[FIED

UNCLASS

" AD-A183 371

A FINITE ELEMENT EXPERT SYSTEM

An Initial Study and Prototype Progrem

EOARD-TR-6 7~ @

Professor A. J. Morris . November 1986

DTIC
ELECTE
AUG 3 3

“o v

tee ‘ emmen e Sy

Accesion For Ji
NTIS CRASI W
DTIC TAB (o]
Unannounced 0

Justitication

Distibution/
Availability Codes

Avail and]or
Dist Special

A

A FINITE ELEMENT EXPERT SYSTEM

An Initiel Study and Prototype Program

A Finite Element Expert System

1. Introduction
2. Overall Problem Definition
2.1 Introduction
2.2 Problem Description
2.2.1 Rstionale
2.2.2 Clessification
3. Crestion of FEES
3.1 Prototype Philosophy
3.2 FEES Knowledge/Inference Modules
3.2.2 Overview
3.2.2 Module Overview
3.2.4 Language
4. FEES Architecture
4.1 Main Components
4.2 Controller
4.3 Input/Output Modules
4.4 Inference Modules
4.5 Usage
5. Conclusions and Recommendations
5.1 Lessons from FEES
5.2 Recommended Future Development
5.2.1 Extersions to FEES
$.2.2 Object Oriented Language
5.2.3 MM, 1. Festures
$.2.4. Oresmer
References

Appendix A User's Guide

1.

Introduction

1.1 Fecilities in FECS
1.2 Solutions

User Procedures

32 hoomaing the FEE progren
. Acveseing the]
2.3 Comsulting FEES

§

[-X- RSN 3 -) SLsLW W N

T Sy
o

I S
[XES N XY -~

-
~

-t b b b b
[X RV EVYE -}

15

- ey T - ST Tt o - . - - - N - i T !
) - - ‘
x> i Page
i 2.3.1 Option 1: Element Selection A3
- 2.3.2 Option 2: Problem Definition A3
2.3.3 Option 3: Element Selection A4
2.3.4 Option 4: Restert s Consultstion M
2.3.5 Option 5: Solutions Ab .
2.3.6 Option 6: Logoff from FEES AS
2.4 Answering questions AS
2.5 Finalising the Element Selection A5
2.6 Requesting Help During a Consultation AS
2.7 Procedures for Checking snd Correcting Input
, Date A6
3. Opersting Instructions As
; 3.1 Looking st Error Messages A6
3.2 Using the FEES Commands A6
3.3 Instructions for Answering Questions A7
3.4 Logying Out A7

Appendix B Programmer's Guide

1. Overview of FEES B1
1.1 The Men-Machine-Interfece 81

1.2 The Element Selector 81

1.3 The FEES Source Files B1

1.3.% FORTRAN Files 82

1.3.2 LISP Files 82

1.3.3 TEXT Files 83

1.3.4 DATA fFiles B3

2. LISP Files

2.1 The ELEMENT SELECTION. LSP File
) 2.1.1 Reeding the Element Dets
2.1.2 Element Selection

2.2 The MATCH NODES. LSP File
2.3 The EXTERNAL. LSP File
b 2.4 The FE.LSP File

3. FORTRAN Files

3.1 The ELEMENT DATA. FOR File
1 3.2 The EMMOR. FOR File

3.3 The EXTERNAL. FOR File

3.4 The FEES. FOR File

3.9 QLT FE FILE File

;: REGIONS File

3.
3.%
3N

o0 Se L] L4
g2szsss=ggy 2 322 TP P

The
The
The
3.8 The MELP. FOR File
The
e
The

o vt v ——

- CHTSUNSR VAR OF NONT
Approved for public relesse; distribution
unlimd

ted.

EOARD-TR-87 -Q&

Craafisld Imstitute of Techwo! O sppicsble) | peropesn Office of Asrospace Research emd

= A e g ™ 7o ACCRERION. ot om0 2 Cude
b Box 14
L3 FPO Bew York 09310-0200
0. NAME OF FUNDING / SPONSONNG . OMICE SYMBOL mmmmmw
ORGANIZATION OF applizebie))
ROARD 178 AFOSR 83-0306 |
§¢. ADDRESS (Chy, State, and 2P Cosle) - ;
Box 14 - % ON %0,
PO New York 09310-0200 ‘ 611027 2301 |)8 194 ;
T B Tecsiy Coaalesvery™ '

"A Pinite Elemant Expert System, An Initial Study awd Prototype Prograa

(12 COSAT? CODES 'F__—ua o Cotir o overse # ?ﬁﬂﬁ W Slosk numbor)
FIELD GAOUP sus-groue | cie elligence: Y
Computer Pfograsming - -~

(-

a

Structursl misx.,-g %J .
19. ANSTRACT {(Continue en roverse N necossery and [~} vt Britere. «

— —>7The report represents sn initisl study into the poseibility of using Expert System
concepts to aid users of finite slement snslysis systems. 8y concentrsting on limited
sspects of the probl Lisp besed prototype consult program hes been constructed.

This cleerly demonstrstes the sdvantages of adopting an Object Oriented spproach in this
~ szrea. The report suggeets how this initis] work mey be further enploited to creete s
full scale xpert System. l‘e-f Lo 4,

—————— e -

eorep-TR-87. OB _

This report has been reviewed by the BOARD Information Office and 1s
relessabls to the Natiomal Techmical Informstiom Service (NTIS). At NTIS
1t will be releasable to the gemersl public, imcluding foreign nations.

This technical report has been reviewed and {s spproved for publicatiom.

D S

» »
Chief, Structures al'umnul Materials

Chief Sciemtist

———r

A.J. NORRIS

COnog.ol Aeronautics,
Crantield titute of Technology,

Bedford.
M43 OAL

. e i . Bt rens ot e ¢

1.

The aim of the work presented in this report is directed
at the creation of an Expert System vhich can act as a
consultant to aid the finite element analyst. 1In principle the
system must Dbe capable of assisting the FE user to cover the
full range of requirements from initial modelling, to result
interpretation and error checking and should be capable of
advising over the full range of problem types; statics,
dynamics, composites, non-linear analysis, etc.

The incorporation of A.I. techniques into the engineering
design process has progressed at an ever increasing pace in
recent years. Conferences [1] have been devoted to this aspect
of computer based design and at least one system £2] has been
incorporated into the preliminary design process. Some of this
expertise has Dbeen passed across to the finite element world
with a view to providing consultancy programs for either
assisting with the modelling process or generating a computer
based ‘users manual’. The main approach in this situation has
involved the use of existing Expert System Shells either
constructed from ‘empted’ programs such as EMYCIN [3) or
specially constructed shells as SAVIOR [4).

This latter approach involving the use of existing shell
like programs assumes that the knowledge and the computer
systems designed to handle it can De completely separated.
There is, however, evidence from human learning studies that the
modelling of a domain contributes strongly to the problem
solving ability and the flexibility of any resulting
inferencing system. Johnson and Thompson [5] show that the
consequences of inadequate knowledge representation in both
human and computer problea solving gives rise to a performance
which has the false appearance of success. Sloman [6] supports
this concept and argues cogently against the advocates of

icular formalismas for representing all kinds of knowledge.
t can be demonstrated that first order predicate logic may have
an important role in theorising about intelligent systems but is
limited in scope and range. In the light of this type of
t 1t 4s suggested C[6] that different formulations are
useful for different purposes to cover the wide variety of types
of expressional systems used by people in different fields such
as sethematicians, scientists and engineers.

These arguments point away from the immediate use of a
shell enviromment for any finite element consultant program. A
better approach seems to lie in examining the nature of the
mu and hulg‘my system on the irharent structure of the

odge. In S way any ‘’‘inference engine’ can then de
oonstructed to implemsnt the casual sequences inherent in the
shilled use of the rule hase eaployed by an expert practitioner.
This is the approach adopted herein.

T™he need for the u:uuncu of A.1. methodologies to
finite elemsnt is s in faportance. rst of
all, Ddecause the systems are complex, the
sn-finite elensnt specialist £inds them very difficult to use.

e o2 L 5020

[RVPRRVPNS

J

- 3 -

Secondly, Dbecause it is now widely recognised that the systems
camnot be used as ‘black boxes’ and require a high level of
experience if errors are to be avoided. As a result a general
assessaent engineer cannot examine the structural integrity of
an item or component using the {finite element method as a
non-specialist without running the risk of making, potentially,
catastrophic errors. A Bsuccessful F.E. Expert System will
return the FE method to the general engineer as a safe and
reliable design assessment tool.

