

MICROCOPY RESOLUTION TEST CHART
National burtall of sIanctandes lata a

ISSIIIITI.

FIIH

IIRROSP ICE SII IIIES

I NIMHANIT (I)F IORISII

AFOSR-TR. 3. 3.1041

RANDOM CHOICE SOLUTIONS

FOR WEAK SPHERICAL SHOCK-WAVE TRANSITIONS OF N-WAVES IN AIR WITH VIBRATIONAL EXCITATION

BY

H. HONMA AND I. I. GLASS

JULY, 1983

UTIAS REPORT NO. 253
CN ISSN OO82-5255
CN ISSN 0082-5255
$83 \quad 12 \quad 13 \quad 279$

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Date Enfered)

REPORT DOCUMENTATION PAGE	
	cipient's catalog number
4. TiTLE (mad Subtulu) RANDOM ChOICE SOLUTIONS FOR WEAK SPHERICAL Shock-wave transitions of N -Waves in air WITH VIBRATIONAL EXCITATION	
7. AUTHOR(O)	-. CONTRACT OR GRANT NUMEER(A) AFOSR 82-0097
PERFOMING ORGANIZATION NAME AND ADORESS Institute for Aerospace Studies, University of Toronto, 4925 Dufferin St., Downsview, Ontario, Canada, M3H ST6	
Bolling AFB, DC 20332	
T4. MONITORING AEENCY NAME A ADORESS(IIt dilterent tom Contrilling off	
16. OISTRIBUTION STATEMENT (Of thio Ropori) Approved for public release; distribution unlimited.	
Tis. Supplementart notes	
If necenamy and identify by biock number) 1. Shock-wave transitions 4. Exploding wires 2. Effects of viscosity, heat-conduction 5. Numerical methods and vibrational excitation. 3. Spherical shock waves	
In order to clarify the effects of vibrational excitation on shock-wave transitions of weak, spherical N-waves, which were generated by using sparks and exploding wires as sources, the compressible Navier-Stokes equations were solved numerically, including a one-mode vibrational-relaxation equation. A small pressurized air-sphere explosion was used to simulate the N-waves generated from the actual sources. By employing the random-choice method (RCM) with an operator-splitting technique, the effects	

UNCLASSIFIED

$$
83 \quad 12 \quad 13 \quad 279
$$

of artificial viscosity appearing in finite-difference schemes were eliminated and accurate profiles of the shock transitions were obtained. However, a slight randomness in the variation of the shock thickness remains. It is shown that a computer simulation is possible by using a proper choice of initial parameters to obtain the variations of the N-wave overpressure and half-duration with distance from the source. The calculated rise times are also shown to simulate both spark and exploding-wire data. It was found that, in addition to the vibrationalrelaxation time of oxygen, both the duration and the attenuation rate of a spherical N -wave are important factors controlling its rise time.

The effects of the duration and the attenuation rate of a spherical N-wave on its rise time, which are designated as the N-wave effect and the nonstationary effect, respectively, are discussed in more detail pertaining to Lighthill's analytical solutions and the RCM solutions for nonstationary plane waves and spherical N-waves. It is also shown that the duration and the attenuation rate of a spherical N-wave are affected by viscosity and vibrational nonequilibrium, so that they can deviate from the results of classical, linear acoustic theory for very weak spherical waves.

UNCLASSIFIED

secumity Classification of this Page(when Dare Entered)

```
AIR PORCE ORFICE DP SCIENTIFIC RESEARCH (APSC)
NOTICEOPI!:*.:...T:T mODMIC
Thist....: . . % roromed and is
10.0. ..ai.AFS190-12.
D!:`
*ATric% !.:
Chief, Techmicai Tnformation Divisgon
```

RANDOM-CHOICE SOLUTIONS
FOR WEAK SPHERICAL SHOCK-WAVE TRANSITIONS OF N-WAVES IN AIR
WITI VIBRATIONAL, EXCITATION
by
II. Honma and 1. 1. Glass

Submitted July, 1982

UTIAS Report No. 253 CN ISSN 0082-5255

Acknowledgements

We would like to thank Dr. J. P. Sislian and Dr. T. Saito for their valuable suggestions and discussions. The assistance received from Mr . 0 . Holst-Jensen in conducting the experiments and from Mr. Y. Tsumita in performing the numerical calculations is very much appreciated.

The financial assistance received from the U.S. Air Force of Scientific Research under Grant AFOSR-82-0097, the Natural Sciences and Engineering Research Council of Canada, the Japan Society for the Promotion of Science, and the Scientific Research Aid of the Ministry of Education of Japan are acknowledged with thanks.

Sunmary

In order to clarify the effects of vibrational excitation on shock-wave transitions of weak, spherical N-waves, which were generated by using sparks and exploding wires as sources, the compressible Navier-Stokes equations were solved numerically, including a one-mode vibrational-relaxation equation. A small pressurized air-sphere explosion was used to simulate the N-waves generated from the actual sources. By employing the random-choice method (RCM) with an operator-splitting technique, the effects of artificial viscosity appearing in finite-difference schemes were eliminated and accurate profiles of the shock transitions were obtained. However, a slight randomness in the variation of the shock thickness remains. It is shown that a computer simulation is possible by using a proper choice of initial parameters to obtain the variations of the N-wave overpressure and half-duration with distance from the source. The calculated rise times are also shown to simulate both spark and exploding-wire data. It was found that, in addition to the vibrational-relaxation time of oxygen, both the duration and the attenuation rate of a spherical N-wave are important factors controlling its rise time.

Tre effects of the duration and the attenuation rate of a spherical N-wave on its rise time, which are designated as th: N-wave effect and the nonstationary effect, respectively, are discussed in more detail pertaining to Lighthill's analytical solutions and the RCM solutions for nonstationary plane waves and spherical N-wavest it is also shown that the duration and the attenuation rate of a sherical N-wave are affected by viscosity and vibrational nonequilibrium, so that they can deviate from the results of classical, linear acoustic theory for very weak spherical waves.

Contents

Page
Acknowledgements ii
Summary iii
List of Symbols v

1. INTRODUCTION 1
2. SPARK AND EXPLODING-WIRE DATA 2
3. SOME ANALYSES FOR WEAK SHOCK TRANSITIONS 3
3.1 Classical Taylor Plane Shock-Wave Transitions 3
3.2 Viscous Plane N-Waves3
4
6
3.3 Nonstationary Viscous Plane Waves 6
3.4 Shock Transitions with Vibrational Excitation 6
4. RANDOM-CNOICE ANALYSES FOR WEAK-SHOCK TRANSITIONS 10
4.1 Basic Equations 10
4.2 Numerical Method 11
4.3 Solutions for Plane Waves 12
4.3.1 Perfect-Inviscid Solution 12
4.3.2 Perfect-Viscous Solution 12
4.3.3 Real-Inviscid Solution 13
4.4 Solutions for Spherical Waves 14
4.4.1 Near-Field Solutions for Perfect-Inviscid Flows 14
4.4.2 Comparison Between Ferfect-Inviscid, Perfect-Viscous, Real-Inviscid and Real-Viscous Far-FieldSolutions15
4.4.3 Simulations for Spark and Exploding-Wire Generated N -Waves 15
4.4.4 Effects of Vibrational-Relaxation Time 17
4.4.5 Effects of N-Wave Duration 17
4.4.6 Effects of Nitrogen Vibrational Relaxation 18
5. CONCLUSIONS 19
REFERENCES 19
TABLES 21
FIGURES
APPENDIX A: EVALUATION OF $\bar{p}_{\text {max }}, \Delta Z$ AND Z_{d} IN THE LIGITHILLN-WAVE SOLUTION
APPENDIX B: DERIVATION OF ANALYTICAI RELATIONS IN SECTION 3.4
APPENDIX C: PROGRAM LISTING FOR RANDOM-CHOICE METHOD
APPENDIX D: PROGRAM OF MacCORMACK'S FINITE-DIFFERENCE METHOD
APPENDIX E: COMPARISON BETWEEN NEAR-FIELD SOLUTIONS OF THEE:APLOSION OF A PRESSURIZED AIR SPHERE USING LAX,MacCORMACK AND RANDOM-CHOICE METHODS FOR APERFECT-INVISCID FLOW
APPENDIX F: BULK VISCOSITY ANALYSIS FOR VIBRATIONAL. REI,AXATION FOR OXYGEN

List of Symbols

a	speed of sound
${ }^{a}{ }_{1}$	undisturbed speed of sound
${ }^{\text {a }}$ e	equilibrium speed of sound
${ }^{a_{f}}$	frozen speed of sound
${ }^{\text {c }}$ j	normalized vibrational specific heat for j-molecule ($\left.=c_{j}^{\prime} / R\right)$
C	viscous term in Eq. (t.1)
e	internal energy
E	total energy
h	absolute humidity
H_{I}	spherical correction of convection term in Eq. (4.1)
H_{R}	vibrational relaxation term in Eq. (4.1)
H_{v}	spherical correction of viscous term in Eq. (4.1)
J	$j=0$, rlane wave; $i=2$, spherical wave [Eq. (4.1)]
k	coefficient in Ey. (3.24)
m	$\left(a_{f}^{2}-a_{e}^{2}\right) / a_{e}^{2}$
M_{e}	equilibrium Mach number
M_{f}	frozen Mach number
M_{s}	shock Mach number
n	decay index of ($\langle\text { p })_{\text {max }}$ for spherical wave
p	pressure
P_{0}	normal pressure, 101.3 KPa
p_{1}	undisturbed pressure
$p_{\text {sat }}$	partial pressure of water vapour at saturation
P_{41}	initial diaphragm pressure ratio
Pr	Prandtl number
$\overline{\mathrm{p}}$	Similarity variable for plane N-waves, defined by liq. (3.12)
$\bar{P}_{\max }$	maximum value of $\overline{\mathrm{p}}$
(Δp)	overpressure ($=\mathrm{p}-\mathrm{p}_{1}$)
$(\Delta p){ }_{2}$	equilibrium overpressure behind steady plane shock wave
$(\Delta \mathrm{p})_{\text {max }}$	maximum overpressure of N -wave
${ }_{(\Delta p)}^{f}$	overpressure immediately behind frozen shock wave
$(\Delta \mathrm{p})_{\mathrm{cr}, j}$	critical overpressure for j -molecule
r	radial distance
r_{0}	radius of pressurized sphere
r*	normalized radial distance ($=\mathbf{r} / \mathbf{r}_{0}$)

List of Symbols - Continued

gas constant
Reynolds number defined by Eq. (3.10)
relative humidity
increment of r
increment of r^{*}
discharge voltage for spark and exploding-wire sources
time
half duration of N-wave
rise time
Taylor rise time for $10-90 \%$ maximum overpressure
characteristic shock-thickening time
normalized time $\left(=a_{1} t / r_{0}\right.$ or $\left.a_{1} t / x_{0}\right)$
normalized half duration of x-wave $\left(=a_{1} t_{d} / r_{0}\right)$
nornalized time $\left(=t / t_{d}\right)$
temperature
normal tomperature
undisturbed temperature
initial diaphragm temperature ratio
vibrational temperature for j-molecule
inc rement of t
wer-temperature $1=T-T_{1}$,
equilibrium ver-temperature behind steady plane shoch wave
maximum over-femperature of X -wave
vibational ner temperature for g molecule
excess mavelet relocity $1=a+r-a_{1}$
u at X . ..
flon velocity for steady shock wave
flow relocity ahead of steady shock wave
flow velocity behond steady shock wave
nonstatunary erm in tq. (4.1)
shock speed
flom relucity
flow velocity behind mo: ang plane shock wave
flow velocity in a moving coordinate system, Eq. (3.24)
absolute value of v at upstream and downstream infinity

List of Symbols - Continued

x	distance
x_{0}	length of high-pressure chamber of shock tube
${ }^{\text {d }}$	half distance of X -wave corresponding t d t_{d}
x_{5}	characteristic shock-thickening distance
x*	normalized distance ($=x / x_{0}$)
X	coordinate defined as $X=x-a_{1}{ }^{t}$
λ_{d}	half distance of N-wave, defined for X
x_{n}	node of X-wave ($u=0$), defined for X
$\therefore \mathrm{x}$	increment of x
$\therefore x^{*}$	increment of x^{*}
$(\therefore x)_{6}^{\prime}$	Taylor thickness for $10-90 \%$ equilibrium overpressure
AX	shock thickness of N -wave, defined for X [E:q. (3.14)]
y	time in 18. (3.24)
z	distance parameter defined by Eqs. (3.5), (3.16), (3.21), (3.35), (3.36), (3.39)
F_{d}	duration parameter defined by Eq. (3.15)
\pm	thickness parameter defined for $=$
$(\therefore=)_{0}$	Taylor-thickness parameter defined by maximum slope of velocity
$(\therefore){ }^{\prime}$	Taylor-thickness parameter defined by 10-90"s equilibrium overpressure
$(\therefore=)^{\prime \prime}$	Taylor-thickness parameter defined by 5-95* equilibrium overpressure
,	ratio of specific heats
.	diffusivity defined by Eq. (3.2)
$\left(\because v^{\prime}\right)$	diffusivity based on vibrational bulk viscosity for j-molecule
${ }^{\prime}{ }^{\text {j }}$	molar concentration for i-molecule
" ${ }^{\text {j }}$	characteristic vibrational temperature for j-molecule
.	thermal conductivity
i	viscosity
${ }^{4} \mathrm{r}$	buik viscosity for rotational relaxation
$\left(\omega_{v}\right)_{j}$	bulk viscosity for vibrational relaxation of j-molecule
	kinematic viscosity
-	density
'j	vibrational energy for j-molecule
$\left({ }_{j}\right)_{e}$	equilibrium vibrational energy for j-molecule

Subscripts
$\mathrm{N} \quad$ nitrogen
0
oxygen

The pressure wates gemerated be supersonic transport afreait SSI) and from explosions in air are often obserced as wath X-ames far from the source. Such pressure waves are heard as sonic booms. The loudness of these waves depends on their maximam overpressures and rise times (Ref. 1) The N-wates with short (microseconds) rise times are perceited as lowder and more startling than the ones with lomg (malliseconds) rise times. As a consequence, Nhate rise times were intestigated extensibely for SST sunge booms and for explosions in air (Refs, $2-t$). However, the observed $S S$ I rise times were often foand to be larger than those which were estimated from classical theory for viscous shoch structures of steady, plame waves derised by Tivlor (Ref. Ji. A recent revien of thas matter may be found an Ret. 0 .

This diserepancy was attrabuted mainly to the effects of atmospherct turbulence (kefs. ${ }^{-}-10$), and real-gas effects arising from the vibrational excitation of the oxgen and nitrogen air molecule (Refs. 11, 12). Honever, the decisile factor for this increased rise time wat: still in question There were difficulties in providing corretations between the observed and analytically estimated rise tames, uning to a lach of information regard ing the ambient temperature, humidity and air turbulence. Such quantitues are not always readily avallable. It was therefore necessary to carry out some simatation experiments under contralled con ditions where krlow atmospheric conditions conld be bhtained.

Holst-lensen (Ref. bi wats able to getmerate well-formed weak spherical \mathcal{A} wate by using sparhs or exploding wires as a source in a still-air dome, usually used for arreushion experiments (Ref. 13). In this manner he wanted co clatify the wibrational effects on the rise time at Şi 8 mates. He found that the observed rise tame here mach shorter than the rese tames estmated from the analysis of plane, fully-dsererad nates iRef. lat. The results could not be explained by any examon mblysts The oblect of this repori is to prete a theoreta al basis for explameng Holot fensen' (ata, whtch will be outlatid in "tetion

The processes antolved an the beneration of
 plex and are not readily predsted. ionsequently, it is necessary to assume a reaconable source model in order to simatate the explosions. In this paper it is assumed that the expanding plasma can be simulated be a pressurased sphere of zall radius at room temperature. The computer - bmalation requires adusting the radus of the pressurtsed sphere and the imagingry diaphragm pressure rat 10 to fit the experiments for maximum overpressure and half-duration of the v-wate with distance from the source. It is then possible to determine the $\because . . \because$ initial energy of the source. The latter is of academic interest as it is not possible to determine the actual energy release from the voltage and capacitance of the discharge without a great deal of additional time-dependent measurements

The nonstatonary, spherical symmetric NavierStokes equations were solved numerically, including the equation of one-mode vibrational relaxation for explosions of pressuri ed sheres in atmospheric
arr. An operator spletting technoque was used an which, at the first stage of calculation, the solutions for inviscid, frosen flow were ohtalned by applying the Randomentose thethod (Revi) and then the effects of viscosity and vibratanal nonequila brium were exaluated be using an explicit finate. difference method.

The RCM is a namerical method which was dewel oped by (ilimis (Ref. 1t:, (horin iRef. is) and hod (Ref. 16) for tlon problems inclading shoch mates. In this method, a Riemans prohlem is solved for each spatial mesh at cach time step and then one of its solutions is chosen at randon as a solution. for the next time step by using a randon sampling technj ue. lt is the great merit of this method that shock waves and contact surfaces can be ex. pressed as discontinuous surfaces without smearing arising from artificial visiositas inherent in all finitedifference methods. This is the man reason for adopting the k for for present analysis The algorithm is hased on a proeram developed by Saito and (ilass (Ref. 1-). The applation of the operator-splitting techatque for analyang the Navier-Stohes equations was first introduced by Yatcormach (Ref. is. In his analysis, the minseid solutions were obtained using a ch.eracteristic method. Recently, Satofirt and Shimizu (Kof. 19) hate tricd to solve the δ ter-stohes equa* ons for a shech-lwe problem ay applying the key with an operator-splitting technque. In the present analysis, the RoM with an operator-splitting techalque was extended to include ribrational relaxation effects for spherically-symetric waves.

It wall be shown subsequently wat the rise times of weak, spherical N-wates ...erated by spaths and exploding wires are seriously affected by two factors which never appear in steady plane wases. These are desighated as an $\because \because-:=\%$ effect and a $\because \because \cdot \because \because \because \because \because \cdot \because$, respetively. The \boldsymbol{N}-nate effeet means that the rise imes of weak N -waves are atfected by the expansion of the flow immed ately behand the shoek froite. The nonstatiorary offect medns that the rise tames of weak shock wates respond to that ies in shoch strengtit so slowly that their transient hehaviours must be consideref. The fundamental analytical ideas about these effects were provided by Lighthill (Ref. 20) for both resous x-hates and impulsively-generated busems plane wates. In Section 3 , his results are rewamined for use in the prosent study.

In order to consider the effects of vibrational excitation of oxygen and nit rogen air molecules, the papers of Polyakova et al (Ref. 21) and Johannsen and Hodgson (Ref. 12) for plane, dispersed waves are also re-examined in Section 3 , and an approximate relation is rived for the rise time of a fally or paytly-dispersed wave. Furthermore, the modified laylor and lighthill solutions for fullydispersed wates are discussed.

In Sections 4.1 and 4.2 , the basic equations and the numerical method of solution are described. In Section A.3, to validate the method of solution for nonstationary shock transitions, RCM solutions for nonstationary biscous and dispersed plane wates are compared with analytical solutions described in Section \therefore. As for solutions for spherical waves (Section 4.4), some numerical results for weak spherical N -hates in atr are presented for the following ture cases: (1) formation of X-waves in
the near-field of a pressurized sphere, (ii) comparison between perfect-inviscid, perfect-viscous, real-inviscid and real-viscous solutions, (iii) effects of vibrational relaxation time or ambient temperature and humidity, (iv) effects of N -wave duration or radius of pressurized sphere, and (v) effects of nitrogen vibrational relaxation. The observed rise times of spark and exploding-wire generated N-waves are also compared with those obtained from the analytical simulations.

In this report, the usual definition of rise time is followed, and is taken as the time-interval for the overpressure to vary from 10% to 90% of its peak value. This definition is quite arbitrary and is especially useful for actual SST signatures, as discussed in Ref. 0. Figure 1.l illustrates the definition of an N-wave rise time t_{r} and its half duration t_{d}. Figure 1.2 also illustrates the definition of a plane-wave rise time t_{r}. The corresponding shock thickness ix and half-duration length x_{d} may approximately be given by

$$
\Delta x=a_{1} t_{r}, \quad x_{d}=a_{1} t_{d}
$$

where a_{1} is the undisturbed speed of sound, since we consider only very weak waves

2. SPARK AND EXPLODING-WIRI: DATA

In this section, the spark and exploding-wire experiments which were carried out by Holst -Iensen (Ref. 6) and the resulting data are summarized. The purpose of these experiments was to generate weak, fully-developed \hat{i}-waves with overpressure below 100 pa in air, which would have interference free shock fronts. This was acconplished by using sparks and exploding wires. The dome containing the UTIAS air cushion vehicle (ACV) circular track facility (Ref. 13) was used as a still-air reservoir for part of the experiments. Its major internal diameter is about $42 . \mathrm{m}$. This provided waves free from interference with walls and other objects.

For detecting weak shocks in the overpressure range 5-100 Pa, a condensor microphone was used [Bruel \& kjaer 4135 free field $0.3 \mathrm{~mm}(1 / 4 \mathrm{in})$ dia] Amplification of the microphene signal was provided by a preamplifier Bek 2619 . The response of the microphone system was tested in the UTIAS Traveling Wave Sonic-Booa Simulator (Ref. 22). When measuring without its protective grid at zero angle of incidence, the microphone has an approximate minimum rise time $t_{r}=2.9 \mathrm{usec}$. The oscilioscopes used were Tektronix types 555 and 535 with a type 1$)$ plug-in that has a bandwidth better than 300 KHz The microphone was calibrated with a BGK pistophone type 4220, which gives a sound pressure level at $250 \quad 1=$ of 124 dB .

In the first series of experiments, sparks were used as a source of N -waves. The sparks were generated by the energy released from a charged 7.5 af capacitor. The maximum charging voltage was 8 kV and the discharge device was a thyratron. A micro phone was placed ahead of the measuring microphone in parallel to get the trigger signal for the oscilloscope. The source and microphone were set up at 1.8 m above the floor to avoid interference from reflected signals.

Fairly extensive measurements were done by using sparks at temperatures of $273-277 \mathrm{~K}$ and relative humidities of $50-73^{\circ}$. Five source-receiver distances $(4.1 \mathrm{~m}, 4.9 \mathrm{~m}, 9.8 \mathrm{~m}, 15.6 \mathrm{~m}$ and 21.6 m$)$ were employed with four different charging voltages of $4.4 \mathrm{KV}, 5.0 \mathrm{KV}, 5.4 \mathrm{KV}$ and 6.0 KV . This series of measurements is termed Series-I. Another series of measurements (Series-ll) was also done at a temperature of 289 K and relative humidity of 50% for the distance range of $11.8-19.0 \mathrm{~m}$ and a charging voltage of 4.4 kV .

