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PREFACE

This report is a companion to an earlier report ("Learning

Curves and Rate Adjustment Models: Comparative Predictio Accuracy

under Varying Conditions," Naval Post~raduate School Technical

Report No. NPS-AS-91-001). Both reports investigate and evaluate

two cost estimating approaches commonly used by cost analysts.

Both use the same methodology. The earlier report focused on

investigating the accuracy of the two approaches; the current

report focuses on bias. Readers familiar with the earlier report

will find the first 19 pages of this report, describing the

methodology, to be quite familiar. For readers unfamiliar with the

earlier report, this current report is designed to be self-

contained.
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LEARNING CURVE AND RATE ADJUSTMENT MODELS:

AN INVESTIGATION OF BIAS

ABSTRACT

Learning curve models have gained widespread acceptance as a

technique for analyzing and forecastirg the cost of items produced

from a repotitive process. Considerable research has investigated

augmenting the traditional learning curve model with the addition

of a production rate variable, creating a rate adjustment model.

This study compares the forecasting bias of the learning curve and

rate adjustment models. A simulation methodology is used to vary

conditions along seven dimensions. The magnitude and direction of

errors in estimating future cost are analyzed and compared under

the various simulated conditions, using ANOVA. Overall results

indicate that the rate adjustment model is generally unblised. If

the cost item being forecast. contains any element that I. not

subject to learning then the traditio nal learning : r.;rve r-'del is

consistently biased toward underestimation of futu-i cost.

Conditions when the bias is strongest. are identified.



LEARNING CURVE AND RATE ADJUSTMENT MODELS:

AN INVESTIGATION OF BIAS

INTRODUCTiON

The problem of cost overruns has consistently plagued the

process of acquiring weapons systems by the U. S. Department of

Defense. Technical improvements in the conduct of cost estimation

and institutional changes in the process of procurement have

occurred over the past few decades, but unanticipated cost growth

during procurement continues. A cost overrun, by definition,

occurs when the actual cost of a program exceeds the estimated

cost. There are, in principle, two broad reasons that a cost

overrun could occur. Either a) initial cost estimates are fair

when made, but subsequently actual costs are poorly managed and

controlled; or b) actual costs are well managed, but initial cost

estimates were unrealistic. This paper focuses on the latter

situation. The paper examines and compares bias in two estimating

models used frequently by cost analysts: the learning curve and

the rate adjustment model.

Learning curves have gained widespread acceptance as a tool for

planning, analyzing, explaining, and predicting the behavior of the

unit cost of items produced from a repetitive production process.

(See Yelle, 1979, for a review.) Cost estimation techniques for

planning the cost of acquiring weapon systems by the Department of

Defense, for example, typically consider the role of learning in

the estimation process. The premise of learning curve analysis is
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that cumulative quantity is the primary driver of unit cost. Unit

cost is expected to decline as cumulative quantity increases.

There is general acknowledgement that cumulative quantity is

not the only factor that influences unit cost and that the simple

learning curve is not a fully adequate description of cost

behavior. Hence prior research has attempted to augment learning

curve models by including additional variables (e.g., Moses,

1990a). Most attention has been focused on the addition of a

production rate term.1  The resulting augmented model is usually

referred to as a rate adjustment model.

Conceptually, production rate should bne expected to affect unic

cost because of the impact of economies of scale. Higher

production rates may lead to several related effects: greater

specialization of labor, quantity discounts and efficiencies

associated with raw materials purchases, and greater use of

facilities, permitting fixed overhead costs to be spread over a

larger output quantity. Together, these effects work to increase

efficiency and reduce production cost (Bemis, 1981; Boger and Liao,

1990; Large, et. al., 1974; Linder and Wilbourn, 1973). However,

higher production rate does not guarantee lower cost. When

production rate exceeds capacity, such factors as over-time pay,

lack of skilled labor, or the need to bring more facilities online

may lead to inefficiencies and increased unit cost. In short,

1one review of the literature pertaining to learning curves
(Chency, 1977) found that 36% of the articles reviewed attempted
to augment the learning curve model in some manner by the inclusion
of production related variables.
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production rate may be associated with both economies and

diseconomies of scale.

PRIOR RESEARCH

Numerous studies, using data on actual productio cost

elements, have been conducted to empirically examine the impact of

production rate on unit cost. The broad. objective of the research

has been to document rate/cost relationships and determine if

consideration of production rate leads to improvements in cost

explanation or prediction. Results have been inconsistent and

general findings inconclusive. Various studies (e.g., Alchian,

1963; Cochran, 1960; Hirsh, 1952; Large, Campbell and Cates, 1976)

found little or no significance for rate variables. Other studies

did document significant rate/cost relationships (e.g., Bemis,

1981; Cox and Gansler, 1981). Some research found significant

results only for particular individual cost elements, such as labor

(Smith, 1976), tooling (Levenson, et. al., 1971) or overhead

(Large, Hoffmayer, and Kontrovich, 1974). But rate/cost

relationships for these same cost elements were not consistently

evideiit in other studies. When significant, estimates of the

rate/cost slope varied greatly and the direction of the

relationship was sometimes negative and sometimes positive (e.g.,

Moses, 1990a). In reviewing the existing research on production

rate, Smith (1980) concluded that a rate/cost relationship may

exist but that the existence, strength and nature of the

relationship varies with the item produced and the cost element

3



2

examined.

The prior research suggests that consideration of production

rate sometimes improves cost explanation, but not always. The

prior research suggests that a traditional learning curve model

sometimes is preferable to a rate adjustment model, but not always.

The prior research provides little guidance concerning the

circumstances under which explicit incorporation of production rate

into a learning curve model is likely to lead to improved

explanation or prediction. This issue is important in a number of

cost analysis and cost estimation situations. Dorsett (1990), for

example, describes the current situation facing military cost

estimators who, with the military facing budget reductions and

program stretchouts, are required to rapidly develop weapon system

acquisition cost estimates under many different quantity profiles.

One choice the cost analyst faces is between using a rate

adjustment model or a traditional learning model to develop

estimates.
3

2 Several explanations for these varying, inconclusive
empirical results can be offered: (a) Varying results are to be
expected because rate changes can lead to both economies and
diseconomies of scale. (b) Production rate effects are difficult
to isolate empirically because of colinearity with cumulative
quantity (Gulledge and Womer, 1986). (c) Researchers have usually
used inappropriate measures of production rate leading to
misspecified models (Boger and Liao, 1990). (d) The impact of a
production rate change is dominated by other uncertainties (Large,
Hoffmayer, and Kontrovich, 1974), particularly by cumulative
quantity (Asher, 1956). Alchian (1963), for example, was unable
to find results for rate adjustment models that improved on the
traditional learning curve without a rate parameter.

