
After you have read the research report, please give us your frank opinion on the contents. All comments—large or small, complimentary or caustic—will be gratefully appreciated. Mail them to: CADRE/RI, Building 1400, Maxwell AFB AL 36112-5532.

THE EFFECT OF HIGHER EDUCATION VARIABLES ON CADET PERFORMANCE DURING 1987 LIGHT AIRCRAFT TRAINING

Thank you for your assistance

Cut along dotted line

DISCLAIMER

ι.

This publication was produced in the Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts. The views expressed in this publication are those of the author and do not reflect the official policy or position of the Department of Defense or the United States government.

This publication has not been reviewed by security and policy review authorities and is not cleared for public release. It is the property of the United States government and is not to be reproduced in whole or in part without permission of the commander, AUCADRE, Maxwell Air Force Base, Alabama.

CONTENTS

Chapter		ļ	Page		
	DISCLAIMER	•	ii		
	FOREWORD	•	v		
	ABOUT THE AUTHOR	•	vii		
	PREFACE	•	ix		
1	RESEARCH DESIGN Need for the Study Statement of the Problem Null Hypothesis	•	1 1 3 4		
	Assumptions Limitations		4 4		
2	REVIEW OF LITERATURE. Post-World War II to 1959 1960-1969 1970-1979 1980 to Present Summation of Previous Research Variations between the Current Study and Past Efforts	• • •	7 9 10 15 17		
3	<pre>METHODOLOGY. Subjects. Training Syllabus. Ground Academics. Flying Training. Officership. Possible Pitfalls. Mission Grading Parameters. Grading Scale. Maneuver Item File. Dependent Variables. Pass or Fail. Quantified Performance. The Independent Variables. Scholastic Aptitude Test Scores. University Grade Point Average. University Academic Major. University Varsity Sports Competition. Prior Flying Experience.</pre>	· • • • • • • • • • • • • • • • • • • •	21 23 24 25 28 29 30 31 33 34 37 37 37 38 38 38	0 r	
	iii	By Devision/ Distribution/ Availability Codes [Avail and/or			
	DSID INGRECTED	Dist A-1	Avail Spec	-	•

INSPECTED

. .

Chapter

	AFROTC Detachment	38
	Air Force Officer Qualifying Test	39
	AFROTC Quality Index Score	39
	Gender	39
	Statistical Analysis	39
4	RESULTS	41
	Analysis of Subject Demographics	41
	Dichotomous Variables	42
	Pass or Fail during the LATR Program	42
	Effect of Prior Flying Experience	42
	University Varsity Sports	
	Competition	43
	Gender as a Variable	43
	Effect of Academic Majors	44
	Multivariant Analysis of Dependent	
	Variables	44
	Summary of the Results	45
5	CONCLUSIONS AND RECOMMENDATIONS	47
	Prior Flying Experience	47
	Varsity College Athletics	48
	Air Force Officer Qualifying Test	49
	College Grade Point Average	50
	Curricular Variables Not Affecting	
	Performance	50
	Academic Majors	50
	Scholastic Aptitude Test Scores	51
	Quality Index Score	51
	Gender	51
	Recommendations	52
	A Brief Summary of LATR 1987	53

ILLUSTRATIONS

<u>Table</u>

K.

,

1	Maneuver Item File	32
2	Independent and Dependent Variables	33
	APPENDIXES	55
	REFERENCES	261

Page

iv

FOREWORD

Lt Col Larry E. Baker examines a question of continuing interest to the Air Force and more specifically to the Air Force Reserve Officer Training Corps: Are we using the most appropriate standards for selecting young officers to be trained as pilots? Colonel Baker applies a scientific approach to studying the 1987 light aircraft training (LATR) program to determine which selection criteria have the most reliability as predictors of success in the LATR program and which likely would also have validity as predictors of success in undergraduate pilot training. Als study indicates the need for continuing research in this area.

M. DREW, Colonel, USAE

Director, Airpower Research Institute Center for Aerospace Doctrine, Research, and Education Lt Col Larry E. Baker is an exercise physiologist from Miami, Florida, serving in the Air Force Reserve with the 482d Tactical Fighter Wing, Homestead AFB, Florida. He was the Air Force Reserve research fellow at the Airpower Research Institute, Maxwell AFB, Alabama, for the academic year 1987-88.

Colonel Baker is a US Air Force command pilot with a total of 5,500 flying hours. His military career includes three combat tours of duty in Southeast Asia, where he totaled more than 1,000 hours of combat flying. He was a member of the Wolf forward air control group flying the F-4 for the 8th Tactical Fighter Wing at Ubon Royal Thai Air Thailand. He is a graduate of the central instructor Base, pilot school in the F-4 and was an instructor pilot in a replacement training unit. Other active duty assignments included flying high-altitude research and reconnaissance, piloting the R-57 and U-2 in the full pressure suit environment. Colonel Baker is a civilian certified flight instructor and has flown civilian aircraft ranging from the four-engine Jetstar II to the high-performance, acrobatic Pitts Special.

Colonel Baker has a doctorate from Florida International University and holds master of science, master of arts, and bachelor of science degrees. He is a resident graduate of the Air War College. He has taught at the university level and is a past director of the Health and Fitness Institute, a sports medicine center in Coral Gables, Florida.

vii

PREFACE

This research effort resulted from the Air Force Reserve's desire to enhance its selection of candidates for undergraduate pilot training (UPT). However, at the outset of this research, I relegated developing an accurate method to determine which applicants from the Reserve should attend UPT to the back burner. I quickly realized that the available data and prior research did not provide an accurate, meaningful formula for identifying which students would complete pilot training successfully and, thus, could not provide a sound basis for deciding which officers should be sent to UPT. Hence, I directed my research toward developing a research design that would supply some of the criteria that seemed to be lacking in the previous body of scientific studies. This research should supply some of the missing pieces to the puzzle of what makes a good Air Force pilot.

In designing this study, I sought to determine the extent to which the current criteria for selecting candidates for pilot training are valid as predictors of success in a flying training program. Toward this end, I limited the scope of the effort to producing precise, valid results that could withstand the rigorous tests required of scientific inquiry. Moreover, to enable replication of the study at a later date, I restricted the variables to data that was readily available from a subject's records or that was currently being used as discriminators in selecting individuals for UPT. The study of individual flying careers during and after UPT would produce the best results in deciding which traits most clearly indicate likely success as a pilot. However, because the time and money to track individual careers across the span of several years were not available, I had to develop an alternative research design.

The 1987 light aircraft training (LATR) program for Air Force Reserve Officer Training Corps cadets met several of the necessary criteria for a sound research design. The Air Force designed the LATR program to emulate UPT and to determine the student's potential for successfully completing a pilot training program. In addition, the selection criteria for LATR approximated the qualifying standards for UPT. Hence, I could treat the validity of using the LATR selection criteria as predictors of success in flight screening as emulating the validity of using the UPT selection

ix

standards as predictors of success in UPT. Moreover, the 1987 LATR had other advantages as a research design. It was a short program with little potential for the sociological conditioning that takes place in the rigid military environment of UPT, and it allowed excellent proce-dural controls.

The results show that many of the selection constructs developed to identify individuals that have the potential to become military pilots are probably incorrect. In addition to underscoring some important relationships between selection variables and flight performance, I demonstrate that some perceived relationships between variables were unjustified.

I chose to follow the formal academic and scientific research model to include a formal statement of the problem, formulation of the null hypothesis, and the statement of the specified methodology to give validity to the results. From the model, I derived the statistical procedures necessary to determine, within a definite range of probabilities, the statistical relationship between the selection variables for LATR and the flight performance of cadets as measured by the official pass-fail grade and a quantified indicator of cadet performance during the flight training. I used applications of the Statistical Package for Social Scientists-X (SPSS-X) to make the actual statistical analysis. The computer runs for these applications and the raw data sets are included in the appendixes for those who want to examine the results and the analysis in greater detail. Although this scientific approach may limit the readership somewhat, to adhere to a less strict protocol would reduce the accuracy of the findings--as has been the case in much of the previous This analysis research on the pilot selection problem. should stimulate reevaluation of the selection criteria for LATR and UPT.

Lany E Baker

LARRY E. BAKER, Lt Col, USAF Research Fellow Airpower Research Institute

CHAPTER 1

RESEARCH DESIGN

The United States Air Force continually faces the problems of recruiting, educating, training, and retaining its pilot force. If the Air Force is to maintain a high level of operational ability, it must have a highly capable corps of pilot officers. To ensure that it has adequate numbers of skilled pilots, the Air Force initially must select gifted individuals for its undergraduate pilot training (UPT) program, the first step in becoming an active duty pilot.

This researcher focuses on the Air Force Reserve Officer Training Corps' (AFROTC) method of selecting candidates for its light aircraft training (LATR) program as the first step in deciding which AFROTC graduates will attend UPT. Current knowledge and data are inadequate as to what type of undergraduate curriculum and extracurricular activities will best enable a university student to pilot a supersonic aircraft with a high degree of skill within a year of graduation. This research design should increase that knowledge. Specifically, this researcher examines those traits that the AFROTC pilot candidate can relate most strongly to his or her success in completing the present Air Force preselection flight training and screening program--LATR.

Need for the Study

Most research on the selection process has attempted to correlate selection criteria (input variables) with success in UPT. This relationship may appear logical at first glance since the selection of candidates who can complete training is the stated objective of the pilot selection process. Given the current selection criteria for UPT, one may conclude that Air Force ROTC has based its selection process on the assumption that students in specific academic majors make superior aviators. The allocation of 80 percent of the AFROTC scholarships to engineering majors is indicative of If the only objective of the screening process this bias. is to identify piloting skills, then AFROTC has not examined current selection criteria such as a high grade point average, excellent Scholastic Aptitude Test (SAT) scores, and top scores on the different phases of the Air Force Officer Qualifying Test (AFOQT) with the rigor necessary to justify their use as primary selection criteria. Likewise AFROTC has not analyzed its bias toward engineering students

sufficiently to determine if engineers do indeed do better as pilot trainees. This rationale obscures the fact that the overall objective should be to develop and train the most skilled pilots possible, not just to graduate individuals from LATR or UPT. The environment of UPT may selfselect specific educational variables that do not necessarily correlate with high skill levels at a point later in the officer's flying career.

One of the issues that may cloud the UPT selection process is screening applicants not only for piloting skills but also for other traits that the Air Force finds desirable in its officer corps. These other indicators, while not at cross-purposes, may dilute pure piloting traits and characteristics among the selected student aviators.

In this study, the researcher examines specific higher education curricular variables--course of study, varsity athletic competition, prior flying experience, and gender-in relationship to their effect on performance by AFROTC cadets during the LATR program. The intense 16-day flight screening LATR program is the last step for AFROTC students, other than successful completion of the bachelor's degree and commissioning, that leads to UPT. The objective of the light aircraft training program is to determine if a candidate has the potential to complete Air Force undergraduate pilot training. Due to the short duration of LATR, the cadets are not subject to the effects of the intense sociological conditioning experienced during undergraduate pilot training. Hence, innate flying ability may be less difficult to determine during LATR than in UPT, when sociological indoctrination has developed as a potentially more significant factor.

Despite the fact that AFROTC uses exacting eligibility requirements in choosing cadets for flight screening and training, the failure rate of these cadets during the flight screening program (as it has been referred to in the past years) or LATR (the 1987 title) has held at 30 percent. Moreover, the failure rate for AFROTC graduates at UPT runs close to 40 percent. Each UPT attrition represents a lost investment of \$70,000. Reducing the attrition rate by developing a selection strategy that would accurately predict which AFROTC students would be successful during UPT could save large sums in the Air Force budget.

The overall effect of the failure rate during pilot training may be even more significant when one considers factors other than just funding. Many of the young officers who do not finish UPT stay in the Air Force and complete their careers in fields that they consider second best. To what extent this feeling may influence operational efficiency is subject to debate; however, not to acknowledge this possible negative emotion among a significant faction of the Air Force officer corps may be an error. A high UPT attrition rate can only add to this problem.

If time and money were not a factor. this research question could be developed into a pure experimental design, with random selection and control groups of nonflying However, to select individuals at random from the cadets. general college population and then attempt to motivate them to undergo a project such as the LATR program would not be feasible or rational. Perhaps a pure sample of flying talent in reference to academic performance could be established. However, if the randomly selected subjects were not inclined toward a career in military aviation, then the effort would be less than satisfactory. The subjects included in this study have been selected by AFROTC to compete for a spot in undergraduate pilot training. The selection process for the subjects in this study would seem to meet the need of the research objective.

The results of this research should provide data and support for refining the criteria used in selecting AFROTC students for training as Air Force pilots. The use of refined selection criteria would reduce attrition during UPT, thus resulting in more efficient use of expenditures. Improved identification of flying abilities among AFROTC cadets could enhance the ability of the Air Force to complete its assigned mission.

Statement of the Problem

The United States Air Force has experienced a high rate of attrition among AFROTC graduates during UPT. One of the possible methods of reducing this attrition rate is to develop a superior method of selecting AFROTC student pilots for undergraduate flight training. This researcher approaches this problem by focusing on higher educational curricular characteristics of AFROTC officer candidates competing in the LATR program for an assignment to undergraduate pilot training.

Specifically the researcher attempts to determine the relationship of these selected variables to the overall performance of the AFROTC cadets who took part in the light aircraft training at Embry-Riddle Aeronautical University, Daytona Beach, Florida, in the summer of 1987. Knowledge gained by examination of the selected subject's performance in relationship to existing educational variables may assist in developing a more precise method of selecting student pilots and may lead to a reduction in the high rate of UPT attrition.

Null Hypothesis

There is no relationship between the specified higher educational curricular variables and the performance of Air Force Reserve Officer Training Corps cadets during the 1987 light aircraft training program for AFROTC conducted at Embry-Riddle Aeronautical University.

Assumptions

The researcher bases his research design on the following assumptions.

1. For this study to have any operational value, the results should apply to future AFROTC cadet groups. This condition requires a similar symmetrical population, as is the case. The pool of AFROTC cadets selected for undergraduate pilot training and flight screening has remained very consistent throughout the years as to the independent variables that are the focus of this study. Relationships between variables derived from 1987 LATR data are assumed to apply to future cadet groups.

2. The 1987 LATR cadets constitute the entire population; hence, random selection is not an issue.

3. The treatment received by each cadet is identical. Variations in teaching skills, in weather during check rides, and in performance of individual aircraft during stalls and other maneuvers do exist, but these variances are of insufficient magnitude to cause a significant difference in the performance of the subjects.

Limitations

Time, money, and subjects with which to develop a classic experimental design are not available.

1. Random selection and control groups to probe the question of specific traits and curricular variables in reference to flying skills and ability are not a viable option. Examining the problem with subjects that have been preselected may limit the explanatory potential of this research design.

2. Time limited this study to just the 1987 LATR classes. The time necessary to track the cadets during the last one or two years of college, the year-long period of undergraduate pilot training, and advanced flying training was not available. Following the professional flying development of all cadets until they reach full operational flying status as active duty pilots would provide highly relevant information.

CHAPTER 2

REVIEW OF LITERATURE

Researchers who have studied the subject of selection of students for flying training have examined psychological or personality variables, have attempted to determine which physiological attributes relate to flying skills, or have conducted basic research into the quantification of flying skills. These researchers have used various test instruments including pen-and-paper tests developed by the military, standard psychological tests, and computer-driven simulator devices.

None of the researchers have examined the specific subject of the present research study--examining the relevance of using higher educational curricular variables as quantified predictors of performance during military light aircraft flight screening. A few have examined curricular variables in relationship to undergraduate pilot training with negative results. Nonetheless, the research studies reviewed here do have in common with the current study a long-range interest in developing selection criteria for military flight training that will be predictive of success in both pilot training and active duty pilot status. Research prior to and during World War II is not of apparent value as it tended not to relate to the current problem or was not documented in a scientific manner. No effort is made to describe the evolution of the pilot selection process, only to review the sound research that may reflect on this current investigation.

Post-World War II to 1959

Between World War II and 1960, researchers directed their efforts at attempting to correlate existing personality traits with success as an aviator. The watershed research project was undertaken by the Army Air Forces Aviation Psychology Program in 1947. This project examined 23 tests in an attempt to validate personality traits as predictors of student pilot success. None of the tests provided predictive validity in reference to pilot performance (Guilford 1947).

J. R. Berry analyzed the Cornell Word Form (Weider et al. 1945) for use as a predictive instrument for screening pilots and found a slight relationship with success in aviation training (Berry 1954). Berry found some signifi-

7

cance in this relationship; however, the small subject sample limited the validity of the study.

R. S. Melton administered the Minnesota Multiphasic Personality Inventory (MMPI) to naval aviators in an attempt to evaluate the personality characteristics of successful fliers (Melton 1954). The study showed some relationships between hysteria, masculinity-femininity, and mania; but Melton had limited success in predicting pass or fail of Navy cadets using the MMPI.

In 1956 S. B. Sells examined more than 100 personality tests in relationship to pilot selection. Sells concluded that factors such as test-taking skills and motivation skewed the results of such testing and that an evaluation of the first series of flights a student made were far more reliable predictors of success (Sells 1956).

In another 1956 study, the US Naval School of Aviation Medicine at Pensacola, Florida, sought to determine the validity of using personality inventories in the naval aviation selection program. The Navy concluded that tests developed to determine specific personality traits were not effective in determining success as a naval aviator. The rationale for the lack of success was that the personality tests are designed to detect psychological variations and are not directed toward performance variations (Voas et al. 1956).

D. K. Trites and A. L. Kubala searched for a relationship between the results of the Cornell Word Form (CWF) and flying performance. They examined Air Force pilots and were able to establish a relationship between specific traits on the CWF and traits exhibited by Air Force pilots (Trites and Kubala 1957). However, the research was directed at established aviators and would not indicate a predictive relationship among student aviators.

S. C. Fulkerson evaluated military aviators using the MMPI (Fulkerson 1958). He reported that five areas of the test permitted the discriminating of pilots from the normal population.

The research during this period focused on evaluating military aviators in reference to standard psychological tests in an attempt to identify a personality type that would enable selection of candidates with similar traits. This rationale may be defective in that the selective pressure of military aviation and the resulting role playing of the individuals involved may screen the actual personality.

1960-1969

In 1962 C. Mullins attempted to resolve the problem that personality types and role playing may affect the results of the test instrument. He devised a test that required the subject to identify which of two fields of dots contained a specific number of dots and which of the two dot fields contained more dots. The hypothesis was that the individual who could sort this information in the least time would prove to be less compulsive. The level of compulsiveness would relate to flying proficiency (Mullins 1962).

In 1963 L. R. Green used the Eysenck Personality Inventory to conduct an exploratory investigation of the relationship between personality measures and voluntary resignation from naval flight training at the US Naval School of Aviation Medicine (Green 1963). Green determined that no significant differences existed between student pilots who completed training and those who self-eliminated.

F. E. Peterson used the Edwards Personal Preference Scale (EPPS) (Edwards 1959) to determine if a relationship existed between success in naval flight and personality (Peterson 1965). This research determined that the EPPS was not effective in predicting success during flying training.

R. K. Ambler attempted to establish a relationship between success during Navy flight training and student pilot carefulness established by peer rankings (Ambler 1966). This peer-rating system did not develop significant relationships that would make development of effective preselection criteria for student pilots possible.

During 1966 the Navy sought to determine if a vehicular trainer would prove successful in predicting success in naval aviation training (Askren 1966). Results proved inconclusive; however, this study could be considered the first of many attempts to develop a quantified system of evaluating student pilots based on physiological motor skills.

Personality traits were again examined in relationship to success in naval aviation training. A team lead by H. L. Fleischman examined five personality scales in an attempt to determine if a relationship existed between a specific profile and success in military aviation (Fleischman et al. 1969). The Taylor Manifest Anxiety Scale showed a significant relationship between both pass or fail outcomes and self-elimination. The other instruments proved unrelated to performance in flight training. The 1960 to 1969 time frame was most significant when considering the developing trends in research. The focus of the research in pilot selection was the student pilot, not the qualified aviator. In addition, researchers made the first attempts to quantify and evaluate the actual requirements of piloting skill. This trend continued into the next decade.

1970-1979

C. L. Hulin and K. M. Alvares assumed that Air Force selection tests do not predict success as a pilot. They then attempted to develop a research protocol that would explain the lack of predictive success (Hulin and Alvares 1970). In their study they evaluated three possible explanations of the temporal decay in predicting pilot proficiency. The results were not conclusive in predicting a level of flight proficiency.

The Royal Air Force commissioned a research study by A. B. Goorney to establish a correlation and method of analysis for determining if the military aircrew population differed from the British population at large. This study examined both pilots and navigators using the MMPI and the Maudsley Personality Inventory (Goorney 1970).

In another British study done in 1971, researchers used the Eysenck Personality Inventory in an attempt to develop a relationship between personality traits and success as a student pilot within the Royal Air Force. This study showed that the neurotic-introvert quadrant produced the largest amount of failures among the student pilot population; the stable-introvert quadrant had a much greater success rate (Jessup 1971).

R. E. Doll explored the relationship between vocational interest and success in flight training by administering the Strong Vocational Interest Blank test instrument to a group of Navy flight students and analyzing pass or fail performance during the course of the study (Doll 1972). This study determined that subjects who completed Navy flight training had a high interest in math and science. Critics of this study have pointed to the bias built into the results because the Navy's selection criteria for aviation students are weighted in favor of math and science.

One of the most promising psychological testing procedures used to predict success in aviation training was the Defense Mechanism Test developed in 1961 in Sweden by U. Kragh. T. Neuman conducted a comprehensive research study in an attempt to validate this test with the pass or fail criteria of military flight schools (Neuman 1972). The results of the study were inconclusive. However, the Swedish air force did elect to make the Defence Mechanism Test part of its selection process for undergraduate pilot training.

S. F. Bucky and S. L. Ridley gave the California Psychological Inventory to a group of naval flight students with hopes of establishing a relationship between specific profiles and success (Bucky and Ridley 1972). More than 300 students took the test. The researchers tracked the students' performances in the training program and found that the profiles of students who passed the training and those who failed were almost identical.

Bucky also approached the issue of success in aviation training by studying the relationship of aviation students and perceived levels of optimism, relevance, and importance. A questionnaire was administered to measure these specific attributes. Individuals who self-eliminated from the flying training displayed significant differences in the level of perceived importance they attached to flying training and were less optimistic than subjects who finished the course of training (Bucky and Burd 1973).

During this same time frame, Bucky researched the relationship between state and trait anxiety in voluntary withdrawal of Navy student pilots (Bucky and Spielberger 1973). The researchers administered the State-Trait Anxiety Inventory to more than 300 subjects who were to attend flying training. The study showed that students who displayed high levels of anxiety attrited at a rate significantly greater than students who scored low on the anxiety scale.

In 1973 P. A. Knoop developed an advanced simulation research system that made practical research experiments to quantify piloting skills and to establish specific qualifications and parameters for training proficiency (Knoop 1973). This effort provided a focus for later studies.

C. E. Billings followed with another study aimed at quantifying pilot performance with the objective of validating performance measures for rotary-wing aircraft (Billings 1973). Using an aircraft wired with a computer recording device to capture various flight and aircraft functions, Billings found that pilot skill could be determined by analyzing the variability of the aircraft rotor revolutions per minute. W. L. Waag and associates examined the use of confidential instructor ratings at the Naval Aerospace Medical Laboratory for reliability in predicting success in naval undergraduate pilot training (Waag et al. 1973). They determined that these confidential ratings were a significant factor in predicting success or failure during pilot training and recommended that the Navy implement these ratings during the presolo stage as a permanent protocol.

The US Air Force elected in 1974 to employ the pen-andpaper psychomotor tests in the selection of candidates for undergraduate pilot training. The protocol was validated and has been in service, with revisions, to the present (McGrevy and Valentine 1974). Since the Air Force Officer Qualifying Test (AFOQT) has shown small but significant relationships to the success rate at UPT and since AFOQT scores are used as part of the selection criteria for LATR, the latest version will be used in the present research as part of the independent variables.

Using the Strong Vocational Interest Blank test, D. W. Robertson examined the relationship of vocational interest to success in flight training. The results displayed no validity in relationship to predicting levels of performance. The major problem in the study was that priorselection procedures and criteria biased the results in that the sample of unsuccessful student pilots was similar in vocational interest to the sample of student pilots who successfully completed flight training (Robertson 1975).

Advances in computer technology during the 1970s allowed the development of apparatus-based psychomotor evaluation (Long and Varney 1975). Further improvements in this type of testing led to the use of computer-driven protocols in the 1980s. Although early results were not conclusive, the method of employing a computer-driven instrument showed promise.

A Canadian study explored the personality profiles of different populations within the Canadian military and established a relationship between specific profiles and military positions (Skinner et al. 1976). The research did not provide a predictive relationship in reference to flight training.

The US Air Force also explored the relationship between the Strong Vocational Interest Blank test and success in flight training and developed the same problems as had the Navy in Robertson's earlier research with a similar protocol (Guinn et al. 1976). Again prior selection screened the subjects and biased the results. The relationships were stronger when predicting who would not complete the training but were weaker in projecting success in flight training.

The School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, directed studies into quantifying performance on flight simulators to evaluate their effectiveness. The purpose of the research was to identify criterion variables most applicable to initial flight simulation and to establish any differences between flight simulations and actual flight (Miller 1976). The data collected from research of this type may prove helpful in the future in establishing specific quantified parameters for measuring pilot performance in a training situation.

B. A. Smith, B. K. Water, and B. J. Edward studied performance on a T-37 aircraft simulator in an attempt to design a cognitive pretraining instructional package to help student pilots master overhead traffic pattern skills in the T-37 jet trainer (Smith, Water, and Edward 1975). They used a multimedia package to help develop the specific skill. an experimental group to the instruction They exposed package and put additional subjects in a control group. The experimental group was able to grasp the necessary skill in the overhead flying task in less time than the control aroup. Smith, Water, and Edward recommended that the cognitive pretraining package be implemented as part of the flight curriculum. Of primary interest here is their method of quantifying performance.

P. A. Irish and others studied the effects of system and environmental factors upon performance by experienced pilots on advanced simulators (Irish et at. 1977). Irish and his associates measured pilot behavior on various aspects of the flight envelope in an advanced simulator to determine the independent variables for the various maneuvers. The study advanced understanding of the quantification of the flight process.

G. S. Krahenbuhl, J. R. Marett, and N. W. King used the State-Trait Anxiety Inventory to evaluate the performance of T-37 student pilots in Air Force undergraduate pilot training. He determined that students who were considered inferior pilots perceived greater stress during the training program than did students who were doing well (Krahenbuhl, Marett, and King, 1976). The results of this study are rather logical as poor performance should produce high levels of anxiety in subjects who fear elimination from flight school.

In 1978 a team at the US Air Force Human Resources Laboratory validated the relationship between psychomotor skills and success at Air Force flight training (Hunter et al. 1978). This study proved significant as it created interest in establishing further research in developing a computer-driven method of evaluating potential flying skill levels.

A Swedish study revisited the Defence Mechanism Test in an attempt to quantify and validate the screening test in relationship to actual pilot performance (Neuman 1978). The validation was successful and the testing procedure is being employed in Sweden at the current time. Problems exist, however, in regard to using the test in the United States military system because of the requirements necessary to administer the test and the variation in the subject population.

The Federal Aviation Administration (FAA) analyzed the psychophysiological effects of aging within a pilot population. The study analyzed and quantified pilot performance, both successful and unsuccessful, and identified 14 factors as being related to success or failure in flying (Gerathewohl 1978).

R. G. Griffin and J. A. Hopson administered the Omnibus Personality Inventory (Heist and Yonge 1969) to flight students in an attempt to establish a relationship between success or failure in training and the test profile. The results were negative when examining for predictive use in the flight screening protocol (Griffin and Hopson 1978).

A research study completed in the late 1970s attempted to establish the effect of pretraining criterion on flight-simulator performance. US Air Force Academy cadets were tasked with specific parameters in a flight simulator while exposed to different levels of cognitive difficulty (Nataupsky et al. 1979). The results indicated that pretraining was significantly important when complex psychomotor tasks are required.

Research in the 1970s continued the trend toward computer psychomotor evaluation. The use of flight simulators in research evaluation and quantification was increasing at a great rate. The focus of the standard psychological tests was toward that of the student pilot, not the experienced aviator. Although many studies were developed, the ability to predict which pilot candidates would be successful remained slight.

1980 to Present

In a 1980 study, J. B. Joaquin used the Personality Research Form (Jackson 1974) as a method of predicting success during Canadian undergraduate pilot training (Joaquin 1980). Joaquin concluded that students with high interpersonal and leadership traits and a high degree of instrumental aggressiveness were successful in the flying training program. Student pilots with low scores in the above categories were more prone to failure.

A French study, completed in 1980, examined the developmental potential and limits to psychological screening of aviation personnel (Bremond 1982). J. Bremond discussed the problem of forming a standard protocol to determine the psychological fitness of pilot candidates. The research explored the relationships between pilot aptitude and success in various flight training programs. This five-year study showed no relationship between actual performance and that predicted by standard tests. Long-term monitoring of pilots to verify any testing protocol is recommended but would be expensive and time-consuming.

The Navy conducted a preliminary evaluation of two dichotic listening tasks as predictors of performance in naval aviation undergraduate pilot training. This study showed promising results (Griffin and Mosko 1982). Military pilots must be able to divide their attention among several tasks concurrently and many of these tasks are auditory. This research established the ability of student pilots to divide attention and this attention was quantified. The subjects were then tracked through pilot training and the success of the student pilot was compared to the ability to perform dichotic listening tasks. This study found a positive relationship between students displaying high ability in dichotic listening and success at flight training.

W. C. McDaniel and others examined the problems of when or if to wash out a student pilot from flight training. They compared the utility of a computer-aided training device for evaluating and scheduling students for further training to human evaluation and decisionmaking in regards to student progress (McDaniel et al. 1982). The study indicated that the computer assessment of student progress showed promise and should undergo further development and evaluation.

In an attempt to establish a quantified performance criteria for specific flying skills, researchers linked a computer-driven recording device to a flight simulator and

15

sampled various flight parameters throughout the test flight (Demaio et al. 1983). The research concentrated on reducing and simplifying the large amount of data resulting from this system to meaningful parameters, with a hope of establishing precise quantified flying performance. A similar study at the USAF Test Pilot School, Edwards AFB, California, sought to measure flight parameters (Melody et al. 1983).

The FAA used a contrasting approach to study the problem of quantifying performance in aviation. A simulator was linked to a computer that sampled flight parameters throughout the mission during which the pilot experienced several simulated emergencies and various levels-ofclearance difficulty (Stein & Rosenberg 1983). The pilots were asked after the flight to rank the levels of stress and performance work load perceived during the flight. They were able to code the level of difficulty with accuracy.

G. B. Thomas and R. W. Clipper sought to determine the level of consistency between performance on a perceptualmotor task and a pen-and-paper achievement motivational test among Navy flight students (Thomas and Clipper 1983). indicated that a relationship existed. A Results particular-choice RT paradigm repeatedly resulted in correlations of 0.43 to 0.69 (p < 0.05) between consistent task performance and measures of achievement motivation, and the test-retest reliability of the consistency measures was on the order of 0.70. This relationship was the only one established by the study. Further research was recommended to establish and refine this relationship with the intent of developing a pilot selection instrument with achievement as a component.

H. Wichman and J. Ball administered the Rotter Locus of Control Scale (Rotter 1966) to a group of FAA-certified flight instructors in 1983 in an attempt to establish differences between this group of subjects and the general population. Significant variations occurred in levels of internal perception (Wichman and Ball 1983). This study would not provide insight to preselection criteria as the subjects were all qualified pilots. The variations from the general population may result as an effect of the social process of aviation training. A similar study in Australia (Ashman and Tefler 1983) using Royal Australian Air Force pilots also detected differences in the pilot sample from the normal population with the Edwards Personal Preference Scale (Edwards 1959).

A study by the Air Force Reserve Officer Training Corps focused on background variables in a cadet's record that may affect a cadet's success at undergraduate pilot that may affect a cadet's success at undergraduate pilot training (Diehl 1986). The study examined 32 variables in reference to undergraduate pilot training success or failure. No relationships of significance were established that would enable effective use as a predictive device in reference to undergraduate pilot training. Four proved to be statistically significant. However, the impact was less than three percent. The pilot section of the AFOQT resulted in explaining 2.71 percent and was the best predictor, but it was not useful in reality.

Recent investigation of pilot selection has focused on the basic attributes test (BAT) system, an Air Force computer-based battery of tests designed to enable quantifiable selection criteria for undergraduate pilot training. This system assesses psychomotor skills and a variety of psychological and cognitive attributes. All tests are contained in a computer-program run. The system is complete with visual display and stick and rudder pedals (Carretta 1987). The various tests contained within the computer program have been validated with a degree of promise (Kantor and Bordelon 1985; Bordelon and Kantor 1986). The USAF Human Resources Laboratory, Brooks AFB, Texas, is attempting to establish variations in specific aircraft abilities, differentiating between high performance, fighter aircraft, and other aircraft assignments (Carretta 1987). This research may prove highly significant in developing and refining the pilot selection criteria.

The research conducted in the 1980s has focused on the student pilot as the subject of investigation with the emphasis on identifying traits within the subject population that would differentiate individuals on a preselection basis into pass or fail groups. Personality was augmented with physiological attributes as the primary selection criteria under investigation. The significance of computer testing-for example, the Air Force basic attributes testing--has been expanded greatly during the last few years.

Summation of Previous Research

Research since World War II has been characterized by an evolution of the primary focus of research from attempting to differentiate aviators from the normal population to attempting to predict which members of the general population would develop into successful aviators. The methodology also evolved from primarily employing a pen-and-paper test to develop psychological profiles into searching for psychological variations with a computerdriven test device. The research has established that individuals who are military pilots do deviate from the normal population in psychological parameters. This knowledge is of limited value, however, as the very process of military flight training and socialization may produce this variation in psychological profile. The effects of role playing among military aviators and pilots in general make it quite difficult to test for preexisting psychological characteristics that would assist in selecting military aviators.

The research on quantifying flight performance may not provide relevant information in regard to determining which individual will develop into a skilled aviator. computer-driven simulator tests evaluate how well Most the subject adheres to an established flight profile. An ability to fly by the numbers may not be the necessary trait pilots must display to meet real-world military that aviation requirements. Specifically in high-performance fighter aircraft, when situation awareness in a multidimensional arena becomes the desired goal, the ability for mental creativity and divided focus are primary. This skill may be considered an art form rather than a task-orientated parameter that can be evaluated by precise quantification of performance.

Most research examined the process of flight training from a viewpoint of pass or fail criteria. This variable may be the correct dependent variable. However, in light of the many factors that affect the success of a student military aviator, some effort should be expended on attempting to quantify performance during flight training. A focus on overall student performance may prove informative in relationship to student characteristics and background The subject of pilot selection for military variables. aircraft needs additional systematic research if a system of evaluation is to be established that will precisely identify individual volunteers for military flight training who have a high probability of developing into skilled professional aviators.

<u>Variations between the Current Study</u> <u>and Past Efforts</u>

This study varies from past research in several aspects. The dependent variables include a quantified performance evaluation that reflects the subject's overall potential for flying and the pass or fail criterion of previous studies. Regressing the independent variables with this level of performance during the program may improve the reliability of criteria used in selecting individuals to attend flight training.

Past studies have focused on tests specifically derived to evaluate psychological profiles or ones that have been developed to screen for flying potential. The relationship between traits in the subject's background have not been subjected to the same level of interest. The independent variables used in this research design focus on the subject's educational experiences. Scholastic Aptitude Test scores, university grade point average, flying experience, athletic experience, academic major, and the various test scores and ranking systems developed by the Air Force for the subjects of the treatment are examined in relationship to success during the LATR program.

The primary variation in this study and previous work, however, is the difference in the treatment. Past studies have examined individuals who were already qualified pilots or they have compared results of various undergraduate pilot training efforts. This study examines the flying skills of a subject population which has yet to undergo the stress and possible personality modification of undergraduate pilot training. The treatment of the light aircraft training program--civilian instructors, light aircraft, and short duration of training--should not provide the opportunity for possible modification of individual traits as may undergraduate pilot training. Thus, the relationship between selected variables and the performance of the subjects may be more indicative of actual innate flying skills than undergraduate pilot training with its potential overload of modifying influences.

This researcher considers problems basic to the selection criteria currently in use and should reinforce previous studies if the trends found in undergraduate pilot training are continued or amplified when employing the LATR program as a treatment. The results may then be compared to the previous results of UPT studies.

19

CHAPTER 3

METHODOLOGY

The procedures and specific parameters used in the study were determined by the necessity of staying within the guidelines specified in US Air Force training manuals, operational technical data, and regulations and by the contract with the civilian flight training school, Embry-Riddle Aeronautical University at Daytona Beach, Florida. Although the light aircraft training (LATR) syllabus served as a defined protocol, this researcher has stated the LATR syllabus as if it had been designed for this study in order to more nearly approximate a true research design.

In this study, the researcher has quantified and evaluated specific variables in the higher edu experiences of the selected subjects (Air Force education ROTC cadets) -- academic major, Scholastic Aptitude Test scores, grade point average, scores on the Air Force Officer Qualifying Test (AFOQT), gender, quality index score, AFROTC athletics, and previous detachment, varsity flying experience. The procedures and protocol were derived from the prior efforts of the Air Force and every effort is made The researcher has to provide complete documentation. paraphrased manuals or other documents for the purpose of clarity. The researcher has no intent to claim authorship of the LATR protocol, only to expand or amplify the procedures to facilitate understanding of the research design. The researcher has given full credit and responsibility for the LATR program to the Air Force.

Subjects

The subjects were all AFROTC cadets who were attempting to qualify for undergraduate pilot training as the first step in trying to become Air Force pilots. They were university students who had achieved junior or senior class standing for the following fall term and were attending school at one of the 152 colleges and universities that have AFROTC detachments. They attended light aircraft training for ROTC at Embry-Riddle Aeronautical University from 20 May to 19 August 1987 in three classes. The first class arrived on site 20 May 1987 and completed training 22 June 1987. The second class began 21 June 1987 and finished on 22 July 1987. The last class started on 20 July 1987 and ended on 19 August 1987. The competition for the LATR positions as the first step in qualifying for undergraduate pilot training (UPT) among AFROTC cadets is intense, with AFROTC selecting the individuals it considers most highly qualified. The actual standards or scores on the various selection instruments change yearly depending on the need for new pilots. AFROTC Regulation 45-13, Weighted Professional Officer Course Selection System, outlines the selection process. Based on this researcher's observations the subjects seemed well motivated and eager to complete the training program. That the subjects performed to the maximum of their ability seems highly probable.

The subjects had to meet the minimum medical standards specified in Air Force Regulation 160-43, <u>Medical Examina-</u> tion and <u>Medical Standards</u>, chapters 7 and 8. Any physical or mental abnormality or defect was grounds for rejection. Subjects had to have 20/20 vision not corrected. Specific aspects of their medical history--for example, motion sickness after the age of 12--might be cause for rejection.

While participating in the LATR program the students were provided with living accommodations that met the Air Force standard as specified in the contract between the Air Force and Embry-Riddle Aeronautical University (ERAU USAF-ATC 1987). Each cadet received at least 90 square feet of living space in a permanent dormitory. Each room was kept between 68 and 78 degrees. Power, lights, water, and other necessary accommodations such as bedding and closet space were available as specified in the contract. The dormitories at the university were used since they were vacant during the summer term.

The contractor also provided meals for the cadets in the university dining hall. The cadet's diet included three meals a day of no less than 3,200 calories, the composition of which was delineated in the contract. This controlled diet provided adequate nutrition and reduced the likelihood that variations in nutritional intake would influence the results of the flying program.

The length of the cadet's duty day was controlled. The work day was restricted to a maximum of 12 hours. Each cadet received a minimum of 12 hours of rest time prior to each duty flying period. Provisions for eight hours of uninterrupted sleep were programmed into the rest period. This protocol was identical to the one used at undergraduate pilot training. Cadets were organized into divisions defined as flights. Each of the classes was formed into six flights. Throughout the training and evaluation, the cadets attended class, ate meals, performed physical exercise, and reported to the flight line in these subgroups.

Random selection of subjects was not an issue in this research design. From a viewpoint of validity, the population--all the AFROTC cadets attending light aircraft training at Embry-Riddle Aeronautical University--was sampled. Selection of a randomized sample was not possible due to the contract between the Air Force and Embry-Riddle. Moreover, random selection of subjects from the population at large was not practical because of the extreme cost and because only a select few AFROTC cadets (those meeting minimum qualifications) were even eligible for consideration as potential subjects.

Training Syllabus

The Air Force developed LATR as a way to screen undergraduate AFROTC cadets for pilot training. The purpose of the light aircraft training syllabus was to "identify those participants who have the basic aptitude to become Air Force pilots and minimize attrition in undergraduate pilot training (UPT)" and motivate them to pursue a career as a rated officer in the Air Force. (ATC syllabus S-V8A-C, 1)

written flight training syllabus has The been continually changing since 1956 when Public Law 84-879 authorized the flight instruction program, AFROTC's original training flight screening program. The flight instruction program (FIP), which had similar objectives to the current program, remained in effect until 1984 when it was replaced by the flight screening program (FSP). This change was a response to the increase in UPT attrition among AFROTC The Air Force felt that the students could graduates. profit from an earlier exposure to military flying operations; FIP had been taught primarily by civilians with civilian procedures and techniques. The flight screening program was replaced in June 1987 by the light aircraft training program. The current research focused on this latest derivation.

Although actual flying requirements have not changed significantly, the philosophy has changed. During FIP the mind-set was to let every student complete the training; the prevailing sentiment of FSP was to weed out as many as possible as early as possible. This change in philosophy notwithstanding, attrition continued to climb. Perhaps neither FIP nor FSP was entirely accurate in its ability to identify flying potential. The 1987 LATR program was an attempt to improve the reliability of the screening process. The key difference between LATR and its predecessors is that the LATR program stresses training before attempting to screen out individuals, whereas the FIP and FSP attempted to spot innate flying problems very early in the process with or without prior training.

The 1987 LATR syllabus (ATC S-V8A-C) defined in specific terms the lesson plans and procedures for the training program. The three main parts of the training included ground academics, flying training, and officership and other contributing factors. The Air Force adhered to this protocol with steadfast devotion and the standardization was intense in terms of both intent and reality. (For specifics, consult the original.)

Ground Academics

The ground instruction consisted of primary information necessary for the cadet to understand the basics of flying theory and practice.

Military Policies and Procedures (1 hour). This lecture described course objectives, flight-line policies, and conduct while on the flight line; procedures for meals; and travel to and from the operations area. The lecture outlined military regulations regarding behavior and responsibilities both on the flight line and during the program.

Policies, Procedures, and Familiarization (3 hours). This block of instruction introduced students to training site policies and directives, flight directives, procedures for flight scheduling and aircraft dispatch, specific required flight items, required readings, and various policies required by the flight instructors. In addition the students received briefings on procedures for flying in the local area and on the basics of traffic control. Also at this time the students were introduced to the basic aircraft systems, checklist use, and the various procedures involved with operations of the aircraft while on the ground.

<u>Airmanship</u> (8 hours). During this block of instruction, the cadet examined the basic theory of flight and the applied application of the theory. The lectures covered the features of the Cessna 172 aircraft and its associated engine and systems and addressed the basics of radio communication and emergency procedures. <u>Flying Safety</u> (1 hour). This lecture stressed the importance of flying safety; introduced the student to the Air Force's general philosophy on safety as well as to specific local, Air Training Command, and Air Force safety programs; and identified local hazards and problems on the flight line.

<u>Testing</u> (3 hours). The ground academic program consisted of three major tests, one on the academics block of instruction and two on the operational procedures. The students had to score 85 percent on each test to pass. A student not reaching the required score on the first attempt could retake a test. If the student had further academic difficulty, he or she faced elimination from the program. In addition, three bold-face emergency procedures tests were administered. The student had to complete those tests with a perfect score or be subjected to retest and possible elimination from the program.

Other Ground Activities (2.5 hours a day). Other ground training activity consisted of a daily physical education training period of 1.5 hours and various military drills and procedures.

Flying Training

Flying training comprised the major emphasis of the LATR program and was the primary screening factor. The training consisted of 11 aircraft flights for a total airborne time of 14 hours. During his field research on this project, the researcher first gained currency in the Cessna 172 and then flew as an observer during student flying operations to gain a qualitative insight to the actual mission parameters. The researcher at times expands on the descriptions of the individual sorties (lessons) in the Air Force syllabus to add qualitative insight to the written operational plan. Familiarity with the mind-set of the individual student pilot and instructor was important to understanding the level of instruction and proficiency developed.

The flying training lessons were broken down into two-hour time periods. The cadets reported to the flight line for a mass briefing of 15 to 20 minutes by the civilian instructor pilot flight commanders. The briefing consisted of a report on probable weather and conditions, a synopsis of the day's lesson, and an overview of the various emergency procedures and aircraft operations that could be encountered. The students then joined their assigned instructor pilots for a briefing on the individual mission to include the specific area where they were to practice maneuvers, the airfield at which they were to practice patterns and landings, and any techniques required for the ride. This preflight briefing normally lasted 10 to 15 minutes.

The instructor and cadet student pilot then walked to the assigned aircraft and conducted preflight operations. The mission was then flown for the prescribed amount of time, followed by a postflight inspection and tie-down of the aircraft, and then a short one-on-one debriefing of the student pilot by the instructor. The debriefing was often short since the instructor pilot may have had three students. A potential loss of standardization could have occurred at this point due to differences in the instructor work load, thereby adding a variable in student training protocol.

Flight 1, Instructor and Student Pilot (1 hour). During this ride, referred to in Air Force slang as a "dollar ride," the instructor demonstrated preflight, ground operations, departure, level flight, and the other basics of flight control. At this time the student was not expected to demonstrate any proficiency and the instructors enjoyed the "stick" time. The instructors then entered the landing pattern and performed a full-stop landing. Potential problems for the student included air sickness and perhaps manifestations of anxiety (MOA), to be defined below.

Flight 2, Instructor and Student (1.2 hours). This ride was similar to the first. The student had an opportunity to attempt the basic maneuvers and a traffic entry and approach and landing. The tone of the instruction was positive. The students were usually concerned with where to focus their attention, outside the aircraft or in the cockpit on the gauges and switches.

Flight 3, Instructor and Student (1.4 hours). During this ride, students practiced flight handling characteristics of the aircraft and stalls, both characteristic and secondary. The instructor explained the operation of the VHF omnidirectional range (VOR) receiver. The landing pattern was a priority.

Flight 4, Instructor and Student (1 hour). The student was introduced to slips and full-flap landings and reviewed the air work. He or she was expected to know the procedures and understand the basic parameters of the mission. Flight 5, Instructor and Student (1.4 hours). The student reviewed the maneuvers introduced in the previous flights. At this stage, the student had been exposed to all of the maneuvers that were part of the training and was expected to perform the basic skills and procedures. (The maneuvering item file [MIF], below, contains a complete list of the required items and proficiency levels required.)

Flight 6, Instructor and Student (1.4 hours). The student reviewed all the maneuvers, with the emphasis on traffic patterns and landings.

Flight 7, Instructor and Student (1.4 hours). The student was expected to direct the mission and in essence perform most of the required items correctly and safely. If the student had made normal progress at this stage, he or she could land the aircraft safely and recognize unsafe situations as they developed.

Flight 8, Instructor and Student (1.4 hours). This flight was the first on which the student was required to show proficiency on all the required flight items. It was the first ride on which the student could have received an unable grade for lack of proficiency. This mission was also a watershed in that the next ride was a short dual followed by a student solo, with all its potential for a tragic end.

Flight 9-1, Instructor and Student (0.8 hours). The instructor and student performed at least three safe landings and patterns. When the instructor was satisfied with the ability of the student to fly the aircraft safely, part one of this ride was terminated and the instructor departed the aircraft after a full-stop landing.

Flight 9-2, Student Solo (0.4 hours). The student performed three takeoffs and landings.

Flight 10, Instructor and Student (1.2 hours). This ride was a complete review of the required check ride items. The student was required to perform all mission parameters to expectations in a safe, consistent manner.

Flight 11, Flight Examiner and Student (1 hour). This flight was the student's final ride and evaluation for the screening program. (The specifics of the flight check requirements are delineated in the section on quantification of performance.)

If the student was unable to satisfy requirements of the syllabus, he or she might make additional rides and get further instruction. However, the rate at which the student learned the flying techniques and data was considered an important aspect of fitness for undergraduate pilot training, and, as such, was highly significant in regard to success or failure.

Officership

As potential officers, the cadets were expected to display the attributes of good officership. These traits included adherence to the appropriate Air Force rules, regulations, and official protocol requirements. Deviations from these prescribed behaviors could have been grounds for rejection from the LATR program and could have resulted in the cadet's being rejected from consideration for undergraduate pilot training.

Possible Pitfalls

If a student pilot, after receiving initial training in the LATR program, developed a fear of flying and wished to withdraw from the program, he or she was put in the manifestations of anxiety category. The training syllabus defined MOA as follows:

Although some slight anxiety or nervousness is common among students learning to fly, real fear of flying can interfere with a student's judgment, decision making ability, and physical ability to control the aircraft. Manifestations of apprehension can include such things as passive or active airsickness, insomnia, loss of appetite, anxiety and tension related to the flying environment. When a student exhibits or admits to any of the above symptoms to a degree that seems to impair flight-line performance, document the situation in the student's grade folder and refer the student to the Flight Surgeon for evaluation. Reference ATCR 161-3 and ATCR 51-2 for action to be taken by operational personnel when a student is determined to be suffering from MOA. (ATC S-V8A-C 1987, 9)

If the student suffered from MOA, the Air Force removed the student from the program. This action did not have any effect on the AFROTC cadet's possible Air Force career other than nonselection to UPT.

Another possible pitfall for the subject along the way toward UPT was airsickness.

Students who experience airsickness require individual attention and a reasonable opportunity to adapt to the flying environment. Airsickness is defined as active (vomiting) or passive (does not include vomiting, but does result in significant deviations in the mission profile due to the student's discomfort or nausea). Most airsickness is of brief duration and is related to multiaxial accelerations, pulling G's, unfamiliar attitudes, and anxiety. Following the general UPT airsickness training philosophy outlined in ATCR 51-2, however if a student experiences airsickness following the C-6 mission the DCFO/CFO must approve the solo mission. Place a student on Special Monitoring Status if four episodes of airsickness are experienced. (ATC S-V8A-C 1987, 9)

If the student could perform the mission while airsick, the instructor did not make a notation of the problem. However, as the training became more intense, the student would be unable to fly the aircraft at the required level of proficiency while airsick. Any resulting lack of flying skill led to termination from the training program.

A student may have elected to voluntarily withdraw from the LATR program due to personal factors (self-initiated elimination or SIE); this step removed the student from any Air Force flying training in the future. If a student became injured or ill and could not complete the LATR class, he or she could be reinstated at a later date if a position was available and the student still met the requirements of entry. The student "washed back" into another training class at a later date or perhaps into the next year's selection pool. Cadets removed from the LATR program due to airsickness, MOA, SIE, illness, or injury were not included in the quantitative performance data but were included as to the pass or fail standard.

Mission Grading Parameters

The 1987 LATR program used a specific protocol that had been developed to enable a precise criteria-referenced evaluation of the student pilot's progress. Much effort was expended in the form of instructor pilot check rides and standardization meetings to ensure, to the most practical point attainable, that the grades received by the students were accurate and in relationship to the developed standards. In addition, the Air Force used the maneuver item file, which outlined levels of proficiency for specific lessons.

Grading Scale

The syllabus defined the absolute grading scale as follows:

Procedures for Grading Instructional Flights:

a. Absolute Maneuvering Grading. The following rating scale is used to evaluate the student's characteristic performance on each maneuver attempted during each sortie or observed during the supervised solo mission. This is an absolute rating scale and the student's proficiency must be judged against the training standard. Do not consider the type or amount of training the student has received.

(1) Demonstrated. Enter "D" on the record of training when the maneuver is demonstrated only, but not practiced.

(2) Unable (U). The student is unsafe or lacks sufficient knowledge, skill, or ability to perform the operation, maneuver, or task.

(3) Fair (F). The student performs the operation, maneuver, or task safely but has limited proficiency.

(4) Good (G). The student performs the operation, maneuver, or task satisfactorily. Deviations occur but are corrected in a timely manner.

(5) Excellent (E). The student performs the operation, maneuver, or task correctly, efficiently, and skillfully. Minor deviations occur but do nc⁺ detract from overall performance.

b. Relative Overall Mission Grading. Rate the student on each maneuver accomplished using the absolute grading scale described above and assess a relative overall grade as soon as possible after the flight. Record these grades on the appropriate Record of Training (ATC Forms 878 and 860). When students are introduced to a maneuver, they may receive several Unable (U) grades. This does not mean the student is unsatisfactory or is not progressing normally since the average student may be unable to accomplish many maneuvers initially. Students should show progress on subsequent missions and a student's continuous failure to show progress should be reflected in the overall grade. In any case, if a student fails to demonstrate the required level of proficiency given in the MIF for the applicable instruction unit, the overall grade must be unsatisfactory. (ATC S-V8A-C 1987, 5)

Within the previously quoted parameters, the researcher observed differences in the way individual instructor pilots interpreted the grading standards, sometimes with intent. For example, in an attempt to motivate a student who seemed to lack confidence, the instructor pilot may have inflated the overall grade. The reverse also happened, an instructor may have reduced the grades of a student to drive home a message that the instructor wanted reinforced. The Air Force team of military instructors made every effort during 1987 LATR to prevent this practice from occurring. It would be naive to assume that it is not a factor in the grading, but the norm was adherence to the above printed standards with a high relative equality of grading criteria.

Maneuver Item File

The maneuver item file (table 1) specified the required aspects of each mission and the proficiency level expected from the student pilot in each of the areas. The Air Force followed this flight training outline during the 1987 LATR program with precise adherence to the profiles of each scheduled mission (lesson) and the expected level of proficiency.

The training syllabus provided overall procedural structure to the IATR program. The procedures outlined in the syllabus and the contract with Embry-Riddle enabled precise control of the treatment to the cadet subjects. By following the procedures outlined in these two documents, a researcher should encounter no problems in replicating the study.

TABLE 1

Maneuver Item File (MIF)

	Lessons*										
	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11
Ground											
operations	U+	U+	U+	U+	F+	F+	F+	F+	F+	G+	G+
Takeoff	U+	U+	U+	U+	U+	F+	F+	F+	F+	F+	F+
Traffic exit	D+	U	U	U	U	F+	F	F	F	F	F+
Straight level	U+	U+	U+	U+	F+	F+	F+	F+	F+	G+	G+
Turns	U+	U+	U+	U+	F+	F+	F+	F+	F+	G+	G+
Climbs	Ŭ+	Ŭ+	U+	Ŭ+	F+	F+	F+	F+	F+	G+	G+
Level off	U+	U+	U+	U+	F+	F+	F+	F+	F+	G+	G+
Coordination	U+	U	U	U	U	F+	F	F	F	F	F
Glides	U+	U	U	U	F+	F	F	F	F	G+	G+
Slow flight			U+	U	U	F+	F	F	F	F	F+
En route descent		U+	U	U	F+	F	F	F	F	F	F
Steep turns			U+	U	U	U	F+	F	F	F	F+
Power on stalls			U+	U	U	U	F+	F	F	F	F+
Traffic stalls				Ŭ+	U	U	U	F+	F	F	F+
Traffic entry	D+	U	U	U	U	U	U	F+	F	F	F+
Pattern	U+	U	U	U	U	U	U	F+	F+	F	F+
Normal landing	U+	U	U	U	U	U	U	F+	F+	F	F+
No flap landing		U+	U	U	U	U	U	F+	F+	F	F+
Go around		U+	U	U	U	U	U	F+	F+	F	F
Forced landing				U+	U	U	U	F+	F	F	F
Trim	U+	U+	U+	U+	F+	F+	F+	F +	F+	G+	G+
Throttle											
techniques	U+	U+	U+	U+	F+	F+	F+	F+	F+	G+	G+
In flight checks	U+	Ū+	U+	U+	U+	F+	F+	F+	F+	F+	F+
Radio procedures	U+	U+	U+	U+	U+	Ŭ+	U+	F+	F+	F+	F+
Clearing	U+	U+	U+	U+	U+	U+	U+	F+	F+	F+	F+
In flight plan	U+	U+	U+	U+	U+	U+	U+	F+	F+	F+	F+
Emergency											
procedures	U+	U+	U+	U+	U+	U+	U+	F+	F+	F+	F+
VOR orientation			U+	U	U	U	U				
Secondary stalls			U+	U	U	U	U				
Slips				U+	U	U	U				
Full flap pats				U+	U	U	U				
Full flap											
landings				U+	U	U	U	U	U	U	U
Airmanship	U+	U+	U+	U+	U+	U+	U+	F+	F+	F+	F+
Blindfold check										F+	

*A "+" symbol following the letter grade means the maneuver must be accomplished on that sortie. Absence of the "+" means the maneuver may be performed, but is not required to complete the mission. Maneuvers, once optioned, should be performed frequently enough to develop/maintain proficiency. (ATC S-V8A-C 1987, 12)

Dependent Variables

Two dependent variables (table 2) indicated the effect of the LATR program on the subjects: the standard USAF pass or fail grade and a quantified indicator of subject performance developed for this study.

Pass or Fail

The 1997 Air Force LATR flight screening program established a pass or fail category for each subject. An attempt was not made to rank or assign an overall score. A "top ten percent" was selected by a qualitative voting

TABLE 2

Independent and Dependent Variables

Independent variables

SPSS-X Codes

<pre>SAT scores University grade point average University academic major 1. Social Science 2. Math and Physics 3. Engineering 4. Aviation Science 5. Business 6. Computer Science 7. Other University varsity sports competition Prior flying experience ROTC/University/College Det enrollment Air Force Officer Qualifying Testing 1. Academic Achievement 2. Pilot 3. Navigator 4. Verbal 5. Quantitative AFROTC quality index score Gender</pre>	SATE GPA M 1 2 3 4 5 6 7 A 5 6 7 A FLY DET AFOQT AA PL NV NB QT GIS S
--	---

Dependent variables

Results (pass-fail)	R
Performance	PERF

system among the civilian flight commanders and the Air Force instructor staff. The syllabus, S-V8A-C, defined the requirements for graduation and the specifics that may have led to limination. The independent variables were examined in rotionship to the pass or fail criterion established by the official Air Force results generated by the LATR program. The pass or fail grade was coded as R.

Quantified Performance

To further explore the effects of higher education curricular variables on the performance of the AFROTC cadets, the following protocol was developed to code and quantify the individual performance of the cadets. At first reflection it seemed appropriate to assign a value to each entry in the student's grade folder and simply derive a numerical score. However, factors could influence the resulting data. For example, individual instructors assigned grades to the students in different situations, with great variety. Contrasting ideas on motivational strategies, differences in instructor egos, variations in student-instructor relationships, and numerous other factors would influence grades regardless of the effort expended to control the grading process.

Another consideration was how to weight each grade entry since certain aspects of the flight training are far more significant than others. For example, the flight examination was quite an important factor, one which in later flight training may spell success or failure at UPT. A student pilot must perform during evaluations when undergoing military flight training. A student who did not test well likely would experience severe problems in later flight training programs. The coding system used in this research should reflect promise in reference to performance. As a result the weight of the various factors of flight screening must be considered.

The total student score for the LATR program consisted of three parts: a qualitative, overall score on missions C08, C09-1, C10, and C11; the quantitative score of all 28 factors performed on the final examination check ride mission; and the total points scored on the three written tests. Each portion accounted for approximately one-third of the total, considering normal student performance. To minimize the variation due to subjectivity and to place performance in its proper context, the research used the following coding system. The total of all the measures was coded PERF. <u>Part 1, Qualitative Mission Score</u>. Student flights C08, C09-1, C10, and C11 were selected as watershed points during the program. The grades for each mission were coded in the following manner.

Unable(U) = 00 pointsFair(F) = 30 pointsGood(G) = 60 pointsExcellent(E) = 90 points

The total points for the four missions were added to the performance total.

Mission number CO8 was the first mission that, in accordance with the maneuver item file, required student proficiency on all required items. It preceded the student solo and, hence, required a sound evaluation by the instructor pilot. The instructor was most likely to present а true evaluation of the student's ability at CO8 because the student would attempt to solo on the next flight. At this point, previous experience and differences in learning curves began to level out and a relatively uniform picture of actual flying ability resulted. Mission number C09-1 was the first half of the student's first solo flight and the instructor needed to make as pure a judgment call as possible for the obvious safety considerations.

Mission number C10 was the last ride that the student and the assigned instructor flew together under normal conditions. It was a practice check ride and all items in the maneuver item file were reviewed. The overall grade received on this ride reflected the instructor's best evaluation of the cadet. The next mission was conducted by a civilian pilot of flight commander rank or one of the military staff and would serve as the student's final evaluation. This check ride not only graded the student but also provided data on the effectiveness of the instruction. The instructor pilot attempted to evaluate the student on ride C10 very realistically, as another opinion was forthcoming on ride C11 from the instructor's superior.

The final examination, ride Cl1, was the most accurate attempt at quantitative evaluation. This mission was graded by a check pilot other than the student's civilian instructor pilot. The parameters of the check flight were quite specific. The check ride was in reality the best indicator of performance as it demonstrates, under pressure, the actual ability of the student. The military considers this ability to respond under pressure a valid part of the selection process.

Part 2, Quantitative Scoring, Examination Flight. The examination check mission consisted of 28 graded factors that have specified and defined parameters existing in the syllabus. The Air Force made an intense effort to ensure that the grades received by the cadets on the examination check mission were as specific in nature as possible and reflected the ability of the student pilot. The Air Force defined the parameters for the grading criteria and conducted meetings with the instructor pilots, and an Air Force evaluator flew with each check pilot--all in an effort to arrive at a standard result on the evaluation flight. Part 2 of the total performance score was weighted as indicated below.

> U = 00 F = 06 G = 12E = 18

The scores for each of the 28 graded factors were added and the total was the score for part 2. If a factor was not graded on the check ride for an operational mission consideration, then the score from the last time the student performed that requirement was logged for inclusion in the total.

Part 3, Academic Scores. Part three of the total performance score was the summation of the three academic tests. Each test was worth 100 points and the total of all three comprises the score for part three. If a student failed a test, scoring below 85 percent, this first score was used to calculate the part three total, even if the student retested and achieved a higher, passing score.

Total Score. The totals for each of the three parts of the scoring were added and the student received one score that was indicative of total performance (PERF). The independent variables were explored in light of this criteriondependent variable, along with the dependent variable of pass or fail for the total program.

Quantified Performance Factor Equation

PERF	= Qualitative	+	Quantitative	+	Academics
	Flying		Flying		

Where,

Qualitative flying = sum of scores for missions 8, 9-1, 10, and 11 (score defined as E = 90; G = 60; F = 30; and U = 00),

Quantitative flying = sum of scores for 28 factors on mission 11 (score defined as E = 18; G = 12; F = 6; and U = 0), and

Academics = sum of actual scores on the three written tests.

The Independent Variables

The independent variables listed (table 2) were indicated in the literature to have been relevant in the pilot screening process and were in general part of the current selection process. The primary focus of this study was to determine if use of these variables was indicated as justified when screening for piloting ability. One of the overriding considerations for looking at these variables was that those responsible for the AFROTC selection procedure were currently reviewing most of these variables. In addition, most of these data would be readily available if future investigation indicated that it would add to the prediction of success or failure at UPT. A brief description of each independent variable and the rationale for its inclusion follows.

Scholastic Aptitude Test Scores

The Scholastic Aptitude Test (SAT) score--coded SATE-of each subject was included in the study in an attempt to determine if these scores related to flying performance. The SAT is a part of the selection criteria for AFROTC; in the past a high score has enhanced the student's chance of selection for UPT. The Air force seems to assume that a good SAT score increases a student pilot's chances of graduating from UPT, thus indicating a relationship to sound flying skills.

University Grade Point Average

The university grade point average (GPA) has been one of the primary criteria for selecting students for the advanced AFROTC program. AFROTC makes all of its UPT selections from among those students in the advanced AFROTC program. Hence, the UPT selection process places a value on a high GPA. As with SAT scores, the Air Force seems to see a relationship between high GPAs and success in UPT.

University Academic Major

The question as to what type of academic major (M) enables completion of military flying programs has been debated greatly. Military thinking on the subject seems to have favored mathematics and engineering. These majors have enhanced selection to UPT. AFROTC has given most of its scholarships to students with these majors. Research on the subject as to whether specific academic majors may relate to an increase in flying ability has been inconclusive.

University Varsity Sports Competition

This variable (A) is not considered in current UPT selection procedures. This researcher, through observation of the military flying community, has determined that a large percentage of successful military aviators had been college athletes. Any subject who played at least one year of varsity sports at the college level was considered a varsity athlete.

Prior Flying Experience

Individuals who have qualified for a private pilot's license are not required to attend LATR. Other students may have some flying hours but have not yet qualified for their certification. They were required to attend LATR. It seemed logical that in a program such as LATR that any flying experience would enhance the ability of the student to complete the program. Previous research reflects little, if any, relationship between prior flying experience and success at UPT. If the variable of previous flying (FLY) has an effect on the outcome of the LATR experience, it may be reducing the effectiveness of the screening program.