Exploding wires were used to produce N-waves by replacing the resistor in the spark circuit by a thin nickel wire 0.125 mm dia and optimum length of 5 cm . The sudden discharge of energy vaporized the wire. The expansion of the metal vapour generated an N-wave in the far field. The measurements were done at two conditions for Series-lll ($T_{1}=2^{-7} k$, $\mathrm{Rul}=75 \%, \mathrm{r}=6.7 \mathrm{~m}, 12.8 \mathrm{~m}, 24.3 \mathrm{~m}, \mathrm{~S}=4.6 \mathrm{kV}, 6.0$ $\mathrm{KV})$, and Series-IV ($\mathrm{T}_{1}=280 \mathrm{~K}, \mathrm{RH}=8.55^{\circ}, \mathrm{r}=$ $24.3 \mathrm{~m}, 29.3 \mathrm{~m}, \mathrm{~S}-4.6 \mathrm{kV}, 6.0 \mathrm{KV})$, where T_{1} is the room temperature, Rll the relative humidity, r the distance from the source and S the charging voltage

The vibrational relaxation times for oxygen and nitrogen were evaluated by using the empirical relation obtained from the absorption of sound wates by Bass and Shields (Ref. 23), as tabulated in Table 2.1 . The vibrational relaxation time at room temperature strongly depends on the absolute humidity of the atmosphere, as water molecules significantly reduce its value.

Representative oscillograms from sparks and exploding wires are shown in Fig. 2.1. It can be seen that both a spark and an exploding-wire source make it possible to produce well-established N-waves far from the source. In the exploding-wire experiments, the N -waves were much cleaner than those generated by a spark, especially with regard to the rear shoch. It was found that the wire length 1 . plays a significant role in shaping the rear shock pressure profile. dfter testing several wire lengths, a wire length $1=5.0 \mathrm{~cm}$ proved to generate the most symmetrical N -waves, and was used in all subsequent runs. The microphones were set up normal to the wire to minimize any line-source effect.

In Figs. 2.2-2.4, the maximum (peak) overpressure (ip) max , the half-duration $t d$ and the rise time t_{r} are plotted against the distance from the source r. Figure 2.5 shows plots of t_{r} vs $(\therefore p)_{\max }$. The data for different series are represented by different symbols, which are common through figs. $2.2-2.5$. For the Series-I experiment, the data are plotted only for $S=4.4 K V$ and 6.0 KV to avoid confusion.

In Fig. 2.2, the lines indicate the curves of (Ap) max r^{-n}, which are drawn from the arbitrary points to fit the experimental data, where n is termed the decay index of maximum overpressure. The solid and broken lines correspond to the curves for $n=1$ and 1.4 , respectively. For 100 - (Ap) max 20 Pa both spark and exploding-wire data show that maximum overpressures decay nearly inversely proportional with distance from the source, as estimated from linear-acoustic theory. On the other hand, the spark data show that the decay index increases below 20 Pa . This deviation from linear-acoustic theory can be attributed to real-gas effects arising from

Whratanal excitation of uxyen (sce Section 4.4) It is noted that the same input energy does not result $1 n$ the same decay of $(\Delta p)_{\max }$ for different energy sources. The exploding-wire source makes for a stronger explosion in air than the spark source for the same discharge voltage. It should also be noted that the overpressure decays are different tor the different series of spark experinents despite the same discharge voltage.

In Figs. 2.3-2.5, the broken lines indicate the tendency of the experimental data. The halfdaration t_{d} imerases with r. The durations for the exploding-wire experiment ($85-155$ i.sec) are longer that those for the spark experiments 150-75 ..see). The rise times t_{r} also increase with r, while the maximum overpressure decreases with r. It should be noted fromfig. 2.5 that the rise t mes t_{r} are different for the different series of experiments and supply voltages at the same maximum verpressure.

5. SOMI ANAIISES FOR WEAK SHOCK TRANSITIONS

In this section, some analytical solutions for neak shock transitions are reviewed and discussed in connection with the spark and exploding-wire data, whach were shown in Section ?. In Sections $5.1-3.3$, some analytical solutions for viscousshoch transitions are shown in cases of steady planar wates, quasi-stationary N-waves and nonstathonary planar waves, respectively. The analytical solation for steady planar waves was derived by laylor tRef. 5), and will be designated as the laylor solution or the Taylor shock transition. The analytical solutions for quasi-stationary D-waves and nonstat ionary planar waves were defined hy lighthill (Ref. 20), and will be designated as the I ighthall solutions, or the lighthill X-wate and the lighthill shock transition, respectively. In Section i.t, solutions for dispersed waves with bibrational excitation are shown for a steady plane wave, and an approximate expression is derved for the rise time of a fully or partlydispersed wate. The Taylor and lighthill solutions are extended to dispersed waves with vibrational relaxation by using a bulk-viscosity concept, and the extended solutions will be designated as the modifled Taylor solution and the modified lighthill solution, respectively. Some insight is also given into the structures and rise times of weak spherical S-wales.

S. Gasscal Taylor Plane Shock-Wave Transitions

In the following three sections, sections
 are considered, where the vibrational mode of molecular internal energy is assumed to be ir a : . Wiscous, steady shoci waves are formed as a result of a balance between the wate-form-stepening Pendency due to the finite-amplitude compression (comection) effects and the nate form-casing tendency due to the viscoms-diffuston effects this balan, ing determines the thaterness of a stedde shock watve and depends on the shock strength

The classical laylor solat an o Ref. 5) for weak, plane shock wave transit bons se expressed by lighthill (Ref. 20) as

$$
\begin{equation*}
\frac{y}{y_{2}}=\frac{1}{1}+\left(x_{1}\right) \frac{\left.(1+1) x_{2}(x-i) s\right)^{-1}}{2} \tag{3.1}
\end{equation*}
$$

for a shock w.u travelling with steady profile at a constant opeed J_{s}, where $r=f l o w ~ v e l o c i t y$ redatice to the ground; $v_{2}=$ flow velocity at $x \cdot-\cdot$, $=$ ratio of specific heats, $x=$ distance, $t=t i m e, ~=d i f f u s i v i t y$ of sound, defined by

$$
=\frac{-}{5}+\frac{r}{\square}+\frac{-1}{1 r r}
$$

where $=k$ inematic biscosity,.$=$ viscosaly, $\cdot r=$ bulk viscosity duc to rotational relaxation, $\mathrm{Pr}=$ Prandt 1 number. All the thermodynamic and transport coefficients, , , , .., .r and Pr, may be assumed to be constant throughout the flow, since the shoch wates are weak. The original Taylor solution did not include the bulk viscosity due to rotational relaxation as it appears in liq. (3.2). However, in the present paper, the term ze*er $\therefore \therefore$: is used when it includes only the effects of rotational relaxation in order to distinguish from the.$\quad \because \because \vdots \because \because \because \because \because$ which includes both the effects of rotational and :lbittional relaxation.

From the weak-nale assamption, we have

$$
V_{1}=\mid p /\left(p_{1}\right)
$$

where p is the overpressure ($\left.p=p-p_{1}\right): a_{1}$, the undisturbed speed of sound; p_{1}, the undisturbed pressure. Then liq. i.3.1) can be rewritten as

$$
\frac{(p)}{(p)_{2}}=-1+\exp : \frac{+1}{2} \frac{a_{1}\left(x-()_{s} t\right)}{p_{1}} \frac{(\therefore p)_{2}}{i \mid} \quad(3.4)
$$

where (:p) is the overpressure at x - -r Define a dimensionless arable,

$$
\begin{equation*}
==\frac{a_{1}\left(x-\left(t^{t}\right)\right.}{-} \frac{(\lambda p)=}{p_{1}} \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{(\eta)^{\prime}}{\left(\square p^{\prime}\right)}=1+\exp \left(\frac{1+1}{2}=\right)^{1} \tag{5.6}
\end{equation*}
$$

or

Figure 3.1 exhibits the Taylor velocity or pressure profile in a plot of $\% / 2$ or (ip)/(ip)? against $=$. The variable z is a similarity variable, since the velocity or pressure profile can be obtained as a unique curve against $=$ for shock waves with different strength (ip) $/ \mathrm{P}_{\mathrm{l}}$, and it will he termed the distance parameter.

Three different definitions of shock thickness for = are also shown in Fig. S.l. The thickness $\left.1^{\prime}\right)_{0}$ is defined by

$$
(\because)_{0}=\frac{v z}{d y / d z}=\frac{(\square p)_{z=0}}{d(p) / d z}
$$

This thickness corresponds to the velocity or den-sity-hased thickness, and it has been used in some literature for shocks of moderate strength. The thichnesses $(\therefore z)_{0}^{1}$ and $(\therefore)_{0}^{\prime \prime}$ are defined by the distanes for the overpressure to vary from 10° to 90. and from 5° to 95°, respectively, of its equilibrium value behind the shock. The last definition was used by l.ighthill (Ref. 20) for the shock thick ness derited from the velocity profile. From Eq. (5.0) or (3. ${ }^{-}$, we can evaluate the values of (A$)_{0}$, $(\therefore=)_{0}$ and $(\therefore)_{0}^{\prime \prime}$ as
$(\therefore)_{0}=4.00^{-}, \quad(\therefore)_{0}^{\prime}=5.122^{\circ}, \quad(\therefore Z)_{0}^{\prime \prime}=6.870$
These will be termed the thicklless parameters. The second definition of the shoch thickness (10-90\% overpressure) is used throughout this report because it can give a reasonable criterion for evaluating the thiekness of a shock wave with an antisymmetric structure, which is tound in N-wates and in partly or fully dispersed plane waves.

The actual Faylor thickness $(x)_{0}^{1}$ and the Taylor rise time tro ($10-90 \%$ overpressure) can be redated to the faylor thickness parameter (VI) $_{0}$ as

$$
\begin{equation*}
\frac{(\therefore x)_{0}^{\prime}}{\left.1 \cdot a_{1}\right)}=\frac{{ }^{t} r_{0}^{\prime}}{\left(\because a_{1}{ }^{2}\right.}=\frac{2}{+1} \frac{(\therefore-1)_{0}^{\prime}}{(\because p)_{2} / p_{1}} \tag{3,8}
\end{equation*}
$$

from liy. (3.5), where $t_{r_{0}}$ is the Taylor rise time corresponding to the Taylor thickness (ix) o, We assume $t^{\prime} r_{0}=(x)\left(x / a_{1}\right.$, since the wave speed is nearly equal to al for very weak waves.

In Fig. 3.2 , the Taylor thickness $(i x)_{0}$ or the laylor rise time tro are ploted in a nondimensional form against $(\therefore p)=/ p_{1}$ for a range of $(\therefore p)=/ p 1=$ $10^{-5}-10^{-5}$ or $(\therefore p)=1 \mathrm{~Pa}-100 \mathrm{~Pa}$ in the atmosphere. At NTP for air $=1.353 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, $\because r / . .=2 / 3,=1,4, \operatorname{Pr}=0.7$ and, from Eq. (3.2), $=3.45 \times 10^{-5} \mathrm{~m}-\mathrm{s}$. Using $a_{1}=331 .-\mathrm{m} / \mathrm{s}$, the characteristic length and time are

$$
\cdot / a_{1}=1.115 \times 10^{-} \mathrm{m}, \quad / a_{1}^{2}=3.1 \times 10^{-10} \mathrm{sec}
$$

Therefore, for $(\therefore \mathrm{p}) 2 / \mathrm{p}_{1}=10^{-4}$, or $(\mathrm{p}) 2=10 \mathrm{~Pa}$ at VTP, then $(x)=5.5 \mathrm{~mm}$ and $t^{\prime}{ }^{\prime} 0=16 . \mathrm{sec}$, from Fig. S. \therefore. The Taylor thickness or rise time is inversely proportional to the shock strength ('p) $/ \mathrm{pl}_{1}$. As the shock speed is weakened, the Taylor thickness increases and tends to infinity as (A$)_{2}$ - 1 .

As mentioned at the beginning of this section, the balance between the finite-amplitude (nonlinear) compression effects and the viscous-diffusion effects determines the thickness of a steady shock wave. As the wave is weakened, the nonlinear effects are gradually diminished, while the viscousdiffusion effects remain unchanged regardless of the shock strength. Therefore, for very weak shocks, the diffusion effects exceed overwhelmingly the nonlinear compression effects and broaden the shock thickness to very large values. In the limit of $(\hat{p})_{2} \cdot 0$, the nonlinear effects disappear and only the diffusion effects remain, so that the thickness tends to infinity. However, in an actual case, the steady st ructure of such a very weak wave would not
be realized because it requires an infinitely long time for the wave to reach a steady state through viscous diffusive action. In the case when the shock strength increases, the nonlinear effects are strengthened, while the diffusive effects remain unchanged. However, the shock thickness cannot be less than the molecular mean-free-paths, since the shock compression process is after all a result of molecular collisions. In other words, for strong shocks, the shock thickness has a lower limit which is controlled by molecular-collision processes.

Figure 3.3 shows a comparison between the experimental and theoretical (Taylor) rise time t_{r} vs the maximum overpressure $(\Delta \mathrm{p})_{\text {max }}$. The Taylor curves shown in Fig. 3.2 are reproduced for $T_{1}=$ 273 K and 290 K . As seen from Fig. 3.3, the rise times for the spark data (Series I and II) are shorter than the Taylor rise times for the same maximum overpressure, while the rise times for the exploding-wire data (Series III and IV) are longer. Both data do not coincide with the Taylor curves. It is clearly seen that the Taylor rise times for steady viscous shocks can give no reasonable explanation for the observed rise times for weak spherical N-waves. Therefore, another analysis is required for this purpose.

3.2 Viscous Plane N -Waves

In this section, consideration is given to the case of a batanced $\|$-ik $2 v e$, which is produced by moving a piston forward and then retracting it to its original position in a tube. The generated plane N-wave gradually decays due to viscous effects as it proceeds. Lighthill (Ref. 20) solved this problem and obtained a similar solution for weak plane N-waves, where the velocity profile is given as

$$
\begin{equation*}
u=\frac{x / t}{1+\exp \left(x^{2} / 2 \cdot t / i \cdot \exp (\operatorname{Re})-1 i\right.} \tag{3.9}
\end{equation*}
$$

where X is a coordinate measured in a frame of reference which moves in the same direction as the waves, with an undisturbed speed of sound ap and is defined as $X=x-a_{1} t ; u$ is the excess wavelet velocity whose rariations are responsible for the \because Mo.tior effects and is defined as $u=a *-$ - al (a is the local speed of sound, v, the particle velocity); Re is a Reynolds number of each half of the X-waves, which is defined in terms of the mass flow in that half. For example, for the front half

$$
\begin{equation*}
\operatorname{Re}=\frac{1}{t}: u d x \tag{3.10}
\end{equation*}
$$

where x_{n} is the node $u=0$ and is the diffusivity defined by E.q. (3.2). Note that $k e$ is not invariant, but varies with time as the mass flow varies with the decay of the wave. The tunind N-wave means that its total mass flow always vanishes as

$$
\mathrm{udx}=0
$$

From the nonlinear wave relation,

$$
\begin{equation*}
u=\frac{i+1}{2} v \tag{3.11}
\end{equation*}
$$

Using Eqs. (3.3) and (3.11) and defining the simalarity variables
then from E4. (3.9),

$$
\begin{equation*}
\left.\bar{p}=: i_{1}+\frac{\exp \left(5^{2} / 2\right)}{\exp (\operatorname{Re})-1}\right]^{-1} \tag{3.13}
\end{equation*}
$$

Figure 3.4 shows the pressure profiles for several different Reynolds number Re in a plot of \bar{p} against

For a given Reynolds number Re, we can obtain $\bar{p}_{\max }$ (the maximum value of \bar{r}), $\therefore \dot{S}$ (the shock thickness defined by $10-90 \%$ overpressure) and d (the half length of the i-wave measured from the origin to the point of 10% overpressure in the wave front). Then the following parameters can be obtained:

$$
\begin{align*}
& \therefore 2=\frac{2,}{1+1}(\Delta r) \bar{p}_{\max }=\frac{a_{1}(\Delta X)(\Delta p)_{\max }}{P_{1}} \tag{3.14}\\
& z_{d}=\frac{2 \gamma}{\gamma+1} \varepsilon_{d} \bar{p}_{\text {max }}=\frac{a_{1} x_{d}}{i} \frac{(\Delta p)_{\max }}{p_{1}}=\frac{a_{1}{ }^{2} t_{d}}{(\therefore p)_{\max }} p_{1} \tag{3.15}
\end{align*}
$$

where ΔX is the shock thickness corresponding to $\Delta j_{i}, \Delta X=\Delta 5 \sqrt{t} ; X_{d}$, the half length of the N-wave corresponding to $\xi_{d}, X_{d}=\xi_{d} r^{2} t$; (S) max, the maxi mum value of (Δp). The parameters ΔZ and id corre spond to the shock thickness and the flow duration of the N-wave with reference to the dimensionless variable 2 , which is defined similarly to Eq. (3.5) as

$$
\begin{equation*}
z=\frac{a_{1} x}{s} \frac{(\Delta p)_{\max }}{p_{1}} \tag{3.16}
\end{equation*}
$$

$\therefore 2$ is the thickness parameter defined in the previous section and Z_{d} will be termed the duration parameter. Details of the derivation of $\overline{\mathrm{f}}_{\mathrm{max}}, \therefore$ and Z_{d} are given in Appendix A.

Figure 3.5 exhibits the pressure profiles for the same cases as shown in Fig. 3.4 in a plot of $(\Delta p) /(\Delta p)_{\text {max }}$ against $z-Z_{0}$, where Z_{0} is the z at $(\Delta p) /(\Delta p)_{\text {mar }}=0.5$. The solid line indicates the Taylor solution for steady plane waves, which is given by Eq. (3.6) or (3.7). The Lighthill N-wave solution approaches the Taylor solution as $I_{d}+\infty$ or $\operatorname{Re} \rightarrow \infty$. This can also be shown from Eq. (3.13) as follows. Assume that $\overline{\mathrm{p}}$ reaches its maximum $\mathrm{P}_{\text {max }}$ at $;=\xi_{\mathrm{m}}$ for large Re. Then, approximately,

$$
\begin{gather*}
\overline{\mathbf{p}}_{\text {max }}=\xi_{m}, \quad \operatorname{Re}=\xi_{m}^{2} / 2 \\
\text { Put } \xi=\xi_{m}+\xi^{\prime}\left(\xi^{\prime} \cdots \xi_{m}\right), \text { then } \\
\overline{\mathbf{P}}=\xi_{m}\left[1+\exp \left(\xi_{m}^{\prime} \prime^{\prime}\right)\right]^{-1}=\overline{\mathbf{p}}_{\max }\left[1+\exp \left(\overline{\mathrm{P}}_{\max } \xi^{\prime}\right)\right]^{-1} \tag{3.17}
\end{gather*}
$$

in the limit of $R e \rightarrow$. Fquation (3.17) has the
same form as Eq. (3.6), the Taylor solution, since $\bar{p}_{\max }:=$ can be replaced by $2-\dot{Z}_{0}^{\prime}$, where Z_{0}^{\prime} is the \sum at $\xi=F_{3}$. It should be noted that the shock thickness decreases as the Reynolds number Re or the duration parameter I_{d} decreases for the same maximum overpressure.

In Fig. 3.6 , the ratio of the thickness parat meter $(\therefore z) /(: 2) \dot{j}$ is plotted against the duration parameter Z_{d}, where $(\therefore)_{0}^{\prime}$ is the $(\therefore Z)$ for Z_{d}. (laylor solution) and is given by $(\therefore 2)_{0}^{\prime}=5.127$ this figure clearly shows the dependence of the shoch thickness on the duration of the N-wave. As the duration or the maximum overpressure increases, the shock thickness approaches the Taylor value. As the duration or the maximum overpressure increases, the shoch thickness approaches the Taylor value. As the duration or the maximum overpressure decreases, the deviation from the Taylor value increases.

In Fig. 3.7, the normalized shock thickness $(i x) /\left(\cdot / a_{1}\right)$ or the normalized rise time $t_{r} / 1 / / i_{1}$) is plotted against the normalized maximum overpressure ($\therefore \mathrm{p}$) max $/ \mathrm{P}$ for the normalized duration
 be seen from Fig. 3.- that the shock thickness or rise time decreases for a fixed maximum overpressure (Ap)max as the duration of N-wave decreases. This is the $\because-\cdots, \therefore \because$ described in the Introduction.

In Fig. 3.8, the experimental data of Ref. 6 are compared with the lighthill solutions for N-waves. The rise time t_{r} is plotted against the maximum overpressure (\therefore p) max. The solid lines exhibit the S -wave solutions for $\mathrm{t} \mathrm{d}_{\mathrm{d}}=50$..sec and ${ }^{-0}$ wsec which correspond to the half-durations in the spark experiments. The Iaylor rise time for $\Gamma_{1}=273 k$ is also plotted against (.ip)max. The figure shows that the rise times obtained in the spark experiments are adequately explained by the Lighthill model of viscous (frosen) N-wave shochs though the measured rise times slightly deviate from the theoretical curves in the range of the lower overpressure.

In Fig. 3.9, the experimental data are plotted on a figure showing the ratio of the thickness parameters $(i=) /(\therefore=)_{0}^{0}$ vs the duration parameter z_{d}, shown in Fig. 3.6. The data cover the range of $2_{\mathrm{d}}=10-100$, in which the spark data lie between $\mathrm{zd}=10$ and 60 and the exploding-wire data lie between $\Sigma_{d}=50$ and 100 . Using the duration parameter Z_{d}, the data may be categorized into three domains. Above $z_{d} \quad 50$, the measured $(\therefore 2)$-values deviate from the Lighthill curve and steeply increase with increasing 2 d . In the range $\mathrm{Id}=15-50$, the measured $(\therefore \Sigma)$-values nearly coincide with the Lighthill curve, a scatter of the data exists. Below $z_{d} " 15$, the measured ($\Delta 2$)-values again deviate from the curve and steeply decrease with decreasing 2_{d}. The broken lines are drawn to stress the tendency of the data.

Figure 3.10 shows a comparison between the observed and lighthill N -wave pressure profiles. Typical profiles in the Series I-IV are plotted by the broken lines in comparison with the corresponding analytical ones, which are evaluated from Eq. (3.13) to have the same maximum overpressure ($\Delta \mathrm{p})_{\text {max }}$ and the same half-duration t_{d} as the experimental ones, and plotted by the solid lines to fit each other at the nodes of the N-waves. As seen from the figure, the pressure profiles observed in the spark experiments \{Series I and 11; Figs. $3.10(a)$ and (b)] nearly coincide with the analytical

Ones, while the pressure profiles observed in the exploding-wire experiments [Series 111 and IV; fig. $3.10(c)$ and (d)] deviate from those predicted analytically. The main difference between both experiments is that of the halt-duration of the N-wave. Figure 3.10, as well as Figs. 3.8 and 3.9 , suggests that the lighthill viscous A -wave model does not always explain the rise times of N -waves over the entire range of $t \mathrm{~d}$ or Zd .