3Two other techniques for making cost estimates when
production rate changes are also mentioned by Dorsett: curve
rotation, which involves an ad hoc upward or downward revision to

4



Reacting to the inconsistent findings in the literature, Moses

(1990b) raised the question of under what circumstances it would

be beneficial to incorporate consideration of producticn rate into

a cost estimation problem. The objective of the research was to

attempt to identify conditions when a rate adjustment model would

outperform the traditional learning curve model (and vice versa).

The ability of each model to accurately estimate future cost was

assessed under various conditions. Generally findings were that

neither model dominated; each was relatively more accurate under

certain conditions.

OBJECTIVE OF THE STUDY

One limitation of the Moses study was that accuracy was

measured as the absolute difference between estimated and actual

cost, without concern for the direction of the difference. When

controlling real-world projects, the consequences of errors in

estimation typically depend on whether costs are under or over

estimated. Underestimation, resulting in cost growth or cost

overruns, is typically met with less pleasure than overestimation.

Thus the question of model bias toward over or under estimation is

of interest.

The objective of this study is to investigate and compare

estimation bias for the learning curve and rate adjustment models.

the slope of the learning curve, and the use of repricing models
(e.g., Balut, 1981; Balut, Gulledge, and Womer, 1989) which adjust
learning curve estimates to reflect a greater or lesser apptication
of overhead cost. Doesett criticized curve rotation for being
subjective and leading to a compounding of error when the
prediction horizon is not short. He criticized repricing models
because they must be plant-specific to be effective.
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Does either model exhibit consistent or systematic bias? Are there

circumstances where one model may be biased and the other not? Is

the bias produced toward underestimation or overestimation of

future cost?

RESEARCH APPROACH

Operationally the research questions require an examination of

the estimation errors from two competing cost estimation models.

The two competing models were as follows:

The traditional learning curve model, which predicts unit cost

as a function of cumulative quantity:

CL = aQb (1)

where

CL Unit cost of item at quantity Q (i.e., with learning
considered).

Q = Cumulative quantity produced.
a = Theoretical first unit cost.
b = Learning curve exponent (which can be converted to a

learning slope by slope = 2b).

And the most widely used rate adjustment model, which modifies the

traditional learning curve model with the addition of a production

rate term:

CR = aQbRC (2)

where

4Note that this is an incremental unit cost model rather than
a cumulative average cost model. Liao (1988) discusses the
differences between the two approaches and discusses Yihy the
incremental model has become dominant in practice. One reason is
that the cumulative model weights early observations more heavily
arid, in effect, "smooths" away period-to-period changes in average
cost.
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CR  Unit cost of item at quantity Q and production rate per
period R (i. e., with production rate as well as
learning considered).

Q = Cumulative quantity produced.
R Production rate per period measure.
a = Theoretical first unit cost.
b Learning curve exponent.
c = Production rate exponent (which can be converted to a

production rate slope by slope = 2c).

A simulation approach was used to address the research

questions. In brief, cost series were generated under varying

simulated conditions. The learning curve model and the rate

adjustment model were separately fit to the cost series to estimate

model parameters. The estimated models were then u,3ed to

separately predict future cost. Actual cost was compared with

predicted cost to measure bias. Finally, an analysis (ANOVA) was

conducted relating bias (dependent variable) to the simulated

conditions (independent variables).

There are thr -.gain benefits gained from the simulation

approach. First, ,ctors hypothesized to influence bias can be

varied over a wider range of conditions than would be encountered

in any one (or many) sample(s) of actual cost data. Second,

explicit control is achieved over the manipulation of factors.

Third, noise caused by factors not explicitly investigated is

removed. Henice simulation provides the most efficient way of

investigating date containing a wide variety of combinations of the

factor levels wh.ile controlling for the effects of other.factors

not explicitly identified.

7



RESEARCH CHOICES

There were five choices that had to be made in conducting the

simulation experiment;

(1) The form of the rate adjustment (RA) model whose

performance was to be compared to the learning curve (LC) model.

(2) The functional form of the cost model used to generate the

simulated cost data.

(3) The conditions to be varied across simulation treatments.

(4) The cost objective (what cost was to be predicted).

(5) The measure6 of bias.

Items (1), (2), (4) and (5) deal with methodological issues. Item

(3) deals with the various conditions simulated; conditions which

may affect the nature and magnitude of bias. Each item will be

discussed in turn.

1. The Rate Adjustment Model. Various models, both

theoretical and empirical, have been suggested for incorporating

production rate into the learning curve (Balut 1981; Balut,

Gulledge, and Womer, 1989; Linder and Wilbourn, 1973; Smith, 1980,

1981; Washburn, 1972; Womer, 1979). The models vary with respect

to tradeoffs made between theoretical completeness and empirical

tractability. Equation 2, described above, was the specific rate

adjustment model analyzed in this study, for several reasons:

First, it is the most widely used rate adjustment model in the

published literature. Second, it is commonly used today. in the

practice of cost analysis (e.g., Dorsett, 1990). Third, in

addition to cost and quantity data (needed to estimate any LC

8



model), equation 2 requires only production rate data.5  Thus

equation 2 is particularly appropriate for examining the

incremental effect of attention to production rate. In short,

equation 2 is the most widely applicable and most generally used

rate adjustment model.

2. The Cost Generating Function: A "true" cost function

for an actual item depends on the item, the firm, the time period

and all the varying circumstances surrounding actual production.

It is likely that most manufacturers do not "know" the true cost

function underlying goods they manufacture. Thus the choice of a

cost function to generate simulated cost data is necessarily ad

hoc. The objective here was to choose a "generic" cost function

which had face validity, which included components (parameters and

variables) that were generali:zable to all production situations,

and which resulted in a unit cost that depended on both learning

and production rate factors. The following explanation of the cost

function used reflects these concerns.

At the most basic level the cost of any unit is just the sum

of the variable cost directly incurred in creating the unit and the

share of fixed costs assigned to the unit, where the amount of

fixed costs assigned depend on the number of units produced.

5Other RA models offered in the literature require knowledge
ofA still additional variables. The equation 2 model is
particularly applicable in situations where a cost analyst or
estimator does not have ready access to or sufficient khowledge
about the cost structure and cost drivers of a manufacturer.
Examples include the Department of Defense procuring items from
government contractors in the private sector, or prime contractors
placing orders with subcontractors.
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UC = VC + FC (3)

PQ

where

UC = Unit cost.
VC = Variable cost per unit.
FC = Total fixed costs per period.
PQ = Production quantity per period.

The original concept of "learning" (Wright, 1936) involved the

reduction in variable cost per unit expected with increases in

cumulative quantity produced. (By definition, fixed costs are

assumed to be unaffected by volume or quantity.) To incorporate

the effect of learning, variable cost can be expressed as:

VC0 = VC, (Q ) (4)

where

Q = Cumulative quantity.
VC0 = Variable cost of the Qth unit.
VC1 i Variable cost of the first unit.
d = Parameter, the learning index.

