the meridian at the X axis, is the change in incidence, $-\theta_{x}{ }^{2}$
or,

$$
D+E=(90-F)-\theta_{x}
$$

$$
\theta_{x}=[(90-E)-(D+F)]
$$

$(I-38) \quad \therefore \sin \theta_{x}=-\cos E(\sin F \sin D-\cos F \cos D)$ $-\sin E(\sin F \cos D+\cos F \sin D)$

From $\Delta \underline{b}, \theta_{\alpha}, 90-a_{3}:$
$\sin F=\frac{\sin \theta_{\alpha}}{\sin \underline{b}}, \cos \underline{b}=\cos \left(90-\alpha_{3}\right) \cos \theta_{\alpha}=\sin \alpha_{3} \cos \theta_{\alpha}$
$(r-39) \quad \therefore \sin F=\frac{\sin \theta_{\alpha}}{\sqrt{1-\sin ^{2} \alpha_{3} \cos ^{2} \theta_{\alpha}}}$,
$\cos \mathrm{F}=\frac{ \pm \cos \theta_{\alpha} \cos \alpha_{3}}{\sqrt{1-\sin ^{2} \alpha_{3} \cos ^{2} \theta_{\alpha}}}$

$$
I-32
$$

From Δ a $,\left(90-\theta_{\alpha}\right),\left(90-\theta_{\boldsymbol{\gamma}}\right):$

$$
\begin{aligned}
\cos \underline{a}= & \cos \left(\alpha_{3}-\delta_{3}\right) \sin \left(90-\theta_{\alpha}\right) \sin \left(90-\theta_{\delta}\right) \\
& +\cos \left(90-\theta_{\alpha}\right) \cos \left(90-\theta_{\delta}\right)
\end{aligned}
$$

or
$(x-40) \quad \cos \underline{a}=\cos \left(\alpha_{3}-S_{3}\right) \cos \theta_{\alpha} \cos \theta_{\delta}+\sin \theta_{\alpha} \sin \theta_{\delta}$
From $\Delta \underset{\text { e }}{ },\left(90-\theta_{y}\right),\left(90-\theta_{\delta}\right):$
$\cos \underline{c}=\cos \left(90-\theta_{z_{b}}-\delta_{3}^{\prime}\right) \sin \left(90-\theta_{y}\right) \sin \left(90-\theta_{\delta}\right)$
$+\cos \left(90-\theta_{y}\right) \cos \left(90-\theta_{\delta}\right)$
$(I-41) \quad \cos \underline{c}=\sin \left(\delta_{z}+\theta_{z_{b}}\right) \cos \theta_{y} \cos \theta_{\delta}+\sin \theta_{y} \sin \theta_{\delta}$

$(I-42) \sin D=\frac{\cos \theta_{\delta} \cos \left(\delta_{3}+\theta_{\varepsilon_{b}}\right)}{\sin \underline{c}}=\frac{\cos \theta_{\delta} \cos \left(\delta_{z}+\theta_{z_{b}}\right)}{\sqrt{1-\cos ^{2} \underline{c}}}$
From $\Delta \underline{\underline{D}}^{\prime}, \underline{a}, \underline{a}^{\prime}:$
$(T-43) \cos E=\frac{\cos 日-\cos p \cos q}{\operatorname{nin} \underline{b} \sin \underline{c o s} a-\cos p \cos \varepsilon} \sqrt{\left(1-\cos ^{2} \underline{p}\right)\left(1-\cos ^{2} \underline{q}\right)}$

Substituting $(I-40)$ and $(I-41)$ in $(I-42)$ and $(I-43)$, the following expressions are derived:
$(x-44) \sin D=\frac{\cos \theta_{\delta} \cos \left(\delta_{3}+\theta_{z_{b}}\right)}{\sqrt{1-\left[\sin \left(\delta_{3}+\theta_{z_{b}}\right) \cos \theta_{y} \cos \theta_{\delta}+\sin \theta_{y} \sin \theta_{\delta}\right]^{2}}}$ $(I-45) \cos D=\sqrt{1-\frac{\cos ^{2} \theta_{\delta} \cos ^{2}\left(\delta_{3}+\theta_{z_{b}}\right)}{1-\left(\sin \left(\delta_{3}+\theta_{z_{b}}\right) \cos \theta_{y} \cos \theta_{\delta}+\sin \theta_{y} \sin \theta_{\delta}\right]^{2}}}$

$$
\pm\left(\cos \theta_{\delta} \sin \left(\theta_{3}+\theta_{z_{b}}\right) \sin \theta_{y}-\sin \theta_{\delta} \cos \theta_{y}\right)
$$

$(I-46) \cos B=\frac{\cos \left(\alpha_{3}-\delta_{3}\right) \cos \theta_{a} \cos \theta_{\delta}+\sin \theta_{a} \sin \theta_{\delta}\left(\sin \left(\delta_{3}+\theta_{z_{b}}\right) \cos \theta_{y} \cos \theta_{\delta}+\sin \theta_{y} \sin \theta_{8}\right)\left(\sin \theta_{3} \cos \theta_{a}\right)}{\sqrt{\left\{1-\left[\sin \left(\delta_{3}+\theta_{z_{b}}\right) \cos \theta_{y} \cos \theta_{\delta}+\sin \theta_{y} \sin \theta_{8}\right]^{2}\right\}\left\{1-\left[\sin \alpha_{3} \cos \theta_{\alpha}\right]^{2}\right\}}}$

Finally, substituting $(I-44),(I-45),(I-46),(I-47)$ and ($I-39$) in ($I-38$), we obtain the final expression for θ_{x}, and, with some rearranging and the use of well-known trigonometric identities, it reduces to:

$$
(I-48) \sin \theta_{x}=-\frac{(I)(I I)+(I I I)(I V)}{(V)}
$$

where

$$
\begin{aligned}
(I)= & \cos \left(\alpha_{3}-\delta_{3}\right) \cos \theta_{\alpha} \cos \theta_{\delta}+\sin \theta_{\alpha} \sin \theta_{\delta} \\
& -\sin \alpha_{3} \cos \theta_{\alpha}\left[\sin \left(\varepsilon_{3}+\theta_{z_{b}}\right) \cos \theta_{y} \cos \theta_{\delta}\right. \\
& \left.+\sin \theta_{y} \sin \theta_{\delta}\right] \\
(I I)= & \sin \theta_{\alpha} \cos \theta_{\delta} \cos \left(\delta_{3}+\theta_{z_{b}}\right) \pm \cos \theta_{\alpha} \cos \alpha_{3} \times \\
& \times\left[\cos \theta_{\delta} \sin \theta_{y} \sin \left(\delta_{3}+\theta_{z_{b}}\right)-\sin \theta_{\delta} \cos \theta_{y}\right] \\
(I I I)= & \pm \sin \theta_{\alpha}\left[\sin \theta_{y} \cos \theta_{\delta} \sin \left(\delta_{3}+\theta_{z_{b}}\right)-\sin \theta_{\delta} \cos \theta_{y}\right] \\
& \pm \cos \theta_{\alpha} \cos \alpha_{3} \cos \theta_{\delta} \cos \left(\delta_{3}+\theta_{z_{b}}\right) \\
(I V)= & \pm\left\{1-\left[\cos \theta_{y} \cos \theta_{\delta} \sin \left(\delta_{3}+\theta_{z_{b}}\right)+\sin \theta_{y} \sin \theta_{\delta}\right]^{2}\right. \\
& -\sin \alpha_{3} \cos { }^{2} \theta_{\alpha}-\left[\cos \theta_{\alpha} \cos \theta_{\delta} \cos \left(\alpha_{3}-\delta_{3}\right)+\right.
\end{aligned}
$$

$\left.+\sin \theta_{\alpha} \sin \theta_{\delta}\right]^{2}+2 \sin \alpha_{3} \cos \theta_{\alpha}{ }^{*}$
$*\left[\cos \theta_{\alpha} \cos \theta_{\delta} \cos \left(\alpha_{3}-\delta_{3}\right)+\sin \theta_{\alpha} \sin \theta_{\delta}\right] *$
$\left.\times\left[\cos \theta_{y} \cos \theta_{\delta} \sin \left(\delta_{3}+\theta_{z_{b}}\right)+\sin \theta_{y} \sin \theta_{\delta}\right]\right\} 1 / 2$

$$
(v)=\left(1-\sin ^{2} \cdot \alpha_{3} \cos ^{2} \theta_{\alpha}\right)\{1-
$$

$\left.-\left[\cos \theta_{y} \cos \theta_{\delta} \sin \left(\delta_{z}+\theta_{z_{b}}\right)+\sin \theta_{y} \sin \theta_{\delta}\right]^{2}\right\}$
Now, when $\theta_{y}=\theta_{z_{b}}=0, \theta_{X}$ must $=0$.
I, II, III and IV reduce to the following:

$$
\begin{aligned}
I & =\cos \alpha_{3} \cos \delta_{3} \cos \theta_{\alpha} \cos \theta_{\delta}+\sin \theta_{\alpha} \sin \theta_{\delta}
\end{aligned}
$$

$$
I I=\sin \theta_{\alpha} \cos \theta_{\delta} \cos \delta_{3} \pm \cos \theta_{\alpha} \cos \alpha_{3} \sin \theta_{\delta}
$$

$$
\begin{aligned}
& I I I= \pm \sin \theta_{\alpha} \sin \theta_{\delta} \pm \cos \theta_{\alpha} \cos \alpha_{3} \cos \theta_{\delta} \cos \delta_{3} \\
& I V= \pm\left(\sin \theta_{\alpha} \cos \theta_{c} \cos \delta\right.
\end{aligned}
$$

$$
\begin{aligned}
& I V= \pm\left(\sin \theta_{\alpha} \cos \theta_{\delta} \cos \delta_{3}=\sin \theta_{\delta} \cos \theta_{\alpha} \cos \alpha_{3}\right)
\end{aligned}
$$

If we choose the positive root for IV, then the negative sign in II is correct, and the two negatives in III are required in order that (I) (II) two negatives in III are signs shown circled on (I)(II) + (III)(IV) $=0$. Thus,

There are import the the hinges. For instance, if $\theta_{\alpha}=90^{\circ}$: the arrangement of

$$
\begin{aligned}
(I)= & \sin \theta_{\delta} \\
(I I)= & \cos \theta_{\delta} \cos \left(\delta_{z}+\theta_{z_{b}}\right) \\
(I-49)(I I I)= & \sin \theta_{y} \cos \theta_{\delta} \sin \left(\varepsilon_{J}+\theta_{z_{b}}\right)-\sin \theta_{\delta} \cos \theta_{y} \\
(I V)= & \left\{\cos ^{2} \theta_{\delta}-\left[\cos \theta_{y} \cos \theta_{\delta} \sin \left(\delta_{z}+\theta_{z_{b}}\right)\right.\right. \\
& \left.\left.+\sin \theta_{y} \sin \theta_{\delta}\right]^{2}\right\} 1 / 2 \\
(V)= & I-\left[\cos \theta_{y} \cos \theta_{\delta} \sin \left(\delta_{z}+\theta_{z_{b}}\right)\right. \\
& \left.+\sin \theta_{y} \sin \theta_{\delta}\right]^{2} \\
\text { If, in addition, } & \theta_{\delta}=0, \operatorname{it} \operatorname{seduces} \operatorname{to}: \\
(I-50) \sin \theta_{x}= & \frac{-\sin \theta_{y} \sin \left(\delta_{3}+\theta_{z_{b}}\right)}{\sqrt{I-\cos ^{2} \theta_{y} \sin ^{2}\left(\delta_{z}+\theta_{z_{b}}\right)}}
\end{aligned}
$$

Another frequently used configuration has the drag hinge initially in the $Y^{\prime} Z^{\prime}$ plane $\left(\alpha_{3}=0\right)$ and perpendicular to the flapping hinge

$$
\left(\tan \theta_{\alpha}=\frac{\cos \delta_{3}}{\tan \theta_{\delta}}\right)
$$

Substituting $\alpha_{3}=0$

$$
\begin{aligned}
& \sin \theta_{\alpha}=\frac{\cos \delta_{3} \cos \theta_{\delta}}{\sqrt{\cos ^{2} \theta_{\delta} \cos ^{2} \delta_{3}+\sin ^{2} \theta_{\delta}}} \\
& \cos \theta_{\alpha}=\frac{\sin \theta_{\delta}}{\sqrt{\cos ^{2} \theta_{\delta} \cos ^{2} \delta_{3}+\sin ^{2} \theta_{\delta}}}
\end{aligned}
$$

We get,
(see next page)

There are, of course, other hinge configurations in use, for which the general formula ($I-48$) becomes simplified. The simplifications involved, will, however, usually be immediately obvious. Since, on most designs, the independent variables $\theta_{y}, \theta_{z_{b}}, \theta_{\delta}$, δ_{3}, and $\left(\theta_{\alpha}-90\right)$ are not greatly different from zero, we write a Taylor expansion, in operator form, as follows:

$$
\begin{align*}
& \sin -\theta_{x}=\sin \theta_{x}+ \tag{I-52}\\
& +\left[\theta_{y} D_{\theta_{y}}+\theta_{z_{b}} D_{\theta_{z_{b}}}+\theta_{\delta} D_{\theta_{\delta}}+\left(\theta_{\alpha}-90\right) D_{\theta_{\alpha}}+\delta_{3} D_{\delta_{3}}\right] \sin \theta_{x} \\
& \quad+\frac{1}{2}\left[\theta_{y} D_{\theta_{y}}+\theta_{z_{b}} D_{\theta_{z_{b}}}+\theta_{\delta} D_{\theta_{\delta}}+\left(\theta_{\alpha}-90\right) D_{\theta_{\alpha}}+\delta_{3} D_{\delta_{3}}\right]^{2} \sin \theta_{x} \\
& +\frac{1}{6}\left[\theta_{y} D_{\theta_{y}}+\theta_{z_{b}} D_{\theta_{z_{b}}}+\theta_{\delta} D_{\theta_{\delta}}+\left(\theta_{\alpha}-90\right) D_{\theta_{a}}+\delta_{3} D_{\delta}\right]_{3}^{3} \sin \theta_{x}
\end{align*}
$$

$$
+-----
$$

In the above, D is the differential operator, and all terms on the right side are taken at $\theta_{y}=\theta_{z_{b}}=\theta_{\delta}=\left(\theta_{\alpha}-90\right)=\delta_{3}=0$.
Evaluating the terms indicated above by differentiating (I-48), we find the approximate formula for θ_{x}

$$
\begin{aligned}
\theta_{x} & =-\theta_{y}\left(\delta_{3}+\theta_{z_{b}}+\frac{1}{2} \theta_{y^{\prime} \delta}\right)+\left(\frac{\pi}{2}-\theta_{a}\right)\left(\theta_{z_{b}}+\theta_{y} \theta_{\delta}\right) \sin \alpha_{3} \\
& \left.-\theta_{z_{b}}\left(+\delta_{3}+\frac{1}{2} \theta_{z_{b}}\right) \cos \alpha_{3}\right)
\end{aligned}
$$

This approximation formula may be used for preliminary work where $\theta_{y}, \theta_{z_{b}}, \theta_{\delta},\left(\theta_{\alpha}-90\right)$, and δ_{3} are not greater than roughly 30°. In the formula, all angles are, of course, in radians.

Assuming $\alpha_{3}=0$ and $\tan \theta_{a}=\frac{\cos \delta_{3}}{\tan \theta}$ (hinges matually perpendicular, (formulas (I-5I)) θ_{x} has been computed and plotted as a function of $\delta_{Z}, \theta_{\delta}, \theta_{Y}$ and $\theta_{z_{b}}$. These graphs are included as figs. I-7, I-8.

1. General:

Feathered hinged blades possess three degrees of freedom of motion; they can move freely (or restrained by dampers) about the flapping pin, drag pin and feathering axis of the blade.
2. Applied loads acting on each blade element in a steady forward flight:

The loads imposed on each blade element are:
a. Dynamic loads
b. Gravity loads
c. Aerodynamic loads
a. Dynamic loads

The dynamic loads acting on each blade element are due to absolute accelerations to which each mass particle of a blade element is subjected while moving in the space.

This acceleration can be resolved along XYZ axes, the definition of which wes given in Part I of this report. Reproducing Fig. $I-2$ of Part I, we have

FIG. II-I

$$
+
$$

By definition from Part I, X axis coincides with
the feathering axis of the blade, Y axis coincides With the initial position of the root chord extend to the origin (drag $p i_{n}$) " 0 ", Z root chord extended to plane YX. P . 0 , Z axis is perpendicular

In order to simplify the problem of the accelerations and air problem of calculating be assumed that the drag hinge and (iftloads), it will coincide with the origin 0^{\prime}. The and flapping hinge easily justifiable since both are assumption is loads are much smaller near the mimic and aerodynamic the tip. Therefore, Fig. $\alpha-\ddot{z}$ shows root than those near rotor diagram which is used shows the simplified loads mentioned above:

F/G. II -2

The coordinates of a particle on a blade element referred to XYZ axes are:
$(\pi-1 a) \quad z=\operatorname{esin} \theta_{e}$
(b)
$x=r$
(c) $y=e \cos ^{\theta} x_{\theta}$

The coordinates of a particle on a blade element referred to $X^{\prime} Y^{\prime} Z^{\prime}$ axes are:
$(\pi-2 a) \quad z^{\prime}=x \sin \theta_{y}+e \sin \theta_{x_{e}} \cos \theta_{y}$
(b) $\quad x^{\prime}=x \cos \theta_{z} \cos \theta_{y}-\operatorname{ecos}_{x_{\theta}} \sin \theta_{z}-\operatorname{esin} \theta_{x}{ }^{\sin \theta_{y} \cos \theta_{z}}$
(c) $J^{\prime}=x \sin \theta_{z} \cos \theta_{y}+e \cos \theta_{x_{e}} \cos \theta_{z}-e \sin \theta_{x_{e}} \sin \theta_{y} \sin \theta_{z}$

To obtain the components, along XYZ axes, of absolute velocities and accelerations relative to $X^{\prime} Y^{\prime} Z^{\prime}$ axes, acting on a particle, the first and second derivatives of $z^{\prime}, x^{\prime}, y^{\prime}$, in respect to time, are first taken and later resolved along XYZ axes. Classical methods also can be used, such as the one described on page 390 of ref. 9

2XY components of absolute velocities (relative to $X^{\prime} Y^{\prime} Z^{\prime}$) axes of a particle: (I I-3a)
$\dot{z}=x \dot{\theta}_{y}+y\left(\dot{\theta}_{z} \sin \theta_{y}+\dot{\theta}_{x}\right)$
(b) $\quad \dot{x}=-z \dot{\theta}_{y^{-}}-\dot{y} \dot{\theta}_{z} \cos \theta_{y}$
(c) $\quad \dot{y}=x \dot{\theta}_{z} \cos \theta_{y}-z\left(\dot{\theta}_{x}+\dot{\theta}_{z \sin } \theta_{y}\right)$

Accelerations:

As in the case of the velocities, all acceleration terms containing y and z are considerably smaller than those containing x, except near the root, and therefore may be neglected except when calculating the moments about the x axis.

It can be assumed that

$$
\sin \theta=\theta \text { and } \cos \theta=1.0
$$

It will be of interest and importance to compare the magnitude of all component terms with the square of the angular velocity, ${\hat{\theta_{a}}}_{2}^{2}$:

$$
\dot{\theta}_{z}^{2}-\text { by definition, } \dot{\theta}_{z}=\theta_{z_{a}}+\dot{\theta}_{z_{b}}
$$

Neglecting higher harmonics, we can write an expression for $\theta_{z_{b}}$ as follows:

$$
\begin{aligned}
& \theta_{z_{b}}=e_{0}-\gamma_{1} \cos \left(\theta_{z_{a}}-\theta_{z_{\gamma}}\right) \\
& \text { and } \\
& \left(\theta_{z_{b}}\right)_{\max }=\gamma_{1} \theta_{z_{a}}
\end{aligned}
$$

On most normal designs, r_{1} is no greater than 1.5° and therefore

$$
\left(\theta_{z}\right)_{\max }^{2}=\left(1 \pm \frac{1 \cdot 5}{57 \cdot 3}\right)^{2} \dot{\theta}_{z_{a}}^{2}
$$

In other words the variation of $\dot{\theta}_{z}^{2}$ is no greater than 5 per cent, and therefore, for all practical purposes, may be neglected.

Hence, we may assume

$$
\dot{\theta}_{z}^{2}=\dot{\theta}_{z_{a}}^{2}
$$

II ~ $\quad \sigma$
$\left(\theta_{x}\right)^{2}$ and $\left(\dot{\theta}_{y}\right)^{2}$ are both functions of $\left(\theta_{z_{a}}\right)^{2}$ and their maxinums can be expressed in a similar manner to $\left(\dot{\theta}_{z_{b}}\right\}_{\max }$.

$$
\begin{aligned}
& \left(\dot{\theta}_{y}\right)_{\max }^{2}=\left(\beta_{1} \dot{\theta}_{z_{a}}\right)^{2} \\
& \left(\dot{\theta}_{x}\right)_{\max }^{2}=\left(\theta_{x_{c}}^{\prime} \dot{\theta}_{z_{a}}\right)^{2}
\end{aligned}
$$

with maximum values of β_{1} and $\theta^{\prime} x_{c}^{\prime}$ very seldom exceeding 10° on aotual designs, or

$$
\begin{aligned}
& \left(\dot{\theta}_{y}\right)_{\max }^{2} \leq .04 \dot{\theta}_{z_{a}}{ }^{2} \\
& \left(\dot{\theta}_{x}\right)_{\max }^{2} \leq .04 \dot{\theta}_{x_{a}}^{2}
\end{aligned}
$$

which is evidently negligible in comparison with $\dot{\theta}_{z_{a}}{ }^{2}$:
$\dot{\theta}_{x} \dot{\theta}_{y}$ is of the same order of magnitude as $\dot{\theta}_{y}{ }^{2}$ and $\dot{\theta}_{x}{ }^{2}$ and therefore is negligible.
$\dot{\theta}_{x} \dot{\theta}_{z}$ and $\dot{\theta}_{y} \dot{\theta}_{z}$ both are quite high, about 20% of $\dot{\delta}_{z}{ }^{2}$ and probably cennot be neglected in cases where calculations involve M_{x}, torsional moments.
$\left(\ddot{\theta}_{x}\right)_{\text {max }}$ and $\left(\dot{C}_{y}\right)_{\text {max }}$ are of the same order as $\left(\dot{\theta}_{x}\right\}_{\max }$ and $\left(\dot{\theta}_{y}{ }^{2}\right)_{\max }$ which is 4% of $\dot{\theta}_{z_{a}}{ }^{2}$.
θ_{z} is of the ame order as $\delta_{z_{b}}{ }^{2}$ and is 2.5% of $\dot{\theta}_{z_{a}}{ }^{2}$.

On the basis of the above, the expressions for accelerations given in equations ($b-4 a$), (b) and (c) can be reduced to:
$(\pi-6 a) \quad \ddot{y}=x\left(\theta_{y} \dot{\theta}_{z}^{2}+\ddot{\theta}_{j}\right)$
(b) $\ddot{x}=-\dot{x}_{a_{a}}{ }^{2}$
(c) $\quad \ddot{y}=x\left(-2 \theta_{y} \dot{\theta}_{y} \dot{\theta}_{z_{a}}+\ddot{\theta}_{z}\right)$

The dynamic loads:
The dynamic loads acting on a blade element due to accelerations imposed on each particle of this element are obtained by integrating over its volume.

Therefore, if the mass of each particle is called Δm, we have
$(z-7 a) \quad\left(F_{z}\right)_{m}=-\Sigma \ddot{z} \Delta m$
(b) $\quad\left(F_{x}\right)_{m}=-\Sigma \ddot{x} \Delta m$
(c) $\quad\left(F_{J}\right)_{m}=-\Sigma \ddot{y} \Delta m$
where $\ddot{z}, \ddot{x}, \ddot{y}$ are component accelerations of a particie and $\left(F_{y}\right)_{m},\left(F_{x}\right)_{m},\left(F_{y}\right)_{m}$ are the component inertia forces of a blade element mass "mdx".

II - - 8 .

For all purposes except the calculations invalving torsional moment M_{x}, combining ($I-6 a$), (b), (c) , (I I-7a), (b), (c),
we have
$(\pi-8 a) \quad\left(F_{z}\right)_{m}=-\operatorname{mx}\left(\theta_{y} \delta_{a}{ }^{2}+\delta_{y}\right) d x$
(b) $\quad\left(F_{x}\right)_{y}=\max _{z_{a}}^{2} d x$
(c) $\quad\left(F_{y}\right)_{m}=m x\left(2 \theta_{y} \dot{\theta}_{y} \dot{\theta}_{z_{a}}-\ddot{\theta}_{z}\right) d x$

b. Gravity loads

x, y, z components of gravity loads acting on a blade element of weight ware:
$(\pi-9 a) \quad\left(F_{z}\right)_{w}=-w \cos \theta_{y}$
(b) $\quad\left(F_{X}\right)_{y}=-w \sin \theta_{y}$
(c) $\quad\left(F_{J}\right)^{W}=0$

These are, in general, small and may be neglected.
c. Aerodynamic loads acting on a blade element
in steady forward flight.
In calculating the aerodynamic loads imposed on a blade in forward filght, it is common practice to neglect the effect of flexibility of the blade. However, if the evaluation of that effect is desired, the following procedure involving successive approximations is suggested:

1. Calculate the coefficients of the harmonic motion of the blade, assuming that the blade is infinitely stiff. 2. Calculate the total deflection of the blade in the $Z X$ and $Z Y$ planes, ueing the dynamic and airload distribution on the basis of the assumption in (1).
2. Calculate the structural twist of the blade, using the dynamic and airload distribution on the basis of the assumption in (1).
3. Calculate the structural twist of the blade due to bending in the $Z X$ and $Z Y$ planes.
4. Correct the airload distribution for the flexural deflection found in (2) and the twist found in (3) and (4).
5. Repeat the procedure if necessary.

The angle of attack of a blade element on an infinitely stiff blade:

The angle of attack of a blade element is:

where
(IIT-11)

$$
\theta_{x}=\theta_{x_{0}}+\theta_{x_{c}} \cos \left(\theta_{z_{a}}-\theta_{z_{c}}\right)+\theta_{x}\left(\theta_{y}, \theta_{z_{b}}\right)
$$

$$
\begin{aligned}
& \theta_{z_{c}}-\text { the control, phase, azimuth angle } \\
& \theta_{i}=-\tan \frac{V_{z}}{V_{y}}=-\frac{V_{z}}{V_{y}} \\
& \left.\theta_{x}\left(\theta_{y}, \theta_{z}\right)-\operatorname{th}\right)
\end{aligned}
$$

The variation where τ_{1} is a function of θ

$$
\begin{aligned}
& \theta_{x} \text { - the angle of incidence at the root } \\
& \theta_{x_{c}} \text { - the minimum control pitch } \\
& \theta_{z_{c}} \text { - the control. }
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{x}\left(\theta_{y}, \theta_{z_{b}}\right) \stackrel{V_{y}}{V_{y}} \text { the change of pitch due to } \\
& \text { from charts T }
\end{aligned}
$$ flapping and hunting.

cocked in horizontal and vertical is ane and the drag hinge lies in the plane of the flapping hinge, the change of pitch due to flapping, in the angular of pit a given value of θ_{z}, can be closely $\left(0^{\circ}-20^{\circ}\right)$, forge
b_{b},
due to the second her of pitch due to cyclic variation ${ }_{z}$. (II-I2) cain be treated neglected. Therefore, of ing is very small condition and depends an a constant for a r_{1} in equation (II-12)

$$
\begin{aligned}
& \text { approximated by a straight line and } \\
& \text { can be written in the form. }
\end{aligned}
$$

can be written in the form: line and

$$
\theta_{x}\left(\theta_{y}, \theta_{z}\right)=\tau_{1} \theta_{y}
$$

A sufficiently accurate value of " e_{0} ", the constent part of $\theta_{z_{b}}$, (the lag angle of the blade in "power on" flight) can be obtained from

$$
(\pi-13)
$$

$$
\sin e_{0} \cong e_{0}=\frac{\Delta}{b\left(e_{1} \cos r+e_{2} \cos \delta_{3}\right)\left(F_{x 0}\right)_{m}}
$$

where
M_{z}, is the total rotor torque
b is the number of blades
$\left(e_{1} \cos \gamma+e_{2} \cos \delta_{3}\right)$ is the distance from " α "
hinge to the axis of rotation
when $\theta_{y}=0$.
$\left(F_{x 0}\right)_{m}$ is the total inertia force acting along X axis at " s " hinge.

For reference, see page $I-63$ and Fig. ($I-\Xi$) below which is part of Fig. $(I-3)$:

If we let

$$
\begin{aligned}
& \text { If we let } \\
& (\pi-14 a) \quad \theta_{x_{c}} \cos \theta_{z_{c}}=\Psi_{1} \\
& \sin \theta_{z}=\Psi_{2}
\end{aligned}
$$

(b) $\theta_{x_{c}} \sin \theta_{z_{s}}=\psi_{2}$
and since by definition

$$
\begin{aligned}
\theta_{y} & =a_{0}-a_{1} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}} \\
& -a_{2} \cos 2 \theta_{z_{a}}-b_{2} \sin \theta_{z_{a}}
\end{aligned}
$$

the equation (I T-10) becomes

$$
\begin{aligned}
& \text { the equation }(\text { II }-10) \text { becomes } \\
& \left(\text { II -15) } \begin{array}{rl}
\theta_{I} & =\theta_{x_{0}}+\varepsilon_{0} \tau_{1}+\left(\Psi_{1}-\tau_{1} \varepsilon_{1}\right) \cos \theta_{z_{a}}+ \\
& +\left(\psi_{2}-\tau_{1} b_{1}\right) \sin \theta_{z_{8}}+\theta_{t} x_{I}+\theta_{1} ;
\end{array}\right.
\end{aligned}
$$

In the region of reversed flow, following ref. 2, the angle of attack $\theta_{\text {ry }}$ can be expressed as

$$
\theta_{I T}=-\theta_{I}
$$

General express io lift and $d r a g$ forces along the blade is:

$$
(\pi-16 a) \quad \frac{d x}{d x}=\frac{1}{2} \mathrm{pcC}_{1} \mathrm{v}^{2}
$$

and
(b)

$$
\frac{A D_{0}}{d \sigma}=\frac{1}{2} p^{c} C_{D_{0}} v^{2}
$$

where O_{1} and $C_{D_{0}}$ are the section lift and the profile drag coefficients.

If we let $\left(F_{z}\right)_{a}$ and $\left(F_{y}\right)_{a}$ be the component sirforces acting along Z and Y axes respectively, the distribution of these forces along the blade can be expressed by:

$$
(\pi-17 a) \quad \frac{d\left(F_{z}\right)_{a}}{d x}=\frac{d I}{d x} \cos \theta_{1}+\frac{d D_{0}}{d x} \sin \theta_{1}
$$

(b)

$$
\frac{d\left(F_{Y}\right)_{a}}{d x}=\frac{d u}{d x} \sin \theta_{1}-\frac{d D_{0}}{d x} \cos \theta_{1}
$$

FIG. $B-4$
where

$$
(71-18 a)
$$

(b)

$$
\begin{aligned}
& \theta_{x_{1}}=\theta_{x}+\theta_{t} x_{r} \\
& \theta_{1} \cong \frac{\nabla_{z}}{-\nabla_{y}}
\end{aligned}
$$

Since all angles except $\theta_{\mathbf{z}_{\mathbf{a}}}$ are amall, we take

$$
\begin{aligned}
& \sin \theta=\tan \theta \cong 0 \\
& \cos \theta=1.0
\end{aligned}
$$

Also, the Z component of the drag forces, except near the atall, is very small in comparison with the component due to the lift! therefore, the equations (II-17a)

(b)
$\frac{d(F)}{d x}=\theta_{1} \frac{d x}{d x}-\frac{d D_{0}}{d x}$
Resultant velocity components V_{x}, V_{y}, V_{z} acting at a (4T-20a)

$$
\begin{aligned}
& \dot{t}=-\dot{x}_{y} \\
& \dot{t}=0
\end{aligned}
$$

(b) $i=0$
(c) $\quad t=-x \dot{0}_{z_{a}}$

Velocity components due to the motion of the rotor

N/EECTION OF MOTION
FIG. $\bar{T}-5$
The above Fig. ($\pi-5$) shows the resolution of rotor
velocity VA into its X^{\prime} and Z^{\prime} components.

Fig ($I-6$) shows the velooity components due to ∇_{A} acting at a blade element projected on $X^{\prime} Y^{\prime}$ plane.

FIG. II-7

Fig. (rr-7) shows the velooity components acting at a blade element in the ZX plane due to the rotor velocity V_{A}.

The total velocity components along ZXY due to rotor velocity V_{A} are

$$
(\pi-2 / a) \quad V_{A z}=V_{A x^{\prime}} \cos \theta_{Y}-V_{A x^{\prime}} \sin \theta_{Y} \cos \theta_{z_{a}}
$$

(b) $\quad V_{A x}=V_{A Z} \cdot \sin \theta_{Y}+\nabla_{A x} ; \cos \theta_{Y} \cos \theta_{z_{a}}$
(c) $\quad \nabla_{A y}=\nabla_{A x}{ }^{1} \sin \theta_{z_{a}}$

Following the usual assumption that the effect of the radial velooity oomponant on the lift and drag is negligible and since $\sin \theta_{y}=\theta_{y}$ and $\cos \theta_{y}=1.0$, the above equations become
($\pi-22 a) \quad \nabla_{A z}=V_{A Z^{\prime}}-V_{A X^{\prime}} \theta_{Y} \cos \theta_{Z}$
(b) $\quad V_{A x}=$ neglected
(c) $\quad V_{A Y}=V_{A X}{ }^{\prime} \sin \theta_{\varepsilon_{a}}$

Velocity components due to induced velocity V_{1} : In accordance with ref. 10 it is sufficiently accurate to assume the distribution of induced velocity in forward motion along the fore and aft diameter to be trianguiar as shown on Fig $(\pi-8)$:

FIG. II-8

At any point of the blade the distribution can be approximated by equation.
$(71-23)$

$$
V_{1}=\overline{V_{1}}+\nabla_{1} \pi_{I} \cos \theta_{z_{2}}
$$

Therefore, remembering $\cos \theta_{y}=1$, and neglecting the radial component, the velocity components due to V_{1} ere:

$$
(I I-24 a) \quad V_{1 z}=\bar{V}_{1}+\bar{V}_{1} x_{I} \cos \theta_{z_{a}}
$$

(b) $V_{1 x}=$ neglected
(c) $\quad \nabla_{1 y}=0$

The total velocity components at a blade element are:

$$
\text { (I I-25a) } \quad \nabla_{v}=\dot{z}+\nabla_{A z}+\nabla_{1 \varepsilon}
$$

1I-18
$(\pi-25 b) \quad V_{x}=\dot{x}+V_{A x}+V_{1 x}$
(c) $\quad V_{y}=\dot{y}+\nabla_{A y}+V_{1 y}$

From nomenclature we have
(zt-26a) $\quad \lambda=\frac{V_{A_{z}}{ }^{\prime}+{\overline{\nabla_{1}}}^{R \theta_{z}}}{\mathbf{z}_{a}}$
(b) $\quad \lambda_{1}=\frac{\overline{V_{1}}}{R_{\hat{\theta}_{a}}}$
(c) $\quad \mu=\frac{V_{A x^{\prime}}}{R \dot{\theta}_{z_{a}}}$

Substituting into equations ($21-25 a$) to (c) the expressions of their component terms. and using the parameters given by equations (IF-260) to (c) we have
($\pi-2 / a)$

$$
\begin{aligned}
V_{z} & =-x \dot{\theta}_{y}+\lambda R \dot{\theta}_{z_{a}}+\lambda_{1} R \dot{\theta}_{z_{a}} z_{r} \cos \theta_{z_{a}}- \\
& -\mu R \dot{\theta}_{z_{a}} \theta_{y} \cos \theta_{z_{a}}
\end{aligned}
$$

(b) $\quad V_{x}=$ neglected
(c) $v_{y}=-x_{r} R \dot{\theta}_{z_{a}}-\mu R \dot{\theta}_{z_{a}} \sin \theta_{z_{a}}$
-II - -

$$
\begin{aligned}
& \text { where from notations, Part I } \\
& \text { (II-28a) } \quad \theta_{y}=a_{0}-a_{1} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}}-a_{2} \cos 2 \theta_{z_{a}}- \\
& -b_{2} \sin 2 \theta_{a} \\
& \text { (b) } \\
& \dot{\theta}_{y}=\varepsilon_{1} \dot{\theta}_{z_{a}} \sin \theta_{z_{a}}-b_{1} \dot{\theta}_{z_{a}} \cos \theta_{z_{a}}+ \\
& +2 a_{2} \sin 2 \theta_{z_{a}}-2 b_{2} \cos 2 \theta_{z_{a}}
\end{aligned}
$$

and therefore
(c)

$$
\begin{aligned}
\ddot{\theta}_{y} & =\varepsilon_{1} \dot{\theta}_{z_{a}}^{2} \cos \theta_{z_{a}}+b_{1} \dot{\theta}_{z_{a}}^{2} \sin 2 \theta_{z_{a}}+ \\
& +4 a_{2} \cos 2 \theta_{z_{a}}+4 b_{2} \sin 2 \theta_{z_{a}}
\end{aligned}
$$

Substituting θ_{y} and $\dot{\theta}_{Y}$ into equations ($\bar{I}-27 a$) and $(\pi-27 c)$, and dividing by $R \dot{\theta}_{z_{2}}$ we have

$$
\text { (II-29a) } \quad \begin{aligned}
u_{z} & =\frac{V_{z}}{R \theta_{z_{a}}}=\lambda+\frac{1}{2} \mu \varepsilon_{1}+\left(-\mu s_{0}+x_{r} b_{1}+\right. \\
& \left.+\frac{1}{2} \mu \theta_{2}+\lambda_{1} x_{r}\right) \cos \theta_{z_{a}}+\left(-x_{r} a_{1}+\right. \\
& \left.+\frac{1}{2} \mu b_{2}\right) \sin \theta_{z_{a}}+\left(\frac{1}{2} \mu a_{1}+2 x_{r} b_{2}\right) \cos 2 \theta_{z_{a}}+ \\
& +\left(\frac{1}{2} \mu b_{1}-2 x_{r} a_{2}\right) \sin 2 \theta_{z_{a}}+\frac{1}{2} \mu \theta_{2} \cos 3 \theta_{z_{a}}+ \\
& +\frac{1}{2} \mu b_{2} \sin 3 \theta_{z_{a}} ;
\end{aligned}
$$

(I I-29b)

$$
u_{y}=\frac{v_{y}}{R \theta_{z_{2}}}=-x_{y}-\mu \sin \theta_{z_{a}}
$$

The distribution of air load along a stiff blade.

" \underline{Z} " component of the airload:

Considering the equations (II-/6a) and (I-19a) we have
(II-30) $\quad \frac{d\left(F_{z}\right)_{z}}{d x}=\frac{1}{2}{\rho \rho C C_{1}} v^{2}$
where

$$
\begin{aligned}
& c \quad \text { is a chord } \\
& C_{1}=2 \theta_{r} \text { is the section lift coefficient } \\
& V \cong V_{y} \quad \text { is the air velocity at a blade element }
\end{aligned}
$$

- Substituting into equation ($\pi \overline{-30}$) the values of θ_{r} from (II-15) we have
(II-31) $\quad \frac{d\left(F_{z}\right)_{a}}{d x_{r}}= \pm \frac{1}{2} \rho c a u_{y}^{2} \dot{\theta}_{z_{a}}^{2} R\left[\theta_{x_{0}}^{\prime}+\psi_{1}^{\prime} \cos \theta_{z_{a}}+\right.$

$$
\left.+\psi_{2}^{\prime} \sin \theta_{z_{a}}+\theta_{t} x_{r}+\theta_{1}\right]
$$

where

$$
(\pi-32 a) \quad \theta_{x_{0}}^{\prime}=\theta_{x_{0}}+a_{0} \tau_{2}
$$

(b)

$$
\psi_{1}^{\prime}=\psi_{1}-\tau_{1} a_{1}
$$

(c)

$$
\psi_{2}^{\prime}=\psi_{2}-\tau_{1} b_{1}
$$

TI- 21
$(\pi-33) \quad \theta_{1}=-\frac{V_{i}}{V_{y}}=\frac{u_{z}}{u_{y}}$

$$
x_{r}=\frac{\pi}{R}
$$

The sign minus is used for all values of θ_{z} from π to 2π.

Substituting from ($\pi-29 a$) and (b) the expressions for u_{y} and u_{z} into ($\pi-31$) and neglecting after that substitution all harmonic terms above the second, we have the distribution of the Z component of the air load:

$$
\begin{align*}
& \frac{d\left(F_{z}\right)_{a}}{d x_{r}} \quad \frac{1}{ \pm c c_{z_{a}}}=A_{o a}+A_{1 a} \cos \theta_{z_{a}}+B_{1 a} \sin \theta_{z_{a}}+ \\
& \quad+A_{2 a} \cos 2 \theta_{z_{a}}+B_{2 a} \sin 2 \theta_{z_{a}}
\end{align*}
$$

where

$$
c_{z_{a}}=\frac{1}{2} \rho a \theta_{z_{a}}^{2} R^{3}
$$

(2-34a)
(b)

$$
A_{1 a}=\left(b_{1}+\psi_{1}^{\prime}\right) \frac{\mu^{2}}{4}-\left(a_{0}+\frac{a_{2}}{\underline{2}}\right) \mu x_{r}+\left(b_{1}+\psi_{1}^{\prime}+\lambda_{1}\right) x_{r}^{2}
$$

(c)

$$
\begin{aligned}
B_{1 a} & =\left(3 \psi_{2}^{\prime}+4 \frac{\lambda}{\mu}+a_{1}\right) \frac{\mu^{2}}{4}+\left(2 \theta_{x_{0}}^{\prime}-\frac{b_{2}}{2}\right) \mu x_{r}+ \\
& +\left(2 \mu \theta_{t}+\psi_{2}^{\prime}-a_{1}\right) x_{r}^{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { II-22- } \\
(I I-34 d) \quad A_{2 a}=-\theta_{x_{0}}^{\prime} \frac{\mu^{2}}{2}+\left(a_{1}-\Psi_{2}^{\prime}-\frac{\mu \theta_{t}}{2}\right) \mu x_{r}+2 b_{2} x_{r}^{2} \\
\text { (e) } \quad B_{2 a}=-a_{0} \frac{\mu^{2}}{2}+\left(b_{1}+\Psi_{1}^{\prime}+\frac{\lambda_{1}}{2}\right) \mu x_{r}-2 a_{2} x_{r}^{2}
\end{gathered}
$$

The above equation gives the distribution of the airload along the blade in " Z^{\prime} direction for any azimuth angle $\theta_{z_{g}}$ and is expressed in terms of flapping coefficients, blade incidence, cycilc control, angular velocity of the shaft, and μ, λ, and λ_{1}.

The underilned terms, being small, can be neglected.

Total average thrust produced by the rotor in forward plight.

Total thrust $T=b\left(P_{z}\right)_{a}$
where $\left(F_{z}\right)_{\text {a }}$ is the average thrust produced by one blade.

$$
\left(F_{z},\right)_{a} \cong\left(F_{z}\right)_{a}
$$

Therefore

$$
T=b\left(F_{z}\right)_{a}
$$

where $\left(F_{z}\right)_{a}$ is obtained by integrating $a\left(F_{z}\right)_{a}$ from the root to the tip of the blade and from 0 to 2π.

$$
\begin{align*}
\left(F_{z}\right)_{a} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta_{z_{a}} \int_{0}^{B} \frac{d\left(F_{z}\right)_{a}}{d x_{r}} d x_{r} \tag{II-36}\\
& -\frac{1}{\pi} \int_{\pi}^{2 \pi} d \theta_{z_{a}} \int_{0}^{-\mu \sin \theta_{z}} \frac{d\left(F_{z}\right)_{a} d x_{r}}{d x_{r}}
\end{align*}
$$

The second term represents the effect of reversed flow. The blades are in the region of the reversed flow from $\theta_{z_{a}}=\pi$ to $\theta_{z_{a}}=2 \pi$ and from $x=0$ to $x=-\mu R \sin \theta_{z_{a}} \cdot$
Integrating and neglecting the terms of the order above μ^{3}, the thrust expression for uniformly tapored blades is:
$(\pi-37)$

$$
\begin{aligned}
T & =\frac{1}{2} b c_{o} \rho A \dot{\theta}_{z_{a}}^{2} R^{3}\left\{\left[\frac{1}{2} \lambda\left(B^{2}+\frac{1}{2} \mu^{2}\right)+\right.\right. \\
& +\theta_{x_{0}}^{\prime}\left(\frac{1}{3} B^{3}+\frac{1}{2} \mu^{2} B\right)+\theta_{t}\left(\frac{1}{4} B^{4}+\frac{1}{4} \mu^{2} B^{2}\right)+ \\
& \left.+\psi_{2}^{\prime}\left(\frac{\mu B^{2}}{2}-\frac{\mu^{3}}{8}\right)\right]-t\left[\lambda\left(\frac{B^{3}}{3}+\frac{\mu^{2}}{4}\right)+\right. \\
& +\theta_{x_{0}}^{\prime}\left(\frac{B^{4}}{4}+\frac{1}{4} \mu^{2} B\right)+\theta_{t}\left(\frac{B^{5}}{5}+\frac{1}{6} \mu^{2} B^{3}\right)+ \\
& \left.\left.+\Psi_{2}^{1}\left(\frac{\mu B^{3}}{3}-\frac{\mu^{3}}{8}\right)\right]\right\}
\end{aligned}
$$

FIG. II-9
where
c_{0} is the root chord extended to " 0 ".
c_{1} ls the extended tip chord

$$
\begin{aligned}
& t=1-\frac{c_{1}}{c_{0}} \text { taper ratio } \\
& c=c_{1}\left(1-x_{r} t\right) \text { equation of the chord }
\end{aligned}
$$

For convenience of calculation, the actual chord c may be expressed by the mean chord \bar{C} in the expression of thrust, and the equation $(\pi-37)$ becomes
(II-38) $\quad T=\frac{1}{2} b \bar{c} \rho a \dot{\theta}_{z_{8}}^{2} R^{3}\left[\frac{1}{2} \lambda\left(B^{2}+\frac{1}{2} \mu^{2}\right)+\right.$

$$
\begin{aligned}
& +\theta_{x_{0}}\left(\frac{1}{3} B^{3}+\frac{1}{2} \mu^{2} B\right)+\theta_{t}\left(\frac{1}{4} B^{4}+\right. \\
& \left.\left.+\frac{1}{4} \mu^{2} B^{2}\right)+\Psi_{2}\left(\frac{\mu B^{2}}{2}-\frac{\mu^{3}}{8}\right)\right]
\end{aligned}
$$

Flapping coofficients of "Oy"

From p. I-13 ve bave

$$
\begin{aligned}
\theta_{y} & =a_{0}-a_{j} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}}-a_{2} \cos 2 \theta_{z_{a}}- \\
& -b_{2} \sin 2 \theta_{z_{a}}
\end{aligned}
$$

The expressions for flapping coefficients in terms of other parameters are found from equations derived from the dynamic equation of the motion of the blade in flapping.

