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PREFACE

1 The topic for the 30th Geophysical Fluid Dynamics
Summer Program was "The Influence of Convection on -arge-
Scale Motions." The principal lecturer, Kerry Emanual,
presented the essential elements of dry convection, the
thermodynamics of moist air, and moist convection (both
precipitating and not). Building upon this excellent
summary of the fundamentals of atmospheric convection, he
then discussed its role in the dynamics of squall lines,
tropical cyclones, and the 40-day tropical wave. Moist
convection has not been discussed in recent GFD seminars,
and Kerry's lectures provided a superb introduction to the
topic for both Fellows and Staff. Other meteorologists
discussed recent theoretical and observational research on5 atmospheric convecting systems.

Convectively-driven flows in the ocean were
described by Peter Killworth; Ed Spiegel and Christian
Elphick reviewed the theory of nonlinear convection. These
views of convection in other systems lent valuable
perspectives on the atmospheric problem.

As always, lectures on many other topics enriched
our summer program and suggested new research approaches to
both Staff and Fellows. The reports from the Summer Fellows
completed the program; many explored aspects of atmospheric
convection or convectively influenced flows. Their reports
are to be treated as unpublished manuscripts; some of this
work will be developed into publications in the future.

I Our summer was also enriched by other notable
events. The softball team beat the PO team. The Education
Office hosted a 30th Anniversary picnic and brought three of
our alumni, Chris Garrett, Ruby Krishnamurti, and Frank
Richter, to give anniversary lectures. Our thanks to Jack
Whitehead and Education for a very pleasent event. Finally
we were extremely pleased by the award of the Presidental
Medal of Science to Joe Keller.

We thank the Office of Naval Research and the National
Science Foundation for their support. Elizabeth Shadid
provided secretarial assistance for the selection of
Fellows, while Pamela Goulart provided essential support for
our efforts during the summer and in preparing this final
report. Finally we thank A.L. Peirson for his
administrative efforts in making this program possible.

5 Glenn Flierl
Director

I
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INTRODUCTION

The topic of this Woods Hole GFD summer course, "The effect of convection on large
scale circulations," is applicable to atmosphere, ocean, and mantle motions. The lectures
will focus on atmospheric convection. Here, the phase changes of water introduce crucial
and irrever;ible physics not present in dry convection.

The necessity of considering moist convection poses the following challenge: Tradi-
tionally, the style of GFD research, especially at Woods Hole, has been to make clear the
dominant physics by combining mathematical rigor in investigating simple models with
complenentary controlled lab experiments. In this way, GFD theory has eXlanded to
encompass numerous "Simlle" model motions that by limiting the number of physical pro-
cesses makes clear dominant interactions. This is invaluabl, in interpreting in iitu data

whcre a myriad of physical processes act together. Unfortunately, no laboratory analog
exists that includes the micro-physics of water phase changes (and associated condensate
fallout) coupled with convective dynamics. One way to bridge the gap between theoretical
models and ol)serv Ttional data is numerical simulations. With simulation, though, care
neds be especially taken with parameterizations, since careless choice of parameterization
can produce expected, but wrong, results.

Out~ine of Course:

First, an overview of dry convection will be given, including theory and laboratory
experiments. Then, after developing relevant thermodynamics, moist convection is ad-
dressed. The new sets of phenomenon introduced by moisture are significant: cumulus
clouds are very unlike dry plumes. Finally, large scale dynamical systems in convectively
adjusted atmospheres are discussed.

1. REVIEW OF DRY CONVECTION

WhMt i Convection?

An encyclopedia definition of convection is "Any motion resulting from action of a
temporally uniform body force acting on density fluctuations." The configurations shown
in both figures below would then result in convection. By making the definition that
follows, only configuration la results in convection: "Motion due to an unstable density
distribution along the vector of the body force."

lo., ,P /'P l> 16
__ __ _ __ ___P .__
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In the first lecture we define the buoyancy force, develop a simplified system of equa-
tions using the anelastic and Boussinesq approximations, and begin our consideration of
dry convection by studying a plume above a point source of heat.

Buoyancy

For this summer the only body force considered is gravity. We now develop the
associated buoyancy term which expresses the acceleration of the fluid due to gravity
acting on density variations.

The vertical momentum equation for a fluidi in a constant vertical gravity field is:

dw = _aP_

i T_-g(11
I where

wr 
a a specific volume

p _ pressure

* w- vertical velocity

The specific volume and pressure are defined as the sum of mean and perturbation com-
ponents:

P(Z,),1) = Xz) + '(-:y, zI ) (1.3)

The mean state is assumed to be in hydrostatic equilibrium:

Uz = -g (1.4)

8Z

Expanding the vertical momentum equation:

dw = .ftp aop _ -9

Ot z Tz Oz

I The first and last terms on the right hand side cancel by (1.4) and making the substitution
-O'p/Oz = g/?i we obtain: dw = B(z,Yzt) - ap 

(1,5)

where B is buoyancy defined as:T

B gat (1.6)

The buoyancy is the component of vertical acceleration due to density perturbations.
The second component of vertical acceleration, -a(Op'/Oz), is commonly called the non-
hydrostatic pressure gradien., acceleration and usually arises from dynamical effects of
forced momentum changes.I

I
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For it general fluid, specifir volume is a function of prcssure, volume, and ot.; sssible
paramete-rs (ic. salinity, suspended water content) which we henristicall) grotp kogether
in one variable, S. By the cluin rule:

IT + (is (

The cocficient of thermal expansion is defined: 3
1 (O) (l.s)

We define temperature and S as mean plus pcrturbatioI (primed) components,

T T+T'

S= + S'

For small T', P, and S', by (7), buoyancy can be approximated as:

B3 [PT' + " (La "S 1,' + Ict

For an ideal gas,

p&= RT (1.10)

Consequently,/ = 11T and L('.).T = -1/p. Note that, by the ideal gas law (1.10), I
a )",iT = 0. Substituting in (1.9) gives

T p 1  (1.11)I

We now demonstrate that the contribution to buoyancy in an ideal gas due to pressure

variations can be neglected when the fluid velocities are substantially subsonic. Integrating
the horizontal momentum equation: 3

Du Op (1.12)

with respect to x, and assuming the Lagrangian horizontal velocity derivative scales as
Ua(Oo/Ox) we obtain: P!ltU/2 (1.13)

Rearranging and using the gas law: U

~ "u (1.14)
p RT c2 I
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- where c- ('7RT)I is the speed of sound and -y - c./e,
So, if U.2/c << T/T the contribution to density due to pressure variations is negli.3 gible and the buoyancy becomes simply:

B~g~
T

5 Anelastic and Boussinesq Approximations

In this section we obtain two approximations by scaling the momentum and xrass
continuity equations. In full form the mass continuity equation is proguostic, containing
the time derivative Op/Ot. When the flow is considerably subsonic, U << c, d? ?ag
negligible terms results in a diagnostic continuity equation relating velocity divergence to
vertical advection of mass. This, the anela-ttic approximation, eliminates sound waves.

The Botssinesq approximation neglects small terms that arise from the condition that
the vertical extent of the motion is much less than the scale height, H. The scale heigift
is defined as the vertical scale over which density changes are 0(1). With both approx-
imations, the mass continuity eqn. becomes simply the statement of zero 3-D velocity
divergence. Furthermore, the specific volume (or density) is replaced by a constant mean
value in the momentum equations except when coupled with gravity. It is worth noting that
the conditions for the Boussinesq approximation, D << H, are typically not as well met
as the anelastic condition, Uo << c. However, qualitatively, the Boussinesq approximation
seldom eliminates phenomenon and usually results only in quantitative changes.

We begin by rewriting the nass continuity equation using the ideal gas law and the
first law of thermodynamics. From the ideal gas law

1 dp 1 dp 1 dT(

PdT = p dt Tdt

and from the adiabatic form of the first law of thermodynamics:

3 ldp _c dT (1.17)

p dt RT dT

Finally, using c. + R = c., we now write the continuity equation:

(Ot v Ow)_ c~ldp c, [ 0 0 0 0]+3 + ) = = 2] + +j logy,) (1.18)
Oz Oy Oz cp pdt -cp Ot 8Z O8j ex %

We use the following scaling (primed variables are 0(1) and dimensionless):

(uv) = Uo(U',V)
( Y) L(z',)

w= Wo(W')
3 z=D(z')

I
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Assuming the various terms of the velocity divergence have similar magnitude allows:

L D

Now wt scale the pres.sure terms. On the basis of the vertical momentum equation we
take: Olog p -g - 1

O AT ,

where H is the scale height of the atmosphere.
We then scale both the local time derivative and the horizontal pressure Sradient by

equating their magnitudes to the inertial terms of the horizontal moment .m equation:

Olog P., UO log ,,u OU. ~ u0
& 8 RT Ox RTL

The separate scaling for the various pressure derivatives are then

alog p 1 l(Dog p),

Olog p Uo3 Olog p

alog p U 2  a log p)1

8: RL ax
With this scaling, equation (1.18) becomes:

-+ , =-- +-. [.8,g:' log log (1.10)

ax, O .9wZ'U 2  &I , 0Y ], 0 'P (1.19)

where c = [(c,/c.)RTI/ 2 is the speed of sound in an ideal gas.
For atmospheric and oceanic motions, Uo << c. We make the anelastic approximation

to the mass continuity equation, dropping O(Uo/c) terms and obtain:

H + + =-og (1.20)

The Boussinesq approximation assumes DfH << 1. The continuity equation then sim-
plifies to:

ou' v' Ow'
- x - -.-b +=Z 0 (1.21)

For energetic consistency, it can be shown that the perturbation densities, when they
multiply inertial terms in the momentum equationsneed to be dropped. Therefore, the
Boussinesq approximation neglects density variations except where they are coupled with
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gravity. Noting that we have neglected all forms of diffusion we now write our complete
system in dimensional variables: d= - p (1.22)

dL _ (1.23)

-- 8: + (1.24)dt ay

+  +  = 0(1.25)
dB

"= 0 (1.26)

where we have divided the pressure and specific volume into mean and perturbation par-'s
with the mean field in hydrostatic balance. The buoyancy, B, was previously defined,
B (a'/). Note that we have switched notations again, and primed variables p' and a'
now refer to dimensional perturbation variables.

I IA. LOCAL AND GLOBAL CONVECTION

I Definition:

We have to compare the length scale of the source of buoyancy L& ,and the convective
length scale L,:

I 1) the convection is said to be local if Lb << <L for instance in case of a point source
of heat:

1 L o

I
I
!
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I
2) the convection is said to be global if L& >> L for instance in case of convection

between two plates:

- 17
-NO \03

LOCAL CONVECTION

Point Source of Heat

We consider a plume (a continuous buoyant jet) above a point which provides a con-
stant heat flux. We assume the plume to be fully turbulent, with a very high Reynolds
number Re = UL/vI, where U and L are respectively the typical velocity and length scale,
and v is the viscosity. We also assume that the ambient fluid is infinite and homogeneous.

Experimentally, it has been observed that if Re is sufficiently high, the flow becomes
independent of its value. So we assume Re = co and that the effect of turbulent mixing is
dominant compared to molecular diffusion. We thus neglect the viscosity and the thermal
diffusion.

External Parameter 
WoI

In this approximation, the external quantities are:
-- the gravity 9 I

- the temperature flux FT
- the thermal expansion coefficient j

These lead physically to only one relevant external parameter, the buoyancy flux:

Fo = [FT [L 3] 3
Dimensional Analysis
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As we neglect the viscosity, and the thermal diffusion, the only length scale at a high
i is - itself. So we can only use F. and z in order to build the other quantities. As the

plume is turbulent, we look only at the time average of the different quantities. The only
way to obtain a velocity is to use the quantity

I F - -'
Thus the time average velocity is:

U 0F F.z- I Function(r/R)

where r is the radial '-ae radius of the plume.
As is usual in we thus take the typical velocity as:

with a coefficitt of order 1.

In the same way, we write the buoyancy as:

0I = i -  ;t-11

and the radius of the plume:

Of course, all these arguments work only because we assume a infinite fluid without
viscosity and molecular diffusion, i.e. without any other length scale than x.

But experimentally, these arguments work even in a closed room, as Yih measured in
I 1951:

V'= 4.Foi z- Iexp(-96r2 /z 2 )

One can remark that the mass flux increases with height as

This result is characteristic of turbulent convection can be explained by the entrainment
of the ambient air by the turbulent motion.

air

Dimensional analysis gives i and " becoming infinite when z goes to zero, but this
just comes from the assumption of a point source of heat. In a laboratory experiment, the
source has a finite dimension; the theory can be corrected by definition of a virtual origin.

I Notes by Jim Countryman and Stephane Douady

I
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2. OTHER BUOYANT PLUMES AND THERMALS

First, recall the results from the previous lecture for a dry convecting plume. Scale I
analysis led to the following relationships: R - z, , z-,IF/ 3 , r.3iv, (Fo/:)I 3 . From
these relationships we can calculate that the mass flux must be Al F -, wR 2 ". -s/3. This
increase in mass flux is interpreted as entrainniea by the plume of the ambient fluid, which
then acquires finite buoyancy by mixing with the plume fluid. Rouse, Yih, and lumphreys

(1952) performed plume experiments to confirm these similarity solutions, and succeeded
in finding mean plume properties that fit the following expressions:

-- 4.7(F/)'/" exp(-96r2 /z 2)

B = g(T - To)lTo = 11.OF / ,- s/3 exp(-71r 2 /:')

which are in agreement with the dimensional analysis.
Now consider a line source of buoyancy, with flux per unit length, F0. In analogy with

a point source, Fo is the relevant dimensional parameter. The dimensions of F0 are LC - , 3
which implies t , zf / . Thus in this case dimensional analysis yields

W ',, F1/'3  (independent of z) I
B ,,. F ,_z-  (2.1)

Notice that w and B do not fall off with height as quickly as in the point source case, due
to the loss of one dimension.

Consider the case of two parallel line sources, each of strength F. For large z we
expect that the two lines will be indistinguishable from a single line of double strength 3
2F 0 . (See figure.) Experimentally, the two plumes entrain each other at surprisingly small
z, giving the appearance of asingle plume.

Now we will reexamine a point source of buoyancy, but this time it will also be a point
source in time (i.e., a flash or explosion). The resulting buoyant cloud is called a thermal.
In this case, the relevant dimensional parameter is the volume- integrated buoyancy, which
we denote by Q. The dimensions of Q are L'/t2 , which implies t , z2Q- 1/2 . Dimensional
analysis yields

W, Q1/ 2 Z 3-
B, Qz-3 (2.2)

R z 3
The thermal experiences a greater fall off with height of w and B than does the steady
plume, due to the gain of one dimension (time). Notice that the mass flux wR 2 , z again
increases with height, implying entrainment. In this case both the drag due to entrainment
and the loss of buoyancy with height (B - z-') act to slow down the rate of ascent of the
thermal. 3

I
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I 0.7

1'5---;"

0.5I TO 0I I.

I 0.1

Sovir:c-ne 0 Source

i -o'S 0 X 05 I0

IMean isotherms and streamlines for turbulent convection due to two parallel
fine sources located at the left and right boundaries (after Rouse, Baines, and
Humphreys, 1953)

We now leap into a new regime. What happens if we have a local source of heat in a
stratified fluid? We introduce a stratification parameter

N2 =g f (2.3)

The quantity N has the dimensions of 1/t and is known as the Brunt-ViisiliL frequency.
It corresponds to the frequency of oscillations of gravity waves, i.e., waves whose restoring
force is due to buoyancy variations. There is now an external time scale t ,, 1/N, and
hence similarity solutions like those above derived from dimensional analysis may not exist.

Now return to the case of a thermal, but this time embed it in a stratified medium.
A length scale based on the two relevant dimensional parameters may be found for the

I problem: L ,, (Q/N2)1/ 4 . This is related to the height the thermal will reach before it
becomes neutrally buoyant (i.e., how high the mushroom cloud goes).

I
I
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The seminal paper on this subject was written by Morton, Taylor and lTrner in 1956,
and the following approach is based on that work. Borrowing from the results of dimen-
sional analysis, we assume first that the radial profiles of the thermal are geometrically
similar at all heights z (i.e., the plume behaves locally as a true similarity plume). Sec-
ond, we define entrainment as a horizontal influx of ambient fluid moving at speed U, and
assume

= -aw (2.4)

where a is an entrainment coefficient.
Characterize the thermal by some mean radius R(z), and assume spherical geome-

try. Also make the Boussinesq approximation that density contrasts are negligible unless
multiplied by 9. Then the rate at which mass increases is

d4 
(jwR ) = (4irR2)(-II) (2.5)

= (47rR)(aw)

We may write the momentum equation as:

4 ) = 4(2.6)

Finally, conservation of heat yields:

d(4 R3T) = (47'R 2 )(aw)T. (2.7)

where Ta and T& are the temperatures of the ambient fluid and the thermal, respectively.
By combining equations (2.5) and (2.7) we can find an expression for the time rate of
change of buoyancy B:

d 4 ) = T 4 7rR3

d 4  3T 4 dT,= -t(ia To) - R 3 i"
d =_ 4 ,do(!. -(R- [T&- T,]) w-d- (2.8)

Tti [T 5 2] dz

where we have used A = w' . Multiply eqn. (2.8) by g/To, use B = g93AT = g(T -

T,)/T (with/3 - 1/T. for an ideal gas). This gives

d(_ 4rR3 B) = -37-R3wN2 (2.9)
dt3

with
N2  T O=

- - __T. 89ZI
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I
To solve the set of equations (2.5), (2.6) and (2.9) make the substitution = u.

The results are as follows:
R =aB -N2- +3Q Z

4 + W- (2.10)

* 2,2 + 3Q

Note that we recover the unstratified results if N = 0.

3

IR
IS' V V

!II , _

I

I

The solutions for the dimensionless radius (R), height (z), buoyancy (A), and
vertical velocity (u) of a thermal in a uniform stably stratified fluid (from Morton,
Taylor, and Turner, 1956)

I The maximum height reached by the thermal, Zmx, is given by

5Z m -ZW--=-0) = ( Q 1/4 (2.11)

The height at which the buoyancy of the thermal drops to zero, zf,, is given by

Zfia J(z = 0( = o)= (,,T = 0.84z. (2.12)

I [Note the presence of the length scale L , (Q/N2)'/'.]

I
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a a a/i

40-I

30- //

*j ///,/[ .,U

z ~F./ N~A

Measurements of the final height above the release point of a buoyant thermal in
a stably stratified ambient fluid. The linear regreision line is drawn in and the
dashed lines represent twice the standard deviation. (from Morton, Taylor, and
Turner, 1956)

Since Zm~a > zji,,t*, we see that the thermal iritially overshoots its equilibrium height. It

then executes a damped oscillation about zf n..

The entrainment coefficient a may be deduced from observations using either eqns.
(2.11), (2.12), or (2.10a). Woodward (1959) performed experiments with laboratory ther-
mals and found that the the' -.als transverse a cone of half angle 150, corresponding to c
= 0.27. Using eqn. (2.12) M- .ca; Taylor, and Turner determined experimentally that a
=.285, which is consistent with the value of Woodward and seems to be representative of
most buoyant thermals.

To summarize, the main features of dry local convection include entrainment, linear
(conical) expansion of radius with height, and a limiting height in the case of stratification.
Later, when we examine the nature of cumulus convection, we will observe dramatically
different phenomena.

We now move on to the topic of global convection. The paradigm is the convection
of a homogeneous fluid between parallel plates, known as Rayleigh convection. The plates
are assumed to be held at constant temperatures T and T2 (this assumes infivite heat
conductivity' for the plates) and separated by a distance d:
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We specify the lower plate temperature T2 to be hotter than the upper plate temper-
ature Ti. For small AT - T - TI, heat is transported by molecular diffusion and there
is no convection. Above a certain critical AT convection begins. The basic parameters
of the prob!em are the buoyancy 9,OAT, d, P, and ic, where the latter two variables are
the viscosity and thermal diffusivity. The problem has two independent non-dimensional
parameters, conventionally taken to be

Ra =g#ATd 3  the Rayleigh number (2.13)

= v/1C, the Prandtl number (2.14)

The Ra can be interpreted as the ratio of convective heat flux to molecular heat flux, while
o is the r!-tio of the characteristic time scales for the diffusion of heat versus the diffusion
of momentum by molecular processes.

The ratio of Ra and o is
Ra gI3ATd3

1
a = • (2.15)

For laminar flow, where there is a balance between buoyancy and viscosity, B = gflAT
scales as wov/d 2, which implies:

IRa w~od gIfiATd3Ia - -= Re, the Reynolds number = (2.16)O1 V V
2
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3. GLOBAL CONVECTION

Rayleigh - Benard Convection

We will examine a thin, horizontal layer of fluid between two infinite plates. The lower
plate is at a higher temperature than the upper boundary so that a negative heat gradient
exist through the fluid. At weak enough values of the gradient the heat exchnage is carried
by molecular diffusion. As the gradient is increased in magnitude, con-cctive cells form.

T|
i / f / / // T T

IAT T -T

/7/1 /-/; / 1/1/ 1I
Empirically, it has been found that the aspect ratio of the depth of the fluid to the

width of the convective cells is of the order of 1:1; while atmospheric convection has aspect
ratios ranging from 1:30 up to 1:60. This, to date, has not been explained satisfactorily.

The problem of Raylcigh-Bcnard convection can be completely specified through the
four physical parameters of the problem;

d - depth of the layer
v - molecular diffusivity
r. - thermal diffusivity
g,3AT - maximum buoyancy differential

It is assumed that parallel plates are perfectly conducting so that T1 and T72 remain
uniformly constant with Tj < T2 . By the Buckingham Pi theorem, the problem may be
described by two independent non- dimensional parameters. Classically these are:

Ra =g#ATd 3  - Rayleigh number (3.1)
PiK

a= Prandtl number (3.2)

Experimentally, it has been shown that the fluid remains stationary until the Rayleigh
number exceeds a critical number, at which point steady, convective overturning begins.

The Rayleigh number may be interpreted in various ways. For a laminar flow it is
identical to the Nusselt number, Nu, the ratio of convective to conductive heat flux. Since
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I
the flow is laminar, convective motions will be on the same scale as molecular diffusion
motions. The equivalence of these buoyant forces B is made here:

B ~ (3.3)

SH/co. = Bwc convective flux (3.4)

BI Ho.,= IC conductive flux (3.5)

Nu = W-d = gpATd3 = Rayleigh number (3.6)I KX

One may also define the Reynolds number for a measure of the local hydrodynamic
stability of the cells.IR = - =R (3.7)

V a'

Although Rayleigh-Benard convection is not a new problem, it is still the focus of
current research especially for the transition to chaos and turbulence. One is referred to
Physics Today, June, 1988. A group at the Univ. of Chicago [Heslot et. al. 1987] has
obtained a Rayleigh number on the order of 1011.

The problem is too complicaied to have an exact analytic solution. Different ap-
proaches have been made to provide limited insight into the behavior of the convection.
Linear analysis about the steady gradient solution has been valuable in determining the
critical Rayleigh number and the initial motions of convection. Finite amplitude nonlinear

I theory can predict the first few transitions, and fiutally, a highly truncated spectral method
may illuminate the general nature of the system although it isn't overly accurate. Since the
interactions within the system are highly non-linear, there is a breakdown in the analysis

I with any of these simple methods.

A Brief Review of the Linear Analysis

As mentioned earlier, linear analysis entails expanding the v..riables about a known
solution. The steady, diffusive solution is:

3 v=0 (3.8a)

T T= T,+(T2 -T2)) (3.8b)

The expanded variables are placed in the Boussinesq equations. The steady state equations
* are then subtracted off leaving:

= -a 0 V,' + B'I + zV 2v' (3.9a)

8' WV2B, (3.9b)

! .z
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V. v' =0 (3.9c)

where 9 = g(T2 - Ti).]/(0.5(T2 + T1 )dJ is the steady state buoyancy. 3
A diffusive scaling is then introduced.

(z', y', .')= d(z, y, z) 3
t. = (d'/v)t

= (v/d)v (3.10)

aop" = (v2/d2 )p

= nATaB

The domain is 0 < z < 1 and t > 0.
The equations may now be simplified to contain the two non-dimensional parameters. 3

&- = -VP + Ra B + V y

OBN
aB - w = V 2B (3.11)

V.v=O I
By eliminating p and B, ,he problem may be further reduced to the sixth order equation:

- V2)( - V2)V 2W = Ra V~w (3.12)

where I
02302

Two different sets of boundary conditions may be imposed as either a free-slip condition
at the two plates, or no-slip boundaries.

w(O) = 0 , W(1) = 0 (3.13) U
B(0) = 0 , B(1) = 0 (3.14)

Free-slip:
uu()= V(0)= 0, U(1)=v'(1)=0 (3.15) 3

No-slip:

u(0) = v(0) = 0, u(1) = V(1) = 0 (3.16)

The order of the problem is reduced from eighth order to sixth by the symmetry in the
horizontal plane.

A Fourier series solution is sought for (3.12) with normal modes of the form:

w= Re (J/ J 0 w,(z)exp[w(K.,K,)t + ,(K.z + Ky)]dKdK,) (3.17)
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wih a complex w. Note if Wr = 0 then the solution is marginally stable. If wr > 0 then
the convection is characterized by unstable growth. If w, = 0 then the solution has the
form of stationary convection; otherwise the convection is oscillatory. In this problem, it
may be shown that wi = 0, for wr > 0.

To prove this, the Fourier solution is substitutei into (3.12). The resulting equation
for iv!

(a +. K 2 - D2 )(w + K 2 - D )(IK2 - D)wt, = RaK 2t: (3.18)I where

0

is multiplied by to*, the result is integrated over the vertical extent, imaking use of integra-
tion by parts and the boundary conditions, and the imaginary part is taken. The result
is

Wi 10 K2(2awr+ K 2(1 +a)lt 12 +(2aw.+2K 2(1 +o)jDj12 +(1 +a)ID 2w1 12 = 0 (3.19)

Thus wi = 0. One then goes back to (3.12) and exanines the case Wi = 0 to find the

marginal Rayleigh number from:

(K2 - D2 )3wl = RaK 2t (3.20)

A solution that satisfies free-slip boundaries is wl = sin(nrz). Make the substitution toI find
Ra = (K 2 

( 
27r2)3 

3.21)K 2

then minimize with respect to n and K.
Thc minimum Rayleigh number occurs when n equals 1. Thus,

it2 22 i.e., K,, = 2.22, 7r/K... = 1.42, Racrt = 74 657.5 (3.22)

Similarly one may work through the no-slip boundary conditions (see Chandrasekhar,
1962) to get

RacrIt = 1708, K = 3.12, and ,r/K = 1.01 (3.23)

I Here K is fixed but K., and K. may vary accordingly. Note that for the rigid boundaries
the aspect ratio is closer to 1:1, with a higher critical Rayleigh number.

The cells formed should fill the plane. Two-dimensional rolls are common. To have
a regular polygon evenly fill the surface one must have an internal angle of ,r(1 - 2/N)
where N is the number of sides of the polygon. If Al such angles ,must fit together at a
point then:

2r=A'M27(1 -2/Nv)

I
U
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The only integral solutions to this equation are N 31 4 & 6. In convection, regular I
hexagons (N = 6) are usually observed. The range of validity of this solution is limited.
Results of Krisnamurti [970] show distinct transitions in the 1.elation between the non-
divergent heat flux (Nusselt number) and the Rayleigh number.

10 -

A IN
o // I

6 /
x7II

I
4I

I
I I I I I I 1 I I I ! I

0 2 4 6 8 1012 14 Ib 18 20 22 24,
Ralehigh nmixl r x 10"'

For high Rayleigh numbers the flow is highly turbulent and a relation of Nu Rall 3

has been observed. 3
For Rayleigh numbers beyond this range coherent structures have been observed.

The Effect of Mean Shear Upon Convection 3
The Rayleigh-Benard problem may be extended to include mean vertical shear. Here

we consider the inviscid problem for simplicity. Consider a basic flow between two horizon-
tal plates with velocity U(z) in the z-direction and imaginary buoyancy frequency N(z)
(so that N2 > 0 corresponds to unstable stratification).

I
I
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i-/H T-= 7-,

I =0 T.T

For small perturbations to this state the linearized equations governing Boussinesq,
inviscid, adiabatic motions are

u, + Uu, + wU, = -aop, (3.24a)

vC + UV, = -Cropy (3.24b)

wt + Uw, = -aop. + B (3.24c)

Be + UB, = N2w (3.24d)

U, + vV + W. = 0 (3.24e)

where u, v, and w are the eastward, northward and upward velocities and p and B are the
pressure and buoyancy perturbations. cx0 is a mean specific volume. From these we can
derive some integral relations which show that the horizontally divergent part of the flow
cannot extract energy from the meanshear when N 2 > 0 unless U,, is non-zero.

We divide the horizontal motion into an irrotational part (subscript i) and a non-I1 divergent part (subscript n) as follows:

i Ui +Un (3.25)
V = Vi + Vn

where
-O= 0 (3.26)

and
" n -+- W = 0 (3.27)

IBy multiplying (3.24a), (3.24b) and (3.24c) by ui, vi and w respectively, adding, then aver-
aging vertically between the plates and horizontally over one full period of the disturbance
in z and y, we obtain3 1= (3.28)

where an overbar indicates a volume average. Similarly, multiplying (3.24a) and (3.24b)
by Un and Vn, adding, and averaging gives

1- ( 2) n = -U n t (3.29)

I
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These are the energy equations for the divergent and non-divergent parts of the flow
respectively. Note (3.28) does not depend on the non-divergent part of the flow and (6".&9)
does not depend on the buoyancy. I

We can also derive an expression for the shear energy generation term -Uuiw The
solution to the linear system (3.24a) to (3.24b) will be a superposition of modes of the
form:

7 = R,[,i(z)eo ¢& -zc)+ ''v] (3.30)

for each dynamical variable 77. After eliminating ii, 6, P, and h we are left with an equation I
for tB:

I ) = + (3.31)
dz2 -w

Here A2 = k2 + 12 is the total wavenumber squared and i = a, + sk(U - c).
Now we follow Howard (1961) in defining a new complex variable

h -,,b (3.32)

n is any real number. Substitute this in (3.31) and multiply by h*/n, where * means
complex conjugate, then integrate vertically between the plates. Integrating by parts
where appropriate and using the boundary condition that at and hence h vanish at z = 0
and z "- H, we obtain

2( dn h 12+ {n(1 - n)s2t(Lj)2 + ns -d2 + A2a (1-n) _ A2 N 2,2n}h 12] dz

-- 0 (3.33)

In the particular case when n = 1 so that h = tb the real part of this integral gives

1 H [hI2+A ItD 2  { -C)Uz - A2 N2 (o!2 _ k2(U _ C)2) dz =0 (3.34)

We can obtain a second integral relation by multiplying equation (3.31) by t" and
integrating between the plates:

Hds V.t d tbz 12+(2 kz 2N2 -Hd1  d+-,Id I)I 2N2  dz = 0 (3.35) 1

Using the mass continuity equation (3.24e) and the irrotational relation (3.26) the first
term in the integral can b. expressed as

6 di d b
z d = (3.36) I

= U5A2ab'a2 I

MI
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But, using (3.30), the sh.ar generation term in (3.28) can be written

U-U.-itit -Y -Re [0U.Ab'Iiid_-j (3.37)

Substituting from (3.36) and (3.35) gives

a 2H:---=. I 1 +,XIIg2 - #YIJ - (3.3S)

Combining this with (3.34) to eliminate the first two terms in the integral yields

I ak2 JIB12 [C)+ -c 2(U _ C)2 d- (3.39)-u:H =, r- 2 " I 1-'  \2 - +1"

From this we can conclude that for growing disturbances (a > 0) in constant shear flow
(U-.. = 0) with unstable stratification everywhere (N 2 > 0) the divergent circulation always
gives up kinetic energy to the mean flow (unless convection occurs in rolls aligned with the
shear so that there is no transfer of kinetic energy to or from the divergent circulation).

We can derive a similar expression for the generation term in the non-divergent kinetic
energy budget. Start by taking the curl of the horizontal momentum equations (3.24a)
and (3.24b) to eliminate the irrotational velocity:

s(kD, - Lt,,) = hbU: (3.40)

Then eliminate 6 using (3.27):
=. -- i ,U (3.44)

A2  -

I Then the shear generation term in (3.32) can be written

3 -Uu, 1 w - RUfI,,zB*dz
(342)

or 112 kI 2_ Ln U2 z

2H J1 2 IS12

So the non-divergent part of a growing disturbance always extracts energy from a mean flow3 with shear. However, from (3.28), this can never find its way into the vertical circulation.
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4. MOIST THERMODYNAMICS.

This lecture introduces the definitions and basic concepts involved in moist thermody- U
namics. This includes the definition of the cloud specific volume and virtual temperature.
The first law of thermodynamics is used to dcrive a buoyancy variable called 0, which
is conserved in the absence of phase changes. By considering phase equilibria a criterion
for condensation to occur on displacing it parcel of air is developed from the Clausius.
Clapeyron equations. A conserved entropy in the case in which phase changes may occur
is also defined.

In this lecture we assume that all condensed water is falling at its terminal velocity and
so we can ignore the acceleration of condensate relative to the air. We now define a number
of properties of the system which will be useful in describing moist thermodynamics.

Thernodynaniic Quantities

Spccific Volume

We define the specific volume of the material, a, to be the ratio of the volume, V, to
the mass Al of the moist and cloudy air, I

V3
where Al = Afd + .f- .j , with the subscripts d=dry air, v=vapor and c=condensate.

Similarly, we define ad to be the specific volume of dry air and al to be the specificaI
volume of the water condensate to give

ad + lat

I+m+l

where in is the ratio of the mass of water vapor to that of dry air and 1 is the ratio of the
mass of condensate to that of dry air. The quantity Q = in + I is the total water (vapor
and condensate) and this is conserved in a reversible process. We note here that the ratio
lal/crd is very small, of order 10', and so the partial volume of the water condensate is
negligible.

Virtual Temperature

We may write the specific volume in terms of Pd, the partial pressure of the dry air,
as ad = RdT/pd where Rd is the gas constant for the dry air and T the temperature. This
alternative definition gives rise to the concept of a virtual temperature, T,, which is the U
temperature giving the atmospheric density when used in conjunction with the perfect gas
law for dry air. If we choose a to satisfy

RdT

then
Pd + Q

I
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1 where p is the total pressure in the cloud. If e is the partial pressure of the water vapor
then _ = P d + C

Pd p - _ Pd

Since the ratio of the mass of water vapor to the mass of dry air 1 = .l,/M4 = aj/a, =
ec/pj where c a R£/R. = 0.622 for the atmosphere, we have p/p = 1 + (rn/e) and the
expression for the virtual temperature becomes

1.=TI+ (rn/C)
1+Q

I Moist air without condensate is thus less dense than dry air at the same temperature. This
has important consequences. For example, the buoyancy flux from the ocean in the tropics

I is introduced by moistening not by heating.

Buoyancy Variable 0,

For moist air without condensate, the first law of thermodynamics gives us

(M, + Mi)dq = (Mdc, + Mc,,)dT - vdpI and so

dq = c'dT - adpI where ____

1 M(c,,/cd)I = c,d, I1+rn

We may write this in terms of virtual temperature as

dq = c,"dT, - adp

whereI 
C, c3 1 + + m(c,.,/cjj) = cpa(1 + 0.24m)

1 + (m/C)

where we have ignored the volume occupied by the condensate.
Now, in an adiabatic process dq = 0 and so

cdT, = RTdlog(p)

from which we may define the variable 0,,,

I 8'U = T. ( )/P),I
which is a constant along an adiabat. Note that c is similar to cd, as m < 0.025, even in

I the tropics.

I
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We may interpret 0, as a buoyancy variable. In the tropics it is observed that ,, is
approximately constant in the region 10 - 500 m above the ocean. This layer is convectively
adjusted, and although other conserved properties may not be constant, 0, is fixed because
it is a buoyancy variable. Thus the fluid arranges itself to be in a state of neutral static
stability.
Phase Equilibrium

We now consider the phase equilibria of an ice/water/vapor system. Tile diagram
below shows the partial pressure of water vapor plotted as a function of the temperature
along the equilibrium curves for (1) BO - ice and vapor, (2) CO - liquid and vapor, (3)
DO - liquid and ice and (4) AO - supercooled liquid and ice. 0 is the triple point at which
T = 273.16°K and the partial pressure, e = .11mb. (Note that 1 millibar represents
100 inks units of pressure). C is the critical point at which the vapor/liquid equilibrium
curve ends. At this point T = 647*K and e = 221,000mb. An important feature of the
phase relations for H20 is that ice melts under pressure and this allows for a variety of
phenomena including ice-skating. P

e C

-7

The phase equilibrium curves may be derived from the differential form of the laws of
thermodynamics to give the Olausius-Olapeyron equation. This has the form

( I T(aj - all)
where L is the latent heat of condensation or fusion. We note that the heat of fusion is an
order of magnitude smaller than the heat of condensation in the case of water vapor.

Since the specific volume of vapor a, >> all the specific volume of condensed water,
we have from the equationi of state

de ,, Luel
dT Tau, R,,T 2

where e, is the partial preirsure at saturation. If we neglect the dependence of L,, upon T
then we can find the approximate solution

es= eo exp(L!(U .- )e V;To-T
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I
where e. = 6.211mb; T. = 273.16*K. Experimental data take into account the temperature
dependence of 4, and other factors. An excellent empirical fit for atmospheric conditions
is C17.67(T - 273.16)c. = 6.11 exp T-29.88

Phase Change Mic.roPhysicT

The following micro-scale factors can modify the phase equilibrium curves for conden-
sation of water vapor.
(i) Surface tension increases the saturation vapor pressure. This effect becomes important

* as the water droplet size decreases.
(ii) Salt lowers the saturation vapor pressure.

(iii) Certain particles in suspension assist condensation; they are called condensation nu-
cleii. These include dust, smoke, soot and salt particles. Note that maritime clouds
are more likely to precipitate than land clouds because the spectra of condensation
nucleii in continental clouds are more sharply peaked than the spectra of particles in
maritime clouds. This more uniform size distribution increases the coalescence rate.
When the water vapor temperature lies between 0 and -400C heterogeneous freezing

can occur and there may be a mixture of water and ice in the cloud. In contrast to the
process of condensation of water vapor, heterogeneous freezing of the condensed water does
not occur as readily, since there is a shortage of nucleii with the same crystalline structure
as ice. However, if the temperature falls below -40°C then ice forms homogeneously and
spontaneously. If ice crystals fall into a supercooled water cloud, rapid growth of the
crystals will occur at the expense of the water droplets since the saturation vapor pressure
over ice is less than that over water.
Mizing and criterion for condensation:

When two masses of air at different positions on the water vapor/condensate equilib-
rium curve mix, the concavity of the curve may cause the mixture to be supersaturated
since e (the vapor pressure) and T mix linearly. If we displace a parcel of (moist) saturated
air and allow it to evolve adiabatically as the background c changes, condensation may
occur if the change in saturation vapor pressure is greater than the change of saturation
vapor pressure at constant mixing ratio in the parcel. We may quantify this criterion forcondensation as follows

I where we have used the Clausius-Clapeyron equation

(dp L -

* =dT RT 2

I
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for the evolution along the saturation equilibrium curve and the expression

( Op ) = Oe ( Opd ) =PCad

OT)m \fid T IM TRd

gives the change of vapor pressure at constant mixing ratio.

Revernsible Thermodynamics including Vapor/Condensation Phase Changes.

The specific entropy of a mixture of dry air, water vapor, and liquid water may be
defined as

MdS = MdSd + MvS, + MISI

wher- MI is the mass of liquid water, and so

S = Sd + mS, + IS

where
S C,,, log(T) - R. log(e)

St = C1 log(T)
and

Sd = Gpdlog(T) - Rdlog(pd)

In phase equilibrium,
S. - St .

T
and so we may rewrite the entropy as

S = Sd + L t.m.+ QS1
IT

= (Cpd + QCz)log(T) + 
d -

= (Cpd + QCI)log(0)

where we have defined 0e to be the equivalent potential temperature. The term involving
the water vapor pressure is included to account for the effects when the air is unsaturated
- it matches the non-saturated entropy to the saturated entropy. We may solve the above
differentizl relation to give the expression for equivalent potential temperature

( = T Qe ([Cv LQ ]
or =( P)R/(PdQ1) ept DPd \e/kCd +QCdT

This quantity is conserved under phase changes of water substance and in unsaturated air.
Processes which cause non-equilibrium effects include radiational cooling, freezing,

melting and evaporation of rain falling into unsaturated air all produce non-equilibrium
effects. We neglect rain evaporation as it only produces at most 0.20C change of 0, ir
heavy rain. However, as mentioned earlier, evaporation from an ocean or lake does change
the moist entropy and is the dominant mechanism of heat transfer from the ocean in the
tropics.

Notes by Fabian Waleffe and Andrew Woods
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I
5. NON PRECIPITATING CLOUD

I We now look at the th 'odvnamic and kinematic structure of the clouds. We will
not try to cxplain their spati,., distribution, i.e. size and the spacing between them. For
instance, we will consider the clouds far enough apart to be independeint, which is not
completely valid if they are created from a source having a munch larger scale.

A simple definition of the cloud corresponds to the water content of the air. When a3 plane goes into a cloud, it finds a near discontinuity as the water content jumps from zero
to its maximum value (Warner, 1955)

I
AJ9.~ro t t
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Thc measuremcnts are not very easy. In the 50's, the instruments had low precision.I Now$ the instruments are better, but the planes go through the cloud quickly, so the finial
resolution is also low, about lO0im horizontally. Thc following figure from Malkus (1954)
shows wind and turbulence levels. Note the strong shears at the edge of the cloud.

Another observing problem is the short life-time of each stage of a cumulus cloud, and
our inability to predict the future of a given growing cloud, so that it is difficult to observe
the whole life cycle. Also, fluctuations are much larger than the cloud mean values, as the
convection is turbulent.I

I
I
I
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For instance the mean vertical velocity can be of order 4 m/s, averaged in space (an

average in time would give a much smaller value), and the noise is then typically 6 to 7 m/s.
The variation of virtual temperature is also very small, of the order of the instrumental
precision, 1 or 2"C. So it is very difficult to make buoyancy measurements in the cloud.

The convection occurs in response to local instability. The instability can be of finite
amplitude, and this could explain the spacing and the structure of the cloud, but here we
will only consider the case when a cloud is already formed. Since non-precipitating clouds
do not produce net heating, the only way they can stabilize the atmosphere is to reduce
the subcloud entropy by entrainment of dry air from aloft.

Mixing diagrams depict the composition of the clouds in terms of conserved variables
Q = I + m, the total water content, and 0,, the total entropy variable. These are nearly I
linearly mixing in the range of atmospheric conditions. The mixing diagram for the air
near, but not in, the cloud looks like the following figure (Paluch, 179).

This measurement serves as a reference to interpret where the air comes from in the I
next figure, which shows the measurements within a towering cumulus cloud, superimposed
on the preceeding diagram. 3
The in-cloud measurements nearly fall along a straight line connecting cloud base (near
1.5 km) with cloud top (near 8 kin).

A straight line between two points on a diagram of two conserved quantities signifies
that the air at a given height is a mixture of the air of the two extreme points only. Thus
the cloud can be interpreted as a volume of air coming from near cloud base mixed only 3

I
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with some air coming from the top of the cloud. The environmental air between these two
regions does not seem to appear inside the cloud. A simple picture is thus a region with
mixing of two layers, disconnected from the ambient air:
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The presence of the air coming from the subcloud layer is natural, but explanation
of the presence of the air coming from the top of the cloud requires discussion of a new
mechanism: cloud top instability.

Cloud Top Instability

We study next an instability which occurs only in clouds. Consider the top of a cloud.
We suppose that this interface is buoyantly stable, i.e. that a volume of dry, air pushcdinto the cloud without any mixing is positively buoyant and vice- versa.

But an instability occurs when we allow the displaced volume to mix with surrounding
air (the cloud is turbulent). When a volume of dry air is mixed into the cloud, and
mixed, ormasome of the water of the cloud volume is evaporated. This evaporation makes
the mixed volume colder, and, under some conditions, it will be negatively buoyant and
accelerate downwards.



I 39

I -- r,,- "

I .. . . . .C , 7 -

er

. o' .&.o"-.-

We assume that the inixd volume moves slowly compared to the time scale of evap-
Ioration, so it always remains in thermodynamic equilibrium. This is no longer truc if itIis raining or snowving, as thc cvaporation time for these particles is not small compared to

mixing time scales.Criterion foC istabitity

We take the pressure to be hydrostatic and we ncglect its fluctuations in the buoyancy.

The heat equation becomes

dq = 0
I = cvdT - adp) + Ludrn

= cdT + gdz + Ludm

I with our assumption. So we define

hu = c.T, + gz + Lur

(corrected for the presence of vapor by using T. rather than T, since cpdT is closer to c'T
I than cdT) as the moist static energy. The inertial energy is neglected. This quality is

nearly conserved and linear with the mixing. We also define the virtual static energy:

I = cPT, + gz
= hu, - Lm

The buoyancy may be expressed:

B - -- (Sum - Su) + g(lm - l) (.1)
cPTUi ¢~

I
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where in refers to the mixed vohlnle anld C to the surromndinlg cloud. For a simplified
treatment we first neglect the effect of the condensed water I. Thus

D = - h,h,, - hec - Lp(in", - (52
CPT,

In order to obtain the greatest magnitude of negative buoyancy with the smalle-st mixing
ratio, we suppose that all the water is just evaporated so that the mixed volume is at
saturation.

Since w assume that the mixed volume is at equilibrium, we can ue the Clausius-
Clapeyron relation:

,,," =m~exp \tg/( 3( Lv )1
I-m l+/Vg I

as we assume that we are near the hreshold of the instability, i.e., B is small.

As h, is nearly conserved in mixing, we have:

h.m = (h,,, + 6h)/(1 + 6) (5.4)

where 8 is the mixing fraction, and c denotes the air just above the cloud top. Thus we
obtain, using (5.2), (5.3) and (5.4)

n = 9 he - hvc (5.5)
cT, (1 + 6)[1 + inL/(.c, T I

The criterion for the instability is reached when B lxcomes negative; this happens when

hv,€ < h,. or Ah, < 0

In a complete treatment, without neglecting the term g(l, - Qc) = -glc (as the mixed
volume contains no condensate), we need a new relationsik to find 6. Since total waterm ixes linearly, "le + + 1C

The treatment is the same, just changing B to (B-g c) in the Clausius Clapeyron equation.
Then we obtain B < 0 for:

Ah. < A(l + m)cTu 1 + qJL,(c.R.T,)
I + qcL,/(RT,)

Since A(l+ m) is negative, Ah, must be smaller than a finite negative value to obtain
the instability.

Structure and Magnitude of the Instability

As a means of getting a rough estimate of the magnitude and form of the convection, we
apply similarity theory, under the assumption that the plumes generated by the instability
are highly local in character. See Emanuel (1981) for more details.

We are now interested in the future of a very local mixed region:
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I

We assume that tihe iixed vollune remains always saturated. The conservation equa-tions for spherical theral are:

(Volutne in Boussinesq approx.):

± 10 = -3. tv (5.6)

I '(Moentum):

W Wu,) = ft,(B + 91,C) (5.7z)

where we discriminate between tle therminal buoyancy B and the buoyancei to the

liquid conerical t.
(Thermal buoyancy): d

~(R3 ) ~ ( -+v w rok) (5.7)

dT Cdt

where Nj 2 = (g/0,)(dB/d:), e, is the virtual temperature of the dry atmosphere, and
r = L,9/1cTc. The second term assumes the form above if the vapor evaporates instan-
tancously.
(Total water):

T, dQz
.([ - Qc]) = _R3,,- = (5.9)

I This is derived in the same way as the conservation equation for 0 in a dry thermal.
The self similiar solutions are

I R = -Cz
=2 s _ 2 161., = f,-3 - 2.- -r g)l,=-- .""=

B = -foa-
3  - - r j -

16

Q. Q- Q =QO- Z- (Q l~)exp (Rt~g C)i]1

I ii iii iv

I
I
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where Q, = saturation mixing ratio (= m,)
Qo a Waft,, - Qc)),oI
Fo=R - I):=o

and z decren~ss downwards. We now check that, the cloud rmiahis munsaturated, i.e. Q,. -
Q > 0. In the expression for Q, - Q, we neglect the third term whuich is ncgative but small
And find that

i is positive

I
>z I

ii is negative ..

