A MODEL FOR PREDICTING INTEGRATED MAN-MACHINE SYSTEMS RELIABILITY

prepared for
Naval Sea Systems Command
Department of the Navy
Washingten, D. C

Izplied Psychological Services
Sciance Genter
'Wuyne, Wa.

under
Contract NOOO24.72-C.127

This document has been appioved for public release und sale: its distribution is unlimlted.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dafe Enfered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	REPORT NUMEER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subilile) A Model for Predicting Integrated Man-Machine System Reliability: Model Logic and Description		5. TYPE OF REPORT A PERIOD COVERED Technical Report
	AUTHOR(A) Arthur I. Siegel J. Jay Wolf Martin R. Lautman	8. Contract or grant number(e) N00024-72-C-1277
	PERFORMING ORGANIZATION NAME AND ADDRESS Applied Psychological Services, Inc. 404 E. Lancaster Avenue Wayne, Pa. 19087	10. PROGRAM ELEMENT, PROJECT, TASK
11. Controlling office name and adoress		12. report date November 1974 13. NUMBER OF PAGES 224
14. MONITORING AGENCY NAME a ADORESS(II dillterent from Conitrolling Offico)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale; its distribution is unlimited.		
17. DISTRIBUTION STATEMENT (of the sbstract ontered in Block 20, If difleront from Ropori)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necesaary and identlfy by block number) reliability, availability, maintainability, modeling, simulation, performance, system evaluation, psychology, mathematical analyses, human engineering, engineering psychology.		
20. ABSTRACT (Confinue on reverat ide If necessary and identify by block number) A previously developed man-machine model which is capable of simulating closed man-machine systems operated by crews of from 4 to $20 \mathrm{mem}-$ bers was substantially modified so as to allow its use for system reliability and system availability predictive purposes. The resultant new model is capable of generating new system availability and reliability measures based on human and equipment performance resulting from the computer simulation runs.		

20.

A description of the revised computer model including the changes is presented, together with the model flowchart and user information.

The degree of success in producing rational output achieved during a set of basic runs using the revised model and program is discussed.

A MODEL FOR PREDICTING INTEGRATED MAN-MACHINE SYSTEM RELIABILITY

Model Logic and Description

Arthur I. Siegel
J. Jay Wolf
Martin R. Lautman

prepared for

Naval Sea Systems Command
Department of the Navy
Washington, D. C.

by

Applied Psychological Services, Inc.
Science Center
Wayne, Pennsylvania
under
Contract N00024-72-C-1277

```
This document has been approved for publiceree
lease and sate: its distribution is unlinited

\section*{ABSTRACT}

A previously developed man-machine model which is capable of simulating closed man-machine systems operated by crews of from 4 to 20 members was substantially modified so as to allow its use for system reliability and system availability predictive purposes. The resultant new model is capable of generating new system availability and reliability measures based on human and equipment performance resulting from the computer simulation runs.

A description of the revised computer model including the changes is presented, together with the model flowchart and user information.

The degree of success in producing rational output achieved during a set of basic runs using the revised model and program is discussed.

The authors acknowledge with sincere thanks the contributions which others have made to this model development and enhancement study. Dr. Robert Coleman contributed some of the concepts, equations, and logic incorporated into the equipment reliability section of the new model, and to the system effectiveness measures. Mr. Jon Bearde assisted in the preparation of the revised computer programs and prepared simulation runs for the computer. Mr. Frank Agresti and Mr. William Helsel, General Electric Company, facilitated the computer analyses.

We are also considerably indebted to Mr. James Jenkins and Mr. Kenneth LaSala of the Naval Ship Systems Command for their advice and assistance in formulating the research and in deriving the new model features. Finally, we express our appreciation to Dr. Jerry Lamb of the Naval Undersea Systems Center and Mr. Carl Sontz of Tracor, Inc., who provided beneficial suggestions throughout.

\author{
Arthur I. Siegel \\ J. Jay Wolf \\ Martin R. Lautman
}

APPLIED PSYCHOLOGICAL SERVICES, INC. November 1974

TABLE OF CONTENTS
Page
CHAPTER I - INTRODUCTION AND BACKGROUND ..... 1
General Overview ..... 1
Prior NAVSHIPS Sponsored Efforts ..... 1
Goals ..... 4
Numerical Estimate of Reliability ..... 4
Characteristics of the Numeric ..... 5
Level of Specificity ..... 5
Sensitivity and Robustness ..... 6
Model Reliability, Validity, and Generality ..... 6
Other Goals Established ..... 7
Further Relationships Among the APS Models and Related Efforts ..... 7
CHAPTER II - THE MODEL AND THE VARIABLES SIMULATED ..... 11
Introduction ..... 11
Data Input Required ..... 20
Crew Formation and Initial Value Selection. ..... 21
Preparations for Daily Simulation ..... 25
Daily Simulation ..... 26
Motion Sickness ..... 26
Operator Induced Malfunctions ..... 28
Intermittent Failures. ..... 30
Event Processing ..... 30
Personnel Selection for Assignments ..... 31
Group Leader Identification ..... 32
Event Start Time ..... 33
Shift Logic ..... 33
Event Families ..... 34
Fatigue ..... 36
Physical Capability ..... 38
Physical Capability Calculations ..... 41
Competence ..... 43
Stress ..... 44
Event Duration ..... 46
Aspiration ..... 47
Working Pace ..... 50
Group Pace Calculations ..... 52
Event Performance Time ..... 53
Event Bookkeeping ..... 57
Performance Adequacy ..... 58
Event Performance Efficiency. ..... 61
Recalculation of \(\mathrm{PCC}(\mathrm{M})\) and \(\mathrm{FA} T(\mathrm{M})\) ..... 61
Adjustment of Consumables ..... 61
Page
Event Success or Failure Determination ..... 62
Performance Level ..... 62
Event Results Recording ..... 63
Failure Processing ..... 63
End-of-Day Processing ..... 63
Average Physical Workload ..... 65
Competence Upgrading ..... 65
End-of-Day Performance Measures ..... 66
Physical Incapacity ..... 70
Safety Index ..... 70
End-of-Day Sleep ..... 72
End-of-Day Recording ..... 72
End-of-Iteration Summary Calculations and Recordings ..... 74
CHAPTER III -INITIAL MODEL APPLICATION--SENSITIVITY TESTS ..... 77
Mission Events ..... 77
Scheduled Events ..... 77
Repair Events ..... 79
Emergency Events ..... 79
Event Types ..... 82
Parameters ..... 82
Results ..... 88
Crew Size ..... 88
Sea State ..... 93
Workday Length and Proficiency ..... 97
Average Crew Pace ..... 101
Reliability Analysis ..... 101
CHAPTER IV -DISCUSSION, SUMMARY, AND CONCLUSIONS ..... 107
Stochastic vs. Deterministic Predictive Methods ..... 107
Summary and Conclusions ..... 108
REFERENCES ..... 111

\section*{TABLE OF CONTENTS (cont.)}Page
APPENDIX A - FORTRAN Codes and Definitions ..... 115
APPENDIX B - Input Data Formats ..... 135
A PPENDIX C - Logic Flow Charts ..... 151
APPENDIX D - Program Organization. ..... 175
APPENDLX E - Computer Programs ..... 183
2-1 Sample Computer Output for Initial Values ..... 24
2-2 Goal Aspiration Cases. ..... 48
2-3 Maximum TPCOM after Various Numbers of Days. ..... 66
2-4 End of-Day Performance Measures ..... 67
3-1 "Standard" Parameter Set Run Conditions ..... 84
3-2 Crosstraining Probability Matrix ..... 85
3-3 Sensitivity Test Runs ..... 86
3-4 Personnel Assignment Matrices for Crew Sizes of 9 and 14 ..... 87
3-5 Workday Length and Proficiency Parameter Values for Parameter Sets 2, 3, 5, and 6 ..... 98
3-6 Overall Reliability Metrics for Parameter Sets 2 and 3 ..... 104
3-7 Overall Reliability Metrics for Parameter Sets 3 and 7 ..... 105
3-8 Overall Reliability Metrics for Parameter Sets 4 and 5 ..... 105

\section*{LIST OF FIGURES}
Figure Page
2-1 General flow logic diagram of model ..... 13
2-2 Fatigue relief curve ..... 37
2-3 Fatigue buildup curve ..... 39
2-4 Overexertion function ..... 43
2-5 Mental load effects ..... 46
2-6 Pace adjustment effect ..... 50
2-7 Determination of slowness factor ..... 52
2-8 Stress effect ..... 53
2-9 Stress effectivity ..... 59
2-10 Sample event output ..... 64
2-11 Safety index ..... 71
2-12 Sample end-of-day recording ..... 73
2-13 Sample end-of-iteration recording ..... 76
3-1 Sample sensitivity test input data for scheduled events ..... 78
3-2 Sample sensitivity test input data for repair events ..... 80
3-3 Sensitivity test input data for emergency events ..... 81
3-4 Sample sensitivity test event type input data ..... 83
3-5 Event success and failure percentage as a function of crew size. 89
3-6 Hours (average) worked in primary specialty and hours idle as a function of crew size ..... 90
3-7 Average physical load as a function of crew size ..... 91
3-8 Average hours slept as a function of crew size ..... 92

\section*{LIST OF FIGURES (cont.)}
Figure Page
3-9 Average failure difference as a function of sea state ..... 94
3-10 Event success and failure as a function of sea state ..... 95
3-11 Average performance adequacy as a function of sea state ..... 96
3-12 Average physical load as a function of workday length and proficiency. ..... 99
3-13 Event success and failure percentage as a function of workday length and proficiency ..... 100
3-14 Average fatigue as a function of workday length and proficiency. ..... 102
3-15 Event success and failure as a function of average crew pace.. ..... 103

\section*{CHAPTER I}

\section*{INTRODUCTION AND BACKGROUND}

General Overview
The integration of human reliability (HR) and equipment reliability (ER) data into a single comprehensive model for predicting system reliability (SR) has been one of the major expressed concerns of Navy system planners (Blanchard, 1972). Efforts to use currently available models, however, have not met with desired success levels. An attempt was made, for example, to include human performance data in the WSEIAC (1965) model, even though an explicit basis was not originally provided in the model for such consideration. As noted by Blanchard (1972) "... attempting to force human performance characteristics relative to a particular system design into an available structure provided by a model developed to account for equipment consideration is extremely difficult and grossly inadequate. " Similarly, efforts to incorporate human performance data into the GEM (Orbach, 1968) and RAMA (Hamilton \& Bennett, 1970) models have not as yet proved useful. Moreover, even when separately noted, the contributions of HR and ER to SR have not been quantified in an easily generalizable fashion. The result makes extrapolations to new environments/equipments/personnel difficult (Smith et al., 1970). This problem is primarily a result of the absence of a clear and concise statement defining the separate characteristics and properties relevant both to ER determination and HR determination and the development of a unifying strategy for incorporating them into an SR framework. While a number of equipment reliability models are currently available (e.g., MIL-STD-756), there has only been limited work in human reliability modeling (Siegel \& Federman, 1974, Federman \& Siegel, 1973).

\section*{Prior NavSHIPS Sponsored Efforts}

Over the past several years, Applied Psychological Services has been engaged in developing, testing, and demonstrating a family of man-machine computer simulation models. Considerable emphasis has been given in these models to the HR aspects. The earliest model has also been successful in showing the utility of the stochastic simulation approach for predicting human reliability in the electronic equipment maintenance context (Siegel \& Federman, 1974). The results of this prior work point out and support the feasibility of the general approach for HR prediction purposes. On the basis of this prior effort it seemed that a similar approach to the prediction of HR in all contexts (electrical, electromechanical, mechanical, and electronic maintenance, as well as equipment operation) offered considerable promise.

However, the stochastic simulation model employed previously for HR prediction is limited to simulation of tasks performed by one or two operators and is further limited because it is not easily adaptable for total system simulation purposes. Accordingly, a model was sought which would allow simulation of the actions and behaviors of larger groups of men and total equipment systems. A further prerequisite
in such a model is the ability to accept and interact with ER data so as to yield an integrated SR numeric. Quite obviously, the output should be analyzable into the contributors to high or low SR.

A second Applied Psychological Services' large crew model was also considered. This model simulated psychosocial and performance interactions for groups of operators selected from crews of up to 90 men. Predictions made by the model, mostly based on HR considerations, include system effectiveness, crew morale and cohesiveness, operator orientation, sickness, and proficiency. In this model, each day of a multiday mission is simulated to yield crew-mission evaluation.

However, work with this model indicated that it was not appropriate for intermediate size crews, because as crew size decreases, so does group size, mitigating the applicability of model logic based on HR group theoretic concepts.

Another model developed and validated at Applied Psychological Services under Office of Naval Research sponsorship was considered. This model, called the intermediate size model (ISM), has been fully described elsewhere (Siegel, Lautman, \& Wolf, 1972; Siegel, Wolf, \& Cosentino, 1971; Siegel, Wolf, \& Fischl, 1969). Examples of variables included in the model are: crewman proficiency, crew morale, level of aspiration, fatigue, and stress.

The ISM simulates the acts and behaviors of individuals and/or groups of persons as they perform the tasks required for the operation of a man-machine system. While the model can also simulate tasks performed by a sinaller number of persons, its primary advantage is its ability to simulate teams of 4 to 20 mean. As such, it complements the one man - two man model (Siegel \& Wolf, 1962; 1969) and the large size crew models which had been previously developed and validated at Applied Psychological Services.

As in the large crew model, the approach to the problem of crew simulation in the ISM is through the formulation of a representation which simulates group activity and which yields operational (workload) measures, as well as measures of man-machine system performance efficiency. Because the model is to be used in simulating difficult and untried missions, in which the operators' physical and mental limitations may plan an important part, original emphasis in ISM development was placed on human or operator-oriented variables. Nevertheless, the more ordinary operational variables (the amount of time worked by operators, status of supplies, etc.) are also included. It has been found helpful to consider the separation of the principal model variables into these two categories: psychological or operator oriented variables, and operational variables. Examples of psychological variables are competence, characteristic work pace, physical capability, aspiration level, stress tolerance, and state of fatigue of the operator. Examples of operational variables simulated are level of consumables, performance time allowances, task essentiality, and extra work requirements (overtime).

In all of these models, an analysis of the task or mission to be simulated is required prior to simulation. This analysis provides input data to the computer. These data, together with information on equipment, personnel, emergencies, and the like are prepared for computer processing in accordance with a program which implements the model's logic. Under program control, the computer starts at mission time zero and simulates the crew's performance of each unit of work or occurrence during the mission.

To date, it appears that the attempt to include human behavioral and social interactive variables in determining system effectiveness has been limited to the efforts of Applied Psychological Services. No other model currently available attempts to account for and predict human behavior in as detailed and mathematically explicit a fashion. This has been true even though it has been estimated (Blanchard, 1972) that over a 20 year system life cycle, 80 per cent of the cost in that period can be assigned to personnel. It would appear, then, that the need for SR models which include personnel related variables is apparent and that the ISM provides such a framework. Furthermore, the logic of the ISM facilitates the extraction of both equipment related and human related factors as they are involved in system performance effectiveness.

Additionally, it was determined that the ISM could be modified so as to satisfy each of a number of characteristics and properties required in a system reliability oriented model.

The present report describes the entire model including these modifications and as such is self contained. It also presents the extent of success this resultant model has demonstrated in initial model testing simulation runs.

The approach adopted was to take the ISM, which is principally HR oriented, and to augment its basic capabilities with additional features such as:
- operatorinduced equipment failures
- motion sickness and its effects
- equipment performance measures
- shift simulation capability
- increased tracking of uses of consumables including spare parts
- enhanced summarization so as to yield measures of equipment, human, and system reliability
- simulation of a related group of events, called a "family," to yield increased simulation detail
- generalization of model and extension of limits
- consideration of equipment reliability by four major equipment types
- modification of equipment repair time calculation
- degradation of performance adequacy on emergency and on repair events when such events take longer than a target time to complete

The ISM, as modified for consideration of ER, HR, and SR determination, allows answering questions relative to a specific system such as:
- What is its ER?
- What is its HR ?
- Which components of ER contribute most to unreliability?
- Which components of HR contribute most to unreliability?
- What changes in equipment will lead to an increase in ER?
- What personnel changes will increase HR ?
- What behavioral variables contribute most to HR ?
- What part does ER and HR, respectively, contribute to SR ?
- What system design changes will best contribute to an increase in reliability?
- How does crew proficiency affect HR? SR?
- What are the effects of such items as motion sickness, fatigue, morale, level of aspirations, etc., on HR? on SR?

Goals

The balance of this chapter contains a description of the various goals set for the enhancement work in terms of features and characteristics required of the resulting model. General descriptions are also included of the approach taken. Specific information on model logic changes, and their impact on the ISM computer program are presented in Chapter II.

\section*{Numerical Estimate of Reliability}

Perhaps the most critical requirements of a HR model is the ability to provide a numeric defining HR in a manner which can be compounded with ER data. This compounding should result in a summary numeric defining the total SR. The importance of this property was noted by Blanchard (1972), who summarized the statements of his panel of model users as follows: "There was a concensus (sic) on the desirability of integrating, incorporating, or in some way combining human reliability models with equipment reliability models" and "... attention should be devoted to the statistical compatibility of human error rate data and equipment failure rate data which might in some way be combined to provide an overall output reliability index. "

Accordingly, ISM was modified so as to allow separate summary numerics reflecting both the reliability of: (1) equipment (and its "performance" during the simulation) and (2) humans and their performance. These numerics are based on a common metric and, as such, may be compounded to give an overall estimate of SR. The separate identification of the two reliability numerics allows the quantification of the contribution to SR of the two major system components. The results, accordingly,
allow identification of the component which might be most advantageously modified so as to provide the greatest improvement in overall SR.

\section*{Characteristics of the Numeric}

In order to arrive at an overall estimate for \(E R\), traditionally, single component reliabilities are expressed probabilistically and are compounded. An an analogous fashion, it has been suggested that HR be generally conceived as being a composite index. Meister (1970), for example, noted that "...since the reliability prediction (ER) is formulated in probabilistic terms, the HR technique must be formulated in comparable terms." Meister also observed that "...it will be necessary to deal with the likelihood of events occurring over a series of performances. " Somewhat more generally, it seems necessary to deal with the set of events which constitute performance as well as over a series of performances of the set. This approach possesses the advantage of identifying the specific components contributing to unreliability which degrade overall HR. System designers, among others, would be able to investigate on an "event-by-event" basis where major improvements either in the man-machine interface itself or in the introduction of some form of performance aiding would best augment HR and, consequently, SR. By an "event" in the HR sense is meant a component of the overall task such as "detection" in a sonar attack sequence.

As a further requirement within this approach, Blanchard (1972) noted in his survey that "... most respondents indicated that. . . use of single-value performance estimates including \(H R\) indices... would be inadequate for their needs. " This conclusion was reached from an expressed desire among his respondents for a quantification of the distributions (as well as tolerance limits) surrounding the performance estimates. This desire is analogous to the synthesizing of distributions from component test data as involved in a determination of system reliability, as described by Fagen and Wilson (undated). Similar data for the components, if not for the whole task, in an HR determination would also be desirable.

Accordingly, it seems that the underlying components of HR in a given system should be identified and measured on a common metric (probability of success), allowing both a measure of overall HR as well as the identification of the components of the final index. Distributions of values analogous to MTBF distributions will also be obtained, wherever possible. Where distributions are available, compounding might require convolution of mathematical functions.

\section*{Level of Specificity}

One of the key issues in HR determination is the level of specificity required. Balaban and Costello (1964) concluded that "There can ...be no general criterion for the level at which a system should be defined; nor can general ground rules be formulated. Each assessment must dictate its own criteria." Likewise, no uniform agreement among model users on this important question was found by Blanchard (1972).

Dunnette et al. (1972), in discussing the issues involved in the development of a Naval Personnel Status Index (NPSI) raised a problem somewhat similar to that considered here--the level of specificity necessary for the development of an index of HR. They suggested that the basic data system necessary for the development of their NPSI should focus on tasks or functions as the primary unit of analysis. In view of the difficult effort involved in the development of a data store type of system and possible user resistance to its employment (Blanchard, 1972), the HR metric focused in its level of analysis on tasks and/or functions. In ER determination, the level of specificity was selected at the equipment level. The ER for maintenance of all types of equipment (electrical, electromechanical, mechanical and electronic), as well as for equipment operation, was also provided for.

\section*{Sensitivity and Robustness}

While it is desirable that both the overall ER and HR indices of the model be sensitive to shifts in their respective components, subtle shifts should give rise to small or no changes in the major index. In general, each index should be robust to minor day-to-day fluctuation in magnitude and/or direction of their components. Additionally, changes in the index should not be time dependent in and of itself (Bryan, 1973).

\section*{Model Reliability, Validity, and Generality}

The first requirement of any model is that it be reliable; that is, its predictions must be stable. With stochastic models, this stability is reflected in the distribution of obtained values being consistent over different model runs. Following the establishment of model reliability, model validity can then be ascertained. Validity is defined as the demonstration that a model is measuring what it purports to measure. With stochastic models, predictive validity can be demonstrated when the distribution of model derived values reflect the expected (actual) distribution to within acceptable levels of agreement. Expected distributions can be obtained from historical records, theoretical derivations, etc. Since both reliability and validity are quantifiable constructs, it is necessary to define a model's reliability or validity in a statistical sense. The issue to be considered is one of more or less reliable and/or valid rather than a simple yes/no dichotomous decision. Validity, in the form of success or failure of performance, however, must be clearly stated (Meister, 1970).

The validity of a model is a function of its generality. As generality increases, validity decreases for any given situation. A balance between validity and generality must be forged in most stochastic model development efforts.

\section*{Other Goals Established}

In addition to the properties and characteristics noted above, other features mentioned by others were established as desirable objectives in enhancing model utility. First, a model should be easily utilized by nonspecialists (Meister, 1970). Input requirements and outputs should be as simple and nontechnical as possible, but experience has shown that models which tend to require a great deal of sophistication on the part of the user have not received wide application. Similarly, model input requirements (e.g., formats) should be set up in a manner that is compatible with both typical engineering and human factors analyses. To the extent that a model exhibits parallel structure in its requirements for engineering and human input data, the less complicated will be the input data task requirements.

To the extent possible, a model should make use of available data or data which can be developed from usually available data via transformations. Once again, the less the burden on the model user, the greater is the expected use of a model.

Additionally, a goal was established to develop a model general enough to be applicable during system development, as well as during final system performance assessment (Siegel, 1973 ; Leuba, 1968; Meister, 1970). This use of a model will probably be critical in evaluating overall utility. As Blanchard (1972) has noted, one of the most frequent problems facing Navy planners is deciding between two (or more) alternative systems while the systems are in early planning stages. The model should allow planners in the early phases of system development to compare relative reliability or values of some similar effectiveness measure for competing systems.

Finally, a model should include consideration of qualitative and quantitative manning requirements so as to allow testing of expected performance levels of crews of different skills and proficiencies within skills.

Fleishman et al. (1973) have observed that "The parallel specification of the elements contributing to human reliability in a manner analogous to that performed for machine components by engineers is a necessary prerequisite for predicting overall system reliability. " The adaptation of the ISM is designed to determine the ER and HR components of SR, as well as SR. This approach clearly follows that specification, as development of the ER and HR numerics, involves determination of aspects, properties, and characteristics of each. It also involves determination of how these can be dealt with in a parallel manner and their final integration into predicting SR without violating the typical assumptions underlying each.

Further Relationships Among the APS Models and Related Efforts
One question which might be raised is that of the relationships or continuity of variables from one model to another in the series of three Applied Psychological Services' models described. In an attempt to respond to this, and to indicate the relationship of the variables in the ISM to the others, the following summarization presents the principal variables, functions, or concepts of each of the three models.

Although no specific experiments have been performed to determine the continuity of predictions made by the three models due to their similarity, it is expected that reasonable output overlap and trend similarity would result if the same mission could be simulated on the different model.
\begin{tabular}{|c|c|c|c|c|}
\hline & & Smal1 Model & Intermediate Model & Large Group Model \\
\hline & \multirow[t]{3}{*}{Quantity} & \multirow[t]{3}{*}{1 or 2 men} & \(3-20\) men & 10-99 wen \\
\hline & & & groups & groups \\
\hline & & & group leader & crew size increment \\
\hline & Categories/ & & primary/secondary specialties & \\
\hline p & \multirow[t]{2}{*}{types} & & 10 personnel specialties and & 30 personnel specialties and \\
\hline E & & & ```
    cross training
command echelon
``` & \begin{tabular}{l}
cross training \\
ranks/rates \& promotion
\end{tabular} \\
\hline R & \multirow[t]{3}{*}{Goals} & \multirow[t]{3}{*}{goal aspiration} & aspiration & proficiency deviation \\
\hline & & & leaders expectation & leaders expectation \\
\hline S & & & performance adequacy & \\
\hline 0 & \multirow[t]{6}{*}{\begin{tabular}{l}
Physical \\
Attributes
\end{tabular}} & \multirow[t]{6}{*}{} & physical workload & confinement \\
\hline & & & motion sickness & \\
\hline N & & & hazard (safety index) & \\
\hline & & & sleep & \\
\hline N & & & physical incapability (sickness) & sickness \\
\hline & & & physical workload & \\
\hline \multicolumn{5}{|l|}{E} \\
\hline & Performance & stress and stress & competence & proficiency \\
\hline \multirow[t]{5}{*}{L} & \multirow[t]{5}{*}{Attributes} & thresholds & fatigue & orientation \\
\hline & & cohesiveness & pace & morale and morale thresholds \\
\hline & & individuality (speed) & stress and stress threshold & cohesiveness \\
\hline & & factor & mental load & \\
\hline & & & unmanned station hours & unmanned station hours \\
\hline \(\infty\) & Composition & 1-300 tasks & 200 events per day of 300 types & 1-200 action units per day \\
\hline \multirow[t]{2}{*}{M} & & & & \\
\hline & \multirow[t]{2}{*}{Duration} & \multirow[t]{2}{*}{\begin{tabular}{l}
minutes-hours \\
mission time limit
\end{tabular}} & \multirow[t]{2}{*}{hours to 30 days shifts} & to 30 days \\
\hline I & & & & shifts \\
\hline S & Environment & & sea state & environmental efficiency \\
\hline \multirow[t]{2}{*}{S} & \multirow[t]{9}{*}{\begin{tabular}{l}
Elements \\
(tasks)
\end{tabular}} & essentiality & essentiality & essentiality \\
\hline & & types (joint, & types (scheduled, emergency, repair) & types (normal, training, difficult) \\
\hline I & & equipment, decision, cyclic) & & \\
\hline 0 & & precedence (task and time) & precedence (task and time & precedence (time) \\
\hline \multirow[t]{5}{*}{N} & & & performance time & performance time \\
\hline & & success/failure determination & fixed and variable event times & \\
\hline & & waiting, idling & Fixed and variable event times & carryover if incomplete \\
\hline & & success probability & touch up or repeat & touch up or repeat \\
\hline & & time remaining & completion time limit & completion time limit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline E & Quantity & & 30 types & 35 types at 20 stations \\
\hline Q
U
I & Capability & equipment tasks & failure and generation of repairs operator initiated failures & failure and generation of repairs \\
\hline P & \multirow[t]{5}{*}{Performance/ Status} & \multirow[t]{5}{*}{} & failure rates & failure rates \\
\hline 'M & & & up time & \\
\hline E & & & down time & communications \\
\hline N & & & performance level & \\
\hline T & & & consumables levels & \\
\hline & \multirow[t]{7}{*}{Mission Effectiveness} & \multirow[t]{7}{*}{mission success probability performance repetitions peak stress tasks mission duration} & system reliability level & \multirow[t]{7}{*}{total efficiency} \\
\hline \(\bigcirc\) & & & \multirow[t]{6}{*}{\begin{tabular}{l}
system performance level \\
equipment performance efficiency system global effectiveness level consumables balances equipment and human MTBF \& MTTR
\end{tabular}} & \\
\hline U & & & & \\
\hline T & & & & \\
\hline P & & & & \\
\hline U & & & & \\
\hline T & & & & \\
\hline & \multirow[t]{6}{*}{Time Utilization} & \multirow[t]{6}{*}{tasks failed, ignored average time used waiting time average time overrun peak and average stress number of tasks and last task completed} & \multirow{6}{*}{\begin{tabular}{l}
success, idle, sleep, repair \\
no. of events, success, fail, ignore, primary, secondary
\end{tabular}} & hours worked, ot, unused, repair \\
\hline M & & & & no. of action units, repair, ignored essential, nonessential, \\
\hline A
S & & & & postphoned \\
\hline S & & & & \\
\hline R & & & & \\
\hline E & & & & \\
\hline M & \multirow[t]{6}{*}{Personnel} & goal aspiration & performance adequacy & psychosocial efficiency \\
\hline E & & performance & physical and mental load & crew cohesiveness index \\
\hline \(\stackrel{N}{\text { N }}\) & & average cohesiveness & health and safety indices & total crew efficiency \\
\hline T & & & performance & sick days \\
\hline \multirow[t]{5}{*}{S} & & & & crew orientation \\
\hline & & & & promotions \\
\hline & & & & \\
\hline & Frequency & iteration, and run & and run summary & iteration, and run summary \\
\hline & & summary & & \\
\hline
\end{tabular}

Principles Leading to Quantification of Variables

Since the ISM is an elaboration of an extant model and its foundations have already been documented, this report will not dwell on the mechanics of selecting or quantification of the model's variables. Siegel, Wolf, and Fischl (1969) present an extensive discussion on the following variables within the model:

\author{
physical capability \\ competence \\ fatigue \\ physical incompatibility \\ working pace \\ level of aspiration \\ psychological stress \\ confidence
}

This prior work includes literature references to studies considered pertinent and includes full descriptive and analytic logic. Particularly significant relationships are described and instances of agreements of concepts with specific literature sources are cited.

Briefly, the general policy followed in the selection and utilization of variables for use in the ISM, as well as the other APS models, is summarized by the following:
1. from the principal features of the model and its known goals, select one or more theories/approaches of greatest importance, e.g., small group theory, environmental considerations, extent of importance of equipment performance
2. with these guidelines, select specific variables on the basis of literature studies, prior model results, and/or best judgment
3. identify those factors on which selected variables should depend, i.e., the relationships among variables
4. extract from the literature the qualitative analytical expressions which link the variables one to another, fitting trend lines to known or estimated relationships
5. scale the variables and expressions to achieve consistency throughout the model

\section*{CHAPTER II}

THE MODEL AND THE VARIABLES SIMULA TED

\section*{Introduction}

The model makes provision for simulating characteristics of the individual crew members of a system and the equipment they operate. Each characteristic is altered as a function of events that transpire during a simulated mission, and each in turn exerts an influence on mission events. In general, the HR oriented characteristics subsume physical and mental performance factors, personality and motivational factors, learning and reinforcement, and aspiration and leadership.

A crew of 4 to 20 men is modeled. The ER factors include equipment repairs by type, sea state, intermittent failures, up and down time factors, and equipment performance measures. The activities to be assigned to and performed by the crew are itemized into specific events for each day of a multiday mission. This information, together with data on average personnel performance, on equipments to be operated, and on emergencies which may occur, are provided in coded form to the high speed digital computer. These data are manipulated for each scheduled event, each equipment repair event (or event family), and each emergency which is encountered. The major segments of the model are:
1. crew formation
identification of each crew member and assignment of specific capabilities and characteristics to each crew member
2. daily schedule generation
preparation of itemized events to be completed on each day of the mission
3. personnel assignment
selection of individual men to accomplish the work of each event with option to use a shift assignment logic
4. event simulation
calculation of conditions existing during each event and the determination of how well and how quickly the assigned men accomplish the work which constitutes the event
5. personnel update
modification of the numerical status of human and equipment variables as a result of group performance during the event
6. results recording
selection and display of the value of key variables and summarized conditions as desired (i.e., for each event, each day, each mission iteration, and a summary of all iterations)

Figure 2-1 presents a gross view of the flow logic sequencing. A more detailed logical flow diagram of the model is included as Appendix C. The two flow charts are compatible in that the key nodes, identified by circles containing lower case letters, represent corresponding points in the model and program. The computer program, written in the FORTRAN IV language, implements these flow charts and the sequenced logic, as described. To facilitate both descriptive and analytic program-to-model interaction, this report will utilize FORTRAN variable names. Appendix \(A\) to this report presents a list of the variable names and definitions.

Missions of durations of up to 30 days can be simulated. A mission to be simulated may be composed of up to 300 types of events, and 200 of any of these types may be scheduled on any given day. The events are performed by crews of no more than 20 men who are in up to 10 different personnel specialties and who may be in four command levels. The crew may operate up to 30 types of equipment and may encounter up to 10 types of emergencies. Events are performed by from 1 to 20 men selected from the crew (or shift) to form a group which accomplishes the specific event.

FIGURE 2-1. GENERAL FLOW LOGIC DIAGRAM OF MODEL

ASSIGN MEN TO GROUP AS REQUIRED BY TYPE. SELECT ON CRITERIA, IN ORBER OF IMPORTANCE ARE:
(1) LEAST AMOUNT OF TIME WORKED
(2) MATCH OF WORKER TO ENERGY REQUIRED
(3) COMPETENCE
(4) ASSIGNED SHIFTS

ASSIGN IN PRIMARY SPECIALTY IF AVAILABLE (EXCEPT TRAINING EVENTS) OTHERWISE IN ALTERNATE SPECIALTY.

DETERMINE EVENT START TIME AS A FUNCTION OF:
- TIME ASSIGNED MEN ARE AVAIL. ABLE AND ASSIGNED SHIFTS
- COMPLETION OF PRIOR REQUIRED EVENT
- earliest possible start time SPECIFIED

16

FIGURE 2-1. (CONT.)

FIGURE 2-1. (CONT.)

FIGURE 2-1. (CONT.)

\section*{Data Input Required}

Six sets of data are required prior to use of the model. The individual items of data in each of these sets are given in the various tables in Appendix B. A change was made in the method of handling scheduled event data. Instead of providing input data for up to 80 events each day, the model was expanded and generalized to allow the task analyst to specify (and provide input data for) up to 300 event types. Any of these can be scheduled at any time of any day. The input data for event types is defined in Appendix B. Also, for each day of the mission, the task analyst develops event sequence data for up to 200 scheduled events planned to be performed that day. These task sequence data, specified in Appendix B (each refering to one of the predefined task types) constitute the crew daily workload.

All times in the simulation are given to a precision of hundredths of an hour. Each 24 hour day is simulated, and time is counted from 0000 to 23.99. A subset of the data items for scheduled events is required to describe an unscheduled repair of an equipment or to describe an occurrence of an emergency. Repair events are also called out by type of event.

Note here that the model now distinguishes between incidence of hard equipment failure (a condition in which the equipment is completely inoperable as a result of, for example, a component failure) and the incidence of intermittent failure (a condition in which no "repair" is accomplished but which results in a reduction of performance "score" for the equipment).

The next set of data, relating to personnel characteristics and qualities for the mission, consists of the elements itemized and described in Appendix B. The first is average population body weight (WT). If a specific system is being simulated in which the body weights of its personnel are known to differ from those of the general population or the general military population, the mean weight and standard deviation of that specific system's manning tables become the input data. For all other circumstances, the mean weight and standard deviation may be obtained from any appropriate anthropometric tabulation (e.g., Damon, Stoudt, \& McFarland, 1966; Webb, 1964; Hertzberg, Daniels, \& Churchill, 1950; etc.). The crosstraining probability table provides the likelihood values of a man of each type having been crosstrained in each secondary specialty.

Appendix B lists the parameters of the model. This model monitors the level of up to 20 selected consumables. Of these 20,10 may be monitored on a unit expenditure basis and 10 may be monitored on a rate of expenditure (e.g., 100 gallons per hour) basis. One parameter input specifies the initial inventory of consumables at the beginning of the mission in arbitrary units. A secondary input specifies the consumable threshold values. When the value of one or more consumables drops below the selected threshold, those events which require this consumable (except repairs and emergencies) are ignored. The parameter \(N\) provides for preselecting the number of simulations to be performed. Other parameters are described later in this chapter as their influence is noted during the processing flow.

FORTRAN nomenclature for other data items, constants, arrays and variables complete Appendix B. Discussion of recordings of results in various printout options is postponed to the end of the event simulation discussion.

Crew Formation and Initial Value Selection
The processing begins at circle a of Figure 2-1 or Appendix C. The number of men in the crew is determined totally and by command echelon using the MEN [NT, ICE(M)] data provided as input from the personnel data. Each man is assigned to one of four command echelon values:
1. officer
2. senior petty officer
3. junior petty officer
4. unrated

Then, each crew member is assigned a primary specialty or type number, IPS(M), by the computer. Next, using this assignment and the personnel crosstraining table, PTT[IT, IPS(M)], from the set of personnel input data, each crew member is assigned a secondary specialty, ISS(M). Values of IPS(M) and ISS(M) range from one to 30 , corresponding to the 30 possible types of personnel.

Crew members of different levels of physical capability are simulated. The physical capability variable, as employed, is intended to summarize and represent the physiological/anthropometric characteristics which the crew member brings to his job.

A normalized physical capability value, \(\mathrm{PC}(\mathrm{M})\), is now assigned to each man. It is the beginning of the mission value calculated using the mean and sigma of body weight of the total population (personnel input data) based on a normal distribution. Here, as well as elsewhere in this report, RD denotes a random deviate, i.e., a number drawn at random from the normal distribution with a mean of zero and a standard deviation of unity. A crew member of average weight will have a value of \(\mathrm{PC}(\mathrm{M})=1\).

The parameter CALRY represents the energy consumption of the average crew member in a day. Using each man's normalized body weight as a multiplier with the parameter CALRY, a specific value is calculated indicating the average number of calories, CAL(M), which each man normally could be expected to expend each day. A similar but short term value of energy or power output (consumption) rate, \(\operatorname{PWR}(\mathrm{M})\), is calculated for each crew member, again using \(\operatorname{PC}(\mathrm{M})\) as a multiplier. The parameter PWRRT, the average caloric expenditure of all crew members over a strenuous one hour task, is multiplied by the physical capability value \(\operatorname{PC}(M)\) for each \(M\), and the result PWR(M) is used as the short term power rate per hour. (See bottom-right box of Appendix C, flow chart sheet 1.) PWRRT (mnemonic power rate) is considered to reflect a short term peak workload requirement.

Values for individual crew member's pace or working speed are selected by pseudorandom number techniques from a normal distribution having a mean equal to the average crew pace parameter, \(A C P\), and a standard deviation of 0.11 . That is, 68 per cent of the crew population can be expected to fall in the range from ACP 0.11 (fast operators) to \(\mathrm{ACP}+0.11\) (slow operators).

In a similar way, the model next calls for the calculation of a value representing the level of aspiration, \(\operatorname{ASP}(M)\), for each crew member at the start of each mission. These are selected from a normal distribution with a mean equal to the input parameter AASP and a standard deviation equal to one-tenth of that value. \(\operatorname{ASP}(\mathrm{M})\) values must fall in the 0-1 range.

The amount of sleep each man takes each day is monitored by the model as a factor influencing fatigue. One of the elements involved here is the length of time since the completion of a crew member's most recent sleep, HSLS(M); the mnemonic is hours since last sleep. In order to determine an initial value of this variable for each man at the beginning of the mission, the Monte Carlo method is again employed where the average is the input parameter, SLEEP, and the standard deviation is \(1 / 4\) SLEEP. Thus, this initial HSLS(M) value represents the number of hours since the last sleep of a man, \(M\), at the start of the mission.

Given values for HSLS(M) for every crew member, it is then possible to determine the fatigue level for each man, FAT(M), an important mission starting condition. This is accomplished using the subroutine FBUILD (fatigue buildup) shown in Appendix C.

The next initial condition calculation for the crew results in the selection of a stress threshold for each man, STRM(M). Again, a specific value is taken for each crew member from a normal distribution having an average equal to the average psychological stress threshold parameter, APST, and a standard deviation of APST/6.

The model next generates a value for competence of each crew member in both his primary and secondary specialties, \(\operatorname{PCOM}(M)\) and \(\operatorname{SCOM}(M)\), using subroutine PSCAP, Appendix C, page 22. Competence is a descriptive variable for affording gross categorization of the quality level of an individual's criterion behaviors. This is accomplished by command echelon using percentages of crew of various qualifications as provided in the personnel input data, and the summarized crew complements by command echelon, IAA(CE), previously calculated. The total crew competence is determined in the primary specialty as an average of the \(\operatorname{PCOM}(\mathrm{M})\) values over the crew.

Any physical incapacity, \(\mathrm{PI}(\mathrm{M})\), of a man at the beginning of the mission is calculated next in the same way in which it is determined before beginning each day's simulation. A few randomly selected men may have a degraded condition representing mild sickness. The number of such men to be so degraded each day, NPI, is determined by selecting a number from a Poisson distribution whose average is the quotient of the number of men in the crew divided by the parameter MPI (the average number of man days per incidence of degradation). For example, if there are 15 crew members and degradation is expected, on the average, once out of 10 man days, then the number of men considered handicapped is selected by drawing a number (always an integer) from the Poisson distribution having an average of \(15 / 10=1.5\). The selection of which specific individuals are considered to be degraded is made randomly so that all men are equally likely for selection. For each man, M, so selected, the model calculates the level of incapacitation, PI(M), and the duration in days[PI2(M)].