F/G. II-10

Taking the moment of all forces acting on the blade about the y exis, we have:
($7 x-39$)

$$
\Sigma M_{y}=0=\left(M_{y}\right)_{a}+\left(M_{y}\right)_{m}+\left(M_{y}\right)_{g}+\left(M_{Y}\right)_{d}+\left(M_{y}\right)_{00}
$$

where
$\left(M_{y}\right)_{a}$ is the moment due to air loads
$\left(M_{Y}\right)_{m}$ is the moment due to dynamic loads
$\left(M_{J}\right)_{g}$ is the moment due to veight
$\left(M_{J}\right)_{d}$ is the moment due to mechanical damping aevices. This mowiont will bs asธumod to be proportional to angular velocity of the rlapping δ^{δ}.
$(\pi-40)$

$$
\left(M_{y}\right)_{d}=K_{y} \delta_{y}
$$

This assumption, in most of the cases, represents a good approximation. It can easily be seen that any other assumption except completely disregarding that term does not give any practical solution.

$$
\left(M_{Y}\right)_{00}
$$

is the moment due to the eccentricity of the flapping pin with respect to the origin " 0 ".

Moment duè to air loads $\left(\mathrm{M}_{\mathrm{y}}\right)_{\mathrm{a}}$:
From ($I T-19 a, \pi-16 a, I \pi-14 a, \pi-14 b, I I-10$) and following the derivations of ref. 2
$(x-41)+\left(M_{y}\right)_{a}=\oint^{B} \frac{1}{2} \rho c a \dot{\theta}_{z_{a}}^{2} R^{4}\left\{\theta_{x_{0}}^{\prime}+\psi_{1}^{\prime} \cos \theta_{z_{a}}+\right.$ $\left.+\psi_{2}^{\prime} \sin \theta_{z_{a}}+\theta_{t} x_{r} u_{y}^{2}-u_{y} u_{z}\right\} x_{r}^{2} d x_{r}-$ $-2 \int_{0}^{-\mu s i n \theta_{z_{a}}} \frac{1}{2} \rho R^{4} \dot{\theta}_{z_{a}}^{2}\left\{\theta_{x_{0}}^{\prime}+\psi_{1}^{\prime} \cos \theta_{z_{a}}+\psi_{2}^{\prime} \sin \theta_{z_{a}}+\right.$

$$
\left.+\theta_{t} x_{r} u_{y}^{2}-u_{y} u_{x}\right\}\left.x_{r}^{2} d x_{r}\right|_{\pi} ^{2 \pi}
$$

The second integral is the reversed flow term and enters $\left(M_{y}\right)_{a}$ only from $\theta_{z_{a}}=\pi$ and $\theta_{z_{a}}=2 \pi$.
B is the tip loss factor.
Substituting u_{x} and u_{y} into the above equation, integrating, combining and dropping all terms of order above μ^{4}, we have

$$
\begin{aligned}
& \text { (II-42) } \quad \frac{+\left(M_{y}\right)_{a}}{\mathrm{CC}_{\mathrm{z}_{\mathrm{a}}{ }^{R}}}=\left\{\frac{1}{3} \lambda \mathrm{~B}^{3}+.080 \mu^{3} \lambda+\right. \\
& +\frac{1}{4} \theta_{x_{0}}^{\prime}\left(B^{4}+\mu^{2} B^{2}-\frac{1}{8} \mu^{4}\right)+\frac{1}{5} \theta_{t}\left(B^{5}+\frac{5}{6} \mu^{2} B^{3}\right)+ \\
& \left.+\frac{1}{8} \mu^{2} \mathrm{~b}_{2} B^{2}+\psi_{2}^{\prime}\left(\frac{\mu B^{3}}{3}+.0332 \mu^{4}\right)\right\}+ \\
& +\sin \theta_{z_{a}}\left\{\frac{2}{3} \mu \theta_{x_{0}}^{\prime} B^{3}+.053 \mu^{4} \theta_{x_{0}}^{\prime}+\frac{1}{2} \mu \theta_{t} B^{4}-\right. \\
& -\frac{1}{4} a_{1} B^{4}-\frac{1}{6} \mu b_{2} B^{3}+\frac{1}{2} \mu \lambda B^{2}-\frac{1}{8} \mu^{3} \lambda .+ \\
& \left.+\frac{1}{8} \mu^{2} a_{1} B^{2}-\psi_{2}^{\prime}\left(\frac{5}{96} \mu^{4}-\frac{B^{4}}{4}-\frac{3}{8} B^{2} \mu^{2}\right)\right\}+ \\
& +\cos _{z_{a}}\left\{-\frac{1}{3} \mu_{0} B^{3}-.035 \mu^{4} \varepsilon_{0}+\frac{1}{4} b_{1} B^{4}-\right. \\
& -\frac{1}{6} \mu a_{2} B^{3}+\frac{1}{8} \mu^{2} b_{1} B^{2}-\psi_{1}^{\prime}\left(\frac{1}{96} \mu^{4}-\frac{B^{4}}{4}-\right. \\
& \left.\left.-\frac{\mu^{2} B^{2}}{8}\right)+\frac{1}{4} \quad \lambda_{1} B^{4}\right\}+\sin 2 \theta_{z_{a}}\left(\frac{1}{3} \mu b_{1} B^{3}-\right. \\
& -\frac{1}{2} a_{2} B^{4}-\frac{1}{4} \mu^{2} a_{0} B^{2}+\frac{1}{24} \mu^{4} a_{0}+ \\
& \left.+\psi_{1}^{\prime}\left(\mu \frac{B^{3}}{3}+.00885 \mu^{4}\right)+\frac{1}{6} \mu \lambda_{1} B^{3}\right)+ \\
& +\cos 2 \theta_{z_{a}}\left\{-\frac{1}{4} \mu^{2} 0_{x_{0}}^{1} B^{2}+\frac{1}{32} \mu^{4} 0_{x_{0}}^{1}-\frac{1}{6} \mu^{2} \theta_{t} B^{3}+\right. \\
& +\frac{1}{2} b_{2} B^{4}+\frac{1}{3} \mu a_{1} B^{3}-.053 \mu^{3} \lambda-\psi_{2}^{\prime}\left(\frac{\mu B^{3}}{3}+\right. \\
& \left.\left.+.0221 \mu^{4}\right)\right\}
\end{aligned}
$$

whore c, the actual chord of the blade, is replaced, for convenience of calculations, by the mean chord ©.

Moment due to dynamic loads $\left(M_{M}\right)_{m}$:

From equations

$$
(x-43) \quad\left(M_{y}\right)_{m}=\int_{0}^{1}-m x_{y}^{2} R^{3}\left(\theta_{y} \dot{\theta}_{z}^{2}+\ddot{\theta}_{y}\right) d x_{r}
$$

where " m " is the unit mase of the blade.
Since $I_{y} \cong I_{F}=\int_{0}^{1} m x_{r}^{2} R^{3} d x_{r}$
and substituting θ_{y} and $\ddot{\theta}_{y}$

$$
(\pi-44) \quad\left(M_{y}\right)_{m}=-I_{F} \dot{\theta}_{z_{a}}^{2}\left(a_{0}+3 a_{2} \cos 2 \theta_{z_{a}}+3 b_{2} \sin 2 \theta_{z_{a}}\right)
$$

Moment due to weight of the blade $\left(M_{Y}\right)_{g}$:
(IIT-45)

$$
\left(M_{Y}\right)_{g}=-\int_{0}^{1} w x_{T}^{2} R^{3} d x_{r}
$$

- phere " w " is the unit weight of the blade and is usually quite small.
$(I I-46) \quad \frac{\text { Moment due to mechanical damping }\left(M_{Y}\right)_{d}:}{\left(M_{y}\right)_{d}=-K_{y} \dot{\theta}_{y}=-K_{y} \delta_{z_{a}}\left(a_{1} \sin \theta_{z_{a}}-b_{1} \cos \theta_{z_{a}}\right.}$
$\left.+2 a_{2} \sin 2 \theta_{z_{a}}-2 b_{2} \cos 2 \theta_{z_{a}}\right)$
where K_{y} is a constant depending upon the adjustment of the damper.

In the first case the effect of change of pitch due to the cyclic pitch control applied by the pilot vill be combined with the change of pitch due to the flayping which is obtained because of the hinge arrangement.

The combined effect will be assumed to be knoun and can be called the effective pitch control.

In the second case it will be assumed that only the effect of actual pitch control is known.

In writing down these expressions in a similar manner to the procedure used in ref. 2 , the expressions for a_{0}, a_{2}, and b_{2} will be carried to the order of μ^{2}, and a_{1} and $b_{1} w i l l$ bo carried to the order of μ^{3}.

Neglecting $\left(M_{Y}\right)_{g}$ and $\left(M_{Y}\right)_{00}$, substituting ($I-42$), ($\pi-44$), ($\pi-46$) into ($\pi-39$), and equating coefficients of identical trigonometric functions, we obtain the five equations below:

$$
\begin{aligned}
& \text { (} 71-47 \text {) } \\
& \text { Let } D_{y}=\frac{{ }_{F} I_{F}}{K_{y}} \cdot \frac{\dot{\theta}_{X_{Q}}}{R} \\
& (I-A B a) \quad \alpha_{0}=\frac{F^{\prime}}{2} \quad\left(\frac{I}{3} \lambda B^{3}+\frac{1}{4} \rho_{x_{0}}^{\prime}\left(B^{4}+\mu^{2} B^{2}\right)+\right. \\
& \left.+\frac{1}{5} \theta_{t}\left(B^{5}+\frac{5}{6} \mu^{2} B^{3}\right)+\frac{4_{2}^{1} \mu B^{3}}{3}\right\} \\
& \text { (b) } \\
& a_{1}=\frac{1}{\frac{B^{4}}{4}-\mu^{2} \frac{B^{2}}{8}+\frac{2}{D_{y}}}\left\{\mu \lambda \cdot\left(\frac{\mathrm{~B}^{2}}{2}-\frac{\mu^{2}}{8}\right)+\right. \\
& \left.+\mu \theta_{x_{0}}^{\prime} \cdot \frac{2 B^{3}}{3}+\frac{1}{2} \mu \theta_{t} B^{4}-\frac{1}{6} \mu b_{2} B^{3}+\psi_{2}^{\prime}\left(\frac{B^{4}}{4}+\frac{3}{8} B_{\mu}^{2}{ }^{2}\right)\right\}
\end{aligned}
$$

(II-48c)

$$
\begin{aligned}
b_{1} & =\frac{1}{\frac{B^{4}}{4}+\mu^{2} \frac{B^{2}}{8}+\frac{2}{D_{y}}}\left\{\mu a_{0} \frac{B^{3}}{3}+\frac{1}{6} \mu a_{2} B^{3}-\right. \\
& \left.-\frac{1}{4} \lambda_{I} B^{4}-\psi_{I}^{\prime}\left(\frac{B^{4}}{4}+\frac{\mu^{2} B^{2}}{8}\right)\right\}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \left.\frac{B^{4}}{2} a_{2}+\frac{6}{\gamma_{F}} b_{2}=\mu\right\}-\varepsilon_{0} \mu \frac{B^{2}}{4}+\frac{1}{3} b_{1} B^{3}+\frac{1}{6} \lambda_{1} B^{3}+ \\
& \left.\quad+\psi_{1}^{\prime} \frac{B^{3}}{3}\right\}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \left.\frac{B^{4}}{2} b_{2}-\frac{6}{\gamma_{F}} a_{2}=\mu\right\} \theta_{X_{0}}^{\prime} \mu \frac{B^{2}}{4}-\frac{1}{3} a_{1} B^{3}+\frac{1}{6} \mu \theta_{t} B^{3}+ \\
& \left.\quad+\psi_{2}^{\prime} \frac{B^{3}}{3}\right\}
\end{aligned}
$$

To a first approximation (II-48a), (b), and (c) may be written:
(II-49a) $\quad a_{0}=\frac{\gamma_{F}}{2}\left\{\frac{I}{3} \lambda B^{3}+\theta_{X_{0}}^{\prime} \frac{B^{4}}{4}+\theta_{t} \frac{B^{5}}{5}\right\}$
(b) $\quad a_{I}=\frac{\dot{2} \mu}{B^{2}}\left\{\lambda+\theta_{X_{0}}^{\prime} \frac{4 B}{3}+\theta_{t} B^{2}+\frac{B^{2} \psi_{2}^{\prime}}{2 \mu}\right\}$
(c) $\quad b_{I}=\frac{4}{3 B} \mu a_{0}-\lambda_{I}-\psi_{I}^{\prime}$

Substituting (II-49a), (b), and (c) in (II-48d) and $\left(\theta_{-}\right)$, and solving for a_{2} and b_{2} :
(II-50a)

$$
\begin{aligned}
\mathrm{b}_{2} & =\frac{-\mu^{2} \gamma^{2}{ }_{F}}{144+B^{8} \gamma{ }_{F}^{2}}\left(\frac{5}{9} \lambda_{B^{5}}^{5}+\frac{25}{36} \theta_{X_{0}}^{1} B^{6}+\right. \\
& \left.+\frac{8}{15} \theta_{t} B^{7}+\frac{4 B^{3} \lambda_{I}}{\mu \gamma_{F}^{2}}\right\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
a_{2} & =\frac{\gamma_{F} \mu^{2}}{6}\left\{\frac{2}{3} \lambda_{B}+\frac{23}{36} \theta_{x_{0}}^{\prime} B^{2}+\frac{1}{2} \theta_{t} B^{3}\right\}+ \\
& +\frac{1}{12} \gamma_{F} B^{4} b_{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
a_{0} & =\frac{\dot{\gamma}_{F}}{2}\left(\frac{1}{3} \lambda B^{3}+\frac{1}{4} \theta_{X_{0}}^{\prime}\left(B^{4}+\mu^{2} B^{2}\right)+\right. \\
& \left.+\frac{1}{5} \theta_{t}\left(B^{5}+\frac{5}{6} \mu^{2} B^{3}\right)+\frac{\Psi_{2}^{:} \mu B^{3}}{3}\right\}
\end{aligned}
$$

(d)

$$
\begin{aligned}
a_{1} & =\frac{2 \mu}{B^{4}-\frac{\mu^{2} B^{2}}{2}+\frac{8}{D_{y}}}\left\{\lambda B^{2}+\frac{4}{3} B^{3} \theta_{x_{0}}^{\prime}+\theta_{t} B^{4}-\right. \\
& \left.-\frac{1}{3} b_{2} B^{3}+\psi_{2}^{\prime}\left(\frac{B^{4}}{2 \mu}+\frac{3}{4} B^{2} \mu\right)\right\}
\end{aligned}
$$

(e)

$$
\begin{aligned}
b_{I} & \left.=\frac{2 \mu \cdot B^{3}}{B^{4}+\frac{\mu^{2} B^{2}}{2}+\frac{8}{D_{y}}}\right\} \frac{2}{3} a_{0}+\frac{1}{3} a_{2}-\frac{1}{2} \lambda_{I} B- \\
& \left.-\psi_{I}^{\prime}\left(\frac{B}{2 \mu}+\frac{\mu}{4 B}\right)\right\}
\end{aligned}
$$

where, as previously defined,
(II-32a)

$$
\theta_{x_{0}}^{\prime}=\theta_{x_{0}}+a_{0} \tau_{1}
$$

(b)

$$
\psi_{1}^{\prime}=\psi_{1}-\tau_{1} a_{1}
$$

(c)

$$
\Psi_{2}^{\prime}=\Psi_{2}-\tau_{1} b_{1} .
$$

In order to find the values of the flapping coefficients with control and flapping terms separated, wo substitute the expansions above for $\rho_{x_{0}}^{\prime}, \psi_{1}^{\prime}$, and ψ_{2}^{\prime} in equations ($\left.r-49 a\right)$, b), and (c), and obtain the following first approximation values for a. a_{1}, b_{1}
(x-51a)

$$
a_{0}=\frac{\frac{1}{3} \lambda B^{3}+\frac{B^{4}}{4}\left(\theta_{x_{0}}\right)+\theta_{t} \frac{B^{5}}{5}}{\frac{2}{\gamma_{F}}-\frac{B^{4}}{4} T_{1}}
$$

(b) $\quad a_{1}=\frac{\tau_{1}}{1+\tau_{1}^{2}}\left\{\frac{2 \mu}{\tau_{1} B^{2}}\left[\lambda+\frac{4}{3} B\left(\theta_{x_{0}}+a_{0} \tau_{1}\right)+\right.\right.$

$$
\left.\left.+\theta_{t} B^{2}+\frac{B^{2}}{2 \mu} \psi_{2}\right]-\frac{4}{3 B} \mu_{0}+\lambda_{1}+\psi_{1}\right\}
$$

(c)

$$
b_{1}=\frac{4}{3 B} \mu a_{0}-\lambda_{1}-\psi_{1}+\tau_{1} a_{1}
$$

The first approximation values given by ($x-51$) may be used to solve for $\theta_{x_{0}}^{\prime}, \psi_{1}^{\prime}$, and ψ_{2}^{\prime}, which may then be used in equations ($\bar{I}-50$) in the usual manner,

Y Components of Air Load

- It was shown on $p_{0} x-14$, equation ($\overline{-19}$ (9), that the air load acting on each blade element in the "Y" direction is:

$$
(I-196) \quad \frac{d\left(F_{Y}\right)_{B}}{d x}=\theta_{1} \frac{d L}{d x}-\frac{d D}{d x}
$$

Combining with ($\pi-16 a$) and (b) and replacing x by $x_{r} \cdot R$
(b) and e lacing x by $(\pi-52) \quad \frac{d\left(F_{Y}\right)_{a}}{d x_{r}}=\frac{\rho}{2} \mathrm{cc}_{1} \theta_{1} R V^{2}-\frac{\rho}{2} \mathrm{cc}_{D_{0}} R V^{2}$

From refs. 4 and 5 ,

$$
(\pi I-53) \quad C_{D_{0}}=\delta_{0}+\delta_{1} \theta_{r}+\sigma_{2} \theta_{r}^{2}
$$

δ_{0}, σ_{1}, and δ_{2} depend on the characterietics of the chosen airfoil and can be determined from the charts given in figures / and 2 of ref. 4 .

The angle of attack, θ_{r}, is given by equation (II-/5)
and the velocity components by equations (II-29a) and (6). Letting

$$
(\pi-54 a) \quad \frac{d\left(F_{y}\right)_{L}}{d x_{r}}=\frac{\rho}{2} \operatorname{cc}_{1} \theta_{1} R v^{2}
$$

(b)

$$
-\frac{d\left(F_{Y}\right)_{a_{D}}}{d x_{r}}=+\frac{1}{2} \rho c C_{D_{0}} R v^{2}
$$

and expanding $(x-54 a)$, we have

II- 34
given below for the coefficients, ter order of the terms, it have been dropped. In deter $\theta_{1}^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}, \lambda, \delta_{2}$ are of the is assumed that $\varepsilon_{0}, \varepsilon_{1}, b_{1}, \theta_{x_{0}}^{\prime}, \Psi_{1}, \psi_{2}, \lambda_{1}$ are of the order μ^{2}.
and er μ; and that $\delta_{0}, \delta_{1}, \varepsilon_{2}, b_{2}, \delta_{1}$

$$
\begin{aligned}
& \text { order } H \text { (II-55a) } A_{O_{2}}=\frac{\mu^{2}}{2}\left\{\frac{\lambda}{\mu}\left(2 \frac{\lambda}{\mu}+\psi_{2}^{1}+2 a_{1}\right)+a_{0}^{2}+\frac{3}{4} a_{1}^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\mu x_{r}\left\{\frac{\lambda}{\mu} \theta_{x_{0}}^{\prime}-\frac{0}{2}-\theta_{0}^{\prime}\right. \\
& +x_{r}^{2}\left\{\lambda \theta_{t}+\frac{b_{1} \psi_{1}^{\prime}}{2}-\frac{a_{1} \psi_{2}^{\prime}}{2}+\frac{\lambda_{1}^{2}}{2}+\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}+2 \varepsilon_{2}^{2}+2 b_{2}^{2}\right.
\end{aligned}
$$

$$
\left.+\left(\psi_{1}^{\prime}+2 b_{1}\right) \frac{\lambda_{1}}{2}\right\}
$$

$$
\begin{aligned}
(\pi-55 b) A_{a_{a_{L}}}= & \frac{\mu^{2}}{2}\left\{\frac{2 \lambda}{\mu}\left(a_{2}-2 a_{0}\right)-3 a_{1} a_{0}\right\}+\mu x_{r}\left\{\frac{\lambda}{\mu}\left(2 b_{1}+\psi_{1}^{\prime}\right)-a_{0} \theta_{x_{0}}^{\prime}\right. \\
& +\frac{a_{1} \psi_{1}^{\prime}}{2}+\frac{b_{1} \psi_{2}^{\prime}}{2}+a_{1} b_{1}+\frac{2 \lambda \lambda_{1}}{\mu}+\frac{3}{2} \lambda_{1} a_{1}-\frac{a_{2} \theta_{x_{0}}^{\prime}}{2} \\
& \left.-2 a_{0} b_{2}\right\}+x_{r}^{2}\left\{\theta_{x_{0}}^{\prime}\left(b_{1}+\lambda_{1}\right)-\mu \theta_{t}\left(a_{0}+\frac{a_{2}}{2}\right)+b_{2} \psi_{1}^{\prime}\right. \\
& \left.-a_{2} \psi_{2}^{\prime}+2 b_{1} b_{2}+2 a_{1} a_{2}+2 b_{2} \lambda_{1}\right\}+x_{r}^{3}\left\{\theta_{t}\left(b_{1}+\lambda_{1}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
(\eta-55 c){ }^{B_{1_{a_{L}}}=} & \frac{\mu^{2}}{2}\left\{\frac{2 \lambda}{\mu}\left(\theta_{x_{0}}^{\prime}+b_{2}\right)-a_{0} b_{1}\right\} \\
& +\mu x_{r}\left\{\frac{\lambda}{\mu}\left(\mu \theta_{t}-2 a_{1}\right)+\frac{b_{1}}{2} \psi_{1}^{\prime}-\frac{5}{4} a_{1} \psi_{2}^{\prime}-\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}+\frac{b_{1} \lambda_{1}}{2}\right. \\
& \left.-\frac{b_{2} \theta_{x_{0}}^{\prime}}{2}+2 a_{2} a_{0}\right\} \\
& +x_{r}^{2}\left\{-a_{1} \theta_{x_{0}}^{\prime}-2 a_{2} \lambda_{1}-\frac{1}{2} \mu b_{2} \theta_{t}-a_{2} \psi_{1}^{\prime}-b_{2} \psi_{2}^{\prime}\right. \\
& \left.+2 a_{1} b_{2}-2 b_{1} a_{2}\right\}+x_{1}^{3}\left(-\theta_{t} a_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (\pi-55 d) \quad A_{a_{L}}=\frac{\mu^{2}}{2}\left\{\frac{\lambda}{\mu}\left(2 a_{1}-\psi_{2}^{1}\right)+a_{0}^{2}+a_{1}^{2}\right\} \\
& +\mu x_{r}\left\{4 \frac{\lambda}{\mu} b_{2}+a_{1} \theta_{x_{0}}^{\prime}-\frac{a_{0} \psi_{1}^{\prime}}{2}-a_{0} b_{1}+\frac{a_{2} \psi}{2} 4 b_{2} \psi_{2}^{\prime}\right. \\
& \left.+2 a_{1} b_{2}+b_{1} a_{2}-a_{0} \lambda_{1}+a_{2} \lambda_{1}\right\} \\
& +x_{1}^{2}\left\{\frac{b_{1} \psi_{1}^{\prime}}{2}+\frac{a_{1} \psi_{2}^{\prime}}{2}-\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}+2 b_{2} \theta_{x_{0}}^{\prime}+a_{1} \theta_{t} \mu+\frac{\lambda_{1} \psi_{1}^{\prime}}{2}\right. \\
& \left.+b_{1} \lambda_{1}+\frac{\lambda_{1}^{2}}{2}\right\} \\
& +x_{r}^{3}\left\{2 a_{t} b_{2}\right\} \\
& (\pi-55 e) \quad{ }^{B} 2_{a_{L}}=\frac{\mu^{2}}{2}\left\{\frac{\lambda}{\mu}\left(2 b_{1}+\psi_{1}^{\prime}\right)-a_{0} \theta_{x_{0}}^{\prime}+a_{1} b_{1}\right\} \\
& +\mu x_{y}\left\{-\frac{\eta}{\mu} a_{2}+b_{1} \theta_{x_{0}}^{\prime}-\frac{\theta_{0} \Psi_{2}^{\prime}}{2}-\frac{a_{0} \mu \theta_{t}}{2}+a_{1} a_{0}+\frac{b_{2} \varphi_{1}^{\prime}}{2}\right. \\
& \left.+a_{2} \psi_{2}^{I}-2 a_{1} a_{2}+b_{1} b_{2}+\frac{\lambda_{1} \rho_{x_{0}}^{\prime}}{2}\right\}
\end{aligned}
$$

(continued on next page.)

$$
\begin{aligned}
& \text { II - } 37 \\
& +x_{r}^{2}\left\{-\frac{a_{1} \psi_{1}^{\prime}}{2}+\frac{b_{1} \psi_{2}^{\prime}}{2}-a_{1} b_{1}-2 a_{2} \theta_{x_{0}}^{\prime}+b_{1} \mu \theta_{t}+\frac{\lambda_{1} \psi_{2}^{\prime}}{2}\right. \\
& \left.+\frac{\mu \lambda_{1} \theta_{t}}{2}-\lambda_{1} a_{1}\right\} \\
& +x_{r}^{3}\left\{-2 a_{2} \theta_{t}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +A_{2_{Z_{D}}} \cos 2 \theta_{z_{2}}+B_{2_{o_{D}}} \sin 2 \theta_{z_{8}} \\
& \text { (I-56a) } A_{O_{a_{D}}}=\frac{\mu^{2}}{2}\left\{\delta_{\delta}+\delta_{2}\left[2 \frac{\lambda}{\mu}\left(\frac{\lambda}{\mu}+\Psi_{2}^{\prime}+a_{1}\right)\right]\right\} \\
& +\mu x_{r}\left\{\delta_{1}\left[\frac{\lambda}{\mu}+\psi_{2}^{\prime}\right]+\delta_{2}\left[2 \theta_{x_{0}}^{\prime}\left(\frac{\lambda}{\mu}+\psi_{2}^{\prime}\right)-\alpha_{0}\left(b_{1}+\psi_{1}^{\prime}\right)\right]\right\} \\
& +x_{r}^{2}\left\{\delta_{0}+\delta_{1} \theta_{x_{0}}^{\prime}+\delta_{2}\left[2 \lambda \theta_{t}+2 \mu \theta_{t} \psi_{2}^{\prime}-a_{1} \psi_{2}^{\prime}\right.\right. \\
& +\Psi_{1}^{\prime}\left(b_{1}+\lambda_{1}\right)+b_{1} \lambda_{1}+\left(\theta_{x_{0}^{\prime}}^{\prime}\right)^{2}+\frac{\psi_{2}^{\prime 2}}{2}+\frac{a_{1}^{2}}{2} \\
& \text { (continued on noxt page.) }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{\psi_{1}^{\prime 2}}{2}+\frac{b_{1}^{2}}{2}\right]\right\} \\
& +x_{r}^{3}\left\{\delta_{1} \theta_{t}+\delta_{2} \cdot 2 \theta_{t} \theta_{x_{0}}^{\prime}\right\}+x_{r}^{4}\left\{\delta_{2} \theta_{t}^{2}\right\} \\
& (\pi-566) A_{I_{a_{D}}}=\frac{\mu^{2}}{2}\left\{-\frac{4 \delta_{2} \lambda_{a_{0}}}{\mu}\right\}+\mu x_{r}\left\{-\delta_{1} a_{0}+\right. \\
& \left.+\delta_{2}\left[2 \frac{\lambda}{\mu}\left(\psi_{1}^{\prime}+b_{1}+\lambda_{1}\right)+\left(a_{1}+\psi_{2}^{\prime}\right)\left(b_{1}+\psi_{1}^{\prime}\right)-2 a_{0} \theta_{x_{0}}^{\prime}\right]\right\} \\
& +x_{1}^{2}\left\{\delta_{1}\left[\psi_{1}^{\prime}+b_{1}+\lambda_{1}\right]+\delta_{2}\left[2\left(b_{2}+\theta_{x_{0}}^{\prime}\right)\left(\psi_{1}^{\prime}+b_{1}+\lambda_{1}\right)\right.\right. \\
& \left.\left.+2 a_{2}\left(a_{1}-\psi_{2}^{\prime}\right)-2 \mu c_{t} a_{0}\right]\right\} \\
& +x^{3}\left\{\delta_{2}\left[2 \theta_{t}\left(\psi_{1}^{\prime}+b_{1}+\lambda_{1}\right)\right]\right\} \\
& \text { (II-56c) } B_{I_{a_{D}}}=\frac{\mu^{2}}{2}\left\{\delta_{1} \frac{2 \lambda}{\mu}+\delta_{2} \frac{4 \lambda \theta_{x_{0}}^{\prime}}{\mu}\right\} \\
& +\mu x_{r}\left\{2 \delta_{0}+\delta_{1} 2 \theta_{\Sigma_{0}}^{\prime}+\delta_{2}\left[2 \frac{\lambda}{\mu}\left(r_{2}^{\prime}-a_{1}\right)\right.\right. \\
& \text { (continued on next page.) }
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left(\psi_{1}^{\prime}+b_{1}\right)\left(\psi_{1}^{\prime}+b_{1}\right)-\frac{a_{1}^{2}}{2}+\frac{3}{2} \psi_{2}^{\prime 2}+20_{x_{0}^{\prime}}^{2} . \\
& \left.\left.+2 \lambda \theta_{t}-a_{1} \psi_{2}^{\prime}+2 a_{1} a_{2}\right]\right\} \\
& +x_{f}^{2}\left\{\delta_{1}\left[2 \mu \theta_{t}+\psi_{2}^{\prime}-a_{1}\right]+\delta_{2}\left[2 \theta_{x_{0}}^{\prime}\left(2 \mu \theta_{t}+\psi_{2}^{\prime}-a_{1}\right)\right.\right. \\
& \left.\left.+2 b_{2}\left(a_{1}-\psi_{2}^{\prime}\right)-2 a_{2}\left(\psi_{1}^{\prime}+b_{1}+\lambda_{1}\right)\right]\right\} \\
& +x_{I}^{3}\left\{\delta_{2} 2 \theta_{t}\left(\psi_{2}^{\prime}+\mu \theta_{t}-a_{1}\right)\right\} \\
& (\pi-56 d) A_{2_{a_{D}}}=\frac{\mu^{2}}{2}\left\{-\delta_{0}+\delta_{2}\left[2 \frac{\lambda}{\mu}\left(a_{1}-\psi_{2}^{\prime}\right)\right]\right\} \\
& +\mu x_{r}\left\{\delta_{1}\left[a_{1}-\psi_{2}^{\prime}\right]+\delta_{2}\left[4 b_{2} \frac{\lambda}{\mu}+2 a_{1}\left(b_{2}+a_{x_{0}}^{\prime}\right)\right.\right. \\
& \left.\left.+2 \psi_{2}^{\prime}\left(b_{2}-0_{x_{0}}^{\prime}\right)-a_{0}\left(b_{1}+\psi_{1}^{\prime}\right)\right]\right\} \\
& +x_{1}^{2}\left\{\delta_{1}\left[2 b_{2}\right]+\delta_{2}\left[4 \mathrm{~b}_{2} \theta_{x_{0}}^{\prime}+\mu \theta_{t}\left(2 a_{1}-2 \psi_{2}^{\prime}-\frac{\mu \theta_{t}}{2}\right)\right.\right. \\
& \text { (continued on next page.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { II }-40 \\
& -\frac{1}{2}\left(a_{1}-\psi_{2}^{\prime}\right)^{2}+\psi_{1}^{\prime}\left(\psi_{\frac{1}{2}}^{\prime}+b_{1}+\lambda_{1}\right) \\
& \left.\left.+\frac{1}{2}\left(b_{1}+\lambda_{1}\right)^{2}\right]\right\} \\
& +x_{r}^{3}\left\{s_{2} \cdot 4 b_{2} \theta_{t}\right\} \\
& (I-56 c) B_{2_{2}}=\frac{\mu^{2}}{2}\left\{\delta_{2} \cdot \frac{2 \lambda}{\mu}\left(\psi_{I}^{:}+b_{1}\right)\right\} \\
& +\mu x_{r}\left\{\delta_{1}\left(\psi_{1}^{\prime}+b_{1}\right)+\delta_{2}\left[20_{x_{0}}^{\prime}\left(\psi_{1}^{\prime}+b_{1}\right)-4 \frac{\lambda}{\mu} a_{2}\right.\right. \\
& \left.\left.-2 a_{2}\left(a_{1}+\psi_{2}^{\prime}\right)+a_{0}\left(a_{1}-\psi_{z_{2}^{\prime}}^{\prime}\right)\right]\right\} \\
& +x_{r}^{2}\left\{-\delta_{1} 2 \varepsilon_{2}+\delta_{2}\left[2 \mu \theta_{t}\left(\psi_{1}^{\prime}+b_{1}\right)\right.\right. \\
& -\left(a_{1}-\psi_{2}^{\prime}\right)\left(\psi_{1}^{\prime}+b_{1}+\lambda_{1}\right)-4 a_{2} a^{\prime} x_{0} \\
& +x_{r}^{3}\left\{-\delta_{2} \cdot 4 a_{2} \theta_{t}\right\}
\end{aligned}
$$

Torque Moment in the XI Plane About the Drag Pin Due to

Aerodynamic Loads

The moment due to air loads about the axis of rotation is given by:
(II-57) $\quad\left(M_{z}\right)_{a}=\left|\int_{0}^{1}+R x_{r} \frac{d\left(F_{y}\right) a_{D}}{d x_{r}} d x_{r}+\int_{0}^{B} R x_{r} \frac{d\left(F_{y}\right) a_{I}}{d x_{r}} d x_{r}\right|_{0}^{2 \pi}$

$$
\left\lvert\,-2 \int_{0}^{\left.\mu \sin \theta_{z_{a}} R x_{r}\left[+\frac{d\left(F_{y}\right) a_{D}}{d x_{r}}+\frac{d\left(F_{y}\right) a_{L}}{d x_{r}}\right] d x_{r}\right|_{\pi} ^{2 \pi}, ~}\right.
$$

where
$\left.\right|_{\pi} ^{2 \pi}$ means that the expression enters
into the moment only in the interval π to 2π. Evaluating these expressions, which are harmonic functions of $\theta_{z_{a}}$, and combining into a single harmonic function of $\theta_{z_{a}}$, continuous from 0 to 2π by the method of ref. 2 , we find:
(II-58) $\quad\left(M_{z}\right)_{a}\left(\frac{I}{\operatorname{ReC}_{z_{a}}}\right)=G_{0}+G_{1} \cos \theta_{z_{a}}+H_{I} \sin \theta_{z_{a}}+G_{2} \cos 2 \theta_{z_{a}}$

$$
+\mathrm{H}_{2} \sin 2 \theta_{z_{a}}
$$

where, neglecting terms of order μ^{5} or higher:

$$
\begin{aligned}
\left(\pi-58_{a}\right) G_{0} & =\lambda^{2}\left\{\frac{B^{2}}{2}-\frac{\delta_{2}}{2 a}-\frac{\mu^{2}}{4}\right\} \\
& +\lambda\left\{-\frac{1}{a}\left(\frac{\delta_{1}}{3}+\frac{2}{3} \delta_{2} \theta_{x_{0}}^{\prime}+\frac{\delta_{2} \theta_{t}}{2}\right) \frac{B^{3}}{3} \theta_{x_{0}}^{\prime}+\frac{B^{4}}{4} \theta_{t}\right. \\
& \left.+\frac{\mu B^{2}}{4}\left(\psi_{2}^{\prime}+2 a_{1}\right)\right\} \\
& +\left\{-\frac{1}{a}\left[\frac{\delta_{0}}{4}+\frac{\delta_{1} \theta_{x_{0}}^{\prime}}{4}+\delta_{2}\left(-\frac{a_{1} \psi_{2}^{\prime}}{4}+\frac{b_{1} \psi_{1}^{\prime}}{4}+\frac{\theta_{x_{0}}^{\prime 2}}{4}+\frac{2}{5} \theta_{t} \theta_{x_{0}}^{\prime}\right)\right]\right. \\
& +\frac{\mu B^{2}}{4}\left(a_{0}^{2}+\frac{3}{4} a_{1}^{2}\right)-\frac{\mu B^{3} a_{0}}{3}\left(\lambda_{1}+b_{1}+\frac{\psi_{1}^{\prime}}{2}\right) \\
& \left.+\frac{B^{4}}{4}\left(\frac{b_{1} \psi_{1}^{\prime}}{2}+\frac{\lambda_{1} \psi_{1}^{\prime}}{2}+b_{1} \lambda_{1}-a_{1} \psi_{2}^{\prime}+\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}+2 a_{2}^{2}+2 b_{2}^{2}\right)\right\}
\end{aligned}
$$

$$
(\pi-586) a_{1}=\frac{\mu^{2} B^{2}}{4}\left\{2 \frac{\lambda}{\mu}\left(a_{2}-2 a_{0}\right)-3 a_{1} a_{0}\right\}
$$

$$
+\frac{\mu}{3}\left\{\frac{\lambda}{\mu}\left[B^{3}\left(2 b_{1}+\psi_{1}^{\prime}+2 \lambda_{1}\right)-\frac{2 \delta_{2}}{a}\left(b_{1}+\psi_{1}^{\prime}\right)\right]\right.
$$

(continued on next page.)

$$
\begin{aligned}
& \text { II - } 43 \\
& \left.+B^{3}\left\{\frac{a_{1} \psi_{1}^{\prime}}{2}+\frac{b_{1} \psi_{2}^{\prime}}{2}+a_{1} b_{1}+\frac{3}{2} \lambda_{1} a_{1}-2 a_{0} b_{2}-a_{0} \theta_{x_{0}}^{\prime}\right)\right\} \\
& +\frac{B^{4}}{4}\left\{\theta_{x_{0}}^{\prime}\left(b_{1}+\lambda_{1}\right)+b_{2}\left(\Psi_{1}^{\prime}+2 b_{1}+2 \lambda_{1}\right)-a_{2}\left(\psi_{2}^{\prime}-2 a_{1}\right)\right. \\
& \left.-\varepsilon_{0} \mu \theta_{t}\right\} \\
& +\frac{B}{5}^{5} \theta_{t}\left(b_{1}+\lambda_{1}\right) \\
& (I I-5 \varepsilon c) \quad H_{1}=\frac{\mu^{2} B^{2}}{4}\left\{2 \frac{\lambda}{\mu}\left(\theta_{x_{0}}^{\prime}+b_{2}\right)\right\} \\
& +\frac{\mu}{3}\left\{\frac{\lambda}{\mu}\left[B^{3}\left(\mu \theta_{t}-2 s_{1}\right)-\frac{2 \delta_{2}}{8}\left(\psi_{2}^{\prime}-a_{1}\right)\right]-\frac{\delta_{0}}{8}\right. \\
& \left.+B^{3}\left\{\frac{b_{1}}{2}\left(b_{1}+\psi_{1}^{\prime}\right)+2 a_{0} a_{2}-\frac{a_{1}^{2}}{2}-\frac{5}{4} a_{1} \psi_{2}^{\prime}\right]\right\} \\
& +\frac{B^{4}}{4}\left\{b_{2}\left(2 a_{1}-\psi_{2}^{\prime}\right)-a_{2}\left(2 b_{1}+2 \lambda_{1}+\psi_{1}^{\prime}\right)-a_{1} 0_{x_{0}}^{\prime}\right\} \\
& -\frac{B}{5}^{5} a_{1} \theta_{t}
\end{aligned}
$$

$(1-58 d) \quad G_{2}=\frac{\mu^{2}}{4}\left\{B^{2} \frac{\lambda}{\mu}\left(2 a_{1}-\Psi_{2}^{2}\right)+\lambda^{2}\right\}$

$$
\begin{aligned}
& +\frac{\mu B^{3}}{3}\left\{4 \frac{\lambda b_{2}}{\mu}+a_{1}\left(2 b_{2}+\theta_{x_{0}}^{\prime}\right)-a_{0}\left(b_{1}+\frac{\psi_{1}^{\prime}}{2}\right)\right\} \\
& +\frac{B^{4}}{4}\left\{b_{1}\left(\lambda_{1}+\frac{b_{1}}{2}+\frac{\psi_{1}^{\prime}}{2}\right)+a_{1}\left(\mu \theta_{t}+\frac{\psi_{2}^{\prime}}{2}-\frac{\varepsilon_{1}}{2}\right)\right. \\
& \left.+2 b_{2} \theta_{x_{0}}^{\prime}+\frac{\lambda_{1} \theta_{x_{0}}^{\prime}}{2}\right\}+\frac{2}{5} B^{5} b_{2} \theta_{t}
\end{aligned}
$$

(ZI-58e) $\quad H_{2}=\frac{\mu^{2} B^{2}}{4}\left\{\frac{\lambda}{\mu}\left(2 b_{1}+\psi_{1}^{\prime}\right)\right\}$

$$
\begin{aligned}
& +\frac{\mu B^{3}}{3}\left\{-\frac{4 \lambda a_{2}}{\mu}+b_{1} \theta_{x_{0}}^{\prime}-\frac{\varepsilon_{0} \Psi_{1}^{\prime}}{2}+a_{1} a_{0}-2 a_{1} a_{2}\right\} \\
& +\frac{B^{4}}{4}\left\{b_{1}\left(\mu \theta_{t}+\frac{\Psi_{2}^{\prime}}{2}-a_{1}\right)-\frac{a_{1} \Psi_{1}^{\prime}}{2}-2 a_{2} \theta_{x_{0}}^{\prime}+\frac{\lambda_{1} \Psi_{2}^{\prime}}{2}\right\} \\
& -\frac{2}{5} B^{5} a_{2} \theta_{t}
\end{aligned}
$$

Since the sum of the constant part of the aerodynamic torque and the engine torque should be zero, we write $(71-59)$

$$
G_{0}+\frac{2 C_{Q}}{a \sigma}=0
$$

Where G_{0} is given by $(\pi-5 \varepsilon a)$.

Following the lead of Bailey in ref. 4 , ye substitute in the expansion for G_{0} the expressions for the flapping coefficients given by equations ($\pi-50$). The result is an equation in $\mu, \lambda, \lambda_{1}, \theta_{t}, \theta_{x_{0}^{\prime}}^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}$, $\gamma_{F}, \frac{{ }^{2 C_{Q}}}{a \sigma}, \delta_{0}, \delta_{1}, \delta_{2}$, of which the unknowns are λ and $\theta_{x_{0}}^{\prime}$. Substituting into this equation the value of $0^{\prime} x_{0}$ from equation $(\pi-38)$, we obtain an equation of the type below:

$$
\begin{aligned}
&(I-60) \quad \lambda^{2}\left\{t_{1}+t_{1}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right\} \\
&+\lambda\left\{t_{24}\left(\frac{\delta_{1}}{a}\right)+\left(\frac{2 C_{r}}{a \sigma}\right)\left[t_{2}+t_{2}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\theta_{t}\left[t_{3}+t_{3}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]\right. \\
&+\psi_{1}^{\prime}\left[t_{4}+t_{4}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\psi_{2}^{\prime}\left[t_{5}+t_{5}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right] \\
&+\lambda_{1}\left[t_{6}+t_{6}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right\} \\
&+\left(\frac{2 C_{r}}{a \sigma}\right)\left\{t_{23}\left(\frac{\delta_{1}}{a}\right)+\frac{2 C_{T}}{a \sigma}\left[t_{7}+t_{7}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\theta_{t}\left[t_{8}+t_{8}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right.\right. \\
&+\psi_{1}^{\prime}\left[t_{9}+t_{9}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\psi_{2}^{\prime}\left[t_{10}+t_{10}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]
\end{aligned}
$$

II - 46

$$
\left.\begin{array}{rl}
& +\lambda_{1}\left[t_{11}+t_{11}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right\} \\
+ & \theta_{t}\left\{t_{25}\left(\frac{\delta_{1}}{a}\right)+\theta_{t}\left[t_{12}+t_{12}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\psi_{1}^{\prime}\left[t_{13}+t_{13}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]\right. \\
& \left.+\psi_{2}^{\prime}\left[t_{14}+t_{14}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\lambda_{1}\left[t_{15}+t_{15}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]\right\} \\
+ & \psi_{1}^{\prime}\left\{\psi_{1}^{\prime}\left[t_{16} \div t_{16}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\psi_{2}^{\prime}\left[t_{17} \div t_{17}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]\right. \\
& \left.+\lambda_{1}\left[t_{18}+t_{18}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]\right\} \\
+ & \psi_{2}^{\prime}\left\{t_{26}\left(\frac{\delta_{1}}{a}\right)+\psi_{2}^{\prime}\left[t_{19}+t_{19}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]+\lambda_{1}\left[t_{20}+t_{20}^{\prime}\left(\frac{\delta_{2}}{a}\right)\right]\right\}
\end{array}\right\}
$$

The coefficients t_{n} and t_{n}^{\prime} are functions of H, γ_{F}, D_{y} and B. As shown by Bailey, variations of γ_{F}, D_{y}, B from average representative values do not affect the coefficients very much. The coefficients t_{n} and t_{n}^{\prime} have therefore been computed as functions of μ for $\gamma_{F}=15$, $B=.97, D_{y}=\infty$. For the actual computation, s more complete expression than (IT-58a) for G_{0} was used, in which all terms in μ of μ^{4} or lower order were retained. Where possible the numerical work presented by Bailey in ref. 4 was used. For the sake of brevity, we give only the results of these computations in figures $[-11$ to $\pi-19$.