Because the finite eleme method has a vast range of
applicability the starting point to the present work was fixed
as the static analysis of linear structures. Having limited the
scope of the proposed Experty System it was also found necessary
to 1limit the range in order to Dbuild a prototype program.
Prototyping has proved to be beneficial in other A.I. projects
and was felt to be extremely important in F.E. analysis where
there is a complex interaction between engineering judgement and
firm sathematical knowledge. Thus a very limited prototype
program has been constructed and is outlined below.

The main activity of this program is to select appropriate
finite elements for specific structural configurations. 1It is
written in LISP as initial studies indicated that the list
compiling properties of the language could be used to advantage.
The outcome of the work does, however, point strongly to some
form of object oriented description language particularly with
respect to procedual aspects. Within this framework the main
influence and control processes could be efficiently exploited.

The remaining sections of this report described the
overall problem at which the program is directed and the
specific sub-program selected for prototyping. An outline
description of the program architecture is presented though
aspects related to usage are reported separately. Finally the
report indicates future lines of progress which could be
isplemented with a view to generating a user friendly interface
and expert advisor to major finite element systems.

OVERALL PRONLEM DEXINITION
2.1 Introduction

When the finite element method is considered and
subsequently used for the analysis of a major structural item a
range of problems confront the engineer. These start with
overall aspects which relate to planning the jod and continue
through wmore technically specific matters such as meshing,
eslemant selection and conclude with the need to interprete the
results with respect to the accuracy of stresses, displacements,
frequancies, mnode shapes etc. The questions associated with FE
applications tand to Dbe the same in nature for all types of
applciation. Often the only change in wmoving from one
application to anather is the focus of the stion. For
ezauple, similar questions must De answered if elements are
being selected for static and dynamic analyses but the relative
faportance changes in the move from static to dynamic
considerations. In attempting to construct an Expert System it

S

- 4 -
is, therefore, natural to define the problem in terms of the
questions which must Dbe answered by the analysis. In this

section we 1look at the overall problem and in the next one we
address the items gpecific to the prototype application.

2.2 Problem Description

2.2.1 Rationale

The problem of analysing a structure with the aid
of an FE saystem is described below in terms of the main
areas of interest together with an indication of some of
the detail considerations which fall within these areas.
As indicated earlier, the knowledge required for the
resolution of these problem areas may be heuristic or

mathematical in nature, Some attempt to classify the
broad nature of the knowledge is given.

2.2.2 (Classification (Outline)
1. Qverall Considerations (Heuristic Knowledge)
i) Planning requirements - staff, time-scales, etc.

ii) Deciding problem type - static, dynamic,
non-linear etc. or combination.

11i) General suitability of FE for problem.
iv) Solution requirements - hardware, software.

2. Modelling _ Problems (Heuristic/Mathematical
Knowledge)

i) Main structural features
- shape (flat/curved), thickness of members,
curved/straight boundaries, boundary
constraints.
11) Materials

- isotropic, anisotropic, composites
{orthotropic).

111) Responses
= linear, non-linear, dynlaié. etc.
iv) Loading

- static, aerodynamic, transient, thermal, shock,
etc.

s s e e e

f:}jr' e e s

VAR

v)

vi)
vii)

1)

i1)

ii1)
iv)

v)

1)
i1)

1)
i1)
111)
iv)
v)

vi)

Structural Inconsistencies

- joints, off-sets, discontinuities, stress
raisers, contact problems, hinges, etc.
Damping Type
Structural/Loading Symmetry or Asymmetry
e (Heuristic/Mathematical

Knowledge)
Structural regions
- regions with similar

identified
i.e. membranes, beams, shells, etc.

structural properties

Effect of material

- e.g. ‘composite’ elements.

Nodal compatibility or M.P.C.'s required.
Geometric properties accommodated

- curved edges, reinforcements, off-sets, etc.
Special problems

- e.g. shells,

(Heuristic/Mathematical
Knowledge)

Grid density requirements.
Isoparametric shape restrictions.

Solution Problems

Potential numerical idealisation problems.

(Mathematical Knowledge)

Matrix inversion/solution regquirements.
Eigenvalue/Vector solvers.
Bon-linear routines.

Reduction methods.

Sub-8tructure considerations.

Lwﬁv.-

L2

e e ot

6. Results Interpretation
(Heuristic/Mathematical Knowledge)

i) Equilibrium checks

- nodal, overall.

i1i) Consistency checks
- Stress jumps, displacement discontinuities, etc.
iii) The effects of structural inconsistencies.

It should be emphasised that this classification is not
exhaustive and represents an outline of the type of knowledge
and problems found in finite element applications. No attempt
has been made to augment the task to include the application of
pre- and post-processors, nor to the overall design problem
which would require consideration being given to automated
design methods.

CREATION OF FEES (finite element expert system)
3.1 Prototype Philosophy

Although it is tempting to use an established shell as the
basis for a new finite element Expert System the arguments
advanced in section 1 and the experience gained in the creation
of FEASA [6] indicate that this may not be the best path. A
better approach is to create an Expert System based on the
structure of the finite element applications knowledge.
However, the creation of an Expert System to handle the full
finite element analysis problem outlined in Section 2 represents
a formidable task. A more appropriate line of attack involves
writing a prototype Expert System based on a limited sub-set of
this knowledge. 8pecifically the items in 2.2.2 under Modelling
Problem 1, i1 and Element Selection i-iv (inclusive) were
included. In addition, it was decided that only statics
problems should be considered at this, initial, stage.

Using such a limited sub-set of the overall FE knowledge
base it was clear that no meta-level knowledge or control was
required. But the augmentation of the program in the directions
of generality would soon impose such a requirement. Thus a
wmodular structure for the Expert System architecture was
created. For convenience and portability this progran was made
specific to the Digital Equipment Corporations VAX range of
computers.

o

No Expert System can be made independent of human input
nor is it desirable that it should be independent. Computers
are useful for certain operations and engineers are nore
effective in other, more creative, areas., Any Expert System
should be able to participate in a dialogue with the user. 1In
order to facilitate this man-machine interaction a range of
FORTRAN routines have been created to allow the program to
exploit the screen management facilities available under the
VAX/VMS 4.2 operating facility. These routines also serve as
the main control program for the Expert System as a whole.

In principle there is no need to 1limit the range of
elements which can be included in FEES and, in consequence,
there is no restraint on the system with respect to potentijial
interacing FE programs. However, because special problems exist
with certain complex elements, such as shells etc. it was
decided for convenience to limit the current element library to
simple elements. Because this is not a fundamental limitation
the library can be augmented when deamed suitable.

3.2 Knowledge/Inferenc les
3.2.2 Qverview

When the finite element process is examined, it is
found possible to describe the basic inference process as
one of, essentially, accumulating constraints. To begin
with the geometric properties of the structure starts a
process of limiting the elements which can be used. The
concept emmerging from this limiting process is that the
structure to be analysed needs to be divided up into
regions with similar geometric properties. If further
limiting factors relating to the structure, such as
inconsistencies, special features etc., are included it
can be seen that there are a range of constraints which
relate to the structural description. HWith these limits
in place 1it is possible to evaluate appropriate elements
for each region taking into account factors such as nodal
conformability. Finally, with all constraints in place

and the evaluation complete the process of selecting -

specific elements can be commenced.

Clearly, the human eye 1is more appropriate at
deciding if a structure is curved or thin or has other
important geometric properties. Thus the FEES program
assumes that the user 1is able to supply this type of
information and enters a dialogue in order to obtain it.
But it does, currently, assume that the user may be unsure
about the types of mwmechanical action the structure is
performing. Thus, during the dialogue, the user is asked
to place a level of certainty on such factors as membrane
action, bending etc.

VY Y T

thus:

3.2.3
1)

e n s s manl

- 8 -
Module Overviews
Structural Descriptions Module
Purpose:

to describe the geometric shape of the structure
and material properties on a region by region basis

Mode of Action:

1) Divides the structure into regions depending upon
the basic spatial properties
ii) In each region defines structural properties
(curvature, thickness, boundaries)
iii) Identifies special regions which relate to beams,
nodes ets.
iv) Defines material properties in each region
v) For each region sets up an element identification
‘vector’ and region ‘vector’.
These ‘vectors’ are predicate type descriptors
encapsulating the properties of the entities under consideration
REGION CC), €y, €, C)))
ELEMENT (REGION, PROPERTY, MATERIAL,)
where
REGION: is the ‘vector’ descridbing the geometry of
the structure and its boundaries
PROPERTY: is the ‘vector’ describing the action
property of an clement, i.e. membrane,
rod, bean ,.....
MATERIAL: relates to the material constants and

properties

.4:”:4.\

Each of these defining terms may have a list of arguments
like REGION, for example, MATERIAL, includes Poisson’s ratio,
elasticity constants etc.

2) Element Evaluation Module
Purpose:

to advise the system on the element properties
required for each region such that the Selector
Module can attempt to select appropriate elements.