The level of physical incapacitation is calculated so as to yield an equiprobable value in the range from 0.75 to 0.95 . Similarly, the duration of the degradation is determined from a Poisson distribution sampling in which the average value is PID, a personnel input datum representing the average duration of a minor physical incapacitation. The model does not simulate the situation in which a man is incapacitated to an extent which precludes his working.

The results of all initial value selection computations are optionally recorded (print option 2, \(\operatorname{IND}(2)=1\)) individually for each crew member and summarized by crew echelon and for the total crew. A sample of these data is shown in Table 2-1.

Sample Computer Output for Initial Values
\(\qquad\) -APPLIED PSYCHOLOGICAL SEPYICFSO-NAVSEA HURT AIS,MRLAJJWAJB \(\qquad\) \(11 / 05174\) \(\qquad\) PAGE \(\qquad\) 7
PRENT OPYION PHO

Preparations for Daily Simulation
At circle b of Figure 2-1, several variables are reset to initiate the simulation. These resets precede the simulation of the first day's events.

In preparation for simulation of all daily events, the model now calls for the determination of the specific day of first occurrence of any repair (due to catastrophic failure) of each of the IQ equipments, as well as of the day of first occurrence of each of the \(K\) types of emergencies. There is a limit (including up to 10 operator induced failures) of 30 repairs per day. The dates of first repair are based on an exponential equipment failure distribution. These are calculated as one would determine the time of arrival of an event so distributed. (Note that the model critically determines the day of first occurrence of each failure. Later, each time a day is simulated in which such a failure occurs, the same procedure is used to determine the day of next occurrence of the failure. The method selected is from Bekey and Gerlough (1965):

A phenomenon characterized by sequences of arrivals may be treated by the exponential distribution; then:
\[
p(g \geq t)=e^{-t / K}
\]
expresses the probability that spacing between arrivals equals or exceeds the specified time, where \(g\) = gap between arrivals, \(\mathrm{t}=\) time, \(\mathrm{K}=\) average time spacing between arrivals and \(1 / K=\) arrivals per unit time. Then \(\mathrm{t}=-\mathrm{K} \ln (1-\mathrm{P})\). One may substitute a random fraction \(R=1-P\) and solve for the time between arrivals.

In this way, the day of first failure occurrence, IDF(IQ), is determined and rounded to the nearest integer day for each equipment, IQ. The "constant" used, RELH(IQ), is the average time in days between hard (catastrophic) failures of equipment \(I Q\) and the equipment failure rate is measured in average number of days between failure occurrences. During the course of the mission, as each failure occurs on a day being simulated, the day of occurrence of the next failure of that equipment is determined as outlined above and added to the previous day's value to obtain the current (next) value.

All IDF(IQ) values are reset to zero at the initiation of each mission iteration.

Determination of the similar day of first occurrence of each of \(K\) types of emergencies, \(\operatorname{IDE}(\mathrm{K})\), is based on the exponential distribution using the above described logic for the time of next equipment hard failure. This was implemented since it was considered that an assumption of a constant hazard rate for anticipation of emergencies was appropriate.

The following brief analysis, although it is a relatively standard derivation, shows that the consequence of this assumption is the exponential distribution.

Let \(\lambda \Delta t=\) probability of a random event between \(t\) and \(t+\Delta t\). Then, \(1-\lambda \Delta t\) \(=\) probability of no random event between \(t\) and \(t+\Delta t\). Let \(N(t)=\) probability of no event from \(T=0\) to \(T=t\). Then \(N(0)=1\), also \(N(t+\Delta t)=N(t) x(1-\lambda \Delta t)\). That is, no event from 0 to \(t+\Delta t\) means no event from 0 to \(t\) and no event from to \(t+\Delta t\). From this equation, we can obtain a differential equation, solve it, and so obtain the exponential distribution of time between events:
\[
\begin{aligned}
& N(t+\Delta t)-N(t)=-N(t) \lambda \Delta t \\
& \lim _{\Delta t \rightarrow 0}\left[\frac{N(t+\Delta t)-N(t)}{\Delta t}\right]=-N \lambda=\frac{d N}{d t}
\end{aligned}
\]

Solve differential equation, using \(R(0)=1\), to obtain:
\[
N(t)=e^{-\lambda t}
\]

Thus, a constant hazard rate and an exponential distribution of time between events are equivalent.

\section*{Daily Simulation}

The logic sequence now enters the phase of processing which is repeated serially for each mission day, ND. The sequence is initiated at circle c (Figure \(2-1)\) with reset of several variables in preparation for the daily processing.

\section*{Motion Sickness}

Next, the effect of sea state on crew performance is determined for the day. The operation of most nonshore based Navy equipment is in an environment where motion sickness can affect human reliability. Motion sickness is caused by particular kinds of motion; its symptoms include nausea, vomiting, malaise, and cold sweating. The incidence of motion sickness on sea cruises varies from less than one per cent to almost 100 per cent, depending on the vessel, the sea conditions, and other factors (Tyler, 1946). During moderate turbulence, a 25-30 per cent rate of sickness to the point of vomiting can be expected (Chinn, 1963). While it is generally accepted that when conditions are appropriate, almost
everyone will become motion sick, it has been shown (Hemingway \& Gareen, 1945) that the degree of susceptibility to motion sickness varies among individuals. A number of studies have shown that repeated or continuous exposure to motion results in declining motion sickness in most people (e. g. , Bard, 1945; Bruner, 1955). It is clear that sufficient empirical data exists to generate distributions of expected motion sickness as a function of mission length. The parameter inputs, SESTA (IS), specifies the cumulative probability of each of 10 values of the roughness of the sea from 0 (calm) to 9 (rough). For example, a value of SESTA \((6)=0.72\) indicates that 72 per cent of all mission days have a sea state of six or below. Prior to simulation of each day, a pseudorandom number (RY), in the 0 to 1 range, is compared to the 10 SESTA (IS) input values. Here is the sea state index \(0,1, \ldots, 9\). For example, if the SESTA(IS) values are:
\begin{tabular}{ccccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
SESTA (IS) & 0.10 & 0.30 & 0.50 & 0.80 & 0.90 & 0.95 & 0.97 & 0.98 & 0.99 & 1.0
\end{tabular}
and RY is . 36, the sea state for this day, ICSS, \(=2\) since SESTA(1)<RY but SESTA (2) \(>(R Y)\). The current day's sea state, ICSS, is selected as the minimum value of IS for which SESTA (IS) < RY is selected as the sea state for the current day. This sea state value is used in the calculation of a value for competence of each crewman for the day. Both primary and secondary specialty competences, TPCOM (M) and \(\operatorname{TSCOM}(\mathrm{M})\), are affected. The effect is linear such that no change to previously computed, nondegraded (start of mission) competence values is made if \(I S=0\) (calm sea) and such that start of mission values are degraded by a factor of 0.445 for a worst case of sea state of 9 , representing a heavy storm condition. This linear relationship between sea state and competence is shown in the bottom left box of logic flow sheet 4 in Appendix C.

Following this, the list of days of the first occurrence of repairs and emergencies (just calculated) is scanned to identify any repairs and/or emergencies which are to be simulated on this day. (The model provides for simulation of up to 12 "repair" events to represent a single equipment repair.) The total number of such repairs and emergencies is integrated with the events of this day. Pointers, identifying the sequence of events to be simulated, are then generated. If there are no repairs or emergencies, the pointer for event 1 will be 2 ; for event 2 it will be 3 , etc. When a family of one or more repair events or an emergency is encountered in this process, the logic calls for placing this unscheduled event in a random but equiprobable position in the sequence of all events for the day. The pointer for an unscheduled event is calculated by taking the product of a pseudorandom number in the interval \(0-1\) and the total number of events for the day, NTE. The pointer(s) for the event just prior to the unscheduled event(s) is (are) then adjusted to indicate the unscheduled event. The data for repairs and emergencies are transferred in memory for processing in sequence as determined by the pointers.

This process is accomplished by generating an array of pointers, NPTR(I), \(I=1,2, \ldots, N T E\), where NTE is the total number of events of all types. Pointers serve to identify the event to be simulated next, after each event. The maximum value of NTE is 570 , the sum of NOSE + NR + NE:

The pointer array space assignment is then:
\[
\begin{aligned}
0-200 & \text { scheduled events } \\
201-560 & \text { repair events } \\
561-570 & \text { emergency events }
\end{aligned}
\]

The following other data are now automatically inserted for repairs and emergencies:
\begin{tabular}{llc}
Kind of event ending & KE & variable end time \\
Type of event & INT & emergency or repair \\
Time event must be completed & TL & 24 hours (any time) \\
Time before which event cannot begin & ST & 0 hours (any time)
\end{tabular}

\section*{Operator Induced Malfunctions}

The possibility of an operator inducing malfunctions into the equipment with which he works has recently been incorporated into the model. At this point in the simulation for each day, specific equipments are identified on which such failures are to occur. Actual event simulations generated by repairs thus involved are calculated and described later.

The logic for this feature is given in logic flow sheet 5 of Appendix C. Essentially, it performs the following functions:
- During the daily schedule generation, it determines the events on which an operator induced equipment failure will occur:
- This can only occur once per event family.
- It is a function of the mental load of the event (an input code 1-9), the current sea state (\(0-9\)), and a random effect. The probability is highest when the sea state and mental loads assume their highest values. For example, when mental load for the event is low, i.e., has a value less than 3 , then an operator induced failure will occur if the ranges of these are:

RY1 <
\(0.001+\left(\frac{0.001 \mathrm{RY} 2}{4}\right)\left(\frac{\mathrm{ICSS}+1}{10}\right)\)

0 to 1 (0.001 to 0.00125) (0.1 to 1)
- The occurrence of the operator induced failure is then directly proportional to the current sea state and occurs with a probability equally likely to fall between 0.001 and 0.00125 times \(\frac{(\mathrm{ICSS}+1)}{10}\). For calm sea (\(\operatorname{ICSS}=0\)), this reduces to a probability in the range 0.0001 to 0.000125 . For ICSS \(=2\), then it does not exceed 0.00375 .

The probability of occurrence during an emergency is higher than during a scheduled event.
- In the case in which an operator initiated malfunction occurs, the model generates a family of up to 12 repair events to represent the repair of the equipment into which the failure was induced. These are inserted into the daily schedule of events in which the operator induced malfunction occurred.

Such an occurrence has the subsequent effect of lowering equipment reliability by adding events during which equipment will be logged by the model in a down (inoperable) condition.

Scaling has been selected so that the probability of an operator induced failure per event varies for repairs from 0.001 (low sea state and mental load) to 0.0375 (high sea state and mental load) and from 0.08 to 0.10 for emergencies.

\section*{Intermittent Failures}

As noted above, processing for hard equipment failures results in repair action events and in degraded equipment scores. The concept of intermittent failures provides for equipment down time, which results in worsened equipment reliability measures, but is not considered sufficiently significant to warrant operator repair action.

To incorporate this feature, the model calculates the number of occurrences of intermittent failures each mission day for each equipment, INO(IQ). This is accomplished by selection of a pseudo random number from a Poisson distribution with mean equal to the average number of intermittent failures per 24 hour period, RELI(JET), provided as an input parameter for each equipment type:
\begin{tabular}{ll}
JET & Equipment Type \\
\hline & \\
1 & Mechanical \\
2 & Electromechanical \\
3 & Electrical \\
4 & Electronic
\end{tabular}

Using this value of INO and TUI(IQ) (time an equipment is down for an average intermittent failure), the amount of "down time" for each equipment is calculated. These initial daily values of down time for each equipment will be increased later for each repair event, as it is simulated in turn.

\section*{Event Processing}

After the setting of the event number, IE, to the value of the first pointer and other initializations, the processing has reached circle \(d\) and begins a series of processing steps (through circle h) which is repeated for each event to be simulated.

The number of such occurrences, INO(IQ), is then RP[RELI(JET)], as shown in the top-middle box of flow logic sheet 6 in Appendix \(C\).

Following the resets for each event, the computer determines whether or not conditions exist which would justify skipping (ignoring) the current event. In no case is a repair or emergency event ignored; however, either of two general conditions could cause a scheduled event to be so treated. The first is a low value of the input essentiality of the event, \(\operatorname{IESS}(I E)\). If this essentiality value is less than the essentiality threshold parameter, IET, then the event is ignored. (The task/ mission analyst determines the essentiality thresholds on the basis of his understanding of the relative importance of each event to the mission and these values are provided as mission input.)

The second possible condition for skipping an event is too low a level for a consumable. The model provides for \(L\) (up to 10) consumables based on usage per event plus L1 (up to 10) consumables based on usage per time. The model also provides (up to 10) sets of 10 thresholds for the supply of each consumable. One set of thresholds is selected by TS(IE) (input data) as applicable to each event and if the value of one or more consumables is less than the corresponding selected threshold, then the event is ignored.

\section*{Personnel Selection for Assignments}

The logic detailing the selection of the most desirable personnel to assign to each a specific event begins at circle e of the flow chart. In general, the processing logic is similar for both normal events and training events. However, for simulating the performance of normal events, personnel are assigned on the basis of their primary specialty, whereas in the case of training events, the selection is made on the basis of the secondary specialty.

The processing is performed for each personnel type sequentially. All men of the desired personnel type (who have not already worked more hours than the overtime threshold parameter [WORK 2]) are considered and evaluated for selection on the basis of the following criteria:
1. the number of hours worked so far during the day, TW(M). The man who has worked least is preferred. If there is an excess of men, with equal TW(M) values available, of the type being sought, then the selection is made on the basis of
2. a function, CALR, relating the man's peak energy rate (over a one hour period) to the energy rate, in calories per hour, required by the event also normalized to a one hour period. All cases in which the required energy is less than the man's "available" energy are considered equal. The purpose of this selection criteria is to avoid a mismatch between the requirements of the job and the physical capability of the personnel assigned.
3. competence in the primary specialty, IPCOM(M). The most competent is selected first.

Before actually confirming the selection of a given man for assignment to the group which will perform the event, a test is made to determine if the performance of this event would require that the potential group member to work overtime. That is, the computer tests whether or not the current time worked, TW (M), plus the expected (average) event time, ADUR(IE), exceeds the overtime threshold parameter, WORK 1. If the threshold is not exceeded, then the individual who has been tentatively selected is confirmed for group assignment. If overtime is required for this man (for whom it has already been determined that he has worked least), then there are clearly no more desirable personnel of this type available. In this case, an incomplete processing indicator (IPI) is set. Following the processing of all the remaining personnel types, crosstrained crew members are sought to substitute for any primary specialty men who are unavailable because of the overtime requirement. The overtime thresholds including WORK 1 are provided as input parameters so that they may be varied on computer runs and the effects of such variation on output noted. Values of the parameters should be selected on the basis of reasonableness for the mission simulated, reflecting the realities of the work cycle.

The concept of a family of scheduled events (i.e., a group of interconnected and interrelated events) is also included. This is limited, however, to a series of events performed by one man. In case of such a family (of up to 12 events) all will be performed by the same man--whoever was selected by the selection logic for the first event of the family (i.e., if \(\operatorname{IFOI}(I E)=1\), from the event sequence input data).

By this process, one man at a time is selected and confirmed. If, when the most desirable crew member is selected, additional men are still required of this type, then the process repeats. When all required men have been confirmed, or the proper IPI has been set, the sequence of operations is repeated for each successive personnel type required by the event, until the entire required work group has been formed.

If the IPI indicator has been set during the process, the processing continues with the search for personnel who have been crosstrained in the personnel types which were not fully staffed by primary specialists. Should the situation arise in which no more personnel of the desired type are available in the secondary specialty without their working overtime, then a tally is made and cumulated of all such unmanned station hours, USH, based on the number of unassigned men who are required and the average event time.

\section*{Group Leader Identification}

Provision is made to simulate the influence of leadership on the work group. Later in the simulation, the leader's aspiration and his competence value are used to effect performance. To this end, the model now requires designation of a group leader. Thus, at the completion of the assignment of the required personnel to a given event, the model continues, at circle \(f\) of Figure 2-1,
with the identification of a leader for the work group. The group member with the highest command echelon value is tagged as the leader. In the event of a tie, the competing man with the highest value of competence in the primary specialty is selected.

\section*{Event Start Time}

The next question to be answered is: What is the earliest time that the event can begin, assuming the assigned men are to perform the work, and given other input data? It is likely that the men who have been selected for event performance may have completed their previous assignment (or otherwise be available) at different times. So that the event in question can begin when all selected men are available, the latest time of day at which any group member has completed his most recent work assignment is checked. The earliest shift when the job can be accomplished is also determined. To accomplish this bookkeeping, the computer maintains the latest time that each crew member has worked, \(\mathrm{Z}(\mathrm{M})\), and the largest of these, Z1, (for the men in the work group) is determined. Another constraint which enters into the determination of event start time is the case in which a specified event must be completed before the present event starts. The prior event, IPE(IE), is given in the input data. This is implemented by keeping a value, \(\mathrm{ZC}(I E)\), for the time of completion of every event as it is completed, and by determining the time of completion of event IPE(IE), i. e., ZC[IPE(IE)]. The last element in the start time determination is a specific time of day before which the current event cannot begin. This value, ST (IE), is also provided as input data. Thus, the event start time is selected as the largest of the three values: Z1, ZC[IPE(IE)], and ST(IE).

If this start time exceeds the input data time limit value, TL(IE), then the event is bypassed after a calculation of unmanned station hours, USH. The USH variable is used to accumulate the number of working man hours which were dictated by the event workload but which are not performed due to unavailability of crew members or the like.

\section*{Shift Logic}

The optional shift logic allows the division of the total crew into watches (shifts). In the case of implementation of this logic by the analyst, only men assigned to a shift which is congruent with the real time of day are selected for event assignment. To implement this feature, each simulated crew member is assigned by the task analyst to one or more shifts up to a maximum of six shifts in a 24 hour day. The model determines the earliest time an event can begin (based on its start time or time of completion of the specified precedent event), and identifies men for each shift during which the job could be performed. The same man may be identified for more than one shift. The number of unmanned
station hours (level of undermanning) which could accrue if the event is performed on each possible shift is then computed, and the event is assigned to that shift in which unmanned station hours is at a minimum. Where the minimum unmanned station hours occur in more than one shift, the earlier shift is selected for event performance. The no shift option can be effected by assignment of all crew members to all shifts by the task analyst.

\section*{Event Families}

In order to allow for the fine grain simulation/analysis of events, the event family concept was developed. The analyst can break down each scheduled or repair event into a series of subevents. These components of human performance can then be simulated to determine which are most critical to successful event performance. Different types of men can be assigned to these subevents by the analyst allowing for test of different policies. For example, the results of several simulations may indicate that a specific subevent in a repair family is critical and may require staffing by crew members of generally higher proficiency levels or men who are trained in a specific specialty.

The number of subevents and the simulation sequence of the subevents in a family is fully flexible. For scheduled events, the number of subevents is unlimited, while for repair events the number is limited to 12.

Each event or subevent (scheduled, repair, or emergency) must be as signed to a class by the analyst. The classes for scheduled events are: communication, operation, decision, or act. This allows summarization by class at the end of the simulation.

Each repair is designated as one of four major types: electrical, electronic, electromechanical, or mechanical. Siegel and Schultz (1962), using factor analytic procedures, identified nine factors involved in electronic repair. Eight of these factors, as shown below, were expected to be involved in the electronic repairs to be simulated. These results were extended to the other three major classes of repairs (electrical, electro-mechanical, and mechanical) with analogous factor (type) definitions. The analyst identifies which major class of repair he expects to be necessary in his categorization of the equipment involved in an event as either electrical, electronic, electro-mechanical, or mechanical and uses the factor types to define the sequence of actions required to repair successfully the equipment. Any or all may be used and in any combination. Performance of each of these factors will be simulated as a subevent with the concept of a family being employed to include all the subevents for the repair. Summarization by class (factor) then allows the identification of the factors which contribute to task failure, which take the most time, and the like.

A summary of the repair event types and the factors within types follows.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Repair Events} & \multicolumn{2}{|c|}{Code} \\
\hline & Number & FORTRAN \\
\hline \multicolumn{3}{|l|}{Electronic} \\
\hline Uses reference manuals & 6 & EURM \\
\hline Electronic cognition & 7 & EC \\
\hline Electronic circuit analysis & 8 & ECA \\
\hline Electronic repair & 9 & ER \\
\hline Electronic equipment operation & 10 & EO \\
\hline Electronic equipment inspection & 11 & EIP \\
\hline Electronic instruction & 12 & EI \\
\hline Electronic report & 13 & ERPT \\
\hline \multicolumn{3}{|l|}{Electrical} \\
\hline Uses reference manuals & 14 & ELURM \\
\hline Electrical cognition & 15 & ELC \\
\hline Electrical analysis & 16 & ELA \\
\hline Electrical repair & 17 & ELR \\
\hline Electrical equipment operation & 18 & ELO \\
\hline Electrical equipment inspection & 19 & ELEP \\
\hline Electrical instruction & 20 & ELI \\
\hline Electrical report & 21 & ELRPT \\
\hline \multicolumn{3}{|l|}{Electro-mechanical} \\
\hline Uses reference manuals & 22 & EMURM \\
\hline Electro-mechanical cognition & 23 & EMC \\
\hline Electro-mechanical analysis & 24 & EMA \\
\hline Electro-mechanical repair & 25 & EMR \\
\hline Electro-mechanical equipment opkration & 26 & EMO \\
\hline Electro-mechanical equipment inspection & 27 & EMEI \\
\hline Electro-mechanical instruction & 28 & EMI \\
\hline Electro-mechanical report & 29 & EMRPT \\
\hline \multicolumn{3}{|l|}{Mechanical} \\
\hline Uses reference manuals & 30 & MURM \\
\hline Mechanical cognition & 31 & MC \\
\hline Mechanical analysis & 32 & MA \\
\hline Mechanical repair & 33 & MR \\
\hline Mechanical equipment operation & 34 & MO \\
\hline Mechanical equipment inspection & 35 & MEI \\
\hline Mechanical equipment instruction & 36 & MI \\
\hline Mechanical report & 37 & MRPT \\
\hline
\end{tabular}

\section*{Fatigue}

Provision is made within the model to simulate fatigue states. Fatigue is considered to build as a function of the energy demanded by a work event and K the duration of elapsed time since the individual'slast sleep. In general, according to Kleitman (1963), fatigue builds up slowly for the first 8 to 10 hours of wakefulness, then it accelerates more rapidly up to 16 hours of wakefulness, the normal retirement time. If retirement is denied after 16 hours of wakefulness, fatigue continues to guild until about 20 hours of wakefulness, the middle of what would be the sleep period. Then, as a function of the body's circadian rhythm, the rate of additional buildup slows quite markedly. The asymptotic maximum is reached at about the 50 th sleepless hour, which would represent two consecutive nights without sleep. The literature indicates that "after two successive nights of sleep deprivation the subjects are about as sleeply as they are likely to get... [Kleitman, 1963, p. 226]."

Having determined the starting time for the event under consideration, the question arises: How long has it been between the time each group member's most recent event was completed and the time the current event begins? If this interval is zero, the following processing for sleep, time fatigue, and physical capability need not be performed since no change has taken place in these values, which are also calculated following each simulated event. However, if some time has elapsed (possibly different amounts of time for each group member), then these factors may change and the appropriate processing is performed. If the interval exceeds the catnap rest parameter, CN, for any man, then it is assumed that the man in question was in fact sleeping during the interval. Exceptions to this are: (1) the situation in which a man has already exceeded the maximum daily sleep allowance parameter MAXSL, or (2) the situation in which a man's fatigue level is below the fatigue threshold parameter TFAT. This last condition insures that no sleep will begin for personnel who are not sufficiently "tired. " If a sleep period occurs, its duration istallied as equal to the interval less a fixed sleep preparation and wakeup time (30 minutes)

A value of time fatigue is calculated if sleep is to be simulated. Time fatigue of an operator, FAT(M), is reduced as a function of the amount of sleep and is increased after the duration of the event itself is known. The fatigue relief function utilized was developed previously by Applied Psychological Services (1966) and is presented as Figure 2-2. The general nature of the fatigue relief calculation is to examine the duration of the sleep and to reduce the fatigue level in accordance with a relationship which specifies that eight continuous hours of sleep reduce fatigue to zero. However, to simulate such factors as individual differences in sleep requirements, more and less refreshing sleep, and other randomly occurring and hence unprogramable events, the specific extent of fatigue reduction resulting from a given duration of sleep is selected by a stochastic process from a range of values surrounding the fatigue reduction curve. This is accomplished by

Figure 2-2. Fatigue relief curve.
selecting a number equiprobable in the shaded area (by pseudorandom numbers) around the two linear events in Figure 2-2 as a function of the duration of the sleep period itself. This, in turn, generates a fatigue reduction factor which is then multiplied by the current fatigue level. This process is repeated for each man in the work group independently.

If the interval is insufficient to allow sleep, then it is assumed that the interval was spent in some leisure, recreational or rest activity, but that this activity, nevertheless, has the same effect on a man's fatigue as working. In this case, the model calls for the calculation of a new fatigue value for each group member in this situation. Here, the function used is the fatigue buildup relationship, as shown in Figure 2-3. As in the case of fatigue relief from sleep, the function is divided into linear segments around which random variations are taken to obtain specific values of \(\operatorname{FAT}(\mathrm{M})\) at any given time. This calculation is self contained in subroutine FBUILD (HSLS), as shown in Appendix C, page 22.

\section*{Physical Capability}

Salient within the simulation is the conception of the match between a person's physical capability and the job requirements. Heavy duty tasks, such as ammunition handling and equipment moving, require a greater physical capability than operating electronic equipment or plotting courses and bearings. Accordingly, provision is made to simulate individuals of various levels of capability with respect to the physical characteristic of strength.

In addition, the physical capability variable permits the simulation to reflect changes in the same individual. Specifically, this variable affords direct simulation of the effects of fatigue, of such randomly occurring incapacitators as colds, headaches, seasickness/airsickness, sprains and strains, and, as an output, it affords analysis of physical workloads separate and distinct from mental workloads.

The representation of strength in the model is an indirect one. This seems necessary because the literature indicates that strength is not a unitary concept.

Fleishman et al. (1961, 1962) administered a broad spectrum of strength tests to 201 Naval trainee recruits on whom age, height, and certain other data were available. All test results and anthropometric/biographic data were intercorrelated, and the resulting matrix was factored by the centroid method and rotated to a simple structure. This procedure yielded three primary factors of strength, a fourth, markedly weaker, and three final factors not involving strength variables per se (i.e., one was interpreted as a balancing factor, and the other two factors were biographically related). The three primary factors of strength were named Dynamic Strength, Static Strength, and Explosive Strength. They were described by the authors as follows:

Figure 2-3. Fatigue buildup curve.

The common requirement of all tests on the Dynamic Strength factor is for the muscles involved to propel, support, or move the body repeatedly or to support it continuously over time.

The tests of our Static Strength factor emphasize the lifting power of the muscles or the pounds of pressure which the muscles can exert.... In contrast to Dynamic Strength the force exerted is against external objects, rather than in supporting or propelling the body's own weight.

We have given the Explosive Strength factor the alternate name of "Energy Mobilization, " since tasks of measuring this factor require the effective release of energy in one explosive act. ... The fact that our sprints are loaded on this factor is entirely consistent with this notion of "distance through which a force" can be moved (Fleishman, Kremer, \& Shoup, 1961, p. 37).

These descriptions seem to imply that the first and the third factors pertain mainly to the types of strength exhibited in particular athletic contests. In fact, gymnastics and calisthenics loaded most heavily on the first factor and running and jumping activities loaded most heavily on the third. Factor two, however, the socalled Static Strength factor, seems to transcend athletics and to reflect the type of strength involved in most military and industrial laboring tasks which depend on strength. This is the type of strength that is involved in lifting, pushing, pulling, and otherwise moving equipment, and other objects. Furthermore, the Fleishman et al. data show static strength to be highly correlated with weight.

In view of the availability of weight data, body weight was accepted as the indicator of physical capability within the model.

Other data further support the defensibility of weight for providing a reasonable index of strength. For example, Damon, Stroudt, and McFarland (1966) indicated that "A general size factor, common to all dimensions, extends also to strength. " Tappen (1950), in examining championship weightlifters, obtained a correlation coefficient of 0.85 between body weight and the number of pounds "pressed." Caldwell (1963) reported a product moment correlation of 0.74 between the weight and the maximum dynamometric pull of both male and female college students. Fisher and Birren (1949) also reported significant correlation coefficients between the dynamometer score and weight of 90 male military personnel and 161 Waves. Hansen and Cornog reviewed a study by Jones (1947) indicating that ". . . strength is related both to body size (especially to weight) and to the mesomorphic component in body build" (Hansen \& Cornog, 1958, p. 250).

Within the simulation, the physical capability of the various crew members changes during the course of a mission as a function of two fundamental concepts: (1) the physical capability of the infirmed operator (e. g. , the operator who is seasick, has a cold, or a headache, etc.) is less than the physical capability of that operator when he is well, and (2) the physical capability of the fatigued operator is less than the physical capability of that operator when he is "fresh."

By program action, such degrading effects occur at random times during the mission, at a rate dependent on an input parametric value. The processing of this variable occurs, however, only at the beginning of the mission and at the end of each mission day. The value of the variable is utilized in the physical incapacity calculation.

When a simulated individual becomes subject to the incapacity effect, his physical capability is reduced. The exact extent of impairment cannot be specified in view of large individual differences in reaction to these minor ailments and afflictions. Accordingly, the capability reduction is treated by a stochastic process.

\section*{Physical Capability Calculations}

If a fatigue calculation is required (and a new time fatigue value, FAT(M), determined for the working group members), then the current physical capability, \(\operatorname{PCC}(\mathrm{M})\), must also be calculated since \(\operatorname{PCC}(\mathrm{M})\) is dependent upon FAT(M). This calculation represents the physical capability of the men at the start of the event. It is repeated for each group, as described below. It is assumed that the physical capability of a man decreases with time at work, total work done, overexertion, and disability (physical degradation). Physical capability also varies among men. These effects are assumed to be independent of each other and operate multiplicatively. The function* may be expressed analytically as:
\[
\operatorname{PCC}(\mathrm{M})=\operatorname{PC}(\mathrm{M}) \cdot \operatorname{PI}(\mathrm{M}) \cdot\left[1-(1-\mathrm{K} 1)\left(\frac{\operatorname{ACAL}(\mathrm{M})}{\operatorname{CAL}(\mathrm{M})}\right)^{2}\right] \cdot \mathrm{g}\left(\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{P}_{\mathrm{N}}}\right) \cdot[1-0.1 \mathrm{FAT}(\mathrm{M})]
\]

Here, \(\mathrm{PC}(\mathrm{M})\) is the physical capability (related to strength) of the man, as calculated at the beginning of the mission (1 is an average value). \(\mathrm{PI}(\mathrm{M}\)) is the physical incapacity yalue related to minor sicknesses discussed above. The factor [1-(1-K1) \(\left(\frac{\operatorname{ACAL}(\mathrm{M})}{\mathrm{CAL}(\mathrm{M})}\right)^{2}\) is termed the work factor. Here. ACAL(M) is the total work done

\footnotetext{
The physical capability variable was selected and quantified on the basis of an analysis of the pertinent sources as summarized in Siegel, Wolf, and cosentino (1971, pages \(31-34\)). The form of the function and its rationale follows from that analysis.
}
(calories expended) on all events from the last sleep period up to and including half of the calories expected to be expended on this event, maintained by the computer as the tally of accumulated calories. CAL(M) is the average number of calories expended in a normal working day for each man, as discussed earlier. The K1 term represents a disability factor--a fraction to which the work factor falls when a particular man has done his normal quota of work during the day. In this analysis, we note that a man's capability decreases as he continues to work and that it is reduced to the value K1 after a normal day's effort. The term \(g\left(P_{T} / P_{N}\right.\) represents an overexertion effort. Here, a mismatch of capabilities between the men assigned and the physical requirements of the events, in terms of energy (calories) required, are considered. The function is:
\[
\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{P}_{\mathrm{N}}}= \begin{cases}1 & \text { when } \mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{N}} \leq 1 \\ \frac{\mathrm{c}-\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{N}}}{\mathrm{c}-1} & \text { when } 1 \leq \mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{N}} \leq \mathrm{c}\end{cases}
\]

Thus, the overexertion factor has no influence as long as the work rate for the given event does not exceed the peak work rate expected for the men.

In FORTRAN notation:
\begin{tabular}{ll}
\(\mathrm{P}_{\mathrm{T}}\), work rate for the event & \(=\operatorname{IEC}(\mathrm{IE})\) calories per hour \\
\(\mathrm{P}_{\mathrm{N}}\), peak work rate & \(=\operatorname{PWR}(\mathrm{M})\) calories per hour \\
c, value of \(\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{N}}\) yielding zero & \(=\mathrm{ZPC}\) \\
\begin{tabular}{l}
physical capability due to over- \\
exertion
\end{tabular} &
\end{tabular}

The function is represented graphically as shown in Figure 2-4.

Figure 2-4. Overexertion function.

The last term of the \(\operatorname{PCC}(M)\) equation is a function of the fatigue factor, as previously defined, which is dependent only upon time elapsed since last sleep and sleep duration.

The group physical capability is calculated as the average of the physical capability values over all group members.

\section*{Competence}

Job competence, as employed in this simulation model, represents those aptitude, ability, training, and experiential factors which determine how well an individual performs on the job. It pertains to the quality, or accuracy, of performance, and is almost completely independent of the speed of performance. The overall influence of this variable is for greater competence to yield more accurate task performance. The only circumstance in which competence bears any relationship to event completion time in the model is in the circumstance of an event which must be repeated if performed unsatisfactorily. The less competent individual has a lower probability of succeeding on an event. Since repetitions consume time, satisfactory completion of that event will take the less competent operator longer than his more competent peer--not because he necessarily works more slowly-but because he is more likely to need to repeat the event.

Each simulated crew member is considered to have a degree of competence rated on a scale between zero and unity, in both a primary occupational specialty and a secondary specialty. Competence values at the start of a mission are selected by the computer on the basis of personnel input data. Mean and standard deviation values for the generation of such data are available in a number of sources.

Within the model, competence is one of the principal determinants of how well an event will be performed. Thus, as the competence of the persons selected to perform an event increases, the likelihood that they will perform the event satisfactorily also increases.

However, we do not assume competence to be static. Within the model, provision is made to allow competence to be modified as a function of experience (Ghiselli \& Brown, 1948) and as the aspiration level varies. In the prior regard, Deutsch (1954, p. 208) maintained that "If an individual has considerable experience in a given activity, he will know pretty well what level he can expect to reach and the gradient of values on the subjective probability scale will be steep" and in the latter regard, Krech and Crutchfield (p. 410) contended that "A successful individual typically sets his next goal somewhat, but not too much, above his last achievement. " Consequently, the model provides for increments in the competence of crew members during the mission simulation as a function of performance and aspiration levels. This relationship is shown in the first box of flow logic sheet 19 and is explained in a subsequent section of this chapter which is side headed "competence upgrading."

\section*{Stress}

Provision is made within the model to simulate the effects of certain manifestations of anxiety and stress. Specifically, differences in the stress tolerance of individuals are simulated, as are individual anxiety levels and ractions to anxiety/stress.

Stress is operationally defined as the ratio of the amount of time needed for completion of the current event to the amount of time available for completing the event. This value is calculated for each event (i. e., for each group performing the event) during the simulated mission. Stress tolerance is simulated as a threshold, STRM(M), assigned for each crew member, against which the stress value is compared in order to determine program actions. Stress values which are below threshold are considered mild; those of threshold level and larger are considered severe. The general principle implemented is for mild stress to be psychologically organizing or facilitating, while severe stress is disorganizing or debilitating. This representation is consistent with the current literature on the influence of stress on various aspects of behavior. A number of others (e. g., Harris, Mackie, \& Wilson, 1956; Torrance, 1961; and Hare, 1962) have reviewed the effects of stress on task performance. All of these essentially concur that stress exerts a beneficial effect up to a particular point, but beyond that point, stress is disorganizing.

Under severe stress, performance accuracy is expected to deteriorate. The incidence of careless errors with mounting pressure and with attempts to save time is a common observation. It is confirmed in most contemporary psychological views of anxiety influences. Accordingly, when an operator's current stress reaches the level of his stress threshold, the probability of successful task performance is reduced or, phrased alternatively, the probability of error is increased. When stress subsides to more modest levels (below the threshold), this effect is reversed.

As described above, stress also affects the operator's level of aspiration. So long as stress remains low relative to the stress threshold, aspirations, when attained, are reset higher. When stress mounts to the level of the stress threshold, if the aspiration level is not attained, it is reduced to the level of current performance. This influence of stress on the level of aspiration is an implementation of Lewinian psychology. In 1942, Lewin wrote that "A successful individual typically sets his next goal. . . above his last achievement. ... The unsuccessful individual, on the other hand. .. becomes intimidated and gives up reaching out toward higher goals..." The model utilizes stress as well as performance records in differentiating the successful from the unsuccessful individual, in order to effectits program actions.

Finally, situational events can influence stress loads. In particular, emergency situations impose considerable stress upon all who are party to them. This very obvious effect is simulated by providing for the possibility of increased stress when certain selected emergencies occur.

In summary, the concept of a stress threshold, as defined for an individual in the prior model, developed by Applied Psychological Services for the Office of Naval Research (Siegel \& Wolf, 1969), is extended in the present case to apply to the group. A group stress threshold, GSTRM, is calculated as the average of the stress threshold values of the men assigned to the group. The psychological stress of the group itself in accomplishing the event is now determined.

Psychological stress is a time-induced function dependent on the time available to the operator and his expected performance time. In the present model, therefore, if no event time limit, TL(IE), is specified as input data, the no stress condition, \(G S T R=1.0\), applies. If a time limit is specified, then the group stress is calculated as:

GSTR \(=\frac{\text { Expected Performance Time }}{\text { Time Available }} \times\) Mental Load Factor
where GSTR is limited between 1 and 5 , the expected performance time is ADUR(IE), the time available is the time limit less start time \(=T L(I E)-Z 2\), and the mental load factor is \(0.875+\operatorname{LODM}(\operatorname{IE})(0.25)\). This mental load effect is represented graphically in Figure 2-5. Here, LODM(IE) is the mental load input code.

Figure 2-5. Mental load effect.

\section*{Event Duration}

The next major segment of the processing, which represents, in a sense, the kernel of the simulation, is the calculation of the duration of the event. It involves variables such as stress, goal aspiration, pace, and group performance.

If the event is known to be of fixed duration, \(\operatorname{ASD}(I E)=0\), or if the end time of the event is fixed, i. e., if event input specifies \(\mathrm{KE}(\mathrm{IE})=1\), then it is not necessary to calculate the performance time and those variables upon which it is otherwise dependent. In such cases, the processing continues with circle g after the setting of the performance time, PT(IE), and event end time, ZC (IE). In preparation for this, the calculation of group performance (event success percentage) and group aspiration are accomplished next as the averages of the group members' individual values for these respectively.

PERF(M) \(=\) Current Performance of Each Man
\(=\frac{\text { Number of Successful Events Worked On Whole Mission }}{\text { Total Number of Events Worked On Whole Mission }}\)

GPERF = Group Performance \(=\) Average of Performance of the Men in Group
GASP = Group Aspiration = Average of Current Aspiration of the Men in Group

\section*{Aspiration}

Provision is made to simulate the level of aspiration, or motivation, of each member of the crew. This is done by initially assigning individual aspiration values on a zero to one scale, permitting those values to affect the speed of performance, and then adjusting the aspiration values as a function of operator success records and the amount of stress being incurred.

The initial aspiration level represents the performance that the operator would hope to attain--the ratio of the number of event successes to the number of attempts. Thus, an operator with an aspiration value of 1.00 would aspire to succeed in every one of his task attempts, while an operator with aspiration value of 0.50 would have lower motivation and would be viewed as considering a rate of one successful attempt in two as acceptable.

As simulated, the level of a man's aspiration influences his working pace and stress, and is in turn subject to the influence of the degree of stress the operator is incurring and his success record. Considered are: (a) the operator's goal discrepancy--the difference between the aspired success record and the actual record, and (b) the difference between current stress on the operator and the operator's stress threshold. Comparison of the goal discrepancy with the stress differential provides the basis for the reciprocal influences involving level of aspiration. Five discrete circumstances can exist.

Case 0 No significant goal discrepancy
Case 1 Positive goal discrepancy (i.e., aspiration in excess of actual performance record) and subliminal stress
Case 2 Zero or negative goal discrepancy and subliminal stress
Case 3 Positive goal discrepancy and stress equal to or greater than threshold

Case 4 Zero or negative goal discrepancy and stress equal to or greater than threshold

Through the five cases described above, the level of aspiration variable, a motivational variable, can be seen to influence working pace and current stress, while being, in turn, influenced as a function of task success records and level of stress. The reciprocal and dynamic quality of the variable as treated in the model is quite consistent with aspiration level dynamics as described by such writers as Lewin (1942) and Kelley and Thibaut (1954).

The model's logic for processing each case is shown in Table 2-2 below.