I

iv is positive 

I

so that Q1 - Q varies like

I
I
I
I
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at first decreasing and then increasing. We ask that thcmininium be positive. This leads
to the approxinate condition

-Qo > 6.75 14 Ck ±(Qc- I)]

In the atmosphere, this condition is easy to satisf,.
The mixed volume stops descending when w(-.) = 0. At this depth, the first term inIw is negligible; thus

The maximum velocity is obtained at half this distance:

!(r- g)A'- i, at -: = (r- g)N-

z * - •

1. 0 -I -90

R1 0. 1.Wnicso lm rdu .boac n
verical voi ty 1o nd~c tion s ofum rdimesi bon deth forI

I
I
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The important length scale hcre is (r - g)No'2I, around S km for a 2 gin/kin water
contcnt cloud. Note that this is indl)enclent of the entrainment parameter a. Correspond-
ing vertical velocities reach 10 in/s. Also note that the plume is still unsaturated when
it stops. As the thcrmal descends and expands, it gradually loses buoyancy and would
eventually come to rest. But since it is still unsaturated at this point (when Q, - Q is U
everywhere positive ), its base would be unstable for the same reason that the cluod top
itself is. Were this to happen, new therinus would be formed from older ones. This implics
either that the thermals would split on their descent or that they would maintain a niearly I
constant radius; in either case, similarity breaks lown because of the importance of the
lengti scale (r - g)N-21C.

Despite the invalidity of similarity theory, we may conclude that cloud top instability I
produces downdrafts of at least the magnitude of ordinary cumulus updrafts. It is likely
that this mcchanism dominates the dynamics of non-precipitating clouds.

Refcrences
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6. TAXONOMY OF PRECIPITATING CLOUDS

I In this lecture we will review some observations of different cloud systems. The first
type of precipitating cloud system to become fairly well understood is known as an air
S mass thunderstorm. These relatively common storms (typical of Florida) tend to form in
areas where there is little background horizontal wind, and move in the direction of that
wind. A system of this type is made up of a random conglomeration of smaller individual

I cloud cells, in various states of growth and decay. These cells typically exist for about 30
minutes, although the storm system itself can last many hours. Air mass thunderstorms
are about 5 to 10 km in height, with an order one aspect ratio. The evolution of individual
cells can be characterized by three stages: the cumulus stage, the mature stage, and the
dissipating stage.

The early stage of a single air mass thunderstorm cell is known as the cumulus stage,
shown schematically in Fig. 6.1. During this stage, there is a net upward mass flux due to
it miean upward vertical velocity at all levels in the cloud. There is little or no )recipitation
falling to the ground, but there is formation of l)recipitation-sized droplets inside the cloud.

I The second phase of a cell's life is the mature stage (Fig. 6.2). Cloud-scale downlrafts
apCpear, along with surface rain. The final, dissipating, stage is characterized by wek
downward motion and light surface rain (Fig. 6.3).

The dynamical consequences of the surface rain that appears during the mature stage
can be very important, and will be the subject of it subsequent lecture, but one aspect
should be mentioned in this context. As the rain falls into the relatively dry air below
the cloud, some of the water is evaporated, thus cooling the air and increasing its density.
This hcavy air falls and spreads as it density current (gust), lifting light air as it moves. It
is possible that this process of uplifting could initiate the growth of new convection cells,
and hence explain why these cells tend to conglomerate into large systems (Fig. 6.4).

A second type of precipitating cloud system is known as an organized multi-cell storm.
In contrast with the air mass thunderstorm, these relatively rare storms tend to form in
areas with it fairly large vertical shear of the mean horizontal background wind, and do
not move in the directions of the mean wind. In fact, they usually move at an angle

I to the right of the mean wind ( in the Northern Hemisphere), with new cells forming
preferentially on the right side of the storm (Fig. 6.5, 6.6ab). Unlike an Ekman layer,
this symmetry breaking is not due directly to the earth's rotation, since the storms are
too small and too short-lived. Instead, it is due to the shear of the mean wind veering
to the right with height. Occasionally, the mean shear progresses to the left with height,
resulting in preferential motion to the left of the mean wind (Fig. 6.6c).

In areas of even larger vertical shear, a third class of storm may develop, known as a
supercell. As the name implies, this is a quasi-steady, single cell storm that is extremely

I energetic. In fact, they can be so violent that they can lead to the formation of tornados.
They are typically about 10 km in horizontal extent, and can, last several hours and produce
a great deal of precipitation. Supercells are usually continental, and are seen mostly in

I the midwest of the United States and sometimes in Australia. A schematic of a supercell
is shown in Fig.- 6.7, and an actual radar image in Fig. 6.8. Note in the radar image
that there is no signal from the "vault" region, and therefore no rain there. This reflectsI

I
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the fact that upward velocities in the vault are typically 50 m/s, resulting in an advcctive
time scale that is much shorter than the water droplet coalescence time scale. Most of the
energetic motions in a supercell occur on the scale of the cloud radius, as opposed to the
nonprecipitating case where most of the motion seems to appear at scales much smaller
than the cloud. As a result, numerical models have been quite successful (in this instance)
in helping to understand such systems.

A fourth type of precipitating cloud system is the squall line (Fig. 6.9). Like an air
mass thunderstorm, a squall line is a group of individual convection cells, but the cells are3
arranged in a line that typically propagates at a speed of a few to as many as ten m/s.
Broadly speaking, there are two types of squall lines. The first type is the so-called "slow"
squall line (fig. 6.10), which is more common in the tropics, and lines up in the direction
of the vertical shear of the mean horizontal background whid. There is relative flow into
the squall line at all heights since V, - V is always por.tive, where V is the composite line
speed and V,, is the wind speed normal to the line. The second type is called a "fast" squall I
line (Fig. 6.11), and is more common in mid-latitudes. As opposed to the "slow" case,
these lines are oriented perpendicular to the mean shear. Again, there is relative flow into
the line at all heights, except for a small range around a height of 4km. It is interesting to
note that dry convection theories, even nonlinear formulations, predict squall lines forming
only along the mean shear, as in the case of slow squall lines, but in contrast to the case
of fast squall lines.

This concludes our brief look at examples of precipitating storm systems in the earth's
atmosphere. Next, we will turn to the dynamics of precipitating convection.
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I
7. THE DYNAMICS OF PRECIPITATING CONVECTION

IFour main points distinguish precipitating convection from non-precipitating convec-
tion:

i) If precipitation reaches the ground there is a net vertically integrated latent heat
release over the cloud lifetime.

ii) The thermodynanmics of precipitating convection is irreversible (although this is a small
effect: for practical purposes 'conserved' quantities are a )proximately conserved).

iii) There are buoyancy sinks and sources due to a) the weight of liquid water and b)
latent heating (cooling) due to evaporation iii unsaturated air, which are uncoupled
from the vertical dlisplacement. This enables disturbances to propagate.

iv) Condensate may accumulate locally where to = vT where t'T is the velocity ait which
rain drops fall, assumed to be their terminal velocity.

I A Model Problem

As a means of appreciating the dynamical effects of falling precipitation, we formulate
a very simple, linear, parallel-plate convection problem. Consider a flow between two
horizontal plates. Assume that the air is saturated and is unstably stratified. There is aI constant flux of liquid water through the top boundary, (its exact rate is irrelevant so long
as it is enough to keep the condensate content finite): a so called 'shower head' boundary
condition.

Also assume that the time scale of evaporation is negligibly small compared to the timeI scale of raindrop motions and that all drops of liquid water fall at tile same fixed terminal
velocity VT. We consider only two-dimensional motions in the x, z plane.

The linearised equations governing inviscid, Boussinesq motions are:
lit = -aopz (7.1)

wt = -oopz + B - gl (7.2)

Bt + wBf = - "---wq. (7.3)

It - VT1i= = -w',. (7.4)

ux + wz = 0 (7.5)

I
I
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where u and w are the horizontal and vertical velocities, B is the buoyancy perturbation

due to all effects other than liquid water loading and D(:) is a mean buoyancy. I is the
perturbation mass mnixing ratio of liquid water and V,(--) is a mean saturation water vapor

mixing ratio. We can rewrite the buoyancy equation as

, WiJ 2  
(7.6)

where 9 Twh. 
(7.7)

and TV + (7.8)

i, is a mean virtual moist static energy. We can use (7.5) to define a stream function:

W =O , (7.9)

and cotabine (7.1) and (7.2) to eliminate pressure and form a vorticity equation, reducing
the system to three equations.

(V20), = B, - g9, (7.10)

B, , ,.. (7.11)

It - VTIz = -M, (7.12)

First consider the case where there are no top and bottom boundaries. The only
length scale in the problem is L = vT/N. We use the following non-dimensionalization
(where now a * indicates a dimensional variable):

(Z', z) (VT/R) (z, z)

Be = NTB

0* = (VTl)', (7.13)

to = I-I,:tr-

Then (7.10) to (7.11) become

(v0),= B. -al. (7.14)

BA (7.15)

It- - - - (7.16)

where a = -g.j!jN2 is the only parameter remaining in the problem. (a mry be inter-
preted as the ratio of buoyancy due to liquid water loading to buoyancy due to temperature
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changes.) WcI first consider the unbounded problem. Seeking normal mode solutions ofI the form -

A& *R [ C r+s(ks+rz)J 77

3 etc., we obtain a cubic equation for the growth rate, a:

-(+2)I - (7.18)

In general ar is complex implying both growth/decay and propagation. The growth rate

or and phase speed .-aj/k are shown as functions of (31/(I + r2/0).

14

toI

MUi 1. Dittctisionfcss p.Oul, rmcs of unbounded tu ~s :1
-untacnofjlror 4~V~~aIv~1 c n i ci-Ai mivumberw a o-z r1I(3. 2. As in Mir,. I but Sosvint din)Cnsionicss pbjjsc spvt(Ij

,and b) r - OXS

The effect of falling water in this case is to cav.se the convection to propagate (os-I ciliate), although the propagation direction is arbitrary. This effect was first explained
by Seitter and Kuo (1983) who demonstrated that the phase-lagged buoyancy effects ofI falling rain lead to vorticity generation that is out of phase with the Yorticity itself.

Precipitating Conviection Between Two Plates

The domain for this dynamical model is now set to be that of the classical global3 convection problem between two parallel plates. This introduces a length scale, d, the
separation length between the two plates.
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I
One may now non-dinmlnsionalize the problem in the following ,nanner:

(z:e,-) = d (:) I
B* 2(IB

e - Vj,- )g (7.19)

R I
This will prove to be convenient in developing the governing equations. One still assumes
a periodic solution in x similar to (7.17). __

IP = P(.)eWL+ 'k "  (7.20) -

One now goes back to the governing equations and eliminatcs B and 1 in favor of T to get:

W 2 vT9P:z - W' T:: + VTk 2 (1 - W2 )%p + wk 2(w2 + a - 1)%p = 0 (7.21)

This third order equation in : requires three boundary conditions. Along with assuming
that the plates are rigid, it also assumed that the liquid water perturbation cannot ex-
ist over the top boundary. When combined with governing equations of conservation of
momentum and buoyancy, one gets:

1=0 at z= 1 .-.. 0 at z=1 (7.22)

along with
an =0 at z=0, 1 (7.23)

This now constitutes an cigenvalue problem for the growth rate w, as a function of a,
VT and k. A periodic solution of %P() = exp(trz)is assumed leading to another cubic
dispersion relation. This equation is singular in vT; however, a diffusion term will correct
this. The solutions of this cubic relation in r are found numerically, leading to 2 general
classifications: propagating modes and non-propagating modes as shown:
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The symmetry of the problem prevents a favored direction of propagation. The phase
speed may also be represented as a function of v7, and a

Finally, we present the stream functions for a propagating mode:

One of the important features to come out of this model is the lag between the updraftsI and rainwater in the propagating mode. Propagating convection is favored for the systemI when the drag exerted by the falling liquid water from a vertical motion is comparable to
the thermal buoyancy.

I
I
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Precipitating Convection with a Sub-cloud Layer

One may study some of the aspects of sub-cloud evaporation by breaking the vertical
domain to include a dry lower level.

/1//Il'_ _/i.// , /

Now the formed condensate from the moist convection falls into the dry level and
may evaporate. It is assumed that the rate of evaporation is proportional to the amount
present. The governing equations for the upper cloud layer remain the same while the
equations governing the lower level are:

(VO), = B, - al, (7.24)

Bt = -crEMI (7.25)

it - VTlZ = -E (7.26)
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where E is the evaporation rate normalized by N, and M is proportional to the heat of
Ivaporization:M 

= A l( .73 --- (7.27)
CPT"

Solutions are found by matching vertical displacement, pressure and condensate across
the boundary. Similarly, a dispersion relation is found which must be solved numerically.
This now leaves a parameter space of T, v7, E, and d which is too large to explore
thoroughly. Solutions are found to fall into 2 catagories. The first are "cloud" modes
which are similar to the previous system. The second classification is the "sub-cloud" mode
which is believed to be an artifact of the model. The stream function, perturbation liquid
water and pressure perturbation fields are given for the "cloud" mode. It is noted that the
pressure perturbation field shows strovg similarity to the field produced by LeMone ct al.

I (1984b) for a tropical squall line.

Precipitating Convection with a Mean Wind Shear

A final model of precitating convection is explored in which the effects of a mean
wind shear are roughly included. For simplicity, it has been assumed that the sub-cloud
layer is at rest while the cloud layer is moving with a uniform velocity U. The governing
equations are identical to the previous sections' with the exception that the normal mode
solutions are Doppler-shifted (the growth rate is replaced by the complex expression or +
tkU) for the cloud layer. One then must again match the pressure, liquid water, and3 vertical displacement across the interface. It is noted that the stream function is no longer
continuous across the layers. We avoid the usual shear modes by considering those modes
whose phase speed lies outside the "Howard semi-circle", ie. c > U or c < 0. The effect of
the shear on the growth rate and phase speed is shown below

!b

05 -: -o "- -- -"U. 000

04, C10A Moo 0041bd I w
" 3. 0040- '1 00" - -....

I0 -00 0 2 O -- 0 2-0 Fia. 16. Vaution ortrolh rate (a) and absolute value ofdiffifence
LI bctcw n cloud layer wind Uand phase speed c(b) with Urfora . 1.0.

Vru 0.I, E a 0.5. :6 - 0.2 and k - 5.0.

I
I
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Flo. 13. Pressure perturbation associatc1 %ith modc sOwn in F-ig.I
12; ,amplite 1.14 time% the sireamtunciion amplitude.

pl (Poscols) FOR SLOW LINES (c 3 rn/s)

0 U

noa. 12. (a) Sircamrunction (normalized to have an 2amplitudc or0 6
1.0) associated with "cloud mod' ror a - 1.0. 3r -0.1, R~ - 0.5
and k - 81.0; mode moves troin left to right %ith a dimensionless
speed oro.022 and gmoih rate oro.53S: depth orsubeloud layer is Flo. 14. Composite pressure pcrturbation (Pd) itdative to inflow0.1.(b) Perturbation liquid %atcrassociated with modksltown in (a); environment for slow-movins tropical squall lines. Sloping line in-
amplitude - 8.45. dicatcs position ofleding egeorclouds assocd ith squl. Dotted

lines at left indicate average flight levels oraireraft. Note vertical scale
cx~rgceation ot6i. Irrom LUe~onc et al. (1984h)).3
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I
Next the growth rate is shown as i function of the evaporation constant E and the

mean shear. For a givcn eva)oration rate there is seen to be an optimal shear velocity.
For weaker shear velocities convcction parallel to the shear is l)referrcd while for stronger
shears perpendicular convection is the preferred form.I

I I-ll I/ / , ,-
075 ' I

41/ "--O

Io2 " 45

no. 18. Dimcnionlms ih tc us a function ofcvaporation
rate 1. and cloud.laycr/subcloud.la)er shcar U for - 1.0. 5'r - 0.1.

0.2 and k - 5.0. GroAeh rts to kf h o h edy i line at
ucft am 3nocatcd Aith the "cloud mode"; all otlrc pertlain to "sub-

cloud" mode. Doted line denoics ro~ih ratc maximum.

I Finally the dominant convective form as a function of the mean shear is shown:

FIG. 19. Qualitahti, model regimc diagram. laportlion ratc and/
or subcloudlayer depth shown on ordinate Ahilc cloud.acr/sub.
clo!ud.ha)vr shr appears on abscism'.I

A principal observation of this model is that precipitating convection can extract
energy from the mean shear unlike non-precipitating convection.I

I
I
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The Optimal Low Level Shear

Rotumno ct al. (19SSJ derive an expression for the optimal low-level shear: that which I
allows the updraft to be vertical.

;-- I

I- R I

Consider the region shown of depth d extending in the x direction from L to 1. The
vorticity equation for an incompressible Boussinesq fluid in two-dimensional motion may
be written: ol (.

+ V. (V) = - (7.28)

In a frame of reference moving with the gust front the velocity is steady, so aq/&t vanishes.
Integrating (7.28) over the region shown we obtain: g

j ((u11)R - (ML,)L dz + j (wq)ddx = j(BR - BL)dz (7.29)

Assume the left and right boundaries are far enough away so that 17 = Ou/Oz there. Then

[( ~ - 2 2 2 U J ) R d
2 [ _,U0)_ (it - I(w,?)ddx- (BR - (7.30)

Also assume there is negligible buoyancy in the air approaching the cold .ool: BR = 0, and I
demand that there is negligible advection of vorticity across the top boundary. Consider
two cases;
Case i) No pre-frontal shear

URd = URo and ULO = 0 so (7.30) becomes 3
ULd =-2jBLdz (7.31)

Note fod BLdz < 0 because of the cold pool. Returning to a frame in which ULd = 0 , we

recover ( BLdz)/ as the phase speed: just that of the classical gust front.
Case ii) Assume there is some incoming low-level shear Au and ask what value of this

shear will cause the low-level inflow to exit as a vertically oriented jet (f (w?7)ddx = 0).

I
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(a) .(b)

CAS)

C) 
(d)

*CAi6s.C3

FIG. Schematk diapam showing how a buoysat updalk may be infloenced by wind A and/w o a
apool. !&) With so shem a&d no col pool, the aih o( the updriA prod ed by the thedma.ly

symmetric vonicity disicibutioa is vertkal. Jb) With a -old pool. the diuribuihot is based by = h nesive
votkity o(the underlying cold pool and c3uset the updraft to lean upsear. (c) With sear. the ditributionit Wisted tow,*M positive vontlcity and this causes the updraft to kai back ovt r the cold pool. (d) With both

a cold pool and %hear. the two hs may npthe each other, and a o an t uporaft.

U Set ULd = uRu = 0 and f (wq)dd = 0. Then equation (7.30) implies

Au 2 =u2 = -2 Bdz (7.32)

I Au is the optimal shear. In this case the imported positive vorticity is just balanced by
the generation of negative vorticity by the cold pool.
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8. TROPICAL CYCLONES: OBSERVATIONS AND ENERGETICS

i In this lecture we will begin the study of tropical cyclones, not only for their intrinsic
interest, but also because tropical cyclones can be used as a laboratory for ndcrstanding
the interaction between convection and large scale flows. After taking a look at the typical
atmospheric state in the tropics, we will review some observational facts about tropical
cyclones. This presentation will end with a look at the energetics of these storms. Their
dynamics will be investigated in the next lecture.

The observations made by Jordan in 158 (next page) are often regarded as typical
of the tropical atmosphere. The solid line is the environmental virtual temperature. TheI clotted line on this diagram represents the virtual temperature of a parcel of fluid liftcd
pseudo-adiabatically from the boundary layer (that is without including the contribution
from liquid water loading). This does not mean that rain falls, it is simply ignored! From
this curve one would conclude that there is a strong potential for convective instability.
However by looking t the dashed line, which includes liquid water loading in the definition
of virtual temperature, the atmosphere secms nearly neutral.

According to the CISK (Conditional Instability of the Second kind) hypothesis, orig-
inally advanced by Charney and Eliassen, the initial development of the cyclone would
result from the release of convective potential energy. This would imply that weak tropical
cyclones would not necessary be confined to maritime environments. However, contem-
porary numerical simulations reveal the essential importance of evaporation from the sea
surface, and this suggests a quite different mechanism. In the remainder of this lecture and
the next one it will be shown that intense storms can be maintained without any contribu-
tion from conditional instabi!ity. This is consistent with Riehl's (1954) early assumptions
and estimates. The basic idea is that tropical cyclones result from a finite amplitude air-
sea interaction instability. Thus origin and amplification of these storms are two different
questions.

Observational Facts:

In nature some kind of disturbance is almost always observed to preceed the occurence
of a tropical cyclone. This disturbance can be an easterly wave for instance, as illustrated
in the following sequence of diagrams showing the gencsia of hurricane Hilda.

To interpret these diagrams one should know that tlie thickness of the 500-200 mb layer
is related to the average virtual temperature of that layer. For a hydrostatic atmosphere
one can write 9z

OP p
and thus

gAz = -RTl In -
Pi

The next series of figures, constructed from observations of hurricane Inez, illustrates
I the inner structure of a hurricane.

The general picture is that of low-level air spiraling cyclonically toward low pressure,
and speeding up due to the partial conservation of angular momentum.

I!_



68 Fim. 8.1

* I

5000

300I

5004 \ .

I
l0 1 ..4..

900-

4, I,

Temperetue (C) )

1. Mean thermodynamic conditions over the Caribbean region during hurricane season

from rawinsonde observations composited by Jordan (1958). The solid line shows theI

environmnental virtual temperature, and the dotted and dashed lines show the virtiWa

temperature of a Iparcel lifted adiabatically from 1000 mb, not including and including

the'contribution from adiabatic liquid water loading, respectively.

) , -I



I Fig. .269

100II IHTbIN METERS WO SPEEDS (METIURS PER SECOND)

I W

-A-

7'p

Iz

J"IcUlz 3-lUM-m eator for 00 .y Sptmber 27 showing a basMl pIctwolAbl cvAtcrly wavtu *%-r ctem Csiba&. the Arot low k-vt:lI v*~Wnee of the dhtvb~aaeethat becme hurricane HIW.

I500 - 200 MB. THICKNESS AND SHELAR (WINOS IN KNOTS)
SZJE--Y!~ 27. 1964 (O00OO-) HEIGHTS IN ~7R

I 1. .3

#I

fyI 1.o

tIC
tw is s. all is, To. 650to

Fiouxt 6.-The surace trough (dotted) almost midway between the trough-ridge iyatem in the 500- to 100.mb. thicknesq.



70 Fig. 8.3

Hwy F.Kni ex Dail T. Rvitgm i33 I
1000 MIL KEIGHT IN METERS WIND SPEWS (METERS PER SECOND)

w tM0 j"000

ANSI J 3WIU
T.7I

Z4I
IV so I

%I

Firz3-ttohgeasterly wave over tailcm Cuban Ij~~2
500 - 200 MB. THICKNESS ANO SHEAR (WINOS IN KNOTS)

3SEPTEdeER 28. 1.964 (0000 2) HEIGHTS IN METERSI

04WM 94 Sim

85D

"ds

.10 II
w0 Is- is 1 0 40,



rig. 8.4 71

i000 Me. H4EIGHT IN METERS WINO SPEEDS (METE.4 RS S Eo_, TEw as, . . 4 SEC'O"='-
;EPE~i5tq 2. .. ,-

4ww

! I 

50- 1000e HCNESADSER(WNSI N,7,-,Z ,.S- T-sl 
,: -,.

* l * ?~I W a WAII l :l

0 g- ia t

*~~~~~~d *.? VItiOa.

roa 3.J Wa Jm1e 07

Fzo~az 2-Tropica! deprmlofl (Hillda) t 00 oc.-,r, September .

500 - 200 M. THICNES , NO SHEAR (WINS IN KNOT2;

$S=T V,+ 2 . 1o9 .-. 0000 53 HC G HeT IN M E TE.=,  J

01J0 \dJj $.10 W ~O 4.e

£......, 7 /

, * ... I* 7 so,

th -"i t to 2-,+ li

/... ..+,....... . + , o _.;:, L.## :

s. ~~- S-'Ist ,,-Wv

1- I
* , ! .. .. i I .. . I __/

* .- 0 I "WT IPI *'!0 I0

Pl~lll 4-" lil'llll nll'ld lrmn t n th 80- t 21).ab. liyl, flli irldl lllly ltii te li lue otInoliilS.



72 Fig. 8.*

1000 64. HE!G)HT I METERS *PLO SESD (ME-TZ.S PER SEMI=O
upS(PTIEVOMR .249t coco

...7 %'.. -I

ar - I.I

r$.
arm

*r r 14 - r t

""I I*Au

Fi~tx 17-Trples stom Hlda at 00 @oIT, September 30.

500 - zcO Ms. THICKNESS A-40 SHEAR (WINOS WN KNOTS)
s!2TEry5Vl 30. 0.14 (OCCO I I HEGHTS w METES

~7

I a V

/%~ f *'I--U

73. 70/3 o

Fsotraa 21.-Lack ofdata prohibited more detailed azaalyuis of thitha m " he storm arms but tber is little douabt of the larger



I 73
Fig. 8.6

-iO ME. HEIGHT 01 METERS WINO SPUDS (ME-al PE- Sit=14)
CTC-,K i. QcmX

I w

It
ar 4..N? wiOIO

It

E1:13w W~: $t W 2

OW.t Ito

we.W I ~. o



74 Fig. 8. 73

ISOTACHS (REL. WINDS) (KT) PA. 1770 FT (9W0 Me.)
HURIRICANE 0 INEV* SEPTEMKR Z41. iJ496

440

40-

30 iDso 4

0-I
~143

4 IIt

3 0 45 It

I0 50I

700

80 0

40- 8 0 4 30 2 0 0 W 2 0 4 0 0

50I

WEST DISTANCE (NAUTICAL MILES) EAST

FIG. 2.4b. Low-level (950 mb) isoiachs (kt) in Hurricane Inez (1966) (Hawkin~s and Imbernbo. 1976).



Fig. 8.7 75

tow

%ASK&

IIMile,
IlT 212121 _9X'

.5'S

so GO~

I It "of

- I I _

I-INS
SO ~ IN SOS I N 0 0 O

-mA MFL1* LvL----. --- ' Mi.1 VMW MO**************Of *
fjo.2.7,~~~~~~ Veopc setoIidsels(i nHriamIto 8SoebO1"(akn n
ImemI 1976).



76

I
According to Anthes (1982) the strongest sustained (1 mini. average) winds ever

recorded were SS ni/sec (317 kmu/h) for hurricane Inez precisely. The averoge maxinum
speel is about 50 In/swc.

These maximunm winds occur at the "eye wall" where the inflowing convergent air
suddenly turns upward. This is also the region of heaviest. rainfall (up to 50 cm/day). r
clouds are not distributcd uniformly outside the eye wall, instead they organize into bands
(5?) spiraling toward the center. This is visible on the 2 satellite photographs.

The fluid is nearly in rigid body rotation inside the eye, and the velocity drops off
as roughly r - 1/2 outside of it. There does not secn to be any typical length scale: the

smallest storms call fit en'rely within the eyes of the largest. The radius of the eye varies
between 10 to 100 ki. The vertical structure of hurricane Inez is displayed next. One will
notice the relatively smal variation with height, in the 900-400 nb layer especially, and
an anticyclonic flow in the upper trol)osphere.

The figure above shows a warm core with t strong horizontal temperature gradient.
at the eye wall. Colder air is l)reseut fron the surface to about 600 nib, between about
3 to 6 eye wall radii. That is the region where precipit-tion occurs. The figures below
presenti a similar diagram for the equivalent )otential temperatture. It differs markedly from I
the temperature distribution. Notice for instance th. pool of small equivalent potential
temperature in the core around 500 nib, while the temperature increases to the center.
The general inward increase of 8, arises because moist entropy is transferred from the sea I
surface by evaporation. Finally let us mention that there is subsidence in the eye. This
is related to the large temperature excess in the core. Air is sinking and varming up
adiabatically.

There is a distinct seasonal cycle for the occurence of tropical cyclones and they are
generated only in regions of warm sea surface temperatures. These observations support
the important role of air-sea interaction in hurricane dynamics.

Energetics

As stated earlier, our working assumption is that of no convective available potential
energy. But then where does the energy necessary to maintain the tropical cyclone come
from? The answer is that the near-surface air is sub-saturated (75 - 80 % humidity) and
thus there is a large thermodynamic disequilibrium with the ocean. This is shown on the

following figure where curve A is the virtual temperature (including condensate loading)
CI a parcel of air lifted adiabatically from the surface, which has first been saturated at sea
level. Curve B corresponds to it parcel which has been saturated, then brought to 950 mb
(a typical surface pressure in the eye of the hurricane) through an isothermal expansion.

This is the mcchanisni for the transfer of energy between the air and the ocean. Air is I
sucked in from large radius along the sea surface toward the eye. It acquires moist entropy
by moisturizing and isothermal expansion. ( about 1/2 the heat flux is due to isothermal
expansion and 1/2 to increased humidity). It then rises adiabatically to high altitudes
where it eventually loses heat by radiation.

Remark: the transfer of heat in the boundary layer is of course turbulent. This is
"mechanically-driven" turbulence. The standard p,-ameterization formula is for instance:

-= CDV(q, - q),

w ' =I
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U
where V is the modulus of the velocity and

C eaCT)

P9

This is very important and is the reason behind the finite amplitude behavior of a hurricane.
The fluxes depend on the velocity, which depends on the prrssure gradient, which in turn
increases as the moist entropy increases as a result of the flux of water vapor. On the other
hand, the turbulent flux of momentum in the boundary layer is the mair. sink of energy.

One can make the above description more quantitative. A tropical cyclone can in fact
be represented ly a simple Carnot cycle:

0U ,. + ---. , .- p---- .- " " - O

I 7100

I ' tradeinversion

,L ~ ~.., .\ ._X
N\ - \ v \\\sea surlace

Figuie 6. The structure and airflow of a mature hurricane are shown saturation. The total entropy increases from point a to point c and is
in this cross section, which spans a width of about 1,600 km and a approximately conserved during ascent through the eye wall to
height of 15 km. The regions correspond closely to those of the point o. Ileat is lost by Infrared radiation to space, symbolically
overall tropical atmosphere shown in Figure 4, but with an between points o and W. Because heat is acquired at a much higher
additional region of subsiding air In the eye (Region 5). in this case, temperature than it Is lost at, the Carnot heat engine, which
the sea-surface temperature may be considered constant, but the converts heat into mechanical energy, Is very efficient t - %). In
total entropy content of the subcoud layer (Region 4) increases the steady state, this energy is mostly balanced by frictional
inward toward the eye as the Increasing surface wind speed leads to dissipation at the surface.
greater evaporation rates, causing the near-surface air to approach

I
The Hurricane Carnot cycle

I The two essential laws are:
Bernoulli's relation: d( V2 ) + gdz + adp + . di = 0
First law of thermodynamics: Tds = cpdT - crdp + d(Luw)
where F is the frictional force and l'is a unit vector along the motion vector.

Integrating Bernoulli's law over a closed loop one gets:

I
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by integrating along the bouindary layer wh.c( is a.suncd to be isothermal. The indhce,
corresponds to a point outside the cyclone, and C to th.e eye as shown in the figure above.
Then assuming that all tle frictional dissipation is in the boundary layer one gets:J o@l= j'OdlI

and fromi the first law of thermodynamics:

f Tds = odp = - o 1i

which gives:

(TB T--t)(SC - SO,) = -RdT, In Pn
Pa

where TB is the (uniform) temperature in the boundary layer, TI, is the average temper-
ature along o-o' (se fig. above), S is the specific ,antropy defined by:

S = ClnT- RtInp+ L.

This relation states that the amount of heat in - heat out = the work done against
dissipation in the boundary layer.

Using the definition of S in the boundary layer we can rewrite the above relation as

T 0 ,Rj In PIn = L,(wc - wj) To - To,
Pc T

where T 3 - To.1
TB ;

is the thermodynamic efficiency. But now
A4 ad RdT e c(T)
Aid e, R,,Tpd- p1

where RH stands for Relative Humidity, e = R,/R, = 0.622, and c,(T) is the saturation
vapor pressure. pj is the partial pressure of dry air.

Thus one gets :

In P - Lu,, Tn - To., RHC p. RHa.
Pc To,,Rd TB RHc ( -Rc

or
In y = A(y - B)

where Pa

Pa
Pc

This equation does not have solutions for all values of A and B. There is a limiting
curve in the A-B parameter space.
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The domain beyond that curve corresponds to "hypercenes", i.e. extremely intense

hurricanes. In this regime, the isothermal expansion is so strong that the heating it causes
cannot be balanced by dissipation in the boundary layer. If they existed (and they might
in some different place or time) they would be supported by a quite different physics.

The figure below shows the minimum sustainable central pressures computed from the
formula above (In y = A(y - B)] with RH, = 1 assuming September mean climatological
conditions.

i Epilog
A couple of weeks aftt. the end of thc summer program, hurricane Gilbert was born

and recorded as the most powerful ever in the Atlantic ocean. The following article ap-
,peared in The Boston Globe, Friday September 16, 1988.

Hurricane Gilbert is not only the most powerful Atlaniic hurricane ever recorded, it
may well be the most gigantic storm that ocean is capable of producing, weather scientists
said yesterday.

However, the researchers said, they are mystified as to why 6-l:'bert, alone of several
storms this season, grew to such awesome proportions.

(...)[Robert Burpee, of NOAA] noted that the storm season has seen a dozen tropical
depressions - low.prcssure systems that spawn storms- " and five or siz have followed nearly

I
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Fijgur 7. flurrcs.: :;c reotry bow ressure. The tropical oceans are ideal spawning
grounds (or them, as dmntaebythis map, which shows the minimum sustainable
central prtst-tes in tropical storms under Stptemb-.r mean climatological conditions over theI
Pacific Ocean and the Caribbean Sea. Thei pressures, which have been calculated using Eq. 5.
arc expressed In millibars, with 1,015 tnb Assumed to be the normal surface pressure. The
dots and italicized numbess show. resptctively, the locations and central pressures of some
of the most Intense hunricants on record. Tropical storms In the Australian rergion are notI
Indicated, because they occur during the late Southern Ilemiphere summer (rtbnaary-
April).

identical paths ... but we are wondering why most have remained very, very weak, while

this one -following nearly the -same path. has become in terms of minimum pressure" thc

strongest of the century.
( .. ) Tuesday the atmospheric pressure beneath Gilbert's central "eye" was 26.31

inches of mercury. Only in a hurricane in the Western Pacific in 1927 has a lower figure

been measured.
Low atmosphere - . esurC develops with the rise of warm, moist air that drives a

hurricane.
Theory puts limit on intensity

A recent theory that hurricanes have a theoretical limit of intensity has been proposed by

Kerry A. Emanuel, Professor of Meteorology at the Massachusetts Institute of Technology.5
Hurricanes, termed "the greatest storms on earth," are spawned in tropical oceans

from atmospheric disturbances that create regions of low pressure.

Simply hurricanes are a kind of "engine" that converts heat into mechanical energy -5
destructive winds that can pulverize entire cities.

The fuel for the engine is the wide temperature difference between the warm ocean

surface and the much colder atmosphere above it; a hurricane typically rises some nine

miles above tha Earth.
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For a hurricane to be born, the ocean surface must be 80 degrees Fahrenheit or warmcr,
and the water must be warm for a considerable depth below the surface.

Moisture from the warm occan evaporates into the surrounding air, and as the moist
air rises, it carries heat which is released when water condenses at chilly high altitudes.
The high altitude tempcrature was about 120 degrees below zero Fahrenheit at the time
Gilbert matured, said Emanuel.

Thc upward flow of warm, moist air produces thick clouds, torrential thunderstorms,3 lightning, and strong winds that, because of the earth rotation, spiral around a clear, tran.
quil "eye".

Emanuel said the power of a hurricane, like that of ant auto engine, is limited by the
rate at which "fuel" car be poured into it and the efficiency of the engine. The fuel limit for
a storm is the amount of moisture the air over the ocean surface can holdand the efficency
of the hurricanc's "engine" is dcetrmined by the temperature differences. Calculations
showed that Gilbert had reached those limits.
Gilbert's eye small

In addition, the violence of a hurricane's spiraling winds is related to the size of the
central "eye", and Gilbert 's eye is strikingly smaller. about eight miles wide compared to
the usual 20 miles, said scientists.

Somewhat stronger hurricanes are possible in the Pacific Ocean, say researchers, be.
cause they accumulate more energy as they travel across that ocean's greater ezpanses.

SThe following diagrams are also taken from thc Globe.
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9. DYNAMICS OF TROPICAL CYCLONES

I Numerical Simulation

In this lecture wc first discuss an nxisymmctric numcrical hurricane model (Rotunno
Iand 1nianucl, 1987). Non-hydrostatic, primitive cquations are used. The siniulatcd region

is 1500 kim radially by 24 km vertically. Resolution is 15 km radially and 1.25 km vertically.
A spongc layer is inscrted between 19 and 21 km to absorb gravity waves and radiation
lateral boundaries are used (ic. waves propagate out ideally without reflection). Radiative
relaxation is uscd Q = -(8 - V)/7r. Highly simplificd microphysics are used wherein basi-
cally 1 > 1 g/kg results in rain. The turbulence cepends on the moist Richardson numer.
The sea surface temperature is fixed and the wind-dcpendtent exchange coefficients arc as
follows:

Mocntum: -CDIvIv CD = CDo + CDVIVl
Latcnt icat: ceIVI(e. - 0)
Moisture Exchange: colvl(q. - q)

The model is initialized with a convectivcly neutral sounding. Results of the simulation
follow.
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liquid %ater, contour intenal, . g kg '. dashed line denotes the 0.1 g kg 'contour, and %ater vapor. lightest shading indicates 3 . q, -. 8 g 1% ', darkershading indicates 8 < q, < 13 g kg"l, and darkest shading indicates q, > 13 g kg".
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A simpler model

In this recond part of lecture 9 we discuss a "simplified" numerical simulation. We
assume that at all times the atmosphere is conditionally neutral defined in the general sense

of being moist adiabatic along angular momentum surfaces. The model is axisymmetric
arid is expressed in the following coordinates:

Potential Radius R?: {RI = rV + {r23

Pressure P as vertical coordinate
TimeT-

Assuming convection maintains a moist adiabatic lapse rate along R surfaces, the
thermal wind equa~tion can be shown to be:

-2 -2 2 (Tb~ _ S T
rb = t 2 3 6.t)jdS

7-R dI
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wherc
rb - radius of R surface at top oi IlL (T' = 'T)
re - radius of R surface at tropopause (T = T,)
S" - saturation moist cntropy

The siituration moist entropy is the entropy the atmosphere would have if it were saturatcd.
This is a state variable but not a conserved quantity unless the air is saturated. The
condition of conditional neutrality is equivalent to the specification of S* constant along
1 surficc, .

I /!1/1/ .! / / / / !./ / "-/-,

3 

S

I&

-- mass stream function outside of clouds (zero at top and bottom)S - moist entropy of BL.1o - mass stream &Unction at top of BL.

As indicated in the figure, the model distinguishes deep and shallow convection. This
is an essential part of the model. The deep clouds precipitate and have a net mass flux.
They represent a mass source at the top and correspondingly a mass sink at the bottom.
The shallow clouds do not precipitate and have no net mass flux. They do act as a source
of moist entropy in the middle layer and a sink of moist entropy in the BL.

A parameter of the system is ct. In the equations that follow this will be seen to
relate the vertical cloud velocities to the convective instability. However, the model is3 not sensitive to this parameter since the convective time scales are short comparea to the
system evolution time scales.

I
I
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In the shallow clouds, the pressure velocities (w =- dp/dt) of the updrafts and down-
drafts are

WU = -Q(&_S 12

and the fractional areas covered by updrafts and downdrafts are equal. Thus there is no
net mass flux by shallow clouds, but they do transport entropy.

In the deep clouds
= =-( - S)( 1 2)

and this does lead to a net mass flux.
With the definition of o as the fractional area of a grid covered by a deep cloud and

reference to the figure below, the mass continuity equation can be w:itten:

18 0w Ow
-(ru) + ( ) =

OP

i I

It i

I I

Let

or

so that
10G Ower -Fr -i-f

and

C, -- ro - - dr2
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Again, 4, is a mass streamfunction for flow excluding deep clouds. G represents the mass
fluxes in deep clouds.

Lateral friction is included in the boundary layer. The equations for conservation of
moist entropy complete the system.

The variables are now scaled as follows: Define

x a (T6 -Tt)(S -S.)

where S. is the ambient PBL entropy, and

S=(T - T)(S. - S.)

where So is the saturated entropy of sea surface at ambient pressure.
Note that X, is a measure of initial air-sea thermodynamic disequilibrium. We nondi-

mensionalize as follows:

I XXX
X" * XX*

3 r - x(1/2)f -r

R - xl/2)f-R

..R T.p - (P°oPe) XT 7.)

4 4Xpo o /

P -.4 P0exp RdT j

From this nondimensionalization and values of the various parameters, we find typical
scales:

velocity - X8 (60 m/s)

radius - X('/ 2.f' (1000 kin)

time - C -  ( ).P  ( 12) (16 hours)

Our equations are now:
conservation of angular momentum in boundary layer:

07' o K R ;b T
*r b

with

Orb b1
1
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conservation of angular momentum in sop layer:

O,2 r2
C = 0 - w adr2
Or 10

thermal wind:
r;2 = r2 2R OR

a diagnostic equation for the boundary layer streamfunction:

Oo = (1 + clvl)lv&lI.N(R2 - r2) + [ 2

1+ 2R OR awe

temperature equations

O* Qw.(1- ) -+ - rad(X*)
Or2

""-" Q 4 "1" (12 -a) - rad(X')

Or2

m

( -)wo - 800

2 T - TM -2 Tm - Tt 2

the entropy conservation equations: 3
o ak 2'+o (x - xM) - o. .,wx - xM) + (1 + cIVDIVI(x: - X)

OXM (x - xm) -(1 ) (o + (x -xM)

-'Wu(X - Xm) - rad(Xm)

with 
_ _ I

To -RHa

Xt 2Xmi+ X*

I
LI
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fractional coverage of convection

1or, = 0.5

surface pressure
OP2

Or4 r&

These dimlCnsionleSS equations are described as follows: the radius of R surfaces il
the lower layer (r6) changes according to the mass flow in the lower layer and viscous
dissipation, with the latter proportional to the deformation multiplied by a length scale, t,
squared. The radius of R surfaces in the upper layer changes according to the total mass
flow (including that due to deep convection) in the upper layer. The boundary layer flow
is determined by the surface stress according to the aerodynamic drag formulation with a
wind-depenle"exchange coefficient and the mass sink due to deep convection.

The temperature equations for the middle and lower layer contain terms represent-
ing adiabatic compression, diffusion (to control the numerical integration), and radiative
relaxation to the initia! condition. The calculation of the vertical velocity at the middle
level requires knowledge of the radius of R surfaces there (r,,.) which is again determined
from the thermal wind equation.

The boundary layer entropy conservation equation includes horizontal advection, ver-
tical exchange through the boundary layer top by the mean flow and by shallow convection,
and surface fluxes. X: is the (pressure-dependent) saturation entropy of the sea surface.
Entropy conservation in the lower layer is controlled by mean fluxes through the top and
bottom of the layer, shallow convective fluxes, and radiation. Xt is the entropy in the
upper layer which is assumed to be that of the initial state (X,. , an upward extrapolation
from the boundary leyer and lower layer) plus X*.

The fractional area covered by deep clouds is simply a constant cloud width (10 kin)
divided by the dimensional physical distance between adjacent R surfaces. This means
that we permit only one deep cloud per grid volume. The fractional coverage of shallow
clouds is fixed at 0.5. Surface pressure is diagnosed from the cyclostrophic relation.

The dimensionless parameters of the system are:
a - discussed previously
c - determines the wind-dependence of the surface exchange coefficient
t - a diffusion length scale
Q - dry static stability
rad - a radiative relaxation rateI - the ratio of the boundary layer pressure depth to that of the lower and upper

layers
P - determines the magnitude of the isothermal expansion heating
RH. - the ambient surface relative humidity
Xmi -*'the initial entropy of the lower troposphere
I T' - the thermodynamic efficiency

1



I
96 I

All the other dhimensionless parameters describe the initial and boundary conditions.
Preliminary experiments with this model reveal the reasons for the finite amplitude

nature of cyclogenesis in the model. The figure below shows two different experiments
which are identical except that they are initialized with different amplitudes. The weak
vortex decays while the strcnger one amplifies, as in the more complete model. A third
experinent is identical to tlv C-.t except that shallow convection has been artifically
turned off. The run with no shallow convection amplifies immediately but does not antain
the same amplitude. Evidently the shallow convection plays a dual role: it prevents weak
disturbances from amplifying but permits mature storms to reach a larger amplitude than
they othcrwise would.

The reasons for this behavior are straightforward. When a weak vortex is placed ill
contact with the ocean, Ekmain pumping cools the lower layer of the interior of the storm by
adiabatic expansion. This leads to the development of shallow convection, which, because
it does not precipitate, does not heat. But because the vertically integrated entropy
is conserved in convective overturning, the boundary layer dries out as the lower layer
moistens. Thus the vortex becomes cold core and weakens due to friction. Only if the
initial vortex is sufficiently strong will the anomalously large surface entropy fluxes make
up for the drying of the boundary layer by shallow clouds. Then deep convection can occur
in the core, and the vortex intensifies.

If shallow convection is prevented, however, the boundary layer in the outer region of
maturc vortices moistens and deep convection breaks out. When this happens, the surface
flow in the interior becomes divergemi and the vortex weakens.

References
Rotunno, R. and K.A. Emanuel, 1987. An air-sea interaction theory for tropical cy-

clones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numer-
ical model. J. Atmos. Sd., 44, 542-561.

Notes by Jim Countryman and Stephane Douady
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10. OSCILLATIONS IN CONVECTIVELY-ADJUSTED FLOWS

Today we will locus on t relatively new el;t. of ;iir w internrtiois. Observations haveI
kl1 to the lirovery of a prominent mode of .villitioi in the enst wvst winds of Iwriot 30
60 days in the tropical atmosplere, oiffen racled tlt 40 day oscillation. This mode usually
has its maxinitun aIlplitude at the eilnator. is contied to within 30 degrees Iaititude of
the equator, and is sqeit to have it Ilai tiry wave nimlr of imuity. Tile strotist signals
in the Xotal wild, found tit heights of MO inh uttl 150 iilt) in the trollosphere, ore out of 5
phase, implying the cnillation is hnrow~h~ic in umature. hifared ininge of clod tops havr
shown that the wave moves toward tilte-.t at a speecd of almut 10 mn/s.

Although this phenometon Isn't Ibe,.e tih subjet of mm1d investigatioi, some tile- U
oretical explanations have bmen offered. The first attempt was to explain the wave as an
equatorial Kelvin wave. but phase spelc of Kelvin moies matching the olbervl atnmo.
spheric structure are many times larger thani the observed spedms. The inclusion of strong U
dissipation can reduce Kelvin wave sleetls to those that are observed. but the notable
sensitivity of wave spmes to diffuision coefficients is disturbing, as is the problem of main-
taming a wave subject to such dissipation. Cei'ral circtilation molels (GCM's) wsing an U
ocean planet have produced wave modles with lwritxs of about 30 days, whose struciure
cley resembles the observations. suggesting that the presence of land and zonal may-n•
metry may not be very important in explaining this phenomenon. However, the phase
speeds produced by these models are generally too large by a factor of two.

Conider a new model based on the interaction of a moist atmosphere with a fixed
ocean. The convection in this atmosphere is viewed as a means of redistributing heat from
the ocean surface throughout the entire troposphere. On the time scale of the 30--0 day
wave, convection can he treated as instantaneous, so that the atmosphere is considered to
be convecti ly neutral. It is assumed that the moist adiabatic lapse rate characterizing
this neutral atmorphere is determined by the moist entropy of the boundary layer i.e.,

S. = S& (10.1)

where So is the saturation moist entropy of the troposphere above the subcloud layer, and 5
S is the moist entropy of the subeloud layer itself. In addition, fluctuations in the moist
entropy of the subcloud layer are assumed to he linearly proportional to fluctuations in
the mean moist entropy of the troposphere above it, i.e.,

S& = 143 (10.2) -

where 6 denotes a fluctuation. vi is the proportionally constant and 3 is defined as

- 1 SOP

with p and p, being the pressure at the top of the sub-cloud layer and at the top of the
tropophere, respectively, and Ap = pb - pt. The value of v can be related to fluctuations
in the relative humidity of the troposphere, or to the percentage of surface evaporation 3

I
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I
anomalies realized as precipitation. Thus, in precipitating regions, v is close to unity, while
it can be quite small otherwise.

We are interested in forming a linear model that gives rise to growing baroclinic
cdisturbances, as suggested by observations and GCM's. The anticipated wind-evaporation
feedback install'i ty is s' -- n schematically below:

IP
PI*o P..OslIIIe!

Cooing Watming

N-7 thw 5,MOC@ tel Vht Af lt PMt.,1q Sli4( t140l Fhaa 41E41 1

Cell

Fi. 1. Conceptual illustration of the 30-60 day wave as an air-
s .a interaction instability. Anomalously strong e asterlies at right give

risn to anomalous heat fluxcs from the sea surface; the moist entropy
is then rapidly redistributed aloft by convection. The resulting tem-

perature anomaly leads the surface convergence by one quarter cycle,
leading to wave growth and eastward propagation.

