

MICROCOPY RESOLUTION TEST CHART

RATIONAL DESIGN OF TUNNEL SUPPORTS:

by
Michoel D. Voegele
Department of Civil and Mineral Engineering
University of Minnesota
Minneapolis, Minn. 55455

September 1979
Final Report
Approved For Public Rolease; Distribution Untimited

Properod for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314
Under Contract No. DACW45-74-C-0066
Monttorad by Ceotechnical Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vieksburg, Miss. 39180

$$
80520001
$$

Destroy this report when no longor needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

This program is furnished by the Government and is accepted and used by the recipient with the express understanding that the United States Government makes no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and dato contained in this program or fumished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof. The program belongs to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other then a Government program.

Unclassified

fo. ABSTRACT (Continued)
the realization that the observed behavior of a jointed mass is different from the behavior of a continuum.

Chapter III is devoted to providing numerical verification of the Distinct Element method. In particular, several comparisons to limit equilibrium solutions are presented. The comparisons are favorable

The ther chapters are concerned with the behavior of a jointed rock mass when disturbed by an excavation The discussion covers two broad topics: (a) excavations that are stable without external support, and (b) excavations that require external support. The behavior of the jointed mass is typically illustrated by means of contact force distributions within the mass and through the development of arching. For those excavations requiring support, computergenerated ground reaction curves are presented

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

PREFACE

This is the final report of a study performed by the University of Minnesota, Minneapolis, Minnesota, under Contract No. DACW45-74-C-0066 with the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. This work was sponsored by the Office, Chief of Engineers, U. S. Army. This study, which was originiaily funded under the Civil Works Investigation Study (CWIS) Program, "Materials-Structures," by the Missouri River Division, Corps of Engineers, resulted in a report entitled "Rational Design of Tunnel Supports: A Computer Model for Rock Mass Behavior Using Interactive Graphics for the Input and Output of Geometrical Data." Following this preliminary study with its emphasis on rock mass behavior, the WES continued the contract under the CWIS Program, "Materials-Rock."

The study was conducted by Dr. M. D. Voegele, Department of Civil and Mineral Engineering, University of Minnesota, under the supervision of Professor Charles Fairhurst, Department Chairman. ©Technical contract monitor for the WES was Mr. J. B. Palmerton, Research Civil Engineer, Engineering Geology and Rock Mechanics Division (EG\&RMD), WES. Dr. D. C. Banks, Chief, EG\&RMD, was the Contracting Officer's Representative.

During the period of this contract and preparation of the report, the Directors of the WES were COL J. L. Cannon, CE, and COL N. P. Conover, CE. Technical Director was Mr. F. R. Brown.
Page
PREFACE ii
Chapter
I INTRODUCTION I-1
II
THE ANALYSIS OF THE BEHAVIOR OF A ROCK II-1MASS CONTAINING PLANES OF DISCONTINUITY

1. Introduction II-1
2. The Response Characteristics of a II-3 Rock Mass
3. Direct Application of Soil Mechanics II-6 Theories
4. Elastic Theories Applied to Rock Masses II-8
5. Classical continuum elastic theories II-8
6. Finite Element analyses II-9
7. Jointed Mass Behavior Models II-12
8. Physical models II-12
9. Photoelastic models II-14
10. Observational models II-15
11. Limit Equilibrium Analyses II-18
12. An Evaluation of the Techniques Commonly II-21 Used in Jointed Mass Modeling
13. The Distinct Element Method II-24
14. Applications of the Distinct Element Method II-30
III VERIFICATION OF THE ACCURACY OF RESULTS III-1CALCULATED BY THE DISTINCT ELEMENT METHOD
15. Introduction III-1
Chapter Page
16. The Base Friction Method III-5
17. Limit Equilibrium of a Single Block III-12
18. Two Block Limiting Equilibrium Model III-18
19. Embankment Stability Utilizing III-24 Equilibrium of Slices
20. Multi-Block Limiting Equilibrium with III-29 Toppling
21. Pressure Distribution in a Jointed III-36 Foundation
22. Summary III-40
IV THE STABILITY OF UNDERGROUND EXCAVATIONS IV-1
IN JOINTED ROCK
23. Introduction IV-1
24. General Observations on Force Distribution IV-6 Around Excavations in Jointed Rock
25. A Model for the Behavior of Jointed IV-13 Mine Roofs
26. The basic model IV-13
27. The properties of the basic model IV-17
28. The Stability of Roofs in the Absence IV-22 of Arch Development
29. An Examination of the Stability of IV-26 Jointed Roofs
30. The Voussoir arch IV-26
31. Arching conditions in jointed roofs IV-37
32. The development of arching in IV-49 single layer models
33. Arching in multilayered models IV-56
34. Use of Results in Design IV-66
35. Summary IV-71
Chapter Page
V AN ANALYSIS OF THE SUPPORT REQUIREMENTS V-1
OF EXCAVATIONS IN JOINTED ROCK MASSES
36. Introduction V-1
37. The Estimation of Rock Loads for $v-4$ Support Design
38. The concept of a ground reaction curve V-4
39. Tunnel support design concepts V-7
40. Calculation of the potential ultimate V-19 roof loads in the jointed mass model
41. The use of displacement controlled V-28 fixed blocks to generate ground reaction curves
42. Support Requirements in the Absence V-33 of Arch Development
43. An Investigation of Support Requirements V-43
in Jointed Roofs
44. Jointed mass behavior representation V-43 by means of ground reaction curves
45. The use of the Distinct Element V-59 method in the design of support systems for excavations in jointed masses
46. The Effect of Joint Interlocking on the V-75 Ground Reaction Curve
47. Summary V-85
VI SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR VI-1FURTHER DEVELOPMENT
REFERENCES R-1
Appendix
A THE DISTINCT ELEMENT METHOD A-1
B USERS MANUAL FOR THE DISTINCT ELEMENT PROGRAM B-1
C LISTING OF THE DISTINCT ELEMENT PROGRAM C-1

The goal of engineering analysis is intelligent design. This is true for disciplines which are based upon theoretical concepts discovered literally centuries ago as well as for more recently recognized disciplines such as Rock Mechanics engineering. Whereas the researcher in most fields of engineering has at his disposal analytical techniques which have been proven through decades of use and sound analytical development, the Rock Mechanics researcher has a limited number of analytical techniques at his disposal. Many of the problems encountered in the field of Engineering Geology and Mining engineering require the specification of the response behavior characteristics of a jointed rock mass. Foundation design requires a knowledge of the stiffness of the rock mass so that settlements and forces can be predicted accurately. Highway cuts in rock must be designed so as to be completely safe from slope failures. Mines, shafts and tunnels must all be designed with a knowledge of the behavior of the rock mass. The economic design of open pit mines relies heavily on the pit slope angle; a change of only a few degrees in the slope angle has a significant effect on the stripping ratio and thus the economic success of the mining venture. The design of dam foundations or abutments is particularly sensitive to the behavior of the rock mass. Settlements which can be tolerated by dan foundations are quite small. The failure to consider all of the response characteristics of a rock mass in such situations has in the past led to catastropic failures and the attendant loss of life. In all of these problems the role of mass jointing can play a significant role
in the mass response, but all too frequently the exact behavior of the joints is poorly understood. Intelligent design requires an understanding of this behavior.

The analytic techniques at the disposal of the Rock Rechanics engineer upon which the design must be based are quite limited, and typically have been borrowed from other fields. The principles of classical mechanics are often used as an aid in analysis but it is frequently observed that the behavior of a rock mass cannot be characterized by the assumptions inherent in these classical methods. The fundamental assumptions of a continuum characterization, homogeneity and linearly elastic response, are often seen to be too limited in scope to characterize adequately the behavior of a rock mass. That group of materials which we classify as rock is typically non-homogeneous, anisotropic, and often discontinuous; of these characteristics the discontinuous nature of the rock mass is certainly the most influential in governing the ultimate behavior of the mass when subjected to some external stimulus. Constitutive relations can be generalized to include the effects of anisotropic structure; for example, a recent paper by Singh (1973) describes the development of an anisotropic continuum model in which the average influence of planar features can be taken into account.

Finite Element methods provide an accurate, approximate, method of solving problems in elasticity. The formulation of a "joint" element by Goodman et al. (1968) greatly increased the potential of the Finite Element methods in Rock Hechanics problems. However, Finite Element methods still strictly model a continum and thus
large displacements are not possible except through iteration with each new iteration utilizing parameters derived from the previous iteration.

To portray adequately the response of a jointed rock mass requires the correct modeling of the discontinuities present, that is, the joints must have both normal and shear stiffness, they must obey some type of failure law and, most important, the blocks defined by the joints must be free to undergo large displacements and rotations if conditions so dictate. A computer model which satisfies all of these criteria was presented by Cundall (1971b).

The computer model for simulating progressive large scale movements in blocky rock systems which has since becone known as the Distinct Element method utilizes semi-rigid rock blocks to characterize the behavior of a discontinuous rock mass. The interaction between the blocks is governed by realistic friction laws and simple stiffness parameters. There are no arbitrary limits on the amount of displacement and rotation allowed to each block and any block is permitted to touch any other block. True progressive failure is thus modeled and the mode of failure is automatically selected by the program since the system fails by that mode with the lowest stability. The program allows individual study of the effects of joint geometry, joint parameters, loading conditions and excavation procedure.

The Distinct Element method portrays a rock mass as a two dimensional assemblage of discrete blocks. There are no restrictions on block shapes or magnitudes of displacements and rotations. In the configuration used in this dissertation, the program is interfaced
with a graphics terminal su that movements of the blocks can be observed as the computer calculates them.

The equation governing the behavior of the blocks is solved in an explicit rather than implicit manner. Because the jointed rock mass may fail in such a way that the movement of the blocks leads to a new equilibrium position, an adequate block model must take this into consideration. An implicit solution assumes path independence; that is, the final answer must be the same no matter how the blocks move to get there. It seems safe to assume that path dependent phenomena such as separation along joints, stick-slip behavior of joint surfaces and block interlocking could not be modeled adequately except by an iterative procedure using very small time increments. It should be recognized that by using this approach, one would simply be using an implicit solution to model the solution that would have been obtained directly by an explicit approach.

The major approximation inherent in the Distinct Element method is that deformations occur along the surfaces of the rock blocks. This is acconplished by modeling each block as being rigid with what amounts to a thin elastic region around the perimeter. A consequence of this is that the program should produce the best solutions in situations where deformation is governed by movement along joint surfaces. On the other hand, those situations where elastic deformations of the rock mass are of the same order of magnitude as the movement along the joint surfaces are perhaps best modeled by elastic solutions of the Finite Element type or by a continuum characterization.

Joint inclination and confining pressure play a significant role in the determination of the failure mode. The combination of the conditions of low confining pressures and favorable (or unfavorable dependent on viewpoint) joint orientation can lead to failure modes that are joint controlled. When viewed in terms of overall mass stiffness (i.e., deformation resulting from the application of external load), it can be seen intuitively that those failures in situations of low overall stiffness are probably joint controlled while the higher stiffness models exhibit failures that are essentially independent of jointing.

The research described in this dissertation has as its basis two main goals. First, owing to the relative newness of the Distinct Element method, a verification study has been undertaken to determine whether or not the Distinct Element method calculates solutions similar to other methods commonly used to analyze jointed rock masses. The second goal of the research is to apply the Distinct Element method to an engineering problem; in this particular case to the design of supports and the behavior of the rock mass surrounding an underground excavation. Underlying these two main research goals are several attendant yet equally important goals. One underlying theme concerns the application of computer interactive graphics to engineering analysis. Another underlying thene concerns the potential perspective of the Distinct Element method.

To introduce the investigations of the behavior of jointed rock masses performed with the Distinct Element method, a brief survey of the methods corimonly used to analyze the behavior of jointed media is
presented. Common to those methods surveyed is the realization that the observed behavior of a jointed mass is different than the behavior of a continuum. Several of the methods adopt the approach that the behavior of the jointed mass is fundamentally similar to that of a continuum; the same basic equations are assumed to govern both models but the constitutive relations are modified for the jointed models to simulate the presence of jointing. Other methods typically propound the fact that the jointing governs the mass behavior and thus postulate governing equations based upon assumed or observed behavior. This intrcductory section concludes with a brief overview of the Distinct Element formulation and presents several examples illustrating applications of the Distinct Element program.

Confidence in the use of approximate numerical techniques such as the Distinct Element method can best be developed by comparing calculated results to known solutions. However, for the particular case of the behavior of a jointed rock mass, comprehensive analytical solutions do not exist. The second major portion of this dissertation sunmarizes the results of numerous analyses, the sole purpose of which was to demonstrate the validity of solutions calculated by the Distinct Element method. The models chosen for comparison are typically simple and care was exercised to ensure that the behavior of the chosen model was described adequately by its solution. Most of the models chosen for the comparisons were based upon Limit Equilibrium principles, and the Distinct Element calculated solutions were seen to agree quite well with the Limit Equilibrium solutions in all cases. This general theme of comparison to existing solutions is not limited to this portion of the dissertation,
however. Wherever possible in the later portions of the dissertation, every attempt is made to compare Distinct Element calculated solutions to other solutions.

The remainder of the dissertation is concerned with the behavior of a jointed mass when disturbed by an excavation. The discussion covers two broad topics: excavations which are stable without external support; and, excavations which depend upon externally applied support for stability. The interactive capabilities of the graphics terminal are fully utilized in these studies, both to observe the behavior of the mass and to modify the model while the program is running.

Chapter 4 presents the results of analysis of stable excavations in jointed rock. The behavior is illustrated by means of contact force distributions within the mass and interpreted as being governed by the development of arches within the mass. The mechanisms responsible for the development of the arching behavior are investigated and an interpretation utilizing arching theories is presented.

Chapter 5 presents the results of analyses of excavations in jointed rock which are not stable unless an external support is provided. The behavior is described quantitatively by ground reaction curves, relating the deflection of the excavation roof to the magnitude of the required support force. These curves reflect the interaction between the rock mass and the support system in an attempt to guide the research along paths of investigation that are consistent with current thought regarding rational modeling of tunnel behavior. The results of these analyses are then compared to several methods, primarily of an observational nature, commonly used to design support
systems for excavations in jointed rock. The rationale governing these conparisons is an attempt to provide some manner of analytic support for these routinely used design schemes.

The dissertation concludes with a summary of pertinent results and a critical assessment of the potential of the method in engineering anālyses and design. The assessment of the potential emphasizes the limitation of the model in its present configuration with particular reference to the mini-computer based configuration. Suggestions for further development of the model are also presented, outlining areas of potentially fruitful research.

CHAPTER II

the analysis of the behavior of a rock mass
CONTAINING PLANES OF DISCONTINUITY

2.1 Introduction

Before introducing the concepts underlying the Distinct Element model, a brief, historical review of the methods of analysis commonly used when dealing with the behavior of a discontinuous rock mass is presented. An exhaustive bibliography on jointed rock has been avoided, since a significant portion of all publications dealing with Rock Mechanics would need to be included. Rather, this chapter presents an overview of the methods of analysis used when dealing with jointed rock, concentrating on those methods that are accepted by engineers involved in actual design. The overview is relatively complete, including examples of all methods recognized to be in use at the present time.

A general survey of the response characteristics of a jointed rock mass is presented first, to enumerate those behavior mechanisms which must be incorporated in any analysis of a jointed rock mass if it is to portray accurately the behavior of the mass.

An overview of the methods of analysis is then presented. The methods lend themselves nicely to categorization in the following groups:

1) Direct application of the principles of Soil Mechanics to the behavior of rock masses;
2) application of elastic theory, both in the classical
sense and by use of Finite Elements;
3) behavior models including direct physical modeling as well as models based on observed behavior; and,
4) methods of analysis utilizing Limit Equilibrium theories as developed in the fields of plasticity and soil mechanics.

The chapter concludes with a brief introduction to the Distinct Element method of calculating the behavior of a mass separated into distinct blocks by jointing or other discontinuity surfaces. The applicability of the model is discussed by way of a short presentation of worked examples. It is hoped that the examples selected give some insight into the scope and power of the method as well as demonstrating typical problems which can be analyzed by the method.

2.2 The Response Characteristics of a Rock Mass

The obvious trend in the past several decades has been to excavations, both in mining ventures and the construction of ciril works projects, on a scale never before attenipted. The mining of vein type deposits frequently takes place in poor quality rock; in the case of the civil works projects, the best sites in terms of rock quality have already been selected for previous construction. Since it was no longer possible to ignore the rock behavior, the traditional concept of the soundness and stability of a rock mass had to be re-evaluated. In recognition of this requirement, a study group, the International Study Group for Geomechanics, was founded in Salzburg, Austria in 1951. The goal of this study group was to develop relations among all workers dealing with construction in rock and to develop a practical approach to the mechanics of rock masses.

The findings of the study group, which was succeeded by the International Society of Rock Mechanics in 1962, were presented by John (1962), and the following few paragraphs, quoted directly from John's paper, attempt to summarize the philosophy of the Salzburg group.
> "Because the particular properties of rock as foundation and construction material deviate, in many respects, from those of other foundation materials, rock mechanics is compelled to follow its own course. The continuity of soil masses ... resulted in methods for analyzing a continuum, thus defining the concept of soil mechanics. In situ rock, however, contrary to the wide spread assumption in foundation engineering, is rarely homogeneous; rarely without mechanical discontinuities. Therefore, rock mechanics is, in most cases, to be a study of a jointed structure, of a discontinuum."

The philosophy of the Salzburg group emphasizes the collaboration between civil and mineral engineers and geologists. The interrelation of engineers and geologists is readily apparent in the fundamental concepts of Rock Mechanics as outlined by John:

1) "For most engineering problems, the technical properties of a rock mass depend far more on the system of geological separations within the mass than on the strength of the rock material itself. Therefore, rock mechanics is to be a mechanics of a discontinuum, that is, a jointed medium"
2) "The strength of a rock mass is considered to be a residual strength that, together with its anisotropy, is governed by the interlocking bond of the unit rock blocks representing the rock mass"
3) "The deformability of a rock mass and its anisotropy result predominately from the internal displacements of the unit blocks within the structure of a rock mass."
C. Jaeger (1964) presented a similar philosophy to that of John and noted that engineering calculations should take a far more detailed view of the actual state of the rock mass. Recogniziny the inadequacy of the (then) present state of the art, he outlined a program of suggested research, emphasizing model tests and investigations of stress distributions in jointed media.

Fairhurst (1967), in assessing the influence of defects and discontinuities on the behavior of a rock mass noted that failure in a rock mass always begins at some structural defect and that the analysis of the behavior of the mass must consider: the orientation and distribution as well as the magnitude of the applied forces; the distribution and orientation of structural defects with respect to the applied forces; and the energy available to cause continuing movement in the mass.

One final requirement of any method used to calculate the response of a jointed mass is that it should incorporate all of the kinematically possible failure modes. In addition to sliding on discontinuity planes, rotation of individual blocks about their centroids is also kinematically possible as reported in field exposures by Muller (1964) and DeFreitas and Watters (1973) and on a laboratory scale by Hoffman (1970). An analysis incorporating only force equilibrium and ignoring moment equilibrium could easily result in the neglect of an important response of the mass.

2.3 Direct Application of Soil Mechanics Theories

Recognizing that large displacements preclude the use of elastic theory, Seldenrath (1951) idealized the strata comprising European coal measures as masses of loose structure, and attempted to apply Soil Mechanics principles to the problems of calculating fracture planes due to subsidence and calculating loads on props at a working longwall face. To the extent that he assumed reasonable values for friction coefficients, he was able to generate results that were confirmed in practice.

Morrison and Coates (1955) presented a method for the estimation of stresses surrounding a circular vertical shaft by means of plastic flow relationships deduced from Mohr's circle of stress. They questioned the utility of their method for practical design and concluded that although the approach was better than a simple elastic analysis, the actual material behavior was still more complex.

Wilson (1959) applied general Soil Mechanics principles to the problem of slope stability in open pit mines. He concluded that failures of cut slopes in fractured and fissured rock were often the result of uplift pressures in the water behind the slope face. Observing that the strength of granular material appeared to be independent of particle size provided that a constant degree of compactness was maintained, Wilson extrapolated this result to the analysis of the behavior of broken and fissured rock. Since the scale of the jointing relative to the size of the pit was small, Wilson analyzed the stability of cut slopes using the principles
of Soil Mechanics.
Jaeger (1970) analyzed highly jointed and broken rock by regarding the jointing as random and applying the laws of Soil Mechanics to its behavior. His analysis suggested that values of Youngs' modulus measured by plate bearing tests on jointed material for which the plate covered several joints were in reasonable agreement with laboratory values measured on actual specimens of the material containing many joints.

2.4 Elastic Theories Applied to Rock Masses

Elastic analyses of discontinuous or jointed masses can be conveniently grouped into two classes although the difference between the methods is one of application rather than fundamental difference in the theory. The first ciass comprises methods of analysis which directly utilize classical elastic theory; frequently the input parameters are modified to reflect different behavior modes due to the presence of discontinuities. The second class comprises Finite Element type analyses wherein the continuum is discretized and a stiffness relationship is formulated for applied forces and nodal point displacements. This latter class is obviously well suited to the situation of varying material properties throughout the mass.

2.4.1 Classical continuum elastic theories

Obert, Duvall, and Merrill (1960) restricted their analysis of the design of underground openings to competent rock but included horizontally stratified rock provided that the bond between layers wàs weak.

Beam and Plate theory were used for the analysis but it was noted that requirements of an elastically perfect, homogeneous, isotropic mass precluded the possibility of any fracturing in the roof unless it was parallel to the span direction.

Barla (1970) presented constitutive relations for the nonlinear and time dependent behavior of rock masses but did not present relations for discontinuous masses.

Smart (1970) developed a continuum model consisting of rigid cubical blocks set in a clay matrix and found good agreement with field data.

Singh (1973a, 1973b) used strain energy principles to derive general constitutive equations for a rock mass containing an arbitrarily oriented set of orthogonal, discontinuous joints in terms of a "stress concentration factor" matrix (which he computed by Finite Element analysis). His model gave good results for regions of low stress gradient but was found to give poorer results in regions of high stress gradient.

2.4.2 Finite Element analyses

One particular type of elastic analysis has gained acceptance since its inception. The Finite Element analysis, particularly in light of the modifications described below, has become a routinely used tool in Rock Mechanics problems.

Zienkiewicz et al. (1968) noted that linear elastic solutions indicating regions of tension in a rock mass were probably unrealistic for the general case of a cracked and fissured mass. Using a Finite Element formulation with an included "stress transfer" iteration they were able to calculate a solution with no tension present in the mass. They also demonstrated that the solution provided a lower bound to the load at failure.

Goodman, Taylor, and Brekke (1968) succeeded in incorporating a zero thickness element with normal and shear stiffnesses within the Finite Element formulation. With this special "joint element" they modeled failure in tension and shear, rotation, arch develop-
ment and collapse patterns in jointed rock.
Hoffman (1970) compared the results of model tests with the results of Finite Element analyses and found that the large deformations and geometric changes in the jointed mass were not compatible with the assumptions inherent in the Finite Element method.

St. John (1972) analyzed the behavior of rock slopes in open pit mines using Finite Element models incorporating joint behavior. He concluded that the technique provided acceptable results provided small displacement theory was relevant but stressed the need for field data to verify the constitutive laws used in the program.

Chappell (1974 a; 1974 b), and Burman, Trollope, and Philp (1975) related the behavior of a jointed medium to rigid body displacements of block centroids. The modified Finite Element formulation replaced the elastic blocks with rigid ones and connected the block centroids with "joint" elements capable of modeling the combined block and joint responses of stress versus strain and moment versus rotation. Appropriate moduli were obtained by physical experiments.

Wang and Sun (1970 a, b) and Wang, Sun, and Ropchan (1972) used Finite Element analyses to determine stresses in gravity loaded open pit slopes. These stresses were then incorporated in a Limit Equilibrium analysis to determine the safety factor of the slope with respect to sliding on a preselected failure plane.

Manfredini, Martinetti, and Ribacchi (1975) used Finite Element analyses of slopes to demonstrate the inadequacy of Limit Equilibrium methods in design. One interesting, though not unexpected, conclusion from their study was that the intact properties of the rock mass played very little part in the behavior of the jointed medium.

2.5 Jointed Mass Behavior Models

The jointed mass behavior models have been arbitrarily separated into three groups. The first comprises true physical models including both those models where similitude requirements are met and those whose purpose is simply to demonstrate the kinematics of failure. The second group, photoelastic modeling, is a sub group of the first group but owing to the special type of information it yields, is considered separately. The third group comprises theories of behavior which are primarily based upon either empirical data and the results of model tests or postulated behavior mechanisms.

2.5.1 Physical models

Lang (1964) used physical models for assistance in understanding the behavior of underground power stations. The most significant result of this research was aid in visualizing deformation behavior of jointed media.

Krsmanovic and Milic (1964) undertook a comprehensive series of tests to determine pressure distribution in a discontinuum subjected to external loads. Their results demonstrated that the pressure distribution was most sensitive to the original state of stress of the mass.

Trollope (1966) examined the behavior of a trapezoidal opening in a jointed rock mass. His work indicated two zones above the opening: a triangular "suspended zone" above the opening and a stable region outside of the "suspended zone".

Goldstein et al. (1966) investigated the behavior of models of jointed slopes by using a centrifuge. The goal of their research was to investigate the different failure conditions of slopes cut in jointed rock.

Fumagalli (1968) outlined the general principles of mechanical similitude including the incorporation of discontinuity surfaces for the proper physical scale modeling of problems in rock.

Edwards (1968) constructed a model of an open pit slope with wooden blocks as an aid to the interpretation of deformation measurements obtained in the field. An important conclusion of his work was that even though the models were not truly scaled they reproduced the measured phenomena better than an elastic analysis.

Gaziev and Erlikman (1971) embedded strain gauges in plaster blocks and built models to examine pressure distributions in discontinuous masses. They concluded that the state of stress is characterized by two "streams" of stresses following the directions of the principal joint sets.

Erguvanli and Goodman (1972) stressed the importance of kinematic models to observe possible failure modes, as well as scale models which could more accurately predict true behavior patterns.

Goodman (1972) outlined the use of the base friction model to observe the kinematic behavior of rock masses containing discontinuities.

Barton (1974) examined the deformation of discontinuous models consisting of approximately 40,000 blocks. Cut slopes were
excavated in the model after consolidation. The outcome of the experiments was compared to Finite Element analyses and photcelastic studies reported in the literature at that time. In all cases the "reasonable" behavior as predicted by theory failed to materialize.

2.5.2 Photoelastic models

Lang (1961) used photoelastic models to study the effects of the presence of joints in the roof of an underground opening. He also presented some guidelines for rock bolting based upon patterris of stress transfer observed in bolted photoelastic models.

Maury (1970) examined the distribution of stresses in horizontally stratified masses by means of photoelastic models. He noted that the observed behavior was fundamentally different from that predicted by continuum theory.

Brcic and Nesovic (1970) analyzed detailed two dimensional models of dam foundations by photoelastic models. Their results suggested that the presence of discontinuities was a most significant parameter in the definition of the foundation bearing capacity.

Ergun (1970) performed a photoelastic analysis of a biaxially loaded plate with orthogonal joints and noted that the stress distribution was affected by: voids in the joints, the ratio of applied pressure, the joint inclination, and the stress history.

Chappell (1973) investigated the interactions of underground openings in jointed media photoelastically. His conclusion was that the mechanisms of slip, rotation, and interlock controlled
the load distribution. Furthermore, he noted that the interaction between a number of openings tended to accentuate these mechanisms.

2.5.3 Observational models

The observation of the behavior of discontinuous masses as well as the behavior of laboratory models has led to several theories of behavior which for lack of a better name are herein termed observational models. These observational models attempt to predict behavior in light of stress disruption/or redistribution across planes of discontinuity such as joints, or, in the case of soils, grain contact. They often utilize the information gained from model experiments or collected from real situations and extract response patterns which are postulated to hold for a large class of problems.

Terzaghi (1946) carried out tests in railroad tunnels in the eastern Alps by inserting wooden blocks of known strength properties in timber sets. On the basis of the results of these tests, he postulated the expected loads on tunnel supports as a function of the degree of jointing of the rock mass under consideration.

Trollope (1957, 1961) developed an arching theory of force distribution within granular masses by a statical equilibrium analysis of a mass consisting of systematically packed, smooth, rigid spheres. He applied this theory to block jointed models to deduce general design principles. The same approach was used by Trollope and Brown (1965) to develop general equations for the
distribution of pressure in a discontinuous mass beneath a strip loaded foundation.

Hyashi (1906) formulated an approach to determine the distribution of stresses in a fissured foundation in terms of the combined Pascal distribution. The effects of cohesion and frictional resistance were incorporated by means of an iterative application of Bousinesq's equation. His model recognizes a transient depth below which slip no longer occurs along joint planes. In the absence of cohesion or frictional resistance his model reduces to that postulated by Froelich (1933) who idealized the contact stresses in stacked cylinders as an assemblage of tiered, simple beams.

Lane (1961) and Lutton (1970) presented empirical charts relating slope height to inclination. Their data indicated trends, but they recognized that adverse geologic structure could invalidate the use of the charts.

Abel (1966) constructed a statistical model for the estimation of support leads in a tunnel from measured steel set loads, geologic and construction factors. He noted that although the principles of analysis were general, every tunnel must be considered as a separate problem.

Ross-Brown (1973) collected data concerning the stability of cut slopes in open pit mines throughout North America. He concluded that stability problems were too complex to be summarized by statistical relationships and that each mine needed to be considered as a separate entity in light of the experience obtained
in other mines.
More recently, Wickham, Tiedemann, and Skinner (1972), Bieniawski (1973), and Barton, Lien, and Lunde (1974) have presented empirically derived rock mass classification schemes for predicting loads on tunnel supports. The classification schemes result from the statistical manipulation of data collected during construction in rock and consider parameters such as joint spacing, orientation, infilling, and the presence of water.

2.6 Limit Equilibriunl Analyses

The basic principles of Limit Equilibrium applied to jointed rock masses are basically not different from the principles of the analysis of soil slopes as advocated by Fellenius (1936) or Bishop (1955). Owing to the degree of indeterminacy in the problem, assumptions must be made regarding the magnitude of some forces as well as their point of application.

A large portion of the literature on the stability of rock slopes comprises work on the analysis of the sliding behavior of tetrahedral wedges of rock by means of stereographic projection (e.g. John, 1968). Although two dimensional problemis can be handled by this method, the amount of work required in the calculation as opposed to a simple graphical solution hardly merits the effort. Limit Equilibrium of three dimensional wedges is not considered in this review.

John (1962) presented a graphical analysis of the stability of a wedge of rock defined by joint planes and a cut surface. To determine the magnitude of rock anchor forces, he utilized conditions of limiting equilibrium by assuming that full frictional resistance would be developed along the plane of sliding effectively allowing him to specify the force polygon.

Bray (1966, 1967 a, b) substituted the equations for principle stress in the Mohr-Coulomb-Navier relation to develop the ratio of principle stresses at failure by sliding in a jointed mass as a function of the orientation of the principle stresses and the friction coefficient. An interesting outcome of this analysis
comes by superposing a system of multiple fractures; in this model the value of the stress ratio approaches that of the active pressure coefficient as used in soil mechanics.

Jennings (1970) noted that failure in rock slopes did not necessarily follow a single plane. Rather, the failure surface that developed was often stepped. Utilizing Limit principles, the equations he presented incorporated sliding on a discontinuity as well as failure through intact rock.

Calder (1970) used Limit principles to analyze the stability of slopes in jointed rock. His analysis demonstrated that contrary to the case of slope failure in soils, significant changes in cut slope angle in jointed masses often have no effect on the degree of stability.

Hoek (1970) presented design charts, based on Limit Equilibrium principles, for the rapid assessment of the stability of slopes excavated in jointed rock. The assumptions necessary to produce the charts are conceded to be severe but are common to all analyses of this type.

Rosengren (1971) presented the results of a comprehensive analysis of the stability of blocks and wedges formed by the joint systems. Whereas the factor of safety as used by most investigators relates total driving force to total resisting force, Rosengren's definition of factor of safety contains one term relating available friction to required friction and another term relating required cohesion to available cohesion.

Pentz (1971) investigated the situation where the failure criterion was not linear; a simple power law was used to relate normal stress to shear stress in place of the commonly used Mohr-Coulomb-Navier relationship.

Gaziev and Rechitski (1974) used Limit Equilibrium principles to analyze a rock slope with multiple slip modes possible. Their analysis located the layer with the minimum stability factor. The overall stability of the mass was then related to the individual layer stabilities.

Statistically based modifications of Limit Equilibrium methods have also been presented by several authors.

McMahon (1971) introduced design procedures that determine the probability that a rock slope will be undercut by joints that lie in unstable orientations. On the basis of these assumptions, and utilizing Limit Equilibrium principles, he arrived at curves relating probability of failure to slope angle.

Serrano and Castillo (1974) introduced probability density functions for the strength of discontinuities and the matrix as well as for block size and combined them with Limit Equilibrium principles to generate a stability curve for a rock slope in terms of probability of failure.

2.7 An Evaluation of the Techniques Conmonly used in

 Jointed Mass ModelingThe preceding literature survey dealt with the numerous methods commonly used to predict the behavior of rock masses containing planes of weakness. It is of interest to present a brief summary of this survey that emphasizes what, in particular, advantages each of the methods offer.

The observational type methods are typically the first "analytical" method associated with engineering analyses. It is to the credit of men like Terzaghi that they recognized that the degree of jointing present in a rock mass could be the most significant factor to be considered in a design. However, most investigators pursuing this method noted that although the method usually worked quite well for a given problem, the information gained was generally not of use at other sites. Most recent investigators have tried to overcome this shortcoming by statistical manipulation of a large amount of data.

Elastic solutions, and in particular, modified elastic solutions are recognized as having shortcomings, but are usually conceded to be fairly accurate in those cases where the jointing is homogeneous throughout the rock mass. The modified solutions usually attempt to account for the jointing by anisotropic mass behavior. It is interesting to note that one of the leading proponents of this method of solution "... has now abandoned his earlier view ... that an 'equivalent orthotropic medium' can be constructed to fairly represent the deformability of regularly
jointed rock ..." (Goodman, 1974). Goodman makes this statement on the basis of dilatancy and stress dependent behavior of the joints and suggests that the more influential discontinuities should be treated as individual rock mass components.

The application of soil mechanics theories to the analysis of the behavior of jointed rock masses has been successful in those cases where the scale of the jointing relative to the problem was sufficiently small. However, if detailed analysis, on the scale of the jointing, is required, the method lacks validity.

The use of Limit Equilibrium principles holds much promise if it is possible to reduce the intricacies of the problem to the point where a "handleable" number of equilibrium equations can be written, and if the joint behavior may be represented as simply as is done in Limit Equilibrium methods. The main problem with this type of approach is that the necessary assumptions often tend to oversimplify the problem - if too many assumptions need to be made to reduce the indeterminacy, then the model may no longer be representative of the problem to be solved.

Physical modeling seems to offer the best solution to modeling the behavior of jointed rock masses, since the behavior is exactly modeled if similitude requirements are met. However, it is virtually impossible to set up the identical physical models which are necessary for parametric variation, and the cost of a detailed model can be prohibitive.

The Distinct Element method uffers a combination of the capabilities required to predict the behavior of jointed rock
masses. The joints are modeled as the most significant components of the problem. There is no need to oversimplify the problem and the data structures can be stored permitting a given geometry to be analyzed as many times as desired.

It is in the context of a reproducible "physical" model that the Distinct Element method is used in this dissertation.

2.8 The Distinct Element Method

The Distinct Element method introduced by Cundall (1971 a, b) is a computer based analysis that simulates the behavior of a system of discrete, semi-rigid rock blocks. Block interactions are governed by realistic friction and stiffness laws. Each block may undergo unlimited displacement and rotation while progressive failure is modeled. In its present formulation the program is run in an interactive mode on a dedicated mini-computer coupled to a cathode ray tube (CRT) graphic output device. The CRT is used both for the input of geometric and material information as well as for the output data which consists of drawing the movements of the blocks as a function of time. The description presented follows Cundall (1971 b).

The program calculation cycle comprises force-displacement relations for the block contacts and laws of motion for the block centroids. Very simple relationships are used to relate normal force to normal displacement and shear force to shear displacement.

The normal force-displacement relationship owes its simplicity to the assumption that the normal stiffness of a joint plays a very small role in the failure process of the rock mass and that shear force does not affect normal force. Thus normal force is assumed proportional to the overlap between two blocks. Diagramatically,

where constant of proportionality K_{n} is the joint normal stiffness and the resultant force acts upon both blocks. In the more likely case where two faces together form a joint, equilibrium is maintained by two point contacts, thus:

Cundall argues for the validity of representing a joint by two point contacts by noting that owing to irregularities present on a real joint, contact will occur only at discrete points, quite possibly only two.

The shear force-displacement relationship cannot be described by such a simple formulation because the shear force depends upon the past history of movement of the blocks as well as the amount of normal force. To account for this, the shear force must be calculated incrementally with the incremental amount of shearing force assumed proportional to the relative movement of a block corner along another block face. The incremental shear force is then added, noting the sense of movement, to the shear force already existing between the two blocks. Diagramatically:

where the proportionality constant K_{s} is the joint shear stiffness.
Although not strictly necessary from a physical standpoint, the normal force is also calculated incrementally in the program
so that all forces are derived from incremental displacements. This formulation does, however, simplify the task of incorporating nonlinear phenomena, such as dilatation, associated with the normal stress.

Two failure laws are incorporated in the program. Since it is probably unrealistic to have tensional resistance across a joint, a "no tension" criterion is adopted at each time step, by simply setting normal forces that become negative to zero. The criterion governing shear failure is the Mohr-Coulomb-Navier law. At every time step, the shear force at each contact point is tested and limited to a maximum force, which is dependent upon the normal force.

The force-displacement relations are thus used to calculate the set of forces acting on each block solely due to the geometric position of each block relative to its neighbors. The forces acting on each block may be resolved into an equivalent force vector and a moment acting on the block centroid. If a law of motion is now implemented (in this case Newtons second law) the linear acceleration vector can be calculated as the quotient of the resultant force and the mass of the block. Similarly, the rotational acceleration is the quotient of the resultant moment and the rotational moment of inertia of the block. By choosing a suitable time step, these accelerations may be numerically integrated twice to give the displacement of the block. For example, in the x direction:

$$
\begin{array}{ll}
v_{x}^{\text {new }}=v_{x}^{\text {old }}+\frac{F_{x}}{m} \cdot \Delta t & v=\text { velocity } \\
u_{x}^{\text {new }}=u_{x}^{\text {old }}+v_{x}^{\text {new }} \cdot \Delta t & m=\text { displacement } \\
& F_{x}=\text { Force on block in } x \text { dir }
\end{array}
$$

with similar equations for the y direction and rotation. The time step cannot be made arbitrarily large, or rapid geometric changes would not be modeled accurately. However, a more subtle reason for the limit on the time step is that owing to numerical instabilities in the solution of the equations, there is a limit to the maximum time step. This is discussed in more detail by Cundall (1971 a) along with the damping requirements of the equations.

The complete calculation cycle can be summarized as:

In addition to the main calculation cycle, routines are needed to keep track of the coordinates of contacts; the use of arbitrarily large displacements and the attendant large number of possible contact points requires the implementation of a dynamic memory
allocation scheme. This scheme is discussed in Appendix B along with a more complete listing of the equations comprising the main calculation cycle. A complete discussion of the fundamental algorithm of the program is given by Cundall (1974).

2.9 Applications of the Distinct Element Method

As a conclusion to this chapter, several examples illustrating the application of the Distinct Element method to problems involving the response behavior of jointed rock masses are presented. The problems range in complexity from modeling a rock slope as a single block bounded by a joint plane and a tension crack at the crest, to examining the behavior, as failure progresses, of a jointed mass being mined by caving techniques. The examples chosen illustrate most of the salient features and capabilities of the Distinct Element method; however, the potential of the method extends much farther. Particular examples of extended applications could include true blasting analysis, coupled fluid flow behavior and incorporation of elastic stresses and strains.

The problem of the correctness of the solutions obtained by the Distinct Element method will be addressed in the next chapter; for the present time the correctness of the solutions should be accepted. Alternatively, the examples can be viewed in light of kinematics only with calculated displacement modes and forces interpreted in light of experience and intuition.

Example 1-Stabilization of a Failing Rock Slope

The rock slope illustrated in Figure 2.1(a) consists of a single block bounded by a joint plane dipping approximately 25° out of the face of the slope and a vertical tension crack at the crest of the slope. The friction coefficient of the joint plane is . 15 ,

Figure 2.1 Stabilization of a Failing Rock Slope
corresponding to an angle of 8.5°; thus the block should be unstable and is seen to move on the screen as illustrated in Figure 2.1(b). Note that the block centroids are identified by a dot and that an "F" at a centroid means that the block is fixed in space, that is, not free to move.

To investigate the affect of inclination of an applied stabilizing force, a small block is placed on the slope and forces are applied at various angles. As can be seen in Figures 2.1(c) and (d), the smallest force required to stabilize the slope corresponds to an angle of inclination equal to the dip of the joint. Also, the required stabilization force increases as the bolt inclination becomes perpendicular to the joint plane. However, the length of bolt or cable required for stabilization is a minimum when this length is normal to the joint. By assuming a simple relationship governing bolting costs, it is possible to determine the optimum inclination for installation of stabilizing forces. A simple, yet reasonable estimate of relative cost is obtained by assuming that cost increases linearly with length and force relative to some base cost (in this case the horizontal bolt was chosen), this can be expressed as:

$$
\cos t_{i}=\cos t_{H}\left(\frac{T_{i}}{T_{H}} \cdot \frac{F_{i}}{F_{H}}\right)
$$

Assigning an arbitrary figure of 1 to the cost of the horizontal bolt, figure $2.1(e)$ which relates the bolt cost to inclination, can be plotted. From this figure it can be seen that based upon the
assumed cost relationship, the optimum angle of inclination of the stabilizing force is approximately 30°.

Realistic cost data can be used to refine the cost relationship and much more complicated slope geometries can be modeled with the Distinct Element method.

Example 2 - Horizontally Stratified Mine Roof

Figure 2.2 illustrates a horizontally stratified mine roof; there are no joints exposed within the span of the roof. The only information that can be obtained by using the Distinct Element method in a problem such as this is the weight distribution on the pillars which in this case could readily have been obtained by inspection. The Distinct Element method in its present formulation does not incorporate elastic behavior of the elements; all deformations occur on joint surfaces. For problems where elastic deformations are important an elastic analysis such as Finite Element analysis should be used. For this particular problem however, beam theory could have been used to determine the bending moments and deflections (see, for example, Obert, Duvall, and Merrill 1960).

[^0]Example 3 - A Gravity Retaining Vall
Illustrated in Figure 2.3(a) is a retaining structure which is required to prevent movement of the jointed mass to its left. Three friction coefficients are involved in a problem such as this: ϕ, the friction angle of the joints within the mass; ϕ_{b}, the friction angle for sliding on the base of the wall; and, ϕ_{w}, the friction angle for sliding of the rock mass along the wall. By selectively varying these parameters it is possible to illustrate several aspects of the behavior of the wall in response to loading. Figure 2.3(b) illustrates the behavior of the wall when $\phi=26^{\circ}$ and $\phi_{\mathrm{b}}=\phi_{\mathrm{W}}=45^{\circ}$; as the blocks begin to move outward, the wall cannot slide along its base and thus begins to rotate as evidenced by the single contact vector at the lower right hand corner of the wall. The lower left hand corner of the retaining wall is actually lifted off the plane of sliding. The situation is, however, stable.

In Figure 2.3(c) another stable situation is illustrated. In this case, $\phi=\phi_{\mathrm{b}}=19^{\circ}$ while $\phi_{\mathrm{W}}=45^{\circ}$. The " 9 " printed on a surface indicates that that surface is assigned the friction behavior specified for material type 9. This analysis indicated that as the rock mass moved outward the base of the retaining wall moved until sufficient frictional resistance to maintain stability was generated along the base. Some rotation of the retaining wall has occurred and is indicated by the differing lengths of the contact vectors along the base of the retaining wall.

As a final variation of this example, illustrated in Figure 2.3(d), an analysis with $A_{w}=\phi_{b}=\phi=19^{\circ}$ is presented. This

Figure 2.3 A gravity retaining wall
case is not stable - note the settlement of the mass arid the gap at the lower left hand corner of the wall. Failure has occurred because sufficient resistance could not be developed along the base of the retaining wall. Also, the reduction of the frictional resistance between the mass and the wall reduced the overturning moment on the wall which in the previous cases had acted to increase the shearing resistance along the base of the wall. This is easily understood in terms of a simple analogy - trying to move the retaining wall by a single force acting through its centroid.

The two sketches represent the extremes in terms of orientation of contact forces along the wall. In the first sketch, representing the case $\phi_{W}=0$, the force exerted by the mass on the retaining wall, F_{w}, has no vertical component while in the second sketch, representing the case $\phi_{W}=45^{\circ}$, the force exerted by the mass on the retaining wall, F_{w}, has a vertical component. The vertical
component of F_{W} acts to increase the normal force on the base of the retaining wall, thus increasing resistance to sliding movement. The effect of increasing the coefficient of friction ϕ_{W} is thus to stabilize the retaining wall against translational sliding.

Example 4 - A Rock Slope Which Fails by Toppling

The assessment of the stability of a cut slope in light of translational kinematics often makes use of the fact that if the major joint set dips into the slope, failure by sliding is not possible. Although this statement is true, the fact that a rock mass meets this criterion does not automatically ensure the stability of the cut slope as this example illustrates.

Presented in Figure 2.4 are several stages of the progressive failure of a cut slope where the major joint set dips into the slope face. Figure 2.4(a) represents the case before running the program while Figure 2.4(b) illustrates the situation just as failure begins; as can be seen from the figure, the toe block must move before the mass can fail. Thus the toe block represents a "keystone" and in the absence of fracturing, the behavior of the entire mass depends upon the behavior of this block. Any remedial action designed for a cut such as this must be based upon knowledge of which blocks or sections of the slope act as keystones. With the Distinct Element method it is a simple matter to determine which blocks can best be utilized to stabilize the mass.

Figure 2.4(d) illustrates another physically observed feature which is accurately modeled by the Distinct Element method. After

Figure 2.4 A rock slope which fails by toppling
a significant amount of movement has occu red, stable equilibrium of the mass is reached. (Blocks which moved away from the mass were erased as the progran progressed).

Example 5 - Anchoring a Large Force in Rock Mass
This example presents a comparison of the failure loads calculated when a large external force, such as an anchorage force for a transmission tower, is applied to a jointed mass in two different directions. The rock mass in question and the two loading directions are illustrated in Figures 2.5(a) and 2.5(c). The force vectors which cause failure, drawn to a common scale, are also illustrated; the deformed geometries are illustrated in Figures 2.5(b) and 2.5(d).

If the scale of the problem is such that the bedding planes are spaced at three feet, the visible jointing is spaced at six feet, the jointing parallel to the plane of projection is spaced at five feet, and the mass density is ion pof; then the faiture loads are approximately 160 kips for the case where loading parallels the jointing, and 230 kips for the case where loading crosses the jointing.

The modes of failure are also markedly different in the two cases. In the case where the loading parallels the jointing, failure of the mass occurs essentially by slip along the joints. However, in the situation where the loading crosses the jointing, failure encompasses a larger volume of the rock mass and is more of a rotational failure than a slippage failure.

Figure 2.5 Anchoring a large force in a rock mass

Example 6 - A Pressure Tunnel Near a Free Surface

This example examines a hypothetical situation where a pressure tunnel is located near a free surface. A situation such as this could be encountered, for example, in a diversion tunnel for a dam.

The failure of the rock mass in this particular case depends upon the penetration of water into the joints at fairly high pressures. Hopefully, in a real situation, water pressure testing would have been performed to assess the permeability of the mass and appropriate remedial action such as grouting and lining undertaken to prevent water loss. Nevertheless, the example is instructive and is presented in spite of its lack of realism.

Figure 2.6(a) illustrates the tunnel under consideration; the diameter of the tunnel is 20 feet and the internal pressure, which is assumed to penetrate all joints intersecting the tunnel, is 100 psi. The initial failure with the friction angle equal to 22 degrees on the joint planes is illustrated in Figure 2.6(b). In this type of problem the water pressure does not decrease as the joints open, for there is a practically unl imited supply of water to move out into the joints as they open.

Figure 2.6(c) shows a later stage of the progressive failure while Figure 2.6(d) illustrates the pressure distribution in the joints as indicated by an asterisk on those joints where water pressure is applied. The water pressure units illustrated are internal computer units and are seen to follow a parabolic trend, decreasing in intensity from the tunnel to the free surfaces. The

(b)
(a)

Figure 2.6 A pressure tunnel near a free surface

Figure 2.6 Continued
chosen pressure distribution has led to an unexpected displacement field as evidenced by the open joint one block away from the tunne? in the first row of blocks. Evidently, the effects of the free surface and the water pressure were sufficient to cause movement of the two righthand blocks in the first row of strata but, owing to the increased overburden load, the block nearest the tunnel remained stable.

Example 7-A Shear Zone in a Tunnel Roof

Example 7 is concerned with a problem of roof stability in a tunnel intersected by a plane of weakness having a noticeably lower friction coefficient than the rest of the mass and dipping at a less favorable orientation than the main joint set. In addition, the plane directly above the main failure plane was also assigned a low friction coefficient to better model a shear zone.

The tunnel under consideration has a width of 24 feet and is illustrated in Figure 2.7(a); the planes considered as the boundaries of the shear zone are assigned friction type $5\left(\phi=5^{\circ}\right)$ as indicated in Figure 2.7(d). The mode of failure, which can be compared to squeezing material into the excavation by movement along the planes defining the shear zone, is illustrated in Figure 2.7(b) and $2.7(c)$. The disruption of the integrity of the roof defines a volume of rock which must be restrained by the support system. At a unit weight of rock of 160 pcf , the weight of this volume of rock is approximately 100 kips per foot of tunnel length.

Figure 2.7 A shear zone in a tunnel roof

Figure 2.7 Continued

Recognizing that the block exposed in the upper right hand corner of the tunnel acts as a keystone upon which the behavior of the roof depends, the force necessary to stabilize this block (and thus the entire system) was determined. By placing a small block in contact with the desired block and applyifig various forces it is possible to determine the force that will maintain equilibrium of the mass. The forces could equally have been applied at the centroid of one of the failing blocks, but by utilizing a small block acting along the edge of one of the failirg blocks the effects of rotation due to eccentric loading are better modeled. One such force is shown in Figure 2.7(d). This force, which has a magnitude of approximately 20 kips per foot of tunnel length demonstrates that it is possible to keep masses in equilibrium with forces that are small when compared to the weight of the mass which is failing.

Example 8 - Behavior of a Jointed Mass During Mining by Caving
The final example presented in this section illustrates the movements of blocks and the forces developed during these movements as progressive failure occurs in a large, jointed mass being mined by caving techniques. The block configurations as mining progresses are illustrated sequentially in Figures 2.8(a) through 2.8(j). The figures present the situation beginning some time after mining had commenced; in addition, as soon as individual blocks had moved sufficiently far from the mass so that they no longer influenced the behavior of the mass, they were erased. In
other words, the problem of jamming or arching at the draw point was not considered.

After the first two introductory illustrations (Figures 2.8(a) and 2.8(b)) alternate illustrations show only the contact forces, for the block outlines would only make the drawing more difficult to interpret.

The factors that influence the behavior of the mass include a relatively low friction angle on the joint planes ($\phi=17^{\circ}$) and rigid boundaries. The four independent, intersecting joint sets are not claimed to be representative of conditions at a particular mine site. Rather, they were selected solely to give the mass more freedom to move, as two intersecting joint sets were found to have a tendency to lock and stabilize as the individual blocks moved.

Examination of Figures 2.8(a), 2.8(b), and 2.8(c) illustrate the expected movement of the lower unconfined blocks. Figure 2.8(d) illustrates that two separate arches have developed, indicating that the blocks in the lower part of the mass are failing as a unit and, judging from the magnitude of the forces in the upper part of the mass, providing enough resistance to keep the upper part of the mass stable.

This conclusion is reinforced by Figure 2.8(e) where it can be seen that the lower blocks are separating significantly from the mass. Figure $2.8(f)$ shows the continued development of two separate arches. The thrusts developed in the lower arch are not of sufficient magnitude to stabilize the mass, as evidenced by the progression of raveling up into the mass as illustrated in

Figure 2.8(g) and the collapse of the lower arch as shown in Figure 2.8(h). Figure 2.8(i) illustrates the continued movement of the mass toward the draw point. The uppermost layer is still maintaining its integrity due to the slight confining effect at the arch abutments. The lower arch has completely failed as can be seen in Figure 2.8(j). Although not illustrated, the upper arch eventually collapsed when a sufficient movement of the lower mass blocks caused a loosening at the arch abutments.

Figure 2.8 Behavior of a jointed mass during mining by caving

Figure 2.8 Continued

Figure 2.8 Continued

Figure 2.8 Continued

Figure 2.8 Continued

CHAPTER III
VERIFICATION OF THE ACCURACY OF RESULTS CALCULATED
BY THE DISTINCT ELEMENT METHOD

3.1 Introduction

As the Distinct Element method is, in fact, an approximate method to obtain the response behavior of a block jointed system, an attempt must be made to verify that the calculations performed in the method yield results that are acceptable. What is required of a solution to a problem involving the inclusion of joints in a rock mass is that it incorporate and assign most influence to the significant parameters affecting the behavior of the mass. If in doing so, some small elastic strain is overlooked, the solution cannot be classified as exact but, needless to say, if the important responses of the block system are modeled correctly, the solution certainly must be classified as acceptable.

Confidence in the use of an approximate numerical technique such as the Distinct Element method can best be developed through comparison to existing solutions to problems which include the significant parameters which the numerical technique models. A high degree of confidence is obtained if the numerical model duplicates the results of proven analytical solutions. Somewhat less confidence in the model is developed if the comparisons are made to approximate solutions, although the degree of confidence in the approximate solutions, as evidenced by their level of acceptance by practicing engineers and designers, obviously must
be considered in the comparisons.
The problem of verifying the accuracy of solutions calculated by the Distinct Element method is compounded by the lack of analytical solutions that describe the behavior of a jointed rock mass. Instead, when dealing with the behavior of a jointed mass, most analytical solutions invoke approximations which draw upon empirically observed behavior models, soil mechanics theories and classical elastic solutions with the elastic parameters modified to reflect joint behavior. These types of models are severely limited in their applicability; for example, the elastic analyses are probably most valid for the case of very close jointing and the case of a very regular degree of jointing that can be characterized as an anisotropy. More general models for calculating the behavior of a jointed mass typically attack the problem by assuming simplified relationships between the parameters selected to typify the behavior. This type of model suffers in that the full implications of the roles these parameters play in the behavior of the mass are not yet fully understood.

What is needed then to perform a truly accurate comparison unfortunately does not exist. Rather, the very nature of the problem dictates that a choice be made between approximate techniques of analysis which often contain vastly simplified, empirically adjusted assumptions regarding the overall mass behavior which could possibly only be valid for a distinctly limited range of material properties.

One group of approximate techniques, which is limited in its
scope to geometrically ideal problems, is acceptable for a comparison of this type. Limit Equilibrium solutions are concerned with the static equilibrium of bodies at the point of failure. Under this assumption, the frictional forces are assumed to be fully developed and thus force diagrams can be drawn and equilibrium equations written. This method requires the knowledge of the location of the failure surface and a minimal number of interacting blocks. Provided that the geometry of the mass can be represented simply, Limit Equilibirum principles are routinely used to calculate the response of a jointed mass.

In the sections that follow, five simple approximate models for the behavior of jointed masses are presented and the calculated responses are compared to that generated by the Distinct Element method. Included in these models are Limit Equilibrium analyses of: one block on an inclined plane with sliding and rotation possible; two interacting blocks, one in an active state, the other in a passive state; and, multiple interacting blocks both with and without the possibility of rotation. Also included are comparisons to physical models examined with a base friction apparatus, presented primarily for qualitative observations on the kiriematics of large displacements, as well as a simple pressure distribution in a jointed mass where simplifying assumptions regarding material behavior have reduced the problem to an application of the principles of static equilibrium.

Cormon to the models chosen for comparison to the Distinct Element model are simple geometric properties and minimal
assumptions regarding material behavior. As a result of this the models possess the additional feature that an intuitive insight into the ultimate response behavior is often possible. If it is possible to demonstrate that the simple models give the correct response, then it is much more meaningful if the Distinct Element model gives the same response.

3.2 The Base Friction Method

The base friction or base shear modeling technique is a physical, scale modeling technique described by Goodman (1972) that developed from the suggestion that the effect of gravity on a jointed rock slope could be simulated by shear forces on the base of the model as it was pushed over a plane surface. Alternatively, as in demonstrations attributed to Dr. E. Hoek (Goodman, 1976) the base may be moved while the model is restrained. The advantage of a horizontal assemblage of blocks lies in the fact that complex, unstable models may be constructed and failure observed as gravity is suddenly "switched on". Disadvantages arise due to the fact that accurate modeling of a real situation requires that a model material having the exact frictional properties of the real material must be found. In practice, exotic mixtures of flour, sand, salt and cooking oil are used to make a cuttable, semi-rigid modeling material. A material of this type has the advantage that discontinuities may be cut into it at arbitrary orientations; for the purposes of this investigation, however, as rigidity was of prime importance, 1 cm cubes of commercially available plexiglass were used to construct the models. The inability to orient discontinuities at arbitrary angles was not considered a severe liability in this investigation as the end result was simply to demonstrate qualitatively that the Distinct Element method would reproduce the expected modes of failure in several models where the failure modes were obvious. Figure 3.1 illustrates the small base friction apparatus used to study the behavior of the jointed models.

Figure 3.1 Diagramatic sketch of base friction apparatus used in comparison

Modeling techniques such as base shear are typically kinematic in that they reproduce the geometric features of the geologic structure and the excavation to a sufficient degree to establish possible modes of failure. However, they are not exactly scaled dynamically. For example, the base shear method does not give the correct response when a moving body acquires lateral momentum since in the base friction model, real accelerations are proportional to the driving belt velocity (Goodman 1976).

The implication of this is that in the absence of block to block contact, the only accelerations permitted in the model would be in the direction of the belt velocity as indicated in Figure 3.2. The Distinct Element model of this situation is included to demonstrate that momentum is indeed properly modeled.

However, several qualitative observations of a kinematic nature can be made: blocks which receive no supporting resistance must move downward under the effect of gravity; unconfined, geometrically unstable blocks must rotate and topple; and confined, geometrically unstable blocks must induce sliding in neighboring blocks as they rotate and topple. These three behavioral features of jointed systems can readily be simulated on a base shear apparatus by a laterally unsupported mine roof, an overhanging cliff and a cut slope in a jointed mass, respectively. These three failure models were chosen because, due to their simplicity, the kinematics of the failure are obvious. This makes them ideal for comparison with the Distinct Element method for it demonstrates that the Distinct Element method can calculate the proper failure mode for several situations for which the failure modes can be envisioned.

Figures 3.3, 3.4, and 3.5 illustrate a comparison of each of the three above mentioned failure modes by the base shear technique and the Distinct Element method. Little, if any, comment appears necessary other than to point out the similarity of the developing failure in all three cases.

Figure 3.2 Dissimilarity of base friction model and Distinct Element method and real situation where momentum is not negligible.

Base Friction

(1)

(2)

(3)

Distinct Element

(1)

Figure 3.3 Comparison of base friction analysis and Distinct Element method for case of unrestricted, gravity induced block displacement.

Figure 3.4 Comparison of base friction analysis and Distinct Element method for case of unconfined geometrically unstable blocks.

Base Friction

Figure 3.5 Comparison of base friction analysis and Distinct Element method for case of confined, geometrically unstable blocks.

3.3 Limit Equilibrium of a Single Block

The simplest and most obvious quantitative test of the validity of the Distinct Element method is whether or not it can adequately model the behavior of a single block on an inclined surface. The laws of static equilibrium furnish two important aspects of the behavior of such à block: first, it will not slide unless the angle of friction is less than the angle of inclination of the surface upon which it rests; and second, when the direction of the weight vector falls outside of the base of the block, overturning of the block must occur. This toppling stability is related to the geometry of the block as illustrated in Figure 3.6. When the ratio of the width of the base to the height of the block is less than the tangent of the angle of inclination, overturning of the block occurs.

Thus, the limiting stability condition of a single block on an inclined plane is a function of the angle of friction (o), the shape (ratio h / b) and the inclination of the sliding plane ($\dot{\sim}$). The interrelationship of these parameters has been presented graphically by Hoek and Bray (1974) and is reproduced in Figure 3.6. This diagram delineates the four behavioral characteristics of a single block on an inclined plane: stable, sliding, toppling, and a combination of sliding and toppling. Note that the line $\}=\%$ is not fixed on the diagram - it is moved laterally to specify the boundary for a given ϕ situation.

The line $\phi=\psi$ and the line $h / b=\cot \psi$, representing limiting conditions for any specific block under consideration, suggest an

1.ibre 3.6 Conditions for sliding and toppling of a block on an inclined plane (from Hoek and Bray, 1974).
alternate method of plotting this data. For a given base plane inclination ψ, the geometric ratio (h / b) and the friction angle (ϕ) are plotted as the ordinate and abscissa respectively. The line $h / b=\cot \psi$ separates the plot into two regions in which toppling will or will not occur; the line $\psi=\phi$ similarly divides the plot with respect to sliding. The only advantage of such a plot, an example of which can be seen in Figure 3.7 , is that the four regions are more nearly equal in area than on the Hoek and Bray plot. It suffers from the disadvantage that two lines must be drawn for each specific case whereas the Hoek and Bray diagram only requires that one line be redrawn.

As a test of the ability of the Distinct Element method to calculate the proper response of a single block on an inclined plane, paired values of ϕ and h / b were randomly generated for several different values of the base plan inclination (ψ) and the observed behavior of the block plotted on the described diagram. The results for two values of ψ are presented in Figure 3.7. In addition, several limit values were plotted whenever possible. For example, in the case $\psi=26.6^{\circ}$ the value of ϕ at which sliding just began was also noted. Also in the case $\psi=26.6^{\circ}$, as the limiting condition for toppling was $h / b=2.0$, limit conditions at which toppling just began were investigated.

The results presented in Figure 3.7 show that the Distinct Element method is capable of accurately predicting the behavior of a single block on an inclined surface with respect to sliding or toppling failures. However, close examination of the left side,

Notes

1) $\psi=\phi$ represents limit equilibrium for sliding
2) $H=B \cot \psi$ represents limit equilibrium for toppling

Figure 3.7 Limit Equilibrium conditions for a single block on a plane surface: $\phi, H / B$ pairs randomly generated for constant ψ.
uppermost quadrant, indicates that most failures in this region were of a sliding nature rather than a combination of sliding and toppling. The reason for this is easily understood in light of the true meaning of the diagram.

The behavior of a sliding block is indeterminate except at conditions of limiting equilibrium; that is, the theory that has been used to predict the behavior of a block is only valid along the line $h / b=\cot \psi$ and along the line $\phi=\psi$. In three of the quadrants, the fact that either one or both of the failure criteria are not met still allows the determination of the behavior. Consider, as an example, the right side, uppermost quadrant: if a block cannot slide, rotational behavior can be deduced from moment equilibrium.

In the lefthand, uppermost quadrant however, neither of these stability criteria is met and the problem is highly statically indeterminate. Intuitively, it must be true that a block sliding on a frictionless surface cannot topple due to the inability of the system to develop an overturning couple. On the other hand, a block sliding on a plane inclined at an angle slightly greater than the friction angle experiences an overturning couple due to the frictional resistance acting on the sliding surface. If, additionally, the block geometry is conducive to toppling, then intuitively, the fact that the block is sliding should introduce an additional toppling moment. An analysis as simple as that illustrated in Figure 3.6 cannot predict the dynamic behavior just described as it is only concerned with limiting cases.

Examination of the plots in Figure 3.7 indicates that combined toppling and sliding was infrequently observed and only occurred near the limiting conditions. The line that delineates that area of the graph corresponding to simultaneous sliding and toppling behavior is not deducible from a simple Limit Equilibrium analysis. The fact that this coupled behavior is not determinable does not detract from the comparison in the least for the true test of the Distinct Element method lies in its ability to produce accurate results along the lines $\psi=\phi$ and $h / b=\cot \psi$ which, as Figure 3.7 indicates, it has done.

3.4 Two Black Limiting Equilibrium Model

Goodman (1976) presents a method by which a Limit Equilibrium analysis of two interacting blocks can be performed with the aid of a stereonet. Figure 3.8 illustrates the general nature of the problem; a rock slide consists of two free blocks, one of which is in an active or loading state, the other is in a passive or resisting state. Sliding of the passive wedge is initiated by load transfer from the active wedge which, by definition cannot be sustained by friction alone along its base planes; moment equilibrium is not considered.

The procedure consists of three steps:

1. analyze active block with plane 3 as a free face: find F_{p} required
2. analyze passive block with plane 3 as a free face, and with load $-F_{p}$
3. system is safe if resultant or passive block falls within the friction cone to the normal to plane 2 Note that if the angle that the resultant on plane 2 makes with the normal to plane 2 is taken as the friction angle on plane 2, then limiting equilibrium conditions exist throughout the mass.

Several different geometries were analyzed by this method for comparison with the Distinct Element method. Care was taken to ensure that the geometries chosen for analysis would fail with a minimal amount of rotation and with full frictional resistance developing on all planes in accordance with the basic theory. The results of several of the test cases are presented in Table 3.1,
some of the geometries and the associated stereographic projections are presented if Figure 3.8.

The difference in the friction coefficient for stability on Plane 2 as calculated by two block Limit Equilibrium as compared to that calculated by the Distinct Element method was found typically to be on the order of one percent.

	Limit Equilibrium		Distinc	Element	Relative Difference
Case	ф	μ	¢	μ	in μ
1	$23.0{ }^{\circ}$	0.425	$23.3{ }^{\circ}$	0.430	1.2\%
2	$25.5{ }^{\circ}$	0.477	$25.7{ }^{\circ}$	0.482	1.0\%
3	$30.6{ }^{\circ}$	0.591	$30.8{ }^{\circ}$	0.597	1.0\%
4	$33.0{ }^{\circ}$	0.649	$33.1{ }^{\circ}$	0.652	0.5\%
5	$37.6{ }^{\circ}$	0.770	$37.5{ }^{\circ}$	0.767	-0.4\%

Table 3.1 Comparison of the coefficient of friction required for stability as calculated by Limit Equilibrium and by the Distinct Element method.

Other geometries, in which rotation played a major part in the failure, were analyzed and compared by the two methods. A typical geometry investigated is illustrated in Figure 3.10. The friction coefficient calculated by two block Limit Equilibrium for this geometry was found to be 0.554 ; the friction coefficient calculated by the Distinct Element method was found to be 0.490 . The resulting difference in the friction coefficient was thus eleven percent. If, however, a Limit Equilibrium analysis

Figure 3.8 Parameters for two dimensional, two block Limit Equilibrium analysis (from Goodman, 1976)
incorporating rotation is performed, the friction coefficient for stability of the passive block is found to be 0.477 with a resulting difference in the friction coefficient of 2.7%. The geometry, stereographic solution and idealized force distribution are shown in Figure 3.10.

Figure 3.9 Geometries, force polygons and stereographic solutions for representative two block cases analyzed by Limit Equilibrium.

Figure 3.10 (a) (b) (c) Limit Equilibrium analysis of a two block model where toppling is an expected failure mode; (d) Alternative force distribution for consideration of moment equilibrium.

3.5 Embankment Stability Utilizing Equilibrium of Slices

An interesting test of the ability of the Distinct Element method to calculate a comparable solution arises in a comparison to the method of slices approach commonly used to assess the stability of a soil slope. Although the intent of the method of slices approach is to model a soil slope as failing plastically at all points simultaneously, equilibrium is calculated for a number of vertical slices whose behavior can best be described as that of a rigid block. There are a number of approaches to the solution of this problem, but they all have in common the fact that an idealization is made in the true force distribution on a slice to make the solution statically determinate. Examples of idealizations which can be solved by hand calculations are the Fellenius and simplified Bistop techniques (Lambe and Whitman, 1969) which assume zero force resultant in the direction normal to the failure arc and zero force resultant in the vertical direction, respectively. More complex lateral force distribution schemes exist, and are typified by the method of Morganstern and Price (1965), which assumes the lateral force distribution parallels an originally unknown but determinable function, and the method of Spencer (1967, 1973), which assumes that the lateral forces are inclined at a constant and determinable yet originally unknown angle. The solution of these more complex schemes is typically highly iterative and best handled by a computer.

To keep a proper perspective it must be noted that Fellenius chose to ignore the side forces in his method since the error introduced was on the order of five percent and that Beichmann in

1937 used 13 different and reasonable assumptions about the side forces to demonstrate that the maximum difference ariong the methods was only four percent (Golder, 1972). In addition, Spencer (1967, 1973) was able to demonstrate the insensitivity of the moment equation to the slope of the interslice forces. The inclusion of a constant side force inclination led to a significant reduction in required computational time as there was no longer any need to calculate the thrust position function as in the method of Morganstern and Price.

For purposes of comparison to the Distinct Element method, four commonly encountered method-of-slices analysis were used. The friction circle technique, Taylor (1937), although not a slice type analysis, was also used. With the normal stress concentrated at a single point, this equilibrium solution establishes a lower bound safety factor for all method-of-slices solutions which satisfy statics. The Fellenius and simplified Bishop methods (Lambe and Whitman, 1969) were used because of their simplicity and tendency to bracket the other methods (Whitman and Moore, 1963). Wright's modification of Spencer's method (Major, et al., 1976) was chosen as representative of the methods that include lateral forces, primarily due to its superiority in computational speed.

The results of the comparisons for two slope configurations are presented in Figure 3.11; the significant difference between the cases is that case B is more nearly planar owing to the larger radius of the failure surface. Inspection of the figure illustrates several interesting points as outlined in the following

- Fellenius
O S:....
A Simplifind bichay
-

paragraph.
Firstly, the variation in the friction coefficient required for Limit Equilibrium conditions is a function of the number of slices; the fact that Spencer's method, which utilizes lateral forces, is less sensitive to this parameter probably indicates the reason for this. As the blocks get thinner, they become rotationally unstable and lateral forces are required to maintain equilibrium. On the other hand as the number of slices becomes smaller, the system begins to act as an active/passive block system and once again, lateral forces are required for equilibrium to be reached. In practice, it is recognized that these problems are avoided if the number of slices is in the range of from ten to twenty. Within this range the friction coefficient as calculated by the Distinct Element method is within two percent of the method incorporating side forces (Spencer-Wright) and typically within five to seven percent of that given by either Fellenius or Bishop. Secondly, the friction coefficient calculated by the Distinct Element method diverges from that calculated by the other methods for a small number of slices. This is probably due to the fact that the Distinct Element method approximates the circular failure arc by a series of straight line segments and the possibility that any given segment could have an unwarranted influence on the sliding behavior. A given line segment could lower the inclination of the failure surface at any point along the slope with a corresponding decrease in the resultant friction coefficient required for stability. In contrast to this is the case where the
failure arc is approximated by a larger number of slices; in this case the average slope of the failure arc is correctly represented. These two cases are illustrated in Figure 3.12.

Case A
Case B

Figure 3.12 Possible mechanism (exagerated view) for divergence of Distinct Element method from slice methods as slice thickness increases. Note that in case A, sliding can occur on a line segment which has a higher inclination than the average for that section of the arc while this does not occur in case B.

3.6 Multi-Block Limiting Fquilibrium with Toppling

Goodman and Bray (1976) demonstrated that block toppling can easily be analyzed by Limit Equilibrium methods for the special case of blocks resting on a positively stepped base as shown in Figure 3.13(a). Sliding and toppling modes of failure are analyzed for each block according to the failing configurations illustrated in Figure 3.13(b). The indeterminacy in the equilibrium equation for each block is resolved by assuming that full frictional resistance develops at each contact point. The other major assumption in the method is the position of the points of contact.

Beginning with the uppermost block, the force to prevent toppling and the force to prevent sliding are calculated. The larger of these two numbers dictates whether toppling or sliding will occur; however, if both forces are negative, the block is stable. For the analysis of the next block down the slope, the larger of the two forces (or zero if the block is stable) is applied to the downslope block and the stability of that block determined. The method continues down the slope until the toe block is reached. The force required to maintain equilibrium of the toe block is the cable force required to stabilize the entire slope since all excess driving forces have been transferred to the toe block by the calculation method. The method is general enough to handle any location and orientation of the cable force.

Two of the geometries chosen for analysis are illustrated in Figure 3.14; although similar in appearance, they differ in that the toe block will fail by sliding in one case and by toppling in the other case.

Figure 3.13 Conditions for toppling and for sliding of a given block under limiting conditions (after Goodman and Bray, 1976).

One additional point must be considered when the mode of failure is dominated by toppling. Whereas the stability of a system of sliding blocks may be analyzed with the Distinㄷ Element method by beginning with a condition that is stable with respect to frictional sliding and reducing the friction coefficient until failure occurs, the situation that exists when toppling modes of failure are present is more complex. On the one hand, frictional resistance on the sides of the block and at the corner about which rotation is occurring cannot be fully developed unless rotation induced lateral movement has been allowed to occur between blocks. But on the other hand, once some rotation has occurred, the geometric configuration of the blocks is such that a higher force is required to maintain stability with respect to toppling.

In a comparison of the Distinct Element method and the Goodman and Bray Limit Equilibrium method, this fact must be taken into consideration. Since the significant coordinates are always available during the running of the Distinct Element program, the amount of rotation of an individual block can always be calculated at any time during the running of the program. In addition, a sensitivity analysis relating cable force to base plane inclination was performed using the Goodman and Bray Limit Equilibrium method.