AFROTC Detachment

The individual detachment or university (DET) at which the student was enrolled could have an influence on the ability to perform during the LATR program. It was not possible to evaluate this factor because of insufficient numbers of subjects. If there had been sufficient subjects from each detachment, these data would have been analyzed.

Air Force Officer Qualifying Test

The AFOQT is a primary part of the current UPT selection process. Previous research supports, in some degree, the use of this testing procedure.

AFROTC Quality Index Score

AFROTC has developed the quality index score (GIS) to grade and rank individual cadets on their potential for success at UPT. It is considered the primary selection instrument.

Gender

Variations in male or female (S) performance in the LATR program would provide relevant information for determining if any differences exist between the sexes as to flying ability.

Statistical Analysis

The statistical analysis used in this study consisted of six steps. The computer program SPSS-X was the method of calculation for the study. The following outline delineates the protocol.

1. Subject demographics. Standard tables were completed for each of the three LATR class groups. A composite group was then compiled by including the results and data from all three classes in total. Histograms were developed for PERF, SATE, GPA, GIS, AA, PL, NV, VB, and QT. These data were analyzed for normal distribution. All variables with means were subjected to analysis of variance searching for significance at the .05 level. Frequency variables R, A, and M were evaluated with the chi-square test. To determine if any of the variables are related, a Pearson correlation coefficient was employed. If the above procedure determined that the four groups were uniform, then the remaining procedures examined only the composite data. If a variation within the groups was apparent, the individual groups were examined. When appropriate, the remaining analysis was directed toward the composite group with variations if necessary. X-Y plots of the variables were developed to further explore the relationships.

2. Pass-fail. The subjects were divided into two groups: those who passed the LATR program and those who failed. The standard table format displays subject demographics. T-tests searching for significance at the .05 level examined the variation between the two groups in FLY, SATE, GPA, AA, PL, NV, VB, QT, and GIS. Chi-square was employed to test variation in S and A.

3. Subject categories. The subjects were placed in groups dependent upon the following variables: Gender (male or female); prior flying experience (fly or no fly); and varsity athletics (yes or no). The standard table for demographics was completed on each of the six resulting subgroups. Chi-square was used to determine if significant variation exists within the three main groups on R. T-tests were performed to examine variation on PERF in each of the three categories.

4. Academic majors. Subjects were divided into seven academic groups in relationship to the previous stated categories. The standard tables on subject demographics were completed for each group. A one-way multiple analysis of variance was completed for each of the following variables: PERF, FLY, SATE, GPA, GIS, AA, PL, NV, VB, and QT at the .05 level of significance. A crosstabulation (CROSSTABS) of the seven academic majors and R was completed and a test for significance employing chi-square was undertaken.

5. Discriminant analysis. To determine the effect of the independent variables on R, A, FLY, SATE, GPA, M, GIS, AA, PL, NV, VB, and QT, a discriminate analysis (DISCRIM-INANT) was employed. A case sequence number (SEQNUM) was developed for each subject and histograms for the canonical discriminant functions produced.

6. Multiple linear regression. To determine the effect of the variables S, A, FLY, GIS, SATE, GPA, M, AA, PL, NV, VB, and QT on the dependent variable PERF, multiple linear regression analysis (REGRESSION) was used searching for significance at the .05 level. A regression line plot was developed. A significant relationship between the dependent variables R and PERF to the independent variables S, A, FLY, SATE, GPA, M, GIS, AA, PL, NV, VB, and QT will be cause to reject the null hypothesis. If a significant relationship in the above variables is not indicated by the analysis, the null hypothesis will stand.

CHAPTER 4

RESULTS

In this study, the researcher adhered to the statistical analysis plan and methodology described in chapter 3. His analysis produced the following results. Seven of the independent variables were significant at the .05 level of confidence. Previous flying time, varsity athletic experience, and the pilot, academic achievement, and navigator portions of the Air Force Officer Qualifying Test (AFOQT) all proved significant. Academic grade point average and the verbal section of the AFOQT were significant in the negative context. High scores on these two variables proved detrimental to the success of the LATR program. The results of the data collection are presented in appendix A.

Analysis of Subject Demographics

The researcher examined the three classes of Air Force Reserve Officer Training Corps (AFROTC) cadets attending the 1988 LATR program to determine if the classes were of similar composition. Summaries of the characteristics of the three classes are presented in appendix B, tables 1, 2, and 3. (Table 4 deals with all subjects.) The results of this examination are presented in the following paragraphs.

Histograms of the variables performance (PERF), Scholastic Aptitude Test (SATE), grade point average (GPA), quality index score (GIS), and academic achievement (AA), pilot (PL), navigator (NV), verbal (VB), and quantitative (QT) portions of the AFOQT showed a normal distribution. A composite group of all three classes was developed and again a normal distribution was found for the above variables. Histograms of the variables are included in appendix C.

The variables PERF, SATE, GPA, GIS, AA, PL, NV, VB, and QT for all three LATR classes were examined by an analysis of variance searching for significance at the .05 level. No significant difference in the means among the three separate classes was evident. Frequency variables--dependent variable R (results, pass-fail) and independent variables A (athletics) and major (M)--were evaluated with a chi-square test. No significant differences were displayed between the three student classes.

To determine if a relationship existed among the variables, they were examined by a Pearson correlation coefficient test. The results are contained in appendix D. In addition, an X-Y plot of the interval variables projected with the PERF variable is provided (appendix E). After examining the distribution of the variable detachment (DET), the researcher determined that there were not adequate numbers in the various categories with which to develop meaningful data; hence, DET was dropped from further consideration during this research study.

Dichotomous Variables

As a result of the above analysis, the researcher concluded that the three LATR classes were quite similar in demographics and the remaining data analysis could proceed with a composite sample of all three classes of the 1987 LATR program.

Pass or Fail during the LATR Program

The subjects were divided into two groups for this analysis: those who passed the LATR program and those who failed and were disqualified from future flying training. For a summation of the demographics of these two groups, consult appendix B, tables 5 and 6. A T-test was performed to evaluate for significant differences at the .05 level for the independent variables FLY, SATE, GPA, AA, PL, NV, VB, and GIS (appendix F). Of this group, only prior flying QT, experience (FLY) proved to be significant. The other indevariables did not vary significantly between the pendent pass and fail groups. A categorical independent variable, varsity athletics (A), was identified for further evaluation. Of the 230 subjects who passed the LATR program, 33 were identified as college atheletes, while none of the 35 in the failure group had competed in varsity athletics. There were no significant differences in pass or fail (R) in relationship to gender (S). Overall, the pass and fail groups differed as to prior flying experience. The pass group contained 113 cadets with prior flying experience. The mean flying time for this group was 16.31 flying hours. The mean time for the eight cadets with flying experience in the fail group was 3.875 flying hours. The variation in the means of the two groups for the variable FLY was statistically significant at the .004 level.

Effect of Prior Flying Experience

To explore further the independent variable FLY, the researcher divided the population into two groups: a group composed of cadets with more than four hours flying time prior to entering LATR and a group that had four or less hours experience before entering the program. Summaries of the two groups are listed in appendix B, tables 7 and 8. A T-test was performed on the variables PERF, SATE, GPA, GIS, AA, PL, NV, VB, and QT within these two flying groups in an attempt to determine if factors other than prior flying experience may have influenced the success rate of the cadets (appendix F).

The single other variable of significance was PERF during the LATR program. The group with prior flying experience compiled the mean of 778.2, while the nonexperienced group scored a mean of 709.8. This difference was significant. The other variables did not indicate a significant difference between the two groups.

University Varsity Sports Competition

Two groups of subjects were formed for the purpose of analysis. One group of 33 subjects, which represented the cadets who were classified as varsity athletes and a group of 232 who did not have varsity athletic experience (appendix B, tables 9 and 10). Of the 33 varsity athletes, none failed the LATR program. In the nonathlete category, 35 failed. A chi-square analysis indicated that the difference in pass or fail was statistically significant (appendix G). A T-test was performed to compare the means of the variables SATE, GPA, GIS, FLY, AA, PL, NV, VB, and QT within the varsity athletes. There were no significant differences in the mean values (appendix F).

Gender as a Variable

The LATR cadets were divided into two groups dependent upon gender (S). The population included 13 females and 252 males. The data for the two groups is listed in appendix B, tables 11 and 12. A chi-square test for significant differences in the LATR results variable R with respect to gender was not significant. T-tests were developed searching for significant variation in the means of SATE, GPA, GIS, PERF, FLY, AA, PL, NV, VB, and QT. The females displayed higher scores at the .05 level in the following areas: SATE, AA, PL, NV, QT, and GIS. There was no significant difference in PERF (appendix F).

Effect of Academic Majors

The cadets were categorized into seven different academic majors as delineated in chapter 3. For the specific breakdown and values within each subject major, consult appendix B, tables 13, 14, 15, 16, 17, and 18. The effect of academic major (M) on the results (R) of the LATR program was evaluated by a cross tabulation of M by R and by a chisquare (appendix G). There were no significant differences in the pass or fail criteria for the various academic majors. To determine if a difference in the dependent variof cadet performance during the LATR program able and academic major existed, a one-way analysis of variance was performed between PERF and M-1, M-2, M-3, M-4, M-5, M-6, and There was no significant difference between the M-7. variables (appendix H). The academic majors were then explored for between group variation in SATE, GPA, GIS, FLY, PL, NV, VB, and QT by a one-way analysis of variance. AA, There were no significant differences among the academic majors within these variables. It was determined that there was no variation in the dependent or independent variables for the subjects in relationship to academic major during the 1987 LATR program.

<u>Multivariant Analysis</u> of Dependent Variables

The dichotomous dependent variable success in the LATR program (R) was subjected to a discriminant analysis for the following independent variables: SATE, GPA, GIS, FLY, A, M, S, AA, PL, NV, VB, and QT. Five of the variables had a statistically significant bearing on determining subject placement in the pass or fail category. The variables, listed in order of descending influence, are FLY, A, NV, VB, and GPA. GPA and VB influence the analysis in a negative fashion. The higher the GPA or VB the more probability of placement in the failure group. Varsity athletics (A), an increase in prior flying experience (FLY), and higher scores in the navigator (NV) portion of the AFOQT discriminate toward placement in the pass group. Appendix I shows the results of the discriminant analysis.

The dependent variable PERF was subjected to multiple linear regression analysis with S, GIS, A, FLY, SATE, GPA, M, AA, PL, NV, VB, and QT as the independent variables. The results indicated that three of the independent variables added to the predictive ability of the equation at the .05 level of confidence. The variable FLY was entered on step one with a multiple <u>R</u> of 0.28302 and an \underline{R}^2 of 0.08. Step two derived NV with a multiple R of 0.34642 and an R^2 of 0.12001. On step three, AA displayed a multiple <u>R</u> of 0.37316 and an <u>R</u>² of 0.13. Appendix J shows the regression analysis to include the case-wise plot of the standardized residuals, a histogram of the residuals, a plot of the residuals, and a standardized partial regression plot for the three significant variables.

The dependent variable R (pass or fail) was also subjected to multiple regression analysis by coding 0 or 1, and the results were as follows. On step one the variable FLY was again the most influential with a multiple R of 0.17590 and an R^2 of 0.03 while displaying a significance of <u>F</u> of 0.0041. On step two, the variable varsity athletic competition (A) produced a multiple <u>R</u> of 0.23282 and an R^2 of 0.05421. The significance of <u>F</u> was 0.0007. The other independent variables did not add significantly to the explanatory power of the equation.

A relationship exists between the variable PERF and FLY, as indicated by a correlation of 0.283 at a level of significance less than 0.0001. In addition, a correlation of 0.229 exists between the variable PL and PERF. PERF correlates with the variable NV at 0.206. A relationship between the variable FLY and PL exists at a correlation of 0.18 at a significance level of .002 (appendix E). In response to these relationships, the PL variable, which displays a higher correlation to PERF than the NV variable, does not add to the predictive quality of the regression equation if all the variables are included. To resolve the influence of the PL variable on PERF in interaction with the other independent variables, a multiple regression analysis was performed with the independent variable FLY removed from the equation. This regression analysis placed the variable PL on the first and only step, with a multiple R of 0.22908 and an R^2 of 0.05248. The significance of F was equal to 0.0002. The regression sequence complete with residuals is contained in appendix K. This procedure demonstrated the significant influence of the variable PL on the dependent PERF.

Summary of the Results

The following independent variables proved statistically significant in contributing to a cadet's level of performance and success or failure during the LATR program.

• Prior flying time (FLY) influenced both the performance (PERF) and the rate of pass or fail (R) during the LATR program. • Varsity athletic experience at the college level was a determining factor in the success or failure but did not influence the cadet's quantitative performance (PERF).

• The results of the analysis of the Air Force Officer Qualifying Test were mixed. The pilot, navigator, and academic achievements were statistically significant indicators from a positive viewpoint. The greater the score, the greater potential for a high performance score or success during the LATR program. However, the verbal part of the test was a negative indicator. Success was related to a lower score in the verbal section of the AFOQT.

• Grade point average (GPA) was also a negative indicator of success. The lower the grade point average the more potential for success in the LATR program. Grade point average did not influence the level of quantified performance (PERF) during the program.

• The other independent variables of the study, sex, quality index score, academic major, scholastic aptitude score, or the quantitative section of the AFOQT did not display a relationship with the two dependent variables PERF and R.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Based on the data analysis, this researcher concludes that a significant relationship is evident between three of the higher education curriculum variables--prior flying time, athletics, and portions of the Air Force Officer Qualifying Test--and subject performance in the light aircraft training (LATR) program for Air Force Reserve Officer Training Corps cadets conducted at Embry-Riddle Aeronautical University during the summer of 1987. In this chapter, the researcher identifies the curricular variables that proved significant, analyzes why the relationship occurred, and discusses the possible ramifications of such a relationship. The researcher also examines the independent variables that did not display a relationship with the two dependent variables and critiques their possible relationship to the issue. The researcher closes this chapter with selection his recommendations and a short summation of the study.

t.,

53

Prior Flying Experience

LATR program cadets with prior flying experience showed significantly higher success (pass or fail) and scored significantly better on the quantified variable of performance than cadets who had no flying experience prior to the program. This relationship is quite logical. The LATR program is a short-duration, criterion-referenced experience requiring that basic skills be developed within the first few hours of flight training. A cadet with these skills already evident is at an advantage during the program. Much of the determination of a cadet's suitability for undergraduate pilot training (UPT) is focused on the rate of learning. A student pilot who may be relearning or enhancing prior skills has a distinct advantage when compared to peers in relationship to these factors. An AFROTC cadet with flight time as part of a curricular program during the university experience has a definite advantage when competing in the LATR program for a position in UPT.

Past studies have shown little, if any, significant relationship between prior flying experience and the graduation rate at UPT. In the researcher's opinion, prior civilian flying time is not a factor in enhancing success at UPT and does not relate to superior performance in the operational years following UPT graduation because the demands of military flying are far more rigorous than those of the civilian sector and the initial advantage is well diluted long before graduation from UPT. Using prior flying time as a selection criterion for LATR and UPT may overstate the effectiveness of the LATR program as a device to identify cadets for UPT by weighting the pool of selected cadets with those that have some prior flight experience.

Varsity College Athletics

AFROTC cadets who had experienced at least a year of varsity, college-level athletic competition as part of the total higher education curriculum were significantly more successful in the program as measured by pass or fail. This finding is subject to judgment as the results of the chi-square were not entirely conclusive because of lack of sufficient numbers in the fail cell of the crosstabulation (appendix G). However, it is logical to conclude that the relationship between success and varsity athletic group membership is significant. If the results had been less definitive, by having produced some failures, the total criteria for the chi-square would have been obtained. An increase in the number of students who were classified within this category would additionally add to the strength of the finding. Furthermore the strength of the relationship derived by the regression analysis is in support of the finding.

To draw any conclusions as to why the relationship between this specific variable and success in flight training programs exists is well beyond the scope of this research. Nonetheless, the researcher speculates that the relationship derives from the psychological profiles of the cadet athletes and their environmental conditioning rather than any physiological variation such as superior hand-eye coordination. By definition the category of varsity athletics does not screen specifically for physiological traits. A varsity college marksman is included, as is a weightlifter. The actual training aircraft also is probably not a discriminating factor. A light aircraft will not differentiate between speed of reflex or other physical parameters and then translate the variation into superior performance.

What may separate the varsity college athlete from the normal population is the exposure to stress and other psychological conditions that are present both in flight training and athletic competition. By the time an athlete reaches the level of college competition, he or she is conditioned to perform under pressure. This pressure may be in the form of negative reinforcement from a coach, peer pressure, or an individual ego-gratifying strategy. Those who survive the sports system and continue competing at the college level have individual strategies that facilitate performance under high levels of stress.

Flying training requires an identical adaptation to To perform during the LATR program, the cadet must stress. have the ability to continue to learn a physical and mental skill while under perceived high stress. The ego drive to become an Air Force pilot, the pressure to succeed along with peers, and the stress of operating in an aerial environment, all while being subjected to negative criticism by the flight instructor, creates the same psychological state as does athletic competition. The college athlete is conditioned to, and has successfully adapted to, performing while in this mental state. It is the opinion of this researcher that this similarity may explain much of the success of the varsity athletes in this study. Speculation aside, the cadets classified as varsity athletes completed the LATR program at a rate significantly different from the norm.

Air Force Officer Qualifying Test

Four of the five parts of the Air Force Officer Qualifying Test (AFOOT) demonstrated a significant relationship with the cadet's performance in the LATR program, although the strength of the relationships was not impressive. The pilot section of the test was the best indicator on an individual basis. A high score on the pilot section indicated a correlation with both success, as measured by pass or fail, and quantified performance. High scores on the navigator and academic sections added a slight increase in the ability to predict the outcome of a cadet's participation in LATR. The verbal section of the AFOQT was related to success only from a negative viewpoint. Cadets with high scores on the verbal section were more prone to failure during LATR. However, this relationship was very weak, and although statistically significant, not of operational value.

In reference to the 1987 LATR program, although there is a small relationship between the AFOQT and the dependent variables of pass-fail and quantified performance, the test provides only a slight predictive indication of the cadet's ability to complete the screening program successfully. This evaluation of the AFOQT must be placed in the proper context. The relationships may be small, but, in the opinion of this researcher, the AFOQT is still the best paper test instrument yet developed to screen flying training applicants. The pilot portion is quite relevant to the task of providing an initial evaluation of an applicant's potential for flying training.

College Grade Point Average

The cadet's college grade point average displayed a slight but statistically significant relationship to his or her success or failure in the LATR program. In reference to the 1987 LATR program, the higher the cadet's grade point average, the greater probability that the student would fail the screening program. This tendency was exhibited only under discriminate analysis and only on the fifth and final step analysis. When the grade point average was examined within the pass or fail groups, it was not proven significant by T-test. In addition, the Pearson correlation was not impressive. In consideration of the above analysis, in the researcher's judgment, it was concluded that it was not logical, from any operational perspective, for a cadet's grade point average to influence performance during the LATR program.

Curricular Variables Not Affecting Performance

The other curricular variables that were the focus of this study did not display a relationship to the outcome of the cadet's performance in the LATR program. Sex, academic major, Scholastic Aptitude Test scores, and quality index scores did not display a relationship with the dependent variables of the research design. The absence of a relationship here is quite interesting as three of the four are now used as selection criteria for entrance into the LATR program.

Academic Majors

The Air Force displays a selection bias, in reference to both LATR and UPT, toward what it describes as hard, as opposed to soft, majors. These majors include the math, physics, and engineering categories of this study. The researcher concludes that this bias is not justified when evaluated in conjunction with the results of this study. Differences in academic majors did not demonstrate any significant variation in either of the LATR program's two dependent variables. Based on the results of the 1987 LATR program, the researcher concludes that there was no relationship between a cadet's academic major and performance.

Scholastic Aptitude Test Scores

A high Scholastic Aptitude Test (SAT) score enhances selection to both the advanced AFROTC course and to UPT via LATR in current AFROTC procedures. This selection bias is not justified when viewed within the confines of this study. The researcher concludes that there was no relationship between SAT scores and performance during the LATR program of 1987.

Quality Index Score

The AFROTC quality index score (GIS) is one of the primary differentials used for selection to UPT via LATR. The researcher concludes that there was no significant relationship between the quality index score variable and performance during the 1987 LATR program.

Gender

Males and females did not display significant differences in relationship to either pass or fail or to quantified performance during the 1987 LATR program. Nevertheless, the females were subjected to a significantly more rigorous selection criteria than were the males. Because the females scored significantly higher in Scholastic Aptitude Test scores, quality index scores, and AFOQT scores, one could conclude that the Air Force is requiring higher standards from the female applicants to UPT in hopes of establishing equal graduation rates in comparison to the males.

Air Training Command folklore seems to substantiate this conjecture. This logic breaks down when one considers the equal rates of success in UPT at present among males and females. When considering the results of this specific research study, this logic is even less clear. The variables of quality index score and SAT score have no effect on the LATR performance. The AFOQT, although a significant indicator, in reality has little predictive effect. If the variables for selection to UPT via LATR, on which the females are required to display higher values, do not affect the total subject population in reference to performance in then why the apparent variation in selection LATR, The researcher concludes (1) that gender as a criteria? variable had no effect or relationship to quantified performance or success during the 1987 LATR program, but (2) that significant variations did occur in the required entry standards into the flight screening program in relationship to gender.

Recommendations

Given these findings, the Air Force needs to make the following changes in its LATR and UPT selection criteria and policy.

1. The issue of cadets with previous flying time competing for selection to UPT with cadets without flying experience should be addressed. A selection bias that considers prior flying time as advantageous to a cadet's selection should be examined. The issue should be resolved from the viewpoint as to how the prior experience affects actual "operational proficiency" at a later stage in the military flier's career, not specifically the graduation rate from LATR or UPT.

2. A research effort should be directed toward determining if the results of this LATR study, in reference to the success of the varsity athletes, will replicate with UPT as the treatment. Additional research should examine the variable of past varsity athletics membership to determine if a relationship with successful military aviators in the operational field may exist. This variable is, in addition, an interesting area for research in reference to the fighter-qualified pilots and those individuals not selected for this type of flying specialty. The researcher recommends that consideration should be given to including the athletic competition variable as a strong positive indicator of potential success as a military aviator.

3. The AFOQT should continue to be employed as a selection instrument for UPT. However, the screening should be made in relationship to the strength of the individual candidate on only the pilot and navigator sections if the goal of selection is flight potential only. Research should be continued to update and refine this valuable test instrument.

4. The issue of female pilot selection needs to be examined. If it is determined that standards are different on variables that have no relationship to flight success, the researcher recommends that this differentiation be terminated. The variable of gender should be subjected to close examination in reference to success at UPT and research should be continued to include operational flying performance variations. 5. Current pilot selection criteria contain elements that have displayed no relationship to success in either LATR, as demonstrated by this research design, or in UPT, as shown by past research. Thus, this researcher recommends that the Air Force and its component commands review the current selection procedure and eliminate those specific aspects that do not add to the prediction of success in flight training. A clear distinction needs to be defined as to what attributes are specifically desired for flying operations and what attributes are contained within the pilot selection criteria to enhance the total Air Force officer corps concept.

(AT

A Brief Summary of LATR 1987

* The 1987 LATR program provided a unique opportunity to explore the question of what specific variables may influence a qualified individual's ability to pilot military aircraft. The specificity of the research design prevents accurate statistical inference to other subject populations and flight training programs. However, the implications of the study are clear: the men and women selected for Air Force pilot training over the past 20 years have been very similar--the basic selection criteria have remained consistent. The rate of attrition from the undergraduate training program has also remained somewhat pilot consistent, with variations being detected as supply and demand change. The LATR research study was clear in indicating that many of the selection criteria did not relate to flying performance. With the similarity of populations, it is very possible that these variables also have no effect on $\Lambda(UPT)$ or operational flying. It is $\beta(SD_{U})$ additionally apparent that varsity athletic competition may continue to exert an effect during UPT. Undergraduate pilot training

This research design was successful in describing basic concepts that could prove useful in future research that may be developed to improve the selection process for UPT. The research established that specific parameters that have in the past been considered important discriminators for selecting cadets for flight training do not show validity as selection criteria. The contribution of quantifying the specifics of existing relationships will provide a sound reference on the question of curricular variables and their effect on flight performance.

APPENDIX A

DATA	SET	1
------	-----	---

SUBJ	R	PERF	DET	s	A	FLY 1	M	GPA	*GIS*	SATE	AA	PL	NV	VB	QT
1001	1	664	010	0	0	000	1	300	10413	1321	88	53	61	92	78
1002	1	704	010	1	0	000	2	290	09162	1123	76	55	65	72	75
1003	1	775	010	1	0	000	5	248	09923	1361	84	69	86	69	90
1004	1	630	012	1	0	000	1	287	07813	0970	44	61	57	41	52
1005	0	336	012	1	0	000	5	245	08003	1170	61	53	56	55	64
1006	0	341	012	1	0	000	7	217	07373	0979	51	76	66	55	48
1007	0	746	035	1	0	000	3	358	09450	1250	75	84	79	74	69
1008	1	831	060	0	0	000	3	247	09726	1240	84	94	86	90	71
1009	1	939	105	0	0	035	5	355	10062	1200	71	66	62	80	81
1010	1	832	130	1	0	011	5	318	10184	1240	82	58	71	84	75
1011	1	797	130	1	0	000	3	296	08846	1200	84	60	76	67	91
1012	0	000	145	0	0	000	7	250	10516	1321	89	95	93	81	90
1013	1	685	145	1	0	000	1	360	09822	1218	76	57	63	74	71
1014	1	690	145	1	0	000	6	349	09348	1130	69	76	73	69	64
1015	1	915	145	1	0	000	1	239	08629	1060	63	87	83	67	57
1016	0	410	145	1	0	003	5	324	08230	1140	72	67	66	77	64
1017	1	717	145	0	0	000	2	334	10736	1384	99	86	96	96	99
1018	1	750	145	1	0	000	1	222	07646	0910	69	52	61	74	59
1019	1	818	150	1	0	000	3	330	10872	1240	89	94	89	90	80
1020	1	913	150	1	0	000	3	334	08379	1020	61	86	85	48	71
1021	1	672	150	1	0	000	7	270	08442	1053	63	71	73	44	80
1022	1	753	150	1	0	015	1	278	08627	1160	61	81	85	40	80

												_			
1023	1	849	150	1	0	000	2	340	07573	1053	33	67	61	33	38
1024	1	799	155	1	0	000	1	348	10944	1302	95	97	99	86	96
1025	1	713	155	1	0	000	2	322	08631	1130	50	45	52	41	61
1026	1	743	157	1	0	010	3	391	09359	1120	68	77	72	67	64
1027	1	836	157	1	1	021	4	245	07024	0874	34	60	62	26	52
1028	1	871	158	1	0	000	1	248	08333	1040	78	66	79	64	82
1029	1	670	158	1	0	008	1	227	07669	0985	52	52	30	74	31
1030	1	990	158	1	0	052	5	267	09228	1110	61	67	75	36	85
1031	1	816	158	1	0	002	1	334	10127	1123	72	83	73	77	64
1032	1	830	158	1	0	030	3	244	07305	1230	28	87	73	31	33
1033	1	689	158	1	0	004	1	233	08917	1170	89	89	91	86	86
1034	1	766	158	1	0	000	1	292	06931	0970	27	64	56	23	43
1035	1	667	158	1	0	001	2	253	08872	1030	84	87	96	57	95
1036	1	898	159	1	0	010	3	240	08372	0990	83	82	83	67	90
1037	1	813	159	1	0	000	1	239	07766	0936	44	70	53	46	45
1038	0	410	205	1	0	C00	3	305	08095	0942	43	56	53	32	61
1039	1	565	220	0	0	000	1	297	10759	1321	88	53	60	87	82
1040	1	924	220	1	0	001	1	207	08002	1110	71	83	72	86	52
1041	1	658	290	1	0	000	7	228	06970	1048	63	57	38	84	38
1042	1	825	290	1	0	020	2	265	08042	1053	63	95	84	72	52
1043	1	800	355	1	0	008	3	242	09168	1300	89	74	79	99	69
1044	1	645	355	1	0	000	3	212	07289	1100	49	63	61	40	61
1045	1	720	355	1	0	000	3	305	10422	1240	93	93	95	81	95
1046	1	777	370	1	1	000	5	278	08746	1090	81	96	96	62	90

Data Set 1--continued

Data	Set	1c	ont:	inued
------	-----	----	------	-------

			· · · · · · · · · · · · · · · · · · ·	_							-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1047	1	750	430A	1	0	023	4	295	07053	0880	34	66	42	46	26
1048	1	720	432	1	0	000	5	261	07104	0855	34	57	51	26	52
1049	1	728	485	1	1	016	5	230	08164	0991	53	48	56	38	75
1050	1	827	490	1	0	003	2	336	09544	1260	70	58	65	67	69
1051	1	852	550	1	1	000	2	343	10593	1300	97	87	96	87	99
1052	1	654	550	1	0	000	6	367	08899	1020	57	77	67	62	52
1053	1	822	560	1	0	004	3	245	08399	1100	76	74	81	84	61
1054	1	661	560	1	0	007	6	275	06925	0880	35	75	68	23	59
1055	1	750	590	1	0	000	1	274	06958	0940	59	65	54	60	57
1056	1	734	590	1	0	000	1	342	07463	0950	35	57	42	46	28
1057	1	778	590	1	0	800	1	341	08090	0990	52	62	52	69	34
1058	0	657	590	1	0	000	7	221	08512	1200	68	54	66	69	61
1059	1	821	590A	1	0	001	6	272	08728	1130	79	62	56	96	52
1060	1	708	595	1	0	000	2	302	07826	1100	65	63	72	50	76
1061	1	682	600	1	0	006	5	248	07057	0900	33	75	72	24	52
1062	1	851	600	1	1	000	2	279	07783	1040	49	57	59	50	48
1063	1	815	620	1	0	000	5	268	09100	1090	70	52	65	55	80
1064	1	799	640	1	0	002	1	260	09067	1218	86	67	65	97	66
1065	0	499	640	1	0	005	3	252	08331	1123	67	46	63	53	76
1066	1	680	640	1	0	000	1	237	08515	1120	69	45	36	90	41
1067	1	857	640	1	0	043	5	200	07228	0880	51	63	43	69	33
1068	1	825	720	1	0	000	1	190	08737	1321	75	71	82	62	80
1069	0	348	745	1	0	000	3	288	08804	1100	69	95	97	44	88
1070	1	736	765	1	1	000	5	280	07934	0900	52	54	58	36	75

1071	1	707 770	10	001 3 258	09212	1150 84	65	79	74	86
1072	1	659 770	10	000 3 238	10184	1170 92	80	81	98	78
1073	0	445 775	1 0	000 1 264	08238	1123 53	54	31	90	17
1074	1	706 785	1 0	000 2 320	09348	1270 81	. 88	91	57	92
1075	1	931 865	11	000 7 255	07549	0990 50	45	57	48	54
1076	1	819 867	1 0	000 3 291	08139	1110 57	74	89	26	90
1077	1	789 880	1 0	000 3 269	08615	1190 49	57	54	67	31
1078	1	751 915	10	000 7 212	07842	1053 45	78	65	53	41
1079	1	995 925	10	020 7 226	07566	0973 50	85	79	50	52

Data 1--continued

DATA SET 2

SUBJ	R	PERF	DET	s	A	FLY	M	GPA	*GIS*	SATE	AA	PL	NV	VB	QT
2001	1	786	010	1	0	002	3	324	09054	1123	53	86	84	57	52
2002	1	750	010	1	0	800	1	210	08506	0973	59	86	73	60	57
2003	1	702	060	1	0	000	4	220	08390	1053	61	86	81	55	64
2004	1	781	090	1	0	007	3	327	08845	1048	63	54	69	46	78
2005	0	377	115	1	0	000	5	304	08423	1080	52	52	59	38	71
2006	1	515	115	1	0	008	3	301	09233	1150	82	56	66	77	80
2007	1	799	115	1	0	020	5	324	09081	1080	57	69	64	55	59
2008	1	778	130	1	1	032	1	384	11562	1361	91	77	78	98	76
2010	1	765	150	1	0	002	2	308	09030	1110	81	76	81	74	80
2011	1	725	150	1	0	000	1	263	09759	1370	95	91	94	97	90
2012	1	903	150	1	0	015	1	246	08638	1010	65	78	69	72	54
2013	1	821	150	1	0	000	6	282	08196	1100	62	86	89	55	66
2014	1	784	150	1	0	003	3	346	10192	1270	86	85	84	86	80
2015	1	837	150	1	1	007	3	230	07329	0980	52	66	66	48	59
2016	0	000	150	1	0	000	3	248	07613	1000	57	70	87	27	88
2017	1	804	150	1	0	002	5	277	08371	0880	47	61	45	48	44
2018	1	683	150	1	0	000	1	292	08684	1150	71	61	53	81	57
2019	1	840	150	1	0	006	1	299	07680	0950	27	70	66	30	33
2020	1	826	157	1	0	000	4	324	09339	1090	57	70	59	50	64
2021	1	678	157	1	0	000	4	238	07905	1090	51	58	65	50	54
2022	1	761	1.57	1	0	000	4	255	08237	1090	71	75	48	97	34
2023	1	837	157	1	0	027	6	258	07528	1053	37	62	44	33	48

2024	1	832	157	1	0	007	3	348	08199	0936	44	71	76	40	54
2025	1	823	157	1	0	000	3	265	08051	1110	61	70	64	64	54
2026	1	683	157	1	0	019	4	283	07651	1000	50	66	67	44	59
2027	1	740	157	1	1	000	6	339	10111	1270	86	88	89	74	90
2028	1	792	157	1	0	010	4	267	09607	1170	81	88	93	69	85
2029	1	768	158	1	0	000	3	311	08989	1230	72	94	92	55	85
2030	0	437	158	1	0	007	5	330	09926	1200	75	58	55	84	59
2031	1	734	158	1	0	000	2	363	09459	1190	68	79	81	55	76
2032	1	702	158	1	0	000	2	278	07960	1060	43	60	56	44	45
2033	1	774	158	1	0	001	2	214	09266	1200	83	70	84	74	85
2034	1	787	165	1	0	000	5	340	07983	1090	45	46	53	36	61
2035	1	800	205	1	0	030	3	230	08559	1123	72	82	70	95	40
2036	1	793	205	1	0	000	3	332	09342	1218	68	89	81	64	66
2037	1	769	205	1	0	000	5	232	08261	1015	68	79	83	57	75
2038	0	000	215	1	0	000	2	380	11218	1350	93	77	88	90	90
2039	1	740	215	1	0	000	7	261	08501	1053	54	69	72	67	43
2040	0	532	220	1	0	000	1	318	09326	1218	75	76	61	84	59
2041	0	433	220	1	0	000	3	323	09810	1270	91	53	69	87	88
2043	1	962	220	1	0	000	3	270	10127	1502	97	94	94	98	93
2044	1	748	225	1	1	000	3	230	08342	1220	71	56	74	55	82
2045	1	783	250	1	0	000	3	369	09505	1218	79	69	80	50	93
2046	1	730	250	1	0	000	3	233	08035	1080	69	80	81	62	71
2047	1	783	255	1	0	041	2	360	09992	1270	88	80	82	86	85
2048	1	708	355	1	0	005	5	229	07772	1130	59	54	51	67	48

Data Set 2--continued

2049	1	808	365	1	1	000	3	300	09714	1320	90	71	82	86	88
2050	1	735	370	1	1	000	5	263	08415	1110	47	55	77	26	76
2051	0	370	370	1	0	000	1	267	09045	1130	78	65	66	86	61
2052	0	000	370	1	0	000	1	227	08271	1190	63	77	67	86	34
2053	1	728	425	1	0	010	3	246	08885	1270	81	88	83	78	76
2054	1	854	425	1	0	000	6	245	09688	1218	69	79	78	47	85
2055	0	000	425	1	0	000	3	305	09942	1361	83	96	79	92	66
2056	1	851	425	1	0	021	5	231	07435	1090	38	75	53	44	38
2057	1	734	425	1	0	002	3	247	08913	1218	84	73	75	96	64
2058	1	751	432	1	0	003	6	280	07649	0942	31	75	60	33	34
2059	1	686	442	1	0	000	3	286	08100	0985	52	75	73	50	57
2060	1	813	442	1	0	010	5	265	09650	1112	75	85	88	62	80
2061	1	682	465	1	0	001	1	308	09146	1053	76	65	62	84	61
2062	1	995	485	1	0	023	1	189	07428	0980	53	93	87	48	61
2063	1	701	536	1	0	060	3	294	08835	1240	76	82	62	74	71
2064	1	770	536	1	0	000	3	236	07856	1130	47	55	67	38	61
2065	1	817	550	1	0	000	3	394	10759	1240	85	64	91	67	92
2066	1	625	560	1	0	011	1	227	06862	0930	43	63	45	50	38
2067	1	847	560	1	1	010	3	383	10351	1150	68	61	79	53	78
2068	1	851	560	1	1	000	7	289	09146	1020	71	59	81	49	76
2069	1	761	560	1	0	029	3	260	07368	1020	72	69	71	69	71
2070	1	831	585	1	0	003	2	357	11674	1450	97	86	91	99	91
2071	1	754	585	1	0	000	3	282	09651	1320	99	84	91	99	97
2072	1	881	590A	1	0	044	1	209	07089	0815	25	71	65	26	33

Data Set 2--continued

							_								
2073	0	466	595	1	0	000 3	3	243	09853	1280	90	76	84	92	82
2074	0	000	600	1	0	000 1	L	383	09998	0940	69	56	47	78	54
2075	1	713	605	1	0	000 e	5	217	06991	0800	31	51	57	23	52
2076	1	733	670	1	0	000 1	L	248	08208	1015	38	51	43	33	52
2077	1	689	720	1	0	000 3	3	283	10015	1450	9 5	84	95	90	94
2078	1	670	720	1	0	000 5	5	289	10211	1310	91	77	80	84	91
2079	1	808	720	1	0	060 1	L	265	09999	1240	93	87	87	93	88
2080	1	735	720	1	0	000 7	7	293	10022	1220	84	69	81	77	85
2081	0	466	720	1	0	000 2	2	297	09338	1310	81	63	63	77	78
2082	1	898	730	1	0	000 3	3	309	10192	1320	81	94	95	72	82
2083	1	814	752	1	1	000 1	L	238	09353	1330	92	75	76	97	80
2085	1	554	752	1	1	000 7	7	239	08002	1110	65	82	86	60	66
2086	0	505	755	1	0	002 6	5	277	07298	1093	35	61	53	30	48
2087	1	839	765	1	0	028 5	5	221	07749	1123	37	62	51	44	34
2088	0	390	770	1	0	000 3	3	286	08745	1170	62	50	48	67	54
2089	1	693	770	1	1	000 3	3	247	08873	1160	75	58	73	69	75
2090	1	854	772	1	0	000 2	2	247	07477	1010	23	62	45	26	28
2091	1	704	915	1	0	004 3	3	309	09115	1053	63	64	69	60	64
2092	1	653	915	1	0	002 3	3	296	09760	1170	68	64	72	69	61
2093	1	664	915	1	0	000 5	5	317	08883	1123	75	84	82	55	86
2094	1	775	915	1	1	000 3	3	253	08526	1218	71	97	96	72	66

Data Set 2--continued

DATA SET 3

SUBJ	R	PERF	DET	s	А	FLY	M	GPA	*GIS*	SATE	AA	PL	NV	VB	QT
3001	1	748	012	1	0	000	1	253	08236	0985	52	71	46	72	33
3002	1	676	015	1	0	035	5	200	07122	0985	52	79	75	32	78
3003	1	845	017	1	0	061	5	245	08759	1080	95	96	94	90	94
3004	1	622	019	1	0	001	7	249	07195	0855	31	41	38	38	31
3005	1	765	019	1	0	013	5	217	07676	1048	63	65	74	53	71
3006	1	790	019	1	0	004	5	282	07815	0892	37	62	49	30	54
3007	1	840	019	1	0	005	5	352	07966	0954	47	70	72	44	54
3009	1	757	035	1	0	000	7	330	09364	1165	83	86	90	78	80
3011	1	793	035	1	0	030	3	280	08428	0985	52	71	68	67	38
3012	1	849	045	1	0	000	4	272	07429	0900	40	62	58	53	31
3013	1	798	045	1	1	020	3	329	10890	1440	99	97	94	99	96
3014	1	704	055	1	0	003	1	241	09072	1106	85	66	66	87	76
3015	1	729	055	1	0	002	3	272	09297	1280	88	69	68	99	64
3016	1	621	055	1	1	004	4	282	06994	0835	28	50	50	27	38
3017	1	696	055	1	0	000	1	344	08812	1100	54	57	60	46	66
3018	1	698	075	1	0	000	1	255	07438	0979	51	57	62	50	54
3019	1	757	075	1	0	002	6	399	11028	1230	90	95	91	96	78
3020	1	869	075	1	0	035	7	292	09332	1141	80	64	64	78	75
3021	1	724	075	1	0	005	3	269	07703	0997	54	75	76	55	57
3022	1	784	085	0	1	000	7	289	09155	1130	40	85	82	32	57
3023	1	831	088	1	0	040	7	242	08138	1110	69	60	51	87	43

65

ł

3024	1	696	880	1	0	009	5	357	09618	1117	76	82	81	66	80
3025	1	660	088	0	0	014	7	287	10256	1160	84	74	71	86	76
3026	0	521	088	1	0	006	1	287	07855	0930	43	71	70	44	45
3027	1	827	088	1	0	050	3	400	12010	1390	98	86	93	93	98
3028	1	743	105	1	0	000	3	250	07149	1123	35	54	54	32	45
3029	1	797	128	1	0	000	1	243	09175	1250	80	47	56	81	71
3030	1	625	128	1	0	002	6	285	07277	0940	31	57	51	33	34
3031	1	746	128	1	0	078	2	346	08767	1050	68	74	72	77	54
3032	1	735	128	1	1	000	3	280	08978	1050	53	63	67	48	61
3033	1	829	128	1	0	000	6	240	08422	1026	59	53	57	50	66
3035	1	805	150	1	0	004	7	239	08301	1050	52	55	43	53	57
3036	1	796	150	1	0	007	3	378	08685	1130	65	61	79	46	80
3037	1	717	150	1	0	002	7	314	09338	1053	92	83	89	81	93
3038	1	821	158	1	1	000	1	303	08563	0930	67	60	64	53	76
3039	1	822	165	1	0	000	3	300	09542	1200	82	73	80	67	88
3040	1	802	165	0	0	019	2	270	10819	1310	95	86	90	93	92
3041	0	559	172	1	0	000	5	311	08686	1037	61	60	63	60	59
3044	1	797	172	1	0	008	1	297	07484	1010	51	94	75	62	41
3045	1	631	172	1	0	000	7	326	09230	0950	51	50	51	60	43
3046	0	309	172	1	0	001	1	304	07595	0870	40	55	51	41	43
3047	1	612	206	1	1	000	6	228	08456	1250	67	75	86	39	90
3048	1	748	206	1	0	012	7	248	06838	0785	21	44	47	15	41
3049	0	000	206	1	0	003	5	265	07345	0899	38	62	61	27	58
3050	1	721	206	1	0	010	7	275	06934	083 5	28	50	52	30	34

Data Set 3--continued

3051	1	750	215	1	0	007	1	300	08332	1180	45	47	37	72	21
3052	1	740	225	1	0	002	5	226	09135	1230	93	54	58	93	88
3053	0	000	295	1	0	000	1	330	07386	0785	21	46	52	19	23
3054	1	814	305	1	0	019	4	200	07937	1123	59	90	88	41	76
3055	1	744	326	1	0	000	7	200	08675	1170	84	76	81	67	91
3056	1	834	330	1	0	018	1	325	08101	1050	54	51	51	46	66
3057	1	595	330	1	0	000	3	277	09201	1200	88	98	97	74	92
3058	1	811	330	1	0	078	1	254	08570	0990	62	93	80	48	75
3060	1	761	330	1	1	006	1	250	08286	0980	54	71	64	69	41
3061	1	806	330	0	1	064	3	279	08709	1090	44	85	66	55	34
3062	1	697	330	1	0	000	7	264	08806	1160	81	75	70	74	80
3063	1	794	330	0	1	000	5	212	08666	1170	87	95	88	78	88
3064	1	771	330	1	0	000	3	286	08514	1000	78	73	79	55	90
3065	1	741	330	1	0	016	7	254	07335	0990	53	52	46	50	59
3066	1	729	330	1	0	000	3	285	09589	1200	76	54	58	97	43
3067	1	764	330	1	0	014	1	305	09019	1110	70	80	87	50	85
3068	1	860	330	1	0	021	1	275	07584	0830	25	82	62	32	26
3069	0	548	380	1	0	004	1	291	09064	1090	52	53	44	69	34
3070	1	866	390	1	0	010	4	317	08410	0886	36	53	53	26	57
3071	1	882	390	1	0	022	3	307	09731	1270	92	91	94	87	90
3072	1	700	400	1	0	000	3	305	08608	1090	70	83	77	64	71
3073	1	602	4:0	1	0	000	2	279	08239	1110	63	71	71	55	69
3074	1	795	415	1	0	002	5	290	07120	0899	38	52	45	44	38
3075	1	824	415	1	0	035	1	216	08186	1015	57	75	٤5	62	52

Data Set 3--continued

Data	Set	3cor	nti	inued
------	-----	------	-----	-------

3076 1 774 415 1 0 010 3 245 09858 1270 78 96 96 50 92 3077 1 798 420 1 0 013 2 256 08566 1129 78 80 86 62 82 3078 0 406 420 1 0 000 5 280 08330 0907 75 63 81 53 86 62 82 3080 1 790 475 1 0 031 1 232 09358 1150 71 73 75 64 72 3081 1 694 535 1 0 031 1 232 07079 0980 43 53 64 30 32 3083 1 681 507 1 1 000 7 246 07496 0886 36 51 64 30 64 30 54 36 51 54 54 54 <th>-</th> <th></th> <th>_</th> <th></th> <th></th>	-														_		
3078 0 406 420 1 0 000 7 297 07794 0942 54 66 60 77 3 3079 1 778 475 1 0 001 5 280 08330 0990 75 63 81 53 84 3080 1 790 475 1 0 011 5 252 09358 1150 71 73 75 64 75 3081 1 694 5358 1 0 005 5 267 07575 0800 40 48 48 50 3 3083 1 681 550 1 1 008 3 325 07621 0930 43 53 64 30 64 3083 1 653 607 1 1 008 7 340 07440 0886 36 51 64 27 54 3086 1 715 665 1 0 007 1 <td></td> <td>3076</td> <td>1</td> <td>774</td> <td>415</td> <td>1</td> <td>0</td> <td>000</td> <td>3</td> <td>245</td> <td>09858</td> <td>1270</td> <td>78</td> <td>96</td> <td>96</td> <td>50</td> <td>93</td>		3076	1	774	415	1	0	000	3	245	09858	1270	78	96	96	50	93
3079 1 778 475 1 0 000 5 280 08330 0990 75 63 81 53 84 3080 1 790 475 0 0 011 5 252 09358 1150 71 73 75 64 75 3081 1 694 5358 1 0 031 1 232 07079 0980 45 66 51 60 33 3083 1 694 5358 1 0 005 5 267 07575 0800 40 48 40 30 64		3077	1	798	420	1	0	013	2	256	08566	1129	78	80	86	62	85
3080 1 790 475 0 0 011 5 252 09358 1150 71 73 75 64 74 3081 1 810 475 1 0 031 1 232 07079 0980 45 66 51 60 33 3082 1 694 5358 1 0 005 5 267 07575 0800 40 48 48 50 33 3083 1 681 550 1 1 008 3 325 07621 0930 43 50 43 50 51 64 30 64 65 65 64<		3078	0	406	420	1	0	000	7	297	07794	0942	54	66	60	77	33
3081 1 810 475 1 0 031 1 232 07079 0980 45 66 51 60 3 3082 1 694 5358 1 0 005 5 267 07575 0800 40 48 48 50 3 3083 1 681 550 1 1 008 3 325 07621 0930 43 53 64 30 64 3084 0 432 607 1 0 000 7 246 07496 0886 36 51 64 27 54 3086 1 715 665 1 1 000 7 240 07940 1040 65 61 65 7 3086 1 745 665 1 0 000 1 234 08725 1090 75 94 84 86 57 3087 1 744 695 1 0 000 1 234 <td></td> <td>3079</td> <td>1</td> <td>778</td> <td>475</td> <td>1</td> <td>0</td> <td>000</td> <td>5</td> <td>280</td> <td>08330</td> <td>0990</td> <td>75</td> <td>63</td> <td>81</td> <td>53</td> <td>88</td>		3079	1	778	475	1	0	000	5	280	08330	0990	75	63	81	53	88
3082 1 694 535B 1 0 005 5 267 07575 0800 40 48 48 50 3 3083 1 681 550 1 1 008 3 325 07621 0930 43 53 64 30 64 3084 0 432 607 1 0 000 2 372 10106 1170 84 69 70 81 80 3085 1 653 607 1 1 000 7 246 07496 0886 36 51 64 27 54 3086 1 745 665 1 1 000 7 249 07940 1040 65 61 55 7 3087 1 745 665 1 0 000 1 234 08725 1090 75 94 84 86 57 3089 1 744 695 1 0 000 1 261 </td <td></td> <td>3080</td> <td>1</td> <td>790</td> <td>475</td> <td>0</td> <td>0</td> <td>011</td> <td>5</td> <td>252</td> <td>09358</td> <td>1150</td> <td>71</td> <td>73</td> <td>75</td> <td>64</td> <td>75</td>		3080	1	790	475	0	0	011	5	252	09358	1150	71	73	75	64	75
3083 1 681 550 1 1 008 3 325 07621 0930 43 53 64 56 3084 0 432 607 1 0 000 2 372 10106 1170 84 69 70 81 84 3085 1 653 607 1 1 000 7 246 07496 0886 36 51 64 27 54 3085 1 715 665 1 1 000 7 300 09377 1141 80 85 91 74 74 3087 1 745 665 1 0 003 7 249 07940 1040 65 61 65 74 74 74 3088 0 361 685 1 0 000 5 282 07144 1015 23 51 30 64 35 3091 1 719 695 1 0 006 5 </td <td></td> <td>3081</td> <td>1</td> <td>810</td> <td>475</td> <td>1</td> <td>0</td> <td>031</td> <td>1</td> <td>232</td> <td>07079</td> <td>0980</td> <td>45</td> <td>66</td> <td>51</td> <td>60</td> <td>33</td>		3081	1	810	475	1	0	031	1	232	07079	0980	45	66	51	60	33
3084 0 432 607 1 0 000 2 372 10106 1170 84 69 70 81 82 3085 1 653 607 1 1 000 7 246 07496 0886 36 51 64 27 54 3086 1 715 665 1 0 07 300 09377 1141 80 85 91 74 74 3086 1 745 665 1 0 003 7 249 07940 1040 65 61 65 74 74 74 3088 0 361 685 0 0 000 1 234 08725 1090 75 94 84 86 57 3089 1 734 695 1 0 000 1 261 08185 1110 68 53 60 84 49 54 54 54 54 54 54 54 54 54 <td></td> <td>3082</td> <td>1</td> <td>694</td> <td>535B</td> <td>1</td> <td>0</td> <td>005</td> <td>5</td> <td>267</td> <td>07575</td> <td>0800</td> <td>40</td> <td>48</td> <td>48</td> <td>50</td> <td>33</td>		3082	1	694	535B	1	0	005	5	267	07575	0800	40	48	48	50	33
3085 1 653 607 1 1 000 7 246 07496 0886 36 51 64 27 54 3086 1 715 665 1 1 009 7 300 09377 1141 80 85 91 74 74 3087 1 745 665 1 0 003 7 249 07940 1040 65 61 65 74 74 3088 0 361 685 0 0 100 1 234 08725 1090 75 94 84 86 57 3088 1 734 695 1 0 000 1 234 08725 1090 75 94 84 86 57 3090 0 000 695 1 0 000 1 261 08185 1110 68 53 60 84 36 54 34 36 54 34 36 54 34 54 <td></td> <td>8083</td> <td>1</td> <td>681</td> <td>550</td> <td>1</td> <td>1</td> <td>008</td> <td>3</td> <td>325</td> <td>07621</td> <td>0930</td> <td>43</td> <td>53</td> <td>64</td> <td>30</td> <td>64</td>		8083	1	681	550	1	1	008	3	325	07621	0930	43	53	64	30	64
3086 1 715 665 1 1 009 7 300 09377 1141 80 85 91 74 74 3087 1 745 665 1 0 003 7 249 07940 1040 65 61 65 55 74 3088 0 361 685 0 0 000 1 234 08725 1090 75 94 84 86 57 3089 1 734 695 1 0 000 5 282 07144 1015 23 51 39 30 24 3090 0 000 695 1 0 000 1 261 08185 1110 68 53 60 84 44 46 54 3091 1 719 695 1 0 006 3 278 07266 0930 43 56 61 86 54 3093 1 581 772 1 1 </td <td></td> <td>3084</td> <td>0</td> <td>432</td> <td>607</td> <td>1</td> <td>0</td> <td>000</td> <td>2</td> <td>372</td> <td>10106</td> <td>1170</td> <td>84</td> <td>69</td> <td>70</td> <td>81</td> <td>80</td>		3084	0	432	607	1	0	000	2	372	10106	1170	84	69	70	81	80
3087 1 745 665 1 0 003 7 249 07940 1040 65 61 65 57 7 3088 0 361 685 0 0 000 1 234 08725 1090 75 94 84 86 57 3089 1 734 695 1 0 000 5 282 07144 1015 23 51 39 30 24 3090 0 000 695 1 0 000 1 261 08185 1110 68 53 60 86 43 3091 1 719 695 1 0 006 3 278 07266 0930 43 56 58 38 54 3091 1 581 772 1 0 000 5 253 07443 0822 26 67 53 26 64 55 3093 1 581 772 1 1 000 </td <td></td> <td>3085</td> <td>1</td> <td>653</td> <td>607</td> <td>1</td> <td>1</td> <td>000</td> <td>7</td> <td>246</td> <td>07496</td> <td>0886</td> <td>36</td> <td>51</td> <td>64</td> <td>27</td> <td>54</td>		3085	1	653	607	1	1	000	7	246	07496	0886	36	51	64	27	54
3088 0 361 685 0 0 000 1 234 08725 1090 75 94 84 86 57 3089 1 734 695 1 0 000 5 282 07144 1015 23 51 39 30 24 3090 0 000 695 1 0 000 1 261 08185 1110 68 53 60 86 43 3091 1 719 695 1 0 006 3 278 07266 0930 43 56 58 38 54 3092 1 506 772 1 0 000 5 253 07443 0822 26 67 53 26 34 36 34 36 34 36 34 36 34 36 34 36 34 36 34 36 36 34 36 36 34 36 34 36 36 36 36		3086	1	715	665	1	1	009	7	300	09377	1141	80	85	91	74	78
3089 1 734 695 1 0 000 5 282 07144 1015 23 51 39 30 24 3090 0 000 695 1 0 000 1 261 08185 1110 68 53 60 86 43 3091 1 719 695 1 0 006 3 278 07266 0930 43 56 58 38 54 3092 1 506 772 1 0 000 5 253 07443 0822 26 67 53 26 34 34 56 58 38 54 3093 1 581 772 1 1 000 1 250 08425 1117 76 65 61 86 53 36 34		8087	1	745	665	1	0	003	7	249	07940	1040	65	61	65	55	71
3090 0 000 695 1 0 000 1 261 08185 1110 68 53 60 86 43 3091 1 719 695 1 0 006 3 278 07266 0930 43 56 58 38 54 3092 1 506 772 1 0 000 5 253 07443 0822 26 67 53 26 34 36		8088	0	361	685	0	0	000	1	234	08725	1090	75	94	84	86	57
3091 1 719 695 1 0 006 3 278 07266 0930 43 56 58 38 54 3092 1 506 772 1 0 000 5 253 07443 0822 26 67 53 26 34 36 54 3093 1 581 772 1 1 000 1 250 08425 1117 76 65 61 86 54 3094 1 810 800 1 0 000 5 301 07633 0911 37 58 63 23 64 3095 1 782 800 1 0 037 5 254 08003 1123 61 67 70 40 80 3096 1 737 800 1 0 000 5 317 10064 1321 97 90 96 97 92 3097 1 737 800 1 0 </td <td></td> <td>3089</td> <td>1</td> <td>734</td> <td>695</td> <td>1</td> <td>0</td> <td>000</td> <td>5</td> <td>282</td> <td>07144</td> <td>1015</td> <td>23</td> <td>51</td> <td>39</td> <td>30</td> <td>24</td>		3089	1	734	695	1	0	000	5	282	07144	1015	23	51	39	30	24
3092 1 506 772 1 0 000 5 253 07443 0822 26 67 53 26 34 3093 1 581 772 1 1 000 1 250 08425 1117 76 65 61 86 54 3094 1 810 800 1 0 000 5 301 07633 0911 37 58 63 23 64 3095 1 782 800 1 0 037 5 254 08003 1123 61 67 70 40 80 3096 1 737 800 1 0 000 1 310 10064 1321 97 90 96 97 92 3097 1 737 800 1 0 000 5 317 07454 0973 37 57 62 32 52 3098 1 679 800 1 0 000 3 </td <td></td> <td>3090</td> <td>0</td> <td>000</td> <td>695</td> <td>1</td> <td>0</td> <td>000</td> <td>1</td> <td>261</td> <td>08185</td> <td>1110</td> <td>68</td> <td>53</td> <td>60</td> <td>86</td> <td>43</td>		3090	0	000	695	1	0	000	1	261	08185	1110	68	53	60	86	43
3093 1 581 772 1 1 000 1 250 08425 1117 76 65 61 86 56 3094 1 810 800 1 0 000 5 301 07633 0911 37 58 63 23 64 3095 1 782 800 1 0 037 5 254 08003 1123 61 67 70 40 80 3096 1 737 800 1 0 000 1 310 10064 1321 97 90 96 97 92 3097 1 737 800 1 0 000 5 317 07454 0973 37 57 62 32 52 3098 1 679 800 1 0 000 3 288 08131 1123 54 51 53 44 69		3091	1	719	695	1	0	006	3	278	07266	0930	43	56	58	38	54
3094 1 810 800 1 0 000 5 301 07633 0911 37 58 63 23 64 3095 1 782 800 1 0 037 5 254 08003 1123 61 67 70 40 80 3096 1 799 800 1 0 000 1 310 10064 1321 97 90 96 97 92 3097 1 737 800 1 0 000 5 317 07454 0973 37 57 62 32 54 3098 1 679 800 1 0 000 3 288 08131 1123 54 51 53 44 69		3092	1	506	772	1	0	000	5	253	07443	0822	26	67	53	26	34
3095 1 782 800 1 0 037 5 254 08003 1123 61 67 70 40 80 3096 1 799 800 1 0 000 1 310 10064 1321 97 90 96 97 93 3097 1 737 800 1 0 000 5 317 07454 0973 37 57 62 32 52 3098 1 679 800 1 0 000 3 288 08131 1123 54 51 53 44 69		3093	1	581	772	1	1	000	1	250	08425	1117	76	65	61	86	59
3096 1 799 800 1 0 000 1 310 10064 1321 97 90 96 97 92 3097 1 737 800 1 0 000 5 317 07454 0973 37 57 62 32 52 3098 1 679 800 1 0 000 3 288 08131 1123 54 51 53 44 69	1.1	3094	1	810	800	1	0	000	5	301	07633	0911	37	58	63	23	64
3097 1 737 800 1 0 000 5 317 07454 0973 37 57 62 32 52 3098 1 679 800 1 0 000 3 288 08131 1123 54 51 53 44 69	1.1	8095	1	782	800	1	0	037	5	254	08003	1123	61	67	70	40	80
3098 1 679 800 1 0 000 3 288 08131 1123 54 51 53 44 69		8096	1	799	800	1	0	000	1	310	10064	1321	97	90	96	97	93
		8097	1	737	800	1	0	000	5	317	07454	0973	37	57	62	32	52
3099 1 793 820 1 1 000 5 276 07380 0899 38 56 51 46 34	1	8098	1	679	800	1	0	000	3	288	08131	1123	54	51	53	44	69
	3	8099	1	793	820	1	1	000	5	276	07380	0899	38	56	51	46	34

Data	Set	3	Conti	inued
------	-----	---	-------	-------

3100	1	654 8	B75	1	0	000	7	271	08487	1080	75	65	73	62	80
3101	1	837 8	875	1	0	000	3	306	09693	1090	68	75	71	67	64
3102	0	000 B	875	1	0	000	5	224	07076	1050	57	78	80	44	71

APPENDIX B

LATR Program subjects

Total Number of Subjects	=	Number=79
LATR Results (R)	=	Pass=69, Fail=10, % Fail=12.7
Performance (PERF)	=	Mean=737.795, SD=138.511
Sex (S)	=	Males=73, Females=6, 7.6%
Varsity Athletics (A)	×	Number=7, 8.9%
Prior Flying Experience	=	Number=29, Mean time=12.759
SAT Scores (SAT)	Ŧ	Mean=1104.734, SD=132.351
University GPA (GPA)	=	Mean=2.778, SD=45.893
AFROTC Quality Index Score	=	Mean=86.107, SD=10.941
Academic Majors		
	=	Number=22
	=	
Engineering	=	Number=19
Aviation Science	=	Number= 2
Business	=	Humber 15
Computer Science	=	••••••••
Other	=	Number= 8
Air Force Officer Qualifying		5
Academic Achievement	=	
Pilot	=	
Navigator	=	
Verbal	=	Mean=62.810, SD=21.149

- Pilot
 =
 Mean=69.620, SD=14.655

 Navigator
 =
 Mean=69.101, SD=16.521

 Verbal
 =
 Mean=62.810, SD=21.149

 Quantitative
 =
 Mean=65.253, SD=19.942

LATR Program Subjects

Total Number of Subjects	=	Number=90
LATR Results (R)	=	Pass=76, Fail=14, % Fail=15.6
Performance (PERF)	=	Mean=733.753, SD=126.967
Sex (S)	=	Males=90, Females=0
Varsity Athletics (A)	H	Number=12, 13.3%
Prior Flying Experience	=	Number=38, Mean time=15.211
SAT Scores (SAT)	=	Mean=1142.444, SD=139.005
University GPA (GPA)	=	Mean=2.822, SD=47.485
AFROTC Quality Index Score	=	Mean=88.772, SD=10.449
Academic Majors		
	=	Number=17
Math and Physics		Number= 9
Engineering	=	Number=34
Aviation Science	=	Number= 6
Business	=	Number=13
Computer Science	=	Number= 7
Other	=	Number= 4
Air Force Officer Qualifying	Tes	ting
Academic Achievement		Mean=66.978, SD=18.959
Pilot		Mean=72.133, SD=12.676
Navigator		Mean=72.300, SD=14.449
Verbal		Mean=64.278, SD=21.341
August the states		

- = Mean=72.133, SD=12.076= Mean=72.300, SD=14.449 = Mean=64.278, SD=21.341 = Mean=66.878, SD=17.964

LATR Program Subjects

Total Number of Subjects	=	Number=96
LATR Results (R)	=	Pass=85, Fail=11, % Fail=11.5
Performance (PERF)	=	Mean=727.293, SD=110.801
Sex (S)	=	Males=89, Females=7, 7.3%
Varsity Athletics (A)	=	Number=14, 14.6%
Prior Flying Experience	=	Number=54, Mean time=
SAT Scores (SAT)	=	Mean=1054.604, SD=136.967
University GPA (GPA)	=	Mean=2.800, SD=0.411
AFROTC Quality Index Score	=	Mean=84.435, SD=10.181
Academic Majors Social Science Math and Physics Engineering Aviation Science Business Computer Science Other	= =	Number=20 Number= 4 Number=21 Number= 4
Air Force Officer Qualifying Academic Achievement Pilot Navigator		Mean=60.344, SD=20.742 Mean=68.135, SD=14.894

- = Mean=67.385, SD=15.531
 = Mean=57.990, SD=21.690
 = Mean=61.948, SD=21.058

Verbal

All Subjects/Composite Group LATR Program

Total Number of Subjects	=	Number=265
LATR Results (R)	=	Pass=230, Fail=35, % Fail=13.2
Performance (PERF)	=	Mean=732.659, SD=124.758
Sex (S)	H	Males=252, Females=13, 4.9%
Varsity Athletics (A)	н	Number=33, 12.5%
Prior Flying Experience	н	Number=121, Mean time=15.488
SAT Scores (SAT)	H	Mean=1099.381, SD=140.748
University GPA (GPA)	=	Mean=2.801, SD=0.446
AFROTC Quality Index Score	=	Mean=86.407, SD=10.622
Academic Majors Social Science Math and Physics Engineering Aviation Science Business Computer Science Other		Number=62 Number=25 Number=73 Number=12 Number=47 Number=15 Number=31
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative		

LATR Fail Group (Unsuccessful Subjects Only)