3.3 Nonstationary Viscous Plane Waves

In this section, consideration is given to a nonstationary plane wave, which is generated by the impulsive motion of a piston in a tube. The initially discontinuous wave-front is smoothed out due to viscous diffusion and it tends to form a final steady profile. It will be shown in the succeeding sections that this process of shock
 role in determining the rise times of weak spherical N -waves.

Lighthill (Ref. 20) has given a solution for the nonstationary plane wave by solving Burger's Equation. He obtained the following result:

in which the initial wave form is given by
$u(x, 0)=u_{2}$ for $x \cdot 0$, and zero for λ. 0
where u_{2} is the excess wavelet velocity for $X \cdot-\cdots$.
Using Eqs. (3.3) and (3.11),

where 2 and t are the distance parameter and the time parameter, respectively, defined by
$z=\frac{a_{1}\left(x-\frac{1}{2} u_{2} t\right)}{(\dot{\alpha} p)_{2}} \frac{p_{1}}{i}, \quad i=\frac{a_{1}{ }^{2} t}{i}\left[\frac{(\dot{p})_{2}}{p_{1}}\right]^{2}$

The complementary error function is defined by

$$
\operatorname{erf}_{c}(x)=\int_{x}^{n} e^{-y^{2}} d y
$$

Note that the shock strength (A$)_{2} / \mathrm{p}_{1}$ depends on the piston velocity $v_{2}\left[=2 u_{2} /(y+1)\right]$ and is invariant throughout the process. When $\mathrm{I} \rightarrow \infty$, Eq. (3.20) becomes

$$
\begin{equation*}
\frac{(p)}{\left(\frac{p}{p}\right)_{2}}=1 \cdot \exp \frac{1+1}{21} z_{1}^{-1} \tag{3.22}
\end{equation*}
$$

which 15 the laylor solution for steady plane waves, 1:4. (3.6).

Figure 3.11 shows the pressure profiles for several different time parameters in a plot of (P)/1 pleagainst the distance parameter 2. The pressure profile appreaches the Taylor profile as -. It can be seen that the shock thickness (\because) ancreases as increases (whether based on maximum slope or $10-90$ of $(\mathrm{p}) /(\mathrm{p}) 2$!.

In Fig. 3.12, the ratio of the thickness para-
 define a characteristic-time parameter of shoik thickenıng s as at $(\Sigma) /(\because)_{0}^{\prime}=0.99$, then

$$
=5.5 \text { or } \quad s=30.25
$$

from whach the corresponding time $t s$ and distance x_{s} are obtatned from l:q. 13.2l| as

$$
\begin{equation*}
\frac{t_{s}}{\left(/ a_{1}\right)}=\frac{x_{s}}{\left(\cdot{ }_{\left(a_{1}\right)}\right)}=\frac{\left(A_{1}\right)_{2}-2}{p_{1}} \tag{3.23}
\end{equation*}
$$

which are designated as the shock-thickening time and distance, respectively. These are inversely proportional to the square of the shock strength (p) $2 / \mathrm{pl}$. This means that it takes a progressively longer time and distance to reach a final steady state for weaker shock waves or for lower (A p$)_{2} / \mathrm{p} 1$. Physically, this tendency of longer shock-thickening time or distance for weaker shocks is attributed to the decline of shock steepening due to nonlinear (convective) effects.

In Fig. 3.1.3, the normalized shock-thickening time $t_{s} /\left(\cdot / a_{1}{ }^{2}\right.$) or distance $x_{s} /\left(\delta / a_{1}\right)$ is plotted against the shock strength (ip) $2 / \mathrm{pl}_{1}$. The time scale on the right hand side indicates the shock thickening time at NTP in air. For (p$)_{2} / \mathrm{p}_{1}=10^{-4}$ or $(\therefore \mathrm{p})_{2}=10 \mathrm{~Pa}, \mathrm{t}_{\mathrm{s}}=1 \mathrm{sec}$ or $\mathrm{x}_{\mathrm{s}}=330 \mathrm{~m}$. These values suggest that the nonstationary effect on the rise time or the shock thickness becomes very important for weak shock waves, for it takes a long time or a large distance to reach a steady state. This result is of value in interpreting Fig. 3.4 or 3.5 , which provides solutions for quasi-stationary N -waves at the final values after a very long time without specifying how long it may actually take. The above solution quantifies the time or distance in specific cases. The spark and explodingwire generated N-waves, described in Section 2 , are also expected to be affected by this nonstationary effect, since the maximum overpressures are below 20 Pa only over a distance of 10 m .

3.4 Shock Transitions with Vibrational Excitation

The structure and thickness of shock waves with vibrational excitation in air will be considered now. The analytical results of Polyakova, Solyan and Khokhlov (Ref. 21) and Johannsen and Hodgson (Ref. 12) for plane dispersed waves are re-examined and compared with Holst-Jensen's data (Ref. 6). Furthermore, extensions of Lighthill solutions for N-waves and nonstationary waves to shock transitions with vibrational excitation are
made possible by using a bulk-viscosity concept.
For weak shock waves with vibrational excitation, steady shock waves are formed as a result of a balance between the wave-form-steepening tendency due to finite-amplitude-compression effects and the wave-easing tendency due to both effects of viscous diffusion and vibrational relaxation. For very weak waves, the compression effects diminish and the wave-form-easing effects become predominant. As discussed in Section 3.1 for \because ecows or frent shock transitions, in the limit of $(\therefore p)_{2} \cdot 0$, the nonlinear compression effects disappear and the wave-form-easing effects remain, so that the wave thickness tends to infinity. For weak shocks whose strengths are slightly above the Jimit of zero overpressure, the vibrational relaxation is more effective than the viscous diffusion for the wave-easing tendency. In this case, the compression process is so slow that the energy dissipation due to vibrational nonequilibrium becomes predominant compared with that due to translational and rotational nonequilibrium which requires a more rapid change of the flow properties. As the wave strength increases, the shock thickness decreases owing to the increase in nonlinear-compression effects. When the nonlinear-compression effects overcome the wave-easing effects due to vibrational relaxation, the frozen shock transition appears in the compression process of the wave.

Figure 3.14 illustrates these two types of shock transition with vibrational excitation through pressure and temperature profiles. The vibrational temperature T_{V} is also plotted to show the process of vibrational energy excitation. The former wave dominated by the vibrational excitation is called a fully dispersed wave, and the latter wave including the f rizn (relatively sharp, viscous) shock transition is called a partly dispersed wave. For strong shocks, the nonlinear compression mainly balances with the viscous diffusion, though it is accompanied by the slower process of vibrational excitation. As shown in fig. 3.14, for stronger shocks, the temperature goes up to the maximum (Rankine-Hugoniot) value through the frizen shock compression and then it falls to the final equilibrium state through the milasatin zute as vibration attains its share of energy.

Polyakova et al (Ref. Il) have obtained an analytical solution for the structure of steady, plane dispersed waves for nonviscous and nonconductive gases as

$$
\begin{equation*}
\frac{y+y_{0}}{i j}=\ln \frac{\left(v_{0}+v\right)^{k-1} v_{0}^{2}}{\left(v_{0}-v\right)^{k+1}} \tag{3.24}
\end{equation*}
$$

where $y=t-5 / a_{e} ; 5=$ Lagrangian coordinate, $a_{e}=$ equilibrium speed of sound; $y_{0}=$ constant of integration; $: j=$ vibrational relaxation time for j-molecule; $v=$ velocity in a moving coordinate
 spatial coordinate; $\cdots, k^{2}=m a e^{\prime}\left(2 v_{0}\right)$; $m=\left(a_{f}^{2}-a_{e}^{2}\right) / a e^{2} ; a_{f}=f r o z e n ~ s p e e d ~ o f ~ s o u n d ; ~$ $==(r+1) / 2$.

In order to rewrite Eq. (3.24) using the normalized overpressure $(\therefore p) /(\therefore p) 2$ and the distance parameter 2 , which were introduced in the previous sections, introduce two quantities: the bulk viscosity and a critical overpressure.

The bulk viscosity $\left(L_{v}\right){ }_{j}$ for the j-molecule can be expressed as

$$
\begin{equation*}
\left.\left(u_{v}\right)_{j}=?_{j} 0^{\left(a_{f}\right.}{ }^{2}-a_{e}^{2}\right)={ }_{j} 0^{m a} e^{2} \tag{3.25}
\end{equation*}
$$

for processes sufficiently slow, where. 0 is the equilibrium density of the medium. Then the diffusivity $(\because v) j$ for j-molecule with a bulk viscocity $\left(u_{v}\right)_{j}$ can be expressed as

$$
\begin{equation*}
\left(\cdot_{v}\right)_{j}=\left(n_{v}\right)_{j} / v_{0}=j_{j}^{m a} e^{2} \tag{3.26}
\end{equation*}
$$

This diffusivity will be used as a reference physical property. It should be noted that the use of this property does not mean that the vibrational relaxation processes can always be replaced by the bulk viscosity, which is valid only for processes sufficiently slow.

The critical overpressure is defined as the equilibrium overpressure behind a plane dispersed wave whose wave velocity is equal to the frozen speed of sound. When the equilibrium overpressure exceeds the critical overpressure, the steady plane wave is a partly dispersed wave with a frozen (viscous) shock front, which is followed by the vibrational relaxation region. When the equilibrium overpressure is below the critical overpressure, the steady plane wave is a fully dispersed wave with a smooth transition, which is controlled by the vibrational excitation of the molecules.

The equilibrium overpressure across a normal shock wave with vibrational excitation can be given as

$$
\begin{equation*}
\frac{(\hat{p})_{2}}{P_{1}}=\frac{2,\left(M_{f}^{2}-1\right)+2(;-1)\left(M_{f}^{2},-1\right) c_{j}}{(1+1)+2(1-1) c_{j}} \tag{3.27}
\end{equation*}
$$

where M_{f} is the frozen Mach number, c_{j} the vibrational specific heat for j-molecule normalized by the gas constant $c_{j}=c_{j}^{\prime} / \dot{R}$ in which c_{j}^{\prime} is assumed to be constant across the shock wave. Details of the derivation of Eq. (3.27) are given in Appendix B. If the harmonic oscillator approximation is applied to the vibrational energy level, the vibrational specific heats for O_{2} and N_{2} in air may be written as
where T_{1} is the initial gas temperature (room temperature), " the vibrational characteristic temperature ${ }^{\circ} \mathrm{o}=2239.1 \mathrm{~K},{ }_{\mathrm{N}}=3352 \mathrm{~K}$. For $\mathrm{M}_{\mathrm{f}}=1$, we have the critical overpressure for the j-molecule as

$$
\begin{equation*}
\frac{(1 p)_{c r, j}}{P_{1}}=\frac{2(y-1)^{2} c_{j}}{(1+1)+2(;-1) c_{j}}=\frac{2(y-1)^{2}}{\gamma+1} c_{j} \tag{3.29}
\end{equation*}
$$

for $c_{j} \cdot 1$, which is usually valid for atmospheric air, as very little vabrational excitation can exist at nearly room temperature. The critical overpres-
sure (A p) cr, j depends on the gas temperature T_{1}, since the vibrational specific heat $c j$ depends on l_{1}.

In Fig. 3.15, the critical overpressures $(A p) \mathrm{cr}, 0$ and $(A \mathrm{p})_{\mathrm{cr}, 0+\mathrm{N}}$ are plotted against T_{1}. The lines denoted by O_{2} and $\mathrm{O}_{2}+\mathrm{N}_{2}$ are calculated fron

$$
\begin{gather*}
\frac{(\therefore p) c r, 0}{p_{1}}=\frac{2(r-1)^{2}}{1+1} c_{0} \tag{3.30a}\\
\frac{(i p) c r, 0+N}{p_{1}}=\frac{2(r-1)^{2}}{1+1}\left(c_{0}+c_{N}\right) \tag{3.30~b}
\end{gather*}
$$

respectively. That is, in the former case, only the vibrational excitation for 0 -molecules in air is taken into account. For $(\Delta p)_{2} \leqq(\Delta p)_{c r} j$, the steady plane wave is fully dispersed, and for $(\therefore \mathrm{p})_{2}>(\mathrm{d} p)_{\mathrm{cr}, \mathrm{j}}$ it is partly dispersed.

The diffusivity $\left(\hat{\delta}_{V}\right)_{j}$ can be expressed by the critical overpressure as

$$
\begin{equation*}
\left(\delta_{v}\right)_{j}=\frac{\gamma+1}{2 \gamma} a_{1}{ }^{2} \tau_{j} \frac{(\lambda p)_{c r, j}}{P_{1}} \quad \text { for } c_{j} \ll 1 \tag{3.31}
\end{equation*}
$$

The parameter k, which appears in Eq. (3.24), can be rewritten as

$$
\begin{equation*}
\frac{1}{k} \frac{(\therefore p)_{2}}{(A p)_{c r, j}} \text { for } c_{j} \ll 1 \tag{3.32}
\end{equation*}
$$

That is, the parameter k is the ratio of the critical and equilibrium overpressures. For $k, 1$, the wave is a partly dispersed wave, and for k : 1 the wave is a fully dispersed wave. The derivations of tiqs. (3.31) and (3.32) are given in Appendix B.

Using the relation

$$
\begin{equation*}
1+\frac{\hat{v}}{v_{0}}=2 \frac{(\hat{p})}{(\Delta \mathrm{p})_{2}} \tag{3.33}
\end{equation*}
$$

then
$\frac{\gamma+1}{z_{i}}\left(z-z_{0}\right)=\left[1+\frac{(\Delta \mathrm{p})_{2}}{(\Delta \mathrm{p})_{\mathrm{cr}, \mathrm{j}}}\right]$ in $\left[1-\frac{(\Delta \mathrm{p})}{(\Delta \mathrm{p})_{2}}\right]$

$$
\begin{equation*}
-\left[1-\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \text { in }\left[\frac{(\Delta p)}{(\Delta p)_{2}}\right] \tag{3.34}
\end{equation*}
$$

from Eq. (3.24), where the distance parameter Z is defined as

$$
\begin{equation*}
z=-\frac{a_{1}{ }^{2} y}{\left(ह v_{j}\right.} \frac{(\lambda p)_{2}}{P_{1}} \tag{3.35}
\end{equation*}
$$

in a similar way to Eqs. (3.16) and (3.21) in the previous sections, it can be rewritten as

$$
\begin{equation*}
z=-\frac{2 \gamma}{i+1} \frac{y}{t_{j}} \frac{(\Lambda p)_{2}}{(\Lambda p)_{c r, j}} \tag{3.36}
\end{equation*}
$$

Z_{0} is an arbitrary constant. Details of the deriva-
tion of Eq. (3.34) are also given in Appendix B.
Johannesen and Hodgson (Ref. 12) have also obtained an exact solution for steady plane dispersed waves for nonviscous and non-conductive gases, as follows:

$$
\begin{gather*}
\frac{M_{f}^{2}\left[(\gamma+1)+2(r-1) c_{j}\right]}{2 \bar{u}_{1}{ }^{1} j} x=-(1+1) M_{f}^{2} \frac{\dot{u}}{u_{1}} \\
+\frac{1-M_{f}{ }^{2}}{1-\frac{u_{2}}{\tilde{u}_{1}}} \text { in }\left(1-\frac{\dot{u}}{\tilde{u}_{1}}\right) \\
-\frac{\left[1-\gamma M_{f}^{2}-(\gamma+1) M_{f}^{2} \frac{\tilde{u}_{2}}{\dot{u}_{1}}\right] \frac{\ddot{u}_{2}}{\tilde{u}_{1}}}{1-\tilde{u}_{2} / \tilde{u}_{1}} \text { in }\left(\frac{\dot{u}}{\dot{u}_{1}}-\frac{\dot{u}_{2}}{u_{1}}\right) \tag{3.37}
\end{gather*}
$$

where \dot{u} is the flow velocity, \dot{u}_{1}, \dot{u}_{2} are the flow velocities at $x \rightarrow+\infty$. Using the relations

$$
\begin{gather*}
1-\frac{\dot{u}}{\dot{u}_{1}}=\frac{1}{M_{f}^{2}} \frac{(\Delta p)_{2}}{p_{1}} \frac{(\Delta p)}{(\Delta p)_{2}} \tag{3.38a}\\
\frac{\bar{u}}{\dot{u}_{1}}-\frac{\dot{u}_{2}}{\dot{u}_{1}}=\frac{1}{{ }_{i} M_{f}^{2}} \frac{(\Delta p)_{2}}{p_{1}}\left[1-\frac{(\Delta p)}{(\Delta p)_{2}}\right] \tag{3.38b}
\end{gather*}
$$

and neglecting the higher order terms of $O\left(c_{j}\right)$, the same equation as Eq, (3.34) is obtained, which was derived from the Polyakova et al (Ref. 2l) formula, by using the distance parameter defined by

$$
\begin{equation*}
z=-\frac{a_{1} x}{\left(\delta_{v}\right)_{j}} \frac{(\Delta p)_{2}}{P_{1}}=-\frac{2 \gamma}{i+1} \frac{x}{a_{1}^{I} j} \frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}} \tag{3.39}
\end{equation*}
$$

Further details can be found in Appendix B. Equation (3.34) will be used as a solution for steady plane dispersed waves.

In the limit of a weak wave $(\Delta p)_{2} \rightarrow 0, E q$. (3.34) tends to

$$
\begin{equation*}
\frac{\gamma+1}{2 \gamma}\left(z-z_{0}\right)=\ln \left[1-\frac{(\Delta p)}{(\overline{\Delta p})_{2}}\right]-\text { in }\left[\frac{(\Delta p)}{(\Delta p)_{2}}\right] \tag{3.40}
\end{equation*}
$$

This has the same form as the Taylor solution, Eq. (3.7), in which the diffusivity $\&$ is replaced by ($\left.\mathrm{v}_{\mathrm{v}}\right)_{\mathrm{j}}$. In the limit of weak shocks, the shock compression process is infinitely slow, so that the bulk viscosity concept may be applied to the vibrational relaxation process. The solution, in which the diffusivity 5 is replaced by (${ }^{5} v$); or $\hat{i}+\left(\delta_{v}\right)_{j}$, will be called the modified Taylor solution.

Figure 3.16 shows the pressure profiles for several different values of $(\Delta p)_{2} /(\Delta p) c r, j$ in a plot of $(\Delta \mathrm{p}) /(\Delta \mathrm{p})_{2}$ against $Z-z_{0}$. The curve for $(\wedge p)_{2} /(\Delta p)_{c r} \rightarrow 0$ corresponds to the modified Taylor solution. For partly-dispersed waves $\left[(\Delta p) 2^{\because(\Delta p)} \mathrm{cr}, j\right]$, there appears a discontinuous shock front. The overpressure ($\Delta \mathrm{p}$)f immediately behind the frozen shock is given by

$$
\begin{equation*}
\frac{(\Delta \mathrm{p})_{\mathrm{f}}}{(\Delta \mathrm{p})_{2}}=1-\frac{(\Delta \mathrm{p})_{\mathrm{cr}, \mathrm{j}}}{(\Delta \mathrm{p})_{2}} \tag{3.41}
\end{equation*}
$$

In Fig. 3.10, the chain curve indicates the pressure profile for ($\therefore \mathrm{p})_{2} /(\mathrm{Sp})_{\mathrm{cr}} \mathrm{j}=2$, in which the discontinuous shock strenyth at $\mathcal{Z}=z_{0}$ is (Ap)f $=0.5(\therefore \mathrm{p})_{2}$.

The thickness parameter (1.2) is defined by the 10-90. equilibrium overpressure, and can be related to the rise time t_{r} as

$$
\begin{equation*}
\because=\frac{I_{1}}{1+l} \frac{t_{r}}{j} \frac{(\eta) z}{(p)_{c r, j}} \tag{3.42}
\end{equation*}
$$

For fully-dispersed waves where $\left[(\hat{p})_{2}(\right.$ (ip)er, $]$, then from E4. (3.34)

$$
\begin{equation*}
\therefore=\frac{2}{1+1} \cdot n 9=5.12 ?=(\because 2)_{0}^{0} \tag{3.43}
\end{equation*}
$$

regardless of the value of $(: p) 2 /(\therefore p)$ er, . That is, the thickness or rise time of a fully-dispersed wave, which is based on the $10-90^{\circ}$ equilibrium overpressure, has the same value of the thickness parameter as the faylor thickness or rise time, if the diffusivity $(: v)$ is used instead of

In fig. 3.1^{-}, the ratio of the thickness parameter ($\mathrm{Z} / \mathrm{f}=\mathrm{Z}$ is ploted against the equilibrium overpressure normalized by the critical overpressure for fully and partly-dispersed waves. It can be seen in the figure that the effect of dispersion on (\therefore) remains up to (\therefore p) $2=10(\therefore \text { p) })^{\text {(}}$. This means that the rise times for steady plane waves are affected by the vibrational relaxation up to $\left.(\therefore)^{\prime}\right)=$ 500-1,000 Pa in air, since (p) er, $\mathrm{i}=50-100 \mathrm{~Pa}$ in the usual range of ground temperatures (see fig. 3.15).

The Lighthill solutions for N-wates isection 3.2) and nonstationary waves (Section 3.3) may be applied to fally-dispersed wates for small (${ }^{\prime}$) (p) cr, b b replacing the diffusivity with the vorational diffusivity (\cdot); in order to provide a
 effects on the thickness or rise time of dispersed waves with librational excitation.

Assume that,

$$
\begin{array}{ll}
a_{1}=331 .^{-} \mathrm{m} / \mathrm{s}, & j=10^{-5} \mathrm{sec} \\
(\therefore p)_{\mathrm{cr}, \mathrm{j}}=50 \mathrm{~Pa}, & \mathrm{p}_{1}=101.3 \mathrm{kFa}
\end{array}
$$

then, from fy. (3.31),

$$
\left(v_{j}=4^{-} \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right.
$$

(Compare with above for translation and rotation of $3.43 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, that is, the dispersed shoek structure is entirely controllad by the vibrational relaxation.)
$\left(v_{v}{ }_{j} / a_{1}=14 \times 10^{-7} \mathrm{~m}, \quad\left(\vdots_{v}\right)_{j} / a_{1}{ }^{2}=43 \times 10^{-10} \mathrm{sec}\right.$
(compare with $\delta / a_{1}=1.03 \times 10^{-7} \mathrm{~m}$ and $/ a^{2}=3.1 \times$ $10^{-1} \delta^{5}$ sec noted above.) These values are about ten times as long as the ones evaluated for viscous shocks in Section 3.1. This means that the thick ness or the rise time of a plane dispersed wate is about ten times as long as that of a viscous shock wave for the same shock strength $(\mathrm{p}) / \mathrm{p}_{1}$. The shock-thickening time or distance of an impulsive step wave is also tenfold greater for a dispersed wave than for a viscous wave, as seen from Iq.
(3.23). For $(\therefore \mathrm{p})_{2} / p_{1}=10^{-4}$ or $(\mathrm{p})_{2}=10 \mathrm{~Pa}$, $t_{s}=15 \mathrm{sec}$ or $\mathrm{X}_{\mathrm{s}}=5 \mathrm{~km}$. This shows that it is very difficult to obtain a plane dispersed wave in a steady state on a laboratory scale.

