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ABSTRACT

A general method is presented for constructing a location estimator which

is asymptotically efficient at any two different location-scale families of

symmetric distributions as well as at an appropriately defined class of

distributions lying in between. The method works by embedding the two

families in a comprehensive parametric model and identifying the estimator

* with the MLE. The case when the families are Normal and Double exponential is

' examined in detail.
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SIGNIFICANCZ AND EXPLANATION

This paper considers the following probl ' in the estimation of the

center of a symetric probability distribution. Suppose the statistician has

a model F which he hopes is a good approximation to the true underlying

distribution H generating his data. Further suppose that he has reason to

believe that any deviation of H from F will probably be in the direction

of another model G. A general procedure is presented for constructing an

estimator which is asymptotically efficient at both F and G as well as at

a suitably defined family of distributions lying in between. The case when

F is Normal and G Double exponential is studied in detail via both

asymptotic theory and Monte Carlo simulation (for finite sample sizes). The

estimator is shown to compare favorably against nine other well known

competitors. Computer programs are included.
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DIRECTIONALLY EFFICIENT ROBUST ESTIMATORS
OF LOCATION VIA EXPONENTIAL EMBEDDING

Wei-Yin Loh

1. Introduction p

In robust estimation of the center of a symmetric distribution, we

usually assume that we have a parametric model F (e.g. Normal location-scale

family) which we hope is a good approximation to the true underlying

distribution, but we do not assume it to be exactly right. A robust estimator

is then desired, i.e. one which is efficient, or nearly efficient, at F and

has reasonably good efficiency in a neighborhood of F. In the case that F

is Normal, the neighborhood is cruite often taken to consist of all symmetric

distributions with tails ranging in thickness from the Normal to the Cauchy.

Typically no particular distribution in the neighborhood (other than F) is

preferred over the others, i.e. we do not require the estimator to be more

efficient at some distributions than at others.

In this paper, the case is considered where the statistician has reason

to believe that, if the true distribution were to deviate from F, it would

probably (but not definitely) be towards a heavier-tailed model G. In such

circumstances it would be desirable for the estimator to possess high, if not

optimal, efficiency at G as well. Gastwirth (1966) and Crow and Siddiqui

(1967) have studied this problem when G consists of one or more parametric

families. Roth these papers suppose it is known that the population sampled

belongs to a set F of parametric families, like {Normal, nouble

*
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exponential) or (Normal, Double exponential, Cauchy). They then search for an

estimator, within various classes (like R- and L- estimators), which has

maximin efficiency over F. Since maximin estimators emphasize safety over

efficiency however, they may be efficient (or even asymptotically efficient)

nowhere in F.

If asymptotic efficiency were the only criterion, of course solutions to

our problem are available from the class of fully adaptive estimators (see

e.g. Andrews et al. (1972), Sacks (1975), Stone (1975) and Beran (1978)),

these being constructed to be asymptotically efficient at all sufficiently

smooth distributions. But since these estimators make no use of our knowledge

of F and G, it seems plausible that a semi-adaptive procedure which uses

this information explicitly may perform better (at F and G) for small

samples. Examples of such procedures have been suggested by Hogg and

others. Hogg (1967) proposes an estimator which chooses among the sample

mean, median, 25% trimmed mean, and mid-range according to the sample

kurtosis. This estimator is asymptotically efficient at the Normal, Double

exponential and uniform distributions, and empirical evidence (see e.g.

Andrews et al. (1972) and Wegman and Carroll (1977)) suggests that its small

sample performance at these distributions is better than many of the blatantly

adaptive procedures. Further it is robust since it yields the sample median

or trimmed mean whenever the sample kurtosis is large. Another procedure that

applies maximum likelihood or Bayes rule to first select a family of

distributions from within a predetermined set and then uses the optimal

estimator for that family is considered in Hogg et al. (1972).

In this paper we introduce a general method for constructing a semi-

adaptive estimator which is asymptotically efficient at any two parametric

families F and G as well as at a family of distributions lying between

-2-
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them. The definition of this family and an explanation for its relevance are

given in Section 2. Unlike the Hogg-type procedures which are based on

trimmed means, our estimator is more like an K-estimator since it is the

maximum likelihood estimator (MLE) corresponding to a genuine likelihood

function. If the tails of F and G span a wide enough range, we expect

this estimator to he robust. The particular example when F is Normal and

G Double exponential is studied in detail in Sections 3-5. Section 3 derives

the likelihood equations, section 4 deals with the asymptotic properties of

the estimator, and section 5 contains empirical evidence on its small sample

performance compared to some well-known adaptive and nonadaptive competitors.

-I3
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2. Some embedding methods

Let F - {a f(o (x-e)); -a < e < <, a > 0} and G = (t-g(T-(x-8)),

-a< < 4, T > 0) be two location-scale families of densities on the real

line. We assume that f(x) and g(x) are symmetric about 0 and want an

estimator 0 of e that is asymptotically efficient at F and G as well

as those densities in between. There appears to be no universal agreement on

what is meant by the set of distributions "between" two families. We will

define it in the following way. Let H be a comprehensive parametric model

parametrized by an additional parameter e (XI,A 2  such that A X

corresponds to F and A = A2 corresponds to G. Then all distributions

in H that are not in F or G will be considered as being in-between

and G. In order for the estimation problem to be well-defined, the densities

in H will have to be symmetric. Once a suitable embedding H is found, we

will define 8 as the MLE over H of the center of symmetry 6.

There are at least three approaches to constructing such an embedding.