Mode of Action:

1) Augments the ELEMENT list with further constraints
on potential element types

ii) Examines each region to decide if special reasons
exist which c¢ut down the available choices, i.e.
shape requirements (e.g. the incorporation of
curved Dboundaries), grading requirements (e.g.
local stress raisers requiring fine meshes), etc.

iii) Examines each region to see if adjacent regions
impose constraints because elements have already
been selected there (this may indicate use of
M.P.C.’s)

iv) Special loading requirements may require specific
elements or the structure may require special
elements, e.g. presence of cracks.

The module then augments the ELEMENT list to incorporate
these new constraints hence:

ELEMENT (REGION, PROPERTY, MATERIAL, NODAL
CONSTRAINTS, SHAPE, EIC....)

where, as usual, the new augments may have a list of properties
8IC;

SHAPE (BOUNDARY SHAPE, CURVATURE, GRADING, ETC.)

NODAL CONSTRAINTS
(REGION, ATTACHED ELEMENTS, GEOMETRIC
CONSTRAINTS, ETC).

@tCoivcesnns

Some of the new augments can take account of any special
features which the analyst may feel are appropriate to element
selection. For example, not using a 3-D membrane element in a
Wing Box structure which is gsnuinely 3-D whilst the membrane
element is really only 2-D

- 4,

3) Elsment Selector Moduls

Purpose:

to use the accummulated information from the
earlier modules to select elements for each region

Mode of Action

i) For each region unravels the ELEMENT ‘vector’ and
attempts to match with the elements in the library.

€

4) Additional Modules

Although no additional modulus have currently been
incorporated into the above procedures could
be extended to account for Meshing, Loads, etc.

3.2.4 Lanquage

The structure of the modules outlined in 3.2.2
indicates a clear pattern to the way the knowledge is
accusmulated. If this is compared to the existing
programaing languages it is seen that both LISP and PROLOG
resemble the above forms. The fact that one of the
processes involves adding facts to an accumulating list of
items would seem to point towards a LISP implimentation.
But higher order inferencing which more advanced forms of
the system would require point to a PROLOG or even a 'C’
implimentation. However, the availability of DEC/LISP
which has recently Deen introduced to all VAX machines
decided the issue and the core part of PFEES which
impliments the wmodulus of section 3.2.2 and selects the
elements is written in DEC/LISP.

As explained adbove, the control modulus which call
on the element selector routines and interface with the
user employ FORTRAN or VMS routines.

IEES Architecturs
4.1 Main Components

The program is constructed in the usual msodular fora
adopted by all sodern software developments. ™e main
components consist of three major modulrs descrided in 3.2.2;
the structural description module, the element evaluation module
and the element selector. Information flow and overall control
are achieved through the control module whilst the user operates
the system through the input/output module. A schematic outline
is shown in Fig.l.

Atmmmtu-el.uuumcutchmno:hc
datadase and appropriate management system will be required in
future as the data content of the systesm builds up.

4.2 Coatrellax

The control module manages the flow of the program
ocganising tasks osuch that each activity is carried out at its

sorveet precedure to be. It also ensures that cencurrent
rn wh inteorforense with oach other and heepe

of the overall .a--uwnxcm-

4n & mammer 1invie te the wuser porforns these tasks

The Ingut/ Nedule currently ferms the interface
botusen the ev/Infovence wodules and the user. This
reguirensnt :: all ‘cr :ut .{:ﬁ. te C::: ';::t

!] ow the
user. Dene of the roguired u‘!ﬂ'. data are
written in PFORTRAD form the link with « Although MELP
facilities are -z::d to the user via pre-written text, no
c% has asde to allow explanation and
tuteor facilities to Dde incorpora . MNowever, experience

with the LOKI ([7) project indicates that a way forward does
exist to introduce a natural language facility to improve the
dialegue capability of the progras.

4.¢ Infaxence Madules

T™he three w®modules, Structural Description, Element
Evaluator and EKEleaent Selector, represent the basic inference
facilities of the existing progras. The functions and
construction of these modules are described in Section 3.2.2.

4.5 Usams
The outlined above has been into ration on
the Coh 11/750 operating under V.K.8. current

element 1lidbrary contains a small set of element descriptions
created for research purposes and an alternative set
n'nul;uu the LUSAS element 1idrary (LUSAS is a proprietry

[

- 13 -

In creat am it was necessary to start the
precess of class ytu' defining finite cloment ‘surface’
and ‘desp’ hknowledge. T™his leads to the creation of the
‘Inforence’ tedules which have a clearly defined structure of
their owmn. A a result it i that the handling of
finite element Rnowl ean Dbe sone form of Object
Oriented . e could ueed to define the
Imowledge descrided in current ‘Inference’ Nodulus
ulmtumn ions covering move of the P.E. probles. In

sddition, an Object Oriented m could be used to great
:{m in the Control Module as part of a Meta-level reasoning
s B8

If an Obdject Oriented oach sinilar to the C.N.L. (8]
uu\ur is adopted than a) would be formed with existing
Natural Language programs which could be)} to create a
useful tutorial and mulnuen facility for . Wthin such
a tutorial wmodel the 'User Assesor’ program would de located
which would asses the usera gensral capability and knowledge and
automatically adjust the level of esplanation accordingly.

As seen in 3.2.2 the approach adopted in the development
of FEES allows mlo‘!- and constraints to be put together in a
fora which can be easily in eted as instructions for a User
nmu. Thus, the resulting E.8. aR could output results
a form allowing a direct ingut (say) and thcuby

-3?« with sajor urn of ch- euuuenn Users Manual.
also require incorporation Mcl tuuutu

which are easily .clund in this type of approach.

Finally, the structure of the prototype and any future
successor are of such a sisple fora that it is possible to
consider ways in which the computer itself could asses a given
sclution run. In consequence, a fors of learning can be built
into the systea wher 'm‘nmm runs are ezamined for patterns
of usage. m-
developuent an interesting an called 'DRENER’'. This

umueaomo aperation when FEES was not in use,

revieow previocus rums, ul at to assess

patterns which would then be empl to speed-
consultations.

.2 DReasmmanded Putucs Develsasents
$.2.1 Imtanaisns o FERS
T™he eoxisting pregran oan 2o ontended in several

directions without a redical w.-tun in the
fellowing areas:

1) Develepaent the neviedge base of FEES to cover
the full twu clement preblen range indicated in
Sectiem 3.12.13. ™is would n extonding the
arehitscture of the that shown in
.1 to incorporate u which would

for neshing, results mmuen. etec.

i1) Interface with a u.ouuy to allow
screen BSani tien tmt data.
Linking with pre-and mt-’rmom- also be
advantageous

i11) Creation of a User Mamml lacemsnt module to
allow for the easier use of . ANYBIS, etec.

iv) Linking of the program to a gensral finite element
rational database to increase ths range of
potential problems.

$.2.2 fhiect frisated Leomuass

As indicated eclosouhere in this report the structure
of the knowl dase indicates that an rtunity exists
to emploit -\ joct Oriented Approach. variety of 0.0.

available but there is some advantage in
select one m the developuent of the Language itself
can be into the develaopaent of the knowledge base
“0:1‘.“:““"{”& Within :u- gmk one

ity 1s enploy Conceptual Mode

C.n.L.) ing developed in the LOKI (8] jocua‘".
the BSuwopsan Beonenic Cemmittees programmes.
Developaents ceuld, therefore, take place in the following
areas:

lojitation of C.N.L. to enhance the Control
e facilities and to be the main procedure for
descriding the hnowledge.

11) The use of C.N.L. to creats a more advanced set of
reasoning facilities Doth at the Meta-level and
lower levels of the prograa.

111) Baploitation of C.N.L. to ate a linited set

incorpor
of matural lanpuage facilities into the Control
m‘.

Man-tachine
1inited to the curreat Imput/Output
age

dove are requi
%o sllew Systen to be offectively used M
the gsneral (mum» ongineer: y

1) ?cmumwtmuu.mmmu
al the pregran to ewplain the for

s e A AT

- 18 -

4 specific decision and to instruct the
ueer. A simple set of ‘canmed’ texts and HELP
files 15 net adequate to this complex task.

41) Coupled with the Explamation/Tutorial facilities a
‘User Assessor’ 1is required to allow the prograa to
cope with users who are sore ignorant of the finite
:.uluoat‘ aethod and its limitation than they

“.

S.2.¢ [xesmsr

As dindicated in BSection 5.1 it 1is possidle to
construct a progran which can have a limited ‘learning’
ea.nbuuy built-up from runs of the FIES system. The

uses ths idea that each run of the systes is
lono‘ in a file and is then availadble for analysis. This
analysis is ecarried out by a new progras called Dreamer
which emamines the data for patterns of usage. These
patterns can then be uuc to prompt users towards likely
solutions to wmeshing r problems when a new
structure is being set-wp tor F.E. analysis.

