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I.  INTRODUCTION 

The presence of smoke, dust, aerosol and exotic gases on the 

battlefield may impair the effectiveness of battlefield radar in such 

an environment.  The object of the work described in this report was 

to review the unclassified and classified literature on the absorption 

and scattering processes undergone by 100 ym to 1 cm wavelength radia- 

tion as it propagates through the atmosphere.  The literature reviewed 

includes those papers that describe calculations and measurements of 

100 lim to 1 cm wavelength radiation and absorption by normal atmospheric 

gases and by water vapor, rain, ozone, atmospheric aerosols, clouds, 

fogs, battlefield dust and smoke and the exotic gases produced by 

motorized equipment and weapons during battle. 

The government report literature surveyed during this study is 

listed in Appendix A of this report.  An NTIS literature survey was ob- 

tained for use in this study.  The NTIS survey was entitled "Submllli- 

meter Wavelength Radiation Absorption and Scattering by Atmospheric 

Gases, Water Vapor, Ozone, Aerosols, Clouds, Fog, Battlefield Dust and 

Smoke." A total of 51 reports listed in the NTIS survey was ordered 

for use in this study.  A number of the reports listed in the NTIS sur- 

vey were already available in the RRA document files.  A total of 190 un- 

classified, 34 limited, and 14 classified government sponsored research, 

reports were reviewed for this study.  In addition, a number of books 

were reviewed and articles on millimeter radiation interactions in the 

atmosphere from the following journals were reviewed: 

IEEE Transactions on Microwave Theory and Techniques, 1970-1977 
IEEE Transactions on Antenna and Propagation, 1970-1977 
Journal of the Optical Society of America, 1970-1977 
Applied Optics 
Infrared Physics, 1963-1977 
Journal of Geophysical Research, 1963-1977 ! 



Journal of the Atmospheric Sciences, 1974-1976 
Optics and Spectroscopy, (Russian Translation) 1970-1977 

,  Radio Physics and Electronics (Russian Translation), 1969-1977 
Nature and Nature/Physical Sciences, 1970-1977 
Journal of the Faraday Society, 1970-1977 (and selected 1960's) 
Optical Engineering, 1973-1978 
Physical Review (selected articles), 1965-1975 
Review of Modern Physics (selected articles), 1973-1978 
Journal of Molecular Spectroscopy, 1967-1977 

Section II gives a summary of the unclassified documents in the 

open literature on:  1) attenuation by atmospheric water vapor and oxygen, 

2) atmospheric index of refraction, 3) attenuation and scattering by fog, 

rain and clouds, 4) attenuation and scattering by snow. 5) attenuation by 

Ozone, 6) attenuation and scattering by aerosols and dust and 7) attenua- 

tion and scattering by battlefield generated dusts and smokes.  Section III 

gives a summary of the limited distribution, unclassified literature on at- 

tenuation and scattering by rain and hail, attenuation by water vapor and 

the refractive indices for sea spray.  Section IV discusses the results 

of the review of the classified literature. 

A bibliography of the unclassified literature is given in Appen- 

dix A.  Section V describes the methods used to index the contents of the 

articles reviewed.  Recommendations for further work that is needed to 

further the understanding of the interaction processes undergone by mm 

and sub mm radiation as It propagates in the atmosphere are given in 

Section VI. 
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II.  SUMMARY OF LITERATURE SURVEYED 

The following sections present data taken from the reviewed 

, literature which describe the current state of knowledge on the inter- 

action cross sections for millimeter and submillimeter radiation when it 

is propagated through the atmosphere. 

2.1    Attenuation by Water Vapor and Oxygen 

Corcoran has presented a table (shown here as Table I) of the 

' atmosphere "Windows" and bounding absorption peaks, from 3.2 cm to 

156 \im  for absorption due to water vapor and oxygen for a zenith path 

through a cloudless Maritime Polar atmosphere.  The absorption is given 

for water vapor, oxygen, and combined gaseous attenuation for these 

chief atmospheric constituants. 

2 
Traub and Stier has presented an atmospheric calculation for 

mid and far IR at 4 observing altitudes, 4.2 km (Mauna Kea), 14 km 

(aircraft), 28 km (balloon), and 41 km (balloon). Molecular abundances, 

effective pressures and temperatures used in the Curtis-Godson approxi- 

mation as shown here in Table II (from Traub and Steier, Ref, 2).  They 

used the AFCRL atmospheric absorption line parameter tape  to obtain the 

wavenumber, line strength, pressure broadening coefficient, and energy 

level of the lower state for over 109,000 known transitions of H 0, 0 , 

0^, CO^, CO, N^O, and CH^ between .76 Mm and 3.26 mm.  Figure 1 presents 

the results of their calculations of atmospheric transmission from 100 ym 

to 1000 ym using the initial conditions shown in Table II.  The "4 km"  ' 

labeled curve is really for the 4.2 km altitude of Mauna Kea.  The verti- 

cal ordinate, the transmission, unreadable in the curves of Fig. 1 is 

linear from 0 to 1. A Lorentz line profile was used for simplicity, 

though a Van Vleck-Weiskopf line profile would have been more accurate 

in the wings of each line. 



Table  I.     Candidate  "Windows"  in  the  Submillimeter and 
Microwave Bands,  Arising from Absorption Spectra of 
Water Vapor and Oxygen,  with Attenuation in Decibels 
Calculated  for a Zenith Path  through a Cloudless Mari- 
time Polar Atmosphere  (from Ref.   1) 

WdvelFngth   (approx.) 

Bounding Absorption  Peaks Attenuation ( in decibels) a long  zenith path 

of   window at   jp.ist Wavplpnqth of Primary Combined 
Window qdseous absorption peak absorption absorbing  gas By  water  vapor By  oxygen gaseous absorption 

No absorption of  consequence  at          1 
wavelengths  greate r  than   3.2cm 

I l.?cm 0.005 0.140 0.145 

l.Scm Water vapor 0.408 0.200 0.608 

II 9mti, 0.074 .0.340 0.414 

Bmrn Oxygen 0.100 135. 135.1 

III SiTnn 0.25 5 1.00 1.253 

2.5 2mm Oxygen 0.447 30.0 50.447 

IV 2. ^rrm 0.S06 0.40 . .,  .-,   :.>■;         0.906 

1 .6mm Water  vapor (is.e 0.16 65.98 

V 1. 5mm 1 . BO 0.31 2.11 

9 20u Water  vapor 90.9 0.68 ,91-"iB 

VI BBOu 9.12 0.75 9.87 

780u Water  vapor f,21. 0.-95 •   ., • .-. ;     621.95 

VTI 72nu 20.9 1.10 22.00 

f.60u Water  vapor e74. 1.30 • ^ :      '■     875.30 

VIII 6'-,nu f.4.8 1 .40 €6.20 

6?0u Water vap)or 184. 1.50 >                     185.50 

IX ft?Oa SS.S 1.55 57.05 

5 30u Water  vapor 37,100. 2.10 37,102. 

X iSOu 189. 2,40 191.40 

"ITSu Water  vapor I'Kl. 2.60 ' ■   ■ "           692.60 

XI ' SOu 'V.O 2.90 '"•90 

39 7u Water vapor 27,000. 3.80 ■ 27,003.8 

XII 34 5u ■72.0, 5.0 :.     ;,      •    77,0 

325u Water vapor I.ISO. 5.6 1,455.6 

XIII 320u 189. •     5.8 194:8 

303u Water  vapor 176,000. 6.5 176,006.5 

XIV 29nu 360. ■ 7. '   "      367. 

256u Water  vapor 18 7,000..^ 
'.    '•     ■- 

187,009. 

XV 237u '">4 0. 11. 551. 

215u Water   vapor 176,000. 13. .   176,013. 

XVI 200u 486. 15. 501. 

174u Water  vapor 6,900. (20.) 6,920. 

XVII .    If.'lu 1,2 30. (22.) 1,252. 

1S6U Water vapor 6,900. (25.) 6,925. 
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Table II.  Molecular Abundances, Effective Pressures, and 
Temperatures Used in the Curtis-Godson Approximation^'^ 

4.2 km 14 km 28 km 41 km 
(Mauna Kea) (Aircraft) (Balloon) (Balloon) 

?6, 209460,0 ppmv 209460.0 209460,0 209460.0 
325.0 ppmv 325 0 325,0 325.0 

CH. 1.5 ppmv 1.1 0,8 0.4 
NjO 0.25 ppmv 0,20 0,20 0.20 
CO C.07 ppmv 0 06 0,06 0.06 
H,0 1200|jm 2,5 ppmv 2,5 ppmv 2.5 ppmv 
0, 7.28 E18cm-' 6.37 EIH 1,85 E18 1.70 E17 
P 600.0 mbar 14i.6 16,2 2.52 
P(eff) 300.0 mbar 70.8 8,10 1.26 P(H,0) 506.0 mbar 70,8 8,10 1.26 
^(O,) 36.4 mbar 30,2 7,09 1.84 
T(eff) 228.0 K 217.0 230 0 268.0 
r(H,0) 252.0 K 217,0 230.0 268.0 no,) 219.0 K 221,0 233,0 260.0 

"The HjO abundances in the last three columns correspond to 2.25, 0 26, and 0.040 precipitable Mm, respectively; the 
H,0 at 4.2 km is assumed to have a scale height of 1.85 km. The abundances listed are for unit air mass; an additional factor 
of 2 is included in the actual calculations corresponding to a zenith angle of 60". Tlie base pressure at each altitude is given 
byp,  and the effective pressure for collisional line broadening is indicated by p(eff), p(H,0\ and p(0,) for the first five 
ipecies, HjO, and O,, respectively ;the temperatures rtt th 0 corres!) -.'nding prpssure levels are also listed. 

Data from Ref.   2. 

t 
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4 
Archie Straiton , in a tutorial article, presents the results 

of a calculation of the attenuation in the 10-400 GHz wave bands 

(3.33 cm - .75 mm) due to oxygen and water vapor in a vertical path 

from sea level for a standard atmosphere.  His results are shown in 

Fig. 2.  We see graphically the major absorption lines and windows of 

the microwave-mm wave region; below 100 GHz, the absorption spectrum 

is dominated by the "22" GHz water vapor line, and the "60" GHz molecu- 

lar oxygen line.  Attention has been placed on communication systems 

operating in the 35 GHZ and 93 GHz regions of transmission maximum 

for long range requirements, and in the 60 GHz region, for short range, 

secure communications.  Some authors have utilized the water vapor 

lines (in emission) at 22 GHz and 183 GHz to measure the atmospheric 

water vapor content.  In his calculation, Straiton used the Gross / 

Zhevakin-Naumov attenuations T(v) at a frequency V for a single line 

with center frequency v.. 

r(v) = ^ 
/   2 b       4TT V a 

IT  , 2     2,2 , , 2 2 
(v . . - V )  + 4v a 

S - a measure of the strength of a line 

a = approximately the change in frequency from V.. at which 

the attenuation has dropped to 1/2 (line breadth parameter = 

-Av) 

Values of V.., S, and a, which are given by Burch for water vapor 

from 0.5 to 36 cm are presented here as Table III. The water vapor line 

breadth parameter is given by (after Straiton, Ref. 4) 

pT    (P/760) 
Av = 2.62 (1 + 0.01 — ) — ,    ' 

(T/3.18)0-^25 
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Table III.     Parameters  for HO  lines below 38.8  cm 

(Data  from Ref.   7) 

'I 
cm ' 

.r 
lsuU)|)i 320°K 

'renipei 'iUiirc 
30()"K. 280 "K: 260''K 240°K 220"K 

1.,?') - 2 1.42-2 1.43-2 1.42-2 1.38-2 
(li^X) OWA O.IW) 0.104 0.110 
4.7i-4 3.01-4 1.77-4 9.30-5 4.28-5 
0.(W5 0.0<;9 0.10 on 0.12 
7.5,^-4 8.85-4 1.05-3 l,2(>-3 1.54-3 
0.102 0,1(J6 0.111 0.117 0.123 
7.42-4 8.16-4 8.98-4 9X9-4 1.09-3 
0.0<W 0.0<)7 0.10 0.11 0.11 
5.52-4 5.91-4 6.30-4 0.67-4 7.01-4 
().0<«) o.o<;4 0.098 0.10 0.11 
l.(W-3 1.20-3 1.32-3 1.45-3 1.60-3 
0.091 0.095 0.099 0.10 0.11 
2.55 2.88 3.28 3.76 4.32 
().(W6 0.100 0.105 0.111 0.117 
0.48-3 7.34-3 8.36-3 9.58-3 1.10-2 
0.096 0.10 0.11 0.11 0.12 
3.22-3 3.75-3 4.40-3 5.21-3 6.26-3 
0.10 0,10 0.11 0.12 0.12 
3.28-3 3,51-3 3.75-3 3.<»-3 4.20-3 
0,089 0,093 0.0')8 0.10 0.11 
3.54-3 4,06-3 4.68-3 5.44-3 6.38-3 
0.(W6 0,10 0.11 0.11 0.12 
7.64-2 5.84-2 4.22-2 2.84-2 1.75-2 
0.077 0.079 0.081 0.084 0.087 
2.95 3.14 3.33 3.51 3.65 
0.093 0.097 0.102 0.107 0.113 
1.95-4 1.49-4 1.08-4 7.28-5 4.48-5 
0.077 0.079 ■ 0.082 0.085 0.088 
2.72+1 2.99+1 3.30+ 1 3,64+1 4.02+1 
0.0<>5 0.0<« 0.104 0.109 0.115 
5.93-2 6.54-2 7.21-2 7.96-2 8.78-2 
0.095 0.099 0.10 0.11 0.12 
8.43-3 5.92-3 3.89-3 2..U-3 1.26-3 
0.070 0.072 0.074 0.076 0.078 
1.52-1 1,25-1 9.96-2 7.48-2 5.23-2 
0.050 0.051 0.052 0053 0.055 
2.28 2.10 1.88 1.62 1.34 
0.065 0.067 0.068 0070 0.073 
4.67-1 3.87-1 3.07-1 2.31-1 1.61-1 
0.050 0.051 0.053 0.054 0.056 
2.82+1 3 03+1 3.25+1 3.46+1 3.66+1 
0.082 0.085 0.089 0.092 0.097 
8.72-1 8,01-1 7.16-1 6.18-1 5.10-1 
0.063 0,065 0.066 0.069 0.071 
3.55 3.56 3.52 3.42 3.24 
0.069. 0.071 0.073 0.075 0.078 
6.93-1 6.72-1 6.39-1 5.93-1 5.32-1 
0.086 0.0<X) 0.0';3 0.098 0.103 
6.99-2 7.51-2 8.06-2 8.60-2 9.12-2 
0.082 0.085 0.088 0089 0.096 
9.82-2 7.21-2 4.98-2 3.18-2 1.84-2 
0.042 0.043 0.044 0.046 0.047 
3.28-2 2.41-2 1.67-2 1.06-2 6.15-3 
0.042 0.043 0.045 0.046 0.047 
2.16-1 2..54-1 3.03-1 3.66-1 4.4«-1 
0.1 U 0.116 0.122 0.128 0.135 
3.43 4.03 4.78 5.75 7.01 
0,111 0.116 0.122 0.128 0.135 
1.73+3 2.04+3 2.42+3 2.91 + 3 3.54+3 
O.lll 0.116 0.122 0.128 0.136 
3.90-1 4.55-1 5.35-1 6.36-1 7.66-1 
0.104 0.109 0.115 0.121 0.129 
1,84+1 1.84+1 1.82+1 1.76+1 1.67 + 1 
0.076 0.079 0.083 0.087 0.092 
1.15 7.78-1 4.92-1 2.83-1 1.45-1 
0.111 0.116 0.122 0.128 0.135 
2.31 2.67 3.11 3 66 4.34 
0.104 0 109 0.115 0.121 0.129 
1.15 + 3 1.33 + 3 1.55+3 1.82 + 3 2.16+3 
0.104 0.109 0.115 0.122 0.129 

n,74 

2.27 

2,69 

4,03 

4.62 

4.80 

6.11 

6.79 

8,06 

8.50 

S.90 

10.74 

10.85 

11.89 

12.68 

13.05 

13.10 

14.58 

14.65 

14.78 

14.92 

15.68 

15.87 

16.29 

16.30 

16.79 

16.82 

16.96 

18.26 

18.58 

19.99 

20.71 

21.% 

24.84 

25.09 

3 
4 
3 
1 
1 
5 
4 
6 
5 
4 
4 
3 
2 
3 
2 
2 
2 
5 
4 
2 
3 

10 
9 
5 
4 

10 
9 
4 
3 
4 
3 

10 
11 

7 
6 
6 
5 
7 
6 
4 
3 
6 
5 
5 
4 
6 
7 
4 
3 
8 
7 
8 
7 
1 
1 
1 
1 
1 
1 
2 
2 
5 
4 
1 
I 
2 
2 
2 
2 

-5 
-1 
-3 

1 
1 
0 

-4 
0 

-5 
-1 

0 
-1 
-2 

2 
-2 

2 
0 

-1 
-1 

1 
2 

-2 
- 7 
-3 
-4 

0 
-7 
-3 
-3 

1 
-3 

1 
-4 
-8 

2 
6 
1 
5 
3 
5 

-1 
3 
2 
4 
0 
4 

-2 
-6 
-1 

3 
3 
7 
4 
6 
1 

-1 
1 

-1 
1 

-1 
0 

-2 
1 
3 
1 

-1 
0 

-2 
0 

-2 

18 

IS 

18 

18 

18 

18 

S=1.35- 
° = 0.087 
6.95-4 
O.fWl 
6.47-4 
0.098 
6.75-4 
0.089 
5.15-4 
0.086 
9.86-4 
0.088 
2.26 
0.092 
5.75-3 
0.0')2 
2.79-3 
0.096 
3.05-3 
0.085 
3.11-3 
0.(W2 
9.57-2 
0.074 
2.77 
0.089 
2.44-4 
0.075 
2.47+1 
0.091 
5.38-2 
0.091 
1.14-2 
0.069 
1.77-1 
0049 
2.43 
0.064 
5.45-1 
0.049 
2.62+ 1 
0.080 
9.29    1 
0.001 
3.51 
0.0<)7 
7.05-1 
0,0X3 
6.49-2 
0.079 
1.27-1 
0.042 
4.20-2 
0,042 
1,85-1 
0,107 
2,95 
0.107 
1.49+3 
0.107 
3.38- 1 
0.100 
1.82+1 
0.073 
1.59 
0.107 
2.02 
0.100 
1.00 + 3 
0.100 

The table is to be read as indicated by tlic tollnwing example fnr n 
cm"'. The isotnpe is H;C>"' unless ind*' 

1.74 cm   ' line. J' =0. 7" =5. r' = -5, 7" = - 1. ."J = 1.3.S X 10"' g- 
■■d olhiTWLse; D corresponds to UDO. 18 10 ll..()'«. 



Table Til.  (Continued) 

>'o .7' 
cm"' .!" 

28.07 10 
11 

2S.,U j 

28.68 
1 
2 
2 

29.77 1 
0 

30,(n 2 

Ml 1 ,i 
1 
3 
2 

,W.2,! 9 
8 

M) !<6 4 
3 

32.." 5 
4 

32.'U 2 
1 

Xy2\ 3 
2 

,^.1.47 5 
4 

3.V6S 2 
1 

:(,5q 3 
3 

36.74 1 
0 

37.14 I 
0 

37.90 3 
3 

38.24 7 
8 

3S 4.^ 3 
2 

38.62 6 
> 

38.79 3 
3 

r" Isnlopc                   320  K 

-I 9.1.=;-2 
0.0.^2 

1 1>                          6.84-2 
0 0 0<)5 
!• ■     1.03 

-^ O.IOO 
0 I)                            3.9')-1 
0 (1.(196 

^^ 4.34" 1 
" 0.(199 

-I 3.13-1 
1 0.(l'»2 

-<' 1.(13 
i 0.0 
0 

) 

11 

4.34+ 1 
0,083 
.r07+l 

^ 0.080 
-2 7.17 + 2 

0 ()()<)q 

-3 I)                          5.3') -1 
-1 O.OO.S 
-2 18                         6.S8-2 

2 0.080 
') n                          9.4,^-2 
1 0.100 

-1 4.87 + 3 
- 3 0 m;. 

0 18                         2.H,>, 
0 (),(K)6 
" •                              1.41+3 
0 ()0<)6 
1 18 1 IIM 1 

-1 Oii'M 
-^ 3 74 
-7 (),()78 
-I 7.41 + 2 

1 O.fWl 
-1 8.18 4-1 

•* 0.070 
1 .r37 + 3 

•1 0.1191 

1 riii|H'r.n(iirc 
300  K 280" K 

4.27-2 

260 "K 

2.62 - 2 

240''K 220''K 

6.4.S     2 I.4<)-2 7,14-3 
0.0.i3 0.0.S3 0.(),=;4 0.055 0,056 
7.93 - 2 9,2N-2 1.10- I 1.31-1 1,59-1 
0.(K)9 0.10 0.11 0.12 0,12 7.29-1 4 .^7     1 3.02- 1 1.70-1 8,4-1-2 
0.104 0.1()<) 0.11.S 0.121 0,129 
4.67-1 .V,>2-1 6.60-1 8.00- 1 9,85-1 
0.1(H) 0.1 o,s 0.110 0.117 0.124 
3.11-1 2.iO-l 1.32-1 7.50-2 3.79-2 
0.103 0.108 0.113 0.119 0.126 
2.17-1 1.41-1 8.49-2 4.61-2 2.20-2 
O.IW.i 0.0<»8 0 10 0,11 0.11 
8.79-1 7.2.S-1 .S.72-1 4.28-1 2.97-1 
0.080 0.083 0.086 0.089 0.094 
4.66+1 4.9<»+ 1 .^33+1 5,67+1 5.97+1 
0.0S6 0.091 0.09.^ 0,100 0.107 
.r28+l .r47+l .';.62+i 5,70+1 5.70+1 
0.083 0.086 O.OOO 0094 0098 
8.29+2 9.67 + 2 1.14+3 1.36+3 1.64+3 
0.103 OIOS 0.113 0.120 0.127 
6.20-   1 7.17-1 8.38- 1 9.88-1 1.18 
0.099 0.10 0.11 0,11 0.12 
7.18-2 7.44-2 7.6.S-2 7.77-2 7.78-2 
0.083 0.086 0.090 0.094 0.099 
1.09-1 1.28-1 1.51-1 1.80-1 2.17-1 
0.104 0.10.v 0.113 0.119 0.125 
,=i.46 + 3 6.1,S + 3 6.96+3 7.91+3 9.02+3 
0.()<)<) 0.104 0.110 0.116 0.124 
3.31 3')1 4.67 5.65 6,95 
0.100 OIO.S 0.110 0,1]7 0,124 
1.6.^ + 3 l,9.S + 3 2.^.^+3, 2.82+3 3.47+3 
0,100 0,10.=; 0.111 0.117 0,124 
1.17+1 1.^0+1 1.45+1 1.62+1 1,81 + 1 
0.0<).S 0 KH) 0.10 0,11 0,12 
3.49 3.19 2.84 2,44 2.00 
OOSO 0.083 0.086 0.089 0,093 
XM + i ''37 + 2 1.06+3 1.21 + 3 !,38+3 
0()95 0()99 0.104 0.109 0,115 
7.96+1 7.62+ 1 7.15+1 6.53+1 5.75+1 
0.071 0.073 0.076 0.078 0,081 
.r96 f 3 6.634 3 7.,V,) + 3 8.25+3 9.23+3 
0.09,=; 0.099 0.10.=; 0.111 0,117 
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where  p = water vapor density in gm/cm 

T = absolute temperature, °K 

P = pressure in mm mercury. 

For water vapor, in the Gross equation for the attenuation, the strength 

function S is 

-5/2 
S '^ pT    exp(-a/T), 

where  a varies from line to line. 

The line breadth depends on the collisions of the polar molecules with 

like molecules and other molecules in the atmosphere.  For oxygen, Meelcs 
Q 

and Lilley  give the line breadth Av(P T)by the equation 

Av (P^T) = A P [[0.21 + 0.78B] |_° 

1-^-1 0.85 

where  A  specifier, the line broadening at unit pressure (= 1.95MHZ(minHgr)) 

and    3  specifies the relative effectiveness of the N  - 0  collisions 

as compared to the 0^ - 0^ collisions  (= .25 for pressures less than 267mmHg) 

9 
In a report by Richard Longbothum , the water vapor resonant scat- 

tering cross sections a(for high altitudes, 30 -^0 km) at 22 GHz (22,235 GHz, 

or 1.35 cm) and at 183 GHz (183.31 GHz or 1.64mm)are given by ■ 

where 

a(v,T,N,v ) = 
o 

K (\>.T,N.\' ) _a_      o 
N(h) 

/ N(h) = number of water vapor molecules/cm  for a path length h. 

At 22.235 GHz, the absorption coefficient K , for a pressure 
10 a 

broadened line  , is given by 

K^ = 1.05 X 10 ^^ ^jj^    exp(-644/T) 

in"52 NV Av    -1 + 1.52 X 10    ^ ,„       cm 
,3/2 

Av Av 

(V-VQ)^+AV^  (V+VQ)^+AV^ 

11 



where 

N = Number density of water vapor molecules in a cm 

V = frequency in Hertz 

T - Kinetic temperature in °K. ■ -' 

At 183.31 GHz, the absorption coefficient for a pressure broadened 

line is (after Groom, Ref. 11) ■ 

2 
-29 N\) 

K^ = 6.46 X 10   '-^Yli  exp(-200/T) 

, , Q   ,„-52 Nv^Av   -1 
+ 1.8 X 10    ^ 1^       cm  . 

Av Av 

o 
(V-VQ) +AV    (V+VJ +AV 

^3/2 

When both doppler and pressure broadening are applicable (altitude above 

70 km) the 1/2 width Av is given by .  •■ 

AV ^ (Av ^ + AV^^) l/2_  ..,   , . .       .  , ,    .: 

The pressure broadening Av  is given by (Groom, Ref. 11) as 

U013.25/ 
Av = 2.62 X 10^ '""""•""' ,,.  • (1 + 0.0046P) Hz, 

P (T/318)°'^25 

where 

P = total atmospheric pressure in mb 
' -3 

p = density of water vapor in gm m 

T = kinetic temperature in °K.   . ■■.. 

The doppler broadening Av  is given by (Groom, Ref, 11) as 

Av = 8.45 X lO"'^ V /f Hz. 
D Q 

12 



A plot of the absorption cross sections for the two main lines, at 22 and 

183 GHz, is shown in Fig. 3.  Data for this plot is tabulated in Table IV. 

These data were abstracted from Longbothum, Ref. 9.  Persual of this table 

(which includes line widths) shows the broadening of line widths of the 

absorption cross sections as the altitude decreases from 120 km to 30 km. 

One variable that is often elusive in a set of atmospheric trans- 

mission measurements is that of the water vapor pressure and atmospheric ;• 

water content.  These two parameters are presented next as Fig. 4, atmo- 

spheric water vapor content and Fig. 5, water vapor pressure as a function 

of temperature and relative humidity.  Both of these curves are from 

A. R. Downs 

Before leaving the discussion of basic atmospheric attenuation 

of mm and sub mm wavelengths, mention should be made of two papers on 
.13 

the physical properties of the oxygen molecule.  Welch and Mizushima ,^ 

have given a table of observed and calculated frequencies of the 0„ mole- 

cule, from 53.066 GHz to 3865.81 GHz (given here as Table V).  A result 

of a nonlinear least squares fit to 25 microwave and 3 sub mm and IR wave- 

lengths is a set of molecular parameters for 0 , given here as Table VI. 

14 
Ott and Thomson   discussed the index of refraction of air (oxygen) 

in the 55-65 GHz region in their article "Characteristics of a Radio Link 

in the 55-65 GHz range."  They give the path averaged refractive index 

n(v) as a sum of frequency dependent and independent parts, 

,(V) = 1 + ZL^ fp + A810e\ . ^Q-6 

^  (S/y)'10"^ . '300^ ^ 

(-i + Z)    \ T  )        \1013.25 

with Z = (V^-V)/Y 

T = absolute temperature °K 

P and e are in millibars (1 mb = 0.75006376 Torr), 

13 
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vs. Height (Data from Ket. 9) 
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Fig.   4.     Atmospheric  Water Vapor  Content   (Data  from Ref.   12) 
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Table V.  Observed and Calculated Frequencies of 

Oxygen Lines (GHz). 

Transition (Miscn-pd Calculiitnl 
",•/[—In',tT frcqupncy* frrqucni-y 

,   „ ,   , l56.2{i4 778(M) 
'•'       '-^    ■;        ir.6.264 7r,.ww) 5'-..2r,4 7r>8 

,   . ,   , J58.44r,r.00(M) 

r.9. oyn 978(7,) r>n. nyo 979 

60.434 776(Z) 00.434 778 
Gl.ir)n570(Z) 01.150 507 
fil.son ir,9(\v) 
61.800 155(7,) ''l.ROOm 

62.411223(7,) 02.411234 
62.99110(11)" 02.997 999 

63.508 520(7,) 03.508 542 

64.127 777(\V) 04.127 790 
04.0782(11)" 04.078 920 

65.224 12(7) 05.224 070 

05. 704 744 (W) O5.7O4 7G0 

118. 750 343(M) 118.750 330 
02.480 255(7) 
02.48O255(M. «2. 486 207 

on. 300 (14.) r/,) 00. lioo 005 

59. 104 215^7) 59. 104 211 
5"!. 31':! «''5(7l 50. 323 883 

57.01 1  UIP'' 57.012 192 

".0. 90 I -ililV,') .,(■,. pen 214 

50.303 3;i3(U) 50.303 397 

55.783 81 9(\V) 55.783 805 

55.221 372av) 55.221 302 

54.071 M5(\V) 54.071 141 

54.1294(11)" 54.129 902 

53.5994(H)" 53.595082 
53. 000 8(Wa) 53. 000 802 

430.985 277(M) 430.985 276 
2 490. 283 (K) 2 490.283 

3 805.81(E) 3 805.810 

*(E)   .See Ref.  12,    (H) scp Krf. 7,   (M) see Kef.   11, 

(W) see Ref. 6,  (Wa) see Ucf.  10,  (Z) see   Rcf. 5., 

*Llne not Included in fit. 

Note:  The references indicated above are 
references In Ref. 13 of this report. 

5,6 5, ,5 
7,8 7, ,7 
9,10 3, ,9 

11,12 11, ,11 

13,14 13, ,13 
15,16 15, ,15 
17,18 n, ,17 
19,20 19, , 19 
21,22 21, ,21 
23,24 23, ,23 
25,26 25, ,25 
1,0 1, ,1 

3.2 3, ,3 

5,4 55, 5 
7,6 7, 7 
9,8 9, <t 

11,10 11, 11 
13,12 13. 13 
15,14 15, 15 
17,16 n, 17 
19,18 19, 19 
21,20 21, 21 
23,22 23, 23 
25,24 2'', 25 
27,26 27. 27 

1, 1 3, 3 
13,13 15, 15 
21,21 23, 23 
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Table VI.  Molecular Parameters of Oxygen Molecule 

(GHz) 

(Data from Ref. 13) 

Parameter 
Wilheit and 

Barrett Butcher, et al. Present Work 

43.100589 

-1.4 X 10"'^ 

59.501346 

5.845 X 10 

-0.2525917 

-2.455 X 10 

-5 

-7 

43.10059 (27) 

-1.454 (4) X 10 
-4 

43.100518 (3)' 

-1.449629 (9) x 10 

-1.57 (11) X 10""'"° 

59.501342 (7) 

5.847 (3) X 10 

-0.2525865 (10) 

-4 

-5 

-0.2464 (20) X 10 
-7 

Note:  The statistical uncertainties quoted are approximately two 
standard deviation limits and do not include explicitly ex- 

,  ;, .   perimental uncertainties of the frequencies measurements. 
The standard deviations were estimated from the last itera- 

. tion of the nonlinear fitting procedure based upon Taylor- 
series expansion about the estimated values. 

r 
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These authors choose to use a "Lorentzian" line shape: 

S = 5220 Hz 

Y = 3.92 GHz = line width 

V = center frequency in GHz 

Different authors seemed to have "favorite" collision broadened reasonant 

line width functions (equivalent reasonant cross sections); from data by 

Burch (7), the experimental values favor (for v< 15.5 cm" , A>.645 mm) 

the Van Vleck-Welskopf function. Above that frequency (X<.645mm) Burch 

feels that the Gross/Zhevakin-Naumov form fits the data on water vapor 

best. 

The general data coverage on atmospheric transmission is heavier 

on the microwave - mm wave end than it is on the 100 ym end. A rough 

estimate is that there are 3-5 times the experimental and theoretical 

article coverage at the 30-300 GHz end (1 cm - 1 mm) than there is from 

1 mm to 100 ym. ' ■    , 

As a final note on general atmosphere transmission, we would like 

to mention the following five papers which have attenuation calculations 

and measurements, line width functions, etc: 

a) "Atmospheric Absorption of Radio Waves Between 150 and 350 GHz" 
1 £ 

by F. T. Ulaby and Archie Straiton   •      •  ■   •- : .  .  - ■ 

b) "Calculations of Antenna Temperature, Horizontal Path Attenua- 

tion and Zenith Attenuation due to Water Vapor in the Frequency Band 

150 - 700 GHz" by R. W. McMillan, J. J. Gallagher, and A. M. Cook"*"^ 

c) "Water Vapor Absorption Spectra of the Upper Atmosphere" 
18 

(45-185 cm), by G. C. Auguson, A. J. Mord et al. 

d) "Method of Calculating the Atmospheric Water Vapor Absorption 
19 

of MM and Sub MM Waves" by A. Yu. Zrazkevskiy 

e) "Temperature Dependence of the Absorption of Radio Waves by 

Atmospheric Water Vapor at the 10 cm - 0.27 mm Wavelengths," by K. A. 

Aganbekyan, A. Yu. Zrazkevskiy and V. G. Malinkin/0 
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Two curves from McMillan et al  serve to summarize much of the 

atmospheric attenuation data in the mm - sub mm range.  Fig. 6 presents 

horizontal-path attenuation vs. frequency at sea level, and Fig. 7 

presents the total zenith attenuation from sea level. 

2.2    Atmospheric Index of Refraction 

The atmospheric index of refraction is an important parameter 

which has received much less attention in the literature than atii.ospheric 

propagation.  An illustration of the problem is from Davis and Cogdell 

who measured the "differential refractive index" with their 16 foot 

antenna on Mt. Locke.  This is a measure of the difference in pointing 

direction between optical and radio frequency waves and for some high 

resolution antennae, this difference (antenna point angle error) can be 

on the order of the beam width of the antennae.  Davis and Cogdell's 

analysis of their data suggests that the refractive index is fairly 

well known up to 100 GHz and is given by 

N = (77.6P/T) [l + (4810/T) (e/p)] . .•        ' 

o 
where       T = temperature K , 

P = pressure in mbar ....      ...... 

e = water vapor partial  pressure in mbar. 

Above 100 GHz  and below the 140 GHz atmospheric window there 

is a downward break in the index of refraction as a function of fre- 

quency . , „ 

In retrospect, one would expect a set of "sag effects" in the 

antenna pointing error each time the frequency crosses a main atmosphere 

resonance line.  The main absorption lines, below 200 GHz, are at 22 and 

183 GHz (water vapor) and at 60 and 118 GHz (0 ).  Davis and Cogdell saw 

their "sag effect" in the antenna point angle error on either side (97 

and 140GHz) of the 118 GHz 0  resonance line.  It is suspected that 
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Fig. 6.  Horizontal-path Attenuation Versus Frequency at Sea Level 

(Data from Ref. 17) 
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this sort of thing will happen on each side of major atmospheric 

reasonances, at the frequencies noted just previously, and at higher 

frequencies, as per the tables of resonances by Corcoran (Table 1) and 

by Burch (Table III).  Also, as the atmospheric attenuation is a func- 

tion of the relative humidity, so is the index of refraction; one might 

question if the "sag effect" is more pronounced about either side of 

the water vapor resonance/absorption lines than about the 60 and 110 GHz 

oxygen line. 
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2.3    Attenuation and Scattering by Fog, Rain and Clouds 

If one knew the size distribution of the water droplets contained 

in fog, rain or clouds and the complex index of refraction for water as a 

function of wavelength and temperature, then it is possible to determine 

the scattering, absorption and extinction cross sections and the phase 

function with the application of Mie theory.  The data available on the 

complex index of refraction is not very complete and there is not very 

good agreement in the various published values as a function of wavelength 
21 22 

and temperature.  For 20°C water, Deirmendjian  '  has compiled a set 

of measured data from 12 ym to 1000 ym.  For wavelengths between 2 mm and 

33 mm Deirmendjian used the Debye equation to compute the complex index 

of refraction for water. 

Table VII presents Deirmendjian's collection of complex index of 
23 

refraction data for water.  Dorothy Stewart  has tabulated a set of 

indexes of refraction at h  wavelengths, .55 ym, 10.6 ym, 870 ym, and 

1250 ym.  Table VIII lists the data she used in her verv comprehensive 

article on infrared and submillimeter extinction by fog.  She mentions 

in her article about recent sources of complex index of refraction data 

on water.  Table IX, from the 1971 Chemical Rubber Company Handbook of 
24 

Chemistry and Physics,  is a listing of data from two different groups 

on how the static dielectric constant of water varies with temperature. 

The static dielectric constant is not a constant, as usually assumed, but 

varies with temperature.  Hale and Querry  did a very extensive survey 

of the optical constants of water with 59 reference listings; they computed 

the rcr.l part of the index of refraction doing a Cauchy principle value 

integration of smooth curve fits of all available data on the imaginary 

parts of the index of refraction, k(A), of water, from 200 nm to 1 meter 

wavelength.  They produced a table for the complex index of refraction of 

water from 20 nm to 200 ym (just the 100 ym - 200 ym section is reproduced 

here as Table X.)  R. K. Crane  in his article "Microwave Scattering 

Parameters for New England Rain" presented two sets of calculations of the 

microwave index of refraction: one set was based on Debye's formula of 

the index of refraction of water using Kerr coefficients and the other set 

is.attributed by Crane to Grant et al. The results of these calculations 
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Table VII.  Complex Indices of Refraction vs Wavelength for Water 

(From Refs. 21, 22) 

X Index of : Refraction A Index of Refraction 

12. ym 1.111 - 0.199i 500.ym 2.22 0.7401 

17.ym 1.376 - 0.429i 700.ym 2.32 0.890i 

28.ym 1.549 - 0.338i 1000.ym 2.50 1.09i 

40. ym 1.519 - 0.385i 

60. ym 1.703 - 0.587i 2 .mm 2.5604 - 0.89471 

100.ym 2.06 - 0.551i 5.mm 3.1918 - 1.76571 

140.ym 2.07 - 0.470i 10 .mm 4.2214 - 2.52591 

200.ym 2.08 - 0.509i 20.mm 5.8368 - 3.00461 

337.ym 2.20 - 0.6001 33 .mm 7.1755 - 2.86421 

Table VIII.  Indices of Refraction for Water 

(From Ref. 23) 

Source 
Wavelength 

(ym) Index of Refraction 

Hale and Querry (1973) 

Hale and Querry (1973) 

Davies et al. (1970)* 

Davies et al. (1970) 

0.55 

10.5 

870 

1250 

,-9. 
1.333 - 1.96 (10 ) i 

1.185 - 0.0662 i 

2.422 - 0.9667 i 

2.630 - 1.1407 1 

*The index of refraction for 870 ym is an interpolated value. 
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Table IX.  Static Dielectric Constant of Water 

From NSRDS-NBS 24 

W. J. Hamer 

t°c e* et t°C e* 

0 87.74 87.90 50 69.91 

5 85.76 85.90 55 68.34 

10 83.83 83.95 60 66.81 

15 81.95 82.04 65 65.32 

18 80.84 80.93 70 63.86 

20 80.10 80.18 75 62.43 

25 78.30 78.36 80 61.03 

30 76.55 76.58 85 59.66 

35 74.83 74.85 90 58.32 

38 73.82 73.83 95 57.01 

40 73.15 73.15 100 55.72 

et 

69.88 

68.30 

66.76 

65.25 

63.78 

62.34 

60.93 

59.55 

58.20 

56.88 

55.58 

*From data of Malmberg and Maryott (1956). 

tFrom data of Owen, Miller, Milner and Cogan (1961). 

Table X.  Complex Indices of Refraction vs Wavelength for Water 

(from Ref. 25) 

m = n' + i n" 

X(ym) 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 

n"(A) 

-0.532 

-0.531 

-0.526 

-0.514 

-0.500 

-0.495 

-0.496 

-0.497 

-0.499 

-0.501 

-0.504 

n'(A) 

1.957 

1.966 

2.004 

2.036 

2.056 

2.069 

2.081 

2.094 

2.107 

2.119 

2.130 
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for frequencies between 8 and 70 Ghz are presented here as Table XI.  The 

disagreements between the two sets of refractive indices are more 

pronounced in the complex part, n", than in the real part, n'.  Crane 

took the Debye index of refraction to be defined by 

n(A) = 
\ 

88 - 5.5     . ^     , ^ .  „ 
. , i.AA(T) - ^'^    = " + ^'^ 

A 

where AA(T) = temperature-dependent 1/2 width.  "88" is actually a 

temperature-dependent static dielectric constant at 0 frequency.  Wilcox 
27 

and Grazino  developed a compilation of the index of refraction of water 

vs temperature for A = 1, 3, and 10 mm radiation, shown here as Table XII. 

There seems to be a great amount of faith put on the use of the 

Debye formula for calculating the complex index of refraction of water in 

the microwave and millimeter wavelength range.  It would be interesting 

to see some measured data in the 1250 ym - 1 cm wavelength region, as there 

was in the 12 ym - 100 ym region for Deirmendjian's report. 

To help visualize better some of the previously-described tabulated 

measured data on the complex index of refraction for water at wavelengths 
22 

between 10 and 1000 ym, several curves from Deirmendjian  are reproduced 

here as Fig. 8 . Also, in Fig. 9, we present the extinction coefficient of 
25 

water as given by Hale and Querry  (imaginary part of complex index of 
—fi 

refraction) as a function of wavelength for wavelengths between 10  m and 
25 

1 meter.  Fig. 10 shows a set of plots from Hale and Querry  giving the 

real part of the index of refraction of water for the spectral region 

0.2 - 200 ym.  The individual data points on each set of curves refer to 

individual authors data that Deirmendjian and Hale and Querry, respectively, 

used.  For further details about these points, please consult Refs. 21, 

22, and 25. 
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Table XI.  Refractive Index of Water for a Drop Temperature of 0.0°C 

(Data from Ref. 26) 

Computed Using Debye Model with Kerr Coefficients 

Frequency 
(GHz) nj n" 

8.00 7.4786 -2.7721 

9.35 7.0969 -2.9060 

15.50 5.7619 -3.0278 

35.00 3.9533 -2.4301 

70.00 3.0179 -1.6856 

Computed Using Data Attributed to Grant, et_  al. 

8.00 7.6474 -2.7146 

9.35 7.2788 -2.8692 

15.50 5.9459 -3.0694 

35.00 4.055 -2.5465 

70.00       ,     3.0410 -1.8093 

29 



Table XII.  Indices of Refraction for Water vs Wavelength 

(from data in Ref. 27) 

Temperature Index of 
^(™°)   (deg C) refraction 

1 0 2.407 - 10.477 

XO 2.481 - 10.705 

18 2.561 - 10.885 

20 2.587 - 10.937 

0 2.759 - 11.241 

10 3.106 - 11.663 

18 .    , ,.        3.411 - 11.937 

20 3.505 - 12.007 

10                 0 4.221 - 12.526 

iO 5.155 - 12.834 

18 5.817 - 12.869 

20 ' '    5.992 - 12.900 
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28 
Chamberlain, Zafer and Hasted  have measured the index of 

refraction of water between .1 mm and 0.5 mm using a Michelson inter- 

ferometer. Results of their measurements, and some others they quote 

are shown in Fig. 11. 

One needs to have indices of refraction (or the dielectric 

"constant", equivalently) available as a function of temperature when 

computing scattering, absorption and extinction cross sections with the 

use of Mie or Rayleigh theory. 

The need for further work on the complex index of refraction for 

water is obvious; first in priority with respect to water is the need for 

experimental data on the complex index of refraction as a function of 

temperature over the entire wavelength range of interest.  Most severe 

is the requirement in the 1 cm - 1 mm region where everyone seems to 

rely on the Debye equation with no references to actual dielectric/ 

refractive index measurements in that spectral region. 

A. Stogryn  has developed a modification of the Debye equation for 

the complex dielectric "constant" of saline water.  He has given parameters 

in the equation as functions of water temperature and salinity.  The dielectric 

constant is defined by 

e - e 

1 - i«2TTrf       2Tr£*f o 

with 

e    =  temperature- and salt-control-dependent static dielectric 
constant 

T = time constant as a function of temperature and normality 
of the salt solution = T(T,N) 

f = frequency in Hertz 

£ = 5.5 
oo 

a = ionic conductivity of the dissolved salt in mho/meter 
-12 

e* = permittivity of free space = 8.854X10   Farad/meter, 
o 

He gave £ , T, and 0 as a function of the normality of the salt solution. 

A relationship of this sort should be valuable in the calculation 

of scattering by slightly salty fogs (sea spray), or fogs that have become 
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authors of Ref. 28. The points are measure- 
ments by other authors and by the authors of 
Ref. 28). 
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contaminated with ZnCl dust from smoke screens or from burning phosphorous, 

which forms ^2^5' which becomes dilute phosphoric acid when the P 0 

contacts a fog droplet. 

There are several basic texts that are of value for information 

on dielectrics; these are:  Dielectrics and Waves, by A. R. Von Hippel^° 
31 

Dielectric Materials and Applications,   by A. R. Von Hippel, and The 

Theory of Electric and Magnetic Susceptibilities"^^.  Von Hippel's books 

have been the compendium of information on dielectric phenomena for 20 
32 

years.  Van Vleck's treatise,   now 44 years old, still is one of the best 

introductions to dielectric and magnetic phenomena extant.  Van Vleck 
33 

recently  has written a revised version of his classic papers on line 

breadths and should be consulted for details as to validity of the 

formula presented here or by other authors regarding this area. 

The principal difference between fog, rain and clouds when 

determining their scattering, absorption and extinction cross sections 

is in the range of drop diameters for each.  The ranges of drop diameters 

for haze, fog, clouds, and rain, as given by G. D. Luhers,   are given in 

Table XIII,  Note that although there is quite an overlap in drop diameters 

for fogs, clouds and rain, there is a tendency to larger drop diameters 

as the atmospheric conditions change from clouds to fog to rain. 

The calculation of the absorption, scattering and extinction 

in a medium such as fog, clouds and rain is based on the knowledge of 

the absorption, scattering and extinction cross sections for individual 

particles.  The theory for calculating these cross sections for individual 
35 

spherical particles was developed by Mie.   Mie's work was extended by 

Stratton  and, as outlined in Kerr,   by Goldstein.  A Comprehensive 

study of the theory of electromagnetic scattering from small particles 
38 is also given by Van De Hulst. 

A single dielectric sphere in the path of a plane wave will scat- 

ter and absorb some of the incident energy. These effects are character- 

ized by several quantities called cross sections and have the dimensions 
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Table XIII.  Drop Diameters for Various Atmospheric 
Conditions (from Ref. 34) 

ATMOSPHERIC CONDITION DROP SIZE R.\NGE 

Micrometers 

Haie 0.01 - 3 

Fog 0.01 - 100 

Clouds 1   - 50 

Drizzle (0.25 nnn/hr) 3   - 800 

Moderate Rain 
(4.0 nun/hr) 

3   - 1500 

Heavy Rain 
(16.0 mm/hr) 

3   - 3000 
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39 of area.  The Gunn and East  definitions of the scattering, absorption, 

extinction, and backscatter cross-sections are: 

Total Power Scattered (over 4iT steradians) 
Scattering Cross Section =  = r^——-:;: ;; rr  ^  , Incident Power Density 

.,  ,  .   „    „        . Total Power Absorbed (as heat) 
Absorption Cross Section = 73—-—z ;^ rr '^       Cn ^ Incident Power Density 

a 

.        .       „ „        .    '       Total Power Lost (to the incident wave) 
Extinction Cross Section =  = — 7; =; 7-  

,  . Incident Power Density 

The term extinction is used to describe the energy lost by the incident 

wave to a single particle; attenuation is the energy lost to a continuous , :j 
'"'   ' * 

volume of particles. ■     '--^ 
^ -lit 

It should be noted that the conservation of energy requires that 

Q = Q + Q 
e   a   s i ;  ■ 

and Total Power Scattered Backward (along 
the direction of incidence)  

c« 

i-,: 

Backscatter Cross Section = , . Incident Power Density 
(a) ^     .  i.,i 

The scattering and absorption properties of single particles are 

complex functions of the size, shape, and index of refraction of the 

particles as well as the wavelength of the incident energy.  The scattering, 

absorption, extinction and backscattering cross sections for 4.3 mm wave- 

length radiation interaction with spherical water spheres at 18°C (from 

Ref.40), are presented in Fig. 12 as a function of the particle radius. 

It is seen that the cross sections increase with radius for radii between 

0 and 6 mm. ... 

For mm wavelength radar our interest lies in the backscatter and 

attenuation cross sections associated with a continuous distribution of 

particle sizes within a given volume.  Particle size distributions for rain, 

fog and clouds are given by Deirmendjian  and Richard.   If the particle 

size distribution is known, the reflectivity and attenuation can be 

determined, using the appropriate scattering theory. 
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The scattering theory to be used in the determination of the 

backscatter and attenuation of rain and fog depends on the size of the 

drops in the medium and the wavelength of the radiation.  Mie scattering 

theory must be used for drops larger than 0.06 wavelength in diameter. 

For drops smaller than 0.06 wavelength the Rayleigh theory approximations 

are applicable. 

Since rain is comprised of drops 258 micrometers (0,258 mm) and 

larger, Mie scattering theory must be used for millimeter wavelength 

radiation.  The smaller drops in haze, fog and clouds allow the use of 

the Rayleigh approximation. 

Fog results from the condensation of atmospheric water vapor into 

water droplets that remain suspended in the air.  When the resulting 

cloud or water droplets or ice crystals envelop an observer and restrict 

his horizontal visibility to one kilometer or less, the international 

definition of fog has been satisfied.  Evaporation and cooling are 

the principal physical processes which contribute to the formation of 

fog.  Of the various fog classifications used by meteorologists, the two 

basic types of interest in radar  applications are advection fog and 

radiation fog. 

Advection is the horizontal movement of an air mass that causes 

changes in temperature or other physical properties.  An advection 

(or coastal) fog is one which forms over open water as a result of the 

advection of warm moist air over colder water. 

Radiation (or inland) fog forms in air that has been over land 

during the daylight hours preceding the night of its formation.  Fogs 

which form in low, marshy land and along rivers on calm, clear nights 

are also considered radiation fogs. 

The characteristics of these two fogs are given in Table XIV. 

Note that the advection fog has a higher liquid water content, 

but greater visibility than the radiation fog.  The correlation of 

visibility in fog to liquid water content is shown in Fig. 13 (from 
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Table XIV.  Fog Characteristics 

(Data from Ref. 40) 

RADIATION ADVECTION 
(INLAND) FOG (COASTAL) FOG 

Average Drop Diameter 10 microns 20 microns 

Typical Drop Size Range 5-35 microns 7-65 microns 

Liquid Water Content O.ll g/m^ 0.17 g/m^ 

Droplet Concentration 200 cm"-^^ 40 Cm"^     ;,,; 

Visibility 100 m 200 m 
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Ref. 40) for both advection and radiation fogs. 

There is considerable variation in the water content of clouds 

and water fogs, but in general, stratus (or low) clouds and typical 

radiation or advection fogs have water contents on the order of 

0.25 g/m or less.  Mason  reports that the maximum liquid water 

content of an advection fog approaches 0.4 g/m"^ when there is a strong 

temperature inversion.  On rare occasions, the liquid water content 

can become as large as 0.5 to 1.0 g/m in very dense radiation fogs 

(with 20 to 30 meters visibility). 

The small size of water droplets comprising a fog allows the 

use of the Rayleigh approximations in the determination of the 

reflectivity and attenuation at 70 GHz.  Atlas ^ shows that in the 

Rayleigh scattering region the one-way attenuation coefficient, a, is 

given by 

^  81.86 M Im(-K)  ^^ ,, 
"  Ap ^—  dB/km, 

where  M = liquid water content per unit volume of fog in g/m , 

Im(-K) = absorption coefficient, 

m = complex index of refraction, 

A = wavelength in mm, 
3 

p = density of water in g/cm . 
3 

A density of 1 g/cm for water is generally assumed for all temperatures, 

since the density varies no more than 0.78% over the 0°C to 40°C 

temperature range. 

In the Rayleigh scattering region, attenuation is due mainly to 

absorption.  To calculate the absorption  coefficient for fog, the 

index of refraction for water must be determined for the frequencies 

of interest.  The complex index of refraction, m, is given in terms 

of the complex dielectric constant, t: , by: £,' 

2 
m = e = ^1 - 1^:9. c    i    z 
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where e, and e^ are the real and imaginary parts of the dielectric 

constant. 

The dielectric constant may be evaluated by the Debye formula 

c  - e. 
o      °° 

c  -, , . AA   «>' 
1 + J ^ 

where e^, e^ and AA are empirically derived constants. 

Let us now look at some of the data currently available on 

millimeter and submillimeter wavelength attenuation in fog, clouds, and 

rain.  Victor W. Richard, in Ref. 40, has given a good description of 

rain, fog and cloud data, from which a lot of this section's information 

is derived.  A summary of the data from Richard  is presented in Figs. 

14 and 15.  Fig. 14 shows the positions of the atmospheric "windows", 

and the "walls".  The profitable areas for further work in the millimeter- 

submillimeter region apparently should center around wavelengths of 

94 GHz, 140 GHz, 240 GHz, 360 GHz, 420 GHz, and 890 GHz.  Past 240 GHz, 

long-range communications do not appear to be practical; however, short 

range uses as missile guidance radar and imaging, target designators, and 

others, should be feasible.  Fig. 15 is a comparison of the one-way 

attenuation due to a fog of 100 m visibility having  a density of 0.1 gm/m" 

with the one-way attenuation for 3 rain rates as a function of frequency. 

Fig. 16 (Ref. 40) shows in more detail the one-way attenuation of a 

fog as a function of frequency, temperature and liquid water content. 
44 

A. R. Downs  has calculated haze and fog attenuation coefficients for 

visible and IR radiation, as well as for microwaves with frequencies 

between 9.375 to 240 GHz.  These data are shown on Table XV.  Downs' 

article references 27 different papers on atmospheric transmission on 

rain, fog and battlefield dust conditions. 