The linear embedding consists of densities defined by1 - 1 -1 -

h(x;e,o,r,X) a (1-A)f(- (x-8)} + T Xg{T (x-6)1;
(2.1)

-< e < -t O,r > 0; 0 4 X

This construction has the advantage of being simple and allowing a physical

interpretation for A as a prior probability. Unfortunately, since 0 and

T are unknown parameters, the likelihood function is unbounded at each data

point xl,...,xn for n ) 2. Hence MLEs do not exist. This difficulty can

be avoided by including the restriction that o/T = constant. But besides

drastically diminishing the size of the embedding, this seems to make the

choice of the constant artificially important.

Another approach is to have the members of H be "F in the middle

and G in the tails", i.e. for k > 0 define

-4-



hx8 tk {a fa (x-6)) , Ix-0J < k~h(x; 8,OT~k) -

-1 -1 .
T g{T (x-8 )} , otherwise

The M-estimator of Huber (1964) used this construction with F Normal and G

Double exponential, and the additional requirement that h be continuously

differentiable in x. The problem of estimating all the parameters

(O,a,T,k) via maximum likelihood does not appear to have been attempted,

although Bell (1980) has investigated the question of adaptively choosing k

from the data using the criterion of minimum estimated asymptotic variance.

A third construction is the exponential embedding where

1-X~ -1 X -I
h(x; eO,T,A) = c(a,T,A)f [a (x-e)lg {T (x-8)) ;

(2.2)

-m < 0 w; ,T > O; 0 4 X 4 1 ;

and c(O,T,X) is a scaling factor. Cox (1961), Atkinson (1970), Brown (1971)

and Weerahandi and Zidek (1978) have used this in various contexts. Recently,

using the Kullback-Leibler information number as a measure of statistical

distance, Loh (1983) showed that as A ranges from 0 to 1, the distri-

butions represented in (2.2) in fact constitute the shortest path between f

and g in distribution-space. This result offers a justification for claim-

ing that (2.2) yields densities in between F and G.

We adopt the method of exponential embedding in this paper and estimate

8 with its MLE 8, regarding 0, T and X as nuisance parameters. (The

fact that the nuisance parameters may not all be identifiable is not worrisome

because we are only interested in estimel-ng 0.) It is clear that e is

location and scale equivariant, i.e. if we transform the data vector x to

ax + b for some constants a and b, then

e(ax+b) = ae(x) + b .

If e and 8 are the MLFs for e under the submodels F and G,

G

the following theorem which will be used later gives conditions for e to lie

between e and .

F G

-5-
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Theorem 2.1. Suppose that for each (0,T) the likelihood functions (of 8)

under F and G are unimodal. Then the MLE 8 for (2.2), when 0, T and

are treated as nuisance parameters, always lies between 8F and 8G j
Proof. This follows from the assumption of unimodality of the likelihoods and

the fact that the values of 8 and 8 are unchanged whether a and T
F G

are known or not.

When F is Normal and G Double exponential, the MLEs are the sample

mean X and median X respectively. These two estimators are at the

extremes of the family of symmetrically trimmed means, and the a-trimmed mean

X is often thought of as a compromise if the true underlying distribution isU

believed to have tails between those of the Normal and Double exponential. It

is interesting to note that X does not share the property of 8 in Theorem
a

2.1 in this case.

Since 8 is an MLE, classical theory suggests that under regularity

conditions, it is asymptotically efficient when 0 < A < 1. When A = 0 or

1, proofs of asymptotic normality are more difficult since the true parameter

vector is now a boundary point. There appears to be no general theorems for

such situations. In specific cases, a proof will probably depend on a

combination of the results of Huber (1967) and ad hoc arguments. Robustness

of 8 is likely to depend on the robustness of 0 if G is heavier-tailed
G

than F. Intuitively this is because the estimated density (2.2) will tend to

be close to some member in G if the true distribution is heavier-tailed

than G. we illustrate these points with an example in the following

sections.



3. Normal-Double exponential example: likelihood equations

We study here the case when F is Normal and G Double exponential.

Equation (2.2) becomes

2()2
(3.1) h(xi O,s,t) = c(s,t)exp{- a _- - tlx-Oj}

1

where c(s,t) =  j s#(t/s)/#(-t/s) if s,t > 0

s/(2w)1/2 if t = 0, s > 0

t/2 if s = 0, t > 0

and *( ), *( ) are the standard Normal density and cumulative distribution

functions. The scale factor c(s,t) is defined on V =

[0,-) x [0,-) N{((0,0)1. It can be checked (using e.g. (3.6) below) that

c(s,t) is continuous on D. Clearly (3.1) yields F when t 0 and G

when s 0.

Let 0, s, t be the MLEs for 0, s, t. The following theorem whose

proof is sketched in the Appendix shows that the three-parameter minimization

problem of determining the MLEs may be reduced to one involving only one

parameter in [0,').

Theorem 3.1. Let (Xi,..,xn) be an ordered sample of size n and x,

x - (X[(n+), 2] + X(n/ 2 +1 ]) be the sample mean and median respectively (here

[ ] is the greatest integer function). Suppose that x 4 x. if n is even

and xn/2 ( x, then 0 x. Otherwise the minimization of the likelihood

corresponding to (3.1) can be reduced to the following one-dimensional

problem: Let v - t/s, w - t/s2 and let k0  be the largest integer k such

that xk C x. Define -o be e set of integers {k ,...,[(n-1)/2]1 and

divide the interval [0,mp into the subintervals f[ [1kP2k| ,q 1q 2k;

Lo k e NJ where Plk0 0, (n-)/2 and for k k +,...,[(n-3)/2,

-7-
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P2k n(n-2k)- ( -x){(r-2k) (x -x)Elx -xXk+- k+- i -k+1

-1 (2 -1/2
+ n EN2Cjx 1 )

(3.2) q 2k '

q 2k = n(n-2k-2) (x k+-x){(n-2k-2) (xk+l-Xl xi-Xk+l I

+ n- IZ(xi-xk+l )2}1/2 ,

PI,k+ =2k

For each k e N, define for v e (0,-) the functionr 2  1 -- w 2

(3.3) fklv) log(w/v) + log 0(-v) + 2 (2nw2 ) 1 (x -- )

