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REPORT 

PREFACE 

This report ha3 'been prepared at the request 

of the Army Air Forces Air Materiel Command at 

"Wright Field as one phase of it3 program to determine 

a reliable and practical set of design criteria for 

helicopters. 
An attempt has been made to make the report as 

self-contained as possible for use in the structural 

analysis of helicopter rotor blades in any steady 

forward flight condition. The material can easily 

be extended to accelerated flight conditions<. 

The actual establishment of a set of design 

criteria has not been undertaken. It is, however, 

thought that the material here presented may prove 

to be of such general nature and completeness that, by 

its applications to design problems, it may help toward 

the establishment of such design criteria. 
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Analysis of Helicopter Rotor Blade3. 

Summary; _. 

The purpose of this report is to give all the/theory and 

derivations necessary for the structural analysis of helicopter 

rotor blades in steady forward flight. These data can easily be 

made applicable to accelerated flight- 

Description and Discussion of Material. 

Four different types of blade attachment of the rotor hub 

are considered: 

a) Feathered, articulated blades equipped with 
mechanical damping devices. 

b) Feathered blades, center-hinged, rigid in the 
plane of rotation (see-sav type). 

c) Single blade (for type of attachments see 
discussion, Part IV.) 

d) Feathered blades with completely rigid 
attachment. 

The description of the report, which is divided into 

six parts, is as follows: 

Part I 

This part contains material of general nature applicable 

to all types of rotors: 

1) Description of the assumptions used in this report 

which are applicable to all four rotor types. 

2) General symbols, reference axes and definition of 

the initial position of the blades, 

3) Discussion of methods for solving the linear 

differential equations with variable coefficients 

by use of approximations to functions. Demonstrations 

ü L —1+ 
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of collocation, Least square, and Galerkints methods, 

are given by a simple example. 

Geometry of angular displacement of blades - change 

of blade incidence due to blade angular displacement 

about the alpha and delta hinges. The most general 

cases are considered separately for articulated and 

see-saw types. Working charts are also presented for 

the case when «C, = 0 and the hinges are -mutually 

perpendicular. 

Part II 

This part covers the theory and derivations necessary for 

the structural analysis of articulated blades equipped vith 

mechanical damping devices: 

1) Dynamic loads acting on a blade elenent. Accelerations 

imposed on a mass particle of a blade element are first 

derived. The load acting on a blade element is ob- 

tained by integrating over the total mass of the element. 

The expressions derived are applicable to any type of 

attachment. The assumption is made that both hinges 

are in the 3ame plane, their intersection coinciding 

with the center of the rotor hub. 

2) Gravity loads 
5) Aerodynamic loads.  This chapter is subdivided into 

several sections? 

a) Discussion of the effect of blade deformation 

on aerodynamic loads. 

b) Angle of attack of a blade element on an 

infinitely stiff blade;    the change of incidence 
due to angular motion of a blade about its hinges 

and due to application of cyclic pitch control 

(the variations of incidence due to small periodic 

osoillation of the blade in the plane of rotation 

I J 
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a) 

e) 

f) 

g) 

and due to second harmonic flapping are ne- 

glected. ) 
The distribution of induced velocity is assumed 

to he triangular along fore and aft diameter of 

the rotor. 

The distribution of the Z component of air load 

along a stiff blade is given in terms of the 

"flapping" coefficients and parameters A and |L. 

The first two harmonics are considered. 

The "flapping" coefficients are determined, taking 

into consideration the mechanical damping of the 

blade motion at the "flapping" hinge. Tvo sets of 

expressions are given: In the first set the effect 

of change of incidence due to motion of the blade 

is combined with the effect of change due to cyclic 

pitch control. The second set of expressions con- 

siders these effects separately. 

The distribution of Y components of air load along 

a stiff blade. The load is given in terms of the 

"flapping" coefficients, A and \i.    The first two 
harmonica are considered. The expression for the 

profile drag coefficient i» taken from ref. (4) 
and is CD = &Q +   S^ Qv + £2 9r , where 0^ is 

the angle of attack of the element under consideration. 

Aerodynamic torque equation. This equation is ob- 

tained by Integrating from tip t.o root the moment 

about the alpha hinge of the Y components of air 

forces acting on the blade. The mean value of 

torque is obtained by integrating the torque from 

0 to 2ir. 

Extension of ref. (4) to account for the variation 

of pitch due to angular motion of the blade and due 

to cyclic pitch control; and also to account for 
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the triangular distribution of induced 
velocity through the rotor. Charts are 

given to help calculate quickly the axial 

flov coefficient X. 
h)  "Hunting" coefficients. The coefficients 

of Fourier series representing the harmonic 

motion of the blade in the plane of rotation 

are called "hunting" coefficients. These 

coefficients are determined from the dynamic 

equation of .motion of the blade in the plane 

of rotation. 

The effect of mechanical damping is considered 

in vriting these equations.  The damping moment 

is assumed to be proportional to the angular 

velocity of the periodic oscillation of the blade 

in the plane of rotation. 

Calculation of bending momenta and deflection curve 

in Z direction. 

a) Loads on a blade element 

External - Aerodynamic, gravity, inertia 
Internal - Shears, moments, tension forces 

Complete expressions for the external Z loads 

are also given in this chapter. 

b) The equations of equilibrium (motion) of an 

element of flexible and stiff blades. 

c) Derivation of the differential equation for 

the deflection. Variable moment of inertia of 

the blade is considered. As a first approxima- 

tion the effect of blade flexibility on air 

loads is neglected. 

d) Solution of the differential equation for de- 

flection by "collocation" method. A polynomial 

is chosen to satisfy the boundary conditions of 
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i 

the blade, including mechanical damping moment 
at the "flapping" hinge. A five point solution 
is put into convenient tabular formo Explanations 

are given for the constant and harmonic parts. 

First and second harmonics are considered, 

e) Step-by-step tabular method of finding the 
bending moments in the Z direction. The complete 

physical picture is given in deriving and ex- 

plaining this method. The solution is set into 
tabular form for ten points. Tables are given for 

the constant and harmonic parts. The firBt and 

second harmonics are considered. The effect of 

blade flexibility on air loads is neglected. 

Calculation of bending moments and deflection curve 

in the Y direction. 
a) Loads on a blade element. The effect of eccen- 

tricity of the alpha hinge is taken into consider- 

ation in evaluating the load components acting on 

a blade element. 
Complete expressions for the external Y loads are 

also given in this chapter. 
b) The equations of equilibrium (motion) of an element 

are given for flexible and stiff blades. 

c) Solution of the differential equation for de- 
flection by "collocation" method is given. The 

assumed solution is of the same form as for 
bending in the Z direction. The tables derived for 

the Z direction bending are applicable for the Y 

direction bending. 
d) Step-by-step tabular method for finding the bending 

moments in the Y direction. The theory and tables 

are the same as for the Z direction bending. 
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c) 

d) 

6) Torsion on the blades. 

a) Torsion due to dynamic forces on stiff blades. 

Expressions are derived for distributed and con- 

centrated weights. 

In deriving these expressions, it- was assumed that 

the elastic center and the center of gravity of 

any blade section lay on the zero lift chord line 

of that section.  Periodic torsion includes the 

second harmonic. 

Torsion due to aerodynamic forces. 

Torsion due to Z and Y deflections.  Expressions 

are derived to account for the torsional de- 

formations due to bending of the blade in the Z 

and Y directions. 

Total torsion is calculated as the sum of torsions 

found in sections a, b, and c. 

7) The effect of blade flexure on the distribution of load 

along the blade in the Z directions the "flapping" 

coefficients are corrected to account for the deflection 

of the blade. 

8) Sample calculation. 

A sample calculation of bending and deflection in the Z 
direction is given by both "collocation" and "tabular" 

methods. 

Calculations of all the necessary parameters, such as 

the "flapping" coefficients, \, air and dynamic loads, 

are also given. The constant and harmonic parts of the 

moments and deflections are calculated and plotted. The 

complete procedure (in all detail) is explained for all 

calculations. 
Many practical points are outlined. For example: use of 

faired curves for El} adjustment of the air loads to 

satisfy the actual boundary conditions of the blade, 

which may not be quite satisfied due to approximations 
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involved in deriving our expressions for the 

"flapping" coefficients; slow convergence of 

solutions of the deflection differential equations, 

by "collocation" method, in cases vhen the slope of 

the deflection curve is known at 3L, » 0. 

Discussion of Y direction air loads, bending moments 

and deflections, is also given in this chapter. 

Part III 

Center-hinged blades rigid in the plane of rotation 

(see-saw type) are considered in this part. The blades are 

assumed to have a " &  " hinge and built-in coning. 

1) "Flapping " coefficients are determined in a manner 

similar to the one used for the articulated blades by 

writing the equation of motion about the flapping 

hinge. 

2) Solution for A ; it is assumed for all practical 

purposes that sufficient accuracy is obtained if A. 

13 determined by the use of the charts given in 

Part II for articulated blades. 

5) "Hunting" coefficients are found in terms of "flapping" 

coefficients, built-in coning and S ,. 
4) Calculation of the Z and Y direction bending moments 

and deflections for the "see-saw" type blades. Only 

the "tabular" method is given, since the "collocation" 

method becomes not practical because of the boundary 

conditions. All tables prepared in Part II are 

applicable. 

5) Torsion and the effect of flexibility. All expressions 

derived in Part II are applicable for the "see-saw" 

type. 
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Part IV 
Single blade rotors are considered, with five types of 

blade attachment to the hub« 
1) Fully articulated vith counterweight rigidly attached 

to hub (fig IS- I p. IS-1 ). This case is treated in 

every detail as a special case of the fully articu- 

lated multi-bladed rotors of Part II. 

2) Fully articulated with counterweight rigidly attached 

to the blade (figir-f p. m-l).    This case is also 
treated as a special case of the fully articulated, 

multi-bladed, rotors of Part II, except that some 

of the equations therein must be modified to account 

for the inertia of the counterweight.  Biese modifi* 

cations are given in detail.  The air loads on the 

counterweight are neglected. 

?) Single hinge attachment with counterweight attached 

to hub, (fig TX- l p. JST-7). This case is treated in 
a manner similar to that for the "see-saw" type blades 

of Part III. Deviations therefrom are noted and given 
in detail. 

4) Single hinge attachment with counterweight rigidly 

attached to the blade (fign-Z p. nr-7 ). This case 

is treated the same as case 3, except that the modiu 

fications to account for the inertia of the counter- 

weight are included. 

5) Rigid blade attachment. This is in every detail covered 

by the analysis of Part V for multi-bladed rigid Motors. 

Part V 

Rotors with the blades rigidly attached to the hub.  "Built- 
in" coning and lag angles are considered. The solution for A. 

of Part II is considered adequate. The equations and theory of 
Part II are generally applicable, upon substitution of the 

proper flapping and hunting coefficients, which are, of course, 

known at the outset. The method recommended for finding tho 

i- 
I  / 

s 

-A 1 



:9v 

1 

I. 

i 
• 1 

benälng moments and deflections Is the tabular method, and 

its application to rigid "blades is discussed in detail. 

If the theory and methods of this report be extended 

to accelerated flight conditions, the gyroscopic forces, on 

blades rigidly attached, must be considered. Therefore, ex- 

pressions for the accelerations on the blades are given, for 

a maneuver involving angular velocity in roll. 

Part VI. Design Criteria Considerations. 
A brief discussion is given of some factors which will 

influence the establishment of a set of design criteria for 

helicopter rotor blades. 
The significance of the material in this report toward 

such a task Is briefly evaluated. 
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Fart I 
1. General Assumption« 

The assumptions used in this report, which are 

applicable to all rotor types investigated, are as 

follows: 

A.l. The approximated distribution of induced velocity 

along a blade is given by expression 

(r- o     v± => \ ( l + xr cos oz ) 

Ref. / , 2, 

A.2. The magnitude of mean induced velocity V* is 

given by 

_      T (x-z) 
2rr Rc pVA 

Ref. 3 

A.3. The radial component of the resultant air 

velocity at a blade element may be neglected. 

Ref. 2 

k%\.    It is assumed that in a steady flight, any 
satisfactory design will avoid stalling of the 

tips. 

A.5. It vill be assumed that compressibility shock 

wave on the advancing blades is avoided. The 

limiting maximum speed given by Bailey is 

Ref. 4 

s 
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A. 6 
The calculation of the tip loss factor, B, is 
based on the Prandtl theory (ref. &  and 6>      ) 
modified to account for the induced losses due 
to the necessarily large deviation from a constant 
induced velocity in a practical design.  The 
additional correction vas calculated on the basis 
of several existing designs by Quentin Wald and 
presented in the Sikorsky Report, ref.7 

/2c 

(T.4) B = 1-
V
_^ - .6 (*r)t/ic^ 

where (XjJt is xp where the taper of the blade 
begins. 

This expression is only valid for 

for (*r)t - -5, .6 (xr). is replaced by ,3> and 

the expression for the tip loss factor becomes 
for (xr)t ^ .5 

(X-4a)       B = 1 -/2c^T ( £ + .3) 

A.7. The slope of the blade section lift coefficient 
is a straight line. 

Ref. 2. 

A.8. All harmonics above the second one are neglected 
(the effect of higher harmonics on lover ones is 
taken into account). 

Ref. 2 

i- / / 
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A.9.  The reversed flow region is treated in a manner 

similar to ref. Z ,  i.e., the trailing edge 
of each blade element in that region is treated 

as the leading edge and vice versa, the effect of 
stall disregarded. 

A.10. In calculating the inflow coefficient and 

harmonic coefficients of the blade motion, the 
blade is infinitely stiff. 

A.ll. In calculating the inflow coefficient and har- 

monic coefficients of the blade motion, the blade 
chord is constant, equal to the mean chord de- 
fined as 

(1-5)    c = kf0 

Ref. 8 

A.12. For all calculations except when it is specified, 

all rotor hinges intersect at the center of the 
hub o'. 

A.13. The.root chord is assumed to be extended to the 
center of the hub. 

A.l4. All angles except azimuth 0_ are small, so that 
za 

sin Ö = tan 6=6 

cos 9  = 1.0 

A.15. The blade drag contributes a negligible amount 

to the thrust of both the blade element and the 
rotor. 

A. 16 An far as the flow through the rotor is concerned, 

the number of blades is infinite. Among other 

things, this implies that the inertia of the air 
is negligible. 

1 
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The Reversed Flov Region 

In the region of reversed flow, the air loads are negative 

relative to the region of straight flow, and the equations for 

the airloads are discontinuous at x„ - p. sin 6, Unless 

discontinuity can be eliminated, the bending moments and 

deflections of the blades must be found separately at each 

azimuth angle. This eliminates the possibility of finding 

the harmonic parts of the deflections and bending moments, 

whi'ch prevents solving the second approximation 

for the effect of blade flexibility on the air loads, and 

even prevents accounting for the inertia loads due to 

deflections of the blade (the term RMZ  , equation S-93). 

In this case the step-by-step tabular solution for the bending 

moments is recommended since it appears to be shorter than 

the "collocation" method. 

Mathematical means of avoiding this impasse may exist, 

but it is felt that the problem is not of sufficient importance 
to warrant investigations of these means, considering their 
complexities. 

In any case, it is well to bear in mind these further 

limitations of the theory presented herein, when it is applied 

to a blade in the reversed flow region, 7T<6 < 2TT . Although 
za 

not strictly justifiable, it is thought that a good compromise 

solution for the bending moments of a blade in reversed flow 

might be obtained by considering that the air loads inboard 

of xr = n are zero at any azimuth angle. This assumption 

at least would permit an approximate calculation of the effect 

of the inertia loads due to bending (see pp,m-6  to m-H  ). 
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I«  Coordinate Axei 

i^7 -^x^s orgornr/o/j 

eoroiz DISK. 

oizecrioA/ OF- 

.*='<*. 1-/ 

a.  The X„, Y„ and Z„ axes are fixed to aircraft as shown above. 

Xaaxis is horizontal when the aircraft is on the ground. 

D.  The X , Y and Z axes are also fixed to the aircraft hut 

have the origin passing through the center of the rotor huh, 
Z* axis coincides with the rotor shaft. 
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c. The X, Y and Z axes are rotating axes vith their origin,0, 

at the drag hinge. The X axis is coincident vith the pitch 
changing axis (feathering axis) of the blade when the blade is 
assumed to be infinitely stiff.  The Y axis is perpendicular to 

\r 1 
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X axis and coincides vlth extended aero lift root chord 

of the blade (extended to "0")vhen the blade ia in its 

initial position. The Z axis is perpendicular to both 

the Y and X axes, as shovn. 

II. Initial position of X Y Z axes. 

£i £= 

FIG. 2-3. THft.ee - v/ew    OF 

*°' *iÖ£_  _y 
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The initial position of the "blade ia defined &3  follovst 
The X Y plane ia parallel to X Y* plane, the projection of 

i i i 

X axis on X Y plane lies along X axis. 

III. Linear Dimensions. 

Distance from the origin "0" 

(drag hinge) to a blade 

element 

Chordvise distance of a particle 

on a blade from the pitch changing 

axis (X axis) 

Distance of a particle from the X Y 

plane 

Distance of a blade element from Z 

axis vhen the blade is in the 

initial position. 

Blade radius—Distance of the tip 

of the blade from z' axi3 vhen 

the blade is in the initial 

position. 

Delta link length is equal to o'of 

(Pig 1-3 ) 

Alpha link length is equal to 0f0 

(Fig I-3 ) 

Chord of a blade element 

Mean chord 

Extended root chord 

Extended tip chord 

Blade structural deflection parallel 

to X Y Z axes respectively 

IV. Angular Dimensions. 
Total an'salar displacement about 

the X axis of the X Y plane from its 

initial position—Total blade incidence 
at the drag hinge 

"Rational" 
System 

"Classical" 
System 

I 
J • . 
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Total angular displacement about 

the Y axis of the Y X plane 

from its initial position— 

Flapping angle 

Total angular displacement about the 

Z axis of 2 X plane from its ini- 

tial position. 

"Rational" "Classical" 
System   System 

Angular displacement about the Z axis 

of the Z X plane from its initial 

position due to the rotation of 

the drive shaft 

Angular displacement about the Z axis 

of the Z X plane from its initial 

position due to the motion about 

drag hinge 

¥ 

Absolute angle of attack of a blade 

element 

Induced angle of attack of a blade 

element 

Total twist of the blade—between 

the extended root chord and the 

tip 

Blade incidence at the drag hinge 

due to collective pitch control 

Maximum (minimum) blade incidence 

at the drag hinge due to cyclic 

pitch control 

Control phase azimuth angle 

Effective blade incidence 

Angle of incidence of a particle on 

a blade element 

Angular displacement about the X 

axi3 of the X Y1 plane from its 

initial position—Roll 

xo 

xc 
9*c 

xoe 

xe 

v 
I 

l 

Ü 
^-jLf. 



I-—n— 

Angular displacement about the 

Y' axis of the X Y' plane from 

its initial position—Pitch 

Angular displacement about the Z* 

axis of z'x plane from its 

initial position—Yaw 

Angular dimensions of Delta 

(Flapping) axis and Alpha 

(Drag) axis respectively as 
shown in Pig.(*-3) 
Measured in Z X plane from X 

Measured in Z Y plane from Z 

Measured In X Y plane from Y 

V. Linear Velocities. 

Resultant air velocity at Rotor 

Absolute velocity of aircraft 

Resultant velocity at a blade 

element 

Components of velocity at a blade 

element due to motion of the blade 

Component of VR parallel to X*Y Z* 
axes respectively 

Components of V. parallel to the 

X'Y'Z' axes respectively 

Components of V parallel to the 

X Y Z axes respectively 

Induced velocity at any point of the 

Rotor 

"Rational" "Classical" 
System    System 

V * 

v 

Si, ^ 
02» <&2 

VA 

V 

x, y, z 

'2'oCg 

v 
v 

VRX' V VRZ' 

VAx' VAy* VAZ' 

V V Vs 

V + V, 

Mean induced velocity of Rotor 

i- 
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Moments about axes parallel to      "Rational" "Classical" 
the X Y z axes respectivelr      •• s7s^m System 

M*i'VMzi 

XI'  Series Expansions. 

Flapping Anglfii 

"Rational" 6 - a   „    „ 
J   o   i     z„  °1 sln 0  - a. cos 26 a 2a   d za 

"Classical" ß = 

t>2 
3i:x  26 

So ~ aT OOS H>  - b  sin H> ~ 0   1        1 ln    ap cos 2V - 

- t>2 sin 2*P 

Feathering Angle; 

"Rational" 6_ = 
c0 - C;L cos 02 - d;L sin 6 

zD   2 c0 cos 26 

- d0 sin 26 d z. 

"Classical" 6 » 6Q - A, cos * - B.sin * - Ag cos w 

B2 sin 2V 

Lag Angle: 

"Rational" 6 
*b ~ eo " el oos eZfl - fx sin 6z - e2 cos 26 - 

f2 sin 26 

"Classical" * = EQ - E;L Cos T - Pj sin V - ^ cos w . 

- P2 sin 24- 

V 

L_ i   L - 
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"Rational" 

XII. Coeffl£i22£2- -g^"""   2 

lin   i.oj.TTy^ 
Rotor 

Rotor drag 
X) = C-i 

"Classical 
system 

2 = UL2 
V        2 L,- = C 

C^     TT 
2   10V2 

uR2ipvA2 B2-Dz 
YT  - P 

Rotor 
force 

lateral FRy' = 7 

Rotor thrust 

Mean infl«* 
factor 

K 

T = Cm P «t 

B 0, 

Mean induced      ^ V^ 
inflow fac-  Ni " R h 

tor 

Tip »peed 
ratio 

3A£ 

solidity 

Rotor torque = «z 

Rotor rolling 

l>- = 

(T = 

A» 

irR 

c    p«2   TR5        Q=CQP^ 
M.I  - CQ p    *a 

=   Cv   TT 

2irR5 

moment V - H T *   2 
T ?5 T PVA ' L'   = C& 

R^PV2 

V- 

i     I 
I   ! 
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Rotor pitching 

moment  •= Mi 

Ratio of V com- 
ponents to ro- 

tational tip 

speed 

Ratio of dis- 
tance of an 
element from 

origin,0, to 

blade radiua 

"Rational" 
System 

V V uz 

*r = f 

"Classical" 
System 

M C„ TT R5 i PV2 
m     2 

Up.U^Up 

b 

3 

XIII. Mlscellaneoug 

Number of blades 

Tip loss factor 

Moment of inertia 
about Delta hinge  I_ 

Moment of inertia 
about Alpha hinge  ID 

Moment of inertia 
about Y axis      I 

Moment of inertia 
about Z axis      I. 

Blade sections 
moments of inertia 

about their axes 

parallel to Y and 
Z axes respectively I ^ , Izi 

b 

B 

V 
\ I 
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"Rational" 
System.. 

"Classical" 
System 

Mass constant of 
rotor "blade roTw "-"-•—      . 
(Flapping hinge) T

?  = 

c pa R 

Mass constant of 

rotor hlade 

(drag hinge) 

c_pa R_' 

Slope of lift 

curve per 

radian 
= a 

Mean profile 

drag coef- $ 
ficient 

Subscript used in 

connection 

vlth a flex- 

< h ile hlade 

Mass per foot 

length of 

•blade 
<s m 

Weight per foot 
length of the 

•blade 
= V 

Total veight of 

each hlade ~\ 

I 

3sr 

I 
I   • 

\ I 
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^-0-sr Order 
Since the calculation of blade deflections involve the 

solution of linear- differential equations of fourth order, 
the outline of several known methods for solving thab type of 

equation is given in the following« 

Three methods listed below are considered! 

Collocation 
Least square 
Galerkin 

The type of differential equation considered is of the 

form 

(x) -   + ,n„      , x d" z 
tx-fe)  Gn

W ton   
n-1   dxn 

or in a more brief form 

Cr-Aa)   G(P)Z - f W = ° 

where 

Gl(x) S + Go^
Z = f U) 

_ d 
P = dx 

GXP + 
G
0 

(l-6>b)       G(p) = Gnp
n + G^-jP11-1 + 

and x is an independent variable. 
The problem consists in finding the unique solution 

in one interval of a s~ x ä; b . 
The solution can be assumed to be given by a polynomial 

vhich can be written in a form 

(r_7j  Z(x) = X0U) M=1J    •) 



-1 
TB-- 

where X0(x) are functions of which are and X-(x) 

chosen in such a way as to satisfy as many boundary conditions 

for Z(x)    and its derivatives as possible, inherently, i.e., 
independently of the value:; of the coefficients a. . 

Sometimes it is not possible to satisfy all the boundary 

conditions without introducing difficulties in the subsequent 

integrations. In such cases it is better not to satisfy a 

boundary condition then to satisfy a false one. 

The constants a. roust be such as to get the assumed 

solution Z(x)    to fit the actual one z as closely as 

possible. The main difference between methods of solving 

the equation is the way the constants a. are determined. 

It is obvious that for a given differential equation 

and boundary conditions there may be a number of polynomials 

which can be chosen. Some of them may satisfy all the 

conditions, others may satisfy them only partially, but may 

be preferred because of their simplicity in integrating. 

Once a polynomial is chosen, the problem is then reduced 

to determination of constants a. . 