Table 2-2
Goal Aspiration Cases
\begin{tabular}{|c|c|c|c|}
\hline Case & Aspiration-Performance Condition & Stress vs. Threshold Condition & Result \\
\hline 0 & \(|G A S P-G P E R F|<0.02\) & - & None \\
\hline 1 & GPERF < GASP & GSTR < GSTRM & Calculate pact adjustment factor \\
\hline 2 & GPERF \(\geq\) GASP & GSTR < GSTRM & Reduce aspiration level \\
\hline 3 & GPERF < GASP & GSTR \(\geq\) GSTRM & Set aspiration \(=\) performance Calculate pace adjustment factor \\
\hline 4 & GPERF \(\geq\) GASP & \(\mathrm{GSTR} \geq \mathrm{GSTRM}\) & Reduce group stress \\
\hline
\end{tabular}

The pace adjustment factor is calculated as:
Case 1: \(\quad\) PAF \(=1.0-0.4\) (GASP - GPERF)
Case 2: \(\quad\) PAF \(=1.0+0.4\) (GASP - GPERF)

The pace adjustment effect is shown graphically in Figure 2-6. Thus, changes in the pace due to this adjustment factor are a linear function of the difference between aspiration and actual performance, where lower pace values indicate faster operators.

Case 1 presents a circumstance which will be recognized as predisposing positive motivational value--the operator is not performing as well as he would like to, yet he is only mildly stressed, if at all. The psychological expectation is that he would strive to perform better, and the model effects this by reducing his pace value, thus simulating his working faster.

Case 2 further illustrates the dynamic aspect of level of aspiration, both as occurring in life and as simulated in the model. Presented is a zero or negative goal discrepancy, which means that performance has at least equalled operator aspiration, and stress is still of only modest magnitude. Psychological theory (e. g., Deutsch, 1954) indicates that under these conditions, the operator would "raise his sights" and aspire to do more, since he demonstrated to himself that he has easily attained the initial level. In this regard, Krech and Crutchfield (1948) wrote:

> ...a successful individual typically sets his next goal somewhat, but not too much, above his last achievement. In this way he steadily raises his level of aspiration. Although in the long run he is guided by his ideal goal.... nevertheless his real goal...is kept realistically close to his present position.

This process is simulated in the model according to a Monte Carlo procedure, as described in the next chapter.

Case 3 presents a circumstance of resignation. The operator is not performing as well as he would like, but is incurring severe stress. Because of the severe stress, he has no choice but to accept his current performance level. The model effects this by reducing the aspiration value so that it equals the performance record. The simulated operator has ceased his upward striving and avoids the severe stress by accepting his current performance. However, associated with the cessation of upward striving, with the "edge" off the individual's motivation, one might expect to observe the beginnings of a partly voluntary and partly involuntary deterioration in performance. This effect is simulated in the model by also increasing the pace value, thus slowing down the rate at which the operator performs his tasks.

In case 4, current stress is altered. Specifically, Case 4 presents the circumstance of performing equalling or exceeding operator aspiration, but stress being substantial. That is, the operator is incurring severe stress, despite the fact that he has attained the level of performance he set for himself. It seems reasonable that as he reviews his success record, he stops "sweating it" quite so desperately, for he has demonstrated that he can attain his aspiration level. In the model, this is simulated by reducing the operator's current stress by ten per cent.

In case 2, the increase in aspiration level is randomized to be equiprobable between a zero and 10 per cent increase. In case 4 , the group stress reduction is always a 10 per cent reduction.

Figure 2-6. Pace adjustment effect.

Working Pace
The ISM model simulates differences in the pace, or the speed, at which each of the various crew members works. This variable is intended to summarize and represent individual differences which determine how quickly an individual performs a job. Speed of event performance is treated in the model independently from the accuracy of performance. The pace variable is one of the means by which the speed of performance is simulated.

Each member of the simulated crew is initially assigned a value to represent his normal working pace, PACE(M). The assignment is made by the computer, through random draw from a normal distribution of values with a mean equal to the input parameter Average Crew Pace, ACP, and standard deviation of 0.11 . The concepts reflected in this distribution are establishment of unity as the "normal working pace" in the general population, and expressing variations from the norm in such a way as to satisfy a \(2: 1\) ratio between the characteristic paces of the slowest operator and the fastest. From the distribution described above, an extremely slow worker would be represented by a value in the realm of three standard deviations above the mean, or \(\operatorname{PACE}(\mathrm{M})=1.33\), an extremely rapid worker by a value in the realm of three standard deviations below the mean, or \(\operatorname{PACE}(\mathrm{M})=\) 0.67 , a very close approximation to \(2: 1\). Such a range of differences, although seemingly large, is consistent with fairly fundamental psychological observations; for example, "Wechsler shows that the range of most physical and mental activities vary as 2 to \(1 . . .[\) Barnes, 1954, p. 353, in reference to one of David Wechsler's (1935) early works]."

A value for the pace of the group on each variable time event (GPACE) is calculated as the average of the pace values for the men in the group. The purpose of the pace variable then is to influence the time worked by a group on each simulated variable time event. Ignoring other factors for the moment, it is desired that a slower group (say one with a group pace value 1.1) would take ten per cent longer than nominal and a faster group, with pace value of 0.75 , would perform the task in three-fourths of its nominal execution time, plus or minus the stochastic effect. Thus, the group pace value functions in the model as a multiplicative modifier of the execution time assigned.

Fatigue affects the speed of task performance as well as the quality of performance (Ghiselli \& Brown, 1955, p. 249). Its influence on quality has been described and its influence on speed is represented in a very similar way. The reader will recall that fatigue builds as a function of the amount of time since the operator last slept, and as a function of tasks performed in that interval. After each event, a current fatigue level is calculated and, via the physical capability variable, is employed to alter the operator's existing pace value. The nature of the alteration is to increase pace values with the buildup of fatigue (decrease in physical capability), thus rendering more slow the execution time for subsequent work as the operator becomes more tired.

\section*{Group Pace Calculations}

In the simulation, the work speed of the group for an event, termed its pace, is determined as the product of three factors. The primary influence is the average of the individual pace values, \(\operatorname{PACE}(\mathrm{M})\), of the men assigned to the event. The second is the pace adjustment factor just discussed and shown in Figure 2-6. The third, called the slowness factor, SF, is dependent on the value of physical capability, PCC(M), of each group member, as shown in Figure 2-7. This figure indicates no effect on operator speed for an average, \(\operatorname{PCC}(M)=1\) value, but that operator speed is halved when physical capability is completely degraded and doubled when \(\mathrm{PCC}(\mathrm{M})\) reaches a maximum limit value of 2 . Thus, fatigue, sleep, and overexertion elements enter the pace computation which, in turn, influences performance time.

Figure 2-7. Determination of slowness factor.

Event Performance Time

Three factors comprise the performance time, PT(IE), calculation for scheduled events. The first is a value, \(V\), selected from the normal distribution with mean, ADUR(IE), and standard deviation, ASD(IE), both given as input. The second factor is ZIJ. The group stress and group stress threshold influence the ZIJ value and thence performance time, as shown in Figure 2-8.

Figure 2-8. Stress effect.

The result is a value, ZIJ, which is a multiplicative factor for \(V\) in the determination of performance time. The third factor entering this calculation is the group pace value, GPACE, just discussed. Thus, performance time is calculated as:

and is limited to lie between 0 and 4 ADUR(IE).

A modified calculation for V is employed for repair events. In studies which pay particular attention to repair time, it is conventional to assume a logarithmic normal distribution. This gives a probability density function that rises steeply for small values and is less accentuated for large values as shown below:

Then, \(\ln t\) is normally distributed. The difference from normal distribution is that the program generates a random value of \(\ln t\) from a normal distribution and then the exponential of this value of \(\ln t\) is the random value of \(t\).

The following describes the computation involved in choosing appropriate values of mean and standard deviation. If \(y=\ln x\) is normally distributed with a mean \(\mu\) and standard deviation \(\sigma\), then \(x\) will have mean \(\zeta\)
\[
\zeta=e^{\mu+\sigma^{2} / 2}
\]
and variance:
\[
\sigma_{x}^{2}=\zeta^{2}\left(e^{\sigma^{2}}-1\right)
\]
i. e.,
\[
\begin{aligned}
& \mu=\text { mean of logarithm of repair time } \\
& \text { ADUR(IETY) }=\zeta=\text { mean of repair time } \\
& \text { TEM3 } 3=\sigma=\text { standard deviation of logarithm of repair time } \\
& \text { ASD(IETY) }=\sigma_{X}=\text { standard deviation of repair time }
\end{aligned}
\]

Solving the above equations for \(\mu\) and \(\sigma\) by algebraic step we determine:
\[
\text { TEM } 1=e^{\sigma^{2}}=1+\frac{\sigma_{x}^{2}}{\zeta^{2}}
\]
and determine \(\mu\) by:
\[
\text { TEM } 2=e^{\mu}=\frac{\zeta}{\left(e^{\sigma^{2}}\right)^{\frac{1}{2}}}
\]

Then \(\mu\) and \(\sigma\) are used with normal random deviate intrinsic function, and exponential of this result is the random repair time.

In FORTRAN notation:
\[
\operatorname{TEM1} 1=1+\frac{[\operatorname{ASD}(\operatorname{IETY})]^{2}}{[\operatorname{ADUR}(\operatorname{IETY})]^{2}}
\]

TEM \(2=\frac{\text { ADUR(IETY) }}{\sqrt{\text { TEM } 1}}=\frac{\zeta}{\sqrt{\text { TEM } 1}}\)

TEM \(3=\sqrt{\ln \text { TEM } 1}=\sigma\)

Then:
\[
\mathrm{V}=\mathrm{e}^{(\ln \mathrm{TEM} 2+\mathrm{RD} \sqrt{\ln \mathrm{TEM} 1})}
\]
which is used only for repair events.
Following determination of event performance time, the time of day at which the event was completed, ZC(IE), is calculated as event start time plus performance time \(=Z 2+\mathrm{PT}(\mathrm{IE})\). If completion time is later (larger) than the time limit for the event, TL(IE), given as input, then the event is assumed to last only until TL(IE), i.e., \(Z C(I E)=T L(I E)\) and \(P T(I E)=T L(I E)-Z 2(I E)\). The balance of the unworked time is tallied as unmanned station hours, USH.

If the event time exceeds 24 , then \(\mathrm{PT}=24-\mathrm{Z} 2\) so that no events will carry over to the next day. In this case, \(Z C=24\).

\section*{Event Bookkeeping}

Beginning with circle \(g\) in the flow chart, a variety of additional event bookkeeping calculations are completed based upon availability of the value of performance time.

First, for each equipment used in the event the cumulative equipment up time and down time (for the current day) are revised. For scheduled and emergency events (in which equipment is assumed operational) up time for each equipment is simply:
\[
\operatorname{CUT}(\mathrm{IQ})=\operatorname{CUT}(\mathrm{IQ})+\mathrm{PT}(\mathrm{IE})
\]

For each repair event, the duration of which is assumed to represent an equipment inoperability period, cumulative equipment down time is :
\[
\operatorname{CDT}(I Q)=\operatorname{CDT}(I Q)+\mathrm{PT}(\mathrm{IE})
\]

A sum of actual repair times (event times for repair events) is maintained for each equipment as:
\[
\operatorname{CART}(\mathrm{IQ})=\operatorname{CART}(\mathrm{IQ})+\operatorname{ADUR}(\mathrm{IE})
\]

Next, performance level, the equivalent of MTBF, is calculated for each equipment as:
\[
\operatorname{EPL}(\mathrm{IQ})=\frac{\mathrm{CUT}(\mathrm{IQ})}{\mathrm{CUT}(\mathrm{IQ})+\mathrm{CDT}(\mathrm{IQ})}
\]

The time since last sleep, HSLS (M), is augmented for each working group member by adding the performance time for the event. Then the tally of time worked for the day, for each group member, TW(M), is revised, and the last time of day worked, \(Z(M)\), is set, for each group member, equal to the event completion time, ZC(IE). Then the number of calories expended on this event by each man, CCAL(M), is calculated to be equiprobable between 0.95 and 1.05 times the product of IEC(IE, NT) and PT(IE). Next, the total number of calories expended since last sleep, ACAL(M), is adjusted by adding a current event calorie value, CCAL(M). The CCAL(M) value is also used in accumulating the tally of calories expended by each group member for the current day, IDC(M).

Next, the crew mental load is cumulated in load-time units. Given the mental load code, LODM(IE), which specifies the graduated load scale and which applies during the period of event performance, PT(IE), the value LODM(IE). PT(IE),
is added to prior values to summarize current crew mental load units.
Similarly, the event hazard class code IH(IE) is multiplied by PT(IE) to provide a measure of hazard units, EH, accumulated as TEH for later calculation of the safety index on a daily basis.

\section*{Performance Adequacy}

Having determined the values for all of the variables affecting the performance of the event, the adequacy of the performance may now be determined. The following four variables are considered for each man in the group associated with the performance of the event:
\begin{tabular}{lc}
Variable & Range of Values \\
\hline stress & \(1-5\) \\
competence & \(0-1\) \\
physical capability & \(0-2\) \\
aspiration & \(0-1\)
\end{tabular}

With each of these variables, the model associates a function for the work group which varies from \(0-1\), in which unity represents perfection. These four functions are then combined to obtain an overall measure of how well the group performed. The function for effectivity (goodness) of stress is given below and shown in Figure 2-9.
\(\mathrm{ES}= \begin{cases}\frac{(1-\mathrm{BE}) \mathrm{GSTR}}{\text { GSTRM-1.0 }}+\mathrm{BE} & \text { if GSTR }<\text { GSTRM } \\ \frac{5-\mathrm{GSTR}}{5-\mathrm{GSTRM}} & \text { if GSTRM } \leq \text { GSTR } \leq 5 \\ 0 & \text { if GSTR }>5\end{cases}\)

Figure 2-9. Stress effectivity.

The effectivity function for competence, EC, utilizes the values of crew member competence, TPCOM(M), previously degraded as a function of sea state and provides for added weight to be given to the competence of the leader, TPCOM(LI), as shown below:
\[
\mathrm{EC}=\frac{\{2[\mathrm{TPCOM}(\mathrm{LI})]+\Sigma \mathrm{TPCOM}(\mathrm{M})\}}{\mathrm{IG}+2}
\]

Here, the summation is taken over all members of the group. This represents an average competence value for the group in which the leader's competence has been given two extra weighted shares. In the determination, TPCOM(M) is selected as either the competence in the primary specialty, \(\operatorname{TPCOM}(M)\), or in the secondary competence, \(\operatorname{TSCOM}(\mathrm{M})\), depending upon the actual assignment of the men during the event.

In the situation of a repeat (second try) of an event due to failure to perform satisfactorily the first time, 0.2 is added to EC on the repeat to simulate a short term increase in the effectivity for group competence. This increase is justified since the group has worked recently together and has had the benefit of immediate experience.

The effectivity for the physical capability, EF, is set equal to the group physical capability value itself, GPCC, if less than one, and is set equal to unity if GPSS exceeds unity.

The fourth and last function is the effectivity of aspiration, EA. It is treated like competence, with the leadership aspiration receiving extra weight, as follows:
\[
\mathrm{EA}=\frac{\{2[\mathrm{CASP}(\mathrm{LI})]+\Sigma \mathrm{CASP}(\mathrm{M})\}}{\mathrm{IG}+2}
\]

In order to calculate from these four measures a single value for performance adequacy, the following formula is used:
\[
\mathrm{PA}=\sqrt{\frac{3(\mathrm{ES})(\mathrm{EC})+(\mathrm{ES})(\mathrm{EF})+(\mathrm{ES})(\mathrm{EA})+3(\mathrm{EC})(\mathrm{EF})+3(\mathrm{EC})(\mathrm{EA})+(\mathrm{EF})(\mathrm{EA})}{12}}
\]
which simplifies to:
\(P A=\sqrt{\frac{3(E C)(E S+E F+E A)+E S(E F+E A)+(E F)(E A)}{12}}\)

A potential degration in this value of PA is taken into consideration if the current event is either a repair or emergency. If such is the case and if the computed duration of the event, PT(IE), exceeds the maximum (target) duration of that event which is provided as an input, then PA is degraded by the ratio of DTR(IQ)/ PT(IE) for repair events or \(\mathrm{DTE}(\mathrm{K}) / \mathrm{PT}(\mathrm{IE})\) for emergencies.

\section*{Event Performance Efficiency}

For later use in determining mission performance efficiency, a running sum is maintained of performance efficiency values for each event.

Efficiency \(=\frac{\text { event essentiality } x \text { performance adequacy }}{\text { performance acceptability level }}\)

This efficiency function is calculated for each event. It is, essentially, a ratio of actual event results (performance adequacy weighted by event essentiality) to the level of performance acceptable to the supervisor. The cumulative sum of event performance efficiencies, SEF, is calculated as a function of the performance adequacy, the event importance (essentiality value), IESS(IE), the leader's aspiration, \(\operatorname{CASP}(L I)\), and the constant, \(K 7\), which indicates the level of acceptable performance, described below, as follows:
\[
\mathrm{SEF}=\mathrm{SEF}+\frac{\mathrm{PA} \cdot \operatorname{IESS}(\mathrm{IE})}{\mathrm{CASP}(\mathrm{LI}) \cdot \mathrm{K} 7}
\]

Also, a similar running sum of event essentiality values, ISIE, is maintained for the day.

Recalculation of \(\mathrm{FCC}(\mathrm{M})\) and \(\mathrm{FAT}(M)\)

The values of physical capability and time fatigue are now adjusted in the same manner as was described previously for each group member who participated in the event simulated. The prior calculation is required only if there was a time interval between the prior event and the current event. However, the calculation is not required in every case. It represents an updating of values as a result of time worked on the current event, TW(IE), and the new values represent the situation at the end of the current event. The fatigue, FAT(M), the physical capability of each man in the group, PCC(M), and the group physical capability, GPCC, are calculated as previously described.

\section*{Adjustment of Consumables}

The revised level of consumables available is determined next. First, the actual amount of consumables expended is calculated either as a function of event performance time and expenditure rate or on a unit expenditures basis. Then prior values of the \(L\) consumables, \(K O N(L)\), are adjusted to account for consumption during the event.

Since the rate of expenditures for some events is more logically given in terms of usage units per event rather than per hour, the logic of the model considers both types of expenditures independently. Accordingly, for "unit" events the current level of expenditures, KONC1(L1) is:
\[
\operatorname{KONC} 1(\mathrm{~L} 1)=\operatorname{KONC} 1(\mathrm{~L} 1)-\operatorname{IRC} 1(\mathrm{~L} 1)
\]
where IRC(L1) is the number of units expended per event.
For events in which expenditures are accounted in terms of units per hour, the corresponding effect is accomplished by multiplying the rate of expenditure of each consumable by the duration of the event and cumulatively subtracting the product from current values for each consumable:
\[
\operatorname{KONC}(\mathrm{L})=\operatorname{KONC}(\mathrm{L})-\operatorname{IRC}(\mathrm{L}, \operatorname{IET}) \cdot \mathrm{PT}(\mathrm{IE})
\]

Event Success or Failure Determination

Performance adequacy, just calculated, is an important element in determining the success or failure of the performance of an event. An initial estimate of a criteria for success might be whenever performance equals or exceeds the leader's expectation, i.e., when PA \(>\) CASP(LI). However, it must be conceded that a team's leader will be willing to accept "something less" than his own performance aspiration value as constituting acceptable performance for a group of his peers or subordinates. Thus, the model uses the constant K7 for this "something less" and defines an event to be successful whenever:
\[
\mathrm{PA}>[\mathrm{CASP}(\mathrm{LI})] \mathrm{K} 7
\]

Performance Level

After determining performance adequacy, the model increases by one the tally of the number of successes or failures, as appropriate for each man who worked on the event. These tallies are NOSUC(M) and NOFAIL(M) and are accumulated over the entire mission iteration. A new performance value, PERF(M), for each man who worked on the event is now determined as the ratio of the number of successes to all events in which he has participated.

\section*{Event Results Recording}

Next, the results of a single completed event are optionally recorded for later printing. If the option to record detailed event results is taken (print option 5, \(\operatorname{IND}(5)=1\)), the results are recorded and printed for analysis. Included in the printout are the following results for each event: successful/unsuccessful, men available, start time allowed, prior event requirements time finished, event start time, event duration, event end time, unmanned hours, group stress, physical capability, pace, aspiration, performance adequacy, hazard, consumables used and remaining, men on the job, and each man's fatigue, physical capacity, hours worked (cumulative), calories expended on this task, calories expended (cumulative) hours since sleep, idle hours, hours slept, cumulative performance, and aspiration, as shown in Figure 2-10.

The printout for each event performed is concluded with data on each man who was assigned to the event. Here, an asterisk in the LDR column identifies the work group leader.

\section*{Failure Processing}

In the case of an event which is unsatisfactorily performed, the repeat-touchup code, R/TU(IE), of the input data determines whether the entire event is to be resimulated (repeated) or whether it is to be partially redone (touched up). If the event is coded as 1 (repeat), a second try is accomplished by returning to circle \(g\) in the processing flow chart. Only one such repetition is allowed for any event occurrence. If the second attempt is also unsatisfactory, the processing continues at circle h.

If the event is coded as 2 (touchup), a second try is simulated during which the performance time is set equal to one-half of the value of the performance time previously calculated. Again, second try processing begins at circle g.

If the failure processing code is a 3 (no repetition permitted), the processing continues at circle \(h\), and the processing is the same as that which takes place after a task repetition or touchup.

\section*{End-of-Day Processing}

Then, at circle h of the model flow chart, a check is made to determine whether or not the current event being simulated represents the last event of the day. If the event which has just been simulated is not the last event of the day, then the next event is selected as a function of the pointer and the probability of each of the three alternative paths, PRB (IE, IA), given as input data. The processing returns to circle \(d\) to begin the simulation of the next event in turn.
- EMERGENCY EVENY J DAY 1 PFRATION 1 -

MEN AVAIL 16;0 START ALLOWED D: PRIUK EVENT O FINISHED O: EVENT STARTS 16:00 GASTS O:49 ENDS 16, 49 UNMANNED MRS O.
GROIP STRESS 2,26 PHYS CAP 1;01 PACF 1,0 ASH 0, 83 PERY AD 1,03 HAZ 0,5
- PER HR CONS USENE
\begin{tabular}{lllllllllll}
- UNIT CONS USED: & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline UNIT CONS LEFT: & 462 & 472 & 72 & 72 & 72 & 62 & 72 & 72 & 72 & 72
\end{tabular}


```

REPAIR TAMIGY STR DAY I ITFRATION 1 EVEN S

```


GROUP STRESS 3,18 PHYS CAP 0,89 PACE 1,5 ASH 0,92 PERF AD 0,65 HAZ 0,9
—PER HR CONS USENE

- HAN IYPE SPEC LDR RANK ATIGUE PHYS CAY HRS HRRD CALORIES CÄLSOHRS SINCE SLEEP TDLE HRS SLERT CUM PERF ASP

- REPAREABILY \(\qquad\) 1. PAY__ ! YERATION_1 \(\frac{15}{\text { FIGNORED DUE } T 0 \text { NO YIME AVABLABLE }}\)

If the event just simulated is, in fact, the last one of the day, then the computations continue with the determination and summarization of several end-of-day conditions. These are:
\begin{tabular}{lll}
average physical workload & APW(M) & each man \\
primary competence & PCOM(M) & each man \\
current crew competence & CCC & crew \\
physical incapacity & PI & each man \\
safety index & SI & crew \\
crew mental load & CML & crew \\
average equipment performance level & AEPL & crew \\
equipment performance efficiency & EPEFF & equipments \\
system performance efficiency & PEFF & system \\
system reliability level & SRL & system \\
system performance level & SPL & system \\
system global effectiveness measure & SGEM & system
\end{tabular}

Average Physical Workload
As a measure of under/over exertion for each man in the crew, the value of average physical workload, APW(M), is calculated. It is determined for each crew member as follows:
\[
\begin{aligned}
\operatorname{APW}(M) & =\frac{\text { calories expended during day's work }}{\text { calories per this man's average day }} \times \frac{\text { no. of hours worked }}{\text { no. of hours in average workday }} \\
& =\frac{\operatorname{IDC}(M)}{\operatorname{CAL}(M)} \times \frac{T W(M)}{W O R K 1}
\end{aligned}
\]

This variable provides a measure of load on personnel, and in that regard may be partially redundant with the unadjusted number of hours worked each day.

\section*{Competence Upgrading}

To implement crew learning in the course of a simulated mission, the logic calls for increases in primary competence on a daily basis for each crew member whose competence in his primary specialty is less than his current aspiration. The mission is assumed to be sufficiently short so that no degradation of competence occurs in an unused skill, and it is assumed that failure in performing an event does not degrade competence.

The competence upgrading scheme is based on the work of DeJong (1957) and of Crossman (1959). Of particular importance was the work of Blackman (1936) and Crossman (1956), which indicated that performance proficiency (here termed competence) on a given task (event) continued to increase even after 10,000 "trials."

In updating TPCOM(M) at the end of each day for man \(M\), the following formula was developed:
\[
\operatorname{TPCOM}(M)=\operatorname{PCOM}(M)+[\operatorname{CASP}(M)-\operatorname{TPCOM}(M)] \operatorname{NU}(M)[0.0017]
\]
where \(N U(M)\) is the number of successful events participated in by man \(M\) on day ND. The constant, 0.0017 , was determined by the condition that in 30 days, \(\operatorname{PCOM}(\mathrm{M})\) shall not increase by more than 0.1 from an initial value of 0.75 , based upon 80 events per day for a given \(M\) with a maximum value of unity for CASP(M) representing optimum aspiration.

Table 2-3 gives results for \(\operatorname{PCOM}(\mathrm{M})\) for the constant selected:

Table 2-3
Maximum TPCOM after Various Numbers of Days
\begin{tabular}{cc}
Number of Days & \(\operatorname{PCOM}(\mathrm{M})\) \\
0 & .7500 \\
10 & .7892 \\
20 & .8222 \\
30 & .85005 \\
50 & .89335 \\
100 & .9545 \\
200 & .9917
\end{tabular}

After a new value of primary competence that has been calculated for each man in the crew, a current crew competence, CCC, is determined as the average of the individual values.

End-of-Day Performance Measures
Table 2-4 presents a summary of the end-of-day measures calculated to summarize human, equipment and system performance.

Table 2-4

\section*{End-of-Day Performance Measures}

Type of Measure
Variables Calculated and Their Frequency

To recognize the importance of equipment performance in the total mission effectiveness measures, two values are calculated at the end of each simulated mission day. This serves to quantify how well the ship's equipment performed during the day. The first such measure, the average equipment performance level, AEPL, is merely the average of EPL values taken over all equipments. The second is the equipment performance efficiency, EPEFF, calculated as AEPL times the ratio of the sum of average repair duration input data value, ADUR (IET), for the day's repair events to the sum of actual repair times for these same events. As such, it represents a measure of equipment performance based on simulated repairs each day.

Next, the human performance efficiency for the simulated day is calculated. It is the sum of three factors. The first and most basic is the ratio:
\[
\begin{aligned}
\text { sum of event performance efficiency values } & =\text { SEF } \\
\hline \text { sum of event essentiality values } & =\text { ISIE }
\end{aligned}
\]

This factor then measures the effect of performance adequacy, leader's aspiration, and K7 values over the events performed for the day. The second is a factor which measures degradation due to the total amount of unmanned station hours for the day normalized by dividing by the total number of crew working hours:
\[
1-\frac{\text { USHT }}{(\mathrm{IC})(\text { WORK } 1)}
\]

The last factor is a degradation of human performance efficiency due to the extent to which events were ignored,
\[
1-\frac{\mathrm{NIGR}}{\mathrm{NTE}}
\]
where NIGR is the number of events ignored and NTE is the total number of events simulated during the day.

In order to calculate system reliability level, SRL, combining both human and equipment reliability measures, the range of variation of each was normalized. Here, it was assumed that the average performance over all men in the crew would be in a range from 0.65 to 1.0 , i. e.,
\[
0.65 \leq \mathrm{X}=\sum_{\mathrm{M}=1}^{\mathrm{IC}} \operatorname{PERF}(\mathrm{M})<1.0 .
\]

This range of values and the values for the equipment reliability range were selected initially on the basis of judgment as to anticipated results from the model. However, additional experience is required to confirm them and, therefore, they are
subject to change. It is anticipated that such change will be implemented to allow a wider range for equipment (hardware) reliability. Then, a new value, \(X^{\prime}=\) \(X-0.65 / 1-0.65\), was defined whose range, based on \(X\), would be from 0 to 1. Similarly, on the basis of an estimation that the variable AEPL, average equipment performance level, would lie in the range from 0.9 to 1.0 , i. e., \(0.9 \leq \mathrm{Y}=\) AEPL \(\leq 1.0\), a new variable \(Y^{\prime}=Y-0.9 / 1-0.9\) was defined. This variable is based on \(Y\), whose range would be the same as that of \(X^{\prime}\). What is desired is the combination of \(X\) and \(Y\) in such a way that the result, \(S R L\), would be expected to lie in the selected range 0.7 to 1 . A concave relationship was selected for the combination:
\[
Z^{\prime}=X^{\prime} \cdot Y^{\prime}
\]

Then, converting \(Z^{\prime}\) by linear scaling we have:
\[
Z=0.7+Z^{\prime}(1-0.7)
\]

Thus, \(Z\) ' will vary between 0 and 1 when \(Z\) varies between 0.7 and 1.0 , and to ob\(\operatorname{tain} Z\), we have:
\[
\begin{aligned}
Z & =S R L=0.7+\left(X^{\prime} \cdot Y^{\prime}\right)(1-0.7) \\
S R L & =0.7+8.571(X-0.65)(Y-0.9)
\end{aligned}
\]

A corresponding treatment was given in the calculation of system performance level, SPL, from PEFF and EPEFF:
\[
S P L=0.7+8.571(P E F F-0.65)(E P E F F-0.9)
\]

To combine SRL and SPL, each of which varies from 0.7 to 1.0 , a convex treatment was selected. This combinatorial technique is also subject to revision. Here we let:
\[
\begin{aligned}
& S P L=P^{\prime}=\frac{P-0.7}{1-0.7} \\
& S R L=Q^{\prime}=\frac{Q-0.7}{1-0.7} \\
& R^{\prime}=\sqrt{\frac{\left(P^{\prime}\right)^{2}+\left(Q^{\prime}\right)^{2}}{2}}
\end{aligned}
\]
(It is noted that SPL and SRL are figures of merit or "scores" calculated on a known but arbitrary scale. They are not probabilities as such.)

Then, the combination of SRL and SPL, called general system measure, equals:
\[
\begin{aligned}
\operatorname{SGEM}=\mathrm{R} & =0.7+\mathrm{R}^{\prime}(1-0.7) \\
& =0.7+\sqrt{\frac{(\mathrm{SRL}-0.7)^{2}+(\mathrm{SPL}-0.7)^{2}}{2}}
\end{aligned}
\]

This measure, like SRL and SPL, is a "figure of merit" or "index of effectiveness" rather than a probability measure. Further work is anticipated relative to the refinement of a total effectiveness measure.

\section*{Physical Incapacity}

Except on the last day of the mission, the calculation of physical capability is now performed again in the same way as described above under the heading "Crew Formation and Initial Value Selection." Here, again, at the end of each day of the mission (except the last), a determination is made regarding which crew members are to be simulated as degraded (sick) and, if so, how much, and for how many days. The only added processing required at the end of the day is the bookkeeping to reduce the duration of the incapacity, PI2 (M), by one day for each man already incapacitated. If PI2 \((\mathrm{M})=0\), indicating that crew member M was not incapacitated in the preceding day, then \(\mathrm{PI}(\mathrm{M})=1.0\). If \(\mathrm{PI} 2(\mathrm{M}) \geq 1\), indicating the duration of the crew member's incapacitation, then PI2 (\(M\)) is decreased by unity and his incapacity level is indicated by \(\mathrm{PI}(\mathrm{M})\).

\section*{Safety Index}

Another end-of-day processing calculation is the determination of a safety index, Sl, for the crew. This index is formed as a function of the event hazard codes assigned to events performed during the day and of the length of time spent in each of these hazard classifications. A safety index of unity is optimum, that is, minimum hazard conditions possible; a safety index value of zero indicates the worst possible hazard conditions.

The event hazard values for all events of the day are cumulated and called total event hazard, TEH. This value is then divided by the total maximum possible value for the daily event hazard. The ratio is called the hazard ratio:

\[
=\frac{T E H}{9(T H W)}
\]
where THW, the total hours worked, \(=\sum_{M=1}^{I C} T W(M)\).

Having determined the hazard ratio, the computer then determines the safety index as follows:
\[
S I=\frac{9}{8}(1-H R)
\]

This relationship is shown in Figure 2-11 and is based on the fact that event hazard assumes values from 1 to 9 .

Thus, the index equals zero when all event time is spent in a maximum hazard condition and equals unity when all event time is spent under minimally hazardous conditions.

Figure 2-11. Safety index.

A revised scaling of crew mental load is accomplished so as to be consistent with 0 to 1 scaling used for the physical load variable:
\[
\mathrm{CML}=\frac{\mathrm{CML}}{9(\mathrm{THW})}
\]

End-of-Day Sleep
At the completion of the processing of all events for the day and various end-of-day calculations, the model determines the end-of-day sleep requirement and the corresponding fatigue level for each man. Prior to simulating each event, the model checks to determine if conditions permit the selected crew members to sleep between the current and their prior work event (these conditions are time available, catnap time threshold, and fatigue level threshold). Thus, the program provides for operators taking their sleep periods during the 24 hour days, as conditions permit.

Since conditions may permit additional sleep at the conclusion of all work for the day, the processing logic provides for determining the end-of-day sleep status for all crew members. This process determines how much sleep each man should have between the last time worked, \(\mathrm{Z}(\mathrm{M})\), and the day's end, 24.0 hours. If the time available for sleep, \(24-\mathrm{Z}(\mathrm{M})\), exceeds the parameter \(\mathrm{CN}+0.5\), and if the crew member has not had his full quota of sleep for the day, MAXSL, then a sleep period is simulated by calculating sleep duration (limited to MAXSL). As the result of this sleep, new values are generated for time fatigue (reduced due to sleep relief), hours since last sleep, HSLS(M), and a physical capability, PCC(M), all effective at the start of the next day.

\section*{End-of-Day Recording}

The basic computations completed, processing now turns to reporting of results. If print Option 6 has been taken, the summarized results of the day just simulated are recorded for printout on the computer's high speed line printer. Figure 2-12 shows a sample tabulation. The first section provides summarized event and status information for the overall crew performance. Most of the headings shown are self explanatory. All times are given in hours. The AVG PERF ADEQ (average performance adequacy, third line) is a mean of the performance adequacy value of all events performed. The AVG FAIL DIFF (average failure difference) is a mean, taken only for failed events, indicating the difference between performance adequacy, (PA), and the required performance level, CASP(LI)•K7. The second section shows important data summarized by man. These results are either totals for all daily activity (hours worked, slept, idle, number of events successfully performed), or represent end-of-day conditions (fatigue, aspiration, competence). Averages for all of the elements in the second section follow the individual crew member summaries and represent daily summaries for simulated variables for the day.

DAIGY FQUIPMENT PERFORMANCE DATA
\begin{tabular}{rrrrr}
10 & \(C A R Y\) & CDT & CUT & EPL \\
1 & \(13: 40\) & 8,00 & \(6: 46\) & 0,45 \\
- & 4 & 10 & 3,99 & \(6: 59\) \\
3 & \(1: 00\) & 0,69 & \(6: 40\) & 0,80
\end{tabular}

Summarized are: the total number of events scheduled, events worked, repair events, emergency events, repeated events, successes, failures, and ignores, total hours worked, time spent on scheduled and repair and emergency events, unmanned station hours, average performance adequacy, average failure difference percentage of tasks failed and succeeded on first try, percentage of tasks succeeded on second try, and percentage of tasks ignored and repeated. Also, presented are: the safety index, competence increase, confidence, hazard, consumable balances, maximum stress and on which event, maximum mental load and on which event, maximum calories expended and on which event. A summary table is presented including for each man his physical capacity, hours worked in primary specialty, hours worked in secondary specialty, hours slept, hours idle, fatigue level, health index, average physical workload, competence, aspiration, performance (cumulative) and number of successes. Each of these variables is also averaged across the entire crew. A summary table of these variables is also presented by type of man.

Eleven reliability related variables are also summarized in the end-of-day printout. These are: average equipment performance level (AEPL), equipment performance effectiveness (EPEFF), equipment mean time between failures (EMTBF), equipment mean time to repair (EMTTR), system reliability level (SRL), system performance level (SPS), system general effectiveness (SGEM), and, for each equipment, equipment performance level (EPL), current average repairtime (CART), current down time (CDT), and current up time (CUT).

These same items are given in the third section of the end of day recording as a mean by type of man, where type is generally synonomous with work specialty.

End-of-Iteration Summary Calculations and Recordings
If the day just simulated was not the last day of the mission, then the day number, ND, is increased by one, and the entire process is repeated for the next and subsequent mission day's events by returning to circle c of the model flow chart.

After the last day has been simulated, several end-of-iteration summary calculations are made and the end-of-mission iteration record is made for later printing.

However, just prior to the recording, seven mission iteration human and equipment reliability summary measures are calculated as shown by their variable name below:
\begin{tabular}{lcc|l}
& \multicolumn{2}{c|}{ Reliability } & Availability \\
& MTBF & MTTR & \\
\cline { 2 - 4 } & & & \\
HUMAN & HMTBF & HMTTR & HAVAIL \\
EQUIPMENT & EMTBF & EMTTR & EAVAIL \\
SYSTEM & - & - & SYSAVAIL
\end{tabular}

These data are calculated from other available iteration summary values as shown in the flow chart at circle K, based upon the basic definitions of MTBF and MTTR and AVAIL \(=\frac{\text { MTBF }}{\text { MTBF }+ \text { MTTR }}\).

The resultant recording of iteration output is then made. This recording contains such summary items as: number of events successful on first and second try, number of events failed and ignored, average man hours spent in primary specialty, in secondary specialty, hours spent sleeping and hours idle, consumables remaining, averages of physical load, mental load, competence, average performance adequacy, average fatigue, average aspiration, average health, and average safety. Each of these variables is also summarized as percentage of total, average per day, or percentage of original, whichever is appropriate. Summary by day (including an average across days) includes: number of repair or emergency events, average man hours spent doing repairs or handling emergencies, maximum stress, maximum mental load, confidence, hazard, average failure difference, number of successes and unmanned hours. A summary table by day and man type is provided for the following variables: physical capability, hours spent on primary and secondary specialties, sleep time, idle time, fatigue, health index, average physical work load, competence, aspiration, cumulative performance, and number of successes. Averages for these variables across types by day are also provided (Figure 2-13).

Reliability metrics provided at the end of each iteration are human mean time between failure (HMTBF), equipment mean time between failure (EMTBF), human mean time to repair (HMTTR), equipment mean time to repair (EMTTR), human availability (HAVAIL), and equipment availability (EAVAILL. A composite reliability metric of system availability (SYSAVAIL) is also provided.

Following each such mission iteration of ND days, a check is made to determine whether all N mission iterations have been completed. If not, the entire process, as described, begins again for the next iteration at circle a of the flow chart.

If N mission iterations have been accomplished, then the results of all of the \(N\) iterations are summarized, a new set of parameters is called into the computer and is recorded. The run summary tabulation output provides the summary of each and all iterations of the run in a tabular form which is similar to the iteration summary.

This entire process, then, results in the simulation of N iterations of a mission for each of several parameter sets and continues until the computer has processed all parameter sets provided as input.

Figure 2-13. Sample end ofiteration recording.

\section*{CHA PTER III}

\section*{INITIAL MODEL APPLICATION--SENSITIVITY TESTS}

The model described in Chapter II was applied to a hypothetical mission. The mission was developed specifically for assessing the logic of the model's output and for obtaining an initial estimate of its internal validity. The mission was general in scope and involved typical work events as found in many Navy shore and sea based systems. However, the mission was not intended to reflect accurately any specific mission. Rather, it was developed to provide a basis for experiencing and evaluating the model's internal structure and its output. Such a hypothetical mission possesses advantage because certain model features may be inadequately tested in a usual mission. For example, emergencies or repairs would occur so infrequently that test of features related to these variables would be insensitive or require an inordinately large number of iterations per run.

This chapter discusses the mission developed, the related input data, and the results obtained from the sensitivity test analysis.

\section*{Mission Events}

The mission developed for model sensitivity test involved 27 events. These were subdivided into 10 scheduled events, 14 repair events, and 3 emergency events. All 27 events could occur on any given day with stochastic processes determining both the actual events which occurred, as well as their sequence of occurrence.

\section*{Scheduled Events}

The 10 scheduled events were subdivided into two scheduled event families with four and two events, respectively, and four single events. Figure 3-1 shows a sample portion of the computer tabulation of the scheduled event input data. The following explanation of scheduled event 3 (Figure 3-1) illustrates the meaning of the data relative to this event. Scheduled event 3 employs event type number 11 (IETYP = 11), uses the third set of thresholds for units per hour consumable consumption (\(\mathrm{TSR}=3\)), uses the second set of thresholds for units consumable consumption (TSRI = 2), and is neither the first nor the last event (1 FOI = 0) in family two (IEFW = 2), which consists of four events (NTF = 4). Also, scheduled event 3 is followed by scheduled event \(4[\mathrm{NX}(1)=4\) and \(\operatorname{PRB}(1)=1.00]\). Before scheduled event 3 can be started, precedent event 1 (IPE =1) must be completed. Scheduled event 3 can be touched up (RTU = 2) and must be completed by time limit 0730 hours (\(\mathrm{TL}=7.30\)). It must start by 0345 hours \((\mathrm{ST}=3.75)\).

Figure 3-1. Sample sensitivity test input data for scheduled events.