2
+ I (x -e+w) ,if v e [plk.q2k

k+I

0 , otherwise

where

(i) for v e tPlkP2k]'

k kc-1 2 2 )1 (xx _l2 ~ix2}1/2
w = n v 7 (x-x.) + {n-2v4  (-x 2 + n'VE 2 )

1 1

(3.4) 8 = x + w(n-2k)/n

(ii) for v e [qlkIq20]

1 2 1 -2 4 2
w (2n) v EIx -x I + {n v (EIx -x 1)2

i k+1 2 i k+1

+ 41 12 1/2+ n (x i-xk+ 1

(3.5) e = xk+1

Let f(v) = fk(v) and v minimize f(v) over [0,-). Then the .
keN

corresponding to v (given by (3.4) or ('.5)) is the MLE for 8 for the

density (3.1).

I-8-



A

We are unable to prove or disprove tiat 0 is a.s. unique, although our

experience with numerical examples suggests that this is the case. Should

multiple roots occur, however, we can choose the root closest to the sample

median. In view of the theorems in the next section, this will guarantee a

consistent sequence of roots. To implement the method on a computer, we note

that if v lies in [q1,[(n_1)/ 2],), its value need not be computed

exactly since e is independent of it. So we need only determine whether

v lies in this interval. This search is greatly assisted by the following

approximatin which effectively reduces the interval to a finite one.
* )2

Theorem 3.2. Let S EIx -x I and S = E(x -x 2 where k =
i k+1 2 i k+1

((n-1)/2]. If v > maxf212, 2S 1 /nS 2 , q lk , then f(v) - log(S1 /(n'2)) - 1 -

-2 2' -4 22
v -2{nS /(2S 2 11 is bounded above by v -4(5/2 + (7/12)(nS 2 ) 2 and below

2 12 1

-4 2 2
by -v ((3/2)(nS /S (w/2)(1 - W/8)).

21

-22

Proof. Expand f(v) in powers of v using Taylor's series and the

inequalities (see e.g. Johnson and Kotz (1970) p. 279): for x > 0,

2 1/2 2 1/2
(3.6) ((x +8) + 3x}/4 < *(x)/(-x) < {(x +2n) + (W-1)x}/w

A Fortran program that uses these two theorems is given in the

Appendix. It uses a modified version of the function minimization routine

FMIN in Forsythe, Malcolm and Moler (1977) and calls IMSL subroutines MDNORD

and MSMRAT to compute (x) and Mill's ratio.

-9-
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4. Asymptotics

It is shown in this section that B is asymptotically efficient when the

model (3.1) is correct. If (e,s,t) is an interior point of the parameter

space, standard methods can be used to prove consistency and asymptotic
AA

efficiency of (O,st). However these methods are inapplicable when (6,s,t)

is a boundary point, as when the true underlying distribution is Normal or

Double exponential. For these cases we use a thoerem in Huber (1967) to prove

consistency and then resort to ad hoc methods to argue asymptotic efficiency.

Incidentally, consistency of B alone is a consequence of Theorem 2.1 since

it is sandwiched between X and X both of which are consistent under

(3.1). Consistency for the other MLEs (as well as 6) is shown in the

following theorem.

Theorem 4.1. 0, s and t are consistent estimates of e, s and t when

(3.1) is correct.

Proof. The proof consists of checking that the conditions in Theorem I in

Huber (1967) holds. These are called assumptions (Al) - (A5) in the paper to

which we refer the reader for a precise statement. Let x = (-V,,) x V,

where D is defined in Section 3. Let a = (e,s,t) e f, and a0

(o0,s 0,t0 ) be the parameter vector corresponding to the true distribution.

Following the suggestion in Huber (1981, p. 130), we take pairs yn =

(X2n-lX2n) of the original data (x,x 2 1...) as our new observations and

define
1 2{ _2 +( 2_e2

p(y,a) = -2 log c(s,t) + - s {(x -) 2+ (x -) 2
2 1 2

+ t{Ix 1-0, + Ix 2-01 .

Assumption (A-i) is immediate, and (A-2) follows from the continuity of

p(y,a) as a function of a. Let a(y) = p(ya 0 ) and note that

iq F(p(y,a) - a(y)} is a Kullback-Leibler information number; hence it is non-

-10-



negative and well-defined (possible -) for all a e f, and vanishes only

when a - .  (Here all expectations are taken with respect to a .) This

implies assumptions (A-3) and (A-4).

Finally to verify (A-5), let _ be the point at infinity in the one-

point compactification of n. In our context (A-5) may be stated as follows:

There is a continuous function b(a) > 0 such that

(i) inf(p(y,a) - a(y)}/b(a) > hy) for some integrable h,
a

(ii) lim inf b(a) > 0, and
Ip

(iii) E~lim inf [p(y,a) - a(y)]/b(a) )o 1.

Take b(a) to be identically 1 for all a. Then (ii) is immediate and i)

will follow if we show that inf p(y,a) is integrable. For each s and t,
a

p(y,a) is minimized when 0 = (x1 +x 2)/2. Therefore writing z = 1x1-x2 1/2,

we see that

22
(4.1) inf p(y,a) inf (-2 log c(s,t) + s z + 2tz .

a set

Now suppose (s,t) is an interior point, and make the change of variable u =

t/s. The expression in parenthesis on the RHS of (4.1) can be rewritten as

2 2 2
(4.2) H(z,s,u) - -2 log s + u + 2 log #(-u) + s z + 2suz

For fixed u this is minimized when 2sz = (u2+4)1 /2 - u. Substituting this

for s in (4.2) and differentiating with respect to u yields

dH/du = u - 2#(u)/O(-u) + (U2 +4)/2

which is positive for all u (see Birnbaum (1942)). We therefore conclude

* -1
that inf H(z,s,u) is attained at u = 0 and s = z • Hence inf p(y,a) =

2 log z + constant, which is clearly integrable, and so i) obtains. To

verify (iii) it suffices to check that lim inf p(y,a) = . There are two

-11-
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cases to consider, namely (a) 181, s, t -, and (b) 161 * , s,t + 0. In

both cases however, we have

P(y,G) (o(- log s + s262/2 + t1e) if ts -  constant

O(- log t + s82/2 + t101) if tS- + a

Obviously lim inf P(y,a) = in either case. Thus (iii) is verified and the

proof is ended.