																												＋1\％			
																						＋	＋1	\pm	＋7．		1＋1：	1			
									C		，	1		＋2	，	5		2			ST	－2	T1＋	titt	1		${ }^{1}+{ }_{\text {＋}}$				
1					＋		＋17		＋+	＋+	＋it	$\underline{4}$	＋	IT	${ }_{1+}$								H：＋	171	\pm		IT			71.	
						1	T1		$\pm+$			1＋1											＋1：						－		
							＋1		＋17	\＃		－			215	1		－	4		！		Her	＋1＋	${ }^{+}$	＋+	ITH	$1+1$		＋1	
							＋17	± 1	\square	＋1．				－1	＋1			\＃	I		1		1＋1	11t	＋	\＃＋	＋12			\＃	
		，					1＋		＋	\＃\＃	＋1．	＋		＋	17	＋		＋	17：1		－	＋1＋1	${ }^{1+1}$	Hif	7＋i＋	71	＋		，	－1．	
		\＃					T1	I．	T1		tit	＋1，	－1	\＃12	4	7		7				－	\％		＋		7－1		TIT＋		
\＃		\＃	\＃	＋	\＃	\pm	\＃	$7+1$	＋	＋	7＋：－	＋	－1．	H2，	\pm			7			H	＋17	127		＋		＋+	4	＋1．	It	
							＋12			＋11	＋1＋			711	＋：			＋			＋	．						It			
		\＃							＋1\％	\＃	74			\＃	\＃\dagger	\＃1		＋	＋		1	\％	\＃	1	＋	＋．	＋17	＋1．			
		＋			\＃	＋			1	\＃	111	＋		＋				IT				H			＋	\＃	17	I＇			
\＃	＋	\#\#		\＃	＋	\＃	1		rit	＋	＋：1＋	$1+1$	\＃1	\＃\＃：	＋1＋			＋			，	＋1．	7\＃	＋	＋	H17	1．7：	I：	，＋1		
									1		171	1	\＃\＃	$7+$	＋1＋			\pm			＋	1	＋	T，		＋1	17	＋		\％	
					\＃1tf	T．	7 \％		12	＋	＋1：	\because	＋：＋	$7+$	H	＋		H1			＋		7\％	7		\square	．	7%	：15：	＋	
		＋		H	＋1：				t			\％	－1；		＋17						：	1！	H				\cdots	．			
	\＃	7		\＃							T－1	H．	＋71．7	＋	．	1		1				＋	H	\＃	It	＋1－1	＋：＋			$+$	
\＃					\％				E		＋tr	＋	－2：	$\stackrel{\square}{\square}$	＋！								＋		H		7.15				
\＃\＃	＋	＋＋			\＃\＃		4			41	＋+	1.1		＋7\％	$\underline{+1+}$			4	It		1	7＋\＃			＋	I：	＋1	7	－		
\＃		\pm							ct			1＋1		\＃	析										H			11			
\＃		＋		\＃	\＃	\＃				2	\pm	1.		＋	$\underline{+1+1}$	7		H	＋1		＋	\＃\＃			H		［i\％	$11+$	－	1	
		It									ITH		H1	\＃1	7											\＃			11！		
		＋1			1				H，	＋	$1{ }_{+}$	171．	†H1	11	$\underset{\sim}{1+1}$	$\underline{7}$		＋	＋＋		\pm	\＃	\＃\＃	1	\＃	＋17	tit	－	＋i＋i	H．	
\＃	1	＋			\＃	\＃	1				1			＋	\＃			H	＋1！		＋	＋	＋			$1+$	＋！		1	$\stackrel{+}{4}$	
\＃	\＃1	＋		H	\＃	\＃	\％－	It	TH	1	17	＋1\％	＋		，	\＃		＋			＋	\square	\％	\＃	－	$11+$	III	\＃		\cdots	
		\％		11：							＋	7：1	$\pm+$		\％			＋			\pm	\square	H	\＃		1	＋：＋				
\＃	H	，				\＃＋	＋	．	＋17	＋17．	－	－7	＋	\＃7	＋	7		＋	\#		：7	＋	＋1	\＃	H	－11：	－ 1.				
\＃	＋1	，			＋1	H	＋1		$1+1$	＋1	1.	IT		1				T			＋1！	T：	！	＋1	\＃：	＋12	＋				
\＃	\＃	\＃			İH	＋	［1，	＋1．	＋1	1		1\＃	\cdots	＋2－	＋			土	${ }_{+}^{+}$		＋1	1	＋	＋1	H	7	$7{ }^{\text {F }}$				
				＋								± 17		\＃1	H			＋			1＋1	$\underline{\square}$	$\underline{4}$		＋						
\pm	4	\＃，	\＃\＃	\＃	7\％		1\＃	＋	\＃1，	＋7．	I	7\＃	1	＋	177	\＃		＋ 1	＋11		\cdots	－2	H	4	H	İ－	，	＋			
	＋1			T				\＃17	＋1		＋	＋+	＋1＋	＋！	H	＋		It	${ }^{+}$		7	＋			$\stackrel{+}{+}$	7tr	－	\cdots	＋1．		
	\＃			＋	1		＋	\pm			\pm	T17	T\＃\＃	1	T	T		H	＋			＋．1．	1／4	\＃\＃	ITI			$\stackrel{+1+}{+1}$	$\underline{+1}$		
\pm	\pm	＋1		－			＋	＋1．	＋1	\＃	＋1	75	＋12	\＃	1			H	\pm		＋	＋	\％	＋	tt：	17	$7{ }^{\text {2 }}$				
\＃	\＃＋1	7	＋		H		．	＋1	71	－11	7%	7T1	TH		＋			［\＃	\cdots			－	7	\＃	：	－	1\％				
				，		1			＋	7！									＋								HT		H		
	1	\＃1		\＃	＋，	\＃11		＋1．	I		11	17	＋					＋	\＃		＋+	＋i＋		17．	＋1＋	＋	－	\＃：1	圤		
	IT	1		＋i	1	11				1	H＋1	：			＋			4				$1+2$		＋11			11	＋	7：		
＋	\square	，	\＃\＃	\＃	＋+	$1+$	$1+$	7！	\＃\＃	\＃		\＃\％	＋1	TII	＋			7	，		＋+	F－	4	＋2	＋		＋	＋1	\pm		
					\＃1				＋		I	＋1\％	170	2	4			W	t				1		\＃1						
\pm	＋	H	＋	＋	It，	\＃	－	TT	－1；	71	It	IIT	${ }_{+}+$			／		I				＋	\＃		H		＋	II		17	
					\＃		＋				＋	＋		＋				＋	\pm		\＃					T	－		＋	1	
\＃	H	\＃1	；	7	\＃	\pm	\＃	H	HI！	$1+1$	＋7	12	\＃	＋	，			＋	\＃		\＃\＃	＋+1	\＃	＋		H1	I：		：1		
	H			$\underline{+}$	\＃1	1	\％	1	\％										＋					T			＋1．				
\＃\＃	\＃	H		7II	ItII	I\＃	\＃	1	$1 \pm$			I＋	＋12		7			1	17					\＃			－1．				
1				1	＋1	711													＋								1				
\＃	＋1			It	$1+1$	III	\＃	I	H	＋	＋			\pm										二				IT．1．	＋1		
						1	1.		\square	＋	＋1＋	T			＋			＋	＋		－								Tr－		
							\％								T																
\＃		＋1	＋	$1+$	1	＋1＋1	＋	＋1．	\＃	＋	＋1	$7{ }^{1}$	H－	，	\square			＋			\pm	＋1］	$\pm 1+$	＋	，	1	$\underline{+1}$	－	$1+$		
				17	\＃	－：	＋	T1	＋1	H	＋1		T	＋	＋						：	1					＋	\ddagger	：		
\＃	IH	1			1	＋	：＋		＋+	H	＋1	，	$1+$	＋	I			＋			$1 \#$	＋1．7	1			10	T 1		Ir		
					＋\＃	－：	T1	＋	－	\pm			\pm	H		\％		＋1	－1		\＃		T＋1				$1+$				
	\＃\＃			\＃	$\underline{+17}$	IT，		1	\pm		：＋	＋			＋	，		\＃	\pm		T	\＃／7		析	＋	It	1.		\＃		
		T				4		11		\＃1	1＋	＋1	\＄！	1	1／4	，		\＃	＋1		＋	4	\＃／			TIT	\＃		，		
$\#$	\＃			\＃	1\＃	H	\＃	＋17	\＃\＃	［17	\＃	$1 /$	＋	\＃	，	\＃		＋1．	It			＋1	\％	＋		1\＃＋	7＋1		＋1．		\pm
	T			＋	\＃			15	$1{ }^{1+1}$		17	＋11							$1+$		12		1				\pm				
	\＃		＋	1＋7．	\＃	＋		12		＋	1／／		14	1	I\＃				${ }_{4}+$		1	T	［1］	7			\pm				
	＋+	\＃	＋1	＋1	＋\＃1	\＃1	IT	＋17	＋11	\square	＋1	，	，					，			，	± 1		O				I	－		
1	\＃\＃	\＃	\＃		［\＃］	\＃	＋	＋1，	＋F．	＋+1	\＃＋	＋1	／+		＋			＋	－		＋	4.	$1+$				1		＋	1	
		T	，	＋	＋	1				$1 /$									tit		＋										
				771	＋1	＋	＋				＋	＋	＋	＋	，			．	11		－		，				＋1．		＋		
								＋1										It	，		I＋		1＋	IT	＋	－	1－：	－			
\＃				H	\＃			1\＃	＋	$\stackrel{+7}{+}$		＋1．	1	\＃		1		tit	$2+$		＋	－＋1	＋1＋	14	．	＋1＋	7	\＃，	＋	＋	
	－			\＃	t			4			＋							T	7		＋1	H				＋\＃	1	＋1			
	－			\＃\＃	\＃\＃			\＃	＋		＋			－				\＃才	－		1	＋		1			＋	：	7，		
						园		$1+1$					＋	$\stackrel{ }{1}$				H	17		＋	＋1＋		＋		\cdots	7\％		＋		
		＋1	＋+			\％	\＃	1	， 1					＋10	＋1：			＋1．	－i＋		7	1	＋	$1+1$	17：	＋17	－			＋	
			＋1		＋			17\％		11	1	1	7	T1							T	＋1＋1	$17+$	7		＋1	＋17		＋	，	
				\＃		＋	＋	＋		3	＋＋＋	$\square 1$	＋1	．	＋1．	＋			\pm		＋	14	It	${ }^{+}$	1	$\underline{+}$	\pm	．	＋		
				＋！			＋1		，	\＃1	T－1	1.	＋\＃								1	＋							T1－		
＋	＋			$1+1$.	：	＋1，	H＋	＋+1	IT	1＋1＋	＋i＋	\＃	421	＋	2			\＃	1		＋	＋17	\＃	\＃	1	H	\＃	＋	It		
				\＃	＋		＋	$1+{ }^{2}$	－	－	1		\＃	＋				\＃	挷		1	土	＋1．	1 1	＋	＋1＋1	＋+				
	＋	－				\＃	\＃		7	$1+71$	It	＋		\＃		．		H			＋	1	7，\＃	$71+$	＋－	71.	Tr＋	＋	，		
	7		＋															\＃			－	\＃		＋		＋	＋1\％	T1） 1	＋		
							\＃																								

11	111.	1111			HIT11	171	H14												i\＃	7	\＃\＃	\＃\＃\＃	\＃\＃	\＃\＃	171＋1	1	\＃\＃		
		＋1									T		＋	2	－	1	＋17	\pm	1！	＋	H	TH	1	＋1：	71：＋	\％	＋1		
		11.			＋	H1	＋	H	1	＋	H11		\cdots	＋	＋	．	H	± 11	＋17	It．	，	11	H	11	TH：	＋	＋\＃		
													－				．	IPS		2									
	1		H				$\underline{1}$	I！	H＋	．	IIH．	7\％	15	．	＋1：	\rightarrow	1.	H4	，	＋1．	It：	＋1．1		121	17	1	H1		
																											1		
	，								，		4		$\underline{2}$	12			2	5	2	．	．	．		1			I		
								\＃			＋1			\cdots			I		$1{ }^{1}$										
111	\＃	1	II	1111	$1+1$	1	II	II	IIH	\＃	17	$1+$	11	\＃	T	I	1．12		＋1］	－					I				
							，																						
	\pm							1				IT1．		1													1		
	It！		TH	，	111	17		＋	IH	！	III：	＋1：	$11+$	1.	H	＋	＋	＋	\＃		$1+$	－	＋+	1	$1+1$	\＃	＋1		
													＋7，		\＃						＋1								
1	Itt	，			，		111	1	－		tit	，	It．	＋1．	＋	＋	H：	1	＋1＋	T．．	＋\＃	＋，			71\％		\＃		
	1）：	\pm					1	I＋			\％					1	1								7＋1				
\＃\＃	$11+$	1	$1{ }^{1}$	\＃	It		1	＋	HII	\＃11	2：11	\＃	＋			＋	．	\ldots	$\underline{++}$	7	\＃	1			＋	＋17	\＃		
\pm	＋1：	＋								7						－		11			2				1It		TH		
\＃1．	12＋1	＋11	1.11	11	1	1	\＃\＃	H1	\＃1	\＃	$1+12$	83	＋1．1	＋1．	12	\＃1			$1+1$	－		．	，		1：＋1	＋	$1+11$		
	7								1		＋	＋1＋	T ${ }^{+}$	17	＋1		\％1										1		
\＃	， $11:$				H11		12			11	＋17		1＋	11：1	＋1．	I！	H／								，				
	\＃	1										1＋1	＋1						＋										
4	11：	1			＋11		I	112	1．1．	1	1：1．1	111	$\underline{+1}$	＋	．		TIT	＋1	H		1	II	II						
				L											T														
H：	：1．	1生		\＃	H	\＃	1	I	\＃\＃	\＃	1	111		，	11	1	＋1，												
			1	III，	1		111	11	1	$1{ }^{2}$	1	171	\pm	1	$1+1$		＋1．1	\＃1	1	＋	IT1	171．	＋1．	＋	7	＋1．	＋1＋		＋
	＋					＋1				\＃	＋		\＃：	7	－	＋1									＋170		1		
\＃	1	T！	1	H！	111	1	1	$1 \pm$	\＃	H1	！	17.	111	＋1	1	IT	T，		＋	－		1		$1 \pm$	＋12				
				H	＋1								1	t＋	ITI	\pm			1					\＃	71，				
1111	121	TH1			＋17！	17	1	H1	11	1	1	III	$1+1$	T1	It	－1It		＋．，	$1+4$	＋1．	1	＋，	$1+$	－1	：			＋	
						19		i！			＋1＋	＋1	T＋	＋1：＋	$1+$	\pm	，	71	1	I：	\＃1		＋	，	1				
\pm	11		H	\＃	$1{ }^{1}$	1		17	15	II	11.	1.	\＃	． 5	17！	1	\square	：1．	12	It．	I！		41						
													71	＋．		71．	IT－	I，	$1+1$			－	I：	$\xrightarrow{\square 11}$	17\％				
	H－1			111	171	It	1	1	IT		1 It	$1: 1$	III	12：	11.1	1	112	－-1.	1：12		tit		［11	\＃11	$1+$		！ 1		
					＋1								17：				Tir		－1－		＋1				$1+$		IT		
				\＃	H11			H		H	＋1	171	HT	T		－			，		1	I	：17		I：				
	＋11							－			＋	＋1	1	＋1			1	＋112	＋1＋		1.				T				
		1	，		1			1	T		1						4		1.			IT	＋1＋		＋				
				＋10	＋	2	＋1．	＋1	＋		\＃	1	T1	＋1	IT：	－1＋	H	＋1	\pm		＋		＋1	＋1	Ti		T		
	H＋	17		\＃	＋	1		717	＋1＋	，	I！	\pm	1.	$\underline{\square}$	7111		L 1	\＃1．		－1	＋	1：＋		－1：	\％	\pm	12：	＋	
										\＃\＃	\＃\＃	$1+1$	＋1＋				1	7	＋1．		＋+						＋		
	10	Clo		IT		III	Itr	2，	41	7111	，	II：	IT		＋1．	1.		－ 11	＋		＋1：						＋		
																＋	－+1	L1．	＋						＋！				
	， 1							c_{1}	C2	＋	＋．	\＃\＃	1%	17	H	121	71：		：\％12				1	12.					
											\＃	1	T1	\pm	＋1	1	7	7＋17		Tit	－1	11		\pm	T：				
1	1\％	11	12.	\square	\＃	\＃	\＃	H1	（a）	11	H	122	171	111	＋1I	11．1	1	＋1：		1．．1	121．	，		1\＃	IIII		\＃1		＋
											\＃	\＃			$+$						＋10			\＃11					
$1 \pm$	＋1				\＃		H			\＃	1\＃	\＃	It\＃	ITI	＋171		II					1		\＃11	＋17	＋1＋1			
												＋11	T	T	＋1＋		H					，	11		± 1	－			
t	it	＋	H	\＃	1＋1	＋	\＃	$1 \pm$	H	121	H1	11：	＋17	\＃	15	$1: 1$	1			\＃			H		1		＋	－	1
				＋			II		\cdots		H	\pm	＋	：11				2	I		I	＋	1		－1t				
	1\＃	1	It	＋17	H	1－11	171I	\＃1	\＃	\＃	：＋H	11：7	1111	72			7.	＋．．．	It	＋－4．	＋．．				\＃1	12：1			
					\＃		\＃		\＃		\＃		1		$1+$		＋	14．1．	＋2．	\square	＋＋1：		IT		＋	\square			
\＃	1			T	111		IIt	1	12	H1．	1	H1\％	\cdots	1	－1	17	III	2	11	＋	＋1：	1.	\＃	t．	7.	\＃	\＃	I\＃	
						7							1		\％				17		＋1＋	t\＃	\＃1	1：－	＋	－4	＋	\＃	
				7	\＃		H	ItI，	H12	12	\＃\＃：	172	＋		＋：－				18		H	＋1．	－7：I		1	＋			
									＋1	H	，	1			T	＋	म＋1			，			1				1		
	，		H1	171	111	H	1	H	III	IT	\＃1				H\＃	I	＋11		，	It	$1+$		7		H：1	＋1	\＃1：		
				\＃	\＃！				H4	14	士上		？	＋1．	＋1：	＋1	11	＋＋1		＋1：	1	T		＋	\square	＋	$1{ }^{1+1}$		
\＃		，		\＃\＃	\＃			，	Htr	117			II．	立H	\＃1：	\＃1	T1．	\％	It	71：	\＃\＃1	\＃	III	＋1：1		＋1			
											5.	＋	＋	＋1！	\＃\＃		112，				\square			12					
\＃	7		H	${ }^{+}$	II	I			，	1	It：	＋1\％	712	III	II！	$\# \#$	1＋1	IT：	H－1	＋，	\＃\＃		：		＋		1		
										T			＋1	\pm	T	11	I								．				
＋1				\＃1	\＃	\＃\＃	＋	I－1	\square	\＃	tilt	1	121	\＃1：	1		\pm			1					\＃	，	，		
											71		WI		$1+1$	1.1	H	7			T	\％			，	TI	＋11		
	＋	＋	＋	H1	\＃＋	H＋	ptr	$1+1$	H1H	\＃＋	ItII	Ht1：	＋+	tre	171i	17：1	7171	71：	＋11	＋	\pm	\％11	＋	＋17	7．71	$+{ }_{+}+$	，		
				\＃	\＃	\pm	－	＋1	＋	＋1－1	＋1t1	＋1．1	1	＋1	1＋1		T	11	11		＋1		1		＋1	1	＋		
＋17				\pm	± 1	1	\pm	It	$1{ }^{1}$	H1	111	1111	\＃1	\＃＋	1：	\＃	\＃	＋	H1	\＃	＋	4	\＃	\＃1	1：4	\％．	1		
											＋17	＋	＋1：	T		\＃		，	1＋1			＋			T11				
\＃\＃		＋	＋		H	，	II	\＃11	\＃	H	Iti	\pm	It．	IT	，	＋1．	$11+$	＋	＋1\＃	［17	＋+	17	＋\＃	＋	1／H		＋		
								＋1								＋	＋			＋1			\＃	\＃	117		1		
					17＋	711	＋1	ITII	$1+1$	＋15：	\＃＋1	1	＋1／2	WH	1\＃］	1.15	＋	［	\＃	1 ± 17	İ	04	\＃11	\pm	\＃\＃1．	＋	IH		
								＋	：	苐	\％	\cdots	＋1\％		T	T	\＃	＋	\＃	7	H		1	＋1		17	$\stackrel{7}{4}$		
				，	It：	In	H1	HII	：\＃1	1 H	111	H	$1+$	： 11	LC	＋1＋4	17．	\＃	\pm	$1+$	［	\square	\＃\＃		T：	\＃17	＋1		
											＋		＋：	\pm	It	\ldots	＋	\pm	－		＋1	T	＋1	＋	\＃，	＋	＋		
\＃	＋11				H	1＋1	H	HH	\＃	，	＋17	\％	ITI	\ldots	L＋1．	1：＋1	\＃\＃	$1+11$	1	＋	＋		\pm	III：	1］	\ldots	＋－1		
																\＃	＋1．1		\＃T	\square	T			\＃			＋		
	＋	1									$17+$		．	IIt		＋		＋			\＃		－						

＋																													
													＋																
																									：it		＋		
															\％+				，		T1					＋			
																											＋		
		$+$				．			＋1		＋																．+ ＋		
± 1		＋t＋							＋										\％1				＋17						
\＃										\square	17	2	76	1		＋O，	2	＋1	－		＋it		$\underline{+17}$				：12	\square	
						＋					\pm	1	：		IT			IIt	＋1．	1	T1		$1+1$				＋		
\＃	\＃＋	＋17		$1+$	＋	＋	\＃．	7	＋	＋1	$1+$	＋1＋1	：	\ldots	＋\＃	＋	，	H	＋	17	＋1， 1	，	1：12		1.	\＃1）	7\％	17	
											11	＋＋：＋	\cdots	1	I！：	12：					${ }^{2}$		1				＋		
7	\＃	＋1							，			＋7：	－		＋：	It											$\because:$		
	\cdots	＋									＋	＋1			L	1		＋	$7+1$					1：	H：		11		
		\＃7，						1			－17					T1：	＋	．	！	：12	$1{ }^{\text {d }}$	．	1						
													＋1；		T1	＋					1	T1	7						
＋	11＋	$7!$	H	，		＋		，	L		＋1：1	117	＋7！		T－1	II，	$1{ }^{1}$	＋	7	ITH					：				
										＋					，														
				＋						＋．	＋1，		114		＋17		T												
		＋1＋		－	＋H＋				1	$3+$	＋1＋	－	＋		＋1＋	$12+$	＋1＋	TH．	1	$\underline{1}$	111	T1．	．						
		${ }^{+1}$			＋1	I				位	FI				－171			177	17	＋1！			IL			＋			
\＃！			＋\＃！	$1+$	\＃\＃	717	＋17		2	9	＋：－	7	\％	\cdots	－17．	7，		\pm	1	$1+1$	115	＋1：	F：		：＋	7：i：	：17．	＋：	
7：17	T1．	$\stackrel{+}{+}$				\＃					＋！	＋	－+	＋1．1	＋：－	＋1	$1+$	1	I．		1					＋	；\％		
1\％it		H1			－				＋1		＋i：1	：	：		1\％：	1＋1．	Itt		＋		It：	${ }_{21+}^{+1}$	It	I					
											H1\％	\pm					F．：		1	t．	717		41.						
		＋		It	IT			1	＋		＋171	＋1＋1	＋	11．	$1{ }^{1+1}$	ItI	Itri	．	I\＃	示		．	＋1：	＋	＋1：	1：		$1+$	
											H				：112		：		1T＋	＋	1		＋1．	17				：	
\＃	＋	＋	＋	\＃	\＃	＋1．	1	71	171．	＋	\＃	17	＋	2：－＋	1－＋	$\underline{+}$	－		I\＃	4		1.	T＋1＋	7	$1+1$	！	，		
					＋1＋							11	＋．：＋		：11	7	1			17									
				＋1	＋				1， 1	H	H	＋	1.		TIL	－1．1	$1+$	1		＋11	1＋1		＋1＋1		：		17		
！	$\underline{\square}$	＋			＋17	$1+$	1	H：	T1．	1	H7t	1：	\square		$1{ }^{1 / 2}$	T1＋1	7：1		－	1	－11	\square	t	1			T		
1 H	\＃1，	＋1＋	1		＋17	＋	1	ITIt	IT：	＋	7：	7：	：		T：	12	$1{ }^{1}$	1＋	\ldots	＋：	－	， 1	if：	1					
				1，	＋1．	＋ 1			I：1：	11ti	\cdots	－	－		：1：			＋	－	＋			－						
1		1	－	＋14	1：17	17：	＋		1.	71：	－1：\％	＋	－			\square	．		＋	＋			IIt						
		＋1：	1		T：1	＋1				TH	\cdots		－				－	2		－									
11	＋11	＋：\％	IT	T．	TIT	1	，	1.	：．1：	：11：	－1：	－	：7		\％：	＋	，		9	： 1			．						
	＋12		＋	＋1	－1：	＋					＋1．	7＋1：	＋17		：1	＋1	－			1			$\stackrel{+}{ }$	，			12		
11.	117	1.		111	1：115	I．：	，	，	171	11	＋11．	：－：	．．．．	，	＋1．	：\％	．			F＝	．								
T11						\＃			\％				－			－11	＋1．		＋	7				1.			T		
$17 \pm$	＋i＋．	III：			，				－						－	＋：．	：－		：1：	TH．									
			11	\％	It			1：1			T：																		
		11		1		1									T	7	H					1.1							
				\＃		7	\＃\＃		U		，	＋：7	：	，	－	\％17	1.	＋：		－			＋1：	－	：	－	＋1．	1	
711\％	＋11－1	＋1：	＋	1171	11	III	H11	1	1，1			$\ldots 7$		＋	\cdots	$1+11$	＋1＋	\％	，	T		$\square 1$	11	7：1		112			
		H		＋1	$1+1$	＋		1				－	＋	－	＋	－7：	\％	\cdots	＋1＋1		：r：＋		1	\pm					
	H1	＋1．	\＃	\＃	－：17	＋1－2		＋	＋1．	1	I：	7	\＃	\because	\ldots		17．	121					＋1	71：	：7\％	$7 \pm$			
								II	I		\＃		－		＋	1	：	± 1	京		\cdots	＋	＋	\square					
± 1	＋17	\＃	\＃	15	\％ 7	$1+$	＋	7	\＃\＃	－1／1	7	7			［1		1.	1：2	t！	－		\＃+1		＋	－				1
\pm	71	\＃	＋1	12．：	H1！	H		71	讨	\pm		：	－		1	1	：	1：－					$3 \square$	2	1				
21：	1\＃	III		111	＋1＋	＋1＋		＋4	H＋	12								2：		5－i	$1+$								
＋1；	1	It：		12－1		121	＋	7.	＋17		T			\cdots	TH．	＋：	－ 7			\because	\％	\pm		：	1	I：1	T		
\＃	－1	4	\＃	＋\＃1	＋i＋	\cdots	${ }_{+}^{+}$		：1：	III	：17	－11		＋．．．	T		＋+					2	＋．＋	－	\cdots	＋1：	！ 17	＋	
			1		7it	＋17		1，	1	\＃－1	T：	－．．．	－	．	：		\％												
＋			－1，	－1：1	\＃14		．	＋1	${ }_{7}+$	IT	－1\％					： 7	－+						L	S	\％：\％	．			
			H	H	＋1．5	7：		TI	H	－1：	＋1＋1		\rightarrow		＋．－		－	＋1	－		＋			1	F：7：	11			
± 11	1		\＃！	1				\square		＋1：	H1	$\pm 7: 1$				71＋1			－-1	27.				T	守：				
\pm	1	11	＋		＋t＋1	$1+$		TIT		＋11	＋17	til				F／P	［15－1						：19	－1：	＋1．				
7．：＋	\cdots	1	H	1	1＋1	$\underline{+1}$	\cdots	$1+$	1	114	7， 7	12			＋．	1／2：	TH：					\％17	：	－1．	${ }_{7}$		I		
			1t＋	＋	＋	1			H1		T	7－7．	5	－	1：11	－1．													
				$1+$	\pm			\＃	\＃\＃	II	t	\＃7			1	＋	＋2，	－；	1－										
		7＋1	I！		17				析		$1+$	\cdots	－		7：		4it．						－	，					
	－：7	－	i，	＋+1	II	＋1）	＋1．	1＋1	$1+1$.		＋1	＋1．	．．．：	－+		121	＋1．	7\％					＋						
	\％1：	－	扣	＋．．				＋1＋	1		＋+	．			3.	，	7	（7）	\because	，		I：		－					
	＋1＋1	1	itil	1＋：	：1．	，	＋＋1	$\pm .1$	${ }_{\text {＋17 }}^{1+1}$	［1\％	－	－		1		1：7：	\＃	${ }^{+}$		\therefore	－			－				＋1．	
\pm		IT：	\pm	H：	＋11	守京	＋i：	1	：11t	H	T1	－	$\because ?$				75	I	$1 \cdot$		1.4	：						\％	
11	＋1．		＋	T		\＃1		\pm	\％		It						－				！		\％1		1		1\％1	7：	
\pm		：	It			1	1＋	7						［：	： 1	，	：－	\cdots			\because			－					
＋1．1：	＋			\＃		＋1	IT：	712	＋－					1.	－	＋1／	＋	4		， 7.	：						＋1．	＋	
－itic	＋	＋+	\＃	－	＋		＋15					2：	2：			7	$\underline{\square}$	\cdots		71：	－	＋i：	T	＋1＊＊	，	：1919	：		
\pm	I		＋1－1	117	\pm	\＃\＃	H\％	1－：		＋		I：		＋	11	$\underline{+7}$	127	－		．	：12	1＋：	＋1＋t	12：17			：17	It	
＋	1：	5	1		＋	\＃\＃		＋7，							－	H	＋：	\cdots		－	\％${ }^{\circ}$	：1	$7{ }^{7}$	：1			\therefore		
III		ItI	1＋4		＋17											．				\ldots								1	
		－t＋			I：	1	1	7		İ1	1\％	－		：－		\ldots		－	： 1			迷	［：7	．				t1	
It	＋1．	＋	\＃1）	＋	\＃1	\ddagger	＋	$+$	＋2．	，	：	：	T		\pm	2i：：	\pm	f：：	\％	\cdots	4	61				＋		＋	
		＋	＋	$1+$	17	＋17	＋1\％	± 1	1＋15	＋	\cdots	－2］	\pm	＋：	＋	－		：$:$	－：1．		：				：1	i＋1			
\＃	$1+$	7\％	H：	＋：＋	12	1／21	，	： $7+1$	：11	＋		I：：	．．	E	12	H．			3									＋	
		\pm	11＋	T	T	$11+$	1	T		－1		－	1	It	：17	：1t		＊：		\cdots			．	1	T：	：t1	＋1／		
		H	＝	H	\＃	H	$1+$	＋17．	1		＋	12		－	，	，	\rightarrow	．	．	．	，	．					＋		
		$\stackrel{1}{11}$							＋		＋	17		T	＋1	1：1		，	1	＋t．	号		711						
\pm		17						＋				＋1								管号									

Equation of Motion of a Stiff Blade in the XY plane (The
Hunting Coefficients)

Fig. 1 - 20

It was shown in the analysis for the flapping coefficients on $p .4$ il that the effect of the eccentricity of the flapping pin would be small. It is therefore assumed again that the flapping pin and the axis of yocation coincide. The eccentricity of the dreg pin, however, may be considerably larger, and will be considered.

In Fig. ir $/ c$, above, the actual blade position is sketched in solid lines, while dotted lines show the idealized position for which accelerations \ddot{x} and \ddot{y} have been derived on pp. $\mathbb{H}-1$ to $I-\%$. In the sketch, x_{1} is the spanwise coordinate of a blade particle with the blade in its true position, while x is the spanvise coordinate of the same particle with the blade in the idealized position.

$$
\begin{aligned}
& \text { the same partich } \quad x \sin \gamma_{2}=r_{I} \sin \gamma_{1} \text { or } \frac{\sin _{2}=\frac{r_{1}}{x} \sin \gamma \text {. }}{\text { (un-61) the sketch }}
\end{aligned}
$$ From the sketch

$$
\begin{gathered}
x \sin r_{2}=r_{1} \sin 1 \\
\text { Since } r_{1} \text { is very nearly equal to }-\theta_{z_{b}} \text { and is a fair } \\
\text { small angle, and since } \frac{r_{1}}{x} \text { is small for the important }
\end{gathered}
$$

(large) values of x, γ_{2} is a very small angle.
Now we write the expressions for the moments about the drag pin:
1.) Aerodynamic moment:
(I I-62)

$$
M_{o_{1}}=\int_{I_{1}}^{R} x_{I}\left(F_{Y}\right)_{a} d x_{1}
$$

A more rigorous expression would be

$$
\left.\left.\int_{I_{1}}^{R} x_{1}\right\}\left(F_{Y}\right)_{a} \cos \gamma_{2}+\left(F_{x}\right)_{a} \sin \gamma_{2}\right\} d x_{1}
$$

but we neglect the radial component, $\left(F_{X}\right)_{a}$, and since γ_{2} is very small, except near the root where the forces are small, $\cos \gamma_{2} \neq 1$. Further, since γ_{2} is small, $x=x_{1}$ to a very close approximation, and since r_{1} is small, we

2.) Dynamic Moment ı

$$
M_{o_{I_{m}}}=+\sum_{I_{1}}^{R}{x_{I}}\left(F_{y_{1}}\right)_{m}
$$

From the sketch,

$$
\text { (II-64) } \begin{aligned}
\left(F_{Y_{1}}\right)_{m} & =\left(F_{y}\right)_{m} \cos \gamma_{2}+\left(F_{x}\right)_{m} \sin \gamma_{2} \\
& \cong\left(F_{Y}\right)_{m}+\frac{r_{1}}{x}\left(F_{X}\right)_{m} \sin \gamma_{1}
\end{aligned}
$$

$$
(\pi-64) \quad \cong\left(F_{Y}\right)_{m}-\left(F_{x}\right)_{m} \frac{r_{1}}{x} \sin \theta_{Z_{b}}
$$

Now, from $p . \pi-8$ equations $(\pi-8 b$) and ($I \pi-8 c$):

$$
(I I-\theta c) \quad\left(F_{Y}\right)_{m}=m x \cdot\left(2 \theta_{Y} \dot{\theta}_{y} \dot{\theta}_{z_{a}}-\ddot{\theta}_{z}\right) d x
$$

$$
(I I-86)
$$

$$
\left(F_{x}\right)_{m}=m x \dot{\theta}_{z}^{2} d x
$$

Substituting the above for $\left(F_{Y_{1}}\right)$ and again assuming $x_{1}=x$,
(II-65)

$$
\begin{aligned}
M_{O_{I_{m}}} & =\int_{r_{1}}^{R} m x^{2}\left(2 \theta_{y} \quad \dot{\theta}_{y} \dot{\theta}_{z_{a}}-\ddot{\theta}_{z}\right) d x \\
& -\int_{r_{1}}^{R} m x r_{1} \sin \theta_{z_{b}} \dot{\theta}_{z_{a}}^{2} d x
\end{aligned}
$$

where " m " is now the "line density" of the blade.
$\int_{r_{1}}^{R} m x^{2} d x$ may be taken as I_{Z}, the moment of irertia of the blade about the drag pin, and $\int_{Y_{1}}^{R} m x d x$ is the "mass moment" of the blade, and is designated by the special symbol M_{m}.

$$
\begin{gathered}
\text { Also, since } \\
\text { (III-66a) } \quad \theta_{z}=\theta_{z_{a}}+\theta_{z_{b}} \\
\text { (b) } \quad \ddot{\theta}_{z}=\ddot{\theta}_{z_{a}}+\ddot{\theta}_{z_{b}}
\end{gathered}
$$

and

$$
\ddot{\theta}_{\bar{z}_{a}}=0 \text { by definition, }
$$

therefore

$$
(I I-66 c) \quad \ddot{\theta}_{z}=\ddot{\theta}_{z_{b}}
$$

$$
\text { (II-67) Therefore } \quad M_{o_{I_{m}}}=-I_{z}\left(\ddot{\theta}_{z_{b}}-2 \theta_{y} \dot{\theta}_{y} \dot{\theta}_{z_{a}}\right)-M_{m} r_{1} \sin \theta_{z_{b}} \dot{\theta}_{z_{a}}^{2}
$$

3.) Damping Moment:

$$
\text { (II-68) } \quad \mathrm{M}_{\mathrm{O}_{\mathrm{d}}}=-\mathbb{K}_{1} \dot{\theta}_{z_{\mathrm{b}}}
$$

The assumption of damping moment proportional to angular velocity is at best an approximation, but the difficulties of analysis with any other assumption are tremendous.
Summing the three moments about the drag $p i n$, and equating

$$
\begin{aligned}
& \text { Summing the three moments } \\
& \text { to zero: } \\
& \text { (II-69) } \quad\left(M_{z}\right)_{a}-I_{z}\left(\ddot{\theta}_{z_{b}}-2 \theta_{y} \dot{\theta}_{y} \dot{\theta}_{z_{a}}\right)-M_{m} r_{I} \sin \theta_{z_{b}} \dot{\theta}_{z_{a}}^{2}
\end{aligned}
$$

$$
-K_{I} \dot{\theta}_{z_{b}}=0
$$

$$
\text { We now assume that } \theta_{2} \text { is an harmonic function of }
$$

$$
\begin{aligned}
& \text { Dy the Fourier serf } \\
& \theta_{z_{b}}=e_{0}-e_{1} \cos \theta_{z_{a}}-\rho_{1} \sin \theta_{z_{a}}-e_{2} \cos 2 \theta_{z_{8}}
\end{aligned}
$$

$$
-I_{2} \sin 2 \theta_{8}
$$

Since $\theta_{z_{b}}$ is in itself a fairly small angle, and θ_{I}, e_{2}, f_{1}, f_{2} are very small, we assume that (I IT-70)

$$
=\theta_{2} \sin \theta_{0} 1
$$

Substituting the Fourier expansions for $\theta_{z_{b}},\left(M_{z}\right)_{a}$,
coefficients of identical Unto (II-69) and equating we find that

Calculation of Bending Moments and Deflection Curve in

the z Direction.

The reference line for calculation of the deflections is the instantaneous position of the infinitely . When the is defined by θ_{z} and, from the the blade element with the blade bends, the line connive θ_{f} with the plane $X^{\prime} Y^{\prime}$. origin, O^{\prime}, makes an of the blade element is z, to a close degree of approximation since z is small compared to x :

$$
\begin{aligned}
\text { (III-73a) } & \theta_{y_{f}}
\end{aligned}=\theta_{y}+\frac{z}{x}, ~(b) ~=\theta_{y}+\frac{d z}{d x}
$$

Forces on the Blade Element

1) External Forces - (refer to fig.II-21)
a) $\left(F_{z_{f}}\right)$ is the aerodynamic force acting perpendicular $(\pi-74) \quad\left(F_{z_{f}}\right)=\frac{I}{2} \rho c V_{f}^{2} C_{I_{f}} d x_{f}$
where $C_{I_{f}}$ is section lift coefficient
b) ($\left.\mathrm{F}_{\mathrm{f}_{\mathrm{f}}}\right)$ is the gravity force acting parallel to the neglected.
c) ($\mathrm{F}_{\mathrm{x}_{\mathrm{f}}}$) is the inertia force due to acceleration

d) $\left\langle F_{z_{f}}\right)_{m}$ is the inertia force due to acceleration
(27-76)
$\left(F_{z_{f}}\right)=-m x_{f}\left(\theta_{y_{f}} \dot{\theta}_{z_{a}}^{2}+\ddot{\theta}_{y_{f}}\right) d x_{f}$
(reference, p.II-8, equation $\Pi-8 a$.
$(I I-79) \quad \Sigma\left(F_{X_{f}}\right)=\left(F_{z_{f}}\right) \sin \left(\phi-\theta_{y_{f}}\right)+\left(F_{X_{f}}\right) \cos \left(\phi-\theta_{\mathrm{X}_{f}}\right)$

$$
-\left(F_{z_{f}}\right) \sin \phi-d F_{x_{f}}=0
$$

Substituting into $(\pi-78)(\pi-79)$ from ($\pi-74$) we find the equations of motion of the flexible blade:
$(\pi-80) \quad \frac{1}{2} \rho c V_{f}^{2} c_{I_{f}} d x_{f}=m x_{f}\left(\theta_{y_{f}} \dot{\theta}_{z_{a}}^{2}+\ddot{\theta}_{y_{f}}\right) d x_{f} \cos \left(\phi-\theta_{y_{f}}\right)$
$-\operatorname{mx}_{f} \dot{\theta}_{z_{a}}^{2} d x_{f} \sin \left(\phi-\theta_{y_{f}}\right)-\left(F_{z_{f}}\right) \cos \phi+d S_{f}+F_{x_{f}} d \phi=0$
and
(II-B1) $\quad-m x_{f}\left(\theta_{y_{f}} \dot{\theta}_{z_{a}}^{2}+\ddot{\theta}_{y_{f}}\right) d x_{f} \sin \left(\phi-\theta_{y_{f}}\right)+m x_{f} \dot{\theta}_{z_{a}}^{2} d x_{f} \cos \left(\phi-\rho_{y_{f}}\right)$
$-\left(F_{z_{f}}\right)_{g} \sin \phi-d F_{x_{f}}=0$
Since $\phi, \theta_{\mathrm{y}_{\mathrm{f}}}$, and θ_{y} are smell angles we take
$V_{f}=V, \quad x_{f}=x$
$\cos \left(\phi-\theta_{y_{f}}\right)=1, \sin \left(\phi-\theta_{\mathrm{y}_{\mathrm{f}}}\right)=\left(\phi-\theta_{\mathrm{y}_{\mathrm{f}}}\right)$
$\left(\dot{\theta}_{z_{a}}^{2} \theta_{y_{f}}+\ddot{\theta}_{y_{f}}\right) \cdot \sin \left(\phi-\theta_{y_{f}}\right)=0$
Neglecting the gravity forces and using the above assumptions, ($I r-80$) reduces to

$$
\text { (II-B2) } \quad \frac{I}{2} p c V^{2} c_{I_{f}} d x-m x\left(\dot{\theta}_{z_{a}}^{2}+\ddot{\theta}_{y_{f}}\right) d x+d s_{f}+F_{x_{f}} d \theta=0
$$

$$
\begin{aligned}
& \text { and (} x-81 \text {) reduces to } \\
& \text { (파-83) } \quad m x \dot{\theta}_{z_{q}}^{2} d x-d F_{x_{f}}=0 \\
& \text { For a stiff blade, (sy-82), by dropping subscript } \\
& \text { " } f \text { " and setting } \theta=\theta_{y}, d \phi=0 \text {, becomes } \\
& \text { (II-84) } \quad \frac{1}{2} \rho c v^{2} c_{1} a x-m x\left(\theta_{y} \dot{\theta}_{z_{z}}^{2}+\ddot{\theta}_{Y}\right) d x+d S=0 \\
& \text { Subtracting (} \pi-84 \text {) from (} \pi-82 \text {): } \\
& \text { (II-85) } \quad \frac{1}{2} \rho C V^{2}\left(C_{I_{f}}-C_{\underline{I}}\right) d x-m x \dot{\theta}_{z_{a}}^{2}\left(\phi-\theta_{y}\right) d x \\
& -m x\left(\ddot{\theta}_{y_{\hat{S}}}-\ddot{\theta}_{Y}\right) d x+i S_{\tilde{F}}-d S \div F_{X_{\vec{I}}} d \phi=0
\end{aligned}
$$

Integrating (I I-83)

$$
\text { (II-86) } \quad F_{x_{f}}=+\dot{\theta}_{z_{a}}^{2} \int_{x}^{R} m x d x=\dot{\theta}_{z_{a}}^{2} M_{m_{X}}
$$

where "m $_{x}$ is the "mass moment" of the blade outboard of station x.