The variation of the step inclination illustrated in the figure does not represent an actual change in the geometry of the model but reflects the actual displacement of the blocks due to rotational movements in the Distinct Element model. The value of the cable
force determined by the Distinct Element method for several values of block rotation is illustrated. The corresponding values as determined by Goodman and Sray's method are also plotted for equivalent rotations. By comparing the data in this manner, there is assurance that the difference in calculated vaiues is not due to a failure to compare equivalent models.

The results of the two comparisons are presented in Figure 3.14; part A illustrates the case of the toe block toppling and part B illustrates the case of the toe block sliding. Inspection of Figure 3.14 shows that the response of the Distinct Element model is similar to that of the Goodman and Bray Limit Equilibrium model; the cable force calculated is also similar for both models.

The relative difference in the calculated cable forces is approximately ten percent for the case of toe block sliding and approximately twenty percent for the case involving toe block rotation. Examination of Figure 3.15 illustrates several discrepancies between the contact force distribution assumed by Goodman and Bray and that calculated by the Distinct Element model. These discrepancies all have a direct bearing on the magnitude of the required cable force and help to explain the difference in the value of the cable force as calculated by the two methods.

The contact forces indicated by the number 1 in the figure indicate "elastic" compression of the block system due to the applied bolt force and result in an increased value of the bolt force required for stability. The contact force indicated by the

\longrightarrow
10^{\prime}

Figure 3.14 Comparison of Distinct Element calculated response of multi-block Limit Equilibrium and response as calculated by the method of Goodman and Bray (1976).
number 2 also reflects the tendency of the cable force to compact the system; as rotation begins, shearing resistance develops. This force however, acts to stabilize the block and thus, indirectly, reduce the required value of the cable force. The contact forces indicated by the number 3 directly contradict the basic assumption of Goodman and Bray - the development of full frictional resistance at all sliding contacts. Forces of this type acting at less than full frictional development increase the rotational moment on a block and thus increase the required value of the cable force.

In spite of these discrepancies, agreement of the models is still quite good indicating that the effect of the additional contact forces and the failure to mobilize full frictional resistance at all sliding contacts is slight. Additionally, rotational failure is very unstable and dynamic as opposed to simple frictional sliding which is essentially static. In light of this it is felt that the agreement between the Goodman and Bray model and the Distinct Element model is quite good.

Figure 3.15 Observed discrepancies in the contact force distribution assumed by Goodman and Bray (1976).

3.7 Pressure Distribution in a Jointed Foundation

Several authors, notably Krsmanovic and Milic (1964), Trollope and Brown (1965), and Hayashi (1966) have investigated the distribution of pressure in a fissured or jointed mass loaded by a strip footing. Krsmanovic and Milic used physical, scale models incorporating pressure measuring transducers to examine behavior beneath the foundation, while Trollope and Brown and Hayashi deduced geometrically progressing load transfer factors that were used to predict the pressure distribution within the jointed mass. Of the three models, Hayashi's was used in a comparison with the Distinct Element method because the tests Krsmanovic and Milic performed were limited in scope and involved rupture of the blocks while Trollope and Brown's model relied upon the development of arching in the load transfer and was judged to be more applicable to the analysis of the behavior of a jointed mass on a settling foundation than to a strip loaded foundation (Trollope, 1968). Hayashi presents three approximations, each successively more complex in computational effort, to the distribution of pressures in a jointed, strip loaded foundation. The first approximation, which actually appears earlier in Froehlich (1933), approximates the jointed mass as a tiered assemblage of point loaded simple beams; the resultant pressure distribution for the case of no cohesion or frictional resistance reduces to the combined Pascal distribution as illustrated in Figure 3.16. The second approximation determines the elasticplastic boundary below which slip no longer occurs by means of the

Note:
Vertical load acting on block is determined by combined Pascal distribution factor (indicated within block) miltiplied by one-half of total load acting on strip (0.5 Tq)

Figure 3.16 Hayashi's first approximation to the vertical, normal stress distribution in a fissured foundation combined Pascal distribution.

Boussinesq equations and the third approximation attempts to correct for the conversion of strain energy to heat as slipping occurs. As the second and third approximations introduce additional simplifying assumptions concerning the material behavior, the first approximation was chosen for the comparison with the Distinct Element method.

One of the resulting comparison plots is illustrated in Figure 3.17. Even plotted to an exagerated scale, the similarity is obvious. The maximum discrepancy in the two methods, relative to the total load, is seen to be only four percent. The dissimilarity in the two methods arises in Hayashi's failure to include rotational terms in his analysis. Examining the first row of blocks beneath the strip load shown in Figure 3.16 suggests that the central block, owing to a larger load, will undergo a slightly larger deflection than will the blocks on either side. This will result in an inward rotation of the two side blocks and a corresponding increase of load in the region beneath the central blocks. Following this line of reasoning it is easy to see that had Hayashi considered rotations in his model, the resulting pressure distribution would have been, from a qualitative viewpotnt, slightly higher in the central region and lower on the sides bringing it more in line with the pressure distribution calculated by the Dist.inct Element method.

Figure 3.17 Vertical stress on a horizontal plane in a fissured foundation by the Distinct Element method and Hayashi's (1966) method.

3.8 Summary

It seems appropriate to conclude with a brief summary of the comparisons just presented, for the credibility of the remainder of this dissertation depends in part upon the acceptance of the validity of the Distinct Element method on the basis of the simple comparisons presented. Using a base shear apparatus, it was demonstrated qualitatively that the Distinct Element method calculated kinematically correct responses for several classes of complex problems where intuitive projections of the resultant mass deformational response were possible. For those Limit Equilibrium analyses of block models which represented essentially static situations, agreement was typically within one or two percent; even for the more dynamic situation involving multiblock rotations, agreement was on the order of ten percent. Finally, for that situation where it was possible to duplicate all of the assumptions regarding mass behavior, the Distinct Element method was observed to calculate a pressure distribution beneath a strip loaded foundation that was essentially similar to that calculated by Hayashi's (1966) theory.

Confidence in the method depends upon extending this credibility in the Distinct Element obtained solutions to problems where analytical solutions are not possible and where intuitive observations pertain to the mass deformational response are often not practical owing to the complex nature of the jointing.

There are no readily apparent reasons why extending the Distinct Element method to models which are more complicated
geometrically should result in answers that are any less acceptable than those generated for the preceeding comparisons. The Distinct Element formulation contains no underlying requirements to dictate where failure surfaces shald develop nor does it require that the failure mode must somehow be reducible to idealized mechanisms of arching, toppling, or sliding. No mass elastic response equations with empirically modified parameters are incorporated in the model; no "joint elements" need be formulated. In fact, owing to the explicit nature of the formulation there is not even a need to form a stiffness matrix relating block deformations to interblock loads.

The Distinct Element formulation is oriented toward the behavior of each block as an individual mass. The kinematic behavior of each block is independently calculated using Newton's law of motion; each block senses the blocks surrounding it only as boundary conditions. If the movement of a block leads to penetration or relative movement along the surface of another block then the normal and shear stiffness will lead to interblock contact forces by a simple application of Hooke's law with an upper limit to the forces set by the Mohr-Coulomb relation. These forces are simply treated as boundary conditions for the first block. When a contact is broken by a relative displacement between the two blocks involved, there is no longer a need to consider the effect that these blocks have upon each other.

In light of this single block orientation of the Distinct Element formulation there is no readily apparent reason why the only difference between a problem involving only a few blocks and
one involving tens or hundreds of blocks should be anything more than the extended time required to perform the calculations.

It should he noted, however, that the time step used in the calculation cycle is sensitive to the number of contact points a single block experiences at a given time. An increasing number of contact points can lead to numerical instabilities; this simply necessitates a reduction in the time step and is not an indication that the Distinct Element formulation is incapable of solving problems where single blocks simultaneously experience multiple contact points. In the present configuration, the equations are stable up to a maximum of eight points per block.

Additional verification comparisons of Distinct Element calculated responses are presented in the remaining chapters whenever it is possible to express quantitatively the behavior of the block jointed mass under consideration. The high degree of correlation exhibited by the comparisons presented in this chapter is also found to be true for the comparisons presented in the later chapters.

THE STABILITY OF UNDERGROUND EXCAVATIONS IN JOINTED ROCK

4.1 Introduction

The first step in a rational support design method must logically be to predict whether or not a need for support actuaily exists. Rather than categorically stating that an excavation will or will not be stable if unsupported, it is more realistic to analyze a given situation by varying the values of the input parameters to determine those parameters to which the given excavation will be most sensitive. Using realistic values of the design parameters it can be determined if the excavation can be expected to stand unsupported or if support will be required. This type of investigation is typically found to be very sensitive to the input parameters, particularly those such as joint orientation and spacing, and the magnitude of the pre-existing stress field. Within the context of the expected variation of the parameters in the real situation it is then possible to make a qualitative statement about the stability of the excavation. This typically could be expressed in one of three ways: (1) within the expected variation of the input parameters the proposed excavation should be stable; (2) the expected variation in the input parameters indicates that the excavation may or may not be stable, suggesting a possible need for light supports; or (3), realistic variation of the input parameters indicates that the excavation will not stand unsupported, suggesting the need for heavier supports.

This chapter presents the results of numerous analyses of the
behavior of excavations in jointed rock in an attempt to determine which parameters had the greatest effect on the stability of the excavation. The models chosen for analyses are characterized by simple joint configurations and the behavior examined through the contact forces that exist between the blocks. This behavior is then interpreted in light of arching theory.

The term arch usually conveys the concept of a vaulted opening so that arching seems to describe the process by which the vaulted opening is formed. As used by Woodruff (1966), the term arching refers to the natural process by which a fractured material acquires a certain ability to support itself through the resolution of the vertical component of its weight into diagonal thrust. Arching theories examine the processes by which this stress transfer is accomplished.

Arching theories are based upon an analysis of beam behavior such as that presented by Woodruff (1966) which is illustrated in Figure 4.1(a). The analysis indicates that zones of tension and compression exist in the strata above the opening. In recognition of the fact that rock is relatively weak in tension, the lower row of the strata above the excavation is represented as being comprised of two independent blocks. The compressive forces which act to maintain the stability of the two blocks above the excavation are illustrated in Figure 4.1(b). The similarity of this force distribution to that of a three hinged structural arch is obvious; an analysis of excavation roofs in this manner is often termed linear arch analysis. As noted in Figure 4.1(b) no vertical force transmittal to the two roof blocks is assumed to occur. Thus
linear arch analysis, in this simple form at least, is an analysis of the lower row of strata only.

A significant portion of the results of this chapter are based upon the recognition of arching patterns in the Distinct Element calculated contact force distributions in the jointed rock surrounding an excavation. It is worthwhile then to briefly describe the origin of the contact forces and the manner in which the arches are recognized.

The contact forces represent the interaction between the blocks. A simple illustration is presented in Figure 4.1(c) where one block is shown on top of another; it is the upper block that is of interest. The weight of the block, shown as w in the figure is the force tending to cause movement. The interaction with the lower block leads to two contact forces which equilibrate the upper block weight. The contact forces are calculated from the overlap or interpenetration of the blocks as described in Chapter 2.8 and represent an equilibrium condition. The contact forces in more complex models are calculated exactly the same way.

The recognition of arching in the contact force distributions is based upon two observations. First, the arching phenomenon is indicated by the presence of relatively high magnitude contact forces. Arching involves diagonal thrust, but the vertical component of this thrust must be at least equal to the weight of the blocks being supported by the arch action. Since the arch thrusts typically form at low angles, the horizontal component of the thrust is usually large. The recognition of arching also is based upon the necessary

$T=$ Tension
C = Compression

Figure 4.1 (a) General distribution of stress in a beam over an opening; (b) self supporting linear arch model; and (c) contact forces due to weight of block.
continuity of the force distributions. In particular, a block which is in equilibrium can have no unbalanced forces acting on it. Thus, the occurance of high contact forces in a region of low contact forces can only be possible if some mechanism is acting to transfer these forces to a high stressed region.

The analyses presented in this chapter indicate interactions exist within the mass which are typically neglected by arching theory. The analyses also indicate trends suggesting which input parameters have the most effect on the stability of an excavation in jointed rock.

4.2 General Observations on Force Distribution Around Excavations

 in Jointed RockAn elastic analysis of the behavior of the rock surrounding an excavation invariably leads to the conclusion that the vertical stress component is transferrec to the rock on either side of the excavation resulting in a region of relatively low stress immediately above the excavation. This fact has been demonstrated many times in the past by using photo elastic models and recently by using Finite Element analysis. A typical plot of stresses surrounding an opening in an elastic medium is presented in Figure 4.2(a). Note that a zone of tension exists at the crown.

The Distinct Element method can be used to study the redistribution of stress due to an excavation in a jointed medium. As an example, consider the model of the roof of an excavation presented in Figure 4.2(b). Owing to the discontinuous nature of the vertical jointing, only blocks in the lower four rows are able, from a kinematic standpoint, to move into the excavation. The weights of all of the blocks, drawn to a common scale, are illustrated in Figure 4.2(c). All of the contact vector distributions for the jointed models illustrated in Figure 4.2 utilize the same force scale. Figure $4.2(\mathrm{~d})$ illustrates the redistribution of forces that occurs as the room is excavated. Analogous to the elastic model, the bulk of the stress is transferred to the material on either side of the excavation and a destressed, triangular zone is seen directly above the opening. The lower portion of the

(a)

(b)

Figure 4.2 (a) stress distribution in roof of opening in elastic medium; (b) model for behavior of jointed roof.

Figure 4.2 (continued): (c) block weights for jointed roof model; (d) force distribution in roof following excavation (overburden due solely to block weight).

Figure 4.2 (continued: (e) force distribution in roof due to block weight and additional load to simulate greater depth: (f) stress distribution in triangular wedge supported at lower corners.

(g)

Figure 4.2 (continued): (g) stress distribution in jointed roof
by Finite Element analysis.
triangular zone is seen to be in tension in the elastic case, whereas in the jointed model the absence of contact forces at the center of the bottom row of blocks indicates that the response of the jointed model is characterized by opening of joints. Furthermore, the pattern of compressional contact forces in the lower portion of the traingular zone indicates that an arch is forming and supporting the weight of the blocks within the triangular zone. The formation of this arch is discussed in section 4.3.3.

To investigate the effects of greater depth of the excavation, a uniform force was applied to the upper row of blocks in the model. Figure 4.2(e) is a plot of the stress distribution for the case where the applied forces correspond to a depth of excavation approximately ten times that illustrated in Figure 4.2(b). The same relaxed triangular zone characteristic of the low stress problem can be seen in Figure 4.2(e).

Comparison of the force distributions in the jointed models with that for the elastic case indicates that although arches are developing in both cases the support afforded by the formation of the arch is fundamentally different in the two cases. In the elastic case a single arch forms relatively high in the roof and the weight of the material in the destressed zone is supported through the development of tensional forces. The jointed models on the other hand develop two arches, one relatively high in the roof which delineates the destressed zone; and one that acts to support the lower strata.

This observation indicates a significant difference between the behavior predicted by elastic analyses and by the Distinct Element method. To determine to what extent the elastic behavior depended upon the continuity of the mass, several idealized models of roof behavior were analyzed, two of which are described here.

Figure 4.2(f) presents the results of a typical elastic analysis wherein the destressed zone was analyzed independently of the surrounding rock mass. The arch is still seen to form in the upper portion of the wedge of material and the material in the lower part of the wedge is in tension. This is in direct contrast to the behavior of the jointed masses analyzed by the Distinct Element method.

Figure $4.2(\mathrm{~g})$ presents the results of a Finite Element analysis where the destressed zone was bounded approximately by a series of joint elements. Once again, the resultant behavior is characterized by a high arch and tensional forces; no evidence of arching action in the lower portion of the destressed zone is seen.

The behavior of the roof above an excavation in an elastic medium is thus seen to be fundamentally different than the behavior of a similar excavation in a jointed medium. The next portion of this chapter presents the results of an investigation to determine the causes of this fundamental difference.

4.3 A Model for the Behavior of Jointed Mine Roofs

The analyses discussed in this chapter deal with the behavior of the roofs of excavations in a medium where jointing is vertical and horizontal. The models have been kept simple deliberately so as to gain insight into relationships among the various parameters. As the overall goal of this study is to demonstrate the usefulness of the Distinct Element method in the analysis of excavation in jointed rock, more effort has been expended on demonstrating the effect of varying the significant parameters than on developing a single, all encompassing equation purported to describe the behavior of mine roofs.

The majority of the analyses to be discussed utilize similar jointed models, but although the chosen models are realistic the limitations were not imposed by the Distinct Element method as such; the techniques presented in this chapter are equally applicable to any model configuration. Although outside the scope of this study it is easy to envision an eventual compendium of various model geometries that portrays graphically the differences in the behavior of models.

4.3.1 The basic model

The basic model used for analysis consists of a rectangular opening in a rock mass with continuous horizontal jointing and discontinuous jointing in the vertical direction as shown in Figure 4.3. This model does not consider the effect of joint inclination but does allow for variation of the span, aspect ratio of the hlocks and friction angle of the joint surfaces.

Figure 4.3 Jointed model upon which analysis was based. (0 is span width, w is block width, t is block thickness and h is height of the triangular wedge.

Figure 4.4 Diagramatic section of a roof fall (After Jones and Davies, 1929).

As justification for the use of the model a brief summary is given of four previous studies comprising theoretical calculations, laboratory as well as field observations and measurenents, which utilized a similar model or support the model.

1) Behavior of Coal Mine Roofs

Jones and Davies (1929) presented a summary of their observations of roof behavior in British coal mines. They found that roof falls were invariably limited in height, the majority of the falls extending from 3 to 10 feet upward; falls exceeding 15 feet in height were considered exceptional. Judging from their description of the mining methods, the drifts were from 12 to 18 feet wide. They also concluded that the canopy of the fall was typically stepped along the sides "in the manner of a stairway viewed from below". A diagramatic section from their paper is reproduced in Figure 4.4.
2) Loads on Tunnel Supports

On the basis of observations and measurements of timber crushing in railway tunnels, Terzaghi (1946) proposed a classification scheme for the estimation of the maximum probable load on tunnel supports. Figure 4.5 presents one of the models used by Terzaghi to illustrate his concept that in relatively thin strata with many joints a peaked roof will develop. According to Terzaghi a constant load with a height equal to the height of the peaked roof acts to load the tunnel supports.
3) Laboratory Investigation of Arching

Trollope (1966) utilized a physical model with continuous joints parallel to the roof and discontinuous jointing in the
perpendicular direction to demonstrate the behavior of an excavation roof. Like Terzaghi he concluded that in general, two zones may be identified within the immediate roof.

Figure 4.5 Maximum probable overbreak if no support furnished (Terzaghi, 1946)

Figure 4.6 Trollope's Block Jointed Model (Trollope, 1966)

The first is inherently stable; the other zone which he referred to as the suspended zone, corresponds roughly with Terzaghi's triangular zone. Whereas Terzaghi concluded that the material within the zone would load the tunnel supports, Trollope was more concerned with the development of arching and stability within the suspended zone. Trollope's model is shown diagramatically in Figure 4.6.
4) Theoretical Stability Analysis of Underground Openings Wang, Panek and Sun (1971) utilized Finite Element analysis techniques to determine the stress distribution surrounding excavations in a homogeneous medium. The maximum shearing stresses so calculated were then utilized in a Limit Equilibrium analysis to determine potential fracture surfaces. If the potential fracture surfaces were found to be unstable, they were termed critical. Although not directly applicable to problems of jointed rock, their results nevertheless indicate that the critical fracture surfaces define triangular wedges above the excavation. Possible and critical fracture surfaces calculated by their method for square and rectangular openings are illustrated in Figure 4.7. These plots indicate an expected maximum height of the triangular wedge of from 0.15 to 0.5 times the excavation width depending upon Poisson's ratio and the coefficient of internal friction.

4.3.2 Properties of the basic model

Referring once again to Figure 4.3 it can be seen that, by kinematic considerations, a triangular wedge of material is free to

Figure 4.7 Possible and critical fracture surfaces for square and rectangular openings. (Wang, Panek and Sun, 1971)
move into the excavation. The height of this triangular wedge (referred to by Terzaghi as overbreak and by Trollope as the height of the suspended zone) is easily calculated in terms of the excavation span and the thickness and width of the blocks defined by the jointing pattern.

The number of blocks (b) in the bottom row of the roof strata is given by:
$b=0 / w$
0 is the true span of the excavation
w is the block width
(Note that span is defined as illustrated in Figure 4.3)
Restricting the analyses to the case where all blocks are identical, it is easily verified that the height of the triangular wedge is given by:

$$
h=b \cdot t
$$

where: t is the block thickness
In terms of the aspect ratio of the blocks ($A=t / w$)

$$
h=0 \cdot A
$$

Equation 4.2 is plotted in Figure 4.8 as a family of curves representing the wedge height as a function of span for various aspect ratios; the block shapes are also illustrated for several values of the aspect ratio. The curves represent kinematic considerations only and indicate that increasing the aspect ratio of the blocks has the effect of increasing the height of the traingular wedge and thus, for a constant block width, the volume of material that tends to move into
the excavation. The curve corresponding to an aspect ratio of 0.5 is plotted more boldly since this is the equation for the height of the arch in stratified rock according to Terzaghi.

The graph is presented without units since the axes are consistent; that is, if the span is measured in meters, then the height of the wedge will be in meters.

Figure 4.8 Relationship between span width (0), and height of suspended zone (h) for various values of the aspect ratio (t / w) of the model illustrated in Figure 4.3. The aspect ratio of the blocks is graphically portrayed.

4.4 The Stability of Roofs in the Absence of Arch Development

The simplest model of roof behavior considered comprises excavations where the roof strata form a monolithic block and resistance to downward movement of the roof strata is provided only by frictional resistance acting along the vertical sides of the block. Owing to the complete absence of flexural deformation in this model, arching behavior is unable to develop. Typical geometries of the roof block are illustrated in Figure 4.9.

In models of this type, Limit Equilibrium principles are often used to develop the governing equation (see for instance, Szechy, 1970). The idealized force distributions shown in Figure 4.9 were used to derive a relationship between the horizontal thrust (H), the total weight of the roof block (W) and the friction angle (ϕ). In order to derive this relationship, an assumption regarding the relative magnitudes of the frictional reaction (R_{1}, etc.) must be made. To make the models illustrated in Figure 4.9 statically determinate two assumptions must be made: first, it is assumed that full frictional resistance is mobilized at all points of contact; and, second, it is assumed that the frictional resistance vectors are symmetric about the block. Under these assumptions, equilibrium principles can be used to derive the equation relating horizontal force to block weight and friction angle. This relationship is:

$$
H=1 / 2 \mathrm{~W} \cot \phi
$$

A number of monolithic roof geometries were analyzed by the Distinct Element method for purposes of comparison to equation 4.3. The results of these analyses are presented in Figure 4.10 where the joint plane angle of frictiun required for stability is plotted as

Figure 4.9 Limit Equilibrium models for roof behavior under frictional suspension.

Figure 4.10 Friction angle (7) required for stability as a function of horizontal force (H) and roof weight (W) in a non arching model.
a function of the applied horizontal force and the roof weight. The family of curves plotted in Figure 4.10 was generated using equation 4.3; it is readily apparent upon inspection of the figure that there is a high degree of correllation between the horizontal force required for stability as calculated by equation 4.3 and that calculated by the Distinct Element method.

In the derivation of equation 4.3 it was assumed that full frictional resistance was developed at sliding contacts and that the frictional resistance developed symmetrically. Figure 4.11 illustrates that this is indeed the case; the three representative geometries presented in the figure have rully developed frictional resistances and the symmetry is obvious. The reason that some of the contact forces point away from the sliding block and that some point toward it is due to the plotting convention of the listinct Element program. Since each contact point comprises two blocks, there must be a force acting on each block. The convention adopted is to plot the force corresponding to the edge upon which sliding is occuring.

Figure 4.11 Frictional resistance developed in no-arching models at onset of sliding failure.

4.5 An Examination of the Stability of Jointed Roofs

4.5.1 The Voussoir arch

The concept of an arch is of fundamental importance in the study of the way in which loads are transfered to the sides of an opening. Relatively large, unsupported spans in jointed rock can only be obtained if the major portion of the load due to the overlying strata is carried to the abutments through arches forming in the jointed rock immediately above an excavation. As an aid in visualizing the way in which an arch develops in jointed media, it is instructive to examine a particular type of masonry structure which utilizes arch principles to transfer gravity loads to abutments. This structure is known as the Voussoir arch and examples of this type of arch can be seen in the ancient Roman aquiducts and in the vaulted ceilings of European cathedrals. The Voussoir arch is still in common use today for purposes such as relieving the loads on a lintel over a window or for bridging the span of a road.

Despite the widespread usage of the Voussoir arch in masonry construction, the first rational attempts to quantify the behavior of the Voussoir arch did not appear until Pippard, Tranter and Chitty (1936) and Pippard and Ashby (1938) published the results of an extensive experimental study of the mechanics of the Voussoir arch. A significant outcome of their research was the observation that a Voussoir arch could be analyzed as a three hinged, and thus statically determinate, arch.

The analyses, performed by Pippard, Tranter and Chitty and Pippard and Ashby are significant to this present study for at least three
reasons:

1) the analysis was an attempt to quantify the behavior of a jointed medium;
2) the results of the theoretical studies were compared to physical models; and
3) the method of analysis introduces the general calculation techniques of linear arch analysis.

It would seem worthwhile, therefore, to devote some detail to the above mentioned work.

Figure 4.12 illustrates a Voussoir arch as it might occur as a structural element of a small bridge. Descriptive terminology for the various components of the arch is identified in the figure. The wedge shaped blocks which comprise the arch are individually known as voussoirs; they are usually disposed symmetrically about a central voussoir known as the keystone. Pippard and Baker (1948) summarized the earlier work of Pippard, Tranter and Chitty (1936) and Pippard and Ashby (1938) and noted that no single voussoir is more important structurally than any other and that a keystone is not an essential feature of the arch. The keystone is an aesthetic and traditional feature rather than a structural requirement; thus a Voussoir arch can be stable even with a central joint present.

As previously mentioned, the research of Pippard and his coworkers indicated that the force distribution in a Voussoir arch would be statically determinate, in the absence of fixity at the abutments, owing to the development of three hinges. For a symmetrically loaded Voussoir arch two of the hinges were seen to be loacted at the

Figure 4.12 A typical Voussoir arch application with component parts identified.

Figure 4.13 Nomenclature used in analysis of a non-symmetrically loaded Voussoir arch. For a description of identified variables see the text.
abutments with the third hinge at midspan if a central joint existed or on one of the faces of the keystone if it were present. For the case of non-symmetrical point loading the two abutment hinges developed as in the symmetrical case, but the position of the third hinge was initially variable, typically located somewhere on the extrados between midspan and the loaded voussoir. Increased load or abutment movement caused the position of the variable hinge to move closer to the loaded voussoir; when the hinge reached the joint next to the loaded voussoir on the midspan side, it did not change its position again until failure had occured.

The observations concerning the formation of hinges, coupled with the results of the other analytical and experimental studies performed by Pippard and his co-workers provide good data for checking the accuracy of the Distinct Element method as well as introducing the techniques of linear arch analysis which will be used extensively in this chapter.

The idealized model used in the present study is illustrated in Figure 4.13. The model arch is circular in shape and the abutments subtend an angle of 2θ. Hinges are assumed to develop at the abutments and at the extrados of the joint nearest the point of application of the external load W on the side nearest the crown. Each individual voussoir subtends an angle of 2δ and has a weight w. The voussoirs are numbered consecutively from 1 at the keystone to m at the abutment; thus the total number of voussoirs in the arch is $2 m-1$. In addition to the external load, the arch is also loaded by
its self weight. With respect to the non-abutment hinge, self weights of magnitude aw and bw act on the shorter and longer spans respectively, as illustrated in Figure 4.13. The points of application of the loads are located as follows: the external load W is applied at the centroid of voussoir number n; the longer span load is located at an angle ξ clockwise from the vertical; the shorter span load is located at an angle n counter clockwise from the hinge which in turn is located at an angle ϕ counter clockwise from the vertical. It is easily shown that for an odd number of voussoirs;

$$
\begin{align*}
& \eta=\xi=(m-n+1) \delta ; \\
& \phi=(2 n-3) \delta ; \\
& \theta=(2 m-1) \delta ; \\
& a=m-n+1 ; \text { and } \\
& b=m+n-2
\end{align*}
$$

For a Voussoir arch with an even number of voussoirs a slight modification must be introduced; the voussouirs are numbered consecutively from the crown joint starting with 1 and ending with m. Thus, these are 2 m voussoirs in the arch. The corresponding parameters are given by:

$$
\begin{align*}
& n=\xi=(m-n+1) \delta ; \\
& \phi=2(n-1) \delta ; \\
& \theta=2 m \delta ; \\
& a=m-n+1 ; \text { and } \\
& b=m+n-2
\end{align*}
$$

The analytical approach used by Pippard, Tranter and Chitty (1937) involved the determination of strain energies and application of Castigliano's theorems. This approach was necessary because they
were interested in displacements as well as forces and because they analyzed indeterminate as well as determinate arches. Since the present study is limited to three hinged arches which are statically determinate, a simpler analytical method has been adopted.

Equilibrium principles provide the means to determine the force distribution in a statically determinate structure and have been used to derive the following equations.

The horizontal force H induced by a point load of magnitude W applied at the centroid of voussoir n subject to the development of hinges in the manner previously described is found by the superposition of the horizontal force H_{w} due to the external load and the horizontal force H_{s} due to the self load. These horizontal forces are calculated by taking moments about the midspan hinge and using an equation expressing vertical equilibrium.

The horizontal thrust due to the self weight of the arch is given by:
$H_{s}=\left((\sin \theta-\sin \phi) L_{s}-a w(\sin (\phi+n)-\sin \phi)\right) \frac{1}{\cos \phi-\cos \theta} \quad 4.5$
The quantity L_{s} represents the vertical abutment reaction on the shorter span due to the self weight of the arch and is given by:
$L_{s}=((\sin \phi+\sin (\theta+n)) a w+(\sin \theta-\sin n) b w) \frac{1}{2 \sin \theta}$
The horizontal thrust due the applied point load is given by:
$H_{w}=\left[L_{w}(\sin \theta-\sin (\phi+\delta)-W(\sin (\phi+\delta)-\sin \phi)) \frac{1}{\cos \phi-\cos \theta}\right.$
4.7

The quantity L_{w} represents the vertical abutment reaction on the shorter span due to the point load and is given by:

$$
L_{w}=\frac{w}{2}\left(1+\frac{\sin (\phi+\delta)}{\sin \theta}\right)
$$

To demonstrate the validity of the above equations, several data points from Pippard and Baker (1948) are plotted in Figure 4.14a with the plotted curve representing the ratio of horizontal force to applied load, neglecting the self weight of the arch, given by equations 4.7 and 4.8. Since Pippard and Baker did not present their analytical expressions for the ratio of horizontal thrust to applied load, the parameters used in equations 4.7 and 4.8 were scaled from drawings in their paper. In light of this limitation, the fit of the data points to the theoretical expression can be described as quite good.

The Distinct Element method was used to analyze several Voussoir arches. The results of one of these series of tests are presented in Figure 4.14b. The theoretical curve presented in the figure represents the horizontal force due to an applied point load, incorporating the horizontal force due to the self weight of the arch, as given by equations 4.5 through 4.8. In this case, as in other Voussoir arches analyzed by the Distinct Element method, the test points fit the theoretical curve quite well, and suggest that the Distinct Element method is capable of reproducing the results of the physical model tests performed by Pippard and his co-workers.

Figure 4.14(a) Horizontal thrust developed due to an applied point load neglecting the self weight of the arch.

Figure 4.14(b) Horizontal thrust due to an applied point load incorporating the self weight of the arch.

To complete the discussion on Voussoir arches it is instructive to examine the force distribution in the arches for several cases as calculated by the Distinct Element method. The geometry of the arch and two force distributions for different positions of the applied point load are presented in Figure 4.15; also shown in the figure is the geometry of the arch at failure in response to increased load. Immediately apparent in both force distributions is the formation of the midspan hinge as evidenced by absence of contact force on one corner of the loaded block. Pippard and Ashby (1938) concluded that the position of this hinge was invariable once finite displacement of the abutments or sufficient loading had occured. As previously noted, the hinge always formed on the extrados of the arch on the midspan side of the block to which the point load had been applied; in all of the arches analyzed by the Distinct Element method the midspan hinge was seen to develop in the manner described by Pippard and Ashby.

The force distribution in the arch is also indicative of the way in which the failure of the arch ultimately occurs in response to increased loading. Examination of the force distributions in Figure 4.15 (b) and (c) show that in both cases the longer span is experiencing far less compressive force on the extrados than on the intrados. As the externally applied load is increased to induce failure, the geometry shown in Figure 4.15(d) develops. The increased load leads to the development of a fourth hinge on the arch at which point the arch collapses. The position of the fourth

Figure 4.15 Variation in force distribution with the position of the applied load, and the ultimate collapse of a Voussoir Arch.
hinge is not as predictable as the other three, and is complicated by the fact that slippage may occur along the sides of the voussoirs. The method of calculation of the critical external load, which involves trial and error procedures and is beyond the scope of this brief introduction to Voussoir arches, is discussed by Pippard and Baker (1948).

4.5.2 Arching conditions in jointed roofs

As early as 1885 (Jones and Davies, 1929) Fayol demonstrated that an arching action could occur in bedded roofs and would act to shield the immediate roof from the full weight of the overlaying material. The fact that the height of the dome formed when a mine roof failed was limited was taken by Jones and Davies as further evidence that arching action was occurring and acting to transfer the bulk of the vertical load to the adjacent pillars. At a later date, Evans (1941) proposed that arching was also occurring within the immediate roof in the manner of a Voussoir Arch.

Evans characterized the behavior of the lower strata in a mine roof as a jointed beam within which the stresses were distributed in the manner of a modified three hinged arch. As downward dispłacement of the beam occurs, the central joint opens in response to "bending" induced tension and the compressive forces are increased at the upper contact. The analogy to a three hinged arch is clearly seen in the postulated pressure distribution which is illustrated in Figure 4.1. Because the manner in which the forces are distributed
resembles the classical Voussoir arch, this type of analysis is often referred to as Voussoir beam analysis.

Evans' research, and that which followed, was concerned with the stress state and subsequent fracture of the strata within the immediate roof above the excavation and is not directly applicable to the present study. The concept of two separate pressure arches in the roof strata is, however, of interest.

In the discussions that follow, the pressure arch that carries the weight of the superincumbent strata to the sides of the excavation will be termed the ground arch; the lower arch that forms within the wedge of failing material will be termed the roof arch.

The analyses that form the basis for the discussion presented in this chapter indicate clearly that the stability of the roof of an excavation in jointed material is dependent upon the formation of the roof arch. In fact, the general pattern of force distribution in the basic model of this study is that illustrated in Figure 4.2(d). Most of the weight due to the overlaying strata is transferred to the abutments through the ground arch; the stability of the resulting destressed zone is maintained through the development of the roof arch in the lower strata. Specific departures from this general pattern were observed in those instances where the horizontal stress field was greater than that required for stability and in those instances where the block thicknesses exceeded some critical thickness. Both of these occurrences inhibit block rotations and thus the developinent of arching.

Although it may be argued that the geometry of the basic model forces the developinent of the ground arch in the manner of a corbel, the following examples demonstrate the formation of both arches even in those cases where the geometry of the blocks does not act to aid the formation of the ground arch.

Before proceeding with the discussion it is appropriate to mention a factor common to all of the Distinct Element models presented in this chapter. The horizontal stress field is modeled by means of loads applied at the centroids of the outermost blocks. Additionally, these blocks are modeled as having no frictional resistance to lateral movement. The result of this approach is tha\% the horizontal stress thus has the characteristics of a "following load"; the horizontal stress field always remains constant and is independent of lateral displacement. This simplification was necessary because the rigid blocks of the Distinct Element formulation do not allow blocks peripheral to the excavation to accomodate movement through elastic strain. If this approximation is not made, the modeled geometries are so stiff that failure does not occur. The analyses therefore cannot model the effects of varying the joint stiffness or of the dilatant properties of real joints. The analyses do, however, closely approximate the conditions modeled by linear arch analysis and are considered to be valid, though rudimentary, approaches to modeling the behavior of excavation roofs.

Figure 4.16(a) illustrates an example of the basic model; if complete failure were to take place, blocks from the lower six

Figure 4.16 Formation of the ground and roof arches in a vertically discontinuous jointed model.

Figure 4.17 Roof and ground arch development inhibited due to high horizontal forces.
rows would nove into the excavation. However, sufficient horizontal pressure is present so that the configuration is just stable. The distribution of contact forces is as illustrated in Figure 4.16(b).

Although examination of Figure $4.16(b)$ indicates that the middle joint in the lowest row of blocks has opened at its lower contact, the configuration of blocks is, nevertheless stable. The mechanism that is responsible for this stability is the development of the roof arch. The relaxed or suspended zone can be seen to extend upward roughly four-fifths of the span distance.

The magnitude of the horizontal force has a significant effect upon the behavior of the blocks in the lower roof. Figure 4.17 illustrates the same geometry as Figure 4.16(a) but in this case the horizontal force has a greater magnitude. The force distribution indicates that full contact is maintained across the central joint of the immediate roof and that stability of the roof is due solely to frictional support at the abutments in the manner of a monolithic roof.

Significant arching has not developed in this model but the amount of horizontal force necessary to prevent arch formation and thus support the roof by frictional resistance alone is approximately twice as large as that required for stability under conditions where the roof arch develops. It should be noted that if the lower roof comprised a single block, the amount of force required to stabilize the configuration by frictional resistance would be less than the case where arching develops.

Two examples where the jointing pattern does not involve
corbelling are included in this section. These examples demonstrate the development of both the roof and ground arch in two instances where the geometry of the rock nlass does not necessarily act to force the development of two arches. Figure 4.18(a) illustrates a model with continuous jointing in the horizontal and vertical directions subjected to a horizontal force just sufficient to maintain equilibrium. The resulting force distribution is illustrated in Figure 4.18(b); the behavior of the roof is again characterized by a relaxed zone extending upwards roughly two-thirds the width of the span. This zone is supported by the roof arch. The ground arch is clearly developed but not to the same degree as would be expected in the previous model, where the geometry of the model aids the development of the ground arch.

Figure 4.19(a) illustrates a model geometry with continuous vertical jointing but discontinuous jointing horizontally; as with the model shown in Figure 4.18, the continuity of the vertical jointing was expected to inhibit the formation of the ground arch and allow the mass to fail monolithically. The force distribution, however, indicates that once again, both the ground arch and the pressure arch have formed and led to the characteristic relaxed zone, although in this case the height of the relaxed zone extends only one-third of the span upwards into the roof.

The block movements that lead to the development of arches are primarily of a rotational nature. The rotations arise as the unequal forces on opposite sides of a block, which arise as the blocks move,

Figure 4.18 Formation of ground and roof arches in a continuously jointed model.

Figure 4.19 Formation of the ground and roof arches in a horizontally discontinuous jointed model.
cause a moment imbalance about the centroid of the block. In the case of a stable configuration, equilibrium is maintained through horizontal thrust whereas in an unstable configuration, the rotation can continue since sufficient equilibrating forces cannot be developed. Figure 4.20 illustrates a block geometry (a), the contact force distribution (b) and the block rotations (c) corresponding to the contact force distribution. Comparison of (b) and (c) indicates that: all significant rotation is occurring within the suspended zone; the magnitude of the rotational movement decreases with depth into the roof; and, contact forces within the suspended zone are primarily normal to joint surfaces even though this is where the most significant rotation has occurred. The development of the ground arch as seen in Figure $4.20(b)$ indicates that the suspended zone extends approximately four rows of blocks into the roof. The development of the roof arch can also be seen. Considering the relative magnitudes of the rotations of the blocks maintaining these arches, it is interesting to note that larger forces are developed in the ground arch even though the rotations are smaller. This is probably a reflection of the higher degree of confinement of the blocks maintaining the ground arch. The blocks adjacent to the excavation are free to rotate somewhat into the excavation. The next row of blocks upward thus has the freedom to rotate toward the excavation although not as much as the lower row. Successively less rotation is permitted until at the limit of the suspended zone, minimal rotation is occurring.

Figure 4.20 contact forces and corresponding block rotations.

(a)
condition at equilibrium

condition at failure

Figure 4.21 Development of block rotation as failure initiates.

As failure conditions develop, further rotation occurs as can be seen in Figure 4.21. The most significant change in rotation occurs in the lowermost row where the magnitude of the rotations of the inner two blocks of the lower row remain constant but those of the outer two blocks increase to a value greater than that of the inner blocks. This deflection then allows the blocks in the next row upward to deflect and rotate, effectively moving the loosened or suspended zone upward.

4.5.3 The development of arching in single layer models

The development of arches in mine roofs is often explained by recourse to simple models from linear arch theory (e.g. Woodruff, 1966) such as those illustrated in Figure 4.23. The force distribution in this type of model is that of a three hinged arch and can be readily deduced as the model is statically determinate. Consider the left hand side of the symmetric model as illustrated in Figure 4.22, vertical equilibrium shows $V=W$, and moment equilibrium about point a shows:

$$
H=\frac{W O}{4 t}
$$

Figure 4.22 The Linear Arch Model

(b)

Figure 4.23 Typical block models for linear arching study.

This force distribution represents a limiting condition; as vertical deflection of the beam causes the contact at the lower face to be broken, the value of the lever arm t decreases and thus an increasing value of H is required for stability.

Analyses by the Distinct Element method of several linear arch models is summarized in Table 4.1 and indicates that Equation 4.9 may be used to predict the horizontal thrust required for stability in certain instances. These data show that equation 4.9 is correct for low aspect ratios of the blocks but loses validity as block thicknesses increase and friction coefficients of the joints decrease. For larger block thicknesses and lower friction coefficients, the horizontal thrust required for stability is found accurately by equation 4.3 which is repeated here for convenience:

$$
H=W / 2 \cot \phi
$$

Analysis of the force distribution at failure provides insight into this discrepancy. Figure 4.24 illustrates the force distribution at failure in models C, A and D. Figure 4.23(a) illustrates conditions at failure for model C with $\mu=0.5$. Full frictional resistance is mobilized on the abutment joints and compression is transmitted across the lower contact of the mid span joint. Although arching is developing, failure is by sliding along the abutment joints. Figure 4.24 (b) illustrates the force distribution for model A with $\mu=1.0$. Arching is fully developed as evidenced by the absence of force transmittal at the lower mid span joint contact. An important distinction in this case is the fact that frictional resistance is

Table 4.1 Sumary of linam hrch Mojels

Fodel	Friction Coefficient μ	Predicted Failure Loads		Observed Side Load at Failure	Observed Failure liode
		Arching ${ }^{4}$	Sliding		
A^{1}	. 25	500	280	$500{ }^{2}$	Arching
	. 5	500	140	507	Arching
	1.0	500	70	500	Arching
B	. 25	500	550	$550{ }^{3}$	Sliding
	. 5	500	280	500	Arching
	1.0	500	140	500	Arching
C	. 25	500	1120	1710	Sliding
	. 5	500	560	550	Sliding
	1.0	500	280	490	Arching
D	.25	500	2580	2550	stiaing
	. 5	500	650	650	Sliding

Notes: 1 Geometry of models
Model A $t=25,0=700,2$ block linear arch model Model B $\mathrm{t}=50,0=700,2$ block linear arch model Model C $t=100,0=700,2$ block linear arch model Model $0 t=225,0=700,8$ block, voussior beam

2 Difference i_{1} calculated side load for arching models is typically less than 2%.

3 Difference in calculated load for sliding models is typically loss than 1%.

4 Equation 4.1 may be rewritten by recognizing that W is a function of t and $0\left(W=t * \frac{0}{2} * d i\right.$; substitution leads to (densily, $d=1$) $H=\frac{0^{2}}{8}$ and thrust is thus independent of block thickness.

Figure 4.24 Force distributions in linear arch model (force scale from Figure 4.23).
not fully developed along the abutment joints. The vertical component of the abutment reaction is equal to the weight of the roof block while the horizontal component is equal to the horizontal thrust required to maintain stability against arching (equation 4.9).

This fact permits the calculation of the critical friction coefficient that delineates arching failure from frictional sliding in the linear arch model. Consider an opening of span 0 , with the roof blocks having thickness t, and weight W per block. From linear arch theory, the thrust developed during arching is:

$$
H=\frac{W 0}{4 t}
$$

The critical friction angle (ϕ crit) is the inverse tangent of the ratio of the block weight and the thrust force:

$$
\phi \text { crit }=\tan ^{-1}\left(\frac{4 \mathrm{t}}{0}\right)
$$

If the friction angle of the joints is greater than this critical value, sliding cannot occur and failure, if it occurs, will be by true arching. On the other hand, if the friction coefficient on the joints is less than this critical value, sufficient frictional resistance cannot be developed and failure occurs by sliding.

Equation 4.10 is plotted in Figure 4.25; this figure may be used to determine if, for a given span and block thickness, failure will be by true arching or by slippage with only partial development of arching conditions. The equation has been found to be correct for all linear arch models analyzed.

Figure 4.25 Critical friction angle as a function of excavation span and block thickness (span and thickness must be in consistent units).

4.5.4 Arching in multilayered models

In the preceeding section relationships were developed that were found to predict accurately the horizontal thrust required for stability and the failure mode for the single layer, linear arch or Voussoir beam model. The application of these relationships to multilayered models has not been as successful. Figure 4.26 illustrates a summary of stability conditions for a number of tests of the basic model geometry. Whereas in the linear arch model, comprising a single layer of blocks, errors in the predicted failure load were less than 2% for arching failure and less than 1% for sliding failure, the corresponding errors for the multilayer cases were as much as 40% for arching cases but still less than 1% for sliding cases. Pertinent data of the multilayer tests are summarized in Table 4.2.

It is prudent at this time to digress momentarily to discuss the origin of the data presented in Table 4.2. In a typical stress analysis the relationship between the parameters can be expressed as an equation and a unique answer obtained by some solution technique (viz. inverting the stiffness matrix in a Finite Element analysis). In the Distinct Element method, as in other nonlinear explicit methods, the problem geometry is defined, the boundary conditions are specified and subsequent motion of the blocks is observed; equilibrium occurs as the force distribution converges to a situation where the relative accelerations of the blocks approaches zero. In terms of the problem at hand this means that a set of

Table 4.2
Summary of Multilayer Arching Tests

01	t	$\underline{\square}$	W	Predicted side loads (H) at Failare ${ }^{2}$					Obscrued Side lodjs (H) at Fallure ${ }^{4}$					observed failure Node
				Arching	$\underline{1}=1.0$	$H^{=0.5}$	$\underline{y}=0.3$	$1=0.25$	$4 \mathrm{crit}^{3}$	$\underline{\mu} 1.0$	$\underline{1}=0.5$	$\underline{y}=0.3$	$\underline{\mu}=0.25$	
700	20	1	106	460	53	100	176	-	0.11	55	105	175	-	5,5,5
700	20	2	106	460	53	106	-	212	0.11	385	425	-	465	A,A,A
700	20	3	110	480	55	110	185	-	0.11	440	470	515	-	A, A, A
100	20	4	110	480	-	110	193	-	0.11	-	540	650	-	-, A, A
750	20	6	120	560	60	120	-	240	0.11	650	725	-	800	A, A, A
700	40	2	230	500	115	230	-	460	0.23	300	315	-	415	A, A, A
700	50	4	290	420	-	290	-	-	0.29	-	575	-	-	-, A, -
700	50	2	285	500	143	285	-	570	0.29	475	560	-	600	A, A, A
600	50	2	230	345	115	230	-	-	0.33	300	350	-	-	A, $A_{\text {a }}$ -
600	40	4	196	360	-	196	-	-	0.25	-	300	-	-	-, $A_{\text {, }}$ -
500	50	2	180	225	90	180	-	-	0.40	200	225	-	-	A, A_{0} -
450	25	4	85	190	43	85	-	170	0.22	150	175	-	200	A, A, A
805	100	2	610	570	305	610	-	1220	0.50	325	625	-	1225	S.5,5
800	100	1	610	570	305	600	-	1220	0.50	305	615	0	1210	S,S,s

Notes: 10 is the true span, t is block thickness, b ts number of blocks in lower row of strata and W is total welght of blocks in lower row. All dimensions are consistent computer units.

2 Predicted side loads (H): Arching fallure load from equation 4.9, 5 ifding failure loads, for various values of friction coefficient μ from equation 4.6.

3 Critical friction angle delinedting sldaing ard arching, equation 4.10.
4 Load (H) observed at failure in Distinct Element model for several tests of same geometry.
5 Osserved mode of failure (S - sliding. A - arching) for each of the tests of same geometry. Columns correspond th high, mediun and low value of joint friction coefficient. "-" indicate, no test data for that value of μ.

- failure by arching
- failure by sliding

Figure 4.26 Summary of multilayer arching tests (all dimensions in computer units).
boundary conditions is applied and the program allowed to run until it is determined that the geometry is stable. The boundary conditions are then incrementally modified and again the program is allowed to run. This iteration is then continued until failure occurs. Thus, each data point on Figure 4.26 represents a limiting condition deduced by a minimum of four or five conputer runs.

The problem of determining equilibrium conditions is discussed further in Appendix B.

Tabulated in Table 4.2 are predicted side loads for stability obtained by Equation 4.9 for arching conditions and by Equation 4.6 for sliding conditions. The observed loads at failure are also tabulated and comparison indicates a general divergence from the predicted values. Nine of the tests developed sliding failure modes and are indicated by a circular symbol in the plot of Figure 4.26; the remainder of the tests developed full arching failure modes and the data points are seen to follow the general trend of the linear arch model as represented on Figure 4.26 by the square symbols.

In those tests where failure was by frictional slippage, the side loads were typically within 2% of the value predicted by Equation 4.6; the indication being that in those cases where full arching does not develop, Equation 4.6 may be used to assess the stability of a mine roof. For those tests where stability is dependent upon full development of the roof arch however, the error relative to the predicted side loads ranges from about 5% to 40% with the average error equal to approximately 17%. The only consistent trends in the errors are that the error increases with
the number of blocks in the lower row and that for a fixed geometry the error either increases or moves from negative to positive as the friction angle increases.

Analysis of the linear arch, single row models led to the calculation of a critical friction angle (Equation 4.10) that was found to predict accurately the dividing line between failure by arching and failure by sliding along the abutment joints. The tangent of the critical friction angle for each of the multilayered block tests is also tabulated in Table 4.2; several instances can be found in the table which illustrate discrepancies between actual and predicted failure modes with arching failure modes developing in several instances where the critical friction angle concept predicted a sliding failure mode.

Examination of the data indicates that failure by full development of the roof arch is more likely to occur than failure by sliding along the abutment joints. Exceptions to this observation were found only in those i. iances where the development of the arch was somehow constrained. Specific conditions that lead to failure by slippage were the expected case where the main roof was monolithic and arching could not develop, and cases where the block thickness was relatively large and the main roof comprised only two blocks. In these instances the horizontal load at failure could be predicted accurately in terms of the block weights by the use of Equation 4.3:

The most noticeable departure from the observed behavior of the single layer linear arch models was concerned with contact force distribution along the lower row of blocks. In the single layer models, failure always initiated as the central contact along the lower face opened; as noted earlier, this was the expected behavior since the deflection of the blocks reduced the moment arm of the horizontal stabilizing force resulting in increasingly unstable conditions. This phenomonon is, however, not indicative of the behavior of the multilayer models.

The conditions preceeding failure in the multilayer models are characterized by two common features. First, loss of force transmittal across the lower contact of the midspan joint is not indicative of failure. Frequently, significant horizontal force reduction after the joint opens is required before failure occurs. The second general behavior pattern that was recognized concerns the distribution of contact forces in the immediate roof. Figure 4.27 presents a typical multilayer model and a section of its contact force distribution. The blocks are in equilibrium but a reduction in the horizontal thrust of approximately 10% would lead to failure; this is a typical force distribution of a multilayer model at stress conditions slightly greater than those at which failure occurs. Three characteristics of the force distribution in multilayer models have been noted in all models tested and are indicated in Figure 4.27 by the letters A, B, and C. The characteristics are:
A) absence of force transmittal across the lower contact of the mid span joint
B) minimal vertical transmittal within the suspended zone, especially to the lower row of blocks
C) the development of an additional contact force where the blocks adjacent to the abutment rotate into the next upward level of blocks

The second characteristic is to be expected in light of the model; the corbelling effect of the blocks outside of the suspended zone acts to lessen the span over which the next row of blocks must be supported. In this particular case, the span is decreased by 25%, the weight to be supported is decreased by 25% and the required horizontal force to just maintain equilibrium is 45% of that which is actually being applied. This simple calculation neglects the vertical force transmittal which is occuring to the second row of blocks, but the fact that the thrust applied to the second row of blocks is almost twice that required for stability indicates why the deflection of the second row is small compared to that of the lower row and thus why no vertical force transmittal occurs to the lower row.

The other two observations, A and C, are closely related and provide a reasonable explanation as to why the behavior of the multilayer models depart from the linear arch model. Figure 4.28 is a schematic representation of the two blocks on the left hand side of the lower row of blocks in Figure 4.27(a) based on the contact force distribution of Figure 4.27(b). The linear arch model is based upon the contact force distribution illustrated in Figure 4.22; comparison of these two figures indicates that the model used

(a)

(b)

Figure 4.27 Contact force distribution in lower rows of multilayer model.
for the development of the linear arch equation is not valid for the multilayer cases. As the lower row of the multilayer model deflects some rotation of the blocks occurs and leads to the developinent of a shearing resistance along the top of the block. The same phenomenon was observed in the Goodman and Bray Limit Equilibrium Model of toppling behavior of rock slopes (section 3.6). In the Goodman and Bray model the corresponding force was taken as zero; although this may be valid for the low degree of confinement that exists in near surface problems, the stress conditions surrounding an underground excavation dictate an elastic interaction of the blocks. Two blocks cannot just "sit" next to each other but must act to transmit relatively high forces across their boundaries. Thus, as the block attempts to rotate it is resisted not only by the mid span contact force but by an additional shearing resistance as well. This observation explains the reason for the inability of the linear arch model to predict accurately the horizontal load at failure: the linear arch model simply does not consider all of the forces present. The presence of an additional shearing resistance also explains how stable conditions can be maintained even though the lower contact of the mid span joint is broken. In section 4.3.5 it was noted that in the linear arch model, once this contact opened, the governing equation dictated that failure must occur. The presence of the additional force acting on the block tends to maintain equilibrium in a manner not accounted for by the linear arch model.

Unlike the linear arch model, the force distribution presented
in Figure 4.28 is statically indeterminate. To develop an equation relating span, block thickness, joint spacing, block weights and friction coefficient would require that two assumptions be made concerning the forces. The logical assumptions would be to assume the development of full frictional resistance of the two contacts experiencing shear. However, in the majority of tests run, full frictional resistance was not seen to develop at either contact. Rather, the Distinct Element method can be used to study each model on an individual basis and develop relationships not subject to arbitrary assumptions regarding the force distributions.

Figure 4.28 Force distribution observed during arching in multilayer models.

4.6 Use of Results in Design

The results from the previous Distinct Element runs can be expressed in a way that may be useful for design plaposes. The two examples presented below utilize the data of Table 4.2 to derive empirical relationship between parameters. These relationships are characterized by errors in the order of 4% rather than the 40% error experienced when using linear arch theory to predict the horizontal thrust.

The first example derives a relationship between the horizontal force required for stability, the number of blocks in the bottom row, (a factor which is analogous to joint spacing) and the friction angle of the joints, in models similar to those shown in Figure 4.3. The excavation width and the block thickness are constant in this analysis. The data points, which represent the failure conditions for 11 test models, and the associated linear trends are plotted in Figure 4.29. The linear trends in the figure are members of a family of curves represented by the equation

$$
H=314.3-59.5 \tan \phi+(87.3-19.3 \tan \phi) b
$$

with all dimensions expressed in consistent computer units. Also included in the figure is a horizontal dashed line which represents the value of horizontal force necessary to maintain roof stability as calculated by linear arch theory. The data point.s corresponding to a monolithic lower roof $(b=1)$ are included on the plot and are scen to deviate from the trend of Equation 4.11; the frictional resistance relationship (Equation 4.6) predicts these values

irn 4.29 Linear relationship between horizontal force, number of blocks in the lower row and joint friction angle (constant span and block thickness).
correctly.
For a constant span and block thickness, linear arch theory predicts that the value of horizontal thrust should be a constant and does not consider the effect of friction. The actual data indicate that a linear relationship exists between horizontal thrust, joint spacing in the roof and friction angle of the joints.

The data values indicate that the side force required for stability increases both as the joint spacing decreases and as the friction coefficient of the joints decreases.

The second example illustrates a relationship between the horizontal force required for equilibrium, the joint friction coefficient and the excavation span for models of the type illustrated in Figure 4.3. In this example the models have a constant block thickness and are characterized by a single midspan joint. The linear nature of the relationship can be observed in Figure 4.30. The linear trends plotted in the figure are members of a family of curves represented by the equation:

$$
H=190 \tan \phi-540+(1.59-0.48 \tan \phi) 0
$$

and fit the data with a maximum error of approximately 2%. All dimensiond quantities are in consistent computer units.

The dashed line included in the figure is the value of side load predicted by linear arch theory. The required horizontal force for stability is seen to increase with span as predicted by linear arch theory but the linear arch theory does not take account of the fact that an increase in the joint friction angle reduces the horizontal

A $\mu=0.25$
() $\mu=0.50$
血 $\mu=0.99$

Figure 4.30 Linear relationship between span, horizontal force and joint friction angle (constant block thickness and one midspan joint; all dimensions in computer units).
load required for stability. This reduction is due primarily to the additional shearing resistance provided by the layer interactions.

4.7 Summary

The stability of excavations in jointed rock was seen to be governed by mechanisms of stress transfer which resulted in a zone of relatively destressed material above the excavation. This destressed zone was observed in the analyses of openings in elastic material as well in the analyses of openings in jointed masses, but the fundamental behavior was different. The elastic anaiyses indicated that a ground arch formed and transfered the overburden load to the abutments, but that the destressed zone was simply "hanging" on the rock comprising the arch and thus experiencing tensile stresses. The analyses of the behavior of the jointed masses indicated the formation of the ground arch as in the elastic case, but suggested that the stability of an excavation in jointed media was attained through the development of a second arch, the roof arch, in the strata inmediately above the excavation. The roof arch was observed in all stable geometric configurations except for those cases involving high horizontal stresses and those cases involving large block thicknesses. In the first case the high horizontal stresses prevented the block rotations necessary to form the arches and stability was maintained by frictional suspension of the mass along the vertical joints. In the second case, the block thickness, relative to the excavation span, reached a point at which the arch development was constrained and failure of the mass was by sliding along the joints. It was found that the transition between arching and sliding behavior could be predicted accurately.

The Distinct Element obtained solutions for single layer, self loaded, jointed beams were compared to a linear arch theory neglecting the compressive strength of the rock and the lateral stiffness of the abutments; agreement of the data with theory was quite good. When the single layer, linear arch theory was compared to multiple layered models, however, agreement of the data and theory was poor. The discrepancy was seen to be due to layer interactions, not accounted for in the single layer model, acting in a manner that increased the horizontai thrust on the abutments.

A Limit Equilibrium solution for the observed contact force distribution was calculated, but discarded since the contact vectors were seldom observed to be at fully developed frictional resistance. Instead, the data was examined in order that the significant parameters and the relationships between them could be isolated. Two main conclusions could be drawn from the data. First, there is a linear relationship between the span and the horizontal thrust required for stability of the mass. However, in contrast to linear arch theory, the models examined by the Distinct Element method indicated that this relationship involved the joint friction coefficient. This was observed to be due to interactions between the lower two layers and not a resultant of slipping along the vertical joints at the abutments.

The second identified relationship indicated that the horizontal thrust was a function of the joint spacing, expressed as the number of blocks in the lower row of strata, and the joint friction coefficient. The significance of this observation lies in the fact that linear arch theory does not account for an effect due to joint
spacing. The data indicate that as the number of blocks in the lower row of strata increases from two to six, the horizontal stress required for stability almost doubles; linear arch theory, on the other hand, predicts that this horizontal stress should be a constant va?.!e.

To keep a proper perspective, it must be noted that the analyses described in this chapter were performed with a restricted behavior model possessing infinite strength and regular jointing. More sophisticated linear arch theories account for load transfer between layers and the compressive strength of the material. The real situation in bedded roofs involves crushing of the rock which can change the length of the moment arm used to calculate the horizontal thrust in the linear arch theory. It must be concluded that it may be invalid to criticize linear arch theory or the basis of the analyses just described. The analyses do indicate, however, that mechanisms act in jointed rock that perhaps should be implemenied in a comprehensive linear arch theory.

CHAPTER V

AN ANALYSIS OF SUPPORT REQUIREMENTS OF EXCAVATIONS
IN JOINTED ROCK MASSES

5.1 Introduction

In a historical review of tunnel construction, Szechy (1970) states that the oldest known tunnel other than those associated with mines is, according to present knowledge, over 4000 years old. This tunnel was constructed in Babalonia during the reign of Queen Semiramis to underpass the River Euphrates. The length of this tunnel was over 1 km and it had a cross-section of 3.6 m by 4.5 m . Although built by cut and cover methods, elements of the structure demonstrated (viz. a vaulted arch for the roof) that the Babylonians possessed considerable skill in tunnel construction, most likely gained from experience in previous tunneling ventures. To fully emphasize the significance of this undertaking, Szechy notes that it wasn't until 1843 that the next subaqueous tunnel, that crossing the River Thames in London, was opened, almost 4000 years later.

Significant increases in the magnitude of the scale of projects typically undertaken in underground excavation have not been accompanied by, or for that matter, preceeded by analytical techniques capable of explaining the complex behavior of the structural system comprising the rock mass and the support system. The design of tunnel or excavation support systems are routinely guided by empirical and observational rock load prediction schemes. It is universally acknowledged that the use of these schemes results in
an overdesign, but the majority of research undertaken today seems not to be directed toward understanding the mechanisms responsible for the behavior of an excavation but toward somehow strengthening the position of the empirical methods through the acquisition of additional data. This approach has helped to identify the parameters to which support design is most sensitive, but the fact that excavation support design is highly site dependent does not obviate the need for rational methods for the prediction of support pressures.

This chapter presents the results of analyses of jointed rock masses which utilize the Distinct Element method to characterize the interaction of a jointed rock mass with a support system. The vehicle chosen to quantitatively express this interaction is a ground reaction curve. A ground reaction curve is simply a plot of the support force necessary to maintain the stability of a rock mass as a function of displacement of the rock mass. The utility of the ground reaction curve in support design is that it typically yields information about the optimum time of support emplacement as well as the magnitude of the force the supports must resist.

Previously, ground reaction curves have only been calculated by continuum based methods; the rock was assumed to be broken but the representation of the behavior was by a plastic or elasticplastic constitutive relationship.

The Distinct Element formulation provides the research tool necessary to investigate load-deflection relationships in a medium where the deformation is controlled solely by the jointing. The ground reaction curves presented in this chapter indicate a
relationship between required support force and the geometric parameters defined by the excavation dinensions and the joint spacings. This data was also compared to predictions made by several of the empirical methods in an attempt to determine if any correlation could be found.

5.2 The Estimation of Rock Loads for Support Design

5.2.1 The conrept of a ground reaction curve

As an introduction to the discussion of the various methods commonly in use to design reinforcement schemes in tunnels it is prudent to discuss a theoretical concept which provides a means to quantitatively describe the behavior of the rock mass as it is disturbed by an excavation. This concept is concerned with the in eraction of the material surrounding the excavation and the support system emplaced to ensure stability. The behavior of the material is described by a ground reaction curve relating the force required to stabilize the mass to the deformation of the edge of the excavation. As an illustration of the concept, an example (Deere et al., 1969) describing a ground reaction curve for a soil mass is presented.

The basis for establishing the stress for which a tunnel lining should be designed is illustrated in Figure 5.1 where the average radial stress on a circular tunnel lining is plotted as a function of the average inward radial deformation of the tunnel wall. The point A illustrated in the figure represents the average radial stress befor excavation occurs.

If the radius of the tunnel lining were steadily decreased, the load on the tunnel lining would decrease in accordance with a relationship describing the stress-strain-time characteristics of the soil. If the soil were elastic the relationship would be linear as shown in the figure by the dashed line $A E$; for the more likely case that the material is inelastic, the relationship could
resemble the curve $A D$. This relationship is termed the ground reaction curve. The form of the ground reaction curve cannot be calculated exactly but may be approximated in several instances of practical importance on the basis of field observations coupled with theoretical investigations.

As the tunnel excavation approaches a given cross-section, the soil deforms radially toward the tunnel and axially toward the working face. By the time the working face has reached the crosssection an average radial deformation, of magnitude u_{1} has already occurred. If the tunnel lining was placed in contact with the soil at this point in time and was capable of preventing any further deformation of the soil mass, the average stress in the lining would be B as indicated in the figure. If further inward deformation of the tunnel walls occurred before the lining was placed, say of magnitude u_{2} illustrated in the figure, the radial stress would be C.

In reality, the tunnel lining will itself undergo a radial deformation of small magnitude before stability is obtained. The effect of deflection of the lining may be estimated by a curve of its force-displacement behavior, which can be called a support reaction curve, such as the curve F in the figure. The final load on the tunnel lining is given by the intersection of the ground reaction curve and the support reaction curve taking cognizance of the fact that a certain amount of deformation of the tunnel walls has occurred before the installation of the tunnel lining. The
final strass in the tunnel lining is thus C and the deflection of the lining is u_{ℓ}. Note that the deflection of the tunnel wall is actually given by the sum $u_{1}+u_{2}+u_{\ell}$.

figure 5.1 Interaction of soil and tunnel lining (after Deere et $\mathrm{Al} ., 1969$).

The dimensioning of tunnel supports, as with any structure, requires a fairly accurate knowledge of the magnitude of the loads to be resisted by the supports. From an economics viewpoint, it is preferable to be able to estimate support requirements on the basis of exploratory drilling footage but it is certainly acceptable to be able to modify the support design based upon observations at the working face. The fact that tunnel designers have been unsuccessful in using the first method probably explains the present trend toward instrumentation of underground construction.

This is not meant to imply that there has been a lack of proposed analytic models to explain observed rock pressure and displacement; rather the major problem with the analytic models is that they lack portability. A truly general design method would have to include all possible factors such as, mass condition, material type, construction method and type of reinforcement. Since the full implications of the many factors involved, and particularly their interactions, are not presently understood, analytical techniques are typically confined to examination of a single one of the factors. This is precisely why there are no comprehensive tunnel design-load specifications anywhere in the world and why they are compiled for each particular project on the basis of prevalent conditions.

The particular factor which is of interest in this study is the rock load for which the tunnel supports should be designed. The methods commonly in use at the present time to determine the

rock pressure in the vicinity of underground excavations typically possess the characteristics of one of three categories: approximate methods based upon the extent of upbreak; theories based upon theoretical stress conditions in the rock mass; and theories based upon displacement and equilibrium assumptions. The methods which directly incorporate the jointing of the rock mass tend to be empirical rather than analytical and typically are based upon or related to the amount of upbreak above the excavation. The following brief survey of tunnel support design methods for jointed masses thus emphasizes those methods based upon the extent of upbreak. Several design concepts which do not directly include the jointing of the mass are also incorporated in the survey because they introduce concepts which are pertinent to the ensuing discussion.

The origin of the practice of dimensioning tunnel supports to resist a given amount of upbreak is usually attributed to Bierbaumer (1913), whose observations were based upon the failure of timber supports. Table 5.1 lists the values of roof pressure to be expected in various types of material. This table is frequently attributed to Bendel (1948) who actually attributes it to "others". The most significant aspect of Bierbaumer's observed rock pressure values is that they are independent of width of the excavation.

A more widely known method of estimating support loads based upon expected upbreak is that of Terzaghi (1946). Terzaghi based his estimates of the intensity of rock loads on the failure of

Table 5.1 Observed support loads: Bierbaumer

	Roof Pressure$P_{v}\left(t / m^{2}\right)$		Temporary tindar support		Remark
Rock material	At outbreak	After completion of drift		Degree of stressing	
Rock, more or less blocky	0	8-12	Skeleton lagging, light	0 to insignificant	Loosening pressure smali
Very seamy rock, cemented conglomerate, soft rock, with small overburden height	10	30-35	Skeleton lagging, solid	Small	Loosening pressure increasing at the moment of outbreak not. perceivable
Heavily fractured rock (roof breakdown), rolling gravel and conglomerate	15-25	30-40	Tight, strong lagging	Mean	Bigger pressures perceivable simultaneously with outbreak. Ensuing of equilibrium condition. very prolongated
Loose rock under heavy pressure (eventually in saturated condition). Bigger overburden height	25-35	40-60	Very tight. sol id	Considerable	Stabilization of pressure conditions very difficult
Loose and soft (pseudosolid) rock under heavy pressure. Very big overburden height	40-60	100-150	Very tight. lagging and strong hard-wood sill-beams	Going up to rupture	Stabilization possible only after the completion of very protracted deformations (months even years: Karawanken tunnel)

Table 5.2 Rock load guidelines: Terzaghi

Rock load H_{p} in feet of rock on roof of support in tunnel with width $B(f t)$ and height $H_{t}(f t)$ at depth of more than $1.5\left(8+H_{t}\right)$

Rock Condtion
Rock Load H_{p} in feet

1. Hard and intact
2. Hard stratified or schistose
3. Massive, moderately jointed
4. Moderately blocky and seamy
5. Very blocky and seamy
6. Completely crushed but chemically intact
7. Squeezing rock, moderate depth
B. Squeezing rock. grest depth
8. Swelling rock
zero
0 to 0.58
0 to 0.258
$0.25 B$ to $0.35\left(B+H_{t}\right)$
$(0.35$ to 1.10$)\left(B+H_{t}\right)$
$1.10\left(8+H_{t}\right)$
$(1.10$ to 2.10$)\left(3+H_{2}\right)$
(2.10 to 4.50$)\left(8+H_{2}\right)$

Up to 250 ft . Ireispoce tive of value of $(0+1!)$

Remarks
Light lining, required only if spalling
Light support.
Load may change erratically from point to point.
No side pressure.
Little or no side pressure.

Considerable side pressure. Softening effect of seepage towards bottom of tunnel requires either continucus support for lower ends of ribs or círcular ribs.

Heavy side pressure, invert struts required. Circular ribs are recomended.

CIrcslar rits required. In extreme cases use yleldía suppret.
wooden blocks of known strength inserted between the individual members of timber sets. The Terzaghi load estimates are summarized in Table 5.2. Note that the magnitude of the loads are dependent upon the tunnel dinensions as well as the presence or absence of groundwater.

Stini (1950) also presented estimates of the rock load due to upbreak which are presented in Table 5.3. Like Terzaghi, Stini's loads are dependent upon tunnel geometry, but whereas Terzaghi described the time lag between excavation and final load (bridge-action period) as typically of the same order of magnitude as the excavation cycle time, Stini noted that much longer time periods elapsed before full loads came on the supports.

Modifications of Terzaghi's basic classification scheme are frequently found in the literature and attest to its one time high degree of acceptance. For example, a report by the California Department of Water Resources (ENR, 1959) details cost data for 99 tunnels designed by a slightly modified version of Terzaghi's basic design loads.

A major effort to add a quantifying descriptor to Terzaghi's rock load classification is due to Deere et al. (1969) and Deere et al. (1970). The pertinent data from Deere et al. (1969) is summarized in Table 5.3. An easily measured field index properly, R.Q.D. is correlated to both Terzaghi's and Stini's classification scheme. This correlation provided the means to "objectively" select the proper load class.

Table 5.3 Rock Loads and Classification

$$
V-12
$$

The effect of jointing and faulting on tunnel support loads was emphasized by Cording et al. (1971) and Cording and Deere (1972). They noted ihat triangular wedges could form above the crown due to adverse joint orientation and attempted to calculate the required support pressure as a function of shearing resistance along the sides of the wedge. Later work by Cording and Mahar (1974) noted that the kinematics of the situation dictated that at least one surface of the wedge should separate from the rock mass. The equivalent rock loads they presented, which are summarized in Table 5.4, do not assume any shearing resistance in the mass but are simply the pressure due to the total weight of the wedge.

The practice of designing tunnel supports on the basis of the amount of upbreak assumes that the rock has no inherent strength and that there is no real interaction between the support and the failing mass. One recent trend in tunnel support design focuses on methods which take advantage of the strength of the mass and which incorporate mass/support interaction. The brief survey of recent work is presented only to enumerate these concepts.