We are now ready to deduce asymptotic normality and efficiency.

Theorem 4.2. 8 is asymptotically efficient when the underlying

distribution F has a density given by (3.1).

Proof. When the true parameter vector (O,s,t) is an interior point of the

parameter space, the asymptotic efficiency of the MLEs follows easily from the

standard theorems (see e.g. Lehmann (1983)). We therefore only prove the

result when either s or t is zero.

(i) F is Normal. By the preceding theorem, t + 0 and s + s for some

s > 0. It is clear that equations (3.4) and (3.5) together define a monotone

function of v in [0,m). Therefore

'/n le-xi -C wln-2k I/Vn =tln-2kl/(s In)

* for some k between k0  (defined in Theorem 3.1) and n/2. Here In-2k 01

is the difference between the number of deviations {x.-;) with positive
1

signs and the number with negative sign. Since In-2k 01 = 0 p(n) (David i..
P

A -2 a 2
(1962)), we see that /n 1-xl 4 tln-2kO/(s /n) + 0. Hence 6 has the same

asymptotic variance as x which is efficient.

(ii) F is Double exponential. We assume without loss of generality that I.

x ' x and again use the notation of Theorem 3.1. We know from Theorem 4.1
p * p a a

that s + 0 and t + t > 0. Therefore v = t/s P . Let kn(X) be the

largest integer k such that q2k (defined in (3.2)) satisfies q2k < v.I

-12-
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.1

Then k0 4 k n n/2 and n-2k 0 = 0p(n) (see Brown and Kildea (1979)). So

(n-2k )/ n converges in probability to some random variable Y. We will show
n

that Y is degenerate at 0. First observe that VnJlx -x 4 Inlx-xi =
k

k 
n

-1 - -1 - p
0p(1) and n (x-xi ) = (2n) EIx.-xi + constant. Next note that
P k1 1

can be written as
k+1

q2k n(n-2k-2) (Xk+1-x)/{2(n - 2k- 2) (xk+ -x) (X-x. )

-I 12 1/2
+ n E(xi-x)

AP P
Since v + m, this yields q + M. This implies that Y = 0. Therefore

p n *

kn/n +R where vm R + 0. Since xk  4 8 x, it follows that 8 hasS2+ Rn n

n
the same asymptotic variance as x (Lehmann (1983), Chapter 5, Problem 3.5).

The next theorem shows that for heavy-tailed distributions like the

Cauchy (or Tukey's "slash") 8 is asymptotically equivalent to the median.

It is therefore robust against these distributions.

Theorem 4.3. Assume that the true underlying density has tails of order

-2
lx1- . Then 8 has the same asymptotic variance as X.

Proof. Assume as before that the x's are ordered and use the notations of

Theorem 3.1. Brown and Tukey (1946) showed that for such distributions

-1 -1 -
(4.3) X = 0 P(1), n EIX I = 0 P(1), n EX 0 P(n)

It is easy to check that

O0(n E(x.- ) v/s = (n ix -;1)

Since 8 lies between X and X, (4.3) implies that v = 0 p(n). Now

choose (k I such that k = n + nR where Vn R + 0. This ensures that
n n 2 n n

the knth order statistic Xk has the same asymptotic variance as X. 0
n

Putting k kn  in (3.2) we see also that

-13-



q(in R ) Cx -x)/(W;R ) (x -x)(n- Lix -x I)
2knn ki n k i k

+ n-2 E~ x ) 2)1/2

vhich in view of (4.3) is at most 0 ((n R ) . Clearly, ye can choose
P ii

kn so that in R n* 0 and nR n Then for large no q, n << vwith

high probability. This yields Xk 4 0 4 and hence the result.

F -14-
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5. Sall-sample behavior: sensitivity curve, breakdown bounds and

Monte Carlo

This section contains computer-generated results on the small-sample

performance of 8. Figure 5.1 shows its stylized sensitivity curve for sample

size 20. This is seen to be very similar to that for a trimmed mean, and may

be compared with those of other estimators given in Andrews et al. (1972).

The curve is obtained by starting with a pseudo-sample of 19 expected normal

order statistics, adding to this a moving point x, evaluating 8 from the
A

combined sample, and plotting 20 times 0 as a function of x.

3

-1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.1. Sensitivity curve

Andrews et al. (1972) also used the concept of breakdown bounds to get

some idea of the tolerance of an estimator to extremely aberrant data. For

each sample size n, j sample points are taken to be 100, 200,...,jOO and
q

-15-



the remaining n-j points are taken to be the n-j expected normal order

statistics from a sample of size n-j. The numbers in Table 5.1 give the

Table 5.1. Breakdown Bounds

Largest % of contamination such that estimator < 3.