Dividing thru ($\pi-85$) by $d x$, and substituting frow ($\mathrm{I}-73 a$), (b) and ($x-86$),

$$
\begin{aligned}
\text { (I I-87) } & \frac{1}{2} \rho c \bar{v}^{2}\left(c_{I_{f}}-c_{I}\right) \\
& -\operatorname{mx} \dot{\theta}_{z_{a}}^{2} \frac{d z}{d x}-m \bar{m}+\frac{d S_{f}}{d x}-\frac{d S}{d x}+\dot{\theta}_{z_{a}}^{2} \operatorname{sim}_{x} \frac{d^{2} z}{d x^{2}}=0
\end{aligned}
$$

However,

$$
(\pi-88) \quad S_{f}=\frac{{d y_{y_{1}}}^{d x}}{} \quad \text { and } \quad H_{y_{1_{f}}}=-E I \frac{d^{2} z}{d x^{2}}
$$

$$
\text { II - } 70
$$

where I is the structural moment of inertia of the blade element about the Y axis.
(I I-89)

$$
\therefore s_{f}=-\frac{d(E I)}{d x} \frac{d^{2} z}{d x^{2}}-E I \frac{d^{3} z}{d x^{3}}
$$

and (I I-90)

$$
+\frac{d S_{f}}{d x}=-\frac{d^{2}(E I)}{d x^{2}} \frac{d^{2} z}{d x^{2}}-2 \frac{d(E I)}{d x} \frac{d^{3} z}{d x^{3}}-E I \frac{d^{4} z}{d x^{4}}
$$

The term $\frac{d S}{d X}$ represents the distribution of load on the stiff blade. It is in two parts - the aerodynamic thrust load and the inertia load. The aerodynamic load is given on p . $\boldsymbol{I}-21$, equations $\overline{\text { IF }}$-3quto that used inertia load, by process similar to that used in obtaining equation \mathbb{T}-44 (p.17-28) , is

$$
\begin{aligned}
& \frac{d\left(F_{z}\right)_{m}}{d x}=-m x \dot{\theta}_{z_{a}}^{2}\left(\varepsilon_{0}+3 a_{2} \cos 2 \theta_{z_{a}}+3 b_{z} \sin 2 \theta_{z_{a}}\right) \\
& \text { Substituting the appropriate expressions into } \frac{d S}{d x} \text {, } \\
& \text { (11-91) } \\
& \text { substituting } x_{r}=\frac{x}{R} \\
& \text { (II-92) } \quad \frac{d S}{d x_{r}}=-\frac{d\left(F_{z}\right)_{a}}{d x_{r}}-\frac{d\left(F_{z}\right)_{m}}{d x_{r}}=-\frac{d\left(F_{z}\right)_{a}}{d x_{r}}-R \frac{d\left(F_{z}\right)_{m}}{d x^{\prime}} \\
& =\left(-A_{o_{\varepsilon}} c C_{z_{a}}+\operatorname{mXx}_{r} \dot{\theta}_{z_{\varepsilon}}^{2} \varepsilon_{o} R^{2}\right)-\left(A_{I_{a}} c C_{z_{a}}\right) \cos \theta_{z_{\varepsilon}} \\
& -\left(B_{1_{a}} c C_{z_{a}}\right) \sin \theta_{z_{a}}-\left(A_{z_{\varepsilon}} c C_{z_{a}}-3 m x_{r} \dot{\theta}_{z_{\varepsilon}}^{2} \varepsilon_{2} R^{2}\right) \cos 2 \theta_{z_{a}} \\
& \text { (continued on next page) }
\end{aligned}
$$

$-\left(B_{z_{a}} c C_{z_{a}}-3 m x_{r} \dot{\theta}_{z_{a}}^{2} b_{2} R^{2}\right) \sin 2 \theta_{z_{a}}$
Where $A_{a}, A_{I_{a}}, B_{I_{a}}, A_{2_{a}}$ and $B_{2_{a}}$ are given by (I I-34a to e)
Let $z_{r}=\frac{2}{R}$, and substitute $x_{r_{d S_{f}}}^{R}$ and ${ }_{Z_{r} R}$ for x and z
in $(I-87)$, and replace $\frac{\mathrm{dS}_{\mathrm{f}}}{\mathrm{dx}}$ by its equal of $(I-90)$:
(II-93) $+\frac{(E I)}{R^{3}} \frac{d^{4} z_{r}}{d x_{r}^{4}}+\frac{2}{R_{3}} \frac{d(E I)}{d x_{r}} \frac{d^{3} z_{r}}{d x_{r}^{3}}+\left(-\frac{\dot{\theta}_{Z_{8}}^{2} M_{m_{x}}}{R}+\frac{I}{R_{3}} \frac{d^{2}(E I)}{d x_{r}^{2}}\right) \frac{d^{2} z_{r}}{d x_{r}^{2}}$

$$
+m R x_{r} \dot{\theta}_{z_{a}}^{2} \frac{d z_{r}}{d x_{r}}+\frac{1}{R} \frac{d S}{d x_{r}}+R m \ddot{z}_{r}-\frac{1}{2} \rho c V^{2}\left(C_{I_{f}}-C_{1}\right)=0
$$

We are only interested in the "steady state" solution to the foregoing equation. Since the forcing function $\frac{d S}{d x_{r}}$ is a harmonic function of $\theta_{z_{a}}$, the "particular integral" will also be a harmonic function of $\theta_{z_{a}}$, and will be written
(II-94) $\quad z_{r}=z_{r_{1}}+z_{r_{2}} \cos \theta_{z_{a}}+z_{r_{3}} \sin \theta_{z_{a}}+z_{r_{4}} \cos 2 \theta_{z_{a}}$

$$
+z_{r_{5}} \sin 2 \theta_{z_{a}}
$$

(II-94a) $\quad{ }_{z_{r}}=-\dot{\theta}_{z_{a}}^{2}\left(z_{r_{2}} \cos \theta_{z_{a}}+z_{r_{3}} \sin \theta_{z_{a}}+4 z_{r_{4}} \cos 2 \theta_{z_{a}}\right.$

$$
\left.+4 z_{r_{5}} \sin 2 \theta_{z_{a}}\right)
$$

Substitutirp the expressions for z_{r} and $\frac{d S}{d x_{r}}$ given by equations ($\pi-94$) and ($\pi-92$) into ($\pi-93$), we obtain five differential equations in $z_{r_{1}}, z_{r_{2}}, z_{r_{3}}, z_{r_{4}}$ and $\mathrm{z}_{\mathrm{r}_{5}}$, by equating coefficients of identical trigonometric functions. Each of these equatizns can be solvea approximately by eny one of the methods described in fert I, pp. I-11 ro I- 25 . Experience has showr that the easiest of these is the collocation method. The application of this method to these particular equations is illustrated on the following pages and is set up in tables which can be worked out by non-technical computers. The five differential equations are as follows; assuming as a iirst arproximation that $C_{I_{f}}=C_{1}$:

$$
+m R \dot{\theta}_{z}^{2} x_{r} \frac{d z_{r}}{d x_{r}}=-m x_{r} \dot{\theta}_{z_{a}}^{2} a_{o} R+\frac{A_{a}{ }_{a} c_{a}}{R}
$$

$$
+m R \dot{\theta}_{z_{a}}^{2} x_{r} \frac{d z_{r_{2}}}{d x_{r}}-m R \dot{\theta}_{z_{a}}^{2} z_{r_{2}}=+\frac{A_{I_{a}} c c_{a}}{R}
$$

$$
\begin{aligned}
& \text { (H-95c) } \frac{E I}{R^{3}} \frac{d^{4} z_{r_{3}}}{d x_{r}^{4}}+\frac{2}{R^{3}} \frac{d(E I)}{d x_{r}} \frac{d^{3} z_{r_{3}}}{d x_{r}^{3}}+\left(\frac{1}{R^{3}} \frac{d^{2}(E I)}{d x_{r}^{2}}-\frac{\dot{\theta}_{Z_{2}}^{2} M_{m_{X}}}{R}\right) \frac{d^{2} z_{r_{3}}}{d x_{r}^{2}} \\
& +m R \dot{\theta}_{z_{a}}^{2} x_{r} \frac{d z_{r_{3}}}{d x_{r}}-m R \dot{\theta}_{z_{a}}^{2} z_{r_{3}}=+\frac{B_{1_{2}}{ }^{c C_{z_{a}}}}{R} \\
& \text { (d) } \frac{E I}{R^{3}} \frac{d^{4} z_{r_{4}}}{d x_{r}^{4}}+\frac{2}{R^{3}} \frac{d(E I)}{d x_{r}} \frac{d^{3} z_{r_{4}}}{d x_{r}^{3}}+\left(\frac{1}{R^{3}} \frac{d^{2}(E I)}{d x_{r}^{2}}-\frac{\dot{\theta}_{z_{a}}^{2} M_{m_{X}}}{R}\right) \frac{d^{2} z_{r_{4}}}{d x_{r}^{2}} \\
& +m R \dot{\theta}_{z_{a}}^{2} x_{r} \frac{d z_{r_{4}}}{d x_{r}}-4 m R \dot{\theta}_{z_{E}}^{2} z_{r_{4}}= \\
& -3 m x_{r} \dot{\theta}_{z_{a}}^{2} a_{2} R+\frac{A_{2_{a}}{ }^{c C_{z_{a}}}}{R} \\
& (e) \frac{E I}{R^{3}} \frac{d^{4} z_{r_{5}}}{d x_{r}^{4}}+\frac{2}{R^{3}} \frac{d(E I)}{d x_{r}} \frac{d^{3} z_{r_{5}}}{d x_{r}}+\left(\frac{1}{R^{3}} \frac{d^{2}(E I)}{d x_{r}^{2}}-\frac{\dot{\theta}_{z_{a}}^{2} M_{m_{X}}}{R}\right) \frac{d^{2} z_{r_{5}}}{d x_{r}^{2}} \\
& +m R \dot{\theta}_{z_{a}}^{2} x_{r} \frac{d z_{r_{5}}}{d x_{r}}-4 m R \dot{\theta}_{z_{a}}^{2} z_{r_{5}}= \\
& -3 m x_{r} \dot{\theta}_{z_{a}}^{2} b_{2} R+\frac{B_{2}{ }^{c C_{z_{a}}}}{R}
\end{aligned}
$$

It will be convenient to write these equations in the following way:

The equation for $z_{r_{1}}$ becomes $(1=1,2,3,4,5)$:
(I I-96)

$$
\begin{gathered}
A_{1} \frac{d^{4} z_{r_{1}}}{d x_{r}^{4}}+B_{1} \frac{d^{3} z_{r_{1}}}{d x_{r}^{3}}+C_{1} \frac{d^{2} z_{r_{1}}}{d x_{r}^{2}}+D_{1} x_{r} \frac{d z_{r_{1}}}{d x_{r}}-E_{1} z_{r_{1}}= \\
F_{i}+G_{1} x_{r}+H_{i} x_{r}^{2}+I_{1} x_{r}^{3}+J_{1} x_{r}^{4}
\end{gathered}
$$

where $A_{1}=A_{2}=A_{3}=A_{4}=A_{5}=E I / R^{3}$

$$
\begin{aligned}
& B_{1}=B_{2}=B_{3}=B_{4}=B_{5}=\frac{2}{R^{3}} \frac{d(E I)}{d x_{r}} \\
& C_{1}=C_{2}=C_{3}=C_{4}=C_{5}=\frac{1}{R^{3}} \frac{d^{2}(E I)}{d x_{r}^{2}}-\dot{\theta}_{z_{a}}^{2} M_{m_{x} / R} \\
& D_{1}=D_{2}=D_{3}=D_{4}=D_{5}=E_{2}=E_{3}=\frac{E_{4}}{4}=\frac{E_{5}}{4}=m R \cdot \dot{\theta}_{z_{a}}^{2} \\
& E_{1}=0
\end{aligned}
$$

$$
F_{1}=+\frac{\mathrm{cC}_{z_{2}}}{R} \theta_{x_{0}}^{\prime} \frac{\mu^{2}}{2}
$$

$$
G_{1}=-m R a_{0} \dot{\theta}_{z_{a}}^{2}+\frac{c C_{z_{a}}}{R} \mu\left(\frac{\mu \theta_{t}}{2}+\psi_{2}^{\prime}+\frac{\lambda}{\mu}\right)
$$

$$
H_{1}=\frac{c C_{a}}{R} \theta_{x_{0}^{\prime}}^{\prime}, \quad I_{I}=\frac{c C_{z_{a}}}{R} \theta_{t}
$$

$$
F_{2}=\frac{c C_{z}}{R} \frac{\mu^{2}}{4}\left(b_{1}+\psi_{1}^{\prime}\right), \quad G_{2}=-\frac{c C_{z}}{R} \mu a_{0}
$$

$$
H_{2}=\frac{c c_{z_{a}}}{R}\left(b_{1}+\psi_{1}^{\prime}+\lambda_{1}\right), \quad F_{3}=\frac{c c_{z_{a}}}{R} \frac{\mu^{2}}{4}\left(3 \psi_{2}^{\prime}+\frac{4 \lambda}{\mu}+a_{1}\right)
$$

$$
\begin{aligned}
& H_{3}=\frac{c C_{z_{a}}}{R}\left(2 \mu \theta_{t}+\Psi_{2}^{\prime}-a_{1}\right) \\
& P_{4}=-\frac{\therefore c_{z_{a}}}{R} \frac{\mu}{2}^{2} \theta_{x_{0}}^{\prime} \\
& G_{4}=-3 m a_{2} R \dot{\theta}_{z_{a}}^{2}+\frac{{ }^{c c_{z_{a}}}}{R} \mu\left(a_{1}-\psi_{2}^{\prime}-\frac{\mu \theta_{t}}{2}\right) \\
& H_{4}=2 \frac{{ }^{c C} z_{a}}{R} b_{2} \text {, } \\
& F_{5}=-\frac{c c_{z_{a}}}{R} \frac{\mu}{2}^{2} a_{0} \\
& G_{5}=-3 m b_{2} R \dot{\theta}_{z_{a}}^{2}+\frac{c_{2}{ }_{2}}{R} \mu\left(b_{1}+\psi_{1}^{\prime}+\frac{\lambda_{1}}{2}\right) \\
& H_{5}=-2 \frac{{ }^{c C_{z}}{ }_{\mathrm{Z}} a_{2}}{} \\
& I_{2}=I_{3}=I_{4}=I_{5}=0 \\
& J_{1}=J_{2}=J_{3}=J_{4}=J_{5}=0
\end{aligned}
$$

The end conditions are that the deflection, $z_{r_{1}}$, be zero at $x_{r}=0$; that the moment and shear be zero at the (II-97) $\frac{d^{2} z_{r_{1}}}{d x_{r}^{2}}=\frac{d^{3} z_{r_{1}}}{d x_{r}^{3}}=0$ at $x_{r}=1$;
and that the moment be that caused by the mechanical damper at the root,
(II-98)

$$
\begin{aligned}
\left(\frac{d^{2} z_{r_{1}}}{d x_{r}^{2}} x_{r}=0\right. & =-\frac{R}{(E I)_{x_{r}}=0}{ }^{\left(M_{y}\right)}{ }_{D} \\
& =\frac{R}{(E I)_{0} \dot{\theta}_{z_{a}} K_{y}\left(a_{1} \sin \theta_{z_{a}}-b_{1} \cos \theta_{z_{a}}\right.} \\
& \left.+2 a_{2} \sin 2 \theta_{z_{a}}-2 b_{2} \cos 2 \theta_{z_{a}}\right) \\
& \text { (refer p. } a-28 \quad \text {) }
\end{aligned}
$$

II - 76

$$
\begin{aligned}
& \text { We wish to find a solution of the form } \\
& (\mathbb{I}-99) \quad \begin{array}{l}
z_{r}\left(x_{r}\right)= \\
z_{r_{1}}\left(x_{r}\right)+z_{r_{2}}\left(x_{r}\right) \cos \theta_{z_{a}}+z_{r_{3}}\left(x_{r}\right) \sin \theta_{z_{a}} \\
\\
\end{array} \quad+z_{r_{4}}\left(x_{r}\right) \cos 2 \theta_{z_{a}}+z_{r_{5}}\left(x_{r}\right) \sin 2 \theta_{z_{a}}
\end{aligned}
$$

$$
+n_{1} n_{i}
$$

$$
\begin{aligned}
& \text { (II-99) } \\
& \begin{aligned}
& =z_{r_{1}}\left(x_{r}\right)+r_{2} \\
& +z_{r_{4}}\left(x_{r}\right) \cos 2 \theta_{z_{a}}+z_{r_{5}}\left(x_{r}\right) \sin 2 \theta_{z_{a}}
\end{aligned} \\
& \text { which satisfies all the above end conditions. } \\
& \text { satisfies all the above end coactions of } x_{r} \text { of the type below satisfy the } \\
& \text { end conditions: } \\
& \begin{array}{l}
n_{2} \quad x_{r}^{n}+2\left\{\frac{1}{(n+1)(n+2)}-\frac{2 x_{r}}{(n+2)(n+3)}+\frac{x_{r}^{2}}{(n+3)(n+4)}\right\}
\end{array} \\
& \text { (} 14-100 \text {) } \\
& z_{r_{1}}=s_{1}\left\{e^{\left.\left(x_{r}-1\right)^{2}-x_{r}^{2}-e\right\}}\right.
\end{aligned}
$$

$$
\text { (II-1006) } \begin{aligned}
\frac{d z_{r_{i}}}{d z_{r}} & =s_{i}\left\{2\left[\left(x_{r}-1\right) e^{\left(x_{r}-1\right)^{2}}-x_{r}\right]\right\} \\
& +T_{0_{i}} x_{r}\left(1-x_{r}+\frac{1}{3} x_{r}^{2}\right) \\
& +T_{1_{1}} x_{r}^{2}\left(\frac{1}{2}-\frac{2}{3} x_{r}+\frac{1}{4} x_{r}^{2}\right) \\
& +T_{2_{i}} x_{r}^{3}\left(\frac{1}{3}-\frac{1}{2} x_{r}+\frac{1}{5} x_{r}^{2}\right) \\
& +T_{3_{i}} x_{r}^{4}\left(\frac{1}{4}-\frac{2}{5} x_{r}+\frac{1}{6} x_{r}^{2}\right) \\
& +T_{4_{i}} x_{r}^{5}\left(\frac{1}{5}-\frac{1}{3} x_{r}+\frac{1}{7} x_{r}^{2}\right)
\end{aligned}
$$

$$
\text { (yy-100c) } \begin{aligned}
\frac{d^{2} z_{r_{i}}}{d x_{r}^{2}} & =s_{i}\left\{\left[1\left[2\left(x_{r}-1\right)^{2}+1\right] e^{\left(x_{r}-1\right)^{2}}-1\right]\right\} \\
& +\left(1-2 x_{r}+x_{r}^{2}\right)\left(T_{0_{i}}+x_{r} \mathbb{T}_{1_{1}}+x_{r}^{2} \mathbb{T}_{2_{1}}+x_{r}^{3} \mathbb{T}_{3_{i}}\right. \\
& \left.+x_{r}^{4} \mathbb{T}_{4_{i}}\right)
\end{aligned}
$$

$$
(y-100 d) \quad \frac{d^{3} z_{r_{1}}}{d x_{r}^{3}}=s_{i}\left[8\left(x_{r}-1\right)^{3}+12\left(x_{r}-1\right)\right] e^{\left(x_{r}-1\right)^{2}}
$$

$$
+T_{o_{i}}\left(-2+2 x_{r}\right)
$$

$$
+\mathrm{T}_{1_{1}}\left(1-4 x_{r}+3 x_{r}^{2}\right)
$$

$$
+\mathbb{T}_{2_{i}} x_{r}\left(2-6 x_{r}+4 x_{r}^{2}\right)
$$

$$
\begin{aligned}
& r \\
& \text { II - } 78 \\
& +T_{3_{i}} x_{r}^{2}\left(3-8 x_{r}+5 x_{r}^{2}\right) \\
& +T_{4_{i}} x_{r}^{3}\left(4-10 x_{r}+6 x_{r}^{2}\right) \\
& (x-100 e) \quad \frac{d^{4} z_{r_{1}}}{d x_{r}^{4}}=S_{i}\left[16\left(x_{r}-1\right)^{4}+48\left(x_{r}-1\right)^{2}+12\right] e^{\left(x_{r}-1\right)^{2}} \\
& +\mathrm{T}_{\mathrm{O}_{1}} \text { (2) } \\
& +T_{1_{i}}\left(-4+6 x_{r}\right) \\
& +T_{2_{1}}\left(2-12 x_{r}+12 x_{r}^{2}\right) \\
& +T_{3_{i}} x_{r}\left(6-24 x_{r}+20 x_{r}^{2}\right) \\
& +T_{4_{i}} x_{r}^{2}\left(12-40 x_{r}+30 x_{r}^{2}\right) \\
& \text { At the root, } \left.x_{r}=0 \text {, from (} \quad 1-100 c\right) \text { : } \\
& (I \pi-101) \quad \frac{d^{2} z_{r_{1}}}{d x_{r}^{2}}=S_{i}(6 e-2)+T_{O_{1}}
\end{aligned}
$$

And from the end conditions given by equations ($\pi-98$):
$(\pi-1 / / a) \quad S_{1}(6 e-2)+T_{O_{1}}=0$

$$
=L_{1}
$$

$$
\begin{aligned}
(\text { II -101b }) \quad S_{2}(6 e-2)+T_{0_{2}} & =-\frac{b_{1} \dot{\theta}_{x_{a}} K_{y} R}{(E I)_{x_{1}}=0}=I_{2} \\
\text { (c) } \quad S_{3}(60-2)+T_{0_{3}} & =\frac{a_{1} \dot{\theta}_{a_{a}} K_{y}^{R}}{(E I)_{0}}=I_{3}
\end{aligned}
$$

(d) $\quad S_{4}(60-2)+T_{0_{4}}=-\frac{2 b_{2} \dot{\theta}_{z_{a}} K_{y} R}{(E I)_{0}}=I_{4}$
(e) $\quad S_{5}(6 e-2)+T_{0_{5}}=+\frac{2 s_{2} \dot{\theta}_{z_{a}} K_{y} R}{(E I)_{0}}=I_{5}$

Substituting equations (II-1000), (b) , (c) , (d), (e), , into $(\pi-96)$, we get an equation in x_{r}, S_{1} and $T_{n_{1}}$. Assuming that the equation is satisfied at five values of x_{r}, Fields five equations which can be solved for S_{1} and $T_{n_{1}}$. This work is discussed in mare detail in the next section.

Solution of the Differential Equations for the Deflection and Bending Moment Curves in the Z Direction.

Substituting the assumed solution for ${ }^{2} r_{i}$ and its derivatives (given by I-100a to e), into ($\pi-96$), we obtain an equation of the following type:
(x - 102) $\quad S_{i}\left\{A_{i} f_{1}\left(x_{r}\right)+B_{i} f_{2}\left(x_{r}\right)+C_{i} f_{3}\left(x_{r}\right)+D_{i} f_{4}\left(x_{r}\right)+E_{i} f_{5}\left(x_{r}\right)\right\}$

$$
\begin{aligned}
& i\left\{A_{i} f_{1} x_{r}\right. \\
& +T_{0_{i}}\left\{A_{i} f_{6}\left(x_{r}\right)+B_{1} f_{7}\left(x_{r}\right)+C_{i} f_{8}\left(x_{r}\right)+D_{i} f_{9}\left(x_{r}\right)+E_{i} f_{10}\left(x_{r}\right)\right\}
\end{aligned}
$$

$$
+I_{I_{1}}\left\{A_{1} f_{11}\left(x_{r}\right)+\cdots \cdots \cdots \cdots E_{1} f_{20}\left(x_{r}\right)\right\}
$$

$$
+T_{2_{1}}\left\{A_{1} f_{16}\left(x_{r}\right)+\cdots \cdots \cdots \cdots E_{1} f_{25}\left(x_{r}\right)\right\}
$$

$$
+T_{3_{1}}\left\{A_{1} f_{21}\left(x_{r}\right)+\ldots \ldots E_{i} f_{30}\left(x_{r}\right)\right\}=
$$

$$
+I_{4_{1}}\left\{A_{1} f_{26}\left(x_{r}\right)+\cdots \cdots \cdots \cdots F_{i}+G_{1} x_{r}+H_{1} x_{r}^{2}+I_{1} x_{r}^{3}+J_{1} x_{r}^{4}\right.
$$

where

$$
\begin{aligned}
& f_{1}\left(x_{r}\right)=\left[16\left(x_{r}-1\right)^{4}+48\left(x_{r} 11\right] e^{\left(x_{r}-1\right)^{2}}\right. \\
& f_{2}\left(x_{r}\right)=\left[8\left(x_{r}-1\right)^{3}+12\left(x_{r}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}\left(x_{r}\right)=\left[8\left(x_{r}-1\right)\right. \\
& f_{3}\left(x_{r}\right)=\left[4\left(x_{r}-1\right)^{2}+2\right] e^{\left(x_{r}-1\right)^{2}}-2
\end{aligned}
$$

$$
f_{4}\left(x_{r}\right)=2 x_{r}\left[\left(x_{r}-1\right) e^{\left(x_{r}-1\right)^{2}}-x_{r}\right]
$$

$$
\begin{aligned}
& f_{5}\left(x_{r}\right)=-\left[e^{\left(x_{r}-1\right)^{2}}-x_{r}^{2}-e\right] \\
& f_{6}\left(x_{r}\right)=2 \\
& f_{7}\left(x_{r}\right)=-2+2 x_{r} \\
& f_{8}\left(x_{r}\right)=1-2 x_{r}+x_{r}^{2} \\
& f_{9}\left(x_{r}\right)=x_{r}^{2}\left(1-x_{r}+\frac{1}{3} x_{r}^{2}\right) \\
& f_{10}\left(x_{r}\right)=-x_{r}^{2}\left(\frac{1}{2}-\frac{1}{3} x_{r}+\frac{1}{12} x_{r}^{2}\right) \\
& f_{11}\left(x_{r}\right)=-4+6 x_{r} \\
& f_{12}\left(x_{r}\right)=1-4 x_{r}+3 x_{r}^{2} \\
& f_{13}\left(x_{r}\right)=x_{r}\left(1-2 x_{r}+x_{r}^{2}\right) \\
& f_{14}\left(x_{r}\right)=x_{r}^{3}\left(\frac{1}{2}-\frac{2}{3} x_{r}+\frac{1}{4} x_{r}^{2}\right) \\
& f_{15}\left(x_{r}\right)=-x_{r}^{3}\left(\frac{1}{6}-\frac{1}{6} x_{r}+\frac{1}{20} x_{r}^{2}\right) \\
& f_{16}\left(x_{r}\right)=2-12 x_{r}+12 x_{r}^{2} \\
& f_{17}\left(x_{r}\right)=x_{r}\left(2-6 x_{r}+4 x_{r}^{2}\right) \\
& f_{18}\left(x_{r}\right)=x_{r}^{2}\left(1-2 x_{r}+x_{r}^{2}\right) \\
& f_{19}\left(x_{r}\right)=x_{r}^{4}\left(\frac{1}{3}-\frac{1}{2} x_{r}+\frac{1}{5} x_{r}^{2}\right) \\
& f_{r}
\end{aligned}
$$

$$
\begin{aligned}
& f_{20}\left(x_{r}\right)=-x_{r}^{4}\left(\frac{1}{12}-\frac{1}{10} x_{r}+\frac{1}{30} x_{r}^{2}\right) \\
& f_{21}\left(x_{r}\right)=x_{r}\left(6-24 x_{r}+20 x_{r}^{2}\right) \\
& f_{22}\left(x_{r}\right)=x_{r}^{2}\left(3-8 x_{r}+5 x_{r}^{2}\right) \\
& f_{23}\left(x_{r}\right)=x_{r}^{3}\left(1-2 x_{r}+x_{r}^{2}\right) \\
& f_{24}\left(x_{r}\right)=x_{r}^{5}\left(\frac{1}{4}-\frac{2}{5} x_{r}+\frac{1}{6} x_{r}^{2}\right) \\
& f_{25}\left(x_{r}\right)=-x_{r}^{5}\left(\frac{1}{20}-\frac{1}{15} x_{r}+\frac{1}{42} x_{r}^{2}\right) \\
& f_{26}\left(x_{r}\right)=x_{r}^{2}\left(12-40 x_{r}+30 x_{r}^{2}\right) \\
& f_{27}\left(x_{r}\right)=x_{r}^{3}\left(4-10 x_{r}+6 x_{r}^{2}\right) \\
& f_{28}\left(x_{r}\right)=x_{r}^{4}\left(1-2 x_{r}+x_{r}^{2}\right) \\
& f_{29}\left(x_{r}\right)=x_{r}^{6}\left(\frac{1}{5}-\frac{1}{3} x_{r}+\frac{1}{7} x_{r}^{2}\right) \\
& f_{30}\left(x_{r}\right)=-x_{r}^{6}\left(\frac{1}{30}-\frac{1}{21} x_{r}+\frac{1}{56} x_{r}^{2}\right)
\end{aligned}
$$

and A_{1}, B_{1}, C_{1}. are given on page $717-74$.

On account of the complexities of the equetions for the flapping coefficients, it was necessary, in their solution, to make certain approximations. The result of these approximations is that the coefficients of the airloads, F_{1} timu J_{1}, p. $\mathbb{Z}-74$, do not quite satisfy the conditions that the moment, due to all forces acting,

$$
I I-83
$$

be zero at the root (equation $\pi-39$). The bending moments as found by the collocation method appear to be quite sensitive to such discrepancies, and the loads computed by (II-96) should be modified so as to satisfy equation ($\pi-39$) . An arbitrary method of modification is presented in the Sample Calculations, pp. II-153 to III-155. The modified distribution of air load is then entered in Table II-1 in plaoe of the first five rows of column (8).

Substitution of five values of x_{r} in equation gives five equations with six unknowns, which can be solved with the help of equations (II-101) The solution has been arranged in tabular form on the following pages.

When the constants S_{1} and $T_{n_{1}}$ are known, it is only necessary to substitute them into equations (II-100) to obtain $z_{r_{1}}$ and its derivatives as functions of x_{r}, and then to substitute those functions into equation (II-99) to obtain z_{r} as a function of x_{r} and azimuth angle.

The tables are arranged for a five point solution, which has been found adequate in most cases. It may, however, be found that the approximate solution, using five points, has not converged sufficientiy toward the true solution. In that case, a larger number of " n "'s must be used, and equation ($\pi-102$) must be assumed to be satisfied by more values of x_{r} in order to obtain enough equations to solve for the increased number of coefficients, $\mathrm{T}_{\mathrm{n}_{1}}$. Tables $\pi-1$ and $\pi-3$ can be extended accordingiy. In the case of the first harmonic, $(1=2,3)$ the solution by collocation, using five points, has been found not to converge sufficiently. The failure to converge is due to the fact that in the choice of an approximate solution we impose the end condition of a derinite slope at the root.

All the first harmonic inertia loads cancel out, leaving
only the air loads to determine the position of the laving
But the air loads are treated as constants, independent is arbitrarily determined by the blade slope at the root choose to adopt. It is well known theximate solution we cases where the solutions by collocation the convergence end condition, viz., case at the root is very poor in where the end condition of rigidly a ot is a definite We can, however, aroid $\quad\left(\frac{d z_{r}}{d x_{r}}\right)_{0}=0$.
(π - 103)

and solving by successive r $J_{1} x_{r}^{4}+E_{1} z_{r_{1}}$
the equations are similar approximation.
procedure is as similar foproximation.

1) Assume, follows: fir all values of this form, and solve in the first approximal 1 . The
and solve by the same methodination, that
the result $\frac{d^{2}\left(z_{r_{1}}\right)}{d_{1}^{2}{ }_{r}}$ and $\left(z_{r_{1}}\right)$ method as for $1=1,{ }_{1}=0$,
2) For the second approximation $\left(z_{r_{1}}\right)$
and put the term $E_{1}\left(z_{r_{1}}\right)$ on the ${ }^{\prime} F_{1}$ thru $J_{1} x_{r}^{4}$
solve by the same method to get the right side, and
$d^{2} \Delta_{2} z$

3) If $\Delta_{2} M_{i}$ and $\Delta_{2} z_{1}$ are not within the desired

$$
\begin{aligned}
& \text { If } \Delta_{2} M_{1} \text { and } \Delta_{2} z_{1} \text { are not within with the term } \Delta_{2} z_{1} \text { on } \\
& \text { accuracy, solve again wi }{ }^{2} \text {; to get } \frac{d_{3}^{2} \Delta_{3} r_{1}}{d x_{r}^{2}} \text { and } \Delta_{3}^{z_{1}} \text {; } \\
& \text { the right side, to obtained. }
\end{aligned}
$$

and so on until desired accuracy is obtained.
The total moment and deflections are, then

$$
(\text { II }-104)
$$

$$
(\mathbb{I}-105)
$$

$$
\begin{aligned}
& M_{1}=\left(M_{1}\right)_{1}+\Delta_{2} M_{1}+\Delta_{3} M_{1}+\ldots \\
& z_{r_{1}}=\left(z_{r_{i}}\right)+\Delta_{2} z_{r_{1}}+\Delta_{3} z_{r_{1}}+\ldots
\end{aligned}
$$

The values of $E_{1}{ }^{z_{1}}{ }_{1}$
that two approximations are sufficient (see osmple calculation page II -166). parts $1=4,5 ;$ since in the $x_{1}+H_{1}^{2}$ that the convergence of successive approximations is quite as it stands, and the diffio encountered because the blade collocation solution is not examined by the inertia loses. slope at the rot is here determined by
x. ; 1. .

(1)	(2) $\mathrm{T}_{\mathrm{O}_{1}}$	(3) T_{1}		(5) I_{3}	(6) $I_{L_{1}}$	(7) s_{1}	(8) Constant \dagger
A_{1} :	- $1_{6}\left(x_{T}\right)=$	- $f_{11}\left(x_{r}\right)=$	- $\mathrm{f}_{16}\left(x_{r}\right)=$	- $\mathrm{f}_{21}\left(x_{r}\right)=$: 26 (x_{T}) $=$	- $\mathrm{f}_{1} \quad\left(x_{r}\right)=$	${ }^{-1} \mathrm{~F}_{1}{ }^{\prime \prime}$
B_{1} :	${ }^{-1} f_{7}\left(x_{1}\right)$ "	- $f_{12}\left(x_{r}\right)=$	- $f_{17}\left(x_{r}\right)=$	- $5_{22}\left(x_{1}\right)=$	- $\mathrm{f}_{27}\left(\mathrm{x}_{\mathrm{T}}\right)=$	$* f_{2}\left(x_{1}\right)=$	$-x_{1} C_{1}=$
c_{1} :	- $\mathrm{f}_{8}\left(x_{T}\right)=$	- $\mathrm{f}_{13}\left(x_{\text {f }}\right)=$	* $f_{18}\left(x_{r}\right) *$	${ }^{1}{ }_{23}\left(x_{7}\right)=$	- ${ }_{28}{ }^{28}\left(x_{T}\right)=$	* $f_{3} \quad\left(x_{x}\right)=$	$\left.-x_{2}^{2} \mathrm{H}_{1}=\right\}+$
D_{1} :	- $\mathrm{f}_{9}\left(x_{r}\right)=$	${ }^{1} 1_{14}\left(x_{1}\right)$ "	- ${ }^{19}\left(r_{r}\right.$) ${ }^{\text {a }}$	$*_{24}\left(x_{r}\right)=$	${ }^{*} f_{29}\left(x_{f}\right)=$	$* 2_{4} \quad\left(x_{x}\right)=$	$-x_{2}^{3} I_{1}=$
x_{1} :	- $f_{10}\left(x_{\text {I }}\right)$.	- $f_{15}\left(x_{\text {r }}\right)=$		${ }^{-1} 25\left(x_{r}\right)=$: $\mathrm{r}_{30}\left(\mathrm{x}_{\mathrm{f}}\right)=$	" ${ }_{5} \quad\left(x_{x}\right)=$	$-x_{1}^{4} \mathrm{~J}_{1}{ }^{\text {a }}$ -
Sse notos	Mo ontry	No ontry	Ho entry	Mo ontry	Ho ontry	*	**
	$\mathrm{C}_{\mathrm{T}_{\mathrm{O}_{1}}{ }^{5} .}$ SBo noteo - ond -an	$\begin{aligned} & \mathrm{C}_{\mathrm{T}_{1}}{ }_{1} \\ & \text { Enter in Toble } \pi \cdot 3, \\ & \text { Colurn }, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{T}_{1}}= \\ & \text { Entor in Toblez-3, } \\ & \text { Column } 2 \end{aligned}$				Enter in Toblay $\mathbf{5}$, Colurn 6

* Multiply $c_{T_{0_{1}}}$ in colume 2 by (2-60) ond ontor hore in coluen. 7 .

II - 87

table a-2 - valurs of $f_{n}\left(x_{f}\right)$ for various values of x_{r}

n	x_{r}				
		. 25	. 50	. 75	2.00
1	206.589432	77.332111	32.100625	16.033941	12.000000
2	-54.365640	-21.718806	-8.988175	-3.326544	0
3	14.309692	5.458984	1.852078	. 395112	0
4	0	-. 783146	-1.142013	-1.524185	-2.000000
5	0	1.025726	1.684257	2.216288	2.718282
6	2.000000	2.000000	2.000000	2.000000	2.000000
7	-2.000000	- 1.500000	-1.c:0.9 9	-. 500000	0
8	1.000000	. 562500	. 250000	. 062500	0
9	0	. 048177	. 145833	. 246094	. 333333
10	0	-. 026367	-. 088542	-. 166992	-. 250000
11	-4.000000	-2.500000	-1.000000	. 500000	2.000000
12	1.000000	. 187500	-. 250000	-. 312500	0
13	0	. 140625	. 125000	. 046875	0
14	0	. 005452	. 028645	. 059326	. 033333
15	0	-. 002002	-. 011979	-. 029444	-. 050000
16	2.000000	-. 250000	-1.000000	-. 250000	2.000000
17	0	. 187500	0	-. 187500	0
18	0	. 035156	. 062500	. 035156	0
19	0	. 000863	. 008333	. 022412	. 033333
20	0	-. 000236	-. 002604	-. 008569	-. 016667
21	0	. 312500	-. 500000	-. 562500	2.000000
22	0	.082031	. 062500	-. 105469	0
23	0	. 008789	. 031250	. 026367	0
24	0	. 000157	. 002865	. 010382	. 016667
25	0	-. 000034	-. 000707	-. 003178	-. 007143
26	0	. 242188	-. 125000	-. 632813	2.000000
27	0	. 029297	. 062500	-.052734	0
28	0	. 002197	. 015625	. 019775	0
29	0	. 000031	. 001079	. 005403	.009524
30	0	-. 000006	-. 000218	-. 001364	-. 003571

TABLES $\pi-3$ - FOR THF SOLUTION OF THE FIVE LINEAR SIMULTANEOTS
EQUATIONS IN FIVE UNKNOWNS
$1=$

Soluma		1	2	3	4	5	6	
Rov	x_{r}	T_{1}	$\mathrm{T}_{2}{ }_{1}$	T_{3}	T_{4}	s_{1}	Corttant	
1	1.0							8
2		1						D
3	. 75							E
4		1						D
5		\bigcirc						32
6			1					D
7	. 50							E
8		1						D
9		0						s2
10			1					D
11			0					36
12				1				D
13	. 25							E
24		1						D
25		0						S2
16			1					D
17			0					S6
18				1				D
19				0				S12
20					1			D
21	. 0							E
22		1						D
23		0						S2
24			1					D
25			0					S6
26				1				D
27				0				S12
28					1			D
29					0			S20
30						1		D

Explarstion on next pege

Explanation of TABLE $\pi-3$, page $\pi-88$:

The operations are as follows:
E - Enter the appropriate values from TABIE III-1.
D - Divide the value in the same column, previous row, by the first (from the left) value in that row which is not zero. The first values in rows marked "D" are 1 , and are already entered.
S - Subtract the value in same column, previous row, from the value in the same colum, row denoted by the number following the "S". The first values in rows marked " S " are zero, and are already so entered.

To illustrate, the value in row 13 , column 4 , would be taken from Table $\pi-1$, column 6 for $x=.250$. The value in column 4 , rov 14 vould be the value in column 4 , row 13 divided by the value in column 1 , row 13. The value in column 7 , row 26 is the value in column 7 , row 25 divided by the value in column 3 , row 25.

It may be observed that when the values in TABLE $z-z$ are multiplied by the " n_{1} " at the head of their respective columns, the sum of the terms so obtained in any row, plus the constant of column 8 , equals zero. Thus row 30 provides the solution for S_{i}, and $T_{4_{i}}$, T_{3}, etc. may be found by successively writing the equations corresponding to rows 28,26 , etc. The numerical work in the table may be checked by substituting the solutions obtained for $T_{n_{1}}$ into the equations represented by rows $1,7,13$, etc. $T_{O_{1}}$ is found by the use of equations $(\pi-101)$, page $\pi-78$.
Table II-3 must be solved for each of the five values of "i"。

Step-by-Step Tabular Method of Finding the Bending Moments - Bending Moments The method to be presented here was first applied to later refined by him so that it reference $/ 1$, and was blades. An attempt is made it could be applied to rotor justification of the method, to present a simple physical detailed work involved. The and tables are given for the the inertia loads due to periothod is extended so that can be accounted for. periodic bending of the blade The differential equations for the constant and harmonic parts of the deflection and bending moment near, and, therefore, their complete ((α), ((\in)) are principle of superposition, may be compile solutions, by the all the separate solutions to the taken to be the sum of whole forcing function, (i.e., z various parts of the Furthermore, on account (1.e., Z loads, end moments, solutions can be worked of the linearity, the separate etc.). forcing function worked out as the number the separate function; (1.e times the solution per of units of the the solution ${ }^{\text {i }}$, if the forcing function unit forcing solution for for a unit forcing function is A units, and solution for the actual forcing function is B, then the A times B).

Referring to the sketch above, it is assumed that the blade is a series of straight segments, each of length Δx, the numbered points denoting the ends of the segments, and the letters denoting their mid-points. It is assumed that the bending moment is constant betwoen lettered points, and that the running loads due to aerodynamic thrust and centrifugal force are constant between numbered points. If the bending moment be known at "1" (say), and the slope be known at "a" (say), then the change in slope from "a" to " b " is known to be $\Delta x\left(\frac{M}{B I}\right)_{1}$. The slope at ${ }^{n} b^{\prime \prime}$ is,
therefore, known and the change in deflection between stations "2" and " 1 " can be found, from which M_{2} can be evaluated in terms of M_{1}, the aerodynamic shears, and inertia forces. This process can be continued out to the tip of the blade.

Considering now in detail one segment of the blade between stations 1 and 2 , and neglecting for the moment the Z direction shears due to the inertia loads, we have

F/G. II-24
where $\left(F_{x_{1}}\right)_{m}$, and $\left(F_{y_{a}}\right)_{1}$ at the left are the total centrifugal force and aerodynamic shear at station 1 , and s and $\left(f_{x}\right)$ are the constant (over the segment) running aerodynamic shear and centrifugal force.