The "New Austrian Tunnelling Method" described by Rabcewicz (1964) is a relatively recent construction technique for minimizing the loads on tunnel supports. In the method, a thin layer of shotcrete is applied to the tunnel walls as soon as is possible following excavation in order to prevent degradation of the rock mass and thus maintain its strength. However, as Wagner (1970) has noted, the proper use of the method requires detailed knowledge of

Table 5.4 Rock loads due to crown wedges

$\begin{gathered} \text { (-) } \\ \text { OIP } \\ \text { ANGLE } \end{gathered}$	$\begin{aligned} & \text { (} \theta \text {) } \\ & \text { HALF } \\ & \text { ANGLE } \end{aligned}$	(ne) MEIGHI of EQUIVALENT ROCK LOAD	MINIMUM CONDITION for fallure	
$0^{\circ} \cdot 30^{\circ}$	$90^{\circ} \cdot 60^{\circ}$	(0 - .15)8	Both planes wavy, offist	
$30^{\circ}-45^{\circ}$	$60^{\circ}-45^{\circ}$	(.15 - .23)8	One planewavy ar affisel: One plane smooth to slightly wavy	
$45^{\circ}-80^{\circ}$	$45^{\circ} \cdot 30^{\circ}$	(.25-.45)	One plone sheated, continuous and planar: One planeslighily wary	
$60^{\circ} \cdot 75^{\circ}$	$30^{\circ} \cdot 15^{\circ}$	(.45-1.0)8	Both planet sheared, continuaus and planar	
75° - 90°	$15^{\circ} \cdot 0^{\circ}$	- 1.08	Lew lateral stresses in arch; Surfaces plonar, smooth, passibly open, or progressive failwre aided by separation alang lowangle joints	

From Cording and Mahar (1974)
the rock properties and behavior.
Daemen, Fairhurst and Starfield (1969), Daemen and Fairhurst (1973) and Daemen (1977) stress the need to consider both the complete force/deformation behavior of the rock mass and the interaction of the support system with the surrounding rock mass. Daemen (1977) presents ground reaction curves based upon a continuum analysis of an excavation surrounded by a zone of broken material possessing a residual strength. The method employed involved the determination of the pressure to be applied against the excavation surface to achieve stability; one resultant curve, typifying a material with low residual strength, is presented in Figure 5.2. This figure contains several interesting features. The line labeled $k=\infty$ represents a material characterized by a sudden loss of strength after the peak strength is reached; note that the implication of this type of behavior is that support pressure is independent of mass deformation. This is analagous to the "dead weight" loading characteristic of the design methods based upon amount of upbreak. A second interesting feature of the figure is the two lines, labeled $k=0$ and $k=0.1$, corresponding to materials exhibiting perfectly plastic post peak behavior. The implication of this type of behavior is that the ground will stand unsupported; in a 15 foot diameter tunnel the strain at the cessation of deformation corresponds to a displacement of approximately 0.1 inches.

Finally, the shape of the intermediate curves lends analytical support to the practice of placing the supports early. The

Note: The parameter " k " describes post peak behavior. $k=0$ is a plastic post peak behavior while $k=\infty$ is an immediate drop to a residual strength in the post peak region.

Figure 5.2 Ground reaction curves from continuum analysis of rock with low residual strength (Daemen, 1971).
application of shotcrete immediately after excavation allows the support/mass system to equilibrate at the minimum point of the ground reaction curve.

A similar approach, presented by Fanek, Dixon and Mahtad (1975), was based upon a Finite Element analysis and included the effect of joint orientation. Their work indicated that the support pressure was more sensitive to joint orientection and joint slippage than to failure of the intact rock mass.

Dixon (1971) noted the importance of including the confining influence of the rock mass on the supports and produced a Finite Element model of the support system which was iteratively used to determine the forces in the support system. The forces were the resultant of the application of independently obtained active loads and the passive resistance of the rock mass. Orenstein (1973) adopted a similar procedure using a frame model loaded by independently obtained active loads. The passive resistance of the rock mass was modeled as a spring at each blocking point characterized by a support modulus. Neither of these approaches truly models the interaction of a rock mass and its support system since the input parameters are determined independently. Typical of the methods that do model the interaction of the mass and support is that of Daemen (1975). With this model Daemen studied the progressive development of failing material surrounding an excavation and effects of support variation. His conclusions, however, stress the need for instrumentation programs to verify this type of calculation.

The other recent trend in tunneling practice has been to collect design data from actual projects, isolate common features of the design, and attempt to categorize this data by statistical manipulation so that it can be extrapolated and used for design of new projects. The attractiveness of this method in terms of the present study is that jointing of the rock mass plays a central role in all of these classification schemes.

Abel (1966) combined geologic mapping of the Straight Creek tunnel pilot bore with a 1 imited number of support load measurements to produce a set of design charts for prediction of rock load elsewhere in the tunnel. The method was judged to be successful but Abel noted that the results might not be applicable in other locations.

A classification scheme described by Kruse, et al. (1970) related the design of pressure tunnels to the different types and quality of rock encountered during excavation. In this particular application qualitative visual criteria were related to the deformation modulus of the rock mass. Abel's (1966) classification was adopted but the authors stressed that the usefulness of a classification scheme depended upon unambiguous definition of the input parameters.

Wickham, Tiedemann and Skinner (1972, 1974), Bieniawski (1973), and Barton, Lien and Lunde (1974) present conceptually similar classification schemes for aid in the selection of tunnel supports. The classification systems are based upon (respectively): general area geology, joint orientation and spacing, and ground water and joint condition; RQD, weathering, strength, joint spacing and
orientation, joint separation, joint continuity, and ground water; and, RQD, number of joint sets, joint roughness and alteration, ground water and adverse stress conditions. All of the classification systems are relatively simple to use, utilizing data that should be routinely collected during pre-construction investigations. The methods give similar answers and can, in fact be correllated to one another (Bieniawski, 1976).

At this time it is prudent to summarize briefly those portions of the preceeding discussion which are particularly significant with respect to the present study. The majority of the methods commonly used to design support systems in jointed rock are based upon the observation of isolated failures and the extrapolation of successfully designed support systems. There is certainly nothing wrong with extrapolating previous design data to proposed ventures provided that the basic behavior mechanisms of the rock mass and support system are similar. The most significant objections to this approach are that overly conservative designs could easily propagate and that extrapolation requires a complete understanding of the pertinent geologic properties, the mass behavior, and the function of the support system.

Analytic models of the rock mass and support system provide results that indicate that the interaction of the mass and support is a significant parameter relative to the final equilibrium state. It must certainly be proper to utilize a continuum approach to study a highly stressed situation where the rock mass is failing uniformly, but there is no real evidence to suggest that this
particular representation is valid for lower stressed situations where the primary deformation takes place along pre-existing discontinuity planes. In fact, the continuum analyses that have incorporated jointing in the mass indicate that the support load is more sensitive to slippage along the joint planes than to the failure of the intact mass.

The present trend of extrapolation based upon qualitatively observed parameters and instrumentation provides a useful and practical approach to the problem of tunnel support design. However, the use of these classification schemes should be guided by rationally applied analytic models wherever possible. It is precisely in this context that the Distinct Element metrod is used in the remainder of this chapter. In particular, ground reaction curves are presented for several realistic models in an attempt to provide a guiding rationale for the continued use of the classification schemes.

5.2.3 Calculation of the potential ultimate roof loads in the jointed mass model

The discussion presented in Chapter 4.3 introduced a simple model for the behavior of the roofs of rooms excavated in a medium where the jointing was assumed to delineate blocks of a col tant aspect ratio. The orientation of the joint planes was limited to either horizontal or vertical; additionally, the jointing in the vertical direction was assumed to be discontinuous. Subject to these restrictions, it is possible to describe a particular
excavation/joint configuration in terms of three geometric parameters: the true span (0); the aspect ratio of the blocks (block thickness (t) divided by block width (w)); and the height of the triangular zone (h) which delineates that material for which unrestricted movement into the excavation is kinematically possible. These geometric parameters are noted on the diagramatic section of an excavation in a jointed mass illustrated in Figure 5.3(a). The volume of material which kinematically can undergo a finite, as opposed to an infinitesimal, displacement into the excavation is outlined and indicated in the figure.

As noted in Chapter 4.3, the number of blocks (b) in the bottoin row of the roof strata and height (h) of the zone of potential finite displacement are given respectively by:

$$
b=0 / w
$$

and

The geometric parameters of the model can also be used to determine the total weight of the material within the triangular zone of potential finite displacement. This quantity is of interest since it represents the maximum load on the support system if the downward displacement of the triangular zone is sufficient to cause loss of transmittal of vertical force across the boundary between the triangular zone and the overlaying strata.

The total weight (L) of material within the triangular zone is easily calculated in terms of the total number of blocks (B) comprising the zone. For a unit thickness normal to the plane of the paper and a given weight density (d), the total weight within the zone of potential finite displacment. of the basic model
illustrated in Figure 5.3(a) is:
$L=B \cdot t \cdot w \cdot d$
The t tal number of blocks within the zone of potential finite displacement is related to the true span of the excavation and the block width. In fact, it is the quotient of these two parameters, the number of blocks in the bottom row, that leads to a simple expression for the total number of blocks in the triangular zone. The total number of blocks in the triangular zone is the sum of the number of blocks in each of n rows of blocks in the zone:
$B=b+(b-1)+\ldots+(b-n+2)+(b-n+1)$
The terms on the right side of the equal sign in equation 5.3 are the terms of an arithmetic progression

$$
a_{n}=a_{1}+(n-1) d
$$

where a_{1} is the first term,
a_{n} is the nth term, and
d is the common difference
The properties of the basic jointed mass model are such that:

$$
\begin{aligned}
& a_{1}=b, \\
& a_{n}=1, \\
& n=b, \text { and } \\
& d=-1
\end{aligned}
$$

The total number of blocks in the triangular zone is given by the sum of the first n terms of this arithmetic progression:

$$
B=\frac{b}{2}(b+1)
$$

The total weight of material within the zone of potential finite displacement is thus:

$$
L=\frac{b}{2}(b+1) \cdot t \cdot w \cdot d
$$

In terms of the true span of the excavation:

$$
L=\frac{0 t}{2}\left(\frac{0}{w}+1\right) d
$$

Equation 5.8 was used to obtain the five sets of curves presented in Figure 5.3. Each family of curves represents a constant block width while each curve within a family represents a different block thickness. The thickness values increase in an upward direction. The calculations were performed using a weight density of 150 pcf; all length dimensions are thus in feet. Since equation 5.8 is linear with respect to density, the curves may be corrected for any desired density simply by multiplying the load by the quotient of the desired density, in pounds per cubic foot, and 150 pcf.

The graphs illustrated in Figure 5.3 should be used with caution since the model upon which they are derived is based upon integer values of the number of blocks in the lower row. Although the curves give a seemingly proper value of the load for non-integer values of b, the jointed model is only defined for those instances where the span is an integer multiple of the block width. It must also be noted that even though the complete curves have been plotted in all cases, the model is also undefined in those instances where the true span is less than the block width. This cutoff point has been indicated on the abscissa of each plot by a small triangle; the curves are not valid for the basic model to the left of this
cutoff point.
The graphs of Figure 5.3 indicate that the total weight of the triangular zone increases parabolically with span and that for a given block width and span, increasing the thickness of the blocks leads to an increased load. On the other hand, for a constant span and thickness, increasing the width of the blocks decreases the loads on the supports.

By a suitable choice of variables it is possible to plot all of the data of Figure 5.3 as a single linear relation between dimensionless variables. This plot is presented in Figure 5.4. Although this plot lacks the utility of Figure 5.3, its value is due to the fact that it is valid for any consistent set of units. For example, consider an excavation in a medium with a weight density of $26 \mathrm{KN} / \mathrm{m}^{3}$ and jointing in the manner of the basic model leading to blocks of thickness 0.5 m and width 1.5 m . The aspect ratio of the blocks is thus 0.33 . For an excavation 12 m in width, the true span (0) is 10.5 m ; the number of blocks in the bottom row of the roof strata, which is the ratio $0 / w$; is thus seven. Referring to Figure 5.4 an ordinate value 4.0 corresponds to an abscissa value 7.0. The potential ultimate load corresponding to a finice displacement of the triangular wedge can be determined by multiplying the known parameters out of the ratio. The load is thus $4 * 10.5 \mathrm{~m} * 0.5 \mathrm{~m} * 26 \mathrm{kN} / \mathrm{m}^{3}$ or 546 KN per meter of excavation length.

Figure 5.3 Ultimate potential load to be resisted by supports for basic jointed roof model: (a) basic model; (b) bloch width $=1$ foot;

Figure 5.4 Dimirısionless linear relationship between span, block width, block thickness, density and potential ultimate load.

5.2.4 The use of displacement controlled fixed blocks to generate ground reaction curves

A ground reaction curve is a particular example of the nonlinear stiffness behavior of a jointed rock mass which can only be determined in reality by a succession of measurements. These measurements reflect the changing relationship between the load to be resisted by the supports and the inward displacement of the rock mass. Since the force sum acting on a spatially fixed block is automatically calculated by the Distinct Element program, a spatially fixed block can be utilized to determine the magnitude of the support force necessary to stabilize a failing rock mass. A value so determined is of use because it is a point on the ground reaction curve but this information is of much more value if the complete ground reaction curve can be determined.

The solution to the problem of determining a complete ground reaction curve by the Distinct Element method requires that some type of automated control mechanism be incorporated in the model to vary the position of the load indicating block.

Analogous to a laboratory testing frame, there are two basic governing control mechanisms: force control, which requires a freely moving block; and displacement control which requires a spatially fixed block. Both mechanisms require that a small block be placed against the strata in the manner illustrated in Figure 5.5(a) and (b).
ro implement the force controlled testing machine, the force
on the load indicating block is reduced by some amount. The net result of this action would be an acceleration, due to the excess load imposed by the strata, of the load indicating block away from the strata, continuing until equilibrium of the system was again achieved. In practice, there are two serious drawbacks to the implementation of a force controlled testing machine. The first problem is concerned with inertial effects. Beginning at point (l) on the ground reaction curve illustrated in Figure 5.5(c), a force reduction of magnitude ΔF should again reach equilibrium at point (2); however, the inertia of the system could cause the jointed mass to temporarily experience the conditions at point (3). Since the applied force is higher than that required for equilibrium, the load indicating block will move toward the strata. Owing to the highly non-linear stiffness behavior of a jointed mass, it is likely that this reloading will follow a different behavior curve than the unloading curve. In the case illustrated, the reloading curve is stiffer than the loading curve, and the mass comes to equilibrium at point (4) instead of point (2). The result of this is that instead of the true ground reaction curve (1) - (2) - (3), the data would indicate curve (1) - (4) as being the ground reaction curve.

The second problem that would be encountered would occur if the ground reaction curve had an upswing such as the segment of the curve (6) - (7) in Figure 5.5(c). The postulated force controlled testing machine would continue to lower the force applied
to the load indicating block and thus, equilibrium could not be reached.

A displacement controlled governing mechanism is not foolproof either. Although not subject to the inertial effects of the freely moving block utilized in the force controlled testing machine, the displacement control of a fixed block can also lead to incorrect results. One point of interest, which is addressed later in this chapter concerns the interaction of the support and the rock mass. If the presence of a support force affects the development of arching within the rock mass, then a large displacement step could pull the support away from the rock mass and all interaction between the support and the rock mass would cease. One consequence of this type of action is illustrated in Figure 5.5(d). If, indeed, arching does occur and stabilize the rock mass so that the generated ground reaction curve is (1) - (2) - (3) - (8) as illustrated in the figure, the displacement steps must be small enough so that the support-mass interactions are faithfully modeled. It is possible that the presence of the support tends to inhibit roof arch development; if this is indeed the case, then the true ground reaction curve would be (1) - (2) - (3) - (6) - (9). This problem will not arise if the displacement steps are small enough.

It might be noted that the mechanism of unfixing a block and letting it move to a new position before refixing it does not lead to an acceptable solution. The force sum acting on the fixed block is a large quantity relative to the weight of the fixed block. Thus when the fixity of the block is removed, high acceleration would
tend to make the now free block undergo a large displacement. This of course, could lead to the same problem illustrated in Figure 5.5(d).

The actual mechanism incorporated in the Distinct Element program is the displacement controlled fixed block. The routine modifies the low order (high precision) part of the fixed block centroid coordinates. Displacements in the x coordinate direction and the y coordinate direction are specified as well as the number of cycles between displacement steps. Once the displacement control mechanism is enabled, it will continue to incrementally move the load indicating block, until the control mechanism is disabled. In this manner, the displacement control mechanism functions as a testing machine with the output being a ground reaction curve for the rock mass in question. In actual use, however, the mechanism is disabled at frequent intervals to ensure that the mass/support system reaches equilibrium before continuing the displacement of the load indicating block.

(a)

(c)

(b)

(d)

Figure 5.5 Mechanisms for obtaining ground reaction curves for jointed rock mass (a, b and d) and generalized force displacement curve (c).

5.3 Support Requirements in the Absence of Arch Development

In order that the development of the ideas presented in this chapter be complete, it is prudent to examine the support requirements for the simple monolithic roof model presented in Chapter 4.4. Recall that owing to the absence of flexural deformation in the model, arching behavior was unable to develop and stability of the single block was achieved by frictional resistance acting along the vertical joints. For those situations where the magnitude of the horizontal force acting on the block is insufficient to prevent failure of the roof through downward movement of the block, equilibrium, and thus the integrety of the roof, can only be obtained by the application of an external force.

The Limit Equilibrium models utilized in Chapter 4 can easily be modified to incorporate an external force or the resultant of an external support pressure; the modified models are illustrated in Figure 5.6(a). The assumptions of symmetry of the frictional reactions and the full mobilization of frictional resistance lead to an equation of vertical equilibrium which is given by:

$$
P=W-2 \tan \phi
$$

where: $\quad P$ is the external support load;
W is the weight of the block
H is the total horizontal thrust; and
\ddagger is the angle of sliding friction of the joints.
If the support load and horizontal thrust are normalized with respect to the weight, a diminsionless form of equation 5.9,

(b)

Figure 5.6 (a) Limit Equilibrium models of roof behavior under combined frictional suspension and external force. (b) external support requirement for stability of frictionally suspended roofs.

$$
\frac{P}{W}=1-\frac{2 H}{W} \tan A
$$

is obtained. This equation is plotted in Figure 5.6(b) for various values of tand. As was expected, the magnitude of the external support force decreases with increasing horizontal thrust; the decrease is more rapid for higher joint friction angles.

A number of unstable, monolithic roof geometries were modeled using the Distinct Element method for purposes of comparison to equation 5.10. In these models the external support load required for stability was either applied to the centroid of the roof block or applied to the centroid of a small block placed at midspan on the bottom of the roof block specifically for this purpose. There was no discernable difference in the results obtained by the different methods. Examination of Figure 5.6(b) reveals a high degree of correlation between the Limit Equilibrium solution and those calculated by the Distinct Element method.

The basic model dealt with in this study forms an inverted "staircase" in the roof when failure occurs (see Chapter 4.3). The geometric relationships relating total roof load to the span of the excavation and the aspect ratio of the blocks formed by the jointing which were developed in the preceeding section can be used to determine the magnitude of the parameter W in equation 5.9. Bearing in mind the fact that the roof is monolithic it is still possible to calculate a ficticious aspect ratio for the joints that form the vertical sides of the roof block. Thus equation 5.7 or 5.8 may be used to determine the total weight of the roof. If the support
force is assumed to be some percentage (K) of the total roof load and if in addition, the total horizontal thrust (H) is expressed as the height of the arch (h) multiplied by the horizontal stress $\left(\sigma_{h}\right)$, then K is given by the relation:

$$
\begin{align*}
& K W=W-2 H \tan \phi \tag{a}\\
& K=1-2 \frac{0 \frac{t}{W} \sigma_{h} \tan \phi}{\left(\frac{0^{2} t}{2 w}+\frac{0 t}{2}\right) d} \tag{b}\\
& K=1-4 R /(0+w)
\end{align*}
$$

The stress factor (R) is defined as

$$
R=\frac{\sigma_{h} \tan \phi}{d}
$$

All of the above mentioned parameters are illustrated in Figure 5.8.
Figure 5.7 illustrates the relationship between the percentage of the roof load to be supported (K), the true opening width (0), the stress factor (R) and the block width (w). The three separate graphs correspond to different values of w, chosen to represent: a high fracture frequency or a low RQD ($w=2 \mathrm{in}$.) ; a moderate fracture frequency or RQD ($w=10 \mathrm{in}$.) and; a low fracture frequency or a high RQD ($w=25 \mathrm{in}$.). The curves demonstrate an increase in the percentage of support required corresponding to an increase in block width; this reflects the fact that for any given block thickness, an increase in the block width tends to make the roof block assume a rectangular rather than a triangular shape. The percentage of support required also decreases with increasing horizontal stress

Figure 5.7 Percentage of total roof weight (k) to be supported as a function of true opening (0) for varying block width (w) and stress factor (R).
(σ_{h}) or friction coefficient. (tan ϕ) or decreasing material density (d). This fact is expressed by the stress factor (R) which is also incorporated in the graphs shown in Figure 5.7.

Equation 5.12 can also be used to determine the maximum unsupported span length for the model illustrated in Figure 5.8 simply by solving for the situation where there is no required external support force ($K=0$). Under these stipulations, equation 5.12 becomes:

$$
0+w=4 \frac{\sigma_{h} \tan \phi}{d}
$$

The quantity $0+w$ is the excavation width (S) illustrated in Figure 5.8; the figure also presents a plot of excavation width (S) as a function of horizontal stress (σ_{h}) for different values of $\tan \phi$. This figure can be used to determine the maximum expected horizontal span for a monolithic roof failing by slipping along vertical joints in the presence of a horizontal stress field.

The model under consideration does not incorporate failure by arching but it is of interest to know if the maximum span predicted by equation 5.6 exceeds the span at which failure by arching would occur. This can be determined for the simple case of a rectangular roof comprised of two blocks, since the rigid block analyses of single layer model arching developed in Chapter 4.5.3 indicated that a clearly defined boundary between failure by sliding and failure by arching could be determined for a multi-block, single layer model. In terms of maximum unsupported spans for a two block rectangular
roof, equation 4.3 may be rewritten:

$$
0=2 \frac{\sigma_{h}}{d} \tan \phi
$$

Likewise, equation 4.9, which relates horizontal thrust to span may be rewritten:

$$
0=\sqrt{8 \frac{\sigma_{h}}{d} t}
$$

It is thus possible, at least in the simple case of a roof comprised of two rectangular blocks, to determine if the calculated maximum unsupported span exceeds the approximate value of the span at which failure occurs by arching.

Equations 5.15 and 5.16 are actually the dividing lines that separate zones of stability and instability; in the first case the equation del ineates that zone where sliding will occur and in the second case, the equation delineates that zone where failure will be by arching. Equations 5.15 and 5.16 have been plotted in Figure 5.9 with horizontal stress plotted as a function of span, various values of the joint friction coefficient have resulted in a family of curves, inclined at about 25 degrees from the span axis, that delineate the zones of sliding failure. Similarly, various values of the block thickness have resulted in the family of curves, at the steeper inclination, that delineate the zones of arching failure. When plotted on the same figure, these two equations thus delineate four zones, indicative of the condition of the roof, that are dependent upon the block thickness and the joint friction

Figure 5.8 Maximum unsupported spans (s) for non-arching model as a function of horizontal stress (σ_{h}) and friction coefficient (μ_{1})
coefficient. To use Figure 5.9 the curve corresponding to the block thickness and the curve corresponding to the friction coefficient are selected. The point corresponding to the span and horizontal stress will then lie in one of four zones. The zones correspond to complete stability, failure by sliding, failure by arching, and failure by sliding and arching. These zones are illustrated in

Figure 5.9 for the particular case $t=2$ feet and $\tan \phi=0.5$.

Figure 5.9 Conditions for failure by arching or sliding for the illustrated roof geometry.

5.4 An Investigation of Support Requirements in Jointed Roofs

5.4.1 Jointed mass behavior representation by means of ground reaction curves

The brief survey of design concepts presently in use to aid in the dimensioning of tunnel supports indicated that the majority of the methods that recognize the rock mass as a jointed discontinuum are of an empirical nature and are often criticized for their failure to account for the interaction of the support system and the rock mass. However, the fact that the older amount of upbreak or dead weight loading schemes (Bierbaumer, Terzaghi and Stini) are based upon observations, admittedly crude, of pressures acting on installed support systems indicates that there is at least some partial measure of the support/mass interaction incorporated within them. The same is true of the newer schemes (Wickman, Tiedeman and Skinner, Bieniawski, and Barton); the design pressures are based upon actual installed support data supplemented by instrumentation data where it was available. Thus the interaction of the mass and support system is incorporated in these schemes even though it is not somehow explicitly expressed as one of the basic input parameters.

Conspicuous in its absence, however, is analytical substantiation of the required support loads predicted by the empirical schemes for those instances where the failure of the rock mass and the resulting loading of the support system is governed by the presence of distinct planes of weakness, such'as joints and
faults, within the rock mass. The Distinct Element method provides the mechanism to investigate the behavior of jointed masses which are controlled by the behavior of the joints. Additionally, the implementation of the displacement controlled testing mechanism described in Chapter 5.2.4 provides the data necessary to quantitatively describe the behavior of the jointed rock mass as it interacts with a simple support system.

The Distinct Element method has been used to study the support requirements of numerous excavation roofs which possess the joint pattern characteristic of the basic model utilized in Chapter 4. These characteristics are regular, continuous jointing in the horizontal direction and regular, discontinuous jointing in the vertical direction. Once again, this is a plane strain model and the aspect ratio of the blocks for a given problem is a constant. The results of this investigation are presented in this section by means of several ground reaction curves which are representative of the observed responses.

The results presented in Chapter 4 indicated that the stability of the roof of an excavation in jointed rock was most sensitive to the magnitude of the horizontal stress. It follows logically, therefore, that an investigation of the support requirements of excavations in jointed media should be concerned with the effect of horizontal stress on the ground behavior as expressed by a ground reaction curve relating the total load acting on the support to the vertical deflection of the support.

The models analyzed in this chapter are subject to the limitations of those described in Chapter 4, namely highly idealized joint behavior and a simplified mechanism for modeling the horizontal stress. The joints are modeled as planar and do not possess cohesion. The tendency of construction procedures such as blasting is to destroy the cohesion of the joint surfaces near the excavation. This, coupled with the fact that the models portray the behavior of failing masses leads to the conclusion that the analyses are valid in terms of the cohesive strength of the joints. The fact that the joints are considered to be planar, however, does detract somewhat from the validity of the analyses. Real joints are non-planar; perfectly mating rough surfaces can only be forced to slide relative to one another if they are free to move apart. This dilatancy leads to increased mass strength for if the joint separates two confined blocks, the only way relative movement can occur is if shearing of the rock mass takes place. As noted in Chapter 4.5.2, the horizontal stress field is modeled as a constant load, owing to the rigid nature of the blocks in the Distinct Element formulation. Under a constant load situation strength increases due to dilatancy do not occur. The analyses presented in this chapter are probably only realistic for problems where dilatancy does not play a significant role. Near surface excavations with relatively open or infilled jointing are examples of such a situation.

Figure 5.10 presents two ground reaction curves for the six
meter wide excavation illustrated in the figure. Part (a) of the figure illustrates the ground reaction curve for a case where sufficient horizontal stress exists to stabilize the mass in the absence of externally applied support. The ground reaction curve reflects this fact indicating that a value of the roof deflection of approximately five centimeters, the load acting on the supports is zero. The second ground reaction curve illustrated in the figure represents a situation where the magnitude of the horizontal stress field is insufficient to stabilize the mass without the introduction of external support. The parameter W, indicated on the ground reaction curve, is the total wight of the material within the zone of potential finite displacement described in Chapter 5.2.3. W is thus that yuantity which was previously termed the potential ultimate roof load. The form of the ground reaction curve suggests that as deflection of the roof continues the required support force approaches a constant value, and that this value is given by the potential ultimats of load W.

A similar situation 1 four meter wide excavation where the blocks have a significantly lower aspect ratio (0.4 as opposed to 1.5 for the first case) is presented in Figure 5.11. As before, the two ground reaction curves represent the situations where sufficient stabilizing horizontal pressure is present (part a) and the case where external support is required for stability for the roof (part b). However, in this case, the ground reaction curve in the first part of the figure represents the behavior of the mass where the applied horizontal stress is

(a)

Figure 5.11 Ground Reaction Curves for fin Wide Excavation: (a)Stabilizing Horizontal Stress; (b) Insufficient Horizontal Stabilizing Stress.
not significantly higher than the value where failure would occur if no support system was present. The end result is the same as that seen in higher stress situations presented for the six meter wide excavation. The support requirements drop to zero at a roof deflection of approximately three cm , but in the case of the four meter wide excavation there is a noticeable kink in the ground reaction curve occurring at the value of the load corresponding to the potential ultimate roof load. This probably reflects the need for finite displacement to occur before rotation of the blocks can devleop the arch necessary to stabilize the roof. The second part of the figure presents the ground reaction curve for the situation where the horizontal stress alone is insufficient to stabilize the mass. Again, the behavior of the roof indicates that the support requirements approach a constant level with increasing deflection of the roof. Note that the value of the required support resistance is again given by the potential ultimate roof load W.

The tendency for the ground reaction to indicate a constant value of the required support force was observed in the majority of the cases examined. Exceptions to this observed behavior were rare; one example will be presented shortly. The three ground reaction curves presented in Figure 5.12 are representative of a number of calculated mass responses and indicate that the rock load for which supports should be designed is represented fairly accurately by the potential ultimate roof load. Figure $5.12(a)$ and (b) both represent situations of insufficient horizontal stabilizing force for a

Figure 5.12 Ground Reaction Curves for a 16 meter Wide Excavation Illustrating the Consistancy of Constant Support Load with Decreasing Horizontal Stress and Friction Coefficient.

Figure 5.12 Continued.

16 meter wide excavation; part (b) nowever, represents a situation of much lower horizontal stress. The general shape of the ground reaction curves is, nevertheless, similar. The third ground reaction curve also represents low stress conditions but indicates the effect of increasing the friction coefficient of the joints. As can be seen, the same constant load requirement emerges. The major effect of the higher friction coefficient is to decrease the rate at which the ground reaction curve drops to the final, constant level. This is also representative of other cases observed; an increase in the friction coefficient has little effect on the ultimate support requirement.

The three curves presented in figure 5.12 also indicate a characteristic decrease in the support load requirements with further roof deflection. This decrease in required support was observed most. frequently in problems involving blocks with a low aspect ratio. This behavior typically corresponded to roof deflections of the order of 10 to 20 percent of the block thickness and is indicative of bed separation occurring as an arch develups in the second row of strata above the excavation. This behavior was not observed in situations involving higher aspect ratios, probably owing to the tendency of this type of model to fail by sliding rather than arching.

The presentation of the calculated ground reaction curves has indicated that twon enerai behavior patterns energed from this investigation: first, ground reaction curves for masses which would have been stable without external suport reflect this
stability by indicating no required load after a small finite deflection of the roof; and second, ground reaction curves for masses which would have failad without external support indicate that the required support is a constant value, typically given thy the potential ultimate roof load of the model. The first result was not unexpected; the second result, however, requires an attempted explanation.

Figure 5.13(a) illustrates a 10 meter wide excavation; the distribution of contact forces for the case of no external support is illustrated in part (b) of the figure. The contact force distribution represents clearly the situation observed for other stable excavation geometries; well developed roof and ground arches can be seen along with minimal vertical force transmittal within the zone of potential finite displacement. The contact force distributions illustrated in Figure 5.13 (c) and (d) are representative of conditions prevailing in the presence of external support. The relative roof deflections of the roof corresponding to these force distributions are indicated on the ground reaction curve for the mass in part (e) of the figure. The first force distribution indicates that the presence of the support results in an initial inhibition of the development of the roof arch and allows vertical force transmittal through the zone of potential finite displacement. Part (d) of the figure is indicative of conditions on the constant portion of the ground reaction. The roof arch is partially developed, but the presence of the support is preventing the block rotations necessary for minimizing the

(b)

(c)

Figure 5.13 Contact. Force Distributions for Indicated Model(a); (b) No External Support; (c) and (d) External Support; Relative Deformation Indicated on Ground Reaction Curve (e).

(d)

Figure 5.13 Continued.
vertical force transmittal within the zone of potential finite displacement.

At this point it is opportune to emphasize the "physical" properties governing the behavior of the joints. In the present formulation of the Distinct Element program, the joints are assumed to be smooth, planar surfaces with shear strength due only to frictional resistance. This characterization neglects two important parameters of joint behavior: cohesion and dilatancy. Cohesion along joint surfaces is significant in determining the initial strength of a joint; once failure begins, cohesion is typically lost, so it is probably realistic to characterize a failing jointed mass as cohesionless. The dilatant properties of joints are relatively well known, at least qualitatively. The main effect of the dilatant behavior of joints is a volume increase with shear movement resulting in an increased normal stress on the joint and thus, an increased resistance to shear. In order to arrive at the ground reaction curves presented in this section the behavior of the joints was thus highly idealized. It is therefore unrealistic to expect that the ground reaction curves presented are characteristic of the behavior of all jointed masses.

As a final example of a ground reaction curve for an excavation in a jointed rock mass, a situation is presented where the typical, constant ultimate load requirement was not observed. The case under consideration, a 24 meter wide excavation where the jointing defines blocks having an aspect ratio of 0.1 , is illustrated in Figure 5.14. The ground reaction curve, also
illustrated in the figure, is seen to possess characteristics markedly different from those typically observed. The most significant of these are the lower rate of decrease of the curve, an upswing of the curve with increasing roof defleciton, and values of the support requirements significantly in excess of the potential ultimate roof load. As an aid to understanding this departure from the typical behavior, it is instructive to examine the geometry of the deformed state of the rock mass as indicated in parts (b) and (c) of the figure. As can be seen, the maximum deflection of the roof is not occurring at the support point as was the case in the other geometries examined. Additionally the horizontal force is causing the relatively slender lower strata to buckle. The result of this action is that the lower row of blocks is actually "prying" the support block away form the strata and thus acting to increase the load on the support.

This example points out several shortcomings of this analysis which should be enumerated. First, it indicates the inadequacy of modeling the support system as a single point since multiple "blocking points" could have prevented the off center maximum deflections and possibly could have resulted in a different response. The other major shortcoming of this analysis is the infinite strength of the blocks. In a real situation the behavior indicated in the figure would probably result in fracture of the blocks long before the situation indicated in part (c) of the figure could have developed.

Figure 5.14 Ground Reaction Curve and Displaced Geometries for 24 meter Wide Excavation.

The modeling of jointed excavation roofs presented in this section lead to the conclusion that the ultimate load to be resisted by the support system could be predicted, in the majority of cases, by the potential ultimate roof load described in Chapter 5.2.3. The ultimate loads predicted by the ground reaction curves are summarized in Figure 5.15. Neglecting data from analyses similar to that just described, a relationship between the ultimate support load and the span of the excavation can be seen. This relationship was found to be a function of the aspect ratio of the blocks, but relatively insensitive to the friction coefficient of the joints. The relationship between the support load required and span is given approximately by:

$$
L=n B^{2}
$$

where

$$
n=2+5 A \text {, and }
$$

$$
A \text { is the block aspect ratio. }
$$

5.4.2 The use of the Distinct Element method in the design of

 support systems for excavations in jointed massesThe ground reaction curves presented in the preceeding sertion indicated that in response to the idealized assumptions of joint behavior utilized in the analyses, the support force required for stability was seen typically to be a function of the geometric properties of the excavation. In particular, the uitimate resisting force was found to have been given approximately by the potential ultimate roof load, which could be calculated with the aid of

Note: A is the aspect ratio defined by the jointing.

Figure 5.15 Summary of ultimate loads on support system for cases where the mass did not stabilize independently of the support system.

Figure 5.4 or approximated by equation 5.17 in terms of the span and the aspect ratio of the blocks. In this section is presented a comparison of these results and the observed load-span relationship with several of the empirical schemes to see if a correlation exists. To ensure that the discussion doesn't stray too far from reality, actual design data from several underground excavations is also included.

The primary purpose of this investigation was to see if the Distinct Element calculated response of an excavation in jointed rock, taking account of mass/support interaction, could be correlated to "dead weight" load schemes such as that proposed by Terzaghi. Several comparisons of this type are presented in Figure 5.16. Parts (a) and (b) of the figure present the total load to be resisted as a function of span as estimated by the methods of Terzaghi and Stini. The Terzaghi load classes two, three and four are included on the graph and it can be seen that classes two (hard, stratified) and three (massive, moderately jointed) bracket the data nicely. It should be noted that the models examined could be included in class four (blocky and seamy) and as such, would indicate that Terzaghi's method is non-conservative. Similarly, the Stini estimates for classes two, three and four have been plotted in part (b) of the figure and compared to the Distinct Element responses. Examination of the comparison presented in the figure indicates good agreement with the Stini classes two (nearly stable) and three (lightly broken) for spans greater than about eight meters in width, but the agreement becomes

Figure 5.16 Conparison of Distinct Element calculated required support load with: (a) Terzaghi estimates, (b) Stini estimates.

Figure 5.16 continued, (c) Bierbaumer estimates, (d) Cording estimates.
less good with decreasing span.
The constant pressure theory of Bierbaumer is compared to the data in part (c) of the figure. There is a semblance of agreement for spans in the 25 to 30 meter range; extrapolation of the trends of the data, however, indicates that this agreement is probably coincidental (two non-parallel lines must intersect somewhere). It is unlikely that Bierbaumer had access to data from excavations of this width; for spans in the two to five meter range, there is no correlation between Bierbaumer's method of predicting the load and that calculated by the Distinct Element method.

The final comparison presented in Figure 5.16 utilizes the load estimation scheme described by Cording et al. (1971). This scheme will be described in some detail presently but for now it is sufficient to note that the parameter n is based upon actual design data. The fit of the curves to the Distinct Element data is quite good.

This comparison would certainly be more meaningful if the actual design data for excavations in which the support system had failed were available. The next best information is design data for excavations that did not fail; this is what is available and it will be used in further comparison. A significant number of actual support pressure designs were summarized by Cording et al. (1971); this data is presented graphically in Figure 5.17(a). Cording et al. attempted to correlate RQD to support pressure by means of what they termed the Terzaghi Design Envelope (Figure 5.17(b). This

Figure 5.17 (a) Summary of support pressure design data used for cavern excavations, (b) logarithmic representation of total load.
data has been replotted in part (c) of the figure to reflect total loads rather than pressures. This classification scheme, then is essentially similar to Terzaghi's but predicts a smaller total load or pressure when the value of RQD is very high. It must be emphasized that the data represents design pressures for excavations that are stable. Invariably, the data then represents an incorporated factor of safety or an overdesign. Additionally, most of the caverns have arched crowns; in general higher support pressures would be required for excavations having flatter roofs. It can be seen, therefore, that the comparison of this design data and the required loads calculated by the Distinct Element program is not strictly valid. It is not suggested that the amount of over design and the required pressure increase in the case of the flat roof cancel each other, but that the combined result gives a valid basis for comparison.

Four of the graphs presented in Figure 5.18 are identical to those presented in Figure 5.16 except that the design data summarized by Cording et al. has been incorporated on each of the plots. Most of the comments presented earlier are still valid, but additional comment is required in several instances. The conservative nature of the Terzaghi rock load estimates is more apparent when the data of Cording et al. is added to the plot. Stini's estimates of the rock load still fit the data quite well for spans greater than 10 meters; unfortunately data for the narrower spans was not available. The rock loads predicted by

V-67

Figure 5.18 Summary of support loads as calculated by the Distinct Element method and reported in the literature Comparisons to metoods of: (a) Terzaghi; (b)Stini;

Figure 5.18 (continued) Methods of: Bierbaumer (c); Cording,et al.(d);

Figure 5.18 (continued) Fiethod of Barton,et al.

Bierbaumer's method are still quite nonconservative in light of the actual support pressures. The estimates of the rock load as calculated by the method of Cording et al. are seen to fit the data quite well, and seems to indicate that an RQD based modification of the Terzaghi rock load estimates is a valid tool for the estimation of expected support loads in an excavation.

It is beyond the scope of this investigation to present detailed summaries of the newer classification schemes presented by Wickham et al., Bieniawski, and Barton et al. but it is relevant to include at least one of the schemes in the comparisons presented herein. Of the three methods, Barton, Lien and Lunde's was chosen for inclusion for no reason other than that the results are expressed as support pressures. Some familiarity with the method on the part of the reader is assumed.

Barton, Lien and Lunde's classification scheme requires the specification of six input quantities; the values of those quantities thought to represent the Distinct Element modeled geometries are presented in Table 5.5.

Table 5.5 Parameter Values for Rock Mass Quality Q
A) RQD (Good to excellent) 75-100\%
B) Joint Set Number (two joint sets) 4.0
C) Joint Roughness Number (smooth, planar) 1.0
D) Joint Alteration Number (unaltered) 1.0
E) Joint Water Reduction Factor (dry) 1.0
F) Stress Reduction Factor (low stress) 2.5

The resulting Q value is found to range from seven to ten; the rock masses modeled by the Distinct. Element method all fall in the "fair" category and a need for support is indicated. The indicated support pressures are $100 \mathrm{KN} / \mathrm{M}^{2}$ for those spans less than ten meters in width and $150 \mathrm{KN} / \mathrm{M}^{2}$ for those spans greater than ten meters in width. In these calculations an excavation support ratio (ESR) of 1.0 was assumed.

The support pressures calculated were compared to the Distinct Element calculated data and the data presented by Cording et al. The results of this comparison are presented in Figure 5.18(e). It is readily apparent that the constant support pressures suggested by Barton, Lien and Lunde's method do not adequately describe the trends of the data calculated by the Distinct Element method. Furthermore, the support pressures result in total loads that are significantly higher than the data of Cording et al. indicate would be experienced in practice.

The data calculated by the Distinct Element method during this investigation raises one serious objection to the use of the design equation presented by Cording et al. Without exception, all of the geometries modeled using the Distinct Element program had an RQD value of 100 percent. The use of the design equation postulated by Cording et al. would, in this instance, result in a significant underestimate of the amount of required support force. The value of " n " corresponding to an RQD value of 100 percent is 0.1 ; the majority of the plotted data, both that calculated by the Distinct Element method and that reported by Cording et al. can be seen to
lie above the curve corresponding to an n value of 0.1 . Perhaps an equivalent $R Q D$ based upon seismic velocities could be calculated for the Distinct Element geometries, but it is really outside the scope of this investigation to attempt a correlation of this type.

Figure 5.19 presents a summary of the required support force as a function of span for those masses investigated by the Distinct Element method; also included in the figure is the actual design data summarized by cording et al. The curves indicating the trend of the data have, in this instance, been calculated using equation 5.14. The presented curves fit the data as well as those suggested by Cording et al.; however, in this case the curves are a function of the aspect ratio of the blocks formed by the jointing. It is not immediately clear that there should be a correlation between RQD and aspect ratio of the blocks. It certainly would be feasible to estimate the block aspect ratio if directionally biased RQD data were available, but RQD data is not typically recorded in this manner.

It was not the intent of this section to deduce a relationship between RQD and the aspect ratio of the jointing; what wās desired was computationally based verification of empirical rock load estimation schemes. The properties of the basic nodel chosen for investigation indicated that a reasonable estimate of the upper limit to the amount of load to be resisted by the support system could be calculated in terms of the geometric parameters of the rock mass and excavation. The eventual results indicated that this upper limit, the potential ultimate roof load, was actually the

Figure 5.19 Sumary of Distinct Element calculated required support loads and design data presented by Cording et al., also illustrated are the various aspect ratios.
value for which the supports should be designed. This value could be calculated by equation 5.8 or estimated in terms of the aspect ratio of the blocks. Comparison of the results to actual design data indicated a high degree of correlation.
5.5 The Effoct of Joint Interlocking on the Ground Poartion Curve The rock mass models that have been presented previously possessed the characteristics of the basic model described in Chapter 4.3. The basic response characteristic of this model is that a triangular wedge of material separates from the rock mass as failure occurs. Before the basic model for study was selected the behavior of a number of varied joint geometries was investigated. One of the most striking factors to emerge from those analyses was the sensitivity of the rock riass behavior to joint orientation. Gf particular interest was the observation that geonetries initially observed to he unstable, often stabilize after a finite displacenent. This sensitivity of rock mass behavior to joint orientation can be illustrated for a particular mass configuration by varying the joint orientation without changing any of the other parameters. The ground reaction curve provides the means for quantifying the observed differences in roof behavior.

The basic rock mass geometry to be investigated is illustrated in Figure $5.20(\mathrm{a})$. The model represents an excavation in a medium with two well defined joint sets. The major set dips gently and is continuous; the minor set is somewhat variable in orientation, crosses the major set approximately at right angles on the average and is discontinuous. Exposed in the upper right hand side of the excavation is an almost triangular wedge of material bounded by joints with a friction angle of 5°; all other joints have a friction angle of $26.5_{5}^{\prime \prime}$. The triangular wedge represents a shear zone and its presence can be expected to govern, or at least severely

Figure 5.20 Ground reaction curve for a model where arching acts to stabilize the mass.
influence, the behavior of the rock mass.
The eventual deformed state of the rock mass is illustrated in Figure 5.20(b). Inmediately obvious upon inspection of the figure is the fact that the roof has stabilized as evidenced by the lack of contact between the roof and the leftmost portion of the shear zone. This stabilization is the result of joint interlocking leading to the formation of the roof arch which acts to transfer the loading forces to the abutments. The roof and ground arch can be seen in a plot of contact vectors but tend to be observed by the plotted joints. In order that the arches could be seen, the regions corresponding to the high contact forces have been outlined and shaded; the ground and roof arches corresponding to the rock mass of Figure 5.20 are illustrated in Figure $5.21(a)$.

A quantitative expression of this arching behavior is indicated by the ground reaction curve which has been separated into its vertical and horizontal components, presented in Figure 5.20(c). The vertical component curve demonstrates a general decrease, with displacement, in the amount of load to be resisted by the supports. In fact, at a deformation of 0.5 m the only vertical load on the support is the weight of the leftmost triangular portion of the shear zone. This decrease in load corresponds to the development of the roof arch with vertical displacement and the subsequent transfer of vertical force to the sides of the excavation. The horizontal component indicates that at a deformation of 0.5 m the force is practically zero. The reason for this can be seen by reference to the diagram showing the ground and roof arches, figure 5.21. The

Figure 5.21 Pressure distributions in: (a) a stabilized roof, (b) a failing roof.
roof arch transfers load onto jointed blocks relatively near the excavation. The resultant of this abutment force tends to push the blocks back into the rock mass and thus acts to reduce the horizontal load on the supports. Note that if the amount of deformation could be tolerated, this roof would stand unsupported.

The measurement of joint orientations in the field is always subject to a high degree of subjectivity; since the joints can only be observed at outcrops, local undulations can introduce a degree of uncertainty in the measurement of the true attitude of the discontinuities. The significance of accurately determining the joint orientations is dramatically illustrated in the second part of the example.

Figure 5.22(a) illustrates a rock mass geometry that at first glance appears identical to that presented in Figure 5.20(a). Closer examination of the figure indicates that although the major joint sets have identical attitudes in both figures, there are minor variations in the orientation of the discontinuous cross jointing. In particular, note the small cross joint exposed on the left hand side of the excavation which has been emphasized in both figures by indicating its loaction by an arrow. It was noted that on the average the cross jointing was approximately perpendicular to the main joint set. An uncertainty of five degrees in the measured orientation of a joint is not a large number, nor are variations in true joint inclination of from five to ten degrees uncommon. Whether the variation between the models arises from errors in measurement or true deviatiuns in joint

Figure 5.22 Ground reaction curve for a model where arching does not act to stabilize the mass.
attitudes is not significant. What is important is the fact that the behavior of the two models changes markedly in response to relatively minor changes in joint orientation.

One stage of the deformation of the model is illustrated in Figure 5.22(b). Examination of this figure indicates a more widespread disruption of the roof than in the previous model but even more importantly, there is continuous contact through the roof down to the support.

Once again the ground reaction curve illustrated in Figure $5.22(c)$ and separated into its vertical and horizontal components provides the means to quantitatively describe these observations. The most striking dissimilarity in the ground reaction curves is that the second model is characterized by required support loads that do not diminish with increasing displacement. This roof is completely unstable and requires an external support system. The required support is relatively constant with deformation up to a displacement of almost one meter.

The instability of the roof is indicative of the lack of formation of the roof arch. This is indeed the case as can be seen by reference to Figure $5.21(b)$. The magnitude of the force to be resisted by the supports is limited by the full development of the ground arch. The lack of development of the roof arch prevents the mass from stabilizing and necessitates the emplacement of an external support system.

It is of interest to compare the actual support loads determined from the preceeding analyses to the theoretical values as
predicted by Terzaghi's method. The characteristics of the models indicated that the proper classification for these masses was the hard stratified rock category. This category is typified by little resistance against separation along strata boundaries and the weakening of the strata by transverse joints. The moderately jointed rock category requires intimate block interlocking or healed fracture whereas the blocky and seamy category requires blocks which are separated along joints and imperfectly interlocked. The last two categories are actually the limiting cases for the hard stratified rock category.

The sum of the horizontal and vertical components of the ground reaction curves for the two previous examp les are plotted in Figure 5.23. Also plotted in the figure are the values of the support load as predicted by Terzaghi's theory.

The constant value of the total support load as calculated for hard stratified rock by Terzaghi's theory is $700 \mathrm{kN} / \mathrm{m}$ of tunnel length; compared to the ground reaction curves in Figure 5.23 an over-design is indicated. For displacements less than about 0.25 m the relative differences are 25 percent and 30 percent for the failing roof and the stabilizing roof respectively. For displacements greater than 0.25 m the relative difference is approximately 50 percent for the failing roof and increases with displacement for the stabilizing roof. The relative difference between observed load and predicted load is seen to be significantly greater for the two support load values calculated by the equations for blocky and massive rock masses, which are $800 \mathrm{kN} / \mathrm{m}$ and $350 \mathrm{kN} / \mathrm{m}$ of tunnel

Support

> CALCULATED SUPPORT L.OADS

TERZAGHI
——— BLOCKY SEAMY
…-... HARD STRATIFIED
PRESENT STUDY
FIGURE 5.4

Figure 5.23 Comparison of ground reaction curves for a f that stabilizes after deformation and a roof that fails completely with Terzaghi support loads.
length respectively.
The support load as predicted by the method developed in this chapter is also indicated in Figure 5.23. Although the model upon which the method is based involves only horizontal and vertical jointing, examination of Figure 5.21 indicates that the mechanism of load transfer in these two examples is similar to that observed in the basic model. The parameters needed to use the design chart presented in Figure 5.4 are illustrated in Figure 5.23 ; the span is 7.5 m , the block width is 3 m , the block thickness is 1.6 m and the weight density of the material is $26 \mathrm{kN} / \mathrm{m}^{3}$. The potential ultimate load to be resisted by the supports is found to be $545 \mathrm{kN} / \mathrm{m}$. This value is plotted with the ground reaction curves in Figure 5.23 and is seen to agree quite well with the required support loads indicated by the ground reaction curves. For displacements less than about 0.25 m the relative differences are approximately 5% and 10% for the failing roof and the stabilizing roof, respectively. For displacements greater than about 0.25 m the relative difference is about 15\% for the failing roof and increases with displacement for the stabilizing roof.

5.6 Summary

The design of underground excavations, particularly the design of the support system is largely based upon precedent. The summary of methods commonly used to predict support load pressures indicated that the earlier methods categorized support requirements by subjective, qualitative descriptions of the rock mass. The more recent methods have introduced some measure of objectivity into the classifications, and strengthened the data bases underlying the schemes by collecting information from more sources. Theoretically, at least, two engineers with identical field data should arrive at similar conclusions using these classification schemes.

One current school of thought in tunnel design advocates the philosophy that the behavior of an underground excavation is governed by the interaction between the mass and support system. The analyses described in this chapter had as their basic goal the multiple task of satisfying current thought on tunnel behavior while at the same time attempting to exhibit either verification or total nonagreement with the results predicted by the empirical methods.

The method chosen to attack this problem was to determine the ground reaction curves or support-deflection behavior of numerous jointed mass/excavation configurations. In this manner it was hoped to demonstrate that the Distinct Element model solutions would always predict support pressures that were significantly lower than those calculated by the empirical methods, since the predictions of these methods are based upon
supporting the total dead weight of a specified volume of rock. For the basic geometry selected for the study, the weight of the material for which it is kinematically possible, neglecting any supporting effects, to move into the excavation, and thus load the supports is easily calculated. It was expected that this potential ultimate roof load would provide a rarely attained upper limit to the necessary value of support resistance indicated by the analyses.

Both of these assumptions were found to be incorrect; in fact, the data indicate that the value for which the supports should be designed is given by the potential ultimate roof load. While this value is typically noticeably smaller than the support loads predicted by the empirical design schemes, there is not enough of a difference to conclude that it has been demonstrated that the use of the empirical methods results in an overdesign.

To understand the reason for the similarity of results, the characterization of the joints must be examined. The joints used at the present time in the Distinct Element method are smooth planar structures which have strength only through frictional resistance. The joints do not possess cohesion. Cohesive resistance is more significant in the initial strength of a rock mass than in determining the failing behavior. Not much is lost in the analyses of failing rock masses if no cohesion is assumed. The joints also are not characterized by dilatancy. The dilatancy properties of real joints contribute additional strength through volume increase
as shearing occurs. Neglecting the dilatancy of the joints must result in a conservative estimate of the strength. Additionally, in real excavations there is another dilatancy caused by the volume of rock surrounding an excavation moving radially inward. This mass dilatancy also acts to increase the normal force acting on the joints and thus increase the mass strength. The Distinct Element modeled geometries were designed so that only roof deflections were possible and thus neglected this mass dilatancy.

Another limitation imposed upon the analyses described in this chapter is concerned with the joint stiffness. In order that the program could be implemented on a mini-computer, many simplifications needed to be made; one of these was the use of "integer" arithmetic with the burden of watching the signs and decimal points placed upon the programmer (Cundall, 1974). One significant consequence of this was that the joint stiffness turned out to be a function of the problem size. The range of joint stiffness that could be investigated was thus limited. The approximation of the horizontal stress field as a constant load would negate the effects of varying the joint stiffness in any case.

It must be emphasized that the approximations just described are not a consequence of the Distinct Element formulation, but of the mini-computer configuration of the program. These approximations would not need to be made if the program ran in an environment of larger memory on a computer possessing a floating point processor.

The implication of the results presented in this chapter can thus be interpreted in one of two ways. By neglecting dilatancy,
a correlation was found between the required support force and the potential ultimate roof load. This support force was also found to correlate fairly well with the empirical methods particularly those of Stini and Cording et al. If it can be inferred that the failure to incorporate the dilatancy properties of real joints in the analysis leads to a value of the mass strength that is too low, then it can be concluded that the potential ultimate roof load and thus the empirical methods represent a conservative value of design load.

The second interpretation also follows from the properties of the joints. It is reasonable to expect that the dilatancy properties of joints would play a miner role in situations of relatively low stress. It can thus be concluded that dimensioning the supports to resist the potential ultimate roof load, or using one of the empirical schemes should give the best results in problems involving low stresses.

CHAPTER VI

SUMMARY, CONCLUSIO:NS AND SUGGESTIOAS FOR FURTHER DEVELOPMENT

Before sumnarizing the results of this investigation, it is imperative that a few sentences be devoted to defining the "ground rules", so to speak, which must govern the discussion which follows immediately. The limitations placed upon joint behavior cannot be overemphasized. The joints within the models utilized in this study were smooth and planar; any shear resisting strength of the joint was due solely to frictional resistance developing as sliding occurred. The joints did not possess cohesive strength; as the cohesive properties are more important in determining the initial strength of the mass, it was felt that little was lost by modeling failing, jointed masses by surfaces having no cohesive strength. The same cannot be said for the fact that the joints utilized did not possess dilatancy characteristics. It is possible that the inclusion of joint dilatancy could significantly affect the resultant mass strength and thus the outcome of many of the analyses reported in this dissertation.

A complete summary of the results of each section is presented at the end of that section; the sumary of results presented here will thus be relatively brief.

One of the min goals of this dissertation was to demonstrate that the behavior of jointed rock as predicted by the Distinct Element methor was realistic. The approach taken to demonstrate the
validity of the Distinct Element method was based upon comparison to solutions commonly used to describe the behavior of jointed rock masses. The majority of the solution methods chosen for comparison were based upon Limit Equilibrium principles; a basis for selection for comparison was a subjective criterion of how well the solution described the behavior of the model. Thus those solutions selected for comparison are typically simple and the resultant behavior can be intuitively predicted. In all of the comparisons presented in Chapter 3 as well as others presented throughout the remainder of the dissertation, the Distinct Element calculated behavior was seen to correlate quite well with the theoretical solutions.

The second portion of the dissertation described the results of numerous analyses of the behavic jf jointed masses by use of the Distinct Element method. The goals of these analyses were to determine those parameters to which the stability of an excavation in jointed rock was most sensitive and to investigate the effects of support interaction in jointed media in an attempt to determine if a rational basis existed for the continued use of empirical design schemes.

The subjects of Chapter 4 were an investigation of the force distributions surrounding excavations in jointed rock masses and an examination of the stability of unsupported excavations. The topics were approached through numerous models in which the input parameters were varied and the resultant behavior of the model observed. The behavior of the models was illustrated by means of
contact force distributions and block displacements plotted on the graphics terminal. The behavior of the models was seen to be governed by force transfer due to the development of arches following block rotations. The stability of an excavation was seen to be sensitive to the horizontal force, the joint friction coefficient and the spacing of the vertical joints. A linear arch analysis neglecting crushing of the blocks and lateral stiffness of the abutments was compared to the behavior as observed by use of the Distinct Element method. Good agreement between theory and observation were noted for single layer models. The theory did not account for the presence of additional shear resistance available in multilayer models and thus there was a poor correlation between theory and observed data.

The investigations described in Chapter 5, on the other hand, were concerned with the behavior of excavations which required externally applied support to maintain stability. The investigations were concerned with the interaction between the supports and the jointed mass and formed the basis for a comparison with different empirical support load prediction schemes. The required supporting force as predicted by the Distinct Element method was obtained through the use of ground reaction curves. These Distinct Element calculated support forces were then compared to the support forces predicted by the empirical methods. Incorporated within this comparison was actual support design data for several underground excavations.

The methods which best describe the combined Distinct Element calculated data and design data were seen to be the methods of Cording et al. and the method based upon the potential ultimate roof load described in Chapter 5. It should come as no surprise that Cording et al.'s method fits their data; it is significant that Cording et al's method fits the Distinct Element calculated data and that the support load predictions based upon analyses performed using the Distinct Element method fit the field data as well as is seen. As was noted in the summary of Chapter 5, the incorporation of dilatancy behavior in the joints of the Distinct Element model could significantly alter the results of these comparisons.

The results of the analyses of excavations jointed masses suggest that the Distinct Element method deserves consideration for use in the design of underground excavations. There is not meant to be an implication that all of the information needed to specify a support system for an underground excavation can be obtained by an application of the Distinct Element method. It is only suggested that the Distinct Element method be used as one of the many tools used in the design of an underground excavation.

It is tempting to conclude that a viable design technique would be to analyze a given problem neglecting the dilatant properties of the joints; using this approach it might be argued that a safety factor would be built into the analysis. However, until the joint dilatancy properties are fully understood it must be recognized that there would be a good deal of uncertainty as to whether or not the safety factor would be one or ten or even one hundred.

The data which should routinely be collected during a preliminary site investigation can be utilized in the Distinct Element method to provide preliminary design information. This data would likely include preliminary information on joint spacing, arientation and condition as well as estimates of the horizontal stress state. Using the Distinct Element method, it could quickly be determined if the excavation would be stable or require light or heavy supports. Variations of these input parameters would result in a good idea of how sensitive the excavation stability would be to errors in the assumed values of the input parameters. This analysis could be continuously updated as data from exploratory drilling become available and further refinements could accompany the excavation progress.

This type of design technique is not limited to tunnels; the same data and same procedure are equally applicable to the analysis of slope problems or foundation problems.

These are several reasons that suggest that the method just described is particularly applicable to a class of problems which could be best described as low stress problems. The very nature of the present formulation of the Distinct Element method makes it imperative that it only be applied to problems where the behavior of the mass is controlled by the jointing; this is a characteristic of problems that are near or at the surface. A low stress problem also exists where the frictional resistance of the joints is very low, perhaps due to the presence of clay seams. The investigations
described in Chapter 4 indicated that the material within the zone of potential finite displacement also typically fit the requirements of low stress behavior, although this behavior can be prevented by the presence of high horizontal stresses.

The conclusions to this dissertation must also address the problems encountered due to the mini-computer configuration of the present version of the Distinct Element program. It should be noted from the outset that these are not criticisms of the Distinct Element method itself, but of the equipment upon which the program used in this study presently runs. Foremost of these criticisms must be the time required for a problem solution. The relatively slow computational speed of the mini-computer coupled with the lack of a floating point processor often led to problem solution times which could only be tolerated by someone working toward a Ph.D. Computational times approximately one-twentieth of those encountered during this study could easily be realized on a more powerful computer. However, lost by this implementation would be one of the most powerful capabilities of the Distinct Element program. The insight into the behavior of a jointed mass gained by examining contact force distributions at each time step is often quite revealing. This can realistically only be done on a dedicated computer.

The amount of computing time required and the limited memory size of the mini-computer also acted to limit the size of the problem that could be investigated. These limitations often resulted in simplified models such as those used to determine the ground
reaction curves presented in Chapter 5. It was noted in Chapter 5 that the idealizations could have nasked an important behavior response due to inward movement of the side walls accompanying the roof deflections. This question cannot be resolved until the Distinct Element method is configured on a system possessing a greater amount of memory.

One of the underlying goals of this dissertation was concerned with the utilization of a computer interactive graphics approach to an engineering problen. One particular phase of the project was concerned with developing the graphic interaction capabilities of the present version of the Distinct Element program to the point where an untrained user, particularly one having minimal familiarity with computing techniques, could sit down and use the program to solve simple problems. The solution of this problem was to incorporate a great deal of explanatory material within the program. It is difficult to assess the success of this portion of the project in other than a subjective manner. It did, however, seem as though the majority of those using the program for the first time encountered little difficulty.

Also within the defined goals of this dissertation was the problem of developing a proper perspective as to the applicability of the Distinct Element method. The conclusions drawn are subjective and incorporate material not described in this dissertation. The class of problems most suitable to analyses by the Distinct Element method is characterized by relatively low stress conditions and behavior which is joint controlled. Typical examples of problems
meeting these requirements involve slope stability, shallow excavations and foundation behavior. The degree of unconfinement characteristic of these problems ensures that the behavior of these types of problems will be joint controlled. However, the possibility of fracturing of blocks due to local stress concentrations must not be overlooked. It is reasonable therefore to use the analysis obtained by the Distinct Element method in conjunction with an elastic analysis used to determine zones of stress concentration and thus potential fracture. These potential fracture planes can then be incorporated within the Distinct Element method to determine any possible effect.

The dividing line between low stress problems and high stress problems is not clearly defined. It has been noted that the zone of material immediately adjacent to an excavation is under relatively low stress conditions; due to the action of the ground arch the material surrounding the destressed zone experiences much higher stresses. The logical solutions to problems of this type would be either a coupled elastic-Distinct Element program or a modified Distinct Element program which incorporated elastic rather than rigid blocks.

It is clear from the work typified by Daemen (1975) that highly fractured rock can be modeled by a continuum representation incorporating residual strength properties. It was not possible within the context of the present study, given the limited number of blocks, to determine that point at which the behavior of broken rock ceases to be governed by the directionality imposed by the
joints and can thus be represented as isotropic. The work described by Bray (1966) does, however, furnish at least a guideline. Bray examined the behavior of jointed masses subjected to an arbitrarily oriented stress field. His results indicated that six independently oriented joint sets were required before the behavior of a jointed mass approximated that of a granular isotropic material. The implication here is that if the material is highly fractured or if the stress conditions are sufficient to fracture the rock it is probably best to adopt a continuum approach.

The research undertaken for this dissertation indicated several areas where further development of the program could be beneficial, and suggested an area of research that could prove to be most rewarding.

The first steps that need to be taken in any further development of the Distinct Element program require faster computational times and a significantly larger computer memory. The results of Chapter 5 were based upon idealized geometries; the typical amount of minicomputer time required to generate one of the ground reaction curves often exceeded two days. This amount of time simply cannot be tolerated if the program is to be accepted as a design tool. The shortcomings of the 1 imited number of blocks were also indicated. The solution to both of these problems is the implementation of the model on a larger, faster computer.

The most promising areas of further research identified by this dissertation are concerned with the continued investigation of the behavior of excavations in jointed rock. Foremost of these should
logically be the incorporation of dilatant behavior of the joints. Additionally, an implementation on a larger computer would allow more blocks per problem and thus a more accurate representation of an underground excavation. This implementation would also allow the incorporation of a stiffness representation of a support system. This would also lead to a better description of the support system/ mass interaction. It is still felt that, if at all possible, this implementation should take place on a dedicated computer.

The area of research not covered by this investigation which holds promise for a future study is a detailed comparison of the results of observations and careful measurements of physical models and comparable model behavior calculated by the Distinct Element method. This research could form the basis for the incorporation of dilatant behavior in the Distinct Element method as well as providing additional verification of the Distinct Element method through carefully controlled physical testing. In fact, it is easy to visualize a research program that is highly complementary in nature, utilizing a sort of "feedback" system. The Distinct Element method would be useful in the interpretation of the observed data from the physical model while at the same time, the physical model would help to refine the equations used in the Distinct Element formulation.

Abel, J. F., Ir. (1966), "Statistical Analysis of Tunnel Supporting Loads", Transactions, Society of Mining Engineers, AIME, v235, n3, September.

Barla, G. (1970), "Some Constitutive Equations for Rock Materials", Proc. 11 th Symp. on Rock Mech., AIME, Berkeley, pp221-236.

Barton, N. R. (1974), "Rock Slope Performance as Revealed by a Physical Joint Model", Proc. 3rd Cong. ISRM, vIIB, pp765-7i3.

Barton, N. R., R. Lien and J. Lunde (1974), "Engineering Classification of Rock Masses for the Design of Tunnel Support", Rock Mechanics, v6, n4, December.

Bendel, L. (1948), Tunnelgeologie, Ingenieur Geologie, v2, Springer, Vienna.

Bieniawski, Z.T. (1973), "Engineering Classification of Jointed Rock Masses", Trans. S. Afr. Instn. Civil Eng., v15, n12, pp335-344.

Bieniawski, Z. T. (1976), "Rock Mass Classifications in Rock Engineering", Proc. Symp. Explor. Rock Engr. Johannesburg, pp97-106.

Bierbaumer, A. (1913), Die Dimensionierung des Tunnelmauerwerks, Leipzig, Englemann.

Bishop, A. W. (1955), "The Use of the Slip Circle in the Stability Analysis of Slopes", Geotechnique, v5, pp7-17.

Bray, J. W. (1966), "Limiting Equilibrium of Fractured and Jointed Rocks", Proc. 1 st Cong. ISRM, Lisbon, paper 3.51.

Bray, J. W. (1967a), "A Study of Jointed and Fractured Rock Part 1 - Fracture Patterns and Their Failure Characteristics", Felsmechanic, v5, n2-3, ppl17-136.
Bray, J. W. (1967b), "A Study of Jointed and Fractured Rock Part 2 - Theory of Limiting Equilibrium", Felsmechanic, v5, n4, pp197-216.

Brcic, V. and M. Nesovic (1970), "Photoelastic Investigations of Discontinuous Rock", Proc. 2nd Cong. ISRM, Belgrade, paper 8-23.

Burman, B. C., D. H. Trollope and M. G. Philip (1975), "The Behavior of Excavated Slopes in Jointed Rock", Australian Geomechanics Journal, vG5, n1, pp26-31.

Calder, P. N. (1970), "Slope Stability in Jointed Rock", CIM Trans., v75, pp132-136.

Chappell, B. A. (1973), "Interaction of Underground Openings with Reference to Numbers 2 and 5 Ore Bodies Located at Mount Isa Mines, Australia", Proc. Symp. Protection Against Rock Fall, Katowice, paper III-T.

Chappell, B. A. (1974a), "Deformational Response of Blocky Models", Int. Jour. Rock. Mech. Min. Sci., vll, ppl3-19.

Chappe11, B. A. (1974b), "Numerical and Physical Experiments with Discontinua", Proc. 3rd Cong. ISRM, Denver, vII-A, ppl13-125.

Cording, E. J., A. J. Hendron, Jr. and D. U. Deere (1971), "Rock Engineering for Underground Caverns", Proc. Symp. Underground Rock Chambers (ASCE), Phoenix, pp567-600.

Cording, E. J. and D. U. Deere (1972), "Rock Tunnel Supports and Field Measurements", Proc. 1st RETC (AIME), Chicago, pp601622.

Cording, E. J. and J. W. Mahar (1974), "The Effect of Natural Geologic Discontinuities on Behavior of Rock in Tunnels", Proc. 2nd RETC (AIME), San Francisco, vl, pplo7-138.

Cundall, P. A. (1971a), "The Measurement and Analysis of Acceleration in Rock Slopes", Ph.D. Dissertation, University of London, Imperial College of Science and Technology.

Cundall, P. A. (1971b),"A Computer Model for Simulating Progressive Large Scale Movements in Blocky Pock Systems, Proc. Symp. Rock Fracture (ISRM), Nancy, paper II-8.

Cundal1, P. A. (1974), "A Computer Model for Rock Mass Behavior Using Interactive Graphics", U. S. Army, Corps of Engineers, Technical Report MRD 2-74 (Missouri River Division).

Daemen, J.J.K. (1975), "Tunnel Support Loading Caused by Rock Failure", Ph.D. Dissertation, University of Minnesota, Minneapolis.

Daemen, J.J.K. (1977), "Problems in Tunnel Support Mechanics", Underground Space, v1, n3, ppl63-172.

Daemen, J.J.K., C. Fairhurst and A. M. Starfield (1969), "Rational Design of Tunnel Supports", Proc. 2nd Symp. on Rapid Excavation (AIME), Sacremento.

Daemen, J.J.K. and C. Fairhurst (1973), "Ground/Support Interaction Fundamentals and Design Implications", Part 2, Tunnels and Shafts in Rock, U.S. Army Corps of Engineers., EM 1110-2-2901.

Deere, D. U., R. B. Peck, J. E. Monsees and B. Schmidt (1969), "Design of Tunnel Liners and Support Systems", Final Report, U.S.D.O.T. Contract no. 3-0152.

Deere, D. U., R. B. Peck, H. W. Parker, J. E. Monsees and B. Schmidt (1970), "Design of Tunnel Support Systems", Highway Research Record, No.339, pp26-33.

DeFreitas, M. H. and R. J. Watters (1973), "Some Field Examples of Toppling Failure", Geotechnique, v23, n4, pp495-514.

Dixon, J. D. (1971), "Analysis of Tunnel Support Structure with Consideration of Support/Rock Interaction", Transactions SME-AIME, v250, n4, pp304-309.

Duvall, W. I. (1976), "General Principles of Underground Opening Design in Competent Rock", 17th U.S. Rock Mech. Symposium (AIME), Snowbird, paper 3AI.

Edwards, D. B. (1968), "Ground Stability Problems Associated with the Black Rock Open Cut at Mount Isa", Proc. Aust. Inst. Min. Engrs., n226, pt2, pp61-72.

ENR (1959), "Tunnel Estimating Improved: Tied to Geology", Engineering News Record, Dec. 17, 1959, p54-70.

Ergun, I. (1970), "Stress Distribution in Jointed Media", Proc. 2nd Cong. ISRM, Belgrade, paper 2-31.

Erguvanli, K. A. and R. E. Goodman (1972), "Application of Models to Engineering Geology for Rock Excavations", Bull A.E.G., v9, p89.

Evans, W. H. (1941), "The Strength of Undermined Strata", Trans. IMM, London, v50, pp475-532.

Fairhurst, C. (1967), "The Influence of Defects and Discontinuities on the Deformational Behavior of Rocks", 15th Annual Conf. on Soil Mechanics and Foundation Engineering, University of Minnesota, pp18-41.

Fellenius, W. (1936), "Calculation of the Stability of Earth Daris', Proc. Second Congress on Large Dams, Washington, pp445-459.

Froelich, D. K. (1933), "Discussion on Earths and Foundations", Proc. Am. Soc. Civ. Engrs., v65, ppl470-1474.

Fumagalit, E. (1968), "Model Simulation of Rock Mechanics Problems", in Rock Mechanics in Eng. Practice, Zieniewicz and Stagg, ed., (John Wiley).

Guziev, E. G. and S. A. Erlikhnan (1971), "Stresses and Strains in Anisotropic Rock Foundation", Proc. Symp. Rock Fracture (ISRM), Nancy, paper 2.1.

Gaziev, E. G. and V. I. Rechitski (1974), "Stability of Stratified Rock Slopes", Proc. 3rd Cong. ISRM, Denver, vIIB, pp780-791.

Golder, H. Q. (1972), "The Stability of Natural and Man-made Slopes in Soil and Rock", Proc. 2nd Int. Conf. on Stability in Open Pit Mining (AIME), Vancouver, pp79-86.

Goldstein, M., M. Berman, B. Goosev, T. Timofeyeva and A. Turovskaya (1966), "Stability Investigation of Fissured Rock Slopes", Proc. Ist Cong. ISRM, Lisbon, paper 6.10.

Goodman, R. E., R. L. Taylor and T. L. Brekke (1968), "A Model for the Mechanics of Jointed Rock", Journal of the Soil Mechanics and Foundations Division, Proc. of the American Society of Civil Engineers, v94, n3, pp637-659.

Goodman, R. E. (1972), "Geological Investigations to Evaluate Stability", Proc. 2nd Int. Conf. on Stability for Open Pit Mines (AIME), Vancouver.

Guodman, R. E. (1974), "The Mechanical Properties of Joints", Proc. 3rd Cong. ISRM, Denver, vIA, pl27.

Goodman, R. E. (1976), Methods of Geological Engineering in Discontinuous Rocks, West Publishing Co., St. Paul.

Goodman, R. E. and J. W. Bray (1976), "Toppling of Rock Slopes", Proc. ASCE Specialty Conf. Rock Engineering for Foundations and Slopes, Boulder, v2, pp201-234.

Hayashi, M. (1966), "A Mechanism of Stress Distribution in the Fissured Foundation", Proc. 1st Cong. ISRM, Lisbon, paper 8.5.

Hoek, E. (1970), "Estimating the Stability of Excavated Slopes in Open Cast Mines", Trans. I.M.M., Sect. A, v79, pAl09.