If the assumed solution happened to be the exact solution 

of the given differential equation we would have 

(x-e)      G(P) z{x)  - f(x)  = o 

but since it is only an approximate solution we have 

(x-aaj      G(P) Z(x)  - f{x) f 0 = 6(l) 

where  6 (x)    is a function obtained when Z(x)    is substituted 
for z in the left hand side of the differential equation (x-6, ), 
The above equation can also be written in the form 

(1-Bb) (x) 
S 
2 
5 - 1 

Aj(x) a. + XQ(x)  - r(x) 

, L. 
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vhere A.(x) = G(p) X,(x) for ] « 0 , 1, 2 S   (x-8c) 

The three methods nov can he outlined 

Collocation 
The constants a. are chosen so that Z(x) satisfies 

the differential equation exactly at S selected points 
X15 X2 . . .Xg , i.e., € (x) «0 at tho3e selected points. 

A.UJ a, + X0Ui> " 
f(xi} 

= 1 J     J 

(1-9) 

for i = 1, 2, 3 . . . S . 
To illustrate the method, consider, for example, a simple 

cantilever beam uniformly loaded and constant El 

W*Aw. 

FJJL-I^- 

/\~ , Rt each point distant 7    from the 
^e equation for the moment at each po 

root vill he 

EI^|=^(e-y)
2 

dy 

if ve let f = * and 
e"W 

__ _    -2BT 

the equation hecomes 

£± = (i - *)2 

dx^ 

(l-io) 

It'll) 

(/ . iO a.) 

/ 

U   — 
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With the -boundary conditions 

, = fiS. = 0    at    x = 0 CT-/A) 
= ax 

d z = ä_2 =0    at    x » 1 
d?      dx5 

(J-/2.Ö-) 

The exact solution of the equation is 

T
2  T5  T^ 

Assume the solution to he given hy a polynomial 

_2 r* _ Si + (2)  sin ^ x] + a2 [-3- - ^f + *yg 
(x_/4) Z(x) = a1 1-2- " TT 

+  V     2 

5iri x- _ 2x + (a., 9in gi 

*2     2   +   1^ (i)
2 sin I^I « 

(J 
- /4a) Xjx) = 0 

2x -  + _i— (S)2 sin -^ «1 
(I-Mi) X.(x) - [-2- -7^^:  7*3-5)* U 

Retaining first three terms ve have S - 5 and 

(j-/*<0 Z(x) = a1 [-5-  TT + V    2 

r*2 - 3£ + (TIT) 
sin I ^ 

for x = 0 ,   Z(x) = 0 

"•'II 

1 ' 



•I - 21" 

(l-i4d) Z(x)  - a± [x - | + | cos \ x]  + a2 [* - JL + 2    .   2   .„  v  ^    .   _      r.        2.2    008^rx] 
3? 

+ a3 Cx -gr+ w cos Iirl] 

for    x - 0 ,   Z(x)  = 0 

(I-,4 e)    z(x)  = ax (1 - sin £ x) + »2 (1 + Bin ^ x) + a? (l - sin 3f x)  ; 

for    x = 1, z(x) - 0 

Sr „„„ 5nr 9v nno 9TT (i-/4f)      Z(x) - - B^ £ cos ^ * - a2 2^ cos 4f x - a, 4f cos 4? 

for    x « 1  ,        Z(x)  = 0 

Substituting   Z(x) into the differential equation, 
ve have 

(L-tS)       ax (1 - sin \ x) + ag (l - sin 3jf x) + a, (l - sin 4Jr *) 

-d-x)2=€(x) 

Chosing three points vhere € / » «0 , w have at points 
(chosen at random) 

x1 = 0 1/2 *5 - 2/3 

ll-i<=°.) z-y  + a2 + a? - 1 = 0 (x - o) 

(b) .29? ax + 1-707 ag + ,293 a? - .25 - 0   (x - l/2) 

(c) .134 ax + 1.866 a2 + a? - „1109 - 0     (x - 2/3) 

< 

Ü   U 



Solving, ve have 

ax = -9963 

a2 =-»0504 

a, = .0341 

1  •-• 22' 

x2  2x 

Therefore, the equation for deflection becomes; 

(I-/7) Z(x) = .996? [\ - ^ + (|)  sin £ x] - .0304 [^ - |y 

+ (|p)23in ^ x] + .0341 [£ - § + (^)2sin § x] 

Calculating at several points and comparing with the exact 

solution, ve have, 

0 

.25 

• 50 

.75 
1.0 

looation z exact 

0 0 
.02386 .0264 

.O89 .0887 

.1801 .1665 

.2716 .25 

If more terms are taken, the approximation will he even 

closer than above. 

Least Square 

In this method each constant, a. , is determined in such 
oJ 

a way that the mean squared error £  , in the interval from 

a to b in the differential equation is minimum-, or 

7 • 

U 
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(r-"j   ^ A2 <* - 2 A &* dx = 0 

Using the same example a3 in collocation 

dcz 
(l-/Oa)        2-ig  • (l - x)' 

dx 

•we had, 

(1-iS)    £ - a1 (1 - sin | x)  +  a2 (1-- sin |I x) 

+ a (1 - sin ^ x) - (1 - x)' 

The least square equations are 

1 1        c 

fr-/*)    0 - / 6 (1 - sin \ x) dx"- / 6 (1 - Bin |t x) dx 

/ £ (l - sin 2f x) dx ; 

or, evaluating these integrals 

.226 ax + .235 ag + .291 a, - .2133 » 0 

(r-zo) .235 a1 + 1.245 ag + .802 a? - .2118 - 0 

.291 ax + .802 a, + 1.358 a, - „2631 

Solving 

al • *95. 

a2 - -.0339. 

&3 * -.00268 

i- / / 

Li ^~JL 



a   £ Xj   (*) d* = o 

X (x)    is obtained f*. 
****** Wü^- Nation    ,_„ 

^ed the nUfflber o;
S
t

n
e
be «"* instead *   f ff^' «* 

•""W «3 ln toB      * te^s taten ls *   *J  <*)  , 

*-„,     , " *° -*- - "ve^ thS — 

ASain>  theae lnte^Dn 

•.I i 

L! L 
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Trials of the three methods have shown that the first, 
collocation, requires the least computation to find the 

coefficients for a given approximation, and since neither 

of the other methods appears to have any advantage in rate 
of convergence, collocation is the one chosen for the 

solution of the differential equations for the harmonic 
parts of the blade deflections. 

~fr J", 
> 

L L ^Al 
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Geometry of the Rotor Blade Hinges. 

On helicopters vhich have blades attached to the hub "by 

one or two hinges )generally called the "&" , or flapping 

hinge and/or the 'Vx" , or drag hinge) it is desirable to 

interrelate the flapping angle, lag angle, and incidence 

(6 , 0 , 0X) analytically by means of expressions involving 

only those variables and constants vhich depend only on the 

geometry of the hinges. In this chapter, a method of 

obtaining these expressions is given, and graphs showing the 

relation between the variables for some typical hinge con- 

figurations are given. 

There are at least three methods of obtaining the desired 

expressionst 

1. Descriptive geometry 

2. Analytic geometry 

3. Spherical trigonometry 

It is believed that the third, spherical trigonometry, 

is best suited to this particular problem. 

The analysis i3 in two parts: The first deals with the 

case of only one (the "6" , or flapping) hinge. The second 

deals with the more general case where both "6" and 'U" 

hinges are used. The results of the first part could be 

obtained as a particular solution to the second part. 

Consideration of the case of only one hinge as a separate 

problem is, however, simpler and clearer. 

Special notation for this chapter is the following", 

Qc The angle between the flapping, or 

the X'Y' plane. 

6a The angle between the drag, or 

initial position, and the 

"&" , hinge and 

nan , hinge, in its 

X'l' plane. 

uL 

' I 

••//•• I 
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6  in this chapter means only the change in blade 

angle of attack due to flapping or lagging from 

the initial position. 

a, a1, to, to , c are arcs constructed on the surface 

of the sphere to form the spherical triangles on 

vhlch the solution depends - (see fig. X'5   and 

r-tf). 
D, E, F are angles in the spherical triangles on 

vhich the solution depends, (see fig. 1-5  and !-£>) 

In the text, A a, to, £ is the spherical triangle 

whose sides are a, to and £ . 

Single hinged rotor. 

Pig. Z'S shows the X axis and the o hinge starting at 

0 , origin of X'Y'Z'  axes and projecting out thru the surface 

of a sphere whose center is at 0* . The initial positions of 

the XYZ axes are coincident with the x',Y'z' axes shown in 

the figure.  The angle ©g is the angle between the & hinge 

and the X'Y' plane. S- is the angle between the Y* axis 

and the X'Y1 projection of the hinge. 

Construct great circle arc3 a and a' on the surface of 

the sphere thru the X axis and the S hinge. It should not 

require proof that a  = a' and that the change in the angle 
between the arc a and the meridian thru the X axis, is the 

varlatole, - 6 .  Thus the angle in the lower left corner 

of A (90 - © ), (90 - ©g), a', is marked 90 

From A a , (90 - &,) , ©g : 

©- 

/ / 

,/ 

"\ 

U 
 •<- \\ 
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V cos es   .       6 

P'^a      (90- e )       ,n 
3 e* 

c°s (90 - e       t, \ 
z,      °-z)  sin (on . fl i 

^  sln    90 - e  ) cos * - cos  (go . e , '*        V - 
e&) C03 fso - e) 

(I-^)    .in (6, t8    , 

Solving for aln 

V   ' coT-^ - tan 6& tan fi 

,        fr^7) sin Q 

sin 6 

cos 6 
cos €P (sin 6, _ 

- cöäS^ /oo32<5, - s1„2. 

3 ~ tan e sin «j 

Since e  - o  ,. *   y 
4.T, 2v ~   when o   r. 
the ab°- *• o0rr-ec

b
t. °y - ° ' the ^ N  BigQ ^ 

(T-28) 

If *3-o 

sin a 

or* if o. 

zb * " tan ey tan o5 

'6=0 
fr--29) sin Q   ml

1^ 

cos a 

' S*om 4 (go . Q  , 
y 

y ' (90 

1, 
\       Or 

3in (90 - p . e , 
sl* (9oT^J^ - ————!3-®zb) b sinl    _ 

< — 

/ / 

u 
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cos 6g  cos   (S     + ©z   ) 
'cos  (P + ox)  - -j-g £- 

( z'2° } )                                /     cos2 ©s cos2 (83 + 9Z  ) 
sin (P + Sx) = /l 2 £- 

sin    a 

From    A a  ,   (90 - k,)   ,   ©r '. 

sin ©,. /     sin" ©,. 
/l (x-37 )    sin F = gjg a&    ,    cos P = /l g—§• 

— oin a 

From (2-^4 ) : 

(1-34 ) sin2 a = 1 - sin2 8, cos2 ©& 

From (X-Ü ): 
/   sin S~ 

(T-33) cos (83 + oz ) = /l - (cos tf -  tan ©^ tan 0yr. 

Wov, ex = (F + ©x) - F 

(r-34)  sin 9X = sin (F + ©x) cos P - 3in P cos (F + © ) 

Substituting (x-3o), (Z-i/),   (x-32), (Z-33) in ( Z-34) 
and reducing, we find 

- cos ög/cos ©     C 
\I-3S)    sin 0    = «—1 JL  )   cos &, sin ©„ sin S, cos ©r 

x      l-sin28? co7266) ~ 7 3 ö 

sin 66 [cos 6? -/cos2©   -   (sinS_-tan % sin 6y)2K 

If    ©g = 0 

(J-36)     sin ©x = - tan &, tan © 

"t 

u 
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if 6? = o: 

( 1-31)    sin 6X = sin es cos Q& \ COg g -/1 - tan
29y tan

2eg( *  0 

Double Hinged Blades. 

The analysis for the case of both "a" and nh"  hinges 
may proceed in a manner similar to that for the singly hinged 

blades. 

Figure I-C>  shovs the X axi3, S hinge, and a hinge all 

starting at 0 , origin of the X Y 2 axes and projecting out 

thru the surface of a sphere vhose center is at 0 . The 

initial positions are shovn as solid lines. 

The'angle ©g is the angle betveen the S hinge and the 

X Y plane. 0„ is the angle between the a    hinge and the 
X Y plane before any rotation has occurred about the & 

hinge. Similarly, the angles S  and a, are the angles 

betveen the Y  axis and the X Y  projections of the 

hinge, and the initial position of the a hinge, respectively. 

The necessary constructions are as follows: 

1. Construct great-circle-arc a on the sphere 

thru the & hinge and initial position of the a hinge. 

2. Construct great-circle-arc b on the sphere thru 

the X* axis and the initial position of a hinge. 

2. Construct the great-circle-arc J; on the sphere thru 

the & hinge and the final, or general, position of the 
X axis. 

\.    Sving small circles on the sphere of radii b and a 

about the X axis and S hinge axis respectivelyj and 

from their intersection draw radii b1 and a' to the 
X axis and S hinge. 

!    i 

I r 

Ü A + 
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It may now tie supposed that the way in which the X axis 
arrived at its general position from the initial one was as 
follows: 

1. The blade and the a hinge, maintaining their 
initial angle to one another, rotated together about the 
& hinge, so that the arc a rotated to the position 
a.' , and the arc b moved to some new position not shown. 

2. Finally the blade rotated about the a' hinge 
sufficiently to move arc b down to its position b 
when the X axis wa3 at the general position shown. 

It i3 now apparent that the change in the angle between 
the arc b and the meridian at the X axis, is the change in 
incidence, - 8 « 

or. 

( Z'3B) 

D + E = (90 - F) - 9X 

0X  = [(90 - E) - (D + F)] 

sin Ö = - cos E (sin F sin D - cos F cos D) 

- sin E (sin F cos D + cos F sin D) 

From A b, ea, 90 - a_ 

sin 9, 
sin F - ••• v,a , cos b = cos (90 - a,) cos 8„ •= sin a, cos «„ sin D 

{x-39)    . .  sin F 
sin 0„ 

y 1 - sin a, cos^ ©_ 

cos F 
+ cos Ö cos a_ 

=«    I. i    I. • •  r i 

J 5~ 5  
/ 1 - sin a, cos ©_, 

i 

V 
1 A 

Li 
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Prom A a , (90 - ©a) , (90 - ©g) : 

cos a - cos (a, - & ) sin (90 - ©a) sin (90 - ©&) 

+ cos (90 - ea) cos (90 - ^) 

OP 

(1-40)    cos a « cos (a, - S ) Cos ©a cos ©& + sin ©a sin ©5 

Prom ic, (90 - ©y) , (90 - ©5) : 

cos c - cos (90 - ©„ - & ) ain (90 - ©_) sin (90 - ©R) 
- z^       > y © 

+ COB (90 - 0) cos (90 - ©g) 

(J-*/) cos c • sin (6, + »z ) cos © cos ©£ + sin © sin ©g 

also sin D 
sin (90 - ©„ - &,) 

•in (90 - ©g)       sin c 

(x-42) sin D 
cos ©c cos (6- + ©„ )  cos ©c. cos (&-Z  + ©_ ) 

sin c / 1 - cos c 

t      t 
Prom Ab 1 o , t : 

(T-43)    con E  cos a - cos t cos g    cos a, - cos fe cos s 

sin b sin c / (l - cosz b.)(l - cos2 c) 

Substituting ( r-f(o) and (T-4I)  in ( r-*.z) and (1-43),  the 
following expressions are derived: 

V 

Ll 
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Finally, substituting (1-44),  (z-45),  {r-4&),   {1-47) 
and {i-39)  in (z~3ß),  ve obtain the final expression for 
0 , and, with some rearranging and the use of well-knovn 

trigonometric identities, it reduces to: 

(r-4S)  sin« -- (I) (II) + (HI? (IV? 
*       (v) 

vhere 

(i) m cos (a^ - S ) cos «a cos ©& + sin ©a sin ©£, 

- sin a, cos 9a  [sin (Sw + 0 ) cos 8 cos ©g, 

+ sin © sin Q%) 

(il) = sin ©Q cos ©g, cos (&, + ©z ) + cos ©a cos a_ * 

• [cos ©g sin ©_ sin (*, + ©_ ) - sin fc. cos ©_] 

(ill) = + sin ©_ [sin ©„ cos ©c^ sin (6, + 0 ) - sin ©ft cos ©„] — a      y     o      p   Z|j        t-"     y 

"cos ©„ coi a, cos ©=. co3 (&, + ©_ ) 

©( » 
(IV) - + ] 1 - [cos ©y oos ©& sin (6j + ©z ) + sin Ö sin «gj* 

- sin a, cos ©a - [cos ©a cos ©g,cos (a, - 
&J) + 

(continued on next page) 
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8+2 sln °3 cos e a 

"fC°Sea°°se&cos( 
3     63^3ineaain%], 

"fcos 8y ••• % sin f6   + e . 
5      V + Si^y sin «y/ 

-^oseyC03essin 

3  e
2b) +sin9ln   2 

Wov> vhen 6 = e  _ * / 
J   2b    ' ex »"st = o . 

*'  IX'  UI  ** IV reduce t0 fch 
^ the following; 

x  = cos a, cos R 
3   &3 «a. ^ Cos 9£ + 

H = sin o , a  ° 6s ea c°s % cos 6  . „ 
^ + COS A  „„ III 3-3 eQ Cos  s 

a-LI = + sin e sin a * s 

a «n % + cos a ,.„ 

a COs «c cos 6 = „. Tf 3 = sin a. cos e If ve choose «„, 5    a c°s a,) 

*•««**« in order S *"?,the **, **»«£,?",*" «»«atlve 
SiS- shown ci^J^ ^ + ^dv   0 ^ 
^oarelraD  

ap-^«« cornet     "  ^'^ 

«- ^e3. Po^Tt?' 
SPeClal "«•• ^ the instance, lf =   ^ the arrange**^ of 

1/2 

+- 

i 
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(I) = sin 9& 

(II) = cos ©& cos (6 + 9Z ) 
b 

( j-<«5>)  (III) - sin © cos ©g sin (S, + 0 ) - sin ©6 coo 0 

(IV) =• jcos2 ©6 - [cos © cos ©g sin (6, + ©z ) 
v. J~) i A>      '    b 

1211/2 + sin © oin ©§ J r 

(V) - 1 - [cos © cos ©g sin (6- + ©2 ) 

-y —- d6j2 + sin ©„ sin ©£,]' 

If, in addition, 9j = 0 , it reduces to: 

{JT-So)     sin © 

- sin ©y sin (S? + ©z ) 
at i • —i , — i  i • >- — i i • • i «    •••! i 

/l- cos2 ©~~ sin2 (6, + ©_ ) 
y -5   *b 

i 
i 

Another frequently used configuration has the drag hinge 
initially in the Y'z' plane (a, = 0) and perpendicular to the 
flapping hinge 

cos S-, 
(tan ea - TIn-©7> 

Substituting a, • 0 

sin ©„ 

cos ©„ 

cos &, COB ©5 

Ve get, 

-F- 

y/ cos* ©& cos* £>, + sin
2 ©g, 

sin ©g 

 5 5 5— cosc fig cos 6, + sin ©£, 

(•ee next page) 
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There are, of course, other hinge configurations in use, for 

which the general formula (l-48) becomes simplified.  The simpli- 

fications involved, will, however, usually be immediately obvious. 

Since, on most designs, the independent variables 6 , 9 , 9^, 
b 

£,, and (©_, - 90) are not greatly'different from zero, we write a 

Taylor expansion, in operator form, as follows: 

(1-52)  sin- 9„ = sin 9^ + 

+ [Ve + VD9 + 9& V + (ea J y   b zb 
90) Dfl + S D, ] sin 6v ya   ->    3     x 

+ - te„ DQ +• e„ DQ + 9,DQ + (e„ - 90) DQ + £,D, ]2 sin e. y e b z "s^e. 3% 

+ i [Q^Q + ez^DQz + es D^ + (9a - 90) D^ +S^DC P sin e, TS, 

In the above, D is the differential operator, and all terms on 

the right side are taken at 9„ = 8„ = 9,. = (9„ - 90) = S, = 0. y   ^,   o    u       p 

Evaluating the terms indicated above by differentiating (1-48), we 

find the approximate formula for 9 1 

8x = -9y W3 
+ \  + f VP + (| - 9a) Kb 

+ eyV Sin °3 

-9zb 
(+S+|V  COSa3i 

This approximation formula may be used for preliminary work 

where 9 . 8,0,, (9„ - 90), and S~ are not greater than roughly 
y z

b  o   u        2 

30°. In the formula, all angles are, of course, in radians. 

cos & ._ 
-2.    (hinges mutually Assuming a, = 0 and tan 9 

tan 9 

perpendicular, (formulas (l-5l) ) 9 has been computed and plotted 

as a function of 0 , 9,, 9_ and 0 . These graphs are included 
.5  0  y    zb 

as figs. 1-7, 1-8. 
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1. General: 

Feathered hinged blades possess three degrees of 

freedom of motion} they can move freely (or restrained 

by dampers) about the flapping pin, drag pin and 

feathering axis of the blade. 

2. Applied loads acting on each blade element in a 

steady forward fllghtt 

The load3 imposed on each blade element are: 

a. Dynamic loads 

b. Gravity loads 

c. Aerodynamic loads 

a. Dynamic loads 

The dynamic loads acting on each blade element 

are due to absolute accelerations to which each 

mass particle of a blade element is subjected 

while moving in the space. 

This acceleration can be resolved along XYZ 

axes, the definition of which was given in Part 

I of this report. Reproducing Pig. 1-2  of Part 

I, we have 

2 
4 

^4    GXIS   or ZoTfiTtOU 

Z 

-r PflH7ICJ.E OF ß   SLGO/z   ELBMEK/T 
exTEuoeo    e.oor CHOIZQ 

SSCT'O/J   /9-fl 

f. /  : 

\\ 
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The coordinates of a particle on a blade 
element referred to XYZ axes are: 

CM-la.) 

(4 

esin©_ 

x = r 

eco3©_ 

The coordinates of a particle on a blade 
element referred to X'Y'Z1 axes are: 

(a-*.*.) 

lb) 

z = xsin© + esln© cos© 7 *e  y 

x = xcosöeos©,, - ecos©, sin©„ - e3in6_ sin© co3© z   y      xe        z      xe   y   z 

(c) 7   = xsin© cos© + ecos© cos©„ - esin©_ sin©„sin©_ 
e z 

To obtain the components, along XYZ axes, of 
absolute velocities and accelerations relative to 
X'Y'Z axes, acting on a particle, the first and 
second derivatives of z',x , y , in respect to 
time, are first taken and later resolved along 
XYZ axes. Classical methods also ,can be used, such 
as the one described on page 590 of ref. 9 

ZXY components of absolute velocities (relative 
to X'Y'Z')axes of a particle: 

fc-5*)    X = x«y + y(©zsin©y + Qx) 

(b) x = -z©_- y©zcos© 

(c) y = x©zcos© - z(©x + ©zsin© ) 

J   .. 

u 
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Accelerations: 

As in the case of the velocities, all 

acceleration terms containing y and z are 

considerably smaller than those containing 

x, except near the root, and therefore may 

be neglected except when calculating the 

moments about the x axis. 

It can be assumed that 

sin 6 = 6 and   cos 6 = 1.0 

It will be of interest and importance to 

compare the magnitude of all component terms 

with the square of the angular velocity, 9 : 
za 

0|: - by definition, 9„ = 6„ + 9 z '    z        z„  z, a   b 

Neglecting higher harmonics, we can write 

an expression for 9_ as follows: 
zb 

z^   o   1      zn  z* "b 
and 

a 

On most normal designs, ?1  is no greater 
than 1.5° and therefore 

x z'max - ( 1 - wrr*   \ 
' 2 In other words the variation of 6 is no 

greater than 5 per cent, and therefore, for 

all practical purposes, may be neglected. 

Hence, we may assume 

ef 8. 

' I 

1 
i 

V 
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($x)      and (Ö )    are both functions of(6    )2 and tifeeir 
a 

maximums can be expressed in a similar manner to 

/max 

l"x'nax •= («_ 0 ) 
zc za 

with maximum values of ßn  and 0 ' very seldom ex- 

ceeding 10° on aotual designs, or 

1 y'max   ,u^ ***. 

^mL ~ -0* «x 2 
a 

vhich is evidently negligible in comparison vith 

6. 2- 

6X 0 is of the same order of magnitude as 

* 2    • 2 
0   and «x  and therefore is negligible. 

•    • •    • 

Gx 9z and Öv °z both are 1u;lte ^S11/ about 
20°/ of kz 2 and probably cannot be neglected in 

cases where calculations involve M- torsional 
moments. 

^®x^max snd ^y^max are of the same order as 

(*x \ax and <*y *>«« vMch ls * °/o of«/. 

i- 

/ / 

/• 
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"ö_ Is of the tame order a» 6_  and in 2.5 °/° ot z *b 

On the basis of the above, the expressions for 
accelerations given in equations (ß-4a.),   (b)     and 
(c)  can he reduced to: 

8 

2 

y «a • " r 

(b) x = -xO, 
a 

(c)      y-*(-28yoyoz +ea) 

The dynamic loads! 
The dynamic loads acting on a blade element 

due to accelerations imposed on each particle of 
this element are obtained by integrating over its 
volume. 

Therefore, if the mass of each particle is called 
Am, we have 

(a-7a,) (F ) =• -2 zAm 

0>)        (Px)m •= -2 xt* 

where z, x, y are component accelerations of a 

particle and (Ps)m» (*x)m* (py^a 
are the component 

inertia forces of a blade element mass "mdx". 