By inspection
$(\pi-106) \quad M_{2}=M_{1}+\Delta z_{1-2}\left(F_{x_{1}}\right)_{m_{1}}-\left(f_{x}\right)_{m} \frac{\left(\Delta z_{1-2}\right)^{2}}{2}-\left(F_{z}\right)_{a_{1}} \Delta x+\left(\frac{\Delta x}{2}\right)^{2}$
$=M_{1}+\Delta z_{1-2}\left[\left(F_{x_{x}}\right)_{m_{1}}-\left(f_{x}\right)_{m} \frac{\Delta z_{1-2}}{2}\right]-\Delta x\left[\left(F_{x_{1}}\right)_{a_{1}}-\Delta \frac{\Delta x}{2}\right]$
$=M_{1}+\Delta z_{1-2}\left(F_{x}\right)_{m_{0}}-\Delta x\left(F_{z}\right)_{a_{0}}$
where $\left(F_{x}\right)_{m_{b}}$ is the total centrifugal force at "b"
and $\left(F_{z}\right)_{a_{b}}$, the total aerodynamic shear load at "b".
We now consider the effect of the inertia shear loads. The total bending moment and deflection are harmonic functions of azimuth angle, and are written
(II-107) $\quad z=z_{1}+z_{2} \cos \theta_{z_{a}}+z_{3} \sin \theta_{z_{a}}+z_{4} \cos 2 \theta_{z_{a}}+z_{5} \sin 2 \theta_{z_{a}}$
and
(II-108) $\quad M=M_{1}+M_{2} \cos \theta_{z_{a}}+M_{3} \sin \theta_{z_{a}}+M_{4} \cos 2 \theta_{z_{a}}+M_{5} \sin \theta_{z_{a}}$

The principle of superposition allows us to compute the various harmonic parts separately and then add them together. The harmonic parts of the acceleration of a blade element are given by

$$
\left(I I-10^{9}\right) \quad a_{i}=\frac{d^{2}}{d t^{2}}\left(z_{i}\right)=-P_{i} z_{i}^{i} z_{a}^{2}
$$

Where 1 indicates the harmonic, and

$$
\begin{aligned}
& \text { Where } 1 \text { indicates the naris } \\
& \text { (II-110) } \quad P_{1}=0 ; P_{2}=P_{3}=1 ; P_{4}=P_{5}=4
\end{aligned}
$$

The shear force due to this acceleration is

$$
(I T-\prime \prime)
$$

$$
d s_{1}=-\mathbb{m} \varepsilon_{1} d x=+m P \dot{\theta}_{z_{8}}^{2} z_{1} d x
$$

Where m is the mass line density of the blade. Isolating again the segment of blade between stations 1 and 2 , as in figure II-24, wo have

F/G.II-25

Where x^{\prime} is measured from station 1 , as indicated
(I I-1/3)
$z=z_{1}+x^{\prime} \frac{\Delta z_{1-2}}{\Delta x}$
since blade was assumed straight between 1 and 2 .
Similarly, the change in shear at " 2 " is
$(7-114)$
$d\left(\Delta S_{2}\right)=P \dot{\theta}_{z_{a}}^{2} m z d x^{\prime}$
Substituting ($\mathbb{I}-1 / 3$) for z, integrating from " $I^{\text {" to " } 2 \text { " }}$ for the total changes between $" 1$ " and " 2 " due to the inertia loads on the segment, we have
(II-115) $\quad \Delta S_{I-2}=P \dot{\theta}_{z_{8}}^{2} \int_{0}^{\Delta x} m\left(z_{I}+x^{\prime} \frac{\Delta z_{1-2}}{\Delta x}\right) d x^{\prime}$

$$
\text { (II-116) and } \quad \Delta^{\prime} M_{I-2}=P \dot{\theta}_{z_{a}}^{2} \oint^{\Delta x} m\left(z_{I}+x^{\prime} \frac{\Delta z_{I-2}}{d x}\right)\left(\Delta x-x^{\prime}\right) d x^{\prime}
$$

Evaluating these integrals, assuming m constant at its value at "b",

$$
\text { (II-117) value at } \quad \Delta S_{I-2}=P \dot{\theta}_{z_{a}}^{2} m_{b} \Delta x\left(z_{I}+\frac{\Delta z_{1-2}}{2}\right)
$$

$$
\text { (II-1/8) } \quad \Delta^{\prime} M_{I-2}=P \dot{\theta}_{z_{a}}^{2} m_{b} \Delta^{2} x\left(\frac{z_{1}}{2} \div \frac{\Delta z_{1-2}}{6}\right)
$$

Figure II -26 below shows these inertia loads end moments on each segment and their reaction at the root:

The increments in shear and moment shown acting at each station, and defined by equetions $(\pi-\cdots 1)$ and $(r-\| \varepsilon)$, are due to the inertia loads on only the previous segment. For the present, we neglect the inertia shear reaction at the root (S_{o}), and then the total change in moment, say from (2) to (3), $4 l_{2-3}$, due to the inertia load on all the segments is
(II-/19)

$$
\Delta \mathrm{I}_{2-3}=\Delta^{\prime} \mathrm{H}_{2-3}+\Delta x\left(\Delta \mathrm{~S}_{0-1}+\Delta \mathrm{S}_{1-2}\right)
$$

But, from (I-//7),(I-1/ठ):
(II-1/9a) $\quad \Delta^{\prime} M_{2-3}=P \dot{\theta}_{a}^{2} m_{c} \Delta^{2} x\left(\frac{z_{2}}{2}+\frac{\Delta z_{2-3}}{6}\right)$
(b) $\quad \Delta S_{0-1}=P \dot{\theta}_{z_{a}}^{2} n_{a} \Delta x\left(z_{o}+\frac{\Delta z_{0-1}}{2}\right)$
(c) $\quad \Delta S_{1-2}=P \dot{\theta}_{z_{a}^{2}}^{2} m_{b} \Delta x\left(z_{1}+\frac{\Delta z_{1-2}}{2}\right)$

Hence,
($14-120$)

$$
\begin{aligned}
\Delta M_{2-3}= & P \dot{\theta}_{z_{a}^{2}}^{2} \Delta^{2} x\left[m_{c}\left(\frac{z_{2}}{2}+\frac{\Delta z_{2-3}}{6}\right)+m_{a}\left(z_{0}+\frac{\Delta z_{0-1}}{2}\right)\right. \\
& \left.+m_{b}\left(z_{1}+\frac{\Delta z_{1-2}}{2}\right)\right]
\end{aligned}
$$

which, since $m_{c}=m_{a}+\Delta m_{a-b}+\Delta m_{b-c}, m_{b}=m_{a}+\Delta m_{a-b}$, $z_{2}=z_{0}+\Delta z_{0-1}+\Delta z_{1-2}, z_{1} \times z_{0}+\Delta z_{0-1}, z_{0}=0 ;$
can be written as follows:
(II-120a) $\Delta M_{2-3}=P \dot{\theta}_{z_{a}}^{2} \Delta^{2} x\left[z_{1}\left(m_{b}-\frac{\Delta m_{\varepsilon-b}}{2}\right)+z_{2}\left(m_{c}-\frac{\Delta m b-c}{2}\right)+m_{c} \frac{\Delta z_{2-3}}{6}\right]$
However, $\left(m_{b}-\frac{\Delta m_{g-b}}{2}\right)$ and $\left(m_{c}-\frac{\Delta m_{b-c}}{2}\right)$ are respectively, the average line densities of the blede between stations a, b and b, c; and may be taken as the true values at stations (1) and (2).

- Thus
$(\pi-121)$
($\pi x-122$)
$\Delta M_{2-3}=P \dot{\theta}_{z_{e}^{2}}^{2} \Delta^{2} x\left(m_{1} z_{1}+m_{2} z_{2}+\frac{m_{c} \Delta z_{2-3}}{6}\right)$
In neglecting the root shear reaction, S_{0}, we have allowed the inertia shears to accumulate so that at the tip the inertia shear is the sum of 811 the
$\Delta S=\dot{P}_{z_{a}}^{2} \Delta x \mathrm{mz}$
from equations ($\pi-119 b$) and (c), where the m's are at the midpoints of the segments, and the z 's are the average z 's for the segments. The sum of 811 these terms ve call S. It will be convenient to consider the quantity $\Delta x \cdot S$. Thus, for any of the parts into which the actual bending moment is separated,

II - 97

(III-123)
$\Delta x \cdot S=\Sigma \dot{P Q}_{z}^{2} \Delta^{2} x \mathrm{mz}$
where the mz's are taken at the midpoints as above.

The change in deflection, Δz, may be seen to be the change in deflection for the previous segment plus Δx times the change in slope. The change in slope is $\Delta x\left(\frac{M}{E I}\right)$ Thus,
$(\pi-124) \quad \Delta z_{3-4}=\Delta z_{2-3}+\Delta^{2} x\left(\frac{M}{E I}\right)_{3}$
$(I I-124 a) \quad \Delta z_{2-3}=\Delta z_{1-2}+\Delta^{2} x\left(\frac{N}{E I}\right)_{2}$, etc.

- . Δz between any two numbered stations is the sum
of all the $\Delta^{2} x\left(\frac{M}{E I}\right)$ for the previous numbered stations, and of course, z, at any station is the sum of all the previous Δz^{\prime} s.

In equations (II-121), (II-106) and ($x-124$), we have the basis for table $I I-4$, wich has been arrenged in order to allow en untrained computer to carry out the step-by-step process defined by the foregoing analysis. The table is set up for $\Delta x=.1 R$ (i.e., 10 points).

- The verious parts into which the whole bending moment is divided, for any specific harmonic, are es follows:
$M_{1}^{\prime}:$
The bending moment due the known aerodynamic shear loads, the known part of the root moment (due to mechanical damping), and the known slope of the blade at the root (due to "built-in" coning), with

```
II - 98
```

```
            unknown root moment \(=0\)
            unknown root slope \(=0\)
            unknown inertis shear reaction at root \(=0\)
                Initial entries are
            \((1)_{0}=\) know part of root moment
            (4) \(.05=.1 \mathrm{R} \cdot\) known part of root slope \(+(3)_{0}\)
            \((7)_{r}=.1 R \cdot\) total aerodynamic shear at the
                        station "r"
                            \(M_{i}^{\prime}\) may be entered as the titie for column 1 ,
                and the sum of column 13 may be subscripted
                \(\Delta x \cdot S_{M^{\prime}}\).
                    Ci: The bending moment due to a unit root slope,
        with
            root moment \(=0\)
            aerodynamic loeds \(=0\)
        inertia shear reaction at root \(=0\)
        Initial entries:
            \((1)_{0}=0\)
            (4). \(05=. I R\)
            \((7)_{r}=0\)
            Column 1 should be headed " \(C_{i}\) ", and \(\Sigma\) (13)
            should be subscripted \(\Delta x \cdot S_{c}\).
                    E. The bending moment due to a unit shear reaction
            at the root, with
```

$$
\begin{aligned}
& \text { root moment }=0 \\
& \text { aerodynamic loads }=0 \\
& \text { roct slope }=0 \\
& \text { Initial entries: } \\
& (1)_{0}=0 \\
& \text { (4). } .05=0 \\
& (7)_{r}=. I R \\
& \text { Column } 1 \text { is headed } " E_{i} " \text {, and } \Sigma(13) \text { is } \\
& \text { subscriptej } \Delta x \circ S_{E} \text {. } \\
& A_{1} \text { : The bending moment due to } \varepsilon \text { unit root moment, } \\
& \text { with } \\
& \text { aerodynamic loads }=0 \\
& \text { root slope }=0 \\
& \text { inertia shear reaction at root }=0 \\
& \text { Initial entries: } \\
& (1)_{0}=1.000 \\
& \text { (4). } 05=(3)_{0} \\
& (7)_{r}=0 \\
& \text { Column } 1 \text { is headed " } A_{1} \text { ", and } \Sigma(13) \text { is } \\
& \text { subscripted } \Delta x \cdot S_{A} \text {. }
\end{aligned}
$$

For the fully articulated rotor, we need not solve for A_{i}, since we know that the only root moment possible is that due to mechanical damping which is known at the beginning and included in H_{i}^{\prime},

II - 100

In the solution for $\|_{1}^{\prime}$, the initial entries are,
in more detail:

$$
\begin{aligned}
& \text { tail: } \\
& \begin{aligned}
&(I)_{0}= \text { root moment due to med } \\
& M_{I_{0}}^{\prime}, \text { From }
\end{aligned} \\
& \begin{aligned}
M_{I_{0}}^{\prime} & =0 \\
M_{Z_{0}}^{\prime} & =\dot{\theta}_{z_{a}} K_{y} b_{I} \\
M_{30}^{\prime} & =-\dot{\theta}_{z_{a}} K_{y}^{a_{I}} \\
M_{4_{0}}^{\prime} & =2 \dot{\theta}_{z_{a}} K_{y} b_{2} \\
M_{50}^{\prime} & =-2 \dot{\theta}_{z_{a}} K_{y}^{a}{ }^{a}
\end{aligned}
\end{aligned}
$$

(4) $.05^{\circ}$ Since there is no known part of the root slope, (4). $05=(3)_{0}$.
(7) ${ }_{F}$, the total aerodynamic shear at the station x_{r}, is obtained by graphically integrating the airloads given by equation ara).

$$
(\pi-125 a)\left(F_{z}\right)=C_{z} \int_{a}^{1.0} c\left\{\theta_{x_{0}}^{\prime} \frac{\mu^{2}}{2}+\left(\frac{\mu \theta_{t}}{2}+\psi_{2}^{\prime}+\frac{\lambda}{\mu}\right) \mu x_{r}+\left(\theta_{x_{0}^{\prime}}^{\prime}+x_{r} \theta_{t}\right) x_{r}^{2}\right\} d x_{r}
$$

$$
(I I-125 a)\left(F_{z}\right)_{I}=C_{z_{a}} \int_{r}^{1.0} c
$$

$(I-125 c)\left(F_{z}\right)_{3}=c_{z_{a}} \int_{x_{r}}^{1.0} \delta\left(\left(3 \psi_{2}^{\prime}+4 \frac{\lambda}{\mu}+\varepsilon_{1}\right) \frac{\mu^{2}}{4}+2 \theta_{x_{0}}^{\prime} \mu x_{r}+\left(2 \mu \theta_{t}+\psi_{2}^{\prime}-\varepsilon_{1}\right) x_{r}^{2}\right\} d x_{r}$
(d) $\left(F_{z}\right)_{4}=C_{z} \int_{x_{r}}^{l_{n} 0} c\left\{-\theta_{x_{0}^{\prime}}^{\prime} \mu^{2}+\left(a_{1}-\psi_{2}^{\prime}-\frac{\mu \theta_{t}}{2}\right) \mu x_{r}+2 b_{2} x_{r}^{2}\right\} d x_{r}$
(e) $\quad\left(F_{z}\right)_{5}=C_{z_{a}} \int_{x_{r}}^{1.0} c\left\{-a_{0} \frac{\mu^{2}}{2}+\left(b_{1}+\psi_{1}^{\prime}+\frac{\lambda_{1}}{2}\right)_{\mu x_{r}}-2 a_{2} x_{r}^{2}\right\} d x_{r}$

It is not necessary in this case to erbitrarily modify the air load curves so thet they exactly satisfy equation(r-39), since in the step-by-step method the inertia loads are determined simultaneously with the bending moments, and, therefore, the error in the bending moments should not exceed the error in the air loads. In the collocation method (pp. IT-65) this was not the case, and errors in the bending moments due to inconsistencies in the flapping coefficients might be many times the error so caused in the eir loads. In order to compare the results by collocation and the tabular methods, however, it is obvious that the same air loads should be used in both methods.

When M_{i}^{\prime}, C_{i}, and E_{i} are known, the total moment at any station is
(IT-126) $\quad M_{i}=M_{i}^{\prime}+C_{i}\left(\frac{d z}{d x}\right)_{o_{i}}+S_{o_{i}} E_{i}$
Where $\left(\frac{d z}{d x}\right)$ and $S_{o_{i}}$, the root slope and inertia shear reaction at the root, are as yet unknown.

However, at the tip $M_{i}=0$; and the inertia shear is zero, so

$$
\text { (II-128) }\left(\frac{d z}{d x}\right)_{0}=-\frac{M^{1}}{C} \text { at the tip. }
$$

For $1=2,3$; by setting

$$
M=M^{r}+C\left(\frac{d z}{d x}\right)_{0}+S_{0} E=0 \text { at tip, }
$$

and solving with (II-127) we find

$$
(I I-129) \quad S_{0}=\frac{(\Delta x S)_{M^{\prime}}}{(\Delta x S)_{E}}\left\{\frac{\frac{C}{(\Delta x S)_{C}}-\frac{M^{\prime}}{(\Delta x S)_{M}}}{\frac{E}{(\Delta x S)_{E}}-\frac{C}{(\Delta x S)_{c}}\left[1-\frac{.1 R}{(\Delta x S)_{E}}\right]}\right\}
$$

$$
(\pi-130) \quad \text { and } \quad\left(\frac{d z}{d x}\right)_{0}=-\frac{M^{1}+S_{0} E}{C}
$$

It will, however, be found that equation ($4-127$) for S_{0} reduces to the indeterminate form $\frac{0}{0}$, since

$$
\frac{C}{(\Delta x S)_{c}}=\frac{M^{\prime}}{(\Delta x S)_{M \prime}}=\frac{E}{(\Delta x S)_{E}-\cdot I R}
$$

This may be interpreted as meaning that any combination $\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)_{0}$ and S_{0} which satisfies equation (II-/30) could be chosen, without affecting the bending moments. If we choose $\left(\frac{d z}{d x}\right)_{0}=0$, then $S_{0}=-\frac{M^{\prime}}{E}$ (for $x_{r}=1.00$, of course),

$$
\begin{aligned}
& S_{M^{\prime}}+\left(\frac{d z}{d x}\right)_{0} S_{c}+S_{0}{ }^{\circ} S_{E}-S_{o}=0 \\
& \text { or, wultiplying through by } \Delta x=\circ 1 R \text {, } \\
& \text { (II-127) } \quad(\Delta x S)_{M}+\left(\frac{d z}{d x}\right)_{0}(\Delta x S)_{c}+S_{0}\left[(\Delta x S)_{E}-. I R\right]=0 \\
& \text { For } 1=1 ; \quad P=0, E=(\Delta x \cdot S)_{M 1}=(\Delta x S)_{c}=S_{0}=0
\end{aligned}
$$

$$
\text { II - } 103
$$

and

$$
(\pi I-131)
$$

at every station. Obviously, the solutions of table I-4

For $i=4,5 ; P \neq 0$ and by setting $(a, i v)=0$ and

II-/29) $\quad S_{0}=\frac{1 M}{(\Delta x S)_{E}}\left\{\frac{E}{\frac{E}{(\Delta x S)_{E}}-\frac{C}{(\Delta x S)_{C}}\left[1-\frac{.1 R}{(\Delta x S)_{E}}\right]}\right\}$
and
(I I-130)
where C, E, M^{\prime} are for $X_{r}=1.00$.
Hence, M_{i} is determined at every station.
There are some approximations involved in the method which may be pointed out -
a) As in the collocation method, the air loads are computed assuming a stiff blade. act parallel
b) The centrifugal forces are assumed coning and flapping tu the $X^{\prime} Y^{\prime}$ plane. Forbore would be negligible. angles, the errors so also made in the collocation These assumptions are also. In fact, the tabular solution, pp E c method is esse which forms the bests for the equation j method.

1:	1	2	3	6	- 5	6	7	8	9	10	11	12	13
${ }_{\text {Sta }}^{\left(x_{2}\right)}$		$\frac{.801{ }^{2}}{}{ }^{2}$	(1) $\cdot \frac{.10 R^{2}}{81}$	4 s	${ }^{\left(F_{x}\right)}{ }^{\text {a }}$. $18\left(r_{x}\right)$	$\mathrm{P}=\mathrm{S}_{2}^{2} \mathrm{I}_{4}(.1 \mathrm{R})^{2}$:	(8) $\cdot 3$	$\Sigma(10)$	- $\frac{18}{6}$	$\Delta(\Delta x \cdot s)$
0				---	\cdots	---	--		0		--	---	\cdots
. 05	---	---	---							---			
. 10				---	-.-	---	---				\cdots	---	\cdots
.15	---	---	---							---			
. 20				---	\cdots	\cdots	\cdots				\cdots	---	--
. 25	---	\cdots	---							---			
. 30				\cdots	---	\cdots	\cdots				\cdots	---	---
. 35	---	\cdots	\cdots							---			
. 60				\cdots	\cdots	---	--				\cdots	---	\cdots
4.45	---	-	\cdots							---			
. 50				-.-	---	\cdots	---				\cdots	\cdots	---
. 55	\cdots	---	\cdots							\cdots			
. 60				\cdots	\cdots	---	---				\cdots	---	---
. 65	---	---	---							---			
. 70				\cdots	---	\cdots	\cdots				---	\cdots	---
. 75	---	\cdots	\cdots							---			
.80				---	---	\cdots	---				---	---	--
. 85	---	---	---							---			
. 0				---	\cdots	---	---				---	-..	---
. 95	\cdots	\cdots	---							---			
1.00		---	--.	\cdots	--	\cdots	---				---	\cdots	--
									Soe	explanation	on next pag	($\left(\Delta_{x} \cdot s\right)$	

II - 105

Explanation for Table II -4.

Instructions for filling out the table:
Let $(n)_{r}$ be the value in column n, station r.
Columns 2, 5, 7, 8 depend on physical characteristics of blade, except that "P" depends on the harmonic being considered (p. II -93).
$(1)_{0}=$ initial entry; (3) $0=(1)_{0} \cdot(2)_{0} ;(4) .05=(3)_{0}$
or initial entry; (6).05 $=(4) .05 \cdot(5)^{2} .05 ;(9)_{0}=0$;
(9) $.05=(9)_{0}+\frac{1}{2}(4) .05 ;(10)_{0}=(8)_{0}(9)_{0} ;$
$(11) .05=(10)_{0} ;(12) .05=(8) .05 \cdot \frac{1}{6}(4) .05$;
$(13) .05=(8) .05 \cdot(9) .05 ;(1) .10=(1)_{0}+(6) .05$
$-(7) .05+(11) .05+(12) .05^{;}$(3).10 $=(2) .10^{(1)} .10^{\text {; }}$
(4) $.15=(4) .05+(3) .10 ;(6) .15=(4) .15 \cdot(5) .15$;
(9).10 $=(9)_{0}+(4) .05 ;(9) .15=(9) .10+\frac{1}{2}(4) .15$;
$(10) .10=(8) .10^{(9)} .10^{;(11)} .15^{(11)} .05^{(10)} .10^{9}$
$(12) .15=(8) .15^{\cdot \frac{1}{6} \cdot(4) .15 ;(13) .15=(8) .15 \cdot(9) .15 ;}$
(1) $.20=(1) .10^{+(6)} \cdot 15^{-(7) .15+(11)} .15^{+(12)} .15^{\text {; }}$
and so on. Finally, $\Delta X \cdot S=\Sigma$ (IS)
Column (I) should be labelled according to the part of the moment being computed. A discussion of the various end conditions and initial entries is given on page $\mathbb{-}-97$.

Calculation of Bending Moments and Deflection Curve In

The same theory for the "edgewise" deflections is very neariy
As before, fore "flatulse" deflections, reference ill Instantaneous position ce inge for the define given on poorly the drag binds, the in ne the infinitely stiffens is the thru the z^{\prime} axis and makes an angle the blade element With
When the blade bends the drag hinge, ${ }^{a} b_{f}$ With the plane therefore, approximately, deflection, 0, , We assume that

$$
\begin{aligned}
& \text { (II-132a) } \quad \theta_{z_{b_{f}}}=\theta_{z_{b}}+\frac{y}{x} \\
& \text { (b) } \\
& \theta_{z_{b_{f}}}-\theta_{z_{b}}-\left(\tau_{f}-\tau\right)=\frac{y}{x+r_{I}} \\
& \text { (c) } i_{f}=\theta_{z_{b}}+\frac{d y}{d x}
\end{aligned}
$$

Forces on the blade element

1) External forces (ref. fig. [-27)
a) $\left(\mathrm{F}_{\mathrm{f}_{f}}\right)$ is the aerodynamic drag force -
$(\bar{z}-133) \quad\left(\mathrm{F}_{\mathrm{y}_{\mathrm{f}}}\right)=+\frac{1}{2} \rho \mathrm{P} \mathrm{V}_{\mathrm{f}}^{2} \mathrm{~F}\left(\mathrm{C}_{\mathrm{I}_{\mathrm{f}}}\right)$
where $F\left(C_{I_{f}}\right)$ contains the drag coefficient and is a function of $C_{I_{f}}$ only, since the profile drag coefficient is a function of lift coefficient.
b) $\left(F_{Y}\right)_{f_{m}}$ is the inertia force due to ecceleration perpendicular to line $0^{\prime} x_{f}$ -
$(I I-134) \quad\left(F_{y_{f}^{\prime}}\right)=m x_{f}\left(2 \theta_{y_{f}} \dot{\theta}_{f} \dot{\theta}_{z_{a}}-\ddot{\theta}_{z}\right) d x_{f}$ (ref. equation $(\pi-8 c)$ p. $\pi-8$)
c) $\left(F_{x_{f}}\right)$ is the inertia force due to acceleration along the line $0^{\prime} x_{f}$
$(\pi-135) \quad\left(F_{x_{f}}\right)_{m}=m x_{f} \dot{\theta}_{z_{a}}^{2} d x_{f}$ (ref. equation ($\pi-8 b$) p. $\mathbb{Z}-8$)
2) Internal forces

Exactly as in the case of flatwise forces acting internally, p.r-67, we have

a) Shear forces S_{f} and $\left(S_{f}+d S_{f}\right)$ acting on element as shown.
b) Bending moments
$M_{z_{1}}$
and $\left(M_{z_{1_{f}}}+d M_{z_{1_{f}}}\right)$
as shown.
c) Longitudinal tensile forces, $F_{x_{f}}$ and $\left(F_{x_{f}}+d F_{x_{f}}\right)$
producing a forwards force $F_{y_{t}}=F_{x_{f}} d_{f}$.
Equating the sum of all forces, dynamic and static, acting perpendicular to the blade element, to zero:

$$
(\text { II }-137)
$$

$$
\begin{aligned}
\Sigma\left(F_{y_{f}}\right)= & \left(F_{y_{f}}\right)+\left(F_{y_{f}}\right) \cos \left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right) \\
& -\left(F_{x_{f}}\right) \sin \left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right)+d s_{f}+p_{y_{t}}=0
\end{aligned}
$$

and equating forces parallel to blade element to zero:

$$
\begin{aligned}
(x-138) \quad \Sigma\left(F_{x_{f}}\right)= & \left(F_{y_{f}}\right) \sin \left(\varphi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right) \\
& +\left(F_{x_{f}}\right) \cos \left(\varphi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right)-d F_{x_{f}}=0
\end{aligned}
$$

Substituting ($7 \mathrm{I}-133$); ($x-136$) from (I I-137), ($I I-138$) we find the equations of motion of the flexible blade:
(I I-139) $\quad \frac{1}{2} \rho c V_{f}^{2} F\left(c_{1_{f}}\right)+m x_{f}\left(2 \theta_{y_{f}} \dot{\theta}_{y_{f}} \dot{\theta}_{z_{a}}-\ddot{\theta}_{z_{f}}\right) \cos \left(\phi_{f}-0_{z_{b}}+r_{f}\right) d x_{f}$

$$
-m x_{f} \dot{\theta}_{z_{a}}^{2} \sin \left(\varphi_{f}-\epsilon_{z_{b_{f}}}+\tau_{f}\right) d x_{f}+d S_{f}+F_{x_{f}} d \Phi_{f}=0
$$

and
$(\pi-140) \quad-\operatorname{mx}_{f}\left(2 \theta_{y_{f}} \dot{\theta}_{y_{f}} \dot{\theta}_{z_{a}}-\bar{\theta}_{z_{f}}\right) \sin \left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right) d x_{f}$
$+m x_{f} \dot{\theta}_{z_{a}}^{2} \cos \left(\phi_{f}-\theta_{z_{b_{f}}}+r_{f}\right) d x_{f}-d F_{x_{f}}=0$

Since $\phi_{f}, \theta_{z_{b_{f}}}, \tau_{f}$ are small angles, we take $V_{f}=V, x_{f}=x$
$\cos \left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right)=1.00$,
$\sin \left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right)=\left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right)$
$\left(2 \theta_{\mathrm{y}} \dot{\theta}_{\mathrm{y}_{\mathrm{f}}} \dot{\theta}_{\mathrm{z}}-\ddot{\theta}_{z_{f}}\right) \sin \left(\phi_{\mathrm{f}}-\theta_{z_{b_{f}}}+\tau_{\mathrm{f}}\right)=0$
Using these assumptions, $(\pi-139)$ reduces to:
(II-14I) $\quad \frac{1}{2} \rho c V^{2} F\left(C_{I_{f}}\right)+m x\left(2 \theta_{y_{f}} \dot{\theta}_{y_{f}} \dot{\theta}_{z_{a}}-\bar{\theta}_{z_{f}}\right) d x$
$-\operatorname{mx} \dot{\theta}_{z_{a}}^{2}\left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}\right) d x+d S_{f}+F_{x_{f}}{ }^{d \phi}{ }_{f}=0$

$$
\begin{array}{ll}
& \text { and }(I I-140) \text { to: } \\
(I \pi-142) & \max _{z_{a}}^{2} d x-d F_{x_{f}}=0
\end{array}
$$

For a stiff blade, dropping subscript " $f^{\prime \prime}$ and setting * $=\theta_{\Sigma_{\mathrm{b}}}, \mathrm{d} \varphi=0,(\pi-141)$ becomes
(II-143) $\quad \frac{1}{2} \rho C V^{2} F\left(C_{1}\right)+\operatorname{mx}\left(2 \theta_{y} \dot{\theta}_{y} \dot{\theta}_{z}-\ddot{\theta}_{z}\right) d x$

$$
-\max _{z_{a}}^{\dot{\theta}_{a}^{2}}(z) d x+d S=0
$$

Integrating ($I I-142)$
(II-144) $\quad \mathrm{F}_{x_{f}}=\dot{\theta}_{z_{a}}^{2} \quad \int_{x}^{R} m x d x=\dot{0} \dot{z}_{a} M_{m_{x}}$
where $M_{m_{x}}$ is the "mass moment" of the blade outboard of station x, about the z^{\prime} axis (axis of rotation).

Subtracting (II-143) from (II-141):

$$
\begin{aligned}
(I I-145) \quad & \frac{1}{2} \rho c v^{2}\left[F\left(c_{I_{f}}\right)-F\left(c_{I}\right)\right] \\
& +m x\left[2 \dot{\theta}_{z_{a}}\left(\theta_{y_{f}} \dot{\theta}_{y_{f}}-\theta_{f} \dot{\theta}_{y}\right)-\left(\ddot{\theta}_{z_{f}}-\ddot{\theta}_{z}\right)\right] d x \\
& -m x \dot{\theta}_{z_{a}}^{2}\left(\phi_{f}-\theta_{z_{b_{f}}}+\tau_{f}-\tau\right) d x+d S_{f} \\
& -d S+F_{x_{f}} d \phi_{f}=0
\end{aligned}
$$

Assuming $\theta_{y} \theta_{y}=\theta_{y_{f}} \theta_{y_{f}}$, and $C_{I}=C_{I_{f}}$, and substituting from ($\pi T-132$) and ($\pi-144$)
($\overline{-146)}$

As in the section on "Flatwise" deflections, p. IF -7C, the $\operatorname{term} \frac{d S_{f}}{d x}$ is
(II-147) $\quad \frac{d S_{f}}{d x}=-\frac{d^{2}(E I)}{d x^{2}} \cdot \frac{d^{2} y}{d x^{2}}-2 \frac{d(E I)}{d x} \frac{d^{3} y}{d x^{3}}-E I \frac{d^{4} y}{d x^{4}}$
$\frac{d S}{d x}$ represents the distribution of load on the stiff blade and is in two parts, aerodynamic (given by equations (I I-34) pp. π (-21) and inertia. The inertia load is given by equation (z. $8 c$) p. II-S
(I I-148)

$$
\begin{aligned}
\frac{d\left(F_{y}\right)_{m}}{d x_{r}} & =R^{2} m x_{r}\left(2 \theta_{y} \dot{\theta}_{y} \dot{\theta}_{z_{a}}-\ddot{\theta}_{z}\right) \\
& =4 m R^{2} x_{r} \dot{\theta}_{z_{a}}^{2}\left\{\left(\frac{e_{1}}{4}-\frac{a_{0} b_{1}}{2}-\frac{b_{1} a_{2}}{2}+\frac{a_{1} b_{2}}{2}\right) \cos \theta_{z_{a}}\right. \\
& +\left(\frac{f_{1}}{4}+\frac{a_{0} \dot{a}_{1}}{2}-\frac{a_{1} a_{2}}{4}-\frac{b_{1} b_{2}}{4}\right) \sin \theta_{z_{a}} \\
& +\left(e_{2}-a_{0} b_{2}+\frac{a_{1} b_{1}}{2}\right) \cos 2 \theta_{z_{a}} \\
& \left.+\left(f_{2}+a_{2} a_{0}+\frac{b_{1}{ }^{2}}{4}-\frac{a_{1}{ }^{2}}{4}\right) \sin 2 \theta_{z_{a}}\right\}
\end{aligned}
$$

Then
$(I f-149) \quad \frac{d S}{d x}=\left(\frac{d\left(F_{y}\right)_{a_{L}}}{d x_{r}}+\frac{d\left(F_{y}\right)_{a_{D}}}{d x_{r}}+\frac{d\left(F_{y}\right)_{m}}{d x_{r}}\right) / R$.
Since the forcing function, $\frac{d S}{d x_{r}}$ is a harmonic function of $\theta_{z_{a}}$, so is the steady state solution for y. We, therefore, let $y_{r}=y / R$ and
 the $\frac{r_{1}}{x}$ term $\ln (\pi-146)$, we obtain five differential equations for $Y_{r_{1}}$ by equating coefficients of identical trigonometric
form given below: Conveniently write these equations in the

$$
\begin{aligned}
& (\pi-15) \quad A_{i}^{\prime} \frac{d^{4} y_{r_{1}}}{d x_{r}^{4}}+B_{1}^{\prime} \frac{d^{3} y_{r_{1}}}{d x_{r}^{3}}+C_{1}^{\prime} \frac{d^{2} z_{r_{1}}}{d x_{r}^{2}}+D_{1}^{\prime} x_{r} \frac{d y_{r_{1}}}{d x_{r}}-E_{1}^{\prime} y_{r_{1}} \\
& =F_{1}^{\prime}+G_{1}^{\prime} x_{r}+H_{1}^{\prime} x_{r}^{2}+I_{1}^{\prime} x_{r}^{3}+J_{1}^{\prime} x_{r}^{4}
\end{aligned}
$$

$$
A_{I}^{\prime}=A_{2}^{\prime}=A_{3}^{\prime}=A_{4}^{\prime}=A_{5}^{\prime}=E I / R^{3}
$$

$$
\begin{aligned}
& B_{1}^{\prime}=B_{2}^{\prime}=B_{3}^{\prime}=B_{4}^{\prime}=B_{5}^{\prime}=\frac{2}{R^{3}} \frac{d(E I)}{d X_{r}} \\
& C_{1}^{\prime}=C_{2}^{\prime}=C^{\prime}-n^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}^{\prime}=c_{2}^{\prime}=c_{3}^{\prime}=c_{4}^{\prime}=c_{5}^{\prime}=\frac{1}{R^{3}} \frac{d^{2}(E I)}{d x_{r}^{2}}-\dot{\theta}_{z}^{2} M_{m} \\
& D_{1}^{\prime}=D_{1}^{\prime}=D^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}^{\prime}=D_{2}^{\prime}=D_{3}^{\prime}=D_{4}^{\prime}=D_{5}^{\prime}=E_{1}^{\prime}=\frac{E_{2}^{\prime}}{2}=\frac{E_{3}^{\prime}}{2}=\frac{E_{4}^{\prime}}{5}=\frac{E_{5}^{\prime}}{5}=\operatorname{Rm}_{z_{a}^{2}}^{2} \\
& F_{1}^{\prime}=\frac{{ }_{z}^{2}}{z_{a}} \mu^{2}
\end{aligned}
$$

$$
F_{I}^{\prime}=\frac{c c_{z}}{R} \frac{\mu^{2}}{2}\left\{\frac{\lambda}{\mu}\left(2 \frac{\lambda}{\mu}+\psi_{2}^{\prime}+2 a_{1}\right)+a_{0}^{2}+\frac{3}{4} a_{1}^{2}\right.
$$

$$
\begin{aligned}
& \left\{\frac{\delta_{0}}{a}-\frac{\delta_{2}}{a}\left[2 \frac{\lambda}{\mu}\left(\frac{\lambda}{\mu}+\psi_{2}^{\prime}+a_{1}\right)\right]\right\} \\
& \left\{\frac{2 \lambda}{1}(a\right.
\end{aligned}
$$

$$
F_{2}^{\prime}=\frac{c c_{z}}{R} \frac{\mu^{2}}{2}\left\{\frac{2 \lambda}{\mu}\left(a_{2}-2 a_{0}\right)-3 a_{1} a_{0}+4 \frac{\delta_{2}}{a_{0}} \frac{\lambda}{\mu} a_{0}\right\}
$$

$$
\begin{aligned}
& (\pi-150) y_{r}=y_{r_{1}}+y_{r_{2}}{ }^{\cos \theta_{z_{a}}}+y_{r_{3}} \sin \theta_{z_{a}}+y_{r_{4}} \cos 2 \theta_{z_{a}}+y_{r_{5}} \sin 2 \theta_{z_{a}} \\
& \therefore \frac{d^{2} y}{d t^{2}}=-R \dot{\theta} z_{a}\left(y_{r_{2}} \cos \theta_{z_{a}}+y_{r_{3}} \sin \theta_{z_{a}}+4 y_{r_{4}} \cos 2 \theta_{z_{a}}\right. \\
& +4 y_{r_{5}}{\sin 2 \theta_{z_{a}}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{3}^{\prime}=\frac{c_{z_{a}}}{R} \frac{\mu^{2}}{2}\left\{2 \frac{\partial}{\mu}\left(\theta_{x_{0}}^{\prime}+b_{2}\right)-a_{0} b_{1}-\frac{\delta_{1}}{a} 2 \frac{\lambda}{\mu}-4 \frac{\delta_{2}}{a} \frac{\lambda}{\mu} Q_{x_{0}}^{\prime}\right\} \\
& F_{4}^{\prime}=\frac{{ }^{c C_{z}}{ }_{a}}{R} \frac{\mu^{2}}{2}\left\{\begin{array}{l}
\frac{\lambda}{\mu}\left(2 a_{1}-\psi_{2}^{\prime}\right)+a_{0}^{2}+a_{1}^{2}+ \\
+\frac{\delta_{0}}{a}-\frac{\delta_{2}}{a}\left\{2 \frac{\lambda}{\mu}\left(a_{1}-\psi_{2}^{\prime}\right)\right]
\end{array}\right. \\
& F_{5}^{\prime}=\frac{{ }^{c C_{z_{a}}}}{R} \frac{\mu^{2}}{2}\left\{\frac{\lambda}{\mu}\left(2 b_{1}+\psi_{1}^{\prime}\right)-a_{0} \theta^{\prime}{x_{0}}_{0}+a_{2} b_{1}-\right. \\
& \left.-2 \frac{\delta_{2}}{a} \frac{\lambda}{\mu}\left(b_{1}+\psi_{1}^{\prime}\right)\right\} \text {. } \\
& \begin{aligned}
G_{1}^{\prime}=\frac{c c_{z_{a}}}{R} & \mu\left\{\frac{\lambda}{\mu} a_{x_{0}}^{\prime}-\frac{a_{0} \psi_{1}^{\prime}}{2}-a_{0} \lambda_{1}-a_{0} b_{1}-\frac{b_{1} a_{2}}{2}+\frac{a_{1} b_{2}}{2}\right. \\
& \left.-\frac{\delta_{1}}{a}\left(\frac{\lambda}{\mu}+\psi_{2}^{\prime}\right)-\frac{\delta_{2}}{a}\left[2 \theta_{x_{0}}^{\prime}\left(\frac{\lambda}{\mu}+\psi_{2}^{\prime}\right)-a_{0}\left(b_{1}+\psi_{1}^{\prime}\right)\right]\right\}
\end{aligned} \\
& G_{2}^{\prime}=\frac{c c_{z_{a}}}{R} \mu\left\{\begin{array}{l}
\frac{\lambda}{\mu}\left(2 b_{1}+\psi_{1}^{\prime}\right)-a_{0} \theta_{x_{0}}^{\prime}+\frac{a_{1} \psi_{1}^{\prime}}{2}+\frac{b_{1} \psi_{2}^{\prime}}{2}+a_{1} b_{1}
\end{array}\right. \\
& +\frac{2 \lambda \lambda_{1}}{\mu}+\frac{3}{2} \lambda_{1} a_{1}-\frac{a_{2}{ }^{0} x_{0}}{2}-2 a_{0} b_{2}+ \\
& +\frac{\delta_{1}}{a} a_{0}-\frac{\delta_{2}}{a}\left[2 \frac{\lambda}{\mu}\left(b_{1}+\psi_{1}^{\prime}+\lambda_{1}\right)+\left(a_{1}+\psi_{2}^{\prime}\right)\left(b_{1}+\psi_{1}^{\prime}\right)\right. \\
& \left.\left.-2 a_{0} \theta_{x_{0}}^{\prime}\right\}\right\}+\operatorname{mR} \dot{\theta}_{z_{a}}^{2}\left(e_{1}-2 a_{0} b_{1}+2 a_{1} b_{2}-2 b_{1} a_{2}\right) \\
& G_{3}^{\prime}=\frac{c C_{z_{a}}}{R} \mu\left\{\frac{\lambda}{\mu}\left(\mu \theta_{t}-2 a_{1}\right)+\frac{b_{1} \psi_{1}^{\prime}}{2}-\frac{5}{4} a_{1} \Psi_{2}^{\prime}-\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}\right. \\
& +\frac{1}{2} b_{1} \lambda_{1}-\frac{1}{2} b_{2} \theta_{x_{0}}^{\prime}+2 a_{2} a_{0}-2 \frac{\delta_{0}}{\varepsilon}-2 \frac{\delta_{1}}{2} \theta_{x_{0}}^{\prime} \\
& -\frac{\delta_{2}}{a}\left[2 \frac{\lambda}{\mu}\left(\psi_{2}^{\prime}-a_{1}\right)+\frac{1}{2}\left(b_{1}+\psi_{1}^{\prime}\right)^{2}-\frac{a_{1}{ }^{2}}{2}+\frac{3}{2} \psi_{2}^{\prime 2}\right. \\
& \left.\left.+2 \theta_{x_{0}}^{\prime 2}+2 \lambda \theta_{t}-a_{1} \psi_{2}^{\prime}+2 a_{1} a_{2}\right]\right\} \\
& +\operatorname{mR}_{\operatorname{Diz}_{2}}^{\sum_{a}}\left(f_{1}+2 a_{0} a_{1}-a_{1} a_{2}-b_{1} b_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{4}^{\prime}=\frac{c C_{z}}{R} \mu\left\{4 \frac{\lambda}{\mu} b_{2}+a_{1} \theta_{x_{0}}^{\prime}-\frac{a_{0} \psi_{1}^{\prime}}{2}-a_{0} b_{1}+\frac{1}{2} a_{2} \psi_{1}^{\prime}+b_{2} \psi_{2}^{\prime}\right. \\
& +2 a_{1} b_{2}+b_{1} a_{2}-a_{0} \lambda_{1}+a_{2} \lambda_{1}-\frac{\delta_{1}}{a^{2}}\left(a_{1}-\psi_{2}^{\prime}\right) \\
& -\frac{\delta_{2}}{a}\left[4 \frac{\lambda}{\mu} b_{2}+2 a_{1}\left(b_{2}+\theta_{x_{0}}^{\prime}\right)+2 \psi_{2}^{\prime}\left(b_{2}-\theta_{x_{0}}^{\prime}\right)\right. \\
& \left.\left.-a_{0}\left(b_{1}+\psi_{1}^{\prime}\right)\right]\right\} \\
& +\operatorname{mR} \dot{\theta}_{z_{a}}^{2}\left(4 e_{2}-4 a_{0} b_{2}+2 a_{1} b_{1}\right) \\
& G_{5}^{\prime}=\frac{c c_{z}}{R} \mu\left\{-4 \frac{\lambda}{\mu} a_{2}+b_{1} \theta_{x_{0}}^{\prime}-\frac{1}{2} a_{0} \psi_{2}^{\prime}-\frac{1}{2} a_{0} \mu \theta_{t}+a_{1} a_{0}\right. \\
& +\frac{1}{2} b_{2} \psi_{1}^{\prime}+a_{2} \psi_{2}^{\prime}-2 a_{1} a_{2}+b_{1} b_{2}+\frac{1}{2} \lambda_{1} \theta_{x_{0}}^{\prime} \\
& -\frac{\delta_{1}}{a}\left(b_{1}+\psi_{1}^{\prime}\right)-\frac{\delta_{2}}{a}\left[2 \theta_{x_{0}}^{\prime}\left(b_{1}+\psi_{1}^{\prime}\right)-4 \frac{\lambda}{\mu} a_{2}\right. \\
& \left.\left.-2 a_{2}\left(a_{1}+\psi_{2}^{\prime}\right)+a_{0}\left(a_{1}-\psi_{2}^{\prime}\right)\right]\right\} \\
& +m \dot{\theta}_{z_{a}}^{2}\left(4 f_{2}+4 \varepsilon_{0} a_{2}+b_{1}^{2}-a_{1}^{2}\right) . \\
& H_{1}^{\prime}=\frac{c c_{z}}{R}\left\{\lambda \theta_{t}+\frac{1}{2} b_{1} \psi_{1}^{\prime}-\frac{1}{2} a_{1} \psi_{2}^{\prime}+\frac{\lambda_{1}^{2}}{2}+\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}+2 a_{2}^{2}\right. \\
& +2 b_{2}^{2}+\frac{1}{2} \lambda_{1}\left(2 b_{1}+\psi_{1}^{\prime}\right)-\frac{\delta_{0}}{a}-\frac{\delta_{1}}{a} \theta_{x_{0}}^{\prime} \\
& -\frac{\delta_{2}}{a}\left[2 \lambda \theta_{t}+2 \mu \theta_{t} \psi_{2}^{\prime}-a_{1} \psi_{2}^{\prime}+\psi_{1}^{\prime}\left(b_{1}+\lambda_{1}\right)\right. \\
& \left.\left.+b_{1} \lambda_{1}+\theta_{x_{0}}^{\prime 2}+\frac{\psi_{2}^{\prime 2}}{2}+\frac{a_{1}^{2}}{2}+\frac{\psi_{1}^{\prime 2}}{2}+\frac{b_{1}^{2}}{2}\right]\right\}
\end{aligned}
$$

1

$$
\begin{aligned}
& H_{2}^{\prime}=\frac{c c_{z_{a}}}{R}\left\{\theta_{x_{0}}^{\prime}\left(b_{1}+\lambda_{1}\right)-\mu \theta_{t}\left(a_{0}+\frac{a_{2}}{2}\right)+b_{2} \mu_{1}^{\prime}\right. \\
& -a_{2} \psi_{2}^{\prime}+2 b_{1} b_{2}+2 a_{1} \varepsilon_{2}+2 b_{2} \lambda_{1} \\
& -\frac{\delta_{1}}{a}\left(b_{1}+\lambda_{1}+\psi_{1}^{\prime}\right)-\frac{\delta_{2}}{a}\left[2\left(b_{2}+o_{x_{0}}^{\prime}\right)\left(b_{1}+\lambda_{1}+\psi_{1}^{\prime}\right)\right. \\
& \left.\left.+2 a_{2}^{\prime}\left(a_{1}-\psi_{2}^{\prime}\right)-2 \mu \theta_{t} s_{0}\right]\right\} \\
& H_{3}^{\prime}=\frac{c c_{\Sigma_{a}}}{R}\left\{-a_{1} \theta_{x_{0}}^{\prime}-2 a_{2} \lambda_{1}-\frac{1}{2} \mu \theta_{t} b_{2}-a_{2} \psi_{1}^{\prime}-b_{2} \psi_{2}^{\prime}\right. \\
& +2 a_{1} b_{2}-2 b_{1} a_{2}-\frac{\delta_{1}}{a_{1}}\left(2 \mu \theta_{t}+\psi_{2}^{\prime}-a_{1}\right) \\
& -\frac{\delta_{2}}{a}\left[2 \theta_{x_{0}}^{\prime}\left(2 \mu \theta_{t}-a_{1}+\psi_{2}^{\prime}\right)+2 b_{2}\left(a_{1}-\psi_{2}^{\prime}\right)\right. \\
& \left.\left.-2 a_{2}\left(b_{1}+\lambda_{1}+\psi_{1}^{\prime}\right)\right]\right\} \\
& H_{4}^{\prime}=\frac{c C_{z_{a}}}{R}\left\{\begin{array}{c}
\frac{1}{2} b_{1} \Psi_{1}^{\prime}+\frac{1}{2}{ }^{a_{1}} \psi_{2}^{\prime}-\frac{a_{1}{ }^{2}}{\lambda^{2}}+\frac{b_{1}{ }^{2}}{2}+2 b_{2} \theta^{\prime} x_{0}+\mu \theta_{t}{ }^{a_{1}} \\
\lambda_{1}
\end{array}\right. \\
& +\frac{1}{2} \lambda_{1} \Psi_{1}^{\prime}+b_{1} \lambda_{1}+\frac{\lambda_{1}^{2}}{2}-\frac{\delta_{1}}{a} 2 b_{2} \\
& -\frac{\delta_{2}}{2}\left[4 b_{2} \theta_{t_{0}}^{\prime}+\mu \theta_{t}\left(2 a_{1}-2 \psi_{2}^{\prime}-\frac{\mu \theta_{t}}{2}\right)-\frac{1}{2}\left(a_{1}-\psi_{2}^{\prime}\right)^{2}\right. \\
& \left.\left.+\psi_{1}^{\prime}\left(b_{1}+\lambda_{1}+\frac{\psi_{1}^{\prime}}{2}\right)+\frac{1}{2}\left(b_{1}+\lambda_{1}\right)^{2}\right]\right\} \\
& H_{5}^{\prime}=\frac{c C_{z_{a}}}{R}\left\{\frac{1}{2} b_{1} \Psi_{2}^{\prime}-\frac{1}{2} a_{1} \Psi_{1}^{\prime}-a_{1} b_{1}-2 a_{2} \theta_{x_{0}}^{\prime}+\mu \theta_{t} b_{1}\right. \\
& +\frac{1}{2} \lambda_{1} \psi_{2}^{\prime}+\frac{1}{2} \mu \theta_{t} \lambda_{1}-\lambda_{1} a_{1}+\frac{\delta_{1}}{a} 2 a_{2} \\
& -\frac{\delta_{2}}{a}\left[2 \mu \theta_{t}\left(b_{1}+\psi_{1}^{\prime}\right)-\left(a_{1}-\psi_{2}^{\prime}\right)\left(b_{1}+\lambda_{1}+\psi_{1}^{\prime}\right)\right. \\
& \left.-4 a_{2} \theta^{\prime} x_{0}\right\}
\end{aligned}
$$

$$
I I-116
$$

$$
\begin{aligned}
& I_{1}^{\prime}=\frac{c c_{z_{a}}}{R}\left\{-\frac{\delta_{1}}{a} o_{t}-\frac{\delta_{2}}{a} \cdot 2 \theta_{t} \theta_{x_{0}}^{\prime}\right\} \\
& I_{2}^{\prime}=\frac{c c_{z_{a}}}{R}\left\{\theta_{t}\left(b_{1}+\lambda_{1}\right)-\frac{\delta_{2}}{a}\left[2 \theta_{t}\left(b_{1}+\lambda_{1}+\psi_{1}^{\prime}\right)\right]\right\} \\
& I_{3}^{\prime}=\frac{c c_{z}}{R}\left\{-a_{1} \theta_{t}-\frac{\delta_{2}}{a} 2 \theta_{t}\left(\mu \theta_{t}-a_{1}+\psi_{2}^{\prime}\right)\right\} \\
& I_{4}^{\prime}=\frac{c C_{a}}{R}\left\{2 \theta_{t} b_{2}-\frac{\delta_{2}}{R} \cdot 4 b_{2} \theta_{t}\right\} \\
& I_{5}^{\prime}=\frac{c c_{z}}{R}\left\{-2 a_{2} \theta_{t}+\frac{\delta_{2}}{a} \cdot 4 a_{2} \theta_{t}\right\} \\
& J_{1}^{\prime}=-\frac{c C_{z}}{R} \frac{\delta_{2}}{a} \theta_{t}^{2}, J_{2}^{\prime}=J_{3}^{\prime}=J_{4}^{\prime}=J_{5}^{\prime}=0
\end{aligned}
$$

Nation of the Differential Equations for the Deflection

and Bending Moments in the Y direction.
The assumed solution is of exactly the same form as for the the z direction deflection, $z_{r_{i}}$, given by equation ($\mathbb{I}-100$). The same tables may be used for the solution for the coefficients $T_{n_{1}}^{\prime}$ and S_{i}^{\prime} in the solution

$$
\left.+\frac{x_{r}^{2}}{(n+3)(n+4)}\right\}
$$

The coefficients $A_{i}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime}, D_{i}^{\prime}, E_{i}^{\prime}, F_{i}^{\prime}, G_{i}^{\prime}, H_{i}^{\prime}, I_{i}^{\prime}, J_{i}^{\prime}$ are given on pp.IT-/12 for the edgewise deflections, and must be be used instead of the coefficients $A_{i}, B_{i} \ldots \ldots . J_{i}$ given for the flatwise loads.