Hoek, E. and Bray, J. (1974), Rock Slope Engineering, Inst. of Mining and Metallurgy, London.

F'offman, H. (1970), "The Deformation Process of a Reqularly Jointed Discontinuum During Excavation of a Cut (In German)", Proc. 2nd Cong. ISRM, Belgrade, v3, paper 7-1.

Jaeger, C. (1964), "Rock Mechanics and Dam Design", Water Power, pp210-217, May.

Jaeger, J. C. (1970), "Behavior of Closely Jointed Rock", Proc. 11th Symp. on Rock Mech (AIME), Berkeley, pp57-68.

Jennings, J. E. (1970), "A Mathematical Theory for the Calculation of the Stability of Slopes in Open Cast Minec", Proc. Symp. Planning Open Pit Mines, Johannesburg, pp87-102.

John, K. W. (1962), "An Approach to Rock Mechanics", Journal of the Soil Mechanics and Foundations Division, Proc. of the American Society of Civil Engineers, v88, n4, August.

John, K. W. (1968), "Graphical Stability Analysis of Slopes in Jointed Rock", Jour. of the Soil Mechanics and Foundations Division, Proc. of the American Sóciety of Civil Engineers, v94, nSM2.

Jones, 0. T. and E. L. Davies (1929), "Pillar and Stall Working Under a Sandstone Roof", Trans. Inst. Min. Engrs, v76, Pri33329.

Krsmanovic, D. and Milic, S. (1964), "Model Experiments on Pressure Distribution in Some Cases of a Discontinuum", Felsmechanic, Suppl. 1.

Kruse, G. H., K. L. Zerneke, J. B. Scott, W. S. Johnson and J. S. Nelson (1970), "Approach to Classifying Rock for Tunnel Liner Design", Proc. 11 th Symp. on Rock Mech. (AIME), Berkeley, pp169-192.

Lambe, T. W. and R. V. Whitman (1969), Soil Mechanics, John Wiley, New York, pp352-373.

Lane, K. S., (1961), "Field Slope Charts for Stability Studies", Proc. Int. Conf. Soil Mech. Fndn. Engr., Paris, v2, p651.

Lang, T. A. (1961), "Theory and Practice of Rock Bolting", Trans. AIME (mining), v̌̌20, p333-348.

Lang, T. A. (1964), "Rock Mechanics Considerations in Design and Construction", Proc 6th Symp. on Rock Mechanics, Rolla, pp561-605.

Lutton, R. J. (1970), "Rock Siope Chart from Empirical Slope Data", Transactions SME-AIME, v247, n2, ppl60-162.

Major, G., H. S. Kim and D. Ross-Brown (1976), "Stability Analysis and Computer Programs", Repcrt prepared for CANMET by Dames \& Moore ATG.

Manfredini, G., S. Martinetti and R. Ribacchi (1975), "Inadequacy of Limiting Equilibrium Methods for Rock Slopes", Proc. 16th Symp. on Rock Mech. (AIME), Minneapolis, pp35-44.

Maury, V. (1970), "Distribution of Stresses in Discontinuous Layered Systems", Water Power, May/June 1970, pp195-202.

McMahon, B. K. (1971), "A Statistical Method for the Design of Rock Slopes", Proc. 1st Aust/New Zealand, Geomechanics Conference, pp314-321.

Morganstern, N. R. and V. E. Price (1965), "The Analysis of the Stability of General Slip Surfaces", Geotechnique, v15, nl , pp79-93.

Morrison, R.G.K. and D. F. Coates (1955), "Soil Mechanics Applied to Rock Failure in Mines", SMM Bull, Nov, pp701-711.

Muller, L. (1964), "The Rock Slide in Vajont Valley", Felsmechanic, v2, p148.

Obert, L., W. I. Duvall and R. H. Merrill (1960), "Design of Underground Openings in Competent Rock, U.S. Bureau of Mines Bulletin 587.

Orenstein, G. S. (1973), "Computer Study of Steel Tunnel Supports", U.S. Army Engineers Technical Report C-73-2, August.

Panek, L. A., J. D. Dixon and M. A. Mahtab (1975), "A Method for Computing Stabilizing Pressures for Excavations in Incompetent Rock", Prox. 16th Symp. on Rock Mech (AIME), Minneapolis, pp151-156.

Pentz, D. L. (1974) "Methods of Analysis of Stability of Rock Slopes ", Proc. Ist Int. Cont. on Stability Open Pit Mining (AIME), Vancouver, pp119-142.

Pippard, A. J. and J. A. Ashby (1938), "An Experimental Study of the Voussoir Arch", Jour. Inst. C.E., 1938-1939, paper 5177.

Pippard, A. J. and J. F. Baker (1948), The Analysis of Engineering Structures, Edward Arnold and Co., London, pp568-595.

Pippard, A. J., E. Tranter and L. Chitty (1936), "The Mechanics of the Voussoir Arch", Jour. Inst. C.E., 1936-1937, paper 5103.

Rabcewicz, L. (1964), "The New Austrian Tunnelling Method", Water Power, November 1964, pp453-457.

Richardson, H. W. and R. S. Mayo (1941), Practiral Tunnel Driving, McGraw-Hill, New York.

Rosengren, K. J. (1971), "Pock Mechanics Investigations for a Large Open Cut at Mount Isa", 1st Aust. - New Zealand, pp322-328.

Ross-Brown, D. (1973), "Aspects of Slope Design in Open Pit Mining", Ph.D. Dissertation, University of London, Imperial College of Science and Technology.

St. John, C. M. (1972), "Numerical and Observational Methods of Determining the Behavior of Rock Slopes in Open Cast Mines", Ph.D. Dissertation, University of London, Imperial College of Science and Technology.

Salamon, M.D.G. (1974), "Rock Mechanics of Underground Excavations" Proc. 3rd Cong. ISRM, Denver, vi-B, pp951-1100.

Seldenrath, Th, R. (1951), "Can Coal Measures be Considered as Masses of Loose Structure to Which the Laws of Soil Mechanics May be Applied", Int. Cong. Rock Pressure and Support in the Workshop, Liege, 1951 paper A5.

Serrano, A. A. and E. Castillo (1974), "A New Concept About the Stability of Rock Masses", Proc. 3rd Cong. ISRM, Denver, vIIB, pp820-826.

Singh, B. (1973a), "Continuum Characterization of Jointed Rock Masses, Part 1 - The Constitutive Equations", Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., v10, pp311-335.

Singh, B. (1973b), "Continuum Characterization of Jointed Rock Masses - Part 2 - Significance of Low Shear Modulus", Int. Jour. Rock Mech. Min. Sci. v10, pp337-345.

Smart, P. (1970), "Strength of Weathered Rock", Int. Jour. Rock Mech. Min. Sci., v7, pp37l-383.

Spencer, E. (1967), "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces", Geotechnique, v17, ppll-26.

Spencer, E. (1973), "Thrust Line Criterion in Embankment Stability Analysis", Geotechnique, v23, $\mathrm{n} 1, \mathrm{pp85-100}$.

Stini, J. (1950), Tunnelbaugeologie Wien, Springer-Verlag, pp215-221.
Szechy, K. (1970), The Art of Tunneling, Akedemiai Kiado Budapest, pp133-219.

Taylor, D. W. (1937), "Stability of Earth Slopes", Jour. of the Boston Society of Civil Engineers, v24, n3, pp197-246.

Terzaghi, K. (1946), "Introduction to Tunnel Geology", in Rock Tunneling with Steel Supports, by Proctor and White (Commercial Shearing and Stamping Co., Youngstown, Ohio).

Trollope, D. H. (1957), "The Systematic Arching Theory Applied to the Stability Analysis of Embankments", Proc. 4th Int. Conf. Soil Mech. and Found. Eng., vII, p382-388.

Trollope, D. H. (1961), "Mechanics of Rock Slopes", Trans. AIME (Mining), v220, pp275-281.

Trollope, D. H. (1966), "The Stability of Trapezoidal Openings in Rock Masses, Felsmechanic, v4, n3, pp232-242.

Trollope, D. H. (1968), "The Mechanics of Discontinua or Clastic Mechanics in Rock Problems", in Rock Mechanics in Eng. Practice, Stagg and Zienkiewicz, ed. John Wiley, London

Trollope, D. H. and E. T. Brown (1965), "Pressure Distributions in Some Discontinua ", Water Power, August, pp310-313.

Wagner, H. (1970), "The New Austrian Tunnelling Method", Proc. So. Afr. Symp. Tech. and Potential of Tunneling, v1, p121-127.

Wang, F. D. and M. C. Sun (1970a), "Slope Stability Analysis by the Finite Element Stress Analysis and Limiting Equilibrium Method", U.S.B.M., RI 7341.

Wang, F. D. and M. C. Sun (1970b), "A Systematic Analysis of Pit Slope Structures by the Stiffness Matrix Method", U.S.B.M., RI 7343.

Wang, F. D., L. A. Panek and M. C. Sun (1971), "Stability Analysis of Underground Openings Using a Coulomb-Navier Shear Failure Criterion", Trans. Soc. of Mining Eng. of AIME, v250, p317.

Wang, F. D., M. C. Sun and D. M. Ropchan (1972), "Computer Program for Pit Slope Stability Analysis by the Finite Element Stress Analysis and Limiting Equilibrium Method", U.S. Bureau of Mines, RI 7685.

Whitman, R. V. and P. J. Moore (1963), "Thoughts Concerning the Mechanics of Slope Stability Analysis", Proc. 2nd Pan Am. Conf. Soil Mech Fndn. Engr., Brazil, vi, pp391-411.

Wickham, G. E., H. R. Tiedemann and E. H. Skinner (1972), "Support Determinations Based on Geologic Predictions", Proc. 1st RETC (AIME), Chicago, pp43-64.

Wickham, G. E., H. R. Tiedemann and E. H. Skinner (1974), "Ground Support Prediction Model RSR Concept", Proc. 2nd RETC (AIME), San Francisco, v1, pp691-707.

Wilson, S. D. (1959), "The Application of Soil Mechanics to the Stability of Open Pit Mines", Quarterly Colo. School Mines, v54, n3, (3rd Rock Mech. Symp.), pp93-113

Woodruff, S. D. (1966), Methods of Working Coal and Metal Mines Pergamon Press, Oxford, pp39-43, 257-305.

Zienkiewicz, O. C., S. Valliappan and I. P. King (1968), "Stress Analysis of Rock as a No Tension Material", Geotechnique, v18, pp56-66.

APPENDIX A

THE DISTINCT ELEMENT METHOD

The Distinct Element method is a computer model described by Cundall (197la) that simulates the behavior of accemblages of rock blocks. The version of the program described by Cundall (1974) forms the basis for the work described in this thesis. Significant features of the program described by Cundall (1974) include arbitrary block shapes, unlimited block displacements and rotations, and a high degree of user interaction. The interaction requires a dedicated computer and centers around a graphic terminal with a cross-hair cursor input capability. The system enables the user to draw a picture of the problem on the terminal and watch the subsequent movement of the blocks as gravity and other loads are applied.

A very thorough presentation of the algorithms implemented in the program, as well as a description of the required hardware, is given by Cundall (1974). The purpose of this appendix is to briefly summarize Cundall's description of the program and note the significant additions to the formulation. Little would be gained by repeating Cundall's descriptions since his report is readily available.

The calculation cycle used in the program is similar to the one used in most explicit finite difference calculation schemes. Forces arise due to the deformations that occur at corner-to-edge contact points. In each time step of the iteration the incremental shear and normal displacements for a given contact point are calculated using the incremental translational and rotational
displacements of the two blocks in contact. The new shear and normal forces acting on the blocks are then calculated from forcedisplacement relationships. All of the contact forces for a given block are then resolved into an equipollent set of forces including a moment acting on the block.

The force and moment sums acting on each block are used to compute translational and rotational accelerations for the block. The accelerations are integrated numerically to obtain block velocities which are then integrated to give the block displacements. With this new set of block displacements the iteration cycle can begin again. Note that if the force and moment sums acting on a block are zero, there will be no acceleration of the block; this is precisely how the program models an equilibrium state.

Before the displacements and accelerations of the blocks can be calculated, however, some method of defining the block geometries must be implemented. The blocks could be treated as "elements" related to defined nodal points as is done in conventional finite Element analyses. The input would thus consist of numerous cards containing nodal point and element data; anyone who has attempted this to define a mesh for a Finite Element analysis is acutely aware of the frustration that results from trying to "debug" such a mesh. The approach adopted by Cundall (1974) and implemented in the program used for the research described in this dissertation nvercomes the difficulties associated with mesh generation. The actual rock mass geometry, as defined by the jointing, is drawn on the screen of the CRT. All calculations necessary to determine
the significant coordinates are thus performed by the program. The structure of the program is governed by the size limitations imposed by the mini-computer; the actual program consists of three overlays which correspond to the three main calculation phases of the program.

Phase 1 of the program governs the interactive dialog by which the lines defining the block geometry are created. A flow chart for this section of the program is given by Cundall (1974); the flow chart is essentially valid for the present configuration of the program. Care was taken so that the changes to Phase 1 , which will be described presently, did not alter the program sequence or execution.

The two main changes made in the Phase 1 section of the program are concerned with the format of the data input and the storage and subsequent retrieval of data files. Whereas the iritial version of the program used only the cross-hair cursor of the CRT for input, the present version of the program uses a graphic tablet ("digitizer") and a numeric input scheme as well. The three routines are virtually identical and, in fact, use only one set of coding. Whichever routine is active at a given time is noted by the value of the variable $K O D E: K O D E=-1$ signifies that the numeric input routine is selected; $K O D E=1$ signifies that the graphic tablet is in use; and, $K O D E=0$ signifies that the cross-hair cursor is being used for input. All three input methods may be used for a single problem. Potential users wishing to implement the modified version of the program need only supply software for the graphic tablet (Subroutine DIGIT). It should be noted that the numeric input routine contains a scale factor. In this manner, actual field
coordinates may be used as input, and divided so that they meet the program requirements (see Cundall, 1974).

The second major change in the Phase 1 program enables users to store data files consisting of line segments and coordinate data. To do this, the common blocks are written to or read from the Linc tape units. The operation is straight forward; line 57 of the program (see Appendix C) LIST (3) = 13286 is simply a "password" to prevent garbage from being read as a data file.

The second overlay, Phase 2, is unchanged from Cundall's (1974) original listing. This is the routine that scans the line segments created in Phase 1 of the program and converts the line segments to closed areas. A flow chart for this routine is presented by Cundall (1974).

The first two overlays of the program are written in Fortran; to conserve memory, the third overlay is written in Data General assembly language. The only serious drawback caused by this is that the present version of the program will only run on a Data General computer.

Most of the changes made to the program were concerned with the third overlay, Phase 3. This section of the program contains the coding necessary to compute the block accelerations and displacements. Detailed descriptions of the modifications will be noted in the descriptive summary of the Phase 3 subroutines to be presented shortly; the main calculation cycle, however, remains essentially unchanged.

The equations used in the main calculation cycle are summarized
on this and the following pages and are taken directly from Cundall (1974).

Shear and nomal forces for contact

$$
\begin{aligned}
& F_{n}^{c}:=F_{n}^{c}-\Delta u_{n}^{c} \cdot k_{n} \\
& F_{s}^{c}:=F_{s}^{c}+\Delta u_{s}^{c} \cdot k_{s} \\
& D_{n}^{c}=-\Delta u_{n}^{c} \cdot K_{n} \\
& D_{s}^{c}=\Delta u_{s}^{c} \cdot K_{s} \quad \begin{array}{l}
\text { (Deshpot fore } \quad \begin{array}{l}
\text { act } 1 n \text { scme } \\
\text { as mar.er }
\end{array} \\
\text { forces) }
\end{array}
\end{aligned}
$$

The above equations are subject to the followlrg conditions:

$$
\begin{equation*}
\rightarrow \text { If } F_{n}^{c}<0, \tag{3}
\end{equation*}
$$

set $\left.\begin{array}{rl}F_{n}^{c} & =0, D_{n}^{c}=0 \\ F_{s}^{c} & =0, D_{s}^{c}=0\end{array}\right\}$ (no-tension)
\rightarrow If $\left|F_{s}^{c}\right|>\mu . F_{n}$,
set $\begin{aligned} F_{s}^{c} & \left.:=\mu . F_{n}^{c} . \operatorname{sign}\left[F_{s}^{c}\right] \text { (friction law }\right) \\ D_{s}^{c} & =0 \text { (no damping when slidirg) }\end{aligned}$
(where: $k_{n}=$ normal stiffress,
$k_{s}=$ shear stiffness,
$K_{n}=$ normal dashpot constant,
$K_{s}=$ siear dasipot constant.)

Note: $\sum_{c} \begin{aligned} & \text { means the summation over all } \\ & \text { contact points for block } i\end{aligned}$
Exactly similar equations are used for block J

$$
\left.\begin{array}{l}
F_{x u m}^{i}=\sum_{c} F_{x}^{c i}+F_{x \text { lood }}^{i} \\
F_{y v m}^{i}=\sum_{c} F_{y}^{c i}+F_{y y^{\text {lood }}}^{i}+F_{y y n a v}^{i} \\
M_{\text {sum }}^{i}=\sum_{c}\left\{F_{y}^{c i}\left(x^{e}-x^{i}\right)-F_{x}^{e i}\left(y^{c}-y^{i}\right)\right\}
\end{array}\right\}
$$

Equations (continued)

$$
\left.\begin{array}{l}
\dot{u}_{y}^{i}:=\dot{u}_{y}^{i}+\frac{\mathrm{F}_{y s u n}^{i} \cdot \Delta t}{L^{i}} \tag{6}\\
\dot{u}_{x}^{i}:=\dot{u}_{x}^{i}+\frac{\mathrm{F}_{x, 0 m \cdot \Delta t}}{m^{i}} \\
\dot{\theta}^{i}:=\dot{\theta}^{i}+\frac{\mathrm{M}_{s u m}^{i} \cdot \Delta t}{\bar{I}^{i}}
\end{array}\right\}(6
$$

Similarly for block j
($\Delta t=$ time increment;
$\mathrm{m}_{\mathrm{i}}^{\mathrm{i}}=$ mass of block i ;
$I^{i}=$ moment of inertia, block 1.)

Velocities are derived from forces, by numerical integration

At this point the calculation cycle is complete since the incremental displacements needed by equation 1 on page A-5 have been calculated. A complete discussion of the relationships used in equations 1-7 is given by Cundall (1974). The algorithms user to derive the coordinates and angles used by equations 1 and 2 are also presented.

As a prerequisite to the discussion of the Phase 3 subroutines, a brief discussion of the data structures is necessary. The problem of unlimited block movement and the potential for any given block to contact any other block requires an efficient scheme of memory management. Simple sequential arrays are not sufficient for the task at hand as it requires that the words in the memory be subject to additions and deletions of data while at the same time the amount of unused memory, memory reshuffling and processor time must be kept to a minimum. The solution implemented by Cundall to alleviate the difficulties of handling large, sparse data arrays was borrowed from the techniques of manipulating information structures by computer. The data structures rely heavily on the techniques of list processing whereby the data is stored in short lists in arbitrary computer memory locations with one word of the list containing information sufficient to locate subsequent data. The entirety of the data can thus be imagined to be one long list comprised of several short lists strung together through the memory. The reader who requires exact details concerning the implementation of the list processing techniques is advised to consult Cundall (1974) pages 62-72. All that will be presented herein is a brief overview of the list processing implementation and a description of the format of the data structures used in the present formulation of the program.

The storage requirements for a given block model due to tire problem of allowing any block to touch any other block are overcome by a list scheme. All block corners are classified into coarse
boxes covering the screen area. When the program needs to know if a given edge is near any block corners, it is only necessary to scan the area delimited by those boxes encompassing the edge. As the blocks move as a result of forces acting on them, their corners are reclassified into new boxes if necessary. This boxing scheme turns out to be very efficient as only a small amount of computer time is required.

It is impossible to allocate sufficient memory space for all possible block to block contacts - the space required is far too great. The only viable solution is a method to allocate memory as it is needed by the formation of a new contact and return the memory to a pool of available memory when it is no longer needed. A scheme of linked memory allocation provides such a solution and is implemented in the Distinct Element prosram.

In the program a fixed group of words is reserved as a set of pointers; each word corresponds to a given block. Each pointer contains the address of the start of a linked list of all contacts for the block associated with that pointer. Another list is used to store all of the memory which became "dead" once a contact was broken. When a new contact is detected by the program the program first checks the list of dead contact space. If space exists it is used, otherwise, previously unused memory at the high end of core is allocated. The following pages describe in detail how the data is organized in the computer memory. The first page following shows a total memory map illustrating the four main parts of the memory. These are:
a) the program
b) the sets of data pertaining to each block
c) the pointers and data necessary for the "boxing" scheme, and
d) the data sets and pointers pertaining to the contact between blocks

The subsequent pages illustrate expanded forms of groups b, c, and d to show in detail the structure of each list.

The present formulation of the program utilizes another linking scheme to store the data pertinent to applied joint water pressures when they exist. The format of data lists used in this scheme is also illustrated. There are two other linked lists threaded through the memory that must be mentioned; these are the "empty" lists used to reference previously used memory space that is now free for re-use. Memory is made available whenever a block contact is broken or when a pressure segment is deactivated. The two empty lists and the joint pressure lists are referenced by global memory pointers and make use of whatever memory is available. Adding or reclaiming a group of words from the empty lists is simply a matter of reshuffling the link bits and is illustrated by Cundall (1974).

Total ramor -an fophaze 3

Note: M, M2 etc are the global symbols that refer to tio polnters to the memory locatiors shown

 arranged sequertially, exparded to show format for one blook:
 manual flued/free flas $\left\{\begin{array}{l}0=\text { free } \\ 1=\text { fixed }\end{array}\right.$
(numbers are octal)

" wote: Li any $\left|X_{i}\right|$ or $\left|Y_{1}\right|$ is greater than 127_{10}, thea biock is classified as a LO:G BLDCK, aria the second format sibom is used. This is to seve remory, as sily : fow blocks will be lofe.

Itantifies the particuigr comer of the partieular blook that falis in the ajsosiated tox. The ciata ficu that bleck ane corner moy then be found from tho bluci: cata amys (rage E3)
 for tre pointens to the fous oi remory stom

Format of linked Lists of Pressure Ses ent Data

```
if no pressure sesments exist, .PRES = -1
```


The empty list of pressure segments strings togetner groups of six words kith were previously active as pressure segment data lists. It is

The empty list of contact data has a similar form but the list groups are $13_{\text {a }}$ words lang. It is accessed by the pointer. ENPT.

With this preliminary information in mind, a brief discussion of each of the subroutines of Phase 3 may now be presented. The logic of the subroutines is straight forward and due to the number of comments interspersed in the listing, there seems to be little need to present flow charts for the programs. The brievity of the discussion is justified by the fact that Cundall (1974) has adequately described the original versions of the subroutines. The descriptions presented herein are thus primarily concerned with the modifications made to the program.

Subroutine TRANS
The purpose of TRANS is to translate the Fortran data arrays into the Phase 3 format illustrated on pages $A-12$ and $A-13$. It is the first subroutine to be executed in Phase 3 and is only used once. The program originally (Cundall, 1974) was overwritten by the data input routine, but this is no longer so. Additionally, TRANS classifies all of the block corners into boxes utilizing the format illustrated on page A-14; Cundall outlines the procedure for accomplishing this.

The changes made to TRANS are minor and are outlined in the following sentences. The initial program version was implemented for a specific memory size; the present version determines the size of its environment and adjusts itself accordingly. The routine determines the locations of the Fortran common blocks and sets several pointers. The memory sizing routine works for all physical
configurations except 32 K words; for this memory size the common block locations are displaced by one word. For this reason variable IY is dimensioned as 513 only in Phase 3. This juggling is not necessary for other memory sizes and may not be necessary for other operating software.

Subroutine CONTR
The next routine to be executed governs the main control loop; subroutine CONTR also monitors the keyboard. The logic of the program is unchanged from Cundall (1974) but the fact that this routine embodies the main calculation cycle merits the presentation of a flow chart.

The overall logic of CONTR is straight forward and simply involves the evaluation, for each block in turn, of the sets of equations listed on pages $A-5$ through $A-7$.

The calculation of the displacements from the forces (subroutine MOTIO) involves the evaluation of equations 6 and 7 for each block. Accelerations derived from forces are integrated twice to give displacements. Gravity forces and any applied forces are added to the forces derived from block contracts. In this part of the calculation cycle the magnitude of the displacements are also monitored and if necessary, control is transferred to the routine that determines if any of the block corners need to be assigned to new boxes.

Having thus obtained incremental displacements for all blocks, the force/displacement laws (equations 1 through 5) are used to obtain contact forces.

The control routine also calls subroutine UPDAT every so often to update the coordinate data used in equations 1 through 7. UPDAT updates the sine and cosine of the edge in contact with a particular corner, as well as the global coordinates of the contact point. UPDAT also deletes broken contacts and searches for new ones.

The other function of subroutine CONTR is to monitor the keyboard and respond to keys hit by the user while the program is running or waiting. The program responds to the keys and modifies the sequential operation of the program. The function
of the individual keys is clearly explained in the listing of CONTR (Appendix C) as well as in Appendix B.

Subroutine REBOX
As has been observed, the corner reboxing routine is called from MOTIO whenever a block is suspected of having moved sufficiently to need its corners reclassified into new boxes. The logic of the corner reboxing scheme is presented by Cundall (1974) and is unchanged in the present version of the program.

REBOX also updates the applied joint water pressures. The water pressures must act normal to the joint surface and do not dissipate as the blocks move. Any rotational movement of a block with an applied water pressure would lead to a change in the x and y components of the applied force. Subroutine REBOX updates this information whenever it is called for any block.

Subroutine MOTIO
This subroutine evaluates equations 6 and 7 on page A-7 for all blocks except those having either the master or manual fix flags set. As noted earlier MOTIO also makes a decision when to call the reboxing routine to reclassify any block's corners into new boxes. A call to REBOX is triggered whenever the cumulative motion of any block exceeds one screen unit.

Subroutine FORD

This subroutine evaluates equations 1 throuah 5 on page A-5 and A-6 for each block in sequence. It accesses the data stored in the contact list associated with each block, and computes the force sums acting on that block. Equation 5 is the only equation of the main calculation cycle that is different than that presented by Cundall. It now contains terms to account for the presence of joint water pressure.

$$
\begin{align*}
& F_{x \text { sum }}^{i}=\sum_{c} F_{x}^{c i}+F_{x \text { load }}^{i}+F_{x p r e s}^{i} \\
& F_{y s u m}^{i}=\sum_{c} F_{y}^{c i}+F_{y \text { load }}^{i}+F_{y p r e s}^{i}+F_{y g r a v}^{i} \tag{5}\\
& M_{s u m}^{i}=\sum_{c} F_{y}^{c i}\left(x^{c}-x^{i}\right)-F_{x}^{c i}\left(y^{c}-y^{i}\right)+M_{p r e s}
\end{align*}
$$

Ford also contains numerous entry points that are primarily used for experimenting with the program. These entry points allow modification of block weights and the dynamic factors of the program.

Subroutine UPDAT

The subroutine UPDAT is called once every few iteration cycles to check for new contact points. UPDAT also updates coordinate data as required. The routine is unchanged from the original form; the description presented by Cundall is very complete and contains a flow chart of the subroutine.

Subroutine PONT

Subroutine PONT is used to calculate the global coordinates of a contact point from the local coordinates of that point. This is
done by a simple coordinate transform for a translated origin and rotated axes. The equations are: (see any book on analytic geometry)

$$
\begin{aligned}
& X G=X C+X L \cdot \cos \theta-Y L \cdot \sin \theta \\
& Y G=Y C+X L \cdot \sin \theta+Y L \cdot \cos \theta
\end{aligned}
$$

where $X L, Y L=$ local coordinates
$X G, Y G=$ global coordinates
$\theta=$ angle of local system to global system
$X C, Y C=$ local origin ($=$ block centroid)

Subroutines DISPL and TEK
With the exception of the contact vectors, which are generated by subroutine FORD, all screen plotting is managed by subroutine DISPL. Subroutine DISPL in turn calls TEK which is nothing more than the basic Tektronix supplied software package for minicomputers. Whereas Cundall's (1974) version of the program providoc hard copy through digital plotting, the present hardware includes a Tektronix 4637 copier. Although DISPL will still drive a digitai plotter, this feature is rarely used.

The remainder of the subroutines of Phase 3 are primarily used for various utility functions. No great detail will be expended on describing the main function of each routine. The subroutine listings (Appendix C) contain many comments that indicate how the functions are performed. The interested reader is directed to the listings.

Subroutine INPUT

The utility routines embodied in INPUT are primarily concerned with parameter specification and modification. Most significant of the functions are:

1) set up or modify the values of the ten different
friction properties used by the program
2) input of applied pressures
3) numerical input of applied loads
4) set up of displacement control routine

The input of pressure segments deserves firther attention. The presence of water in a joint tends to exert a force against the joint surfaces. For a single joint surface:

F and M are calculated as soon as a pressure segment is defined and never varies with displacement. The x and y components of the force do vary with displacement and are updated in REBOX.
4) $F_{x}=F \cdot \sin \alpha$

$$
F_{y}=-F \cdot \cos \alpha
$$

The initial value of F_{x} and F_{y} is also calculated in REBOX.

Subroutine UTIL
Subroutine UTIL contains several utility programs. The entry points and their functions are:

1) .HITC - a routine to determine which block has the centroid corresponding to given x and y coordinates.
2) . PRNT - output a single character to the teletype
3) . ALPH - sets the Tektronix to alpha mode
4) . PAGE - a routine to clear the Tektronix screen
5) .LENG - a routine to return the length of side NP of the block in question
6) .TYP - a routine to return the surface type number of a given edge
7) .SCAL - a routine to scale vector lengths
8) .IPRN - a binary to decimal conversion routine that prints a right justified integer in a given field length
9) .PRN2 - a routine to print a single character on the teletype - character is in ACD
10) . MESS - a routine to print a message at a specific location on the screen
11) AXIS - a routine to draw an axis with tick marks
12) .GETT - a routine to receive a character from the teletype
13) . DBIN - a decimal to binary conversion routine
14) . CHEK - checks if an ASCll byte is a digit and reduces it to binary if it is
15) WORD - a routine to get an alphanumeric string from the key board

Subroutine CYCLE

Subroutine CYCLE contains several additional utility routines. The entry points and their functions are:

1) . KET - a routine to set velocities to zero at a kinetic energy peak
2) . RSET - a routine to set the iteration cycle counter to zero
3) OPTIN - a routine to set options governing vector scale factors, automatic copy and automatic stop
4) .STEP - a routine to step the iteration cycle counter
5) .TPRN - a routine to print elapsed cycles

Subroutine HITS

Subroutine HITS checks all sides of all of the blocks to determine which edge of which block the coordinates x and y fall upon.

Subroutine LOADS

Subroutine LOADS allows all block weights to be multiplied or divided by an integer constant.

Subroutine MOVIT
The law of motion for displacement controlled blocks is embodied in subroutine MOVIT

Subroutine TAPE
Subroutine TAPE contains the standard Linc tape utilities. It also contains the coding for reading or writing save files in Phase 3, and performs the overlay to return to Phase 1.

APFENDIX B
USER MANUAL FOR DISTINCT ELEMENT PROGRAM

The information contained in this Appendix describes the operation of the configuration of the Distinct Element program used for this dissertation. The Appendix is arranged in such a way that each of the three operating phases is described in sequence, with comment interspersed as necessary. The comment following the third phase of the program is extensive and contains much information pertinent to the successful operation of the program.

During all three phases of operation the computer responds to user commands whenever a teletype key is struck. There are a lot of key commands to which the program will respond with appropriate action. Lists of these keys follow. Rather than memorizing the lists and attempting to implement them all at once, it is strongly suggested that the potential user familiarize himself first with those keys which are essential to the operation of the program. As the user becomes confident in the use of these keys through the running of simple examples, more keys can be added to his "working vocabulary".

Essential Keys

Phase 1-1,2, E, P-2, rubout
Phase 2-E,S,R, P-3
Phase 3 - $G, D, F, C, Z, I(F), S$

If a more detailed introduction to the use of the program is desired see Cundall (1974).

PHASE 1 - OPERATIVE KEYS, CURSOR DISPLAYED

1 - Key " 1 " is always used to define the first end of a line segment. Move the cross-hair cursor to the desired point and strike the key. The computer responds by drawing a "+" at the point indicated.

2 - Key "2" is always used to define the second end of a line segment. Move the cross-hair cursor to the desired point and strike the key. The computer responds by drawing a "+" at the indicated point and by drawing a line between the first and second end points of the desired line segment. The computer program was modified to recognize the fact that it is often desirable to draw connected line segments. Therefore, the program will respond to the "2" key following either a "l" key or a "2" key. In this case the program supplies the coordinates of the first endpoint of the line segment at the proper time by using the last input of the second end of a line segment.
E - Ary individual line segment may be erased by placing the cross-hair cursor at any position on the line segment and typing the "E" key. A useful trick to make the drawing clearer is to create a line segment at the edge of the Tektronix screen and then erase it. When the remaining line segments are redrawn, the "+'s" at the ends of line segments are not redrawn.
rub- All created line segments may be erased by typing the "rubout" out key. When the "E" key is used to erase a line segment, the end points of that line are not removed from the point list.

These points can often impede the creation of a drawing. If a large number of line segments are to be erased, it is preferable to use the "rubout" key.

H - To make a hard copy of the Tektronix display type key "H" or strike the make copy button on the console.

W(code) To store the complete list of line segments created in Phase 1, type "W" followed by the desired code file number. To store the line segments in the third file, for example type "W" followed by "3".
R (code) To recover a list of line segments created at an earlier time, type "R" followed by the desired code file number. For example, to recover the eighth file type "R" followed by "8".

Note: The program uses the ASCII equivalent of the character to calculate the position of the file on the Linc tape. On a 620s block tape the permitted files, in order, are: l-9, :, ;, <, =, >, ?, ©, and A - Q. The program also stores a "password" in the file to prevent garbage from being read into the program.

N - The program has a subroutine to allow the numerical input of line segment end points. To implement this feature, type key "N".

C - The Tektronix screen coordinates are from 0 to 1023 in the x direction and from 0 to 780 in the y direction. Often, the problem to be analyzed can be in field coordinates
which do not fall conveniently in this range. By typing key "C", a scale factor may be input to the program which is then used by the program to divide the input data in such a way that it will fall within the range of the Tektronix screen coordinates. Incidentally, the program treats both the scale factor and the input data as integer numbers, so nothing is to be gained by typing in highly accurate field coordinate data. The "C" key does not affect either the cross-hair cursor input or the digitizer input.

D - The program contains a subroutine to allow input of data by means of a graphic tablet or digitizer. To implement this feature type key "D".

digitizing routine

The digitizing routine will accept input data from the graphic tablet until the "E" key is typed. At this point the control returns to the main program and the cross-hair cursor is displayed. NUMERIC INPUT ROUTINE

Upon entrance to the numeric input routine, the computer responds by typing " $\mathrm{Xl}=$?" and waiting for input data. After the data input following "Y2=?" several keys are operative.

CR - striking the carriage return key causes the computer to respond "Xl=?" etc.
/ - striking the "/" key causes the program to use the last endpoint as the first endpoint of a new line segment. The computer response is thus " $\mathrm{X} 2=$?" etc.

L - striking the "L" key causes the computer to redraw all lines. This key is frequently used as every input data pair will leave " $\mathrm{Xl}=$?" and " $\mathrm{Yl}=$?" typed on the screen - it soon becomes difficult to follow what is happening on the screen unless "L" is frequently implemented.

E - striking key "E" while in the numeric input routine will cause control to be returned to the main program and the cursor is displayed.

Once the desired number of line segments has been created, the second Overlay of the program may be implemented. To do this, strike key "P" followed by key "2". Two comments are appropriate. First, it is not possible to get to Phase 2 from either the numeric input routine or the digitizer routine. The cross-hair cursor must be displayed before control can be passed to Phase 2. Second, all three input methods work together. Thus, it is possible to create part of the assemblage of line segments in the numeric input routine and finish the creation in the cross-hair cursor input routine.
A) Cursor Displayed - Operative Keys

1 Use the cursor position as end no. 1 of a new line
2 Use the cursor position as end no. 2 of new line (display the line)

E Erase the indicated line
H Make a hard copy of display
rubout - Erase all lines
W(code) Write the display onto tape in location code
R (code) Read the display at location code into memory
D Go to digitizing routine
If Go to numeric input
C Change N scale factor
P Then 2 go to $\mathrm{P}-2$
B) Digitizing Routine

Accept line segments fron digitizer
E Escape to cursor on
C) Numeric Input Routine

Responds $\mathrm{Xl}=$?, etc, after $\mathrm{Y} 2=$? several keys are operative:
CR Select a new point
/ Repeat point
L Redraw all lines
E Escape to cursor on

PHASE 2 - OPFRATIVE KEYS

E - A single block may be erased in Phase 2. To implement this option, place the cross-hair cursor on the desired block centroid and type key "E".
R - All erased blocks may be restored by typing key "R".
S - A single block may be examined by placing the cross-hair cursor on the desired block centroic and typing key "S". After the single block is displayed, the block may be erased by typing key "E". Striking any other key returns without erasing the block. This feature is most useful to determine which centroid belongs to a given block.

A - Striking key "A" witl display all of the blocks.
H - A hard copy of the display may be obtained by striking key " H " or pressing the "make copy" switch on the Tektronix console.

To return to Phase 1, strike key "P" followed by key "l".
To pass control to the third Overlay, Phase 3, type key "P" followed by key "3".

Two comments are in order. First, it is more economical in terms of computer work expended to erase unwanted blocks in Phase 2 than in Phase 3. Second, if the computer determines that no blocks can be created from the line segments passed by Phase 1, control is automatically returned to Phase 1. This means that it is not possible to get to Phase 3 without at least one block on the screen. To access a Phase 3 save file it is necessary to create a single block, and pass it from Phase 1 to Phase 2 and then onto Phase 3.

$$
B-8
$$

At that point, the Phase 3 save file may be read.

PHASE 2 SUMMARY

E Erase the block indicated
A Display all blocks
S Display the single block indicated - E Erases the block, any other key returns without erasing block
li Make a hard copy of the display
R Restore all erased blocks
P then 1 go to Phase 1
P then 3 go to Phase 3

Phase 3 - OPERATIVE KEYS

Iteration Cycle Not Running

G - To begin or continue the iteration cycle type key "G"
D - As the Tektronix is a storage CRT all images drawn on the screen remain on the screen until erased. To redisplay the system of blocks type key "D".
Z - To remove all inertia from the system type key " Z " to set all velocities to zero. This key is useful in the consolidation phase of the program in conjunction with the "V" key as described in a later section.

H - To make a hard copy of the blocks displayed on the screen type key "H" or depress the "make copy" switch on the Tektronix console.

T - To display the surface properly types which have been declared in the cursor routine, type key "T". The program displays a number from 1 to 9 at the midpoint of the edge of the block. Those surfaces having surface type \emptyset (the default value) are not indicated.

W - To store page zero (a variable list) and all block data, type key "W". The program writes this data on Linc tapes for future retrinval. This feature can be used to store the consolidated block assemblage and identical problems can be run to study the effect of certain parameters. Only one file can be written or read by Phase 3, so no "code" is required.
R - To read a previously stored Phase 3 write file, type "R". The program reads page zero and the block data, essentially
defining a new problem. A problem may be written on tape and returned to at a later time. As noted earlier, it is not possible to gain access to Phase 3 without going through Phase 1 and Phase 2. The best method of access is to create a single block in Phase 1 and pass it on to Phase 3. Upon typing key "R", the stored problem will be recovered. It is important to note that only the default friction value is stored in page zero. Friction properties for surface types 1-9 must be re-entered if the problem is changed. Note that it is possible to use the Linc tape utility "KBEX" to go directly to Phase 3, but this requires knowledge of severai starting addresses.
V - The contact vectors of each block may be displayed by typing key "V". The stability of a block can be assessed by repeatedly typing key " V " and noting the variation of the position and length of the contact vectors. Note, however, that while the iteration cycle is not running, new contacts are not being detected (subroutine UPDATE) and repeated typing of key "V" may allow blocks to punch through edges. It is recommended that no more than 10 "V" keys by typed without typing key " G^{\prime}.

L - The weights of all blocks, all externally applied loads and joint fluid pressures are displayed when key "L" is depressed.
J - To input joint fluid pressures, type key " J ". The program responds by displaying the cross-hair cursor and waiting.

Positiun the cross-hair cursor on the desired joint se and type the desired value of pressure followed ly a cari: : : return. The cursor is then re-displayed. Additional pasidi data may then be entered by the above procedure. Filternid tively, a carriage return exists from the routine. linte that if two line segments are adjacent the logic of trie program will apply to fluid pressure to both surfaces.

C - Typing key "C" displays the cross-hair cursor and allows ati: to several input routines described in a later section.

I - By typing key "I", four additional input routines may lee accessed by typing an additional key. These keys are:

F - If key "F" is typed following key "I", the routini- to
define surface friction property types is accessed.
To define the friction coefficient corresponding to each numbered surface type, place the horizontal cursor on the same 1 ine as the desired surface type, type the "." key followed by a 3 digit decimal value of the friction coefficient, and end with a carriage return. After all desired friction coefficients have been defined, another carraige return will give control back to the main routine. Note that the maximum friction coefficient is 0.999 and that the value actually used by the program differs by .001 due to a validity check.
L. - Typing key "L" following key "I" accesses the same numerical input routine described under key "0" in the
cursor routine.
0 - Typing key "0" following key "I" allows the user to define several options including the options to print values of applied loads and contact vectors, define the vector length scale factor, and automatically make copies and stop the program after a desired interval. The kinetic energy damping routine should be used with extreme caution.

U - If key "U" is typed following key "I", a routine to define user units is entered. At the present time the only result of entering this routing is to cause a set of divided axes, labeled in desired units to be displayed on the screen.
X - By typing key " X " the iteration cycle counter is reset to zero. This routine is useful to set the cycle counter to zero after the consolidation phase so that the problem can begin at zero time.

Q - Typing key "Q" accesses several routines to vary some of the dynamic parameters and block weights. Its primary function is in program development and debugging.

M - Typing key "M" puts the cross-hair cursor on the screen and enables the selection of the block to be used for the displacement control mechanism. Place the cursor on the desired block centroid and hit any key except "E". The program guides the user through the specification of the displacement steps,
frequency and direction. Striking key "E" disables the mechanism if it is already set.

P - Upon completion of the problem, control may be passed to Phase 1 by typing key "P".

Iteration Cycle Running

S - To stop the iteration cycle and prepare for input, modification etc. type key "S".
N - While the iteration cycle is running blocks that are moving are being redrawn as they move. To prevent this type key "N". The computer responds by blanking the Tektronix screen. This action is required if the program is to be left unattended as the Tektronix screen can be permanently damaged if an image is displayed for a time longer than about 15 minutes without being redrawn. This option also makes the program run faster since the computer does not have to service the Tektronix for plotting.

A - Plotting of the blocks as they move can be restored by typing key "A". However, this option does not redraw all of the blocks, it only enables the drawing of blocks as they move. This has the advantage of allowing the user to determine zones of movement within a nass, for example. To redraw all of the blocks, both moving and stable, type key "A" followed by key " 0 ".

Several of the keys which are operative when iteration cycle is stopped are also operative when the iteration cycle is running.

These are:
D - display all blocks
H - make a hard copy
T - display surface types
V - display contact vectors
L - display load vectors

Iteration Cycle not Running, Cross-Hair Cursor Displayed

F - To force the program to hold a block fixed in space, place the cross-hair cursor on the desired block centroid and type key "F".
U - To release the status of a previously fixed block, place the cross-hair cursor on the desired block centroid and type key "U".

E - Blocks can be erased by placing the cross-hair cursor on the desired block centroid and typing key "E". However, as mentioned earlier, it is more economical in terms of computer effort to erase blocks while in Phase 2.

0 - Typing key "0" writes the prompt message "Select Single Block". Place the cross-hair cursor on the desired block, hit any key and the program displays just the one block. Also displayed on the screen are the block centroid coordinates and the magnitude of the applied loads. Additionally, if switch zero on the computer console is in the up position, pertinent force and velocity data are displayed. Finally, an opportunity is presented to numerically change the values of
the applied loads. This routine exits the cursor routine automatically.

1 - Applied loads may be input from the cursor routine by placing the cursor on the desired block centroid and typing key "l". The cross-hair cursor is then moved to a position defining the magnitude and direction of the desired load vector and key "2" is typed.
$\emptyset-9$ - Surface property type flags are set in the cursor routine by placing the cross-hair cursor on the desired block edge and typing a key from " \emptyset " to "9". This flag alerts the program to search the friction table for a specific friction value.

Any other key removes the cursor and transfers control back to iteration cycle not running status.

There are two external "flags" available to the user to modify the execution of the program. These are data switches on the console of the computer. If switch 15 is in the up or on position, the printing of the elapsed cycles and default friction coefficient is inhibited. This is of use when it is desired to have copies that are free of text. The other flag is controlled by switch \emptyset on the console; it serves multiple purposes in guiding program execution. If switch \emptyset is in the up position, it is not possible to return to Phase 1 ; this is done to prevent accidental loss of a program. Switch \emptyset "on" also causes velocity and acceleration data to be printed when a single block is examined, as well as allowing a message to be printed when the displacement control mechanism is operative.

PHASE 3 SUMMARY

Not Running

G Go (start dynamics)
D Redraw all blocks
Z Set all velocities to zero
H Make hard copy
T Display surface types
W Write display on tape
R Read display from tape
\checkmark Display contact vectors
L Display loads \& pressures
J Accept joint pressures
C Display cursor
I Input actiuation

F Friction U Units

L Loads 0 Options
x Reset cycles
Q Debug routine
M Access displacement control
P Go to Phase 1

Running

S Stop running
N No plot option
A Activate plotting Also: D, H, T, V, L

Cursor Displayed

F Fix block indicated
U Unfix indicated block
E Erase block indicated
0 Display block indicated
1 First end of applied load vector (centroid) followed by a 2
\emptyset to 9 Define surface type (friction)

Other keys remove cursor

USEFUL INFORMATION
The remainder of this Appendix is devoted to the presentation of information that will be of use to potential users of the progran. Some of this information is intender to make it easier for an untrained user to begin working with the program, sone of it is intended wo an and development and some of it is simply odds and ends. To apology is offered for the rather rambling nature of the presentation.

Block creation

In the first overlay or main section of the program, line segments are drawn on the Tektronix screen using the cross-hair cursor, a numerical coordinate input routine or the graphic input tablet. At this stage of the program we are only drawing line segments. Thus it is not necessary to draw each block individually.

The program detects intersections and overlaps and treats them as such. Inridentally the program has a built in error factor of 5 screen units (out of $1023 \times$ or $768, y$). It is therefore impossible to create a situation such as:

The program will merge
the points into

Always remember that line segments that do not define a closed area will be rejected by the program Overlay 2 (see following paragraph). In the second Overlay of the program, the computer scans all line segnents created in the first Overlay to determine which line segments will form closed areas. For example, if the following line segments were created in Phase 1 , (or the first Overlay):

Phase 2 (second Overlay) would return the following bit.

It must be emphasized that closed areas must be drawn in blocks are desired in the main part of the progran. If a a line segment has been inadvertently omitted, there is no 1 mos other than to return to Phase 1 and begin anew.

In Phase 1, use rubout rather than erase if possible ? program remembers all points created since the last rubets. Thus, if you desired to create a line but had created and ri: previous line, the program would, if it considered the act. proper, divert the line to include the previous line's ent

This happens very easily, be aware of why it happens.
As the Tektronix 4010-1 is a storage oscilloscope and not a television screen, all information drawn on the screen is stored on the screen. Under no circumstances use the page key to clear the display. This leads to a minor state of confusion as to what the program is doing. Especially serious is the situation that occurs if you use the page key when the cross-hair cursor is displayed. The effect of this is to place the screen in ALPHA mode (ASCII input) while the governing software is still in GIiv MODE (graphic input). When this occurs, you no longer will be able to communicate with the computer through the Tektronix, and the computer will be hung-up in the graphic input loop. This isn't really as serious as it looks. For some roason, striking the
return key several tines will bring the cursor back. However, this is not fool proof - if you strike the return key quickly, it is possible that the program will give the Tektronix the order to take the cursor down before it actually gets it back on the screen. In this case the computer is no longer confused, but quite often the operator is. Enough said, the best solution is to not touch the page key when using this program.

Linc tapes

The Linc tape system is a unique mixture of the operating advantages of a disk system and the lower cost of a magnetic tape format. The addresses of the storage blocks are written on the tape and the software can search the tapes in either direction for a specific block address and, once it is found, read, write or overwrite starting at that address. The present form of the Distinct Element program relies heavily on the Linc tapes and the following paragraphs present information that could be of use to someone using the program.

The system used for this study has two drives - unit 0 and unit 1. Unit 0 is used by the program for the Phase 1 save files. The save file handing routine, subroutine TAPE, does not check the tape file directory before writing nor does it append a title to the directory for the save file. It is thus a good idea to use a blank tape on unit 0 and maintain a separate "directory" of the save files. Unit. l is used for a tape that has the three overlays and the introduction to the program written on it. (Incidentally the
an...... ...essed by piacing a "blank" tape on unit 0, a "program" : it 1 and typing "HELP". The program takes it from there!) [anit $]$ is also used to store the Phase 3 save file. It ont to note that the file directories do not "know" about ; and save file and thus it is up to the user to protect ace from block 150_{8} onward.
inc tape furnished software used in this study did not ophisticated operating system. The fact that not having sincted operating system led to additional memory (= larger \therefore offset by the fact that the overlays must be "done by inc tape utilities have the capability to move data from Mory and vice versa. The overlays of the program are of memory written onto tape. For the present study oddresses on the tape on unit 1 are:

.atile	beginning block number *	number of blocks
mate 1	350 。	55_{8}
mas?	$45 \mathrm{C}_{8}$	37_{8}
1nar: 3	5108	378
P3 save file	1508	$\begin{aligned} & \text { up to } \\ & 200_{8} \end{aligned}$
$\underset{\substack{\text { ital } \\ \text { ane } \\ \hline}}{ }$	5558	1

- Un I inc tapes used have 620 , blocks of 400 words

It is important to point out that the Linc tape routine $\mathrm{BE} \mathrm{B} \boldsymbol{\mathrm { x }}$, which is used to write the overlays onto tape, does not check the file directory. It is a very easy matter to destroy files on the tape if KBEX is not used with extreme caution.

Execution times

The amount of real time required for execution of a single cycle of the Phase 3 iteration loop is primarily a function of the number of blocks comprising the model in question. The progran execution times are also greatly influenced by any progran options in use and the amount of "connect" time devoted to machine/user dialog. The option which consumes the most time is, of course, the plotting of the blocks as movement occurs. This is due to the fact that communication across a teletype line occurs under conditions of "programmed I/O" - the CPU must wait between each transfer until tho Tektronix is ready to accept more data.

The accompanying graph presents an approximate portrayal of the real time required for the Nova 1220 to perform one complete cycle of the iteration loop as a function of the number of blocks modeled in the program. The graph indicates a range of time required for calculation; the lower end of the range is a fairly accurate representation of the fastest possible calculation times for a given number of blocks. This time can only be realized by running in the "no plot" option. The upper end of the range represents the tine required for one cycle of the iteration loop with the plotting option

activated and most of the blocks in the program moving. This probably represents an accurate upper linit to the calculation time and the time required for most problems would be somewhat less than that illustrated.

The time dedicated to user/machine dialog is not included in the graph but can be a significant portion of the total time required for prngram execution. This is especially so for users who are unfamiliar with the program, but increased exposure to the program usually leads to familiarity and an attendant drop in the amount of time required for interaction.

Conversion factors

All calculations performed by the Distinct Element program described in this Appendix utilize variables whose magnitudes and dimensions have been adjusted to give optimum calculation speeds. This has been done in order that double precision variables are avoided and so that all arithmetic is done on integers (integer arithmetic is many times faster than floating point arithmetic in the absence of a floating point processor). In order that someone who wishes to do so may convert to either metric or english units, three conversion factors are presented in the following paragraphs.

The first conversion factor is a defined relationship between physical problem length and that used in the computer program. Consider the following physical situation: a block 100 ft on a side, 1 ft thick, with a unit weight of 160 pct.

The computer model is drawn in such a way that the equivalent edge lengths are 300 cu (computer units). The unit weight in the computer model is 1 cu (this can be changed by typing " Q " followed by key "W" - the following must be modified if the unit weight is changed). By selecting 300 cu to represent 100 ft , the first conversion factor f_{d} is automatically defined.

To get feet or meters multiply the program distance by f_{d}

In this particular example,

$$
300 \mathrm{cu} * f_{d}=100 \mathrm{ft} \quad \text { or }
$$

$$
f_{d}=0.333 \mathrm{ft} / \mathrm{cu}
$$

The second conversion factor is a derived relationship between physical problem forces and those used internally in the computer program returning to the example, the real weight of the block is
seen to be:

$$
100 \mathrm{ft} * 100 \mathrm{ft} * 1 \mathrm{ft} * 160 \mathrm{pcf}=1.6 \times 10^{6} 1 \mathrm{ts}
$$

The weight of the block in computer units is given by the Distinct Hament program - in this case it is seen to be 720 cu . The r...ber 720 represents a normalized weight obtained by detemining the volume of the block and dividing by 125. The number 125 is related to the tolerance to which points and lines are subjected in Phase 1 and Phase 2. The smallest block allowed is defined to be 5 times the area defined by the screen accuracy (5×5). The s!allest block area possible is then 125 units; when normalized the smallest block weight allowable is thus 1 cu since the unit Wight used in the program is 1 cu . The weight used in the connter program for this example is thus

$$
\begin{aligned}
& 125 * \frac{100 \mathrm{ft}}{\mathrm{~d}} * \frac{100 \mathrm{ft}}{\mathrm{f}_{\mathrm{d}}} * \frac{160}{d} \mathrm{pcf}=W \mathrm{cu} / \text { unit depth } \\
& \text { Sirce } W \text { real/unit depth }=100 \mathrm{ft} * 100 \mathrm{ft} * 160 \mathrm{pcf} \\
& W \text { real }=125 * f_{d}^{2} * d * W \mathrm{cu}
\end{aligned}
$$

The conversion factor between real situation force and that used internally by the computer is f_{l}

$$
f_{t}=125 * f_{d}^{2} * d
$$

> To get force in pounds or newtons multiply the displayed force by f_{l}.

In this particular example

$$
\begin{aligned}
& f=125 \times 0.333 * 160 \text { or } \\
& f=2222.221 \mathrm{~b} / \mathrm{cu}
\end{aligned}
$$

The third conversion factor relates pressure in physical units such as psf or N / m^{2} to the units used internally in the computer program. If the base pressure of the real block considered in this example is calculated the quotient of the block weight and the contact area are found.

$$
P_{\text {real }}=\frac{W}{A}=\frac{100 \mathrm{ft} * 100 \mathrm{ft} * 1 \mathrm{ft} * 160 \mathrm{pcf}}{100 \mathrm{ft} * 1 \mathrm{ft}}
$$

In the computer situation this reduces to

$$
p(c u)=\frac{\frac{100 \mathrm{ft}}{f_{d}} * \frac{100 \mathrm{ft}}{f_{d}} * \frac{160 p c f}{d} * \frac{1 \mathrm{ft}}{f_{d}}}{\frac{100 \mathrm{ft}}{f_{d}} * \frac{1 \mathrm{ft}}{f_{d}}}
$$

or

$$
P_{\text {real }}=P \text { cu } * f p
$$

where

$$
f_{p}=f_{d} \cdot d
$$

> To get pressure in psf or pascals, multiply the displayed pressure by f_{p}

In the example considered, if it were desired to input a joint water pressure whose resultant would balance the weight of the block, its magnitude would be found in the following manner

- real pressure $P=1.6 * 10^{6} \mathrm{lb} / 100 \mathrm{ft}^{2}=16000 \mathrm{psf}$
$-f_{p}=f_{d} * d=0.333 * 160-53.3 \mathrm{psf} / \mathrm{cu}$
- pressure in computer units $=\frac{{ }^{p} \text { real }}{f_{p}}=\frac{16000}{53.3}=300 \mathrm{cu}$

Equilibrium conditions

The problem of recognition of equilibrium conditions is of paramount importance in the Distinct Element method, as in other explicit finite difference programs. An explicit formulation does not have a "solution" in the sense that an implicit formulation such as a Finite Element analysis does. In the implicit formulation the behavior of each point is related to the other points through a system of equations that can be solved for a given input resulting in a solution. In an explicit formulation, on the other hand, the points communicate only with their nearest neighbors; the "solution" in this case does not necessarily need to be a situation of stable equilibrium. The only way that an equilibrium situation can be recognized is by observing the behavior of the blocks.

The obvious solution to this problem is to observe the blocks flashing on the screen - the movement of the blocks is obvious and it can immediately be recognized if the problem under consideration is unstable. However, the fact that the blocks are not flashing
un the screen does not necessarily indicate that an equilibrim situation has been reached. In the example considered in the previous section, one screen unit of displacement corresponded :h four inches of real displacement. In a large problem where the apre are sonewhat confined, thousands of iteration cycles ai: needed to get this much displacement; for a program involving 75 blocks the real time for this many calculations could take an hour. This is obviously not a very satisfactory method to determine if equilibrium exists.

The software necessary for more subtle solutions has been incorporated within the present version of the program. At any time during the running of a problem, the program may be stopped (fey "S") and any block examined for pertinent data. By displaying the cursor (key "C") then typing key "0" will result in the nessage "SELECT ANY BLOCK" being displayed on the screen. By placing the cursor on the desired block centroid and striking any key a display (f biock data will be presented. This data includes: block centroid coordinates (four places to right of decimal point dispiayed); the anbalancod force sums acting on the block; the block velocities and ongle of rotation; and, the values of user applied loads. By examising certain "key"blocks as the program runs it is a relatively sinmpe mater to determine if an equilibrium state has been reached.

[^1]contact lists do not exist before the start of the program, so the blocks do not know that they have neighbors. When gravity is suddenly switched on, all of the blocks begin to move at once and as block interactions occur, the contact lists are developed. The way in which the block configuration is allowed to interact has a significant effect on the outcome of the program in those instances where a proper mass consolidation is not achieved. An improperly consolidated system of blocks can lead to a diverging solution; this can be recognized by the presence of wildly fluctuating contact forces that bear no relation to the block weights involved.

The blocks should be allowed to consolidate in an initial equilibrium position before the actual problem is run. This can usually be accomplished by the judicious placement of restraining blocks; these are subsequently removed to begin the actual problem. To actually consolidate the mass a good deal of time must be spent observing the behavior of the blocks and intervening to guide the program. Just switching gravity on without regard to consolidation of the blocks can easily lead to situations where pressure waves travel through the mass and prevent the blocks from reaching an equilibrium state.

Several bits of information are related in the following sentences that should be helpful to potential users of the program. First of all it is very helpful to start the problem with all frictional properties set to zero (the program automatically does this unless the user changes the friction table). The first block interactions often involve high contact forces; if the friction
coefficients of the surfaces are other than zero, situations can arise whereby relatively large forces are "locked-in" only to be released when just the right contact occurs. By starting with a zero value of the friction coefficient, shear resistances do not develop along the joints and in conjunction with the velocity zeroing technique described below, the restrained system of blocks comes to equilibrium. At this point, the restraining blocks can be removed and the program allowed to run.

The technique of properly consolidating a system of blocks involves zeroing the block velocities at the correct time; the system of blocks cannot reach equilibrium unless all inertial effects are removed. It is possible to gain insight into the status of a block mass by examining the behavior of the contact vectors. The key "V" is used to display the contact forces whenever it is struck; this is accomplished by setting a plot flag, going once through the iteration cycle and then taking the flag down. This is especially useful if the program is in the stopped mode since the "V" key can be used to step through the iteration cycle incrementally. The variation in the length and angle of the contact vectors is indicative of the relative stability of the behavior. Well consolidated systems of blocks display little variation in length or inclination of the contact vectors. To achieve this state the user must examine the behavior of the system and zero the block velocities (key " 2 ") when the system is in an "average" state. An "average" state is exactly what it sounds like - the length of the contact vectors are approximately the
average of the variation in length, and the inclination of the contact vectors is approximately midway between the extreme inclinations. This can rarely be achieved in one attempt, and the amount of time required to do it successfully increases with the degree of confinement of the problem (i.e., tunnel models are much more difficult to consolidate than slope models).

A few words of caution are in order. Stepping through the iteration cycle using key "V" neglects the very important subroutine calls to UPDAT. Unless UPDAT is called, new contact points are not detected nor are contact data updated. The result of this is that blocks can move through one another. As a rule of thumb, no more than about 25 consecutive cycles should be run by using the " V " key without using the "G" key which does call UPDAT. Potential users will find that applying loads incrementally rather than all at once will result in well behaved models. The same is true for friction coefficients; gradually increasing the friction coefficient to the required value also results in well behaved models.

Special problems

Two specific problem geometries that can lead to obviously improper solutiuns have been identified during the course of this research. Both involve shortconings in the contact determining logic; the problems are identical in nature but whereas one is easily overcome, the other requires that some care be expended in block consolidation to prevent its occurance. The problems will be illustrated by reference to the specific geometries in which they
were first identified.
The first of the two problems occurred during the analysis of a rock slope which had failed. (This incidentally, was a real problem - the analysis was performed in collaboration with Dr. Michael Bukovansky of the consulting firm of Dames \& Moore.) The geometry of the problem:

The area under consideration is shown highly magnified: four separate blocks are identified. Geological investigation indicated the presence of a fault plane that could lead to the development of a "chiseling" action - the upper blocks could slide down and "pry" the lower blocks. The initial analyses performed using the Distinct Element program failed to reproduce the expected failure. Close examination of the behavior indicated that instead of sliding past block \#3, the lower point of block $\leqslant 1$ was contacting block \#4 and "hanging up"; the net result being that the entire assemblage of
blocks stabilized. In the real situation, any such contact would result in fracture development at the point - in the Distinct Element program such cracking is presently not modeled. This problem was solved simply by moving the position of the cross joint between block \#3 and block \#4 to a slightly lower position on the slope as illustrated below.

The second problem is of a similar nature; its occurance is rare and is usually due to improper block consolidation. The problem was identified in a model similar to that illustrated and resulted in the stability of a model which should have failed.

To illustrate the problem a magnified section of the model is required; a contact between blocks $\# 1$ and -2 , circ?ed in the sketch, is illustrated

The overlap of the two blocks results in a contact force F tending to push the blocks apart. However, in an improperly consolidated block mass, especially one with high horizontal forces applied before the mass is allowed to move, the contact situation could look like this after the first iteration.

Depending upon which "contact" is first discovered by the contact seeking logic edge \#l of block \#l could be identified as the edge in contact. The resultant force would thus act to prevent the downward movement of block $\% 2$. This problem has not arisen in models where proper consolidation steps have been taken. As
insurance, however, all models tested where this problem could occur have been allowed to fail as part of the analyses, to make certain that the problem was not occurring.

For those geometries to be tested where the occurance of this problem is a possibility, special care can be taken during the consolidation phase to prevent its occurance. This often involves consolidation of segments of the model on an individual basis and then pushing the individual segments together to form the model.

APPENDIX C

LISTING OF THE DISTINCT ELEMENT PROGRAM

This Appendix contains listings of all of the subroutines necessary to build the three overlays of the Distinct Element program used in this dissertation. Most of the Phase 1 and Phase 2 routines are written in Fortran; a few are written in Data General Nova assembly language. All of the Phase 3 subroutines are written in Nova assembly language.

At first glance, the assembly language subroutines may appear to be of little value to those unfamiliar with Data General computers; this is, however, not the case. Assembly language programming differs very little from the techniques used in programable calculators and in fact rarely involves anything more sophisticated than moving data between memory and accumulators, performing arithmetic functions, and occasionally jumping to a subroutine. The listings presented are interspersed with numerous comments and the straightforward logic of the program makes them very readable.

As an aid to potential users a list of the subroutines loaded in each overlay is presented next.
List of Phase 1 SubroutinesPage rumber
MAIN C-4
LINEX C-10
ERASE C-11
INSEC C-12
HARDC-14
CROSS C-14
TEK machine language subroutines; fortran C-15
TAPE interface recognized by calls to C-19
COPY .CYPL and . FRET. C-23
OVERLAP C-24
DIGIT C-27
List of Phase 2 Subroutines
Page Number
BUILD C-29
CENT
CROSSC-33C-14
HARD C-14
TAPE machine language subroutines; Fortran C-19
COPY interface recognized by calls to C-23
TEK .CYPL and .FRET. C-15
List of Phase 3 Subroutines
Page Number
TRANS see note following C-40
TEK C-48
PONT C-51
HITS C-54
TAPE C-59
UTIL C-64
LOADS C-75
FORD C-79
UPDAT C-94
REBOX C-104
MOTIO C-108
DISPL C-113
CONTR C-120
CYCLE C-138
INPUT C-149
MOVIT C-166
NoteThe order in which the subroutines are loaded is immaterialunless the digital plotting routine (subroutine PLOT, Cundall, 1974)is desired. In this case, the plotting routine is read from the
tape, in absolute binary, whener it is needed. The routine starts at location 440 and thus o:erwrites the first subroutine in memory. If the loading sequrince places TPANS at the start of menory, the overwriting will not disrupt the program.

Preceeding the listing of the Phase 3 subroutines is a list
of the Phase 3 global symbols. These are primarily entry point addresses and frequently used variables. The listing begins on

Page C-37.