Substituting into equation 3:

UCO = VC,(Q d) + FC (5)
PQ

Additionally, assume the existence of a "standard" ("benchmark,"

"normal," "planned") production quantity per period (PQ,).

Standard fixed cost per unit (SFC) at the standard production

quantity would be:

SFC = FC (6)
PQ,

The production rate (PR) for any period can then be expressed

as a ratio of the production quantity to the standard quantity:

10



PR = PO (7)
PQ,

The second term of equation (6) can then be rewritten as:

FC = SFC (8)
PQ PR

and equation 5 rewritten as:

UC0 = VC,(Q d) + SFC (PR"I) (9)

In this formulation it can be seen that total cost per unit is

the sum of variable cost per unit (adjusted for learning) plus

standard fixed cost per unit (adjusted for production rate). This

model incorporates the two factors presumed to impact unit costs

that have been most extensively investigated: cumulative quantity

(Q) and production rate per pericd (PR). 6 It is consistent with

both the theoretical and empirical literature which sees the

primary impact of learning to be on variable costs and the primary

impact of production rate to be on the spreading of fixed costs

(Smith, 1980). Simulated cost data in this study was generated

using equation 9, while varying values for the variables and

parameters on the right hand side of the equation to reflect

differing conditions.

6Smith (1980, 1981), for example, used a model similar to
equation 9 to explore the effect of different production rates on
unit cost. Balut (1981) and Balut, Gulledge and Womer (1989)
construct models based on learning and production quantity to
assist in "redistributing" overhead and "repricing" unit costs when
changes in production rate occur. The Balut and Balut, Gulledge
and Womer models differ-in that they determine a learning rate for
total (not variable) unit cost and then apply an adjustment factor
to allow for the impact of varying production quantity on the
amount of fixed cost included in total cost.

11



3. The Simulated Conditions: The general research hypothesis

is that the estimation bias of the LC and RA models will depend on

the circumstances in which they are used. What conditions might

be hypothesized to affect bias? Seven different factors

(independent variables) were varied during the simulation. These

factors were selected for examination because they have been found

to affect the iagnitude of model prediction errors in prior

research (Smunt, 1986; Moses, 1990b). In the following paragraphs,

each factor is discussed. A label for each is provided, along with

a discussion of how the factor was operationalized in the

simulation. Table 1 summarizes the seven factors.

i) Data History (DATAHIST): The number of data points

available to estimate parameters for a model rhould affect the

accuracy of a model. More data available during the model

estimation period should be associated with greater accuracy for

both the LC and the RA model.7  The effect of the number of data

points on bias however is unclear. If a model is inherently an

"incorrect," biased representation of a phenomena, having more data

on which to estimate the model parameters will not eliminate the

bias.

In the simulation, data history was varied from four to seven

to ten data points available for estimating model parameters. This

simulates having knowledge of costs and quantities for four, seven

or ten production lots. Four is the minimum number of observations
W

7There are, of course, cost/benefit tradcoffs. The marginal
benefits of increased prediction accuracy for any model must be
weighed against the marginal costs of additional data collection.

12



TABLE 1

INDEPENDANT VARIABLES

Concept Label Levels

Data History DATAHIST1  4 7 10

Variable Cost Learning VCRATE 75% 85% 95%
Ra4e

Fixed Cost Burden BURDEN2  15% 33% 50%

Production Rate Trend PROTREND Level Growth

Production Rate
Instability/Variance RATEVAR4  .05 .15 .25

Cost Noise/Variance COSTVAR5  .05 .15 .25

Future Production Level FUTUPROD6  Low Same High

1Number of data points available during the model estimation
period; simulates the number of past production lots.

2Standard per unit fixed cost as a percentage of cumulative
average per unit total cost, during the model estimation period.

3A level trend means production at 100% of standard production
for each lot during the estimation period. A growth trend means
production rate gradually increasing to 100% of standard production
during the estimation period. The specific growth pattern depends
on the number of production lots in the estimation period, with
sequences as follows (expressed as a % of standard): For DATAHIST
= 4: 33%, 67%, 100%, 100%. For DATAHIST = 7: 20%, 40%, 6G%, 80%,
100%, 100%, 100%. For DATAHIST = 10: 10%, 20%, 35%, 50%, 70%, 90%,
100%, 100%, 100%, 100%.

4Coefficient of variation of production rate. (Degree of
instability of production rate around the general production rate
trend.)

5Coefficient of variation of total per unit cost.

6"Same" means production rate at 100% of standard for each lot
produced within the prediction zone. "Low" means production rate
at 50%. "High" means production rate at 150%.



needed to estimate the parameters of the RA model by regression.

The simulation focuses on lean data availability both because the

effects of marginal changes in data availability should be most

pronounced when few observations are available and because many

real world applications (e.g., cost analysis of Department of

Defense weapon system procurement) occur under lean data

conditions.

ii) Variable Cost Learning Rate (VCRATE): In the cost

generating function, learning affects total unit cost by affecting

variable cost per unit. Past research (Smunt, 1986) has shown that

the improvement in prediction accuracy from including a learning

parameter in a model (when compared to its absence) depends on the

degree of learning that exists in the underlying phenomena being

modeled. The association between learning rate and degree of bias

however is unclear. In the simulation, variable cost learning rate

(reflected in parameter d in equation 9) was varied from 75% to 85%

to 95%. Generally, complex products or labor intensive processes

tend to experience high rates of learning (70-80%) while simple

products or machine-paced processes experience lower (90-100%)

rates (Smunt, 1986).
8

iii) Fixed Cost Burden (BURDEN): In theory (and in the cost

function, equation 9) a change in the number of units produced

during a period affects unit cost in two ways: First, increasing

volume increases cumulative quantity and decreases variable cost

8See Conway and Schultz (1959) for further elaboration of

factors impacting learning rates.

13



per unit, due to learning. Second, increasing volume increase the

production rate for a period and reduces fixed cost per unit, due

to the spreading of total fixed cost over a larger output. Both

these effects operate in the same cirection; i. e., increasing

volume leads to lower per unit cost. This has led some cost

analysts to conclude that in practice, it is sufficient to use an

LC model, letting the cumulative quantity variable reflect the dual

impacts of increased volume. Adding a production rate term to an

LC model is seen as empirically unnecessary.

In principle, if fixed cost was zero, cumulative quantity would

be sufficient to explain total unit cost and production rate would

be irrelevant. But as fixed cost increases as a proportion of

total cost, the impact of production rate should become important.

This suggests that the relative bias of the LC and RA models may

depend on the amount of fixed cost burden assigned to total cost.