As for the iV-waye effect, the dispersed wave is affected by the expansion behind the shock front more seriously than the viscous wave, since the forner has a larger thickness than the latter for the same duration and maximum overpressure. Therefore, both the \therefore-ibue and nonstationari. effects will seriously modify N -waves with vibrational nonequilibrium.

In Fig. 3.18, the exploding-wire data are compared with several theoretical curves in a plot of the rise time t_{r} against the maximum overpressure ('p)max. The chain lines indicate the faylor and the modified Taylor rise times. The broken lines indicate the modified lighthill rise times for S-naves of $t_{d}=100$ and 120 asec. The vibrational diffusivity 1 ito for oxygen is used for the modified lav' r and the modified lighthill solutions. All con are evaluated for the gas temperature $\mathrm{I}_{1}=280 \mathrm{~K}$ and the relative humidity $\mathrm{RH}=8.5 \%$ (Series 16). The corresponding vibrational-relaxation time and the critical overpressure for oxygen are about 5.7 ..sec and ol Pa , respectively. The measured rise times are much shorter than the modified lighthill rise times for fully-dispersed N-waves. This discrepancy can be attributed to

Figure 5.10 shows a comparison between the ohserved and modified lighthill i -wave pressure profiles in a similar way to fig. 3.10 for viscous Xhates. Typual nrofiles from Series $1-1 N$ are plotted asing broken lues in comparison with the corresponding analytical ones shown as solid lanes, what are exaluated from fy. i3.1.3., with replaced by 'fll the profiles hate the same maximam overpressure, plmax and the same half-duracion t_{d} as the experimental anes, and fit at the nodes of the Smates. By contrant to tig. S.ll, the discrepaney betheen the ohsored and analytival profiles is clear.

Io conclude thas section, consideration is fiven to a chamacterista feature of weah X-waves with vibrataonal nonequilthrum. Figure 3. 20 illustrates a classification of wead \forall-waves by their degree of vibrational nonequilibrium. The profiles of gas and ribrat aonal temperatures are ploted under the following assumptans: (1) the maximum Ipeahl overpressures are belon the crittal overpressure for steady, plane wales; (ii) the maximum overpressure is the same for all cases in Fig. 3. 20; (isi) only one mode of vibrational excitation is considered. As seen, the S-waves can be classified into fure categorses: ta) quasi-equilibrium wave, (b) moderately-nonequalibrium nave, (6) highty mon equ:librium wate, (d) nearly-frozen wave, (e) quasifrozen wate.

The degree of excitation of vitrational energy is denoted by the vibrational temperature r_{v}, which is ploted by broken lines in fig. i. . 0 . The time lag hetween the gats and whrational temperatures corresponds to the whational relaxation time a In a quasi equilibrium wave, the vibrational temper ature nearly follows the gas temperature. This is the case where the concept of bulk viscosity is valid and the modified lighthill solution for 1 -wates may be applied. The structure of the shock front is
controlled by the vibrational relaxation, that is, the wave is a fully-dispersed wave. In a moder-dely-nonequilibrium wave, an appreciable deviation wf the vibrational temperature from the gas temperature can be seen. In this case, the concept of bulk viscosity cannot be applied to the vibrational relaxation, though the front structure is still controlled by the vibrational relaxation. This wave can also be considered as a fully-dispersed wave. In a highly-nonequilibrium wave, the front structure is controlled by both processes of vibrational exEitation and viscous dissipation. The wave becomes - partly-dispersed wate in the sense that the front structure is partly controlled hy viscous effect. the structure of a nearly-frozen-flow frozen wave is matnly controlled by viscous effect, though vibrational excitation still remains in the rest of the flow field. In a quasi-frozen wave, the ribrational excitation is marginal so that the whole flow field can be considered as frozen.

The discrepancy between the observed and analitheal rese times and \because ressure grofiles described in the preceding sections may be explained by considerang the above classification for N-waves. The X-wates senerated by sparks could be highlynonequilibrium waves or nearly-frozen waves, since the front structures seem to be mainly controlled by riscuas effect. The N-wases generated by exploding wires could be moderately-nonequilibrium waves. The coupleng of the N-wate and nonstationary effects would make the situations even more complex.
4. RAMOOM-GHOICI ANALISFS FOR WENK SHOCK TRADSITIUSS
4.1 Kasic tquations

The analysis is based on the following assumptions:
(a) The flow is a nonstationary one-dimensional (planar or spherscally symetric) viscous, compressible air flow.
(b) The viscosity . and thermal conductivity are assumed to be constant, as the shock waves are weak.
(6) The gas is assumed to be thermally perfect: the equation of state for a thermally-perfect gas is used.
(d) Both cases of calorically-perfect and imperfect gases are analysed. For calorically-imperfect cases (refeired to as real gases), the vibrational relaxation of air molewules are tasen into account. However, for most of the analuses, only the vibrational relaxation of oxygen is taken into account, since the vibrational-relaxation time of nitrogen is much longer than the duration of most $\begin{aligned} & \text {-wates analysed in this study. }\end{aligned}$ The effects of mitrogen vibrational relaxation are discussed only in the last part of this section. The harmonic-oscillator approximation 15 applied to the vibrational energy level.
e) The rotational relaxation is taken into account through the bulk-viscosity concept. The bulk sucosity due to the rotational relaxation is ansumed to be . $\mathrm{r}=(2 / 3) \mathrm{m}$

Then the basic flow equations can be written as:

$$
\begin{align*}
& \frac{U}{\cdot t}+\frac{\cdot F}{\cdot r}-\frac{i^{2}}{i r^{2}}+\frac{j}{r} \frac{\cdot}{\cdot r} ; C+j\left(H_{I}+H_{v}\right)-H_{R}=0 \tag{4.1}
\end{align*}
$$

$$
\begin{aligned}
& 1 \\
& 0 \\
& H_{R}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { • } \sin ^{\prime} \mathrm{N}^{1 / i} \mathrm{x} \\
& p=\text { RI, } 1=\quad \because+\frac{1}{2} r^{2}, \quad e=\frac{5}{2} R T+0_{0}+j \\
& \text { (4.2) }
\end{aligned}
$$

where $j=6$ for plane flows and $j=2$ for spherical flows, - density, v velucity, p - pressure, 1 - temperature, f - total energy, e-internal energy, R - gas constant, i Vibrational energy for the j-nolecule : -1 for oxseen and $j=\mathbb{N}$ for nitrogeni, fle equilbraum bhrational eneres for the 1 molecale,, Ubratanal relaataton time for the imolecule

Based on the harmonse oscillator approxamation, the equilibrium efbrational energy for the $;$ molcolle (y) can he expressed as

$$
\begin{equation*}
1_{1}=\frac{y^{k}}{e x p} \frac{1}{1} 1 \tag{17}
\end{equation*}
$$

where at is the charactersise uheatanal tempera
 \because molar concontration for the 1 molceale: $E_{0}=$
 (T, for the y molecule san alsu he defined as

$$
\begin{equation*}
y_{1}=\frac{1^{R}}{1}-\frac{1}{1} T_{1} 1 \tag{1.1.1}
\end{equation*}
$$

The bhat bmal reladitom tames for wsene io and atrogen are ebaluated using the empirical relataons ohtained from the aboorgtam of sound waves by hass and shiclds ikef. 23), as follows:

$$
\begin{align*}
& \left.v_{0}=\frac{1}{2} \frac{P_{0}}{p}-24+4.4 \times 10^{4} h \frac{0.05+h}{0.391+h}\right]^{-1} \tag{4.5}
\end{align*}
$$

where $p_{0}=101.3 \mathrm{KPa}, \mathrm{T}_{0}=293.15 \mathrm{~K}, \mathrm{~h}-\mathrm{absolute}$ humidity of air ($\%$). As seen in Eqs. (4.5) and (4.6), the vibrational relaxation times for oxygen and nitrogen strongly depend on the absolute humidity of air. In Fig. 4.1, T_{0} and τ_{n} are plotted as functions of the absolute humidity for $p=101.3$ $k P a \quad$ (Ref. 12). The relaxation time for nitrogen is two or three orders longer than the relaxation time for oxygen. The relative humidity is defined as

$$
\begin{equation*}
\mathrm{RH}=\mathrm{h}\left(\mathrm{p} / \mathrm{p}_{\text {sat }}\right) \tag{4.7}
\end{equation*}
$$

where psat is the partial pressure of water vapour at saturation, and given by the Goff-Gratch equation (Ref. 24) as

$$
\begin{align*}
& \log _{10}\left(\mathrm{p}_{\text {sat }} / \mathrm{P}_{0}\right) \\
& \quad=10.79586\left[1-\left(\mathrm{T}_{0} / \mathrm{T}\right)\right]-5.02808 \log _{10}\left(\mathrm{~T} / \mathrm{T}_{0}\right) \\
& \quad+1.50474 \times 10^{-4} 1-10^{-8.29692\left[\left(1 / \Gamma_{0}\right)-1\right]} \\
& \left.\quad+0.42873 \times 10^{-3} 10^{4.76955}\left[1-\mathrm{T}_{0} / \mathrm{T}\right)\right]-1 \\
& \quad-2.2195983 \tag{4.8}
\end{align*}
$$

4.2 Vumerical Method

An operator-splitting technique was applicd to Eq. (4.1). The calculation is done for each spatial mesh in each time step using the following procedure
(1) The hyperbolic equations are solved for an inviscid frozen flow,

$$
\begin{equation*}
\frac{U_{1}}{\cdot t}=-\frac{\cdot F}{\cdot r} \tag{+.9}
\end{equation*}
$$

where the subscript I indicates the solution of stup (1).
(2) The spherical corrections are made by using the values of the physical properties evaluated in step (1)

$$
\begin{equation*}
\frac{\cdot U_{2}}{\cdot t}=-j\left(H_{1}\right)_{1} \tag{4.10}
\end{equation*}
$$

1.3) The viscous diffusion equations are solved by using the values of the physical properties evaluated in step \{2\}.

$$
\begin{equation*}
\left.\frac{\cdot 1}{-t}=\frac{t^{2}}{r^{2}}+\frac{j}{r} \frac{1}{r}\right) C_{2}-j\left(H_{v}\right) \tag{4.11}
\end{equation*}
$$

(4) The vibrational relaxation equations are solved by using the values of the physical properties evaluated in step (3).

$$
\begin{equation*}
\frac{U_{4}}{t t}=\left(H_{R}\right)_{3} \tag{4.12}
\end{equation*}
$$

The final solutions are obtained in step (4).

The RCM is applied to step (1) and the explicit method of finite difference is applied to steps (2) and (3). In step (4), the integrated relation was used. If one step is passed over among steps (2)-(4), then the following solutions result: plane flow, an inviscid-nonequilibrium flow or a viscousfrozen flow, respectively. These are termed as a plane solution, a real-inviscid solution and a perfect-viscous solution, respectively. The full solution including both effects of vibrational excitation and viscosity is called a real-viscous solution.

An outline of RCM is described below. Figure 4.2 shows an illustrative diagram for grid construction and sequence of the sampling procedure. The notations r and \therefore are increments of space and time, respectively. for arbitrary integers n and i, the properties U_{i}^{n+1} at time $(n+1) \therefore t$ are calculated from the properties U_{i}^{n} at time n 't. The intermediate values $U_{i+1 / 2}^{n+1}$ are evaluated at time $(n+1 / 2) \cdot t$. In the region of ir re $\quad(i+1) r$ and nit $t:(n+1 / 2): t$ (surrounded by the broken lines in Fig. 4.2), the Riemann problem (shock-tube problem) is solved for the discontinuous initial values

$$
\|=\cdot \begin{array}{lllll}
u_{i+1}^{n} & r & i+\frac{1}{2} & r & (4.15) \\
u_{i}^{n} & r & i+\frac{1}{2} & r &
\end{array}
$$

in this region. Then, for example, the solution consists of a shoch waye \dot{S}, an expansion wave $\stackrel{\rightharpoonup}{\mathrm{R}}$ and a contact surface r, as shown in Fig. 4.2. At tam: in + 1/:) t, the region $i \cdot r \cdot r \cdot(i+l)$ can he dirided into four subregions (1)-(4) (or five subregions, if the interior of the expansion fan is taken into account), and the physical properties in cach subregion can be determined from the solut $i o_{i}$ ef the shock-tube problem fur the initial condition 1.15). The walues $11_{i+1 / 2}^{n+1 / 2}$ are equated to those of $11^{n+1} \because$ at moint 1 \{r $=\frac{1+1 / 2}{r_{p}}$; i.r $\left.r p(i+1) r\right\}$, whach is chosen at ranum. That is, we assurne $1 \prod_{i+1}^{n+1} \frac{2}{2}=11_{p}^{n+1 / 2}$. The choice of P is made b a random-sampling technjque in such a way that the sampled points are uniformly distributed within a finte-sampling frequency. In a similar way, the falues of $1_{i}^{n+1 / 2}$ are obtained from the initial values of $\|_{j}^{n}$ and $\|_{j-1}^{n}$. At the second half-tame step, the values of 11_{i}^{n+1} are evaluated from the values of $1_{i-1 / 2}^{n+1 / 2}$ and $1_{i+1 / 2}^{n+1 / 2}$ as initial ones. ciodunow's iterative technique is applied to solve the kiemann problem. As the vibrational energies are assumed to be frozen, they are invariant across the wates, and keep their intial values, whose boundary is the contact surface

In the second and third steps of the operator splitting technique, explicit finite-difference schemes are employed. The finite-difference forms of Eys. (4.10) and (4.11) reduce to

$$
\begin{equation*}
(11)_{1}^{n+1}=\left(11_{1}\right)_{i}^{n+1}-1\left(\left(H_{1}\right)_{1}\right)_{i}^{n+1} \cdot t \tag{14.14}
\end{equation*}
$$

$\left(U_{3}\right)_{i}^{n+1}=\left(U_{2}\right)_{i}^{n+1}+\frac{\therefore t}{(\therefore r)^{2}}\left[\left(C_{2}\right)_{i+1}^{n+1}-2\left(C_{2}\right)_{i}^{n+1}+\left(C_{2}\right)_{i-1}^{n+1} \mid\right.$
$+\frac{1}{2 r_{i}}-t\left[\left(C_{2}\right)_{i+1}^{n+1}-\left(C_{2}\right)_{i-1}^{n+1}\right]-j\left[\left(H_{v}\right)_{2}\right]_{i}^{n+1}$ it
The multiple time step is used to evaluate $\left(U_{3}\right)_{i}^{n+1}$ to improve accuracy. At the intermediate substep

$$
\begin{align*}
& \left(\|_{3} i_{1}^{n+|1 \cdot+1| i k \mid}=\left(U_{3}\right)_{i}^{n+(\cdot / k)}+\frac{\therefore t / k}{(\cdots r)^{2}}\left[\left(C_{3}\right)_{i+1}^{n+(\cdot / k)}\right.\right. \\
& \left.\therefore(1)_{i}^{n+1} \cdot(k)+\left(C_{3}\right)_{i-1}^{n+(\cdot / k)}\right]+\frac{j}{2 r_{i}} \frac{\partial t / k}{\partial r}\left(\left(C_{3}\right)_{i+1}^{n+(1 / k)}\right. \\
& \left.(k)_{i-1}^{n+(\cdot h)}|-1|\left(H_{v}\right)_{3}\right|_{i} ^{n+(\cdot / k)} \frac{\therefore t}{k} \quad(i=0,1, \ldots k) \tag{4.16}
\end{align*}
$$

where the time increment $i t$ is subdivided by k. Yost of the calculations were carried out for $k=10$.

In the fth step, the librational relaxation wuat toms for alr molecules

$(i=n, i)$

Are solled in each spatial mesh under the assumption of comstant temperature and pressure, thereby yielding the andlyt心al relation

$$
\begin{gather*}
\left|\sum_{i}\right|_{i}^{n+1}=1 \cdot 11_{i} l_{i}^{n+1} \\
1!_{1} l_{1}^{n+1} \exp -\frac{1}{i} \quad(j=0, N 1 \tag{4.18}
\end{gather*}
$$

The finate-difference schemes with multiple time teps. similar toly. (4.10), were also applied to l.f. 1..1-), and found to give the same results as 14. 14.18). In order to reduce the computation time, ly. (1.1s) was used for most of the calculations. is decerthed in section 4.1 , in the present study, only the vibrational relaxation equation for oxygen mis solved lexcept section 4.4.61. Furthermore, the hulk uscosity concept was applied, instead of liq. (1.1-), to the vibrational relaxation for oxygen in coctsons 4.4.5 and 4.4.6, in which the N-waves with lome durations were analysed.

The condition of symmetry is 1 mposed on the wall humandry and at the centre of the sphere. That is, at the houndary $1_{0}{ }^{\circ} \mathrm{r}$

$$
\begin{equation*}
n_{1_{0}+\frac{1}{}}(w)=1_{1_{0}}{ }^{(-w)} \tag{4.19}
\end{equation*}
$$

The condition of continuity of gradient is imposed on the free houndary. That is, at the free boundary $1 / r$

$$
\begin{equation*}
{ }^{11} 1_{1}-1 \quad U_{1}=U_{1}-U_{1}+1 \tag{4.20}
\end{equation*}
$$

The entire programs are given in Appendix C.

4.3 Solutions for Plane Waves

As a check on the method, the one-dimensional shock-tube problem was solved for a perfect-inviscid flow, perfect-viscous flows and real-inviscid flows. The thickness and structure of the shock waves are compared with those obtained analytically in Chapter 3.

4.3.1 Perfect-Inviscid Solution

Figure 4.3 shows a computer plot of a perfectinviscid solution of overpressure ($\therefore \mathrm{p}$) against distance x for several time intervals for a diaphragm pressure ratio $\mathrm{P}_{41}=2$ and initial temperature ratio $T_{41}=1$. The overpressure ($: p$) is normalized by the initial pressure p_{1}, and the distance x is normalized by the length of the high-pressure chamber $x_{0}\left(x^{*}=\right.$ $\left.x / x_{0}\right)$. The diaphragm is placed at $x^{*}=1$. The time t is normalized by $x_{0} / a_{1}\left(t^{*}=a_{1} t / x_{0}\right)$. After starting the calculation or the removal of the diaphragm, a shock wave as a discontinuous front propagates towards the right hand side, and a rarefaction wave propagates towards the left hand side. When $t^{*}=1$ the head of the rarefaction wate arrives at the end wall of the high-pressure chamber. The shock Mach number M_{S} is about 1.10 , and the normalized equilibrium overpressure or the shock strength (ip) $2 / \mathrm{p}_{1}$ is about 0.403 . It should be noted that, unlike finite-difference schemes, the shock wave as a discontinuous front occupies one mesh jump without smearing, where the nornalized one-mesh size $x^{*}=$ $1 / 40$.

4.3.2 Perfect-liscous Solutions

Figure 4.4 shows a computer plot of a perfectviscous solution for the same case as Fig. 4.3. The rarefaction wate reflects at the end wall ($x^{*}=0$) and proceeds towards the right hand side. As expected, smooth shock transitions due to actual viscosity are obtained. In order to show these smooth transitions clearly, a hypothetical chamber length $x=0.001 \mathrm{~cm}$ was assumed at an initial pressure and temperature of $\mathrm{P}_{1}=101.3 \mathrm{KPa}$ and $\mathrm{T}_{1}=273.15 \mathrm{k}$. Consequently, $t=0.100 . . \mathrm{sec}$ for $t^{*}=3.500$.

Here, it was not necessary to obtain the whole flow field. The fine structure of the shock front was important. Therefore, in order to save computation time, the calculation was done only in a confined region near the front for the wave far from the diaphragm, neglecting the behaviour of the rarefaction wave. Figure 4.5 illustrates the region of calculation and a plot of the shock-front path in the $x^{*-t *}$ plane. In the calculation, $30-80$ mesh points around the front were used, and the physical properties at each mesh point were transferred hack to two points in the computational space as the wave proceeds over two points in physical space. The condition of continuity, Eq. (4.20), is imposed on the free boundary of the region of calculation. In Fig. 4.5 , the white circles indicate the perfect-riscous RCM solutions, in which the position of the shock front is defined as the po: ition of 50° of $(\mathrm{P})_{2}$. The solid and broken lifes indicate analytical shock and soundwave paths, respectively. The mumerical solution for the shock path is in excellent agreement with
analysis.

Figures $4.6(a)-(c)$ show perfect-viscous numeri\therefore solutions for the shock-tube problem described above by comparison with Taylor's and Lighthill's analvtical solutions for the shock thickness, which is defined by $10-90 \%$ of (ip) 2 . The ratio of the thickness parameters $(\therefore Z) /(\therefore \bar{\Sigma}) 0$, which corresponds to the thickness or rise time normalized by the lialor thickness or rise time, is plotted against the time parameter : defined by $\mathrm{Fq} .(3.21)$. The tigures andicate that the step wave with zero thickness is reduced to a plane wave with a smooth transition owing to viscous action, as the wave proceeds The broken and solid lines indicate Taylor's and lighthill's solutions, respectively. The various numerical solutions are indicated by symbols. All calculations were carried out for the same case as $H_{1 g}$. $4.4\left[P_{41}=2, T_{41}=1, T_{1}=27.3 \mathrm{~K}, \mathrm{P}_{1}=101.3\right.$ $\left.\mathrm{kPa}, \mathrm{M}_{\mathrm{s}}=1.10,(\therefore \mathrm{p})_{2}=40.7 \mathrm{kPa}\right]$.

Figure $4.0(a)$ shows the effect of multiple time step for viscous correction. The mesh size is $x^{*}=1 / 40\left(\therefore x=2.5 \times 10^{-5} \mathrm{~cm}\right)$. The black and white circles indicate the cases for $k=1$ and 10 in Fq . (4.10), respectively. The $k=10$ result for the transient behaviour of the shock thickness is closer to lighthill's solution. It is seen that the multiple time step for viscous correction improves the result for the transient behaviour of the shock thickness. The random walk due to the random sampling in RCM and the overshoot of the thickness value above Taylor's value can be seen. The multiple time step of $k=10$ was used for all calculations described below.

Figure $4.6(b)$ shows the effect of the choice of random numbers. The mesh size is $\therefore x^{*}=1 / 80$ $\left.x=1.25 \times 10^{-5} \mathrm{~cm}\right)$. The black and white circles indicate the cases using the random numbers by maximum-length linearly recurring sequence and lincar congruential sequence, respectively. It can be seen that the latter method is in better dgreement. Therefore, linear congruential sequence was used for all other calculations in the present study, as well as by Saito and Glass (Ref. 17). It is also seen in Fig. $4.6(b)$ that the result is improved by reducing the mesh siae by half, in comparison with the result in Fig. $4.6(a)$.