Total Number of Subjects	=	Number=35
LATR Results (R)	=	Fail=35, % Fail=100
Performance (PERF)	=	Mean=452.160, SD=102.853
Sex (S)	-	Males=33, Females=2, 5.7%
Varsity Athletics (A)	=	Number=0
Prior Flying Experience	=	Number=8, Mean time=3.875
SAT Scores (SAT)	=	Mean=1111.800, SD=142.621
University GPA (GPA)	×	Mean=2.882, SD=0.450
AFROTC Quality Index Score	=	Mean=86.907, SD=10.343
Academic Majors Social Science Math and Physics Engineering Aviation Science Business Computer Science Other	3 II 11 II	Number= 0 Number= 7 Number= 1
Air Force Cfficer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative		Mean=64.143, SD=17.471 Mean=66.200, SD=14.465 Mean=65.457, SD=14.754

LATR Pass Group (Successful Subjects Only)

Total Number of Subjects	=	Number=230
LATR Results (R)	=	Fail=230
Performance (PERF)	=	Mean=763.148, SD=81.437
Sex (S)	=	Males=219, Females=11, 4.8%
Varsity Athletics (A)	=	Number=33, 14.3%
Prior Flying Experience	=	Number=113, Mean time=16.310
SAT Scores (SAT)	æ	Mean=1097.491, SD=140.679
University GPA (GPA)	=	Mean=2.789, SD=44.584
AFROTC Quality Index Score	Ħ	Mean=86.331, SD=10.684
Academic Majors		
	-	Number=51
		Number=22
Engineering		Number=64
Aviation Science		Number=12
Business		Number=40
Computer Science		Number=14
Other		Number=27
Air Force Officer Qualifying	Tes	ting
Academic Achievement		Mean=64.004, SD=19.979
Pilot	=	

- = Mean=70.504, SD=14.050
 = Mean=70.191, SD=15.617
 = Mean=61.009, SD=21.349
- Quantitative = Mean=65.239, SD=19.810

Navigator Verbal

Prior Flying Experience Group (Greater than 4 Hours)

Total Number of Subjects	= Number=85
LATR Results (R)	= Pass=82, Fail=3, % Fail=3.5
Performance (PERF)	= Mean=778.200, SD=97.293
Sex (S)	= Males=80, Females=5
Varsity Athletics (A)	= Number=10
Prior Flying Experience	<pre>= Number=85, Mean time=21.059</pre>
SAT Scores (SAT)	<pre>= Mean=1063.965, SD=137.916</pre>
University GPA (GPA)	= Mean=2.773, SD=0.494
AFROTC Quality Index Score	= Mean=84.416, SD=11.311
Math and Physics Engineering	<pre>= Number=21 = Number= 5 = Number=23 = Number= 6 = Number=20 = Number= 2 = Number= 8</pre>
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative	Testing = Mean=59.788, SD=19.446 = Mean=71.400, SD=13.603 = Mean=68.765, SD=14.750 = Mean=58.424, SD=21.062 = Mean=61.082, SD=20.002

Zero Flying Experience to 4 Hours Total Experience Group

Number of Subjects	=	Number=170
LATR Results (R)	=	Pass=151, Fail=32, % Fail=21.1
Performance (PERF)	=	Mean=709.888, SD=130.856
Sex (S)	=	Males=172, Females=8
Varsity Athletics (A)	=	Number=23
Prior Flying Experience	=	Number=0, Mean time=0
SAT Scores (SAT)	=	Mean=1116.106 SD=139.334
University GPA (GPA)	=	Mean=2.814, SD=42.332
AFROTC Quality Index Score	=	Mean=87.347, SD=10.178
Academic Majors Social Science Math and Physics Engineering Aviation Science Business Computer Science Other		Number=41 Number=20 Number=50 Number= 6 Number=27 Number=13 Number=23
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative		Mean=66.022, SD=19.459

80

Subjects not Varsity Athletics

Total Number of Subjects	=	Number=232
LATR Results (R)	=	Pass=197, Fail=35, % Fail=15.1
Performance (PERF)	=	Mean=728.748, SD=129.290
Sex (S)	=	Males=222, Females=10, 4.3%
Varsity Athletics (A)	=	Number=0
Prior Flying Experience	=	Number=110, Mean time=15.245
SAT Scores (SAT)	=	Mean=1099.371 SD=138.643
University GPA (GPA)	=	Mean=2.805, SD=0.449
AFROTC Quality Index Score	=	Mean=86.348, SD=10.569
Academic Majors		
Social Science	=	Number=57
Math and Physics	=	Number=23
Engineering	=	Number=63
Aviation Science		Number=10
Business		Number=41
Computer Science		Number=13
Other	=	Number=25
Air Force Officer Qualifying	Tes	ting
Academic Achievement	=	Mean=64.047, SD=19.614
Pilot		Mean=70.043, SD=13.919
Navigator	=	Mean=68.974, SD=15.724
Verhal		Noon-62 142 CD-21 201

= Mean=62.142, SD=21.381
= Mean=63.991, SD=19.965

81

Quantitative

Verbal

Varsity Athletics Group

Total Number of Subjects	=	Number=33
LATR Results (R)	=	Pass=33, Fail=0, % Fail=0
Performance (PERF)	=	Mean=758.970, SD=85.324
Sex (S)	=	Males=30, Females=3, 9.1%
Varsity Athletics (A)	=	Number=33 All
Prior Flying Experience	=	Number=11, Mean time=17.909
SAT Scores (SAT)	=	Mean=1099.455, SD=157.081
University GPA (GPA)	=	Mean=2.773, SD=43.222
AFROTC Quality Index Score	=	Mean=86.822, SD=11.145
Math and Physics Engineering Aviation Science		Number=10
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative		Mean=63.848, SD=20.094 Mean=69.182, SD=15.917 Mean=73.727, SD=13.884

Males Only

Total Number of Subjects	=	Number=252
LATR Results (R)	=	Pass=219, Fail=33, % Fail=13.1
Performance (PERF)	=	Mean=732.984, SD=123.730
Sex (S)	=	Males=252, Females=0
Varsity Athletics (A)	=	Number=30, 11.9%
Prior Flying Experience	=	Number=116, Mean time=14.922
SAT Scores (SAT)	-	Mean=1093.052, SD=139.789
University GPA (GPA)	-	Mean=2.802, SD=.449
AFROTC Quality Index Score	=	Mean=85.789, SD=10.372
Academic Majors		
Social Science	Ŧ	Number=59
Math and Physics		Number=23
Engineering		Number=71
Aviation Science	=	Number=12
Business	=	Number=44
Computer Science	=	Number=15
Other	-	Number=28
Air Force Officer Qualifying	Tes	ting
Academic Achievement		Mean=63.298, SD=19.473
Pilot		Mean=69.421, SD=13.946
Navigator		Mean=69.131, SD=15.587
Verbal		Mean=60.690. SD=21.337

- = Mean=69.131, SD=15.587 = Mean=60.690, SD=21.337 = Mean=64.052, SD=19.735

Verbal

Females Only

Total Number of Subjects	=	Number=13
LATR Results (R)	=	Pass=11, Fail=2, % Fail=15.4
Performance (PERF)	=	Mean=726.083, SD=150.176, 12N
Sex (S)	=	Males=0, Females=13
Varsity Athletics (A)	=	Number=3
Prior Flying Experience	=	Number=5, Mean time=28.600
SAT Scores (SAT)	=	Mean=1222.077, SD=99.684
University GPA (GPA)	=	Mean=2.773, SD=0.396
AFROTC Quality Index Score	=	Mean=98.384, SD=8.280
Academic Majors		
	=	Number=3
Math and Physics	=	
Engineering	=	
Aviation Science	=	Number=0
Business	Ħ	Number=3
Computer Science	ï	Number=0
Other	-	Number=3
Air Force Officer Qualifying	Tes	ting
Academic Achievement		Mean=78.077, SD=18.053
Pilot	=	Mean=79.923, SD=15.008

= Mean=79.923, SD=15.008
= Mean=78.000, SD=12.845
= Mean=78.462, SD=18.141
= Mean=75.385 SD=13.755 Navigator Quantitative = Mean=75.385, SD=17.552

Verbal

Academic Major/Social Science (1)

Total Number of Subjects	=	Number=62
LATR Results (R)	=	Pass=51, Fail=11, % Fail=17.7
Performance (PERF)	=	Mean=728.172, SD=138.085
Sex (S)	=	Males=59, Females=3
Varsity Athletics (A)	=	Number=5, 8.1%
Prior Flying Experience	=	Number=29, Mean time=16.276
SAT Scores (SAT)	=	Mean=1076.145, SD=143.635
University GPA (GPA)	=	Mean=2.734, SD=.459
AFROTC Quality Index Score	=	Mean=85.525, SD=10.293
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative		Mean=62.629, SD=19.581 Mean=68.629, SD=14.327 Mean=64.000, SD=16.049

Academic Major/Math + Physics (2)

Total Number of Subjects	=	Number=25
LATR Results (R)	=	Pass=22, Fail=3, % Fail=12.0
Performance (PERF)	=	Mean=737.833, SD=111.141
Sex (S)	Ħ	Males=23, Females=2
Varsity Athletics (A)	=	Number=2, 8.0%
Prior Flying Experience	=	Number=10, Mean time=18.100
SAT Scores (SAT)	=	Mean=1178.480, SD=124.811
University GPA (GPA)	=	Mean=3.084, SD=.445
AFROTC Quality Index Score	=	Mean=82.008, SD=11.754
Air Force Officer Qualifying Academic Achievement Pilot Navigator		Mean=72.480, SD=20.337 Mean=72.840, SD=12.766 Mean=75.880, SD=14.802
Verbal Quantitative		Mean=67.000, SD=19.904 Mean=73.680, SD=19.763

Major/Engineering (3)

Total Number of Subjects	=	Number=73
LATR Results (R)	=	Pass=64, Fail=9, % Fail=12.3
Performance (PERF)	=	Mean=739.141, SD=121.060
Sex (S)	=	Males=71, Females=2, 2.7%
Varsity Athletics (A)	=	Number=10, 13.7%
Prior Flying Experience	=	Number=30, Mean time=15.300
SAT Scores (SAT)	=	Mean=1165.795, SD=126.144
University GPA (GPA)	=	Mean=2.893, SD=.438
AFROTC Quality Index Score	=	Mean=89.881, SD=9.936
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative		ting Mean=71.178, SD=17.083 Mean=74.260, SD=14.455 Mean=76.986, SD=12.359 Mean=66.342, SD=20.817 Mean=71.973, SD=17.045

Major/Aviation Science (4)

Total Number of Subjects	=	Number=12
LATR Results (R)	=	Pass=12, Fail=0, % Fail=0
Performance (PERF)	=	Mean=764.833, SD=78.848
Sex (S)	=	Males=12, Females=0
Varsity Athletics (A)	=	Number=2, 16%
Prior Flying Experience	=	Number=7, Mean time=15.143
SAT Scores (SAT)	=	Mean=999.25, SD=117.407
University GPA (GPA)	=	Mean=2.66, SD=.371
AFROTC Quality Index Score	=	Mean=79.98, SD=8.56
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative	= = =	Mean=50.167, SD=16.364 Mean=68.667, SD=13.527 Mean=63.83, SD=16.061 Mean=48.667, SD=19.992

Major/Business (5)

Total Number of Subjects	=	Number=47
LATR Results (R)	=	Pass=40, Fail=7, % Fail=14.9
Performance (PERF)	=	Mean=732.756, SD=136.411
Sex (S)	=	Males=44, Females=3
Varsity Athletics (A)	=	Number=6, 12.8%
Prior Flying Experience	=	Number=26, Mean time=17.154
SAT Scores (SAT)	=	Mean=1049.234, SD=129.278
University GPA (GPA)	=	Mean=2.72, SD=.415
AFROTC Quality Index Score	=	Mean=83.069, SD=9.389
Air Force Officer Qualifying Academic Achievement Pilot Navigator Verbal Quantitative	= = =	ting Mean=57.936, SD=18.927 Mean=65.468, SD=12.842 Mean=65.532, SD=14.527 Mean=51.830, SD=19.492 Mean=65.000, SD=19.209

.....

Academic Major/Computer Science (6)

=	Number=15
=	Pass=14, Fail=1, % Fail=6.7
=	Mean=724.667, SD=100.723
=	Males=15, Females=0
=	Number=2, 13.3%
=	Number=7, Mean time=6.286
=	Mean=1072.133, SD=140.274
=	Mean=2.875, SD=.529
=	Mean=84.362, SD=12.169
=======================================	ting Mean=55.867, SD=21.057 Mean=71.000, SD=13.206 Mean=67.933, SD=15.586 Mean=50.867, SD=24.175 Mean=61.200, SD=18.222
	= = = = = Tes

APPENDIX C

PERF

CHE SYMBOL EQUALS APPROXIMATELY 1.00 OCCURRENCE COUNT MIDPOINT

											******	********	*******	*************************	*********	****					.+[20 30 40 50	HISTOGRAW FREQUENCY	7.813 NEDIAN 751.000	4.759	1.792 SKEWNESS -1.236	000°602 WIMINIM COO°989	106929.000
ił t	***	**	*****	***	*	*****	****	***	******	*****	***************	*********	******	*********	******	***********	*****	*****	**	***			HISTOGRA	STD ERR	STD DEV 12	S E KURT	с Б	136
275	355	388	421	4 F 4	487	520	553	586	619	652	685	719	151	784	817	850	883	915	949	585	H	o		732-659	750.000	1.908	.153	995.000
2	4	¢1	¢	n	-	ŝ	4	Ē	2	13	25	29	36	41	37	21	v	ŗ	~	r				XEAN	MOCE	KURTOSIS	S E SKEW	HAXIMUM

1,0

MISSING CASES

255

VALID CASES

COUNT	HIDPOINT	DNE SYMBUL	EQUALS APPROXIMATELY		4.00 OCCURRENCES
144	-	********	* - * * * * * * * * * * * * * * * * * *	********	
36	m	*******			
24	2	*****			
14	11	****			
α	15	**			
Ð	61	**			
v	Eč	**			
€J	27	*			
r	16	**			
4	5 E)	*			
¢۷	6£	*			
I N)	€ 4	•			
с	47				
2	51	*			
O	55				
2	59	*			
2	63	*			
o	67				
o	71				
c	75				
2	79	*			
		[+ • • • • [• • • • + • •		••••+••••[••••+••••]••••+••••]••••]••••
		0 ¢ ٺ	90	120	160 200
		SIH	HISTOGRAM FREQUENCY	NCY	
HEAN	7.072	STD ERR	.844	MEDIAN	0 • J
BODE	0.0	STD DEV	13.744	VARIANCE	6-
KURTOSIS	8.369	S F KURT	1.993	SKEWNESS	
S E SKEW	.150	RANGE	78,000	MUMINI	
MUMIXEN	78.000	504	1974.003		
VALID CASES	265	U UNISSIN	CASES 0		

۶LY

CUM PERCENT	4.55	32.8	£0.4	64.9	82°6	55.5	100.0		
VALID PERCENT	27.4	9.4	27.5	4 ° S	17.7	5.7	11.7		100.1
1237844	23.4	9.4	27.5	4.5	17.7	5.7	11.7	# 1 # # # # #	100.0
VALUE FREDIENCY	62	25	73	د ا	47	15	31	*	265
VALUE	-	~	m	4	ŝ	×	*		TRTAL
VALUE LABEL									

2

62	1.00	********************************	********	****	**
25	2.00		***		
52	3.00	*****	******	***********************************	******
12	A.00	******			
47	5.00	******************	*******	*****	
15	6.00	*******			
31	7.00	*********	*****		
		I			I I
		0 15	ÛÊ	45 6	60 75
		HISTO	HISTOGRAM FREQUENCY	NCY	
7 4	3.475	STD ERR	.122	HEDIAN	3+000
05	3.000	STD DEV	1.989	VARIANCE	3.955
21025	-1.028	S E KURT	1,993	SKEWNESS	• 358
E SKEW	.150	RANGE	6.000	MUMINIW	1 • 000
•	•				

ONE SYMBOL EQUALS APPROXIMATELY 1.50 OCCURRFNCES

VALUE

COUNT

HEDIAN	VARIANCE	SKEWNESS	MUMINIW		
.122	1.989	1,993	6.000	921 . 000	1555 0
STD ERR	STD DEV	S E KURT	RANGE	SUM	MISSING CASES
3.475	3.000	-1.028	.150	7.00	265
	300%	KURTOSIS	S E SKEW	MINIXE	VALID CASES

VALID CASES

XIMATELY .80 OCCURRENCES						****	*********	_	***	********	***											[+ I I	24 32 40	NCY.	MEDIAN 277.000	VARIANCE 1995.835	SKFWNESS .468	MININUM 189.000		
ONE SYMBOL EQUALS APPROXIMATELY	**	****	*****	******	*********	******************	***************************	*************	********	**********************	****************	********	******	**********	*******	******	*****	****	*****	****		* I I	8 16	HISTOGRAM FREQUENCY	STD ERP 2.744	STD DEV 44.575	S E KURT 1.993	RANGE 211.000	SUM 74235.000	MISSING CASES 0
TNID4GIW	185 #1	196 **	207 #1	219 #1	229 #1	240 #1	251 #1		-	-	-	306 #4		329 #1	-	350 #1	361 #4	372 #4	383 #1	394 #1	405 +	1	0		280.132	245.000	248	.150	400.000	265
COUNT	N	4	s	0	61	23	32	20	22	6 č	2.5	19	60	15	11	~	÷	F	5	F)	1				MEAN	MODE	KURTOSIS	S E SKEW	MIMIXAM	VALID CASES

GP A

3°86	98 . 9	99.2	0 0 00	100.0		
4.	۰.	۰.	۰.	4.		100.0
4.	••	۰.	•	4.	2	100.0
1	-		-	-	1111111	265
11028	11218	11562	11670	12010		TOTAL

COUNT MIDPDINT ONE SYMBOL EQUALS APPROXIMATELY .60 DCCURRENCES

		******	******	*****	******	亲亲亲亲亲亲弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟弟	************************	***	*****	****											+ I I I	19 24 30	ENCY	MEDIAN 8526+000	VARIANCE 1128392.11	SKEWNESS .481	000*8289 MANIMINIM	
*****	*******	******	*******	*****	******	*******	******	******	******	*******	*****	******	*****								I • • • + • • • • I • • • • + • • • I	12	HISTOGRAM FREQUENCY	65.254	1062.259	1.993	5172.000	2289789•00
******	*******	**********************	********************	****************	*******	*******	******	******	******************	*****************	*********	*******	***********	*****	*****	*****	**		***	**	I I I	v	SIH	STD ERR	STD DEV	S E KURT	RANGE	NUS
6954	7201	7449	2692	7942	818	8436	8583	930	2216	9424	9671	8166	10165	10412	10659	10906	11153	11400	11647	11894	-	0		8640.713	9002.000	204	.150	12010.000
13	14	50	12	18	22	26	40	16	20	19	12	12	12	4	4	ŝ	1	0	~					MEAN	MODE	KURTOSIS	S E SKEW	MUMIX

.'

c

MISSING CASES

265

VALID CASES

SIじ

SATE

COUNT WICPOINT ONE SYMBOL EQUALS APPROXIMATELY .80 OCCUPPENCES

						******	*****	****	*******************************	*****		****									[• • • • • • • • • • • • • • • • • • •	24 32 40		46 MEDIAN 1106.000	VARIANCE 1	93 SKEWNESS .115	00 MINIMUM 745.000	00
			****	******	*******	*******	**************	*******	********	*********	*****	**********	****	****	****							16	HISTOGRAM FREQUENCY	8.646	14	T 1.993	717.000	291336.000
****	****	******	******	*******	********	******	*******	*******	*******	********	******	*******	****	*********	*****	*****	***	+	***	+	[• • • • • • • • •]	с В	I	STN ERR	STD DEV	S F KURT	RANGE	MULS
961	829	364	66¥	934	969	1004	1039	1074	1109	1144	1179	1214	1249	1284	1319	1354	1389	1424	1459	1494		~		1099.391	1090.000	289	.150	1502.000
đ	ŝ	8	11	16	21	22	23	19	36	21	14	22	11	12	EI	υ.	~	-	~	-				MEAN	MODE	KU970SIS	S F SKEW	MINIXAN

0

MISSING CASES

255

VALTD CASES

.60 OCCURRENCES 0 390.315 -.259 64.000 17-000 *********** \$ \$ ************** ************************ SKENNESS VARIANCE ********************** MUMINIH *********************** MEDIAN ONE SYMBOL EQUALS APPROXIMATELY ********** ****************** 18 **************** HISTOGRAM FREQUENCY 1.214 ************ 1.993 82.900 ********** 17121+000 *********** 2 ********** ******** ******* 5TD 548 5TD 264 5 6 Kurt ******** Ś ****** ******* RANGE ******* SUM **** *** * c 8 a 2 0 0 4 0 N 0 m m m 4 4 0 4 8 N 9 9 9 9 9 9 86 90 46 MIDPOINT 64.608 90.000 .150 -.919 - A M O O A M O A COUNT KURTOSIS S E SKEW MIMIXIM AODE NEAN

0

MISSING CASES

500

VALID CASES

95.1	97.0	38.5	99.6	100.0		
2.6	1.9	1.5	1.1	••		100°0
2 . 6	1.9	1.5	1.1	4.	1 4 1 2 1 1 1	100.0
~	ις.	4	n	1		265
94	95	96	۷Ą	e 6		10101

COUNT MIDPOINT CHE SYMPOL EQUALS APPROXIMATELY .50 OCCURRENCES

				*****	***********	*******************************	***	******	***********	****	****	******************************	**		***	*******					* • • • • I • • • • * • • • • I • • • •	15 20 25		MEDIAN 69.000	VAPIANCE 200.310	SKERNESS	MINIMIN 41.000	
		**		******************	********	********	****************	********	*******	****************	********	*********	**************	************	********	********		******	*********			10	HISTOGRAM FREQUENCY	696.	14.153	1.993	57.000	18533.000
	**	********	******	*******	*******	********	*********	********	*******	*******	*******	********	********	*******	******	******	*******	***********	********	**	[• • • • + • • • •] • • • • • • • • • •	ſ	S14	STD 588	STr DEV	S E KURT	RANGE	NUS
39	4 Q	4 J	€ 4	51	54	52	60	63	66	69	72	75	78	81	84	A 7	06	59	96	66	1	0		69°936	75.000	983	.150	000-96
c	1	7	4	15	22	22	14	19	21	15	14	Ēč	[]	12	14	19	Ŷ	10	5	1				N & M J	11 C O X	KUGTCSIS	S E SKEW	MUWIXEN

0

MISSING CASES

265

VALID CASES

٦L

- 18 - 18 - 18 - 18	91.5	8.J. 4	84.9		89°3	87.1	91.7	2	93.2	5.	96.2		99.5	100.0		
50 F • 0 • 0	8.	1.9	1.5	1.5	1.9	.	3•5	۰.	1.1	1.9	1.1	2.6	ес •	4	100.0	1 1 1
ir € • € • €		1.9	1.5	1.5	9-1	e. •	2.6	۰ ۵	٠	1.9	٠	2 • 5	6	• •	100.0	
4 W	8	n	4	4	ŝ	2	7	-	er)	ſ	n	~	c 1	1	265	
6. 8. 6	5° 5.	A A	57	U C.	6 80	ن ٥	۱ó	ćů	۲, σ	40	0 ۲	96	70	96	TCTAL	

CHUNT MINPHINT DNE SYMPOL EQUALS APPROXIMATELY .60 DCCURRENCES

***	**	*****	***	*************	******	安安安安大学大学安安安安安安安安安安安	*****	***************	****	专家会议事件"本书学家书书》》的"书书书书书书书书书书书书书书书书书书书书书书书书书书书书书书书书书	*****	*****	*****	*****	年古安安东大广东学士学家大贵族会古法法文的安安安安安安安安安安安安	*****	计数据数字 计计计计算机 化合金合金合金合金合金合金合金合金合金合金合金合金合金合金合金合金合金合金合金	学校会会会长大大大学会会大会会	*****	****	[• • • • • • • • 1 • • • • • • • • • •	r 6 12 18 24 30	HISTJGRAM FREQUENCY
31.33	34.67	36.00	55.14	44.67	49.00	51.33	54.67	23.00	51.33	64.67	69.01	71.33	74.67	<u> 19.60</u>	EE®le	72.4a	00-25	EF.16	74.67	98.00		•	
_									19	30								C -					

Ž

T014L 265 100.0 100.0

COUNT MIPODINY ONE SYMMPLE EQUALS APPROXIMATELY .50 OCCURRENCES

c

HISSING CASES

265

VALID CASES

R.A.		8.0A	0°00	92.1	93.6	05.1	0.70	98.5	98 .9	100.0		
4	1.7	1.5	1.1	1.1	1.5		c•1	1.5	4.	1.1		100.0
4.	1.9	1.5	1.1	1 • 1	1.5	1.5	1.7	1.5	4.	1•1		100.0
-	r	4	r	m	٩	4	ŝ	4	-	m	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	255
4	а.	63	C 0	ιċ	¢ C	10	3 5	16	đ	60		TOTAL

COUNT WIDPDINT DNE SYMPOL EQUALS APPRAXIMATELY .60 DCCUPRENCES

								******************************			****	**************************	*****	******	******	******					[18 24 30	QUENCY	MEDIAN 67.000	VARIANCE 385.553	SKEWNESS 206	MINIMUM 21.000		
				*********	***	*********	_	******	********	********	********	******	*********	*********	*********	*********	********	********	***			; I 1	HISTOGRAM EREQUENCY	1.205	19.635	1.993	79.00	15956.000	
***	******	********	********	***************	**********	*************	*********	******	************	******	***************	*******	****************	****************	***************	**************	********	**************	********	******	[9 0	511	STD FHR	STD DEV	S E KURT	RANGE	SUM	
20	24	28	6.' F)	9E	•	44	6 4	52	56	60	54	69	72	26	C M	84	6. 60	56	96	0 u 1				64.723	52.000	973	.150	000.00	
2	4	÷	Ŷ	•	•	14	2	27	14	13	15	12	17	18	18	19	13	14	c	4				HEAN	MODE	KURTOSIS	S E SKEW	MUMIXAM	

0

MISSING CASES

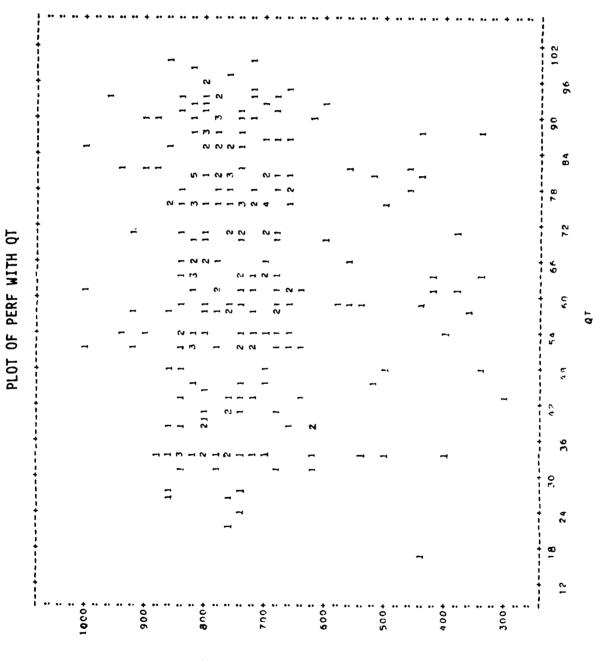
265

VALID CASES

* *

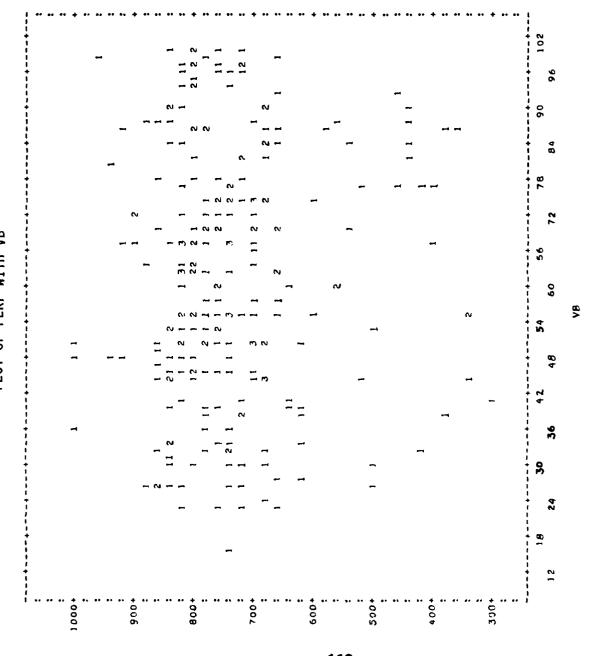
APPENDIX D

DF KF	SATE	GPA	×	FLY	NEWFL Y	PL	24	ŝ	77	615
1.0000	0330	0320	-019R	##UE82"	2586##	**1623**	.2056**	.0272	.0767	.0588
OEEO.	1.0000	**243**	**004*	0532	.1732*	**112**	.5532**	**272**	***269*	.7963**
0320	* * * * * * *	1.0000	•1894**	0520	• C • 3 •	.0411	.1367	.1315	.1979##	.5048**
9610	**0008*	•1894##	1.0000	0293	.1485#	**161**	.6573**	*#658*	• 7938 + +	. 8182**
.2830**	0532	0520	0293	1.0000	7006**	.1750+	.0175	.0156	E++0	0196
2586**	.1732*	•0434	.1485*	7006++	1.0000	0712	•0355	.1005	.1225	.1290
1622*	**1124.	• 0411	**162	.1750*	0712	1.0000	.8036**	*3582**	**615**	**117**
.2056**	*\$235*	.1367	+6573++	.0175	.0355	**9036*	1.0000	.3325##	.7765**	.5665**
0272	* \$ 6972 * *	.1315	*8420 * *	•0156	.1005	.3582**	.3325**	1.0000	.3607##	* #01 08*
.0767	***234**	**6161*	-7938++	0443	.1228	**626**	.7765**	.3607**	1.0000	**1663.
• 0548	*+E962*	• 5048**	.8182**	0196	.1290	•4117**	.5665**	**079*	• 6631 ##	1.0000


* * * * * *

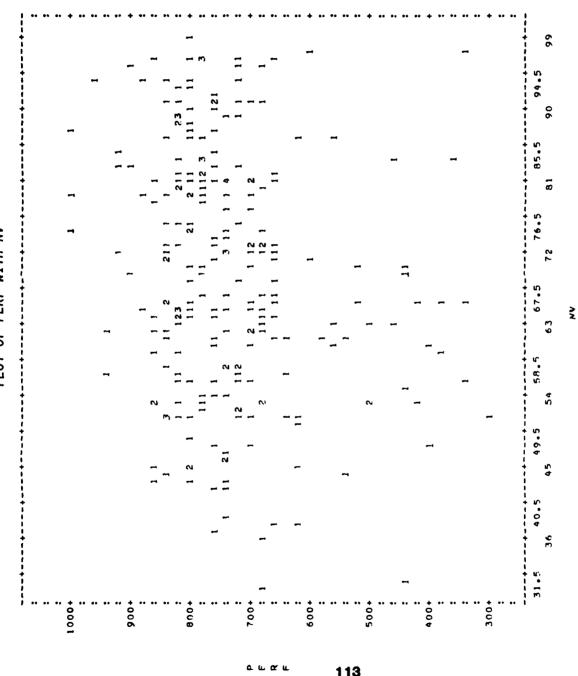
COEFFICIFNTS

CORRELATION

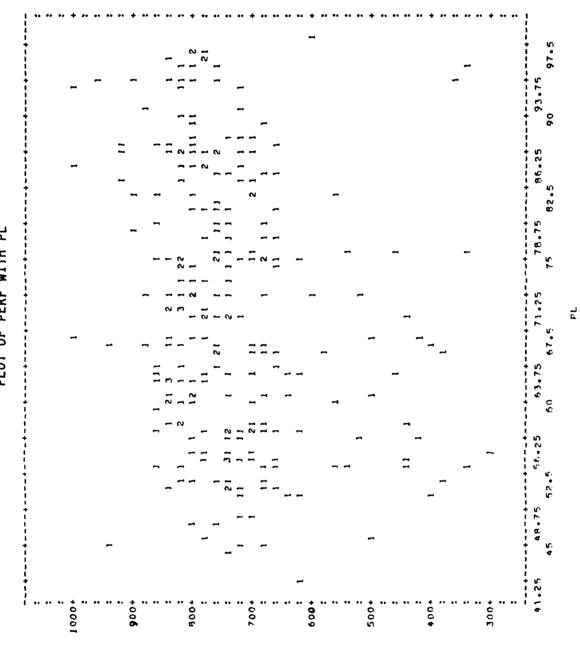

P E A R S D N

APPENDIX E

255 CASES PLOTTED.


111 **a. w a u**

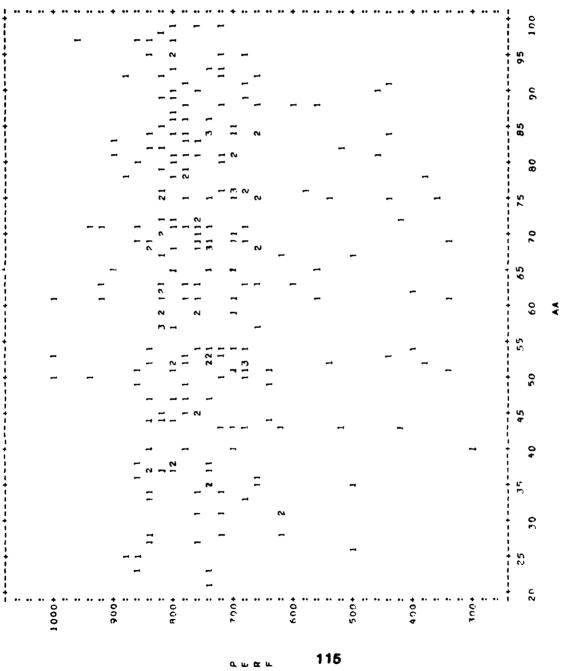
PLOT OF PERF WITH VB


awau 112

255 CASES PLOTTED.

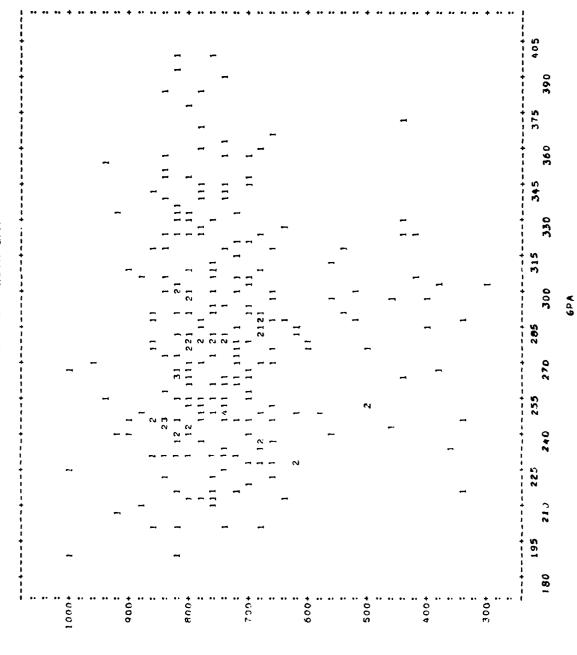
PLOT OF PERF WITH NV

255 CASES PLOTTED.

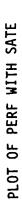

PLOT OF PERF WITH PL

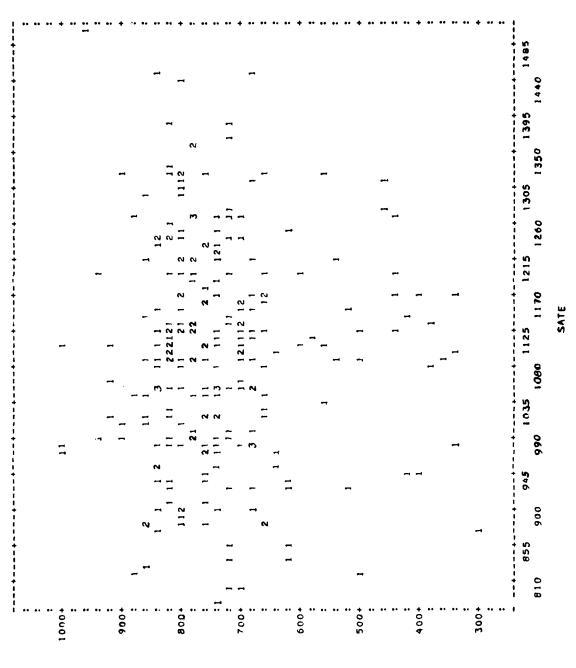
255 CASES PLOTTED.

114


. . . .

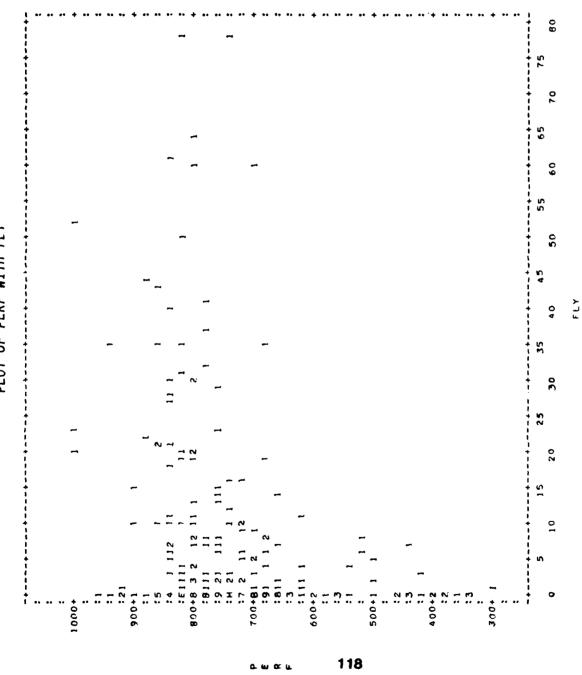
م س م س


255 CASES PLOTTED.



PLOT OF PERF WITH GPA

255 CASES PLUTTED.


awar 1

255 CASES PLOTTED.

<u>awa</u> 117

PLOT OF PERF WITH FLY

255 CASES PLOTTED.

or u

DATA INFORMATION

265 UNWEIGHTED CASES ACCEPTEN.

SIZE OF THE PLOTS

HORIZONTAL SIZE IS 80 Vertical size is 40 FREQUENCIES AND SYMBOLS USED (MOT APPLICABLE FOR CONTROL OR OVERLAY FLOTS)

>	≯	×	≻	N	*				
,	ī	•	I.	1	,				
ЗI	32	55	3 4	3E	36				
ر	z	z	0	٩	0	۵	s	۲	5
1	I	1	I.	I.	I.	I.	I.	ŧ	I.
21	22	23	24	25	26	27	28	29	0 E
Ð	υ	٥	Ŀ	L	ی	1	I	7	¥
I.	I	1	1	I	1	1	١	1	١
11	12	E	4	15	16		18	19	20
1	~	Ē	4	ŝ	ŝ	2	œ	ø	<
I.	I	I.	٠	i	1	ſ	ſ	1	ŧ
-	~	m	4	ŝ	¢	~	œ	o,	10

APPENDIX F

GROUP	GROUP 2 - R	9 G 19 G	•										
							~ •	• PONLED	PONLED VARIANCE F	FSTIMATE *	SEPARATE	VARIANCE	ESTIMATE
1 AA 1	VARTABLE 	NUMPER OF CASES		STANDARD DEVIATION	STANDAPD ERRAR	* F * VAL.UF	2-TAIL + F PCOP. +	T VALUF	DFGPEES NF Freedom	2-TAIL * PROB. *	T VALUE	DEGREES DF Freedom	2-TAIL Prob.
FLY	6ADUP 1	35	1.PP47	1.91	0.120	, , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·		2 6 6 7 8 7 7 7			4 8 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	รมมุร	230	ч€(ч, ч	14.509	n. 957	* * *	• • • •		263	* * * * 00 • 0	-7.07	261.06	0000
SATE	GRAUP 1	35	1111.8000	142.621	24.107) 1 1 1 1 1 1 1 1 1 1 1 1			8 3 1 1 1 1 2 3 3 4	
	6R3UF 2	230	1002.001	140.679	9.276	FC-1 +		ن ن ن ن ن ن	263	0.576 *	0.55	44°67	0.582
6 P A	GROUP 1	35	288.2265	45.069	7.618								
	6RNUP 2	230	276-9000	44°5'84	2 ° 0 ° 0	*]•05	• • •	1.15	263	0.251 *	1.14	44.73	0.259
~ ~ ~	GROUP 1			17.471			1					8 9 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
23	64JUP 2	530	64.0043	19.979	1.317	F	- 0.352 +	4 U • U	263	* * *	0.04	49.59	0.966
1	6R011P 1	5 E					1		, , , , , , , , , , , , , , , , , , ,		f f f f f f	1 1 1 1 1 1 1 1 1	
	GROUP 2	ŰE Z	70.45043	14.050	0.926 0	κο	* 0 * 77 • 0 *	a	263	* * * * * *	-1.65	66 • 44	0.107
	L GUDAS		65.4571	14 . 754			1		, , , , , , , , , , , , , , , , , , ,			1 1 1 1 1 1 1 1)
	GROUP 2	230	£ [61°02	15.617	1.040		* 0.715 *	4 . 1 .	263	* * * * 60°u	-1.75	46.3B	0°066
E N	GROUP 1	, , , , , , , , , , , , , , , , , , ,		22.506	4 C & + F		1		; 				
	6R0UP 2	0£2	1900-19	21.349	1.408		* 5F0*0	1.07	263	0.284 *	1.03	43.83	0.307

 POCLEN VARIANCE ESTIMATE * SEPARATE VARIANCE EST 2-TAIL * T DEGREES OF 2-TAIL * T DEGREES OF 2 PROP. • VALUE FREEDOM PRAB. • VALUE FREEDOM 0.849 • -1.34 °63 0.183 • -1.37 45.78 0.855 • 0.30 263 0.183 • -1.37 45.76 0.855 • 0.30 263 0.766 • 0.31 45.76 0.086 • -17.64 253 0.000 • -14.63 27.37 	, , ,	1	· · · · · · · · · · · · · · · · · · ·	• • • •	1		+	ں ا	- + v	•	1 1 1	1 1 1 1	1	•	1 1 1	1		
Indec Number Stainach Staina Staina	duna.		67 (L	• •				ı	6									
IABLE NUMBER STAINARD STAI		:	5							•	POCLED	VARJANCE	ESTIMAT		SEPARATE	VARIANC	E ESTI	EMATI
GROUP 1 15 6.4571 19.150 3.230 1.07 0.849 1.13 -1.37 45.78 GROUP 1 35 230 65.230 1.306 1.306 1.07 0.849 1.13 9.137 45.78 GROUP 1 35 8 1.306 1.306 1.306 1.306 1.306 1.376 45.78 GROUP 1 35 8 1.306 1.306 1.306 1.306 45.76 GROUP 2 230 8631.10.3 1068.437 70.451 1.07 0.855 0.30 763 0.31 45.76 GROUP 2 230 8631.10.3 1068.437 70.451 1.07 6.766 0.31 45.76 GROUP 2 230 763.166 10.263 20.571 1.66 0.31 45.76 GROUP 2 230 763.137 70.671 1.66 0.016 217.64 23 0.316 14.53 27.37	. 1961	BLE	NUMAER Of Cases	A F A Z	STAHLARD DFVIATION	STAMDADD ERROR	• • •	F VALUE	2-TAIL PROR.	* * *	T VALUE	DEGPEES (Frefom	15 2-1A1	• • •	T VALUE	DEGREES Freedo		2-7A1L Prob.
GROUP 1 35 RKON.7103 1034.383 174.843 4 1.07 0.855 4 0.30 263 0.766 4 0.31 45.76 GROUP 2 230 RKT1.1041 1068.437 70.451 4 1.07 0.855 4 0.30 263 0.766 4 0.31 45.76 F GROUP 1 25 452.1600 102.953 20.571 4 1.60 0.086 4 17.64 253 0.000 4 -14.63 27.37 GROUP 2 230 763.1678 91.437 5.370 4 1.60 0.086 4 17.64 253 0.000 4 -14.63 27.37	; 1 1 1 ⊨	CROWP 1	35	1 2 5 8 - CX	•	3.230		1.07			, + , + , - , -		0.183	; ; * * * * * * ;	76.1-		0 0 0 1	0.178
GROUP 1 25 452.1660 102.953 20.571 * * * * * * * * * * * * * * * * * * *		6.800 1 C		8601.7103 8633.1043	1			1.07	,	* * * * * *	0 M + C	F95	0.766	; ; * * * * * * ;	0.31	45.75		0.761
	•	GROUP	1 1 1	457.1670 763.1670	102.953 102.953			۱ • وی			-17.64	253	000.0	1	-14.53	27.37		

40069	< < - Cl	5 0 5 0							+ PD0LED	VAP1ANCF	FSTIMATE *	SEPARATE	VARIANCE	ESTIMATE
VARIABLE	BLE	B ¥ V V	ш 3.	STANDARD DEVLATION	STANDARD ERROR	• • •	r Valuf	2-TAIL PPOR.	* * T * value	DEGREES DF Freedom	* 2-TAJL * PROP. *	T VALUE	DEGREES OF Freedom	2-TAIL Prob.
1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	GROUP 1	222	720.7477	129+290	R.677	• •						- - - - - - - - - - - - - - - - - - -	1 6 7 7 7 1 1	
	640UP		3.969	85.	14-853	• • •	2•30	0.006	0m•1: •	565	0•195 *	01.1-	20.00	• • • •
SATE	GROUP 1	232	1099.3707	138.643	301°6	+ + •								
	GR00P 2	11	1099.4545	157.081	27.344	• • •	1•28	FOF •0	00•0- • • •	592	• • •	00.0-	24.50	966 0
GP A	6 GIUD 1	232	2123.ng	44.955	2.951	++	1	1 1 1 7 1 1 7		6 1 2 3 5 6 1		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	f 1 1 1 1 1 1 1 1	
	GROUP 2	11	9596.774	43.222	7.524	* • •	1.08	6-9-0	86.0 * *	505	• • • •	0•39	42.47	0 • 701
	GROUP 1	232	64.6474	19.61	1.209	**						3 8 8 9 9 9		
125	6.ROUP 2	Ç£	4	20.094	£ú†*€	• • •	1.05	0.803	***	263	* * *	\$0°C	41.15	0.958
	GROUP 1	232	150.07	610*11	0.914					1 1 1 1 1 1 1				
	۵		60		2.771	• • •	1	0.269	n n c	503	* * *	0 • 30	39•28	0 • 7 6 9
2	1 20085	232			1 - 032									
	GROUP 2	66	F727.E7	•	2.417		47 • I	0.404	· · · ·	5.0.2	* * *	16.1-		
8	6 ROUP 1	232	62.1422	195.15		• • •								
	GROUP 2	E E	57.4848	12.294	3.401	• •	60.		<u>-</u>	5627		• 1 • 1	20.04	002.0

			5												
GROUP 2	× , × 0	EG	-						٠	PONLED	PUNLED VARIANCE ESTIMATE	STIMATE 4	* SEPARATI	SEPARATE VARIANCE ESTIMATE	STIMATE
ARIJ	VARIABLE	NUMBER Df cases	MEAN	STANDARD Deviation	STANDARD Error	* * *	r Value	F 2-TAIL Value Pror.	* * *	T VALUË	DEGREES OF 2-TAIL Freedom Pror.	2-TAIL	+ T + VALUE	DEGREES OF Freedom	2-TAIL PR08.
Q.T.	ат скоир 1 6 коир 2	1 1 5	v 6 6 • 8 9	1 1 1	1.3)1 3.116	• • • • • •	1.24	0.468	• • • • • •	- 1 - 35	263	0 • 1 7 9	¢ 7 1	E I • 44	0.150
S 1 9	680UP 1 680UP 2 680UP 2	232 232 33	4634.8103 N682.2121	1114	40E . 69 402 . 92	* * * * *		6£9•0	* * * * *	-0.24	263	0.811	6 2 -	40.62	619*0
, , , , , , ,	620UP 2	2		12.975	2.259	****		0.672	*****	64.0	263	0 - 62 - 3	0.52	43.09	0.608

40085			5.00						+ PODLED	L VARTANCE	ESTIMATE	*	SEPARATE VARIANCE E	ESTIMATE
VARIABLE	18LE	NUMBER OF CASES	N N N N N N N N N N N N N N N N N N N	STANDARD DEVLATION	STANDARD ERRAR		F VALUE	2-TAIL PR08.	* T * VALUE	NEGREES OF Je Freenom	0F 2-TAIL M PR08.	. + T . + VALUE	DEGREES OF Freedom	2-TAIL PR08.
1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	GROUP 1	58	778.2000	97.293	10.553			f J / / I / (I / (I / (I / ()))						
	6R0UP 2	170	709.8892	130.856	10-036	* * *	1.61	600.0	\$ * *	522	00000	* * *	216.60	000.0
SATE	1 30089	ι Γ	1063.9647	137.916	14.959	**								
	6ROUP 2	180	s, c	139.334	10.385	* * *	1.02	0.931		502	600°0	0 9 9 1 1 1 1 1 1	cc•001	c00•0
GPA	1 411085	56	277.3176	914°04	5,360	↓ ↓ ↓ ★ ★ ↓		7 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1						
	5 GRUND 2	190	4	42,332	3 - 1 5 5	* * *	1.36	0 * 0 ¥ ð	0/ • 0 • 0 • * *	6 6 2	2 ¥ ¥ * C			
	GROUP I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19.446	2 * 109							**		
27	GROUP 2	1 R.G	66.C222	19-459	1.450	* * *	00.1	1.000	n er • • • •	692 E	910-0	44 •	164.92	
р Г Г	1 40085			E09*E1	1 - 4 - 5	, 	1 1 1 1			 			- - - - - - - - - - - - - - - - - - -	
		1 A O	¢ ¢	14.391	1.073	* * *	1 • 12	0.566	* * - • 10	6 263	0 • 2 • 8	«	173.50	662.0
	GROUP 1			14.750	1 • 609	; ; ; + + ·	1 1 1 1		· · · · · · · · · · · · · · · · · · ·	1 7 1	, , , , , , , , , , , , , , , , , , ,		- - - - - - - - - - - - - - - - - - -	
	2 anuu	1 R ()	ġ	15.957	1.189	* * *	1.17	6 6 • 0	8: 	26.9	5 2 2 2	+ + +	177.1	6 9 9 9
	GROUP 1		58,4235	21.062	2.284					1 2 1 3				
	GR011P 2	180	F. P444	21.615	1.611		со • †	006-0	* - - -				c	

9ROUP	GROUP 1 - NEWFLY	.Y FG	1.00												
d1)บชร	GROUP 2 - NEWFLY	Y EQ	2•n0						1 4 *	10150 V	ARIANCE ES	511MATE *	SEPARAT	PUDLED VARIANCE ESTIMATE * SEPARATE VARIANCE ESTIMATE	STIMATE
						*		1	+	1		*	,		
VARTABLE	IBLE	NUMBER DF CASES	REAN	STANDARD DEVIATION	STANDARD Error	> * *	ALUE	F 2~TAIL Value Prob.	> * *	T D	T DEGREES UF 2+1AIL * VALUE FREEDOM PROB. *	2-1AIL # PR08. #	VALUE	FREEDOM PROB.	PROB.
10					8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	¦ •	1 1 1	1	*	• • • • • • • • • • • • • • • • • • • •		1 * 1 1 1 1 1 1			
	6R0UP 1	85	61°CA74	200,05	2.170	• •	30 1	1 05 0.757	* *	10.6-	563	**	-1-99	160-90	0.048
	68011P 2	1 40	66.2722	19.474	1.451		•				2				
							1111							***************************************	
615						*			٠			•			
	GROUP 1	85	8441.6235	1131.156	122.692	* *	1.24	1.24 0.245	• •	-2.11	563	0.036 +	-2.03	150.21	0.044
	6R0UP 2	180	8734.7270	1017.969	75.867	*		1	*			•	_		
						*			#				_		
								1	1 1 1					***************************************	2

ł

S Li

GROUP	7 - 1 00X	E A E A	• • • -					* ·	POOLED	PODLED VARIANCE E	ESTIMATE +		SEPARATE VARIANCE E	ESTIMATE
ARI	VARIARLE	NUMBER Of Cases	MÊ AN	STANDARD DEVLATION	STANDARD ERROR	* * F * VALUE	2-TAIL UE PROB.	* * * 3 5	Τ νλί υξ	DEGREES OF Freedin	2-TATL # PROA. #	T VALUE	DEGREES OF Freedom	2-TAIL Prob.
PERF	GROUP 1	12	726.0833	150.176		1 7 8 8 8 8	!			1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 9 8 8 8 8 8 8 1 1		
	GROUP	4	732.9835	en en	76.9.7	• - • * *	1.47 0.284	* * * «	-0-19	10 10 10	* * *	-0.16	11.75	0 - 878
SATE	680UP 1	E I	1222.0759	+89+06	27.647		;	**	()))))	5 5 5 5 7 7 7	/ # # 1 1 1 1 1 1	- - 	4 4 1 1 1	6 0 9 9 9 9 9 9 9
	5 GUDP 2	252	1093.0516	139.789	A.An6		1.97 0.1	* * * ©	3• 53	263	* * *	10 4 4		0•001
GPA	6R011P 1	E I	277.3846	39.671	11.003	* * *	}	**		1 1 2 1 3 3 3			0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	6R011P 2	252	EL	£9.	2 . R 3 A	* * *	1.29 0.653	* * *	n. • • • •	503		52 • 0 •	13.04	0.803
	1 40045	13	78.6769	18,053	5.007		1		9 1 1 1 1 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1			9 5 5 7 7 1 1 7	
129	GR0UP 2	252	£1.2076	19.473	1.227	• * * *	1.16 0.472	* * *	£0 € € ₹	F Q Z	* * *	2.8.2	1 3 • 4 8	0.013
٩٢	1 40045		1630.97	15.008	4.163	; ; ; * * ;	!	**						
	5 9110 2		69.4206	13.946	0.879	*		• • •	4 C • D	r. C N		L 4 • N	1 3 • 09	
1	640NP 1	13	0600.47	12.445	195°E	1 7 1 1 1 1 1 1	1	 + + + 						
	5R0UP 2	252	69.1310	15.547	0.982	<u>.</u>	NG8*0 / V** (* * * 5	20.02	F 0 2	* * * G G G G	2.40	1 3.89	0.031
67	GROUP 1	13	78.4615	18.141	5.031	· · · ·		 	+ 1 4 1 6 1 6	 				
	GROUP 2	252	40°¢יטטצ	756.15	1.344	•		• *		r a b				

GROUP	1 - SFX	Ċ	c													
ROUP	• ••	5 (7														
						•			* •	POOLED	POOLED VARIANCE FSTIMATE	STIMATE		RATE V.	SEPARATE VARIANCE ESTIMATE	STIMAT
VARTABLE	BLE	NUMBER DF CASES	Ł	STANDARD DEVLATION	STANDARD Error		F VAL UE	F 2-TAIL Value Prog.	* * *	T VALUE	DEGREES OF 2-TAIL Freedom Prob.	F 2-TAIL PR08.	* T * VALUE		DEGREES OF Freedom	2-TAIL Prob.
F G	QT GROUP 1 GROUP 2	13 252	75.3846 64.0516	17.552	4.868 1.243	****	1.26	0.681	****	2.03	263	0+043	2.2¢		13.61	0.041
						*			¥				*			
6 I S	GROUP 1	. m	9838.4615	828	229.669	**			• • • ·					, , , , , , ,	1 6 1 1 1 1	1
	GROUP 2	252	8578.97a6	1037	65.341	* * *		186.0 76.1	* * *	16.4	203	000-0	* * 5.21	5	14.02	000*0
	FLY GROUP 1		11.0000	19.205	5.327	**			**						1 1 2 1 1 1	
	GROUP 2	252	6.8690	13.425	0.846	• • •	50.5	2.00 0.042	* * *	1.06	503	162.0	* * *	11	12.61	0.458

APPENDIX G

	SE	SEX									
	•• •			100							
				TOTAL							
	•••	ö	1:								
				35							
	••		2 :	13.2X							
			219 :	230							
	•		. 2	86.8X							
	+										
	COLUMN TDTAL	13 4.9X	252 95.1X	265 100.0X							
CH1-SQUARE	D.F.	SIGNI	SIGNIFICANCE	N I W	HIN E.F.	CELLS	WITH F.F.<	5 V			
)]]]]]]]]]]]]]]]]]]]				8							
0. 0.05652	~ ~		1.0000 0.8121	8	1.717 Before YAT	I OF 4 Yates correction	ູົ	25•0%)			
STA	STATISTIC		SYMMETRIC	raic	WITH R Dependent		WITH SEX Dependent	SEX Sent			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			* *							
TEDTAINTY	LATOVA UNCEDIATNIY CREETCIENT		0,0	0.00035	30-0	0.00026		0.00052			
SOMERS' D			0	0.01324	0.0	0.02289	•••	0.00932			
					0.01	0.01460	•	0.01460			
STA	STATISTIC		ערחו	ž	SIGNIFICANCE	CANCE					
				,							
IHd			410.0	60							
NTINGENCY	CONTINGENCY COEFFICIENT	-			Ċ	0.4040					
KENDALL'S I						0.4062					
			0-01460			0.4065					
			LAFON. N								

	, , , , ,	• • •	1	i i i	1 1	•	1 1	t	U	0 2	S	-	80 K	U L BY	ζ.		Z 0	0	u.	J	1 1	•		1	,	1	
	•	+ + + + + + + + + + + + + + + + + + + +	, , ,	1	•	1 1	1	I	1 1	t 1	1	r	1	+	•	1	+	1	I	•	1	1	1 1	1 1	•	1	
		COL	COUNT : Adj res :	I																	•	ROV					
	ť			l	1:		CV .	5 : 5	1	ел М		•		ļ	5		1	÷.					J				
	r		• • • •		• •• •• • •			1		• • • •		04				1 } 1	CO 	•••••		* -	• •• ••	35 13.2X	×				
			• •• •• ••	-1.2	• •• •• ·		~~~ ~~~		4 F 10	· •• •• ·		~ 4	• •• •• ·	4	04		40			27		230 86.8X	ж				
			COLUMN Total	29 - F	- - -		9 • 4 X		 73 27-5X	×		12		47 47 17.7X	, ×		15		1	31 7 7	+	265 100.0X	ж Ой				
	CHI-SQUARE	ARE	D.F.	S	1 GN]	IFIC	SIGNIFICANCE			N N	L L			CEL	LS J	CELLS WITH E.F.<	- -	¥.	an I								
	3.69602	802	9 1	L		0.7175	0.7175			1		5		+ 0F			~	28.6%									
134		STATISTIC	ric				SYMMETRIC	ETR	10		NI1 DEF	WITH R Dependent	ENT			N N N	WITH H Dependent	DENT									
	LAMBDA Uncertainty coeffi Somers' d Eta	NTY COEFF	 Effici	CIENT			0.00581 0.00920 0.04039	0.00920 0.00920 0.0920	1 - 0 6 1 - 0 M		1	0.02				1	0.0056 0.0056 0.0915 0.0915	0.01042 0.00561 0.09155 0.04852	1 21 21 21 21 21 21 21 21 21 21 21 21 21								
		STATISTIC	T1C				VALUE	J.			5	SI GNIFICANCE	F1C1	ANCE													
	CRAMER'S V Contingency coeffi	V NCY COE	EFFICI	CIENT			0.11813	813																			
	KENDALL'S TAU R Kendall's Tau C Deadeonie D	S TAU F S TAU C					0.04871 0.04198	178.198				o o o	0.1964 0.1964 0.1964	* * *													
	GAMMA						0-11435	435				>	4	2													
	NUMBER OF	F MISSING		OBSERVATIONS	IONS	*		0																			

													•	•
	COUNT : ADJ RES :	<		RDW Total										
œ		5 1 1 5 7 5 7 1		+ : 33 : 23 : 23 : 23 : 23 : 23 : 23 : 23	×									
	+	-2.4		1 230 1 86.81	×									
	COLUMN TDTAL	++- 232 87.5X		+ 265 100.0X	×									
CH1-SQUARE		SIGN	SIGNIFICANCE		MIN E.	• •	CELL	S WITH	Ē	IC.				
			0.0340				TOF TES CORRECTION		4 (25.0X DN)					
15			MMY2	TRI	2 Q K	NITH R Dependent		30	WITH A Dependent					
LAMBDA LAMBDA Uncertainty Sdmers' D Eta	 NTY COEFFICIENT D	len t		0. 0.04943 0.14708	P 1	0+04852048520485200+15086	0.04852 0.15086 0.14712	i	0+05036 0-05036 0-14348 0-1412	999 999 10				
ST	STATISTIC		VALUE	UE	υ.	SIGNIFICANCE	CANCE							
PHI Contingenc Contingenc Kendall'S Fearson'S Gamma	PHI Contingency cdefficient Kendall's Tau B Kendall's Tau C Pearson's R	E N J	0.14712 0.14555 0.14555 0.14712 0.14712 0.14712 1.00000	222 222 222 222 222 222 222 222 222 22)	600 600 600 600 600 600	6000 6000 000 000 000							
NUMBER OF	MISSING DE	MISSING DRSERVATIONS		0										

APPENDIX H

ANALYSIS OF VARIANCE

SOURCE Between groups	WITHIN GROUPS	TOTAL	GROUP COUNT	GRP 1 58	2	GRP 3 71	4	GRP 5 45	Q	7	707AL 255	FIXFO EF	RANDUM
С С	248	254	MEAN	728.1724	737.8333	739.1403	764.8333	732.7556	724.6567	712.8333	732 . 658f	EFFECTS MODEL	EFFECTS MODEL
SUM OF SQUARES 29965.6391	3923451.679	3 95 3417•318	STANDARD DEVIATION	138.0853		121.0604	~	136.4110	100.7229	130.9691	124.7583	125.7791	
MEAN Squares 4994.27	15820.36		STANDARD ERRDR	18.1315	22.6866	A.	22.7616	20.3350	26.0065	23.9116	7.8127	7.8766	7.8766
32 A • 3	57		NAM I N 1 W	309.0000	432.0000	348.0000	621.0000	336.0000	505.0000	341.0000	ບບບບ້ານບ້		
F F Atio PR08. 3157 .9285			MUMIXAM	995 • 0000	854.0000	962.0000	30	0000-066	S	995.0000	0000-300		
			95 PCT CONF	-	-	+	-	691.7732 TD	+	-	717.2730 TO	717 . 1453 TD	713.3856 TO
			INT FOR M ^e	4.48	4.76	7.79	P14.931	773.738	780.445	761.738	748.044	748.172	751-932

WARNING - BETWEEN COMPONENT VARIANCE IS NEGATIVE It was replaced by 0.0 in computing above random fffects measures

-314.0081 RANDOM EFFECTS MODEL - ESTIMATE OF BETWEEN COMPONENT VARIANCE

APPENDIX I

ON GROUPS DEFINED BY R

.

.

ANALYSIS

DISCRIWINANT

265 (UNVEIGHTED) CASES VERE PROCESSED. 0 OF THESE VERE EXCLUDED FROM THE ANALYSIS. 265 (UNVEIGHTED) CASES VILL BE USED IN THE ANALYSIS.