I I / 

"\ 

JU 
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Por all purposes except the calculations In- 
volving torsional moment M ,  combining (p-6a.) ,   (b) , 

(C)    ,   (11-7*) ,     0>)    ,    (<) , 
ve nave 

(jr-sa.)  (p£)m - -mc(«yöa 
2 + Sy) ax 

Ch)       (PX)B =  mx bz  2 dx 

W   (Py)a -  mx( 29 h    ©z - \)  dx 

b. Gravity loads 

x,y,z components of gravity loads acting on a 
blade element of weight v are: 

(*-9*.) (*«>w " "wcot °y 

<w (Px)w - -«*» 
e
y 

(c) (Py), -  0 

Ofcese are, In general, small and may be neglected. 

/ / 

i ! 
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c. Aerodynamic loads acting on a blade element 

in steady forward flight. 
In calculating the aerodynamic loads imposed 

on a blade in forward flight, it is common 
practice to neglect the effect of flexibility 

of the blade. However, if the evaluation of 
that effect is desired, the following procedure 

involving successive approximations is suggested: 

1. Calculate the coefficients of the 
harmonic motion of the blade, assuming 

that the blade is infinitely stiff. 

Calculate the total deflection of the 

blade in the ZX and ZY planes, using 

the dynamic and airload distribution 
on the basis of the assumption in (l). 

Calculate the structural twist of the 

blade, using the dynamic and airload 

distribution on the basis of the 

assumption in (l). 
Calculate the structural twist of the 

blade due to bending in the ZX and ZY 

planes. 
Correct the airload distribution for the 

flexural deflection found in (2) and 

the twist found in (3) and (4). 
Repeat the procedure if necessary. 

2. 

3- 

5- 

(JT-IO) 

where 

(*-") 

- O + ex(eve* } 

a  "c 
+ eT cos(ez_- -, i - -X»V"«D 

> 

/ / 

i 
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•,  „-r "B " the COR- 

stant Part of 0 , ^the iaS 

«pover on" flight) can *e obtained from 

V     _ 
(B-/3)     8in eo * eo " b(e oos Y-+ e2 cosS5) (PX0V 

•T ' 

"^: " 

where 

M_i is the total rotor torque 
z* 

h  is the number of blades 

(e, cosJ^+ e2 cos£,) Is the distance from "&c 
hinge to the axis of rotation, 

vhen © = 0. 

(P ) is the total inertia force acting along 

X axis at "oC:t hinge. 

For reference, see page 3T-63 and Pig. (£-3 ) "below 

which is part of Fig. (l-3)t 

f" 

«_ Y Axis 

•oc" HI*J$£ 

X **-'s 

X R*'S 

L 
'- J 
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if *e let     0  „ «V, g   COS Qz     * 

and si*oe W -
»c 

- *2 °°° 
2°*a   2 

(«-">        *     °       , tt.   •v.*8*' 

,    of attach «T* 
tbe angle of 

•SS^^^ntal aeroa^c9*£ w: 

_2 

and 

Si-ip< joC,.*2 

ax 

•*T> 
o a ~ p« «T 

as 
- p« -D 

/ / 

J' 

I—I    I— 



IT' 

ii - 13. 

where Q. and CD are the section lift and the profile 
x     o 

drag coefficients. 

If ve let (F.)„ and (P^)„ he the component airforces I B       yd 

acting along Z and Y axes respectively, the distribution 

of these forces along the hlade can he expressed hy: 

(x-n*-) *(gz>a 
dx 

dL .«_ Q .  o -r— cos 8., + — 
1  dx dx 

sin 0. 

(b) 

dD. 
ÜV, - fi ,in 0, - ^ cos 0. 

•££/?0  1-lfT L/tJe 

/7<S- n-4 

where 

(a-fta.) »t*I 

W 8i  "  — 

Since all angles except 0  are small, we take 
a 

sin 0 - tan 0 - Ö 

cos 0 » 1.0 

Also, the Z component of the drag forces, except near 

the stall, is very small in comparison with the com- 

ponent due to the lift} therefore, the equations (if-ITaJ 

/•''. 

"t 
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***  &-/7Ä) 

Cs- /?«.; 

^; 

2Ü. 
ala<Piiriaa 

«*i beo ode 

^sultaot 

dx 

«x 

• a    «tr,      dD 

the aoti 
£&-2£the 

x'— 
V 

^/ iotpr 

_£jf°>-ae 
^/^A- 

^•e-rc ̂ /ö/V Cyr 

-££. 
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£^ 
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.    Ofg£C TIOAJ OF MO T/OAJ 

«~y 
V cos ei9 

Fl<$. n-C 

V#X' S//J 9^ 

Pig (B-6) shova the Telocity components due to 

V. noting at a hlade element projected on X* Y1 

plane. 

V^'COSÖy 

0,0'  "  XV PL/WE 

< — 

F/Q. a-7 

Pig. («"-7 ) shows the velocity components acting 

at a hlade element in the ZX plane due to the rotor 
velocity VA. 

- I 

Li 
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!Phe total velocity components along ZXT du« to 
rotor velocity V, are 

(•tt-21*) V^, - VA£, COB 0 - Vj^,  sin 0 cos 0 

#>     VAx " ^An' s±n °v + TA*« eo" öv cos 9 
7  T 'AX' 

W VAy " VAx« 8ln V 

Pollovlng the usual assumption that the effect of 
the radial Telocity component on the lift and drag Is 
negligible and since sin 9   • 0 and cos 0 =1.0, 

J       y       y 
the above equations become 

(tt-SZo.) VAZ-*AZ' -YAX'  «ycos \ 

(AI y     m neglected 

# V - VAx' "in V 

\r 

Velocity components due to Induced velocity 7.; 
In accordance vith ref. /O     it is sufficiently 
accurate to assume the distribution of induced 
velocity in forward motion along the fore and aft 
diameter to be triangular as shown on Pig (z-£ )i 

W 
I •' 
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FOZE 4- »FT omMEreR. OF eoroe DISK 

OlRECT'^U    °P    MOT/OM 

\7;- M£F1U  lUOUCCD   VELOCITY 

FIG. B-Q 

At any point of the blade the distribution can 

be approximated by equation. 

Therefore, remembering cos 0 = 1, and neglecting 

the radial component, the velocity components due to 

V^ are: 

(1-14°.) "12 
vi* - TL + Vi Xr C0S W2 

w 

(c) 

V. - neglected 

viy- ° 

total velocity components at a blade element 

(I -*5aJ     Vg - r + VAB + Viz 

The 

aret 

<— J 
i 

L! 
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U-zsb)      vx= i + YAx + v^ 

(*) V~ - 7    + V      4. V 

Prom nomenclature we have 

t 
JS j 
R 6. 

fcr-x6«j   Ä = \z' +\ 

za 

w 
R«. 

fc;       M. = -V. 
R\ 

the 
Substituting into equations &WÄ) to f , ) 

expressions of their consent terms and usin* L 
p—t». glven b7 equation3 ^ - ~: have 

r-^ T.-^+AHi,    +AlRö2    x 
2o      r cos 0 

a -*a 

~  MHO.    0    cos o. 
a    * *. 

I" 
/ 

t 
>a I 

W V   «    neglected " — ! 

W Vy .    -Xr H ^ .  ^ ^  gin ^ , 

"ii 
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vhere from notations, Part I 

(ff-2«*)      «y 0„ = ar 
- a, cos 

Q      .^ sine  -a, :os 20, 

*„ sin 20. 

v» 0  cos 0  + i _ a e  sin 0  - °i "a     za 
^      6y = 

al öza    
za      * 

+ 2a, sin20r - 2^ cos 20^ 

and therefore 

(<=) 
o = a, 0 W7   x za 

0 Ä  cos 0_ + «! *« U, 0.  3 in 20, + 

+ ,a2 cos 20Za + ^2 •*» 
28za 

„ .0 and 0 into equations U-^) and 
Substituting 0 ana y       ve have 
U-27c), and dividing W R «Za 

(Z-2.1*) 
( -u*„ + XA + 

2 
,1     J_ O-r "b } COS 20   + 

+ i ^ -in «Za + < | -1 + 2^2) 

+(i^-2Xra2)Sin^a+^2-^a 
+ 

+ i ut2 sin 5QZa > 

ü — 
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(2-2.9 b) u 
7     R©. 

-Xy - \i  sin öj 

The distribution of air load along a stiff blade. 

"Z" component of the airload; 

Considering the equations (K-1LC)  and {x-ijo.) 
ve have 

(x-30) 
d(Fz)a   1    JZ 
di     2   1 

vhere 

c  is a chord 

C^ = a 0  is the section lift coefficient 

V = v    Is the air velocity at a blade element 

Substituting into equation (x~lo)  the values of 
Q_ from (jr-'5)  ve have 

(jt-31) 
d(Fz)a = + 1 

**r 

- pea ul 0. R ©^ + Y, cos 0„ + 

+ ^ sm o  + etxr + ©J 

vhere 

^-32«.;      «; -ex 4-a^ 

te) Tl - *1 - <L«l 

(c) ^=^2-^1^1 

,/• 

u 

U-l 
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(a-33) 

^  R 

The sign minus is used for all values of © from T  to 
2rr. z 

Substituting from {a-iaa)  and ( b   )  the expressions 
for u and u into (a-3i) and neglecting after 

that substitution all harmonic terms above the second, 
ve have the distribution of the Z component of the air 
load: 

(JT-34) 
d^)a 
dx TTc- " Aoa + Ala oos ez + B,asin 0„ + za   • -la— -xa 

+A2a cos 20z    + B2ft sin 26    ; 
a 

vhere 

(S-3S) 
°z    = 7 Pa 622    R3 

a      2 za 

{11-34«.) A„o  =  (8*     +^g j JJ2        H*t i        X^ 
vo       2 '2 T — 

(*>) 

+ (el   + xej 

2 

la=  ^l+^i) V(ao+T3  ^r + Oi+^+V 

1 
i 

fc; Jla =  (*£ + 4 A, h) Ji! + (ao.    „ i j + 

+ (2uet + ^ - ai) *r
2 

o        2 

/   ' 
/  • 

[   '     1 i—i      L_ 
_=^li 
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(s-34d) '2* <0 4
+ (ai - < - ^ « r + 2b2 xr 

fej B^ =    -ao JL. + (bl + *[ + -2)  ^ - 2a; x2 
2 *r 

The above equation giveß the distribution of the airload 
along the blade Ln. "Z" direction for any azimuth angle 6_ 

and is expressed in terns of flapping coefficients, blade 

incidence, cyclic control, angular velocity of the shaft, 

and p., X,  and A.,. 

The underlined terms, being small, can be neglected . 

Total average thrust produced by the rotor in Xcgward 

flight. 
I! 

Total thrust  T = b(F„iL 

vhere (F_i)Ä la the average thrust produced by one blade, s a 

Therefore 

i   ' 

6r-3^; 

T - b(P2)a 

where (P_)_ is obtained by integrating «(Pz)a from the 

root to the tip of the blade and from 0 to 27T. 

2-de      f
B   dfrj. 

2ir ^o ra^o       dx 

^T 

-J     d0z    / a^>a dx" 
0     dxr 

/ • 

-i- ! 
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The second term represents the effect of reversed flow. 
The blades are In the region of the reversed flov from 

ir to 0 27r and from x • 0 to x = -nK sin Ö 
a "a ""a 
Integrating and neglecting the terms of the order above 

•5 
p. , the thrust expression for uniformly tapered blades is: 

(x-37) T = i b CQ pa a
2 R3 ( [ 1 X(B2 +1^2) + 

v 2   °    za   I L2      2 

+ Q«  ( A a? + A ^B) + Q. ( V + i u2 B2) + xo  3    2       r 4   4 

+ 0. 1 ..2 ( 4_ + i ^ B) + o (l + i^ B^) + t  5 

+ ^2^-^)]i 

I „2 T^ 
6 

r 
JL 

flCTUm.    BLf)C£ 

F/G. IT-9 

i 
1 

i- 

vhere 
c is the root chord extended to "0". 

c^ is the extended tip chord 

;./ 

u L 
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t = 1 - ~  taper ratio 

c = c1 ( 1 - xt) equation of the chord 

For convenience of calculation,the actual chord c may 
he expressed toy the mean chord" in the expression of 
thrust, and the equation (cr-37)  becomes 

(M-3&) 1      .2   T 
I » i 1) c pa 9„  R-* 

2 za 
| X.(B2 + i n2) + 

+ 6   '     ( iß5 +i Vi2 B)   + öJ'iB4 + xo        3 2 *    4 

*  i »V) + *• < J2_ .   £, 

V • I / 

Ü 
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Flapping coefficient» of "0 " 

Prom /o..r-/5ve nave 

C- " »o " aico,°* ~ Vln0z " *2
C082«r 

- b2»ln20t 

The expressions fop flapping coefficients In 

terms of other parameters are found from equations 

derived from the dynamic equation of the motion of 

the blade in flapping. 

*.(^-*CF>)' 

o',o 

?/<$.   M-/0 

Taking the moment of all forces acting on the 
blade about the 7 axis/ve have: 

lM-39) 2My   -   0   -    (My)a   +    (My),,,   +    (l^   +   { ^) 4   +    (l^  ^ 

vhere 
(M_)_ is the moment due to air loads 

(M )  is the moment due to dynamic loads 

(M )_ is the moment due to »eight 

(M ). is the moment due to mechanical damping 
devices. This moaont will be assumed to 
be proportional to angular velocity of 
the flapping 6 . 

i- / / 

Ü '_._J 
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(jt~4o) <Vd - VJ 
This assumption, in most of the cases, 

represents a good approximation. It can 

easily be seen that any other assumption 

except completely disregarding that, term 

does not give any practical solution. 

^^r'oo1 is the moment due to the eccentricity of 

the flapping pin vith respect to the origin 

Moment due to air loads ( Va: 

Prom   (   S-11<*., a-lLa., JZ- l4a.tjr-/4b, TC-/0 
following the derivations of ref. Z 

)  and 

(r-41) + (My)a m £B A pea «2    R* j    QX    + ^ 003 ^    + 

+ r'  sin 0      + «t xr    u2. . UyU, J x2 dxr - 

-Hsinöj, 2 

-2/1 pea    * R^ e_    (    el   + H*,  cos 0      + H»'  sin Ö. 
<2 za *      *o        -1 za        2 ra 

+ Vr   V" V* J Xr2dxr i 
2T 

The second integral is the reversed flov term and enters 

(H_)a only from 9  =» 7r and 8  =» 2TT. 
a        a 

B is the tip loss factor. 

Substituting u^ and u into the above equation, integrating, 

combining and dropping all terms of order above n , we have 

/ / 

J", 

U. 
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(It-it) 
+(MJ 
 3L*    -     i    X B3    + .080 n3 A + 
cCzR 

t- 

4      o 8 5* 6 

+ sin 0„ 
'a ^3 

f£ |i «_'   B3 + .053 U* 0 *    4n 03* 

- A a,B* - A nboB3 + A y.AB2 - A p.3A.     + 
4    A 6      * 2 8 

+ c os©^ j - i ^0B" - .035 ^aQ + i ^ 

-^•f ^*M+ BI» 2\ i ^3 - 

+ H>1   (  n IL + .00885 |i*)  + A \i   \,B3  J  + 
3 6 •"•      ' 

+ cos 20,    | - A p.2 oA B2 + JLp4 O'    -Ip,2 e^B3 + 
2a  (      4 xo 32 *o      6 * 

+ A bJJ* + A u«,  B? -  .053 p3 X - y;  (^ + 
2    « 3      A 3 

+ .0221 p*)j 

—r 

/'•; 

L      
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vhere c, the actual chord of the blade, is replaced, 
for convenience of calculations, by the mean chord 
C' 

Moment due to dynamic loads <J&' 
From equations 

C*-43) (My)m = ;0' - m*l R? (e of + ey) dxr 

vhere "m" is the unit mass of the blade. 

Since Iy s Ip - /J mx^ R
3 dxr 

and substituting 0   and © 

(ff- 44) (Vm= -h?°l    (ao+3a 2a ' ° igCoa 262 + 5b2sin 20  1 
a a) 

Moment due to veight of the blade (M) : 
n i .   .   la 

(Z-4S) (Vg- - /o*"T
2 R? ^r 

vhere "w" is the unit veight of the blade and is 
usually quite small. 

Moment due to mechanical damping (M_)dt 

(P-4C.) (My)d = -Ky«y = - KyOz ( ai sin ö2= - b2 cos Öz 

+ 2 a2sin 282 2 b_ cos 2 0 ) 

vhere Ky is a constant depending upon the adjustment 

of the damper. 

u 
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(x-48a) 

II - 29- 

In the first case the effect of change of pitch 
due to the cyclic pitch control applied by the pilot 

will be combined with the change of pitch due to the 

flapping which is obtained because of the hinge 

arrangement. 

!The combined effect vill be assumed to be known 

and can be called the effective pitch control. 

In the second case it will be assumed that only 

the effect of actual pitch control is known. 

In writing, down these expressions in a similar 

manner to the procedure used in ref. JL     ,  the ex- 
pressions for a0, a2, and b„ will be carried to the 

order of \i ,  and a^ and b, will be carried to the 

order of \sr. 

Neglecting (M_) and (IL.)00», substituting 

(nr-42 ),   {x-44),   (ir-46)  into (z-31),  and equating 
coefficients of identical trigonometric functions, 
we obtain the five equations below: 

Let D. VP 
y 

r 
K, 

_F_ 
2 

f 1    Aß3 +JL o«     (B* + fa2)  + 

»5    * « 1 ) 

0>) Ux.(^-^) + 

V 

+ <   . 2? + i^t »* -I^ + v- <£ f |BV)J 

/• 

/",. 

l 

J 

Ll 



I-I-30- 

(Il-48c) 

(a) 

(e) 

bi=3F 
I 3 

,*      ..2^2 

B4 6 
Ta2+-Kb2 

/ 2 

+ V. 

D2 - f" a2 = M. f «;   n 2! - i alB5 + i u e B5 6P v       o       ^       3    -1 fi t 

+ *K 
2 3   ) 

To a first approximation (ll-48a), ( b ), and ( c ) 
may be written: 

a o3 PH.  J 

(c) bl=— ^o- ^l-n 3B 

ü 1 _.__._,. =i 
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Substituting (n-*9a),   ( b ), and ( c ) m ( 
and ( e_), and solving for 

(Il-50a) 

0>) 

(c) 

(d) 

(e) 

a2 and b2: 
II-48d) 

- n2   *2 

144 

8 

—«—r-   MXB5 + 25e'    B6
4. 

F 

+ — e. B
7
 + 1 

15    * n»      ) 
F 

*T?   H' 
= -ZJL    f2XB + 23©«    B2

4.1 
36   *r 2    t e* B^    + 1 

+ ^^PB\ 

+ f Qt  &5 + | ^%3)  + lüi!    j 

al* 
2U 

B^.ü2^    + 
^ 

(AB
2
+|B^   +0fcB4 

*o        * 

5 V3 - **2   (^- ^ f B2,)   j 

b-,  = 2|i •  B3 

2 ^ 

\-~ 

I   /" 

L 
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U L 

¥here, as previously defined, 

\"%+ao^ 

W 

W 

*1 - *1 - ^i«! 

*2 -*2-rih. 

(X-Sla.) 

(*) 

In order to find the values of the flapping 

coefficients vith control and flapping terms separated, 
ve substitute the expansions above for o' , V,, and 

xo  A 

Yg in equations (r-49a.), ( A ), and ( a    ), and ob- 

tain the following first approximation values for a. , 

»1» V 

*     4   xo    * 5 ao- 

i +r -era2-   L       3 •x0  + ao Ti> + 

+ ©t B
2 + -2- v 

2pi  £ -^•^o+ X1+^j 

60 b, = 
i = W "*<> -   xi' *i + ^iai 

The first approximation values given by {jr-St) 
may be used to solve for ö'  , ¥., and ¥„ , vhich 

o 
may then be used in equations {at-So)  in the usual 
manner, 
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Y Components of Air Load 

, It vaa shown on p. x-i4,  equation (a-/?b),  that the air 
load acting on each blade element in the "Y" direction is! 

vR 

/  ,«1*1     d(Va _ a    dL  dD 
dx    x dx  dx 

Combining with (x-rt*.) and (6)     and replacing x by 

(E-5Z) 
1(PJ 
P - f °C1 «i Rv2 " I CCD RV2 

Prom   ref3. Jf. and 5 

fr-M) V = &o + Sl «r + 62  °: 

( j^, and S2 depend on the characterietics of the chosen 

airfoil and can be determined from the charts given in figures 
/ and 2    of re<f. k    . 

The angle of attack, 6 , is given by equation (l-/S) 
and the velocity components by equations(K-A9<K) and (/b)    . 
lotting 

d(py)aT 

dxr   2 
= £ cCj^ ©± RV

2 

O) 
d(v«D 
dx_ 

+ - p cCn RV2 
2    Do 

and expanding (x-S4a,)t  we have 

i 
t 

< — 

/ /' 

L! 
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d(Oa. 7*1, . 

1-55) dx. 
cC_ 

+ N 
C03   6* 

+ B, 
sin V 

+ *2 
cos •'"a 267.    +B2 

sin 29*t 

vtiere the 

neglected, and    cz, 

^ than ^e second 

terffl?;V ** 
=   £•    &   G8« 

I» 
the 

order 
higher 

are 

than 

for the ooBf«-0--     ,„- the 

terms of °^ ter*s> 
» -_AA*     01      "^ -     J.V 

it 

8iV    .   - droPPed" 
Yiave •been 

ls as3^9d 

a,»  ul 

ientS'   "tue order 
ter^^\.,X,*2 

el i *i*   2 

are 

h,, "x. 

ordeT \J- » 

o "v       arQ 

and that    V    * 

of the 

of the 

order V-   • 

^ + V, + 2al 

(* 
-&*) }% 

2  W        * 

2  + i Bl 

*1*2 + -i 
BT   

D
2' 

M«, a„^l 

+ V^M V-   xo 
o        2      \>t       „<,2  + 2h9 v  *i ai+!^ + 2a2    2 

>xl 
i*\ + sv 2 + v\ 

i / 

U 
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tV   • 

(a-.«,)     Al      - Ü? j 2* (a2 - 2aQ) - 5»! aJ + P,   J (*>l + ^> " ao Öi( xaL      2   ( p. ' ^ 

a, T'       t>, *' 

2 2 

2*\ 
+ -^ + -^ + ai bi+ — + i\ ai 

a2 V 

a*o *2    + *r   K    <*1 + \>  - «*t ('o + f) + *2 »1 2 

- a. yj * 2V>2 + 2»i »J + 2»2 \j   * *2 I "t (tl + V 

„.„.; B^.|
2
 |ö(.;.V'A) 

.2      v.2 

+ yx„ 
A °l „,.      5 .    .«      *i . bl • *1 AA 4 (V*    - 2a.)  + -i f    - f a   *    - -i + -^ + 
ji        t ••• 2     1      4    x    ^       2 2 

to- 6 2    x. 
+2&2 ao< 

+ Xr      " Sl '* °i    ~ 2a2 Al " 7 »*2 °t " *2 Tl " *2 *2 

+ 2ax b2 - 2b1 a2 |  + x£ (- ©t a1) 

t- / / 

Ll <=.-!+ 
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fr-S5-)   A^ _ | I i (2ai - -£) + a* + af 

•^*  v^-V-svAv! *o 2 

+ 2a;L b2 + b1 a2 - aQ Xx + a2   ^ 

bi Ti    ai T2    *i    *i » X, *, 
2 2 22 zx

0
lt 2 

+ X-       2«t b2 

(Tr-55-e)     B2      - Ü2 { A (2b,  + y')  - a    0*    + a.  b. 

+ MX   )   -a a. + b,  «'    - !°Jlk - !oJL!* + a,  a    + ^ ^ 

+ a2 4^    - 2^ a2 + b   b2 •» 

(continued on next page.) 

1 
1 

/ / 
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2 li^.^^-BH^^ 
>1*2 

üÜ-\al' 

+ ^      -2a20t 

Also, 
d(*J 

0T-56) 
V-D . -A- - *0      + V. °03 "'a T "S •.    +B1.    ,il10«« 

dxT 
cC„ *D •» 

, -a        sin 28- 
+ A3      cos 20^ + B% 

(*-**) A
0&D    2 ̂j«b + 52[2t(t^2 

+ v«, n ^ i* 

^„^v-v^-^-"1*2 
+ 4 *o + öi 

•2   «? 

(continued on next page.) 
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•2       P 

2 2 

+ ^si*t + v-te;^x^ s
2«t

2 

(X-K6) Ax     «£2j". ^^«o 
»n      2 rr ""*    -^ aQ + 

x ox o 

o      •*• J-        1' 

+ 2*2   («! ~ **)   -2M+.] »i      Ob       I t      0J 

^^'»tK + ^+vi: 

^\-f7^x-3 
+ »,/^ + &i29. 

e |T
S - h* 

(continued on next page.) 
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1  iJ1 

2        2    2 *- 

+ 2/\«t - ^ r2 + a^ a2] 

+2b2  (^-y2) -2a2  (rJ+^+^j 

+ *£    &22«t (lJ_+M«t-^) 

«j,       2 ( °        2  l* £ l«i - Vi 

+ ^2^2-O-.0(b1+^,] 

+ * j Sl   [*V   + S2   t*>2 <o + M»t   (2., - »i - Ä) 

(continued on next   page.) 
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Li 

- 1KJ- 

-l^-tf*^*^ 

+ i(*x+Vai 

+ **?    2 
S>     •    l«3o   © 2 "t 

tp-SL*)   B2 2    ( ^ 

X 

+ ^iK + V + ^)+s^<(^ + ^"^a2 

2a2  (»3. + Y2 + «£)  + »o (al T!)1 

^(.^•V»^^1 

^-^K^+V'^0 

^\-H'^\ 

•••/ /" 
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n»»-nque Moment in t*16.—i^- •— 

aerodynamic Loads 

,. 4-v,0 n-x* s of rotation i3 air loads about the ax..s 01 

2ir 

1 

The moment due  to 

given "by*. 

d(F_).                       B                    yaLdxl 
y *£ dx    +   /    R xr —:       r 

2ir 

- 2/ 
o 

dx„ dx. 