Sample size n

5 10 20 40

20 40 40 45

X 0 0 0 2.5

x 0 10 10 10
10

X 20 20 25 25

40 40 45 47.5

JOH 40 20 20 22.5

TAK 20 10 15 17.5

JAE 20 20 25 25

HG1 20 30 35 37.5

HG2 40 30 35 37.5

largest j for which the estimator is less than 3 (the estimator is said to

break down if it exceeds 3). For comparison the breakdown bounds for the

following estmators are also given in the table:

Nonadaptive: X = sample mean

X 10% symmetrically trimmed mean
.10

X 2 25% symmetrically trimmed mean
.25

X = sample median

-16-



Adaptive: JOH = John's adaptive estimator

TAX = Takeuchi's adaptive estimator

JAE - Jaeckel's adaptive trimmed mean

HG1
Hogg-type adaptive estimators.

HG2

The definitions of JOH, TAK and JAE are given in Andrews et al. (1972) under

the same names. HG1 was first suggested by Hogg (1974) and is defined to be

X if Q < 1.81, X if 1.81 C Q C 1.87, and X if Q > 1.87.
.125 .25 *375

Here Q is the ratio {U(.2) - -L(.2))/{U(.5) - L(.5)}, where U(8) and

L(B) are the averages of the largest and smallest [(n+1)B] order statistics

respectively. The estimator HG2 is a modification of HG1 to make it

asymptotically efficient at the Normal and Double exponential distributions.

It is defined to be X if Q < 1.81, X.25 if 1.81 4 Q 4 1.87, and X if

r > 1.87. From Table 5.1 it is clear that for n 10, 20 or 40, the

breakdown bounds for 8 are superior to all the others except those for the

sample median.

Monte Carlo estimates of the variances (multiplied by n) of each of

these estimators are given in Tables 5.2 - 5.4 for n = 10, 20 and 40 and

the following distributions: i) N(0,1) (Normal with mean 0 and variance

1), (ii) the density (2.2) with f N(0,1), g = Double exponential with
1 -jxl

density e , and 2 (i1) Double exponential, (iv) contaminated

Normal: 90% N(0,1) + 10% N(0,100), and (v) Cauchy. The first three

distributions are picked for the study because they span the range in which

is efficient. Distributions (iv) and (v) are included to test its

robustness properties. Estimates of the standard errors are given in

parentheses, and the minimum estimated variance for each distribution is

underlined. The simulations were done on a VAX/11/750 computer. The IMSL

-17-



generator GGUW was used to generate uniform random numbers and the Box-Muller

transformation applied to produce normal deviates. The Princeton swindle was

used whenever possible. The number of replications ranged from 1000 - 5000.

It is immediately clear from these tables that in none of the sample

size-distribution combinations considered does ; beat all of the other

estimators. To analyse them further, we can look at deficiencies. These are

defined to be the ratios (estimated variance)/(minimum estimated variance),

where the minimum is taken over the ten estimators compared. The coded

deficiencies are shown in Tables 5.5 - 5.7. Only deficiencies greater than*i
1.5 appear as digits or x's. All the estimators (with the possible exception

of the mean and median) seem to be equally good at the Normal and Double

exponential distributions. The excellent performance of TAX at distribution

(ii) also stands out.

Finally to compare the relative performance of the estimators over all

situations combined we follow Tukey's (1979) suggestion to look at maxima and

sums of deficiencies. For each sample size, let A(i) and B(i) be the maximum

and total deficiency of the ith estimator over a set of distributions. The

estimators are then ranked according to the values of (Ai)) and (B(i)).

These two criteria are denoted by "minimax" and "total" in Tables 5.8 - 5.9

where the estimators are ranked first for distributions i) - (iii), and then

again for all five distributions.

The following points may be made from these two tables:

(a) For n - 20 or 40, TAX and JOH appear hard to beat. For n = 10

however, the picture is quite different. Here JOH is somewhat below average

when only distributions i) - (iii) are considered, and TAX has a poor showing

for all distributions combined. The reason may be that these two estimators

are over-adapting at this sample size.

-18-

I



b) There seems to be little to choose between B and HG2. Both are

consistently good over all three sample sizes.

(c) HG2 is superior to HGI for the distributions considered.

(d) The adaptive trimmed mean JAE trails e and HG2 almost every time.

(e) None of the nonadaptive trimmed means (including the mean and median) are

competitive.

The above results encourage us to feel that for the kind of situation

described in the introduction, our proposed procedure will produce viable

estimators.
i

rlot

1

pL
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Table 5.2. Variance x(n=10)

Standard errors in parentheses

N(0,l) - DEXP 10%ION Cauchy
2

o1.069 0.416 1.59 1.98 5.09

(.004) (.009) (.02) (.03) (.16)

X1.000 0.347 1.99 10.17 768180.0

(.007) (.04) (.40) (73179.0)

x .1 0.61.127146.101.50.61.127143

(.002) (.009) (.03) (.13) (3.51)

x1.157 0.630 1.41 1.57 4.15

(.006) (.011) (.03) (.02) (.15)

X1.382 0.874 1.46 1.74 3.36

(.015) (.015) (.02) (.20) (.08)

JOH 1.194 0.445 1.62 1.82 4.38

(.007) (.010) (.03) (.19) (.23)

TAX 1.048 0.307 1.71 2.62 18.55

(.002) (.007) (.03) (.19) (5.42)

JE1.081 0.428 1.56 1.87 6.53

(.004) (.009) (.02) (.13) (.53)

RGI 1.119 0.513 1.48 1.67 4.18

(.005) (.010) (.02) (.06) (.18)

HG2 1.094 0.411 1.60 1.91 4.73

(.008) (.009) (.02) (.16) (.25)
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Table 5.3. Variance x(n=20)

N(0,1) X- - DEXP l0%1ON Cauchy
2

o 1.074 0.373 1.46 1.97 3.41

(.005) (.008) (.02) (.02) (.09)

X 1.000 0.349 1.92 11.40 19921.0

(.007) (.04) (.41) (14362.0)