45 
Dorothy Stewart " in her extensive literature search on fogs 

and their drop sizes, has computed the extinction of visible. IR, and 

43 



1000 

—MIUIMETERS 
)Q0 10 

WAVELENGTH 
MICRONS- 

12 JL 

ii    100 

CO o 
I z 
o 

z 
ui 

I ■ 
lu 
Z o 

300        axW      3X10* 
FRECIUENCY-GIGAHERTZ 

3X10* 

Fig. 14.  Atmospheric Attenuation vs. Frequency (from Ref. 40) 

wiUl'<Crtat WAVELCivJGTH Wf»'» 
100 

—I— 
10 

^ 
f\j'^^ 

/ ^>6 £>.(W-» 
'       |P0»- V,t.l,.li1, Illy 

— •  . J        IfetyvT^/ht-    Coin 

VHIfSlE 

^ jnfe>  Ptp 

3QD >io' 3.|d* 
FREQutwcy - 6l&^HEeT^ 

^-.a* 

Fig. 15.  Rain and Fog Attenuation vs. Frequency (from Ref. 40) 

44 



to 

7   1 

Z o 
i z 
U4 

0.1   - 

0.01 

M                                   11 TTl 1— 

:    35GHX- -   \ 
.    70 GHt. 
.    94GHx. 

■— 

/■   

• 
,    ■ ■■ . 

O'C, 

• / 
■ / y \ /^        • 
• 

■' 

/ 
/ /\^ 

• 
/// '/, y        /' 

• > 

^ 

// 

40'C,^^ z/ 
-'/^ 

\- ^  \y\ 4 /          ' 
m                    .   V          ■. 

//^ / 

/ 
/ • 

" /   /       / Jr / ., 

/ 
^ 

''\ 

/ 
/ 

/ • 

,// (A. 
t 

/ 
/ 

.X.  i, 
0.001 0.01 0 1 

LIQUID WATE« CONTENT \qlir^) 
ro 

Fig. 16.  One-Way Attenuation in Fog As a Function of Liquid 
Water Content (from Ref. 40) 

45 



J3 
U 

iH 
0) 
> 

c 

>> 
4J 

•H 
,n 
•H 

CO 
•H 
> 

o 
C 
o 

•H 

u 
c 

CD 

c 
•rl 
a 

•H 
U-l 
M-( 

OJ 
o 
o 
c 
o 

cfl 
3 
c 
0) 
4J 

00 
o 

c 
0] 

N 

> 

4-1 

e o 
u 

i 

I! 
I 

j 

I 

if 

^k « s h h\'^s\'%\ 

b b t> b 
>-       ^       •-       M       <• 
•_    •_    •_    <_   TL. 

I> b t> '_    '_    '_    '_    '_ 

t> w t> 
—     0-     ^     n     ^ <_     •_     •_     •_     • 

b    b    b    SI    e    e    o    e    e 

(M      lA      o      o 
e    e    >^    N    M*    o 2   8   S   5 

46 



n 
h 

submillimeter energy by fogs.  Results of her calculations are shown in 

Figs. 17, 18, and 19.  Fig. 17 shows a comparison of the attenuation of 

1250 ym and 10.5 ym radiation by fog droplets; Fig. 18 shows a comparison 

of the attenuation of 1250 ym and 0.55 ym radiation by fog droplets; and 

Fig. 19 shows a comparison of the attenuation of 1250 ym and 870 ym radia- 

tion by fog droplets.  We see from Fig. 18 that the visibility at .55 ym 

is not necessarily a good indicator of 1250 ym attenuation, but that the 

correlation of 10.6 and 1250 ym attenuation is pretty good.  Also, the 

correlation of attenuations of 870 ym and 1250 ym radiation is good. 

V 
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44 ' 
Downs   calculated the scattering coefficient for haze and fog at  ' 

millimeter wavelengths and concluded that the scattering coefficient 
-4      -5   -1 

was between 10  and 10   (km  ) which is at least  6 orders of magnitude 

below that of the scattering coefficients for haze and fogs at wavelengths 

of .55 ym - 10.6 ym. 

46 
V. Corcoran  has calculated the fraction of the total attenuation 

along a zenith path through the atmosphere containing a 500-m thick strato- 

cumulus cloud that results from the water droplets in the cloud and from 

the gaseous absorption along the total path.  It is seen from Table XVI 

that the contribution to the attenuation by cloud droplets increases with 

an increase in the wavelength for wavelengths between 0.345 mm and 3 mm. 

Similarly the contribution to the attenuation by gaseous absorption 

increases with a decrease in wavelength.  The attenuation resulting from 

gaseous absorption is seen in Table XVI to increase faster with decreasing 

wavelength than does the attenuation produced by the cloud droplets. 

22 
D. Deirmendjian  has calculated extinction coefficients according 

to 3 cloud models and 2 precipitation models; his results are shown in 

Fig. 20.  His calculations were for wavelengths between 1.0 \im  to 100 mm. 

Tabulated values of this data are presented in Table XVII. Deirmendjian 

has also calculated a set of mass extinction coefficients for haze, clouds, 

and rain; this data are presented in Table XVIII for discrete wavelengths 

between 16 ym to 2.0 mm. 

47 
Lo, Fannin and Straiton  have measured "the attenuation of 8.6 

and 3.2 mm radio waves in clouds" by use of a millimeter wave radiometer. 

Results of their measurements are shown in Figs. 21, 22, and 23.  Corrections 

were made to the measured data for the attenuation resulting from the 

atmosphere gaseous constituents to obtain estimates of the cloud 

attenuations.  The correction for water vapor attenuation was based 

on ground-level water vapor density measurements.  The sum was used as 

a source of millimeter wavelength radiation with the radiometer pointing 

at it through the clouds.  Figure 21 presents 35 GHz (8.6 mm) attenuation 

vs 95 GHz (3.2 mm) attenuation for heavy pre-rain clouds.  Figure 22 

presents the total (zenith) attenuation due to cumulus clouds for 92 
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Table XVI.  Proportion of Total Attenuation Due to a 500-m Strato-Cumulus 
Cloud in a Zenith Path (data from Ref. 46) 

Candidat e windows Contr i button Total Proporti on 
Total 
gaseous 

by   droplets 
in   a   500-meter 

attenuation 
due   to   gases 

of  total 
attenuation   due 

Window Wavelength   A absorption st-cu  cloud and   cloud   droplets to   cloud   droplets 

III 3mm I.25   db 0.97   db 2.22   db 43.7t 

IV 2 . 3mm 0.91   db 1.17   db 2.08   db 56. 11 

V 1 . 3mm 2.11   db 1.60   db 3.71   db 43.2% 

VI aaog 9.87   db 2.40   db 12.27   db 19.61i 

VII 7?0g 22.0     db 2.92   db 24.92  db 11.71 

u 620u 57.0     db 3.00   db 60.0   db 5.01 

XII 345p 77.0     db 5.50   db 82.5   db 6.71 

Table XVII. Cloud Volume Extinction and Absorption Coefficients 
(data from Ref. 22) 

(Neper km ) 

Cloud   C.l   (N =  lO^cm"^) Cloud  C.5   (N =   lO^cm   "^) Cloud  C.6   (N = 10   ^cm   ^) 

\ 
^ex ^b ex ^b (i ex '^ab 

(X-0) (15.64) (42.41) (0.7540) 

12. um 10.28 7.352 36.32 22.61 0.7933 0.4030 

17. um 16.12 10.23 49.98* 28.49* 0.8500* 0.4113* 

28. ym 12.33 7.849 49,88 27.36 0.9004 0.4521 

40. pm 8.468 6.392 39.86 24.89 0.9250 0.4774 

60. pm 7.013 5.816 37.69 25.41 0.9742 0.5065 

100. \m 2.690 2.415 20.70 14.55 i.061 0.553 

140.ym 1.420 1.352 9.742 7.797 1.074 0.555 

200.ym 0.9732 0.9570 5.617 5.109 0.9774 0.5190 

337.ym 0.5812 0.5789 2.949 2.880 0.6845 0.4016 

500.ym 0.4566 0.4560 2.235 2.219 0.4186 0.2911 

700.ym 0.3474 0.3472 1.676 1.671 0.2563 0.2031 

1000.ym (0.2423) 1.165 1.164 0.1440 0.1274 

2.ram (0.0999) (0.474) (0.0401) 

5.mm (0.0381) (0.181) (0.0153) 

10. mm (0.0119) (0.0563) (0.0048) 

Values from an earlier run with m =« 1.369 - 0.438i. 
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Table XVIII.  Mass Extinction Coefficients for Haze, Clouds, and Rain 
(data from Ref. 22) 

-1       -"^ 
(Ygjj in neper km  per g m   liquid water content) 

Haze  L Cloud   C.l Cloud  C.5 Rain-10 
X         w = =  1.167-10"^  g m"^ w =  0.06255  g -3 

m        w = 0.2969 g m~^ w = 0.5091  g m"^ 

(X->0) (3117.) (250.1) (142.8) (2.573) 
16.61JIO 2A7.6 

17.0um 257.8 168.3 

100.ym '      (36.8) 43.01 69.72 2.816 
200.um (16.8) 15.56 18.92 2.950 
337.pm (10.5) 9.293 9.932 3.097 

500.um (7.21) 7.301 7.527 3.243 

1. mm (3.87) (3.87) 
* 

3.92A 3.580 
2.nmi (1.60) (1.60) (1.60) 3.830 
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and 35 GHz radiation.  Figure 23 shows the attenuation effects of an 

overcast sky versus air mass (secant of zenith angle) for 35 GHz and 

92 GHz radiation. •   ■ 

47 
As a function of cloud type, Lo   et al. have summarized their 

measurements in two tables:  the first, presented here as Table XIX 

gives the attenuation in db,  for 35 and 95 GHz radiation, due to 

individual fair-weather cumulus clouds.  In Table XX is a summary of 

zenith cloud attenuation for 35 and 95 GHz radiation by different cloud 

types. 

46 
Corcoran  has calculated data on the attenuation due to moderate 

rain of a 2-km depth (zenith path through a 500 m thick strato cumulus 

cloud). His data for attenuation of radiation with wavelengths in the 

atmosphere windows between 345 ym to 3 mm are given in Table XXI. 

There is a vast literature on the scattering and attenuation of 

millimeter and submillimeter radiation by rain.  Before we get into the 

data and calcualtions that were found relevant, let us discuss some of 

the currently used size distributions for rain droplets.  D. Deirraendjian 

introduced a general raindrop sized distribution, 

rx Y       ... . .    . .  ' " * , ," 
n(r) = ar exp(-br ) 

to model both clouds, hazes and raindrops.  The parameters a, a, b, Y 

are positive, real numbers that may be related to measurable parameters. 

For Y = 1> 
00 

n(r)dr = N = total number of particles per unit volume 

0 

in the distribution.  This gives 

22 

Nb 
^ ~ r(a+l) • 

Some other properties of Deirmendjian's distribution are that there 

is only one peak in the distribution, there is exponential decay in the 

number density in both increasing drop size and a cut-off on decreasing 

drop size. 
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Table XIX.     Attenuation due   to  Individual  Fair Weather 
Cumulus  Clouds    (from Ref.   47) 

Cloud  Attc niiat ion,   dR ')5 CJHz  Attciui.itiun 
IS GHz 95 GHz 35 GHz  Att.'nu.ition 
0.  1 (j 0. SH 5. 5 
0. 04 0, IS 4.5 
0. U 0,65 5.4 
0. 06 0. 22 1.7 
0. 09 0, i6 4.0 
0. 16 0. 4R 3.0 
0, 04 0. 16 4.0 
0. 06 0.22 1.7 

Table XX.     Summary  of  Zenith  Cloud Attenuation  for 
Different  Cloud  Types   (from Ref.   47) 

Number 
of 

Days 

Total 
Number 

of 
Observalions 

Gr< 
Water 

ur 
V 
in 

d 
ip 

g 

Level 
or Dengitv 
/m5 

35 GH?.  Value in dB/95 GHz Va ue in dn 
Cloud Type Measured C ou d Attenuati on Calculated Gasec us Attenuation 

Mean .Standard 
Deviation 

Moan .Standard 
Deviation 

Mean Standard 
Deviation 

Altocumulus 5 7 16. 8 1.4J , 02/-. 23 .09/.30 . 38/1.93 .02/. 14 

Altostratus Z 2 14.7 1.53 .15/. 30 .04/.05 . 34/1,73 .0 3/. 16 

Stratocumulua 8 22 18.9 1.68 . 18/.61 . 13/.41 .43/2.14 .03/. 15 

Stratua 5 8 19. 1 2. 30 . 1 3/. 12 . 03/. 24 .42/2.14 .04/.21 

Nimbostratus 2 5 20. 8 0. 31 . 14/. 11 .06/.24 .44/2. 32 .01/.03 

Cumulus 13 20 18.7 1.81 . 12/. 34 . 14/. 36 .41/2. 12 .03/. 18 

Cumulonimbus 2 6 18. 1 2. 39 . 34/2. 36 .22/1.86 .40/2.07 . 04/. 23 
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Table XXI.  Proportion of Total Attenuation due to Moderate 
Rain of 2-KM Depth (Zenith Path Through 500-M 
Strato-Cumulus Cloud) (data from Ref. 46) 

Candidate windows Total gaseous 
absorption plus 
contribution to 
attenuation by 500- 
meter st-cu cloud 

Contri bution 
by 
moderate rain 
of 2 km depth 

Total 
attenuati on 
due to 
gases, cloud 
and ra i n 

Proportion 
of total 
attenuation 
due to 
2 km ra1n 

Window Wavelenqth 

III 3mm 2.iZ   db 5.2  db 7.42 db 70X 
IV 2. 3mm 2.08 db 2.5  db 4.58 db 55J 
V 1.3rim^ 3.71 db 2.5  db 6.21 db 40S 

VI 880u^ 12.27 db 2.4  db 14.67 db 16% 
VII 720ij^ 24.92 db 2.3 db 27.22 db Bj; 
IX 620u^ 60.0  db (2.2) db (62.2) db (3.5) 

XII 345|,^ 82.5  db (2.0) db (84.5) db (2.3) 

mnH»r.f= ^''""^"ce made at these wavelengths for possible reduction in attenuation due to 
moderate rain by the mechanism of forward scatter. = i. tcua L i on uue to 

Note:  Values in parentheses are extrapolated. '       ' 
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Other prominently used drop-size distributions are those attributed 
49 50       51 

to Laws and Parson  ' Marshall and Palmer  and Best.   These distributions 

are illustrated by the following tables and graphs.  Table XXII shows, for 

the Laws and Parson drop-size distribution, the percent of the total of 

water versus the particle size for 5 different rain rates.  Similar data 

for the Marshall and Palmer distribution are shown in Table XXIII.  The data 
52 in Tables XXII and XXIII were obtained from a paper by Wilcox and Graziano. 

Figure 24 shows data based on the Best model that gives the drop radius 

concentration as a function of droplet radius for rainfall rates of 1, 

4, 16, and 64 mm/hr.  The Best model describes the fraction of the total 

liquid water contained in the water drops which have diameters less than 

X (mm)  for a given rainfall rate R (mm/hr).  The Best model is defined 

by: 

F(x) = l-expl-(x/a)''] , 

where        a = AxR^ , 

3 3        : 
The total liquid water content expressed in mm /m is 

w = CXR'^   '  \ 

A = 1.3, c = 60, p = 0.232, r = 0.846, and n = 2.25. 
44 

Downs  felt that the Best distribution most accurately describes the 

70 GHz scattering data for rain.  He calculated a rain scattering 

coefficient as a function of rainfall rate (or visibility) for visible 

light, IR, microwaves and millimeter wave radiation.  Downs used the 

Laws and Parson's drop radius distribution in calculating the microwave 

and millimeter wave rain scattering coefficients.  Downs' results are 

depicted in Tables XXIV and XXV.  Table XXIV gives the rain scattering 

coefficient in km  vs visibility (or rainfall rate) for visible through 

10.6 lim radiation, and Table XXV gives the rain scattering coefficient 

per km vs rainfall rate for frequencies of 9.375 GHz through 240 GHz. 

Absorption coefficients in rain for 9.375 GHz to 240 GHz radiation were 
53 calculated by Setzer;  his results are shown here as Table XXXVI. 
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Table XXII.  Laws and Parsons Drop Size Distributions 
(data from Ref • 52) 

1 Rain rate (mm/hi r) 

1.25 2.5 5 ^r> 100 

D(mm> Percent of total volume- 

0.5 10.9 7.3 4.7 1.7 1 
1 37. 1 27.8 20.3 7.(i 4.r, 
1.5 31.3 32.8 31.0 18.4 8.8 
2 13.5 19 •it.l 23.;» 13.9 
2.5 4.9 7.9 11.8 19.9 17.1 
3 1.5 3.3 5.7 12.8 8.4 
3.5 0.6 1.1 2.5 8.2 15 
4 0.2 0.6 1 3.5 9 
4.5 0.2 0.5 2.1 5.8 
5 
5.5 
6 
6.5 

0.3 1.1 
0.5 
0.3 

3 
1.7 
1 
0.7 

Table XXIII. Marshall and Palmer Drop Size Distribution 
(data from Ref. 52) 

--^-' I Rain rate (mm/hr) 

].2r. 2.5 5.0 
" 

100 

D(mm) Pcrc ent of total vo umc 

0. :> 83.1» 
! 

81. f>          1       76.6 65.0 54.3 
I 12.1 15.0 17.8 22.9 24.8 
1.5 1.7 2.8 4.3 7.9 11.5 
2 i*. :i 0. r, 1 2.8 5.2 
2. :> 0.1 0,3 1 2.4 
3 0.4 1. 1 
:;. 't 0. 5 
4 0.2 
4. 5 
5 
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Table XXIV,  Scattering Coefficient for Rain as a Function of Rain Rate 
(or Visibility) for Wavelengths of 0.55, 1.06, 2.3, 3.8 and 
10.6 ym (Data from Ref. 44) 

HOMMU 
MSI 
mm) 

lAiM acAirmiNB oovncinrr (nrh 
muB 

am minuMGiM oaaum 
o.ss l.Oi 2.S S.I M.« 

0.24S 0.24S 0.244 0.246 0.24f 14.0 
0.376 0.376 0.376 0.$77 O.SSI 10.4 
0.S76 0.S76 0.S76 0.S77 0.5t2 
0.M2 0.M2 0.tt2 O.MS O.MO 

i« l.SS l.SS l.SS l.SS I.S6 
S2 2.07 2.07 2.07 2.07 2.07 
64 S.17 3.17              3.17            3.17 3.18 

'■' , 

Table XXV.  Scattering Coefficient for Rain as a Function of Rain Rate 
for Frequencies of 9.375, 35, 94, 140 and 240 GHz 
(Data form Ref. 44) 

RAINPALL 
RATE 

om/m) 
RAn SCATTB tDK COCTFl [cinrr (w-i)                   1 

n Mt) 
9.375 35 94 140 240 

6.0x10-5 1.7x10-2 1.4x10-1 1.6x10-1 1.6x10-1 
1.7xlO-< 4.0x10-2 2.3x10-1 2.4x10-1 2.4x10-1 
4.7x10"* 8.5x10-2 3.7x10-1 3.8x10-1 3.taio-l 
1.4x10"^ 1.8x10-1 6.4x.O-^ 6.4x10"^ 6.4x10-1 

16 4.0x10"^ 4,rt]o"^ I.IXIQO 1.1x10° 1.1x10° 
32 1.2xlO-^ 8.2x10-1 1.8x10° 1.8x10° 1.0x10° 
64 3.2x10-2 1.7x10^ 2.9x10° 2.9x10° 2.9x10° 

I                          1 
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Table XXVI.  Absorption Coefficient for Rain as a Function of Rain Rate 
for Frequencies of 9.375, 35, 94, 140 and 240 GHz 
(data from Ref. 53) 

■m 
mm) 

RAIN AMOvnoH coeFPiciBTr (irh 

mquMCY (Oh) 

f.sn SI M 140 240 

2.0K10'' 4.4al0"* 1.2x10"* 1.4x10"* 1.4x10'* 

4.aKio~' •.7K10"* 2.iiao~* 2.1x10"* 2.3x10'* 

1.2x10"* l.*KlO'' s.axio'* 3.7x10"* 3.7x10'* 

2.tKl»'* S.tel0'^ S.4xl0** ♦.2x10"* 6.2x10"* 

M •.$»!•■* S.tel0'' •.7x10"* 1.0x10® 1.0x10® 

32 l.telO'^ l.flKlt^ 1.5x10® 1.7x10® 1.7x10® 

M S.iKlf"* i.a«i0^ 2.SK1^ 2.0x10^ 2.telO® 
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D. C. Hogg's  measured data on the one-way attenuation due to 

rain at 70 GHz and some theoretical data by Crane,  and SRI  are presented 

in Fig. 25.  Crane  calculated the one-way attenuation in rain vs rainfall 

rate and showed that the Laws and Parson's model fits Hogg's data best; 

Crane's data are for frequencies of 15.5, 35, 70, and 94 GHz.  V. Richard 

compiled this set of Crane's data, and his compilation is shown in Fig. 26. 

22 
D. Deirmendjian's  calculations of the extinction coefficient 

resulting from rainfall are given in Fig. 20, where the extinction 

coefficient B  ^, km  vs wavelength is shown for 3 cloud models and 2 ext '^ 
rainfall models.  The wavelength coverage is from 1.0 ym to 100 mm. 

44 
Downs  has combined the scattering and absorption tables for 

visible, IR, microwave and millimeter wave radiation, and his results, 

giving the rainfall attenuation coefficients vs rainfall rate, are 

presented in Table XXVII. 

27 
Wilcox and Graziano  calculated the combined atmospheric 

attenuation by water vapor (a (vapor)), oxygen (a ), and rain (a (cond)). 
w o w 

They plotted the total attenuation (db/km) vs rainfall rate for radiation 

of wavelength 3, 4, 8, and 10 mm, for rainfall rates of 0.1 mm/hr to 100 

mm per hour.  Their results are presented in Fig. 27. 

2fi 
Crane  has calculated the rain backscatter cross section per 

unit volume of rain at 0°C vs rainfall rate for 15.5, 35, 70, and 94 GHz, 

using the Mie scattering theory.  His data are presented in Fig. 28. 
40 

(Downs  collected Crane's curves and produced the composite curve presented 

here as Fig. 28.)  Victor Richard and John Kammerer  of BRL have collected 

data from measurements and calculations of the radar backscatter cross 

section per unit volume for 9.375, 35, 70 and 95 GHz frequencies.  These 

data are plotted as a function of rain rate, from 0.1 mm/hr to 100 mm/hr 

in Figs. 29, 30, 31, and 32.  Figure 29 presents BRL's measured data of 

backscatter cross section vs rain rate for the 4 frequencies mentioned. 

Figure 30 presents BRL's 35 GHz backscatter cross section vs rain rate as 

well as a number of other calculations and measurements.  Figure 31 

presents BRL's 70 GHz data and a collection of other calculations and 
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1.0 10 
RAINFALL RATE (mm/hr) 

Fig. 25.  Comparison of Theoretical and Measured Data on 
One-Way Attenuation in Rain at 70 GHz (data from 
Refs. 26, 40 and 54) 
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Fig. 26.  One-Way Attenuation in Rain vs Rainfall Rate for 
Frequencies of 15.5, 35, 70 and 94 GHz (Data from 
Refs. 26 and 40) 
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Fig. 27.  Combined Atmospheric Attenuation Caused by Water Vapor 
(a  (Vapor)), Oxygen (a ), and Rain (a  (Cond)) as a 
w o w 

Function of the Rate of Rainfall for Wavelengths of 3, 
4, 8 and 10 mm (Data from Ref. 27) 
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Fig. 28.  Backscatter Cross Section per Unit Volume of 
Rain at 0°C versus Rainfall Rate for 15.5, 
35, 70 and 94 GHz Radiation (Data from Refs. 
26 and 40) 
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100 

R/MN RATE (mm/hr) 

Fig. 29.  Measured Backscatter Cross Section for Rain 
vs Rain Rate for Frequencies of 9.375, 35, 
70 and 95 GHz (Data from Ref. 55) 
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Fig. 30.  Measured and Calculated Backscatter Cross Section for 35 GHz 
Radiation in Rain as a Function of Rain Rate (Data from 

Ref. 55) 
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Fig. 31.  Measured and Calculated Backscatter Cross Section for 70 GHz 
Radiation in Rain as a Function of Rain Rate (Data from Ref. 55) 
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Fig. 32.  Measured and Calculated Rain Backscatter Cross Section for 
95 GHz Radiation in Rain as a Function of Rain Rate (Data 
from Ref. 55) 
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measurements which were referred to in their article.  Figure 32 presents 

BRL's 95 Gliz data along with other calculations and measurements.  The 

reader is referred to Ref. 55 for further details on these curves. 

A. V. Sokolov   computed the attenuation in rain, in dS/km vs 

intensity of rainfall, 1-100 mm/hr, for visible, IR, and microwave 

frequencies, for .63 ym - 8 mm, using Mie theory, where applicable, 

and Best's drop-size distribution.  His results are shown in Table XXVIII. 

Serge Godard  measured the reflectivity of rain drops as a 

function of drop radius for radiation of .86 cm, 3.21 cm, 5.5 cm, and 

10 cm wavelength.  His data on rain-drop reflections are shown here in 

Fig. 33.  He also found that for 0.86 cm waves, the attenuation in rain 

is really independent of the drop-size distribution; even though the 

reflectivity is very much a function of drop diameter. 

58 
Malinkin, Sokolov, and Sukkonen  measured the attenuation 

coefficient in dB/km for 8.6 mm radiation, and computed the attenuation 

for 1, 2, 4 and 8.6 mm radiation.  The results of their calculations are 

shown in Fig. 34.  Figure 35 shows more details of their measured and 

calculational data on the attenuation coefficient at A=8.6 mm as a function 

of rainfall rate. 

Sokolov and Sukkonen  computed the attenuation of radio-waves 

in the 0.1-2ram range using the drop-size distributions of both Best and 

Polyakova.  For rain rate less than 10-12 mm/hr, using Mie theory, the 

computations were in agreement with experimental data at 0.96 mm.  The 

results of their theoretical calculations are shown in Table XXIX. 

Bakin. Zimin et al.   measured the attenuation in rain of radio- 

waves of 0.96 mm.  The results of their measurements are shown in Fig. 36. 

They found that compared to radiation of 8.6 ram, the attenuation at 0.96 mm 

is larger roughly by a factor of 2.5 to 3.0.  Table XXX tabulates their data 

(average values) with some of Medhurst   at 0,96, 4.3, 6.2, 8.6  and 9,6 mm 

for rainfall intensity of 5 and 12 mm/hr. 

In 1970, V. I. Rozenberg   performed a critical review of radar 

characteristics of rain in the submillimeter range.  He calculated the 

backscattering cross section and the attenuation coefficient for sub-     i 

millimeter radiation using the Marshall-Palmer and Best drop-size        i 
I 
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Table XXVIII. Attenuation Coefficient for Rain vs Rainfall 
Intensity for Wavelengths between 0.63 lim and 
8 mm (Data from Ref. 56) 

Attenuation Coefficient T(dB/km) 

Intonsit>' 
of rain, 
mm/hr 

Wave length o ratii.ition 

O.M|jm J.l }lm 10.6 jjm 100 )lni SOO Jim «00 Jim 1mm 2 mm 4mm 8 mm 

1 1.1 1.1 1.1 1.5 1.5 l.(! 1.7 1.5 0 8 0.3 
5 3.0 3.0 :i.o 3.4 3.5 3.I-, 3,7 3.r. 2.9 1.4 

10 4.5 4.5 4.5 5.J 5.4 5.0 5.7 5.G 4,8 2.7 
25 7.8 7.9 7.9 8.8 9.3 9.6 O./i 9.3 8 9 5.9 
50 )::.5 ij.n I'j.i; 13,9 14.7 15.3 15,1. Ili.O 15.0 11.1 

100 1B.^ 18.5 18.5 :;o.o ;;i.3 22,1 L'2.7 „3.0 1:2.3 17.3 

Table XXIX. Calculated Attenuation Coefficient for Rain vs 
Rainfall Rate for Drop-Size Distributions of 
Best and Polyakova at T=20°C 

Attenuation Coefficient yCdB/km) 

I. 
mm/hr 

w avflont^th >>. mm 

- n I 0 n.H 0 .'. O.l 

B^ pb B p B P B P B P 

0.5 0.7 (1.8 (1.9 O.K (19 0.8 0.9 0.8 0 8 0.0 
1.0 1.5 1.3 1.7 1.3 l.Ci 1.2 I.B 1.1 1,5 1.0 
2.5 ■-•■.3 2 li 2,4 2.5 2.4 2.4 2.3 ■ . .. 2,1 2.0 
5.0 3.1) 4.1 3.7 3.9 3.(1 3,H 3.5 3.4 3:2 3,1 

lO.O 5.C. 7.7 5.7 7.2 5.(1 7.(1 5,4 0.3 4.9 5,8 
25.11 9.3 13.8 9.9 12.8 9.(i 12.5 9.3 11.2 8.3 1(1.4 
5(1,0 til.d 22.1 in.i; 20.5 15.3 20.(1 14.7 18.1 12.7 Ki.li 

(00,0 23.11 34,(1 22.7 31.5 22 1 30,(1 ri.3 28.'i 18,U 2(1.5 

a. Calculated using the Best Distribution 
b. Calculated using the Polyakova Distribution 
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Fig. 33.  Rain Drop Reflection as a Function of Drop Size for Several 
Wavelengths (Data from Ref. 57) 
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Fig. 34,  Computed Attenuation Coefficients 
at X=l, 2, 4 and 8.6 mm vs Rainfall 
Rate (Data from Ref. 58) 
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Fig. 35.  Measured and Calculated Attenuation Coefficients 
at \=8.6 ram vs Rainfall Rate: Solid Curve is 
Calculated Data, Dashed Curve is Average of 
Measured Data, Points are Measured Data 
(Data from Ref. 58) 
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Table XXX. Average Values of the Attenuation Coefficient 
in Rain for Rainfall Intensities of 5 and 12 mm/hr 
and Wavelengths of 0.96, 4.3, 6.2, 8.6 and 9.6 mm 
(Data from Ref. 63) 

Attenuation Coefficient (dB/km) 

Wave- 
!length 

(mm) 

Intensity 
(iirai/hr) 

5                    12 

0.96 

4.3 

6.2 

8.6 

9.6 

4.8              7.8 

3.5              6.0 

3.0              6.5 

2.2              3.0 

1.2              2.0 



distributions.  Results of his calculations for the backscattering 

cross section in units of (m ) are shown in Fig. 37.  His attenuation 

coefficient, in dB/km, is shown in Fig. 38.   Both calculations were for 

radiation of wavelengths of 0.3 mm to 10 cm, and rainfall rates of 0,1, 

1, 10, and 100 mm/hr.  He presented a large bibliography on work performed 

prior to 1970, with 60 references, 

f) '\ 
Joerg Sander  measured the attenuation due to rain at 5,77, 3.3, 

and 2 nun.  Simultaneously recorded were rainfall rate and a part of the 

drop-size spectrum.  He calculated the total cross section of spherical 

water drops at a temperature of 10°C as a function of radius, from 

0,3-3,5 mm, using Mie scattering theory,  Sander's calculated cross section 

data are shown in Fig. 39.  His measured attenuation data are presented in 

Figs. 40, 41, and 42 as scattergrams for 5.77, 3.3 and 2,0 mm wavelength 

radiation respectively.  The measured data are compared in these figures 

with a calculation of the attenuation in dB/km vs rainfall  rate for 

5.77 mm, 3.3 mm and 2 mm radiation, respectively.  Also plotted on these 

scattergrams were regression curves for rainfall rate with attenuation, 

R. D, and attenuation with rainfall rate DIR.. 
A' 'A 

Robert Crane wrote a tutorial  article on "Attenuation due to Rain, 
64 

a Mini Review."   He reviewed progress on the development and verification 

of a theory of rain-caused attenuation, and considers the the statistical 

models required to predict attenuation, ca 1975.  Wavelength coverage in 

his article appears to be from 15 cm to 0.8 cm. 

R, R, Rogers  has reviewed "Statistical Rainstorms Models: Their 

Theoretical and Physical Foundations," in a long article, ca 1976.  Most 

of the data discussed by Rogers is for propagation of 10-20 GHz radiation 

in rain, but some millimeter wavelength data is discussed.  He has a 

number of suggestions for further research. 

66 
G. C. McCormick  wrote an article on theory of propagation in a 

precipitation medium, considering the polarization aspects of the rain. 

He concluded that the most advantageous polarizations for the measurements 

for (rain) medium characteristics are right-hand circular, left-hand 

circular, and ± 45° slant linear (with respect to the rainfall direction). 
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Fig. 37.  Specific Backscattering Cross Section of Rain of 
-        Different Intensity at 18°C, Marshall-Palmer Dis- 

tribution (dashed lines) (Data from Ref. 62) 
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Fig. 39. Mie Calculations of the Extinction Efficiency 
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and 2.0 mm (Data from Ref. 63) 
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Radio waves of 16.5 - 30.9 GHz were considered In his calculations. 

Julian Goldhlrsh  computed some attenuation fade statistics 

for satellite to 2 ground stations separated by a distance d. He modeled 

the total (zenith path) attenuation by 

£1 . 

A. = 
1 

k(£)dJl (In dB), 

where        k(£) ^ a[z(£)]^ In dB/km.. 

The values of a and b used by Goldhlrsh are given In Table XXXI. 

He also computed the joint conditional probability that attenuation at 

two terminals separated by a distance d exceeds the abclssa at path 

elevation angle  6 = 45° at 100 GHz.  His joint probability calculations 

are presented here as Fig. 43.  He has done similar calculations for 

frequencies of 13, 18, and 30 GHz.  He used the radar reflectivity of 

rain at 2.8 GHz as part of his data base. 
CO 

P. Wiley  In his PhD thesis, considered the non-spherlclty of 

raindrops regarding scattering calculations, reviewing Oguchl's work 

of the 1960s.  He then extensively reviewed the literature on cm and mm 

rainfall propagation experiments.  He analyzed in detail some 19.3 GHz data 

for polarization effects.  He compared his results for rainfall attenuation 

with that of Oguchi, for horizontal and vertical polarization for a 1.43 

km path at 19.3 GHz.  His data are shown here as Fig. 44.  He calculated 

the cross polarization vs pathlength for a tilt angle of 60° and a 

frequency of 19.36 GHz.  His results are shown in Fig. 45.  He did 

similar calculations for a tilt angle of 75°; those results are shown 

in Fig. 46.  Conclusions he reached regarding the influence of polarization 

on millimeter wave propagation through rain are the following: 

1)  The best polarizations to use for a  depolarization experiment 

are ± 45° from the vertical.  2) Vertical and horizontal polarizations should 

not be used for a depolarization experiment,  3) Vertical polarization 

suffers the least average attenuation during rainfall.  4) Oguchl's 

attenuation and phase rotations for 19.36 GHz are correct.  5) The effective 
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Table XXXI.  Best Fit Values of a and b for k 
(k in dB/km, Z in mm^/m^) 

= aZ 

(Data from Ref. 67) 

/ a h 
(GHz) 

13 3.15 X I0-* 0.732 
18 9.12 X 10-* 0.681 
25 3.25 X 10-' 0 610 
30 6.82 X 10-' 0.570 
100 6.20 X 10-' 0.429 

8 1? 16 20 24 28 32 36 40 44 48 

Fade Depth, Aq (dBI 

Fig. 43.  Joint Conditional Probability that 
Attenuation at Two Terminals Separated 

^   by Distance d Exceeds the Abscissa at 
Path Elevation Angle 9=45° at f=100 GHz 
(Data from Ref. 67) 
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percentage of oblate drops assumed in an analysis is critical to the 

predicted polarization level.  6) Polarization diversity is not feasible 

as a means of increasing resistance to rain-induced fading.  7) The 

use of polarization multiplexing utilizing orthagonal polarizations is 

limited to very short path lengths.  8) Use of a distribution of rain- 

drop sizes is unnecessary to get good agreement between theory and 

experiment(!). 

69 
Louis Ippolito,  the NASA Goddard ATS-5 and 6 millimeter wave 

communications experiment manager, wrote his 1977 PhD thesis on 

"Scattering in Discrete Random Media with Implications to Propagation 

through Rain."  Ippolito   investigated the multiple scattering effects 

on wave propagation through a volume of discrete scatterers.  The mean 

field and intensity for a distribution of scatterers was developed 

using a discrete random media formulation, and second order series 

expansions for the mean field and total intensity derived for one- 

dimensional and three-dimensional configurations.  The volume distribu- 

tion results were shown to proceed directly from the one-dimensional 

results.  Ippolito's analyses demonstrated that either discrete or 

continuous techniques may be employed for the mean field and intensity 

expansions, as long as care is taken to insure non-overlapping 

scatterers in the formulation.  The multiple scattering intensity 

expansion was compared to the classical "single scattering" intensity 

and the classical result was found to represent only the first three 

terms in the total intensity expansion.  The Foldy approximation to 

the mean field was applied to develop the coherent intensity, and 

Was found to exactly represent all coherent terms of the total 

intensity.  An incoherent intensity term, secular in L, in path length, 

was found which was not accounted for in the Foldy approximation result 

or in the "single scattering" formulation.  Ippolito's study demon- 

strated the feasibility of using discrete random media techniques for 

the determination of multiple scattering effects in propagation through 

a volume of discrete scatterers, and has provided some insight to the 

more general problem of multiple scattering in a rain volume. 
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I- 
L. Ippolito  chaired a meeting on the 20 and 30 GHz experiments  '' 

with the ATS-6 satellite.  A number of interesting papers on the attenuation 

and depolarization of 20 and 30 GHz radiation was presented at that meeting. 

2.4 Scattering and Attenuation by Snow 

The scattering of radiation by snow is different than the scat- 

tering by rain in that the dielectric constant of ice is much less than 

that of water, and that the ice particle making up snow is distinctly 

nonspherical. 

M. D. Blue  of Georgia Tech measured the permittivity of 

water and ice at 97-103 GHz by a reflectivity measurement of water 

and ice relative to mercury.  He found that the reflectivity of water 

was: 

R = 0.392 + .014 for 103.8 GHz radiation, 

thus   n - ik = 3.24 - 1.825i for the index of refraction for water 

and    e'- is"" = 7.16 - 11.825i for water's dielectric constant. 

He also measured the reflectivity of water at temperatures from 32°C 

to 47°C at 103.8 GHz, though no sets of terms for Debye's equation 

were given, as a function of temperature.  The index of refraction of 

ice at 99 GHz was found to be 1.7 ± .08, real, within experimental 

measuring ability. 

The literature on scattering and attenuation by snow in the 

millimeter wave range is very sparse.  Malinkln, Sokolov and Sukhonin^^ 

measured the attenuation due to snow at 8.6 mm wavelength.  Their result, 

in dB/km vs snowfall rate in mm/hr is shown here as Fig. 47.  They con- 

cluded that the attenuation in dry snow is 2.5-5 times smaller than the 

attenuation in rain of the same intensity.  Reference 58 includes a 

reference list of 11 articles. 

72 
Yu. S. Babkin et al., measured the attenuation of radiation at 

a wavelength of 0.96 mm in snow, with a vertical polarization, and a 

680 m path length.  The following empirical relation was found to fit 

the mean attenuation in dB/km vs snowfall rate in mm/hr , 
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;;!i::'>->i;r;K';;R^ 

Y   (dB/km)   =  3.02   l'''^ 

where I =  snowfall  rate per iran/hr. 

When the authors of Ref. 72 tried to analyze the measured attenuation 

data with the use of Mie theory, they obtained results that disagreed 

with the measurements by a factor of about 3.  They assumed that the ice 

index of refraction was 1.78-0.000241, and estimated that a homogenous 

mixture of ice, water and air (making up snow) would have an index of 

refraction of 

m = 1.052 - 0.000121 for X = 0.96 mm. 
s 

They assumed that an equivalent volume of snow (melting ice) would 
-3 

have a density of 0.07 gm cm  .  They calculated an attenuation 

coefficient related to that of water of the same wavelength.  Doing 

this, they found that attenuation in rainfalls is 30 - 40% less than 

in snow of the same equivalent water content.  Babkin's data on snow- 

fall attenuation in dB/km vs snowfall rate is shown in Fig. 48. 

2.5    Attenuation by Ozone in the Atmosphere 

Ozone is an atmospheric constituent that manifests itself 

most at higher altitudes except during thunderstorms, lightning, etc., 

and in and around arcking electronic devices (brush type motors). 

The most comprehensive article on the millimeter wave spectrum 
73 

of ozone is by M. Lichtenstein, J. Gallagher, and S. A. Clough.   They 

used a Stark effect spectrometer and measured absorption lines for 

frequencies between 9.2 to 320 GHz.  Results of their absorption 

measurements are given in Table XXXII.  Note that the strongest lines 
-4    -19   -1 2 

(where the intensity is more than 5X10  X 10   cm  /molecule/cm ) 

occur at frequencies higher than 230 GHz. 

74 
A. Barbe, C. Secroun et al., more recently (1977) remeasured 

some of the absorption lines of ozone in the 15-80 GHz region; their 
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Table XXXII.  0^ Pure Rotational Ground Vibrational 

State Transitions (Data from Ref. 73) 

Upp«I Lowe r Obs. Calc. Obs.- Intensity 
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Table XXXII.  (Continued) 

Opp« r t.owar Obs . 

j 

State Pre<?\j«ncy 
OBIC. Ob..- 
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Table XXXII.  (Continued) 

Opp«r Lower Oba. Calc. Ob».- Intensity 

State St«t« Frequen =Y Frequency Calc. 296°K IC-i' crn-l/ 
J     1 ̂ ''c J \ ■'c MHz MHz MHz Molec/oi^ 
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Table XXXII.  (Continued) 

0pp«r 
Stata 
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Stata 
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new results are presented here as Tables XXXIII and XXXIV. Table XXXIII 

is for rotational lines of O3 in the V^^ (ground) state and Table XXXIV is 

for rotational lines of 0^ in the v^ (ground) state. 

A spacecraft instrument was developed for the measurement of 

the mm characteristics of ozone by personnel at the Ewln Knight Company!^ 

They chose a line at 101.7 GHz for radiometrically measuring the emitted 

radiation of the air mass beneath the spacecraft. Reference 75 describes 

the design of the instrument from concept phase, laboratory phase, through 

a balloon-mounted instrument, and to a spacecraft flight instrument. 
78 

Canton, Manneller et al.  define the ozone absorption coefficient as: 

a 
A^e 

-A /T 
s 

oz .5/2 NO, V 
Av Av 

(v-A^)^ + (Av)^ (v+A^)^ + (Av)^ 

Av \l^ 
where 

For the 101.7 GHz transition. 

1/2 

A = 1.2 X 10  km"-*-; A. = 13.1°K; A, = 101.7368 x lO^.Hz 2   ' "3 

.7„ .=,,1/2,   -1 A = 5.28 X 10 Hz (°K '") mm ^,  A_ = 7.31 x 10-'(°K) 3,o,,x-l/2 

These constants A^, A^, A^, A^ and A^ are from GoraJ^ and Townes and 

Schawlow.  A comparison of measured absorption profile data taken with 

use of the instrument described in Ref. 75 and calculated absorption 

profiles based on the above equation is shown in Fig. 49. 
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Table XXXIII.  Rotational Lines of  0„ in 

the V State (Data from Ref. 74) 
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7 : 

10 2 

12 2 

U 2 

15 3 

U 2 

16 3 

18 3 

18 2 

IS 2 

22 A 

29 5 

23 ] 

12 1 

23 2 

29 3 

30 5 

23 ( 20 

24 4 20 

" fper 
•J "., \ 
2 n  2 

3 1  3 

5 1  S 

3 1  7 

1 I 1 1 1 

13 13 

15 IS 

16 2 14 

17 1 17 

17 2 16 

19 2 18 

17 1 13 

19 19 

23 1 21 

30 1 26 

24 21 

II t 10 

22 19 

2S I 24 

31 i 28 

24 3 21 

25 3 23 

calc. (MHl) 

43059.674 

I05IS.195 

6*332.847 

56322.535 

60569.033 

36254.753 

19215.805 

36281.394 

10272.456 

60127.209 

20308.969 

29143.331 

9669.776 

77996.535 

69900.453 

69297.243 

71611.790 

43303.101 

<OI9a.237 

347<(.390 

23716.013 

29(81.33S 

43059.910 

10518.320 

66333.070 

563:;.620 

60569.120 

36254.790 

19215.910 

36281.440 

10272.310 

60127.340 

20309.340 

29143.300 

9669.370 

77996.306 

69901.401 

69296.890 

71611.623 

43304.288 

60198.432 

34781.333 

23716.273 

29189.336 

Table XXXIV.  Rotational Lines of 16 0 in the 

v^ State (Data from Ref. 74) 

lo w«r upiter cjic. cant) Ok.. (MHa) 

■i^i J K 
.^1 

2 3 0 3 15664.591 15664.570 
5 4 ' 39099.335 39099.200 
7 9 a 19673.215 18673.010 

10 10 9 46687.931 46688.170 
9 12 12 59371.426 59371.430 

1 1 14 14 45388.259 45388.270 
12 15 13 56314.345 56313.970 
13 16 16 40733.576 40733.370 
15 16 14 10705.554 10705.730 
15 IS 13 45990.313 45989.990 
14 IS 1 7 45322.044 45321.930 
17 20 20 61286.619 61296.7 30 
16 20 19 12594. 171 12593.910 
24 30 27 71318.362 713 17.572 
19 24 22 51441.035 5144 1.095 
22 24 21 29460.893 28460.788 

30 3 M 29 25 70673.174 7J6-7.947 
30 5 -" 31 27 21292.446 2129 2.100 
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Fig. 49,  Measured and Predicted Ozone Absorption Profiles 
Normalized to Equal Amplitude for a Background 
Sun Temperature of 2500 °K (Data from Ref. 75) 
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2.6    Attenuation and Scattering by Atmospheric Aerosols 

First, let us consider just what constitutes an aerosol. 

Depending on where you are on the earth (or up in the stratosphere) an 

aerosol could mean various things. 

79 
Lendberg and Gillespie  at White Sands, New Mexico, collected 

dust samples and ran them through a fractionated dust stage to sort them 

out for sizes.  They found that the particle composition varies as a 

function of their sieve pore size that allowed these dust particles to 

pass.  The result is shown in Table XXXV.  They measured the imaginary 

index of refraction of these dust sample stages from 0.3 \im  to 1.7 ym 

and showed that there was a vast difference in this quantity with dust 

size. 

The major reference on atmospheric dust and aerosols has to 
80 

be the conference proceedings  "Atmospheric Aerosols; Their Optical 

Properties and Effects"; this conference was held at Williamburg, 
80 

Virginia, December 13-15, 1976.  K. Bullrich and G. Hanel  presented 

(Paper MHl) data on particle size distributions for different types of 

aerosols.  Their distributions are shown in Fig. 50.  They also 

showed that the humidity has a definite impact on the optical character- 

istics.  The mass absorption coefficient k/p vs wavelength (1.0 ym to 

10.0 ym) is given in Fig. 51 for 3 levels of humidity.  One would expect 

that the humidity will also affect the absorption coefficient of aerosols 

at longer wavelengths. 

80 
H. E. Gerber et al. in paper TUA6  , presented a paper on "Laser 

Transmissions through a Concentrated Aerosol."  They used a centrifuge-type 

device to concentrate aerosols to simulate a light path through the cell 

of up to 1 km.  They measured data on the transmission as a function of 

time for a concentrated oil aerosol and for 0.63, 1.06, 3.8  and 10.6 ym 

wavelength radiation.  Their results are given in Fig. 52. 

80 
E. P. Shettle and F. E. Voltz,  in their paper MC14 "Optical 

Constants for a Meteoric Dust Aerosol Model" calculated the attenuation 
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Table XXXV.  Optically-Significant Components 
of Size Fractionated Dust Samples^ 
(Data from Ref, 79) 

Stage number 

Component 7 6 5 4 3 2 

X 

1 

X 

0 

Clay minerals'* _ _ X X X X 
Quartz — X X X ,Y X X 
Calcite —   X X X X X 
Gypsum X X — 
Ammonium sulfate X A'   
Carhon'' X X — 

° The X indicates that the material was present; the symbol — 
indicates that the material was detectable hut present in much lower 
concentration. 

'■ Specifically montmorillonite. illite. and kaolin group clays. 
' The presence of carbon was estimated by other means, as dis- 

cussed in text. 
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Fig. 50.  Aerosol Particle Size Distributions as 
Measured by Bullrich and Hanel (Ref. 80) 
for Continental, Sahara Dust and Maritime 
Hazes 
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Fig. 51.  Mass Absorption Cross Section, k/p , of 
Aerosols at Three Different Humidities 
(Data from Ref. 80) 

Fig. 52.  Attenuation of Laser Radiation by Oil 
Aerosols as a Function of Time (Data 
from Ref. 80) 
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coefficient for a set of samples of meteoric dust whose reflectivity 

had been measured in the spectral region 2.5 to 40 pm.  A 9-oscillator 

model was fitted to these measurements using a nonlinear least squares 

optimization of his sets of equations, which were: 

2   2 
(n-1)  + k        .,  ^. .^ 

Ra = -^^^ 7. j = reflectivity 
(n + 1)  + k 

2   2 2A^(Vj -^^) 
n -k =A+1 2r2~  IT 

J  (v.  - V )  + Y. V 

nk = ^ 

A. Y. V 

.  ,2    2.2 ,   2 2   ■ 

V. = frequency of jth oscillator 

A. = oscillator strength 

Y. = damping constant or band width 

Results of their calculation of the aerosol attenuation coefficient 

are show in Fig 53. 

James W. Fitzgerald at the Optical Submillimiter Atmospheric 
Q-I 

Propagation Conference  presented a paper on "Effect of Relative 

Humidity on Aerosol Size Distribution and Visibility-Modeling Studies. 

Fitzgerald derived a relationship between the relative humidity and 

the equilibrium size of an aerosol particle that had an insoluble 

core with a soluble covering in the form of a pure salt.  The       j 

equilibrium saturation ratio, S, is described by 
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Fig. 53.  Scattering, Absorption and Extinction 
Coefficients vs Wavelength  for Meteoric 
Dust Model (Data from Ref. 80) 
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S  =  exp 2a' 
rp'R T 

V 

3    ,-^^-'^'\      -,-1 i ep, M    r ^  -^ 
1   _l  d     w     d 

M^{p'(r-r/    (1-e))  - cp^r/}J 

where 

S = equilibrium saturation ratio (%  relative humidity 
divided by 100), | 

r = equilibrium radius of the particle (solution droplet) 

r^, p^ = radius and density of the dry particle, 

M = molecular weight of water, w ° ' 

M = molecular weight of the soluble component, 

i = Van't Hoff factor, 

R = specific gas constant of water vapor, 

£ = mass fraction of the soluble material on the dry 
particle 

a', p' = surface tension and density of the aqueous salt 
solution. 

On a cruise off the coast of Nova Scotia, a sea-fog aerosol size dis- 

tribution was measured, and compared with calculations obtained from 

the above model.  Results of the calculations and measurements are shown 

in the next two figures.  The first, Fig. 54, is for 10 km downwind of 

the formation edge of a fog, and the second, Fig. 55, is for 25 km down- 

wind of the fog  formation line.  These are models that should prove 

useful for millimeter wave studies on sea-fog aerosols. 

It is apparent that some calculations and measurements of 

radiation scattering by aerosol have been made for wavelengths up to 

30 ym in the IR region, but no measured data were found in the .1 mm 

to 1 cm region. 

Information on the aerosol index of refraction needs to be 

generated and measurements made in the submillimeter region.  Experi- 

mentally, the Fourier transform spectrometer could be used to determine 

the complex index of refraction of a number of different types of 

particles. 

107 



108 

2 AUGUST 1975 
2303 EDT 
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' MEASURED (CALSPANI 

DIAMETER Vml 

Fig. 54.  Comparison of Observed and Predicted Droplet 
Size Distributions at a Point 10 km Downwind 
of the Forming Edge of the Fog on 2 August 1975 
(Data from Ref. 81) 

a PREDICTED 
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11 17 23 

DIAMETER ifm) 

Fig. 55.  Comparison of Observed and Predicted Droplet 
Size Distributions at a Point 25 km Downwind 

,  -   of the Forming Edge of the Fog of 4 August 1975 
(Data from Ref. 81) 
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Some of the types of aerosol particles that need to be considered 

when making index of refraction measurements are: 

Soluble Materials 

(NH^)2 SO^ 

NH.NO^ 
4  2 

NaNO„ 

NH,C1 
4 

CaCl„ 

NaBr 

NaCl 

M9CI2 

LiCl 

ZnCl„ 

^2°5 

Non Soluble Materials 

Clay minerals (montmorillonite, illite, 
and kaolin group) 

Quartz 

Calcite 

Gypsum 

Carbon 

Basalt 
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2.7    Attenuation and Scattering by Battlefield Dusts and Smokes 

The literature relating to the attenuation and scattering properties 

of battlefield dust and smokes in the millimeter and submillimeter wave 

region in very sparse. 

82 
G. Tinsley and T. Cosden  measured the particle size distribution 

of some machine-gun smoke.  The particle distributions shown in Fig. 56 

are one-minute averages.  The "1514" time is before the smoke reached the 

particle counter.  At 1518, the smoke had largely passed.  They calculated 

the extinction in this smoke for 3.9 ym radiation.  E. W. Stuebing, F. 0. 