Fixed cost burden was simulated by varying the percentage of

tctal unit cost made up of fixed cost.9 Three percentages were used

in the simulation: 15%, 33%, and 50%. The different percentages

can be viewed as simulating different degrees of operating

9Operationally this is a bit complex, since both per unit
variable and per unit fixed cost depend on other simulation inputs
(cumulative quantity and production rate per period). The process
of relating fixed cost to total cost was as follows: First, a
cumulative average per unit variable cost for all units produced
during the estimation period was determined. Then a standard fixed
cost per unit was set relative to the cumulative average per unit
variable cost. For example, if standard fixed cost per qnit was
set equal to cumulative average variable cos per unit, then "on
average" fixed cost would comprise 50% of ,.,tal unit cost during
the estimation period. Actual fixed cost per unit may differ from
standard fixed cost per unit if the production rate (discussed
later) was not at 100% of standard.

14



leverage, of capital intensiveness, or of plant automation. The

15% level reflects the average fraction of price represented by

fixed overhead in the aerospace industry, as estimated at one time

by DOD (Balut, 1981). 1 The larger percentages are consistent with

the trend toward increased automation (McCullough and Balut, 1986).

iv) Production Rate Trend (PROTREND): When initiating a new

product, it is not uncommon for the production rate per period to

start low and trend upward to some "normal" level. This may be due

both to the need to develop demand for the output or the desire to

start with a small production volume, allowing slack for working

bugs out of the production process. Alternatively, when a "new"

product results from a relatively small modification of an existing

product, suffici.nt customer demand or sufficient confidence in the

production process may be assumed and full scale production may be

initiated rapidly. In short, two different patterns in production

volume may be exhibited early on when introducing a new item: a

gradual growing trend toward full scale production or a level trend

due to introduction at full scale production volume.

The simulation created two production trends during the model

estimation period: "level" and "growth." These represented

general trends (but, as will become clear momentarily, variance

around the general tre)nd was introduced). The level trend

simulated a production rate set at a "standard" 100% each period

V
10In the absence of-firm-specific cost data, the Cost Analysis

Improvement Group in the Office of the Secretary of Defense treats
15% of the unit price of a defense system as representing fixed
cost (Pilling, 1990).
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during model estimation. The growth trend simulated production

rate climbing gradually to 100%. Details of the trends are in

table 1.

v) Production Rate Instability/Variance (RATEVAR): Numerous

factors, in addition to the general trend in output discussed

above, may operate to cause period-to-period fluctuations in

production late. Manufacturers typically do not have complete

control over either demand for output or supply of inputs.

Conditions in either market can cause instability in production

rate. (Of course, unstable demand, due to the uncertainties of

annual budget negotiations, is claimed to be a major cause of cost

growth during the acquisition of major weapon systems by the DOD).

Production rate instability was simulated by adding random

variance to each period's production rate during the estimation

period. The amount of variance ranged from a coefficient of

variation of .05 to .15 to .25. For example, if the production

trend was level and the coefficient of variation was .05 then

"actual" production rates simulated were generated by a normal

distribution with mean equal to the standard production rate (100%)

and sigma equal to 5%.

vi) Cost Noise/Variance (COS'VAR): From period to period

there will be unsystematic, unanticipated, non-recurring, random

factors that will impact unit cost. Changes in the cost, type or

availability of input resources, temporary increases or decreases

in efficiency, -nd unplanned changes in the production process are

all possible causes. Conceptually such unsystematic factors can
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be thought of as adding random noise to unit cost. While

unsystematic variation in cost cannot (by definition) be

controlled, it is often possible to characterize different

production processes in terms of the degree of unsystematic

variation; some processes are simply less well-understood, more

uncertain, and less stable than others.

Does bias depend on the stability of the process underlying

cost? To investigate this question, random variance was added to

the simulated costs generated from the cost function. The amount

of variance ranged from a coefficient of variation of .05 to .15

to .25. For example, when the coefficient of variation was .25,

then "actual" unit costs simulated were generated by a normal

distribution with mean equal to cost from equation 9 and sigma

equal to 25%.

vii) Future Production Level (FUTUPROD): Once a model is

constructed (from data available during the estimation period), it

is to be used to predict future cost. The production rate planned

for the future may vary from past levels. Further growth may be

planned. Cutbacks may be anticipated. Will the level of the

future production rate affect the bias of the LC and RA models?

Does one model tend to under (or over) estimate cost if cutbacks

in production are anticipated and another if growth is planned?

One might expect that inclusion of a rate term might be expected

to reduce bias when production rate changes significantly (i. e.,

either growth or decline in the future period).

In the simulation, future production was set at three levels:

17



low (50% of standard), same (100% of standard) and high (150% of

standard). These simulate conditions of cutting back, maintaining

or increasing production relative to the level of production

existing at the end of the model estimation period.

4. The Cost Objective: What is to be predicted? Up to this

point the stated purpose of the study has been to evaluate bias

when predicting future cost. But which future cost? Three

alternatives were examined.

i) Next period average unit cost: As the label suggests this

is the average per.unit cost of items in the production "lot"

manufactured in the first period following the estimation period.

Here the total cost of producing the output for the period is

simply divided by the output volume, to arrive at unit cost.

Attention to this cost objective simulates the need to predict near

term unit cost.

ii) Total cost over a finit2 production horizon: The

objective here is to predict the total cost of all units produced

during a fixed length production horizon. Three periods was used

as the length of the production horizon (one production lot

produced each period). If the future production rate is low (high)

then relatively few (many) units will be produced during the finite

production horizon. Attention to this cost objective simulates the

need to predict costs over some specific planning period,

regardless of the volume to be produced during that planning

period.

iii) Total program cost: The objective here is to predict
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total cost for a specified number of units. If the future

production rate is low (high) then relatively more (fewer) periods

will be required to manufacture the desired output. The simulation

was constructed such that at a low (same, high) level of future

production six (three, two) future periods were required to produce

the output. Attention to this cost objective simulates the need

to predict total cost for a particular production program,

regardless of the number of future periods necessary to complete

the program.

Examining each of these three cost objectives was deemed

necessary to provide a well-rounded investigation of bias. How-

ever, the findings were the same across the three cost objectives.

In the interest of space, the remainder of this paper will discuss

the analysis and results only for the first cost objective, the

average cost per unit for the next period's output.

5. The Measure of Bias: A model specific measure of bias

(BIAS) was determined separately for each (LC or RA) model as

follows:

BiAS (PUC - AUC) + AUC

where

PUC Predicted unit cost from either the learning curve
or the rate adjustment model.

kUC = Actual unit cost as generated by the cost func-
tion.

Positive values for BIAS indicate that a model overestimates actual

future cost; negative values indicate underestimation. A model

that is unbiased should, on average, produce values for BIAS of
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zero. BIAS represents the dependent vari4 ble in the statistical

analysis. The research question then becomes: What factors or

conditions explain variance in BIAS?