2ir 

means that the expression enters 

vhere 

into the moment only in the interval ir to 2ir . Evaluating 

these expressions, vhich are harmonic functions of 9  , and a 

combining into a single harmonic function of ©z , continuous 

from o to 2ir by the method of  ref.  2. , ve  find*. 

(X-*8) z a RcC„ 

+ H2 sin 29z 

r" ,/' \ 

L 
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vhere, neglecting teras of order    n5    or high« 

2     £>      „2 (tt-56a)     G     - X2   )  -    - 21 - ü' 
° 2        2a " * 

+ 4-I(T+!*2<   + ÜS,>V   +B* 
2        3   xo      4      * 

^(^+2ai) 

1 rSo     Sl V 
a    4 + S9 (- *1  T2       ^l   *i X 

* 4 4        c    t "x 4       5 
)] 

ä!(.!+2^, .*i ^  -° •*•!> --ra (\ + ^ + i) 
2 

+ £*  (VÜk + 
Al ^ + ^ A ,      a?      o? -J 

"     (^^+"T" + blAl-'lT2+?^+2a§ + 2D|) 4    2 
2   2   fc"2 T Cü2' 

1    H      \  % la2  2V " 3^ «c 

+ ^[B3^-i-V-^^+^ 

(continued on next page.) 
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el) 
+B5(^+^ + ai*iiAiai-2a°*2"a° % 

ao ^ 9t 

+ I et (*1 + Al) 

^Hx-^^o^] 
2Sr 

+ &UlB5(n«t-s*i)--r
(,|'i-ai)1 "2T 

5  n- 

+ B- 3 (ü (^ + fj_) + 2a6 a2 2  4 ^ 

+ £.} *a 
(a^ • ^ 

. T') . a2 (2^ + 2\ + ^) " »: 1 if 

1 
I 

-| *l*t 

> i 

"I 

L 
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(*-<red) G2 = fL** [B
2^(2a]L-y;) + A2| 

f j^ + a^ + ^-a^+l] 

+ — iT ) v r>    , bi .^w « r.l0 ..üs.fij 
h <\ +-7+-t]  +ai (^9t 2   2 2   2 

Ai«. 
?      -  "0 

+ 2b0 ©Y + - 
d    xo 2 

+ S B5 b2 et 

tf-5Se) Bj, - üi£ U (2b, + ^J j 

^L^b^-^a^-2^ 

k        X t   2   I     2 
- 2a 6  + 

^ xo    2 

-fB5*2et 

Since the sum of the constant part of the aerodynamic 

torque and the engine torque should be zero*, we write 

2C 
Go + 

Q = 0 
acr 

(S-S9) 

Where G  is given by (r - 5& a.) 

T 

•zlL 
! I 
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Folioviag the lead of'ßailey in ref. 4 ,  ve 
substitute in the expansion for GQ the expressions for 

the flapping coefficients given by equations (K-So) 

.t is an equation in p., *• ,   \,  Öt, Q_ , 
o 

, 6 , £,, 6p, of vhich the unknovns are 

•\   ^ lit 
The result is an equation in p., A , /v

1, Ö^, Qx , T-^, fg» 
2C ° \ 

^1, —® , f^, £>,, 6,, of vhich the unknovns are /\ 
*  aa 

and 8  . Substituting into this equation the value of 
*o 

8_  from equation (n - 36) , ve obtain an equation of the 

type belov: 

x* U +1; ti«) 

+ A 1 t0, (-1) + (—S)[t, + t! (-i)l + Q,. [t, + tl (-1)] ü24 2 T 2 ao" a 't l "3 T "3 

' r        '  /°2\i     '  r        I  ,09,, + 4^ [th  + t4 (—)] + V2   [tg + tg (-£)] 

+A1 [t5 + t; (!i)j 

2C     f 6.. 2C_, ,6. ,     6, 

+ \ [t9 + *9   (~)]  + V2  [t10 + ho  (—)] 

(continued on next page.) 
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•VV^n^ 

I s s 

*lt 
tl8 + tl8 

+ %, *o« (—) + *ö tt10 + t'  (-1)] + A. [t.n + t'  (.£)] ^26 "19 "19 20 

+ Aj J t21 + t21 & + t22(!o)+!^ = o dd     a    a(T 

The coefficients t  and t n      n are functions of \i  » 

/p, D , and B As shovn by Bailey, variations of *<_ 

D , B from average representative values do not affect 

the coefficients very much. The coefficients t  and n 
nave therefore been computed as functions of \i   for ^t, - 15 » 

B = .97 , Dy =oo For the actual computation, a more 

complete expression than (n-sSa.) for G  was used, in 
ii 

which all terms in u of p.  or lower order were retained. 
Where possible the numerical work presented by Bailey in 
raf.  4   was used. For the sake of brevity, we give only 
the results of these computations in figures K-u  to  K- IS  • 

L 
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Ais found by solving equation (a- &, o),  and e'  bv 
equation (a-38) xo 

—pr- 
I  . 

/ •   t 

i 
t! 
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££or eor«T,oU 

Fig.   1-Z° 

ln w analyst *« ^/^..c»^ 
It va3 slaovn m the       ^ ^ effect of    ^ ^^ore 

coefficients  on P-   _ -      ^ „ gmall. f rQ. 

as3»med ^f; fVe eccentricity of *        ^, 
taUOU 00Tidera.ly 1^'  «*^^fla position is 
may *e consider ^  actual * shov tWJ 

In T?iB- tf   y    '    !    ,    vhile dotted line __ 

Men derived =n W- " „la4e P««-"» ^COM4«.W °* 

«.-«)     * *" *   * 8  sna „ a Ca»W 
„•*w equal to -«a 

Y 13 very nearj-^ woortant 
Since YX ,x   ^^ for tV.e WP 

„ne and since — 
small angl6' 
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,     c vprv small angle- 

flov ve 

drag Pin*. 

vrite the expressions 

!.) Aerodynamic moment: 

<^r-<i2; 
M, 

x,   (Oa   tol ll Viy'a 

*L 

A more rigorous expres sion vould oe 

r *iK}. co8r2+(^)aSlnY2 

„ut ve neglect the r 

t 

approximation 

) **l 

4  fw \  , and since Y2 
adlal component, W>x>a 

~ +-V!f> forces are root vhere the ior  ^ ^ 

is very 

small, 

a very close 

assume 

small, x = *i •n  except near the small, excey        , e Y is 
„ » -\      Further, 3^nce  1 2 

costal- ^ 1B small, ve 

v •'•a -^o 

2.) Dynamic Moment. 

R 

/* ,M N   (given hy equation 

From the sketch, 

+ 2 x, (P,J, 

(i-w; 
v  + (F )  sin Y2 

J3_ m 

,„ x  + Ü (FJ  sin Yx 
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(jt-ac) 

{a-eh) 

(x- 65) 

* (V» - (F*}* , 3in \ 
Nov, fromp.X-a equations (*-**) and (*-«*): 

(FJ = mx • (29y 6y «Za - "e'z) ** 
y m 

(F )  = mx 0Z  to 
' x m 

Subs tituting the above for (^)m and aga 
in assuming x-^ - x, 

mx 2  <28y 'QY \ ' *8'z) d* 

in 6,  6/ dx 
b  a 

mx rx sin 6Z^ «z 

vhere "m" Is nov the 

,-R 

"line density" of the blade, 

mx dx may be taken as !„, the moment of ir.ertia 

of the blade about the drag pin, and \    mx 
ax is the 

'mass moment" of the 

special symbol IV 

X 
blade, and is designated by the 
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1 

<* 

Lb) 

Also, »ince 

Wz   za .66«.)     HZ *" ~Za    -b 

and = 0 hy definition, 

•Ö. = V 

therefore 

ijherefore 

= _iz (8 - 2ey ey oZa)  , 
,x sin 0  0 

* Z* 

"m 

fjr-^) 

5.) Damping Moment:. 

moment proportional to 

„  assumption o,;--a:7pro;imatlon ** ~ 

angular velocity » * ^ any other assumption 
££*«.. or analysis 

tremend0US'  .__ ^.„ a,out tue dra6 P- and satins 

Summing the 

to zero: 

three moments 

(zr-^) 
(»0 

%%, 

2e, ey ez 

Q     =0 

%• a   z   D 

) - M» rl 3in % 6za 
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, 0 function °* 

«ID 

. j a «&iTW 

Since 8B ve  ft«*^ 
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O 
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OJ 
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Calculation of Baruilng Momenta and Deflection Curve in 

the Z Direction. 

IzX   r«*'fu Bl"D£ 

STtFF ß^oe- 

„r fhe deflections 

tte rot„e»oe line » ---«» f^ly .till «-. —> 

1B oerlned ly   .. r1;^,^ tie Hade .0—» -* tM 

KLade »»i.. th. "-»e °°°" „lth tie plane   X I    • 
origin.    0'   , •»*>» *» "«^    '1 „ ,.    ,      t„ a oloa. 
„ tie demotion of *«-" ^»f^ 0MP„8l «.    » • 
Lgre. of epproxl»»«»» •"» 

(H-73^) eyf=
e* + * 

(b) 
x  dZ 

1 I 
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Forces on the Blade Element 

l) External Forces - (refer to fig.jr-^' ) 

a)  (F )  is the aerodynamic force acting perpendicular z 

a to the blade element. 

(jar-74) (FZf) = \ pcvf 0lf dxf 

where C,  is section lift coefficient 
xf 

b) (F_ )  is the gravity force acting parallel to the 
g Z1  axis.  It is usually small and vill be 

neglected. 

c) (FY )  is the inertia force due to acceleration 
f m along the line 0'x~ . 

(M~7f) (Px ) = + mxf 
e| dxf   (ref. p.ir-<5 , equ.j-*A.) 

d)  (F„ )  is the inertia force due to acceleration zf          
m perpendicular to the line 0'xf - 

(V-7C>) (F ) = - mxf (ev öf   + fl ) dx. zf       t      yf za   yf 

(reference, p.JT-8  ,  equation 2"-<&a-.) 
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(a-19) s (P ) = (P ) sin (i>  - Gv ) + (P_ ) cos (<t> - 9 ) 

D) ID 

- (P )  sin * - dPx = 0 
f g f 

Substituting lntofc- 7<sA (ff -19)  fTom(z-7 4) we find the 
equations of motion of the flexible blade: 

'f *a 
&-8o)        \  pcvf Clf dxf = mxf (Qyj^  + 0yJ dxf cos (# - 9^) 

- zaxp 6^ dx_ sin (• - 9 ) - (F„ ) cos <» + dS-. + P_ d* « 0 
a yf' 

7f 

'f T Px, 

and 

("ir-e/j    -mx~ (9,r 8^ + 9Tr ) dx_ sin (<t> - 9 ) + OX'Q^ dx. cos ($ - 0^ ) 
'f "a 

- (p„ )  sin 0 - dF_ =0 

Since <t> , 6      ,  and 8  are snel.1 angles ve take 
J f1 J 

V- = V , x„ = x 

cos (<t> - e_ ) = i , sin (* - e ) = (<» - e ) 

(9, 9^ + 9, ) • sin (*-©„)- 0 
za ^ yf 

Neglecting the gravity forces and using the above assumptions, 
( jt- 8o )  reduces to 

U-ßZ)        i  pcV2 C, dx - mx (• 9? + e' ) dx + dS- + P  d<> = 0 

V 
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and  ( ir-31   ) reduces to 

(pc-Si) mx of dx - dF  =0 
za      xf 

For a stiff blade, ( jsr-ez       ), by dropping subscript 
"f" and setting 0 = Q , d* = 0 , becomes 

(iC-84) Tg  pcV2 C1 dx - mx (0 9^ + 9 ) dx + dS = 0 

Subtracting {a-&4  )  from (ff-<5£ ): 

(x-a^-)    | pcV2 (C,  - C,) dx - mx Of (<t> - 8 ) dx 
f z

a        y 

- mx (9  - 9 ) dx + dS„ - dS H- P  do = 0 

Integrating (z-83   ) 
ID 

fr-66)    PXf = + efa / mx dx = Q2 Mm_ 

where M^  is the "mass moment" of the blade outboard of 
x 

station x . 

Dividing thru (JE-85 ) by dx , and substituting from 
(r-73«.), (A  ) end (jr-56), 

(zr-57;      \ pcV2 (c1   - cx) 

m \ S -*; dS f      dS £S + e< d2
z 

dx   " ax   '   wz„  "'m a      x dx 

Hovever, 
dM 

(K-88) 
~3x and        i. V = - El d2

Z 

dx 

I- 
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(* 
-8?) 

and 

, 18 the structural moment 

Tilrua of the «- •""* 

atout the TC «is. 

. Sf - ~ ax  dx' 

,  > ,2„     d^z 
d(El) d_z __ EI —5 
         dx^ 

dS- 

dx 

d2(El) d2z  _ d(El) d5z   -,T d^z 

dx^ dx      dx dx3     dx 

the s 

The term -*— represents the distribution of load on 

tiff blade.  It is in tvo parts - the aerodynamic 
"-•"« load.  The aerodynamic load 

nertia load 
thrust load and the 

is gi 
inertia load, by process s. 

filiation u-44  (p. S-IS, ),   i 

•.34*to «-34 6 and the 2-3 „  •>,      equations a-"- - obtaining 
is given on p. «"^ *, similar to that used in oh 

equatior 

d(Fa) 

(1-9') dx 

Suhstitu 

•2 ,       +,8 cos 29z 
+5h2 sin 29 ) 

- mx 62  (a0 + ^
a2 c    za 

za 
dS 

relate expressions into •&  . 
atlng the appropriate ex. 

and substituting xr  * 

rlfT?     ) d(FZ) 

d(Pj d(Fz)
m *_J 

d(Fj 

m _ _ - R 

(jr-9*)        SSj 
dS    _ _ 

(_ A      cC„    + 'nxr0z    "°' \        O-        zn 

=    a R2)   -   I*!. cCzJ   C0S °« 

.   (Bl    CO    )   -1» 6z£ 

(A.    cCz    - 3""r 
yz 
o2    a0R2)   cos 295 

*2a •  za 

(continued on next page) 

\  I 

t 
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-   (B2 oCz    -  Wza    2 
a      & ,    B        are given hy 

&        ana   B2 

vhere    A0    > A1Q        *a a 

„* *r-1• -*tttur.%»s•«*of( "" ): x
 \     —A renlace    -SjT L6t ** ' V  ) and replace -^ 

in ( x-87 ' 

Cn-?3) 

ir-«/    ' 2 

+ iSU -TT + P ^T dX£ v <*4   R 

1   IT2 (C   - C,) = ° 
d*r  1 as_ + RmZr - 4 P

c^ ^cif  
1 

+ mRxr <a ^ + * ^7 

„ in the steady state» solution 

Ve axe only interested inj* ^ ^^ 

t0 the foregoing equation. llparticular 

dS, i3 a harmonic function of J ^ , and 
^ -,«,« toe a harmonic func^        a 
integral" vlU also he 

vill he vritten 

x 7  cos 29 
+ z  sin ez + zr      za 

, 7      cos 6  + *r,    *a    * 
(3-94)    •p-^+'ra    **    5 

in Q   + ^r, °OS 26z 

+ U_ sin 26ZQ) 
*5 

i I 
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Substituting the expressions for z and ^  given 

by equations (n-94)      and (xr - 9-c.)  into (E-93) , we obtain 

five differential equations in z  , z  , z 
rl   r2   r3 

z  , by equating coef f ic '.ents of identical trigonometric 

z„  and 

functions. Each of these equations can be solved approximately 

by any one of the methods described in Part I, pp. x-H ro z-i5, 
Experience has shown that the easiest of these is the 

collocation method.  The application of this method to these 

particular equations is illustrated on the following pages 

and is set up in tables which can be worked out by non-technical 

computers.  The five differential equations are as follows', 
assuming as a first approximation that C, '1 • 

dV 

dx 

d2z 
(J-,*0 H_4l + 2 SMI  *i + a dltoi _ z„ m d2z 

R^ axr dx^ 
a "X\ 

o_x dx! 

dz^ 

+ nR9f x 
a     r 

A cC 
°„ z. 

n*r 6^ aQR + 
a 

d*z 
C  ju  ) El  v2       2 d(El)   r2 , i 1 QET) 

R^ dxr   R 

dpzT 

r  dxr' 

of M   d2z„ 
Za *V    r2 
R dx; 

dz. A cC 
+ raR 9  x  3 - _ n)F> Q^     z       = + 

za r^S      za r2      R 

J- 

I ! 
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ez V crz. 
O, "Z    TIL ••••* 

r3    f i. a2(ei). _ __§_£) —^ 
R to 

dz_ 

+ iriR ez   xr __ «e 
BT    CCZ xa    Za 

** \ % 

d5z. dV                  AtvTs    Q'% !   d^(El)  __ 
TTT rH     _,_   2   d(EI)      Jt +  (-r —~-T - (   ^ ) ^ l^r-   p tor     ^ 

e    Mm      d z za mx}  15 
R tor 

dz. 
;2 + mR e|    xr -TS; 

i . 4 ER 9^    z za   r4 

A2 CCzn .0 ^a a 
3 mxr 8fa a2 R + -^— 

\ El -T-r + ^3 ^sr ^T    R3   «^ 

«2
Z V d2z-5 a _i) . • - 
R tor 

R-    daC        R r 

dz 
„ ;2   T   ...5 . imiR e;   z + mR 0*    xr -g^ za    r5 

B2 °C 
.0 ^a "a 

p mxr e      u2 R 
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It will be convenient to write  theae  equations  in the 

following -way". 

The equation for    z        becomes    (i = 1, 2,  3, 4, 5)'. 
ri 

aV d5z^ 

(xr-9^ AiT?T + Bi TT + Ci dx" dx; 

*\ dzr. 

pi + Gi*r + Hixr + Xixr + JA 

where    Aj_ = A,, = A? = A^ = A^ = El/R5 

n        R-R-R--R-2    a (El) 
Bl = B2 ~ B3 - B4 - B5 ~ ~3    dxr 

R-^    dx; a 

D0 = D, = D,,  = Dc Ej =^ = -^ = 1^-92 

E1 =  0 

cCz 2 
pl = + -TT^ \ \ 

cC ,1^6. 
G-,   =   -   mR   a,.,   et     + -n-^ U-   (^ + *o  + TT  ) -o  -za   •   TT 

cC„ 

Hl - -TT V 
cC 

z„  ..2 

'2 T p. 

*1 = -H4 6t 

cC_ 

p2 = -TT2- T (bl + ^   • G2 = " -^ i;a 
a 

- • — v**** n O 

cC. cC 
z-  ..2 

^(^K+v - p
5 = -TT^$<*•;+ £ + *!> 
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cC„ cC Z      , Z | 
G, - -p-S 2p.9x   ,       H, = -jf-ä (2piOt + f2 - a^ 
P o 

C°za a2 • 

•2   C°za   ,     '   ^tx G4 - - ?ma2 R «^ + -R-8- |i ^ - f2 - -g£) 
a. 

cCz cCz  2 

cCz X I 
05 - - 5mb2 R e^ 

+ -R-^ I1 (bi + Yi + -^) j 

H5 " " 2 TT* a2 | 

I2 ** I3 = I4 = I5 * ° 

Jl "  J2 " J3 = J4 • J5 = ° 

The end conditions are that the deflection, z  , be 

zero at r = 0 ) that the moment and shear be zero at the 

«*' d2zr   d\ 

fa-*7)     5^ =  T = ° at *r " 1 > tar    <Jx£        ^ r     r 

and that the moment be that caused by the mechanical damper ! 
at the root, i 

d2zr 
(TL-98) ( gi)       - - -_5   (Mj ! 

t 

- mr0 *xa 
:V (aisln \ - bicos 8za ! 

s 
+ 2a„  sin 28„    -  2b0 cos 26„   ) \ 

a a 

(refer p.   n-z8 ) 

V 
\ I 
,; I 
' 1 

11 
I 

1     j 

Li   L 
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,   „  a solution oi sixx QZ 

J  ., t0 find a a + a      \*T' Ve visn to c03 a     +   r5 

+ z„    ^V a 

* P  end condition- 
,  fle3 all 1*. a^ve ^ 

vVlich satisfies ^ ^ ^ ^ .ill 

actions of    *r 

9nd condition-- 

ur-^   -2 

(i-w°) 

f e^xr - *r ) x2 "» 

H , , a 
Mfive p0iJat 

n2 

°1 
«-five point 

„„ five v&me3 oi 

_ ir       2 

(n-/«^) 

(x    - l)2        2 - e) 

*1 -.     • 

+ T0   X
T ^     ' 

+ T-,    xr ^      b 

^1 -i      2\ 
+ T2j 

xr ^- 

+ 1^   xr ^     ^ / - 

V I 

L_        
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(je.-ioob) 

dz. 
j-i.S,    2l(x,-l). ̂  -  l''- Sl 

+ T
0i 

xr ( 1 - x, + 3 
1 ^2, 

• T^x2.   (|_|xr+^) 

+ T0    x Jel-is**-? 2, *r  ^ 

+ T,    x 

+ T^  Xr 

(u-/ooc) 
dV 

dx; 
U2   (x_ - I)2 +11   e 

(x. - 1)' 
-1] 

+  (1 - 2xr + 4)   (TQi + xr T^ + x2  T2i + xj T?i 

+ xÜ Tk  ) 

(jl-/eoel) 

d5z. 

dx; 
i = S,   [8  (x„ - l)5 + 12  (x_ - 1)] 

(x. - D' 

+ T0     (-2  + 2xp) 

+ T,      (l - 4x+ 3X2.) 

+ T2    xr  (2 - 6xr + te2) 

(continued on next pagd.) 

i i 

-1    L- 
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+ T?i ^  (2 " 8xr + 5*?> 

+ T^ xj (if - 10xr + 6x
2) 

4 
d z 2 

*i = S, [16 (x_ - l)k  + 48 (x„ - l)2 + 121 a r " 1)£ 
dx4 

r 

(*-,oo«)   j^i = s± [16 (^ - l)
4 + 48 (xp - l)

2 + 12] e 

+ T0 (2) 
ui 

+ T,  (-4 + 6x) ±1 r 

+ T2  (2 - 12xr + 12X
2,) 

+ T3 xr (6 " 2Jfxr + 20xr^ 

+ T4± *r 
(12 " 40xr 

+ 30x?) 

At the root,    x^ * 0 ,  from ( i-/Mt        ): 

(^-/o/J  gi = S     (6e - 2)  + T. 
dx*       * %       -' T io1 ; r 

(continued on next page.) 

,/- 

1 

1 
And from the end conditions given by equations {    n- J8 )s I 

(JC-to/a.) Sx (6e - 2) + T0 = 0 = L^ 
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,c,      35 (6e - 8) + To3 °   (Ei)o 

2b2 Ö  V 

* --   b 

(d)     3^ (6e - 2) + TQ4 - "   (m) 

I- 

J4 

2a2 •  V 

(e) S5 (6.-2) +T0 -+- (EI)       5 

' J   T  . 'Asking that the equation Is satisfied at 
5 

five values of *r 
1       *     , yields five equations vhich can De 

solved for S. and T  . This vorlc is discussed in mere 

detail in the next section. 

H 

-i  — — 
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fa-tot) 

Solution of the Differential Equations for the Deflection 

and Bending Moment Curves in the Z Direction. 

Substituting the assumed solution for z   and its ri 

derivatives  (given hy x-/oo<*. to        e        ),  into  (r-96)   , 
ve obtain an equation of the following type-. 