Verderame et al., in paper 14 of the conference^^, presented a talk on the 

"Nature of Gun Smoke and Dust Observation." They developed the data 

listed in Table XXXVI which gives the products of nitro-cellulose combustion 

from a 30 mm Rarden cannon round.  Stuebing et al. also modeled an obscuring 

smoke cloud which they assumed was due to a combination of gun smoke and 

the dust created from the ground by the muzzle blast of the cannon.  They 

calculated the optical densities at 0.5, 1.06 and 10.6 ym wavelengths that 

were provided by the smoke produced by the firing of a 30 mm Rarden 

cannon from measured transmission vs time measurements for those wave- 

lengths.  The optical density is defined by the equation T = 0.1° where 

T is the measured transmission and D is the optical density.  Figures 57 

and 58 show the measured optical density vs time for the three wavelengths 

used in the measurements.  Also shown in these figures are the optical 

densities obtained from model calculations.  The transmission through the 

smoke has two minima:  the first appears to result from the smoke produced 

by the products of nitrocellulose combustion (which was modeled as water) 

and the second results from the dust created from the ground.  The comparison 

between the model results and the measured densities for A = 0.53 ym appears 

to be good.  Although the data in Figs. 57 and 58 are for wavelengths in 

the visible and near infrared, the models giving the "smoke" particle size 

distribution vs time could be used with Mie theory to determine absorption, 

scattering and extinction coefficients for millimeter and submillimeter 

wavelength radiation. 
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Fig. 56.  Measured Particle Size Distributions 
for Machine-Gun Smoke; time = 1515 
(Data from Ref. 82) 
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Table XXXVI.  Products of Nitrocellulose Combustion, 

(from Data In Paper 14 of Ref. 81) 

Major Products 

2 

Major Minor Products 

CO,  CO2,  H2,  H2Q  (Water Gas Equilibrium) 

N, 

CH^.  NH^ 

Minor Minor Products 

C,  K2O,  SnO^,  Na20,  BaO 

(Pb,  Sb,  Si,  Zr,  Ca,  Al) 
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■f = Water Model Result 

O = 0.53pn Observed Data 

+ = Water Model Result 

TIME (sec) 

Fig. 57.  Measured and Calculated Optical Density vs Time After 
Firing of Cannon (from Ref. 81) 
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,2 ■- 
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TIME (sec) 

Fig. 58.  Measured and Calculated Optical Density due to 
Gun Smoke and Dust Model (from Ref. 81) 
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Alan Downs in Ref. 44 has reviewed the transmission of optical 

radiation through smoke and dust.  The transmission through several smokes 

for visible and 10.6 ym wavelength laser light as a function of the particle 

concentration is shown in Fig. 59.  Further work of optical transmission 

in smokes is alluded to in Downs' report.  Downs also reported data on trans- 

mission versus time for visible (.4 - .7um), near IR (.7 - 1.1 ym) and IR 

(3-5um and 8-14um) radiation through 105 mm HC round caused smoke cloud 

(presented here as Fig. 60), a 60 mm WP morter caused smoke cloud presented 

here as Fig. 61) and a fog oil smoke cloud (presented here as Fig. 62).  The 

latter fog oil cloud was produced by 9-M-7 fog oil smoke pots.  Downs reported 

that when 94 GHz and 140 GHz radar beams were transmitted through each of 

these clouds, the resulting signals showed no attenuation.  Table XXXVII 

lists the time in minutes that each of the visible and IR systems could 

"see" the smoke phenomena that were described in the previous three figures. 

Downs also presented data on transmissions through a dust cloud that 

were collected at Fort Sill during smoke tests.  The transmission through 

the cloud is shown here in Fig. 63.  The reduction in transmission during 

the 0-20 second time period is due to the smoke and the cause for the 

transmission loss in the 123 second - 200 second time period is due to dust. 

Downs also reported on another dust cloud experiment.  The results 

obtained from the experiment are shown in Fig. 64.  Downs reported that 

there was no apparent attenuation of 94 GHz and 140 GHz radar by the dust. 
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Table XXXVII.  Time in Minutes After Production of Smoke that the 
Presence of the Smoke Could be Detected by Radiation 
in the Indicated Wavelength Ranges (Data from Ref, 44) 

WVUMBIM 

QBCMMI) 

MBASUMD 

quMmrr 

BWfWnTPT' 
/Mi AcriuJKY 
ptOMcnuf 

POG OIL 
POTS 

HC 
POTS 

UK 
QHMABIS 

0.4^.7 NudaM TiM of 
Total AttMWitlos 10 17 4 45 

0.7-1.1 NudHB Tiao of 
Total AttMwatloB 10 17 4 43 

3-5 NudOMtiM of 
Total Att—MTfirni 0 • 0 17 

Avorafo 
Ttanaitsira OoM 0.70 0.65 

MaiMH 
Tr«MRi»sloa 0.35 0.15 0.05 0 

•-14 MndaaTlM of 
Total AttMcatloa 0 0 0 13 

Avorafo 
TraandssloB 0.90 o.to 0.70 

Transalstioii 0.50 0.35 0.15 0 
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III.  SUMMARY OF DOCUMENTS SURVEYED IN THE 

LIMITED DOCUMENT LITERATURE 

Only documents that were felt worthy of mention, as containing 

information not found in the open literature will be discussed here. 

The technical areas will be along the same format as was in the unlimited 

version. 

3.1    Attenuation and Scattering by Rain and Hail 

Vogel reports in Ref. 83 on Mie theory calculations for spheres 

of water (rain) and ice (hail) at frequencies of 30, 100, 150 and 300 GHz. 

The values he used for the index of refraction for water and for ice are 

given in Table XXXVIII.  He points out that frozen rain (hail) scatters 

more radiation than does liquid rain for frequencies above 150 GHz.  The 

Russians concur with this conclusion in their articles on attenuation by 

snow (see Ref. II).     Richard and Kammerer  also points out that mm radia- 

tion scattering by ice will tend to be more peaked in the forward direction 

for frequencies above 100 GHz than that computed for water droplets.  The 

single scattering of ice was found to be critically dependent on its con- 

ductivity.  A number of different Mle theory calculations of the phase 

function for scattering are given In Ref. 55.  Attenuations due to rain- 

fall at 100 GHz based on the Mle theory calculations were compared with 

measurements taken by Setzer, 

within the experimental error. 

r  -1 

measurements taken by Setzer, Asarl and Medhurst  , and were found to be 

3.2    Attenuation by Water Vapor 

Gamble and Hodgens  reported on a literature survey for mm waves 

of wavelength 0.735 - 8.57 mm.  They caution about dimer effects during 

heavy fog (relative humidity >95%) or rain (RH >80%).  Dimer effects are 

(H^O) - (H^O) interactions that tend to broaden the water vapor absorption 

12: 



Table XXXVIII.  Index of Refraction of Water and Ice 

(Data from Ref. 84) 

iFrequency 
,    (GHz) State 

Index of 
Refraction              ; 

iO 
Water 
ZO°C 

5,9    -  Z . 9, 

Ice 1.91  -  0, OOZi 

100 
Water 
zee 3. 505-Z. 007i 

Ice 1 . 88 - 0. 00076i 

150 
Water 
ZO'C 

3. 039-1 . 575j 

1 Ice 1. 88 -  0. 00076i 

-    iOO 
Water 
20°C 

Z.587-0.937i 
i 

Ice 1. 88 - 0. 000761-: 
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85,86 
lines.  Dimer effects were also considered by Russian authors 

Gamble and Hodgens present data in Ref. 84 on the in band attenuation in 

dB/cm vs. visibility for a number of wavelengths between 320 mm to 8.57 mm 

and for atmospheric temperatures between 0° and 30°C in 5° C steps.  A 

sample of their data is given here as Table XXXIX.  Three figures of 

interest from Ref. 84 should be noted; data on the wavelength dependence 

of the refractive index of ice, presented here as Fig. 65; data giving 

the volume concentration of water droplets by size, presented here as 

Fig. 66, and the attenuation due to the liquid water content as a function 

of visibility for a number of wavelengths between 320 ym and 8.57 mm and a 

temperature of 24° C, presented here as Fig. 67.  Gamble and Hodgens con- 

clude that at any particular wavelength chosen in the mm band, water vapor 

absorption will be the driving unknown parameter, and will be a strong   ■ 

function of temperature and humidity.  He feels that high resolution 

measurements need to be made to back up the actual calculations to be 

certain of the absolute attenuation at a given frequency. 

3.3    Refractive Indices for Sea Spray 

87 
Eric Shettle  has reported on measurements of sea spray for 

wavelengths between 0.1 ym and 40.0 ym and a relative humidity of 80%. 

His data are presented here in Fig. 68.  He also reported measured data 

on the refractive indices of water, sea spray aerosol and sea salt for 

wavelengths in the visible and infrared wavelength regions.  There is a 

paucity of data on indices of refraction in the mm and sub mm wavelength 

ranges. , - 
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IV.  SUMMARY OF DOCUMENTS SURVEYED IN THE CLASSIFIED LITERATURE 

A review of the classified literature showed that all the physical 

properties of the atmosphere and other media, e.g., rain, aerosols, snow, 

and battlefield conditions, were treated in the unclassified section.  The 

classified documents were effectively hardware related and no new physical 

properties of the atmosphere were discussed. 
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V.  RECOMMENDATIONS FOR FURTHER RESEARCH 

Two of the most important attenuators of mm and sub mm radiation 

in the atmosphere are water vapor and oxygen.  For the case of water 

vapor there are resonance frequency regions at approximately 1.3, 2.1, 

3.2 and 8.6 mm where absorption is abnormally large. Much of the water 

vapor attenuation coefficient data currently available for the mm and 

sub mm wavelength range were measured or calculated over a decade ago. 

It appears that some new measurements would be useful for checking out 

the accuracy of band model calculations.  The measurements need to con- 

sider the effects of temperature and pressure on the absorption cross 

section of water vapor.  The Russians  '  have pointed out the impor- 

tance of considering dimer effects, where attenuation is proportional 

to the square of the humidity, when calculating the absorption cross 

section for wavelengths in the 1.15 to 1.55 mm band. Most investigators 

have used a Lorentz line profile when calculating the contribution to 

the absorption cross section from the wings of each line.  It appears 

that use of other line profiles, such as the Van Vleck-Weiskopf model, 

would probably produce more accurate water vapor absorption cross section 

data in the mm and sub mm wavelength range than that now available.  The 

line broadening produced by (N - H^O), (0^ - H^O) and (H^O - H^O) col- 

lisions needs further investigation. 

The absorption by oxygen in the mm and sub mm wavelength is 

usually considered to be fairly well known,.  Even so, the experimental 

and theoretical data now being used is over a decade old and a comparison 

of transmission calculations based on that data with measurements would 

be useful. 

The index of refraction of liquid water at 20°C is fairly well 

known, but at other temperatures it is not well known.  Thus, the trans- 

mission of mm and sub mm radiation through clouds and fogs containing 
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water droplets may be considered to be well known at 20° C but only at 

that temperature.  A measurement program is needed to determine the 

temperature dependent parameters needed in the Debye equation. 

There are a fair number of measurements of the attenuation and 

scattering coefficients for rain at frequencies of 15, 20, 30, 35 and 

70 GHz, much fewer at frequencies of 94, 140, 240 and 300 GHz and none 

at frequencies above 320 GHz.  The need to consider the effects of non- 

sphericity of rain drops, as suggested by Oguiche and discussed by 
69 

Wiley  , when computing scattering, absorption and extinction coeffi- 

cients and phase function data with the use of Mie theory should be 

studied. 

Propagation of mm and sub mm radiation through snow has not 

received much attention.  At frequencies less than 50 GHz snow is not 

as important a scatterer as rain, but for frequencies greater than 

150 GHz, and especially for wet snow, it will scatter more than rain. 

Calculations of the scattering and attenuation characteristics of snow 

with the use of Mie theory needs to consider the fact that snow flakes 

are not spheres.  A measurement program is also needed to obtain more 

accurate values of the index of refraction for both ice and snow in the 

mm and sub mm wavelength range.  Measurements of the index of refraction 

of ice and snow need to be made as a function of temperature and, for the 

case of snow, as a function of the "wetness" of the snow. 

Aerosol effects have not been seriously considered for mm and 

sub ram wavelengths since for normal atmospheric aerosol size distributions 

the particle size is small enough for Rayleigh scattering theory to be 

applicable.  Aerosol effects for battlefield type dust, which contains a 

significant fraction of large particles, needs further investigation. 

Studies need to be carried out on the scattering and absorption by large 

aerosol particles with a core of one material and an outside shell of 

another material.  The index of refraction of aerosols for mm and sub mm 
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wavelengths needs to be measured so as to provide data to be used in Mle 

theory calculations. 

There is no information available on the index of refraction for 

battlefield dusts, battlefield generated smokes and exotic gases and the 

aerosols produced by vehicle engines.  Although some information on com- 

bustion products were found in the literature, there is a need for a 

study to define the specific combustion products emitted by the engines 

of battlefield vehicles and to determine which are important absorbers 

and scatterers of mm and sub mm wavelength radiation.  Of great impor- 

tance is the need for data on the size distributions of the particles 

contained in battlefield generated dusts and smoke. 

Some data are available on the transmission of mm and sub mm 

radiation through battlefield generated dust and smoke (see Section 2.7). 

More effort needs to be expended to develop better models of the time 

and spatial dependent variation of battlefield smoke and dust particle 

size distribution.  Since the particle sizes that are important in Mie 

theory calculations are those with diameters greater than 0.06 times the 

wavelength, the need to treat these large particles as nonspherical 

particles in Mie theory should be investigated. 

The exotic gases produced under battlefield conditions should 

be identified and the absorption lines for these gases should be tabu- 

lated to determine which of the gases would be important absorbers for 

mm and sub mm wavelength radiation. 
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APPENDIX A - BIBLIOGRAPHY 

A bibliography of the unclassified unlimited and limited 

literature on the interaction phenomena occurring in the atmosphere 

for millemeter and submillemeter radiation is given in the Appendix. 

To aid the user of this bibliography, a 7-digit identifier or 

index number, on the same theme as the Dewey Decimal classification or 

key-word description, is given to each bibliographical entry.  This 

7-digit index number has the following form: 

The first digit of the identifier number, which is used to 

identify the materials discussed in the biographical entry, is assigned 

numbers as follows: '  •      ' . "  ; ■ 

Water vapor 

Rain and aqueous water 

Snow 

Clouds and Fog .        ^ 

Air 

Oxygen, 0^ 

Ozone ' ' 

Nitrogen and its compounds (include Organic Compounds) 

Exotic gases and Hydrocarbons 

Smoke and Aerosols ■:     ... •. • 

Dust and Solid material 

Hardware Discussions 

Plasmas 

The material identifiers listed above were selected to satisfy the 

terms of the work statement of the contract; additional identifiers are 
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provided because of titles specifically oti these topics that had been 

reviewed and were considered useful peripheral information in mm wave 

technology.  If an article discusses more than one material, and one 

of the materials discussed is one of those called out in the contract, 

then the article is listed under the material category called out in 

the contract.  To identify the mm wave spectral region, the second 

digit of this 7 "digit" identifier is used in the following fashion: 

1) 10-30 GHz (3.33 cm - 1 cm) 

• 2) 30-100 GHz (1 cm - 3.33 mm) 

3) 100-300 GHz (3.33 mm - 1 mm) - ■' '"    ' '   '  '■ ■ ■ ' 

4) 300-1000 GHz (1mm - 333 um) --       '  ' /■ ' 

5} 1000 GHZ - 3000 GHz (333 um - 100 ym)   ^   '''■' ■        -- 

6) Greater than 3000 GHz (wavelength less than 100 ym) 

For the third digit of the index number identifier, one 

of the following numbers for unclassified, unlimited distribution docu- 

ments is used: 

1) Experimental ■  - . 

2) Theory ■ 

3) Combination of Experimental and Theory     ^ , 

For limited distribution, unclassified documents, one of the 

following numbers for the third digit is used: 

4) Experimental 

5) Theory 

6) Combination of Theory and Experimental 

For confidential documents, the third digit was assigned as 

follows (to include the classification): : .; . 

7) Experimental 

8) Theory 
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9) Combination of Theory and Experimental 

For secret classified documents, the third digit is assigned as follows: 

A) Experimental 

B) Theory 

C) Combination of Theory and Experiment 

To identify the specific technical area described in the biblio- 

graphical entry, such as transmission, reflection, etc., the fourth 

"digit" is used in the following way: 

1) Transmission 

2) Reflection , 

3) Cross Section 

4) Backscatter 

5) Dielectric . ,     ,-  ,-, ■ :-   i      '-      ■      \      .      '      ': 

6) Index of Refraction 

7) Emission ' . "■ 

The fifth digit of the identifier number, which describes the 

project area described in the bibliographical entry, is assigned as 

follows: 

1) Radar 

2) Astronomy 

3) Radiometry ,      . 

4) Fourier Transform Spectrometer 

5) Spectrometer and Michelson Interferometer 

6) Remote Sensing 

7) Communications 

8) General Use 

9) Obscurant 

A) Laser and Maser 

B) Missile Seeker ,. . 
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The sixth digit of the identifier number is used to indicate 

the number of articles in the bibliography on each title or technical 

area (1-9, A-Z).  A computer code can be written to search on a file 

(tape or disc) where, with respect to an 80 column card, the first 7 

columns would contain the 7 "digit" number.  The last digit of the index 

number (the seventh) is used to designate the number of 80 column cards 

space in the file required to contain the subfile. 

A.l    Illustration of Indexing/Identifier Technique 

Let us pick a number and see how it refers to the indexing 

system discussed above (Along with discussion on what is on a file): 

C 2 1 2 1 7  8 Author's name*title of article*contract number 
or where published (if not a government document)* 
(Example—Applied Optics, Vol. 10, No. 4, 738-748) 

Date of Publication* and Government Publication 
Number such as AD-number* 

Short Summary of article*(author's abstract used 
if it contains enough succinct information). The 
above information is packed to fit in as small a 
space as possible. 

^ - 80 column card space used 

7 th article of this type 

-Article is on Radar 

Backscatter 

Experimental Method, Unclassified 

30 - 100 GHZ frequency range 

Hardware Discussion 

To allow a computer to access the contents of the index card file on a 

disc or a tape, the information given after the 7 digit identifier must 

be spaced by a computer recognizable identifier, e.g., an asterisk.  The 

end of the abstract will end uniformly by a double asterisk for an end 

of file identifier for each article file. 
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MICROWAVE ATTENUATION STATISTICS ON THE EARTH-SPACE PATH AT 

STATISTICS FOR A YEAR OF LITERATURE 
DISCUSSION OF LIKELY SOURCES OF 
EL^?^''9V*I^S^.P'^°cgDURE BY HOGG, 
THIRD YIEfD^RFSULTl^-^.^^-^-^ySfcu^^iu^rKtyiU. AlIENUATION AT A 
EXCEPT AT VERY HIGH 
ON   THE    ■-   -"   - r   MEASURING 
ACCURATE   ESTIMATES 

CRAWFORD HILL 
ON THE EARTH-SPACED 

CUMULATIVF 
^„„.„RESENTED, ALONG WITH A 
^,^S2S^, RESULTS ARE: 1) THE 

„^ - , WHEREIN ATTENUATION M^ASuRE- 
ARE USED TO PREDICT ATTENUATION AT 

l^T§Sfi$T^Sf!EEMENT WITH OBSERVATIONS 
^  ATTENUATION LEVELS, 2) BECAUSE OF i IMITS 
RANGE_OF_THE SUN^lRACKER ( RAD I pMETER ) TviORE 

SHf   CAN^B|,PRO|Ag[/S^i^%r|UIWg?Af?§N'^S^S „ DIRECT^HEASOREMENTS.S* 
^^fSn^^rrf^M^i^k^J^' J-5 AFSAR, M.N 

,*'^SM?^l^?Ac:r-^A'"'^"^^^-'''^EQUENCY DIELEC 
V.^^HK^.P^H^i^^uIP^'^S^S^ONS  ON MICROWAVE 
JECHNIOUES. VOL. MTT-22. NO. 12. 1028 
*i^^KL^2Y^^S^^ ^N DISPERSIVE FQURIER 
AT^cfif?P8'?5P-K, ^^^   COMPLEX REFR "" 
MATERIALS ARE NOW   

>3 0DB 
LONG 

AT 

DAVIES. 
TRIC 

J.B, G.J.; HASTED 
PROCESSES IM 

.«o •- THEORY AND 
1028-1032*DEC. 1974» 

, COMPLEX REFfiACtTvE'fftB?'c^§%Pfg^§?^^^^^ 
DIRECTLY MEASURABLE OVER A WiDE SPECTRAL 

RANGE WHICH EXTENDS FROM MI CROWAVE" WAVELENGTHS Tn THE Mf^n 
K,5-.Mf2^ir,^i?ULTS FOR ETHENOL AND BUTENOL ARE PRESENTED 

BQjSnitiGfs OFFERED °» ^^^ SPECTRA IN TERMS OF HYDROGEN 

^^?^'', ?on?RNk,^TK',.f^A*?*^'-ECTRIC RELAXATION AND HYDROGEN BONDING 
IN LIQUIDoADVANCES IN MOLECULAR RELAXATION PROCF^^F^OAO-OO* 
12^2*IN THE ARTICLE  DIELECTRIC ABSORPTION MEASUREMENTS ARE 

IN WATER, WATER-DIOXENE MIXTURE 
VS E" 

ALCOHOLS 
0^ 

JONES. H.B.; 
IN THE 10 TO 
PROPAGATION, 

AND SMITH. d.« 
40 GHZ BAND* 
VOL. AP-23, NO, 
PHASE AND 

THE 

, S?i[?^c?RifJ^f!'xA'figS^??S^e'^/^^^^^^^^^^° ^^'L^^f^^ 
111171C«TH0MPS0N. M.C.; WOOD' L.E.; 

PHASE AND AMPLITUDE SC I NT ILL At I ON 
IEEE TRANSACTIONS ON ANTENNAS AND 
792-797«N0V. 1975«S I MULT ANEOUS MEASUREMENT'^ OF 
AMPLITUDE VARIABILITY WERE MADE ON ^M KM SLANT PATH USING 
5 RADIO^FREQUENCIES. 9.35, 14 . 4 . ?2 - ?? 25.4. AND 33 3 GH7 
^.A^Ig^bL^gEOUENCIES WERE CLOSEN FOR THEIR RELATIONTQ 
WATER VAPOR ABSORPTION.  THE AMPLITUDE DATA SHOW OrcAS IONAL 
FADES IN EXCESS OF 20 DB SUPERIMPOSED ON SMALL OR SriNTII-    ■ 
LATIONS OF SEVERALPB.  NE I THER PHASE NOR AMPLITUDF VAR ABILITY 
SHOW EFFECTS ON THE MOLECULAR RESONANCE OF WATER VAPOR AT 

^^!iJL^.*,99CR?^5§'^; JULIUS^-PREDICTION METHODS FOR RAIN ' • 
ATTENUATION STATISTICS AT VARIABLE PATH ANGLES AND CARRIFR 
ASn°^^SJfpA???;K^^^tJn?-' AND ion GH'ZMEEE TRANSACTISSS'O5'AN?ENNAS AND PROPAGATION. VOL. AP-23. NQ . 6. 786-79I*N0V. 1975«FAnE 
DEPTH AND SPACE DEVERSITY STATISTICS OF PROPAGATION ALONGE 
P^?I'^;P^i^9f.,?*^ii? I^AVE BEEN CALCULATED FROM RApAR REFLECT IVI TY 
R^I^ R^eS^^f^S USING MODELING TECHNIQUES.  THE REFLECTIVITY     ■ 
DATA BASE WAS OBTAINED DURING THE SUMMER OF 1973 AT WAi i OPS 
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^SLAND'^VA. USING A HIGH RESOLUTION S-BAND RAOAR INTFRFirPn 
A COMPUTER AND DIGITAL PROCE SS ING SYSTEM   FADE STATISnfs 
HAVE BEEN.CALCULATED^FOR^^VARloyS^PATH ANGLES AND SEVERAL ^ 

WITH 

^^FREQUENCIES   BETWEEN^S   AND   100GH7::r   '^^^^' 
'^^,MZ^S?^*^2^?;   jgERG«RAlN   ATTENUATION   OF   Mil 

tMn^2^nD*^;T?A.,^-2'    AND   2   MMMEEE   TRANSACT 
AND   PROPAGATION   _,    VOL.    AP-23,    NO.    2.    ?l3-; 
MEASUREMENTS   OF   RAINFAII     ATTFNllATTnM   OF   MM' 

-  -1970. 
. WERE THE 
WERE THUS 

LLIMETER WAVES 
„r,, - ir, T7'--^ ...^..^^^ , IONS ON ANTENNA 

_. VOL. AP-23, NO. 2.    213-220»MARrH  , 1975» 
7 "*Mn-nuM-, .^^^^''^LL ATTENUATION OF MM WAVES AT § 77 

o?.!', h^^,   2 MM WAVELENGTH WERE CONDUCTED DURING 1969- 
SIMULTANEOUSLY RECORDED METEOROLOGICAL QUANT IT lES 
n^?^D[i?^£^'^'^^^S *S A FUNCTION OF RAINFALL RATE utTbRMINED. 

^^um^^^^rd^K' LI*N'^~'^^^I°''E^OTE PROBING OF ATMOSPHERE AND WIND 
AMk°S^nDA^lT^LL>^"^^ER WAVESMEEE TRANSACT IONS ON ANTENNAS 
AND PROPAGATION, VOL. AP-18, NO.  4, 493-497*JUIY lQ7n» 
A TECHNIQUE IS DEVELOPED TO PRQBF THE ATMOSPHEftP TllRRili P^^F 
^.I^^^^'I^ ^^?n^^" ^^E WIND VELOCITY ALONG A PATH USING MM 
^^^1?.^^/ ^P'^L.  DATA OBTAINED IN A L INE-OF-SIGHT MM WAVE 

VISIBLE AND —^-f^-^' 
^ METHOD IS USED TO ..^^. ,,,. ^^„^ 
262121D«SOKOLORE, A.V.«ATTENUAyI ON'OF V ISTBLE'AND"YNFRAfiPD 

PHYS fs°\ir 'fi' T   ?^°W;RADIQ ENGINEERING AND^E[ECTRONIC 
T,.n^i.£x', VOL. 15, NO. 12», 21 75-2l78ol970nTHE RESULTS OF A 
THEORETICAL CALCULATION OF RAIN ATTENUATI ON 1N THE RANGE OF 
0.63-100 UM, OBTAINED FROM RIGOROUS FORMULAS OF MI F'S 
DIFFRACTIONS THEORY, ARE PRESENTED FOR THE CASE WHERE TWF 
7iM?^F,r!^^^^s^n'^Si^ ^^^   f^AIN DROPS ^ORRESPOSDS TO THE DATA OF 
IW^Tni '^IhlTs Wf^'lS'^^mim^'m n IN.ACCORSANCE^' 
THEORETICAL RESULTS 
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223171C»DUDZENSKY. 7R 

Ip   ^ss^ o^A.'r'T I ^^oS^^yi^A^r^^E 
OF ATTENUATION ARE GOOD FROM 6.3 UM 

RISON OF THE RESULTS OF ATTENUATION 
THS OF .6329 AND 10.6 MM #2   OVER 1.36 KM 
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AND OTHER GASES 
Bl25829»TjlA, T.H 

THE NOTION OFDIELE 
RELAXATION»ADVAN 

BQRDE 
CTRI 

IjK. P.; AND BOTTCHER, C.J.F.»0,Ni 
T.,-.iAr,-^fi}^-^^^^   ^^   "'"HE THEORY OF DIELECTRIC 

OF DIELECTRIC FRICHON IS ANALYZED AN? SHOWN THAT TSEIR 
DERIVATION IS INCONSISTENT.  THE INFLUENCE OF DlPO F-DIPnl P 
{W^f?.;??JiS'^..°I)l .PJ^LECTRJC RELAXAT ON IS THPN JNVES'TJGSTED 
/r*J^°I^E^K,w^!pSy^£^ SHdws THAT Th^iS INTERACT ON FWE^D 

#OEXPERIMFNTAL   DATA   ON   DIELECTRIC   CONSTANT   AND   LOSS   FACTORS 
f?S   f^f^y^D   VIA   BuDn'S   EQUATIONS'    WHICH   RELATE   THF   REAL 
AND   fMAGiNARY   f*ARTS   OF   THE   D   ELECTRIC   CONSTANT   TO   LINEAR 
?^p^§^°iIJi°!:i?T2M^P   DIELECTRIC   (LORENT? I IN )   AND   TWO   LOSS 
TERMS,. EACH   WITH   DIFFERENT   RELAXATION   TIMES   AND   TWO   WEIGHT 
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D323661E»LAX._B. AND COHN. D 
ON Jv^s^u^J^^i^gnge'D'i'A^^o'^'wiiH'pus^MiEl^^ 

'^^^gO^n^l iy^°?X.A'^D TECHNIQUES, VOL. MTT-22. NO. t2> 
l049-iq52»DEC 1974»N0 #»RECENT ADVANCES IN THE DEVELOPMENT 
?L^^$'iP?$V^S ^Srl^xtlt^ LASERS HAVE OPENED UP NEW AREAS OF 
INVESTIGATION IN THE STUDY OF LASER PLASMA INTERACTION   THFSF 

■^f^l^S 'tiiLUDE STUDIES OF LASER-INDUCED GAS BREAKDOWN AND 
PLASMA^HEATING AT CYCLOTRON RESONANCE, LASER-INDUCED 
§?i^S09S'^r^^[i?I§TJVT?Pt^?^ AND STUDIES OF LASER-GENERATED 
?A§^^^JRrl^^i'^?Ii^PIkITIES IN ARC PLASMAS.  IN ADDITTON, 
ly^^L^^L^S. ^^S!?^ CAN BE USED^FOR DIAGNOSTIC MEASUREMENTS 
i^»J9*^^5*5M£k^§^*S' WHICH INCLUDE ION TEMPERATURE MEASURE- 
MENTS BYJHOMSON SC A TTER I NG , AND OF TRANSVERSE THERMAL 

°^i^^?-n ?y2k''i.',nS;r-i BUTTON,^K. J. ; WALDMAN, J.; AND COHN. D.R.» 
MppULATEp SUBMILLIMETER LASER INTERFEROMETER SYSTEM FOR 
^k^i^^J^^SI^"^ MEASUREMENTS^^APPLIED OPTICST VOL. 15, NO. 
2645-2648«N0V. 1976*N0 #»A HIGH RESOLUTION SUBMILLIMETER 
!^15l^?°c:7!J^Ji^S^STEM FOR MEASUREMENT OF ELECTRON DE NS I T IES 

IN THE 1 E14 CM-3 < NE < 2.El5 CM-3 RANGE HAS BEEN DEVELOPED 
FOR USE IN HIGH DENSITY TOKOMAKS.  PHASE MODULATION AT 1 MHZ 
IL^R^P^^l-Jf^ig ^^P?^''^^Si^^^ FREQUENCY MIXI NG OF TWO CAVITY 
jy^iS^^O.^.A^^.^Sr^PS^ILLATORS.  THE OPTICALLY PUMPED CH30H 
^^^iP?Mr"W^'^.OPERATE AT 118.8 UM, FEATURE A NOVEL OUTPUT 
R9HPki^£o2^S'9LTt!*T PERMITS GOOD MODE QUALITY AND  '  " 
DIVERGENCE.  THE BEST SIGNALS ARE DETECTED USING 
DEVELOPED GE LI PHOTOCONDUCTOR, AND A DIRECT  " 
OP THE^PHASE SHIFT FROM THE TIME LAG   
REFERENCE SIGNALS.<^» 

521621A»DAVIS. JOHN H. AND COGDELL, JOHN ,,. 
REFRACTION AT MILLIMETER WAVELENGTHS«IEEE 
ANTENNAS AND PROPAGATION, VOL. AP-18, NO 
1970»NO #»MEASUREMENTS OF THE Dlf^FERENCE 
OPTICAL ASTRONOMICAL REFRCTlON AT LAMBDA 

11 

. LOW BEAM 
  A NEWLY 
MEASUREMENT 
PROBE AND BETWEEN 

^ASTRONOMICAL 
TRANSACTIONS ON 
4, 490-493»JULY 

BETWEEN RADIO AND 
- 8.6, 4.3, 3.1, AND 
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iA?.^^,^^^   DESCRIBED.  THE MEASUREMENT TECHNIQUES UTILIZED 
SOLAR LIMB CROSSING TIMES OBSERVEO WITH A 16-rT RAn 0 I 
TELESCOPE.  RESULTS SHOW THE EXPErTED DEPENDENCE UPON 
ATMOSPHERIC WATER VAPOR BELOW LAMBDA = 3 MM, BuT RADIO REERACTION 

^Jf^?^ 19.   ^r.^^^.9,^   OPTICAL REFRACTION AT THE SHORTEST WAVELENfiTHT.. 
^^U?L^M'A9,'«K^*A;^y^= FANNIN. BOB M.; AND STRAITON, ARCHIE W.» 

ATTENUATION OF 8.6 AND 3.2 MM RADIO WAVES BY CLOUDS^IEc^ 
TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. Ap-?3, NO  6, 
T^^:^?^? ^°y 1975'^NO #»MEASURED ATTENUATIONS ASSOCIATED WITH 
A VARIETY OF CLOUD CONDITIONS AT WAVELENGTHS NEAR 8.6 AND      '• 
,^r? ^^n^"E REPORTED. TWO SPECIFIC EVENTS. DURING WH CH 
HEAVY RAIN CLOUDS COVERED THE SKY. ARE EXAMINED AND ST ATI ST ICAI 
DATA COLLECTED OVER A 6-MONTH PERIOD ON A VARIETY OF CLOUD 
TIONS WERE THE RAIN BEARING CUMULONIMBUS AREA.  OF THE NON- 
RAIN CLOUDS, THE TWO TYPES FOR WHICH THE SAMPLE SIZES ARE 
ADEQUATE AND ATTENUATIONS ARE SUFFICIENT FOR MEAN NGFUL 
CONCLUSIONS ARE STRATO CUMULUS AND CUMULUS. THEIR 35 GHZ/ 
RESPECTIVELY II ^^^^^ 0.18/0.61 DB AND 0.12/0.34 DBM. 

343111 -BASKINi YU.S.; SEKHAKOV, I. A.; SOKOLOV, A.V.; STROGANOV. 
L t.; AND SUKHONIN, YE. V.»ATTENUATI ON OF RAD ATION AT A WAVE 
LENGTH OF 0.96 MM IN SNOW^RADIO ENGINEERING AND ELECTRON I C 
PHYSICS, VOL. 15, NO. 12, 2171-2174^» 19 70 »N0 #»THE ATTENUATION 
OF RADIATION ON SNOWFALLS WITH RATE UP TO 2 MM/HR, COMPARED 
TO ATTENUATION OF MELTED WATER. IS MEASURED AT A WAVELENGTH 
OF 0.96 MM OVER A 680 M PATH.  IT IS SHOWN THAT THE ATTENUAT ION 
N,RAINFALLS WITH THE SAME INTENSITY IS LOWER BY 3.0-40% 

A HIGHLY IDEALIZED COMPUTATION OF THE ATTENUATION  N SNOWFALL 
IS CARR ED OUT ON THE BASIS OF MIE'S THEORY! THE COMPUTATIONS 
AGREE WITH THE EXPERIMENTAL DATA Vr ONE INTRODUCES EFFECT VE 
RADII OF SPHERICAL SNOW PARTICLES.*«    i N Kuuuuta .^htuiivt 

THE 10-40 CM-1 (1 MM - .25 MM) REGION. AT A RESOLUTION OF" 

623i7jC*RE8ER. EARL E.: MITCHELL, RICHARD L. ; AND CARTER,        ' 
CLARENCE J,; .ATTENUATION OF THE 5-MM WAVELENGTH BAND  N A 
)(^P-*?k^.^^^9SP"^^E*I^^E TRANSACTION ON ANTENNAS AND PROPAGATI ON 
VOL. AP-18. NO. 4,    472-479* _JULY 1970»NO #»EFFECTS OF ATMO- 
SPHERIC CHANGES ON ATTENUATION IN THE ATMOSPHERE ARc: 
EXAMINED FOR THE 5 MM WAVELENGTH REGION OF'THE ELECTRO-        ' 
MAGNETIC SPECTRUM (48-72 GHZ).  ATTENUATION VS FREQUENCY 
Al^.^LHTUDE FOR VERTICAL TRANSMISSION THROUGH y^l'^^^''^^ 
ATMOSPHERE, CAUSED BY OXYGEN ABSORPTION, ARE TABULATED 
A9?c:?„^???/fl?"^P^t.^^D SEASONAL MODEL ATMOSPHERES  THE 
^nli^^cn^I^S Sw^lF^ OF WATER FORMATIONS ARE DISCUSSED 

_,,COMPARED TO OXYGEN A TTENUA T I ON . »- 
62ll71A«R0SENKRANZ , PHILIP W.^>SHAPE OF THE 5 

AND 

MM OXYGEN BAND 
l^nM"''\/nJ^°?C"i^^\',^^^.^^S^i*Sll0^j'O^J ANTENNAS AND>ROPAGA- TION, VOL. AP-23, NO. 4, 498-506»JULY 197'^»N0 #«THP PROBi FM 
OF ABSORPTION OFMICROWAVES BY MOLECULAR OXYGEN IN THE ATMO- 
^SSf^l I2.I5^^^PD S^ A ^IRST ORDER APPROXIMATION TO THP 
IMPACT THEORY OF OVERLAPPING SPECTRAL LINES.  BY INTLUDING 
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ONLY THE COUPLING BETWEEN ADJACENT ROTATIONAL STATES IN 
MOLECULAR COLLISIONS, WE HAVE DEVISED A SIMPLE APPROX MA- 
TION METHOD FOR COMPUTING THE INTFRFERENCF BETWEEN LIN^S 

^.FROM MEASUREMENTS ON THE RESOL VED LINES ^# «t:iwtfcN LlNcb 
B^1581E*SMnHi DONALD R. AND LOEWENSTE IN,'ERNEST V.»0PTICAL 

FAR INFRARED MATERIALS, 3: PL AST I CS*APPLI ED 
io.',^y9j^5' 1^35-134l^JUNE 1975ON0 #<fROOM TEMPERA 
CONSTANTS (INDEX OF REFRACTIONS AND ABSORPTION 
OF PLASTIC MATER AL WERE MEASURED OvER THE 

CONSTANTS OF 
OPTICS, VOL. 
TURE OPTICAL 
COEFFICIENT) 

;M-1 TO 350 CM-1 (poo UM - 28.6 UM) SPECTRAL RANGE   THE 
■^^-^-*^iM^f^S!r/-^?L"IS,^^.RENSlTY POLYETHELENE, TPX, ACLOR. 

50 
MAT 
KAPTON, SURLYN AND MYLER.  ALL EXCEPT TPX EXHIBIT RTRF- 
^5^^?l^Sf.^So^ CONSEQUENCE OF STRETCH ING DURING MANUFACTURE. 
Tt^,^c*^^,?*^^.°^ ^'^O SETS IS REPORTED HERE.  THE REFRACTIVE 
ri^Pi^w^^S^CALCULATED FROM THE CHANNEtEn SPECTRUM AS 
CBSERvEp IN REFLECT ON .FROM THE EXAMPlE; THE ABSORPTION 
COEFFICIENT WAS DETERMINED (EXCEPT POLYETHELENE) BY A    • 

^^TRANSMISSION MEASUREMENT. »* tttriNc; BY A .        . 
^^i^§^?f,'-°iyi^^I^/N, ERNEST v.; SMITH, DONALD R-! AND 

K9?PA^;, 5°BERT L.^OPTICAL CONSTANTS OF FAR INFRARFD 
^oJ^?i^'-?An^io55^S^*'-LINE SOLIDS^^APPLIED OPTICS, VOL 
398-406f^FEB 1973^^N0 #»THE FAR I.R. OPTICAL CONSTANTS 
CRYSTALLINE MATERIALS AT 300 DEG K AND 1.5 DEG 
^.^S^.riiPO^J^D.  THESE MATERIALS ARE CRYSTAL QUARTZ, 
SAPPHIRE, GERMANIUM, AND SILICON.  FOR QUARTZ AND SAPPHIRE, 
BOTH SETS ARE^REPORTED (THEY ARE BI RFFRINGENT).  THE M^ASURF- 

a^^Vi]%   i2II,^P/f^9^ ^° t^^-l P 350 CM-1"(333 UM -- 28.6 UM) 
®^i^^iZ^§0*°^§iA ^-f^- AND GEBBIE, H . A . r,REFRACT I VE INDEX OF 

t^ J/?P§i^;.,y*I^S VAPOR, AND THEIR MIXTURES AT SUBM ILL I METER 
H^^i'-ENGTHS»APPLIED OPTICS, VOL. 10, NO. 4, 755-758* APR 11  1971* 
^9v?,^I^^.,?i'^5^9JI^^ INDEX OF NITROGEN, WATER VAPOR. AND THEIR 
^n^J^S^ WAS^MEASURED AT 337^UM, 311 UM AND ?8 UM WITH MOLECULAR 
LASERS.  A DISCREPANCY BETWEEN THESE NEW MEASURED     JULt^ULAK 

„ MICROAVE VALUES FOR PURE N2 IS UNEXPL AI NED . »<^ 
9437A17*R0SENSLUHI M.; TEMKIN, R     ' ^ " 

12, NO 
0" FOUR 

VALUES AND 

AND BUTTON, K . J,»SUBMILLI 
NO 
MM 

11 

NED 

KIIif'ot^§^P«'^Ay^LENGTH TABLES»APPL I ED OPTICS. VOL. 15 
2635-2644»N0V 1976»N0 #»TABLES PRESENTED THAT LIST SUB 
LASER LlNES^gBSERVED IN THE OPTICAL PUMPING OF MOLFCULAR 
?A§hS WITH C02 LASER RADIATION.  THE LINES HAVE BEEN OBTA 
f,?92, ?SPyi°yf.,^y^MSATigNS BY VARIOUS AUTHORS ARE IN THE 

^ WAVELENGTH RANGE FROM 34 UM TO 1.965 MM.«« 
9125819»BL0CK, H. AND NORTH. A.M.«DIELECTR I C RELAXATION IN 

POI YMER SOLUTIONS^ADVAN. MOL . RELAXATION PROCESSES, VOL. 1, 
309-374M970*NO #*»THlS IS A LONG, GENERAL ART ICLE ON O^ELE £TR IC ' 
RELAXATION  N POLYMER SOLUTIONS, TITLES IN THIS MINI-TREAT ISE    , 
ARE CLASSIFICATION OF POLYMER TYPES, POSSIBLE RELAXATION 
MECHANISMS,THEORY OF DIELECTRIC RELAXATION IN POLYMER 
SOLUTIONS. DIELECTRIC RELAXATION iN RANDOM COIL MOLECULES, 
DIELECTRIC RELAXATION OF POLYELECTROLYTE AND ALLIED MACRO- 

^ MOLECULES, AND DIELECTRIC RELAXATION OF RIGID AND LIKE POLYMERS »» 
212311C<'PINTELMANN. F. ^SCATTER I NG CAUSED BY PRECIPITATION IN THE 

MILLIMETER WAVELENGTH (3 CM WAVELENGTH)-^NO #»N0 #»JAN 1972* 
N73-31100»IN THIS REPORT WE REPORT ON THE CALCULATION OF '   ' 
DIFFERENTIAL SCATTERING CROSS SECTION USING MIE'S THEORY 
THE SCATTERING CROSS SECTION IS CALCULATED FOR SPHERICAL 

THE 
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PARTICLES WITH COMPLEX INDEX OF RPFRACTION,  VAIUPS OF THE 
SCATTERING CROSS SECTION ARE GIVEN FOR VARIOUS RATM RATES 
AND WAVELENGTHS.  THE CALCULATIONS ASSUMED LAWS-PAPERS AND 
BARSRALL-PALMER DROP DISTRIBUTIONS, USING HROPLET DISTRIBU- 
TION " ME ASURED ON 912817, BY FGR D33, IT IS DEMONSTRATED 
THAT THE SCATTERING CROSS SECTION MAY NOT BE CHARACTERIZED 
BY EVEN RATE ONLY .«* 

2l.:S3810«WlLEY, P.H.-'THE INFLUENCE OF POLARIZATION ON MILLI- 
METER WAVE PROPAGATION THROUGH RAIN (PHD THESIS)»N0 #« 
NO #*JUNE 1973*N74-10140«THE AUTHOR EXPLORED IN HIS 
PHD THESIS THE INFLUENCE OF POLARIZATION ON MM WAVE PROPA- 
GATION FROM BOTH AN EXPERIMENTAL AND A THEORETICAL VIEW- 
POINT.  UNIQUE ASPECTS OF THE MODE USED HERE ARE: 1) 
SPHERICAL RATHER THAN PLANE WAVES ARE ASSUMED, 2) THE 
AVERAGE DROP DIAMETER IS USED RATHER THAN A DROP SIZE 
DISTRIBUTION, 3) THEORY IS SIMPLE ENOUGH THAT THE EFFECT 
OF CHANGING ONE OR MORE PARAMETERS HAS ON THE CROSS POLAR- 
IZATION LEVEL IS EASILY SEEN.  CONCLUSIONS: 1) THE BEST 
POLARIZATIONS TO USE FOR A DEPOLARIZATION EXPERIMENT ON 
ARE PLUS OR MINUS 45 DEG FROM THE VERTICAL, 2)    VERTICAL AND 
HORIZONTAL POLARIZATION SHOULD NOT BE USED FOR A POLARIZATION 
EXPERIMENT, 3) VERTICAL POLARIZATION SUFFERS THE LEAST AVERAGE 
ATTENUATION DURING RAINFALL, 4) OBUCHIS ATTENUATIONS AND 
PHASE CORRECTIONS ARE CORRECT FOR 19.36742, 5) THE EFFECTIVE 
PERCENT OF OBLATE DROPS ASSUMED IN ANALYSES IS CRITICAL TO 
THE PREDICTED CROSS POLARIZATION LEVEL, 6) POLARIZATION 
DIVERSITY ISNOT FEASIBLE AS A MEANS OF INCREASING RESISTANCE 
TO RAIN-INDUCED FADING _, 7) THE USE OF POLARIZATION MULTI- 
PLEXING UTILIZING ORTHOGONAL POLARIZATIONS IS LIMITED TO 
VERY SHORT PATH LENGTHS.»« 

5631838»SMITH, MONA F. ,, ED I TOR^*ATMOSPHER IC EFFECTS ON LASER 
BEAMS, VOL. 1. 1964-1974 (A BIBLIOGRAPHY WITH ABSTRACT)* 
NO #<^-N0 #»OCT l976«NTIS/PS-76/0842«THIS IS A 10-YEAR BIB- 
LIOGRAPHY OF ATMOSPHERE EFFECTS ON LASER BEAMS.  MOST OF THE 
ARTICLES DEALWITH VISIBLE AND IR LASERS THROUGH 10.6 UM. 
THIS MUST BE CONSIDERED AS AN IMPORTANT SOURCE OF DATA ON 
LIGHT WAVE INTERACTION EFFECTS WITH AEROSOLS AND TURBU- 
LENCE EFFECTS OF WAVELENGTHS SHORTER THAN lOO UM.»» 

521l7lEoSMITH. I KEf^M I LL I METER COMMUNICATION PROPAGATION 
PROGRAM, FINAL REPORT. VOL. I V.»NAS5-9523,NO #»1965» 
N66-30305«THIS DOCUMENT IS VOL. Ill OF THE FINAL REPORT 
FROM THE MM COMMUNICATION PROGRAM BEING PERFORMED UNDER NASA 
CONTRACT NO. NAS5-9523 BY RAYTHEON SPACE AND INFORMATION 
SYSTEMS DIV. FOR GODDARD SPACE FLIGHT CENTER.  THE PROGRAM 
WAS A STUDY TO DESIGN EXPERIMENTS WHICH WERE TO DETERMINE 
THE EFFECTS OF THE PROPAGATING MEDIUM ON MM WAVE (10-100 GHZ) 
SPACE LEVEL COMMUNICATIONS-  THIS IS A DESCRIPTION BIBLIO- 
GRAPHY OF DOCUMENTS WHICH WERE USED ON THE STUDY.  CATE- 
GORIES CONSIDERED:  METEOROLOGY. ATMOSPHERIC PROPAGATION, 
PLASMA EFFECTS CHANNEL CHARACTERIZATION, COMMUNICATION        i 
SYSTEM PERFORMANCE, COMMUNICATION SYSTEM APPLICATION,       ■ I 
ANTENNAS AND COMPONENTS- CIRCUITSD. EXPERIMENTAL GROUND       ! 

523111D»ALTSHULER, E.E. AND EBEOGLER, D.B.»DOD WORKSHOP ON 
MILLIMETER WAVE TERMINAL GUIDANCE SYSTEMS (SECOND)(ADVERSE 
WEATHER EFFECTS)«NO #<>R ADC-TM-76-9»MAY 1976»AD A026 270» 
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A ONE-DAY WORKSHOP WAS HELD AT THE AF CAMBRIDGE RESEAR 
UBpRATnRlES (AFCRL) ON 28 JUN l976, ON THE SuBjErT OF 
nR^L?^F^^g!^^tiJM\^2yd^? LEATHER, THIS WHRKSHOP W 
Qn'^^'^J.^F.I^ °Y T*^E AF ARMAMENT LAB (AFATL). EGLIN AFB. F 
l^r^S^f^^^CTION WITH AFCRL. HANSCOM AFB. AND WAS A PART 
l\ll 2L^.c^§i.'^L,I^St^NICAL COORDINATION GROUP (JTCG). AND 
THE SENSORS AND SEARCHES GROUP, COORDINATION ACT VniE 
J.HLSi^f^I yi ^t THIS WORKSHOP WAS TO EXTEND THE LEVEL 
UNDERSTAND NG OF THE ADVERSE WEATHER PROBLEM WITHIN TH 
PpD, SO, THAT MM WAVE SYSTEMS CAN BE DESIGNED AND TESTE 

sJ^^f^^l^^b):An.J^E •^EY FREQUENCIES WERE 35 AND 95 GHZ » 
562181E *CORCORAN, V.J.^WORKSHOP ON AMOSPHERIC TRANSMISS 

^2^?'-iNS*'^AHC15-73-C-0200*NO #»DEC 1975*AD-A026 354iTH 
IS A REPORT ON A WORKSHOP ON ATMOSPHERIC TRANSMISSION 
MODELING. THE WORKSHOP WAS DIVIDED INTO A MORNING SFS 
IN WHICH PAPERS RELATING TO THI TOPIC WERE PRESENTED A 
AFTERNOON WORKSHOP THAT AS DIVIDED NTO A PHYIICS AND 
ENGINEERING SFSSION AND A SESSION ON COMPUTER MODELING 
THE PURPOSE OF THE WORKSHOP WAS TO BRING TOGETHER THOS 
SiS^kf.^^^O I^AVE CONTRIBUTED TO COMPUTER MODELING OF AT 
SPHERIC TRANSMISSION. THOSE WHO USE THE PROGRAMS, AND 

^iZ^^Ur'^nPJiy'A'^A ^^^   BEARD. C. I .^MICROWAVE RAQIOMETRIC 
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wgULD BE ACCEPTABLE IN THE FyTURE.** 
.173ir#MARTIN. L.U. AND BEARD, C . I . »M . w.^ur,H .c n, 
2!J^?I^2'^.S''.AI^Oi£yE^I^ INTERNAL WAV^S«NRL-MR-3283SNb 
^^l   i.^Z*^i*S:A026 523»MICR0WAVE RADIOMETERS 0226 GHZ) H 
^SRniy^n^'RST TIME, DETECTED INTERNAL WAVES IN THE ATM 
SPHERE^BOUNDARY LAYERS AND LOCALIZED ALTITUDE.  VARY N 
INTERSECTION HE GHT OF A NARROW (3 DEG)  NTERNAL BEAM 
THAT Of A WIDE (22 DEG) VERTICALLY pBlNTNG ANTENNA 
BEAM ALLOWED DETERMINATION OF THE WAVE ALTITUDES.  THE 
GROUND-BASED RADIOMETERS WERE LOCATED AT SAN DIEGO, WH 
IN^AN EXPERIMENT IN MAY-JUNE 1975, THE NAVAL ELECTRONI 
LABORATORY CENTER (NELC) PROVIDED "ATMOSPHERIC TRUTH" 
COMPARISON TO THE RADIOMETER DATA OBTAINED BY THE NAVA 
RESEARCH LABORATORY, NELC PROVIDED FM/CW RADER. ACOUST 
SPyi^SiS.'^klE*^' MICROBOROGRAPH, RADIO-SONDE. AND SURFA 
METEOROLOGICAL DATA.»» 