Figure $\downarrow .6(0)$ shows the comparison between the R(M) and lachormack's finite-difference method (MFM), which is shown in Appendix D. The MFM solution is in poor agreement with Lighthill's solution. Its thickness or rise time values are much larger than the analytical ones owing to the effect of artificial viscosity. The RCM solution with operatorsplitting techniques is superior to the MFM solution for the same mesh size, although random scattering of the thickness or rise time values do occur. Better agreement with Lighthill's solution was attained by using a finer RCM mesh as shown. Computer costs would limit the ultimate mesh size to be used.

In Fig. 4.7, the normalized overpressure (Ap)/ (p) : is plotted against the distance parameter Z at times : $=0.99,45.0$ and 58.3 for cases of $x=1.25 \times 10^{-5} \mathrm{~cm}$ |white circle in fig. $4.6(\mathrm{c}) \mid$. The origin of 2 is taken at the place of ($\Delta \mathrm{p}) /(\mathrm{ip})_{2}=$ 0.5. The solid lines indicate lighthill's solution for the transient state at : $=0.99$ and Taylor's solution for the final steady state at : $\rightarrow \infty$. The

RCM pressure profiles show very good agreement with the analyses. This result suggests that the RCM with the operator-splitting technique may be applied to analyse the transient behaviour of a viscous shock structure, though some random walks and overshoot above the Taylor value were observed for the thickness or rise time data.

4.3.3 Real-Inviscid Solution

The initial conditions $\left(\mathrm{P}_{41}=1.0018, \mathrm{~T}_{4}\right)=$ $1.0, \mathrm{p}_{1}=101.3 \mathrm{kPa}, \mathrm{T}_{1}=303.15 \mathrm{~K}$ and $\left.\mathrm{RH}=90^{\circ}\right)$ were chosen so as to give a fully-dispersed wave in the final steady state for a real-inviscid flow, and to give a fast approach to the steady state in order to reduce the computational cost. Only the vibrational excitation for oxygen molecules was taken into account for atmospheric air. The corresponding relaxation time for oxygen is ${ }^{0}=$ l. 04 usec and the characteristic time using the bulk riscosity $(v)_{0}$ for oxygen is $(1)\left({ }^{\prime} / l^{2}\right.$ $8.4 \times 10^{-10} \mathrm{sec}$. The equilibrium shock Mach number $M_{e}=1.0004$ and the equilibrium overpressure is $(\mathrm{P})_{2}=91.1 \mathrm{~Pa}$, which is less than the corresponding Ěritical overpressure for oxygen (p)er, $0=95.5$ Pa, so that the wate may become a fully-dispersed wate in the final steady state

Figure 4.8 shows the transient behawiour of the pressure and temperature profiles of the dispersed wave obtained for the condition described above $\left(x_{0}=0.5 \mathrm{~cm}\right.$ and $\left.x=0.0125 \mathrm{~cm}\right)$. The solid lines indicate the pressure and temperature profiles, which are the same in normalized plots of $(\mathrm{p}) /(\mathrm{p})$) and $(\therefore T) /(T) 2$ as the wave is very weak. The broken lines indicate the normalized vibrational temperature profiles $\left(\mathrm{T}_{V}\right) /(\mathrm{T})_{2}$. Ten profiles are shown for the time parameter $=0.0003,0.41,0.81,1.6$, $3.5,4.9,0.5,8.1,9 .^{-}$and 11.4 or the normalized distance $x^{*}=1.2,30,00,120,238,360,476,593$, 716 and 830 , where - is defined using the bulk viscosity $(:)_{0}$ for oxygen as $\left.=\left[a^{2} t /(:)_{0}\right][\because \mathrm{p})_{2} / \mathrm{p}_{1}\right]^{2}$. The calculation was also carried out only for a ronfined recion near the front for the wave far tron the diaphragm, similar to the perfect-viscous flow as shown in Fig. 4.5. The initial step wave is smoothed out owing to the dissipative effect of the vibrational relaxation. It should be noted that this process which smears the wave is largely different from that of the viscous wave. This tendency of smoothing has been shown analytically for 1 inear waves (Ref. 25) and for nonlinear waves (Ref. 26). In a transient state, the wave is a partly-dispersed wave with a frozen shock front, even if the equilibrium shock pressure is below the critical overpressure. This suggests that the nonstationary effect is more important for dispersed waves than for viscous shocks.

Figure 4.9 shows plots of $(\therefore) /(\because)_{0}^{\prime}$ us : for real-inviscid shocks. The solid and uroken lines indicate the modified lighthill solution and the modified Taylor solution, respectively. The symbols indicate the RCM solutions for $\mathrm{x}=0.025 \mathrm{~cm}$ and 0.0125 cm , respectively. The latter case corresponds to the one in Fig. 4.8. The RCM solutions of shock thickness show random walks and overshoot above the Taylor value, similar to the viscous solutions shown in Fig. 4.6. The thickness tends to approach the modified Taylor value using the bulk viscosity for oxygen vibrational relaxation. It should be noted that the shock-thickening time of the RCM solution is nearly the same as that of the modified lighthill
solution, although the $(\therefore)(\therefore=)_{0}$ vs : plot of the KCY solution deviates from lighthill's solution owing to the difference in the transient-wate profiles between the two solutions shown in Figs $\therefore .11$ and 4.s. That is, the shock-thickening time based on the modified lighthill solution provides a reasonable estimate.

In lig. d. 10, the normalized overpressure !pl (p) is ploted against the distance parameter at - 25.0 and 27.0 for the case of $: x=0.0125$ cim (white circle in fig. 4.9), where Z is also defined using the bulh viscosity for oxygen wibrat ional relaxation. the solid line indicates the analytical solution for $(\therefore p) 2(\therefore p)$ er, $0=0.954$ caluated from f4. (3.3t) for steady dispersed waves. The RCM pressure protile for $=27.6$ shows very gond a!reement with analssis, but the $:=25.0$ solut ion shows a slight deviation from the analytial one at the upstream side of the front. This deviation would be attributed to the randomness assochated with the Roy solution. However, in econeral, the Roy solution for real-inviscid flow $: 1$ 心bes bery reasonathe results.
1.1 bolutions for spherical haves
is desevined in chapter \therefore, the shock struetures Us sherical wates may be affected by X-wate and nonstatomary effects and would be different from those of plane wabes in some sithations. The purpose of this section is to show some characteristic teatures of transient hehawiour of shock structures of spherical wases through the koy analysis associated with the sparh and exploding-wire experiments

Incnty-three cases ot momerical results are presented in thas section for spherical waves, and
 !1, $\because=. .$. respectively the 1 -series 1 di, d..... corresponds to perfect-intised solutions; R-series, perfect-siscous solut oms; r-series, real-invisid solutions; and lreseries, real-viscous solutions. the parameters, which should be giten as initial conditions, are the radius of the pressurized sphere r_{1}, the pressure and tomperature ratios Fit and ifl across the initala inner pressuriad air and the ambient atmosphere, the atmospheric pressure pland temperature l_{l}, and the relative hamidity RH. These are tabalated for each case in lahbe f. 1 . We assumed $\mathrm{Pl}=101.3$ kpa for all cases. The relaxation time, and the spatat meshes r^{*} and r ate also tabulated in Table t.l. The atmosphertic conditoms (It and RHI) are chosen from data in the sparh and explodimethare expera ments deseribed in thapter = Sories 1 Wi.

In the © and fleseries analyses (real gases), the fabrational excitation is taken into account only for oxyeen except case is. an which both vitrational excitatans for oxyen and nitrogen are included. In isses 15 through lis, the vhrational relaxation for oxygen is eraluated by wing the bulh wasosits concept 1 netead of solvink the relaxation equat ion for axyien
 I lom

 the presimiad yhere The prowes of sume
formation from ane explosion of a pressurized air sphere and the effects of the pressure and temperature ratios are discussed.

Case Al is a perfect-inviscid solution for $r_{4}=$ - in the near-field of a pressurized sphere. Figures $4.11(a)-(6)$ exhibit computer plots of overpressure distrilistion at various times after the explowion.

Figure 1 1.... shows the initial process of explosion of a pressurized air sphere. The front shock, which is formed immediately after bursting the sphere, decays as it propagates outwards, leaving an expanding low behind it. The rarefaction wave, which propagates inwards into the sphere, reflected at the centre of the sphere and produces a highly rarefied region behind it. A second imploding shoct wate of ever increasing strength is formed at the boundary between the inner and outer expansion regions. Some "noise" in the pressure profiles in the expansion region can be attributed to the random walk inherent in the RCM. The comparison between near-field solutions of the explosion of a pressurized air sphere using l.ax, Maccormack and Random-Choice methods for a perfect-inviscid flow is given in Appendix f.

The sucteeding process of N-wave formation is shown in Fig. $4 . l l(b)$. the imploding second shock reflects at the centre of the sphere and produces a highly compressed region around it. The reflected second shoch is initially very strong, but rapidly decays at it proceeds outwards. It follows the front shoch and forms the rear shoch of an N-wave fieure t.llac exhihits the propagation of an established $\begin{aligned} & \text {-wate, which maintains a similar }\end{aligned}$ protile as it propagates out wards. Its maximum prah) oserpressure decass madually and the durat ion ancreases sowly.
ligures $4.12|a|-1 d$ show a comparison of ectablished v-waes for cases Al-A.t. Figure 4.12(a) exhbits a pressure profile for the same case as Fig. f.llet, though the mesh size is increased to $r^{*}=1,10$ to be compared with cases A.-At. In rase A., the emperature ratio T_{11} is twice that for case Al. In casc AJ, the pressure ratio f_{41} is increased from - to 9. in case At, both pressure and temperature ratios are higher. Figure $4.12(b)$ shows that case A results in a more symmetric - wave than ciase Al owing to the hoter sphere, which enables the second shock to form sooner. thas sugests that the half-duration of the negatwe overpressure of an X-wave can be controlled through a choice of 111 . Figures $12(c)$ and $12(d)$ show that for higher Pifl and Tjl the F -waves generated by a spart or an exploding wire cannot he simulated usime a pressurized-sphere explosion model.

As seen in 1.ges. 4.12(a)-(d), the overpressure protile of the positue phase show only a slight thange in shape resardless of P 4 and int talthough F and the durations are differentl. However, the nesative phases strongly depend on these ratios. the length of the positive side is of the order of $r^{*} \quad 1$ or $r=r_{0}$ in each case. That is, the halfduration of an -wale is determined mainly by a chouce of the sphere radius within the range of lal and fil comsidered here In the following, use is made of $\mathrm{l}_{11} 1$, in irter to simplify the analesas, since attentan is focussed on the frontshock structures int the Shates in this work.
1.1. . Gongarison Betwern Perfect-Inviscid, PerfectShscous, Real-Inviscid and Real-Viscous, birfield solutions

The calculation for cases $\mathrm{A} 5, \mathrm{~B}, \mathrm{C}, \mathrm{and}$ bt were carried out for the same parameters in order to ?...the the somparisun clear between perfect-inviseid, pertect-1scous, read-antisedd and real-viscous - foutons in the far field. The ribrational excitation tor oxvegen was taken into account for real ances (t1 and 101). The ambient conditions correspons to the series-1 experiment, and the relaxation tata $0=15.0$..sec

The results are shom in figs. 4.15-4.1 ${ }^{-}$ Hgure t.lis shows the path of the shoch front by Fiotting the centre of the frome $[0.5(\mathrm{p})$ max $]$. The momalazed radius r^{*} and the normalized time t^{*} are detaned by $r^{*}=r / r_{0}$ and $t^{\circ}=a_{1} r_{1}$. respectively. the solid lane modates the path of a somic line. It is sech that away from the explosion the front path nearly comeides with the sonic-line path thas result indicates the validity of the method of subtwn with regard to the propagation of the wave. the daldat bons were also carried out only in a Contand compatational region near the front in the farfold as bell is the calidataths for plane nates shmoll infig. 4.5.

The mandum orepressare 1 pmax for spherical nater decas with thereasme distame efron the centre . Ncordang to dasscal acoustatheory
 as frown an the followims, the decos of the maxamum oserpersare an desmate from chasical theory it the effects of vasosity and vomatamal monequili irramiare taten man decount. In order to readily cobluate the decay rate of the maxamm oterpressure.
 losally is prax r^{n}. In seneral, the value of a burtes with r, whale $n=1$ apples t opherical motert mat:
flente $1.1 t$ show the decat of the maxamem oberpressure for four cates as a tumetion of the dastame r. In the perfect-mossed solat ion cease 6!, the mamam orepressure decass at a rate moersely proportional tor $n=1 i$ for ptmax low Pa, though n for, P'max loor Pa, in other cases, BL, 11 and 11 , the decay indices n increase for 'rlmax lou fa due to the dissipative cfferts of riscosity and ribrational nonequilibrium in comparison with case A5. While almost the same nerpressures are obtained for 1 pl max 100 pa for all cases inclading ciase Aj, at $r=$? 0 n, $n=1.25$ for case 81 and $n=1.405$ for cases $C 1$ and 11 . The feriation from the classical acoust ic theory for (olmax lill Pa sattributed to the mominear

ligure 4.15 exhibits the half-duration t as a function of distance r. The rapid anerease of $t d$ near the centre is attrabuted to nonlinear effects In case A, t d as constant for ('plmax 100 Pa , while tricases 81, (1 and 11 , 4 increases with r due to dissipatme effects of viscosity and ribma :anal nothequilibrium.
figure 1.16 shows the rase times $t r$ as a functon of distance r, and fig, 4^{-1} shows the pressure profales at several locations for cases AS, Bl, Cl and 01. The perfect-1nviscid solution results in a discontimuous front so that $t_{r}=0$ in this case.
unlike the smoothing causes by artificial viscosit in finite-difference methods. As seen in case ci, the effect of ribrational nonequilibrium contributes to t_{r} only for weak waves. The rise times for the real-ibsoas case 1 l are almost the same as the rise times of the perfect-riscous case B1, until the effect of vibratanal nonequilibrium becomes noticeable. The viscoss effect plays a dominant role in derermining the rise time in these cases Howeser, the librational monequilibriam plays an important role in reducing the maximun overpressure

The profile of the perfect-viscous transition at $r=2 l .6$ |fig. 4.1-th|| is not similar to either the profile for a steady plane wase section S.1), the quasi-stationary X-wale for moderate Reyolds number (Section ₹ \because, or the nonstationary, plane wave (Section 3.2l. This shows a characteristic feature of the nonstationary effect for spherica! X-hates. Figare $4.1^{-1}(\underset{\text { e }}{ }$ indicates that the wave is a partly dispersud wate with a diseontimous front, even though the steady plame nate hecomes a fully-dispersed wate witt a smooth tran sition for the corresponding oterpressure at $r=$ A. om section $3 . f$ Agan, this is a nonstationary effeet for dispersed wates, whel 1 s doscussed in Section 4.3.今. The nonstationar dissipatioe effects due to viscosits and vibrational noncquilibribu are coupled in the real-1 seous solut ion |lag. 1.1- (d)|

The results for cases $A 5, K 1,11$ and 111 show that the decay heharour of the masimum overpressure, the half-durat tom, the rise tame ore the shock thichnesst and the preserte protile of a weak spherical \because wise san he affected both bsoosity and vibrat tonal nonequalibrium. Whas shows that both effects must be taken into decoumt when amalying the shock st ructure of a weah spherical Buate.

1.4.f simalations for surh and lxpadigg-birebencrated 大-hates

In this section, the namerical simulations are shown for the spherical X-waves, which were generated from spark and exploding-wire sourees, descrabed in thapter 2. A requirement was set for the $\therefore \cdots, \because \because$ of weak spherical $\begin{aligned} & \text { waves that }\end{aligned}$ the calculated maximum overpressure $1^{\circ} \mathrm{p} \boldsymbol{m}_{\text {max }}$ and the half duration $t d$ should connede with the experimental values at a specified location r. This requirement can be fulfilled by giving appropriate alues to the initial pressure ratio P_{41} and the radius r_{0} of the pressurined sphere However, in practice, the adjustment of the values of P_{4} and r_{0} is a laborious task in order to mateh required values of (p) max and $t d$ at a speciaied location. several trial calculations were needed to get the final result. Cases $R 2, C 2, D 1,[2$ and 113 are the results of $\therefore \quad \because \cdot:^{\cdot}$ for the spark and exploding-nire data.

In ligs. 4.18-1.2. the results of the numeracal calculations are compared with the experimental data by plotting ('plmax is r, ti is r, $t r$ is r, and Ir is liphmax. In these figures, the experimental points are ploted by white symbols and the numerical ones by blact symbols. The solid and broken lifes denote the interpolated limes for the numerical and experimental data, respectively. In fig. 4.2l, the
bwhen lates denote the laghthall rase tatie＇s for S bates wht ta 30 and 0 asce，and the shan lame
 the storept chates an rase the are attributed ou tia rmbumess mherent in the Rey．

Ibeutes t．lis and 1.19 show that one can simat at the thanse of 1 phman and ta anainst r by a
 1t：t．\＆．2ll and $1.2 l$ indicate that the perfect
 \therefore neant semat te the monstat ionary hehaviour of the
 fotust r ．cusces 11 ， 1.2 and bls indicate that the achl viscos solut bus simalate the experimental that：feammoly well，when ore sonsiders the thon ©ationtios at the spark distharge and explode

ise Erneral ficatures of the results an be

 ned＝matates the expermental data．the increase

 いまい。

 stre aromt the citcot of refixatan tate on t will be sund an the sucterdans sestam．

1．The expleding ware data（seraes N！and their －amalatom lase his shen，be coparison with the afut duta．that the－tronger explosion and longer

 the mondstably ettexts．He strong explosion \therefore ase a shater rate of change of the maximam oter fr sure for the salle oberpessure（see Fig．4．18） ob that the rase tame has conagh tame to increase． farthromer，a longer damat mon probides a margin for barempe the race the thas effert will he

 thre and whrational－temperatiere profiles at
 and W：，resper avely．the soldd lates indicatce the peseare and temperature profiles，which are the sater for weat wates an normaloed formes of（ 1 f
P！exx and ！if／t hinax．The broken bues indicate －he bibrat womal temperature in a normalized form of
（1，1 11max，where 1， $1, I_{1}$ ．

 13．0m， 18.0 and \therefore ．on，and the masmam oreppres

 sten，the peath presalare and remperature hecobe sradally bianted due to the eherey transtor from the tanslatamad amd rotat armal modes to the Vibrational mode，while the bach lexpansiom pressute and temperatare profale becomes gradatly
 the vhtat womal mode 10 the translati mal and rota thoma modes．Has atoces owang tu slow－relaximg behasour of the shatatomal encrge amd leads to an elongat wen of the half daratom．She shoch thicharss or the race tate is mathly somtrolled by the dissipat we oftert of viscosity，though it 15
 the emanslat amal and rosational mades to the
 In a sellse that the shach from：is ablaly controlled
 partly dispersed water．
figure a．\because d exhatats the samatatom for the

 respectacly，aproxamaty at weordatio with the

 lat lhas an he attronted in the datioremes in
 tempertura：，1．A．
 at the sharter melanatam tame the feak blanting acours in the eafler sidge when the shere thachness
 the habher matal fowperatate，more encere is reparme to werte the wheatwas made so that the effect of wheathenal exchatmon apeats for haves at hicher maxama ownotestare In the
 the fromt st motures are mandy controllod by dibat bonal cxedatorn and the wate protiles nearly follow the ，ibrat whal temperature proftles man！ to the enorey transfer to the viloratamal made．In thes sonse，the wates mat he ealled fally dismersed wates in this ramer．Howcere．it hombl he noted that the viscoms despattom also plays an mportant role in imerestm！the shoth thichacs or rase tame， by contrast with－comd．tully dispersed，plate halces，as seen in lase 1.2 and $t .2$ in which the

Pisure $1 . \therefore$ ate show the smalation for the

 Pa and 11.1 Pa，respeotwely．The wates helow 35 Pat show charactorsta feathere of fally－disporsed natres．thmph the shork phathesses are different
trom the umes an fig． $4 . \therefore(b)$ ．Ihe peah blantamb
 show that wide variations of wate profiles are possible demending un combinataons of relaxataon flak，initbal temperature，half－duration，and strongth ot explosion．

In its． $4 . \therefore$ and 4.24 ，the calculated prossure ＂rotiles are compared nith those ubserved at seberal laratmons for serios i and 11 ，respectively Festre 1.2 shons a compartson between vase lly and serfes 1

 I！protile at r－11．and ltm．The solid amd Wrohen lanes mataite the momerical and experimental presubre irotiles，respertively．lhe shoch transi

 fresuld fritily

In 1：\therefore－ $1 . \therefore$ 1．こ
the tull $\begin{gathered}\text { wate profiles of }\end{gathered}$

 In order th sase soputat lam the the tull s－wate sulatan were obtamed with latger medn siats
 the half i mabe sulatluns for lll，H2 and lls shown at ore these tigures show that the transition rowites and rase tames of the rear shochs are difterent from the tront shoik dut to the difference an whrat lumal montuqulabriam．
 protile of pressure 1 sempared with the observed
 wate protils were ohtamed（Rut．of．Although the alculated halt－durat lon ty is at．longer than the ohserved one，both profiles are similar．The precise simalataon for full $\begin{gathered}\text {－waves would require }\end{gathered}$ an adustment ot the inttial tomperature ratio I_{1}
 lhas mat he dome un a tature study

1．1．1 fituctsot Inrational Relaxation Inme

the purpose ot this section is to show the eftect of vibrational redaxation time more catardy by comparing cases la，and ild．The initial pressure ratio Pat and the sphere radius r_{0} are the same for both eases，but the initial temperature and humidity are different and gives rise to a of 5.54 and 15．6 ．．see，respectively．The initial temperature and humidity of case lit correspond to case［1．）
 functaons of r ．fhe discont inuous change of tr in
 which appears in the Rox solutions．Figure t．is shows a comparison of both pressure protiles at the same distincer 19 m ．
 4．29）is slightly affected by the vibrational relax－ at lom tomes for these rases．The decay indices at $r=20 \mathrm{~m}$ are $\mathrm{n}=1.31$ for H 2 and $\mathrm{n}=1.40$ for 14.
 are not affected appreciably by the ditference in －but tr is very much affected by it The rise tame tor casc lat with a longer relaxation time is
shorter at atived distance than the rase time for cate ll－with a shorter relakitton tame．［has temdene \therefore an be explatmed be the monstat tonary ど！心！