It u felt that most design offices do have their

N o e
s . a result many problems

have beon previousl ronted and the F.E. analyst often
starts solution process using this ‘in-house’
mewledge. Dresamer is intended to follow thes sane
losophy and, thus, -up the inferencing process.
use of gquiet pert on the comaputer for solution
analysis lies that the Expert System will appear to

‘learn’ (finite element knowledge when not in use and each
consultation should seem to represent an imsprovement on
the previous one.

- 16 -
1. Mason Conference °‘IKBS in Design and Manufacture’

2.

at the British Association for the Advancement of
Science, sponsored by the Institution of Mechanical
Engineers, 4th September, 1986, Briitol University,
Bristol, U.K.

J. Alsina, J.P. Fielding and A.J. Morris
ADROIT: An Aid, ESPRIT Technical Week, Brussels,
Belgium, October 1985.

J. Bennet, L. Creasy, R. Englemore and R. Melish

SACON: A Knowledge - Based Consultant for
Structural Analysis, Stamford University Computer
g:;:ncc Dept.., Rept. No.STAN-C8-78-699, September

1.C. Taig
Private Communication, Ble. Warton Division,
Marton, Lancashire, U.K.

P.E. Johnson and H.B. Thompson

Strolling Down The Garden Path: Error Prone Tasks
in Expert Problem Solving.

7¢th I.J.C.A.1., 1981, p.p.215-217

A. Sloman

Wy WNe Need Many Knowledge Representation
Formalisms. Res. and Dev. in Expert System. (Ed.)
M.A. Blower, Proc 4th Conf. Bi. Computer Society
Specialist Group in E.8. December 1984.

ESPRIT PROJECT 107
LOKI s A Logic Oriented Approach to Knowledge and
Databases Supporting Matural User Interfaces.

Research Centre of Crete

Conceptual Nodell Ianzuuo LOKI Interim
Prq:na Report m .M.L., March 1986.

M
3
¢
i
]
1
i
.

-

sy

APPENDIX A
USER'S GUIDE

A.1 INTRODUCTION

The FEES program described in this appendix is a prototype program
that selects the best elements according to a specified set of
requirements. The user selects the FE-package to be used and then
specifies the problem to be modelled. FEES takes the element
description data and the problem specification and selects the
elements vhich best satisfied these,

Great emphasis has been made on making FEES easy to use. The data
input is free-format and it is performed interactively from the
terminal. The system uses the Screen Management Guidelines (SMG)
available in VAX/VMS i{n order to provide a “friendly" environment to
work vith. The presentation of the solutions are clear and self
explanatory and enables the user to interpret the results without
delay. The user has a set of commands vhich allov him to control the
consultation.

A.1.1 Pacilities in FPEES

The user vill find the folloving facilities of great benefit when
using the system:

1. PFlexible data in;ut by the user. The data input is performed
nteractively via menu vindovs. For each menu a set of
specific instructions is displayed in a separate vindov.
Purther help can be obtained with the HELP command. The
options done in a menu are slvays highlighted. PFor menu
questions, the sysatem displays s small counter vindov vhich
indicates the number of questions, the number ansvered, and

the number to snsver.

2. Solution order. A typical consultation vith FEES consists in

n n{ t package f£ile name and defining the problem to

be modelled. The progras then selects the best slements and
displays the solution.

~

USER’'S GUIDE Page A-2

3. Brror diagnostics. FBES checks all user input and the
correct evaluation of the different options and issues the
appropriate error message vhen an error occurs.

4, User interface facility. At any stage during the
consultation session, FEES can be instructed by the use
through a set of simple commands to get further explanation
on the current menu, go back to a previous menu etc.

A.1.2 Solutions

FEES has been developed to provide solutions for the element selection
problem within FE analysis and it is hoped to extend the present
prototype to cover a much larger part of this field. As a prototype
it has been verified by reference to worked examples, it is relatively
easy to learn, use and apply. In presenting the results wve have tried
to provide the explanations vhich lie behind the reasons for rejecting
or selecting a particular element.

A.2 USER PROCEDURES

This section describes the procedures the user must follow in order to
employ the FEES system together with the procedures for checking input
data and correcting input errors. The order in vhich these are given
spproximates the order in which a FEES consultation proceeds.

A.2.1 Logging in

Make sure that the terminal is on and press the RETURN key one or more
times until the system prompts to you for your user name, type in your
user name and press the RETURN key. The system then prompts you for
your passvord, enter your passvord and press the RETURN key.

A.2.2 Accessing the FEES program

After successfully logging in, the default DCL "$" prompt will be
shovn on the left margin indicating that the computer is ready to
accept your commands. Type the FEES command and press the RETURN key.
This command will start up the FEES system by loading the required
files (this usually takes a minute or two depending on the load on the
wachine) and displaying the PEES main menu on a windov positioned at
about the centre of the screen (this will be the position from which
PEES will display all the question and text menus) together wvith an
instructions vindov positioned at the bottom left hand corner of the
screen (this will be the position vhich FEES uses to display the
instructions for every question or text menu).

Y

~

R
W‘ —
USER’S GUIDE Page A-3
NOTE

At the DCL level all commands given to the computer
must be folloved by pressing the RETURN key to
indicate that you have finished typing the command.
Vithin FEES you tell the system that you finished with
a menu vhen you press CTRL/Z, or a function key
command, see below.

A.2.3 Consulting FEES

The consultation session starts by asking the user to choose one of
the options displayed in the main menu. These are outlined below.

A.2.3.1 OPTION 1. Element selection - This option allows the reading
of the element data from a file vhich has been created on a previous
consultation or edited separately. A further menu is presented here,
vhose main purpose is to define the element data to be used by FEES in
order to model the problem. These options are:

OPTION 1. Lists the file names or tables which contain the
element data in the format needed by FEES. Selecting one of the
names restores element data, if a nev name is used, a nev table
name is created.

OPTION 2, This option lists the element names known to FEES.

OPTION 3. Enables the user to viev the element data in terms of
its property names and property values.

OPTION 4. This option enables the user to add (delete or
modify) information to (from) an »ld element.

OPTION 5. With this option nev elements can be added to FEES.

OPTION 6. Vhen creating or modifying an element the property
napes and values defined must be knovn to FEBS thus, this option
1list the valid names and values.

OPTION 7. Returns the user to the main menu.

A.2.3.2 OPTION 2. Problem definition - Vith this option FEES is told
the problem to model Dy ansvering a series of questions. The systems
displays previous regions vhich may be selected if it is necessary to
restore and wodify s previous region. If one of the names is selected
or & nev one iz typed, a further menu is displayed vith a series of
questions to be ansvered in order to define the problem. For each
question several ansvers are possible, by specifying how certain (or

o b rnna it Tt ARl |

i
‘
!

N g

— ——

L

aetomcgitlogin

-~
B . o,

USER'S GUIDE Page A-4

important) the user 1is regarding the options the system may employ
these in order to satisfy the user requirements. This value should be
given as a percentage, no answer or O being don’t know, 100 being for
certainty, SO for not too sure etc.

A.2.3.3 OPTION 3. Element selection - Here the program evaluates the
ansvers given above by selecting the elements which best match the
requirements. The screen is cleared and the message "L{SP WORKING."
is displayed on the top left hand corner of the screen (this might
take a fev minutes depending on the number of elements and regions
used, and how busy the machine is). When finished, the main menu is
re-displayed with the option to view the valid solutions.

A.2.3.4 OPTION 4. Restart a consultation - This option allows the
user to restart a previously SAVEd session so as to modify or continue
the session. The system displays the names which can be restored.
The name typed must correspond to one of the names shown.

A.2.3.5 OPTION 5. Solutions - This option allows the solution to be
vieved. "The region names being used are displayed for viewing the
solutions individually. The combined solutions are shown under the
name "REGIONS".

1. RULE 1. Eliminates the elements which have nothing in
common with the important requirements. i.e., All the
answvers greater 50 percent.

2. RULE 2. Eliminates the elements which lacked some important
requirements. i.e., The answers greater 50 percent.

3. RULE 3. Eliminates the elements which had all the essential
requirements but missed some inessential ones. i.e., All the
ansvers below and including 50%. The don’t knows and 0
certainty are not taken into consideration.

The final solution for a region is shown as a list of elements which
have satisfied all the important and essential requirements.