C111719*BART0N, JAMES E.'PERFORMANCE OF A J-BAND (12-18 G 
AIR-TO-GROUND WIDEBAND DATA LINKt^NO #»N0 #*^jyNE 1976»A 
A027 191*THIS REPORT DISCUSSES THE EFFECTS OF ADVERSE 
WEATHER CONDITIONS ON A LONG AIR-GROUND DATA LINK (15 
BAND).  IT INCLUDES ATTENUATION DUE TO RAIN AND THE DE 
TION OF ANTENNAE PATTERNS CAUSED BY WATER FILM ABSORPT 
ON A RADOME AND ANTENNA FEEDS. AND CONCLUDES THAT THE 
DISCUSSED FALLS ABOUT 7DB SHORT OF THE REQUIRED MARGIN 
1% OF THE YEAR.«» 

5l2l81B<fR0PPEL. D,«PRESENT STATUS OF THE RRI §LANT-PATH 
ABSORPTION MODEL (SLAM) CO,»NO #»NQ #*JAN I976»AD-A027 
A COMPUTER PROGRAM (SLAM) IS DESCRIBED WHiCH CALCULATE 
ATTENUATION BY AIR OF UWAVE AND MM ATTENUATION. 8ESID 
THE HORIZONTAL ATTENUATION. THE VERTICAL ATTENUATION F 
VARIOUS LEVELS DOWN TO THE GROUND AND OUT INTO SPACF I 
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PROriLE AND 

- CHARACTER- 
PROPAGA- 

LIMITATIONS 

. r.E.»AlRCHEM: 
CHEMISTRY OF THE 
1976»AD-A030 157» 
AND HAVE CONCEN- 
THE IONIZED 

^^LSykAJiP.^05 ^ "^IX^D FREQUENCY.  THE LINE , ._. . 
AlKS5^*;*iS^c y°B^L CAN BE SELECTEH FROM AMONG SEVE 
COMPARISON IS MADE WITH OTHER CALCULATIONS, AND WITH 
EXPERIMENTS.  POSSIBILITIES FOR IMPROVING THE PROGRAM ARE 

^^?,^§i§okS'r^.^9yiA P-L-»PROCEEDlNGS OF NATIONAL CONFERENCE ON 
ELECTROMAGNETIC SCATTERING. JUNE 15-18, 1976»N0 #*N0 #» 
^Hf^^,r,^?$?ft^:AS27 868<>THIS^D0CUMENT CONTAINS SUMMARIES OF 
ALL^INVITED^AND CONTRIBUTED PAPERS.  OTHER PUBLICAT ONS 
(PUBLISHED ELSEWHERE) ARE: REPORTS WITH THF FINDINGS OF 
VARIOUS PANELS AND FINAL RECOMMENDATIONS TO THE AIR FORCE: 
tl9T$r-R°2'5n9!^ ELECTROMAGNETIC SCATTERING CONTAINS THE 

.;^l^ni^BnP^£f'^',/'^° * SELECTION OF CONTRIBUTED PAPERS?** 
5631826«H0DARA, H., CONF. CHMN , «OPTICAL PROPAGAT ION IN THE 

ATMOSPHERE: AGARD CONFERENCE PROCEEDINGS NO. 183*AGARD-CP- 
183«MAY 1976»AD-A028 615«THTS IS A CONFERENCE PROCEEDINGS 
9Liyiu^9Z?. *GARD CONFERENCE "OPTICAL PROPAGATION IN THE 
ATMOSPHERE"    .  SESSION TITLES ARE I. ATMOSPHERIC 
ISTICS. II. INCOHERENT PROPAGATION, III. COHERENT 
TION, ly. NON-LINEAR PROPAGATION, V. PROPAGATION 
ON SYSTEMS.** 

D12681C»L0RTIE. E.L.; KREGEL- M.D.; AND NIBS 
A COMPUTATIONAL TECHNIQUE FOR MODELING THE 
ATMOSPHERE (BRL REPORT 1913)»N0 #»N0 #»AUG 
DEIONIZATION PROCESSES THOUGHT TO DESCRIBE 
TRATIONS OF ION AND NEUTRAL CONSTITUENTS IN 
A NUMBER OF TECHNIQUES OF VARYING COMPLEXITY ANO'EFFlrTENrY 
ONE VERY EFFICIENT TECHNIQUE FOR COMPLEX CASES IS THE 
I^^^Syi^r^S^^UTER PROGRAM.  THIS PROGRAM U T I L I ZES THE K- 
METHOD FOR SOLVING THE ORDINARY niFFERENTlAL EQUATIONS 
WHICH ARISE FROM THE MATHEMATICAL DESCRIPTION OF ATMOSPHERIC 

609«FEB 1976*AD-A030 489«8RIGHTNESS TEMPERATURES RESULTING 
^ROMMWAVE THERMAL EMISSION FROM A 1/? SPACE RANDOM MED UM 
^?i*?,^bk"^^IP9v ^^E RANDOM MEDIUM HAS A NON-UNIFORM TEM- 
PERATURE PROFILE AND IS CHARACTERIZED BY CORRELATION FUNC- 
TIONS THAT POSSESS BOTH VERTICAL AND LATERAL VARATIONS 
RADIATIVE TRANSFER EQUATIONS ARE DERIVED.  THEY ARE SOLVEn 
^n';!^^^ IJERATIVE INTEGRAL EQUATION APPROArH FOR SMALL 
SCATTERING ALBEDO AND WITH A NUMERICAL APPROACH FOR GENERAL 

'^N'i'J»^NS%taIK^'95il^ii^^Jr9?f^*'?Hli'?^^r^,o^F^%^[^?i^^^6-^°^• 
CEEDINGS OF THE 1974 MM WAVES TECHNIQUES CONFIRENCE HELD 
26-28 MARCH 1974, SPONSORED BY THF NAVAL ELECTRONICS LABORA- 
TORY CENTER.  MAJOR TITLFS OF THc"CONFFRENCE WERE  A) SOLTD 
STATE DEVICES AND COMPONENTS, B) "PROPAGATION, ANTENNAES. 
C) CIRCUIT COMPONENTS, COMMUNICATTON  .  AN ARTIciE BY 
VICTOR^RICHARD AND J. KAMMERER "MM WAVE RAIN BACKSCATTERTNG 
MEASUREMENTS. HAS BACKSCATTER AND WATER niFLECTRiC DATA 
AT 10. 35, 70 AND 95 GHZ.«« -iCLcuiniu UA i A 

1* 
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111731E»G0RDY, NORMAN C.*REMOTE SENSING OF ATMOSPHERIC WATER 
?P^J^ylA.^89W.?^J^LLITES USING MICROWAVE RADIOMETRY  ^NO #* 
IEEE TRANSACTIONS AND PROPAGATION. VOL. AP-24. NO  5, 155-162* 
MAR 1976»N0 #*ANALYSIS IS PRESENTED WHICH SU^STANT IAfES THE 
^iR^ ^S^,?I'-^,U?S eS^^^V^D IN RELATING INTEGRATED WATER VAPOR 
AND LIQUID WATER TO BRIGHTNESS TEMPERATURES AT FREQUENCIES 
NEAR THE 22.235 GHZ WATER VApQRLINE.  THE INFLUENCE OF ATMO- 
SPHERIC AND SURFACE VARIABILITY  S SHOWN TO BE MINIMAL OVPR 
h^ij^J^r^^K^i^J.ruif^SyRFACES.  DETERMINATION 0? ATMOSPHERIC 
WATER CONTENT USING REGRESS ON TECHNIQUES IS SHOWN TO FOUOW 
DIRECTLY THE NIMBUS-Fl MICROWAVE SPECTROMETER ABOARD NIMBUS  -5 
^Pln^O'JE^SiS ^IJ^   RADIO-SONDE WATER VAPOR MEASUREMENTS AND  ~ 

ig^iSMlT^^R^lBgfRg^BfSBl^S-'^^'.J'^^^''^^^^^ "^^^°^^^ '^'''''^ 
NO #»1973*N73-28716 - N73-27864<»TH IS IS A COLLECTION OF TALKS 
Siy.lS ^l   ^y^tjORS FROM NASA-GODDARD ABOUT SIGNIFICANT ACCOMPLISH- 
^f^lllr)^^r.ltl^.tl   ^SFC.  SPACE SCIENCE AND TECHNOLOGY SUPPORTAVE 
9,1   9?.^^c!59S^A^§ IN LAUNCH^VEHICLES, VISIBLE AND IR IMAGERY 
OF THE^EARTH COMMUNICATIONS (15 AND 31 GHZ VIS AjS-V) 
AND ASTRONOMY PROGRAMS ARE DISCUSSED.«* 

563184B«SMITH. MONA F., ED ITOR«ATMQSPHERIC EFTECTS ON LASER 
BEAMS, VOL. 2. 1975 - SEPTEMBER 1977: (A BIBLIOGRAPHY WITH 
ABSTRACTS)»NO #»N0 #»OCT 1977»NTIS/PS-77/083l»THIS IS A 
GpNTlNUATION OF NT IS/PS-76/0842, A BIBLIOGRAPHY ON ATMOSPHERE 
EFFECTS ON LASER BEAMS.  MOST OF THE ARTICLES USE VIS13LE AND 
iS-.k^i^Si VEr-IS.^S-^ UM.  THESE BIBLIOGRAPHIES ARE AN IMPORTANT 
?RF?i^SE^ INFORMATION ON AEROSOLS AND TURBULENCE EFFECTS IN 
THE ATMOSPHERE.** 

B417717»DAVIES, G.J. AND HAIGH, J.»SUBMILL I METER SPECTRA 
9^. P^?i ^l^\}   ^^5 L-Sy DENSITY POLYETHYLENE»NO #*»INFRARED PHYSICS, 
VOL. 14, 181-188«1974»N0 #*AS PART OF A SEARCH FOF '  2-^iV^' 
or HIGH MICROWAVE^TRANSPARENCY' FOR TELECOMMUNl'CATION APPL^CA-^^ 

LOW DENSITY ~ '     
RECORDED AT 

POLYETHYLENE, 
SUB-MM 

TIQNS -, THE SPECTRA OF PURE HIGH AND 
PREPARED BY A MESO PROCESS, HAVE BEEN 
WAVELENGTHS.»» 

922171F»DAVIES. GRAHAM J. AND EVANS, MYRON»USE OF GENERALIZED 
LANGEVIN THEORY TO DESCRIBE FARINFRARED ABSORPTIONS IN NON- 
DIP0LAR^LI0UIDS«N0 #»J0URNAL OF THE CHEMICAL SOCIFTY OF 
LONDON^FARADAY II. 72, 1194-1205»1976«NO #»THE MORI CONTINUED 
FRACTION REPRESENTATION OF THE KVBO RESPONSE FUNCTION, TRUN- 
CATED AT FTRST ORDER, GENERATES A SPECTRAL FUNCTION WHICH 
IS SUCCESSFUL IN DESCRIBING ABSORPTION OS NON-filPLOR LIQUIDS 
IN THE HIGH MICROWAVE AND FAR INFRARED REGIONS.  THERE IS 
SOME EVIDENCE THAT THE EQUILIBRIUM AVERAGES (K0(O) AND Kl(O) 
INHERENT IN THIS REPRESENTATION ARE BOTH I NTERMOl ECULAR PROPER- 
TIES, IN CONTRAST TO THE CASE OF PURE DIPOLAR ABSORPTION, 
WHERE K0(0) IS A SINGLE MOLECULE PROPERTY.  THE CORRELATION 
FUNCTION OF THE DERIVED SPECTRAI FUNCTION IS COMPARED AND 
CONTRASTED WITH THAT OF THE INTENDED DIFFUSION MODEL OF 
GORDON.»» 

C11731A»yLABY, F.T.»PASSIVE MICROWAVE REMOTE SENSING OF THE 
EARTH'S SURFACE»NO #»IEEE TRANSACTIONS ON ANTENNAS S PROPA- 
GATION, 112-115»JAN 1976*N0 #»ABSTRACT - THIS IS A BRIEF 
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^^MISSISN°BY^BANDs•n?■|p^f??,'^"fZic^^^^QpS OF CALCULATING TRANS- 

isaiiiiyrf «"«;& iftp i»"- S^nln^C PATH WHICH IS HOMOGENEOUS IN THF DT^^TRTRiiTrnM A? 

^iuAD[n"n9?.'c^?^T*^k^f^^f'0MAGNETIC SCATTERING FROM IRREGULARLY 

/ii, S2,.R'-'r„ ' ^ '"t tONSISTENT WAVELENGTH IS SOI VFD A<; A n A?";!- 
^^SJ?^^?^"! X^l,^S PROBLEM IN WHICH THE VECToh GRPEN'S THEOREM 
cDuyii^ ^§c*«5iy^5*l=IZED BOUNDARY CONDITION.  THE INSCR RFD 
SPHERE. THE PART ClE SURFACE AND THE CI RrilM^TR I Rpn QDUCOC 
DIVIDE SPACE UP INTO FOUR REGIONS   VECTOR SPHFRTrApuAD^ 
MONIOUS EXPANSION ARE USED OUTSIDE THE C?RCUMSCR SFD SPHFRP 
n^^r ,!^^l?lKJii^K,^'^§CPIBED SPHERE; ANY CONVENIENT COMPLITP SET 
O^^f^UNCTlON CAN BE USED IN THE REGIONS IN RE TWEEw   THc 
^fM^^J^^^n^l^L^^ F.Sy^JIO'^S ARE REDUCED TO A SE? OF 4^La-2) LINEAR EQUATIONS WHERE L IS THE MAXIMUM ORnFR nF TuP <!pbcBirAi 

..io^^U''S^..^iE°i° ^9 DESCRIBE THE SCATTERED FIElD' If REFS^i *^ 
^^?Rl^9KV°^^§in9dD"lStlA^t*VXiRSATlLE THREE-n M?N§IONAL RA/ 

TRACING COMPUTER PROGRAM FOR RADIO WAVES IN THF Tnwn^PUPDc:* 
NO #»N0 #»QCT l975»PB-248 856"TH S RFPORT nFSCRlRPq AW APPMRATC 

. VERSATILE FORTRAN COMPUTER PROGRAM FOR TRACING RAYS THROUGH ^ 
^'^M,^f^,\iPJ''9^ii^^Piy^ ^^*^OSE INDEX OF REFRACT ON VARIES CON- 
TINUOUSLY IN 3 DIRECTIONS.  ALTHOUGH DEVELOPED TO CAl fUl ATF 
THE PROPAGATION OF RADIO WAVES IN THE lONISPHERE  THE PRnCRAM 
CAN EASILY BE MODIFIED TO DO OTHER TYPES OF RAY TRArlMG 
BECAUSE OF ITS ORGANIZATION INTO SUBROUTINFS   THE DOCUMFN- 
JATION INCLUDES EQUATIONS, FLOW CHARTS , PROGRAM LI ST INGSWITH 
COMMENTS _, DEF NITIONSOF PROGRAM VARIABI F9. nFPk ^PT iiPc 

^DESCRIPTION OF INPUT AND OUTPUT? AND A SAMPlECASF^I 
C23172B»SUNDBERG, G . G . *M I LL I METER WA VE SYS ATFM ELErTROMAr^NFT r r 

COMPATIBILITY STUDY<.CONTRACT DHAB07-74-C-017lfNO I^JUN 1974^ 
tSp'^?R??3S,^^|? REPORT PRESENTS THE RESULTS OBTAI NED DURING 
THE FIRST QUARTER EFFORT OF THE MM WAVE FMT STUDY   THF PPRTnn 
COVERED IS 6 FEB 74 - 6 MAY 747  THE MAJOR EFFORT TN THF FTRST 
QUARTER CONSISTED OF THE COLl ECTI ON OF nAT A FROM PRPVIn 19 
PROGRAMS WHICH ARE REl ATED TO THE MM WAVE EMC STUDY AND PRE- 
LIMINARY TEST PLANNING FOR THE EXPERI MENTAL TEST PRonRAM   MM 
^,*,;i(LiyfJi" OPERATIONS RELATIVE TO EMC CHARACTERISTICS IS  ^^ 

^ ?RTS?|c'ifBED^BfTSfM^?S!i^{ecSSE^Bi^ir^ '''   ANTEWINDgwS ^ 
Ap-780 602»A METHODOLOGY FOR QUANTITATIVELY FSTI MATINR THF 
PERFORMANCE OF MM WAVE (30-300 GHZ  SYSTEM IN THF ATMOSPHERE 
AND ON THE PRESENCE OF RAINFALL.   NFORMATION ON THF TRANS- 
MISSION PROPERTIES OF MM WAVES IS COMBINED  ITH CURRENTLY 
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PROCESSES IN ATMO- 
»N0 #»SEPT 1975»AD-A017 
R THIS 10-YEAR 
VEN TO THE PU8LI- 
ERSONNEL SUPPORTED 

J.S. ; AND GAMBLE, W.L- » 
AGATION BIBLIOGRAPPHY _»RR-77-3» 
REPORT ISAN ANNOTATED BI8LI0- 

M PROPAGATION.  SEVERAL ARTICLES 
TING POINT FOR REVIEWING THE 
REFS.*» 

ETER RESEARCH: PRELIMINARY 
-77-4»N0 #«NOV 1976»AD-A035 760» 
S OBTAINED AT 3.2 MM AND 
TH SAMPLES OF THE IMAGES. 
CM WITH THE 3-2 MM RADAR, 

DAR, AND 4 CM WITH VISIBLE 

.»A REVIEW OF ATMOSPHERIC TRANSMISSION INFQR- 
TICAL«BRL-MR-2710»N0 #»DEC 1976»AD-A035 059» 
N ATTEMPT AT CONSOLIDATION OF A LOT OF INFOR- 
HFRIC ATTENUATION; IN WAVEBANDS FROM THE 
.  IT DISCUSSES ATTENUATION DUE TO RAiN, SMOKE, 
ATIONS FOR FURTHER MEASUREMENTS ARE GIVEN.«» 
E.»A 60 GHZ DIGITAL FM SIMPLEX SYSTEM»ECOM- 
976«AD-A033 115»A 60 GHZ DIGITAL FM SIMPLEX 
WAVEGUIDE IS DESCRIBED.  THE SYSTEM IS 
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or FRPP LAYER 
339-401»1976» 
IN THE COM?_EX 
FAR I.R. REGION 

OPERATIONAL AND WILL BE USED AS A REFERENCE TO BE COMPARED 
WITH FUTURE INTEGRATED CIRCUIT AND HYBRID MM RADIOS. 
«. GUNN LOCAL OSCILLATOR WAS DEVELOPED WHICH ATFECTS SI3- 
NIFl'-ANT RECEIVER NOISE REDUrTION.  SUBSYSTEM MEASUREMENTS 
SHOW GOOD CHARACTFRIST ICS FOR 1 KM PROP AG A T I ON . ■»» 

56?6B2G*B1SS0NNETTF, L . R . ^>PROB AB I L I T Y DISTRIPUTION AND ASYMP- 
TOTIC VARIANCE OF STRONG IRRADIANCE FLUCTUATION OF OPTICAL 
WAVES IN TURBULENT MED I A»DRE V-R-40 i?/75»N0 «-^OCT 1973« 
An-AO?l 126»THE ASYMPTOTIC SOLUTIONS FOR THE FIRST AND SECOND 
CODE STATISTICAL MOMPNTS OF THE AMPLITUDE OF A PLANE OPTICAL 

■  WAVE PROPAGATING IN A TURBULENT ATMOSPHERE ARE DERIVED FROM 
MAXWF! LS EQUATION.  THESE SOLUTIONS SHOW THAT THE IRRADIANCE 
VARIANCE WOULD DIVERGE TO INFINITY IF THE PROBABILITY DIS- . 
TRIBUTION WERE LOG-NORMAL. BUT THAT IT COULD TEND TO UNITY 
IF THIS DISTRIPUTION WERE NORMAL.  THEREFORE. THE WIDE.Y 
USED HYPOTHESIS OF LOG-NORMAL PROBABILITY DISTRIBUTION IS 
INCOMPATIBLE WITH THE EXPERIMENTAL OBSERVATION OF THE 
SATURATION OF THE IRRADIANCE VARIANCE.  AN ORDER OF MAGNITUDE 
FSTIMATE OF THE PROPAGATION DISTANCE CHARACTERISTIC OF THESE 
ASYMPTOTIC SOLUTIONS INDICATE THAT THEY SHOULD APPLY IN 
THE SATURATION REGION.  22 REFS.^n^ 

952541 G^PASSCHIER. W.F.; HORIJK, D.D.; AND MANDEL. M.<JTHE 
DFTERMlNAtlON OF COMPLEX REFRACTIVE INDICES WITH FOURI=R- 
TRANSrORM INTERFFROMETRY IV; ERROR ANALYSIS 
EXPER1MENTS»N0 #^MNFRARED PHYSICS. VOL. 16, 
NO #r,AN ANALYSIS IS PRESENTED OF THE ERRORS 
REFRACTIVF INDEX SPECTRUM OF LIQUIDS IN THE 
(P-.n02 MM. 5-500 f-M-1) AS DETERMINED BY FREE LAYER 
EXPERIMENTS.  "^HE SPECIMEN TRANSMISSION METHOD IS FOUND TO 
RF THE MOST RELIABLE IF EDITING METHODS CAN BE APPl lED. 
If IS FURTHER CONTLUDED THAT REPEATING OF A SINGLE MEASURE- 
MENT IS NOT NECESSARY, BUT THAT EXPERIMENTS AT SEVERAL SPECI- 
MEN THICKNESSES IS OBLIGATORY.  IT IS SHOWN THAT THE ERROR 
DUE TO THE VAPOR PHASE ABOVE THE LIQUID SPECIMEN CAN BE 
QUITE SUBSTANTIAL.  A COMPARISON OF THE ERROR ANALYSIS WITH 
SOME EXPERIMENTAL RESULTS IS GIVEN FOR 8R0M0F0RM, CHLOROBEN- 
ZINE AND METHANOL.«» 

951641A-AFSAR, M,N.: CHAMBERLAIN. J.; AND HASTED, J.3.»THE 
MEASUREMENT OF THE REFRACTION SPECTRUM OF A LOSSY LIQUID IN 
THE FAR INFRARED REGION»NO #^»INFRARED PHYSICS- VOL. 16. 
587-599sl976«N0 #»DISPERSIVE FOURIER TRANSFORMS SPECTROMETRY 
FOR THE DETERMINATION OF THE REFRACTION SPECTRUM QF A LOSSY 
lIQUin IS DESCRIBED.  THE PRINCIPLE OF FIRST ORDER SUBTRACTION 
PROCPnuRE AND FULL DETAILS OF HOW TO USE IT WITH SAMPLED 
INTERFEROGRAMS ARE GIVEN.  THE NEW RESULTS )0N CHLOROBENZENE 
FOR 1/LAM8DA = 30 CM-1 TO HO CM-1 ) ARE COMPARED WITH 
RESULTS OBTAINED USING OTHER TECHNiQUES . »» 

943551D»EVANS. M. AND DAVIES- G.J.»EFFECT OF PRESSURE AND 
TEMPERATURE ON THE INTERMOLECULAR MEAN SQUARE TORQUE IN 
LIQUID CS2 AND CCL4*N0 #»JOURNAL OF THE CHEMICAL SOCIETY OF 
I ONTON. FARADAY II, VOL. 72, 1206-1213»1976eNO #»THE 
EFFE'^TS OF TEMPERATURE AND PRESSURE ON THE INTERMOLECU. AR 
MEAN'SOUARE TORQUE IN LIQUID CS2 AND CCL4 ARE ESTIMATED 
USING THE INDUCFP ABSORPTION BANDS OF THESE LIQUIDS IN THE 
MM BAND, 2-300 CM-1 (.5 CM - .00333 CM).  THE SPECTRUM WAS ' 
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ERI AlfM 
OF   -   ■ 

UQUln^HFMuS   rS^t:^'%JS^^ir?*5S0^S   CUBE    INTERFEROMETER; 
11UU1 !)   HfcLIUn   CODED    INSB   DETETTOR   WA<^   iKPn   rnc   O-TI    ru   ^ 

iOLAY^CALL   WAS   USED   FOR   THE   WAVE   NDMBER   RANGE   "-'-'^ 
12?!   f^,^LUC'ENTS   ALPHA(GAMMM    ----^^ 
ARD   FOURIER   TRANSFORMATION.«« 

VOL. 23f,-2g:3St i ~ ?^575°NS-syTK?%^!^is  i'^a^E' 

"ixsrE;!uk!M!:?iEfiyfeRo-S6LiY-iM^g^"^2s^"" 

A   G-^., ,    ^. 
THE   ABSORP 

„   I.ISING   STAND 
941.65l8*CHAMB 

MEASUREMFNT   u 
SURMILLIMETER 

 -w 2d-;?oo CM-i 
WERE CALCULATED 

NO"#»nEC"i975»AD-A6l9^860*AN ANALYI 
HCN LASER,  THE HCN-LASING 

^LASER COMMUNICATION 
- 5eR*GE0/PH/75-12» 
.IS OF A FAR IR LASER .■■vj iT-rji_vv x'/^^w^u-fluiy HftU»AN 

COMMUNICATION SYSTEM USING THE 
WAVELENGTH OF 337 UM FALLS WIT 
WINDOW AND PROVIDE THE IMPETUS POR A"LASER .^  
Tui^ErN. . I^in^^pTEM COMPONENTS THAT ARE FXAMTNED" f NCL UDF 

.WITHIN^THE"350 UM"ATMOSPHERIc' 
FOR A LASER COMMUNICATION 

ur HI nuornti 
RADIOMETRIC DATA'.«« 

522181A«-LAR0CCA » A.J. AND TURNER. R F »A TMncjpuco i r TDAMC 
MIIIANCE AND^RADIANCE: METHODS OF cALCUrATlSN^CONlpJcT" 

■^v^§T^ll^EF^°H^°^^T^^lf;sii iv' 
IHE::REP0R^IS-BR0ADLY'DI;?S?§^^Jlr?H'E'^^fG8if^ 

=! STRESS Li _ 
IN 
ARE 

MITTANCE   AND   RADIANCE:   ME' 
NOOOl4-73-0321.-0002»NO   #<*. 
REPORT   IS   A   DESCRIPTION   0 
CALCULATING   ATMOSPHERIC   TF 
THE   RFPORT    T9   RROAni V   nT\/i 

TERING   AND   ABSORPT ION,'^w   TH   THE   GREATER   STRFSS T! T n^^^*'" 
ABSORPTION.       THE   ESSENTIAL   MATERIAL    !S   PRESENTED      °   °^ 
DESCRIBID   «/'       '    ^   ®'    ^^   ""^^^   SPECIFIC   METHODS 

^^MFniA^AFrJF'TS^'^^^RAA^SS^i^AL^Sf*^   PROPAGATION    IN   TuR3ULr-NT rifcUIA«Al-CRL-TR-75-04393NO   #«AIJG   197^tiAn-AnicnAiiwc   uVu" 
DISCUSSED AND EXTENDED THE MOST RECENT DEVELOPMENT   ^ 
^.f^SPAG^UPyOF UWAVE AND OPTICAL RFAMS IN TURBULENT 

;LEAR ATMOSPHERE.  AMONG THE ---■-■■-■-■ 
.--ADING, BEAM WANDER. LOSS OF 
ANGLE OF ARRIVAL VARIATIONS. 

-c|*nMl''rnI-;*5^^^!:iSi .^yCLEAR AGENCY 

SUCH AS THE . 
ARE BEAM SPRf 
TILLATIONS. 
EFFECTS.  All 
   --  ^ 

I u n a u L c IN I 
PHENOMENA 
COHERENCF 
AND SHORT 

OF METHODS 

ON THE 
MEDIA. 
CONSIDERED 
SCIN- 

PULSE 
OF COM- 

56287R18»80RTNER, M.H. AND BAURERT ...-,..,^„_ 
M..,..^     "'"^'^'^'^ ,^?.IUON*NO^ #«-Ng # * JUNE "19 75 ■:!■ 

-'CO /n j o^PUK I l>Jt:ft I     n.H.      A 
REACTION RATE HANDBOOK 
AD-A018 386*THIS IS A COMPILATION OF ION-NEUTRAL REACTIONS 
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RATE CONSTANTS OF ATMOSPHERICALLY IMPORTANT SPECIES   THE 
REACTIONS REPORTED ARE POSITIVE AND NEGATIVE ION CHARGE - 
ZR^N^'^^S (ELECTRON TRANSFER) WITH NEUTRALS. I ON-ATOM-I NTER- 
Sg^S^U?fSS'^^S^i§Ki"iS'' REARRANGEMENTS. _, .ND ^-eiov" 

ClUll9ifSK0LNIK, M.i.<>REVIEW OF CURRENT RADAR INTERESTS AND 
EXTENDING THE RADAR SPEC T . . . . « NRL-M5/R-?869<J NO #»AUG 1974,AD" 
7R5-007*THIS REPORT CONSISTS OF TWO PAPER THAT ARE CONCERNED 
WITH CURRENT RADAR INTEREST.  IN ONE PAPER, THE VARIOUS MAJOR 
APPLICATIONS ARE DESCRIBED AND A LISTING OF CURRENT PROBLEM 
AREAS ARE GIVEN.  THE OTHER PAPER DISCUSSES THE EXTENSION 
OF RADAR OUTSIDE THE NORMAL UWAVE BANDS TO INCLUDE THE 
HF REGION AND ONE END OF THE SPECTRUM AND MM WAVES AT THE 
OTHER ENn.*» 

25?581A^DEIRMENDJI AN, D.^^FOR INFRARED AND SU8M ILL I METER 
SCATTERING. I. THE OPTICAL CONSTANTS OF WATERT A SJRVFY« 
NO #^N0 #*FEB 1974*AD-787 205»THIS IIS A LITERA- ^"''^-' 
JURE SURVEY OVER THE OPTICAL CONSTANTS OF LIQUID WATER FROM 
t5U TO lOOOU IN 1974.  HE CONCLUDES THAT THE CONSTANTS ARE 
FAIRLY WELL KNOWN IN THE ENTIRE RANGE UP TO MM WAVES 
OPTICAL CONSTANTS FOR ICE IN THE SAME WAVELENGTH RANGE ARE 
LESS WELL KNOWN; ICE PARTICLES ARE NON SPHERICAL AND PRESENT 
THEORY DOES NOT EXIST FOR THg EXOTIC SHAPE THER CRYSTALS 
T A K E . * « 

C11411D»DYANA, A.C.<>RADAR REFLECTIVITY MEASUREMENTS SYMPOSIUM, 
M-j-I-' 1964*RADC TDR-64-23. VOL. I<^NO #»APRIL 1964«AD 6oV 
364»THIS REPORT IS A COLLECTION OF TECHNICAL PAPERS REVIEWED 
ANn OTSCUSSED AT THE SYMPOSIUM ON RADAR REFLECTIVITY MEASURE- 
MENTS ON JUNE 2-4. 1064 AT MIT.  THE PRIME GOAL OF THE 
SYMPOSIUM IS THE EXCHANGE OF IDEAS AND INFORMATION RELATIVE 
IP S'^^EARCH EFFORTS. PAST, PRESENT AND FUTURE IN THE FIELD 
OF RADAR REFLECTIVITY MEASUREMENTS.  THE TFCHNI CAL PAPERS 
DWELL ON THE FOLLOWING REFLECTIVITY RANGE SUBJECTS: GEOMETRY, 
AND TECHNIQUES, SPECIAL EQUIPMENT, MODELS . MODEL Si PPORTS, 
SPECIAL MATERIALS, CALIBRATION, RANGE INTERCALI BRATI ON, 
MEASUREMENTS PROCEEDING DATA STANDARDS, CORI^ELATION AND 
APPLICATIONS. •»» 

B125869--.BELLEMANS, A "^STA T I ST I C AL THEORY OF ELECTRIC POLARI- 
ZATION';W-31-104-EIV 6-38*N0^AUG 1067^^ANL-7381*THIS REPORT 
CORRESPONDS TO A SERIFS OF SIX LECTURES GVEN TO THF MEMBERS 
pADl"fM^9h^D ^I^^^ SCIENCE^niVISION OF ARGONNE NATIONAL 
LABS IN AUG 1967.  THE MATERIAL PRESENTED HERE GIVES A 
REVIEW OF THE PRESENT SITUATION IN THE ST AT I ST ICAL THEORY 
OF DIELECTRICS, AS FAR AS LINEAR EFFECTS IN' THE FIFLD ARE 
CONCERNED: THEORY OF THE STATIC DIELECTRIC CONST ANT. AND 

^^.^Ly-J^, P:^'^*!^^^ (FREQUENTLY DEPENDENT) DIELECTRIC FUNCTION.»» 
521.681A--^LEE, R . W , »R A D I 0-W A VE PROPAGATION PATH»CONTR A CT AFi_ii 

(628)-5n54^^NQ #^.nEC 1967^An-669 lOl^THIS IS THE SECOND HALF 
OF A REPORT ON MEASUREMENT OF ATMOSPHERIC TURBULENCE AT 
,^!..S9^' ^VER^A 28 KM LINE-OF-SIGHT PATH WITH A 2R00'- 
LAMBPA, 9 ELEMENT RECEIVING ARRAY.  BOTH THE MEASURED 
PHASE STRUCTURE FUNCTION AND MEASURED AMPLITUDE -OVANANCP 
^,'^ic^?MC^P^?K,)^^I^;^^^9f'^^^^^L MODELS OF ATMOSPHERIC STRUC- 
TURE INVOLVING A SPECTRAL DENSITY TO SOME POWER (-11/3, IN 
THE CASE OF THE KOLMOGOROV SPECTRUM) OF THE TURBULENCE 

167 



ORDER OF 
20 DEG C 

BOTH 

G.D. 
;MENTS 
?UMEN- 

WAVENUMBER.»» 
9436419«AFSAR, M.N.; HASTEn, J. B. ; 7AFAR, M '^ • ANin rwiMi^co 

LAIN, J.«ABSORPTION BANDS IN LIQUID CHLOROFORM ANHRRnMn 
FORM^^NO #»CHEMICAL PHYSICS LETTERS, VOL  31 i NO  1 , 69-7?^ 
OCT 15_.1975»N0 #^THE OPT I CAL CONST ANTS , COMPLEX " REFRACT I ?F 

LIQUD CHLOROFORM AND BROMOFORMWFRE MEASURED AT 
i.Auc-NMiMoP^ gl^^g^SIVE FOURIER TRANSFORM SPE£TROSCOPY IN THE 
WAVE NUMBER REGION 20-350 CM-1 (0.5 MM - ?8 5 UM) rniF-rniF 
p AGRAMS (E"(GAMMA) VS E'(GAMMA )) ARE CALCULATED FOR ^ 

o^^I5V,l^^u^SH^nJ"^ REFRACTION MEASUREMENTS.^- 
93i64lB»CHAMBERS. J.; AFSAR, M.N.; MURRAY, n R : PRTrF 

^ti°.^^^^f^' M.S.^^SUBMILLIMETER-WAVE DIELECTRTC MEASURF 
?^Tt^F,°5^i^9c.^^J^^IALS«NO #MEEE TRANSACT ON ON INS? 
TATION t   MEASUREMENTS, VOL- IM-23, NO. 4,  483-487«nFr 
t?74.N0#^A SUMMARY IS GIVEN OF PRESENT DEVELOPMENTS ON 
2.^^?^Sl^ygr-'^P^?I^? TRANSFORMS &   TFCHNIQUFS FOR THF MEASUPF- 
^M?^cv°^NJ';^§/Sf^yiN^'^ VARIATION oF THE COMPLEX REFRACTIVE 
INDEX IN THE RANGE 100 GHZ - 9 TH7.  THIS PAPER PFAl S WITH 
MEASUREMENTS OF THE REAL PART N GAMMA  OF JHP COMPLEX 
REFRACTIVE INDEX.  MATERIALS CONS IDFRED ARF LIQUID CHLORO- 

oJi^^^^l; ^THANOL AND POTASSIUM BROMIDE (CRYSTAL) 1».^ 
24l58in^»DAVlES. M.; PARDOE. G.W.F.; CHAMBERLAIN. J : AND 

GEBBIE. H.A.^SUBMILLIMETER AND M ILI METER WAVE ABSORPTION 
?L^2?LS°k^?.e^'P NON-POLAR LIOU DS MEASURFDRY FOURIFR 
Ip^^^M^^^.S'^i^I^"SCOPY:^NO #*FARADAY SOCIETY, LONDON TRANS 
ATTIONS NO. 566. VOL. 66, 273-292»FEB 1970f^N0 #«AN ASSESS- 
MENT OF THE FOURIER TRANSFORM SPECTROMETER SHOWS ITS An- 

:  VANTAGES FOR APPLICATIONS TO THE MILL IMFTER WAVE REGION 
■  REFRACTION AND ABSORPTION SPECTRUM ARg OBTA INFD FROM 50'rM-1 

TO 2 CM-1 (.20 MM - .5 CM) IN SOME CASES?  RESULTS FOR WATER, 
^^^kl^^,' lr5 DIP><AN, CYCLOHEXANE. PECAHYDRONAPHTHALFNE . 
DIMETHYL ACETYLENE (2 PUTYNE). AND 1-OCTYNE ARE REPORTED 
AND CONSIDERED IN RELATION TO EARLIER MI CROW AVE DIELECTRIC 
DATA. »«• 

B4il41Pr,AFSAR, M.N.; HONIJK. D.D.; PARSCHIER, W.F.; AND 
^9y'T9^,'c>^-;M?I§PP^^^VE FOURIER TRANSFORM SPECTROMETRY WITH 
VARIABLE THICKNESS VARIABLE-TEMPERATURE LIQUID CFU S*NO ?« 
lEp TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 
MTT-25 NO. 6, 505-511«JUNE 1977*N0 #*MEASUREMENTS OF THE 
POWER ABSORPTION COEFFICIENT AND INDEX OF RFFRACTION WERE 
MADE ON GERMANIUM AND LIQUID CHLOROBENZENE AT 25 DFG C 
^9^c=^,^B ^"'^19^°^ WAV^ NUMBER 20 CM-2 TO 180 CM-1 (500 UM - 
55.5 UM) USING ROLLIN AND G LAY DETECTORS.  THE LIQUID CELL 
K^T^k^^iSM^^r.^^^^^ 0^ ONE OF THE MIRRORS OF THE MICMELSON 
INTERFtROMETER.*» 

921582F*KEATZE, U . »DIELECTRIC RELAXATION IN AQUEOUS SOLUTIONS 
OF POLYVINYLPYRROLIDONE^NO #r,ADVANCES IN MOLECULAR RELAXA- 
TION PROCESSES 7. 71-85»1975«N0 #^^THE COMPLEX DIELECTRIC 
CONSTANT OF AQUEOUS SOLUTIONS OF POLYVINYLPYRROLTnoNE 
(SOLUTE CONCENTRATIONS C BETWEEN 1 AND 5.5 MOL L-1) AND 1-ETHYL 
-2-PYRROLipONE (C-5-5 MOL L-1) HAS BEEN MEASURED AS A     ='"'^ 

FUNCTION OF FREQENCY BEtWEEN 50 MHZ AND 70 GHZ AT 2*^ C. 
PROCEEDING FROM AN ANALYSIS OF THE FREQUENCY DEPENDENCE 
OF THE PERMITTIVITY.  THE EXTRAPOLATED HIGH FREQUENCY 
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Sr T,*1Pe^°ySP5^.*80UT POSSIBLE BUILDUP OF A CONCENTRATION 
A^ Tul?^^S^9MP,t:^!;^JSi I^P^^OSPHERE AND LOWER STRATOSPHERE 
QUANTITIES^I» RELEASED AT GROUND LEVEL IN INCREASING 

^^?I^i,*.;t'^P2M^5A P^ARLES S.; SCHWARTZ, JACK; LINZ. 
AP^';^y?Abi'^I^S/ ik^ K" MASER^MELHOUS CO;  AFCRL'66-357» AF 191628-4006»APR 1966»AD-637 683«THIS IS A FINAL REPORT 
9!^w22yTS*£LWORK DEALING WITH THEORETCAL AND EXPERIMENTAL 
INVESTIGATIONS OF THE PROPERTIES OF FERROELECTRIC MATER ALS 
LEADING TO THE DEVELOPMENT OF MATERIALS WITH THE SPECIAL 
??2P^''I iio'^?[;E?SARY FOR THE OPERATION OF A LEGARD 
FIELD MASER IN THE MM RANGE.  MEASUREMENTS OF LIGARD FIELDS 
^l^^riSSl^KLSIAjE CROSS OVERS BY OPTICAL AND MICROWAVE 

ri?Rfi?JS2nS9n^ ^^,^0° ' f ^.k^^^iS.i^Ll^'-L^AS MAGNETOMETER METHODS.*» 
C11581F»H0RT0N, J.B. AND DONALDSON, M.R.» NVESTIGATION OF 

LARGE^SIGNAI MICROWAVE-EFFECTS IN FERROELECTRIC MATERIALS. 
FINALF^REPORT, 1 JULY 1963 - 31 JAN 1966*§PERRY MICROWAVE 
SR^IS^CJ NO. DA36-e39-AMC-0324e(g)*>MAR 1966*An-634 524» 
THEORY^AND MEASUREMENT TECHNIQUES FOR OBTAINING THE 
2lll=i9lPi'^.?°^'^^*Fr*ND LOSS TANGENTS FOR FERROELEgTR IC 
MATERIALS AT LOW FREQUENCIES, AND IN THE MICROWAVE BAND. 
1, §H^ ^irS^ GHZ^ARE GIVEN. AND SOME RESULTS ARE INCLUDED. 
ALSO, RESULTS OF INVESTIGATIONS OF METHODS OF PREPARING 
POLYCRYSTALLINE CERAMIC MATERIALS FOR MICROWAVE FREQUENCY 
USE IS REPORTED.  METHODS OF INVESTIGAT NG THE NON- 
L NEAR PROPERTIES OF FERROELECTRIC MATER I ALS BIASED IN THE 
^^"^ikiSJPi£x5?SI0N ARE INCLUDED.  GENERAL APPLICATION 
2^r<^^B5PELECTRIC MATERIALS FOR MICROWAVE COMPONENTS IS 
D I SCUSSfcD.** 

523171D«ALTSHULER, EDWARD E. »EARTH-TO-SPACE COMMUNICATIONS AT 
MM WAVELENGTH*AFCRL-65-566*N0 #*AUG 1965»AD-621 94?; 
A PROGRAM TO INVESTIGATE THE FEASIBILITY OF EARTH-SPACE 
COMMUNICATION CHANNELS INTHE MM WAVE REGION IS PRESENTED 
l^^.^^^9^X   OF ATMOSPHERIC ATTENUATION DUE TQ ABSORPTION. 
SCATTERING^AND REFRACTI6N PRQPENTION PROPERTIES OF ATMO- 
??y^5iSrS'J§SES,^CLOUDS AND PRECIPITATION.  CURVES OF TOTAL 
^jyP^KHF5i9 ATTENUATION AND NOISE LEVEL AS A FUNCTIONOF 
METEOROLOGICAL PARAMETERS AND ANTENNAE DEVIATION ANGLE 
ARE ALSO PRESENTED.  A SERIES OF EXPERIMENTS DESIGNED TO 
OBTAIN AS MUCH INFORMATION AS POSSIBLE ON THE LIMITATIONS 
IMPOSED BY THE ATMOSPHERE ON MM WAVE PROPAGATION  S PRE- 
SENTED.** 

933581G*CHANTRY, G . W . *D I ELECTRIC MEASUREMENTS IN THE SUBMILLI- 
METER REGION AND A SUGGESTED INTERPRETATION OF THE POLEY 
ABSORPTION»NO #*IEEE TRANSACTIONS ON MICROWAVE THEORY AND 
TECHNIQUES, VOL. MTT-25, NO. 6, 496-500*JUNE 1977*N0 #« 
MOpEN ACTIVITY IN THE FIELD OF EXTRA HIGH FREQUENCY DIELEC- 
TRIC MEASUREMENTS ON POLAR LIQUIDS IS BRIEFLY REVIEWED AND 
THE MEANS FOR CARRYING THEM OUT BRIEFLY DESCRIBED   IT IS 
NOW POSSIBLE TO DETERMINE THE COMPLEX PERMITTIVITY (AND 
HENCE. JHE^COMPLEX REFRACTIVE INDEX) OVER THE RANGE 10 TO 
8TH TO^IO^TO 13TH HZ TO AN ABSOLUTE PRECISION OF 1% AND 
IS, THEREFORE, WORTHWHILE TO RE-EXAMINE THE LIQUID 
LATTIMER THEORY WHICH WAS PUT FORWARD SOME TIME AGO AS AN 
EXPLANATION FOR THE ADDITIONAL POLAY ABSORPTION.  THIS 
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1960-1964 ARE GIVEN. MEASUREMENTS WERE CONDUCTED BY RADIO 
ASTRONOMICAL METHODS AT DIFFERENT HEIGHTS ABOVE SEA LEVEL. 
WHICH MADE IT POSSIBLE TO DETERMINE THE EFFECTIVE PATH FOR 
02 AND WATER VAPOR OF THE ABMOSPHERE IN ABSORPTION. TOTAL 
ABSORPTION OF THE ATMOSPHERE FROM SEA LEVEL DURING ZENITH 
OBSERVATION IS GAMMA = 0.26 + 0.0065 P VAPOR, WHERE P = 

LAYER OF AIR.  EFFECTIVE 
THE ATMOSPHERE ARE 

(1.75 -t- OR - 0.1) KM 
WATER VAPOR AT StA 
+ OR - .02) DB/KM, 

AND 
AND 
.13 

ABSOLUTE HUMIDITY IN THE SURFACE 
HEIGHTS OF 02 AND WATER VAPOR OF 
RFSPECTIVFLY (4.3 + OR - .3) KM, 
COEFFICIENTS OF ABSORPTION OF 02 
LEVEL ARE (0.21 + OR - .02) AND ( 
RESPECT I VELY . »<* 

523133A«WINKLER, LOUIS^^THE PENNSYLVANIA STATE UNIVERSITY 
RADIO ASTRONOMY OBSERVATOR»DA-18-001-AMC-905(X ) »N0 #»NOV 1968» 
AD-687 391»THE PURPOSE OF THE WORK RELATING TO THIS REPORT 
IS TO STUDY THE PROPAGATION CHARACTERISTICS OF MM WAVES IN 
THE EARTH'S ATMOSPHERE.  ONE METHOD USED TO ACCOMPLISH THIS 
WAS TO MAKE MEASUREMENT OF THE SUN AND ATMOSPHERE TOGETHER' 
AND THE ATMOSPHERE ALONE.  THESE MEASUREMENTS WERE MADE 
WITH A 36 GHZ RADIOMETFR.  OTHER METHODS WERE TO REDUCE 
AND ANALYZE DATA SUPPLIED BY THE TECHNICAL MONITOR AND 
DEVELOP SOME RELATED THEORETICAL IDEAS.»« 

9??581B»GIESE, K.eCORRELAT I ON ANALYSIS OF EXPERIMENTAL PER- 
MITTIVITY DATAeNO #<*ADVAN. IN MOLECULAR RELAXATION 
PROCESSES, 7, 157-166*1975'»N0 #»THE AUTO-CORRELATI ON OF 
FUNCTION PHI NIN(GAMMA) OF THE RELAXATION TIME DISTRIBUTION 
FUNCTION GAMMA(R) IS OBTAINED FROM THE AUTO- AND CROSS- 
CORRELATION OF REAL AND IMAGINARY PARTS OF THE PERMITTIVITY 
DATA ARE SUBJECT TO EXPERIMENT ERROR.  THE SPECTRUM OF THE 
AUTO-CORRELATION FUNCTION APPEARS TO BE MOST SUITABLE FOR 
THE DETERMINATION OF THE DISTRIBUTION FUNCTION H(R). 
IT IS NECESSARY TO OBTAIN ADDITIONAL INFORMATION BY EVAL- 
UATING THE LOWER ORDER MOMENTS OF THE DISTRIBUTION FUNCTION.** 

D311651C»MEND0NCA, J . «-M I LL I METER WAVE POLAR METERS AND THE 
COTTON-MOUTON EFFECT IN PLASMAS»NO «^N0   #«DEC 1972* 
EUR-CFA-FC-675«THIS PHD THESIS IS A STUDY OF THE COTTON- 
MOUTON EFFECT ON A PLASMA OF 2 AND 4 MM WAVELEN&THS. 
ORDINARY TURNSTILE CURVE GUIDE FUNCTIONS AT 2-3 CM ARE NOT 
EASILY SCALABLE FOR 2-4 MM USE; THEY ARE DESIRED AS 
POLARIZATION ANALYZING ELEMENTS.  TITLE OF CHAPTERS OF 
THIS THEME ARE: 1) CERTAIN EQUIVALENT SCHEMES. 2) SMAI L 
DIMENSIONED GUIDE POLARIZER. 3) MEASUREMENTS PROCEDURfc. 
4) POLARIZATION IN AN INHQMOGENEOUS MAGNET PLASMA. 
5) MEASUREMENT OF THE COTTON MOUTON EFFECTS ON A PLASMA 
(AT .337, 2, AND 4 MM) .*» 

21256n«P0RTER, RONALD A. AND HO, PING-TONY*MI CROWAVE RADIO- 
METRIC SENSING OF SURFACE TEMPERATURE AND WIND SPEED FROM 
SEASAT*CONTRACT # 6-35217»N0 #*FEP 1977»PB-270 323»A COM- 
PREHENSIVE STUDY HAD BEEN PERFORMED TO DETERMINE THE 
ACCURACY WITH WHICH SEA SURFACE TEMPERATURES AND WIND 
SPEEDS CAN BE DERIVED FROM BRIGHTNESS TEMPERATURES 
TO BE SENSEIJ BY THE SEASAT SMMR MICROWAVE RADIOMETER 
(APPARENTLY 6.6, 10.4 AND 18 GHZ).  THIS WORK WAS BASED 
ON THF USE OF A 2-SCALE OCEAN ROUGHNESS MODEL.  AN INSTRU- 
MENT 2-SECTION OCEAN FOAM MODEL, CONSISTING OF WHITE CAPS 

173 



ANp_FROM STREAKS WAS APPLIED TO THE WORK PERFORMED ON 
„ FREQUENCIES WERE USED IN THIS STUDY 
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(y)(IN FRENCH)»CEA-B2993»N0 #*l966ePB-l73 395»WE PLAN 
TO STUDY THE ELEMENTS NECESSARY TO REALIZE TWO TYPES OF 
INTERFEROMETER:  A) INTERFEROMETER WITH TWO SEPARATED 
WAVE PATHS. UTILIZING A TRANSMISSION CELL AT AMBIENT 
Ji^jPi'^^IyPE.^ B) MICHELSON INTERFEROMETER, UTILTZING A 
REFL|CTI0N CELL. WITH VARIABLE TEMPERATURE: WAVE BAND 
COVERED: 2- MM - 8.6 MM.»« 

D22661C*ETIEVANT, C . ♦APPLICATION OF MICROWAVES AND FAR INFRA- 
RED TO THE^PROBLEMS OF DIAGNOSTICS IN RESEARCH ON CON- 
TROLLED FUSION (IN FRENCH)»NO #»ASSOCI AT ION EURATOM-CEA 
iI^Pok*T^USI0N*21 MAY^1973»CEA-C0NF-2313»C0NTRHLLER FUSION 
PRESENTS US^WITH SEVERAL DIAGNOSTIC PROBLEMS-  ONE CON- 
SIDERS SUCCESSIVELY:  MEASUREMENT PLASMA DENSITIES TNTER- 
FEROMETRYCALLY, THE DETERMINATION OF DENSITY PROFILES BY 
MATTER F;0ULEn INTERFEROMETRY AND BY REFLECTOMETRY . THE 
^ZyRY OF TURBULENCE BY DIFFUSION OF MICROWAVE, THE 
MEASUREMENT OF COMPONENTS OF MAGNETIC FIELD BY FORSDAY 
521^119'^.^NR,.8YA^METH0D EXPLOITING THE NON-LINEAR 
PROPERTIES OF PLASMAS (WAVELENGTH COVERAGE: 0-3-4 MM).ft» 

'"•^^^ilSki^OXj h'    CONSTANT, E.; ABBAR, C; AND DESPLASIQUES. 
P.»CORRELATION, RELAXATION AND ULTRAHERTZI AN ABSORPTION 
IN LIQyiDS«NO #»ADVANCE MOL- RELAXATION PROCESSES. 1. 
273-307<*l967-68*N0 #«THIS IS AN EXPERIMENMTAL AND THEORETI- 
CAL STUDY OF ABSORPTION OF RADIO WAVES, CM--SyB MM IN 
LENGTH^I.N POLAR LIQUIDS WITH SIMPLE RIGID MOLECULES.  IN 
THE^FIRST PART, EXPERIMENTAL RESULTS ARE SUMMED UP. 
MOLECULES STUDIED ARE PLANAR OR "SYMMETRIC TOP."  A 
FINAL ANALYSIS OF THESE DATA PROVIDES EVIDENCE OF TWO NEW 
PHENOMENA WHICH HAVE NOT BEEN SYSTEMATICALLY STUDIED.  IN 
THE SECOND PART, WE TRY TO INTERPRET THEORETICAL RESULTS 
OBTAINED FROM THE CORRELATION FUNCTION CONCEPt.  SUBSTANCES 
STUDIED WERE TRICHLORETHANE-HEXANE AND TR I CHLOROMETHANES, 

^ AND METHYL PROPYL CHLORIDE.«» 
213111K»G0DARD. S.L.«PROPAGATI ON OF CENTIMETER AND MILLIMETER 

WAVELENGTHS THROUGH PRECIP ITAT ION»NO #»IEEE TRANSACTIONS 
ON ANTENNAS « PROPAGATION. VOL. 18. NO. 4, 530-534«JULY 
1970«N0 #»FROM THEORETICAL CONSIDERATIONS. IT IS POSSIBLE 
TO CALCULATE ATTENUATION THROUGH RAIN AT SEVERAL WAVE- 
LENTHS.  IT IS SHOWN THAT ATTENUATION IS A LINEAR FUNCTION 
OF RAIN^RATE FOR A 0.86-CM WAVELENGTH.  THIS PROPERTY IS 
INDEPENDENT OF THE DISTRIBUTION SPECTRA OF DROP RADIUS 
WITHIN A TEN-PERCENT PRECIS ON.  THIS LATER PROPERTY HAS 
BEEN TESTED EXPERIMENTALLY IN TWO DIFFERENT WAYS.  1) MEASURE- 
1) MEASUREMENTS THROUGH RAiN HAVE BEEN MADE WITH A RADAR 
AT 0.86 CM.  RESULTS ARE REPORTED.  THEY SHOW QUITE IMPOR- 
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80 REFS.»» 
P.»PR0PAGATI0N or 

LLIMETER^NO #»N0 #» 
EXTENSIVE HY 

TION 
ES 

FUTURE DEVELOPMENTS ON THE SUBJECT. 
512171D*ZHEVSKIN. S.A. AND  NAUMOV. A 

CENTIMETER. MILLIMETER, AND SUB MI 
SEPT l969»AD-694 411»W0RKING FRQM EXTENSIVE BIBLIOGRAP 
(199 ENTRIES), THE AUTHORS REVIEW THE PRESENT STOCK OF 
KNOWLEDGg OF PROPAGATION OF MICROWAVES IN THE EARTH'S 
ATMOSPHERE.  THE EFFECT OF WATER VAPOR DIMER, AND 
DONOMERS AS WELL AS 0? ARE EXAMINED AS THEY CONTRIBUTE 
TO^THE TOTAL ABSORPTION COEFFICIENT.  THREE FORMS OF THE 
SPECTRAL LINES ARE CONTRASTED;  1) BY LORENTZ,  2) VAN 
VLECK AND WEISHOPF, AND 3) A FORM OBTAINED FROM A SOLU 
OF THE KINETIC EQUATION.  NATURAL ATMOSPHERIC WAVEGUlD 
ARE DISCUSSED BRIEFLY INDICATING WHY IT IS IMPRACTICAL 
TO USE THEM FOR COMMUNICAT IONS . *» 

622181A»REBER. E.E.; MITCHELL, R.L.J AND CARTER, C.J.ft 
ATTENUATION OF THE 5-MM WAVELENGTH BAND IN A VARIABLE 
ATMOSPHERE»NO #»N0 #»JULY 1969»An-694 510»EFFECTS OF ATMO- 
SPHERIC CHANGES ON ATTENUATION IN THE ATMOSPHERE FOR THE 
5-MM WAVELENGTH REGION OF THE E « M SPECTRUM (48-72 GHZ). 
ATTENUATION VS FREQUENCY AND ALTITUDE FOR VERTICAL TRANS- 
MISSION THROUGH THE ATMOSPHERE. CAUSED BY 02 ABSORPTION. 
ARE TABULATED FOR GEOGRAPHICAL AND SEASONAL MODEL ATMO- 
SPHERES.  THE ATTENUATION EFFECTS OF ATMOSPHERIC WATER 
FORMATIONS ARE DISCUSSED AND COMPARED TO 02 ATTENUATIO 

212411A»KRASYUK, N.P. AND IROZENBERG, V.I.»RADAR CHARACT 
ISTlCg OF PRECIPITATION OF DIFFERENT NATURE^NQ #*N0 #« 
OCT l969#Ap-700 40l»THE SPECIFIC EFFECTIVE AREA OF RET 
GRADE SCATTERING OT AND ATTENUATION FACTOR OF RADIO WA 
IN THE CM MM BAND, IN RAINFALLS OF VARIOUS ORIGIN 
WITH VARIOUS LEVELS OF RAINDROP SIZE DISTRIBUTIONS. AT 
VARIOUS TEMPERATURES AND RAIN IN FORESTS WERE CAlCULAT 
THIS QUANTITATIVE DATA ON THE ATTENUATING AND REFLECTI 
EFFECT OF RAIN ON THE OPERATION OF ELECTRONIC EQUIPMEN 
IN THE CM AND MM RANGE.»» 

