
AD-AI83 371 A Fl NITJ E ELMENT E5P~ $~N NINT ASUDAN I/
PROTOTY PE POCRAM(U) C~Ai ~L NTO C ENLAND)
AfRODYNAMICS DIV A J NORIS NOV 86 EOARf-TR-87-97UNCLASZ'IFIED A OIR-85-0306 F r 1 2/9 NL

EL-25

44,

......

fOARD-TR-87-QA

Professor A. J. Morris November 1986

DTIC
ELECTEI

1Acoeson For
NTIS CRAWI
OTIC TAB 03
Unannotnced 3
Justification

By
Dist ibution I

AvalabifitY Cod@
Ayal and)lor

stal

A-
A FINITE ELEMENT EXPERT SYSTEM

An Initial Study and Prototype Program

aWJ

•~~ 4 .. ,14

Contents

A Finite Element Expert System

1. Introduction 2

2. Overall Problem Definition 3

2.1 Introduction 3
2.2 Problem Description 4

2.2.1 Rationale 4
2.2.2 Classification 4

3. Creation of FEES 6

3.1 Prototype Philosophy 6
3.2 FEES Knowledge/Inference Modules 7

3.2.2 Overview 7
3.2.2 Module Overview 8
3.2.4 Language 10

4. FEES Architecture 10

4.1 Main Components 10
4.2 Controller 11
4.3 Input/Output Modules 12
4.4 Inference Modules 12
4.5 Usege 12

5. Conclusions and Recommendations 12

5.1 Less" from FEES 12
5.2 Recommended Future Devlopl1nt 13

5.2.1 Extensions to FEES 13
5.2.2 Object Oriented tLNa 14
5.2.3 M.M.1. Featureo 14
5.2.4. Dreamer 15

References 16

App edIx A Uer's Guide

1. Introduction Al

1.1 Fecilities in FEES Al
1 .2 Solutions A2

2. Ue Proesau A2

2.1 Le nq in A2
2.2 Aseslnl the FEES peeM A2
2.3 cenulting IAS

.ll

2.3.1 Option 1: Element Selection A3
2.3.2 Option 2: Problem Definition A3
2.3.3 Option 3: Element Selection A4
2.3.4 Option 4: Restart a Consultation A
2.3.5 Option 5: Solutions A
2.3.6 Option 6: Logoff from FEES A5

2.4 Answering questions A5
2.5 Finalising the Element Selection A5
2.6 Requesting Help During a Consultation A5
2.7 Procedures for Checking and Correcting Input

Date £6

3. Operating Instructions A6

3.1 Looking at Error Mesesages A6
3.2 Using the FEES Commands A6
3.3 Instructions for Answering Questions A7
3.4 Logying Out A7

Appendix B Programmer's Guide

1. Overview of FEES 91

1.1 The Man-Mchine-lnterface 91
1.2 The Element Selector 61
1.3 The FEES Source Files Bl

1.3.1 FORTRAN Files 92
1.3.2 LISP Files B2
1.3.3 TEXT Files B3
1.3.4 DATA Files 83

2. LISP Files 64

2.1 The ELEMENT SELECTION. LSP File 64
2.1.1 Reading the Element Data 94
2.1.2 Element Selection 65

2.2 The MATCH NODES. LSP File 96
2.3 The EXTERNAL. LSP File 67
2.4 The FE.LSP File W

3. ARIm Files U

3.1 The CLEMENT DATA. FOR File n
3.2 Tm EAR. FOR File O
3.3 The EXTERAL. FAR File W9
3.4 The FEES. FWR File 610
3.5 Wo GET FE FILE File 310
3.6 I oCT RE6106 File 611
3.7 e ET T IW.FR ile I1
3.6 TOW NELP. FAR File 312
).9 he 1ILUTIS. FUR File 12
3.11 onu VIIrTS ,. FUr Fl m 6133.11 The INS IlfUP. m File 617

-

- A DO-PA

3L MUNFY L MM A ----- I OO UNTIONOAAR~" OFOU

IL Approved fair public reless.; d1strIbution

4.- nmiumaw NUMR M L my= sOMU w
ECARD 9-8 7. -Q3

NOW OF CU 0 Nm mmW WU Y&1 111 or 111 MU s'lwi
Cresf lid lsstftat. of !eNoet IW vpam, Offiee If hAoemsem. sareb and

lox 1o41
Pno 11ew York 09510-4200

TOOTIU AIM 5-O

WO NUP*ewTR 1OtA"510-005II7"2m 1

A nuth reort rer Set en nitia Study nto tv obty Pofugra et yse

13mep. to O id users oW iT elVMt VnlAle sytes MPG "Mefkoen ISn limited
71pset oCMf hu Froble AL buOe prototP cosltb ppm ebencstce.
Thi cPleerlNy dentretM eteev~p faetigo betbetdepscnti

-we. The report repsts hant initial worky Ino futheiiiyo euiger t Setem
full ecaosuerIstem.itel amlasytm eyon raieo Ai

Ta i ftepbl4Ls ae rttyecnutpj o encntutd
Thscerybmntab h ~naa faotn nOjc retdepam nti

am. hereor g a owths ntil ore ayb frtve ep'ledto*rot

OF 1

fbim ysper We bee. reviewed by the BUM Informtin offiLee dn in
e2leeeeble to the Netiemel Toobsee1 Iftf.,et~ Servi~oo (UTIE). At MTS
It will be releable to the Samerel public. Including foieiw nations.

Ibi teeama, report ban bass revim madi io approved for publicatias.

Chie, Structues an Structural Materials

Ckief Scientist .1.

A mtial studya Peew. rsa

A. J. HOIS

Crm..Ild mltut of Te.loy,I
coumFI3
W43 S&

2-

The aim of the work presented in this report in directed
at the creation of an Expert System which can act as a
consultant to aid the finite element analyst. In principle the
system mast be capable of assisting the FE user to cover the
full range of requirements from initial modelling, to result
interpretation and error checking and should be capable of
advising over the full range of problem typesi statics,
dynamics, composites, non-linear analysis, etc.

The incorporation of A.I. techniques Into the engineering
design process has progressed at an ever increasing pace In
recent years. Conferences El] have been devoted to this aspect
of computer based design and at least one system E23 has been
incorporated into the preliminary design process. Some of this
expertise has been passed across to the finite element world
with a view to providing consultancy programs for either
assisting with the modelling process or generating a computer
based 'users manual'. The main approach in this situation has
Involved the use of existing Expert System Shells either
constructed from 'empted, programs such as DEYCIN E3] or
specially constructed shells as SAVIOR E43.

This latter approach involving the use of existing shell
like programs assumes that the knowledge and the computer
systems designed to handle it can be completely separated.
There is, however, evidence from human learning studies that the
modelling of a domain contributes strongly to the problem
solving ability and the flexibility of any resulting
inferencing system. Johnson and Thompson E5] show that the
consequences of inadequate knowledge representation in both
himan and computer problem solving gives rise to a performance
Which has the false appearance of success. Sloman C6] supports
this concept and argues cogently against the advocates of
particular formalisms for representing al kinds of knowledge.
It con be demonstrated that first order predicate logic may have
an Important role In theorising about Intelligent systems but Is
laitod in scope and range. In the light of this type of
arVpint it is suggested [63 that different formulations are
Wseful for different purposes to cover the wide variety of types
at expressional systems used by people in different fields such
as mthematiclans, scientists and engineers.

These arguments point away from the Imediate use of a
shell omwirement for any finite element consultant program. A
better approa seems to lie in examining the nature of the
Mraea A bagJ a system on the Irherent structure of the

6ia iy any 'inference engine' can then be
M e we el the rul base employed by an expert practitioner.

Is Is the pach adopted herein.

Soeo" fr the lication t A.I. methodologies to
ite elom" asis is growing in Importance. First of

0al, bmUse 0 "W systems becoig co lez, the
amn-eimt. Oint epecialist i" them vwry difficult to use.

mmma m d I i limmimmdii a d eee P * i l "(

- - -

-3-

Secondly, because it Is now widely recognised that the systems
cannot be used as 'black boxes' and require a high level of
experience If errors are to be avoided. As a result a general
assessment engineer cannot examine the structural integrity of
an item or component using the finite element method as a
non-specialist without running the risk of making, potentially,
catastrophic errors. A successful F.E. Expert System will
return the FE method to the general engineer as a safe and
reliable design assessment tool.