NUMBER OF CASES BY GROUP

LABEL	
CASES WEIGHTED 35.0 230.0	265.0
10	
NUMBER UNVEIGHTED 35 230	265
0 -	TOTAL
œ	

GROUP MEANS

¥¥	64 • 1 • 2 8 6 64 • 0 0 • 3 5	64 • 02264			
S 15	8690.71429 8633.10435	8640.71321			
I	3+22857 3+51304	3.47547			
6 A	2 46 .22857 278.90000	280.13208			
SATE	1111-80000 1097-49130	1099.38113	01	60.45714 65.23913	64+60755
FLY	0.88571 8.01304	7.07170	Y B	65.20000 61.00870	61.56226
۲	0. 0.14349	0.12453	> 2	65.45714 70.19130	69.56604
SEX	0.94236 0.95217	0.95094	ΡL	66.20000 70.50435	69.93585
œ	° 143	TOTAL	œ	0 -	TOTAL

GROUP STANDARD DEVIATIONS

44	17.47122 19.97892	19.63549			
615	1034.38270 1068.43656	1062.25603			
1	2°07344 1°97745	1.96869			
GPA	45, 16863 44,58429	44.67477			
SATE	142.62081 140.67894	140.74804	01	19.15931 19.81000	19.75639
FLY	1.89071 14.50899	13.74437	87	22。50595 21。34884	21.50821
4	0. 0.35132	0.33081	> 7	14.75355 15.61681	15.56159
SEX	0.23550 0.21386	0.21639	PL	14.46456 14.05005	01651.41
œ	o	TOTAL	œ	o	TOTAL

POOLED WITHIN-GROUPS COVARIANCE WATRIX WITH 263 DEGREES OF FREEDOM

**	397.0163 133.7091 201.6902 358.5551		
515	1132299° 17129°44 6241°209 9430°802 15957°36		
£	3.960579 -306579 -5.451163 -2.751304 -1.202399 -1.202399 -9.546107 0.4415417		
6 P A	1993.372 -9.538322 23587.24 454.65 454.65 100.7376 100.452 100.462 100		
SATE	19861.69 1400.220 1400.220 119417.3 2221.473 2224.1955 1224.1955 1224.1955 111.6161 2111.6161 1775.841	τu	389,1579
FLY	183.7586 -91.54477 -24.39842 -1.078421 -239.2147 -2.819170 -7.819170 -1.392847 -1.3078958 -1.40.02239	e v	462,3330 156,1685
4	0.1074723 0.2563795 0.28637395 0.1889734 0.1889734 0.1889734 0.1855458 0.1656458 0.1656458 0.442656 0.442916 0.4642916	> 2	240.4953 113.9978 237.0348
SEX	0 • • • • • • • • • • • • • • • • • • •	ΡL	198.9319 175.3179 111.5346 120.5364
14	x x x x x x x x x x x x x x x x x x x		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

POOLED WITHIN-GROUPS CORRELATION MATRIX

SEX	•	FLY	SATE	۷d5	I	615	۷۷	٩L	> 2	8
1.00000										
-0.07607	1.00000									
-0.06869	-0.05769	1.00000								
-0.19801	0.00533	-0.04792	1.00000							
0.01507	-0.01291	-0.04031	0.22253	1.00000						
-0.03437	0.08722	-0.03997	-0.15977	-0-10904	1.00000					
-0.25639	0.01766	-0,01658	0.79630	0+50490	-0.14467	1.00000				
-0-16286	-0.00303	-0.02932	0.80125	0.18973	-0.13923	0.81827	1.00000			
-0.16297	-0.03589	0.16020	0.42722	0.04881	++660*0-	0.41585	0.48189	1.00000		
-0.12552	0.08727	-0.00066	0.56009	0.14510	-0.03896	0.57150	0.66110	0.80153	1 • 00000	
-0.17824	-0.06273	0.02772	0.69681	0.12744	-0.22308	0.69743	0.84764	0.36777	0.34187	1.00000
-0.12577	0.07179	-0.05992	0.63875	0.20485	0.01125	0.66702	0.79666	0.43321	0.77481	0.36817

01

1.00000

01

CORRELATIONS WHICH CANNOT BE COMPUTED ARE PRINTED AS $99 \bullet^{\eta} \bullet$

145

WILKS' LAMBDA (U-STATISTIC) AND UNIVARIATE F-RATIO With 1 and 263 degrefs of Freedom

0.99979 0.97835 0.96906 0.96906		
0.99979 0.97835 0.96906	0.5611E-01 5.819	
0.97835 0.96906 0.00881	5.819	0.8129
0.96906 0.00881		0.0165
0.00881	8,398	0.0041
	0.3131	0.5762
0.99498	1.326	0.2505
0.99765	0.6207	0.4315
0.99966	0.89045-01	0.7656
666660	0.1506E-02	0.9691
0.98936	2.829	0.0938
0.98935	2.631	0.0937
0.99563	1.154	0.2836
0.99326	1.785	0.1827
000000	0.99966 0.99999 0.98936 0.98935 0.993583 0.99326 0.99326	19966 19999 18936 19563 19326

COVARIANCE	CE MATRIX FOR GROUP	0. 0						
	SEX	4	FLY	SATE	GPA	¥	615	44
SEX	0.5546215E-01							
A FLY	0. 0.52100846-01	•••	3.574790					
SATE	-5.511765	•	• •	20340.69				
6PA	2.719328	•0		256.4672	2031.182			
X	-0.4537815E-01	•0		15.37059	-26.75966	4.299160		
615	-54.69328	0.	-175.6807	107018.1	24006.86	-397.4034	1069948.	
44	-1.050420	••	-6.542017	2110.088	138.6429	÷1.768908	15152.84	305.2437
٩L	-1.664706	••	-6.300000	775.2176	-71.64118	2.011765	4625.735	110.5294
74	-1.355462	••	-5.740336	818.4471	-87.31345	4.951261	4845.252	135.6681
87	-1.076471	••		2270.512	145-2471	-9-40000	16513-97	316.2941
0 T	-0.7672269	••	-5.005042	1454.771	98.27479	6.598319	10038.34	219.9326
	PL	> 2	٨B	0T				
ă	200.2235							
	169.6118	217.6672						
88	91.75294	37.52353	506.5176					
0 T	105.2000	205.6672	36.02353	367.0790				
148								
COVARIANCE	CE MATRIX FOR GROUP	JUP 1.						
	SEX	¥	FLY	SATE	GPA	I	515	۷۷
SEX	0.4573761E-01							
; < i	-0.6208468E-02	0.1234289						
SATE	1046457•0- 1046457•0-	0.2829125	101c • 015	19700.67				
GPA	-0.2362445	-0.2170306		1565.281	1987.759			
I	-0.1029049E-01	0.6580596E-01		-53.74661	-7.153712	3.910309		
615	-59.80285	7.076666	-248.6477	121258.2	23984.32	-292.8529	1141557.	
4	-0.6417125	-0.2246060E-01	-8.008791	2238.011	170.7996	-5.997874	17422.91	399.1572
٩٢	-0.3251187	-0.1905829	36.11130	860.1791	45.96769	-3.504424	6481.061	137.1506
N	-0.2833871	0.5095500	0.6918170	1284.329	128.3424	-2.116043	10111.63	211.4926

146

211.4926 364.8297 322.4225 10111.03 15874.72 14590.31 -9.567800 -0.7695083 118.9397 192.6485 2087.943 1823.511 10.21823 -17.65815 -0.5078033 0.5332257 -0.7943421 -0.5037972 4B 01

										385.5525	133.1340	200.8508	357.2637	307.9256					
			۷V							38		20	50	90 M					
			615						1128392.	17065.47	6189.035	9363.697	15924.70	13917.11					
			I					3.954889	-307.0942	-5.435049	-2.639837	-1.042882	-9.647141	0.5963979					
			GPA				1995.835	-9,956975	23958.22	166.1599	26.00093	95.00071	126.3762	174.6316					
ат	392.4360	FREEDOM	SATE			19810.01	1410.275	-45.10993	119059.8	2213.287	836.6920	1211.670	2110.448	1761.241	от				390,3151
8 >	455.7728 173.7097	264 DEGREES OF FI	FLY		188.9077	-102.9327	-31.95648	-0.8410377	-285,5551	-7.903145	34.04250	3.743353	4.611049	-12.03994	V B			1600.204	153.2707
> N	243.8846 125.3520 241.6920	41TH 264	•	0.1094340	-0.1377501	0.9176672E-02	-0.3422670	0.6177B16E-01	5.187364	-0.2176958E-01	-0.9425386E-01	0.5201544	-0.5096770	0.5414808	> 2		242.1632	111.2928	238.7419
PL	197.4039 176.1651 114.4716 122.8134	TOTAL COVARIANCE MATRIX 1	SEX	0.4682676F-01 -0.52315415-02	-0.1934391	-6.041838	0.1352916	-0.1446541E-01	-58,98003	-0.6920669	-0.4917953	-0.4153087	-0.8321612	-0.5306890	PL	200.3103	176.9986	109.0362	122.4482
	7 8 7 0 4 8 7	TOTAL CO		SEX	FLY	SATE	GPA	X	61 S	44	٦	> N	٨B	0T	147	٦ ٩	> 0	87	91

. I . I ŧ

> α ON GROUPS DEFINED BY

ANALYSIS NUMBER

-

CANDNICAL DISCRIMINANT FUNCTIONS

100.001 1.0000 MAXIMUM NUMBER OF FUNCTIONS........... Minimum cumulative percent of variance... Maximum significance of Wilks' Lambda....

PRIOR PROBABILITY FOR EACH GROUP IS 0.50000

CANDNICAL DISCRIMINANT FUNCTIONS

NCE	
SIGNIFICA	0•0286
D.F.	12
CHI-SQUARED	22,901
PERCENT OF CUMULATIVE CANDNICAL : AFTER INVALUE VARIANCE PERCENT CORRELATION : FUNCTION WILKS' LAMBDA CHI-SQUARED D.F. SIGNIFICANCE	0.9147457
AFTER Function	0
 NN	• •
CANDNICA Correlati	: \$E\$6162°0
CUMULATIVE PERCENT	100.00
PERCENT OF Variance	100.00
PERCENT OF FUNCTION EIGENVALUE VARIANCE	0.09320 100.00
4CT10N	*
FUI	148

I CANDNICAL DISCRIMINANT FUNCTIONS REMAINING IN THE ANALYSIS. * MARKS THE

STANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1	207	.4899	.5532	.3518	.3332	.0456	.289	1116.	0.38241	.110	.895	507
	SEX		FLY	<			G I S	4 A	٩L	۷۷	8 A	qT

STRUCTURE MATRIX:

POOLED WITHIN-GROUPS CORRELATIONS BETWEEN DISCRIMINATING VARIABLES and canonical discriminant functions (variables ordered by Size of Correlation Within Function)

FUNC 1

I	0.63213	0.52619	0.36702	0.33095	-0.25120	-0-23436	0.18809	0.10412	-0.09754	-0.08395	-0.06113	-0.05001	
	FLY	<	>2	۲L	GPA	VB	07	I	615	SEX	SATE	A A	

UNSTANDARDIZEC CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1	1.516025	0.4877497E-01	-0.5434677E-02	0.3099251E-01	-0.1650553E-01	-0.1511912
149	•	FLY	GPA	NV	VB	(CONSTANT)

CAMONICAL DISCRIMINANT FUNCTIONS EVALUATED AT GROUP MEANS (GROUP CENTROIDS)

FUNC	
GROUP	

-0.72190 0.10985 0 -

TEST OF EQUALITY OF GROUP COVARIANCE MATRICES USING BOX+S M

THE RAMKS AND NATURAL LOGARITHMS OF DETERMINANTS PRINTED ARE THOSE OF THE GROUP COVARIANCE MATRICES.

GROUP LABEL	RANK	LOG DETERMINANT
0	11	(SINGULAR)
1	12	51.236345
PROLED WITHIN-GROUPS		
COVARIANCE MATRIX	12	51.040543

NO TEST CAN BE PERFORMED WITHDUT AT LEAST TWD NON-SINGULAR GROUP Covariance Matrices.

1 ı 1 6 ANALYSIS L N N N N N N N ۵ v Ś -٥ 1 1 ŧ ŧ . 1 ŧ 1 , 1 1 I ł 1 I 1 1 1 ŧ 1 f

........

ON GROUPS DEFINED BY R

ANALYSIS NUMBER

2

CANDNICAL DISCRIMINANT FUNCTIONS

PRIOR PROBABILITY FOR EACH GROUP IS 0.50000

151

113111

0 WILKS . LAMBDA -------YARIABLES NOT IN THE ANALYSIS AFTER STEP 0.99765 0.99563 62666*0 0.97835 0.96906 99499 0.98935 0.99881 0.99966 0.99999 0.98936 0.99326 0.15058E-02 0.56109E-01 0.89040E-01 F TO ENTER 2.8309 1.1542 8.3976 0.31314 1.3261 2.8292 5.8187 0.62068 1.7850 TDLERANCE 1.0000000 .0000000 1.0000000 0000000 0000000 • 1 0000000 .0000000 1.0000000 .0000000 • • • • • • • • 00000000 1.0000000 MUMININ TOLERANCE 1.0000000 .0000000 • 0000000 • 0000000 .0000000 .0000000 .0000000 .0000000 .00000000000000 1.0000000 VARIABLE SATE SEX FLY GPA 615 **K** 2 0 F ۲ x

* * * * * * * * * * * * * * * * * * *	DEGREES OF FREEDOM SIGNIF. BETWEEN GROUPS 06 1 1 263.0 62 1 263.0 0.0041	3LES IN THE ANALYSIS AFTER STEP 1	NOT IN THE ANALYSIS AFTER STEP 1	F TO ENTER WILK 0.18431 6.4443	0.17127 1.0353 0.78962 0.60516E-01	0.205895-02 1.4694 1.28392 1.2831 2.2081 2.2081	ANCES BETWEEN PATOS OF GROUPS AFTER STEP 1 And 263.0 degrees of Freedim. 0		B.3976 0.0041
* * * * * * * * * * * * * * * * * * *	WILKS' LAMBDA 0.96906 Equivalent F 8.39762	VARIARLE TOLERANCE F TO R FLY 1.0000000 8.39	MINIMUM MUMINIM	ABLE TOLERANCE 0.9952822 0.9966714	TE 0.9977038 A 0.9983749 0.9984020 S 0.9997250	A A 0.9991403 0.9991403 PL 0.9743375 0.9743375 NV 0.9999996 0.99999999 VB 0.99992317 0.9992317 QT 0.9964101 0.9964101	F STATISTICS AND SIGNIFICANCES Each F Statistic Has 1 and Group 0	GROUP	. .

6400V 7.5579				
7.5079	7.5079	7.5079		
7.5079	7.5079	7.5079		
			7.5079	
7.5079	7.5079	7.5079		
7.5079	7.5079	7.5079		
7.5079	7.5079	7.5079		

WILKS' LAMBDA	3. NV	WAS INCLUDED	IN THE	ANALYSIS.					
HILKS' LAME			DEGREES OF	FREEDOW	SIGNIF.	BETVEEN G	GROUPS		
	NDA	0.93856	- -	263.0					
EQUIVALENT F	u.	5.69545	m	261.0	6000.0				
	AR	VARIABLES IN THE	E ANALYSIS AFTER	IER STEP	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1			
VARIABLE T	TOLERANCE	F TD REMOVE	WILKS' LAMBDA	VOI					
	.9890621			-					
FLY 0 NV 0	0.9966522 0.9923648	8.8750 2.0126	0.97047 0.94579						
	AA	VARIABLES NUT I	IN THE ANALYSIS	AFTER	step 3	1 3 4 5 4 5 4 5 4 5 5 4 5 5 5 5 5 5 5 5 5			
		MUMINIM							
VARIABLE T	TOLERANCE	TOLERANCE	_	WILKS' LA	LAMBDA				
	0.9746911	0.9746911	0.63589	0.93627	527				
SATE 0	0.6818751	0.6782306	2.1271	0+930	994				
GPA 0	0.9765430	0.9708908		0.93356	356				
	0.9888880	0.9811307	0.52872	0.936	565				
S	0.6720167	0.6672561	1.7676	0-932	22				
	.5581775	0.5544048		106 · 0	157				
	0.3222835	0.3222835	0.31725E-01	0.93844					
01	0.3961384	0.3961384	2.410/ 0.96282E-01	0.93821	121				
F STATISTICS AND Each f Statistic		SIGNIFICANCES BFTW Has 3 and 2	FEN PAIRS (61.0 DEGRE	GRC OF	JUPS AFTER STEP Freedom.	en e			
	GROUP	0 d0							
GROUP									
-		5.6954 0.0009							

4.8974 0.0008 ************************************ BETVEEN GROUPS *********** ---ŝ F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP SIGNIF. ŝ 0.0012 VILKS' LAMBDA 259.0 DEGREES OF FREEDOM. 0.92534 0.92567 0.92468 0.92571 0.92503 0.92572 0.92407 259.0 DEGREES OF FREEDOM ------ VARIABLES IN THE ANALYSIS AFTER STEP 263.0 WAS INCLUDED IN THE ANALYSIS. WILKS' LAMBDA 0.95677 0.92994 0.94288 0.93983 0.93356 0-93626E-01 0-83655E-01 0.79690E-01 n F TO ENTER 0.36935 0.27102 0-18462 0.54127 ŝ F TO REMOVE 4.1392 * * * * * * * * 0 0.8472991 0.3839329 0.8301356 0.0012 0.2402486 0.1216066 0.3097268 TOLERANCE 0.3767704 8.6053 0660.1 4.7202 3.8671 2.1123 MUMINIM 5 AND 4.13917 0.92601 GROUP EACH F STATISTIC HAS 0.9941092 0.9698657 0.3839329 TOLERANCE 0.9792848 0.8606669 0.8680020 TOLERANCE 0.9506278 0.9354616 0.2402486 0.1216066 0.3097268 0.3767704 GPA # # WILKS' LAMBDA ••• EQUIVALENT F # . GROUP VARIABLE VARIABLE * * * AT STEP SATE FLY 615 SEX GPA ž < ٨B × 156

#

F LEVEL OR TOLERANCE OR VIN INSUFFICIENT FOR FURTHER COMPUTATION.

SUMMARY TABLE

LABEL		
.516.	1000. .0007.	.0012
WILKS' Lambra	.96906 .94579 .93856 .02904	260
VARS 1 N	Q M 4	r un
ACTION Entered Removed	₹	6PA
STEP	- ~ - ~	10

CANDNICAL DISCRIMINANT FUNCTIONS

	SIGNIFICANCE 0.0012	
	0.F. 5	I
	DA CHI-SQUARED 20.026	
	VILKS • LAMRI 0.9260060	
AFTER	FUNCTION 0	•
E CANDWICAL : AFTER	CORRELATION :	0.2720185 :
PERCENT OF CUMULATIVE	PERCENT	100.00
PERCENT OF	VARIANCE	0.07991 100.00
	EIGENVALUE	0.07991
	UNCTION	*

I CANDNICAL DISCRIMINANT FUNCTIONS REMAINING IN THE ANALYSIS. * MARKS THE

STANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1	0.49700	0.66118	-0.24264	0.48063	-0.35490
157	۲,	FLY	GPA	> 2	4 B

STRUCTURE MATRIX:

POOLED WITHIN-GROUPS CORRELATIONS BETWEEN DISCRIMINATING VARIABLES And cangmical discriminant functions (variables ordered by Size of correlation within function)

FUNC	•	•	2	7	~	<u>د</u>	-	7	•	•	0	2
NC 1	63213	-	0	3309	2512	2343	18809	1041	0975	0839	0611	0500

UNSTANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1 1.516025	0.48774976-01	-0.5434677E-02	0.3099251E-01	-0.1650553E-01	-0.1511912	
158	_	GPA	2	V.B	(CONSTANT)	

CAMONICAL DISCRIMINANT FUNCTIONS EVALUATED AT GROUP MEANS (GROUP CENTRNIDS)

LINC) -	
GROUP		

-

-0.72190 0 -

TEST OF EQUALITY OF GROUP COVARIANCE MATRICES USING ROX+S M

THE RANKS AND NATURAL LOGARITHMS OF DETERMINANTS PRINTED ARE THOSE Of the group covariance matrices.

LOG DETERMINANT	(SINGULAR)	22.251803	22.023373
RANK	•	¥î)	Lî,
GROUP LABEL	0	1	POOLED WITHIN-GROUPS Covariance matrix

NO TEST CAN BE PERFORMED WITHDUT AT LEAST TWO NON-SINGULAR GROUP Covariance Matrices.

,

1 . ŧ 1 ł ŧ . ANALYSIS ► X ∢ z --T α υ Ś -٥ ŧ 1 I . 1 t 1 . 1 I 1 1 1 1 ŧ ŧ 1 • . . .

1 ł 1 I ŧ I 1 .

ON GROUPS DEFINED BY R

ANALYSIS NUMBER

m

SELECTION RULE: MAXIMIZE MINIMUM MAMALANDBIS DISTANCE (D SOUARED) Between Groups 2 MAXIMUM NUMBER OF STEPS.......... STEPWISE VARIABLE SELECTION

CANONICAL DISCRIMINANT FUNCTIONS

100.00 1.0000 MAXIMUM NUMBER OF FUNCTIONS................ Minimum cumulative percent of variance... Maximum significance of Wilks' Lambda....

PRIOR PROBABILITY FOR EACH GROUP IS 0.50000

------ VARIABLES NOT IN THE ANALYSIS AFTER STEP

BETWEEN GROUPS 00 0 0000 0.3799649E-01 0.4365579E-01 0-9313442E-01 0.9319219E-01 0.2764433 D SQUARED 0.1915471 0.56109E-01 0-89040E-01 0.15058E-02 F TO ENTER 8.3976 5.8187 0.31314 0.62068 2.8292 2.8309 1.3261 1.1542 TOLERANCE 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.000000 • 0000000 1.0000000 000000001 1.0000000 1.0000000 MUMINIM .0000000 • 0000000 1.0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 0000000 TOLERANCE .0000000 VARIABLE SATE SEX FLY GPA GIS ~ 870 Ž ٦ I

0.5876125E-01

1.7850

1.0000000

0000000

-

* * * * * * * * * *									
* * * * * * *		RETWEEN GROUPS	0		sdy		BETWEEN GROUPS	1 1	
* * * * * * * *	YSIS.	FREEDOM SIGNIF. 7 263.0 263.0 0.0041	263.0 0.0041	ER STEP 1	BETWEEN GROUPS	STEP 1		0°4961941 0+3117485	0.3265490 0.32698490 0.3203674 0.3517401
	DED IN THE ANALYSIS.	NEGREES OF 1 1 1	-	HE ANALYSIS AFTER	E D SQUARED	IN THE ANALYSIS AFTER	F TO ENTER 0.18431	6.4443 0.17127 1.0353 0.12050	0.60516E-01 0.60516E-01 0.20595E-02 1.4694 2.7392 1.2881 2.2081
	WAS INCLUDED	0.96906 8.39762	0.276443 8.39762	RIABLES IN T	F TO REMOVE 8.3976	RIABLES NOT			0.9994000 0.9991250 0.9991375 0.9999375 0.9999995 0.9992317 0.9968101
*	1. FLY	LAMBDA Ent f	UARED	VARIABLES IN THE	E TOLERANCE 1.000000	VARIABLES		0.9966714 0.9977038 0.9983749	0.99984020 0.9998403 0.9991375 0.9993375 0.9992996 0.9992317
* * *	AT STEP	WILKS° LAMBDA Equivalent F	MINIMUM D SQI Equivalent F	1 1 1 1 1	VARIABLE Fly	8 8 8 8 9 9	VARIABLE Sex	4 2 2 4 2 3 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP Each F statistic has 1 and 263.0 degrees of Freedom.

-

GROUP O

GROUP

-

8.3976 0.0041

	SIGNIF. BETWEEN GROUPS 0.0007	0.0007 0 1	2	BETWEEN GROUPS	:P 2	ED BETWEEN GROUPS			0	Ð	1 0 60
EU IN THE ANALTSIS.	DEGREES OF FREEDOM S 2 1 263.0 2 262.0 0	2 262.0 0	ANALYSIS AFTER STEP	D SOUARED	N THE ANALYSIS AFTER STEP	F TO ENTER D SQUARED 0.39247	0.17183 0.93159 0.44096	0.80940E-01 0.32026E-02		c.uico u.soof/90 0.93623	1.6812 0.5551599
·	0.94579 7.50788	0.496194 7.50788	VARIABLES IN THF	E F TD REMOVE 6.4443 9.0196	VARIABLES NNT IN	MINIMUM Tolerance 0.9888562					7 0.9917247
	WILKS' LAMBDA Equivalent f	MINTMUM D SQUARED Equivalent f	YA	VARIABLE TOLERANCE A 0.9966714 FLY 0.9966714	YA	VARIABLE TOLERANCE Sex 0.9888562		s		VB 0.9954827	

7.5079 0.0007

#

BETVEEN GROUPS -BETVEEN GROUPS 0 00 00 0 RETWEEN GROUPS SIGNIF. m 6000.0 0.0009 ------ VARIABLES NOT IN THE ANALYSIS AFTER STEP m D SQUARED 0.6422474 0.6161780 0.6294926 0.6523095 0.6160441 DEGREES OF FRFEDOM 3 1 263.0 261.0 ------ VARIABLES IN THE ANALYSIS AFTER STEP 261.0 WAS INCLUDED IN THE ANALYSIS. D SQUARED 0.31725E-01 0-96282E-01 m F TO ENTER m 1 • 3923 0 • 52872 0.63589 2.1271 1.7676 2.4107 1.3886 F TO REMOVE TOLERANCE 5.6935 8.8750 2.0126 0.9708908 0.9746911 0.6782306 0.9811307 0.6672561 0.5544048 0.3222835 0.8712405 0.3961384 MUMINIM 0.566780 5.69545 0.93856 5.69545 0.9765430 0.9888780 0.6720167 0.9890621 0.9966522 0.99266522 TOLERANCE TOLERANCE 0.9746911 0.6818751 0.5581775 0.3272835 0.8739779 0.3961384 MINIMUM D SQUARED Equivalent F 3. NV VILKS' LAMBDA EQUIVALENT F VARIABLE VARIABLE AT STEP SATE SEX 615 FLY NV GPA ** 2 8 L 01 x 163

۳, F STATISTICS AND SIGNIFICANCFS BETWEEN PAIRS OF GROUPS AFTER STEP Each F statistic has 3 and 261.0 degrees of freedom.

0 GROUP

GROUP

5.6954 0.0009

BETVEEN GROUPS
8000
260.0 After Step
HF ANALYSIS AFT
C.6552309 4.69735 1ABLES IN T F TO REMOV F TO REMOV 8.98557 3.48956 3.48957 3.4897 2.4107 2.4107 2.4107 1.49LES NOT MINIMUM
UAR 997966 97324 95234 95234 95234 95234
MINIMUM D SQ EQUIVALENT F EQUIVALENT F A VARIABLE VB VB VB VB VB VB VB VB VB VB VB VB VB

WILKS' LAMBDA Equivalent F			DEGREES OF				
	AMBDA Nt F	0.92601 4.13917	 ຄ	FREEDDM 263•0 259•0	\$16N1F. 0.0012	BETWEEN GROUPS	
EQUIVALE:	MINIMUM N SQUARED Equivalent f	0.691813 4.13917	K)	259.0	0.0012	•	
8 8 8 8 8	VARIARLE	s	IN THE ANALYSIS AFTER	TER STEP	5	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
VARIABLE A Fly GPA NV VB	TOLERANCE 0.9722848 0.9941092 0.9698657 0.8669665 0.8660669	F TD REMDVE 4.7202 8.6053 1.00990 3.8671 2.1123	E D SQUARED		BETVEEN GROUPS	6ROUPS	
		P	IN THE ANALYSIS	AFTER	STEP 5 -	8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
VARIABLE Sata Sata Gis Aa Ot Ot	TDLERANCE 0.9506278 0.3839323 0.9354616 0.2472486 0.1215066 0.3297268 0.3767704	MINIMUM T0LERANCE 0.8472991 0.3839329 0.2801356 0.2802486 0.1216066 0.3767704 0.3767704	F TO ENTER 0.36935 0.18462 0.93626E-01 0.83655E-01 0.83655E-01 0.83127 0.54127	D SQUARED	ED	BETVEEN GROUPS	

* * * *

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP 5 Each F Statistic Has 5 and 259.0 degrees of Freedom.

GROUP

0

GROUP

F LEVEL OR TOLERANCE OR VIN INSUFFICIENT FOR FURTHER COMPUTATION.

SUMMARY TABLE

LABEL					
GROUPS	-	-		~	
BETWEEN	c	o	o	c	o
s16.	• 0041	.0001	•000•	.0008	• 0012
MINIMUM D Souared	.27644	.49619	.56678	.65231	.69181
•91S	.0041	.0007	•0000	.0008	• 0012
W1LKS' Lambda	.96906	.94579	.93856	.92994	.92601
VARS 1 N	1	2	F)	-	ŝ
ACTION Step Entered Removed	1 FLY	2 A	J NV	8× 4	S GPA

CANONICAL DISCRIMINANT FUNCTIONS

SIGNIFICANCE	0.0012
D.F.	Nî
CHI-SQUARED	20°026
WILKS' LAMBDA	0.9260060
AFTER FUNCTION	0
ICENT DF CUMULATIVE CANONICAL : AFTER Riance percent correlation : function Wilks' Lambda CHI-Souared D.F. Significance	0.2720185 :
CUMULATIVE PERCENT	100*001
PERCENT OF Variance	100.00
UNCTION EIGENVALUE	00.001 19970.0
FUNCTION	*

* MARKS THE I CANONICAL DISCRIMINANT FUNCTIONS REMAINING IN THE ANALYSIS.

STANDARDIZED CANDNICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1	0.49700	0.66118	-0.24264	0.48063	-0.35490
166	~ 3	ドレイ	6PA	N	6 8

STRUCTURE MATRIX:

POOLED WITHIN-GROUPS CORRELATIONS BETWEEN DISCRIMINATING VARIABLES and canonical discriminant functions (variables ordered by size of correlation within function)

FUNC 1	0.58532	0.48722	48622*0	0.33974	0.26986	-0.23260	-0.21700	0.15913	-0.11303	-0.06027	0.04784	-0.00784
	FLY	<	N	P٢	01	GPA	VB	I	SATE	61S	SEX	**

UNSTANDARDIZED CANDNICAL DISCRIMINANT FUNCTION CDEFFICIENTS

167

FUNC 1	1.018171	1.494363	0.4081059E-01		464887E-	291415E-	.272074	714881E-	711331E-	134113E-	.416549	43523E-I	-1.720581
	SEX	~	FLY	SATE	GPA	I	61 S	A A	PL	72	80	07	(CONSTANT)

CANONICAL DISCRIMINANT FUNCTIONS EVALUATED AT GROUP MEANS (GROUP CENTROIDS)

FUNC GROUP

• -

-0.77964

TEST OF EQUALITY OF GROUP COVARIANCE MATRICES USING BOX+S M

THE RANKS AND NATURAL LOGARITHMS OF DETERMINANTS PRINTED ARE THOSE Of the group covariance matrices.

LDG DETERMINANT	(SINGULAR)	22.251803	22.023373
RANK	4	¥0	ŝ
GROUP LABEL	0	1	POOLED WITHIN-GROUPS Covariance matrix

NO TEST CAM BE PERFORMED WITHOUT AT LEAST TWO NON-SINGULAR GROUP Covariance Matrices.

.

ANALYSIS

DISCRIMINANT

J

.

1

ŧ

ON GROUPS DEFINED BY R

ANALYSIS NUMBER

4

CANONICAL DISCRIMINANT FUNCTIONS

PRIOR PROBABILITY FOR EACH GROUP IS 0.50000

		90												
		RESIDUAL VARIANCE		0.95430	0.93536		0.98920				0.97725	0.97723	0.99059	0.98552
		F TO ENTER	0.56109E-01	5.8187	8.3976	0.31314	1.3261	0.62068	0.89040E-01	0.15058E-02	2.8292	2.8309	1.1542	1.7850
IABLES NOT	MUMINIM	TOLERANCE	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
TAN TANT		TOLERANCE	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
•		VARIABLE	SEX	•	FLY	SATE	GPA	I	615	~ ~	PL	72	4 B	aT

170		STEP 1. FLY LLKS LAMBDA LLKS LAMBDA UUIVALENT F SIDUAL VARIANCE SIDUAL VARIANCE NAR RRIABLE TOLERANCE Y 1.00000000 Y 1.00000000 Y 0.9952822 RRIABLE TOLERANCE Y 0.9984020 Y 0.9993749 Y 0.9993749 Y 0.99933749 Y 0.9993375 Y 0.9993375 Y 0.9993377 Y 0.9993377 Y 0.9993375 Y 0.9993375 Y 0.9993377 Y 0.9993377 Y 0.9993377 Y 0.99993377 Y 0.999994101 Y <	0.93536 1ABLES 1N 1 F T0 REMOV B.3976 B.3976 B.3976 B.3976 0.9952822 0.9952822 0.9953129 0.9993749 0.9993755 0.999175 0.999555 0.999555 0.9955555 0.995555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.9955555 0.99555555 0.99555555 0.99555555 0.9955555555555555555555555555555555555	NALYSIS NALYSIS E SIDUAL E ANALY 10431 17127 17177 17177 17177 17177 17177 171777 171777 1717777 1717777 171777777	□ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 • 00 • 1 1 • • • • • • • • • • • • • • • • • • •	-				
		GROUP	0								
	GROUP										
	-		8.3976								

8.3976 0.0041

BETWEEN GROUPS 2 -----N F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP SIGNIF. RESIDUAL VARIANCE ~ 0.0007 262.0 DEGREES OF FREEDOM. 0.87589 ------ VARIARLES NOT IN THE ANALYSIS AFTER STEP 0.87870 0.87813 262.0 DEGREES OF FREEDOM 263.0 ------ VARIABLES IN THE ANALYSIS AFTER STEP RESIDUAL VARIANCE WAS INCLUDED IN THE ANALYSIS. 0.32026E-02 0.80940E-01 F TO ENTER ~ 0 0.39247 0.17183 0.93159 0.44096 2.0126 0.93623 1.5962 1.6812 ¢, F TO REMOVE 0 TOLERANCE 0.9893463 0.9888562 0.9958014 0.9929320 0.9944046 0.9949854 0.9963922 0.9716358 0.9890621 0.9917247 6444.9 MUMINIM 9.0196 0. 34579 2 AND 7.50788 0.88964 GROUP EACH F STATISTIC HAS TOLFRANCE 0.9966714 TOLEPANCE 0.9888562 0.9976972 0.9981419 0.9910642 0.9994449 6211666*0 0.9923648 0.9966714 0.9736251 0.9954827 0.9917247 RESIDUAL VARIANCE < WILKS' LAMBDA \$ EQUIVALENT F VARTABLE VARIABLE GROUP -AT STEP SATE SEX 615 FLY ٩d 8 C * ž ٦ × 171

7.5079 0.0007

RIABLE TOLEPANCE F TO REMOVE RESIDUAL VARIANCE 3 RIABLE TOLEPANCE F TO REMOVE RESIDUAL VARIANCE 3 0.9990621 5.6935 8.8750 5 5 3 0.99906522 8.8750 2.0126 8.8750 5 3 0.99906522 8.8750 2.0126 8.8750 3 0.99906522 8.8750 0.9756 3 3 MINUM RESIDUAL VARIANCE 7 0.9923648 3 MINUM RIABLE MINUM 7 6.86165 3 RIABLE TOLERANCE F 7 0.86165 3 RIABLE TOLERANCE R 0.658190 0.86165 3 RIABLE TOLERANCE R 0.658175 0.686165 3 A 0.9746911 0.652872 0.86165 3 3 TE 0.9681980 0.9706306 1.37266 0.866403 3 TE 0.976391775 0.652875 0.317266 0.866403 3 0.95701779 0.972228350 1.77676
VARIARLES IN 1 4CE F TO REMOV 4CE F TO REMOV 521 85.635 522 85.635 522 85.635 522 85.635 72 72 167 0.6572561 735 0.9911307 167 0.6572561 735 0.9911307 167 0.6572561 735 0.33228938 135 0.33228938 739 0.3961384 739 0.3361384 739 1.8712405 739 1.3712 739 1.3712405 739 1.3712405 739 1.3712405 739 1.3712405 739 1.3712405 739 1.3712405 739 1.3712405 739 1.3712405 739 1.3712405 730 1.3712405 730 1.3712405 730 1.3712405 7312405 740 1.3712405 7512405 70 70 1.3112405 70 70 1.3112405 70 70 1.3112405 70 70 1.3112405 70 1.3112405 70 70 1.3112405 70 1.311240
VAR 46 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55

RETVEEN GROUPS • F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP Each F statistic has 4 and 260.0 degrees of Freedim. STGNIF. RESIDUAL VARIANCE 4 0.0008 4 ------ VARIABLES NOT IN THE ANALYSIS AFTER STEP 0.85255 260.0 263.0 ------ VARIABLES IN THE ANALYSIS AFTER STEP DEGREES OF FREEDOM RESIDUAL VARIANCE WAS INCLUDED IN THE ANALYSIS. F TO ENTER 4 0.31942 0.34363 0.17309 0.16604 0.17252 0.35176 1.0990 0.15932 4 F TO REMOVE 0 0.3148913 0.3835200 0.8606669 0.8539388 0.3930695 0.8333376 0.3865874 TOLERANCE 0.1230164 3.4890 2.4107 4.8568 8.9857 MUMINIM 0.92994 0.85979 GROUP 0.1230164 0.3148913 0.3835200 TOLERANCE 0.9796869 0.8712405 0.8739779 0.9523428 0.3930695 0.9698657 0.9429046 0.3865874 0.9960697 TOLERANCE RESIDUAL VARIANCE 4. VB WILKS' LAMBDA EQUIVALENT F VARIABLE VARIABLE GROUP AT STEP SATE FLY SEX GPA G 1 S ** 45 Ž 82 x 173

0.0008 4.8974

Time Degrees of freedwords Signed Signed Signed Signed Fesiduri-Lewit 4.13911 5 1 233.0 0.0012 Fesiduri-Lewit 4.13911 5 2 233.0 0.0012 Fesiduri-Lewit 4.13911 5 2 233.0 0.0012 Fesiduri-Lewit 4.13915 Ffer Step 5 Varialle Tolerance F To Revore Restouri 5 Varialle Tolerance F To Revore Restouri 5 Varialle Tolerance F To Revore Restouri 4 Varialle Tolerance F To Revore Restouri 4 Varialle Tolerance HUNNUM F To Revore Restouri 4 Varialle Tolerance HUNNUM F To Revore 8 5 Varialle Tolerance HUNNUM F To Revore 8		AT STEP	5. GPA	WAS INCLUDED	ED IN THE ANALYSIS	NAL YS IS.						
RESIDUAL VARIANCE 0.85255 PERSIDUAL VARIANCE 0.85255 PARIANCE 10 REMOVE RESIDUAL VARIANCE VARIANLE TOLERANCE F TO REMOVE RESIDUAL VARIANCE VARIANLE TOLERANCE F TO REMOVE RESIDUAL VARIANCE VARIANLE 0.9971088 8.4020 8.4020 CA 0.9990805 1.0990 8.4020 CA 0.9090805 3.4671 10.9990 VM 0.06090200 2.1123 8.778 8.778 VARIANLE 0.0000200 2.1123 8.4020 9.4051 VAN 0.0000200 2.1123 8.4020 9.4041 VARIANLE TOLERANCE F TO ENTER RESIDUAL VARIANCE VARIANLE TOLERANCE F TOLERANCE F TOLERANCE 8.4020 VARIANLE TOLERANCE TOLERANCE F TOLERANCE 8.4020 VARIANLE TOLERANCE TO ENTER RESIDUAL VARIANCE 8.778 VARIANLE TOLERANCE TO ENTER 8.51046 0.9393550 0.19462 VIA 0.13105610 0.210102 0		HILKS' L'	ANGDA Nt f	0.92601 4.13917	DEGREES 5 1 5	0F FR	\$16N1F. 0.0012	BETVEEN	I GROUPS			
<pre>variable folderande in the Analysis after step 5</pre>		RESIDUAL	VARIANCE	0.85255								
TOLERANCE F TO REMOVE RESIDUAL VARIANCE 0.99948092 4.7202 0.99941092 8.6053 0.99941092 8.6053 0.99941092 8.6053 0.9994657 1.0990 0.9809020 3.8671 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 2.1123 0.9809020 0.1120 0.9930329 0.993566-01 0.9930329 0.9936266-01 0.91210066 0.121066 0.1210066 0.121066 0.1210066 0.1210606 0.1210066 0.1210606 0.1210066 0.1210606 0.1210066 0.1210606 0.1210066 0.1210606 0.121006 0.121060 0.121006 <td></td> <td></td> <td></td> <td>NI</td> <td></td> <td></td> <td></td> <td>1 1 1 1</td> <td>}</td> <td></td> <td></td> <td></td>				NI				1 1 1 1	}			
FLY 0.09941002 8.6005 WV 0.06690200 3.8671 WV 0.06690200 2.1123 WV 0.06690200 2.1123 MV MINIMUN F MALYSIS AFFER STEP 5 VARIABLE TOLERANCE TOLERANCE F TO ENTER MVRIABLE TOLERANCE F TO ENTER RESIDUAL VARIABLE TOLERANCE TO ENTER RESIDUAL VARIANCE 0.03839329 0.0385656-01 0.018462 M 0.1210066 0.23097268 0.23097268 0.23097268 M 0.121060 0.2402406		VARTABLE				VARIANCE						
W 0.8690020 3.8671 VB 0.8690020 2.1123 VARIABLE MINIMUM MALYSIS AFTER STEP 5 VARIABLE TOLERANCE MINIMUM VARIABLE 5 VARIABLE TOLERANCE FTD ENTER RESIDUAL VARIANCE 5 VARIABLE TOLERANCE FTD ENTER RESIDUAL VARIANCE 5 VARIABLE TOLERANCE 0.9506278 0.9472991 0.356935 5 SEX 0.9506278 0.98472991 0.356935 0.9386556-01 5 A 0.2393356 0.3830356 0.9386556-01 5 5 A 0.22902486 0.2300356 0.9386556-01 5 5 PL 0.2302704 0.27102 0.3767704 0.54127 5 PL 0.2307704 0.3767704 0.54127 5 5 PL 0.3767704 0.3761704 0.54127 5 5 PL 0.3767704 0.3761704 0.54127 5 5		× 70× 70×	0.9941092 0.9941092 0.9698657	8.6053 1.0990								
 VARIABLE TOLERANCE NOT IN THE ANALYSIS AFTER STEP 5 VARIABLE TOLERANCE TOLERANCE F TO ENTER RESIDUAL VARIANCE VARIABLE TOLERANCE TOLERANCE F TO ENTER RESIDUAL VARIANCE SATE 0.95506278 0.8839329 0.18462 SATE 0.95506278 0.8839329 0.18462 SATE 0.9554616 0.89301356 0.936556-01 GIS 0.2402486 0.89301356 0.936556-01 GIS 0.2402486 0.89301356 0.0796902 GIS 0.21160066 0.21160066 0.2116006 GIS 0.23097268 0.29105566-01 GI 0.23097269 0.0766906-01 GI 0.3767704 0.3767704 0.54127 GRUP 0 GROUP 0 GROUP 0 GROUP 0 GROUP 0 GROUP 0 GROUP 0 		2 2 2	0.8690020	3.8671 2.1123								
SEX 0.9506278 0.8472991 0.36935 SATE 0.3839329 0.3839329 0.18462 SATE 0.3839329 0.3839329 0.18462 SATE 0.3354616 0.8301356 0.936556-01 GIS 0.2402486 0.8305556-01 AA 0.1216066 0.27102 PL 0.3097268 0.3097268 0.0796906-01 QT 0.33097268 0.3097268 0.0796906-01 QT 0.33097268 0.3067264 0.54127 PL 0.3767704 0.3767704 0.54127 QT 0.3767704 0.3767704 0.54127 PL 0.3767704 0.54127 0.54127 QT 0.3767704 0.3767704 0.54127 QT 0.3767704 0.54127 0.54127 GRUP 0 259.0 DEGREES OF FREEDOM.		VARIABLE		H U	: TO ENTER		VARIANCE					
0.9354616 0.8301356 0.93626E-01 0.2402486 0.2402486 0.83655E-01 0.1216066 0.1216066 0.27102 0.3097268 0.3097268 0.79690E-01 0.3767704 0.54127 0.3767704 0.54127 10.3767704 0.54127 10.3767704 0.54127 0.57104 0.3767704 0.54127 10.3767704 0.54127 0.57104 0.3767704 0.54127 0	-	SEX			0.36935 0.18462							
0.1216066 0.1216066 0.27102 0.3097268 0.3097268 0.79690E-D1 0.3097268 0.3097268 0.79690E-D1 0.3767704 0.3767704 0.54127 Ch f Statistics and Significances Between Pairs of Groups After Step Ch f Statistic Has 5 and 259.0 degrees of Freedom. Group 0 Group 1 1 4.1392 1 0.0012		N I S			0.93626E-0 0.83655E-0	2 -						
GROUP GR		10	0.1216066		0.27102 0.70600E_0	• -						
SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP Has 5 and 259.0 degrees of Freedom. Group 0 4.1392 0.0012		: t a	0.3767704	0.3767704	0-54127	-						
6R0UP * *		F STATIS' Each f Si		ŝ	ETWEEN PAIR 259.0 deg							
4 0 • 0			GROI									
1 4.1392 0.0012		GROUP										
		-		4.1392 0.0012								

* * *

F LEVEL OR TOLERANCE GR VIN INSUFFICIENT FOR FURTHER COMPUTATION.

SUMMARY TABLE

	LABEL						
RESIDUAL	VARIANCE		00000	.88964	.87589	.85979	, 85255
	\$16.			.0007	•000•	.0008	.0012
WILKS'	LAMBDA	20020		.94579	.93856	• 92994	.92601
VARS	N	•	-	~	Ð	•	ŝ
ACTION	D REMOVED						
•	STEP ENTERED	2		<	N	87	GPA
	STEP	•	-	2	n	4	n

CANONICAL DISCRIMINANT FUNCTIONS

	SIGNIFICANCE	0.0012	
	D.F.	N)	
	CHI-SQUARED	20.026	
	CORRELATION : FUNCTION WILKS' LAMBDA CHI-SOUARED D.F. SIGNIFICANCE	0.9260060	
AFTER	FUNCTION	•	
CANDNICAL : AFTER	CORRELATION :	••	0.2720185 :
PERCENT OF CUMULATIVE	PERCENT		100.00
PERCENT OF	VARIANCE		0.07991 100.00
	EIGENVALUE		0.07991
	NCITONUT		1*

I CANDNICAL DISCRIMINANT FUNCTIONS REMAINING IN THE ANALYSIS. # MARKS THE

STANDARDIZED CANDNICAL DISCRIMINANT FUNCTION CDEFFICIENTS

FUNC 1	0.49700	0.66118	-0.24264
	4	FLY	GPA

175

0.48063 -0.35490 > Ø Z >

STRUCTURE MATRIX:

POOLED WITHIN-GROUPS CORRELATIONS BETWEEN DISCRIMINATING VARIABLES And Canonical Discriminant Functions (variables ordered by Size of Correlation Within Function)

FUNC 1	.6321	.5261	.3670	.3309	.2512	.2343	0.18809	.1041	.0975	.0839	-0.06113	-0.05001
	FLY	<	N <	PL	GPA	VB	01	I	615	SEX	SATE	4 4

UNSTANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS 176

FUNC 1

1.516025	0.4877497E-01	-0.5434677E-02	0.3099251E-01	-0.1650553E-01	-0.1511912	
•	FLY	GPA	NV	A B	(CONSTANT)	

CANONICAL DISCRIMINANT FUNCTIONS EVALUATED AT GROUP MEANS (GROUP CENTROIDS)

FUNC	
GROUP	

-0.72190 0.10985 • -

TEST OF EQUALITY OF GROUP COVARIANCE MATRICES USING BOX+S M

THE RANKS AND NATURAL LOGARITHMS OF DETERMINANTS PRINTED ARE THOSE Of the group covariance matrices.

LOG DETERMINANT (Singular)	22.251803	22.023373
R ANK	вî	ŝ
GROUP LABFL O	1	POOLED WITHIN-GROUPS Covariance matrix

NO TEST CAN BE PERFORMED WITHNUT AT LEAST TWO NON-SINGULAR GROUP Covariance Matrices.

. 1 I ۱ ł 1 1 . 1 ŧ 1 1 ŧ I I e 1 ANALYSIS DISCRIMINANT ----NUMBER OF CANONICAL DISCRIMINANT FUNCTIONS.. • ı 1 (ı LIST OF THE 12 VARIABLES USFD.. 1 1 8 1 1 ON GROUPS DEFINED BY R -ANALYSIS NUMBER.. ı ŧ • . 1 178

DISCRIMINANT Scores	.1549	756	2869	4626	8659	0048	0713	9946	8874	5061	7617	3438	5132	-0.8452	0319	-1.0405	-1.1071	-0-6540	•1035	.1680	.3421	•7534	• 3084		-1.1/09		-0.2780	.8239	.6328	.3052	6176	.5230	.4376	0.4873	1.0270	-0.0864	-0.1013	9338	.3817	-1.4064	5706	6703	.1378	.2738	•000•	.0620	1984	
D15 SC	-2-	0	-0-21	0	¥•0-	0-		-0-	••	0	0	• 0 -		•	•	-	-		•	e i	ċ	• •	; ;	5 -				0	2.	•	•	ċ	•	•	-	•	•	-1-9	•0-	-	°c	• 0 -	• 0-	•	S	Ŷ	•	
HIGHEST IP P(G/D)	0.1626	.405	0.490		0.3620	0.4274	0.3395	0.3551	25	0.4607	•		0.256	0.386	•	•	266 °0	0.425	••0	ċ	0	0.274	6.2.0	5 0	964.0		0.488	0.391	•	0.494	0	0•3	••0	0.3	0.228	0	••0	0.1	0	0.275	0	0.4243	0.456	0.3675	0.1097	0.4400	0.383A	
2ND HI GROUP	1	T	0	-	-	0		-	õ	-	-	-	~	-	¢	-			0	•	0	о ·	- (~ •	- 0) C	. –	0	•	•	•	-	•	0	•	•	1	-	1	•	1	0	0	o	•	0	
1L1TY P(6/D)	.8374	*	.5098	•5296	.6180	.5726	• 6605	.6449	.7491	.5393	.5956	.5030	.7431	•6136	.5807	• 6543		n 1	805c.	• 5304	0.6456	0.7258	0.1005			AIFO.	.5118	.6090	.9347	.5057	• 7009	• 6828	.5240	.6758	.7720	4	551	• 8085	-5115	724	692	.5757	543	532	E068.	.5600	.6166	
PR08AB1L17Y P(D/G) P(G/D	.1690 0.	9813 0	5851 0	7512 0	9313 0	017 0	0	.8298 0.	1420 0	7844 0	9857 0	0	0	0	0	0	0	9 8806 9 8 8 9 9	8242 0	7744	8232	5256	0/65	0 60C6	00060	0 11/6	0	9647 0	0 119 0	0	.6178 0.	859 0	C	0	0	376 0	8259 0	484 0	۲ ٥	0 8	513 0	129 0	7976 0	767	.0599 0.8	.8567 0.	·0 49E6 ·	
HIGHEST P Group P(0	0	1 0.		5°0 C		000	0		0 0		00	0	0	0	0	0	0	0	0	0	0		o c	o c		0	0	0	- 0	1 0,	0	0	1 0.	0	- -	0	0	0	0	0	0	10	10	-	0 -	-0.	
	*	*		*		*		*		**	*		*	* *			# ·	#					*	•	H 4	F F		*					*				# #	*	* *	*		*						
ACTUAL Group	-			1	°	0	0		-	-1	-	0	-	~	-	•	-	-	-	-	-	-		- .			• •		-	1	1	-	-	-	-	1	•	-	-	~	1	1	-	1	1	-	••	
SEL																																																
MIS Val																																																
CASE Segnum	-	N	m	4	łn	v	~	æ	o	10	11	12	13	*	15	16	17	8	10	50	21		۲ 7		5 N N	0 6		562	30	31	32	5	4 M	35	36	37	60 FT	39	40	14	42	E 4	Ŧ	\$0. 4	9 4	47	48	

DISCRIMINANT Scores	-1.2179	1.3556	-0-8003	-0.5535	0.9710	-0.6770	-1.6717	-1.4377	-0.9477	-1.4206	-0.7562	0.7672	0.3922	-0.2821	-1.0292	-0.5421	2687 • [-	1.2870	-0.2072	0.6053	1.9590	-0.1892	641373	-2.0700	4866+01	0.7141	0.4335	-1.7083	0.0012	1.1576	-0.3783	0.8998	0.4116	-0.2693	-0-3146	-0.5095	0.201	5486.1	*LLE*0+	0.0795	0.3596	-0.1769	-0.4439	1.7529	0.6806	-0.3639	æ	2	-0.2955
2ND HIGHEST Group P(G/D)	.310		ņ	••0	•	••0	0.2	•	•	٠	•	0	•	ċ	ċ	•	1 0.2130	0 • 1 89	•	0 0.3014	•		0.396	•	•	٠	•	0.22	0 0.4260	0.208		•	•	0 0.4862		••	n 4	61.0	•	4 • C	0.349		1 0.4746	0 0.1334	0 0.2874	192	.302	•	0 0.4921
HIGHEST PROBABILITY Group P(D/G) P(G/D)	0.6612 0.689	0.2161 0.	.9836 0.	0.8211 0.5	0 0+62.0	0.9183 0.5	.3724 0.7	0.5105 0.	0.8665 0.6	.5215 0	0.9813 0.594	0.5166 0.728	0.7844 0	0.6886 0.	0.8029 0.	0.8122 0	0 0416*0	• 1 9 7 7 7 9 0		0.6265 0.	0.0657 0.	0.7582 0.531	0.9851 0.603	0.1969 0.826	0.7030 0	0.5515 0.	7528 0	0.3531 0.	0.9065 0.	2988 0.	0.6892 0	0.4347 0.	0.7696 0.	0.6981 0.5	0.6648 0.	1042.0 0787.0 0				.9688 0.5	8096 0.	0.7676 0.	•	ہ ہ	1 0.5741 0.7126	.6776 0.5	0.6321 0.	•6840 0.	1 0.6789 0.5079
	*		*	# #		#	# #	*		*	# #				# #		ł			# #					* *			*			*				*	# #		-	H H				* *		*	#	# #	#	
ACTUAL GROUP	1	-	-	-	-	-	-	-	•	-	1	-	1	1	-4	0	-•••		- 1	0	-	-	-	o	-	1	-	-	-	-	-	-	-		0			- ·		-	-	-	-	-	0	-	1	**	1
SEL																																																	
HIS Val																																																	
CASE Seonum	50	51	52	10 10	4	5	56	57	50 50	59	60	61	6.2	6.	• •	60	0 9			69	10		80 80		74	45	16	11	78	19	0		82	n . 80 (6 0 D	6	06	91	92	56	94	95	96	97	86

ST DISCRIMINANT (/D) SCORES	413 -0.5933	486 -	2578 0.6465	595	782 -	æ	827	2798 0.7218		223	va	•	•	•	953			195190- 100100 2013 0- 0354 0		•			6610°1 6622°0			0.2500 -0.2710 0.3500 -0.0714		0.1358 1.7297	• • •	•	•	2				-	י כי	595	582	249	250	875	4.95	- 699	2309 1.0089	817	.2769 0.7379	AOF - 0 -
2 ^N d Highest Group P(G/D	1 0.4	•	•	0	E 0 I	•	0 0.1	0 0 0	•	1 0.3	0	•	ċ	0	0	-				•	•					-	50	0	0	1 0.2		-	0	•	•	5	•	0 (0	•	٥	•	ċ	0 0 0	0 0.2	0 0.2	¢
HIGHEST PROBABILITY Group P(D/G) P(G/D)	0 0.8522 0.5587	0.4343	4667 0.	. 7884	.9171 0.62	0.7526	.2230	0.5464 0.	0.9894 0	0.7052 0.	0 6046 0	0.9121	.9935 0	0.8135 0.	0.9808 0.	0.9137 0.		64650 63850 0 0 0 8413 0 8787			640J 0	0.9069 0	0 0	0 2008.0	80/5°0 0/16°0 1	0.88470	0.4500 0.	0.1072	0	0.5193 0	0.9607	0.6747 0	0.9766 0	.6680 0	0.9541 0	6227-0		0806*0	0.8412 0	0.0858	.0860	0.6941 0	0.7548 0.664	.7630 0.533	5 0.769	.5533 0	1 0.5358 0.7231	
	** [1 **	1	1	** [1	1		1	•	1 **	** 1	1	*		*	- 0	•	ŀ	0 0	ο.	-		# #		**	•		0	0	1	1	0	-	*					-	-	**	** -	-			1	,
ACTUAL GROUP																																																
HIS Val Sfl																																																
CASE N Segnum V	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	• •	611	110		211	611		ی 18		521		126	127	128	129	130	131	132	133		0.01	071	151	951	139	1 4 0	1 4 1	1 4 2	143	144	145	146	