I

I Since we want baroclinic disturbances, the mean state is chosen to be barotropically
stable, and the vertically integrated velocity fluctuation must vanish to insure that there
will be no barotropic disturbances. Using the hydrostatic relation and the equation of
motion for horizontal velocity fluctuations, an expression can be derived relating fluctua-
tions in surface pressure to fluctuations of moist entropy in the surface layer, and hence3 fluctuations in the mean moist elitropy in the troposphere via equation 10.2:

n.b = -Tbe6-S (10.3)

where 4b and Tb are the geopotential and absolute temperature of the surface layer, re-
spectively, and e is the thermodynamic efficiency given by

T - T (10.4)

I
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with T being the mean absolute temperature in the atmosphere,

where po is taken to be 1000 nib and Apo =- Pa - pg. Equation 10.3 cffectively constitutes
our convective paramicterization. Note that this paramcterization allows no changs in
the temnperaturc of the atmosphere above the boundary layer as long as processes in the
boundary layer occur at constant entropy. Thus, evce if there is somnc amount of "moisture I
convergence" (which is necessary to drive other convection paramcterizations), our param-
eterization implies that heating due to condensation exactly cancels adiabatic cooling, if
the boundary layer entropy remains constant. I

Now we arc in a position to formulate the equations that arc to be solved. On an
equatorial fl-plane, the horizontal mnomentum equations are I

du Ox Or"
T =  - + p  - 9-Op (10.6)

--- -fy- g-

where -r and 7-Y are stresses. If we assume that the stresses vary linearly (with pres-
sure) from the surface layer to the top of the sub cloud layer and if the standard bulk-
aerodynamic stress relation is used, then the stresses arc

~~C D V.1Lg (10.8)I
OT"

ary= PG CDlVlV. 
(10.9)

where the subscript a denotes the top of the surface layer, Ap,, is the difference between
the pressure at the surface and the top of the sub cloud layer, and CD is the drag coeflicient. I
The mean state is assumed to have a zonally and vertically constant zonal wind. If eqns.
(10.6) and (10.7) are linearized about this mean state, and eqns. (10.8) and (10.9) are
used, we get the following in the boundary layer: I

- (6u) 4; U-(Su) = S - ob-(6&) + fly(6v) - 2"-U(6u) (10.10)

g(6a) + UC(D) - yr -U(5v) (10.11)

where 6 denotes a fluctuation quantity, h - (Apm'RTo)/(pag) is a boundary layer scale
height, and the factor of 2 difference in the stress terms arises due to the fact that the mean
wind is purely zonal. Note that we have an expression for fluctuations in geopotential at
the top of the boundary layer (eq. 10.3), so we will solve 10.10 and 10.11 there, along with
a thermodynamic equation for S.
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The relevant thermodynamic equation is

dS OrI d= -gc,- + R (10.12)

where c. is the heat capacity at constant pressure, r, is the vertical entropy flux, and it is
the radiative cooling. Again, assume a bulk aerodynanic relation for the surface flux,

To = PacecIi(S - S.) (10.13)

where c# is the exchange coefficient and S. the saturation moist entropy of the sea surface.
If eqn. (10.12) is then linearized about a mean state of radiative convective equilibrium,Iwe get 8

wegea(6S) + Ua(6S) -9g-, + sR (10.14)

I To get an expression for 63, eqn. (10.14) is integrated from the top of the surface layer to
the top of the troposphere,

0(633+= p.CU63' - P.cesgn(U)(S. - S)ui + 6dp (10.15)

where S,-S is now the mean (time averaged) difference. If it is assumed that the radiative
cooling term can be approximated by Newtonian cooling,

± P' 6Adp c-- -- 65 (10.16)

where r,. is an appropriate time scale, then our set of linear equations is:

n (,) + =(u) 8... (,, + y(v) - ,D,(,o) (10.17)
(6) + U (u) T&cv i-(6) _ 2 TU U(SV)(1.8

IU -(6) Tw~6r -- ,(6 ) co

(63 +Ua(3 -c -v (G,) + CesnU(.- S)(u) - 1 (63) (10.19)8: H Ho~~ T,
where i - (ApRT./p.g) and (10.3) has been used.

As a prelude to solving these equations, we will nondimensionalize as follows, with
asterisks denoting dimensional variables:

I _a-.a

-= Al/4#-1/2aI/4Y

t= A-1/2all/t

Sue = Al12 a26u (10.20)

6v - A3/4#-1/2a'i 46u

U A'/2a'/2U

I



102

where a is the radius of the earth. a ud

A =aTi-I cO(S, - S).

Using tile above Scaling.", the cquations becomei

y(-() + U 1(6) = 1(6T) + V,(6u) - 2F(6,t) (10.21)

-(6u) + Ua(h) = P - Py(6,u) - F(,) (10.22)

00
t-(6T) + U -0 (6T) = -- 1(6T) + .sgn(U)(6tt) (10.23)

where F - cgUadt- 1, P =- OA-I/2u/ 2', and = al/2:-I/2 rrI + Fil(coh)/(coti). Since
we have a closed set of linear equations with constant coefficients, we will try solutions of
the form

, u'It,)el t' (10.24)

where cr is complex. Similar expressions are used for 6u and 6T, resulting in the following
linear equations:

(D + 2F)u = kT + yu (10.25)

(D + F)u = P dT- Y) (10.26)

(D + 7 )T = u sgn(U) "0.27)

where D = cr + ikU. First we search for sonic solutions of simplified equations. IN - that
if v = 0 eqns. (10.25) and (10.27) can be used to find the dispersion relation:

(D + 2F)(D + 7) = ik sgn(U) (10.28)

If P is large, then the geostrophic approximation, dT/dy = yu, can be made. In this case
the dispersion relation implies v = 0 everywhere. From cqns. (10.26) and (10.27), the
temperature structure is seen to be

T = BexP [y2'(D + 7)sgn(U)] (10.29)

where B is a constant. To have well-behaved solutions, the exponential must decay with
increasing y. Thus if we assume that the real part of D is positive, resulting in growing
disturbances, we conclude that sgn(U) must be negative. Therefore, consderation will be
limited strictly to mean easterly winds.

The following figure shows the horizontal structure of the solutions for the moist
entropy, zonal wind, vertical velocity, and cumulus mass flux perturbations for k = 1.
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account for the temperature chnnges in the wave. This estimate results in anl expression

for the (nonw dinensional) cUnulUs mass flux perturbation, M,:

P1 = to + t2DT (10.31)

Note that the mu field is almost identical to the M field and that the negative peaks in u
(anomalously high total wind) lead the positive peaks in T by a little less than 450.

Estimates of the thermal damnping, f, indicate that it is at least an order of magnitude
smaller than F, and is neglected. The dispersion relation (10.29) is then investigated in
two limits. In the limit of large friction, F2 >> k, the growth rate is

= 0.125k 2/F 3  (10.32)

while the phime speed is
c = U + 0.5/F (10.33)

Note that the phase speed is independent of wavenumber. In the opposite limit, k >> F 2,
we get or - 0.51/2k/2 and c - 0.51/2k - /2 (10.34)

In this case, which may be more applicable to the real atmosphere, a growth rate o,. = 0.27
day- I and wave period of 23 (lays is obtained for a wavenumber unity disturbance. In both
limits, the linear theory fails to choose the longest waves to be most unstable.

There are some possible explanations why the real atmosphere may nevertheless choose
the longest wave. First, the meridional scale should be comparable to the equatorial defor-
mation radius, (NH/2P) I/ 2 where N is the buoyancy frequency. Using the y normalization
from eqn. (10.20), and using eqn. (10.29) to define a meridional length scale, it is found
that only disturbances of very low wavenumber can have a scale greater than or equal to
the deformation radius. Another possibility for why the atmosphere chooses the longest
waves is the effect of finite amplitude waves. Waves will tend to be damped if subsidence
warming exceeds radiational cooling in the descending wave motions. It is estimated that
the least amount of damping will occur for the longest waves.

Equations (10.25) - (10.27) also permit a set of nongeostrophic modes characterized
by u and T vanishing at the equator. Proceeding as before, it is found that these modes
can have quite large growth rates, but also have both eastward and westward phase speeds
of 70 to 80 m/s for k = 1, and are thus not directly related to the problem of the 30-
60 day oscillation. However, these modes do have periods (5-6 days) that are similar to
observations of higher wavenumber tropical waves.

We have seen what the perturbation fields look like for constant sea surface tempera-
ture (SST) and constant mean zonal wind. It is of interest to vary these quantities in the
meridional direction to see how the structure of the perturbation fields changes.

If we vary the SST in the meridional direction, the only change in eqns. (10.25) -
(10.27) is that eqn. (10.27) becomes

(D + -f)T =-UB(Y) (10.35)
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!
where it is assumned that sgn (U) = -1. B(y) is nondinensional and is interpreted to
be the meridional variation of either the mean air-sea moist entropy difference or the
thermodynamic efficiency. Just as in the constant SST case, the equations decouple at
y = 0, and we get the dispersion relation

U (D + 2F)(D + -) = -&R(0) (10.36)

Thus, we see that although the form of D(y) will afrect the structure of the modes, the
dispersion relation depends only on its value at the equator. Below are shown the horizontal
structure of the T, u, v and w fields for the case B(y) = 1/(1 + y ).

I The cumulus mass flux is henceforth riot plotted because it strongly resemble. the w
field. It can be seen that the eddy angular moinentuni flux, Re[Luvj, is always directed
away from the SST maximum at the equator, and perhaps helps to sustain equatorial
casterlics. We show a similar case with B(y) = 1/1I + 0.5(y - 0.5)2].

The asymmetry in the wind fields is due to the fact that higher winds are needed south
of the equator to balance the heat flux due to the higher temperature in the north. Again,
note that the eddy angular momentum flux is directed away from the SST maximum.

Now consider the case where the mean zonal wind varies in the meridional direction,
but does not vary with height (i.e., barotropic), and U(y) < 0 for all V where the solutions
have a significant amplitude. The existence of the mean zonal wind affects the damping
and advection terms, so eqns. (10.25) - (10.27) become

(a + tkU + 2F'U)u = ,kT + v(y - U) (10.37)

ddyII
(a + zkU + G'U + 7 )T = -u (10.39)

where the geostrophic approximation has been made, and F' = CDah-l, and G' = coaH - '.
Once again, the equations decouple at j = 0, provided dUldy = 0 there, so the dispersion
relation depends only on the value of U at the equator. WVe show the various fields for
U(Y) = -0.05/(l + Y2 ).

Note that, in this case, the eddy angular momentum flux in toward the equator. Next
are the fields for U(y) = 0.25 cos(-'y) - 0.075.

Again, the vertical velocity is strongly peaked at the equator, while the angular mo-
mentum flux is toward the equator.

SNeelin, et al. (1987) independently introduced an almost identical model. In addition,
GCM experiments were made in an attempt to confirm the wind-evaporation feedback
mechanism. Experiments that inhibit this feedback show a marked reduction in energy at
periods characterizing the 30-60 day wave. However, they also find that this may not be
t mechanism at worl, suggesting that wave-CISK or some other instability could

*also be a factor.

I



106r

0 1

Fi.3 ldan2 itibtoso~a ,()U ()uSol) tsi ig .btCt h uIttyAd o'b 2)vrin codn
to lftoff. Ioaoa 1 eoiym~td or! 1h mltdsoT adwr .0,08 n .! epciey



107

x - _ _ __ _ _ _

I %IN
Iy

/; 1i Ij Of~

I., Of ~

- -

2 -I

'% %%~'

/1~~ 01,

I -2
-- --

ric. 4. As in Fig. 3, but for A varying 2ccorJing to A - 1/11 + 0.50, - O.S)'I. For 2 zonal velocity amplitude of I
the amplitudes or T. v and w are 1. 13, 0.19, and 2.19, respectively.



108

A ,

e-

e NI % N' I I I - %

I~% A \'\NIV
01 0

it 0

I -I I

' -P

'I . I - . 1..0. .

x X

I 
--

0 0

\ %\

IJ

na . orzota dsibuton o () . b)it (c van () or 0.F*12.an G Ifo manzoal in vryngacorin
to 00./( +w- Fo azoalvelciy mpitdeor1. te mpltuesorTv.an I- re1.5. .6 ad .8. esecivly



109

xx -

2 12

II
toi cs JI AIos SI4 2324-2340.t

Ne"eln J.. I..Hl n .Cok 97 vrto - win fee bac an loI rquny aiaiit n h toiclatophr. .Ato Si,4,231238
Note byTim owlng ad Mt Matr2orI1o

I 0



I
I
I
I

1988 Sunnr Study Program

I

I inl

i Geophysical Fluid Dynamics

I
I ABSTRACTS OF PARTICIPANTS

I
I
I
I
I
I
I
I



Ito~

INTERACTION OF OCEANIC CONVECTIVE BOUNDARY LAYER
AND TROPICAL CLIMATE

Alan K. Betts
Middlebury, Vermont

Observational analysis of FGGE dropwindsonde data using conserved ther-
modynamic variables showed mixing line structures for the convective bound-
ary layer over the equatorial Pacific. Deeper boundary layers show a double
structure. Reversals of the gradients of mixing ratio and equivalent potential
temperature above the boundary layer top are present in all the averages and
suggest that the origin of the air sinking into the boundary layer needs further
study. (Betts and Albrecht, 1987)

Betts and Ridgway (1988) used an idealized energy-balance model for a
closed tropical circulation to illustrate the coupling between the net tropo-
spheric radiative cooling, the surface fluxes and the mean subsidence away
from the precipitation zones. Then a one-dimensional diagnostic model and
radiation mode with boundary layer clouds were combined to explore this cou-
pling for a specific region using mean sounding data over the tropical Pacific
from Betts and Albrecht (1987). The radiatively driven subsidence rate at
the top of the convective boundary layer is approximately 35 mb/day (0.04
Pa/s) and is largely independent of boundary layer cloud fraction. The sensi-
tivity of the corresponding convective heat flux profiles to the mass divergence
profile and cloud fraction within the boundary layer is explored. Reasonable
assumptions give realistic surface sensible and latent heat fluxes for this re-
gion of approximately 10 and 130 W m2 . The work illustrates the important
background climatic control of the radiation field on the tropical surface fluxes.

A one-dlmensional, thermodynamic model for a partially mixed, partly
cloudy, convective boundary layer (CBL) is coupled to a radiation model to
compute equilibrium solutions for a tropical CBL and troposphere in energy
balance over the ocean (Betts and Ridgway 1080). The model gives the climatic
equilibrium cloudbase (950mb) and CBL top (800mb) and low level (347K)
and shows the deepening of the CBL and rise of low level with increasing wind
speed and sea surface temperature (SST). One extension of the model gives
the equilibrium SST as a function of surface wind speed and CBL cloudiness.

ReferenceB
Betts, A.K., and B.A. Albrecht, 1987: Conserved variable analysis of boundary

layer thermodynamic structure over the tropical oceans. J. Atmos. Sci.,
44, 83-99.

Betts, A.K. and W. Ridgway, 1088: Coupling of the radiative, convective and
suiface fluxes over the equatorial Pacific. J. Atmos. Sci., 45.
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Betts, A.K. and W. Ridgway, 1089: The equilibrium convective boundary layer
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CONVECTIVE PARAMETERIZATION IN LARGE-SCALE MODELS

Alan K. Betts
Middlebury, Vermont

Detts (1086) and Betts and Miller (1986) outlined a new convective ad-I justment scheme, based on the lagged adjustment of temperature and moisture
fields towards reference quasi equilibrium thermodynamic structures.

The shallow convection reference profile was based on a mixing line, and
that for deep convection used a moist virtual adiabat up to the freezing level,
and a specified constraint on the moisture profile.

Subsequent work with this scheme in progress at ECMWF (Heckley et
al, 1087; Betts and Miller, 1985) has shown the complexity of the Interac-
tions between convection, clouds, radiation and the tropical climate. Work in
progress at NMC has shown the importance of the convective parameterizatlon
to summer rainfall forecasts.

UReferences
Betts, A.K., 1086: A new convective adjustment scheme. Part I: Observational

and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-692.
Betts, A.K. and M.J. Miller, 1985: A new convective adjustment scheme for

global models. Seventh Conf. on N. IV.P. Montreal, June, 1085, 7pp.
(preprint)

Betts, A.K. and M.J. Miller, 1986: A new convective adjustment scheme.
Part H: Single Column tests using GATE-wave, BOMEX, ATEX, and
Arctic Airmass data sets. Quart. J. Roy. Meteor. Soc., 112, 603-710.

Heckley, W.A., M.J. Miller, and A.K. Betts, 1987: An example of hurricane
tracking and forecasting with a global analysis/forecasting system.

I Bull. Amer. Meteor. Soc., 68, 226-220.

ENERGY EXTREMIZATION BY PSEUDO-ADVECTION

i G.F. Carnevale
G.K. Vallis

W.R. Young
Scripps Institution of Oceanography

La Jollan, CA, 92093, U.S.A.
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A new inethod for finding stable stationary flows is presented along with
demonstrations of its implementation by numerical simulation. This method
can be applied to any system in which advection plays a role. Algorithms
are constructed which can smoothly deform any flow into a flow of extremnal
energy while preserving all topological invariants. The algorithms are based
solely on advection with an artificially crafted velocity field, chosen at each
instant in such a way that the energy changes monotonically for all time.
Specific pseudo-advection algorithms have been derived for a wide variety of
systems including ,uasigeostrophic flow, three-dimensional Euler flow, and
magnetohydrodynamics have been derived. There are actually many ways of
accornmplshing this as described in Vallis et al. (1080). We have successfully
applied this pseudo-advection technique numerically in two-dimensional Eu-
ler flow and one-layer quasigeostrophic flow over topography. For example,
consider the case of two-dimensional Euler flow. The dynamical evolution of
the flow is simply the advection of relative vorticity, w, by the imcompressible
velocity field derived from a streamfunction which satisfies w = V*1-:

a=

An algorithm which monotonically changes the energy of the flow while pre-
serving the value of w on all particles evolves the vorticity field according to
the following artificial dynamics:

0"W = - aJ(OPW),W) (2)

at
where ot is an arbitrary constant. That is, all of the particles carrying their
original values of w are simply advected with a new velocity field that is de-
rived from an artificial st'eamfunction, ', which is related to the physical
streamfunction by

= 0 - aV 2J(Oq) (3)

The vorticity field evolving according to the modified dynamics (2) continually
gains or loses energy depending on the sign of a according to

E = a [J( ,W)]2 dxdy (4)

Thus any state is driven toward an extremal energy state, which since it is
extremal must be stationary and stable. Consequently, this method seeks
and where possible finds the stable stationary flow isovortical to any given
flow. An example of this algorithm simulated numerically is provided in the
accompanying figure.



A NONLINEAR, TIME DEPENDENT THERMOCLINE THEORY

I William K. Dewar
Department of Oceanography

Florida State University
Tallahassee, FL 32306

A non-eddy resolving, time dependent, nonlinear theory of the large-scale
ocean circulation is discussed. The variability in this theory occurs as a re-
sponse to variability in forcing. Baroclinic and barotropic evolution is com-
puted using a two-layer, quasigeostrophic, wind-driven model. Both analytical
and numerical solutions are obtained.

Attention is focussed on the low-frequency, basin scale fluctuations of the
wind. Based on these restrictions, the various modes of response are separatcd
by means of a multiple time scale analysis. The barotropic response is found to
be effectively instantaneous, and a relatively simple advection-diffusion equa-
tion is shown to govern the baroclinic response. Analytical solutions of the
baroclinic equation are obtained under the assumption that the time scales
of the wind variability are short compared to the cross-basin baroclinic wave
propagation time. Numerical solutions are obtained in more general cases.

The baroclinic large-scale response is fundamentally nonlinear in that
baroclinic waves propagate in the presence of the Sverdrup flow, which is
itself time dependent. This nonlinearity results in at least two effects. First,
the characteristics of wave propagation are significantly altered from pure zon-
ality. This leads to the formation of homogenized zones, within which directly
forced thermocline variability vanishes. Second, thermocline fluctuations are
produced which have variance at frequencies other than those of the forcing.
Thus, forcing the model with an annually varying wind stress yields contribu-
tions to the thermocline spectrum at one year and all its superharmonics (i.e.,
o months, 4 months, 3 months, etc.). The amplitudes of the superharmonics
increase with distance from the eastern boundary. Mean baroclinic circulation
on the scale of the thermocline waves is also found. The above features are
predicted by analytical theory and confirmed by numerical experimentation.

Observations of the geographical distribution of thermocline variability in
the North Pacific and North Atlantic Oceans and of first mode variance at
"inadmissible" planetary wave frequencies are discussed in light of the the-

* ory.
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FARADAY INSTADILITY

Stephane Douady U
Laboratoire de Physique de l'Ecole Normale Supdrieure de Lyon

46 Alle dl'Italie 00304 Lyon Cedex 07 France

Faraday discovered in 1831 that the free surface of a vertically oscillating
layer of fluid is unstable to surface waves. An experimental study of these para-I
metrically excited surface waves is presented. The shape of the eigenmodes in

a closed basin is discussed, and the importance of boundary conditions and of
the meniscus wave is proved by a study of the modes. Stability boundaries, I
wave amplitude, and characteristic perturbation decay times are measured and
found to be in accordance with an amplitude equation derived from symmetry.
The measurement of the amplitude equation coefficients allow us to explain the I
observed supercritical transitions and to show the effects of the edge constraint
on the dissipation and elgenfrequency of the various modes. The fluid surface
tension is obtained from the dispersinrn relation measurement. Several visu-
alization methods in large aspect ratio cells are presented, and the existence
of many stationary wave patterns above the instability onset is shown. In a
square cell, patterns with different symmetries are observed and understood I
as superpositions of linearly unstable modes of the fluid free surface.

JUPITER'S GREAT RED SPOT AS A SHALLOW WATER SYSTEM

Tim Dowling
California Institute of Technology

The Voyager spacecraft have provided us with high resolution photographs
of Jupiter's Great Red Spot (GRS) and other long-lived atmospheric vortices.
From these we have derived detailed horizontal velocity fields for the cloud-top
level, but information about the deep motions is not directly observable. Lack
of vertical information leaves open many fundamentally different possibilites
for the dynamics of Jupiter's deep atmosphere and its effect on the vortices.

Most models of the GRS drastically simplify the vertical structure of the
atmosphere due to lack of information. The so-called 1-1/2 layer model is
popular, where the thin upper weather layer, which contains the vortex, over-
lies a much deeper layer,which is meant to represent the neutrally stratified
deep atmosphere. Any motions in the deep layer are assumed to be zonal and
steady, and result in meridional topography at the fluid layer interface. Spec-
ifying the deep motions is equivalent to specifying the bottom topography of
the upper layer, and hence the background potential vorticity field. Current

I



models of the GRS start by guessing the deep motions and then proceed to
study vortices using the implied bottom topography.

By making the same 1-1/2 layer model assumptions as above, we can
derive the correct bottom topography from the GRS cloud-top velocity data,
up to a constant which depends on the unknown radius of deformation. A
quasi-geostrophic analysis of the data is presented in Dowling and Ingersoll
(1988), and a more complete shallow water (SW) analysis is in preparation. In
the SW analysis we start by calculating the Bernoulli function B from the GRS
velocity data, which is observed to be nearly steady in the reference frame of
the vortex. We also calculate the kinetic energy per mass K, and the absolute
vertical vorticity field, (C + f). The bottom topography gh:! is related to the
observations by 9h2 = B - K - (C + f)/q, where the potential vorticity q, is the
only unknown. Since for steady motions a B contour (known) is equivalent to
a q contour, we can model q by some function q(B). The procedure is to specify
q = q0 on B = Do, and then solve by least squares for the bottom topography
and for q(B).

The results yield the bottom topography, and hence the deep velocity field
and background potential vorticity, consistent with the GRS velocity data.
None of the current models is qualitatively correct over the entire latitude
range of the GRS. The results show that the deep atmosphere is in differential
motion and that the background potential vorticity field is not uniform.

We are currently studying a numerical 1-1/2 layer SW model with the
derived bottom topography. A model run which starts with the observed
cloud top winds produces several eddies. These eddies merge over time to
form a single, long-lived eddy, closely resembling the GRS. Notable features,
like the large filamentary region extending to the west of the GRS, appear in
the runs but do not persist. The initial system is unstable, leading naturally to
the genesis of vortices, but the upper layer velocity field tends to smooth out
with time. How the cloud top winds on Jupiter are maintained in an unstable
state is a crucial unanswered question.

!
References
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LARGE-SCALE DYNAMICS AND TOPOLOGY
NEAR THE ONSET OF CONVECTION

Christian Elphick and E. A. Spiegel
Department of Astronomy

Columbia University

I. Evolution Equations

There has been a renewed concentration of interest lately on the develop-
ments near to the onset of sustained convective motion for a variety of reasons
(as explained in a review in preparation with S.Zaleskl). Though much of the
theoretical work on these questions is based on the mildness of the instability,
the evolution ,equations for convection near to onset are as nonlinear as the
Navier-Stokes equations themselves, and give rise to phenomena of great com-
plexity, if in lower diniensionality than the original fluid equations. Moreover,
a great number of controlled experiments in the regime o" mild instability pa-
rameter are being conducted. These render the subject interesting in its own
right and also make it a crucible for general ideas on the nature of nonlinear
dynamics. We will sketch some features of the basic theory as background for
a discussion of those aspects of present interest to us, namely the development
of spatio-temporal structures.

We assume an acceptance of the Boussinesq equations for basic convection.
It is conveiient to write these equations as evolution equations for a atate
vector U(x, z, t) where x is the horizontal coordinate vector and the components
of U are all scalars or pseudoscalars. In the case of ba-;ie Boussinesq convection,
we have

)(1)

where w, 0 and C are the vertical velocity, deviation of the temperature from its
local static value and the vertical component of vorticity. The equations have
this general form:

atXu = LU + )I(U). (2)

Here Z and X4 are linear, partial differential operators, depending on the pa-
rameters of the system (Rayleigh number, Prandtl number and aspect ratio)
and X is a nonlinear operator, which also involves spatial derivatives. This
equation possesses the usual symmetries, such as invariance under translation?
in x and t, Galilean invariance and Boussinesq symmetry. With the latter s -

metry, if U(X, t) is a solution, where X = (x, z), then so is -BU(BX) a solution,
where B = diag(l, 1,-1).

In the case of finite box size, the linearization of (2) gives rise to a discrete
spectrum of growth rates. Let there be N modes with slow growth or decay
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and suppose that all the other modes are very stable in linear theory. Then
we write NU(x, x, f)- A~)(;kj lck (3)

I--1

where k, and nr represent the horizontal wave vectors and the vertir i mode
numbers of the modes and the dots replace the terms containing t. highly
stable modes. Amplitude equations may be derived for A : (A,) t known
means. These equations are of the form

A = MA + g(A) (4)

where g is a nonlinear, vector-valued function. The N x N matrix M has as
eigenvalues all the (possibly complex) linear elgenvalues of the slow modes.
The only instability that a mode can have in basic Boussineski convection is
a direct (monotonic) growth when the Rayleigh number Increases through
a critical value. But if we enrich the problem with rotation or other such
Influences on stability, we may introduce new parameters and, with them,
the pousiblity of instability by growing oscillations - overstability. With two
s.tability parameters, we can even arrange for the frequency of the overstable
mode to pass through zero as the growth rate does. All such vagaries of the
spectrum of possible instabilities are expressed in the eigenvalues of M.

When the order of the amplitude equation (4) Is three or more, we can
have chaotic solutions. Of course such results can be derived by analysis only
asymptotically as we approach marginality. An amplitude equation, when

I three dynamical effects operate on the stability of the fluid, occurs with

M=( 0 g

where a, P and -y are parameters of the linear theory (Arneodo, et al. GAFD
1985). Though one gets chaos from uuch equations, some of the fun goes out

of it when we remember that they can be derived by respectable methods only
in very carefully tuned conditions. It would be nice to encounter rich behavior
with less contrivance. One way to do that is to increase the box size and thus

allow more modes to be slow near onset, without special pleading about the
parameters. In the limit of infinite horizontal extent, we encounter continua
of modes becoming slightly "i'stable together through the tuning of a single

parameter.
In the continuous case, when there is translational invariance in x, it is

often helpful to write

U(x,z,t) = fUk(zt)d 2k. (5)

I.
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The case of a band of modes becoming directly unstable has been widely stud-
ied. Proceeding in parallel as in the discrete case I I

U,(z, t) = Akt#z, k, n) +., (6)

where the higher terms are nonlinear in Ak. To proceed, we need to supposeI
that Ak vanishes for k lying outside of a thin ring in the k-plane containing
Iki = k0 where k. is the magnitude of the wave vector for which instability first
becomes possible as the Rayleigh number increases through its control value. I
Then we can seek, in analogy with (4), an evolution equation like I

,Ak= rkAk + fJJ Gk(p, q,r) Ap Aq A. d2p d2qd 2r, (7)

where k = jkj, a is the growth rate of the mode with the appropriate k, andI
the kernel Gk contains a factor 6(k - p - q - r). Since the wave vectors in Gk
all lie on the critical circle Ikl = k,, the wave vectors p,q,r,-k are colinear in
pairs. Hence the rest of Gk, apart from the 6-function, depends only on a single
angle. When the convection is two-dimensional, that angle is constant and the
kernel is just a constant times the 6-function. If the kernel that applies for
two-dimensional convection is used generally, we have the model proposed by
Swift and Hohenberg.

It is also good to use the x-representation, so we define the nonlinear
planform function

A(x,t) = (22r)-t / Ak(t)cik'xd 2k, (8)

with 2 - = (/ 2  - 2)2,k=f - ..o, (9)

where C is a real constant of order unity. Then, we get

aA= 2- 2 (V2 + k2) 2]A + 7{A}, (10) I
where jr is a cubic functional. (For suggestions about how to derive such an
equation see Cross, Phys. Fluids, 1980 or Coullet & Spiegel 1988.) The same
kind of thing arose in work on melting in layers and it was apparently that
inspiration that led to the proposal of the S-W model with 7{A} = const.x A3 . In
the 2-d case, we have, approximately, (k2 -k )2 - 4k (k-k 0 )2 , with k-k = 0().

Then we are led to the Ginzburg-Landau equation, calculated for convection
by Newell and Whitehead and by Segel (both in JFM 1969). We should add
that if the boundaries do not sustain tangential shears, we find that the vertical
vorticity modes for Jkl close to zero are very weakly damped. They should be

I Coullet & Spiegel in "Energy stability and convection," Galdi & Straughan,
eds. Pitman Res. Note 168 (1988).
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included in the dynamics as Zippelius and Siggia have done in Phys. Fluids
1083.

The derivation of an evolution equation for the planform function A(x,t)
starting from an ansatz like (6) is suggested by the procedures used by Bogoli-
ubo, and collaboratc.rs in statistical physics. This approach is advantageous
for complicated situations with more than one band of unstable wavenumbers.
But the explicit calculations can become burdensome. If you just want the
iorm of the equations, you may be willing to get these more directly, using
symmetry arguments. Physicists have been doing this for some time. In fluid
dynamics, H.P. Robertson used symmetry arguments to deduce the Karman-
Howarth equations. The popularity of using symmetry arguments to derive
evolution equations for bifurcations in systems with continuous spectra seems
to have begun when Fauve proposed doing this in his 1082 Fellow's lecture.
Just to give the flavor of this kind of approach, let us sketch it here for the
case of overstability in the full three-dimensional case, starting from the Bo-
goliubov type of ansatz. This constitutes part of the thesis work of Z. Qian.
A full treatment would also include vertical vorticity In the free slip case, but
we leave that out here.

For the stationary bifurcation, we modulated #(z; k, n) exp(ik , . x) with an
amplitude function Ak(t). After finding the evolution equation, it seemed more
revealing to leave the wave vector representation and go over to an A(x, t), as
in (8). But now, in the overstable case, we are going to modulate something
like O(z; k, n)cxp(itk, x + iw t). Hence, we expect that the analogue of A(x, t) will
be complex. To stress this feature, we will call the modulational amplitude in
x-representation 4P(x,t). We expect this to be written as in (8):

But now, we have also

I %'(x,t) = (2r)- 1 f Ak(t)ek'xd 2 k. (lla)

So corresponding to T and * we have in k-representation Ak(t) and A*..k(t),
which may look familiar to those acquainted with the formalism of second
quantization.

With Qian, we seek solutions of the form

Uk(z,t) = Ak(t)(z;k,n) + A*.kt)(z; k,n) +.... (12)

Let A" = (Ak,A*), with 1i = 1,2. We look for an evolution equation of the form

tAl = UkA"' + 11r1ApAd 2pd2q+..., (13)I

I
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I
where, for the case of overstable convection,

o= + iw(k - - h-k) (14)I

where w, is a real constant and e is complex. The dots in (13) stand for cubic
and higher nonlinearities and for corrections to the frequency of the oVerstable
mode. The tensor kernels can be given forms dictated by the theory of isotropic
tensors, as in the work of Robertson. Here, we sketch the simplest approach 
to tle guessing of equations of the right form. I

Since we have invariance under the transformation t -o t + fo, w, require
that under the transformation,

A' cxpi(-1)"'+tfw, - A exp[i(-1)+'(t + 10)w .,

the evolution equation should not change. With o0 = wet 0 we write this as I
invariance under A" -. A"exp~i(-1)'+1oo1. This implies that 0, indeed,

it implies that IrP1P3,::: 0 unless + . Similarly, invariance
under the transformation x -- x + a, that is, Uk - Uk exp(ik , a), gives

Jrp,.-P= (k)6(k + pL(-1)0 + + PN(-l)a") 3
To leading order then •

atA = akAf" r r;A" AP A- d2p d2q d2r, (15)

with the side condition that -s+a+fi+y should be even. Without pursuing this
to the bitter end, we may simply report that many of the same properties of the
stationary bifurcation case are recovered: the kernel is simplified in the two-d
case and, if we use that simplification in general, we get the Hopfilan analogue
of the S-W model. The one-d limit of this equation is asymptotically the pair
of coupled complex Ginzburg-Landau equations known to be appropriate for
this problem.

These equations for real and for complex planform functions, or order
parameters, have not been well studied, though simulations have been done for
the stationary case. We want to see whether the amplitude-evolution equations
for the overstable case admits in its repertory fields of solutions of coherent
structures as the G-L equation does. The interacting coherent structures for
the one-d case have been studied in a manner used by some particle physicists.
We describe this method here.

II. Dynamics of Interacting Structures

Equations like the G-L equation become ordinary differential equations
when we try traveling wave solutions. There often exist wave velocities for
which these ODEs admit heteroclinic or homoclinic trajectories. In terms of the

I
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original PDEs, these trajectories correspond to to shocks or pulses respectively.
These are analogues of the coherent structures of turbulence, or so it has been
claimed (in the the 1081 GFD course, for example). It ought to be possible
to study the interactive dynamics of such structures, at least when they are
widely spaced. The interaction of the shock-like domain walls that may arise
in cellular convection has been especially studied by the group in Nice (see
references in Lecture III).

One way to app,'oach such a multi-structure theory is to use some of the
ideas of statistical physics. We have in mind the example of a one-dimensional
system such as that produced by two-dimensional convection. We are currently
studying the two-dimensional extension for three-d convection with Qian. The
work we describe next was done with Ehud Meron (PRL 1088). We are working
on an astrophysical applications with Odcd Regev. There ii; also work by Fowler
(les Houches lecture, 1987) that attacks these problems from the standpoint of
the homoclinic solutions of the PDE itself (a possiblity also raised by Howard
in a GFD lecture some years ago).

Suppose once again that we have an equation of the type

au = LU + R(U), (16)

i where U(z,t) is a state vector depending on x, L(a) is a linear differential
operator and X is a nonlinear operator. We shall suppose that (16) has trans-
lational invariance, but shall ignore other invariances in this treatment.

We look for a solution to (16) of the form

U(x,t) = H(x), X = x- ct, (17)

where c is a constant speed and where H - 0 when z-ct - 4oo. (Such solutions
do exist for the G-L equation, both real and complex for a part*'-ular c, say co.
For fiducial purposes, we arrange that when the first component of H, H(11
say, is largest, X = 0. Then H(1) -* 0 when X -o oo.

We consider next the possiblity of a solution to the PDE (16) containing N
pulses located at the positions X = X" where j = 1, 2, ... , N and now X = z - cot.
The pulses will interact, so that, even in the frame of the single-pulse solution,
they move; hence the X" depend on t. These pulse drifts are to be given by
equations of motion that come out of a solvability condition based on the
multi-pulse ansatz. That happens in a way that we shall describe elsewhere,
with epsilons and all that. Here, we offer a shorter, somewhat postulational
derivation.

Let us assume that
(A) There is an N-pulse solution of (16):

U(x,t) = Vv(X, {Xt}),t = 1,2,...,N. (18)

I
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Here {xel means the set of all pulse positions, Xe, which depend on t. If we
put (18) back Into (16), we get

N

(cax - -C)VN = )I(VN) - EXC8XCVN. (19)
t=1I

(B) There exists a VI(X,Xk) for any of the N Xk such that

(Cax - Z)vI = .(vC) (20)

and VI(X, Xk) = H(x - Xk). We shall write Ht = H(x - Xt).
Now we make the basic approximation that we expect to hold when the

gas of pulses Is very dilute:
N

(C) VN(X,{xC}) = ZVI(X, Xz). (21)

More generally, we would express VN in terms of all the lower order rK,I
K < N. That is, (21) Is a first approximation to a series in which VN, is
expressed In terms of the other VK with K < N. That sort of series is what
leads to the famous hierarchy of approximations of 3tatistical mechanics.

By combining (19) and (20) we obtain the lowest order approximation:

N N

~Z~cH JI(ZHt) -Zii(HL), (2

where prime means differentiation w.r.t. the argument. To go further, we need
to define an innzer product 'An the space of state vectors. This Is the ordinary
scalar product for the components and integration over X. Once there is a
scalar product, we can define an adjoint. The adjoint to He satisfies

I-Cax - 1(-a)fI = Wit (ie). (23)

We further assume that
(D) A solution of (23) exists with He -+ 0 when X -4 ±o.

If we differentiate (23) w.r.t. Xe, we get

[-(-a -It.a 6 jft.H Ht. (24)

The idea is that we may use the operator L = -cax -£C(-ax) - to define

a set of basis functions and that the null vector Hle is one of these. Naturally,
that this is possible is also a mild assumption, (E) say.

iI
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Let

(H IH,) = f H'(X - x) f(x - x,,) =-g(x -Xm) = (25)

Assuming that these homoclinic pulses drop off exponentially at ±oo we con-
clude that g.. = go ; 1 and that the off-diagonal gte. are exponentially small
in separation of neighboring pulses. Hence, if we multiply by HI, we get

g0kHk IN H EX (ZlH we)). (26)
n=2°

This then is the equation of motion of the interacting pulses, up to terms that
are exponentially small in the separation of pulses. So long as the gas of pulses
remains dilute, these terms continue to be small.

Eq. (26) is the equation of motion for the N pulses. We have here what
is sometimes called a lattice gas, but it is a highly dissipative one for there is
no second derivative of pulse position. That lack is inevitable for we did not
allow the gas to be Galilean invariant. (That is another story that we save for
another occasion.) We have also to calculate the right hand side, but we won't
go into all that here either. In the dilute case, we expect only nearest neighbor
interaction, so the velocity of the kth particle can depend only Xk - Xk-I and
Xk+1 - Xk, because of translational invariance.

In one dimensional dynamics, the force law between pulses is not expected
to depend on powers of pulse separation. However, the force law may have
a range. In the case of pulse gases, two funny things can happen. The pulse
pushes (or pulls) on the one ahead differently than on the one behind. So
we have an anisotropy and Newton's third law does not apply. The second
thing is that, in the force law, the range can be complex; that is the force can
be both exponential and trigonometric in its dependence on pulse separation.
This gives a pulse dynamics that can produce rather complicated pulse trains
where the pulses bunch up together and then leave goodly gaps. Next time
you look at a train of "solitary" waves, you should be aware that it may be
possible to give such a simple description of the structure of the train. But the
paradigm for this game remains convection near to threshold and we hope to
be be able to apply these notions in some detail for that case. To show how
that may go, we describe next the collective structures known as defects of the
convective patterns.

III. Defect Theory

We conclude with a brief discussion of topological defects in the solutions
of the nonlinear planform equations. Suppose such an evolution equation has
the form atA = F(V, A), which is a simplified form of (13). We shall call a stable
solution of this equation that is localized to a small region of physical space

I
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(called the defect's core) a topological defect of a macroscopic system, where
the medium is found to be in an unbroken symmetry phase. Examples such
as dislocations, grain broundaries and sources and sinks of traveling waves I
in convective structures have attracted considerable attention (e.g. Cellular
Structures in Instabilities, 210 of Lecture Notes in Physics eds. J. Wesfried and S.
Zaleski; Coullet, Elphick, Gil and Lega, Phiys. Rev. Lett., 50 1087); in particular
they are thought to play a role in the transition to turbulence (Cross and
Newell, Physica D, 10, 1984; Pocheau, Croquette and Le Gal, Phys. Rev. Lett, 55,
1980). In general these topological structures are expected to appear whenever
a system suffers a phase transition associated with the breaking of fundamental
symmetries.

Far enough from the defect's core the medium is an ordered state or in a
broken symmetry phase. In this region the defect solution takes values on a
manifold X hence the name topological defect. Let us illustrate these concepts
in the case of a dislocation in Rayleigh-Bdnard convection (See Fig. 1). In
this case we can represent the defect's core as the interior of a small circle
enclosing a point D, where the roll amplitude vanishes while its phase turns by
2r around it. (D is referred to as a point defect.) Physically this corresponds
to the insertion of an extra wavelength into a pattern of rolls. In this example,
the ordered state corresponds to the perfectly periodic roll structure (breaking

translational invariance) and X is a circle with radius ( %n') "' parametrized
by the roll phase, where R is the Rayleigh number.

We now introduce some mathematical tools (a readable introduction to
this topic is Mermin, Rev. Mod. Phys., 51 1970) that are useful to understand
the topological aspects of these localized structures. Let us assume that our
physical system occupies some continuous region R and suppose that the system
is an ordered state (broken symmetry situation) except in certain defect-regions
(points, lines, surfaces) where some broken symmetries are restored. (E.g. in 3
Fig. 1 since the roll amplitude vanishes at D, translational invariance is locally
restored in a small neighborhood of D.) We can describe this situation by
introducing an order parameter A defined in R - {defects) = V. Let us define X
(sometimes called the "manifold of internal states") to be the manifold where
A takes its values (in some cases X4 can be identified with the set of equilibria
of the system). So we have a mapping A: V - I.

Having defined this mapping it is natural to ask whether the singular re-
gions (the defect cores) where A is not defined can be removed or not by purely
local alteration of the order parameter configuration. To answer this question
we have to study the topological stability of a defect. To do this we surround
the defect-region by a subspace v C V. For simplicity we choose v to be a
hypersphere. If d = dim(R), d' = dim (defect), then dimv = d - d, - 1 := r. This
leads to a mapping A :r _+ 4. The defect under consideration is topologi-
cally stable if this mapping has some non-trivial topological aspect (such as a
non zero winding number) or in, other words, if there exists some topological
obstruction that prevents the disappearance of the defect. In our example of
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U Fig. I we are led to study mappings S' - S'. It is a mathematical result that
mappings from SI - S' (see Fig. 2) can be classified into homotopy sectors.
Mappings within one sector can be continuously deformed into one another,
whereas mappings from two jifferent sectors cannot be continuously deformed
into one another. Furthermore, each homotopy sector is characterized by an
integer N (the winding number of a mapping in that sector). The dislocation
shown in Fig. 1 corresponds to a topological defect belonging to the N = 1
sector and its stability follows from the following reasoning: Suppose we were
able to make it disappear. Then we could continuously deform the loop L to
a point. But then the winding number would have to make an abrupt jump
from N = 1 to N = 0, which would contradict the assumed continuity. A sim-
ilar reasoning gives the result that topological defects with vanishing winding
number are topologically unstable.

For a kink-like topological defect (the defect's core has dimension d' = d - 1
and Is sometimes called a domain wall; it corresponds to a surface in 3-d, a
line in 2-d and a point in 1-d) what we have said so far leads us to consider
mappings So - .4. S0 , the unit sphere in R, consists of the two points
±1. One of the points, +1, corresponds to a point on one side of the domain
wall, and the other, -1, to a point on the other side. It is fairly clear that
topologically nontrivial mappings from SO to X4 exist only if X is a disconnected
space, that is, if the set of equilibria of the system are related to each other by
a discrete symmetry gro.ip.

To illustrate these concepts we consider the case of a grain boundary in
Rayleigh-Bdnard convection (see Fig. 3). This is a system of rolls that meet
at a right angle.

A typical thermohydrodynamic field # can be expressed in terms of the
complex amplitudes A and B as 4 = Acik,:= + BeikdJ + cC. From the expression for
4 and Fig. 3 we see that this system possesses the discrete symmetry z --, y,3 A -- B. In this case, . can be identified with the equilibria of the system
that correspond to two disconnected circles, one circle parametrized by the
phase of rolls A and the other by the phase of rolls B. The two circles are
related to each other by the discrete symmetry group of the grain boundary.
Our topological considerations lead us to expect the appearance in this system
of stable kink-like topological defects. In fact, we can obtain these localized
structures by solving the amplitude equations for A and B (see Fig. 4),

I atA = jiA + e(a- 2k.o17Y)A - (IA12 + gJB I2 )A

I otB = AB + C - J-a.)2 B - (IB 12 + gIAI 2)B

where e and g are real constants and a = (R - R,)/R,. For stability of rolls,
Sg> 1.

So far our considerations have been purely topological. For a complete
description of topological defects we have to address also the dynamical aspects
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of these localized structures. For example using a method very similar to
that presented in the first part of this work we can study the interaction of
many kink-like topological defects. We are currently studying these issues (in
collaboration with J. Milovich) for the grain boundary system.

This work has been supported by the NSF under grant PHY 87-04250 to
Columbia University. We would like to mention once again that our coworkers
in various aspects of this work are E. Meron, Z. Qian and 0. Regev.
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I Fig. 1 A top view of a dislocation in R-B convection. The lines represent roll equiphases, The + (resp
-) sign indicates upward (reap. downward) fluid motion. Turning once around the loop L makes a jump

of 2r in the roll's phase. This corresponds to a dislocation with winding number N = 1. Physically this
corresponds to the insertion of an extra wavelength A . An anti-dislocation has winding number N = -1
and can annihilate a dislocation leaving the medium in a state with net winding number N = 0. The state
N = 0 is topologically equivalent to a perfectly periodic roll structure.
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-. j$I. In (a) the trivial mapping is givlen whet9 the circle Cl maps into oneI

point in the circe 02. In (b) a non trivial mapping is given,. Both (a) and (b) have N = 0 and can be
continuously deformed into one another by shrinking the undashed loop. In (c) a non trivial mapping with
N = 1 is shown; it cannot be deformed into (a) or (b).
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3 GENERATION OF BAROCLINIC MOTIONS FROM
BAROTROP!C EDDIES

Glenn R. Flierl
Cen.te.r for Meteorol and Physical Oceanography

MIT

I 1. Circular Eddies

Barotropic circular eddies can be unstable to baroclinic modes which cause
vertically-varying shifts In the axis of the eddy. McWilliams and Gent (1086)
first demonstrated this by numerical solution of the instability problek ',, show-
ing that an m = 1 barocllnic mode could appear in regions stable to barotropic
disturbances. Flierl (1088) studied this problem analytically using vortices
with piecewise constant potential vorticity fields. When the basic vortex has
no flow outside of a radius r > b with peak velocities at r = 1, the baro-
clinic "twisting mode" (the m = 1 mode, corresponding to tilting the axis in
the vertical) appeared In barotropically stable regimes when b > 2 and -1 (the
nondimensional inverse deformation radius) is smaller than 1.2/(b - 1). The In-
stability ozily appeared when the circulation In the deep fluid was in the same
ieflle as that In the upper "f"'2  I J " f.... r- NAAS- t-"-4'"L2"
Interpreted as a combination of two effects: shifting of the inner and outer
centers leads to dipolar propagation as In Btebuyck's summer fellowship lec-
ture (1986); tilts in the vertical axis lead to a rotational tendency. If these
two have the proper phase relationships they will reinforce an initial tilt and
center shifts.