\section*{Repair Events}

The 14 repair events were subdivided into two repair families with eight and five events, respectively, and one single repair event. The eight repair event family was designated as repairing electronic equipment. The five repair event family was designated as repairing electromechanical equipment, while the single repair event involved a mechanical repair. Figure 3-2 shows a sample of the computer tabulation of the repair event input data. The following explanation of the third event in the electronic repair family describes the meaning of the input data for repair events. This repair event employs event type number (TYPE = 3) with event 2 as the next event to be performed [NX(1)=202; 202-200=2 with 200 subtracted as repair events begin at that location in memory] with a probability equal to \(1.0[\operatorname{PRB}(1)=1.0]\). If performed unsuccessfully, the event is not repeated or touched up (\(\mathrm{RTU}=0\)). There is no required precedent event \((\mathrm{IPF}=0)\). Repair event 3 is not the first or the last event (IFOI = 0) in family 1 (IEFN \(=1\)), which is composed of a total of eight repair events (\(I R E=8\)) Like all other events in this family which is employed in corrective maintenance of electronic equipment number 1 (\(\mathrm{IQ}=1\)), no data change options are in effect [IEDC(1-3)=0; IEDC (1-3) \(=0\)). Equipment 1 has: a reliability of 0.1 (\(\mathrm{RELH}=0.1\)), an intermittent failure rate of \(1.00(T U I=1.0)\) per hour, and a maximum repair time of 5.00 hours (DTR \(=5.00)\).

\section*{Emergency Events}

No families are involved in the simulation of the emergencies. Three types of emergencies were included in the sensitivity test data. Figure 3-3 presents the computer tabulation of the emergency event input. The data for emergency event 2 (\(\mathrm{K}=2\)) will serve as an example. The average event time is expected to be . 70 hours (ART \(=.70\)), with a standard deviation of .10 (\(\mathrm{ASDE}=0.10\)), and a maximum of 1.20 hours (\(\mathrm{DTE}=1.20\)). The rate of consumable expenditures (units per hour) is shown to be 10 for consumables one through four \([\operatorname{IRCE}(1-4)=10]\) and zero for consumables six through ten \([\operatorname{IRCE}(6-10)=0]\). The threshold set used for these consumables is 1 (TSE = 1). The rate of consumable expenditure (units) is shown to be five for consumables one through five \([\operatorname{IRCE}(1-5)=5]\) and 10 for consumables six through \(10[\operatorname{IRCEl}(6-10)=10]\). The threshold set used for these consumables is also \(1(\mathrm{TSE}=1)\). The mental load involved in this task is \(2(\) LODME \(=2)\), the essentiality is 75 (IESSE \(=75\)), and the hazard class is \(2(\mathrm{IHE}=2)\). Seven men are necessary for this emergency with types (NREQE)--and expected energy consumption by type (IECE) in parenthesis--one \([\operatorname{IECE}(1)=180)\), two \([\operatorname{IECE}(2)=180)\), four \([\operatorname{IECE}(4)=638]\), eight \([\operatorname{IECE}(8)=720]\), nine \([\operatorname{IECE}(9)=720]\), and ten [IECE(10) \(=720\)] required. Two type 10 men are required \([\mathrm{NREQE}(10)=2\)].
-. 10 DESCRIFTIONFRB(2-3) RTU IENC(2-3) IEUCV(1き3)3)
 - 1 ELECTRONIC REPAJR 2

 - 2 ELECTROMECHANICAL REPAIR 1
 - 14214212212 1:00 0,
 \(+252152122121: 0001\)
 \(152152122121: 0000\)
 162162122121000 1
 \(\begin{array}{lllll}16 & 216 & 212 & 212 & 1: 00 \\ 17 & 217 & 212 & 212 & 1: 00 \\ 0\end{array}\)
01
01
01
0
0
0
 100
\begin{tabular}{|c|c|}
\hline 0 & 0, \\
\hline 0 & 0, \\
\hline 0 & 0. \\
\hline 0 & 01. \\
\hline 0 & 0. \\
\hline
\end{tabular}
\(\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\)
\begin{tabular}{|c|c|c|c|}
\hline & & 2 & 2 \\
\hline 0. & 0 & 1 & 5 \\
\hline 01 & 0 & 0 & 5 \\
\hline 0. & 0 & 0 & 5 \\
\hline 0. & 0 & ก & 5 \\
\hline 0. & 0 & 2 & 5 \\
\hline
\end{tabular}
\(0: 300000\)
3
3
3
3
3

\section*{- MECHANICAL REPAIR: 19224224224 1:00 O,}
\(\infty\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Figure 3-2. Sample sensitivity test input data for repair events.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\) APPLIED FSYCHOLOKICAL SEPV?CES--NAVSEA HURY A;S,MRI,JJW, JB \(\qquad\)

NDRE ARY ASNE DTE
1RCE\{1-10\} TSE LODME IRCEI (1-10) TSEI IHE

IESSE
IECE(1-10)
 19?. \(2622^{-1} 150,216,210,144,1441\) 144, 210. 216,

3
\(\ldots 0.35 \quad\) EMERCIENCY 3
\(0.10 \quad 0.90\)
\(\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 144 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\)
\(\begin{array}{lllll}1, & 1, & 1, & 1 i \\ 0, & i_{5} & 0, & 216, & 0_{1}\end{array}\)

Figure 3-3. Sensitivity test input data for emergency events.

Event Types

Scheduled and repair events are all associated with event type data. This feature allows flexibility to the analyst in coupling events with different critical parameter values. Figure 3-4 presents a sample portion of the computer tabulation of the event type data. Event type \(11(J=11)\), which is associated with scheduled event 3 (explained earlier), will serve to illustrate the meaning of the event type data input entries. This decision event type has an essentiality of 99 (IESS = 99), a mental load of \(2(L O D M=2)\), and a fixed end time (\(K E=1\)). It is not a training event (\(\mathrm{INT}=1\)), has a hazard class of \(1(\mathrm{IH}=1)\), and requires five men with types (NREQE)--and expected energy consumption by type (IECE) in parenthesis--two \([\operatorname{IECE}(2)=216]\), five \([\operatorname{IECE}(5)=216]\), seven \([\operatorname{IECE}(7)=216]\), nine \([\operatorname{IECE}(9)=250]\), and ten \([\operatorname{IECE}(10)=250]\). This event type has an expected average duration of five hours (\(A D U R=5\)) and an average duration standard deviation of 0.1 hours (\(A S D=.1\)). The class of the event is 3 (\(C L A S S=3\)), and one equipment (\(\mathrm{NIQR}=1\)) is required --equipment number one \([\operatorname{IQR}(1)=1]\). The expected consumable usage in units per hour is one \([\operatorname{IRC}(1-10)=1]\) and in units it is also one \([\operatorname{IRC1}(1-10)=1]\).

Parameters

Computer input data were selected so as to allow initial exercise of the major model features.

Following data preparation, a variety of computer simulation runs was completed employing a range of parameter values in order to allow evaluation of the sensitivity of the model to variations in parametric input and how they affect various reliability metrics.

Table 3-1 shows the nominal values, or conditions, for each computer run performed.

Table 3-2 presents the matrix which was used in the assignment of personnel crosstraining probabilities. This matrix presents the probability of a personnel type with a given primary specialty being crosstrained in a given secondary specialty. These values were obtained through interviews with persons who were patrol boat members and were used in the Siegel et al. (1972) study.

The parameter values varied for the seven sensitivity test runs are shown in Table 3-3. Each set of values in a computer run was designated a "parameter set" and numbered one to seven, as shown in Table 3-3. These parameter values allow the comparison of such effects as varying workday length, crew proficiency, and sea state on output measures such as the number of repairs successfully completed.
\(\qquad\)

EVENT TYPE DATA
ICEMTIFIER.

IRC(1-10)
IRC1(1-10)
\(\qquad\)
……......

- 5 , \(\quad 1 \quad 3, \quad 0 \quad 0 \quad 0 \quad 0 \quad 0:\)
\[
\text { EVENT TYPE } 3 \text { ELECTRONIC RFPAID=-12E! }
\]
\[
i^{1,} 1^{1,}
\]

EVEAT TYOF क ELFCTRONIC RFPAgRome EH
\(\qquad\)
 EVEAT TYOF B ELFCTRO:IC RFPAIRAO-O EH,

 EVENT TYPF 3 ELFCTKOINIC RFPATF:- -3 ERPI
 \(05,2,13,000000010\)
 EVENT TYPE O\#̈COHYUNICATE
 EVENT TYPF O:COHYUNICATE \(\ldots \ldots \ldots\)
 , 0 , 0 , 0 -

 EVEAT YYDE 10=-0PÏRATF -..
 -11.
EVENT TYPF. 11 DECIDE

 EVENT TYPE: 12 ACT

Figure 3-4. Sample senșitivity test event type input data.
"Standard" Parameter Set Run Conditions
\begin{tabular}{|c|c|c|}
\hline Parameter & FORTRAN & value \\
\hline Average psychological stress threshold & APST & 2.30 \\
\hline Workday, assignment limit & WORK1 & varied \\
\hline Workday, maximum & WORK2 & 22.00 \\
\hline Hours since last sleep at start & SLEEP & 1.00 \\
\hline Catnap threshold & CN & 1.00 \\
\hline Maximum sleep permitted per day & MAXSL & 8.00 \\
\hline Fatigue threshold & TFAT & 0.25 \\
\hline Average crew pace & ACP & varied \\
\hline Average daily calories per crew member & CALRY & 2700.00 \\
\hline Average short term power rate (cals/hr) & PWRRT & 440.00 \\
\hline Acceptable performance constant & K7 & 1.00 \\
\hline Work factor constant & K1 & 0.95 \\
\hline Consumable levels: (units/hr) & KON(1) & 15150.00 \\
\hline & KON(2) & 10000.00 \\
\hline & KON(3) & 6000.00 \\
\hline & KON(4) & 500.00 \\
\hline & KON(5) & 500.00 \\
\hline & KON(6) & 500.00 \\
\hline & KON(7) & 500.00 \\
\hline & KON(8) & 500.00 \\
\hline & KON(9) & 500.00 \\
\hline & KON(10) & 500.00 \\
\hline Consumable levels: (units) & KON1 (1) & 100.00 \\
\hline & KON1 (2) & 100.00 \\
\hline & KON1 (3) & 100.00 \\
\hline & KON1 (4) & 100.00 \\
\hline & KON1 (5) & 100.00 \\
\hline & KON1 (6) & 100.00 \\
\hline & KON1 (7) & 100.00 \\
\hline & KON1 (8) & 100.00 \\
\hline & KON1 (9) & 100.00 \\
\hline & KON1 (10) & 100.00 \\
\hline Initial aspiration level & AASP & 0.85 \\
\hline Number of iterations & N & 5.00 \\
\hline Essentiality threshold & IET & 0.30 \\
\hline Sea state & SESTA & varied \\
\hline
\end{tabular}

\section*{Personnel Data}

Mean body weight of total population
\begin{tabular}{lr}
WT & 160.50 \\
SIGWT & 20.00 \\
PPFQ & varied \\
PPMQ & varied \\
PPUQ & varied \\
SPFQ & varied \\
SPMQ & varied \\
SPUQ & varied \\
MPI & 5.00 \\
PID & 5.00 \\
& \\
ZPC & 2.00 \\
MEN(ICE,NI) & varied
\end{tabular}

Table 3-2
Crosstraining Probability Matrix

Secondary
Specialty
\begin{tabular}{lccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0.99 & 0.65 & 0.71 & 0.25 & 0.09 & 0.18 & 0.18 & 0.13 & 0.11 & 0.05 \\
0.78 & 1.00 & 0.65 & 0.63 & 0.31 & 0.45 & 0.38 & 0.23 & 0.26 & 0.59 \\
0.79 & 0.46 & 1.00 & 0.11 & 0.13 & 0.12 & 0.43 & 0.16 & 0.35 & 0.06 \\
0.56 & 0.72 & 0.24 & 1.00 & 0.71 & 0.35 & 0.21 & 0.16 & 0.19 & 0.42 \\
0.38 & 0.27 & 0.12 & 0.62 & 0.94 & 0.14 & 0.26 & 0.32 & 0.12 & 0.13 \\
0.36 & 0.22 & 0.42 & 0.06 & 0.21 & 1.00 & 0.52 & 0.54 & 0.25 & 0.06 \\
0.81 & 0.39 & 0.72 & 0.14 & 0.42 & 0.72 & 1.00 & 0.86 & 0.48 & 0.14 \\
0.21 & 0.06 & 0.12 & 0.10 & 0.47 & 0.37 & 0.55 & 1.00 & 0.08 & 0.03 \\
0.26 & 0.16 & 0.85 & 0.04 & 0.04 & 0.60 & 0.23 & 0.18 & 0.96 & 0.06 \\
0.83 & 1.00 & 0.82 & 0.97 & 0.87 & 0.71 & 0.82 & 0.73 & 0.74 & 1.00
\end{tabular}

Table 3-3

\section*{Sensitivity Test Runs}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameters Varied} & \multicolumn{7}{|r|}{Parameter Set--Test Run} & \multirow[b]{2}{*}{Comparison} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline Workday length (hours) & 18 & 18 & 18 & 12 & 12 & 12 & 18 & Average vs. long workday \\
\hline \multicolumn{9}{|l|}{Primary proficiency} \\
\hline 1. Per cent fully qualified & 0 & 0 & 0 & 90 & 90 & 90 & 0 & High proficiency vs. \\
\hline 2. Per cent minimally qualified & 10 & 10 & 10 & 10 & 10 & 10 & 10 & low proficiency crew \\
\hline 3 . Per cent unqualified & 90 & 90 & 90 & 0 & 0 & 0 & 90 & \\
\hline \multicolumn{9}{|l|}{Secondary proficiency} \\
\hline 1. Per cent fully qualified & 0 & 0 & 0 & 90 & 90 & 90 & 0 & High proficiency vs. \\
\hline 2. Per cent minimally qualified & 10 & 10 & 10 & 10 & 10 & 10 & 10 & low proficiency crew \\
\hline 3 . Per cent unqualified & 90 & 90 & 90 & 0 & 0 & 0 & 90 & \\
\hline Average crew pace & 1. 0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1. 25 & Average vs. slow crew \\
\hline Sea state & 9 & 9 & 0 & 0 & 9 & 0 & 0 & Calm vs. rough seas \\
\hline Crew size & 14 & 9 & 9 & 14 & 9 & 9 & 9 & Large vs. small crew \\
\hline
\end{tabular}

Table 3-4 shows the personnel assignment matrices for crew echelon by personnel type for the two crew sizes (9 men and 14 men) simulated. The decrease in crewsize from 14 to 9 results in the loss of one type one man from crew echelon one, one type two man from crew echelon two, one type five man from crew echelon three, and two type ten men from crew echelon four.

Table 3-4
Personnel Assignment Matrices for Crew Sizes of 9 and 14
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{11}{|c|}{Crew Size of 9} \\
\hline & & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{2} & \multicolumn{4}{|l|}{Personnel Type} & \multirow[b]{2}{*}{7} & \multirow[b]{2}{*}{8} & \multirow[b]{2}{*}{9} & \multirow[b]{2}{*}{10} \\
\hline & & & & 3 & 4 & 5 & 6 & & & & \\
\hline & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Crew & 2 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Echelon & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

Crew Size of 14

Note that a variety of differences were selected in an attempt to assess ef fects on the model's output for sensitivity evaluation. These changes in output, when viewed in the light of input change, may be used to determine the realism (agreement with logical expectancy) of model's output responses both in direction and magnitude. To allow appraisal of the model's sensitivity, the results achieved will be presented in groups of parameter set runs which concentrate on a selected facet of the model's response. For example, parameter sets 1 and 2 allow a determination of the effect of crew size. The only change in parameter values between the two computer runs is crew size. Similarly, a comparison between parameter sets 3 and 7 allows quantification of the effects of variation in average crew pace.

Crew Size

The results from parameter set 1 versus 2 and 4 versus 6 represent the effects of variations in crew size on the completion of the events in the simulated day's work. Parameter sets 2 and 6 include crew sizes of 9 men, while parameter sets 1 and 4 are simulations of crews with 14 men. Parameter sets 1 and 2 both involve: long workdays, low proficiency crews, average crew pace, and rough seas. Parameter sets 4 and 6 both include: short workdays, high proficiency crews, average crew pace, and calm seas.

Figures 3-5, 3-6, 3-7, and 3-8 present the effects of crew size variation on selected simulation output. The first of these figures indicates for both comparisons an increasing percentage of tasks successfully completed with increasing crew size. The percentage of tasks failed decreased from 71.2 to 65.9 with increasing crew size for parameter sets 1 and 2 , while the percentage of tasks failed for parameter sets 4 and 6 remained relatively constant. The effects of crew size variation on task performance accordingly seems to have had its greatest impact on the percentage of tasks successfully completed. Task success percentage increased approximately 10 per cent for parameter sets 1 and 2 (less than optimal conditions) and approximately 15 per cent for parameter sets 4 and 6 (with more optimal conditions). Increases in the number of events failed with smaller crews seems to be coupled with less than optimal conditions. Large simulated crews were more able to handle the increased workload. This result seems to be in accordance with logical expectancy.

Figure 3-6 indicates, as would be expected, that more idle hours and less work by crew members in their primary proficiency accompanies larger crew sizes. Idle time was about 20 per cent greater for parameter set 1 as compared with parameter set 2 and about 10 per cent greater for parameter set 4 as compared with parameter set 6 . The decrease in time worked in primary specialty is reflective of the general decrease in work time per crew man with increasing crew size. This trend of these results is also considered to be realistic.

Figure 3-7 presents the effect of crew size on average physical workload. As expected, increasing the size of the crew results in a simulation output which indicated less physical workload per crew member. The difference in workload between parameter sets 1 and 2 (less than optimal conditions) and parameter sets 4 and 6 (more optimal conditions) reflects the greater number of events attempted (not ignored) and successfully performed (see Figure 3-5) by the simulated crew under the more optimal conditions.

FIGURE 3-5. EVENT SUCCESS AND FAILURE PERCENTAGE AS A FUNCTION OF CREW SIZE.

FIGURE 3-6. HOURS (AVERAGE) WORKED IN PRIMARY SPECIALTY AND HOURS IDLE AS A FUNCTION OF CREW SIZE.

FIGURE 3-7. AVERAGE PHYSICAL LOAD AS A FUNCTION OF CREW SIZE.

FIGURE 3-8. AVERAGE HOURS SLEPT AS A FUNCTION OF CREW SIZE

The effect on average hours slept of variations in crew size is shown in Figure 3-8. With increasing crew size, the average number of hours slept can be observed to increase for parameter sets 1 and 2, as well as parameter sets 4 and 6. The effect is marginal for parameter sets 4 and 6. For parameter sets 1 and 2 , approximately a 20 per cent increase in sleep time was shown with the increased crew size. The increased sleep time available under the more adverse conditions (parameter sets 1 and 2) is a function of more events being ignored.

The crew size data suggest that the crew size variable is adequately and logically reflected on a number of the model's output variables. This variable seems to have the desired effects on event success, failure, hours worked, idle time, hours slept, and physical workload levels.

\section*{Sea State}

The effect of the sea state parameter on the model's output was explored by comparing the simulation results from: (1) parameter sets 2 and 3, and (2) parameter sets 5 and 6. Parameter sets 2 and 3 are characterized by: long workdays, low proficiency crews, average crew pace, and small crews. Parameter sets 5 and 6 are characterized by: short workdays, high proficiency crews, average crew pace, and small crews. Parameter sets 2 and 5 have sea state values equal to 9 (rough seas) while parameter sets 3 and 6 have sea state values equal to 0 (calm and glassy) seas.

The effects of variation in the sea state parameter are shown in Figures 3-9, \(3-10\), and 3-11. Figure \(3-9\) shows the effect of sea state variation on the average failure difference. As anticipated, both parameter sets indicated a larger margin between actual and acceptable performance (the failure difference) for the rough sea state condition. The larger failure differences observed for parameter set 2 as compared with parameter set 3 suggest that, according to the model, a lower proficiency crew working a longer worker day will suffer a significant performance degradation in rough seas and that this degradation is higher than for the short workday, high proficiency crews.

Figure 3-10 presents the effects on the percentage of events successfully completed or failed as a function of difference in sea state. Percentage of failure appears to increase significantly with adverse weather conditions. The effects on percentage of success appear to have been greatest in the comparison of parameter set 2 with parameter set 3 . Here, a 14 per cent decrease was indicated. The slight increase in percentage of successful events observed for parameter set 5 as compared with parameter set 6 (adverse weather conditions) (4 per cent) is consistent with the prior indication of the model that higher proficiency crews working shorter workdays are less affected by the sea state.

FIGURE 3-9. AVERAGE FAILURE DIFFERENCE AS A FUNCTION OF SEA STATE.

FIGURE 3-10. EVENT SUCCESS AND FAILURE AS A FUNCTION OF SEA STATE.

FIGURE 3-11. AVERAGE PERFORMANCE ADEQUACY AS A FUNCTION of SEA STATE.

Figure 3-11 presents the effects of varying sea state on average performance adequacy (APA). Both parameter sets are in agreement. Each indicates a decrease in APA with increasing weather turbulence. Also, as predicted, the better crew (higher proficiency) of parameter sets 5 and 6 demonstrated higher APA. In summary, it appears from the average failure difference, percentage success/ failure, and average performance acequacy data that the model yields results which are directionally sensitive in the anticipated direction when the new sea state variable is implemented--at least over the ranges tested.

Workday Length and Proficiency

One of the many uses of the model can be phrased symbolically as:
\[
A \cap B \simeq C \cap D
\]

That is, the occurrence of conditions \(A\) and \(B\) is approximately equivalent (in terms of some criterion such as number of successful event) to conditions C and D. An analyst might, for example, be interested in whether a crew of lesser proficiency which is given more time to work would perform as well as a crew of greater proficiency given less time. This type of analysis is illustrated in the sensitivity tests reported here. In this aspect of the sensitivity tests, proficiency and workday length were varied concurrently. Table 3-5 presents the workday length-proficiency parameter combinations investigated.

Parameter sets 2 and 3 include a long worday with a crew of low proficiency, while parameter sets 5 and 6 include a short workday with high proficiency. Comparisons between the results from parameter sets 2 and 5 and between parameter sets 3 and 6, accordingly provide the desired data.

Table 3-5
\begin{tabular}{c}
Workday Length and Proficiency Parameter Values \\
for Parameter Sets 2, 3, 5, and 6 \\
\hline
\end{tabular}

Parameter Set
\begin{tabular}{lcc}
Parameters & \(\frac{2 \text { and } 3}{18}\) & \(\frac{5}{2}\) and 6 \\
Workday length (hours) & & 12 \\
Primary proficiency & 0 & 90 \\
Per cent fully qualified & 10 & 10 \\
Per cent minimally qualified & 90 & 0 \\
Per cent unqualified & & 90 \\
Secondary proficiency & 10 & 10 \\
Per cent fully qualified & 90 & 0 \\
Per cent minimally qualified & \(\frac{2}{9}\) & \(\frac{3}{0}\) \\
Per cent unqualified & 9 & 9
\end{tabular}

Figures 3-12, 3-13, and 3-14 present the simulation output resulting from the workday length-proficiency variation. The first of these figures indicates an increase in the average physical workload with the shorter workday-higher proficiency. For parameter set 2 in comparison with parameter set 5 , as well as for parameter set 3 in comparison with parameter set 6 , the increase amounted to better than 25 per cent. It is possible that the faster crew has to work harder during the shorter time period allotted to them to complete the day's work and that their greater proficiency does not offset the necessary increase in physical labor. Parameter sets 3 and 6 indicated a much greater degree of physical load than the paremeter sets 2 and 5. This result probably, as has been noted earlier, reflects the greater number of events ignored under adverse weather conditions.

Figure 3-13 presents the effects on event success and failure percentages as the result of the workday length-proficiency variation. The percentage of event success increased dramatically for the higher proficiency crews. Analogously, percentage of event failure decreased with the increase in proficiency. While the shorter workday would probably have an effect, in and of itself, prior results with an earlier version of this model (Siegel, Wolf, \& Cosentino, 1971) suggest that the large variations observed in event success and failure is primarily a function of the variation in proficiency.

FIGURE 3-12. AVERAGE PHYSICAL LOAD AS A FUNCTION OF WORKDAY LENGTH AND PROFICIENCY

FIGURE 3-13. EVENT SUCCESS AND FAILURE PERCENTAGE AS A FUNCTION OF WORKDAY LENGTH AND PROFICIENCY.

Figure 3-14 presents the effect of varying the workday length and proficiency on average end-of-mission fatigue. No effect is indicated for the comparison of parameter sets 2 and 5. For parameter set 3, compared with parameter set 6, a drop of approximately .07 in fatigue was indicated in the higher proficiency-shorter workday combination. Coupled with the results presented in Figure 3-12, this suggests that while the average physical load may increase because of the shorter workday, the fatigue level at the end of the day has actually been depressed. The higher average fatigue for parameter sets 3 and 6 is, once again, probably reflective of the large number of events ignored during adverse weather conditions.

Integration of results from the three analyses involving comparisons between workday length and crew proficiency combinations suggests support for contentions favoring the trend sensitivity of model parameters to variations in the se variables. However, further calibration analysis of the fatigue variable may also be indicated. The data relative to fatigue, event success and failure, and physical workload, for the most part, tend to be logical and consistent with the observed trends being in the predicted directions. These results also serve to demonstrate the utility of the model for assessing the effects of tradeoffs (e. g. , low proficiency and a long workday versus high proficiency and a short workday). This type of analysis has traditionally been found to be useful to the system analyst. In the cases shown, the advantage of high proficiency far outweighs the "advantage" of a longer workday.

\section*{Average Crew Pace}

The effect of varying average crew pace on event success and failure is shown for parameter sets 3 and 7 in Figure 3-15. As would be expected, the percentage of events failed increased, and the percentage of events successfully completed decreased as the average pace of the simulated crews decreased. The percentage of events failed due to this 25 per cent decrease in average crew pace (defined as a slow crew) increased approximately 13 per cent, while the percentage of events successfully completed decreased approximately 8 per cent. These changes in event performance illustrate adequate sensitivity of the model to variations in this variable.

\section*{Reliability Analysis}

Mean time between failures, mean time to repair, and availability were calculated both for the crew and for the equipment in the simulations involving each parameter set. Additionally, the overall system availability metric, which is a function of both equipment and human reliability, was also calculated after the completion of all the iterations for each run. Equipment mean time between failures (EMTBF), equipment mean time to repair (EMTTR), and equipment availability are calculated within the model in the usual manner. Human mean time between failure (HMTBF) is calculated in terms of touchup and repeat time, while human availability (HAVAIL) is calculated by dividing HMTBF by HMTBF and HMTTR.

FIGURE 3-14. AVERAGE FATIGUE AS A FUNCTION OF WORKDAY LENGTH AND PROFICIENCY

FIGURE 3.15. EVENT SUCCESS AND FAILURE AS A FUNCTION OF AVERAGE CREW PACE

These statistics are particularly sensitive to the number and types of events actually performed during a simulation run. Because of the stochastic nature of the model and the intention of requiring a large number of unscheduled (repair and emergency) events in the sensitivity tests, the actual values of the numerics obtained in this sensitivity analysis are of less concern than relationships between stochastic runs where both a similar number and type of events were performed.

Also, the reliability data reported are only a sample of those actually computed. However, they do reflect the general trends observed. Those analyses which resulted in counter-intuitive findings are currently being investigated.

The present discussion is particularly interested in the human oriented metrics--HMTBF, HMTTR, HAVAIL. The equipment oriented metrics are based on the usual equation and reflect input data.

Parameter sets 2 and 3 differed only in sea conditions. The sea state in parameter sets 2 and 3 was 9 and 0 respectively. Table 3-6 presents the obtained reliability values for these parameter sets.

Table 3-6
Overall Reliability Metrics for Parameter Sets 2 and 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter Set} & \multicolumn{2}{|c|}{MTBF} & \multicolumn{2}{|r|}{MTTR} & \multicolumn{2}{|l|}{Availability} & \multirow[t]{2}{*}{System Availability} \\
\hline & Human & Equipment & Human & Equipment & Human & Equipment & \\
\hline 2 & 0. 744 & 3. 384 & 2. 71 & 20.889 & 0.215 & 0.139 & 0.181 \\
\hline 3 & 2.226 & 3. 367 & 3. 06 & 21.339 & 0.421 & 0.136 & 0. 313 \\
\hline
\end{tabular}

The parameter set 2 crew showed shorter HMTBF (as anticipated), shorter HMTTR (against anticipation), lower availability (as anticipated), and lower system availability. The reversal of directional tendency in the case of HMTTR is believed to be an artifact of the low number of iterations included in these sensitivity tests. However, these results may also suggest that further calibration of the HMTTR measure may be necessary.

Table 3-7 presents the various reliability metrics comparing the results from parameter sets 3 and 7. These two parameter sets differed only in the assigned average crew pace. Parameter set 7 represented the slower crew. All the metric comparisons, with the exception of the HMTTR comparison, indicate superiority for the faster crew. There was a considerable increase in system availability as the result of manning the simulated system with a faster crew. However, again there is a reversal for the HMTTR comparison. The present thinking relative to this reversal is the same as that discussed for the prior parameter set comparison.

Table 3-7
Overall Reliability Metrics for Parameter Sets 3 and 7
\begin{tabular}{cccccccc}
\begin{tabular}{c}
Parameter \\
Set
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{c}
MTBF \\
Human
\end{tabular}} & \multicolumn{2}{c}{\begin{tabular}{c}
MTMipment
\end{tabular}} & \begin{tabular}{c}
Human \\
Equipment
\end{tabular} & \begin{tabular}{c}
Availability \\
Human \\
Equipment
\end{tabular} & \begin{tabular}{c}
System \\
Availability
\end{tabular} \\
\hline 3 & 2.226 & 3.367 & 3.06 & 21.339 & 0.421 & 0.136 & 0.313 \\
7 & 1.649 & 3.536 & 2.86 & 18.130 & 0.366 & 0.163 & 0.283
\end{tabular}

The effect of the crew size variable with a short workday, high proficiency crews, average crew pace, and calm seas is shown in Table 3-8. Parameter set 4 includes a crew of 14 men, while parameter set 6 has a smaller crew (9 men).

Table 3-8
Overall Reliability Metrics for Parameter Sets 4 and 6
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{MTBF} & \multicolumn{2}{|c|}{MTTR} & \multicolumn{2}{|l|}{Availability} & System \\
\hline Set & Human & Equipment & Human & Equipment & Human & Equipment & Availability \\
\hline 4 & 5. 314 & 2.829 & 1. 88 & 18.754 & 0. 739 & 0.131 & 0.531 \\
\hline 6 & 6. 953 & 3.157 & 4. 60 & 15.829 & 0. 602 & 0.166 & 0.441 \\
\hline
\end{tabular}

The larger crew indicated a shorter HMTBF, a shorter HMTTR, a higher AVAIL, and a higher system availability. Here, all numerics are in the anticipated direction with a 20.4 per cent increase in system availability resulting from the increase in crew size.

In summary, it appears that, as a first attempt at deriving and computing human related reliability and availability metrics, the model has proved successful. The reliability metric values obtained were, by and large, logical and interpretable. There seems to be some need to investigate more fully the HMTTR metric and to confirm that these metrics accurately reflect the logic of the model, as well as the real world situation.

\section*{CHAPTER IV}

DISCUSSION, SUMMARY, AND CONCLUSIONS

The present study attempted to: (1) extend and strengthen a previously developed model for simulating the acts and behaviors of the operators of an intermediate size system to include a greater number of options to the model user, (2) evolve the model into one which produces reliability oriented metrics for both humans and equipment on both an event and overall system level, and (3) conduct an initial series of sensitivity tests relating the new variables and parameters to those already present in the model. The extensions incorporated as well as the new reliability metrics introduced were reviewed earlier in this report.

The results of the sensitivity tests, taken as a whole, suggest that the logic for the modifications and new variables and parameters as introduced seem to reflect positively on the model's content validity. More specifically, the crew size, sea state, average crew pace, and workday length variables all seemed to respond properly in direction and magnitude in response to the variations introduced. The results of the various reliability calculations also seem promising. However, due to the novelty and uniqueness to this model, it appears that more extensive tests and analysis is required. Real mission data, as opposed to the high equipment failure probability and artificial sequencing of scheduled eventsemployed in the test data set, are required for a more definitive evaluation of these metrics.

Additional calibration and testing of the present model, which represents an adaptation of the Applied Psychological Services' intermediate size crew model (Siegel, Wolf, \& Fischl, 1969; Siegel, Wolf, \& Cosentino, 1971; Siegel, Lautman, \& Wolf, 1972) is currently being performed. However, when one couples the present results with the results of the prior sensitivity tests (Siegel, Wolf, \& Cosentino, 1971) and the prior tests of the validity of the model (Siegel, Lautman, \& Wolf, 1972), there is considerable basis for believing that a useful method is evolving. We note in this regard that additional efforts which will test further the empirical validity of the present model are anticipated by Applied Psychological Services in the immediate future.

\section*{Stochastic vs. Deterministic Predictive Methods}

The present approach is based on the belief that human behavior in dynamic social and work situations cannot be represented by deterministic methods. The approach holds that the social and work situations contain considerable random variation and that such variation must be represented in any predictive technique which is concerned with these situations. The logic of the stochastic modeling approach is also based on the contention that direct, unidirectional cause-effect relationships are seldom found in social and work situations. It would be extremely
pleasant for the behavioral scientist if such direct relationships existed. Nonetheless, to argue for such relationships is to argue against the whole of individual differences in ability, motivation, and attitudes.

Moreover, models of the type here involved possess certain diagnostic or experimental value. They allow answers to questions like: What would happen if the system is manned in such and such a manner? What would happen if I increased or decreased the length of the workday or the physical workday of the crew? Deterministic methods, by and large, do not allow such experimentation. In this sense, we hold that it is not enough to know that a given system reliability will probably be attained. It is equally important for a technique to provide insight into areas for required remedial action. Otherwise hit and miss methods will be employed. Such methods fail to possess favorable cost/effectiveness due to the time and effort involved in their actuation. They also do not allow the systematic analysis of the complex interactions among subunits which themselves may be nondeterministic.

\section*{Summary and Conclusions}

This report presented a computer based, stochastic, man-machine simulation model designed to predict and describe the performance of intermediate size crews and to relate that performance to the reliability of both the human and equipment components in the system. The rationale underlying the selection of variables to be simulated, the internal logic of each variable, and the expected interactions were all described. Specific improvements in model capabilities in terms of both increased storage capacities and the introduction of new variables and logic were explicitly detailed and related to the calculation of human, equipment, and system reliability metrics. Flow charts, variable descriptions, and the actual model program (which is currently still being enhanced were also provided.

The sensitivity of the model was also tested and evaluated. Variation in several key variables (such as crew size and workday length) served as the basis for this analysis. The results of the test and analysis suggest that a reasonable start had been made toward the goal of developing a stochastic modeling technique for quantifying reliability and more generally for providing a vehicle for effective system planning relative to a variety of personnel planning situations.

Specific model modifications and improvements which were implemented include, but are not limited to:
- extension of the number of scheduled, repair, and emergency events
- incorporation of the concept of event family for both scheduled and repair events allowing fine grain analysis of event performance data
- introduction of the concept of event type data allowing the analyst almost an unlimited set of parameter values which can be used in any run and which can provide a "bank" of parameter values which can be used for any event
- development of metrics for quantifying reliability for humans and techniques for merging such values with typical equipment reliability data
- inclusion of the option of introducing shifts into the workday
- tracking of consumables on a units level ("spare parts")

Further refinements of the model are necessary and are currently being implemented. These will improve the model's fidelity to real life events and its internal consistency. Validation studies are also required. These are also planned in the immediate future. Nonetheless, the use of the model has been demonstrated and the model can be expected to be of utility to the system analyst both in the design and test of new systems, as well as in analysis of systems currently in operation.

\section*{REFERENCES}

Applied Psychological Services. The logic and processing of human behavioral variables in the HASSLE program. Wayne, Pa.: February 1966.

Balaban, H.S., \& Costello, D.L. System effectiveness--concepts and analytic techniques. 267-01-7-419. Annapolis: ARINC Research Corporation, 1964.

Bard, P. Physiological investigations of causes and nature of motion sickness. Report No. 485, September 30, 1945, National Research Council Committee on Aviation Medicine.

Barnes, R.M. Wotion and time study. New York: Wiley, 1954.
Bekey, G.A., \& Gerlough, D.I. Simulation. In R.E. Machol (Ed.), Systems engineering handbook. New York: McGraw Hill, 1965.

Birren, J.E. Motion sickness: Its psychophysical aspects. A survey report on human factors in undersea warfare. Washington, D.C.: Committee on Undersea Warfare, 1949.

Blanchard, R.E. Sumvey of Navy user needs for human reliability models and data. Santa Monica, Calif.: Behaviormetrics, 1972.

Bruner, J.M. Seasickness in a destroyer escort squadron. U.S. Amned Forces Medical Journal, 1955, 6, 469-490.

Bryan, G.L. In M.E. Dunnette, G.T. Milkovich, and S.J. Motowildo (Eds.), Possible approaches for development of a naval personnel status index (NPSI). Minneapolis: Personnel Decisions, 1973.

Caldwell, L.S. Relative muscle loading and endurance. Journal of Engineering Psychology, 1963, 2, 155-161.

Chinn, H.I. What is motion sickness? In Symposium on Motion Sickness with Special Reference to Weightlessness. Wright-Patterson AFB, Ohio: Aerospace Medical Research Laboratories, 1963.

Damon, A., Stoudt, H.W., \& McFarland, R.A. The hwan body in equipment design. Cambridge, Mass.: Harvard University Press, 1966.

Deutsch, M. Field theory in social psychology. In G. Lindsey (Ed.), Handbook of social psychology. Cambridge, Mass.: Addison-Wesley, 1954.

Dunnette, M.E., Milkovich, G.T., E Motowildo, S.J. (Eds.), Possible approaches for development of a naval personnel status index (NPSI). Minneapolis: Personnel Decisions, 1973.

Eagan, T.L., E Wilson, M.A. Monte Carlo simulation of system reliability. Undated.

Federman, P.J., \& Siegel, A.I. Prediction of human reliability. II. Validation of a set of human reliability prediction techniques. Wayne, Pa.: Applied Psychological Services, 1973.

Eleishman, E.A. The dimensions of physical fitness--the nationwide normative and developmental study of basic tests. New Haven: Yale University Department of Industrial Administration and Department of Psychology, 1962.

Fleishman, E.A., Kremer, E.J., \& Shoup, G.W. The dimensions of physical fitness-a factor analysis of strength tests. New Haven: Yale University Department of Industrial Administration and Department of Psychology, 1961.

Eleishman, E.A., Levine, J.M., Glickman, A.S., Siegel, A.I., Lautman, M., Alluisi, E.A., \& Goldstein, I.L. A program for research in human performance. AIR-\(33700-6173-\) FR. Washington, D.C.: American Institutes for Research, 1973.

Ghiselli, E.E., \& Brown, C.W. Personnel and industrial psychology. New York: McGraw-Hill, 1955.

Hamilton, R.L. \& Bennett, M. Reliability, availability, and maintainability (RAMA). NSRDL Letter Report No. 1-22, Annapolis: Naval Ship Research and Development Center, 1970.

Hansen, R., \& Cornog, D.Y. Annotated bibliography of applied physical anthropology in human engineering. Wright-Patterson AFB, Ohio: Wright Air Development Center, Technical Report 56-30, 1958.

Hare, A.P. Handbook of small group research. New York: Free Press Macmillan, 1962.

Harris, W., Mackie, R.R., \& Wilson, C.C. Performance under stress; a review and critique of recent studies. Los Angeles: Human Factors Research, 1956.

Hemingway, A., \& Green, E.L. Airsickness during èarly flight training. Journal of Aviation Medicine, 1945, 16, 406-416.

Hertzberg, H.T.E., Daniels, G.S., \& Churchill, E. Anthropometry of flying personnel-1950. Wright-Patterson AFB, Ohio: Wright Air Development Center, Technical Report 52-321, 1954.

Kelley, H.H., E Thibaut, J.W. Experimental studies of group problem solving and process. In G. Lindsey (Ed.), Handbook of social psuchology. Cambridge, Mass.: Addison-Wesley, 1954.

Kleitman, N. Sleep and wakefulness. Chicago: University of Chicago Press, 1963.

Krech, D., E Crutchfield, R.S. Theory and problems of social psychology. New York: McGraw-Hill, 1948..

Lamb, J.C., E Williams, K.E. Prediction of operator performance for sonar maintenance. IEEE Transactions on Reliability, Vol. R-22, No. 3, August 1973.

Leuba, H.R. The human factors ingredient in system effectiveness. Annapolis: ARINC Research Corporation, 1968.

Lewin, K. Time perspective and morale. In G. Watson (Ed.), Civilian Morale. Boston: Houghton, 1942. Cited by D. Krech and R.S. Crutchfield, Theory and problems of social psychology. New York: McGraw-Hill, 1948.

Meister, D. Criteria for development of a human reliability methodology. Paper presented at U.S. Navy Human Reliability Workshop, Naval Ship Systems Command, Washington, D.C., 1970.

Orbach, S. Generalized effectiveness methodology (GEM) analysis program. LP 920-72-1, SF-013-14-03. Brooklyn, N.Y.: Naval Applied Sciences Laboratory, 1968.