Ior 4 保，dispured plant mates，as thown in Section $3, \ldots$ ，the longer relaxation time kdtes a thacher tran－tion or a longer rise tame，since tr
 the bork thathentig the，whsin wis detimed by the tam wi approbeh いf an amulsuc atep wate to the final steady state，as also proportional io a In the modified lighthall solution for a nonstation ary fully dispersed wate．furtherritre，it was shown in section $4 . \sin ^{3}$ that this shock thichersing thale was in elose atreement with the Rex solution． What is，the longer the rebaxation ime，the slower is the rate at change of shoch thichness．For cate lot with the lomger rolaxation tome，the nate still rematas a partly－dispersed wate whose shoch tramsi－ toon as mainly controlled by vicoous action，while for cast lo^{-2} nith a shorter relaxation time the wate becomes a tully－dispresied wate whose transition is malaly controlled hy vibrational nonequilibrium． thas 1 s the reason why the longer relaxation time ghes us the shorter rise time for the weak spheri－ （ial wates in contrast with steady nlanc wates，

t．t．$\overline{5}$ lffects of N－have luration

In t：- eetion，the effeets of the duration of the x wate on the desay rate of 1 plane the rate of bacroase of ta and the rise time tr are intes－ tifated by thanging the radius ra of the pressuriaed alr sphere．In catses los and lo，real－riscous solu－ town are ohtalmed for the same conditions as case 11－except for the sphere radius．The radii for cases llS and low are ten and fitty times，respertively， as large as the radius for lla．Consexuently，the half－darations of the generated x waves for ins and ［he ate about ton and fifty times as long as the half－duratbon for II．furthermore，the distances tarelled hy the wate fromts in eases lls and lle are about fen and fitty times as long as the distance in cose le to reach nearly the samo maximum over－ pressure。

In cases Na_{s} and lit，the vibratiomal relaxation time for oxygen is much shorter than the half－dura－ tions of the b waters，and 11 td 10^{-2} for 15 and
 where of $11 . \begin{gathered}\text { at } \\ \mathrm{t} \\ \mathrm{t} \\ \text {－} 19 \mathrm{~m} \text { ．Accurding to the }\end{gathered}$ Elassification deseribed an the last part of Section ．，the former eases correspond to quasi－cquilitiorium wates，while the latter corresponds to a moderate nomequilibrium hille．In this section，the bulk－ viscosity concept is introduced to evaluate the ribrational relaxation for oxyen instead of solvine the relaxat ion equat ton for oxygen．This assumpt is reasomable for these eases due to the fact that the relaxat an time or beneth for oxyeen is much shorter than the characteristic－flow ime or lengeth， such as the halt－durat ion or A－wate length．In practicc，a typical time step＇t for 105 and［ith becomes longer than o $1=11.2$ ．sec for 05 and 56.2 ．．sec tion llol．In the basic equations（ly． （4．11），the coefficient of riscosity i．＋iry was replaced $b y$ ．．r＋ $1 . y^{\prime} 0$ ，and the method of solving the equations for pertert viscous flows was used． That is，only spherical and viscoms corrections were corriced out an the operator－splittang techanaque． fotalls of the bulh viseosity analysis are shown in Appornelix 1
figure 1.0 .5 shows the attemuat ion of（ip）max is
 w. Corse lo is a perfect-inused sulation for the

 the same for all ases at hather plam hut ware as the wates weahell. At $r^{*}=\therefore$, the $n=1$ for case do, 1.1: for とase 12, 1.1. for fase 15 and 1.06 for eats the. The deciby index n decreases at a fixed dsstance as the hait-dumation ta increases. That ss, the effect of bthatamal nonegulbibriam on the decal rate of 1 pimax is weatened as the wate ap proaches equilibrima. Since $n=1$ fir a weak froeen wate (case del, the maximam balue of n womld exast
 shown in this section, the maxama value of n was whtamed for casc la
figure 1.64 shows the normala ed half datat ant ti as a tumeton ot re, where tis defined by id
 mithal state for all cases dae the nonlimetr efter, but are quite differbat at the later stame of we the ofed wates dependang on the derde of bhra

 tion of 1 fimas. The hroken late matates the

 sulution. The cham lanes admate the mednind fighthall solutions for rad viscous A -hates with
 whath correspond to the half daratoms at $r=2,010$
 that the rise time imreases with eneressame tata a
 fighthill whate In asse le, the rase tame tr "ter shouts the modifad laybur whe for the higher
 Wershout of t_{1} abose the lathe babe for an am
 can be improsed by using a iner mesh sife As deseribed for plante wates in section 4 . $\begin{gathered}\text {, the }\end{gathered}$ present method of calculation eswes sood results for the transient behawour of t, but has the defert that there appear some owershouts of : above the faylor walac for quasi-steady mates. some 1 mprobe ment will be required in the calculatoms in a future study. the nomstatamary oftet clearly appears for 1 phmax to fa an case lis and for
 tend to frecee and have lower blues than the mode fied haylor and lighthil! balacs.
 thon of , ptmax for comprason between acse lo and fot. In ase lot, the relaxation equatom tor oxygen was solved wathout using the hulk vacosity concent for the same parameters as case be. Whe blach and white erreles correspond to cases lite and bon, respectively. The broken litte indsates the modifted laydor solation. The rise tome balues of DoA result in a hogher overshout of the madifed Taylor valoes than those of let. Ihas as the reasom why the balh viscosity concept was used in the analysis of V hales of long darat loms.

 cublabram, the perh rase tame becomes sharp and the hach heromen "trathlt

 lof oxsent is tahen into ascount throuht the baik

 the detalts an be seen th ppendat

nhlue !		

 the derat rate imereaber fut fran hothe ald in

 mot attectod hy 19

 same lant mat for ! fhere thence matuate that

case 11 , while the vibrational relaxation of oxygen acts as a bulk viscosity in case D8. Figure 4.42 shows that the wave is a partly-dispersed wave for nitrogen. Fully-dispersed wates for nitrogen could be ohtained for waves with longer duration and lower maximam overpressure.

3. comelosions

the foregong results can be sumarized as follows:
(1) It was shown that the transient shock structures of weak plane and spherical waves in ait can be analysed by solving the unsteady, compressible Savier-Stohes equations with a bibrational-relaxa thon equation for oxygen or nitrogen, using the random-choice method (RCM) with an operator-split ting technique
2) The perfert-viswus and real-imuised solutions for impulsibe step-hates shon that the smaring frocesses due to dissipative effects of viscosity and librational nonequilibriam for shoch fronts are an reasonable agrement with analysis. However. there 15 some randomess in the shoch thachness or the rise tame value and there are some wershoots above the steady-state valut
(S) The initial S wave formation process was estah ished for a perfect-intiscid wave for exploding pressurized air spheres. It was found that the Ittemation of the maximum (peah) overpressure and the half-duration of an W-wate in the far ficld can be contrelled by a proper chotce of sphere radus and initial diaphragm-pressure ratio.
(t) The perfect-invisead, perfect-iscous, realinviscid and real-biscous far-field solutions for noak spherical waves in air were compared. It was found that the dissipative effects of viscosity and uhational nonequilibrium of oxygen on the decas of the maximum overpressure, half-duration and S-wate rise time become distinguishable for values of (Plmax 100 Pa .
(5) the numerical simulations were carried out for weak spherical i-waves generated in atmospheric air from sparks and exploding wires. The numerical result: show good agreement with the experimental data with regard to the decay rate of (: p) max, the increasing rate of t, the rise tame $t r$ and the wave profiles. The results indicate that the ohserved shock structures of weak spherical N-wates are controlled by the coupled dissipative effects of viscosity and vibrational nonequilibrium of oxygen
(t) The calculated and observed rise times for shock thichnesses) for weak spherical N-waves are mostly mach smaller than those preducted analytically for steady plane waves. It is found that this phenomenon is attributed to the $\because-2 \cdot \mathrm{a}$ and the - $\because: \because \because \because \because \cdot \because$, coupled with vibrational relaxation of oxygen. The shorter half-durations gwe shorter rise times for the same maximum overpressures due to flow expansion behind the front shock of an N-wate (N-wave effect). A more rapid decrease of the maximum overpressure also results in a shorter rise time for the same maximum overpressure, since the shock-thickening time becomes increasingly long as a wave is weakened, so that
the increase of shock thickness cannot follow the change in maximum overpressure monstationary effect). furthermore, a longer relaxation time results in a shorter rise tame in contrast to a steady wate, since the shock-thickening time is nearly proportional to the relaxation time for dispersed waves (monstationary effect).
i^{-}, ts the damation ifterases. tite rase time approches the modefied taylor value for sterdy plane wates or the modified lighthill value for quasi-stationary v-wates, which is obtamed hy introducang the bulh viseosity concept into the liscous-flon amalysis. for nates mith longer darations, the nenstationary effect on rise time appears only for loner maximam overpressures.
(s) the decay index n, which denotes the local decay rate of phatax, defined hy phate r^{-n}, is equal to unity for a classsal, linear acoustse wave, but increases due th the dissipative effeets of biscosity. and whrational nonequalbrian for moderate noncquabbram, heak spherical X-haves. it approaches unty for quast-equilibrium waves of long duration.
(9) The effects of $\begin{aligned} & \text { (1) } \\ & \text { (ibrational nonequilibrium on }\end{aligned}$ (p)max, t_{d} and t_{1} are fomd to be similar to those of O, such as an increase in decay index and half duraton, and smaring of the pressure peak. These effects appear only at lewer maxamm oferpressure thelom dolda for wabe of long daration
 motabat an tor the prosent -thed was to answer the quest wn wherer N wates senerated by sparks or cxplodins wates dan sambate Ssl-generated N-haves

 product bly ghate and exploding wires, the rise tames are deternaned be d-hate daration and the nonstat bonary datame trabelled from the source. tivertheless. the present study is important since it has sacceded at providane appropriate explanathons for the rise tame of spark and exploding-wire echerated b-nates by usine the concepts of the $\because-a$: $\because \because$ and the $\because \because \cdot \because \cdot \because$ with the add of vory good kiy simalations of the atoal experment.

KIHIRINOLS

1. Niedzwiechi, A., Ribner, H. S., "Sublective londness of X-Wate sonic Booms", I. Acoust. Soc. America, lol. of(t), nec. 198, pp, 161-. 10.1
\therefore Hilton, D. A., Noman, J. W., "Instrumentation Techniques for Veasurement of Sonic Room Signatures", I Acoust Soc America, Vol is, No. \therefore, fart \therefore, l906.
2. Maglieri, U. I., fuchel, l., henderson, H. R., "Sonic Room veasurements for SR-" Vircraft Hperating at Mach humbers to 5.0 and tlatudes to 24.584 yeters", Mast ix $11-65.23,19$?
3. Reed, \therefore. N., "Atmospheric At tenuation of 1 xplosion Warest, J, lioust. Soc. America, Vol.

4. Taylor, i. I., 'The fonditions vecessary for llascontinuous kotam in Gases", froc. Royal Soc. Vol $\mathrm{Bt}, 1910$, pp $3-1$.
(). Holst-densen, O., "An Ixperamental Investagation of Rase limes of Very Weah shoch hates". Illas lch. sote No. 229, dareh lysl.

Ribner, II. i., Morris, l'. J.. (hu, K. H., "laboratory Simulation of levelopment of superbooms by Atmospheric furbutence", 1. Acoust. Soc

s. Plothin, K. I., (ieorge, A. K., 'Propagataon of Weah Shoch wates through furbulence", I. Platd Mechanics, fol. 51 , dart $3,19^{-}-$pre 119 do
9. Pierce, A. $1 ., \mathrm{Maglict}, \mathrm{H} . \mathrm{J.}, \mathrm{'lftects}$ ot Atmospheric Irregularities on sonde Boom Propat gation', J. Acoust. Soe. Amerkia, Vol. 51, Xo. \therefore,

10. Fioncs-lilllams, J. R. Hone, 9. i., "On the Possibility of furbulent the shoch Wates", I. Flatd Mechanics, lol. 38, Part

 an weak shoch liaves in dir and the stracture of sonic Kangs', J. Hadd Mechanics, lol. 3 , fart 1, 19-5, PP $18^{-}-196$
12. Johannsen, A. H., Hedgson, J. l'., 'The thysies of Weak haves in iases", 'Report on Progress in fhstis', lol, \therefore, 19³, pp. os! eto.
15. Sullaban, P. A. Hinches, 4., Murra, J., farratano, 6. I., "Rescarch on the Stability
 Nos. 19³.
14. Lidm, . ., 'Solution in the large for sommear dypertolic systems of lyatitans", Come Fure Apyl Math., lol. 18, 1903, P. 197^{7}.
15. Chorin, A. .J. "Ramdom (home Solutan of Hyperbolic system', J. Comp Phys., bol. \therefore.

 Part $4,19^{-7}, \mathrm{p}^{-8}{ }^{-8}-94$.
1.. Saltu, 1., (ilass, 1. 1.. "Applacatans of Random-thoice Method to Problems in shoch amd
 $240,1993$.

19. Sutotuha, V.. Bhation, J., "Yplamtame of Rathom: (howe Method to tompresshble Daber

 Hates of limite Vaplitude", 'humber an

叫

 of (haracterastas an Reatimg bias Maxture with Applaitaons to Heperamia Flon", Wrabt

 Fropagation in a Reladan! has". I. Fluad Vech. .

100102.1

Wibrational Relaxation Tames for oxygen (0 ' and Nitrogen (',

Strics		$1,(k)$	RII ! ${ }^{\text {P }}$	Nil (":1	, 1 rsec	N (msec)
l	spark	2-3-9-	$50-73$	0. $38-11.45$	1.1-1	1.05-1. 2
I I	sparh	$\therefore 8$.	50	0.80	$5 . \mathrm{K}$	1.5:
111	IW	\geq^{--}	-5	0.61	9.1	0.75
15	EK	280	$8^{-} .5$	0.88	5.	(1) 52

If-room temperature, RH-relative humadity, All absolute humsdity, lh-exploding wire
labled.1

Parameters for Computation of Spherical Nalws
(a) Perfect-Imbiscid Plows

Case	r_{+1}	${ }_{+1}$	r°
AI	2.0	1.0	1/80, 1/40
AlA	2.0	1.0	1/10
A:	2.0	2.1	1/10
A3	9.0	1.0	1/10
A 4	9.0	9.0	$1 / 10$
A5	2.44	1.0	1/30
A6	1.8	1.10	$1 / 30$

(b) Perfect-Viscous Flows

Case	P_{41}	T_{41}	$\mathrm{I}_{1}(\mathbb{N})$	r_{0} (cm)	r*	1 (cm)
B1	2.44	1.0	273	1.15	$1 / 50$	11.0 .58 .3
B2	1.2	1.10	$\therefore 3$	1.8	1/41)	11.0145

(c) Real-Inviscid Flows

Case	P_{41}	T_{4}	$\mathrm{I}_{1}(\mathrm{k})$	R11 $\binom{$ a }{0}	$0^{(.2 s)}$	$\mathrm{r}_{0}(\mathrm{~cm})$	r^{*}	r (cm)
Cl	2.44	1.0	27.3	0 ?	15.0	1.15	1.30	0.0385
C2	1.2	1.0	273	6 -	15.6	1.8	140	0.045

(d) Real-Viscous Flows

Case	P_{41}	T_{41}	$\mathrm{T}_{\mathrm{I}}(\mathrm{K})$	RII (n_{n})	$0^{(0.5)}$	$r_{0},(\mathrm{~cm})$	r*	r (cm)
D1	2.44	1.0	273	6 ?	15.6	1.15	$1 / 30$	0.0 .885
D1A	2.44	1.0	273	0^{-}	15.6	1.15	1/10	0.115
D2	1.8	1.0	289	50	5.54	1.15	1/30	0.0383
D2A	1.8	1.0	289	50	5.54	1.15	1/10	0.115
03	3.3	1.0	280	87.5	5. 3	1.8	$1 / 20$	0.09
D3A	3.3	1.0	280	8. 5	5. ${ }^{\text {a }}$	1.8	1/10	U. 115
1.4	1.8	1.0	27.3	0^{-}	15.6	1.15	1/30	11.0383
155	1.8	1.0	289	50	5.54	11.5	1/30	0.383
DG, D6A	1.8	1.0	289	50	5.54	5-. 5	1.30	1.917
0^{7}	1.08	1.0	289	50	5.54	5-. 5	1/30	$1.91{ }^{-}$
D8	1.08	1.0	289	50	$510\left(\mathrm{~N}_{2}\right)$	$5^{-} .5$	1/30	$1.91{ }^{-}$

FIG. 1.1 DEFINITION OF RISE TIMI: τ_{r} AND HALF-DURATION OF AN N-WAVE t_{d}.

FIG. 1.2 DEFINITION OF RISE TIME tr OF A PLANE WAVE.

FIG. 2.1 SPARK AND IEXPLODING-WIRE-GFNERATED N-WAVES.
(a) SERIES I - SPARK
$\mathrm{S}=6.0 \mathrm{kV}, \mathrm{r}=21.6 \mathrm{~m} ;(\mathrm{sp})_{\max }=8.2 \mathrm{~Pa}$, $\mathrm{t}_{\mathrm{d}}=72 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{r}}=11.9 \mu \mathrm{~s}$.
(b) SERIES IV - EXPLODING WIRE
$\mathrm{S}=6.0 \mathrm{kV}, \mathrm{r}=29.3 \mathrm{~m} ;(\mathrm{Ap})_{\max }=20.2 \mathrm{~Pa}$, $\mathrm{t}_{\mathrm{d}}=122 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{r}}=15.2 \mathrm{\mu s}$.

FIf. 2. 2 MAXIMUM OVERPRESSURE DATA (ip) max vs r. $\mathrm{n}:(\mathrm{P})_{\max }=\mathrm{r}^{-\mathrm{n}}$.

SPARK: SIRRIES I - O AND Il - \triangle; EXPLODING WIRES: SERIES III - \diamond AND IV -

FIG. 2.3 HALF-DURATION DATA t_{d} vs r.
SPARK: SERIES I - O AND II - Δ; EXPLODING WIRES: SERIES III - \bigcirc AND IV - \quad.

Fiti. 2.t RISE HIMI DAM tr is r.

FH. $\therefore .5$ RISE TIME DAIA t_{r} is ($\left.p\right)_{\text {max }}$.

FIG. 3.1 TAYLOR VELOCITY OR PRESSURE PROFILE AND DEFINITIONS OF SHOCK THICKNESS.

FIG. 3.2 NORMAI.IZED TAYIOR THICKNESS $(\hat{x}) \wedge /(\% / a 1)$ OR NORMAIIZEI
 STRENGTH (Ap) ${ }_{2} / \mathrm{p}_{1}$.

SPARK: SERIES I - O ANI II - Δ;
EXPLODING WIRI: SERIES III - \diamond NWI 11

FIG. 3.4 IIGHTHILI N-HAVIS ASYMPOTIC FORMS OF PUSES WITH EERO MASS FLOW) FOR REYNOLDS NIMR!ZS Re $=50,10$, $5,1,0.5$ (REF. 20).

FIG. 3.7 NORMALIZFD SHOCK THICKNISSS $\triangle X /\left(5 / a_{1}\right)$ OR NORMALIZED RISE TIME $\mathrm{t}_{\mathrm{r}} /\left(\delta / \mathrm{a}_{1}{ }^{2}\right)$ VS NORMALIZED MAXIMUM OVERPRESSURE ($\left.\hat{\mathrm{p}}\right)_{\text {max }} / \mathrm{p}_{1}$ FOR NORMALIZED DURATION $\mathrm{t}_{\mathrm{d}} /\left(\delta / \mathrm{a}_{1}{ }^{2}\right)=5 \times 10^{5}, 2 \times 10^{5}, 10^{5}, 5 \times 10^{4}$ FOR LIGHTHILL N -WAVES.

Nat., 1, 1.1

(a) SERIES I - SPARK DATA

LIGHTHILL: $(\Lambda p)_{\max }=8.52 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=12 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=72 \mu \mathrm{~s}$.
SERIES I: $\quad \mathrm{r}=21.6 \mathrm{~m},(\Delta \mathrm{p})_{\max }=8.52 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=11.4 \mathrm{\mu s}, \mathrm{t}_{\mathrm{d}}=72 \mu \mathrm{~s}$.

(b) SERIES II - SPARK DATA
I.IGHTHILL: $(\Delta \mathrm{p})_{\max }=5.83 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=16.7 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=76.8 \mu \mathrm{~s}$.

SERIES II $r=19.0 \mathrm{~m},(\Delta \mathrm{p})_{\max }=5.83 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=15.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=76.8 \mu \mathrm{~s}$.

FIG. 3.10 COMPARISON BETWEEN EXPERIMENTAL ---- AND THEORETICAL (LIGHTHILL) PRESSURE PROFILES OF N-WAVES.

(c) SERIES III - EXPLODING-WIRE DATA LIGHTHILL: $(\$ \mathrm{p})_{\max }=17.0 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=7.97 \mathrm{is}, \mathrm{t}_{\mathrm{d}}=113.6 \mathrm{is}$. SERIES III: $\quad \mathrm{r}=27.6 \mathrm{~m},(\mathrm{Ap})_{\max }=17.0 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=10.5 \mathrm{\mu s}, \mathrm{t}_{\mathrm{d}}=113.6 \mathrm{is}$

(d) SERi S IV - EXPIODING-WIRE DATA
I.IGTHILL: $(\Delta \mathrm{p})_{\max }=15.3 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=8.68 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=105.3 \mu \mathrm{~s}$. SFRIIS IV: $\quad r=29.3 \mathrm{~m},(\Lambda \mathrm{p})_{\max }=15.3 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=18.7 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=105.3 \mathrm{\mu s}$.

Fig. 3.10-CONTINUED COMPARISON BETWEEN I:XPERIMENTAL -. - AND THEORETICAL (I.I(iHTHIIL.) PRESSURI PROFIIES OF N-WAVES.

 FOR LARIOUS TIME PARAMETHRS. $=0,0.1,0.5, \therefore .0,10$, , FOR LIGMMHIL NONSTAIDONAKY USCOUS PIANE WABS.

 SOlIARE ROOT OF TIME PARAMITLER \because FOR I.ICITIIILIL NONSTATIONARY viscous plane waves.

FIG. 3.15 NORAALIEED SHOCK-THICKENING TIMI: $t_{s} /\left(\because / a_{1}^{2}\right)$ OR DISTANCI: $\mathrm{x}_{\mathrm{s}} /\left(: / \mathrm{a}_{1}\right)$ PLOTTED AGALNST SHOCK STRIENGTH (ip) $2 / \mathrm{P} I$ FOR NONSTATIONARY VISCOUS PLANE: WAVIS.

FIG. 3. 14 PRESSURIः p, AVD TEMPERATURE (TRANSLATION + ROTATION T, AND VIBRATION T ${ }^{2}$) PROFIIL:S OF SHOCK TRANSITIONS WITH VIBRATIONAI, IXCITATION FOR FULILY AND PARTLY DISPERSI:D WAVES.

 OF INITIAL TEMPERATURE TI FOR AIR.