001	C---MAIN PROGRAM (OVERLAY NUMBER ONE)---.--	
ตด?		COMMON I 1 (768), 12(768), LIST(32),
003	*	LISTC (128), IX(512), IY(512)
004		COMMON/HANDY/N,L,IACC
085	75	$N=0$
006		$L=0$
007		$1 A C C=5$
008		$1 \mathrm{FACT}=1$
009	1	$M J X=J \times 2$
618		MJY=JY2
911		LCODE=0
$01 ?$		KODE $=0$
013		CALL CURS (I, JXI, JYI)
014		CALL CHARO(159)
015		1F(N.EQ.J.OR. I.NE.178) GO TO 80
016		LCODE = 1
Q17		$J \times 2=J \times 1$
018		$J Y 2=J Y 1$
019		$J \times 1=M J X$
029		$J Y 1=M J Y$
021		GO TO 103
022	80	IF(I.NE.196) GO TO 40θ; "D" FOR DIGIIIZER
92.3		KODE $=1$
02.4		GO TO 100
025	409	IF(I.EQ.195) GO TO 2.10 ; "C" TO CHANGE FACTOR
ด2. 6		IF (I.NE.206) GO TO I04 ; FOR NUM. INPUT
027		KODE=-1
828		GO TO 291
029	104	1F(1.EQ.2日0) GO TO 72 ; "H" FOR HARD COFY
030		IF(I.EQ.197) COTO 73 ;"E" FOK ERASE
831		1F(I.EC.208) GOTO 76 ;"F" FOR "FHASE..."
932		IF(1.EC.255)GOTO 74 : RUBOUT ALL LINES
033		IF(1.E日.215) GO TO 81 ; "h"FOR hFITE
034		IF(I.NE.2IO) GO TO E7 ; MUST BE "R" IO READ
035		CALL CHARI (I)
036		NFIKST= (I-177)*12 ;GEI FILE CODE
037		CALL CHARO(155)
038		CALL CHARO(140)
039	83	CALL TAPE (I,NFIRSI, I1, Il, NEFF (
040		IF(NEKR.EC.a) CO IO 82
Q41		PAUSE TAPE EFFOF---HIT ANY KEY TO REPEAT
®at		GO TO 83
843	82	N=LIST(1)
044		L=L1ST(2)
P45		1F(LIST(3).NE.13286) GO TO 75
046		D0 $84 L X=1, L$
047		$I A=11(L X)$
0.88		18=12(LX)
049		CALL PLOTS $0, I X(I A), I Y(I A))$
050	84	CALL PLOTS $1 . I X(I B), I Y(I B))$
051		CALL CHAFO(159)
$05 ?$		GO TO 1
053	81	CALL CHAFI (I)
054		NFIRST $=(1-177) * 1$?
055		LIST(1) =N

```
        LIST(2)=L
```

 LIST(2)=L
 LIST(3)=13286
 LIST(3)=13286
 86 CALL TAPE(2,NFIRST,11,11,NEFR)
 86 CALL TAPE(2,NFIRST,11,11,NEFR)
 IF(NERR.EO.A) GO TO I
 IF(NERR.EO.A) GO TO I
 PAUSE TAPE ERROR---\hbarRITE FROTECT ON ? HIT A KEY
 PAUSE TAPE ERROR---\hbarRITE FROTECT ON ? HIT A KEY
 GO TO }8
 GO TO }8
 87 IF(1.NE.177) GOTO 1 '"I" FOR FIRSI END OF LINE
 87 IF(1.NE.177) GOTO 1 '"I" FOR FIRSI END OF LINE
 IF(KODE.EO.0) GO IO 103
 IF(KODE.EO.0) GO IO 103
 100 CALL DIGIT(JXI,JY1,ICODE)
 100 CALL DIGIT(JXI,JY1,ICODE)
 IF(ICODE.NE.D) GOTO I
 IF(ICODE.NE.D) GOTO I
 GO TO 103
 GO TO 103
 201 ACCEPT" X!=",JXI," YI= ",JY!
201 ACCEPT" X!=",JXI," YI= ",JY!
JXI=JX1/IFACI
JXI=JX1/IFACI
JY1=JY1/IFACT
JY1=JY1/IFACT
03 IF(N.EQ.0) GU TO 4
03 IF(N.EQ.0) GU TO 4
DO ? NN=1,N
DO ? NN=1,N
IF(IAPS(IX(NN)-JXI).GT.IACC) GOIO 2
IF(IAPS(IX(NN)-JXI).GT.IACC) GOIO 2
IF(IARS(IY(NN)-JYI).GI.IACC) GOIO 2
IF(IARS(IY(NN)-JYI).GI.IACC) GOIO 2
IFIRST=NN
IFIRST=NN
GOTO 3
GOTO 3
2 CONTINLE
2 CONTINLE
GOTO A
GOTO A
3 JXI=IX(IFIRST)
3 JXI=IX(IFIRST)
JYI=IY(IFIRST)
JYI=IY(IFIRST)
IF(LCODE .EQ. 1) GO TO 108
IF(LCODE .EQ. 1) GO TO 108
COLL CHARO(135)
COLL CHARO(135)
1F(KODE)202,14,109
1F(KODE)202,14,109
4 IF(L.EQ.0) GOTO 12
4 IF(L.EQ.0) GOTO 12
CALL LINEX(JXI,JYI,IXR,IYF,NHII,LL)
CALL LINEX(JXI,JYI,IXR,IYF,NHII,LL)
IF(NHII.EO.1) GO TO 8
IF(NHII.EO.1) GO TO 8
IFIRST=N+1
IFIRST=N+1
GOTO 13
GOTO 13
8 JYI=I YR
8 JYI=I YR
JXI=IXR
JXI=IXR
IFIRSJ=N+1
IFIRSJ=N+1
L=L+1
L=L+1
II(L)=IFIRSI
II(L)=IFIRSI
I?(L)=12(LL)
I?(L)=12(LL)
1P(LL)=1FIKST
1P(LL)=1FIKST
CALL. CMARO(135)
CALL. CMARO(135)
IX(IFIRST)=JXI
IX(IFIRST)=JXI
IY(IFIRST) =JYI
IY(IFIRST) =JYI
CALL CROSS(JX1.JY1)
CALL CROSS(JX1.JY1)
N=IFIRST
N=IFIRST
IF(LCODE •EQ. 1) GOTO 108
IF(LCODE •EQ. 1) GOTO 108
IF (KODE) 202.14.1@9
IF (KODE) 202.14.1@9
ACCEPT" }\times2=\cdots,JX2,"Y2=",JY2
ACCEPT" }\times2=\cdots,JX2,"Y2=",JY2
J×2=J OR/IFACT
J×2=J OR/IFACT
JY?=JYZ/IFACT
JY?=JYZ/IFACT
GO TO 198
GO TO 198
CALL DIGIT(JX2,JY2,ICODE)
CALL DIGIT(JX2,JY2,ICODE)
GO TO 108
GO TO 108
CALL CURS(I,JX2,JY2) 2GEI POINT 2
CALL CURS(I,JX2,JY2) 2GEI POINT 2
CALL CHARO(159)
CALL CHARO(159)
IF(I.NE.178) GOTO 14

```
        IF(I.NE.178) GOTO 14
```

111	182	IF (IARS (Jx2-Jxi).GI.IACC) EOTO 15
112		IF(IARS (JYR-JYI).GT.IACC) GOTO 15
113		IF(KODE) 2¢R.14.109
114	15	IF(N.LE.1) GOTO 25
115		DO $16 \mathrm{NN}=1, \mathrm{~N}$
116		IF(NN.EQ.IFIRST) Goto 16
117		IF(IABS (IX(NN)-JX2).GT.IACC) GOTO 16
118		IF(IABS (IY(NN)-JY2).GT.IACC) GOTO 16
119		1SECS $=$ NN
120		GOTO 17
121	16	CONTINUE
122		GOTO 18
123	17	J×2=1x(ISEC)
124		JYP=IY(ISEC)
125		Call charo (135)
126		GOTO 28
127	18	1F(L.ECC.0) GOTO 25
128		CALL LINEX JX2,JY2,IXS,IYS,NHIT,LL)
129		IF(NHIT.EQ.1) GO To 26
130	25	ISEC $=\mathrm{N}+1$
131		GOTO 27
132	26	J×2=1 \times S
133		$J Y 2=1 Y S$
134		$15 E C=N+1$
135		$\mathrm{L}=\mathrm{L}+\mathrm{l}$
136		$11(L)=15 E C$
137		$12(L)=12(L L)$
138		$12(L L)=15 E C$
139		CAI.L CHARO(135)
140	27	$1 \times(1 S E C)=J \times 2$
141		IY(ISEC) = JY\%
142		CALL CROSS (Jx2,3Y2)
143		$\mathrm{N}=15 \mathrm{CL}$
144	28	J×0 $=7 \times 5-3 \times 1$
145		$J Y \mathrm{D}=\mathrm{JY} 2-\mathrm{JYI}$
146		IF (IABS (JYD).GT.IABS (JXD)) G0IO 60
147		I Sh $Y=0$
148		IF(JX2.GT.JX1) GOTO 29
149		GOTO 49 (1) GT0
150	60	$1 \mathrm{Sw} Y=1$
151		IF(JYZ.GT.JYI) GOTO 29
152	49	$J \times 1=J \times 2$
153		$J \times R=J \times 1$
154		$J Y L=J Y 2$
155		$J Y \mathrm{R}=\mathrm{JY}$
156		IPL=ISEC.
157		IPR=IFIRST
158		GOTO 30
159	29	$J X_{L}=J \times 1$
160		JXR=J×2
161		$J Y L=J Y 1$
62		$J Y R=J Y 2$
63		IPL = IFIRST
164		$1 P R=15 E C$
65	30	1FelShY.EQ.0)GOTO 61

```
166
167
168
1 6 9
178
1 7 1
172
172
174
175
176
177
177
1 7 9
180
181
182
183
184
185
186
1 8 7
188
189
190
1 9 1
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
218
219
220
```

```
213 C--BEGIN LINE SEARCH FOR THIS SEGMENT--
```

213 C--BEGIN LINE SEARCH FOR THIS SEGMENT--
214 IFI=II(LK)
214 IFI=II(LK)
215 IF2=12(LK)
215 IF2=12(LK)
216 IF(IFI.EQ.IL.AND.IFR.EQ.IF) GOTO 34
216 IF(IFI.EQ.IL.AND.IFR.EQ.IF) GOTO 34
217 IF(IFI.EQ.IR.AND.IF2.EG.IL) GOTO 34
217 IF(IFI.EQ.IR.AND.IF2.EG.IL) GOTO 34

```
        H=FLOAT(JXR-JXL)/FLOAT(JYR-JYL)
```

 H=FLOAT(JXR-JXL)/FLOAT(JYR-JYL)
 NXTOT=0
 NXTOT=0
 DO 62 NY=1,N
 DO 62 NY=1,N
 IF(IY(NY).GT.JYR.OR.IY(NY).LT.JYL)GO TO 62
 IF(IY(NY).GT.JYR.OR.IY(NY).LT.JYL)GO TO 62
 IF(NY.EQ.IPL.OR.NY.EQ.IPR) GOTO 62
 IF(NY.EQ.IPL.OR.NY.EQ.IPR) GOTO 62
 IXX=IFIX(H*FLOAT(IY(NY)-JYL))+JXL
 IXX=IFIX(H*FLOAT(IY(NY)-JYL))+JXL
 IF(IASS(IXX-IX(NY)).GT.IACC) GOTO 62
 IF(IASS(IXX-IX(NY)).GT.IACC) GOTO 62
 NXTOT=NXTOT+1
 NXTOT=NXTOT+1
 LIST(NXTOT)=NY
 LIST(NXTOT)=NY
 62. CONTINUE
 62. CONTINUE
 GOTO 63
 GOTO 63
 61 H=FLOAT(JYR-JYL)/FLOAT(JXR-JXL)
 61 H=FLOAT(JYR-JYL)/FLOAT(JXR-JXL)
 NXTOT=8
 NXTOT=8
 DO 31 NX=1,N
 DO 31 NX=1,N
 IF(IX(NX).GT.JXR.OR.IX(NX).LT.JXL) GOTO 3I
 IF(IX(NX).GT.JXR.OR.IX(NX).LT.JXL) GOTO 3I
 IF(NX.EQ.IPL.OR.NX.EQ.IPR) GOTO 31
 IF(NX.EQ.IPL.OR.NX.EQ.IPR) GOTO 31
 IYY=IFIX(H*FLOAT(IX(NX)-JXL))+JYL
 IYY=IFIX(H*FLOAT(IX(NX)-JXL))+JYL
 IF(IABS(IYY-IY(NX)).GT.IACC) GOTO 31
 IF(IABS(IYY-IY(NX)).GT.IACC) GOTO 31
 NXTOT=NXTOT+1
 NXTOT=NXTOT+1
 LIST(NXTOT)=NX
 LIST(NXTOT)=NX
 31 CONTINUE
 31 CONTINUE
 63 KOUNT =0
 63 KOUNT =0
 C
C
IF(NXTOT-1)50.53.33
IF(NXTOT-1)50.53.33
33 IND=%
33 IND=%
C--ORDER POINT LIST IN INCREASING X (OR Y)--
C--ORDER POINT LIST IN INCREASING X (OR Y)--
DO 32 NXX=2,NXTOT
DO 32 NXX=2,NXTOT
NXI=LIST(NXX-1)
NXI=LIST(NXX-1)
NX2=LIST(NXX)
NX2=LIST(NXX)
IF(ISWY.EQ.1) GOTO 47
IF(ISWY.EQ.1) GOTO 47
IF(IX(NX2).GE.IX(NX1)) GOTO 32
IF(IX(NX2).GE.IX(NX1)) GOTO 32
gOTO 48
gOTO 48
47 IF(IY(NX2)-GE.IY(NXI)) GOTO 32
47 IF(IY(NX2)-GE.IY(NXI)) GOTO 32
48 LIST(NXX-1)=NX2
48 LIST(NXX-1)=NX2
L.IST(NXX)=NXI
L.IST(NXX)=NXI
IND=1
IND=1
32 CONTINUE
32 CONTINUE
IF(IND.EQ.1) GOTO 33
IF(IND.EQ.1) GOTO 33
53 IL=IPL
53 IL=IPL
IR=LIST(1)
IR=LIST(1)
GOTO 51
GOTO 51
50 1L=IPL
50 1L=IPL
IR=IPR
IR=IPR
51 KOUNT =KOUNT+1
51 KOUNT =KOUNT+1
NINT=0
NINT=0
LOLD=L
LOLD=L
DO 35 LK=1,LOLD
DO 35 LK=1,LOLD
IF(IFI.EQ.IL.OR.IFI.EQ.IF.OR.IF2.EQ.IL.OR.IFZ.EQ.IR)GOTO 3S
IF(IFI.EQ.IL.OR.IFI.EQ.IF.OR.IF2.EQ.IL.OR.IFZ.EQ.IR)GOTO 3S
CALL OVLAP(IX(IL),IX(IR),IX(IF1),IX(IF2),IX5,IX6,NSI)
CALL OVLAP(IX(IL),IX(IR),IX(IF1),IX(IF2),IX5,IX6,NSI)
IF(NSI.EQ.B) GOTO 35

```
        IF(NSI.EQ.B) GOTO 35
```



```
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
31!
312
313
314
314
316
317
318
319
320
321
322
32.3
324
```

```
    CALL PLOTS(0.IX(IL),IY(IL))
```

 CALL PLOTS(0.IX(IL),IY(IL))
 CALL PLOTS(I,IX(IR),IY(IR))
 CALL PLOTS(I,IX(IR),IY(IR))
 34 IF(KOUNT-NXTOT) 56,52,54
 34 IF(KOUNT-NXTOT) 56,52,54
 56 IL=LIST(KOUNT)
 56 IL=LIST(KOUNT)
 IR=LIST(KOUNT+1)
 IR=LIST(KOUNT+1)
 GOTO S:
 GOTO S:
 52 IL=LIST(KOUNT)
 52 IL=LIST(KOUNT)
 IR=IPR
 IR=IPR
 GOTO 51
 GOTO 51
 IF(KODE)203.1.100
 IF(KODE)203.1.100
 CALL CHARO (159)
 CALL CHARO (159)
 CALL CHARI (MCODE)
 CALL CHARI (MCODE)
 IF(MCODE.E0.197) GO TO 1 B"E" TO ESCAPE NUM. INPUT
 IF(MCODE.E0.197) GO TO 1 B"E" TO ESCAPE NUM. INPUT
 IF (MCODE.EQ.141) GO TO 201
 IF (MCODE.EQ.141) GO TO 201
 IF(MCODE.NE. 2DA) GO TO 301
 IF(MCODE.NE. 2DA) GO TO 301
 CALL CHARO(155)
 CALL CHARO(155)
 CALL CHARO(140)
 CALL CHARO(140)
 DO 3@2 NL=1.& ;REPLOT ARRAY OF LINES
 DO 3@2 NL=1.& ;REPLOT ARRAY OF LINES
 IAA=11(NL)
 IAA=11(NL)
 1BB=12(NL)
 1BB=12(NL)
 CALL PLOTS(O.IX(IAA),IY(IAA))
 CALL PLOTS(O.IX(IAA),IY(IAA))
 CALL PLOTS(1,IX(IBB).IY(IBB))
 CALL PLOTS(1,IX(IBB).IY(IBB))
 CALL CHARO(159)
 CALL CHARO(159)
 GO TO 203
 GO TO 203
 301 IF(MCODE.NE.175) GO TO 205 3"/" IO REPEAT POINT
301 IF(MCODE.NE.175) GO TO 205 3"/" IO REPEAT POINT
JX1=JX2
JX1=JX2
JY1=JY2
JY1=JY2
GOTO 103
GOTO 103
205 TYPE" ?"
205 TYPE" ?"
60 TO 283
60 TO 283
72 CALL HARD
72 CALL HARD
GO TO 1
GO TO 1
73 CAL: ERASE (JX1,JY1)
73 CAL: ERASE (JX1,JY1)
GOTO }
GOTO }
CALL CHARO(155)
CALL CHARO(155)
CALL CHARO(140)
CALL CHARO(140)
GO TO }7
GO TO }7
76 CALL CHARI(IN)
76 CALL CHARI(IN)
IF(IN.NE.178) GOTO 1
IF(IN.NE.178) GOTO 1
CALL CHARO(155)
CALL CHARO(155)
CALL CHARO(140)
CALL CHARO(140)
LIST(1)=N
LIST(1)=N
LIST(2)=L
LIST(2)=L
LIST(3)=IACC
LIST(3)=IACC
CALL OVLAY(2,I1)
CALL OVLAY(2,I1)
GO TO :
GO TO :
210 ACCEPT" NEW SCALE FACTOR? * , IFACT
210 ACCEPT" NEW SCALE FACTOR? * , IFACT
GO TO 1
GO TO 1
END ; THANK GOODNESS:!!

```
    END ; THANK GOODNESS:!!
```

001		SUBROUTINE LINEX(IXH,IYH,IXR,IYR,NHIT,LINE)
002	C--R	Ine to detect if line is near point--
023		COMMON 11(768), 12(768), LIST(32).
084		LISTC(128), IX(S12), IY(512)
005		COMMON/HANDY/N,L,IACC
096		DO $5 \mathrm{LL}=1, \mathrm{~L}$
007		$1 P 1=11(L L)$
008		1P2=12(LL)
009		$\left.1 \times 1=1 \times(1)^{\prime}\right)$
010		$\underline{I} 1=I Y(I P 1)$
011		$1 \times 2=I \times(1 P 2)$
012		$I Y 2=I Y(I P 2)$
013		$I Y D=I Y 2-I Y 1$
014		I $X D=1 \times 2-I \times 1$
015		IF(IABS (IYD).GT.IABS (IXD)) GOTO 6
016		IF(IX2.GT.IXI) GOTO 7
017		IF (IXH.LT.IX2.OR.IXH.GT.IXI) GOTO 5
018	9	H=FLOAT(IYD)/FLOAT (IXD)
019		IYG $=1 F I X(H * F L O A T(I X H-I X 1)+0.5)+I Y 1$
020		IF(IABS (IYG-IYH).GT.IACC) GOTO 5
821		$I Y R=I Y G$
022		$\underline{I} \mathrm{XR}=1 \times \mathrm{H}$
023		GOTO 8
024	7	IF(IXH.LT.IXI.OR.IXH.GT.IX2) GOTO 5
025		GOTO 9
026	6	IF(IYR.GT.IY1) GOTO 10
027		IF (IYH.LT.IYZ.OR.IYH.GT.IYI) GOTO 5
028	11	$H=F L O A T(I X D) / F L O A T(I Y D)$
929		IXG $=1 F I X(H * F L O A T(I Y H-I Y I)+0.5)+I X I$
030		IF(IABS (IXG-IXH).GT.IACC) GOTO 5
031		$I X R=I X G$
032		$1 Y \mathrm{R}=1 \mathrm{YH}$
033		GOTO 8
034	10	IF(IYH.LT.IYI.OR.IYH.GT.IYR) GOTO S
035		GOTO 11
036	5	CONTINUE
837		NHIT $=0$
838		RETURN
839	8	NHIT $=1$
040		LINE=LL
041		RETURN
042		END

021	SUAROUTINE ÉKASE(IXH, IYH)	
602	C--TO E	ERASE ONE LINE \& RE-DRAW SYSTEM--
003		COMMON I $1(768), 12(768)$, LIST(32).
004	*	LISTC(128), IX (512), IY(512)
005		CO110N/HANDY/N,L, IACC
026		CALL LINEX(IXH,IYH,IXR, IYR,NHIT,LINE)
637		IF (NHIT.EQ.G) RETURN
098	C--ERASE SCREEN--	
029		CALL CHARO (155)
010		CALL CHARO (140)
011	$\mathrm{C-CO}$	OUT LL; SHUFFl-E DOWN REST--
O1?		LL=LINE
813		IF (LL.E日.L) GOTO 2
814		L. $1=\mathrm{L}-1$
015		DO 1 LK=LL, L1
016		I $1(L K)=I 1(L K+1)$
017	1	$I 2(L K)=12(L K+1)$
018	2	$L=L-1$
019		DO $3 \mathrm{LX}=1, \mathrm{~L}$
020		$I A=I!(L X)$
021		$1 \mathrm{~B}=12(\mathrm{LX})$
022		CALL PLOTS ($0, I X(I A), I Y(I A))$
023	3	CALL PLOTS (1,IX(IB),IY(IB))
824		CALL CHAPO(159)
025		RETUKN
026		END

```
0 0 1
002
0 0 3
004
005
0 0 6
007
0 0 8
0 0 9
0 1 0
0 1 1
012
0 1 3
014
0 1 5
0 1 6
0 1 7
0 1 8
0 1 9
020
021
022
023
024
025
226
027
028
029
030
0 3 1
0 3 2
033
0 3 4
035
036
037
038
039
040
041
0 4 2
0 4 3
0 4 4
0 4 5
0 4 6
047
048
0.49
050
0 5 1
052
053
054
055
```

```
        SUBROUTINE INSEC(IX1,IX2,IY1,IY2,IX3,IX4,IY3,IY4,
```

 SUBROUTINE INSEC(IX1,IX2,IY1,IY2,IX3,IX4,IY3,IY4,
 * IX5,IX6,IY5,IY6,IX,IY,NSUC)
 * IX5,IX6,IY5,IY6,IX,IY,NSUC)
 IDI=IX2-IXI
 IDI=IX2-IXI
 ID2=1Y2-IY1
 ID2=1Y2-IY1
 1D3=1Y4-1X3
 1D3=1Y4-1X3
 IDA=IY4-IY3
 IDA=IY4-IY3
 IF(IDI.EQ.0) GO TO 1
 IF(IDI.EQ.0) GO TO 1
 IF(ID2.EO.0) GO TO 2
 IF(ID2.EO.0) GO TO 2
 IF(IABS(ID2).EQ.IABS(ID1)) GO TO 3
 IF(IABS(ID2).EQ.IABS(ID1)) GO TO 3
 IF(IABS(IDI).GT.IABS(ID2)) GO TO 4
 IF(IABS(IDI).GT.IABS(ID2)) GO TO 4
 10 IF(IABS(ID3).GT.IABS(ID4)) GO TO 14
 10 IF(IABS(ID3).GT.IABS(ID4)) GO TO 14
 HI=FLOAT(ID1)/FLOAT(ID2)
 HI=FLOAT(ID1)/FLOAT(ID2)
 IXIL=IFIX(HI*FLOAT(IYS-IYI))+IXI
 IXIL=IFIX(HI*FLOAT(IYS-IYI))+IXI
 IXIR=IFIX(HI*FLOAT(IY6-IYI))+IXI
 IXIR=IFIX(HI*FLOAT(IY6-IYI))+IXI
 G2=FLOAT(ID3)/FLOAT(IDA)
 G2=FLOAT(ID3)/FLOAT(IDA)
 IX2L=IFIX(G2*FLOAT(IY5-IY3))+1X3
 IX2L=IFIX(G2*FLOAT(IY5-IY3))+1X3
 IX2R=IFIX(G2*FLOAT(IY6-IY3))+IX3
 IX2R=IFIX(G2*FLOAT(IY6-IY3))+IX3
 IXDL=IX2L-IX1L
 IXDL=IX2L-IX1L
 IXDR=IX2R-IXIR
 IXDR=IX2R-IXIR
 IF(ISIGN(I,IXDL).EQ.ISIGN(I,IXDR)) GO TO S9
 IF(ISIGN(I,IXDL).EQ.ISIGN(I,IXDR)) GO TO S9
 R=FLOAT(IABS(IXDL))/FLOAT(IABS(IXDR-IXDL))
 R=FLOAT(IABS(IXDL))/FLOAT(IABS(IXDR-IXDL))
 IY=IY5+IFIX(R*FLOAT(IYG-IY5))
 IY=IY5+IFIX(R*FLOAT(IYG-IY5))
 IX=IFIX(HI*FLOAT(IY-IYI)) +IXI
 IX=IFIX(HI*FLOAT(IY-IYI)) +IXI
 NSUC=1
 NSUC=1
 RETURN
 RETURN
 14 H1=FLOAT(IDI)/FLOAT(ID2)
 14 H1=FLOAT(IDI)/FLOAT(ID2)
 IF(IDA.EQ.0) GO TO 15
 IF(IDA.EQ.0) GO TO 15
 G1=FLOAT(ID4)/FLOAT(ID3)
 G1=FLOAT(ID4)/FLOAT(ID3)
 GH=G1*H1
 GH=G1*H1
 IY=(G1*FLOAT(IX1-IX3)-GH*FLOAT(IY1)+FLOAT(IY3))/(1.0-GH)
 IY=(G1*FLOAT(IX1-IX3)-GH*FLOAT(IY1)+FLOAT(IY3))/(1.0-GH)
 17 1X=IFIX(HI*FLOAT(IY-IY1))+IXI
 17 1X=IFIX(HI*FLOAT(IY-IY1))+IXI
 16 IF((IX.GT.IX6).OR.(IX.LT.IXS)) GO TO 99
 16 IF((IX.GT.IX6).OR.(IX.LT.IXS)) GO TO 99
 IF((IY.GT.IY6).OR.(IY.LT.IYS)) GO TO 99
 IF((IY.GT.IY6).OR.(IY.LT.IYS)) GO TO 99
 NSUC=1
 NSUC=1
 RETURN
 RETURN
 15 IY=1Y3
15 IY=1Y3
GO IO 17
GO IO 17
1 IF(ID4.NE.0) GO TO 10
1 IF(ID4.NE.0) GO TO 10
IX=IXI
IX=IXI
IY=I Y 3
IY=I Y 3
NSUC=1
NSUC=1
RETURN
RETURN
2 IF(ID3.NE.0) GO TO 4
2 IF(ID3.NE.0) GO TO 4
IX= IX3
IX= IX3
IY=IY1
IY=IY1
NSUC=1
NSUC=1
RETURN
RETURN
3 IF(IABS(ID4).EQ.IABS(ID3)) GO TO 99
3 IF(IABS(ID4).EQ.IABS(ID3)) GO TO 99
4 IF(IABS(ID3).GT.IABS(IDA)) GO TO 12
4 IF(IABS(ID3).GT.IABS(IDA)) GO TO 12
H2=FLOAT(ID2)/FLOAT(ID1)
H2=FLOAT(ID2)/FLOAT(ID1)
IF(IDJ.EQ.0) GO TO 18
IF(IDJ.EQ.0) GO TO 18
G2=FLOAT(ID3)/FLOAT(ID4)
G2=FLOAT(ID3)/FLOAT(ID4)
GH=G2*H2
GH=G2*H2
IX=(G2*FLOAT(IYI-IY3)-GH*FLOAT(IXI)+FLOAT(IX3))/(1.0-GK)
IX=(G2*FLOAT(IYI-IY3)-GH*FLOAT(IXI)+FLOAT(IX3))/(1.0-GK)
19 IY=IFIX(H2*FLOAT(IX-IX1))+IYI

```
19 IY=IFIX(H2*FLOAT(IX-IX1))+IYI
```

056		GO TO 16
057	18	$1 \mathrm{x}=1 \times 3$
658		GO TO 19
059	12	H2=FLOAT (ID2)/FLOAT (ID1)
068		IYIL $=1 F I X(H 2 * F L O A T(I X 5-I X 1))+I Y 1$
061		IYIR=IFIX(H2*FLOAT (IX6-IX1)) + IY1
062		GI=FLOAT (ID4)/FLOAT(ID3)
063		IY2L=IFIX(GI*FLOAT(IX5-IX3)) + IY3
064		IY2R=IFIX(G1*FLOAT (IX6-IX3)) + IY3
065		IYDL $=1 Y 2 \mathrm{~L}-1 \mathrm{Y} 1 \mathrm{~L}$
066		IYDR $=1 Y 2 R-I Y 1 R$
067		IF(ISIGN(1,IYDR).EQ.ISIGN(1,IYDL)) GO TO 99
068		R=FLOAT (IABS (IYDL))/FLOAT (IABS (IYDR-IYDL))
869		
070		
071		NSUC=1
672		RETURN
073	99	NSUC=0
074		RETURN
075		END

001
002
003
004
805
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

SUBROUTINE HARD
C--ROUTINE TO MAKE A HARD COPY OF DISPLAY-COMMON I1(768), I2(768), LIST(32),

* LISTC(128),IX(512),IY(512) COMMON/HANDY/N,L,IACC CALL COPY (ISWIT) ;SWITCH OFF=4631 IF(ISWIT EQ. O) GOTO 5
DO $1 \mathrm{~K}=1, \mathrm{~L}$
$I P I=I I(K)$
$1 P 2=I 2(K)$
$M X=4 * I X(I P I)-2047$
$M Y=4 * I Y(I P 1)-2047$
CALL PLOT (MX,MY,3)
$M X=4 * I X(I P 2)-2047$
$M Y=4 * I Y(I P 2)-2047$
1 CALL PLOT (MX,MY,2)
DO $2 J=1, N$
$M X=4 * I X(J)-2017$
$M Y=4 * I Y(J)-2017$
2 CALL INUM $(M X, M Y, J, 4)$
CALL PLOT ($-2047,-2947,3$)
5 CONTINUE
RETURN
END

NOTE: PLOT IS THE SUBROUTINE DESCRIBED BY CUNDALL. 974) FOR PLOTTING THE LINES OR BLOCKS ON AN $X-Y K$,ORDER

001	SUBROUTINE CROSS (IX, IY)
002	CALL PLOTS (0, IX C (10,IY)
093	CALL PLOTS (1, IX-10, 1Y)
084	CALL PLOTS ($0, I X, I Y+10)$
005	CALL PLOTS (1, IX, IY-10)
006	CALL CHARO(159)
007	RETURN
098	END

--
$00065 \cdot 000000$
$00066 \cdot 040526$
$00066^{\circ} 240526$
$00067^{-223401}$
$00070^{\circ} 040526$
$00071 \cdot 0234$ 月2
00072.940525
$00073^{\circ} 023400$
$00074^{-040524}$
$00075^{\circ} 054520$
00076.101915
00077.000425
$00100^{\circ} 101113$
$00101 \cdot 000405$
00182.006511
$00103^{\circ} 000292^{\circ}$
001041006507
$00105^{\circ} 000291^{\circ}$
$00106^{\circ} 220511$
00107.101112
$00110^{\circ 102400}$
$00111 \cdot 034477$
$08112^{\prime 1} 162513$
$00113 \cdot 161000$
00114.040503
$00115 \cdot 101120$
00116.101120
$00117 \cdot 101128$
$00120 \cdot 101300$
00121.034463
$00122 \cdot 163802$
$00123^{\prime} 940476$
60124.006467
$00125^{\circ} 000221^{\circ}$
$00126^{\circ} 0208471$
$00127^{\circ} 034453$
$00130^{\circ} 163400$
$00131 \cdot 034455$
$00132 \cdot 163000$
$00133^{1040466}$
$00134^{\prime} 006457$
$00135^{\circ} 000221^{\circ}$
$00136^{\circ} 020460$
$00137^{\prime} 101112$
$00140^{\circ} 102.400$
$00141^{\prime} 034450$
00142'162513
$00143 * 161020$
$00144^{\circ} 046452$
$00145^{\circ 101120}$
00146.101120
$00147^{\circ} 101120$
$00150 \cdot 101300$
$00151 \cdot 934433$
$00152^{\prime} 163000$
$00153^{\circ} 040446$
00154.096437
$00155^{\circ} 90022^{\circ}$
$00156^{\circ} 020448$
$00157 \cdot 034423$
08160163480

$\begin{aligned} & \text { CCACD: } \\ & \text { TPLOT: } \end{aligned}$	0	3 TEMY FOR ACO		
	STA	D,TPTACO; SAVE ACD		
	LDA	0, 01,3	3GET X	
	5 TA	$0 . T P T X$		
	LDA	B, 82, 3	3 GET Y	
	STA	$0 \cdot$ TPTY		
	LDA	0.80 .3	; GET MODE	
	STA	O.TPMOD		
	STA	3.TPTADD; SAVE CALL ADDRESS		
	MOV:	0,0, SNR	; SKP IF NEO O	
	JMP	TPTDV	$1=0$ INITIALIZE AND DARK	VECTOR
	MOVL ${ }^{\text {A }}$	O.D.SNC	;SKIP IF	
	JMP	TPTNRI4	; NORMAL BRIGHT VECTOR	
	$J S R$	echouz	;SET TO ALPHA	
	US			
TPTDV:	JSR	echouz	\% DARK VECTOR	
	GS			
TPTNRM:	LDA	O.TPTY	3GET Y	
	MOVL	O.D.SZC	3 SKP IF +	
	SUB	0.0	; MAKE 0	
	LDA	3.0780	; UPPER Y BOUND	
	SUBL *	3, 0, SNC	; SKP IF ON SCREEN	
	MOV	3.0	SSET TO EDGE	
	STA	D,TPTY	; SAVE GOOD Y	
	MOVZL	$0 \cdot 0$: USE UPPER 5 BITS	
	MOVZL	0,0		
	MOVZL	$0 \cdot 0$		
	MOVS	0.0	3 AND SWAP HALVES	
	LDA	3.8040	3 HI Y TAG	
	ADD	3.0	IPUT IN CHAR	
	STA	Q. TPTTMP	? USE A TEMP	
	JSR	echouz	;SHIP HI Y 5	
	TPTTMP			
	LDA	Q,TPTY	sGET Y	
	LDA	3,8037	; MASK	
	AND	3.0	3 LEAVE LOW Y 5	
	LDA	3,8140	; LOW Y TAG	
	ADD	3,0	3 SET IN CHAR	
	STA	O.TPTTMP		
	JSR	echouz	; SHIP LOW Y	
	TPTTAP			
	LDA	Q.TPTX	: Get X Value	
	MOVL\#	$0.0 .5 Z C$		
	SU8	0.0		
	LDA	3.D1023		
	SUBl*	3.0.SNC		
	MOV	3.0		
	STA	$0 \cdot \operatorname{TPTX}$		
	MOVZL	0.0	: AND 00 LIKE Y	
	MOVZL	0.0		
	MOVZL	0.0		
	MOVS	0,0	\% $\mathrm{HI} \times 5$	
	LDA	3.8040	3HI X TAG	
	ADD	3,0	3 ADD IN TAG	
	STA	0.TPTTMP		
	JSR	CHOUZ	SHIP HI $\times 5$	
	TPTTMP			
	LDA	$0 \cdot T P T X$	3 GET X	
	LUA	3.8037	GOODIE MASK	
	AND	3.0	\% LEAVE LOW X 5	

$00161^{\circ} 034424$ 00162'163000 $00163^{\prime 0} 048436$ $00164^{\circ} 096427$ 00165.000221. $00166^{\circ} 020432$ 00167101113 $00170^{\circ} 000404$ $00171^{1} 102400$ $00172^{\prime} 840426$ $00173^{\circ} 000713$ $00174^{\circ} 020420$ $00175^{\circ} 934420$ $08176^{\circ} 001403$ $00177^{\circ} 000032$ $00200^{\circ} 000033$ $00201^{-000035}$ 00202.000037 $00203^{\circ} 000020$ 000292' $00204^{\circ} 000040$ 00205'000100 $00206^{\circ} 000140$ $00207^{\circ} 000003$ $00210^{\circ} 001414$ $0021^{\prime} 001777$ $00212^{-001010477^{\circ}}$ $00213^{\prime} 000056^{\circ}$ $0021^{\circ} 000000$ 00215 000000 00216.800000 $00217^{\prime 0} 000000$ $00220^{\circ} 000000$ $00221^{\prime 0} 00000$ $08222^{\circ} 040772$ $00223^{\circ} 054772$ $00224^{\circ} 006767$ 00225'000202. 00226.006765 00227'000200' $00230^{\circ} 006763$ 08231 0 000177' $00232^{\circ} 006760$ $00233^{\circ} 000216^{\circ}$ $00234^{\circ} 020753$ 00235.040764 00236° ก20760 $0023^{\circ} 000421$ $00242^{-206752}$ $00241^{\circ} 00021^{\circ}$ $00242^{\prime} 006750$ $00243^{\circ} 00021^{\circ}$ $00244^{\prime} 034736$ $00245^{\prime} 920752$ $00246 \cdot 163400$ $00247 \cdot 040750$ $00250 \cdot 020746$ 0025 1'163400 0 $00252 \cdot 101300$ $00253^{-101220}$

	LDA	3,8100	HLOW \times TAG
	ADD	3.0	PPUT IN TAG
	STA	0. TPTIMP	
	JSR	еснOUZ	
	TPTTMP		
	LDA	B.TPMOD	
	MOVL	$0.0, \operatorname{SNC}$	
	JMP	TPTEXT	
	SUB	0.0	
	STA	B,TPMOD	
	JMP	TPTNFM	
IPTEXT:	LDA	O.TPTACE	\%RESTORE ACD
	LDA	3.TPTADD	; CALL ADDRESS
	JMP	3,3	; EXIT
SUBOQ:	032		
ESC:	033		
GS:	035		
US:	037		
B020:	020		
B037=US			
B040:	040		
8100:	100		
8140:	140		
D003:	003		
D780:	1414		
D1023:	1777		
CHINP:	CHIN		
CHOUZ:	CHOUT		
TPTACD:	0		
TPTADD:	0		
TPTX:	0		
TPTY:	0		
TPMOD:	0		
TPTTMP:	0		
CURSIS:	STA	0. TPTACE	; SAVE ACO
	STA	3.TPTADD	; Save call address
	JSR	echouz	: SET TO ALPHA
	US		
	JSR	echouz	; TURN ON CURSER
	ESC		
	JSR	e CHOUZ	
	SUBQ日		
	JSR	QCHINP	3 GET CHAR
	TPTX		
	LDA	0. D003	; GET LOOP COUNTER
	STA	$0 \cdot$ TPTTMP	
	LDA	$0, T P T X$; GET CHAR
	JMP	CURPS	; STORE CHAR
CURLP:	JSR	QCHINP	3 GET HI COORD
	TPTX		
	JSR	ECHINP	; GET LOW COORD
	tety		
	LDA	3.8037	: MASK
	LDA	Q,TPTY	: LOW COORD
	AND	3.0	SMASK OFF GARBAGE
	STA	$0 \cdot$ TPTY	; SAVE FOR LATER
	LDA	0.TPTX	נHI COORD
	AND	3.0	BMASK OFF
	MOVS	0.0	3 SWAP
	MOVER	$0 \cdot 0$	

ADD 3,0 BPUT IN TAG
STA O.TPTIMP JSR PCHOUZ

LDA B.TPMOD
MOVL 0.0. SNC
JMP TPTEXT
STA B,TPMOD
JMP TPTNFM
LDA b.TPTACOSRESTORE ACD JMP 3,3 :EXIT

ESC
GS: 035
US: 037
B020: 020
B037=US
Be40: 640
8140: 140
D003: 003
1414
CHINP: CHIN
CHOUZ: CHOUT
TPTACD: \varnothing
TPTADD: 8
-
TPTY: 0
TPTTMP:
CURSIS: STA
STA
JSR
US
ESC
SUBQ日
JSR
TPTX
LDA
LDA
JMP
JSR
JSR
tPTY
LDA
LDA G.TPTY :LOW COORD
AND 3.0 BMASK OFF GARBAGE
LDA O.TPTX JHI COORD

MOVER

$88254^{\circ} 101220$		MOVER	$0 \cdot 0$		C-18
$00255^{\prime} 101220$		MOVER	0,0		
$00256^{\circ} 034741$		LDA	3, TPTY	3 LOW COORD	
00257*163000		ADD	$3,0$:ADD IN LOK COOÑD	
$00260^{\circ} 934735$	CURPS:	LDA	3.THTADD	; CALL ADDRESS	
00261.043403		STA	0.80 .3	; STORE VALUE	
$00262^{\circ} 175480$		1 NC	3.3	1 ADJUST ADDRESS	
00263.054732		STA	3.IPTADD	: SAVE LPDATED ADD	
00265.000753		DSE	TPTTMP	: CHECK FOR DONE	
$00266^{\circ} \mathrm{D20726}$		JMP LDA	CURLP	; LOOP IF NOT	
$00267^{\circ} 91400$		JMP	0,1 PTACE 0.3	PRESTOFE ACO	
00270.000004		4	0.3	- REIURN	
00271.0060025	CURS:	JSR	e.CPYL		
$00272^{\circ} 060277$		INTDS			
00273'054416		STA	3, 5×3		
$00274^{\circ} 004726$		JSR	CURSIS		
$00275^{\circ} 000312^{\prime}$		A1	CURSIS		
$80276^{\circ} 008313^{\circ}$		A2			
$00277^{\circ} 000314^{\circ}$		A3			
$00300^{\circ} 034411$		LDA	3,5×3		
$00301^{\circ} 824411$		LDA	1.A1		
$00302 \cdot 047611$		STA	$1, \mathrm{AN}, 3$		
$00303^{\circ} 024410$		LDA	1.A2		
$00304^{\circ} 047612$		STA	1, EN1,3		
$00305^{\circ} 024407$		LDA	1.A3		
$00306^{\circ} 047613$		STA	1, EN2, 3		
00367'060177		INTEN	1.enzs3		
$00310^{\circ} 0060015$		JSR	C.FRET		
$00311^{\circ} 0000000$	5×3:	0			
$00312^{\circ} 000000$	A1:	0			
$00313^{\circ} 000000$	A2:	0			
$00314^{\circ} 009000$	A3:	0			

$00064^{\circ} 000377$ 00065'063077 $00066^{\circ} 020420$ $00067^{-062074}$ $00070 \cdot 000750$ $00271^{-060177}$ $00072 \cdot 0060925$ 00073.054412 $00074^{\circ} 000445$ $00875^{\circ} 032752$ $00076^{\circ} 000000$ $00077^{\circ} 000350$ 00100.000055 $00101^{\circ} 000450$ $00102^{\circ} 000037$ $00103^{\circ} 00051^{\circ}$ $08184^{\prime} 000037$ $00105^{\circ} 000000$ $00106^{\circ} 000001$ 00107•000006

; NOW FOR A SLIGHTLY MODIFIED VERSION OF THE ; Standard linc tape utilities....
CLINC: SUB 2.2
JMP CHKZ
RLINC: LDA 3,D2R
MP READZ
STA 3.DIXX
STA 1.D2XX
STA 2.SAC2
JSR DO
LDA 1.D2XX
SUB 1.0
LDA 2.SAC2

00153.151113		MOVL	2,2,SNC	C-21
$00154^{\circ} 150008$		COM	2,2	
$00155^{\circ} 034472$	CHKZ:	LDA	3.D2C	
00156.054467	READE:	STA	3.D2XX	
$00157^{\circ} 934407$		LDA	3.01KC	
$00160^{\circ} 054473$		STA	3.DIXX	
001619094410		JSR	DO	
00162.060274	EXIT:	NIOC	LINC	
$00163^{\circ} 000750$		JMP	RETRN	
$00164^{\circ} 000000$	SAC2:	0		
08165.021000	D1W:	LDA	$0,0,2$	
08166.000750	DIRC:	JMP	READ-DIXX,1	
00167132512	D2R:	SUBL"	1,2,SEC	
$00170^{\circ} 000000$	RETU:	0		
00171.054777	DO:	STA	3.RETU	
00172.375474		DIB	3.LINC	
00173.175112		MOVL."	3.3.SEC	
00174.000446		JMP	E4	
081751151113		MOVL"	2,2,SNC	
$00176^{\circ} 000410$		JMP	FINDF	
20177'150000		COM	$2 \cdot 2$	
$00200 \cdot 176480$	FINDR:	SUB	3,3	
00201.162000		ADC	3,0	
00202.060374		NIOP	LINC	
00203.004467		JSR	GETBL	
00204'101401	FINDN:	INC	0,0,SKP	
00205'000776		JMP	- -2	
00206.060174	FINDF:	NIOS	LINC	
$00907^{\circ} 004463$		JSR	GETBL	
$00210^{\circ} 000777$		JMP	- -1	
00211'175224		MOVZR	3,3,SER	
00212.800766		JMP	FINDR	
00213'125005	FOUND:	MOV	1,1,SNR	
00214002754		JMP	ERETU	
00215'166000		ADC	3,1	
$00216^{\circ} 046474$		STA	O,TEMP1	
00217.044474		STA	1.TEMP2	
00220.024476		LDA	1,SIZE	
00221'147000		ADD	2,1	
00222'000431		Jimp	DIXX	
00223.063674	READ:	SKPDN	LINC	
00224.000777		JMP	- - 1	
09225'06347.		SKPBN	LINC	
00226.000416		JMP	RDAT	
$00227^{\prime \prime} 160474$	RCHK:	DIA	0,LINC	
00230'116405		SUB	0,3, SNR	
00231^{\prime}-000434		JMP	SCHK	
00232.824465	E1:	LDA	1.Cl	
$08233^{\circ} 004483$		JMP	$\bullet+3$	
00234.934462	E2:	L.DA	3.SIZE	
00235.024463		LDA	1,C2	
$00236^{\circ} 020454$		LDA	0,TEMPI	
$00237^{\circ} 0009723$		JMP	EXIT	
00248.924461	E3:	LDA	1,C4	
002.41'9n6721		JiMP	ExIT	
0924? 024460	Ea:	LDA	1,C8	
$00243^{\circ} 090717$		JMP	EXIT	
$00244^{\circ} 060474$	RDAT:	DIA	C,LINC	
00245'132512	D2XX:	SUBL*	1,2,SEC	
$00246^{\circ} 041000$		STA	0.0 .2	

C9247. 0 ¢0402	D?C:	JMP	- +2	
Q9250.061074	VIDAT:	DOA	$0, L I N C$	C-22
$00251 \cdot 117000$	BLOOP:	ADD	0,3	c-22
02? 52'151400		I NC	2,2	
00253.021003	DIXX:	LOA	0,0,2	
00254.763074		DOC	a,LINC	
00255.263674		SKPDN	LINC	
c0256'000777		JMP	- - 1	
00257.063474		SKPBN	LINC	
03260.920773		JMP	WDAT	
00261.075074	WCHK:	DOA	3.LINC	
09262'675474		DIE	3,LINC	
00263.175064		MOV	3,3,SZR	
00264.000756		JMP	E_{4}	
$00265^{\circ} 132414$	SCHK:	SUB\#	1,2,SZR	
$00266^{\circ} \mathrm{B02746}$		JMP	E2	
00267.020423	NEXT:	LDA	O.TEMPI	
00270.024423		L.DA	1.TEMP2	
00271.000713		JMP	FINDN	
00273.034421	GETBL:	STA	3.TEMP1	
00274.162432		LDA	3.MLIM	
00275.900405		SUBZ\#	3,0,SEC	
00276.334417		JMP	WAIT	
$00277 \cdot 162032$		LDA	3. PLIM	
$00300 \cdot 900740$		ADCZ\#	3.0.SEC	
$00391^{\circ} 074474$		DIA	3,1 INC	
00302'063474	WA IT:	SKPBN	LININC LINC	
00303'000777		JMP	WAIT	
$00304^{\circ} 063774$		SKPDE	LINC	
$00305^{\circ} 960774$		JMP	WAIT-1	
$00306^{\circ} 0744474$		DIA	3.LINC	
$00307^{\circ} 116543$		SUBOL	0,3.SNC	
$00310^{\circ} 010402$		$15 Z$	TEMP!	
00311.092401		JMP	OTEMPI	
$00312^{\circ} 009000$	TEMP1:	0		
$80313^{\circ} 000000$	TEMP2:	0		
$00314^{\circ} 177770$	MLIM:	177778		
$00315^{\circ} 000620$	PLIM:	620		
$00316^{\circ} 000490$	SIEE:	400		
$00317^{\circ} 000001$	C1:	1		
$00320^{\circ} 000002$	C2:	2		
$00321^{\circ} 900004$ c	C4:	4		
00322'000010	C8:	10		
		- FNn		

		-TITL -ENT	ovLAP OVLAP
		- ExTD	-CPYL..FRET
		- NREL	
171611		$N=-167$	
177612		$\mathrm{N} 1=\mathrm{N}+1$	
177613		$\mathrm{N} 2=\mathrm{N}+2$	
177614		$\mathrm{N} 3=\mathrm{N}+3$	
177615		$\mathrm{N} 4=\mathrm{N}+4$	
177516		$\mathrm{N} 5=\mathrm{N}+5$	
177617		$N 6=N+6$	
$00000^{\circ} 000800$	SAVE:	0	
$08901^{\circ} 9308008$	$\times 5$:	0	
	X6:	0	
00003-020010		10	
09004'0060015	OVLAP:	JSR	e. CPYL
00905'054773		STA	3. SAVE
90006.023611		LDA	8,8N. 3
00007.027612		LDA	1.enl.3
00018.033613		LDA	2, 8N2,3
00011.037614		LDA	3.0N3.3
$00012 \cdot 122512$		SUBL\#	1.0.SEC
$00013^{\prime 0} 00455$		JMP	$F 1$
00014172512		SUBL.	3.2, SzC
$00015 \cdot 000426$		JMP	F2
00016.162513		SUBL*	3.0.SNC
00017'132512		SUBLA	1,2,SĖC
$00020^{\prime 0} 00533$		JMP	NOGO
00021.112512		SUBL*	0.2.sⓒ
$00822 \cdot 000411$		JMP	F3
$00223 \cdot 136512$		SUBL"	1,3,SzC
$00024^{\circ} 000404$		JMP	F4
00025.054754		STA	3, $\times 5$
00026.040754		STA	0, $\times 6$
00027.000514		JMP	OK
$00030^{\circ} 944751$	F4:	STA	1, $\times 5$
$00031^{\prime} 040751$		STA	$0 . \times 6$
00032.000511		JMP	OK
00033'136512	F3:	SUBL\#	1.3.SEC
$00034^{\circ} 090404$		JMP	$F 5$
00035.054744		STA	$3 . \times 5$
$000360^{\circ} 050744$		STA	$2 . \times 6$
$00037^{\circ 000504}$		JMP	OK
$000480^{\circ} 944741$	F5:	STA	1. $\times 5$
60041.050741		STA	2×6
$09042 \cdot 008501$		JMP	OK
$00043^{\prime 1} 142513$	F2:	SUBL"	2,0,SNC
$00044^{\prime} 136512$		SUBL\#	1,3, S $\mathrm{z}_{\text {C }}$
90045'000506		JMP	NOCO
9ag46'116512		SUBL"	0.3.SEC
C.j047.000411		JMP	56
09050'132512		SUBLA	1,2, S 2 C
$00051 \cdot 009404$		JMP	
6005?.058727		STA	$2 . \times 5$
00053.040727		STA	$8 . \times 6$
96054.090467		JMP	OK
90255.044724	F7:	STA	1.xs
$\because 6056^{\circ} 847724$		STA	D. $\times 6$
00057'009464		JMP	OK
90060'132512	F6:	SUBL*	1,2,SさC

00061.000404		JMP	$F 8$	
00062'050717		STA	2, $\times 5$	C-25
$00063^{\circ} 054717$		STA	$3 . \times 6$	
$00064^{\circ} 008457$		JMP	OK	
$00865^{\circ} 944714$	F8:	STA	1, $\times 5$	
00066.054714		STA	$3 . \times 6$	
$00067^{\circ} 090454$		JMP	OK	
00670.172.512	F1:	SUBL"	3,2,5zC	
00071.090426		JMP	F9	
0e072'166513		SUBL*	3,1,SNC	
00073 '112512		SUBL*	0,2,SEC	
00974.000457		JMP	NOGO	
00075.132512		SUBL"	1,2,SzC	
$00076^{\circ} 000411$		JMP	F10	
06077'116512		SUBL*	D.3.SEC	
$08100^{\circ} 008404$		JMP	F11	
00101.054708		STA	3, $\times 5$	
09102.044700		STA	1, $\times 6$	
$08103^{\circ} 000440$		JMP	OK	
00104.040675	F11:	STA	D, $\times 5$	
$00105^{\circ} 044675$		STA	1, $\times 6$	
$00106^{\circ} 000435$		JMP	OK	
00107'116512	F10:	SUBL*	$0,3,5 z C$	
00118.000404		JMP	F12	
00111.054670		STA	3. $\times 5$	
$00112^{\circ} 050670$		STA	2. $\times 6$	
$00113^{\prime 000430}$		JMP	OK	
00114.040665	F12:	STA	$0 . \times 5$	
00115.050665		STA	2.x6	
$00116^{\circ} 000425$		JMP	OK	
001171146513	F9:	SUBL"	2.1.SNC	
00120116512		SUBLA	8,3.SEC	
00121.000432		JMP	NOGO	
$00122 \cdot 136512$		SUBL*	1,3,SzC	
$00123^{\circ} 000411$		JMP	F13	
00124'112512		SUBL*	0,2,5zC	
00125.000404		JMP	F14	
00126.050653		STA	2, $\times 5$	
00127.044653		STA	1, $\times 6$	
00130.000413		JMP	OK	
$00131^{\circ} 040650$	F14:	STA	0, $\times 5$	
00132.044650		STA	1, $\times 6$	
$00133^{\circ} 900410$		JMP	OK	
$00134^{\circ} 112512$	F13:	SUBL"	0.2.SZC	
90135.000404		JMP	F15	
$00136^{\circ} 050643$		STA	2, $\times 5$	
$08137^{\prime} 954643$		STA	3, $\times 6$	
$00140 \cdot 000403$		JMP	OK	
00141.040640	F15:	STA	$0, \times 5$	
00142.054640		STA	3, $\times 6$	
$00143^{\circ} 929636$	OK:	LDA	$0 . \times 5$	
$00144^{\circ} 024636$		LDA	1, $\times 6$	
$00145^{\circ} 034633$		LDA	3.SAVE	
$08146^{\circ} 043615$		STA	O. EN4.3	
$00147^{\circ} 047616$		STA	1,0N5,3	
00150.102520		SUBzl	0,0	
$00151 \cdot 943617$		STA	0,8N6.3	
00152.0069025		JSR	$2 \cdot F \mathrm{FET}$	
00153.034625	NOGO:	LDA	3.SAVE	
0154.102460		SUBC	0.0	


```
0 0 1
02
0 0 3
004
035
0 0 6
0 0 7
008
009
010
011
012
020
021
02.2
g23
024
025
0 2 6
828
629
030
831
032
033
034
035
036
037
0 3 8
039
040
041
042
643
044
845
046
047
048
0 4 9
050
051
052
053
054
0 5 5
```

```
013 IF(L.LE.2) GOTO 18
```

013 IF(L.LE.2) GOTO 18
014 PI=4.0*ATAN(1.0)
014 PI=4.0*ATAN(1.0)
015 Pl2=2.0*PI
015 Pl2=2.0*PI
016 PI05=0.5*PI
016 PI05=0.5*PI
017 PI180=P1/360.
017 PI180=P1/360.
018 LBIT=100000K
018 LBIT=100000K
019 MASK=77777K
019 MASK=77777K

```
C--------SECOND OVERLAY--------
```

C--------SECOND OVERLAY--------
C--ROUTINE TO RUILD BLOCKS FROM LINES
C--ROUTINE TO RUILD BLOCKS FROM LINES
COMMON KEY(256),IBLOC(1536),1DUM(608),11(768),
COMMON KEY(256),IBLOC(1536),1DUM(608),11(768),
* 12(768),LIST(32),LISTC(128),IX(512),IY(512)
* 12(768),LIST(32),LISTC(128),IX(512),IY(512)
COMMON/HANDY/N,L.IACC
COMMON/HANDY/N,L.IACC
C
C
C N=NUMBER OF POINTS
C N=NUMBER OF POINTS
C L=NUMgER OF LINES
C L=NUMgER OF LINES
C
C
N=LIST(1)
N=LIST(1)
L=LIST(2)
L=LIST(2)
IACC=LIST(3)
IACC=LIST(3)
K=1
K=1
NBLOC=0
NBLOC=0
C--SET FLAGS ON ALL LINES--
C--SET FLAGS ON ALL LINES--
DO 1 LL=1,L
DO 1 LL=1,L
II(LL)=II(LL).OR.LBIT
II(LL)=II(LL).OR.LBIT
1 I2(LL)=12(LL).OR.LBIT
1 I2(LL)=12(LL).OR.LBIT
IF ANY FLAGS STILL LEFT--
IF ANY FLAGS STILL LEFT--
2 DO 3 LL=1,L
2 DO 3 LL=1,L
IF(II(LL).AND.LBIT) GOTO 4
IF(II(LL).AND.LBIT) GOTO 4
IF(I2(LL).AND.LBIT) GOTO 5
IF(I2(LL).AND.LBIT) GOTO 5
3 CONTINUE
3 CONTINUE
IF(NBLOC.GT.0) GOTO 17
IF(NBLOC.GT.0) GOTO 17
18 CALL OVLAY(I,KEY)
18 CALL OVLAY(I,KEY)
paUSE
paUSE
GOTO 18
GOTO 18
17 KEY(NBLOC+1)=K ;ALL FLAGS MUST BE DOWN.
17 KEY(NBLOC+1)=K ;ALL FLAGS MUST BE DOWN.
CALL CHARO(135) ; FIND CENTROIDS ETC.
CALL CHARO(135) ; FIND CENTROIDS ETC.
CALL CENT (NBLOC)
CALL CENT (NBLOC)
4 Il(LL)=11(LL).AND.MASK
4 Il(LL)=11(LL).AND.MASK
IENDI=11(LL)
IENDI=11(LL)
IEND2=12(LL).AND.MASK
IEND2=12(LL).AND.MASK
GO TO 6
GO TO 6
5 I2(LL)=I2(LL).AND.MASK
5 I2(LL)=I2(LL).AND.MASK
IENDI=12(LL)
IENDI=12(LL)
IEND2=11(LL) B(FLAG MUST ALREADY BE DOWN)
IEND2=11(LL) B(FLAG MUST ALREADY BE DOWN)
6 ISTART=IEND:
6 ISTART=IEND:
IPNT=1
IPNT=1
LISTC(1)=LL
LISTC(1)=LL
GAMSUM=0.0
GAMSUM=0.0
IXD=IX(IEND2)-IX(IENDI)
IXD=IX(IEND2)-IX(IENDI)
IYD=IY(IENDO)-IY(IENDI)
IYD=IY(IENDO)-IY(IENDI)
IF(IXD.NE.ด) GOTO 8
IF(IXD.NE.ด) GOTO 8
IF(IYD.LT.日) GOTO }
IF(IYD.LT.日) GOTO }
ALFOLD=PI/2.0
ALFOLD=PI/2.0
GOTO?
GOTO?
7 ALFOLD=1.5*PI

```
    7 ALFOLD=1.5*PI
```

056		GOTO 9
057	8	ALFOLD=ATAN(ABS (FLOAT (IYD)/FLOAT (IXD))
058		IF (IXD.LT. I $^{\text {(}}$ GOTO 10
059		IF(IYD.GT.0) GOTO 9
060		ALFOLD=P12-ALFOLD
061		GOTO 9
062	10	IF(IYD.GT.0) GOTO 11
063		ALF OLD $=$ ALFOLD + PI
064		GOTO 9
055	11	ALFOLD=PI-ALFOLD
056	C--FIND	MOST CLOCKWISE LINE FROM LL--
067	9	LMAX $=0$
068		GAMAX $=$ P I
069		DO 12 LIN=1.L
070		IF(LIN.EQ.LL) GOTO 12
671		IF(II(LIN).AND.LBIT) GOTO 13
072	16	1F(I2(LIN).AND.LBIT) GOTO 14
073		GOTO 12
074	13	IF((II(LIN).AND.MASK).NE.IEND2) GOTO 16
075		$1 E 1=I E N D 2$
076		IE2=I2(LIN).AND.MASK
077		GOTO 15
078	14	IF(CIL(LIN).AND.MASK).NE.IEND2) GOTO 12
079		IEI=IEND2
089		$I E 2=I 1(L I N) \cdot A N D . M A S K$
081	15	$I X D=I X(I E 2)-I X(I E 1)$
082		$I Y D=I Y(I E 2)-I Y(I E 1)$
083		IF(IXD.NE.0) GOTO 20
084		IF(IYD.LT.0) GOTO 19
085		ALF=PI/2.0
086		GOTO 22
087	19	ALF $=1 \cdot 5 * P \mathrm{P}$
088		GOTO 22
089	20	
090		IF(IXD.LT.B) GOTO 2.I
691		IF(IYD.GT.0) GOTO 22
092		ALF=PI2-ALF
693		GOTO 22
094	21	IF(IYD.GT.0) GOTO 23
095		$A L F=A L F+P I$
896		GOTO 22
097	23	ALF = PI-ALF
998	22	GAM = ALF-ALFOLD
099		IF (GAM.GE.PI) GAM $=$ GAM-PI2
106		IF (GAM-LT-PI) GAM $=$ GAM + PI 2
101		IF (GAM. GE.GAMAX) GOTO 12
102		GAMAX $=$ GAM \quad MOST CLOCKWISE ANGLE YET...
103		LMAX=LIN \%WITH ITS CORRESPONDING LINE.
104		ALFMAX=ALF
105		IEDI= IEI
106		IED2 = IE2
107	12	CONTINUE
108		
109	C--KNOCK	DOWN FLAG FOR THAT LINE--
110		1F(11 (LMAX).AND.MASK).EQ.IED2) GOTO 24

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
$11(\operatorname{LMAX})=1 E D 1$
GOTO 25
$2412($ LMAX $)=1 E D 1$
25 GAMSUM=GAMSUM+GAMAX BUM OF ALL BLOCK ANGLES IPNT $=1 P N T+1 \quad 3$ POINTER TO TEMP. LIST OF LINES
LISTC(IPNT) $=$ LMAX IF(IED2.EG.ISTART) GOTO 26
LL=LMAX sNEW LINE BECOMES OLD LINE
ALFOLD=ALFMAX
IEND2=IED2
GOTO 9
26 IF(GAMSUM.GT.0.0)GOTO 2 NBLOC $=$ NBLOC +1
KEY(NBLOC) $=\mathrm{K}$
C--the next section merges adjacent lines if
C--THEY have nearly egual slopes, and writes
C--the resulting list of points onto ibloce)
LINE=LISTC(1)
IF (ISTART.EQ.II(LINE)) GOTO 31
IP1 =I 1 (LINE).AND.MASK
GOTO 32
31 IPI=I2(LINE).AND.MASK
$32 \quad 1 \times 1=I \times\left(1 P_{1}\right)$
$1 Y_{1}=I Y(1 P 1)$
$1 \times \theta=I \times(I S T A R T)$
$I Y \theta=I Y(I S T A R T)$
$1 X D=I \times 1-I X B$
$1 Y D=I Y 1-I Y O$
IF (IXD.EQ. E) GOTO 43
ALFI=ATANZ(FLOAT(IYD),FLOAT (IXD))
GOTO 44
43 ALFI=SIGN(PI05,FLOAT(IY1))
44 ALFIR=ALF:
DO 50 IK=2.IPNT
IF (IK.EQ.IPNT) GOTO 51
LINE=LISTC(IK)
IF(IPI.EQ.II(LINE)) GOTO 41
1P2=11(LINE).AND.MASK
GOTO 42
41 IP2=I2(LINE).AND.MASK
42 I $\times 2=I \times(I P 2)$
IY2 $=1$ Y (IP2)
$47 \quad 1 \times D=1 \times 2-I \times 1$
$I Y D=I Y 2-I Y 1$
IF (IXD.EQ.0) GOTO 45
ALF2=ATAN2(FLOAT(IYD),FLOAT(IXD))
GOTO 46
45 ALF2=SIGN(PIO5,FLOAT(IY2))
46 IF (ABS (ALF2-ALF1).LT.PI180) GOTO 53
$1 \mathrm{BLOC}(\mathrm{K})=|\mathrm{P}|$
$\mathrm{K}=\mathrm{K}+1$
$1 P 1=1 P 2$
ALFI=ALF2
$|X|=I X 2$
$|Y|=I Y 2$

```
166
167
168
169
170
171
172
173
174
175
176
177
178
1 7 9
180
181
182
183
184
185
186
187 C
188
189
190
191
192.
193
194
195
1 9 6
1 9 7
197
198
199
200
201
202
203
204
```

```
            gOTO 50
```

 gOTO 50
 51 IX2=IX(ISTART)
 51 IX2=IX(ISTART)
 IYR=IY(ISTART)
 IYR=IY(ISTART)
 GOTO 4T
 GOTO 4T
 53 IPI=IP2
 53 IPI=IP2
 50 CONTINUE
 50 CONTINUE
 C--LAST LINE TO DO NOW--
C--LAST LINE TO DO NOW--
IF(ABS(ALFIR-ALFI).LT.PII80) GOTO 48
IF(ABS(ALFIR-ALFI).LT.PII80) GOTO 48
IBLOC(K)=ISTART
IBLOC(K)=ISTART
K=K+1
K=K+1
48 IF(K-KEY(NBLOC).GT.2) GOTO S2
48 IF(K-KEY(NBLOC).GT.2) GOTO S2
C--WEED OUT THIN BLOCKS--
C--WEED OUT THIN BLOCKS--
K=KEY(NBLOC)
K=KEY(NBLOC)
NBLOC=NBLOC-1
NBLOC=NBLOC-1
GOTO 2
GOTO 2
52 Kl=KEY(NBLOC)
52 Kl=KEY(NBLOC)
K2=K-1
K2=K-1
CALL PLOTS(0,IX(IBLOC(K2)),IY(IBLOC(K2)))
CALL PLOTS(0,IX(IBLOC(K2)),IY(IBLOC(K2)))
DO 49 KB=Kl,K2
DO 49 KB=Kl,K2
49 CALL PLOTS(1,IX(IBLOC(KB)),IY(IBLOC(KB)))
49 CALL PLOTS(1,IX(IBLOC(KB)),IY(IBLOC(KB)))
GOTO 2
GOTO 2
C--DEAL WITH DEAD END--
C--DEAL WITH DEAD END--
28 II(LL)=II(LL).AND.MASK
28 II(LL)=II(LL).AND.MASK
12(LL)=I ?(LL) -AND.MASK
12(LL)=I ?(LL) -AND.MASK
IF(IPNT.LE.1) GOTO 2
IF(IPNT.LE.1) GOTO 2
I PNM=IPNT-1
I PNM=IPNT-1
ITO=ISTART
ITO=ISTART
C--RESTORE FLAGS TO PRECEEDING LINES--
C--RESTORE FLAGS TO PRECEEDING LINES--
DO 3G IL=1.IPNM
DO 3G IL=1.IPNM
LINE=LISTC(IL.)
LINE=LISTC(IL.)
IF(ITO.EQ.II(LINE)) GOTO 33
IF(ITO.EQ.II(LINE)) GOTO 33
ITO=II(LINE).AND.MASK
ITO=II(LINE).AND.MASK
I2(LINE)=I2(LINE).OR.LBIT
I2(LINE)=I2(LINE).OR.LBIT
GOTO 30
GOTO 30
33 ITO=I2(LINE).AND.MASK
33 ITO=I2(LINE).AND.MASK
I|(LINE)=II(LINE).OR.LBIT
I|(LINE)=II(LINE).OR.LBIT
30 CONTINUE
30 CONTINUE
GOTO 2
GOTO 2
END

```
        END
```



```
856
057
058
859
060
061
062
063
064
065
0 6 6
067
068
0 6 9
070
071
072
0 7 3
674
075
0 7 6
077
078
879
080
GOTO 12
\(9 \quad Y M=Y M-G 1 *(G 2 * F L O A T(I X 2)+F L O A T(I X I-I X 2) * F L O A T(I Y 2+2 * I Y 1) / 3.0)\) GOTO 12
\(11 \quad Y M=Y M-G I *(G 2 * F L O A T(I X I)+F L O A T(I X 2-I X I) * F L O A T(I Y I+2 * I Y 2) / 3-0)\)
\(12 \quad I P I=I P 2\)
\(I C X(N)=I F I X(X M / A R E A+0.5)+I X M\)
\(I C Y(N)=I F I X(Y M / A R E A+\mathfrak{O} \cdot 5)+I Y M\)
CALL CROSS（ICX（N），ICY（N））
GOTO I
13 I AREA（N）＝0．0
1 CONTINUE
C－－TO COMPUTE THE LENGTHS OF EACH EDGE－－
DO \(80 \mathrm{~N}=1\) ，NBLOC
\(K I=K E Y(N)\)
\(K 2=K E Y(N+1)-1\)
IPA＝IBLOC（K2）
\(K N=K 2\)
DO \(81 \mathrm{~K}=\mathrm{K} 1, \mathrm{~K} 2\)
IPB＝I BLOC \((K)\)
\(X D I F=I X(I P B)-I X(I P A)\)
\(Y D I F=I Y(I P R)-I Y(I P A)\)
LENG（KN）\(=\) SQRT（XDIF＊XDIF＋YDIF＊YDIF）＊ 0.5
\(K N=K\)
81 IPA＝IPB
80 CONTINUE
```



```
25 CALL CURS（ID，IXX，IYY）
CALL CHARO（159）
IF（ID．EO．197）GOTO 20 ：＂E＂FOR＂ERASE＂
IF（ID．EQ．2日B）GOTO 30 ，＂H＂FOR＂HARD COPY＂
IF（ID．EO．2日8）GOTO 50 ；＂P＂FOR＂PHASE．．．＂
IF（1D．EQ．193）GOTO 22 ；＂A＂FOR＂ALL＂
IF（ID．EQ．211）GOTO 6D ；＂S＂FOR＂SINGLE＂
IF（ID．EQ．210）GOTO 70 3＂R＂FOR＂RESTORE＂
GOTO 25
20 DO \(24 \mathrm{~N}=1\) ，NBLOC
1F（IABS（ICX（N）－IXX）．GT．IACC）GOTO 24
IF（IABS（ICY（N）－IYY）－GT．IACC）GOTO 24
1F（IAREA（N）．LE．D）GOTO 24
1 AREA \((N)=-I A R E A(N)\)
GOTO 22
24 CONTINUE
GOTO 25
22 CALL CHARO（155）
CALL CHARO（140）
DO \(21 \mathrm{~N}=1\) ，NBLOC
IF（IAREA（N）．LE•O）GOTO 21
\(K I=K E Y(N)\)
\(K 2=K E Y(N+1)-1\)
CALL PLOTS（日，IX（IBLOC（K2）），IY（IBLOC（K2））） DO \(23 \mathrm{~K}=\mathrm{K} 1\) ，K2
23 CALL PLOTS（I．IX（IBLOC（K））．IY（IBLOC（K））） CALL CROSS（ICX（N），ICY（N））
21 CONTINUE GOTO 25
```

50 CALL CHARI (IN)

CALL CHARO(155)
CALL CHARO(140)
I BLOC (1536) =NBLOC
CALL OVLAY(3,KEY)
GOTO 25
60 DO $61 \mathrm{~N}=1$, NBLOC

IF (IABS (ICX(N)-IXX).GT.IACC) GOTO 61
$I F(I A B S(I C Y(N)-I Y Y) . G T . I A C C) ~ G O T O ~$
1

 \(I F(I A B S(I C X(N)-I X X) \cdot G T . I A C C)\)
 $I F(I A B S(I C Y(N)-I Y Y) \cdot G T \cdot I A C C)$ GOTO 61
GOTO 62
61 CONTINUE
GOTO 25
$62 \quad \mathrm{NN}=\mathrm{N}$
IF (IAREA (NN).LE. 日) GOTO 25
CALL CHARO(155)
CALL CHARO(149)
$K 1=K E Y$ (NN)
$K 2=K E Y(N N+1)-1$
CALL PLOTS(O,IX(IBLOC(K2)), IY(IBLOC(K2)))
DO $63 \mathrm{~K}=\mathrm{K} 1, \mathrm{~K} 2$
63 CALL PLOTS(I,IX(IBLOC(K)),IY(IBLOC(K)))
CALL CROSS(ICX(NN), ICY(NA))
CALL CHARI (IN)
IF(IN.NE.197) GOTO 22
IAREA (NN) $=-$ IARS (IAREA(NN))
GOTO 22
DO $71 \mathrm{~N}=1$, NBLOC
CALL COPY (ISWIT) BCHECK FOR SWITCH
IF(IStiIT •EO. O) GOTO 25
DO $31 \mathrm{~N}=1$, NBLOC
IF(IAREA(N).LE.D) GOTO 31
$K I=K E Y(N)$
$K 2=K E Y(N+1)-1$
$11=1 \times(I R L O C(K 2)) * 4-2947$
$12=I Y(I B L O C(K 2)) * 4-2847$
CALL PLOT (IL, I2,3)
DO $32 K=K 1, K 2$
$11=1 \times(1$ BLOC $(K)) * 4-2047$
$I 2=I Y(I B L O C(K)) * 4-2 g 47$
CALL PLOT (I1,12,2)
$I C I=I C X(N) * 4$
IC2=ICY(N)*A
CALL PLOT (IC1-2087,IC2-2047,3)
CALL PLOT (IC1-2007,IC2-2047,2)
CALL PLOT (IC1-2047, IC2-2087,3)
CALL PLOT (IC1-2047,IC2-2007,2)
CONTINUE
CALL PLOT $(-2047,-2047,3)$
GOTO 25
40 CALL CHARO(155)
CALL CHARO (140)
CALL OVLAY(1,KEY)
GOTO 25
CALL CHARI (IN)
CALL OVLAY(3,KEY)
78
62

166		IF © AREA
167		$\operatorname{IAREA}(N)=1 A B S(1 A R E A(N))$
168	71	CONTINUE
169		GOTO 22
170		END

List of Fhase 3 Global Symbols

Symibol Name	Originatins Routine	Purpose of Symbol
CONTR	COMTP	Iteration and Control routine entry
feet	INPUT	ASCII Lengtin Descriptor
MOVFL	INPUT	Nemory overfluw message
MU	FORD	Default value of friction coefficient
OPTIN	CYCLE	Pointer to option input routine
POLHD	Input	ASCII force descriptor
PUP	REEOX	Pressure segment test entry
trans	trans	Initial translation routine entry
- ALLB	UPDAT	Pointer to routine to update ail blocks
.ALPH	UTIL	Pointer to routine to set Tektronix in aipra noce
.AXIS	UTIL	Pointer to routine to draw exes on screen
. BSIZ	TRANS	Number of words in block data arrays, excluding corners
. Cl 100	COHTR	A constant ($=100$ octal)
. CHEK	UTIL	Pointer to routina check if character is a digit
.CLNC	tape	Pointer to tape checking routine
. CPNT	UPDAT	Pointer to word that can be changed
.CURS	TEK	Pointer to routine that enables cursor
. DBE	UTIL	Pointer to Decimal to Binary conversion routire
. DEIN	UTIL	Pointer to Decimal to Binary conversion routine
. DCM	MOUIT	Pointer to routine to move a fixed block
.DIS8	DISPL	Pointer to rcutine that plots a single block
. DISP	DISPL	Pointer to routine that plots all blocks on paper
. OISS	DISPL	Pointer to routine that plots all blocks on screen
. Dir3N	INPUT	Block number of fixed block to be moved
. DMEP	INPUT	Block data pointer of fixed block to be roved
. EMPT	trans	Head of empty list
. FORD	FORD	Pointer to force/displacenert routine
.GETT	IJTIL	Pointer to routine to accept kejboard character
. HEAM	LOADS	Pointer to routine to modify block weights
.HITC	UTIL	Pointer to routine to detect cursor hit on tlock
. HITS	HITS	Pointer to routine to detect cursor hit on edge
. IACC	UTIL	Accuracy limit for hits on tiritroids

. 14	nipur
. Ifric	UTIL
. krT	CYCLE
. Leivg	UTIL
. LODE	IfPut
. 1 PAP	contr
.LPLS	DISFL.
. 17	trans
. M^{2}	TRAis
. N 3	TRAMS
. M^{4}	TRANS
. H 5	TRANS
. M 6	TRAMS
. M7	TRAMS
.MLM	TRANS
.MESS	UTIL
.FFLG	INPUT
\%OT	MOTIO
.MOVE	IHPUT
. MSKR	REBOX
.NUM	TRANS
. NVEC	DISPL
. $01 / 2$	TAPE
. ${ }^{\text {PSE }}$ GE	UTIL
. PERT	InPuT
. Pito	CONTR
. PLis	TEK
.PONT	POIT
. POH?	pont
. PRES	InPut
.prin	UTIL
. PPNT2	UTIL
.PSEG	INPUT
.PSIZ	TRAMS
. READ	TAPE
. REOX	REBOX
. REEZ	REBOX

. RIIiC	TAPE
.ROT	MOTIO
.RSET	CYCLE
. SCAL	UTIL.
. Slicg	UPOAT
. SPRP	Input
. STEP	CYCLE
. SYCL	IIPUT
.TIME	FORD
.TPRN	CYCLE
.TREC	MOTIO
.TYP	UTIL
.UD	INPUT
.UINP	InPUT
.UREP	CONTR
.UW	INPUT
.VEC	COATTR
.VFAC	UTIL
. WLiAC	TAPE
. WOPD	UTIL
.WRIT	TAPE
. XCGD	INPLT
. YCGD	INPUT

Pointer to tape reading routine
Constant of integration for anjuiar velocity
Pointer to routire that resets cycle counter
Pointer to vector scaling routine
Pointer to single bloct updetirg routine
Pointer to beginnirs of friction table
Pointer to routine th increnent cjcle counter
Frequency of moverient of fixed block
Pointer to routine to change time step
Pointer to routine that displays cycles
Inverse time step
Pointer to return surface type number for edge
Unit of displacenent
Pointer to units input routine
Update frequency
Unit weight
Vector plotting flag
Vector scaling factor
Pointer to tape writing routine
Pointer to routine to get alphanulieric string
Pointer to routine to store a data set
X - component of fixed block displacement
Y component of fixed block displacement
－TITL TRANS
3 TO CREATE NEH DATA STRUCTURES FROM ；THE ORIGINAL FORTRAN ARRAYS．

－ENT	
－ENT	．M4，．M5，．M6，．M7，－EMPT，．PSIZ
－ENT	－MEM
－EXIN	CONTR
－EXTD	．PON1，．PON2，．ALLB，．DISS，．MSKR
－EXTD	．OVL，．MESS．．TPRN
－ZREL	
0	3HIGHEST MEMORY LCTN

00000－000000 00001－0000иの 020日2－900000 00003－0000000 00034－200000 00005－000000 00006－000000 $00007-000000$ 00010－000000 00011－000014 00012－000000 00013－000025

00000．000000 $00001^{\circ} 0000000$ $00302 \cdot 000020$ $09093 \cdot 000000$ $09084^{\circ} 800808$ $00005^{\circ} 000404$ $00006^{\circ} 000400$ $00007^{\circ} 00041^{\circ}$ 900012
$00010 \cdot 020011$
00011.001001 $00012^{\circ} 001000$ $00813^{\circ} 000400$ $00014^{\circ} 000400$ $00015 \cdot 300400$ $00016^{\circ} 003000$ $06017 \cdot 003000$ $00020 \cdot 000400$

60021：177770 000010 90622．901908 00n23＇100600 $00024^{\circ} 000303^{\circ}$ 0а92．5 000304°日0月？6．0gnoag