Note that Squires theorem does not hold because the azimuthal wavenum-
ber is quantized; one can show that a barotropic jet in a periodic domain can3 likewise have the most rapidly growing mode be baroclinic. The circular eddy
geometry makes quantization natural; in addition, the m = 1 mode is, unlike
the zonal jet problem, not stationary.
2. Elliptical Eddies

We next consider the case of elliptical barotropic flow, generalizing the
results of Pierrehumbert and Bayly for infinite elliptical streamline patterns
q1 = (_1 - )Z2 /2 + (-y + C)y2 /2 to rotating and stratified flows. Following Bayly's
procedure of setting all fields proportional to exp(s(k(t)x+t(t)y,+mz)) and choos-
ing appropriate time dependence for k and I yields a Floquet problem for a
three vector of horizontal velocity amplitudes and i times the buoyancy ampli-
tude. We find a resonance point for e = 0 when the wavenumbers are related
by m 2 = 82,,_ N2)

(f + 2-y) 2 -_y2 ( 1)

I
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with s2 "- k + 2, which is constant to the appropriate order in Icl << 1. As C
increases (the flow becomes more elliptical), a band of instability will open for
m values around the resonant point. .

For nonrotating, homogeneous flows, the above equation is satisfied for
rn/s 3-1/2; but for the geophysically interesting case, with -Y < f << N, we
find instability for 

==
Thus the vortex must be anticyclonic and have a Rossby number greater than
1/3. Then the vortex can feed energy into internal gravity waves with an rn/s
value derived from the expression (1). Strong, anticyclonic, elliptical flows
may be a source for internal wave motions.

We also considered bounded regions of elliptical flows, taking the Kirchhoff
vortex as case of an barotropic exact solution with elliptical streamlines. When
the ellipticity is weak, the ellipse can be thought of as an azimuthal mode 2 :lis-
turbance upon a Rankine vortex. We used weakly nonlinear contour dynamics
inethods to solve for the evolution of a mode 2 barotropic disturbance and a
baroclinic mode 1 disturbance. The latter corresponds to a depth-dependent
shift in the position of the axis of the vortex. The coupled equations for the
amplitudes of these two modes are then treated as a perturbation problem
with the baroclinic disturbance being much weaker than the barotropic am-
plitude. A critical value of the ratio of the deformation radius for the vertical
structure in question to the vortex radius of 1.7-1/2 was derived. (This can
also be thought of as mR = 1.71/ 2 N/f in analogy to the expression above for
rn/s; now, however, the perturbations are geostrophic rather than internal
waves.) Again, as the ellipticity increases, we expect their to be a wider range
of unstable vertical wavenumbers. Numerical computa*ans with a two layer
contour dynamics code initialized with a barotropic ellipse with a 2:1 aspect
ratio (stable to barotropic perturbations) demonstrate that the instability i-
deed shifts energy from the elliptical mode into displacement of the centers in
the two layers (with the eddies becoming more circular). The instability seems
to vacillate, but it may be that the contour will steepen and break off filaments
at some point in the evolution, causing an effectively irreversible change in the
eddy structure.

References
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I
SOME STRAIT TALK

H Chris Garrett
Dalhousle University

The Strait of Gibraltar is an exciting and important place oceanographi-
cally and raises many interesting problems In geophysical fluid dynamics.

A key question is whether the exchange through the Strait, that is re-
quired by an excess of evaporation over precipitation in the Mediterranean,
has been driven to a maximum "overmixing limit by strong mixing in the
Mediterranean. This has been proposed by Bryden and Stommel (1084), and
elaborated upon by Farmer and Armi (1986) using their two layer hydraulic
theory. Historical data cannot be easily interpreted in terms of these idealized
theories, so Myriam Bormans and I have been concerned with the importance
of non-rectangular cross-sections, the earth's rotation, friction and barotropic
fluctuations. Details are given in the papers cited below, but one elementary
general consequence of simple scaling arguments is that the importance of
the earth's rotation depends not only the ratio of the strait width to internal
Russby radius, but also on the Froude number.

As assessment of a wide variety of data sets in the light of the models
leaves the question of maximal or submaximal exchange unresolved; maybe
the exchange alternates between the two states on time scales that we do
not know and for reasons that we do not understand. The problem is worth
pursuing. in view of the potential of the Strait of Gibraltar as a "choke point"
for monitoring changes in the Mediterranean.

References
Bormans, M. and C. Garrett, 1988; The effects of non-rectangular cross-

section, friction and barotropic fluctuations on the exchange through
the Strait of Gibraltar. J. Phys. Oceanogr. (submitted).

Bormans, M. and C. Garrett, 1988; The effect of rotation on the surface inflow
through the strait of Gibraltar. J. Phyis. Oceanogr. (submitted).3 Bryden, H.L., and H.M. Stommel, 1984; Limiting processes that determine
basic features of the circulation in the Mediterranean Sea. Oceanologica
Acta, 7, 289-296.

Farmer, D.M., and L. Armi, 1986; Maximal two-layer exchange over a sill and
through the combination of a sill and contraction with barotropic flow.
J. Fluid Mech., 164, 53-76.

Garrett, C., J. Akerley, K.R. Thompson, 1988; Low frequency fluctuations in
the Strait of Gibraltar from MEDALPEX sea level data. (in prepara-
tion).
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NONLINEAR WAVES, SOLITONS AND WAVE TRANSPORT
IN BUOYANT CONDUITS

Karl R. Helfrich and John A. Whitehead
Department of Physical Oceanography 3
Woods Hole Oceanographic Institution

Fluid of a lower density and viscosity can buoyantly rise through a viscous 3
fluid in a field of gravity through conduits. These conduits support simple
pipe, or Poiscuille, flow. However, the conduits are surprisingly rich in their
behavior because of the movement of the pipe wall which may be expressed
as a nonlinear partial differential equation having propagating wave solutions,
including solitary waves. There is interest in the conduits for several reasons.
One is that geological and geophysical counterparts of conduits may actually I
exist in the Earth as rising plumes of low viscosity material. Secondly, the
conduits are a simple analog of compaction driven flow in a porous viscous
matrix. Thirdly, the conduits support solitary waves which exhibit soliton- I
like behavior.

Laboratory experiments on the characteristics of the solitary waves and
their interactions have been conducted and compared with theory. The ob-
servations of shape and phase speed of individual waves show good agreement
with the theoretical predictions. Large amplitude waves traveled slightly faster
than the theoretical predictions. The discrepancy is probably due to higher I
order effects associated with wave slope not accounted for in the theory. In-
dividual wave characteristics (shape, amplitude and speed) were very nearly
preserved after collision with another wave. A phase jump of each wave was
the main effect of a collision. The larger (faster) waves increased in amplitude
by an average of 5 percent after collision and their phase speeds decreased by
an average of 4 percent. The small wave was unchanged. Numerical solutions
over-predicted the magnitude of the observed phase jumps by about 40 percent
when compared to the experiments.

It is also shown theoretically and confirmed experimentally that all soli-
tary waves have closed streamlines in a frame moving with the waves. Thus,
isolated parcels of material will be trapped within the closed streamlines and
transported upward over large distances. Calculations indicate that material
in these parcels will be far less contaminated by diffusion from the surround-
ings than material in ordinary pipe flow where longitudinal stretching and •
lateral diffision dominate. We suggest such waves might exist in the mantle of
the Earth and convey uncontaminated deep mantle material to the surface of
the Earth.
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I EXACT NON-REFLECTING BOUNDARY CONDITIONS

IJoseph B. Keller and Dan Givoli
Department of Mathematics and Mechanical Engineering

l Stanford University

An exact non-reflecting boundary condition is devised for use in solving
the reduced wave equation in an infinite domain. The domain is made finite
by the introduction of an artificial boundary on which this exact condition is
imposed. In the finite domain a finite element method is employed. Although
the boundary condition Is non-local, that does not affect the efficiency of the
computational scheme. Numerical examples are presented which show that the
use of the exact non-local boundary condition yields results which are much
more accurate than those obtained with various approximate local conditions.
The method can aluo be used to solve problems in large finite domains by
reducing them to smaller domains, and it can be adapted to other differentialIequations.
Introduction

To solve the reduced wave equation numerically in an unbounded domain,
It Is usual to Introduce an artificial boundary B to make the computational
domain finite. Then some boundary condition must be imposed on B. We shall
show how to obtain an exact boundary condition there, and how to combine
it with the finite element method in the computational domain. This leads to
an efficient method which eliminates the defects, such as spurious reflections
from B, which arise in other procedures.

We shall also show how to solve a problem in a large finite domain by
cutting out a large regular subdomain, thus introducing an artificial boundary
B. This leaves a smaller computational domain bounded in part by B. On B
we shall again obtain an exact boundary condition and use it with the finite
element method in the computational domain.

Naturally there has been a great deal of previous work on these subjects.
In order to see how the present work is related to it, and to what extent the3 present work is novel, we shall describe some of the previous methods. The
simplest and most usual boundary condition is

U,(x) = tku(x) , x on B. (1)

Here u(x) is the unknown scattered field, u,, is its outward normal derivative,
and k is the wave number. This condition is of the same form as the Sommerfeld
radiation condition, which is exactly correct when imposed at infinity but only
approximately correct when imposed at a finite boundary B. As a consequence
the use of (1) leads to the spurious reflection of waves from B. The magnitude
of the reflected wave increases the more the direction of the wave u deviatesI

SI



from the direction normal to B, so it increases as B is moved closer to the
scattering region.

In order to dininish the spurious reflection, various authors have devised
improved local boundary conditions. Engquist and Majda (1) did so by ex-
pressing u, exactly as a pseudodifferential operator applied to u on B, and
then approximating this operator by the local differential operators given iM

(65) and (66) below. Bayliss and Turkel (2) used the asymptotic expansion
of u far from the scatterer to obtain similar approximate local boundary con-
ditions. Feng (3) obtained an exact non-local condition involving an integral
over B of u multiplied by a Green's function, and then he approximated it by
various local conditions, such as (07) below. However all these local boundary
conditions still lead to spurious reflection.

Gustafsson and Kreiss (4] considered a hyperbolic system of equations for
two functions of z, y and t in a waveguide. They obtained an exact non-local
boundary condition involving the Fourier coefficients of the solution, and dis-
cussed its use in a finite difference method. Hagstrom and Keller [5] formed
an exact boundary condition in a cylindrical domain in terms of the eigenfunc-
tions and eigenvalues of a problem in the cross-section of the cylinder. They
also proved the existence of an exact boundary condition for certain nonlinear
problems, and gave an asymptotic expailsion for it. Ting and Miksis [0] ob-
tained an exact boundary condition by expressing u on B as an integral of u
and u, over a surface interior to B, using the free space Green's function.

The work most closely related to ours is contained in Fix and Marin [7],
MacCamy and Marin [8], Marin [9], [10) and Goldstein [11). In all of them
an exact boundary condition is imposed on B and the finite element method
is employed in the computational domain. In [7] this boundary condition is
found analytically for a waveguide and some numerical results are given. In
(8] two dimensional exterior domains are considered. The boundary condition
involves the solution of an integral equation on B for which numerical methods
of solution are given. The convergence of the finite element method with this
boundary condition is proved. A summary of these results and a numerical
example are presented in [9]. Goldstein [II] presents a survey of previous work,
and gives a convergence proof for the finite element method with an exact
boundary condition on B in the case of two dimensional exterior problems and
waveguides.

In contrast with the method of MacCamy and Marin [8] and Marin [9], we
choose B to be a circle in two dimensional exterior problems and a sphere in
three dimensional ones. As a consequence we can express the exact boundary
condition explicitly in terms of known fuctions rather than in terms of the
solution of an integral equation which is obtained numerically. This results
in a simpler and more accurate method, which is similar to that used by Fix
and Marin [7] for waveguides. It enables us to discuss the bandedness of the
finite element stiffness matrix, the separability of the integrals in the boundary
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condition, and the best choice of the radius of B in terms of the computational
accuracy and cost.

We shall present the solutions of some test problems obtained by our
method. We shall compare them with exact solutions and with numerical
solutions involving the Sommerfeld condition (1), the Engquist-Majda condi-
tions (65) and (06) and the Feng condition (67).

We shall also obtain the exact boundary condition explicitly for Laplace's
equation in both exterior and interior domains. Then we shall present a simple
convergence proof of the finite element method with this boundary condition.

At first sight it seems that the non-locality of the exact boundary con-
dition might spoil the banded structure of the finite element matrix, and the
complexity of this condition might require a great deal of computation. How-
ever neither of these difficulties occurs. In fact our results using the non-local
conditions are more accurate than those obtained by using approximate local
conditions, and they require about the same computational work.

We present the finite element formulation for the reduced wave equation
in a infinite domain. The exact boundary condition is formulated, and we
also show how the methnd can be applied to large finite domains. The con-
vergence of the scheme and some computational aspects is discussed and we3 present some numerical results and compare them to those obtained by using
the approximate local boundary conditions proposed by other authors.
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DEEP CONVECTION IN THE WORLD OCEAN U

Peter D. Killworth I
Deacon Lab. of the Institute of Oceanographic Sciences

Hooke Institute for Atmospheric Research
Department of Atmospheric Physics
Clarendon Laboratory, Parks Road

Oxford OXI 3PU, England

The observational background to deep oceanic conviction is discussed, tak-
ing two main scenarios as paradigms. The first is the "classic" sinking of dense
water down and around a continental slope. Five separate ingredients appear
to be involved. The first is a reservoir on which dense water can form; in the
paradigm, this would be a wide, shallow continental shelf. The second is a
source of dense water within the reservoir, frequently the efflux of dense brine
by the freezing of sea ice. The third is a reason for dense water to descend to
depth (since dense shelf water can be geostrophically balanced against lighter
sea water); instabilties or pre-existing wind- or buoyancy-driven circulations
can serve as this mechanism. Observations suggest that a multiplicity of water
masses always seems to be a fourth ingredient. The last ingredient is merely
that the densities, dynamics, and geography do permit the dense water to sink;
for example, it appears that the variation of expansion cofficlent with depth
plays an important role in the energetics of the descent of Weddell Sea Bottom
Water.

The second scenario is open-ocean convection, of which the classic example
is' "tertime deep convection in the Mediterranean. Again, certain ingredients
are necessary. First, a background cyclonic circulation, to produce an upward
"doming" of isopycnals is necessary. Second, a "preconditioning" mechanism,
usually ill-defined, is needed to select an area for future convection. Third,
in common with slope convection, more than one water mass appears always
to be involved. Fourth, a sufficiently strong surface forcing is involved. These
ingredients combine to yield a narrow violent mixing region, followed by a
poorly understood sinking and spreading phase.

Observations have historically concentrated upon the convective events
themselves, and much less upon the interaction between the larger scale flows
(in which the convection is embedded) and the convective events. In particular,
the way in which convection modifies its own environment - and hence alters
future convective events - is poorly understood.
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FLOWS PRODUCED BY DISCRETE SOURCES OF BUOYANCY

I Peter D. Killworth
Deacon Lab. of the Institute of Oceanographic Sciences

Hooke Institute for Atmospheric Research
Department of Atmospheric Physics
Clarendon Laboratory, Parks RoadIOxford OXI 3PU, England

(Work joint with M.K. Davey of the U.K. Met. office is reported)
The response of an ocean with a single active dynamical layer (notionally

with an infinitely deep upper layer above it, of slightly less density) to localised
buoyancy forcing on a beta-plane Is considered. The archetypal oceanic prob-
lem would be a localised source of dense water (indeed, some discussion of the
Mediterranean outflow was given in the talk).

It is shown that three regimes exist. When the forcing is very weak, the
response is linear, and consists oi a quasi-steady "tube" of fluid stretching
westward from the forcing region, with a front advancing at the long Rossby
wave speed, and some transient structure in the vicinity of the forcing. (It has
not been possible to find an equivalent solution for the case of an f-plane with
a sloping bottom, so that the experiments of Whitehead, and of Linden, may
be intrinsically nonlinear). When the amplitude of the forcing is increased, po-
tential vorticity contours are sufficiently deformed to permit instability both
in the forced region and to its west. The response becomes a series of shed
eddies, each of which propagates westward almost independently of its neigh-
bours. Further increase in forcing amplitude yields a completely unsteady
response.I

LARGE SCALE FLOW IN TURBULENT
RAYLEIGH-BENARD CONVECTION

I Ruby Krishnamurti
Florida State University

Laboratory experimental data was reviewed which showed the occurrence,
at certain Rayleigh numbers of a large scale horizontal shear flow U(z) in tur-
bulent Rayleigh-Benard convection. Measurements of turbulent velocities and
their correlations show that, in the horizontally-averaged horizontal momen-
tum equation, the balance is between the Raynolds stress divergence a/az(i-)
and the divergence of the viscous stress on the mean flow vd 2ig/az2 where U is
the horizontally averaged u, which is the horizontal velocity component, w is
the vertical velocity component, z the vertical coordinate and v the kinematicI

I
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viscosity. A nomizero averaged stress U-0 is associated with the vertical tilting of
convective plumes, and leads to a vertical transport of horizontal momentum
tip the gradient of U.

In a low order model of Rayleigh-Benard convection it was found that
tilted cellular flows arise as an instability of the usual upright cells. A further
bifurcation to tilted transicnt plumes results in many of the laboratory-observed I
features such as a large scale shear flow U(z) and countergradient monentum
transport of horizontal momentum by the tilted plumes.

These ideas were applied to the numerical weather prediction problem of
"systematic errors" in the forecast, i.e. a secular drift to a different climatol-
ogy after long time integration. In spite of our lack (to (late) of laboratory
data on the parameter dependence of this momentum transport by convective
plumes, we nevertheless attempted to incorporate these ideas in a parameter-
ized countergradient transport of horizontal momentum by shallow cumulus
convection in the tropical troposphere. Using the FSU global spectral model
truncated at T42, and ECMWF global data from February 1979, we found a
marked decrease in the systematic error of a 15-day integration, particularly
through better maintaining the strength of the Trades in the region of the
Pacific ITCZ.

UPPER BOUNDS ON FUNCTIONS OF THE
DISSIPATION RATE IN TURBULENT SHEAR FLOW.

W.V.R. Malkus and L.M. Smith
Deptartment of Mathematics, MIT

The search for a statistical stability criterion characterizing steady state
turbulent shear flows has led us to the study of a function we call the dissi-
pation rate Nusselt number. It is proportional to the ratio of the fluctuation
dissipation rate and the dissipation rate of the mean. The first Euler-Lagrange
equations for an upper bound of this function have optimal solutions with the
observed scaling laws and an asymptotic velocity defect for turbulent channel
flow. As in the case of maximum transport, the optional solution for the model
equations is a discrete spectrum of stream-wise vortices. It is shown how these
solutions can be brought closer to the realized flow with additional constraints
on the smallest vortex.

A second test of the generali:tability of the dissipation rate Nusselt num-
ber is sought in comparing the predicted extremes for Couette flow with the
(limited) observations. Both extrema and observations indicate that the ve-
locity defect will vanish at large Reynolds number in Couette flow. New data
is needed to evaluate this unexpected conclusion.
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L stly, steps to deduce this remarkably simple -statistical stability criterion
from ,relative stability arguments lead to just those integrals which appear in
the criterion - yet to date, not In the correct configuration.

EDDY-WALL INTERACTIONS

Doron Nof
Department of Oceanography

Florida State University
Tallahastee, Florida 32306

A nonlinear one and a half-layer model was considered to examine the
collision of isolated eddies with vertical walls. The round undisturbed eddies
were allowed to have relatively large amplitudes; they were bounded by a
free streamline beyond which the ocean Is stagnant. The Inviscid interaction
was described by, conceptually, 'cutting" the eddies with a straight vertical
wall. The resulting events were studied using a perturbation expansion in , the
nondimensional penetration of the wall into the vortices, i.e., "weak" Interac-Itions are examined. Two class of eddies were considered. The first consists
of linear quasi-geostrophic eddies (i.e., small amplitude and slow circulation)
that were weakly Interacting with a wall whereas the second involved mod-
erately nonlinear eddies (i.e., relatively high amplitude and fast speed) that
again were weakly Interacting with the wall. Analytical solutions for times
of (where f is the Coriolis parameter) and an infinitely deep lower layer were
constructed by applying the conservation of potential vorticity, energy and
integrated momentum.

It was found that the first clar s of eddies (linear quasi-geostrophic eddies)
leak fluid as they interact with the wall. When a quasi-geostrophic anticyclonic

"-wortex interacts with a wall, it leaks fluid from its right-hand side (looking off-
shore in the northern hemisphere) whereas a quasi-geostrophic cyclonic vortex
leaks from its left-hand side.

Surprisingly, the second class of eddies (moderately nonlinear eddies) be-
have in a very different way. Due to the high inertia of these eddies, the leakage
associated with a weak interaction is completely blocked and the adjustment to
the presence of the wall is confined to the contact area. This bizarre behavior
stems from the high speeds along the eddy's rim which choke the leaked flow.
When these high speeds are relaxed the leakage re-appears.

Simple qualitative experiments on a rotating table support the conclusion
that eddies with small speeds along the edge leak. It was speculated that the
interaction of warm-core rings with the Gulf Stream has some similarities to
the interaction of an anticyclonic vortex with a solid wall. Furthermore, it was
speculated that the loss of mass observed during such ring-Stream interactions
is a result of the leakage predicted by our theory and experiment.I

I



MESOSCALE CONVECTION IN THE OCEAN

Donald 3. Olson I
Rosentiel School of Marine and Atmospheric Science

Observations of convective modification within inesoscale (L - R,) field in
the oceans are reviewed. The role buoyancy generated convection plays in wa-
ter mass modification is considered with simple one dimensional and $/S space
models. It is concluded that mesoscale rings formed from western boundary
currents are natural sites for intermediate depth convection because of the ten-
dency for anticyclonic or warmn ring production to introduce high temperature
surface waters to climatologically cooler atmospheric conditions. This air-sea
interaction anomaly is responsible for convective mixing of surface waters to
greater density horizons than is possible in the parent water masses in the sub- I
tropical gyres of the ocean. Observed convected cells in a Gulf Stream warm
core ring are described. These features found in a survey of ring 82B (second
ring of 1982) are approximately 10 - 12 km in diameter compared to the ring I
length scale, as measured by the radius of its velocity maximum of 60 km. This
recently convected patch of fluid Is 0.02 kg m - 3 denser than the rest of the ring's
adiabatic core. This density anomaly and the 303 mi thickness of the layer gives I
the feature a perturbation radius of deformation of Rj = %iFW/f = 2.5 km. The
feature is expected to produce velocity anomalies based on a perhaps ques-
tionable geostrophic scaling of 0.10 m 3- 1 as compared to ring velocities of
0.60 m s - 1. Observations of the temporal evolution of the convected region in
ring 823 using satellite imagery suggests it was advected around the ring by
the ring's swirl velocity, and slowly sheared out into a thin filament; i.e. the
shear in the ring destroyed any tendency for the region to maintain its identity
for more than a week. Observations in both this Gulf Stream ring and a ring 3
from the Agulhas Current show, however, that the ring cores remain inho-
mogeneous over time scales of several months. Colder more dense well mixed
layers are often found underlying the main convectively mixed region or stad 1
in these rings. It is speculated that these sub-thermostad layers are derived
from the ring edge. A nonlinear mixed layer model coupled with the conser-
vatior of angular momentum is formulated to further consider this problem. I
Finally estimates are made of the importance of convection within mesoscale
features to the larger scale distribution of properties in the ocean. It is found
that although rings in the Gulf Stream system are not important in terms
of their contribution to the planetary heat and salt fluxes they can dominate
the character of the near surface water masses and play an important role in
the ventilation of a portion of the subtropical gyre thermocline. Convective
modification of waters in the mesoscale field contributed to the South Atlantic
by the Agulhas 2:nay dominate the central water properties of its subtropical
gyro.

I
I



I
143

ENTRAINMENT AND DETRAINMENT IN CUMULUS CLOUDS

U David J. Raymond
Physics Department and Langmuir Laboratory

for Atmospheric Research
New Mexico Institute of Mining and Technology

S1. Introduction Socorro, NM 87801

In this talk we first lay out a framework In which the effect of cumulus
clouds on large scales may be discussed. We then present current ideas as to
what cumulus clouds actually do to large scales. Emphasis here is on non-
precipitating clouds.

2. Framework
The basic equations are

V. (pov) = 0 (1)

3 for mass continuity, where pa is the ambient density as a function of height,
09
-$ + v.VO=H* (2)

for potential temperature, where H" is the rate of change of 0 due to conden-
sation and evaporation of water, and

57 + v(3)

for equivalent potential temperature.
We define a horizontal low pass filter operator < > and divide 0 and 0, into

slowly and rapidly varying parts:

e=< > +0' ()

Ge =< , > +,.4

The low pass filter is assumed to have the property that < 0' >=< 01 >= 0.
Applying the low pass filter operator to the potential temperature equation

results in 00
re utsi (9 < > v , < v > " > --- V . (po < vO' >) -< HI > .()

at Po

Note that we have not performed a conve ntional Reynolds separation, because
the velocity has not been split into Lmoothed and fluctuating parts. This

I
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Is because the fluctuating velocity associated with a cumulus cloud does not
necessarily average to zero as required by a Reynolds separation.

We now define a quantity

< M >< /a < a > l(6)

and further define
< Y, >=< Y > -k < m > . (7)

Equation (5) simplifies to

< >+ <  V, > N < O >= o (8)

when < v > is eliminated in favor of < v. >, The quantity < V. > is actually
the velocity of the air in the dry environment surrounding any cumulus clouds
that may exist. Since the motion of the environment is adiabatic, we call this
the adiatiic velocity. Notice that the adiabatic velocity by itself doesn't satisfy
the continuity equation. Physically, this is because air Is continually flowing
back and forth between the environment and cumulus clouds.

Eliminating < v > from (1) and low pass filtering results in

V.(po <v,, >) = -apo <M > o<S>()
ax

Clearly, -apo < m > laz plays the role of a source term for the maxs continuity
equation. The quantity po < m > is thus the horizontally smoothed vertical flux
of mass due to cumulus clouds. Since < v. > describes only adiabatic motions,
p0 < m > must include all diabatically induced vertical motions, including those
due to the evaporation of liquid water as cloud material is injected into the
environment.

A similar treatment for the equivalent potential temperature equation re-
sults in

a<$,> -3<e0,> 1a~ > aoz> -- V.(po<vO>)_<E>, (10)+'t < v, > .V< 0, >= - < M > - z (Po <Vl> = ,(

which may not immediately look like a simplification, as equivalent potential
temperature has acquired a rather complex source term, < E >. However,
many models of convection treat < vO ,> as a sum of currents carrying air
vertically from one level to another, i. e.,

< v8" >,- k ,lo- < oo >It
i
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Nwhere 0' in each current has been equated to the actual equivalent potential
temperature in that current, 0,,, minus the mean equivalent potential temper-
ature. The total mass flux Is the sum of the partial mass fluxes, i. e.1

<m >= Em, (12)I i
so E simplifies to

I _L E 0 gi < s, >) -, E o (13)PO . i a

and the determination of < E > reduces to the determination of mj(z) and
.,#(z) for each current. If no entrainment or detrainment occurs between the

beginning and end of each current, (13) simplifies even further. Since equiv-
alent potential temperature Is then conserved in transport along the current,
the last term in (13) vanishes and the deriative a(pomi)/az reduces to delta
functions at the top and bottom limits.

If a chemical species with mixing ratio X and source function C* exists in
the environment, It obeys the equation

ax+V . V = C'. (14)

Similar treatment results in a smoothed equation for the mixing ratio of the
species, a<X>+><

* ~at (5

where
<c>=<c' > (16)

POi a a

This Is a way to describe the effects of cloud chemistry on the environment.
The above framework was first proposed by Ooyama (1071) for the special

case in which the currents took the form of entraining plumes, and was later
generalized by Raymond (1087).

3. The coupled current model
We now investigate an approximation scheme in which a cloud is charac-

terized as a system of coupled mass currents, each of which neither entrains
or detrains along its length. Each current originates from some mixture of
the environment and the output of other currents, and each current discharges
into other currents, the environment, or some combination thereof. Since the
mass flux along a current is constant under these assumptions, we have

apomrn17
Opomf = Ai[(z - ai) - 6(z - bi)l, (17)

I
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where a, Is the starting level for the i'th current and bi is its ending level. The
constant mass flux associated with that current Is p .

Under these conditions, (13) reduces to

< .E >= - I JpI(z - aj) . .- 6(z - bj)6', ], (18)
PO

where 9C".,,(al)- <9.,(.a)> (19) =

and
'.b= 9.(b)- < 9.(bi) > (20)

Thus, only the values of the equivalent potential temperature at the beginning
and end of the channel relative to the environment at those levels are impor-
tant. In a finite difference model the delta functions could be spread out over
a single grid interval.

For a chemical species the corresponding equation is complicated by the
presence of an Intrinsic source function C° , and the possibility that the mixing
ratio might change along a current due to chemical processes. However, these
two effects nearly cancel each other out. This may be seen by noting that

< c" >=< C.' > + cis, (21)£I

where we have divided the smoothed source term into a part occurring in the
environment and a part occurring in each current. As long as a statistically
steady state exists, the time rate c' 'hange of the concentration of a chemical
species in a parcel moving up o- 1k vn a current should equal the vertical
velocity times the z-derlvative of t-e concentration along the current. When
appropriate smoothing is done, this results in

Ci -- i (22)

whence < C >=< C.,, > _ 46p,[(z - a)X - 6(z - b)x], (23)
P O 

•

where the definitions of X' and X' are analogous to (19) and (20).

4. Graphical notation and examples
It is possible to represent the currents in a cumulus cloud by arrows in a

graphical notation. We adopt the convention that arrows entering from the
bottom represent pure cloud base air, while those entering from the left side
represent environmental air. Arrows either terminate at a junction of currents
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I
or exit into the environment, depending on the disposition of the contents of
that current.

Figure 1 shows diagrams describing unmixed parcel ascent, an entraining
plume, and a detraining plume. Unmixed parcel ascent requires no explana-
tion, but the other two do. Because individual currents cannot entrain, the
entrainment in the entraining plume must be represented as a sequence of dis-
crete events in which the current representing a segment of the plume mixes
with a current from the environment, the mixture feeding the next plume
segment.

The detraining plume is even more complex. The initial current from
cloud base splits into two currents, one of which mixes with a current from the
environment and exits to the environment. The other branch ascends, again
bifurcates, and the two sub-currents repeat what happened in the first step.
This goes on until the last bit of cloud base air is used up.

These diagrams make it clear that a detraining system is much more complex
than an entraining system because multiple currents containing cloud base air
have to be accounted for.

It is possible to translate the aqove diagrams directly into mathematical
expressions by entering the properties of each stream into the sums of (18)
and (23). For example, the case of unmixed ascent has only one current with

0, since it is picking up environmental cloud base air at that point. AtI tihe upper level 0'1, = O,(cloudbase) - O,(cloudtop), and

< E >= A 6(z - Ztop)(Oe,(base) - BetpI.(4
* P°

For an entraining plume with one entrainment event, we find

< E >= L-(z - z,,.,)OCt -t + 'Ltt" 16(z - Z,ld)8c2 - 6(z - ztop)OO3I, (25)PO PO

where O,1 = O,(base) - 0,(mid), 0,2 = 0,(miX) - 0,(mid), and 0, 3 = 0"(miX) - 0,(top).
The value of 0, in the upper current is given by linear mixing with the envi-
ronment in proportion to the mass flux, i. e.,

O,(mix) = g(10 base) + -L- nvc,(mid) (26)

A bit of algebra shows that the mid-level terms in (25) cancel, resulting in

I E >= + Au 6(Z - zp)O, 3. (27)
PO

In other words, an entraining plume only modifies the environmental 0, at the
level of final detrainment.I

I
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5. What actually happens in cumulus clouds
Raymond and Dlyth (1086) present observations of the detrained mass flux

of cumulus clouds F as well as the results of corresponding model calculations. I
(F is the mass source term < S >, defined in (9), divided by the number of
cumulus clouds per unit area.) The model is equivalent to a detraining thermal
model with the proviso that detrained material mixes in varying proportions I
with environmental air and then rises or sinks to its level of neutral buoyancy
before exiting the cloud.

Figures 2-4 show the computed and measured F(z) for four different cases. I
The observed detrained mass flux in figure 2 is from a composite of cumulus
congestus clouds that occurred during the summer of 1982 over the Magdalena
Mountains in central New Mexico. Note that even though cloud top was near
500 mb, air was detrained primarily near cloud base, or between 600 and 700
mb. In other words, cloud base air that reached cloud top typically sank
almost back to cloud base after mixing with environmental air. The model
shows quite similar results.

Figures 3 and 4 show two cases (also observed over the Magdalena Moun-
tains) in which thin detrainment layers aloft occurred. These layers were at
least qualitatively predicted by the the model. Note that in both these cases
substantial detrainment also occurred near cloud base. More details on these
studies may be obtained from the above-referenced paper.

Note that the observed cloud tops in figures 2 and 4 actually exceeded
the predicted cloud tops, which were simply the equilibrium levels for a non- I
entraining parcel. This definitively eliminates the entraining plume as a possi-
ble model for these clouds, since entrainment would imply a maximum cloud
top height much less than the undilute equilibrium level.

6. Summary
In this talk I have attempted to develop the conceptual and mathemat-

ical basis for describing cumulus models with a multitude of interconnected
flows. I then showed that entraining and detraining models were conceptually
very different in spite of the symmetry in terminology. Finally, I presented
observational results that can only be explained by a flow that is functionally
equivalent to a detraining thermal. Whether cumulus clouds actually take the
form of detraining thermals, or whether some more complex flow is mimicking
this behavior is unknown at this point.

References
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Meteor. Soc. Japan, 49 (special issue), 744-756.
Raymond, D. J., and A. M. Blytb, 1986: A stochastic mixing model for non-
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Figure Captions
Figure 1. Coupled current diagrams describing models of mixing, entrain-

ment, and detrainment. a) The unmixed parcel is represented by a single
current. b) The entraining plume is split into segments of no entrainment
separated by Impulsive entrainment events. c) The detraining plume splits off
sub-currents which mix with environmental air.

Figure 2. Observed and predicted detrained mass fluxes for a composite
case of cumulus congestus clouds over the Magdalena Mountains of central
New Mexico. Note that even though cloud top exceeded 500 mb, most mass
detrained between 000 and 700 mb.

Figure 3. As in figure 2, except a single case on 24 July 1080. In this case
detrainment occurred both below cloud base and at middle levels. The two
different curves on the left indicate two different imposed cloud base temper-
atures.

Figure 4. As in figure 3, but case of 23 July 1084. Note again the strong
detrainment well below cloud top.

I
I
I
I
I
I
I
I
I
I
I



150 F'r I

a.) U',, , ,J p.. c I ) IE ,t',- ,,,v,,, F Iv

C.) D~ois~PIllm



3Fig. 2 151

ULt

LUU

IN 0 LL.
mJ o

* 0

3 0

o 0.
0. 0

0

0 '
Q

ui LU
0 E.

0 0C
m LL

00I I0

Iot



152 Fig. 31

0)0
wNc o 1

N0 -o

c', 0 U

o00 0 0 00

C14 C) 'LO 0t PD

0 r0
LU '.4

cc4 U.
eq

0 
m

'. 5 0 I0C4 toW
*qu sunsl



Fig. 415I41 5

* 0

LL

Ic 0 t,

*q)3ns8



i
154,

DYNAMICAL MODELS FOR MELT SEGREGATION

Frank M. Richter
University of Chicago

The most pervasive form of relting in the earth Is due to decompression, as
in the case of mid-ocean ridges where thC 3urface divergence of the plates forces
adiabatic upwelling and partial melting of order 20%. Since the oceanic crust
is made up of pure melt phase, there must exist a mechanism for separating
melt from residual solids, which in turn implies that the residual solids must
themselves be deformable.

McKenzie has developed a formalism for describing the process of melt
segregation from a deformable residual matrix In terms of a compacting porous
medium, and in this talk I will consider some of the solutions that have been
found. The simplest situation involves the one-dimensional compaction by
gravity of a melt-matrix mixture resting on an impermeable base. If the
melt fraction is given as an initial condition the subsequent evolution of the
system involves a compaction boundary layer at the base where the matrix
deforms to invade the Interstitial pore spaces and push out the melt. Above
this boundary layer is an Interior regime where the pressure gradient due to
the flow of melt Is sufficient to balance the tendency of the matrix to deform.
As melt is exhausted from the boundary layer, the boundary layer grows at
the expense of the interior regime and eventually dominates the system.

Another class of solutions to the McKenzie equations is solitary waves of
excess melt fraction. Such waves will arise if the rate of melting is hetero-
geneous in the sense of there being local regions characterized by more rapid
melting. The.e ',aves can be one, two, or three-dimensional. We can show that
the one-dimensional solitary waves are unstable to the two-dimen.Ional waves
and expect that two-dimensional waves are themselves unstable to three-
dimensional perturbations.

EFFECTS OF GEOTHERMAL HEAT FLUX AND TOPOGRAPHY
ON THE

CONVECTIVE VENTILATION OF CONFINED BASINS

Claes G.H. Rooth
RSMAS, University of Miami

Convective ventilation of confined ocean basins requires, in steady state, a
compensating buoyancy flux which can be supplied either by downward forced
convection (mixing/eddy diffusion) of buoyancy, or by geothermal heating ef-
fects. The latter are usually considered dynamicaaly negligible in deep ocean
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I
circulation analysis but isolated deep basins tend to develop almost adiabatic
stratification in their deepest layers, allowing even weak interior buoyancyIsources to become significant.

The intensity of the geothermal heat flux can be taken as uniformly Cis-
tributed over the horizontal projection of the basin area. The heat input per

-- unit depth is then proportional to the gradient of cross sectional area with
depth, dA/d.z. This provides a dynamic link between the basin topography
and the convective ventilation, since the stratification will be modified by any
buoyancy flux imbalances in such a way as to minimize them,

Killworth and Turner (1082) demonstrated that a transient basin filling
experiment with a time-modulated buoyancy source could be effectively mod-
elled based on a triple time scale mean field interaction approximation. The
convective process is treated as a quasi-stationary response to a slowly varying
buoyancy source, while the time scale of latter is in turn taken as fast compared
to rate of evolution of the interior basin state. For this case, one or several
time-variable convective sources can be treated as an ensemble of simultane-3ously acting (parallel) sources. For such an ensemble, let the integrated buoy-
ancy flux across a level surface be B. Then it is easily seen that dB/dz = NV,
where N is the buoyancy (Brunt-Vaisala) frequency for the interior domain,
and V is the integral volume flux for the convective plume ensemble (z is taken
as positive upwards). An identical relation couples the buoyancy flux gradient
for any individual plume to its volume flux and the interior stratification. An
interesting consequence of this is that the deep basin stratification is expected
to approximately mirror the hypsographic curve.

To close the problem, we must formulate a predictor for the mass flux vari-
ations for the convective plumes. This has been done for the limiting cases of
free plumes and of shallow flows on sloping boundaries, in either case neglect-
ing rotation effects (Turner, 1973). Numerical experiments with a free plume
ensemble and a series of different bottom topography forms bear out the pre-
diction of a close tie between the bottom shape and the probability distribution
for the depth of penetration of individual elements of a plume ensemble. In
the seminar, computations were presented for a plume ensemble with a uni-
form distribution of initial buoyancy flux over a 40:1 range of intensity, with
the total negative buoyancy flux input ten times the geothermal heating effect.
Approximately 40the ensemble (the weakest elements, representing about 16of
the total original buoyancy flux input relative to the reference density at the
source level in the basin) terminate within the diffusive thermocline range,
while the rest reach the bottom in the case of a square (flat bottom) basin,
or exhibit a distributed termination pattern which roughly mirrors the basin
hypsography. Note that while the latter subset carries over 80% of tile initial
buoyancy flux relative to the density at the upper basin boundary, an approx-
imate balance with the geothermal heat flux in the deeper basin part has been
reached at the bottom of the thermocline. This happens mostly because of

I
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the entrainment of thermocline waters, but in part also because of this point
a greater reference density enters in the buoyancy flux definition.

Tracer based ventilation diagnostics for the deep Caribbean basin, and
for the Cariaco basin, off the coast of Venezuela (Holinen and Rooth, 1988)
support the theoretical expectation of a bimodal ventilation effect in deep
natural basins.

Rc.rcnccs I
Holmen, Kim J. and Claes G.H. Rooth (1988), Ventilation of the Cariaco

Trenci, a case of Multiple Source Competition? Submitted to Dccp Sea
Research.

Killworth, Peter D. and J. Stewart Turner (1082), Plumes with time -vari-
able buoyancy in a confined region. Geophysical and Astrophysical Fluid
Dynamics, 20, 265-204.

Turner, 3. Stewart (1073) Buoyancy Effccts in Fluids, Cambridge University Press,
Cambridge, U.K., 367 pp. I

A THEORY FOR STRONG, LONG-LIVED SQUALL LINES I

Richard Rotunno
NCAR

Boulder, Colorado

I discuss a study of the mechanics of long-live, line-oriented, precipitating
cumulus convection (squall lines) using two- and three-dimensional numeri-
cal models of moist convection (Rotunno, Klemp and Weisman, 1088). These I
models, used in juxtaposition, enable us to address the important theoretical
issue of whether a squall line is a system of special, long-lived cells, or whether
it is a long-lived system of ordinary short-lived cells. Our review of the obser-
vational literature indicates that the latter is the most consistent paradigm for
the vast majority of cases, but, on occasion, a squall line may be composed of
essentially steady, supercell thunderstorms. The numerical experiments pre-
sented show that either type of squall line may develop from an initial line-like
disturbance depending on the magnitude and orientation of the environmental
shear with respect to the line. With shallow shear, oriented perpendicular
to the line, a long-lived line evolves containing individually short-lived cells.
Our analysis of this type of simulated squall line suggests that the interaction
of a storm cell's cold surface outflow with the low-level shear produces much
deeper and less inhibited lifting than is possible without the low-level shear,
making it easier for new cells to form and grow as old cells decay. Through
intercomparison of two- and three-dimensional squall line simulations, we con-
clude that the essential physics of this type of squall line is contained in the
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two-dimensional framework. We argue that these results describe the physics
of both midlatitude and tropical squall lines. Under conditions of deep strong
shear at an angle to the supposed line, a line of supercells develops in which
their respective three-dimensional circulations do not interfere with one an-
other.

References
Rotunno, R., J.B. Klemp and M.L. Weisman, 1088. A theory for strong, long-

lived squall lines. J. Atmos. Sci., 45, 463-485.I
A GEOMETRIC 'VIEW OF DYNAMICAL APPROXIMATIONS

Rick Salmon
University of California-Scripps

Institute of Oceanography

This lecture presentg a method for deriving approximate dynamical equa-
tions that satisfy a prescribed constraint typically chosen to filter out unwanted
high-frequency waves. Although the method proposed is very gent.-al, we are

Smainly interested in the case of a rotating fluid in which the prescribed con-
straint is geostrophic balance.

Let R be the (infinite-dimensional) phase space of the fluid, with general
I coordinates x . Every point z- (x1 , z,...) of R corresponds to a possible

state of the fluid system as a whole. The exact dynamics

I -d-dt (1)

corresponds to the vector field v; in phase space.
Consider the phase-space submanifold composed of states in which the

fluid is everywhere in geostrophic balance. We call this submanifold the slow5 manifold. The slow manifold is defined by the (infinitely many) equations

#(t)()=0, t=1, 2, 3, ... (2)

I expressing geostrophic balance at every point of physical space. We seek "bal-
ance,"d dynamical approximations in which systems on the slow manifold re-
main there. Such approximations obviously consist in replacing the exact
vector field v in (1) by a vector field tangent to the slow manifold (2).

The quasigeostrophic approximation (QG) corresponds to an "ordinary
projection" of vi onto the slow manifold, in which the normal mode amplitudes
of the linearized dynamical equations are treated like Cartesian coordinates in
phase space.

I
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In more geometrical language, QG is equivalent to the metric projection

dz/dt = V + 1Lz()gO#4(1/Oz' (3) 1
of the exact dynamics (1) onto the slow manifold (2) of geostrophic states. The
coefficients u(4) are chosen such that (3) satisfies

do4t= 0 (4) 1
and the metric gi$ is related to the exact dynamics as follows: If the exact
equations are linearized about a state xo of rest with flat isopycnals, then the
linear equations conserve the energy

HO = gY~~ (5)
2

where Ax =-x - xO is the phase space displacement from the fixed point x0 , and
the constant tensor gij is the inverse of g'i. I

UnfortunAtely, phase-space has no natural metric, and gii Is therefore an
artificial component of the quasigeostrophic approximation. Its presence ex-
plains why QG Is valid only near a state with flat isopycnals.

If the exact dynamics are Hamiltonian, then vi takes the particular form

V= J'iai/a1CXi (5) 3
where Jj" is the symplectic tensor and H Is the Hamiltonian. Ji$ and gii have
completely different properties. However, the semigeostrophic equations are
obtained by replacing g i by J0$ in (3) and (4). The resulting equations, which
can also be derived in several motivated ways, lie at the heart of a beautiful
theory developed by Dirac.

The constraints (2) defining the slow manifold are the only arbitrary com-
ponents of this theory. These constraints are "consistent" if the coefficients
Pu(e) are uniquely determined. A simple iterative procedure tests and (if nec-
essary and possible) augments an arbitrary set of trial constraints to produce
a consistent set. If the constraints are consistent, then the approximate dy-
namics is itself a Hamiltonian dynamics, and canonical coordinates exist. The I
various forms of the semigeostrophic equations correspond to slightly different
definitions of the slow manifold. The optimal form is that for which canonical
coordinates are easiest to find. $

The most important lesson from this work may be that any approximation
takes its most transparent form when written in a covariant form in general
phase space coordinates.

References

Salmon, R. Semigeostrophic theory as a Dirac-bracket projection. J. Fluid
Mech. (in press) 3
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SEPARATION OF A BOUNDARY JET IN A ROTATING FLUID

Melvin Stern
Florida Stt-,te University

A jet flows from a source along a vertical wall of a large rotating tank con-
tnining water of the same density. The flow approaches a sharp corner where
the vertical wall turns through an angle A. If A is less than a critical value the
current flows past the corner and continues down the wall. If A exceeds the
critical angle, then the jet separates at the corner by flowing into a dipolar vor-
tex, which carries the mass away from the wall and into a large recirculating
gyre. The main significance of the rotation i to make the flow two dimensional,
and to conserve vertical vorticity. The critalal A is computed by contour dy-
namics (using a conformal mapping) for a piecewise uniform vorticity jet. The
results compare favorably with laboratory measurements.I

VORTEX DYNAMICS OF STRATIFIED FLOWS

Gretar Tryggvason
Department of Mechanical Engineering and Applied Mechanics

The University of Michigan
Ann Arbor, MI 48109

Two recent applications of vortex methods to stratified, vortical flows are
discussed. One is the deformation of a free surface due to the large ampli-
tude Kelvin-Helmholtz instability of a submerged vortex sheet. The roll-up
of the vortex sheet causes a deformation of the free surface and leads to a
breaking wave, the entrainment of air, or the generation of relatively short
waves, depending on the strength and depth of the vortex s}.eet. The other
example considers the collision of a vortex pair, or a ring; with a relatively
weak density interface. In the limit of weak density stratification, this prob-
lem is governed by only one nondimensional parameter combining the effect
of the vortex strength and the stratification. Weak rings behave as if the in-
terface were a solid boundary, but strong rings penetrate deep into the other
fluid. For intermediate strength, the vortex pair penetrates partly and is then
pushed back by baroclinicadly generated vorticity at the interface. The back
flow generates a complicated system of secondary vortices. Thr calculated be-
havior correlates well with recent emperimental results of Willrnart and Hirsa
for free surface flows, and Dahm and Scheil for the interaction of vortex rings
with a weak density interface.3 We then discuss the extension of generalized vortex methods to three-
dimensional free surface problems. As in two dimensions, the dynamics is
governed by the condition that the pressure is constant at the interface ( in

I
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the absence of surface tension). This allows us to write an evolution equation
for either the tangential ve2ocity or the velocity potential. The normal corn-
ponent is determined by the conditions of incompressibility and irrotationality
which leads to an integral equation over the free surface. By an application
of the formulas of classical vector analysis it is possible to formulate several
alternative boundary integral equations for the normal velocity or the vector
stream function. We list the various possibilities and discuss which are suitable
for numerical implementation. In conclusion, some general comments on the
vorticity formulation of stratified flows are presented.

I
DIFFUSION COEFFICIENTS AND VELOCITIES FROM TRACERS

I
George Veronis
Yale University

An investigation into t e feasibility of solving the inverse problem for
(eddy) mixing coefficients, te, along with the velocity field, v from distribu-
tions of tracers was based on solving the 2D forward problem first (given r.
and v determine tracer distributions). Since the known r. and v of the forward
problem are the unknowns of the inverse problem, the exact solution is known
and can be used to measure the accuracy of the results obtained.