X10 1.056 0.476 1.52 2.08 7.81

(.002) (.009) (.03) (.08) (.40)

x 1.190 0.689 1.30 1.52 3.27
.25

(.008) (.013) (.03) (.01) (.14) 3

x 1.494 1.012 1.31 1.83 2.79

(.028) (.018) (.02) (.02) (.06)

JOH 1.127 0.300 1.43 1.44 2.88

(.005) (.008) (.02) (.01) (.09)

TAX 1.048 0.218 1.55 1.42 3.70

(.002) (.006) (.02) (.02) (.16) pr

JAE 1.102 0.404 1.41 1.48 3.58

(.005) (.009) (.02) (.01) (.12)

HG1 1.121 0.519 1.35 1.58 2.85

(.005) (.010) (.02% (.06) (.08)

HG2 1.072 0.376 1.47 1.72 2.98

(.007) (.008) (.03) (.02) (.09)

04
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Table 5.4. variance x(n-40)

I'

N(0,1) A.DEXP 10%iON Cauchy

*81.051 0.353 1.31 1.95 2.91

(.004) (.007) (.02) (.02) (.05)

x 1.000 0.350 1.99 10.49 235439.0

(.007) (.05) (.33) (118967.0)

x 1.062 0.488 1.51 1.59 6.14
.10

(.003) (.010) (.04) (.03) (.20)

x 1.199 0.727 1.25 1.50 2.89
.25

(.009) (.014) (.03) (.01) (.06)

x 1.513 1.166 1.23 1.97 2.62

(.023) (.021) (.02) (.02) (.04)

JOH 1.097 0.217 1.27 1.43 2.50

(.004) (.005) (.02) (.01) (.06)

TAX 1.035 0.139 1.42 1.35 2.73

(.002) (.004) (.02) (.01) (.07)

JA 1.077 0.362 1.36 1.47 3.06

(.004) (.008) (.02) (.01) (.08)

*HG1 1.107 0.528 1.27 1.61 2.46

(.004) (.010) (.02) (.02) (.05)

HG2 1.067 0.356 1.36 1.74 2.57

(.008) (.007) (.02) (.02) (.05)
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Table 5.5. Deficiencies of estimators (n-10)

Variances divided by minimum variance among 10 estimators rounded
to nearest integer. one's are suppressed, numbers > 9 are coded x.

Normal - DEIP 10%ION Cauchy
2

x 6 x

x1 2 4

.25 2 *25

JOH. .

TAX 2 6

JAE 2

11GI 2 . 2

HG2.
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Table 5.6., Deficiencies of estimators (n=20)

Noma - DEXP 10%10N Cauchy

0 2

e 2 .

x2 .. 3

x3 .. 3

x. 5 .. 5

JOH...

TAX..

JAE *2

HG1 *2..*

HG2 *2
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Table 5.7. Deficiencies of estimators (n-40)

Normal -DEXP 1O%ION Cauchy
2

e 3..

x 3 2 Bx

x4 .. 2

x 5.25*

x 2 8.

JOH 2

TAX. *.

JAE *3 .

HG1 *4

HG2 *3.

-25-



Table 5.8. Ranks of estimators for dists. (i) - (iii)

n Criterion 1 2 3 4 5 6 7 8 9 10 5

10 Minimax TAX HG2 6 JAE X JOH x HGI .2 5A .

Total TAK e X HG2 JAE X JOH HGI .2 5.10 .2

20 Minimax TAK JOH x 9 HG2 JAE X HG1 X x S
.10 .25

Total TAK JOH 6 HG2 JAE X X HG1 X X
.10 .25

40 Minimax TAK JOH e HG2 JAE x HGI X .
.10 . 25

Total TAX JON HG? JAE x x 1  HG1 x%2 K

I.

* - 4

.~ -0.2

Table 5.9. Ranks of estimators for all 5 dists. ij

n Criterion 1 2 3 4 5 6 7 a 9 10

10 Minimax HG2 JOH 8 HG1 JAE X X K TAK -
.25 .10

Total HGI HG2 JOH 9 X JAE X1 TAK X.25 .10

20 Minimax TAK OOH 8 HG2 JAE HGI X 0 X x
.10 .25 -

Total TAK JOH HG2 JAE 0 HGI X 2 X X

40 Minimp TAK JOH e HG2 JAE x HGI x x x
.10 .25

Total TAK JOH HG2 JAE 6 HGI K 0 K X.10 .25 L
-1

.1oi
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Appendix

Proof of Theorem 3.1. Let (xli...,xn) be an ordered sample of size n such

- 2
that x 4 x. Let v - t/s and w - t/s . Then (3.1) can be revritten as

h(xi e,v,w) - 21 v (-v)) -exp{- v 2w-2 (Ix-0 + w)2)

-m< 0 < - 0' YeW > 0•

First observe that if n is even and Xn/2 x, then e = x. So for n

even, we need only consider the case when x < x n/2* For fixed v and w,

the likelihood is maximized by that integer k and 8 satisfying

(A.1) x( < x
< k+1

n n
which minimizes (x -81 )

2 + 2w Ix i-el. It is clear from the assumptions we
1 1

have made and Theorem 2.1 that 2k < n. This gives

Sx + (n-2k)/n if w e k

(A.2)
Xk+ 1  if w e 3k

where 'k in the interval (n(xk-x)/(n-2k)) , n(xk+l-x)/(n-2 k)] and

I [n(xk+l-x)/(n-2k), nlXk+l -x)/(n-2k-2)] if n- 2k - 2 > 0

3 k - tn(xk+ -x)/(n-2k),-) if n - 2k - 2 < 0p

Nov for fixed v, and (ek) given by (A.2), it can be verified that there

is a unique w that minimizes the likelihood. This w is given by

12k 2n4klv1 2 n 21/

n-v 2 I(x-x i) + (n-2v4(1(x-x )) + nv (x -'x) if w e Ik

1 2 7 1 -2 4k1)2 1 1 2 v
2  

h +1/
(2n)-v 2  lx i-xk+l I + (nx2 4 ( i-x k+11 ) + 4n-v 2  i-xk+

if w e 3k

-27-
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Inverting these equations yields the intervals Eq1k~2' q ID~~

k k k0 ....,1(n-1)/21) given in (3.2).
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Fortran prog3rams