Figure I summarizes the complete simulation process leading up

to the deteraination of BIAS. The simulation was run once for each

possible combination of treatments. Given seven factors varied and

three possible values for each factor (except for PROTREND which

had two), there were 3 x 3 x 3 x 3 x 3 x 3 x 2 = 1458 combinations.

Thus the simulation generated 1458 observations and 1458 values for

BIAS for each of the two models.
11

ANALYSIS AND FINDINGS

BIAS was evaluated using analysis of variance (ANOVA) to

conduct tests of statistical significance. All main affects and

first order (pairwise) interactions were examined. Findings with

probability less than .01 were considered significant.

LC Model Bias. Table 2 provides ANOVA results addressing BIAS

from the LC model. As shown, four main effects, DATAHIST, BURDEN,

PROTREND, and FUTUPROD, are significant, indicating that values for

11In the simulation, just as in the real practice of cost
analysis, it is possible for a model estimated on limited data to
be very inaccurate, leading to extreme values for BIAS. If such
outlier values were to be used in the subsequent analysis, findings
would be driven by the outliers. Screening of the observations for
outliers was necessary. During the simulation, if a model produced
an BIAS value in excess of 100%, then that value was replaced with
100%. This truncation has the effect of reducing the impact of an
outlier on the analysis while still retaining the observation as
one that exhibited poor accuracy. Alternative approaches to the
outlier pioblem included deletion instead of truncation and use of
a 50% BIAS cutoff rather than the 100% cutoff. Findings were not
sensitive to these alternatives.
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FIGURE 1. SIMULATION FLOWCHART
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TABLE 2

BIAS FROM LEARNING CURVE MODEL

ANALYSIS OF VARIANCE RESULTS

3OURCE DF SUM OF SOUARES MEANSOUARE F VALUE

4odel 85 56.92195 .6697 29.07
Error 1372 31.60432 .0230 PR>F:
Corrected Total 1457 88.52626 .0000

R2  CV BIAS MEAN
.6430 140.35 -.1081

SOURCE DF ANOVA SS F VALUE PR>F

DATAHIST 2 0.2937 6.38 0.0018*
VCRATE 2 0.0085 0.19 0.8311
BURDEN 2 0.3710 8.05 0.0003*
PROTREND 1 4.6998 204.03 0.0001*
RATEVAR 2 0.1167 2.53 0.0797
COSTVAR 2 0.0976 2.12 0.1205
FUTUPROD 2 47.0628 1021.54 0.0000*
DATAHIST*VCRATE 4 0.1184 1.29 0.2737
DATAHIST*BURDEN 4 0.0363 0.39 0.8124
DATAHIST*PROTREND 2 0.1280 2.78 0.0625
DATAHIST*RATEVAR 4 0.0265 0.29 0.8854
DATAHIST*COSTVAR 4 0.1503 1.63 0.1637
DATAHIST*FUTUPROD 4 0.1398 1.52 0.1944
VCRATE*BURDEN 4 0.0506 0.55 0.6990
VCRATE*PROTREND 2 0.0374 0.81 0.4435
VCRATE*RATEVAR 4 0.0623 0.68 0.6083
VCRATE*COSTVAR 4 0.1068 1.16 0.3271
VCRATE*FUTUPROD 4 0.2820 3.06 0.0159
BURDEN*PROTREND 2 0.3131 6.80 0.0012*
BURDEN*RATEVAR 4 0.0282 0.31 0.8738
BURDEN*COSTVAR 4 0.1631 1.77 0.1323
BURDEN*FUTUPROD 4 1.8751 20.35 0.0001*
PROTREND*RATEVAR 2 0.0176 0.38 0.6812
PROTREND*COSTVAR 2 0.0323 0.70 0.4955
PROTREND*FUTUPROD 2 0.3652 7.93 0.0004*
RATEVAR*COSTVAR 4 0.1570 1.70 0.1464
RATEVAR*FUTUPROD 4 0.0949 1.03 0."3902
COSTVAR*FUTUPROD 4 0.0855 C.93 0.4467



BIAS are influenced by these treatment conditions. Table 3

summarizes BIAS values under the various conditions. Some

interesting patterns are evident.

First, the overall mean BIAS across all observations is -.108.

This means that, on average, the LC produces cost estimates that

are about 11% too low.

Second, the mean BIAS for each treatment for every variable of

interest, is negative, (with only one exception, when FUTUPROD is

"high"). This means that the LC model bias toward underestimation

is a consistent, pervasive phenomena. It is not driven by isolated

conditions.

Third, in spite of the general tendency toward underestimation,

the degree of bias does differ depending on the conditions. The

effects of the different conditions perhaps can be best demonstrat-

ed by a plot of BIAS values by treatments. Figure 2 shows such a

plot, with the (four significant) variables superimposed. In this

plot, 1, 2, and 3 on the X-axis reflect low, medium and high values

for the independent variables (which are taken from the left,

middle and right columns of Table 3). Figure 2 reiterates the

point made previously: BIAS is consistently negative (except when

FUTUPROD is high). More importantly, trends are evident:

a) Data History: Negative bias, the underestimation of future

cost, tends to increase as the number of observations available for

estimating model parameters (DATAHISi, increases. At first glance

this seems counter-intuitive. Traditional wisdom says that having

more data available leads to better parameter estimates and better
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model forecasts. But that is true only if a model is correctly

specified. This issue will be discussed further later.

b) Fixed Cost Burden: Negative bias tends to increase as the

proportion of total costs comprised of fixed costs (BURDEN)

increases. This result is perhaps not surprising. In the

underlying cost phenomena being modeled, learning impacts the

incurrence of variable costs, not fixed costs. It is plausible

that the LC model would become more biased as fixed costs increase.

c) Past Production Trend: The negative bias is cunsiderably

stronger if the ratq of production was growing, rather than level

during the model estimation period. This is not difficult to

explain. An increasing production rate during the model estimation

period will result in a steadily declining fixed cost per unit.

An LC model will interpret this rate effect as a learning effect,

and overestimate the degree of learning actually occurring. Future

forecasts of cost will thus be biased downward.

d) Future Production Level: As the production rate, during

the period for which costs are being forecast, shifts from "low"

to "high", the LC model shifts from strongly underestimating to

overestimating cost. In short, there is an inverse relationship

between future production level and the bias toward underestima-

tion. This effect is to be expected. Higher (lower) future

production will result in lower (higher) fixed cost, and total

cost, per unit, creating a tendency toward positive (negative) bias

for any cost estimate.