Si £ A1f1(xr)  + Bif2(xr)  + C^U^  + D^^lXy)  + \?5{xv) ^ 

+ 'E01i
Alr6(*r)  + Bif7Ur> + Cif8Ur> + V^r*  + VlO(*rH 

+ liJVll^  + Eif15(xr^ 

+ T
2J

Aifl6^  +  

.(=«0 +  
Ü A,fr 

.   .   •  E1f20(Ir) I 

.   .   • Eif25Ur) 5 

+ T,    1 ^21^^ 

(O + 
V50Ur} } 

2   ,   T  x5  + J,x 

fl(xr) - I« <S - « (%r . 1)S 

f5Ur 

f,xJ - 2Xr us -1] e <*, - iv -xrl 

.1 

/ . 
/   • 

L_l    I.  
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I 

i l 

V 

r5Ur) 

f6<*r> 

f7(xr) 

f8(xr> 

f9(xr) 

[e^"l)2 ~2 x- - e] 

- 2 + 2xr 

2 
1 " 2xr + *r 

.2 /,   _  . 1 _2 

L10 

Lll 

u12 

•13 

llh 

c15 

L16 

L17 

:18 

•19 

*r> 

S> = 

2/1  1 _  , 1 _2N 

4 + 6x, 

xp) 

Xj.) 

xr> 

xr) 

*r> 

1 - 4x + 3x^ r   r 

= xr (1 - 2xp + Xy) 

= T5 /l  2     1 2x 

x5 (1  1 x_ + 1 _2 
r "*• 'TO # 

= 2 - 12x„ + 12x^ 

xr) 

xr> 

V 

- xr (2 - 6xr + 4xJ) 

= x2 (1 - 2xp + x
2) 

4/1  1 T _,_ 1 2\ 

/ 
/ • 

i i 

Li !  
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'i i 

^CT^r 

f21(*r 

f22(xr 

*\,.,(x 23 r 

f24(xr 

f25(xr 

f26(xr 

f2j(xr 

f28(xr 

f29(xr 

V*r 

_   4,1   11  2x 

xv  (6 - 24xr + 20x*) 

= x2. (3 - 8xT  + 5x2) 

= xj (1 - 2xr + x
2.) 

= ,5 /l  2    12» 

= x2 (12 - if0xr + 30x^) 

= xj (4 - 10^ + 6x2) 

- xj (1 - 2xr + x^) 

,6 ,1 1 2, 

= - z6 ( 1 _ 1       1  2x 
xr ^ff   2T xr + 55 xr; 

i 

and A.^ , B^^ , C^ J.  are 

given on page H-y^f  . 

On account of the complexities of the equations for 

the flapping coefficients, it was necessary, in their 

solution, to nake certain approximations.  The result of 

these approximations is that the coefficients of the 

airloads, Fj,  thru J. , p. #-7-?  »do not quite satisfy 

the conditions that the moment, due to all forces acting, 

,./ 

i i 

f I 
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be zero at the root (equation ir-39     ). The bending 

moments as found by the collocation method appear to 

he quite sensitive to such discrepancies, and the loads 

computed by (JT-76)    should be modified so as to satisfy 

equation (n-39)   . An arbitrary method of modification is 

presented in the Sample Calculations, pp. JT-/5t      to JL-/55   . 

The modified distribution of air load is then entered in 

Table jr-/ in plaoe of the first five roirs of column ( 8 ). 

Substitution of five values of xr in equation 

gives five equations vith six unknowns, vhich can be 

solved vith the help of equations (u-/o/) 

The solution has been arranged in tabular form on the 

folio-wing pages. 

When the constants S1  and T   are knovn, it la 
1      ni 

only necessary to substitute them into equations ^-/oo) to 

obtain zv and its derivatives as functions of x. 

and then to substitute those functions into equation (2:-??) 

to obtain z^ as a function of x  and azimuth angle. 

The tables are arranged for a five point solution, 

•which has been found adequate in most cases.  It may, 

however, be found that the approximate solution, using 

five points, has not converged sufficiently tovard the 

true solution. In that case, a larger number of "n"'s 

must be used, and equation (zr-/o£) must be assumed to be 

satisfied by more values of x  in order to obtain enough 

equations to solve for the increased number of coefficients, 

Tn .  Tables it-1     and u-3     can be extended accordingly. 

In the case of the first harmonic, (i = 2, 3) the solution 

by collocation, using five points, has been found not to 

converge sufficiently.  The failure to converge is due to 

the fact that in the choice of an approximate solution 

ve Impose the end condition of a definite slope at the root. 

/ .• 

-iU_| 
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aTe no* **• oD. 

r   „ iB obtained« 
1red ****** iB 

on until doBired ^n. 

_ >R\ moment a tax "'" 

<**    " =    J«^*«* &Te • second *-»°^ 

Pase * " ^ 1* not so eatl % , ^ 

*«    1 " *' r    x    +si   T AS quite 

awe Ti>asnit^e ^ccesai^ aP*        94) fo»    * 

3TDBl1, r*a    and. tne encounter ^ertia J-. 
as « •*"*'solution is no d W *» i» 

*°^*°'"* 1S *eTS 
slope at 

f 

L. 
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TABU: 1-1    - VALUES OP   rn (x,)   FOR VARIOUS VALUES OP   xr 

*r 

.25 .50 .75 1.00 

1 206.589432 77.332111 32.100625 16.033941 12.000000 

2 -54.365640 -2l.7l£?oC -8.988175 -3.326544 0 

5 14.309692 5.458984 1.852078 .395112 0 

1 0 -.783146 -1.142013 -1.524185 -2.000000 

5 0 1.025726 1.684257 2.216288 2.718282 

6 2.000000 2.000000 2.000000 2.000000 2.000000 

7 -2.000000 - 1.500000 -l.c:o-:i -.500000 0 

8 1.000000 .562500 .250000 .062500 0 

9 0 .048177 .145833 .246094 •333333 

10 0 -.026367 -.088542 -.166992 -.250000 

11 -4.000000 -2.5OOOOO -1.000000 .500000 2.000000 

12 1.000000 .187500 -.250000 -.312500 0 

13 0 .140625 .125000 .046875 0 

14 0 .005452 .028645 .059326 •083333 

15 0 -.002002 -.011979 -.029444 -.050000 

16 2.000000 -.250000 -1.000000 -.250000 2.000000 

17 0 .187500 0 -.187500 0 

18 0 .035156 .062500 .035156 0 

19 0 .000863 .008333 .022412 .033333 

20 0 -.000236 -.002604 -.008569 -.016667 

21 0 .312500 -.500000 -.562500 2.000000 

22 0 .082OJ1 .062500 -.105469 0 

23 0 .008789 .031250 .026367 0 

21 0 .000157 .002865 .010382 .016667 

25 0 -.000034 -.000707 -.003178 -.007143 

26 0 .242188 -.125000 -.632813 2.000000 

27 0 .029297 .062500 -.052734 0 

28 0 .002197 .015625 •019775 0 

29 0 .000031 .001079 .005403 .009524 

30 0 -.000006 -.000218 -.001364 -.003571 

i    ! 

1  i 
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TABLE a-3     -  FOR THE SOLUTION OP THE FIVE LINEAR SIMULTANEOUS 

EQUATIONS IN FIVE UNKNOWNS 

i = 

Column 1 2 3 1 5 6 
Operation 

Rov *r \ \ \ \ 3i Coifttant 

1 
1.0 E 

2 1 D 

3 

.75 

E 

1 

5 

1 D 

0 S2 

6 X 1 D 

7 

.50 

E 

8 1 D 

9 0 S2 

10 1 D 

11 0 36 

12 X 1 D 

13 

.25 

£ 

11 1 D 

15 0 S2 

16 "x^ l D 

17 >< 0 S6 

18 X\ X 1 D 

19 y~^ X 0 S12 

20 X x«^~ 
1 D 

21 

.0 

E 

22 i D 

23 0 S2 

2h x 1 D 

25 ><r 0 36 

26 ^x; ̂ X^ 1 D 

27 X 0 S12 

28 X 1 D 

29 X 0 S20 

30 X X 1 D 

Explanation on noxt page 

I) 



II - 89 

Explanation of TABLE X-3    , page jr-.se t 

The operations are as follows: 

E - Enter the appropriate values from TABLE x- i   . 
D - Divide the value in the same column, previous row, 

hy the first (from the left) value in that row which is 

not zero. The first values in rows marked "D" are 

1 , and are already entered. 

S - Subtract the value in same column, previous row, from 

the value in the same column, row denoted by the 

number following the "S" . The first values in 

rows marked "S" are zero, and are already so entered. 

To illustrate, the value in row 15, column k,  would be 
taken from Tables-/ , column 6 for x = .250 .  The 

value in column k,  row 14 would be the value in 
column h,  row 13 divided by the value in column 1, 
row 13, The value in column 7> row 26 is the value 

in column 7, row 25 divided by the value in column 3, 

row 25. 

It may be observed that when the values in TABLE z-'t   are 
multiplied by the "T at the head of their 

respective columns, the sum of the terms so obtained 

in any row, plus the constant of column 8, equals zero. 

Thus row JO provides the solution for S, and Ti, 

T-,  , etc. may be found by successively writing the 
^i 

equations corresponding to rows 28, 26, etc.  The 

numerical work in the table may be checked by 

substituting the solutions obtained for T into 

the equations represented by rows 1, 7, 13, etc.  Tn 
°i 

is found by the use of equations (x-101) , page jr-16 , 

Table ir-3 must be solved for each of the five values of 

"i" . 
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Th« =-;iii:==^i£_M°ment<» Hie method to h« -«—-S^nts 
J*opeUer blades .     „ Rented here Vfls 

blades-    A, at£*" S0 t*at it could be 1    "     '  — vaa 

det^led vo,k lnJf -0«.  and tables a  ^ »V«o« 

CaD ^ -counted fot   t0 Peri^° h^^t 

Nations ,Ä     °    thS de^ection and *   T^*** «- 

•«•*- -:;::»£«, c£: * «?*. - 
A    Woes    B ;. 

^ih 
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- ** — ~^L_ - zU 

I 
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Referring to the sketch above, it Is assumed that the 

blade la a series of straight segments, each of length Ax , 

the numbered points denoting the ends of the segments, and the 

letters denoting their mid-points. It is assumed that the 

bending moment is constant between lettered points, and 

that the running loads due to aerodynamic thrust and centri- 

fugal force are constant between numbered points.  If the 

bending moment be known at Ml"  (say), and the slope be 

knovn at "a" (say), then the change in slope from "a" 

to is knovn to be *<<£>. The slope at "b" is, 

therefore, known and the change in deflection between stations 

"2" and "1" can be found, from which Mg can be evaluated 

in terms of M, , the aerodynamic shears, and Inertia 

forces.  This process can be continued out to the tip of 
the blade. 

Considering now in detail one segment of the blade 

between stations 1 and 2 , and neglecting for the moment 

the Z direction snears due to the inertia loads, we have 

£/<$. n -24 

V 
\ i 

( I 
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where (F )  , and (?)   ,  at the left are the total 
mi       *«i 

centrifugal force and aerodynamic shear at station 1 , anl 

s and (f )  are the constant (over the segment) running 
m 

aerodynamic shear and centrifugal force. 

By inspection 

(Azn _) tKi\2- 
(tt-io*)       Mg - \  + Az1_2(Px)  - (fx)  ^ (Fz) Ax + s ^ 

m,     m a. 

Az 
1-21 Al! = M^ + AZl_2[(Fx)  - (fx) —££] - Ax [(F,)  - B ^] 

M1+AZl_2(Fx)  - Ax(Fz) 

"b       *b 

vhere (F )   is the total centrifugal force at "h" 

*b 
and (F„)  , the total aerodynamic shear load at "b" . 

Zab 
We now consider the effect of the inertia shear loads . 

The total bending moment and deflection are harmonic 
functions of azimuth angle, and are written 

(n-i°7)        z =» z, + z2 cos 9      + z, sin ©z + z^ cos 20  + z^ sin 243 
a        ^ a a        J a 

and 

(x-'oe) H - 1^ + Hg cos  9Z    + M,  sin Qz    + Jfy cos 20z    + Mc  sin 29 

i 
i 

i 
i I 
!  I 

The principle of superposition allows us to compute the 

various harmonic parts separately and then add them together. 

The harmonic parts of the acceleration of a blade element 

are given by 

/ .' 
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i    indicates *e 

0 -,  ?2 = F? 

(»• 
/" 

V 

1    and   2  ' ^s 

FjG^zJL5 

Tne cnange 

load,    dsi ' 

i \      due to tte 

^lade eleoea* 

(B-//a) 

inertia 

i .       \   = da  (A* 

in moment at ,„_nt 3ho*n 

on th< 

x ) - P8V 
,«2    mz  l**" 

'a 

) dx 

"A"* 

I    ! 
t      ! 
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i vhere x  is measured from station 1 , as indicated 

(JT-//3)     2 = Z1  + X  -3-— 
since hlade vas assumed straight hetveen 1 and 2 . 

Similarly, the change in shear at "2" is 

(•B-//4) d (AS ) = P62 mz dx' a 

Substituting (S~tli)   for z , integrating from "lM to "2" 
for the total changes "between "l" and "2" due to the 

inertia loads on the segment, ve have 

+ x  A x 
Ax 

po2  f m (ZT 
(r-//d  ^i-2 = peza 

Jo 

and Ax ,     • Azl-^ (AX - x') dx' 
.    _ PQ2  r  m z, + * -TT1 V 

< teerals, assuming » constant at 
Evaluating these integrals, 

its value at  D > 
AZn 

^  = ?e
2 ^ AX (Zl + -TH 

2  /Zl  AZl-2,> ',,   _ po2 EL A x \-ir- ~      5 
(jr-//e;  A Mi-2 _ za ^ 

< OT,Ha loads and moments „  iL helov shovs these inertia loao. 
Figure *-*<- •° reaction at the root. 

on each segment and the_r 

V 

! I 
t I 
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ä'Mt.t 

F/$. n-ZQ> 

The increments in shear and moment shovn acting at 
each station, and defined by equations (zr- in) and Ic-ne), 
are due to the inertia loads on only the previous segment. 

For the present, we neglect the inertia shear reaction at 

the root (S ) , and then the total change in moment, 

say from (2)  to  (j) , ^--'o.* >  due to the Tertia 

load on all the segments is 

(B-//9) A-'i2_5 = ^'"2-3 
+ to (ASo-l + ^1-2^ 

But, from (s-//7) ,(x-,t&) : 

(jT-//9°.) *\-3  = PÖ2 mc A
2x (^ + _f|=3) 

#; 

w 

AS0-1 = P6z ma to (zo + a 

Az o-l 

AS 1-2 

Az 
Po2 n^ Ax (z + —1=2) 

a       - ä. 

I \ 
! I 
i 1 

I- 

1 1 
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Hence, 

(a-uo)     AM2_? - P0f A
2x [mc (•/ + _§=2) + ma (zQ + 

a 

Az o-l. 

»b (Z3 

Az 1-2 
)] 

which, since mc - mfl + Ama_b + Am^ , n^ = ma + Ama_b 

z2 ' zo + Azo-l + Azl-2 ' zl 0        0-1 o; 

can be written as follows: 

;2 A2. 
Am a-b\ (z-/20a.)     AM^ = P6^ A^x [Zl (n^ |l£) + z2 ( 

Am b-c 
2— •) * % -#=21 

Am, a-b However,  (m. ^-) and (m ^—)    are 

respectively, the average line densities of the blade 
between stations a , b and b , c ',  and may be taken as 
the true values at stations (l) and (2). 

' 1 

• Thus 

(n-izi) AM, 
m_Az, 

.'-3 = •t/*  (ml2l + m2Z2 + ^-^^ 
In neglecting the root shear reaction, S , we have 

allowed the inertia shears to accumulate so that at the tip 
the inertia shear is the sum of all the 

j      (JT - /2Z) 

i 
AS = P9_  Ax mz 

za 

from equations (s-n9b) and (c)     , where the m's 
are at the midpoints of the segments, and the z's 
are the average z's for the segments. The  sum of 
all these terms ve call S .  It will be convenient 
to consider the quantity Ax-S •  Thus, for any of the 
parts into which the actual bending moment is separated, 

• < I 

! 1 
! I 
\ ! 

V 

! 
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Ax-S = 2 P9^ A2x m z 
za 

where the mz's are taken at the midpoints as ahove. 

The change in deflection, Az , may he 3een to he the 

change in deflection for the previous segment plus Ax times 

the change in slope.  The change in slope is . /M\ 

Thus, 

^2„ ,M 

W 

(x-U4) Az^ = Az2_5 + A^x (-^)_ 

(l-W4a)    Az2-3 Az1-2 + A x (^j)   , etc. 

. . Az hetween any two numhered stations is the sum 

of all the A x (•**-) for the previous numbered stations, 

and of course, z , at any station is the sum of all the 

previous Az's . 

In equations (jr-lZl),  (TL~IOG)    and 0c-/z4)  , we have 

the hasis for table H-4- , which has been arranged in order 

to allou an untrained computer to carry out the step-by-step 

process defined by the foregoing analysis.  The table is 

set up for Ax = .1R (i.e., 10 points). 

* The various parts into "which the vhole bending moment 

is divided, for any specific harmonic, are as follows". 
i 

M^ '  The bending moment due the known aerodynamic 

~~   shear loads, the known part of the root moment 

(due to mechanical damping), and the known slope of 

the blade at the root (due to "built-in" coning), 

with 

V 

1  I 
i  I 
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unknown root moment = 0 

unknown root slope = 0 

unknown inertia shear reaction at root 

Initial entries are 

(1), known part of root moment 

(4) 0c = .1R • known part of root slope + (3) 

(7)    = .1R • total aerodynamic shear at the 

station "r" 

i 

M. may be entered as the title for column 1 

and the sum of column \3 may be subscripted 

AX.SM' . 

Ihe bending moment due to a unit root slope, 

with 

root moment = 0 

aerodynamic loads = 0 

!! 

inertia shear reaction at root = 0 

Initial entries: 

U)0  = 0 

W. 05 = 'M 

a: 

(7)r = 0 

Column 1     should be headed "C±"   ,  and 2 (13) 

should be subscripted Ax-S 

The bending moment due to a unit shear reaction 

at the root, with 

I 
i 1 

I 
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root moment = 0 

aerodynamic loads » 0 
roct slope = 0 

Initial entries: 

(Do = ° 

.05 0 

(7)r = .1R 

Column I  is headed 

subscripted AX'S-, . 
"V ' and 2 (13) is 

The bending moment due to a unit root moment, 
with 

aerodynamic loads = 0 
root slope = 0 

inertia  shear reaction at root = 0 

Initial entries: 
(1). 

CO .05 

1.000 

=  (3). 

(7)r = 0 

Column  1 is headed "Ai" , and 2 (l?)  is 
subscripted AX'S» . 

For the fully articulated rotor, we need not solve for 

A, , since ve knov that the only root moment possible is that 

due to mechanical damping which io known at the beginning and 
included in I-U . 

V 
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in the 
detall* 

solutxouror    Ht> 

<*ial entries 
arßj 

lllo ' prom   " 

cMBloal damply 

xo 

K>i 

^o 

W: !    -aezV2 

ttc 
= , 26 a V2 

„ 18 no vcnovn pa**<* 
.     slnce there is (5)Q 

^.05'    !t:,oot slope,     W.OS 
or at the stat-1- 

shear a* gating 
the re 

the — -S^Sf ST «V • r   13 o»»"""..;^ Mi»«-°» 
•;M ^w- «^ 

(A-/*5"*) 

0) 

l* N     = C, 

•+ci • *A'*h 

i.o w+^ * ao    r 

/ 
/  • 

1 ! 

Ü   - 
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(*-/*re)   (Pz)3 = Cza/^°c[^2 + ^ + al)¥2+ 26x0^r + (2^et + T2 "  al^]dxr 

1-0   (     ,   „2 ,        p.©^ r,~) 

(<=>)       &z\ = Cza/xr 
c K£ + (al " *2 " -r)v=v + 2Vr j ^r 

(e)       (P,)g = CZa;i"°c|-\ /+ (bx + ^ + ^)p*r - 2a2 x2] dxr 

It is not necessary in this case to arbitrarily modify the 

air load curves so that they exactly satisfy equation(s-3 9)» 

since in the step-by-step method the inertia loads are 

determined simultaneously vith the bending moments, and, 

therefore, the error in the bending moments should not exceed 

the error in the air loads.  In the collocation method (pp. ir-65 ) 

this was not the case, and errors in the bending moments due to 

inconsistencies in the flapping coefficients might be many 

times the error so caused in the air loads. In order to 

compare the results by collocation and the tabular methods, 

however, it is obvious that the same air loads should be 

used in both methods. 
i 

When I'L , C, , and E.  are known, the total moment 

at any station is 

(ff-/*6) M dz. 
1 = Ml + Ci (a£>    + SoA 

where (-J-)     and S  , the root slope and inertia shear 

°i      1 

reaction at the root, are as yet unknown. 

However, at the tip M. = 0 ', and the inertia shear is 

zero, so 

! 
I 
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I     i 

!     j 

SM>   +<Ü>o
Sc+VSE-S 

or, multiplying through by Ax = „IR 

(if-«7)     (AxS)M, + (g)  (AxS)  +an[(axS), .IB] 

(ir - (2.8) 

P0r 1 = ±-°>     P = ° >  E = (Ax-S)MI = (A*S)„ = S = 0 
and 

/dz- 
^35v = - £• at the tip. 

For 1 = 2, ? ; by setting 

M = M» + C (g|)  + SQ E = 0 at tip, 
o 

and solving with (l£-/2j)       we find 

(iC-/Z?) 

(w-/3o) and /dzx 1HF 

^c   (^xS)M> 

(AxS)    (AXS) 
1 - .IR 

(AxS), 

M» + S E 
0 

It will, however, be found that equation (5 -)?.?)   for 
S  reduces to the indeterminate form •* >   since 

c   =   M'  _     E 
(AxS)c   (AxS)M, _ (AxS)E - .IR 

This may be interpreted as meaning that any combination 

i-r—)      and S  which satisfies equation (x-/do) could be 
o 

chosen, without affecting the bending moments.  If we 

choose (^£) = 0 , then S 
o 

of course), 

M' 
(for xv  = 1,00, 
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and 

(3T-/3») M = H' + 
S
O 

E 

*""    ° ^ions of table 1-4 
tation  odiously, the soluoions 

at every station. 
•P•- M  ana ^ * required are for 

•i I = 0 and 
. p^o and by setting (• -i 

solving vltn <- 

(JL-I&)      So = 

a.nd 

(jt-i3o) 
/dZN 
4s\ 

yhere C, E, M 
are for *r = 1-00 

H. is determined at every station. 

b) 

Hence, i>i. a.~  

There are some approximations involved in the method 

•which may be pointed out - 
a) As in the collocation method, the air loads 

are computed assuming a stiff blade. 
The centrifugal forces are assumed to act parallel 

t^ the X'Y'  plane. For small coninp and flapping 

angles, the errors so introduced would be negligible. 

These assumptions are also made in the collocation 

solution, pp : «• i   to *-<£••"» .  In fact, the tabular 

method is essentially a step-by-ste*, solution of 

equation('j !o} vhich forms the basis for the 

collocation method. 

T 
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Explanation for Tahle jr - 4 . 

Instructions for filling out the tahle". 

Let (n)  he the value in column n , station r . 

Columns 2, 5, 7, 8 depend on physical characteristics 

of hlade, except that "P" depends on the harmonic 

"being considered (p.ar-93). 

(D< (2)a; (»).05" (5)° 
(1) = initial entry',  (5)0 - — o     -   _ 

(12).15 • (6).l5 ' ^ 
(«.a» <»>.ls-<».»-(9)-»' 

12) 15 = v"'.l5  o     •—       %     Mov 
, N     (7)     c + d1) 15 + (12)-15 ' ,,\     4. (t.)     _ v ' ' 15       ' .IP 

(1)>20 
= U)-10     -15     ,15 

and so on.  Finally, of 

o*- (1)—- -tr rr.-»:«— 
end conditions m»* 

! I 

/ - 

11 

Ü 
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i ! 

(X-I3Z*)      e.  - e +~ 

(b) e, _ e _ (f _r) o _i- 
D-D 3 

05 W   *f - \ + S 

Forces on the blade element 

l) External forces (ref. flg.jr-.z7) 

a)  (F )  is the aerodynamic drag force - 
7f a 

(*-/33)    (Fy ) - +\  pcV^ F(C1 ) 

vhere F(C, ) contains the drag coefficient 
if 

and is a function of C,  only, since the 
xf 

profile drag coefficient is a function of lift 

coefficient» 

b)  (F )   is the inertia force due to acceleration 
7  f 

m , 
perpendicular to line 0 xf - 

(JC-,34) (FyO  - mxf (2eyföyfbZa - \)  dxf 
m 

(ref. equation(ir-?c) p. jr-8 ) 

c)  (F )  is the inertia force due to acceleration 
f m , 

along the line 0 xf 

(x-/i5) (Fx )  = mxf Q2
z    dxf 

(ref. equation (ir-5 b) p. 1-8 ) 

2) Internal forces 

Exactly as In the case of flatwise forces acting 

internally, p.r-fe7, we have 

. i I 

_j i. 

~-±_ 
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FI$. x-za 

a) Shear forces Sf and (Sf + dSf) acting on 
element as shown. 

b) Bending moments M„   and (M_  + dM_ ) 
Z. *.        ZJ 

as shown. 

c) Longitudinal tensile forces, F_  and (F_ + dF_ ) 
zf      xf   xf 

/tt-<"5b)     producing a forwards force P_ - F_ d*_ . 

Equating the sum of all forces, dynamic and 

static, acting perpendicular to the blade element, 
to zero! 

1     r a    r m Df 

- (p )  sin (•. - 0,      + t' )  + dSf + P_ - 0 

and equating forces parallel to blade element to zero! 

(r-,58)    S(FXf) - (Pyf)_ sin (•, - 0^ + tf) 

(JI-/37) 

± 
I 

+ (F ) cos (*f _ «  + r ) - «  .0 
m b.        xf 

f 

I / 

•/'••. 