The forward problem involved flow, either rectilinear or with embedded
eddies, in a channel with fixed tracer concentrations at the boundaries. The
tracer distributions were obtained on a network of gridpoints. The inverse
problem was first solved in portions of the channel where the tracer field was
given on the same network. With enough error-free tracer data the exact 1C and
v could be obtained, so the inverse problem is well posed. Most of the inverse
calculations made use of tracer data with errors due to either truncation or
added noise.

It comes as no surprise that if enough data are available (sufficiently many
tracers and/or sufficiently many gridpoints), the accuracy in the derived values
of x and v is limited only by the accuracy of the given tracer data. Generally
speaking, satisfactory results were obtained only if the system to be solved was
overdetermined, either by enough data or via approximations that limited the
number of unknowns.

An encouraging sign is that using a limited representation for K (either
constant in blocks of cells or a low-order polynomial) yielded values of K and
v that were as accurate as, and sometimes more accurate than, the values
obtained with a more complete representation for K. The approximate form
for K. gave better results than a fully variable r even when the velocity field
included a small scale eddy that was only marginally resolved by the grid
network.
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The success obtained with approximate forms for r. and v is very encour-
aging since one of the most serious problems confronting observers who try
to interpret the record is paucity of data. The anisotropy of mixing (at least,
horizontal and vertical) plus the low vertical velocity of the mean flow render
the 3D problem a difficult one where the demands on data can be met only
marginally if at all. It is here that the approximate forms for xc and v may
make an otherwise hopeless task one that is tractable.I

THE FLUID DYNAMICS AND THERMODYNAMICS
OF ERUPTION COLUMNS

* Andrew W. Woods
University of Cambridge

3 This talk considers modelling the fluid dynamics and the thermodynam-
ics of Plinian eruption columns (Woods, 1988). Plinian eruptions involve the
continuous discharge of a mixture of gas and solid fragments from volcanic
vents at speeds on the order of hundreds of metres per second, generating a
continuous column of hot pyroclasts, rocks, and entrained air which rises to a
few tens of kilometres (Walker 1981). The lower part of the eruption column
in which the initially dense material from the vent is carried a few kilometres
upwards by its momentum is called the gas-thrust region (Sparks and Wilson
1976). Air is entrained as the material rises; the air expands due to heating
from the hot pyroclasts and can eventually cause the material in the column
to become buoyant. If there is sufficient thermal energy in the column, it then
behaves as a buoyancy-driven convective plume in which the plume material
is significantly hotter than the ambient fluid. This effect causes the column to
continue rising to as much as a few tens of kilonietres, until the column ma-
terial ceases to be buoyant. Above this neutral buoyancy height, an umbrella
cloud, of a few kilometres thickness, grows radially. Alternatively, if the initial
momentum (or other properties controlling the process, e.g. temperature) is
insufficient for the material to reach the point at which the upwards buoy-
ancy forces begin to dominate, then the column will collapse at a much lower
height,typically a few kilometres.

Various models of Plinian eruptions have been presented (particularly Wil-
son 1976; Sparks 1986; Wilson and Walker 1987), and the results have been
compared with observational data (Settle 1978; Wilson et al. 1978). A num-
ber of these models are based on the classical work of Morton et al. (1956)
who introduced models for convecting plumes in both uniform and stratified
environments in which density differences between the constituent fluids are
small. Their model incorporated a Boussinesq approximation and did not con-
sider any of the large thermal effects which are present in a volcanic eruption.I

I
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However, the models of Morton et al. have been applied to volcanic eruption
columns by modifying the buoyancy term in the governing equations or by
including all additional expansion of the air due to internal heating, but re-
taining the basic approximations which were made in the original model. The
resulting models are not always consistent with the basic laws of thermody-
namics and fluid dynamics which govern the eruption column motion because
of the large density and temperature changes which can occur in an eruption
column.

A major purpose of this talk is to develop a physical model of Plinian
eruption columns from first principles. This work derives and investigates the
fluid dynamic and thermodynamic constraints in the basic governing equa-3
tions which describe an eruption column. The column is modelled as being ill
a steady state in both the gas-thrust region and buoyancy-driven region with
a constant, continuous supply of material from the vent. The steady-state
approximation is a good model of the eruption process when the column has
become established, after the initial explosion (Carey and Sigurdsson 1085).
The thermal interactions in the column are modelled using the steady flow en- I
ergy equation. A closure hypothesis is required to complete the model. Some
previous models of plume rise (for example Schatzmann 1970) have attempted
to derive a universal closure hypothesis encompassing both buoyancy-driven U
and momentum-driven plumes. This approach has been successful in mod-
elling laboratory experiments; however, it necessitates the introduction of (up
to) five empirical constants. In contrast, the present study proposes separate U
closure hypotheses for the gas-thrust and buoyancy-driven regions by consid-
ering the dynamics particular to each region. In tile gas thrust region we use
a modification of Prandtl's model of a jet (1954) while in the buoyancy driven
region we use the entrainment assumptinn, (Morton et al.) 1056. This requires
only one empirical constant for each of tile regions and the regions are merged
where the column becomes buoyant. The laterally spreading umbrella cloud
at the top of the column, which has been modelled by Sparks (1086), is con-
sidered as part of the convective region in order to determine the total column
height, as in Morton et al. (1056). The important effects on the column height
and structure resulting from the ambient stratification in both the troposphere
and tile stratosphere have also been investigated.

Numerical -calculations have yielded tile following conclusions for the pa-
rameter ranges of interest:

1. In the upper region of the column the rate of change of the enthalpy
flux with height is principally governed by the rate of change of the potential
energy flux. This reduces the column temperature in the upper region, and so
the column becomes less buoyant, until it comes to rest. This effect reduces
the vertical extent of the column. Thus the steady-flow-energy equation which
incorporates the interaction of the enthalpy with the potential energy plays an
important role in determining where the top of the column is located.
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1 2. The radius of the column increases rapidly in the gas-thrust region as
the entrained air is heated to a very great temperature. This is followed by3 a more gradual column radius increase in the buoyancy-driven region when
the entrained air is not heated to such great temperatures. Above the neutral
buoyancy point, the radius increases more rapidly into the radially spreading
utmbrella cloud.

3. The phenomenon of column collapse is critically dependent on the vent
vel-)city. It is predicted to occur only for much smaller velocities than found
previously by Wilson (1976) (U = 100 m/s whereas Wilson found collapse
when 100 m/s < U < 400 m/s). This greatly increases the range of eruption
conditions which can generate a Plinian column, as well as extending the range
of heights of Plinian columns to smaller values.

4. If the vent radius is large or the Initial gas mass fraction small, the
column can become so buoyant once above the gas-thrust region, because of
the large amount of thermal energy, that the column velocity can actually
increase with height in the column.

5. The gas-thrust region height decreases with Initial temperature, initial
gas content and initial velocity because these increase the buoyancy of the
column. It increases with increasing vent radius because the volume of air
entrained relative to the column volume (per unit height) decreases with radius.

6. As anticipated, the column height increases with the initial temperature,
initial velocity and vent radius but decreases wi' the initial gas content.

7. In the troposphere the temperature decreases with height and so columns
rise somewhat higher than they would in an isothermal environment because of
their increased buoyancy. However, once In the stratosphere, the temperature
gradient reverses, and so this effect is reversed.
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ARRESTED SHEAR DISPERSION AND OTHER MODELS OF
ANOMALOUS DIFFUSION

W.R. Young
University of California-Scripps

The macroscopic dispersion of tracer in microscopically disordered fluid
flow can ultimately, at large times, be described by an advection-diffusion
equation. But before this asymptotic regime is reached there is an intermedi-
ate regime in which first and second spatial moments of the distribution are
proportional to t". Conventional advection-diffusion (which applies at large
times) has v = 1 but in the intermediate regime v < 1. This phenomenon is
referred to as "anomalous diffusion" and we discuss the special case v = 1/2 in
detail. This particular value of v results from tracer dispersion in a central pipe
with many stagnant side branches leading away from it. The tracer is "held
up" or "arrested" when it wanders into the side branches and so the dispersion
in the central duct is more gradual than in conventional advection-diffusion
(i.e. v = 1/2 < 1).

This particular example serves as an entry point into a more general class
of models which describe tracer arrest in closed pockets of recirculation, per-
meable particles, etc. with an integro-differential equation. In this view tracer
is arrested and detained at a particular site for a random period. A quantity of
fundamental importance in formulating a continuum model of this interrupted
random weTki i the distribution of stopping times at a site. Distributions with
slowly decayi.g tails (long sojourns) produce anomalous diffusion while the
conventional model results from distributions with short tails.



1 165

I
RECENT RESULTS ON VORTEX RECONNECTION IN 3D FLOWS

U Norman J. Zabusky
University of Pittsburgh

We revi :w recent results obtained from Blot-Savart filament codes (E.
Siggia, A. P%;mir and K. Schwarz) and spectral codes (S. Kida, R. Kerr, A.
Pumir) with varying initial conditions. In particular, we emphasize the re-
cent results of Melander and Zabusky, where the initial condition consists of
orthogonally-offset gaussian vortices. For two vortices we see three stages for
a reconnection.

The early phase is where the primary configuration evolves into a locally
antiparallel bound vortex pair. At the same time, one observes secondary
"hairpin-like" structures being "pulled" from weak regions of the vortex tube.
These are intensified.

During the second phase, the primary bound structures are intensified
while tertiary vortex structures are entangled around the primary tubes. In
the final phase there seems to be local and sudden dissipation and reconnection.

p The primary vortices move apart, mainly as a result of the curvature of the
entangled "hairpins."

We also examine the collision of translating dipolar vortex tubes and
dipolar-dipolar vortex systems. A common feature is the formation of ring-like
structures.

I
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JBaroclinic Models and Hurricane Motion

.J.R. Countryman

Sumnir 1988I

Abotvact
This project marks the beginning of work which will investigate the

causes of hurricane motion. The dominant causes of motion, steering wind
and btta-drlft have been primarily studied In barotropic models. Hoth the
large scale enivironment of a hurricane and the storm itelf are baroclinic.
The bulk of this project has been to document vortex pair solutions In a
2.1.%yer quasl-gecetropic model with varying effective bea(intan gradient
of potential vorticity) and vertical shear. These do not resemble cyclone.,
bot represnt non-iinear solutiorns In a model that I will furthur Investigate
with regards to hurricanes.

I Introduction:
The generailiy accepted dominant causes of hurricane niotion art advection by
a steering wind and beta-d' ift. Both empirical forcasting and analytic miodelsI
have primtarily considered these barotropically. It is undeniably true that both
the large scale eniviroment surrounding a huarricane and the cyclone itself are
baroclinic. Following is a speculative list of somte baroclinic factors:I

* Vertical sheering of the steering (or am~bient) wind.

* The effective beta (defined as the horizontal gradient of amnbient potential3
vorticity) is height dependent.

* The baroclinic internal structure of the hsirricane has dynamics that in-
fluence the stormn sotion and these dynamnics are dependent on the aboveU

Furthurniore, the iiplifyinR a.-msupticon Iiif tie huirricane dnes nt. aler the
anibient environment is usually iade. If you want to dIrop) this asmtniption,I
and consider the hurricane and the large scale as coupled, then baroclinicity is
intportant.

We hatve considered the simiplest baroclinic mnodel; a quasi-geostrophic twoU

layer miodel. This is in no way quantitatively adequate, but is a tractable miodel
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and can provide insight and dirtction for the research or more complicattd and
realistic mnodels. First, the gcncral formt or propagathing solution mtodes (or
this toodel are derived and then slitcific couplcd vortex pair :olutious are devel-
oped. Essentially, this work is the logical way to start to stystemtatically considerI 3)propagating solutions in this mmodel. The solutions little resemble hitrricanes.
hlowever, our solutions arc always cyclonic in the bottom layer And Anticyclonic
above with the following rational.

Diagnos4is of potential vorticity vs. thecta profiles or hurricanct show aI concentrated deep regionm or significantly positive potential vorticity "bl)Cow"
and a larger, shallower and weaker region or relatively low potential vorticity
'gahovt"(ScnaberL and Alworth, 1087). The quotes are to stress that poten-I h~tal vorticity is plotted against theta. rhteta always increases with height, but
surfaces or constant theta arc far front horizontal. D)ynamical equations can
be written with theta. as the vertical coordinate and potential vorticity as tile
dependent variable. The invertibility principle allows deterinination of velocity
and mnass fields. Our belief is thVt the two-haycr QG~ model with ivtibility
by geostropltic wind is qu alit ative ly analogous to a more realistic model with
potential vorticity, theta coordinates andl invertibility by the nion-linear balanceI equation.

lit section 2 the two-layer QG niodel is presented. The fields are partitioned
int') anibient(no time dependence) and disturbance(time varying) parts to al-
low consideration of soltitions in different large scale conditions. lit section 3
the general formt or zonally propagating s4olution imodes is derived. And in -,ec-
tion 4 isolated, dipole solutions are presented. Szctioit 5 is a discussion of dipole
solution results and in section 0 concluding comments are iimade.

2 Two-Layer Model:

I2.1 Quasi-geostrophic two layer equations:

The quasi-geostrophic equations for two layers with sloping boundaries are:

.Iqj/ot + j(01. q,) = 0(i

8q2 Ot + J ( 2 ,q2) =0 (2)I where subscripts 1 and 2 denote the top and bottont layers respectively (Ped.
losky, 1979). The quasi-geostrophic potential vorticities are dlefined:

q, =-V2 01 + A'( 2 - 0) + PIY (3)

q2  
2 

2  (: -02) + P2Y (4)

I? f,2/g'Dj alhld 2j fo2/g'D 2
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U
art the inverses of the Ro#sly radii of deformation squarcd. And 3

P, m 6(planetary) +,,(sloping to) boutndary) (5)

P2 = P(planetary) +f ,(sloping bottoml boundary) (0)

By including sloping boundaries, the velocity shear and potential vorticity I
gradients can be independently varied.

2.2 Partitioning into ambient (function of y only) and I
disturbance fields:

The fields are partitioned into ambient(barrmd) and difturbance(pried) parts.
Note that the disturbance is generally non.lincar. We restrict the Ambient field*
to be functions of y only. Thus:

01 D eI(q)utolY (7)

02 - 12 () +0 2(, ,)()

q2 ()=V 2()+ (z 02) +P23I -(ol 2).+A(, 2 2) +PI Y (10)3

q2= V 2 +.%2(o' _-02 ) (12)I

2.3 Disturbance equations:I

We now define:

2=((72), = -(G 2 )jy+A2?(G2 -- I)+P 2  (14)

Note that f j and P2 are simply the meridional gradients of ambient, quasi.
geostrophic potential vorticity. Recall that we are restricting all ambient vari-
ables to be functions only of y. ' mts, i 1 and f2 depend only on ,y. Equn.

tions 1 and 2 can now be written:

(P + +J(0',q+f 1 Y) = 0 (15)

a 3x
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I
I2.4 Scaling:

In this section, and hereafter, dimensional variables will be denoted with a .
superscript and dimensionless variablct will have no 6 superscript. We now
define Oe Roshy radius of deformation for the baroclink mode:

We define dimensionless variables:

I (x', ') - IRI (X,Y) t- II/,R1c
(U,,V) - Ij'pR (uV) (#,',2) - [JR-( (,/,,)

3 And we also define dimensionless P and P2.
(14iD) - [ 01A ,. )

Finally, we define F, and F2 I whoet square roots are the ratios of the length
scale to the Ressby radii of etach layer. With R' as the length scale, F, and F2

considerably simplify:

r, = A2 R#2 = F2 mAR 2 722'1&

3 With the above, pl and P2. the meridonal-gradients of ambient potential vor-
ticity are: u I l+P,. + F;(a 1 - 2) -(U)

I I +P2, + F2(02 - o) -(02',,
where 8,. and P2. are the scaled "slope betas', ie. = Pa./" anld3 sinmiliarly for P2,.

2.5 Scaled two layer equations:

With the scaling of the previous section and the restrictions that the ambient
currents have zero second derivative in the meridional direction, our filal systemis:o)

~ = 0 (17)
a2i + 0 2 q+ J(02', q2 + ,2Y) =- 0 ( 8

where the dimensionless variables are:I
I
I
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3 Solution Modes: I
In this section we consider the various modes that arc possible in our systes. 3
3.1 Two equivalent methods:

As way of exallple. we contrast two equivalent. ways or obtaining solstions for
a one.layer equivalent barotropic systenst. The first way is the common netihod

of specifying the form of solution and plugging this into the governing equation.

The second method, by considering the forin or zonally propagating solsstionss,

specifies the potential vorticity as an arbitrary function of *' + cy - cly.
In this section we are considering a one layer equivalent harotropic systm

with constant zonal current, a. The governing equation is:

(- 0 a 0 ,q+fy 0

where q

We are looking for zonally propagating solutions and hence of the fors: 3
O(ZO y, 1) = TV(, y) where X =(z - ct)

Applying the chain rule and s .m!plifying:

S = 41x

= ~sI

I

I
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3.1,1 Method I:

Consider solutions where

*xx + *Vo - K2 (9)

Substituting in equation 19, we obtain:

I'< [(a- c)(K 2 - F) + o]=0 (20)

relating c and K. If K is imaginary, (it. W( < 0), and we define:
I k = K/,

we obtain the familiar Rossby wave sonal phase speed relation:
cml (21)

K +F

We call these the OWkveu ;todeq. and forms of solutions are:

= K ( hkt-rhI+v
l )) where ( k2 + 12

k= J,(r)
J.,(kr)(c, cos(n) + C2 in(nE))

= Y(kr)
, = Y,(kr)(c, cos(n8) + c2 in(n))

where r = /(x - ct)2 + 2 = arctan(y/(z - ct) , and J and Y are bessel
functions.

If K is real, we obtain what we will call the "exponential" modes. We obtain
the following:

c = a+ K-F (22)

Forms of solution are:I , e(k(z-rt)+1y) where K2 = k? + 12

= Ko(Kr)
' = K,,(Kr)(r, co.'(ne) + c2Sil(.)

= u(Kr)

,= ,,(Kr)(cl cos(ne) + C2 sin(ne)

where r and 0 are defined as above and K and I are modified bessel functions.I
I
I
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S.1.2 Method 11:

With our defniton of *(X, y) and the chain rule relations, equation 19 can be
written: J(*+c y y )i=O (23)

Hence, any * satipf-ing :

q 4 fly = j(t + cy - G) (24)

is a valutions. If # and q approach zero, then the limiting form of equation 24
is:

fly - Y(cy - laY)I
and thus the form of I a. simply a 7onstant, b, multiplying its argument:

(c - Ia)

Our equation for *, equation 24, simplifies to:

* xx + ', - F* = b(*) (25)

Again, considering solutions where

we obtain: 

I
K2 =b+F

If (b + F) > 0, then we obtain the "exponential" modes of the previous section.
If (b + F) < 0 , th.on we obtain the "wave" modes.

The inotivati..a for this second method is this. By considering equation 24
with I of the linear forin of b(.) it is clear that superpositions of solutions are
solutions. We can add any number of the wave" or "exponential" modes and
still have an exact steadily propagating solution.

3.2 Solution modes In two-layer system:

In this section we use method I to obtain the sohtions to the two layer quasi-
geostrophic systenm. It shnuld he tremedl that. the idsntkial .-mhitinis etill he
obtained by method 11 and therefore a superposition of modes for oe particular
c are exact solutions. Henceforth, we will take the current in the bottoml layer,

12, to be sero, and coi;: :.ler only cases where ilt' 07 is a constant. With these
restrictions and dropping primes we have front section 2.5:



3 173

I
I

+ 0 + J(01' q + fily) = o (20)

( 2 +J(02 ,qI2 +i2 ) o (27)

whereI = V2¢l + F, (02 -q)

q= V2 02 + F2(01  0)

and

2 = I + P2 .- F7(0)

Again, we are considering steady, zonally propagating solttions where:

I ,I(xyt) = T(xY) and

02(XY, t) = l2(X,Y) where X = (z - ct)

For a particular mode we take:

*1=AZI%(X,!,) %7= 2(,Y

where

('Y)xx + (),, = K2 (%Y)

I Plugging this into equations 26 and 27 and using the chain rule relations we
obtain:

f (0 -c)(K2 - F)+z ( )c)FI = (
-cF2  -c(K 2 _F 2 ) + fi2 A2%X ) = 0

(28)

U For the above system of equations to hold for non-trivial solutions the deternii-
liant of the matrix must, be zero. To satisfy this, for a given K2, we obtain a
quadratic equation in c and hence two possible modes (two different c's). After
the appropriate algebra:

_a_((K2 - FJ)2 + (K2 - F2 )fi1)_+_%AR(c

2 2K2 (K2 - F- F 2) (29)

I
I
I
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with

ARC= ((K2 - -- (K2 -A) 2 + O2(2 - +

Also, front equations 28 we obtain a relationship for A:/AI for each mode.

In figures I -5 are plotted the propagation speed (C) and A2/AI vs K for the
two modes. In each figure, the two plots to the left are the "exponential" modes
(it. K2 > 0. K real). And to the right are the "wave" modes (ie. K2 < 0, K
imaginary). Note that the abcissas of the "wave" mode plois should really be
labeled K, the imaginary part K.

In figure 1, note the "exponential" baroclinic mode (solid curve). As
K'- 14,  €-.+00

K- I, C -oo3

This is associated with the fact that V2*, the relative vorticity and -F(*),the stretching vorticity are of opposite sign and can cancel, unlike the ".#ave"modes where the relative vorticity and the stretching term are of same sign.

Figure I is the standard two-layer beta plane case. 0 = 0 and both top
and bottom boundary are flat. fi this case, we clearly have barotropic modes
(A2/A, = 1) and baroclinic modes (A2/Aj = -1) for all K. li the subsequent.
cas, we see that the relative amplitude of the two layers is dependent on wave
number, K.

The parameters for figures 2-4 correspond to increasing ambient baroclin.
icity with flat boundarict. In figure 4, G= 2.0. For O> 2 we have baraclinic
instability (Phillips Model). The modes grow with time ani tiere are no steady
solutions. A highly idealized explaination for the 0= 2.0 limit is as follows: If I
you have heating in the tropics, the analog for the two layer model is to de-
crease the depth of the lower (denser) layer and increase the depth of the tipper
(lighter) layer. With the constaints of no bottom layer current, and riid, level
boundarie, the parameters of figures 2-4 obtain. In the same way thut a dry I
atmophere heated below ideally would equilibrate to a dry adiabat, the ambient
two-layer state, ideally would equilibrate to 0 = 2,,61 = 2, P2 = 0. Figure 5 is
the cae where the top boundary slopes. Going furthur out on a limb, one could i
draw the analogy to the tropopause, which does slope in the same sense as Fig.
5 parameiers. The trnpopause is tnt a rigid houndary hut. may a. somewhat
like one.

Note that figure 3 is included basically to illustrate the way that figure 4
is approached. The sharp corners of figure 4 are not so surprising wheat you
consider that this case is just on the edge of baroclinic instability .
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I
4 Dipole Solutions:

li this section we obtain solutions that arc ciftetially point vortex pairs. The
solutions are a superposition of Ki "xponentill modes. There is a difficulty
with superposing Kit modes. The Ku modes include a n4iularity at r = 0.
To obtain valid solutions, an interior solution,valid for r < c. is :natchcd to
the K, exterior solutions, valid for r > (. it the limit as ( - 0 the inte.
rior solution approaches a point vortex and the matching condition becomes
that the local vdocity, t the point vortex, is equal to the propagation sped.
(Flierl,LarichevNMcWillianusRtemik,1980; 1'lierl,1987)

I 4.1 Modal solutions for two layers, Method II:

Sub tituting *1 and *2 as detned in section 3.2 in equations 26 and 2' we
obtain:

J(4f .t-€!- ( ,,q, +j ,.i) = 0 (30)

i(4+ ,q: +P:v) =0 (31)

Hence, any *I', *2 satisfying:

I q!il" = Y,'il+c!,-6y) (32)

q2 + fiY = 2(*2 +CY) (33)

is a solution. If 4 ,q*i,9,qq 2 approach zero, then the limiting formn of equa.
tions 32 and 33 are:

2 Y = Y2 (€.V_)

Thus, the form of both 11 and 12 are constants, 6,bJ2, mnultiplying their argu-
I ients:

Equations 32 and 33 simplify to:
V 2*y + F, ( * 2- ,P ) = b l( l ) (34)

V + .F2('i, - .'2) = b2(4' ) (35)

where

axox 0y0yiI
I
I
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Again, we siress that equations 34 and 35 are linear and we can superpose
solutions. Takiig

V2* - K2'l *
equations 34 and 35 can be written it matrix form:

(,=_:), ) ((o)( F (K2 Fra- ) (K2 - F (30) 

Froin the reqtiretent1 that the detertinant itt 30 equal zero, we obtain a
quadratic for K2 and:

(F, + F2 + III + b2) 7-)
K2 = (37)

where
ARG - (F, + F2) + (b - b2 )2 . 2.0 (F, - F2 )(bI - b2)

Also, for each K2 we have:

A iA, = (-1.o(K 2 - F - bF))/F(
= (-1.oF2 )/(K2 - F -b2) (3)

4.2 Final form of Dipole Solutions:

From section 4.1, the specification of the propagation speed, c, determtines It,
and b2 antd subsequenatly two modes with

k, ,If K (one val,,e from eqn. 37)
k2 = K (other value front eqn. 37)

For each mode, the relative amplitudes of each layer are specified by equation 38. 1
We choose as our modal solhtion3 Kn modified bessel functions. The govern-

.ng ecluations are translation invarknt and therefore we can arbitrarily specify
the origin(r = 0) of each mode. By the linearity or equlations 31 and 35 we call I
superpose any number of modes, for one value of c. We define ra(lial coordinates:

r" 4 /(_ x- )2 + (y _ A/2)2

I t~e -- 'I
r f( - C)2 +(y -A/2I
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the final form of tle disturbatce field is now written:

401 = $I" [Uk'(Kj(kI r")j + Uk2IjK(k 2 r")I +.1' t t~'iK(ka r')I+ tk2I~f(k 2 r')I

*2= q U{1 jKtu(kI r")I + Uk2IKo(k 2 rhi)I}+l 4Iuk r)''4~kr

\V, have written the solution in two parts with s" multiplying the part coiprised
of 0 odu with origt:I(xu-cO, y =-A/2) , II

and 's multiplying the part comprised of modes with origin:
I(z = ct, ,Y - A/2) 44

WVe choose the four coelfidents, III1 11, 112, 1i and 112 such thait ill tile
limit r" - 0:

e The ." part of the solution approaches a point vortex of strength ." in
the upper layer at point. U

I * The lower layer shigularities cancel.

The azimuthal velocity associated with Kn(kr) is the radial derivative,
k KI (kr), which in the small r limit appronches - /r. Our criterin are tits:

uk, ,U2k2  = -1/2:r (39)I ~~~k Uk2~1~ .0

Equation 38 for ki ald k2 determines U21 / . These four
conditions determine the four U coefficients.

Similiarly, the four £ coeflicients are chosen so have a point vortex of strength
sl in tie lower layer at point Z and singularity cancellation in tile top layer:

+ 42 = -/2,r (42)

Again, equation 38 specifies L2 I, and4 1

Finally, S,, and .4 are determined by denmanding thalt the local velocities it
the singularites be equal to the propagation speed. Remember, %PI anld * 2 as
defined in section 3.2 are the disturbance fields. The top layer, layer I, includes
0:

0 - Lk~ {4In(k1 r')] + t21Ko(k2 r')j} = c (m =t cl, y= -A /2) (.13)

-k, r IK )U(k .r -)JU2IKo(k: r")j} = c (x = ci, y = A/2) (44)

I
I
I
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i
where, the yj subscripts indicate that a partial derivative w.r.t Yi is to he taken.
By aligning the two point vortices as we have there are only zonal currents at
the singularities. The y derivatives are easily related to radial derivatives:

0.' (4kil(ki)[Ia(ki A)I+4 2(k)K(k-,A)I} c (45)

I1" {I!ti (ka)IKa(k, A),+ Uk(k 2) IKi (k2 A)I C (40)

We briefly review the tolution method:

" The ambient state is specified by: F1, F2 , 0, fil, and fi2.

* The propagation speed, c, and the ambient state determine bi, 62, k1, k2
anti tle L and 4 coefficients.

" The meridional distance between the two vortices, A, determines ," ani .1
and this completes tile Specification of a solution.

5 Dipole Solutions, Discussion:

5.1 Strengths of vortices vs. c and A:

In the top half of figures 6-11 are plotted the two vortex strengths as a function
of propagation speed, c, and tiLe meridional distance between the vortices, A.
The values of A are written along tile curves. In the bottom half, the wave
nuomhes and corresponding values of A2/AI for tile two anodes are plotted as
a function of propagation speed.

Figures 6 and 7 are for the standard two layer case, 0 = 0. In figure 0 curves
are drawti for A between 0.5 and 3.5. In figure 7, A varies between 0. 1 and 0.5.
Figures 0 and 7 reflect the same parameter values as figure 1. Refering to fig.
0, we see that for larger values of c, the effect of P3 diminis.-hes and we see tile
intuitive result that the propagation speed is greater for stronger vortices. And
for a fixed strength, propagation speeds are larger for vortices close together.
The solution bears similarities to vortex pairs in one layer, no P. For sonaller c,
the effect offi becomes important. For noides that propagate slowly, the relative
vorticity Inmust dominate tile planetary vorticity. Thus, the % oe numbers are
large. The larger tile wave number, the more quickly the velocities fall off away
from the point vortex. From figure 1, we see that as c -- 0, K - Co. Thus,
we see the vortex strengths growing arbitrarily large as c -* 0. Note that. tIe
leftmost propagation speed plotted in figures 0 and 7 is c = .01, and therefore
kland k2 are finite.

Figure 8 is for 0 = 1.0, Pz = 1.5, O2 = 0.5. Tile relevant previous figure
is figure 2. Figures 9 and 10 are for the case 0 = 2.0, fi = 2.0, /2 = 0.0. ;

refer to figure 4. For these ca.-es the strength of tile upper layer vortex is larger.
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The upper layer vortex solttion is the only current advecting the lower layer
vortex, whereas the upper layer vortex is ndvected by V1 as well as the lower
layer vortex tolution. For small c, 41 > fi2 becomes eignificant.

Figlire II is for the case of no 0, but sloping upper boundary and therefore
/il > &2. The vortex streitgth plots are very similar to figure 0, with dohie
the strengthf, yet equal strengths iii each layer. It the next section, we will see

that thte structure of the vortices differ, howevcr.

5.2 Streamlines and Streaklines:

l figures 12-17 are plotted * and *'-cy for some exeml)lative solutions. The s
field are streamlines and deternmine velocities in a fixed fruaule. The *I + cy fields
are called streaklines and delerine the velocities relative to a frame moving
at the propagation speed. Iti all cases th donain is 10 by 10 (non-dinietsiolnal
length, see section 2.4). Note that ill solutions have singularites. Tie solutions
in regions sitar the singularities are clipped.

Figures 12 and 13 are for the standard two layer case, 0 - 0. rhese two .o.
lIttions show that two propagation speeds are possilble with the vortex strengths
and A remaining equal. The wavenumbers and corresponding horizontal scale
of thle solutions are different.Figires 14,15 and 10 art for cases with Oand consequently stronger vortices

in the top layer. Comparisonu of fipures 14 and 15 shows the general trelid of
more symmetric solutions for larger c.

Finally, figure 17 is the case of nio 0, but. sloping upper boundary. Te
strengths of the vortices are equal but it can be seen that the upper and lower
layer solntio|Is are not. exact reflections of each other. Compare to figure 13.

6 Conclusion:

As previously stated, the solutions presented have little to do with Iurricanes.
They do indicate dynamical interations that are important in a model that will
be furthur studied with regard to cylone motion. Solutions that are propagating,
steady, isolated and unforced in a p plane can be shown to be limited to east.
wesqt propagation.

A hurricane is certainly forced. A direction for future work is to include a pa-
rameterization of coIvective forcing anei search for steady propagating soltions

that are therefore t|ot. limited to zonal motion. This introduces the complication
of Romby wave radiantin and a.cinted radiation conlitins, hut. we speculate
that this is both realistic and ani essential part of the dynamics.

Finally, we express the concern that the steady co.traint may be 1aurealistic:
it .may be necessary to consider propagating solutions that vary with timue. A,
related concern is that a realistic hurricane solution might slowly influence a

Ia

I
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I
larger and larger region of the large scalc enviroment.
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I Fig. 1. Propagation Speed (C) and Relative Amplitude of the Solutb'n in the
Two Layers vs. =wave number" for steady, propagating nodes,

= 0 and the effective beta. in both layers (Pi and P2) are equal to the plan-

etary beta. Flat boundaries.
The wave modes are the familiar Rossby Waves for a QG two-layer model(Pedlosky,
1979)
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Two Layers vs. "wa.ve number" for steady, propagating modes.

1.98 and the elective betas 01 and 2) are 1.98 and 0.02. Flat boundaries.
This figure should be compared to figure 4 where V = 2.0. Recall that for3 0'> 2.0 the solutions are baroclinically unstable.
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written along the curves are 4, the meridional distance between the vortices.
BOTTOM HALF: Wave numbers and corresponding values of A21AI for theI
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except different A values. (Also, see fig. 1)
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1
1

I INTRODUCTION
I

Previous experiments on the Faraday instability had shown that it is a very simple and convenient
way to observe the surface wave modes of a closed vessel. This instability allows us to measure their
cigenfrequency and dissipation which, when the free surface is pinned at the edge of the lateral walls,

kappear to depend on the aspect ratio e for a given wavenumber K. When we consider the linear problem,

these effects come, of course, from the side walls, but the aim of this project was to show that they comeI only from this special boundary condition for the free surface.
After a short summary of the previous experimental results, we first develop some generalI considerations about the boundary conditions of an inviscid problem, the general relation between the

dispersion relation and the equipartition of the energy, the treatment of the viscosity by boundary layersI (including the rectified flow), and how to found from Navier-Stokes the real coefficients (among them the
dissipation) of the amplitude equation of the instability. The;e considerations show that we only need to
know the free surface and the longitudinal velocity at the walls in the inviscid linear problem. In a second
part, we try to solve the inviscid problem with this new bounday condition: for the free surface, by finding
both the flow and the dispersion relation. We also discuss the work of Benjamin & Scott on the cigen-Ifrequency problem. Finally, we present the induced results for the dissipation.

I
Summary of the orevious experimental resultsI

The Faraday instability is a parametrical excitation of surface waves in a vertically oscillating vessel ofI fluid. In the frame of the vessel, the gravity is modulated : g -4 g (1 + E cos cot), and the modulation
parametrically excites the surface waves through the gravity term of the dispersion relation of the waves.I The threshold curves (the accelaration above which the waves appear as a function of co) give directly the

eigenfrequency and the dissipation of the mode:

I
I
I
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For practical reasons (to avoid the waves generated by the meniscus), we chose to pin the free surfacc

-t the edge of the lateral walls so that the surface is perfectly flat:

This is very simple to perform experimentally, with water for instance, and is the bet way to obtain a

perfectly flat surface with wellcontrolled and well-defined boundary conditions.
In a rectangular cell, with wave numbers kx and ky along each direction, the results give an

cigenfrequency depending on the aspect ratiokfor a same total wave number K = 4k, 2+ky2 . Thus, this

boundary condition induces a new dispersion relation, as the usual one depends only on K. In the samem
way, the dissipation depends on the aspect ratios i-.. In a square cell, we observed that the dissipation was

increasing with ly(cE [o, 1]) at a same K:

I
I

Another experimental observation is a constant flow with the structure of a Marangoni convection

directly induced by the surface waves. Also, at high accelerations, we sometimes observe an important

horizontal flow coming from the side walls. These effects can be explained as we will show by the
rectified flow in the viscous boundary layer.

U
mI
m
I
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= I GENERAL CONSIDERATIONS

3 1 Inviscid Problem

We consider an inviscid fluid in a closed vessel with a free surface:

i The second boundary condition, at the first linear order is 4 = - g h + yA h
and the first one is 4z = ht. We will look only at the first linear order problem.
We discriminate the vectors parrallel to the wall, or horizontals, from the perpendicular, or vertical

ones, by adding a slach at these variables (for instanceV is the horizontal gradient).

i 1.1 Boundary Conditions for the Free Surface

TheUre are only two possibilities:I If n, the vector normal to the wall, is defined at the boundary of the free surface,
we can apply there both it = h and VO. n =0 .This gives (at a vertical wall):

S(v h.n)=0

So, with the initial conditions of a flat surface:

This is what we call the usual, or first, boundary condition. This equation means that the free surfaceH is always perpendicular to the wall:

1 If n is not defirned, for example at the edge of the lateral walls, we have then
i condition on h. But this is only true at this particular line where n is not defined. Thus, if we want to

always escape the preceding boundary condition, we now have the condition h = c(l), where c(l) is the
edge line of the lateral walls. For an horizontal one, we thus have

i This is what we call the new, or second, boundary condition.

In conclusion, we can summarize the two possibilities by the general condition:
hVh.n=O

The first boundary condition makes the problem very easy to solve. But this condition cannot beI preserved when one adds surface tension and viscosity to the problem. Moreover the boundary condition
of an oscillating fluid near a vertical wall is very difficult to describe and solve. Thus, the derived inviscid
solution cannot be v'; to directly find the real flow.I
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On ihe other hand, the new boundary condition makes the inviscid problem very difficult to solve.

But this solu:ion can be used to obtain directly the real flow when adding the surface tension and viscosity,
as this boundaiy condition is still valid. 3

1.2 Structure of the Inviscid Problem

This problem is constituted in two parts: 2-' O
The geometrical one ZOE

tA CI
does not depend on the properties of the fluid, except the incompressibility. It just expresses the flow

as a function of any imposed surface h(x,y t).

* The physical one (tb" .econd boundary condition at the surface):

t= - g h + yh
where the physics of the fluid appears.
It expresses the fact that the surface displacement is an cigenmode.

Thus, we first solve the geometrical problem ; i.e., find as a functional of h, and report this solution
in the physical boundary condition. This gives both the dispersion relation and the free surface eigen
modes.

1.3 Dispersion relation and equipartition or energy I
To obtain the energy equation, one multipl~es 4 = 0 by t and integrates over the volume. After few

transformations, using that D (z -h) = 0 is equivalent to V . n h+ and " h

dxdy , using also the physical condition at the surface and the general form of the boundary condition for
the free surface, one finnally obtains :

I dJ[Vo .)2 dv+ P JJ gh 2 + y (V h)2] dxdy ]0
IProeetro d S'urfacI

One checks the conservation of energy in a inviscid fluid.
But another way to obtain the dispersion relation is by multiply the equation A = 0 by 0 and

integrating over the volume. After the same transformations, and using also the physical condition at the
surface and the general form of the boundary condition for the free surface, and the Taylor theorem, one
iinnally obtains :

(V )2 dv f g h2 + y(V h)2 IdxdyI
J ~P S

where the bar correspond to a time average over one oscillation period.
This equation can also be obtained by multiplying the physical condition at the surface by h and

intcgrating over the surface.
By doing these integrations, we have lost the condition on h, and we only found the dispersion

relation.
Under this form one recognize the equipartition of energy, the right term being the kinetic energy, and

the left term the potential energy. But it is also the the dispersion relation as is gives o0 (the first term) as a
function of the flow and surface properties.

This property of equivalence is in fact quite general for any oscillator, as it always can be writen
under the form K. h = o02 M . h, where K is a stifness operator and M an inertia operator ; so
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2h*.M.h = jh*.K.h or 2= . Benjamin & Scott used this fomulation with a variationnalfh*.M.h

pinciple, saying that the real cigen frequency correspond to the minima of this ratio.

2 Viscous Fluid

We just summarize well-known results on the viscous boundary layer theory. The equations are:
atu + (u.V) u- V p + VA u
V.u=O

2.1 scaling
we assume that the viscosity is snmll, so that the inviscid solution is still valid except ncar the wall:

The scaling in the fluid is: U! - W - U
V-a--

I t
p - UO)L

where L and o) are the wave length and pulsation of the surface waves.
The equations then reads:

atu+ U (u.V)u=-Vp+ - Au
V.u=O

with the assumptions of 1 , which corresponds to h << L, where h is the amplitude of the
CoL

waves; and 1.

The length scale 8 where the viscosity starts to kill the tangential velocity is obtained by equlibrating
the terms at u and v D27 u ; so co - L i.e. 8 = .One can notice that v

In the viscous boundary layer the scaling is then

uz-U but w (')I
V--but a,-'

and the equadons read:

ItU+ U (u.V) u='Vp+ ( ) Au+a 2,U
coL

V.u=O

The principal question is now to know the variation of pressure in the boundary layer. By taking the
divergence of Navier-Stokes, one obtains A p = - V . (u.V) u .
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cOL

and in the boundary layer A p + L P V (U.V) U

Now to solve the problem we devellop the velocity feild and the pressure in orders of a small
parametcr E , and we solve for each order. As there is two physical small parameters in the problem, we
will nced to compare both.

2.2 First order

For the pressure, we have, in the viscous boundary layer, 2. P0 = 0; so the pressure is thc. same
than in thc fluid. We have in the fluid:

UOt =. V p0
V .UO=0

where U0 is the inviscid boundary solution. In the boundary layer:
U0t=- V po+vu 0 z =-VP 0 +vU 0 z

= UOt + v u0.
V .U0=0

We match the two solution, i.e. we imposes that uO -+ UO when - + With the notations:

U 0 - U0(x,y)eii )t whenz-0,andW0 - -V.AU(x,y)zeiC6twhenz-,0,
the solution for u reads:{ i

0 = U0(x,y)eio0t ff)

wO -V.U 0(x,y) e io)t 8 g 7

{f%=i Real part I - exPC (- 11 ]
where 9 /=NReal part[:L- 1-i[ l8 ) z

The physics correspond simply to kill the tangential velocity on a length 8; but one can observes that
it kills also the gradicnt of normal velocity:

One can here note that the first idea to solve the problem of a flow with a surface in sine by using
only the viscosity to kill the normal velocity, is impossible. It can be seen by doing the same kind of
scaling, mutatis mutandis:

.7-,.



Thcn one finds w . L u, so w * u and infinite at the limit of a zero viscosity, what is rather

unphysical. So we first have to solve the inviscid problem, and after use the result of the boundary layer
theory.

2.3 Second order : Rectified now

We now need to compare U and ('s. Physically, we prefer tostill have the dissipation occuring

I only in the viscous boundary layer, Uso -mrresponds also to thr. experimental limit where0) .

I S '< hi 'L.

Wc then takes = -U- , and a possible scam,, ..+ .This givcs for the pressure:
COL

2 p + E-4p=. -E3 V. (u.V) u
So at the second aroder we still have no variation of the pressure when crossing the boundary layer.

I'hc equation for the flow in the viscous bopundary layer is then:
ul t + (uO.V) uO = Ult + (UO.V) UO + v u'ZZ

The rectified flow U is the constant flow at the end of the viscous boundary layer, found by using
I +06

the trick : v I z uzz dz = - v U . So we multiply by z, integrate and average in time the preceeding

* 31
equation. It gaves the final result : U = - U 0 u 0x

With the negative sign, one sees that this flow escape the maximum of velocity oscillation to
converges to the minimum of velocity oscillation. This corresponds exactly to the constant flow observed in
experiments in water, meaning that this flow is due to the friction of the surface wave flow ont the bottom.

The physic of the rectified field flow is in fact very simple. For an oscillatory flow, the quadratic
Iterm, i.e., the advective term, of Navier-Stokes will always gives a constant term. The question is now

why a viscous boundary layer is needed? Because in the fluid, the pressure is not imposed, so the constant
part of the advective term is balanced by a constant pressure gradient. But on the contrary, in the boundaryI layer the pressure is imposed to be the pressure in the fluid. As the velocity decreases to go to zero at the
wall, in the boundary the advective term cannot balance this constant pressure gradient, and thus a rectified
flow is generated.

This property of the pressure in the boundary layer is general and always creates secondary flows,
cven in a non-oscillating system, for instance in curved system (the tea leaves in a cup of tea).

I 3 Dissipation

3.1 Mathieu ,amplitude, and energy. equations

The studied instability is a parametrical one, governed at the first linear order by tha Mathieu equation:
xtt+2,Xxt + O(t)x=O

This equation, without the damping term in X, can be obtained from the inviscid problem in the case
of the first boundary condition (Benjamin & Urssel). If one takes the nonlinear problem, one can found the
corresponding nonlinear terms.

The amplitude equation can be obtained from the preceeding by develloping in e all the quantities

x=c(AeiCOt + c.c. ) + h.o.t.
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2062(t0 ) 2 ( + : (Cc +m c.c.) + h.o.t.)

(d T.+ E 8 + h.o.1.

At E c F(A) + h.o.t.
All these dcvcllopements have their physiscal meanings.
One obtains at the first order the 1/2 rcsonnance, i.e. the dispersion relation. At the second order, one

obtains the linear amplitude equation:

At=(-X+iS)A+i -'-A
4

Thc energy equation is obtained by multiplying the Mathicu equation by xt and intcgratang over onc
excitation period. If one then reports the same dcvcllopcment than before, one found the equation for the
modula of the amplitude, i.e. only the real tcrnis of the amplitude equation:

(AA'),=-A A +i T(A 2 A).

From the nonlinear inviscid equation, one knows how to found the linear and nonlinear imaginary
tcns of the amplitude equation (the real parts correspond to the dissipative case). The idea is now to found
the real linear and nonloincar real parts of theamplitue equation from the energy equation dcrivied from 1
Navier-Stokes. Practically this is possible accurately only for the first real term, usually called the Udissipa, ion.

3.2 Dissipation of the amplitude equation from Navier-Stokes I

We first have to write the energy equation, always obtained by the same way and transformed with
the same tricks: I,

where V and S refer to the volume and surface of the oscillating free surfae volume of fluid.
We rccongnizc in this equation that the energy source comes from the modulation of the gravity, and 1

that the dissipation occurs only where o * 0, principally in the viscous boundary layer (here the surface 1

dissipation will be neglected).
Now one just have to express u (and then (o ), as a function of the free surface h. After, the same U

dcvellopeinent of h over one cigen mode of oscillating amplitude x -'nd constant one A will give the E
equvalent of the energy equation for the amplitude equation.

One must note that, at this point, this equation assummed no aproximation, and thus is exact to all
orders (incuding the nonlinear). But one sees that one would have to devellop the integrals, which limits U
oscillate, but also to know u with the corresponding accuracy, i.e. to solve the nonlinear viscous problem
for the flow of one free surface wave mode.

The first term is exactly the first term in the equation for the module of the amplitude, the second term
coressond to the forcing, the energy source, and the third to the dissipative term.

We just need to compute the third one, but also the first as it gives a coeficient. To compute the first
term, we first assume that the kinetic energy is very close to the inviscd one. The error can be estimated:

~(U)2 dv =j(UO)2 dv - [ I- A

with A =[ 8 boto + ]
U0°surface 4

One can here note that the preceeding aproximation explains why the eigen frequency is changed by •
viscosity, as for a same free surface, and thus potential energy, the kinetic energy is reduced. Thus the

eigen frequency is increased : Wisj2 = oinv2 1 + .].

Now we use the equivalence of dispersion relation and eigen frequency and transform the potential
energy for h small. so:
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[ PS g h2 + y(V h)2])dxdy

which is very easy to compute for a given free surface wave mode (for a sinusoidal one this gives the
usual factor (g + y K2) ).

To compute the dissipative term, we use the preceeding scaling to simplify the expression of the
vorticity uz - WX UZ as wX ~ ('.) ux . Now uz has a simple expression as a function of the

inviscid solu tion : z = U O(x,y) e i u i ( 47 w h '6 = fz., = R el p n C + + i - 1

I . Thus o> ,.<<, >d
Thu v r ( ) ? dvu - !I (U )2 ds

Wall ,t'acc

where I = - - Thus we just have to compute the integral of the module of the

I inviscid velocity at the wall. With the usual adinicnsionnalization U - cAh, this gives

I[ K 2 G(KiKL)

where G(KH, KL) = k U 0)2 ds (the - denotes the adimensionnalization) is a geometrical
I~ wS

factor corresponding to the structure of the inviscid flow.

I

I

I

I

I

I

I

I

I

I
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II INVISCID PROBLEM

I Formal Solution

1.1 Formal Solution or the geometrical problem 3
CI

p 

1

We note h=h f(xy) c i0,1
O=iow h O(x,y,z) c ioa

Tli first idea is to decompose 0 on products of two cosines, which automatically satisfy the lateral * I
boundary conditions.