Note that the only time cost is overestimated by the LC model
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TABLE 3

LEARNING CURVE MODEL BIAS
BY MAIN EFFECTS

Independent Variable BIAS for Each Level

DATAHIST Value: 4 7 10

BIAS Mean: -.096 -.100 -.128

VCRATE Value: 75% 85% 95%

BIAS Mean: -.108 -.111 -.105

BURDEN Value: 15% 33% 50%

BIAS Mean: -.086 -.119 .120

PROTREND Value: level - growth

BIAS Mean: -. 051 - -. 165

RATEVAR Value: .05 .15 .25

BIAS Mean: -.120 -.098 -.107

COSTVAR Value: .05 .15 .25

BIAS Mean: -.099 -.106 -.119

FUTUPROD Value low same high

BIAS Mean: -.344 -.070 .091

Overall Mean: -.108
Range of Group Means: -.344 to .091



FIGURE 2

PLOT OF LEARNING CURVE MODEL BIAS
BY MAIN EFFECTS
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is when future production level is high. The LC is still biased

toward underestimation, but if the future production level

increases enough to reduce per unit fixed cost enough, the tendency

toward underestimation is masked by the offsetting tendency toward

reduced actual per unit cost.

In addition to these main effects, the Table 2 ANOVA results

indicated that pairwise interactions involving BURDEN, PROTREND and

FUTUPROD are also significant; not only does BIAS depend on these

three variables, it depends on how they interact. These interac-

tions are illustrated in Figures 3, 4 and 5.

Figure 3, the interaction between Fixed Cost Burden and

Production Rate Trend, merely reinforces previous findings:

Negative bias tends to be greater when burden is higher or when the

production rate grows during the model estimation period. The

figure just indicates that the combination of these two conditions-

-high burden coupled with growing production volume--magnifies the

negative bias.

Figure 4, the interaction between Fixed Cost Burden and Future

Production Level, clearly reinforces the previously noted inverse

relationship between future production level and the bias toward

underestimation. But findings concerning Burden now appear

conditional. High burden increases the tendency towerd underesti-

mation, if future production level is low. But high burden

increases the tendency toward overestimation when future producticn

level is high. In shoft, increasing fixed cost burden magnifies

the biasing effect--in either d4rection--caused by shifts in the
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future production level.

Figure 5 shows the interaction between the production trend

during the model estimation period and the future production level

during the forecast period. The most interesting observation

concerns the two points where BIAS is close to zero. These occur

when a) a "level" production trend is coupled with the "same" level

in the future forecast period, and b) a "growing" production trend

is coupled with a "high" level in the forecast period. Consistency

characterizes both situations; the production rate is either

consistently level or consistently increasing throughout the joint

estimation/forecast periods. In contrast, the greatest bias occurs

when a "growing" production trend is coupled with a "low" level in

the future forecast period. Here an inconsistent pattern, a shift

from increasing to decreasing production rate, causes severe

underestimation of cost.

RA Model Bias. Table 4 provides ANOVA results addressing BIAS

from the RA model. Table 5 summarizes BIAS values under the

various experiment conditions. Two findings are evident. First

the overall mean BIAS for all observations is only -.0016. Thus,

on average, the RA model exhibits no bias. Second, this absence

of bias is evident for all treatments across all variables of

interest. There are no significant main effects in the ANOVA

results and group means for BIAS in table 5 range only from -.021

to .026. Thus the overall absence of bias is not caused by

positive bias under some conditions offsetting negative bias under

other conditions. Rather the absence of noticeable bias exists
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FIGURE 3

LEARNING CURVE MODEL BIAS

INTERACTION OF FIXED COST BURDEN
AND PRODUCTION RATE TREND
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FIGURE 4

LEARNING CURVE MODEL BIAS

INTERACTION OF FIXED COST BURDEN
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FIGURE 5

0.3 *LEARNING CURVE MODEL BIAS
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TABLE 4

BIAS FROM RATE ADJUSTMENT MODEL

ANALYSIS OF VARIANCE RESULTS

SOURCE DF SUM OF SQUARES MEAN SOUARE F VALUE

Model 85 11.18626 .1316 1.08
Error 1372 166.9451 .1217 PR>F:
Corrected Total 1457 178.1314 .2919

R2  CV BIAS MEAN
.0628 21638.82 -. 0016

SOURCE DF ANOVA SS F VALUE PR>F

DATAHIST 2 0.17)9 0.73 0.4815
VCRATE 2 0.3435 1.41 0.2441
BURDEN 2 0.0539 0.22 0.8012
PROTREND 1 0.2335 1.92 0.1662
RATEVAR 2 0.2986 1.23 0.2934
COSTVAR 2 0.5567 2.29 0.1019
FUTUPROD 2 0.3965 1.63 0.1964
DATAHIST*VCRATE 4 0.3066 0.63 0.6412
DATAHIST*BURDEN 4 0.0866 0.18 0.9498
DATAHIST*PROTREND 2 0.0972 0.40 0.6706
DATAHIST*RATEVAR 4 0.3802 0.78 0.5373
DATAHIST*COSTVAR 4 0.0617 0.13 0.9727
DATAHIST*FUTUPROD 4 0.2723 0.56 0.6921
VCRATE*BURDEN 4 0.6156 1.26 0.2818
VCRATE*PROTREND 2 0.1873 0.77 0.4633
VCRATE*RATEVAR 4 0.3605 0.74 0.5642
VCRATE*COSTVAR 4 0.1389 0.29 0.8875
VCRATE*FUTUPROD 4 1.3745 2.82 0.0238
BURDEN*PROTREND 2 0.0470 0.19 0.8243
BURDEN*RATEVAR 4 0.3449 0.71 0.5860
BURDEN*COSTVAR 4 0.3527 0.72 0.5751
BURDEN*FUTUPROD 4 0.6125 1.26 0.2844
PROTREND*RATEVAR 2 0.1738 0.71 0.4897
PROTREND*COSTVAR 2 0.2152 0.88 0.4132
PROTREND*FUTUPROD 2 1.1777 4.84 0.0080*
RATEVAR*COSTVAR 4 0.1900 0.39 0.8156
RATEVAR*FUTUPROD 4 1.5652 3.22 0T0122
COSTVXR*FUTUPROD 4 0.5640 1.16 0.3273



TABLE 5

RATE ADJUSTMENT MODEL BIAS
BY MAIN EFFECTS

Independent Variable BIAS

DATAHIST Value: 4 7 10

BIAS Mean: .004 .008 -.017

VCRATE Value: 75% 85% 95%

BIAS Mean: -.021 -.000 .016

BURDEN Value: 15% 33% 50%

BIAS Mean: -.004 -.008 .007

PROTREND Value: level - growth

BIAS Mean: -. 014 - .011

RATEVAR Value: .05 .15 .25

BIAS Mean: .016 -.002 -.019

COSTVAR Value: .05 .15 .25

BIAS Mean: -.019 -.011 .026

FUTUPROD Value low same high

BIAS Mean: .015 .004 -.024

Overall Mean: -.0016
Range of Group Means: -.021 to .026



FIGURE 6

RATE ADJUSTMENT MODEL BIAS

INTERACTION PRODUCTION RATE TREND
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across the various treatments.