For multiple regions the valid elements and the ones eliminated by
RULE 3 are collected and RULE 4 rule is used. This rule finds the bar
and membrane elements and tries to match the nodes at the boundaries.
If it succeeds it shows the results as a list of bars with the
corresponding membrane(s). Elements vhich do not belong to these two
types are displayed as » separate list.

e W

USER’S GUIDE Page A-5

A.2.3.6 OPTION 6. Logoff from FEES - This option exits the user from
FEES. The screen is cleared and the following message displayed

End of consultation. Back to LISP.
Type (BXIT) to exit LISP or (RUN) to start a new session.
Lisp>

To the LISP prompt "Lisp>" type the desired action.

A.2.4 Ansvering questions

The actions required in order to "make the system do things" are
follow:

1. Name Question. The system presents the question to the user
with the appropriate instructions, the name given must be
alphanumeric and according to the instructions given. Names
are typically used to identify an element or a file.

2. Numeric Questions. The system presents the gquestion(s) to
the user, the ansver given must be within a valid range if
not, the system prints an error message notifying what went
vrong.

3., Menu Options. The ansver given should correspond to one of
the options displayed in the menu. If the answer does not

match any of the options then an error message is displayed
and the correct option should be typed.

4. Yes/No Questions. This type of question expects a yes or no
for an ansver if not, the system prints an error message.
For some questions a default ansver is included in the
question, this is taken if no answer is given.

A.2.5 Finalizing the element selection

If no element is found to satisfy all the important and inessential
requirements then, use can be made of one of the elements given in the
list provided by RULE 3 or the requirements modified, or a different
F.E. package chosen. On the other hand if the evaluation is found to
be satisfactory, a new session can be started with the restart option
or logout from FEES with the main menu options 4 or 6 respectively.

A.2.6 Requesting help during a consultation session

At any point during a consultation session the user can £ind the
commands available to him through the INDEX command or alternatively
by hitting the "PF4" key.

DENARRIARY &g

IOV

‘
e

>

USER’S GUIDE Page A-6

A.2.7 Procedures for checking and correcting input data

According to the type of question the system checks that the value
given corresponds to a valid input format. Numeric questions should
be within a valid range, for yes/no questions the answers given must
be YES or NO (Y or N for short). Finally, there are menu type of
questions in which the ansver given must be one or more of the choices
displayed, when there is only one ansver this is made explicit in the
vording of the question. The correction of input data is made easy by
having the system display the errur thus, the user can edit his
ansver.

A.3 OPERATING INSTRUCTIONS

The instructions described in this section are carried out in order to
consult the FEES system, assuming that all the softvare (LISP version
2 and the FEES suite programs, text, and data) and hardvare
(e.g. VAX-11/VMS version 4, terminals such as the VT100 or compatible)
are available. The instructions described here include: format and
content of each input, input checks that are made by the system,
action taken if an error is found.

A.3.1 Looking at error messages

When ansvering questions or using commands, FEES has a wide range of
error messages in order to provide objective information about the
error. The system displays the message on a separate window
positioned at the bottom right hand corner, this vindov is removed
vhen the ansver given is accepted. Some of these are:

1. Outside of range. This error occurs vhen the ansver given
does not lie vgthin a valid range.

2. Incorrect choice. Vhen the answer(s) given does not match
any of the options in the menu.

3. Invalid answer. This error is displayed wvhen the system does
not understand the ansver or it is invalid vithin the present
state of evaluation of the session.

A.3.2 Using the FEES commands

The system provides four basic commands which can be 1issued at any
time during the consultation by using the appropriate PF key or by
typing the command and pressing CTRL/Z. These are (PF key and vord):

USER’S GUIDE Page A-7

1. PFl or RPM
s command returns the user to the previous menu wvithout
processing any of the ansvers given in the current menu. It
is useful if the user does not vant to make a choice.

2. PF2 or HELP
s command produces help text on the current menu {n the
form of definitions and/or example ansvers.

3. PF3 or SAVE
This command saves the state of the consultation and logs the
user off from FEES returning to LISP.

4. PF4 or INDEX

The INDEX command produces this help text on the commands
available.

A.3.3 Instructions for ansvering questions

Every question and text menu in FEBES displays a set of instructions
aimed at helping the user ansvwer and read a piece of text. The main
types of display are:

1. Menu Questions. These type of questions display an
enumerated selection of possible ansvers from vhich the user
can select the option number and attach a certainty of his
ansver. Depending on the question single or multiple options
can be chosen.

2. Menu Options. Menus of this type present an enumerated
sequence of the possible choices and the ansver given should
correspond to one of the options.

3. Yes/No Questions Questions of these type are used to confirm
an action to be taken step before proceeding. Possible
ansvers are: Y, YES, or N, NO. For this type of question
there 1is no approximation i.e., ansvers like "not really” or
*"unknovn" are not permitted.

4. Text Menus. These type of menus are used to display
nformation to the user.

A.3.4 Llogging out

Vhen the gession at the terminal is final, the option 6 is used in the
PEES main menu to exit returning to LISP (the prompt "Ligp>" is
displayed) then, LISP macro EXIT is used to return to DCL command
level (i.e., the DCL prompt "$" is displayed) then the DCL command
LOGOUT ends the session. The system responds by displaying the user

e e man—

s WO T PRV

1

——

USER’S GUIDE

’r" 'g e S o Y At Sbdel Mo 4

i name, date and time vhen logged out.

Page A-8

ST, R A e e o, -

b =+ 2 o KE e

79.. o B gy, e oy

i

FRES is & prototype program for element selection. This appendix is
simed at a programmer vho vishes to understand VERS in order to extend
it or modify it. Pamiliarity vith LISP, PORTRAN, and VAX/VMS Screen

t Guidelines (SMG) is assumed. The appendix is concerned
vith the overall structure of the program, details are explained in
the program comments.

B.1 OVERVIEV OF FEES

There are tvo major components to the PFEES systen. These are the
Han-Machine-Interface (MN1) programs and the element selection
programs.

B.1.1 The Man-Machine-Interface

The WMI is used to interact with the user by obtaining all the
required input and displaying the results found. The imput froa the
user is translated into a suitable form for the eclement selection
progras, the results produced by the latter are then displayed to the
user.

8.1.2 The element selector

The element selector reads the element description data and “picks”
the elements which best satisfy the user requirements. A further
selection is made sccording by matching the nodes betveen elements.

3.1.3 The FEES source files

The FEES system is msde up of s set of LISP and PORTRAN pregrams, and
s set of text and data files. These are:

e ————

5.1.3.1
1.

2.

11.

12.

5.1.3.2

'S GUIDE Page B-2

files -

BLENENT DATA.POR
Reads frem and vrites the element data to a file.

BRROR . POR
Yoed to display the different error msssages.

EXTERNAL . POR
Bxternal reutines used vithinm LISP to vrite results.

7ERS. POR
Contrels the uwser iamteractioa.

GET_FE_FILE.POR

Requests the FR-package neme to be used by the slement
selector, it also provides verious facilities for vieving and
nodifying the clement description data.

GEY_RBGIONS. POR
Requests one or more region names to be used to identity the
user's probles.

GET_TRUTH. POR
Asks the user various questions in order to categorized the
prodlea.

NELP. POR
Displays help text on a question.

SESSION. POR
Saves or restores a consultation sessiom.

SNC DOUTINGS . POR

VasrTous reutines are defined here which use the 3G VAX/WNS
fecility te request input and dicplay results ia the form of
vindovs.

SOLUTION. POR
Routine to retrieve and display the results.

UTILITIES.POR
Comeral purpose routines for string hemndling, imput checking,
initislization etc.

L8P tiles -

ELENENT SELECTION.LS?
The contrellear for elemant selection.

FROGRAIS '§ GUIDE Page -3

2. EETERNAL.LSP
Definitions of the external PORTRAN routines used vithin
LI

3. m.L%
The centroller for the interaction vith PRES.

4. LOAD.LSP
This file is used to load the different LISP source files
required by PEES, and starts up the session.

3. NATCH_NODES.LSP
The centroller to metch nodes betveen different regions.

5.1.3.3 TIRXT files - A set of files is used by the PORTRAN procedures
to prompt the user, it also provides the necessary instructions and
help text to ansver a question and the text used in the error

asssages.

1. file.}@WV

The senu files are based on the philosophy that a question
consists of tvo parts, the question and the instructions on
bov te ansver. Thus, vhen FEES prompts the user it crestes
tvo vindovs: eme imstruction vindov and one menu vindov vith
8 "resding side” vhere the user can type an ansver or command
or close the vindovs. BRach file contains the imstructions
title and text (3 lines) folloved by the memu title wvhich
names the "parent” menu and text (100 limes maximum).

2. file.MBLP
Similarly, the halp files consists of an imstructions part
and a text part. Bach wenu has a help text file associated
vith {t.

3. BIROR.NESSAGRS
This is a single file vhich stores the text (3 limes) wused
vhen an input has sccurred. The error sessages are displayed
on 8 separated viadev to the sbove.