Because the finite eleme method has a vast range of
applicability the starting point to the present work was fixed
as the static analysis of linear structures. Having limited the
scope of the proposed Ezperty System it was also found necessary
to limit the range in order to build a prototype program.
Prototyping has proved to be beneficial in other A.I. projects
and was felt to be extremely important in F.E. analysis where
there is a complex interaction between engineering judgement and
firm mathematical knowledge. Thus a very limited prototype
program has been constructed and is outlined below.

The main activity of this program is to select appropriate
finite elements for specific structural configurations. It is
written In LISP as initial studies indicated that the list
compiling properties of the language could be used to advantage.
The outcome of the work does, however, point strongly to some
form of object oriented description language particularly with
respect to procedual aspects. Hithin this framework the main
influence and control processes could be efficiently exploited.

The remaining sections of this report described the
overall problem at which the program Is directed and the
specific sub-program selected for prototyping. An outline
description of the program architecture is presented though
aspects related to usage are reported separately. Finally the
report indicates future lines of progress which could be
Implemented with a view to generating a user friendly interface
and expert advisor to major finite element systems.

2. . .. m~To

Mben the finite element method Is considered and
i*eequently used for the analysis of a major structural itee a

range of prblem confront the engineer. These start with
overall aspects uhich relate to planning the job and continue
throuA sore tecbiically specific mattwrs such as meshing,
element selection and conclude with the need to interprete the
remlts with respect to the accuracy of stresses, displacements,
fr encies. nmoe shapes etc. The questions associated with FE
MWtOatiA e tend to be the sam In nature for all types of
aw scation. Often the only change in moving from one
agpletion to anome In the f ocus of the question. For
rmle, elalar questioes mist be answered If elements are
benM selected for static ad dyna mc analyses but the relative
ie anges in the move from static to dynamic
eIderations. In attempting to construct an Espert System ItL _

-4

is, therefore, natural to define the problem in terms of the
questions which must be answered by the analysis. In this
section we look at the overall problem and in the next one we
address the items specific to the prototype application.

2.2 Problem Description

2.2.1 Rationa

The problem of analysing a structure with the aid
of an FE system is described below in terms of the main
areas of interest together with an indication of some of
the detail considerations which fall within these areas.
As indicated earlier, the knowledge required for the
resolution of these problem areas may be heuristic or
mathematical in nature. Some attempt to classify the
broad nature of the knowledge is given.

2.2.2 Classification (Outline)

1. Overall Considerations (Heuristic Knowledge)

1) Planning requirements - staff, time-scales, etc.

ii) Deciding problem type - static, dynamic,
non-linear etc. or combination.

iii) General suitability of FE for problem.

iv) Solution requirements - hardware, software.

2. Modelling Problems (Heuristic/Mathematical
Knowledge)

i) Main structural features

- shape (flat/curved), thickness of members,
curved/straight boundaries, boundary

constraints.

1i) Materials

- isotropic, anisotropic, composites
(orthotropic).

1ii) Responses

- linear, non-linear, dynamic, etc.

iv) Loading

- static, aerodynamic, transient, thermal, shock,
etc.

v) Structural Inconsistencies

- joints, off-sets, discontinuities, stress
raisers, contact problems, hinges, etc.

vi) Damping Type

vii) Structural/Loading Symmetry or Asymmetry

3. Element Selection (Heuristic/Mathematical
Knowledge)

1) Structural regions

- regions with similar structural properties
identified

i.e. membranes, beams, shells, etc.

ii) Effect of material

-e.g. 'composite' elements.

Iii) Nodal compatibility or M.P.C.'s required.

iv) Geometric properties accommodated

-curved edges, reinforcements, off-sets, etc.

v) Special problems

- e.g. shells.

4. Meshing Problems (Heuristic/Mathematical
Knowledge)

i) Grid density requirements.

Ii) Isoparametric shape restrictions.

5. Solution Problems (Mathematical Knowledge)

1) Potential numerical Idealisation problems.

Ii) Matrix inversion/solution requirements.

111) Eigenvalue/Vctor solvers.

iv) Non-linear routines.

v) Reduction methods.

vi) Sub-Structure considerations.

ti) sopaa~erlc haperesrictons

-6-

6. Results Interpretation
(Heuristic/Mathematical Knowledge)

1) Equilibrium checks

- nodal, overall.

Ii) Consistency checks

- Stress jumps, displacement discontinuities, etc.

iII) The effects of structural inconsfstencies.

It should be emphasised that this classification is not
exhaustive and represents an outline of the type of knowledge
and problems found in finite element applications. No attempt
has been made to augment the task to include the application of
pre- and post-processors, nor to the overall design problem
which would require consideration being given to automated
design methods.

3. CREATION OF FE (finite element expert system)

3.1 Prototve Philosophy

Although it is tempting to use an established shell as the
basis for a new finite element Expert System the arguments
advanced in section 1 and the experience gained in the creation
of FASA E63 indicate that this may not be the best path. A
better approach is to create an Expert System based on the
structure of the finite element applications knowledge.
However, the creation of an Expert System to handle the full
finite element analysis problem outlined in Section 2 represents
a formidable task. A more appropriate line of attack involves
writing a prototype Expert System based on a limited sub-set of
this knowledge. Specifically the items in 2.2.2 under Modelling
Problem i, ii and Element Selection i-iv (inclusive) were
included. In addition, it was decided that only statics
problems should be considered at this, initial, stage.

Using such a limited sub-set of the overall FE knowledge
base it was clear that no meta-level knowledge or control was
required. But the augmentation of the program in the directions
of generality would soon Impose such a requirement. Thus a
modular structure for the Expert System architecture was
created. For convenience and portability this program was made
specific to the Digital Equipment Corporations VAX range of
compters.

-7-

No Expert System can be made independent of human input
nor is it desirable that it should be independent. Computers
are useful for certain operations and engineers are more
effective in other, more creative, areas. Any Expert System
should be able to participate in a dialogue with the user. In
order to facilitate this man-machine interaction a range of
FORTRAN routines have been created to allow the program to
exploit the screen management facilities available under the
VAX/VMS 4.2 operating facility. These routines also serve as
the main control program for the Expert System as a whole.

In principle there is no need to limit the range of
elements which can be included in FEES and, in consequence,
there is no restraint on the system with respect to potential
interacing FE programs. However, because special problems exist
with certain complex elements, such as shells etc. it was
decided for convenience to limit the current element library to
simple elements. Because this is not a fundamental limitation
the library can be augmented when deamed suitable.

3.2 FEES Knowledae/Inference Modules

3.2.2 Overview

When the finite element process is examined, it is
found possible to describe the basic inference process as
one of, essentially, accumulating constraints. To begin
with the geometric properties of the structure starts a
process of limiting the elements which can be used. The
concept emmerging from this limiting process is that the
structure to be analysed needs to be divided up into
regions with similar geometric properties. If further
limiting factors relating to the structure, such as
inconsistencies, special features etc., are included it
can be seen that there are a range of constraints which
relate to the structural description. With these limits
in place it is possible to evaluate appropriate elements
for each region taking into account factors such as nodal
conformability. Finally, with all constraints in place
and the evaluation complete the process of selecting
specific elements can be commenced.

Clearly, the human eye is more appropriate at
deciding if a structure is curved or thin or has other
important geometric properties. Thus the FEES program
assumes that the user is able to supply this type of
information and enters a dialogue in order to obtain it.
But it does, currently, assume that the user may be unsure
about the types of mechanical action the structure is
performing. Thus, during the dialogue, the user is asked
to place a level of certainty on such factors as membrane
action, bending etc.

3.2.3 Module Overviews

1) Structural Descrigtions Module

Purpose:

to describe the geometric shape of the structure
and material properties on a region by region basis

Mode of Action:

I) Divides the structure into regions depending upon
the basic spatial properties

ii) In each region defines structural properties
(curvature, thickness, boundaries)

Iii) Identifies special regions which relate to beams,
nodes eta.

iv) Defines material properties in each region

v) For each region sets up an element identification
'vector' and region 'vector'.

These 'vectors' are predicate type descriptors
encapsulating the properties of the entities under consideration
thus:

REGION

ELE4ENT (REGION, PROPERTY, MATERIAL,

where

REGION: is the 'vector' describing the geometry of
the structure and its boundaries

PROPERTY: is the 'vector' describing the action
property of an clement, i.e. membrane,
rod, beam

MATERIAL: relates to the material constants and
properties

-! - 9--

-9-

Each of these defining terms may have a list of arguments
like REGION, for example, MATERIAL, includes Poisson's ratio,
elasticity constants etc.

2) Element Evaluation Module

Purpose:

to advise the system on the element properties
required for each region such that the Selector
Module can attempt to select appropriate elements.