日月の2．7．034761 06930．630771 $00031 \cdot 12.6400$

00633．10750n 00034．175400

00124'101084		MOV	$0,0,5 \# R$	C-4?
$00125 \cdot 101112$		MOVL*	$0 \cdot 6,5 \mathrm{C}$	
00126.032661		JMP	ENEXTK	; Negative, of zero, area
	3 S 3 la			
00127941014		STA	0,14.2	; Store afen
$00130 \cdot 103400$		SUS	0.8	;initialize the folloning:
$08131 \cdot 043562$		STA	9, mAx	
00132.041062		STA	0,2,2	; LOh X
00133.041004		STA	$8,4,2$	BOW Y
$00134^{\prime 241011}$		STA	0,11,2	; (SIN)
$00135 \cdot 041065$		STA	$0.5,2$	3 X-VEL
$00136^{\circ} 041006$		STA	0.6 .2	: ALFHA-DOT
00137041012		STA	8.12,2	BLOW ALPHA
$00140 \cdot 041007$		STA	0.7.2	; XFSUM
00141.041015		STA	0.15 .2	; Y-VEL
00142.041016		STA	0.16 .2	3 YFSUM
00143.041017		STA	0.17,2	;MSUM
$00144^{\prime 0} 041020$		STA	0.20 .2	: DELTA-X
00145'041021		STA	0.21.2	; DELTA-Y
$00146^{\prime} 041022$		STA	0.22 .2	- DELTA-ALPHA
$00147^{\prime} 041023$		STA	0,23.2	; \times LOAD
00150.041024		STA	0.24 .2	3Y LOED
$00151 \cdot 100000$		COM	0,0	
$00152 \cdot 041010$		STA	$0,10,2$; (COS) $=$ NEAREST THING TO
	;			
00153.934626		LDA	3.18X	
$00154^{\prime \prime} 137808$		ADD	1,3	
$00155^{\circ} 021400$		LDA	0.0.3	;GET ICX(NB)
00156.041001		STA	0,1,2	;PUT IN NEH BLOCK LIST
$00157^{\circ} 849537$		STA	$0,1 \times$; teap store for later use
00160.034622		LDA	3,1CY	
00161.137000		ADD	1,3	
00162.021400		LDA	0.0 .3	; GET ICY(NB)
$08163^{\circ} 041083$		STA	0,3,2	; PUT IT Alway
$00164^{\circ} 940531$		STA	D.IY	; AS WITH IX
00165'034616		LDA	3,KEY	
$00166^{\prime 137000}$		ADD	1,3	
00167'021480		LDA	0,0,3	; KEY(NB)
$00170^{\circ} 025401$		LDA	1,1,3	; KEY(NB+1)
00171'106400		SUB	0.1	
00172.045000		STA	1,0,2	;NUMBER OF POINTS THIS BLOCK
00173'024813-		LDA	1..BSIz	
$00174{ }^{\circ} 133000$		ADD	1,2	
00175'126520		SUBEL	1.1	
00176'122400		SUB	1,8	SKEY(NB)-1
00177'034605		LDA	3.LENG	;POINTER TO LENGTH ARRAY
00200.117000		ADD	0,3	
00201'054506		STA	3.FANG	
00202.054506		STA	3,FENG	
00203.934623		LDA	3.1BLOC	
00204'117000		ADD	0.3	
00205 054504		STA	3,FING	
$00206^{\circ} 054504$		STA	3.FONG	:2ND. COPY FOR LONG BLOCK
00207.021400	LOOP:	LDA	0,0.3	:POINT NUMEER
00210.122400		SUB	1.0	;P. NUM -1
$00211^{\circ} 034472$		LDA	3.1PX	
$00212 \cdot 117000$		ADD	0.3	PPOINTER TO X CO-ORD IN IPX
$00213^{\circ} 025400$		L.DA	1,0,3	$3 \times$ CO-ORD IN ACI
$00214^{\circ} 034470$		LDA	3.IPY	

$00215 \cdot 117803$		ADD	6，3	SPOINTER TO Y CO－ORD IN AC3
00216．020500		LDA	E，IX	；GET XC EACK
60217＇122406		SU8	1，0	；XC－XP（RELATIVE X ，XR）
g02．0．1c34\％		NEG	0.0	
0022． 049465		STA	O－TEMP	
00222＊ 24463		LUA	1，GNE27	3127
08223＇101112		MOVL	$0,0,5 \geq 2$	
90224＇100409		NEG	0,0	；$A B S(X R)$
08225＇10651：		SURLA	0，1，Sic	；IS ABS $(X R)>127$ ？
60226＊009472		JMP	FhORD	3YES，TREAT AS LONG BLOCK
00227．024464		LDA	1．MAX	；IS IS SHORTEST？
$00230^{\circ} 196512$		SUBLA	$0,1, S E C$	
$00231^{\circ} 0.462$		STA	0．114X	
$00232^{\circ} \mathrm{C}$ ¢ 0454		LDA	Q，TEMP	：GET ACO WITH CORRECT SIGN
$00233^{\circ} 0240055$		LDA	1．，MSKR	
00234．123790		ANDS	1，6	；MASK OFF LEFT BYTE，AND SWAP
90235＊925400		LDA	1，0，3	；Y CO－ORD IN ACI
90236．115900		MOV	0,3	；RETAIN XR in left byte of ac3
$60237^{\circ} 029456$		LDA	0.19	SGET YC BACK
$00240 \cdot 122400$		SUB	1，0	3 YC－YP（RELATIVE Y，YR）
00241．170400		NEG	0.0	；TO CORRECT A BLUNDER ！
$00242^{\prime} 040444$		STA	$0 . T E M P$	
$00243^{\prime} 024442$		LDA	1，ONE27	3DO AS WITH X．．．
$00244^{\circ} 101112$		MOVL\＃．	0，0，SZC	
$00245^{\prime} 109490$		NEG	0,0	
$00246^{\prime} 106512$		SUBL＊	0，1，5EC	
$00247^{\circ} 000451$		JMP	FWORD	；MUST BE LONG BLOCK
00250．924443		LDA	1．MAX	
00251．106512		SUBL ${ }^{\text {F }}$	O．1，SEC	
00252.046441		STA	D．MAX	
$00253^{\circ} 020433$		LDA	Q，TEMP	
00254.01240055		LDA	1．．．MSKR	
00255：123400		AND	1.0	；MASK OFF LEFT GYTE．．
$00256^{\circ} 163000$		ADD	3，0	3．．．AND ADD IN XR
$00257^{\circ} 041000$		STA	$0,0,2$	；STORE FULL WORD IN LIST
$00260^{\circ} 034427$		LDA	3，FANG	
$00261^{\prime} 021400$		L．DA	$0,0,3$	；GET LENGTH OF SIDE NP
$00262 \cdot 041001$		STA	$0,1,2$	；STORE LENGTH IN 2ND WORD
$00263^{\circ} 018415$		ISE	NP	
$00264^{\circ} 920414$		LDA	$0, N P$	
00265＇026414		LDA	1．EBPNT	；GET MAX POINTS
$00266 \cdot 151403$		INC	2，2	；BUMP POINT POINTER
$00267^{\prime} 151480$		INC	2，2	
0027日＇122513		SUPL \＃	1，0，SNC	；1S NP $>$ MAXP ？
$00971 \cdot 000507$		JMp	OUT	：YES，END OF POINT LOOP
$00272^{\prime 010417}$		ISE	FING	：NO：CARRY ON
002730910414		1 SZ	FANG	
00274．034415		LDA	3，FING	；POINTER TO IBLOC ARRAY
00275＇126520		SUBĖ	1，1	
$00276 \cdot 000711$		JMP	LOOP	：ROUND AGAIN wE GO
	；			
00277＇月ดดดロロ	NB：	0		
0030日＇090090	NP：	0		
00301.000000	BPNT：	0		
$00302^{\circ} 000000$	PPNT：	0		
$00303 \cdot 035600$	IPX：	35600		SEORTRAN POINT ARRAYS
$00304^{\circ} 035600$	IPY：	36600		
$00305^{\circ} 000177$	ONE27：	177		
$00306^{\circ} \mathrm{BO日ODD}$	TEMP：	0		
09307＇00の日のด	FANG：	0		

$09401 \cdot 040677$
00482.334677
$00403^{\circ} 050676$
$00404^{\prime} 010676$
00405'052675
$00406^{\prime} 102430$
$00407^{\circ} 024704$
$00410 \cdot 0300055$
00411.132512
$00412 \cdot 145000$
00413131000
$00414^{\prime} 073301$
$00415^{\circ} 045413$
$00416^{\circ} 030663$
$00417^{\prime} 010660$
00420'024012-
00421'020556
00422.122512
$00423^{\prime} 002435$
$00424^{\prime} 102400$
00425'042655
00426*050003-

00492.034677
$00403^{\circ} 050676$
00404'010676
$00405^{\circ} 052675$
$00406 \cdot 102400$
$00407^{\circ} 024764$
$00411 \cdot 132512$
$00412 \cdot 145000$
00413'131000
$00415 \cdot 045413$
$00416^{\circ} 030663$
00417 918660
00421.020556
$00422 \cdot 122512$
00423'002435
-
00426.050003-
; THE NEXT PART CLASSIFIES ALL POINTS
;THE NEXI PART CLA
IN COARSE BOXES.
$00427^{\circ} 624432$
$02430^{\circ} 134400$
$00431 \cdot 147000$
$00432^{\circ} 044004-$
$00433^{\circ} 044432$
$00434^{\circ} 102000$
$00435^{\circ} 041000$
$00436^{\circ} 151400$
08437.175404
00440.000775
00441.182400
$00442^{\circ} 040420$
$00443^{\circ} 034801^{-}$
$00444^{\circ} 054422$
$00445^{\circ} 032421$
$00446^{\prime} 151005$
$00447^{\circ} 000465$
00450.021000
$00451^{-024420}$
00452.123400
$00453^{\circ} 040414$
00454'126400
$00455^{\circ} 044406$
00456.0060015
00457^{\prime} nee 416
$00460^{\circ} 000120^{\circ}$
$00461^{\circ} 000329$
$00462^{\circ} 000000$
$06453^{\prime} 000000$
00464. 0 004.0
00465° 00000co
00466.000008
$00467^{\circ} 000000$
$00470 \cdot 000190$
00471.003377

```
STA O,NP :RESET POINT COUNTER
```

STA O,NP :RESET POINT COUNTER

```
STA O,NP :RESET POINT COUNTER
```

STA O,NP :RESET POINT COUNTER
LDA 3.BPNT
LDA 3.BPNT
LDA 3.BPNT
LDA 3.BPNT
STA 2.BPNT
STA 2.BPNT
STA 2.BPNT
STA 2.BPNT
ISE PPNT
ISE PPNT
ISE PPNT
ISE PPNT
STA 2.EPPNT
STA 2.EPPNT
STA 2.EPPNT
STA 2.EPPNT
SUB 0.0
SUB 0.0
SUB 0.0
SUB 0.0
LDA 1.MAX
LDA 1.MAX
LDA 1.MAX
LDA 1.MAX
LDA 2,.MSKR 3>256 NOT ALLOHED
SUBL\# 1,2,SZC
SUBL\# 1,2,SZC
SUBL\# 1,2,SZC
SUBL\# 1,2,SZC
MOV 2,1
MOV 2,1
MOV 2,1
MOV 2,1
MOV 1.2
MOV 1.2
MOV 1.2
MOV 1.2
MUL 1*
MUL 1*
MUL 1*
MUL 1*
STA 1,13.3 ID*D (MAX) FOR M. OF I.
LEA 2,BPNT
LEA 2,BPNT
LEA 2,BPNT
LEA 2,BPNT
NEXT: ISE NB
NEXT: ISE NB
NEXT: ISE NB
NEXT: ISE NB
LDNA 1..NUM
LDNA 1..NUM
LDNA 1..NUM
LDNA 1..NUM
LDA B,NB
LDA B,NB
LDA B,NB
LDA B,NB
SUBLA 1,0,SEC ; IS NB>=NBLOC ?
SU\&LA 1,0,SEC ;IS NB==NBLOC ?
SUB O,O
SUB O,O
SUB O,O
SUB O,O
STA O.QPPNT ;FUT ZERO ADDRESS IN LOCATOR LIS
STA 2..M3 ;NEXT FREE MEMORY
BRESET POINT COUNTER

```
                            BRESET POINT COUNTER
```

 BRESET POINT COUNTER
    ```
                            BRESET POINT COUNTER
```

LDA 1, BOXSZ
NEG $\quad 1,3$
2.1 sLINK ARRAY START
1,.M4
1, FREE
0.0
3NOTE: LINK = 17777 MEANS END OF LIST.
PIG: STA D, D, 2 SET ALL LINKS TO 17777
2,2 INITIALLY
3.3.SZR
PIG
0.0
O,NBA : BLOCK NUMBER
3..Ml
3.PPNTA
2.ePPNTA
2,2,SNR ;END OF LIST?
DONE ;YES
0.0.2 3 FIRST BLOCK WORD
1.MSKR
1,0 GGET POINT COUNT ONLY
g,PCNT : POINT COUNT
1,1
1,NPA : RESET POINT COUNTER
e.PONI ; GET CO-ORDS OF FIRSI POINT
place
BOXSZ: 320 ; BOX ARRAY SIEE ($20 * 15$ OCTAL)
NRA: 0
NPA: g
PRODEZ: 400 ;PROD LOCATOR SIZE
FREE: 0
PPNTA: 0
PCNT:
C100: 100
MSKR: D日G377

－TITL TEK
3TO PLOT A POINT ON THE TEKTRONIX SCREEN：

JSR E．PLTS
（PUT G HERE FOR BEAY OFF，
1 FOR BEAY ON，
－ 1 FOR POINT PLOT）
INPUT：ACO $=X$ CO－ORDINATE
$A C 1=Y$ CO－ORDINATE
3
TO GET CURSOR CO－ORDINATES AND CHARACTER：
JSR e．CURS
CHAR
X
Y
WHERE：
CHAR＝ADDRESS OF KORD CONTAINING
KEY CHARACTER，
X＝ADDRESS OF KORD WITH X CO－ORD，
$Y \quad=\quad \because \quad n \quad \because \quad n \quad Y \quad$＂
－ENT ．PLTS．．CURS
－ZREL
ODO日日－0日の日17．．PLTS：TPLOT
日日の日1－0日日150＇．CURS：CURSIS

0080．040416
$00031^{-063610}$ $00802^{\prime} 000777$ $00003^{\circ} 065510$ $00004^{\circ} 043400$ $00005^{\circ} 020411$ $00006^{\circ} 901401$ $00007^{\circ} 040407$ 00010．063511 00011＇000777 $00012^{\circ} 023400$ $00013 \cdot 061111$ 00014.020402 00015° 月ल1401 の日の16．ดตの日の日 QED17＇の40525 00020＇044525 $00021^{\prime 0} 1400$ $00022^{\circ} 040524$ $00023^{\circ} 054520$ $00024^{\circ} 101015$ $00025 \cdot$ हल0405 00日26．101113 $00027^{\circ} 006405$ $00330^{\circ} 006511$ $00031^{\circ} 000130^{\circ}$ 00032° बल．6507 00033^{\prime} ต90127＇ 00034＇020511 $00035^{-101112}$ $00036^{\prime} 102460$ $00037^{\prime} 034477$日0ロ4の＇162513

| $00134^{\circ} 000140$ | B143: | 140 | | |
| :---: | :---: | :---: | :---: | :---: |
| $00135^{\circ} \mathrm{0acog}$ | D003: | 083 | | |
| $00136^{\circ} 001414$ | D780: | 1414 | | |
| $00137^{\circ} 901777$ | D1023: | 1777 | | |
| $00146^{\circ} \mathrm{DO} 000^{\circ}$ | CHINP: | CHIN | | |
| $00141^{\prime 209067}{ }^{\circ}$ | ChOUE: | CH:OUT | | |
| $00142.6 n \mathrm{cos}$ | IPTACD: | 0 | | |
| 00143.000000 | TPTADD: | 0 | | |
| $00144^{\circ} 0000000$ | TPTX: | 0 | | |
| $00145^{\circ} 900200$ | TPTY: | 0 | | |
| $00146^{\circ} 000000$ | TPMOD: | 0 | | |
| 00147 900000 | TPTTMP: | 0 | | |
| $00150 \cdot 040772$ | CURSIS: | STA | Q,TPTAC | gisave acb |
| $00151 \cdot 654772$ | | STA | 3,TPTAD | ;save call address |
| $00152^{\circ} \mathrm{C06767}$ | | JSR | echoue | ;SET TO ALPHA |
| $00153^{\circ} 000130^{\circ}$ | | US | | |
| $00154^{\prime} 006765$ | | JSR | echouz | ITURN ON CURSER |
| $00155^{\circ} 000126^{\circ}$ | | ESC | | |
| $00156^{\circ} 006763$ | | JSR | echouz | |
| $00157^{\circ} 000125^{\circ}$ | | SUBGQ | | |
| 00160.006760 | | JSR | ECHINP | SGET CHAR |
| $00161^{\circ} 008144^{\circ}$ | | TPTX | | |
| $00162 \cdot 629753$ | | LDA | 0,D003 | ;GET LOOP COUNTER |
| $00163^{\circ} 840764$ | | STA | Q.tPTTM | |
| $00164^{\circ} 020760$ | | LDA | 0,TPTX | ; GET Char |
| $00165^{\circ} 800421$ | | JMP | CURPS | ; Store char |
| 00166.006752 | CURLP: | JSR | ECHINP | 3GET HI COORD |
| $00167^{\circ} 000144^{\circ}$ | | TPTX | | |
| 00170.006750 | | JSR | ECHINP | 3GET LOW COORD |
| $00171^{\circ} 000145^{\circ}$ | | TPTY | | |
| 00172.034736 | | LDA | 3,8037 | : MASK |
| $00173^{\circ} 020752$ | | LDA | D,TPTY | :LOW COORD |
| $00174{ }^{\prime} 163400$ | | AND | 3.0 | ; yask off garsage |
| $00175^{\circ} 840750$ | | STA | Q,TPTY | ;SAVE FOR LATER |
| $00176^{\circ} 020746$ | | LDA | 0. TPTX | ; H1 COOPD |
| 00177'163400 | | AND | 3,0 | ; MASA OFF |
| $00200 \cdot 101300$ | | MOVS | 0,0 | ; SwAP |
| 00201'191220 | | MOVZR | 0,0 | |
| 00202'101220 | | MOVZR | 0,0 | |
| $00203^{\circ} 101220$ | | MOVZR | 0.0 | |
| $00204^{\circ} 034741$ | | LDA | 3.TPTY | ; LOW COORD |
| 00205'163000 | | ADD | 3,0 | Smbl In low coord |
| 00206.034735 | CURPS: | LDA | 3.TPTADD | ctall ADDRESS |
| $00207^{\circ} 043406$ | | STA | 0.20.3 | ; SJORE VALUE |
| $00210^{\circ} 175480$ | | INC | 3,3 | 3 ADJUST ADDRESS |
| 00211.054732 | | STA | 3,TPTADD | SEAVE UPDATED ADD |
| 00212.014735 | | DS \vec{E} | TPTTMP | ; CHECK FOR DONE |
| $00213^{\circ} 000753$ | | JMP | CURLP | SLOOP IF NOT |
| $00214^{\prime} 020726$ | | LDA | 0. TPTAC | S䂺STORE ACG |
| $00215^{\circ} 001400$ | | JMP | 0.3 | ; Kit TURN |
| | | - END | | |

-TITL FONT
; ROUTINE TO RETURN GLOBAL CO-ORDINATES ; OF POINT NP, BLOCK NB ;INPUT: ACI = FOINT NP

AC2 $=$ POINTER TO START
OF DATA, BLOCK NB.
;OUTPUT:ACO $=\times$ CO-ORDINATE
ACI $=$ Y CO-ORDINATE
AC2 IS PRESERVED.
; ENTRIES:
JSR E.PON: , FOR NORMAL ENTRY
JSR E.PON2, IF PREVIOUS CALL WAS FOR THIS BLOCK (AC2 NOT NEEDED).

00000-000000. 00001-000170'

- PON1:
00000.054544 $00001^{\prime} 021000$ 00002.034545 $00003 \cdot 117480$ $00004^{\circ} 054555$ $00005^{\circ} 040547$ 000061101100 000071040546 $00010^{\circ} 021001$ $00011^{\circ} 040537$ $00012^{\prime} 021003$ $00013 \cdot 940536$ $00014^{\circ} 021011$ $00015^{\circ} 040535$ 00016.021010 $00017^{\circ} 940534$ $00020 \cdot 058523$ $00021^{-0200015}$ 00022'113000 00023.175004 $00024^{\circ} 000536$ 00025'127008 00026.133000 $00027 \cdot 020516$ 00030.025000 $00031^{\prime} 135300$ $00032^{-117400}$ $00033 \cdot 107400$ $00034^{\circ} 030512$ $00035 \cdot 147414$ $00036^{\circ} 106009$ 00037157414 0004日'11600日 $00041^{\circ} 044515$ $00042^{\circ} 030510$ $00043^{\circ} 102440$
$00044^{\prime} 125112$ $00945 \cdot 124440$ $09946 \cdot 073301$ ne047'125112 00050.101400 $00051 \cdot 101002$ $00052^{\prime} 100400$ $00053^{\circ} 024501$ 00054'125102 $00055^{\circ} 100400$ $00056^{\circ} 024472$ 000571.106480 00060.044500 00061.165000 00062'030471 $00063^{\circ} 102.440$ $00064^{\prime} 125112$ $00065^{\prime} 124440$ $00066^{\circ} 073301$ $00067 \cdot 125112$ $00070^{\cdot 101400}$ $00071^{\prime} 101002$ 0007 '1 1004020 $00073 \cdot 024462$ $00074 \cdot 125102$ $00075^{\circ} 190400$ $00076^{\circ} 024462$ 00077107000 00100.044460 $00101 \cdot 165000$ $00102 \cdot 030450$ $00103^{\prime 1} 102440$ 00104'125112 $00105 \cdot 124440$ 001069073301 00107'125112 $00110 \cdot 101400$ 00111'101022 $00112 \cdot 100400$ $06113^{\circ} 024441$ $00114 \cdot 125102$ $00115^{\prime} 100400$ $00116^{\circ} 02.4433$ 00117107000 00120.044437 $00121^{\circ} 024435$ $00122^{\circ} 030431$ 00123^{102440} $00124^{\circ} 125112$ $00125 \cdot 124446$ $00126^{\circ} 073301$ $00127^{\prime} 125112$ 00130.101400 $00131 \cdot 101022$日0132.100480 20133.024422 $00134^{\circ} 1251 \% 2$ $00135^{\prime} 109400$ $00136^{\prime 0} 0.4421$ 00137107000

| MOVL" | 1,1,SEC | ;-VE Yk? |
| :---: | :---: | :---: |
| NEGO | 1.1 | ; YES. ABS (YR). SET CAREY |
| MUL | | ; YF\#SIN IN ACD |
| MOVL | 1,1,SEC | ;ROUNDED ARITHMETIC |
| INC | 0.0 | |
| MOV | $0,0,5 \geqq C$ | ;RESTORE SIGN |
| NEG | 0.0 | |
| LDA | 1,SINF | |
| MOVL | 1,1,SEC | |
| NEG | 0,0 | ;-VE SIN |
| LDA | 1, XC | |
| sub | 0,1 | $3 \mathrm{X}=\mathrm{XC}-\mathrm{YR} * \mathrm{SIN}$ |
| STA | 1, X | |
| MOV | 3,1 | |
| LDA | 2,cos | |
| SUBO | $0 \cdot 0$ | |
| MOVL* | 1.1.SZC | |
| NEGO | 1,1 | SSET CAREY IF ACI< |
| MUL | | $3 \times R * C O S$ IN $A C O$ |
| MOVL* | 1,1,SZC | |
| INC | 0.0 | |
| MOV | 0,0,SZC | |
| NEG | 0.0 | |
| LDA | 1, CosF | |
| MOVL | 1,1,SEC | |
| NEG | 0,0 | ;-VE COS |
| LDA | $1, x$ | |
| ADD | 0.1 | ; $\mathrm{X}=\mathrm{X}+\mathrm{XR} * \cos$ |
| STA | 1, X | 3 GLOBAL X CO-ORD |
| MOV | 3,1 | ; XR |
| LDA | 2,SIN | |
| SUBO | 0,0 | |
| MOVL* | 1,1,SEC | |
| NEGO | 1.1 | |
| MUL | | : XF*SIN |
| MOVLA | 1.1.SEC | |
| INC | 0.0 | |
| MOV | 0.0.SEC | |
| NEG | 0.0 | |
| LDA | 1.5INF | |
| MOVL | 1,1,SZC | |
| NEG | 0.0 | |
| LDA | 1,YC | |
| ADD | 0.1 | : $Y C=Y C+X R * S I N$ |
| STA | 1,Y | |
| LDA | 1,YR | |
| LDA | 2, \cos | |
| SUBO | 0.0 | |
| MOVL ${ }^{\text {F }}$ | 1,1,SEC | |
| NEGO | 1.1 | |
| MUL | | |
| MOVL* | 1.1.SZC | |
| INC | 0.0 | |
| MOV | $0 \cdot 0 . \operatorname{SEC}$ | |
| NEG | 0.0 | |
| LDA | 1, CosF | |
| MOVL | 1,1,SZC | |
| NEG | 0.0 | |
| LDA | 1,Y | |
| ADD | 0,1 | $\boldsymbol{Y} \boldsymbol{Y} \boldsymbol{Y}+\boldsymbol{Y} \boldsymbol{R} * \cos$ |

$00132 \cdot n \Delta C 765$ $00133^{\circ} 191112$ 98134．10840日 98135＇030765 C0136＇1？ 460 $00137 \cdot 142513$ CR140．124901 には141．073101 a $9142 \cdot 101112$ 191430：25404 の日144． 1444751 00145．920745 जी146．И？ 4746 Cか1．97＇102499
 0 0151．101112 20115P＇19040． م615： $1 ? 6403$ م®154＇14P513 （2155．124001 00156．：73101 00157101112 09160125400 96161：044735
$00162^{\circ} 020741$ $00163 \cdot 124741$ 00164.634727 9月165＇152400 19166•849477 0．167＇934725 90170＇166400 の日171＇044475 （1172．004477
$00173^{\circ} 175112$ のल174＇17A4日a の日175＇6？a0175 a日176＇166423 90177＇9日247日

902080．a30716 9520！ロ24455 $0920 \cdots 102440$ $06063^{\circ}: 25112$
 ตロว45． 173301 f10以5＇125112 64．47•101490
 rapli 1004RG
以0？ $13.10510 ?$ f0？14．10n410 ค1：215•1150日 ज1916． 124447

| STA | $0 \cdot \cos F$ | ；Cos Sign flag |
| :---: | :---: | :---: |
| MOVL．$\#$ | $0,0,52 C$ | ；－VE？ |
| NEG | $0 \cdot 8$ | ；YES，GET ABS（XB－XA） |
| LDA | 2．L | ；Leneth of edge |
| SUR | 1，1 | |
| SURL＊ | 2，3，5NC | ；$X D=1$ ？ |
| COM | 1，1，SnP | SET ACl TO 1111．．． |
| DIV | | |
| MOVL | $0.0 .5 E C$ | ；ROUND UP IF NECESSARy |
| INC | 1,1 | |
| STA | 1．cos | |
| LDA | $0 . Y 8$ | |
| LDA | 1，YA | |
| SUB | 1.0 | ；YB－YA |
| STA | O．SINF | SSIN SIfin flac |
| MOVL＊ | $0.0 .5 E C$ | ；－VE？ |
| NEG | 0.0 | |
| SUB | 1－1 | |
| SUBL\＃ | 2，0．SNC | ；$Y \mathrm{D}>=\mathrm{L}$ ？ |
| COM | 1，1，SKP | ；YES |
| DIV | | |
| MOVL\＃ | $0.0 .5 Z C$ | |
| INC | 1，1 | S ROLND UP |
| STA | 1．SIN | |

；
；CET TRANSFORMED CO～ORDS OF X, Y ；COMPUTES：$X T=X G * \operatorname{COS}(A)+Y G * \operatorname{SIN}(A)$ $Y T=Y G * \operatorname{Cos}(A)-X G * S I N(A)$

```
                STA D,COSF ;COS SIGN FLAG
                    NEG O,Q ;YES, GET ABS(XB-XA)
;LENGTH OF EDGE
SURL; 2,3,SNC;XD>=L?
DIV MOVL: D,D,SEC ; ROUND UP IF NECESSAKY
INC 1,1
STA 1.COS
LDA 0.YS
SUB 1.0 ;YB-YA
STA O.SINF SIN SIGNFLAG
OOVL:O,SEC;-VE?
NEG 0.0
SUBL# 2,0.SNC ; YD>=L?
COM 1,1,SKP ;YES
MOVL# 0.0.SZC
INC 1.1 sROUND UP
STA 1.SIN
\begin{tabular}{lll} 
LDA & \(0, X\) & ：GET COORDS OF POINT \\
LDA & \(1, Y\) & UNDER CONSIDERATION \\
LDA & \(3, X A\) & \\
SUR & 3,0 & \\
STA & \(0, X G\) & ；REL．TO EDGE START \\
LDA & \(3, Y A\) & \\
SUB & 3,1 & \\
STA & \(1, Y G\) & \\
JSR & YTGET &
\end{tabular}
MOVL# 3,3,SZC
NEG 3.3 BABS YT
LDA 1..IACC
SUBZ 3,1,SNC : CHECK FOR NORMAL DIST.
JMP ESVPZ INOT NEAR; EXIT!
LDA 2,SIN ;NOW FOR XT
LDA 1,YG
SURO 0.0
MOVL# 1,1,SZC ;SET CARRY IF NEG
NEGO I,1 BAND MAKE ACI +VE
MUL
MOVLA 1,1,SミC
INC B,O :ROUND UP
MOV O,B,SZC ;CARRY?
NEG 0.0 :RESTORE SIGN
LDA 1,SINF
MOVL 1,I,SEC ISIGN OF SIN
NEG 0.O
MOV O.3 JSHUNT INTO AC3
LDA 1.XG
```

;
;

$00234^{\prime} 024666$ $00235^{\circ} 0200175$ $00236^{\circ} 106499$ 00237.166433 $00240^{\circ} 002427$ 00241•116433 $00242^{\circ} 002425$
$00243^{\circ} 036425$ $00244^{\circ} 020647$ $00245^{\circ} 024644$ $00246^{\circ} 123220$ $00247^{\circ} 043400$ 00250.020644 $00251^{\circ} 024641$ $00252^{\circ} 123220$ $00253^{\circ} 043401$ $09254^{\circ} 024645$ $00255^{\prime \prime} 152520$ $00256^{\prime 1} 146400$ 00257'030623 $00260^{\circ} 020640$ $00261^{\prime} 005493$ $00262^{\circ} 002405$ $00263^{\circ} 656405$ $00264^{\circ} 902403$ 00265° 000000 $00266^{\circ} 009000$ $00267^{\circ} 090000$ $00270^{\circ} 000024^{\circ}$

3WE HAVE A HIT!

LDA 3.EHIT3R
LDA O.XA
LDA $1, X B$
ADDZR $\quad 1,0$
STA $\theta, \theta \theta, 3$ STORE X MID-POINT
LDA \quad O,YA
LDA $1, Y B$
ADDER 1.0
STA O,EI,3 SSTORE Y MID-POINT
LDA 1,NP
SUBZL 2,2
SUB 2.1
LDA 2.ACZ
LDA $\quad 0, N B$
JSR 3,3 HHITEXIT
JMP ESVP3 :CARRY ON SCAN
STA 3.eHIT3R 3NEW RETUR゙N ADDRESS
JMP ESVP3 ; CARRY ON
$03305^{\circ} 165423$ $00396^{\circ} 115009$ 00307'9?4756 $00310^{\circ} \cdot 33696$ 00311^{103442} $00312 \cdot 125112$月0313'12444才 $00314^{\circ} 073311$ $00315 \cdot 125112$ $00316^{\circ} 101400$ $00317^{\circ} 1$ 11ด22 $00320^{\prime} 100400$ 00321'024604 00322•125102 $00323^{\circ} 152403$ $00324^{\circ} 116400$ $00325^{\circ} 902401$ $00326^{\circ} 002000$

| | | | C-50 | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | NEG | $0 \cdot 0$ | | | |
| | MOV | e, 3 | : PARTIAL SUM In AC3 | | |
| | LDA | $1, X G$ | | | |
| | LDA | 2,SIN | | | |
| | SUBO | $0 \cdot 0$ | | | |
| | MOVL" | 1,1,SEC | | | |
| | NEGO | 1,1 | | | |
| | MUL | | | | |
| | MOVLA | 1,1,SEC | | | |
| | INC | 9.3 | | | |
| | MOV | $0.8,5 \geq 5$ | | | |
| | NEG | 0.0 | | | |
| | LDA | 1.SINF | | | |
| | MOVL | 1,1,SEC | | | |
| | NEG | 0.0 | | | |
| | SUB | 0,3 | ; SUBTRACT FROM | PREVIOUS | RESULT |
| | JMP | EYTSAV | | | |
| YTSAV: | 0 | | | | |
| | - END | | | | |

$00137^{\circ} 054430$
$00140^{\circ} 152400$ $00141^{\prime} 000417$ $00142^{\prime} 054425$ $00143^{\prime} 034430$ $00144^{\circ} 000415$ $00145^{\circ} 054422$ $00146^{\circ} 034423$ $00147^{\prime} 054510$ 00150 '044501 00151.050417 $01152^{\circ} 004423$ $00153^{10224476}$ $00154^{\circ} 122400$ $00155^{\circ} 030413$ $00156^{\circ} 151113$ $00157^{\circ} 150000$ $00160^{\circ} 034473$ $09161^{\circ} 054470$ $00162^{\circ} 034410$ $00163^{\circ} 054474$ $00164^{\circ} 004411$ $00165 \cdot 969274$ $00166^{\circ} 002401$ 00167.000000 $00170^{\circ} 000000$ $00171^{\circ} 021090$ $00172 \cdot 000750$ $00173^{\circ} 132512$ $00174^{\circ} 000000$ $00175^{\circ} 054777$ $00176^{\circ} 075474$ 001771175112 $00200^{\circ} 000446$ 00201 151113 $00202^{\circ} 900410$ $00203^{\circ} 150000$ $00204^{\circ} 176400$ $00205 \cdot 162000$ $00206^{\circ} 060374$ $00207^{\circ} 004467$ $00210^{\circ} 101401$ $00211^{\circ} 200776$ $00212^{\circ} 060174$ 06213* 064463 $00214^{\circ} 000777$ $00215^{\circ} 175224$ $09216^{\circ} 009766$ $0021^{\circ} 125005$ $09220^{\circ} 902754$ $00221 \cdot 166000$ $00222^{\circ} 040474$ 00223° の44474 00224'024476

| 3 INPUT: | ACD | =FIRST BLOCK |
| :---: | :---: | :---: |
| 3 | ACl | = NUMEER OF BLOCKS |
| 3 | AC2 | =FIRST CORE ADDRESS |
| 3 | | |
| 3 OUTPUT | : ACl | = ERROR CODE |
| 3 | | |
| CLINC: | STA | 3, SAC 3 |
| | SU3 | 2,2 |
| | JMP | CHKZ |
| RLINC: | STA | 3, SAC 3 |
| | LDA | 3.D2R |
| | JMP | READZ |
| WLINC: | STA | 3, SAC 3 |
| | LDA | 3,D1W |
| | STA | 3.01XX |
| | STA | 1. D2XX |
| | STA | 2,SAC2 |
| | JSR | DO |
| RAW: | LDA | 1. D2XX |
| | SUB | 1,0 |
| | LDA | 2.SAC2 |
| | MOVL* | 2.2.SNC |
| | COM | 2,2 |
| CHKZ: | LDA | 3,D2C |
| READZ: | STA | 3.D2XX |
| | LDA | 3.DIRC |
| | STA | 3.DIXX |
| | JSR | DO |
| EXIT: | NIOC | LINC |
| | JMP | eSAC3 |
| SAC3: | 0 | |
| SAC2: | 0 | |
| D!W: | LDA | $0,0,2$ |
| DIRC: | JMP | READ-D $1 \times X, 1$ |
| D2R: | SUBL\# | 1,2,SEC |
| RETU: | 0 | |
| DO: | STA | 3,RETU |
| | DIB | 3.LINC |
| | MOVL" | 3,3, SZC |
| | JMP | E4 |
| | MOVL" | 2,2,SNC |
| | JMP | FINDF |
| | COM | 2,2 |
| FINDR: | SUB | 3,3 |
| | ADC | 3,0 |
| | N1 OP | LINC |
| | JSR | GETBL |
| FINDN: | INC | 0,0,5KP |
| | JMP | - -2 |
| FINDF: | NIOS | LINC |
| | JSR | GET日L |
| | JMP | - - 1 |
| | MOVZR | 3,3,SZR |
| | JMP | FINDR |
| FOUND: | MOV | 1,1,SNR |
| | JMP | eRETU |
| | ADC | 3,1 |
| | STA | 0 OTEMPI |
| | STA | 1.TEMP2 |
| | LDA | 1,SIZE |

| 90225．147090 | | ADD | 2．1 | c－62 |
| :---: | :---: | :---: | :---: | :---: |
| c02．26．000431 | | JMP | DIXX | |
| 80227＇063674 | READ： | SKPON | LINC | |
| のにつ30．00ハ777 | | JMP | －－ 1 | |
| $00231 \cdot 063474$ | | SKPEN | L．INC | |
| 00232．090416 | | JMP | FDAT | |
| $00233^{\circ} 068474$ | P．CHK： | DIA | O，LINC | |
| 00234＊115405 | | SUB | $0,3,5 N R$ | |
| $00235^{\circ} 0 \mathrm{Oc} 434$ | | JMP | SCHK | |
| $00236 \cdot 024465$ | E1： | LDA | 1，C1 | |
| －1237．003493 | | JMP | －+3 | |
| $063240 \cdot 034462$ | E2： | LDA | 3．SIZE | |
| $00241 \cdot 024463$ | | LDA | 1．C2 | |
| $00242 \cdot \mathrm{O29454}$ | | LDA | O－TEMPI | |
| $00243^{\circ} 000722$ | | JMP | EXIT | |
| $00244^{\circ} 02.4461$ | E3： | LDA | 1．C4 | |
| $00245^{\prime} 023720$ | | JMP | EXIT | |
| $00246^{\prime 0} 024460$ | E4： | LDA | 1， C 8 | |
| $00247^{\prime 0} 00716$ | | JMP | EXIT | |
| 00250.060474 | RDAT： | DIA | $0 \cdot L I N C$ | |
| 00251．132512 | D2XX： | SUBL＊ | 1，2，SZC | |
| $00252^{\circ} 041000$ | | STA | $0,0,2$ | |
| $00253^{\circ} 000402$ | D2C： | JMP | －＋2 | |
| $00254^{\circ} 061074$ | VIDAT： | DOA | $0 \cdot L I N C$ | |
| $00255^{\circ} 117000$ | BLOOP： | ADD | 0,3 | |
| 002500151400 | | INC | 2，2 | |
| $00257^{\prime 021000}$ | DIXX： | LDA | 0，0，2 | |
| 00260.963074 | | DOC | $0 . L I N C$ | |
| 00261．063674 | | SKPDN | LINC | |
| $00262^{\circ} 1000777$ | | JMP | －－ 1 | |
| $08263^{\circ} 063474$ | | SKPBN | LINC | |
| $00264^{\circ} 000770$ | | JMP | WDAT | |
| 20265 ${ }^{\circ} 075074$ | WCHK： | DOA | 3．LINC | |
| $00266^{\circ} 075474$ | | DIB | 3，LINC | |
| 00267．175094 | | MOV | 3，3，SZR | |
| $00270^{\circ} 000756$ | | JMP | E4 | |
| $00271 \cdot 132414$ | SCHK： | SUB\＃ | 1，2，SZR | |
| $00272^{\circ} 800746$ | | JMP | E2 | |
| $00273^{\circ} 020423$ | NEXT： | LDA | $0 . T E M P 1$ | |
| $00274^{\circ} \mathrm{62} 4423$ | | LDA | 1．TEMP2 | |
| $00275^{\prime} 000713$ | | JMP | FINDN | |
| $00276^{\circ} 054420$ | GETBL： | STA | 3－TEMP1 | |
| 002771034421 | | LDA | 3，MLIM | |
| $00300 \cdot 162432$ | | SUBZ＂ | 3，0，SZC | |
| $003011^{\circ} 000485$ | | JMP | WAIT | |
| $00302^{\circ} 034417$ | | LDA | 3．PLIM | |
| $00303^{\circ} 162032$ | | ADCZ ${ }^{\text {\％}}$ | 3．0．SEC | |
| $00304^{\circ} 009740$ | | JMP | E3 | |
| $00305^{\circ} 074474$ | | DIA | 3，LINC | |
| $00306^{\circ} 063474$ | WAIT： | SKPEN | LINC | |
| $00367^{\circ} 000777$ | | JMP | WAIT | |
| $00310 \cdot 063774$ | | SKPDE | LINC | |
| $00311^{\circ} \mathrm{n} 00774$ | | JMP | WAIT－I | |
| $00312^{\circ} 074474$ | | DIA | 3，LINC | |
| $00313^{\circ} 116543$ | | SUBOL | 0，3，SNC | |
| 00314.910402 | | ISZ | TEMP！ | |
| 08315.002401 | | JMP | －TEMP1 | |
| $00316^{\circ} 000000$ | TEMP1： | 0 | | |
| $00317^{\circ} 000000$ | TEMP2： | 0 | | |
| 00320＇177770 | MLIM： | 177770 | | |

| 00321'002620 | PLIV: | 620 |
| :---: | :---: | :---: |
| $00322^{\circ} \mathrm{Ocman} 4{ }^{\circ}$ | SİE: | 400 |
| $00323^{\circ} 090301$ | C1: | i |
| $00324^{\circ} 009062$ | C2: | 2 |
| 00325° 00月004 | C4: | 4 |
| $00326^{\circ 009310}$ | C8: | 10 |

-TITL UTIL
, SEVERAL UTILITY PROGRAMS
-ENT .HITC, .IACC,.PRNI,.PAGE, -LENG, .SCAL -ENT . VFAC..IPRN,.PRN2,.MESS,.ALPH,.TYP -ENT .AXIS,.GETT,.DBIN..CHEK...WORD..DBO -EXTD .MI..DISS,.LPAP,.MSKR..PLTS

00000-000005
$00001-000000^{\circ}$ 00002-000052. 00003-000279. 00004-000164. 00005-000331 00006-000655 00007-000062' 00010-000067. 00011-000101. 00012-000126. 00013-000151. $00014-000421^{\circ}$ $00015-000560^{\circ}$ 00016-000572. $00017-000570^{\circ}$ 00020-020640. 00021-000003

IACC:
.HITC:
HITC
-PRN2:
-IPRN: TART
-MESS: MESS
.HORD: WORD
-ALPH: ALPHA
-PAGE: PAGE
-LENG: LENG
.TYP: TYPE
-SCAL: SCAL
.AXIS: AXIS
-GETT: GET
-DBIN: DBIN
-DBO: DBE

- CHEK: CHEK
. VFAC: 3
3
- NREL

3
; ROUTINE TO FIND WHICH BLOCK HAS CENTROID 3 CORRESPONDING TO GIVEN X,Y CO-ORDINATE

JSR O.HITC
X (ADDRESS OF INPUT X)
Y (ADDRESS OF INPUT Y)
(RETURN HERE IF NO HIT)
(RETURN HERE WITH POINTER TO BLOCK
IN AC2 If SUCCESSFUL, AND NB IN ACI)
00000.023401
$00001^{\circ} 049445$
09092.023401
60803.040444
$00004^{\circ} 954444$
$0000=1102400$
$00006^{\circ} 040443$
$00007^{-6349015}$ 03010.031470 $00011 \cdot 151805$ 03012.808432 $00013^{201921014}$ 00014.101005 $00015^{\circ} 080424$ $00016^{\circ} 021001$ $00017 \cdot 024427$ $00020 \cdot 122409$ $08021^{1161112}$ $00022^{1109400}$ 00023.024909gon? A. $^{2} 10651$? $00025 \cdot 000414$ $00026^{\circ} 0$?10103


```
3
;VECTOR SCALING FOLTINE
g0151.83ag21- SCAL: LDA 2,.VFAC
;
AC
;ROUTINE TO PRINT A RIGHT-JUSTIFIED INTEGER
; IN A GIVEN FIELD LENTH, LITH LEADING EEEROS
;OR WITHOUT
; JSR e.IPRN
            (-) N (VALUE, NOT ADDRESS)
                    WHERE N IS FIELD LENGTH (ZEROS PRINTED
                    IF NEGATIVE.
                    THE NUMBER TO BE PRINTED IS IN ACE
3
TART:
LDA 2,0,3
            MOVL# 0,0,SZC
            NEG 0.0
            INC 3.3
            STA 3.SAV3
            MOVL# 2,2,SEC
            NEG 2.2.SKP
            SUB 1.1,SKP
            SUBZL 1,1
            STA 1,FLAG SSTORE ZERO/BLANK FLAG
            STA 1,FLAG SSTORE ZERO/BLANK FLAG
            STA 2,FIELD ;FIELD LENGTH
            LDA 3,TENS
            STA 3.POINT
            LDA 3.HOLD
            STA 3.PPNT
            LDA 3.JOLD
            STA 3.MM
            SUB 2,2
BIG: LDA 3,QPOINT
            ISZ POINT
            MOV 3,3,SNR
            JMP END
            SUB 1.1
SMALL:
            SUBE 3,0,SEC
            INC 1.1.SKP
            ADD 3.0,SKP
            JMP SMALL
            STA 1.EPPNT
            MOV# 1.1,SNR
            JMP FRED
            LDA 3.JNEW
            STA 3.MM
            INC 2,2
                                    2,2 SOUNT NON-ZERO DIGITS
                                    PPNT
                                    BIG
```

ค0152'1日? afに
$00153^{\circ} 044410$
$00154^{\circ} 125112$
c®155:124406
c日156.073101
00157° のЗ34.4
$00160^{\circ 151112}$
(0)161'1?.444.4
$00162^{\circ} 001400$
$00163^{\prime} 090000$
00164.931400
$00165^{\circ 101112}$
$00166 \cdot 100400$
$09167^{\circ} 175400$
$00170^{\circ} 054524$
00171.151112
$00172^{\circ 150401}$
$00173^{\circ} 126401$
$00174^{\circ} 126520$
$00175^{\circ} 044520$
$00176^{\circ} 050520$
$0017^{\circ} 034475$
$00200^{\circ} 054517$
$00201 \cdot 034502$
$00202^{\circ} 054516$
$00203^{\circ} 034507$
$00204^{\circ} 054414$
$00205^{\circ} 152400$
$00206^{\circ} 036511$
$00207^{\circ} 010510$
00210.175005
$00211^{\circ} 000416$
$00212 \cdot 126400$
$00213 \cdot 162422$
$00214^{\prime} 125481$
日⿰习习15.163001
$00216^{\circ} 000775$
00217.046501
$00220 \cdot 125015$
$00221 \cdot 000404$
00222.034471
$00223^{\circ} 054775$
$00224^{\circ} 151400$
$00225^{\circ} 910473$
$00226^{\circ} 900760$

| $00227^{-034467}$ | END: | LDA | 3.FIELD | |
| :---: | :---: | :---: | :---: | :---: |
| $00230 \cdot 151005$ | | MOV | 2.2.SNR | |
| $00231^{\prime} 151400$ | | INC | 2.2 | |
| 00232'050467 | | STA | 2,SAV2 | |
| 00233'156423 | | Subz | 2.3.SNC | |
| $00234^{\prime} 009427$ | | JMP | ASTER | 3FIELD TOO SMALL |
| $00235^{\prime 170405}$ | | NEG | 3,2,SNR | |
| 00236.000410 | | JMP | DIGIT | ; NO ZEROS |
| $00237^{\prime 0} 024456$ | | LDA | 1.FLAG | |
| $06240 \cdot 020463$ | | LDA | Q, zero | |
| 96241.125985 | | MOV | 1,1,SNR | |
| $00242 \cdot 220462$ | | LDA | O.blank | |
| 00243*006093- | | JSR | e.PRN2 | SEND OUT LEADING |
| 00244'151404 | | INC | 2,2,SER | ; ZEROS OR BLANKS |
| $00245^{\circ} 000776$ | | JMP | - -2 | |
| 00246.030443 | DIGIT: | LDA | 2,B0T | |
| $00247^{\prime 0} 024452$ | | LDA | 1.SAV2 | |
| $00250 \cdot 132400$ | | SUB | 1,2 | |
| 00251'124405 | | NEG | 1,1,SNR | |
| 00252'002442 | | JMP | eSAV3 | ;NOTHING TO PRINT |
| 00253.021000 | LOOP 1: | LDA | 0,0,2 | |
| $06254^{\circ} 634447$ | | LDA | 3,ZERO | |
| 00255'163000 | | ADD | 3,0 | |
| 00256'006003- | | JSR | e.PRN2 | ; SEND OUT DIGIT |
| 00257'151400 | | INC | 2,2 | |
| 00260'125404 | | INC | 1,1,SZR | |
| 00261'000772 | | JMP | LOOP1 | |
| $00262 \cdot 002432$ | | JMP | eSAV3 | 3 EXIT |
| 00263'020437 | ASTER: | LDA | O,AST | :SEND OUT ASTERISKS |
| 00264'006003- | NIT: | JSR | e.PRN2 | |
| $00265^{\circ} 014431$ | | DSE | FIELD | |
| $00266^{\circ 880776}$ | | JMP | N1T | |
| 00267'002425 | | JMP | eSAV3 | |

3
; ROUTINE TO PRINT OUT SINGLE CHARACTER
3 JSR E.PRN2
3INPUT: CHARACTER IN ACO
3
$00270 \cdot 063511$ $00271^{\prime} 000777$ $00272 \cdot 061111$ $00273^{\prime 0} 001400$

| SKPBZ | TTO |
| :--- | :--- |
| JMP | $0-1$ |
| DOAS | 0, TTO |
| JMP | 0,3 |

000012
$00274^{\circ} 000275^{\circ}$ 00275'023420 $00276^{\circ} 001750$ $00277^{\prime 0} 00144$ $00300^{\circ} 000012$ $00301^{\circ} 000001$ $00302 \cdot 000000$ $00303^{\circ} 000304^{\circ}$ 000005 000010 $00311^{\circ} 00031^{\circ}$ $00312 \cdot 125015$ $00313^{\circ} 000484$ $00314^{\circ} 0200000$ 00315° ดลวดอด $0036^{\circ} 000000$

END:
LDA
3.FIELD

MOV 2.2.SNR
2.2

SUBZ 3.2,SNR

JMP DIGIT
1,FLAG
LDA Bo
1,1,SNR
LDA O.BLANK
INC
JMP

DA
SUB
NEG
1,1,SNR
$0,0,2$
3.ZERO

3,0
2.2

SZR

ESAV3 EXIT
D,AST ;SEND OUT ASTERISKS
RN

NIT
eSAV3

| $00450 \cdot 151220$ | | MOVER | $2 \cdot 2$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $00451 \cdot 151220$ | | MOVER | 2.2 | | | $C-71$ |
| $00452 \cdot 151 ? 20$ | | MOVER | 2,2 | | | |
| $00453 \cdot 650465$ | | STA | 2.11 | | | |
| 00454＊147000 | | ADD | 2，1 | | | |
| $02455^{\circ} \mathrm{CO} 4474$ | | JSP | PLOT | | | |
| 0045 0 ＇月00600 | | 0 | PLOT | | | |
| ค1457．929457 | | L．DA | $0 \cdot \mathrm{XN}$ | | | |
| 00460＇02．4457 | | LDA | $1, Y \mathrm{~N}$ | | | |
| 09461＇004470 | | JSR | PLOT | | | |
| $08462 \cdot 103001$ | | 1 | PLOT | | | |
| 00463^{\prime} ค20453 | | LDA | $0, X N$ | | | |
| $00454^{\circ} 024453$ | | LDA | $1 . Y \mathrm{~N}$ | | | |
| $00465 \cdot 033450$ | | LDA | 2，1 | | | |
| 00466＇143070 | | ADD | 2．0 | | | |
| 00467 ＇00446？ | | $J S R$ | PLOT | | | |
| $00470^{\circ} 000901$ | | 1 | | | | |
| $00471 \cdot 020445$ | | LDA | $0 . X N$ | | | |
| 00472.024445 | | LDA | $1, Y \mathrm{~N}$ | | | |
| $00473^{\circ} 0330442$ | | LDA | 2，1 | | | |
| $00474^{\prime} 143000$ | | ADD | $2 \cdot 0$ | | | |
| $00475^{\circ} 030443$ | | LDA | 2．L1 | | | |
| $00476 \cdot 147000$ | | ADD | 2，1 | | | |
| $00477^{\circ} 004452$ | | $J S R$ | PLOT | | | |
| $00500^{\circ} 080001$ | | 1 | | | | |
| $00501 \cdot 102400$ | | SUE | 0.0 | | | |
| 30502．024433 | | LDA | 1.1 | | | |
| $08503 \cdot 030448$ | | LDA | 2，NINE | | | |
| $00504^{\circ} 050440$ | | STA | 2，TCNT | | | |
| $00505^{\circ} 151400$ | | INC | 2，2 | | | |
| $00506^{\circ} 073101$ | | DIV | | | | |
| $00507^{\prime} 044436$ | | STA | 1，DIVIS | | | |
| $00510^{\circ} 020430$ | | L．DA | $0, L 1$ | | | |
| $00511 \cdot 101220$ | | MOVER | 0,0 | | | |
| $00512 \cdot 924425$ | | LDA | 1，YN | | | |
| $00513 \cdot 107000$ | REPL： | ADD | 0.1 | 3THIS WORD CAN | E | HANGED |
| $00514^{\circ} 944425$ | | STA | 1，YNI | JHIS WORD CAN | | U |
| 00515.024422 | TEA： | LDA | 1，YN | 3TO PLOT TICKS | ON | AXIS |
| $00516^{\circ} 020420$ | | LDA | $0, \mathrm{XN}$ | 3 PLOT IICKS | ON | AXIS |
| $00517^{\circ} 030426$ | | LDA | 2，DIVIS | | | |
| 00520.143000 | | ADD | 2，0 | | | |
| 00521＇040415 | | STA | $0 . \mathrm{XN}$ | | | |
| 0052.2004427 | | JSR | PLOT | | | |
| $00523^{\circ} 008090$ | | 0 | | | | |
| $06524^{\circ} 020412$ | | LDA | 0． XN | | | |
| $00525^{\circ} 02.4414$ | | LDA | 1，YNI | | | |
| $00526^{\circ} 004423$ | | JSR | PLOT | | | |
| $00527^{\circ} 000001$ | | 1 | | | | |
| 90530．914414 | | DSZ | TCNT | | | |
| 00531.000764 | | JMP | TEA | | | |
| $00532.906007-$ | | JSR | e．ALPH | | | |
| $00533^{\circ} 034407$ | | LDA | 3．TTSAV | | | |
| $00534^{\circ} 901403$ | | JMP | 3.3 | | | |
| 00535° ค00000 | L： | 0 | | | | |
| ロ0536＇ロロ日0ロロ | XN： | 0 | | | | |
| $06537^{\circ} 000980$ | YN： | 0 | | | | |
| $005400^{\circ} 000090$ | LI： | 0 | | | | |
| $00541^{\circ} 000000$ | YNI： | 0 | | | | |
| $00542^{\circ} 0000000$ | TTSAV： | 0 | | | | |
| $00543^{\circ} \mathrm{go0011}$ N | NINE： | 11 | | | | |

1
IDECIMAL TO BINARY ROUTINE (ALMOST !IDENTICAL TO DATA GENERAL'S)

JSR @.DBIN
;
:ENTRY WITH FIRST
STA 1,ECIB ;CHARACTER IN ACO

IDA
SUB 0.1.SNR
EC96
SUB $\quad 9.1, S Z R$
JMP EC98
ISZ ECIO
JSR E.PRN2
e.gett
E.PRN2

JMP EC95
LDA 1.ECII
JSR ECSO
JMP EC97
LDA 1.ECI
MOVEL 1,1
DSZ ECIO

NEGOR 1.1

```
00624'002407
00625:131120
00626'151120
03627.147000
006.30'125120
00631.107000
03632'001470
00633*000090
00634'000000
00635'000020
00636.000053
00637.000055
00640'024412
00641'123400
00642.024412
00643.122032
00644*001400
00645'024406
00646'106032
00647.001400
00650.122400
00651'001401
00652.000177
00653'000860
80654.000071
```


| | 3 | | | |
| :---: | :---: | :---: | :---: | :---: |
| 00050．9340025 | | LDA | 3．－M1 | 3GET IST BLOCK POINTER |
| $00051 \cdot 054464$ | | STA | 3．BLK | |
| 00052.0240315 | | LDA | 1，NUM | 3GET NO．OF BLOCKS |
| $00053^{\circ} 044463$ | | STA | 1，CNT | |
| 08854．931460 | OVR2： | LDA | 2，0，3 | |
| $90055^{\circ} \mathrm{O} 53462$ | | STA | 2．TEMP | 3 SAVE FOR LATER |
| $00056^{\circ} 021014$ | | LDA | 0．14，2 | ；GET AREA |
| $00057^{\prime} 181905$ | | MOV | 0， 0 ，SNR | SSKIP ERASED BLOCK |
| $00060 \cdot 002425$ | | JMP | TRAP | |
| $00061^{\circ} 024457$ | | LDA | 1，WHER | |
| $00062^{\prime 1} 125064$ | | MOV | 1－1，SER | If NOT O DIVIDE |
| $00063^{\circ} 000412$ | | JMP | DIVD | |
| 00064＇111000 | MULT： | MOV | 0.2 | |
| 00065＇1．22400 | | SUB | 0.0 | |
| 08066＇024453 | | LDA | 1，CNST | |
| $00067^{\circ} \mathrm{C73301}$ | | MUL | | |
| $00070^{\prime} 030447$ | | LDA | 2，TEMP | |
| $00071^{\prime \prime} 045014$ | | STA | 1，14，2 | 3STORE NEW＂AREA＂ |
| 00072．125132 | | MOVZL＂ | 1－1，SEC | ；TEST FOR＞ 77777 |
| $00073^{\prime} 000426$ | | JMP FA | | |
| 00074＇000411 | | JMP | IRAP | |
| $00075 \cdot 105900$ | DIVD： | MOV | $0 \cdot 1$ | ；AREA IN ACI |
| $00076 \cdot 102400$ | | SUB | B， 0 | \％CLEAR HI PART |
| $00077^{\circ} 030442$ | | LDA | 2，CNST | |
| $00100^{\prime} 132432$ | | SUBZ\＃ | 1，2，SEC | 3 DIV TEST |
| $00101^{\circ} 000420$ | | JMP | FAIL | |
| 00102.073101 | | DIV | | |
| $00103^{\circ} 030434$ | | LDA | 2．TEMP | |
| $00104{ }^{\circ} 045014$ | | STA | 1，14，2 | |
| $00105^{\circ} 010430$ | TRAP： | IS ${ }^{\text {E }}$ | BLK | |
| $00106^{\circ} 034427$ | | LDA | 3，BLK | |
| $00107^{\circ} 014427$ | | DSZ | CNT | |
| 00110.000744 | | JMP | OVR2 | ：DO NEXT BLOCK |
| $00111^{\prime} 020416$ | | LDA | B，ZER | |
| 00112.024416 | | LDA | 1．ONE | |
| 00113.030416 | | LDA | 2，TWO | |
| $00114^{\prime} 0060055$ | | JSR | 2．MESS | |
| $00115^{\circ} \mathrm{ga0252}$ | | MS09 | | |
| 90116.177160 | | －400． | | |
| 00117.000372 | | 250. | | |
| $00120^{\circ} 002422$ | | JMP | ECON | |
| $08121^{\prime} 0060055$ | FAIL： | JSR | e．MESS | |
| $00122^{\circ} 000143^{\circ}$ | | MS08 | | |
| 00123 177470 | | －200． | | |
| $00124^{\circ} 900310$ | | 200. | | |
| $00125^{\circ} 002415$ | | JMP | CCON | |
| | RTRN： | 0 | | |
| | ZER： | 0 | | |
| $00130^{\circ} 000000$ | ONE： | 0 | | |
| 09131.090800 | TWO： | 0 | | |
| $00132^{\circ} 000000$ | DIG： | 0 | | |
| $06133^{\circ} \mathrm{A00115}$ | MM： | ${ }^{\prime \prime} \mathrm{M}$ | | |
| $06134^{\circ} 000104$ | DD： | ＂D | | |
| | BLK： | 0 | | |
| $00136^{\circ} 000000$ | CNT： | 6 | | |
| 0日137＇ 0 ¢0006 | TEMP： | 0 | | |
| 0日140＇0の日の刀ด | WHER： | 0 | | |
| $00141^{\circ} \mathrm{O} 0 \mathrm{nogo}$ | CNST： | 0 | | |
| 001～2＇177777 | CON： | CONTR | | |

| 00143.949506 | 3 MS08: | . TXT | *FA |
| :---: | :---: | :---: | :---: |
| $00144^{\circ} 046111$ | IL | | |
| 001451042105 | ED | | |
| 00146.051454 | , S | | |
| $00147 \cdot 040524$ | TA | | |
| 00150.052122 | RT | | |
| $00151^{\circ} 040440$ | A | | |
| 08152.020124 | T | | |
| 00153.026520 | P- | | |
| $00154^{\circ} 000061$ | 1* | | |
| 00155946102 | MSE2: | -TXT | *BL |
| 00156.041517 | OC | | |
| $00157^{\circ} 020113$ | K | | |
| 02160.042527 | WE | | |
| $00161 \cdot 043511$ | 16 | | |
| 00162.052110 | HT | | |
| $00163^{\circ} 946440$ | M | | |
| $00164^{\circ} 042117$ | OD | | |
| 00165.043111 | $1 F$ | | |
| $00166^{\circ} 841511$ | 1 C | | |
| $00167^{\circ} 052101$ | AT | | |
| 00170.047511 | 10 | | |
| $00171^{\circ} 000116$ | N* | | |
| 00172.047504 | MS04: | -TXT | *DO |
| 08173.054448 | Y | | |
| $00174^{\circ} 052517$ | OU | | |
| $00175^{\circ} 053440$ | W | | |
| 00176.051511 | 15 | | |
| $00177^{\circ} 020110$ | H | | |
| $00200^{\circ} 047524$ | T0 | | |
| 00201.046440 | M | | |
| 00202.046125 | UL | | |
| $00203^{\circ} 044524$ | TI | | |
| 00204'046120 | PL | | |
| 00205'020131 | Y | | |
| 00206'046450 | (M | | |
| $00207^{\prime 2} 020051$ |) | | |
| 00210.051117 | OR | | |
| $00211^{\circ} 042949$ | D | | |
| $00212^{\circ} 853111$ | IV | | |
| 00213642111 | 10 | | |
| $00214^{\prime} 020105$ | E | | |
| $00215^{\circ} 842850$ | (D | | |
| $08216^{\circ} 020051$ | , | | |
| $00217^{\prime 044124}$ | IH | | |
| 00220.020105 | E | | |
| 00221'042527 | WE | | |
| 00222.043511 | IG | | |
| 08223.052110 | HT | | |
| 09224*020123 | 5 | | |
| 00225'020077 | ? | | |
| $00226^{\circ} 009800$ | * | | |
| 00227.052515 | MS05: | .TXT | *MU |
| 00230.052123 | ST | | |
| $00231^{\circ} 841040$ | B | | |
| 00232.020105 | E | | |
| 00233'020115 | 1 | | |
| $00234^{\prime 051117}$ | OR | | |
| 00235'042040 | D | | |

| 20236.910048 | * | | | C-78 |
| :---: | :---: | :---: | :---: | :---: |
| $00237^{\prime 2} \mathrm{C44127}$ | MS96: | . TX. ${ }^{\text {I }}$ | *WH | |
| 00240.052101 | AT | | | |
| 00241.044440 | I | | | |
| $00242^{\prime 2} 0123$ | S | | | |
| 00243.944124 | TH | | | |
| $00244^{\circ} 020105$ | E | | | |
| $00245^{\prime} 040506$ | FA | | | |
| 00246.052103 | CT | | | |
| 00247.051117 | OR | | | |
| $00250 \cdot 937440$ | ? | | | |
| 00251.03004e | * | | | |
| $00252^{\circ} 047503$ | MS09: | - TXT | * CO | |
| $00253^{\circ} 050115$ | MP | | | |
| $00254^{\circ} 042514$ | LE | | | |
| $00255^{\circ} 042524$ | TE | | | |
| 00256.026104 | D, | | | |
| $00257^{\circ} 053440$ | W | | | |
| $00260 \cdot 044501$ | AI | | | |
| $00261^{\circ} 044524$ | TI | | | |
| 00262.043516 | NG | | | |
| $00263^{\prime} 040040$ | e | | | |
| $00264^{\prime 2} 041440$ | C | | | |
| 00265'047117 | ON | | | |
| $00266^{\circ} 051124$ | TR | | | |
| $00267^{\prime 000009}$ | * | | | |

-TITL FORD
3FORCE-DISPLACEMENT LAW FOR ALL 3 CONTACT POINTS
-EXTD .M1,.MS,.NUM,.EMPT,.MSKR
.EXTD .VEC,.SCAL,.PLTS,.SPRP,.PRES
-EXTD .MESS,.GETT,.IPRN
-EXTD .ROT, .UREP, TPEC
-EXID .NVEC,.PAGE,.ALPH..HEAVY

- EXTN CONTR
-ENT -FORD,.TIME,MU
- ZREL
$00000-000000$
$00001-090033^{\circ}$ 00002-000001 00003-000001 00004-000000 00005-000000 00006-000000 00007-000000 00010-000020 $00011-000000$ $00012-000000$ $00013-000000$ $00014-000000$ $00015-000000$ 00016-000000 00017-000000 00020-000000 $00021-000000$ 00022-000000 00023-000000 00024-000672.

MU: G00000 -FORD: FORD
-KDN: 1
-KDS: 1

XCP: $\quad 0$
YCP: \quad O
DELS: $\quad \square$
DELN: \emptyset
FN: $\quad \square$
FDSAV: $\quad 0$
LOCPR: 0
LOCBL: 0
LOCBP: 0
OLINK: 0
COUNT: θ
PRLNK: θ
COS: 0
SIN: 0
COSF: 0
SINF: \quad
-TIME: DYNFAC

- NREL
$00000^{\circ} 102440$ $00001 \cdot 058420$ $00002 \cdot 027470$ $00003^{\circ} 033401$ $00004^{\circ} 125112$ $00005 \cdot 124460$ $09006^{\circ} 151112$ $00007^{\circ} 150460$ $00010^{\circ} 073301$ $00011^{\circ} 030005 \$$ $00012 \cdot 143700$ $00613^{\circ} 125300$ 00014.147400 $00015^{\circ} 107002$ $00016: 124400$ $00017^{\circ} 030402$ $00020^{\circ} 001402$ $00021^{\circ} 000000$
MULS:
;FRICTION COEF. (DEFAULT VALUE = •日)
3 NORMAL DAMPING FACTOR
; SHEAR DAMPING FACTOR

MULS
SUBO 0,0
STA 2.SV2
LDA e1.0.3 3A
LnA e2,1,3 sB
MOVL\# 1,1,SZC
NEGC 1.1
MOVL 2,2,SZC
NEGC 2.2
MUL
LDA 2..MSKR
ANDS 2,8 STAKEMIDDLE 8 BITS
MOVS 1,1
AND 2,1
ADD D,1.SZC
NEG 1,1
LDA 2, SV2
JMP $2,3 \quad 3 A * B$ IN ACI
$09022^{\circ} 008000$ $00023^{\prime} 000000$ $00024^{\circ} 000000$ $00025^{\circ} 000000$ $00926^{\circ} 000000$ $00027^{\circ} 000000$ $00030^{\circ} 000000$ $00031^{\circ} 000000$

| $00123^{\circ} 024004-$ | | LDA | $1, X C P$ | |
| :---: | :---: | :---: | :---: | :---: |
| $00124^{\circ} 106400$ | | SUB | 0,1 | |
| $00125^{\circ} 044677$ | | STA | 1, XDP | |
| $00126^{\circ} 021003$ | | LDA | 0.3 .2 | 3 YG, OTHER BLOCK |
| $00127^{\circ} 024005-$ | | LDA | 1. YCP | |
| $00130^{\circ} 106400$ | | SUB | 0,1 | |
| 00131.044674 | | STA | 1.YDP | |
| 00132.021022 | | LDA | 0,22,2 | |
| 00133'040673 | | STA | 0 0, DAP | JDELTA-ALPHA |
| $00134^{\circ} 204644$ | | JSR | MULS | |
| $00135^{\circ} 000026^{\circ}$ | | DAP | | |
| $00136^{\circ} 000025^{\prime}$ | | YDP | | |
| $00137^{\circ} 821820$ | | LDA | $0,20,2$ | 3 DELTA-X, NB(P) |
| $00140 \cdot 122480$ | | SUB | 1,0 | |
| $00141^{\circ} 024667$ | | LDA | 1. DXL | |
| $00142 \cdot 122400$ | | SUB | 1.0 | ; DXP-DXL |
| $08143^{\circ} 048576$ | | STA | $0 \cdot$ DELX | |
| $00144^{\circ} 004634$ | | JSR | MULS | |
| $00145^{\circ} 900026^{\prime}$ | | DAP | | |
| $00146^{\circ} 000024^{\circ}$ | | XDP | | |
| $00147^{\circ} 021021$ | | LDA | $0,21,2$ | ; DYP |
| $00150^{\circ} 123000$ | | ADD | 1,0 | |
| 00151.024660 | | LDA | 1,DYL | |
| $00150^{\circ} 122400$ | | SUB | 1.0 | SDYP-DYL |
| $00153^{\circ} 040561$ | | STA | O, DELY | |
| $00154^{\circ} 004562$ | | JSR | TRANS | 3 TRANSFORMATION ROUTINE |
| $00155^{\circ} 030817-$ | | LDA | 2, PRLNK | |
| $00156^{\circ} 021005$ | | LDA | 0,5,2 | ;OLD N (NORM. DISP.) |
| $00157^{\circ} 163000$ | | ADD | 3,0 | |
| 00160.041005 | | STA | 0,5,2 | 3NEW N |
| $00161 \cdot 165000$ | | MOV | 3,1 | |
| 00162.030553 | | LDA | 2,KN | ; NORMAL STIFFNESS |
| $00163^{\prime} 102400$ | | SUB | $0 \cdot 8$ | |
| $00164^{\circ} 125112$ | | MOVLA | 1,1,SZC | |
| $09165^{\circ} 124400$ | | NEG | 1,1 | |
| $00166^{\circ} 073301$ | | MUL | | |
| $00167^{\circ 175113}$ | | MOVL ${ }^{\text {A }}$ | 3,3,5NC | |
| $00170^{\circ} 124400$ | | NEG | 1,1 | 3INVERT ORIG. SIGN |
| $00171.030017-$ | | LDA | 2,PRLNK | ; FOR + VE FN |
| $00172^{\prime} 021006$ | | LDA | 0,6,2 | \% OLD NORMAL FORCE, FN |
| $00173^{\circ} 125112$ | | MOVLA | 1,1,SZC | |
| $00174^{\circ} 000405$ | | JMP | OK | |
| $00175^{\prime 1} 107090$ | | ADD | 0.1 | |
| $00176^{\circ} 125112$ | | MOVL\# | 1,1,SEC | |
| $00177^{\circ} 006506$ | | JSR | ELM1 | |
| 00200'000404 | | JMP | STOR | |
| 00201.107000 | OK: | ADD | 0,1 | 3 ADD IN INCREMENT |
| 00202.125112 | | MOVL\# | 1.1.SZC | $3 \vec{r} E R O$ ADHESION ASSUMED |
| 00203 080529 | | JMP | DELET | ; SET FORCES TO EERO |
| 00204'045006 | STOR: | STA | 1,6,2 | ; NEW NORMAL FORCE |
| $00205^{\circ} 044010-$ | | STA | $1, \mathrm{FN}$ | |
| $00206^{\circ} 165000$ | | MOV | 3,1 | |
| 00207.930002- | | LDA | 2,*KDN | 3DAMPING FACTOR |
| 00210.102400 | | SUB | 0.0 | |
| $00211^{\circ} 125112$ | | MOVL | 1.1.SZC | |
| $00212 \cdot 124400$ | | NEG | 1,1 | |
| $09213^{\circ} 073301$ | | MUL | | |
| 60214'175113 | | MOVL * | 3,3,SNC | |
| 00215*124490 | | NEG | 1.1 | |
| 0日2 16.026910- | | LDA | θ OFN | |

| | | | | C-83 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $00307^{\prime} 000503^{\prime}$ | VDISP: | VDIS | | | | |
| | ;NEXT BLOCK | | | - | | |
| *0310.016012- | NEXTA: | ISZ | LOCPR | ; INCR. PROD L | LOCATOR | |
| 00311.934212- | | LDA | 3,LOCPR | | | |
| $003129054015-$ | | STA | 3, OLINK | | | |
| $00313^{\circ} \mathrm{a} 10813-$ | | ISE | LOCBL | 3 INCR. DATA L | LOCATOR | |
| $00314^{\circ} 0114816-$ | | DSE | count | ; EXIT IF ALL | BLOCKS | |
| $00315 \cdot 092414$ | | JMP | ELOOPR | 3 SCANNED | | |
| 00316.0362125 | | LDA | 2..PRES | | | |
| 00317 151112 | | MOVL\# | 2,2,SEC | | | |
| 0032.0.8.al1- | | JMP | efosav | ; NO PRESS. SE | EGMENTS | |
| 00321'002401 | | JMP | EFRS | ; GET FORCES F | FROM PR. | SECS. |
| の¢322 ${ }^{\circ} \mathrm{C} 06637^{\circ}$ | PRS: | PRESU | | | | |
| 60323'102400 | DELET: | SUR | 0,0 | | | |
| 00324'041006 | | STA | 0.6.2 | | | |
| 00325'041007 | | STA | 0,7,2 | | | |
| 00326'000750 | | JMP | CHAIN | | | |
| 00327'000553' | SHR: | SHEAR | | | | |
| $00330^{\circ} 090044^{\circ}$ | ENTR: | ENTRY | | | | |
| 00331'000n43' | LOOPR: | LOOP | | | | |
| | SAVE: | 0 | | | | |
| 00333 00000000 | DELX: | 0 | | | | |
| $00334^{\circ} 000000$ | DELY: | 0 | | | | |
| $00335^{\circ} 0090003$ | KN: | 3 | | | | |
| $00336^{\circ} 054774$ | TRANS: | STA | 3. SAVE | | | |
| $0 \times 337^{\prime \prime} 024774$ | | LDA | 1. DELX | | | |
| 60340'030020- | | LDA | 2, \cos | | | |
| $00341 \cdot 102440$ | | SUBO | 0,0 | 3 CLEAR CARRY | | |
| 00342.125112 | | MOVL ${ }^{\text {a }}$ | 1,1,SEC | | | |
| $00343^{\prime \prime} 124440$ | | NEGO | 1.1 | ; SET CARRY | | |
| $00344^{\circ} 073301$ | | MUL | | ; DELX*COS | | |
| $00345 \cdot 125112$ | | MOVL" | 1,1,SZC | ; ROUND UP IF | NEC. | |
| $00346^{\prime 1} 101408$ | | INC | 0,0 | | | |
| 00347'101002 | | MOV | $0,0,5 \mathrm{C}$ | | | |
| 00350.100400 | | NEG | $0 \cdot 0$ | 3 RESTORE SIGN | | |
| 00351.02.022- | | LDA | 1, CosF | | | |
| 00352.125102 | | MOVL | 1,1,SŻC | | | |
| $00353^{\circ} 100400$ | | NEG | 0.0 | | | |
| 00354*115000 | | MOV | 0,3 | 3 PARTIAL SUM | IN AC3 | |
| $00355^{\circ} 024757$ | | LDA | 1. DELY | | | |
| 00356.039021- | | LDA | 2.SIN | | | |
| 00357.102440 | | SUBO | 0,0 | | | |
| 00360.125112 | | MOVLA | 1,1,SZC | | | |
| $04361 \cdot 124448$ | | NEGO | 1,1 | | | |
| $00362^{\circ} 073321$ | | MUL | | 3DELY*SIN | | |
| $00363^{\circ} 125112$ | | MOVL. | 1,1,SZC | 3 ROUND UP IF | NEC. | |
| $00364^{\circ} 101400$ | | INC | 0.0 | | | |
| $00365^{\circ} 101002$ | | MOV | 0,0,SZC | | | |
| $00366^{\circ} 100480$ | | NEG | В, \square | | | |
| 00367'024023- | | LDA | 1,SINF | | | |
| $00370 \cdot 125102$ | | MOVL | 1,1,SZC | | | |
| $00371 \cdot 108480$ | | NEG | 0.0 | | | |
| $00372^{\circ} 117800$ | | ADD | 0.3 | - DELX*COS + DELY | Y*SIN | |
| $00373^{\circ} \mathrm{C} 54006-$ | | STA | 3.DELS | | | |
| A0374* 42.4740 | | LDA | 1.DELY | | | |
| $00375^{\circ} 033020-$ | | LDA | 2, \cos | | | |
| $00376 \cdot 102449$ | | SUBO | 0,0 | | | |
| $00377^{\circ} 125112$ | | MOVL | 1,1,SEC | | | |
| 80498.124449 | | NEGO | 1,1 | | | |
| 80401.073301 | | MUL | | 3DELY*COS | | |

| |
| :---: |
| 2 |
| 0405'100402 |
| 06 |
| 0407.125182 |
| $00410 \cdot 100400$ |
| 00411'115000 |
| $06412^{\circ} 0247$ |
| 00413.030021 |
| -102 |
| 08415'1251 |
| 00416.124440 |
| $00417^{\circ} 073301$ |
| $00420^{\circ} 1251$ |
| 00421'101400 |
| 00422'101002 |
| $00423 \cdot 1004$ |
| $08424^{\circ} 9240$ |
| $00425^{\prime} 125102$ |
| 0042.6'100400 |
| 00427'116400 |
| 438.054807 |
| $0431 \cdot 002781$ |

$00432 \cdot 054444$ $00433^{\circ} 027400$ $00434^{\circ} 033402$ 90435'176406 00436.125112 $00437 \cdot 157000$ 00440'151112 $00441^{\prime} 137000$ $00442 \cdot 102400$ 00443'073301 $00444^{\circ} 162400$ $08445^{\circ} 840432$ $00446^{\circ} 044432$ $00447^{\circ} 934427$ $00458^{\circ} 027401$ $00451^{\circ} 033403$ $00452 \cdot 176400$ $00453^{\prime} 125112$ $00454^{\prime} 157000$ $00455^{\prime 1} 151112$ $00456 \cdot 137000$ 00457'102400 $00460^{\circ} 073301$ 00461'162400 $00462 \cdot 030415$ $00463^{\circ} 034415$ 00464'167022 $00465 \cdot 151400$ $00466^{\circ} 143900$ $00467^{\circ} 0300055$ 0047 月' 143700 $00471 \cdot 125300$ 00472'147400