B.1.3.4 TA files - Tvo files are used to store the element property
asmes and preperty valwes.

1. PROPERTY.DATA
This file steres the property nases and values kmeva to the
system. It is weed to previde a guidelin2 to the user vhen
defining or medifying on clemsat.

-~ @_ v~~~ -

—~pPT A A e

Roghum 3 GuIsE Page -4

2. QUESTIGNS.BATA
This file steres the property names and valuves associated
vith the tions woed by the system in erder to dafine the

prebles. order in vhich they are stored relates to the
oxder of the questiens as specified ia the file
SQUESTIONS . NEy" .

3. file.BaY

Stores the slement description data to be used by the elesent
sglecter pregrams.

8.2 LISP FILRS

Bere ve outline the everall fumction of the LISP files, since a more
detailed description can be found in the source files cemments.

5.2.1 The BLEMENT SELECTION.LSP file
Two japertant facilities are provided by this file:

1. & sethod for retrieving and storing the element description
dats.

2. A sethed of selecting an element given soms requirements,
psoviding sems eup tion vhen eliminating or selecting an
element.

B.2.1.1 ing the el t data -

READ-RLIVENT -DATA (FILENAME)
This preceduse is wsed to rond the data from the file FILENANE. The
element data sust be stered in the felleving wvay:

1. :t: first record indicates the number of elements in the
ile.

2. Por csch elemant description the folloving erder is taken:
the eclement neme, the nusber of preperties, then for each
preperty there is associsted the property name and its
preperty value(s). VWith the last record of the elament
description having the preperty STORE-SCORE vith velue O.

The data is rend in o precedural semner and the clemsat memes are
stored in the list BLENDNT-HANES, and the felloving tve precodures are
weed to organise the dats.

PUT (BLIVANT-RANE, PROPERTY-IANE, PROPIRTIES).

- @o——————

.

o i et

Pempens s cuise Page 5-3

This preceduse is the PEBS preperty list builder by sssociating eacn
elenent vith s set of preperty names snd values.

COBER-PROPERTY-LIST (PROPERTY-LIST)

This precodure takes 8 preparty list as imput and generstes s nev
ty list based en the old eme but re-ordered so that the preperty

dontifiers and their valuwes are in alphabdetical erder.

5.2.1.2 Elegeat pslecties -

SLENRNT-SELACTION (REBGCIONS, FILENMR)

Por aach vegion the hard and seft requirements are obtained and the
elemants sre scored accerdingly. Three rules are weed im ordesr to
elininete the clemants vhich do not satisfied seme o1 all of the
roquirensnts. The cesults are writtem to a fi)2 iv: later
consultation. The folleoviag are the mein procedures used:

1. BREAD-RBOUIRSD-BLEWENT-DATA (VILEMANE PRIORITY I-PRIORITY)
This routine reads required element description data as
specified by the user. FILENANE represents the region nase
ond it is used to vrite the questions (property names) asked
to the file “FILBNANRE QUESTIONS.MEMORY®. PRIORITY {s a
string vhich denotes the certainty of the ansvers given {.e.,
curreatly 100X for amsvers between 51 aad 100 certainty
valwe, and 50X for ansvers betveen 1 and 50. The I-PRIORITY
is the integer valwe of PRIORITY.

2. SCORE-BACK-RLENENT
Given the information contained in modules READ-ELENENT-DATA
and RBAD-RBOUIRED-RLENENT-DATA this medule compares the data
in the element property list (plist) and the required data
;tmny list and writes the score in the element property
ist under the property identity SCORR-STORE.

3. RULE-1 (FILENAMNE)

This is sn e¢lement selection rule which states that if an
element in the detabase does mot match any of the
requirements specified, ve must ignore it for the rest of the
ren. The scores of esch element are chacked and if they are
sero that element is reweved from the 1list BLENENT-MANKS.
The rejected elements oare stored in s list called
BRE-1-DISCARD. PILBUANE is the mame of the region. The
rejected eleaments are vritten to the file "FILENAME.RULE1l”
snd the ansvers given to the file "FILEWAME ANSVERS.NENORY".

4. RMAR-2 (PILERAR)
This is an clement selection rule vhich states that if an
elemant in the database deoes not match all of the essential
requirements specified, ve must ignore it for the rest of
this run. The sceres of sach clement are checked and if they
are less then MAXR (msximum scere for & veR requirement)
that elament §s removed frem the list ANES. The
rejected elonants are stered in & list called PILER-2-DISCARD

b on s

, PROGRAINED 5 GUIDS Page -6

tegether vith the sumber of aissing properties. FILERANE is
the neme of the region. The rejected elements are vritten to
the file °“FILIMANE.RULE2" end the smswers given to the file
“PILENANE_ANDVERS . MBNORY" .

S. M-I (FILENAE)

This is an element selection rule vhich states that §f an
elemsnt in the database does not match all the requirements
specified, ve must ignore it for the rest of this run. The
scores of each element are checked and if they are less than
NAXR thet element is removed from the list ELEMENT-NANES.
The rejected elements are stored in a list called
RULR-3-DISCARD tagether vith the number of wmissing
properties. The rejected elements are vritten to the file
SFILBRANE .RULE3" and the ansvers given to the file
*FILENANE _ANSVERS . NENORY" .

6. SCORR-RACH-BLENENT
Given the information read by msodules READ-ELEMENT-DATA and
READ-RBQUIRSD-ELENENT-DATA this module compares the data in
the element plist and the required data plist and vrites the
score in the element plist under the property name
SCORE-STORR .

7. OUTPUT-BLEMENT-NANES (PILERAME N I)
This routine vrites the valid elements to a file FILENAME
(region name) after RULE-1 and RULE-2 and then after RULE-3,
creating the files “"FILENAME 1.0UT" and “FILENANE 2.0UT"
respectively.

8. Finally, the results (the valid element mames) are vritten to
the file “FILEMANE.SOLUTIONS® vhere FILENAME denotes the
region name.

5.2.2 The NATCH NODRS.LSP file

MATCE-NODE-RSTVEERN-ELENENTS (REGIONS)

When thare are more than tvo regions, a further rveduction in the
number of elements is mede by taking the list of elements eliminated
by RULE-3 and the valid elements for esach region and then mstching the
nodes at the boundaries. The folloving are the main procedures used:

1. READ-REGIONS-ELENENT-RAMES
This procedure reads the element mames for the different
RECIONS from the file FILENANE.RULE3 snd FILENAME 2.0UT vhere
FILENME is the name of a region in REGIONS, and puts thes in
the list BLEMENT-NAMES.

2. BAR-4 (FILENANE)
This is an element selection rule vhich states that if two
elements of type bar and membrane in the datsbase ars not
conpatible at the nodes they must be ignored for the rest of

T et & s - - w4 ¢ g

PROGRAMMER'S GUIDE Page B-7

i

the run. Other elements vhich are not immediatly seen as
incompatible are stored in LIST-OF-OTHER. The rejected
elenents are stored in a list called RULE-4-DISCARD i.e., bar
elements for vhich there are no matching wmembrane elements.
PILEMAME i3 the name of the file "REGIONS". The rejected
elements are vritten to the file "REGIONS.RULE4".

3. OUTPUT-REGIONS-ELEMENT-NAMES (FILENAME)
The 1ist ELEMENT-NAMES of valid elements is wvritten to the
file "REGIONS.OUT".

4. Pinally, the results (the list of valid elements and the

elements for vhich RULE-4 does not apply) are vritten to the
file "REGIONS.SOLUTIONS".

3.2.3 The EXTERNAL.LSP file

Because of the nature of LISP, explicit declarations of the external
routines used have to be made, see VAX-LISP user manual. These are
(equivalent format):

1. PEES (REGIONS, FILENAME, ORDER-FLAG)
This routine gets the input from the user and it then
displays the solution file. REGIONS is a string of the form
"REG REGl ... etc", PILENAME is a string of the form
"LUSAS.DAT", and ORDER-PLAG is an integer vhich indicates the
state of the consultation i.e., exit, solution, or
evaluation.

2. INTERPRETER 1 (FILENAME)
This routine reads the solutions data files and formats them
into a resdable form explaining the meaning of the data.
PILENAME is a string denoting the region name. This routine
creates the solution file "REGION.SOLUTIONS" for each region.

3. INTERPRETER 2 (P1LENAME)
This routine resds the solutions data files and formats them
into & readable form explaining the meaning of the data.
FILEMAME is a string denoting all the regions used. This
rovtine creates the solution file "REGIONS.SOLUTIONS®,

4. MEMORIZE (FPILENANE, MEMORY-NODE, ORDER-NUMBER)
This routine collects all the output from s selection run and
stores it in the memory file. Bach piece of data is tagged
vith date, time , quantity and type information. FILENAME is
the region name, MRMORY-NODE is a string number, and the
ORDER-WUMBER is an integer.