The coefficients $I_{1}^{\prime}, I_{2}^{\prime}, I_{3}^{\prime}$. $I_{4}^{\prime}, I_{5}^{\prime}$ are given below by

$$
\begin{aligned}
& \text { equations corresponding to (I-101): } \\
& \text { (b) } \\
& \begin{aligned}
S_{1}^{\prime}(6 e-2)+T_{O_{1}}^{\prime}= & =I_{1}^{\prime} \\
S_{2}^{\prime}(6 e-2)+T_{O_{2}}^{\prime}= & \frac{\dot{\theta}_{Z_{e}} K_{1} R}{(E I)_{0}}=I_{2}^{\prime}
\end{aligned} \\
& \text { (} \pi \text { - } 153 a \text {) } \\
& S_{3}^{\prime}(6 e-2)+T_{O_{3}}^{\prime}=\frac{e_{1} \dot{\theta}_{z_{a}} K_{1} R}{(E I)_{0}}=I_{j}^{\prime} \\
& \text { (c) } \\
& \text { (d) } \\
& \text { (e) } \\
& S_{5}^{\prime}(\Sigma-2)+T_{O_{5}}^{\prime}=\frac{2 e_{2} \dot{\theta}_{2} K_{2} R}{(E I)_{0}}=I_{5}^{\prime}
\end{aligned}
$$

Hence, aside from priming the coefficients $A_{1} \ldots I_{1}$ and using the new definitions above and on pp II-1/2, the routine involved in solving the edgewise differential equations is exactly the same as that for the flatwise differential equetions. The same tables ($I I-I, I I-2, I I-3$) and pertinent remariss and instructions apply.

II - $1: 19$

Stop-by-step tabular method of finding the bending
moments in the Y direction
The theory for the step-by-step solution for the edgewise bending moments is exactly the same as for the siatrise moments, except 4 should be changed to
Δy
sid the heading of cOl. 7 changed to

$$
. I R\left(F_{Y}\right)_{i}
$$

The entries in col. 5, the centrifuge forces, are the at sta. (.10) and (.15), re hinge. eccentricity of the the root be Formula giving forces, ($\left.F_{Y}\right)_{8,}$, will of course be the aerodynamic she given below: different, and are $g 1$

$$
\begin{aligned}
& M_{I_{0}}^{1}=0 \\
& M_{Z_{0}}^{\prime}=\dot{\theta}_{z_{8}} K_{1} I_{1} \\
& M_{3_{0}}^{\prime}=-\dot{\theta}_{Z_{8}} K_{1} \Theta_{1} \\
& M_{4}^{\prime}=2 \dot{\theta}_{Z_{a}} K_{1} I_{2} \\
& M_{5}^{\prime}=-2 \dot{\theta}_{z_{8}} K_{1} e_{2}
\end{aligned}
$$

($3-154 a$)

$$
I I-2.20
$$

(b)
(c)
(d)
(e)

$$
\left(F{ }_{y}\right)_{a_{4}}=c_{z_{a}}^{z_{x}} \int_{5}^{2.0}
$$

$$
\left.\sum_{a}^{B}\right)_{d x}
$$

$a_{a} \int_{x_{r}} c\left(B_{2_{L}}-\frac{{ }_{2_{2}} a_{D}}{a}\right) d x_{r}$

Torsion on the blades.
a. Stiff blade:
A. Torsion due to dynamic forces:

It is assumed that the elastic center and the center of gravity of any blade section lie on the zero lift chord line of that section (see Fig. II-29)

The torque about the elastic center due to the inertia forces acting on a particle of the blade element is

$$
\text { (II-155) } \quad \begin{aligned}
\quad d M_{X_{d}}^{\prime} & =\ddot{z}\left(c D \cos \theta_{x}-Y\right) d m \\
& +\ddot{y}\left(z-c D \sin \theta_{x}\right) d m
\end{aligned}
$$

where $d m$ is the mass of the particle, y and z are coordinates of the particle, and D is the distance in \% chord from the elastic center to the feathering axis.
Substituting for the accelerations from equation (I I-6a) and ($x-6 c$):

$$
(\text { III }-156)
$$

$$
\begin{aligned}
& d M_{x_{d}}^{\prime}=\left\{\left(D \subset \cos \theta_{x}-Y\right) x(I)\right. \\
& -\left(D r c \cos \theta_{x}-J\right) z \text { (II) } \\
& +\left(D C \cos \theta_{x}-Y\right) y \text { (III) } \\
& +\left(z-D \cdot C \sin \theta_{x}\right) x \text { (IV) } \\
& -\left(z-\operatorname{Lc} \sin \theta_{x}\right) z(V) \\
& \left.-\left(z-\operatorname{Dc} \sin \theta_{x}\right) y(V I)\right\} d m
\end{aligned}
$$

II - 123 -
where
(b)

$$
\begin{aligned}
& (I)=\dot{\theta}_{z}^{2} \sin \theta_{y} \cos \theta_{y}+\ddot{\theta}_{y} \\
& (I I)=\dot{\theta}_{z}^{2}+\dot{\theta}_{y}^{2}+2 \dot{\theta}_{z} \dot{\theta}_{x} \sin \theta_{y}+\dot{\theta}_{z}^{2} \sin ^{2} \theta_{y}
\end{aligned}
$$

$$
(\pi-156 a)
$$

$$
(I I I)=\ddot{\theta}_{X}+\ddot{\theta}_{Y} \sin \theta_{Y}
$$

(c)
(d) (IV) $=-2 \dot{\theta}_{Z} \dot{\theta}_{Y} \sin \theta_{Y}+\ddot{\theta}_{Z} \cos \theta_{Y}$
(e) (V) $=\ddot{\theta}_{X}+\ddot{\theta}_{z} \sin \theta_{Y}+2 \dot{\theta}_{z} \dot{\theta}_{y} \cos \theta_{Y}$
(f)

$$
(V I)=2 \dot{\theta}_{x} \dot{\theta}_{z} \sin \theta_{y}+\dot{\theta}_{z}^{2}
$$

Integrating equation ($x-156$) over the blade element, letting " m " be line density of the blade, the torsion due to the element is:
(I T-157)

$$
\begin{aligned}
M_{x_{d}}^{\prime}= & (I) \operatorname{xmc}\left(D \cos \theta_{x}-d \cos \theta_{x}\right) \\
& -(I I)\left(c^{2} D_{\operatorname{md}} \cos \theta_{x} \sin \theta_{x}-I_{y z}\right) \\
& +(I I I)\left(c^{2} D \cos \cos ^{2} \theta_{x}-I_{y}\right) \\
& +(I V) \operatorname{smc}\left(d \sin \theta_{x}-D \sin \theta_{x}\right) \\
& -(V)\left(I_{z}-c^{2} D \min \sin ^{2} \theta_{x}\right) \\
& -(V I)\left(I_{y z}-c^{2} D \cos \theta_{x} \sin \theta_{x}\right)
\end{aligned}
$$

Where I_{y}, I_{z} are mass moments of inertia about the I and Z axes, and $I_{y z}$ is the product of inertia, and d is the distance in $\%$ chord from the center of gravity to the feathering axis.

II - 124

Assuming that the Y_{p} principal axis coincides with the zero lift chord line,
where $I_{y_{p}}$ and $I_{z_{p}}$ are moments of inertia about the principe l axes.

Substituting ($\pi-158 a$) and (b), (c) in $(\pi-157)$, since all angles are small, assuming

$$
\begin{array}{ll}
\sin \theta_{x}=\theta_{x}, & \cos \theta_{x}=1.0 \\
\cos \theta_{y}=1.0
\end{array}
$$

$$
\begin{aligned}
& \sin \theta_{x}=\theta_{x}, \quad \cos \theta_{y}=1.0 \\
& \sin \theta_{y}=\theta_{y}, \quad \text { negligible }
\end{aligned}
$$

terms in θ^{3} are negligible

$$
\begin{aligned}
& \dot{\theta}_{z}^{2}=\dot{\theta}_{z}^{2}, \quad \ddot{\theta}_{z}=\ddot{\theta}_{z_{b}} \\
& \dot{\theta}_{y}^{2} \text { is small compared to } \dot{\theta}_{z}^{2}
\end{aligned}
$$

we obtain:

$$
(\text { II- } 159)
$$

$$
\begin{aligned}
& \text { obtain: } \\
& M_{x_{d}}^{\prime}=\left[m x c(D-d)\left(\theta_{y} \dot{\theta}_{z_{a}}^{2}+\ddot{\theta}_{y}-\theta_{x} \ddot{\theta}_{z_{b}}^{\prime}\right)\right. \\
& \left.\dot{i} \dot{0}+\theta_{y} \ddot{\theta}_{z_{0}}+\theta_{x} \dot{\theta}_{z_{a}}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\operatorname { m x c } \left(D c^{2}(D-d)\left(\dot{\theta}_{x}+\theta_{y} \ddot{\theta}_{z_{b}}+\theta_{x} \dot{\theta}_{z_{a}}^{2}\right)\right.\right. \\
& \left.+\operatorname{ma}^{2}\right)
\end{aligned}
$$

$$
\begin{array}{r}
-I_{y_{\underline{p}}}\left(\ddot{\theta}_{x}+\theta_{y} \ddot{\theta}_{z_{p}}+\theta_{x} \dot{\theta}_{z_{z}}^{2}\right) \\
\ldots \quad 0 \quad \ddot{\theta}_{-}-\theta_{x} \dot{\theta}_{z_{p}}^{2}+
\end{array}
$$

$$
\begin{aligned}
& -I_{y_{\underline{p}}}\left(\ddot{\theta}_{x}+\theta_{y} \theta_{z_{b}}\right. \\
& \left.-I_{z_{p}}\left(\ddot{\theta}_{x}+\theta_{y} \ddot{\theta}_{z_{b}}-\theta_{x} \dot{\theta}_{z_{a}}^{2}+2 \dot{\theta}_{y} \dot{\theta}_{z_{z}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (II-158a) } \quad I_{y}=I_{y_{p}} \cos ^{2} \theta_{X}+I_{z_{p}} \sin ^{2} \theta_{X} \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

IX-- 125

Substituting

$$
\begin{aligned}
& \theta_{x}=\theta_{x_{0}}^{\prime}+\psi_{1}^{\prime} \cos \theta_{z_{a}}+\psi_{2}^{\prime} \sin \theta_{z_{a}}+\theta_{t} x_{r} \\
& \text { (prom (II-11) } \\
& \ddot{\theta}_{x}=-\dot{\theta}_{z_{a}}^{2}\left(\psi_{1}^{\prime} \cos \theta_{z_{a}}+\psi_{2}^{\prime} \sin \theta_{z_{a}}\right) \\
& \theta_{y}=a_{0}-a_{1} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}}-a_{2} \cos 2 \theta_{z_{a}} \\
& -b_{2} \sin 2 \theta_{a} \\
& \dot{\theta}_{y}=\dot{\theta}_{z_{a}}\left(a_{1} \sin \theta_{z_{a}}-b_{1} \cos \theta_{z_{a}}+2 a_{z} \sin 2 \theta_{z_{a}}\right. \\
& \left.-2 b_{2} \cos 2 \theta_{z_{a}}\right) \\
& \dot{\theta}_{y}=+\dot{\theta}_{z_{a}}^{2}\left(a_{1} \cos \theta_{z_{a}}+b_{1} \sin \theta_{z_{a}}+4 \varepsilon_{2} \cos 2 \theta_{z_{a}}{ }^{+}\right. \\
& \left.+4 b_{2} \sin 2 g_{a}\right) \\
& \ddot{\theta}_{z_{b}}=\dot{\theta}_{z_{a}}^{2}\left(e_{1} \cos \theta_{z_{a}}+f_{1} \sin \theta_{z_{a}}+4 e_{2} \cos 2 \theta_{z_{a}}\right. \\
& \left.+4 f_{2} \sin 2 \theta_{z_{a}}\right)
\end{aligned}
$$

and integrating from x to the tip to get total torsion, neglecting harmonics higher than the second:

$$
\begin{aligned}
(\pi-160) \quad M_{x_{d}} & =\dot{\theta}_{z_{a}}{ }^{2} \int_{x_{r}}^{1.0}\left(J_{o_{d}}+J_{1_{d}} \cos \theta_{z_{a}}+\right. \\
& +L_{1_{d}} \sin \theta_{z_{a}}+J_{2_{d}} \cos 2 \theta_{z_{a}}+ \\
& \left.+L_{z_{d}} \sin 2 \theta_{z_{a}}\right) d x_{r}
\end{aligned}
$$

where

(II-160a)

$$
\begin{aligned}
J_{O_{d}} & =\operatorname{mRx}_{r} c(D-d)\left(a_{0}-\frac{1}{2} e_{1} \psi_{1}^{\prime}-\frac{1}{2} f_{1} \psi_{2}^{\prime}\right) \\
& +\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{p}\right)\left[\operatorname{mdc}^{2}(D-d)-I_{y_{p}}+I_{z_{p}}\right] \\
& -\left[\operatorname{mdc}^{2}(D-d)-I_{y_{p}}-I_{z_{p}}\right]\left(\frac{1}{2} e_{1} a_{1}+\right. \\
& \left.+\frac{1}{2} b_{1} f_{1}+2 \theta_{2} a_{2}+2 b_{2} f_{2}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
J_{I_{d}} & =2 I_{z_{p}}\left(b_{1}+\psi_{1}^{\prime}\right)-m x_{r} R c(D-d)\left[e _ { 1 } \left(\theta_{x_{0}}^{\prime}+\right.\right. \\
& \left.\left.+\theta_{t} x_{r}\right)+2 e_{2} \Psi_{l}^{\prime}+2{e_{2}}_{2} \psi_{2}^{\prime}\right] \\
& +\left[m d c^{2}(D-d)-I_{y_{p}}-I_{z_{p}}\right]\left(a_{o} e_{1}-\right. \\
& \left.-2 a_{1} e_{2}-\frac{1}{2} e_{1} a_{2}-\frac{I}{2} b_{2} f_{1}-2 f_{2} b_{1}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
L_{1_{d}} & =-2 I_{z_{p}}\left(a_{1}-\psi_{2}^{\prime}\right)-m x_{r} R c(D-d)\left[f _ { 1 } \left(\theta_{x_{0}}^{\prime}+\right.\right. \\
& \left.\left.+0_{t} x_{p}\right)+2 f_{2} \psi_{1}^{\prime}-2 e_{2} \psi_{2}^{\prime}\right] \\
& +\left[m e^{2}(D-d)-I_{y_{p}}-I_{z_{p}}\right]\left(a_{0} f_{1}+2 e_{2} b_{1}+\right. \\
& \left.+\frac{1}{2} a_{2} f_{1}-2 a_{1} f_{2}-\frac{1}{2} e_{1} b_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& (\pi-160 d) \\
& J_{2_{d}}=4 b_{2} I_{z_{p}}+m x_{r} R c(D-a)\left[3 a_{2}-4 e_{2}\left(\theta_{x_{0}}^{\prime}+\right.\right. \\
& \left.\left.+\theta_{t} x_{r}\right)-\frac{1}{2} \theta_{1} \psi_{1}^{\prime}+\frac{1}{2} f_{1} \psi_{2}^{\prime}\right] \\
& +\left[\operatorname{mdc}^{2}(D-d)-I_{y_{p}}-I_{z_{p}}\right]\left(4 a_{o} e_{2}-\right. \\
& \left.-\frac{1}{2} e_{1} a_{1}+\frac{1}{2} b_{1} f_{1}\right) \\
& I_{2_{d}}=-4 a_{2} I_{z_{p}}+m x_{r^{R}} R(D-d)\left[3 b_{2}-\right. \tag{e}\\
& \left.-4 f_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}\right)-\frac{1}{2}\left(\theta_{1} \Psi_{2}^{\prime}+f_{1} \Psi_{1}^{\prime}\right)\right] \\
& +\left[\operatorname{mac}^{2}(D-a)-I_{Y_{p}}-I_{z_{p}}\right]\left(4 a_{0} f_{2}-\right. \\
& \left.-\frac{1}{2} a_{1} f_{1}-\frac{1}{2} e_{1} b_{1}\right)
\end{align*}
$$

The indicated integrations can usually best be be done graphically, unless the blade chord and airfoil section are constant along the span. $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}$ and $e_{0}, e_{1}, f_{1}, e_{2}, f_{2}$ are, of course, respectively, the flapping and hunting coefficients.
B. Torsion due to a concentrated mass:

If a concentrated mass, m^{\prime}, is located at $x_{r}=x_{r}^{\prime}$, the torsional moment produced by this mass due to motion of the blade can be evaluated by means of equation $(\pi-156)$. Let a^{\prime} be the distance between the mass and the Feathering axis of the blade and S be the angle between this distance
and the zero lift line of the blade section at station X_{r}^{\prime} (see sketch, Fig. II-29). Then in
equation (II-is6):
$(\pi-16 / a) \quad y=d^{\prime} \cos \left(\theta_{x}+\zeta\right)$
(b) $\quad z=d^{\prime} \sin \left(\theta_{x}+\zeta\right)$
(c) $d m=m^{\prime}$

Substituting ($\mathbf{r}-161$), making the approximations of $p . r-124$, and substituting $p \cdot \bar{I}-125$, we obtain the expression for the torsion due to the dynamic forces on the concentrated mass,
(I I-162a)

$$
\begin{aligned}
M_{x_{d}}^{\prime} & =m^{\prime}{\dot{\dot{c}_{z}}}_{2}\left(J^{\prime} o_{d}+J_{I_{d}}^{\prime} \cos \theta_{z_{a}}+I^{\prime} I_{d} \sin \theta_{z_{a}}\right. \\
& \left.+J_{2_{d}}^{\prime} \cos 2 \theta_{z_{a}}+I_{2_{d}}^{\prime} \sin 2 \theta_{z_{a}}\right\}
\end{aligned}
$$

where
(II-/626)

$$
\begin{aligned}
J_{o_{d}}^{\prime} & =c^{\prime}\left(D^{\prime}-d^{\prime} \cos \zeta\right)\left(R x _ { r } ^ { \prime } \left[a_{0}-\frac{1}{2}\left(\theta_{I} \Psi_{I}^{\prime}+\right.\right.\right. \\
& \left.\left.+f_{1} \Psi_{2}^{\prime}\right)\right] \\
& \left.+c^{\prime} d^{\prime} \cos \zeta\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)\right\} \\
& +c^{\prime} d^{\prime} \sin \zeta^{\prime}\left(R x_{r}^{\prime}\left[a_{0}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)\right]\right. \\
& +D^{\prime} c^{\prime}\left[\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)^{2}+\psi_{1}^{\prime 2}+\Psi_{2}^{\prime 2}+\right. \\
& \left.+\frac{a_{1}}{2}+\frac{b_{1}}{2}+2 \varepsilon_{2}^{2}+2 b_{2}^{2}\right] \\
& \left.+c^{\prime} d^{\prime}\left[\cos \zeta-\sin \zeta\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& (I I-162 c) \\
& J_{1_{d}}^{\prime}=c^{\prime}\left(D^{\prime}-d^{\prime} \cos \zeta\right)\left(R x _ { r } ^ { \prime } \left[-e_{1}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)-\right.\right. \\
& \left.\left.-2\left(e_{2} \psi_{1}^{\prime}+f_{2} \psi_{2}^{\prime}\right)\right]\right) \\
& \left.+d^{\prime} c^{\prime} \sin \zeta\right\} R x_{r}^{\prime}\left[a_{0} \psi_{1}^{\prime}+\frac{3}{2}\left(a_{2} \psi_{1}^{\prime}+b_{2} \Psi_{2}^{\prime}\right)+2 a_{0} b_{1}\right. \\
& \left.+a_{2} b_{1}-a_{1} b_{2}+a_{1}\right] \\
& \text { - } D^{\prime} c^{\prime}\left[2 a_{1} a_{2}+2 b_{1} b_{2}+2 \psi_{1}^{\prime}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)\right] \\
& \left.+d^{\prime} c^{\prime} \sin \zeta\left[\psi_{1}^{i}-o_{1}+2 b_{1}\right]\right\} \\
& I_{1_{d}}^{\prime}=c^{\prime}\left(D^{\prime}-d^{\prime} \cos \zeta\right)\left(R x _ { r } ^ { \prime } \left[-f_{1}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)-\right.\right. \\
& \left.\left.-2\left(f_{2} \psi_{1}^{\prime}-e_{2} \psi_{2}^{\prime}\right)\right]\right\} \\
& +d^{\prime} c^{\prime} \sin \zeta\left\{R x _ { r } ^ { \prime } \left[a_{0} \psi_{2}^{\prime}+\frac{3}{2}\left(b_{2} \psi_{1}^{\prime}-a_{2} \psi_{2}^{\prime}\right)-2 a_{0} a_{1}\right.\right. \\
& \left.+b_{1} b_{2}+a_{1}^{2} 2_{2}+f_{1}\right] \\
& -D^{\prime} c^{\prime}\left[2 a_{1} b_{2}-2 a_{2} b_{1}+2 \varphi_{2}^{\prime}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)\right] \\
& \left.+\mathrm{d}^{\prime} \mathrm{c}^{\prime} \sin \zeta\left[4_{2}^{\prime}-\mathrm{f}_{1}-2{a_{1}}_{1}\right]\right\} \\
& J_{2_{d}}^{\prime}=c^{\prime}\left(D^{\prime}-d^{\prime} \cos \zeta\right)\left(R x _ { r } ^ { \prime } \left[3 a_{2}-4 e_{2}\left(\theta_{x_{0}}^{\prime}+\right.\right.\right. \\
& \left.\left.\left.+\theta_{t} x_{r}^{\prime}\right)-\frac{1}{2}\left(e_{1} \Psi_{1}^{\prime}-\rho_{1} \Psi_{2}^{\prime}\right)\right]\right\} \\
& +A^{\prime} c^{\prime} \sin 3\left\{R x _ { r } ^ { \prime } \left[3 a_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)-4 a_{0} b_{2}-\right.\right. \\
& \left.-2 a_{1} b_{1}+4 e_{2}\right] \\
& \left.+d^{\prime} c^{\prime} \sin \zeta\left[-e_{2}+4 b_{2}\right]\right\} \text {. } \\
& \text { (e) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
L_{2_{2}}^{\prime} & \left.=c^{\prime}\left(D^{\prime}-d^{\prime} \cos \zeta\right)\right\} R x_{r}^{\prime}\left[3 b_{2}-4 f_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)-\right. \\
& \left.\left.-\frac{I}{2}\left(\theta_{I} \Psi_{2}^{\prime}+f_{I} \Psi_{1}^{\prime}\right)\right]\right\}
\end{aligned} \\
& +d^{\prime} c^{\prime} \sin \zeta\left\{R x _ { r } ^ { \prime } \left[3 b_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right)-4 a_{0} a_{2}^{i}\right.\right. \\
& \left.-a_{1}^{2}+b_{1}^{2}+4 f_{2}\right] \\
& \left.+d^{\prime} c^{\prime} \sin \zeta\left[-f_{2}-4 a_{2}\right]\right\} \\
& c^{\prime} \text { is chord at sta } x_{r}^{\prime} \text { where the mass is located, } \\
& D^{\prime} \text { is distance, in } \% \text { of chord, from the blade } \\
& \text { elastic center to feathering axis, at sta. } x_{r}^{\prime} \text {; } \\
& \mathrm{d}^{\prime} \text { and } \zeta \text { are as defined p. 2-127. }
\end{aligned}
$$

If the mass, m^{\prime}, concentrated at x_{r}^{\prime}, is distributed in a $z \mathrm{y}$ plane in such a way that its moments of inertia about its own axes should be considered, then the additional torsion due to the dynamic forces and the $Y Z$ distribution of $m^{\prime} 1 s$, from ($x-160$),

$$
\begin{align*}
\Delta M_{X_{d}}^{\prime} & =\dot{\theta}_{z}^{2}\left\{\Delta J_{o_{d}}^{\prime}+\Delta J_{1_{d}}^{\prime} \cos \theta_{z_{a}}+\Delta I_{1_{d}}^{\prime} \sin \theta_{z_{a}}+\right. \tag{II-163}\\
& \left.+\Delta J_{o_{d}}^{\prime} \cos 2 \theta_{z_{a}}+\Delta I_{2_{d}}^{\prime} \sin 2 \theta_{z_{a}}\right\}
\end{align*}
$$

where

$$
\left(\begin{array}{rl}
\Delta \text { I- } 163 a)
\end{array} \quad \begin{array}{rl}
\Delta J_{o_{d}}^{\prime} & =\left(I_{z_{p}}^{\prime}-I_{y_{p}}^{\prime}\right)\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}^{\prime}\right) \\
& +\left(I_{z_{p}}^{\prime}+I_{y_{p}}^{\prime}\right)\left(\frac{1}{2} e_{1} a_{1}+\frac{I}{2} b_{1} f_{I}+2 e_{2} a_{2}+\right. \\
& \left.+2 b_{2} f_{2}\right)
\end{array}\right.
$$

(II-163b)
(c)
(d)
(e)

$$
\begin{aligned}
& \Delta J_{I_{d}}^{\prime}=2 I_{z_{p}}^{\prime}\left(b_{1}+\psi_{I}^{\prime}\right)-\left(I_{z_{p}}^{\prime}+I_{y_{p}}^{\prime}\right)\left(a_{0} e_{I}-\right. \\
& \left.-2 a_{1} e_{2}-2 f_{2} b_{1}-\frac{1}{2} e_{1} a_{2}-\frac{1}{2} b_{2} f_{1}\right) \\
& \Delta I_{I_{d}}^{\prime}=-2 I_{z_{p}}^{\prime}\left(a_{1}-\psi_{2}^{\prime}\right)-\left(I_{z_{p}}^{\prime}+I_{Y_{p}}^{\prime}\right)\left(a_{0} f_{1}+\right. \\
& \left.+2 b_{1} e_{2}-2 a_{1} f_{2}+\frac{1}{2} a_{2} f_{1}-\frac{1}{2} e_{1} b_{2}\right) \\
& \Delta J_{d}^{\prime}=4 b_{2} I_{z_{p}}^{\prime}-\left(I_{z_{p}}^{\prime}+I_{y_{p}}^{\prime}\right)\left(4 a_{0} e_{2}-\frac{1}{2} e_{1} a_{1}+\right. \\
& \left.+\frac{1}{2} b_{1} f_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta I_{2_{d}}^{\prime} & =-4 a_{2} I_{z_{p}}^{\prime}-\left(I_{z_{p}}^{\prime}+I_{y_{p}}^{\prime}\right)\left(4 a_{0} f_{2}-\frac{I}{2} a_{1} f_{1}-\right. \\
& \left.-\frac{I}{2} e_{1} b_{I}\right)
\end{aligned}
$$

where $I_{z_{p}}^{\prime}$ and $I_{Y_{p}}^{\prime}$ are the moments of inertia of the mass, m^{\prime}, about axes through its own $O G$ and parallel to the principal axes of the blade section at sta. X_{r}^{\prime}.
The term involving the product of inertia of m^{\prime} about these axes has been neglected. The term would, of course, be zero if the principal axes of the mass, m^{\prime}, were parallel to those of the blade section at sta. x_{r}^{\prime}.
C. Torsion due to aerodynamic forces:

It is assumed that the aerodynamic forces act at the aerodynamic center of the blade element. The distance of the a.c. from the feathering axis in the Y_{p} and Z_{p} directions is called h_{1} and $h_{2}(\% \%$ of chord), respectively. The torsion due to the 2
direction aerodynamic forces is

$$
\begin{aligned}
& \text { (III-164) } \\
& M_{x_{1}}=\int_{x_{r}}^{1.0} c R 008 \theta_{x}\left(D-h_{1}+h_{2} \tan \theta_{x}\right) \cdot \frac{d\left(F_{z}\right)_{a}}{d x_{r}} \cdot d x_{r} \\
& \text { where } \frac{d\left(F_{z}\right)_{a}}{d x_{r}} \text { is given by equation (II-34). } \\
& \text { Assuming } \cos \theta_{x}=1.00, \sin \theta_{x}=\theta_{x} \\
& M_{x_{a_{1}}}=\int_{x_{1}}^{2.0} c_{z_{a}} c^{2} R\left(J_{o_{a_{1}}}+J_{1_{a_{1}}} \cos \theta_{z_{a}}+\right. \\
& +L_{1_{a_{1}}} \ln \theta_{z_{a}}+J_{a_{a_{1}}} \cos 2 \theta_{z_{a}}+ \\
& \left.I_{z_{a_{1}}} \sin 2 q_{z_{2}}\right) d x_{1}
\end{aligned}
$$

where

$$
(\pi-165 a)
$$

$$
\begin{aligned}
J_{o_{a_{1}}} & =A_{o_{a}}\left[D-h_{1}+h_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}\right)\right]+\frac{1}{2} A_{1_{a}} \psi_{1}^{\prime}+ \\
& +\frac{1}{2} B_{1_{a}} \psi_{2}^{\prime}
\end{aligned}
$$

(b)

$$
\begin{aligned}
J_{1_{a_{1}}} & =A_{1_{a}}\left[D-h_{1}+h_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{1}\right)\right]+A_{o_{a}} \Psi_{1}^{\prime}+ \\
& +\frac{1}{2} B_{2_{a}} \Psi_{2}^{\prime}+\frac{1}{2} A_{2_{a}} \psi_{1}^{\prime}
\end{aligned}
$$

$$
(\pi-165 c)
$$

$$
\begin{align*}
J_{a_{a_{1}}} & =A_{a_{a}}\left[D-h_{I}+h_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}\right)\right]+\frac{1}{2} A_{I_{a}} \psi_{1}^{\prime}- \tag{d}\\
& -\underline{B}_{3} \quad \psi^{\prime}
\end{align*}
$$

(c)

$$
-\frac{I}{2} B_{I_{a}} \psi_{2}^{\prime}
$$

The torsion due to the Y direction aerodynamic forces is:
(I I-166)

$$
M_{x_{2}}=-\int_{x_{r}}^{1.0} c R h_{2} \cos \theta_{x} \cdot \frac{d\left(f_{y}\right)_{a}}{d x_{y}} \cdot d x_{y}
$$

or, assuming $\cos \theta_{x}=1.00$,

$$
(\pi-167)
$$

$$
\left.+I_{1_{a_{2}}} \sin \theta_{z_{a}}+J_{2_{a_{2}}} \cos 2 \theta_{z_{a}}+L_{2_{a_{2}}} \sin 2 \theta_{a_{a}}\right) d x_{2}
$$

$$
\begin{aligned}
& { }^{L_{a_{a}}}=B_{2_{a}}\left[D-h_{I}+h_{2}\left(\theta_{x_{0}}^{\prime}+\theta_{t} x_{r}\right)\right]+\frac{1}{2} A_{I_{a}} \psi_{2}^{\prime}+ \\
& +\frac{I}{2} B_{I_{a}}{ }^{\prime \prime} I^{\prime} \\
& A_{a}, A_{I_{a}}, B_{I_{a}}, A_{a_{a}}, B_{2_{a}} \text { are given by equation } \\
& (\pi-34 a),(b),(c),(\alpha),(e), p . \pi-21 \text {. } \\
& \text { The integration can probably best be done } \\
& \text { graphically. }
\end{aligned}
$$

II- -135

The total torsion on the stiff blade is, then,

$$
\begin{aligned}
& \quad M_{x}=M_{x_{d}}+M_{x_{d}}^{\prime}+\Delta M_{x_{d}}^{\prime}+M_{x_{a_{1}}}+M_{x_{a_{2}}}+M_{x_{a_{3}}} \\
& \text { qu. }
\end{aligned}
$$

b. Flexible blade.
A. Torsion due to z deflection.

Fig. \quad - 30

The torsion at station x due to a Y load, $d\left(F_{Y}\right)$,
at station x^{\prime}, outboard of x, is Y load, $d\left(F_{y}\right)$,

$$
d\left(M_{x_{z}}\right)=\left[z^{\prime}-z-\left(x^{\prime}\right]\right.
$$

$\phi] \cos \in d\left(F_{J}\right) \quad F 1 g . \pi-30$

$$
d\left(M_{x_{z}}\right)=\left[\left(z^{\prime}-z\right)-\left(\frac{d z}{d x}\right)\left(x^{\prime}-x\right)\right] d\left(F_{Y}\right)
$$

Integrating from x to the tip to find
(I I-172)
torsion at x, and changing to to find the total
$\frac{d z_{r}}{d x_{r}}$ is the slope @ sta. x_{r}.

II - 137

However,

$$
\begin{equation*}
\frac{d\left(F_{Y}\right)}{d x_{r}^{\prime}}=\frac{1}{R} \frac{d^{2} M_{z}}{d x_{r}^{2}} \text { at sta. } x_{r}^{\prime} \tag{II-173}
\end{equation*}
$$

The torsion at a station x_{r} is, of course,
a harmonic function of $\theta_{z_{a}}$:

$$
(I I-174)
$$

$$
\begin{aligned}
\left(M_{x_{z}}\right) & =\left(M_{x_{z}}\right)+\left(M_{x_{z}}\right)_{2} \cos \theta_{z_{a}}+\left(M_{x_{z}}\right) 3^{\sin \theta_{z_{a}}} \\
& +\left(M_{x_{z}}\right)_{4} \cos 2 e_{z_{a}}+\left(M_{x_{z}}\right){ }_{5} \sin 2 \theta_{z_{a}}
\end{aligned}
$$

M_{z} and z_{r} have been found as harmonic functions of $\theta_{z_{a}}$:
(I I-175)

$$
M_{z_{1}}=M_{z_{1}}+M_{z_{2}} \cos \theta_{z_{a}}+M_{z_{3}} \sin \theta_{z_{a}}+M_{z_{4}} \cos 2 \theta_{z_{a}}+
$$

$$
+\mathrm{M}_{z_{5}} \sin 2 \theta_{z_{2}}
$$

(II I-176) $z_{r}=z_{r_{1}}+z_{r_{2}} \cos \theta_{z_{a}}+z_{r_{3}} \sin \theta_{z_{a}}+z_{r_{4}} \cos 2 \theta_{z_{a}}+$

$$
+z_{r_{5}} \sin 2 \theta_{z_{0}}
$$

$$
(I I-177)
$$

Letting $\Delta z_{v_{1}}^{\prime}=\left(z_{r_{1}}^{\prime}-z_{r_{1}}\right)-\left(\frac{d z_{r_{1}}}{d x_{r}}\right)\left(x_{r}^{\prime}-x_{r}\right)$ and
substituting $(I-173),(\pi-174),(\pi-175)$ and $(x-176)$ into (II-172), and neglecting harmonics higher than the second, by equating coefficients of identical trigonometric functions:

$$
(I I-178 a)
$$

$$
\begin{aligned}
& \left(M_{x_{z}}\right)=\int_{x_{r}}^{1}\left[\frac{d^{2} M_{z_{1}}}{d x_{r}^{2}} \Delta z_{r_{1}}^{\prime}+\frac{1}{2}\left(\frac{d^{2} M_{z_{2}}}{d x_{r}^{2}} \cdot \Delta z_{r_{2}}^{\prime}+\right.\right. \\
& \\
& \left.\left.\quad+\frac{d^{2} M_{z_{3}}}{\Delta x_{r}^{2}} \cdot \Delta z_{r_{3}}^{\prime}+\frac{d^{2} M_{z_{4}}}{d x_{r}^{2}} \Delta z_{r_{4}}^{\prime}+\frac{d^{2} M_{z_{5}}}{d x_{r}^{2}} \cdot \Delta r_{r_{5}}^{\prime}\right)\right] d x_{r}^{\prime}
\end{aligned}
$$

$$
\text { I-2 } 238
$$

($75-178$)
(c)
(d)
(e)

$$
\text { (II-179) } \Delta z_{r_{1}}^{\prime}=\int_{x_{r}}^{x_{r}^{\prime}} \int_{x_{r}}^{x_{r}^{\prime}} \frac{M_{Y_{1}}}{E I_{y}} d x_{r}^{\prime} d x_{r}^{\prime}
$$

The integrations indicated can probably best be done graphically.
B. Torsion due to deflection in Y direction.

The theory for $M_{x_{y}}$ is exactly similar to that for $M_{x_{z}}$, and we can write, by inspection of (II-178),
$1 f$

$$
M_{y}=M_{Y_{1}}+M_{Y_{2}}^{\prime} \cos \theta_{z_{a}}+M_{y_{3}} \sin \theta_{z_{a}}+M_{y_{4}} \cos 2 \theta_{z_{a}}+
$$

$$
+M_{Y_{5}} \sin 2 \theta_{z_{8}}
$$

$$
y_{r}=y_{r_{1}}+y_{r_{2}} \cos \theta_{z_{8}}+y_{r_{3}} \sin \theta_{z_{2}}+y_{r_{4}} \cos 2 \theta_{z_{8}}+
$$

$$
+\Psi_{r_{5}} \sin 2 \theta_{z_{8}}
$$

then
(I I-180)

$$
M_{x_{y}}=\left(M_{x_{y}}\right)+\left(M_{x_{y}}\right) 2^{\cos \theta_{z}+\left(M_{x_{y}}\right)} 3^{\sin \theta_{z_{a}}+}
$$

$$
+\left(M_{x_{y}}\right)_{4} \cos 2 \theta_{z_{a}}+\left(M_{x_{y}}\right) 5^{\sin 2 \theta_{z_{a}}}
$$

FI. 240

(c)
(a)
(b)

$$
\begin{aligned}
(I I-181 e) \quad\left(M_{x_{y}}\right)= & \int_{x_{r}}^{1}\left[\frac{d^{2} M_{y_{5}}}{d x_{r}^{2}} \Delta y_{r_{1}}^{\prime}+\frac{d^{2} M_{y_{1}}}{d x_{r}^{2}} \Delta y_{r_{5}}^{\prime}+\frac{1}{2}\left(\frac{d^{2} M_{Y_{2}}}{d x_{r}^{2}} \Delta y_{r_{3}}^{\prime}\right.\right. \\
& \left.\left.+\frac{d^{2} M_{y_{3}}}{d x_{r}^{2}} \Delta y_{r_{2}}^{\prime}\right)\right] d x_{I}^{\prime}
\end{aligned}
$$

For $\Delta y_{r_{1}}^{\prime}$ either
(I I-182a) $\quad \Delta y_{r_{1}}^{\prime}=\left(y_{r_{1}}^{\prime}-y_{r_{1}}\right)-\frac{d y_{r_{1}}}{d x_{r}}\left(x_{r}^{\prime}-x_{r}\right)$

$$
\left(\frac{d y_{r_{i}}}{d x} \text { is slope at } x_{r}\right)
$$

or

$$
\Delta y_{r_{1}}^{\prime}=\int_{x_{r}}^{x_{r}^{\prime}} \int_{x_{r}}^{x_{r}^{\prime} M_{z_{1}}} \frac{E I_{z}}{} d x_{r}^{\prime} d x_{r}^{\prime}
$$

may be used, whichever is most convenient.

The Effect of blade flexure on the distribution of load along the blade in the Z direction.

The effect of blade bending and twisting on the load distribution in the Z direction will arise from their effects on the dynamic pressure and angle of attack at any given station along the blade. The effect of change in dynamic pressure will be entirely negligible. The change in angle. of attack may be appreciable, and is in two parts, that due to structural twist, and that due to change in downwash.
(II-183) From (II-73a) $\quad \theta_{y_{f}}-\theta_{y}=\frac{2}{x}$
If we assume that the flapping coefficients for the flexible blade are
(II-184a) $\quad a_{o_{f}}=a_{0}+\Delta a_{0}$
(b)

$$
a_{l_{f}}=a_{1}+\Delta a_{1}
$$

(c)

$$
b_{1_{f}}=b_{1}+\Delta_{b_{1}}
$$

(d)

$$
a_{2_{f}}=a_{2}+\Delta a_{2}
$$

(e)

$$
b_{2_{f}}=b_{2}+\Delta b_{2}
$$

where $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}$, are for the stiff blade, then it is apparent that

$$
\begin{aligned}
& \text { (II-185a) } \quad \Delta a_{0}=\frac{{ }^{I_{r}} r_{1}}{x_{r}} \\
& \text { (b) } \\
& \Delta a_{1}=-\frac{{ }^{z_{r}} r_{2}}{x_{r}} \\
& \text { (c) } \\
& \Delta b_{1}=-\frac{{ }^{2} r_{3}}{x_{r}}
\end{aligned}
$$

$$
\begin{aligned}
\text { (II-185d) } \quad \Delta a_{2} & =-\frac{{ }^{2} r_{4}}{x_{r}} \\
\text { (e) } \quad \Delta \mathrm{b}_{2} & =-\frac{{ }^{z_{r}} r_{5}}{x_{r}}
\end{aligned}
$$

From (II-29) it may be seen that the change in downwash angle, $\theta_{i}=\frac{u_{z}}{u_{y}}$, is a linear function of the changes in the flapping coefficients, given above.