Siegel, A.I. Paper prepared for Naval Ships Command Symposium, 1973.
Siegel, A.I., Lautman, M.R., \& Wolf, J.J. Digital simulation of the performance of intermediate size crews: A multimethod-multitrait validation of a digital simulation model. Wayne, Pa.: Applied Psychological Services, 1972.

Siegel, A.I., \& Schultz, D. A multidimensional scaling analysis of the job perfomance of naval aviation electronics technician. Wayne, Pa.: Applied Psychological Services, 1962.

Siegel, A.I., \(\varepsilon\) Wolf, J.J. Techniques for evaluating operator loading in manmachine systems. A description of \(a\) model and the results of its first application. Wayne, Pa.: Applied Psychological Services, 1959.

Siegel, A.I., E Wolf, J.J. Man-machine simulation models, psychological and performance interaction. New York: Wiley, 1969.

Siegel, A.I., Wolf, J.J., E.Cosentino, J. Digital simulation of the performance of intermediate size crews: Application and validation of a model for crew simulation. Wayne, Pa.: Applied Psychological Services, 1971.

Siegel, A.I., Wolf, J.J., E Fischl, M.A. Digital simulation of performance of intermediate size crews: Logic of a model for simulating crew psychosocial and performance variables. Wayne, Pa.: Applied Psychological Services, 1969.

Smith, R.L., Westland, R.A., E Crawford, B.M. The status of maintainability models: A critical review. Human Factors, 1970, 12, 271-284.

Sontz, C., \& Lamb, J.C. Predicting system reliability from human data. Proceedings of 1975 Reliability and Maintainability Symposium. January 1975.

Tappen, N.C. An anthropometric and constitutional study of championship weight lifters. American Joumal of Physical Anthropology, 1950, 8, 49-64.

Torrance, E.P. A theory of leadership and interpersonal behavior. In L. Petrullo and B.M. Bass (Eds.), Leadership and interpersonal behavior. New York: Holt, Rinehart \& Winston, 1961.

Tyler, D.B. The influence of placebo, body position, and medication on motion sickness. American Journal of Physiology, 1946, 146, 458-466.

Webb, P. (Ed.), Bioastronautics data book. Yellow Springs, Ohio: Webb Associates, 1964.

Wechler, D. The range of human capacities. Baltimore: Williams \& Wilkins, 1935.
WSEIAC (Weapon System Effectiveness Industry Advisory Committee), Final Report of Task Group II. Prediction-measurement. AFSC-TR-65-2, Vols. I, II, and III. Andrews AFB, Maryland: Air Force Systems Command, 1965.

\section*{A PPENDIX A}

FORTRAN Codes and Definitions
\begin{tabular}{|c|c|c|}
\hline & FORTRAN & Description \\
\hline & AASP & Average aspiration \\
\hline & \(A C P\) & Average crew pace \\
\hline & ADUR & Average duration of scheduled event \\
\hline & ADURIO & Internal variable \\
\hline & APST & Average psychological stress threshold \\
\hline & ARY & Average repair time \\
\hline & ASD & Average standard deviation of repair \\
\hline & ASDE & Average standard deviation of emergency \\
\hline & 3E & Effectivity of stress \\
\hline & \[
\begin{aligned}
& \text { CALRY } \\
& \text { CN }
\end{aligned}
\] & - Number of calories required by average crewman per day Catnap length \\
\hline & 01 & Aplhanumeric descriptor array \\
\hline & DTBE & Duration time between emergencies \\
\hline & DTE & Duration time of emergencies \\
\hline & DTR & Duration time of repairs \\
\hline - & DUMY & Internal variable \\
\hline \(\stackrel{\square}{2}\) & EDCV & Data change value \\
\hline & EMREVT & Emergency event data set \\
\hline & EQREVT & Repair event data set \\
\hline & FP1 & Internal variable \\
\hline & 5 P 2 & Internal variable \\
\hline & FP3 & Internal variable \\
\hline & FP4 & Internal variable \\
\hline & FP5 & Internal variable \\
\hline & GBG & Internal variable \\
\hline & \(!\) & Internal variable \\
\hline & 1 CLASS & Class \\
\hline & 1 DES & Description array \\
\hline & \(1{ }^{1} \mathrm{DF}\) & Day number of next failure for each piece of equipment \\
\hline & 1 DS & Number of duty shifts \\
\hline & IEC & Expected energy consumption \\
\hline & IECE & Expected energy consumption for emergency \\
\hline & IEDC & Data change variable \\
\hline & IEFN & Family number \\
\hline & IEFNX & Temporary variable \\
\hline & IERR & Error branch \\
\hline & IESS & Essentiality \\
\hline
\end{tabular}
```

FORTRAN Description
IESSE Emergency essentiality
IET Essentiality threshold
IETYF Event type number
IFO! Event number in family
IGRG Internal array
IH
HE Event hazard class (emergency)
1! Index variable
IND
NF
N+
IP1
PP
P%
P3
1P4
PP
IPE
PP
10R
IRC
RCI
IRCE Consumable rate of expenditure (units/hours)--emergencies
|RCE1 Consumable rate of expenditure (units)--emergencies
RE Number of repair events
!REX Repair event number maximum
ITEM
TER
J
JJ
k
M
Physical capacitation fraction

```

```

    KE
    KK
    Index variable
    Initial level of consumables (units/hours)
    KON1 Initial level of consumables (units)
    KONP Threshold consumables (units/hours)
    ```
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline KONTI & Threshold consumables (units) \\
\hline LODM & Mental load \\
\hline LODME & Mental load for emergency \\
\hline YAXSL & Maximum sleep \\
\hline YEN & Crew composition array \\
\hline 4 M & Internal variable \\
\hline 4P ! & Average number of man days per incidence of physical incapacitation \\
\hline N & Number of iterations \\
\hline ND & Number of days \\
\hline NDBE & Number of days between emergencies \\
\hline VDMAX & Maximum number of days \\
\hline VDS & Duty shift \\
\hline NEME & Number of emergencies \\
\hline NEQRE & Number of equipments required \\
\hline NFP1 & Internal variable \\
\hline NFP2 & Internal variable \\
\hline NFPJ & Internal variable \\
\hline NFP4 & Internal variable \\
\hline NFP5 & Internal variable \\
\hline N1F & Number of family \\
\hline NfPI & Internal variable \\
\hline N1P2 & Internal variable \\
\hline N!PJ & Internal variable \\
\hline N1P4 & Internal variable \\
\hline N1P5 & Internal variable \\
\hline NIOR & Equipment used array \\
\hline NOSE & Number of scheduled events \\
\hline VREQ & Number of men required by type \\
\hline VREQE & Number of men required by type for emergency \\
\hline NTYPES & Number of types \\
\hline NX & Next event number for each alternative \\
\hline param & Common block \\
\hline PERSNL & Common block \\
\hline P!D & Average duration of physical incapacity \\
\hline PPFQ & Per cent fully qualified in primary specialty \\
\hline PPMO & Per cent moderately qualified in primary specialty \\
\hline PPUO & Per cent unqualified in primary specialty \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline PRA & Probability of each alternative path \\
\hline PTT & Cross training probability table \\
\hline PTTT & Common block \\
\hline PWRRT & Average short term power output \\
\hline RELH & Equipment reliability \\
\hline REL! & Intermittent reliability \\
\hline RTU & Repair touchup code \\
\hline SCHEVT & Internal variable \\
\hline SESTA & Sea state \\
\hline SIGWT & Standard deviation of body weight \\
\hline SLEE & Number of hours since last eight hour sleep period \\
\hline SPFO & Per cent fully qualified in secondary specialty \\
\hline SPMQ & Per cent minimally qualified in secondary specialty \\
\hline SPUO & Per cent unqualified in secondary specialty \\
\hline ST & Earliest starting time allowed \\
\hline TFAT & Fatigue threshold \\
\hline il & Time limit by which event must be completed \\
\hline TS & Consumable threshold set identifier (units/hours) \\
\hline TS1 & Consumable threshold set identifier (units) \\
\hline PSE & Threshold set for consumables below which event is ignored (units/hours) \\
\hline PSE1 & Threshold set for consumables below which event is ignored (units) \\
\hline TSR & Threshold set for consumables below which emergency is ignored (units/hours) \\
\hline TSR1 & Threshold set for consumables below which emergency is ignored (units) \\
\hline PUl & Intermittent reliability \\
\hline PYPE & Internal variable \\
\hline WORK1 & Number of hours worked after which no new work assignment is made \\
\hline WORK2 & Number of hours worked after which no new work is authorized \\
\hline WY & Mean body weight \\
\hline 7.9 C & Physical capability constant \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline \(\triangle A S P\) & Average aspiration \\
\hline ABS & Absolute value \\
\hline ACAL & Calories expended since last slept for each man in crew \\
\hline \(A C P\) & Average crew pace \\
\hline ADUR & Average duration of scheduled event (hours) \\
\hline ADUR'2 & One half of average duration \\
\hline ADURIO & Average duration of scheduled event in type data \\
\hline \(\triangle E P L\) & Average equipment performance level \\
\hline AMAXI & Maximum value \\
\hline AMINI & Minimum value \\
\hline APA & Ayerage performance adequacy \\
\hline \(\triangle P S T\) & Average psychological stress threshold \\
\hline \(\triangle P W\) & Average physical workload for the day for each man in crew \\
\hline ART & Average repair time \\
\hline ASD & Standard deviation of ADUR \\
\hline ASDE & Average standard deviation (emergency) \\
\hline \(\triangle\) SP & Level of aspiration at beginning of iteration for each man in crew \\
\hline A TEM & Temporary variable \\
\hline BE & Effectivity stress on performance on a no-stress state \\
\hline BLANK & Temporary variable \\
\hline QTEM & Temporary variable \\
\hline CAL & Average calories expended per day for each man in crew \\
\hline CALR & Intermediate calculation used in crew selection process \\
\hline CALRY & Number of calories required by average crewman per day \\
\hline CARY & Current average repair time \\
\hline CASP & Current level of aspiration for each man in crew \\
\hline CCAL & Calories expended for the event for each man in crew \\
\hline CCC & Current crew competence \\
\hline CCI & Initial crew competence \\
\hline CD \({ }^{\text {P }}\) & Current downtime \\
\hline CML & Crew mental load \\
\hline CMLMX & Maximum crew mental load obtained for an event during the day \\
\hline CN & Catnap length. Below considered rest. Above is sleep. \\
\hline CTEM & Temporary variable \\
\hline CUT & Current uptime \\
\hline 01 & Alphanumeric descriptor array \\
\hline DS & Amount of sleep for the day for each man in crew \\
\hline OTBE & Duration time between emergencies \\
\hline
\end{tabular}
\begin{tabular}{ll}
FORTRAN & Description \\
DIE & Duration time of emergencies \\
DYEM & Temporary variable \\
OYR & Duration time of repair \\
EA & Goodness of aspiration value \\
EC & Goodness of competence value \\
EDCV & Data change value \\
EF & Goodness of physical capability value \\
EH & Event hazard \\
EMY日F & Equipment meantime between failures \\
EMTYR & Equipment meantime to repair \\
EPEFF & Equipment performance effectiveness \\
EPL & Equipment performance level \\
ES & Goodness of stress value \\
ESSS & Temporary variable \\
FYEM & Temporary variable \\
EXER & Overexertion factor used in physical capability calculation \\
FAY & Fatigue level for each man in crew \\
FDIFF & Failure difference \\
FLIC & Number of men in crew \\
FLIG & Number of crew members in group participation in current event \\
FLOA & Conversion to real \\
FUNC & Function \\
GASP & Group aspiration level \\
GPACE & Group pace value used in performance time calculation \\
GPCC & Group physical capability \\
GPERF & Group performance \\
GSYR & Group stress \\
GSYRM & Group stress threshold \\
HEADR & Program header \\
HR & Hazard ratio used in SI calculations \\
HRSE & Total man hours worked on emergency events for the day \\
HRSR & Total man hours worked on repair events for the day \\
HRSS & Total man hours worked on scheduled events for the day \\
HSLS & Number of hours since last slept for each man in crew \\
I & Index variable \\
IAA & Number of men in crew for each echelon \\
IABC & Temporary variable \\
IC & Maximum number of crewmen
\end{tabular}
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline \(1 C E\) & Command echelon for each crewman \\
\hline ICLASS & Class \\
\hline 1 CML & Event with maximum CML for the day \\
\hline !CSS & Current sea state \\
\hline 10 C & Calories expended for the day for each crewman \\
\hline IDCMX & Event with maximum calories expended for the day \\
\hline IDE & Day number of next occurrence for each emergency event \\
\hline \(1{ }^{1} \mathrm{DF}\) & Day number of next failure for each piece of equipment \\
\hline 1 DS & Number of duty shifts \\
\hline IE & Event number \\
\hline 1 EC & Expected energy consumption during event (calories per hour) \\
\hline IECE & Expected energy consumption during emergency event (calories per hour) \\
\hline IEDC & Data change variable \\
\hline IEFN & Family number \\
\hline IEIE & Counter for number of different events attempted for the day \\
\hline IEMAX & Maximum number of events \\
\hline IESS & Event essentiality \\
\hline \ESSk. & Emergency event essentiality \\
\hline IEY & Essentiality threshold. Determines ignores. \\
\hline IETYP & Event type number \\
\hline PEVENT & Event to be simulated for the day \\
\hline IFIRST & Temporary variable \\
\hline 1501 & Event number in family code \\
\hline IG & Group member \\
\hline IGAP & Internal variable \\
\hline IGIND & Indicator for cause of ignored event \\
\hline IGNOR & Indicator for ignored event (\(1=\) event ignored) \\
\hline [H & Event hazard class (1-3= low, 4-6= medium, 7-9= heavy) \\
\hline IHE & Event hazard class (emergency) \\
\hline 11 & Index variable \\
\hline 111 & Index variable \\
\hline \(1 \| P 1\) & Index variable \\
\hline INO & Indicators for output recording options \\
\hline INIF & Internal variable \\
\hline INIO & Internal variable \\
\hline INT & Event code (\(1=\) normal, \(2=\) training) \\
\hline INVS & Inverse pointer array \\
\hline 1015 & Operator induced failure \\
\hline
\end{tabular}
```

| IPE | Prerequisite event |
| :---: | :---: |
| IPFT | Previous event indicator |
| IPI | Incomplete processing indicator |
| 1PS | Primary specialty for each crewman |
| 1PSS | First 20 slots same as IPS, second 20 slots same as ISS |
| 1PTR | Pointer array for events |
| IGMAX | Maximum number of pieces of equipment or repair events |
| IQR | Equipment list |
| IRC | Consumable rate of expenditure (units/hours) |
| IRC1 | Consumable rate of expenditure (units) |
| 1RCE | Consumable rate of expenditure for emergencies (units/hours) |
| IRCE1 | Consumable rate of expenditure for emergencies (units) |
| IRE | Number of repair events |
| ISIE | Internal variable |
| ISS | Secondary specialty for each man in crew |
| IST | Internal variable |
| 1SW1 | Internal variable |
| ITAP | Tape option |
| 1TEM | Temporary variable |
| ITER | Current interaction |
| ITRY | Counter for number of attempts with current event |
| ITYPE | Type for which man was selected for event for each man in group |
| J | Internal variable |
| J1 | Internal variable |
| JJ | Internal variable |
| JNDS | Internal variable |
| $K$ | Type of emergency |
| K1 | Fraction to which a man's physical capability is reduced |
| $\times 7$ | Derating constant for acceptable performance |
| KA | Number of crew members available for selection for current event |
| KASE | Case number |
| KE | Event end time type ( $1=$ fixed end, $2=$ variable end) |
| K】ND | Indicator in group selection process ( $0=$ searching primary specialties, $1=s e c o n d a r y$ |
| KK | Internal variable |
| KMAX | Maximum number of types of emergency events |
| KON | Initial level of consumable (units/hours) |
| KON1 | Initial level of consumable (units) |

```
```

FORTRAN Description
KONC Current consumable level foreach consumable (units/hours)
KONC1 Current consumable level for each consuamble (units)
KONE Consumables expended for the event for each man in group
KONE1 Consumables expended (units)
KONY Consumable threshold (units/hours)
KONP1 Consumable threshold (units)
kOUNT Internal variable
KTEMP Temporary variable
L! Crewman chosen as
LL Internal variable
LMAX Maximum number of consumables (units/hours)
LMAX1 Maximum number of spare parts consumables (units)
LODM Event mental load (1-3 light, 406 medium, 7-9 heavy)
LODME Mental load (emergencies)
LSHIFY Internal variable
4
4A
MAT
YAVAIL
YAXSL
MAXST
MAXSTE
Event on which maximum stress was obtained
MCHS
MEN
MPCC
MP!
N
ND
NDAYS
NDRE
NDMAX
NDS
NE
NEME
NEORE
NFALE
N!F
vIGNF
VIN
NIQR Number of equipments in repair
VKASES Number of cases

```
\begin{tabular}{lll}
FORTRAN & Description \\
NN & Temporary variable \\
NOFAlL & Number of failures for iteration for each crewman \\
VOIF & Number of operator induced failures (counter) \\
NOIF & Total number of operator induced failures
\end{tabular}

FORTRAN Description
\begin{tabular}{|c|c|}
\hline PRE & Probability of each alternative path after current ev \\
\hline -SCOM & PCOM (\(1-20\)) and SCOM (1-20) \\
\hline PSESIC & Per cent seasick \\
\hline PT & Performance time for each event \\
\hline PTR & Sequential order of events for the day \\
\hline DTT & Cross training probability table. Given primary by secondary \\
\hline PWR & Average short term power output rate for each crewman \\
\hline PWRRT & Average short term power output rate for average crewnan (calories/hour) \\
\hline RELH & Equipment reliability \\
\hline REL! & Intermittent reliability \\
\hline RTEMP & Temporary variable \\
\hline RTU & Action if event performance is unsatisfactory (1 = repeat, \(2=\) touchup, \(3=\) no action) \\
\hline FY2 & Action number from uniform distribution \\
\hline SCOM & Secondary competence for each man in crew \\
\hline SEF & Efficiency factor \\
\hline SESTA & Sea state \\
\hline SF & Slowness factor used in computing GPACE \\
\hline SFDIF & Failure difference \\
\hline SFTHRS & Shift hours \\
\hline SGEM & System general effectiveness measure \\
\hline SI & Safety index \\
\hline SIDC & Total calories expended this event \\
\hline SIDCMX & Maximum SIDC for any event this day \\
\hline SIGW & Standard deviation of work time \\
\hline SLEEP & Number of hours since last 8 hour sleep period \\
\hline SPFO & Per cent of crew fully qualified by average crewman at mission start \\
\hline SPL & System performance level \\
\hline SPMO & Per cent of crew minimally qualified in secondary specialty \\
\hline SPUQ & Per cent of crew unqualified in secondary specialty \\
\hline SRL & System reliability level \\
\hline ST & Earliest starting time allowed (hours) \\
\hline STAR & Star \\
\hline STRM & Psychological stress for each crewman \\
\hline SUCC & Evaluation indicator (\(S=\) successful, \(U=\) otherwise) \\
\hline PAVAIL & Testing criterion for each man eligible for the event \\
\hline TEH & Total event hazard for the day \\
\hline TEM1 & Temporary variable \\
\hline PEM2 & Temporary variable \\
\hline PEM & Temporary variable \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline TEMP & Temporary variable \\
\hline TFAT & Fatigue threshold below which sleep is not authorized \\
\hline PHW & Total hours worked for the crew for the day \\
\hline PITLE & Program title \\
\hline TL & Time limit by which event must be completed (hours) \\
\hline PPCOM & Temporary primary competence \\
\hline PPSCOM & Temporary/secondary competence array \\
\hline TS & Consumable threshold set identifier (units/hour) \\
\hline TS1 & Consumable threshold set identifier (units) \\
\hline TSCOM & Temporary secondary competence \\
\hline TSE & Consumable threshold for emergencies (units/hours) \\
\hline TSE1 & Consumable threshold emergencies (units) \\
\hline PU! & Intermittent failure rate \\
\hline TH & Working time for the day for each crewman \\
\hline TWP & Working time in primary specialty for each crewman \\
\hline TWS & Working time in secondary specialty for each crewman \\
\hline USH & Unmanned station hours for the current event \\
\hline USHP & Total unmanned station hours for the day \\
\hline \(\checkmark\) & Value of time function used in computing performance time \\
\hline WH & Time since last event participation for each crewman, wait hours \\
\hline WORK1 & Number of hours worked after which no new assignments are made \\
\hline WORK2 & Number of hours worked after which further work is not authorized \\
\hline WT & Mean body weight of total population (lbs) \\
\hline YU & Internal variable \\
\hline \(z\) & Last real time worked this day for each crewman \\
\hline 21 & Earliest time when all group members are available \\
\hline 22 & Earliest time current event can begin \\
\hline 2 C & Real time of completion for each event \\
\hline ZPC & Physical capability constant \\
\hline
\end{tabular}

\section*{FORTRAN Description}
\begin{tabular}{ll}
IPUYSN & Uniform probability test function \\
\(k\) & Temporary probability variable \\
PAR & Type of emergency \\
YEST & Temporary variable \\
\(Y\) & Temporary variable
\end{tabular}
\begin{tabular}{cl}
FORTRAN & Description \\
FBUILD & Function sub program \\
H & Temporary variable \\
HSLS & Hours since last slept \\
TEMI & Temporary variable
\end{tabular}
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline \(\triangle A S P\) & Average aspiration \\
\hline \[
\triangle C P
\] & Average crew pace \\
\hline AEPL & Internal array for daily summary \\
\hline AEPL & Average equipment performance level \\
\hline APA & Average performance adequacy \\
\hline APST & Average psychological stress threshold \\
\hline APW & Average physical workload \\
\hline ASP & Aspiration \\
\hline ASPA & Temporary aspiration \\
\hline RE & Effectivity of stress on performance \\
\hline CAL Ry & Average calories expended per day for each man in crew \\
\hline CALRY & Number of calories required by average crewman per day \\
\hline CART1 & Current average repair time \\
\hline CASP & Internal array for average repair time \\
\hline CCAL & Current aspiration \\
\hline CDT & Current calorie level \\
\hline CDT: & Current down time Internal array for downtime \\
\hline CI & Blanks \\
\hline CML & Crew mental load \\
\hline CMLMX & Crew mental load (maximum) \\
\hline CN & Catnap length \\
\hline CUT & Current up time \\
\hline cury & Internal array for uptime \\
\hline naly & Output array \\
\hline - 5 & Alphanumeric decription array \\
\hline EDCV & Amount of sleep for the day \\
\hline FMPBF & Data change value \\
\hline \begin{tabular}{l}
FMPBP \\
EMTTR
\end{tabular} & Equipment mean time between failures \\
\hline & Equipment mean time to repair \\
\hline \[
E P 1
\] & Equipment performance effectiveness \\
\hline & Equipment performance level \\
\hline FD & Fatigue \\
\hline & Temporary variable \\
\hline FLITER & Crew size (floating point) \\
\hline float & Iteration (floating point) \\
\hline coar & Floating point \\
\hline
\end{tabular}
```