211173A»CRANE. ROBERT K.»RAIN ATTENUATION AT MILLIMETER 
WAVELENGTHS«AF19(628)-5167«N0 #»1968«AD-7Q7 813ftTHE MA 
PROPAGATION PROBLEM CONFRONTING THE USE OF MM WAVES FO 
LINE-OF-SIGHT COMMUNICATION LINKS OPERATING THROUGH TH 
ATMOSPHERE IN HYDROMETER SCATTERING.  RAIN, HAIL, SLEE 
SNOW, AND FOG ALL CAN CAUSE SEVERE ATTENUATION AT MM 
WAVELENGTHS.  THE PROBLEM OF HYDROMETER SCATTERING 
REPORTED IN THE LITERATURE TEND TO SUPPORT THE CONCLUS 
THAT CURRENT THEORY IS NOT SUFFICIENT TO ADEQUATELY PR 
DICT ATTENUATION.** 

5226838*ISHIMARU. A.«PROPAGATI ON AND RECEPTION OF PARTIA 
COHERENT WAVES IN RANDOM MED I A*CONTRACT #F19628-69-C-0 
NO #«'DEC 197l»AD-743 833<»THE FINAL REPORT GIVES A SUMM 
OF ALL THE WORK COMPLETED AND UNDER WAY UNDER THIS CON 
TRACT COVERING THE PERIOD FRQM DEC. 1968 TO DEC. 1971. 
THE WORK COVERS A BROAD SPECTRUM INCLUDING TEMPORAL FR 
QUENCY SPECTRUM, FOCUSED BEAMS, REMOTE PROBING. MULTIP 
SCATTERING EFFECTS, AND RAIN ATTENUATION.** 

621131E*REBER. E,E.»ABSORPTI ON OF THE 4- TO 6-MM WAVELEN 
BAND IN THE ATMOSPHERE^CONTRACT F04701-71-C-0172*NO #* 
MAR 197?«AD-745 951»THE ANALYSIS OF AN EXTENSIVE SERIE 
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or ZENITH ATTENUATION ME 
BOTH SIDES OF THE OXYGEN 
ELUCIDATES THE ABSORPTIO 
WAVELENGTH BAND. WITH T 
UATiON MEASUREMENTS WERE 
THE PRECIPITABLE WATER C 
MINE THE ZENITH ATTENUAT 
WATER. FROM THESE COEFF 
TOTAL PRECIPITABLE WATER 
nXYGFN COMPONENTS OF THE 
MINEH «« 

C21171A«COHN. MARVIN AND L 
OF MILLIMETER WAVE RESEA 
PROBLEMScN00014-77-C-016 
TECHNICAL REPORT CONTAIN 
OF THE EXISTING AND PROJ 
ART. SPECIFIC AREAS TRE 
ANTENNAE, COMPONENTS, PO 
TECHNIQUES. AREAS WHERE 
WOULn RESULT IN INCREASE 
OUT.«tt 

C1.3171C->KEELTY, J.M. AND C 
VOL. 5. LISTINGS OF DET 
CONTRACT PG 727001-1«NO 
CONTAINS SAMPLES OF THE 
PARAMETERS SALIENT TO TH 
FORMANCE. THE VOLUME BE 
STRUCTURE OF THE COMPUTE 
THE MEANING OF SAMPLE PR 
PRECIPITATION RATES. ERR 
VARIATIONS FOR VARIOUS M 
SECTION DISCUSSINGTHE RE 
UP THE REMAINDER OF THE 

513183A*STEELE, F.K. AND V 
RECENT WORK ON PROPAGATI 
10 TO 100 GHZ»NO #«N0 #* 
ARE PRESENTED ON THE SUB 
WORK ON RADIO PROPAGATIO 
QUENCIES FROM 10 GHZ TO 
SEPARATED INTO SIX MAJOR 
THROUGH PRECIPITATION, M 
NON-TURBULENT CLEARANCE^ 
MEASUREMENTS/DATA, AND A 

621681D*LIEBE» HANS J.'-*A P 
SPECTROMETER FOR ATMOSPH 
WAVELENGTHS»NO  #<>N0  #*AP 
REFRACTION SPECTROMETER 
UNDER SIMULATED ATMOSPHE 
PAGATION FACTORS, ESPECI 
OF THE OXYGEN UWAVE SPEC 
ATTENUATION PRESSURE PRO 
AND 103 TORR. THE SENS! 
ON 10 THE 9TH AND 0.01 D 
STRUCTURE OF THE 0? MS A 
ANALYSIS.  SPECIAL DIAGN 

ASUREMENTS OF THE ATMOSPHERE ON 
ABSORPTION SPECTRUM (48-7? GHZ) 

N CHARACTERISTICS OF THE 4'TO 6 MM 
HE SUN AS A SOURCE, ZENITH ATTEN- 
MADE AND USED AS A FUNCTION OF 
ONTENT OF THE ATMOSPHERE TO DETER- 
lON COEFFICIENTS OF PRECIPITABLE 
ICIENT AND MEASUREMENTS OF THE 
CONTENT IN THE ATMOSPHERE, THE 
ZENITH ATTENUATION WERE DETER- 

ITTLEPAGE, ROBERT S.»IMPLICATIONS 
RCH AND TECHNOLOGY ON NAVAL 
6«N0 #«JAN 1967«AD-813 46?*T 
S A SURVEY AND A CRITICAL AN 
ECTEC MM WAVELENGTH STATE OF 
ATED ARE PROPAGATION EFFECTS 
WER SOURrES, AND RECEIVER 
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1968» 
TWO 

,^^0R DEDUCING SPECTROSCOPIC PARAMETERS.«* 
^^l^^Ru'lJ/i^iiny^t^S J.«STUDIES OF OXYGEN AND WATER VAPOR 

MI^?'^':'*^?. iS^^I^* UNDER SIMULATED ATMOSPHERIC CONDlTIONiS« 
NASA-AAFIL58.506; N0AA-NESS5-13155»N0 #»JUNE 1975»C0M-75' 
^lP.^^*^^':'0?P"Ef^C RADIO WAVE PROPAGATION IN THE 40-140 GHZ 
BAND IS INFLUENCED BY THE UWAVE SPECTRUM OF 02 AND WATER 
^^§°?AMTlt!JS REPORT TREATS THE COMPLMENTAPY SIDES OF 
jy^ £°KI'^0'rl-ED LABORATORY EXPERIMENTS AND COMPUTFR ANAI YSIS 
^OR PROVIDING MOLECULAR TRANSFER CHARACTERISTICS   ^"^^^'-^^^^ 
??^??yp^ PS^^,1L^^TPF£i?E,^JJ,H REFRACTOMETER WAS OPERATED 

i^E /       IE ;s  T^vs^Euiic??^PRE^ySR^^ 
5y?f6NS^'SN?^g%^JigR^^^^?Hi'5^KHE'SiJI^^^^° '^'^^ c°^- 

511.181A*ZHEVAKIN, S . A . «PROPAGA T I ON AND ABSORPTION OF RADIO 
^^XiSjN T>^E ATMOSPHERE AND TROPOSPHERE^NO i^NO #UuG ' 
i'S??.'*^2ll;t^^^JS PUBLICATION CONTAINS A TRANSLATION OF 
^?lA£k^i ^^9^   ^HE RUSSIAN PERIODICAL "NEWS OF 
HIGHER EDUCATIONAL INSTITUTE, RADIO PHYSlCsV GORKY, VOL. 
lR;r.[:i2;M?nl°^.i.^^rA. COMPLETE BIBLIOGRAPHICAL INFORMATION 
ACCOMPANIES EACH ARTICLE.  CONTENTS*  "PROPAGATION OF CM, 
MM AND SUB MM RADIO WAVES IN THE EARTH'S ATMOSPHERE" 
AND "A STUDY OF TROPQSPHERIC ABSORPTION OF RADIO WAVES 

^ BY RADIO ASTRONOMY METHOD"*** 
5131828*Y9GLER, L.E. AND VAN HORN. J . S . F.*BIBLlOGRAPHY ON 
PROPAGATION EFFECTS FROM 10 GHZ TO 1000 THzUo #»N0 #* 
^^5ri9'^^*C9^-''5-10809*A BIBLIOGRAPHY ON E S M WAVE PROPA- 
9^^J-S^nP,X^.5rt'I^^r,2''r.SIGHT PATHS THROUGH THE TROPOSPHERE 
AT FREQUENCIES ABOVE 10 GHZ.  THE REFERENCES ARE DIVIDED 
IV.9,   iHgEG^MAIN CATEGORIES COVERING THE AREA OF PROPAGA- ■ 
T ON THROUGH NON-TURBULENT CLEAR ATMOSPHERE AND PRECIPI- 
TA TI ON.** 

^^^i2L,^>I^S';?£S0N.^W.I.*A REVIEW OF RADIOMETER MEASUREMENTS OF 
ATMOSPHERIC ATTENUATION AT WAVELENGTHS FROM 75 CENTIMETERS 
ISo^ MILLIMETERS (LITERATURE SEARCH) <^NASA-TN D-5087»N0 #* 
APR 1969»N69-22949ttPUBL SHED VALUES OF VERTICAL ATTPN- 
UATION^RESULTING FROM RADIOMETRIC MEASUREMENTS 
OF ABSORPTION AND EMISSION OF THE EARTH.  ATMOSPHFRF I ^J 
jyE WAVELENGTH RANGE FROM 75 CM (,4 GHZ) TO 2 MM (150 GHZ) 
ARE PRESENTED.  THE LITERATURE SEARCH INCLUDED A REVIEW 
OF SEVERAL HUNDRED PUBLICATIONS.  THESE DATA EMPHASIZE THE 
NEED FOR FURTHER THEORETICAL AND EXPERI MENTAL WORK  N THE 
CALCULATION AND MEASUREMENT OF ATTENUATION IN 
THIS PORTION OF THE SPECTRUM.»» 

733731B«N0 #«DESIGN OF A SATELLITE INSTRUMENT FOR MEASUREMENT 
OF THE^MILLIMETER CHARACTERISTICS OF ATMOSPHERIC OZONE^ 
NAS5-12-117«N0 #»1969*N69-32l83» THE OBJECTIVE WAS TO SEiECT 
AN OZONE RESONANT LINE (APPROX 100 GHZ) WITH SUFFICIENT 
INTENS TY WHICH COULD BE DETECTED WITH A SIGNAL TO NOISE 
RATES (FROM A SPACE-BORNE RADIOMETER) ADEQUATP TO ALLOW 
RESOLUTION OF THE LINE PROFILE TO THE PRECISION REQUIRPD 
FOR THE INVERSION.  A FURTHER STIPULATION WAS THAT THP 
TECHNIQUES AND COMPONENTS INrORPORATED IN THE DESIGN OF 
THE SATELLITE INSTRUMENT, OR NEAR, CURRENT STATE OF THF 
ART.»» 

178 



1231619*GAUT. N . E . »INTERAnTI ON MOnEL OF MICROWAVE ENERGY 
AND ATMOSPHERIC VARI ABLES^CONTRXPT NAS8-26?73«N0 #»APR 
?2c ^?r^^yel;?^P,???S^SULTS ARE PRESENTED FOR A STUDY OF 
THE EFFECTS OF WATER VAPOR. LIQUID WATER, AND ICE UPON 
RADIATIVE^TRANSFER PROCESSES AT MICROWAVE FREQUENCIES AND 
l^.I*;^^c^^^.^5'..'^"E FUNDIMENTAL PROCESSES BY WHirH THESE 
SPECIES INTERACT WITH MICROWAVE ENERGY ARE DISCUSSED 
AND THEIR STATISTICS ANALYZED IN TERMS OF THFIR APPLICA- 

^ TION TO A RANGE OF REMOTE SENSING PROBLEMS.** 
^^UZ>1^''^SS°'-n2,i )^^A'    L.J.*EARTH SATELLITE PROPAGATION 

ABOVE GHZ: PAPERS FROM THE 1972 SPRING URSI SESSION ON 
EXPERIMENTS AND UTILIZING THE AFS-5 SATELLITE^NO #*N0 #* 
MAY 1972*N72-30141«THIS DOCUMENT PRESENTS A COLLECTION OF 
PAPERS ^ROM^THE SPECIAL SESSION ON EARTH-SATELLlTE PROPA- 
^^^19[^,^S2yfrK^,2^°*^Z. PRESENTED AT THE INTERNATIONAL UNION 

U°?§E"iLS'EF IS,^"EoS;§i^T"5."'^^ EXPERIMENT IS INCLUDED 
212371C<»H0DGE. D.B.#A SIMPLE METHOD FOR THE DETERMINATION 
?LPr^FI'^l S^l^^^LL DIMENSIONS AND OR I ENT AT I oKcON- 
TRACT NGR-36-008-080»N0 #*SEPT 1973«N74-10578»A SIMPLE 
KfI!1°D^lS PROPOSED FOR THE DETERMINATION OF EFFECTIVE 
RAIN CELL DIMENSIONS AND ORIENTATION.  TWO RAIN CELL 
MODELS HAVE BEEN CONSIDERED; THE CIRCULAR CELL AND THE 
ELLIPTICAL CELL.  IN BOTH MODELS IT IS ASSUMED THAT 
THE RA N RATES CONSTANT THROUGHOUT THE CELL ---.THE 
RESULTING RAIN CFLL CHARACTERISTICS ARE OF DIRECT VALUE 
l^,   l^^J^^^JH^^^r.^^   M^ WAVELENGTH ATTENUATION STATISTICS 
ON BOTH SINGLE TERMINAL AND DIVERSITY EARTH SPACE PROPA- 

E=I9.^U9^TSAI[^T^S WEI-'- ^S POINT TO POINT DOMESTIC LINKS.»♦ 
511173A<>IPP0LIT0, L.J.»TWENTY AND THIRTY GHZ MILLI METER 

!^^yi.^?Ci''l!?i^"^S WITH THE ATS>6 SATELLI TEUO #»N0 #»1975«N75- 
33154»THE ATS-6 (APPLICATIONS TECHNOLOGY SATELLITE) MM WAVE 
EXPERIMENT. DEVELOPED AND IMPLEMENTED BY THE NASA GODDARD 
SPACE FLIGHT CENTER (GSFO- HAS PROVIDED THI FIRST DIRECT 
MEASUREMENT OF 20 AND 30 GHZ EARTH-SPACE LINKS FROM AN 
ORBITING SATELLITE.  THIS REPORT CONTAINS THE FIRST COMPRE- 
HENSIVE PUBLICATION OF INITIAL DAtA RESULTS OF THE ATS-7/6 
V^A!;^?)(L^^P^^^^E^^ ^^0^ ^^E ^^> ^*JOR PARTICIPATING ORGAN- 

511172B»FANG. D . J . <»PRE C I P I T AT I ON ATTENUATION STUDIES RASED 
ON MEASUREMENTS OF ATS-6 20-30-GH7 REACON SIGNALS AT 
CLARKSBURG. MD^^CONTRACT NAS5-207 4 0 *N0 #^ AUG 1976«N 77- 
23?95'-^C0MSAT LABS PARTICIPATED IN THE MM WAVE PROD  EX- 
Si^li^i^^.U'^SP.^J^SA NAS5-20740, PERFORMING MEASUREMENTS 
OF THER 20/30-GHZ ATS-6 SATELLITE BEACON SIGNALS AND 
AUXILL ARY MEASUREMENTS SUCH AS RADIOMFTRIC SKY TEMPERA- 
VM^   t^^JM^ll^   PRECIPITATION AT CLARKSBURG. MD 
THESE MEASUREMENTS WERE INTENDED TO ADVANCE UNDERSTANDING 

THIS REPORT DESCRIBES A STUDY OF THE FEASIBILITY OF AEROSOL 
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TOR^TRANSFER OF MICROWAVE RADIATION 
ACTIONS OF THE MAIN GEOPHYSICAL 
EGLEAR NO. 222«N0 #» 
S, LENINGRAD1968<*JULY 1964^»NASA 
OF ARTICLES CONTAINS THE RESULTS 
EXPERIMENTAL INVESTIGATIONS OF 
E ATMOSPHERE AND THE UNDERLYING 
REGIONS OF THE SPECTRUM. THE 

ON IN A CLOUD-FREE ATMOSPHERE, 
ITATION ARE STUDIED! THE REFLECTION 
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AND RADIATION OF THE ROUGH SURFACE OF THE SEA AND THE ICE 
COVER ARE INVESTIGATED AND THE CONTRAST IN RADIO BRIGHT- 
NESS TEMPERATURE OF THE ICE FIELD, THE ZONE OF CLOUD COVER, 
PRECIPITATION AND THE REGIONS OF REVERSED HUMIDITY ARE 
EVALUATED.  THE POSSIBILITY OF USING RADIO EMISSION IS 
EVALUATED FROM THE VIEWPOINT OF SOLVING INVERSE PROBLEMS, 
I.E.. SOUNDING OF THE ATMOSPHERE AND THE UNDERLYING 
SURFACE FROM ATRCRAFT.-^^ 

5?3531A-»K0NDRATYEV . K.Y., ET AL . ^--M I CRO WA VE REMOTE ENVIRONMENT 
SOUNnlNGttNASA T T-F-1 ft9 30 <>N0 #«JULY 1 97 6»N7 A-27 44 Q-TH I S IS 
A LONG ARTICLE ON MICROWAVE REMOTE SOUNDING -- MICROWAVE 
RAniOMETRY.  CALCULATIONS ARE FOR THE .8CM - 3.2 CM WAVE- 
LENGTH REGIONS. ALTHOUGH THERE ARE DISCUSSIONS ABOUT 
MEASUREMENTS IN THF .3-3.? CM RANGE IN THE ATMOSPHERE- 
SOU . OIL SPILLS. ICE COVER.  CALCULATIONS OF DIELECTRIC 
CONSTANTS OF SOUS ARE ALLUDED TO. IN THE 8.1 - 214 MM 
RANGE.  THERE IS A 167-ELEMENT BIBLlOGRAPHv JM DIELECTRICS, 
RADIOMETRY THAT IS VERY GOOD..-,* 

21?761Q<^K0MFN, M.»METH0DS FOR CORRECTING MICROWAVE SCATTERING 
AND'FMISSION MEASUREMENTS FOR ATMOSPHERIC EFFECTS^^N AS A-CR- 
14718.-^N0 ##AUG 1975 ;>N76-27629* Al GORYTHMS HAVE BEEN DEVELOPED 
TO PERMIT CORRECTION OF SCATTERING COEFFICIENT AND BRIGHTNESS 
TEMPERATURE FOR SKYLAR-5-193 PAD SCAT (13.9 GHZ RADIOMETER) 
FOR THE PFFECTS OF CLOUD ATTENUATION.  THESE ALGORYTHMS 
DEPEND ON A MEASUREMENT OF THE VERTICALLY POLARIZED EXCESS 
BRIGHTNESS TEMPERATURE AT 50-DAY INCIDENCE ANGLE. 
THE EXCESS TEMPERATURE IS CONVERTED FROM EQUIVALENT 50 
DAY ATTEN., WHICH MAY THFN BE USED TO ESTIMATE THE HORI- 
70NTAI LY POLARIZED EXCESS BRIGHTNESS TEMPERATURE AND 
REDUCED SCATTERING COEFFICIENT AT 50 DEG.  FOR ANGLES 
OTHER THAN 50 DEG, THE CORRECTION ALSO REQUIRES USE OF THE 
VARIATION OF EMISSIVITY WITH SALINITY AND WATER TEMPERATURE. 
ROUTINES IN FORTRAN IV ARE PRESENTED FOR THESE CALCULA- 
TIONS.** 

231581K^^BLUE. M . D , *PERM I TT I V I T Y OF WATER AT MILLIMETER WAVE 
LENGHTS'^N56-508?»NO #*AUG 1976*N76-3 0911 *TH I S REPORT 
COVERS WORK PERFORMED ON THE PERMITTIVITY OF SEAWATER AND 
ICE AT 100 GHZ.  MEASUREMENTS ON WATER WERE FROM 0 DEG 
C TO 50 DEG C; ON iCE, NEAR -10 DEG C. 
SMALL NUMBER OF MEASUREMENTS WERE MADE 
ABSORBER MATERIALS USED IN THE PROGRAM 
SEARCH ON MM WAVE TECHNIQUES."  AT 103 
ING RESULTS ARE GIVEN:  FREE WATER 
+ OR - -014; INDEX OF REFRACTION M 

OF 
IN ADDITION, A 

ON REFLECTIVITY 
"RE- 
86 GHZ. THE FOLLOW- 

REFLECTIVITY - 0.392 
3.24 - I 1.825 

APPROPRIATE DIELECTRIC CONSTANTS ARE: E' - IE" = 7,16 
I 1J.a25.  FOR SEA WATER (.7N SOLAR OF NACL).  R(SALT 
WATER)/R(FRESH WATER) = 1.0056 + OR - .010.  FOR SALT 
WATER FROM THE GULF OF MEXICO- RCSALT WATER)(R(FRESH WATER)) 
= 1.0041.008.  THUS, ONE CAN'T DETECT THE EFFECT OF SAuT 
IN WATER AT 100 GHZ-  FOR ICE AT 99 GHZ; R(!CE) = .0785 + 
OR - .0112; N = 1,78 + OR - -08; E = 3.17 + OR - .27. 
THE LITERATURE INDICATES NO ABSORPTION OR DISPERSION OF 
ICE IN MM-CM BANDS.»* 

212371MsMAWIRA, A. AND DICK, J . *DEP0LARIZATI ON BY RAIN. 
SOME REI ATED THERMAL EMISSION CONS IDERATIONS«NO #* 
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EINDHOVEN UNIVERSITY, REPORT TH-75-E-61«SEPT 1975* 
N77-21284»THIS REPORT DEALS WITH THE E & M PROPERTIPq OF 
A MEDIUM CONTAINING A AX I SYMMETR I C RA IN nSnpq   TM llr?THM 
2 ARf OUTLINED THE BASIC ASSUMPTONS UNDERLYING THE IN- 

M N igRM?ic P^[A^;^°BA5E^?KS§5Sg 'THIS^^EE? ft^'°§E  I   4 

;K!iolgap*  °E^f I lVE^^fbM°'pEl??5^i^i?c'fo'R°' f^N  L^P^^^^^ 
SECTION 5.    THE RELATIONS BETWEEN VAR^OUSQUANTIT^E?; ^^ 
REFERRING TO MONOCHROMATIC SIGNALS SUCH AS THE CRnlq 

jR^'5li?U^iSD'*%*!^I'?^ ^SU^Lra^? EMiJSfoS'SSiNITUDE 
523171E«MAZUR, D.G.; MACKEY, R.J.: AND TANNER  9 R *FnnTY 

AND 80 GHZ TECHNOLOGY ASSESSMENT AND FORECAST iN6LUD?NG 
EXECUTIVE SUMMARY»NO #»N0 #»MAY 1976»N76-27319iTHF RESUl T«; 
OF A SURVEY TO DETERMINE CURRENT DEMAND AND TO FORECAST 
THE"I985^S^fl*^?M^°gcyfin°^pI^f/L,"^' 80 SANDS DURIN^ 
THt 19oU-2uOO TIME PERIOD ARE GIVEN.  THE CURRENT <;TATP 
OF THE ART IS PRESENTED AS WELL AS THE TECHNOLOGY RFOlllRF 
KiKI§ 9,1   CURRENT AND PROjicTEDSERVCES   POTENTIAL DEvnnP- 
MENTS WERE IDENTIFIED AND A FORECAST IS MADE   THE IMPACT^ 
g^T^I^?iS"P*iCn*TTENUATlON IN THE 40 AND 80 GHZ BANDS WERE 
i?lJ/'?Ali'^,.^2^.SpTH WITH AND WITHOUT DIVERSITY^  THREE 
SERVICES FOR THE 1980-2000 T IME PER IOD --  NT^RArr7UP TU 
H GH QUALITY 3 STEREO PAIR AUDTO; AND 30 MB DATA -I ARE 

Dx?^^iK S/JtioSYSTEM REQUIREMENTS AND DOWN-LINK CALCULATIONS »* 
^^Mll^.t,'^^^^^^'   MARVIN R.; OSBORNE. GORDON; LICS. KEN? 

i^^.^^^^K^^^l  ,*yfi.?9XE!^EY, JR., R.M.»COMPLEX  NDEX OF RE- 
npt?rr^v/Rr ^^7^\^S^^^'^J';^^J1SIBLE AND IR»Nio #*APPLIED 
OPTICS, VOL. 17, NO. 3. 353-356,•1978»N0 #» 
NEAR NORMAL-INCIDENCE RELATIVE SPECTULAR REFLECTANCE WAS 
MEASURED THROUGHOUT THE 0.2-32.8-UM WAVELENGTH REGION FOR 
J.y?i^ CUT AND POLISHED SAMPLES OF BETHANY FALLS LIMESTONE  ' 
WATER, FOR WHICH THE COMPLEX REFRACTIVE INDEX IS WELL 
KNOWN. WAS THE REFLECTANCE STANDARD.  ALTHOUGH THE VISUAL 
^E§E^R,*^CES OF THE THREE SAMPLES WERE QUTE DIFFERENT, 
JHE RELATIVE REFLECTANCE SPECTRA FOR THE THRgF SAMPLES 
WERE NEARLY  DENTICAL.  THE THREE RELATIVE RlFLErTANrF 
SPECTRA WERE AVERAGED TO OBTAIN A COMPOSITE RELATIVE 
Pi£k^§I^Fi.,SPECTRUM.  KRAMERS-KRONIG ANALYSIS OF THE 
COMPOSITE RELATIVE REFLECTANCE SPECTRUM THFN PROVIDED 
SPECTRAL VALUES OF THE COMPLEX RFFRAcT IVED I NDEX FOR LIMF- 
STS^^Ar A.CLASSICAL LORFNTS DISPERSION ANALYSIS WAS ALSO 
MADE OF THE COMPOSITE RELATIVE REFLECTANCE SPECTRUM, AND 
THE RESULTING DISPERSION PARAMETERS WERE TABULATED  INFRA-  ' 
?^Sn^^^9?^CHARACTERISTIC OF THE CARBONATE ION C03 OF THE CALCITE 
COMPRISING THE LIMESTONE APPEARING AS STRONG FEATURES I^ THE 
SrfcC TR A . «•* 
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.^EVALUATION OF INDEX PROPERTIES OF NATURAL 
QLARIMETER STUDIES»NO #f^NO #<»SEPT 1974»AD- 
EPENDENCE OF THE POLARIZATI ON OF RADIATION 
URFACES COMPOSED OF NATURALLY OCCURH NG 
PROPERTIES, SUCH AS MOISTURE (WATER) 

B612618»RA0, N.( 
FORMATION BY f 
AOOO 90i*THE I 
REFLECTED BY \ 
I2J.(?^P^ INDEX rKUKtKlltb, iUUH AS MOISTHf 
CONTENT. TEXTURE, AND COMPOSITION OF THE SOIL SAMPLES 
HAS BEEN EXAMINED IN DETAIL IN THE LABORATORY IN 9Fl FTTPn 

B6l^^T^VA\MlV''Vn'-^   OVER TH^^^VISIBLE'AND NEAR^li^ii^^SJ^S, 
"6J-1O39«HINDS, B.D.; KIMBERLiN, R.F.; AND HOLDALE, G R » 

BOUNDARY LAYER DUST OCCURRENCE. I: ATMOSPHERIC DUST OVER 
THE WHITE SANDS MISSILE RANGE»EC0M-DR-75-2«N0   #»APRl! 1975»An-A010 335«TI 
REPORT PROVIDES AN OVERVIEW OF PUBLISHED AND SOME UNPUBLISHED        ^^5«T( 
DATA ON ATMOSPHERIC DUST OVER THE WHITE SANDS MISqilERANRF 
!^^./'^EfA ^^^   SURVEY ENCOMPASSES THE OCCURRENCE OF DUSTY 
CONDITIONS. AND THE EFFECT OF THE DUST ON THE PROPAGATION 
OF DUST »*^° ACOUSTIC ENERGY AND PER-SE PROPERTIES 

^^U^?^.A^t^J,!S'2S' B.D. AND HOLDALE, G. B . ^BOUNDARY LAYER DUST 
OCCURRENCE.  IV. ATMOSPHERIC DUST OVER SELEC..V  »ErOM- 
DR-77-3*N0 #«JUNE 1977»AD-A041 077«THIS IS THE FOURTH IN 
A^SERIES OF REPORTS DESIGNED TO PROVIDE A GUIDE FOR THE 
OCCURRENCE OF DUST OVER SELECTED GEOGRAPHICAL AREAS 
TABULAR DATA ON THE DURATION AND THE DIURNAL AND 
MONTHLY OCCURRENCE OF BLOWING DUST (VISIBILITY LESS 

11.KM) AND OF DUST STORMS (VIS IB L TY 
KM) ARE PRESENTED BY 45 STATIONS WHICH 
LEAST 3.7 DAYS (1%) WITH BLOWING DUST.*« 
T?T°'*$K2.HfikR^^E' G.B.^BOUNDARY LAYER DUST 

r.^   ..     -r.    — „'II' ATMOSPHER C DUST OVER RUSSIA... » 
iC0M-DR-77-2*N0 #«MAY 1977»AD-A040 581«THIS IS 3RD IN 
SERIES OF REPORTS DESIGNED TO PROVIDE A GUIDE TO THP 
OCCURRENCE OF ATMOSPHERIC DUST OVER SELECTED GESGRA^HI 
AREAS,_..TAByLARlZED DATA ON THE DIURNAL VARIATION OF 

MONTH AND ON THE DURATION FACTOR FOF 

THAN 
LESS THAN 1 
AVERAGED AT 

B61162C»HINDS 
OCCURRENCE, 

'OR OCCURRENCE BY 
SELECTED TIME PERIODS THROUGHOUT THE YEAR FOR BLOWING 
(VISIBILITY LESS THAN 11 KM) AND OF DUST SlOEM (VISI- 
BILITY LESS THAN 1 KM) ARE PRESENTED FOR 85 ITATIONS IN 
STATES IN THIJSSR?^* ^^ ^°^^^^ CENTRAL UNIONI UD 54^^ 

D21661F»SEXT0N, M . C . «SUBMILL IMETER LASER. MICROWAVE AND 
irfSZR^SCOP^C DIAGNOSTICS OF lONIZATION IN GASEOUS 
PLASMAS«GRANT AFOSR-72-2338»N0 #«-JULY 1975»An-A0Pfi 4nT» 
^SL^il^^gf^'?^ CF THE REACTION RATE CONSTANT K FOR THE 
PROCESS AR(+) 4. 2AR GOES TO AR(+) 2 + AR WAS EXAMINFD 
WITH 35 GHZ RADIATION OVER 1.E13 - l.Ell ELECTRONS CM-3 
^K/^^P^*n^?S[:-OyS.  K WAS VARIED FROM 279 TO 1 5X10-31 
CM3 SEC-1 AS THE  NPUT POWER VARIED FROM is Tfi 7Sn wr ri 
A NUMERICAL ANALYS IS OF THE HELIUM AFTERRinw DEC AY UL^ 
CARRIED OUT WITH A 1-DIMENSlONAL CYLINDRICAL CODF 
PROGRAMMED SUCH THAT IMPORTANT PARAMFTERS CAN BE RFAnTi Y 
VARIED TO SUCH EXPERIMENT.  THE PLASMA CHARACTERISTir^ 
OF A PULSED HCN LASER WERE STUDIED WITH LINE EMlS^rnw 
SHOWING SIGNIFICANT PRODECOMP^|§SIONNEkR?HE CONTROL 

222411D«D6WNS, A.R.^^A MODEL FOR PREDICTING THE RAIN BACK- 

DUST 
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SCATTER FROM A 70-GHZ RADAR^*BRL-MR-2467»N0 #«MAR 1975<*AD- 
A009 699»A MATHEMATICAL MODEL REQUIRING LITTLE COMPUTER 
TIME HAS BEEN DEVELOPED TO PREDICT THE INTENSITY OF 70-GHZ 
RADAR BACKSCATTER BY RAIN.  THE BACKSCATTER MODEL IS BASED 
ON AN OPTICAL RADIATIVE TRANSFER MODEL DEVELOPED UNDER THE 
AMC TARGET SIGNATURE ANALYSES PROGRAM.  THE DESCRIBED 
APPROACH WAS TAKEN IN ORDER TO DEVELOP A BACKSCATTER EQUA- 
TION INDEPENDENT OF THE RADAR FREQUENCY SO THAT THE 
EQUATION CAN BE SOLVED BY SPECIFYING THE NEEDED FREQUENCY 
DEPENDENT INPUTS.  THE BACKSCATTER EQUATION IS DERIVED 
AND THE INPUTS PERTAINING TO 70 GHZ ARE CALCULATED AND 
PRESENTED IN THE FORM OF GRAPHS AND TABLES.»» 

C11731B»SILVER, SAMUEL AND WELCH. WILLIAM J.*SOLAR RADIATION 
AND ATMOSPHERIC ABSORPTION IN THE MILLIMETFP^NO #«N0 #« 
JAN l970ttAD-703 697»THIS IS A PROGRESS REPORT FOR THE ^ 
PERIOD AUG 1. 1969 - JAN 31. 1970 ON MM WAVE- 
ASTRONOMY ACTIVITY AT THE SPACE SCIENCES LAB.. U. OF CAL . , 
BERKELEY.  OBSERVATIONAL STUDIES EITHER IN PROGRESS OR 
COMPLETE ARE FOR THE FOLLOWING RADAR SOURCES: VIRGO A, 
SATURN. VERNUS, JUPITER. THE SUN, GALACTIC MOLECULAR LENS 
SOURCES* AND THE OBSERVABLE QUASI STELLAR OBJECTS.  FUTURE 
DEVELOPMENTS WERE DISCUSSED - AN INTERFEROMETER SYSTEM - 
EARTH 1-20 FT ANTENNA AND A 10-FT ANTENNA.^f^ 

B21551E*MCSWEENEY, ALBERT AND SHEPPARD. ALBERT P . **M I LL I METER 
AND SUBMILLIMETER WAVE DIELECTRIC MEASUREMENTS WITH AN 
INTERFERENCE SPECTROMETER»CONTRACT NONR-991(13)«N0 #« 
APR l970»AD-709 983*THIS IS A PROGRESS REPORT SUMMARIZING 
WORK nONE UNDER THE ABOVE CONTRACT FROM 15 APRIL 1964 - 
14 APRIL 1970.  A NUMBER OF ARTICLES ARE GIVEN IN ENTIRETY. 
REPORTED FROM THE OPEN I ITERATURE.  THE CHIEF EXPERIMENTAL 
TOOL CONSTRUCTED WAS A 30-CM APERTURE MlCHELSON INTER- 
FERENCE SPECTROMETER FOR STUDYING DIELECTRIC MATERIALS 
AT FRQUENCIES FOR 50-3000 GHZ REGION (1,67-100 CM-1). 
THIS REPORT SUMMARIZES HOW THIS INSTRUMENT HAS BEEN USED 
TO OBTAINDIELECTRIC CONSTANT, LOSS TANGENT AND TRANSMISSION 
COEFFICIENT OF MATERIAL.  RESULTS OF MEASUREMENTS ARE GIVEN 
AS APPENDICES TO THIS REPORT, ON DIELECTRIC MEASUREMENTS.** 

522682D^^ISHIMARU. A. AND HONG, S . T .-^PROPAGAT I ON CHARACTERIS- 
TICS OF A PULSE WAVE IN A DISCRETE TIME*CONTRACT NO. F19628- 
74-C-0009»NO #«MAR 1974»AD-782 029«THE PROPAGATION CHARAC- 
TERISTICS. COHERENCE TIME. COHERENCE BANDWIDTH, AND PULSE 
TRANSFORM OF A WAVE PASSING THROUGH A DISCRETE TIME 

MEDIUM ARE CONSIDERED IN THIS REPORT.  THEY 
ON FOLDY-KOERSBY THEORY.  USING THE FIRST 

^ EXPLICIT EXPRESSIONS ARE GIVEN FOR PLANE, 
BEAM WAVES.  THESE EXPRESSIONS APPLY TO 

VARYING RANDOM 
ARE FORMULATED 
ORDER SOLUTION 
SPHERICAL, AND 
THE CASES OF SMALL TRANSMITTING BANDWIDTH AND FOP 
SHORT PROPAGATION DISTANCES.  NUMERICAL CALCULATIONS ARE 
MADE FOR MM WAVE PLANE AND SPHERICAL WAVES PROPAGATED 

522681C»SCREENiVASHIAK. T. AND ISHIMARU.  A.^PLANE WAVE 
PULSE PROPAGATION THROUGH ATMOSPHERIC TURBULENCE AT MM 
AND OPTICAL FREQUENC lES^^CONTRACT F19628-74-C-0 005*NO #» 
MAR 1974ttAD-782 030«STARTING FROMTHE PARABOLIC EQUATION 
FOR A WAVE PROPAGATING IN A RANDOM MEDIA, THE EQUATION 
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MITTED-REFLECJED WAVE METHOD IN THE MM WAVE RANGE^^NO «« 
^II^J^^^^A ^^ICROWAve THEORY ' TEfH. MTT-19, 827-8P9* 
PRL^?ZI"'^9,,*,*Ao!^^!i TECHNIQUE FOR " ME ASUR I NG THE DIELECTRIC 
CONSTANT AND LOSS TANGENT OF MATERIALS IN THE MILI IMFliR 
WAVE RANGE TS DESCRIBED.  THE MEASUREMENT APPARATUS AN5 
THE ANALYSIS IS CONSIDERABLY SIMPLER THAN THAT USING 
?°^y^^i^l°fi^LJI^';'^l°'J^§-, l^^   K^W TECHNIQUE IS BASED UPON A SIMPLE GEOMFTRIrAl nPTTrS APPRO Y T MA T T nw j^j WHICH A 

THE 
SIMPLE GEOMETRICAL 

PLANE REFLECTOR IS R 

FO! 

PTI 
ATE 

S APPROXIMATION' 
SO AS TO MAXIMIZE TRANS- 

MITTED-BEFLECTED WAVE POWER THROUGH THE _.M ATER I AL .  ONLY 

WINDOWS 

^.?')'^.'f^§H2i^Ayp.^9^^.IS USED IN THE MEASUREMENT.»* 
541l33Ii*BySS0LETT . E. AND BULUTEUU, J . P . »DETFRM I NAT I ON OF 
^i?^9iA^I?Al2^PyERIC MIXING RATIO FROM HGH RESOLUTION  - 
55|CIRA IN THE FAR IR*NO #«INFRARED PHYSICS, VOL. 14. 
,^2^^^p2*l974«N0 #«STRATOSPHERIc EMISSION SPECTRA WERE 
OBSERVED ABOARD A CARAVELLE IN THE FREQUENCY RANGE 30-250 
CM-1.  OXYGEN LINES UP TO 200 CM-1 HAVE BEEN IDENTIFIED 
IN THESE SPECTRA AND COMPARED WITH LINES THEN ACTUALLY 
PREDICTED AND LINES DETECTED PR^VIOUSLY BY BTHER AUTHORS 
UP TO 115.7 CM-1.  USING A METHOD SUGGESTED BY BURROUGHS 
AND HARRIS WE HAVE MEASURED THE MIXING RATIO U OF WATER 
y^?°?.JP«A^R JSP^ f^UR SPECTRA.  THE VALUES THAT WE FIND 
^?,^o^ 9P°Bo*^?^E^i^I WITH THOSE FOUND BY DIFFERENT AUTHORS 
IN PAS^YEARS AT AIRCRAFT AND BALLOON ALTITUDES.  IN 
ADDITION TO THIS, AN UNEXPECTED BEHAVIOR IS SEEN WHFN 
PAIRS OF LINES OF HIGH FREQUENCY ARE USED.  THE VALUES 
OF U^CHANGE IN TIME CORRESPONDING TO THE PASSAGES OF THE 
AIRCRAFT THROUGH STRATOSPHERIC REGIONS WHERE DIFFERENT 

^ PHYSICAL CONDITIONS EXIST.*» 
5411329»DALL'0SLI0» G.; FONTE, S.; ET AL.*ATMOSPHERIC 

AND BROAD BAND PHOTOMETRY IN FAR IR ASTR0N0MY»N0 #» 
INFRARED PHYSICS 14, 335-34 l<tl974«N0 #<^THE FAR IR ATMO- 
SPHERIC WINDOWS HAVE BEEN OBSERVED DURING MANY MONTHS QF 
OBSERVATIONS AT THE ALPINE STATION OF TESTA GRIGA (3500 M 
ASLI).^ THE SEASONAL AND DIURNAL VARIATION OF THE ATMO- 
SPHERIC TRANSMITTANCE FOR EACH WINDOW HAVE BEEN MEASURED. 
THE CONTRIBUTION OF THE MINOR ATMOSPHERE COMPONENTS IS 
ALSO DISCUSSED.<^» 

C42131G-»DALL'0GLI0, G.J FONTI, S.; GIRALDI, G.; ET A|.* 
AN AUTOMATIC RADIOMETER FQR THE MEASUREMENT OF THF'ATMO- 
SPHERIC EMISSION AND TRANSMITTANCE IN THE FAR IR*" 
NO #<'INFRARED PHYSICS. VOL 14, 3 03-321^197 4c NO #*Wf= 
DESCRIBED AN INSTRUMENT TO MEASURE THE ATMOSPHERIC 
MISSION THROUGH THE WINDOWS BETWEEN 300 UM AND 30nn 
THE RADIOMETER OPERATES AUTOMATICALLY, SCANNING THE 
IN STEPS OF 0.7 DEG FROM THE HORIZON TO THE ZENITH. 
THE TIME CONSTANT AS SELECTED BY THE OPERATOR.  THE 
SPECTRAL DISTRIBUTION OF THE RADIATION IS MEASURED US ING 
MICHELSON INTERFEROMETER WITH AN OPTICAL PATH DiFFERENCF 
OF + OR - 10 CM.  USING A 77 nEG K REFERENCE BLACK90DY, 
THE ATMOSPHERIC TRANSMITTANCE CAN BE MEASURED WITHIN AN 
ACCURACY OF BETTER THAN 1%.  SOME PRELIMINARY ""^ 
ARE DESCRIBED, OBTAINED AT THE ALPINE STATION 
GRIGA (3500 M ABOVE SEA LEVEL).»« 

B522916*TAKAHASHI. SHIN-ICHI»BLACKENING FOR SUB 

HAVE 
TRANS- 
OM . 
SKY 
WITH 

RESULTS 
OF TESTA 

MM WAVE' 



LENGTHS»NO #»IR PHYSICS, VOL. 13, 301-303*1973» 
NO #<.A BLACKENING TECHNIQUE IS DESCRIBED FOP THE FAR IR 
S^9^9^u».;^59^ SAND POWDER IS FOUNn TO BE IN EXCELLENT 
BLACK MATERlAL^FOR THE LONG WAVEL^NGTH REG1 ON (XND ALSO 

^^i.S'^K^.o^P'rS^F?*' ^•^'   '^^^   MELCHIORRI, B.*MATERIALS FOR 
^^^,?^^§c^*5.iA?V^= PASS TRANSMISSION FILTERS^NO #« 
i'^c^^^'lK^ ^^l^^Q^'    VOL. 13, 184-211, 1973*N0 #*!A STUDY 
S.^fr^^F^ ^^5^ ^^   THE OPTICAL PROPERTIES OF 30 COMPnuNDS 
SUITABLE FOR MAKING FAR IR FILTERS OF THE YOSHINAGA TYPE 
THE TRANSMISSION CURVE OF EACH COMPONENT IN THE FAR I R ' 

S^f^?S^^ft|lR^y?^C^OF^THE^MATERlALS CAPIBL^ OF 'chkriut' 
^^ii§i?n»^?°^l,', ^A '^^^   RABACHE, P.SSYNTHETIC TRANSMISSION 
Mn^r?Mpi^nl^^r,C5?7^^^^ARED FOR THE LOW STRATOSPHERE* 
^P,T^,Si^^5^PiP PHYSICS. VOL. 15, 189-199*197^*N0 #»THE 
AUTHORS PRESENT A METHOD FOR THEORET ICAL ANALYSIS OF 
SPECTRAL TRANSMISSISN APPL IED TO THE LOWER STRATOSPHERE 
IN THE FAR INFRARED.  THE RESULTS ARE PRESENTED A^ 

ciJ^l^H^Ilk SPECTRA OF HIGH RESOLUT10N%« ^ 
^ l^nk^lnM^^f^I^S. J.E.; SWANN' NEW.; CARRUTHERS. G.P. AND 

ROBINSON, G,A.«MEASUREMENTS OF THE SUB MM STRATOSPHRIC 
1^31?^?^ ^^,^^"^?y^ ^?0^ k   BALLOON PLATFORM»NO#MNFRjiED 
PHYSICS, VOL. 13, 149-155»1973»N0 ^'A DESCRIPTI ON T 9 
GIVEN OF THE MEASUREMENT, FROM A BALLOON PLATFORM  OF 
THE SUB MM WAVELENGTH EMISSION OF THF STRATOSPHERE ABOVE 
30 KM.  USING A MICHELSON INTERFEROMETER AND FOURIER 
Sf^u-^?°^^2^,^STl^I^^J^,lQUi5' THE SPECTRUM HAS BEEN OBTAINED 
WITH A RESOLUT ON OF .5 CM-1, AND FROM THIS A VALUE OF 

'^■^?iZnSn?VS^,'^^' P-R-«STATISTICAL RAINSTORM MODELS! THEIR 
IK^I^'^K^IISA^K^^BO^H^SICAL FOUNDATIONS^NO #«IEEE TRANS 
ANTENNAES AND PROP., 547-566^^JULY 1966^N0 #«PRECIPI- 
TATION HAS BECOME A SERIOUS SOURCE OF ATTPmjATION A^ HIPWPR 
^PpyENCIES ARE BEING EMPLOYED PoR MI CROWAvr COMMUN?CAT IONS 
SYSTEM PERFORMANCE IS STRONGLY INFLUENCED RY fHE OUANT TY 
AND "HARACTER OF PRFf I P I T AT I flN TM A T 0 -^'URS 0 VER THF I I NIK^ 
OF THE SYSTEM.  RAIN APPEARS TO BE THE PRECIPITATION FORM 
THAT ACCOUNTS FOR MOST OF THp SERIOUS ATTC^^UAT ON nrrUR- 
RENCES.  IT IS ALSO FOR RAIN THAT THE SCATTER NGTHFSRY 
^S MOST COMPLETE   RAIN ATTENUATI ON CAN BE ACCURATFLY PRE- 
DICTFD IF THE DROP SIZE DISTRIBUTION ALONG TWF PRnPArATTnM 
PATH IS KNOWN.  THESE DATA HAVE BEEN USFD TO FORMULAT^ 
STATISTICAL RAINCELL MODELS THAT PERM IT PREP ICTI ON OF 
l^^   ?,^gopK^^A[^?^"^ SINGLE-PATH AND P ATH-QI VER§ t Y S YST EMS 
THE ruRRENT STATUS OF RAINCELL MODEL"^ IS R^VlEWFn iwn 
SUGGEST ONS FOR FUTURE RESEARCH ARF OFFFREp   59 PpFFRFMrES »* 

Bli?8lDi:CHAMBERS. J.G.; PHILLIPS, M J ; BARNFS. A 1 • Awn 
ORVILLE-THOMAS, W.T.^ANALYS S OF iNFRAREn PAND SHARP? 
PERIVEH   FROM   ATTFNUATEn    TOTAL   RE FL EC T I ON ' ( AT R )    MEASijRE- 
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RELAXATION   PROCESSES MENTS^NO #*ADV. MO 

iQTsr^MO #»0PTICAL 
TOTAL REFLECTION (ATR) TFCHNIQ 
ABSORPTlbN or A WIDE VARIETY 
THE APPLICABILITY OF THE VAN VLEQK 
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1,    113- 
NUATED 
NSITY 
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WERSSKOPTBOND SHAPE 

ONSTANTS MEASURED BY THE 
'  ~ "  QUE FOR MFDIUM . . ..- 

OF LIQUIDS WERE USED TO TEST 

VOL. 
ATT! 

DIUM INTI 

120 

TWO PAf^AMETER CHARACTERISTICS 
INTEGRATED BAND INTENSITY 
LECTRir EFFFCT AND A DAMPING 
EAN COLLISION OR RELAXATION 

)EL.  THIS MODEL YIELDS 
.  A PARTICULAR BOND, TH( 
CORRECTED FOR THE BULK D 
CONSTANT, RELATED TO THE 

B1258/D»GIESE. K,#ON THE NUMERICAL EVALUATION OF THE DIE- 
ELECTRIC RELAXATION TIME DISTRIBUTION FUNCTION FROM PER- 
MITTIVITY QATAftNO #*ADVAN. MOL . RELAXATION PROCESSES, 5. 
363-373«19/3»N0 #clN THE LINEAR RESPONSE THEORY, A DES- 
CRIPTION OF THE MACROSCOPIC DIELECTRIC PROPERTIES OF 
MATERIALS-IS PROVIDED BY SOME CHARACTERISTICS FUNCTIONS, 
EACH OF WHICH COMPLETELY DETERMINES THE BEHAVIOR OF THE 
MATERIAL.  DEPENDING ON THE KIND OF EXPERIMENT^ PERFORMED 
EITHER IN THE FREQUENCY OR TiME DOMAIN, THE MEASUREMENTS 
ARE DIS CUSS 

F TH 
ED^IN 

TERMS OF THE PUL 
" 'ON IS MADE 

TRANSFORM 

OF THE COMPLEX P 
;fEP RESPONSE 

^RMITTIVITY OF IN 
POSTTIQN.  .DlS; 

TERMS ^ „ 
;E OR STFP _ . .. _  ^ 

CUSSION IS MADE OF EMISSION CALCULATIONS 01^ E(W) FRQM 
FOURIER TRANSFORM SPECTROMETERS USING THE FFT, 22 REFS.** 

8l2586C»DEV, S•B•1 NORTH- A.M.;ANn PETHRlcK. R . A.*CQMPUTA- 
TIONAL TECHNIQUES IN THE ANALYSIS OF DIELECTRIC RELAXATION 
MEASUREMENTS»NO #*ADVANCED MOL. RELAXATION PROCESSES. 4. 
259-191»l972«N0 #*IN THIS ARTICLE. A NUMBER O" COMPUTA- 
TIONAL TECHNIQUES CURRENTLY USED IN THE ANALYSIS AND 
INTERPRETATION OF DIELECTRIC DATA ARE DISCUSSED.  PARTI- 
CULAR ATTENTION IS PAID TO NEW OR UNFAMILIAR PROCEDURES. , 
THESE TECHNIQUES, ALTHOUGH THEY ARE CONSIDERED SPECIFI- 
CALLY IN TERMS OF DIELECTRIC MEASUREMENTS. HAY EQUALLY 
~ ■  ~ APPLIED TO ANALOGOUS STUDIES OF THE MACRoScOPlC 

RESPONi 'r'b' A PERTURBING FIELD. ( AVER AGE-.01-90 E OF A SYSTEM 
GH7) .  8i REFS.»* 

521IBIA«GIMMESTAD, G.G.; WARE, R.H.; BOHLANDS, R-A. AND 
GEBBIE. H.A.»0BSERVATI0N OF ANOMALOUS SUB MM ATMOSPHERIC 
SPECTRA«N0 #»ASTR0PHYSICAL JOURNAL,, PART I, VOL, 208.„ 
3ll-3l3«N0V 15. 1977*JN0 #»A TMOSPHER I C SPECTRA IN THE RANGE 
7-25 CM-l HAVE BEEN OBSERVED AT MT. EVANS. COLO.  LARGE 
DISCREPANCIES ARE FOUND BETWEEN THE OBSERVATION AND 
A MODEL BASED ON KNOWN ATMOSPHERIC CONSTITUENTS.  TO 
ACCOUNT FOR THIS, THE EXISTENCE IN THE ATMOSPHERE OF VAPOR 
PHASE COMPLEXESOF WATER MOLECULES ASSOCIATED WITH CERTAIN 
WEATHER PHENOMENA IS POSTUL ATED . « »^ ^^^ ^ „.,,., ..^x^r, 

C43lilA^*CQRC0RAN. VINCENT J + rf^*?" J,^'^5*?§PcSyBM I LL I METER 
PHASED ARRAYS AND APPL I CAT I ONS«NO #*^IbEE TRANSAC 
ON MICROWAVE THEORY AND TECHNIQUE 
11(33-1107«DEC l974i.N0 #*^THIS^IS A 
riRST PART nlSCySSES THE "ANTENNA 
ARRAY OF SUBMM DEVICES, USING THE 
THE APERTURE PATTERN.  THE SECOND 
"WINDOWS IN THE SUBMM AND MM ATMOSPHERIC 
SPECTRUM, AND ATTENUATIONS DUE TO CLOUDS 
TIONS ^^   THE MM WAVEBAND APE DISCUSSE D.'-« 

#*^IEEE TRANSACTIONS 
. VOL. MTT-22. NO. 12, 
TWO-PART ARTICLE: THE 
PATTERNS OE A PHASED 
FOURIER TRANSFORM OF 
PART GIVES. IN 3 TABLES 

ABSORPTION 
SOME APPLICA- 
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622181I»LIEBE. H.J. AND WELCH, W . M . ^--MOLECUL A R 
PHASE ^MSPERSICN BETWEEN 40 AND j40 GHZ FOP 
FROM nIFFERENT AL T 1 TUDES*-'NO #ttOFFICE OF TELE 
N.B.S- OT REPORT 73-10KMAY 1973«M0 #^:-RADIO W 
IN THE 40 - 140 GHZ BANii THROUGH THE FIRST 1 
ATMOSPHERE I STRONGLY INFLUENCED BY THE MIcR 
OF OXYGEN (02-MS).  A UNIFIED TREATMENT OF M 
ATTENUATION ANT PHASE DISPERSION IS FORMULA^ 
OF MOLECULAR PHYSICS ARE TRANSLATED INTO FRE 
TEMPERATURE, PRESSURE, AND MAGNETIC FIELD DE 
COMPLEX REFRACIVE INDEX.  THE INFLUENCE OF W 
Al SO ^MSCUSSED.  ATTENUATION AND DISPERSION 
MODELS ARE EVALUATED BY COMPUTEP ROUT INES. 
rOMPUTER PLOTS ARE GIVEN AS A FUNCTION OF AL 
HOMOGENEOUS, ZENITH, ANp TANGENTIAL PATH GEO 
MOLECULAR RESOUPrFS OF MINOR ATMOSPHERIC GAS 
CUSSED BRIEFLY AS IN THE NOISE WHICH ORIGINA 
0 2 - M S . '■» <^ 

Bl2583k=;-RUDASHEVSKY, E.G.; PROKHOROV. A.S, 
SUBMILLIMETER SPECTPOSCOPY OF WEAK ANTIF 
MAGNETIC FIELDS UP TO 300 KOE^NO #vMEEE 
ON MICROWAVE THEORY AND TECHNIQUES. VOL. 
1064-l069<fDEC 1.974<fN0 #^^THE DYNAMIC PROP 
ANTIFERROMAGNETS WITH PZYALOSHINKY INTER 
INVESTIGATED AT WAVELENGTH 0.3-14 MM. IN 
UP TO 300 KOE ANr AT TEMPERATURE 4.2-400 
PROBLEM OF IMPURITIES, F I ELD-I NDUCED PHA 
TYPES OF SPIN OSCILLATION FOR DIFFERENT 
FERROMAGNET WITH PZYALOSHINKLY INTERACTI 
BASED ON THE INVESTIGATION RESULTS, A NE 
THE PHYSICS OF MAGNETIC PHENOMENON, USIN 
COMPLETE RATIONAL BASIS OF MOMENT AND AV 
POTENTIAL SERIES EXPANSION. HAS BEEN DEV 
PARISONS OF AFMP EXPERIMENT AND THEORY F 
(BLACK IRON OX IDE-ALPHA HEM AT 1TE) . NI, F 
FEB030(WITH GA+3), ARE GIVEN, AND CORREL 
EXCELLENT.»» 