RO o et A bt e s

PROGRAMMER'S GUIDE Page B-8

8.2.4 The FE.LSP file

This is the controller for the interaction with FEES. It initializes
some data and calls the external procedure FEES, according to the user
specification it evaluates the ELEMENT-SELECTION or exits. After
evaluation the external procedure FEES is called in order to observe
the results, re-evaluate the ansvers, or exit from FEES.

B.3 FPORTRAN FILES
Several files have been written in FORTRAN to build the MMI side of

the system using the SMG facilities. Here we outline each file, with
a more detail description in the source files comments.

B.3.1 The ELEMENT DATA.FOR file

This file defines the routine ELEMENT DATA wvhich reads from cr vrites
to a file the element names, property names and property values.

FORMAT

ELEMENT DATA (10, IN_FILE, NO_OF ELEMENTS, ELEMENT_NAME,
NO_OF_PROPERTIES, PROPERTY NAMES, PROPERTY VALUES)

ARGUMENTS
10 « integer to indicate read or vrite.
IN_FILE » input string; indicates the name of the FE-package name.

NO_OF ELEMENTS = output integer; indicates the number of elements in
the flle (maximum 100).

ELEMENT NAME = output string vector; stores the elemenet names.

NO_OF_PROPERTIES = output integer vector; stores the number of
properties for each element (maximum 20).

PROPERTY_NAMES =« output 2D string array; stores the property name for
an element.

PROPERTY VALUES = output 2D string array; stores the property values
for an element property.

B.3.2 The ERROR.FOR file

This file defines the routine ERROR vhich prints the error message by
1vking for the error type in the file DIR ERROR:ERROR.MESSAGES. It
rings the bell three times before printing the error message.

b L L

e e g

PROGRAMMER'S GUIDE Page B-9

PORMAT

ERROR (PB, VD3, ERROR_TYPE)

ARGUMENTS

PB = input integer; denotes the pasteboard identification.

VD3 = input integer; denotes the virtual display for the error window.

ERROR TYPE = input string; denotes the error type.

B.3.3 The EXTERNAL.FOR

This file defines the three routines used within LISP to format the
results.

1. INTERPRETER 1. This routine creates a solution file of the
for "REGION.SOLUTIONS" for each region REGION. It interprets
the results of rules 1, 2, and 3 and gives the final solution
as a list of valid elements.

FORMAT

INTERPRETER1 (REGION)

PARAMETERS

REGION = input string; specifies the region name.

2. INTERPRETER 2. This routine interprets the results for tvo
or more regions by writting the solution to the file
"REGIONS.SOLUTIONS”. (The name REGIONS is used).

FORMAT

INTERPRETER2 (REGIONS)

PARAMETERS

REGIONS = input string; specifies the list of regions.

3. MEMORIZE. This routine vrites to a file the location and
time at vhich the questions and ansvers vere processed.

FORMAT
MEMORIZE (FILENAME, MEMORY_NODE, ORDER CODE)
PARAMETERS

FILENAME = input string; specifies the region name.

i A

o ol

s~

PROGRAMMER'’S GUIDE Page B-10

MEMORY_NODE = input string; specifies the filename to which
questions ("REG_QUESTIONS.MEMORIZE") and ansvers
("REG_ANSVERS.MEMORIZE") are stored.

ORDER_CODE = input integer; specifies solution order.

B.3.4 The FEES.FOR file

This file defines the procedure FEES vhich controls the interaction
vith the wuser. The procedure is called from LISP and it is used to
obtain and display results to the user. FEES erases the screen,
creates the instructions, menu, and error windows then, displays the
main menu text. The procedure actions in this menu are:

OPTION 1. Calls the routine GET_FE FILE.

OPTION 2. Calls the routine GET_REGIONS.

OPTION 3. Exits from this procedure and returns to LISP,
alloving the element selection to be performed.

OPTION 4. Calls the routine SESSION.
OPTION 5. Calls the routine SOLUTIONS.

OPTION 6. Exists from this procedure and returns to LISP.
FORMAT

FEES (REGIONS, FE_FILE, ORDER_FLAG)
ARGUMENTS

REGIONS = input/output string; specifies the regions used.

FE_FILE = input/output string; specifies the FE package used.

ORDER FPLAG = input/output integer; specifies the current state of the
consultation. Valid values are as follows: 1

0 output integer; if consultation is to be terminated.

1 input/output integer; if FEES is to request the user the
FE_FILE and the REGIONS. “

2 input integer; specifies that the element selection has been i
completed and that the solutions can be viewed.

B.3.5 The GET FE FILE file A

This file defines the routine GET _FE FILE to request the table name

o

Bhadieial A Sl ann J0

o

- ———

PROGRAMMER'S GUIDE Page B-11

from the user in order to read the element description data in terms
of the number of elements, property names and values, it also allowvs
the user to define new elements, or modify existing ones.

FORMAT

GET_FE_FILE (PB_INFO, FE_FILE, OLD_FILE, OPTION DONE, COMMAND FLAG)
ARGUMENTS

PB_INFO = input integer vector containing the display information.
PE_FILE = output string denoting a previous or a nev FE-file.

OLD_FILE = output string denoting a previous FE-file.

OPTION_DONE = output integer vector; indicates the options selected by
the user.

COMMAND FLAG = output integer; indicates the successful completion of
this routine.

B.3.6 The GET REGIONS file

This routine asks for a REGION NAME then it calls GET TRUTH and saves
the ansvers given in the file "REGION NAME.REGION".

FORMAT
GET_REGIONS (PB_INFO, REGIONS, REGION FLAG, COMMAND FLAG)
ARGUMENTS

PB_INFO = input integer vector with the display information.

REGIONS = output string denoting the list of regions selected by the
user.

REGION_FLAG = output integer vector denoting the state of each region
(maximum of 10).

COMMAND FLAG = output integer used to denote any command given by the
user.

B.3.7 The GET TRUTH.FOR file

This file defines the routine GET TRUTH vhich asks several questions
to the user in order to define the problem. On successful completion
it creates tvo files REG 100.REQ and REG 50.REQ where REG is the
region name and the Y00 and 50 denote the certainty of the ansvers
given i.e., all the ansvers between 51 and 100 are stored in the file

PROGRAMMER’S GUIDE Page B-12

REG 100.REQ vhile the ansvers between 1 and 50 are stored in the file
REG_50.REQ. O ansvers and no ansvers are taken as don’t knows. (For
the property OUTPUT any ansver given defaults to 50X certainty).
FPORMAT

GET_TRUTH (PB_INFO, REGION NAME, NO OF QUESTIONS, LINK LINE, REPLY,
COMMAND_FLAG, “TRUTH_FLAG)

ARGUNENTS
PB_INFO = input integer vector containing the display information.
REGION NAME = input string denoting the region name.

NO_OF QUESTIONS = input/output integer denoting the number of
questions.

LINK LINE = input/output integer vector denoting the position of the
questions in the text file.

REPLY = input/output string vector denoting the ansvers given by the
user.

COMMAND FLAG = output integer; denotes any user command.

TRUTH_FLAG = output integer; denotes the successful completion of this
routine.

B.3.8 The HELP.FOR file

This file defines the HELP routine which prints help text on the
current menu. It creates a smaller window than the FEES menu window
vhich contains the ’‘help’ text and is deleted returning to the menu
window.

FORMAT

HELP (PB_INFO, IN_FILE)

ARGUMENTS

PB_INFO = input integer vector; contains the display information.

IN FILE = input string; specifies the menu file (the question) for
vhich help is required.

B.3.9 The SOLUTIONS.FOR file

This file defines the routine SOLUTIONS used to viev the individual
regions solutions. It displays the regions for selection, vhen more

s

S S

g

B

R)

PROGRAMMER'S GUIDE Page B-13

than one region exists the name "REGIONS" is also included. The user
selects one, and the procedure VIEV_TEXT is called.

FORMAT

SOLUTIONS (PB_INFO, REGIONS)

ARGUMENTS

PB_INFO = input integer vector; contains the display information.

REGIONS = input string; specifies the region name(s).

B.3.10 The UTILITIES.FOR file

This file defines various general purpose routines for string
handling, input checking etc. The routines are:

1.

CHECK. This routine counts the number of characters
according to their type.

FORMAT

CHECK (STRING, L, NO_OF_BLANKS, NO_OF DECIMALS,
NO_OF_ILLEGALS, NO_OF_LETTERS, NO_OF MINUS, NO_OF NUMBERS)

ARGUMENTS
STRING = input string.
L = output integer; denotes the length of the string.