| FORTRAN | Description |
| :---: | :---: |
| FNTE | Number of total events (floating point) |
| HRSE | Hours worked on emergency |
| HRSR | Hours worked on repairs |
| HRSS | Hours worked on scheduled events |
| HSLS | Hours since last slept |
| HSLSA | Reinitialization of hours since last slept |
| 1 | Internal variable |
| IAA | Crew echelon number |
| 1 C | Maximum number of crewmen |
| ICF | Command echelon |
| 1 CML | Crew mental load |
| 1 CSS | Current sea state |
| PDALYI | Internal array for daily summary |
|  | Data change |
| PDCMX | Data change maximum |
| IEDC | Data change variable |
| IEFN | Family number |
| IET | Essentiality threshold |
| IETYP | Event type number |
| 1501 | Event number in family code |
| 1/TEF | Temporary variable |
| IMTAG | Output array |
| 1ND | Indicators |
| IPF | Prerequisite event |
| $1 P S$ | Primary specialty |
| 1 QMAX | Maximum number of pieces of equipment or repair events |
| ISS | Secondary specialty for each man in crew |
| ITER | Iteration |
| $J$ | Temporary variable |
| JITEH | Internal array for daily summary |
| K | Type of emergency |

```
\begin{tabular}{ll}
FORTRAN & Description \\
KI & Fraction to which a man's physical cabality is reduced after daily quota is done \\
K7 & Derating constant for acceptable performance \\
KK & Internal variable \\
KON & Initial level of consumable (units/hours) \\
KON1 & Initial level of consumables (units) \\
KONC & Current consumable level (units/hours) \\
KONCI & Current consumable level (units) \\
KONT & Consumable threshold (units/hours) \\
KONT1 & Consumable threshold (units) \\
MAXSL & Maximum sleep permitted per day \\
MAXST & Maximum stress for any event \\
MAXSTE & Event of maximum stress \\
MPCC & Maximum physical capability \\
N & Number of iterations \\
NISI & Internal variable \\
ND & Number of days \\
NDAYS & Days in simulation \\
NDMAX & Maximum number of days \\
NE & Number of emergency events \\
NEME & Temporary variable \\
NEDRE & Number of equipments emerging \\
NFALE & Number of failures this day \\
NIF & Number in family \\
NIGNK & Number of events ignored \\
NOSE & Number of scheduled events \\
NPRFM & Number of events performed \\
NR & Number of repairs \\
NREI & Total repairs for the run \\
NREPT & Number of repeats \\
NSUCI & Number of successes in first try \\
NSUCZ & Number of successes in second try
\end{tabular}
\begin{tabular}{|c|c|}
\hline FORTRAN & Description \\
\hline NTF & Total number of events \\
\hline NTIPE & Number of men in each type \\
\hline リ! & Number of daily successes by crewman \\
\hline \(1!\times\) & Next event number for each alternative \\
\hline OUTA & Internal array \\
\hline nutb & Output array \\
\hline PACE & Working pace \\
\hline PACEA & Reinitialization of work pace \\
\hline \(P C\) & Physical capability \\
\hline PCA & Reinitialization of physical capability \\
\hline PCP & Current physical capability \\
\hline PCOM & Primary competence \\
\hline PCOMA & Reinitialization of primary competence \\
\hline PEFF & Performance effectiveness \\
\hline DERF & Performance level by crewman \\
\hline PI & Physical incapability \\
\hline PI? & Number of future days of physical incapacity for each crewman \\
\hline PIA & Reinitialization of physical capacity by crewman \\
\hline PRR & Probability for each alternative path after current event \\
\hline PWR & Average short term power output by crewman \\
\hline PWRRI & Average short term power output for average crewman \\
\hline QEL! & Intermittent reliability \\
\hline REMTB & Temporary variable for equipment mean time between failure \\
\hline REMTK & Temporary variable for equipment mean time to repair \\
\hline ETU & Action if event performance is unsatisfactory \\
\hline SCOM & Secondary competence \\
\hline SCOMA & Secondary competence reinitialized \\
\hline SESTA & Sea state \\
\hline SFCIfF & Failure difference \\
\hline SGEM & General system measure \\
\hline SI & Safety index \\
\hline cincmx & Maximum calories expended for this event \\
\hline SLFE \({ }^{\text {P }}\) & Number of hours since last 8 hour sleep period \\
\hline SPL & System performance level \\
\hline
\end{tabular}
\begin{tabular}{ll}
FORTRAN & Description \\
SRL & System reliability level \\
ST & Earliest starting time allowed (hours) \\
STRM & Stress threshold \\
TS & Temporary variable \\
TDALY & Daily total output array \\
TEH & Total daily event hazard \\
TEMI & Temporary variable \\
TEMS & Temporary variable \\
TFAT & Fatigue threshold \\
TIITER & Iteration summary array \\
TL & Time limit by which event must be completed (hours) \\
TOT & Internal variable \\
TOUTA & Internal array \\
TPCOM & Temporary primary competence \\
TS & Consumable threshold set identification (units/hours) \\
TSI & Consumable threshold set identifier (units) \\
TSCOM & Temporary secondary competence \\
TH & Time worked \\
TWP & Time worked in primary \\
TWS & Time worked in secondary \\
USHT & Unmanned station hours \\
WORKI & Number of hours worked after which no new assessment is made \\
WORKZ & Number of hours worked after which further work is not authorized \\
ZTEM & Temporary variable
\end{tabular}

\section*{APPENDIX B}

Input Data Formats

\section*{APPENDIX B}

INPUT DATA FORMATS
\begin{tabular}{|c|c|c|c|}
\hline Title Cards Description & FORTRAN & Format & Value \\
\hline Card 1 Number of iterations & NKASES & I3 & \\
\hline Card 2 Title & HEADR & \(12 \mathrm{A6}\) & 72 sp \\
\hline Card 3 Tape input option & ITAP & I3 & \\
\hline Number of days simulated & NDMAX. & I3 & \\
\hline Parameter Names & FORTRAN & Val & \\
\hline & & SPAR & \\
\hline (card 4 and on) & & NFP \(2 / E\) & \\
\hline Average psychological stress threshold & APST & - & \\
\hline Hours worked after which no new assignments are made & WORK & - & \\
\hline Hours worked after which further work is unauthorized & WORK 2 & - & \\
\hline Hours since last sleep period by average crew member at start of mission & SLEEP & - & \\
\hline Catnap length-hours below which is rest, and above which is sleep & CN & - & \\
\hline Maximum sleep permitted per day (hours) & MAXSL & - & \\
\hline Fatigue threshold-below which sleep is not authorized & TFAT & \(\square\) & \\
\hline Average crew space & ACP & - & \\
\hline Number of calories required by average crew member per day & CALRY & - & \\
\hline Average short term power output for average crew member (calories/hour) & PWRRT & - & \\
\hline Derating constant for acceptable performance & K7 & - & \\
\hline Fraction to which man's physical capability reduced when daily quota done & K1 & - & \\
\hline Effect of stress on performance & BE & - & \\
\hline Initial aspiration level & AASP & & \\
\hline Initial value of consumable: 1 & KON(1) & - & \\
\hline (units/hour) , 2 & KON (2) & & \\
\hline 3 & KON (3) & - & \\
\hline 4 & KON(4) & - & \\
\hline 5 & KON(5) & - & \\
\hline 6 & KON(6) & - & \\
\hline 7 & KON(7) & - & \\
\hline 8 & KON(8) & - & \\
\hline 9 & KON(9) & - & \\
\hline 10 & KON(10) & - & \\
\hline
\end{tabular}

FORTRAN
\(\operatorname{KONT}(1,1)\)
\(\operatorname{KONT}(2,1)\)
Kont (3,1)
\(\operatorname{KONT}(4,1)\)
\(\operatorname{KONT}(5,1)\)
KONT \((6,1)\)
\(\operatorname{KONT}(7,1)\)
\(\operatorname{KONT}(8,1)\)
\(\operatorname{KONT}(9,1)\)
\(\operatorname{KONT}(10,1)\)
KONT \((1,2)\)
\(\operatorname{KONT}(2,2)\)
KONT \((3,2)\)
KONT \((4,2)\)
\(\operatorname{KONT}(5,2)\)
\(\operatorname{KONT}(6,2)\)
\(\operatorname{KONT}(7,2)\)
KONT \((8,2)\)
\(\operatorname{KONT}(9,2)\)
\(\operatorname{KONT}(10,2)\)
\(\operatorname{KONT}(1,3)\)
KONT \((2,3)\)
\(\operatorname{KONT}(3,3)\)
\(\operatorname{KONT}(4,3)\)
KONT \((5,3)\)
\(\operatorname{KONT}(6,3)\)
\(\operatorname{KONT}(7,3)\)
\(\operatorname{KONT}(8,3)\)
\(\operatorname{KONT}(9,3)\)
\(\operatorname{KONT}(10,3)\)
\(\operatorname{KONT}(1,4)\)
\(\operatorname{KONT}(2,4)\)
\(\operatorname{KONT}(3,4)\)
\(\operatorname{KONT}(4,4)\)
\(\operatorname{KONT}(5,4)\)
KONT \((6,4)\)
\(\operatorname{KONT}(7,4)\)
\(\operatorname{KONT}(8,4)\)
\(\operatorname{KONT}(9,4)\)
KONT (10,4)
\(\operatorname{KONT}(1,5)\)
\(\operatorname{KONT}(2,5)\)
\(\operatorname{KONT}(3,5)\)
\(\operatorname{KONT}(4,5)\)
KONT \((5,5)\)
\(\operatorname{KONT}(6,5)\)
KONT \((7,5)\)
\(\operatorname{KONT}(8,5)\)
\(\operatorname{KONT}(9,5)\)
\(\operatorname{KONT}(10,5)\)

VALUE
\(\qquad\) ,
\(\qquad\) —,
\(\qquad\) -'
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) —,
\(\qquad\)
,'
\(\qquad\) -',
\(\qquad\)
-'
\(\qquad\) -,
\(\qquad\) -'
\(\qquad\) —,
\(\qquad\) -,
\(\qquad\) -,
\(\qquad\) ,'
\(\qquad\) -,
\(\qquad\) —, -,
\(\qquad\)
-,
\(\qquad\) -'
\(\qquad\) -'
\(\qquad\)
-,
\(\qquad\)
\(\qquad\)
-'
\(\qquad\)
\(\qquad\) -',
\(\qquad\) -,
\(\qquad\)
\(\qquad\) ,
\(\qquad\)
\(\qquad\) \(-\),
\(\qquad\) -,
\(\qquad\) -'
\(\qquad\)
-'
\(\qquad\) ,
\(\qquad\) -',

Title Cards Description

Consumable threshold for consumable 1, threshold 6
consumable 1, threshold
2
3
4
5
5
7
7
8
9
10
1,
2
3
4
4
5
6
7
8
9
10
consumable 1, threshold
2
3
4
5
6
7
8
9
10
10
consumable 1 , threshold 9
2
3
4
5
6
7
8
9
10
consumable 1 , threshold 10
threshold 8

Title Cards
Description

Initial value of consumable: (units)

Consumable threshold for consumable 1 , threshold 1

FORTRAN

KON1 (1)
KON1(2)
KON1 (3)
KON1 (4)
KON1 (5)
KON1 (6)
KON1 (7)
KON1 (8)
KON1 (9)
KON1 (10)
KONT1(1)
KONT1 (2)
KONT1 (3)
KONT1 (4)
KONT1 (5)
KONT1 (6)
KONT1 (7)
KonT1 (8)
KONT1 (9)
KONT1 (10)
\(\operatorname{KONT1}(1,2)\)
\(\operatorname{KONT1}(1,2)\)
\(\operatorname{KONT1}(3,2)\)
KONT1 \((4,2)\)
KONT1 \((5,2)\)
\(\operatorname{KONT1}(6,2)\)
KONT1 \((7,2)\)
KONT1 \((8,2)\)
\(\operatorname{KONT1}(9,2)\)
\(\operatorname{KONT1}(10,2)\)
KONT1 \((1,3)\)
KONT1 \((2,3)\)
KONT1 \((3,3)\)
\(\operatorname{KONT1}(4,3)\)
KONT1 \((5,3)\)
KONT1 \((6,3)\)
\(\operatorname{KONT1}(7,3)\)
KOMT1 (8,3)
KONT1 \((9,3)\)
KONT:1 \((10,3)\)
KONT1 \((1,4)\)
\(\operatorname{KONT}_{1}(2,4)\)
KONT 1 \((3,4)\)
\(\operatorname{KONT} 1(4,4)\)
\(\operatorname{KONT}_{1}(5,4)\)
KONT \(1(6,4)\)
\(\operatorname{KONT} 1(7,4)\)
\(\operatorname{KONT}_{1}(8,4)\)
\(\operatorname{KONT}_{1}(9,4)\)
KONT1 \((10,4)\)

VALUE

\section*{value}
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\)
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\)
,
\(\qquad\)
-,
\(\qquad\)
,
\(\qquad\) ?,
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
,'
\(\qquad\)
\(\qquad\) -,
\(\qquad\)
\(\qquad\)
-'
\(\qquad\)
\(\qquad\)
',
\(\qquad\)
\(\qquad\)
\(\qquad\) ,
\(\qquad\) -'
\(\qquad\)
\(\qquad\) ,
\(\qquad\)
-'
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,'
\(\qquad\) ,
\(\qquad\) ,'
\(\qquad\) ,'
\(\qquad\)
,
\(\qquad\) ,
\(\qquad\)
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\) -'

Title Cards
Description

Consumable threshold for consumable 1 , threshold 5 2
3
4
5
6
7
8
9
10
consumable 1,
2
3
4
5
6
7
8
9
10
consumable 1, threshold 7
2
3
4
5
6
7
8
9
10
consumable 1 , threshold 8
2
3
4
5
6
7
8
9
10
consumable 1, threshold 9
2
3
4
5
6
7
8
9
10

FORTRAN

KONT1 \((1,5)\)
KONT1 \((2,5)\)
KONT1 \((3,5)\)
KONT1 \((4,5)\)
KONT1 \((5,5)\)
KONT1 \((6,5)\)
KONT1 \((7,5)\)
\(\operatorname{KONT1}(8,5)\)
\(\operatorname{KONT1}(9,5)\)
KONT1 \((10,5)\)
KONT1 \((1,6)\)
\(\operatorname{KONT1}(2,6)\)
KONT1 \((3,6)\)
\(\operatorname{KONT1}(4,6)\)
KONT1 \((5,6)\)
KONT1 \((6,6)\)
KONT1 \((7,6)\)
KONT1 \((8,6)\)
KONT1 \((9,6)\)
\(\operatorname{KONT1}(10,6)\)
KONTI \((1,7)\)
KONT1 \((2,7)\)
KONT1 \((3,7)\)
\(\operatorname{KONT1}(4,7)\)
KONT1 \((5,7)\)
KONT1 \((6,7)\)
\(\operatorname{KONT1}(7,7)\)
KONT1 \((8,7)\)
KONT1 \((9,7)\)
\(\operatorname{KONT1}(10,7)\)
KONT1 \((1,8)\)
\(\operatorname{KONT1}(2,8)\)
KONT1 \((3,8)\)
KONT1 \((4,8)\)
\(\operatorname{KONT1}(5,8)\)
KONT1 \((6,8)\)
\(\operatorname{KONT1}(7,8)\)
KONT1 (8,8)
\(\operatorname{KONT1}(9,8)\)
KONT1 \((10,8)\)
\(\operatorname{KONT1}(1,9))\)
\(\operatorname{KONT1}(2,9)\)
KONT1 \((3,9)\)
KONT1 \((4,9)\)
KONT1 \((5,9)\)
\(\operatorname{KONT1}(6,9)\)
\(\operatorname{KONT1}(7,9)\)
KONT1 \((8,9)\)
KONT1 \((9,9)\)
KONT1 \((10,9)\)

VALUE

\(\qquad\) ,
\(\qquad\)
\(\qquad\) ',
\(\qquad\)
\(\qquad\)
\(\qquad\) ,
\(\qquad\)
\(\qquad\) -',
\(\qquad\)
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\) ,
\(\qquad\) \({ }^{\prime}\),
\(\qquad\) \(-'\)
\(\qquad\) ',
\(\qquad\) ',
\(\qquad\)
-,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) -'
\(\qquad\) ',
\(\qquad\) ',
\(\qquad\) -'
\(\qquad\) ,
\(\qquad\) -'
\(\qquad\) -'
\(\qquad\) -'

Title Cards
Description

Consumable threshold for consumable 1 , threshold 10
2
3
4
5
6
7
8
9
10

Sea State
(term and height of waves in feet)
\begin{tabular}{|c|c|}
\hline 0 & -- calm, glassy \\
\hline 1 & -- rippled, 0-1 \\
\hline 2 & -- smooth, 1-2 \\
\hline 3 & -- slight, 2-4 \\
\hline 4 & -- moderate, 4-8 \\
\hline 5 & -- rough, 8-13 \\
\hline 6 & -- very rough, 13-20 \\
\hline 7 & -- high, 20-30 \\
\hline 8 & -- very high, 30-45 \\
\hline & -- phenomenal, over 45 \\
\hline
\end{tabular}

Intermittent reliability--electronic equipment
Intermittent reliability--electrical equipment Intermittent reliability--electromechanical equipment Intermittent reliability--mechanical equipment

Number of mission iterations
Number of iterations per computer run
Essentiality threshold, below which an event is ignored (1-100)
Indicators for output recording options
Print all inputs (1), or parameters only (0)
Print (1), or don't print (0): crew initial conditions : day numbers of 1 st. repair, emergencies
Print detailed event results for all events beginning with day
Print end of day results for all days beginning with day Print (1), or don't print (0) mission results by individual man

FORTRAN
\(\operatorname{KONT1}(1,10)\)
\(\operatorname{KONT1}(2,10)\)
\(\operatorname{KONT1}(3,10)\)
\(\operatorname{KONT1}(4,10)\)
\(\operatorname{KONT1}(5,10)\)
\(\operatorname{KONT1}(6,10)\)
\(\operatorname{KONT1}(7,10)\)
\(\operatorname{KONT1}(8,10)\)
\(\operatorname{KONT1}(9,10)\)
\(\operatorname{KONT1}(10,10)\)

SESTA(1)
SESTA(2)
SESTA(3)
SESTA(4)
SESTA(5)
SESTA (6)
SESTA (7)
SESTA(8)
SESTA (9)
SESTA(10)

RELI (1)
RELI (2)
RELI (3)
RELI (4)

N
IET
IND(1)
IND(2)
IND(3)
IND(4)
\(\operatorname{IND}(5)\)
\(\operatorname{IND}(6)\)
IND(7)

VALUE
\(\square\) ,
\(\qquad\)
\(\qquad\)
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\)
\(\qquad\) -'
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\) -'
\(N I P 2 / I P 2=\)
\(\qquad\) ,
\(\qquad\) -
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
-,
\(\qquad\)
-,
\$

Title Cards
Description

Mean body weight of total population
Standard deviation of population body weight \%crew fully qualified in prime specialty \%crew minimally qualified in prime specialty \%crew unqualified in prime specialty
\%crew fully qualified in second specialty
ocrew minimally qualified in second specialty
\%crew unqualified in second specialty
Avg. \(N\) man days between physical incapacitations Avg. duration of incapacity (days)
Physical capability constant, a value yielding zero Physical capability due to over exertion

\section*{FORTRAN}

WT
SIGWT
PPFQ
PPMQ
PPUQ
SPFQ
SPMQ
SPUQ
MPI
\begin{tabular}{l}
VALUE \\
\hline SPERSNL \\
NFPI/FPI
\end{tabular}
\(\qquad\) -',
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
PID
ZPC
\(\qquad\)

Crosstraining probability
(probability of man with given specialty also being trained in each other specialty).
\begin{tabular}{l}
second specialty \\
\hline\(\square\) \\
\hline\(\square\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline FORTRAN & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \(\operatorname{PTT}(1-10,1)\) & , & -, & __, & -' & -' & -' & -' & -' & -' & -' \\
\hline \(\operatorname{PTT}(1-10,2)\) & - & -' & -, & -' & -, & -' & -' & -, & -' & - , \\
\hline \(\operatorname{PTT}(1-10,3)\) & _' & -, & -, & -' & -' & -' & -' & -, & -' & -, \\
\hline PTT (1-10,4) & - & -' & -_, & -_, & -' & -' & -', & -' & -' & -' \\
\hline \(\operatorname{PTT}(1-10,5)\) & - & -, & -, & -' & -' & -' & -' & -' & -' & -' \\
\hline \(\operatorname{PTT}(1-10,6)\) & -_, & -', & -, & -, & -' & -, & -' & -' & -, & -, \\
\hline \(\operatorname{PTT}(1-10,7)\) & -, & - , & -' & -' & -, & -, & -' & -' & -' & -, \\
\hline \(\operatorname{PTT}(1-10,8)\) & -, & & -' & -' & -' & -' & -' & -' & -, & -, \\
\hline \(\operatorname{PTT}(1-10,9)\) & , & -, & _, & -' & -' & -', & -' & -' & -' & -' \\
\hline PTT(\(1-10,10\)) & -' & - ' & -' & -' & -' & -' & -' & -' & -, & -, \\
\hline
\end{tabular}

Crew composition
number of men in each specialty at each eschelon (rank)

Title Cards

FORTRAN
NDS
Number of duty shifts
Crew duty shift assignment Man

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
\(\operatorname{IDS}(1-6,1)\) \(\operatorname{IDS}(1-6,2)\)
\(\operatorname{IDS}(1-6,3)\)
\(\operatorname{IDS}(1-6,4)\)
\(\operatorname{IDS}(1-6,5)\)
\(\operatorname{IDS}(1-6,6)\)
\(\operatorname{IDS}(1-6,7)\)
\(\operatorname{IDS}(1-6,8)\)
IDS(1-6,9)
\(\operatorname{IDS}(1-6,10)\)
\(\operatorname{IDS}(1-6,11)\)
\(\operatorname{IDS}(1-6,12)\)
IDS(1-6,13)
\(\operatorname{IDS}(1-6,14)\)
\(\operatorname{IDS}(1-6,15)\)
\(\operatorname{IDS}(1-6,16)\)
\(\operatorname{IDS}(1-6,17)\)
\(\operatorname{IDS}(1-6,18)\)
\(\operatorname{IDS}(1-6,19)\)
\(\operatorname{IDS}(1-6,20)\)

VALUE

\section*{Title Cards}

\section*{Description}

Equipment repair
Reliability (days between failure)
Intermittent failure duration (hours)
Repair maximum duration (minutes)

For each event in the repair family
Event 1 Probability of next event
Data change number
Data change value
Event 2 Probability of next event Data change number
Data change value
Event 3 Probability of next event
Data change number
Data change value
Event 4 Probability of next event Data change number Data change value
Event 5 Probability of next event Data change number Data change value
Event 6 Probability of next event Data change number
Data change value
Event 7 Probability of next event Data change number Data change value
Event 8 Probability of next event Data change number Data change value
Event 9 Probability of next event
Data change number
Data change value
Event 10 Probability of next event
Data change number
Data change value
Event 11 Probability of next event
Data change number
Data change value
Event 12 Probability of next event
Data change number
Data change value

FORTRAN

RELH
TUI
DTR

VALUE

\section*{SEQREVT}

NFP4/FP4=
\(\qquad\) -
\(\qquad\)
,
\(\qquad\)
, \(\qquad\) , \(\qquad\) —,
\(\operatorname{PRB}(1-3,1)\)
\(\operatorname{IEDC}(1-3,1)\) \(\operatorname{EDCV}(1-3,1)\) \(\operatorname{PRB}(1-3,2)\)
\(\operatorname{IEDC}(1-3,2)\)
\(\operatorname{EDCV}(1-3,2)\)
\(\operatorname{PRB}(1-3,3)\)
\(\operatorname{IEDC}(1-3,3)\)
\(\operatorname{EDCV}(1-3,3)\)
\(\operatorname{PRB}(1-3,4)\)
\(\operatorname{IEDC}(1-3,4)\)
\(\operatorname{EDCV}(1-3,4)\)
\(\operatorname{PRB}(1-3,5)\)
\(\operatorname{IEDC}(1-3,5)\)
\(\operatorname{EDCV}(1-3,5)\)
\(\operatorname{PRB}(1-3,6)\)
\(\operatorname{IEDC}(1-3,6)\)
\(\operatorname{EDCV}(1-3,6)\)
\(\operatorname{PRB}(1-3,7)\)
\(\operatorname{IEDC}(1-3,7)\)
\(\operatorname{EDCV}(1,3,7)\)
\(\operatorname{PRB}(1-3,8)\)
\(\operatorname{IEDC}(1-3,8)\)
\(\operatorname{EDCV}(1-3,8)\)
\(\operatorname{PRB}(1-3,9)\)
\(\operatorname{IEDC}(1-3,9)\)
\(\operatorname{EDCV}(1-3,9)\)
\(\operatorname{PRB}(1-3,10)\)
\(\operatorname{IEDC}(1-3,10)\)
\(\operatorname{EDCV}(1-3,10)\)
\(\operatorname{PRB}(1-3,11)\)
\(\operatorname{IEDC}(1-3,11)\)
\(\operatorname{EDCV}(1-3,11)\)
\(\operatorname{PRB}(1-3,12)\)
\(\operatorname{IEDC}(1-3,12)\)
\(\operatorname{EDCV}(1-3,12)\)
\(\qquad\) ,' \(\qquad\)
\(\qquad\) ,
\(\qquad\) -9 , \(\qquad\) ,
\(\qquad\)
\(\qquad\) - \(\qquad\) -'
\(\qquad\)
-' \(\qquad\)
, \(\qquad\) ',
\(\qquad\) ,
,
\(\qquad\) -'
\(\qquad\)
,' \(\qquad\) , \(\qquad\) ,'
\(\qquad\)
, \(\qquad\)
\(\qquad\) -,
\(\qquad\)
,' \(\qquad\)
\(\qquad\) -'
\(\qquad\)
-, \(\qquad\)
,' \(\qquad\) -'
\(\qquad\) , \(\qquad\) , -'
\(\qquad\)
\(\qquad\)
\(\qquad\) -,
\(\qquad\)
\(\qquad\)
\(\qquad\) -'
\(\qquad\)
-, \(\qquad\) ', \(\qquad\) -'
\(\qquad\) ,' \(\qquad\) ', \(\qquad\) -,
\(\qquad\) - \(\qquad\) , \(\qquad\) -',
\(\qquad\) , \(\qquad\) ', \(\qquad\) -,
\(\square\) , - \(\qquad\) -'
\(\qquad\)
\(\qquad\)
\(\qquad\) -
\(\qquad\)
, \(\qquad\) , \(\qquad\) -,
\(\qquad\)
\(\qquad\) , \(\qquad\) -'
\(\qquad\)
\(\qquad\)
_,
\(\qquad\)
\(\qquad\) , \(\qquad\) E.
\(\qquad\)
, \(\qquad\) , \(\qquad\) -,
\(\qquad\) ,

Title Cards
Description
\(\frac{\text { Repair description }}{\text { Equipment-Number }}\)
Description (72 digits)
Threshold (units/hour)
Threshold (units)
Number of repair events in family
Family number
Event family members (repeat for each repair)

Event 1 Type number
Precedent events
Next events
Repair/Touch up \((1,2,3)\)
Event family indicator (\(0,1,2\))
Event 2 Type number
Precedent events
Next events
Repair/Touch up
Event family indicator
Event 3 Type number
Precedent events
Next events
Repair/Touch up
Event family indicator
Event 4 Type number
Precedent events
Next events
Repair/Touch up
Event family indicator
Event 5 Type number
Precedent events
Next events
Repair/Touch up
Event family indicator
Event 6 Type number
Precedent events
Next events
Repair/Touch up
Event family indicator
Event 7 Type number
Precedent events
Next events
Repair/Touch up
Event family indicator

FORTRAN

NEQRE
TSR
TSR1
IRE
IEFN

IETYP
IPE
NX(1-3,1)
RTU
IFOI
IETYP
IPE
NX \((1-3,2)\)
RTU
IFOI
IETYP
IPE
NX(1-3,3)
RTU
IFOI
IETYP
IPE
NX(1-3,4)
RTU
IFOI
IETYP
IPE
NX \((1-3,5)\)
RTU
IFOI
IETYP
IPE
NX(1-3,6)
RTU
IFOI
IETYP
IPE
NX(1-3,7)
RTU
IFOI

VALUE
NIP4/IP4=
\(\overline{72 H}\) \(\qquad\) -,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\) ,'
\(\qquad\) ,
\(\qquad\) , ,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\) , \(\qquad\) -
\(\qquad\) , -,
\(\qquad\) -'
\(\qquad\) -,
\(\qquad\)
\(\qquad\) , \(\qquad\) ,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\)
\(\qquad\) —,
\(\qquad\) , -'
\(\qquad\) ,
\(\qquad\) ,'
\(\qquad\) -'
\(\qquad\)
\(\qquad\)
\(\qquad\) , , ,'
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\) ,
\(\qquad\) - \(\qquad\) , ,
\(\qquad\) -,
\(\qquad\) —,
\(\qquad\) -,
\(\qquad\)
\(\qquad\)
\(\qquad\) ,
\(\qquad\) ,

\section*{Title Cards} Description

Emergencies
Emergency: Description
Essentiality
Men required (by type)
Mental load
Rate of consumable expenditure (units/hours)
Threshold (units/hours)

Threshold (units)
Hazard class
Energy consumption (calories/hr)
Number days between emergencies
(repeat for each emergency)

Average recovery time (hours)
Average standard deviation of recovery time (hours) Duration target (hours)
(repeat for each emergency)

\section*{Event type data}

Description
Essentiality
Number of men required (by type)
Mental load
Kind of event end time
Kind of event
Rate of expenditure of consumables (units/hours)
Rate of expenditure of consumables (units)
Hazard class
Energy consumption (cal./hr.)
Number of equipments required
Equipments required
Class
(repeat foe each event type)

ART
FORTRAN \(\begin{gathered}\text { VALUE } \\ \begin{array}{c}\text { SEMREVT } \\ \text { NIP5 } / \text { IP } 5=\end{array}\end{gathered}\)

IESSE
\(\operatorname{NREQE}(1-5,1)\)
NREQE (6-10,1)
LODME
\(\operatorname{IRCE}(1-5,1)\)
IRCE (6-10,1)
TSE
IRCE1(1-5,1)
IRCE1 (6-10,1)
TSE 1
IHE
IECE (1-5,1)
IECE (6-10,1)
NDBE

ASDE
DTE

IESS
NREQ \((1-5,1)\)
NREQ (6-10,1)
LODM
KE
INT
\(\operatorname{IRC}(1-5,1)\)
\(\operatorname{IRC}(6-10,1)\)
IRC1 \((1-5,1)\)
IRC1 (6-10,1)
IH
\(\operatorname{IEC}(1-5,1)\)
\(\operatorname{IEC}(6-10,1)\)
NIQR
\(\operatorname{IQR}(1-6)\)
ICLASS

72 H \(\qquad\) , ,
-'-'-'_'-'
-'_'_'_, -'
\(\qquad\) ,
-'_'-'_'_,
-'_'_'_'_'
\(\qquad\) ,
-'_'_, -'_,
-'_'_'_,-'
\(\qquad\) ,
-'_,_,-,
',-'_,',
\(\qquad\) ,

NFP5/FP5 \(=\)
\(\qquad\) _,
\(\qquad\) , \$
\$TYPE
NIP6/IP6=
72 H \(\qquad\) , ,
-, -'_,_,
, -',-',
\(\qquad\) -'
\(\qquad\) ,
-,_'_,,
',_'_,,
-'_'_'_','
-'-'-'-'-'
\(\qquad\) -,
-'-'_'_'-'
-'_'_'_',
-'-'_'-'-'-'
\(\qquad\) -,

Title Cards
Description

Average duration (hours)
Average standard deviation

ADUR
FORTRAN

ADUR
ASD

ASD
ADUR
ASD
\(\frac{\text { Value }}{N F P 6 / F P 6=}\)
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\)
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\) ,
\(\qquad\) -,
\(\qquad\)
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\) -,
, \(\qquad\) ,
\(\qquad\) -
\(\qquad\) ,
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\)
,
\(\qquad\)
,
\(\qquad\) ,
\(\qquad\)
,
\(\qquad\) ,

Title Cards
Description

Average duration (hours)
Average standard deviation
(repeat for each event type)

Scheduled events title card
(Input card not free format)
Day number for this iteration
Number of scheduled events this iteration Title

\section*{Scheduled events}

\section*{Type}

Precedent events
Threshold (units/hour)
Threshold (units)
Repair/Touchup
Event family indicator
Number in family
Family number
Next events
(repeat for each scheduled event)
Time limit
Start time (hours)
Probability of alternatives
Data change number
Data change value
(repeat for each scheduled event)

FORTRAN

ADUR
ASD

VALUE
\[
\text { NFP6/FP6 }=
\]
\(\qquad\) ,
\(\qquad\) \$
\begin{tabular}{llll}
FORTRAN & FORMAT & \multicolumn{1}{c}{ VALUE } \\
& & \\
ND & I3 & - \\
NOSE & I3 & \(-\overline{-}\) \\
& 11A6 & \((\overline{66}\) spaces \()\)
\end{tabular}
FORTRAN \(\quad\)\begin{tabular}{l}
VALUE \\
\begin{tabular}{l}
\$SCHEVT \\
NIP \(3 / I P 3=\)
\end{tabular}
\end{tabular}

IETYP
IPE
TS
TS1
RTU
IFOI
NIF
IEFN
NX (1-3,1)

TL
ST
\(\operatorname{PRB}(1-3,1)\)
\(\operatorname{IEDC}(1-3,1)\)
\(\operatorname{EDCV}(1-3,1)\)
\(\qquad\) -
\(\qquad\) ,
\(\qquad\)
\(\qquad\) ,
\(\qquad\) -'
\(\qquad\)
-'
\(\qquad\)
\(\qquad\) —,
\(N F P 3 / F P 3=\)
\(\qquad\) ,
\(\qquad\) -'
\(\qquad\) -',
\(\qquad\) ,

\section*{A PPENDIX C}

Logic Flow Charts

WH(i) \(\geq \mathrm{CN}+0.5\) ? (TIME TO SLEEP?)
IF NO. EXIT TO XI

DS(i) \(\geq\) MAXSL? (SLEEP OUOTA FILLED?)
IF YES, EXITTO XI

FAT(i) \(\leq\) TFAT (FATIGUE UNDER THRESHOLD?)
IF YES, EXIT TO XI
SUM SLEEP FOR DAY:
DS(\((\mathrm{i})=\) MIN \(\quad[\) MAXSL, DS \((\mathrm{i})+\mathrm{WH}(\mathrm{i})-0.5]\)
COMPUTE FATIGUE DUE TO SLEEP:
TEMI = MIN [MAXSL - DS(\(i\)), WH(\((\mathrm{i})=0.5\).]
IF TEM \(1>5\), FAT \((i)=0.0\)
F \(1 \leq\) TEM \(1 \leq 9\), FATIUD
FAT(i) \(\left[\frac{69}{70}-\frac{19}{140}\right.\) TEM +0.2 RY \(]\)
IF \(0 \leq\) TEM \(1<1\), FAT \((i)=\)
FAT(i) \(\cdot[0.9-0.05 \cdot\) TEM \(1+0.2\) RY \(]\)
LIMIT SUCH THAT \(0 \leq\) FAT \((i) \leq 1\)
RESET CALORIES EXPENDED SINCE LAST SLEEP: ACAL(i\()=0\) COMPUTE HOURS SINCE LAST SLEEP EOUIVALENT:

> IF FAT \((i)<.15, \operatorname{HSLS}(i)=\frac{160}{3} \cdot\) FAT \((i)\)
> IF \(.15 \leq\) FAT \((i)<.9, \operatorname{HSLS}(i)=\frac{44}{3} \cdot\) FAT \((1)+5.8\)
> IF \(.9 \leq\) FAT \((i) \quad\).HSLS \((i)=310 \cdot\) FAT \((i)-260\).

\section*{COMPUTE PERFORMANCE TiME:}

IF GPCC < 1. \(\quad\) SF \(=2.0-\) GPCC
\[
\text { OTHERWISE SF }=1.5-(\mathrm{GPCC} / 2)
\]

COMPUTE GROUP PERFORMANCE:
\[
\begin{aligned}
& \text { GPERF }=\left(\sum_{i \in G} \text { PERF(i) }\right) / I G \\
& \text { COMPUTE GROUP ASPIRATION: }
\end{aligned}
\]

\[
G A S P=\left(\sum_{i \in G} \operatorname{CASP}(i)\right) / I G
\]

\[
\text { GPACE }=\left[\left(\sum_{i \in G} \text { PACE(1) }\right) \text { IG }\right] \text { PAF - } \$
\]
(GROUP PACE)
\[
V=e^{(Q n T E M 2+R D \sqrt{\text { InTEM })}) \text { WHERE TEM } I=1+\frac{\text { ASD }(I E T Y)^{2}}{\text { AOUR(IETY) }}{ }^{2} .}
\]

FOR REPAIR EVENTS
\(V=A D U R(I E T Y)+R D \cdot A S D(I E T Y)\)
\{ FOR SCHEDULED EVENTS \{and emergencies

IF GSTR \(<G S T R M\) :
PT(IE) \(=\) GPACE \(\cdot\left(1-2.35075 t+3.4722 t^{2}-1.829 t^{3}\right) \cdot V\)
\[
\text { WHERE } \mathrm{T}=\left(\frac{\text { GSTR }-1}{\text { GSTRM-1 }}\right)^{3}
\]

\section*{FROM PAGE 14}

COMPUTE TIME FATIGUE AND PHYSICAL CAPABILITY FOR ALL MEN IN GROUP:
FAT(i) USING SUBROUTINE FBUILD PCC(i), MPCC((i), AS ON PAGE 10, L0 GPCC FOR GROUP AS ON PAGE 12, (L2)

\begin{tabular}{|c|}
\hline SUBROUTINE FBUILD (HSLS) \\
\hline COMPUTE FATIGUE BUILDUP (FATIMI) FOR EACH M: \\
\hline \[
\begin{aligned}
\text { FAT }(M) & =0.01875 . ~ H S L S(M)-R Y \cdot 0.2 \\
\text { if } 0 \leq H S L S(M) & <8
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { FAT }(M)=(15 \cdot \text { HSLS(M) }-109) / 220+R Y \cdot 0.2 \\
& \text { if } 8 \leq H S L S(M)<19
\end{aligned}
\] \\
\hline \\
\hline \(0 \leq\) FAT \((M) \leq 1\) \\
\hline
\end{tabular}

SUBROUTINE PSCAP: COMPUTE PRIMARY AND SECONDARY COMPETENCE (IAA, PCDUM, PSCOM)
CALCULATE PRIMARY AND SECONDARY COMPETENCES
PERFORM STEPS \(1,2,3\) FOR \(i=1,2,3\), AND 4 :
1. \(L(1)=\mid A A(i) \cdot P P F Q\) \(L(2)=I A A(i) \cdot P P M O\)
L(3) - IAA(i). PPUO
2. IF \(\sum L(j) \neq\) IAA \((i)\), ROUND UP EACH \(L(j)\) IF EQUALITY IS NOT OBTAINED. ADD I TO EACH L(i). CONSIDERING THE LARGEST LII FIRST, UNTIL EOUALITY IS OBTAINED
3. ASSIGN THE FIRST L(i) MEN WITH ICE (M) \(=\) PCOM \((M)=.95+R D \cdot 0.03\)

FOR THE NEXT L(2) MEN WITH ICE(M) = \(\operatorname{PCOM}(M)=.75+R D \cdot 0.03\)

FOR THE NEXT L(3) MEN WITH ICE(M) = PCOM (M) \(=.60+\) RD \(\cdot 0.03\)
4. REPEAT THIS PROCESS, REPLACING PCOM(M) WITH SCOMIM) AND PPFQ. PPMO, PPUO WITH SPF O, SPMO, SPUO

APPENDIX D

Program Organization

APPENDIX D
COMPUTER PROGRAM ORGANIZATION

The Computer Program
The program for the model was given the name P 420 and was prepared in the widely accepted FORTRAN IV programming language. All runs reported were made on the Honeywell 635 computing system.

The \(\mathrm{H}-635\) is a 36 bit word machine with cycle time of one microsecond. The ISM model requires 32 k words of core memory storage to compile and execute where \(k=1024\).

A page-heading subroutine, available at most computer installations, and two random number generators are the only non-standard routines which would require special consideration when executing the simulation program at other facilities. The program was prepared with computer independence in mind so that converting the P 420 program to FORTRAN for another large scale computer should require little more than replacing control cards and recompiling on the new computer.

The model divided into a executive program (XMAIN), input and output routines, and several supporting subroutines, and several supporting subroutines. In general terms, the executive performs the following functions:
a) Performs all initializations
b) Calls for parameter and personnel data from input routine
c) Determines crew characteristics
d) Calls for emergency and equipment repair event data and determines when in mission these events are to be simulated
e) Calls for scheduled event data for each day from input routine
f) Determines order for events to be simulated for the day
g) Selects crew for each event
h) Simulates crew performance and evaluates same
i) Allows for second attempt of "failed" event
j) Prints results for each event (optional)
k) Determines next event
l) At end of day, summarizes events for day and calls output routine to print daily results
\(\mathrm{m})\) At end of iteration, calls output routine to print iteration summary
n) At end of mission, calls output routine to print mission summary

The detailed event results (item j above) will be printed on events for which the event and day numbers exceed the values of IND(5) and IND(4) respectively (see Appendix A, Table A-7).

The input routine (INPT1) is responsible for accepting the simulation input data and, after verifying that each input section contained the proper number of data items, passes the data to the executive. Optionally, a complete listing of all input data can be printed by the input routine (see IND(1) Appendix A Table A-7). The parameters are unconditionally printed. If a section of the input file does not contain the proper number of data items, an appropriate mes sage together with all of the data or that type (e.g. personnel data) is printed for review and the program halts after checking the remaining input sections.

There are four entries to the input subroutine (OUTP1). The first entry is used when a listing and summary of the crew characteristics is requested. This output occurs, when requested by print option 2 , at the beginning of each iteration. This option is dependent on IND(2) (see Appendix A, Table A-7).

The second entry provides for summarizing the results of a days simulation. A printed listing of these data may or may not be effected, depending upon print option 6. The end of day results will be recorded on such iteration on those days for which the day number exceeds the value of \(\operatorname{IND}(6)\).

The third entry in the output routine unconditionally prints the (see example Table 2-5) report summarizing the data obtained at the end of each iteration of the simulated mission. Table 206 presents this format.

The fourth, and final, entry unconditionally summarizes and prints data obtained at the end of each run of N iterations as shown in Table

The supporting subroutines, also coded in FORTRAN IV, are FBUILD, IPUYSN, and PSCAP. The function of FBUILD is to compute fatugue buildup for the men in the crew; IPUYSN generates random numbers with a poisson distribution; and PSCAP determines primary and secondary competence levels for each man in the crew.

The card deck organization for execution of the program on the H635 is shown below:

Figure D-1 P420 Deck Set-Up

The
The five digit number in the first card represents a run number used by the computation center to identify the run. The 5 digit number in the second card represents a charge number or accounting code. On the LIMITS card, the numbers indicate the maximum length processor time core memory (\(\mathrm{K}=1024\)) and print lines on a given run. The run will be terminated if any of the se conditions is noted. On the TAPE card, the numbers indicate the logical unit number, the channel number \((\mathrm{D}=\) dismantle after run), and the physical tape reel numbers. The options on the INCODE card are either IBMF (FORTRAN code prepared on the Model 026 Keypunch) or IBMEL (extended language code, prepared on the Model 029 Keypunch).

At many installations, both the \$SNUMB and \$IDENT cards are prepared by the operations personnel. The \$TAPE card is required only on runs requiring more than one iteration or for runs employing the tape input option.

When a simulation with multiple iterations is completed a tape containing a large portion of the input data has been created. This tape may be used in subsequent simulations by choosing the tape option for input. The tape contains all the input following the \(\$\) PERSNL data group. This means that if the print option was in effect (IND(1) \(=0\)) when the tape was created, the descriptors for the equipment repairs and emergency events are also on the tape. Hence the user must enact the print option when employing that data tape. Failure to do so will cause improper reading of records and the program will abort.

\section*{Program Timing}

The recompilation time on the \(\mathrm{H}-635\) is from one to two minutes depending on the extent of the programs compiled. Execution time is, of course dependent on the simulation input data involved. The following execution time estimates are examples from runs made with the mission data described in Chapter III. A run of 10 iterations during which recording was made for summaries only consumed about. 020 seconds per event. A run in which all detail event output was recorded consumed. 059 seconds per event or about 1.2 minutes for a 5 iteration run. As another example, a two mission case each with 5 iterations of 4 days with full detail recordings of all events took 146 seconds of processor time. This corresponds to 0.056 seconds of processor time per event.

Figure D-2
Computer Simulation System

\section*{A PPENDIX E}

\section*{Computer Program*}
* This computer program, like all simulation programs, is evolutionary. The program presented in Appendix E represents the status of the simulation model program as of November 22, 1974.
```