J 

u —=^=.^1 
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Substituting (z-ri3)r (*-<36) from (jr - '37) , 

(n-ii6) ve find the equations of motion 

of the flexible blade: 

6r-/3»)    \  pcV^ F(C1 ) + mxf (28y 9y 9Z - o'z ) cos (<Df - 0Z  + ^f) dx 
X X  X  cL      X D 

- mxf6z sin (4>f - 6z  + Zf)  dxf + dSf + Fx d<!>f = 0 

and 

(*-,«>)     .mxf &7f?7t\ - eZf) .m (•, - o^ + rf j dx 

+ mxfez cos (<t>f - ez  + rf) dxf - dPx 
a bj.       J     f 

Since <t>~ , 9   , r^, are small angles, we take 

Vf = V , xf = x 

cos (<t>. - 6   + *„) = 1.00 , f  'z. 

sin (•. - Q   + r ) = (• -8   + 21) 'f  "z. f  ~z,  T fy bf 

(29 e o  - e ) sin (• -e  + r ) = o 7 yf za   zf     i   zb   i 

Using these assumptions, (a-/39)  reduces to! 

(z-*4t) \  PCV2 F(0lf) + mx (26yfeyf0Za - \j   dx 

m&Z    (<t> -9   + «1) dx + dS„ + FY d0„ = 0 Za  *   zbf   *       1   xf I 

1 
i 

I 1 /' 
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and (x- 14-0)    to: 

(m-/4z) mx6^ dx - dF  - 0 
*• za     *f 

For a stiff blade, dropping subscript "f" and 
setting • = 0  , d» = 0 , (x-i+l)   becomes 

b 

(n-/4 3) ^  pcV2 PfC^) + mi (2ey«yex - Ö£) dx 

-mxO? (Z) dx + dS = 0 2a 

Integrating ( 2 - lAS. ) 

where M^  is the "ma3s moment" of the blade out- 

board of station x , about the Z  axis  (axis of 
rotation). 

Subtracting (K- /4 3)    from (a- 141) '. 

(1 - 145)       \ pcV2 [P (C, ) - F («)] 
f      x 

+ mx [20, te 0 - e e ) - fö _ o n **• za  *f yf   iV  l®zf  V
] dx 

m eL (*f " ez.  + «V -r) dx + f     Z    t'f dS, 

1   ^ 

- dS + F  d*. =1 0 
Jt^    IT 

//••I 

"t! 

Li I  *•"' •^J— 



II - in • 

u 

Assuming 6 0 =0 ©_ , and C, = C,  , and substituting 

from (^:-/^2.) and (&-Ml) 

(S- H*>) -s--^.s+<^+:§-s +\%&-° dt< 
'•** 

As in the section on "Flatwise" deflections, p. m-ic ,  the 
dSf 
•air 

(2-/47; 
dSf 

dx- 

dx' dx 
<om - g _ 2 ilgl £y. _ EI *!f 

dx- 

-r= represents the distribution of load on the stiff blade and is 

in two parts, aerodynamic (given by equations (x - ia)        pp.ir-zi) 
and inertia.  The inertia load is given by equation (r • Sc) p. u-£> 

(ß-M) 
d(F   ) 

J  r 
dx_ R^mxr   (20y9y6z 

a 

T 

6z> 

= 4mR2*J>?     i(^_!^i_VE + ^2)cos 
r  z. 

f,       a a1       a,a0      b,b0 , / 1 . 01 Id 1 d \ . Q 
+ t-q- + —-g if JJ— '    in ez 

a,b, 
+  (e2 - aQb2 + -^-ijcos 2QZ 

Then 

dS 

+ (f2 + a2aQ +    X 

d(F  ) d(F  ) 

)   sin 26, 

d(F,J 

"35c: +      dx„      +     dx„ )/R   " 

dS Since  the  forcing function,    --—      is a harmonic function of 6 

so is the steady state solution for    y .    We,  therefore,  let 

yr = y/R    and 

\ 
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(a-/So)   y    =, y v /      r      jrp    +    y    coa0 

d a        r, ^"a    + y    cos20 

* • • Q y • o a 5 2 

d? * ' S ''a fy>. cose      + v      , 

a ** za 

+ *y_ Bln2Q    \ 

We Cfin convex»„*, trlg°noffletriC f°• glven belov; Gently Wlte 

"quationa in ^ 

'e -i- r where 

A 

Bl     =   B        -    R ' I 
1        2 ~ B3 = B4 - B'       2    dtel) 

^2* + T2+2V-2 + 3      2 

,.    °\   ,r   T " T'**«*•'S • ,,»} 
-    ^Mir^-2ao).3 ^       , 

I-  _. J- 
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s 

P3 = 

F., 

^/r^t^+v-'oh--2* o"l       a 

2   .   -2 cC7       2  /-    v i . ? 2 

,' . C°Z» "2 

i •* 
cC r A <+> za „   U Q«     _ VI . a A,  - ab. 

1 = -T- »  l Ü °x0     -7-       o 1        o 1 
\a2 + 

Slb2 

cC. 
) \,~     . a,1 \   - o Q

1
     + _ii + JgS + B1D1 

2a0b2 + 

* ) $*>! + ^)   - aQ0;o 

a 0' 
2XX 3 2 xQ 

+ -vT   + i Vl 2— 

+ 4 a    - ^ [2 A (b.   + M-; + \)  + (ax + ^)(b    + ^) T   a     o      a yi-L        -1- 

. 2a e'   ]"l + KR'Q
2

Z    (e± - 2aQb1 + 28^ - Sb^) 

cC„ Dl'l      5 
2      v 2 

.       al     . bl 
"a •• )>  (nO    - 2ax)  + -£-± - i a^J

2 " "ff" + "T" 
G3 = 

+ I Vl ' 2 ViQ 
+ 2S2ao ' 2 "a2 - 2 T °x. 

„ (f [2 £ (V2 - ax)  + J(bx + ^)2 - ^ 

+ 2©'   2 + 2Xet - a^ + 2aia2] 
o J 

+ mRS§  (fx + 2aoa]_ - a^ -b^) 

+ « *c 

•f- ,/''. 

Ü   '1  -_-^L 
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cC. 

aH4H + aiV 
Vi aobl + \ *A + Va 

Si + 2Slb2 + b2a2 - aoX1 + a2Xx - -i (^ 7 T^) 

" IT t4 £ b2 + 2al   <b2 + °x  >   + ^2   <b2 *  6x  > -N o o 

" ao   <bl + \)   Jj 
+ raRQ2     (4e2 - 4aQb2 + 28^) 

cC. 
G5 = /   _  1 

'2 ? aQnet + aiao 

+ \ vi + a2 ^ - 2aia2 + blb2 + W\Q 

-^(b1 + ^)-^[2e;o(b1 + r;)-^a 

- 2a2  (&1 + Y2)   + aQ  (ai - r2)   ] > 

+ inRe2     (4f2 + 4aQa2 + b2 - a2) ' 

cC. V 2        =2       yZ 

<Aet + i Vi - -i aiy
2 

+ -r + -r + -r + 2a2 

- -J- [2Aet + 2M.etf2 - a^ + r^ (^ +AX) 

v »2      "»© 
2 • af      f. 

"1   ,  Tl     ,ul, 

JL 
I 

T 
j" 

-1 

u 
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cC. 

=2- 

a t 

^      0»        o* b    + 2»162 + 2b2^" 

i  * 
H5 -—TT 

-a,0 
IX, 

- 2aA " I »** ' &21 1 - "bo* 2"2 

. {*  (2V-0t + *2 ' *1) 

cC„ 

H; 

r * V) + 2t32 (ai" 2 

"   a xo -, > 

_2a2(*1+>l+^ 

1   UVl+*    1Z  V2       f 

+ ?Al'l 1* ,       A,       1(.     -S-j 
I « Q    (2a    - 2*2 " ""2*}      ^ 

a ° i »1 

H5 - —r j? 12 Wl 
a^x " co2'xr 

+ V2R2 

4a. o^1 
2 x, 

^ 

J": 

L 
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CC. 

CC 
zl—!• 

.      CC.      r J 

fs^e2 • °t  - 'i - *i -*;.,•  0 

,/ 

L 



n 

JI--KW- 

«     , for the^eflectlon 

Ss2BSiffl-2£-S2^^55^5S2B- orm BS for the 

-^TT^od solution 13 or equation ^ 

0OBtflc»n« V - _ x,a _   , 

<*-'»' •^ 
 ---rr   - (n+2) (n+3) n2       ,      n+2  t   ^n+2)(n+D 

nl        i 

,       •     '     F«     G., H^_, If di 
^efficients A',, B',. «V Di'Bl'    *      ^ and -o-t » 

^ . ;/i for  the edsevise defiec       en 

for the revise loads. ,   ^ given ^ov ^ 

(<0 

i   (6e - 2)  + T
0l 

= 

1 f        -?lV 

sj, (6e ' 2>  + T°2 = 

e A^ 
s<   (6e - 2)  +<3

= (EI)0 

i 
L5 

= Li, 

S'     Ce-2)   +< 

2e2Ö      Kl» 

U   L 



ff 

I! 
ix- na 

Hence, aside from priming the coefficients A^.-.X, and 

uaing the new definitions above and on pp M-HZ     ,  the 
routine involved in solving the edgewise differential 

equations is exactly the same as that for the flatwise 
differential equations. The same tables {s-i^jr-z^ll-3 ) 
and pertinent remarks and instructions apply. 

i! 

•./.<• i 

j'   ' 
V 

Jl 
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- finding—- 

—-^^ *~-* -trie 

iSi^^^Tr ttieji--^^ VPT) 8olut,J-        „_ for 

„-•«• for tn°        ,a ©»act;« ?0 

^e *'     üä ^aentB     „ given PP   * . for 

«* ^     ,     can ~ ^ *    * ^ ^«* 

„   of   Ct>l-    ' 

and W1 axe ^e 

?0ri^lae *        ar forces,  ^y'H 

„e a«roa^C 3"ea elo,: 

nt    and «e Sl 

afferent, 
_ n 

< 

V 

za 

a 

a 

i »B 

l- 
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!    ! 
! ' 
; ! 
i 

r *r. l-3o- 
u 

V c   (A * ° 
fo ) 

y*9 *cz rl-o 

a*-"*- ) ax 

'«»  * C      rl.o 
\'^s, <** 

(<*) 
(P 

V     -^ & 

*L 
y «4  * c     ^i. o 

r«; 
u. 

v*e,e 

«z 

fe_ 
B„ 

a     y <tc P9 ^ *' *L 

'Oils caa 
o^a 

^ob, 'ab;z 
*" be s*b6 

i- 
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Torsion on the "blades. 

a. Stiff blade; 

A. Torsion due to dynamic forcest 

It is assumed that the elastic center and the 
center of gravity of any blade section lie on the 

zero lift chord line of that section (see Flg. u-29) 

The torque about the elastic center due to the 
inertia forces acting on a particle of the blade 

element is 

[S-IS5) 

(a -1**') 

dM_ = V (cD cos 0 - y) dm 
^d * 

+ y (z  - cD sin 8^) dm 

vhere dm is the mass of the particle, y and z 
are coordinates of the particle, and D is the 

distance in °~/° chord from the elastic center 

to the feathering axis. 

Substituting for the accelerations from equation 

[ic-Ca.)  and (r-£c): 

di^ = | (D-C cos ex - y)x (U 

-(frc cos ex - y)z (II) 

+(DO cos ex - y)y (II3:) 

+(z  _ D-c sin 6x)x (IV) 

_(z - Ec sin 0X)* (V) 

.(« _ DC sin 9x)y (VI) j dm 

/ .- 

f- 

L 
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(d) 

If) 

vheTe     .2   ,n e   cos e   + S 

.2 + i« + »,»x-^ °y     E 

(II) = ex +    7 

••    .  e    sin ^ 
(III) - °x + 67 T 

(IV)   - "2    z 7 y 

,  ob 0    cos 6 

(V) = ex + °* y 

•   2 
„:.    a    sin *~ + ez 

(VI) = 26x 9z 7 
•t-vip "blade 

eouation (»-'*>  °Ver "Y of tha ^de> 

element, let-t^ eWnt i3: 
föe torsion due 

3       *»l*\* 

(Ä-/5-7) 

,       „-  6    - d C0S     X 
H,     .    (I) xmc  (» °°» 6* 

- 2 e    _ IJ 
+(III)   Co*** C0S    °*        ? 

+(IV)  *-»  Cd ^ 6X 

,   .   ,T    - c2D*d sin28x) 
-(v) U* ' 

x   fT      . c2I^ °°s °* 3ln °* 

.      x    are mass moments and 

A 7 axes, and iyz center oi y and Z axe * ^^ fTom ^e 

d i3 tne W*»-'^ axis- 
gravity to tne fa*» 

i 
l 

T- 7 

u 
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1 
i 

«al •**» COlnCldeS ^o Y princiPal ** 
,mlnR that ^e Yp P 

A3s^ng        ^ord line, 

. _^     ft 

u L 

T    _ i       cos2 Öx + J-y 

Mi    -xJ8in26x 

V ' "5  7P    P tia a-bout 
, -  are moments of to 

v^re 1^ **d % 

Substituting (^^malX, assume 
, „~ all angles since aü 

e ,  C0S * 
sin «x - 

e*' 0 
-      COS «y 

sin 0y = °y' 

in e3 are negu^
1« 

terms in w 

•02 . ^ .   '*» = ^ vz za 

ve obtain: -2    + e    - 0%
Qz^ 

„,     _ [ m*c  tf> " d> ^    za 

-     9 \ 
s   6 2) 
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r 

Substituting 

L sin 8, + et *? 

(from Iff-" > 

•2 K cos Q,a + *2 
8ln °^ 

n  - "b, sin 0  - °2 
. _ a, cos 8   Dl    za 

8y - *o   !     
a 

a0 cos 2ÖZ 

- *2 oin 2°«a 

0y , 8^ 11 
8in \ 

- bx cos os + 2a9 sm 
2V 

2t2 cos Zöj- 26. ) 
a 

,„ e  + »Va2 cos 20- 

«y    sa 

+ «tt>2 sin 20,J 

= 8 8 ( ax cos «Za 

'  „  • )i- cos 28 

+ 'l 3in °*a   Z 

V " "•• 
+ 4f2 »in 20,J 

.  the tip to get total 

second*. 

•" 

J' 

--H 

u L =IL 
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L.O 
(u-lloo) '     9 M      =. 0. CR/        (J      + J-,     COB 0      + 

xd       za    / °d       xd za 

+ L,    sin 0_    + J0    coa 20        + xd za        2d za 

+ Lg    »in 20    )  dx, 
d. a 

whore 

fa-fko*.) JQ    - mRxrc  (D-d)(aQ - i ex ^ - i T± *2 ) 
d ^ 

+ (0^ + 0t x,) [mdc2  (D-d)  - 1^ + 1^ ] 
P P 

[*dc2 (D-d)  - Iyp - IZp] (i eA + 

+ J Vl + 2e2a2 + 2to2f2  } 

(*) Jn     = 2I„    ("b,  + %)  - mxJRc  (D - d)     e,(e^    + 
•Si P L ° 

+ 0t xr) + 2e2 fi + 2f2 f2] 

+ | mdc2  (D-d)  - I      - Iz 1   (aQe1 
'P Pi I 

" 2ale2 " f ela2 ~ i Vl " 2f2bl> 

(?) L^    = -21^ («! - r')  - mXyRc  (D - d) [^(0^ + 

+0t*r> +2f2
TI- 2e2T2] 

+ [mdc2(D - d)  - Iy    - lz ]   (a^ + 2e2b1 + 

+ A a^ - a^fg - I eib2) 

i- 
'^.-_- 

u :=-! 
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i 
i 

(n-li,0d) 

£) 

J. - *>2 

+ Q^) - - 
el^l  2 1 2.1 

t[^»-«i -S"SI   °2 

2      * 

2       * 

,  , can usually *••* ^ 

slrtoll r« - -   „x, fl,...'. — 

of course, resp« 
punting coefficients. 

nnncentrated mass: 
B. Torsion due to a concen ^  y ^^ lt ^ . «, , 

If a concentrated mass, - .        ^ due 

„ torsional moment produced W      w means 

of elation Cr-"d- *  therlng axis of ^ 

Dlade and 5 °e 

"F y% 

u L 
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and the zero lift line of the blade section at 
station x' (see sketch, Fig.jr-£9). Then in 

equation (JT-/J6 ) t 

7 - d* cos (0X + X) 

2 = d1 sin («x +S) 

dm = m' 

Substituting (z-fCl)  , making the approximations 
of p-I-IX4,  and substituting p.X-1%5, we obtain the 
expression for the torsion due to the dynamic 
forces on the concentrated mass, , 

(x-liX«.) VL    = m1 82 fj'  + j' cos 0„ + L\    sine., xd     ra % od   id    z& ld    aa 

(b) 

+ ji cos 20. + L_ sin 28. dd *a   zd     za 

(r-/6*6) 

where 

j' = c1(D - d' cos *) k[ao-M + 

+ c*d* cos £(8^ + ©tx^) 

+ c'd' sin£JRx^, ao<«x_ + °t*r> 

+ DV 
t2 (©; + ©tx;)2 + »j* + «p^ + 

"1  fel2     2     2 
+ 2  f "T" + 8&2 + 2b2 

+ c'd' cos S - sin S (e^ + 0tXp ) j -j 

L y. 

Li L 
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- 2(f 2 *i - «2 V 1) , y  . 2a ax 

+ Va + a^2 + ' Xi , 1 
V   (0*     + etxr '] 

2d      ...icA-'i*^ 

-2^ + 4°2]    ,u + «*ti- 

(«0 

—  -  -r*" 

Ll 
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(l-/Wfj 

(x-lt.3) 

Ot-K.3*.) 

al2+b1
2 + JffJ 

i«»» .r + d'C    SlQ ?[- f2 " S Jl 
where 

c1 is chord at sta. xl  where the mass is located} 

D* is distance, in *% of chord, from the blade 
elastic center to feathering axis, at sta. x 

d' and £are as defined p.JT-JXJ. 

If the mass, m', concentrated at x', is distributed 
in a ZY plane in such a way that its moments of 
inertia about it's own axes should be considered, then 
the additional torsion due to the dynamic forces 
and the YZ distribution of m' is, from (x-(4>o), 

AM* « «,2 }AJ' + Aj' cos e„ + AL* sin «„ + 
*d   2 ( °d   h za h za 

+  AJ!  cos 2©„ + ALI sin 2G„  ( 
d ad a ' 

where 

^ " % - Vex0 * Vi) 

+ a>2y 

1- 
si 

üL_ 
,/ 
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(!-»«*») AJ'     = 2i;    (bx + V{) -   (i;    + I'   )(aoei - 

"2ale2 " 2f2*l i 6la2  " | Vl> 

(<0 *H =-< (ai-^ - ^L + i;j(aofi + 

+ 213^2 2alf2 + i a2f1 - | elb2> 

GO M?d = ^ XL - K + OiVa -1 eiai + 

Vi> 

W AL, 2a = -Ha2i;p-(i;p + i;p)Uaof2-|alf; 

- -2 
elV 

vhere I  and i'  are the moments of inertia of the 
P    yP 

mass, m', ahout axes through its own OG and parallel 

to the principal axes of the blade section at sta. x'. 

The term Involving the product of inertia of m 

ahout these axes has been neglected. The term vould, 

of course, be sero if the principal axes of the mass, 

m', were parallel to those of the blade section at 

sta. x . 

Torsion due to aerodynamic forces: 

It is assumed that the aerodynamic forces act at 

the aerodynamic center of the blade element. The 

distance of the a.c. from the feathering axis in 

the Y and Z directions is called t^ and hg (CT7° of 

chord), respectively. The torsion due to the Z 
'* \ 

I  / 

u 
-t 

^~J 
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£x-iU4) \ 

direction aerodynamic forces is 

.0 i cR cos ©x (D - hj^ -rtig tan ©x). S-Z-.to^, 
**v 

(a-'i>5) 

vhere  =-£ is given "by equation (jt-34-). 

Assuming cos ©x - 1.00, sin ©x - ©x 

\ • rc«. C2R ( JO. + ji. °°8 *z0
+ 

X„ 
"•l '   a •l    »1 

+ L,      sin 0„    + J0     oos 2©_    + 

Lg      sin 2©£ ) dz, 

where 

fr-/65«.) JQ       = AQ   f D - \ + h2(©x + 0^)  1+ i Ax    fi + 
a, a L o -i     c      a 

(*) 

+ iBla
y2 

JK    -AlJD-hl4ll2(eio 
+ 0t*r)' a, JL o + A°a^ + 

^ 

2    za    z      2    2a   -1 

//; 

u 
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~°\ 

(x-/t **) 

id) 

to 

\ '\ [" - H ^ „• + 

2    2a 
rl ~ ~ A. 

i^) ]+V *P + 

2   a. ^ 

al        2a (D ~ hi + 1U(Q> •, 

_ 1 ^K* 
2   %   ^ 

»l^a/^lW«' 

2    la
ri 

o        t r'  /+ •= a 
-/    2    2, *2  + 

(*:-/(=&,) 

a        a      2 * Sp    arp „., 

«HWaottly. l0Q Ca» Probably i'8t
( fe

e  >' P.*-*, 
o© dnn« done 

%£*"? *» * a. T ^ 
on 

(•Z-/&7) 

V 

M /.0 

aei"odyn, amic 

2 °08 e 
x - «frj. 

dx.. <fcc 

a«        1 2        -V,  C0S •,    + « a 
+ L. 

la     8l°«„    +J a2 «.      J2     co. 29 

*2 *-      ^ 

•   %"»«v«s 
/ /' 

U L /-JL 
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•w^616 

L* 
,14,1°-) 

3°a; *0^ a2 

a 

H 
»i* 

(M «i 

-«i 
^ 

a 

a 

(o) "»D 

(*0 

a 

<e) 

t* 

ce£> 

ae Tod^! **> ^° 
fti«S 

^eToo^icle ; ***** 

t* 
. tub) *3   ^ 

(* 

(*-^ 

,/fc^ 

j-poia eQ} u&*toIV U ^>P* 
r-/6      ' 

-»»..*"« 
+ W 

ai-tv et& 
V?  oca ^ta •1 

2 &    X* r      2 

A 
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Si i 

(jL-fTo) 

The total torsion on the stiff blade is, then. 

M = M    + M*  + AM*  + 
Xd     *d     xd + I-L  + M„ 

al a2    a3 

equ. (,-/AoJ  (,_,**) (ir.^3) (2r_/4J.j (zr_/47) (i_/Äfl) 

i 
i 

~f- 
I 

H 

Ü 
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(z-ni) 

(x- nia.) 

(*- na_) 

b'  «table blade. 

A*  **««» dUe to z —- 

^ ̂ ^ *„9^ 

sr/j.x 

at nation *f   0
St!tl0^ due to . r , 

if« ,. r, ,    •    hls *•**•- to 

IntegratlnÄ rrom 
7 

to*»loa at *     *° the tip tn *, 

d^ ^  * *}J  ** 
3^f iB  *>• »lope 0 8ta 

< — J", 

/ 

~H 

U L J. 
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(Z-/73) 

(l-iU) 

(ff-/75) 

(fl.-nb) 

(x-m) 

However, 

d(Pj d2M. 

(ic- n& a-) 

i  _£ at sta. xr 
dx;   R dxy 

The torsion at a station xp is, of course, 

a harmonic function of ©2 : 

+ (M_ ) cos 2ez + ("xjp81112^ xz 4      a    z 5 

sin ©. 

M 
and z„ have "been found as harmonic functions 

z r 
of 8 

M =MZ +M2 cose, +H, «in«  +M  =« \ + 
z   z,   z«      a    5      B '1   *2 

+ M  sin 20 

Z = z„ r   r. 
+ z  co. •  + z  «in 0Za  «^ 

+ z„ sin 2« 
r5     *a 

dzr 
.etting Az' = (z' - z ) -( -){x'  -  xj and 

i   *i   i   dx,. r 

substituting (s-rti),<p.-nt)^(i[-n5) and(i-nfc) into 
(jt-lit)  , and neglecting harmonics higher than 
the second, by equating coefficients of identical 

trigonometric functionst 

(1L ) - 
^z l 

.lrd2M.      -  dV 
51 Az' + 

i dx xr L °*r 

d2M_ 

*n  2 
i („-g*- .AZ; 

dx; 

+ Zl  .Az'  + 
dx2_ 

d2MZ,       d*% __HAz; + __^. AZ' ) 
5   dx; 

'zP 
"2s <*r 

Ll L 
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to 
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If 
to 

the 

a3« 

*3M 

*f 4a' <!> 

4«'     , 

*      d»2^ 4g 

fox-, 

ßtep. 
tie Ä"   ~;^> tab; 

,fl*Ua 
V 1t 

** 

** 4, 
*ay be      **oc 
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(« - n?) 
A«. 

T /^r Uli "r *** 

xr 
xr 

^e integrations 

done graphically- 

indicated can prohahly T*>3t *° 

Torsion due 
to deflection 

in 1 direction. 

The theory for M  
is 

exactly similar 
to that for 

and ve can •write, t»y 
inapectio: nof(*-'

7S) 

if „  + M  cos 2ÖZ + 

M ' cos 0Z + "y,    za 

+ ^    »m «^ 

yr = *rx 
+ 7r2 

cos a. +7J 
»me, +yx 

cos <i«z 20, + 

+ Tr. °ln 2°za 

(ir- <* o) 

then 

M- 

/« } sin «_ + 

fM \ sin 2«* 
. (w ) cos 28  + ^ 5 

A'\ 
"t 

U 



(*) 

^.. a*o... 
vie. *e 

"'«z«.; 

**• It 

*^?X_+?% 
2      7^ 4yJ 

<^^^ 

*f 

(6) 

\; % "7*' 
,12 

4  "5?^ v: ) 
"> *5  >>/ ei*' 

**r^ + «** 

d?.. 