Mode of Action:

I) Augments the ELDENT list with further constraints
on potential element types

4 11) Examines each region to decide if special reasons
exist which cut down the available choices, i.e.
shape requirements (e.g. the incorporation of
curved boundaries), grading requirements (e.g.
local stress raisers requiring fine meshes), etc.

iii) Examines each region to see if adjacent regions
impose constraints because elements have already
been selected there (this may indicate use of
M.P.C. 's)

iv) Special loading requirements may require specific
elements or the structure may require special
elements, e.g. presence of cracks.

The module then augments the ELEMENT list to incorporate
these new constraints hence:

ELEMENT (REGION, PROPERTY, MATERIAL, NODAL
CONSTRAINTS, SHAPE, ETC....)

where, as usual, the new augments may have a list of properties
SIC,

SHAPE (BOUNDARY SHAPE, CURVATURE, GRADING, ETC.)

NODAL CONSTRAINTS
(REGION, ATTACHED ELEMENTS, GEOMETRIC

CONSTRAINTS, ETC).

etc

Some of the new augments can take account of any special
features which the analyst may feel are appropriate to element
selection. For example, not using a 3-D membrane element in a
Ming Box structure which is enly 3-D whilst the membrane
element is really only 2-D

-10-

3) Element Selector ~l

Purposet

to use the accummulated information trom the
earlier modules to select el ements for each region

node of Action

1) For each region unravels the ELDUOT 'vector' and
attempts to match with the elements In the library.

4) "ditianal Modules

Although no additional modulus have currently been
Incorporated Into PM the above procedures could
be extended to account for Hashing, Loads, etc.

3.2.4Iin

The structure af the modules outlined In 3.2.2
Indicates a clear pattern to the way the knowledge is
accmulated. If this Is compared to the existing
programming languages It Is seen that both LISP and PRLOG
resemble the above torms. The fact that one of the
processes involves adding facts to an accumulating list of
Items would seem to point towards a LISP implimentation.
But higher order inferencing which more advanced forms of
the system would require point to a PROLOG or even a 'C'
implimentation. However, the availability of DMCLISP
which has recently been Introduced to all VAX machines
decided the Issue and the core part of PM wich
implinents the modulus of section 3.2.2 and selects the
elements Is written In /CLISP.

As explained above, the control modulus which call
an the element selector routines and interface with the
user employ FORTRAN or VIE routines.

4. .hhjWSMISIM
4.*1 NLAANG"

MIw program Is constructed In the usual modular for
adopted by all modern software dewlogments. The main
components conaist at thee major modul#ns described In 3.*2.*2#
the structural description module, the element evaluation module
and the element selector. Information flow og overall control
are achieve through the control module ubilst the user operates
the system through the Inputloutput module. A schematic outline
to shown In Fig9.

At the present tim there Is oecii istabwe- tohafaem mmuWprLtet wmthe entu ill e i

4.2 3 GaMUSU
The estro mmoale mmme the fleor G the pregraim

ermoulowiap ms mobh that ON&b activity Ls carried ot at Its
eppuprat time. If the user aks for a Weak to be perf ormed

me Iepmti =A&=.& Module currently forms t3u Interf ace

module uses iihe poor of UG to screen manage the iayutioutput
"04 0be an allow thu rport system to dilepus with theUser. * at the Prequire toanfn. h data are

faciitie we uppled t "Wuser via pro-mitten text, no

with theLOI 73 roec IniatswjUtaauemylorrnde
mi1st to Introduce a natural lanuuaqe facility to Improve the
dialepie Capaility ot the Program.

4.* 4 "CMin..6"Aa
21 three modules, Structural Moscription, Elemnt

Braluator an" Elsmnt Selector, represent the basic Inference
facilities Of thuA ezistm PrOfrai. 2%9 functions and
construction of these modules are described In Section 3.*2.*2.

Mwphe a outlined Above hMs been ptInto opration on

element library contains a small set of eleme1 descriptions
te o reeac pIlm aprtn nd an. alterniv c et

reprseningtheLMU lemnt ibrryLUM~ io a proprietry

5 .I ~n

2%o Govelogmsnt and ume of the prototype program has
Andicated th esuuoss S the Big -enOeu t afflyinw Imprt
Systoom ideas to oies. the * Useria mess' and
owlisliti. of finitoElement Syste. it bas also mode

clear that me 3.5. -m be evisted afe doe nut require a baic
Sawu~e knoWefte at structural mda~zis on bobaf of the

user. moleus &.C teblow - he emp& n h na
fieto allom esoon"" with Oa onus nly t

opprem we ue oepsoemk as~ smj, inWc. ST ae.
aita brea to bsem f inIte element suerts first.

-13-

In amtiuj the progrm It aen ecessary to start the
a atese ajs p~t aud dWining finite element * surf ace
419d de0p heinleg. juis leede to the creation of the

Reference *Nueee much, boo a clauarly WINNue structure ot
their ow. As a result It Io pw~I that the handling Of
I Smte element knowseg em he Ihsame form, at Object

:E defto ine the
heinedg alemddescrie i tf current * Imerencel Mdulus

ed m future ions everiag more at the 1.3. prosli. In
Mition. an Object oriented approach could be used to grest
strfet in the Cgtol Module as part of a Nets-level reasoning
ability.

if an Object Oriented Appreach simillar to the C.N.L. E83
is adopted tha ln would be formed with euisting

Lanpge programs which could he a Ire to crest. a
wseful tutorial and empisnation facility fora. Nithin such
a ttoial model the Uster Aesesor' programi would he located
ubiebt would asses the users general oapebility and knowledge and
automatically adjust the level ot emplamation accordingly.

As seen In 3.*2.*2 the approach adopted in the developmn
at FMllow. knmuledge and constraints to he put together In a
form which can be easily iLnterprted as Instructions for a User
Noumal. Tus, the resulting 3.3. progam could output results
In a form saloing a direct Input to%= (say) amid thereby
diseence with major parts at the traditional Veers Mnual. This

uudalso require the Incorporation of graphics facilities
Uihl are easily achieved in this type ofaprch

Finally, the structure Of the prototype and any future
successor are of such a Simple f Orm that It is possible to
consider way. In which the computer Itself could &sses a gi1e
solution run. In consequence, a form of learning can he built
Into the system larby previous runs are exammined for patterns
of usage. This would he doe in quiet periods throw& the
development of an Interestinag rermcalled - lug* hi

= PC woulA come into mper"rM m me t In use,
pZGWreviu rum, WA att to assess any use""

pattens muich would then he wlp to speod-up future
Cosultatim.

5.2.1 L t

Ike existing "prga so aie entwed In several
direetem wit a radiCal Ine~iaim S the
follow&* arms I

- 14- I
1) lvelalpment ofa hanlewe base of P to cover

he ull I.Iae OI MM prebM range "ea*al In
Section S. 2. 2. Ibis Woul regire axtending the
arediteeetue o I from tat dm in
nI.1ltoe i e pera =:r 00"08 ,ich ,,ould
aste for ms* g, results Interpretation, etc.

i1) Interface with a , ue8 mpility to allow
screamm usdpulatian I a pu data.
LInig with pre-amd post-processors uwsl also be

i1) Creatian of a User Maual replacement module to
allow for the easer use at A.lJUII, etc.

Iv) inALIng of the pegra to a general finite element
rational database to Increase the range of
potential problems.

I.2.2 fi--t ou =*-.d Ir. ...

hs Indicated eleodre in this report the structure
of the , -led, base Indicates that an opportunity exists
to owleit w)et Oriend Approach. A vr&iety of 0.0.
Lenmpmges are amlable but there is so advantage In
seledbWtime n s thew 6 logmmnt of the Ki page itself
en be blanded into the devela o the kneledge base
-n Inference Ongine. hi tis frauinvok One
y IbIlity i to aplop the C"Maesi Moelling

e. in being ovlo th U 2 iet v n
the amreean amiic Comitts Wa'rrprogrammes.
kvelapssntS coul, thAeae, tabs place in the following
are: I

i) floitation of C.N.L. to emhnce the Control
iniule facilities wad to be the min procedure for

describing the knwledge.

11) Thw we of C.N.L. to create a more advenced set at
reO ning facilities beth at the lbta-loel and
leor lovels at the program.

iII) ftloitati n at C.N.L. to Incorporate a limited set
ae natural lalgImpe facilities Into the ControlNsdule.