1 ** 0 0.9555 0.6112 0 0.1161 1 0.7797 0.5592 0.6112 0 0.1161 1 0.7797 0.5592 0.6112 0 0.1161 1 0.7797 0.5112 0 0 0.1951 1 0.7965 0.6112 0 0 0.1951 1 0.7965 0.6112 0 0 0.1951 1 0.7965 0.6112 0 0 0.1951 1 0.7965 0.6112 0 0 0.1952 1 0.7965 0.6112 0 0 0.1952 1 0.7975 0.6112 0 0 0.1952 1 0.7975 0.6112 0 0.1773 0.1773 1 0.7975 0.6173 0 0.1773 0.1773 1 0.7975 0.6173 0 0.1773 0.1773 1 0.7975 0.6173 0 0.1773 0.1773 1 0.7975 0.7755 0.	1 1 0.0702 0.9955 0.98130 1 0.0702 0.99530 0.98130 0.98130 1 0.0702 0.99530 0.98130 0.98130 1 0.0702 0.99530 0.98130 0.98130 1 0.0702 0.99530 0.98130 0.98130 1 0.0702 0.99530 0.99112 0.99330 1 0.0702 0.99533 0.99112 0.99330 1 0.0702 0.99112 0.99330 0.99112 1 0.0702 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112 1 0.99112 0.99112 0.99112 0.99112	CASE MIS Segnum Val	SEL	ACTUAL GROUP		MIGHEST PROBABILITY Group P(d/g) P(g/d)	2 ND HIGHEST Group P(G/D)	DISCRIMINANT Scores
		97		1	*	0.9565 0.611	0.388	-0.8342
1 0.2233 0.6170 0 0.4793 1 0.4767 0.4504 0.4094 0.4904 1 0.4965 0.4004 0 0.4904 1 0.4965 0.4004 0 0.4904 1 0.4965 0.4014 0.4004 0 0.4904 1 0.4965 0.4014 0.4014 0 0.4904 1 0.4965 0.4014 0.4014 0 0.4904 1 0.4965 0.4014 0.4014 0 0.4904 1 0.4965 0.4014 0.4014 0 0.4904 1 0.4965 0.4014 0.4014 0.4014 0.4004 1 0.4913 0.4012 0.4014 0.4014 0.4014 1 0.4913 0.4012 0.4014 0.4014 0.4014 1 0.4147 0.4147 0.4147 0.4147 0.4147 1 0.4147 0.4147 0.4147 0.4147 0.4147 1 0.4147 0.4446 0.4446 0.4446	1 0.2223 0.61170 0 0.4147 1 0.4747 0.45292 0.40170 0 1 0.49650 0.401814 0.45018 0.401814 1 0.49650 0.401814 0.401810 0 1 0.49650 0.401814 0.40181 0.40181 1 0.49650 0.40181 0.40181 0.40181 1 0.49650 0.40181 0.40181 0.40181 1 0.49650 0.40181 0.40181 0.40181 1 0.49650 0.40181 0.40181 0.40181 1 0.49650 0.40181 0.40181 0.40181 1 0.49650 0.45182 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181 1 0.40181 0.40181 0.40181 0.40181	98		-		0.0702 0.	0.116	•
1 0.7497 0.5292 0.54709 1 0.7797 0.5512 0.0.312 1 0.76516 0.50109 0.0.31912 1 0.76516 0.501312 0.0.31912 1 0.76516 0.501312 0.0.31912 1 0.76516 0.501312 0.0.31912 1 0.76516 0.501312 0.0.31912 1 0.76516 0.501312 0.0.31912 1 0.76517 0.56031 0.51312 0.0.31912 1 0.76517 0.56031 0.51312 0.0.31912 1 0.7613 0.55113 0.0.31912 0.0.31912 1 0.7613 0.55113 0.0.31912 0.0.31912 1 0.7613 0.55113 0.0.31912 0.0.31912 1 0.7613 0.55113 0.0.31912 0.0.11912 1 0.7613 0.55113 0.0.11912 0.0.11912 1 0.7613 0.55113 0.0.11912 0.0.11912 1 0.7613 0.76123 0.0.11912 0.0.11912 1 0.7613 0.76123 0.0.11912 0.0.11912 1 0.7613 0.76123 0.0.11912 0.0.11912	1 0.7787 0.5528 0 0.4709 1 0.9659 0.5512 0 0.4709 1 0.9651 0.5512 0 0.4969 1 0.9651 0.5612 0 0.4964 1 0.9651 0.5612 0 0.4964 1 0.9651 0.5612 0 0.4964 1 0.9651 0.5612 0 0.4964 1 0.9651 0.5614 0 0.4964 1 0.9651 0.5691 0.6117 0.4914 1 0.9691 0.5691 0.6117 0.4914 1 0.9692 0.5691 0.6117 0.4914 1 0.7710 0.4913 0.4014 0.4014 1 0.7710 0.4923 0.4014 0.4014 1 0.7710 0.4913 0.4014 0.4014 1 0.4913 0.4913 0.4014 0.4014 1 0.4913 0.4913 0.4914 0.4914 1 0.4914 0.4914 0.4914 <td>66</td> <td></td> <td>-</td> <td></td> <td>.2238 0.</td> <td>0.1</td> <td></td>	66		-		.2238 0.	0.1	
1 1 0.99578 0.6109 0 0.39918 1 0.99578 0.60084 0.01995 0.61995 1 0.9951 0.60084 0.01962 1 0.6951 0.60084 0.01962 1 0.9951 0.60084 0.01962 1 0.9951 0.60084 0.01962 1 0.9951 0.60084 0.01962 1 0.9951 0.6199 0.01962 1 0.9951 0.6199 0.01962 1 0.9951 0.6193 0.6199 1 0.9952 0.6192 0.01193 1 0.9952 0.6112 0.01173 1 0.71973 0.01173 0.01173 1 0.71973 0.01173 0.01173 1 0.71973 0.01173 0.01173 1 0.71973 0.01173 0.01173 1 0.71973 0.01173 0.01173 1 0.71973 0.01173 0.01173 1 0.71973 0.01173 0.01173 1 0.7173 0.0173 0.01773 1 0.7173 0.01703 0.01773 1 0.01703 0.01703 </td <td>1 1 0.99578 0.6.109 0 0.99518 0.6.109 0 0.99918 0.99918 0 0.99918 0.99918 0 0.99918 0.99918 0<!--</td--><td>00</td><td></td><td>-</td><td></td><td>.7497 0.</td><td>0.470</td><td>-0.2004</td></td>	1 1 0.99578 0.6.109 0 0.99518 0.6.109 0 0.99918 0.99918 0 0.99918 0.99918 0 0.99918 0.99918 0 </td <td>00</td> <td></td> <td>-</td> <td></td> <td>.7497 0.</td> <td>0.470</td> <td>-0.2004</td>	00		-		.7497 0.	0.470	-0.2004
1 1 0.99650 0.60084 1 0.29513 0 0.39512 0 0.39513 1 1 0.6503 0.6003 0.5033 0 0.19561 0 0.39513 1 1 0.6503 0.6003 0.51312 0 0.39514 1 1 0.6503 0.5033 0 0.19514 0 0.39514 1 1 0.6503 0.5132 0 0.1373 0 0.13714 1 0.61972 0.5132 0 0.1371 0 0.13714 1 0.7193 0.5132 0 0.1723 0 1 0.7193 0.5132 0 0.1723 1 0.7193 0.5132 0 0.1723 1 0.7730 0.5132 0 0.1723 1 0.7730 0.5132 0 0.1775 1 0.7733 0.5305 0 0.1733 1 0.7730 0.55404 0 0.1775 1 0.7230 0.5305 0 0.1775 1 0.7230 0.55404 0 0.1775 1 0.7230 0.54052 0 0.1775	1 1 0.99650 0.0084 1 0.0.39515 1 0.09815 0.001312 0 0.0.39515 1 0.09555 0.05013 0 0.19655 1 0.09555 0.50139 0 0.19655 1 0.09555 0.50139 0 0.19651 1 0.9953 0.51317 0 0.19651 1 0.0993 0.50139 0 0.1975 1 0.99635 0.5376 0 0.1973 1 0.0983 0.5376 0 0.1973 1 0.0983 0.5376 0 0.1973 1 0.01972 0.66739 0 0.1773 1 0.01973 0.61730 0 0.1773 1 0.1972 0.61730 0 0.1973 1 0.1973 0.61730 0 0.1973 1 0.1973 0.61730 0 0.1973 1 0.1973 0.61730 0 0.11779 1 0.19250 0.19245 <td< td=""><td>01</td><td></td><td>~</td><td></td><td>0.9578 0.</td><td>•</td><td>0.1716</td></td<>	01		~		0.9578 0.	•	0.1716
1 1 0.8814 0.6512 0 0.1962 1 0.8951 0.6003 0.5112 0 0.1962 1 0.9951 0.6003 0.5119 0 0.1962 1 0.9951 0.6003 0.5119 0 0.4961 1 0.9951 0.6903 0.5913 0 0.4961 1 0.9951 0.6903 0.5113 0 0.4961 1 0.9952 0.5112 0 0.4963 0 1 0.9963 0.5925 0.6133 0 0.4963 1 0.9962 0.5925 0.5132 0 0.4033 1 0.4962 0.5132 0 0.4133 1 0.4963 0.5132 0 0.4133 1 0.4733 0.5132 0 0.4133 1 0.4733 0.5132 0 0.4133 1 0.4733 0.5132 0 0.4133 1 0.4733 0.5132 0 0.4133 1 0.4733 0.4	1 1 0.8814 0.6512 0 0.1962 1 0.8951 0.80138 0 0.1962 1 0.9951 0.50138 0 0.1962 1 0.9951 0.50138 0 0.1952 1 0.9951 0.50138 0 0.1952 1 0.9951 0.5013 0.5114 0 0.1952 1 0.9915 0.5112 0 0.1952 0 1 0.9915 0.5112 0 0.1952 1 0.9915 0.5112 0 0.1952 1 0.9915 0.5112 0 0.1952 1 0.9955 0.51132 0 0.1952 1 0.9955 0.51132 0 0.1952 1 0.7210 0.51132 0 0.1723 1 0.7210 0.51132 0 0.1952 1 0.7210 0.51132 0 0.1952 1 0.7210 0.61132 0 0.1953 1 0.7210 0.61132 0 0.1953 1 0.7210 0.61132 0 0.1953 1 0.7210 0.61132 0 0.1953	02		-	#	0.9669 0.608	0.391	-0.8212
1 0.2625 0.6033 0 0.4961 1 0.9951 0.6033 0 0.4961 1 0.9951 0.6193 0 0.3361 1 0.9951 0.6033 0 0.3961 1 0.9951 0.6193 0 0.3961 1 0.9953 0.5591 0 0.3963 1 0.04653 0.5591 0 0.3975 1 0.66623 0.5132 0 0.4663 1 0.66623 0.5137 0 0.4663 1 0.66623 0.5132 0 0.4663 1 0.66623 0.5132 0 0.1773 1 0.66623 0.5132 0 0.1773 1 0.66653 0.5132 0 0.1773 1 0.66654 0.6513 0 0.1773 1 0.66653 0.6513 0 0.1773 1 0.66654 0.66753 0 0.1773 1 1 0.6675 0.66753 0 0.14	1 0.2625 0.0039 0.0.4961 1 0.2625 0.5039 0.0.4961 1 0.0978 0.5114 0.0.4961 1 0.0978 0.5114 0.0.3075 1 0.0983 0.5991 0.0.4961 1 0.0983 0.5991 0.0.3075 1 0.0983 0.5991 0.0.3075 1 0.04895 0.5629 0.0.12053 1 0.0583 0.5991 0.0.3075 1 0.0583 0.5993 0.5175 1 0.0583 0.5629 0.0.12053 1 0.0583 0.5175 0.0.1472 1 0.0582 0.5175 0.0.1472 1 0.1827 0.1751 0.0.1472 1 0.1827 0.1751 0.0.1472 1 0.1827 0.1751 0.0.1472 1 0.1827 0.1751 0.0.1472 1 0.1827 0.0.1473 0.0.1472 1 0.1827 0.0.1473 0.0.1472 1 0.0182	53		1		.8814 0.	0.368	0.2678
1 0.6656 0.5039 0 0.4961 0 0.4961 1 0.9951 0.5139 0 0.4961 0 0.4961 1 0.6663 0.5139 0.6199 0 0.4869 0 0.4869 1 0.6663 0.6513 0.6913 0.6304 0 0.4869 0 0 0.4869 0 0.4869 0 0 0.4869 0 0 0.4869 0 0 0.4869 0 0 0 0.4869 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•0		-		0.2625 0.	0.1	1.2391
1 0.9951 0.6003 0 0.5992 1 0.6903 0.5915 0.5199 1 0.4003 1 0.6903 0.5915 0.51915 1 0.4003 1 0.6903 0.5915 0.51915 1 0.4003 1 0.6903 0.5915 0.5132 0 0.4123 1 0.6903 0.6197 0 0.4123 0 1 0.6912 0.6529 0 0.1237 0 1 0.6912 0.6529 0 0.4531 0 0.4531 1 0.6913 0.6513 0.6173 0 0.4531 0 0.4531 1 0.6923 0.6173 0.6513 0 0.4531 0 0.4531 1 1 0.6032 0.6131 0 0.4534 0 0.4534 1 1 0.7730 0.6733 0.6143 0 0.4534 0 1 1 0.6625 0.63134 0 0.4545 0 0.4454 0 0.4545	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05		-		0.6658 0.	••0	-0.3132
0 0.9282 0.6199 1 0.3881 1 0 0.9983 0.59114 0 0.4888 1 0 0.9983 0.59114 0 0.4888 1 0 0.9983 0.59114 0 0.4983 1 0 0.9983 0.5931 0 0.3037 1 0 0.9982 0.6932 0.6193 0 0.3337 1 0 0.1972 0.6733 0.6337 0 0.3377 1 0 0.1972 0.6733 0.6733 0.0173 1 0.7230 0.6733 0.6733 0.0173 1 0.7230 0.6733 0.0173 0.0173 1 0.7230 0.6733 0.0173 0.0173 1 0.7230 0.6733 0.0173 0.0173 1 0.7230 0.6733 0.0173 0.0173 1 0.7230 0.6733 0.0173 0.0173 1 0.7230 0.6733 0.0173 0.0173 1 0.01012	0 0.9222 0.64593 0.64593 0.64593 0.64593 0.64584 0.04584 1 0 0.9983 0.6973 0.64884 1 0.4884 1 0 0.9983 0.6973 0.64845 1 0.49643 1 1 0.7612 0.64873 0 0.4972 0.48846 1 0.4073 1 1 0.7612 0.64873 0 0.4972 0.4873 0 0.4973 1 1 0.7612 0.6473 0 0.4773 0.6473 0 0.4773 1 0.7713 0.4773 0.4773 0.4773 0 0.4773 1 1 0.4773 0.4673 0 0.4452 0 1 1 0.4773 0.4673 0 0.4453 0 0.4453 0 1 1 0.4773 0.4645 0 0.4453 0 0.4453 0 1 1 0.4773 0.4645 0 0.4453 0 0.4453 0 0 0.4453	06		-		0.9951 0.	• •0	0.1248
1 0.6903 0.5114 0 0.4808 1 0.6903 0.5913 0.5913 0 0.4808 1 0.6963 0.6925 0 0.4003 0 0.4003 1 0.7612 0.6925 0.5132 0 0.40331 0 0.4033 1 0.7612 0.6925 0.5132 0 0.4033 0 0 0 0.4033 0 0 0 0.4033 0	1 0.6903 0.5114 0 0.4808 1 0.6903 0.69157 0.6488 1 0.40314 1 0.6993 0.6933 0.5933 0.4033 0.4033 1 0.7612 0.6623 0.6122 0 0.4034 1 0.7612 0.6623 0.6122 0 0.4034 1 0.7612 0.6623 0.5132 0 0.4034 1 0.7750 0.5132 0 0.4034 0 1 0.7750 0.5132 0 0.4034 0 0.4034 1 0.7750 0.5133 0.5173 0 0.4034 0 1 0.7750 0.5617 0.6625 0 0.4173 0 1 0.7850 0.5517 0.66457 0 0.4173 0 0.4173 1 0.7850 0.66457 0.66457 0 0.4173 0 0.4173 1 0.7850 0.66457 0.66457 0 0.4173 0 0 1 0.7724	07		0		0.9242 0.	•	-0.8748
1 ** 0 0.88157 0.66485 1 0.3055 1 0.09933 0.55991 1 0.4003 0.5991 1 0.3075 1 1 0.6993 0.5976 0.5991 0.5991 1 0.4003 1 1 0.6973 0.6925 0.6123 0 0.3075 1 0.6973 0.6925 0.5173 0.5250 1 0.1734 1 0.6923 0.6733 0.6733 0.01735 1 0.1735 1 0.7230 0.6733 0.6733 0.01735 1 0.1735 1 0.8274 0.6673 0.6733 0.01735 1 0.1735 1 0.8274 0.6673 0.6733 0.01735 1 0.1735 1 1 0.8274 0.6673 0.01735 0.01735 1 1 0.8274 0.6673 0.01735 0.01735 0.01735 1 1 0.8273 0.01735 0.01735 1 1 0.01735 0.017325 0.01735 </td <td>1 ••••••••••••••••••••••••••••••••••••</td> <td>08</td> <td></td> <td>-</td> <td></td> <td>0.6903 0.511</td> <td>0.488</td> <td>-0.2799</td>	1 ••••••••••••••••••••••••••••••••••••	08		-		0.6903 0.511	0.488	-0.2799
0 0.09993 0.69953 0.6975 0.6712 0.60175 1 0.09955 0.68737 0 0.17833 1 0.6975 0.68737 0 0.17753 1 0.6975 0.68737 0 0.17734 1 0.77537 0.69755 0 0.3371 1 0.7733 0.53766 1 0.22539 1 0.7733 0.5376 0 0.33714 1 0.7733 0.5376 1 0.22539 1 0.7733 0.5455 0 0.3793 1 0.7733 0.5455 0 0.3793 1 0.7733 0.6455 0 0.3793 1 0.7733 0.6455 0 0.1973 1 0.7733 0.8027 0 0.1973 1 0.7733 0.8027 0 0.1772 1 0.7733 0 0.1772 0 0.1772 1 0.7734 0 0 0 0 0.1723 1 0.773	0 0.9983 0.5591 1 0.4009 1 0.7612 0.6629 0.3175 0 1 0.7612 0.6629 0.3175 0 1 0.7612 0.6629 0.3175 0 1 0.7612 0.6629 0 0.3175 1 0.7783 0.55376 1 0.3175 1 0.7793 0.5376 1 0.3173 1 0.7793 0.5376 1 0.1733 1 0.7793 0.5376 1 0.1734 1 0.7230 0.5376 1 0.1733 1 0.7231 0.5377 0 0.1773 1 0.7231 0.5377 0 0.1773 1 0.7231 0.5517 0 0.1773 1 0.7231 0.5417 0 0.1773 1 0.7231 0.5517 0 0.1773 1 0.7231 0.5413 0.5413 0 1 0.7714 0.54133 0.7231 0	60		-	# #	0.8157 0.648	0.351	-1.0127
1 0.0855 0.6737 0 0.1263 1 0.7612 0.6925 0 0.3075 1 0.7612 0.6925 0.5376 0 0.3075 1 0.7612 0.6925 0.5376 0 0.3075 1 0.1972 0.8266 0 0.3075 0 0.3075 1 0.1972 0.8266 0 0.4662 0 0.4662 1 0.1319 0.8274 0.8275 0 0.4662 0 0.4662 1 0.1319 0.8528 0 0.1472 0 0.1472 1 0.1201 0.8527 0.8527 0 0.4353 0 0.1472 1 1 0.8528 0.8627 0 0.8537 0 0.1472 1 0.8528 0.8627 0.8627 0 0.8379 0 0.1472 1 0.8627 0.8627 0.8627 0.8627 0 0.8379 0 1 0.8627 0.8627 0.8627 0.86077 0 0.8	1 0.0895 0.67137 0 0.1263 1 0.7612 0.6925 0 0.3075 1 0.7612 0.6925 0 0.3075 1 0.7713 0.55135 0 0.3075 1 0.7713 0.55136 0 0.3075 1 0.7713 0.55136 0 0.3075 1 0.7713 0.5776 0 0.4964 1 0.1723 0.57136 0 0.4964 1 0.1733 0.6773 0 0.1772 1 0.1733 0.6773 0 0.1772 1 0.1733 0.6773 0 0.1772 1 0.1734 0 0.1772 0 0.1772 1 0.1734 0 0.1773 0 0.1772 1 0.1724 0.1724 0 0.1772 0 1 0.1722 0.1724 0 0.1772 0 1 0.1722 0.1722 0 0.1723 0 0.1723 <td< td=""><td>10</td><td></td><td>0</td><td></td><td>0.9983 0.</td><td>0.400</td><td>-0.7775</td></td<>	10		0		0.9983 0.	0.400	-0.7775
1 0.4692 0.6622 0 0.3377 1 0.7612 0.6562 0 0.3377 1 0.7783 0.55132 0 0.3377 1 0.7783 0.55132 0 0.3377 1 0.7783 0.55132 0 0.3377 1 0.7783 0.5517 0 0.4452 1 0.7230 0.5517 0 0.4373 1 0.7233 0.5517 0 0.4373 1 0.7230 0.5517 0 0.4573 1 0.7230 0.5517 0 0.4573 1 0.7230 0.5517 0 0.1472 1 0.7230 0.5617 0 0.1473 1 0.7230 0.5617 0 0.1473 1 0.0179 0.5617 0 0.1473 1 0.7837 0.5617 0 0.1473 1 0.7836 0.5137 0 0.1473 1 0.7849 0.7724 0 0.25677 <tr< td=""><td>1 0.6993 0.6629 0 0.3075 1 0.4972 0.8629 0 0.4968 1 0.4972 0.8629 0 0.4968 1 0.4972 0.81375 0 0.4968 1 0.4972 0.82376 0 0.4078 1 0.4972 0.81379 0 0.4988 1 0.4131 0 0.4988 0 0.4988 1 0.4131 0 0.4928 0 0.43393 1 0.4141 0 0.44968 0 0.44988 1 0.4828 0.6617 0 0.43933 1 0.4828 0.6617 0 0.44988 1 0.4828 0.64639 0.64939 0 1 0.4828 0.64639 0.64939 0 0.44988 1 0.4828 0.64639 0.64939 0 0.44988 1 0.4828 0.64639 0.64939 0 0.44988 1 0.44949 0.64739 0.64939 0</td><td>11</td><td></td><td>-</td><td></td><td>0.0885 0.</td><td>0.126</td><td>1.8222</td></tr<>	1 0.6993 0.6629 0 0.3075 1 0.4972 0.8629 0 0.4968 1 0.4972 0.8629 0 0.4968 1 0.4972 0.81375 0 0.4968 1 0.4972 0.82376 0 0.4078 1 0.4972 0.81379 0 0.4988 1 0.4131 0 0.4988 0 0.4988 1 0.4131 0 0.4928 0 0.43393 1 0.4141 0 0.44968 0 0.44988 1 0.4828 0.6617 0 0.43933 1 0.4828 0.6617 0 0.44988 1 0.4828 0.64639 0.64939 0 1 0.4828 0.64639 0.64939 0 0.44988 1 0.4828 0.64639 0.64939 0 0.44988 1 0.4828 0.64639 0.64939 0 0.44988 1 0.44949 0.64739 0.64939 0	11		-		0.0885 0.	0.126	1.8222
0 -7612 05629 0 03371 1 07612 05029 0 03371 1 07750 0.5376 1 07734 1 07750 0.5376 1 07734 1 07750 05376 1 04624 1 01319 0.5376 1 01773 1 01319 0.5673 0.5776 0 01773 1 01319 0.5617 0 01773 0 01773 1 01319 0.5617 06733 06731 0 01779 0 01779 1 00188 0.5617 06455 06733 00179 0 01779 1 006122 01719 06455 00179 0 01799 1 00188 05663 01712 0 01799 0 01799 1 1 00188 05663 01719 0 01799 0 01799 1 1 <	0 0.7612 0.5629 0 0.3371 1 0.7783 0.5376 0 0 0.3371 1 0.7783 0.5376 0 0 0.4773 1 0.7783 0.5376 0 0 0.4624 1 0.7783 0.5376 0 0 0.4624 1 0.1373 0.45740 1 0.2250 0 0 1 0.7133 0.45730 0.45730 0	12		1		.6493 0.	0.307	0.5734
1 0.6962 0.5132 0 0.4868 1 1 0.1972 0.85376 1 0.1734 1 0.1319 0.85376 1 0.1734 1 1 0.1319 0.85376 1 0.1734 1 1 1 0.1319 0.85376 1 0.1734 1 1 0.7230 0.6730 1 0.1472 1 1 0.7230 0.6730 1 0.1472 1 1 0.7230 0.6730 0.6733 0 1 1 0.7230 0.6733 0 0 0 1 1 0.8274 0.6952 0 0 0 0 1 1 0.8274 0.6453 0 <td>1 0.6962 0.5132 0 0.4966 1 0.1783 0.4536 1 0.1734 1 0.7793 0.85376 0.1773 0.4662 1 0.1783 0.4750 0.1773 0.4662 1 0.7783 0.4750 0.1773 0.4662 1 0.7793 0.4953 0.1472 0 1 0.7793 0.4653 0.1472 0 1 0.7784 0.6453 0.1472 0 1 0.4824 0.6453 0.0179 0 1 0.1827 0.46453 0.6453 0.0179 1 0.2733 0.8027 0 0.01973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8372 0 0.1973 1 0.28121 0.28192 0.28193 0.</td> <td>13</td> <td></td> <td>0</td> <td># #</td> <td>1612 0.</td> <td>0.337</td> <td>0.4226</td>	1 0.6962 0.5132 0 0.4966 1 0.1783 0.4536 1 0.1734 1 0.7793 0.85376 0.1773 0.4662 1 0.1783 0.4750 0.1773 0.4662 1 0.7783 0.4750 0.1773 0.4662 1 0.7793 0.4953 0.1472 0 1 0.7793 0.4653 0.1472 0 1 0.7784 0.6453 0.1472 0 1 0.4824 0.6453 0.0179 0 1 0.1827 0.46453 0.6453 0.0179 1 0.2733 0.8027 0 0.01973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8077 0 0.1973 1 0.2793 0.8372 0 0.1973 1 0.28121 0.28192 0.28193 0.	13		0	# #	1612 0.	0.337	0.4226
** 0 0.1972 0.5376 1 0.1750 1 0.7783 0.5376 1 0.2250 1 0.1319 0.6376 1 0.2255 1 0.1319 0.65176 1 0.2255 1 0.1319 0.65176 0 0.1472 1 0.1319 0.6517 0 0.1475 1 0.0010 0.6517 0 0.1475 1 0.0011 0.6730 0 0.1475 1 0.0011 0.6731 0 0.1472 1 0.0011 0.6617 0 0.1472 1 0.0011 0.0179 0 0.1473 1 0.0179 0.01729 0 0.1433 1 0.01729 0.01729 0 0.1433 1 0.01222 0.01729 0 0.1433 1 0.01223 0.01729 0 0.1433 1 0.01222 0.01222 0 0.1433 1 0.01223 0.01223 0.01236	1 ** 0 0.1972 0.8266 1 0.4624 1 0.7783 0.57376 1 0.4624 1 0.7783 0.57376 1 0.4624 1 0.7237 0.6730 0.67377 0 0.4624 1 0.7237 0.6730 0.6737 0 0.46354 1 0.86756 0.86737 0.64556 0.43383 0.43383 1 0.86756 0.86757 0.64556 0.80277 0 0.43383 1 0.86756 0.80277 0.60773 0 0.43383 1 0.86457 0.66455 0.80277 0 0.77383 1 0.86457 0.66457 0.60739 0 0.7733 1 0.86472 0.8027 0 0 0.7733 1 0.86472 0.63657 0 0 0.84133 1 0.86472 0.63676 0 0 0 0 1 0.86472 0.63607 0 0 0 0 0 0	1.		1		5962 0.	•	0
1 0.7783 0.5376 1 0.4624 1 0.4133 0.4530 0.4625 0.42250 1 0.4133 0.4531 0.4532 0.41372 1 0.4133 0.4513 0.4532 0.41372 1 0.48274 0.4555 0 0.43833 1 0.48274 0.4555 0 0.43833 1 0.48274 0.4555 0 0.41333 1 0.4872 0.4555 0 0.4595 1 0.7873 0.4983 0.4595 0 1 0.7873 0.4133 0.4133 0.4133 1 0.7873 0.4133 0.4133 0.4133 1 0.7874 0.7246 0.04333 0.4133 1 0.4695 0.4695 0.4595 0 0.41333 1 0.4694 0.72310 0.44933 0 0.44933 1 0.4694 0.4694 0.44943 0 0.44933 1 0.4694 0.4694 0.44943 0 0.44933	1 0.7783 0.5376 1 0.4624 1 0.13135 0.4750 1 0.2250 1 0.13135 0.4753 0.45328 0 0.13772 1 0.13135 0.4535 0.4535 0 0.1472 1 0.4535 0.4551 0.6455 0 0.33745 1 0.8626 0.8625 0.8625 0 0.1779 1 0.8625 0.8625 0.96475 0 0.1779 1 0.8626 0.8627 0.6455 0 0.1779 1 0.8626 0.8627 0.96427 0 0.1779 1 0.8627 0.8627 0.9179 0 0.1799 1 0.2659 0.8627 0.91732 0 0.1973 1 1 0.8372 0.9072 0 0.1973 1 1 0.9252 0.7224 0 0.4595 1 1 0.8372 0.9128 0 0.2579 1 1 0.9252 0.72316 0	15		-	*	0.1972 0.		-2.0692
0 0.3535 0.7750 0.6517 0.01472 1 0.7230 0.5617 0.01472 1 0.7230 0.5617 0.01472 1 0.8874 0.5617 0.01472 1 0.8874 0.5617 0.01473 1 0.8874 0.5617 0.01473 1 0.8874 0.5617 0.01473 1 0.8874 0.5656 0.8027 0.01773 1 0.2656 0.8027 0.01773 0.01773 1 0.2656 0.8027 0.01773 0.01773 1 0.2656 0.8027 0.01773 0.01773 1 0.26579 0.5867 0.02493 0.01733 1 0.26739 0.5365 0.6807 0.02493 1 0.162122 0.7224 0.02493 0.02579 1 0.8833 0.025132 0.02579 0.02329 1 0.96132 0.7224 0.02493 0.02329 1 0.96132 0.02132 0.02329 0.02329 1 <td>0 0.3535 0.750 1 0.2250 1 0.6211 0.6317 0 0.3379 1 0.62214 0.6455 0.6455 0 0.3379 1 0.8274 0.6455 0.6455 0 0.3547 1 0.8274 0.6455 0 0.3545 0 0.3545 1 0.8274 0.6455 0.9017 0 0.4383 0 1 1 0.8273 0.9018 0.9027 0 0.1973 1 1 0.8273 0.8027 0 0.1973 1 0.8027 0.8027 0 0.1973 1 0.8027 0.8027 0 0.1973 1 0.8172 0.8027 0 0.1973 1 0.8172 0.8027 0 0.1973 1 0.8172 0.8027 0 0.1973 1 0.8172 0.8172 0 0.1973 1 0.8172 0.7231 0 0.25679 1 0.8172 0.7231</td> <td>16</td> <td></td> <td>-</td> <td></td> <td>783</td> <td>•</td> <td>-0.1628</td>	0 0.3535 0.750 1 0.2250 1 0.6211 0.6317 0 0.3379 1 0.62214 0.6455 0.6455 0 0.3379 1 0.8274 0.6455 0.6455 0 0.3547 1 0.8274 0.6455 0 0.3545 0 0.3545 1 0.8274 0.6455 0.9017 0 0.4383 0 1 1 0.8273 0.9018 0.9027 0 0.1973 1 1 0.8273 0.8027 0 0.1973 1 0.8027 0.8027 0 0.1973 1 0.8027 0.8027 0 0.1973 1 0.8172 0.8027 0 0.1973 1 0.8172 0.8027 0 0.1973 1 0.8172 0.8027 0 0.1973 1 0.8172 0.8172 0 0.1973 1 0.8172 0.7231 0 0.25679 1 0.8172 0.7231	16		-		783	•	-0.1628
1 0.4319 0.6526 0.6730 0 0.3270 1 0.8626 0.6655 0.5617 0 0.3270 1 0.8626 0.8626 0.5655 0.5730 0 0.3270 1 0.8626 0.8627 0.5655 0.5655 0.5730 0 0.1973 1 0.8626 0.8027 0 0 0.1933 0 0 0.1933 1 0.7870 0.5656 0.8027 0 0 0.1933 0 0 0.1933 1 0.7870 0.5656 0.8027 0 0 0.4193 0 1 0.7719 0.8867 0.8867 0.8027 0 0 0.4193 1 0.7861 0.8867 0.8867 0 0 0 0 0 1 0.8867 0.6887 0.6867 0.8867 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17		0		0.3535	•	-1.7075
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18		-			-	1.6251
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61				0		1674.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20		-		•		-0.0545
1 0.0001 0.9821 0 0.0179 1 0.2555 0.8027 0 0.0179 1 0.2555 0.8027 0 0.1973 1 0.2535 0.5667 0.8027 0 0.1973 1 0.2535 0.5667 0 0.1998 0.1998 1 0.9525 0.5867 0 0.1998 0.1998 1 0.9525 0.7024 0 0.1998 0.1998 1 0.9535 0.7024 0 0.1998 0.1998 1 0.9535 0.7024 0 0.1998 0.1998 1 0.9535 0.7024 0 0.1623 0.1729 1 0.6545 0.7231 1 0.1623 0.1729 1 0.6545 0.7231 1 0.1623 0.1729 1 0.6565 0.7231 1 0.26593 0 0.26593 1 1 0.65635 0.7231 1 0.26593 0 0.26593 1 1 0.65636	1 0.0001 0.9821 0 0.0179 1 0.2656 0.8027 0 0.0179 1 0.2737 0.9626 0.8027 0 0.1973 1 0.2737 0.5656 0.8027 0 0.1973 1 0.2737 0.95267 0 0.1973 1 0.9527 0.5867 0 0.1998 1 0.9525 0.7024 0 0.4133 1 0.9525 0.7231 0 0.4133 1 0.69122 0.7024 0 0.4133 1 0.6695 0.66967 0 0 0.4133 1 0.6695 0.7024 0 0.2209 0 1 1 0.66953 0.7024 0 0.2209 1 1 0.66953 0.7024 0 0.2209 0 1 1 0.66953 0.7024 0 0.2209 0 1 1 0.66953 0.7024 0 0.26953 0 1 1	21						0.3367
1 0.2656 0.8027 0 0.1938 1 0.0188 0.9252 0 0.01938 1 0.0188 0.9252 0 0.01438 1 0.0188 0.9252 0 0.01438 1 0.02733 0.8002 0 0.1939 1 0.02529 0.5867 0 0.1939 1 0.018942 0.6122 0.7305 0 0.41333 1 0.05229 0.5867 0 0.27499 0 1 0.05229 0.5867 0 0.25975 0 0.26799 1 0.05229 0.7231 1 0.27699 0 0.26799 0 1 0.05255 0.7231 1 0.27699 0 0.26699 0 1 1 0.65265 0.7231 1 0.27699 0 0 1 1 0.65265 0.7231 0 0.23200 0 0 0 0 0 1 1 0.65939 0.7731 0 0	1 0.2655 0.8027 0 0.1073 1 0.0188 0.92522 0 0 0.4748 1 0.0188 0.92523 0 0 0.49996 1 0.2655 0.8007 0 0 0.1998 1 0.9523 0.5867 0 0.4133 1 0.8842 0.5867 0 0.4133 1 0.8842 0.5867 0 0.4133 1 0.8842 0.5365 0 0 0.4133 1 1 0.8842 0.5367 0 0.4133 1 1 0.6122 0.7024 0 0.4133 1 1 0.6122 0.7024 0 0.2507 1 1 0.65355 0.72351 1 0.7270 1 1 1 0.65355 0.72351 1 0.7270 1 1 1 0.65355 0.72351 1 0.7270 1 1 1 0.66789 0.66833 0.7024 1	22					-	4.1275
1 0.0188 0.9252 0 0.01788 1 0.7879 0.5807 0 0.4596 1 0.7879 0.5807 0 0.4596 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5305 0 0.4052 1 0.05122 0.7231 0 0.4305 1 0.65128 0.7321 0 0.43635 1 0.65128 0.7321 0 0.2573 1 0.65128 0.7231 1 0.2573 1 0.65132 0.7321 0 0.2573 1 0.6783 0.5677 0 0.2573 1 0.6783 0.5695 0.6893 0 1 0.6783 0.5695 0.6893 0 1 0.6783 0.5695 0.7234 0 1 0.6783 0.5695 0.7734 0 1 1 0.6483 0.67833 0.7736	1 0.0188 0.9252 0 0.0184 0.9252 1 0.7879 0.5867 0 0.4596 1 0.7879 0.5867 0 0.4596 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5867 0 0.4133 1 0.61694 0.6335 0.7321 0 0.4395 1 0.61694 0.63372 0 0.4363 0 0.4363 1 0.6132 0.7231 0 0.2579 0 0.2569 0 1 0.6565 0.7231 1 0 0.2579 0 0.2579 0 0 0.4953 1 1 0.5563 0.7731 1 0 0.2579 0 0 0.2579 1 1 0.5563 0.7231 0 0 0.2579 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23		~		6 0.802		1.2318
1 0.7879 0.580* 0 0.4596 1 1 0.2733 0.800? 0 0.1998 1 1 0.9529 0.5867 0 0.4596 1 1 0.9529 0.5867 0 0.4133 0 1 1 0.8694 0.8372 1 0 0.4092 1 1 0.8694 0.8372 1 0 0.4092 1 1 1 0.8612 0.6335 0.7231 1 0 0.4092 1 1 1 0.6525 0.7231 1 0 0.2679 1 1 1 0.5505 0.7231 1 0 0.2679 1 1 1 0.5505 0.7231 1 0 0.2679 1 1 1 0.5505 0.7231 1 0 0.2679 1 1 1 0.5505 0.7231 1 0 0.2679 1 1 1 1 0.6483 0.5132 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24		-		0188 0.		2.4691
1 0.2733 0.8007 0 0.1998 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5867 0 0.4133 1 0.95122 0.7024 0 0.2579 1 0.95122 0.7024 0 0.2579 1 0.95129 0.7321 0 0.2579 1 0.9555 0.7321 0 0.2569 1 0.9595 0.7321 0 0.2569 1 0.95695 0.6800 0 0.2569 1 0.7321 0 0.2569 0.6800 1 0.7351 0 0.2769 0 1 0.7361 0 0.7320 0 0.2769 1 0.69695 0.6800 0 0 0.2769 1 1 0.7321 0 0 0.7769 1 1 0.7691 0 0 0.7769 1 1 0.6193 <	1 0.2733 0.8007 0 0.1998 1 0.9529 0.5867 0 0.4133 1 0.9529 0.5867 0 0.4133 1 0.05122 0.7024 0 0.4133 1 0.6122 0.7024 0 0.5575 1 0.6122 0.7024 0 0.2577 1 0.6122 0.7024 0 0.2577 1 0.6122 0.7024 0 0.2769 1 0.65359 0.7321 1 0.62779 1 0.6132 0.7361 0 0.27699 1 0.7361 0 0.2209 0.7361 1 0.7361 0 0.7361 0 1 0.6783 0.7361 0 0.27699 1 0.7361 0 0.7361 0 1 0.6783 0.5168 1 0.3261 1 1 0.7361 0 0.4973 1 1 0.6783 0.5168 1 0.4932	25		1		7879 0.	4.0	-0.1504
1 0.9529 0.5867 0 0.4133 1 0.8842 0.6305 0 0.3695 0 1 0.8842 0.6305 0 0.3695 0 0.3695 1 0.6122 0.7024 0 0.3695 0 0.3695 0 1 1 0.6122 0.7024 0 0.3695 0 0 0.4579 0 1 1 0.6122 0.7321 0 0.2579 0 0.3695 0 1 1 0.6132 0.7321 1 0 0.2679 0 1 1 0.6565 0.6883 0.7351 1 0.2209 0 1 1 0.6573 0.6883 0.7351 1 0.2209 0 1 1 0.6783 0.7351 0 0.4933 0 0 1 1 0.6783 0.6132 1 0.4933 0 0 0.4933 0 1 1 0.6783 0.6132 0.6132 0.6441 0.643	1 0.9529 0.5867 0 0.4133 1 0.8842 0.6305 0 0.8342 0 0.4133 1 0.8842 0.6305 0.8372 1 0.1235 0 0.3695 1 1 0.6122 0.7724 0 0.25975 0 0.25975 1 1 0.6555 0.7321 1 0.6579 0.7321 0 0.2209 1 1 0.6555 0.7321 1 0.6579 0.7361 0 0.2209 1 1 0.65655 0.7321 1 0.2209 0.7361 0 0.2209 1 1 0.65655 0.7331 1 0.6239 0.7361 0 0.2209 1 1 0.67039 0.7361 1 0.6443 0.7361 0 0.2209 0 0.2209 1 1 0.67132 0.5168 1 0.6439 0 0.7363 0 0 0.7363 0 0 0 0 0 0 0 0 0 <td>26</td> <td></td> <td>-</td> <td></td> <td>0 6673</td> <td>•</td> <td>1.2141</td>	26		-		0 6673	•	1.2141
1 0.8842 0.6305 0 0.3695 0 0.3695 0 0.3695 0	1 0.8842 0.6305 0 0.3695 1 0.6122 0.7024 0 0.3695 1 0.6122 0.7321 0 0.2679 1 0.6555 0.7321 0 0.2679 1 0 0.6555 0.7321 0 0.2769 1 1 0.6555 0.7321 0 0.2769 1 0 0.6555 0.7331 1 0.2769 1 1 0.6555 0.7351 1 0.2769 1 1 0.65639 0.7351 1 0.27639 1 1 0.65783 0.7351 1 0.27639 1 1 0.6783 0.5132 1 0.37639 1 1 0.6783 0.5132 1 0.37639 1 1 0.6783 0.5132 1 0.37639 1 1 0.6783 0.5505 1 0.37631 1 1 1 0.6773 0.5505 1 0.373631 1 <td< td=""><td>27</td><td></td><td>1</td><td></td><td></td><td>•</td><td>0.0596</td></td<>	27		1			•	0.0596
1 0.6122 0.7024 1 0.42975 1 0.6122 0.7024 0 0.2975 1 0.6122 0.7024 0 0.2975 1 0.65029 0.7321 1 0.25779 0 1 0 0.5355 0.7331 1 0.2769 0 1 1 0.6965 0.6800 0 0.2569 0 1 1 0.6965 0.6800 0 0.3200 0 1 1 0.6965 0.6800 0 0.3200 0 0 1 1 0.69783 0.5168 1 0.4923 0 0 1 1 0.65783 0.5168 1 0.4923 0 0 1 1 0.65783 0.5168 1 0.4923 0 <td>1 0.61694 0.8372 1 0.1628 0.7024 0 0.2976 1 0.6122 0.7024 0 0.2976 0 1 1 0.6122 0.7024 0 0.2976 0 1 1 0.65059 0.7321 1 0.26379 0 0 0 0.6965 0.6800 0 0.26399 0 0 1 1 0.69659 0.6800 0 0.3200 0 0 0.26399 0 1 1 0.69659 0.6800 0.7331 1 0 0.2200 0 0 1 1 0.69659 0.6800 0.69739 0 <td< td=""><td>28</td><td></td><td></td><td></td><td></td><td>•</td><td>0.2643</td></td<></td>	1 0.61694 0.8372 1 0.1628 0.7024 0 0.2976 1 0.6122 0.7024 0 0.2976 0 1 1 0.6122 0.7024 0 0.2976 0 1 1 0.65059 0.7321 1 0.26379 0 0 0 0.6965 0.6800 0 0.26399 0 0 1 1 0.69659 0.6800 0 0.3200 0 0 0.26399 0 1 1 0.69659 0.6800 0.7331 1 0 0.2200 0 0 1 1 0.69659 0.6800 0.69739 0 <td< td=""><td>28</td><td></td><td></td><td></td><td></td><td>•</td><td>0.2643</td></td<>	28					•	0.2643
1 0.6122 0.7024 0 0.2679 1 0.5029 0.7321 0 0.2679 1 0.5029 0.7321 1 0.2769 1 0.5025 0.7321 1 0.2769 1 0.5155 0.7321 1 0.2769 1 1 0.6965 0.6800 0 0.3579 1 1 0.6965 0.6800 0 0.3539 1 1 0.6965 0.6800 0 0.3539 1 1 0.7361 1 0.6339 0 1 1 0.6969 0.6800 0 0.3963 1 1 0.9490 0.6132 1 0.3963 1 1 0.65783 0.6503 1 0.7363 1 1 0.6441 0.6539 0 0 0.3153 1 1 0.6572 1 0.3364 0 0 1 1 0.65505 1 0.3394 0 0 0 1 <td>$\begin{bmatrix} 1 & 0.6122 & 0.7024 & 0 & 0.2976 \\ 1 & 0.5029 & 0.7321 & 0 & 0.2679 \\ 0 & 0.2679 & 0.7321 & 1 & 0.2769 \\ 1 & 0.6965 & 0.6800 & 0 & 0.2639 \\ 1 & 0.6965 & 0.6800 & 0 & 0.2639 \\ 1 & 0.6963 & 0.6800 & 0 & 0.2639 \\ 1 & 0.6963 & 0.6803 & 0 & 0 & 0.2639 \\ 1 & 0.6963 & 0.68132 & 1 & 0.3769 \\ 1 & 0.6963 & 0.6132 & 1 & 0.3763 \\ 1 & 0.7176 & 0.6132 & 1 & 0.3761 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3163 \\ 1 & 0.7717 & 0.6939 & 0 & 0.3163 \\ 1 & 0.3248 & 0.7726 & 1 & 0.3364 \\ 1 & 0 & 0.7176 & 0.5196 & 1 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & 0.73393 & 0.5506 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.73393 & 0.5506 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.73393 & 0.5506 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.73364 & 0 & 0 & 0.3366 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0.3366 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0.3366 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.7717 & 0.6602 & 0 \\ 1 & 0.7717 & 0.6602 & 0 &$</td> <td>29</td> <td></td> <td>-</td> <td>*</td> <td>0.1694</td> <td>-</td> <td>-2.1537</td>	$ \begin{bmatrix} 1 & 0.6122 & 0.7024 & 0 & 0.2976 \\ 1 & 0.5029 & 0.7321 & 0 & 0.2679 \\ 0 & 0.2679 & 0.7321 & 1 & 0.2769 \\ 1 & 0.6965 & 0.6800 & 0 & 0.2639 \\ 1 & 0.6965 & 0.6800 & 0 & 0.2639 \\ 1 & 0.6963 & 0.6800 & 0 & 0.2639 \\ 1 & 0.6963 & 0.6803 & 0 & 0 & 0.2639 \\ 1 & 0.6963 & 0.68132 & 1 & 0.3769 \\ 1 & 0.6963 & 0.6132 & 1 & 0.3763 \\ 1 & 0.7176 & 0.6132 & 1 & 0.3761 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3163 \\ 1 & 0.7717 & 0.6939 & 0 & 0.3163 \\ 1 & 0.3248 & 0.7726 & 1 & 0.3364 \\ 1 & 0 & 0.7176 & 0.5196 & 1 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & 0.73393 & 0.5506 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.73393 & 0.5506 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.73393 & 0.5506 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3364 \\ 1 & 0.73364 & 0 & 0 & 0.3366 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0.3366 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0.3366 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	29		-	*	0.1694	-	-2.1537
1 0.5029 0.7321 0 0.2679 1 0.5955 0.7331 1 0.2769 1 1 0.6965 0.6800 0 0.3250 1 1 0.6965 0.6800 0 0.3559 0.1321 1 1 0.6965 0.6800 0 0.3539 0.1321 0 1 1 0.6965 0.6800 0 0.3639 0 0 0.4923 1 1 0.69783 0.5077 0 0.4923 0 0 0 0 0 1 1 0.6783 0.5077 0 0 0.4933 0	$ \begin{bmatrix} 1 & 0.5029 & 0.7321 & 0 & 0.2679 \\ 0 & 0.5355 & 0.7231 & 1 & 0.2769 \\ 1 & 0.6965 & 0.6800 & 0 & 0.3200 \\ 1 & 0.6783 & 0.7361 & 0 & 0.3200 \\ 1 & 0.6783 & 0.5077 & 0 & 0.3200 \\ 1 & 0.6783 & 0.5077 & 0 & 0.7203 \\ 1 & 0.7717 & 0.69490 & 0.6132 & 1 & 0.3761 \\ 1 & 0.7718 & 0.6789 & 0.68132 & 1 & 0.3761 \\ 1 & 0.7718 & 0.6789 & 0.6847 & 0 & 0.720 \\ 1 & 0.7717 & 0.6939 & 0 & 0 & 0.3153 \\ 1 & 0.7268 & 1 & 0.5505 & 1 & 0.3268 \\ 1 & 0.7268 & 0.5680 & 1 & 0.3268 \\ 1 & 0.7268 & 0.5680 & 1 & 0.3268 \\ 1 & 0.7717 & 0.5680 & 1 & 0.3268 \\ 1 & 0.7717 & 0.5680 & 0 & 0.3369 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 33268 \\ 1 & 0.73398 & 0.5680 & 0 & 0.33698 \\ 1 & 0.7717 & 0.5680 & 0 & 0.33698 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 33268 \\ 1 & 0.73398 & 0.5680 & 0 & 0 & 33268 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 0.3368 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 0.3368 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 0 & 33268 \\ 1 & 0.73398 & 0.5680 & 0 & 0 & 0 & 33268 \\ 1 & 0.73398 & 0.5680 & 0 & 0 & 0 & 33268 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 0 & 33268 \\ 1 & 0.73398 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.7717 & 0.5680 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.73398 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	30		1		2 0.		0.6255
0 0.5355 0.7231 1 0.2769 -1 1 0.6965 0.6800 0 0.3200 0 1 1 0.6965 0.6800 0 0.3200 0 1 1 0.6965 0.6800 0 0.3200 0 1 1 0.6965 0.6801 0 0.3200 0 1 1 0.6965 0.6801 0 0.3200 0 1 1 0.6949 0.6132 1 0.49432 -0 1 1 0.1934 0.6132 1 0.34632 -0 1 1 0.1934 0.6132 1 0.3463 -0 1 1 0.1934 0.6239 0 0.1720 1 -0 1 1 0.6578 0.6847 0 0 0.3153 -1 1 1 0.6789 0.6572 1 0.33548 -1 1 1 0.67176 0.5505 0 0.33598 -1 1	0 0.5355 0.7231 1 0.2769 1 0.6965 0.6800 0 0.3200 1 1 0.6965 0.6800 0 0.3200 1 1 0.6965 0.6800 0 0.3200 1 1 0.6965 0.6800 0 0.3200 1 1 0.6783 0.5077 0 0.4933 1 1 0.6783 0.5168 1 0.49432 1 1 0.6783 0.5168 1 0.49432 1 1 0.6783 0.5168 1 0.3061 1 1 0.6789 0.6847 0 0.1720 1 1 0.6789 0.6847 0 0.1720 1 1 0.6789 0.6847 0 0 0.1720 1 1 0.65705 1 0.63061 0 0 0 1 1 0.6782 0.65602 1 0.63061 0 1 1 0.67176 1 0.	31		1		5029 0	-	.788
1 0.6965 0.6800 0 0.3200 0 1 0.6965 0.7361 0 0.3200 0 1 0.6783 0.7361 0 0.2639 0 1 0.6783 0.5077 0 0.2639 0 1 0.77613 0.5168 1 0.43353 -0 1 1 0.6441 0.6132 1 0.3761 -0 1 1 0.6789 0.6132 1 0.3761 -0 1 1 0.65789 0.6847 0 0.3153 -0 1 1 0.6789 0.6783 0.6339 0 0 0.3153 -0 1 1 0.6789 0.6783 0.6593 0 0 0.3153 -1 1 1 0.6775 1 0 0.3264 0 0 0.3153 -1 1 1 0.6775 0 0 0 0.3264 0 0 0.3153 -1 1 1 0.67176 <td< td=""><td>$\begin{bmatrix} 1 & 0.6965 & 0.6800 & 0 & 0.3200 \\ 1 & 0.4983 & 0.7361 & 0 & 0.3200 \\ 1 & 0.6783 & 0.5077 & 0 & 0.2639 \\ 1 & 0.47351 & 0 & 0.2639 \\ 1 & 0.47351 & 0 & 0.7263 \\ 1 & 0.4732 & 0.5163 & 1 & 0.4732 \\ 1 & 0.4732 & 0.5163 & 1 & 0.4732 \\ 1 & 0.4732 & 0.6841 & 0.66132 & 1 & 0.47663 \\ 1 & 0.47363 & 0.6841 & 0.6782 & 0 & 0.31720 \\ 1 & 0.6789 & 0.6841 & 0.6752 & 1 & 0.3763 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3153 \\ 1 & 0 & 0.7176 & 0.5195 & 1 & 0.3268 \\ 1 & 0.3364 & 0 & 0.7176 & 0.5195 \\ 1 & * & 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & * & 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & * & 1 & 0.7717 & 0.6602 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7177 & 0.6602 & 1 & 0.3369 \\ 1 & * & 0 & 0.3399 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.3399 \\ 1 & * & 0 & 0.7177 & 0.6602 & 0 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.7390 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.7390 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.449 & 0.6602 & 0 \\ 1 & 0.449 & 0.6602 & 0 &$</td><td>32</td><td></td><td>0</td><td></td><td>5355 0</td><td>•</td><td>1.399</td></td<>	$ \begin{bmatrix} 1 & 0.6965 & 0.6800 & 0 & 0.3200 \\ 1 & 0.4983 & 0.7361 & 0 & 0.3200 \\ 1 & 0.6783 & 0.5077 & 0 & 0.2639 \\ 1 & 0.47351 & 0 & 0.2639 \\ 1 & 0.47351 & 0 & 0.7263 \\ 1 & 0.4732 & 0.5163 & 1 & 0.4732 \\ 1 & 0.4732 & 0.5163 & 1 & 0.4732 \\ 1 & 0.4732 & 0.6841 & 0.66132 & 1 & 0.47663 \\ 1 & 0.47363 & 0.6841 & 0.6782 & 0 & 0.31720 \\ 1 & 0.6789 & 0.6841 & 0.6752 & 1 & 0.3763 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3153 \\ 1 & 0 & 0.7176 & 0.5195 & 1 & 0.3268 \\ 1 & 0.3364 & 0 & 0.7176 & 0.5195 \\ 1 & * & 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & * & 1 & 0.7717 & 0.6602 & 1 & 0.3364 \\ 1 & * & 1 & 0.7717 & 0.6602 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.7177 & 0.6602 & 1 & 0.3369 \\ 1 & * & 0 & 0.3399 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & * & 0 & 0.3399 \\ 1 & * & 0 & 0.7177 & 0.6602 & 0 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 1 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.3369 \\ 1 & * & 0 & 0.7176 & 0.5196 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.7390 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0.7390 \\ 1 & 0.7717 & 0.6602 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.3369 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0 & 0 & 0.5600 \\ 1 & 0.4399 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.449 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.449 & 0.6602 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	32		0		5355 0	•	1.399
1 0.4883 0.7361 0 0.2639 0 1 1 0.6783 0.5077 0 0.4923 -0 1 1 0.6783 0.5077 0 0.4923 -0 1 1 0.6783 0.5168 1 0.4923 -0 1 1 0 0.7083 0.5168 1 0.4932 -0 1 1 0 0.4940 0.6132 1 0.3968 -0 1 1 0.1934 0.6230 0.6132 1 0.39661 -0 1 1 0.1934 0.66339 0.6132 1 0.3153 -0 1 1 0.6441 0.66339 0.65752 1 0.3248 -1 1 1 0.65705 0 0.3398 -1 0 -1 -0 1 1 0.7717 0.66022 0 0 0.3398 -0 1 1 0.5580 0 0 0 0.3398 -0	$ \begin{bmatrix} 1 & 0.4883 & 0.7361 & 0 & 0.2639 \\ 1 & 0.6783 & 0.5077 & 0 & 0.4973 \\ 1 & 1 & 0.5783 & 0.5077 & 0 & 0.4973 \\ 1 & 1 & 0.4949 & 0.6132 & 1 & 0.4968 \\ 1 & 0.4963 & 0.69280 & 0 & 0.31720 & 1 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3153 & 0 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3153 & 0 \\ 1 & 0.8230 & 0.5505 & 1 & 0.3248 & -1 \\ 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 1 & 0 & 0.7176 & 0.5196 & 1 & 0.4895 & -1 \\ 1 & 0 & 0 & 0.8850 & 0.5680 & 1 & 0.4895 & -1 \\ 1 & 0 & 0 & 0.8850 & 0.5680 & 1 & 0.4895 & -1 \\ 1 & 0 & 0 & 0.8850 & 0.5680 & 0 & 0.4895 & -1 \\ 1 & 0 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.4895 & -1 \\ 1 & 0 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.4895 & -1 \\ 1 & 0 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0 & 0.4895 & -1 \\ 1 & 0 & 0 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0 & 0.8850 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	33		1		.6965	•	0.5086
1 0.6783 0.5077 0 0.4923 -0 1 ** 0 0.7083 0.5168 1 0.4932 -0 1 ** 0 0.7083 0.5168 1 0.4932 -0 1 ** 0 0.7083 0.5168 1 0.4932 -0 1 ** 1 0.1934 0.6132 1 0.3968 -0 1 1 0.1934 0.6132 1 0.39661 0 1 -0 1 1 0.6441 0.66339 0.6132 1 0.3153 0 1 0 0.3153 0 1 1 0 0.3153 0 0 1 0 0.3153 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1	1 0.6783 0.5077 0 0.4923 1 ** 0 0.7083 0.5168 1 0.4932 1 ** 0 0.7083 0.5168 1 0.4932 1 ** 0 0.9490 0.6132 1 0.4936 -0 1 1 0.1934 0.6280 0 0 1720 1 1 1 0.65789 0.65789 0 0 0.3153 -0 1 1 0.65789 0.65782 0 0.3153 0 0 1 1 0.65782 0 0.63153 0 0 0 0 1 1 0.65782 0 0 0.3153 0 0 0 1 0 1 1 0.65795 0 0 0 0.3153 0 1 1 1 0.67176 0.5196 1 0.4329 0 0 0 0 1 0 1 1 0.6602 0 0.5596<	40		•••		3 O.	-	0.8116
1 ** 0 0.7083 0.5168 1 0.4932 -0 1 ** 0 0.9490 0.6132 1 0.3968 -0 1 1 0.1934 0.6132 1 0.3968 -0 1 1 0.1934 0.6132 1 0.3968 -0 1 1 0.6441 0.6239 0 0 0.1720 1 1 1 0.6441 0.6939 0 0 0 0.1720 1 1 1 0.6789 0.6847 0 0 0.3153 0 0 1 1 0.6752 1 0.3153 0 0 0 0 0 0 0 0 0 0 1 0	1 ** 0 0.7083 0.5168 1 0.4932 -0 1 ** 0 0.9490 0.6132 1 0.3968 -0 1 1 0.1934 0.8280 0 0.1720 1 -0 1 1 0.65789 0.66339 0 0.3061 0 -0 1 -0 1 1 0.65789 0.69399 0 0.3061 0 0 3153 -0 1 1 0.65789 0.65782 1 0.3248 -1 0 1 1 0.67789 0.65752 1 0.3248 -1 1 * 1 0.8230 0.5505 0 0.4495 -1 1 * 1 0.7117 0.5505 0 0.3398 -0 0 1 * 1 0.7117 0.56602 1 0.43398 -0	35		1		5783 0.	0.492	•
1 ** 0 0.9490 0.6132 1 0.3968 -0 1 1 0.1934 0.8280 0 0.1720 1 1 1 0.1934 0.8280 0 0.1720 1 1 1 0.6441 0.6939 0 0 0.1720 1 1 1 0.6549 0.6847 0 0 0.3153 0 1 1 0.6789 0.6847 0 0 0.3153 0 0 0 0 0.7148 0.6752 1 0.3248 -1 1 1 0.8230 0.5505 0 0 0.3248 -10 1 1 0.8230 0.5505 0 0 0.4320 -0 1 1 0.7717 0.55196 1 0 0.3398 -0 1 + 0 0.8850 0.55680 1 0.4320 -0	1 ** 0 0.9490 0.6132 1 0.3969 1 1 0.1934 0.8280 0 0.1720 1 1 1 0.1934 0.8280 0 0.1720 1 1 1 0.6441 0.6939 0 0 0.1720 1 1 1 0.6579 0.6847 0 0 0.3061 0 1 1 0.6789 0.6847 0 0 0.3153 0 1 1 0.67148 0.6752 1 0.3353 0 1 1 0.8230 0.5505 0 0 0.3153 0 1 1 0.8230 0.5505 0 0 0.3398 0 1 1 0.7717 0.6602 0 0 0.3398 0 1 1 0.7717 0.56602 0 0.3398 0 0	36			# #	0.7083 0.	1 0.4832	-0-4055
1 0.1934 0.8280 0 0.1720 1 1 1 0.6441 0.6939 0 0.3061 0 1 1 0.6789 0.6847 0 0.3153 0 1 1 0.6789 0.6847 0 0.3153 0 0 0 7148 0.6752 1 0.32548 -1 1 1 0.68230 0.5505 0 0.3353 -0 1 + 0 0.7176 0.55196 1 0.03393 -0 1 + 0 0.7177 0.55602 0 0.33393 -0	$ \begin{bmatrix} 1 & 0.1934 & 0.8280 & 0 & 0.1720 & 1 \\ 1 & 0.6441 & 0.6939 & 0 & 0.3061 & 0 \\ 1 & 0.6789 & 0.6847 & 0 & 0.3153 & 0 \\ 0 & 0.7148 & 0.6752 & 1 & 0.3153 & 0 \\ 1 & 0.8230 & 0.5505 & 0 & 0.4495 & -1 \\ 1 & 1 & 0.8230 & 0.5505 & 0 & 0.4495 & -0 \\ 1 & 1 & 0.7117 & 0.6602 & 1 & 0.43998 & -0 \\ 1 & 1 & 0.7717 & 0.6602 & 1 & 0.43998 & -0 \\ 1 & 1 & 0.7717 & 0.6602 & 0 & 0.33998 & -0 \\ 1 & 1 & 0 & 0.8850 & 0.5680 & 1 & 0.43208 & -0 \\ 1 & 1 & 0.7717 & 0.6602 & 0 & 0.33998 & -0 \\ 1 & 1 & 0.7717 & 0.6602 & 0 & 0.33998 & -0 \\ 1 & 1 & 0.7717 & 0.6602 & 0 & 0.33998 & -0 \\ 1 & 1 & 0.7717 & 0.6602 & 0 & 0.33998 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 1 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.43208 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.4320 & -0 \\ 1 & 0.4320 & 0 & 0.8850 & 0.5680 & 0 & 0 & 0.4320 & -0 \\ 1 & 0.4320 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0.4320 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	37		1	*	0.9490 0.	-	0
39 1 1 0.6441 0.6939 0 0.3061 0 40 1 1 0.6789 0.6847 0 0.3153 0 1 1 0.6789 0.6847 0 0.3153 0 1 1 0.6789 0.6847 0 0.3153 0 1 1 0 0 0.7148 0.6752 1 0.3248 1 1 1 0.8230 0.5505 0 0 1 1 0.8230 0.5505 0 0 1 1 0 0.7176 0.5196 1 0 1 1 1 0.7717 0.56602 0 0.33398 0	39 1 1 0.6441 0.6939 0 0.3061 0 40 1 1 0.6789 0.6847 0 0.3153 0 41 0 0 0.7148 0.6752 1 0.3248 -1 42 1 1 0.8230 0.5505 0 0.4495 -0 43 1 1 0.8230 0.5505 0 0.4495 -0 43 1 1 0.7176 0.5505 0 0.4495 -0 4 1 1 0.7717 0.5505 0 0.3398 0 4 1 0.7717 0.5680 1 0.43298 0	38		7		•	0	1.4193 5
1 0.6789 0.6847 0 0.3153 0 0 0 0.7148 0.6752 1 0.3248 -1 1 1 0 0.7148 0.6752 1 0.3248 -1 1 1 0 0.7148 0.6752 1 0.3248 -1 1 1 0 0.8230 0.5505 0 0 -0 1 + 0 0.7176 0.5196 1 0 0.33993 -0 1 + 0 0.8717 0.6602 0 0.33993 -0	1 1 0.6789 0.6847 0 0.3153 0 0 0 0.7148 0.6752 1 0.3248 -1 1 1 0.8230 0.5505 0 0 0.4495 -0 1 1 0.87176 0.5505 0 0 0.4495 -0 1 1 0.87176 0.5196 1 0.4893 -0 1 1 0.7717 0.6602 0 0.33393 0 1 ** 0 0.8850 0.55680 1 0.43293 0	39		-		0.693	•	0.5806
0 0.7148 0.6752 1 0.3248 -1 1 1 0.8230 0.5505 0 0.4495 -0 1 ** 0 0.7176 0.5196 1 0.4804 -0 1 ** 0 0.8850 0.5680 1 0.4320 -0	0 0.7148 0.6752 1 0.3248 -1 1 1 0.8230 0.5505 0 0.4495 -0 1 ** 0 0.7176 0.5196 1 0.4804 -0 1 * 1 0.7717 0.6602 0 0.3398 -0 1 ** 0 0.8850 0.5680 1 0.4320 -0	04		~		.6789 0.684	0.315	0.5325
1 1 0.8230 0.5505 0 0.4495 -0 1 ++ 0 0.7176 0.5196 1 0.4804 -0 1 1 0.7717 0.6602 0 0.3398 0 1 ++ 0 0.8850 0.5680 1 0.4320 -0	1 1 0.8230 0.5505 0 0.4495 -0 1 ** 0 0.7176 0.5196 1 0.4804 -0 1 1 0.7717 0.6602 0 0.3398 0 1 ** 0 0.8850 0.5680 1 0.4320 -0			0		0.7148 0	324	-1.1450
1 ++ 0 0.7176 0.5196 1 0.4804 -0 1 1 0.7717 0.6602 0 0.3398 0 1 ++ 0 0.8850 0.5680 1 0.4320 -0	1 ** 0 0.7176 0.5196 1 0.4804 -0 1 1 0.7717 0.6602 0 0.3398 0 1 ** 0 0.8850 0.5680 1 0.4320 -0	2		-		0.8230 0.	0.449	-0.1050
1 1 0.4717 0.6602 0 0.3398 0.408 1 ** 0 0.8850 0.5680 1 0.4320 ~0.635	1 1 0.7717 0.6602 0 0.3398 0.408 1 ** 0 0.8850 0.5680 1 0.4320 -0.635	E 4		-	*	0.7176 0.519	0.480	-0.4179
] ** 0 0.8850 0.5680 1 0.4320 ~0.635	1 ++ 0 0.8850 0.5680 1 0.4320 -0.635	•				0.7717 0.660	0.3391	0.4089
					*	0.8850 0.568	0.432	-635

CASE	NIS		ACTUAL	HIGHES	HIGHEST PROBABILITY	2ND HIGHEST	DISCRIMINANT
SEGNUM	VAL	SEL	ROUP	GROUP	GROUP P(D/G) P(G/D)	GROUP P(6/D)	SCORES
246			-	-	0.1807 0.8329	0 0.1671	1.4574
247			•	0	0.9002 0.6262	1 0.3738	-0.9050
248			1	-	0.1321 0.8527	0 0.1473	1.6246
249			-	-	0.1113 0.8622	0 0.1378	1.7109
250			-	-	0.8106 0.5469	0 0.4531	-0.1210
251			0	0	0.6820 0.6839	1 0.3161	-1.1894
252			** 1		0.5828 0.7103	1 0.2897	-1.3289
253			٩	0	0.2625 0.8038	1 0.1962	-1.9001
254			-	-	1 0.7719 0.5357	E494.0 0	-0.1713
255			-	-	0.9779 0.5935	0 0.4065	0*0909
256				-	0.7117 0.6760	0 0.3240	0.4662
257			-	-	0.8200 0.6475	0 0.3525	0.3462
258			-	-	0.1461 0.8467	0 0.1533	1.5721
259			-	-	0.8485 0.5577	0 0.4423	-0.0724
260			* 	•	0.8098 0.5467	1 0.4533	-0.5390
261			-		0.7870 0.5401	1 0.4599	-0.5094
262				-	0.6391 0.6952	0 0.3048	0.5876
263			~	-	0.6760 0.5070	0 0.4930	-0.2993
264			-	•	0.7029 0.5152	1 0.4848	-0.3983
265			÷	-	0.8480 0.6401	0 0.3599	0.3103
18 STARBOLS USED IN PLOTS	USED	JA PL	-075				

001 0°E 2.0 CANONICAL DISCRIMINANT FUNCTION 1 CANONICAL DISCRIMINANT FUNCTION 1 1.0 -11 11 -HISTOGRAM FOR GROUP 0 • 1111 1111 1111 22 2 5 5 5 HISTOGRAM FOR GROUP 111111 1111111 1111111 1 11111 11111 11111 111111 1111 -1.0 -2.0 -3.0 007 ٠ 4 CENTROIDS m N 9 CLASS Lowobuzu>

001 ** N 0.0 2222 2222 2 2.0 1.0 2222 2 2222 2 2222 2 2222 2 ŝ • 2222 ~ ~ ~ ~ ~ -1.0 N -2.0 -3.0 001 22 60 4 Lawosuzur

185

ALL-GROUPS STACKED HISTOGRAM

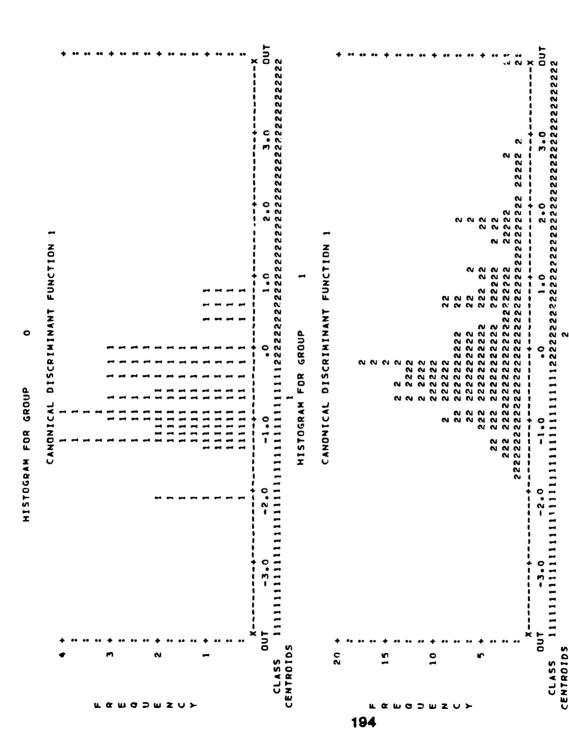
16 + + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

CLASSIFICATION PROCESSING SUMPARY

1 5 4 8 . 1 ł 1 1 ANALYSIS DISCRIMINANT ~ NUMBER OF CANONICAL DISCRIMINANT FUNCTIONS .. 1 ı t ł ı LIST OF THE 5 VARIABLES USED.. 1 1 1 ŀ ON GROUPS DEFINED BY R • ANALYSIS NUMBER..