 PNRMAHR

(a) Series-I: Spark data
(a) SERIES I: SPARK DATA MODIFIEO LIGHTHLL: $(\mathrm{P})_{\max }=8.52 \mathrm{~Pa}, \mathrm{tr}_{\mathrm{r}}=34.6 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=2.2 . \mathrm{s}$. SERIES I: $r=21.6 \mathrm{~m},(\mathrm{P})_{\max }=8.20 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=11.4 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=72 \ldots \mathrm{~s}$.

(b) Series - II: Spark data

(b) SERIES II: SPARK DATA

MODIFIED LIGHTHILL: $(\mathrm{p})_{\max }=5.83 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=36.1 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=70.8 \mathrm{us}$.
SERIES II: $r=19 \mathrm{~m},(\mathrm{p})_{\max }=5.85 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=15.5 \mathrm{us}, \mathrm{t}_{\mathrm{d}}=70.8 \mathrm{irs}$.

FIG. 3.19 COMPARISON BETWEEN EXPERIMENTAL ANI) THEORETICAL (MODIFIED LICHTHILL.) PRESSURE PROFILES OF N-WAVES.

(c) Series-III: Exploding-wire data
(6) SERIES IHI: HPMOHANIGHR HMIA

(d) Series-IV: Exploding-wire data
(d) SERIES IV: IEXIIODING-WIRI: DATA
 SERIIS IV: $\mathrm{r}=29.3 \mathrm{~m},(\therefore \mathrm{p})_{\text {max }}=17 \mathrm{~Pa}, \mathrm{t}_{\mathrm{r}}=18.7 \mathrm{HS}, \mathrm{t}_{\mathrm{d}}=105.5 \mathrm{is}$.

FIt. 3.19 - CONTINUED - COMPARISON BETWEEN EXPERIMIENTAI. ANI THEORITTCAI. (MOMIFIED LIGHTHILL) PRESSURE PROFILI:S OF N-wavtis.

Fig. 3.20 Classification of N-Waves according to the degree of NONF:QUILIBRIUM.

FIt . 4.3 SHOCK-TUBE PROBIEM USING RANIOM-CHOICE MI:THON FOR A PERFECT-INVISCID FION ($\left.P_{41}=2.0, T_{41}=1.0, \therefore x^{*}=1 / 40\right)$.

FIG. 4.4 SHOCK-TUBE PROBLIEM USING RANDOM-CHOICE METHOD FOR A PIERFECT-VISCOUS FLOW ($P_{41}=2.0, T_{41}=1.0, ~ \lambda x^{*}=1 / 40$, $\left.x_{0}=0.001 \mathrm{~cm}\right)$.

FIG. 4.5 REGION OF CALCULATION AND SHOCk-FRONT PATH. O-RANDOM-CHOICE METHOD ($\left.\Lambda X=1.25 \times 10^{-5} \mathrm{~cm}\right)$, ANALYTICAL.

(c) COMPARISON BETWHEN RCM AND MFM (MaCCORMACK'S FINIIE-IHFFERINB METHOD)

$$
\begin{aligned}
& +\therefore=1.25 \times 10^{-5} \mathrm{~cm} \text { (MaCORXACK) } \\
& \mathrm{C}: x=1.25 \times 10^{-5} \mathrm{~cm}, \Delta x=0.5 \times 10^{-5} \mathrm{~cm} \text { (RANOOM-CHOICI) }
\end{aligned}
$$

FIG. 4.6 - CONTINUED - TRANSIENT BEHAVIOUR OF SHOCK THICKNESS FOR SHOCK-THBI PROBIIM USISG RCA IOR A PERFECT-VISCOUS FLOW $\left(\mathrm{P}_{41}=2.0, \mathrm{~T}_{41}=1.0, \mathrm{~T}_{1}=273 \mathrm{k}, \mathrm{P}_{1}=101.3 \mathrm{kI} \mathrm{a}\right)$.

FIli. 4.; TRANSIENT SHOCK PRESSURI: PROFILES FOR SHOCK-TUBI: PROBIIEM USING RCM FOR A PEREECT-VISCOUS FIOW. ($\mathrm{P}_{41}=2.0, T_{4}=1.0$, $\left.\mathrm{T}_{1}=2-3 \mathrm{k}, \mathrm{pl}=101.3 \mathrm{kPa}, \therefore \mathrm{x}=1.25 \times 10-5 \mathrm{~cm}\right)$.
$\left.{ }^{2}(\perp \nabla)\right)^{0}(\Lambda \nu){ }^{2}(\perp \nabla) /(\perp \nabla){ }^{2}(d \nabla) /(d \nabla)$

x
fIc. 4.8 TRANSIENT SHOCK PRISSURE AND TEMPERATURI PROIFIIES FOR SHOCK-TIBE:

- FROZEN SHOCK FRONT.
FIC .4 .8

(IROZI SHIOCK RONT.

FIG. 4.9 TRANSIEXT BEHANIOUR OF SHOCK THCKNESS FOR SHOCK-TUBI PROBIBY
 $\mathrm{P}_{1}=101.3 \mathrm{kPa}, \mathrm{T}_{1}=503.15 \mathrm{~K}, \mathrm{RH}=900^{\circ}, \mathrm{M}_{\mathrm{e}}=1.0004,(\therefore \mathrm{p})_{2}=$ 91.1 Pa. $\Delta \therefore X=0.025 \mathrm{~cm}, O X=0.0125 \mathrm{~cm}$.

Flli. t. 10 STLADY SHOCK-PRESSURE PROFIII: FOR SHOCK-TUWE PRORLAM
 $\mathrm{T}_{11}=1.0, \mathrm{p}_{1}=101.3 \mathrm{KPa}, \mathrm{T}_{1}=503.15 \mathrm{~K}, \mathrm{RH}=90_{\circ}^{\circ}$, $M_{c}=1.0004,(\mathrm{p})_{2}=91.1 \mathrm{~Pa},(\mathrm{~T})_{2}=0.0-7 \mathrm{k}$, $0=1.04 \mathrm{sec}, x_{0}=0.5 \mathrm{~cm}, \therefore x=0.0125 \mathrm{~cm}$.

$$
\text { AVALYTICAL, } \bullet=25.0,01=27.6
$$

111. 1.11 (OXIISH11

Fig. 4.13 PATH OF SHOCK FRONT FOR A PERFECT-INVISCID FLOW (CASI: A5).

FIG. 4.14 COMPARISON FOR PERFECT-INVISCID (A5-A), PERFECT-VISCOUS (B1-O), REAL-INVISCID (CI - +), AND REAL.-VISCOUS (DI - -), FAR-FIELD RCM SOLUTIONS OF ATtINUATION OF MAXIMUM OVERPRESSURE.

 REAL-INVISCID (Cl - + , ANI) REAL-VISCOUS (11 - -), FAR-FIFID RCM SOLUTIONS: HALF-DURATION td VS DISTANCI r.

 ($\mathrm{tr}_{\mathrm{r}}=0$) , PERFECT-VISCOUS (B1 - O), RIAL-INEISCID (Cl - +) , AND REAL-VISCOUS (DI - -), FAR-FIEDD RCM SOIITIONS: RISI: TIME t_{r} I'S nostanci: r.

 ANI RIAL-VISCOUS PRISSURI PROHIDES AI SEVIERAL LOCATIONS FOR REAL-VISCOUS, FAR-FIHII RCM SOIUTIONS.

FIG. 1.22(a)

$\Delta r=11.7 \mathrm{~m}$

$11 r \quad 1!+11$

 $\mid(p)_{\max }=5.85$ Pa, $t_{r} \quad \therefore 0 \therefore, t_{4}=-3.5 \ldots 5$

 VIBRATIONAI TKAPERATURI: AI $r=\therefore .3 \mathrm{~m}$ FOR (GASI DSA. $\left|()_{\text {max }}=14.5 \mathrm{~Pa}_{\mathrm{m}} \mathrm{t}_{\mathrm{r}}-27.5: \mathrm{s}, \mathrm{t}_{\mathrm{d}}=1.36 .3 \mathrm{Bis}\right|$

 loR

II: $\quad r=19 \mathrm{~m}, \quad(\mathrm{r})_{\max }=0.5 \mathrm{~S} \mathrm{P}_{\mathrm{a}}, \mathrm{t}_{\mathrm{r}}=10.7 \mathrm{~s}$

 $r_{0}=1.15$ (mm loR W.).

FIG. 4.35 COMPARISON OF t_{r} VS (iy) max FOR IIPFGRENT HALF DURATIONS FOR REAL-VISCOUS CASES D2, D5 AND D6 ($\mathrm{P}_{41}=1.8, \mathrm{r}_{0}=1.15$ cm FOR D2. D5: $11.5 \mathrm{~cm}, \mathrm{D6}: 57.5 \mathrm{~cm})$.

 ns: $1.08: \mathrm{r}_{0}=57.5 \mathrm{~m} ; 10, \mathrm{n}^{-}: 0_{2} 0 \mathrm{~N}, \mathrm{Y}, 18: 0_{2}+\mathrm{N}_{2} 1$.

 $\left.r_{0}=3.5 \mathrm{~cm} ; 1^{-}: 020 \mathrm{O}, \mathrm{H}, \mathrm{H}: 0_{2}+\mathrm{N}_{2}\right)$.

A以MAK
the centre of the shoch tront of ath Wate vert

(1.1)
 it $\bar{F}=11 . \therefore$ an the shoik tront

$$
\text { exp,Rel }=i_{m}^{--l i x p i:-1}
$$

 rowrotern as

$$
\therefore=-n \cdot \therefore J^{\prime} \frac{\kappa(\mu \cdot 1}{2}
$$

to evaluate ne The method of succosstre derat bur is used tosoldelq. A. Si for mí. The sontre valut \because has ased for the anietal value of aterat
 m 1nto 14. S. $15 i$.
 - ate whamed trom
1.1
 Finx. resperticly. The values at \mid athe of are

 - - ! ?

 sponding balue of Ke is dutermand ata \because :


```
    A4C:M*2
```



```
if 'Y
F L.1 ET(:1)
k
```



```
CJ01: E
```



```
    ANALITICAL SNLGTI
```



```
    <1"!*<1 & is(10%0)
    GNA=?.4
```



```
    REAr.(E,lC)
    **=*./7+!
        l=1,*
        * = = (1-1) :?
        "&A:(5,1Z) (F(N*+J),j=1,7)
        < . 「! 1!
        AGlT(0.2?)
        C) 7, l=1,
        b, =:8(|)
        {*6=,5\times6゙(%い)-1.
        TAC=?•品保(EAE)
        G\angleC= &:WT(ETAC)
        ETA*=FT\DeltaC
    1^JF(R゙.LT. 2.O)THE:.
        FTAN1=1.C+FMZ/CE\timesF(FTA*/2.?)
        tLSE
        ETAM)=2. O%NLTG(FRQ/(ETAM=1.0))
        lvi lF
```



```
        fTAN=ETAM1
        <.jT:1!
        19 C2N=SSOWT(ETAN1)
```



```
        F % =0.c&FMAX
        F1=0.1%FMAX
        <29=62N
```



```
        IF(TAHS(GZQA-GLQ).LT.1.OCI-NG) GOTO 30
        C-20=529A
        (:1 Tr 3.1
    36<21=2.0462C-520A
    41 G21A=\Si.RT(2.0#NL~r.(E2R&(G21/01-1.0)))
        1F(こAAS(G21A-GZ1).LT.1.00-AQ) GOTZ40
        621='.21A
        GJ Tn 41
        4A'Gく=GZ1A-G274
        G2=021A
        1Z=GMOGZ&fmax
        Z=亏%G7(HFNAx
        ~口ITF(A,50) &%,LZ,Zつ
    70 CATTUE
    10 f juMAT(110)
    12F:FMAT(TFIn.2)
    P2 F`MMAT(//IH ,IOX,';{&: I.IGHTHILL ANALITICAL SOLUTION OF OURATION PA
        #ANETFR ANS YHICKNFSS DARAMETER ',/IH ,IGX,
        * MF ,OAAVF FEM, SIVEN QEYAOLDS NUMAEF ##*',
        * ///1+4, 22x,'Q',13x,'ก2',13x,'20'/)
    5c F;~wAT(IH,1CX,3015.?)
        STCP
    00500 ST:
&NC CFSNTA
    CNO S
    SAVEOTA SATA SET ('TA3COOO.LMI.FORT')
    GFADY
    TSLOG END
```



```
    * USED = TA,30000
    * PQCl - URE = LOGON2
```


 fit A Y
ELMZ F7(FI)

し1 T

22:18:

presinte

romsider a stedy mormal shoch wate it a dols wath ribatatonal excitation and assume the equila braun states tor both wales of the hoch front hen, the exsat bum: of contanuts, momentam and ctorg are Rucn by

$$
\begin{aligned}
& 1^{11}=2^{n} \\
& r_{1}+i_{1}{ }^{\prime}-r_{2}+2_{2}{ }^{\prime}
\end{aligned}
$$

(1.1
B.
(B. B)
winct itic abseripls 1 and - demote the states

 ㅇnstant nrensare for tram-lational and rot.at om,il
 Am the \because ? prescod

\qquad

 4.1."

$$
\bullet^{+1} n^{\prime} \quad!_{1}^{\prime}
$$

AD-A.135 903 RANDOM CHOICE SOLUTIONS FOR WEAK SPHERICAL SHOCK-WAVE TRANSIIIDNS OF N-WA. (U) TORONTO UNIV DOWNSVIEW

$\frac{\dot{v}_{0}}{a_{e}}=\frac{\dot{v}_{0}}{a_{1}}=\frac{1}{2} \frac{\dot{u}_{1}}{a_{1}} \frac{\ddot{u}_{1}-\bar{u}_{2}}{\bar{u}_{1}}=\frac{1}{2 \gamma M_{f}} \frac{(\Delta p)_{2}}{p_{1}} \approx \frac{1}{2 \gamma} \frac{(\Delta p)_{2}}{p_{1}}$
Substituting Eq. (B.13) into Eq. (B.12), obtain

$$
\begin{equation*}
\frac{l}{k}=\frac{\gamma+1}{2 \gamma} \frac{(\Delta p)_{2}}{p_{1}} \frac{\gamma}{(\gamma-1)^{2} c_{j}} \cong \frac{(\Delta p)_{2}}{p_{1}} \frac{p_{1}}{(\Delta p)_{c r, j}}=\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}} \tag{3.32}
\end{equation*}
$$

B. 4 Derivation of Eq. (3.34) from Eq. (3.24): Polyakova et al (Ref. 21)

Equation (3.24) can be rewritten as

$\frac{y+y_{0}}{k \tau_{j}}=\left(1-\frac{1}{k}\right) \ln \left(1+\frac{\tilde{v}}{\tilde{v}_{0}}\right)-\left(1+\frac{1}{k}\right) \ln \left(1-\frac{\tilde{v}}{\stackrel{v}{v}_{0}}\right)$

Using the notations for a normal shock in B.l

$$
\begin{gather*}
\tilde{u}_{1}-\hat{u}=\dot{v}+\tilde{v}_{0} \tag{3.15}\\
1+\frac{\tilde{v}_{2}}{\check{v}_{0}}=2 \frac{\tilde{u}_{1}-\tilde{u}}{\bar{u}_{1}-\tilde{u}_{2}}=2 \frac{p_{1}}{(\Delta p)_{2}} \frac{(\Delta p)}{p_{1}}=2 \frac{(\Delta p)}{(\Delta p)_{2}} \tag{3.33}
\end{gather*}
$$

Using the expression (3.32) for k
$\frac{y}{k \tau}=\frac{\gamma+1}{2 \gamma} \frac{(\Delta p)_{2}}{p_{1}} \frac{\gamma}{(\gamma-1)^{2} c_{j}} \frac{y}{T_{j}}=\frac{\gamma+1}{2 \gamma} \frac{a_{1}^{2} y}{(\delta v)_{j}} \frac{(\Delta p)_{2}}{p_{1}}=-\frac{\gamma+1}{2 \gamma} Z$
where Z is defined as

$$
\begin{equation*}
z=-\frac{a_{1}^{2} y}{(\delta v)_{j}} \frac{(\Delta p)_{2}}{p_{1}} \tag{B.16}
\end{equation*}
$$

Substituting Eqs. (3.33), (B.16) and (3.35) into Eq. (B.14) obtains

$$
\begin{align*}
& \frac{\gamma+1}{2 \gamma}\left(Z-z_{0}\right)=\left[1+\frac{(\Delta p)_{2}}{(\Delta \mathrm{p})_{c r, j}}\right] \ln \left[1-\frac{(\Delta \mathrm{p})^{(\Delta p)_{2}}}{(\mathrm{y}}\right] \\
& -\left[1-\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \ln \left[\frac{(\Delta p)}{(\Delta p)_{2}}\right] \tag{3.34}
\end{align*}
$$

where

$$
\begin{equation*}
z_{0}=\frac{2 \gamma}{\gamma+1}\left[\frac{y_{0}}{k \tau_{j}}+\frac{2}{k} \ln 2\right]=\text { const } \tag{B.17}
\end{equation*}
$$

B. 5 Derivation of Eq. (3.34) from Eq. (3.37):

Johannesen and Hodgson (Ref. 12)
From Eq. (B.10)
$M_{f}^{2}=\frac{\left[\gamma+1+2(\gamma-1) c_{j}\right](\Delta p)_{2} / p_{1}+2\left[\gamma+(\gamma-1) c_{j}\right]}{2 \gamma\left(1+(\gamma-1) c_{j}\right]}$

Introducing the relation (3.29), then

$$
\begin{align*}
& 1-M_{f}^{2} \approx \frac{\gamma+1}{2 \gamma}\left[\frac{2(\gamma-1)^{2} c_{j}}{\gamma+1}-\frac{(\Delta p)_{2}}{p_{1}}\right] \\
& \quad \cong \frac{\gamma+1}{2 \gamma} \frac{(\Delta p)_{c r, j}}{p_{1}}\left[1-\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \tag{B.19}
\end{align*}
$$

The terms in Eq. (3.37) can now be rewritten as

$$
\begin{align*}
& {\left[1+\gamma M_{f}^{2}-(\gamma+1) M_{f}^{2} \frac{\tilde{u}_{2}}{\tilde{u}_{1}}\right] \frac{\tilde{u}_{2}}{\tilde{u}_{1}} \equiv \frac{\gamma+1}{2 \gamma} \frac{(\Delta \mathrm{p})_{c r, j}}{P_{1}}\left[1+\frac{(\Delta \mathrm{p})_{2}}{(\Delta \mathrm{p})_{c r, j}}\right] \text {, }} \\
& -(\gamma+1) M_{f}^{2} \frac{\tilde{u}}{\hat{u}_{1}}\left\{1-\frac{\tilde{u}_{2}}{\tilde{u}_{1}}\right) \equiv-\frac{\gamma+1}{\gamma} \frac{(\Delta \mathrm{p})_{2}}{\mathrm{p}_{1}}, \tag{B.21}\\
& \text { (B. 20) } \\
& \text { and } 1 \quad{ }_{1} \\
& \frac{M_{f}^{2}\left[(\gamma+1)+2(\gamma-1) c_{j}\right]}{2 \tilde{u}_{1}^{\top} j} \times\left(1-\frac{\tilde{u}_{2}}{\tilde{u}_{1}}\right) \cong \frac{(\gamma+1) x}{2 \gamma{ }_{1}{ }^{\top} j} \frac{(\Delta p)_{2}}{P_{1}} \tag{B.22}
\end{align*}
$$

Thus, Eq. (3.37) can be rewritten as

$$
\begin{align*}
& \frac{(\gamma+1) x}{2 \gamma a_{1}{ }^{\tau} j} \frac{(\Delta p)_{2}}{p_{1}}=-\frac{\gamma+1}{\gamma} \frac{(\Delta p)_{2}}{P_{1}} \\
& +\frac{\gamma+1}{2 \gamma} \frac{(\Delta p)_{c r, j}}{p_{1}}\left[1-\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \ln \left[\frac{1}{\gamma M_{f}^{2}} \frac{(\Delta p)_{2}}{p_{1}} \frac{(\Delta p)}{(\Delta p)_{2}}\right] \\
& -\frac{\gamma+1}{2 \gamma} \frac{(\Delta p)_{c r, j}}{P_{1}}\left[1+\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \ln \left[\frac{1}{-\gamma M_{f}^{2}} \frac{(\Delta p)_{2}}{p_{1}}\right. \\
& \left.\quad \times\left\{1-\frac{(\Delta p)}{(\Delta p)_{2}}\right\}\right] \tag{B.23}
\end{align*}
$$

Define

$$
\begin{equation*}
z=-\frac{2 \gamma}{\gamma+1} \frac{x}{a_{1}{ }^{\top} j} \frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}} \tag{3.39}
\end{equation*}
$$

$z_{0}=\frac{2 \gamma}{\gamma+1} \frac{2(\Delta p)_{2}}{(\Delta p)_{c r, j}}\left[1+\ln \left\{\frac{1}{\gamma M_{f}^{2}} \frac{(\Delta p)_{2}}{p_{1}}\right\}\right]=$ const
then obtain

$$
\begin{gather*}
\frac{\gamma+1}{2 \gamma}\left(z-2_{0}\right)=\left[1+\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \ln \left[1-\frac{\left.(\Delta p)^{(\Delta p)_{2}}\right]}{}\right] \\
-\left[1-\frac{(\Delta p)_{2}}{(\Delta p)_{c r, j}}\right] \ln \left[\frac{(\Delta p)}{(\Delta p)_{2}}\right] \tag{3.34}
\end{gather*}
$$

B. 6 Derivation of Eq. (3.41): Frozen-Shock Overpressure
Cenerally, the frozen overpressure can be expressed as

$$
\begin{equation*}
\frac{(\Delta \mathrm{p})_{\mathrm{f}}}{\mathrm{p}_{1}}=\frac{2 \gamma}{\gamma+1}\left(\mathrm{M}_{\mathrm{f}}^{2}-1\right) \tag{B.25}
\end{equation*}
$$

Substituting Eq. (B.19) into Eq. (B.25), obtain

$$
\frac{(\Delta \mathrm{p})_{f}}{\mathrm{p}_{1}}=\frac{(\Delta \mathrm{p})_{2}}{\mathrm{p}_{1}}-\frac{(\Delta \mathrm{p})_{\mathrm{cr}, j}}{\mathrm{p}_{1}}
$$

$$
\begin{equation*}
\frac{(\Delta \mathrm{p})_{f}}{(\Delta \mathrm{p})_{2}}=1-\frac{(\Delta \mathrm{p})_{c r, j}}{(\Delta \mathrm{p})_{2}} \tag{3.41}
\end{equation*}
$$

APPENDIX C

PROGRAM LISTING FOR RANDOM-CHOICE METHOD

The program for solving Eq. (4.1) using the RCM with an operator-splitting technique is given in this section. The normalized variables used for computation are:

$$
\begin{gathered}
E^{\prime}=E /\left(\rho_{1} R T_{1}\right), \quad v^{\prime}=v / \overline{R T}_{1}, \quad p^{\prime}=p / p_{1}, \\
\rho^{\prime}=\rho / \rho_{1}, \quad T^{\prime}=T / T_{1}, \quad \sigma_{j}^{\prime}=\sigma_{j} /\left(R T_{1}\right) \\
r^{\prime}=r / L_{0}, \quad t^{\prime}=a_{1} t /\left(\sqrt{\gamma} L_{0}\right)
\end{gathered}
$$

where L_{0} is a reference length, taken as $L_{0}=5 r_{0}$, in most calculations.