5.2.3 E l *

Min esraet Ma-Mmlms Rlti see facilitis t the
gegem awe liited to the current nputoOutput

N&mule Sbih b a Ve ried uer atef see
ampablity. fte maser delopm e reuAired In this
Was to Ii1 . t"M to be fecItiel use by
the - £ mM I agiee

1) M SIOWmsI t*r a feeltes awe required to
praPeM to ealas aw t mens far

reaching & specific declimn wd to Instruct the
e.A si001e set Of 'GRIM' tets and HELP

fi40 is met adeqate to this Complex task.

11) Coupled with the 11Manation/Tutorial facilities a
'ser Assesor' is required to alo the programt to
go"s with wserare mor ae Ignorant of the finite
elomt method end Its hial tat ion than they
realise.

5.2.4 &L r

As indicated In Section 5.1 it is possible to
construct a program sch can have a limited 'learning'
capability built-up from runs of the FM system. The
concept uses the Idea that each ru of the system Is
tlle IIn a file and is then available for analysis. This
amalysis Is carried out by a now program called Dreamer
shick examines the data for patterns of usage. These
patterns can them be used to prompt users towards likely
solat ions to mshing or other problems %ben ane
structure Is being set-up for FEZ. analysis.

It is felt that mest design offices do have their
sm rM I of structural analysis problems whick have a
bio degree of similrity * As a result amny probems will
bave been peviously confronted and the F.E. anayst, often

state he olulon process using thie *in-house'
howled"e. Dremer Is Intended to f olo the saoe
C Ieeet and, thus, -ped- the inferencing process.

use of quiet periods onthe copputer for solution
analysis Implies that the Zert System will appear to
* learn I f inite element knowledge %ben not in use and each
consultation should seem to represent an Improvement an
the previous on.

- 16 -

1. Mson Conference 'IMS In Design and Manufacture'
at the British Association for the Advancement of
Science, sponsored by the Institution of Mechanical
Engineers, 4th September, 1986, iritol University,
Bristol, U.K.

2. J. Alsina, J.P. Fielding and A.J. Morris
/*ROIT3 An Aid, ESPRIT Technical feek, Brussels,
Belgium, October 1985.

3. J. Sennet, L. Cressy, R. Znglemore and R. Melish
BACON: A Knowledge - Based Consultant for
Structural Analysis, Sta ord University Computer
Science Dept., Rept. No.STA-CS-78-699, September
1978.

4. I.C. Taig
Private Commuication, Ae. Narton Division,
Narton, Lancashire, U.K.

5. P.E. Johnson and U.S. Thompson
Strolling Dorm The Carden Path: Error Prone Tasks
In Expert Problem Solving.
7th I.J.C.A.I., 1981, p.p.215-217

6. A. Sloman
Nh Me Need Many Knowledge Representation
Formalisms. Res. and Dev. in Expert System. (Ed.)
N.A. Slower, Proc 4th Conf. Si. Computer Society
Specialist Group in E.S. December 1964.

7. ESPRIT PROJECT 107
LOIo A Logic Oriented Approach to Knowledge and
Databases Supporting Natural User Interfaces.

a. Research Centre of Crete
Conceptual Modelling Lnguange. LOKI Interim
Progress Report amber 4 on C.KL., March 1966.

APPENDIX A

USER'S GUIDE

A. 1 INTRODUCTION

The FEES program described in this appendix is a prototype program
that selects the best elements according to a specified set of
requirements. The user selects the fn-package to be used and then
specifies the problem to be modelled. FEES takes the element
description data and the problem specification and selects the
elements which best satisfied these.

Great emphasis has been made on making FEES easy to use. The data
input is free-format and it is performed interactively from the
terminal. The system uses the Screen Nanagement Guidelines (SHG)
available in VAX/VKS in order to provide a "friendly" environment to
work with. The presentation of the solutions are clear and self
explanatory and enables the user to interpret the results without
delay. The user has a set of commands which allow him to control the
consultation.

A.l.1 Facilities in FEES

The user will find the following facilities of greet benefit when
using the system:

1. Flexible data in ut ,the user. The data input is performed
interactively via menu windows. For each menu a set of
specific instructions Is displayed in a separate window.
Further help can be obtained with the KELP command. The
optima done in a menu are always highlighted. For menu
questions, the system displays a small rounter window which
indicates the number of questions, the number answered, and
the amber to answer.

2. Solution order. £ typical consultation with FMS consists in
definiag the F -pecage file mane and defiaing the problem to
he mdelled. The progrm then selects the best elements and
displays the solutiom.

do

USER'S GUIDE Page A-2

3. rdianostics. FEES checks all user input and the
Orrect evauation of the different options and issues the

appropriate error message when an error occurs.

4. User interface facility. At any stage during the
consultation session, FEES can be instructed by the use
through a set of simple commands to get further explanation
on the current menu, go back to a previous menu etc.

A.1.2 Solutions

FEES has been developed to provide solutions for the element selection
problem within FE analysis and it is hoped to extend the present
prototype to cover a much larger part of this field. As a prototype
it has been verified by reference to worked examples, it is relatively
easy to learn, use and apply. In presenting the results ye have tried
to provide the explanations which lie behind the reasons for rejecting
or selecting a particular element.

A.2 USER PROCEDURES

This section describes the procedures the user must follow in order to
employ the FEES system together with the procedures for checking input
data and correcting input errors. The order in which these are given
approximates the order in which a FEES consultation proceeds.

A.2.1 Logging in

Make sure that the terminal is on and press the RETURN key one or more
times until the system prompts to you for your user name, type in your
user name and press the RETURN key. The system then prompts you for
your passvord, enter your password and press the RETURN key.

A.2.2 Accessing the FEES program

After successfully logging in, the default DCL "$" prompt will be
shown on the left margin indicating that the computer is ready to
accept your commands. Type the FEES command and press the RETURN key.
This command vil start up the FEES system by loading the required
files (this usually takes a minute or two depending on the load on the
machine) and displaying the FEES main menu on a window positioned at
about the centre of the screen (this will be the position from which
FEES will display all the question and text menus) together with an
instructions window positioned at the bottom left hand corner of the
screen (this will be the position which FEES uses to display the
instructions for every question or text menu).

I m ll -I 'M mmi-,

USER'S GUIDE Page -3

NOTE

At the DCL level all commands given to the computer
must be followed by pressing the RETURN key to
indicate that you have finished typing the command.
Vithin FEES you tell the system that you finished with
a menu when you press CTRL/Z, or a function key
command, see belo.

A.2.3 Consulting FEES

The consultation session starts by asking the user to choose one of
the options displayed in the main menu. These are outlined below.

A.2.3.1 OPTION 1. Element selection - This option allows the reading
of the element data from a file vhich has been created on a previous
consultation or edited separately. A further menu is presented here,
whose main purpose is to define the element data to be used by FEES in
order to model the problem. These options are:

OPTION 1. Lists the file names or tables which contain the
element data in the format needed by FEES. Selecting one of the
names restores element data, if a new name is used, a new table
name is created.

OPTION 2. This option lists the element names known to FEES.

OPTION 3. Enables the user to view the element data in terms of
its property names and property values.

OPTION 4. This option enables the user to add (delete or
modify) information to (from) an old element.

OPTION S. Vith this option new elements can be added to FEES.

OPTION 6. Uhen creating or modifying an element the property
names and values defined must be known to PUS thus, this option
list the valid names and values.

OPTION 7. Returns the user to the main menu.

A.2.3.2 OPTIO 2. Problem definition - Vith this option FEES is told
the problem to model by answering a series of questions. The systems
displays previous regions which my be selected if it in necessary to
restore and modify a previous region. If one of the names is selected
or a mew ome is typed, a further menu is displayed with a series of
questions to be answered in order to define the problem. For each
question several anm rs are possible, by specifying how certain (or

__,_--__-____[____l ~m

USER'S GUIDE Page A-4

important) the user is regarding the options the system may employ
these in order to satisfy the user requirements. This value should be
given as a percentage, no answer or 0 being don't know, 100 being for
certainty, 50 for not too sure etc.

A.2.3.3 OPTION 3. Element selection - Here the program evaluates the
answers given above by selecting the elements which best match the
requirements. The screen is cleared and the message "LISP VORKING."
is displayed on the top left hand corner of the screen (this might
take a few minutes depending on the number of elements and regions
used, and how busy the machine is). Vhen finished, the main menu is
re-displayed with the option to view the valid solutions.

A.2.3.4 OPTION 4. Restart a consultation - This option allows the
user to restart a previously SAVEd session so as to modify or continue
the session. The system displays the names which can be restored.
The name typed must correspond to one of the names shown.