DISCRIMINANT Scores	-1.4096	-0.9011	0.0275	-0.6211	-0.6549	-0.1928	-0.8698	-0.3137	0.2277	-0.5289	-0.5103	0.0355	5	٠	•	•				-0.0823	1-0437	-0-6531	-0.3937	-0-9463	-0.6628	2.5500	-0.1069	-1,2863	2.6643	-0.8773	1.7308			0.4987	-0.5667	-0.6943	-1.3417	-0.4154	-1.5990	0.7991	-0.2618	-0.0730	-0.2014	1.8059	-0.0902	-0.4182	2.0036
ZND MIGHEST Group P(G/D)	0.285	1 0.3787	0 0.4311	0.434	1 0.4280	0 0.4765	.384	0.498	390	0.453	0.457	0.429	0.291	.37	0.433	0.361					0.2	0.428	0.481	1 0.3661	4 • C	0.085	0.458	0	0	0.383	044110 0		792-0	0.339	0.446	4	1 0.2970	1 0.4773	• 25	0 0.2851	0 0.4908	0 0.4517	0 0.4783	0.147	0 0.4552	1 0.4767	0 0.1277
НІGHEST РКОВАВІLІТҮ Group P(d/g) P(G/d)	0.4917 0.714	0.8578	0.9344 0.5	0.9197 0.565	0.9466 0.5	0.7621	0.8824 0.615	0.6831 0.501	0	0.8470 0.5	0.8324 0.542	0.9407 0.5	0.5127 0.70	0.8396 0.6	0.9256 0.5	•7878 0•		0.9600 0.575	0.8149 0.537	0.8476 0.	0.3504 0.	0.9452	.7427	0.8069	0.9529 0.573	0.0147 0	0.8284 0.541	0.5725 0	0.0106 0	0.8765	0 0	1922.0	0.6547	0.6974	.8767 0.5	0.9780 0	0.5354 0	0.7592 0.	0.3804 0.745	0	1 0.7101 0.5092	.8549 0.548	1 0.7556 0.5217	999 0.852	.8415 0.544	0 0.7613 0.5233	1 0.0583 0.8723
ACTUAL GROUF	** 5	**		**	0	**	o	**	1	**	** -	**	** 7	**	-		• •					**	**	**	** 1	1	1	** ~	-	•					* -	0	**	** ~	** -	-	1	1	-	-	-	** [1
CASE MIS Segnum val Sel	1	2	F,	•	ŝ	Ŷ	*	Đ	σ	10	1:	12	E I	• -	15	c !	- 0			2.2		18	¢,	25	26	27	28	29	00	31	2			36	37	38	39	04	•	* 2	m 4	• •	10 4	46	47	4 B	6

DISCRIMINANT Scores	-0.9223	1.0400	-1.0926	-0.1637	0.4236	-0.9570	-1.4674	-1-1415	-0.4456	-1.4296	-0.3863	0.6290	0.8518	-0.5010	-1.0532	-0.1991	-1.8090	1.0530	0+0040	0.5637	1.0465	-0.2776	-0.5518	-2.1107	-0.0108	0.9533	0.5965	-1-0454	-0.1636	1.2192	-0.1519	0.3698	0.2558	-0.2011					-0-2683	0.1936	0.1668	-0.7014	1.7095	0.7517	-0.9566	-1.4325	0.0668	-0-9087
2ND HIGHEST Group P(G/D)	1 0.3746	•	1 0.3420	0 0.4704	0	1 0.3678	1 0.2757	1 0.3329	1 0.4710	0	•	ċ	•	1 0.4596	•	•	•	0		0 0.3267			••0	1 0.1823	•		0 0.3207	_		0 0.2195	-	0 0.3630	0	0614.0 0					4	0			0 0-1576	0.2	0.367	1 0.2815	0 0.4231	1 0.3772
HIGHEST PROBABILITY Group P(0/G) P(G/D)	0 0.8412 0.6254	0	0.7109	0.7845 0.529	. 7537	0.8141 0.632	ċ		0.7823	0.4791 0.	0.7372 0.	0.6037	.4581 0.	0.8252 0.	0.7404	-	0.2770 0	3456	0	0	0	•	3649 0	0.1649 0.		.3990 0	0.6265 0	.7463 0	.7845 0	0	.7935 0.5	0 6 4 6 4 0	8840 0.	0 806/ •0	• 0 • 0 • 0 • 0		0.1263 0	0-7769 0-5	0.7054 0.5	0.9333 0.	0.9546 0.	0.9836 0.	0.1097 0.	.5210 0.	0.8144	0 0.4774 0.7185	1 0.9657 0.5769	0 0.8518 0.6228
AL UP	**	-	** 1	-	1	** -	**	1 **	0	**	** -	1	-	**	** "	* * 0	**	-	1	** 0	-	1	** 1	0	1	1	1	** -	1	-	-	-		1	•			*	• -	• -		**		*	** 1	**	-	**
ACTUAL EL GROUP																																																
HIS VAL SI																																																
CASE H Seonum V	50	51	52	53	49	55	56	57	58	59	60	61	62	63	49	65	66	67	68	69	70	11		۲ 18	7 19	75	76	77	78	79	0	8	() E:		e u D (() 4 () 4 ()			6.6	06	16	92	. 0	46	95	96	97	96


DISCRIMINANT Scores	-0.2554	-1.6504	0.5826	-0.0058	-0.6642	0.5878	1.0594	0.6289	0.1021	-1.2851	-0.5214	-0.6527	0.1165	-0.9506	0.6635	-0.5015	0.2195	-0.9745	-0.4441	-1.3753	-1.2041	-0.3228	1.5005	-0.5025	0.0696	1.0140	-0.6771	0.8563	1.6926	-0.9762	-0.7278	0.2846	0.1590	-0.8789	0.5340	-0.6561	-0.2117	-0.2683	0.6004	-1.2412	1.9476	1.8776	0.0155	-0.5780	-0.2790	1.3447	1.4958	0.9119	-0.7588
2ND HIGHEST Group P(G/D)	0 0.4895	1 0.2463	0 0.3232	0 0.4379	0.426	0 0.3223	0 0.2431	0 0.3148	0 0.4159	1 0.3070	1 0.4553	1 0.4284	0 0.4130	1 0.3691	0 0.3087	1 0.4594	0 0.3924	1 0.3645	1 0.4713	1 0.2912	1 0.3215	1 0.4965	0 0.1820	1 0.4592	0 0.4225	0 0.2501		0 0.2755	0 0.1384					1 0.3831	0		0	4.0	٠	C	0 0.1429	0.1	0 0.4335	1 0.4437	0 0.4944		0 0.1826	0 0.2664	1 0.4070
HIGHEST PROBABILITY Group P(D/G) P(G/D)	0.7149 0.510	¢	0.6364 0.	.9079 0.	0.9540 0.	1 0.6327 0.6777	0	1 0.6037 0.6852	•	0	•	•	.9947 0.	0.8191	0.5798	0	0.9127	0 0.8006 0.6355	0 0.7811 0.5287	0 0.5135 0.7088	•	0 0.6898 0.5035	1 0.1643 0.8180	0 0.8263 0.5408	0.9679	0.3659	0.9643	0.4554	.0746 0	0.7992 0	0.9953 0.		0.9608 0.	0.8753	0.6714 0.	0.9475	0.7478	0.7053 0	0.6238 0	0.6035	1 0.0823 0.8571	0.0771	1 0.9248 0.5665	.8856	1 0.6974 0.5056	1 0.2169 0.7979	1 0.1658 0.8174	1 0.4226 0.7336	6•0
		*			*						*	*		*		*			**			**		*			*									* *				*				*					*
ACTUAL GROUP	1	1	-	-	-	-	-	1	-	0	-	-	1	-	-	7	-	0	1	0	0	1		-	-	1	-	~	-	0	0	-	-	o	-	1		-	-	-	~	-	-	1	-	-	1	1	~
SEL																																																	
MIS Val																																																	
CASE Seqnum	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	125 19	0 123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147

DISCRIMINANT Scores	0 1		-	°,	1797.0-	-	-0-3387		01	0.5625	-0.8792		-	Ÿ						•	1		0	Î	0				•						1	·		•	-	1				-1.1767	1			-0.6960
ZND HIGHEST Group Pig/n)	0.446	0 0.0739	0.232	1 0.4568	1 0.3993	0 0.4728	1 0.4932	0 0.2804	1 0.4788	0 0.3269	1 0.3930	0 0.4519	0	0	0										0				4164°0 1	5 0					1 0.3021	0 0.4723	0 0.2969	1 0.4642	•	1 0.3670	0 0.1983	0 0.3080	0 0.2964	1 0.3265	0.444	1975.0	0 0.3039	1 0.4196
HIGHEST PROBABILITY Group P(D/G) P(G/D)	3766	1 0.0087 0.9261	1 0.3089 0.7671	8355	0 0.9401 0.6007	1 0.7758 0.5272		1 0.4734 0.7196	0.7536 0.	0.6508	0.8750	0.8541	0.5414	0.8975	0416	3528	0.9124	0.8797 0.5	0.4473	7661			9549		853			1000.0	0220	6221	2013-0 50010 1 2013-0 5001 0 1		0.5252	0.5079	0 0.5546 0.6979	1775	0.5347 0.	0.8078	0.7285 0.	.8108	2065 0.	1 0.5772 0.6920		0 0.6493 0.6735	1 0.8830 0.5556	1 0.8618 0.6203	1 0.5616 0.6961	0 0.9793 0.5804
ACTUAL GROUP	** [-	-	** -	** 1	-	** -	-4	:		0	-	** ~	0	-	7	** 0	•	**	**	0	-	-	-	-		~	-	**	→ -		*		;	٥	1		** -	** 1	1 ##	1	-	-	0	-		-	** 1
MIS Val sel																																																
CASE SEGNUM	197	198	199	200	201	202	203	204	202	206	207	208	209	210	211	212	213	214	215	216	217		ू र 18			222	223	224	225	022	228	000	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245

SFL D IN PLOT	CASE	MIS		ACTUAL	HIGHES.	HIGHEST PROBABILITY	2ND HIGHEST	DISCRIMINANT
246 2 1 0.1715 0.8150 0 0.1850 247 2 0 0.5353 0.7027 1 0.2973 249 1 0.1454 0.8259 0 0.1741 250 1 0.7027 0 0.1741 251 1 0.7027 0.61492 0 0 251 1 0.7777 0.5114 0 0 0 251 1 0.7777 0.51139 0.65131 0	SEGNUM	VAL	SEL	GROUP	GROUP	P(D/G) P(G/D)	GROUP P(G/D)	SCORES
2+7 0 0.5353 0.7027 1 0.2497 2+8 1 0.14554 0.8259 0 0.1741 250 1 0.7179 0.5114 0 0.4961 251 0 1 0.7777 0.5139 0 0 251 0 1 0.7777 0.5139 0 0 0 251 0 1 0.7777 0.5139 0.5649 0	246			-	-		0 0.1850	1.4771
248 1 0.1454 0.8259 0 0.1741 250 1 0.0964 0.8492 0 0.1508 251 0 0.4964 0.8492 0 0.1508 252 1 0.777 0.5113 0 0.4961 251 0 0.8039 0.6347 1 0 0.4961 252 1 0 0.6835 0.5049 1 0 0.4961 253 254 1 0.7777 0.5131 0 0.4961 0 0.4961 254 1 0 0.6835 0.5049 0.5222 0 0.4961 255 1 0 0.6835 0.5044 0.6573 0 0.4977 255 1 1 0.7733 0.6573 1 0 0.4977 256 1 0.7746 0.5352 1 0.4977 0 0.4977 256 1 0 0.5362 0 0.4977 0 0.4977 261 1 1 0.7745	247			0	o			-1.3404
240 1 0.0964 0.8492 0 0.1508 251 0 0.777 0.5114 0 0 0.4886 251 0 0 1 0.7272 0.5114 0 0 0.4886 251 0 0 1 0.7272 0.5114 0 0 0.4886 251 0 0 0 0.6835 0.6649 1 0.3353 252 1 0 0.6824 0.55222 0 0.4778 255 1 1 0 0.7757 0.55222 0 0 0.4778 255 1 1 0 0.7457 0.55222 0 0 0.4677 255 1 1 0.7522 0 0 0.4677 0 0 0.4677 256 1 0 0 0 0 0 0 0.4677 256 1 0 0 0 0 0 0 0 0 0 0 0 0 0	248			1	1			1.5658
250 1 0.7179 0.5114 0 0.4886 251 0 0.4779 0.5139 0 0.4886 252 0 0.8039 0.5347 1 0.3553 253 0 0 0.6835 0.5014 1 0.3456 254 1 0 0.6835 0.55014 1 0.3457 255 1 0 0.6832 0.55014 1 0.3457 255 1 1 0.7753 0.5191 0 0 0.4886 255 1 1 0.7753 0.5014 1 0 0.4778 255 1 1 0.7753 0.5014 1 0.3457 255 1 1 0.7753 0.55014 1 0.4677 256 1 1 0.7937 0.5323 1 0.4677 260 1 1 0.7936 0.5365 1 0.4677 261 1 1 0 0.5365 1 0.4677 261	249			-	1			1.7723
251 0 ** 1 0.727? 0.5139 0 0.4861 252 1 ** 0 0.6835 0.6347 1 0.3553 253 1 ** 0 0.6835 0.6347 1 0.3355 254 1 0.7754 0.5222 0 0.4778 255 1 ** 0 0.6824 0.5014 1 0.3457 255 1 ** 0 0.66273 0 0.4778 255 1 1 0.7713 0.6577 0 0.4806 256 1 1 1 0 0.7947 0.5522 0 0.4806 259 1 1 0.77133 0.65773 0 0.4809 0 0.4806 259 1 1 0.7937 0.65773 0 0.4809 0 0.4806 259 1 1 0.7937 0.65773 0 0.4809 0 0.4809 250 1 1 0.7937 0.65733 1 0.4677 0 0.4809 260 1 1 0.7937 0.65164 1 0.4677 0 0.4809 261 1 1 0.7835 0.65164 1 0.4677 0 0.4836 261 1 1 0.7835 0 0.5164 0 0.4836 0 0.4836 264 264 0 0.79377 0.6397 0 0.4836	250			-	-			-0.2514
252 1 ** 0 0.4039 0.6347 1 0.3553 253 254 1 0.7574 0.5222 0 0.4778 255 1 1 0.7574 0.5222 0 0.4778 255 1 1 0 0.66273 0 0 0.4778 255 1 1 0 0.5573 0.5513 0 0.4805 256 1 1 0 0.66573 0 0.4805 256 1 1 0 0.6573 0 0 0.4877 259 259 1 0.7946 0.5573 0 0.4877 0 0.4677 259 1 1 0.7946 0.5322 1 0.4677 0 0.4677 0 0.4677 0 0.4677 0 0.4677 0 0.4677 0 0.4677 0 0.4677 0 0.4677 0 0 0.4677 0 0.4677 0 0.4677 0 0.4667 0 0.4677 0 <td< td=""><td>251</td><td></td><td></td><td>÷</td><td>•</td><td></td><td>0 0.4861</td><td>-0.2390</td></td<>	251			÷	•		0 0.4861	-0.2390
253 0 0.6835 0.6649 1 0.3351 254 1 0.7574 0.5222 0 0.4778 255 1 ++ 0 0.6824 0.5014 1 0.4573 255 1 1 0.7574 0.5522 0 0.4778 255 1 1 0 0.6824 0.5014 1 0 0.4805 255 1 1 0 0.6824 0.5573 0 0.4809 259 1 1 1 0 0.4803 0.55362 1 0 0.4677 259 1 1 0 0.9937 0.53562 1 0.46577 0 0.46577 260 1 1 0 0.9937 0.53562 1 0.46577 0 0.46577 261 1 1 0 0.99377 0.55362 1 0.46577 0 0.46577 262 264 0 0.7944 0.55652 1 0.46394 0.649395 0 0.46394	252			-	•		1 0.3653	-0.9702
254 1 0.7574 0.5222 0 0.4778 255 1 ++ 0 0.6824 0.5014 1 0.4986 255 1 1 0.7133 0.6573 0 0.4809 256 1 1 0.7460 0.5191 0 0.4809 257 1 1 0.7460 0.5191 0 0.4409 259 1 1 0.7460 0.5191 0 0.4409 259 1 1 0.7460 0.5191 0 0.44677 259 1 1 0.7740 0.5362 1 0.44677 260 1 1 0 0.7947 0.5362 1 0.46577 261 1 1 1 0 0.5362 1 0.4633 261 1 1 0 0.7361 0.5164 1 0.4633 263 264 0 0 0.7361 0.5164 1 0.4633 263 1 4 1 0 <td< td=""><td>253</td><td></td><td></td><td>0</td><td>0</td><td></td><td>1 0.3351</td><td>-1.1296</td></td<>	253			0	0		1 0.3351	-1.1296
255 1 ** 0 0.6824 0.5014 1 0.4986 256 1 0.7133 0.6573 0 0.3427 257 1 0.7133 0.6573 0 0.3427 257 1 0.7460 0.5191 0 0.4609 259 1 1 0.7460 0.5191 0 0.4609 259 1 1 0.7947 0.5323 1 0.4677 260 1 ** 0 0.4993 0.5362 1 0.4633 261 1 ** 0 0.9377 0.5013 1 0.4633 261 1 ** 0 0.7361 0.5164 1 0.4633 263 1 ** 0 0.7361 0.5164 1 0.4633 264 0 0.7361 0.5164 1 0.4633 2645 264 0 0.7361 0.5164 1 0.4833 265 1 ** 0 0.7361 0.5164 1 0.4833 264 0 0.7361 0.5163 0 0.3046 2645 264 0 0.7361 0.5164 0 0.4836 0 0.4836 264 0 0.7361 0.5163 0 0.4836 0 0.4836 265 1 0.7835 0.6397 0 0.3662 1 0.4143 264 0 0.7361 0.5164 0 0.3662 1 0.4143 264 0 0.7795 0 0.5362 1 0.4143	254			1	-			-0.1990
256 1 0.7133 0.6573 0 0.3427 257 1 0.7460 0.5191 0 0.4809 258 1 0.7460 0.5191 0 0.4809 259 1 0.7460 0.5191 0 0.4809 259 1 0 0.4803 0.5323 1 0.4677 260 1 ** 0 0.7947 0.5323 1 0.4677 261 1 ** 0 0.7947 0.5362 1 0.4677 261 1 ** 0 0.7947 0.5362 1 0.4637 261 1 ** 0 0.7361 0.5162 1 0.4633 263 264 0.5163 0.63964 0.63964 0.41648 264 0 0.77361 0.55162 1 0.41648 265 1 0.77361 0.55162 1 0.41648 265 1 0.77361 0.51962 0 0.41648 265 1 0.77959 </td <td>255</td> <td></td> <td></td> <td>* -</td> <td>•</td> <td></td> <td>1 0.4986</td> <td>-0.3127</td>	255			* -	•		1 0.4986	-0.3127
257 1 0.7460 0.5191 0 0.4809 258 1 0.0594 0.8503 0 0.1497 259 1 0.0594 0.8503 0 0.1497 250 1 1 0.0593 0.5363 0 0.1497 260 1 1 0 0.9377 0.6313 1 0.4633 261 1 1 0 0.9377 0.6013 1 0.4633 261 1 1 1 0 0.9377 0.6013 1 0.4633 263 1 1 0 0.9377 0.6013 1 0.4633 264 0.5954 0.5955 1 0.4835 2 2 2 2 2 0 0.41835 2 2 2 0 0.41835 0 0.41835 0 0.41835 2 0 0.41835 2 0 0.41835 0 0 0 0 0.41835 2 0 0.41835 0 0 0 0 0.41835	256			1	1			0.4772
258 1 0.0994 0.8503 0 0.1497 259 1 *** 0 0.7947 0.5323 1 0.4677 260 1 *** 0 0.7947 0.5323 1 0.4677 260 1 *** 0 0.7947 0.5362 1 0.4677 261 1 *** 0 0.9377 0.63162 1 0.4638 261 1 *** 0 0.9377 0.6013 1 0.3947 261 1 *** 0 0.9377 0.6013 1 0.4638 263 1 *** 0 0.9364 0.65954 0 0.4836 265 1 0.9976 0.55164 1 0.4836 265 0 0.7785 0.6397 0 0.4184 265 1 0.7783 0.6397 0 0.4184 265 1 0.7783 0.6397 0 0.4184 265 1 0.79363 0.63997 0 0.418	257			1	1			-0.2141
259 1 ** 0 0.7947 0.5323 1 0.4677 260 1 ** 0 0.8093 0.5362 1 0.4638 261 1 ** 0 0.9377 0.6013 1 0.3987 261 1 ** 0 0.9377 0.6513 1 0.3987 262 1 ** 0 0.9377 0.6513 1 0.3046 263 1 ** 0 0.9377 0.65164 1 0.4836 264 1 ** 0 0.9982 0.5164 1 0.4836 264 1 ** 0 0.9982 0.5164 1 0.4184 265 0 ** 1 0.7835 0.6399 0 0.3502 265 0 ** 1 0.7835 0.6399 0 0.3502 275 1 0.7835 0.6399 0 0.3502 1 0.4184 265 1 0.7835 0.6399 0 0.3502 1 0.4184 265 1 0.7835 0.6399 0 0.3502 1 0.4184	258			-	1		0 0.1497	1.7823
260 1 ** 0 0.8093 0.5362 1 0.4638 261 1 ** 0 0.9377 0.6013 1 0.3987 262 1 ** 0 0.9377 0.6013 1 0.3987 262 1 ** 0 0.9377 0.6013 1 0.4638 263 1 ** 0 0.9377 0.6013 1 0.4638 264 1 ** 0 0.7361 0.65954 0 0.4836 264 1 ** 0 0.7761 0.65164 1 0.4835 264 1 ** 0 0.9982 0.59952 1 0.4148 265 0 ** 1 0.7835 0.63993 0 0.3502 265 0 ** 1 0.7835 0.63993 0 0.3502 265 1 0.7835 0.63993 0 0.3502 20.55393	259			*	•	0.7947	1 0.4677	-0.4617
261 1 ** 0 0.9377 0.6013 1 0.3987 262 1 1 0.5644 0.6954 0 0.3046 263 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 1 0.7835 0.6398 0 0.3602 265 0 ** 1 0.7835 0.6398 0 0.3602 265 1 0.7835 0.6398 0 0.3602	260			÷	•	0.8093	1 0.4638	-0.4R06
262 1 1 0.5644 0.6954 0 0.3046 263 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 0 0.7361 0.5164 1 0.4836 265 1 ** 1 0 0.9982 0.5852 1 0.4148 265 0 ** 1 0.7835 0.6398 0 0 3502 SYMBOLS USED IN PLOTS SYMPOLS 1 PLOTS 1 0 0.3502	261			÷	•		1 0.3987	-0.R000
263 1 ** 0 0.7361 0.5164 1 0.4836 264 1 ** 0 0.9982 0.5852 1 0.414A 265 0 ** 1 0.7835 0.6398 0 0.3602 SYMBOLS USED IN PLOTS	262			-	1		0 0.3046	0.6862
264 1 ** 0 0.9982 0.5852 1 0.414A 265 0 ** 1 0.7835 0.6398 0 0.3602 SYMPOLS USED IN PLOTS	563			-	•	0.7361	1 0.4836	-0+3849
265 0.3602 Sympols used in Plots	264			÷	•	0.9982	1 0.4148	-0.7196
	265			*	*		o	0.3846
) USEC	Id NI (LOTS				

011005 SYMBOL

LABEL			
GROUP	1 7 1 7 1	•	-
SYMBOL		1	N

ALL-GROUPS STACKED HISTOGRAM

	•	••	••	••	•	••	••	••	•	••	••	••	•	••	2:		001	222222
															ŝ	2222 2		CLASS 11111111111111111111111111111111111
1 NO											N	C.	22	2 22	22222	22222222222	2.0	222222222
NT FUNCTIC									~	22	22	222 2	222 22	222222	22222222	121212228	1.0	2222222
CANDNICAL DISCRIMINANT FUNCTION	N	2	ຎ	2 2	22	2 22 2	22222	222222	222222 2	222222 2	2222222222	2222222222	22 222 22222222222	21 221 222222222222 222222	221111121121212122222222222222	222211111121121212121212121212222222222	0.	22222
CANDNICAL			2	2	2	2	2 2	22 2	22 2	22 2	2 222 2	2 222 2	22 222 2	21 221 2	221111121	1211111122	-1.0	
															-	1 22	-2.0	
																	0.81	
	20 +		••	••	15 +	••	••	••	10 +	••	••	••	+ 10	••	••	••	0UT	1111 1111 10105
				u.	α	w	0	5	- W	, z	υ	≻						CLASS CENTROIDS

CLASSIFICATION PROCESSING SUMMARY

- 265 CASES WERE PROCFSSED. O CASES WERE EXCLUDED FOR MISSING OR DUT-DF-RANGE GROUP CODES. O CASES HAD AT LEAST DNE MISSING DISCRIMINATING VARIABLE. 265 CASES WERE USED FOR PRINTED DUTPUT. 195

1 1 . ŧ ı 1 1 . 1 ŧ ł 4 1 1 1 ANALYSIS DISCRIMINANT ~ NUMBER OF CANONICAL DISCRIMINANT FUNCTIONS .. 1 6 1 ı ł LIST OF THE 5 VARIABLES USED.. ı ON GROUPS DEFINED BY R ANALYSIS NUMBER.. 3 VARIABLE LABEL FL GPA VB VB 196 <

DISCRIMINANT Scores	-1.4096	-0.9011	0.0275	-0.6211	-0.6549	-0.1928	-0.8698	-0.3137	0.2277	-0.5289	-0.5103	0.0355		-0.9243	0.0164	-0.9911	-0.5756	-0.6880	81/9*0-	-0.1243	-0-0823	1.0437	-0-0531	-0.9663	-0.6628	2.5500	-0.1069	-1.2863	2.6643	6 1	1.7368	C6110			р ю •	-0-69+3	-1-3417	-0.4154	-1.5990	0.7991	-0.2618	-0.0730	-0.2014	1.8059	-0.0402	-0.4182
2ND HIGHEST Group P(G/D)	1 0.2854	.378	0 0.4311	1 0.4349	1 0.4280	476	1 0.3849	1 0.4984	.390	••0	1 0.4576	0 0.4295	1 0.2910	1 0.3742	0 0.4333	0.361	0	-			• •) O	0	0 0.0851	0 0.4587	1 0.3068	0	1 0.3834	0	•			0	1 0.4199	1 0.2970	1 0.4773	1 0.2544	0 0.2851	0 0.4908	0.451	0 0.4783	0.147	0 0.4552	1 0.4767
HIGHEST PROBABILITY Group P(D/G) P(G/D)	0.4917 0.714	.8578 0	0	0 0.9197 0.5651	0 0.9466 0.5720	1 0.7621 0.5235	•	0.683	0.9062 0.	0 0.8470 0.5462	0.8324 0.	0.9407 0	0.5127 0.709	0.8396 0.	0.9256 0.	0.7878 0.638	0.8837 0	0.0400 0.078 0.0400 0.275		0.3149 0.		0.3504	71/C*N 2646*N N C419-0 2642-0 0	0.8069	0.9529	0.0147 0.	0.8284 0	.5725	0.0106 0.	0.8765 0	0.1035	8555°0 5585°0 I		- 20 - 0	8767 0.	0.9780 0		7592	0 43804 0	1 0.4907 0.7149	1 0.7101 0.5092	0.8549 0.5	1 0.7556 0.5217	0.0899 0.852	.8415 0.544	0 0.7613 0.5233
ACTUAL Group	:	**	-	** 1	0	** 0	o	** -	-	** [1 **	** 0	1 **	* *	-	c	* .	* 1	•			1			**	1	1	1 **	1	*		•	•	-	*	0	1 **	** 1	**	1	1	1	1	-	-	**
CASE MIS Egnum val sel	1	2		•	ŧî	Ş	~	80	¢	10	11	12	13	1.	15	16	17			20	21	22	62 40	25	26	27	28	29	30	IE	32				37		39	04	41	42	54	**	45	46	47	8 4

DISCRIMINANT Scores	-0.9223	1.0400	•	-0.1637	0.4236	5	-1.4674	÷	10	-1.4296	•	0.6290	851	501	-1.0532	-0.1991	-1.8090	ο.	60	0.5637	0	-0.2776	-0.5518	-2.1107	010	0.9533	0.5965	-1.0454	•	1.2192	-0.1519			-0.6222	0.1392	1.6386	-0.4385	-0.2683	0.1936	_	701	1.7095	151	-0+9566	-1.4325	99	000
2ND HIGHEST Group P(G/D)	1 0.3746	0.246	342	•	0 0.3528	1 0.3678	1 0.2757	0.33	0.47	0.282	.483	0.314	0.27	•	٠	•	0.2	0.24	0.36	ò	0 0.2451		0.449	0.1	ċ		•	0	•	0		0,00,000		0	408	0.1	1 0.4725	0 0.4921	0.397	ċ	0.418	157	0.293	0.367	1 0.2815	0 0.4231	
HIGHEST PROBABILITY Group P(d/G) P(G/D)	0 0.8412 0.6254	0.3523 0.7	7109 0+65	0.7845 0.52	0.7537 0.647	0.8141 0.632	0.4560 0.72	0.6748	0.7823 0	0.4791 0.	0.7372 0.516	0.6037 0.68	.4581 0.7	0.8252 0.	0.7404 0.	•7573 0•522	0.2770 0.7	.3456 0.7	8224 0.	0.6500 0.	3489 0.	0.6984 0.5	0.8649 0.5	.1649 0.	9040 0	3940 0.740	0.6265 0.	.7463 0.64	7845 0.5	2673 0.7	7935 0.	010000 646100 1 1 0 0484 0 1	9046 0.56	0.9206 0.5	766 0.5	1263 0.83	0.77	.7054 0.5	0.9333 0.6		-9836 0.5	0.1097 0.842	0.5210 0.70	8144 0.632	0.4774 0.	0.576	
ACTUAL GROUP	** 1	1	** -	1	-	**] **	** 1	0	** 1	** 1	1		#		¥	**	-		** 0	1	-	**	0	1	1	-	* *	-	~			 • 0	*	-	-	**	1	1	-	**	I	** 0	**	** *	1	•
MIS Vai sel																																															
CASE Seqnum	50	51	52	53	4	55	56	57	58	59	60	61	62	63	8 8	65	66	67	68	69	70		8 1 22		74	75	76	11	78	62	080		4	85	86	87	88	89	06	16	56	63	46	95	96	97	

DISCRIMINANT Scores	-0.2554	-1.6504	0.5826	-0.0058	-0.6642	0.5878	1.0594	0.6289	0.1021	-1.2851	-0.5214	-0.6527	0.1165	-0.9506	0.6635	-0.5015	0.2195	-0.9745	10.4441	-1.3753	-1.2041	-0.3228	1.5005	-0.5025	0.0696	1.0140	-0.6771	0.8563	1.8928	-0.9762	-0.7278	0.2846	0.1590	-0.8789	0.5340	-0.6561	-0.2117	-0.2683	0.6004	-1.2412	1.8476	1.8776	0.0155	-0.5780	-0.2790	1.3447	1.4958	0.9119	-0.7588
2ND HIGHEST Group P(G/D)	0.489	1 0.2463	•	0.437	1 0.4261	0 0.3223	0 0.2431	0		0	ċ	1 0.4284	0	1 0.3691	0	1 0.4594	0	0	0	0	1 0.3215	C	0 0.1820	0	0 0.4225	0	0	0	0	0	1 0.4132		0	1 0.3831	0	1 0.4277	0	0 • 4	0	0	0 0.1429	0.1	0.433	0	494.	0 0.2021	0	0 0.2664	0.407
HIGHEST PROBABILITY Group P(D/G) P(G/D)	.7149 0.51	0.3531 0.	.6364 0.67	0.9079 0.	0.9540 0.	0	0.3423 0.75	ċ	.9938 0.	0.5733 0.	0.8411 0.	0.9448 0.	0.9947 0.5	0.8191 0.	0.5798 0.	0.8255 0	0.9127 0	0.8006	0.7811 0	0.5135 0.	0.6297 0.	0.6898 0	0.1643 0.	0.8263 0	0	0.3659 0	.9643 0	0.4554 0	0.0746 0.8	0 2662 0	0.9953 0	0.8613 0	0.9608 0	0.8753 0	0.6714 0.	0.9475 0	0.7478 0	.7053 0.5	•6238 0•6	.6035 0	1 0.0823 0.8571	•	.9248 0.5	0 0.8856 0.5563	1 0.6974 0.5056	1 0.2169 0.7979	1 0.1658 0.8174	.4226	9706 0.59
		*			*						*	*		*		# #			*			*		*			*									¥ ¥				* *				*					#
ACTUAL GROUP	-	-	-	1	~	-	-	-	-	0	-	-	1	-	1	-	-	•	-	•	•	-	~	1	-	1	1		4	0	•	-	-	٩	-	-	1	-	1	-	-		-	-		-	1	1	1
SEL																																																	
HIS Val																																																	
CASE SEQNUM	66	100	101	102	103	104	105	106	107	108	109	110		112	113	114	115	116	117	118	119	120	151 98	12	123	124	125	126	127	128	129	130	151	132	133	961	135	136	137	138	139	140	141	142	143	144	145	146	147

2MD HIGHEST DISCRIMINANT GROUP P(G/D) SCORES	0- 4603 -0.4	0.0921 2	Ŷ	0	0.4252 0	0	01	0-4333 -0.	0.0886	0.4589	.3437	0-4520 -0	0.2806	0.1541 1	•		0.4540	0.4454 -0.	- 4864 -	0.1503	.3063 -1	0.1054 2	0.0639 2	1 0.3779 -0.9051 0 0.9083 0.7922	0.4669 -	0.4981 -	•	0.2863	1	0.1446	1 0 3 4 0 4 1 4 0 1 1 1 1 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0.3750	ĩ	0-3622 -0	0.3084 0	0.4207	0.147	0.3148 0	.4845 -	0.4978 -0.24	0.4316	•1870 1•461	1 0.4879 -0.3644
HIGHEST PROBABILITY Group P(D/G) P(G/D)	0.8224 0.539	0.0196 0.	0 0.7377 0.5168	0.1797 0.	0.9574	0.9913 0.	0.7337 0.	0.9259	0.0170 0.	0.8276	0.7175 0.6	.8536	0.4740 0.	0.1029 0.	0.7563		8463	0.8791 0.	0.7261	0.0955	0.5707	0.0311 0.	0049	122000 04580 0 710200 20480 1	.7974	0.6842	0.7801	0.4952	0.9878	• •		0.3070	0.8426 0.6	0.7786	0.7915 0	.5787 0.	9749 0.5	•	5035 0.	7329 0.	.7211 0.5	.9323 0.568	0.1767 0.813	0 0.7207 0.5121
ACTUAL Group	** 1	1	0	0	1	++ -	1	** "	1	1 **	o		~		0	(*	**		1	** ~	-		*	*	**	** -	-	*	•		•	*	** [** -	7	-	-		-		*		**
CASE MIS Segnum val sel	148	149	150	151	152	153	154	155	156	157	158	159	160	161	102	601	 9	167	168	-	21 20		172		175	176	177	178	179			183	184	165	186	187	188	189	190	191	192	193		195

DISCRIMINANT Scores	-0.5666	~	1.1274	-0.5142	197		80	0.8269	80	0.5625	-0.8792	•07		-0.8507	-	0.2954	-0.0002	-0.0415	-1.4816	-1.0193	-0.6466	1.7392	0.1664	-0.2181	n.1283	3.9600	1 • 1 4 35	4.1079	-0.6379	1.6526	-0.1649	-0.1508	-1.5035	0.7452	0.7719	-1.3128	-0.1728	0.7307	-0.4787		-0.9613	1.3732	0.6673	0.7336	-1.1767	-0.0373	283	0.6903	-0.6960
2ND HIGHEST Group P(G/D)	0.446	• 0.7	0.232	.456	0.399	0.472	4.	0.280	ċ	0 0.3269	0.383	••0	•	900	ċ	-	••0	•	•	0.355	0.429	0.1	••0	•	0 0.4107	0.0	0.2	0.0	٩.	0.1	•	••0	~•0	•	0.289	0.302	0.472	0.296	••0	0.485	0.367	0.1	-	0.2	1 0.3265	•	0 0.3797	0 0.3039	1 0.4196
HIGHEST PROBABILITY Group P(0/6) P(6/0)	•	0.0087 0	0.3089 0.767	0.8355 0.543	0.9401 0.600	.7758 0.527	0.7016 0	4.0	0.7536 0	0.6508 0	0.8750 0.	.8541 0.548	0.5414 0.701	0.8975 0.611	0.0416 0.885	0.8528 0.622	.9124 0.	0.8797 0.554	6744.0	0.7661 0.644	•9400 0•570	.1032 0.	.9549 0.	.7429 0.518	3 0.589	.0001 0.972	.3013 0.	.0001 0.975	.9330	.1229 0.836	.7835 0.529	0.7943 0.	• 4344 0• 730	• 5252	0.5079 0.710	.5546 0.697	0.7775 0.	0.5347 0.	0.8078 0.	0.7285 0	0.8108 0.633	.2065 0.801	.5772 0.692	0.5328 0.70	0 0.6493 0.6735	.8830 0.555	.8618 0.620	1 0.5616 0.6961	0 0.9793 0.5804
	*			* *	# #		9 #		**				# #				# #		#	#									*				# #						*	* *	*								*
ACTUAL Group	1	~	-	~	~	7	-	-		-	٥	-	-	•	-	-	0	-	-		•	-	-	-	-	-	1	-	-	-	-		-	-	-	0		-		-	-	-	-	~	0	7	~	-	-
SEL																																																	
NAL VAL																																																	
CASE Segnum	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218		°2 20	22	222	223	224	225	226	227	228	229	230	231	mi	233	234	235	236		238	239	240	241		243	244	245

DISCRIMINANT Scores	1.4771	4040-1-	1.5658	1.7723	-0.2514	-0.2390	-0.9702	-1.1296	-0.1990	-0.3127	0.4772	-0.2141	1.7823	-0.4617	-0.4806	-0.8000	0.6862	-0-3849	-0.7196	0.3846
2ND HIGHEST GROUP P(G/D)	0 0.1850	1 0.2973	0 0.1741	0 0.1508	0 0.4886	0 0.4861	1 0.3653	1 0.3351	0 0.4778	1 0.4986	0 0.3427	0 0.4809	0 0.1497	1 0.4677	1 0.4638	1 0.3987	0 0.3046	1 0.4836	1 0.4148	0 0.3602
HIGHEST PROBABILITY Group P(D/G) P(G/D)	1 0.1715 0.8150	0 0.5363 0.7027	1 0.1454 0.6259	1 0.0964 0.8492	1 0.7179 6.5114	1 0.7272 0.5139	0 0.8039 0.6347	0 0.6835 0.6649	1 0.7574 0.5222	0 0.6824 0.5014	1 0.7133 0.6573	1 0.7460 0.5191	1 0.0944 0.8503	0 0.7947 0.5323	0 0.8093 0.5362	0 0.9377 0.6013	1 0.5644 0.6954	6 0.7361 0.5164	0 0.9982 0.5852	1 0.7835 0.6398
ACTUAL Group		0	1	-	1	** 0	1 **	0	-	** -	-	1		1 **	** [1 **	1	1 **	1 **	** 0
SEL																				
N I S VAL																				
CASE Segnum	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263		ş 202

SYMBOLS USED IN PLOTS

LABEL	*************		
GROUP		0	-
SYMBOL		1	N

.....

ドゥ ミッリー オッ ト	• • • • • • • • • • • • • • • • • • •	~~~~							
CENTROIDS CENTROIDS		-3.0 -2.0 -1.0 -1.0 0 1.0 2.0 2.0 3.0 0 1.0 -3.0 1.11111111111111111112222222222222222			22222 22222 UP INANT	2222222	22222222222	2222222222	1 0
	17 se ac 4 ee ee Vit			55555555555555555555555555555555555555					
	• 0_		5 5 5	2 2222 22222 222222 222222222222222222		5 5 5 5	م		
	• •• + •• •		22 22 22 22 22 22 22 22 22 22 22 22 22	~ ~	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	66 22 222 2222 22222 22222 22222	555 555 55 55 55 55 55 55 55 55 55 55 5	•	
	- - -		A 1 1	22222222	222222	222222		22222 2 	

ALL-GROUPS STACKED HISTOGRAM

•	••	••	••	•	••	••	••	•	••	••	••	•	••	2:	2:	X 0UT 2222222
														~	22222 2	XX
										~	2	22	2 22	2222	222222222	
								2	22	22	222 2	222 22	222222	2222222	12121222	22222222
N	~	~	222	22	2 2 2 2	22222	22222	222222 2	222222 2	2222222222	2222222222	22 222 2222222222	21 221 22222222222	22111112112121212222222222222	222211111121121212121222121212122222222	X
						~	22	22	22	2 222 3	2 222 3	22 222 3	21 221 3	22111112	22211111123	-1.0
														1	1 22	-2.0
	••	••	••	15 +	••	••	••	+ 01	••	••	••	+ \$	••	••	••	X DUT CLASS 1111 CENTROIDS
			Ľ.	œ	u	0	D	w	z	U	7					CENTR

CLASSIFICATION PROCESSING SUMMARY

SED.	DED FOR MISSI	2
PROCESSED	EXCLUD	AT IEAC
WERE	VERE	
CASES	CASES	22222
265	•	•
2	04	ł

O CASES WERE EXCLUDED FOR MISSING OR OUT-OF-RANGE GROUP CODES. O cases had at least one missing discriminating variable. 265 cases were Used for Printed Output.

1 ŧ ANALYSIS DISCRININANT -NUMBER OF CANONICAL DISCRIMINANT FUNCTIONS.. t . t . ı 5 VARIABLES USED.. 1 1 1 ł I ON GROUPS DEFINED BY R ANALYSIS NUMBER.. VARIABLE LABEL LIST OF THE Я С Р А V В V В

	ST DISCRIMINANT (70) SCORES	854 -1.4	97 -0	4311 0.0275	9*0- 6*E	280	4765 -0.1928	-	984 -0.3	908 D.	538 -0.	576 -0	6		• 0 • 0	м О		100/CO- 2444.								01	N	-4587 -0.1069	-1.2	N	8.0-					- 0 - 0	-	-			o	4908 -0.2618	5	783 -0	472 1	1552 -0.0902	ĩ	77 2
MIS ACTUAL HIGHEST PROBABIL VAL SE 0 0.4917 0 VAL SE 0 0.4917 0 1 0 0.9197 0 0.9197 0 1 0 0 0 0.9197 0 0 1 0 <td< th=""><th>ZND HIGHE Group P((</th><th>•</th><th></th><th>•</th><th>1 0.4</th><th></th><th>•</th><th>1 0.1</th><th>•</th><th>•</th><th>•</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0 (</th><th></th><th>) (</th><th>o c</th><th>) (</th><th></th><th></th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>•</th><th>• •</th><th>) (</th><th></th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>•</th><th>•</th><th>•</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th></td<>	ZND HIGHE Group P((•		•	1 0.4		•	1 0.1	•	•	•	•	0	0	0	0	0	0 () (o c) (0	0	0	0	0	0	0	•	• •) (0	0	0	0	0	•	•	•	•	0	0	0	0
		0.4917 0.714	0.8578 0.621	0.9344 0.568	0.9197 0.565	0.9466 0.572	0.7621 0.523	0.8824 0.	0.6831 0.501	0.9062 0.609	0.8470 0.546	0.8324 0.542	0.9407 0.570	0.5127 0	0.8396 0.	0.9256 0.	0.7878 0.							0.7427	0.8069 0.6	0.9529 0.5	0.0147 0.	0.8284 0.5	0.5725 0.6	0.0106 0.	0.8765 0.	0.1039 0.	0.9453 0.		0.6974.0-	0.8767 0.	0.9780 0.	0.5354 0.	0.7592 0.	0.3804 0.745	0.4907 0.714	0.7101 0.	0.8549 0.548	0.7556 0.521	.0899 0.852	.8415 0.544	0.7613 0.523	.0583 0.872
		** [-		0		0		7						1					-				**	**	-	1	**	1	**			•		*	0	** 1	1 **	**	-	1	-	-	1	-	** 5	1
	MIS Val S	1	2	Ē	•	ŝ	9	~	80	6			12	13	14	15	16		01			22 22	22	40	25	26	27	28	29	30	31	32	5.5 • •		36	37	36	39	•0	14	42	E 4	44	45	46	47	8 4	49

DISCRIMINANT Scores	-0.9223	1.0400	-1.0926	.163	0.4236	-0.9570	5	-1.1415	5	0	.386	0.6290	0.6518	5	-1.0532	-0.1991	-1.8090	1.0530	5400.0	0.5637	1.0465	-0.2776	-0.5518	-2.1107	-0.0108	0.9533	0.5965	-1.0454	-0.1636	1.2192	-0.1519	0.3698	0.2558	-0.2077	-0.6020	-0.6222	0.1392	1.6386	500 T + 0 -	-0.2683	0.1936	0.1668	-0.7014	1.7095	~	-0.9566	-1.4325	89	906
2ND HIGHEST Group P(G/D)	0.37	0.246	ċ	•	.352	1 0.3678	1 0.2757	1 0.3329	1 0.4710	282	684	•	•	ċ		ċ	•	0.24	ċ	•	ċ	•	0	1 0.1823	0	•	0 0.3207	•	•	0.2	•	0	E • 0	••0	0.4	0.4	••	0.165	••0	••0	0 0.3976	0 0.4029	1 0.4185	0 0.1576	0.293	0.367	1 0.2815	0.423	0.377
HIGHEST PROBABILITY Group P(d/g) P(g/d)	0.8412 0.6	.3523 0.7	0.7109 0.658	0.7845 0.5	0.7537	0.8141 0.6	0.4560 0.	0 0.6748 0.6671	0.7823 0.	0.4791 0.	0.7372 0	0.6037 0.	.4581 0.	0.8252 0	0.7404 0.650	0.7573 0	0.2770 0.777	0.3456 0.7	1 0.8224 0.6301		0.3489 0.754	.6984 0.505	0.8649 0.550	0.1649 0.	.9040 0.561	0 0666.0	0.6265 0	.7463 0	0.7845 0.529	.2673 0	0.7935	0.7949 0.	0.8840	0.7508 0.	0.9046 0.5	0.9206	0.9766	0.1263 0.834	.7769 0.	.7054 0.	1 0.9333 0.6024	1 0.9546 0.5971	0 0.9836 0.5815	I 0.1097 0.8424	0	0.8144 0.632	ŝ	0.9657 0.576	.8518 0.622
	:		*			**	**	**		* *	**			**	*	*	*			**			*					*								*			*				*		*	*	**		*
ACTUAL Group	1	~	-	7	1		-	-	0		~	-		~	-	0	~	-		•	~	-	1	o	-			-	-	1	1		1	1	•	-	-	-	-	~	-	-	-	~	0	1	-	-	1
SEL																																																	
MIS Val																																																	
CASE Segnum	50	51	52	17) 16)	4	55	56	57	58	59	60	61	62	63	64	65	66	67	69	69	70	11		ድ 07	*	75	76	11	78	79	80	81	82	63	84	85	86	87	88	68	06	16	92	£6	94	95	96	97	86

DISCRIMINANT Scores	-0.2554	-1.6504	582	-0.0058	-0.6642	0.5878	1.0594	0.6289	0.1021	5	-0.5214	-0.6527	0.1165	-0.9506	0.6635	-0.5015	0.2195	-0.9745	-0.4441	-1.3753	-1.2041	-0.3228	1 • 5005	-0.5025	0.0696	1.0140	-0.6771	0.8563	1.8928	-0.9762	-0.7278	0.2846	0.1590	-0.8789	0.5340	-0.6561	-0.2117	-0.2683	0.6004	-1.2412	1.8476	1.8776	0.0155	-0.5780	-0.2790	1.3447	1.4958	0.9119	-0.7588
2ND HIGHEST Group P(G/D)	0.489	0.2		4.0	•	•••	ċ	ċ	•	1 0.3070	0.45	1 0.4284	•		•	0.459	0.392	1 0.3645	•	1 0.2912	1 0.3215	1 0.4965	0.1	1 0.4592	1	0.2	1 0.4234	0.2	•	•	1 0.4132	0.379	ċ	•		0	4.0	0.4	0.320	314	0.142	0.139	0 0.4335	0.4	4464.0 0	0 0.2021	0 0.1826	0 0.2664	0+•0
HIGHEST PROBABILITY Group P(D/G) P(G/D)	.7149 0.510	0.3531 0.	.6364 0.676	0.9079 0.	.9540 0.	0.6327 0.677	.3423 0.756	0.6037 0	0.9938 0	0.5733 0.	0.8411 0.	0.9448 0.	.9947 0.587	0.6191 0	0.5798	0.8255 0	0.9127 0.607	0.8006 0.	•		0.6297 0.678	0.6898 0	0.1643 0.	0.8263	• 9679	0.3659 0.749	.9643 0.576	0.4554 0.7	0.0746 0	0.7992 0.635	0 6366.0	0.8613 0.620	0.9608 0.595	0.8753 0	.6714 0.	0.9475 0.	0.7478 0.	0.7053 0.5	0.6238 0.680	0.6035 0.6	•			0.8856	.6974 0.	1 0.2169 0.7979	1658 0.817	1 0.4226 0.7336	7706 0.593
		*			*						**	*		#		#			*			*		*			*									#				*				**					:
ACTUAL Group	1	-	-	-	~	-	-	-	-	0	-	-				-	-	•		0	•	-	-	-	~	-	-	1	-	0	o	-	-	•		-	-	1	-	-	-	1	-		1	1	-	1	-
SEL																																																	
MIS Val																																																	
CASE Seqnum	66	100	101	102	103	104	105	106	101	105	109	110	111	-	-	114	-	116	117	118	119	120	-	20 122	- 2		125		127	128	129	130	131	132	133		135	136	137	138	139	140	141	142	541	144	145	146	147

DISCRIMINANT Scores	-0.4975	2.4444	-0.3870	-2.0635	0.0564	-0.7110	-0.2304	-0.6289	2.4965	504	-1.0837	-0.0746	0.8258	1.7410	-0.4116	0.8678	-1.3237	1.1460	-0.5280	-0.5697	-0.2404	1.7767	-1.2889	2.2653	2.9204	-0.9051	0.7222	-0.4652	-0.3151	-0.4427	0.7920	-0.7067	1.8316	-0.7051	-1.0584	1.1313	-0-9204	-0.4408	-0.9863	0.6651	0.0784	1.8074	0.6293	-0.2314	-0.2471	0.0249	1.4610	449E *01	-1.0732
2ND HIGHEST Group P(G/D)	1 0.4603	0 0.0921	1 0.4932	1 0.1882	0 0.4252	1 0.4166	0 0.4843	1 0.4333	.088	0.458	1 0.3437	0 0.4520	0 0.2806	0	1 0.4781	0.273		0 0.2301	1 0.4540	1 0.4454	0 0.4864	0 0.1503	1 0.3063	0 0.1054	0 0.0639	1 0.3779	0 0.2983	1 0.4669	1 0.4981	_			-	0.417	-	-	-	0.472	0.362	0	0	0 0.1471	0	0 0.4845	0.487	154.0	0 0.1870	5	- 345
HIGHEST PROBABILITY Group P(D/G) P(G/D)	0.8224 0.539	0.0196 0.	.7377	0.1797 0.		0.9913 0.	ċ	¢	0.0170 0.	.8276 0.	0	0.8536	.4740 0	0.1029	0.7563	0.4485	0.5473	1 0.3001 0.7699	0.8463	0 0.8791 0.5546	0.7261	.0955	0 0.5707 0.6937	0.0311	•000•	0.8546	0.5403	0.7974	0.6842	0.7801	.4952	0.9878	0.0851	.9866	0.7365	0.3070	8426	0.7786 0.	0.7915 0.	0.5787 0.	9749 0.	1 0.0896 0.8529	1 0.6035 0.6952	1 0.7329 0.5155	1 0.7211 0.5122	.9323 0.	1 0.1767 0.8130	0 0.7207 0.5121	0.7254 0.654
ACTUAL GROUP	**	1	0	0	-	** 1	~	** [-	** 「	٥	1	-	1	0	1	0	-	**	** -	1	-	** [1	-	** -	1	**	**	**	-	** ~~	~	** ~	** 7	7	** -	** -	** -	-	-		1	-	1	** 0	-	** 1	* *
MIS Val sel																																																	
CASE Segnum	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	-	2 D8	-	173	174	175	176	177	178	179	1 80	181	182	163	184	185	186	187	186	189	190	191	192	193	194	195	196

DISCRIMINANT Scores	-0.5666	2.7334	1.1274	-0.5142	-0.7971	-0.1749	-0.3367	0.8269	-0.4081	0.5625	-0.8792	-0.0740		-0.6507	2.1474	0.2954	-0.0002	-0.0415	-1.4618	-1.0193	-0.6466	1.7392	0 . 1664	-0.2181	0.1283	3 • 9600	1.1435	4.1079	-0.6379	1.6526	-0.1649	-0.1508	-1.5035	0.7452	0.7719	-1.3128	-0.1728	0.7307	-0.4787	-0.3748	-0.9613	1.3732	0.6673	0.7336	-1.1767	-0.0373	0.2839	0.6903	.696
2ND HIGHEST Group P(G/D)	0.445	0.073	.232.	.456	1 0.3993	0 0.4728	1 0.4932	0 0.2504	1 0.4788	0 0.3269	1 0.3830	0 0.4519	1 0.2986	1 0.3886	0	0	-	0 0.4452	1 0.2733	E • 0	0.429	0	••0		-	-			••0			•		0.294	0.289	0.302		0.296	0.464	0.485	1 0.3670	0 0.1983	0 0.3080	0 0.2964	1 0.3265	0.444	0 0.3797	0 0.3039	0.419
HIGHEST PROBABILITY Group P(d/G) P(G/D)	•	0.0087 0	.3089 0.767	0.8355 0.543	0.9401 0	0.7758 0.	0.7016	1 0.4734 0.7196	0.7536	0.6508 0.	0	0.8541	•	0 0.8975 0.6114	.0416 0	0.8528 0	0.9124 0	0.8797 0.5	0.4473 0	0.7661 0			•			.0001		0.0001	.9330	.1229 0.	0.7835 0.	E+61.0	0 ** 5** 0	0.5252	0.5079 0.7	0.5546 0.	0.7775	•5347 0•703	0.8078 0.535	0.7285	•	1 0.2065 0.8017	1 0.5772 0.6920	1 0.5328 0.7036	0 0.6493 0.6735	6830 0	1 0.8618 0.6203	1 0.5616 0.6961	.9793 0.580
ACTUAL Group	** [1	-		++ -	-	** -		** -	-	0		**	0	-	-	** 0	-	** ~	** [0	4	-	-	-	-	-	-	** ~	-	-	-	*	-	-	o	-	1	** -	**	**	-	-	4	0	-	-	-	** 1
MJS VAL SEL																																																	
CASE Segnum	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217		ີ ຂາ			222	223	224	225	226	227	228	229	230	231	232		234	235	236	237	238	239	240	241	242	243	244	245

CASE	NIS		ACTUAL	HIGHES	HIGHEST PROBABILITY	31L17Y	2ND HIGHEST	EST	DISCRIMINANT
SEONUM	VAL	SFL	GROUP	GROUP	GROUP P(D/G) P(G/D)	P(G/D)	GROUP P(P(G/D)	SCORES
246				1	0.1715	0.8150	0 0	0.1850	1.4771
247			0	0	0.5363	0.7027	1 0.	0.2973	-1-3404
248			-	-	0.1454	0.8259	0 0	0.1741	1.5658
249			-	-	0.0964	0.8492	•0 0	0.1508	1.7723
250					0.7179	0.5114	• 0 0	0.4886	-0.2514
251			** 0	-	0.7272		• 0 0	0.4861	-0.2390
252			**	0	0.8039	0.6347	-0 -	0.3653	-0.9702
253			0	0	0.6835	0.6649	.0.	0.3351	-1.1296
254			-	1	0.7574	0.5222	•0 0	0.4778	-0.1990
255			** 1	o	0.6824	0.5014	1 0.	0.4986	-0.3127
256			-	1	0.7133	0.6573	•0 0	0.3427	0.4772
257			-	-	0.7460	0.5191	• • •	U.4809	-0.2141
258			-	-	0.0944	0.8503	•0 0	0.1497	1.7823
259			** 1	o	0.7947	0.5323	1 0.	0.4677	-0.4617
260			**	0	E 6 0 8 . 0	0.5362	1 0.	0.4638	-0.4506
261			**	0	0.9377	0.6013	-0-	0.3987	-0.8000
262			1		0.5644	0.6954	000	0.3046	0.6862
263			**	o	0.7361	0.5164	-0 -	0.4836	-0.3849
264			**	c	0.9982	0.5852	1 0.	0.4148	-0.7196
265			** 0	7	0.7835	0.6398	•	0.3602	0.3846

SYMBOLS USED IN PLOTS

LAREL	*************	
GROUP		0
SYMBOL	* * * * * *	1

N

				•		
+	-	-				+
••	-	1				••
••						••
••	-	1				••
+		1 1 1 1 1				+
••		1 1 1 1 1				••
••		1 1 1 1 1				••
••		1 1 1 1 1				••
+ ~	1111 1	1 11 1 1 1				+
••	1 111	1 1 1 1 1				••
	1111 1					•
••						••
+	11111		1 1			•
•••	11111 1					••
••	11111					• ••
••	1 1111	1 1 1 1 1 1				••
×						×
		• 0 • 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0	2.0	3.0 	100
CENTROIDS .		1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****		77777
	HISTOGRAM FOR	AM FOR GROUP	1			
	CANDNICAL	AL DISCRIMINANT FUNCTION	FUNCTIO	- 2		
20 +				I		+
••						••
•• •		~ •				
•		N				••
15 +		C2 0				+
••		2 7 2				••
••		2 2222				••
••		2 2222				••
10 +		222222				•
••	~	22222	22			••
••	2	222222222	22	2		••
••	22	222	22 2	~		••
+ \$	22	222	222 22	22		+
••		22222222222	22222	2 22		••
••	222 22	222	22222	~	~	: 2
••	222	222222222222222222222222222222222222222	22222222	222	22222 2	2:
x	+ = = = = = = = = = = = = = = = = = = =					×
1:0	-1-0-2-0-1-0-1-0	c .	1.0	0,0	C 7	THO

ALL-GROUPS STACKED HISTOGRAM

			,				
•••			4				
•			2				••
•••			2 2				••
••			222				••
15 +			222				+
••			2 22 2				••
••		~	222222				••
••		22	222222				••
10 +		22	222222 2	2			•
••		22	222222	22			••
••		2 222	222 2222222222	22	~		••
		2 222	22222222222	222 2	~		**
+ 10		22 222	22 222 2222222222	222 22	22		•
••		21 221	21 221 2222222222 222222	222222	2 22		••
••	-	2211111	221111121212121222222222222222	22222222	22222	2	21
: 1 222211111121121212121212121222222222	1 222	1111112	222211111121121212121212121212222222222	2121212222	22222222	22222 2	~ ~
	-2.0		0	1.0			

CLASSIFICATION PROCESSING SUMMARY

265 CASES WERE PROCESSFD.	O CASES WERE EXCLUDED FOR MISSING OR OUT-OF-RANGE GROUP CODES.	CASES HAD AT LEAST DNF MISSING DISCRIMINATING VARIABLE.	265 CASES WERE USED FOR PRINTED OUTPUT.	
CASES	CASES	CASES	CASES	
265	0	0	265	
2	!1	3		

APPENDIX J

CORRELATION, COVARIANCE, 1-TAILED SIG, CROSS-PRODUCT:

9 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	1.000 15564.635 9953417.318 .012 .311 .311 .311 .326 78.906 7667.044	.012 .311 .426 78.906	•059 7667.044				- 032	
2 X X 5	15564.6499 3953417.318 .012 .311 .311 .311 .426 78.906 7667.044	.311 .311 .426 78,906			H O C			
5 5 1 5 2 1 5	15564.635 9999 3953417.318 012 012 112 012 78.906 78.906 7667.044	.311 .426 78,906	7667.044		•	1		
5 E X 6 I S		.426 78,906		3.418	492.360	568.894	-176.256	-7.508
5 5 1 5 2 5	3953417.318 .012 .311 .426 78.906 78.906 7667.044	78,906	•1.5	• 097	000.	.300	50E •	110.
5 1 S 5 1 S	012 311 426 78.906 7867.059		1947429.129	868.259	125059.341	144499.000	-44768.965	-1947.671
61 S	- 311 - 426 78-906 - 059 7667.044	1.000	244	080	073	184	.001	000*
519	.426 78.906 .059 7667.044	.045	Ē	- 006	216	-5.409	600.	.000
615	78.906 .059 7667.044	666.	.000	102	.122	.002	404.	.499
615	.059 7667.044	11.435	-13749.224	-1-447	-54-953	-1374.000	2.212	024
	7667.044	2 + +	1.000	.017	017	. 802	. 499	154
		-54.131	1090919.887	5.974	-248.480	115948.604	23013.905	ø
	.175	.000	666 .	£6£.	.393	• 000	.000	.007
	1947429.129	-13749.224	277093651.349	1517.365	-63113.898	29450945,333	5645531.792	-81152.384
•	.081	- • 0HO	.017	1.000	038	000.	- 022	.092
	3.418	006	5.974	.113	178	.016	319	.061
	190-	.102	100 M -	000	.274	498	.366	.072
	868.259	-1.447	1517.365	28.729	-45.129	4.000	-81.082	15.565
FLY	.283	073	017	036	1.000	054	050	038
0	492.360	216	-248.480	178	194.437	-104.266	-30.965	-1.058
1	• 000	.122	E9E.	.274	666.	.195	.212	.272
7	125059.341	-54,953	-63113.898	-45.129	49386,996	-26483.667	-7865.184	-268.831
SATE	EEO.	184	.802	.000	054	1.000	.242	183
	568.894	-5.409	115948.604	.016	-104.266	19151.349	1478.526	-50,332
	.300	.002	• • • •	.498	.195	666°	• 000	• 005
	144499.000	-1374.000	29450945.333	4.000	-26483.667	4864442 . 667	375545.667	-12784.333
GPA	032	.001	.499	- 022	050	.242	1.000	£60°-
	-176.256	600°	o,	319	-30.965	1478.526	1947.678	-8-146
	.305	464.	• 000	.366	.212	• 000	666*	• 069
	-44768.965	2.212	5845531.792	-81.082	-7865.184	375545.667	494710.337	-2069.075
I	031	. 000	154	.092	038	183	£60°-	1.000
	-7.668	.000	-319.498	.061	-1.058	-50,332	-8.146	3.936
	116.	.499	.007	.072	.272	.002	.069	666"
	-1947.671	024	•	15.565	-268.831	-12784.333	-2069.075	999°749
~~	.020	149	.816	400 -	- 029	.796	.191	- 153
	48.275	621	16723.823	- 024	-7.971	2155-923	164.942	-5-949
	.377	.008		.477	132.			.007
	12261.729	-157.624	4247851.149	-6.035	-2024.698	547604.333	41895.192	-1510.984

REGRESSION **MULTIPLE** * * * *

* * * *

I	124	-3.467	.024	-880.553	057	-1.771	.181	-449.753	228	-9.603	• 000	-2439.247	014	- 558	.410	-141.639
GPA	.059	36.520	.175	9275.976	.158	108.661	• 006	27599.776	•126	117.820	• 022	29926.224	.211	182.844	• 000	46442.420
SATE	.396	771.382	• 000	195931.000	.547	1178.524	• 000	299345.000	.689	2020.854	• 000	513297.000	.641	1740.794	• 000	442161.667
FLY	.182	35.784	.002	9089.106	.021	4.522	.370	1148.506	•010	5.616	.381	1426.494	049	-13.276	.220	-3372.055
~	- • 020	E60*-	.378	-23.506	. 1 05	.550	.047	139.694	073	522	.122	-132.694	.083	.548	E60.	139.188
615	.407	5987.632	.000	1520909.247	.580	9427.665	• • • •	2394626.847	.692	15320.390	• 000	3891379°153	.677	13881.431	.000	3525883.427
SEX	139	- 414	e10.	-105.271	104	545.1	.049	-87.071	176	791	.002	-200.929	- 107	- 446	.044	-113,341
PERF	.229	402.153	.000	102146.788	• 206	399.323	.000	101427.988	027	-71.815	555.	-16240.988	.077	187.925	.111	47733.776
	٩. ۲				N				87				0T			

	44	٦	2	VB	01
PERF	• 050	.229	•206	027	.077
	48.275	402.153	399.323	-71.815	167.928
	.377	.000	• 000	.333	.111
	12261.729	102146.788	101427.988	-18240.989	47733.776
SEX	149	139	104	176	107
	621	414	- 343	791	446
	.009	.013	.049	.002	.044
	-157.624	-105.271	-87.071	-200.929	145-511-
615	818.	.407	.580	. 692	.677
	16723.823	5987.832	9427.665	15320,390	13881.431
	• 000	.000	• 000	.000	• 000
	4247851.149	1520909.247	2394626.847	3891379.153	3525883.427
•	- 004	- 020	.105	073	.083
	024	-,093	.550	522	.548
	. 477	.378	.047	.122	£60°
	-6.035	-23,506	139.694	-132.694	139.188
FLY	- 029	.182	.021	•019	049
	-7.971	35.784	4.522	5.616	-13.276
2	.321	.002	.370	.381	.220
19	-2024.638	9089.106	1148.506	1426.494	-3372.055
SATE	. 796	.396	.547	.689	.641
	2155.923	771.382	1178.524	2020.854	1740-794
	.000	000*	• • • •	• 000	• • • •
	547604.333	195931.000	299345.000	513297.000	442161.667
GPA	191.	.059	.158	.126	.211
	164.942	36,520	108.661	117.620	182.644
	.001	.175	• 000	.022	• • •
	41895.192	9275.976	27599.776	29926.224	46442.420
I	153	124	057	228	014
	-5-949	-3.467	-1-771	-9-603	- , 558
	.007	.024	.181	.000	.410
	-1510.964	-680.553	-449.753	-2439.247	-141-639
44	1.000	.469	.660	.847	.802
	383.046	129.082	201.146	351.102	308.072
	666.	.000	• 000	• 000	.000
	97293.749	32786.847	51091.047	89179.953	78250.227

4 z o

	i		1	
VV	٦L	> 1	80	01
.469	1.000	+ G B +	.352	•
129.082	198.001	176.108	104.821	118.411
.000	666*	• 000	• 000	000.
32786.847	50292.141	44731.341	26624.659	30076.482
.660	.804	1.000	046.	.775
201.146	176.108	242.322	112.284	236.878
.000	000*	666.	• 000	000.
51091.047	14E*[6244	61549.741	28520.259	60167.0B2
.847	.352	.340	1.000	.375
351.102	104.821	112.284	448.975	155.823
.000	000.	• 000	666*	000.
89179.953	26624.659	28520.259	114039.741	39578.918
. 902	.429	. 775	.375	1.000
308.072	118.411	236.878	155.823	385.312
.000	000*	000	.000	666.
78250.227	30076.482	60167.082	39578.918	97869.231

**** NULTIPLE REGRESSION ****

EQUATION NUMBER 1 DEPENDENT VARIABLE.. PERF

DESCRIPTIVE STATISTICS ARE PRINTED ON PAGE 163

BEGINNING BLOCK NUMBER 1. METHOD: STEPHISE

VARIABLE(S) ENTERED ON STEP NUMBER 1.. FLY

MEAN SQUARE 316679.28923 14374.45861	
SUM DF SQUARES 316679.28923 3636738.02841	51GN1F F = 0000
RIANCE Df 253	
ANALYSIS OF VARIANCE r regression residual 24	F = 22.03069
• 09010 22• 03069 • 0000	
R SQUARE CHANGE F change Signif F change	
<pre></pre>	
MULTIPLE R R Square Adjusted R Square Standard Error	

CONDITION NUMBER BOUNDS: 1.000. 1.000

VAR-COVAR MATRIX OF REGRESSION COEFFICIENTS (B) Belov Diagonal: Covariance Arove: Correlation

FLY

FLY .29106

221

XTX MATRIX

	FLY	••••	PERF	••••	SEX	615	۹	SATF	6 P A	X	¥ ¥	PL
רא. 	1.00000	• ••		• •• •	.07312	.01705	.03789	•05403	.05032	.03826	.02921	18237
PERF	- 28302	•••			.03243	.06367	.09219	.04824	01777	02015	• 02804	.17746
	07312		64360.		.99465	24550	08261				5157	
	01706	••	.06367	••	24550	12060.	.01636	.80125	. 49841	15484	.81762	.41053
	03789	••	•U9219	••	08261	.01636	.99856	00171	02341	.09039	00472	01265
SATE	05403	••	.04824	••	18816	.80125	-+00171	.9970A	.23937	16539	. 79441	.40598
_	-+05032	••	01777	**	00275	.49841	02341	.23937	74799.	09496	.18949	.06798
	03826	••	02015	**	00302	15484	•E060*	18539	09496	• 99854	15432	11720
~ ~	02921	••	.0280.	••	15157	.81762	00472	.79441	.18949	15432	- 99915	.47404
	.18237	••	.17746	••	12548	.41053	01265	.40598	.06798	11720	.47404	.96674
	.02083	••	• 19972	••	-,10226	.58020	.10584	.54819	.15922	05654	.66083	.80019
	.01901	••	03255	••	17456	.69257	07259	.69019	.12695	22772	.84719	.34810
	04850	••	.09047	••	11068	.67624	.08117	.63821	.20862	01617	.80048	.43755

#
z
~
0
-
ŝ
Ś
w
α
G
ш
æ
-
w
-
Ø.
-
-
Э
x
*
#

*

DEPENDENT VARIABLE.. EGUATION NUMBER | XTX MATRIX

PERF

01	.04850	6	.11068	.67624	.08117	+63821	.20862	.01617	.80049	.43755	.77623	.37556	. 99765
4 N		.03255		.69257	07259	.69019	.12695	22772 -	.84719	.34810	.34002	\$9666	. 37556
7	02083	199		.58020	.10584	.54819	.15922	05654	.66083	. 80019	.99957	.34002	FCA77.
	FLY		SEX	615	•	SATE	GPA	I	A A	٩L	N	67	

SE B 95% CONFONCE INTPVL
•539498 1.449754 3.594710 8.487614 697.363811 730.794570
VARIABLES NOT IN THE EQUATION
VARIARLE BETA IN PARTIAL
SEX .032606 .033905
.063686
SATE .048384 .050373
A017816018552
AA .028061 .029245
.199808 .208280
VR
.090680 .094434

		MEAN SQUARE 237221.74639 13805.45169																
		MEAN 237221 13805						AA	•04298 -•66112		08396	00464 ·	.43199	+08423	11694	.56226		.28731
		SUM DF SQUARES 474443.49279 3478973.82486	- • 0000					X		;	00880	12202 .09638	15438	08596	.99534	11694		.02773
		25	SIGNIF F					6P.A	.05364 15928	04958	.01354	.40599 04027	.15205	.97211	05596	- 08423	02420-	96490
• • •	VARIANCE	0F 252	17,18319					SATE		E		-48305 05976	.69643	.15205	15438	.43199	12505-	.21250
2 5 5 9 9	ANALYSIS OF VARIANCE	REGRESSINN Residual	F = 17.					۲		4 4 1 1	1 6 1	04508 .98736 -				07469		00102
ช เอ ไม่ม ชิน เม								515		05226	t 1 1 1	04508				404E4		
4 4 4 4		GE .03941 11.42767 GE .0008						SEX	•07099 •10231	.05286	• 98419	18614 07173	13209	+01354	00580	08390		03127
PERF U		CHANGE CHANGE	200	(B) Elation				•• •		 		•• ••	••	••	** (• •	• ••
*	2	R SQUARE F Change Signif F	•					PERF		1		05220	06129	04958	00886	10400	6400["-	06463
ARIAB			1.000.	COEFF1 Arove:								.,		••	•• •		• •	•••
* * Dependent variable.	N STEP NUMBER .34642	• 12001 • 1 1302 • 4 9660		NCI	N	02083 -22439		NN	02084 1.000A3	19981	10231	.10589	.54843	.15928	05656	• 66112 • 66112	TIONE.	.77656
-	x •	ARE 117	MBER BOUNDS:		FLY	.27966 00522		FLY	1.00043 02084	.27886	07099	02915 04009	06546	05364	B0750	04298	0/00/•	06468
EQUATION NUMBER	VARIABLE(S) ENTERED Multiple R	α Ψ	CONDITION NUMBER	VAR-COVAR MATRIX Below Diagonal:		FLY XV	XTX MATRIX		FLY NV	21111111111111111111111111111111111111		615 A	SATE	6PA	T	A A	7 2	01
							23											

												۲	4.718	3.380 17.802											
												TOLERANCE	• 993566	• 999566											
												PARTIAL	.284889	.208280											
												PART COR	.278801	.199764	;	F	82	2783	70		10	0186	40	40	
												CORREL	.283024	.205617		T \$16	.901 .3682			-1.244 .2140		•		•	
: ; ; ;												BETA	.059106	.059106		LER						,		7	
8 : ?												BETA SE	• 278862	908661	EQUATION	E MIN TOLER	1984191			701270. 7				•	
: 1 1															JT IN THE	TOLERANCE	.984191	.662931	.987357		.995338	.562262	.326162	.883974	
													3+536475	2.534269 669.784092	VARIABLES WOT IN THE EQUATION	PARTIAL	.056804	068423	.076218 078202	053609	009462	147853	.032815	113931	
PERF	0.T	168 556	103	27	68 02	09	86		195	151	86	95% CONFDNCE	1.453510	.668425 536.352412	V AR	BETA IN	.053713	833	955		667	696	106	- +13611	
DEPENDENT VARIABLE			(/ / /		.22568 00102			•02773 • • • • • • • • • • • • • • • • • • •	,		.39486	SE B	.528827	.473703 .875841 53	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VARIARLE		T			,	,		'	
PENDENT	4 B	01192 34017	10049	126ET	10R59	.50371	.07279	20849	.07590	.88397	.11151			87) 87)	4 9 9	VARI	SE X	615	A 16	SPA SPA	I	~ ~	٩Ľ	£ 1	
1	4	16570 80053	.01758	04361	05394	03267	05947	07194	.32616	.07590	18385	Ð	2 * 4 9 4 9 9 3	1.601347 603.069252	0 0 8 8 8 8	SIG T	• 0000	.0008	• 0000						
EQUATION NUMBER XIX MATRIX			PERF		615 A	SATE	GPA	1	PL PL	48	0T	VARIABLE	FLY	NV (constant)	••• NI ••••••	VARIABLE	FLY	NV	(CONSTANT)						

* * *

#

z С 1 S

Ś

ω œ U w

۵

ш ---۵

LTI 5 x

> * * * .