There is one statistically significant first order interaction

in the ANOVA. Figure 6 plots this interaction between Production

Rate Trend and Future Production Level. Two points seem notewor-

thy. First, the greatest bias occurs when a "growing" production

trend during the model estimation period is coupled with a "low"

production level in the forecact period. So, as with the LC model,

a shift from increasing to decreasing production causes bias to

occur. Second, in spite of this interaction result being statisti-

cally significant, the magnitude of bias evident is far less than

with the LC model. In a comparative sense, the RA model still does

not appear to create a bias problem.

Additional Analysis of LC Bias: The findings that the degree

of bias in the LC model is dependent on PROTREND and FUTUPROD is

not completely surprising. Both variables reflect how production

rate varies from period to period, and the LC model does not

include a rate term.
12

The findings that LC model bias also depends on DATAHIST and

BURDEN merit a bit more attention. To further investigate, some

addition simulations were run under "ideal" conditions, where

12This does not mean the findirg is without interest. Many
researchers and cost analysts (e.g., Gulledge and Womer, 1986) have
noticed that empirically there is often high colinearity between
cumulative quantity and production rate. This colinearity hss been
argued to make production rate a somewhat redundant variable in a
model, leading to unreliable parameter estimates when thelmodel is
estimated and providing little incremAntal benefit when the model
is used for forecasting future cost. The current findings suggcst
that one role of a production rate variable in a model is to reduce
model bias.
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impacts on cost caused by the other variables were supprtssed.

More specifically equation 9 was used to generate .ost series where

a) production rate was level during the model estimation period,

b) production rate stayed at the same level during the cost

forecast period, c) random noise in cost was set at zero, and d)

production rate variance was set at zero. Only VCRATE, BURDEN and

DATAHIST were varied. Again LC models were fit to the cost series

and then estimated future costs were compared with actual future

costs.

i) The Concave Curve: Figure 7 shows a log-log plot of

residuals (actual minus estimate cost) by quantity for one

illustrative situation (where VCRATE = 75%; BURDEN = 50%; DATAHIST

= 7). Recall that a central assumption of a learning curve is that

cost and quantity are log linear. Figure 7 shows cost as estimated

and predicted by the LC model as a horizontal line (abscissa of

zero), while the plot of the residuals displays the pattern of

actual costs relative to the LC line. Note that actual costs are

not log linear with quantity; instead an obvious concave curve is

evident. This pattern is not a result of the particular values for

VCRATE, BURDEN, and DATAHIST; the same pattern was evident for all

other combinations of variable values examined.

The vertical line in the figure separates the seven cost

observations used to estimate the LC model, on the left, from three

future costs the model is used to predict, on the right. The

concavity of the actual cost curve results In each successive

actual cost diverging increasingly from the LC model prediction.
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FIGURE 7
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TABLE 6

BIAS PATTERNS FROM THE LC MODET,
(At selected values for BURDEN and VCRATE)

VCRATE BURDEN BIAS I  BIAS2  BIAS3  BIAS4

75% 10% -.00544 -.00758 -.00973 -.01186
20% -.00973 -.01348 -.01720 -.02087
30% -.01287 -.01772 -.02250 -.02719
40% -.01487 -.02037 -.02575 -.03099
50% -.01570 -.02138 -.02692 -.03229
60% -.01531 -.02076 -.02604 -.03113
70% -.01365 -.01843 -.02303 -.02747
80% -.01063 -.01429 -.01781 -.02119

85% 10% -.00176 -.00243 -.00310 -.00376
20% -.00315 -.00435 -.00552 -.00668
30% -.00418 -.00573 -.00727 -.00877
40% -.00482 -.00660 -.00834 -.01005
50% -.00507 -.00692 -.00873 -.01050
60% -.00492 -.00670 -.00843 -.01012
70% -.00436 -.00592 -.00743 -.00891
80% -.00336 -.00456 -.00571 -. 010683

95% 10% -.00018 -.00025 -.00032 -.00038
20% -.00033 -.00045 -.00056 -.00068
30% -.00043 -.00058 -.00074 -.00089
40% -.00049 -.00067 -.00084 -.00101
50% -.00051 -.00069 -.00088 -.00105
60% -.00049 -.00067 -.00084 -.00101
70% -.00043 -.00058 -.00073 -.00088
80% -.00032 -.00044 -.00056 -.00067

NOTE: DATAHIST = 7. BIAS is the bias in forecasting the cost of the
first unit produceA after the model estimation period; BIAS2
relates to the second unit, etc.



The conclusion to be drawn is that whenever a learning curve is

used to model a cost series that includes some fixed cost component

(some component that is not subject to learning), then a log linear

model is being fit to a log concave phenomena. A systematic bias

toward underestimation of future cost is inherent in the LC model.

ii) Bias Patterns: Table 6 lists measures of BIAS for various

combinations of BURDEN and VCRATE. The absolute magnitude of the

BIAS values is not important; three patterns in the table are.

First, reading BIAS1 through BIAS4 values across any row reiterates

the pattern exhibited in figure 4. Bias increases when estimating

each additional future unit. This suggests that the further into

the future the LC model is used to estimate costs, the greater the

underestiLation will be.

Second, moving from the bottom, to the middle, to the top panel

of the table--from VCRATE 95%, to 85%, to 75%--it is clear that

BIAS increases. The general pattern suggested is that as the

"true" underlying learni:- rate (of the portion of total cost

subject to learning) increases, the tendency of the LC model to

underestimate futurp cost also increases.

Third, read down any column to observe the pattern of BIAS

values as BU?,EN 3.1.reao- tro- 10% to 70% cf total cost. Negative

bias consistently incre~se -,i;th ic:rrs. in fted co5t burden-

-up to a point--then negative bias decreases witl further increases

in burden. The turn around point for all observations is when

burden is 50%. This confirms the finding from the earlier ANOVA

test, that bias increases with burden, but indicates that that
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pattern holds only when fixed cost is less than half of total cost;

the pattern is not universal. This reversal is perhaps understan-

dable. Consider the two extremes. If BURDEN = 0%, then all cost

would be variable, all cost would be subject to learning, an LC

model would be a correct specification of the "true" underlying

cost function, and zero bias would result. If BURDEN = 100% then

all cost would be fixed, no cost would be subject to learning, an

LC model would again be a correct specification of the "true"

underlying cost function (which would be a learning curve with

slope of zero--no learnizig), and zero bias would result. Only when

costs--some subject tn learning, some not--are combined does the

bias result. And the bias is at a maximum when the mixture is

about fifty-fifty.

iii) Bias and Estimated LC Slope: Recall that the total cost

of any unit produced depends on both VCRATE, which determines the

learning experienced by the variable cost portion of total cost,

and BURDEN, which determines the magnitude of the fixed cost

portion of total cost. Given the findings that BIAS depends on

both VCRATE and BURDEN raises an interesting practical question.