```
    MOVL# 1,1,S\vec{EC} &ROUND UP IF NEC.
    INC O,O
    MOV B,O,SZC
    NEG B,O
    LDA 1,COSF
    MOVL 1.1.SEC
    NEG O,O
    MOV 0,3 BPARTIAL SUM IN AC3
    LDA 1.DELX
    LDA 2.SIN
    SUBO 0,0
    MOVL 1,1,SZC
    NEGO 1,1
    MUL IDELX*SIN
    MOVL# 1,1,SECC ; ROUND UP IF NEC.
    INC B,D
    MOV 0,0,SZC
    NEG 0,0
    LDA 1.SINF
    MOVL 1,1.SZC
    NEG 0,0
    SUB O.3 SDELY*COS-DELX*SIN
    STA 3.DELN
    JMP ESAVE
    3COMPUTES A*XDIF+8*YDIF, AND TRUNCATES
    3TO MIDDLE 16 BITS OF 32 BIT NUMBER
; OUTPUT: ACI
MOM: STA 3,TEMP
    LDA E1,0,3 &A
    LDA e2,2,3 3XDIF
    SUB 3.3
    MOVL# 1.1.SZC
    ADD 2.3
    MOVL# 2,2,SZC
    ADD 1.3
    SUB 0.0
    MUL 
    STA O,HI BA#XDIF IN ACD:ACI
    STA 1.LO
    LDA 3,TEMP
    LDA e1:1,3 ;B
    LDA E2,3,3 3YDIF
    SUB 3.3
    MOVL# 1,1,SZC
    ADD 2.3
    MOVL# 2.2,SEC
    ADD 1,3
    SUB 0,0
    MUL
    SUB 3,0 ;B*YDIF IN ACO:ACI
    LDA 2,HI
    LDA . 3.LO
    ADDZ 3.1,SZC 3ADD 2 D.P. NUMBERS
    INC 2.2
    ADD 2.0 3D.P.ANSWER IN ACG:ACI
    LDA 2,.MSKR %NOW TAKE ONLY MIDDLE
    ANDS 2,0
    MOVS 1,1
    AND 2.1
```

－－－
00473．107000 00474．934482 $00475^{\prime} 001424$ 00476.000200 00477＇000000 00500． 0 000000 00501＇0000のロ $00582^{-000000}$ $00503 \cdot 054446$ 00504° ต29204－ 00505＇024005－ $00506 \cdot 0060105$ $00507^{\circ} 000208$ 00510．024006－ $00511^{\circ} 044770$ 00512．0060075 $00513 \cdot 020004-$ $00514^{\prime} 123900$ $00515 \cdot 040435$ 00516．024007－ $0051^{\circ} 044763$ 00520＇0060875 00521．020095－ 00522＇122400 00523．105000 $00524^{\circ} 020426$ $00525^{\circ} 0050105$ $00526^{\circ} 000001$ $00527^{\circ} 0060235$ 08539.0300215 00531＇151005 $00532 \cdot 002417$ $00533^{-020746}$ $00534^{\circ} 0260155$ $00535^{\circ} 000005$ $00536^{\circ} 020744$ $00537^{\circ} 0060155$ $00540 \cdot 000005$ $00541^{\circ} 0300215$ 00542．151224 $00543^{\circ} 004402$ $00544^{\circ} 002435$ $00545^{\prime} 063610$ $00546^{\circ} 000777$ $00547^{\circ} 068210$ $00550 \cdot 001400$ $09551^{\circ} 000000$ 00552.000000

| 00561.020210- | Sl.IP: | LDA | $1, F N$ | |
| :---: | :---: | :---: | :---: | :---: |
| $00562 \cdot 102400$ | | SU3 | $0 \cdot 0$ | |
| 00563.073301 | | MUL | | IFN*MU IN ACO |
| $00564^{\circ} \mathrm{F} 40443$ | | STA | 0,FSMAX | max poss shear force |
| 00565.030444 | | LDA | 2,KS | ; Shear stiffness |
| 00566.024096- | | LDA | 1-DELS | ; INCR. Shear disp. |
| $00567 \cdot 102440$ | | SUBO | 0,0 | bclear carry |
| 00570.12511? | | MOVL ${ }^{\text {\% }}$ | 1.1.SEC | |
| 06571'12.4440 | | NEGO | 1.1 | ; Set carry if del.s -Ve |
| $08572 \cdot 073301$ | | MUL | | ; DELS*KS ($=$ DELTA(FSJ) |
| 00573'125002 | | MOV | 1.1.SEC | |
| $02574 \cdot 124490$ | | NEG | 1.1 | ; RETURN SIGN |
| 00575.939433 | | LDA | 2.SUS2 | |
| $00576^{\circ} 021907$ | | LDA | 0.7,2 | 3FS(OLD) |
| $00577 \cdot 107000$ | | ADD | 0.1 | 3 RAly FS |
| 00600'044426 | | STA | 1,FS | |
| | 3 | | | |
| | 3 THE | FOLLOWING | LINE WAS IN ERROfi In PAC'S | |
| $00601^{\prime 0} 045007$ | - THE | STA | 1,7,2 | ; 7/30/76 EKROR FOUND |
| | | | | |
| 00602'121102 | | MOVL | 1,0,SZC | |
| $00603 \cdot 124400$ | | NEG | 1,1 | |
| $00604^{\circ} 020423$ | | LDA | g,FSMAX | |
| 00605'122513 | | SUBL\# | 1,0,SNC | 3 EXCEEDED MAX? |
| 00606'000495 | | JMP | DAMP | ;NO. ADD IN DAMPING |
| 00607'125002 | | MOV | 1,1,SZC | ; SIGN? |
| 006101100400 | | NEG | 0.0 | |
| $00611^{\prime 041007}$ | | STA | 0,7.2 | 3NEW FS IN ACD |
| $00612 \cdot 001400$ | | JMP | 0,3 | ; EXIT |
| 00613'024006- | DAMP: | LDA | 1. DELS | |
| 00614.030003- | | LDA | 2,.KDS | SDAMPING FACTOR |
| 006151192440 | | SUBO | 0.0 | |
| 006161125112 | | MOVL\# | 1.1.SEC | |
| 00617'124440 | | NEGO | 1,1 | |
| 09620.073301 | | MUL | | |
| 00621'125002 | | MOV | 1,1,SZC | |
| 80622'124408 | | NE.G | 1,1 | |
| $00623^{\circ} \mathrm{O} 2 \mathrm{4} 403$ | | LDA | 0.55 | |
| 0062.4.123000 | | ADD | 1,0 | : ADD IN DAMPING FORCE |
| $00625^{-001400}$ | | JMP | 0.3 | BEXIT SOUTPUT: ACO) |
| $00626^{\circ} 0000000$ | FS: | 0 | | |
| 80627.000008 | FSMAX: | 0 | | |
| $00630^{\circ} \mathrm{0} 00000$ | SVS2: | 0 | | |
| P0631.000003 | KS: | 3 | ; SHEAR S | Stiffness |
| 80632.917400 | FRMSK: | 17400 | :MASK FOR | OR TYPE " PART OF CONT. hORD |
| 60633.0300115 | GETFR: | LDA | 2..SPRP | |
| $00634^{\circ} 133000$ | | ADD | 1,2 | |
| 00635.031000 | | LDA | 2.0.2 | 3 GET APPROPRIATE FRICTION |
| $00636 \cdot 000723$ | | JMP | SLIP | |
| | 3 | | | |
| | :TO ADD IN PRESSURE FORCES FROM LINKED | | | |
| | BLIST OF PRESSURE SEGMENTS. | | | |
| | ; | | | |
| $08637 \cdot 021000$ | PRESU: | L.DA | 0.0 .2 | |
| 00649.0240655 | | LDA | 1..MSKR | |
| $00641 \cdot 123400$ | | AND | 1.0 | 3 NB |
| $00642 \cdot 0349015$ | | LDA | 3..MI | |
| 00643.117800 | | ADD | 0.3 | |
| 00644.035400 | | LDA | 3.0.3 | : BLOCK POINTER |

$00645^{\circ} 021093$ $00646^{\prime} 025417$ $00647^{\circ} 107000$ $00650 \cdot 045417$
$00651^{-021004}$ 0065 2.02.5407 $00653^{\prime} 107008$ $00654^{\circ} 645407$
$00655 \cdot 021005$ $00656^{\prime} 025416$ $00657 \cdot 107020$ 00660.045416
00661.031002 $00662 \cdot 151115$ $00663^{\circ} 000754$ 00664'002011-
;----
LDA
LDA ADD STA

LDA
LDA ADD
STA
LDA
ADD $\quad 0.1$
STA
LDA 2,2,2 :LINK
MOVL 2,2.SNR
JMP PRESU JMP eFDSAV sEND OF CHAIN.
3----------.-.
3 ROUTINE TO CHANGE TREC, ETC.
3 DTREC:
DKDN: 1
DKDS: 12
DROT: 140
DUREP: 23
;
DYNFAC: JSR
JSR
e. ALPH

JSR e.MESS
DMSE
-200.
720.

JSR e.mess
DMSI
-75.
670.

JSR
DMS2
125.
640.

LDA D..TREC BTME STEP
JSR
4
JSR e.MESS
DMS3
125.
600.

LDA O..KDN BNORMAL DAMPING FAC
JSR
4
JSR
DMS4
125.
560.
LDA 0,.KDS 3 SHEAR DAMPING FAC

| $00732^{\circ} 001260^{\circ}$ | | DM5 5 | | | C-88 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00733.000175 | | 125. | | | |
| $00734^{\circ} 901010$ | | 528. | | | |
| 20735.9236165 | | LDA | 8.-ROT | ;ROT. TIME FAC | |
| $00736^{\circ} 9363155$ | | JSR | e.IPRN | | |
| 00737'000005 | | 5 | | | |
| $03749^{\circ} 9069135$ | | JSR | e.MESS | | |
| $00741^{\prime} 091264^{\circ}$ | | DMS6 | | | |
| $00742 \cdot 003175$ | | 125. | | | |
| $00743 \cdot 000740$ | | 480. | | | |
| $00744 \cdot 0200175$ | | LDA | 8., UREP | 3UPDATE COUNTER | |
| 98745.0068155 | | JSR | e. IPRN | | |
| $00746^{\circ} 000204$ | | 4 | | | |
| | 3 | | | | |
| $09747 \cdot 0060135$ | | JSR | e.MESS | | |
| $03750^{\circ} 001270^{\circ}$ | | DMS 7 | | | |
| 00751.177470 | | -200. | | | |
| $00752 \cdot 098536$ | | 350. | | | |
| 00753.0060135 | | JSR | O.MESS | | |
| $00754^{\circ} 001306^{\circ}$ | | DMS8 | | | |
| $00755^{\circ} 000454$ | | 308. | | | |
| 28756.090454 | | 300. | | | |
| 007570069135 | | JSR | e.MESS | | |
| 00760'921325 | | DMS9 | | | |
| 60761'608454 | | 300. | | | |
| 00762'000484 | | 260. | | | |
| $00763^{\prime 0} 060135$ | | JSR | Q.MESS | | |
| 00764.901367* | | DM10 | | | |
| $00765^{\circ} 000454$ | | 300. | | | |
| 08766.036334 | | 220. | | | |
| $00767 \cdot 0060135$ | | JSR | e.MESS | | |
| 00770.901344* | | DMS 10 | | | |
| 00771.000454 | | 300. | | | |
| 00772.000264 | | 180. | | | |
| | 3 | | | | |
| | 3 GET | CONTROL | KEY | | |
| 00773.0968145 | 3 | JSR | e.GETT | | |
| $08774^{\circ} 824414$ | | LDA | 1.WCHR | 3IS IT A ${ }^{\text {N }}$ | |
| 00775'106415 | | SUB* | O.1.SNR | | |
| 00776.006024S | | JSR | e.heavy | 3 YES | |
| $08777^{\circ} 824407$ | | LDA | 1.ICHR | BIS IT AN I? | |
| 01000'106415 | | SUB" | 0,1,SNR | | |
| 01001.000410 | | JMP | UP | 3YES | |
| 01002.924405 | | LDA | 1,DCHR | ; IS IT A D ? | |
| 010031106415 | | Sus* | O,1,SNR | | |
| $01964{ }^{\circ} \mathrm{COD434}$ | | JMP | DWN | 3 YES | |
| $01005 \cdot 002535$ | | JMP | eCON | : NONE-GO TO CONTR | |
| $010066^{\circ 001111}$ | ICHR: | $\cdots 1$ | | | |
| 01007600104 | DCHR: | "D | | | |
| 01910000127 | WCHR: | " ${ }^{6}$ | | | |
| 010119020862- | UP: | LDA | A,. KDN | | |
| 010121934654 | | LDA | 1.DKDN | | |
| 01013'10643? | | SUBZ\# | A, 1, SZC | ;1FKDN=DKDN ALREADY | AT MAX |
| 01014.anas? | | JMP | MAX | | |
| 01015'122400 | | SUB | 1.8 | | |
| 01月16.040802- | | STA | 0.0 KDN | | |
| 01017'arnazos | | LDA | B., TREC | | |
| E182, 0 94645 | | LDA | 1. DTREC | | |
| $01021 \cdot 12 ? 430$ | | SUB | 1.0 | | |

| $01022 \cdot 0400205$ | | STA | 0., TPEC |
| :---: | :---: | :---: | :---: |
| $01023 \cdot 920803-$ | | LDA | 0..KDS |
| $01024^{\circ} 024643$ | | LDA | 1.0KDS |
| 01025.122400 | | SUB | 1,0 |
| 01026'040日33- | | STA | $0, \ldots \mathrm{KDS}$ |
| 01027.9200165 | | LDA | 0, -ROT |
| 01030.024640 | | LDA | 1,DROT |
| $01031 \cdot 122400$ | | SUB | 1.0 |
| 01032.0400165 | | STA | 0,.ROT |
| $01033^{\circ} 0200175$ | | LDA | 0., UREP |
| 01034.024535 | | LDA | 1, DUREP |
| $01035 \cdot 122406$ | | SUB | 1,0 |
| $01036^{\circ} 2400175$ | | STA | 0. UREP |
| $01037 \cdot 000426$ | | JMP | OUTPT |
| 1 3 ${ }^{\text {a }}$, ${ }^{\circ}$ | | | |
| $01040^{\circ} 0200205$ | DhN: | LDA | D..TREC |
| $01041^{\circ} 024624$ | | LDA | 1.DTREC |
| $01042^{\circ} 107000$ | | ADD | 0.1 |
| $01043^{\circ} 0440205$ | | STA | 1..TREC |
| 01044*029022- | | LDA | Q,.KDN |
| $01045 \cdot 024621$ | | LDA | 1.DKDN |
| 01046^{107000} | | ADD | 0.1 |
| $01047^{\circ} 044002-$ | | STA | 1,.KDN |
| $01050^{\circ} 020003-$ | | LDA | D.OKDS |
| $01051^{\prime} 024616$ | | LDA | 1. DKDS |
| 01652107000 | | ADD | 0.1 |
| $01053 ' 044003-$ | | STA | 1..KDS |
| $01054^{\prime} 0200165$ | | LDA | O.,ROT |
| 01055.024613 | | LDA | 1, DROT |
| 01056'107000 | | ADD | 0.1 |
| $01057^{\prime 0} 0440165$ | | STA | 1,.ROT |
| $01060^{\circ} 0200175$ | | LDA | O,.UREP |
| 01061'024610 | | LDA | 1, DUREP |
| 01062.107日00 | | ADD | 0.1 |
| $01063^{\circ} 9440175$ | | STA | 1,.UREP |
| 01064.900481 | | JMP | OUTPT |
| (0) 3 | | | |
| 01065'0060135 | OUTPT: | JSR | e.MESS |
| $01066^{\circ} 001361^{\circ}$ | | DMS 11 | |
| $01067{ }^{\circ} 176701$ | | -575. | |
| 01070.001236 | | 670. | |
| $01071^{\circ} 0060135$ | | JSR | Q.MESS |
| $01072^{\circ} 001244^{\circ}$ | | DMS2 | |
| $01073^{\circ} 001161$ | | 625. | |
| $01074^{\circ} 001208$ | | 640. | |
| $01075^{\circ} \mathrm{A20020s}$ | | LDA | 0..TREC |
| $01076^{\circ} 0660155$ | | JSR | e.IPRN |
| 91077.000004 | | 4 | |
| 011080068135 | | JSR | e.MESS |
| $011911^{\circ} 0125{ }^{\circ}$ | | DMS 3 | |
| $01102^{\circ} 001161$ | | 625. | |
| $01103 \cdot 081130$ | | 690. | |
| $01104^{\circ} 020002-$ | | LDA | G,.KDN |
| $01105^{\circ} 0460155$ | | JSR | e.IPRN |
| $01106^{\circ} 000004$ | | 4 | |
| $01107^{\circ} 0060135$ | | JSR | e.MESS |
| $01110^{\circ} 001254^{\circ}$ | | DMS 4 | |
| $01111^{\circ} 901161$ | | 625. | |
| $01112 \cdot 901060$ | | 560. | |
| $01113.020003-$ | | LDA | $0 . . \mathrm{KDS}$ |

| 01114.0069155 | | JSR | e.IPRN | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $01115 \cdot 000004$ | | 4 | e.MESS | | |
| 01116.9060135 | | JSR | | | |
| | | DMS5 | | | |
| 9112e.601161 | | 625. | | | |
| 01121.021010 | | 520. | | | |
| $81122 \cdot 0200165$ | | LDA | B, PPOT | | |
| 01123 -006 015 | | JSR | Q.IPRN | | |
| $01124^{\circ} 000005$ | | 5 | | | |
| $01125^{\prime} 0060135$ | | .JSR | e.MESS | | |
| $01126^{\circ 001264}{ }^{\circ}$ | | DiMS 6 | e.MESS | | |
| $01127 \cdot 001161$ | | 625. | | | |
| $01130^{\circ} 000748$ | | 480. | | | |
| 011319200175 | | LDA | 0..UREP | | |
| 01132.0058155 | | JSR | O.IPRN | | |
| $01133^{-60 a 084}$ | | 4 | | | |
| 011341002406 | | JMP | ECON | | |
| ; | | | | | |
| 3 | | | | | |
| 81135.0060135 | max : | JSR | e.MESS | | |
| $01136^{\circ} 081172^{\circ}$ | | ERR | | | |
| 01137177470 | | -200. | | | |
| $01140 \cdot 000226$ | | 150. | | | |
| 01141.002401 | | JMP | QCON 3 GO BACK TO | CONTR | |
| 01142177777 | CON: | CONTR | | contr | |
| 01143.854411 | LIM1: | STA | 3.RETN | | |
| $01144^{\circ} 004412$ | | JSR | WARN | | |
| $01145^{\circ} 024410$ | | LDA | 1,LIMIT | | |
| $01146 \cdot 034007$ - | | LDA | 3,DELN | | |
| 01147.002405 | | JMP | QRETN | | |
| 01150.054494 LIMQ: | | STA | 3,RETN | | |
| $01151^{\prime} 004405$ | | JSR | WARN | | |
| $01152 \cdot 020403$ | | LDA | 0,Limit | | |
| $01153^{\circ} 892401$ | | JMP | QRETN | | |
| | 3 | | | | |
| 01154.000008 | RETN: | 0 | | | |
| 01155077777 | LIMIT: | 77777 | SMAX NORMAL FORCE | | |
| 01156.054413 | WARN: | STA | 3.RETR | | |
| 01157.0060135 | | JSR | Q.MESS | | |
| $01160{ }^{\circ} 001404^{\prime}$ | | MWi | | | |
| $01161^{\prime} 001522$ | | 850. | | | |
| 01162.001332 | | 730. | | | |
| 01163.0060135 | | JSR | e.mess | | |
| $01164^{\circ} 001412^{\circ}$ | | M HL | | | |
| $01165^{\circ} 001522$ | | 850. | | | |
| $01166^{\circ} 081313$ | | 715. | | | |
| 01167634402 | | LDA | 3,RETR | | |
| $01170 \cdot 001400$ | | JMP | Q.3 | | |
| 01171 000900 | RETR: | \bigcirc | | | |
| $01172 \cdot 047523$ | ERR: | . TXT | * So | | |
| 01173.851122 | RR | | | | |
| $01174^{\circ} 026131 \mathrm{Y}$ | Y, | | | | |
| 01175'046181 A | AL | | | | |
| 01176.042522 | RE | | | | |
| 011779042101 A | AD | | | | |
| 01200'020131 Y | Y | | | | |
| 01201.052101 | AT | | | | |

```
        01202.046440
        01203'054101
        01204'64651
        1?05'645525
    01206.053046
    01207.0146101
    01210.042525
    01211.003123
    01212.927055
    01213'027056
    01214'027056
    01215.020056
    01216'054504
    01217.040516
    01220.044515
    01221.020103
    01222.0405?@
    01223.0.40522
    01224*&42515
    01225.042524
    01226'051522
    01227.027056
    01230.027056
    01231.027056
    01232.027056
    01233.080000
    01234.051120
    01235.051535
    012.36.047195
    01237.020124
    01240'040526 VA
01241.052514 LU
01242.051585
01243.090000
01244.052056
01245.042522
01246'020103
01247.000075
01250.045456
01251.047104
01252.036440
01253'000000
01254.045456
01255.951594
01256.036440
01257.000000
01260.051056
01261'052117
01262.036440
01263'000000
01264.052456
01265'042522
01266'020120
01267.008075
01270.047506
01271.051125
01272.047440 0
01273.05?120 PT
01274'047511 10
01275.051516 NS
```

```
01276.040440 A
01277.043526 VA
01300.046111 1L
01301.041101
01302.042514 LE
01303.026440 -
01304.026455
01365'039240
01306.054524
01387.042520
01310.044440 I
01311.052040 T
01312.g20117 0
01313.047111 IN
Q1314.051103 CR
01315.040505 EA
01316.042523 SE
01316.042523 SE
01320.046511 IM
01320.046511 IM
01322.052123 ST
01323'05E105
01324'000000
01325.054524
01326'042520
01327'042040 
0132.'042040 
01331.020117 0
01332.042504 DE
01333.051103 CR
01334.040505 EA
01335.042523 SE
01336.052.040 T
01337.046511 IM
01340.020105 E
01341.052123 ST
01342.050105
01343'000000
01344'047101
81345.020131 Y
01346.052117 OT
01347.042510 HE
01350.020122 R
01351.042513 KE
01352.020131 Y
01353.020055
01354.047516 NO
01355'041440 C
01356.040518 HA
01357'043516
01360.00010:
01361'042516
01362.020127 W
01363.040526 VA
01364.052514 1.U
01365'051505
01366'00ด0ค0
01367'0545?4
01370.042520
01371'053440
    DM58: .TXT *TY
PE
I
01311.052040 T
    O
01314.051103 CR
01320.046511 IM
        ST
EP
DMS9: .TXT *TY
    PE
D
O
EP
        *
DMS10: .TXT *AN
Y
        HE
R
    C
    NG
    5*
    DMSII: .TXT FNE
    W
    ES
    *
    DMIO: .TXT *TY
    PE
    W
--
    T
O
```

```CR
```

```I
E
\[
T
\]
EAT
```

```
-
```

```
01372.052040 T
01373.028117 0
01374.047515 MO
01375.044504 DI
01376.054506 FY
01377.053440 W
01400.044505 EI
01401.044107 GH
01402.051524 TS
01403.000000 *
01404.020040 MW1:
01405.0475?4 TO
01406.920117 0
01407.042510 HE
01413.053101 AV
01411'000131 Y*
01412.025040 MW2
01413.025052 **
01414*025052 **
01415.025052 **
01416.025052 **
01417.025052
01420.000000
```


$09037^{\circ} 151409$ ena49．asa412 Eのn41＇035432 00042＇g09765

INC 2．2 GET ACTUAL LINK ADDRESS
STA 2，OLINK ；KEAEMAER FEVESSE LINK
LDA $3,2,3$ ：CET NEXT EITTEY
JMP FHONE
；TO DELETE AN ENTFY，AND PUT IT IN THE
；＂EMPTY＂LIST．
OELET：
LDA
STA 3，EEMPT ：PUT IN NEM IINK
LDA 2．2，3 BOLDLINK FIELD OF ENTKY
STA B．2，3 STOFE EMPT LINK IN IT
STA 2，GOLINK ；BYPASS OELETED
MOV 2.3 ：NEXT ENTRY
JMP FHONE ；ENITYY
OLINK：$\quad B$
；
；ROUTINE TO UPDATE SINELE BLOCK CONTACTS
；JSR e．SING
；
3INPUT：ACI－BLOCK \＃
；ACZ－POINTER TO START OF DATA．BLOCK HB
$00053^{\prime} 054455$
c9054．344011－ $00055^{\circ} 021014$ 00056．101095 $00957^{\circ} 032451^{\circ}$ $00060^{\circ} 921000$ $00961^{\circ} \mathrm{n2} 40105$ $00362^{\circ} 107400$ $00063^{\circ} 044446$ $00064 \cdot 125490$ 00065＇044012－ $00066^{\circ} 0960165$ $00067^{\circ} 048814-$ 0907日．0060115 $00971^{\circ} 040441$ $00072^{\circ} 044441$ $09073^{\circ} 049003-$ $00074^{\circ} 044004-$ ค0075＇62．4012－ $00076^{\circ} 009420$ $00077^{\circ} 125400$
$00100^{\circ} 0260115$ 00101.842573 00192.044573 $00103^{\circ} 050423$ $001044^{\circ} 084433$ $00105^{\circ} 030421$ $00106^{\circ} 010912-$ $09107.024612-$ 00110° O日G月165 $00111^{\circ} 040014-$ $00112^{\circ} 920562$ $00113^{\circ} 040$ の日3－ $00114^{\circ} 020561$ 09115° G4 A ORA－ $00116^{\circ} 014413$ 0日117＇のกด76の 00120．020412 $00121^{\circ} 049553$

$00122 \cdot 020411$		LDA	$0 . Y 0$			
00123.040552		STA	O,YB			
00124.004413		JSR	RED	3 SEARCH FOR	CONTA	CTS
00125.000674		JMP	SCAN	: SCAN FOR FL	AGS	
$00126^{\circ 000030}$	AC2:	0				
00127.020800	LRIT:	20000				
$08130^{\prime} 1000000$	SIN3:	0				
$00131^{\circ} \mathrm{coga0a}$	NPNTS:	0				
$00132 \cdot 000200$	X 0 :	0				
$00133^{\circ} 000090$	Y0:	0				
$00134^{\prime 2} 003000$	XLBOX:	0				
	YLBOX:	0				
00136.003090	xus0x:	0				
	3 FIND	ANGE OF	ROX SCAN	(XRANG, YRANG		
	; FOR L	NE [${ }_{\text {c }}$ (YA), (XB,	(B)]		
00137.954543	RED:	STA	3,SVR3			
081481102520		SUBZL	0.0			
$00141 \cdot 040552$		STA	$0, B Y P A S$:INITIALIEE	SKIF	FLAG
00142.033547		LDA	2,C100			
$00143 \cdot 023304-$		LDA	D.YA			
00144.024531		LDA	1,YB			
00145'122512		SUBL\#	1,0,SZC	; IS $Y A>=Y B$?		
00146.000404		JMP	REV	; NO		
90147'044533		STA	1,YL	STIORE YB AS	LOME	
$00150^{\circ} 040531$		STA	O,YU	3YA AS UPPER		
00151.003433		JMP	ON			
00152.049525	REV:	STA	$0 . Y \mathrm{~L}$;THE REVERSE		
00153.644526		STA	1,YU			
00154.020203-	ON:	LDA	O. \times A			
00155.024517		LDA	1, $\times 8$			
00156'122512		SUBL\#	1,0,SZC	; DO SAME FOR	X	
$00157 \cdot 030404$		JMP	VER			
00160.044516		STA	1, XL			
$00161^{\circ} 040517$		STA	$0, \mathrm{XU}$			
00162.090483		JiAP	ONN			
06163.043513	VER:	STA	$0, \mathrm{XL}$			
00164.044514		STA	1, XU			
	; FIND	A ADD	SSES			
$00165^{\circ} 924511$	ONN:	LDA	1, XL			
00166.102400		SUB	0.0			
$00167 \cdot 373101$		DIV				
001781101084		MOV	$0,0, S Z R$			
$00171 \cdot 008405$		JMP	- +5			
$00172 \cdot 125005$		MOV	1,1,SNR			
$08173^{\circ} 008483$		JMP	- + 3			
00174.102520		SUBZL	0.0			
00175.106400		SUB	0.1			
0176.044736		STA	1.XLBOX	;NO. X bOXES	From	ORIG
00177.024500		LDA	1,YL			
$09200^{\circ} 102400$		SUS	0,0			
00291.073101		DIV				
00202.101084		MOV	0,0,SER			
002036000405		JMP	- +5			
00204.125005		MOV	1,1,SNR			
$00205 \cdot 100493$		JMP	- + 3			
00236.1025?0		SUBZL	0.0			
002.07.106408		SUB	0.1			
のą16.94472.5		STA	1. YLBOX	3 NO. Y BoXes	FROM	
99211'024457		LDA	1, XU			
00212102406		SUR	$0 \cdot 0$			

$00462 \cdot 113400$
$00463 \cdot 132414$
00464° 0002405
50465'021401
00466.930013-
00467112415
00470.000403
$00471^{\prime 0} 035402$
$00472 \cdot 000764$
$00473^{\prime 2} 024431$
$00474^{\prime} 125503$
00475'000466
00476.020405
$00477 \cdot 025406$
00500'107000
00501.045406
$00502^{\circ} 000773$
$00503 \cdot 010000$
00504.000475.
005051000466
$00506^{\circ} 000454$
00507.024415
$00510 \cdot 125004$
$00511^{\prime 125112}$
$00512 \cdot 000554$
$00513^{\prime 0} 02412$
$00514^{\circ} 020000$
06515:900000
$00516^{\circ} 0000000$
$0051^{\circ} 000000$
$00520^{\circ} 000000$
00521•100000
-0522.040000
$00523^{\circ} 000002$
$00524^{\circ} 000000$
$00525^{\circ} 000000$
$00526^{\circ} 0000000$
$00527^{\circ} 000000$
$00530^{\circ} 0001^{\circ} 26^{\circ}$
$00531^{\circ} 000000$

	AND	0.2	; POINT (EDGE) NUMBER
	SU3*	1.2.SER	; SAME EDGE?
	JMP	haves	3 NO
	L.DA	0.1 .3	3 GET FOINT, BLOCK
	LDA	2,NPNB ;	COMPOSITE WORD
	SUB"	0,2,SNR	: SAME?
;--ALREA	ADY TOUC	CHING---	
	JMP	REN	3YES. UPDATE SIN. COS ETC.
WAVES:	LDA	3,2,3	; NO. GET LINK FIELD
	JMP	SEA	
SADD IN	EXTRA	NORMAL FOR	ree to prevent punch-through
SIF YT	< -2		
REN:	LDA	1,YT	
	1 NCL	1,1,SNC	
CHANGE:	JMP	RENEW	3THIS hORD CAN BE REPLACED
	LDA	0,FORCE	
	LDA	1,6,3	BNORMAL FORCE, FN
	ADD	0.1	; ADD IN INCREMENT
	STA	1,6,3	3 PUT FN BACK
	JHP	change	
FORCE:	10000		3 PREVENTIVE FORCE
CHA :	change		
	JMP	RENEW-CH	HANGE, 1
	JMP	HEAD-CHA	ANGE, 1
3			
3--NOT	ALREADY	TOUCHING-	
CLOUD:	LDA	1,YT	
	mov	1,1,SER	; THROW OUT IF
	MOVL	1.1.SZC	; YT>0
	JMP	WEED	
	JMP	esup3	
FLAG:	20000		
XG:	0		
YG:	0		
OTHER:	0	; CONTACT	POINT \#
PRODL:	0		
SFLAG:	100000		
CFLAG:	400008		
TWO:	2		
YT:	0		
SUP3:	0		
X :	\square	3 ACTUAL	CONTACT CO-ORDS
Y :	0		
AC2R:	AC2		
AC3S:	0		
;			
; TO INSE	ERT NEW	ENTRY....	
ENTER:	LDA	3,.EMPT	;GET ADDR. IN EMPT. LOC.
	MOVL*	3,3,SZC	;IS IT -1?
	JMP	FLOC	BYES. MUST USE MORE CORE
	LDA	2,2,3	; GET LINK IN FREE SPACE
	STA	2,.EMPT	; UPDATE EMPTY LOCATOR
FROG:	LDA	2,PRODL	3 GET CONTACT LOCITOR
	LDA	0.0 .2	
	STA	3.0.2	SSTORE NEW ADDR. IN IT
	STA	0,2,3	PPUT IN NEW LINK FIELD
3NOW PUT	T IN RES	St of data	
	SU8	$0 \cdot 0$	3 SET EERO IN FOLLOWING:
	STA	0.3 .3	3 S (SHEAR DISP)

$00636 \cdot 125112$ 00637111420 0064R'10100? 00641.103420 $00642 \cdot 024807-$ 00643'125102 $00644 \cdot 104400$ $00645 \cdot 1150 \mathrm{c} \pi$ 00646.024647 0064?.030006$00650 \cdot 102448$ $00651 \cdot 125112$ 00652.124440 $00653^{.073301}$ $00654^{-125112}$ $00655^{1101400}$ $00656^{\circ} 101002$ $00657^{\prime 1} 100480$ 00660.02401000661•125102 00662.100400 09663.116402 00664.002401 $00665^{-000009}$ 00666.824631
$00667^{\circ} 044444$ 00670'125005 $00671^{1000404}$ 06672'102520 00673.106490 $00674^{\circ} 00040$ 2. 06675'126520 $00676 \cdot 0960125$ C0677.050435 $00709 \cdot 034903-$ 00701•162400 $00702 \cdot 048613$ $00703^{\circ} 034004-$ $00704^{\prime 1} 166400$ 04705•004723 00706'024615 00707167112 0.710 .092615 00711° и20.422 $00712 \cdot 101112$ $00713^{\circ} 009617$ $00714^{\circ} 030420$ $00715 \cdot 025000$ $00716^{\circ} 0340105$ $06717^{\circ} 167490$ $00720 \cdot 176006$ $00721 \cdot 054412$ $00722 \cdot 101004$ $00723^{\prime} 008403$ 00724167000 00725'060751 $00726^{\circ} 101400$ $00727 \cdot 106415$ $00730 \cdot 102400$

	MOVL*	1.1.SEC		
	INC	0.0		
	MOV	$0.0,5 \geq 2$		
	NEG	0.0		
	LDA	$1, \cos F$		
	MOVL	1,1,SEC		
	NEG	0,0		
	MOV	0,3	PPARTIAL SUM IN AC3	
	LDA	1. XG		
	LDA	2.SIN		
	SUBO	0.0		
	MOVL\#	1,1,SEC		
	NEGO	1,1		
	MUL			
	MOVL*	1,1,SEC		
	INC	0.0		
	MOV	0,0.SEC		
	NEG	0.0		
	LDA	1,SINF		
	MOVL	1,1,SZC		
	NEG	0.0		
	SUB	0,3	SSUBTRACT FROM PREVIOUS	RESULT
	JMP	eytsav		
YTSAV:	0			
WEED:	LDA	1,OTHER	3 Contact candidate	
; ROUTIN	E TO W	D OUT IM	OSSIble Contacts	
	STA	1,SWit		
	MOV	1,1,SNR	PEERO?	
	JMP	TOAD	;YES	
	SUBzL	0.0		
	SUS	0,1	STRY [POINT-1]	
	JMP	GETIT		
TOAD:	SUBZL	1.1	BTRY POINT 1	
GETIT:	JSR	e.PON2	; (PONT ALREADY PRIMED)	
	STA	2,Sv2		
	LDA	3, XA		
	SUB	3,0		
	STA	O,XG	: REL X	
	LDA	3,YA		
	SUB	3,1	\& REL Y	
	JSR	YtGET		
	LDA	1, TVO		
	ADDL*	3-1,SEC	; Y $1<=-2$?	
	JMP	eSVP3	YYES. IMPOSSIBLE CONTACT	
	LDA	0.SWIT		
	MOVL.*	0.0.SEC	:2ND TIME ROUND	
	JMP	ENTER	SYES. STORE THE CONTCT	
	LDA	2,SV2		
	LDA	1.0.2	;CONTROL HORD	
	LDA	3.-MSKR		
	AND	3.1	BNO. OF POINTS (PMAX)	
	ADC	3.3	3-1	
	STA	3,SWIT	-SET FOR EXIT 2ND TIME	
	MOV	$0 \cdot 0.5 Z \mathrm{~F}$		
	JMP	NEWT	SSWIT MUST BE >0	
	ADD	3,1	BFRY POINT (PMAX-1)	
	JMP	GETIT		
NEWT:	INC	0.0	SOTHER +1	
	SUB"	0.1. SNR	BES IT EQUAL TO PMAX?	
	SUB	0.0	BYES. USE POINT \%	

$00731 \cdot 105000$		MOV	M.	
$00732 \cdot 000744$		JMP	GETIT	C-103
$00733 \cdot 00000$	SWIT:	0		
$00734 \cdot 000000$	SV2:	0		
		-END		

$00052 \cdot 024435$ $00053^{\cdot 125300}$ $00054 \cdot 123000$ $00055^{\circ} 004502$ 00056'000461 $00057 \cdot 034437$ $00060 \cdot 054426$ 00761.030430 $00062^{\circ} 025400$ 00063'125005 $00054^{\circ} 000453$ $00065^{\circ} 133020$ 00066.0240025 $00067 \cdot 132512$ 00070.000406 $00071 \cdot 0240035$ $00072 \cdot 132513$ $00673^{\circ} 000483$ $00074^{\prime} 904463$ $00075^{\circ} 000433$ $00076^{\circ} 034410$ 00077.175400 $00100^{\circ} 990760$ 00101.000000 $00102^{\circ} 000000$ $00103^{\circ} 000000$ $00104^{\circ} 000100$ $00105^{\circ} 000000$ $00106^{\circ} 000000$ 00107° ด000000 $0011^{\circ} 000000$ $0011^{\circ} 000000$ $00112 \cdot 001777$ 00113.001414 00114.909988 $00115^{\circ} 0040000$ $00116^{\circ} 00011^{\circ}$
$00117^{\circ} 900020$ $00120 \cdot 177777$ $00121^{\circ} 000001$ 60122.177788 $00123^{\circ} 000017$ $00124^{\circ} 000021$ $00125^{1 / 177757}$ 00126年177761 $00127^{\circ} 000000$ $00130 \cdot 634753$ $00131^{\circ} 025001$ $00132^{\circ} 045400$ $00133^{.034756}$ $00134^{\circ} 021400$ $00135^{\circ} 051400$ $00136^{\circ} 041001$ $00137^{\circ} 010750$ 00140.014754 $00141^{\prime} 000654$ 00142'030737 $00143^{\circ} 020438$

$00144^{\circ} 044741$ 00145＇0253．00 $00146^{\circ} 034747$ 6＠147•167415 $00150 \cdot 167000$ 60151．64566？ 00152．176406 00153．月55020 00154.055021 $00155^{*} 055022$ 00156.000655
00157.050724 00160.031000 $00161 \cdot 000407$ $00162^{\circ} 025000$ $00163^{\circ} 196415$ $00164^{\circ} 901400$ $00165^{\circ} 145400$ $00166^{\circ} 044715$ $0017^{\circ} 031001$ $00170^{\circ} 151112$ $00171^{\circ} 001401$ 06172.000770
;
; ROUTINE TO UPDATE FX, FY IN ANY
; PRESSURE SEGMENT FOR BLOCK NB
;
$00173^{\prime} 021000$
$00174^{\circ} 024506$
$0175^{\circ} 123415$
$00176^{\circ} 002704$
$00177^{\circ} 0302065$
$00208 \cdot 034710$
$00201 \cdot 151113$
$00202^{\circ} 060403$
$00203^{\circ} 030676$
$00204^{\circ} 002676$
$00205^{\circ} 025000$
$00206^{\circ} 020002-$
$00207^{\circ} 123400$
00210.116415
$00211^{\prime} 000483$
00212.031002
$00213^{\circ} 000766$
$00214^{\circ} 136700$
$00215^{\circ} 050466$
$00216^{\circ} 035001$
$00217^{\circ} 054465$
00220.044465
$00221^{\circ} 0340015$
$00222^{-117000}$
$00223^{\circ} 031400$
$00224^{\circ} 0060075$
00225° 日A明41
$00226^{\circ} 0050045$
$00227^{\circ} 049460$
$00230^{\circ} 044460$
$00231^{\circ} 024454$
$00232 \cdot 125400$

```
FIX: STA I,NY
```

FIX: STA I,NY
LDA 1,h,2
LDA 1,h,2
LDA 3,F5IT
LDA 3,F5IT
AND\# 3.1,SMF ; SKIP IF FLAG ALREADY SET
AND\# 3.1,SMF ; SKIP IF FLAG ALREADY SET
ADD 3,1 ;ADD IN MASTEP FIX FLAG
ADD 3,1 ;ADD IN MASTEP FIX FLAG
STA 1,6,2 ;PUT CONTROL WOED BACK
STA 1,6,2 ;PUT CONTROL WOED BACK
SUB 3.3 ;ALLO% "INVISIELE"
SUB 3.3 ;ALLO% "INVISIELE"
STA 3.20.2 ; BLOCKS
STA 3.20.2 ; BLOCKS
STA 3,21.2 3 TO
STA 3,21.2 3 TO
STA 3.22,2 ;INTERACI
STA 3.22,2 ;INTERACI
JMP CONT ;KEEP GOING
JMP CONT ;KEEP GOING
; ROUTINE TO FOLLON CHAIN TO FIND (NP:NB)
; ROUTINE TO FOLLON CHAIN TO FIND (NP:NB)
FIND: STA 2,OLD ;CALLING ADDR
FIND: STA 2,OLD ;CALLING ADDR
LDA 2.0.2 ;ADDN゙ OF IST WORD
LDA 2.0.2 ;ADDN゙ OF IST WORD
JMP MID
JMP MID
ROUND: LDA 1,0,2
ROUND: LDA 1,0,2
SUB\# D.1,SNR ; COMPARE
SUB\# D.1,SNR ; COMPARE
JMP 0,3 ;SUCCESS! ADDR. IN AC2
JMP 0,3 ;SUCCESS! ADDR. IN AC2
INC 2.1
INC 2.1
STA 1,OLD ;OLD LINK ADDR.
STA 1,OLD ;OLD LINK ADDR.
LDA 2.1.2 ;GET LINK
LDA 2.1.2 ;GET LINK
MID: MOVL\# 2.2,SZC :END OF CHAIN?
MID: MOVL\# 2.2,SZC :END OF CHAIN?
JMP 1.3 ;YES. FAILUFE EXIT
JMP 1.3 ;YES. FAILUFE EXIT
JMP ROUND
JMP ROUND
3,22,2 ; INJERACT

```
    3,22,2 ; INJERACT
```

PUP: LDA 0,0,2
LDA 1,PMSK
AND $\quad 1,0$, SNR
JMP ESVRB3
LDA 2..PRES
GRAPE: LDA $3, N B$
PLUM: MOVL\# 2.2.SNC
JMP $\quad+3$
LDA 2.SV2
JMP ESVRB3 :END OF PR. SEG. LIST
LDA $1,0,2$
; NFNB THIS SEG.
LDA D..MSKR
AND 1,0 ;NB1 (BLOCK $\#$)
SUB\# $\quad 0,3, S N R$; SAME BLOCK?
JMP PRUNE ;YES; UPDATE FX,FY
LDA 2.2.2 SNO. GET NEXT LINK
PRUNE:
JMP PLUM
SU
LDA
STA
STA
LDA
ADD
LDA
JSR
STA
JSR
STA
STA
LDA
INC

	LDA	1，PMSK	
	AND＊	1，0，SNR	；OUICK CMECK FOR PRESS．
	JMP	ESVR33	；NONE FOR THIS BLOCK
	LDA	2．，PRES	
GRAPE：	LDA	3，NB	
PLUM：	MOVL\＃	2，2，SNC	
	JMP	－＋	
	LDA	2．SV2	
	JMP	©SVRB3	；END OF PR．SEG．LIST
	LDA	1，0，2	；NFNE THIS SEG．
	LDA	0．MSKR	
	AND	1，0	；NB1（BLOCK \％）
	SUB\＃	$0,3,5 N R$	；SAIAE BLOCK？
	JMP	PRUNE	；YES；UPDATE FX，FY
	LDA	2，2，2	\％NO，GET NEXT LINK
	JMP	PLUM	
PRUNE：	SUBS	D．1	SNPI（EDGE \＃）
	STA	2，PR2	ICURRENT PR．LIST POINTER
	LDA	3．1．2	3 FORCE
	STA	3，FORCE	
	STA	1，NPREM	；REMEMBER IST CORNER
	LDA	3，M1	
	ADD	0,3	
	LDA	$2,0,3$	P BLOCK POINTER
	JSR	C．LENG	；GET LENGTH
	STA	D．L	
	JSR	e．PONI	
	STA	$\theta, X A$	
	STA	$1, Y A$	
	LDA	1－NPREM	
	INC	1，1	

$09154 \cdot 9096$	SVid:	0		
	;			
	; TO ADD	ACO TO ACL, WITH AN UPPER		
	$\begin{aligned} & \text { 3LIMIT } \\ & \text { ADDAX: } \end{aligned}$	SET TO THE ANSHER IN ACI		
00155125003		MOVE	1,1	- CLEAR CAREY
A156.10511?		MOVI_H	1,1,SEC	
$00157^{\circ} 63.4 .45$		J,MP	Al	
$00160^{\prime 2} 181113$		MOVL\#	6,0.5NC	
		JMP	POS	3 BOTH + VE
00162.107320	DIF:	ADD	2, 1	3 BOTH SIGNS DIFFERENT
$03163^{\circ} 061932$		JMP	0,3	SEXIT
Q0164'101113	A1:	MOVL\#	C, D, SNC	
00165.900775		JMP	DIF	;BOTH DIF
$00165^{\prime} 12.4400$		NEG	1,1	; BOTH - VE
00167'100443		NEGO	0,0	; NEGATE BOTH. SET GARPY
$00170{ }^{\circ} 107000$	POS:	ADO	0,1	
$00171^{\prime} 020406$		LDA	$0.114 X$	
$00172 \cdot 106432$		SUBZ $\#$	0,1,SEC	; LIMIt max Velocity
$00173^{\circ} 105000$		MOV	0.1	
$00174{ }^{\circ} 125002$		MOV	1,1,SZC	; FLAG?
90175'124400		NEG	1,1	;YES, NEGATE!
00176*001400		JMP	0,3	SEXIT
00177'037777	MAX:	37777		
10200'12.6400	CLOT:	SUB	1,1	; CLEAR LOWER
00201.021017		LDA	1,17,2	\%MSUM
00202.031013		LDA	2,13,2	; I
$00203^{\circ 115000}$		MOV	0,3	S SAVE M FOR LATER
80204'101112		MOVL\#	0,0, SEC	
00265.108400		NEG	0,0	; ABS (MSUM)
$00206^{\circ} 142432$		SUBZ ${ }^{\text {\% }}$	2,0,SEC	; CHECK FOR OVERFLOW
$00207^{\circ} 124001$		COM	1,1,SKP	
$00210^{\circ} 073101$		DIV		
$00211^{\prime} 1252.9$		MOVZR	1,1	3) - ROT ERR
$00212 \cdot 125220$		MOVER	1,1	;)/8
$00213^{\circ} 125220$		MOVZR	1,1	b)
00214.175102		MOVL	3,3.SEC	
80215.124400		NEG	1,1	; RESTORE SIGN
00216'121000		MOV	1,0	
$00217^{\circ} 930735$		LDA	2,SV2	
$00220 \cdot 025006$		LDA	1,6,2	3 OLD ALPHA-DOT
00221.004734		JSR	ADDMX	
00222'045006		STA	1,6.2	3 NEW ALPHA-DOT
$00223^{\circ} 030001-$		L.DA	2..80T	
$00224^{\circ} 102400$		SUB	0.0	
09225:135000		MOV	1,3	
00226:125112		MOVL	1,1,SZC	
00227'124408		NEG	1,1	
$00230^{\circ} 146513$		SUBL*	2,1,SNC	CHECK FOR UNDERFLOW
00231.000410		JMP	TREE	
00232.030722		LDA	2.5V2	
$00233^{\circ} 041022$		STA	0,22,2	; zERO DELTA-ALPHA
$00234^{\circ} 000670$		JMP	CLOTI	; NO MORE TO DO
$00235 \cdot 124715$	Clote:	LDA	1. BLOCK	
$00236 \cdot 0060035$		JSR	O.REBX	
$00237^{\circ} 000665$		JMP	CLOTI	
$00240 \cdot 640000$	TEST:	40000		
$00241 \cdot 073101$	TREE:	DIV		
002.42・の30712		LDA	2.SV2	
002.43'175102		MOVL	3,3, SEC	
80244*124400		NEG	1,1	

$09245^{\circ} 021012$ 09246'123000 0月247•1251?0 $00250^{\circ} 125120$ 08251'125120 $02252 \cdot 045122$ 90253.048514 $00254^{\prime 1} 105102$ $00255^{\prime} 100400$ $00256^{\prime} 024762$ 00257'122513 $00260^{\circ} 009485$ $00261 \cdot 101002$ $00262 \cdot 100400$ $00263^{\prime} 941012$ 0@264'030540 $00265^{\prime} 122462$ $00266^{\circ} 100490$ $08267^{\circ} 041012$ $00270^{\circ} 024500$ 00271'031011 $00272 \cdot 102400$ $00273^{\circ} 073391$ 0日274'125112 $00275^{\circ} 101400$ $02276^{\circ} 030656$ $09277^{\prime} 025000$ $00300^{\circ} 044471$ $00301 \cdot 125100$ $00302^{\prime} 034465$ $00303^{\circ} 175112$ $00304^{\circ} 175060$ $00305 \cdot 125112$ $00306^{\circ} 125060$ $00307^{\circ} 035010$ $00310^{\circ} 125003$ $00311^{\prime} 009404$ $00312 \cdot 117022$ 003131176000 $00314^{\circ} 000413$ 003151116422 $00316^{\circ} 000411$ $00317^{\circ} 174420$ $00320^{\circ} 025000$ $00321 \cdot 125100$ $00322^{\prime 1} 125100$ $00323^{\prime} 125060$ $00324^{\circ} 125206$ 00325.125200 $00326^{\circ} 045000$ $00327^{\circ} 025010$ $00330^{\circ} 055010$ $00331 \cdot 030437$ $00332^{\circ} 102400$ 80333 073301 $00334^{\circ} 125112$ $00335^{\circ} 101400$ $00336^{\circ} 024433$ $00337^{\circ} 125100$ $08348 \cdot 125100$

	LDA	0.12 .2	; ALPMA (OLD)
	ADD	1.0	3AOO IN D-ALPHA
	MOVEL	1,1	; MAKE UP TUTAL SHIFT
	MOVEL	1,1	; TO 8 BITS
	MOVZL	1,1	
	STA	1,22,2	; DELTA-ALFHA
	STA	O.SICN	HEEEP SIGTV FOR LATER
	MOVL	$0,1,5 \geq \mathrm{C}$	3-VE? (GARBA $-E$ IN ACI)
	NEG	$0 \cdot 0$;YES (C IS SET)
	LDA	1,TEST	
	SUBL\#	1, $0, \mathrm{SNC}$; IS ALPH> $=1 / 64$?
	JMP	CHAN	;YES. INCR. COS \& SIN
	MOV	0,0, SEC	; HAS SIGN -VE?
	NEG	0,0	3YES. RESTORE IT
	STA	0,12,2	; ALPHA (NEW)
	JMp	CLOT 1	;FINISHED!
CHAN:	SUBC	1,0, SEC	; SUBTRACT ALPH (MAX)
	NEG	0,0	
	STA	B,12,2	; ALPHA (NEW)
	LDA	1.AMAX	
	LDA	2,11,2	; SIN
	SUB	$0 \cdot 0$	
	MUL		3MULT. BY AMAX (1/64)
	MOVL"	1.1.SZC	
	INC	$0 \cdot 0$; ROUND UP
	LDA	2,5v2	; (SIN*AMAX NOW IN CAO)
	LDA	1,0,2	SSIN FLAG
	STA	1.SFLAG	
	MOVL	1,1	IPUT FLAG IN CARRY
	LDA	3,SIGN	; D(ALPHA) FLAG
	MOVL"	3,3,5ZC	
	MOVC	3,3	
	MOVL\#	1,1,5ZC	;1S COS FLAG SET?
	MOVC	1,1	;YES. COMP. CAREKY
	LDA	3,10,2	3 CLD COS
	MOV	1,1,SNC	; SAME SIGNS, C \& D(C)?
	JMP	CARO	;YES. SUBTRACT!
	ADDZ	0,3,SZC	; COS+D (COS)
	ADC	3,3	:SET TO MAX IF OVERFLOW
	JMP	PRUNE	
CARO:	SUBE	D,3,SZC	; $005-\mathrm{D}(\operatorname{COS})$
	JMP	PRUNE	
	NEG	3,3	
	LDA	1,0,2	
	MOVL	1,1	
	MOVL	1,1	
	MOVC	1,1	SOMPLEMENT COS FLAG
	MOVR	1.1	
	MOVR	1,1	
	STA	1,0,2	; LPDATE CONTROL 4 ORD
PRUNE:	LDA	1,10,2	BCLD COS
	STA	3,10,2	; Mat COS
	LDA	2, AMAX	
	SUB	$0 \cdot 0$	
	MUL		
	MOVL\#	1,1,5ZC	
	INC	0.0	3 ETUND UP
	LDA	1,SFLAG	; 5 IN FLAG
	MOVL	1.1	; EfCOMES COS FLAG
	MOVL	1,1	; MOW IN CARY

$00341^{1} 034426$ $00342 \cdot 175112$ $00343 \cdot 17506 \%$ $00344^{\circ} 030616$ $00345^{\circ} 0250 \mathrm{ag}$ $00346^{\circ} 125112$ $06347 \cdot 125060$ $00350 \cdot 035911$ 00351'125002 $00352 \cdot 000404$ $00353^{\circ} 117022$ $00354^{\circ} 176000$ $00355^{\circ} 000041^{\circ} 0$ $00356^{\circ} 116422$ $00357^{\circ} 008406$ 60360.174400 $00361 \cdot 125100$ 00362.125060 $05363^{\circ} 125200$ $00364^{\prime 0} 045099$ $00365^{\circ} 055011$ $00366^{\circ} 000647$ $00367^{\circ} 900000$ $00370^{\circ} 001000$ $00371^{1900000}$

98311.044562		STA	1,hw	$C-117$	
$00312 \cdot 056551$		STA	2.AC2		
$00313^{\circ} 0060115$		JSR	e.SCAL		
08314.030547		LDA	2.AC2		
00315021001		LDA	0.1.2	; XC	
00316.935003		LUA	3,3,2	; YC	
$00317 \cdot 136400$		SUS	1.3		
$00320 \cdot 165000$		MOV	3.1		
00321.096000-		JSR	e.PLOT		
0032.2.000061		1			
日月323.0060165		JSR	e.ALFH		
$00324^{\circ} 020547$		LDA	O.hn		
$0 \times 325^{\circ} 0950145$		JSR	e.IPRN		
$00326^{\circ} 000004$		4			
$00327^{\circ} 039534$		LDA	2,AC2		
$00330 \cdot 02.1001$		LDA	0,1,2	; CENTROID AGAIN	
$00331 \cdot 025003$		LDA	1,3,2.		
00332.006000-		JSR	e.PLOT		
$00333^{\circ} 000006$		0			
$08334^{\circ} 825023$		LDA	1,23.2	3 \times LOAD	
08335'044536		STA	1,hw		
00336.0060115		JSR	e.scal	3 SCALE IT	
$08337^{\circ} 030524$		LDA	2,AC2		
00340.021001		LDA	$0,1,2$: $\times 6$	
00341.107000		ADD	0,1		
$08342 \cdot 644522$		STA	1,XVEC		
$00343^{\circ} 025024$		LDA	1,24.2	; Y LOAD	
$00344^{\circ} \mathrm{C44530}$		STA	1,VV		
$00345 \cdot 0960115$		JSR	e. SCAL		
00346.030515		LDA	2,AC2		
$00347^{\prime 2} 021003$		LDA	0.3 .2	SYC	
00350.107000		ADD	0.1		
$00351 \cdot 028513$		LDA	Q. XVEC	; VECTOR NOW IN	ACB;AC1
00352.006000-		JSR	e.PLOT		
$00353 \cdot 000001$		1			
	;				
00354.020005-		LDA	0..NVEC	s.nVEC IS THE FL	LAG TO PLOT/N::
00355'101005		MOV	0.0.SNR	:THE MAG. OF APF	Plied LOAD
00356.002410		JMP	TRIP	; M MEANS NO PLOT	
	3				
$00357^{\circ} \mathrm{C060165}$		JSR	e. ALPH		
$08360^{\circ} 820513$		LDA	D, Wiw		
00361.006014S		JSR	e.IPRN		
$00362 \cdot 009084$		4			
$00363^{\circ} 920511$		LDA	B.VV		
$00364^{\circ} 0060145$		JSR	e.IPRN		
00365 0000004		4			
$00366^{\circ} 010474$	TRIP:	: ISZ	PNT		
$08367{ }^{\circ} 034473$		LDA	3,PNT		
$00370^{\circ} 814471$		DSZ	KNT		
00371.000707		JMP	REPT		
	BTO PRINT JOINT				
			PRESSURES		
$00372 \cdot 0300215$		LDA	2..PRES		
09373.151112	PLUM:	: MOVL4	2,2,SZC		
60374'002471		JMP	ervec	BEXIT	
00375.025030		LDA	1.0.2	; CONTROL WORD	
00376.020007\$		LDA	B..MSKR		
00377 -050467		STA	2,PR2		

00400＇123403		AND	1,0	$\begin{aligned} & \sin 8 \\ & \text { inP } \end{aligned}$	C－118
60471．106700		SUBS	0,1		
00402.044465		STA	1. NPREM		
$00403 \cdot 0340355$		LDA	3．．MI		
03494＇117293		ADD	0．3		
00405．03140．		LDA	2．0．3	S BLOCK POINTER	
ca406－506al3s		JSR	®．LENG		
06407＇040451		STA	C．！．ENG		
80410.921814		LDA	0，14，2		
00411.101005		MOV	0．0．SNR		
$00412 \cdot 000442$		JMP	FRED	；SKIP ERASED EL	ELOCK
00413.0060035		JSR	e．PONI		
$90414^{\circ} 848454$		STA	D，XAA		
80415944454		STA	1，YAA		
00416.024451		LDA	1，NPREM		
00417125400		INC	1，1		
80020.021880		LDA	0，0，2	BCONTROL WD	
$00421^{\circ} 0340075$		LDA	3．．MSKR		
00422.163400		AND	3，0	：NC	
$00423 \cdot 106415$		SUB＊	0，1，SNR	：CHECK FOR LAST	St CORNER
$08424^{\prime} 126480$		SUB	1，1		
$00425 \cdot 0060045$		JSR	e．PON2		
00426．034442		LDA	3，XAA		
00427＇163220		ADDER	3，0	$3(X A+X B) / 2$	
00430．034441		LDA	3，YAA		
06431＇167220		ADDER	3，1	（ $(Y A+Y B) / 2$	
00432．934440		LDA	3，NN5		
$00433 \cdot 162400$		SUB	3，0		
00434＇166406		SUB	3，1		
91435＇0069015		JSR	e．PITS		
00436＇90の9n0		0			
00437＇0¢60165		JSR	e．ALPH		
00440＇0060065		JSR	e．PRN1		
$00441^{\prime} 900052$		＊＊			
$00442 \cdot 638424$		LDA	2．PR2		
$00443^{\prime} 025001$		LDA	1，1，2	；PORCE	
$00444^{\prime} 102440$		SUBO	0.0		
$00445^{\circ} 038412$		LDA	2，N125		
00446.073301		MUL			
$00447^{\circ} 030411$		LDA	2．LENG		
$00450 \cdot 073101$		DIV			
00451．121000		MOV	1.0		
00452＇0060145		JSR	a．IPRN		
$00453 \cdot 000005$		5			
$00454^{\circ} 030412$	FRED：	LDA	2．PR2		
80455．031002		LDA	2，2，2	3LINK	
0045.900715		JMP	plum		
000012		－RDX	10		
00457900175	N125：	125			
000810		－RDX	8		
$00460^{\circ} \mathrm{O} 00000$	LENG：	0			
00461．000000	KNT：	0			
00462．000008	PNT：	0			
$00463^{\circ} 0000000$	AC2：	0			
0¢＾64＊000日0日	XVEC：	0			
$00465^{\circ} 009000$	RVEC：	0			
$08466^{\circ} 0000008$	PR2：	0			
$00467^{\circ} 0906000$	NPREM：	0			
00470.000008	XAA：	0			
$00471^{\circ} 000000$	YAA：	0			

O6132．02п71A	60：	LOA	Gemirlac	
$00133^{\circ} 049715$		STA	O，STAT】	；＇KiUN＂STATUS
c0134＊000645		JサT	GRNT	
$00135 \cdot 600477$	FHASE：	REAOS	C	；CANT LEAVE b／／B－UF
60136．161122		M10 ${ }^{\text {d }}$	$0,0,5 z C$	
の日137＇019785		J1p	STOP	
40140．0ヶ67115		Jこ～～～	f．PACE	
a0141＇1652n		SUBEL	（1） 0	
00142＇gn5mals		JSK	e．oVL	；OVEFLAY \＃1
$09143^{\circ} \mathrm{C63077}$		HALT		；TAPE EFîOX
の日144＊日Сอ775		JMP	－-3	
$00145^{\prime} 0020555$	MOVM：	J！P	E．MOVE	
00146.063077	BOLT：	HALT		
$00147^{\circ} 009755$		JMP	STOP	
00150.0060605	Tline：	JSR	E．TIME	
$00151^{\prime \prime} 9060565$	RESET：	$J S R$	Q．RSET	
00152.0960115		JSR	a．PAGE	
$00153 \cdot 0060525$		$J S R$	a．TPRN	
00154.0060035		JSR	Q－DISS	
$00155^{\circ} 002502$		JMP	QRET3	
00156．0060115	NOPLT：	JSR	©．PAGE	
$00157^{\prime 1} 102526$		SUBEL	0,0	；SUPPEESS PLOTTING
$00160^{\circ} 040022-$		STA	C，PFLG	
$00151 \cdot 092476$		JMP	QFET3	
00162.102400	ACTIV：	SUB	0,0	
90163＇940302－		STA	E，PFLE	；RE－ACTIVATE PLOTTING
00164．0060525		JSR	0．TPRN	；WRITE NO．OF ITETAATIONS
ด0165＇00247？		JMP	QRET3	
00166．0062115	DSPLY：	JSF	e．PAGE	；EfASE SCREEN
90167．9060525		JSF	e．TPRN	；WRITE NO．UF ITERATIONS ；RE－DRAW SYSTEM
00170＇0060月35		JSR	e．DISS	
$00171^{\circ} 002466$		JMP	ERET3	
0日172．月30914s	EERO：	LDA	2，0M1	
$00173^{\circ} 9240155$		LDA	1，AUM	
90174．124403		NEG	1，1	
$00175^{\circ} 10 \bigcirc 400$		SUB	0,0	
90176．035009	ITER：	LDA	3，0，2	
00177.641405		STA	0，5，3	：X－VEL
の日209＊ロ41406		STA	0.6 .3	：OLPHA－DOT
00201．041415		STA	$0,15,3$	；Y－VEL
00202＊151406		INC	2.2	
00203＇125404		INC	1，1，SER	
002त4＇00971？		JIPP	ITES	
aneos mabnets		JSR	6．PKivl	ERING BELL
のаアの5 900507		7		
00207＇О02450		JMP	QRET3	
	; INPUT	ROUT IN	－FRICTI	ON，LOADS：LINITS \＆OPTIUNS
日न210．9960435	INPUT：	JSR	E．MESS	
$00211^{\circ} 001617^{\circ}$		INMS		

					C－125
00362•ก24425		LDA	1，YA		
00363． 34425		LOA	3，YB		
90364＇157220		ADDER	3，1	；$(Y A+Y A) / 2$	
90365：334425		LDA	3，4OVE．1		
00366＊15640\％		SUR	3，1		
		Jor	e．flTS		
9．37：9\％man		6			
9＠371．anciags		JSR	O．ALFH		
0＠372・の29417		LDA	G，TYFE		
$00373 \cdot 0344213$		LDA	3，NNO		
00374．163009		ADD	3， 0	；ASCII CHAA	
$09375^{\circ} 9066375$		JSR	6．Fnn2		
$00376 \cdot 002401$		JMP	gTFSAV		
00377＇009089	TPSAV：	0			
0．490－300920	DLUCM：	c			
	NPNTS：	0			
日9402 n nrami	M：：	，			
ramat3．6mama	$x \mathrm{n}$ ：	0			
60404．000000	YO：	0			
00405．00ncon	XA：	0			
00496＇090n00	XR：	0			
09497＇00กang	YA：	0			
09419．0mbaco	YR：	0			
09A11＇000000	TYFE：	0			
0¢412．0009の6	HOVE1：	6			
004131009060	NNO：	\cdots			
$00414^{\prime} 001160^{\circ}$	FLG：	flag			
	；－－－－	\cdots			
$00415 \cdot 0050255$	UINP：	JSR	E．UINP		
$00416^{\circ} 002641$		JMP	eRET3		
0041710060435	PINP：	JSR	Q．MESS		
$00001 ?$		- RDX	10		
00420．001461．		PMESS			
00421．177324		－300			
$00422^{\circ} 001274$		700			
000810		- RDX	8		
90423.9060445		JSR	e.PSEG		
$00424^{\prime} 002.633$		JMP	ERET3		
$00425^{\circ} 0060475$	RP3：	JSR	E．READ		
$00426^{\circ} 0060115$		JSR	E．PAGE		
00427．006052s		JSR	E．TPRN		
00430．0060035		JSR	Q．OISS		
00431＇092626		JMP	QREI3		
	WP3：	JSR	E. WRIT		
$00433^{\prime} 002624$		JMP	ERET3		
00434＇192400	CUR：	SUB	0.0		
00435＇042757		STA	$0 \cdot 8 F L G$	；RESET PKOP．CHNG．	INDIC．
の9436．926095s	CURS：	JSR	e．CURS		
		CHAR			
$\left.00449^{\circ} 90064\right)^{\prime}$		X			
09441＇00064？		Y			
09442．0960493		JSR	Q．ALPH		
$00443^{\prime} 020457$		LDA	D．CHAR		
09444＇02446？		LDA	1，C1		
$00445^{\prime} 106415$		SURA	$e, 1, \operatorname{SivR}$	；＂1＂BEEN MIT？	
の0446＊ก02456		JIMP	ELOADR	＊	

00543＇10？na0 $00544^{\circ} 0141914$ $04545 \cdot 021030$ no546＇0．3403？s OnS47＇1？340n 0ns 6 ans51＇12640n noSs？ 04447 ？

の9553．00603ns $09554 \cdot 0064: 13$ 00555．0204467 00556．0n60315 $09557^{-01346335}$ 0056？•030003－ $00561^{\prime} 040465$ ne56？＇1024？0 $00563^{\circ} 073101$ 0～564．1271？： ：‘555＇1271＂ 00555＇13769！ 00567・の？4457 0057c＇1924：40 00571° ©73101 9057？1 1370Aの 06573＇ก54452 $00574^{\circ} \mathrm{CO} 9447$ $00575^{\circ} 024447$ 0．4576．125359 $00577^{\prime} 123000$ $0.660 \cdot 035409$ $00601 \cdot 025400$ $00602 \cdot 106415$ 00603 ＇月00405 $00604^{\prime} 165498$ $00605^{\circ} 944440$ 00606.035401 ตด6a7＇nee772 $00610 \cdot 025491$ $00611^{1.046434}$ $00612^{\circ} 910432$ 06613.014434 $00614^{\prime} 090741$
$00615^{\prime 2} 0340345$ ne616．n2n425 $09617 \cdot 117090$ 00629.054425 $00621^{\prime} 035430$ 00622．1650n0 00623．175112 0．9624．900411 00625－171000 0262．6．0354n2 00627•175113 $00630 \cdot 000775$ 0n631．056414 9．9632•ก200275 $01633^{\circ} 0341002$

	SUB	0.0	
	STA	C．14．？	；SET AKE． I IO éERU
	LDA	$0 \cdot 0.2$	
	LDA	1．．9ミK．	
	AND	1，0	
	STA	O．fCNT	
	SLu	1，1	
	STA	1 －NP	
；NEXT	PAHT KEVO	ご A．L	rolint Entrita
；BC：A	：AY		
	JSR	E．PONI	
	JMP	Place	
COW：	LDA	1－NP	
	JSR	－．PON2	
Place：	LDA	3．0．13	
	LDA	2．．cine	
	STA	O， NX	
	SUB	a, a	
	DIV		
	ADDEL	1．1	
	ADDEL	1－1	
	ADD	1，3	
	LDA	$1, N X$	
	SUB	0,0	
	DIV		
	ADD	1，3	
	STA	3，OLD	
	LDA	0，N8	
	LDA	1，NP	
	movs	1，1	
	ADD	1：0	；（NP：NB）
	LDA	3，0，3	；（NO CHECK FOR END）
ROUND：	LDA	1，0，3	
	SUB\＃	0，1，SiNR	
	JMP	OOT	；FOLiND II
	INC	3，1	
	STA	1，0LD	
	LDA	3，1，3	；LINK
	JMP	ROUND	
OOT：	LDA	1，1，3	：THIS LINK
	STA	1，8OLD	
	1SZ	NP	
	DSZ	PCNT	
	JMP	COW	
；TO RE	JRN DEAD	contact	ENTRIES TO EMPTY LIST
	LDA	3，0：15	
	LDA	D，NB	
	ADD	0.3	
	STA	3，OLD	
	LDA	3，0，3	
	MOV	3，1	3 KEEP FİST ENTRY
	MOVL＊	3，3，5EC	
	JMP	EXIT	：NO CONTCTS
NIT：	MOV	3，2	：SAVE PREV．ADDR．（LAST？）
	LDA	3，2，3	BNEXT ENTRY
	MOVL．	3，3，SNC	
	JMP	NIT	；KEEP GOING DOWN CHAIN
	STA	3．00LD	；PLUG INITIAL POINTEK
	LDA	0，E．MPT	
	STA	0.2 .2	：STORE OLD EMPT FOINTEK

のС634．ก44027s	EXIT：	STA	1，EMFT	；UPDATE REMAINING CONTACIS
$00635^{\circ} 0060125$		JSR	e．fllb	
ค2636＇mn6tis？		JSR	e．tPrn	
$00637^{\text {a ancooss }}$		JSR	e．DISS	；KE－DRAW
$00649^{\circ} 002410$		JMP	QCunst	
n0641•员0002	X ：	0		
00643＇0nonea	Y ：	0		
00643＇0n0nen	NR：	0		
n0644＇90nnono	NP：	0		
00645＇9nnnoc	OLD：	0		
$00646^{\circ} \mathrm{non090}$	NX：	0		
92647•0nanca	PCNT：	0		
のc659＊00．436＊	CUESR：	CURS		
	UNFIX：	JSR	E．HITC	
C0652．000641＊		x		
00653＇00064？		y		
006540002774		JMP	ecupsr	
00655＇021000		LDA	0.0 .2	；to release a block
$00656^{\prime} 024542$		LDA	1，MBIT	；IS MASTER BIT SET？
O8657．197414		AND	O，1，SER	
00650.002770		JMP	ECURSR	；YES，HARD LUCK！
00661．024636		LDA	1，FBIT	
00662．107415		AND\＃	$0 \cdot 1, \operatorname{SNR}$	；FIXED ALREADY？
$00663 \cdot 002765$		JMP	CCliRSR	；NO CHANEE NECESSARY
$00664^{\circ} 122400$		SUB	1,0	：REMOVE BIT
00665．941000		STA	0．0．2	；PUT CONTEOL hORD BACK
$00666^{\circ} 0060115$		JSR	e．PAGE	
$00667^{\circ} 0060525$		JSP．	e．TPRN	
00570．0060035		JSR	O．DISS	；RE－DRAW
$00671 \cdot 0.02757$		JMP	OCUPSF	；CARRY ON
	；ROUTINE TO INPUT LOAD VECTORS FROIA SCREEN			
00672．006007s	LOAD：	JSR	e．HITC	
00673＇000641．		x		
$00674^{\circ} \mathrm{0c} 0642^{\circ}$		γ		
$00675 \cdot 100521$		JMP	SURFI	3no hit；try surface
$00676^{\circ} 950501$		STA	2，PNT1	
00677．0060865		JSR	e．PRNI	；RING GELL FOR HIT
$80700 \cdot 009087$		7		
00701．006005s		JSR	a．CURS	
00792＇000522．		CHAR		
$00703^{\circ} 001000^{\circ}$		$X X$		
$00704^{\circ} 001001^{\circ}$		YY		
90705．09609405		JSR	e．ALPH	
00706.020614		LDA	Q，Char	
0070700．4520		LDA	1，C2	
00710．156414		SUS\＃	C，1，SミR	；IS IT＂2．＂FOR 2ND POINT？
0．7711－002737		JMP	egursir	；NO，SOMETHING ELSE
0071？ 00660075		JSR	e．hITC	
$00713^{\circ 001000}$		$X X$		
09714.001801°		YY		
90715．00n4？		JMP	Bog	：HAVEN ${ }^{\text {a }}$ T HIT A BLOCK
09716.934461		LDA	3，FNTI	；FIRST POINT RACK
00717＇156414		SUB＊	2，3，SZP．	；COMPAKE
cu7？${ }^{\text {ancos417 }}$		JMP	BOG	；another block（cuinciuence）
		LDA	0，23，？	；hit on saye block
nav？＇กอบn？ 4		LDA	1，24，2	FYY LOAD
09723＇123005		ADD	1，0，SiR	
6072．4＇00272．4		J．1P	eCuksk	：EEFO．heturn！

（1073．90604！s	JSR	F．OLPH		C－133
01274， 10660465	Jご\％	B．Ifrin		
01？75：301006	6			
月1276－9－5\％435	JSK	E．HESS		
	MEUM			
$01370 \cdot 0 \cdot 1325$	725.			
21301．909606	393.			
¢1300．י3：555	LDA	2．ACPSv		
013031621017	Lia	$\because \cdot 17.2$	；novent ser	
013．1／11 11：	－ハッーレッ	$\cdots, 0, \leq \pm C$	－CET دich	
$01305 \cdot 64531$	Јご	VETO		
01306.004535	JSR	pos		
N13n7：0n5040s	JSR	e．\triangle LFK		
01310．606046s	JSR	6．IPinN		
81311． 1 90007	7			
01312.3960435	JSR	E．MES		
ก1313＇031655＊	XVLM			
013146013 ？	725.			
01315：97751？	330.			
91316＇93n541	LDA	2．AC2Sv		
$01317 \cdot \mathrm{P} 1005$	LDA	0．5．2	；\times Velocity	
01320.101132	Movzl＂	0，0，SëC	X VELOCIT	
01321.004515	JSR	VETO		
01322.004521	JSR	POS		
$01323 \cdot 9460495$	JSR	Q．ALPM		
$01324 \cdot 0060465$	JSR	e．IPFN		
$01325 \cdot 000006$	6			
$01326^{\circ} 0064435$	JSf	Q．MESS		
01327＇001663＊	YULM	e．tess		
01339．0n1325	725.			
01331＇のn9454	300.			
01332.030525	LDA	2．AC2SV		
$01333^{\circ} \mathrm{C} 21015$	LDA	0．15．2	；y Velocity	
01334＇191132	movel．	$0 \cdot 0, \mathrm{SEC}$		
01335.084581	JSR	VETO		
$91336 \cdot 004505$	JSR	POS		
$01337 \cdot 9060435$	JSR	Q．ALPH		
01340＇0060465	JSR	g．IPRN		
$01341^{\circ} 000306$	6			
01342.06508435	JSR	G．MESS		
$01343^{\circ} 001671^{\circ}$	RVLM			
$01344^{\circ} \mathrm{GO1325}$	725.			
01345＇003416	270.			
01345.030511	LDA	2．AC2SV		
81347.821096	LDA	0，6，2	j－ROT VEL	
$01359^{\circ} 161132$	MOVZL．＂	0．0．SEC		
$01351 \cdot n \pi 4465$	JSR	veto		
$01352^{\prime} \times 14471$	JSR	pos		
$01353^{\prime 0} 0660408$	JSR	e．ALFH		
$01354^{\circ} \mathrm{CO60465}$	JSR	Q．IPrin		
01355＇900006	6			
01356．0060435	JSk	๕．MESS		
月1357＇กの1535＊	SINE			
Q13＊明001325	725.			
01361^{\prime} ก09310	200.			
01362.939475	LDA	2．AC2SV ：	；get block fointer	
$01363 \cdot 931090$	LDA	0，0，2 ；	；SIGA OF THE SINE	
A1364＇101132	movela	п， $0, \mathrm{SEC}$ ；	；$+=$ Q，$-=1$－	
Q1365＇094451	JSR	VETO		
01365：094455	JSR	POS		

91367•「21011		Lua	0,11,2	; CET IHE SITVE
01370.anics5		JSF.	Q. IPFin	
91371.17977?		-6		
R137? 0 cosic 4 ¢			e.MESS	
ก1373-n¢15400		DALF		
01374 9691305		725.		
61375, 0 -95		170.		
$91375 \cdot 030441$		LDA	2.ACesv	
01377 -relcz?		LDA	0,?2,2	; GEt del theta
$01400 \cdot 940416$		STA	O,DELF	; Save it
$81401 \cdot 101133$		MOVEL	O, D, SAC	; - OK +
		J!P	LUS	; HAS foS
$01403 \cdot 604433$		JSR	veto	; PKİIT-
$01404 \cdot n 004.11$		JMP	- +1	; NO OP
6140590.911		LDA	Q.DELF	
		JSF.	Q.IPRN	; Pfind It
01407117777		-6		
$01419.9604 \pi ?$		J^P	-+7	
61411.6n44?	LUS:	JSR	POS	;Pinint +
$01412 \cdot 32.4194$		LDA	B,DELF	
$01413 \cdot 006 ? 445$		JSR	Q.IPRN	
01414.17777?		-6		
01415.000402		JMP	- +2	
01416.0nrana	DELF:	\bigcirc		
01417-0nssa3	C:1T	JSR	E.MESS	
$01420^{\circ} \mathrm{OS1563}$.		oues		
		100.		
Q142? 0 ¢0144		100.		
$01423 \cdot 053110$	DOVR:	NIOS	TTI	
0142.4'0060025		JSR	Q.GETT	
-1425'0060375		JSR	Q.PFN二	
$01426 \cdot 924427$		LDA	1, YCHAF	
$01427 \cdot 106405$		SUR	O, 1, SNR	
$01430 \cdot 000420$		JMP	LODE	
$01431 \cdot 004425$		LDA	1,NCHAR	
01432'106444		SUB	O, 1, SER	
$01433^{\circ} 006770$		JMP	DOVR	
$01434^{\circ} \mathrm{n} 02401$		JMP	ert 3 T	SEXIT
91435'101115	RT3T:	eret3t		
61436.054422	VETO:	STA	3.AC3SV	
$01437 \cdot 0060065$		JSR	E.PRNI	
014496009955		"-		
$01441^{\prime 9} 93417$		LDA	3.AC3SV	
$01442 \cdot 001491$		JMP	1,3	
$01443^{\circ} 34415$	POS:	STA	3,AC3SV	
01444.006006S		JSR	e. PRN1	
$01445 \cdot \mathrm{ceoan3}$,		
91445.934412		L.DA	3.AC3SV	
		J.1\%	0.3	
$01450 \cdot 930407$	LCDE:	Lna	2.ACESV	; GET ELOCK fOINTES
$01451 \cdot 0060535$		JSk	e.LODE	;go to intut routine
01450'0nmana	OCHAR:	\cdots		
9145. -naman	OX:	ε		
01454.0nconat	OY:	\bigcirc		
Q1455.000131	YCHAR:	\cdots		
914560nocil6	NCHAR:	${ }^{\circ} \mathrm{N}$		
$01457 \cdot 000000$	AC2SV:	0		
01469.nonono	AC3SV:	0		
	;			
01461'047111	PMESS:	. TXT	*IN	