The time step is determined from the maximum value for the local stability criterion (CFL condition) at each time step:

$$
\Delta t^{\prime}=\max \left[\Delta r^{\prime} /\left\{\left|v^{\prime}\right|+\sqrt{\gamma p^{\prime} / \sigma^{\prime}}\right\}\right]
$$

The program listing given below was used for the computations of real-viscous spherical waves.

```
c * SPHEKICAL WAVE *
c # REAL, VISCOUS *
    IMPLICIT REAL*E (A-H,P-Z)
    DIMENSION KT1(10),PT1(10),TTI(10),TV1(10)
    REAL XARRAY(416),YARGAY(416)
    COMMON/IK/KRI,KL,ISTP,KR,NPI,ITT,N
    COMMON//OT,PL,UL,PL,R,U,P,E,RR,UR,PR,XI,Y,GAM,SOL,SOS,SOR
    COMMON/OUT/TIME,DX,RHO(416),PFE(416),UX(416),ENG(416),XR(416)
    1,PRFAC
    COMMON/RAD/ETA,REO,PRAN,TA(416),U2(416)
    COMMON/RELAX/SO(416),UZ(416),E1,TH1,TAU
    COMMON/TSU/ISK,ISS,ILM
    INTEGER TSTP
c
C cata reading
    READ(5,81) NPRINS
    READ(5,91) ISTART
    READ(5,81) NQQT
    READ(5,81) 10
    READ(5,81) NSTOP
    READ(5,81) JCT
    READ(5,81) JD
    READ(5,01) N
    READ(5,81) NHALF
    READ(5,8!) NOO
    READ(5,81) IXYP
    READ(5,81) INCR
    READ(5,81) ISK
    READ(5,a1) ISS
    READ(5,32) TMAX
    READ(5,82) TMIN
    READ(5,82) PMAX
    READ(5,E2) PMIN
    REAC(5,82) XP1
    READ(5,82) XP2
    READ(5,E2) XFAC
    READ:5,52) RMAX
    READ(5,82) PRFAC
    READ(5,82) ESS
    REAO(5,82) ETA
    READ(5,82) WL
    READ(5,A2) PL
    READ(5,8?) RL
    READ(5,82) TO
    READ(5,82) RH
    FEAD(5,82) COEP
    REAC(5,82) COET
    81 FORMAT(:10)
    82 FORMAT(F15.7)
    CDEFFICIENT OF XYPLOT
    YPI=-PiAIN
    YP2=(PMAX+PMIN)/12.0
    YP3=-TMIN
    YP4=(TMAX+TMIN)/12.0
    JCTM=JCT-JD
    LMT=1
    NP1=N+1
    NP2=N+15
    NPM=N-1
    NPX=N-5
```


PROGRAM OF MacCORMACK'S FINITE-DIFFERENCE METHOD

In Section 4.3.2, the RCM solutions are compared with MacCormack's solution for a perfectviscous plane wave. In this section, the scheme and the program of the MacCormack method are given for the perfect-viscous plane wave.

The basic equation (4.1) can be written for perfect-viscous plane waves as

$$
\begin{gathered}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}-\frac{\partial^{2} C}{\partial x^{2}}=0 \\
U=\left[\begin{array}{c}
\rho \\
\rho v \\
E
\end{array}\right], \quad F=\left[\begin{array}{c}
\rho v \\
\rho v^{2}+p \\
(E+p) v
\end{array}\right], \quad C=\left[\begin{array}{c}
0 \\
2 \mu v \\
\lambda T+\mu v^{2}
\end{array}\right] \\
E=\rho\left(e+\frac{1}{2} v^{2}\right), \quad e=\frac{5}{2} R T, \quad p=\rho R T
\end{gathered}
$$

The corresponding finite difference scheme of the MacCormack method are the predictor step:

$$
\bar{U}_{i}^{n+1}=\bar{u}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1}^{n}-F_{i}^{n}\right)+\frac{\Delta t}{(\Delta x)^{2}}\left(C_{i+1}^{n}-2 C_{i}^{n}+C_{i-1}^{n}\right)
$$

and the corrector step

$$
\begin{aligned}
u_{i}^{n+1} & =\frac{1}{2}\left(\bar{u}_{i}^{n+1}+u_{i}^{n}\right)-\frac{\Delta t}{2 \Delta x}\left(\bar{F}_{i}^{n+1}-\bar{F}_{i-1}^{n+1}\right) \\
& +\frac{\Delta t}{(\Delta x)^{2}}\left(\overline{\mathrm{C}}_{i+1}^{n+1}-2 \bar{C}_{i}^{n+1}+\overline{\mathrm{C}}_{i-1}^{n+1}\right)
\end{aligned}
$$

The normalized variables used for computation are

$$
\begin{aligned}
& E^{\prime}=E /\left(\rho_{1} \gamma R T_{1}\right), \quad v^{\prime}=v / \sqrt{\left(\gamma R T_{1}\right)}, \quad p^{\prime}=p / p_{1} \\
& \rho=\rho / \rho_{1}, \quad T^{\prime}=T / T_{1}, \quad x^{\prime}=x / L_{0}, \quad t^{\prime}=a_{1} t / L_{0}
\end{aligned}
$$

where L_{0} is the reference length, and put as $L_{0}=5 x_{0}$.
The time step is determined from 90% of the maximum value for the local stability criterion (CFL condition) at each time step:

※ USERID = TN30000 *

* PROCEDIJRE $=$ LOGON2

TSLOG STARTED TIME=10:57:0R DATE=8 $1-12-08$ *

READY
E MAC FT(FI)
E
LIST
00010 C FROGRAM LIST OF MACCORMACK METHOC
00020 00030 00040 C : PERFECT, VISCOUS * 00050 C MACCOFMACK \# 00060 00070 00080 00090 00100
00110 C
0012 C
00130
00140 00150 00150 00170 00130 colvo 00200 00210 00220 00230 00240 00250 00260 C 00270 002.0 00290 00300 00310 00320 $0 C 330$ 00340 00350 00300 00370 00380 00390 00400 00410 00420 C
00430 00440 00450 00460 00470 00480 00490 00500 00510 00520 00530 00540 00550

```
00560 C
00570
00540
00540
00000
00510
00620
00030
00640
00050
conco
00670
005mic
00090
00700
00710
00720
00730
00740
00750
00760
0.770
007:u
00790
008:0
0.0<10
00H20
00+30
00ल40
00<50
00R60
00870 C
005:0
00n90
00900
00910
00920
COG30
00940
00950
00500
00970
00980
00940
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01100
01170
01180
01190
01200
01210
x(1) 190 J=1,KJl
190 x(J+1)=x(J)+DX
    * INITIAL CONOITIONS *
    [U 20: J=1,I0
    Ul(J,1)=04/T4
    U1(J,2)=0.0
    v2(J)=0.0
    vC(J)=0.0
    TC(J)=T4
    Ul(J,3)=G1*F4
206 PA(J)=P4
    101=10+1
    0j 207 J=101,kJ2
    Ll(J,1)=1.0
    U1(J,2)=0.0
    v2(J)=0.0
    VC(J)=0.0
    TC(J)=1.0
    U1(J,3)=61
2@7 PA(J)=1.0
    iC 207! j=kJ2,kJJ
2071)PA(J)=1.0
    [0 20& I=1,3
208 U1(IN,1)=0.5*(Ul(In+1,I)+U1(ID-1,I))
    PA(I\Gamma)=0.53(PA(|D)+1)+PA(In-1))
    TC(I7)=0.5*(TC(111+1)+TC(10-1))
    Y=0.0
    MNM=0100
    NCA=1CO
    * FLOT 1* ---FOR SLO.v PLOTTE&
    CALL MEVICE(PXYPLST 1,0,0,0,0)
    CALL PalMO(r,0,200:80,200%F0)
    CALL VSINI(0.0,0.0,20.0,26.0)
    [J 250 I=1,kJ
    XARRAY(I)=XFAC%(FLTAT(I-1)/FLOAT(KJI)+0.5KDX)
250 YAKRAY(I)=PA(I+1)-1.0
    YAFRAY(1)=-0.7
    CALL PL!T(4.0,4.0.-3)
    CALL SCALE(XARRAY,12.5,KJ,1)
    CALL SCALE(YAFRAY,15.5,KJ,1)
    CALL AXIS(0.0,0.0,6HX-AXIS,-6,12.5,0.0,
    * XARRAY(KJ1),XARRAY(KJ2))
        CALL AXIS(O.0,0.0,12HOVERPRESSリRE,12,15.5,90.0,
    * Y{RRAY(KJ1),YARRAY(KJ2))
        YAKFAY(1)=1.0
    CALL LIT.E(XARRAY,YARRAY,KJ,1,C,0)
    CALL SYMRCL(1.2,17.0,0.3,37H%ACCORMACK NFTHOD (NR=160,TX=0.9*(FL),
    * 0.0,37)
            CALL SYNBOL(1.2,16.0,0.3,33HPERFECT,VISCOUS(D41=2.00,T41=1.0),
        *0.0.33)
            : NACCOFMACK H
    DO 209 J=1,KJ2
    [i] 209 l=1.3
209 U2(J.1)=U1(J.I)
    KS1= KS0
    KLI=KLO
    [i] 360 A:=1,NMAX
    CFL1=1.0
    OO 3\capO J=KLI,KS1
    (FL2=1.C/(OSQRT(V2(J))+DSORT(DABS(PA(J)/U1(J,1))))
    IF(CFL1.LT.CFL2) GO TO 300
    CFL1=CFL2
    JCFL=J
300 CHMII.UE
```

```
    UTX=CFLIHCFAC
    DT=DTX*DX
    Cw=2.040T
    03=0.5%0TX
    C4=DTX/OX/REO
    D5=D4/GFPR
    ['6=0.5%04
    [7=0.5*05
    Y=Y+OT
    CO 302 J=KLl,K.Sl
    DOC=0Tx
    U2(J,1)=U1(J,1)-DTX*U1(J+1,2)+חกпкU1(J,2)
```



```
    1 (PA(J+1)-PA(J))/GF
    * +C4*(VC(J+1)-2.0:*VC(J)+VC(J-1))
        U2(J,3)=U1(J,3)-DTX*U1(J+1,2)*(U1(J+1,3)+PA(J+1)/GF)/(1(J+1,1)
    1 +DDD*(!l(J,2)#(Ul(J,3)+PA(J)/GF)/U1(J,1)
    # + ! 5*(TC(J+1)-2.0*TC(J)+TC(J-1))+D4*(V?(J+1)-2.0*V2(J)+V2(J-1))
302 CUNTINUE
    00 303 J=KL1,KS1
    VA=U2(J,2)/U2(J,1)
    IF(OABS(VB).LT.(0.1O-0!)) GO TO 3010
    v2(J)=VEu:2
    G0 Tn 3011
3010 V2(J)=0.0
3011 PA(J)=G2*(U2(J,3)-0.5*V2(J)*U2(J,1))
    vC(J)=2.0kVg
    TC(J)=PA(J)/UZ(J,1)
303 CUNTIVUE
    0) 304 1=1,3
304 U2(1,1)=U2(2,1)
    U2(1,2)=-U2(1,2)
    v2(1)=v2(2)
    PA(1)=PA(2)
    VC(1)=VC(2)
    TC(1)=TC(2)
    DO 306 J=KLI,KSI
    000=03
    U1(J,1)=0.5*(U1(J,1)+U2(J,1))-00C*(U2(J,2)+1)3*U2(J-1,2)
    Ul(J,?)=0.5*(U1(J,?)+U2(J,2))-\capDD*U2(J,1)*V2(J)+D3*U2(J-1,1)
    1: :V2(J-1)-03%(PA(J)-PA(J-1))/GF
    # +r6#(VC(J+1)-2.0#VC(J)+VC(J-1))
    U1(J,3)=0.5#(U1(J,3)+112(J,3))-DDDKU2(J,2)*(U2(J,3)+PA(J)/GF)/U2(J
    1 ,1)+ח3*U2(J-1,2)*(UP(J-1,3)+PA(J-1)/GF)/\2(J-1,1)
    # + ! 7#(TC(J+1)-2. ##TC(J)+TC(J-1))+DG#(V2(J+1)-2.0*V2(J)+V2(J-1))
306 CONTINUE
    OD 307 J=KL1,KS1
    VB=Ul(J,2)/Ul(J,1)
    IF(DABS(VB).LT.(0.10-08)) GO TO 347
    V2(J)=VEk*2
    GJ Tr 348
347 V2(J)=0.0
348PA(J)=c2##(J1(J,3)-0.5*V2(J)*U1(J,1))
    VC(J)=2.0*VE
    TC(J)=PA(J)/U1(J,1)
307 CONTINUE
    CO 314 I=1,3
314 U1(1,1)=U1(2,1)
    U1(1,2)=-U1(1,2)
    v2(1)=v(2)
    PA(1)=PA(2)
    VC(1)=VC(2)
    TC(1)=TC(2)
    DO 3145 l=KLIOKS1
    J=KSI-I+KLI
    PAA=PA(J)-1.0000
```

```
018:0
01890
01900
01910
01920
01930
01940
01950
0 1 9 0 0
01970
019010
01990
02000
02010
02020
02030
02040
02050
02050
02070
020:0
02090
02100
02110
02120
02130
```



```
02150 l FF.4,14,FN.4,14,FH.4)
02100 C #FL`T \hat{z}
02170 FSA=PA(P.PX)-1.0
021ES IF(PCA.(BT.ESS)
02190 [.] 2&.0 l=1,kJ
02200 YARRAY(1)=PA(1+1)-1.7
02210 2nU C.j\tlavt
02220 (ALL LIAE(XARFAY,YAK,RAY,KJ,I,O,J)
```



```
02240 N.IN=TNN+NVO
02250 \thereforeCA = CA +1:C:'SCO
62260 lNC=1NC+1
02270 360 CNATIA,UE
02280 909 CALL VSTEFM(O,O)
02290 CALL SFSLTM
02300 C #EN:N:
02310 v.RITF(6,611)
```



```
02330 STOP
02340 E:SO
Emif: OF ijata
```

INPUT
E
ENO S
SAVEL TO CATA SET (.TV3COOO.YAC.FRRT')
fFADY
TSLUG EAC

* DRCCEDURE $=$ LIGOH. 2

TSLOG ENIEU TIME=10:58:30 TATE=82-12-08

APPENDIX E

COMPARISON BETWEEN NLAR-FIELD SOLUTIONS
OF THE EXPLOSION OF A PRESSURIZED AIR SPHERE
USING LAX, MacCORMACK AND RANDOM-CHOICE METHODS (RCM)
FOR A PERFECT-INVISCID FLOW

In the initial stage of the present study, several numerical methods were tried to solve the problem of the explosion of a pressurized air sphere. Some of the results are presented here to show the superiority of the RCM over other methods for analysing shock-transitions of spherical i-waves.

The near-field solutions using lax, MacCormack and RCM for the same case as $\left.A 1\left(P_{4}\right)=2.0, T_{41}=1.0\right)$ are shown in Figs. E.1, 1..2 and E .3 , respectively. In Figs. E. 1 and E.2 (Lax and Maccormack methods), the time steps were selected to be 80_{0}° of the CFI. condition to avoid undesirable oscillations of numerical values. As seen in figs. F.l(a) and
E.2(a), the Lax and MacCormack solutions give smoothed shock-transitions due to the effect of artificial viscosity in a rough mesh size of $\therefore r^{*}=$ 1/80. By using the finer mesh sizes $\mid \therefore r^{*}=1 / 520$, Figs. E.l(b) and l:.2(b)], this smoothing is improved, and the Lax method gives a better result. However, the smoothing at the front shock still remains. The RCM solutions [Figs. I..2(a) and (b)] show discont inuous shock fronts irrespective of mesh sizes $\left(\therefore r^{*}=1 / 40,1 / 80\right)$, though some randomnesses appear in the expansion part of a pressure profile. In our analysis of shock transition, it is necessary to clarify the effects of viscosity and vibrational nonequilibrium on shock thickness without the effect of artificial viscosity. Consequently, we adopted the RCM.

FIG. E.l(a) NEAR-FIELD SOLUTION OF EXPLOSION OF A PRESSURIZED AIR SPHERE USING LAX METHOD ir (iERFICT-INVISCID FLOW (CASE Al). MESH SIZI: $\therefore \times^{*}=1 / 80$.

FIG. F.l(b) NFAR-FIELD SOLUTION OF EAPUSEAON OF A PRISSSURIZED AIR SPHERE USING LAX MITY OR A PERFECT-INVISCII) FLOW (CASI: Al). MESH SIz!: Ar $=1 / 320$.

FIG. I. $2(\mathrm{a})$ NEAR-FIELD SOLUTION OF EXPLOSION OF A PRESSURIZEI AIP SPHIRRE USING MacCORMACK METHON FOR A PERFECTINVISCID FlOW (CASE Al). MESH SIZE $\Lambda r^{*}=1 / 80$.

 AIR SPMERE USIN; RAVDOM-ChOICE MITHOD DOR A

In Sections 4.4.5 and 4.4.6, the bulk viscosity concept is introduced to evaluate the vibrational relaxation for oxygen instead of solving the relaxation equation for oxygen. The basic equations are shown in some detail as follows:

$$
\begin{align*}
& \frac{U}{\partial \tau}+\frac{i F}{\partial r}\left(\frac{a^{2}}{i r^{2}}+\frac{j}{r} \frac{\vdots}{\partial r}\right) C \\
& +j\left(H_{I}+H_{v}\right)-H_{R}=0 \tag{F,1}\\
& U=\left|\begin{array}{c}
\cdot \\
v \\
E \\
v
\end{array}\right|, \quad F=\left|\begin{array}{c}
V v \\
(E+p) v \\
v v^{2}+p \\
N
\end{array}\right| \tag{1.1}
\end{align*}
$$

$$
\begin{aligned}
& H_{v}=\frac{1}{r^{2}}: \begin{array}{c:c:c}
0 & e^{v} \\
0 & 0 & 0 \\
0 & H_{R}= & 0 \\
0
\end{array} \\
& p=z R T, \quad \mathrm{E}=\therefore\left[\mathrm{e}+\frac{1}{2} \mathrm{v}^{2}\right] \\
& e=\frac{5}{2} R T+(\because) e+\therefore d
\end{aligned}
$$

(F.2) (F.2).

The bulk viscosity $\left(w_{0}\right)_{0}$ is evaluated from liy. (3.25):

$$
\begin{gathered}
\left(r_{0}\right)_{0}=\cdot\left(a_{f^{2}}^{-}-a^{2}\right) \vdots_{0} \\
=\frac{-}{1} a_{f}\left(1-e_{e}\right):_{0}
\end{gathered}
$$

where

$$
\mathrm{e}_{\mathrm{e}}=\frac{\frac{7}{2}+\mathrm{C}_{0}}{\frac{5}{2}+\mathrm{C}_{0}}, \quad \mathrm{C}_{0}=0.209-\frac{0}{-T_{1}} \exp -\frac{0}{\mathrm{~T}_{1}}
$$

The operator-splitting technique was applied to lq. (F.l) as well as liq. (4.l). The effect of vibrational relaxation for oxygen was taken into account in the step of viscous correction [Step 3 ; fq. (4.11)] of the operator splitting through Eqs. (F.5)-(F.5). More precisely, in the first step, the RCM solution should be obtained by solving the Riemann problem for oxygen in vibrational equilibrium, since the whole flow field may be considered for oxygen as in quasi-equilibrium. However, in the present report, the effects of oxygen vibrational excitation is taken into account only through the bulk viscosity, since its contribution to the internal energy specific heats of the air molecules may be considered as very small as long as it is nearly in equilibrium at room temperature. Thus, the RCM solutions were obtained by using the invis-cid-frozen program, excluding the term (o)e in Eq.
instead of lys. (4.1) and (4.2), where ee is an effectave viscosity including the bulk viscosity (id. $)_{0}$ for oxygen, defined by

$$
\begin{equation*}
i_{e}=\ldots+\left(i_{0}\right)_{0} \tag{1..3}
\end{equation*}
$$

UTIAS Neport to 253	UTlas Report to 253
institute for terospace studies, University of toronto inlas. 	Instatute for Aerospace studies. Mnatersity of foront: 'il:
random-chote solutins ror mean shierical. shock-wall traisitions of y-havis in air aith nibational fuctitiles	h1th Librational ! wital!a
tw	
ans : Ftects of whosit, heat conduetion and wibrational	a
derical method	Spherical stusk masen 4 txitoding
In order to clarity the	In
t-waves, which were generared by using sparks and explod:ng wires as	cons equans wery sowed numericaty ancidink a trat nai-relanation
	protas of the thock trnstions were ohtaned tow,
	distane from the source the calculated rise :laes are aiso stow to simiate beth spark ard
explothr-wire data $: t$ was tound that, 1 l additien to :he ubrationat-reiaxation time of exyger.	
30:h the duration and atenuation rate of a spherival ywave are 1 mportant factors controlang :	
	rice lime The effects of the duration and at
flare waves and spherica: hwaves lt is also shown nat the duration and atternation rate ef spheriali x-wave ate affected by viscasity and vibra:ienal nonequitibrium, so that a: can de:ate	
frem the results of ciassicai, itnear acoustic theary for very weak spherical waves.	
Available copies of this report are limited. Return this card to UTIAS, if you require a copy,	Available copies of this report are limited. Return this card to UTIAS, if you require a copy.
m1ts kepor: in ${ }^{\text {as }}$	
nim: vibrallima! : citition	
	honat. 月, has, I I.
	119
In order to ciarify the effects of vibrational exci:ation on shock-wave eranstions of weak sphercas	
N-waves, which were generated by using smaris and exploding wites as sources, the =cmpessibic tivier-	
the effects of afthe: 	
distarie frot the surce. Tre catculated rase times are aiso shom to samuate both spatk and	ct: spa
	rircti:ng
both the duration and attenuation rate of a spherizai v-waye ate imprtant faviore cuntriaitz a,	c:tis. V-wive of its rise
in more detail pertaning to Lighthil's anaiytical solutoons and the RCM solutions for nonstaia-ary	
pisie maves and spherical N-waves. It is also show that the duration and atenuarion rate of 5	
sphersial S -wave are affected by viscosity and vibrational nonequitiorism, so that it can deciate frome	
from the results of classical, linear acoustic theory for very weak spherical waves	
Available copies of this report are limited. Return this card to UTIAS, if you require a copy.	Available copies of this report are limited. Return this card to UTIAS, if you require a copy.