SUBROUTINE TSUB(XDATA,X,N,TOL,THETA)
C XDATA IS AN N-DIMENSIONAL VECTOR CONTAINING THE ORDERED X-VALUES
C X IS AN 1-DIMENSIONAL WORK< vECTOR
C TOL IS THE PRECISION REQUIRED IN FMIN
C THETA CONTAINS THE COMPUTED fILE

IMPLICIT DOUBLE PRECISTON (A-H,O-Z)
DOUBLE PRECISION XDATA(N) .X(N) ,VL(2,50) ,VR(2,50)
DOUBLE PRECISION VO(2n,50) ,SS(50) ,SA(50) ,SK(50) ,FY(2,50)
COMPLEX ZSM,ZLG 0
LOGICAL GCASE
COMMON DT1 .RN,DRS,DRK
EXTERNAL F1,F2
DATA SQRT8/2.828427125D0/4 RN=DBLE(N)
NHALF=N/2
NHP1-NHALF+l
M=(N-1 )/2
IFLAG=N-2ANHALF
DO 5 I=1.N

5 X(I)=XDATA(I)
9=0.0 P
T1=0.0
T2=0.0
DO0 10 I=1,NHALF
T1=T1+X(NHPI1)
T2=T2.X(NHALF+I)

10 S-S+X(NHPl-I)A2+X(NHALF-t)AA2
IF(IFLAG .EQ. 0) THEN
XMED=0.5k(X(NHALF)+X(NHPI))
ELSE
XMED=X(NHP1)
T2r:T2+X (N)
9 :rS+ X(N) AA 2 &.

END IF
XBAR= 'TI4T2).R
AX2 -S/RN
TEMP=XBAR*A2
XVAR=AX2-TEMP
SCEN!:::-T'-NATrMP
!F(XB;AT .E0. XMED) THEN
THETA=XPTAR
G CA SE=.F A LSE.
GO TO 700
END IF
IF(XBAR .LT. XMED) THEN
GCASE=. FALSE -

ELSE
DiO 20 1=1 .10cmiu

0~1 X((NHPI'TEM

TF T T.,( Q (H I X N P

XPR-XAR
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END IF
KO=NHALF

*30 IF(X(KO) .LE. XIIAR) GO TO 35j
KO=KO-l
6O TO 30

35 IF((IFLAG .EQ. 0) .AND. (KO .EQ. NHALF)) THEN
THETA-XDAR
GO TO 700
END IF
s1.0.0
DO 50 X=KO,1,-1

*50 S1=XDAR-X(I).Sl
K-Ko
TEMP0

60 KP1=K+l
VL(1 ,K)uTEMP
RII2K=DBLE (N-2*K)
ASI=SI/RtI2K
DIFF=X(KP1 )-XDAR
VNUM=D IFF*RN/RM2K
SK(K)=S1
VR(1,K)=VNUM/SQRT(2.OADIFFAAS1+XVAR)

S-0..0
DO 70 I=1,K
S=S.ABS(X(K4I)-X(KPI))+ABS(X(KPl-I)-X(KP1))

*70 CONTINUE
DO 80 1w2AK+1,N

so S=S+ABS(X(I)-X(KP1)) I
SA(K)=S
ASO=AX24X(KP1 )A(X(KP1 )-2..OAXBAR)
SS(K)=ASQARN
IM( .EQ. M) GO TO 100
RM2KP=DBLE(CN-2*K-2)
YNUM2=D IFFARN/RM29F
YR (2 ,K) =VNUN2/SQRTCD IFFAS/RM2KP.ASQ)
TEMPZVR(2,K)
K=K+1
Sl=S1.XBAR-X(K)
0O TO 60

100 DRS=RNASCEN
EITEMT':;O * Ati0ALU(1 Ei4LE (XVAR) )
DO 210 K=KO,M
V'Ti =S K(K)
DR K = B L E(K)
A A:--V L (1 I K)

4 BB=VR(1,K)
VX=FMIN(AA,BB,F1,TOf.)
VOC 1,K)=YV(
FYVi ,Y)=F1 (VXY-4DTEMP

210 CONT!NUBl

DO 220 K=K0,M-1
DTI=SA(K)
DRS=RNASS (K)
A A=V L(2 .K)
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99=VR(2,K)
VXmFMIN(AA.D14,F2.TOL)
VO(2,K)=VX
FV(2,K)=F2(YX)-'TEIP2

220 CONTINUE
FVM=EV( 1,KO)
KlmKO
11-1
DO 230 K=KO,M
DO 230 1=1,2
IF(FYN .GE. EV(X,K)) THEN
FVuN-VC I,K)
K 1:K
I1=I
END IF
IF(K .EQ. M) GO TO 235

230 CONTINUE
235 IF(K1 .ED. M .AND. VO(1,N) .EO. VR(1.M)) GO TO 100

DTI=SA(M)
DRS=RNASS (N)
AA=VR( 1,N)
B3=N4AX(SQRT8,2.OARNASQRT(DBLE(ASO) )/DT1)
VO(2,M)=FMIN(AA,BB,F2,TOL)
FV(2,M)=F2(VO(2,N) )-DTENP2
I=2
K=M
IFCFVN .GE. EV(29N)) GO TO 300
9RATXO-SS(M1)*RN/SA CH)AA2
CON=LOG(SA(M)/2.50662827SARN)+1.o
A=CON-FVM
EI=SRATIO/2.0-1 .0
C=O.95394G0517-1 .5ASRATIO**2
AA=BB