LXL 7
Thus we note rn = J J cos(kmx) cos(kny) dx dy

where kmmx _rkn4 X ;and

e = emn cos(knmx) cos(kny)
mn

where the 'denotes a factor 2 for (mn,n)*(0,O) 
I

LX LX

Then J exx cos(knix) dx = [ex(Lx)'Ox(0)] -km2 Jo cos(kmx) dx

Thus one note that this transformation naturally takes into account the solid boundary conditions for 0
and the new system reads:

emn zz -kmn 2 On =0 where kmn2 = km2 + kn2

emnz=fnn atz=H, 3
Omn z=0 atz=O

The solution of which is: 0mn= ch(kmnz) fmn

ch(kmnz) co.. x coskIY
or 0 fmn kmn sh(kmnH)c m n

m 
I

If one lateral wall is at infinity it just corresponds to: 2J d rI

ch(kmnz) e kmnz
and, for an infinite depth,: kmn sh(kmnH) - kmn

0 -10
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I This is not clear under this forn that this solution is really one (problems of divergences). We will
check that above.

1.2 Selection or the free surface and eigen frequency

Thc free surface boundary condition reads :
Ot=(.g+yA)h - 2 O=(g-yA)f atz=ll (1)

S With the first boundary condition for the free surface, \h . n = 0,
the free surface is naturally decomposed over the product of cosines:

f= I pd1 cos(kpx) cos(kqy)
p (I

and thus equation (1) gives:

I fpq k i pq sh Wql) (g + y kpq2 ) cos(kpx) cos(kqY) =0

if we projcc! along each prxduct of cosines, we thus obtain:
I Vp, (, fpq (O2 h q (g+ 'kpq2 ) =0.

Mhe only solution with f*O is:I f= eos(knix) cos(kny)

Tlhus the cigcn nxcs are simply the product of two cosines, and the usual dispersion relation is
obtained. 4 With the second boundary condition, h=0, the surface is naturally decomposed over

* the product of two sines :
f= pqfPq sin(kpx) sin(kqy)

p q
Lx

Now sin(kpx) cos(kmx) dx = 0, if p and m have the same parity

-2 kv p aniaeo
=k p2.-kn 2 'fp dmrf

opposite parity.
This selection on m correspond exactly to the reflection symmetry at the midle of the cell.
The formal solution thus reads:[0 =  fpq 2. p 2 kq ch(kmnz) .cnkmx

, ~ ~~~kp' - 2  kq2 - kn km nshkn)CS'm csnYI I mn h~mH

where the " denotes also the selection on m and n.
The equation (1) then gives:

I
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fo 2Ikn ch(kmnII) os( mx)co(ky) - (g+1 2)sin(k x)iin(ky)J 0
p q 1,0 2 -kll kq1k2Vii kit1,p

P q L m n

If we project along each product of sincs, we now found an infinite set of equations which couple I
cach fPQ to the others :

I ( pq W2 y(pqop0 ' 0) g -[ + y kpoq 0
2 ] fp(I=o 0I

pq

wher p ,q 0  2 k 2kp :2 kq0  ch(knnz) I
where Kp~q~p~qO) m p 'kMk PO 2km: k o2kn7Z knnsh(knt)

where the "' denotes also the double selection rle, i.e. a mode with a given reflection symmetry
along x and y (odd or even for each direction), interacts only with a mode of the same symmetry. We also
note 7(p,q)--y(p,q,p,q). I

This prouves that the surface cannot be simply the product of two sines. But experimentally, it seems
to be very close, especially for large Po and q0, so we assume that a Galerkine aproximation is valid.

At the first order of this approximation, the surface is the product of two sines, which gives for the
dispersion relation:

co2 "p0 ,q0),, = [g + y kpoq 0
2 ]

itsI

or o2 X j (k x .1z)22 k, ch(kmnH) g + Y K2or 2 x(2-km-.7 - 1-1 kmnsh(kmnR) =  [ +'

ra n

with K2  2 + 2 ...
One can notice that the term corresponding to the potential cnrey, i.e. to the free surface, is not

changed from the usual dispersion relation, as in this F 'st aproximation the free surface is still sinusoidal.
But, because of this new boundary condition, the flo\. :hanged, and so is the kinetic energy term. One
also notes its non trivial dependence on kx and ky.

The second order consists to aproximate the surface with the sum of two products of sines. This
gives:

fpq [ (02 y(pq) - (g + y kpq 2 ) ] + fp'q y(p,q,p',q') = 0

fpq y(p,q,p',q') + fp'q' [ 2 y(p',q') - (g + y kpq2) ]= 0

By writing that the determinent is zero, one obtains th: two corrections to the cigen frequencies of the
two modes, and the eigen vectors give the corrections to the surface.

This can be generalized for all orders to obtain more and more accurate solutions. The validity of this
aproximation is checked by looking at the order of magnitude of the coupling terms y (p,q,p',q') compared
to y (p,q).

For a first conclusion, we could say that the surface is now much more complicated, and that even in
the aproximation of a simple surface, the cigen frequency is changed. But all this preceeding treatement is
rather formal, and we now want to look at the validity, existence and shape of these solutions. 1

U
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2 ExamDIes on how to Le C the formal solution to obtain valid

I We use only the simple sinusoidal aproximation for the free surface, but, as he problem is linear, this
treatcment can be exte'dcd to all orders.

We will first.look at cells with one or more lateral wall at the infinite, and thus have integrals instead
of discret sums.

At this point, we notice that, in the transformation of 0aI = 0, we used the condition that Ox(+o) = 0I . When this is not true, it introduces a divergence in the formal solution. But this problem can be solved by
substracting an intuitive solution 00: 0 = 00 + O' such that O'x (+-) = 0.

22.1 Bidimensionnal case, infinite depth

EIf we take h= h sin(k x) € A

*=iw h O(x,z) e iOx
the formal solution reads

€rz /

0- er--cos(r x) dr "0

The integrant has a non-integrable divergence for r=k. This means that Ox has an oscillating
I composant of wave number k, at .+- . This is trivial as, at +a, the fluid does not feel the wall and we must

* ekz
obtain the unbounded solution 0 0 = sin(k x) kz-, as the oscillation of the free surface goes to infinity.

IThus we write 0= 0 + 0', and by using the formal identity
+00

3 sin(k x)= 2 - cos(r x) 

• " -cos(r x) dr , i e

| +-0we obtain 0' = +00 z~k o~ x rie

I, +00
ekz 2 j k Crz kzl

0= sin(k x) -" + - r cos(r x) drI (r

I 0 This solution is still not defined for r=O, but this problem desappears for the physical quantities 0x

This solution can be more properly obtain by writing the new problem for 0':

0
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We see that for this correction flow induced by this new doundary condition, it must compensates the

flow through the wall due to the simple solution 00 . Thus its boundary condition is no longer O'x = 0
This is why the cosine transformation is still interesting in this case as

+00 +0

( O'xx cos(kmx) dx = -0'x(O) + [0'x cos(r x)](-+0) - km2J 0' cos(kmx) dx

,< one assume that O'x (+-) = 0, one obtains:
of r zz + ckz "-PO0, = 0 ,

the solution of which is exactly the preeceding one.
The interpretation of this correction flow 9' as the compensation of the flow through the wall due to

00 :

allows to found directly a good aproximation of this flow far from the comer, as this boundary
condition is like a sink located at the comer:

.So the flow is radially symmetric for kR>, and, in order to preserve mass, i.e. the flux, one must
0

have U 7-= fekz dr= ; soU=
-00

One checks that U (+oo) =0.
We can also check that Ox (0) =0, what is not directly appearant, by looking at the

+00

limit of I= 02.k [erz r- Z sin(rx) dr ,when x goes to zero. For

+002 j~ k [ uz/x _u euz/xl
this, we use the changement of variable u=rx, so I = -7- [ - sin(u) du

+00
w k[ uz/x s_) q 2 sin(u)d=

Now k7" sin(u) - e z u when x -- 0 , and 2 u

so I - ekz when x -4 0, and we have exactly Ox -+ 0 when x - 0.

Figures 2, 3 and 4 show the flow 00 , the correction 0', and the final flow, with a zero normal
velocity at the wall. Figure 5 presents the horizontal velocity U for different depth z, and one check that U
goes to zero at the wall.
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At this point, one can also simply understood why !his new boundary condition, i.e. with a surface
ofra sine, we must wid a correction to the flow, by looking at the mass conservation:

i the cosines always presrve mass, but the s "ie surface needs the adition of a small volume near the
wall. "lc corresponding flow is the correction flow.

I 2.2 Bidimcnsionnal case with bottom,
I 4..,

kz ch(kz)
hlie changcment from the preceeding solution is -4

+00

thus 0 = 5in(k ch(kz) + 2j k ch(rz) ch(kz) cos(r x) dri ,,,,,, s- FT M-kshk~) - 7 -7 -- L rT Fa) " k s h(k 1-1) 1o( .)d

TiBs But natrOlly it2 :heinel fom whichntrr eained tihat there is a constant horizontal nflow at .oo.

Sapar

The sink at the lateral wall creates a constant flow at 4-: 4- I"

H

U eh(kz) dz 1 so U for kx > 1. By substracting ythis flow, and using the

fonnal identity:I x +o
=n jco~ X)d one finnally obtains:

I +_
0 sin(kx) ch(kz) sx 2 J ch(rz) - ch(kz) cos(rx) dr

which is well defined, and can also be corectly found if writing the problem forI ch(kz) x-"0
0" = 0 - sin(kx) k sh(kH) + One checks that 0" (+*-) = 0 by the physical interpretation:

H

I
<.44-*

0
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Figure 6 present the total flow.
One can also demonstrate by the same changement of variables that Ox -4 0 when x -4 0.
*Thc simple interprtation of mass conservation is also valid.

2.3 Lateral wall with bottom (step) 4A

Uh= hsin(kx x) sin(ky y)ceiO)t
*=iw h O(x,z) sin(ky y) c tO)tI The formal solution for 0 reads:

+00

0~ = =qksh(q) cos(rx)dr)

where q2 = ky2+r2.I As always, it diverges for r = kx, so we substract the usual solution:

where K~kxx ++kyrx d

Contrary to the preceeding case, there is no divergence for r =0. This can also by explain by a top

One can also use the same tricks to check that Ox -0 when x -4 0.

2.4 Corner with botom

h= h sin(kx x) sin(ky y) e~~)I =iw h O(x,y,z) e i~
The formal solution reads:

+9.Q ch(QH
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where Q2= r2 + q2 , is not defined from r=- kx and q= ky separetly. This means that we have again to

substrac two solutions of the form sin(kx x) 0(y) and sin(ky y) 0(x), which correspond to the prccceding
solutions for two steps: / I

4- -.

so L

0 = sin(kx x) sin(ky x) ch(Kz d.

Kx sh( qH)

I" sin~k x) kx [q ch('z) ch(Kz)

+ sin(ky y), kx2 r [ h(r') - ch(Kz)] cos(r x) dr

+00k Q . c~') ___

4f, kx k ch( z) __z) ch(rz) ch(Kz)+ *W-'I -r " cos(r x) cos(q y) dr dq

where Q2=r2+q2,
r'2=r2+ky 2,

and q' 2=kx2+q2 .

This solution is now perfectly defined, and there is no divergence from Q=O. This can be also
understood by the same physical reasons : the solution for a step stisfies the boundary for its wall but not
for he otherone:

, I
But the flow throught the wall is located at the comer. Thus the flux condition for the last correction

is located at the comer I

and far from it, it apears like a local sink:

/ u
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so also U - l/R for KR>l.

Another way to obtain the shape of this flow is o notice that the mass is not conserved only at the
comer on a surface correspoding to the quarter of the two wave-length:

Ix
I One can aslo check that x - 0 when x - 0 and 0y - 0 when y -4 0.

2.5 Infinite channel

H

h= h sin(kx x) sin(ky y) e iox 4.

*=io) h O(y,z) sin(kx x) e i~ot
The formal solution reads:

I

I 2 = X cos(rx)

p

where r Cand q2 = kx2 + r2.

This solution is already well defined. But contrary to the preceding ones, it is not trivial to check that
S y -0 when y 0 and y -4 Ly.

2.6 Half infinite channel

I l 4:

h= h sin(kx x) sin(ky y) e ot"

¢=ic h O(x,y,z) e iOt +
i The formal solution reads: o '

0 * k 2 Q h(QH) cos(r x) cos(q y) dr

p
where q =L" and Q2 = r2 + q2 . This solution is not defined from r = kx , so we have to

substract the preceiing solution:

I
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0 = sin(kx x) 2 kx hz) cos(qx)

pI
+ 2_ k x  2 kv[ ch(Q z) qch (q'z) srx o~ )d

sh(QH) " s h (q H) os(r )cos(qy)dr

p
where q =- , q,2 - kx2 + q2 and Q2 - + q2 .

This solution is defined only for m = ky even (so that q is never 0). Oherwise the first term of

the discrete sum allows q--0 which makes the integral nondefined for r=O.
This also naturally apears when looking at the boundary condition near the wall:

for m even:

no flow at I
for m odd:

flow needed at +0o

This problem of divergence due to the discrete sum is thus also due to the mass conservation, and is
discusted in the following section.

2.7 Closed cell LI

•I

.o°

h= h sin(kx x) sin(ky y) e iO I .. 1.

*=ko h O(x,y,z) e iO)t . I
kx =-'M" n and ky n 7

The formal solution reads:
I I

2.km k 2  kmn sh(kmnH) cos(km x) cos(kn y)
m n! L - IThis solution is well defined except for mo and no oddd, as then m=n--O is allowed and the first term

of the sum is infinite. This divergence is also explained from the mass conservation : I
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for mo nad no odd the mode does not preserve the mass of the fluid. If one number is evelA there is
then no problemI

The effect of an odd-odd mode is to suck down the center of the surface:

so that the mass is preserved. This can exactly be interpreted as the neced of another mode, i.e. to say
that the surface is not only a product of two sines, but the sum of several modes. We already knows that
from the study of the dispersion relation ( see § 111.2 ).

We can check this interpretation that the divergence just comes from the mass conervation by
noticying that if we add two modes (of the same parities) such that the sum preserves the mass, then thedivergence de.appears

2k x  2 kv 2k'x 2 k'y 1 ch(kmn z)
= X kx2.km 2 k +kn k'x 2 km 1 k'y kn2J kmn sh(kmnH) cos(km x) cos(kn y)

mnLx Ly

Uwith fIasin(kxx) sin(kyy) + 13 si$n(k'xx) sin(k'yy)] dx. dy =0

i.e. F-"7- + 0 = 0, this is exactly the first term (m=m--O).,X ,V ,X ,

This remark is valid for wathever sum of modes one chooses such that the mass is preserved.

An interesting problem is now to look at the comparasion between this condition of mass
conservation and the differeent orders in the garlerkine aproximlation.

I One can also, from the correction due to a comer, draw the correction to the flow in a rectangular cell,
depending o the parities

* even-even:

Ie
I

*!vnod
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odd-odd:-3

I
3 Short study of the disnersion relation

From all the above excemples one can write the corresponding dispersion relations by reporting 0 in
the physical boundary condition.

Here we will focused only on case of an infinite channel, which was done with the tool of a I
variationnal principle by Benjamin & Scott.

We did not have time to study the dispersion relation in a closed wessel, and to look at the

dependence on the aspect ratio F IY
Figure 7 presents the dispersion relation at the first order of the galerkine aproximaton:

p,2 I

where kx -Ex , r = q2 = r2 + ky2 and K2 = kx2 + ky2 ; for m odd and an infinite depth

(ch/sh=l), and we have ploted A 2 as a function of K and ky. For the usual dispersion

relation, A = K, the diagonal line. The most surprising result is that, for the mode m=l, the dispersion
relation is nearly A = ky . This probably comes from the fact that the mode can not have less than one
transverse modulation, and thus it does not appear in the dispersion relation.

Thus cuts of the curves A(K) are natural as K can start only from ky.
The fact that A goes to zero when ky goes to zero for the modes m>1 is unphysical and just comes

from the fact that an odd mode can not preserve mass in the cross direction, when the wave length becomes
infinite in the long direction ( a zero frequency mode is an unexisting mode). So other modes are needed,
i.e. one needs to go at a higher order in the garlerkine approximation, and this kill this effect.

4 ConclusionI

As a conclusion for this part, we can point out the symplicity of the formal solution. The usual
boundary condition gives quickly the usual simple result. But with the new boundary condition, the surface
is no longer simple. However, we think that it can be simply aproximate by one or the sum of few products
of two sines. Then one can found corresponding aproximate dispersion relations, presenting already the

kx
special dependences on . I

We also shown t'at the formal solution allow to write directly well defined solutions. The
divergences can be understood in several way, the more physiscal corresponding to the mass conservation
imposing a flow at +o*. The nondefinitions coming from kx, ky, K, or 0 just tell us to substract the simple
solutions in sin(kx x), sin(ky y), sin(kx x).sin(ky y), or constant flow. After this, the solution is well
defined, and, in the infinite case, one can check that 0x -- 0 when aproaching the wall. Simple
reasonements with the mass conservation gives also by two different ways the shape of the flow.
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III DISSIPATION

With the approximation of a surface which is simply the product of two sines or cosines, we have I
seen in § 13.2 that

(0) 2 I f(VO)2 ds

[g + y 1(2] LALy W ' S

We just have to compute the integral for the different solutions above. For this, we just have to know
the same integrals :

L L Lsin(k x)2 dx = cos(k X)2 dx

H 2fch(Kz 2 1 r ch(Kli)
if = dz = , RI~IY h(HZ

0 H

Hf sh(Kz) N2 d I [ ch(KH) +

We will present only few exemples, as the computation for each case is always the same.

1 First boundary condition I
From § H 1.2 we know that the surface f = cos(kx x) cos(ky y)

ch(Kz)and that 0 - K sh (Kx) x o~k
One obtains, after a few algebra, and adding the contributions of the bottom and the four side walls:

/kt-\l 
[ ch(KH) +J

w0)ds--[Lx (~ 2+ Ly (,)J] s + ]

ere s2 2 sh(KH)2

There is only one term depending on kx and ky , but this just comes from a difierent weigth on the
different size of the lateral walls. This is a linear depefidance:

('C.

fI
such that 0 . -.'.). ........

LII

( AV
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£ (a) dissipates more than which disspates more than (i)

But this effect desappear in a squarre cell, as one then obtain:
w J(V78)2ds = l [ch(KH) + "- .i-)4

L2  II So +'2 sh(ZH)2

I So
= i- r r K ch(KH) 1 2  K)L N V Ca0 L [3 ch(KI-) sh(K )J + L ch(KIH) sh(K M-)j

4vc W 1: when KH * I i.c.. C0 * I

I + when KH 4 I i.e. o) 1

In fact, one sees that the dissipation is principally due to the friction at the lateral wall, which is
always important (term in lI/L), except at smll frequencies, where the friction at the bottom becomes

comparable. One also sees the general expression of the dissipation in " W, i.e. its increase withU frequency.

2 Second boundary condition

2,1 Bidimensionnal case withoUt bottom

As the simple solution has no tangential velocity at the lateral wall, all the dissipation comes from the
correction flow, the form of which is:

I0
I So . t...

Jw2dz- .+ f dz ~R-
I

which is surprisingly exactly the same contribution than'the preceeding case!

2.2 Step (wall with bottom)

This case is more physical as it allow a tangential flow in both directions:

34

I At the lateral wall, from the preceeding solution, we found

I
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+0@

w=sin(kyy) -f kx r.sh(iz) sh(Kz)

As we are interested in its dependence on kx, ky and K, we adimensionalize this integral by
expressing itas a function of u N k, K 2+ r'- Tu

--. Thus'

K

We think that f does not depend to much m K as it varies only in 10O, 1.

In the same way, one obtains :

W~ q sky g)f(Kz;

__ [urh(Kzu) ch(Kz) u du

with f - -Jl u T i R W - '2( )j U

K
So one can write directly the geometrical factor corresponding to the lateral wal :

LJW ds,.,  [ (H )+ (] I _KH

HK

w ith F(K ; ) = J~ de- dU

and G(KHI; -") =fg2 dKz I
For the bottom, one found a similar structure for this geometrical factor:

with

V r 1 112k ) t

f K ; k~. = fhK) + [ (1ucuh(Ku) -h(K)J U ~ 2 ( dul

K J

g'(KH; )= " { [ sh(KHu) - hKH] u ( d

K

" ( 0 )2 s 1 2 "

and G(K - hKH) g 2
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One can notice that the terms in 1/sh0 comes from the simple solution.

This structure of the dissipation can be found with the remark that the correction flow is created only

to compensate the flow of the simple solution through the wall:

Il With h = h sin(kx x) sin(ky y) e it --

it gives 0 -" ; so UO - . Thus for the correction flow we have:

Ix u. /k .d .x kx~(Ah KT ; so U' -'M at , -.. - and W'- aoh .

And thus one found the structure.
But in fact, the passage from U0 to qe is not so simple, and this is where the factors f, g, F ,G, r, g'

come from.
In this tridimensionnal case, the dissipation at the bottom also desappears at high frequency, as the

correction flow does not go to infinity.

2.3 Square cell and corner

A first approximation for the comer would consist in adding at the dissipation due to two steps the
dissipation due to a first aproximation of the correction flow:

I ""..
I1

with the mass conservation, we found that U - k k .

One must note its strange divergence for kx or ky going to zero.

For a square cell, which is in reality our principal interest, a first aproximation consist to take the
dissipation given by the sum of four steps:

I( 0 
F ' K H ; ) + , F ( K H )

s
I* v
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This cxprcsssion has two terms, the first one is nearly symmetric in kx and ky , and the second is in

kky. The sum also diminuish the small dependence of F and G' in kx and ky (u= k

(4).) 4.

Thus the shat of the final solution is ,
• ( G-) 4(,) O,,,, 4

This is exactly the kind of dependence observed experimentally in a square cell.

A better aproximation of a square cell would be to consider it as th sum of four comers. Now the
corcction of one comer to two step gives a term in I

So the final solution would be like: 1II

This shape explain that there would bea optimum aspect reatio, and perhaps explain the fact that at
high frequency, one preferentially observes modes with a given small aspect ratio near 1/6.

4 cnl sin

As a conclusion for this last part, it apears to be quite simple to compute directly the dissipation term
of the amplitude equation. With the usual boundary condition, it does not give any dependance, except the
trivial rectangular one, on kx and ky.

On the contrary, the new boundary condition gives the observed dependences, and this can be explain
simply by the fact that the dissipation is due to the corection flow needed to compensate the flow through
the wall of the usual solution.

The last result is very interesting as it could explain the shape of the modes in a very large cell, only
by the selection from the dissipation.



* CONCLUSION

Some experiments were performed with a simple boundary condition which consist to pin the free
surfacc at the edge of the lateral walls. But it appears tb give strange dependence of the cigen frequencieskx
and dissipations of the eigcn nodes on the aspect ratio vy.

'By first looking at the structure of the problem, we shown that we need, and only need, to solve the
i inviscid problem with this new boundary condition ; and we shown how to found the real cocicicnts of the

amplitude equation from the energy equation derived from Navier-Stokes. Especially we expressed simply
the disipation X only as a function of the geometry of the inviscid flow at the cell walls.

3 In a second part we found a formal solution for the inviscid problem, and how to found more and

more accurate aproximations for the free surface and cigen frequencies. Benjamin & Scott used a similar

I iaproach, but by using a variationnal method they found more accurate cigen frequencies but lose all
information on the free surface and on the flow. We shown also how from the formal solution to write well

I defined solutions for the flow with physical arguments derived from the mass conservation. These

interpretations allow us to found the shape of the flow.

Finnally we used these results to found the dissipation in a closed cell, and shown how the structure

of the flow near the wall explain the experimental dependences. It can also predicts the shape of the modes

in the limit of a very large cell, just before chaotic behaviors.

Extensions of this work

We will study in more details the surface and the dispertion relation. We would like also to compute
the dissipation in a square cell.

It would be also interesting to look at the derivation of the nonlinear real terms of the amplitude
I equation, still from the energy equation.
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Rotntiug Rayleigh-B136ard Convcctioit with Fixed Flux Doundaries I

'1'iniolliy B. Dowliuig i

Califorania Institute of Technology

I. hntrodttction

Convection between two horizontal plane boundaries, known as Raylcigh-DUnard con-

vcction, has been extcnsively studied for the case of fixed temperature (perfectly conduct-
ing) boundaries. The opposite extreme is the case of fixed heat flux (perfectly insulating)

boundaries, and this problem has been taken up in recent years (cf., Sparrow, Goldstein,

and Jousson, 1964; Ilurle, Jakeinan, atdl Pike, 1967; Chapman and Proctor, 1980; De-

passier and Spiegel, 1982). One significant distinction between the two extremes is the
value of the horizontal wavenumbe- for the onset of convection, kc. li the case of fixed 1
temperature boundaries kc is larger than zero, but in the case of fixed flux boundaries k,

is zero (ic., convection with infinite horizontal wavelength). We have extended the study

of convection with fixed flux boundaries to the geophysically important case of a rotating

system.

After describing the physical system and governing equations, we briefly review below

the effects of varying the thermal boundary condition on the nonrotating case, and the

effects of rotation on the case of fixed temperature boundaries. It will be seen that rotation

introduces several new effects, including a tendency to increase kc and the introduction 3
of a second mode of convection arising from inertial oscillations, known as overstability.

Two important questions then are these: What strength of rotation is required to make k, 1
bigger than zero for the fixed flux problem, and what strength of rotation is required for

overstability? We study the linear problem, beginning with a small k analysis, which in 3
particular will answer the former question. Next, we use a variational technique to study

the system for all k. We will make a brief remark on the nonlinear problem, and then

summarize our conclusions and point to future work.

II. Physical System and Governing Equations

The configuration to be examined is sketched in Fig. 1. We consider a Boussinesq fluid

with kinematic viscosity v, thermal diffusivity x, and coefficient of thermal expansion a,

confined between two horizontal plane boundaries separated by a vertical distance d. The

Boussinesq approximation is not ideal for k, = 0 systems because fluid which travels a great
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horizontal distance Imy eventually See a significant chagC inl deusity. More specifically, the
Boussincsq Ind shallow-layer approximations do not commute (cf., Dcpassier and Spicegl,1 1982). For this first pass we will nevertheless assume that density variations arc only

important when multiplied by g. (An extreme example of a non-Boussinesq, fixed flux
(zero flux) system is bioconvection (cf., Childress, Levandowski, fuld Spiegel, 1975).)

The heat equation for the fllid is

g v) v = V2(1)

I where 7' is the temperature and v = (u,v, tu) is the velocity. An adverse temperature

gradient 042'/0:= -. 6 is hhid fixed on the boundaries. It is customary to define a newIvariable 8 by T'1 = - Oz -1 e, which yields

3ta (#vV6fW = V20 (2)+ vV - =,V' 2

The thermal boundary condition becomes

0: = 0, Z = -:2,. 
(3)

The continuity equation is
V. v = 0, (4)

and the momentum equation for this rotating system is

U ( j+v.V v+fi xv=-lVp+qQOi+VV2V. (5)

Po

I We nondimcnsionalize by redefining variables as follows: v -, tc/dv, p -. pot 2 /dl2 p,
t __# (2/l, X -- dx, 6 -4 d1#8, f -+ t/d 2 f. The equations become

I + V - _ = V2, (6)

V-V=O, (7)

I-( +v.V) v+fixv=-Vp+cRO +crVv, (8)

where the Rayleigh and Prandtl numbers are defined as

ga=dK (9)
*KU



Wc will focus oil free slip boundaries, for which I
OIL OU 0, t (10)I
0:' 1 O =  O 2=

WC examihe tile onsct of convection by determining the marginal curve IR(k) for which

0/0t ! 0 (stationary convcction) and 0/0 = iw (overstability, dcfincd in Sec. IV below).

Fur values of It above the marginal curve thu- system coivects. The minimum ilvue of It

oil the nmrinal curve is denotcd R,, and the corrspoding wavmmibcr is denotcd k,.

Hence initially Convection occurs with wavemunber k,. We arc after how I and k, vary

with rotation.

I. Nonrotating: Effect of Thermal Boundaries

Before proceeding to rotating systems, we will examine the cfect of varying tile thcr-

ma! boundary condition from the fixed temperature case to the fixed flux case. A useful

reference is the treatment by liurle, Jakeman, and Pike (1967). They denote the difflu- I
sivitics of the solid boundary and interior fluid by Ps anid cKp, respectively. We will in

addition define the corresponding thermal conductivities to be K = pC.,p, where C), is the 3
heat capacity. The ratio of conductivities Ks/KF, sometimes called the Biot number'

(Sparrow, Coldstein, and Jonsson, 1964; Proctor, 1981), ranges from infinity to zero as we I
pass from the fixed temperature case to the fixed flux case. To see this, note that at the

interface between the boundary and fluid, we must have continuity of heat flux:

Ks0 Os =.Kr'eF (11)

Thus in the limit Ks/KF = 0 (or ns/rF = 0) we get the boundary condition 08/0Z = 0.

[Note: Both Hurle, Jakeman, and Pike (1967) and Proctor (1981) have apparently confused I
thermal diffusivity . with thermal conductivity K in their equations for continuity of heat

flux. This means their expressions involving finite Biot number are numerically correct I
only when (pC,)s = (pCp)F, which is not generally the case.]

The dependence of marginal stability on Ks/KF, as calculated by Hurle, Jakeman, 3
and Pike, is shown in Fig. 2. These curves are for rigid (no-slip) boundaries, but there is

no qualitative difference with the free-slip case we are studying. In Fig. 2(a) the marginal I
R(k) curves are shown for various Ks/rF, and it may be seen that Rc and k both decrease

with decreasing rs/KF. As mentioned above, kc = 0 for the case ts/xF = 0. Fig 2(b) I
shows R. and kc as explicit functions of KsIKF, with their values for the fixed flux limit

I
I
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denotcd by dotted lines. Th value of R, ranges from 1707.8 to 6! = 720 for tile rigid-

boundary case, and from 277r4/ = 657.5 to 5! = 120 for the free-boundary case. We will

Ibe required to recover the value R, = 120 from our results of Sec. V below i tile lit~iit of

no rotation.

I IV. Rotatisig: The Case of Fixed 'Tmperattire Botlldrics

Rotation adds thirce important new effects to time convecting system. Firstly, fur

yvery strong rotation, the Thylor-Proudimna thcorem applics amd 0/o: 0 away from

the boundarics; that is, vertical motions are inhibited in the interior. Thus, we expect

3R, to increase with f. Secondly, a rotating fluid allows inertial oscillations. 'lhcmrmal

dissipation causes a parcel to rcturn after one half-oscillation with a tempcrature different

3than its starting emperature. This call lead to growing oscillations, called overstability (or

vibrational instability), and is a new, competing minode of convcction. Thirdly, the Coriulis

3 force deflects horizontal motions, and we therefore expect k, to increase with f.

Al excellcnt source for our purposes is Chandrasckhar (1961), from which most of

what follows in this section will be drawn. Ani asymptotic treatment for large rotation

is given ill Heard and Veronis (1971), who deal with the question of viscous And thermal

boundary layers. We will genrally be examining rotation small enough so that tile enltire

layer of fluid is an Ekman layer (ic., friction and Coriolis forces are equally important).

The case of free-slip boundaries is easy (Chandrasekhar, 1961), and leads to the fol-

I lowing expression for marginal stability:

3 =?. I [(7r2 -1.k2)3 + 7r2T], (12)

where the Taylor number T is (f/u) 2 in nondimensional variables or (fd 2/VI)2 inl dimen-

sional variables.

The marginal curve (O/Ot = 0) for T = 10,000 is shown ill Fig. 3, and is labeled
'convection.' The remaining curves are for the marginal state leading to overstability

(0/01 = ic,), and are labeled by Prandtl number o. Note that all curves go to infinity for

small k. Figure 4 shows that Rc and kc increase with increasing rotation, as expected.

The overstablility curves are for a = 0.025, which is the Prandtl number for mercury.

IWe have briefly reviewed linear Rayleigh-Biard convection theory, and now move on

to the new problem of fixed flux boundaries in a rotating system.

V. Rotating: The Case of Fixed Flux Boundaries

i) Small k Analysis

I
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We liiearize the system about v, 8 = 0. The heat equation, eq. (6), becomes

To e . (13)

We perform the standard operation of applying £. V X and £- V X V X to the umomlentum II;
Cipuatio11, ceq. (3), which )'icds I

O fL + O V't oz

V2 ,,, h~ 0 v" i ,,1 _ f ,(o

where ( - . V x v. Next, we make a normal mode expan.ion with 0/01 -s 3, 0/0:--- D,

and V2 - D' - k. The z dependences of the three dependent variables 9, (, aml t will

be dentoted 0(:), Z(=), and IV(:). The equations become:

(D 2 - k' - s) 0 = -W, (16)

(D2 _ k2 - ) Z = -21 12DIV, (17)

(D2 2 ) (D2 - k2 IV = 712Z+ Rk2 e. (18)

We will do an asymptotic expaision with k' as the small parameter, for the 3 0 (sta-

tionary convection) case. Expand in k2 :

0 = 00 + k2 0 2 + k4 0 4 "..., (19a)

Z = kZ 2 + k 4Z4 +..., (1Ob)

W = k2W2 +-kV4 +..., (19c)

R = R0 + k2 R 2 +... (19d)

We leave out IV0, whid may be seen to be zero for 0 = 0(1) by integrating eq. (16) from

Z = -1/2 to -1-1/2, and applying the boundary conditions. That Zo is zero follows from a

similar argument.

We are seeking R0(T) and R2(T). The critical T = Tc where R 2 goes negative will

mark the strength of rotation necessary to move kc off ofzero. The boundary conditions

have become: DO, DZ, W, and D2W = 0, on z = ±1/2. The 0(1) problem is simply

D2 0 0 = 0. (20)
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I Thus DEo is a constDAt,. which must be zero by the boundary conditions. This implies

that Oo is constant, which may be takesn to be oue without loss of generality:

Eo = 1. (21)

J II A n0oilear aalysis We wouhl fild at this point eo = E)o(z,y,t), and proceed to

determine the 'planfortn' equation for Oo. The 0(k2) equatiows are:

D20 2 - O0 + l' 2 = 0, (22)

m ,D2 Z 2 .. TDDI 2 = 0, (23)

SD 4 IV2 - TII 2DZ2 - Ro o = 0. (24)

Equation (23) maiy be immediately integrated Mnd used tO Climinatc Z2 il eq. (24). This

n leads to an equation for I:

D I V2 +2TUW 2 = Ro. (25)

I This is solved by

IU2 = O (1 + E()), (26)

I where E solves the homogeneous problem, and satisfies B = -1, and D2E 0 on :

±1/2. Define a4 = -T, and note that Re(0 2) = 0. Solving for E yields

E = -Re cosh(OZ) (27)

The O(k 2 ) solvability condition on cq. (22) is obtained by integrating over z:

1/ f 2 z ~=-1,

which implies J-2fd-

Roi 1/23 + E(z) d- I

ithus yiclcling -1/8

ForR= 1-Re (Itanli(f))2a 2

For T = 0, this expression gives Ro = 5! = 120, which is the correct value for zero rotation.

Figure 5 shows R0 vs. z = (TI/2 /2)1/2 (2z is the inverse Ekman layer thickness). Included

in the figure is eq. (28) expressed in terms of the real variable z.

I
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The O(k) solutions are as follows:

I:=- iR( - e\osh(/2))), (29) -

L) n

Z2= =-T 'oR Re oSC/2) -:)* (31)

For small T,
1V2 _ 5(: - 3/2-:2 + 5/16), (32)

Z2 ~ -T112(-5 - 5/2:3 + 25/16.), etc. (33)

To get 2 we must go to the O(k 4) equations:

D70 4 - 02 + W 4 = 0, (34)

D2 Z 4 - Z2 + T/'DW4 = 0, (35)

D4W4 - 2D 2 W2 - 1," 2 DZ4 - R.0 2 - R 2 ,0 = 0. (36)

We use the Ok) solutions above and e(qs. (35) and (36) to get an equation for I4:

D4W +TW= 2D2W2 +T 1i j Z:dx+R.02 +TR o.(2D ZidzRO()+ R00-(37)

The solution for |i"4 is
114 2 eoO)+ 2  1 /D /1 II~z

W 4 ={ 4 Le~o+ 3 (+j) sA-~) Re~
(38)

where satisfies the homogeneous problem and the boundary conditions on IV4. Solving

for yields

\cosh(a/2)) +2 T/ 2  cos(a/2)) (39)

--e()- R 2 + (2-3-T +L (39b)
ND2) Ro 16 Rot )

D 2 (±) + 1 (3 + R) R~e (2 + !ax taiil(a/2))(9c
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IIII,, The O(k') solvability condition on eq. (34) is obtainedi by intcgrating over ::

I j IV4 d= e2 : (00)

Evaluation of eq. (40) leads to our expression for R2:

S{ t,,%2, ,,()
R. =R, R'ctanh(ct/2)) - !-a.+ 1---a-" '" 3 + o lift (.t-a)h/2))

9 ( + I tIm tati(
-.. .--- T'---P.l

48 ( 2))(2'11)22 7 )21/2

3 Thc limiting value for T 0 is 1 = 23.61 (cf., Chapman and Proctor, 1080). (The

11 in the denominator comes from the l1-th power term in the series expansion for the

3ati tanh functions of eq. (37)!) We plot Ie(T) and 12(') vs. 2' in Fig.(6). The critical

value of T for which RI gocs negative, and hence k, moves off zero, is TC = 180.15. This
n value corresponds to an Ekman layer thickness of about 0.2. The fact that the comicated

expressions for Ro and R2 yield nearly perfectly straight lines is intriguing, and suggests

a simple and accurate approximate analysis exists for the problem.

ii) Variational Estimate
We tried a small k analysis for the a = iw case, without much success. Instead, wc

move on now to a variational estimate of the marginal stability curve /(k). The fu'ctiomd

expression for R derived below can be shown to be stationary for the case s = 0, but has

not been shown to be so for s = iw. For this case we treat our expression as a useful first
(and only) estimate of R, whose accuracy is to be validated later, perhaps numerically.

We multiply eq. (18) by (D2 - k2 - 1j)W, and integrate. After some integrations by
parts, we obtain the expression:

f (D2 - k - L.) DW 2 + k 2 f [(D a - k2 - 2 + T flow}
k. (f [W - (1- )fWOODWI".l) . (42)

Our trial function for W will be the exact solution for the fixed temperature case:

W = cos(7'z). (43)

I
I
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Next, we find trial functions for Z and e- which satisfy eqs. (16) and (17), and the boundaryi

condilions:

2 .1. +2 si,+(as :),

0 cos( :) , b- r Cosh(k:) (
7 2 + k2 W2 .- 1. k2 + s k sih(k/2)"

The variable b is one for our fixed flux case and zero for the fixed temperature case, and

convcnicntly illustrates the effect of the thermal boundary condition.

Evaluating eq. (38) with the above trial functions yields our estimate for I:

Or2 .1. k2 )(,, 2 + k" + .,)2 +,=. (W46)

"'a___ tM k, (b( ol~/2 31 4

W2 +,k + ab(1- +k' 4;-

This cxprcssion is exact for b = 0 and any s, since the trial functions are exact solutions

to that problem. Compare eq. (46) with b, s = 0 to eq. (12). For the case a = 0, eq. (46)

estimates Rg(T = 0) = 120.17 and T = 179.3, to be compared with the correct values of

120 and 180.15, respectively.

If we now let s = iw and separate eq. (42) into real and imaginary parts, we may find

al expression for w2 (92 = (,2 + k)):

2 b 4 + ,.,2 17 bct qk2 (o +1 + 12(2o, 1) 1 + k {q'(o + 1) +wT(o! - 1))
4 bcoth(k/2) (2 - - q2 k( + 1)

For b - 0, we recover the exact solution for the fixed temperature case (cf., Chandrasekhar,

1961). For cr --o 0, k = 0,
W,2 . a'2 (T - '), (48)

implying T > i"4 = 97.4 for overstability. Thus.overstability can come in while ki is still

zero. Figure 7 shows marginal R vs. k curves from this analysis. The solid curves are for

stationary convection, and the dotted curves are for overstability. It is interesting to note

that the limiting overstability curve for or = 0, which is.independent of T, is just twice

the stationary curve for T = 0. For instance, the niniuni possible R, for the onset of

overstability is R, = 240.

iii) Remark ou 1VoiJijivL~r Prblemi

Chapman and Proctor (1980) have examinec, ae 2D. noiilinear problen for the case

of fixed flux boundaries without rotation. The approach is to exploit the small k nature of
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I the system ill a manntier similar to our analysis il Sec. V ). As in the linear problem, the
temperature perturbation does not depend ol - to first order, ic., Oo = Ou(m, i). Chapmanl

I and Proctor derive the following planform equation for 0o (prinmes denote O/Oz):

oen
i 100 1 A00' + A( 0 + .'4(0000). (49)

W We have bcguni to look at this problem with rotation. We find no new terms:

000 (%9,)I J-,03" + ."' B3(To)(0)' (,, 1")

llowcvcr, the expressio..s for the Bi(T ) rival the expression for R2(7'), eq. ('11). A numner-3 ical attack on this problem will prove useful.

VI. Conclusions3 We have hlndied the linear problem of Rayleigh-BDinard convectioll in a rotating system

with fixed flux boundaries. We find two critical rotation strengths, at Taylor numiber

T = 100 and ' c 180. The first corresponds to the-advent of overstability and the sccontd

%o the puoiht where k. iiuves off of zero for stationary convection. In other words, for

0 < T < 100, the system allows stationary convection with kc = 0. For 100 < 7' < 180, we

get stationary convection with kh = 0, or overstability, depending oil the Prandtl numbcr

c. For T > 180, we get stationary convection with kc > 0 or overstability. Given T,
overstability comes in with kc = 0 for small a and kc > 0 for large 0'.

The small kc nature of fixed flux convection may help explain why convectL,n ill theIEarth's troposphere tends to occur with a horizontalo scale much greater than the vertical

scale. If the thermal boundary conditions of a real physical system call be expressed using3 the parameter b, then eqs. (16) and (47) should yield important information about the

onset of convection.3 As mentioned in the beginning, kc = 0 systems should geta non-Boussinesq treatment,

which will be the next phase of this project. In the nonlinear problem, the new effect of3 overstability due to rotation should prove to be very interesting. Also, the effects of shear

in fixed flux convection remain to be explored.
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Fig. 1. The totating Rayleigh- Binard convection problim with fixed heat flux boundaries. Consider a
Boussitesq fluid with kincmatic viscosity v, thermal diffusivity X€, and coeflricient of thermal expansion 0,
confined between two hotizontal plaue boundarits separated by a vertical distaucc d. The vertical cooldiuate
is :, and gravity g acts il the the -- direction. The system is rotating about the : axis with angular frequency
fl f12. An adverse temperature gradient dT/d: = -P is held fixed on the boundaries, e.g. the thermal
boundary condition specifies fixed flux (insulating) boundaries as opposed to fixed temperature (conducting)boundaries.

I
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Fig. 2. Dependenceof the condition of marginal stability on the thermal boundary condition. (for the case
of tigid boundaries). The thermal diffusivities of tie solid boundary and interior fluid are denoted by ics
and ic, respectively. (See note on thermal diffusivity #c versus thermal conductivity K in text.) Fixed
temper ature and Ifxed flux boundaries (our case) correspond to infinite and sero Ks/#Ip, respectively. (a).
Marginal Rayleigh number R vs. horisontal wavenumber k, for various values of KCs/K,. For the case
Ks/Kr = 0, the onset of convection occurs at k, = 0 (eg., infinite horisontal wavelength). (b) The critical
Rayleigh number for the onset of convection R,, and the corresponding wavenumnber k,, vs. jcs/c~p. The
limiting values for ocs/Ic. tending to zero are indicated by the dotted lines (note the break in the abscissa).
This figure is adapted from Ilurle, Jakenlan and Pike (1967).
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Low Frequency Oscillations in a Coupled Atmosphere- Ocean Model

by
Mathew Maltrud

Scripps Institution of Oceanography

INTRODUCTION

This study is an attempt to look at low frequency oscillations (of the order of I cycle per year)

in a coupled tropical ocean-atmosphere model. Previous studies of this sort have been motivated

mostly by a desire to produce oscillations that resemble the El Nino-Southern Oscillation (ENSO)

phenomenon. Models of all ranges of complexity have been explored, ranging from interactions

restricted to only oceanic and atmospheric Kelvin waves (Lau, 1981), to numerical simulations

of the shallow water equations (Anderson and McCreary, 1985), to simulations of the primitive

equations (Cane and Zebiak, 1983). All of these studies found eastward propagating waves at

low frequencies. This work is different from the others due to the use of a new atmospheric

model proposed by Emanuel (1987). In addition, we will confine this work to a linear analysis.

THE MODEL

The model chosen to represent the atmosphere in this study is that introduced by Emanuel

(1987). This model was developed in an attempt to explain the 30-60 day oscillation in the

tropical atmosphere, invoking a wind-evaporation feedback mechanism that can support (linear)

waves whose amplitudes grow exponentially with time. The momentum equations for this

model, linearized about a mean zonal wind (Ua) on an equatorial B-plane, are:

u u ByV 2CD
-- YX T a h~ aU a
av CvD€T~l y

a+ U -v-=- -- Byu- -j v.
_F Gdx y a h

In these equations, ua and va are the perturbation zonal and meridional velocities, respectively; *
is the perturbation geopotential; B is the gradient of the coriolis parameter, h is a boundary layer
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I scale height, and CD is the drag coefficient since a bulk aerodynamic stress relation is assumed.

The relevant thermodynamic equation for this system, linearized about a mean state of radiative-

convective equilibrium, is:

as asCCO = -- AU(sb-s) + -

I In this equation, S and s are the mean and fluctuating components of the moist entropy

(S=Cpln0, where cp is the specific heat at constant pressure, and 0. is the equivalent potential

temperature), with the subscripts b and s denoting the toi. of the boundary layer and the ocean

3 surface, respectively; H is a tropospheric scale height, and C is the bulk aerodynamic transfer

coefficient for the entropy flux. Perturbation radiative effects have been ignored. To close the

system, it is assumed that moist entropy fluctuations in the boundary layer control the

temperature structure in the troposphere (this is essentially a convection parameterization) so that

the geopotential can be related to the entropy via the hydrostatic relation. For details, the reader

is referred to Emanuel (1987).

The model ocean is chosen to be a reduced gravity, shallow water system representing the

dynamically active thermocline on top of a semi-infinite deep layer that is static (Anderson and

McCreary, 1985). The mcmw.rtum and continuity equations, linearized about a mean zonal

I current (Uo), are:

aiO Duo a h
-- 0- .. +=YV +

a}v o a vo  aho
I + U-T = "g'" 1BYUo + TY

I + U-0 -d +

3 In these equations, uo and vo are the perturbation velocities, d and ho arc the mean and

fluctuating layer depths, respectively; g is the reduced gravity, and 'x and tY are mechanical

I stresses.

I
I
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To close the full set of equations, and to introduce coupling between the ocean and the

atmosphere, some more relations are needed. The positive stresses on the ocean are balanced by

the drag on the atmosphere,

,I = 2CDIU.tuA(-' !*)
p,.d

= CD)IUllva( -~~

pwd

where Pa and Pw are the densities of air and water. At the sea surface, it can be shown that

ds5 = c (k.E)d(inT )

PI

where rd and rm are the dry and nist adiabatic lapse rates, cp is the specific heat of air, and T.

is the sea surface tempcrature (SST). This relation introduces a thermodynamic coupling in

addition to the mechanical stress coupling. Two possible expressions for the SST are:

To = ch o

o+U
-6-+ Uo-,,-+ o-,- = 0

The first of the above expressions is an attempt to model SST fluctuations as due to

upwelling, i.e., a shallowing of the thermocline results in colder water being forced to the

surface. The second expression models the temperature as a passive tracer with a mean

zonal gradient, DTm1/',x. Thus our complete set of equations is:

Du* au = bd as h aa+ U - T-e- r + Byv,,- U

a a+ U a -a TbgV a - Byu - - ,-V. av

as as C C
' +  - H-- - V(S-s) + --- (S-Sb)sgn(U,)u.

Tt IN HI
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N o+U "l" = -g'a" + ByV+ ps

a a ah0  a p
+U = 0,~ - 13yll +C IU.Iv ( -

ah +ah -d (all av0-hW ho (Du ;X0 ;Oh

and cithcr a; aT

T0=ah. or -W +UOT +uO-- = 0

The system is nondimensionalized using the following scaling for dimensional variables denoted

with an asterisk:

x =x

y* =A 0 aoY

t =A A0 t
= UI I 11/2

v .A 4 'I, .19 v
* -- 1

=aI1C(S-S3

U'l o uS

m 0 a0 Ag'To for T=c ch o

or T T o a+r a rm
T a(4-±)T0  for + U-+- -=o

m where ao is the radius of the earth, and A - EvTbH't Co(Ss-Sb). Also, v is an order unity

constant and c, the atmospheric thermodynamic efficiency, is of order 0. 1.