A.2.3.5 OPTION 5. Solutions - This option allows the solution to be
viewed. The region names being used are displayed for viewing the
solutions individually. The combined solutions are shown under the
name "REGIONS".

1. RULE 1. Eliminates the elements which have nothing in
common with the important requirements. i.e., All the
ansvers greater 50 percent.

2. RULE 2. Eliminates the elements which lacked some important
requirements. i.e., The answers greater 50 percent.

3. RULE 3. Eliminates the elements which had all the essential
requirements but missed some inessential ones. i.e., All the
answers below and including 50%. The don't knows and 0
certainty are not taken into consideration.

The final solution for a region is shown as a list of elements which
have satisfied all the important and essential requirements.

For multiple regions the valid elements and the ones eliminated by
RULE 3 are collected and RULE 4 rule is used. This rule finds the bar
and membrane elements and tries to match the nodes at the boundaries.
If it succeeds it shows the results as a list of bars with the
corresponding membrane(s). Elements which do not belong to these two
types are displayed as a separate list.

... *- i - -- l i ~ i l m i li l l l --

USER'S GUIDE Page A-5

A.2.3.6 OPTION 6. Logoff from FEES - This option exits the user from
FEES. The screen is cleared and the following message displayed

End of consultation. Back to LISP.
Type (EXIT) to exit LISP or (RUN) to start a new session.
Lisp>

To the LISP prompt "Lisp>" type the desired action.

A.2.4 Answering questions

The actions required in order to "make the system do things" are
follow:

1. Name Question. The system presents the question to the user
with the appropriate instructions, the name given must be
alphanumeric and according to the instructions given. Names
are typically used to identify an element or a file.

2. Numeric Questions. The system presents the question(s) to
the user, the answer given must be vithin a valid range if
not, the system prints an error message notifying what vent
wrong.

3. Menu Options. The answer given should correspond to one of
the options displayed in the menu. If the answer does not
match any of the options then an error message is displayed
and the correct option should be typed.

4. Yes/No Questions. This type of question expects a yes or no
for an answer if not, the system prints an error message.
For some questions a default answer is included in the
question, this is taken if no answer is given.

A.2.5 Finalizing the element selection

If no element is found to satisfy all the important and inessential
requirements then, use can be made of one of the elements given in the
list provided by RULE 3 or the requirements modified, or a different
F.E. package chosen. On the other hand if the evaluation is found to
be satisfactory, a new session can be started with the restart option
or logout from FEES with the main menu options 4 or 6 respectively.

A.2.6 Requesting help during a consultation session

At any point during a consultation session the user can find the
commands available to him through the INDEX command or alternatively
by hitting the "P74" key.

USER'S GUIDE Page A-6

A.2.7 Procedures for checkinx and correcting input data

According to the type of question the system checks that the value
given corresponds to a valid input format. Numeric questions should
be within a valid range, for yes/no questions the answers given must
be YES or NO (Y or N for short). Finally, there are menu type of
questions in which the answer given must be one or more of the choices
displayed, when there is only one answer this is made explicit in the
wording of the question. The correction of input data is made easy by
having the system display the errur thus, the user can edit his
answer.

A.3 OPERATING INSTRUCTIONS

The instructions described in this section are carried out in order to
consult the FEES system, assuming that all the software (LISP version
2 and the FEES suite programs, text, and data) and hardware
(e.g. VAX-11/VMS version 4, terminals such as the VT100 or compatible)
are available. The instructions described here include: format and
content of each input, input checks that are made by the system,
action taken if an error is found.

A.3.1 Looking at error messages

When answering questions or using commands, FEES has a wide range of
error messages in order to provide objective information about the
error. The system displays the message on a separate window
positioned at the bottom right hand corner, this window is removed
when the answer given is accepted. Some of these are:

1. Outside of range. This error occurs when the answer given
does not lie vithin a valid range.

2. Incorrect choice. When the ansver(s) given does not match
any of the options in the menu.

3. Invalid answer. This error is displayed when the system does
not understand the answer or it is invalid within the present
state of evaluation of the session.

A.3.2 Using the FEES commands

The system provides four basic commands which can be issued at any
time during the consultation by using the appropriate PF key or by
typing the command and pressing CTRL/Z. These are (PF key and word):

/

USER'S GUIDE Page A-7

1. PF1 or RPM
This coand returns the user to the previous menu without
processing any of the answers given in the current menu. It
is useful if the user does not want to make a choice.

2. PF2 or HELP
This co nd produces help text on the current menu in the
form of definitions and/or example answers.

3. PF3 or SAVE

This command saves the state of the consultation and logs the
user off from FEES returning to LISP.

4. PF4 or INDEX
The INDEX command produces this help text on the commands
available.

A.3.3 Instructions for answering questions

Every question and text menu in FEES displays a set of instructions
aimed at helping the user answer and read a piece of text. The main
types of display are:

1. Menu Questions. These type of questions display an
enumerated selection of possible answers from which the user
can select the option number and attach a certainty of his
answer. Depending on the question single or multiple options
can be chosen.

2. Menu Options. Menus of this type present an enumerated
sequence of the possible choices and the answer given should
correspond to one of the options.

3. Yes/No Questions Questions of these type are used to confirm
an action to be taken step before proceeding. Possible
answers are: Y, YES, or N, NO. For this type of question
there is no approximation i.e., answers like "not really" or
"unknown" are not permitted.

4. Text Menus. These type of menus are used to display
information to the user.

A.3.4 Logging out

hen the session at the terminal is final, the option 6 is used in the
FEES main menu to exit returning to LISP (the prompt "Lisp>" is
displayed) then, LISP macro EXIT is used to return to DCL command
level (i.e., the DCL prompt "$" is displayed) then the DCL command
LOGOUT ends the session. The system responds by displaying the user

J -/'-- -l l iiEmilalIla•l

JuRSn IDE Page A4S

rlme, date and time vhen logged out.

PROSRAMIsS GUMD

PUS is a prototype program for element selection. This appendix is
aimed at a programer who wishes to umderstand PUS in order to extend
It or modify it. Familiarity with LISP, liaR!bM, and V4LX/VNS StromMasegment Guidelines (SNG) is assumed. The appendix is concerned

with the overall structure of the program, details are explained in
the program comments.

1.1 OvnEIMV OF IS

There are two major components to the PUS system. These are the

Um-Nachine-Interface (1NT) programs and the element selection' } progtram.!

! 5.1.1 The Han-Machine-Interface
The Wi is used to I nteract with the user by obtaining all the

required Input and displaying the results found. The input from the~user is translated into a suitable form for the elemnt selection
et progam, the results produced by the latter are thn displayed to the

euser.

2.1.2 The element selector

The element selector reads the element description data and *picks*
the elements which best satisfy the user requirements. A further
selectioe is mode according by atchin the nodes btw elements.

1.1.3 1he 15S source films

MThe PUS system is made up of a set of LISP and POR11tS program, mnd
a set of text and data files. These aret

no-BMW , 6513 Face a.-2

3.1.3.1 MOM file. -

1. K W DA-mO
floods re. and writes the alemost data to a file.

2.MPPO
NNd to display the different error Mssages.

3. 011101. POP
Internal routines sed within LISP to write results.

4. I=5. FO
Controls the uer interaction.

5. GET 73 FILE. POR
floqusets the fl-package mom to he ueed by the elemnt
selector, it also provides various facilities for viewing and
modifying the alement description data.

6. GS? SICTNS. PON
Seqiests eae or more region means to be used to identify the
meertIs problem.

7. GTTT0ruPGm
Asks the uer Various questions in order! to Categorized the
probles.

S. ULP.PQ
Displays help text en a question.

9. uSI63.Pft
Saves or restores a consultation session.

10. in N05TUM POR
VArle routin are defined here which use the IN VAX/VMS
facility to request input and display results Is the fae of
windows.

ii. SOLUTION-Fee
Seutine to retrieve and display the remilts.

12. UILMU-POR
amnoral Purpose routines. fer string hendling, input checking,
initialization etc.

1.1.3.2 LPfime

1. KEIUW LCTION.LSF
Soe eairoller for element selection.

PMIQRA ' Is MOB Page $- 3

2. W.TMU.LSP
Definitions of the external P0513W routines wsed within
LISP.

3. 13.3.3
The centroller for the interaction with MS3.