In many circumstances, cost analysts may not have access to

detailed cost data and hence may not "know" the values for VCRATE

and BURDEN in a real world cost problem being analyzed. In fact,

the point of fitting a learning curve to cost data is typically to

arrive at a summary description of an unknown cost function. What

is observable by the analyst is an estimated learning curve slope

for a given observable total cost series. Is there a relationship
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between estimated LC slope and BIAS? The nature of that relation-

ship is not obvious. Ceteris paribus, as VCRATE become steeper,

estimated LC slope will become steeper as well. Given the tendency

of BIAS to vary with VCRATE, this suggests that BIAS will increase

as estimated LC gets steeper. But, ceteris paribus, as BURDEN

increases, estimated LC slope will become more shallow. Given the

tendency of BIAS to first increase, then decrease with increases

in BURDEN, the relationship between estimated LC slope and BIAS is

ambiguous.

Figure 8 plots BIAS against estimated LC slope (generated for

combinations of VCRATE, varied from 70% to 95%; BURDEN, varied from

10% to 80%; DATAHIST = 7). Note that the scatter diagram is not

tightly clustered along any trend line. In the most general sense,

there is no strong relationship between estimated LC slope and

bias. But consider the segment of the plot falling within the

boundaries formed by the two dotted lines. These represent the

boundaries for BIAS when BURDEN is constrained, in this case, to

fall between 30-40%. Given that burden is assumed to vary through

only a small range, then there is a strong empirical relationship:

steeper estimated LC slopes are associated with a greater tendency

toward underestimation of cost.

iv) Bias and Data History: Table 7 explores the impact of

DATAHIST on BIAS. Here BIAS is measured for cost forecasts from

models estimated on n c&ta points, where n is varied from 4 through

10. For each model, BIAS is measured for n + 1, n + 2, etc.

Recall from the earlier ANOVA results that bias increased as
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DATAHIST increased. This lead to the somewhat counter-intuitive

conclusion that LC models get progressively more biased the more

observations there are available on which to fit the model. Two

patterns in the table confirm this finding but clarify its

implications.

First, observe the BIAS values in the diagonal (top left to

bottom right) of the table. BIAS consistently increases. The

prediction of, say, the 7th cost in a series using an LC model

estimated on the first six costs will be more biased than the

prediction of the 6th cost using a model estimated on the first

five. Bias in predicting the n + 1 cost does increase with n.

(This is the same finding as from the ANOVA.)

But observe also the PIAS values in any column. BIAS consis-

tently decreases as DATAHIST increases. The prediction of, say,

the 7th cost using a model estimated on the first six costs is less

biased than the prediction of that same 7th cost using a model

estimated on only the first five. In short, given a task of

forecasting a specific given cost, ceteris paribus, it is always

beneficial to use as many data points as are available to estimate

the LC model.

SUMMARY AND CONCLUSIONS

The central purpose of this study was to examine bias in

estimating future cost from two models commonly used in cost

estimation. The analysis simulated prediction for both the

traditional learning curve and a rate adjustment model, and
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FIGURE 8

PLOT OF BIAS VERSUS
ESTIMATED LC SLOPE
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evaluated bias under varying conditions. The broadest finding was

that the rate Ijustment model provided cost estimates that were

unbiased, while the learning curve model consistently produced

estimates that understated actual cost. Most additional findings

concerned the conditions related to bias in the learning curve

model:

- The cause of the bias is the existence of fixed cost in
total cost. The learning curve assumes a log linear
relationship between cost and quantity, which does not hold
when fixed cost (not subject to learning) is present.

- The bias increases as the proportion of fixed cost in total
cost increases--up to the point where fixed cost comprises
about 50% of total cost--after that further increases in
fixed cost reduce bias. This finding would appear to be
relevant given the trend in modern production processes
toward increasing automation and hence an increasing fixed
component in total cost.

- The degree of bias is affected by the production rate
during both the period of nodel estimation and the period
for which costs are forecast. A consistent production rate
trend throughout these periods minimizes bias. A shift in
production rate trend, particularly to a cutback in volume,
magnifies bias. This finding would appear to be relevant
to cost estimators analyzing programs where cutbacks are
anticipated.

- Assuming the proportional relationship between fixed and
variable components of total cost does not vary greatly,
bias is greater when the estimated learning curve slope is
steeper.

- The bias problem is not diminished as more observations
become available to estimate the learning curve. In fact
the degree of bias increases as the number of observations
increases.

- The degree of bias increases the further into the future
predictions are made. Next period cost is somewhat
underestimated; cost two periods in the future is underes-
timated to a greater degree, etc.

Some of the conclusions are a bit ironic. One typically

expects to improve forecasting when more data is available for
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model estimation. The findings here suggest that bias grows worse.

One typically expects futute costs to decline most rapidly when

past costs have exhibited a high rate of learning. The findings

here suggests that such circumstances are the ones most likely to

result in actual costs higher than forecasted.

Caution should be exercised in drawing direct practice-related

implications from these findings. The finding that the rate

adjustment model is unbiased while the learning curve is biased

does not mean that the rate model should always be preferred to the

learning curve model. Bias is only one criteria for evaluating a

cost estimation model. Consider accuracy. Evidence indicates that

under some circumstances learning curves are more accurate than

rate adjustment models (Moses, 1990b). Thus model selection

decisions would need to consider (at a minimum) tradeoffs between

bias and accuracy. An accurate model with a known bias, which

could be adjusted for, would typically be preferable to an

inaccurate, unbiased model.

The conclusions of any study must be tempered by any limita-

tions. The most prominent limitation of this study is the use of

simulated data. Use of the simulation methodology was justified

by the need to create a wide range of treatments and maintain

control over extraneous influences. This limitation suggests some

directions for future research.

-- Re-analyze the research question while altering aspects
of the simulation methodology. For example, are
findings sensitive to the cost function assumed?

-- Address the same research question using actual cost

and production rate data. Are the same findings
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evident when using "real-world" data?

Providing confirmation of the findings by tests using a~ternative

approaches would be beneficial.

Additional future research may be directed toward new, but

related, research questions.

Investigate other competing models or approaches to
cost prediction. Perhaps bias can be reduced by using
some version of a "moving average" prediction model.
Can such a model outperform both the learning curve and
the rate adjustment approach? If so, under what
circumstances?

-- Investigate tradeoffs between various characteristics
of cost estimation models, such as bias versus accura-
cy.
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