(c) 
(\J 

5   ^^1 + 
d\ 

l*% **T %)/**: 

r* V 

«?*% 

/d% 

5      ^-W* „   - **• 

^ ^V4i~ 
V /<** 

4y' ,     I3- 

<!*• 

\ 

**       '*+   * 

"^s y «* 

f- 
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(JL-I8tz) 

(JC-/8&&-) 

y 5 

c • d\ 
i  + 

J L^   Ay 
x
r 

d2M_ 
+ FJ2 Ay'     ) 

dx;    r2 
^ 

—& Ay« +i(—^< 

For Ay' either 

Ay: - (y; - ^ > - -rr rt - **] 
'*1    ri dx_ 

dyr 
( i. is slope at xr) 
dx 

or 

(u-iUh) Ay^ =j 

x_ „Xj, M 
zi , ' J • —i dx dx^ 

EI* 

may be u3ed, whichever is most convenient. 

—   1 

Ll  
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The Effect of blade flexure on the distribution of load 

along the blade in the Z direction. 

The effect of blade bending and twisting on the load 

distribution in the Z direction will arise from their effects 

on the dynamic pressure and angle of attack at any given 

station along the blade. The effect of change in dynamic 

pressure will be entirely negligible. The change in angle- 

of attack may be appreciable, and is in two parts, that 

due to structural twist, and that due to change in 

downwash. 

(JC-/Ö3)    From (x-73a.)     8  -8 =- 

If we assume that the flapping coefficients for 

the flexible blade are 

(l-/«4a.) aof - 
ao + Aao 

C6) alf " 
al + Aal 

(c) \  " bl + \ 

U) a2f = 
a2 + Aa2 

Ce) b2 - b2 + Ab2 

where aQ, a-, b,, a2, bg, are for the stiff blade, then 

it is apparent that 

(jL-ia5o-) 

(b) 

z. 

ic) 

Aao 
a Ji 

Aa. = _ J_2 

Abj, SB 

I 
I  / 

J", 

\ 
\  I 
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fa. Ißfd) Aa« = _ 

^2 = "  *r 

3^_f i3 a linear function of tn 

angle, ei = u ' 
*.  civen at>ove. 

the flapping coefficients, structural tvist 
»in angle of «ttac* due to ^ ded as The change in angx can te regara 

.vill *e a harmonic function of *z& 

a change in »x 
Thus 

(1-/86) 
1 

°f 
WT *« So 

a     -3 

sin e  + za 

+ A8X  co» 
2öza    *35 

•where 

A6, (l-<S6a.)     ^Hx 
_3i dx 
GI„ 

AQ    is the s vhere A0X   
ia 

u «, ,...1 tor.l« « ">* 

% 

01, u « «— -^w °f - "*• 

I- 
/ .' 

,/ 



II 1+*- 

C*- I87) 

subst 

o    + 4A a      ^    cos © 

*bej.e 

1 a, 

* 2+44 
e      ^2o   cos 2o 

a      ^\  sin 2Q 
Za 

(V 

(c) 
^ . . u> r      « 

/   ' 
/  • 

1    ! 

i  I 
-I      U- 
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(TL-ISTtL) AA2 -41 A«   - AO 
84    \ 

i«  1 + 2  xaJ  + 

»*T 
AO   + —£ 

»3   
xr •• 

- V AO   - 2 -IS 
»4    xr 

M 
*a    2 

r       Zrii AS   - —i 
L ** xr . "*r A6_ 

^2   Zr 4 

A«. + ^'J 
The additional air loads as found from the above relations 

can be added to the constant of col. 8,table JZ-I  or added 
to the shear values in col. 7 of tables-4 in order to find 

the effect of blade flexure on bending moments and de- 
flections. 

i I 
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•i 07> 

^Sfow        *e^t 

°J^t, be 

a^a 
•35 

•'«* «s sü 

cte 
**»t* 

•Ofit 
c3 0   (n>) 

'He 

<?a 2?2e 

>^, ^. 

5o ^5/^ 

5o lbs 

^ 
3.Z 

«<ff- 

ÖS7, ^aj ie-Zit 

* s-2 

J*. 

^Ofc. o*> 

^V, ft.3 

©c? 
<*e 

ft.s 

^be. 
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'*©cj 

1    ! 

I 
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Control; 

The usual procedure in analyses of this 
type is to assume that the total cyclic pitch 
change due to control and flapping is known 

in magnitude and phase angle. In this example 

the magnitude of the cyclic pitch is taken as 

7.5° and the aximuth angle for maximum positive 

pitch is taken as 06.  Thus, fJ « .131 radians, 

Tip speed ratio, \i 

From equation (T-s) 

° = 4R /^Pdx 
0 fl r ^r 

* ' 19 niäS. - .08 x ) P ta 

2-35 - 19 • .08 • * 
5" - 1-135 ft. 

0571 

23.1 rad/sec. 

.250 

(equ. />.i- (4) 

*T = 2700  

•00237 • ir  . 23.12 19V = -00523     (equ./>.r-/4) 

B = 1 - ^~^~7ÖÖ^ 
~  - .966 , 
3 (equ. 1-4   ) 

(for simplicity, neglecting taper) 

- I 
t  
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figures 
-//     to 

prom 

.250 *. 

. -.0151 

_    .895 

v3 
H 
t 5 

.00587 

-.00010 

.0019 

.00050 

=   .59 

"10 

*11 
tl2 

*13 

H* 

*16 

Hi 

.0095 

.0050 

.198 

.0073 

„   .00005 

-.0001* 

fcl8 

"1 

ff-/J 

-,0*66 

.339 

t
1   .    .0390 
3 
• „ ..00011 

'   . -.0276 

« 

1       .5.02 

.    .001*8 

=    .00019 

.0039 

-.00013 

-.0886 

-.0011 
&19 

*20 
t21 

*22 

=    .00007 

.0620 

. -.265 

^23 

*2* ' 

*25 

*26 

.0212 

-.793 
.0525 

. -.0230 

. .0915 

b7 

*8 
'  « -.150 

= _=ooo6o 

.089 

-.838 

-.00960 

-.00002 

.0090 

X10 

*ii" 
Ha' 

tat 

-.0183 

H*a 
'    . -.0195 

H5 
'     . -.00019 

1 .00011 
*17 

H8 
•     . -.0057 

*19 
J    -    .0071 t20 

4l 

.0068 

-.0700 

.919 

.00858 

..000092 

0 

.00198 

.380 

-.0009 

-.0050* 

.20* 

-.0510 

,.000619 

..0001*2 

.00211 

-.00117 

.00389 

,.000122 

-.0881 

-.0015 

.00056* 

.0571 

1   I L-i 
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substituting these coefficients into equation (x-G>o) and 
solving the quadratic for X     ,  we get 

A-= -.067     (discarding the + root). 

The tip-loss factor, B '. 

The tip-loss factor, B , was computed on page.zr-/¥7, 
neglecting the blade taper, to be 

B .966 

It vill be noted that both the collocation method 
and tabular solutions for the bending moments and deflections 
involve airloads, the expressions for which are continuous 
out to 1.00 . To modify the solutions for the bending 

moments so that the air loads consistently become zero at 
x, « B would involve great numerical complication. It is 

advisable, therefore, to compute the air loads in a manner 
consistent with the way in which they are treated in the 
later work; i.e., B •» 1.00 . Therefore, in the following 
calculations the value of the tip-loss factor, B , is taken 
as unity. 

Solution for flapping coefficients: 

Using equation (jt-33)      to solve for Q      ,  with B = 1.00 , 
0 

we find 
t 

Ö_ = 0I82 radians. 
*o 

yp - 
c ajP R   = 13.387   (see definition) 

F 

I! 

V 

1 / 

} 

L- 
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Solving for the flapping coefficients, by equations (z.-5o) 

ve find 
•b2 = -.003091 

a2 = +.006538 

aQ = +.17^107 

&1 = +.091199 

hx = -.07367^ 

Solution for Z direction air loads'. 
Solving nov for the coefficients of the Z direction 

air loads, hy equation (x-3 4)    , ve find 
rt*r •* + .182 x^ 1 .005659 - -0« *, + -182 * 

.oooe96 . .00W» S * -057555 "? 

^ . ..00568S • .<*». *, - .«** 4 

J" , _.„o5wi • .«»» S " -013076 I? 
2 

, «,. air load distribution, 

d(Fj z'a. 
cC. 

R 

c0. 

H 

i 
^ 1 
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fa S       •••!••• I !•• 

dx_ 
  B 
R        •La 

d(P«}«4      C°*a A^ 
dx.. R      2a 

d(F  ) cC 

dx^. R        ^a 

From £cr-35)   ,    C      =25,  043.8 
a 

and substituting  o = 2.35 - .08 R Xy 

ve find the analytical expressions for the air loadB as a 

function only of x I 

d(pz>a 

dx_ 
i = 331.871 - 4157.797 xr + 13,26l.6'73 xj - 6928.106 x^ 

d(Pj z'ar 

dx_ 
= 52.732 - 2643-878 xp + 5063-526 x

2, - 2183.305 x£ 

d(Pj z'a 

dx. 
2 = -901.920 + 5961.753 x„ - 8846.104 x2 + 3471.628 x? 

d(Pj 
i = -334.755 + 1558.367 x„ - 1231*745 *l + 235.327 x^ 

dx. 

I I 

1 
•Sä? 

V 
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d(F J z a 

is. 
5 = -320.218 + 1050.775 x„ - 1315.2^3 ±*  + ^97-758 P 

vhere, of course, the total air load at any station is 

d(Fz)fl «*z\      *(FZ) 
 £-£ = i + £ cos ©z+ 

*i**K, 
sin e 

dx„    dx„ r      r dx. a  dx. z. 

+  cos 28  +     sin 20 
dx„        a    dx_        * 

We observe that the air loads given above fail, by more 

or less, to satisfy the equations from which they were derived, 

because of assumptions made to simplify the equations for 

the flapping coefficients.  If one attempts to use the air 

loads in such a state to solve for the bending moments and 

deflections, one may find an error in the bending moments 

out of all proportion to the error in the air loads (particularly 

by the collocation method, which i3 especially sensitive 

to such inconsistencies). The equations 'which the air loads 

must satisfy come from equation/z-39), and are as follows! 

(x-ießa.)      R / 
i ^zK, 

dx. 
X„ dX„ r  r h \ •. 

o 

1 *<*«>a. 

dx. 
x„ dx + K e„ b, r  r   y zfl 1 

J- 

L! 
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afp j 

U) 1 dfVa R f    _    z a4 
°       dx        xr d*r - 31» ö2   a    , 

2+2Kyez   bp.o 

o        dx        Xr **, - 3Ip &   b_ 
2 " 2Ky V a2 . 0 a    c 

These eqUation3j  of „ 

*«• «oo„„ POInt «»"la be ,„        °-    ae ««wot 

«»sl«w<, here °°*' *°">w. ovo„ tor £    SM> « Mooed,«,, ——«ACT* 

of chord, 

** »°,  Instead    ve f K      
eaCh su«e»aiv;    '* '       ^ ha^ 

s^      so that 

Nations (x-lee) ~~**T~ 

____fS.      as unknowns. 

i- /     -' 

. 
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.T-o-nnailv in this case, 

„odified air load distributions are as follovs. 

3 
^1 . 390.9,1 - »15T.T9T V • «,=61.67, 4 - «-•«* S 

dx r 

!Ü!^ __ 104.l44 - 2643.878 xr + 5063.526 x* - 2l85.305 4 

dxr 

d(F
Z
)a,   ,   „.,  „ofii 753 x - 8846.104 x* + 3*71.628 x' 3 =_o40.101 + 59ol.toy  *r r 

dx r 

^ , -550.592 • «8.367 S - «l-TW 4 * «^ ^ 
dx r 

^5 = .320.752 + 1050.775 x, - 1315-2*3 A  + **-** ^ 

air 10ad distributions are plotted in figure *-!/. 

dxr 

These 

page jr-/&& 



I 

• 

J "i 



1 

•II - 157 

Solution for the Z Direction Bending Moments and Deflections', 

a) Collocation method« 
The moment of inertia distribution for the subject blades 

is given in figure M-31   , page Tt-lSQ .    In general, the 
quantity El  is a discontinuous function of x <> Before 

the derivatives of El  vith respect to x  are taken, 

obviously the curve must be approximated by a continuous 
function of x . The method of doing this is completely 

arbitrary. Vie simply fair as smooth a curve as possible thru 

the actual distribution of I , attempting to hit the mid- 
y 

points of the straight segments (p. r-/5©). Mathematical 
means of arriving at this approximation have been suggested, 
such as the method of least squared error, but the complication 

Involved therein does not seem to be justifiable. The curves 

of the faired El  and its derivatives vith Tespect to x 

(obtained graphically) are shorn in figure z-33    , page .ff-/.*"9. 

It is important that the units be kept con3istent-in this 

case, ve choose lbs., ft., sec, slugs. 
In figure r- 34,  page I-Ho,  tie plot the veight distribution 

of the blade, and, by integrating graphically, obtain the 

mass moment, M^ , as a function of x . 
Vie no* can compute the coefficients A, , B. , C. , D. , 

Ej^ of page x-14  of the differential equations (n - <ib~) 
Ve tabulate these solutions belov as functions of x . (p.lT-/L/) 

-'I / 

J "-J 
\ 
! 

Li L rr^LU 
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D±, E2, E? 

Eii, E 4' *5 

0 .25 .50 .75 1.00 

6.109 6.021 2.770 .641 .117 

0 -3.499 -27.978 -9-335 0 

-363 -375 -182 -101.6 +14.6 

975 956 905 610 545 

3900 3824 3620 2440 2180 

E, » 0 , and since K • 0 , from (JL-/O/)      , L, - 0 . 

The procedure for the constant and second harmonic 
parts (i = 1, 4, 5) is from here on somewhat different 
from that for the first harmonic parts (i = 2, 3) . 

i ° 1, 4, 5 : 

The sum of the first five rovs of column 8  , Table a- I , 
is simply the value of 

R L     äx. 

d <*«>.<  d (pz>m 
- + 

dx. H 
for the harmonic (value of i ) and the x      for which the 
table applies. That is, instead of the first five rows of 
column <S  , Table u- 1  , we enter 

d (Fz}a 1       i      *2 i = 1 j - i i + mx„ 6. a. R 
R  dx,      r ra 6 

f- ,/ 
// 

u  
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~A 

i » 5 

whore 
d <*,\ 

are the adjusted values «M•. 
values given on pagex-/«T 

We illustrate the solutions of Tabls 2T-1  by giving the 
solution for i =* 4 , xr = .25 (table ir-5" , pagei-/67). 

Of course 14 other solutions must be made for the other 
combinations of i » 1,  4. *? •*"» - 
_ ^ ~~i »"J-ULions must- 
combinations of i . , k    Z  BUBt 
and i.Sn   ^___. . 2* 4' 5 *** Xp . 0, ^ ^ ^ 
and 1.00 . Except for the constant of column 8    ,  the 
solutions of Tables z-1   ,  for any Xp are identical for 
i =» 4 and 5 . Finally, the results of these tables are 
entered in Tables x- 3    (one for each value of 1 ) as 
indicated on pagejzr-£6. The solution of Table jt~3  for 
i = 4 is given on pagex-/«s. Having Table ic-6  ve find 
the unknown coefficients T  and S, , in tho assumed 

ni     1 
series for the x deflection. This is given belov for, i - 4 » 

from Tables , Toy3o 

row ze 

row £6 

row** ; 

row .2.2 : 

*nd from equation 

Sjj - .00230550 

\ - + 3.397599 

% * -•°61221 
T„ -.791884 

\ ' +-461759 
T0h " --032991 

/  / 
./ 

! t 
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It is advisable to check these values by substituting into 

the equations represented by  . \ii   /     >        3      »        1 
13      ,      Si I      ,  Table ir - 6 , and seeing that they are 

satisfied to at least five significant figures. 

These coefficients are then substituted back into 

dV „   _r tofind the values of'the second 

equation (a-'">c)tov    ^ 

derivative as a function of *r 

at each station is 

Finally the bending moment 

M = 
d%  EI^ 

&x' R 

EI  i3 fro, figure*- *   , VW'*9 

vhere aiy •"• _ _j.,^r, i 

For i 
k  ,  these last steps are given belov: 

dV 

dx: 

0 
.125 
.250 
.375 
.500 
.625 
.750 
.875 

1.000 

'r 
0 
.0305 
.038I 
.0^38 
.055^ 
.065^ 
.0582 
.0270 
0 

R 

2210 
2210 
2180 
1820 
1000 
510 
237 

Qk 

0 

Mi, 

(ft-lbs) 

0 
67 
83 
80 
55 
33 
14 
2 
0 

•00° «„ •rts of the bending <^  the other harmonic parts 01 

Ll   
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- % (xr ) 
1  ri 1 

which, upon solution, gives us 

•Ei A2 V 

for the entry in column 8     ,  Table zr-/, for the third 
approximation, A_ M,  and A, z  . In the subject example, 

it was judged that the second approximation gave sufficient 

accuracy. It will he noted that the first five columns of 

Table a.-/    are identical, for both i = 2 and 3 , and for all 

the approximations, with the corresponding columns in the 

solution for i = 1 .  This fact of course saves a great deal 

of computation. Finally, the bending moments and deflections 

are 

M1 = (M±)  + A2 f.^ + A? M± + 

5   = (z  )  + A2 2   + A  Z ri    ri 1        *    ri   -> ri 

Because of the indeterminacy of the blade position, we 

can determine only the deflections due to blade bending, that 

is, relative to the tangent at the root.  This, when added to 

the deflection of a stiff blade, will at least give a rough 

approximation to the actual deflection. 

Thus 

•y 



-1 
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:2-Rfv, +xr  [2eS2 " *lM 

" R l{%\ + A2 V, + *3 z_ + 

and rj - R |(zr ) + A2 zr + Aj zr + 

« + xp [2e ((S2)1 + A2 S2 

+ A? S2 + • • •)- a^l 

.+ xp [2e ((S^ + A2 S? 

+ A? S^ +. . •) - \]   ] 

The results of these approximations are tabulated below 

for i «= 2 : 

(«, ) xr (M2)x A2"2 M2 

0 0 0 0 

.125 48 10 58 

.250 69 12 81 
• 375 72 12 84 
.500 55 11 66 
.625 38 8 46 
.750 17 4 21 

.   .875 3 1 4 
1.000 0 0 0 

A_ z z     z_ 
r2 1    2 r2 r2    2 

0       0 0 

.00220  -.00025 -.00245 -.42 

11   66   -.00248  -.00016 -.00264 -.80 
46 

21   +.00075  +.00Q61 +.00136 -1.10 

+.00782  +.00234 +.01016 -1.31 

These results, with those for    i = 3 ,  are plotted in 
figures jr-3ff    and x-3L   . 
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TABUS jr- k    - FOR THE SOLUTION OF TIE FIVE LINEAR SIMULTANEOUS 

EQUATIONS III FIVE USB10WH3 

1 - 1 . 

Explanation on page jr-6? . 
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b) Tabular method. 

The tabular method of finding the bending moments and 

deflections is considerably easier than the method of collocation. 

We present here the solution for i = 4 , that is, the "cos 26_ " 
za 

part of the deflection and bending moment.  The entries in 

Table JT-4 , common to all the different solutions of that table, 

are .our 
EI„ 

(column -2  ) and (?_)_, (column S    ). The x'm 

distribution of El  is taken from the curve in figure x-33     , 

as for the collocation method, and 00-, i» simply 

KK - v 'Qi 

vhere HJJJ  is taken from figure x-34 

The entries in column 7   in the solutions for M  (see -p.S-100) 
are computed from the modified distributions of air loads used 

in the collocation method: 

•1R (F„) = 1.9 / 
1.0 d(P.) z'a dx 

dx_ 

vhere 
d(Pj a'a 

dx_ 
is given on page z-155  , and in this case 

I 



u 

H H* 

-n-»  The entries 
<  3 .ave ,een perform anaiTtioallT. * 

the integrations ^^ from figure ,-34 

in column  «   ., = 4 , and 
case of i - * ' P 

mb2  (.w)
2-*- 1-92" ^l2' 52-2 

***** 

i = lv , for »i • H ' 

given as taoles 

From 

(A*.3)e    =25,992,6>3 

(to.8)      .-3319.T38 

ana- at    ^r - 

M«   „ - 1,010,073-2 

c    =76,798,564 

E 9815.91^ 

I 

~* TaDle   Z~4      for 
^e solutions of *aol_     ^      ^    ^      ^ , 

C,    are Q- . 4 these tamest | 

/ • i 



;i i 

i 
Ü 

r 
II - -IT? 

Solving for     ^' 

Ar   /a9)and(z-/3°)» 
S*    and    Sn    hy equations (ff-a'J 

page i-/o3 , 

(||)    = -.01»H5057 
o 

SQ «= -213.6TA 

Then, at every station, 
M - H' + 6 (^|) + SQ E o 

Similarly, for the defleotions, 

zi- V +zo  ®0 
+ So*B 

vhere z,,' , z , z„    are column  9  in the 

solutions for M , 0 , E , respectively. 

The tending moments so computed are plotted in figure 2T-37 . 

The defleotions are given in figure x~38  . As in the 
collocation solutions, the first harmonic parts of the deflection 
do not have physical significance, since for i * 2, 5 it, vas 
necessary to assume the value for  /dz\  (see p.jr-/aZ.). vdx; 

o 

If ve make the same assumption as in the collocation 

method, for z2 and z, , we have 

t • 

_ . + s zv - 
R xr bl 

Lb) z3 " M   ° E 



and 
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z_ In figure TL-38 were computed by these formulae. 
3 

Comparing the dö.ections and bending moments as computed 

by collocation and the tabular methods, ve observe a con- 

siderable difference In the results by the tvo methods. 

We believe that this is attributable to insufficient convergence 

in either or both of the methods, and that more terms should 

be taken in the assumed solution by collocation, and/or smaller 

increments of blade radius (i.e., more stations) 3hould be 

considered in the tabular method. Extension of the collocation 

method to more terms would seem impractical from the point of 

view of time required to complete the solution.  It is desirable 

to obtain a solution of the differential equations involved by 

means of a "differential analyzer", vhich should definitely 

settle the question of relative accuracy of the two methods. 

The hunting coefficients: 

Since in later solutions for the Y direction bending 

moments, the air loads are taken to x = 1 rather than B , 

it is advisable to be consistent, and in the equations for 

the hunting coefficients, to set B = 1.00 „  The coefficients 

of aerodynamic torque,  (GQ, G1, K^,  Gg, Hg)  are computed 

by equations (a-Se) ,  page X-4Z  .    Finally, the hunting coefficients, 

eQ, e^, f-, e2, fg are computed by equations (z-ll) , page jr-62 . 

The Y direction air loadst 

The Y direction air loads can be conrouted as a function 

of x  from 
r 

d(F ) 

dx_ 

d_^y\ + 
ä_^\ 

dx_ dx_ 

I 

Li 
.»1 
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b) Tabular method' 

The solution by this method Is exactly similar to that for 
the Z direction bending moments, except that, since the air 

loads were not modified in this case, the entries in column 7 , 
table zr- 4-t  can be computed directly by the relations given 
on page u-13.0   (equations a-/'54a.to x-tf'4& ).    Finally, the 

relations corresponding to equations (zr->n9<\)and (b)   , page 2T-/75, 
for the first harmonic deflections, are 

V + so yB " 
R ** e. 

y3 = V + So7E 
Rxr fl 

x 
i 

< — 

Li 



II - ITT 

L    L  ^M 



II— -1-7-8- 

CO 

CQ % 
*I S t*\ 3 ^i t- CO 

CM 
en P-V 

<n o 1 
1 

«n 
1 

00 
CM 

' 
CM 
I- 

R 
1 

K\ 
I 

n 

W 
SI R £ t> S »r. •vj cn a 
M"> J o 1 1 1 7 ^t CO 

1 
* 

i 

iH ©• 

8 -o & § 
CO 

5J * en 

w 
o o 1 <M M3 

1 
CO 

t 
1 

O 

1 

CM 
CO 
to 

M 

* 8 3 en c\ 
en s R 

CO o o 1 I M -* 
1 

«H 
en 
t 

o 
en 
1 • 

~j? CM S s CO 

K "i1 
§ 

•£> 8 "ffl1 O o S a »-H CO CM » 
B 

3 O» m g g g 1 8 g V s 3 g s S § § 
en s 

o o o 1 1 1 1 1 1 ' 1 1 1 1 I 1 i 1 i-l 
1 1 iH 

1 

CM 

to — e 3 9 M3 O " 8 3 s 8 M3 
o 

o CM CM a Q s 3 CM 8 

ft 
a. 

u? 

s o* c* CT> o« O» o» <?• o> o> o 
IH tH iH 1-1 rH iH H 

E «\ a CO PS o> S 
fcK £ *1 *^ « 

-o 

4 
o 

1 
en 

1 
to K 

1 1 2 
i 

I 
a 

H 

v\ &* 1 SO 1 
O 
(-1 
%o 

1 8 o 
3 ft en 1 

o 

CM 

3 

1 a K * 
-4 M IS g o 

O o 
K 
CM 

o 
en 

o o 
o ' 1 I 1 1 • 1 

r* o 

i|s 3 in C- s B g 
en 8 

CM 

8 8 en 
o 

P o g 
,--. o 1 I i 1 1 I 1 t-* CO 

CM 

CM 1 3 3 3 8 m CM 

ol« g g g g S 
§ 

ft 
• * 8- • • 

ö- s- 8 8 

rt I a § 
CM en E CM 

8 M3 
CM -* 

LÜ o «H f 3 SI ? en ift 
O 

0' 
» 

' ' I 
u.- 

-* i ^ o o o 
»H 8 IT* 

CM R tn 3 s in s ir» g K 8 CO 8 8 
•H 

0>    w fH 

'^ - 

/ / 

I 

<=^JL 



I-I -179 

/ 

"H 



111 

jl , 180- 

L =_-J. 