133182L'-^KUKIN, L.M.: NOZDRIN. YU.N.; 
FEDOSEYEV, I. \ . ', AND FURASHOV. N.I 
CONTRIBUTION OF WATER VAPOR MONOME 
ATMOSPHERIC ABSORPTION FROM MEASUR 
LAMBDA = 1,15-1.=;5 MM BAND-"-NO #*RA 
ElECTRONIC PHYSICS. VOL. 20. NO. 1 
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?M^?2f'y!;!.SynJ;y^r-P?°PAGATlON OF SUB MM AND MM WAVFS 

■ ' JRPTIO   " ' 

F 

FSONARCE THF 

SPECIES -- SUCH 
IN THE SPECTRAL 
VOLUMES IN THIS 
^ULESi^U, LIN{ ;; II 

iTOMIi IV 
SPECTRAL 

.n.   .  *^D ABSof^PTlON LINES (IN THP3O-30O GH?I QF 
§^^^, ATMOSPHERE CONSTITUENTS WERE PISCOVERFP B Y US?: OF 
oi^y^L°.^iS DESCRIBED IN THE BOOK.  IT IS A STANDARD 
REFERENCE.** 

^^H^.^^O'^^FKF'^'T^^UL F. ; CORP.- MARIAN S.. FT AL . >-'SPECTR Ai 
TABLES, VOL. III. POLYATOMit MOLECULES WITH INTERNAI ROTA- 
TION^^NO #«N.B.S. MONOGRAPH 70, VOL. III-.JUNF 1969*N6 #« 
IVrLh^,^,^   ^t^lj^l  ^y^ 5-yOLUME N3§ MONOGRAPH IERIES ON 
MICROWAVE SPECTRAL TABLFS.  THESE ARE OF VALUE FOR nETER- 
MINING .CHEMICAL CONSTITUENCY OF A SPEC IF IC MOLECilL AS 

AS OIL VAPORS. COMBUSTION PRODUCTS -- 
REGION FOR 5 GHZ TO PAST 5o GHZ.  OTHER 
^?ir-J^§!-JS SERIES ARE:  I. DISTANCE MOLE- 

ir^r^i^n^f-    -^f   STRENGTHS OF ASYMMETRIr ROTATIONS  " 
, 9b^^J'?Sl9.,K'^'-^^^^'-ES WITHOUT INTERNAL fiOTATlONT V 
LINE LISTING.»« 

5317618«CARLI, B.: MARTIN, D-H.; PUPLET, E.F.: AND HARRIES. 
^oiiSyP^L^l^^HK^ESOLUTIONVoR I .R. MEASUREMENTS OF ATMO- 
SPHERIC EMISSION FROM AIRcRArT«N0 ««J. OPT. SOC  AM , 
VOffAr'^^'A NO. 7, 917-92l»JULY 1977»N0 #«AN ABSOLUTE SPEcTPQ- 
^fI?^9r?*2lOMETER HAS BEEN FLOWN ON A NASA'CV940   ^'^'=^'^^-' 
AIRCRAFT TO MEASURE ATMOSPHERIr EMISSION IN THE SPECTRAL 
RANGE 5-40 CM-1 WITH A RESOLUTION OF 0.02 CM-l APOD I ZED 

RJ^I i'^^lS^d^N^ *ND THE RESUCTS ARE DESCRIBED.S/^ 
^'^lJ,^y-'',^'^^Ol:^OL^.^^SkHOB^^OPJ]cf^liy   PUMPED WAVEGUIDE LASERS* 

K^S **::^Ax9PT- SOC. AM.. VOL. 67, NO. 7,    95?-958»JULY 1977^;- 
NO #*OPTIC;ALLY PUMPED WAVEGUIDE GAS LASERS IN THE SUB MM 
AND MM WAVE REGIONS ARE SIMPLE, COMPACT, RUGGED, EFFICIENT , 
^^^^^f^i^^L SgyP^ENT SOURCES.  A NUMBER OF NEW LASFR L NES 
HAVE BEEN OBSERVED IN THESE LASERS.  GENERAL CONSIDERATIONS 
ARE GIVEN ON THE ATTENUATING CONSTANTS OF THF WAVEGUIDES 

,^THE RATE EQUATION MOnELS.  CHARAcTFRI ST IrS OF THESE 
,  r.\^^^un^^   "^X^f^'^f^ INCLODING OUTPUT COUPLING, NEW LASER 
UMii '?9fi^' POLARIZATION. OUTPUT POWER, STABILITY AND 
COMPACTION.  SOME APPLICATIONS ARE DESCRIBEp RRIEF' Y . 

ncrH^^'-'-Xri FuTuRE ASPEcTS ARE (il SCuSsfc D. *^ 
951181M«BEAN, 8.L, AND PERKQWI T? , S.-^SUB MM FAR IR SPECTRO- 

^^Pr^ l\^,^l^^   ^\9\^^^   *ND SOLID STATE WITH A TUNABLE OPTI- 
CALLY PUMPED LASER^NO #<^J. OPT. SOC AM,, VOL. 67, \'0. 7, 
91l7914»JULY 1977«N0 #nTHE DESIGN ANn SPECTROScOPIC APPLI- 
CATION OF A SUBMILLIMETER-FAR-INFRARED (FIR) OPTICALLY 
Sl^flP^'^rly^^SLE LASER ARE DESCRIBED.  DRIVEN BY 15-25 W OF 
POWER FROM^A CW C02 LASER, THE FIR SYSTEM GAVE MILLIWATTS 
OF POWER BETWEEN 96 AND I2l7 UM.  THE PUMPFD MEDIA WER== 
METHYl ALCOHOL (CH30H) AND 1 -1-DIFLUOROETHYLENE (CH?CF2). 
ly^, 'f;^,^f5 SPECTROMETER WAS USED TO MEASURE THE TRANSMISS ON 
OF LIQUID H?0, THE BULK SEMICONDUCTOR GAAS. THE EPITAXIAL 
SEMICONDUCTOR INAS, AND THE H I GH-TEMPERA JURE SUPERCONDUCTOR 
V3SI.  IN GENERAL. THE LASER SYSTEM GAVE VASTLY IMPROVED 
SIGNAL-TO-NOISE RATIOS, REDUCED STRAY LIGHT PROBLEMS. AND 
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41 KM (10-1000 UM). BOTH HIGH RESOLUTION SPECTRA (.05 CM-D 
AND BROADBAND AVERAGES ARE SHOWN.  THE MODEL ATMOSPHERE 
USED IS A SINGLE LAYER CARTER GonSON APPROXIMATION WITH 
THE rOLUMN ARUNDANrES GIVEN ACrORDING TO ALTITUDE.  THE 
ABSORPTION LINE PROFILE IS A CONVOLUTION OF A LQRFNTZIAN 
ANP A GAUSSIAN.  THERE ARE 23 REFERENCES TO SOURCt 
ARTICLES IN ATMOSPHERIC LIGHT TRANSM ISSI ON.»» 

111161I-"-LnNGB0THEM, RICHARD L.«A FEASIBILITY STUDY OF A 
MICROWAVE WATER VAPOR MEASUREMENT FROM A SPACE PROBE ALONG 
AN OrCULTATION PATH»NO #»PENNSYLVANI A STATE UNIVERSITY* 
APRIL 1975»N75-29603«THIS IS AN EXPERIMENTAL AND THEORETICAL 
STUDY ON THE FEASIBII ITY OF USING A MM WAVE RADIOMETER TO 
MEASURE THE WATER VAPOR CONTENT ALONG ITS LINE OF SIGHT 
PATH, AT 22 (22.235) GHZ AND 183(183.3l) GHZ.  THE RE- 
SONANT H2a CROSS "SECTIONS ARE PRESENTPDr ANQ ySFD TO 
MOnEL THE ATMOSPHERIC WATER VAPOR.  RADlOMEtER SENSI- 
TIVITY IS COMPARED WITH CALCULATED OPTICAL DEPTHS TO 
DETERMINE THE HElf^HT TO WHICH A RADIOMETER CAN MEASURE 
WATER VAPOR. USING THF THREE METHOL^S -- PASSIVE ABSORPTION 
PASSIVE EMISSION, AND ACTIVE ABSORPTION.  CONCLUSION: 
MEASUREMENTS WITH THE 22GHZ LINE ARE LIMITED TO 50 KM 
THICKNESS: USE OF THE 183 GHZ LINE WILL ENABLE MEASURE- 
MENTS UPTO AND ABOVE'lOO KM FOR WATER VAPOR MIXING RATIOS 
AS LOW AS 0.1 PPM UNDER OPTIMUM CONDITIONS.  THIS ARTICLE 
CONTAINS AN EXCELLENT DISCUSSION ON MICROWAVE RA DI OM ET ERS. •♦ 

231 5419«-AFSAR. M.N. AND HARTED, J . P . »ME ASURE^-EN TS OF THE 
OPTICAL CONSTANTS OF LIQUID H20 AND D20 BETWEEN 6 AND 
450 rM-l»NO #»J. OPT. SOC. ^M.. VOL. 67, NO. /. 902-904» 
JULY 19/7«N0 #-VARIOnS ADVANCES IN TECHNIQUES HAVE ENABLED 
NEW MEASUREMENTS Tn BE MADE OVER A GREATLY EXTENDED FRE- 
QUENCY RANGE (6 LT V LT 450 CM-1) OF THE OPTICAL CONSTANTS 
N(V) AND ALPHA (V) OF LIQUID WATER AND LIQUID 020 OF 

OF THE POLARIZATION TN THIS REGION 

AD, 

19 DEG C.  THE ORIGIN 
IS DISCUSSED.»« 

531131B.-G0LDSMITH, PAUL F.; PIAMBFCK- RICHARD L.; AND CH 
RAYMOND L.»MEASUREMENT OF ATMOSPHERIC ATTENUATION AT 
1.3 AND 0.87 MM WITH AN HARMONIC MIXING RAD IOMETER»NO #* 
IEEE MT-2?, NO. ?,    1115-1116»DEC 1974»N0 #»THE ATMOSPHERIC 
ATTENUATION AT 1-3 AND 0,87 MM WAS MEASURED ABOVE M + 
MAMILTON, CALIF. DURING THE PERIOD DEC 5 TO DEC 9, 1973. 
THE MEASURED VALUE OF THE ZENITH ATTENUATION VARIED FROM 
1 TO 5 D8 AT 1.3 MM OVER THIS 5-nAY PERIOD AND WAS 2,5 
AT 0.87 MM ON DEC 9, 1973.  THE TOTAL BEAMWIDTH OF THE 
120" LINK OBSERVATORY TELESCOPE USED IN THE CONDI CON- 
FIGURATION WAS MEASURED TO BE 3' AT 13 MM.r.* 

B13761B*K0NG, J.A., ED I TOR»THEORY OF PASSIVE REMOTE SENS 
WITH MICROWAVES, FINAL REPORTuCONTRACT NO. 953524#N0 #« 
JULY 1975»N76-18629«THIS IS A COLLECTION OF PAPERS ON 
REMOTE SENSING OF THF EARTH BY MICROWAVES IN THE FRE- 
QUENCY RANGE 1.4-37 GH?-  KONG 'S ARTICLE TREATS THE 
FOLLOWING TOPICS:  STRATIFIED MEDIA WITH UNIFORM TEMPERA- 
TURE DISTRIBUTION, 1/2 SPACE RANDOM MEDU WITH NON- 
UNIFORM TEMPERATURE DISTRIBUTION, 2 LAYER RANDOMMEDIA WITH 
UNIFORM TEMPERATURE niSTRIBUTION AND STRATIFIED MEDIA WITH 
NON-UNIFORM TEMPERATURE DISTRIBUTION.  REPORTS/THESIS 
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TION.^t* 
112181K*AGANBEKYAN. K.A.; ZRAZHEVSKIY, A.YU.: AND MOLINHIN, 

V/ G ^TEMPERATURE DEPENDENCE OF THE ABSORPTION OF RADIO 
WAVES BY ATMOSPHERIC WATER VAPOR AT THE lO CM-0.P7 MM 
WAVELENGTHS^^NO #*RAnIO ENGINEERING ANn ELECTRONIC PHYSIcS, 
?0, NO. ll^NOV 1975^^N0 #i^THE ABSORPTION COFFFICIFNTS 
IN THE .398-13.5 MM WAVELENGTH REGION WATER VAPOR ARE 
CALCULATED FOR CONSTANT AIR PRESSURE AND RELATIVE WATER 
VAPOR CONCENTRATION FOR TEMPERATURES OF 173-373 DEG K. 
FROM THE RESULTS OF THIS CALCULATION, THE TEMPERATURE 
DEPENnENCE OF THE AB.SORPT I ON IS OBTAINED AT WAVELENGTHS 
IN THE CM, MM AND SUB MM BANDS, AND CAN BE REPRESNTED IN 
THE FORM GAMMA IS PROPORTIONAL TO T-Nl.  THE TEMPERATURE 
:OEFFIclENT Nl LIES WITHIN THE INTERVAL FROM 3.2 To 4 
r.^I^S^I^*^SMISSION WINnOWS, ANn nEcREASES TO 1-2 IN THE 

ABSORPTION LINES.  THE CALCULATfOR AGREES WFLL WITH EX- 
rf?l^i^I^'- fi^^^A x^t^^ PRINCIPAL INACCURACY IN THE CALCU- 
LATION IS DUE TO THE INDETERMINING OF THE 1/2 WIDTH OF THE 
ABSORPTION LINES, FOR RADIATION IN THE .398 MM TO 13.5 MM 

cO( 
IN 

BANI »u 
622171A«LIEBE, HANS J.«MOLECULAR TRANSFER CHARACTERISTICS 

OF AIR BETWEEN 40 AND 140 GHZ«NO #*IEEE TRANS MICROWAVE 
THEORY^ANn TEHCNIOUES MTT-23, NO. 4, 380-386'APR IL l975« 
Ai)-Ani2 256»RAnlO WAVE PROPAGATION IN THE 40-140 GHZ BAND 
THRU THE FIRST lOO KM OF THE QLEAR ATMOSPHERE IS INFLUENCED 
BY 30 LINES OF 02 SPECTRUM, A^p A LASER EXTENT BY WATER 
)(A^9?- T* UNIFIED TREATMENT OF MOLECUL AR A TTENUATI ON A ND 
PHASE DISPERSION IS FORMULATED WHFRERY RESULTS OF 
MOLECULAR PHYSICS ARE TRANSLATED INTO FREQUENCY, PRESSURE 

^ AND TEMPERATURE DEPENDENCES . ^><f rr^troauf^t 
^^?r,^^?'-\^^f'2l^' J;t.-ATMOSPHERIC TRANSMISSION IN SEVERAL 

SUBMILLIMETER WINDOWS^-^NO #<MNFRARED PHYSICS. VOL. 16. 483- 
485^1976*.N0 #*THIS IS A PRESENTATION OF A CALCULATION 
9'^.J^^nP*^^^^?^^0N ^^   SEVERAL ATMOSPHERIC WI NDOWS BET WEEN 
5 AND 95 CM-1 FOR VARIOUS OBSERVATIONAL GEOMETRIES COVER- 
ING MANY CASES ARISING IN PRACTICAL ASTRONOMICAL AND ATMO- 
SPHERIC EXPERIMENTS.  THE TRANSMITTANCE AT A WAVENUMBER 
GAMM(=1/LAMBDA) BETWEEN A HEIGHT H IN THE ATMOSPHERE AND 
OUTSIDE THE ATMOSPHERE. IN A DIRECTION THFTA TO THE 
ZENITH, HAS BEEN CALCULATED AS A FUNCTION'OF THE WATER 
VAPOR CONTENT ALONG THE LINE OF SIGHT.-i*. 

142121B!»RIGHINI . G. AND STMOM. M . »EX T I NC T I ON IN THE SUB- 
MILLIMETER ATMOSPHERIC WlNDOWS»Nn <r ^.^ I NFRARED PHYSI'^SV VOL 
^tcM^^^n^^^S^PZ^-^^" ^"''^^'^   PROBLEM OF THE E5 11 NCT I ON COEFF I- 
C ENT FOR GROUND RASED SUB MM ASTRONOMY IS DISCUSSED.  MODEL 
CALCULATIONS (FOR WATER VAPOR ) SHOW THAT THE EXTINCT I ON 
^^l^f^^, ^PPf^OXlMMEV   BY THE FUNCTION EXP (-ALPHA X /SQUARE 
ROOT ALPHA X, WHERE X IS THE LINE OF SIGHT WATER VAPOR 
COLUMN DENSITY, MEASUREMENTS OF THE EFFECTIVE ABSORPTION 
gOEFFIClENTS IN THE ATMOSPHERlr WINDOW OF 450 UM? 625 UM, 
/14JJH^_AND 1 MM REGION, RELATTVE TO THAT AT 350 UM ARE 
PRESENTED 
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IN THE USW BAND (3 CM)^NO #*RADIO ENGINEERING AND ELEC- 
TRONIC PHYSICS. VOL. 20, NO. 1, Ill-112«JAN 1.975"'N0 #» 
THE INVESTIGATIONS CQNnUrTED BY US INDICATED THAT THE 
COMPLEX DlELtCTRlC OF THE GROUND FXPERIFNCFS LARGf 
CHANGES WITH HUMIDITv TEMPERATURE AND SIGNAL FREOUENCY- 
THE RESULTS HAVE A SIMPLE EXPLANATION IF THE GROUND IS 
REGARDED AS A COMPLEX DIELECTRIC THAT CONSISTS OF DRY 
EARTH AND WATER THAT CONTAINS A MIXTURE OF DISSOLVED 
SALTS.  THE DIELECTRIC CONSTANT OF DRY EARTH CAN BE THEN 
ASSUMED AS BEING REAL AND INDEPENDENT OF FREQUENCY AND THE 
DIELECTRIC PROPERTIES QP WATER ARE DESCRIBED BY THE DtBYE 
RELAXATION FORMULA, WITH A CONSIDERATION OF THE IQNIC 
CONDUCTIVITY OF THE DISSOLVED SALTS.  WITH THIS APPROACH 
WE CAN USE THE KNOWN DEPENDENCE OF THE ELECTRICAL PRO- 
PERTIES OF- WATER ON THE RADU WAVELENGTH, THE TEMPERATURE, 
AND THE CONCENTRATION OF SALTS IN ORDER TO rOMPUTE THE 
VALUE OF THE COMPLEX DIELECTRIC CONSTANT OF THE REAL 
PHYSICAL GROUND.  CALCULATIONS MATCH MEASUREMENTS REASON- 
ABLY GOOD AT 3 CM WA VElENG TH . ^^j 

B41?61B^BLUE. M.D. AND PfcRKOWITZ, S . «REFLECT I V ITY 
MATERIALS IN THE SiJBM ILL I METER RFGI0N^>N0 #^*IEEE 
ACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL. 
NO. 6. 491-493«JUNF 1977»N0 #»THE APPEARANCE OF ,.., . 
MINATED SCENE AS SUB MM WAVELENGTHS IS DETERMINED BY 
SURFACE REFLECTIVITY.  REFLECTIVITIES OF SOME MANMADE 
AND NATURAL MATERIALS (GRASS, BLAcK PAINT. RUST, SAND, 
SOIL, WOOD (OAK. MAHOGANY. FiR AND ROSEWOOD). LEAVES 
(MAPLE AND GRASS, BOTH FRESH AND DRY), ASPHALT. CONCRETE) 
HAVE BEEN MEASURED.  THE RESULTS 
EVALUATING POSSIBLE APPLICATIONS 

51il75c»V0GEL' W.J.; STRACTON. A.W 
B.M.<»ATS-6 ATTENUATION DIVERSITY     _ _ _, 
CONTRACT NAS5-21982«N0 #«NOV 1975<»N76-l3333*THE RESULTS OF 
DATA OBTAINED AT THE UNIVERSITY OF TEXAS AT AUSTIN IN CON- 
JUNCTION WITH THE ATS-6 MM WAVE EXPERIMENT ARE PRESENTED. 
ATTENUATION MEASUREMENTS AT 30 GHZ ANn SKY NOISE DATA AT 
20 GHZ WERE OBTAINED SIMULTANEOUSLY AT EACH OF TWO SITES 
SEPARATED BY 11 KM.  SPACE DIVERSITY REnUcEn OUTAGE 
TIME FOR A SYSTEM IN AUSTIN, TEXAS WITH A 10 DB FADE 
MARGIN AT 30 GH7 FROM 15 HOURS TO 15 MINUTES PER YEAR.  THE 
MAXIMUM CLOUD HEIGHT SHOWS A GOOD CORRELATION TO THE MAXIMUM 
ATTENUATIONS MEASURED.*» „ ^     ^   r.   ^^ 

511174I*H0DGE. D . B . »MILL I METER WAVELENGTH PROPAGATION STUDIES* 
FINAL REPORT 2374-18«NGR-36-008-080»NO #»JULY 1974»N74- 
29495»THIS IS A FINAL SUMMARIZING THE INVESTIGATIONS CON- 
DUCTED UNDER A NASA GRANT (ABOVE) ENTITLED MM WAVELENGTH 
PROPAGATION STUDIES FOR THE PERIOD DEC 1966 TO JUNE 1974. 
THESE EFFORTS INCLUDED THE PREPARATION FOR THE ATS-5 MM 
WAVELENGTH PROPAGATION EXPERIMENT AND THE SUBSEQUENT DATA 
ACQUISITION AND ANALYSIS.  THE EMPHASIS OF THE OSU PARTI- 
CIPATION IN THIS EXPERIMENT WAS PLACED ON THE DETERMINATION 
OF RELIABILITY IMPROVEMENT RESULTING FROM THE USE OF SPACE 
DIVERSITY ON A MM WAVELENGTH EARTH-SPACE COMMUNICATION 
LINK; THIS EFFORT REPRESENTED THE FIRST ATTEMPT TO PER- 
FORM SPACE DIVERSITY MEASUREMENTS USING AN ACTUAL EARTH- 
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MICROWAVE RADIOMETRY EQUATIONS 

MM 

TERING FROM THE SEAS 
ARE DEVELOPED.»« 

^^In^^AfH^S^I' ^^' WM- J.^ON THE DETERMINATION OF ATMO- 
^■^t^.l^i^uPft^t* LENGTH BY A PASSIVE MICROWAVE RADIOMETER^^MO 
^l^?DfRc^\il^^cy^^;3^568 (NASA TM X-7096? ) *^ TH|§ ART I Ci E 
SSI'^'^ln^LiyLV?,^ ^^   A MICROWAVE RADIOMETER SYSTEM (18-53 
9i^l^    ^9.,D^7.f''^i'^E ^^f ATMOSPHERIC WATER CONTpNT WHICH THpY 
SAY, CAN CHANGE §1 GNTF ICANTI Y IN pQ MINUTES IN A TERTA N 
^If2.^ rlHl§ ^IKOpPHERIC WATpR rONTENT VARlAB LITY IS THE 
ui'cfm c*H?PuT°Ec:f02°^SrlE^.ii°Pl^If^ MEASUREMENTS MADE VIA 

121121P«HARRIES. J.E. AND BURROUGHS- W . J . «OBSERVATIONS OF 
WAVELENGTH SOLAR RADIATION AT SEA LEVELING #MNFiARED° 
DcX!.l$i'Tyi-9^Ar-i°' 165-172»1970»NO #*THIS PAPER 
^I^RSI^TIH^^P^I^LT OF GROUND LEVEL MEASUREMENTS OF THE 
S5^?5?^i9ST2^c^°tA5o5ApI^^I°N AT MILLIMETER WAVELENC^THS 
S^TJ^EU^^R^'::' § ATMOSPHERE. ^USING A MICHELSQN INTERFERO- 
SiI^^oSllfM^n''SLl-^N DETEctOR, HIGH QUAL I T Y SPECTRA H AVE 
?i!^ OBTAINED OVER THE RANGE 2-l2 CM-lT  ABSORPTION 
£!^Jy^Fn\S^fK,IPo[:!?0 AND 02 HAVE BEEN OBSERVED. AND OF 
^A^^^fN^k^^T^'^Ii^^S^ ^S THE 02 TRANSITION J = Q TO Al   FOR 
K=1 LINE AT 4X0 CM-l, WHICH HAS NOT BEEN PREVIOUSLY 
?i?l^^ig y!i^2.§gOAg-BAND TECHNIQuis   WEAK ABSORPTION 
T^^jy'lfwyA^inPf'^.fiCpRDED IN THg 8 CM^l WINDOW, AND 
IH^^^o^AVE BEEN ASSIGNED TO^THE DIMER OF WATER VApOR . 
(H20)2.  THE SPECTRA OBTAlNEn AT SEA-LEVEL HAVE BEEN 
^9^E*5^9 WITH^OTHERS OBTAINED AT AN ALTITUDE 0? p80 M. 
FROM THIS COMPARISON IT HAS BEEN DEDUCED THAT THE LACK 

■ ISORPTION FEATURE IN THE 7-9 
:RS IS DUE LARGELY. AT SEA 
RELATIVELY HIGH PRESSURE 
THE EARTH'S SURFACE.  THE 

OBSERVATION OF A DI 
CM-l REGION BY EARLIER WORK 
LEVEL. TO THE EFFECT OF THE 
AND TEMPERATURE EXISTING AT 

AND 
OF 

[EAStBlLltY^OF'uSING'fHE PRESENT^'TECHNTQUES' TN'ORDER^TO 
^i£liySlTniJ^95°k9SiCA'- PARAMETERS SUCH AS HUMIDITY AND 
^TEMPERATURE IS D ISCUSSED . *<» 

^^^.^^^^^SS^y"^^/,'.^'^A' EVANS. HELEN M.; nHAMBERLAlN. JOHN; 
AND GEBBIE. H A^ABSORPT I ON AND DISPERSION STUDIES IN THE 
RANGE 10-1 - 1000 CM-l USING A MODEULAR MICHELSON INTER- 
FEROMETER»NO #MNFRAREn PHYSICS, VOL. 9, 8^-93n969»N0 #^^ 
A MODULAR MICHELSON INTERFEROMETER HAS BEEN DEVELOPED fOR 
USE AS A FOURIER TRANSFORM SPECTROMETER PROVIDING BOTH 
ABSORPTION^AND REFRACTION SPECTRA.  THE SPHCTRAL RAN(^E 
THAT IT WAS INTENDED TO COVER. 10-200 CM-1, REPRESENTS 
9^LY^A PART OF ITS USEFUL RANGE WHICH EXTENDS TO 500 CM-l. 
IT IS SHOWN^THAT A FEW SIMPLE MODIFICATIONS ENABLE THE 
UPPER FREtJUENCY LIMIT TO BE RAISED TO lOOO CM-l.  THERE 
IS NO EVIDENCE FOR FREQUENCY ERRORS GREATERTHAN THE 
RESOLUTIOH LIMIT, NOR ARE THERE ANY SPURIOUS FEATURES 

,PRESENT IN THE SPECTRA DUE TO ARTEFACTS.*» 
C33151F*CHAMBERLIN. JOHN; GiBBS. J.E.J AND GEBBIE. H.A.» 

THE DETERMINATION OF REFRACTIVE INDEX SPECTRA BY FOURIER 
SPECTRpMETRY«NO #»INFRARED PHYSICS. VOL. 9, 185-209. 1969* 
NO #^lF A DISPERSIVE MEDIUM ISINTRODUCED INTO ONE ARM OF 
A MICHELSON INTERFEROMETER IRRADIATED BY A WIDE BAND OF 
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RADIATION, THE TWO-BEAM INTERFEROGRAM CONTAINS DETAILED 
INFORMATION ABOUT THE VARIATION OF THE COMPLEX REFRACTIVE 
INDEX OF THE MEDIUM WITH WAVE-NUMBER.  RECENT EXPERIMENTAL 
WORK IN THE INFRA-REH SPECTRAL REGION HAS SHOWN THAT THIS 
INFORMATION MAY BE RECOVERED TO GIVE THE COMPLEX REFRACTION 
SPECTRUM OF THE MATERIAL.  DETAILS OF THE MATHEMATICAL 
THEORY AND THE NECESSARY OBSERVATIONS AND COMPUTATIONS 
ARE GIVEN, AND ILLUSTRATED BY THE RESULTS OF RECENT IN- 
VESTIGATIONS OF THE REFRACTION SPFCTRA OF SPECIMENS IN 
EACH OF THE THREE MATERIAL PHASES.«« 

5511AlG^BlRcH, J.R.; BURROUGHS, W.J.; AND EMERGY, R.J.» 
OBSERVATION OF ATMOSPHERIC ABSORPTION USINQ SUB MM MA__ 
SOURCESftNO #*INFRAREn PHYSICS. VOL- 9, 75-83*1969»N0 #» 
SING FIVE SUBMILLIMETER MASFR EMISSION LINES THE ABSORP- 

TION OF THE ATMOSPHERE AND OF PURE WATER VAPOR HAVE BEEN 
EXPERIMENTALLY DETERMINED: THE LATTER AS A FUNCTION OF 
PRESSURE.  THESE RESULTS HAVE BEEN COMPARED WITH VALUES 
DERIVED FROM A COMPLETE THEORETICAL ANALYSIS BASED ON 
MONOMERIC WATER VAPOR ONLY.  THIS COMPARISON LEADS TO 
CONCLUSIONS THAT ATMOSPHERIC ABSORPTION IN THE SPECTRAL 
REGION 32 - 100 CM-1 MAY BE EFFECTIVELY COMPUTED USING A 
THEORETICAL MODEL WHICH CONlnERS MONOMERIC WATER VAPOR 
ALONE; AND THAT FOR ABSORPTION BY PURE WATER VAPOR A 
SMALL DEVIATION EXISTS WHICH IS CONSISTENT WITH THE 
THEORETICALLY EVALUATED SPECTRUM OF THE WATER VAPOR 
DIMER.«» 

531581C*HARRIES, J.E. AND ADE, P.A.R.«ABSORPTI ON BY MINOR 
ATMOSPHERIC CONSTITUTENTS NEAR 8 CM-l^NO #«INFRARED 
PHYSICS, VOL. 12, 143-144»1972»N0 #<^IN THE PREVIOUS 
ISSUE OF INFRAREn PHYSICS, A.G. KISLYAKOV (VOL. 12, P6l- 
63, 1972) OFFERED SOME CRITICISM OF OUR EARLIER WORK, IN 
THAT INSUFFICIENT CONSIDERATION WAS GiVEN TO ABSORPTION 
BY OTHER MINOR ATMOSPHERIC GASES WHEN CONSIDERING THE 
8 CM-1 WINDOW REGION.  DUE CONSIDERATION HAS, IN FACT. 
ALWAYS BEEN GIVEN BY US TQ THESE ABSORBERS AND THE CRITI- 
CISMS HAVE LARGELY BEEN MET IN THE PAPER ON PAGE 81 OF 
THIS ISSUE- BUT WE WOULD LIKE TO DESCRIBE MORE EXPLICITLY 
THE ARGUMENTS MENTIONED RATHER BRIEFLY IN THE PAPER.»» 

133141M^^EMERY, R . u ATMQSPHER I C ABSORPTION MEASUREMENTS 
IN THE REGION OF 1 MM WAVELENGTH*N0 #«INFRARFD PHYSICS. 
VOL. 12. 65-79<>1972<>N0 #<»USING A FROOME-TYPE PLASMA-METAL 
JUNCTION HARMONIC GENERATOR- HIGH RESOLUTION TRANSMISSION 
MEASUREMENTS HAVE BEEN MADE ON THE ATMOSPHERE IN THE WAVE- 
LENGTH RANGE 0,5-3.0 MM.  THEORETICAL SPECTRA HAvE BEEN 
COMPUTED FOR SUBMILL I METER-M I M I METER WAVELENGTH ATMO- 
SPHERIC ABSORPTION DUE TO WATER VAPOR USING THEK KINETIC 
EQUATION FORM FOR THE LINE SHAPE.  MEASUREMENTS WERE MADE 
ON THE BASIC PARAMETERS OF THE MAIN WATER VAPOR ABSORP- 
TION LINES OCCURRING IN THE WAVELENGTH RANGE Q.65-3.0 MM. 
THE PURE WATER VAPOR LINE WipTH PARAMETERS ARE FOUND TO BE 
CONSTANT FOR THE THREE MAIN ABSORPTION LINES IN THIS RANGE 
AND EQUAL TO 0.55 + OR - 0.05 CM-1.  THE WATER VAPOR-NITRO- 
GEN LINE WIDTH PARAMETER FOR THE 1.64 MM WAVELENGTH LINE 
IS MEASURED TO BE 16 PERCENT LARGER THAN THEORY HAVING A 
VALUE OF O.m -t- OR - 0,005 CM-1 AND IS CONSTANT OVER A 
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ILEVATION   ANI 
:SSURE. TFMPI 
SUBROUTINES 

|LE.    AND 
:RATURE, 
OF   EACH 

ANiD 
or 

lOO^GH 
iFp.-T   R 

AT 
PERH P 
DERIVFD FnR 
THE WORK OF PET 

A63183B!»HARRIS, F.S. 
OPTIrAL PROPERTIES 
N77-r5563»THIS IS 
AEROSOLS AND THEIR 

FINITE OVER THE ENTIRF DOMAIN OF 
ACCURATE OVER LAREGE RANGES OF PR 
RELATIVE HUMIDITY.  ALSO. FORTRAN 
THE MOnELS ARE iNCLUpEn.** 

231561 8-::.BLUE. M . D , »PERM I TT I V I T Y OF WATER AT MM W A VELENGTH »N0 #* 
GEORGIA TECH/NASA GRANT NSG-5082 r, AUG 1 976*N7 6-30911 ^TH I S 
REPORT DESCRIBES THE MM WAVE REFLECTIVITY MEASUREMENTS OFF ^ 
OF WATER, ICE ANp SIMULATE! SEA WATER (WITH PLANKTON CONTENT) 

FROM THESE MEASUREMENTS, USING MERCURY AS 4 
CTOR. THE COMPLPX DIALEfTRIr rONSTAiMTS WERt 

MATERIALS."" THE RESULTS AGREE WELL WITH 
RAY (APPL.OPTIrS, vTl, 1836 <1972)).»» 
. ET AL.»ATMOSPHERIC AEROSOISJ THEIR ^ 
AND EFFECTS^^NO #«NASA _cR-2O04 „nE C 1975» 

S A COLLECTION QF PAPERS ON ATMOSPHERIC 
'    OPTICAL PROPERTIES GIVEN AT A SYMPOSIUM 

AT NASA LANGLEY RESEARCH CENTER, SPONSORED BY NASA ANQ THE 
OPTICAL SOCIETY OF AMERICA.  THIS HAS LITTLE TO nO WITH 
MICROWAVES' BUT MUST RE CONSIDERED AN IMPORTANT SOURCE 
COLLATION ON AEROSOL PHYSICAL PROPERTIES.»» 

A6^1828»HARRIS. F.S., ET AL.. ED ITOR»ATMOSPHERIC AEROSOLS: 
THEIR OPTICAL PROPERTIES AND EFFECTS (SUPPLEMENT ) »N0 #» 
NASA-CR-P004 SUPPLEMENT*1976*N77-15664<>THIS IS A CONTINUA- 
TION OF N77-15663 OF THE SAME TITLE ON THE CONFERENCE 
PROCEEDINGS OF A NASA/OPTICAL SOCIETY OF AMERICA CONFERENCE 
AT NASA LANGLEY. DEC 13-15, 1975.  THIS WITH THE PREVIOUS 
PAPER IS A STANDARD REFERENCE ON AEROSOL PROPERTIES THOUGH 
IT HAS LITTLE INFOR ON MM PROPERTIES.*» 

511] /IC'^FONG, D.J. AND HARRIS, J . M . »PREC I P I T A T I ON-ATTENU AT I ON 
STUDIES BASED ON MEASUREMENTS OF ATS-6 20/30 GHZ BEACON 
SIGNAL AT CLARKSBERG. MD«N0 #»C0MSAT LABS, NASA-CR-l52501« 
JULY 1. 1976^N77-23295*THIS PAPER DISCUSSES EXPERIMENTS 
MEASURING THE 20 AND 30 GHZ ATMOSPHERES AS A FUNCTION OF 
TIME USING ATS-6'S BEACONS AS A CALIBRATED SOURCE.  THE 
ATTENUATION VS TIME WAS CORRELATED WITH SKY RADIOMETRIC 
NOISE AT THESE SAME FREQUENCIES? THE MATCVH WAS 
MODERATELY GOOD.  RAIN GAUGES WERE POSITIONED UNDER THE 
PATH OF MM BEAM TO THE ALTITUDES TO REcORD THE RAINFALL 
RATE AND THEN CORRELATE WITH THE ATTENUATION VS^TIME 
MEASURED BY THE GROUND STATIONS.  THE 
BE USED FOR INDIRECTLY ESTIMATING LONG TERM CUMULATIVE 

-   - - '-     IN THE ABSENCE OF DIRECT SATELLITE 

CORRELATII 
; TERM CUMI 
OF DIRECT 

IAY 

ATTENUATION STATISTICS 
SIGNAL MEASUREMENTS.** , ^   ^ 

C215417."'BERT0LINE. f; cOTTANl. G. AND ROGAl, S»COMPLEX DIELEC" 
TRON CONSTANT MEASUREMENTS IN THE FIELD OF MM WAVES (IN 
ITALIAN)»N0 #»F0NnAZIONE UGO BARDONI*MAY 24 1976»N77-25376« 
THE COMPLEX DIELECTRIC CONSTANT OF A PLASTIC BICC WAS 
MEASURED FROM 40-50 GHZ IN A CIRrULAR rAVlTY REFLECOMETER 
USING A 8WV AS A POWER SOURCE.  fnE REASON FOR THIS WORK 
WAS TO PROVIDE A BASIS FOR DESIGN OF HIGHER (THAN 30 GHZ) 
FREQUENCY DIELECTRIC IN CAVITY MEASUREMENT HARDWARE.»» 

C13181D^TH0MAS.J. ,    M.C.;    OTT,    R.H.J    AND   ViOLETTE,    E-J.» 
REPORT   ON   1976   MM   WAVE   CONFERENCE»NO   #»OFFICE   OF   TELE- 
f:OMMUNlCATIONS .    U.S.    DEPARTMENT   OF   COMMERCE.    DENVER»SEPT 
i976»PB-258   576»TITLE   AND   SPEAKERS   ONLY   WERE   GIVEN;   USES   OF 
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RADIO SPECTRUM 
SPEAKERS ARE: 
^ELDMAN. ET AL 
IR. P  JAIN, n. _     ,.  . 
OF B.T.L,," DR. L. TILLElSON, B.T.L.  4) 
F.C.C.." A. REJNER, F.C.C.  ^) "SURVEY OF 

nKJI^kililAV P^'   L. IPPOLITE. NASA  7)"MM 
ON TERRESTRIAL AND EARTH SPAcE PATHS," OR 

^9?Kil'-^EI?2^*i^i^I^'" DR- ^- BOYNE. N.B.S 521131C»REBER, E . E*ABSORPTION OF THE 4-6 MM 
IN THE ATMOSPHERE«NO #«AEROSPACE rORP.. 
';;'$5«iS.,i2T2**'^;:''''5-95i»THis REPORTS ON 
^1^925^^?!^ ATTENUATION OF SIGNALS FROM 48-72 GHZ RECEIVED 
BY A ZENITH PO NTING RADIOMETER - THE SUN AS A MM SOURrt 
^flScSE^iy^E^INJS OF THE PRECIPITABLE WATER CONTENT IN THE 
ATMOSPHERE.  THE ATTENUATION DUE TO 0? WAS DETERMINED. THE 

ABOVE 10 GHZ WAS EMPHASIZED.  TITLE AND 
1)^"A NEW APPROACH TO MM WAVES," N.r. 
' ?AND.  2)"^^ILITARY PLANS FOR MM WAVES," 
C.A.  3) JSOME ASPECTS OF MM WAVE RESEAf^CH 

'THE ROLE OF THE 
SOLID STATE 
"COMMUNICATION 
WAVE PROPAGATION 
n. HAYS. B.T.L. 

««• 
WAVELENGTH BA^JD 

SAMSO-TR-72-151* 
THE MEASUREMENTS OF 

ZENITH 
ALTlTU] 

lED, 
^ND fNQY 

! COLLISION 

^m 

,r.Putll^l^M^V9^^   AS^A FUNCTION OF FREQUE 
nor, n 'P^o'^ESf U^ED TQ COMPARE THE THEORIES FOf 
BROADENED SPECTRAL LINES, AND TO DEVELOP A NEW EXPRESSION 
FOR PRESSURE PRODUCED SPECTRAL LINES.  THIS REPORT HAS A 

^ GOOD BIBLIOGRAPHY ON MEASUREMENTS IN THE 60 GHZ 02 LINE 
9'»2161C»KIRSCHNER. S.M.; LEROY . R.j.; OG I L V I E , JTF 77 AND 

J/.C^I^S^ R'H-^RADIAL MATRIX ELEMENTS AND DIPOLE MOMENT 
rH^?5^^St:^?5r,Zt^L^R°y^O STATE OF CO'^^NO #^ JOURNAL OF MQLE- 
CULAR SPECTROSCOPY 65, 306-312»1977«NO #*RADIAL MATRIX 
ELEMENTS X SUPER(K) FOR K=0 TO K=5, V=0 TO V=12. ABSO- 
LUTE yl:V)=0 TO 4, AND J UP TO 150 HAVE BEEN CALCULATED 
FOR 12C160 USING ACCURATE WAVE FUNCTIONS OBTAINED FROM THE 
NUMERICAL SOLUTION OF THE SCHROEDINGS E'QUATION WITH A 
SECOND^pRDER RKR POTENTIAL CURVE.  THESE SHOULD BE USEFUl 
i^MSH^y-AJI^G EMISSION AND ABSORPTION PROPERTIES OF CARBON ^MONOXIDE IN THE IR AND SUB MM RANGE.'^i» LAKHUIM 

C41151C»BATT, R.J. AND HARRIS. n.J.-»AN OPEN RESONATOR TECH- 
NIQUE FOR THE MEASUREMENT OF ATMOSPHERIC PROPAGATION 
CHARACTERISTICS AT SUBMILLI METER WAVILENGTHS^NO #ilNFRARFr 
^^^^I^^^JSHr 16. 325-327*l976^N0 #^A 3-MlRROR OPEN RESONA- 
TOR TECHNIQUE OPERATING IN THE MIILIMETER BAND IS DESrRIRFD 
THIS TECHNIQUE IS USED WITH A 337 UM LASER TO MEASURE THE 
ABSORPTION OF AIR WITH VARYING WATER VAPOR rONTENT   THF 
n?",,9^CD*^^*SiI°^^Jf^^ STRUCTURE IS LOWERED WlTH THE ADDITION 
SL'^^J.^Ly^f^^P'x^P'-^^^VE TO THE "Q" WITH DRY AIR, WITH 
THE INVERSE OF THE LOADED CAvlTY Q LINEARLY VARYING WUH 
I'l'^r^^^hK^^IVE HUMIDITY. OR, THE ABSOLUTE AMOUNT OF WATER 

^ VAPOR/UNIT VOLUME, IN GM CM-3.»» 
731151E»GEBBIE, H.A.; STONE, N.W.B.; TOPPING, G.; GORA, E.K.; 

?k9?^?yi^S,i^A;.^ND KNEIZYS- F.X.r,ROTATlONAL ABSORPTION OF 
SOME ASYMMETRIC ROTOR MOLECULES.  PART I.  OZONE AND SULFUR 
D10XIDE*N0 #<»JOURNAL OF MOLECULAR SPECTROSCOPY, VOI . 19, 
nT^5ric^!^,*^P S^^Of' 112 SPECTRUM OF OZONE AND SULFUR 
DIOXIDE HAVE^BEEN OBTAINED INTERFEROMETRI CALLY WITH A 
RESOLUTION OF 0.25 AND .12 CM-1 . RESPECTIVELY.  IN THE CASE 
OF OZONE. AGREEMENT WITH PREDICTIONS BASED ON PREVISOULY 
PUBLISHED MICROWAVE DATA HAS BEEN CONFIRMED.  FOR S02, THE 
FAR IR INDICATED THE NEED OF TAKING HlGHERORDER ANTRIFUGAL 
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INTO CONSIDERATION.  A NON-LINEAR 
IS CALCULATED FOR O."^ AND S02 AND 
NO?. ALSO. AND ARE COMPARED WITH 

! AND S 0 ?.» « 
• CM BALLOON-BORNE TELESCOPE FOR FAR 

COLLEGE OBSERVATORY, OPTICAL 
6, 551-557«N0V-DEC 1977»N0 #» 
NSTRUMENTATION CHARACTERISTICS 
ION THIS BALLOON-BORNE FAR IR 

IS TO PERFORM RADIOMETRY AND FAR 
CELESTIAL SOURCES.  SIX FLIGHTS 

HOURS QF 
;CULAR CL 

AND 

IB 

OUDS 

DISTORTION CORRECTIONS 
CORRECTION, CALLED K6. 
IS ALSO GIVEN FOR HPO, 
THOSE CALCULATED FOR 0 

C5173lA^FAZI0, G.G.»A 10 
IR ASTRONOMY»N0 #«HARVARD 
ENGINEERING, VOL. 16- NO. 
THIS ARTICLE PRESENTS THE 
SOME EXPERIMENTAL RESULTS 
TELESCOPE. IT'S PURPOSE 
(40 UM-250 LIM) MAPPING OF   _ 
HAVE PRODUCED MUCH ASTRONOMICAT DATA. WItH 40 
OBSERVATIONS OF HI I REGIONS, nARK CLOUDS. MOLE 

, GALAXIES, ETC.** 
713181B»TANAHA, TrHEHIKO ANn MORINO, YONZO*CORIOLIS INTERACTION 

AND ANHARMONIC f^OTENTlAL FUNCTION OF OZONE FROM THE MICRO- 
WAVE SPECTRA IN THE EXCITED VIBRATIONAL STATES^NO #» 
JOURNAL OF MOLECULAR SPEcTROSCOPY. VOL. 33. 538-55l«1970» 
NO #*MlCROWAVE ABSORPTION SPEcTRA (8-70 GHZ) WERE IDENTI- 
FIED IN THE EXCITED VIBRATIONAL STATF WITH V1=fV V2=iV AND 
^?r^c^^^I^^,irT!y^ INERTIA DEFECT IN THE CORIOLl PERTURBED 
STATE WAS DEFINED AND SUCCESSFULIY APPLIED TQ THE ANALYSES 
9y,^Ip AND QUANTITATIVE POTEN TI AL'CONSTANTS WERE DEFINED 
^.^n.^V^l.y^^^^-r- CLOSE SIMILARITIES WERE OBSERVED SMONG THE 

^ ANHARMONIC^POTENTIAL CONSTANTS OF 03, S02. AND 0F2.»» 
743182C'>BARgE,__A. ; SECROUN, C; JOURIE, P.; MONNANTEUIL. N ; 

DEPANNEMAECHER.^B.DUTERAGE; AND BELLET, J.MNFRARED AND 
MICROWAVE HIGH-RESOLUTION SPECTRUM OF THE V3 BAND OF OZONE* 
NO #»J0URNAL OF MOLECULAR SPECTROSCOPY. VOL. 64, 343-364* 
l?77-t.N0 #»THE VIBRATION-ROTATION BAND OF V3 OF OZONE HAS 

WITH A HIGH RESOLUTION (.012 CM-1) SPECTROMETER 
ABSORPTION SPECTRA OF OZONE WAS BEEN TDENTiriED 
.^i?SKVJ.°^*kr§^ATES^(iOO) AND (001).  A STRONG 
ACTION HAS BEEN OBSERVED.  MORE THAN 1200 
HAVE BEEN IDENTIFIED IN THE V3 BAND.  IT IS 

BEEN RtCORDED 
AND MICROWAVE 
IN THE EXCITE 
CORIOLIS INTE 
SPECTRAL LINES 
SHOWN THAT TRANSITIONS WITH HIGH VOLUMES OF THE QUANTUM 

7JVS?i^^^uic.^,^a^^ CONTRIBUTE TO SIGNIFICANT DISTORT I ON . *» 
7431819^-LlCHTENSTeiN. M. AND GALLAQHER. J . J . »M I LL I ME T^R WA VE 

?/^F-^5^^ 9^ 5^°^i^^0 ^-^^JOyRNAL OP" MOLECULAR SPECTROS COPY, 
VOL. 40, ^0-?6^n97l^^NO #*THE MICROWAVE SPEcTRUM QF 03 HAS 
BEEN OBSERVED TO THE FREQUENCY OF 320 GHZ. AND THE SPECTRUM 
RE-CALCULATED TO OBTAIN NEW ROT A TI ON AL CONSULTS FQR TH^ 
MOLECULE.  THE STARK EFFECT HAS ^EEN MEASURED TO VlFLD RMS 
VALUE OF THE DIPOLF MOMENT OF 0.53?4 "■■■- -~ ..--^ 1'-*-^ '^"s 
DEBYE.  ROTATIONAL CONSTANTS FOR THE 

^ STATE OF 03 ARE GIVEN. ;^» 
2l3l7lG*B0STlAN, r.W.; STUTZMAN, W.L 

■TK" ""~ "" " 

PLUS ORMINU^ .0024 
VIBRATIONAL GROUND 

WILEY, P,H 
MARSHALL, R.E.«-THE INFLUENCE OF PSLARIZATION 6N MILL?MPTFR 
WAVE PROPAGATION THROUGH R A I N*NGR-4 7 - 0 04-091 ^^NO #^JAN 1974» 
N75-?7212<»THIS REPORT PRESENTS TH^- ESSENTIAL FINDINGS QF A 
27 MONTH EXPERIMENTAL AND THE AC^UAl  INVESTIGATI ON INTO 
INFLUENCE OF POLARIZATION ON MM WAvE PROPA(^ATlON THROUGH 
^,*i^-,.I"^J^VESTIGATION WAS SUP'^ORTEp BY NASA TO EXPLORE A) 
J,';;'i,,Li^^*^^^N? ''J^I-H PRECIPITATION pEPOL AR I Z A T I QN W I T^ 
WITH PLACE ON FUTURE MM WAVE EARTH - SATELIITE COMMUNICATION 
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SYSTEMS EMPLOYING ORTHQGONAL POLARIZATION FREQUENCY 
SHARING AND B) THF POSSIBILITY OF IMPROVING THE FADE RE- 
SISTANCE OF SUCH SYSTEMS, EITHER THROUGH POLARIZATION DI- 
VERSITY OPERATION OR BY THS CHOICE OF POLARIZATI ON(S) BLAST 
SUBJECT TO ATTENUATION.  TO FACILITATE THE EXPERIMENTAL 
WORK, THE EFFORTS DESCRIBED IN THIS REPORT wERE CONFINED 
LARGELY TO GROUND BASED COMMUNICATIONS SYSTEM.** 

5l3l6lEr,FARR0W, J.B.*THE INFLUENCE OF THE ATMOSPHERF ON 
REMOTE SENSING MEASUREMENTS. VOL. I<»C0NTRACT NO- fcSRO 1837/ 
7?PP AND 1838/72PD»N0 #»DEC 1973*N74-20986»THIS IS A SUM- 
MARY REPORT OVER TWO STUDIES:  INFLUENCE OF THE ATMOSPHERE 
ON REMOTE SENSING AT 1) WAVELENGTHS FROM UV TO INFRA RED 
(.3 UM TO 15 UM) AND 2)   UWAVE AND RADIO WAVELENGTH (1 MM- 
30 CM).  INFORMATION IS PROVIDED ON THE BASIC PURPOSE OF 
ATMOSPHERIC PROCESSES WHICH INFLUENCE REMOTE SENSING 
MEASUREMENTS.  TYPES Of" PROCESSIVE DtSCRlBED AND DISCUSSED. 
AND THE INFLUENCE OF THE ATMOSPHERE ON INCIDENT AND RE- 
FLECTED SOLAR RADIATION AND ON EMITTED SCENE RADIATION ARE 
THEN DESCRIBED WITH PARTICULAR REFERENCE To THE MAjOR 
TYPE OF SENSOR.  FINAILY, VARIOUS POSSIBLE MEANS 0F_ 
CORRECTING ATMOSPHERICALLY DEGRADED DATA ARE REVIEWED.«» 

B12588G»MAS0N, P.R.; HASTED, J.B.; AND MOORE. L.»THE USE OF 
STATISTICAL THEORY IN FITTING EQUATIONS TO DIELECTRIC 
DISPERSION DATA^NO #«ADVAN. MOL. RELAXATION PROCESS, 
VOL. 6. 217-232«1976«N0 #»THIS PAPER SHOWS HOW A CHOICE 
MAY BE MADE ON THE BASIS QP STATISTICAL THEORY BETWEEN 
ALTERNATIVE DIELECTRIC DISPERSION EQUATIONS HYPOTHESISED 
TO FIT SETS OF EXPERIMENTAL DATA.  IT ALSO SHOWS HOW TO 
FIND THE BEST VALUES AND PROBABLE RANGES OF THE PARAMETERS 
IN THE EQUATIONS.  IT IS FOUND THAT THE IMPROVEMENT IN THE 
FIT OF THE COLE-COLE EQUATION OVER THE DEBYE THROUGHOUT 
THE COMPLETE TEMPERATURE RANGE FROM 0 TO 75 DEG C MAKES IT A 
NEAR STATISTICAL CERTAINTY THAT THERE IS SOME SPREAD OF 
RELAXATION FORCES IN WATER OVER ALL THIS TEMPERATURE RANGE. 
A 20 DEG C FOR EXAMPLE, THE PROBABILITY OF THE IMPROVEMENT 
IN FACT NOT BEING DUE TO CHANGE IS GREATER THAN 92.5%, 
WHICH THE 90 % CONFIDENCE INTERVAL FOR H, THE COLE- 
COLE SPREAD PARAMETER IS .0008 LESS THAN H LESS THAN .018.«» 