* * * * REGRESSION **** MULTIPLE

PERF DEPENDENT VARIABLE.. EQUATION NUMBER 1

VARIABLE(S) ENTERED ON STEP NUMBER 3..

VV

MEAN SQUARE 183498.53038 13557.45708	
SUM OF SQUARES 550495.59114 3402921.72651 SIGNIF F = .0000	
ANALYSIS OF VARIANCE Df regression 251 residual 251 f = 13.534AB	
ANALYSIS Regressi Resioual F =	
.01924 5.60961 .0186	
R SQUARE CHANGE F change Signif F change	13.680
	1.779.
•37316 •13925 •12896 116•43649	BOUNDS:
MULTIPLE R R Square Adjusted R Square Standard Error	CONDITION NUMBER BOUNDS:

VAR-COVAR MATRIX OF REGRESSION COEFFICIENTS (B) Belov diagonal: Covariance Above: Correlation

44	.05721 66125 .24783
> z	05343 .39159 20600
FLY	.27554 01755 .01495
	FLY NV AA

XTX MATRIX

GPA M	• 04720 • 04602 • 06024 • • 08094 • 14981 • 20799	•03400 -•03049	.0261202627	•		.0873306453	•			ī	.04194 .08749
SATE	- 03243 - 04049 - 76831	.01861			'	.36453		•	•	•	00824
٩	.04580 19371 .13284	.05723	08293	.01258	.97744	00237	02908	.08084	10468	02592	.03714
61S	00403 07011 77195	.02802	12133	.32788	.01258	.14958	.34097	03175	01150	.01475	.00389
SEX	•07741 •00358 •14933	EE1E0.	.97165	12133	08293	06758	.02612	02627	05182	04683	.01163
••		• •• •	, , , ,	••	••	••	••	••	••	••	••
PERF	27091 32209 .18497		.03733	.02802	.05723	.01961	03400	040E0	.00741	.01464	01149
••	•• •• •• ••			••	••	••	••	••	••	••	••
A A	-		!	.77195	-13284	.76831	.14981	- 20799	09778	1.10695	.51098
2	07138 1.77778 -1.17582		00358	01011	110371	04049	.06024	-0804	.86518	39165	43874
FLY	1.00372 07138 44470.	.27091	07781	FOA00.			04720	04602	16150	.05950	04272
	FL kv aa	PERF				SATE			r 0		01

											►	4.618 4.125	-2.368 18.111										
											TOLERANCE	•996294 •562498	• 562262										
											PAPTIAL	.279819 .251976	.14785										
•											PART COR	.270409 .241570	138698 -	ł	۲	89	*	6 E		r m	15	24	40
*											CORREL	•283024 •205617			T 51G	646		988	0 0		223		. 565
2 2 2 2 X										:	SE BFTA		.078097	8 8 8 8 6 8 8 8	LER	555099							•
62 62 19 19										THE FOUATION	8E7A	.270912 .322094	• 184969	EQUATION	E MIN TOLER				9 - 24450 1054654 1054654		• •		•
а 31 11										LES IN	VL B	3.457662 . 3.813834 .	i n N	NOT IN THE	TOLERANCE	.971652	.327879	.977436	926495°		.320766	.19501	.24804
U L T I I											DNCE INTRVL		63	VARIABLES ^M	PARTIAL	.040822	.05274B	.062394	303000	745550	.014105	.035731	024859
¥ U 4 *	at •04272	4 1 8 1 9 8 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.01163	.00389 01114	824	.04194	.15576	652	.24805		95% CONFDNCE	1.348971	-2.159529 544.538515		BETA IN	.038422	.085465	.058551		101	104	.075069	101
* * Dependent variable.		;			ł		I		0		SF B	.524915 .625771	.497R26 33.735996 5	1	VARIABLE			Ŀ					
EPENDENT	₹ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7		•01475	.02552	02045	.13676	.19501	- 2065		6 2		33	9 L 9	VAR	SFX	G15	4 U 4 U		Ξ	PL	87	91
-	16150	76518 - 09778	05182	01150	12600.	05124	- 32079	.13676	15576	5 7 8 8 8 8 8 6 6		2.423863 2.581403	-1.179081 610.980219		516 T	.0000	.000	• 0186 0000	• • • • •				
EQUATION NUMBER XTX MATRIX	FLY 511	~~~	SEX	61S A	SATE	GPA 5	ہ ہ	87	01		VARIABLE	FLY 4V	AA (CONSTANT)	- N]	VARIABLE	FLY	7 2	AA COMETANTI					

.050 LIMITS REACHED. = NId -END BLOCK NUMBER

**** XULTIPLE REGRESSION ***

EQUATION NUMBER 1 DEPENDENT VARIABLE.. PERF

SUMMARY TABLE

CORPEL	.2830	.2056	.0198
BETAIN	.2830	.1998	1850
VARIABLE	FLY	N	~
	: N	: N I	: N :
HDDIS	• 000	.001	• 10 •
FCH	22.031	11.428	5.610
RSOCH	.080.	.0399	.0192
491S	• 000	• 000	• 000
F (EQN)	22.031	17+183	13+535
ADJRSQ	.0765	.1130	.1290
RSQ	.0801	.1200	-1392
MULTR	.2830		.3732
STEP	-	N	F

**** EULTIPLE REGRESSION ****

EQUATION NUMBER 1 DEPENDENT VARIABLE.. PERF

CASEWISE PLOT OF STANDARDIZED RESIDUAL

-	0:		0:	PERF	PRE	ESI	*SRESID	*SDRESID	Ш Х	MAHA	*C00K D
•	•	•	•	664	1.686	.68	٠	006	5	80	00.
2	•	*	•	704	9.161	838	128	127	005	435	00.
F)	•	*.	•	775	o	-	5	m	8	ŝ	000.
•	•	•	•	630	5.240	76.240	.657	657	.0054	1.3765	.001
ŝ	•	•	•	336	3.614	347.61	2.999	.048	.0951	88	.020
¢	•	•	•	341	.:	90.219	۰.	3.343	.0033	841	.019
4	•	•	•	746	5.479	9.52	6.3	.1679	.0027	695	000
¢	•	•	•	831	3.938	.062	837	637	.0062	.581	.001
0	•	•	•	939	2.147	6.85	450	454	.0206	.235	.013
10	•	•	•			7.7	.929	. 92	.0055	409	.002
11	•	•	•		9.124	.876	Ŷ	Ś	.0055	.386	00.
12	•	•	•	0	5.112	•	•	•	.0105	.667	•
13	•	*	•	685	3.998	1.0016	.0086	.0086	01	.771	.0000
• -	•	•	•	690	9.066	8.066	241	.241	.0014	4 4 E	.0001
15	•	•	•	915	0.95	64.04	.416	419	5	798	.0056
16	•	•	•	410	3.730	3.730	532	.558	.0026	667	.010
17	•	•	•	717	2.065	25.065	.217	.217	.0155	.939	.0002
18	•	•	•	750	7.089	2.910	542	4	.0047	.186	00.
19	•	*	•	818	5.786	2.213	710	709	.0086	.196	.0016
20	•	•	•		8.47	54.52	1.3364	n	.0100	2,5346	00.
21	•	•	•	672	5.140	3.140	4577	56	.0017	22	000
22	•	•	•	753	4.833	1.833	3617	61	60	.381	•000•
23	•	•	•	849	9.536	19.463	+CO+	• 035	.0131	.330	.0046
42	•	*.	•	199	4.526	4.473	85	85	.0161	.080	.0008
25	•	*.	•	713	6.259	.740	• 2308	.2304	÷	.515	• 0001
26	•	•	•	743	0.902	.097	.0181	18	£000°	.0806	000.
27	•	•	•	836	1.839	4.160	69	468	.0144	3.6635	.0010
28	•	•	•	871	2 • 9 4 2	.057	276	277	50	.8103	00*
29	•	*	•	670	6.501	3,499	50	.2053	.0333	8.4627	• 000
Ē	•	•	•	066	8.702	1.297	1.1539	1.1547	.0412	• 453	.0157
16	•	•	•	-	9.376	6.623	.6320	831	5	\$. 00
32	•	*	•		9.124	.124	80	19	.0364	•234	• • •
	•	•	•	689	0.645	1.645	32	N i	80	.201	• •
	•	•	•	766	3.703	.296	67		9	.211	.0007
35	•	•	٠		2.175	95.175	8242	2	.0125	~	00.
36	•	*	•	898	1.611	46.388	.262	.263.	•	.072	EOO .
37	•	*	•	813	5.915	.085	1.0107	.010	Ŷ	1.5894	00.
	•	•	•	410	7.094	87.09	.478	-2.5045	90	1.6568	.016
9 6	•	•	•	565	2.105	.105	8444	8439	.0205	.218	00.
•	•	•	•	924	5	08.449	.794	1.8030	.0013	.3298	•00•
SE #	0:	•••••••••	0:	PERF	3	α	* SRFS10	#SORFSID	#LEVED	TANAN #	*C00K

	с; +С0	3 °000	000 · 000	100. 0	• • • • • • • • • • • • • • • • • • • •	000. 6	• • • • • •	2 .000		7 .000	4 .0018	2 .0041	6 .000	8 .000	6 .0035	•	7 .001	2 .000	5 .0002	600° E	7 .000	c00• • 003	5 .003	100° E	×00. 7	5 .0048	5 .002	8 .007	•	5 • 085	•	•	•	0 .0245	•	5 • 007	5 .000	5 • 001	2 .0001	6 .0116	9 .0001	7 .0000	•000• 0	5 4002	2 4013	*C00K
	AHAH*	•16	2.363	1.733	.891	3.247	3*355	4.645	2.721	1.162	.590	3.726	454.	.633	3.600	1.500	3.562	1.298	.514	6 .033	.317	5.152	• 928	2	16	m	.725	•	046 *	5 000	in l	2	55.	• 296	25	196	480	17	1.504	255	3.574	.342	1.629	E00.	.782	H
	*LEVER		6	.0065	.0035	.0128	.0132	.0183	.0107	.0046	.0023	.0147	.0017	.0025	.0142	.0059	.0140	.0051	.0020	.0159	.0013	.0203	.0037	0030	.0127	.0020	.0383	.0402	.0037	.0197	.0033	.0048	• 0092	.0327	08	•0039	.0176	.0050	•0029	.0128	.0141	.0013	• 000 •	.0000	.0031	FVF
	* SORESID	.2022	.1984	6	- 5653	. 22	.1185	2	.1507	r n	• 0 6	932	5395	.7044	8768	.5964	4634.	.6438	.379	1.3571	.104	7860	1.2557	23	11	797	.5034	.7981	.7820	-3.8574	.3150	0	• • 5 •	610	.383	2.0110	.3942	.8311	.2178	1.6562	.1369	90	397	.4228	83	DDFST
	+SRESID	.2026	1987 .	ø		230		.1298	-	33	.063	932	5402		8772	597	.4842	644	3805	5		786	1.2543	0	.011	-1.7894	.5041	. 7987	.7826	-3.7549	5	0974	٠	-1.6057	m.	1.9989	.3949	.8316	.2183	650	7EI	000	99		.800	20501
	RESI	23.2086	.986	0-636	5.67	26.558	3.710	4.940	7.457	3.829	3.49	07.576	.726	1-840	-101-2148	9.189	.868	A.708	44.175	6.184	2+200	90.474	. 492	8.7	6.781	7.7	7.445	. 92	0.775	-432.0197	- 51	-11.2921	52.598	.512	.382	31.833	.482	96*3990	5.287		5.825	752	4	18	20	#DFC1
		. • 6	02.	29.363	10.	6.55	763.2893	35.059	2.543	1.829	3.507	44.424	16.	0.1	62.2	0.81	.131	03.291	-	.815	0.200	2.4	705.50R0	6.2	82.21	06.7	22.55	v	734.2241	•	Ð.9	~	-	8.512	50.382	9.1	773.5174	2.6	25.7	454.40	70.1	749.2477	48.	. IE	5	1004
	PERF	659	825	800	545	720	777	750	720	728	927	852	654	822	661	750	734	778	657	821	708	682	851	915	799	499	680	857	825	348	736	707	629	445	706	126	618	789	751	995	786	750	702	781	377	2010
3.0	0:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
0.0	••••••••••	•	*	•	•	•	•	•	+	•	•	•	•	*	•	•	*	•	•	•	•	•	•	•	•	•	*	•	•	•	*	+	*	•	*	•	*.	•	*	•	*	•	•	•	•	
0.6-	••	•	•			•	•			•	•		•	•	•	•	•		•	•	•		•	•	•		•	•		•	•		•	• m	•	•	•		•	•	c	•	•	•	•	
	CASE	•	•	•	4	•	Ŧ	•	Ť	•	'n				ň					¥.		Ŷ				vo	Ō	'n	v		7					~	~	~	~	~	Ē	æ	60	60		

0 m 0	
80	
114	-
9203	••••
72 98	
57	
0	-
0335 6759	1
163	
•••	
- 196	V 1
363	1
96	
37	
60	
92	
47	ī
006	Ni T
89.0	
50	
ο,	
	1
8147	
621	
4	1
ŝ	ĩ
10	ю #

+: SELECTED M: MISSING

+CODK D	•	• 0000	.000	.0030	•0088	.0371	.000	•0096	• 0000	.0007	£000°	•000•	.0010	.0001	.0024	.0048	E 00 .	.0026	1000.	.0013	.0033	.0003	• 0000	.000	.0107	• 0003	.0002	.0008	• 0000	.000	.0150	.0020	• 0007	0	2	.0012	•	• 0000	~	• 0023	.0018	•0003	.0011	• 0000	*COOK D	
*MAHAL				201	.441	26.2009	.2752	480	1.4831	•	.8103	•	2.8695	.781	5.9600	3.0969	0		.5225	.3230	5	4.0569	ŝ	1.2735	.6667	.8441	.2220		•	1.3802	1.9736	•	٠	.2681	•	•	1.2302	•	•	•	• 704	.538	3.7262	2,5940	Z	
+LEVER	0	015	005	.0087	.0135	.1032	.0011	.0688	.0058	.0077	.0032	.0121	.0113	.0070	.0235	.0122	.0083	.0152	.0021	.0013	.0109	.0160	.0140	•050	.0026	.0033	ecoo.	.0173	.0083	• 0054	.0078	.0120	.0076	.0011	.0045	.020B	. 004B	5	.0166	•0085	.0106	.0179	.0147	.0102	ш	
*SDRESID	•	- 0055	197	.9628	-1.4118	1 • 1	5	700	01	.5041	.4135	.3024	.5004	1979	.5875	-1.0822	1.1797	.7235	2340	-1.0159	.9326	9 E	.0620	•2194	580	.3989	.3650	.3925	50	-,5504	-2,2702	698	5035	.3059	-3,3286	.4295	•	5	-1.8410	8450	.6916	2378	.4724	.0829	#SDRESID	
*SRESID	•	0055	198	96	1.409	.112	29	701	0	504	414	.3029	501	198	588	٠	178	4	234	.015	932	ς.	062	219		399	.3656	6	050	5512	2	.699	504	.3065	•	30	•		.832	.845	.6923	2383	.4731	.0830	ESI	
4RES1D		6313	.969	1.409	162	22.450	3.9	.600	.827	8.436	8.057	984	7.908	2.960	7.548	-124,9452	6.413	3.518	7.212	7.977	7.814	27,6010	7.173	25,4773	6.194	357	466	45.2872	.843	-63,8804	60.	0.743	58.376	5.597	8.38	49.4639	•	-5.5443	11.138	.835	0.0	-27.4374	4.576	9.5988	ŝ	
- w	20.	4.631	21.031	22.5	~	33.450	7.06	4.600	96.17	35.563	2.942	06.015	160	96	2.451	.945	9.58	98.481	21	0	.18	796.3990	.826	• 52	.194	31.64	747.5331	4.71	99.	88	3	.74	73.376	09.402	9.386	84.536	85.686	4.544	17.	78.835	29.98	809.4374	744.4240	¢1	#PRE	
PERF		814	•		ō	811	ø	ē	Ö.	794	771	741	Ň	Ŷ	ø	548	Ŷ	ø	0	0	6	824	~	798	406	*		810	694		432		715	4	361	734	•	719		Ð	018	œ	¢.	r	PERF	
0 • E	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0:	3.0
0.0		•	*	*	•	•	*.	*	*	*	•	•	*.	•	•	•	•	•	•	•	•	*	*	*	•	*.	*.	*	*	•	•	•	•	*	•	*	•	*	•	•	*	•	*	•		0.0
-3.0		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	+	•	•	•	•	•	•	•	•	•	::	-3.0
CASE #		218		220	•	222	•	A'	 N 	٩	0	228	 A 	P	10	1	1	ň	53	m	23	m	FD	240	•	242	•	244	245	246	247	248	249	250	251	252	ŝ	ŵ	ιñ.	256	257	ŝ	ŝ	÷		

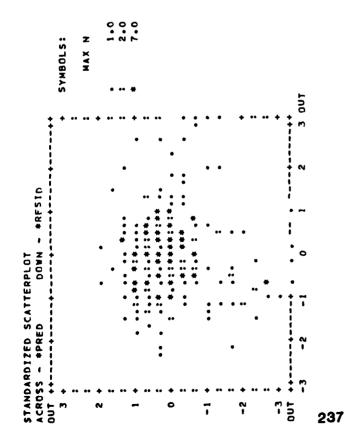
+: SELECTED N: MISSING

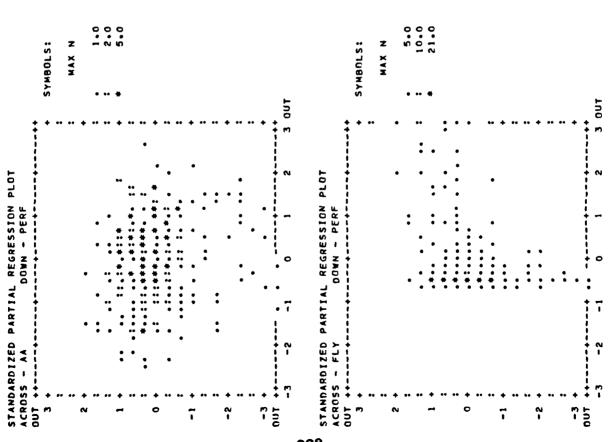
*C00% D •0000 •0022 •0004 •0015 *C00% D
#MAHAL 1.4256 2.2353 .6017 .3125 1.9444 #MAHAL
+ - - - - - - - - - - - - - - - - - - -
*SDRESID 0441 .8221 4903 1.0586 *SDRESID
*5RESID - 0442 - 8226 - 4910 1.0584 *5RESID
*RESID -5.1242 95.1733 -56.9915 122.9177 *RESID
*PRED 684.1242 697.8267 710.9915 714.0823 750.2848 *PRED
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o
CASE # 261 262 262 263 264 CASE 255 CASE 255

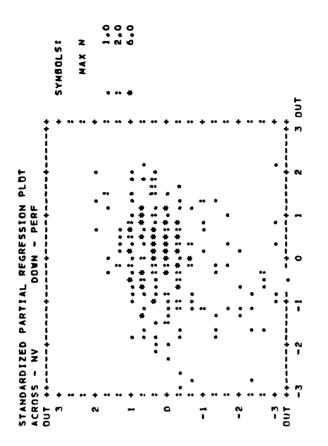
RESIDUALS STATISTICS:

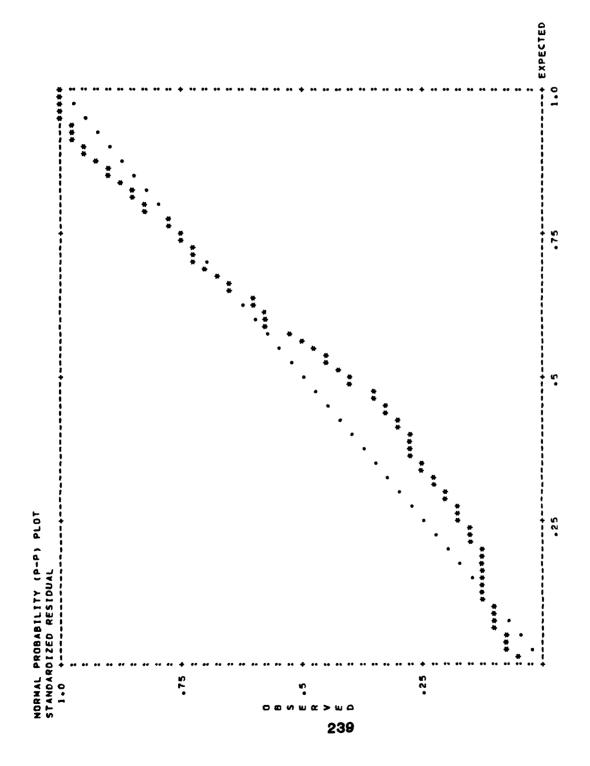
	N] N	MAX	MEAN	STD DEV	z
• PRED	622.5541	933.4507	732.6588	46.5543	255
#ZPRED	-2,3651	4.3131	.0000	1.0000	255
• SEPRED	7.3042	38.1007	13.7803	4.7812	252
*ADJPRED	620.0224	948.1343	732.8001	47.2500	225
<pre>eresid</pre>	-432.0197	231.8339	.0000	115.7468	255
<pre>*ZRESID</pre>	-3.7103	1.9911	.0000	.9941	255
*SRESID	-3.7549	1.9989	0006	1.0016	255
<pre>*DRESID</pre>	-442.4657	233+6531	1412	117.5107	255
SORESID	-3.8574	2.0110	0031	1.0095	255
FMAHAL	.0035	26.2009	2,9882	3.4577	255
CODK D	.0000	• 0852	.0038	•0086	255
PLEVER	.000	SE01.	.0118	.0136	255

TOTAL CASES =


265


DURBIN-WATSON TEST = 1.84815


OUTLIERS - STANDARDIZED RESIDUAL


*ZRESID	10	999	.2654	.2497	.9854	-2.79097	.7429	438	.5226	56	
CASE #	69	210	v	251	'n	40	Ň		16		

• : = NORMAL CURVE) ********* ******** ****** HISTOGRAM - STANDARDIZED RESIDUAL *********** •75 ************* ********* -.50 ********* (* = 1 CASES. ********* * ********* ****:****** • ********* ********* **:***** ****** ******* ****** 80*1 . **** ***** **** **** *** • ** * * # # * # * # # * # . ٠ • • -3.00 * -.38 -.75 1.63 • 50 • 25 .13 -.13 3.00 2.88 2.38 2.13 2.00 1.68 1.13 .88 £9**.** • 00 -1.88 DUT 2.75 2.63 2.50 2.25 1.75 1.00 • 38 -.25 -.88 -1.00 -1.13 -1.25 -1.63 -1.75 -2.13 -2.25 001 1.50 -1.38 -2.38 -2.50 -2.75 -1.50 -2.00 -2.88 -2.63 .28 .14 .20 • 29 .76 4.94 N EXP N • 56 1.33 1.72 2.20 2.75 9.60 11.22 9.60 1.01 3.40 4.13 12.61 8.67 6.75 5.82 6.75 1.7.1 8.67 10.46 11.85 12.32 12.32 11.85 11.22 10.46 5.82 4.94 4.13 04°E 2.75 2.20 1.72 .76 • 56 • 29 .20 •1• 12.71 12.61 7.71 . 41 1.01 112 21 6 22 10 2 -0 1 • o 12 1 ~ 0 NMN-NN-MONO-4 ~ in) 2 2

APPENDIX K

**** NOLTIPLE REGRESSION ****

CORPELATION. COVARIANCE. 1-TAILED SIG. CROSS-PRODUCT:

SATE GPA SATE 60 568.8994 -176.256 .303 568.8994 -0176.256 .3002 -5.409 -5.409 -000 -44768.965 -1374.000 25.313 -000 .002 2.212 .002 2.212 .000 2945.333 5845531.792 .000 2945.333 5845531.792 .000 2945.333 5845531.792 .000 2945.333 5845531.792 .000 2945.333 5845531.792 .000 2955.333 5845531.792 .000 29595.333 5845531.792 .000 29595.333 5845531.792 .000 29595.333 5845545.6677 .000 29595.25657 .000 2959575.25657 .000 29595.25657 .000 295957555555555555555555555555555555555

	44	.660	000	51091.047	.847	351.102	.000	89179.953	.802	308.072	.000	78250.227
	X	057	.181.	-449.753	226	-9.603	• 000	-2439.247	014	558	.410	-141.639
* * * Z	6 P A	• 158 • • • • •	900.	27599.776	.126	117.820	• 022	29926.224	.211	182.844	•000	46442.420
EGRESSI	SATE	- 54 7 - 1 7 8 . 5 9 4	000	299345.000	.689	2020.854	• 000	513297.000	.641	1740.794	• • • •	442161.667
r i ple r	•	.105 . 560	.047	139.694	073	522	.122	-132.694	.083	.548	• 043	139.188
* * * * * ^ * * * * * * * * *	615	• 580 9427,444	000	2394626.847	.692	15320.390	• 000	3891379.153	.677	13881.431	• 000	3525883.427
*	SEX	- 104 - 104	640.	-87.071	176	791	.002	-200-929	107	- 446	.044	-113,341
	PERF	206°. 100°.	000	101427.988	027	-71.815		-18240.988	.077	187.928	.111	47733.776
		> 2			4 B V				٩T			

* * * * * ^ ^ 1 1 1 1 1 1 4 5 4 5 8 2 1 0 N * * * *

Q.T	•077 187•928 •111 •1733•776	- 107 - 446 - 446 - 446 - 113	.677 13881.431 .000 525883.427	。083 。548 。093 139。188	• 641 • 794 • 700 • 700 • 700 • 700 • 700 • 211 • 211 • 211 • 200 • 4642• 420	014 553 553 410 -141.539 308.072 -000	
ß	-027 -71.615 .333 -18240.988	176 791 .002 -200.929	• 692 15320.390 • 000 3891379.153 3	073 522 -122 -132-694		228 -9.603 -000 -2439.247 351.102 351.102	89179.953 352 104.821 •000 26624.659
2	206 399.323 000. 101427.988	- 104 - 343 - 049 - 041	.580 9427,665 0000 2394626,847	,105 ,550 ,047 139,694	.547 1178.524 .000 299345.000 108.661 .158 .006 27599.776	057 -1.771 -1.771 -181 -181 -181 -181 -060 -010	51091.047 .804 176.108 .000 44731.341
P۲	.229 402.153 .000 102146.788	139 414 -013 -105.271	.407 5987.832 .000 1520909.247	020 093 -378 -23.506	•396 •396 •000 195931•000 36•520 •175 9275•976	124 -3.467 -024 -024 -890.553 -869 129.082 -0002	32796.847 1.000 199.001 50292-141
	9 7 7 7	х Ж	615	۲	a tas 2 45	2 4 4	PL

z o

				• • •	ר כ צ	7 I P E	ی س س	R E S S I C	* * z	•		
EQUATION NUMBER	BER I	06PE1	DEPENDENT VARTABLE	:	PERF							
DESCRIPTIVE STATISTICS ARE PRINTED ON PAGE	E STATIS	TICS !	ARE PRINTE	ON PAGE	n							
BEGINNING BL	BLOCK NUMRER	ER 1.	. METHOD:	STEPWISE	LL.							
VARIABLE(S) ENTERED		ON STE	STEP NUMBER	1 PL	Ŀ							
MULTIPLE R R Square Adjusted r Squ Standard Errdr	ARE	.22908 .05248 .04873 .04873	80 80 M M 0 4 M 4	R SOUARE F Change Signif F	E CHANGE E change F change	.05248 14.01225 .0002	<u>م</u> بن	ANALYSIS OF Regression Residual	F VARIANC	E DF SUM 1 21	SUM OF SQUARES 207467.13309 3745950.18456	MEAN SQUARE 207467。13309 14806。12721
								11 11	14.01225	SIGNIF	F = 0002	
CONDITIÓN NUMBER		BOUNDS:	1 • 000 •		1.000							
VAR-COVAR MATRIX Belov diagonal:		OF REGRESSION Covariance		CIENTS Corre	(8) Lation							
	٦٢											
βL	.29440											
XTX MATRIX												
	PL	•• ••	PERF		SEX	515	*	SATE	6 A	I	¥ ¥	> 2
٩L	1.00000		22908	13881		- 40742	•01956	39613	-,05881	.12418	46871	-*80399
PERF	•22908							.0577	.0454	00253	0876	0214
\$EX	13881	}				0	08255	12924	60600*	01746	08437	.00782
GIS A	-40742	•• ••	-,03449 -08595	:!8770 :08255		.83401 .02447	.02497 .99962	.64079 .00808	.47531 02036	- • 10359 - 08941	.62715 .00556	.25229
SATE	.39613					.64079	.00808	.84308	.21879	13413	.61032	.22859
GPA K	-12418		0-248	60600° :	'		02036 .08941	-21879 13413	08573	08573 .98458	.16340 09500	.11089 .04251
**	.46871 					.62715	.00556	.61032	.16340	09500	.78031 	• 28338 . 3636
84	.35157						05643	.54990	.10532	62481	• 68195	.05776
q T	.42870			E9200 3		0241	• 0 9 1 3 9	.47101	.18585	.03892	.60096	.43055

z
o
-
S
S
ш
2
U
U
œ
U.
-
4
F
5
2
ī
-
*
#
#

* * *

DFPENDENT VARIABLE. EQUATION NUMBER 1 XTX MATRIX

PERF

41	42870	021	04763	.50241	.09139	.47101	.18585	• 03892	.60096	.43055	.22392	.81622
E >	35157	.107	12715	.54901	06643	.54990	.10532	18479	.66185	.05776	.87640	.22392
	PL	PERF	SEX	615	<	SATE	GPA	I	4 4	> N	VB	qT

0 0 8 8 8 8 8 8 9		0 J 0 0 0 0 0 0 0 0 0 0 0	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	VAR	IABLES IN T	HE EQUAT	NOI		0 4 6 8 8 8 8 8		VARIABLES IN THE EQUATION	
VARIABLE	£	SE B	95% CONFD	CONFONCE INTRVL	RVL B	BETA	SE BETA	CORREL	CORREL PART COR	PAPTIAL	TOLERANCE	۲
PL (constant)	2,031069 590,699077	.542589 38.681704	.962503 514.519915	3•0 666•8	3.099634 .2 666.878238	•229081	•061198	.229081	•229081	.229081	1.00000	3.743 15.271
NI	8 8 8 8 8		:	1 ABLES	VARIABLES MOT IN THE EQUATION	EQUATION	t t t t t		L I			
VARTABLE	516 7	VAPIABLE	BETA IN	IN PARTIAL	TOLERANCE	MIN TOLER	LER	T SI	516 T			
PL (constant)	• 0002	SEX GIS Ate	.044390 .045162 041358038802 .085983 .088315	.045162 038802 .088315	-940731 -834011 -999618 -999618	•980731 •834011 •999618	1		•4736 •5382 •1605			
				*>>>	-	•						

•996542 •984579 •780308 •353606 •876402 •816216 .996542 .996542 .780308 .353606 .876402 .816216 -.045642 -.046807 -.002572 -.002622 -.112266 -.101890 .060630 .037038 -.122893 -.118191

.050 LIMITS REACHED. . PIN -END BLOCK NUMBER

**** MULTIPLE REGRESSION ***

EQUATION NUMBER 1 DEPENDENT VARIABLE.. PERF

SUMMARY TABLE

CORREL	.2291
BETAIN	.2291
CH VARIABLE BE	PL
	: N I
SI GCH	• 000
FCH SIGCH	14.012
RSOCH	• 0525
31 G F	• 000
F(EGN)	14.012
ADJRSO	.0487
RSQ	• 0525
MULTR	.2291
STEP	-

**** MULTIPLE REGRESSION ****

EQUATION NUMBER 1 DEPENDENT VARIABLE.. PERF

CASEWISE PLOT OF STANDARDIZED RESIDUAL

		0.0	0		1						
CASE #			0	PERF			*SRESID	_	*LEVER	MAHA	*C00K D
-	•	•	•	664	98.	-34.3457	2836	2831	.0057		•000•
ŝ	•	*	•	104	702.4078	1.5922	.0131	1610.	•004	1.1204	• • • • •
m	•	*.	•	775	342	44.1572	.3636	•3630	• 0000	•0040	.0003
•	•	•	•	630	714.5943	-84°2043	6971	6964	.0016	.3995	.0013
'n	•	•	•	336	345	-362.3457	•	-3-0406	.0057	1.4415	.0434
¢	٠	•	•	145		-404.0603	-3-3284	-3.3971	.0001	.1883	.0259
~	•	•	•	746	761.3088	-15,3088	1263	6	.0040	1.0049	.0001
æ	•	*.	•	931	781.6195	49.3805	.4090	.4083	.0116	2,9348	.0013
o	•	*	•	939	724.7496	214.2504	1 • 7645	1.7719	.000 ·	.0766	.0066
10	•	*	•	832	708.5011	9 • 4 9	•	1.0185	•0028	.7145	.0035
11	•	*	•	797	712.5632		.6960	.6953	• 100 •	4944	•100 •
12	•	•	•	•	783.6506	•	•	•	.0123	3.1319	•
13	•	•	•	685	706.4700	-21.4700	1771	1767	•0033	.8397	.0001
41	•	•	•	690	745.0603	-55.0603	4536	4528	.0007	.1693	.0005
s: 2:	•	•	•	915	767.4020	÷59	21	1.2201	.0058	~	E700.
16	*	•	•	410	726.7807	-316.7807	-2.6087	-2.6393	-0002	•0423	.0140
17	•	•	•	717	765.3710	-48.3710	-•3993	3987	.0052	1.3101	.0001
9.6	•	*	•	750	696.3146	53.6854	.4435	.4428	•0064	1.6172	.0010
19	•	*	•	818	781.6195	36.3805	.3013	.3008	.0116	2.9348	.0001
20	•	•	•	913	765.3710	147.6290	1.2188	1.2200	.0052	1016.1	•0068
21	•	•	•	672	734.9049	-62.9049	5180	5172	• 0000	-0062	• 0005
22	•	*	•	753	755.2156	-2.2156	0183	0182	.0025	.6229	.0000
23	•	*	•	849	726.7807	122.2193		1.0065	.0002	.0423	.0021
2 4	•	•	•	799	787.7127	11.2873	•0936	•0934	.0146	3.7107	.000
25	•	*	•	-	682.0972	30.4028	• 2561	.2556	.0123	3.1299	\$000*
26	•	*	•	243	747.0914	-4.0914	0337	0336	.0010	.2550	0000*
27	•	•	•	936	712.5632	23.43	1.0174	1.0175	.0019	. 4944	.0031
	•	*	•	971	724.7496	146.2504	1.2045	1.2055	.0003	.0766	.0031
	•	•	•	670	696.3146	-26.3146	2174	2170	• 0064	1.6172	.0002
0E	•	•	•	066	726.7807	263,2193	2.1676	2.1837	• 0002	.0423	9600.
	•	*	•	816	ŝ	56.7222	.4679	.4672	.0034	.8675	.0008
32	•	•	•	058	\sim	62,5980	.5170	.5162	.0058	1.4778	.0013
	•	•	•	683	71.4	-82.4642	6815	6808	.0073	1.8436	.0026
3	•	*.	•	766	720.6875	45.3125	.3733	.3726	.000	.1755	.000.
ŝ	•	•	•	567	5	-100.4020	8292	8287	.0058	1.4778	4E00*
	•	•	•	898	757.2467	140,7533	1.1607	1.1615	• 0029	.7402	.0046
37	•	•	•	813	732.8739	80.1261	.6598	.6591	• 0000	.000	6000*
38	•	•	٠	410	704.4389	-294,4369	-2.4292	-2.4532	•0038	.9750	.0231
9 E	•	•	•	565		-133,3457	-1.1012	-1.1016	.0057	1.4415	.0059
40	•	*	•	924	759.2778	164.7222	1.3587	1.3610	+003+	.8675	.0068
CASE #	0:				#PRED	*RESID	#SRFSID	*SDRESID	*LEVER	* N A H A I	*COOK D
										:	

	-3.0	0.0	3.0								
CASE #	0:		0:		#PRE	PESI	ESI	*SDRESID	#LEVER	ā.	#C00K 0
14	•	*	•	658	5.470	-48.4700	66E •	-•3991	PD .		• 0009
42	•	•	•		783.6506	41.3494	.3427	.3421	N)	3.1834	.0010
£ 4	•	*	•	0	0.9	ĉ	48	485	.0003	.0851	.0005
	•	• *	•	645	656	3.656	606	6060	.0009		•000•
54	•	•	•	720	9.58	588	.493	.492	2		.0016
46	•	#	•	~	5.6	8.691	.01	.071		442	• 0000
47	•	*	•	750	4.74	ି ୯ ୦	208	207	0	076	.000
4	•	*	•	720	5.47	3.530	111	4 111.	.0033	839	• 0000
49	•	•	•	N	8.19	9.809	.3294	.3268	.0095	421	.0007
50	•	*	•	827	m	8.498	¢	977	.0028	.7145	• 0032
51	•	•	•	852	2	4.598	.6987	97	.0056	1.4778	.0024
52	•	•	•	654	2.0	-93.0914	7669	7663	.0010	.2550	.0015
53	•	*	•	822	740.9982	c	.6671	.6664	.0003	.0851	.0010
54	•	•	•	661	0.5	029	6756	6749	.0005	.1317	•0010
55	•	*	•	750	.	2	224	ŝ	.0005	.1210	.0001
56	•	*.	•	734	6 . A	ŝ	.2271	.2266	.0033	.8397	.0002
	•	*	•	778	5		6	- 10	.0012	.3147	.0007
	•	•	•	657	0.376	- 10	50		.0050	~	.0006
in		*	•	821	6.625	4.374	8	œ	001	31	.0019
		*	•	708	8.656		80	0	.0009	N	• 0000
•••	•	•	•	682	0.5	61.029	502		000	ାମ ≓	.0006
62	•	*	•	851	. s	.530	.192		EDO	Ð	.0052
	•	*	•	815	6.314	18.6	6.	٩,	000	•	.0050
•9	•	*	•	799	26.780	N	ŝ	ŝ	000	0	000
65	*	•	•	499	.12	ŝ	-1.5332	- 60	.0114	2.8835	.0182
66	•	*	•	680	82.0		с •	017	.0123	-	• 0000
57	•	*	•	857	8.656		139	1.1404	•000	.2400	• 0032
68	•	•	•	825	34.9	ం	.7419	.7412	.0000	00	.0011
69	*	•	•	3 4 8	83.650	ະຄ	610	-3.6995	N	18	.1090
70	•	•	•	736	E .0		.2941	.2935	.0050	~	•000•
71	•	*	•	707	722.7185	-	1295	1292	• 0005	.1210	• 0000
72	•	•	•	659	5	4.184	~	7757	.0020	ŝ	.0018
73	•	•	•	445	5.0	-255,3768	-2.1082	•	.0050	1.2759	.0201
7.4	•	•	•	706	69.4	-63.4331	• 52	5233	.0065	1.6557	.0014
75	•	•	•	m	82 . 0	48.9	06	2.0758	.0123	-	.0351
76	•	•	•	-	6 ° 0	8.0	.6424	.6417	o	ø	•000•
11	•	*	•	Ð	٩.	+530	.6807	.6800	.0033		.0017
	•	*	•	751	49.122	1.8	.0155	.0154	.0013	.3318	0
79	•	•	•	995	53.3	231.6601	1.9119	1.9221	.0045	1.1525	.0156
80	•	*.	•	8	65.371	0.629	.1703	.1700	ı۵	1016.1	.000
81	•	•	•	750	65.371	.371	1269	1267	•0052	1.3101	.000
82	•	•	•	702	765.3710	-63.3710	5232	5224	ŝ	1016.1	.0013
83	•	•	•	181	700.3768	80.6232	• 6656	.6648	.0050	1.2759	3
	*	•	•	377	696.3146	-319,3146	-2.6378	-2.6696	.0064	1.6172	.0362
CASE #	0:	•••••	0:	PERF	*PRED	*RFSID	#SRESID	#SDRESID	*LEVER	*MAHAL	#COOK D
	-3°0	0.0	0•E								

		0.6-	0.0	3•0								
No. No. <th>SE</th> <th>• • • •</th> <th></th> <th>;</th> <th>БŖ</th> <th>#PRE</th> <th>RESI</th> <th>SRESI</th> <th>SDRES1</th> <th>LEVEI</th> <th>¥.</th> <th></th>	SE	• • • •		;	БŖ	#PRE	RESI	SRESI	SDRES1	LEVEI	¥.	
No. No. <th>58</th> <th>*</th> <th>•</th> <th>•</th> <th>-</th> <th>04.438</th> <th>189.438</th> <th>1.562</th> <th>1.567</th> <th>000</th> <th>5</th> <th>600</th>	58	*	•	•	-	04.438	189.438	1.562	1.567	000	5	600
No. Table T	86	•	*	•	¢.	30.842	8.157	561	560	000	8	000
No. 174 174 1143 1144 11		•	*.	•	~	47.091	906.0	254	254	5	255	000
0 775-566 -50-560 -4172 -4172 -0003 2449 0 775-566 -50-560 -50-560 -5005 -1003 -1012 -2101 0 72 755-776 -50-560 -9043 -1012 -2101 -1013 -2101 0 72 72 72 72 -7014 -7016<		•	*	•	ø	45.060	9.939	164	53	8	88	000
0 0 746,127.0 153,6770 1.22079 1.22095 0.0013 1.1121 0 1		•	•	•	N	75.526	50.526	.417	417	800	.249	001
01 01 <td< th=""><th></th><th>•</th><th>*</th><th>•</th><th>ο</th><th>49.122</th><th>53.877</th><th>.267</th><th>.269</th><th>5</th><th>331</th><th>400</th></td<>		•	*	•	ο	49.122	53.877	.267	.269	5	331	400
200 20.4001 -1703 -774 -0003 -0003 -0004 200 714.5943 -115.641 -2104 -2516 -0003 -0004 200 714.5943 -115.641 -2104 -2516 -0003 -0004 200 -0014 732.8733 93.161 -7163 -7016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0016 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0016 -0016 201 -0014 -0014 -0014 -0016 -0	16	•	*.	•	ŝ	65.	5.629	459	458	03	01E.	001
0.0 724.7496 112.2514 0242 0001 0016 0016 0.0 724.7496 112.2514 107.151 7784 0010 0010 0010 0.0 724.7491 117.1511 784.7491 117.1511 788.7 0010 0010 0010 0.0 724.7491 107.1511 788.1 788.1 788.1 0010 0010 0010 0.0 774.741 0.0 774.741 0010 0010 0010 0010 0.0 774.741 774.141 <td< th=""><th></th><th>•</th><th>*.</th><th>•</th><th>ø</th><th>63.</th><th>0.660</th><th>170</th><th>170</th><th>400</th><th>.152</th><th>000</th></td<>		•	*.	•	ø	63.	0.660	170	170	400	.152	000
9. 9. 7.2.4773 9.		•	*	•	m	24.74	12.250	924	924	000	26	100
03		•	•	•	•	32.873	•	•	•	• 0000	000	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th></th> <th>•</th> <th>•</th> <th>•</th> <th>0</th> <th>14.594</th> <th>9.405</th> <th>736</th> <th>736</th> <th>001</th> <th>399</th> <th>.0015</th>		•	•	•	0	14.594	9.405	736	736	001	399	.0015
97 940 722.6779 107.1861 .0821 0001 .0001 90 817 716.0201 <th></th> <th>•</th> <th>•</th> <th>•</th> <th>Ð</th> <th>14.594</th> <th>31.594</th> <th>.260</th> <th>2</th> <th>.0016</th> <th>399</th> <th>.0002</th>		•	•	•	Ð	14.594	31.594	.260	2	.0016	399	.0002
98	10	•	*	•	•	32.873	07.126	882	¢	000	000	.0015
99 ••• 678 704.2011 -7.215 2710 0.028 .7145 101 •• 971 714.0531 120.7741 9918 0012 3147 101 •• 971 714.0531 120.7741 9918 0012 3147 101 •• 971 744.091 -7413 -7413 0001 0001 0001 103 •• 971 724.779 971.61 -7413 -7413 0001 0001 0001 104 •• 744 744.131 724.779 9417 7413 -7413 -7413 -7414 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0011 <	86	•	*	•	N	32.873	3.126	766	~	• 0000	0	.0012
100 114 1410 1417 0005 1117 101 101 101 1417 1005 1117 1005 1117 101 101 101 101 101 101 1011 1011 1011 101 101 101 101 1011 1011 1011 1011 1011 101 101 101 1011 1011 1011 1011 1011 1011 1011 101 101 1011	66	•	•	•	~	08.	30.5	.251	.251	002	•	• 0002
101 ••••• 837 716.6253 120.3747 •9918 •0012 •3147 103 ••• 833 732.6739 90.1261 •7421 •7915 •7915 •7915 •7915 •7915 •7915 •7915 •7915 •7915 •7915 •7915 •7915 •7012 •0012 <td< th=""><th>100</th><th>•</th><th>*</th><th>•</th><th>÷</th><th>43.02</th><th>7.970</th><th>4</th><th>-</th><th>.0005</th><th>.1317</th><th>• 0000</th></td<>	100	•	*	•	÷	43.02	7.970	4	-	.0005	.1317	• 0000
102	101	•	*	•	m	16.	20.374	9166*	o,	.0012	-3147	.0026
103 823 732.8773 90.1261 .7421 .7415 .0000 .0001 104 933 725.4740 -41.7406 -11.864 -11.861 .7415 .0003 .0003 105 700 700.4311 22.5560 -11.864 -11.861 .1003 1.0557 106 702 700.4311 22.5560 -11.864 -11.861 .1003 1.0557 109 703 710.5011 -271.5011 -271.511 -0.1181 1.0657	10	•	*	•	m	34.	7.095	. 7995	•	• 0000	000	E100.
104 •••• ••• •••	10	•	•	•	N	32	0.126	742	~	000	000	.0011
105 ••• 740 764.431 -29.431 2427 -0065 1.6557 101 •• 70 714.6195 1126 1126 0.0165 1.6557 108 •• 737 706.4311 22.5569 -0116 2.9348 109 •• 70 714.5011 -7712 1126 1126 1126 111 •• 702 712.5502 -10.5522 0111 0016 .0116 2.9348 111 •• 702 712.5502 -10.5522 01129 01129 .0016 1146 111 •• 702 712.5502 -10.5522 -10.512 12129 0016 1149 111 •• 702 712.5502 10.112 0016 1149 0016 111 •• 703 71.4523 10.712 0019 0019 0019 111 •• 703 71.4523 17.710 1716 0019 0019 111 •• 703 71.4523 10.751 0019 0019 0019 111 •• 703 71.452 1.7162 0019 0019 0019	10	•	•	•	¢	4	41.749	•		000	0	• 0003
106 702 769.3131 22.5669 1861 0055 1.6557 107 734 751.1535 -717.611 11226 .0016 1161 2.9569 109 734 751.1535 -717.1535 -717.1226 .0016 1984 111 734 751.1535 -717.1535 -717.1226 .0019 9944 112 734 751.1535 -171.1535 -71411 0051 9944 112 734 751.1535 -171.1535 -11411 0019 4188 112 704 712.5032 11.6532 1714 1861 0019 0019 1861 113 703 704.27533 1780 1716 0019 1873 114 771.4642 21.45103 1780 0114 2.9435 117 771 <th>01</th> <th>•</th> <th>•</th> <th>•</th> <th></th> <th>69.</th> <th>29.</th> <th>٠</th> <th><u>م</u></th> <th>006</th> <th>•</th> <th>.0003</th>	01	•	•	•		69.	29.	٠	<u>م</u>	006	•	.0003
107	106	•	*.	•	o,	69.43	°.	.1864	.1861	90	•	• 0002
108 ** <t< th=""><th>107</th><th>•</th><th>*</th><th>•</th><th>v</th><th>81.61</th><th>3.619</th><th>.112</th><th>.112</th><th>011</th><th>ъ.</th><th>.000</th></t<>	107	•	*	•	v	81.61	3.619	.112	.112	011	ъ.	.000
109 • 734 751.1535 -17.1535 1414 1411 .0016 .4188 111 • • 772 712.5532 -10.5532 0815 .0019 .4044 111 • • 772 712.5532 -10.5532 0815 .0019 .4044 112 • • 771 664.1262 102.6718 .8520 .3311 .0000 .0019 .4044 115 • • 771.4662 12.553 .17.7865 .1771 .1766 .0017 .1872 .7402 116 • • 771.4665 .17.7865 .1771 .1766 .0016 .4188 117 • • 771.4665 .17.7865 .1771 .1471 .1468 .0114 .28353 117 • • 740 731.4665 .17.7851 .1771 .1468 .0016 .01907 .01918 .0169 .01918 .0169 .01919 .29333 .01415 .0151 .01619 .01619 .01619 .01619 .01619	108	*	•	•	m	3.50	271.501	2.238	2.256	02	.7145	.0170
110 • 702 712.5522 -10.5522 0871 0869 .0019 .4044 111 • • 77 712.5522 -10.5522 0871 .3386 .3381 .0000 .0001 .0001 111 • • 73 684.1253 11.515 .3326 .3520 .0073 11.8435 113 • • 700 757.2467 42.7533 .3526 .3520 .0073 11.8435 114 • • 700 757.2467 42.7533 .3526 .3520 .0073 11.8435 115 • • 700 751.1555 17.8465 .1776 .0073 11.8435 117 • • 740 730.8428 9.1577 .1776 .0073 11.8435 117 • • 740 730.8428 9.1577 .1776 .0077 11.8435 118 • • 740 731.8465 71.751 .1776 .0077 .1843 118 • • 730.34361 <th>109</th> <th>•</th> <th>•</th> <th>•</th> <th>÷D.</th> <th>1.15</th> <th>7.153</th> <th>•1•</th> <th>1411</th> <th>-</th> <th>•</th> <th>1000.</th>	109	•	•	•	÷D.	1.15	7.153	•1•	1411	-	•	1000.
111		•	*	•	0	ŝ.	0.563	• 08	•086	001	4944	• 0000
112 • 787 684.1282 102.4718 •6520 •8515 •0114 2.9835 113 • • 700 757.2467 42.7533 .3526 .3520 .0014 2.4835 114 • • 703 771.4642 21.5556 .1471 .1176 .0013 118.435 115 • 703 751.1535 17.8455 .1471 .1468 .0010 .2538 116 • • 70 747.0914 • .1751 .1471 .1468 .0010 .0000 .0010 .2538 118 • • 740 731.8561 .1751 .1751 .17624 .0000 .0000 .0010 .2538 118 • • 745 745.65.3457 -2.21912 -2.2079 .0007 .1843 118 • • 745 1.4946 2.1912 -2.22079 .0007 .1843 120 • • 7455 1.4940 1.4764 .0076 .0076 .1843 121		•	*	•	~	2	1.126	338	3 3 8	• 0000	1000.	• 0002
113		•	*	•	80	-	2.871	852	851	011	2.8835	.0056
114 793 771.4642 21.5358 1780 1776 .0073 1.8436 115 740 751.1535 17.8465 1710 1776 .0016 4188 117 740 730.8428 9.1577 .0754 073 0010 2538 117 740 730.8428 9.1577 0754 073 0010 2538 118 730.8428 9.1577 0754 073 0001 0840 119 733.73.653.3457 -2.1512 1.7624 0011 25338 120 783 730.8428 52.1572 1.7624 0011 29348 121 730.753 1.4041 1.40977 0116 2.9348 122 730.8428 52.1572 4295 4288 0000 0040 122 730.7451		•	•	•	0	57.	2.753	352	352	002	.7402	000
115 • 769 751.1535 17.8465 .1471 .1468 .0016 .4188 117 • • 0 747.0914 • 0010 .2538 117 • • 740 730.8428 9.1577 .0753 .0010 .25338 119 • • 740 730.8428 9.1577 .0753 .0007 .0040 119 • • 933 698.3867 -2.1951 -1.7524 .0007 .1883 112 • • 952 781.6195 180.3805 1.4940 1.4977 .0116 2.9348 121 • • 952 781.6195 180.3805 1.4940 1.4977 .0116 2.9348 121 • • 952 781.6195 180.3805 1.4940 1.4977 .0116 2.9348 121 • • 733 691.3805 1.4940 1.4907 .0016 .074 .1873 122 • • 733 730.8426 2.91186 2.21718		•	*.	•	o	71.4	1.535	178	177	007	1.8436	000
116 0 747.0914 0 747.0914 0 0000 0000 0000 0040 117 1 1 1 1 0 745.0914 0 <th></th> <th>•</th> <th>•</th> <th>•</th> <th>Ŷ</th> <th>51.1</th> <th>7.846</th> <th>47</th> <th>46</th> <th>00</th> <th>418</th> <th>0</th>		•	•	•	Ŷ	51.1	7.846	47	46	00	418	0
117 • 740 730.8428 9.1577 .0754 .0753 .0000 .0040 118 • • 532 745.0603 -213.0603 -1.7551 -1.7624 .0007 .1883 119 • • 962 781.6195 180.3805 -1.7551 -1.7624 .0007 .1883 120 • • 748 704.4389 521.575 -2.21912 -2.22079 .0037 1.4415 121 • • 730.8428 52.1572 -4.2956 .42956 .42956 .42956 .0038 .0040 .0040 1221 • 730 753.1846 -23.1676 .0191 -1907 .0020 .0040 .5158 123 • 730 753.1846 -23.1646 -1911 -1907 .0020 .5158 124 • 730 753.1846 -23.1646 -23.1916 .2456 .0020 .0020 .5158 125 • • 73 73.1846 -23.1916 .2456 .0020 .0016 .0050		•	•	•	0	47.0	•	•	•	001	253	•
118 * 532 745.0603 -213.0603 -1.7551 -1.7624 .0007 .1883 119 * • 962 781.5195 -2.1912 -2.2079 .0057 1.4415 120 • * 962 781.5195 180.3865 -2.1912 -2.2079 .0057 1.4415 121 • * 962 781.5195 180.3865 1.4940 1.4977 .0116 2.9348 121 • * 962 781.5195 180.3865 -2.1912 -2.2.079 .0057 1.4415 121 • * 736 730.8428 52.1572 .4295 .4288 .0030 .0060 .0060 .0060 .0060 .0060 .0060 .0060 .0060 .0050 1.2759 .1256 .2458 .2453 .0050 1.2759 .12759 .2458 .2690 .2655 .2659 .0050 1.2156 .1210 .2156 .2156 .2156 .2158 .2690 .2669 .0050 .2156 .2156 .21575 .2690 .2669		•	+	•	•	30.	.157	075	075	• 0000	5	• 0000
119 * • 433 698.3457 -2.51912 -2.2079 .0057 1.4415 120 * * 962 781.6195 180.3805 1.4940 1.4977 .0116 2.9348 121 * * 736 73.5611 .3594 .3588 .0038 .9750 122 * 730 730.8428 52.1572 .4295 .4288 .0030 .0040 123 * 730 730.8428 52.1572 .4295 .4288 .0030 .0040 123 * 730 753.1846 -23.1617 -1911 -1907 .0020 .5158 124 * 733 730.8456 29.8154 .7459 .2453 .0020 .5158 125 * * 733 730.951 .7653 .2459 .0020 .5158 126 * 735.7185 -2.5091 .25459 .00629 .00620 .1210 125 * * 735.7185 -2.5051 .2690 .00629 .0066 .00662		•	٠	•	m.	45.06	213.060	1.755	1.7	000	8	.0072
120 • • 962 781.6195 180.3805 1.4940 1.4977 .0116 2.9348 121 • • 748 704.4389 43.5611 .3594 .3588 .0038 .9750 122 • • 783 730.8428 52.1572 .4295 .4288 .0038 .9750 123 • • 730 753.1846 -23.1646 -1911 -1907 .0020 .5158 124 • • 733 753.1846 -23.1646 -23.1646 -1911 -1907 .0020 .5158 125 • • 783 753.1846 -23.1648 7.4533 .0629 .0629 .0020 .5158 125 • • 708 700.3168 7.36951 .2458 .0629 .0050 .12759 126 • • 735.9185 -25.9185 .6019 .6019 .0062 .12204 127 • • 735.7185 -2.9518 .6019 .6016 .10000 .10062 <		*	•	•	5	46.89	265.345	2.191	2 • 2	002	.441	.0233
121 748 704.4389 43.5611 .3594 .3588 .0038 .9750 122 783 730.8428 52.1572 .4295 .4286 .0000 .0040 123 730.8428 52.1572 .4295 .4286 .0000 .0040 123 730.730.8428 52.1572 .4295 .4286 .0000 .0040 124 730 753.1846 -23.1946 -21911 1907 .0020 .5158 124 783 753.1846 29.8154 .7659 .4268 .0020 .5158 125 783 730.949 7.4683 .7458 .0629 .0020 .5158 125 735.9049 73.50921 .6019 .0020 .0050 .12204 126 735.9052 .25991 .6019 .00144 1.1204 127	120	•	•	•	÷O	81.5	80.3	464.	1	011	\$ 2 \$.0175
122	N	•	*	•	-	04.4	3°2	359	358	200	975	• 0005
123 ** 730 753.1846 ~23.1846 -1911 1907 .0020 .5158 124 ** 783 753.1846 29.8154 .2458 .2453 .0020 .5158 125 * * 783 753.1846 29.8154 .2458 .2453 .0020 .5158 125 * * 708 700.3768 7.6232 .0629 .0628 .0050 .5158 126 * * * 700.3768 7.6232 .0629 .0628 .0050 .5158 127 * * * 734.9049 734.5022 .2690 .6011 .0050 .1062 127 * * 702.4078 32.55922 .2690 .2685 .0044 1.1204 128 * * 722.7185 -352.7185 -2.69051 -2.2685 .00055 .11210 ASE 0: 0: * *78510 *58510 *587510 *1676 *0055 .122.04 128 * * * *58510 </td <th></th> <td>•</td> <td>* •</td> <td>•</td> <td>60</td> <td>30.842</td> <td>2.157</td> <td>4</td> <td>428</td> <td>000</td> <td>004</td> <td>•000•</td>		•	* •	•	60	30.842	2.157	4	428	000	004	•000•
124 783 753.1846 29.8154 .2458 .2453 .0020 .5158 . 125 708 700.3768 7.6232 .0629 .0050 1.2759 126 708 700.3768 7.6232 .0629 .0050 1.2759 127 734.9049 734.5021 .6019 .6011 .0000 .0062 127 735 702.4078 32.55922 .26690 .2685 .00044 1.1204 128		•	•	•	m.	53.1	23+184	7	.190	002	515	.0001
125 . * . 708 700.3768 7.6232 .0629 .0628 .0050 1.2759 . 126 * . 808 734.9049 73.0951 .6019 .6011 .0000 .0062 . 127 735 702.4078 32.5922 .2690 .2685 .0044 1.1204 . 128 .* 370 722.7185 -352.7185 -2.9051 -2.9490 .0005 .1210 . ASE # D:		٠	*.	•	B	53.1	9. 815	2	243	005	515	• 0002
126		•	+	•	0	00.376	.623	0	062	005	.275	• 0000
127* .* . 735 702.4078 32.5922 .2690 .2685 .0044 1.1204 .00 128 .* 370 722.7185 -352.7185 -2.9051 -2.9490 .0005 .1210 .01 ASE # 0::0 perf *Pred *resid *sresid *Sdresid *Lever *MAHAL *CODK -3.0 0.0 3.0		•	*	•	0	34.904	3.095	601	v	000	900	8
128 .* 370 722,7185 -352,7185 -2.9051 -2.9490 .0005 .1210 .01 ASE # 0:		•	*	•	m	02.407	2.592	269	68	00	120	8
ASE # 0:	N		•	•	~	22.718	352.718	2.905	2.949	000	121	.0186
3.0 0.0 3.	ASE	•••••	••••	:	ñ	R E	RESI	SRESI	SDRESI	LEVE	HAH	COOK
		m	•	٠								