II - 181 

i 
11 

\ 

1 
i 

I 

U 



PRINCETON  UNIVERSITY 

AERONAUTICAL ENGINEERING LABORATORY 
PAGE   r   ' 

REPORT 

PART III 

CENTER-HINGED BLADES    mem TM m ffl    filGID IN THE PLANE 
OP ROTATION 

(SEE-SAW TYPES) 

\ — 

,<w 

U L 



Ill - 1 

Center-Hinged Blades Rigid in the Plane of Rotation (See- 

Saw Type) 

The subject blades are continuous from x = - R to 

x = R , and are hinged at the huh by a hinge having its 
i i 

axis in the X Y  plane.  The hinge axis may make an 

angle, 8, , vith the blade Y axis, and the blades may 

have a "built-in coning angle", 0  , as shown in the sketch 

below". 

The equations that have been derived in Part II for the 

accelerations, inertia and aerodynamic forces are, in general, 

applicable to the "see-saw" type blades.  The expressions for 

the flapping coefficients need be modified, however, and the 

solution for the Inflow factor, X , should theoretically 

be somewhat different.  It will be necessary to change some 

of the details in the solution for the blade bending moments, 
torsion, twist, etc. 

If the flapping angle of the right half of the blade be 

6  = a - a, cos 9  - b, sin 6  - a„ cos 26, - b0 sin 29, yr   °   x    za   l za   2     za   2     za 

then the flapping angle of the left half is 

t   i 

i 
^ 

s 

Li 
zd 



**i... s 

1        y   ~ e 

2  cos   egg *a   T T; 

a2=0 

b^O 
fa-3) 

a - v 
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a       0 
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R°C        a ,.  j|. 
za 

i 

EL 

,.(i/-l*-^)^V >i ^ 

i*-r) (VB-{ 
1   zs.xdX- / — -^ 
0   dx 

, P 

(m-e)  <H_) -0. 

for (Öz + v) 

n es of the above integrals are given * equation <*-«), 

^^  .ir^ing appropriate substitutions, 

^ m 
gravity loads, is obviously zero. 

(M )  , the moment due to 

.'«. ton.lo» on «- «~. -n .o -n c««eä to »v , 

the term Mx *• sin &? • 

g 

M. 

• onri since »i is 

t 

„I identical »leono»»»!« functions. 

fficients 

"tl 

u  



III ~~k 

i i ii>(B* - f )+ *%y- '3 

\^* *<**$****-&£. 

{at-9 b)     \ = 
i ^e   (I B5 t iSISÖ "iV* 

1 ..»' n d4 • *£ - a11*' 

„.11 .no«* » » °°6ll ,1'   in vhloh 
with equations ^ -- / 

0 , 
&o  yf 

a2 = -b2 
Dy = ^ 

Solution for X : 
Theoretically, A can be shown to depend on |i , C_, 

and a (angle of attack of rotor disc) by the relation 
1 „ 

(JB- io) 
^ 4- tan a = -jj + XT^ 

C_ and vi are, of course, indpendent of the blade hinge 

configuration, while a  , a function of the L/D of the rotor, 
may he remotely affected "by the flapping characteristics« For 

practical purposes, however, it will be sufficiently accurate 

to solve for \ by the method arranged in Part II for the 

general type of hinge configuration. 

The Hunting Coefficients: 
Theoretically, the relation between the lag angle and the 

flapping angle can be shown, by methods similar to those of Part I, 

pp. I-Z6    to 1-43   ,  to be*. 

/ ', 
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(m-")        sin ©z 

COS 0 

 - sin &, cos S 
b  cos ©_     ->     •? 

sin2 ©. 

cos & 
I) + tan2 &      tan2 S, 

2 Jn S> 

Since 6  , 6   and 0  are small angles, this relation 
b   yo      y 

is closely approximated by 

,2 (m - //c)        a tan £5 (Oy - *t ) 

Substituting 

and 

% = eo " el cos 8ra " 
fl sin \  " e2 oos 2eza 

" f2 sln 2«z 

©,, = 0„   - a, cos 9. - b, sin ©„ y  y.  i   E„  1   z„ "o a a 

and equating coefficients of Identical trigonometric functions, 
we find 

(m - iZ a.) 

(b) 

Cc) 

(d) 

(c) 

1 (a2 + b2) tan S? Jo " S  ^1 

e, => 2a, 0  tan S, 
1   1 y0    3 

f, = 2b,0  tan S, 
' o    -^ 

e2 = \  ^1 " al^ tan ^3 

f2 => - a1b1 tan £, 

i- ./'', 
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Calculation of the Z Direction Bending Momenta and Deflections 

for the "See-Saw" Type Blade. 

On the subject type of blades the end conditions are not 

known to us for either half of the blade separately since the 

deflection curve for the right half is influenced by the left 

half, and vice versa. Therefore the solution must consider 

the blade as a whole (i.e., x = R to - R ). Furthermore, 

one half of the blade must be in the region of reversed flow, 

and in the equations (JC- 34) for the air loads, the plus 

must be used outboard of x„ - u. sin 9        and minus sign 

inboard of xr = \i  sin 6, This rrquires that the solutions 

for the bending moment and deflection curve be carried out 

separately for each azimuth angle, unless a simplifying 

assumption concerning the reversed flow region be made (see p.r-4), 

We, therefore, make the assumption that the airloads are zero 

inboard of the point x = p. . 

The collocation method of solution for the bending moments, 

when extended for the see-saw type blades, becomes much more 

lengthy than for the fully articulated blades, because of the 

fact that both blades must be considered.  In view of this fact, 

only the step-by-step method is presented for the see-saw type 

blades. 

The tabular method of finding the bending moments in the 

direction: 

The theory which forms the basis of table v-4   ,  page u-/o4- 

is entirely applicable to the subject blades. The details of 

the solution (that is, the parts into which the total moment 

is separated) are different from those for the fully articulated 

blades because of different and conditions.  They are, in fact, 

different for the different harmonics. I \ 

i 
i 

V 
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(Constant part). 

For i = 1 , by definition, the flapping and 

bending are constant, so that ve immediately 

set S = 0 . By the same reasoning, ve set 

fi£)  , the unknown- part of the root slope, = 0 . 
ax o 
It is then obvious that since the loads on both 

halves of blades are identical, 

M_ » M, at every station. 

Referring to pp. a-97 to x-?9 , the necessary 
i 

solutions are for M  and A .  In more detail 

than is given on p. n- 97 
i 

for M  are, 

the initial entries 

(l) = 0 (no mechanical damping) 

(*) .05 

(7), 

•iae + (3)0 Jo 

are given by the same formula as for 

fully articulated blades, p. n-ioo .     It 

must be borne in mind, however, that 

inboard of x p. , we assume the air 

load = 0 . Hence, in that region,  (7) 

is constant. 

Finally, 

M = Mp = Mj^ 

and 

Mo = 

AM + M 
o 

M x at the tip station. 

i = 2, 3 (First harmonic) 

Physical reasoning tells us that since the air loads 

and slope at the root are exact opposites on left 

and right sides, M_ = - HL  at every station. 

Li ^Lf 
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,nt of inflect!«* and 

0    i3 a point 

Ibeietoie' S" .„•«»- 
W>**" p. *-<»* •       „,      ^ 

-+iculated "i .   out and ^' :^ 
fUlW to inertia loads cancel o  e^ -4> 
harmonic me t onW s» 

s      „. ,**—" "L     . „   . - «- MW1 
0
 ,nT.    assume    ^' , B        The 

ve,  before• , - »    + Bc? 
,e^lng moment i^B    ^     ^ 

initial entries 

^.*"(5)° .or full7 articled 
%-ioo tor  * ^  ^ 

(1),    =»" *' °»o«t i»WMd °'  ^"s »a.e W» 

v.    tin, of c°ur3e' 
AttnetiP, ^   (tip values)- 

H - 0 , s° So =  E 

* Harmonie) u3 tnat 
since ^ , (Second nar  ^^ ^ u   ^ side3, 

Agaln, P^
3i  identical on rig*      s 

air loads are i°-     = Q    and SQR   O^ 

..». aTone, v<S' „ 

Agai", -     identical  
air loads are Q and SQR 

tYle root slope,  ^ 0 
.   ...,=•*•* stat 

^e root slop«,    <<S 0 ^ „,„..„, 

Therefore,     -K , E .     mc 

solutlons are for    H    • 

for    «    are' 

L Jl\ 
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.05 (3). 

(7)  are again the same as for the articulated 

hlades, p. ar-/oo.    At any Btation then, 

M - M' + AM + ES„ o    o 

and at the tip 

M' + AMQ + B30 - 0 

(Ax-S)M< + M0 (Ax-S)A + [(AX-S)JJ - .»] 30 -0 

Solving for MQ and SQ , 

S_ - 
(Ax-S)B 

H 
(Ax-S)a  (Ax-S)M' M 

"B" 
(Ax-S)w  (Ai'S), I}- s: 

(Ax-S) E 

and 

H + S^E o 

vhere M , E , A are at xr « 1.00 

Calculation of the Bending Moments and Deflectilns in the Y 

Direction. 

As for the Z direction tending moments, ve present only the 

step-hy-step method of finding the Y direction tending moment. 

Similarly, ve make the assumption that the air loads are zero 

inboard of x„ = u . The end conditions for the Y direction r 
tending moments are similar to those for the rigid rotors. The 

tlade hunting is determined ty the flapping, pp.zzr-*,5and not ty 

I I / 
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the Y air loads, so that it is necessary to include vith the 

aerodynamic shear loads, the inertia loads due to hunting. 

i = 1 (Constant part) 
and also there is 

rdy 

We can Immediately set SQ = 0 

no unknown part of root slope*,  (-^r) = 0 The 

M necessary solutions of table ir-4 are for 

(p.jr-?7 )•  The initial entries for M  are, 

and A 

(*>.o5=(?)0 + • 1R6„ 

(7)j, are given by equation J-/5"4 outboard of 

Inboard of this point,  (7) xT  = n 

is, of course, constant, 

any station is 
The moment at 

M = M + AM,. 

and 

M = - - at the tip. 
°    A 

i o 2, 3, k,  5  (Harmonic parts) 

As for i - 1 ,  (-»£) = 0 , and the necessary 

i 

solutions are for M , A , and E (p.J-?7).  The 
i 

initial entries for M  are, 

(U0 = 0 

(7) 

(3), 

r - -IB (Py). 

fcnr-/9)   vhere (p )  - (P_)  + (P_) 
J       } a,    y m. 

j. 
! 

i- 

h 
*& 

*& 

,, \ 

J 
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L    L 

In  /«land from(ir-Sc), 
(Fy) are given We^aUo,3(.-/„) 

H  . B2«2    («X - »iV?   L ^ 
(jzr.Wa)       (Fy)^ -a 

1.0 

(*) (FJ ä ci+ ^ L "* "r 

m, 

1.0 

,)       (N> e> 7 miV 

,262     (2^1 + *e2>   i    "****» 

1.0 

^; (F J    -B .a»   (^ - a2 + «a) /   «r*** 

^e total »oaent at any Ration is 

M = M' + AM0 
+ ES° «  , 
«,«, tit) end conditions, 

vhere, from the tip ena 

and 

M0 = 

It' + ES 

'  A , E are for x 
where Mi*» 

1.00 

t- 
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Torsion 

The expressions for the various parts of the torsion, 

and for the 

Effect of Blade Flexibility on the Air Loads, 

vhich vere developed in Pt. II for the fully articulated 

blades, are entirely applicable to the see-sav type of blade. 

See pp. JT-/Z/   to jr-181 . 

V 
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Poesie fc                   „elow.    «wwn                     vith^oH£SHBi^ 
discussed in ae ^ingearrangemsntjii  

, tne fully articulated r „le. 

2)    PullL-Ucu^edJiinS  

^^^f M-4 .at the -- tCr .oads 

acting on t» counter ^ acCOUnt for change3 

entirel, -^JLr-**. TTli 
Xoads due to the oo of Part II. 
.st he made in the    * ^ modified to 

(a)    Bauation («-•*' 

(p-l) 

T'Q2     (a    + 3a2 °os 28: 
+ 5*9 sin 26= 

za 

) 

vtiere i; = % + ** XF        rc 
- inertia of the counter- 

= moment of i        ping pin. 
veight ahout the ix * 

(3»-*) 

u      veig"u —- 

^   ln the equations  for the, fl«*- 
Sifflilarl„ in ^ ^ replaced w • „    . 

coeffioients'   r? 
iv 

where 

/  .• 
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Also, *       _   a-J7  t0 

sclents» PP*       T'   , 

toreP^ce    ^ 

•where 

an4 and 

«here *» 

and    ^c moB»»* 
V ,„   and roa8 

„ the *offlSIit    tv a^out tne dras 

of the w— 18.05»*-— 

(rt    in «* •*»"£ con-^^e root 
^     defiecuons;^ vet^J       d>    ^us, 

^°eS °no^3 •"* ^Sir,e rewritten 
hend^-;^jP.^  — 
elation (*? ' -T 

(*-'> 
c"^i)o    L _*_ cos eZa 

» ?., *, 11 •» •••    „ > 
1 + 2a2 »^ ^a 

,„     cos 26z 

x   e2    (a0 + 5a2 
+ X?c 

Za -) 

<-- 
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i 
i 

Thus 
, equations (2T-/OM to     tO   . P- 

2 -7,5 136001116 

(zB-4. 

T    e2 K 

(b) L2 = 

/el ^ 

c "a 

(e> 
S- e_   1 3V*.b». + 2S2Ky 

L
5=  (EI)/^ 

c    a 

or, If the 
tabular method he used, 

equations 

* T    Q
&
 a 

for   M<     ,   P. *-l°° 
-become. 

v    4 = sVi 

r<=> «i s" Vza
ai 

Ü L 
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I C       *- "~c    *a <6>   l' D "    ~a 

o    a    / -r jj- 
<       ' ^   + ««   [X     (e a    z   i«a b 

° ° * - ***; 

° *« h*+, [x    
c **v 

c o"3 + a 2 
1    - b pi 

*> IL 

i , t(*Wa,a *c   -*2*    )7? 

^ ri ** if 

2 

i — 
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(is-ld)      M^ = 
o 

•J r 

(El), 

R 

(El), 

3) Single hinge attachment and counterweight attached 

to huh. 

The equations and methods of finding the 

flapping coefficients derived in Part II are applicable. The 

solution for  X  should theoretically'he modified somewhat, 

hut, as for the see-sav type blades, the method of Part II is . 

sufficiently accurate for practical purposes. 

The hunting coefficients are determined by the 

flapping and the hinge geometry, in a manner similar to Part III 

for the see-saw type blades.  If Og = 0 , from Part I, 

(Z2-6 j   sin 9„ 
sin S-. cos S 

cos 9 
ci-V3- - 

sin e 
( 1)        ) 
cos S- 

which, for small angles, is closely approximated by 

(zs- -8*.)    ez = tan 5, • e| 

substituting the Fourier expansions for 9   and 9 

into (ß - 8a.)  and equating coefficients of identical 

trigonometric functions, we find 

(zs-9*-)    eQ =|a^ + | [&\  + bj + a| + b|)}tan S^ 

(b) e-^ =  (28^ - a^ - b^g) tan 6 

(c) f1  = (2a^ - a^bg + b^) tan S^ 

I 
,"^_ 

/ .' 
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f2 " (2%*2 - albl)  tan 

3 

(e) 

and enactions    hD ^ 1Utl°a ** the    y   d1 

f//ö,//    ). ' steP method is 

«PPUcable.     ^1USnCe °* the air lo^10»'  «* blade xoads*  of part T 

***** as case  /ff" *** is> in general    • 

^PPIng ooefflcle;7^ «eceasary, vhen ^V'^* to 

an,   ^ 
QtS'  t0 'epiace    j        * 0ofPutlng the and   *1    bv  X' ^    b7   I' - T     .  _ 

f case 3). '^ed by equatlo^ ^_ £* hunting 

2   Lotion can^^ —t. and „ ^ ^ ^ ' '" "" 
step.by.3t      2    * COaP^ ^ 8lt£ lefIeCtlon3 in the 
"-ents *ust *^' °f *«* D| £"** ^location *e 

*• -     rcase'r^ - «—W^* — bending 
bSst °offlputed ^»•-» »oaents ln the 
3SV ^e blade  ^Step-^-tep J^    *   ^ion are 

I;"     a» »ethod is 

i 
i 

< — 

/      / 
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The expressions given in Part II for the 

torsion and the effect of blade flexibility on the air loads, 

are also applicable. 

5) Rigid "blade attachment. 
This type may, in every vay, he considered 

the same as the multi-hladed, rigid rotor treated in Part V. 

All methods and equations are applicable. 

2 , F>* 
/s   or ROTAT/OAJ 

oou*JT££•£/<iMr- 

2'   „*.s   OF   ZOT»T,<>» 

u/ur£Z^£'$Hr?        i 

~^K 

/="/£• or-/- 

^Ä. x 
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Part V Rigid Rotors 
By "rigid" rotor, ve mean that the "blades are rigidly 

attached to the hub, 1. e., flapping and drag hinges are 
not used. There may, hovever, he a built-in coning angle, 
Q      » '— n built-in lag angle, 8,  . In the first Bb o 

.  mnere ma?» ""     ,ß 

flapping coeffId 
_ Q 

a„ • ey O    Jr 

(*"')     a, -•2-*!   2 

a.a that for the hunting 

ft   * *9._ ©  * 8« 

e2 - J-i   2 el " e2 * -1 

As for the "see-sav" type of blade (Part III), it -will 

be sufficiently accurate to solve for  A  by the method 

given in Part II for the fully articulated blades. 

All the equations developed In Part II for the air 

loads are applicable to the rigid rotors, -with, of course, 
substitution of the proper flapping and hunting coefficients 

given above. 

Step-by-step tabular solution for the Z direction bendin~ 

moments and deflections 
The details of the solution for the subject blades are 

nearly identical vith those for the Y direction moments on 

the see-Bav type blade. We can immediately set (2—)  , the " o 

unknown part of the root slope, • 0 . Referring to p.£-97, 

for 1 » 1 (constant part) 
The necessary solutions of table x-4  are for A 

and M . The Initial entries for M  are 

u 



V-- • a 

(i)0 - o , 

(*).05 * (3)o + •» 6y0  ' 

(7)r are given by equation 
p.    . Then 

M = M' + AM 

at any station vhere 
t 

Mo " " i     at xr " 1*00 

for 1 « 2, ?, 4, 5 (harmonic parts) 
The necessary solutions are for M , A, and 
E (p.iz-97 ). The initial entries for M are 

(D0 = 0 , 

(7)r are given by equation(i-izs), p.1-/00. 
The moment at any station is 

M = M' + AM + ES„ o    o 

where, from the tip conditions, 

(AxS)M* 
A, M 

TT—^ T33T (AXS)
E   ( -msj^ - TSS7X I? " T5x57i ] 

and 

M. 
M    + ES 

.    ••        where   A- E, M     are for 

1 
I 

s 

m   1.00 

L L 
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Step-by-3tep tabular aolutlon for the Y direction bending 

moments and deflections. 

The solutions for the T direction moments are 

identical with those for the Z   direction moments, except, 
t 

of course, that for M  in 

i_^i;   (4).05 - (3)0 + .iR eZb   : 

and in 

i = 2, 3, 4, 5',    (7)p    are given by equation^--i54\ 

p.n-izo. 

The equations for torsion and the effect of blade 

flexibility on the air loads, vhich we developed in Part II, 

are applicable to the subject rotors. 
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1B the rate of change 
of angle measured in Y

1, X1 *—• 

ZVX are axes of the hlade. part IIf 

the accelerations acting on 

•x from the origin are» . 

Gr-3*)    I " 8in *° C°3 & 
( e 2 _ V ) + ex. »in e. + 

o   *  ~3 

0X.2  »in an COB a0 cos 26, 
+ 2 &.&,, cos

2 aQ cos e, . .i- 
Z X 

w 

*2 
0-i. 

'3.    .^ i m  - hi  ^  a0 - cos aQ 
2a„(0,2

+-f-) + 

„• %,  . sin a cos a 
+ 2©w *•*' Sln- o     c 

cos 0Z + _i 
0_i „A«2 a cos 26 cos" an cos z»z 

'z  rx 

6=) 

e2 
« o - -il cos a„ »in 2©t 

I = - Ö,. sin ao COS °«  ^    ° 
x    * 

Letting 
sin aQ =» 

cos aQ - 

ao2,o 

cos2 an - 1°° 

ve have 

/-z-_4o-) 

a 2 

- = ao K     »   2 

•2 
V a cos 20r 

0 + 2©B 0xf cos 0, 
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„V --6 " 

l.-6«+Sl + 26A,a0oo.01+%-eo.aOI 
( v- 4D )       | = - 8z+-f + *VVo 

(  c )        1 = -6  ,a. cos Q_ - -£• sin 262 X'   o 'z 2 
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Design Criteria Considerations 

In designing any part of an aircraft structure, one 
must always consider two possible types of"fallure. The first 
type will occur due to a sudden application of a large load 
such as the structure of an aircraft gets In an accelerated 

maneuver or In hitting a gust of wind, and can be called a 
"strength" type failure. The second type Is due to considerably 
smaller but cycllcly varying loads which the structure gets In 

steady flight and It Is usually called a "fatigue" failure. 

Stresses developed In the second type are the sum of 

constant and periodic stresses. The periodic stresses are 
often called "vibratory" stresses and are due to either 

mechanical vibrations or cyclic variation of external loads, 
or to both. 

Usually, on almost all types of helicopter rotor blade 
designs (using metal construction), with the possible 

exception of the rigid type, the ratio of maximum applied 

stress in an accelerated flight condition (maneuver, gust) to 

the maximum stress in steady flight (forward) Is smaller than 

the ratio of allowable yield stress to the allowable fatigue 

stress of the material. Therefore, as a rule, strength 

conditions can be disregarded. While the designer must think 

of avoiding as much as possible structure producing bad stress 
concentrations, the stress analyst must study carefully the 
fatigue conditions and magnitude of allowable fatigue stresses, 
especially in the region, where an abrupt change in the cross 
section of the blade spars could not be avoided; as, for instance, 

one will find at the attachment of a blade to the hub or hinge 

fitting. 

The refined methods used in calculating bending moments 
on the blades become valueless when the stress calculations 
disregard concentration factors due to cut outs and such, or 

when allowable stress is not determined accurately. 
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A great deal of effort and tine was used in preparing in 

this report all equations necessary for calculating the external 

loading on the blades. It is felt, hovever, that vhile the 

expressions for dynamic loads could he determined quite 
correctly in terms of derivatives, the correctness of the aero- 

dynamic loads vas somevhat doubtful becuase of the questionable 

validity of some of the hasic assumptions. These assumptions 

which vere listed in Part I are 

1) Induced velocity field 
2) Unimportance of radial component of the resultant 

velocity at a "blade element 

3) The effect of air inertia 

K)   Flexibilities of the blades 
5) Adjustment of loads to satisfy the boundary conditions 

in solving the equations for deflection and moments 

Because of the foregoing reasons, the effort involved in 
calculating the loads acting on the blades does not seem to be 
justified and probably tvo empirical override loading conditions 

giving the extreme variation of stresses due to bending,could be 

just as safe^ithout penalising severely the Height, as the 
doubtful and lengthy, so called "rational", load calculations. 

In designing the rigid blades, the strength conditions 

may become also of importance because of the high inertia 

(gyroscopic) forces developed vhile the aircraft is rotating 

about any of the axes. 
The methods for calculating the bending moments of the 

blades are based on Btraight-forvard methods of solving linear 
differential equations of higher order vith variable coefficients. 

Their accuracy depends, as in all caces involving approximations, 

on the number of terms uaed. 

•s^ 

I 
"V, 

/ / 

^4 



-VI--- 5 

The tabular method seems to be easier to use than the 

"collocation" method.  The discrepancy between the two is not 

very large in the case of articulated blades. The correct 

solution probably lies between the two sets of values. The 

"collocation" method becomes impractical because of the large 

number of terms required to obtain sufficient convergence 

when the slope of the deflection curve at the root of the 

blade is given a definite value as in the case of the see-saw 

type or rigid type of blades. 

For preliminary calculations of the constant and first 

harmonic (setting as a first approximation 
dt2 

0 ) part3 

of the bending moment on completely articulated blades, 

Reference 12.       ,  can be very useful, replacing variable El 

by a mean El . Of course, the mean value of El i3 somewhat 

hard to calculate and therefore a reasonable guess has to be 

used. 
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