522684D«LIN. JAMES C. AND ISHlMARU. AKTRA«MULTIPLE SCATTERING 
EFFECTS ON WAVE PROPAGATION IN ISOTROPIC SCATTERING MEDIA* 
CONTRACT NO. Fl9 ( 628 )-69-6-0 123#N0 #*MARCH 1971^»AD-735 
284*THE MULTIPLE SCATTERING EFFECTS OF A WAVE PROPAGATION 
IN AN ISOTROPICALLY SCATTERING RANDOM DISTRIBUTION OF DIS- 
CRETE SCATTERERS IS CONSIDERED.  THE INTEGRAL EQUATIONS 
FOR THE COHERENT FIELD AND AVERAGE INTENSITY ARE SOLVED 
USING FOURIER TRANSFORM TECHNIQUES-  AN "INFLUENCE FUNCTION" 
IS OBTAINED FOR THE AVERAGE INTENSITY, WHICH CAN BE USED AS 
THE GREEN'S FUNCTION FOR THE SOLUTION OF AVERAGE INTENSITY 
OF ANY GIVEN SOURCE RADIATION.  EXPLICIT EXPRESSIONS ARE 
GIVEN FOR PLANE, SPHERICAL' AND BEAM WAVES SHOWING THE 
DEPENDENCE ON VARIOUS WAVE AND MEDIUM PARAMETERS.«« 

132I3JD1^MCMILLEN. R.W.; GALLAGHER, J.J.J AND COOK. JR., 0 M * 
CALCUIATIONS OF ANTENNA TEMPERATURE. HORIZONTAL PATH ATTEN- 
UATION. AND ZENITH ATTENUATION DUE TO WATER VAPOR IN THE 
FREQUENCY BAND 150-700 GHZ^^NO #«IEEE TRANSACTIONS ON MICRO- 
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WAVE THEORY AND TECHNIQUES. VOL. MTl-25, NQ. 6 
JUNE 1977-»N0 #r.THE RESULTS OF CALCULATION OF A 
TEMPERATURE AT ZENITH, ROTH WITH AND WITHOUT T 
AS A SOURCE. ARE GIVEN HORIZONTAL PATH AND TOT 
PATH LENGTH ATTENUATION ARE ALSO CALCULATED. 
CALCULATIONS WAS MADE OVER THE FREQUENCY BANH 
USING DATA FROM THE P4-WATER ABSORPTION LINES 
AND 7000 GHZ.  A LCRENTZIAN LINE SHAPE FACTOR 
WITH THE BARRETT AND CHUNG LINE WIDTH PARAMETE 

14?i8jR«VlKT0P0VE. A.A. AND ZHEVEKIN, S.A.«BAND 
A DIHER OF WATER VAPOR-NO #^S0VIET PHYSICS-DOK 
NO. 9. 8.36-839-:iMARrH 197l«N0 i^ijTHE BANn SPECTR 
IN THIS ARTICLE IS 'TAKEN TO MEAN THE SPECTRUM 
MOnEl OF 2 STABLE H20 MOLErULES RIGInLY BOUNn 
A HYDROGEN BAND,  A COSINUSOIpAL APPROXIMATION 
POTENTIAL BARRIER FOR INTERNAL ROTATION WAS US 
OF THE H20-H20 DIMER ARE SEEN IN ITS GREATEST 
THE FREQUENCY REGION LAMBDA-1 LT 7 CM-1.  THE 
TION COEFFICIENT IS GIVEN AS FUNCTION OF TEMPE 
LENGTH. nIPOLE MOMENT AND ENERGY LEVELS.»<* 

812181E<:-SPIRK0, V.; STONE, J.M.R.; AND PAPOUSEK. 
TION-INVFRSION-ROTATION SPECTRA OF AMMONIA; CE 
DISTORTION, CORIOLIS INTERACTIONS AND FORCE H 
t5NH3, 14ND3, AND 14NT3<*N0 #»JOURNAL OF MOLECU 
SCOPY, VOL. 60- 159-178»1976»N0 #<»AN EFFECTIVE 
ROTATION HAMILTORIAN HAS BEEN DEVELOPED FOR N3 
THE NECESSITY OF HAVING TQ INCLUDE HIGH POWERS 
INVERSION MOTION COORDINATE IN THE TAYLOR EXPA 
THE POTENTIAL ENERGY AND THE INVERSE MOMENT OF 
TENSOR. A LEAST SQUARES PROCEDURE THAT INCLUD 
NUMERICAL INTEGRATION OF THE SCHROEOINGER WAVE 
HAS BEEN USED TO DETERMINE '^HE HARMONIC FORCE 
THE DOUBLE MINIMUM INVERSION POTENTIAL FUNCTiO 
(15)NH3, AND FOR (14)Nn3 AND (14)NT3.<»* 

811111D-CURRIES, N.C.; MARTTN, E.E.; AND DYER, F 
FOLIAGE PENETRATION MEASUREMENTS AT MILLIMETER 
NO #«-NO#»DEC l975*An-A023 838<*A SERIES OF RADA 
ON THE PENETRATION OF FOLIAGE HAVE BEEN MADE A 
35. AND 95 GHZ. ME ASLIREMENTS WERE MADE FOR BO 
AND 2-WAY CASES AS SIMILAR FOLI AGE AREAS FQR C 
THE BULK OF THE MEASUREMENTS WERE MADE AT DEPR 
BELOW 3 DEG., ALTHOUGH A SET OF 1-WAY MEASUREM 
MADE FOR'7.4 AND 16.2 GHZ FOR A DEPRESSION ANG 
ATTENUATION PROPERTIES, POLARIZATION RATIOS, A 
SPECTRAL AND CORRELATION PROPERTIES WERE INVES 
FUNCTION OF FREQUENCY. POLARIZATION. DEPTH OF 
REAL SPEED.•»» 

2211818-MTNK. J.W.»RA IN-ATTENUAT I ON AND SIDE-SCA 
MENTS OF MILLIMETER WAVES OVER SHORT PATHS«NO 
REPORT NO. 4327»JUNE 1975»AD-A012 1 6 7-:fRE SULT S 
ATTENUATION AND SIDE SCATTER MEASUREMENTS AT M 
ARE PRESENTED THAT HAVE BEEN OBTAlNEn WITH A S 
TECHNIQUE. THIS REQUIRES A PATH LENGTH THROUG 
ONL^ A FEW METERS SO THAT RAINFALL RATE AND OR 
TRIRUTION CAN BE CONSIDERED UNIFORM ALONG THIS 
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2l|182G*DEIRMENpJlAN, D.*rOR INFRARED AND SUBM I LLI METER 
rSJIJn'^r'^SninMn^ri^y^nQ^ ^X ^LOUDS AND RA I N^CONTRACT NO . 
n? nnS"Q;Mny^nW°r!S'^^S 1975^AD-A0U 644«IN THIS SErOND PARI 
2fnPy?f.^^^'^^ Q^   ^AR IR AND SUB MM ATMOSPHERIC SCATTFRING 
IART'^ISICS^CH^^.TII:^,^ S^P^H CONSTANTS SURVEVEnTNTHE^lRST PART (OIERMENDJ AN i974 - AD-7872n5) TO ESTIMATE FyTlNirTinNi 
fSi^^i?i^S,^LS^pR T"E WAVELENGTH RANGE 12yM TO 2 S CM.^^^'^ 
nP.?Tl9^LKyP£°?^' WE SET UP^NEW ANALYTIC D^OP SIZE DiStRI 
iVIJ.^^nSS^ikS 1° SIMULATE FOG, PREclP I TATTNG CLOUDS. ' " 
5^11. ?c'^'?K^^?,'^^°:i'^S TO RAIN OF 10 AND 50 MM/HR.  THE 
rnir^IrT^^,T^^LoR?t^ O^.^SLUME EXTINCTION AND ABSQRPT 
COEFFICENT COMPUTED ACCORDING TO PQLYDISPERSE MIE 
I^ISTJ!^ K^^rlyp^?^ tJ   Ig^S^^'C WAVELENGTHS. ARE PRE- 
SENTEnlN TABLES ANn GRAPHICALLY IN PLOTS ALLOWING FOR 

lATE INTERPOLATION AT ANY nESIREn WAVELET 

AND 

[ON 

1121 
OF 
NO 
OF 

THP^RJNGE^-*!^'^^^'"*^^'^^ *'^"^'^^"'D^5^'^^0'"WAVEL^NGfH''wiTHl'N 

^2^'^n50^|Ni^PA AND TIGLpAR, H.^ON SPECTROSCOPIC MQDELINQ 
I^irrS^^^S MOLECULE«CONTRACT NO. F29601-74A-0023-0002^ 
#*SEPT I976«AD-A032 448»THIS REPORT EXAMINES THE VAUpI TY 

^.^SPECTROSCOPIC MODELING TECHNIQUES DESERT NG THE ROTA- 
TIONAL^STRUCTURE OF HIGH LYTNG ROTATIONAL LFVELS §r L GMT 
^?I^^^ISIf^ ROTATORS SUCH AS WATER.  PRESENT TECHNIQUES 
BASEn ON WATSON'S ROTATIONAL HAM ILTON I AN WERE FOUNn TO 3E 

„INADEQUATE.»* 
^^Pl*^SnPy|"u?H2 ?: AND HONG; S.T.^PROPAGATION CHARACTERISTICS 

X^n^ P.y^^E ^'^)l^   ^^   A DISCRETE TI ME*CONTRArT NO. Fi9628-74-C- 
0005»NO #»MARCH 1974»AD-782-029*THE PROPAGATION rflARACTER- 
lUl^^^   ^^\^^.^^%^   TIME. COHERENCE BANDWIDTH ANB PULSE WAVE- 
F^ORM OF A WAvE PASSING THROUGH X DISrRETE TIME VARYING RAN- 
SS^r^.ER!* f^EngOj^SIDERED HERE,  THPY XRE FORMULATED 8AS=D 
P^nr9t9^-jy^S?^EY THEORY.  USING TTS FIRST ORDER SOLUTION. 
EXPLICIT EXPRESSIONS APPLY TO THE CASES OF SMALL TRANS- 
^,^IJ''^S.3*N'^WIDTHS AN/OR SHORT PROPAGATION DISTANCES. 
NUMERICAL CALCULATIONS ARE MAnE FOR MM (40 ANn 100 GHZ) 
PLANE AND SPHERICAL WAVES PROPAGATED THROUGH RAIN 
THE RESULTS SHOW THAT THE COHERENCE TIME AND THE COHERENCE 
BANDWIDTH ARE QUITE DEPENDENT ON THE TYPES OF TRANSMITTING 
l^^'"? Si^PJ^ !^9T^^*f^*CTERISTlCS.  WITHIN 10 MM (HR TO 100 MM/ 
HR) PRECIPITATION, A MM PULSE WAVE SUFFERS HEAVY ATTENUATION 
DURING THE PATH, BU^ THE MAIN PORTION OF THE RECEIVING 
PULSE^^ORM IS ESSENTIALLY UNCHANGED.*^ C.CIV.NU 

122131E*SADJIAN, H . *J AN AL YT I C AL STUD^ OF PASSIVE TECHNIQUES FOR 
MEASURING ATMOSPHERUCONTRACT NO. N6 ??9-77-C-0058<^NO #« 
9SJ ^?rZn^^o^°nP 717«CALCULATI0NS ARE PRESENTED THAT SHOW 
jy^nP^??,^^r°L?i£°y^f'^ Of" ^9TH ATMOSPHERIC WATER VAPOR AND 
I^^?L^rIURE D STRIBUTION USING PASSIVE IR AND MICROWAVE 
RADIOMETRY - ASSUMING GROUND BASED RADIOMETERS.  A 
GRADIENT TECHNIQUE IS USED To RECOVER A TEMPERATURE PRO- 
FILE WITH 2 INVERSIONS AND A WATER VAPOR PROFILE WITH 5 IN- 
VERSIONS.  THE METHOD IS APPLICABLE TO DISTRI BUT IONS TO 
2^KM.  CALCULATIONS ARE ALSO PRESENTED THAT SHOW THE 
EFFECT OF WATER VAPOR AND TEMPERATURE ON RADIO WAVE PROPA- 
GATION AND THE EFFECT OF VISIBILITY ON THE PASSI VE ' MRTHOpS. 
15 REFS. AND BIBLIOGRAPHY ON RADIOMETERS, AND MM WAVE' 
PROPAGATION.** 
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S IS DESCRIBED BRIEFLY. 
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IONS OVER A 15 AND 35 GHZ 
ON WITH METEOROLOGICAL 
S WERE OBSERVED WITH WET 
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ON IM THE SUBMILLIMETER RANGe«NSG- 
N66-16704»WATER VAPOR ABSORPTION 
RPTION IN THE SUR MM REGION.  WITH A 
CHELSON TYPE INTERFEROMETER, INVESTP 
N BE EXTENDED TO A LOWER FREQUENCY 
TipM AND ACCURACY.  AN EXPERIMENTAL 
MEASURES THE WATER VAPOR ABSORPTION 

200 CM-1 (.1 CM = 1 MM TO .05 MM) 
T AND PRESSURES OF 4.4 MM HG AND 1.1 
WATER VAPOR ROTATIONAL LIN= POSI- 
EWLY CONSTRICTED HIGH TEMPERATURE 



SUB MM SOURCE IS ALSO DESCRI BFD. ^»« 
723l3lFoCAT0R, WILLIAM M.*ABS0RPTI ON AND EMISSION IN THE 

8-MM REGION BY OZONE IN THE UPPER ATMOSPHERE^-NONR-??? 
(54) AND NSG-2''3-62^»N0 #*MAY 1 967<»AD-652-5 75*»THE ABSORPTION 
OF SOLAR RADIATION AND THE EMISSION OF THE ATMOSPHERE 
(EFFECTIVE SKY TEMPERATURE) WERE MEASURED AT ROTATIONAL 
LINES OF OZONE AT 30, 056, MHZ, 36, 025 MHz. AND 37, 83O 
MHZ.  THE MEASUREMENTS WERE MADE POSSIBLE BY THE SPECIAL 
DEVELOPMENT OF A FREQUENCY SWITCHING RADIOMETER AND A 
GAIN COMPENSATION TECHNIQUE.  THE CONTRIBUTIONS OF OZONE 
TO ATMOSPHERIC ABSORPTION AND EMlSglON ARE EVALUATED FROM 
THE SOLUTION OF THE RADIATIVE TRANSFER EQUATION ON THE 
BASIS OF A LINE WinTH FUNCTION OF TEMPERATURE AND PRESSURE 
AND THE ARDC-1957 STANDARD ATMOSPHERE; THE CONTRIBUTION OF 
THE WATER VAPOR AND OXYGEN ARE DETERMINED FRQM THE THEORIES 
OF BARRETT AND CHUNG FOR H20 AND MEEKS FOR 02.»» 

13?181C»HALL, JAMES T.»ATTENUAT I ON OF MILLIMETER WAVELENGTH 
RADIATION OF GASEOUS WATER'^NO # 9EcOM-5097«J A N 1967*AD-650 8l2- 
THIS IS A THEORETICAL COMPUTATION FOR ABSORPTION BY WATER ^ 
VAPOR BY MM AND SUB MM WAVES FOR GIVEN WATER VAPOR pENSlTjES, 
PRESSURES, AND TEMPERATURES.  THE RIGID ASSYMETRICAL TOP 
ROTOR APPROXIMATION FOR ALL ANGULAR MOMENTUM QUANTUM NUMBERS 
J LT OR = 12 IS USEH WITH THE ZHER AKL I N-NAL'M IR LINE SHAPE 
AND 1/2 WIDTH CALCULATED RY ANDERSONS THEORY.  AN EQUATION 
IS GIVEN FOR EXTRAPOLATING AjTENyATlON COEFFICIENTS TO 
PRESSURES AND TEMPERATURES OTHER THAN THOSE FQR WHICH CAL- 
CULATIONS WERE PERFORMED.  WAVELENGTH COVERAGE - 4 CM-i TO 
100 CM-i: 26 REFERENCES.<»»^^ ^     ^^ ^       r.^n   n   , 

54I131E«-CHANG. SHURMAN AND LESTER, JAMES D . » ATMOSPHER I C 
ATTENUATION MEASUREMENTS AT 600 GHZ«N0 #<JFRANKFORD ARSENAL, 
MEMO REPORT 67-4-l«AUG 1966»AD-644 587«ATMQSPHERIC 
ABSORPTION IN THE 600 GHZ REGION HAS BEEN MEASURED THROUGH 
THE ACTUAL BY MEANS OF A DICKE TYPE SUPERHETERODYNE AUDIO- 
METER RECEIVER USING RECORD HARMONIC MIXING.  THE AVERAGE 
MEASURED VALUE OF HORIZONTAL ATTENUATION WAS APPROXIMATELY 
34 DB/KM/G/M3^  THE VARIATION OF WATER VAPOR ABSORPTION^WITH 
RESPECT TO WAtER VAPOR DENSITY WAS ALSO INDICATED IN THE 
MEASURED RESULTS.  THE MINIMUM DETECTABLE TEMPERATURE 
DIFFERENCE (DELTA T 
RMS VALUE OF OUTPUT 

T) MIN WAS OB 
DEFLECTION 

THE RADIOMETER. 

INED BY CALCULATING 
AND THE USE o" THE 
THE BEST VALUE WAS 

THE 
CALI3RA- 

PROGRAM.  RESEARCH AND 
OF MILLIMETER WAVES: 

AF 04(695)-169<t 

TION CURVE FOR 
5.2 DEG K.»» 

C317317«STACEY, J . ^ELECTRON I CS RESEARCH 
EXPERIMENTATION ON SPACE APPLICATIONS^ 
REPORT NO. TDR-169(325Q-41)-1»C0NTRACT NO   ^  „^ 
NO #»21 MAY l963»AD-609 594*THIS IS A PROGRESS^REPORT IN 
THE PLANNING AND DEVELOPMENT OF A 3.2 MM WAVELENGTH OBSERVA- 
TORY   A DESCRIPTION OF THE INSTRUMENTATION IS GIVEN AND 
OBSERVATIONAL GOALS ARE OUTLINED.»« 

511731D^-WULFSBERG. K . N. *^APPARENT SKY TEMPERATURES AT MILLI- 
METER WAVE FREQUENCIES: AFCRL-64-570*NO #<»N0 #^»JULY l964* 
A-605 813«MEASUREMENTS OF APPARENT SKY TEMPERATURES TAKEN 
OVER A ONE-YEAR PERIOD AT l5.17 AND 33 GHZ ARE SUMMARIZED. 
SKY TEMPERATURE PROFILES FOR VARIOUS METEOROLOGICAL CON- 
DITIONS ARE PRESENTED AS WELL AS CURVES SHOWING THE PER- 
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CENTAGE TIME DISTRIBUTION FOR VARIOUS ZENITH ANGLES. ^SUCH 
FAfTORS AS ABSORPTION AND RADIATION BY OXYGEN AND WATER 
VAPOR, EXTRAPOLATION OF   THE DATA TO OTHER^GEOGRAPHICAL ^ 
AREAS. AND THE RELATION BETWEEN TOTAL ATTENUATION O' THE 
ATMOSPHERE ANn SKY TEMPERATURE ARE nlSCUSSED-^ A nESCRIP-^ 
TION OF THE RAPlOMETFRS AND THE C&LIBRATI ON TECHNIQUES ARE 

62}68^nSsf^'AY? R. J.«MICROWAVE PORTION OF THE OXYGEN LINES RF- 
FRACtOMETER»CON"rRACT NO. AF 19-6 285-1.6 5«ES D-TR-66-65« JUNE 
j966'.:-AD-635 048eA MICROWAVE SUBSYSTEM WAS INSTALLED IN THE 
MITRE CORP'S REFRACTOMETER VANS AS AN INTEGRAL PART OF THE 
OXYC^N LINES REFRACTOMETER.  IN OPERATION, TWO COHERENT 
FREQUENnlES, 45 AND 90 GH?' ARE TRANSMITTED OVER A 23 KM 
PATH^ ANn THE rHANGE IN nlTFERENTlAL PHASE SHIFT IS MEA- 
SUREI^ AT'^HE RECEIVER.  THIS rHANGE^IS AN INDUCTION OF THE 
REFRA'-TIVE QUALITIES OF THE ATMOSPHERE OVER THE PATH.  THIS 
EQUIPMENT WAS TESTED AT A FIELD SITE ON THE LAKE WINNFPE- 
SAUKEF, NEW HAMPSHIRE REGION; TEST RESULTS AND RECOMMENDA- 
TIONS FOR IMPROVING SYSTEM SENSITIVITY AND STABILITY ARE 
GIVEN.«» 

5215817-:^L0NG, M . W . ^SUBM I LL I METER WAVES AND ASTROPHYSICS AT 
QUFEN MARY COLLEGE-r,NO #*>CRNL-2 0-66«JUNE l966»AD-485 456» 
THIS REPORT IS ON THE RESEARCH CAPABILITIES OF QUEEN MARY 
COLLEGE, A SCHOOL OF THE UNIVERSITIES OF LONDON IN THE 
AREA OF SUB MM RESEARCH.  THEY DISCUSS THE KINDS OF SUB MM 
RESEARCH GOING ON (CA 1965) AND THE INSTRUMENTATION BEING 

53ll81B*H0FFMAN. L.A. AND WINTRQUB, M.J.»PROPAGAT I ON FACTORS 
AT 3.2 MILLIMETERS*CONTRAcT NO. AF 04(695)-469#N0 #* 
OCT 1965»AD-474 398^^USING A 15-FT PREUSSON PAROFOLIC 
ANTENNA SYSTEM. ABSORPTION MEASUREMENTS AT 3.2 MM INDICATE 
THAT THE VAN VLEcK-WEISSKOPF THEORY FOR COLLISION BROAQENED 
LINES SATISFACTORILY ACCOUNTS FOR THE ABSORPTION THROUQH 
•THE CLEAR ATMOSPHERE, IF ONE USES THE LINE BREADTH CON- 
STANTS FOR 02 AND H20 EXPERIMENTALLY DETERMINED^AT OTHER 
WAVELENGTHS.  THIN LAYERS OF CLOUDS AND FOG HAVE A NEGLI- 
GIBLE EFFECT ON THE PROPAGATION, WHEREAS THICK CLOUDS AND 
RAIN CAN CAUSE APPRECIABLE ATTENUATI ON.«» 

B31281A.>H0FFR, R . ^^REFLECT I ONS AND EMISSION PROPERTIES OF 
NATURAL AND ARTIFICIAL MATERIALS AT 3 MM WAVELENGTH (IN 
GERMAN)»NO #»8ERN UNIVERSITY, CH-3000-BERN«NOV 4, 1975»N76- 
l0826f»THE THEORY OF SCATTERING UNFOLDS AND THE CONNECTION 
BETWEEN EMISSION AND REFLECTIONS IS ABLE TO BE WRITTEN 
EXPERIMENTALLY IN TERMS OF THE REFLECTION MEASUREMENT.  THE 
MEASURED REFLECTION COEFFICIENT AT 3 MM WAVELENGTH WILL BE 
GIVEN AS A FUNCTION OF THE ANGLE OF INCIDENCE FOR WATER, 
OIL FILM, ON WATER. STRETCHED METAL PLATE, SAND. LOAM, 
BRICK, SAND» HUMUS, FIR WOOD, SN0W.»:J 

2l243lFftEDIS0N. ALLEN R . ^CALCULATED CLOUD CONTRIBUTION TO SKY 
TFMPERATURES AT MILLIMETER-WAVE PRECONTRACT NO- MIPR-R65- 
15-AMC-0091ONBS REPORT NO 9138R»FEB 1966»A0-479 293»THE 
CONTRIBUTION OF WATER AND ICE CLOUDS TO ZENITH TEMPERATURES 
IN THE FREQUENCY RANGE FROM 10 TO 100 GHZ IS CALCULATED^ 
USING REASONABLE MODELS.  IT IS SHOWN THAT RADIATION DUE TO 
ABSORPTION BY WATER VAPOR AND CLOUD DROPLETS MAY CON- 
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Icl?yJ,ic^^°SnlTlP.,9^^^.100 °EG K TO THE APPARENT SKY TEM- 
f^SAly?^,-^ SCATTERING FROM CLOUD QROPLETS IS OF NEGI IGI8LE 
^SKS.f'^^^ei^O^^?.!^? FREQUENCY RANGE CONSIDFRFD.  A CLOUD 
DROPLET SIZE nlSTRrRUTlON OF THP FORR AR(SIXTH POWFR)EXP 
^;;??^^I? y?i? l^   ^yE CALCULATIONS,  THE DROPLET RADIUS IS 
$?LyS^^ BECAUSE or  THE R(CU6E) AND I^CSIXTH PQWER) VARIA- 
TION RESPECTIVE IN THE ABSORPTION AND SCATTERING CROSS 

*^?MS^r?K^^'^\LECK. J.H. AND HUBER. D . L . »ABS0RPT I ON . EMISSION 
^yfiikl^^^P^i^SJHS' A SEMl-HISTORIrAL PERSPEQTTVE*NO K 
REVIEWS OF MpfiERN PHYSICS, VOL. 49, NO. 4, $3^-959«0CT 1977» 
NO #*THE DEVELOPMENT OF THE THEORY OF THE INTFRACTI ON OF 
ELECTROMAGNETIC RADIATION WITH ATOMS AND MOLECULES IS OUT- 
ki^i2,-nK/Jl^l^kX CLASSICAL ANAI YSIS OF ABSORPTION AND 
i"^ l^iR'^.Jin^VS^ULATED IN WHICH PARTICULAR ATTENTION IS 
PAID TO QUESTIONS OF DETAILED BALANCE AND TO THE SUM RULES 
9K^IX^°n^X ^yg.SUSCEPTlBlLITY.  COLLISION BROADENING IS 
I'^IR°nySED THROUGH TI ME-DEPENQENT DIPOLE MOMENT CORRELA- 
IJ.9^vt^95^'fi ^SPoP^y^K-  THE^cORRESPONDlNG QUANTUM MECHANICAL 
.*,'^^h^5i§ i?.P5?SENTED WITH EMPHASIS ON THE POINTS IN COMMON 
fc^iJ,^,-^y^ CLASSICAL APPROACH.  THE IMPORTANCE OF CORRES- 
PONDENCE PRINCIPLES IN BRIDGING THE GAP BgtwEEN CLASSICAL 

D.^^B.QUANTUM MECHANICAL THEORIES IS STRESSED.»^   i- ^ ' «L 
B12583C;50PPENHEIM. IRWIN; SHEELER. KURT E. ^kn WEIS, GEQ 
H.^STOCHASTIC THEORY OF MULTISTATE RFLAXATTHN P^OCESSE 
NO #«ADVANCED MOL. RELAXATION PROCESSES, vOl . 1, 13-68 
1967-68*N0 #*THE AUTHORS PRESENT HERE A BRl^F ANn SELE 
SiXi^^cP^ THE STOCHASTIC THEORY OF MULTISTATE RELAXATI 
PROCESSES. TITLES IN THIS PAPER ARE MARKOV PROCESSES. 
DERIVATION OF THE MASTER EQUATION, GENERAL PROPERTIES 
Ific':'^!^!?^^^!^^^^^'^' "^HE FOKKER PLANCK EQUATION. FIRST 
PASSAGE TIME PROBLEMS. AND SELECTED APPLICATIONS -- HAR- 
MONIC OSCILLATOR RELAXATION IN A HEAT BATH. RELAXTION OF 
TWO INTERACTING SYSTEMS OF HARMONIC OSCILLATION, RELAXA- 
TION OF RALEIGH AND LORENTZ GAS.*« 

9325818«»SMYTH, CHARLES P . »D I ELECTR I C RELAXATION BY INTRAMOLF- 
CULAR MECHANISMS^NO #^ADVAN. MOL. RELAXATION PROCESSES.  "" 
VOL. 1- 1-11»1967-68*N0 #*THIS IS A DISCUSSION OF FFFECTS 
OF INTERNAL FIELDS IN A DIELECTRIC. AND THE RELATIONSHIP 
BETWEEN INTER AND INTRA MOLECULAR MOTIONS AND THEIR CORRES- 
PONDING RELAXATION T^MES.  SOME DATA IS DISCUSSED ABOUT 
MM WAVE ABSORPTION HYDROCARBONS - H-HEPTANE. CYCLOHFXANE, 
BENZENE, AND CCL4.»<^ 

B12584K*MEIXNER. J.«CONSISTENCY OF THE ONSAGER-rASIMIP RECI- 
PROCAL RELATIONS^NO #«ADVAN. MOL. RELAXATION PROCESSES, 
VOL. 5, 319-33J <''1973<fN0 #<>THIS IS A THEORETICAL DISCUSSION 
ON THE^CONSISTENCY (AND VALIDITY) OF THE ONSAGER-CAS IMIR 
RECIPROCAL RELATIONS.  THESE RELATIONSHIPS - FOR DIELECTRIC 
PHENOMENA, RELATE COMPONENTS OF A DIELECTRIC STRFSS TENSOR 
TO EACH OTHER IN EIG - HERMITIAN CONGUGATE OF (EJI .  IN 
A GENERAL SENSE. THE ONSAGER RECIPROCAL RELATIONS FORM A 
LINE FOR THE ENTIRE DISCIPLINE OF MACROSCOPIC IRREVFRSI3LE 
THERMODYNAMICS.*« 

B12585Cf^MElXNER, J.«NEW THERMOP YNAMIC THEORY OF RELAXATION 
PHENOMENA»NO #*ADVAN. MOL. RELAXATION PROCESSES, VOL. 3. 
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227-234n972*N0 #«THIS IS A GENERAL. THEORETICAL DISCUSSION 
ON A NEW LOOK AT RELAXATION PROCESSES. WHICH EXiST IN 
^^x^*''^K^!:!fDlA AS ACOUSTIC. ELASTIC, DIELECTRIC, MAQ- 
NETOACOUSTIC ETC. PHENOMENA.  ALL OF THESE ARE "EFFECTS" 
WHICH OCCUR AS A RESULT OF AN EXTERNAL FIELD ON A MEDIA^ 
WHETHER IT IS A STRAIN. ELECTRIC. MAGNETIC.. .ETC .  THES^ 
EFFECTS "FOLLOW" THE CAUSES IN THE CONSTITUTIVE EQUATIONS; 
FOR EXAMPLE, IN THE CASE OF A DIELECTRIC, THE DiSPLACEHENt 
Kj^'^K^^.K^i^'^jEr^'' WITH E(IW) THE COMPLEX DIELECTRIC 
"CONSTANT" AND.ECW) THE_CAUSAT IVE FIELD.«» 

C417A27*GALLAGHER, J.J.; STRAUCH, R.G.; CUPP, R.E.*EXCITATION 
AND DETECTION TECHNIQUES FOR MM WAVES*QR3821*MARCH 1964 
*AD434001*THE OBJECT OF THIS CONTRACT IS TO INVESTIGATE THE 
EXCITATION AND DETECTION TECHNIQUES FOR MOLECULAR MM WAVE 
TRANSITIONS WHICH CAN BE USED TO DEVELOP A FREQUENCY STANDARD 
OPERATING IN THE REGION OF 1 MM.  DURING THE PAST QUARTER, 
H2S ELECTRIC RESONANCE HAS BEEN OBSERVED** 

D2i7AiC«N0 NAME^MM W/iVE AMPLIFICATION BY RESONANCE 
SATURATION IN GASES*CONTRACT NO- AF 30(602)2744«RADC-TQR- 
63-562*MAR 1964<fAn-434 764»THE POWER SATURATED RESONANCE 
ABSORPTION OF A GAS (HcN) HAS BEEN USED TO ACHIEVE MM WAVE 
AMPLIFICATION.  EXPERIMENTS WERE CONDUCTED AT ROOM TEMPERA- 
TURE IN BOTH A TRAVELING WAVE SYSTEM AND iN A RESONANT 
CAVITY.  THE RESULTS ARE IN GOOn AGREEMENT W ITH THEORY. 
A GAIN^OF 20 DB WAS OBTAINED WITH A 6-INcH LONG BY 3/4:iNCH 
Pi*!;'^I§§ CYLINDRICAL CAVITY AT 86 GHZ.  AN A NA L YS I S I ND C A TES 
JlA^c^^L'^y^f^ENT NOISE FIGURE SHOULD BE 7 DB; MpASUREi^ENTS 
SHOWED THAT ^J WAS^25_DB. WHICH WAS SET BY T^E SINSITIVI^Y' 

Cl3l75C»GREEN, AGUSTUS H.>-MM TECHNIQUE EVALUATION OF GUIDANCE 
DATA ATTENUATION BY EXHAUST PLUMES-r^NO #*RE-TR-63-31 , RE VI SED» 
26 MAR 1964*»AD-435 539*THIS ARTICLE DESCRIBES THE INSTRU- 
MENTATION TO MEASURE THE MM WAVE TRANSMISSION IN THE  ^ 
PLASMA/EXHAUST OF ROCKET MOTORS AT 76 GH7 AND 10 GHZ. 
THEORY LEADING UP TO THE PLASMA ABSORPTION EQUATIBNS ARE 
DEVELOPED, AND RESONANCE FREQUENCIES DEFINED.  BY MEASURING 
THE ATTENUATION CONSTANT AN"; THE PHAsE CONSTANT AS SELECTED 
FREQUENCIES, THE COLLISION FREQUENCY AND THE ELECTRON 
DENSITY MAY BE DETERMINED.  ANY OF THESE RESULTS IND ICATES 
WHICH^TYPES^OF PROPFLLANTS RENDER GOOD PROPAGATI ON CHARAC- 

921581K<^CR0SSLEY. J . ^nl EL ECTR I C RELAXATION ANn INTERMOLECUL AR 
ROTATION IN ALIPHATrc KETONES^NO *<-C AN AD I AN J  CHEM , VOL 
51. 25/l-2675^^1973»N0 #.-^CROSSLEY MEASURES THE DIELECTRIC 
CONSTANTS  OF ALIPHATIC AND AROMATIC KELONFS IN       ^ 
u2l;^Sy^^^y§,',ny;^^?*I?^^A[iif'' ^ECALIN AND PARAFFIN OIL-CYCLO- 
PS^*'^^x^.I^iyS^S AT 25 LEG C IN THE FREQUENC^ RANGE 1-145 
GHZ.  THE RESULTS WERE ANALYZED IN TERMS OF CQLE-COLF PLOTS 
THE RELAXATIONTIMES AND THE I R V IcOSITY DEPFNDENCE WPRE DFALt 
WITH IN TERMS OF INTERMOLECULAR AND WHOLE MOLECULAR ' RO- 

, TATIONAL MECHANISMS.«» 
321151C*GLUSHNER. V.G.; SLUTSHER. B.D.; AND FTRKELSTFLYN, M I » 
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MEASUREMENT OF THE ATTENUATION OF RADIO WAVES IN THE 8 MM 
BAND IN SEA InE AND FRESH WATER IQE   AND SNOW*NO #»RADIO FIZI- 
TEN. VOL. 19(1976), NO. 9, 1305-1 :?07 (USSR) <»9 DEC 19/6»AD- 
8019-605L (FSTC 1068-76)*TH1S REPORT ON THE MEASUREMENT OF 
ATTENUATION OF RADIO WAVES THROUGH SEA IcE, FRESH WATER 
ICE, AND SNOW AT 8.2 MM (36,8 GHZ).  THE "TWO THICKNESS" 
METHOD WAS USED TO EVALUATE THE ATTENUATION.  FOR^SEA ICE» 
WITH SALINITY 2.4 PERCENT, TEMPERATURE -22.4 DEG C- THE 
ATTENUATION WAS lll-l50 DB/METER.  FOR FRESH WATER IcE, THE 
ATTENUATION WAS 13 DB/METER.  FOR SNOW. OF DENSITY .21- 
.32 GM/CM3, IT WAS 3l TO 37 DB/METER.<»« 

224111I»RICHARD, VICTOR W. AND KAMMERER, JOHN E.<*RAIN BACK- 
SCATTER MEASUREMENTS AND THEORY AT MILLIMETER WAvElENGTHS* 
NO #^>US ARMY BALLISTICS RESEARCH LAB., ABERDEEN PROVING 
GROUND' MD  21005 (BRL-1838) «OCT l975*AD-8003 173L^»AN EXPERI- 
MENT WAS PERFORMED TO MEASURE THE PROPERTIES OF RAIN BACK- 
SCATTER BETWEEN 0 AND 100 GHZ OVER A RANGE OF RAIN INTENSI- 
TIES FROM DRIZZLES UP TO lOO MM/HR.  RAIN BACKSCATTfR AMPLI- 
TUDE AND FLUCTUATION MEASUREMENTS WERE MADE SIMULTANEOUSLY 
AT 10. 35, 70, AND 95 GHZ WITH PULSE RAnARS FOR BOTH LI^JEAR 
AND CIRCULAR POLARIZATION ALONG WITH RAINFALL RATE AND DROP- 
SIZE MEASUREMENTS,  THE MEASURED RAIN BACKSCATTER VS RAINFALL 
RATE DATA ARE COMPARED WITH VARIOUS THEORIES, INCLUDING 
SOVIET AUTHORS.  A BIBLIOGRAPHY IS INCLUDED.  RESULTS: 
1) REDUCTION IN RANGE BY RAiN BACKSCATTER IS SEVERE AT 
35 GHZ. COMPARED WITH BOTH HIGHER AND LOWER FREQUENCIES. 
2) THERE IS A DECREASE IN RAiN BACKScATTER AT 20 GHZ. 
3) A RADAR OF A GIVEN DISK SIZE CAN SEE BETTER AT 95 GHZ 
THAN AT 20 OR 35 GHZ.  HAS GOOD RAIN CELL STATI ST ICS.«« 

2l3l7lB»R0GERS. R,R.«STAT I ST I CAl RAINSTORM MODELS: THEIR 
THEORETICAL AND PHYSICAL FOUNDATIONS^NO #«IEEETRANS. ANTENNA 
AND PROP. AP. . . .547-566<*JULY 1976»N0 #»FROM PROPAGATION 
EXPERIMENTS AND STUDIES OF THE FINE RULE STRUCTURE OF RAIN, 
DATA ARE BECOMING AVAILABLE IN THE HORIZONTAL EXTENT OF 
HEAVY RAIN AREAS AND THE WAY THIS STRUCTURE INFLUENCES 
SYSTEM PERFORMANCES.  THESE DATA ARE USED TO FORMULATE 
STATISTICAL RAINFORM MODELS THAT PERMIT PREDICTION OF THE 
PERFORMANCE OF SINGLE PATH AND PATH DIVERSITY SYSTEM.  THE 
CURRENT STATUS OF RAIN CELL MODELS IS REVIEWED AND SUGGES- 
TIONS FOR FUTURE RESEARCH ARE OFFERED.<>^f 

2131728*CRANE. ROBERT K.»ATTENUATI ON DUE TO RAIN, A MINI- 
REVIEW»NO #«IEEE TRANS. ANTENNAS AND PROPAGATION AP-23, 
NO. 4SEPT 1975*N0 #*THIS IS A BRIEF REVIEW PAPER ON RAIN. 
CAUSED ATTENUATION. THE PAPER 
VELOPMENT AND VERIFICATION OF 
ATTENUATION, AND CONSIDERS THE 
TO PREDICT ATTENUATION.  15-35 
BUT HAS REVIEW OF MM AND SUB MM 

REVIEW PROGRESS ON THE DE- 
THEORY OF RAIN-CAUSED 
;TATISTICAL MODELS REQUIRED 
iHZ DATA CONSIDERED MOSTLY 
PROPAGATION TI( ■ERA 

MQ! 
TUR( 

9411816»CHANTRY. G.W.; GEBBIE. H.A.; LASSIER, B.; AND 
SYLLIE' G.«SUB MM WAVE SPECTRUM OF NON POLAR LIQUID AND 
CRYSTAL»NO #«NATURE, VOL. 244, 163-165#APRIL 8, 1967»N0 #* 
THIS REPORTS ON THE ABSORPTION SPECTRUM OF CCL4^AT 130 DEG 
(SOLID) AND AT 300 DEG K (LIQUID). FOR MM WAVELENGTHS 
BETWEEN 20 CM-1 AND 100 CM-1.»» 

842761D<^ANDREEV. B.A,; BURENIN, A.V.J KARYAKIN, E.N.; 
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KURPNOV, A.F.; AND SHAPIN, S . M . ^»SUBM I LL I METER WAVE SPECTRUM 
AN13 MOLECULAR CONSTANTS OF N?0»NO #-»jOURNAL OF MOLECULAR 
SPECTROSCQPY. VOL. 62, 1.25-148*1976«N0 #«THE SUB MM WAVE 
SPECTRUM OF THE N20 MOLEcULt HAS BEEN INVESTIGATED INTHE 375- 
565'GHZ FREQUENCY RANGE WITH A SENSITIVITY BETTER THAN 
10-8 CM-l.  THE MEASURED FREQUENCIES INCLUDE 161 LINES 
WITH INTENSITIES GAMMA GE 10-6 CM-1 BELONGING TO 22 SPECTRO- 
NOMIi^ALLY DIFFERENT SPECIES OF THE MQLECULE ) SPEC I F I C A' - Y , 
THE GROUND AND SOME EXCITED VIBRATIONAL STATES OF THE TIVE 
MOST ABUNDANT ISOTOPIC SPEClES OF THE MOLECULE IN NATURAL 
A8UNnANCE)WITH A STATISTICAL AND SYSTEMATIC ERROR OF THE 
ORnER OF MAGNITUDE 10-8.»* 

862781A«8ILLINGSLEY, FRANK P. II . *CALCULAT En VIBRATION- 
ROTATION INTENSITIES FOR N0(X21I)*N0 #»J0URNAL OF MOLE- 
CULAR SPECTROSCQPY. VOL. 61. 53-70<^1976<tNO #»THP ABSOLUTE 
INTENSITIES OF THE VIBRATIONAL ROTATION TRANSITION IN THE 
GROUND STATE OF NO HAVE BE&N CALCULATED FQR VIBRATION LEVELS 
UP TO V = 20 AND TOTAL ANGULAR MOMENTUM STATES UP TO J = 
35.5.  THE TREATMENT FULLY PROVIDES FOR V IBRAT ION-RQTAT I ON 
COUPLING AND SPIN UNCOUPLING EFFECTS, AND EMPLOYS  AN 
ACCURATE THEORETICAL REPRESENTATION OF THE ELECTRONIC DIPOLE 
MOMENT FUNCTION FO NO.-»^> 

D41?AlA{fPLANT, T.K.; NEWMAN, L . A,; DANIELEWICZ, E.J.; DETEMPLE, 
T.A.; AND COLEMAN, P.D.<»HIGH POWER OPTICALLY PUMPED FOR IN- 
FRARED LASERS»N0 #-IEEE TRANSACTIONS ON MICROWAVE THEORY 
AND TECHNIQUES, VOL. MTT-22. NO. 12, 988-990«DEC 1974»\|0 #» 
THIS ARTICLE DESCRIBES LASER ACTION IN SEVERAL GASES OPTI- 
CALLY PUMPED WITH A C02 TRANSVERSELY EXCITED ATMOSPHERIC 
PRESSURE (TEA) LASER.  A MAXIMUM OF FIR POWER OF lOO KW WAS 
OBSERVED FROM CH3F AT 496 UM.  CHARACTERISTICS OF THE 
SYSTEM AND POSSIBILITIES OF SCALING TO HIGHER POWERS ARE 
DISCUSSED.»« 

C2178lAaMICR0WAVE DEVICES LABORATORY. UNIVERSITY OF UTAH» 
QUARTERLY REPORT. jAN 1. 1963 TO MAR 31, 1963»C0NTRACT NO. 
AF 64(647 )-745*MDL-Q4»MAR 31, 1963*AD-4l2 237»THE BROAD 
PURPOSE OF THE RESEARCH ACTIVITY REPORTED HERE IS TO EXTEND 
THE USEFUL FREQUENCY SPECTRUM INTO THE RANGE FROM UWAVE 
TO OPTICAL FREQUENCIES AND To IMPROVE EXISTING DEVICES AND 
TECHNIQUES INTO THE UWAVE SPECTRUM.  AT PRESENT THIS 
OBJECTIVE IS BEING PURSUED: STUDIES OF ELECTRON BEAM DEVICES 
SOLID STATE DEVICES, AND PLASMAS.  SOME WORK ON X AND K BAND 
TRANSMISSION OF ROcKFT PLUMES WAS REPORTED.<HJ 

Bl358lE»BERG. DANIEL. COMMITTEE CHAIRMAN^DIGEST OF LITERATURE 
ON DIELECTRICS. VOL. 26. 196?»N0 #«PUBLTc*TI ON 1139. 
NATIONAL ACADEMY OF SCIENCE, LIBRARY OF CONGRESS NO. 45- 
33B64*A963»AD-424 943*THIS IS A DIGEST OF LITERATURE ON 
DIELECTRICS PUBLISHED IN l962.  CHAPTER TITLES OF THIS 
REVIEW WORK ARE:  D INSTRUMENTATION AND MEASUREMENTS; 
2)    TABLES OF DIELECTRIC CONSTANTS, DIPOLE MOMENTS AND 
DIELECTRIC RELAXATION TIMES:  3) MOLECULAR AND IONIC INTER- 
ACTIONS IN DIELECTRICS;  4 ) ^CONDUCT I ON IN SOLID DIELECTRICS; 
5) THE BREAKDOWN OF DIELECTRICS;  6) FERROELECTRIC AND PRE- 
ZOELECTRIC MATERIALS;  7) HIGH POLYMERIC MATERIALS;  8) IN- 
SULATING FILMS AND FIBROUS MATERIALS;  9) INSULATING LIQUIDS 
AND APPLICATIONS;  10) INORGANIC INSULATION;  11) APPLlCA- 
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•^I^SySiSiNTS OVER THE 800-33 CM-1(12.5 UM-300 UM) REGION 
ARE PRESENTFD^FOR SEVERAL MATERIALS.  DATA INCLUDE THE 
SPECTRAL REFLECTANCE OF ADP. KDP, NACL, KBR, CSBR. CSI. 
TLBR. TLCL. AND KRSB.  CURVES OF THE EXTERNAL TRANSMITTANcE 
PLI^^P.'-^S OF KD-F, TEFLON, GE, MILLIPORE FILTERS AND A KODAK 
WRATTEN FILTER ARE INCLUDEn.  DATA ARE GIVEN ON THE FUNDA- 
MENTAL ABSORPTION FREQUENCIES OF MGO, LIF.TIO?. KBR, 
TLCL. AND TLI.  DOUBLE BEAM SPECTRA PHOTOMETERS WERE US?D 
FOR MAKING THE MEASUREMENTS. ALL THE CRYSTALS REPORTED 
HERE WERE SYNTHETIC.*« 

B615848«WIJNBERGEN, J.J. AND KELLY, A.A.»FAR INFRARED TRANS- 
MISSION AND REFLECTION OF IRTRAN 1 THROUGH IRTRAN 6 AT 
LOW TEMPERATURES^NO #*APPLlEn OPTICS, VOL. 13, NO- 11. 
2716-27l8ttN0V 1974»N0 #»TRANSMISSI ON AND REFLECTION 
MEASUREMENTS IN THE IR BETWEEN 340 AND 40 CM-l ARE PRE- 
SENTED FOR IRTRANS 1-6.  MEASUREMENTS HAVE BEEN PERFORMED 
AT ROOM TEMPERATURE. LIQUID N2 AND LIQUID HE TEMPERA- 
TURES.»» 

B6i5859<»SH0TTS,W. J. AND SIEVERS. A , J . «LOW-TEMPERATURE FAR- 
INFRARED WINDOWS^NO #»APPLIED OPTICS, VOL. 13, NO. 12, 

IF POLYETHYLENE AND GER- 2773-2774«DEC   1974<JN0   #»WIND0WS   0' 
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TEBORN, F.D.; ERICKSON, 
KUNZ, L.W.»WATER VAPOR 

SPHERE (45-185 CM-1)<* 
2146-2l50»SEPT 1975» 

N SPECTRUM OF THE EARTH'S 
FROM OBSERVATIONS OF 
TAINED USING A MICHELSON 
ELESCOPE ABOARD A HIGH 

S, A. J.^PLEXIGLAS: A CONVENIENT 
THE FIR SPECTRAL REGION*NO #<»ApPLlED 
54-l055»MAY 1975«N0 #-!*THIS 
ORpTlON CONSTANT IN CM-1 OF FUSED 
SS AT 300 DEC K AND 4.2 DEG K 
-5o CM-1 .  (60 GHZ - 
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A61l81GttFIcHER. KLAUS^^MASS ABSORPTION 
TYPES OF NATURAL AEROSOL PARTICLES  ^ .,.. ,. 
APPLIED QPTlCS. vOl. l4' NO. l?- 285i-2856flDFC 
THE MASS ABSORPTIOR INDEX OF AEROSOL PARTICLES 
MEASURED IN THE ?-\l UM WAVELENGTH REGION. TH 
MENTS WERE PERPORMEn ON FILMS OF AEROSOL PARTI 
WERE COLLECTED BY AN AUTOMATIC JET IMP 
AND VARIOUS UNCONTAMlNATEn SITES. ALL 
POSSESS STRONG ABSORPTI ON BANDS IN THE 

INDICES OF VARIOUS 
IN THE INFRARED*N0 #» 

l9'75»N0 #« 
REEN 
" JRt- 

THE ATMOSPHERIC LONG WAvE SPECTRUM. INDICATT 
MARKED INFj^UgNQE OF AERgSOL_PARTICLES ON THE 

HA< ,,_. . 
MEASURE' 

   -LES THAT 
IMPACTOR AT POLLUTED 
■ ■ BUT MARINE AEROSOLS 

TRANSPARENT PART OF 

BUDGET OF 
-lU! 
TH( 

NG THE 
RADIATION 
AEROSOLS 

JE ON 
COl 

NO AND 

  ..  ,._ ATMOSPHERE.  PLACES WHERE THE 
WERE COLLECTED WERE MAINZ. GERMANY (URBAN). vi-.«ni,.c; 
WEST COAST OF IRELAND, (MARINE)(CONTINENTAL) WEST COAST 
OF IRELAND. (MOUNTAIN) JUNGFRAU JOCH, SWITZERLAND. 
AND THREE SITES, NEGER DESERT. ISRAEL,** 

C41141H«FLEMING. J.W. AND CHAMBERLAIN. JOHN*HIGH RESOLUTION 
FOR IR FOURIER TRANSFORM SPECTROSCOPY USING MICHELSON 
INTERFEROMETERS WITH AND WITHOUT COLL I MAT I ON.*N0 #»INFRA- 
RED PHYSICS, VOL. 14, 277-?92»1974«N0 #'^A-2 BEAM INTER- 
FEROMETER OF THE MICHELSON TYPE HAS BEEN USED TO MEASURE 
THE ABSORPTION SPECTRA OF CO, N20. AND NO IN THE SPATIA! 
REGION 15-40 CM-1 AT A RESOLUTION OF .05 CM-1.  THE INTER- 
FEROMETER WAS USED IN BOTH A COLLIMATED AND UNCQLLIMATED 
MODE AND A DETAILED COMPARISON OF MEASURED WAVENUMBERS 
WAS MADE FOR CARBON MONOXIDE.  THE WAVENUMBER CONTRACTIONS 
IN THE COLLIMATED INTERFEROMETER ARE AS EXPECTED FROM 
FINITE APERTURE CONSIDERATIONS- AND THE LARGER CONTRACTIONS 
OBSERVED WITH THE UNCOLLIMATED INTERFEROMETER CAN BE RE- 
LATED TO THE GEOMETRY OF THE COILECTING OPTICS.  ONcE THE 
WAVENUMBER SCALE GIVEN BY THE MEASUREMENTS MADE "■ "" 
N20 SHOW AGREEMENT WITH EXPECTED POSITION FOR 
CM-1.  26 REFS. »» 

141131E»RYAD0V, V.Y.; FURASHOV, N.I,; AND SKORONjOV, 
G.A.»MEASUREMENT OF ATMOSPHERIC TRANSPARENCIf 
0.87 MM WAVE REG ION*CONTRACT NAS5-3760»NAS A-' 

1964»N64-27134»ABS0RPTI0N IN THE   
WINDOW, CENTERED AT THE MEAN 
IS MEASURED BY A RADIOMETER I   .._    _ 

. IN THE SPECTRAL INTERVAL OF 0.9 CM-1.  THE MEAN 
WATER VAPOR ABSORPTION FACTOR IN THIS BAND, CONVERTED 
TO MOISTURE RHO = 7.5/G/M3. AND THE ATMOSPHERIC PRESSURE 
AT SEA LEVEL, GAVE 10.4 DB/KM.  AT THE SAME TIME, THE 
MINIMUM VALUE OF THE ABSORPTION FACTOR IN THIS WINDOW, 
OBTAINED FOR .97 MM WAVELENGTH, CONSTITUTED 8-7 DB/KM. 
COMPARISON IS MADE BETWEEN THE RESULTS OF THE EXPERIMENT 
AND THE THEORETICAL DATA.»» 

321181B*BATTLES, J.W. AND CRANE. D.E.*ATTENUATI ON OF A K A 
BAND ENERGY BY SNOW AND ICE»NO #»NOLC REPORT 670«10 AUG 
1966*AD-638 303*MEASUREMENTS OF THE ATTENUATION^OF E « M 
ENERGY BY SNOW AND THE REFLECTION OF RADIATION FROM SNOW AND 
  MADE BY USING AN INTERFEROMETER AND MANUFACTURED 

ICE IN AN ENVIRONMENTAL CHAMBER UNDER CLOSEI Y CON- 
CONDITIONS.  THE AMBIENT TEMPERATURE WAS HELD AT 

ALL MEASUREMENTS.  SNOW AND ICE ATTENUATION 
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■■4v;;i5t';>-;Si.,,- ■■■ ^iii ^I'viVf;'.. „^:^ry 

AND REFLECTION MEASUREMENTS ARE TABULATED FOR VARIOUS SNOW 
DENSITIES COVERING THE RANGE 32-39 GHZ. RESULTS SHOW THAT 
FLACKED SNOW AND GREATER DENSITY PRODUCED LESS ATTENUATION *» 

C??58t5<''BATTLES. J.W.*MM I NTERFEROMETER^NO #*N0L CER0NA«N0 #» 
. An-603 544»THIS ARTICLE DESCRIBES A NEW MM WAVE INTER- ^ 
FEROMETER. BASED ON FROOME'S, THAT IS DESIGNED To MEASURE 
THE COMPLEX DIELErTRIr CONSTANT OF VARIOUS MATERIALS AT 
MM'WAVELENGTHS (35-75 GHZ) . ^^ „   .. .. r- -,M , 

23ll7]6^^FRENKEL, L . *PROP AGATI ON OF MM AND SUB MM WAVES, MNAL 
RPP6RT*NAS 5W-9A3^^HARTIN C0MPANY^^1965<»N65-79374»THIS REPORT 
GIVES RESULTS OF LABORATORY EXPERIMENTS OF TRANSMISSI ON OF __  __      _   -p ^^^^^ j^ WATER VAPOR ANn OTHER 

)ME MEASUREMENTS OF THE DIELECTRIC h] MM WAVES APPARENTLY 
ATMOSPHERIC GASES 
rONSTANT ON THESE.** 

22^l7l9,>USIK0V. A.YA 
VEStlGATlON OF 
PRECIPITATIONS II (TR 
ZHURNAL- VOL. 6, NO 

' "^.83 7 " 

50- 
ANn 

GERMAN, V.L . . _ , ANn VAKSER 
ABSORPTION AND SCATTERINCi 

IN- 
I 

N68-35I ■»THIS PAPER 

, i.KH.»: 
OF MM WAVES IN 

NSLATE6)»Nd #«UKRAINSKII FlZlCHNU 
, 618-641 (NASA TT-F-11,913)*1968* 

PRESENTS EXPERIMENTAL DATA ON THE 
-       -■    -    - --•■ - 15 

BASIC RESULTS OF A THEORETICAL 
AND ABSORPTION OF MM RADIO WAVES 

DAMPING OF RADIO WAVES RANGING_IN LENGTH FR0M_8.15 TO 
^.17 MM IN RAIN AND THE 
STUDY OF THE SCATTERING 
IN PRECIPITATTONS.»» 