+C00K D	•	• 0006	•0020	•	.0018	• 0000	• 0000	• 0005	.0007	.0002	•0235	.0007	.0013	.0015	.0015	• 0033	.0042	.000	.0013	• 0000	• 0029	.0124	•	.0001	• 0006	• 100 •	.0010	• 0006	• 0000	• 0106	.0073	• 0008	• 0097	• 0082	.0026	.0372	.0001	EE00.	.000	.0026	.000	• 0000	.0011	.0022	*COOK D	
-	.2538	1.6557	.4188	3.3829	.1317	.0487	.1317	.1317	1.1525	.1210	2.6964	.7402	1.1204	.1755	.2400	.3995	.5994	• 00 • 0	1.3101	1.0049	.0062	.1883	.9675	1.8030	.803	1.0049	• 255	1.4778	.0040	.2400	2.9348	-	.7402	*399S	41E.	1.9989	.7145	.3147	.1755	1.0049	3.7107	• 0062	. 4 1 B B	442	*MAHAL	
*LEVER	.0010	-0065	.0016	.0133	.0005	• 0002	.0005	.0005	.0045	.0005	.0106	.0029	.0044	.0001	6000 *	.0016	.0024	0000.	.0052	.0040	.0000	.0007	.0038	.0071	.0071	.0040	.0010	.0058	.0000	6000 .	.0116	.0005	.0029	.0016	.0012	• 0079	.0028	.0012	.0007	.0040	.0146	• 0000	.0016	.0136	*LEVER	
*SDRESID	•	3417		•	.8889	0408	.0655	4690	.4092	8466	1.7911	4631	.5571	.7928	7710	1.0916	1.1588	.2479	.5411	060	.204	-2.3185	•	- 1544	.3194	595	6344	-3347	.0342	-2.0954	•9638	•5838	-1.6821		•••	-2.5252	27	-	5568	8023	1053	.1076	6186	.4911	- LLI	
+SRESID	•		847	•	89	0405	.0657	4697	.4099		783		ŝ	.7934	7716	1.0911	1.1580	.2463	.5418		~	-2.2988	•	.1547	.3199	596	•	.3353	.0342	-2.0815	• 9639	.5846	•	-1.7272	•008	-2.4988	1278	1.1319	5576	8029	1055	.1078	6194	.4918	E	
*RESID	•	433	02.84	•	107.9708	96	7.9708	-57.0292	49.6601			-56.2467			ъб	132.4057	o a	0	53	7.308	46.095	-279.0603	•	8.716	.716	308	160.	40.5980	•	2.6	116.3805	5	03.2	09.5	122.3747	02.2	-15.5011	F	-67.6875	-97,3088	-12.7127	13.0951	-75.1535	9.31	ESI	
₫. ₩	747.0914	69.	-	ഹ	743.0292	~	743.0292	3.029	۵h	718	779.58 <u>85</u>	757.2467	702.4078	720.6875	718.6564	714.5943	710.5321	730.8428	765.3710	761.3088	734.9049	000	BE #	283	694.2836	761.3088	747.0914	7.402	0.842	∞	781.6195		757.2467	•	vo	92.2	8.5	16.625	0.6	.308	7.7	734.9049	1.1	85.68	۵	1
PERF	•	728	854	0	851	734	151	686	813	682		101	770	817	625	847	851		831		681	466	•	713	733	689	670	808	3	õ	898	814		Ò.	3	390	693	854	653	664	~	748	676	•	PERF	,
0:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	0	
	•	*	•	•	*	*	•	•	*	*	*	•	*	*	•	•	•	*	•	*	•	•	•	*	*	•	•	•	+	•	*	•	•	•	*	•	*	*	•	•	*	•	•	* •	•••••	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	٠	•	•	•	*	•	•	•	•	•	•	•	•	0:	
CASE #	129	130		132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	25	140	150	151		153		155	156	157	158	159	160		162	163	164	165	166	167	168	169	170	171	172	CASE #	4 6

712.7175 42.2115 .3442 .4177 .0015 .1210 712.7175 -62.717 .0011 .0012 .1210 714.7175 -62.717 .0011 .0012 .0111 714.7175 -62.717 .0011 .0012 .0111 714.7175 -62.717 .0107 .0012 .0111 774.7175 -61.716 .0012 .0012 .0111 774.7175 -61.716 .0012 .0012 .0112 774.720 -71.725 -01205 .0102 .0112 770.4700 -01041 -01041 .0012 .0114 770.4700 -01041 -01041 .0012 .0114 770.4700 -01041 -01041 .0114 .0114 770.4700 -01041 -01041 .0114 .0114 770.4700 -01041 -01041 .0114 .0114 770.4700 -01041 -01041 .0114 .0114 770.4700 -01041 -010		673.9729	-51.9729	4316	4309	.0166	4.2165	.0020
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	765	2.718	42.281	348	.347	000	.121.	000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	790	6.625	3.374	604	ø	001	314	•000•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	32.873	07.126	882	£	000	• 000	.0015
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ຄ	5.371	8.371	• 0 6 9 0 •	° '	000	016.	0000"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	048	1 - A C H	060.00C					1500.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	r Or	7.712	10.287	.085	.08	410	.710	1000.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	704	4.749	20.749	.170	.170	000	.076	1000.
702.2525 5891 5883 -0079 1.9989 706.4700 -10.4700 -0.0642 -0033 -6.9989 706.4700 -10.4700 -0.0642 -0033 -6.9989 705.4700 -7.4700 -0.0642 -0.0633 -6.9989 733.5506 -2.208 2208 -0033 -1755 733.5307 20.3379 -1702 -0017 -11555 733.3309 20.4601 -1.705 -1702 -0019 -4944 733.3309 213.9048 -1.705 -1702 -0019 -4944 733.300 213.9048 -1.7614 -1.7684 -0003 -0061 734.9049 -1.7614 -1.7684 -0003 -0061 -759 734.9049 -1.7614 -1.7684 -0003 -0161 -779 734.9044 -1.7614 -1.7684 -0003 -0161 -779 734.9044 -1.7614 -1.7684 -0003 -0161 -7402 734.9044 -1.7614 -1.7684 -1.7684 -1.0103 -0181 706.4	729	0.842	•	.015	.015	000	400	• 0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	621	2,252	-	.589	•58	001	.998	.0021
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	696	06.470	ċ	-086	•08	500	628	.0000
783.6506 2208 2208 2204 0125 3.1834 743.0297 198.3175 -15229 0007 11375 743.0297 20.6601 -1702 0019 .4944 71.2.6637 119.4356 -1702 0019 .4944 71.2.6637 -6171 -5053 -0105 11352 740.9992 -90.992 -1702 -0019 .4944 71.2.6637 -6171 -0019 .0062 1.316 740.9992 -91.23.9049 -1.7688 -0003 .0662 740.9912 -110.407 -5011 -5081 .0003 .0662 740.9912 110.4077 -5179 .0013 .0662 .1317 740.9912 110.4077 -6772 .0114 .2400 .2400 740.9912 16.3146 .0742 .9172 .0013 .0851 .1214 740.9912 110.4077 .0114 .0003 .0672 1.2759 740.9912 10.5313 .0124 .0114 .2400 .12101 7116.5651 10.5	699	06.470	÷	•069	• 06	003	839	• 0000
720.6875 148.3175 1.2217 1.2229 0007 1.1755 743.0292 -19.0292 -1702 -1702 -1702 -1702 -1772 757.3399 20.6613 -9762 -9761 1567 -1702 -1702 757.34.992 20.6613 -9762 -9763 -0009 74402 743.9949 -10.726 -1702 -1702 -01702 -0192 740.9972 -213.9049 -1.7614 -1.76243 -0002 -17402 740.9763 -110.4407 -9172 -9172 -0013 -0052 1.2759 700.4700 41.67943 -0172 -0172 -0172 -01673 -01623 700.4700 41.677 -0172 -017412 -0033 -0052 1.2759 700.4078 15.3436 10.0789 1.0789 1.0789 -0033 -0052 700.4078 15.3436 10.789 10.789 -0134	757	3.650	26.650	٠	.220	012		•000•
743.0292 -19.0292 -1567 -1564 0005 11317 763.3399 20.4601 1702 0005 1762 0005 1762 757.2867 -61.2867 -5671 -5671 -5671 0003 00651 740.9982 -213.9049 -17614 -1.7614 -1.7688 0003 00651 754.9709 61.6290 -17614 -1.7688 0003 00651 756.3710 61.6290 -17614 -5681 -0003 00652 766.4700 -6772 -9177 -9172 -9172 -9134 -0050 700.4709 -110.4807 -3513 -9752 -9732 -9172 -9033 700.4709 -110.4807 -5789 -10733 -0033 -8337 700.4709 110.4807 -10793 -00164 -11204 -12759 700.4707 -10793 -10793 -0033 -00457 -14415 711.0943 102.472 -10793 -0134 -12267 -107	÷	0.687	48.312	₽.	.222	000	.1755	.0035
763.3399 20.4601 .1705 .1702 .0045 1.1525 712.5532 10.4436 .9762 .9761 .0019 .4944 757.2667 -6671 .9763 .0019 .4944 757.267 -61.2467 6671 .0053 .0052 .4044 757.267 -90.992 6671 .0053 .0052 .4054 740.9982 -1.7614 -1.7614 -1.7688 .0003 .0062 700.3768 42.6232 .9175 .9172 .0053 1.3101 700.4982 5.0018 .9175 .9172 .0053 1.2759 710.40982 10.4470 6772 .9172 .0014 2.4472 710.40564 10.749 .1344 .0003 .2467 2.4472 710.40564 10.779 .1347 .10793 .0015 .4944 714.5943 11.0789 .10793 .0013 .2467 .4447 714.5943 11.0779 .10793 .0013 .2467 .4445 714.5943 11.0783 .0013 .0013<	724	3.029	9.029		.156	000	.1317	.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	784	3.339	0.460	.1705	-	00	.152	.0001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	831	2.563	19.436	.9762	σ	001	494	• 0028
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	696	7.246	61.246	.505	.504	002	740	•000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	660	866.0	804.998	.667	.666	.0003	085	.0010
765.3710 61.6290 .5081 .5081 .0052 1.3101 700.3768 42.6232 .3519 .3513 .0050 1.2759 660.1593 110.4407 .9175 .0104 2.6472 700.3768 5.0018 .0411 .0050 1.2759 705.4700 -81.4700 6720 6712 .0013 2.6472 705.4700 -81.4700 6720 6112 .0033 2.6472 718.6564 15.3436 .13467 0314 .00657 1.2206 718.6564 15.3456 13467 1346 .00033 .0851 0851 718.6564 15.3467 130.6543 1.07793 .0016 1.1204 712.5632 108.4368 13710 0016 1.1204 712.5632 108.4368 1274 12713 0019 4944 712.5632 153.6522 1274 1271 0019 4944 712.5632 153.652 1274 1271 0019 9487 712.5632 153.652 1274	521	4.904	213.904	1.761	1.768	• 0000	000	006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	5.371	1.6	508	.5081	005	.310	100
686.1593 110.8407 .9175 .9172 .0104 2.6472 706.4700 -81.4700 6720 6712 .0033 .8397 7140.5982 5.0018 .0412 .0411 .0033 .8397 7140.5982 5.0018 .011346 .1344 .0033 .8397 702.4078 102.5922 .8467 .8467 .8466 .0034 1.1204 714.5943 10.0793 .0104 1.1204 .1204 .9955 759.2778 -42.2778 -5709 .6701 .0016 .3995 712.5632 101.4767 .8467 .3491 .0015 .4944 712.5632 153.6532 .153.6532 .1574 .3019 .00219 .4944 765.3710 36.6290 .3024 .3019 .0012 .4944 712.5532 -153.5632 -152657 -122673 .0134 .86475 765.3710 36.6290 .3024 .3019 .00219 .4944 712.5532 -153.5632 -122657 -122673 .0116 .2.9348		0.376	2 • 6	351	.3513	005	.275	.0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	6.159	10.8	917	.9172	010	.647	.0061
740.9982 5.0018 .0412 .0411 .0003 .00651 719.6564 16.3436 .1346 .1344 .0003 .2400 719.5543 15.3436 .1346 .1344 .0003 .2400 714.5943 110.6543 1.0789 .6701 .0057 1.1204 714.5943 81.4057 .6709 .6701 .0067 1.1204 759.2778 -42.2778 -3487 .3481 .0034 1.1204 759.2778 -42.2778 -3487 .3481 .0016 .4944 712.5532 108.4368 .6838 .6831 .0016 .4944 712.5532 108.4368 .3024 .3019 .0016 .4944 765.3710 35.657 -1.2657 .12673 .0049 .4944 712.5532 -153.6524 .3019 .0016 2.9338 781.6195 1574 .1271 .0016 2.9348 712.5525 -615.5625 -1.2657 .12673 .0133 .1317 781.6195 1574 -3.3199 .0016 .0	6 25	6.470	81.	.672	٠	003	839	.0016
718.6564 16.3436 .1346 .1344 .0009 .2400 698.3457 130.6543 1.0789 1.0793 .00057 1.4415 702.4078 102.5922 .8467 .8467 .8467 .8467 714.5943 1012.5922 .8467 .8467 .8467 .3995 714.5943 1012.5922 .8467 .6701 .0016 .3995 712.5532 108.4368 .6838 .6731 .0019 .4944 712.5632 -153.6632 .3224 .3219 .0019 .4944 765.3710 36.6290 .3224 .3219 .0019 .4944 712.5632 -153.6632 -1.22677 .1271 .0019 .4944 712.5632 -153.6632 -1274 .1271 .0019 .4944 712.5632 -153.6632 -1274 .1271 .0019 .4944 712.5632 -153.6632 -1274 .1271 .0019 .13101 712.5525 -611.2252 -15.7467 -1271 .0116 2.9348 702.4078 -33.467 <td>46</td> <td>966.0</td> <td>ໍ່</td> <td>.0412</td> <td>.0411</td> <td>8</td> <td>085</td> <td>• • • • •</td>	46	966.0	ໍ່	.0412	.0411	8	085	• • • • •
698.3457 130.6543 1.0789 1.0793 .0057 1.4415 702.4078 102.5922 .8467 .8467 .3995 .3995 714.5943 1012.5922 .8467 .8467 .3995 .3995 759.2778 -42.2778 -5709 .6701 .0016 .3995 759.2778 -42.2778 3487 .3919 .0019 .4944 712.5532 108.4368 .8938 .6731 .0022 .0487 765.3710 36.6290 .3024 .3019 .0019 .4944 712.5532 -153.632 .1274 .1271 .0019 .4944 712.5632 -153.6457 -1.2667 .0019 .4944 781.6195 15.3805 .1274 .1271 .0019 .4944 712.5632 -153.6457 -1274 .1271 .0116 2.9348 702.4078 -393.4077 -37.399 .0019 .0989 .13101 702.4078 -37.457 -1274 .1271 .0116 2.9348 702.4078 -33.467 -3.3399	735	P.656	16.3	.1346	•13	8	2	• • • • •
702.4078 102.5922 .8467 .8467 .8462 .0004 1.1204 714.5943 81.4057 .6709 .6701 .0016 .3995 759.2778 -42.2778 -6709 .6701 .0016 .3995 712.5532 108.4368 .6703 .6731 .0019 .4944 753.3710 36.290 .68338 .6831 .0019 .4944 755.3710 36.290 .3024 .3019 .0019 .4944 765.3710 36.290 .3024 .3119 .0019 .4944 765.3710 36.290 .3224 .3131 .0019 .4944 712.5525 -153.5632 -1.2657 -12.2673 .0116 2.9348 702.4078 -393.407 .32.467 -3.3099 .0019 .13101 716.5525 -61.2525 -10.792 -10.792 .10796 .0116 2.9348 716.5525 -61.2627 .53399 .0012 .0133 3.364 .13131 692.2525 -131.0222 -10.792 -10.796 .00193 .13131 <td>829</td> <td>8,345</td> <td>30.6</td> <td>٠</td> <td>.079</td> <td>005</td> <td>4</td> <td>.0056</td>	829	8,345	30.6	٠	.079	005	4	.0056
7 14.5943 81.4057 .6709 .6701 .0016 .3995 7 759.2778 -42.2778 -3487 3487 3481 .0034 .8675 1 712.5532 108.4368 .8938 .6731 .0016 .3995 2 738.9671 93.0129 .6633 .6633 .6633 .9934 .9675 2 738.9671 36.6290 .3024 .3019 .0017 .0494 7 738.9671 36.6290 .3024 .3019 .0022 .0487 7 738.9671 36.6290 .3024 .3019 .0022 .4944 7 738.9632 -1274 -1271 .0116 2.9348 7 781.6195 15.3805 -1274 -1271 .0116 2.9348 7 702.4078 -3.2467 -3.333999 .0079 1.9989 .1317 9 702.4078 -39.3407 -5632 .5635 .0079 .1016 2.9348 702.4078 -131.0292 -10792 -10796 .0019 .1317 .1217 16.02655 261.2525 -13.0792 .0079 .0133 3.	805	2.407	02.5	.8467	846	00	.12	.0030
7 759.2778 -42.2778 3487 3481 .0034 .8675 7 712.5532 108.4368 .8938 .6631 .0019 .4944 2 738.9671 83.0329 .6638 .6631 .0012 .4944 2 765.3710 36.6290 .3024 .3019 .0019 .4944 2 765.3710 36.6290 .3024 .3019 .0019 .4944 7 781.6195 1533.6532 -1.2657 -1.2657 -1.271 .0116 2.9348 7 781.6195 153.6525 5064 5056 .0019 .4944 7 781.6195 153.7632 -11.2657 -11.2271 .0116 2.9348 7 702.4078 -393.4078 -3.2467 -3.33099 .0079 1.9989 7 702.4078 -131.0292 -11.0792 -10.0796 .0013 3.3364 7 702.4078 -393.8657 .0079 .0013 3.3364 .13131 1 16.02623 28.777 .0103 .0133 3.3364 </td <td>796</td> <td>4.594</td> <td>1.4</td> <td>670</td> <td>670</td> <td>.0016</td> <td>66</td> <td>•0012</td>	796	4.594	1.4	670	670	.0016	66	•0012
1 712.5632 108.4368 .8938 .8934 .0019 .4944 2 738.9671 63.0329 .6831 .0002 .0487 2 765.3710 35.6290 .3024 .3019 .0019 .4944 7 781.6195 153.6532 -12657 -1.2657 .12110 .4944 7 781.5195 -153.5632 -12657 -1.2657 .12110 .4944 7 781.5195 -153.5632 -12657 -1.2657 .1211 .0116 2.9348 9 702.4078 -392.4078 -3.2467 -3.2099 .0079 1.99999 9 702.4078 -3.92467 -3.31099 .0079 1.1204 1 692.2525 -61.2329 .5632 .5624 .0133 3.364 1 686.1503 686.1709 .0794 .1.10795 .10796 .0133 3.3164 1 16.6523 28.77 .0133 3.364 .1311 .01204 1 680.0661 67.9339 .2377 .23177 .0133 3.3164	717	9.277	42.2	.348	.348	.0034	8	•000•
2 738.9671 83.0329 .6838 .6831 .0002 .0487 2 765.3710 36.6290 .3024 .3019 .0052 1.3101 7 781.6195 15.3805 -1.2657 -1.2657 .1271 .0019 .4944 7 781.6195 15.3805 -1.2657 -1.2657 .1271 .0019 .4944 7 781.6195 15.3805 -1.2657 -1.2657 .1271 .0019 .4944 7 781.6195 15.3805 -1.2657 -1.2673 .0016 2.9348 9 702.4078 -393.4078 -3.72467 -3.3099 .0016 2.9348 9 702.4078 -393.4078 -3.23099 .0013 1.1204 .11204 1 692.2525 -131.0292 -10792 -10.796 .0133 3.3864 1 680.0661 67.9339 .5632 .5524 .0133 3.3131 1 692.2525 28.7475 .2377 .2372 .0012 .3131 1 696.1593 63.84077 .5285	821	2.563	08.436	893	106	700	464	.0024
2 765.3710 36.6290 .3024 .3019 .0052 1.3101 9 712.5632 -153.5632 -1.2657 -1.2657 .019 .4944 7 781.6195 15.3805 -1.2657 -1.2657 .0116 2.9348 1 692.2525 -61.2525 -5664 5056 .0019 1.9989 9 702.4078 -393.4078 -3.2467 -3.3099 .0079 1.9989 2 702.4078 -393.4078 -3.2652 -1.0796 .0013 3.1317 2 702.4078 -310.022 -10.792 -10.796 .0133 3.3864 1 692.2525 213.0022 -10.792 -10.796 .0133 3.3864 1 692.2525 28.77 .0133 3.3864 .0133 3.3864 1 692.2525 28.77 .0012 .0133 3.3131 1 692.2525 28.77 .0104 2.6472 1 692.2525 33.8407 .5285 .0079 1.9989 1 692.2525 28.77	2	8.967	3.032	683	683	000	048	.0010
9 712.5632 -153.5632 -1.2657 -1.2673 .0019 .4944 7 781.6195 15.3805 .1274 .1271 .0116 2.9348 1 692.2525 -61.2525 -50645064 1.1204 1.9989 9 702.4078 -393.4078 -3.2467 -3.3099 .0079 1.9989 1 692.2525 -131.0292 -1.0792 -1.0796 .0013 3.3864 7 76.0061 67.9339 .5632 .5632 .5624 .0133 3.3864 1 692.2525 28.77 .2377 .2372 .0079 1.9989 0 686.1593 63.8407 .5285 .5277 .0104 2.6472 700.3768 39.6232 .3271 .3265 .0079 1.2759 700.3768 39.6232 .3271 .3265 .0050 1.2759	0	5.371	36.629	302	301	002	.310	000
7 781.6195 15.3805 .1274 .1271 .0116 2.9348 .000 1 692.2525 -61.2525 5064 5056 .0079 1.9989 .001 9 702.4078 -393.4078 -3.2467 -3.3099 .0015 1.9989 .001 2 743.0292 -131.0292 -1.0792 -1.0796 .0005 .1317 .002 3 680.0661 67.9339 .5632 .5624 .0133 3.3864 .002 1 680.0553 28.7475 .2377 .5372 .0133 3.3864 .002 1 692.2555 28.7475 .2377 .5372 .0133 3.3864 .002 0 686.1593 63.8407 .5285 .2371 .3265 .0079 1.9989 .000 0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .000 1 686.1593 63.8407 .3271 .3265 .0050 1.2759 .000 1 686.1593 63.6472 .3271 .3265	ŵ.	2.563	153.563	1.265	1.26	001	.494	.0047
1 692.2525 -61.252550645056 .0079 1.9989 .001 2 702.4078 -393.4078 -3.2467 -3.3099 .0044 1.1204 .044 2 743.0292 -131.7292 -1.0796 .0005 .1317 .002 3 680.0661 67.9339 .5632 .5624 .0133 3.3864 .002 1 692.2525 28.7475 .5285 .5277 .0128 .3131 .002 1 692.2525 28.777 .0104 2.6472 .002 0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .000 6 86.1593 63.8407 .5285 .3265 .0050 1.2759 .000 1 6972 .575 .0104 2.6472 .0050 1 696.1593 63.8407 .5285 .0050 1.2759 .000 1 6972 .2759 .0050 1.2759 .000 1 858510 *508510 *508510 *LEVER *MAHAL *CO0K		81.619	5.380	24	12	011	466.	000
9 702.4078 -393.4078 -3.2467 -3.3099 .0044 1.1204 .044 2 743.0292 -131.0292 -1.0792 -1.0796 .0005 .1317 .002 3 680.0661 67.9339 .5632 .5632 .5624 .0133 3.3864 .002 0 716.5253 87.7475 .5632 .5377 .0012 .3131 .002 1 692.52555 28.7475 .2377 .2377 .0079 1.9989 .000 1 696.1593 63.8407 .5285 .2377 .0104 2.6472 .002 0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .000 1 4PRED *PRED *PRESID *SORSID *SORSID *LEVER *MAHAL *CODK	m	2.252	61.252	• 506	• 505	001	.998	.0015
2 743.0292 -131.0292 -1.0792 -1.0796 .0005 .1317 .002 3 680.0661 67.9339 .5632 .5624 .0133 3.3864 .002 0 716.5253 67.9339 .5532 .5524 .0133 3.3864 .002 1 692.2525 28.7475 .2377 .2377 .0079 1.9999 .000 1 696.1593 63.8407 .5285 .2377 .2372 .0079 1.2799 .000 0 700.3768 .3271 .32671 .32677 .0104 2.6472 .000 1 686.1593 63.8407 .5285 .00079 1.2759 .000 1 *PRED *PRED *PRESID *SORESID *SORESID *LEVER *MAHAL *CO0K	309	2.407	393.407	3.246	3.309	00	.12	5
3 680.0661 67.9339 .5632 .5624 .0133 3.3864 .002 0 716.5253 012 .3131 . 1 692.2525 28.7475 .2377 .2372 .0079 1.9989 .000 0 686.1593 63.8407 .5285 .5277 .0104 2.6472 .002 0 686.1593 63.8407 .5285 .5277 .0104 2.6472 .002 0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .0008 6 *PRED *PRED *PRESID *SRESID *SORESID *LEVER *MAHAL *COUK	-	3.029	131.029	1.079	1.079	000	5	002
0 716.6253	748	0.066	7.933	563	562	013	• 3 3	.0028
1 692.2525 28.7475 .2377 .2372 .0079 1.9989 .000 0 686.1593 63.8407 .5285 .5277 .0104 2.6472 .002 0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .000 F *PRED *PESID *SRESID *SDRESID *LEVER *MAHAL *CODK	•	16.525	•	•	•	001	313	•
0 686.1593 63.8407 .5285 .5277 .0104 2.6472 .002 0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .000 F *PRED *PESID *SRESID *SDRESID *LEVER *MAHAL *CODK	721	92.252	8.747	237	237	001	998.	E000.
0 700.3768 39.6232 .3271 .3265 .0050 1.2759 .000 F *PRED *RESID *SRESID *SDRESID *LEVER *MAHAL *COOK	Ś	86.159	3.840	528	ŝ	010	.647	• 0020
F *PRED *PESID *SRESID *SDRESID *LEVER *MAHAL *COOK	740	00.376	9.623	327	•	005	.275	0
	PERF	#PRE	*PESI	SRES I	SDRESI	LEVE	MAHA	COOK

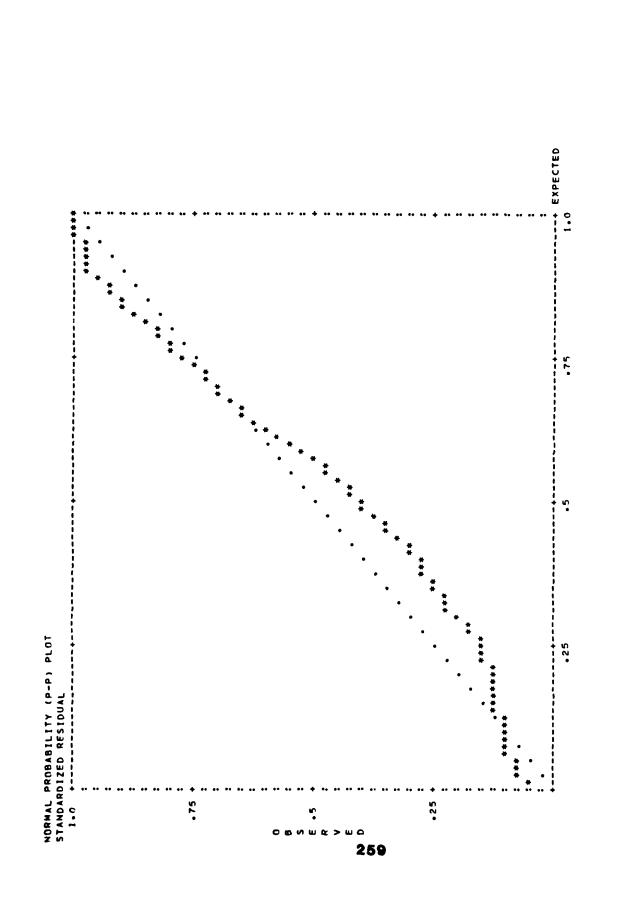
		-3.0	0.0	3.0								
	٠			••	ā.	*PRED	5	ŝ	SDRESI	*LEVER	Ξ.	
101 101 <th>217</th> <th>•</th> <th>•</th> <th>•</th> <th>0</th> <th>;</th> <th>•</th> <th>•</th> <th></th> <th>6</th> <th>.840</th> <th></th>	217	•	•	•	0	;	•	•		6	.840	
101 101 <th>-</th> <th>•</th> <th>*</th> <th>•</th> <th>÷.</th> <th>4 • M</th> <th>-504</th> <th>Ē</th> <th>466</th> <th>S</th> <th>.041</th> <th>000</th>	-	•	*	•	÷.	4 • M	-504	Ē	466	S	.041	000
220 100 100 100 100 1000	-	•	*	•	÷	5.0	.060	• 00	.008	.0001	188	• 0000
221	~	•	*	•	834	4.283	39.716	•	.155	00	.803	.0074
222 111 779.5005 314.115 2.0000 2.9595 0.0005 2.0056 224 1 779 753.3799 42.64001 -2315 0.0005 2.0056 1.1175 224 1 741 739.4500 10.3193 0.0005 1.0175 0.0015 1.0175 224 1 741 739.4500 10.3193 0.0015 0.0015 1.0175 229 1 741 79.47019 44.6193 0.0019 0.0015 1.0177 229 1 741 79.47019 44.6193 0.0019 0.0015 1.0177 229 1 751.4101 10.4113 0.0011 1.0177 0.0017 1.0177 219 1 175.4101 10.4113 0.0011 1.0177 1.0177 219 1 1 1 0.0111 0.0111 1.0177 219 1 1 1 1 1 1.0177 1.0177 219	2	•	•	•	595	9.743	94. 43	1.6	1.621	.0157	•980	.0262
223	~	•	•	•	118	9.588	1-411	~	259	.0106	• 696	0
22.4 000 743.1393 42.4001 3753 0005 1353 0005 1353 22.4 7 7 7 741.0001 10.3993 0005 1.1353 1353 22.4 7 7 7 70.1101 24.4693 0005 1.1317 1573 22.4 7 7 70.1111 24.4693 0005 1.1417 1573 22.1 7 70.1111 24.4693 0009 1156 117 22.1 70.1111 24.4693 0011 117 117 117 22.1 70.1111 24.4693 1111 1111 1117 1117 22.1 70.1111 70.1111 10.44131 1112 1117 1117 22.1 70.1111 70.1111 10.44131 1112 1117 1117 22.1 70.1111 70.1111 10.44131 111111 11117 111111	~	•	•	•	761	•	6.09	C)	214	• 0000	.0062	1000.
222 372 372 372 3763 -0125 -0125 -1317 222 223 264 10 34.032 26433 -0125 -1121 223 264 10 34.032 26433 -0125 -1124 231 23 24 23.0503 106.176 24.0469 -0025 -1275 231	2	•	*.	•	806	Б	2.560	.3521	351	.0045	.152	000
228	0	•	*	•	697	0.5	46.029	•	.378	-0005	.1317	000
227 771 774 7	N	•	*	•	794	3.6	0.349	.0858	085	.0125	.183	.000
270 729 700.370 0.4.695 .0064 1.2779 271 700.370 10.4.753 .0081 1.2779 .0081 1.2779 271 700.370 10.4.753 .0081 1.2779 .0081 1.2779 271 700.370 100.3477 100.4413 100.4413 100.4413 11.2429 271 700 757.2779 100.4413 11.3441 11.2429 .0081 1.24413 273 700 757.240 100.4413 100.4413 11.3441 100.4413 100.4413 273 700 757.240 100.4413 100.44143 11.2412 .0081 12.4412 273 700 753.4401 100.44143 100.44143 100.44143 100.44143 100.44143 273 774 724.0401 100.44143 100.44143 100.44143 100.44143 273 774 774 774 774 774 774 774 274 774 774 774 774 774 774 774 274 774 774 774 774 774 774 774 274 774 774 774 774 774 <	2	•	*	•	111	9.6	2.032	.2638	263	.0002	.0487	.000
229	ŝ	•	*	•	741	÷C.	4.695	36	368	.0064	.617	.0007
230 231 -0091 -0020 -0128 231 - - 74 757.2477 -102.7573 -0091 -1440 233 - - 560 696.3477 -102.7573 -1440 -0020 -1518 233 - - 560 696.3477 -102.7573 -1401 -12420 -0021 -1417 233 - - 560 698.3477 -102.773 -12412 -0031 -0021 -1417 234 - - 500 775.2223 100.4771 -10041 -0003 -11172 234 - - 500 774.700 712.501 -01047 -0003 -11172 234 - - 500 744.613 -01041 -0003 -11172 234 - - 500 747.600 747.600 -0003 -11172 234 - - - 700 724.7406 -11.2412 -0003 -11172 234 - - - 713 714.7406 -11.2412 -11417 -0003 -11417 234 - - - 712 714.7406 -11041 -000	N	•	*.	•	Ň	00.37	8.623	23	235	.0050	1.2759	E000 *
231	F)	•	*	•	ŵ	53.18	0.815	80	•0890	.0020	515	• 0000
273 573 548 698.3457 -1.5245 1.3345 1.3345 1.3415 1.4415 234 7 759.2573 106.4757 .8003 .0057 1.4415 235 . 775.2573 106.4757 .8003 .0057 1.4415 235 . 775.2573 106.4757 .8003 .0057 1.4115 236 . . 775.2573 106.4757 .8003 .0057 .1417 237 . . 807 .9156 .0057 .16172 .2498 239 . . 807 .9156 .0053 .16172 239 8103 .0067 .1417 239 . . .0053 .0053 .0075 .1417 239 . . .0064 .16172 .0064 .16172 231 . . .0063 .0063 .0113 .1417 231 . . .0063 .0063 .0113 .1417 231 . . .0063 .0113 .0113 .0112 231 . . .0063 .0114 .0003 .0166 </th <th>m</th> <th>•</th> <th>*</th> <th>•</th> <th>0</th> <th>57.2</th> <th>02.753</th> <th>ø</th> <th>.8469</th> <th>.0029</th> <th>740</th> <th>002</th>	m	•	*	•	0	57.2	02.753	ø	.8469	.0029	740	002
233 133 1333 1333 1337 .0037 1.4115 234	m	•	•	•	•	5.86	5	-	-	.0057	- 4 4 1	007
233	m	•	*	•	•0	5.96	67.654	•	•	.0057	. 4 4 1	600
233 ••• 700 759.2778 -59.2778 0994 -1.0048 0013 0662 234 734.0049 -132.0049 -1.0044 -0.0067 .0013 0012 239 • • 773 96.3184 -116.044 -1.0046 0013 0012 231 • 773 773 795.0861 -4.665 0034 0012 231 • 773 773 714.715 -116.77 0003 117 231 • • 773 773 716.71 1094 0003 117 231 • • 733 734.7496 -7.021 1004 0003 1177 231 • • 773 773 773 773 7714 1420 1430 1417 1417 1417 1417 1417 1417 1417 1417 1411 1411 1411 1411 1411 1411 1411 1411 1411 1411 1411 141		•	•	•	882		00	60	.880	.0089	- 249	.0050
737 734.000 -132.000 -1.0044 -1.0044 -0004 1.0172 737 73 735.6817 -116.172 .0665 .0665 .0004 1.0172 739 6.6 733.022 80.47164 .0163 .0136 .01472 731 735.6817 -11.6617 .0065 .0003 .0136 .01472 731 731.025 80.4715 .10417 .0003 .0136 .01472 731 731.025 90.41564 .51.5504 .0152 .0136 .0152 .0136 731 790 734.9654 57.3136 .0481 .0763 .0003 .0766 731 790 734.9654 51.3156 .4061 .0003 .0766 734 790 734.9654 57.3135 .7023 .0136 .0766 734 790 734.9654 5.42043 .7023 .0169 .0766 734 790 7905 .7023 .01481 .0003 .0766 734 7905 .7023 .7023 .7023 <	10	• •	•	•	700		0 5		ARA	A 5 0 0 4	•	0000
771 771 772 590,3140 99,650 -0067 -0147 -0064 -0065 -0147 -0064 -0147 -0064 -0147 -0064 -0147 -0064 -0147 -0064 -0147 <t< th=""><th>) P*</th><th></th><th>-</th><th>• •</th><th>602</th><th>4</th><th>132-904</th><th>-</th><th>1.004</th><th>0000</th><th>- 0062</th><th>0024</th></t<>) P*		-	• •	602	4	132-904	-	1.004	0000	- 0062	0024
739 730 743.0222 80.9708 .6663 <t< th=""><th></th><th>• •</th><th>•</th><th>•</th><th>0</th><th></th><th>98.685</th><th></th><th>. •</th><th>.0064</th><th>•</th><th>.0035</th></t<>		• •	•	•	0		98.685		. •	.0064	•	.0035
240 -		•	•	•	0		0.070) K		1000	•	0100
241 * 798 753.1144 * 753.1144 * 754.7496 -316.7496	1 1	•	• •	•	in			\sim	•	0000	• •	1000
241 4 724,746 714,746 714,746 724,746 714,564 59,336 4882 4003 7003 7003 7003 7016 243 4 6 714,746 51,0379 4196 0003 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7016 7403 7416	1 4	•	•	•	- 0				•			
243 242 4484 4441 4415 <		•	•	•	Νċ	724.7406	318.740	0	9999 ° 6			
244 790 738.9671 51.0379 700 700 700 700 700 700 700 700 700 700 700 700 700	1 4	•			> >	ι E	20 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1		999		040	000
245 ** 810 724,790 55,8006 .0481 .0003 2.4210 245 * 653 698,3957 -17,3457 1432 .00057 1.4415 247 * 653 698,3957 -34122 3406 .00057 1.4415 247 * 653 699,3857 -41.2836 0011 .00057 1.4415 249 * 653 694,2836 -41.2836 3412 3406 .00057 1.4415 250 * 653 694,2836 -41.2836 3406 .0011 1.8030 251 * 715 763,3399 -48.3399 3483 35406 .0011 1.1555 251 * 715 714,5943 30.4057 3483 35605 .0011 1.8030 251 * 714 546.5101 .16195 -3.4838 -3.5601 .0016 .0075 1.44278 251 * 719 146.5611 .11672 -11.8161 .0125 .0423 .0756 .0075 .0075	•	• •		• •	. 0	9 8 E	91032	0 1 4		0005		000
246 *** 694 698.1904 5.8006 .0481 .0007 .1007 .1007 .1003 .0040 .0040 .0040 .0041 0481 .0040 .0040 0481 1415 1415 1415 1523 1431 0481 1523 1431 0481 1523 1515 1523 1915 1903 1523 11525 1523 1421 1523 1161 1523 1161 1210 1210 1421 1210 1210 0423 1421 1421 1421 1421 1210 1210 042	•			•		7.40	5.080		- 104 -			
247 * 681 699.3457 -17.3457 -1432 -1432 -1432 -1432 -14415 248 * * 681 699.3457 -17.3457 -1432 -1432 -0001 14415 248 * * 715 763.3399 -3412 -3406 0001 16030 250 * 715 763.3399 -3412 -3406 0001 11525 251 * 714.5943 30.4057 -3483 -35635 0016 11525 252 * 714.5943 30.4057 -34838 -3.5635 0116 2.9348 253 * 714.5943 30.4057 -3.4838 -3.5635 0116 2.9348 253 * 714.5611 11.201 -11826 -3.763 0171 1.8278 254 * 719 704.4387 14.5611 -118162 -118265 -0423 255 * * 7164 -3282 -3.2635 -0171 1.8276 -0071 1.8276 254 * <th>•</th> <th>•</th> <th>• •</th> <th>• •</th> <th>. 0</th> <th>88</th> <th>5.800</th> <th>) (</th> <th></th> <th>1000</th> <th>. 4 2 1</th> <th>0000</th>	•	•	• •	• •	. 0	88	5.800) (1000	. 4 2 1	0000
247 *	•		•	•	00	0.0	17.345	1432	541-	0057		000
249 *	- 4	•		•		44 UE	298 842	 	2.485	0000	000	0210.
249 * 715 763.3399 -46.3399 3990 3983 0045 1.1525 251 * 745 714.5943 30.4057 .2506 .2501 0016 .1995 251 * 745 714.5943 30.4057 .2506 .2501 .0016 .1995 251 * 745 714.5943 30.4057 .2506 .2501 .0016 .1995 252 * 7 694.2836 39.7164 .3276 .0071 1.8030 253 * 719 704.387 14.5611 .1201 .1199 .0016 .12033 254 * 719 704.389 14.5611 .1201 .1199 .0075 .14278 255 * * 506 726.7807 -220.7807 -1.8182 .12199 .0713 .12199 256 * * 506 726.7807 -220.7807 -1.18182 .1199 .0723 .0423 256 * * * 71072 -1.161672 -1.161672 .121	•	•	*	•	ŝ	94.2	41.283		040-	.0071	.803	.0006
250 745 714.5943 30.4057 2506 2501 .0016 3995 251 361 781.6195 -420.6195 -3.5635 .0116 2.9348 252 361 781.6195 -420.6195 -3.5635 .0116 2.9348 252 734 694.2836 39.7164	•	•	*	•	_	63.	46.339	• m • •	.398	.0045	.152	.0007
251 * 361 781.6195 -420.6195 -3.4838 -3.5635 .0116 2.9348 252 .* .* 734 694.2836 39.7164 .3282 .3276 .0071 1.4030 253 .* .* 734 694.2836 39.7164 .3282 .3276 .0071 1.4030 253 .* .* 734 694.2836 39.7164 .3276 .0071 1.4030 253 .* . 734 694.2836 39.7164 .3276 .0071 1.4030 254 . . 73457 . .1201 .1201 .1199 .0035 .9750 255 220.7807 .220.7807 .220.7185 .141.7185 .11672 .11681 .0005 .1210 255 8365 .0072 .0423 .12510 256 141.7185 .11672 .11672 .11681 .0005 .0423 259	5	•	•	•		14.	0.405	N	250	.0016	• 3995	.0002
252 .* 734 594,2836 39.7164 .3282 .3276 .0071 1.8030 .0003 253 . . 0 698.3457 0056 1.4278 . .0076 1.4278 . .0056 1.4278 . .0056 1.4278 . .0056 1.4278 . .0056 1.4278 .	-	*	•	•	ø	81.	420.619	3.483	3.563	.0116	\$ E6*	.0954
253 . 0 698.3457 . . .0056 1.4278 . 254 . 719 704.4389 14.5611 .11201 .1199 .0038 .9750 .0003 255 . . . 506 726.7807 -220.7807 -1.8182 .1199 .0038 .9750 .003 255 . . . 581 722.7185 -141.7185 -11.6172 -11.681 .0002 .0203 .1210 .003 255 . . . 781 722.7185 -141.7185 -11.672 -11.681 .0003 .1210 .003 257 . . . 781 722.7185 -141.7185 -11.672 -11.681 .0003 .1210 .003 257 . . . 773.4952 25.5193 .4547 .4540 .0062 .0423 .0002 259 7145 .0025 .25519 .2105 .0026 .0423 .0026 .0423 .002	10	•	*.	•	m.	94.	9.716	328	327	.0071	803	• 0006
254 * 719 704.4389 14.5611 .1201 .1199 .0038 .9750 .000 255 * * 506 726.7807 -220.7807 -1.8182 -1.8265 .0022 .0423 .006 256 * 506 726.7807 -220.7807 -1.8182 -1.8265 .0002 .0423 .003 256 * . 581 722.7185 -141.7185 -1.1672 -1.1681 .0002 .0423 .003 257 * . 810 709.5011 101.4989 .81370 .8365 .0028 .7145 .002 259 . . 782 773.4952 25.5048 .2109 .2105 .0033 .8337 .000 259 . . 773.4952 25.5048 .2109 .2105 .0033 .8337 .000 250 2109 .2105 .0163 .0423 .0016 250 2109 .0022 .0416	10	•	•	•	0	98.	•	•	•	.0056	.427	•
255 * • • 506 726.7807 -220.7807 -1.8182 -1.8265 • 002 •0423 •062 256 * * • 581 722.7185 -141.7185 -1.1672 -1.1681 •0005 •1210 •003 257 * * • 810 709.5011 101.4989 •8365 •0028 •1145 •002 258 * • 810 709.5011 101.4989 •8365 •0028 •7145 •002 259 * • 810 709.5017 55.2193 •4547 •4540 •002 •0423 •002 259 * • • 732 706.4700 30.5300 •2109 •2105 •003 20416 •000 260 • • 773.4952 255.6048 •2109 •2105 •0030 20416 •003 260 • • • •73.4952 255.6048 •2105 •0030 20416 •003 260 • • •	ŝ	•	*	٠	-	.+0	4.5	-	119	•003F	975	000
256 * * 581 722.7185 -141.7185 -1.1672 -1.1681 .0005 .1210 .003 257 * * 810 708.5011 101.4989 .8365 .0028 .7145 .002 258 * * 810 708.5011 101.4989 .8365 .0028 .7145 .002 258 * * 782 726.7807 55.2193 .4547 .4540 .0022 .0123 .0022 .0023 .016 .0002 .0023 .0023 .0023 .0016 2.0416 .0003 .0000 .0000 .0000 .0003 </td <th>-</th> <td>•</td> <td>•</td> <td>•</td> <td>0</td> <td>26.7</td> <td>220.78</td> <td>1.8</td> <td>1.826</td> <td>.0002</td> <td>• 0423</td> <td>•0068</td>	-	•	•	•	0	26.7	220.78	1.8	1.826	.0002	• 0423	•0068
257 . # . 810 708.5011 101.4989 .8365 .0028 .7145 .002 258 . . 72 726.7807 55.2193 .4547 .4540 .0022 .0423 .0002 259 . . 79 773.4952 25.5048 .2109 .2105 .0070 2.0416 .000 260 . . 73 706.4700 30.5300 .2518 .2513 .0033 .8397 .000 260 . . . 706.4700 30.5300 .2518 .2513 .0033 .8397 .000 260 86397 .000 260 2518 .2513 .0033 .8397 .000 355 86510 .8513 .801510 .8000 .000 36 876510 .2513 .0003 .000 .000 .000 .000 .8397 </td <th>÷.</th> <td>•</td> <td>•</td> <td>•</td> <td>æ</td> <td>22.71</td> <td>141.718</td> <td>1.1</td> <td>1.168</td> <td>.0005</td> <td>.1210</td> <td>003</td>	÷.	•	•	•	æ	22.71	141.718	1.1	1.168	.0005	.1210	003
258	Sin (•	*	•	-	08.5	01.498	æ	836	.0028	.7145	002
259 799 773.4952 25.5048 .2109 .2105 .0080 2.0416 .000 260 737 706.4700 30.5300 .2518 .2513 .0033 .8397 .000 ASE # D:	5	•	•	•	œ	26.7	5.219	•	454	000	•0423	000
260+ . 737 706.4700 30.5300 .2518 .2513 .0033 .8397 .000 ASE # 0:	ŝ	•	*:	•	ō	73.4	5.504	N	210	SC .	.041	000
ASE # O:	÷	•	•	•	m	06.470	0.530	251	251	.0033	839	000
-3.0 0.0 3.	N S	• • •			ų B	PRE	RESI	SRESI	SDRESI	LEVE	HVH	COOK
		n	•	٠								

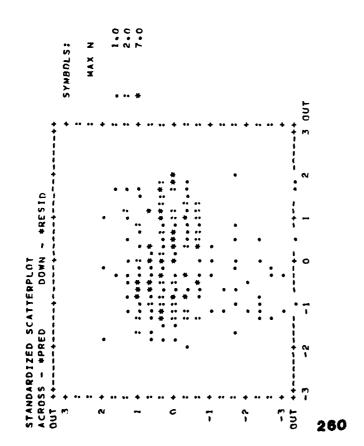
*: SELECTED M: MISSING

4 COOK D	.0001	.0021	.000	.0013	٠	*C00K D	
*MAHAL	1.8030	.9750	.1210	1161.	1025.	*MAHAL	
+LEVER	.0071	.0038	-0005	.0005	.0013	*LEVER	
*SDRESID	1261	.7300	-,5652	.7734	•	*SDRESID	
*SRESID	1263	.7307	5660	.7740	•	*SRESID	
#RESID	-15.2836	88.5611	-6A.7185	93.970A	•	#RESID	
#PRED	694.2836	704.4389	722.7185	743.0292	749.1224	#PRED	
PERF	679	793	654	837	c	PERF	
C C .	•	•	•	•	•	0:	3•0
0.0 0.0 0.8	•	•	•	•	•	0:	0.0
- 3.0	•	•	•	•	•		-3.0
CASE #	261	262	263	264	265	CASE #	

RESIDUALS STATISTICS:

25		212	MAX	MEAN	STD DEV	z
•	*PRED	673.9729	789.7439	732.6588	28.5797	255
	*ZPRED	-2.0534	1.9974	.0000	1.0000	255
	*SEPRED	7.6201	17.4313	10.4747	2.5361	255
	*ADJPRED	675.0618	793.6429	132.6771	28.6304	255
	*RESID	-435.6506	263.2193	.0000	121.4407	255
	*ZRESID	-3.5803	2.1632	• 0000	.9980	255
	*SRESID	-3.6101	2.1676	0001	1.0021	255
	*DRESID	-442.9389	264.2998	0182	122.4423	255
	+SDRESID	-3.6995	2.1837	0026	1.0104	255
	*MAHAL	.0001	4.2165	.9961	1.0033	255
	*COOK D	.0000	•1090	.0041	.0112	255
	*LEVER	• 0000	.0166	• 0039	• 0039	255
	TOTAL CASES	- 265				


TOTAL CASES =


UURBIN-WATSON TEST # 1.90693

OUTLIERS - STANDARDIZED RESIDUAL

*ZRESID	802	567	.3206	-3.23312	.9778	2.8987	.6242	195	.603	639
CASE #	69	251	÷	210	¥î)	128	84	241	16	164

. : = NORMAL CURVE) ******** ************ ************** ************* HISTOGRAM - STANDARDIZED RESTOUAL .50 ********** ********* (* = I CASES. *12 ******** 52* **************** -.50 ********* -.63 ********* -.75 ***** 1.00 ******* 1.25 ******* -.25 ###### • • +*** E[*]-*** 2.00 *. 1.78 *. 1.75 **. 1.63 . 1.50 * . -1.75 **: # # -2.63 *** -1.63 **. * # # * # -1.88 *. ٠ -.88 + -2.88 * 2.13 : • 25 . I 3 --13 -1.25 -1.38 -2.13 -2.50 001 -2.38 -1.00 -1.50 -2.00 -2.25 -2.75 -3.00 3.00 2.88 001 6.75 04°E 2.20 1.33 . 76 1.01 1.33 1.72 2.20 2.75 84 ° ° ° 5.82 6.75 8.67 9.60 10.46 11.85 12.32 12.61 12.71 12.61 11.85 11.22 10.46 9.60 8.67 1.7.1 5.82 4.94 2.75 • 55 . • • • 29 • 20 • 1 • 1.72 ... 11.22 12.32 * NONNMHOMNHNMO 101 000 0 N O 21922 ۴--5 10 12 o • NP

REFERENCES

- AFR 160-43, <u>Medical Examination and Medical Standards</u>. 1984.
- AFROTCR 45-13, Weighted Professional Officer Course Selection System (WPSS). Maxwell AFB, Ala.: 1987.
- Air Training Command, <u>Syllabus of Instruction for Light Air-</u> <u>craft Training for ROTC</u>. Randolph AFB, Tex.: 1987. S-V8A-C.
- Ambler, R. K., N. E. Lane, and F. E. Peterson. <u>Carefulness</u> <u>Peer Ratings as Predictor of Success in Naval Aviation</u> <u>Training</u>. Pensacola NAS, Fla.: Naval School of Aviation Medicine (NSAM), Naval Aerospace Institute, 1966.
- Ashman, A., and R. Tefler. "Personality Profiles of Pilots." Aviation, Space, and Environmental Medicine 10 (1983): 940-43.
- Askren, W. B. <u>A Preliminary Evaluation of a Short Psycho-</u> <u>motor Test</u>. Pensacola NAS, Fla.: Naval School of Aviation Medicine, 1966. NSAM, 66-5.
- Berry, J. R., S. B. Sells, and D. K. Trites. <u>Psychiatric</u> <u>Screening of Flying Personnel: Research on the Cornell</u> <u>Word Form</u>. Randolph AFB, Tex.: School of Aviation Medicine, 1954. USAF SAM, TR-7.
- Billings, C. E. "Studies of Pilot Performance. III-Validation of Objective Performance Measures for Rotary-Wing Aircraft." <u>Aerospace Medicine</u> 44 (September 1973): 1026-30.
- Bordelon, V. P., and J. E. Kantor. <u>Utilization of Psycho-</u> motor Screening for USAF Pilot Candidates: <u>Independent</u> and <u>Integrated Selection Methodologies</u>. Brooks AFB, Tex.: Manpower and Personnel Division, Air Force Human Resources Laboratory, 1986. AFHRL, TR-86-4; AD, A170353.
- Bremond, J. "The Development Potentials and Limits to Psychological Screening of Aviation Personnel." <u>Medecine</u> <u>Aeronautique et Spatiale</u> 21, 3d quarter (September 1982): 146-53.
- Bucky, S. F., and J. Burd. "Need Satisfaction in the Identification of the DOR." <u>Aerospace Medicine</u> 44 (May 1973): 513-15.

- Bucky, S. F., and S. L. Ridley. "California Personality Inventory as a Predictor of Success in the Naval Flight Program." Aerospace Medicine 43 (1972): 971-73.
- Bucky, S. F., and C. D. Spielberger. "State and Trait Anxiety in Voluntary Withdrawal of Student Naval Aviators from Flight Training." <u>Psychological Reports</u> 33 (1973): 351-54.
- Carretta, T. R. <u>Basic Attributes Test (BAT) System: A</u> <u>Preliminary Evaluation</u>. Brooks AFB, Tex.: Manpower and Personnel Division, Air Force Human Resources Laboratory, 1987. AFHRL, TP87-20.
- Contract, Embry-Riddle Aeronautical University and Department of the US Air Force. Light Aircraft Training for ROTC, 1987.
- Demaio, J., H. H. Bell, and J. Brunderman. <u>Pilot Oriented</u> <u>Performance Measurement</u>. Williams AFB, Ariz.: Operations Training Division, Air Force Human Resources Laboratory, 1983. AD, P003450.
- Diehl, Grover. AFROTC pilot candidate attrition, talking paper on research, 1986.
- Doll, R. E., et al. "Vocational Interest Differences between Students Completing the Naval Aviation Training Program and Students Voluntarily Withdrawing." In <u>Pro-</u> ceedings of the 80th Annual Meeting, American Psychological Association, 1972.
- Edwards, A. L. <u>Manual for the Edwards Personal Preference</u> <u>Schedule</u>. New York: Psychological Corp., 1959.
- Fleischman, H. L., et al. <u>The Relationship of Five</u> <u>Personality Scales to Success in Naval Aviation Training</u>. Pensacola NAS, Fla.: Naval Aerospace Medicine Institute, 1969. TR-968.
- Fulkerson, S. C., S. L. Freud, and G. H. Raynor. "The Use of the MMPI in the Psychological Evaluation of Pilots." Journal of Aviation Medicine 29 (1958): 122-29.
- Gerathewohl, S. J. <u>Psychophysiological Effects of Aging:</u> <u>Developing a Functional Age Index for Pilots. 2: Taxonomy</u> <u>of Psychological Factors</u>. Washington, D.C.: Federal Aviation Administration, Office of Aviation Medicine, 1978. FAA, AM-78-16.

- Goorney, A. B. "MPI and MMPI Scores, Correlations and Analysis for a Military Aircrew Population." <u>British</u> Journal of Social and Clinical Psychology 9 (1970) 164-70.
- Green, L. R. <u>An Exploratory Investigation of the Relation-</u> <u>ship between Four Personality Measures and Voluntary</u> <u>Resignation from Aviation Training</u>. Pensacola NAS, Fla.: Naval School of Aviation Medicine, 1963.
- Griffin, R. G., and J. A. Hopson. <u>An Evaluation of the Omnibus Personality Inventory in the Prediction of</u> <u>Attrition in Naval Aviation Training</u>. Pensacola NAS, Fla.: Naval Aerospace Medicine Research Laboratory, 1978. NAMRL, TR-1253.
- Griffin, R. G., and J. D. Mosko. <u>Preliminary Evaluation of</u> <u>Two Dichotic Listening Tasks as Predictors of Performance</u> <u>in Naval Aviation Undergraduate Pilot Training</u>. Pensacola NAS, Fla.: Naval Aerospace Medicine Research Laboratory, 1982. AD, A127337, NAMRL, TR-1287.
- Guilford, J. P. <u>Printed Classification Tests: Army Air</u> <u>Forces Aviation Psychology Program</u>. Washington, D.C.: Government Printing Office, 1947. USAAF, research report 5.
- Guinn, N., M. V. Bart, and S. A. Leisey. <u>Background and</u> <u>Interest Measures as Predictors of Success in Under-</u> <u>graduate Pilot Training</u>. Lackland AFB, Tex.: Personnel Research Division, Air Force Human Resources Laboratory, May 1976. AFHRL, TR-76-9.
- Heist, P., and G. Yonge. <u>Omnibus Personality Inventory</u> <u>Manual Form F.</u> New York: Psychological Corp., 1969.
- Hulin, C. L., and K. M. Alvares. <u>An Evaluation of Three</u> <u>Possible Explanations of the Temporal Decay in Predicting</u> <u>Pilot Proficiency</u>. Urbana, Ill.: Aviation Research Laboratory, University of Illinois, 1970. AD, 731191; AFHRL, TR-71-5.
- Hunter, D. R., V. A. Maurelli, and N. A. Thompson. <u>Vali-dation of a Psychomotor/Perceptual Test Battery</u>. Brooks AFB, Tex.: Personnel Research Division, Air Force Human Resources Laboratory, 1975. AFHRL, TR-77-28; AD, A044525.
- Irish, P. A., et al. <u>The Effects of System and Environmental</u> <u>Factors upon Experienced Pilot Performance in the Advanced</u> <u>Simulator for Pilot Training</u>. Brooks AFB, Tex.: Air Force <u>Human Resources Laboratory</u>, 1977. AD, A043195; AFHRL, TR-77-13.

Jackson, D. N., <u>Personality Research Form Manual</u>. Goshen, N.Y.: Research Psychologist Press, 1974.

- Jessup, G., and H. Jessup. "Validity of the Eysenck Personality Inventory in Pilot Selection." Occupational Psychology 45 (1971): 111-23.
- Joaquin, J. B. <u>The Personality Research Form and Its</u> <u>Utility in Predicting Undergraduate Pilot Training Per-</u> <u>formance in the Canadian Forces</u>. Willowdale, Ontario: Canadian Forces Personnel Applied Research Unit, 1980. Working paper 80-112.
- Kantor, J. E., and V. P. Bordelon. "The USAF Pilot Selection and Classification Research Program." Aviation Space and Environmental Medicine 56 (1985): 258-61.
- Knoop, P. A. "Advanced Instructional Provisions and Automated Performance Measurement." <u>Human Factors</u> 15 (1973): 583-97.
- Krahenbuhl, G. S., J. R. Marett, and N. W. King. <u>Stress and</u> <u>Performance in T-37 Pilot Training</u>. Williams AFB, Ariz.: Flying Training Division, Air Force Human Resources Laboratory, May 1977.
- Long, G. E., and N. C. Varney. <u>Automated Pilot Aptitude</u> <u>Measurement System</u>. Lackland AFB, Tex.: Personnel Research Division, Air Force Human Resources Laboratory, 1975. AFHRL, TR-75-55; AD, A018151.
- McDaniel, W. C., et al. <u>Evaluation of the Computer Aided</u> <u>Training Evaluation and Scheduling (CATES) Decision Model</u> for Assessing Flight Task Proficiency. Orlando Naval Training Center, Fla.: Naval Training Analysis and Evaluation Group, 1982. AD, Al21800; TAEG, TR-130.
- McGrevy, D. F., and L. D. Valentine. <u>Validation of Two</u> <u>Aircrew Psychomotor Tests</u>. Lackland AFB, Tex.: Personnel Research Division, Air Force Human Resources Laboratory, 1974. AFHRL, TR-74-4; AD, 777830.
- Melody, T. J., K. M. McNellis, and J. M. Payne. "Comparative Evaluation of Predicted Flying Qualities Boundaries Using Ground and Airborne Simulators." <u>1983 Report to the Aerospace Profession; Proceedings of the Twenty-Seventh Symposium, Beverly Hills, Calif., 28 September-1 October 1983. Lancaster, Calif.: Society of Experimental Test Pilots, 1983, 215-41.</u>

- Melton, R. S. "Studies in the Evaluation of the Personality Characteristics of Successful Naval Aviators." Journal of Aviation Medicine 25 (1954): 600-604.
- Miller, R. L. <u>Techniques for the Initial Evaluation of</u> <u>Flight Simulator Effectiveness</u>. Wright-Patterson AFB, Ohio: School of Engineering, Air Force Institute of Technology. AD, 036460; GSM/SM/76D-34.
- Mullins, C. <u>Two Measures of Decisiveness</u>. Lackland AFB, Tex.: Personnel Research Division, Air Force Human Resources Laboratory, 1962. TM-62-5.
- Nataupsky, M., et al. <u>Human Factors Society; Proceedings of</u> <u>the 23d Annual Meeting</u>. Boston, Mass., 29 October-1 November 1979. Santa Monica, Calif.: Human Factors Society, 1979. A80-2402608-53.
- Neuman, T. <u>Cross-Validation of the Defence Mechanism Test</u> by the <u>Criterion of Passing or Failure in Basic Military</u> <u>Flight Training</u>. Wright-Patterson AFB, Ohio: Foreign Technology Division, August 1972. FTD, HC-23-1150-72; AD, 904-138L.
- . Quantification and Validation of Precept-Genetic Defence Mechanism. A Hierarchical Analysis of Behavior of Pilots under Stress. Stockholm, Sweden: Research Institute of National Defence, 1978. FOA-C-55020-H6.
- Peterson, F. E., N. E. Lane, and R. S. Kennedy. <u>The Rela-</u> <u>tionship of the Edwards Personal Schedule to Success in</u> <u>Naval Flight Training</u>. Pensacola NAS, Fla.: Naval Aerospace Medicine Institute, 1965.
- Robertson, D. W. "Prediction of Naval Aviators Career Motivation and Job Satisfaction from the Strong Vocational Interest Blank." <u>Dissertation Abstracts International</u> 35 (1975): 4244.
- Rotter, J. B. "Generalized Expectancies for Internal versus External Control of Reinforcement." <u>Psychological Mono-</u> graphs: General and Applied 80 (1966): 1-28.
- Sells, S. B. "Further Developments on Adaptability Screening of Flying Personnel." <u>Aviation Medicine</u> 26 (1956): 35-45.
- Skinner, H. A., D. N. Jackson, and G. M. Rampton. "The Personality Research in a Canadian Context: Does Language Make a Difference?" Canadian Journal of Behavioral Sciences 8 (1976): 156-68.

- Smith, B. A., B. K. Water, and B. J. Edward. Cognitive Pretraining of the T-37 Overhead Traffic Pattern. Brooks AFB, Tex.: Air Force Human Resources Laboratory, 1975. AD, A026118; AFHRL, TR-75-72.
- Spence, J. T., R. L. Helmreich, and C. K. Holahan. "Negative and Positive Components of Psychological Masculinity and Femininity and Their Relationship to Self-Reports of Neurotic and Acting Out Behaviors. Journal of Personality and Social Psychology (1979): 37, 1673-82.
- Stein, E. S., and B. L. Rosenberg. <u>The Measurement of Pilot</u> <u>Workload</u>. Atlantic City, N.J.: Federal Aviation Administration, 1983. DOT/FAA, EM-81-14; DOT/FAA, CT-82/23.
- Thomas, G. B., and R. W. Clipper. <u>Performance Consistency on</u> <u>A Perceptual-Motor Task as a Correlation of Achievement</u> <u>Motivation</u>. Pensacola NAS, Fla.: Naval Aerospace Medicine Research Laboratory, 1983. AD, Al35933; NAMRL, TR-1299.
- Trites, D. K., and A. L. Kubala, "Characteristics of Successful Pilots." Journal of Aviation Medicine 28 (1957): 34-40.
- Voas, B. B., J. T. Bair, and R. K. Ambler. <u>Validity of</u> <u>Personality Inventories in the Naval Aviation Selection</u> <u>Program</u>. Project NM16 01 11, Subtest 1, Report no. 13, <u>Pensacola NAS</u>, Fla.: Naval School of Aviation Medicine Research Laboratory, May 1956.
- Waag, W. L., R. H. Shannon, and R. K. Ambler. <u>The Use of</u> <u>Confidential Instructor Ratings for the Prediction of</u> <u>Success in Naval Undergraduate Pilot Training</u>. Pensacola NAS, Fla.: Naval Aerospace Medicine Research Laboratory, 1973. AD, 757693; NAMRL, 1175.
- Weider, A., et al. <u>Cornell Index</u>. New York: Psychological Corp., 1945.
- Wichman, H., and J. Ball. "Locus of Control, Self-Serving Biases, and Attitudes toward Safety in General Aviation Pilots." <u>Aviation Space and Environmental Medicine</u> 54 (1983).