CXMAIN XMAIN
COMMON/PRSNEL/WT,SIGNY, PPFQ,PPMO,PPUO,SPFQ,SPMQ,SPUQ,
1MP|,PID,ZPC,PTY(10%10),MEN(10,1),NDS,IDS(6,20)
COMMON/IPARAM/APST;WORK1,WORK2,SLEEP,CN,MAXSF,YFAT,ACP,
1CALRY,PWRRT,K7,K1;BE,AASP,KON(10),KONT(10,10),KON1(10),
% KONT1(10,10),SESTA(10),REL!(4), N,IEY,IND(7):NDMAX
COMMON/EQREVNT/ IDF(30),RELH(30),DTR(570), YUI(30),IRE(30)
COMMON/EEMER/ART (10), ASDE(10),DTE (10), IESSE (10), NREQE (10,10),
1 LODME(10),IRCE(10.10),!RCE1(10810), TSE(10), TSE1(10):IHE(10):
1 lECE(10,10),DTBE(10)FNDBE(10)
COMMON/ETYPE/ADUR,ASD,IESS,NREQ(10),LODM,KE,INF,IRC(10),IRC1110).
1 IH,IEC(10),NTQR,IOR(6),ICLASS
COMMON/SEVENY/IEYYP(570), YL(570),\$T(570), EDCV(3,57J), (PE(570),
1 TS(570),TS1(570),NXP8,570),RTU(570),IFO!(570), IEFN(570),NIF(570),
2 IEDC(3,570),PRBY3,570):NOSE,NEQRE,NEME,DI (9)
COMMON/QCOM/PCOM(20),SCOM(20),IPS(20),ISS(20), FPCOM(20),TSCOM(20)
COMMON/OPP1/ \AAY4),PC(20),PACE(20),ASP(20):HSLS(2N),P$20)
    1,P12(20),ICE(20)
    COMMON/OPP2/ TW(20), 『WP(20),TWS(20),DS(20),APW(20),PCC(20),
                            CASP(20),IDC(20), NSUC1,NSUC2,NFALE,NIGNR,
    ? KONC(10),KONC1(10), SI,GML,ND,ITER,NDAYS,MPCC(20),FAT(20)
    3,SFRM(20), CAL(20), PWR(20),CCAL(20),NU(20), PERF(20),MPRFM(4)
    4,APA,SFD!FF,CLSDTA(10,40)
    COMMON/OPPZ/IC,FLIC,NREPY,HRSE,HRSR,HRSS,PEFF,
    1 MAXST,MAXSTE,USHT,NR,NPE,NE,TEH,CMLMX,ICML,SIDCMX,IDCMX,ICSS
    COMMON/OPP4/EPL(30),GDT(30),CART (SO),CUY(30).
    1 AEPL, EPEFF,EMTBF,EMTPR,SRL,SPL, SGEM
    INTEGER TS,TS1,RTU,YSE, PSE&, ISR,, TSR1
    |NPEGER P12,PTR(240),10\F(10)
        REAL KONC,NOSUC(20),NOFAIL(20),IDC,KONE(20),MPCC .MAXST,NU
    REAL MP!,MAXSL,K7,K1,IEC,LODM,IH,IRC,KON,KON&,KONT,KONTI
        REAL !ECE, \HE,IRCE,LODME, IST
    DIMENSION NPPR(580),ADURIO(55)
1 KONFI(20)
    D(MENSION PSCOM(40),{PSS(40),PCDUM(6),TPSCOM(40)
    EQU!VALENCE (PCDUM,PPFQ),(PSCOM,PCOM),(IPSSi|PS), (TPSCOM,TPCOM)
    EQUIVALENCE (ADUR,ADURIO?
    DIMENSION NS(20),IDE(10),
    1
                    2(20), 2C(570),IEVENY(570):NREQY(10), MAVA!L(20).
2
                            TAVA!L(20),MA{20.10);IFYPE(20),MAY(20),WH(20),ACAL(20).
    3 P\(570), \1TLE(9)
    DIMENSION MCHSN(20), {NVS(570),USH(6)
    DIMENSION HEADR(12)
    DATA HEADR(I)/72H APPLIED PSYCHOLOGICAL SERVICES WAYNE, PENNA
1. ARPHUR !. SIEGEL/
    DATA TITLE/GHSCHEDU,GHLED EV,GHENT ,GHREPAIR,GH FAMIL,
    16HY .GHEMERGE:GHNGY EV,GHENT
    DAPA YU,ESSS,PEA/6H U.6H S.GH P/
    DAPA STAR,BLANK/GH *,6H |
    FUNC(A,B,D) = (A + (A*B)/4.) - D
    CALL RANS! 2(12,55)
    READ(5.9050) NKASES
```
```
        KASE = O
    10 KASE = KASE+1
    IF{KASE GT, NKASES) CALL EXIT
        READ(5,9045) HEADR
    9045 FORMAT(12A6)
    CAWL SPGHDR(HEADR)
        LMAX=10
        LMAXI=10
        NTMAX=10
            IPER=0
        NKOUNT = 0
        READ(5.9050) ITAP;NDMAX
        CALL XXIN
    50 IFER=1TER +1
    |TAP = |TAP+1
    NDAYS = 0
9050 FORMAT (213)
    CALL INPUT(IPAP,KASE)
        KMAX=NEME
        !OMAX = NEQRE
        IEMAX=NOSE +NEQRE +NEME
C##COUNT THE CREW FOR EACH ECHELON AND ASSIGN
C#*EACH MAN A CREW ECHELON
            IC = O
            DO 110 | = 1.4
            |AA(I)=0
            DO 100 J = 1,NPMAX
    100 \AA(|) = \AA(I)+MEN(J,!)
    110 |C = |AA(I)+IC
            FLIC= IC
            |!=1
            ЈJ = 0
            DO 120 & = 1,4
            JJ= |AA(1)+JJ
            |F (JJ.LT.II) GO TO 120
            DO 115 J = I!,JJ
    115 |CE(J) = 1
    |! = JJ+1
    120 CONFINUE
CH*ASSIGN PRIMARY SPECIALTIES
    M=1
    DO 160 J = 1,4
    DO 160 1 1,NTMAX
    || = MEN(1,J)
    IF (11.EO.O) GO PO 160
    DO 155 K = 1,I!
    |PS(M)=1
    155 M = M$1
    160 CONPINUE
C###ASSIGN SECONDARY SPECJAGTIES
    DO 220 I=1,IC
    |! = [PS(!)
    TEMI = UNIFMI(0.0)
    TEM1 = PEM1*PTT(NTMAX,11)
    DO 210 J = 1,NPMAX
    |F (PTY(J.II):LT,TEML) GO TO 210
```
```
            !SS(!) = J
            GO PO 220
        210 CON INUE
        220 CONPINUE
    C##PC,CAL,PWR,PACE,ASP,HSLS,FAT,STRM FOR
    C#*EEACH MAN
            DO 300: = 1,IC
            PEM1 = DNORMI (0.0)
                PC(!)=(WT*TEML*SIGWPI/WY
            CAL(!) = PC(!)*CALRY
            PWK(i) - PC(i) PWRRT
            PACE(I) = ACP + DNORM$(0.0) - 0.11
            ASP(|) = AMIN1(AASP*AASP.DNORM1&0.0)/10.0.1.0)
            HSLSS(1) SLEEP+DNORM&(0.0)*SLEEP* 0.25
                    FAP(!)=FRU|LD(HSLS(!j)
        300 STRM(1) = APST + DNORM 1(0,0)%APST/6,0
    CO*OCALCULATE PRIMARY AND SECONDARY COMPETANCE
    C**FOR EACH MAN AND CEI=INITIAL CREW COMPETANCE
            CALL PSCAP(I\triangleA,PCDUM, PSCOM)
            CCl=0.0
    DO 360 l = 1,1C
    360 CC! a CCI* PCOM(1)
    CC! ב CCI/FLIC
C**OCALCULATE PHYSICAL INCAPACITIES
    365 DO 370 1 = 1,IC
        P!(I)=1.0
    370 P(2(1)=0
        NPI = IPUYSN(FLIC/MPI!
        IF (NPI.EQ.O) GO TO 390
        DO 380I=1.NPI
        1!= UNIFM1(O:O)*FL|C
        P|(||)=0.2*UN{FM1{0.0)+0.75
    380 I2(II) IPUYSNIPID\
    39
**FlRST DAY OF IYERATION*-INITIALIZAYIONS
    550 ND = 1
    DO 560 & = 1,KMAX
    560 \DE(I) = 0
    DO 570 1 = 1.IOMAX
    570 1DF(1)=0
        DO 580 1 = 1, LMAX
    580 KONC(I) = KON(!)
    DO 585 I =1.LMAXI
    585 KONC1 (1) E KON1 (1)
        DO590 & 1,IC
        NS(!)=0
        ACAL(!) = HSLS(!)*CAL(1)/24.0
        CASP(I) = ASP(!)
        PERF (1)=ASP(1)
        NOSUC(1) = 0.0
    590 NOFAIL(I) = 0:0
    DETERMINE DAY OF OCCURRENCES OF NEXP FAILURES AND EMERGENCIES FOR
    FAILURE AND EOUIPMENY
    DO605 ! = 1,IOMAX
```
```
\(11=$
1F（1！．EO．O）II $=-1$
$60^{5}$ ！DF（！）$=1 D F(7)-11$
DO 610 I＝1，KMAX
$!1=$ NDBE！\｜ALOG（UNIFMI（0．0））－0．5
IF（I｜，EQ，0）I！＝－1
610 IDE（1）$=10 E(1)$－11
IF（IND（3）．EO：O）GO YO 650
WRIFE $(6,9610)(1,1 D F(1), 1$ I I，IOMAX）
9610 FORMAT $99 H_{1}$ PRIN OPFION THREE／39H FAILURE FYPE＝－＝DAY OF FIRST OCC
URIPE（6，9611） 1
WR！PE（6，9611）（1，1DE（！），1 玉 I，KMAX）
Q611 FORMAT（1HO／A1H EMERGENEY YYPE＝－－DAY OF FIRST OCCURRENCE／
1 （1H 10（13，1H－，（4；4X）））
Cぁロロ日EGIN SIMULATION FOR EAGH DAY－－－INITIALIZATIONS
650 NJGNR $=0$
NSUC1 $=0$
NSUC？$=0$
NFALE $=0$
NREP $=0$
DO $655 \quad I=1,4$
655 NPRFM $(1)=0$
DO 658 J 1.10
DO 658 I $£ 1.40$
058 CLSDTA（J，I）$=0.0$
USHP＝O：O
HRSE $=0.0$
$H R S R=0.0$
HRSS $=0.0$
$M A X^{S T}=0,0$
MAXSTE $=0$
DO 660 I $=1$ IEMAX
$660 \mathrm{ZCl}!1=0.0$
$006701=1.10$
$T W\{1\rangle=0.0$
$T W P(1)=0.0$
TWS（I）$=0.0$
MPCC（1）$=0.0$
$1 D C(1)=0.0$
$D_{S}(!)=0.0$
$N \cup(1)=0.0$
$6702(1)=0.0$
$C M L=0.0$
CMLMX $=-1, E 10$
$1 C M L=0$
S！DCMX＝CMLMX
1DCMX＝0
PEH＝ 0.0
SFD IFF $=0.0$
$S E F=0.0$
ISIE＝0
$A P A=0.0$
DO 675 1E1．I IMAX
CUT（！）$=0.0$
CDY（1）$=0.0$
CARY（I）$=0.0$
``` ```
EPL(|)=0.0
675 CONPINUE
C
c caleulate sea state
ICSS =9
ATEM = UNIFM\& (0.0)
DO 680 i=1.9
705 FORMAY(1H0.215,2F7.4)
!F (ATEM.GT. SESTA (\&)) GO YO 880
ICSS = ! - 1
GO PO 685
680 CONFINUE
685 PSESIC=0.0555 ICSS
DO 690 IE1.1C
PPCOM (!) = PCOM (I)
TSCOM (I) = SCOM (I)
IF (UNIFMI(O.0) .GE. PSESIC) GO PO 690
PPCOM (I) = TPCOM (|) (1. ICSS. 0,0555)
TSCOM {I\rangle = PSCOM (1) . {1- |CSS. 0.0555)
690 CONFINUE
WRIYE (6,682) ICSS,PSESIC
682 5ORMAT(19H0CURRENT SEM STATEEI2/17H PERCENT SEAS\CKEF7.4)
CALL DINPUT
{F(ND .GE. IND(4)) UR!YE{6,8502)
8502 FORMAT(1H1)
C\#\#IDENTIFY FAILURES AND EMERGENCIES FOR YHE DAY
C\#\#AND COMPUTE NEXT OCCURRENEE FOR EACH
700 NR = O
KK = NOSE
DO 710 I = 1,IOMAX
|F (IDF(1).NE.ND) GO PO 710
NR = NR+1
KK = KK+1
|EVENT(KK)=200+(I-1)*$2 * 1
 |{RELH(1)*ALOG(UNIFM$(0.0))=.5
|F { \1.EO,O)
=-1
\DF(!) = IDF(I)-\!
710 CON PINUE
750 NE = O
DO760 I= =1,KMAX
|F (IDE(I).NE.ND) GO TO 760
NE =NE+1
KK = KK*1
{EVENT (KK) = ! *560
|l: NDBE(l)*ALOG (UNIPM1(0.0)) = 0.5
|F(!|,EQ,0)!!==1
IDE (I) IDE(I) - 1!
760 CON INUE
NUMFAM=0
NO:FY = O
ISY = (!CSS * 1)/10.
DO 697 I=1.NOSE
IF (NR + NOIFT .GE. 30) GO TO 697
NO!F=0
\F (\FO! (I):NE, 1) GO TO 697
``` ```
NUMFAM = NUMFAM * 1
IF (NOIFT,GY: 10) GO TO 697
C
C ACCESS PYPE DAYA FROM DISC
\TEMEIETYP(I)
READ\12'! FEM,ERR=30001 ADURIO
C
C
F (NIQR .EQ. O) GO PO 697
DO 698 INIO= 1,NIOR
IF (NOIF .EQ, 1) GO PO 698
RY2 = UNIFM1 (0.0)
3TEM = 0.001
\F(LODM.GT. S) BYEM\&0,01
IF(LODM.GT.6) BTEM=0.03
ATEM = FUNC(ATEM,RY2,IST)
IF \& ATEM .LY:UNIFMI(0,0)) GO PO 698
NO!F = 1
KK = KK * 1
C
C
COUNTER
NOIF% = NOIF% *1
C WHICH REPA!R SEQUENCE
C IEVENT(KK) =200*12*(!QR(N!QR)-1)+1
C WHICH SCHEDULED EVENY HAS AN O!F
698 CONFINUE
6 9 7 CON INUE
C
NR IS NUMBER OF REPAIR FAMILIES
NR = NR * NOIF'
NOSE1 = 0
NTE = NR * NE * NOSE
OO 770 \& =1. NOSE
\F { \FO$!) :NE, 1) GO T0 770
    IEVENT (!) = !
    NOSE1 = NOSE1 * 1
    70 CONFINUE
    RANDOMLY ASS!GNS REPA!RS THEN EMERGENCIES TO TASK SEQUENCE AND
    FHEN FILLS IN SCMEDULED EVENTS TO QUEUE IN ORDER OF INPUY
C** GENERATE POINTERS FOR EVENTS FOR THIS DAY
    7 7 5 \text { DO 780 ! = 1,NTE}
    780 PTR(|) = 0
    JJ = NOSE
        +1
    TEM1 = NTE-1
    DO 810 : JJ,NTE
    | = UNIFMI(0:O).TEMI*1,0
    |F(PYR(I|)) 785,805,785
```
```
    785 kK = 11
    790 11 = 11+1
        |F (|I.GT.NTE) GO TO 795
        IF(PYR(I|)) 790,805,790
    795 11 = KK
    800 \! = !|-1
    |F (PYR(II).NE,O) GO PO 800
    805 KK & IEVENT(!)
        piR(||)= KK
        |NVS (KK)= 1 \+1
    810 CON INUE
    KK=1
    DO 820 l=1,NOSE
    IF (IFOI(!),NE, 1) GO YO 820
        KK=KK+1
        GO O 815
    818 PTR(KK) = 1
    820 CONFINUE
C
C
    KOUNT IS INCREMENT FOR NPYR TO INCLUDE OIF AND FAMILY MEMRERS
    |GAP=0
    KOUNT = O
    DO 831 I=1,NTE
    IPTR = PYR (!)
    IF |IPTR .NE, O) GO YO 841
    |GAP = IGAP * 1
    6O 10 831
    841 CONTINUE
    NPPR (! * KOUNP - IGAP) = IPPR
    |F (IPTR,GE, 561) GO TO 831
C
    835 |SW1 E/PTR.GY, 200) GO TO 842
    IN!F=N|F (IPTR)=1
    IF (INIF.EQ, O) GO YO 834
    60 10 843
    842 INIF = IRE (PIPTR-200) /12 + 1)-1
    IF (INIF.EQ, O) GO YO 834
    843 DO 832 JE1,\N?F
        KOUNT = KOUNP +1
        NPYR (I + KOUNF - IGAR) = IPYR * J
    832 CONPINUE
C CHECK IF SECOND FIME PHROUGH
834 IF (ISW1 .EQ, 1) GO YO 831
    IF (NOIFT, EQ: O) GO TO 831
    IF (|PTR ,GT, 200) GO TO 831
    |SW1:1
    DO 833 JE1,NOIFT
    IF (IPTR.NE, IOIF(J) ) GO YO 833
```
```
C
    HAVE AN OIF
    KOUNT = KOUNT * 1
    !PYR= IEVENT(NTE&J)
    GO PO 835
    83 CONFINUE
    831 CONFINUE
C
    TH!S LOOP COUNTS TOYAL NO. OF EXENYS
        DO 8 I=1.570
        |F(NDTR(I).EQ:O ) GOTO 9
        8 CONTINUE
        9 NTE=1-1
C
    00821 I=1,NTE
    \F(NPPR(!),LF.200) GO TO 826
    CONPINUE
    826 <K=561
    NX(1,KK)=NPTR(1)
    PRB(1.KK)=1.1
    DO 824 I=1,NFE
    K=NPTR(1)
    !NVS(K)=! +1
    !F(K.LE.200) GO 90 823
    !F(K,GT.560) GO PO 822
    |F (!RE({K-2OI)/12 1 ) ,EQ. 1 .OR, IFO|(K) ,EQ, 2 GO PO 822
    GO PO 824
    822NX(1,K):NX(1,KK)
        NX(2,K)=NX(2,KK)
            NX(3,K)=NX(3,KK)
            PRE(1,K)=PRB(1,KK)
            PRE(2,K)=PRB(2,KK)
            PRB(3.K) #PRB{3,KK)
            GO PO 824
    823 KK=K
    824 CONTINUE
    830 JE|E =1
    840 IE = NPTR (IEIE)
            |F!RST = 1
C## RESETS FOR EACH EVENT
    850 |P| = 0
        |G=0
        !TRY = 0
        \GNOR = O
        DO 865 J! = 1 , NDS
        USH (J!) = 0.
    865 CON` INUE
C** DEYERMINE WHETHER EVENT SHOULD BE IGNORED
C
C ACCESS TYPE DATA FROM DISC
        ACCESS TYPE DATA FROM DISC
    |TEM=IETYP(IE)
        IF({TEM,EQ.(-1)) GO TO 851
    READ\12'IYEM,ERR=3000\ ADURIO
    GO PO 854
```
```
    851 ADUR=ART(1E.560)
        ASD=ASDE(IE-560)
        |ESS=lESSE(lE-560)
        LODM=LODME(IE-560)
        KE=2
        |NT=1
        NIQR=O
        |H=|HE(IE-560)
        ICLASS=5
        DO 852 l=1.10
        NREQ(I)=NREOE(1,1E-580)
        \RC(I)={RCE(!,\E.560)
        |RC1(I)=\RCEI(I,IE-560)
    852 IEC(l)=\ECE(!.\E-560)
c
    854 !F & IE .GT. 200) GO 10 862
        (F (IESS.GE. IEY) GO TO 855
        1G!ND = 1
        GO PO 1815
    855 KK a TS(IE)
        IGIND=4
        DO 860 ! = 1.LMAX
        !F(KONC(!).LT, KONT(I,KKI) GOPO 1815
    860 CONPINUE
        IG!ND=夕
        <K= FSI(IE)
        DO 861 !=1, LMAX1
        IF(KONC1(1) .LY.KONT1(l,KK)) GOTO 1815
    861 CONPINUE
C
C COMDUTE NUMEER OF HOURS PER SHIFF
    862 SFTHRS = 24./FLOAT(NDS)
        IF ( IFIRSY .EQ. O) GO YO 857
    |F|RST = 0
        IF (NPTR (1) ,EQ. (E) GO TO 863
    857 [F (NIF(IE) .GY, 1) GO PO 863
        IF \IFOI (IE),GT. 11 GO YO 863
    IF & IG .GY. 1) GO FO 863
C
    HAVE FIRST EVENT IN ONE EVENT FAMILY W!TH ONE MAN GROUP
    JJ=MAT(1)
    LL = ITYPE (JJ)
    IF (NREQT(LL).NE. I) GO YO 863
    ATEM = KTEMP - SFTHRS
    \F(ADUR+Z(JJ):LE,ATEN*0,33)GO PO $150
    863 CONTINUE
    JJ = IPE(IE)
    JNDS = NDS
C
    DETERMINE EARLIEST SHIFY JOB CAN BE STARTED ON AND LATEST TIME BY
    1 JOB MUST BE COMPLEPED
    |!! (AMAXI&ZC(JJ),ST(IE)$/SFTHRS * 1.0
IFIKE
.EQ,1) JNDSETL(IE)/SFTMRS* .99
``` ```
C LSHIFT= O--FIRSS SORIGHROQGH ALG POSSIBLE SHIFYS
C LSHIFT = 1-- SECOND SOR\ WIMH DESIRED SHIFT
QOF LSHIFT = O
905 FORMAT (10HOSHIFTHRS*F11.3.3{6)
60 90 877
C BRANCH TO HERE WHEN LSHGFY = I
878 111 = KTEMP
JNDS = KTEMP
877 DO 875 J! = 1!!,JNDS
C*** IG IS TOTAL NUMBER OF MEN REQUIRED FOR EVENT
WRIPE(6.1066) KTEMP,Ill,JNDS
1000 -ORMAT(1HO4/10)
IG = 0
IP! =0
!GNOR =0
DO 880 I = 1,NYMAX
880 NREOT(I)=NREQ(I)
C*** SELECTION OF PERSONNEL FOR EACH TYPE
C** KIND = O WHEN SELECTING PRIMARY SPECIALPIES
CO* KIND = 1 WNEN SELECYING SECONDARY SPECIALTIES
DO }885\mathrm{ l=1. IC
385 MCHSN(1)=0
KINO = 0
11 = 1
<A = 0
IF (INT .EQ.2) GO 10 1020
900 If (NREQT(I!):NE.0) 60 10 925
910 [F (II.EQ.NTMAX) GO YO 920
11 = 11+1
KA =0
60 %0.900
920 IF PIPI.EQ.0) GO TO 1060
lF(KIND) 1060,1020,1060
925 !5 (KA.NE.O) GO FO 990
TEM1=TL(IE)
LL z KIND*20
00 950 l = 1.10
LL:MLL+1
IF(MCHSN(I).NE.O) GO TO 950
IRIVIAL CASE IS IDSPJ! ,II E I FOR ALL J!
THIS CASE IS ORIGINAL -NO SHIFT--MODEL
IF (IE .GY, 200) GO YO 930
IF (IDS(J!,I).NE. \&) GO TO Q5O
NKOUNT = NKOUNT * 1
IF (NKOUNT .GT, 100) GO TO 934
WRIPE (6,941) I,JIISFYHRS
934 CONPINUE
ZTEMP = J! * SFTHRS * 1,0
\&F {ZTEMP .GY{ 24.0) ZTEMP = 24.0
IF {NKOUNT .GT, 100) GO TO 942
WRIPE (6.941) JI,ITSFTHRS,ZPEMP;Z(1)
``` ```
941 FORMAT (6HOZPEMP 2{5,5F10.3)
942 CONPINUE
f5 (Z(1), G9: ZPEMP) GO YO 950
93O CONPINUE
IF (IPSS(LL),NE.II) 00 PO 950
IF(z(I).GT.PEM1) GO TO 950
IF (TW(I).GT.WORK2) GO YO 950
KA = KA+1
MAVAIL(KA) = 1
CALR=PWR(1)
PEM2 = IEC(1!)
IF (CALR.LE.PEMZ) GO PO 935
CALR = 1.0
GO 90 940
935 CALR = CALR/PEM2
940 PAVA!L(KA) = 1000.0-10.0*PW(I)*CALROPPSCOM (LL)
950 CONTINUE
!F (KA,NE,O) GO TO 900
955 |P! = 1
IF KKIND.EQ.O1 GO TO }91
958 (F (LSHIFP.EQ, 1) GO TO 910
USH(J!) = USH (J!) *ADUR *FLOAT(NREQT(II))
\#0 %0 910
960 KK = KA=1
IF (KK.EQ.O) GO PO 990
DO 980 ! : 1,kK
LL = KA-l
00 970 J = 1.LL
PEMg = TAVAIL(J)
IF (TEM1,LE.PAVAIL(J*I)) GO TO 990
PAVAIL(J) = PAVAIL(J\&1)
PAVAIL(J+1) : PEM1
NN = MAVAlL(J)
MAVAIL(J) = MAVAIL(J*1)
MAVAIL(J+1) NN
970 CONPINUE
980 CONPINUE
990 IF (KA,EQ.O) GO TO 95s
NN = Mavall(%A)
KA = KA-1
IF((IE.GE.561),OR.(SESS ,EQ.100)) 00 YO 1000
IF (TW(NN)\&ADUR ILE.WDRK1) GO $O 1000
    995 IF(KIND.EQ.1) GO TO 958
    |P| =1
    GO PO 910
1000 IF(TW(NN).GP:WORK2) CO TO 995
        1G= !G+1
        MCHSN(NN)=1
    MA(!G,I!) = NN
    MAT(IG) = NN
    RTYPE(NN) = !1
    NREQT(1I) = NREOT(1|).1
    {F(KA .NE, O) GO 90 900
    IF(NREQ(II!) 955;9101955
C
c RESET FOR SECONDARY SEARCH
```
```
C
    1020 KIND = 1
        1] =1
        GO P0 900
C** SELECT LEADER
    1060 CONPINUE
    875 CONPINUE
    WK!FE(6,1063) (USH(\ABC), &ABCF!\!,JNDS)
    1063 FORMAT(9HOUSHOURS = 12F10,5)
C LSHIFT = O CHECK ALL SHIFYS
    LSHIFT = 1 ONCE YMROUGH LOOP WITH BEST SHIFY
    IF (LSHIFP.FQ. 1) GO TO 1064
C ASSIGN JOR TO SHIFT PFIRSY WITH ZERO USH OR MINIMUM OSHI
    KTEMP = 1!1
    IF I II! .EQ, JNDSI GO 1O 1064
    ||P|=||| |
    DO 1061 J! = \1!P1,JNDS
    RTEMP = USH(JI) - USH(KPEMP)
    WRIPE (6,1072) JI;USH(J!%, USH(KPEMP) ,RTEMP
    1072 FORMAT(1H016,359.5)
    \F (RTEMP) 1076.1061.1063
    10:6 RTEMP = RTEMP * 0.000$
!'F (RTEMP) 1078,1061,1061
1078 CONFINUE
KTEMP = J!
1061 CONF:NUE
GSHIFT =1
GO PO 878
1064FLIG=1G
IF(IG.NE. O) GOTO 1065
|GIND = 2
C DO 1062 I=1,NPMAX
C1062 IGE!G+NREQT(!)
C USH=USH*ADUR(IE)*FLOAT (IG)
SO FO 1815
1065 61 = MAT(1)
JJ = lCE(LI)
|F (IG.EQ.1) GO FO 1150
DO 10801=2.1G
KK = MAT(!)
{F(ICE(KK)-JJ) 1075:1070,1080
1070 [F (PPCOM(KK).LE. PPCOM(LI)) GO PO 1080
1075 6! = KK
JJ = ICE(KK)
1080 CONTINUE
C
1150 KK }=0
DO 1160 l = 1,1G
JJ = MAT(1)
``` ```
1160 21 E AMAX1(Z1,Z(JJ))
C**** DETERMINE EARLIESY T|HE WHEN THE EVENT CAN BEGIN
JJ \& IPE(IE)
TEM2=0.0
|F(JJ.NE,0) PEM2FZC(dJ)
ATEM = KTEMP SFYHRS
22\#AMAX1(21, YEM2,ST(IE),ATEM)
IF{Z2 .LT. PL(IE)) GO YO 1162
IGIND=3
USH(KTEMP) = USH (KPEMP) * ADUR * FLIG
C
116200 1165 1=1,1G
JJ=MAT(!)
C*** IS A NON-SCHEDULED RESY OR SLEEP REQUIRED DUE TO START YIME
WH(JJ) = Z2-Z(JJ)
\&F (WH(JJ).NE;O.O) KK = 1
1165 CONPINUE
IF(KK,EQ.O) GO PO 1280
TEM2 = CN+. 5
COSOO IS THE TIME SINCE LAST EVENT LONG ENOUGH TO ALLOW SLEEP
DO 1260 l=1,lG
JJ= MAT(!)
IF(WH(JJ),LT.TEM2) GO TO 1240
C*ar IS SLEEP SUOTA FOR DAY USED
IF(DS(JJ),GE: MAXSL) GO TO 1240
C** OR \# IS FAFIGUE UNDER THRESMOLD
IF(FAT(JJ).LE, TFATI GD TO 1240
C*** NEITHER \&O SUM SLEEP THIS DAY POR EACH M IN G
TEM1=MAXSL-DS(JJ)
LIMIT WH(JJ) SO PHAY DS .LE. MAXSL
DS(JJ)\approxAMIN1(DS(JJ)\&NH(JJ)-5,MAXSG)
C** CALCULAPE TIME FAYIGUE DUE TD SLEEP RELIER IOR EACH M IN G
TEM\&FAM!N1(WH(JJ)VFEM1)=.5
\F(PEM1 .LE. 9.0) GO YO 1205
1200 FAY(JJ) = 0.0
GO PO 1220
1205 {FPPEM1 ,LT. 2,O) GO PO 1210
FAF(JJ) = FAF(JJ)*({138,0-19,0*TEM1)/140.0*0.2*UN!FM1(0.0))
GO PO 1220
1210 PAT(JJ) = FAP(JJ)=(0.9-0.05=FEM\$*0.2*UN{FM1(0.0))
1220 IFPFAT(JJ) .LT. 0.0) FAT(JJ) E0.0
|F(FAT(JJ) ,GY, 1.0) FAT(JJ) = 1.0
ACAL(JJ) =0.0
PEMI = FAT(JJ)
\F(PEM1 ,GT. 0.9) GO PO 1225
\&F(FEM1 .GY,0.15) GO PO 1224
HSLS(JJ) 53%j33333.FAT(JJ)
GO FO 1260
1224 HSLS(JJ) = 14:666667*PEM\&*5.8
GO PO 1260
1225 HSLS\&JJ)=AMAX1(310.00TEM1-260.0.0.0)
GO PO 1260
CWO\# ADJUST HOURS SINCE LAST SLEEP FOR PHIS M
1240 HSLS(JJ) = HSLS(JJ).WH(JJ)
C
calculate fatigue bulldup for imis man due io rest
``` ```
FAT(JJ) % FBUILD(HSGS(JJ))
1260 CONPINUE
C** CALCULATE PHYSICAL GAPABILITY OF EACH MAN IN GROUP
C** SAVE MAX PHYS CAPABILITY FOR EACN MAN
1280 GPCC = 0.0
DO 1295 ! = 1,1G
JJ = MAT([)
KK = \PS(JJ)
TEM2=IEC(KK)/PWR(JN)
IF (TEM2.GE.1.0) GO PO 1285
EXER = 1.0
60 FO 1290
1285 EXER = (ZPC-FEM2)/(ZPE-1.0)
1290 PEM\& = (ACAL(JJ)/CAL(JJ))**2
PEM1 = PC(JJ)*P{(JJ)*(1,0-(1,0-K1)*PEM1)*EXER*(1,0-C.1*FAY(JJ))
|F {TEM1,LY.0:0) TEM1 : 0.0
|F (PEM1.GT.2:0) TEM1 : 2.0
MPCC(JJ)=AMAXI(MPCC(JJ), IEM\&)
PCC(JJ)=FEM1
1295 GPCC = GPCC.FEM1
GPCC = GPCC/FLIG
C** CALCULATE GROUP STRESS THRESHDLD AND GROUP STRESS
GSTRM=0.0
DO 1370 l = 1,IG
JJ = MAT(1)
1370 GSYRM = GSTRM+STRM(JJ)
GSTRM = GSTRM/FLIG
1375 IF||E.GE.560) GO TO 1377
GSTR = (ADUR *(.875*LODM *.025))/(TL(IE)-22)
GO PO 1378
1377 GSPR=GSPRM
1378 IF (GSTR,GT.5:0) GSYR = 5.0
IF(GSTR.LT.1:O) GSYR\#1.0
CO CALCULAFIONS FOR PERFORMANCE TIME AND END FIME
1300 IF\&ASD .NE:O,O) GO TO 1380
IF (KE ,NE.1) GO PO 1310
|F({Z2+ADUR, GP, TL\&IE)) GOTO 1320
PT(IE) = ADUR
ZC(|E) = IL(IE)
GO PO 1550
1310 PT(IE) = ADUR
ZC(IE)= Z2+PT(IE)
GO PO 1550
1320 PT(IE) = PL(IE)-22
ZC(IE) FL(IE)
GO PO 1550
1380 PAF = 1.0
C*** CALCULAPE GROUP PERPORMANCE, GROUP ASPIRATION LEVEL
GPERF = 0.0
GASP = 0.0
DO 1390 % = 1,1G
JJ = MAT (I)
GPERF = GPERF+PERF(JJ)
1390 GASP = GASP+CASP(JJ)
GPERF = GPERF/FLIG
GASP = GASP/FLIG
``` ```
CO* SELECT ONE OF FIVE CASES COMPARING GASP WITH GPERF
C** AND GSTR WITH GSTRM
PEM1 = GASP-GPERF
IF (ABS(TEMI):LE,0,02) GO YO 1460
TEM2 = GSPR-GSTRM
!F (PEM1.GT.A:O) GO PO 1395
IF (FEM2) 1410,1450,1450
1395 [F (PEM2) 1400,1430,1430
1400 PAF = 1.0-0.4\#PEM1
GO PO 1460
1410 DO 1420 I= =1,IG
JJ= MAT(1)
TEM3=PERF(JJ)-CASP(JJ)
IF(PEM3.LE.O:O) GO PO 1420
TEM3=CASP(JJ)*0.1*FEM3*DNORM1(0.0)
IF (PEM3.GY.1.0) TEM3 = 1.0
CASP(JJ):TEMZ
1420 CONTINUE
GO PO 1460
1430 DO 14401=1,1G
JJ \& MAT(l)
1440 CASP(JJ) = PERF(JJ)
PAF = 1.0*0.4* YEM1
GO PO 146n
1450 GSTR = 0.9*GSTRM
C:- Calculate performance tIme
1460 lF (GPCC.GE.1.0) GO YO \$470
SF = 2.0.GPCC
GO PO 1480
1470 SF = 1.5-GPCC*0.5
1480 PEM3 = 0.0
DO 1490 1 = 1,1G
|J=MAT(1)
1490 PEM3 = TEM3+PACE(JJ)
GPACE = PEM3/FLIG*SFOPAF
C
C PEST FOR REPAIRS
c
IF (IE.LT. 201) GO TO 1492
|F (IE.GY. 560) GO PO 1492
PEM1 = 1 (ASD *ASD)/\ADUR * ADUR)
V E EXP(ALOG(ADUR/SORP(PEM1)) * DNORM1(O.O) SORT (ALOG{PEM1)))
GO PO 1493
1492 VE ADUR * DNORM1(0.0) ASD
1493 EONFINUE
ADUR 2 = ADUR/2.
V = AMAXI(ADUR2,V)
C
IF (TEMZ.GE.O.O) GO YO 1500
TEMJ = (GSTR-1.0)/(GSTRM-1.0)
PT(IE) = GPACE V (P- 2.3075 PEM3) ((3.4722 . FEMS PEMJ)
1 + {-1.829 TEMS TEMS TEM3).1)
C PT(IE) = GPACE*V*(1,0+TEM3*(-2.35075+TEM3-(3.4722-1.829*TEM3)))
SO PO 1535
1500 IF (PEM2,GY.1,0) GO PO 1510
PT(IE)=GPACE\&((2.0*TEM2*1.0)*V-TEM2*ADUR)
``` ```
30 YO 1535
1510 PT(IE) = (3.0*V-ADUR %GGPACE
C LIMIT PT(IE)
1535 !F(PT(IE) .GE. O.O1 GO TO 1537
PT(IE) = 0.0
GO PO 1539
1537 PEM1 = 4.O \#ADUR
|F(PP(IE) .LE: TEM1) GO PO 1539
PT(IE) = YEMI
C\&OB CALCULATE REAL TIME OF EVENT COMPLETION
1539 2C(IE) % 22 * PT(IE)
IFPZC(IE).LE,IL(IES) GO TO 1545
PT(IE)=9L(IE)-22
USH(KTEMP) = USH(KTEMP) + FLIG (ZC(IE) - FL(IE) )
ZC(!E)=TL(IE)
1545 [F(ZC(IE).LE,24.0) GO TO }155
DI(IE) = 24.0-22
ZC(IE)=24.0
1550 CONT:NUE
C** UPDATE HSLS. TW;Z,CBAL,ACAL,IDC FOR EACH MAN
1560 :PRY = ITRY+1
\F{!E.GT,560) GO TO 1566
DO 1565 i=1,NIQR
!PEM=!QR(!)
{F(!E,GE,201) GO TO \$562
CUY(!TEM)=CUY(!TEM)*PT(IE)
GO PO 1565
1562 CDT (ITEM) =CDY(ITEM) +PY(IE)
GARY (ITEM) = CART (ITEM) * ADUR
1565 EP((ITEM)=CUT(ITEM)/(CUT(ITEM)+CDT(ITEM))
1566 CONPINUE
TEM1 = PP(IE)
TEM2 = 2C(IE)
TEMS=TEM1
SIDC=0.0
001580 1= = 1,1G
JJ % MAP(!)
HSLS(JJ) = HSLS(JJ)\& PEM1
Z(JJ)= ZC(IE)
KK E !TYPE(JJ)
CCAL(JJ) = IEC(KK) TEM3*(.95+UNIPM1(0.0)/10.)
ACAL(JJ) = ACAL(JJ)+CEAL(JJ)
!DC(JJ) : IDC(JJ)+CCAL(JJ)
PW(JJ) % FW(JJ)+FEM!
IF(KK.EQ.IPS(JJ)) GO TO 1579
CLSDTA(7,ICLASS): CLSDPA(7,ICLASS) * PT(IE)
TWS(JJ)=TWS(JJ)\&PT(IE)
GO PO 1580
1579 TWP(JJ)=TWP(JJ)+PT(IE)
CLSDPA(6,ICLASS)= CLSDPA(0,ICLASS) * DP(IE)
1580 SIDC= SIDC*CCALIJJI
IF(SIDC,LE.SIDCMX) GO YO 1582
S/DCMX=SIDC
IDCMX=IE
1582 PEM2BLODM TEM1
C*** ACCUMULATE CML AND SAVE MAX
``` ```
JF(EMLMX,GE.PEM2) GO YO 1585
CMLMX = TEMZ
ICMLEIE
1585 CML=CML+TEM2
C*** EVENT HAZARD AND SUM POR DAY (TEH)
EH = PEM1*IH
TEH=TEH*EH
C.". CALCULATE PERFORMANEE ADEQuacy
1600 [F(ITRY,GT.1) GO TO 1645
IF (GSTRM.GE,GSTR) GO TO 1610
IF (GSTR.LE.5:0) GO YO 1620
ES = 0.0
GO %O 1630
1610 ES E (1.0-BE)/(GSTRM*2.0)*GSTR*BE
1620 ES = (5.0-GSPR)/(5.0.5SPRM)
1630 PEM1 =TPCOM(LI)
\&F (ITYPE(LI):NE,IPSILI)S PEMI EPSCOM(LI)
EC = 2.0*PEM1
EA = 2.0*CASP(LI)
001640 l = 1,IG
JJ = MAT(I)
\F (ITYPE(JJ):NE,IPS(JJ)) TEM2 FPSCOM(JJ)
PEM2 =TPCOM(JJ)
EC F EC+TEM2
1640 EA EA+CASP(JJ)
PEM2 = FL!G*2:0
EC = EC/TEM2
EA = EA/TEM2
EF\&AMINI(1.0.GPCC)
GO TO 1647
1645 ECEAMIN1(EC*.2,1.0)
1644 PEM1 = EF*EA
WRIPE (6,1650) PA;TEMI,ES,EF,EA,EC
PA E SQRT((3.0*EC\#(PEM1*ES)*ES*TEM1*EF*EA)/12.0)
WRIPE (0,1650) PA, TEM1,ES,EF,EA\&EC
APA=APA+PA
Co. CDMPUTE EFFICIENCY FACYOR
C
SEF = SEF + (PA*FLOAT(!ESS 1)/\&CASP(L!)*K7)
WRIPE (6,1650) PA,CASR(LI),K7 .SEP
1650 FORMAT(5H SEF 6F10.51
WRITE (6,1655) IESS
1655 FORMAT (5H IESS 5l10)
ISIE=ISIE+IESS
calculate fime fapggue and phys cap for alg men in group
1700 GPCC:0.0
DO 1740 1 = 1,1G
JJ = MAY(1)
FAT(JJ) = FBUILD\&HSLS(JJ)I
KK E ITYPE(JJ)
TEM2=IEC(KK) IPWR(JJ)
IF (TEM2.GE.1:0) GO YO 1725
EXER = 110
60 10 1730
1725 EXER = (ZPC-PEM2)/(ZPG-1.0)
``` ```
1730 TEM1=(ACAL(JJ)/CAL(JJ))**2
TEM1 = PC(JJ)*P{(JJ)*(1,0-(1,0-K1)*PEM\&)*EXER*(1,0-C,1*FAP(JJ))
|F (TEM1.GT.2.0) TEM\& = 2.0
IF (TEM1.LY.0.0) TEML = 0.0
MPCC(JJ)=AMAKI(MPCC\&JJ), PEM1)
PCC(JJ) \& PEM1
1740 GPCC = GPCC+FEM1
SPCC = GPCC/FLIG
C** CALCULATE NEW CONSUMABLE LEVELS
PEM! = PT(IE)
DO 17501 = 1.LMAX
KONE(!)=1RC(! )/FEM1
KONC(I) = KONC(I)-KONE(I)
1750 CONPINUE
OO 1752 }=1,LMAX1
KONEI(I):IRCI(!)
KONC1(I)\&KONCI(I)-KONEI(I)
1752 CONTINUE
C* NO CONSUMABLES USED UP
C\#\#\# DETERM!NE SUCCESS OR FAILURE FOR EVENT
1755 SUCC = YU
FDIFF=CASP(LI)\#KT-PA
1F(FDIFF.LT.O.O) SUCC=ESSS
CLSDTA(1,\CLASS): CLSDYA<1,!CLASS) * 1
CLSDTA(8,\CLASS)* CLSDYA(8,ICLASS) * PA
CLSDTA(9,ICLASS)\& C(SDYA(9,ICLASS) + FDIFF
IF (SUCC,EQ.ESSS) GO 1O 1770
SFDIFFESFDIFF+FDIFF
C\#\#\# FA!LED
DO 1760 l = 1.lG
JJ = MAT(!)
1760 NOFA!L(JJ)= NOFAIL(JJ)*1.0
NFALE=NFALE\&1
CLSDTA(4,ICLASS): CLSDPA(4,ICLASS) * 1
GO PO 1790
C** SUCCESS
1770 DO 1780 \& = 1,1G
JJ MAT(!)
NU(JJ)=NU(JJ)\&1,0
1780 NOSUC(JJ)=NOSUC(JJ)\&\&,0
KK - 1
IFIITRY,EQ.1) GO TO \$775
NSUC2=NSUC2*1
CLSDTA(3,ICLASS): CLSDPA(3,ICLASS) * 1
GO TO 1790
1775 NSUC1\#NSUC1+1
CLSDTA(2,!CLASS) = CLSDPA(2,!CLASS) + 1
C*** CALCULAPE PERFORMANGE LEVEL FDR MEN IN GROUP
1790 DO 1800 1 = 1,IG
JJ = MAT(!)
PEML = NOSUC(JJ) * NOFA\&L(JJ)
|F{PEM1 ,GY. 5,0 .AND. NOSUC(JN),GT, 0,0)
X DERF(JJ) = NOSUC(UJ)/TEM1
1800 CON INUE
NPRFM(1)=NPRFM(1)+1
USHP = USHT * USH(KPEMP)
``` ```
C\#B\# UPDATE MAX SYRM FOR TJE DAY
IF(MAXST.GE,GSTR) GO TO 1805
MAXST=GSTR
MAXSTE=\E
1805 60 PO 1820
C*** COME HERE FOR IGNORE LOGIC
1815 !GNOR = 1
N\GNR=N!GNR.1
PT(|E) = 0.0
CLSDTA(1,ICLASS)\& CLSDPA(1,|CLASS) * 1
CLSDTA(5,ICLASS)\& CLSDYA(5,ICLASS) - 1
GO PO 1824
CO\# TEST FOR PRINT OPTION AFPER UPDATING HOURS SPENY IN ACTIVITIES
1820 IF|{E.GY.200) GO TO 1821
HRSS=PT(IE)*FLIG*HRSS
NPRFM(2)=NPRFM(2)+1
GO TO 1824
1821 [F{IE.GT.560) GO TO 1822
HRSR=PT(IE) FLIG*HRSR
NPRFM(3)=NPRFM(3)+1
GO TO 1824
1822 WRSEsHRSE\&PT(IE)=FLIG
NPRFM(4) =NPRFM(4)+1
182(|F(ND-IND(4)) 1890,1825,1830
1825 [F (IE.LT.IND(5)) GO YO 1890
1830 [F(IE,GT. 560) GO PO 1850
IF(IE.GT. 2OO) GO PO 1840
<K =1
L= IE
IF(IGNOR .EQ. 1) GO \$O 1880
GO PO 1860
1840 KK = 4
LL=|JE - 201)/12*1
IF(IGNOR ,EQ. 1) GO PO 1880
GO PO 1860
1850 KK 7
``````
IF!IGNOR EEQ, I) GO PO 1880
1860 || = KK*2
|PEY = IPE(JE|
PEMI = 0.0
\F (IPEY,NE.O) TEM1 ZE\!PET)
WR!PE(6,9860) (TITLE(I),IEKK,IIY,LL,ND,ITER,8UCC,Z1,ST(IE),IPET,
1 TEMI,Z2,PT(IE),ZC(IE),USH(KTEMP),GSTR,GPCC,GPACE,GASP,PA,EH.
2 (KONE(!),!=1.10);(KONC(!),!:1,10), (KONE1(1),|E1,1CY,(KONC1(!),|
2 1,10)
9860 FORMAT//1HOSA6.13:5H DAY,13.11A IPERATION,13.2X.1A6/
1 10H MEN AVA!L ,F5:1,15H START ALLOWED,F5.1:13H PR!OR EVENT,
\ 3,9H FINISHED,F6.2,13H EVENT STARYS,F6.2,6H LASTS,F6.2,
3 5H ENDS,56.2,13H UNMANNED HRS,F7,2/
13H GROUP STRESSTF5:2,9H PHYS CAP,F5.2,5H PACE,F4,1,5H ASP.F5,2,
5 8H PERF AD,F6,2,4H HAZ,F5,1,11X,17HPER HR CONS USED\$1OF6.0,
9/1X,17HPER HR CONS LEFY\& 10F6,0,/1X,15HUNIT CONS USED=1016,
9/1X,15HUNIT CONS LEPVI1016,1
6 111HOMAN TYPE SPEC LDR RANK FATIGUE PHYS CAP HRS WRKB CALORIE!
``` ```
7 CALSHHRS SINCE SLEEP IDLE HRS SLEPY CUM PERF ASPI
DO 1870 l = 1,IG
!! = MAT(!)
KK 三 ITYPE(I!)
PEM1 = PEA
IF(KK,NE.IPS(II)) PEM1EESSS
PEMZ = BLANK
IF (II.EQ.LI) PEM2 = STAR
TEMS=IEC(KK)
WR!PE(6,9865) !l,KK,YEM1,TEM2,ICE{!|),FAT(II),PCC(I!),TW(II);
1 CCAL(I!),ACAL(II);HSLS(11),WH(1!),DS(11),PERF(1!),CASP(1!)
9865 FORMAT I{4,15,2A6,15,F8,3,F9,3,F9,2,F9,1,F10.1,F11,1,F5,1,F10.1,
1F9.2,F5,2%
C
18%O CONPINUE
GO PO 1890
C** PRINT |GNORE DATA
1880 || = KK+2
WR!TE(6,9880) (TITLE(\&),IEKK,!I),LL,ND,ITER
9880 5ORMAT(/1HO3A6.13,5H DAY,13.11H IYERATION,I3.
1 18N IS \GNORED DUE PO)
|F(IGIND,GT, 1) GO PO 1881
WRIPE(6.9881) \&ESS
9881 FOHMAT(1H+.63X,2OHLOW ESSENTIALIYY OF 12)
GO PO 1890
1881 \F(IGIND,GT, 2) GO TO 1882
WR!PE(6.9882)
9882 FORMA (1H+.63X,1OHNULL GROUP)
GO PO 1890
1882 [FIIGIND.GT, 3) GO TO 1883
WRIPE(6.9883)
9883 FORMAT(1H*,63X,17HNO YIME AVAILABLE)
GO PO 1890
1883 !F (IGIND.GP: 4) GO PO 1884
KK = TS (IE)
WRIPE(6.9884) (KONT(IIKK),1E1,10)
9884 FORMAT(1H*,65X,38HCONGUMABLE (UNIY/HOUR) BELOW FMRESHOLD/IHO.1OFB
1 0)
GO 1O 1890
1884 KK = TS1 (IE)
WRIPE (6,9885) (KONP1(1,KK),IE1;10)
9885 FORMAT(1H*,63X,34HCONSUMABLE (UNIFS) BELOW THRESHOLD/1HO,10F8.0)
C** CHECK IF RETRY OF EVENT IS NEGESSARY
1890 \&F(SUCC.EQ,ESSS) GO YO 1892
IF{ITRY,GT.I) GO TO 1892
IF(|GNOR .EQ. 1) GO PO 1892
IF(RTU(IE).EO.3) GO YO 1892
21=ZC(JE)
22=21
NREPT =NREPT*1
IF(RTU(IE).EQ.1) GO TO }353
1810PT(IE)=0.5*PT(IE)\&ASD *DNORM1(0.0)
GO FO 1539
C**\&NCREMENT EVENT COUNTER AND TEST POR END OF DAY
1892 IE|E = INVS(IE)
KK = NPPR(IEIE)
``` ```
IFSNPYR(IE\E),EQ. O) GO TO 1920
IF(NPTR(IEIE).LE. 200) 00 T0 1900
C KK = IE
IE S NPTR(IE{E)
IF EVENT IS NOY SCHEDULED WE MUST PRESERVE CHOICE OF FOLLOWING
EVENT FROM NX AND PRB FOR CURRENT EVENT
C***
C DO 1895 ! = 1.3
C NX(!,!E) E NX(!,KK)
C1895 PRB(I,IE) = PRB(I,KK)
GO 1O 850
``````
1000 TEM1 = UNIFM1(0.0)
KK = 1
{F (TEM1.LY.PRB(1.IES) GO YO }191
<K = ?
IF |PEM1,LT,PRB(I,IE)\&PRB(2,IE)) GO TO 1910
KK = 3
1910 IE = NX(KK,IE)
SO PO 850
C*
1920
CCC = 0.0
ETEM = 0.0
TEMP = IC
DO 1930 1 = 1.1C
APW(!) [DC(I)/CAL(I)*FW(!)/WORK1
!F {PW(I),GY. O.DO\&\ GO PO 1921
PEMP = PEMP - 1.0
GO PO 1922
1921 ETEM = ETEM * PERF(|)
1922 IF PPCOM(I).GE.CASP(I)) GO TO 1930
PCOM(!)=(CASP(!)-PCOM(!))*NU(!)*0.0017*PCOM(!)
1030 CCC * CCC*PCOM(1)
CCC = CCC/FLIC
ETEM = ETEM/FEMP
CO PERFORMANCE EFFICIENCY
TEM1=(1,0-(USHT/(WORK10FLIC)))*(SEF/FLOAF(IS!E))
WR|PE (6,1066) N!GNR,NSUC1,NSUC2,NFALE
WRIPE (6,1063) TEM1
PEFF=TEM1*(1:O-(FLOAP(NIGNR)/FLOAT(NSUC1*NSUC2*NFALE)))
C
C COMRUTE EQUIP AND HUMAN STATS FOR HURT
ATEM=0.
BTEMEO.
CPEMEO.
DTEM=0.
TEMIEIOMAX
DO 1932 l=1,IOMAX
\&F (CDT (!) CUPYI) ,GP. 0.001} 00 PO 1931
FEM1 = PEM1 - 1.0
OO O 1932
1931 CONFINUE
ATEM=ATEM* EPL(I)
BTEMEBTEM + CARTIII
CTEMBCTEM* CDY\I!
DTEMEDTEM* CUY(I)
1932 CONTINUE
``` ```
AEPL=ATEM/TEMI
EPEFF=AEPL/CTEM|BTEM
IF(EPEFF,LT.0%) EPEFE%O.
{F(EPEFF,GT,1;') EPEFF\$1,
EMTBF=DTEM/(DTEM*CTEM)
EMTTR=BTEM/FLOAT(NR)
SRL =0.7+8.571"(EYEM-0.65)*(AEPL - 0.9)
SPL=0.7+8.571* (PEFF-0.65)* (EPEFF-0.0)
SGEME ((SRL-0,7)**2* (5RL-0.7)**2)/2.0
[F(SGEM.LY,O.) SGEMEO;
SGEM = SQRY (SGEM)
C
G*: CALCULAPE PHYS INCAPACITIES
NP! : IPUYSN{FL{C/MP!)
IF (NP!,EQ.O\ GO TO 1960
DO 1950 | = 1,NP!
|| = UNIFMI(0:O) OFLIC
P!(|!) = 0.2UUNIFM1(0,0)+0.75
KK = IPUYSN(PID)
IF(KK,EQ,0) P|(||)=1,0
If (KK.GE.1) KK E KK-1
1950 P12(||)= KK
CALCULAYE SAFEPY INDEX
1960 CONTINUE
THW=0.0
DD 1970 1=1,1C
1970 THW=THW+TW(I)
HR = TEH/(9.|THW)
CML = CML/(9..FHW)
S! = 9./8.*(1.-HR)
1980 CONPINUE
TEM2 =CN+.5
DO 2260 JJ=1,1C
WH(JJ)=24.0-2(JJ)
IF(WH(JJ),LF.YEM2) GO PO 2240
|F(DS(JJ) ,GE? MAXSL) GO TO 2240
TEM1=MAXSL-DS(JJ)
DS(JJ)\&AM!N1(DS(JJ) + MH(JJ)=,5,MAXSL)
TEM1=AMIN1(WH(JJ):TEM1)-.5
\F(PEM1 ,LE, Q.O) GO TO 2205
2200 FAP(JJ) E 0.0
GO YO 2220
2205 \&F(PEM1 ,LT, 1.O) GO TO 2210
FAT(JJ) FAT(JJ)*((138,0-19,0*FEM1)/140,0*0,2*UN{FM1(0.0))
GO PO 2220
2210 FAY(JJ) \& FAY(JJ)*(0.9-0.05* TEM1*0.2*UNIFM1(0.01)
2220 \FFPAT(JJ) ,LT, 0.0) FAT(JJ) = 0.0
\&F(FAT(JJ) .GT. 1:0) FAT(JJ) E 1.0
ACAL(JJ) :0.0
PEM1 \& FAT(JJ)
IF(TEM1 GT. 0.9) GO TO 2225
|F(PEM1 ,GY. O.15) GO PO 2224
HSLS(JJ) = 53:333333 FAP(JJ)
GO 10 2260
2224 HSLS(JJ) = 14:666667.TEM1*5.8
``` ```
GO TO 2260
2225 HSLS(JJ)=AMAX1(310,0*TEM1-260.0.0.0)
GO TO 2260
2240 HSLS(JJ) = HSLS(JJ) * WH(JJ)
FAT(JJ) FFBUILD(HSLS(JJ))
2260 CONFINUE
DO 2295 JJ=1,1C
<K = lPS(JJ)
TEM2=IEC(KK) /PWR(JJ)
IF (FEM2.GE.1.0) GO PO 2285
EXER = 1,0
GO YO 2290
2285 EXER = (ZPC-YEM2)/(ZPC-1.0)
2290 PEM1=(ACAL(JJ)/CAL(JJ))|\#2
PEM1 = PC(JJ)*P$UJ)*\1,0-(1.0-K1)*FEM1)*EXER=(1,0-0.1*FAF(JJ))
 IF (TEM1.LT.O.0) TEM1 = 0.0
 IF (TEM1.GT.2:0) TEM& = 2.0
2295
 PCC(JJ)=TEMg
 !F(NFALE,NE,O) SFDIFFFSFD&FF/FLOAP(NFALE)
 APAEAPA/FLOAT(NSUC1*NSUC2*NFALE)
 EALL OUTPZ
 !F(ND.GE,NDMAX) GO FO 2030
 ND=ND+1
 GO $0 650
2030 CALL OUPPJ
 !F((IYAP,EQ, 1).AND, (N ,GY, 1)) ENDFILE 1?
 NDAYS=NDAYS*ND
 1F(ITER,LT,N) GO TO 50
 CALL OUTP4
 GO FO 10
3000 WRITE(6,3001) ITEM
3001 FORMAT(26H1FATAL 1/0 ERROR FOR REC.- 18)
 STOP
 ENO
COUTP1 SUBROUTINE OUTPI
 SUBROUTINE OUPPI
 |NTEGER PI2
 COMMON/OCOM/PCOM(20),SCOM(20),1PS(20),1SS(20),TPCOM(20),TSCOM(20)
 COMMON/SEVENT/IEPYP(570),TL(57J),ST(570), EDCV 3,570),IPE(570),
 1 TS(570),TS1(570),NX(5,570),RTU(570),IFOI(570),IEFN(570),N(F(570)
 2 (EDC(3,570), PRB(3,570),NOSE,NEQRE,NEME,D((9)
 COMMON/OPP1/ {AAY4),MC(RO),PACE(20),ASP(20),HSLS(20),P((20)
 1,P(2(20),1CE(20)
 COMMON/OPP2, TW(20), TWP(20),TWS(20),D$(20),APW(20),PCC(20),
 CASP(20), IDC(20). NSUC1,NSUCZ,NFALE,NIGNR,
 2 KONC(10), KONCI(10), SI,CML,ND,IFER,NDAYS,MPCC(20),FAT(20)
 3,SPRM(20),CAL(20),PWR(20),CCAL{20),NU(20),PERP(20),NPRFM(4)
 4,APA,SFDIFF,CLSDTA(10,40)
 COMMON/OPPZ/TC,FLIC,NREPY,HRSE,HRSR,HRSS, PEFF,
 1 MAXSY,MAXSTE,USHT,NR,NPE,NE,TEH,CMLMX,ICML,SIDCMX,IDCMX,ICSS
 COMMON/OPP4/EPL(30),EDT(30),CART($0),CUT(30).
 1 AEPL,EPEFF,EMTBFFEMTYR,SRL,SPLISGEM
 REAL MAXST,I|TER IJ&FER
 COMMON/IPARAM/APST;WORK1,WORK2,SLEEP,CN,MAXSL, TFAT,ACP,
 1CALRY,PWRRY,K7,K1;BE,AASP,KON(10),KONT(10,101,KON1(10),
 2 KONP1(10,10),SESTA(10),REL\84),N,IET,IND(7), NDMAX
```
```
 REAL IDC, KON, KONC, MPCC, NU, IMPAB(13,21,10),KON1
 DIMENSION OUTA(35), PEM3, 20), DALY{35,30), 11TER(35,1C),T3(10)
 DIMENSION TOUPA(13,10),NY{PE{10), PDALY(13,10,30), YIITER(13,10,10)
 1. ADALY(10,30), IDALY1(10,30),JIFER(20,10),OUTB(20)
 DIMENSION CLSNME{37),BLSDFI(110,40),CLSDTR(10.40)
 UAPA CLSNME/ 1HC 31HO,1HD ,1HA ,2HEY .4HEURM .2HEC
 1.3HECA ,2HER ,2HEO ,3HEIP , 2HE! , AHERPT ,5HELURM ,
 2 3HELC , 3HELA JJHELR , 3HELO .4HELEP ,JHEL! .5HELRPY ,
```

```
 5 2HM! , 4HMRPT,
 DAPA Cl/GH
 DO 380 l=1.10
 380 NTIPE(I)=0
 0O 390 l=1,1C
 K=1PS(1)
390 NT!PE(K)=NT!PE(K)+1
 {F{!ND(2) ,EQ: O) REFURN
 WR!TE(6,9414)
9414 PORMAT(17H1PRINT OPFION TWO/3H CE, 7x,2HPC,5x.4HPCOM,5x,4HSCOM,5X,
 14HPACE,6X,3HASP,5X,4HHSLSS,7X, 2HP !?
 < =
 00 420 I = 1.4
 KK = 1AA(1)
 If (KK.EQ.O) GO PO 420
 < = K+1
 PCA = PC(K)
 PCOMA = PCOM(K)
 SCOMA = SCOM(K)
 PACEA = PACE(K)
 \triangleSFA = ASP(K)
 HSLSA = HSLS(K)
 PIA z PI(K)
 IF (KK.EO.1) GO YO 41s
 DO 410 J = 2,KK
 K = K+1
 PCA = PCA+PC(K)
 PCOMA = PCOMA +PCOM(K)
 SCOMA = SCOMA+SCOM(K)
 PACEA = PACEA+PACE(K)
 ASPA = ASPA+ASP(K)
 HSLSA = HSLSA+HSLS(K)
 410 P!A = P!A+P!(K)
 TEMI = KK
 PCA = PCA/TEM1
 PCOMA = PCOMA/TEMI
 SCOMA = SCOMA/TEMI
 PACEA = PACEA/TEMI
 ASPA = ASPA/TEM1
 HSGSA = HSLSA/TEM1
 PIA = P\A/PEMI
 415 WRITE (6,9415)|,PCA,NGOMA,SCOMA,PACEA,ASPA,HSLSA,PIA
9415 FORMAT(I3.7F0:3)
 42O CONPINUE
 WR|PE(6,9416) (I,PC(1),PCOM(|),SCOM{1),PACE(1),ASP(18,HSLS(|),
 1 P\(I),P\2(I),FAP(I),STRM(I),CAL(!):PWR(I),ICE(!),{PS(I),IBS(!),
```
```
 2 I#1,IC)
9416 FORMAT $HO/3H IC,7X,2HPC,5X,GHPCOM, 5X,GHSCOM,5X,GHPACE,6X, JHASP,
 15X,4HHSLS,7X, 2HP!,3X, JHP12,6X,3HFAF,5X,4HSTRM,6X, 3HCAL,6X, 3HPWR,
 26H ICE,6H {PS56H {SS/(13,7P9.3,16,2F9.3,F9,0,59.3.316))
 DO 425 I:1.12
425 OUTA(I) = 0.0
 DO 430 l=1,1E
 OUTA(1) = OUPA(1)+PC(1)
 OUYA(2)= OUTA(2)+PCOM(1)
 OUTA(3) = OUPA(3)*SCOM(1)
 OUPA(4) =OUPA(4)+PACE(1)
 OUTA(5) g OUPA(5)&ASP(I)
 OUTA(6) E OUTA(6)*HSLS(1)
 OUTA(7) F OUTA(7)&P|(|)
 OUTA(8):OUTA(8)+FLOAT(P{2(1))
 OUTA(9) = OUYA(9)+FAP\1)
 OUTA(10) = OUTA(10)&STRM&!)
 OUTA(11) = OUTA(11)*EAL(I)
430 OUFA(12)= OUTA(12)*PWR(!)
 DO 435 i=1,12
 435 OUPA(l) = OUPA(1)/FLIC
 WR{PE(6,9417) (OUTA({),|$1,12)
9417 FORMAT(9HOAVGS/MAN/3XI7F9.3.56.2.2F0.3.59,0,59.3)
 TOUTA(3,K) = POUTA(3,K) + YWS(!)
 REYURN
 ENPRY XXIN
 NRE !=0
 CUTI=0.0
 CARPI=0.0
 CDT!=0.0
 DO 437 1=1,40
 DO437 J=1,10
 437 CLSDTI(J.I) =0.0
 DO 460 I=1.10
 DO 440 JE1.35
 440 ||PER(J,I)=0:0
 DO 460 KK=1.13
 DO 450 JE1,21
 450 \MPAB(KK,J,!)=0.0
 DD 460 J=1,10
 460 I!!PER(KK,J,1)=0.0
 REPURN
 ENPRY OUPP2
 DO 2000 JE1.13
 DO 1998 I=1,10
1098 TOUYA(J,I)=0%0
2000 OUPA(J)=0.0
 DO 2010 l=1,1C
 KEIPS(I)
 TEM3(1):24,0-DS(1)-YM(1)
 |MPAB(1, &,|PER) & {MPAB&1, {,|TER) * PCC(!)
 OUPA(1)玉OUTA(1)+PCC(&)
 TOUYA(1,K)=YDUTA(1,K)+PCC(|)
 |MTAB(2, l,IPER) \MPAB(2, I,ITER) FWP(I)
```
```
 OUPA(2) =OUTA(2)+TWP{{)
 TOUTA(2,K)=TOUTAP2,K)+FWP(I)
 !MTAB(3, !,!TER) & !MPAB&3, !,!TER) + TWS(!)
 OU(A(3) %OUTA(3)+TWS (1)
 IMTAB(4, I,IYER) = IMPAB(4, I,ITER) + DS(l)
 OUPA(4)=OUTA(4)+DS(1)
 TOUPA(4,K)=POUTA\ 4,K)+DS(1)
 IMYAB(5, l,!YER) & \MPAB{5, l,!TER) - YEMS(I)
 OUFA(5)=OUTA(5)+TEMS(I)
 TOUTA(5,K)=POUTA(5,K)+FEM3(!)
 [MTAB(6, 1,1PER) &MPAB(6, 1,1TER) & FAT(I)
 OUTA(6)=OUTA(6)+FAT(I)
 TOUTA(6,K)=TOUTA(6,K)+FAT(I)
 !MTAB(7, !,ITER) & {MPAB(7, l,ITER) * P\(I)
 OUTA(7)=OUTA(7)+P!(1)
 TOUTA(7,K)= YOUTA(7,K)+PI(1)
 {MYAB(8, {,IYER) * {MYAB(8, l,\TER) & APW(|)
 OUTA(8)=OUTA(8)+APW(1)
 TOUTA(8,K)=TOUTA(8,K)+APW(I)
 !MYAB(9, !,!YER) # !MPAB(9, !,!TER) - PCOM(!!
 OUTA(9)=OUTA(9)+PCOM(1)
 TOUPA(9,K)=FOUTA(9,K)+PCOM(1)
 {MTAB(10, 1,!TER) % IMTAB(10, 1,1FER) CASP(1)
 OUTA(10)=OUTA(10)*CASP(1)
 TOUTA(10,K)=TOUTA(10,K)+CASP(1)
 OUTA(11):OUTA(11)+1DC\1)
 IMTAB(11, I,ITER) = IMTAB(11, I,IPER) * PERF(I)
 OUTA(12)=OUTA(12)*PERF(!)
 TOUYA(11,K) =TOUTA(11,K)+PERF(1%
 !MTAB(12, l,ITER) IMTAB(12, l:!FER) NU(1)
 YOUYA(12,K)= YOUTA(12,K)*NU(!)
2010 OUTA(13)=OUTA(13)+NU(1)
 DO 2020 !=1.13
 DD 2015 J=1.10
 KENTIPE(J)
 IF (K,NE. O) TOUTA(!,J)=TOUTA&!,J)/FLOAT(K)
2015 CONTINUE
 OUPA($ EOUTA(!)/FLIC
2020 CONPINUE
DALY(1,ND)=NSUC1
DALY(2,ND)=NSUC2
DALY(3,ND)=NFALE
DALY(4,ND)=NIGNR
DALY(5,ND)=OUYA(2)
DALY(6,ND)=OUTA(3)
DALY(7,ND)=OUTA(A)
DALY(8,ND)=OUPA(5)
DALY(9,ND)=KONC(1)
DALY(10,ND)=KONCT2)
DALY(11,ND) =KONCI3)
DALY(12,ND) =OUTA(8)
DALY(13,ND) =CML
DALY(14,ND)=DUTAP9)
DALY(15,ND) = APA
DALY(16,ND)=OUTA(6)
DALY(17,ND) = OUYA(10)
``` ```
DALY(18,ND) \&OUTA17)
DALY(19,ND)=SI
DALY(20,ND) = NPRFM(3)
DALY(21,ND) = NPRFM(4)
DALY(22,ND) =NREPT
DA(Y(23,ND)= HRSR
DALY(24,ND) = HRSE
DALY(25,ND) = MAXST
DALY{26,ND) = CMLMX
DALY(27,ND)\&PEFF
DALY(28,ND) = FEW
DAGY(29,ND)= SFDIFF
DALY(30.ND) = NSUC1 NSUC2
DALY(31,ND) E USHT
DALY (32,ND) = ICSS
IQMAX = NEQRE
DO 2034 IE1.IOMAX
CUTl=CUTI + CUT(I)
CDT!=CDY! + CDF(!)
2034
CARPI=CARTI + CARY(I)
NREI=NREI + NR
DO 20.32 1=1,10
ADALY(1,ND) = KONC(\&)
!DALY1 (I,ND) = KONC1 (!)
2032 CONPINUE
DO 2025 J=1,10
DO 2025 1=1,12
2025 PDALY(l,J,ND) ETOUTAP!,J)
DO 2022 \&=1,40
DO 2022 J=1.9
CLSBTR(J,!)=CLSDTR(J.I) * CLSDTA(J,!)
2022 CLSDTI(J.l)=CLSDTI(J.l) * CLSDTA(J,!)
|F{!ND(6),G\&:ND) REYURN
1990 NPRFM(1)=NPRFM(1)\&N{GNR
FNTE = NPRFM(1)
N1S1=NSUC1 +NSUC2
TEM1=HRSS + HRSR +HRSE
P3(1)=FLOAT(NF ALE)/FNPE100.0
T3(2)=FLOAT(NSUC1)/FNTE:100.0
F3(3) =FLOAT(NSUC2)/FNTE*100.0
T3(4)=FLOAT(NIGNR)/FNTE*100.0
\3(5) FFLOAT(NREPY)/FNTEW100.0
WRITE(6.9984) ND;ITER\&(NPRFM(I),\I1,4),NREPT,N1S1,NFALE,NIGNR,
1 TEMI,HRSS,HRSR,HRSE,USHT,APA,SFDIFF,
1 (Y3(I),IE1,5),SI,CI,GML,PEFF,TEH,
MAXS FMAXSTE,CMLMX, \&CML,SIDCMX, IDCMX,ICSS
3.(KONC1({), (*1,10), (KONC(1), (%1,10)
9984 FORMAT\15HIREPORY FOR DAYIJ,11H) IFERAFIONI3C19H NO. EVENTS-FTOT!
16 14,12H SCHEDULED/4,9H REPAIR\4,12H EMERGENCYI4,10H REPEA:
2SIA.12H SUCCESSESI4.11H FAILURESI4.1OH IGNORESI4/22H HOURS
3WORKED---FOTALF6,1Y11H SCHEDULEDF6.1,8H REPAIRF6.1.7H EMER.
4F6,1,10H UNMANNEDF7.1,15H AVG PERF ADEQF5.2.14H AVG FAIL DIFF
5 F6.3/ 25H PERCENTAGE OF--~FAILUREF5.1, 15H SUCR
6. 15Y TRYF5.1,15H SUEC, 2ND TRYFF.1,9H IGNOREDF5.1:OH REPEAPSF:
7,1/14H SAFEPY INDEXFO.2,1611H I,1A6,13H MENTAL LOAD
8 F8.2.10H PERF EFF F9:3;6H HAZ,F7.O.12H
```

913H MAX, STRESSF6.2.9H ON EVENTI4.18H MAX, MENTAL LOADF4.O. AgH ON EVENTI4.2OH MAX. CAL. EXPENDEDF9. 0.9 H ON EVENTI4,10H SEA SI BATE $13 / 20 H$ CONS. BAL. (UNITS) $10!7$. $123 H$ CONS. BAL. (UN!TS/HR) $1[$ C F7.0)
WR|PE(6.9985)
9985 ORMATI 125 HOMAN TYPE PHYSICAL MOURS WORKEO SLEPT IDLE FATIGI IE MEALYH AVG PHYS GOMPETENCE ASPIRATION PERFORM NUMBER $2 / 4 H$ NO, 10X,4HCAP,4X,12HPRIM, 2ND, $25 X, 5 H I N D E X, 2 X, 8 H W O R K L O A I$ $329 \mathrm{X}, 4$ HCUM., $4 \mathrm{X}, 5$ HSUCC. 1

DO 1991 !E1,1C
WRITE(6,9987) I,IPS(I), PCC(1),TWP(1), PWS(I):DS(!),TEM3(!),FAT(I),
1PI(!),APW(I), PCOMPI),GASP(I), PERF(I),NU(1)
 1512.2. $\quad 59.2,58,01$

1991 CONTINUE
WRIPE(6.9988) (OUTA(1), (=1,10), OUPA(12), OUTA(13)
9988 FQRMATI9HOAVERAGES/9H PER MANF11.3.2F7.2,51.1,56.1,F9,2,F8.2.
1 F10, 2,F12,3,F12,2,F9,2,F10,2) WRITE 6,9989)
9989 FORMAT (1HO//17HOAYERAGES BY TYPE/11H NO TYPE) DO $1995 \quad 1=1.10$
KONTIPE(I)
IF (K,EQ, O) GO TO 1995
WRIPE(6.9990) K, 1;(POUTASJ,1),Jき1,12)