4. LOAD. LS
This file is wsed to load the different LIP source files
required by FIRS, said starts up the session.

5. NAToE MODRS. 3.5
the cintroller to match nodes betweeni differen~t regions.

3.1.3.3 13UT files - A set of files is used by the POSTIUM procedures
to prompt the usr. it also provides the necessary instructions and
help text to answer a question and the text used in the error
massages.-

1.file.1U
The menu files are based on the philosophy that a question
consists of two parts, the question and the instructions on
bow to answer. Thus, Ahen 13M prompts the user it creates
two windows: one Instruction window and one mnuw window with
a Oredimg sidew where the user can type an answer or com"d
or close the windows. Bach file contains the instructions
title adtext (3 lines) followed by the menu title which
nowes the Opeant menu and text (100 lines mxium).

2. file.ULP2
Similarly, the help files consists of an instructions pert
sod a text part. Bach emu has a help text file associated
with it.

3. mO.NBSSX
This is a single file which stores the text (3 limes) used
when en input has occurred. The error massages are displayed
on a soerated vindow to the aboe".

5.1.3.4 WTA 1IL - Two files are used to store the element property
Mmm e d proerty values.

1. MOPWTIONTA
This file steme the Property nMe ad values knows to the
mrstem. It is used to provide a guidelin2 to the user when
Minling or modifying o eloenmat.

- .~'lw- - .

2. I yo.0?A
Ibis file stoes the property usses and values assecisted
wIth the questiesta lsed by the systast to order to define the
problem. The order In which they Or* stored relates to the
Oder of the questleas as speified to the file
NMI am.~.

3. f ile-AT
Sterm the elsant description. data to be sed by the element
selec tor pregres.

2.2 LISP FILBS

Oewe we eutline the *oeall ftmctiern of the US? files, since a more
detailed descriptiorn can he found in the seurce files censent*.

5.2.1 Tlbs 3W SB LSCTON.LSP file

Two isportant facilities are provided by this file:

1. A sethed for retrieving and storing the element description
data.

2. A toohe of selectin; en elemt given Sam requirements,
prOwidiag 9=s OUmplanatiON when elisinetiNg Or selectiftf an'
element.

8.2.1.1 Resdius the elesent data -

~-35Us-DTA (flmu)I Ti~s procedure Is seed to reed the data froe the file FIWUIS. The
element data met be stored is the feleving vat

1. Tbs first record iedicates the nuer of eleents in the
file.'I 2. Per Meh element description the following order is taken:
the element esos, the number of properties, then for ecc
Property ther* Is associated the Property vans and Its
property value(s). with the Last record of the elemntI description having the prperty urns2-mu vith value 0.

Th data is read is a procedural eiet ed the elesest "we are
steWed in she list U. - ,a"d the folleVio# two proedues &re
gsed to Oegenias theta.

3W (~W-WB, IPT-W,~rU

This procedure ts the MSproperty list builder by associating sac.
slimet with a set a# Iroperty mom sand values.

ao-POWITI-US (PMPTY-LIST)
This procedure, take a property list as Input and generates a new

tlist based es the old but re-ordered so that the preperty
fosand their values are is alphebetical order.

5.2.1.2 lMeat selectie -

par each regis. the hard an soft requirmets ea obtained and the
elements are scered accordingly. Three rules at* Ned In order to
eliinate the elemnts which de net satisfied save, at all of the
requirsmnts. The results are written to a Ii)'t io; later
cosuetltation. The follwing are the min procedures used-

1. BRAD RUIMSULMOR-RATA (FIWIW FRIOlti l-PUCIT1)
This reutis reeds required elment description dato as
specified by the msr. FILUW represents the region name
and it is msed to write the question, (property tmeo) asked
to the file OVIWIWM CISSYICS. 5 M I'. P31UIM is a
string which denotes the-certainty of the ansvers given~ i.e.,
currently 1009 for mowers hetween 51 end 100 certainty
value, and SM for smnors hetween I and 50. The I-911031?
is the integer value of 131031?.

2. gem3ACIA 313Sf
Given the Information centained in nodules READ-3L311T -DATA
and U5S lf-L W-DATA this module compares the data
in the element property list (plit) and the required data
lroperty list sad writes the score in the element property
ist under the property identity WonS-SCSI.

3. 3tIL-1 (FILUUWS)
This isnan element selection rule which states that if an
element in the detahese dees sat match ay of the
requirements specified. no mst ignore It for the rest of the
no. The aoree of each element are checked and if they are
seo thet element is reuve free the list SLIT-WAS.
The rejected elements are stored in a list called
RU--KWAC. FILIW io the swof the region. The
rejected elements are written to the file "FILUAM.RULII
and the answers given to the f Ile flIZRWASWES.NEHOS".

4. InN-2 (1115)
Th is iso enalement selection role which state. that if an
eloemmt in the datahese des set match all of the essentilal
requiremeto specified, we most Ignore it for the rest of
this ran. The sesm of each element are checked and If they

b iate lees then MAU (mnim *eare for a liven requiremet)
that elanost is temve free the list NJ M, 4W. ?be

rejected elements are stored in a liat called UI-2-DICARD

iuscanswi Page W56

tsoosther wi th the at o missing properties. FILUA is
the am" of the res. The rejected elements are written to
the file MLWW.UJLI2 and the answers given to the file

s. nN.3-3 (flW)
This Is am elemnt selection rule which states that if an
element In th, database des. not match all the requirements
specified, we must ignore It for the rest of this run. The
scores of each element are checked and if they are less than
MU thet element is removed from the list UUIUW-U1AIS.
The rejected elements are stored in a list called
33hZ-3-NCAND together with the number of missing
preperties. The rejected elements are written to the file
IFILMWS.3" an the answers given to the file
RVILinBinSUS .NYN.

6. UCOU-99-SLNW
given the information read by modules READ-BLUE-DATA and

SISOVIND ILJU-DATA this module compares the data In
the element plist and the required data plist and writes the
sCere im the element plist under the property nae

7. GUWW-RLIIUWU (PILUI N I)
This rematime writes the valid elements to a file FILMW
(region mnew) after SULK-i and MU-2 and then after UUL-3,
creating the files OVILINAIII1.01ff and OFlIIII 2.01ff"
respectively.

I. Finally, the results (the valid element sawes) are written to
the file FILEWN.S0VMlOWS" where PIIJIWI denotes the
region nam.

8.2.2 The NATCO UGOf.LSF file

mitE~U3.6WUI iJ~ffs(flIlOS)
emn there wre more than two regions, a further reduction in the
- er of elements is made by taking the list of elements eliminated

by RVUL-3 and the valid elements for each region and then matching the
mne. at the beundaries. The following are the main procedures us"d:

1. ?JAD4RGMW I-3LENWT-RMNS
This procedure reeds the element manes for the different
UGIuIs from the file VIWIAI.RU3amd PILOWS 2.01f where
RLMUIWIs L the nme of a region In UAIONS, and juts them in
the list UWUW-UUUSA.

2. ou3-4 (f=iI)
Ibis io an element selection rule which states that if two
elements of type her and membrane in the database are set
compatible at the modes they must be ignored for the rest of

PRORMERn'S GUIDE Page 3-7

the run. Other elements which are aot immediatly seen as
incomatible are stored in LIST-OF-OTUER. The rejected
elements are stored in a list called &ULE-4-DISCARD i.e., bar
elements for which there are no matching membrane elements.
FILUA is the name of the file "REGIONS". The rejected
elements are written to the file OEGIONS.RUL40.

3. OUTPUT1-RGIONS-ELENENT-MAKES (FILENAM)
The list EL3NDI-NWXES of valid elements Is vritten to the
file I RIGIONS-OUT".

4. Finally, the results (the list of valid elements and the
elements for which RULE-4 does not apply) are writ ten to the
file 0 RIG IOIS.SOLUTIOWS.

1.2.3 The IITZRNAL.LSP file

because of the nature of LISP, explicit declarations of the external
routines used have to he made, see VAX-LISP user manual. These are
(equivalent format):

I. FES (RIGIOUS, FILENAME, ORDER-FLAG)
This routine gets the input from the user and it then
displays the solution file. REGIONS Is a string of the form
"RZG 33=1 ... etc", FILENAME is a string of the form
OLUSAS.DAT", and ORDER-FLAG is an Integer which indicates the
state of the consultation i.e., exit, solution, or
evaluation.

2. WTUPRT I (FILEMNM)
This routine reads the solutions data files and formats them
Into a readable form explaining the meaning of the data.
FILMIAME is a string denoting the region name. This routine
creates the solution file IRBGION.SOLUTIOMS" for each region.

3. IufUPzm m2 (nluWIE)
This routine reads the solutions data files and formats them
Into a readable form explaining the meaning of the data.
FXIZIAN3 is a string denoting all the regions used. This
routine creates the solution file "RIGIONS.SOLUTIONS".