The change in angle of attack due to structural twist - W111 be a harmonic function of $\theta_{z_{a}}$ and can be regarded as
a change in $\theta_{x_{0}}^{\prime}$. Thus

$$
+\Delta \theta_{x_{s_{4}}} \cos 2 \theta_{z_{a}}+\Delta \theta_{x_{s_{5}}} \sin 2 \theta_{z_{a}}
$$

$$
\text { (I-186a) where } \quad \Delta \theta x_{s_{1}}=\int_{0}^{x} \frac{M_{x_{1}}}{G I_{p}} d x
$$

$$
\text { where } \Delta \theta_{x_{s_{1}}} \text { is the structural twist at any station }
$$

(reference is the root)

$$
M_{x_{1}} \text { is the total torsion at any station. }
$$

$$
\begin{aligned}
& M_{x_{1}} \text { is the total } \\
& G I_{p} \text { is the torsions l rigidity of the blade. }
\end{aligned}
$$

II - 244.

Substituting from ($\pi-185$) and (IT-186) in (r-34a) to (e), vo obtain expressions for the 2 load on the flexible blade. Upon subtracting equations (r-34a) to (e) from these expressions, we find the change in Z direction air load due to flexure to bo:

$$
\begin{aligned}
& \text { (II-187a) } \\
& \Delta A_{o_{a}}=-\frac{\mu^{2}}{2}\left[+\Delta \theta_{x_{s_{1}}}-\frac{1}{2}\left(\Delta \theta_{x_{s_{4}}}+\frac{z_{r_{5}}}{x_{5}}\right)\right] \\
& -\mu x_{r}\left(\Delta \theta_{x_{s_{3}}}\right)-x_{r}^{2}\left(\Delta \theta_{x_{s_{1}}}\right) \\
& \Delta A_{I_{2}}=-\frac{\mu^{2}}{4}\left[\Delta \theta_{x_{s_{2}}}-\frac{z_{r_{3}}}{x_{5}}\right]-\mu x_{5}\left[\Delta \theta_{x_{s_{5}}}-\right. \\
& \left.-\frac{z_{r_{1}}}{x_{r}}+\frac{x_{r_{4}}}{x_{r}}\right]-x_{r}{ }^{2}\left[\begin{array}{l}
\left.\Delta \theta_{x_{s_{2}}}-\frac{z_{r_{3}}}{x_{r}}\right]
\end{array}\right. \\
& \Delta B_{I_{2}}=-\frac{\mu^{2}}{4}\left[3 \Delta \theta_{x_{s_{3}}}-\frac{z_{r_{2}}}{x_{r}}\right]-\mu x_{r}\left[2 \Delta \theta_{x_{s_{1}}}-\right. \\
& \left.-\Delta \theta_{x_{3}}+\frac{z_{r_{5}}}{x_{r}}\right]-x_{r}{ }^{2} \frac{z_{r_{2}}}{x_{r}}
\end{aligned}
$$

$(I I-187 \alpha) \quad \Delta A_{2_{a}}=-\frac{\mu^{2}}{2}\left[\Delta \theta_{x_{s_{4}}}-\Delta \theta_{x_{s_{1}}}-\frac{1}{2} \Delta \theta_{x_{s_{2}}}\right]+$

$$
+\mu x_{r}\left[\Delta \theta_{x_{3}}+\frac{z_{r_{2}}}{x_{r}}\right]-x_{r}^{2}\left[\Delta \theta_{x_{s_{4}}}-2 \frac{z_{r_{5}}}{x_{r}}\right]
$$

(c)

$$
\begin{aligned}
\Delta B_{2_{a}} & =-\frac{\mu^{2}}{2}\left[\Delta \theta_{x_{s}}-\frac{x_{r_{1}}}{x_{r}}\right]-\mu x_{r}\left[\Delta \theta_{x_{s_{2}}}-\frac{x_{r_{3}}}{x_{r}}\right] \\
& -x_{r}^{2}\left[\Delta \theta_{x_{3_{5}}}+2 \frac{z_{r_{4}}}{x_{r}}\right]
\end{aligned}
$$

The additional air loads as found from the above relations can be added to the constant of col. 8 , table $I-/$ or added to the shear values in col. 7 of table $I T-4$ in order to find the effect of blade flexure on bending moments and deflections.

PART II SAMPLE CALCULATIONS

$$
I I-246
$$

by the it the the object of the
 $e^{e_{1}} t_{1 m a t} t_{t}$.
 for the example are

Rotor sealing, R

Blade chord, c

δ_{0}
δ_{1}
δ_{2}
Blade weight
Blade modern
$D_{1 s t r i b l}{ }^{\text {moment }}$ of 1

Forward $^{\text {rp ma }}$ sped, V

Control:

The usual procedure in analyses of this type is to assume that the total cycle pitch change due to control and flapping is known In magnitude and phase angle. In this example the magnitude of the cyclic pitch is taken as 7.5° and the azimuth angle for maximum positive pitch is taken as 0°. Thus, $\psi_{I}^{\prime}=.3 .31$ radians,
$\psi_{2}^{\prime}=0$. Tip speed ratio, μ

$$
.250
$$

From equation (I-5),

$$
\begin{aligned}
& \bar{c}=4 R \int_{0}^{I} \frac{c}{R} x_{r}^{3} d x_{r} \\
&=4 \cdot 19 \int_{0}^{I}\left(\frac{2.35}{19}-.08 x_{r}\right) x_{r}^{3} d x_{r} \\
&=2.35-19 \cdot .08 \cdot \frac{4}{5}=1.135 \mathrm{ft} . \\
& \sigma_{\theta}=\frac{b \bar{c}}{\pi R}=\frac{3 \cdot 1.135}{\pi 19}=.0571 \\
& \dot{\theta}_{z_{a}}=\frac{220 \cdot 2 \pi}{60}=23.1 \mathrm{rad} / \mathrm{sec} . \\
& C_{T}=\frac{2700}{.00237 \cdot \pi \cdot 23 . I^{2} 19^{4}}=.00523 \quad \text { (equ. p.I-14) } \\
& B=I-\frac{\sqrt{2} \cdot .00523}{3}=.966 \quad \text { (equ.p.I-/4) } \\
& \text { (eau. I-4) }
\end{aligned}
$$

$$
r
$$

$$
Q=\frac{135 \cdot 550}{23.1} \quad \text { II }-248
$$

$$
\frac{2 c}{20}=\frac{2 \cdot}{5.75 \cdot 000327}=0.20272
$$

$$
\frac{2 c_{r}}{2 \sigma}=\frac{2 \cdot \cdot 052}{5.75 \cdot 00523}=.000
$$

$$
\frac{8}{0} 1 a=\frac{0210}{5.75}=.00292
$$

$$
\frac{\delta}{2 / 8}=\frac{-.0216}{5.75}=-.00376
$$

$$
\frac{\delta / a}{2.750}=.0696
$$

II - 149

$$
\begin{aligned}
& \text { Solution for } \lambda \text { : } \\
& \text { From figures } \\
& t_{1}=-.0151 \\
& t_{2}=.895 \\
& t_{3}=.00587 \\
& t_{4}=-.00010 \\
& t_{5}=.0019 \\
& t_{6}=.00050 \\
& t_{7}=.59 \\
& t_{8}=.0095 \\
& t_{9}=-.0050 \\
& t_{10}=.198 \\
& t_{11}=.0073 \\
& t_{12}=.00005 \\
& t_{13}=-.00014 \\
& \begin{array}{l}
t_{1}^{\prime}=-.0466 \\
t_{2}^{\prime}=.339
\end{array} \\
& t_{3}^{1}=.0390 \\
& t_{4}=. .00011 \\
& t_{5}^{\prime}=-.0276 \\
& t_{6}=.0212 \\
& t_{?}^{\prime}=-3.02 \\
& t_{8}^{\prime}=-.150 \\
& t_{9}^{\prime}=-00060 \\
& t_{10}^{\prime}=.089 \\
& t_{11}^{\prime}=-.838 \quad-.000619 \\
& t_{12}=-.00960 \quad \text {. } 000142 \\
& t_{13}=-.00002 \\
& \begin{array}{l}
t_{14}=.0090 \\
t_{1}=-.0195
\end{array} \\
& t_{15}=-.0195 \\
& \begin{array}{l}
t_{16}=-.00019 \\
t_{17}=.00011
\end{array} \\
& t_{17}=.00011 \\
& t_{18}=.0068 \\
& \begin{array}{l}
t_{19}=-.0057 \\
t^{2}=.0071
\end{array} \\
& t_{20}=.0071 \\
& t_{21}=-.0700 \\
& t_{21}=.0620 \\
& t_{22}=-.265 \\
& t_{23}=-.793 \\
& t_{24}=.0525 \\
& t_{25}=-.0230 \\
& t_{26}=.0915
\end{aligned}
$$

substituting these coefficients into equation ($15-60$) and solving the quadratic for $\boldsymbol{\lambda}$, we get

$$
\lambda=-.067 \quad \text { (discarding the }+ \text { root). }
$$

The tip-loss factor, B :

The tip-loss factor, B, was computed on pageII-147, neglecting the blade taper, to be

$$
B=.966 .
$$

It will be noted that both the collocation method and tabular solutions for the bending moments and deflections involve air loads, the expressions for which are continuous out to $x_{r}=1.00$. To modify the solutions for the bending moments so that the air loads consistently become zero at $x_{r}=B$ would involve great numerical complication. It is advisable, therefore, to compute the air loads in a manner consistent with the way in which they are treated in the later work; 1.e., $B=1.00$. Therefore, in the following calculations the value of the tip-loss factor, B, is taken as unity.

Solution for flapping coefficients:

Using equation $(\pi-38)$ to solve for $\theta_{x_{0}}$, with $B=1.00$, we find

$$
\begin{gathered}
\theta_{x_{0}}^{\prime}=.182 \quad \text { radians. } \\
\gamma_{F}=\frac{\bar{c} a \rho R^{4}}{I_{F}}=13.387 \quad \text { (see definition) }
\end{gathered}
$$

Solving for the flapping coefficients, by equations (I I-50) we find

$$
\begin{aligned}
& b_{2}=-.003091 \\
& a_{2}=+.006538 \\
& a_{0}=+.174107 \\
& a_{1}=+.091199 \\
& b_{1}=-.073674
\end{aligned}
$$

Solution for Z direction air loads:
Solving now for the coefficients of the Z direction air loads, by equation (I I-34), we find

$$
\begin{aligned}
& \text { Lads, by equation }(I T-241 \\
& A_{o_{2}}=.005639-.067 x_{r}+.182 x_{r}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A_{O_{a}}=.005029 \\
& A_{I_{a}}=.000896-.0044344 x_{r}+.057355 x_{r}^{2}
\end{aligned}
$$

$$
B_{I_{a}}=-.015325+.091387 x_{r}-.091199 x_{r}^{2}
$$

$$
{ }^{B_{I_{a}}}=-.005688+.022800 x_{r}-.006182 x_{r}^{2}
$$

We now find the harmonic parts of the air load distribution,

$$
\begin{aligned}
& \frac{d\left(F_{z}\right)_{a_{1}}}{d x_{r}}=\frac{c_{z_{a}}}{R} A_{O_{B}} \\
& \frac{d\left(F_{z}\right)_{a_{2}}}{d x_{r}}=\frac{c C_{z_{a}}}{R} A_{1_{a}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\left(F_{z}\right)_{a_{3}}}{d x_{r}}=\frac{c^{c} z_{a}}{R} B_{1_{a}} \\
& \frac{d\left(F_{z}\right)_{a_{4}}}{d x_{r}}=\frac{c C_{z_{a}}}{R} A_{2_{a}} \\
& \frac{d\left(F_{z}\right) a_{5}}{d x_{r}}=\frac{c c_{z_{a}}}{R} B_{2_{a}}
\end{aligned}
$$

Prom (II-35), $C_{z_{a}}=25,043.8$
and substituting $\quad 0=2.35-.08 \mathrm{R} x_{r}$
we find the analytical expressions for the air loads as a function only of x_{r} :

$$
\begin{aligned}
& \frac{d\left(F_{z}\right)_{a_{1}}}{d x_{r}}=331.871-4157.797 x_{r}+13,261.673 x_{r}^{2}-6928.106 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{2}}}{d x_{r}}=52.732-2643.878 x_{r}+5063.526 x_{r}^{2}-2183.305 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{3}}}{d x_{r}}=-901.920+5961.753 x_{r}-8846.104 x_{r}^{2}+3471.628 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{4}}}{d x_{r}}=-334.755+1558.367 x_{r}-1231.745 x_{r}^{2}+235.327 x_{r}^{3}
\end{aligned}
$$

$\frac{d\left(F_{z}\right) a_{5}}{d x_{r}}=-320.218+1050.775 x_{r}-1315.243 x_{r}^{2}+497.758 x_{r}^{3}$

Where, of course, the total air load at any station is

$$
\begin{aligned}
\frac{d\left(F_{z}\right)_{a}}{d x_{r}} & =\frac{d\left(F_{z}\right)_{\varepsilon_{1}}}{d x_{r}}+\frac{d\left(F_{z}\right)_{a_{2}}}{d x_{r}} \cos \theta_{z_{a}}+\frac{d\left(F_{z}\right)_{a_{z}}}{d x_{r}} \sin \theta_{z_{a}} \\
& +\frac{d\left(F_{z}\right)_{a_{4}}}{d x_{r}} \cos 2 \theta_{z_{a}}+\frac{d\left(F_{z}\right)_{a_{5}}}{d x_{r}} \sin 2 \theta_{z_{a}}
\end{aligned}
$$

We observe that the air loads givenabove fail, by more or less, to satisfy the equations from which they were derived, because of assumptions made to simplify the equations for the flapping coefficients. If one attempts to use the air loads in such a state to solve for the bending moments and deflections, one may find an error in the bending moments out of all proportion to the error in the air loads (particularly by the collocation method, which is especially sensitive to such inconsistencies). The equations which the air loads must satisfy come from equation $(\pi-39)$, and are as follows:
(IT-188a)

(b)

$$
R \int_{0}^{1} \frac{d\left(F_{z}\right)_{a_{2}}}{d x_{r}} x_{r} d x_{r}+K_{y} \dot{\theta}_{z_{a}} b_{1}=0
$$

(x-180 $c) R \int_{0}^{I} \frac{d\left(F_{z}\right) a_{3}}{d x_{r}} x_{r} d x_{r}-K_{y} \dot{\theta}_{z_{a}} a_{1}=0$
((α)

$$
R \int_{0}^{1} \frac{d\left(F_{z}\right)_{a_{4}}}{d x_{r}} x_{r} d x_{r}-3 I_{F} \dot{\theta}_{z_{a}}^{2} a_{2}+2 K_{y} \dot{\theta}_{z_{a}} b_{2}=0
$$

(c)

$$
R \int_{0}^{1} \frac{d\left(F_{z}\right) a_{5}}{d x_{r}} x_{r} d x_{r}-3 I_{F} \dot{\theta}_{z_{2}}^{2} b_{2}-2 K_{y} \dot{\theta}_{z_{a}} a_{2}=0
$$

These equations,
the net root moment of the bis, express the condition that procedure at this point would be zero. The correct for second approximation vela be to solve equations ($\bar{\pi}-188$) recompute the air loads, resubs of the flapping coefficients, etc., until adequate accuracy be obtained. in equations ($4-188$) is rather laborious, however, even obtained. Such a procedure considered here, and would be even for the sample case of chord, c, with x_{r} were not a the integration indicated by equation simple function, so that to be done graphically in each successive (\mathbf{x}-188) would have And so, instead, we arbitrarily successive approximation.

$$
\begin{aligned}
& \text { In the expressions, p. } x-152, \text { for } \frac{d\left(F_{z}\right) a_{1}}{d x_{r}} \text { so that }
\end{aligned}
$$

this we simply substitute satisfied exactly. In order to do
the flapping coefficient e the first approximation values of keeping the first coefficient air loads into equations ir

$$
\frac{d\left(P_{z}\right)}{d x_{1}} \text { as unknowns. }
$$

Upon performing the integrations, analytically in this case, and solving for the unknown coefficients, we find that the modified air load distributions are as follows:

$$
\begin{aligned}
& \frac{d\left(F_{z}\right)_{a_{1}}}{d x_{r}}=390.931-4157.797 x_{r}+13,261.673 x_{r}^{2}-6928.106 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{2}}}{d x_{r}}=104.144-2643.878 x_{r}+5063.526 x_{r}^{2}-2183.305 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{3}}}{d x_{r}}=-940.101+5961.753 x_{r}-8846.104 x_{r}^{2}+3471.628 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{4}}}{d x_{r}}=-350.592+1558.367 x_{r}-1231.745 x_{r}^{2}+235.327 x_{r}^{3} \\
& \frac{d\left(F_{z}\right)_{a_{5}}}{d x_{r}}=-320.752+1050.775 x_{r}-1315.243 x_{r}^{2}+497.758 x_{r}^{3}
\end{aligned}
$$ These air load distributions are plotted in figure I-31, page If-166.

```
II - 156
```


Solution for the Z Direction Bending Moments and Deflections:

a) Collocation method.

The moment of inertia distribution for the subject blades is given in figure II-32, page $I-158$. In general, the quantity $E I_{y}$ is a discontinuous function of X_{r}. Before the derivatives of $E I Y$ with respect to x_{r} are taken, obviously the curve must be approximated by a continuous function of x_{r}. The method of doing this is completely arbitrary. We simply fair as smooth a curve as possible thru the actual distribution of I_{Y}, attempting to hit the midpoints of the straight segments (p. r-158). Mathematical means of arriving at this approximation have been suggested, such as the method of least squared error, but the complication involved therein does not seem to be justifiable. The curves of the fared $E I_{y}$ and its derivatives with respect to x_{r} (obtained graphically) are shown in figure $I I-33$, page $I I-159$. It is important that the units be kept consistent-in this case, we choose lbs., ft., sec., slugs.

In figure $\overline{-}-34$, page $\mathbb{I}-160$, we plot the weight distribution of the blade, and, by integrating graphically, obtain the mass moment, $M_{m_{x}}$, as a function of x_{r}.

We now can compute the coefficients $A_{1}, B_{i}, C_{1}, D_{i}$, E_{1} of page $\bar{I}-74$ of the differential equations $(\pi-96)$ of $x_{r} \cdot(p, \mathbb{I}-161)$ tabulate these solutions below as functions of $x_{r} \cdot\left(p, p_{1}\right.$

II - 158

II－ 159

																							＋	$1+1$					
													H											12－1					
						＋		0	Er			7 4			4						E． 2		L						
												İH																	
\＃					I		＋		＋		It：			${ }_{+}^{+}$		＋	＋17	1	\cdots	12								：	
							17							7	＋1\％	Tit	－		－1：－					1．			1	，	
\＃	－	H	\＃		I	\＃\＃	\＃	＋11	\＃	\＃＋	1	\＃	＋11	＋1	＋：－	－		\＃17	3＋7	1				1	，，	－a，		7	
		1				IT	＋1	＋			T			Tit	＋17	It	＋		－	＋	\because			1：					
	IT					H	IH	$1 \pm$										\pm	11：		\pm	＋1．	，	7×1	L，：1	＋		7	
														\square	14		TF－	T1，	7		＋		＋1	＋2＋	－	\％	＋1：	T1	
\＃	1			IH		\＃	H	H1		H	Ta		TH	7.	7．	－	＋	－1＋	$7+$		1119	．．．		＋1；		\％，	715	：	
		1			（1）	\＃	7	\pm			＋	\dagger	\＃\＃	H：	＋	\square		＋		\％				拫：	涼	－	\cdots		
		1			\＃	H	\＃	\＃11	＋	－		$1+$	＋+	11．	＋	$1+1$	HI	1.17	\＃\＃	71．	7 H	\＃	＋：＋	$1+:$	15	71；	H17	：1：	
													，		7\％					I＋			15	12	15	175	\％		
H	1－1	＋	＋		1		H		，		IT＋1	1.	T	\＃1：	＋1：	［1／	1H2	＋	＋r	＋：1	if	＋1＋	\％	＋\％：	${ }_{7}{ }^{\text {P }}$	：1	＋	，	
\＃\＃＋											\＃	TI1	H			\＃\＃	\square		1717			－	菏		T＋1．		1：2	17：	
\＃	\＃	＋	\＃	I		－	＋	H7	\＃		T1	＋17	\＃．	7	＋1＋	It	$1+$	＋	＋7	＋1．	！：	\＃	\＃		$\overrightarrow{+}$	I！		7：	
	1		\#				\square					T－									－	－	\＃		11．	－	H		
\＃\＃	H17					\＃	＋		H	\＃		\pm	It		＋1＋1			1 1		\＃1	＋1．	\＃＋	IH1	\＃\＃	1：1	＋：			
H1							11：	＋					＋1					11		t！	＋1	TIH	5：－	1	＋1＋1				
\pm	＋	II		TH	II	\＃	1：11	1.	\＃\＃	\＃	＋$\#$	－	1	\pm	－	y	I		I			$\underline{+17}$	1		717	71：	\because		
－	\square					T	\＃	1：	\＃				T	－			＋1	＋1	＋		$1+$	＋	\＃						
＋i＋	\＃1	\＃	－	＋	\＃	\＃	H	7	＋	，	It：	1	\＃	IT	\＃1	IT	팥	＋	＋	7	1.	I\＃1	11	H	\＃			\pm	
														I	\＃		＋71	111	1	T！		＋tr		T15	7				
\＃	\＃						－					＋	I	It：	＋		$\underline{1+1}$	I＋				17．7．	1		＋			71.	
			＋				4					\＃1			－	示	\＃	＋	\＃\＃	－7		1.1		$+$	İ	＋		＋+	H：
\square	\＃		\pm	1			H1	\pm	＋＋7	1．	HI	11	＋1	＋17	$1+$	H．	71＋	1	＋12	＋	＋1．1	712	$1+1$	It	＋．．			11：	＋：＋
											＋	＋	I			4	＋			$1: 1$	＋：	IT：			1		zit	：－	
＋	，	［：	－	H	＋1．			＋	1.1	－	\＃11	IIT		1	＋		111			＋	＋	IIIT	－	＋	＋17．	－		T－1	
							＋1	112：	Tt＋	＋	\％		＋1：	$1:$	T	7.	İ		：\％．		＋1：	\square	1	T1．	7＋1	I			
\＃	＋	．	H		＋	＋1	$\underline{1}$	15	$1{ }_{1}$	．	4	－	t	T	，	＋1，	－11	T	1：＋			＋1		？	＋i．：			11.	．－
\＃	＋1		T	\＃	T	1	\＃	IT	＋12	1	T15	\＃	－It	73	21	＋1：7	－12	－	1：		71：－	－	＋	7					
\＃	，	＋	－	H	T	＋1：	171．	1：＋1	：\％	＋11	1	712	＋－	1.	：	TiT	\cdots	－	\ldots		T：	－	It：	＋	i．：				
						\pm	1		IT	：11				\pm			T		：$: 1$					＋	11＋	ㅍ：			
\pm	IIt		＋		1	1	H1		1	11：	．＋．	－	，				．－	－	＋．．	－		＋＋	＋i＋	：1：	It：	：7			
	－1				t	71	T			＋1近	－	T：－	－	7	垃	＋：－	［：	－	1.	＋	711	71．	＋	！	－	：1			
	TH1	\＃	＋		＋	T11	t\＃	11		，	1.	1.1	＋ir	1	．11	：	＋1：				1	－11	－	1：7		T		1.	＋
＋1！	I				－		＋17		11	1.				11		＋1－	1		＋5		1711		－		\cdots	\pm			
＋11	Itir	1\＃1	\＃		［1	IH	I1	IT	＋7－1	，	1：1	\pm	1	\cdots			1			－		17	14		＋+1	1			：17
			T			\square	＋11		\pm	H1	$\underline{4}$		1					＋	：	71	T．		IT		151				
	＋	1	1\＃		－	1	71． 1	1．1：	IH	7.	1	1.	．．．．	T－1	＋		$\underline{4}$		－	1				1	－				
	＋11	$1+1$	＋	I！	TT	ti	＋	T！	12	－1：2	71：1	＋1．	－		： 1	It		＋		$\underline{1}$				1.					
H 1	－11	71：	I								$1+$	：																	
													＋1	＋					－										
														\％	20	1		6		＋			，						
								．					\cdots																
				H	\＃1	＋．	1	＋1		T	＋2	1	1＋1：	\pm	t＋	1.1	－	\pm	1	\％	＋				．	＋1．			
111	＋	．	＋	\＃	\underline{H}	I！	＋1	17	＋	＋			－	\pm	Ti，		1．：	\＃：	IT	－	\％	\cdots	ti	1＋1	＋+17	H：			
	＋	\＃		＋	＋	T	H	\＃		11			I1：		at			1：				－	＋		＋	± 1		O	
＋	\＃\＃	－	H1	12	\＃\＃	1.	＋1		It					1			$\underline{17}$		1.1	＋	7			\pm	\square	＋1；			$1+\ldots$
				\square	＋	1		H			T		＋1．	＋1．	a	x^{2}	－	－			1	1	－1．4	＋1．1	＋1．				
\pm	$1+1$	141	\＃	ITH	＋1	L＋	＋1	111	＋1	\＃	İ	A	－1．	：	itat	号；			＋＋．	$7+$	F	\＃\＃：	$1+1$.	1．7	＋it		1	！！	\square
4	11	11．1	1	\pm	\pm	5－1	＋	－	：1	＋1．	$:$	－	＋1	，	＋I．：		＋1．1	＋17	5	－		＋1．	．		T				
＋1．	\＃	7	I＋1	势	7\％	＋	\＃\＃	\＃	IT\＃	\＃！	＋－	5	\％	$\because \because$	＋1：		1：	II：	7	＋1		1－2．	－		1：1．				
	\％			it	7：1	＋1：			111					．	H：－	＋11				＋			－	：	－				
H\％	71＋	＋1．		\＃\＃	7：17	H2：	\＃	＋1．		4	T		．		\square	－1：1		17	＋	＋	$1+$	＋+	\cdots		－1，				
	＋	＋	C＋		T	＋17	\＃	＋17	＋	－+7		2	＋1．	－	T T	＋11				iti	＋	7！	－	＋+	1： 1				
\＃	1＋1	\＃＋		\＃	III	－	H17	1		$\xrightarrow{++}$	1	1	T		＋！\％	－1	1					7＋1	13：	：＋7	\cdots				
7	1		＋	\square	＋1＋1	：T	$1+$	－：	2－7	＋12：	$12:$	：：	7		＋		c－			zy		1	－1．	－					
\pm	IT	\pm	It	\＃	11.	，	＋．．	± 111	＋：－		－t：		N1．	．	．．＋					，	It	＋171	＋1．		\％			： 1	H
				＋	＋1	\cdots	1	＋1．	－	－7：	＋1－1	\square		\cdots	\％：	$1: 4$	72：	－t＋	＋．		\cdots	7\％	\％17						
			S：				7\％	＋	121：	Fit．				L	＋1：	7 $4=$	＋＊＋	\cdots	TH				，						
1	H	1			．	i！	＋	H	＋	＋．：	＋	－		\pm ：	T	15	－1－2			－1．	：．t．	－	17：	．			＊		
H	\＃				\＃	＋	\＃1	IT：1		$7 \ldots$	－1：			TH1	＋－		17：	7	：1：	It	，		＋：．	H1：					．
	7	T	\＃		1＋		1	－			\％	1	－+	－	$\pm \%$		＋	－	！	：：11	：		．	＋1：				－	
\＃	＋	＋	H	11	$1 \pm$		± 7	－	＋	$\underline{+1}$	＋に：	：	${ }^{-1}$		Fic	，	，＋1	I：	－	：	3－4	1.	\ldots						
	\pm	$1+$				＋	＋1	\％	Fta	15：5	12	－	＋	祘	E1．	：－1	＋		$1:$	：	！			7					
\＃	\＃1	＋			${ }^{+}$	＋1It：	\＃！		1，7＋	＋1：	－	$\vec{\square}$	．			：	1			：		4	，	＋：					1
		T		1	\bigcirc		＋1．1		＋1？		1	二：	－	－it	\cdots	$\because{ }^{+}{ }^{*}$	：${ }^{\text {a }}$	，		$!$		7：	＋	法					
1		4			\ldots	立	＋1．	\＃：	$1+12$	＋	，		．	－1	I		．+			：	教	${ }^{+1}$		＋					
					1	T	＋17	12：	＋	：$: 1$	\cdots	：1	1	－		，	\％	：1：		\％	：	：1：	\cdots	！					
＋+1	It	＋	\ldots	\＃\＃	H	＋	＋：＋	T：	＋1\％	3\％	－			\％		．．．				：	\because	\％	：					\pm	
＋	＋1＋	＋	＋	\＃	持寺	＋＋．	：	！	雨	＋1＋	t，：				\％	\therefore	\cdots	：$: 1$			－	－．＊	家	－	\ldots			${ }^{+}$	
7	＋1	711	7	：	－1\％	\％	： 1	：$:$	：15：	：15，		－－7	＋		：\％7：	7：		：－						：${ }^{*}$				，	
\＃1	TIt	－	＋	杜：	！\％：	＋：：	！		＋+	1：	：	－：	：	7	［iJ			，		：		\cdots		：	＊＊			－	
［	\％	$\square \mathrm{F}_{\text {；}}$	$7+1$	：		$\stackrel{+}{ }$	＋：	－+	＋1．＋	7^{4}	．．．	\％ 5	，	$\underline{1}$	L				．					İ：		－			：H：
＋10	＋	－	＋5			：	－	12	$\stackrel{1}{\square}$	＋：	\％			${ }^{+}$	1：：					\cdots					－	－		：	
4	＋1＋5	＋	＋1：	\pm	：1；9	\％	7：\％	，		：	\％：		67		－	3.3												＋	
	1：		Itt：	：r			L：	T^{1}	－	12：	：$: 2$				－									\because					
			＋．．					Itr：																					

II - 160

															34										\%	T				
												+	+		+1.					...	:				+	12.				
							5.5					入V	7	Ws									D.			+				
																									1	+17				
													1a, +							+										
								A															+							
																7:		\square		-										
														1:1																
													T	74	\#			+...	-	1			+.	+	\#	+\#	+12.	+		
														TI						H						+1.				
											.		IT.	+	1			+		,										
\#\#\#		+	7		+1	+			+	+	,	- +	-	\ldots	T	+1		+12	\#	++.	-				-	-		+1		
													\#	\#				12		+1	TT									
										1								$\underline{+}$		1:+						1.		+1:1		
																		.												
				,		1	,		\#.	T		1	+	+	.	-		+	1.	3	+	+		II				-		
											+	T.	T																	
			71	H	1	+	11				1				4	2.		va	\pm	.	+1.2									
						H	+				+	-	-								.									
				17		+	I1.		1.		+				-			+1.		1		7	$+$	+		+				
			H1	T							+	\#1		+	H			:17		H.										
	1					,	1				-	\#1	\#	7				+		+										
												1																		
			T11	$1+1$		+	+it				+	+:	\cdots	\%	-			\cdots	T		1	-1		+		+1	-			
												+1	+	.	\pm			士+												
				.								-			+						,									
				17		H	H				+	\square	:			\cdots		:						\#						
	-			0				-	+.		:	+:.	+	.	\pm	-	-	+15	-		\pm	+.	+				8	.		
														+	1			-												
			+.	1.		-	$1+$.	-		-	+	1	4.	\cdots			\ldots	\pm	-	-	11		4		+1.				
				+	71	-1						-	:	+	\pm			-								IT				
	+1.		I.	+..		.	,		+			T	+,	+	-	,		\cdots	+1.	+.	+	+1	7.	.1.	T					
				-		T	1	:1				+		I11.	11			IF	\square					+						
	111		+	+	711	1\%	1	1				\square	+	2.	-			+..	I		-	\neq				+1	:	11		
+	+11			T	TIT	+	\#	:	N			c:	-					-	-							,				
		1		\%																							6			
				TH		+		1	\pm		T	-						7 7	\#	1.							+:			
				\cdots		-		\cdots	-		T	\cdots	4		7															
							17	IT:	:12		!	\pm	-	7	:		,	+	It:	1				T	-1.			I:-	3	
			+						\#			+						\cdots		:	-							1		
	1						1	H	-			:	\%	1	1			+	\pm		:			H	1115	7	T	1		
													t+	+	:			:											W	
				20	+		+	4				-	11.1	-	\because							1					4			
								-	:				+					1		!										
	+				+	-	.						-	.	+															
				.									X ${ }^{1}$	-												T				
		+0							1			:	\%	:	$\#$													T1		
	-													T	T			7												
	\pm					1711		7	-		:	-	T	-	1			L	+.	1	+1	+	-	H	7	T2		
	+			Q				T	+			-	+:+					+						T		\square		2		
,	.			1	14	\pm	I/	H17	7.7		IT	1.7	\#-	\pm	:		+	+\#	\because	+	\ldots	H	II	\pm	\pm	T2	.	T		
				1							H	+17			1															
	+1		\pm	1	H1	\#		1	11		H1.	\cdots	1-7.	-	+		.		+1.	I.	,	+			1					
	T3			\%		\%					+	+	"					7		-		I!								
						II					+		:											111						
			-		+	T							:		1							1		+		-		-		
1-	+	+	1.	1	2:	+1.	+		\pm		\pm	+.	+:	-	H	\ldots			1.	I	1..	\#	+11	7	+12.	4				
											7	.																		
						1.					:				.				.	-		+	-		+	2		+		
											:	x		EI																
													T.		\ldots	+			.	-				1	.	H	.			
													I												.					
							+.	+	4		+		.	.				-	.	-		+				,	-	+		
					\#		11.		\pm											.										
					111	11		(111	11		+i.	C_{-}	1-1	71:	+			:-	+	:	+2,	IT	+11	-	+	+17	12.	:		
			1		+1	+1	1 IT	+:			:	T	-i	+!	T			+	\#:	.				H		+17	+	+1		
												.		-	-		,		-	.	-		.		\cdots					
						+1	:	I1:				+2.	+	-		1:		+.		+.	:	+1		-:			:1	II		
	1	+	I-	+:+	+1:	$1+$	+1.	+			+.	11.	+	\pm				-	+	.	.		-	+12:	+	+1	\square	1		
						,					:	L		7				+		\%				+	.	L	+7			
			:	1.	I	+17	-																	+		T1				
						+		+1	+1:				\#:					+					I	.		IT	T	+		
									\#																					

$x_{r} \longrightarrow$	0	.25	.50	.75	1.00
A_{1}	6.109	6.021	2.770	.641	.117
B_{1}	0	-3.499	-27.978	-9.335	0
C_{1}	-363	-375	-182	-101.6	+14.6
D_{1}, E_{2}, E_{3}	975	956	905	610	545
E_{4}, E_{5}	3900	3824	3620	2440	2180
$E_{1}=0$, and since	$K_{y}=0$, from $(\pi-101)$,$L_{1}=0$.			

The procedure for the constant and second harmonic parts ($1=1,4,5$) is from here on somewhat different from that for the first harmonic parts $(1=2,3)$.
$1=1,4,5:$
The sum of the first five rows of column 8 , Table $I I-1$, is simply the value of

$$
-\frac{1}{R}\left\{\frac{d\left(F_{z}\right)_{a_{1}}}{d x_{r}}+\frac{d\left(F_{z}\right) m_{1}}{d x_{r}}\right\}
$$

for the harmonic (value of 1) and the x_{r} for which the table applies. That is, instead of the first five rows of column 8 , Table $\pi-1$, we enter

$$
i=1 ;-\frac{1}{R} \frac{d\left(F_{z}\right)_{a_{1}}}{d x_{r}}+m x_{r} \dot{\theta}_{z_{a}}^{2} a_{0}^{R}
$$

$$
\begin{aligned}
& 1=4 ;-\frac{1}{R} \frac{d\left(F_{z}\right)_{a_{4}}}{d x_{4}}+3 m x_{r} \dot{\theta}_{z_{a}}^{2} a_{2} R \\
& 1=5 ;-\frac{1}{R} \frac{d\left(F_{z}\right)_{a_{5}}}{d x_{r}}+3 m x_{r} \dot{\theta}_{z_{a}}^{2} b_{2} R
\end{aligned}
$$

$d\left(F_{z}\right)_{a}$

We illustrate the solutions of Table $\pi-1$ by giving the solution for $1=4, x_{r}=.25$ (table $\pi-5$, page $\boldsymbol{\pi}-167$). Of course 14 other solutions mast be made for the other combinations of $1=1,4,5$ and $x_{r}=0, .25, .50, .75$, and 1.00. Except for the constant of column 8 , the solutions of Tables $\bar{K}-1$, for any , the $1=4$ and 5. Finally, the result x_{r} are identical for entered in Tables $\pi-3$ (oses of these tables are indicated on page $\pi-86$. (one for each value of 1) as $1=4$ is given on page the solution of Table $\bar{I}-3$ for the unknown coefficients T. Having Table $\pi-6$ we find series for the z defile n_{1} and S_{1}, in tho assumed series for the a deflection. This is
from Table given below for $1=4$:
from Table $\pi-6$, row $30: S_{4}=.00230550$
row $28: \mathrm{T}_{4_{4}}=+3.397599$
row 26 : $\mathrm{T}_{3_{4}}=-.061221$
row $24: T_{2_{4}}=-.791884$
row $22: \quad T_{1_{4}}=+.461759$
and from equation $: \quad T_{0_{4}}^{I_{4}}=-.032991$

$$
I I-163
$$

It is advisable to check these values by substituting into the equations represented by $1: 1,7$ 13 , 21 , Table $I T-6$, and seeing that they are satisfied to at least five significant figures.

These coefficients are then substituted back into equation $\left(I I-100 c\right.$) for $\frac{d^{2} z_{r}}{d x^{2} r}$ to find the values of the second derivative as a function of x_{r}. Finally the bending moment at each station is

$$
M=\frac{d^{2} z_{r}}{d x_{r}^{2}} \cdot \frac{E I_{Y}}{R}
$$

where $E I_{y}$ is from figure $I I-33$, page $\mathbb{-}-159$. For $1=4$, these last steps are given below:

$$
\begin{aligned}
& \Gamma
\end{aligned}
$$

$$
\begin{aligned}
& \because \\
& \text { F }
\end{aligned}
$$

$$
-E_{1}\left(z_{r_{1}}\right)
$$

which, upon solution, gives us

$$
-E_{1} \Delta_{2} z_{r_{1}}
$$

for the entry in column 8 , Table $\mathbb{- l} /$, for the third approximation, $\Delta_{3} M_{1}$ and $\Delta_{3} z_{r_{1}}$. In the subject example, It was judged that the second approximation gave sufficient accuracy. It will be noted that the first five columns of Table $a-1$ are identical, for both $1=2$ and 3 , and for all the approximations, with the corresponding columns in the solution for $1=1$. This fact of course saves a great deal of computation. Finaily, the bending moments and deflections are

$$
M_{1}=\left(M_{1}\right)_{1}+\Delta_{2} M_{1}+\Delta_{3} M_{1}+\ldots \ldots
$$

$$
z_{r_{1}}=\left(z_{r_{1}}\right)+\Delta_{2} z_{r_{1}}+\Delta_{3} z_{r_{1}}+\cdots \cdots
$$

Because of the indeterminacy of the blade position, we can determine only the deflections due to blade bending, that is, relative to the tangent at the root. This, when added to the daflection of a stiff blade, will at least give a rough approximation to the actual deflection.

Thus

$$
\begin{aligned}
& z_{2}^{\prime}=R\left\{z_{r_{2}}+x_{r}\left[2 e s_{2}-a_{1}\right]\right\} \\
&= R\left\{\left(z_{r_{2} 1}\right)+\Delta_{2} z_{x_{2}}+\Delta_{3} z_{r_{2}}+\cdots+x_{r}\left[2 e \left(\left(s_{2}\right)_{1}+\Delta_{2} s_{2}\right.\right.\right. \\
&\left.\left.\left.+\Delta_{3} s_{2}+\ldots .\right)-a_{1}\right]\right\}
\end{aligned}
$$

and $z_{3}^{\prime}=R\left\{\left(z_{r_{3}}\right)+\Delta_{2} z_{r_{3}}+\Delta_{3} z_{r_{3}}+\ldots+x_{r}\left[2 e\left(\left(S_{3}\right)_{1}+\Delta_{2} S_{3}\right.\right.\right.$

$$
\left.\left.\left.+\Delta_{3} s_{3}+. . .\right)-b_{1}\right]\right\}
$$

The results of these approximations are tabulated below for $1=2$:
$\begin{array}{llllllllll}x_{r} & \left(M_{2}\right)_{1} & \Delta_{2} & M_{2} & M_{2} & \left(z_{r_{2}}\right) & \Delta_{2} & z_{r_{2}} & z_{r_{2}} & z_{2}^{\prime}\end{array}$

0	0	0	0	0	0	0	
.125	48	10	58				
.250	69	12	81	-.00220	-.00025	-.00245	-.42
.375	72	12	84				
.500	55	11	66	-.00248	-.00016	-.00264	-.80
.625	38	8	46				
.750	17	4	21	+.00075	+.00061	+.00136	-1.10
.875	3	1	4				
1.000	0	0	0	+.00782	+.00234	+.01016	-1.31

These results, with those for $1=3$, are plotted in figures $\bar{I}-35$ and $\pi-36$.

$x_{f}=.25,1=4$

TABLE IT - FOR THE SOLUTION OF TIE FIVE LINEAR SIMULTANEOUS
EQUATIONS IN FIVE URMOWHIS

1. -4 .

Explanation on page $\pi-89$.

b) Tabular method.

The tabular method of finding the bending moments and deflections is considerably easier than the method of collocation. We present here the solution for $i=4$, that is, the $" \cos 2 \theta_{z_{a}}$ "
part of the deflection and bending moment. The entries in Table IT-4, common to all the different solutions of that table, are $\frac{.01 R^{2}}{E I}$ (column 2) and $\left(F_{x}\right)_{m}(\operatorname{column} 5)$. The distribution of $E I_{y}$ is taken from the curve in figure $\bar{I}-33$, as for the collocation method, and $\left(F_{x}\right)_{m}$ is simply

$$
\left(F_{x}^{\prime}\right)_{m}=M_{m_{x}} \dot{\theta}_{z}^{2}
$$

where $M_{m_{x}}$ is taken from iniguro $=-34$.

The entries in column 7 in the solutions for M^{2} (see p. I-100) are computed from the modified distributions of air loads usea in the collocation method:

$$
.1 R\left(F_{z}\right)=1.9 \int_{x_{r}}^{1.0} \frac{d\left(F_{z}\right)_{a}}{d x_{r}} d x_{r}
$$

where $\frac{d\left(F_{z}\right)_{a}}{d x_{r}}$ is given on page $I-155$, and in this case

II- - -172
the integrations have been performed analytically. The entries in column 8 are computed from figure $\pi-34$. In the case of $1=4, P=4$, and

$$
P m \dot{\theta}_{z_{8}}^{2}(.1 R)^{2}=4 \cdot 1.9^{2} \cdot 23.1^{2} \cdot \frac{y}{32.2}
$$

The solutions of Table $I-4$ for $1=4$, for M_{4}^{1}, E_{4}, 0_{4} are given as tables $I I-7$ to $I I-9$. From these tables:

$$
(\Delta x \cdot S)_{M^{\prime}}^{\prime}=-341,734.1
$$

i

$$
\begin{aligned}
(\Delta x \cdot S)_{C} & =25,992,638 \\
(\Delta x \cdot S)_{E} & =-3319.738
\end{aligned}
$$

$$
\text { and at } \begin{aligned}
x_{r} & =1, \\
M^{\prime} & =-1,010,073.2 \\
c & =76,798,564 \\
E & =-9815.914
\end{aligned}
$$

Solving for $\left(\frac{d z}{d x}\right)_{0}$ and S_{0} by equations $(\pi-129)$ and $(\pi-130)$, page II-103,

$$
\begin{aligned}
\left(\frac{d z}{d x}\right)_{0} & =-.01415057 \\
S_{0} & =-213.614
\end{aligned}
$$

Then, at every station,

$$
M=M^{\prime}+\theta\left(\frac{\partial x}{\partial x}\right)_{0}+S_{0} E
$$

Similarly, for the deflections,

$$
z_{i}=z_{M}^{\prime}+z_{C}\left(\frac{d z}{d x}\right)_{0}+S_{0} z_{B}
$$

where $z_{M}{ }^{3}, z_{c}, z_{E}$ are column 9 in the
solutions for M^{\prime}, c, E, respectively.
The bending moments so computed are plotted in figure II-37. The deflections are given in figure II-38. As in the collocation solutions, the first harmonic parts of the deflection do not have physical significance, since for $1=2,3$ it, was necessary to assume the value for ($\left.\frac{d z}{d x}\right)_{0}$ (see p.II-102).

If we make the same assumption as in the collocation method, for z_{2} and z_{3}, we have

$$
\begin{aligned}
\text { (II-189a) } & z_{2} & =z_{M}^{\prime}+S_{0} z_{E}-R x_{r} a_{1} \\
\text { (b) } & z_{3} & =z_{M}{ }^{\prime}+S_{0} z_{E}-R x_{T} b_{1}
\end{aligned}
$$

z_{2} and z_{3} in figure II- 38 were computed by these formulae.
Comparing the deflections and bending moments as computed by collocation and the tabular methods, we observe a considerable difference in the results by the two methods.
We believe that this is attributable to insufficient convergence in either or both of the methods, and that more terms should be taken in the assumed solution by collocation, and/or smaller increments of blade radius (i.e., more stations) should be considered in the tabular method. Extension of the collocation method to more terms would seem impractical from the point of view of time required to complete the solution. It is desirable to obtain a solution of the differential equations involved by means of a "differential analyzer", which should definitely settle the question of relative accuracy of the two methods.