* 240 IE(B)240,250,260

VINF=SQRT(ANAXl(-TEP/4,8.0))
YU-CON+E'/V INFAA2+0 . ATEMP/V INFAA4
IE(FVM .LE. (CON+B/8.0+C/64.0)) THEN
GO TO 600

* ELSE IF (FYN .GE. YU) THEN
GO TO 300
ELSE
CALL. 'ZtAER(A B, CZSM, ZLG, IER)
IF(IER .NE. 0) WRITE(*,*) - LER FROM ZUADR=*,IER
B1I=SRT(AX(DELE(ZSM),DBLE(ZLG)))

*0 OTO 280
END IF

250 IF(A) 300,300.270
260 IF(A) 300,265s,270
265 pp=4-C/B

270 CALL Z6ADR(A,iD,C.ZSNZL-G.IER)
IM(ER .NE. 0) WRITE(A,A) - IER FROM ZOAER=.IER
BB S R (A (P,(SM ,)t,( 16 )

275 IF(E4B IT.E. AA) (30 TO 600
* 290 VX=FMIN(AA,BBF2,TO.'
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TEMP-F2(VX)-DTEMP2
IE(E2(YX)-DTEMP2 .6T. FYM) GO TO 600

300 THETA-X(M,1)
GO0TO700

600 IF(X1 .EQ. 1) THEN
KZK1

* VSVO(1,K)
TEMP=VAA2/RN

* TEMF2=TEMPASK(K)
WO=TEMP2+SQRT (TEMP2*A24TEMPASCEN)
THETA=XBAR+WO*(RN-DBLE(2Ak) )/RN
GO TO 700
ELSE
THETA=X(Kl+1)
END IF

700 IFCOCASE) THEN
THETA=-THETA
XBAR=-XBAR
END IF
RETURN
ENDr

DOUBLE PREC IS ION FUNCT ION Fl (Y)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON S1,RN.RS,RK
U=V*S1
D=U/SQRT(RS)
D2=DAA2

CALL M'NCRD(-V,P)
Fl=LOG(A*P)+0.5/AAA2+2.OA(D/A+RK*((N-RI<)A(V/RN)AA2)
RETURN
END

DOUBLE PRECISION FUNCTION F2(V)
IMPL IC IT DOUBLE PREC IS ION (A-H, O-Z)
REAL RM
COMMON S1,RN,RS
A=4.0*RS

Y=U+SQRT (LIA2+A)
CALL M3?t"R~iT ( R<E 1, ( V) ,RM, IER)
IF(IER NME. 0) RM=-(SORT(VAA2+8.DO)+3.OAV)'/4.I'0
F2:LOG (Y/RM) +2.0* (UL+RS/Y )/Y
RET URN

DOUBLE PRECISION FUNCTIOlN PMIN(AX.RX.F.T01.)
* C THIS IS A SI. IG3HTLY MODIFIED' VERSION OFl A PRORAM BY THE
*C SAME NAME iN rORSYTHE, MALCOLM AND MOLER(1977)

Do! BLE PRECTSION AX,BX,F.TOL

* [OUPL7 PRF.CISION FU,FV,FIW.FX,X
SA.'r EPS

ir(Eps nfT. 0.01)0) 00 To 15
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EPS=1.00
*10 EPS=EPS/2.00

TOL1=1 .0.SPS
IF(TOL1 .GT. 1.00) GO TO 10
EPS=SGRT ( PS)

*15 A=AX

V=A4CA (1-A)
W=V
x=V
E=0.0
FX=F(X)
EV=FX
FW=EX

20 XM=0.5A(A14)
TOL1=EPSAABS( X) +TOL/3. 0
TOL2=2.0*TOL1
IF(ABS'(X-XM) .LE. (TOL2 - .5A(14-A))) (30 TO 90
IF(ABS(E) .LE. TOLD) GO TO 40
R=(X-W)A(FX-FV)
0=(X-V)A(FX-EW)
P=(X-Y)AO-(X-W)AR
Q=2.00A(0-R)
IF(O .GT. 0.0) P=-P
Q=AI4S(O)

E=D
30 IF(ADS(P) .GE. AIS(0.5AGAR)) GO TO 40

IF(P .LE. 0*(A-X)) GO TO 40
IE(P .GE. QA(B-X)) GO TO 40
[1= P/0Q
U=X+D
IE((U-A) .LT. TOL2) I=SIGN(TOL1,XM-X)
IF((Ec-LI) .LT. TOL2) D=lW-li'N(TOL1,XM-X)
GO TO 50

* 40 IF(X .GE. XII) E=A-X
IF(X .LT. XM) £-IB-X

50 IF(AI4S(D) GfE. TOLl) U=X+E'
IF(ABS(D) .LT. TOLl) U=X+SIGN(TOL1,')
FU=FQIJ)
IF(FLJ UT. FXM '30 TU 0 
IF(U X) 4--X

V=W
F V .- F W

FX=VFU
GO TO 20

IF(I .GE. X) B=U
!F(FLJ L.LF W') GO TO 70
1. - (W I:1. X) G 0 TO0 7 0

I'I, LF. rl", GO TO PO
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IF(V .EQ. X) GO TO 80
IF(V .E0. W) GO TO 80
GO TO 20

70 V-W
FVFrm
W-U
FW=FU
GO TO 20

80 V=UFv-ru Si

GO TO 20
90 TOL2=2.OATOL

IF(X-AX .LT. TOL2) THEN
IF(F(X) .GE. F(AX)) X=AX
ELSE IF (RX-X .LT. TOL2) THEN
IF(F(X) .09. F(BX)) X=BX
END IF
FMIN=X

RETURN
END
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