Since this a linear system, we will assume solutions of the form:

Ua(X,y,t) = Ua(Y)e(,+ikx)

t
m
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where a is complex and them art similar expressions for all six of the variablcs. After 1
substitution into the (nondimensionalizcd) equations, the system takes the following form:
(D+2F)u = ik'l" + yvX I

(D+~vx P [r [.>l yuj

(D+Il')T = F1'70 + usgn(U)

D'u0 = -ikh + yv, + 2QuA
(1

D'vO = -P- + yuo ] + Qv

D'ho =- dy d-'0ikuo+- I" dy"

r, = aho  or DT, + uo = 0

where FH CDlUalaoh'; P BA'1/2%3/2; F u2FvColICDH; Q m Fpah/pwd; ( z gd/aoA; D-

c+ikUa; D' a o+ikUo, and

I' a Cg 1 (-5) ( ') for T = h0
0 "m

"/MC for DT o + u = 0

The overbar on To denotes a constant mean SST. If P is large, we can make the geostrophic

approximation,

dT dTo

T- =yua; 7y 
I

All of the equations, except for the ua momentum equation, can then be combined to yie!d an

ordinary differential equation for the meridional structure of the fields:

+ -T + -4D ' yUsgn(U[D'(D+F') - 2QF'r] I dT

+ 4D - + ik + 2*sgn(U[D'(D+F) + 2QF'r] I dyG-- 2 yY
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I
+ ( .- -D+F) - iky(D+Fl))I sgn(UjT = 0

To further simplify the system, one more assumption is made. The ocean and atmosphere

each have solutions for which v=0 everywhere. For the ocean, these ar simply Kelvin waves

3 that have a (squared) phase speed ck2 = G and a zero growth rate. Only the eastward

propagating wave has an amplitude that decays away with latitude, and is thus the only

i physically realizable solution. For the atmosphere, the solutions can be linearly unstable, as

discussed by Emanuel (1987). Well behaved solutions also propagate eastward and the nan

zonal flow is required to be easterly. It is therefore assumed that the coupled system also has

v=0 solutions, which reduces the system to:

(D+2F)u t = ikT
dT =yu

(D+F')T = F'FT o - ua

i D'uo = -ikh 0 + 2Qu.

dh

D'h 0 = -Gikuo

I T= ho  or DT -u0

where it has been assumed that sgn(U) < 0, i.e., the mean zonal wind is easterly. The five

algebraic equations can be combined to yield the dispersion relation:

I (D'2 + Gkr(D+2F)(D+F') + ik] = 2QF'T'Gk'

* where

r'- ecpg1 ( . d-) for T.= aho
0 m

I )( .. )  -i for DT o -U
P cc rm xGkA0 0I

I
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Note that if thc coupling is turned off, e.g., 17O, then the dispersion relations for the ocean and

the atmosphere separately are recovered:

D 2 + Gk= 0 for the ocean

(O+2F)(D+F') = -ik for the atmosphere I
The quartic dispersion relation is solved numerically using Newton's method.

SOME SOLUTIONS

Consider the case where To=aho.From Philander, et. al. (1984), cc is chosen to be IC1/50m.

In addition, we choose d=200m, U--0, and cl 2 = 2 m2/s2 where ck is the free Kelvin wave

speed in the ocean. The atmospheric parameters are the same as those used by Emanuel (1987).

The system is first solved in the absence of the wind-evaporation feedback mechanism in the

atmosphere. .e., the ua term is removed from the T equation. Of primary interest is the

behaviour of the largest scale waves since we want to investigate a global scale ENSO

phenomenon. It is found that all growing oceanic solutions (where an oceanic mode is identified

by having a phase speed close to ck) propagate toward the west, as seen in Fig. 1 and Fig. 2.

Note that the assumption that the solutions have the form e(Ct + ikx) leads to westward waves I
having positive phase speeds, contrary to the usual convention. The structure of one of these

modes is seen in Fig.3. The ocean wave is seen to have a westward Kelvin wave structure, with

the depth and velocity fields being 180' out of phase. The atmosphere is characterized by a

balance between friction and pressure gradient acceleration. We will find this to be true in all

cases due to the low frequency of the motions of interest.

When the wind-evaporation feedback mechanism is enabled, growing modes are found to

propagate both eastward and westward, depending on the strength of the mean zonal wind (Fig.4

and Fig 5.). This is perhaps not too suprising since we know that this feedback drives eastward

waves in the atmosphere. Figure 6 shows that an unstable mode that travels to the east in the

ocean has the structure of an eastward Kelvin wave, with the depth and velocity fields in phase. I
I
I
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I The structure of an unstable westward mode is almost identical to that of the corresponding mlode

without wind-evaporation feedback, although its phase speed is somewhat slower.

The solutions tend to be sensitive to the chosen value of a assumed to rclate fluctuations in

themiocline depth to surface temperature fluctuations. While the shape of the dispersion relation

remains essentially unchanged over an order of magnitude change in a, the phase speed can

change up to 50% and the growth rate can vary by an order of magnitude. It is also interesting to

note that the largest growth rates occur at wavenumbers significantly greater than unity. If El

I Nino is assumed to be a lowest wavenumber disturbance, these results may have limited

I applicability.

Next, consider the case of ocean temperature as a passive tracer, DTo=-uo. The magnitude of

the mean zonal temperature gradient, nlTm/ )x, is chosen to be 1O'C/100"longitude, with all other

parameters remaining the same as in the previou. ease. It is found that the model gives only

westward propagating unstable modes for the case where oT'm/Ex < 0, with or without the wind-

evaporation feedback mechanism. If the sign of the mean zonal temperature gradient is reversed,

then eastward traveling unstable modes are found, again, with or without wind-evaporation

feedback (Fig. 7 and Fig. 8). The structure of one of these modes is shown in Fig. 9. Note that

the ocean wave is not exactly a Kelvin wave, implying significant forcing.

Again, the solutions are sensitive to the choice of the value of DTm/ax, and are sensitive in a

way that is similar to the previous case, with growth rates responding almost in direct proportion

to changes in the forcing constant. It is interesting to note, however, that the unstable modes

3 have the largest growth rate for the smallest wavenumbnr in most cases, suggesting some

possible relationship to an ENSO type of event. But it should also be noted that aTn)Dx > 0 is

probably not a realistic assumption (aTm/ax < 0 in the tropical Pacific) but is necessary to get

eastward propagating waves that grow with time.

It is pos..ble that the temperature fluctuations in the ocean behave more like some combination

of the effects described above. The effect of combining them in the model has yet to be

investigated, though the linear nature of the model would seem to suggest that a superposition ofU
I
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each effect would describe the total response. It should also be noted that the time dependent I
ocean in this model had an extremely small effect on the free modes of the atmosphce.

COMMENIS

The solutions to the dispersion relation have some interesting characteristics, but it isn't yet

clear when this dispcision relation is valid. The uncertainty rests on the assumption that v=O

everywhere, essentially resulting in an overdetcrmined system of six equations and four

unknowns. The requirement that the T and ho fields have the sam meridional structure as given I
by the geostrophic relations leads to an extra constraint on the system in addition to the

dispersion relation, namely that
Do_ k

Gk D + 2F

Although this extra constraint has yet to be extensively investigated, it seems that the best that can

be hoped for is a v=O solution for very special values of some of the external parameters, such as

poorly known drag coefficients, while the worst case would be no possible solution.

Another possible range of validity of the solved dispersion relation is in the vicinity of the

equator. It is easy to see that the equations for y=O are identical to those for v=O except for the I
dvo/dy term in the ho equation. Thus if dvo/dy - 0 near the equator, we could expect our

solutions to be approximately valid there. If vo is symmetric about y--O, then dvo/dy = 0 there by

definition. However, the momentum equations imply that vo is actually antisymmetric about the

equator if uo and ho are symmetric, which must be true for non-trivial equations at the equator.

'Thus, the validity of our dispersion relation seems to rely on the size of dvo/dy compared to the I
rest of the terms in the ho equation. It may be possible that an approximate expression for dvo/dy

near the equator can be obtained from a small y analysis of the full meridional structure equation,

and hence the validity of the dispersion relation at the equator can be quantitatively dealt with.

This analysis is planned for the near future. I
I
I
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I Not knowing the mcridional structure of the modes described above (e.g., Fig. 9) leads to

another troubling question. Are these growing waves well behaved as y--oo? It is known that

westward propagating free Kelvin wave solutions have an amplitude that diverges for large y, so

thc possibility that the westward modes found by this model do decay away as y-o must be

treated with some skepticism. Again, it seems possible that an asymptotic analysis of the

enridional structure equation in the large y limit could shed some light on which modes decay as

y-.ao,. Initial investigation indicates that some westward modes are, in fact, well behaved, but

I more work needs to be done in this case as well.I
CONCLUSION

The main conclusion of this study is that the given model system is capable of supporting

growing disturbances of low frequency, though the relevance of these motions to ENSO remains

I to be seen. The presence of the wind-evaporation feedback mechanism can be quite important in

amplifying eastward propagating modes and suppressing westward ones. However, the range

of validity of the solutions of our dispersion relation remains in doubt until the question of the

meridional mode structure is solved. This problem is slated for the near future.
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Figure 1. Growth rate and phase speed of the wavenmber k=1 unstable oceanic mode for
various values of the atmospheric mean zonal wind in the absence of wind-evaporation
feedback. Ocean temperature fluctuations are proportional to depth fluctuations.
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Figure 2. Growth rate and phase spccd of the unstable oceanic modes for an atmospheric
mean easterly wind Ua 2 rn/s (solid line), Ua=3 rn/s (dottcd line), Ua=6 m/s (dashed line),
and Ua=8 rn/s (dot-dash line). Ocean temperature fluctuations are proportional to depthI
fluctuations and wind-cvaporation feedback is absent.
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amplitudes are such that an atmospheric zonal wind anomaly of 1 rn/s wvill result in
anomalies of 0.6*C, 12 cm/s, 0.6*C, and 33m in the atmospheric temperature, oceanic
spced, oceanic temperature, and thennocline depth, respectively.
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Figure 4. Growth rate and phase speed of the two wavenmber k=1 oceanic modes for
various values of the atmospheric mean zonal wind with the inclusion of wind-evaporation
feedback. Note that the unstable modes propagate to the east for small values of U., and
go west for large values of Ua. Ocean temperature fluctuations are proportional to depth
fluctuations.
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Figure 5. Growth ratc and phase speed of the unstable oceanic modes for an atmospheric
mean easterly wind Ua= 3 m/s (solid line), U,=4 m/s (dotted line), Ua=6 m/s (dashed line,
but not an unstable mode), and Ua=8 m/s (dot-dash line). Ocean temperature fluctuations
are proportional to depth fluctuations and wind-evaporation feedback is included.
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Figure 6. Zonal structure at the equator of an unstable oceanic mode with all atmospheric
mean easterly wind U,.= 4 rn/s and wavenumber k=l. The growth rate and phase speed tire
0.0028 I/day and -1.25 m/s, as seen in Figure 4 and Figure 5. Plotted quantities are theUsame as those plotted in figure 3. In this case, actual dimensionil amplitudes are such that
an atmospheric zonal wind anomnaly of 1 rn/s will result in anomalies of 1.20C, 24 cm/s,
1.3*C, and 65m in the atmospheric temperature, oceanic speed, oceanic temperature, and

thermocline depth, respectively.
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mean casterly wind Ua=6 rn/sand wavenumber k=1. The growth rate and phase speed are
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A ONE-DIMENSIONAL MODEL FOR MICROBURSTS

Steven T. Siems i
University of Washington

1. Introduction1

In 1976 Fujita studied intense, short-lived downdrafts with

respect to the downing of an aircraft. Subsequently he defined a
special class of these downdrafts known as microb.rsts. General
characteristics of these downdrafts are a strong vertical
velocity in the range of 10-20 m/s; a radius on the order of 500-
1000 meters; and a peak lifetim -)f 5-10 minutes. Microbursts 3
have been observed in a wide va. ety of locations. They commonly
occur over the western plains st tee. Hjelmfelt (1987] also
notes that Doppler Radar picks up a boundary layer convergence
microbursts. One can also detect a general. conical shape to the

upper portion of these downdrafts as depicted by Hjelmfelt
(figure 1.1). It is not hard to see the danger that these
downdrafts can present to aircraft especially in the extreme
cases of velocities of 30+ m/s on a radius of over 2 kilometers.
Also their lifetime has been found to extend up to 20 minutes in
rare events.

As a consequence of the recent classification and interest in
microbursts, scientific projects have arisen to help und~zstand
the physical relations of the phenomena. Such programs include I
the Joint Airport Weathers Studies (JAWS, Colorado 1982) and
Northern Illinios Meteorological Research on Downbursts (NIMROD,
Illinois 1981). Further classifications have been made based on
the newfound knowledge. Microbursts studied over the plains
states have shown that the 'alling of rain into a dry planetary
layer is fundamental in driving the microbursts by both
evaporative cooling and liquid water loading. Typically, large I
regions of overlying cumulus clouds sink at velocities of 1.0 -
2.0 m/s into the dry lower layer while simultaneously raining
into the layer. The drag induced by the rain together with the
cooling of the air by evaporation creates the downdraft.

The recent classification of microbursts has also led to
first-attempt models of the phenomena. The aim is primarily for
understanding the complex interactions of the atmosphere, not a
predictive model. One of the earlier models of downdrafts driven
by evaporative cooling and liqcid water loading (Kamboruva &
Ludlam 1966] shows that stronger downdraits are allowed as the I
underlying atmosphere approaches a dry adiabat. This is commonly
observed to hold also. Many Cne-dimensional models have been
studied providing an insight into the relation between the
velocity and the buoyancy generation. One reported feature is

i
i
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I
that the stronger downdrafts are thought to occur with smaller
raindrop composition because of the enhanced evaporation.

Srivastava (1985] produced a more complex one-dimensional
model for microbursts providing information on the vertical
velocity, water vapor mixing ratio, temperature, raindrop size
distribution and cloud water mixing temperature differences which
have been found to be in good general agreement. However, the
model is limited in that it forces a fixed entrainment rate based
on a constant radius for the microburst column. It has been
noted that this is possibly a source of inconsistency (Mahoney &
Rodi, 1987].

II. The Model

The problem will be approached as an ideal plume of the type
described by Morton, Taylor, & Turner (19541 with the additional
complications of buoyancy sources from liquid water loading and
evaporative cooling. Thus, we visualize the fully developed
microburst as a steady-state, one dimensional plume descending
through the neutrally stratified lower layer of the atmosphere.
The deformation caused upon reaching the ground is not
considered. This is an idealized local convective process. The
evaporative cooling is handled by imagining a shower oC
monodispersed drops. These uniformily sized drops evaporate
identically and fall at the same rate relative to the plume.
This shower, or liquid water flux, is considered separate from
the plume and does not directly interfere with the structure of
the plume (figure 2.1). This is a crude method for the handling
drops. A more appropriate method might be to discretize the
raihdrops distribution of Marshall and Palmer as in Srivastava.
However, time prevented this. Srivastava notes that choosing an
appropriate drop size in the mono-dispersed method was quite
satisfactory when compared to the discrete Marshall-Palmer

* distribution results.

The conservation equations are developed in a similar manner
to Emanuel [39 s]. Conservation equation are developed over the
radially averaged conserved quantities. It is assumed that plumeI
remains radially symmetric at any depth. Emanuel notes the
following assumptions for the plume:

3 1. Radial profiles of vertical velocity, buoyancy, vapor
fluxes are geometrically similar at all heights.

2. The mean entrainment rate is proportional to the radially
averaged vertical velocity. (This implicitly prevents
the occurence of detrainment from the plume.)

I - f -

33. A Boussinesq fluid is idealized.

U
I
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4. The Froude number is small. (This insures that
aerodynamic effects are negligible.) 1

5. The plume is fully turbulent, ie. viscosity is
negligible.

6. The environment moves at most with a uniform vertical
velocity. In addition to this, the following assumptions
are needed for the shower. 5

7. A mono-dispersed distribution of drops.

8. The fall velocity, V, of the drop relative to the plumeis proportional to the root of the drop radius (Betts,1981, based on Manton & Cotton).

V~ 2i3V - 2.13 ( r)1

9. The drop mass evaporates as a function of the radius and I
the vapor difference up to the wetbulb vapor content.

This last equation is again an extreme oversimplification. As
shown by Pruppacher & Beard (1971], the actual coefficient is not I
a constant but varies with the Reynolds and Schmidt number. Also
this general form only holds for a limited range of drop sizes.
The vapor difference uses the wetbulb temperatuzr as this is a i
fair approximation to the temperature of the falling drop.
Assumption 3. is perhaps a great weakness of the model as the
density of the atmosphere will vary considerably over 4
kilometers.

The conservation equations are now developed in the manner of
Morton, Taylor, & Turner. A cross-sectional disc of the plume is
considered (figure 2.2). The fluxes of mass, momentum and heat
must be conserved over this disc at all depths, z. In addition
to the plume quantities, the fluxes of liquid water and vapor
must be considered. The limit is then taken as the thickness of I
the disc approaches 0.

Conservation of Mass Flux

r- density of the air
s- liquid water content of the air
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The right hand side of the equation contains the entrainment term
as well as the evaporation term. All evaporated water is assumed
to join the mass of the plume. Upon simplification one gets:

Conservation of Momentum Flux

I (t j) - gravitational buoyancy effect of Boussinesq fluid

The right hand side contains the gravitational force on the plume
and the rain drops. The left hand side is the net momentum flux
of the plume and shower. The second term on the left was kept in
the equations for all calculations even though it may be scaled
out. The effect of neglecting this term has been seen to be
negligible in the results of the computation. Upon
simplification one gets:

* T

* Conservation of Heat Flux 13fA

.A(I~T R VifC 9) ZTr% 1Zcwcr / -W JJ1lK /dep
- potential temperature of plume

e - potential temperature of environment
Lv - latent heat of vaporization
Cr - heat capacity of an ideal gas

The right side is the entrained heat and the cooling effect of
evaporation, respectively. One substitutes (3.1) back into this
equation and reduces it to the buoyancy flux equation:

I = - buoyancy

-L -"buoyant effect of shower

I
I
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= 9- - stratification of the environment

I

If it is assumed that the liquid water flux, f, is zero, the
equations reduce to the closed ideal system of Morton, Taylor, &
Turner. One should then expect the earlier similarity behavior I
when the flux is completely evaporated. To close the system, an
equation is needed for the evaporation. Upon noting that the
flux is proportional to the drop size, one gets:

where % depends on the number of drops in the shower.

In order to close the system now, one needs to find
expressions for the vapor content of the plume, ', and the
wetbulb vapor, W. The vapor of the plume may be found by a
conservation l1w similar to the mass flux:

d- -~ -.

-vapor content of environment 3
The wetbulb temperature and vapor pressure may not be found in
such a straight forward manner. The point is found by
iteratively solving the relation

L-v (1f - j )=Cr (T - TvJ

where the wetbulb temperature is assumed to be saturated. Again,
this is the temperature that a particle would have if it
descended from its lifting condensation level along a moist
adiabat. (fig. 2.3)

i
Finally, the fall velocity equation is brought in:

U
U
I
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Again we have assumed that the flux is directly depended on the
radius of the drops. Psis found from initial conditions on the
flux and fall speed hich are assumed to be specified.

One next nondimensionalizes in terms of the initial fall
speed, V and the initial rain flux, W. With the substitution
of variables and nondimensionalization, the final system is:

IL4 ZS A-

0 60

(P3 is reduced to one identically by thenondimensionalization.)

3 III. Initial Conditions & Solutions

In an effort to compare results with previous work, a
sounding was selected from the literature [Hjelmfelt fig. 3.1].
The cloud base is at 550 mb, with a temperature of roughly 5 K.
The underlying atmosphere is assumed to be well mixed lying along
a dry adiabat with a constant vapor mixing ratio of 6 g/kg.

i Initially, a sinkinq region of air, is assumed of a specified
radius, temperature, rain water content, velocity and rain drop
size (fall velocity). Base values were selected from the
literature. The first solution below (fig 3.2) is shown with

R*= 500 m, w,= 2.0 m/s, Vo= 10. m/s1, S-T= 0.0 K, and 4 g/kg.

In addition to this, initial values for the parameters of the
equations are entered with the dimensional values of

Due to the gross simplification, values for P%, are rather
arbitrary. A value was used in order to produce a reasonable
gross rain flux profile over its depth. The effect of the
variable has been considered in the future analysis.

This system of equations has only approached numerically to
date. A simple leapfrog method is used in space. The method is
started with a forward difference method. Forward differencing
is also used at the step when the flux completely evaporates as

I
I



U
274

well as when the step size is changed for computational
efficiency. The results for the base run are shown figure (3.2
a-c). These are the profiles versus the depth of the lower
layer. The graphs are inverted with the bottom being at the
cloud base of 550 mb. and "rising" as the microburst would
descend. The 850 mb level mark corresponds roughly to the ground
level over the western plains. Profiles were run out further to
allow for a better interpretation. The depth at 850 mb is
roughly 4 kilometer below cloud base. The graphs plot variables
versus depth not pressure. The outer line in (fig a) corresponds
to the radius of the plume. This is not constant as suggested by
Srivastava. Initially, the radius contracts greatly to
accomodate the increasing velocity. It then begins to increase I
as entrainment becomes more prominant. The constriction of the
radius is similar to that of a stream of water falling from a
faucet. The high level entrainment should create a convergence
as reported by Hjelmfelt. The next graph is of the fall I
velocity, plume velocity, and buoyancy versus depth. The
vertical velocity increases to nearly its maximur value in a
relatively short depth. The range of velocity values easily.
falls within the category of micro-bursts. The final graph is of
the rain flux and plume vapor mixi g ratio versus depth. The
rise in the vapor content has a great effect on the amount of m
evaporation as approaches O as approaches . Once U
heavy entrainment begins to occur, the plume vapor content begins
to approach the environment's allowing evaporation to increase
again.

The direct effect of the evaporation may be seen through the
graph of the flux. Figure 3.3(a-c) shows a similar run with the
evaporation parameter increased by a factor of four. At such a
high evaporation rate the rain flux does not last half the
distance to the ground. When the flux runs out, the plume
returns to the type idealized by Morton, Taylor, & Turner.
similar growth in the variables are seen. The peak velocity
occurs when the flux reaches zero if this is above ground level.
By varying , a wide range of evaporation conditions are
considered. While the crudeness of the model prevents subtle
changes in the profile of the flux, the general behavior is well
handled. Graph 3.1 shows how the plume velocity and radius at
850 mb vary with evaporation constant. As the evaporation is
shut off it is seen that the downdrafts become too weak to be
classified as microbursts. Increasing the evaporation appears to
be limited, as the vapor content in the plume will quickly
approach saturation, cutting off further evaporation. The radius
of the plume is found to be surprisingly constant throughout.

To better understand the effect of the governing parameters,
graphs are presented of their effect on the ground plume velocity
and radius of the microbursts. Again, the ground radius is seen
to be rather constant throughout. Graph 3.2 shows the variations
of the initial radius. A limiting case again appears to be
present. Graph 3.3 is of the vapor content of the environment.
Clearly this is a weak relation, however, as expected, drier
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The 30-60 Day Oscillation in the 'ropics

Wind-Evaporation Feedback and Up-Down Asymmetry

John Thuburn Aug/27/1988

Dept. Atmospheric, Oceanic and Planetary Physics,

Oxford, UK.

1 Introduction

Observations in the tropics of zonal wind, surface pressure and outgoing longwave radiation

anomalies among other things have revealed signals which are baroclinic, (the wind in

the uppe ',roposphere is opposite in direction to that in the lower troposphere), global

wavenum. ;r predominantly 1, and eastward propagating with period in the range 30-

60 days. There is some evidence that they are poleward phase propagating.
Wi will revit- model of the phenomenon which relies on wind-evaporation feedback

and .4hat it selects the shortest zonal scales. Here we extend this model by incorpo-

rating ; asymmetry between upwelling and downwelling regions and show that this can

select a global wavenumber 1.

!
I
I
I
I
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Figure 1. Schematic illustration of the wind-evaporation feedback mechanism (based

on figure I otEmanue [1987). A positive surface heat flux anomaly (+++) in the region of

I easterly wind anomaly produces a net warming to the east of the updraft while a negative

surface heat flux anomaly (- - -) in the region of westerly wind anomaly produces a net

I cooling there. The resulting pattern of geopotential perturbations cauzes the pattern to

?ropagate eastwards.

~2 A Wind-Evaporation Feedback Model

Emanuel (1987] and independently Neelin et &l. (1987] proposed wind-evaporation feedback

zs a mechanism for producing growing eastward propagating disturbances. Because the

mean flow in the tropics is easterly and because the surface heat flux increases as u

I does at the top of the planetary boundary layer an easterly perturbation to the mean

lower tropospheric wind will increase Jul and hence increase the surface heat flux whilc r.

I westerly perturbation will reduce Jul and the surface heat flux. There is net heating to the

east of the low level convergence tending to propagate the pattern eastwards. See figure 1.

Both Emanuel and Neelin et al. develop analytical models based on this mechanism.

We will briefly review the model of Neelin et al. - the equations are the same as those

I of Emanuel but the interpretation of some of the terms differs. For more details see those

papers and also lecture 10 in this volume.

The model is a two-layer equatorial beta-plane model linearised about a zonal flow

I i, in which all perturbations are assumed to be purely baroclinic. The thermodynamic

equation is

(at + ia,, + IT)C.T + As ()LP

'I
I
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where T is a mid-tropospheric temperature, As is the dry static energy difference between

the two layers - a measure of the stratification, KT is a Newtonian cooling coefficient, L

is the latent heat of evaporation, P is the rate of precipitation, D is proportional to the

depth of a model layer and the vertical velocity, to, is given by the horizontal convergence

in the lower level: to

1i . kA' + VV) •(2)

The precipitation, P, is obtained from the equation for the lower layer specific humidity,

q. We assume that to a first approximation the tropical atmosphere is saturated so that

q = q,.t and that U.Vq is negligible compared with qV.v.

-q.tw-=E- P .(3)

The perturbation evaporation rate, E, is given by

E = -Au (4)

where A is a positive constant when it is negative. Combining (1), (3) and (4) gives

(Ot + iWx + KT)cT +*wAm = -Au (5)
U

where Am = As - Lq.t is the moist statit energy difference between the two layers. It

is a small difference of two large quantities and we believe it is not important for the

phenomenon we are trying to model, so we neglect this term.

The temperature perturbation is proportional to -1 times the lower layer geopotential

perturbation so, after non-dimensionalizing, we obtain

(O + O,, + r) - au = o (6)

while the horizontal momentum equations .are

(O +8at + 1)u-iv + , o , (7)

(, + Ox + 1)v + B(yu + ,) = 0 .(8)

We have used a Rayleigh friction toe-ficient, KM, to define a time scale and the circum-

ference of the earth, 27rR, to define a zonal length scale. The non-dimensional coefficients

are A 2 2rRP KTa= % B- Kgw = (9)
a -LK, g2

, M'
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I and the meridional length scale is 21rRB -1 /2 . r and a are of order unity but B is very

large, about 400.

If i5 is independent of y, apart from its implicit effect on A, it simply doppler shifts

any possible solutions so we will drop the iU. terms.

These equations support growing normal modes with v = 0 everywhere and

SucK Re exp ik(z - ct) + t - (- ikc)Y!. (10)

which arc eastward propagating and have phase increasing polewards. However waves with
the largest zonal wavenumber -,row the fastest; ar cc k1/2 for large k. This is the major

,shortcoming of this model.

(The model equations also support fast growing, fast propagating modes with v 9 0,
which Emanuel calls 'non-geostrophic' modes, of the form

u oC Re {Y"exp (ik(z - ct) + at- (a - ikc)-) } (11)

for positive integer n. The dispersion relation is approximately

I - ikc = (nB)'/'(1/2 ±-iv/312) . (12)

I Note that the amplitude maximum is off the equator.)

I 3 Up-Down Asymmetry - A Possible Scale Selection Mechanism

I.
I
I
I
I
I
I
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Figure 2. Schematic showing deep precipitating convection in a region of upwelling

and shallow non-precipitating convection in a region of downwalling.

3.1 The Model I
One of the features which distinguishes moist convection from dry convection is the break-

ing of symmetry between upward motions and downward motions; an unsaturated air

parcel moving upwards may cool adiabatically and become saturated causing water to

condense and releasing latent heat which makes the air parcel more buoyant. In downward
motion an unsaturated air parcel generally remains unsaturated.

The works of Lilly [1960) od Bretherton [1987] suggest that this up-down asymmetry

may select a large horizontal length scale for the region of downward motion and a short

length scale for the updraft region.

Here we extend the modei of Neelin et al. by allowing precipitation only where w > 0.

See figure 2. In these regions we have deep convection which distributes heat from the

planetary boundary layer throughout the depth of the troposphere. In the terminology of

Emanuel's model, the saturation moist entropy, s*, of the troposphere, (a measure of the

temperature), is controlled by the moist entropy, sb, of the boundary layer:

S" =sb . (13) I
In regions of downwelling we have only shallow convection. This serves to dry out

the boundary layer and maintain its moist entropy at the saturation moist entropy of the

tropospheric air above:
86-=8" . (14)
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I In these downwelling regions we simply set P = 0 in the thermodynamic equation (1). The
stratification defines a dry Kelvin wave speed co2.

Non-dimensionalizing gives the governing equations:

(l %a- yi + u= o, (=8)

(f + 1)u + D(yu + 0,) = 0 (16)

(+ r) - au = 0 where ui > 0 (17a)

(O + r)O + co2(u. + vy) = 0 where w < 0 . (17b)

Co2 = c; 2/(2rRKIf)2 is the non-dimensional dry Kelvin wave speed. It is typically of

order unity.
In any solutions we derive we must ensure that at the interface between the up and

down regions the normal velocity is continuous and the geopotential is continuous to ensure
conservation of mass and momentum.

Note that these equations are no longer strictly linear. For example we can no longer
superpose solutions unless the regions of upflow in each coincide.I

I
I
I
I
I
I
I
I
I
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Figure 3. The periodic donan in which we sek 1-D solutions. (I) indicates the

upwelling region and (II) the down 'elling region. Li + L11 = .

3.2 1-D Modes

Although, as mentioned above, equations (15)-(17) are no longer strictly linear, it is tempt-

ing to look for growing, propagating solutions of the form

u(X, f) = f~z - ct)'," . (18)

First we will look for solutions just on the equator with u = 0. see figure 3.

(15) and (17) become

(a-c8,+1)u+ = 0 , (19)

(a-cO,+r) -au=O in(I) , (20am)

(a-cl 1 +r) +co 2uz 0 in (II) . (20b)

The general solution can be written

f(z) = uIC '] +uecI = in (I) ,(21a)

f(J) = U C I + U2 Ce' in (I1) , (21b)

where the A's are related to a and c through the dispersion relation in each region. (An

exception occurs when in one region we have equal roots for A. Then

f(z) = ,,e"'" + ,4Xe"'" etc. ) (22)

We have four unkown coefficients, the u's, and the boundary conditions, continuity of u

and give four homogeneous equations so there is a solvability condition of the form

Det(4 x 4 matrix) = 0 • (23)
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I This can be solved numerically. This one constraint gives us surfaces of solutions in

(o', c, LI) space. Having found a solution satisfying the boundary conditions we must check

I that it is consistent, i.e. that w > 0 in (I) and tv < 0 in (II). This eliminates some of the

solutions of (23).

However, there are still surfaces of consistent solutions. But note that for each pair

(a,c) there exists only a discrete set of Lg's with a solution, not a continuum. This is

I relevant to §3.3.

I 3.3 2-D Modes

We now consider variations in the y-direction but keep v = 0 and again look for modes

growing at rate a and propagating at speed c. The 3-momentum equation,

.u+ # --O , (24)

now determines the meridional structure and this imposes stronger constraints than in the

I 1-D problem.

Equations (19) and (20) now apply at every latitude and, since a and c are are

independent of y, Lj must also be independent of y. This follows from the last point made

in §3.2. The longitude of the boundaries between regions (I) and (II) may depend on y,

i lying at z = X(y) + ct and X = X(y) + LI + ct say. See figure 4.

c(-)I NE

Figure 4. Schematic showing the boundaries between upwelling and do-in welling

regions in the 2-D problem.I
I
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So we must have the same 1-D solution at each latitude except for a possible shift of

longitude and a possiE;e scaling factor:

,,(x. , t) f( - t - x ))"v)•(25)

Integrating (24) gives 1

g = Cxp(A 2) (26)

where

Al 21  1 -.~L 0..~~ 1A V 2 13O fi2 AO0- =hXoi h2O. __i (2?)

and
X(Y) =XoY, (28)

i.e. the boundaries between regions of deep and shallow convection can only be parabolas,

with X0 to be determined, and

D =c- ( +1) etc. (29)

The D's are constants relating the zonal u structure to the zonal structure:

= D'u' etc. (30)

Now, for a given M, (27) combined with (29) gives the same quadratic equation for

each A; the four A's can take on two possible values. We've already assumed At # 4t
and Al! \ It so either A' = A" #A = A" or A= 4! # A" - A . In either case

At + A= All + 4l and A1 = AI'4'. These give us some constraints on the coefficients

in the two dispersion relations which are functions of a and c. It turns out that the only

solution is

u-o (31)

= const(x, V)c- *t

i.e. simply a constant temperature perturbation decaying at the Newtonian cooling rate.

There are many other special cases to check. We have already mentioned th- if, for

example A' - A the general solution to the 1-D problem is different. Also if one or more

of the coefficients e.g. ul vanishes we can drop the corresponding constraints in (27) but
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then the need to satisfy the boundary conditions gives us more constraints. It turns out

that there are no non-trivial solutions of the form (25).

It is conceivable that there exist mode-like solutions with fixed propagation speed,

c, and growth rate, a, with non-zero v. I think that it is more likely that an analysis

similar to the above will show no solutions in this case too. If this is true it leads us to

ask ourselves what will happen in the initial value l)roblem, since the flow cannot evolve

into a mode.

3.4 Numerical Solutions

In oider to answer the initial value problem a numerical model was developed to integrate

the equations (15), (16) and (17). The values of u, v and are stored on a recta,'-,lar grid

of points. For most of the integrations descibed here the resolution is 50 points in the zonal

direction by 20 or 30 points in the meridional direction between th- equator and some Ymax.

Centered differences are used to approximate spatial derivatives. Time stepping is done

I using centered differences ('leapfrog') with implicit treatment of the Rayleigh r "ction and

Newtonian cooling terms and lagged scale selective dissipation. A forward Euler step is

used to start the integration and once every subsequent 100 steps to suppress the leapfrog

computational mode.

The boundary conditions are that the solution is periodic in x, u and are syrmmctric

I and v antisymmetric about the equator and v = 0, uy = 0 and . = 0 at y = ymax. In the

experiments described below yma= = 1.0 or 1.5 corresponding to 20* or 30* respectively.

In choosing the initial conditions it is useful to have u and in geostrophic balance

to avoid . large initial adjustment. For most of the experiments described here the initial

conditions are = sin(27rx)&-' 2

O= iu (32)

v=0

For most of the runs the dimensionless parameters take the values

Sa = 0.38, B = 395, co2 =0,29, r = 0. (33)

I The domain integral of the kinetic energy, oc (u2 + v2/B), is used as a diagnostic of

the disturbance amplitude.

I!
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3.4.1 Experiment 1

It was desirable to tcst the model first using equation (17a) everywhere: Emanuel's and

Neclin et al.'s problem.

a) First the model was run with parameters and initial conditions ns described above

except that no scale selective ws used. Very soon wavcs~of the shortest resolved zonal

scale grow rapidly with an e-folding thie of around 1 day. This agrees with the normal

mode theory which predicts that the shorte.st waves grow the fastest (§2). This suggests

that in order to obtain some useful results from the model we should introduce some scale

selective dissipation, 14V 2 , to damp the shortest .,cale waves. If V2 is intended to represent

the divergence of a physical Fickian flux we should recall that x and y have been rcscaled

differently so

V 2 -4,9 2 + .(34a)

If, on the other hand, it is intended merely as a numerical artifice we may prefer to use

simply

V 2  o r2 +  . (34b)

b) Experiment la) was repeated with some scale selective dissipation, it = 2.5 x 10- 1,

which was estimated to be about that required to neutralize the shortest zonal waves, and

the form (34a) was used for V 2. This time a mode of zonal wavenumber 1 grows with an e-

folding time of over 10 days. This is slower than the theoretical growth rate in the absence

of scale selective dissipation and we can estimate that there is significant dissipation of the

kinetic energy by the /LB(uL) 2 term. i
c) The experiment was repeated with the same value of i but using the form (34b) for V 2.

We see a growing disturbance which has zonal wavenumber 1 but has progressively wavier

structure in the meridional direction as time goes on. See figure 5.
The amplitude peak lies off the equator and the meridional wavelength appears to

become shorter as we begin to move away from the equator. Also the growth rate is

faster than the theoretical value for the geostrophic mode and it increases as time goes
on. Almost certainly we are seeing a succession of non-geostrophic modes of successively

higher n and higher growth rate (but all of zonal wavenumber 1).

The scale selective dissipation used here is that used in all the experiments described

below. I
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Figure 5. Plot showing contours of vertical velocity for day 20 of experiment ic). The

stippled region indicates w > 0. The horizontal axis corresponds to the equator and the

vertical axis to an arbitrary meridion.

I 3.4.2 Experinent 2

i The model was run for 20 days with the full physics: equation (17a) where to > 0 and

(17b) where to < 0 using the wavenumber 1 initial conditions (32). A single dominant

rainy region evolves with a very intense updraft on the equator. See figure 6. It moves

eastwards about 130* in 20 days. Taking i! into account this suggests a period around

45-55 dayt. It also leans westwards as we move off the equator by about 600 of longitude

I in 30* of latitude. There are some small scale features ahead of the main wave which

may be gravity wave-like or, more likely, smaller versions of the main wave. They may be

I resolution dependent.

There is little growth of the kinetic energy during the run.

This experiment will be used as a control for comparison with those described below.

I
I

I
I
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I
Figure 6. As in figure 5 for day 20 of experiment 2.

3.4.3 Experiment 3

Experiment 2 was repeated with different initial conditions; a zonai wavenumber 2 distur-
bance with a small amount of wavenumber 1 to break the symmetry;

U = (sin(47rx) + - sin(27rx))c - 4Y2

u=O

Again the deep convection organises itself into a single main region on the equator which

propagates at a similar speed to that in experiment 1. In addition, at higher latitudes a

band of upward motion appears which encircles the globe. See figure 7. It gradually moves

polewards from about 20* at day 20 until it reaches the boundary at about 30* around

day 50 and peters out.

The mechanism by which this rainy band propagates is basically the same as that of

the eastward propagating wave on the equator. There is downwelling between the updraft

and the boundary at yujax and a low level equatorward flow between the two wifli a return

poleward flow ii. the upper level. The coriolis force deflects the low level flow westwards

and so in this region we have enhanced evaporation tending to move the updraft polewards.

The inter-tropical convergence zone (ITCZ) sometimes appears as a pair of conver-

gence zones, one each side of the equator, rather than a single zone on the equator. The
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I
I

Figure 7. As in figure 5 for day 30 of experiment 3.

feature described above may partly explain this, especially if some low level equatorward

mean flow balances the tendency to propagate polewards.

I f o

I
0

I I~ i
I.

I -o

I
mEli
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Figure 8. Normalized profiles along the equator of u (solid line), # (short dashes) and

w (longer dashes) for day 40 of experiment 4. The u and to profiles seem to be characteristic

of the later stages of the waves evolution.

3.4.4 Experiment 4

Because there are discontinuities in the governing equations and because the zirst experi-

ments have produced some small scale features it is prudent to test the sensitivity of the

results to model resolution. Experiment 2 was repeated with the number of gridpcints in

the zonal direction increased to 80. Up to day 20, (the limit of validity of experiment 2),

the results were very similar to those of experiment 2 in the size and shape and speed of

propagation of the region of deep convection, including the presence of small scale features

ahead of the wave. However, beyond this time the updraft region continues to sharpen

and the speed of propagation decreases; the deep convection region only moves about 70*

eastward between days 20 and 40.

The zonal velocity profile (figure 8) seems to take on a characteristic 'mature' shape at

this stage and the small scale features ahead of the wave have disappeared. This leads us to

speculate that the propagation speed of the wave is a function of the updraft width which

may depend on i) scale selective di.sipation; ii) model resolution (ultimately); iii) other

physics not included in the model, which may tend to disrupt the wave and smear out

the updraft region, such as atmosphere-ocean coupling, land-sea contrast and other zonal

asymmetries; iv) a mean non-zero vertical velocity; v) a better criterion for deep convection

based on the moist static stability.
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I Resolution does not appear to be the model's biggest defect.

I 3.4.5 Experiment 5

As a first step towards exploring the sensitivity of the results to variations in the dimen-

sionless parameters expriment 2 was repeated with the evaporation feedback paraimeter

doubled: a=0.77. The results are again very similar to those of experimient 2 up to day 20

except that now the kinetic energy grows significantly implying an e-folding time of around

14-days. Later, in the tmature' stage, the kinetic energy grows even faster suggesting thit
the wave is now in the most efficient form for extracting energy fom tile wind-evnporationl

feedback mechanism.

1 4 Conclusions

We heve shown that by including asymmetry between upward and downward motions in

a wind-evaporation feedback model we can reproduce baroclinic, eastward propagating,
growing disturbances with phase increasing polewards, period about. 40 days or more de-

pending on the width of the updraft region and global zonal wavenumber predominantly 1.
We have also accidently discovered a possible explanation for the ITCZ appearing as

I a pair of deep convecting bands, one eac: side of the equator.

I
I
I
I
I
I
I
I
I _ _ _ _ _
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5 Future 'Work I
We have only made a brief gesture towards testing the sensitivity of th. model to the
'numerical' parameters; resolution (and scale selective dissipation), and the 'physical' pa-

rameters; a, B, r mid c02 (and scale selective dissipation). In particular we could allow

ir and the evaporation feedback parameter, A, to be functions of latitude, and we could
follow Brctherton (19S7J and justify using a larger value of IL in the deep convecting region

than in the downwelling regions because convection is a source of turbulence.

The criterion for deep convection in this model is that w' > 0. This could be improved

upon by integrating equations both for saturation moist entropy, s*, and depth-mean moist

entropy, ., and making a convective adjustment when the atmosphere is statically unstable;

. <.
One important task is to understand the relation between the size and shape of the

updraft region on the equator and its propagation speed.

One possibility is to make the model fully nonlinear. If we make A largest on the

equator we might hope to reproduce a Hadley cell type of mean circulation including
mean low level easterlies on the equator because of the coriolis force. The mean low level
equatorward flow may interact with the poleward propagation of the ITCZ-like bands of

deep convection described in §3.4.3. Also a mean upward velocity on the equator may

mean that the region with to > 0 is broader than in the quasi-linear model.

Having discovered the circumglobal convective bands in numerical simulations, (§3.4.3),
it may be possible to go back and model these features analytically.
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3D INSTABILITY OF BOUNDED ELLIPTICAL FLOW

Fabian WValetle
Massachusetts Institute of Technology

INTRODUCTION
The basic flow under consideration has elliptical streamlines and is the

superposition of a rigid body rotation and a potential flow:

S= x (z(xy)

or in matrix notation:

O= - 0
0 0 00)

where 2-f is the vorticity, c the strain, and J(J < 1'yj for an elliptical flow.

This flow appears in many different situations. It comes up in the precession
of an oblate spheroid ( a model for the earth) as was first discovered by
Poincari. In that context, violent instabilities were observed experimentally
by Malkus. lie noted that for sufficiently large precession angles, shear layers
would appear at 30 degree latitude front the equator of the fluid. Shortly
after these shear layers would seem to break down. Busse extended the
mathematical analysis of this problem and studied the singularity in the
boundary layer leading to shear layers. In a different paper, he studied the
stability of a shear layer in a rotating fluid. Since then it was believed that
the instabilities in precession came from that two step evolution: first an
eruption of the Ekman boundary layer leading to shear layers, followed by
an instability of those shear layers.

Elliptical vortices are also present in several shear flows. One can see
them in Stuart's non-linear, inviscid solutions for a shear layer, or in Orszag
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I

& Patera's 2D developed Poiscuille flow for instance.

e ea a I

3 It has been shown recently that these 2D flows were violently (i.e. on a
convective time scale) unstable to 3D disturbances.

The similarity between the 3D breakdown of these various solutions led
Pierrehumbert to speculate that these instabilities were manifestations of the
same phenomenon, namely, the, instability of a single elliptical vortex, lie
showed numerically that a loca:lized elliptical flow was indeed 3D unstable.
Bayly, Landman & Saffman then considered an unbounded elliptical flow and
confirmed Pierrehumbert's results by solving numerically a Floquet problem.

Their analysis can be done analytically, as shown by Waleffe, and this
allows some interesting extensions.

All these investigations left aside sonic critical points. In particular it
was not clear that this was relevant to more realistic bounded flows. If it
did them the questions of where the energy came from, of the interaction
of the growing disturbance with the mean flow and of its saturation were
yet to be answered. It is well known that the rigid body rotation of a fluid
is absolutely stable. Th.t means stable to any disturbance, including finite
amplitude ones. Many .cientists then naturally thought that the elliptical
instability would just slightly modify the elliptical flow to bring it back to
solid rotation. This is the usual "Lenz's law". If the instability is due to the
ellipticity, then it must act against it. That is how most physical systems
usually react, they directly oppose to the cause which created them.

The following analysis provides an answer to these questions and, in
particular, shows that for small ellipticity the mean flow is not just slightly
modified. In fact a Io of energy can be extracted from it.I

I
I
I
I!_ __
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A simple exact non-linear solution:

Btfore getting into the study of a bounded domain, I will present a new exact
non lirmcar solution. Let 0%, i be the vorticity and vclocity of the full flow.
As usual it is decomposel into the basic elliptical Now and a perturbation.

One has: &% = i + 5, " + W, VIC .

The vorticity equation is:

and thus for- the pertubation one h;,s:

01,5 + 0.1,0 = j x ,i + D.Ci + 2.tO, i- I x (,0 x u-) + PV'0

where D is the strain matrix of the basic flow. Let us choose a pertur-
bation which simply consists in a solid rotation around a horizontal axis:

U = 1 x ', 0 uniform, f position vector.

one checks easily that: Otul = D.0
or

9j 2  - (W I

And we have exponential growth if w, = -w2 initially.

Thus we see that a rigid body rotation with vorticity in the plane of the
ellipse and in the stretching direction, is an exponentially growing exact
non-linear viscous solution of the problem. This is a 3D solution the vor-
ticity of the perturbation being orthogonal to the original vorticity. This
solution represents an ideal case were the tilting of the perturbation vortic-
ity by the elliptical flow is exactly compensated by the tilting of the basic
vorticity by the perturbation. The growth is due to vortex stretching.

This solution illustrates two points nicely. First it shows very simply the
mechanism of the instability. Second it is a non-linear solution (as Bayly's,
Landman & Saffman's) and for that reason, does not interact with the mean
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flow. Its energy comes from the infinite reservoir permitted by the un-
bounded domain. One can legitimately ask whether this has any bearing on
reality!

Analysis in a bounded domain:

The volume delimited by a solid elliptical cylinder is a natural domain to
choose. The elliptical Now is possible in such a domain if the walls move
adequately (as in Malkus' experiment where a rotating flexible cylinder is

I ~ ] deformed in the inertial frame by fixed rollers), or if the fluid were invis-

cid. The effect of viscosity on the perturbation won't be considered in the
following analysis. This is because the instability appears to be an inertial

I phenomenon taking place in the body of the fluid, on a time scale shorter
than the spin-up time.

Previous studies (Dayly, Waleffe) suggest the use of elliptical polar co-
ordinates.

These are defined by: z = PC OS$
Y = PsinD

_. + p2  p2, and p is constant along an ellipse.

One advantage of these coordinates is that the material derivative takes the
simple form:3 o,+ U.1 = at + not
where f = V7=(T is the rotation period of a parcel of fluid. E is the aspect5 ratio of the ellipse (E > 1). Ve will also use = - 0 <= < 1.

The gradient is given by: ( W ) I
sinl cosj,OeJ

I We still have to choose a system of dependent vriables well suited to these
coordinates. One of them should represent the velocity perpendicular to an
ellipse, and then vanish along the elliptical wall.
Let then {

I -UX41 + UCos (s)

where u', u. are the cartesian velocities.

5 It can easily be checked that these choices lead to:

I
II!__ _ _ _ _
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. + !+ 1,v+ Ow

These are exactly the same expresions as for circular cylindrical coor-
dinates!

The (inviscid) Navier-Stokes equations read:

Do ?._ + ,p = 0( cos20Opp- sn2D0 .8p)
D,,+ m + 0op = i(-sin2*&,.p-cos29*J.p) ()

I Dw+0,p = 0

II. = 0

where D = Do + 6.0, and 6.1 and I.S are as given above.