The hunting coefficients:
Since in later solutions for the Y direction bending moments, the air loads are taken to $x_{r}=1$ rather than B, it is advisable to be consistent, and in the equations for the hunting coefficients, to set $B=1.00$. The coefficients of aerodynamic torque, ($G_{0}, G_{1}, H_{1}, G_{2}, H_{2}$) are computed by equations ($\mathbb{I}-58$), page $\boldsymbol{x}-42$. Finally, the hunting coefficients, $e_{0}, e_{1}, f_{1}, e_{2}, f_{2}$ are computed by equations (I-71), page I-62.

The Y direction air loads:

The Y direction air loads can be computed es a function of x_{r} from

$$
\frac{d\left(F_{y}\right)_{a}}{d x_{r}}=\frac{d\left(F_{y}\right)_{a_{L}}}{d x_{r}}+\frac{d\left(F_{y}\right)_{a_{D}}}{d x_{r}}
$$

where the harmonic parts of $d x$

$$
\frac{d\left(F_{Y}\right)_{e_{D}}}{d x_{r}}
$$ course, c, the chord, Will not be necessary do direction loads, because hunting coefficients

Bending Moments:

The I Direction Bending Moments:
8) Collocation method: I_{q}, the moment of inertia about the The variation of I_{2}, paired in the same way that I_{y} Z axis, with X_{r}, must solution for the Z direction bending x_{r} was paired in the solute for the coefficients A_{i}^{\prime} to B_{i}^{\prime} for moments. The solutions for those for A_{1} thru B_{1} for the tables I-1 are similar to coss in this case required 2 direction moments. Since the air F_{1}^{\prime} thru J_{1}^{\prime} can be computed as functions of x_{r} the solution for the bending ma nd and z direction From this point on, deflections is exactly similar The deflections of the blade bending moments and deflections. X^{\prime} ais are of course

$$
Y_{1}^{\prime}=R\left(I_{r_{1}}+I_{r} \sin \theta_{0}\right)
$$

$$
\begin{aligned}
& y_{1}^{\prime}=R\left(y_{r_{1}}+x_{r}\right. \\
& y_{2}^{\prime}=R\left(y_{r_{2}}+x_{r}\left[2 e s_{2}^{\prime}-e_{1}\right]\right) \\
& \left.+x_{1}\left[2 e s_{3}^{\prime}-r_{1}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}^{\prime}=R\left(y_{r_{2}}+x_{r}\right. \\
& y_{3}^{\prime}=R\left(y_{r_{3}}+x_{r}\left[2 e s_{3}^{\prime}-f_{1}\right]\right)
\end{aligned}
$$

$$
y_{3}^{\prime}=R\left(y_{r_{4}}-x_{r_{2}} e_{2}\right)
$$

$$
I_{5}^{\prime}=R\left(I_{r_{5}}-x_{r} I_{2}\right)
$$

$$
I X=176
$$

b) Tabular method:

The solution by this method is exactiy similar to that for the Z direction bending moments, except that, since the air loads vere not modified in this case, the entries in column 7 , table $\pi-4$, can be computed directly by the relations given on page $I I-120$ (equations $\pi-154 a$ to $\pi-154 \in$). Finally, the relations corresponding to equations ($\overline{-}-i 69, i$) and (b) , page $\pi-173$, for the first harmonic deflections, are

$$
\begin{aligned}
& y_{2}=y_{M}^{\prime}+S_{0} y_{E}-R x_{r} e_{1} \\
& y_{3}=y_{M}^{\prime}+S_{0} y_{E}-R x_{Y} f_{1}
\end{aligned}
$$

$1=4$	1	2	3	4	5	6	7	8	9	10	11	12	13
$\begin{aligned} & \text { sta. } \\ & \left(x_{x}\right) \end{aligned}$	E	$\frac{201 R^{2}}{8 I}$	(1) $\cdot \frac{0,01 \mathrm{O}^{2}}{8 \mathrm{I}}$	$\Delta 8$	${ }^{\left(F_{x}\right)_{m}}$	$\Delta^{28} \cdot\left(P_{x}\right)_{m}$. IR (F_{z})	$\mathrm{P}=\dot{o}_{\substack{2 \\ 0}}^{(. R R)^{2}}$:	(8) $\cdot \mathrm{s}$	$\Sigma(10)$	$\frac{2 \cdot(8)}{6}$	$\Delta(0 x \cdot s)$
. 0	0	. 000866	0					1744	0	0			
. 05				0	6860	0	1.9	720	0		0	\bigcirc	0
. 10	-1.980	. 0000864	-.0001622					736	\bigcirc	\bigcirc			
. 15				-.0001662	6680	-1.0\%	1.9	236	-.000882		0	-.00	-. 660
. 20	-2.924	. 000086	-.000626					732	-.0001662	-. 120			
. 25				-.c005888	6310	-3.775	1.9	728	-.0005586		-. 120	-.071	-. 334
. 30	-20.720	. $0000{ }^{\circ} 0$	-. 0.009648					724	-.0007530	-. 545			
. 35				-. 0015536	5780	-8.980	1.9	724	-.c015298		-. 665	-. 287	-2.208
. 40	-22.452	.c001164	-.0026136					720	-.023066	-1.661			
. 45				-.004670	5020	-20.918	1.9	216	-.c023901		-2.326	--.497	-3.123
. 50	-48.093	. 0001900	-. 0298377					208	-.0664736	-4.583			
. 55				-.0233027	4880	-55.64	1.9	656	-.0131260		-6.999	-1.455	-2.611
. 60	-113.971	. 003225	-.0372406					502	-0.0197783	-11.209			
. 65				-.0503453	3200	-166.139	1.9	532	-0.0499510		-28.618	-4.444	-23.914
. 20	- -205.092	. 200582	-.1775635					54	-.001236	-35.32			
. 75				-.2229088	2100	-5.66.081	1.9	480	-.1820780		-53.960	-18.233	-88.357
. 80	-27. 166	. 00116	-1.0723526					4,6	-.2980324	-137.095			
. 85				-1.3022614	1470	-1916.324	1.9	4	-0.091631		-191.055	-96.367	$-4.21 .428$
. 90	-3129,812	. 02778	-8.7208774					232	-1.6002938	-691.327			
. 95				-10.0031388	510	-5101.601	1.9	420	-6.6018632		-882.382	-700.219	-22772.783
1.00	-9815.914								-11.6034326				
												$(\Delta x \cdot s)_{E}=$	-3319.738

II - 179

(SEE-SAW TYPES)

Center-Hinged Blades Rigid in the Plane of Rotation (See-

 Saw Type)The subject blades are continuous from $x=-R$ to $x=R$, and are hinged at the hub by a hinge having its axis in the $X^{\prime} Y^{\prime}$ plane. The hinge axis may make an angle, δ_{3}, with the blade Y axis, and the blades may have a "built-in coning angle". $\theta_{y_{0}}$, as shown in the sketch below:

The equations that have been derived in Part II for the accelerations, inertia and aerodynamic forces are, in general, applicable to the "see-saw" type blades. The expressions for the flapping coefficients need be modified, however, and the solution for the inflow factor, λ, should theoretically be somewhat different. It will be necessary to change some of the details in the solution for the blade bending moments, torsion, twist, etc.

If the flapping angle of the right half of the blade be $\theta_{y_{r}}=a_{0}-a_{1} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}}-a_{2} \cos 2 \theta_{z_{a}}-b_{2} \sin 2 \theta_{z_{a}}$ then the flapping angle of the left half is

$$
\begin{aligned}
& \text { IIE-2 } \\
& \text { (2015-2) } \\
& \theta_{y_{I}}=2 \theta_{y_{0}}-\theta_{y_{r}}=a_{0}-a_{1} \cos \\
& -a_{2} \cos \left(2 \theta_{z}+2 \pi\right) \quad b_{1} \sin \left(\theta_{z_{a}}+\pi\right)
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\theta_{r_{0}} \\
& a_{2} \doteq 0 \\
& b_{2}=0 \quad(3 \pi-3)
\end{aligned}
$$

Flapping Coefficients, As for the general,b_{1}.

(TI T-4) ΣM of all moments on the blade blade, $p . \pi T-25$
Where, as $\left\{\left(M_{a}\right)_{a}\left(M_{y}\right)_{m}+\left(M_{y}\right)_{a b}\right\}$ cos the flapping hinge the
about the $\left(M_{a}\right)_{a},\left(M_{y}\right)$ and $\left(M_{y}\right) \quad M_{x} s 1_{n} \delta_{3}=0$
respectively; M axis due to air, inertia $\quad\left(M_{y}\right)$ are the moments
(20 2 -5)

$$
\left(M_{y}\right)_{a}=\int_{0}^{B} \frac{d\left(F_{z}\right)_{a}}{a-} \text { the torsion. }
$$

$$
\left(M_{y}\right)_{a}=\underbrace{\int_{a}}_{f_{0 r} \theta_{z_{a}}^{B} \frac{d\left(F_{z}\right)}{d x} \cdot x d x} \underbrace{\left.\int_{0}^{B \frac{d F_{a}}{d x} \cdot x d x}\right)}_{f_{0 r}\left(\theta_{z_{a}}+\pi\right)}
$$

p. Tr -27. values of the above for $\left(\theta_{z_{a}}+\pi\right)$


```
III - 3
```

(III-6) $\frac{\left(\bar{n}_{y}\right)_{a}}{\operatorname{RCC}_{z_{a}}}=\sin \theta_{z_{a}}\left[\frac{4}{3} \mu \theta_{x_{0}}^{\prime} B^{3}+.106 \mu^{4} \theta_{x_{0}}^{\prime}+\mu \theta_{t} B^{4}-\frac{1}{2} a_{1} B^{4}\right.$

$$
\left.+\mu \lambda B^{2}-\frac{1}{4} \mu^{3} \lambda+\frac{1}{4} \mu^{2} a_{1} B^{2}-\psi_{2}^{\prime}\left(\frac{5}{48} \mu^{4}-\frac{B^{4}}{2}-\frac{3}{4} B^{2} \mu^{2}\right)\right]
$$

$$
+\cos \theta_{z_{a}}\left[-\frac{2}{3} \mu \theta_{\nabla_{0}} B^{3}-.070 \mu^{4} \theta_{J_{0}}+\frac{1}{2} b_{1} B^{4}+\frac{1}{4} \mu^{2} b_{1} B^{2}\right.
$$

$$
\left.-\psi_{1}^{\prime}\left(\frac{1}{48} \mu^{4}-\frac{B^{4}}{2}-\frac{\mu^{2} B^{3}}{4}\right)+\frac{1}{4} \lambda_{1} B^{4}\right]
$$

(IIT-7) $\left(M_{Y}\right)_{m}=$

The values of the above integrals are given by equation (I I-44), , p. II-28 , and, making appropriate substitutions,
$(m-8)\left(M_{y_{m}}=0\right.$.
$\left(M_{Y}\right)_{g}$, the moment due to gravity loads, is obviously zero. M_{X}, the torsion on the blade, will be small compared to M_{y}, and since δ_{3} is seldom greater than 30°, we neglect the term $M_{x} \times \sin E_{3}$.

Substituting ($\overline{4 \pi}-5,6,7,0$ into (III -4), and equating coefficients of identical trigonometric functions,
$\begin{aligned} \text { (IIT -qa) } a_{1}=\frac{1}{\frac{B^{4}}{2}-\frac{1}{4} \mu^{2} B^{2}} & \left\{\mu \lambda\left(B^{2}-\frac{\mu^{2}}{4}\right)+\theta_{x_{0}}^{\prime} \mu\left(\frac{4}{3} B^{3}+.106 \mu^{3}\right)\right. \\ & \left.+\theta_{t} \mu B^{4}+\psi_{2}^{\prime}\left(\frac{B^{4}}{2}+\frac{3}{4} B^{2} \mu^{2}-\frac{5}{48} \mu^{4}\right)\right\}\end{aligned}$
(IIC-9b) $\quad b_{1}=\frac{1}{\frac{B^{4}}{2}+\frac{1}{4} \mu^{2} B^{2}}\left\{\mu \theta_{Y_{0}}\left(\frac{2}{3} B^{3}+\frac{.070 \mu^{3}}{}\right)-\frac{1}{4} \lambda_{1} B^{4}\right.$

$$
\left.-\psi_{1}^{\prime}\left(\frac{B^{4}}{2}+\frac{\mu^{2} B^{2}}{4}-\frac{1}{48} \mu^{4}\right)\right\}
$$

With the exception of the underlined terms, which are small enough to be neglected, these expressions are identical with equations ($I T-50 d$) and (e) , in which

$$
a_{0}=\theta_{y_{0}}, \quad a_{2}=b_{2}=0, \quad D_{y}=\infty
$$

Solution for λ :
Theoretically, λ can be shown to depend on μ, C_{T} and α (angle of attack of rotor disc) by the relation

$$
(\text { III- } 10)
$$

$$
\tan a=\frac{\lambda}{\mu}+\frac{\frac{1}{2} C_{T}}{\sqrt{\lambda^{2}+\mu^{2}}}
$$

C_{T} and μ are, of course, indpendent of the blade hinge configuration, while α, a function of the I / D of the rotor, may be remotely affected by the flapping characteristics. For practical purposes, however, it will be sufficiently accurate to solve for λ by the method arranged in Part II for the general type of hinge configuration.

The Hunting Coefficients:
Theoretically, the relation between the lag angle and the flapping angle can be show, by methods similar to those of Part I, pp. I-26 to I-43, to be:
(III-11) $\quad \sin \theta_{z_{b}}=\frac{\cos \theta_{y_{0}}}{\cos \theta_{y}} \sin \delta_{3} \cos \delta_{3} \cdot\{$

$$
\left\{1-\sqrt{\frac{1}{\cos ^{2} \theta_{y_{0}}}\left(1-\frac{\sin ^{2} \theta_{Y}}{\cos ^{2} \theta_{3}}+\tan ^{2} \theta_{y_{0}} \tan ^{2} \delta_{3}\right.}\right\}
$$

Since $\theta_{z_{b}}, \theta_{y_{0}}$ and θ_{y} are small angles, this relation is closely approximated by

$$
(I I-1 / \alpha) \quad \theta_{z_{b}}=\tan \delta_{3}\left(\theta_{y}^{2}-\theta_{Y_{0}}^{2}\right)
$$

Substituting

$$
\begin{aligned}
& \theta_{z_{b}}=\theta_{0}-\theta_{1} \cos \theta_{z_{a}}-f_{1} \sin \theta_{z_{a}}-\theta_{2} \cos 2 \theta_{z_{a}} \\
&-f_{2} \sin 2 \theta_{z_{a}}
\end{aligned}
$$

and

$$
\theta_{y}=\theta_{y_{0}}-a_{1} \cos \theta_{z_{a}}-b_{1} \sin \theta_{z_{a}}
$$

and equating coefficients of identical trigonometric functions, we find
$(\pi I-12 a) \quad e_{0}=\frac{1}{2}\left(a_{1}^{2}+b_{1}^{2}\right) \tan \delta_{3}$
(6) $\quad e_{1}=2 a_{1} \theta_{y_{0}} \tan s_{3}$
(c) $\quad f_{1}=2 b_{1}{ }^{0} \mathbf{y}_{0} \quad \tan \delta_{3}$
(d) $\quad e_{2}=\frac{1}{c}\left(b_{1}^{2}-a_{1}^{2}\right) \tan \sigma_{3}$
(c) $\quad f_{2}=-a_{1} b_{1} \tan s_{3}$

Calculation of the Z Direction Bending Moments and Deflections for the "See-Saw" Type Blade.

On the subject type of blades the end conditions are not known to us for either half of the blade separately since the deflection curve for the right half is influenced by the left half, and vice versa. Therefore the solution must consider the blade as a whole (1.e., $x=R$ to $-R$). Furthermore, one half of the blade must be in the region of reversed flow, and in the equations (rr-34) for the air loads, the plus must be used outboard of $x_{r}=-\mu \sin \theta_{z_{a}}$ and minus sign Inboard of $x_{r}=-\mu \sin \theta_{z_{a}}$ 。 This rrquires that the solutions for the bending moment and deflection curve be carried out separately for each azimuth angle, unless a simplifying assumption concerning the reversed flow region be made (see p.I-4). We, therefore, make the assumption that the alrloads are zero inboard of the point $x_{r}=\mu$.

The collocation method of solution for the bending moments, when extended for the see-saw type blades, becomes mach more lengthy than for the fully articulated blades, because of the fact that both blades must be considered. In view of this fact, only the step-by-step method is presented for the see-sav type blades.

The tabular method of finding the bending moments in the 2 direction:

The theory which forms the basis of table $\pi-4$, page $\pi-104$ is entirely spplicable to the subject blades. The details of the solution (that is, the parts into which the total moment is separated) are different from those for the fully articulated blades because of different and conditions. They are, in fact, different for the different harmonics.

t

$1=1$ (Constant part).
For $1=1$, by definition, the flapping and bending are constant, so that we immediately set $S_{0}=0$. By the same reasoning, we set $\left.\frac{(z}{\delta x}\right)_{0}$, the unknown part of the root slope, $=0$. It is then obvious that since the loads on both halves of blades are identical,
$M_{R}=M_{L}$ at every station.
Referring to pp. $\overline{-9}-97$ to $\bar{I}-99$, the necessary solutions are for M^{\prime} and A. In more detail than is given on p. $\overline{-2}-97$, the initial entries for M^{\prime} are,
$(1)_{0}=0$ (no mechanical damping)
(4). $05=.1 R \theta_{y_{0}}+(3)_{0}$
(7) r are given by the same formula as for fully articulated blades, p. I-100. It must be borne in mind, however, that inboard of $x_{r}=\mu$, we assume the air load $=0$. Hence, in that region, $(7)_{r}$ is constant.

Finally,
$M=M_{R}=M_{L}=A M_{o}+M^{\prime}$
and
$M_{0}=-\frac{M^{\prime}}{A}$ at the tip station.
$1=2,3$ (Finst harmonic)
Physical reasoning tells us that since the air loads and slope at the root are exact opposites on left and right sides, $M_{R}=-M_{L}$ at every station.

III - 8

Therefore, $x_{r}=0$ is a point of inflection and
$M_{0}=0$.
Furthermore, for the same reason as for the fully articulated blades, p. II -102 , the first harmonic inertia loads cancel out and ($\frac{d z}{d x}$) and S_{0} are indeterminate and must only satisfy equal We, therefore, assume $\frac{d x}{}{ }^{\circ} M=M^{\prime}+S_{0} E$. The bending moment is given are initial entries for
$(1)_{0}=0$
(4) $.05=(3)_{0}$
(7) $)_{r}$ same as on p. II-100 for fully articulated where aerodynamic running loads have been assumed equal to zero.

$$
\begin{aligned}
& \text { At the tip, of course, } \\
& M=0 \text {, so } S_{0}=-\frac{M^{\prime}}{E} \text { (tip values). }
\end{aligned}
$$

$1=4,5$ (second harmonic) waning shows us that since the Again, physical reasoning shows and left sides, the root slope, ($\left.\frac{d z}{d x}\right)_{0}=0$ and $S_{o_{R}}=S_{O_{I}}$ Therefore, $M_{R}=M_{I}$ at every station. The necessary solutions are for M^{\prime}, A, E. The initial entries for M^{\prime} are,

```
IIT - - 
```

$$
\begin{aligned}
& (1)_{O}=0 \\
& (4)_{.05}=(3)_{O} \\
& (7)_{r} \text { are again the same as for the articulated } \\
& \text { blades, p. } I-100 \text {. At any station then, } \\
& M=M^{\prime}+A M_{O}+E S_{O} \\
& \text { and at the tip } \\
& M^{\prime}+A M_{O}+B S_{O}=0 \\
& (\Delta x \cdot S)_{M}^{\prime}+M_{O}(\Delta x \cdot S)_{A}+\left[(\Delta x \cdot S)_{B}-. I R\right] S_{O}=\cdot 0 \\
& \\
& \text { Solving for } M_{O} \text { and } S_{O},
\end{aligned}
$$

$$
s_{0}=\frac{(\Delta x \cdot s)_{M^{\prime}}^{\prime}}{(\Delta x \cdot S)_{E}}\left\{\frac{\frac{A}{(\Delta x \cdot g)_{A}}-\frac{M^{\prime}}{(\Delta x \cdot g)_{M}^{\prime}}}{\frac{B}{(\Delta x \cdot S)_{E}}-\frac{A}{(\Delta x \cdot S)_{A}}\left[1-\frac{1 R}{(\Delta x \cdot S)_{E}}\right]}\right\}
$$

and

$$
\begin{aligned}
& M_{0}=-\frac{M^{\prime}+S_{0} E}{A} \\
& \text { where } M^{\prime}, E, \text { A are at } x_{r}=1.00
\end{aligned}
$$

Calculation of the Bending Moments and Deflectiins in the Y Direction.

As for the Z direction bending moments, we present only the step-by-step method of finding the Y direction bending moment. Similarly, we make the assumption that the air loads are zero inboard of $X_{r}=\mu$. The end conditions for the Y direction bending moments are similar to those for the rigid rotors. The blade hunting is determined by the flapping, pp. $\mathrm{m} \cdot 4,5$ and not by
the Y air loads, so that it is necessary to include with the aerodynamic shear loads, the inertia loads due to hunting.
$1=1$ (Constant part)
We can immediately set $S_{0}=0$, and also there is no unknown part of root slope; $\left(\frac{d y}{d x}\right)_{0}=0$. The necessary solutions of table $\pi-4$ are for M^{\prime} and A (p, IF-97) . The initial entries for $\mathrm{M}^{\text {' }}$ are,
$(1)_{0}=0$
(4). $05=(3)_{0}+.1 R \theta_{z_{b_{0}}}$
(7) $)_{r}$ are given by equation $\pi-154$ outboard of $x_{r}=\mu$. Inboard of this point, $(7)_{r}$ is, of course, constant. The moment at any station is
$M=M^{\prime}+A M_{0}$
and
$M_{0}=-\frac{M^{\prime}}{A}$ at the tip.
$1=2,3,4,5$ (Harmonic parts)
As for $1=1,\left(\frac{d y}{d x}\right)_{0}=0$, and the necessary solutions are for $M^{\prime} ; A$, and E (p.IT-97). The initial entries for M^{\prime} are,
$(1)_{0}=0$
(4). $05=(3)_{0}$
$(7)_{r}=. I R\left(F_{y}\right)$
(xTr-13) where $\left(F_{y_{1}}\right)_{1}=\left(F_{y}\right)_{e_{1}}+\left(F_{y}\right)_{m_{1}}$
$\left(F_{Y}\right)_{\varepsilon_{1}}$ are given by equations $(I T-154)$ and from $(I-8 c)$,
(III-14a) $\left(F_{Y}\right)_{m_{2}}=R^{2} \dot{\theta}_{z_{a}}^{2}\left(e_{1}-2 b_{1} \theta_{Y_{0}}\right) \int_{x_{r}}^{1.0} \operatorname{mx}_{r} d x_{r}$
(b) $\quad\left(F_{Y}\right)_{m_{3}}=R^{2} \dot{\theta}_{z_{e}}^{2}\left(f_{I}+2 a_{1} \theta_{y_{0}}\right) \int_{x_{r}}^{1.0} m_{r} d x_{r}$
(c) $\quad\left(F_{Y}\right)_{m_{4}}=R^{2} \ddot{\theta}_{z_{a}}^{2}\left(2 a_{1} b_{1}+4 e_{2}\right) \int_{x_{r}}^{1.0} m x_{r} d x_{r}$
(d) $\quad\left(F_{Y}\right)_{m_{5}}=R^{2} \dot{\theta}_{z_{a}}^{2}\left(b_{1}^{2}-a_{1}^{2}+4 f_{2}\right) \int_{x_{r}}^{1.0} m x_{r} d x_{r}$

The total moment at any station is
$M=M^{1}+A M_{0}+E S_{0}$
where, from the tip end conditions,
$S_{O}=\frac{(\Delta x \cdot S)_{M^{\prime}}^{\prime}}{(\Delta x \cdot S)_{E}}\left\{\frac{\frac{A}{(\Delta x \cdot S)_{A}}-\frac{M^{\prime}}{(\Delta x \cdot S)_{M}}}{\frac{E}{(\Delta x \cdot S)_{E}}-\frac{A}{(\Delta x \cdot S)_{A}}\left[1-\frac{.1 R}{(\Delta x \cdot S)_{E}}\right]}\right\}$
$M_{0}=-\frac{M^{\prime}+E S_{o}}{A}$
where M^{\prime}, A, E are for $x_{r}=1.00$
\rightrightarrows

Torsion

The expressions for the various parts of the torsion, and for the

Effect of Blade Flexibility on the Air Loads,
which were developed in Pt. II for the fully articulated blades, are entirely applicable to the see-saw type of blade. See pp. $\pi-121$ to $\pi-187$.

PART IV
SINGLE BLADED ROTORS

$$
I V-I
$$

Single Blade Type

There are many hinge and counterweight arrangements possible for a single-bladed rotor. Some of these are discussed in detail below. (shown schematically fig. 区-/p. IV-7).

1) Fully articulated hingearrangement with counterweight attached to the hub.

This case may, in every detail, be treated as a special case of the fully articulated rotor discussed in Part II. All equations and discussions are applicable.
2) Fully articulated hinge arrangement with counterweight attached to the blade.

It is assumed that the center of gravity of loads the counterweight lies on the X axis. acting on the counterweight ar account for the inertia entirely neglected. In order how er, the following changes loads due to the cautions of Part II.
must be made in (a) Equation(II-44) must be modified to
(a) Equation(II-44) must be modified to
(立-1) $\quad\left(M_{Y}\right)_{m}=-I_{F}^{\prime} \dot{\theta}_{z_{a}}^{2}\left(\varepsilon_{0}+3 a_{2} \cos 2 \theta_{z_{a}}+3 b_{2} \sin 2 \theta_{z_{a}}\right)$ where $I_{F}^{\prime}=I_{F}+I_{F_{c}}$
$I_{F_{c}}=$ moment of inertia of the counter-

Similarly, in the equations for the flapping coefficients, γ_{F} must be replaced by γ_{F}^{\prime},

Also, in the equations for the hunting Also ants, pp. $\mathbb{I}-57$ to $\mathbb{I}-64$, it is necessary
coefficient I_{z}
to replace
where

$$
I_{z}^{\prime}=I_{z}+I_{z_{c}}
$$

and M_{m} by M_{m}^{\prime}
where

$$
\begin{aligned}
& M_{m}^{\prime}=M_{I L}+M_{m_{c}} \\
& I_{z_{c}} \text { and } M_{m_{c}}
\end{aligned}
$$

being the moment of inertia and mass moment of the counterweight about the drag hinge, respectively. Mm_{c} is negative.
(b) In the solutions for the bending moments and deflections, the contribution of the inertia forces on the counterwe considered. bending moments must must be rewritten

$$
\begin{aligned}
& (\square \square-3) \quad\left(\frac{d^{2} z_{I}}{d x_{I}^{2}}\right)=-\frac{R}{(E I)_{0}}\left[\left(M_{Y}\right)_{d}+\left(M_{Y}\right)_{m_{c}}\right] \\
& =\frac{R}{(E I)_{0}}\left\{\theta _ { z _ { a } } R _ { y } \left(a_{1} \sin \theta_{z_{a}}-b_{I} \cos \theta_{z_{a}}\right.\right. \\
& \left.+2 a_{2} \sin \theta_{z_{a}}-2 b_{2} \cos 2 \theta_{z_{a}}\right) \\
& +I_{F_{c}} \dot{\theta}_{a}^{2}\left(\dot{\varepsilon}_{o}+3 \varepsilon_{z} \cos 2 \theta_{z_{a}}\right. \\
& \left.+3 b_{2} \sin 2 \theta_{z_{a}}\right\}
\end{aligned}
$$

Thus, equations (I-10/a) to (c), p. II -78 become

$$
\begin{aligned}
& \text { (II-4a) } \quad I_{I}=\frac{I_{F_{c}} \dot{\theta}_{Z_{a}}^{R}}{(E I)_{0}} a_{0} \\
& \text { (b) } \quad I_{2}=-\frac{D_{1} \dot{\theta}_{z_{a}} K_{Y} R}{(E I)_{0}} \\
& \text { (c) } \quad I_{3}=\frac{a_{1} \dot{\theta}_{z_{a}} K_{y} R}{(E I)_{0}} \\
& \text { (d) } \quad I_{4}=\frac{R}{(E I)_{0}} \dot{\theta}_{z_{a}}\left\{3 a_{2} I_{F_{c}} \dot{\theta}_{z_{a}}-2 b_{2} K_{y}\right\} \\
& \text { (c) } \\
& \text { or, if the tabular method be used, } \\
& \text { equations for } M_{i_{0}^{\prime}}^{\prime} \text {, p. II-100 become: } \\
& \text { (पष-5a) } \quad M_{I_{0}}^{1}=-I_{F_{c}} \dot{\theta}_{Z_{a}}^{a_{0}} \\
& \text { (b) } \quad M_{2_{o}}^{\prime}=K_{y} \dot{\theta}_{z_{a}} b_{1} \\
& \text { (c) } \quad M_{3_{0}}^{1}=-K_{y} \dot{\theta}_{z_{a}}{ }^{a_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (IV-5a) } M_{4}^{\prime}=\dot{\theta}_{z_{a}}\left(2 K_{y} b_{2}-3 I_{F_{c}} \dot{\theta}_{z_{a}} a_{2}\right) \\
& \text { (e) } M_{5}^{\prime}=-\dot{\theta}_{a}\left(2 K_{y} a_{2}+3 I_{F_{c}} \dot{\theta}_{a} b_{2}\right) \\
& \text { Sindiariy, equations }(\pi-15 a x
\end{aligned}
$$ (स5-6a) $\Sigma_{2}^{\prime}=\frac{R}{(E I)} \theta_{0} \quad$ axis $r_{2} M_{c} \dot{\theta}^{2} z_{a}$

(b)
(c) $L_{3}^{\prime}=\frac{R}{(E L)_{0}} \dot{\theta}_{a}\left\{\begin{array}{l}e_{2} K_{2}+\dot{\theta}_{z_{a}}\end{array}\right.$

$$
\begin{array}{r}
\left.\left.+e_{i}\left(I_{z_{c}}-r_{2} M_{m_{c}}\right)\right]\right\}
\end{array}
$$

$$
\begin{aligned}
& \left.\left.+f_{2}\left(I_{z_{c}}-r_{2} M_{m_{c}}\right)\right]\right\} \\
& I_{2}(+40
\end{aligned}
$$

$$
L_{5}^{\prime}=\frac{R}{(E I)_{0}} \dot{\theta}_{z_{a}} \quad\left\{2 e_{2} K_{1}+\dot{\theta}_{z_{a}}\left[I_{z_{0}}\left(-4 a_{a}\left(4 I_{c}-r_{I} M_{m_{c}}\right)\right]\right\}\right.
$$

$$
\begin{aligned}
& i_{a}\left[I_{z_{c}}\left(-4 e_{0} a_{2}+a_{2}^{2}-b_{2}^{2}\right)\right. \\
& +f_{2}(4 J
\end{aligned}
$$

$\begin{aligned} & \text { Or, In the tabular } \\
& M_{I_{0}}^{\prime}=-\frac{(E I)}{R} I_{I}\end{aligned}$
(b) $M_{2}^{\prime}=-\frac{(E I)_{0}}{R} L_{2}^{\prime}$
(c) $M_{3_{0}}^{\prime}=-\frac{(E I)_{0}}{R} L_{3}^{\prime}$

$$
\left.\left.+f_{2}\left(4 I_{z_{c}}-r_{2} M_{m_{c}}\right)\right]\right\}
$$

method, equations for M_{i}^{\prime}, D. I-1/9, become
(b)

$$
M_{3}^{\prime}=-\frac{\left(E I_{0}\right)_{0}^{2}}{R-} L_{3}^{\prime}
$$

$(\pi-7 d) \quad M_{4_{0}}^{\prime}=-\frac{(E I)_{0}}{R} L_{4}^{\prime}$
(e) $\quad M_{5_{0}}^{\prime}=-\frac{(E I)_{0}}{R} L_{5}^{\prime}$
3) Single hinge attachment and counterweight attached to hub.

The equations and methods of finding the flapping coefficients derived in Part II are applicable. The solution for λ should theoretically'be modified somewhat, but, as for the see-saw type blades, the method of Part II is. sufficiently accurate for practical purposes.

The hunting coefficients are determined by the flapping and the hinge geometry, in a manner similar to Part III for the see-saw type blades. If $\theta_{8}=0$, from Part I,
$(\square-\sigma) \quad \sin \theta_{z_{b}}=\frac{\sin \delta_{3} \cos \sigma_{3}}{\cos \theta_{y}}\left(1-\sqrt{1-\left(\frac{\sin \theta_{y}}{\cos \sigma_{3}}\right)^{2}}\right)$
which, for small angles, is closely approximated by
(zx-8a) $\theta_{z_{b}}=\tan \delta_{3} \cdot e_{F}^{2}$
substituting the Fourier expansions for $\theta_{z_{b}}$ and θ_{y} into (IZ-8a) and equating coefficients of identical trigonometric functions, we find
(च-9a) $e_{0}=\left\{a_{0}^{2}+\frac{1}{2}\left(a_{1}^{2}+b_{1}^{2}+a_{2}^{2}+b_{2}^{2}\right)\right\} \tan \delta_{3}$
(b) $e_{1}=\left(2 a_{0} a_{1}-a_{1} a_{2}-b_{1} b_{2}\right) \tan \delta_{3}$
(c) $f_{1}=\left(2 a_{0} b_{1}-a_{1} b_{2}+b_{1} a_{2}\right) \tan \delta_{3}$
$(\pi-9 \alpha) e_{2}=\left(2 a_{0} a_{2}-\frac{a_{1}^{2}}{2}+\frac{b_{1}^{2}}{2}\right) \tan \delta_{3}$
(e) $f_{2}=\left(2 a_{0} b_{2}-a_{1} b_{1}\right) \tan \delta_{3}$

The solutions for the Z deflections are identical direction bending fully articulated rotor, Part II; and with those for the step or collocation method may 11 , and either the step-byThe solution be used.
and deflections, however, is win Y direction bending moments saw type blade, and the tabular steal with that for the seerecommended (ph. ar $-9,10,11$). step-by-step method is The express
flexibility influence torsions for torsion, and blade applicable.

> loads, of Part II, ar

I, are entirely
4) Single hinge attachment with counterweight mounted on the blade.
manner as case (is type is, in general, treated in the same the hub. It is, however has the counterweight attached to flapping coefficients, to necessary, then computing the and γ_{F} by \mathcal{F}_{F}^{\prime} as in case replace I_{F} by $I_{F}^{\prime}=I_{F}+I_{F}$ coefficients are computed by equations (2 . The hunting
(case 3). Tit
(case 3).

```
IVV - - 7- 
```

The expressions given in Part II for the torsion and the effect of blade flexibility on the air loads, are also applicable.
5) Rigid blade attachment.

This type may, in every way, be considered
the same as the multi-bladed, rigid rotor treated in Part V. All methods and equations are applicable.

CASE 3.

$$
\text { CASE } 4
$$

F/G. $\mathbb{F}-1$.

$\mathrm{V}-1$

mean that the blades are rigidly
By "rigid" rotor, we lapping and drag hinges are
attached to the hub, 1. be a built-in coning angle,
approximation theory (stiff blade) it is obvious that for the lapping coefficients

$$
\begin{array}{ll}
a_{0}=\theta_{Y_{0}} \\
(z-1) & a_{1}=a_{2}=b_{1}=b_{2}=0
\end{array}
$$

and that for the hunting coefficients

$$
\begin{aligned}
& e_{0}=\theta_{z_{0}} \\
& e_{1}=e_{2}=f_{1}=f_{2}=0
\end{aligned}
$$

As for the "see-sav" type of blade (Part III), it will given in Part II for the fully articulated blades.

All the equations developed in Part II for the air loads are applicable to the rigid rotors, with, of course, substitution of the proper flapping and hunting coefficients given above.

Step-by-step tabular solution for the Z direction bending

 moments and deflectionsThe details of the solution for the subject blades are nearly identical with those for the Y direction moments on nearly laden type blade. We can
the seesaw
unknown part of the root slope, $=0$. Referring to p. II-97,
for $\frac{1=1}{\text { The necessary }}$ (constant part) for A and M^{\prime}. The initial entries for M^{\prime} are

$v-2$

(1) $0=0$,
${ }^{(4)} .05=(3)_{0}+.1 R \theta_{Y_{0}}$,
(7) r_{r} are given by equation ,
p. . Then
$\mathrm{M}=\mathrm{M}^{\mathbf{\prime}}+\mathrm{AM}$ 。
at any station where
$M_{o}=-\frac{M^{\prime}}{A} \quad$ at $\quad x_{r}=1.00$
for $1=2,3,4,5$ (harmonic parts)
The necessary solutions are for M^{\prime}, A, and $\mathrm{B}(\mathrm{p}, \mathrm{z}-97)$. The inftial entries for $\mathrm{M}^{\text { }}$ are
$(1)_{0}=0$,
${ }^{(4)} .05=(3)_{0}$,
(7) r_{r} are given by equation ($(\mathbb{1}-125)$, p. $\pi-100$. The moment at any station is
$M=M^{\prime}+A M_{o}+E S_{0}$
where, from the tip conditions,

$$
S_{o}=\frac{(\Delta x S)_{M^{\prime}}}{(\Delta x S)_{E}}\left\{\frac{\frac{A}{(\Delta x S)_{A}}-\frac{M^{\prime}}{(\Delta x S)_{M}}}{\frac{E}{(\Delta x S)_{E}}-\frac{A}{(\Delta X S)_{A}}\left[1-\frac{1 K}{(X X S)_{E}}\right]}\right\}
$$

and
$M_{O}=-\frac{M^{\prime}+E S_{O}}{A}$ where A, E, M^{\prime} are for $x_{1}=1.00$

Step-by-step tabular solution for the I direction bending moments and deflections.

The solutions for the Y direction moments are identical with those for the Z direction moments, except, of course, that for M^{\prime} in

$$
\begin{aligned}
& 1=1 ; \quad(4) .05=(3)_{0}+.1 R \theta_{z_{b_{0}}}: \\
& \text { and in } \\
& \frac{1=2,3,4,5 ;}{\text { p. } 1-120 .} \quad(7)_{r} \text { are given by equation }(I I-154)
\end{aligned}
$$

The equations for torsion and the effect of blade flexibility on the air loads, which we developed in Part II, are applicable to the subject rotors.

Inertia forces acting on a rigid blade in hovering flight
The action of gyroscopic forces becomes imp
In a turnabout an aron important in considered in this for vertical fight are also suffioie forces calculated case of forward flight. It is also ass ion of air forces in that maneuver alneglect the varia obviously not correct in so in coning angle conthough it is ob of a rotor with a built-me that the mass ${ }^{3} 0^{\circ}$ aider the case simplicity of analysis, ass athering axis $x-x$ of Let us, for simplicentrated along the feather conc er the blade.

Let Z^{11}, Y^{11}, X^{11} be the axes of the ship before the maneuver takes place. Z^{1}, I^{1}, X^{1} are the instantaneous axis by angle $\theta^{\prime} x^{\prime}$ of the ship while turning about X^{1} axis, by an and
vo
$\dot{\theta}_{z}$ is the rate of change of angle measured in Y^{1}, X^{1} plane.
ZYX are axes of the blade.
Using the method outlined on pages $\pi-1$ of Part II, the accelerations acting on each element of the blade, distance x from the origin ares.

$$
\begin{aligned}
& (z-3 a) \quad \frac{\ddot{i}}{x}=\sin \varepsilon_{0} \cos a_{0}\left(\dot{\theta}_{z}{ }^{2}-\frac{\dot{\theta}_{x^{\prime}}{ }^{2}}{2}\right)+\ddot{\theta}_{x} \sin \theta_{z}+ \\
& +2 \dot{\theta}_{z} \dot{\theta}_{x^{\prime}} \cos ^{2} \alpha_{0} \cos \theta_{z}-\frac{\dot{\theta}_{x^{\prime}}{ }^{2}}{2} \sin \theta_{0} \cos \theta_{0} \cos 2 \theta_{z} \\
& \text { (b) } \quad \ddot{x}=-\dot{\theta}_{x^{\prime}}^{2} \sin ^{2} a_{0}-\cos ^{2} a_{0}\left(\dot{\theta}_{z}^{2}+\frac{\dot{\theta}_{x^{\prime}}^{2}}{2}\right)+ \\
& +2 \dot{\theta}_{z} \dot{\theta}_{x^{\prime}} \sin a_{0} \cos \theta_{0} \cos \theta_{z}+\frac{\dot{\theta}_{x^{\prime}}^{2}}{2} \cos ^{2} \varepsilon_{0} \cos 2 \theta_{z} \\
& \text { (c) } \quad \ddot{y} x=-\ddot{\theta}_{x^{\prime}} \sin \varepsilon_{0} \cos \theta_{z}-\frac{\ddot{\theta}_{x^{\prime}}^{2}}{2} \cos \theta_{0} \sin 2 \theta_{z}
\end{aligned}
$$

Letting

$$
\begin{aligned}
& \sin a_{0}=a_{0} \\
& \cos a_{0}=\cos ^{2} a_{0}=1.0
\end{aligned} \quad a_{0}^{2}=0
$$

we have

$$
\begin{aligned}
(x-4 a) \quad \ddot{z} & =a_{0}\left(\dot{\theta}_{z}^{2}-\frac{\dot{\theta}_{x^{\prime}}^{2}}{2}\right)+\ddot{\theta}_{x^{\prime}} \sin \theta_{z}+2 \dot{\theta}_{z} \dot{\theta}_{x} r \cos \theta_{z}- \\
& -\frac{\dot{\theta}_{x}^{2}}{2} a_{0} \cos 2 \theta_{z}
\end{aligned}
$$

$$
V=-6
$$

$$
\begin{aligned}
& (v-4 b) \quad \ddot{x}=-\dot{\theta}_{z}^{2}+\frac{\dot{\theta}_{x^{\prime}}^{2}}{2}+2 \dot{\theta}_{z^{\prime}} \dot{\theta}_{x^{\prime}} \theta_{0} \cos \theta_{z}+\frac{\dot{\theta}_{x^{\prime}}^{2}}{2} \cos 2 \theta_{z} \\
& \text { (c) } \frac{\ddot{y}}{x}=-\dot{\theta}_{x^{\prime}} a_{0} \cos \theta_{z}-\frac{\dot{\theta}_{x^{\prime}}^{2}}{2} \sin 2 \theta_{z}
\end{aligned}
$$

PRINCETON UNIVERSITY

PART VI
DESIGN CRITERIA CONSIDERATIONS

VI---7.

Design Criteria Considerations.

In designing any part of an aircraft structure, one must always consider two possible types of failure. The first type will occur due to a sudeen application of a large load suoh as the structure of an alrcraft gets in an accelerated maneuver or in hitting a gust of wind, and can be called a "strength" type failure. The second type is due to considerably smaller but cycilcly varying loads which the structure gets in steady flight and it is usually called a "fatigue" failure.

Stresses developed in the second tyoe are the sum of constant and periodic stresses. The periodic stresses are often called "vibratory" stresses and are due to either mechanical vibrations or cyclic variaition of external loads, or to both.

Usually, on almost all types of helicopter rotor blade designs (using metal construction), with the possible exception of the rigid type, the ratio of maximum applied stress in an accelerated ilight condition (maneuver, gust) to the maximum stress in steady flight (forward) is smaller than the ratio of allowable yield stress to the allowable fatigue atress of the material. Therefore, as a rule, strength conditions can be disregarded. While the designer must think of avoiding as much as possible structure producing bad stress concentrations, the stress analyst must stuay carefully the fatigue conditions and magnitude of allowable fatigue stresses, especially in the region where an abrupt change in the crose section of the blade spars could not be avoided; as, for instance, one will find at the attachment of a blade to the hub or hinge ritting.

The refined methoas used in calculating bending moments on the blades become valueless when the stress calculations disregard concentration factors due to cut outs and such, or when allowable stress is not determined accurately.

A great deal of effort and time was used in preparing in this report all equations necessary for calculating the external loading on the blades. It is felt, however, that while the expressions for dynamic loads could be determined quite correctly in terms of derivatives, the correctness of the aerodynamic loads was somewhat doubtful becuase of the questionable validity of some of the basic essumptions. These assumptions which were listed in Part I aro

1) Induced velocity field
2) Unimportance of radial component of the resultant velocity at a blade eloment
3) The effect of air inertia
4) Flexibilities of the blades
5) Adjustment of loads to sor deflection and moments in solving the equatio, the effort involved in
Because of the foregoing reasons, blades does not seem to be calculating the loads acting on the override loading conditions justified and probably two empirical ases due to bending, could be giving the extreme variation of severely the woight, as the just as safe, without penallalled "ratsonal", load calculations. doubtful and lengthy, so blades, the strength conditions

In designing the rigid because of the high inertia may become also of importance bile the aircraft is rotating (gyroscopic) forces developed while the aircraft is rotating about any of the axes.

The methods for calculating the bending mown solving linear blades are based on straight-forward order with variable coefficients. differential equations of higher caces involving approximations, Their accuracy depends, as in all caces involving and on the number of terms used.

The tabular method seems to be easier to use than the "collocation" method. The discrepancy between the two is not very large in the case of articulated blades. The correct solution probably lies between the two sets of values. The "collocation" method becomes impractical because of the large number of terms required to obtain sufficient convergence when the slope of the deflection curve at the root of the blade is given a definite value as in the case of the seemsaw type or rigid type of blades.

For preliminary calculations of the constant and first
harmonic (setting as a first approximation $\frac{d^{2} z}{d t^{2}}=0$) parts
of the bending moment on completely articulated blades, Reference 12 , can be very useful, replacing variable BI by a mean $\overline{\overline{E I}}$. Of course, the mean value of EI is somewhat hard to calculate and therefore a reasonable guess has to be used.