2111716^>DERR. VERNON E . ^INVEST T GAT TONS OF THE PROPAGATION 
OF MM WAVES, MONTHLY LETTER REPORT. l-3l OCT l964«N0 #* 
MARTIN COMPANY^JUNE 21. l965«N65-23707*THIS REPORTS ON 
SOME MEASUREMENTS OF AN ATMOSPHERIC WATER VAPOR ABSORPTION 
LINE AT A HARMONIC OF 74.6668 GH7.  PROBLEMS WITH THEIR 
EXPFRIMFNTAL HARDWARE WERE DISCUSSED.«*      , ^ „ 

212748«SMTTH, IRA. ED I TOR-^F ! RST QUARTERLY REPORT FOR MM 
COMMUNICATIONS PROPAGATION PROGRAM (1 NOV 1964 - 1 rEB 
65)»N0 #«NASA rR-75623<^1966*N66-2 7949»TH I S IS THE FIRST 
QUARTERLY REPORT FOR AN 8-MONTH STUDY PROGRAM TQ DESIGN 

"'TO DETERMINE THE EFFPCTS OF THE PROPAGATION 
LOW (200 NM), MEDIUM ALTITUDE (6000 NM) AND 
COMMUNICATION SATELLITE. IN THE l5-35 GHZ 

-RL Y 
EXPERT'MENTS 
MEDIUM - TO 
SYNCHRONOUS 
BAND.^-»» 

212173A»SMITH IRA, EDIT0R»FINAL REPORT, VOLUME 
COMMUNICATION PROPAGATION PROGRAM (1 NOV 1964 ■ 
1965)»C0NTRACT NO. N AS5-9523«N AS A CR-7 60 9'5»NOV 
30i64»THIS 

MM 

FOR 

II. FOR 
- 1 NOV 

ITRACT NO. NAS5-9523«NASA CR-76095»N0V 1964«N66- 
DOCUMENT IS VOLUME II OF THE FINAL REPORT 

THE MM COMMUNICATION PROGRAM BEING PERFORMED TO 
STUDY THE REQUIREMENTS FOR THE DESIGN OF EXPERIMENTS TO 
nETERMlNE THE EFFECTS OF THE PROPAGATION MEDIUM ON MM 
SPACE-EARTH PATHS. FOR BOTH LOW ALTITUDES (200 NM) 
MEDIUM ALTITUDE (6000 NM) AND SYNCHRONOUS ALTITUDE 
(22.3n0 NM) SATELLITES . ■»» 

56ll21l5i!FAziO. G.G.»A 102-CM BALLOON-BORNE TELESCOPE 
FAR IR ASTR0N0MY*N0 #^fOPTICAL ENGINEERING, VOL- 16 

FOR 
NO 

6.    551-557(NGR22-007-270»N0V-DEC   1977^>N0   ^»THE   CENTER 
FOR   ASTROPHYSICS   -   UNIVERSITY   OF   ARIZONA.      BALLOON-BORNE 
INERTIALLY   GUIDED-    102   CM   TELESCOPE   WAS   DESIGNED   TO   PER- 
FORM   PHOTOMETRY   AND   HIGH   RESOLUTION   MAPPING   OF   FAR    IR 
(40-250   UM)    CELESTIAL   SOURCES.       TO   DATF   THE   TELESCQPE   HAS 
NOW   BEEN   FLOWN   AND   SUCCESSFULLY   RECOVERED   A   TOTAL OF    10 
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Iktl^^-, S^i ^^ ^^E FLIGHTS 
NOMICAL DATA. RESULTING IN 
TIONS OF NUMEROUS QBjErTS. 
S-9y.^§^ MOLECULAR Cl Ouhs. 
£V^,^P,^S: ANP^AN_ASTER0ID. MIN FWHM " " " 

HAVE PRODUCED USEFUL ASTRO- 
MORE THAN 40 HOURS OF OBSERVA- 

^SUCH AS HII REGIONS. DARK  ^ 
GALAXIES. THE GALACT In CENTER, 
MAPS WITH A RESOLUTION OF 1 ARE 

AS 

n^    t^o n^^i^^,.^^^^ ACHIEVED WITH ABSOLUTE POSITION ACCU- 

P.o-^yj^rPH^ £?0^.^^^E LAUNCH SITI IN 
c.^i^^o^O^I^^ *S -50 DEGS DECL NATION CAN 
513162H«N0 #»THE INFIUENCE OF 

SENSING MEASUREMENTS. VOL 
J2^PP*»HSo T5-?400, HAWKER 

REVTESED 
(15 5, 35 liM/;.  iHt EARTH'S ATMOSPHERE IS DFSrR 
THE IMPORTANT .PHYSICAL.PROQESSES OCCURR1N6 WITH 

IS APPROXIMATE 
TEXAS. SOURCE!- 

.u^  . « r,BE OBSERVED.«9 
^THE ATMOSPHERE ON REMOTE 

^3*ESR0 CONTRACT NO. 1838/ 

RT PHYSICAL PROCE??SPS nrniRRTMr, WITHIN IT ARE 
ESSES IN( 
SCATTER ANn EMISSION; PARTTCLL 

EMISSION; RE*RACTI6N AND^TURguLFNCE '' 
OF TH^SE ATROSPHERIC PROCESSES ON PAsSlVE 

"  '        ON VARIOUS PLATFORMS  ~ 

TO 

HE 
EXPLAINED,_..THESE PROCESSES INCLUDE: GASEOUS ABSORPTION 

:NG AND ABSORPTION AND 
.THE INFLUENCES 

SENSORS MOUNTED ON'VARI6US"PLATF6RMS"ARE^REV?EWED'^^ 
^i^^kk^n S???^?;^'y^, J^S^^^P^^S, TO RESTORE )(TMOSPHERIC 
FSF^^^^^^^      ^?$es^-n^?A^[s^3F ^fu^?^^!^^?HE lai^ 
RipfrWA5^LrN§TA^?2f ^'^^ ''   ''''''   ''''''''   ''   ''''^   ''' 

^^lJ^iVS^° 5!!^^ INFLUENCE OF THE ATMOSPHERE ON REMOTE 
§i^^^KS2!^^^5f^§^I5^,)(°'-. 2»ESR0 CONTRACT NO. 1837/72 Pp« 
HSD-TD-7400. HAWKER SIDDLEY DYNAMICS»DEC 1973»N74-?n987« 
THIS SECOND VOLUME (OF 4) GIVFS DETAILS ON REMOTE SFNSINR 
OF WAVELENGTHS FROM UV TO FAR IRT TH6 EARTH-S ATMOSPHFRF 
IS DESCRIBED AND THE IMPORTANT PHYSICAL PROCESSES OCCURRING 
^Utii^rP *RE EXPLAINED.  THESE PROCESSES INCLUDE: GASEOUS 
ABSORPTION AND EMISSION; PARTICLE SCATTERING AND ABSORPTION 
AND EMISSION; REFRACTION AND TURBULENCET  THE INFLUENCES OF 
THESE ATMOSPHERIC PROCESSES ON PASSIVE AND ACT VE SENSORS 
MOUNTED ON VARIOUS PLATFORMS ARE REVIEWED. FINALLY. 
CORRECTIVE TECNIQUES. TO RESTORE ATMOSPHERIC DEGRADED DATA 

^ TO AN ERROR-FREE FRAME. IS EX AM I NED . <*-■       ucoK^utj UA i A 
^^^^?-Ji?oik^25io9A^^^BLIOGRAPHY OF FAR IR SPECTROSCoPY»NO #» 

INFRARED PHYSICS. VOL. 10, 1-55^» t Q70»NO #»THIS BIBl lOGRAPHY 
CONTAINS REFERENCES TO SPECTROSCOP IC STUDIES WITHIN THE 
RfGION 50-2000 UM (.05-2 MM) WAVELENGTH.  A NUMBER OF PAPERS 
ARE  NCLUDED^DEALING WITH TECHNIQUES AND THEORETICAL DIS- 
CUSSIONS, APPLICABLE IN THIS REGION.  PAPERS ARE LISTED BY 
^i^?n9r Sl^^yCATION AND THE FIRST AUTHOR'S NAME IN ALPHA- 
?NCLUDED 22        ^^^   ^ GENERAL CATEGORIZATI ON IS 

1411818<»STEPHENS0N. D.A. AND STRAUCH. R.G.*WATER VAPOR 
SPECTRUM NEAR 600 GHZ*NO #*JOURNAL OF MOLECULAR SPFCTRO- 
SCOPY. VOL. 35. 494-495»1970«N0 #^-^THIS LETTER REPORTS ON 
THE OBSERVATION OF ABSORPTION LINES OF H20 AND D20 AT 
FREQUENCIES NEAR 600 GHZ.  FQR H20. THE FREQUENCY OF 
THE TRANSITION 1(0,1) GOING TO 1(1,0) LlNE^WAS 5^6 9358 
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GHZ.  IN D20» THE FREQUENCY OF THE TRANSITION 0(0.0) 
GOING TO 1(1,1) LINE AS 607.3496 MHZ.**^ 

813511K*GAYDUK. V.I.; LOSKUTOV, V.S.J AND SEKlSTOV, 
NONLINEAR THEORY OF rOMPLEX DIELECTRIC CONSTANT OF 
GASES^NQ #*RAnlO ENGINEERING ANn ELECTRONIC PHYSICS^ 
21,   5-l7»N0V 1976«N0 #»AN EXPRESSION FQR TRE REAL 
IMAGINARY PART OF A COMPLEX DIELECTRIC CONSTANT E 
r^SuSPPl^^D^pN THP BASIS OF A COMPLEX POWER THEOREM.  THE 
COMPLEX IMPEDANCE OF A MATERIAL IS OBTAINED AS      ' 
OF MICROPARTTCLES.  THJS THEORY TS "^ 
OF ROTATING PARTICLES 
IS RARELY INTERRUPTED 

V.N. » 
DIPOLE 

VOL. 
AND 
- P'-JE" 

"OBTAINED 
APPLIED 

B^^r" 

. A FUNCTION 
  -..- . . . ^.^^   TO AN ENSEMBLE 

IN A MICROWAVE FIELD.  THE ROTATION 
BY COLLISIONS BETWEEN THE PARTICLES 
ROTATION IS RARELY INTERRUPTED BY 
PARTICLFS. A DEPENDENCE ^. - 

: IS DERIVED WHlrR INDICATPS THE 
:NlNG" OF THE MATERIAL. WHTCH IS 
KNOWN MICROSCOPIC PARAMETERS OF 

AMD MACROSCOPIC PARAMETERS 
APPLIED TO NH3 G^S AT 12 

AND 

OF 
MM 

IN A UWAV^ . .^^^. 
COLLISIONS BeTWEcN TH 
E" ON SIGNAL MAGNITUD 
PRESENCE OF A "BRIGHT 
EXPRESSED IN TERMS OF   
MOLECULAR SPINS (ROTATORS) 
THE MATERIAL.  THE THEORY I 
PRESSURE AND 1.8 CM WAVELENGTH; NONLINEAR EFFSCTS AI^E 

^SEEN AT 20 UWATTS IN A CAVITY.»» 
151181 -^RABACHE. P. AND REBROURS, B 

ABSORPTION COEFFICIENT OF H20. 03 
IN THE STRATOSPHERE»NO #»INFRAREn 
188«1975«N0 #9lN THIS ARTICLE THE   
OF THE^MOLECULAR ABSORPTION COEFFICIENTS OF 
FUNDAMENTAL CONSTITUENTS WHICH ABSORB AND EMIT 
THE STRATOSPHERE BETWEEN 0 ANP 200 CM-l.  THE SPECTRAL 
RESPONSE SHOWS CLEARLY THAT FOR ALTITUDES ABOVE 16 KM 
OZONE ABSORBS A SIGNIFICANT PART OF THE RADIATION 

55il8l6f*L0MBARDINI , P.P.; MELCHIORRI. F.; SAlIO- C; AND 
RALL'AGNOLA. L.^^ATMOSPHERIC TRANSMITTANCE IN THE FAR IR 
TESTA GRIGA«N0 #*INFRARED PHYSICS- VOL. 15, 73-78*l975» 

r-'ATMOSPHERIC_TRANSMITTANCE IN THE BAND 3O3-2OOO UM WAS 

^SPECTRAL ANALYSIS OF 
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PHYSICS. VOL. 15, 179- 
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AT 

,.- „ .. ■ ■■.^.  .,w,, . w . ...,,,^,,1 , , .,,,,.1. IN ■ 
MEASURED IN THE FAR IR SOLAR OBSERVATORY' 
.1980 M ABOVE STANDARD, SEA LEVEL.«<» 

B4i581A^>BlRCH, J.R.; HARpING, A.F.; CROSS- N.R.; AND ruuLCK. 
D.W.E.^-TEMPERATURE VARIATION OF THE SUBM I LL I METER WAVE- 
LENGTH^OPTICAL CONSTANTS OF SOOA-LIME-S I L I CA GLASS«NO #* 
INFRARED PHYSICS. VOL. 16, 4?i-422M976*N0 #»THE OPT ICAL 
CONSTANTS OF SOPA-LIMF GLASS ARE DESCRIBED FROM lO ' 
45 CM-l^FOR TEMPERATURES OF 1.8, 4.2 AND 293 DEG K 
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B4il817«ALVAREZ. J.A.; JENNINGs; R . E .,' ET AL . ^FAR I . R  MEA- 
SUREMENTS OF SELECTED OPTICAL MATERIALS AT 1 6 DEG K*NO #* 
INFRARED PHYSICS, VOL. 15. 45-49^1975^N0 #*REASUREMENTS 
1.6 DEG K OF THE TRANSMITTANCE AND REFRACTIVE INDEX OF 
2V^§^Z,^,f,RL!^^*r^LENE, POLY TETRA FLUOROETHYLENE HAJE B^EN 
MADE USING A MICHELSON INTERFEROMETER OPERATING IN THE" 
PHASE MODULATED MODE.-'Hi 

B21171E>*VEL'MIN,    V.A.;   KORETS.    V.F.;   ET   AL.»SOME   EFFECTS 

AT 
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TRACTIVE INDEX- PARTICLE SIZE DISTRIBUTIONS. HUMIDITY 
FFFFCTS - DATA Tfl 3? UM, LOW SPECTRAL RESOLUTION PROPAGA- 
TION (LOWTRAN). AND LASER TRANSMISSI ON.»* 

512682J^^RUSeRIDGE' M.G.^A NUMERICAL EXPERIMENT ON THE TURBULENT 
SCATTERING OF MICROWAVE RADIATION BY A TURBULENT PLASMA* 
NO #^*PLASMA PHYSICS. VOL. 10. 95-1 08 ?J1 968»N0 # *CAL CUL A T I ONS 
OF THE REFRACTIVE SCATTERING OF RADIATION IN A MEDIUM WITH 
RANDOMLY VARYING REFRACTIVE INDEX HAVE USUALLY BEEN LIMITED 
TO THE LINEAR APPROXIMATION WHERE THE SCATTERING IS WEAK. 
WORT (1966) HAS rONSIDERED STRONG SCATTERING IN THE NON- 
LINEAR REGIME BUT ONLY FOR VERY RESTYRICTED AND PHYSICALLY 
UNREALISTIC TYPE OF REFRACTIVE INDEX FLUCTUATION.  IN THIS 
PAPER WE DESCRIBE A NUMERICAL EXPERIMENT DESIGNED TO REMOVE 
THIS RESTRICTION AND INVESTIGATE A CASF WITH STRONG BUT 
REALISTIC REFRACTIVE INpEX FLUCTUATIONS. EXAMPLE OF RANnOM 
SURFACES ARE SET UP AND RAY TRAJECTORIES COMPUTED THROUGH 
SUCH SURFACES.  AN ANGULAR DIFFUSION COEFFICIENT EXPRESSING 
THE RATE AT WHICH THE MEAN SQUARE DEVIATION INCREASES WITH 
TRAJErTORY LENGTH IS EVALUATED FROM THE RESULTS AND SHOWN 
TO RE GIVEN BY AN EXPRESSION VERY SIMILAR TO THAT OBTAINED 
IN THE LINEAR APPROXIMATION, ALTHOUGH WE WORK IN A STRONGLY 
NON-1 I'NEAR REGIME. *« 

2]5llin..IMAI . I.; SUZUKI- E. >    IZAWA. T.; AND KURASHIZE- K.« 
STATISTICAL PROPERTIES OF RAINFALL AND RADIOWAVE ATTENUATION 
DUE TO RAIN»NO #«FSTC-725-76 (JAPANESE TRANSLATI ON)»MAY 19/6 
A:}-B015 583L*THIS 1959 ARTICLE CONSIDERS THE STATISTICA'- 
CORRELATIONS GOTTEN BETWEEN ATTENUATION DUE TO RATN, AND 
WAVEl ENGTH OF THE UWAVES (.9-10 CM) USED.  TITLES IN THE 
ARTIf'LE ARE: D    INTRODUCTION, 2) ESTIMATION OF THE SIZE OF 
RAIN CELL BASED ON AUTO CORRELATION ANALYSIS, 3) MEASURE- 

OF THE SIZE OF THE RAINFALL AREA BY RADAR, 4) ESTIMA- 
OF RADIO WAVE ATTENUATION PROBABILITY OF AN ARBITRARY 
BY PROBABILITY DISTRIBUTION OF POINT RAINFALL- 5) RELA- 
OF PROBABILITY DISTRIBUTION OF 10 MINUTE RAINFALL AND 

6» 

MENT 
TION 
LINK 
TION 
PROBABILITY DISTRIBUTION OF LONGER PERIOD RAINFALL.»» 

'     "       PROPERTIES 225181G»GGDARD, S.«RAD IOELECTRIC ATTENUATION OF RAIN 
IN THE 0.86 CM BAND»NO #<»J0URNAL DE RESERCHES ATMOSPHER I QUES . 
FRANCE. 121-167 (FTSC-HT-23-0301-15)»FEB 5, I965«AD-B009 838l 
*tA THEORETICAL ANALYSIS OF THE R A DI OELECTRI C PROPERTIES OF 
RAIN IN THE 0.86 CM BAND IS PERFORMED USING THE STATISTICS 
OBTAINED BY KERKER ON THE NO. AND SIZE OF RAINDROPS AND THE 
VALUES OF THE ATTENUATION ANn SCATTERING CROSS SECTIONS OF 
THE DROPS GIVEN BY HERMAN, BROWNING AND BATTON.  IT IS ALSO 
SHOWN THAT THE RATIO BETWEEN ATTENUATION AND INTENSITY IS 
INDEPENDENT OF DROP SIZE.  THE EXPERIMENTAL DEVICES USED T0 
CHECK THE PROPERTIES OF ATTENUATION IN THE RADIO BANn ARE 
DESCRIBED.  THE GENERAL RESULTS SHOW THAT IT IS POSSIBLE TO 
OVERi OOK THE ATTENUATION DUE TO ATMOSPHERIC GASES WHEN USING 
A SHORT BASE OF MEASUREMENTS (UP TO 10 KM).  THE INDEX OF 
REFRACTION FOR WATER AT .86 MM IS TAKEN TO BE M = 3.98 - 
IX2.37.<»» 

2253811 oVOGEL. WOLF HA RD«SCATT ER ING INTENSITY PLOTS AND TRANS- 
MISSION COEFFICIENTS FOR MM WAVE PROPAGATION THROUGH RAIN# 
CONTRACT NO, F33615-71-C-1203 AFAL-TR-71-345»DEC 197i» 
AD-890 408L»THIS REPORT PRESENTS THE RESULTS OF COMPUTER 
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ORWARD 
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ANn 
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CALCULATIONS OF SCATTERING OF MM RADIO WAVES BY RAIN AMD 
HAIL. ^POLAR PLOTS OF THE INTENSITY OF SCATTERING ARE 
§72^"^ ^°5 FREQUENCIES OF 30, loO, 150. AND 300 GHZ IM- 
PINGING ON SINGLE DROPS RANGING IN SIZE FROM 0-55 MM TO 
7.0 MM. IN SHAPES FROM I.O^MM TO 7.0 MM. AND ON DISTR BU- 
TION or RAINDROP SIZES ASSORTED WITH RAINFAl L RATES FROM 
0.25 MM/HR^TO 150 MM/HR.  IN ADDITION. TABLES AR" 
FQR^THESE FREQUENCIES AND THESE RAINFALL RATES 0 
ATTENUATION FROM ABSORPTION FROM SCATTERING THEIR 
JIONS.  THE FRACTIONS OF ENERGY BACKSCATTERED AND 
F^JJ^?IP^P^5 y^IT SOLID ANGLE ARE ALSO TABULATED 
RAIN RATES STUDIED.  INDICES QF REFRACTION FOR 
ICE ARE GIVEN (TASLE 2, PAGE §) AT FREQUENCIES 

„150, AND 300 GHZ.»« 
226311C»LAMMERS. UVEoINVESTI GAT IONS ON THE EFFECTS OF PRE- 

CIPITATION ON MM WAVE PROPAGATION: A PHD THESIS^NO #»TECH. 
NICAL UNIV. BERLIN, (WEST) GERMANY*»9 SEPT 1975»AD-8006 925L» 
SOATTERING AND TOTAL CROSS SECTIONS ARE COMPUTED, FOR 
tS';;'??^/^ ^.,^^' ^"^ *!=■- RELEVANT VALUES OF THE COMPLEX RE- 
FRACTIVE INDEX AND OF THE RATIO OF THE CIRCUMFERENCE TO 
THE WAVELENGTH.  POLARIZATION DEPENDENT EFFECTS ARE STUDIED 
yj.I^r,^T?jM^k^ APPROXIMATION.  MEASUREMENT MADE WITH FM RADAR 
FOR RAIN, FOG. AND DRY SNOW AGREE SATISFACTORILY WITH COM- 
PUTED VALUES.  THE RESULTS OF BACKSCATTER STUDIES ARE ALSO 
REPORTED.  DEBYE'S THEORY FOR THE DIELECTRIC CHARACTERISTICS 

.:r9^JA^i? AI^R ^^E ARE USED IN THE CALCULATIONS.  24 REFS.^* 
C341119ftRICHARD. VICTOR W.»MM WAVE RADAR APPLICATION TO WEAPON 
SYSTEMS«NO #«BRL REPORT ?63l»jUNE 1976^*AD-B012 103L *APPL I CA- 
TIONS OF MM WAVE RADAR IN GROUND TO AIR. GROUND TO GROUND. 
AND^AIR TO GROUND WEAPONS SYSTEMS ARE PRESENTED.  THE ADVAN- 
TAGES AND LIMITATIONS OF OPERATING ON MM WAVELENGTHS ARE 
DEFINED (FREQUENCY REGION 70-140 GHZ).  THE CHARACTERISTICS 
OF MM WAVE^RADAR PROPAGATION IN ADVERSE WEATHER ARE DESCRIBED 
WITH EMPHASIS ON RAIN BACKSCATTER AND ATTENUATION THEORY, 

^ EXPERIMENTAL DATA. AND RAIN EFFECTS ON RADAR PERFORMANCE.#» 
425l81CttGAMBLE. WM. L. AND HODGENS, TONY E . »PROPAGAT I ON 0!^ MM 

AND SUB MM WAVES^NO #»REDST0NE ARSENAL REPORT TE-7 7-14<f JUNE 
1977»AD-B023 622L«THIS REPORT PRESENTS THE RESULTS OF A 
LITERATURE SURVEY OF THE EFFECTS OF THE ATMOSPHERE ON MM AND 
SUB MM WAVE PROPAGATION.  THE REGIONS INVESTIGATED WERE CON- 
FINED TO A RANGE OF 35 GHZ TQ 408 GHZ (735 UM TO 8.57 MM). 
A SURVEY OF EXISTING THEORETICAL AND EXPERIMENTAL DATA IS 
PRESENTED FOR VARIOUS ATMOSPHERIC CONDITIONS.  METEOROLOGICAL 
UNCERTAINTIES AND THEIR EFFECTS ON ATTENUATION MEASUREMENTS 
ARE DESCRIBED.  AREAS WHERE SUPPLEMENTAL DATA ARE REQUIRFD 
FOR AN UNDERSTANDING SUFFICIENT TO THE NEEDS OF THF SYSTEMS 
ENGINEER ARE PRESENTED.  50 REFS.^n* 

524111B»BARRY, GEORGE; WOODBURY, DICK; AND ROWE. PETEP»AN 
INVESTIGATION OF REPORTED OVER-THE-HORIZON PROPAGATION AT 
35 GHZ*NO #«N0 #«nEC 1974«AD-B003 692L*AN EXPERIMENTAL AND 
THEORETIrAL INVESTIGATION OF A RUSSIAN ARTICLE "REFRACTIVE 
QUALITIES OF THE STRATOSPHERE LAYER EXPOSED TO CIRCULAR 
POLARIZED RADIO WAVES INTHE 30-45 GHZ BAND" BY V.A. 
KIVNYEVSKIY WAS DONE TO DETERMINE ITS VERACITY. THEORETI- 
CALLY, IT WAS IMPOSSIBLE!  EXPERIMENTALLY AT 35 GH7, THE 
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TANCE MEASUREMENTS, AS WELL AS PARTICLE SIZE DISTRIBUT 
OF MATERIALS THAT MAY BE USED AS AEROSOL OBSCURANTS. S 
CAN BE TAKEN (AS FAST AS 10<5o SPECTRA/Str) IN THE 0.65 
UM. 1.7-4,7 UM AND 9-l4 UM REGIONS. RADIOMETRiC DATA 
BE TAKEN {N THE VISIBLE. .9-1.06 UM. .96-2.69 UM, 3-5 
AND 8 UM REGIONS. OTHER REGIONS ARE ACCESSIBLE BY FIL 
CHANGES. THE PARTICLE SIZES THAT CAN B^ MPASURED RANG 
FROM ,009 TO .5 UM uSING AN AEROSOL ANALYZER. AND 1 UM 
UPWARDS USING A FILTER COLLErTION SYSTEM«<* 

A64381D«SARKIS0V. S.L. AND STEPONOV, S • I . *FTD-I D-(RS ) T-0 
NO #»DEC 7, 1977*^AD-B023 365L*THIS REPORT COVERS DISTA 
MEASUREMENTS NATURALLY OCCURRING AEROSOLS WITH THE AID 
TWO-STAGE CONDENSATION IMPACTER TRAPS. WITH THE PARTIC 
COLLECTED BEING FROM .01 MESOMETERS TO 10. OF MICRONS. 
WERE CONnUCTED AND IN THE FOLLOWING REGIONS; DESERT IN 
CITY DISTRICT OF SHEVCHERKO, KRASNOVODSKI; CASPIAN SEA 
NORTH CAVACASUS IN THE REGION OF MAKHACHKALA. KI7LYAR, 
STAVROPOL, NOLISHIK, KRASNODAR; BLACK SEA. SAMPLES WE 
TAKEN AT HEIGHTS OF 50, 100. 500, lOOO. 1500 METERS - 
5500 METERS ABOVE SEA LEVEL. M I CROPHYSICAL MEASUREHEN 
WERE ACCOMPANIED BY THE MEASUREMENTS OF THE PARAMETERS 
THE STATE OF THE ATMOSPHERE.»« 

A65391C»HANC0CK. J. HARRISON AND LIVINGSTON. PETER M.»PR 
FOR CALCULATING MIE SCATTERING FOR SPHERES USING KERKE 
FORMULATION. OVER A SPECIFIED PARTICLE SIZE DISTRIBUTI 
NO. #ffNRL REPORT NO. 7808»NOV 21. 1974^^AD-BQ 00 656L»A 
PROGRAM HAS BEEN WRITTEN FOR CALCULATING THE MIE ScATT 
FOR SPHERES WITH A COMPLEX iNnEX OF REFRACTION.  THg S 
TERED POWER IS EXPRESSED NUMERICALLY AS A CONVERGENT S 
AND THE RESULT IS INTEGRATED OVER A GIVEN PARTICLE DlS 
TION,  THE PROGRAM PROVIDES TWO OPTIONS: A) SCATT^REn 
TENSITIES IN A DIRECTION GIVEN BY THE POLAR ANGLE AND 
COLATITUDE, AND B) INTENSITY FUNCTIONS DEFINED IN TERM 
INTEGRALS WITH RESPECT TO THE MIE SIZE PARAMETER.*« 

A661961»RUHNKE, LOTHER H.. EDITOR»PROCEEDINGS OF A WORKS 
REMOTE SENSING OF THE MARINE ENVIR0NMENT«F52331»NRL RE 
3430»JUNE 1977«AD-B0?3 449L»THIS REPORT CONTAINS PAPER 
SENTED AT A MEETING ON NAVY NEEDS IN REMOTE SENSING AN 
STATE-OF-THE-ART OF ATMOSPHERIC REMOTE SENSING. PRESE 
WERE GIVEN ON A DEGRACTION OF THE MARINE ENVIRONMENT. 
NEEDS FOR ATMOSPHERIC MEASUREMENTS, AND ACTIVE AS WELL 
PASSIVE REMOTE SENSING USING IR. MICROWAVES AND ACOUTI 
TECHNIQUES.»» 

A661816«SIGEL» V.L. AND DUKHIN, S.S.*AEROSOLS. OUR FRIEN 
OUR ENEMIES*FTD-ID(RS)T-0977-77<^NO #ttJUNE 1977 »AD-8023 
THIS IS A LONG RAMBLING DISCUSSION ON AEROSOLS BY TWO 
AUTHORS. THEY DISCUSS HOW AEROSOLS ARE MADE. MEASURED 
SIBLE LIGHT) AND WHAT SUBSTANCES CAUSE AEROSOL FORMATI 
THEIR MANUFACTURING PROCESSES.** 

A66461A*IVLEV. L.S.; YANCHENKO, YE.L; AND SPAZHAKINLJ. M, 
EFFECTS OF THE MICROSTRUCTURE AND SIZE DISTRIBUTION OF 
SOL PARTICLES AND OPTICAL PROPERTIES OF AEROS0LS»NO #* 
1668-75*13 DEC 1975*AD-B013 655L*THE AUTHORS DISCUSS C 
LATED DATA ON THE OPTICAL PROPERTIES OF ABSORBING POLY 
PERSED ATMOSPHERIC AEROSOLS.  CORRELATIONS BETWEEN THE 
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^•'^;*iS^■,4*■»4*i•■ 

SOL STRUCTURE AND THE OPTICAL PROPERTIES ARE POINTED OUT. 
CONCLUSIONS ARE PRESENTED ON THE POSSIBILITY OF INVESTIGA- 
TING THE AEROSOL STRUCTURES BY MEANS OF EXPERIMENTAL EXTINC- 
TION AND INTERPRETATION OF BACKSCATTERING nATA.»» 

B64i6l7«SUDNUZAR0U. KH.E.*THE VERTIHAL EXTENT OF HAZE LAYER 
OVER CENTRAL ASIA^NO #»FSTC-0367-76»28 NOV 1976«AD-Bgl7 158L 
THIS DESCRIBES A SET OF AIRCRAFT OBSERVATIONS OF HAZE AND 
DUST STORM OVER THF TASHKENT OF RUSSIA.  THE AUTHOR RELATES 
THE AIR PRESSURE AND WIND CONDITIONS TO THE FORMATION OF 
THESE HAZES ANl' DUST STORMS.  DATA OF THIS TYPE IS PROFITABLE 
FOR USE AS A MODEL FOR MM WAVING LIGHT TRANSMISSIONS.»» 

C141718«CREPEAU, PAUL J.^TOPICS IN NAVAL TELECOMMUNICATIONS 
MEDIA ANALYSIS*NO #»NRL REPORT NO. 8080»DEC. 31, l976»An-  ^ 

"         --     REMENTS. THE NAVY EMPLOYS 
■ THF" 

8O16 496L»T0 MEET ITS MISSION REQU 
VARIOUS..FORMS OF TRANSMISSION MODE 

, , THE NAVY EMPlO' 
ROUGf^OUT IHE FREQUENCY 

CONTlNyUM^_ IN. .T HIS _ REPORT ;^ DATA /ROM . SEVER AL^REJIENJ ^HFD I A 
;siNG 

lANDS AND 
STUDIES ARE COLLATED TO PROVIDE A BASIS FOR ASS! 
MISSION PERFORMANCE IN THE DIFFERENT FREQUENCY 
ASSOCIATED MEDIA.  BANDS: HF THROUGH 35 GHZ.»» 

C241118^F0RSL, M,<JMILLIMETER RADAR I NVEST I G AT I ON«NO #«NADC-20- 
73013^26 MAR 1973^JAD-910 157L»THIS IS A TEST REPORT ON THE 
FIRST EFFECTIVE 95 GHZ RADAR THAT WAS CONDUCTED WITH VARIOUS 
TARGETS OVER LAND, SNOW AND WATER.  THE RESULTS^OF THESE 
TESTS AND POSSIBLE APPLICATIONS OF THE RADAR ARE DISCUSSED. 
SYSTEM PERFORMANCE FIGURES' RELATING TO DB ABOVE MINIMAL 
DESIRABLE SIGNAL. FOR A VARIETY OF TARGET, CORNER REFLECTORS 
TO NO. 26 COPPER WIRE ARE GIVEN.<*» 

C24U1C»ZIZ70, E.A.; KRICEK, J.V.; SOONG, A.; AND KOESTER. 
K.L,*MM SURVEILLANCE RADAR FOR THE MINI RPV*CONTRACT NO. 
DAA^07-76-C-0843<>NO #*30 JUNE 1977*AD-B020 114L»A 95-GHZ 
SURVEILLANCE RADAR BRASS BOARn HAS BEEN DESIGNED. FABRICATED 

■AND TESTED.  IT IS A FUNCTIONAL REPRESENTATIVE OF A MINIA- 
TURIZED PRODUCTION 95 GHZ RADAR SYSTEM OARRlEn ABOARD A MINI 
RPV.  THF TACTICAL FUNCTION OF THE SENSOR IS TO DETECT AND 
RECOGNIZE HARD TARGETS SUCH AS TANKS. TRUCKS. AND ARTILLERY 
PIECES IN THE COMBA' ZONE BEYOND THE FORWARD EDGE OF THE 
BATTLE AREA (FEBA).  THIS REPORT DESCRIBES THE MM RADAR 
BRASS BOARD. ITS ASSOCIATED INSTRUMENTATION, GROUND TESTING 
RESULTS, AND RECOMMENDATIONS.«» ^ ^ 

C241t2c»KApuSClENSKI , STANLEY J., ET AL.»MILLI METER WAVE 
COMMUNICATIONS PROGRAM: LINK TEST OF HIGH-SPEED DIGITAL 

' :T AN/GRC-173(XW-1)«N0 #«RADC-TR-74-329*JUN 1975« 
666L*THIS DESCRIBES THE RESULTS OF FIELD 
THE AN/GRC-173(XW-1) RADIO SET IN THE WASHINGTON. 

THIS SET OPERATING IN THE 36-38 TO GHZ BAND, 
>VING A BAND WIDTH OF 236 MEGABITS/SEC.  PROPAGATION DATA 

SHOWED THAT  THIS RADIO (LINE OF SIGHT) RECEPTION PATH 
AVAILABILITY WAS 99.99'/, FOR A 3-MONTH PERIOD WHICH INCLUDED 
RAINFALL, SNOW, AND FOG.  THE CONOLUSION DRAWN WAS THAT THIS 
SET FULFILLED ITS DESIGN REQUIREMENTS FOR LINE-OF-SIGHT 
COMMUNiCAT IONS.»« . . 

C24171A*T§A0, K.H.JJKA BAND SATELLITE COMMUNICATIONS SET AN/ASC- 
22^"'F33615-73-C-4036«MAR 1976»AD-Bni6 243L^>THIS REPORT 
DESCRIBES THE DESIGN AND DEVELOPMENT OF THE KA BAND 
SATELLITE COMMUNICATIONS SET,  AN/ASC-22.    THE SET 
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?n^5.\^.^o.i'i',^J,y^^^^-^S-2 G^Z BAND AND IS FOR AIRBORNE 
^ATcP^ ?^rP^I EXPERIMENTS WITH THE LINCOLN EXPERIMFNTAL 
SATELLITES LES-8 AND LES-9.  THIS TERMINAL INCLUDES AN 
^lMkl':^*^iI?/y§SirER. DOWN-LINK REcE IVER. FREQU^NPY^ * 
GENERATION^SYSTEM.^AND A HI6H TRANSMITjANCF RAQOME FOR 

C24311F*S00NG. A.A"; CANELI. J.M.; KOSOWSKY, L.H. AND KOtSTER, 
Dckno'?^T?*B^''4E!^gS9^R^^*^°^^RArT NO. DAAHOl-R-OOlO^NORpEN 
REP0RT^TE-CR-77-6»APRIL ?7» 1976»^D-B0l7 830L<»A SERIES OF 
RADAR EXPERIMENTS ON TARGET CROSS SECTION AND POLAR ZATION 
!J:HARACTERI^TICS^HAS^BEEN,PERFORMEP,AT_4,3 MM^ 
.K.   r-i-r,-• --'*1-^TARGETS (TANKS. ARMORED PERSONNEL ESE„IACTlUAU lAKUtliJ (lAN^S. ARMDREn PFR<^nMWFI  CARRIER, 

(MEADOW 
.^., - ^   -    K  AND WOODS) WERE EMPLOYFn FOR'THF FXPERI- 
SiKJo.M^WR.S^DAR PARAMETERS WERE VARIED IN THE MEASUREMENT 
??9??^^' ^^'::'it^^ PULSEWIDTH (20, 45. AND 70 NS ) . ANn POL AR- 
IZATION,  TARGET AND CLUTTER CROSS SECTION (PLS  AND AMPlI- 
lidPFc^^i^.Pli^U?^ ^P^    INVESTIGATED AS A FUNCTION OF JsP^CT 
£rSb^;c^Ht-.?iMlP^"r.A^D POLARIZATION.  FIXED TARGET ENHMCE" 
nfwLIf?y^i§VP,^F?^ EXAMINED USING A PULSE TO PULSE 

C24771D*WILT. ROBERT L.??4 GHZ RADlOMETER»CONTRACT 
76-C- NO. F33615- 

r>^   94 GHZ UWAVE RADIO- 
:STED.  A PROPAGATION 
WAS ACHIEVED WITH A 
NOISE FIGURE AND IF 
GOVERNMENT FURNISHED 

.,^^^ ■1173«N0 #»JUNE 1977»AD-B020 739 
METER WAS DESIGNED. FABRICATED AND T 
MEASUREMENT SENSITIVITY OF 3.5 DF6 K 
i?P„^2„0UTPyT BANDWIDTH. RADIOMETER 
BANDWIDTH WERE 12.3 DB AND 730 MHZ. 
lKm*ILk2S^L9^S^LA'^OR AND MIXER USING A WIRE EVALUATOR 
AND INCORPORATED INTO THE RADIOMETER. THE RADIOMETER IS 
^'^'nA'^fS^P^^P ^°I*L POWER RADIOMETER WITH PERIODIC CALI8RA- 

C341B19*N0 #»SUBMILLIMETER WAVE SUBSYSTEMS*NO #»SCIFNCE APPLI 
CATIONS, INC./U.S. ARMY MISSILE R«D COMMAND, REDSTONE 
ARSENAL*30 SEPT 1977»AD-B021 010L»THIS DESCRIBES A SUB MM 
K^yPn^^S RECEIVER; 2-C02 LASERS ARE USED TO GENERATF A 
DIFFERENCE FREQUENCY IN THE SUB MM REGION (EXACT BAND 
NOT GIVEN).^ THE ELECTRONIC CIRCUITRY ARE GIVEN. IN D 
THAT WERE USED To PHASE LOCK THE 2-C02 LASERS TOGETHF.- 
WITH PZT PIEZOELECTRIC DEVICES IN A FABRY PEROT-LASPR 
CAVITY,«» 

C361B1B<^WERNER, B ; BELANGER, B.; DOMIZIO- R.D.; AND SMITH, P. 
MILLIMETER SEMIACTIVE GUIDANCE SYSTEM^NO #»N0V 1976»AD-3017 
S^^t-.'Jt^^ CONCEPT INVOLVES THE USE OF A MM ILLUMINATOR 
MOUNTED ON AN RPV AIRCRAFT ON THE GROUND, ILLUMINATING A 
GROUND^VEHICLE SEEKER TARGET, AND A SEEKER MOUNTED  N A 
PROJECT LE^OR SIMILAR WEAPON AND GUIDING THE WEAPON TO THE 
ILLUMINATED TARGET.  TRADEOFF STUDIES WERE CONDUCTED TO 
DETERMINE THE OPTIMUM ILLUMINATOR WAVEFORM AND OPTIMUM 
SEEKER DESIGN.  ANALYSIS OF DETECTION CAPABILITIES AND 
IPA^'5^^^r,A?^'JR*'^Y WERE PERFORMED FOR BOTH CLEAR WEATHER 
AND ADVERSE WEATHER CONDITIONS.»» 

C445818»TYSL, VACLAV<>NEW PRINCIPLES FOR THE CONTRUCTIONS OF 
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SOME MICROWAVE COMPONENTS IN THE MM AND SUB MM WAVELENGTH 
REGION^NO #»i;?TH INTERNATIONAL SCIENTIFIC SYMPOSIUM, TECHNI- 
CAL COLLEGE, ILMENOUR. EAST GERMANY, 1967, (FTSC-0059-75)» 
12 AUG^1975#AD'B010 324L»THE AUTHOR DESCRIBES SEVERAL MM 
WAVE REFLECTOMETER DEVICES THAT MAY BE OF VALUE FOR MEASURE- 
MENTS OF DIELECTRIC CONSTANTS IN THE MM SUB MM WAVELENQTH 
REGION: QUASI-OPTICAL TECHNIQUES ARE USED^** 

Dl51118<^FANSLbR. KEVIN S.*ON THE FREE ELECTI^ON DENSITY IN A 
NUCLEAR BLAST ENVI RONMENT*NO #*BRL-MR-2688»11 SEPT l976« 
An-B0l4_240L<vA TECHNIQUE IS PRESENTED FOR INCLUDING TRANS- 
PORT EFFECTS IN CALcULAT I NG^THE FREE ELECTRON DENSITIES 
A NUCLEAR BLASI WITH A MODIFIED WEPH-D CODE.  TRANSPORT 

IN 

EFFECTS FOR DIFFERENT ALTlTUDpS AND TIMFS ARE SHOWN AND 
DISCUSSED.  IN AnDITION, A METHOn HAS BEEN DEVELOPFD TO 
ESTIMATE AN UPPER BOUND DISTANCE FROM EQUILIBRIUM TN A 
NUCLEAR BLAST. ^BY APPLYING BLAST WAVE SCAL NG THEORY, THE 
ELECTRON DISTRIBUTION WAS FOUND TO BE NEAR EQUILIBRIUM IN 

^ A SPECIFIC REGION; THE BLAST WAVE MAY THEN BE APPROXI MATED.*» 
543181 »MCCLATCHEY, R.M., ET AL.»NO #»ATMOSPHERIC ABSORPTION 

LINE PARAMETER COMP I L AT I ON* A . I?". CAMBRIDGE LABS, APCRI -TR- 
73-0096»1973»NO ##THIS IS A MAGNETIC TAPE OF OVER 109,000 
KNOWN TRANSACTIONS OF H20, 03. 02, Cg2, CO, N20, AND CH4 
BETWEEN 0.76 UM AND 3.26 MM. WITH A FEW EXCEPTIONS.  COPIES 
OF THIS TAPE ARE AVAILABLE FQR $60 FROM U.S  DEPARTMENT oF 
COMMERCE, NATIONAL CLIMACTIC CENTER, FEDERAL BUILD NG, 
ASHVILLE. NORTH CAROLINA 28801.»« 

A62192Ej»8AKER, L.RAY; AND PiNKLEY, LARY GUIDE FOR USER 
11 COMPUTE OF THE JTCG/M? SMOKE OBSERVATION MODEL II: SOM 

CODE^CONTRACT NO. DAAK40-77C-0141»LMSC-HREC-TR, D568206*' 
fEB 1978i»N0 #»THIS IS A COMPUTER CODE USAGE GUIDE FOR A 
VISIBLE (.4-.7 UM) AND I.R. (.7-14.0 UM) SMOKE OBSERVATION 
MODEL, SOM^II.  THIS MODEL HAS IN IT A MUNITION DISPERSAL 
MODULE. A CONTROL MODULE, AN OPTICS MQDEULE (WHICH CONTAINS 
PARTICLE SIZE DISTRIBUTION MODELS, MjE MODEL, ATMOSPHERIC 
AND ADVERSE WEAjHER MODELS INCLUDING THE LOwTRAN I I IB 
NWC/LOWTRAN ^OMPUTER MODEL, A SENSOR MODULE, MEGHAN CAL 
ModULE. AND^ERCEPTION MODULE.  IT APPEARS THAT A GOAL 
OF MM WAVE MODELING WOULD BE TO GENERATE AN "OPTICS 
MODULE'' SO THAT A PROGRAM LIKE THIS WOULD APPLY TO MM 
WAVES AS WELL.»<^ 

A61191E*N0 #«J0INT TECHNICAl COORpINATING GROUP FOR MUNITIONS 
EFFECTIVENESS: SMOKE-AN OBSERVATinN PR IMER^rQNTRACT HO 
FO8635-77-C-0273^^61 JI CG/ME-77-13*4 NOV 1977«N0 #»THIS IS 
A CONFERENCE PROCEEDING ON SMOKE OBSERVATION GIVEN AT A 
SHORT i-pURSE ON SMOKE OBSERVATION. AT THE UNIVERSITY OF 
IpNNESSEE SPACE INSTITUTE. FER ^1-22, l978   THE I^URpSsE 
9r, ^^I^.TSFT^L'H'^S IS TO ACQUAINT U.S. MILITARY PERSONNEL 
AND CONTRACTORS WITH THE MILITARY USAGES OF SMOKE.  IT 
DESCRIBES THE CHEMICAL CONSTITUENTS OF ORDINARY OBSCURANTS, 
SOVIET MILITARY PRACTICES- AND U.S. MILITARY USES. NO 
MENTION OF FAR IR QR MM WAVES IS MAnE HERE; THIS IS INCLUDED 
AS A SOURCE DOCUMENT FOR THE TyPES OF CHEMCALS THAT SHOULD 
BE INCLUDED IN FUTURE FAR IR - SUB MM MODELING OF ATMOSPHERIC 
TRANSMISSION . «« 

A625817^BALDASSARE D I B AR TOLO^OPT I C AL INTERACTIONS IN SOLlDS<>JOHN 
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WILEY CO.«NO #<*1968«N0 #i^"THE PURPOSE OF THIS BOOK IS TO PROVIDE 
PHYSICISTS WORKING WITH LASERS AND ABSORPTION AND Fl OURESENCE 
SPECTROSrOPY WITH A THEORETlfAl RArKGROUND"  TOPICS DISCUSSED 
RELATE TO CALCULATION OF ABSORPTION AND LOSS IN DIELEHTRICS 
AND EMISSION OF LIGHT. AND ARE OF INTEREST IN MM AND SU3 MM 
f^IELfic'''RIc CALCULATIONS** 

A3258I6»MAX BORN AND_KUN HUANG»"DYNAMICAL THEORY OF CRYSTAL 
«»1954»NQ #«THIS TEXT 
MANY OF THE CRYSTALS OF 
ATTENUATION. AND IS A 
OF REFRACTION AND 

THE 
0.5 
CAL( 
DETf 

LATTIcES"»OXFORn. CLARENDON PRESS«NO 
DISCUSSES THE DIELECTRIC BEHAVIOR OF 
IMPORTANCE RE-AEROSOL SCATTERING AND 
SOURCE BOOK OF CALCULATIONS OF INDEX 
DIELECTRIC CONSTANTS** 

A335A16*TH0MAS S. HARTWICK AND DEAN T. HODGES. EDS'.«"FAR IR/ 
SUB MM WAVE TECHNOLOGY / APPL I CAT IONS"*V0L . 105, PROCEEDINGS 
OF THE SOCIETY OF PHQTO-OPTlCAL INSTRUMENTATION ENGINEERS* 
»N0 #«APRIL i977»N0 #»THIS IS A COLLECTION OF PAPERS GIVEN 
APRIL 18-21. 1977 AT RESTON VA. MOST OF THE ARTICLES WOULD BE 
OF APPLICATION HERE SO WILL NOT BE LISTED SEPARATELTY«« 

113181J»nARRELL E. BURCH*ABSORPTI ON OF IR RAplANT ENERGY BY C02 
AND H20 ni. ABSORPTION BY H?0 BETWEEN 0.5 AND 36 CM-1(278 UM- 
2 CM)*NO #«J.O.S.A. VOL 58 No. 10.P 1383-1394*N0 #»OCT. I968<J 
INTERFEROMATIC TECHNIQUES HAVE BEEN EMPLOYED TO MEASURE THE 
H20 ABSORPTION BETWEEN APPROXIMATELY 12.6 CM-1 AND 36.0 CM-1. 

EXPERIMENTAL RESULTS. ALONG WITH RESULTS OBTAINED B^TWEPN 
CM-1 AND 10 CM-1 BY OTHER WORKERS. HAVE BEEN CQMPARCD WITH 
lULATED VALUES OF TRANSMITTANCE BASED ON THEORETICALLY 
;RMINED POSITIONS, STRENGTHS. WIDTHS. AND SHAPES OF ABSORPTION 

LINES. FROM THESE COMPARISONS IT HAS BECOME APPARENT THAT NONE 
OF THE WELL-KNOWN THEORETICAL LINE SHAPES ARE CORRECT FOR THE 
EXTREME WINGS OF THE H20 LINES BELOW APPROXIMATELY 40 CM-1. 
THE AMOUNT OF CONTINUUM ABSORPTION WHICH MUST BE ADDED TO THE 
THEORETICAL ABSORPTION COEFFICIENT TO PROVIDE AGREEMENT 
THE EXPERIMENTAL RESULTS HAS BEEN DETERMINED FOR N2 AND S! 
BROADENED LINES. A TABLE OF THE LINE PARAMETERS HAS BEEN IN- 
CLUDED. ALONG WITH A DISCUSSION OF THE PROCEDURE TO BE "OLLOWEn 
IN CALCULATING THE TRANSMITTANCE OF HOMOGENOUS AND INHOMOGENOUS 
PATHS** 

A63561M»TH0MAS H. NYMAN, KENNETH W. RUGGLES, ET.AL.. EDITORS* 
"PROCEEDINGS OF THE OPTICAL-SUB MM ATMOSPHERIC PROPAGATION 
CONFERENCE". VOL I. UNCLASSIFIED PROCEEDINGS. 6-9 DEC. 1976, 
A. F. ACADEMY*NO #*DEC 1976*N0 #*THIS REPORT IS ONE OF A 2 VOL. 
SET SUBMITTED FOR PRESENTATION AT THE OPTICAL-SUB MM ATMOSPHERIC 
PROPAGATION CONFERENCE HELD AT THE U.S.A.F. ACADEMY ON 6-9 DEC. 
1976. VOL.1 CONTAINS ALL THE UNCLASSIFIED PAPERS. VOL.11 CONTAINS 
THE CLASSIFIED PAPERS. PAPERS OF RELEVANCE TO MM AND SU3 MM WAVE 
PROPAGATION IN VOL.1 ARE AS FOLLOWS; #3."SUB MM WAVE PROPAGATION 
A SURVEY", BY W.L. GAMBLE AND B.D. GUNTHERJ #4, "SUB MM SYSTEM 
FOR IMAGING THROUGH INCLEMENT WEATHER" , BY R. HARTMANN, W.L.^ 
GAMBLE. ET.AL; #9. "ATMOSPHERIC TRANSMISSION MODELING: PROPOSED 
AEROSOL METHODOLOGY WITH APPLICATION TO THE GRAFENWOHR  ATMOS- 
PHERIC OPTICS DATA BASE", ROBERT E. ROBERTS.; #10. "COMPLEX 
REFRACTION INDEX OF ATMOSPHERIC PARTICULATE MATTER ". JAMES 
D. LINDBERG AND JAMES B. GILLESPIE; #14. "THE NATURE OF GUN ^^^ 
SMOKE AND DUST OBSCURATION DUE TO CANNON FIRING", E.W. STUEBERG 
ET.AL.; #15. "OPTICAL AEROSOL MODELS AND LIGHT SCATTERING PRO- 

WITH 
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GRAMS". R.W. FENN AND E.P. SHETTLE? #12, "EFFECT OF RELATIVE 
HUMiniTY ON AEROSOL SIZE DISTRIBUTION AND VISIBILITY". J.W. 
FITZGERALD; #27, "AN AEROSOL MEASUREMENT SYSTEM FOR LASER / 
AEROSOL INTERACTION STUDIES", G.L. TRUSTY AND T.H. COSDEN»» 

5111799»BERNARD GOLDBERG AND JAMES M I NK»COMMUNICAT I ON CHANNELS 
CHARACTERIZATION AND BEHAVIOR" PART IX, MILLIMETER WAVES<>IEEE 
PRESS, REPRINT VOLUME*NO #»1976»N0 #»THIS IS A COLLECTION (4) 
OF REPORTS ON MM WAVE COMMUNICATIONS, AND A BIBLIOGRAPHY OF lOQ 
REFERENCES ON MM WAVE PROPAGATION, TECHNOLOGY, DEVICES, CHANNEL 
MODELING. THE 4 REPRINTS OF THE BIBLIOGRAPHICAL COLLECTION ARE; 
"THE THEORY OF M WAVE LINE OF SIGHT PROPAGATION THROUGH A 
TURBULENT ATMOSPHERE", S. CLIFFORD. IEEE TRANSACTIONS ON ANTENNAS 
AND PROPAGATION, "PROPAGATION STUDIES IN MM WAVE LINK SYSTEMS", 
G.E. WERBEL ANn H.O. DRESSEL, PROC. IEEE. APRIL '67, "PROPAGATION 
PHENOMENON AFFECTING SATELLITE COMMUNICATIONS SYSTEM OPERATING 
IN THE CM AND MM WAVE LENGTH BANDS", R.K. CRANE, "PROC. lEEt 
FEB. '71, AND "CHARACTERISTICS OF AN EXPERIMENTAL GUIDID MM WAVE 
TRANSMISSION SYSTEM". K. MIYASUCHI, ET.AL., IfcEE TRANS. COMM., 
AUG. '/2«» 
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