The boundary conditions are w = 0 at z = 0, L and u = 0 at p = po.

The pressure and vertical variables have been rescaled according to:
~I =~i , X Ji, W", z/iw . These new variables are those

appearing in the above equations with the primes dropped.
One will notice that the left hand side of these equations is identical to the
Eule: equations written in circular cylindrical coordinates. The boundary
conditions are identical too, especially, they do not depend on the ellipticity.

In these variables the basic elliptical flow is U = W = 0, V =fp
(and P = 'E2 ,) ' .n1,'( .-..1cos28)).46a

Linearizing around t state one gets:

Otu + Lu + Vp = [eMN + e-tlaN']Vp (3)

where L= 2 0 N= i i2 0
o~~~ 0 o

A (.)e denotes a complex conjugate.
t has been non-dimensionalized using iL

Let us look for a solution around .0 = 0. For ,3 = 0 the modes correspond
to the inertial waves on a solid rotation seen from the inertial frame. This
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problem was solved by Leonard Johnsson who looked at the precession of
a circular cylinder. After some manipulations of his solutions, the inertial
modes are given by u = Qce' , where:

= [-k[((+rn+2)J, _t(kp)+(a+m-2)J,,+d(kp)] cos: 1I~~~( 2(a, +)) J ° "' (t'p) sin t-

with p= -Jm(kp) mcos Ix C,

(a + a + 2)J, 1 (kpo) = (a + i - 2)J+I(kp)

(0, + n) 2 = 42 = n , "2..

I Now let

u = A(Qo + OQI +...) + ,*(Q +1Q; +...)
p = A(po + Pp + ... ) + ,-(p; + Pp +...)

where ivQo + LQo + VpO = 0, i.e. Qo, po represent any of the inertial modes
given above, A = A(t).

Using this expansion in (3) above one gets:

(A - iaA )Qo + p( ioQc + LQI + Vp ]A +
(A- + iaA')Q; + P [-ioQ; + LQ; + VpflA- =3 e"N + c-'N'l V(Apo + A-p;) + 0(0 ' )

Proceeding as in Greenspan, one gets the solvability condition:

I(A - iA)JQ.Q0d V = 3A"J Q;.N.Vp Ci2 dVl
it 2 fV

Where all the terms which would disappear by integration over 9 for any
m have been discarded from the right hand side. The 0-dependecy of this
right hand side is in ei2(1- m)O and thus at first order in 1 , only in 1
contributes.

I
U
I
I
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We have: 3
,v.VP; i2 OP + 8A i

for in = 1, p; = -J 1 (kp)e-iecosn:, which yields:

N.VpJ = -ke-'Jo(kp)coil [] 3

Q; is given by the conjugate of the expression for the inertial modes
given above, with m = 1.

Putting it all together leads to:

ei20Q;.N.Vp 4- (+ )2 (u + 3)J2(kp) cos2 1z

V = 7 2( ( {cCA2 lZt( a + 3)2Jo2(k!p) + (a- 1)2J22(k.p)]
2(o(+)k 2

2,+ 12j2 J(k.p) sin2 I-)

also: (or + 1)2 - = 4- (a + 1)2

The solvability condition then reads:

A = iaA + iI&aAI

where a is given by:
S_ ( o)(3+f)i2fkP zJ (z)d:

OO 3+) 2J,(z) + 2(3+o,)(1-o,)J2(X) + (I- )2 J22]dz

Let A = a+ ib then: i = (.020 2 - a2)a, * a = aoexp (± :/flTcP -a~t),
b - boexp(:i:/flc 2 -ua 2t), for the growing mode one needs: 5+0
(tei ark: ffoni la + nl < 2 we get -3 < a < 1 and thus ci > 0)

The maximum growth corresponds to a = 0 which implies A = Rest
where R is real. The optimal mode is given by:

OP = R [efQo + e-iWQ], a = 0, M = 1
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That is :

Tha [s k (3J (kp) +J2(kp)) co s I .sin(O + M) 1
R° k(3Jo(kp)- J2(kp))cos1 cos(O + Z)

Q I 2J(kp)sin1: sin(O+ M) 4

with pOPI = 6R Jz(kp) cosl cos(9 + !).

These optimal modes are only possible in some special containers; we
need a = 0 and thus 3Jo(kpo) + J2(kpo) = 0 or aJo(a) + J1 (a) = 0 (using
the recurrence relations between Bessel functions) where a = kpo,
Also for or = 0 we need k2 = 312 = 3" , and thus a "resonant" cylinder
must obey: L v'rr

where L is the length of the cylinder, po its radius, n is an integer and ai is
a root of aJo(a) + JI(a) = 0. (a, = 2.735,a 2 = 5.695,...)

Near the vertical axis this optimal mode appears as a rotation around
a horizontal axis oriented in the stretching direction, exactly as the exact
non-linear solution in an unbounded domain presented earlier. For a, this
corresponds to .

= n, i.e. the aspect ratio is an integer.

I

The nice simple picture is only valid near the axis. There is some significant
distortion as one gets doter to the wall.

Interaction with the mean flow

(I will look only at the optimal case of a resonant cylinder (a, = 0).)
The important next step is to look at the interaction of the growing

mode with the mean flow. Let us decompose the full flow into a mean3 plus a perturbation:" = I(p, t) + C. From the boundary conditions and the

I
I
U
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co, inuity equation we get: 0 = = 0, 9 = I'(p, ). An overbar denotes
an average over x and 0 (i.e. over elliptical cylinders). I

In the case where the perturbation is assumed to be the optimal mode
pre~ented above, one gets from averaging the Euler equations (2) over $ and 3

+ cos 2 ,, ,o, ' + -i0 (p T) = -3(,in2D,p+ -'---ep)

Doing things cleanly (that is eliminating the pressure from (2) by mul-
tiplying the equations by the inverse of the matrix acting on the pressure
gradient, then integrating over 0 and z) one gets:

C91 (sin U2O, + U2" +J - 2) + cos 200,. uv)
P

or
= jR2pk2 o,(312J(kp) + J(kp))e2: a°

4 

1

where R is the amplitude of the mode. And then the mean flow is 3
modified according to the following picture:

The center is despun, while a small layer near the wall is actually spun-up.
If one looks at the total angular momentum of the fluid, one gets:

7 <2 R>J= zJoJ(x)d)e ""

where < pV > is the total angular momentum of the fluid. The right-
hand side is negative and angular momentum is exponentially taken away
form the fluid.



3I 311

I

Energy Transfer:

For completeness, let us look at the total kinetic cziergy of the disturbance.
The kinetic energy, computed from (1), is given by the following expression
in elliptico-polar coordinates where u, v, w are the variables appearing in
(2):

K.E.-" [U2(l + P cos20) - 2Iuvsin20 + v2(1 -Il cos20)) + - 2

The average total kinetic energy of the perturbation varies as:

I +2aP0 dVV df/V'
< K.B.>= P (cos 2u(- + -) + sin 2$(U 27- - v2 -)Ipdp

I That is for the basic flow, =p

d £2 00,,3< K.E. >= -- ofl (2cos29uv + sin28(u2 - V2))pdp

(This expression is valid for any perturbation)
For the optimal growing mode this is:

d £>E2-If - f1 [18J °2(z) + 12JoJ 2 - 2J22xdz exp(23at)
Wl 16 J

and after some acrobatic juggling with the Bessel functions, this can be
rewritten as:

Id E2-If1 (kp - 1)J0ILpo)+j kP 2J e ~Ld~ 2001fl
< K.E. >= - ---f2 [ + , .d2 '2'',

and this expression is positive definite.

* Conclusions & Speculations:

It has been demonstrated that there are indeed growing modes in a bounded
geometry. Only modes with an eis spatial structure can grow, and the
growth is dependent on the aspect ratio of the container. Resonant cylin-
ders correspond closely to an integer aspect ratio (length/diameter). Near
the axis the unstable solutions apppear as a rigid body rotation around hor-
izontal preferred directions and of alternating sign as one moves a diameter

I
I



.12 3

I
2

along the axis. The interaction with the mean flow shows that the Reynolds
stresses correlate with the ellipticity to de-spin the center. This in an in-
teresting result. It suggests that a weak departure from solid rotation is
untable to a disturbance which non linearly destroys the primary rotation
and not the "weak departure". The disturbance could indeed "circularize" I
the flow, at least in the centtr, whereas it actually stops the rotation there.

streamlines:

0!

In other words the ellipticity acts as a catalyst for the extraction of the en-
ergy from the rotation. One wonders if all the vertical angular momentum
will disappear or if this process will saturate in some way. The amplitude
equation should look like:

A = iaA + iic*A" + iKIA 2A

The question it, then what is K ? and what is the nature of that cubic term?
It is valuablo at this point to note that this amplitude equation is identical
to the ov derived for the Faraday instability (Douady) or the physically
similar Mathieu pendulum. The Mathieu pendulum is a pendulum whose
support oscillates vertically.

For infinitesimal oscillation this system is described by the Mathieu equa-
tion: i + (p+qcos 2t)z = 0. For p=1 there are growing (unstable) solutions.
If q is finite this is true for some interval of values of p around 1. The dif-
ference between p and 1 corresponds to a "linear de-tuning" and limits the
growth rate in the way a modified the growth rate in the previous discussion.
The primary growing disturbance has a frequency equal to half that of the
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excitation, exactly as the 20 modulation due to the ellipticity gave rise to a
growing ei' disturbance. This is a well-known fact in parametric instability.
Note that we have a spatial forcing instead of a temporal forcing though.
The saturation is easy to understand for the Mathieu pendulum. The nat-3 ural frequency of the pendulum is a function of the amplitude of oscillation
(This is a fairly general statement about waves). As the disturbance in-
creases, its oscillation frequency drifts until the oscillator is sufficiently de-
tuned that the instability is suppressed. This picture is appealing however
its application to the elliptical instability is not necessarily straightforward.
Looking back at the interaction with the mean flow, one distinguishes two
distinct regions where the fluid is roughly in solid rotation, slower in the
center, faster near the wall.

I - J-

I This is a centrifugally stable configuration. The outer layer is very stable in
particular. Its dynamics is also much faster that that of the inner core. I
would speculate that the effect of this radial distribution is to "bring in the
walls". The outer layer acts as a wall for the inner core. This would be the
way the system can "detune" itself, by effectively modifying the aspect-ratio.
The concept of"non-linear detuning" is in keeping with Greenspan's (1969)
study. I[e looked at the non-linear interaction between an inertial wave and
a geostrophic flow. fie found that there were no resonant interactions and
that the only effect ,'ould only consist in a change of the frequency of the
inertial wave. Finally it seems fairly easy to include the effect of viscos-
ity in the analysis, at least at lowest order. Most of the dissipation occurs
in boundary layers near the wall. This is well-documented in the context
of the theory of rotating fluids. In connection with this discussion, let me
mention that while one can see evidence of the inviscid instability described
above during the initial developements in Malkus' experiment, the latter
behavior is quite interesting and raises many questions. So far it has not
been possible to reach an equilibrated, steady solution. The initial growing
mode eventually breaks down into small scale motions, leaving an inner core
almost totally despun. The walls then proceed to spin up the fluid and a

I
I
I
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similar evolutions takes place. The flow never seems to quite go back to the
initial state and the initial growing disturbance.

Appendix: To avoid confusion I would like to stress the similitudes and
differences between this problem and the one of precession of a cylinder
(Johnsson 1967). In both cases the same inertial wave is excited. For the el-
liptical cylinder this is an instability (of parametric type) while it is a forced
response for the precesslng cylinder. In precession an extra body force ap-
pears due to the variation of the rotation vector (in addition to the Coriolis

and centrifugal forces there is a fl x X inertial force). In short precession
corresponds to an equation of the type + z -= c cos t, while the elliptical
instability corresponds to ii + (1 + ccos2t): = 0.
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Abstract

A simple model of the precipitating convection which generates squall lines is devel-

oped and analysed. This includes separate treatments of the region of rising, condensing,

saturated air ahead of the squall line and the region of downwardly-displaced, unsaturated

air behind the squall line, into which the rain water falls and evaporates. Solutions, which

grow from a quiescent state, are found in an unbounded domain. It is demonstrated that

the squall line propagates into the condensing region. It is also shown that such squall

lines can only exist under certain atmospheric conditions, when the ratio of the ambient

stable stratification is neither too small nor too large. These limits on the atmospheric

stratification both become larger as the water loading increases. We discuss how these

results may be extendcd to bounded domains.
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I 1. Introduction.

A squall line is operationaily defined as any line or narrow band of thunderstorms. In a

squall line, the flow varies only slowly along the line, in contrast to its variation across

the line and this suggests that the process is essentially two-di nensional (Thorpe, Miller

3& Moncrieff, 19S2, Scitter & Kuo, 1983). However, the mechanism by which squall lines

develo p and propagate has not been explained by a simple, consistent theory. In moist,

precipitating convection there are sinks of buoyancy caused by the gravitational force

3exerted on the air by the rain distribution and the evaporation which are uncoupled from

the displacement of air parcels; this allows for the propagation which is impossible in the

Iequivalent non-precipitating convective problem.

3A number of two-dimensional numerical models of squall lines have been developed

over the years, and these have indicated the qualitative nature of the flow across the squall

Iline (e.g. Seitter & Kuo, 1983). From numerical results, a simple explanation of the

basic mechanism of squall line propagation was proposed by Seitter & Kuo, (19S3). This

may be readily understood from figure 1 which shows a sloping squall line propagating

3towards the region of upward-rising, saturated air. In the region of upward-rising air,

water vapour condenses to produce liquid water. As the vapour condenses, it releases

Ilatent heat, providing the source of thermal buoyancy for the upward motion. The liquid

3water then generates a gravitional force on the air, which we refer to as the condensate

or rain loading he squall line moves, some of the rain crosses the line into the region

of downward. .oving, unsaturated air. In this region, the downward motion is caused by

both the evaporation of the rain, which cools the air, and the condensate loading. Thus the

1squall line is a region of strong shear and may be regarded as a sheet of negative vorticity,

maintained by the temperature gradient across the interface.

Seitter & Kuo (1983) proposed that it is the effect of the condensate loading which

I
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causes tile squall line to )ropagate; in tile condensing region of upward motion the fraction

of liquid water increases as we approach the squall line, since the rain falls across the

propagating squall line (figure 1). The liquid rain will therefore generate more negative

vorticity just ahead of the line. In the region beyond the squall line, the liquid rain content

decreases with distance behind the squall line, as it evaporates, generating positive vorticity

in this region of the air. The effect of this additional vorticity field, produced by the rain, is

to move the point of minimum vorticity into the region of upward rising air away from the

interface. In turn this causes the interface to move toward the region of upward motion,

and so the squall line propagatcs.

In their numerical solutions, Seitter & Kuo (1983) also identified a mechanism by

which an applied shear maintains the slope of the line in a bounded domain. Since the

rain falls downwards, the horizontal rain gradient increases with depth in the cloud and

so the squall line tends to propagate faster at its base. Tile application of a wind shear

blowing into tile unsaturated region can oppose this effect and generate a fixed slope. If

the slope becomes too large, tile rain accumulates even more ahead of tile line in the region

of upward rising air, causing the line to propagate faster and its slope to decrease. If the

slope becomes too small the wind shear dominates and increases the slope of the line.

In an attempt to understand the process more fully, Emanuel (1980) developed a sini-

ple linear model of precipitating convection in which the above mechanism of propagation

obtains. In his model the upward and downward motions were treated identically. In the

region of upward motion, the saturated air generates positive buoyancy by condensing out

rain water, while in the region of downward motion the air is forced to remain saturated

by condensing out 'negative rain'; thus generating negative buoyancy. Figure 2(i,ii) shows

qualitatively the vorticity and rate of vorticity generation by rain water loading through a

horizontal section as derived from the figures for the streamlines and rain contours given

in Emanuel's paper, reproduced here in figures 2 (iii),(iv). From these figures, it is seen
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3 that there is a phase lag between the vorticity field and the rate of generation of vorticity,

3 and it is this that causes the propagation.

However, this is not a realistic model of r i1 lines in which there is an asymmetry

I between the upward and downward motions. In a squall line, in the region of downward

3 motion, instead of the unphysical production of negative rain to keep the air saturated, the

negative buoyancy is generated by the rain water evaporation and loading. This produces

both a spatial and a temporal asymmetry in the solution unlike Emanuel's model. However,

we note that Emanuel's model is an appropriate model of the perturbation rain field in a

I different situation in which the basic state is one of uniform water distribution and so the

air may be kept saturated even in the region of downward motion; this may be regarded

as a 'shower head' model.

I The main purpose of this work is to develop and investigate a consistent analy"cal

model of a squall line by modelling separately the different physical processes particular to

both the region ahead of the squall line which for clarity we call the 'condensation region',

and the region behind the squall line, which we call the 'evaporating region'. This model

is able to demonstrate the importance of several new processes associated with squall-line

I dynamics. In section 2, we introduce the model of the cloud microphysics, the equations

of motion, and conservation of buoyancy and rain for the two regions. We also discuss

the matching conditions across the squall line which forms the interface between these two

3 regions. We then develop a hierarchy of solutions of the system. In section 3, we consider

stationary squall line solutions in an unbounded domain, which we generalise to solutions

in which the squall line propagates in section 4. These solutions grow exponentially from a

3 state of rest. We also present a simple argument which shows that the condensate loading

is crucial for the existence of propagating squall line solutions. In section 5, we discuss the

I more difficult problem of finding solutions in a bounded domain and introduce an initial

attempt at tackling this problem. We also briefly consider how the physics of the problem

I
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may be changed in order to introduce a natural vertical bound on the problem. We draw

some conclusions about the present study in section 6. I
2. The Physical Model

Throughout this paper, we consider motions of the system whose time scale is much longer

than the conicnsation time scale SO that the system remains in thermodynamic cquilib-

rium.

(i) Cloud Microphysics.

A detailed study of the microphysics of clouds was carried out by Kessler (1969).

In summary, the liquid water in L cloud may be divided into two categories which we

call cloud water and rain water. The cloud water is advected with the flow in the cloud,

while the rain water (consisting of the larger drops of water) falls out under gravity, at

approximately its terminal velocity.

For the present model, we assume that all the liquid water that forms in the con-

densation region is rain water and that it falls out at its terminal velocity as soon as it

forms. This is an idealisation, but retains the essential physical ingredients of the problem

(Seitter & Kuo, 1983). We also assume that all the rain falls at a fixed terminal velocity,

VT, relative to the air.

This simple model of the micro physics gives rise to the linearised equation for the

conservation of the liquid water

it,- VrT1 = L, (2.1)

where I is the liquid water content and L represents a source or sink of liquid water

corresponding to condensation or evaporation, with z the upward vertical coordinate and

t the time.

In the condensation region, the water vapour condenses out according to the vertical

gradient of the water vapour saturation mixing ratio, q., which represents the maximum
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I water vapour content of the air at a given pressure and temperature, giving

L dq (2.2)dz,

where w is the upward, vertical velocity. We assume that -. is constant, except in section

5 where we consider vertically bounded domains. Note that everywhere in the condensation

region, to > 0, in order that the air remains saturated.

I In the evaporation region, we must assume some law for the evaporation of the rain.

We follow Sietter & Kuo (1983) and assume a simple linear evaporation law L = -El,

where B is the evaporation rate, here asumed to be constant. In order that the air remains

unsaturated in the evaporation region we require the vertical displacement of the air from

the time of entering this region, to, to be negative, i.e. fwdt < 0. The problem of

defining each of these regions and their boundaries is addressed u the approach to finding

a solution.

(ii) The Momentum Equations.

I For simplicity, we assume that the flow is inviscid and we seek disturbamces growing

from the stationary state. This gives rise to the linearised, two-dimensional momentum

equations (Takeda, 1971, Emanuel, 1986)

U t1 = B- 91 -p (2.2.1)

I and

Ut = p-r (2.2.2).

In equation (2.2.1) the term B represents the force due to the buoyancy which is generated

by condensation or evaporation combined with the background temperature gradient. The

term gl represents the condensate loading, with g the acceleration due to gravity, and p is

the pressure field.I
I
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By continuity we can introduce a streamfunction 0 for the velocity field (ut )

(-h,, €) aad then combine (2.2.1) and (2.2.2) to give the vorticity equation

V201 = Bt -g91Z (2.2.4)

(iii) The Buoyancy Equations.

To complete our description of the physical system, we need to consider how the

temperature field varies in the two regions.

In the condensation region the release of latent heat on condensation produces an

unstable stratification which we may denote by

N2 -(2.3.1)

where rm and i, and the moist and dry adiabatic lapse rates and 0. is the mean state

equivalent potential te.perature. This represents the temperature the parcel would have

if it were-allowed to rise along a moist adiabat until all its water has condensed out and

then returned to its initial pressure along a dry adiabat (Durran & Klemp, 1982). This

gives the buoyancy equation

Bt = NC Z. (2.3.2).

In this paper we assume that Nc is a constant except in section 5, where we consider verti-

cally bounded domains. Note that in the upward moving air, the amount of condensation

produced is such as to keep the air just saturated.

In the evaporation region, there is a basic stable background temperature field (the

dry adiabat) with buoyancy frequency Ne, which we also assume to be constant, but in

addition the evaporation of the liquid water cools the air generating negative buoyancy.

Thus the buoyancy equation in this region is

Bt = -N2bz - MEl, (2.3.3)
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where Al is the Stefan number of evaporation, Al

(iv) Non-Dimensionalisation.

We non-dimensionalise these equations using the natural length scale of the system

I,'x, and th- time scale . In addition we non-dimensionalise the water content by the

change in the saturation water vapour mixing ratio over the natural length scale of the

problem, - This gives rise to a set of equations for each of the two regions:

3 I. Condensation Region:

V2 1p, =B, - Al, (2.4.1a)

At =Ox= (2.4.1b)

It l- 1= -= (2.4. 1c)

5II. Evaporation Region:

V20, =Bc - Alx (2.4.2a)

Dt = - N 20, - AMEl (2.4.2b)

I t- l = - El (2.4.2c)

f xt:0 (2.4.2d)

I where N 2 is the ratio N2/N.2

5 Before proceding further, we pause to note the fundamental diff" .e-r.. .- tween the

structure of these two sets of equations.

In the condensation region we can solve for the liquid rain along lines z + t = const

to obtain

l = lo + j'/ ds ; t=to+s ; z=-s+zo. (2.4.3)

I
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WVe deduce that the rain is a function of the vertical velocity in this region. Equation I
(2.4.1a) also demonstrates that the velocity field is a function of the rain field everywhere

in the condensation region.

In contrast, in the evaporation region, we may !,,e for the rain field I to obtain

l= 10CE ; t=to+, ; ::o-5. (2.4.4)

Thus the rain evolves independently of the velocity field and is not influenced by the 3
velocity field. However, (2.4.2a) again indicates that the velocity field is dependent upon

the rain field, which is an inhomogeneous forcing term in the equation.

We deduce that the motion in the condensation region drives the motion in the evap-

oration region; this acts as an important constraint on the nature of the squall line.

(v) Boundary Conditions. I
We now consider the matching conditions across Ithe squall line. As a parcel of air 3

passes through the propagating squall line, its velocity remains continuous as there cannot

be any impluses generated by the squall line. In order to be dynamically consistent, 3
the pressure is also continuous. By similar arguments the rain and buoyancy fields are

continuous. This yields five boundary conditions across the interface. Note that in the

case of a non-propagating squall line, the velocity condition reduces to a condition on the 3
normal velocity. Additionally we seek solutions which decay to zero away from the squall

line. I

I
I
I
I
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3. Non-propagating growing modes in an unbounded domain.

Some of the simplest solutions acnitted by the system are the non-propagating, growing

modes in an unbounded domain. As an initial investigation we seek solutions of the form

i f(x, :, t) = C"'g(x - 7Z) (3.1)

I in which the velocity is everywhere parallel to the direction z = x/, and we choose the

squall line to have this same slope, . Without loss of generality we choose the squall line

to be coincident with the line x = 7z and the condensation region to be z 7:.

If lp = evt+k(- -z t z) in the condensation region, then at the interface I k . There-

fore in the evaporation region, the liquid water and streamfunction are given by

I - -) (3.2)

(3.3).

I We call this the 'rain wave solution'. In this solution k > 0 in order that , - 0 as

x - 7z -+ -oo. For consistency this solution must satisfy the two dispersion relations

a 2~ (1- Aca (3.4)
a~ + -tk)

3 for the condensation region and

a 2 + N 2 =(E A(ME + )(i (3.5)

I for the evaporation region, where

i (3.6)3= 1+72'

Note/3 = 0 (-y = oo) corresponds to a horizontal interface and/3 = 1 ( 0 = ) to a vertical

interface.I
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We deduce that a 5 1 and 7'k < o(A - 1) and note that this solution satisfies the

boundary conditions automatically. Figure 3 shows how the solutions a(#) evolve as the

parameter N 2 , which represents the ratio of the stratification in the stable layer to that

in the unstable layer, is varied. As expected, the growth rate increases as the slope of the

squall line increases and as ,V2 decrcases.

In the limit of a horizontal interface, p -+ 0,a = aoil/2 and 7k = rei'/2 where

Au2 = 1 Aa. (3.7)
o + r.

and

ao,2 + Nv2 - AMr, (3.8)
+. + ro*

Thus we have

1 (AMf_2a N2) (3.9)

and so for o > 0 we require
N2 > M',(A-1I) (3.10)

and so

oN2 -(A -1) (3.11)
ro-(A- 1)((A- I1)A +(A - 1)- N2)(

We deduce that N 2 > A - 1 and N 2 < MA - 1 for a solution to exist. It was shown

numerically that the upper bound of N 2 occurs as P - 0 and that the lower bound for

N 2 occurs as 9 - 1. The results are shown in figure 4, giving the range of atmospheric I
conditions which admit stationary squall line solutions. The region between the upper

solid and lower dotted lines is the maximum range of solutions; in the region between the

lower solid line and the dotted line no solutions with P = 0 exist. This may be seen most

readily by considering the bounds on N2 as P -4 0 where a -- o,31/2 and "1k -4 ro.#/ 2.

I
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I As ,N2 decreases, solutions exist for sloping squall lines (-f :5 oo) which do not exist

for horizontal squall lines ('y "- co). This is because the steeper the squall line, the less

rain that falls out. Therefore, for the same water loading (A), as -f decreases the stabilsing

stratification required for the atmosphere to adjust to the rain forcing decreases. There is

a maximum stabilising stratification above which no solutions exist since above this value

I the atmosphere is too stable and over-compensates for the rain disturbance. The ratio

I of the buoyancy frequencies of the stable stratification to the unstable stratification, N2 ,

attains its largest value when 0 -4 0, i.e. the interface is horizontal (P = 0); in this limiting

case no rain forms and 011 the flow is horizontal.

I 4. Propagating, Growing Modes in an unbounded domain.

We now generalise the results of section 3 and seek the simplest form of propagating modes

in an unbounded domain. We follow the approach of section 3 and look for solutions with

I parallel flow and a linear squall line (z + tit = 7:)

I = exp(ot)exp(k(x + ut - 7--)). (4.1)

I Before proceding with any detailed analysis we make several remarks about the above class

of squall line solution.

First we note that 0: = 7'0: and so the boundary conditions in a moving frame in

which O9 -4 Ot + u0, become

(0J = [= [ ] = 0. (4.2)

In the condensation region, 0 _ 0, but at the squall line in the evaporation region, Or _< 0.

Thus 0. = 0 at the squall line and so there is no vertical flow there.

Secondly, we require both that the solution decay as x + ut - 7z -+ -oo and that

4i, > 0 everywhere in the condensation region. The simplest solution satisfying both of

I
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these conditions is the sum of two exponential decaying modes. We will use this result I
shortly to find the solution in the condensation region.

In the evaporation region, the forced rain wave solution is a single exponentially decay-

ing mode forced from the rain distribution on the squall line (as in section 3). Therefore, 3
we need soinc other mode in this region in order to satisfy the boundary condition t, = 0 I
at the interface. The only other modes which can occur in the evaporative region are

gravity wave modes, which represent the adjustment of the enviroment to the flow at the

squall line in order to conserve the flow properties B, 1, u, p across the interface. Therefore,

the solution in the evaporative region is a combination of the rain wave and a gravity wave. I
It follows from (2.4.2) that the gravity wave mode satisfies

(a + ku) 2 = -ON 2  (4.3)

giving

k -2 N (4.4) I
U iS

In order that this mode decays as x + ti - 7z -4 0o, we require u > 0. This constraint I
implies that the squall line can only propagate into the condensation region. We investigate

the mechanism of this propagation later in this section.

We also note that the modes in the condensation region, x + ut < -yz, satisfy

(a + uk)2 _9(1-A a +ku_) (4.5) -a + ku k^1"

and so in order that b: > 0 and that the solution decays as x + ut - 7z -' -oo, we require I
two positive roots for k. Therefore k7 > (A - 1)(a + ku) and hence 7 > (A - 1)u. We

deduce that if A > 1 then the squall line must slope into the evaporation region and cannot

be vertical. This is because the rain leaves the condensing region more rapidly when the

squall line slopes. If the water loading exceeds the unstable stratification (A > 1) in the

___
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I condensing region then in order to maintain upward flow the density of the rain must be

reduced; this is acheived by having a sloping squall line.

There exist two positive solutions for k in both the cases6 A > 1 and A < 1. This is

I readily seen graphically by plotting the dispersion relation (4.5) as shown in figure 5. We

deduce that for A < 1 there can only be two solutions of (4.5) if the value of y(k), where

=~k A (a + ku) 46cr+ k(, + (4.6

I exceed!s the .lue uk + a at the point at which = u. After some algebra, this condition

may be shown to reduce to the condition - > 2uJ0A. Hence when A < 1 the squall line

I must also slope away from the vertical, and as A -+ 0, the squall line becomes horizontal.

We will show that such a solution is not possible when N 2 is too large because as A -+ 0,

the downward condensate loading is insufficient to balance the upward unstable motion

produced by the latent heat release.

To simplify the solutions we will now work in the frame of reference moving with the

I squall line, x' = x + ut. We choose the line z' = f" to correspond to the position of the

squall line. From now on we drop the prime.

(i) Solution in the Condensation Region. Analysis of the Mechanism of Propagation.

i Following the above discussion, we can immediately write down the streamfunction in

the condensation region, (x < 7z), as

i= exp(t + ki(x - 7yz)) - k1 x~t 2X Y)

where k2 > k, > 0 are the two solutions for k. This solution clearly satisfies the conditions

= 0 at x = 7z and t, > 0 for x < 7z. The rain field is found from (2.4.2) to be

1U+ki(u+7) exp(ki(x-yz))- U+ 2u k2( - 7)) (4.7)
Il
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and the thermal field is

___z (z - - cL(X - (4.8) 1
+___ k£ Is a +(-':))

From these solutions we can undcrstand the mechanism of propagation of the squall

line. The simplest means of understanding the propagation mechanism is to follow the

approach of Seittcr & Kuo anmd examine the vorticity field and its gencrntion. Returning

to the stationary frame, we have

V2 t = Dr - A, (4.9). 3
Figure 6 shows th variation with distance from the squall line of the vorticity field, V2 , 1

and the terms representing the rate of generation of vorticity due to the buoyancy field

(B), the rain loading (-Al,) and their sum.

Near the squall line the buoyancy generation term dominates which causes the vorticity

field to decrease. Therefore the point of minimum vorticity and hence fhe squall line

propagate to the left. In this region, the rain field weakly opposes this buoyancy generation

of negative vorticity. However, as we move some distance ahead of the squall line, the

condensate loading also begins to generate negative vorticity and a little further ahead the I
vorticity generated by the rain-loading dominates the generation of vorticity caused by the

buoyancy field. The rain loading controls the propagation to the left in this region ahead

of the squall line, up to the point even further ahead of the interface where the sum of the

vorticity generation terms becomes positive. Beyond this point the buoyancy generation

of vorticity dominates the rain loading generation of vorticity again. In this very simple

analytical solution there is a more complex mechanism of propagation than that suggested

by Seitter & Kuo (1983). We have determined that the phase difference between the rain

field, buoyancy field and streamfunction cause the propagation of the squall line; however,

this more complex mechanism also depends crucially on the presence of the water loading.
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I (ii) Non-existence of Prolpating Modes when A = 0.

In order to emphasize the importance of the presence of the water loadin paratue.

kerised by A, we now show that no propagating modes exist when A = 0. In this case tile

I dispersion relation in the condensation region becomes

I (a +k'U) = (4.10)

I and for the gravity mode in the evaporation region it becomes

I (a + k,,,)2 = -N 2p, (4.11)

where k, and k, are the wavenumbers in each of the regions. Thus k, -- h ': and

k, -h " However we require two decaying modes in x < 7-: and so tL > 0. This

implies that in z > -1: the gravity mode grows as z - 7: -4 oo.

I Hence no such propagating solutions exist. Essentially, this is because when A = 0

we have adjacent regions of unstable and stable fluid (Bretherton, 1987).

(iii) Solution in the evaporation region.

This solution consists of the rain wave produced by the rain moving across the squall

line from the condensation region (section 3) and the gravity wave which is the response

of the stable stratification to the forcing at the interface.

From the solution in the condensation region, (4.7), we have the value of the rain at

the squall line

I l =+kl _) k l 7  (4.12)
a + kl(u +,y) a + k2(U '

and so the rain wave has the solution

Or= rexp[Ot ( B+ (X - YZ)] (4.13),
+f

I
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where i
Or 8.4k(k 2 - kj) [% ', + (4.14). 1

(N2 + k2)( + k,(it + "))(f , + k2(U + 7))

We may associate the term in Al with the flow produced by the evtporativc cooling while I
we associate the term in . with the condensate loading. Therefore, in this region, either of

these mechnnisns will suffice to produce the downward motion and the associated positive

vorticity gcneration.

The gravity wave mode has the form

-(x - -:)u) ([P's / 2N(" + r/ 2N.
0=ex, at ,,t ) aI O [ U (X- I-)] + a=il- I-UZ-T 7-z)l)

and we may determine a, and 02 most readily from the boundary conditions Of, +Or, = 0,

bg + O(r = 0, at x = y: where the subscripts c, r and g denote the condensation region

solution, the gravity wave and the rain wave.

The interfacial condition o,
,/),.. + , .., = Pcz

at z = 7-- then is used to determine the value of a for the given value of k and -Y.

(iv) Description of Full Solution.

Before considering how the solutions evolve as the atmospheric conditions change, it

is instructive to examine how the vertical velocity, 0,, the buoyancy, B and the liquid

water, 1 vary from some distance ahead of the squall line, through the squall line, to some

distance behind the squall line. In figure 7, it may be seen that in the condensation region

the vertical velocity (0.) has a maximum well ahead of the interface, while the buoyancy

maximum occurs nearer to the squall line, and the liquid water maximum is even closer.

It was shown earlier that this phase shift between the upward motion and the buoyancy

and liquid water fields maintains the propagation of the squall line.
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I In the evaporation region the rain distribution decays exponentially with distance

from the squall line as it evaporates. The temperature drops rapidly with distance behind

the squall line. Near the squall line this is due primarily to the continuity of temperature

across the interface coupled with the exponential growth with time of t"e lode in the

condensation region. However, further behind the line it is primarily due to the production

of negative buoyancy by rainwater evaporation.

Just behind the squall line, the velocity field is controlled dominantly by this produc-

tion of negative buoyancy. However, further behind the line the gravity wave becomes more

I important in controlling the buoyancy distribution and the velocity field. However, the

generation of negative buoyancy by evaporation dominates the velocity field, maintaining

the vertical position of all air parcels below their height on passing through the squall line

so that the air remains unsaturated.

(v) Consistency condition.

I We now develop the consistency condition that once a parcel of air moves behind the

squall line it should remain undersaturated and therefore below the height it had when

passing through the squall line. We may formally express this condition as rt 0, (It < 0,

where x= :at t = 0.

Substituting the full solution for the evaporating region into this expression and after

I some algebra, the condition reduces to

IWcos +.V < Y , [(- k,) x] + Z, (4.15)

I where 1V,X,Y Z may be determined in terms of ar,aa4 as

I = tan- ( N a3c
(13 x )N+ oaa)

= k~a2 + 1 2 ((13 /(P)N + ca14) 2

Ii
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S= /)Na,(, + E)
far - uk.)(,I + -)

and

Z=a3\/)N + ,._4
1* U

where

"+7

W - n readily demonstrate that in principle some solutions can satisfy this condition. We

consider two separate cases.

(a) if X > 0 there are consistent solutions if

Yexp(( - k,)(2 - )) + z < w.

This inequality expresses the condition that the exponential term can only equal the cosine

term at z = 0, as shown in figure 8(i), since the exponential term is constrained to increase

faster than the cosine at z = 0

(b) if x < 0 then figure 8(ii) shows that in this case there can be no further roots, since the

exponential term is constrained to increase faster than the cosine at z = 0 (i.e. ,, < 0).

(vi) Constraints on Atmospheric Conditions and Squall Line Velocity.

Solutions for the class of squall lines satisfying the conditions outlined above were

found as follows. The two roots, ki and k2 , > 0, for the dispersion relation in the conden-

sation region were found for given a and P and then the value for N 2 which allowed the

dispersion relation in the stable region to be satisfied was determined. The consistency of

the solution was then checked using the ;nmcthd d1 xcibed in section (v) above.

This procedure generates the family o.. olutii . :n (Cr, fl, N 2 ) space for each value of

u and A. A typical set of sich solutions is shown in figure 9 where the growth rate, a
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is shown as a function of N2 for given i and A. We nte that this predicts ai mnximum

and minimum for N' and a maximum value for c(N2 ). In each of the solution curves, P

increases along the line and N2 decreases along the line. a increases from one line to the

I next for given P in the direction of increasing N 2 . Therefore the solution of miniimum JN12

I corresponds to the solution with a relatively large value of P, i.e. a near vertical interface,

but as the upper bound for N2 decreu.es, this value is less than the maximum value of f.

It is of inv to plot the locus of maximum growth rates as a function of it, the squall

line speed aun water loading. Figure 10(i) shows how the locus of the maximum

I growth rate, u, as 1 function of N2 and u for given A. Figure 10(ii) shows how the

locus of maximum o varies as a function of P and It for given A; in these solutions N12 is

allowed to vary and these solutions correspond to those shown in figure 10(i).

As it increases, che growth rate decreases but the value of N 2 for which the growth

rate is a maximim increases with u. Also the range of solutions for N 2 decreases with

a, implying that the faster the squall line the smaller the possible range of atmospheric

conditions which can support such an event. The value of ,P at which a has its maxinium

is less than the maximum value of P for the given values of u and A.

I Figure 11 shows how the locus of maximum growth rate, a, varies for given it as

a function of N 2 and A. When A < 1, N 2 > 0. However, for A >_ 1, the minimum

stratification is greater than zero since the rain loading exceeds the unstable stratification

causing the squall line to slope so that more rain falls into the evaporation region. In order

that the environment can adjust to match the flow properties at the boundary we now

I require finite stratification.

Figure 12 summarises the range of atmospheric conditions in which these squall lines

can exist for different values of the squall line propagation speed. As u increases the

I solution space collapses to a very small range of environmental conditions.

I
I
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5. Sohations in a vertically bounded domain

In this section, we address the problem of finding squall line solutions in a vertically

bounded domain. Figure 13 shows the qualitative nature of a propagating squall line, in

the frame of reference moving with the squall line1 in such a bounded domain. A finite

region of rain of the shape shown follows the squall line. Behind this there is unsaturated

air with no liquid water. The upper boundary is a streamline and a line of zero rain so

that rain is not supplied from above. The lower boundary is also a streamline. The shape

of the squall line becomes an unknown to be determined as part of the solution. This may

readily be seen by considering the equations governing the flw. U
In the condeniiation region the coupling between the rain content and the motion gives

rise to a fifth order equation for 0 in x in the moving frame

(o8 + uO.)2 (oe +u o, - 0,)V'10 = (, + u0, - - A(8, + ua.)O,. (5.1)

which recquires five matching conditions across the interface. In the evaporation region

the independence of the rain from the motion gives rise to a fourth order equation for the

motion, with the rain field a forcing term in the equation

(p, + u89) 2V 2 0 = -N 20,x - A(ME + (8, + u8,)), (5.2)

and the equation for the liquid water is

(a, + uA - M/)! = -El. (5.3)

'Tnis only requires four matching conditions for V, at the squall line, hence the squall line

shape provides the extra degree of freedom to solve the problem. In the unbounded domain

case, this degree of freedom was manifested as the slope of the squall line.

(i) Imposed horizontal boundaries.
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I As a first attempt to solve the problem we address the simplest problem which contains

3some of the new physics. We consider non-propagating squall lines, with no water loading

in the cloud and seek solutions of the form f(x, :, t) = ertg(x, :). We obtain

1 = (5.4)

in the condensation region and

I o V2 = -N 20ZZ + f(l) (5.5)

in the evaporation region, where f(l) represents the generation of vorticity due t& the

evaporation of the liquid rain, together with the rain conservation equations. Since in the

unbounded domain the growth rate is bounded by unity, we investigate modes withI
a2 <1I

In the condensation zone, we have a simple hyperbolic equationI
a20" = (1 - a2)0" (5.6)I

with solution

= Cos 1 + oa( - a2)-1/ 2] o - - o_2)-1/2] (5.7)I
Given an interface shape, we can then solve for the flow in the evaporation zone

I numerically, using just one of the matching conditions across the interface, since it simply

involves inverting an inhomogeneous elliptic equation. Note, however, that this is not a

solution of the full system, since by assuming an interface shape we lose a degree of freedom

and so cannot impose one of the boundary conditions. In the present study, the interface

shape was 1cssumed to be linear and the solution in the evaporation region was found using

I
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the continuity of streamfunction boundary condition. The slope was then varied to find

the slope for which the pressure was best matched across the interface. A typical numerical

solution is shown in figure 14 showing (i) the strcamfunction and (ii) the rain distribution.

It was found that as the slope of the squall line is reduced, the pressure across the

interface matches more closely. In the limit, there is a pure horizontal flow and no rain

forms. We conclude that a more complex interface shape is required. A closed form

expression for this shape may be derived in a formal manner, however, it is a highly

non-linear id comnplicated equation.

(ii) Natural vertical bounds of the system.

An alternative approach to generate bounded solutions is to allow the physical prop-

erties of the system to vary with height. In practice, the gradient of the water vapour

saturation mixing ratio may vary with height. This can impose a natural vertical scale on

the system, and remove the need for an upper boundary to be imposed on the system. By

imposing, a variation of the saturation vapour mixing ratio on a scale much greater than

the exponential decay scale of the present set of solutions, the present solutions can be

continously changed with height and thus bounded.

To this end we seek solutions of the form

(Xz, t) = l(z)exp(fx + J 9(z)dz + at) (5.8)

and

O(z, ,t) = exp(fx + J g(z)dz + t) (5.9)

for the flow in the condensation region, for z > 0. In order that such solutions be vertically

bounded we impose that

-- 0 as z + Hdx
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I along the lines fx + fg(:)d. = const. Thus 9(:) -- oo as : - H.

With the solutions (5.8), (5.9), the equation for conservation of the liquid water be-

comes

I l(:)(fu + 0' - W) = ft(:)

where s(z) is the vertical gradient of the water vapour saturation mixing ratio. S(:) remains

finite as : - H and so

I 1 z - H

where A = -fs(H).

Again using the solutions (5.8) and (5.9), the equation of motion in the condensation

Iregion becomes

I (uf + o)(f, + gI + g2) f' -( l(z)A f(uf + a).

I where the unstable stratification, N,2, has now become a function of z. As z -4 H,

I g1 + g2 ^. 0

3 and so g(z) , - . Therefore

1,~ fs(H) a -H
(z) H-z

Using these asymptotic results, if we assume that l(z) =and g(Z) then we

can readily deduce that

1(Z = z) fu + ao
) f 2s(H) ]Jz H

Iand 
2 Z U ,N(z) - (uf + a')(uf +a + s(H))

'I
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In this solution, the streamlines in the condensation region are parallel to the line : =
H( - cxp(-fz)) and along such characteristics I(.) = L,()1" t

solutions, the streamlines tire bounded above by the line : = H. Alternatively, fron the

asymptotic argumants we could have chosen 1(-) = and 0_) , which gives rise to a

different, functional depCndancc =(.).

Only those solutions for which the water vapour saturation mixing ratio is zero at

the point - = H are physically adnissable, since if q,(H) > 0, then any further upward

motion would generate more positive buoyancy, and thus more upward motion. This

condition may be formally expressed as f0, s(-)d- - q,(0) = 0. The rain distribution in

the evaporation region is readily determined by integrating from the squall line along the

lires z = -z/i + con.st as out,.ed in section 2(iv). The flow solution in the evaporation

region may then be found numerically rerting the equation of motion, given 'hihe rain

distribution everywhere in the region. Figure 15 is a schematic of the qualitative nature

of tais solution.

This approach suggests a method of extending the results of section 4 to a more

realistic class of vertically bounded squall line solutions and many of the features of those

solutions are present in these bounded solutions. However, the problem of imposing a lower

horizontal boundary on the squall line remains unsolved. Possibly, the present solutions

may be matched at z = 0 to a distinct region below the squall line, in which the strong

upflows may perhaps originate by mixing at the sea surface.
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I 6. Conclusions

lWe have developed a realistic but simple model of the dynamics governing the propa-

gation of a squall line in which we consider separately the motion in the region of upward-

I moving, saturated condensing air and the region of downward-displaced, unsaturated air.

3 Simple growing md propagating squall line solutions of this system were found and they

predict some very strong constraints on the motion of squall lines, as well as specifying the

3 range of atmospheric conditions in which such solutions may exist. These solutions exist

in the absence of wind shear.

I They predict that

1. Squall lines only propagate into the region of upward-moving, condensing air.

2. Squall lines slope away from their direction of propagation. A significant amount of

condensate thus falls into the region of unsaturated air behind the squall line.

3. ,E,uaii lines can only propagate when the atmospheric stratification lies between an

upper and lower bound, both of which increase as the water loading increases. These

3 bounds are shown in figure 12.

4. As the speed of the squall line increases, the range of atmospheric conditions in which

I such solutions exist decreases.

5. The propagation of the squall line is caused by an interaction of the rain (liquid water)

field and the buoyancy field, with the buoyancy field causing the propagation near to the

squall line and far ahead of the squall line, while the rain (liquid water) loading causes the

propagation in the region between these two extremes.

I It has also been shown that a natural bound on the vertical extent of the squall line

3 may be imposed by decreasing the gradient of the saturated vapour mixing ratio with

height, so that the amount of condensate formed decreases as the parcel rises.I
I
3
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Figure Captions

1. Schematic diagram of at squall line, showing wind velocity, rain contours and motion of
the squall line.
2. (i) Vorticity and (ii) rate of vorticity generation by rainwater along a 'orizontal section
of Emanuel's precipitating convection solutions. (iii) streamlines and (iv) rain contours as
given in Emanuel (19SG) figure 9(a,b), from which the present figures 2(i,ii) were derived
(approxinately).
3. Growth rate of non-propagating disturbances, a as a function of ,, the slope parameter
for various values of A 2 .

4. Upper and lower bounds for N 2 for non-propagating squall lines.
5. Plots of the dispersion relation (4.5) for (i) A > 1 and (ii) A < 1 showing the existence
of two solutions for k, the wavenumber.
6. Plot of (i) the vorticity field, (ii) the total rate of generation of vorticity, (iii) the
rate of generation of vorticity by buoyancy and (vi) the rate of generation of vorticity by
rain loading. This shows the phase difference between the vorticity field and the rate of
generation of vorticity whirh causes the propagation of the squall line.
7. Typical solution of the rain, buoyancy and vertical velocity distributions.
S. Demonstration of the consistency condition (section 4(v)) for the cases (i) X > o and
(ii) X < 0.
9. Growth rate, a', for a propagating disturbance as a function of N 2 for u and A fixed
and variable P.
10. (i) Variation of the maximum value of a as a function of N 2 and it for A fixed and (ii)
variation of the maximum value of a as a function of P and u for A fixed.
11. Variation of the maximum value of a as a function of N 2 and A for u fixed.
12. Upper and lower bounds for N 2 as a function of A for various values of u. This gives
the range of atmospheric conditions for which such a growing, propagating squall line can
exist. Note that these bounds were found for values of 6 in the range (0.01,0.99), and so
do not include disturbances in which the squall line is either vertical of horizontal.
13. Qualitative nature of the squall line, and the rain field, in a vertically bounded,
propagating squall line.
14. (i) Streamfunction and (ii) rain distribution for a typical solution of the vertically
bounded flow in which there is no propagation, the pressure is not matched across the
interface and there is no rain loading. As the interface becomes horizontal the pressure is
better matched for this interface shape.
15. Schematic of the squall line solution in which a vertical bound is incorporated into the
problem by decreasing the saturation mixing ration with height.
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Figure 2_(iii)
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