4. MNORIZ2 (FIWINANE, inIORY-MODE, ODER-MUMBER)
This routine collects all the output from a selection run and
stores It In the memory file. Each piece of data is tagged
with date, time , quantity and type information. FILZMNE is
the region names, MEMORY-NODE is a string number, and the
U3-1UNM Is an integer.

PROGRAMMER'S GUIDE Page B-8

1.2.4 The FE.LSP file

This is the controller for the interaction vith FEES. It initializes
some data and calls the external procedure FEES, according to the user
specification it evaluates the ELEMENT-SELECTION or exits. After
evaluation the external procedure FEES is called in order to observe
the results, re-evaluate the ansvers, or exit from PEES.

5.3 FORTRAN FILES

Several files have been written in FORTRAN to build the MMI side of
the system using the SNG facilities. Here we outline each file, with
a more detail description in the source files comments.

5.3.1 The ELEMENT DATA.FOR file

This file defines the routine ELEMENT DATA which reads from or vrites
to a file the element names, property-names and property values.

FORMAT

ELEMENT DATA (10, IN FILE, NO OF ELEMENTS, ELEMENTNAME,
NO.OFPIOPERTIES, PROPERTY-NAMES, PROPERTY-VALUES)

ARGUMENTS

10 - integer to indicate read or vrite.

IN-FILE - input string; indicates the name of the FE-package name.

NO OF ELEMENTS - output integer; indicates the number of elements in
the fTle (maximum 100).

ZLEMENT NAME - output string vector; stores the elemenet names.

NO OF PROPERTIES - output integer vector; stores the number of
properties for each element (maximum 20).

PROPERTY NAMES , output 2D string array; stores the property name for
an element.

PROPERTY VALUES a output 2D string array; stores the property values
for an element property.

3.3.2 The ERROR.FOR file

This file defines the routine ERROR which prints the error message by
lIoking for the error type in the file DIR MORSRIROt.MSSAGES. It
rings the bell three times before printing t~e error message.

PROGRAMME'S GUIDE Page B-9

FORMAT

ERROR (PS, VD3, ERROR-TYPE)

ARGUMENTS

PS - input integer; denotes the pasteboard identification.

VD3 = input integer; denotes the virtual display for the error window.

ERROR-TYPE - input string; denotes the error type.

3.3.3 The EXTERNAL.POR

This file defines the three routines used within LISP to format the
results.

1. INTERPRETER 1. This routine creates a solution file of the
for "REGION7SOLUTIONS" for each region REGION. It interprets
the results of rules 1, 2, and 3 and gives the final solution

as a list
of valid

elements.
FORMAT

INTERPRETERI (REGION)

PARAMETERS

REGION - input string; specifies the region name.

2. INTERPRETER 2. This routine interprets the results for two
or more regions by vritting the solution to the file
"REGIONS.SOLUTIONS". (The name REGIONS is used).

FORMAT

INTERPRETER2 (REGIONS)

PARAMETERS

REGIONS - input string; specifies the list of regions.

3. MEMORIZE. This routine vrites to a file the location and
time at vhich the questions and answers vere processed.

FORMAT

MEMORIZE (FILUM, MEMORY-NODE, ORDERCODE) i
PARAMETERS

FILINE = input string; specifies the region name.

PROGRAMMER'S GUIDE Page B-10

MEMORY NODE - input string; specifies the filename to which
questions ("REG OUESTIONS.MEMORIZE") and answers
("REGANSVERS.MEMORI2E") are stored.

ORDER CODE - input integer; specifies solution order.

B.3.4 The FEES.FOR file

This file defines the procedure FEES which controls the interaction
with the user. The procedure is called from LISP and it is used to
obtain and display results to the user. FEES erases the screen,
creates the instructions, menu, and error windows then, displays the
main menu text. The procedure actions in this menu are:

OPTION 1. Calls the routine GET FE FILE.

OPTION 2. Calls the routine GETREGIONS.

OPTION 3. Exits from this procedure and returns to LISP,
allowing the element selection to be performed.

OPTION 4. Calls the routine SESSION.

OPTION 5. Calls the routine SOLUTIONS.

OPTION 6. Exists from this procedure and returns to LISP.
FORMAT

FEES (REGIONS, FEFILE, ORDERFLAG)

ARGUMENTS

REGIONS = input/output string; specifies the regions used.

FE FILE = input/output string; specifies the FE package used.

ORDER FLAG - input/output integer; specifies the current state of the
consuTtation. Valid values are as follows:

0 output integer; if consultation is to be terminated.

1 input/output integer; if FEES is to request the user the
FE FILE and the REGIONS.

2 input integer; specifies that the element selection has been
completed and that the solutions can be viewed.

B.3.5 The GET FE FILE file

This file defines the routine GETFEFILE to request the table name

0-41

PROGRAMMER'S GUIDE Page B-l

from the user in order to read the element description data in termsof the number of elements, property names and values, it also allows
the user to define new elements, or modify existing ones.

FORMAT

GETFE_FILE (PB_INFO, FE_FILE, OLD FILE, OPTIONDONE, COMMAND FLAG)

ARGUMENTS

PB INFO = input integer vector containing the display information.

FEFILE = output string denoting a previous or a new FE-file.

OLDFILE = output string denoting a previous FE-file.

OPTION DONE output integer vector; indicates the options selected by
the user.

COMMAND FLAG = output integer; indicates the successful completion of
this routine.

B.3.6 The GET REGIONS file

This routine asks for a REGION NAME then it calls GET TRUTH and saves

the answers given in the file "REGION NAME.REGION".

FORMAT

GETREGIONS (PB INFO, REGIONS, REGIONFLAG, COMMAND FLAG)

ARGUMENTS

PBINFO = input integer vector with the display information.

REGIONS = output string denoting the list of regions selected by the
user.

REGION FLAG - output integer vector denoting the state of each region
(maximum of 10).

COMMAND FLAG . output integer used to denote any command given by the
user.

B.3.7 The GET TRUTH.FOR file

This file defines the routine GET TRUTH which asks several questions
to the user in order to define te problem. On successful completion
it creates two files REG 100.REQ and REG 50.REQ where REG is the
region name and the TOO and 50 denote The certainty of the answers
given i.e., all the answers between 51 and 100 are stored in the file

PROGRAMMER'S GUIDE Page B-12

REG 10O.REQ while the answers betveen 1 and 50 are stored in the file
REG-50.REQ. 0 answers and no ansvers are taken as don't knows. (For
the-property OUTPUT any answer given defaults to 50X certainty).

FORMAT

GET TRUTH (PB INFO, REGION NAME, NOOFQUESTIONS, LINKLINE, REPLY,
COMRANDFLAG, -TRUTHPLAG)

ARGUMENTS

PEINFO - input integer vector containing the display information.

REGION-NAME = input string denoting the region name.

NO OF QUESTIONS = input/output integer denoting the number of
questTons.

LINK LINE = input/output integer vector denoting the position of the
quesfions in the text file.

REPLY = input/output string vector denoting the ansvers given by the
user.

COMMAND FLAG = output integer; denotes any user command.

TRUTH FLAG - output integer; denotes the successful completion of this
routine.

B.3.8 The HELP.FOR file

This file defines the HELP routine vhich prints help text on the
current menu. It creates a smaller window than the FEES menu windov
which contains the 'help' text and is deleted returning to the menu
windov.

FORMAT

HELP (PBINFO, IN-FILE)

ARGUMENTS

PEINFO - input integer vector; contains the display information.

IN FILE - input string; specifies the menu file (the question) for
vhTch help is required.

3.3.9 The SOLUTIONS.FOR file

This file defines the routine SOLUTIONS used to view the individual
regions solutions. It displays the regions for selection, when more

PROGRAMMER'S GUIDE Page B-13

than one region exists the name "REGIONS" is also included. The user
selects one, and the procedure VIEV TEXT is called.

FORMAT

SOLUTIONS (PBINFO, REGIONS)

ARGUMENTS

PBINFO = input integer vector; contains the display information.

REGIONS = input string; specifies the region name(s).

B.3.10 The UTILITIES.FOR file

This file defines various general purpose routines for string
handling, input checking etc. The routines are:

1. CHECK. This routine counts the number of characters
according to their type.

FORMAT

CHECK (STRING, L, NO OF BLANKS, NO OF DECIMALS,
NOOF ILLEGALS, NOOFLETTERS,-NOOFMINUS, NOOP_NUMBERS)

ARGUMENTS

STRING = input string.

L - output integer; denotes the length of the string.