```
!145?'05?500
j
01463'?\OmegaO1?4
O1464'r4751? JO
G1465:C47111 IN
01456,?OC1?4 T
01467.051120 F
O1470.051505 ES
0!471.C505つ3 S!
@147e.r4?5?? त巨
@1473.@जल1?3 S*
01474.9425?3 0\ESS: .TXT *SE
01475*:34P514 LE
11476' 51.3 CT
01477'051:0
    115rur:047111
    |591•[<<1!7
    0150P'0??1?5
    01503.04510?
    01504.041517
    01505.000113
01566.042503
01507.052116
01510'047522
01511.0<2111
01512.041440
01513.047517
01514.942122
01515:047111
0:516.05?101
01517.051505
-152n-0rna0n
61521.024130
015%!(44)56,3
315P3'5P115
    15%,9:475??
01525'042111
01526'(%)
01527.0.%131
01530.042503
81531.052116 NT
01532.047522 RO
01533'042111 ID
01534.000の日0 *
01535.0445?3 SINE: .TXT *SI
01536.92,116 N
01537.@44124 TH
01540.052105 ET
01541.r00101 A*
01542.04?504 DALF: -TXT *DE
01543'920114 L.
01544.044124 TH
01545'05?10S ET
O1546'(!nc1g1 A*
01547.050101 LDMES: -TXT *AP
01550.046120 PL
01551.042511 IE
01552.020104 D
01553.047514 LO
01554.04?101 AD
01555•ค0ด123 S*
```

$01556^{\circ} 020130$

*X$01557^{\circ} 947514$LO
O156！． 152101 AD
A1561＇け2C．40$01562 \cdot 60 \pi 000$$61563^{\prime} 047594$$01564^{\circ} 954440$$01565^{\prime} 95 ? 517$$01566^{\prime}$ ๑53440$01567^{\circ} 051511$0157 月．020110 0$01571 \cdot 047524$（157？＇041440＊
OUES： －TXT ＊DO
$\stackrel{Y}{3}$
OUb15
HTOC
$1573^{\circ} \mathrm{c} 4 \mathrm{a}$ ． 51$01574 \cdot 043516$$01575 \cdot 020105$$01576^{\circ} 044124$01577＇ロอด105$01690 \cdot 047514$01601．04210101609.920123$01603^{\circ} 020050$$01604 \cdot 006131$01635＇051117$01606^{\circ} 047940$01697＇ 2 2． 4440Q1610． 037440
$01611^{\circ} 060040$
01612.920131
$01613^{1047514}$
م1614.042101
$01615 \cdot 020040$
01616. 169 ang
$01617^{\circ} 044440$
$01620^{\circ} 050116$
$01621 \cdot 052125$
01621.052125
01622.043040
01623.052454 , U
$01624^{\circ} 046054$
$01625^{\circ} 947440$
$01626^{\circ} 020122$
$01627^{\circ} 020117$
$01630 \cdot 420077$
$01631 \cdot 909090$
$01632 \cdot$. 02130
$01633^{\circ} 047506$
$01634^{\prime} 041522$
$01635^{\circ} 0201$ 135
01636° (152523
の1637•020115
$01640^{\circ} 09$ の日にด
01641. 120131
01642' 047506
01643. 1415 ? ?
01644'の?त105
01645.9525?3
م1646'ก20115
01647° ดกดดทด
$01651^{\circ} 647515$
$01651^{\circ} 027115$
016591647515
$01651 \cdot 027115$
NG
E
TH
E
LO
$A D$
\leq
6
Y
OR
$01606^{\circ} 047940 \mathrm{~N}$
?
YLMES: •TXT *Y
LO
$A D$
*
INMS: .TXT \quad I
NP
UT
$01622.043040 \quad F$
, U
-L
0
R
0
$?$
XFSM: •TXT $* X$
FO
RC
E
SU

$01556^{\circ} 020130$	XLMES：	．TXT	＊\times
01557^{647514}	LO		
Q1560．\％4？101	AD		
A1561＇02c：40			
$01562 \cdot 004008$	＊		
$61563^{\prime} 047594$	OUES：	．TXT	＊DO
01564.054440	Y		
$01565^{\prime} 959517$	OU		
01566． $15344{ }^{\circ}$	W		
$01567^{\circ} \mathrm{0} 51511$	15		
01570．620110	H		
$01571 \cdot 047524$	TO		
9157？ 041440	C		
91573＇04051a	HA		
01574.043516	NG		
$01575 \cdot 020105$	E		
01576.044124	TH		
（1577＇ก20105	E		
016901047514	LO		
の1601．042101	AD		
$01602 \cdot 920123$	S		
$01603^{\circ} 020050$	6		
$01604 \cdot 006131$	Y		
$01605^{\circ} 051117$	OR		
$01606^{\circ} 047940$	N		
Q1607＇029440	）		
日1610． 3.7440	？		
$01611^{\circ} \mathrm{0} 00040$	＊		
01612 929131	YLMES：	－TXT	＊Y
$01613^{1047514}$	LO		
ค1614．042101	$A D$		
01615.020040			
$01616^{\circ} \mathrm{ngang}$	＊		
01617644440	INMS：	．TXT	＊I
$01620^{\circ} 050116$	NP		
01621.052125	UT		
01622．043040	F		
01623.052454	，U		
$01624^{\circ} 046054$	－L		
$01625^{\circ} 947440$	0		
$01626^{\circ} 020122$	R		
$01627^{\circ} 020117$	0		
$01630 \cdot \mathrm{~V} 20077$	？		
$01631 \cdot 000000$	＊		
01632 ＇ヵ20130	XFSM：	－TXT	＊X
$01633^{\circ} 047506$	FO		
$01634^{\circ} 041522$	RC		
$01635^{\circ} \mathrm{0} 201$ 15	E		
01636° ®52523	SU		
91637＇ 120115	M		
$01640 \cdot 00 \Omega \square 00$	＊		
$01641^{\prime} 120131$	YFSM：	－TXT	＊ \mathbf{Y}
01642＇047506	FO		
91643＇6415？	FC		
01644° ¢？	E．		
$01645^{\prime 9} 925 ? 3$	SU		
F1646＇620115	M		
01647° のก¢009	＊		
01650.047515	－1SUM：	－TXT	＊MO
01651•027115	N.		


```
00035:150400
    00636'145069
    00037'102490
    90948.673301
    00641.030742
    00042.03474?
    00043'167022
    00744.151478
    00045'143006
    00046.040735
    00047.044735
    00052.014737
    00051.007424
    00052.336727
    00053.031415
    00054.0007768
    00055.010724
    00056.01472.4
    00057.0097551
    00060.010730
    00061'024723
    00062.020721
    00063.030722
    00964.034722
    00965:16642.2
    00066.142401
    00067'142000
    00070.101123
    00071'000431
    00072'024013-
    00073'020715
    00074'106032
    00075'000425
00076.030014S
00077'0240175
00100'124400
00101'102400
00102.035000
00103'041405
00104.041406
00185'041415
00106'151400
00107'125404
00110.900772
00111'176400
00112.054676
00113.0340165
00114.175004
00115'020405
00116'0060035
00117'000641.
00120.001522
00121.000062
00122'002656
```

```
EG 2.2
```

EG 2.2
MOV 2.1
MOV 2.1
SLES 0,0
SLES 0,0
MUL
MUL
LUA 2.KHI
LUA 2.KHI
LDA 3.KLO
LDA 3.KLO
ADDZ 3.1,SEC ; DOUBLE PREC ADD
ADDZ 3.1,SEC ; DOUBLE PREC ADD
INC 2.?
INC 2.?
ADD 2,0
ADD 2,0
STA O,KHI
STA O,KHI
STA 1,KLO
STA 1,KLO
DSE FLAG
DSE FLAG
JMP NEXT
JMP NEXT
; y velocity
; y velocity
LDA 3.aFOINT
LDA 3.aFOINT
L.DA 2,15,3
L.DA 2,15,3
JMP BACK
JMP BACK
NEXT: ISZ POINT
NEXT: ISZ POINT
DSZ COUNT
DSZ COUNT
JMP ITER
JMP ITER
; CHECK ON HYSTERESIS COUNT
; CHECK ON HYSTERESIS COUNT
ISZ HYS
ISZ HYS
LDA 1,KLO
LDA 1,KLO
LDA Ø,KHI
LDA Ø,KHI
LDA 2.KOHI
LDA 2.KOHI
LDA 3.KOLO
LDA 3.KOLO
SUBZ 3.1.SEC ;DOUSLE PREC SUB
SUBZ 3.1.SEC ;DOUSLE PREC SUB
SUB 2.0.SKP
SUB 2.0.SKP
ADC 2.0
ADC 2.0
MOVZL. \&.0.SNC
MOVZL. \&.0.SNC
JMP NOPK
JMP NOPK
LDA 1,.C1g
LDA 1,.C1g
LDA 0.HYS
LDA 0.HYS
ADCZ 0.1.SZC
ADCZ 0.1.SZC
JMP NOPK
JMP NOPK
; zERO VELOCITIES
; zERO VELOCITIES
LDA 2,.MI
LDA 2,.MI
LDA 1,.NUM
LDA 1,.NUM
NEG 1,1
NEG 1,1
SUB 0,0
SUB 0,0
LDA 3.0.2
LDA 3.0.2
STA 0,5,3
STA 0,5,3
STA 0,6,3
STA 0,6,3
STA 0.15,3
STA 0.15,3
INC 2.?
INC 2.?
INC 1.1,SZR
INC 1.1,SZR
JMP ITRE
JMP ITRE
SUB 3,3
SUB 3,3
STA 3,HYS
STA 3,HYS
LDA 3.,PFLG 3INHIBIT PRINTING IN NOPLI
LDA 3.,PFLG 3INHIBIT PRINTING IN NOPLI
MOV 3.3.SZR
MOV 3.3.SZR
JMP NOPK
JMP NOPK
JSR e.MESS
JSR e.MESS
KMS
KMS
850.
850.
50.
50.
JMP
JMP
QKRET
QKRET
%
%
*-------------RESET ROUTIME ----
*-------------RESET ROUTIME ----
*

```
*
```

00123.054407	CHNGIT:	STA	3,SAV3
$00124^{\prime} 1764008$		SUB	3,3
$00125^{\circ} 054004-$		STA	3..ITHI
$00126^{\circ} 054003-$		STA	3..1TLO
08127.176520		suszl	3,3
00130.0540100		STA	3..COPCT
00131.002401		JMP	esav3
00132.000000	SAV3:	0	
		OPTION	InPUt ROUTINE -
	3		
00133.0060075	OPTIN:	JSR	e.PAGE
$00134^{\circ} 0060935$		JSR	e.meSS
$08135^{\circ} 000455^{\circ}$		OPTMS	
$00136^{\prime} 177242$		-350.	
00137.001274		700.	
00140.0060035		JSR	e.MESS
$00141^{\circ} 000467^{\circ}$		CRMS	
00142.000062		50.	
$00143^{\circ} 001236$		670.	
$00144^{\prime 2060115}$	OUT:	JSR	e.GETT
$00145 \cdot 024546$		LDA	1, CRGRT
00146.106415		SUB\#	D,I,SNR ;MUST EXIT
00147.000535		JMP	HOME
00150.0060035		JSR	Q.MESS
08151.000523*		$N \mathrm{~N}$	
00152.000310		200.	
$00153^{\circ} 001212$		650.	
$00154^{\prime 0} 060035$		JSR	e.MESS
$00155^{\circ} \mathrm{C00555}{ }^{\circ}$		Q1	
00156.000113		75.	
$00157^{\prime 001130}$		600.	
00160.0060115	OV1:	JSR	e.GET T
$00161^{\prime} 024531$		LDA	1,YCHR
00162.106414		SUB*	0, 1,SER
$00163^{\circ} 000405$		JMP	- +5
09164.0060105		JSR	e.PRN2 SPRINT Y
00165'126520		SUBzl	1,1
$00166^{\circ} 0440045$		STA	1, NVEC ; SET FLAG TO PRINT
$00167 \cdot 000407$		JMP	CNT 1 ; NEXT
$00170^{\prime \prime} 024521$		LDA	1,NCHR :CHK FOR NO
00171.106414		SUB"	O,1,SER
08172'006766		JMP	OVI
$00173^{\circ} 0060105$		JSR	O.PRN2 : PRINT IT
00174126448		SUBO	1.1
$00175^{\circ} 9440045$		STA	1,.NVEC : INHIBIT PRINTING
00176.0060035	CNT 1:	JSR	e.MESS
$00177^{\circ} 000605^{\circ}$		02	
$00200 \cdot 000113$		75.	
$00201^{\circ} 001046$		550.	
00202.006012s		JSR	E.DMIN
$00203^{\circ} 0440055$		STA	1,.VFAC sSET SCALE FACT
00204.0060035		JSR	e.MESS
00205.001051.		Q6	
$00206^{\circ} 008113$		75.	
09207900764		500.	
00210.0860115	OVR6:	JSR	e.gETT
の0211.024501		LDA	1, YCHR
0021?.106414		SUB\#	$0.1, S E R$
$00213^{\prime 0} 00405$		JMP	-+5

$00310 \cdot 177777$ $00311^{\prime} 000116$ 00312.000131 $00313^{\circ} 009215$
 $00314^{\circ} 054523$ $00315^{\circ} 020093-$
 00316.024514
 00317.101400
 $00320 \cdot 106415$
 $00321^{-000404}$
 $00322 \cdot 040093-$
 $00323^{\circ} 034514$
 $00324^{\circ} 901400$
 $00325 \cdot 102400$
 $00326^{\circ} 040003-$
 00327-810004-
 $00330^{\circ} 004434$
 $00331^{\circ} 034506$

```
BAKK: CONTR
NCHR: 'N
YCHR: "Y
CRGRT: 15
;
:---------ROUTINE TO STEP CYCLE COUNTER ---
;
; JSR (.STEF
JMP 0,3 BEXIT
}
\begin{tabular}{|c|c|c|}
\hline 3AKK: & \multicolumn{2}{|l|}{} \\
\hline NCHR: & " N & \\
\hline YCHR: & 'Y & \\
\hline CRGRT : & 15 & \\
\hline \multicolumn{3}{|l|}{;} \\
\hline \multicolumn{3}{|l|}{3--------ROUTINE TO STEP CYCLE COUNTER --} \\
\hline 3 & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{JSR E.STEF}} \\
\hline ; & & \\
\hline \multicolumn{3}{|l|}{3} \\
\hline \multirow[t]{9}{*}{STEP:} & STA & 3.SAV3P \\
\hline & L.DA & 6..IILO \\
\hline & LDA & l. ITMAX \\
\hline & INC & 0.0 \\
\hline & SUB \({ }^{\text {\% }}\) & \(0,1, \operatorname{SNR}\) \\
\hline & JMP & NOTCH \\
\hline & STA & 0,-ITLO \\
\hline & LDA & 3.SAV3P \\
\hline & JMP & 0.3 ; EXIT \\
\hline \multirow[t]{6}{*}{NOTCH:} & SUB & 0,0 \\
\hline & STA & O.,ITLO ; RESET LO WORD \\
\hline & ISZ & -ITHI JINCREMENT HI MORD \\
\hline & JSR & OPTON : CHECK OPTIONS \\
\hline & LDA & 3.SAV3P \\
\hline & JMP & 0.3 3EXIT \\
\hline \multicolumn{3}{|l|}{3} \\
\hline \multicolumn{3}{|r|}{-ROUTINE TO PRINT CYCLES-} \\
\hline \multicolumn{3}{|l|}{;} \\
\hline ; & JSR & e.tPRN \\
\hline \multicolumn{3}{|l|}{3 ( 3 USR} \\
\hline \multirow[t]{24}{*}{TPRN:} & STA & 3,TERMITE \\
\hline & READS & 0 \\
\hline & MOVZR & 0,0,SZC \\
\hline & JMP & 001 \\
\hline & JSR & e.MESS \\
\hline & MAT & \\
\hline & 450. & \\
\hline & 770. & \\
\hline & LDA & 0. ITHI \\
\hline & JSR & e.IPRN : HI PART \\
\hline & 5 & \\
\hline & LDA & 0.-ITLO \\
\hline & JSR & Q.IPRN \(\operatorname{LO}\) PART \\
\hline & -4 & 3WITH LEADING ZEROS \\
\hline & JSR & C.MESS \\
\hline & CYC & \\
\hline & 598. & \\
\hline & 770. & \\
\hline & LDA & 1,MU \\
\hline & LDA & 2,C1000 \\
\hline & SUB & 0.0 \\
\hline & MUL & \\
\hline & JSR & Q.IPRN 3PRINT DEFAULT MU \\
\hline & -3 & \\
\hline OOT: & JMP & etermite \\
\hline \multicolumn{3}{|l|}{3} \\
\hline \multicolumn{3}{|l|}{\(3-\)} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{3 OPTION CHECKER}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
```

$00332^{\circ} 001408$
$00333^{\circ} 054501$
$00334^{-068477}$
$00335^{\prime 1} 101222$
$00336^{\circ} 000425$
$00337^{\circ} 0060035$
$00340^{\circ} 000454^{\circ}$
$00341^{\prime} 000702$
$00342^{\circ} 001402$
$00343^{\circ} 020004-$
$00344^{\circ} 0060015$
$00345^{\circ} 000005$
$00346^{\circ} 020003-$
$00347^{\circ} 0060015$
00350.177774
$00351^{\circ} 9060035$
$00352^{\circ} 000440^{\circ}$
$00353^{\circ} 001116$
$00354^{\circ} 001402$
$00355^{\circ} 0240135$
$00356^{\circ} 030453$
$00357 \cdot 102400$
$00360^{\circ} 073301$
$00361 \cdot 0060015$
$00362 \cdot 177775$
$00363^{\circ} 002451$

00364＇05445？	OPTON：	STA	3．SAVE3		
00365＇020005－		LDA	Q，OPPTN	；ACTIUATE OPTIONS	$?$
$00356^{\circ} 101725$		MOV	0．8．SNR		
$00367^{\circ} 001400$		JMp	0，3		
29370＇020006＊		LDA	c．COPY		
ดด371＇101964		MOV	O，O，SER		
20372＇904413		JSR	COPI		
日®373＇020067－		LDA	6，．STOP		
08374＇101004		MOV	$0 \cdot 6 . S E R$		
00375 －000403		JMP	BON		
$00376^{\circ} 034440$		LDA	3．5AVE3		
$00377^{\circ} 001400$		JMP	0.3		
0日420＇n2ane－	BON：	LDA	1．．ITHI		
00401＇106405		SUB	0.1. SNR		
$08402{ }^{\prime} 002431$		JMP	QCONTIN		
$004233^{\circ} 034433$		LDA	3．SAVE3		
$00404^{\circ} 001400$		JMP	0， 3		
	；				
$00405^{\circ} 054430$	COPI：	STA	3．SAV3A		
$00406 \cdot 020004-$		LDA	Q，ITHI		
$004076024010-$		LDA	1．．COPCT		
$00410^{\circ} 105414$		SUB＊	Q，1，SER		
$00411^{\prime} 091400$		JMP	0.3		
00412．0060025		JSR	e．PRNI		
00413＇000007		7		3RING BELL	
$00414{ }^{\text {c }} 004717$		JSR	TPRN		
$00415^{\circ} 0060065$		JSR	Q．DISS		
$08416^{\circ} 0060025$		JSR	e．PRNI		
$00417^{\circ} 002033$		27.		IASCII ESC	
$004200^{\circ} 0660825$		JSR	Q．PRNI		
80421．000027		23.		：ASCII ETB	
$00422^{\circ} 0060075$		JSR	e．PAGE		
80423 $024918{ }^{\circ}$		LDA	1．．COPCT		
$00424^{\circ} 930886=$		LDA	2，．COPY		
$00425 \cdot 147080$		ADD	2．1		
$00426^{\circ} 044010 \sim$		STA	1，COPCT		
$00427^{\circ} 034406$		LDA	3，SAV3A		
$00430^{\circ} 001400$		JMP	0,3		
	；				
$00431^{\prime} 001750$	C1000：	1000.			
$00432 \cdot 023420$	ITMAX：	10000.			
$00433^{\circ} 000310^{\circ}$	CONTIN：	CONTR			
$00434^{\circ} 000000$	TERMITE				
$00435^{\circ} 000000$	SAV3A：	0			
$00436^{\circ} 0000000$	SAVE3：	0			
$00437^{\circ} 000000$	SAV3P：	0			
$00440 \cdot 041440$	CYC：	－TXT	＊C		
$00441^{\prime} 041531$	YC				
$00442^{\prime} 042514$	LE				
$00443^{\prime} 020123$	S				
$00444^{\circ} 020040$					
$00445^{\circ} 942504$	DE				
$00446^{\circ} 040506$	FA				
$00447^{\circ} 046125$	UL				
$00450 \cdot 920124$	T				
00451＇052515	MU				
$00452 \cdot 038075$	$=0$				
00453^{\prime} の日日月56	－${ }^{\text {＊}}$				
$00454^{\circ} 000040$	MAT：	－TXT	＊＊		
$00455^{\circ} 046448$	OPTMS：	－TXT	＊A		

00456.048525	VA		
$00457 \cdot 046111$	IL		
010460.041101	AB		
$08461^{\circ} 042514$	LE		
00462.047440	0		
$00463^{\circ} 052126$	PT		
00464'047511	10		
$00465^{\circ} 051516$	NS		
$00466^{\circ} 008040$	*		
$00467^{\prime} 02$ ดด50	CRMS:	. $\mathrm{T} \times \mathrm{T}$	* 1
$00470 \cdot 644519$	HI		
$00471 \cdot 420124$	T		
00472.027103	C.		
$00473 \cdot 027122$	R.		
00474'052040	T		
$00475^{\circ} 928117$	0		
$00476^{\circ} 047507$	GO		
$00477{ }^{\circ} 041040$	8		
$00500 \cdot 041501$	AC		
$00501^{\prime} 020113$	K		
00502.047516	NO		
00503.020127	W		
$00504^{\circ} 020055$	-		
$00505^{\circ} 047101$	AN		
$00506^{\circ} 020131$	Y		
$005077^{\circ} 052117$	OT		
$00510^{\circ} 042510$	HE		
00511'020122	R		
00512.042513	KE		
$00513^{\circ} 020131$	Y		
00514.047524	TO		
$00515^{\prime \prime} 041440$	C		
$00516^{\circ} 047117$	ON		
$00517^{\prime} 044524$	T I		
$00520 \cdot 052516$	NU		
00521.020105	E		
00522.000051)*		
$00523^{\circ} 040450$	N1:	. TXT	* (A
00524'051516	NS		
005?5'042527	WiE		
00526.020122	R		
$00527^{\circ} 045101$	AL		
$00530 \cdot 020114$	L		
00531.052521	Qu		
00532.051505	ES		
$00533^{\circ} 044524$	TI		
$00534^{\prime} 047117$	ON		
$00535^{\prime} 026523$	S-		
$09536 \cdot 052123$	ST		
$00537^{\circ} 047101$	AN		
$00540^{\circ} 940504$	DA		
$00541^{\circ} 042122$	RD		
$00542 \cdot 040440$	A		
$00543^{\circ} 051516$	NS		
$00544^{\circ} 042527$	WE		
$00545 * 051522$	RS		
$00546^{\circ} 047072$:N		
$00547^{\circ} 031454$	- 3		
00550.131450	(C)		
$00551^{\prime} 024522$	R)		

$00552.047054 \quad N$
$\begin{array}{ll}00553^{\circ} 047054 & N \\ 00554^{\circ} 000051 & ; *\end{array}$
$\begin{array}{ll}00553^{\circ} 047054 & N \\ 00554^{\circ} 000051 & \text { J* }\end{array}$
$00555^{\circ} 647534$ 01:
$00556^{\circ} 054440 \quad Y$
$00557^{\circ} 052517$ OU
$00560^{\circ} 053440$ w
00561.051511 IS
$00562^{\circ} 020110 \mathrm{H}$
$00563^{\circ} 047524$ TO
$00564^{\circ} 050040$ P
00565°.644522 RI
$00566^{\circ} 052116 \mathrm{NT}$
$00567^{\circ} 040440$ A
$00570^{\circ} 050120$ PP
$00571^{1 \cdot 044514 ~ L I ~}$
00572.042105 ED
$00573^{\circ} 046040$
$00574^{\circ} 040517$
$00575^{\circ} 020104$
$00576^{\prime} 040526$
$00577^{\circ} 952514$
$00600^{\circ} 051505$
$00601^{\circ} 024040$
$00602^{\prime} 027531$
$00603^{\circ} 024516$
$00604^{\circ} 000077$
$00605^{\circ} 044127$
$00606^{\circ} 052101$
$00607^{\circ} 053440$
00610.052517
00611 -042114
$00612^{\circ} 054440$
$00613^{\circ} 052517$
$0061^{\circ} 046040$
$00615^{\circ} 045511$
$00616^{\circ} 920105$
$0061^{\circ} 051501$
$00620^{\circ} 052040$
$00621^{\circ} 042510$
$00622^{\circ} 053040$
$00623^{\circ} 041505$
$00624^{\circ} 047524$
$00625^{\circ} 020122$
$00626^{\circ} 041523$
$00627^{\circ} 045101$
$00630^{\circ} 020105$
$00631 \cdot 040506$
$00632^{\circ} 052103$
$00633^{\circ} 051117$
$00634^{\circ} 024040$
$00635^{\circ} 026116$
$00636^{\circ} 051103$
$00637^{\circ} 037451$
$00640 \circ 000200$
$00640^{\circ} 00 日 200$
$00641^{\circ} 027113$
$00641^{\circ} 027113$
00642.027105
00643° の4252 5
$00644^{\circ} 045501$
00645° 日00日0
P
A
L
$O A$
D
VA
LU
S
ES
(
Y/
N)
?*
02: -TXT *WH
AT
W
OU
LO
Y
OU
L
IK
E
AS
I
HE
V
EC
TO
R
SC
AL
AL
E
FA
CT
OR
(
N,
,
CR
)?
*
KMS: .TXT $\#$ K.
E.
PE
AK
AK
*
．TXT＊DO
Y OU W H TO
P RI A PP LI ED OA D VA LU ES Y／ N） ？＊ ．TXT＊WH AT w OU
LD Y OU L IK
E AS T HE EC TO R SC AL E A OR （
N ， CR ）？ KMS：\quad TXT $\# K$ ． E． PE AK ＊

$00646 \cdot 907504$	Q3:	- TXT	* DO
$0064 \%^{\circ} 654440$	Y		
$00650 \cdot 352517$	OU		
$00651^{\circ} 953446$	W		
$00652^{\circ} 051511$	IS		
$00653^{\circ} 020110$	H		
$00654 \cdot 047524$	TO		
$00555^{\circ} 052440$	U		
$00656^{\circ} 042523$	SE		
$00657^{\circ} 040449$	A		
$00660^{\circ} 052125$	UT		
$00661^{\prime 2} 21517$	OC		
$00662^{\prime 050117}$	OP		
$00663^{\circ} \mathrm{C20131}$	Y		
$00664^{\circ} 051117$	OR		
$00665^{\circ} \mathrm{040440}$	A		
$00666^{\circ} 052125$	UT		
$00667^{\circ} 051517$	OS		
$00670^{\circ} 047524$	TO		
$00671 \cdot 020120$	P		
08672.054450	CY		
$00673^{\circ} 047057$	/N		
$00674^{\circ} 037451$)?		
$00675^{\circ} 000000$	*		
$00676^{\prime 0} 04127$	04:	- TXT	*WH
00677.052101	AT		
$00700^{\circ} 053440$	W		
00701.052517	OU		
$00702 \cdot 042114$	LD		
$00703^{\circ} \mathrm{CS4440}$	Y		
$00704^{\circ} \mathrm{C5} 517$	OU		
00705.046040	L		
00706.345511	IK		
$00707^{\circ} 020105$	E		
$00710^{\circ} 051501$	AS		
00711.052040	T		
00712.042510	HE		
$00713^{\circ} 041448$	C		
$00714^{\circ} 050117$	OP		
$08715^{\circ} 020131$	Y		
$00716^{\circ} 047111$	IN		
$06.17 \cdot 051103$	CR		
$\cdots 9720^{\circ} 046585$	EM		
00721.047105	EN		
0072.2020124	T		
$00723^{\circ} 047058$	(N		
*0724*041454	, C		
$00725^{\circ} 024522$	R)		
$00726^{\circ} 060677$?*		
$00727^{\circ} 052181$	95:	- TXT	* ${ }^{\text {T }}$
$00730^{\circ} 953440$	W		
$09731 \cdot 040510$	HA		
$00732 \cdot 020124$	T		
$00733^{\circ} 947520$	PO		
$00734^{\circ} 047111$	IN		
$00735^{\prime} 020124$	T		
$00736^{\circ} 047527$	Wo		
$00737^{\circ} 045125$	UL		
$00743^{\circ} 820104$	D		
00741'047531	YO		

$00742 \cdot 920125$
$00743 \cdot 044514 \mathrm{~L}$ $00744^{\prime 0} 04$ ？513 KE $00745^{\circ} 052040 \quad T$ 00745＇920！17 00747．05？123 ST 00750.050117 OP $00751.024040 \quad($ $00752 \cdot 026116 \mathrm{~N}$, $08753^{\circ} 651103$ CR $\left.00754^{\prime 0} 937451\right) ?$ $00755^{\circ} 903008$＊ $00756^{\prime 0} 047516$ N2： －TXT＊NO 00757° 042524 $00760 \cdot 020072$ $00761^{\circ} 044124$ $00762^{\circ} 020105$ $00763^{\circ} 047536$ $00764^{\circ} 046114$ $00765^{\circ} 953517$ OW 00766°（147111 IN $00767^{\circ} 020107$ $00770^{\circ} 052516 \mathrm{NU}$ $00771^{\circ} 041115$ $00772^{\circ} 051105$ $00773^{\circ} 020123$ $00774^{\circ} 051101$ $00775^{\circ} 020105$ $00776^{\prime 0} 052515$ $00777^{\circ} 052114$ LT $01000^{\circ} 050111$ IP 01001.042514 LE 01002 020123 $01003^{\circ} 043117$ OF $01004^{\circ} 0304401$ $01005^{\circ} 030060$ $01006^{\circ} 030060$ $01007^{\circ} 000000$ $01010^{\circ} 044450$ 01011026105 $01012^{\circ} 044124$ $01013^{\circ} 020105$ $01014^{\circ} 947503$ $01615 \cdot 050115 \mathrm{MP}$ $01016^{\circ} 020056$ $01017^{\circ} 047111$ IN $01020^{\circ} 042524$ TE $01021^{1050122 ~ R P ~}$ 0102 ？ 042522 RE $01023^{\circ} 651524$ TS $01024^{\circ} 8310402$ 01025・の464ムも $01026^{\circ} 920123$ $01027 \cdot 839062$ $01030^{\circ} 030960$ $01031 \cdot 324460$ $01032^{\circ} 0000080$ $01033^{\prime 0} 044510$ 4：－TXT＊HI $01034^{\circ} 020124$ $01035^{\prime} 048503$

		．TITL	INPUT
	\％${ }^{\text {a }}$		
	；SEVERAL	infut	houtines
		－ENT	－SPRF，．．INP，UINP．．UD，．UK，．fSEC
		－ENT	FEET，FOLND，MOUFL，－FEMI，．PKES
		－ENT	－LODE，．MOVE，．XCGO，．YCCD
		－ENI	－SYCL，－Mfle，．dMBN，－DMBF
		－ExTO	－PKAI，FLIS，．PAEE，MMESS，．IFAN
		－EXTD	MU，－DISS，CUKS，．ALPH，．PHN2
		－ExTD	－AXIS．．D9IN．．EEII，Prine
		－ExTD	－TfFi，HIIC
		－EXTD	－CHEK，HORD．．HITS．．OB0．．H7，．MEM
		－EXTD	－MSKR，．LENG，－PONI，．PON2，．REBE
		－ExTA	conif
		－EREL	
のagan－anaz ${ }^{\text {a }}$	．SPRP：	PROF	
	．INP：	input	
日agar－naton3＇	－loDe：	LODE	
9aga3－031157＇	－SIGN：	SGN	
חnaba－nal174＇	－bran：	BFing	
00n05－0912a2＇	－NGAT：	neat	
09006－931－43．	－MOVE：	move	
のanat－ananaa	－XCED：	0	： X DISP
日2010－903020	－YCED：	ด	；Y DISP
ดanli－agnata	－SYCL：	0	；DCM CYCLES
0日大1？－7日3002	－MFLE：	0	；DCM FLAG－ $0=0 \mathrm{FF}$
日日a13－gracan	－DYBN：	0	；＇＂Block no．
0na14－8日anan	－DMRP：	0	；＂block poiniek
gnol－amanam	．UD：	0	sunit of disflacement
20916－6030an	－Un：	0	：UNIT WEIGHT
日an17－09631？	－UINP：	UINP	：ENTRY FOK UNITS INFUT ROUIINE
ดロロさの－177777	－PE， 1 T：	177777	；PRESS．SECMENI EMPIY HEAD
日0821－177777	－PFES：	177777	；FEEESS．SEEAENI LISI HEAD
－09ว？－900413＇	．PSEC：	EGGI	
		－NKEL	
000012		－RDX	10
	3		
	PDISPLAY PROPEEIY TABLE AND NAIT FOROUSER TO TYPE IN NEW FKICIION COEFFICIENTS．		
	3		
PACARM－954467	INPUT：	STA	3．SFSAV
日anal masiane	IN？：	JSK	e．pAEE
日rano ambanas		JSR	e．MESS
20003＇月01？22．		TEXTI	
0apona．177634		－100	
0nan5．an1139		600	
ennas innshase		JSR	e．mESS
		TEXT？	
00010．177634		-100	
$00011 \cdot 901034$		540	
		JSR	e．mes
日an13．901237		TEXT3	
anal4．177160		－400	
anal5－031034		540	
nam16．096agas		JSR	Q．MESS
		TEXT4	
RRaparamalas		108	
		510	
ancrz＇ลananca		L．DA	0.40

3 Y			
; FRACTION IN ACC			
$N=3$			
FRAC:	STA	3.FSAV	
	STA	O.FF	
	L.DA	0.0.0.3	
	L.DA	1,1,3	
	JSR	e.pLTS	
	0		
\&	JSR	Q. Prinl	
	37		
¢	JSR	(P.PFNI	
	\cdots		
¢	JSR	C. PFNI	
	''。		
	LDA	1, FR	
	LDA	2.c1090	
	SUR	Q, 0	
	MUL		
-	JSR	e. If F N	
	-N		
	LDA	3,FSAV	
	JMP	2,3	
FSAV:	0		
FR:	0		
CHAR:	0		
X :	0		
$Y:$	0		
	-RDX	10	
c1000:	1000	;SET AT	10**N
	- RDX	8	
;			
; PUT UP CURSOR AND MAIT			
GET:	JSR	e.CUFS	
	CHAR		
	X		
	Y		
	JSR	e.ALPH	
	LDA	o.char	
	LDA	1.CF	
	SUQ*	0, 1, SEF	3CHECK FDR "RETUKN"
	JMP	NEXT	
	JSR	C.PAGE	: NO Changes retukn.
	JSR	e.TPRN	
	JSR	0.DISS	; AND EXIT
	Jimp	ESPSAV	
NEXT:	LDA	1.DOT	
	SUB*	0,1, SZK	PCHECK FOR DEC. POINI
	JMF	CET	SNO GOOD: KEEP MAIIING
	LDA	1,Y	
	LDA	Q, YL	
	SURE	$0,1, \operatorname{SNC}$; CHECK FOR LOWER LIMII
	JMP	GET	
	SUR	日, ${ }^{\text {a }}$	
	LDA	2.YINC	
	DIV		
	LDA	A,N1S	
	SURE	1.0.SNC	: CRECK FOK UPPER LIMII

-- -
คの2.57'01475月
0月260'月のロ76?
Q日ク61'192751
日月262'024414
00263'122415
日昭64*00?746
日卬265'0.224?:

日ดр67'arロama
014631
00081?
001217
090191
004986
000080
00270.000271.
$00271^{\prime} 814631$
00272.001217
00273° 日の日1 तt
$00274^{\circ} 202006$
00275.80日000
$08276^{\circ} 009015$
000090
000012
009912
00311.900808
日月312'654777
$00313^{\circ} 0060034$
00314 •006004S
$00315^{\circ} 901264^{\circ}$
$00316^{\circ 177634}$
$08317^{\circ} 001138$
0ค320.036094S
ค03? 1.0日1305
00322.177634
$00323^{\circ} 001965$
6月32.4.0日6004S
$00325^{\circ} 001312^{\circ}$
00326° ค日の 342 ?
00327'901065
00330° 996月135
$00331^{\circ} 091412$
0日332.9n月144
an333.0n0S5a
00334'0969045
ด日 33° ดの 133°
$00336^{\circ} 909144$
ด9337. ตคの620
0め34の・のn6の145
$00341^{\circ} 944915-$
00342° ตのムかっ1s
のท343'900361:
คの3A4'ロกS日のAS
$00345^{\prime} 00135^{\circ}$

$09346 \cdot 960144$		100			
Q0347＇003310		200			
		－KDX	8		
90350．096014s		JSǐ	e．DBIN	；GET UNIT KEIGHI	
90351．044016－		STA	1，．UW		
00352．0760215		JSR	P．hORD	；FORCE DESCKIPTOR	
の日353＇90日37？${ }^{\circ}$		POUND			
00354．006015s		JSR	e．GETI		
90355＇9050n3s		JSR	e．PAEE		
00356．0060165		$J S R$	e．tprn		
00357° の日大刀）075		JSR	e．DISS		
$00360^{\circ} 002731$		JMP	eUSAV		
088011	FEET：	－BLK	11	B BYIE SIRING FOK DISPL．	
000011	POUND： 3	－8LK	11	B BYIE SIRING FOK FORCE	
	；INPUT OF PRESSURE SEGMENIS				
$00493 \cdot 9960945$	ERR：	JSR	E．MESS		
000812		－FDX	10		
$00404^{\circ} 00141^{\circ}$		TOBIG			
$00405{ }^{\circ} 900310$		200			
90406．000764		500			
000010		－RDX	8		
0の4日7＇0日の405		JMP	EGGS		
の0410． 0 9月の日0	$\begin{aligned} & \text { EGG3: } \\ & \text { FORIN: } \end{aligned}$	0	－－		
$00411 \cdot 000000$		B			
000012		－FDX	10		
$00412^{\circ} 000175$	N125：	125			
000810		－PDX	8		
$00413^{\circ} 654775$	EGG1：	STA	3．EGG3		
00414.0060195	EGGS：	JSR	－．CURS		
$00415^{\circ} 009604^{\circ}$		CHARI			
Q6416＇0n660．		XP			
$00417^{\circ} 000606^{\circ}$		$Y P$			
日0420＇220554		LDA	0，CHARI		
$00421^{\circ} 0064205$		JSR	e．CHEK		
ค日422＇002766		JMP	CEGG3	：EXIT	
$00423^{\prime \prime} 0960115$		JSR	e．ALPH		
00424．0060224		JSR	O．HITS		
$00425^{\circ} 000605^{\circ}$		XP			
00426＇000606＇		YP			
$00427{ }^{\prime} 000765$		JMP	EGGS	；NO HIT	
0043a．050557		STA	2，AC2B	：BLOCK POINTER	
の日431＇044557		STA	1，NP	：EDGE	
$00432 \cdot 040557$		STA	B，NB	；BLOCK＊	
$00433^{\circ} 054557$		STA	3，ZIMM	；RE－ENTRY ADDFESS	
$00434^{\circ} 020551$		LDA	O．XP		
0日435＇024551		LDA	1，YP		
の日436＇930555		LDA	2．C5	；OFFSEI	
－124371424日日		SUB	2．0		
$00440^{\circ} 1464$ A日		SUB	2.1		
		JSK	e．PLTS		
0日442＇0日日明		0			
80443＇0日GOIIS		JSR	e．ALPH		
PA444＇C060015		JSR	e．PRNI	3PRINT＊ON SELECTED	
00445＇0ดの日52		＂＊ 3 －DGE			
00446＇020536		L．DA	B．CHARI	PGEI INITIAL CHARACTEK	BACK
日日447＇0c6日23s		JSR	－．DBD	3 NOW GET THE RESI	
0045月， 030572		LDA	2，CRF		
＠日451＇142414		SUAF	2．0．SER	ICHECK FOR CR	

```
    60452.00?736
    A0453.0.44736
    00454.030533
    01455.0.04533
    00456.40601275
    00457.1C50gn
    09450.030731
    00461\cdot1172400
    00462.073301
    00463'0307?7
    00464.142513
    00465'c07716
    00456.073101
    94467'04A542
    00\triangle70'月の157?
    00471'0%4440
    00472.000463
    00473'r20550
    0日474'1016月4
    9@475'020524
    00476.021の日? 
    00477'041490
    0250日'0?日920-
    00501'950029-
    00502'94100?
    00503.034507
    00504.005401
    00505*000605*
    00506*000606*
    00507'月007.05
    00510.0545月2
    00511'050476
    00512'044476
    00513'040476
    00514'006日27S
    00515'1050000
    00516'030673
    00517'102400
    00520.073301
    00521'030671
    00522.142513
    00523'000660
    09524'073101
    00525'044516
00526'000534
00527'00900a
00530.anด021-
80531'030021-
00532'151112
0053\mp@subsup{3}{}{\circ}001400
00534*054773
00535'02.4454
00535'a2.4452
00537'1013^の
00540'1070日日
00541'034767
09542'021900
```


$00634^{\circ} 034412$		LDA	3．fFLAG	
10635＇1634日可		AND	3.0	
00636．199090		con	0.0	
$00637^{\prime \prime} 61700$		STA	0.0 .2	；SET PRESSURE FLAG
00643.0050325		$J S R$	e．REBE	；REBOX：UPDATE FX，FY
$00641 \cdot 000642$		J．MP	AGAIN	
$00642 \cdot 000015$	CRR：	15		
$00643^{\circ} 090909$	FORCE：	0		
$00644^{\circ} 900808$	MOMNT：	0		
$00645^{\prime} 000806$	SIZPR：	6		
00646.177377	PFLAG：	177377		
$00647 \cdot$ 日月acand	XA：	6		
$07650^{\circ} 0000000$	X 8 ：	0		
0日65： 0 － 0 anaco	YA：	0		
$09652^{\circ} 090900$	YB：	0		
09653° の日月a00	LNG：	0		
$90654^{\circ} 0900000$	XD：	0		
$00655^{\circ} 00000000$	YD：	0		
$00656^{\circ} 00000000$	XCC：	0		
$00657^{\circ} 000000$	YCC：	0		
$00660^{\circ} \mathrm{A0日0000}$	HI：	0		
$00661^{\prime} 009208$	LO：	0		
	；			
$00662^{\circ} 030725$	COMPM：	LDA	2．AC2B	
$00663^{\circ} 824725$		LDA	$1 . N P$	
$00664^{\circ} 0060305$		JSR	e．PONI	
$00665^{\circ} 0497662$		STA	0.10	
$00666^{\prime 044763}$		STA	1．YA	
00667＇024721		LDA	I，NP	
$00670 \cdot 0060275$		JSR	e．leng	
$00671^{1040762}$		STA	O．LNG	
$00672^{\prime} 021088$		L．DA	0，0．2	
00673 ＇0347265		LDA	3．MSKR	
00674＇163400		AND	3.0	
$00675 \cdot 125400$		INC	1．1	
00676＇122415		SUR＊	1,0, SNR	
$00677 \cdot 126400$		SUB	1.1	IMUST BE FIRST CORNER
00700.0868315		JSR	e．PON2	
$00701^{\prime 0} 034745$		LDA	3． XA	
00702＇162400		SUB	3，8	：XB－XA
00703.034746		LOA	3，YA	
0日704＇1564日0		SUB	3.1	BYB－YA
$00705 \cdot 040747$		STA	$0, \times 0$	
$00786^{\circ} 044747$		STA	1．YD	
00707.021091		LDA	$0.1,2$	－\times C
$00710^{\circ} 024675$		LDA	$1 . \times 8$	SMID－POINT
00711．122400		SUB	1.0	
$00712^{\circ} 044744$		STA	$0 . X C C$	
$00713^{\circ} 091003$		LDA	0.3 .2	；re
08714.024672		LDA	1，YP	
$88715 \cdot 122490$		SUB	1，0	
$00716^{\circ 049741}$		STA	O，YCC	
$06717^{\circ} 904445$ ，		JSR	SMUL	3SIGNED MULTIPLY
00720.069655^{\prime}		YD		
$08721^{\circ} \mathrm{ecac} 657^{\circ}$		YCC		
$00722^{\circ} 049736$		STA	$0 . \mathrm{KI}$	
09723＇暞4736		STA	1．LO	
00724＇604441		JSR	SMUL．	
00725＇006654＇		$\times 0$		
00726 ${ }^{\circ} \mathrm{O日月656}{ }^{\circ}$		$x C C$		

09727'030731		LDA	2, HI	
00730.034731		LDA	3.10	
ดn731.167n2?		ADUE	3,1, 5 ± 6	sADD 2 DF NLMBERS
$00732 \cdot 151480$		INC	2,2	
$00733 \cdot 143790$		ADD	$2 \cdot 0$	
$00734^{\prime} 176400$		SUA	3.3	
$00735 \cdot 101113$		MOVL\#	$0,0, \sin$ c	; MEgative?
$08736 \cdot 060435$		JMP	NONEG	; NO
$00737 \cdot 12.4405$		NEG	1,1, \sin	
$08740 \cdot 10949!$		NEG	$0.0 .5<1$	
$00741 \cdot 108098$		COM	0.0	
$00742 \cdot 176520$		SUBzL	3.3	
00743.030710	NONEG:	LDA	$2 \cdot L N G$	
$00744^{\circ} 073101$		DIV		
$08745 \cdot 030676$		LDA	2.FORCE	
00746.102480		SUR	$0 \cdot 0$	
00747.673301		MUL		
$00750 \cdot 175005$		MOV	3.3.SNR	
$00751^{\circ} 000484$		JMP	BIT8	
$00752 \cdot 124485$		NEG	1.1.5Nk	
00753.100481		NEG	$0.0 .5 K P$	
00754.100000		COM	0.0	
$00755^{\circ} 0300265$	BIT8:	LDA	2..MSKR	; TAKE MIDDLE 8 8ITS
$00756^{\prime} 143700$		ANDS	2,0	
$00757 \cdot 1253008$		movs	1,1	
$00760^{\prime 147400}$		AND	2,1	
$00761 \cdot 107000$		ADD	0.1	BRESULT IN AC!
$00762 \cdot 044662$		STA	1,MOMNT	
$00763^{\prime 0} 002417$		JMP	eThT	
$00764^{\circ} 000980$	SMUL3:	0		
$00765^{\prime 0} 054777$	SMUL:	STA	3,SmUL 3	
$00766^{\prime 0} 07400$		LDA	1, e8, 3	-
$00767 \cdot 023431$		LDA	2,01,3	
00770'176489		SUB	3.3	
00771'125112		MOVL*	1,1,SZC	
00772'157000		ADD	2,3	
00773.151112		MOVL"	2,2,SzC	
00774'137000		ADD	1,3	
00775'102400		Sub	0.0	
00776.073301		MUL.		
00777'162400		SUB	3,0	
$01090 \cdot 034764$		LDA	3,SMUL3	
01001.001402		JMP	2,3	
$01002 \cdot 000471^{\prime}$	TWT:	TWIT		
	\%			
	; APPLI	D LOAD	INPUT < N	NUM.)
$01003 \cdot 050437$	LODE:	STA	2,8LKPT	
$01004 \cdot 0060045$		JSR	C.MESS	
$01005{ }^{\circ} 001431^{\circ}$		NEWX		
01006.000175		125.		
01007600113		75.		
01810.096003-	XL.OD:	JSR	U.SIGN	BEE SIEN OF LOAD
$01011.096004-$		JSR	e.brng	; GET LOAD
01012.9060945		JSR	e.mess	
$01013^{\circ} 001445^{\circ}$		SMES		
01014000416		270.		
018150969113		75.		
$01016^{\circ} 90077$?		JMP	XLOD	
01017'006005-		JSR	e.ngat	

$01820^{\circ} 03642 ?$		LDA	2.8LKPT	
$01021 \cdot 945023$		STA	1.23.2	; PUT It In LISt
	3			
6192? 1 906cous		JSR	e.mess	
$01623^{\circ} 0 \cdot 1437^{\circ}$		NEWY		
01924.ancil75		125.		
$01025^{\circ} 900067$		55.		
01926'0nchar	YLOD:	JSR	Q.SIGN	
91027'06606a-		$J S R$	e.BFNG	
81039.935an4x		JSR	e.mess	
$01831^{\circ} \mathrm{On} 1445^{\circ}$		SMES		
01032.00nal6		270.		
$01033^{\prime 0} 000667$		55.		
$01034^{\circ} 009772$		J.4P	YLOD	
01035'096835-		JSK	e.nGAT	
$01036 \cdot 03 \mathrm{Can4}$		LDA	2,BLKPT	
$01037 \cdot 045024$		STA	1,24,2	
$01040 \cdot 902401$		jMP ECONT		
C1041'177777				
$01042 \cdot 200600$	$\begin{aligned} & \text { BLKPT: } \\ & \text {; } \end{aligned}$	0		
	3 DISPLACEMENT CONTROL ROUTINE			
$01943^{\circ} \mathrm{6} 068045$	MOVE:	JSR	e.MESS	
$01044^{\circ} 0191577^{\circ}$		BMES		
$01045^{\circ} 090144$		100.		
$010466^{\circ} \mathrm{Omal} 44$		100.		
010479066105		JSR	e.curs	3SELECT BLOCK
Q1050, 901154°		Chirc		
$01051^{\prime} 001155^{\circ}$		XDM		
		YDM		
$01053^{\circ} 0860175$		JSR	e.hitc	
01954'091155'		XDM		
01055'001156		YDM		
$01856^{\circ} 808765$		JMP	move itry again	
01057.020475		LDA	0, CHRC	; IS IT AN "E"
$010680^{\circ} 034473$		LDA	3,ESKPB, 3 SNR	; IF SO EXIT AND
01061.116415		Sus*		; UNHOOK DCM
$01062^{\circ} 000531$		JMP	FNSH	
$01063^{\circ} 950014-$		STA	2,.DMBF ; BLOCK POINTER	
$01064^{\circ} 044813-$		STA	1,.DMBN :AND NUMBEK	
01065'176520		SUBZL	3.3 :GEN A 1	
01066.054812-		STA	3,.MFLG	; ALERT DCM
	3 3			
	3--.- ACCEPT DISPLACEMENTS			
	3			
$01067 \cdot 0060935$		JSR	E.PAGE	
01070.0060845		JSR	e.MESS	
$01071^{\circ} \mathrm{0日1457}$		DMS 1		
0107? 177470		-200.		
01073.006764		500.	e.MESS	
$01074^{\circ} 0060045$		JSR		
$01075^{\circ} 001477^{\circ}$		DMS2		
$01076^{\circ} 090341$		225.		
$01077^{\circ} 090733$		475.		
01100.0069045		JSR	e.MESS	
$01101^{\circ} 091515^{\circ}$		DMS3		
$01102 \cdot 908226$				

3			
3----------			
552545	STA	3. GOBK	
	LDA	OSSIEN	
	JSR	e.prna	; PRINT SIGN
	JSR	e.D日IN	; \times LOAD IS IN ACI
	LDA	3.605K	
	JMP	5,3	
3			
;			
NGAT:	LDA	0.SIEN	SSIGN OF NEW LOAD
	LDA	2,MNUS	;ASCII -
	SUB*	0,2,SNR	
	NEG	1,1	
	JMP	0.3	
3 3			
Plus:	$\cdots+$		
MNUS:	'		
GOBK :	0		
SIGN:	0		
;			
FNSH:	SUB	1.1	
	STA	1.,MFLG	; TURN OfF flag
S	JSR	e.mESS	
	DMS 6		
	-390.		
	608.		
	JMP	PCONT	
3			
TEXT:	. TXT	*SU	
RF			
$A C$			
E			
PR			
OP			
ER			
II			
ES			
*			
TExT2:	. TXT	*TY	
PE ${ }^{\text {P }}$			
*			
TEXT3:	. TXT	*FR	
IC ${ }^{\text {c }}$			
II			
ON			
*			
TEXT4:	. TXT	* DE	
FA			
UL			
T			
(${ }^{\text {P }}$			
YP			
E			
*			
0)			
*			
TEXT5:	. TXT	* PR	

$01257 \cdot 052117$	OP		
0126 .051135	ER		
01261.054524	TY		
$01262^{\prime} 921440$	\#		
01263.603046	*		
81264'047111	TExT8:	- TXT	*IN
$01265^{\circ} 052520$	PU		
01266*124124	T		
$01267^{\prime 0} 043117$	OF		
$01270^{\circ} 042040$	D		
01271.051511	IS		
$01272^{\circ} 043524$	TA		
01273.941516	NC		
01274.020105	E		
$01275 \cdot 047101$	AN		
$01276 \cdot 920104$	D		
$01277^{\prime 0} 47506$	FO		
$01300^{\circ} 041522$	RC		
$01301 \cdot 020105$	E		
$01302 \cdot 047125$	UN		
$01303^{\circ} \mathrm{052111}$	I I		
$01304^{\prime} 000123$	S*		
$01305 \cdot 940503$	TEXT9:	- TXI	*CA
$01306^{\circ} 052125$	UT		
$01307 \cdot 047511$	10		
01310.035116	N:		
01311.000000	*		
01312.647117	TEX10:	- TXT	*ON
$01313^{\circ} 954514$	LY		
$01314^{\circ} 947040$	N		
$01315 \cdot 046525$	UM		
$01316^{\circ} 042502$	BE		
$01317 \cdot 851522$	RS		
01320.643048	F		
01321.047522	RO		
$01322 \cdot 026115$	M		
01323.020061	1		
$01324^{\circ} 044124$	TH		
$01325^{\circ} 047522$	80		
$01326^{\prime 043525}$	UG		
01327.920110	H		
$01330 \cdot 030065$	50		
$01331^{\prime} 030060$	00		
01332.048440	A		
$01333^{\circ} 046114$	LL		
$01334^{\circ} 053517$	OW		
$01335^{\circ} 842105$	ED		
$01336 \cdot 000000$	* ${ }^{\text {c }}$ -		
$01337^{\prime} 044127$	TEXI1:	- TXT	*WH
$01340 \cdot 052101$	AJ		
$01341^{\circ} 042040$	D		
01342.028117	0		
Q1343.047531	YO		
$01344^{\circ} 020125$	U		
$01345^{\circ} 040527$	ViA		
01346.052116	NT		
$01347 \cdot 052040$	T		
$01350^{\circ} 044510$	H1		
$01351^{\circ} 920123$	S		
$01352^{\circ} 042514$	L.E		

$01353 \cdot 043516$ @1354.944124 $01355^{\circ} 059040$ 01356° Q20.6117 $01357 \cdot 8425$?2 $01360 \cdot 351120$ 01361.051505 $01362 \cdot 1047105$ 01363.0375 ? 4 01354.002040 $01355^{-044127}$ $01366^{\circ} 05 ? 101$ $01367 \cdot 944442$ 01370.020123 $01371^{\circ} 044124$ 01372.020105 $01373 \cdot 047125$日1374.05?111 $01375 \cdot 053448$ $01376^{\circ} 044505$ $01377^{1044197}$ 01400.020124 $01401^{\circ} 043117$ 01402.051040 01403.041517 $01484 \cdot 037513$ $01485^{\circ} 000046$ 01406.046407 $01407^{\circ} 046505$ $01410 \cdot 051117$ 61411.020131 01412.053117 $01413^{\circ} 051105$ 01414.046106 $01415 \cdot 053517$ $01416^{\circ} 006000$ $0147^{\prime} 050987$ $01420^{\circ} 042522$ $01421 \cdot 051523$ 01422.851125 $01423^{\circ} 0210105$ $01424^{\circ} 947524$ $01425^{\circ} 020117$ $01426^{\circ} 049514$ 01427.043522 $01430^{\circ} 000105$ $01431^{\prime} 042516$ $01432 \cdot 020127$ $01433^{\circ} 020130$ 01434.047514 $01435^{\circ} 042101$ $01436^{\circ} 1000040$ $01437 \cdot 042516$ $01440 \cdot 020127$ $01441^{\circ} 020131$ $01442^{\circ} 047514$ $01443^{\circ} 042101$ $01444^{\circ} 000040$ $01445^{\circ} 051440$ $01446^{\prime} 043511$

NG
TH
T
0
RE
PR
ES
EN T?
TEX12: .TXT *hH

AT
I
5
TH
E
UN
IT
b

EI
GH
T
OF
R
OC
K ?
MOVFL: $\cdot T X T \quad *<7>M$
EM
OR
Y
OV
ER
FL
ow
*
TOBIG: .TXT *<7>P
RE
SS
UR
E
TO
0
LA
RG
E*
NEWX: .TXT *NE
W
x
LO
$A D$
NEWY: •TXT *NE
W
Y
10
AD
SMES: .TXT * S
$01447^{\circ} 020116$ 01450° a44596 $01451^{\circ} 051522$ 81452.928124 $01453^{\circ} 046120$ $01454^{\circ} 040505$ ©1455 042523 $01456^{\circ} 280040$ $01457^{\circ} 047111$ $01460^{\circ} 052520$ $01461^{\circ} 020124$ $01462 \cdot 044506$ $01463^{\circ} 042530$ $01464^{\circ} 020104$ $01465^{\circ} 046102$ $01466^{\circ} 041517$ $01467 \cdot 020113$ $01470^{\circ} 044504$ $01471 \cdot 050123$ $01472^{\circ} 048514$ $01473^{\circ} 042503$ 61474'042515 $01475 \cdot 052116$ $01476^{\circ} 008123$ $01477^{\circ} 031050$ $01500^{\circ} 054105$ $01501^{\circ} 030520$ $01502 \cdot 020066$ $01503^{\circ} 051511$ $01504^{\circ} 047440$ $01505^{\circ} 042516$ $01506^{\circ} 051440$ $01567^{\circ} 051103$ 01510.042505 01511.028116 $01512 \cdot 047125$ $01513^{\circ} 052111$ $01514{ }^{\circ} 000051$ $01515^{\circ} 020130$ $01516^{\circ} 042503$ $01517^{\circ} 052116$ $01520^{\circ} 047522$ $01521^{\circ} 042111$ $01522^{\circ} 042040$ $01523^{\circ} 051511$ $01524^{\circ} 046120$ $01525^{\circ} 041501$ $01526^{\circ} 046505$ $01527^{\circ} 047105$ $01530^{\circ} 000124$ $01531^{\circ} 020131$ $01532^{\circ} 042503$ $01533^{\circ} 052116$ $01534^{\circ} 047522$ 01535 042111 $01536^{\circ} 042040$ $01537^{\circ} 051511$ $01540^{\circ} 046120$ $01541^{\circ} 041501$ $01542^{\circ} 046505$
N
FI
RS
RS
I
PL
EA
SE
DMSI: .TXI $\#$ IN
PU
T
FI
XE
XE
${ }^{\mathrm{D}} \mathrm{B}$
${ }_{\mathrm{O}}^{\mathrm{OL}}$
${ }^{K}$
DI
SP
LA
CE
ME
NT
S*
DMS2: .TXT * (2
EX
P1
6
IS
0
NE
S
$C R$
EE
N
UN
IT
)*
DMS3: .TXT *X
CE
NT
RO
ID
D
IS
PL
$A C$
EM
EN
T* \quad.TXSA: \quad TY
DMSA: •TXT *Y
CE
NT
RO
RO
10
1
15
PL
AL
EM

				C-165
$01543 \cdot 947105$	EN			c-165
$01544^{\prime} 000124$	T*			
01545.044506	DMS5:	-TXT	* ${ }^{1} 1$	
$01546 \cdot 044516$	NI	.TXT	*F1	
01547044123	SH			
01550.042105	ED			
01551.053454	, W			
01552.944591	AI			
01553.044524	II			
01554.043516	NG			
$01555^{\circ} 940440$	A			
01556.020124	T			
$01557^{\circ} 947503$	co			
01560.052116	NT			
81561.800122	R*			
01562.047125	DMS6:	- TXT	*UN	
$01563 \cdot 047510$	H0			
$01564^{\circ} 945517$	OK			
01565.942105	ED			
01566.942048	D			
$01567^{\circ} 046503$	CM			
$01570^{\circ} 026440$	-			
01571.920055	-			
01572.052101	AT			
01573.041440	C			
01574.047117	ON			
01575.05 .1124	TR			
$01576^{\circ} 090908$	+			
015771042523	BMES:	- TXT	* SE	
$01600^{\circ} 042514$	L.E			
01601.652103	CT			
$01602 \cdot 041049$	B			
01603'047514	LO			
$01604^{\circ} 945503$	CK			
01605.044954	, H			
$01606^{\circ} 052111$	IT			
01607'040440	A			
016101054516	NY			
01611945440	K			
01612.054505	EY			
01613.000000	*			
$01614^{\circ} 941440$	DMS7:	. TXT	* C	
$01615^{\circ} 941531$	YC			
$81616^{\circ} 042514$	LE			
01617902123	S			
01620.042502	BE			
01621'053524	Tw			
01622.942505	EE			
$01623^{\circ} 020116$	N			
81624.847515 M	MO			
$01625 \cdot 942526$	VE			
01626.020123 S	S			
01627'028080 *				

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

[^2]
[^0]: - Figure 2.2 A Horizontally Stratified Rock Mass

[^1]: sect consolidation
 The block data passed onto Phase 3 from the first two overis: contains information pertaining to individual blocks only. The

[^2]: Voegele, Michael D
 Rational design of tunnel supports: an interactive graphics based analysis of the support requirements of excavations in jointed rock masses / by Michael D. Voegele, Department of Civil and Mineral Engineering, University of Minnesota, Minneapolis, Minn. Vicksburg, Miss. : U. S. Waterways Experiment Station ; Springfield, Va. : available from National Technical Information Service, 1979.
 v, [516] p. ill. ; 27 cm . (Technical report - U. S. Army Engíneer Waterways Experiment Station ; GL-79-15)

 Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Contract No. DACW45-74-C-0066.

 References: p. R-1 - R-9.

 1. Excavation. 2. Interactive graphics. 3. Jointed rock. 4. Rock masses. 4. Tunnel supports. I. Minnesota. University. Dept of Civil and Mineral Engineering. Il. United States. Army. Corps of Engineers. III. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report ; GL-79-15.
 TA7,W34_ne_6l-79-15