The rest of the arguments are output integers, their name
denotes their type.

CHECK NAME. This routine checks that a string is
alphanumeric.

FORMAT
CHECK_NAME (STRING, REASK)
ARGUMENTS

STRING ~ input string.

REASK = output integer; denotes if the string is alphanumeric
or no.

CHECK YESNO. This routine checks that a string is a yes or
no ansver.

FORMAT

PROGRAMMER'S GUIDE Page B-14

CHECK_YESNO (STRING, REASK)
ARGUMENTS
STRING = input string.

REASK = output integer; denotes if the string is one of:
YES, Y or NO, N.

CLEAR. This routine injtializes a string vector to empty.
FORMAT

CLEAR (LINE, LINES)

ARGUMENTS

LINE = input string vector.

LINES = input integer; denotes the number of lines in the
vector.

COUNT ITEMS. This routine counts the number of items in a
string (assume one or blanks betveen them), and returns the
items in a vector and the number of items.

PORMAT

COUNT_ITEMS (STRING, LINE, LINES)

ARGUMENTS

STRING = input string.

LINE = output string vector.

LINES = output integer.

CSORT. This routine sorts a list of words in dictionary
order using a simple insertion sort technique.

PORMAT
CSORT (LINE, LINES)

ARGUMENTS

LINE « input/output string vector.

LINES = input/output integer.

C T0 I. This routine converts a string number to integer.

FORMAT

PROGRAMMER'S GUIDE Page B-15

10.

C_TO_I (STRING, N)
ARGUMENTS
STRING = input string.
N = output integer.

DIR. This routine formats a string vector in a “directory"

Tora.

FORMAT

DIR (VIDTH, COUNT, LINE, LINES)

ARGUMENTS

VIDTH = input integer; specifies the line width.

COUNT = input integer; specifies the number of jtems per
line.

LINE - input/output string vector wvith the
individual/arranged items.

LINES = input/output integer representing the number of
lines.

GET FILES. This routine returns in a vector form the files
Tound according to a certain specification.

FORMAT
GET_FILES (IN_FILE, LINE, LINES)
ARGUMENTS

IN FILE = input string representing the filename(s) to look
for.

LINE » output string vector representing the files found.

LINES = output integer vrepresenting the number of files
found.

I T0 C. This routine converts an integer to a string.
PORMAT

I_TO_C (N, STRING, L)

ARGUMENTS

N = input integer.

A At~ .

[=

PROGRAMMER 'S GUIDE Page B-16

11.

12.

13.

STRING = output string.
L = output integer representing the length of STRING.

LOCATE. This routine finds the position of an item in a
string.

PORNAT
LOCATE (STRING, N, TAIL, L)
ARGUMENTS

STRING = input string.

N = input integer representing the position of the item to be
found.

TAIL = output string representing the truncated string with
the "head" as the item.

L = output integer representing the length of the item (0 if
not found).

MEMBER. This routine looks for an element in a string and
returns its position.

PORMAT
MEMBER (STRING, LIST, N)

ARGUMENTS

STRING = input string representing the item to be found.
LIST = input string.

N = output integer representing the position of the item (0
if not found).

TRIM OFF. This routine trims off the trailing and 1leading
edge blanks from a string.

FORMAT
TRIM_OFF (STRING, L)
ARGUMENTS

STRING = input/output string.

L = output integer representing the "true” Jlength of the
string.

PROGRAMMER 'S GUIDE Page 3-17

5.3.11 The SNG ROUTINES.POR file

This file defines various routines vhich are used to handle the
input/output vith the user.

1.

BIGHLIGHT OPTION. This routine iz used to highlight the
options of 2 menu.

PORMAT

WIGHLIGHT OPTION (VD, LINE, LINES, OPTION_DONE,
NO_OF_OPTTONS)

ARGUMENTS
VD = input integer; specifies the display identification.
LINE = input string vector; represents the menu lines.

LINES = input integer; represents the number of lines in the
Penu.

OPTION DONE = input integer vector; represents the options to
highlight.

NO_OF OPTIONS = input integer; represents the number of
options in the menu.

KEYSTROKE. This routine reads and prints a keystroke at a
given position in the screen. It updates the column position
according to the key type. Refreshes the screen if CTRL/U or
CTRL/R are used, deletes a character if the DELETE key is
used, and converts lovercase letters to uppercase.

FORMAT

KEYSTROKE (PB, KB, VD, ROV, COLUMN, KEY, KEY_TYPE)

ARGUMENTS

PB = input integer; specifies the pasteboard identification.
KB = input integer; specifies the keyboard identification.

VD = input integer; specifies the read display
identification.

ROV = input integer; represents the current cursor rov
position.

COLUMN = input/output integer; represents.the current/updated
column position of the cursor.

KBY = output integer; represents the ASCII code number of the
key.

————————y

ke o

PSR

[RESSIS.

PROGRANNER 'S GUIDE Page 3-18

KEY TYPE = output integer; represents a code used to identify
the key.

PRINT DISPLAY. This routine clears & specified vindov and
prints a given text to that vindov.

PORMAT

PRINT_DISPLAY (VD, LINE, LINES)

ARGUMENTS

VD = input integer; specifies the display identification.
LINE = input string vector; stores the lines to print.

LINES = input integer; denotes the number of lines to print.
READ DISPLAY. This routine creates a display of given wvidth
and vith the same height as the menu display to read the
ansvers and/or commands from the user. The menu and reading
displays are scrolled vhen necessary. For menu questions
(each question is defined in the text file by an asterisk in
the first column) an ansver display counter is created. The
bell is rung once to attract the user’s attention.

FORMAT

READ DISPLAY (PB, KB, VD, LINES, LINE, ROV_START,
COLUNN START, VIDTH, NO_OF_QUESTIONS, LINK LINE, REPLY,
COMMAND FLAG)

ARGUMENTS

PB = input integer; specifies the pasteboard identification.
KB = input integer; specifies the keyboard identification.

VD =« input integer; specifies the wmenu display
identification.

LINES = input integer; represents the number of lines in the
menu.

LINE « input string vector; represents the text lines in the
aenu.

ROV_START = input integer; represents the rov position for
the read display.

COLUMN_START = input integer; represents the column position
for the read display.

VIDTH = input integer; denotes the vidth of the read display.

PROGRAMMER'S GUIDE Page B-19

WO_OF QUESTIONS = output integer; denotes the nusber of
quastions.

LINK_LINE = output integer vector; represents the position of
the questions in the text file.

REPLY « output string vector; stores the ansvers/commands
given by the user.

COMMAND FLAG = output integer; identifies any given command.

SCROLL DISPLAY. This routine scrolls a display, vhen the
- ' -ARROV, LINE-FEED or RETURN key are used.

FORMAT

SCROLL DISPLAY (TYPE, DIRECTION, VD, LINES, LINE, IFLAG,
Rov_oLB, ROW, ROV_PILE)

ARGUMENTS

TYPE = input integer. Possible values are: 0O to scroll the
display, and 1 to read from the display vhile scrolling.

DIRECTION = input integer. Possible values are: -1 to
scroll up the display by one row, and 1 to scroll dovn the
display by one rov.

VD = input integer; specifies the display identification.
LINES = input integer; represents the number of lines.

LINE = input string vector; represents the text lines.

IFLAG = input integer vector; indicates the position of
non-empty lines.

ROV OLD = input integer; represents the previous rov
posItion.

ROV =« input integer; represents the nev rov position.

ROV _FILE = output integer; represents the cursor position
vithin the file.

TEMPLATE. This routine reads and prints a file to the screen
In tvo parts: part 1 reads and prints the title and text for
the instructions vhile part 2 reads and prints the title and
text for the menu or help vindow.

PORMAT

TEMPLATE (IN_FILE, VD1, VD2, LINES, LINE)

ARGUMENTS

PROGRAMMER'S GUIDE Page B-20

IN_FILE = input string; indicates the filename to be read.

VD1 = input integer; specifies the menu display
identification.

VD2 = input integer; specifies the instructions display
identification.

LINES = output integer; represents the number of lines in the
menu.

LINE = output string vector; represents the menu text lines.
VIEVTEXT. This routine allows a text to be vieved.

FORMAT

VIEV_TEXT (PB_INFO, IN FILE, LINE, LINES, COMMAND FLAG)
ARGUMENTS

PB INFO = input integer vector; specifies the display
information.

IN FILE = input string; indicates the filename.

LINE = input string vector; represents the menu text lines to
be vieved.

LINES = output integer; represents the number of lines in the
text.

COMMAND FLAG = output integer; indicates the command code if
one vas used.

L

DATE
LMED

R
=
-
A
N
. . U
Py Tt
.“
e

-y