The rest of the arguments are output integers, their name
denotes their type.

2. CHECK NAME. This routine checks that a string is
alphanumeric.

FORMAT

CHECK NAME (STRING, REASK)

ARGUMENTS

STRING - input string.

REASK - output integer; denotes if the string is alphanumeric
or no.

3. CHECK YESNO. This routine checks that a string is a yes or
no answer.

FORMATtj

PROGRAMMER'S GUIDE Page 9-14

CHECK YESNO (STRING, REASK)

ARGUMENTS

STRING - input string.

REASK = output integer; denotes if the string is one of:
YES, Y or NO, N.

4. CLEAR. This routine initializes a string vector to empty.

FORMAT

CLEAR (LINE, LINES)

ARGUMENTS

LINE = input string vector.

LINES input integer; denotes the number of lines in the
vector.

5. COUNT ITEMS. This routine counts the number of items in a
string (assume one or blanks betveen them), and returns the
items in a vector and the number of items.

FORMAT

COUNT ITEMS (STRING, LINE, LINES)

ARGUMENTS

STRING - input string.

LINE = output string vector.

LINES - output integer.

6. CSORT. This routine sorts a list of vords in dictionary
order using a simple insertion sort technique.

FORMAT

CSORT (LINE, LINES)

ARGUMENTS

LINE - input/output string vector.

LINES - input/output integer.

7. C TO I. This routine converts a string number to Integer.

FORMAT

_0-- m m Im m m

* PROGRAMMER'S GUIDE Page B-15

CTOI (STRING, N)

ARGUMENTS

STRING - input string.

N = output integer.

8. DIR. This routine formats a string vector In a "directory"
To-r.

FORMAT

DIR (VIDTH, COUNT, LINE, LINES)

ARGUMENTS

VIDTH . input integer; specifies the line vidth.

COUNT = input integer; specifies the number of items per
line.

LINE = input/output string vector vith the
individual/arranged items.

LINES - input/output integer representing the number of
lines.

9. GET FILES. This routine returns in a vector form the files
found according to a certain specification.

FORMAT

<4 GETFILES (IN-FILE, LINE, LINES)

ARGUMENTS

IN FILE - input string representing the filename(s) to lookfoi.
LINE output string vector representing the files found.

LINES =output integer representing the number of files

found.

10. I TO C. This routine converts an integer to a string.

FORMAT

I TOC (N, STRING, L)

ARGUMENTS

N input integer.

PROGRAMMER ' S GUIDE Page 3-16

STRING - output string.

L - output integer representing the length of STRING.

11. LOCATE. This routine finds the position of an item in a
string.

FORMAT

LOCATE (STRING, N, TAIL, L)

ARGUMENTS

STRING - input string.

N - input integer representing the position of the item to be
found.

TAIL - output string representing the truncated string vith
the "head" as the item.

L - output integer representing the length of the item (0 if
not found).

12. MEMBER. This routine looks for an element in a string and
returns its position.

FORMAT

MEMBER (STRING, LIST, N)

ARGUMENTS

STRING - input string representing the item to be found.

LIST - input string.

N = output integer representing the position of the item (0
if not found).

13. TRIM OFF. This routine trims off the trailing and leading
edge blanks from a string.

FORMAT

TRIM OFF (STRING, L)

ARGUMENTS

STRING . input/output string.

L - output integer representing the "true" length of the
string.

tPOGANNR'S GUIDE Pag 5-17

5.3.11 The SNG ROUTINS.POB tile

This file defines various routines vhich are used to handle the
imput/output with the user.

1. BIGRLIGHT OPTION. This routine is used to highlight the

options of 0 menu.

FORAT

NIGELIGHT OPTION (VD, LINE, LINES, OPTIONDONE,
NO OF OPTIONS)

ARGUMENTS

VD - input integer; specifies the display identification.

LINE = input string vector; represents the menu lines.

LINES = input integer; represents the number of lines in the
menu.

OPTION DONE = input integer vector; represents the options to
highlijht.

NO OP OPTIONS - input integer; represents the number of
optiois in the menu.

2. KEYSTROKE. This routine reads and prints a keystroke at a
given position in the screen. It updates the column position
according to the key type. Refreshes the screen if CTRL/U or
C[RL/R are used, deletes a character if the DELETE key is
used, and converts lowercase letters to uppercase.

FORMAT

KEYSTROKE (PB, KB, VD, ROW, COLUMN, KEY, KEY TYPE)

ARGUMENTS

PB - input integer; specifies the pasteboard identification.

KS = input integer; specifies the keyboard identification.

VD - input integer; specifies the read display
identification.

ROW . input integer; represents the current cursor roy
position.

COLUMN - input/output integer; represents.the current/updated
column position of the cursor.

KEY * output integer; represents the ASCII code number of the
key.

+I

PROAER'S GUIDE Page &-18

KIT TYPE - output integer; represents a code used to identify
the-kay.

3. PRINT DISPLAY. This routine clears a specified vindow and
prints a given text to that vindov.

FORMAT

PRINT DISPLAY (VD, LINE, LINES)

ARGUMENTS

VD - input integer; specifies the display identification.

LINE - input string vector; stores the lines to print.

LINES = input Integer; denotes the number of lines to print.

4. READ DISPLAY. This routine creates a display of given vidth
and vith the same height as the menu display to read the
ansvers and/or commands from the user. The menu and reading
displays are scrolled vhen necessary. For menu questions
(each question is defined in the text file by an asterisk in
the first column) an ansver display counter is created. The
bell is rung once to attract the user's attention.

FORMAT

READ DISPLAY (P, KB, VD, LINES, LINE, ROW START,
COLURN START, VIDTH, NOOF. QUESTIONS, LIN-LINE, -REPLY,
CONEAN _FLAG)

ARGUMENTS

PB = input integer; specifies the pasteboard identification.

KB - input integer; specifies the keyboard identification.

VD - input integer; specifies the menu display
identification.

LINES - input integer; represents the number of lines in the
menu.

LINE - input string vector; represents the text lines in the
menu.

ROV START - input integer; represents the row position for
the-read display.

COLUMN START - input integer; represents the column position

for t4 read display.

VIDTU a input integer; denotes the vidth of the read display.

low--

P'OGANNER S GUIDE Page B-19

00 OF QISTIONS - output integer; denotes the number of
quistTons.

LINK LINE - output integer vector; represents the position of
the questions in the text file.

REPLY a output string vector; stores the ansvers/comands
given by the user.

COMAND FLAG - output integer; identifies any given command.

5. SCROLL DISPLAY. This routine scrolls a display, when the
UP-AROY, DOWN-ARROW, LINE-FEED or RETURN key are used.

FORMAT

SCROLL DISPLAY (TYPE, DIRECTION, VD, LINES, LINE, IFLAG,
ROw-OLD, ROY, ROw-FILE)

ARGUMENTS

TYPE - input integer. Possible values are: 0 to scroll the
display, and 1 to read from the displa7 vhile scrolling.

DIRECTION - input Integer. Possible values are: -1 to
scroll up the display by one row, and 1 to scroll dovn the
display by one roy.

VD - input integer; specifies the display identification.

LINES - input integer; represents the number of lines.

LINE = input string vector; represents the text lines.

IFLAG - input integer vector; indicates the position of
non-empty lines.

ROY OLD - input integer; represents the previous roy
position.

ROW - input integer; represents the nev roy position.

ROV FILE - output integer; represents the cursor position
vitin the file.

6. TEMPLATE. This routine reads and prints a file to the screen
in tvo parts: part 1 reads and prints the title and text for
the instructions while part 2 reads and prints the title and
text for the menu or help vindov.

FORMAT

TEMPLATE (INFJILE, VD1, VD2, LINES, LINE)

ARGUMENTS

PROGRAMMER'S GUIDE Page 5-20

IN-FILE - input string; indicates the filMname to be read.

VDI - input integer; specifies the menu display
identification.

VD2 - input integer; specifies the instructions display
identification.

LINES . output integer; represents the number of lines in the

menu.

LINE * output string vector; represents the menu text lines.

7. VIEITEXT. This routine allows a text to be viewed.

FORMAT

VIEVWTEXT (PBINFO, IN FILE, LINE, LINES, COMMANDFLAG)

ARGUMENTS

PS INFO - input integer vector; specifies the display
inlormation.

IN FILE - input string; indicates the filename.

LINE - input string vector; represents the menu text lines to
be viewed.

LINES - output integer; represents the number of lines in the
text.

COMMAND FLAG . output integer; indicates the command code if
one was used.

.. i.

AT