```
9990 FORMAT(215, F10.3.2F7.2,F7.1,F6.1,F9,2,F8,2,F10.2,F12,3,F12.2,
```

1 F9.2.F8.2)
1995 CONTINUE
WR!TE(6,1996) (1,CART(1),CDY(1),CUT(1),EPL(1),1月1,10MAX)
1996 FORMAT ///1HO. $25 \times$ Y 32 HDAlLY EQUIPMENY PARFORMANGE DATA //
127 H 10 CART CDT CUT EPL /183.4F6.2))
WRIPE(6.1997) AEPLTEPEFF,EMTBF,EMTPR,SRL,SPL,SGEM
1997 FORMAT ///6H AEPL \$F6.2,4X,GHEPEFFEF6.2,4X,GHEMTBF=F6.2.
1 4 X, $6 H E M P T R=F 6,2 ; 4 X, G H S R L=F 6,2 ; 4 X, 4 H S$ LEF6,2, $4 X, 5 H S G E M=F 6,21$
WRIFE(6.2159)
2159 FORMAT///1HO.3OX;24HSUMMARY BY EVENT CLASS
185 H CLASS TOT PERF HRS PRIM HRS SEC SUEI SUC2 FAIL IGNORI
1 PERF AD AV FAIL DIFF,
DO $1=1,40$
IF (CLSDYA(1.1).LE.0.0) GO PO 40
DO $30 \mathrm{~J}=2.9$
30 CLSDTA(J,l) = CLSDTAPU,1)/CLSDPA(1,!)
WR!PE(6,2160) 1,CLSDYA(1,1),CLSDYA(6,1),CLSDTA(7,1),CLSDTA(2,1),
1 CLSDTA 3,1$), C L S D T A(411), C L S D T A(5,1), C L S D Y A(8,1), C L S D T A(9,1)$

40 CONTINUE REPURN ENPRY OUPPZ
2030 WRJPE(6,9029) ITERyNDMAX

2 127H DAY NUMBER OF EVENTS AVE, MAN HOURS SPENT
 4/5X,125H SUCI SUC2 FAIL IGNORE PRIM, SECOND SLEEP IDLE 5 PHYS LD MEN LD COMP APA FAT. ASP HLTH SF $6 Y / 1$
DO $2031 \mathrm{~J}=1$, NDMAX
2031 WRIPE (6,9030) J, (DALY(1,J).1=1.8), (DALY(1, J),1812.19)

```
    9030 FORMAY (14.1x,355.0,59.0%457.2.24x, F8,2,58.2,56.3,56.2.
    1 F6,2,F5,2,256.21
        FD.NDMAX
        TOT=0.0
        DO 2055 1=1,NDMAX
        DO 2055 J=1,4
        POY=YOY*DALy(J.!)
2055 1!PER(J.1PER)=1!PER(N|ITER)酎ALY(J.!)
        DO 2056 J=1,4
2056 !ITER(J.IPER)*IIYER(J*IPER)/YOTM100.0
        DO 2058 J=5,8
        DO 2057 l:1,NDMAX
    2057 1!PER(J.1PER)=1!PER(J.1PER)*DALY(J.1)
2058 ||PER(J,IPER)=|ITERNU,ITER)/FD
    00 2061 {=1,10
    JIYER(I,!PER) # KONC(I)/KON(I) "100.0
    ZTEM = KONCT(1)
    JIPER(1+10,T&ER) = 2T&M /KONב(1) 100.0
2061 CONPINUE
    DO 2060 J.12.19
    DO 2059 [z1,NDMAX
2059 [1PER(J,!PER)=1IPER(J.1PER)*DALY(J.1)
2060 1|PER(J,ITER)=\1TER(J,IPER)/FD
        WR{PE(6,903!) ({ITER(I,ITER),{=1,8),(!lTER(1,|YER),|E12,19)
9031 FORMAT(1H/5X,22甘%=-DERCENT OF YOYAL-0-6X,15HAYERAGE PER DAY7X,
    1 24H 18X:15HAVERAGE PRR DAY/
    2 5x,3F5,1,F7,1,4F7,2,24X, 2F8,2,F6,3,56,2,56,2,55,2,2F6,21
        00 3010 J=1,NDMAX
        WR!PE(6,3040) (ADALY(%,J),181,10)
3040 FORMAT(24H CONS. BAL. (UNITS/HR) 10F7.0)
3010 CONPINUE
    WRIPE (6,3050) (JITER\J,ITER),J$1,10)
3050 FORMAT(24H PERCENT OF ORIGINAL 10F7,3)
    DO 3020 J=1,NDMAX
    WRIPE (6,3030) (IDALY$($,J),151,10)
3030 FORMAT(24H CONS. BAL, (UN!TS) 10!7)
3020 CONTINUE
    WRIYE (6,3050) (JITERIJ,IPER),J&11,20)
    WRIPE(6.90315)
90315 FORMAT 1/131H DAY NUMBER OF EVENTS AVE, MAN HOURS SPENT
    IAX STRESS MAX MEN LD PERF EFF HAZARD AVO FL DIFF NUMBER UNI
    ZANNED SEA / &X;3&HREPAIR EMER REPY REPAIR EMERGENCY,63X,
    3 5HSUCC., JX, SHHOURS, 2X,6H STATEI
    DO 2062 J=1,NDMAX
    WRIPE(6,90310) J, RDALY(!,J),I=20,32)
    DO 2062 1=20,32
    2062 [ITER(I,ITER) IITER(I,ITER)+DALY(I,J)
90316 FORMAT(14,1X,F9:1FF6,1,F6,1,F9.1,F13.1,F12,2,F12.2
    1 F12,3,58,2,F13,3,58,2,F10,2,55,1)
    DO 2063 l=20,29
2063 |IPER(I,|TER) = |ITER(I,IPER|/FD
    |1TER (32,ITER) = IIYER (32,ITER)/FD
    11YER(31,1TER) = 11PER(31,ITER)/FD
90317 FORMATl/9HOAVGSIDAYFO:1,2F6.1,F8,1,F13.1.512.2.F12.2.
    1 F12,3,F8,2,F13,34F10;2,F10,2,F5,1)
    WR!甲E(6,90317) (1ITER(I,ITER),1%20.32)
```

```
        WR!PE(6,9034)
9034 FORMAT( /// 3OHOAVERAGES BY TYPE OF PERSONNEL//
    WRIPE(6,9032)
9032 FORMATI 125HO PYPE PHYSICAL HOURS WORKED SLEPT IDLE FI
    IPIGUE HEAGTH AVG PHYS COMPETENCE ASPIRATION PERFORI
    2 NUMBER/4H NO,.10X,4HCAP,4X,12HPRIM. 2ND,25X,5HINDEX,2X,
    3 8HHORKLOAD,38X,4HCUM,.4X,5HSUCC.1
        DO 2065 i=1,NDMAX
        DO 2065 J=1,:0
        k=NY!PE(J)
        IF(K.EQ.O) GO TO 2065
9033 FORMAT(1H 13,16,510,3,2F7,2,F7.1,F6.1,F9,2,58,2,510,2,F12.3%
    1 F12,2,10x,FQ:2,F8,21
        DO 2064 KK=1,12
2064 TIITER(KK,J.ITER)ETI!TER(KK,J,ITER)*YDALY(KK,J,!)
2065 CONTINUE
        DO 2067 J=1.10
        K=NTIPE(J)
        IF(K.EQ,O) GO TO 2067
        DO 2066 i=1.11
2066 TIIPER(I,J.!TER)EYIIYERS!,J,ITER\/FD
    WRIPE(6,9991)K,J,MT!IPER\I,J,IYER\,1E1,12)
9991 FORMAT(215 ,F10.3,2F9.2,F7.1,F6.1,F9,2,F8,2,F10,2,F12,3,512,2,
    1 10x,F9.2,F8.2)
2067 CONTINUE
2070 CONTINUE
    \3(1)=CUP!/(CUP!*CDP!)
    93(2)=CART //FLOAT(NRE{)
    REMPB=REMPB - T3(1)
    REMPR=REMTR * P3(2)
    IF(!ND(7),EQ,0) RETURN
    WR!YE(6,9275)
9275 fORMAT(3OHOAVERAGES PER DAY FOR EACH MAN/I
    DO 2072 I=1,12
2072 OUPA(1):0.0
    DO 2080 1:1.1C
    DO 2075 J.1,12
    IMYAB(J,l,ITEB) E IMPAB(J,l,ITER)/FD
2075 OUPA(J)=OUTA(J)&&MTAB(J,I,ITER)
2080 WRIPE(6,9991) 1,IPS(1),(IMPAB(J,I,IPER),JE1,12)
    DO 2082 f=1,12
2082 OUTA(I)=OUTA(1)/PLIC
    WRIPE(6,9996) (OUTA(1),! {1,12)
9996 PORMATIIOHOAVERAGES
    1F F10%3,2F9,2,F7,1,56,1,F9,2,58,2,F10,2,F12,3,512.2.
    1 10x,F9.2,F8,21
        WR!TE(6,9999) T3(1)0 T3(2)
9997 FORMAT\//7HOEMTBF: F8:3,5X,6HEMPYR: F8.3)
        WRIPE(6.2159)
        DO 2084 1=1,40
        IF( CLSDTI(1,1).LE. 0,0) GO TO 2084
        00 2083 J=2,9
2083 CLSDTI(J.I)= CLSDT|(J.!) / CLSDTJ(1,!)
    WR!PE(6,2160) 1,CLSDY((1,1),CLSDP(16,1),CLSDT1(9,1),CLSDT!(2,1),
    1 CLSDT1(3,1),CLSDT1(AF1):CLSDP165,1),CLSDP1(0,1),CLSDTI(9,1)
2084 CDNTINUE
```

```
    REIURN
        ENPRY OUPP4
        FLITER=ITER
            WRITE(6,9555) ITER, GDMAX
9555 FORMAT IIGHIRUN SUMMARY FORI3,14H IPERITIONS OFIJ,12H-DAY MISSIONI
    1 127H ITER NUMBER OF EVENTS AVE. MAN HOURS SPENT
                                    --------END OF DAY AVERAGES-----------. INDICES
    2/5X,125H SUCI SUC2 FAIL IGNORE PRIM, SECOND SLEEP IDLE
    3 PHYS LD MEN LD COMP APA FAT, ASP HLYH SFI
    4Y/5X,22H---PERCENT OF TOTAL---6X,15HAVERAGE PER DAY7X,
    5 2 4 H ~ 1 8 X i I S H A V E R A G E ~ P E R ~ D A Y ) ~
            DO 2105 1=1,32
2105 OUPA(I)=0
            DO 2110 l=1, IPER
            WR|PE(6,9556) 1,\I|PER(J.|),JE1,8),(||PER(J.|),J=12.19)
9556 PORMAT(1X,14,3F5,1=F7,1,4F7.2,24X, 2F8,2,F6,3,56,2,F6,2,F5.2%
    1256.2)
    DO 2108 J=1,32
2108 OUPAlJ)=OUTARJ)+1ITER(J.!)
    DO 2109 J=1.10
    OUPB(\jmath) OUPB(л) + 小fTER(j,!)
    OUPB (J+10) = OUPB(J+10) * JITER(J*10 ,1)
2109 CONPINUE
2110 CONPINUE
    DO 2115 J=1.32
2115 OUPA(J)EOUTA(J)/FLIFER
    WR!PE(6,9557) (OUTA(8),181,8),6OUTA(1),1:12,19)
9557 FORMAT (19HOAVERAGES/|TERATION/
    1 5X,3F5,1, 5F7,2,24X, F8,2,F8.2.F6,3,F6.2,F6,2,F5.2,
    2 2F6,2)
    DO 2150 IF1,ITER
    WRIPE (6,3070)!,(JlTER(J,1),J*1&10)
3070 FORMAT(6H ITER I2;44H CONS, BAL. (UNITS/HR) DERCENT OF ORIGINAL
    1 10F7.3)
    WRIPE (6,3060) 1, (JIPER(J,I),J$11,20)
3060 TORMAY(GH ITER I2;44H CONS, BAL. &UNITSS PERCENY OF ORIGINAL
    1 10F7.3)
2150 CONPINUE
    WRITE(6,3080) ROUTBP(1),\F1,10)
3080 FORMAT(37H AVERAGE CONSUMABLE USAGE (UNITS/HR) :16X,10F7.2)
    WRIPE (6,3090) (OUTB(!),1:11,20)
3090 FORMAT(34H AVERAGE CONSUMABLE USAGE (UNIPS) :19X,10F7.2)
    WR!PE(6,9115)
9115 PORMAT ///131H ITER NUMBER OF EVENTS AVE. MAN HOURS SPENY I
    IAX STRESS MAX MEN LD PERF EFF HAZARD AVO FL DIFF NUMBER UN
    ZMANNED SEA / 8X;3GHREPAIR EMER REPP REPASR EMERGENCY,GJX,
    3 5HSUCC,,5X,5HHOURS,6H STATE)
        WRIPE(6,90316) (1;(IITER(J,1),JE20,32), (11,ITER)
        WR\FE(6,90318) (OUTAIS),1:20.32)
90318 FORMAT(19HOAVERAGES/ITERATION/
    1 8X,3F6.1,F9,1,F13:1;F12,2,F12,2,F12,3,F8,2,$13,3,F8%2,F10.2,F5,1
        DO 2120 l=1,11
        DO 2120 J=1.10
2120 FOUPA(I,J)=0.0
9120 FORMAT(///30HOAVERAGES BY PYPE OF PERSONNEL/)
    WR!PE(6,9120)
```

```
        WR!FE(6.9558)
9558 FORMAT ( 125HO PYPE PHYSICAL HOURS WORKED SLEPT IDLE F
    1TIGUE HEALTH AVG PHYS COMPETENCE ASPIRATION PERFORM
    2 114X ,WHCAP.4X,12HPRIM. 2ND.25X,5HINDEX,2X,
    3 8HWORKLOAD,3OX, &HCUM,I
        DO 2125 I=1,ITER
        DO 2124 J=1.10
        IF{NTIPE(J).EO.O) GO TO 2124
        DO 2123 K=1,11
2123 TOUPA(K,J)=YOUTA(K,J)+PIITER(K,J,!)
2120 CONPINUE
2125 CONTINUE
    DO 2140 J=1.10
    IF(NPIPE(J).EQ. O) GO TO 2140
    DO 2130 \=1,11
2130 TOUPA(I,J) = TOUPA(&,J)/FLIPER
    WR!PE(6.9993) J.(TOUPA(1,JJ,1E1,11)
9993 FORMAT(5X,15,F10.3,2F7,2,F7,1,F6,1,F9,2,58,2,F10,2,F12,3,512,2.
    1 F9,2,F8,2)
2140 CONFINUE
    WR!PE(6,2159)
    DO 2144 |=1,40
    {F(CLSDYR(1,|),LE.0.0) GO TO 2144
    DO 2143 J&2.9
2143 CLSDPR(J,I) = CLSDPR(J.1) / CLSDPR(1,!)
    WR!PE(6,2160) 1,CLSDPR(1,1),CLSDYR(6,1),CLSDTR(7,1),CLSDYR(2)1),
    1 CLSDTR(3,1),CLSDTR(451),CLSDTR(5,1),CLSDTR(B,1),CLSDTR(9,1)
2144 CONIINUE
    F3(1) = OUTA(1)/(OUPA(1) OUUTA(2) OOUFA($)) (OUPA(5)&OUTA(6))
    P3(2) = OUTA(2)*(OUPA(5)*OUTA(6))
    T3(3) = T3(1)/(T3(1) P3(2))
    T3(4) = REMTB
    T3(5) = REMTR
    P3(6)= P3(4)/(T3(4) & P(5))
    T3(7)=SQRT(0.5*(T3(S)*e2*T3(6)**2))
    WR!PE(6,9140) (T3(I),{&1,7)
9140 FORMAT(1H0,9HHMTBF *,F8.3,5X,8HHMPTR %,F8.3.
    1 5X,9HHAVA!L E,F%.31
    2 1X,9HEMTBF #,F8,3,5X,8HEMFTR %,F8.3,5X,8NEAVA!L %,F8.3/
    3 1X,9HSYSAVA!LE,F8.3)
            REPURN
            END
CFBLD
                                    FUNCPION FBUIND
            FUNCFION FBUILD(HI
    HSLSaH
    TEM1=0.2@UN!FM160.01
    IF(HSLS.LT.B:O) 60 10 20
    IF(HSLS.LT.19.0) GO PO 10
    FBUILD = (HSLS +229.0)/810.0+TEM1
    GO TO 5000
    10 FBUILD=(15,00HSLS-109,0)/220,0&PEM1
    GO TO 5000
C/////|////////////////|///1//
    20 FBUILD 0.01875 HSLS - 0.1 PEML
```

```
    5000 IFIFBUILD .GE: O.0) GO TO 5002
        FBU&LD = 0.0
        GO PO 5555
    5002 IF(PGUILD .GF: 1,0) PBUILD : 1.0
5555 RETURN
            END
CIPUY FUNCPION IPUYSM
            FUNCTION \PUYSN(PAR)
        TEST=EXP(.PAR)
        KEO
        Y:UNIFMI(0.0)
    1000 &F(Y.LE.TEST, GO TO 5000
        KEK*1
        YEY*UNIFM1(0:O)
        GO YO 1000
5000 1PUYSN=K
        REPURN
        END
IPSCAP SUBROUYINE PSEAP
    SUBROUTINE PSCAP(IAA,PCDUM, PSCOM)
    DIMENSION [AA(4),PCDUM(6),PSCOM&40),TEM(3),L(3),LL(3),DAPR{3)
    DATA DAPR/0.95,0,75,0,606
    NN:1
    OO 350 | =1,4,3
    DO 340 JE1.4
    bIE|AA(J)
    PEMI=LI
    KI=1
    DO 110 K=1.3
    PEM(K)=TEM1*PCDUM(K\)
    L(K)=TEM(K)
    Kl=K!+1
    110 L1=L1-L(K)
    $F(L1,EO.0)GO YO 275
    KI=1
    DO 130 K=1.3
        TEM(K)EFEM(K)-FLOAT(L(K))
        [F(PEM(K).LYA(P,5)) GO PO 130
    L(K):L(K)+1
    L1ミL1-1
    &F(L1.EQ.0)GO PO 275
130 CONPINUE
        DO 135 K=1,3
    $35 LL(K)=K
    DO 150 K:1.2
    KKBJ=K
    DO 140 |!=1,KK
    IF{PEM(I|).GE:PEMRI|*I)IGOTO 140
    PEMDETEM(|!)
    LTELL(I!)
    TEM(||)ETEM(|l*1)
    TEM(|!+1)=TEMP
    LL(!|)=LL(I|&1)
    LL(!I*1)&L!
    140 CONPINUE
    150 CONP!NUE
```

```
        DO 160 K=1,3
    KK=LL(K)
    L(KK)=L(KK)+1
    しまなしま-1
    IF(L1.EQ.O)GO PO 275
    160
    CON&INUE
        KK=LL(1)
        L(KK)=L(KK) +LI
    27500 310 K=1.3
    KK=b(K)
    IF(KK.EQ,0)GO YO 310
    PEMP = DAPR(K)
    DO 305 NE1,KK
        PSCOM(NN) =AMIN1(.99.PEMP*DNORM1(0.0)*0.03)
    305 NN=NN+1
    310 CONPINUE
    340 CONPINUE
    350 NN=21
        RETURN
        END
CINPUT SUBROUFINE INRUP
    SUBROUTINE (NPUT(ITER,KASE)
    COMMON/PRSNEL/WT, SIGWY,PPFQ,PPMQ,PPUQ,SPFO,SPMQ,SPUO.
    14PI,PID,ZPC,PTY(10,10),MEN(10,4),NDS,IDS(6,20)
    COMMON/IPARAM/APSTYWORK1,WORK2,SLEEP,CN,MAXSL,IFAT, ACP,
    1CALRY,PWRRT,K7,K1;BE,AASP,KON(10),KONT(10,10),KON1(10),
    2 KONP1(10,10),SESTA(10),REL{(4);N,IET,IND(7),NDMAX
        COMMON/EQREVNT/ IDF(30), RELH(30),DTM(570), TU\(30),IRE(30)
    COMMON/EEMER/ART(10),MSDE(10),DTE(10),IESSE($0),NREQE(10,10),
    1 LODME(10),IRCE(10,10),&RCE1(10;10), TSE(10), TSE1(10);1HE(10).
    1 IECE(10,10), DYBE(10) {NDBE(10)
        COMMON/ETYPE/ADUR,ASD,IESS,NREQS101,LODM,KE,INF,IRC(10),IRC1(10),
    1 IH,IEC(10),NIOR,IOR(0),ICLASS
    COMMON/SEVENY/&EPYP(570);9L(570),5Y(570), EDCV(3,570), (PE(570),
    1 TS(570), PS1(570),NX(3,570),RTU(570),IFOI(570),IEFN(570),NIF(570)
    2 IEDC (3,570),PRB (3,570),NOSE,NEQRE,NEME,D\(P)
        DIMENSION FP1(111),1P1(161),FP2(248),IP2(9):FP3(2200),1P3(2200),
    1FP4(3660), (P4(3800),FP5(600), (P5(2000),DUMY(12),IDES(12)
    DIMENSION PT&T(10;10)
    DIMENSION ADUR!O(55)
    EQU{VALENCE(IDUR{O,ADUR)
    EQU{VALENCE (HP,FP1),(MEN,(P1),{APST,FP2),(N, (1P2),
    1 (FP3,FP4),(FP3,FP5),(IP3,(P4),&(P3,IP5),(IP3,IGBG),&FP3,GBG)
    INTEGER TS,TS1,RYU,YSE, PSE1,TSR,YSR1
    REAL MP!,MAXSL,K7,K1,JEC,LODM,IH,IRC,KON,KON1,KONT,KONT1
    REAL IECE,!HE,IRCE,LODME
    NAMELIST/PERSNL/NFP1;FPI,NIP1,IPI
    NAMELIST/PARAM/NPP2,FR2,N!P2,IP2
    NAMELIST/SCHEVT/NFP3,FP3,NIP3,IP3
    NAMELIST/EQREVT/NFP4,FP4,NIP4,IP4
    NAMELIST/EMREVY/NFP5,FP5,NIP5,IP5
    NAMELIST/FYPE/ NFP5,FP5,N\P5,IPS
    IERR = O
    IFIIPER,GY, 1) GO YO 225
    100 NFP2 = 0
    NIP2=0
```

```
    READ (5,PARAM)
    |F((NFP2,NE.248),OR, FNIP2,NE,91) GO 90 9010
    101
        WR!TE(6,8100) (FP2(1),!F2,248);({P2(1),101,9)
8100 5ORMAT (7H1APSP EF13.2.8H WORK1EF14.1,8H WORK2EF14.1,8H SLEEPEF
    114,1,8H CN FF14.1.8H MAXSL F14.1/7HOTPAT IF13,2,8H ACP FF14.
    22,8H CALRYEF14.0%8H PWRRTEF14.1,8H K7 EF14,2,8H K1 #F14,2/
    37HOEE EF13.2.8H AASPFF14.2/1
    314HOKON(1-10) 10P9,0/15H KONF(1-10) 110(14X.10F9.0/).
    4/14HOKON1(1-10) & 10F9.0/ 15H KONF1(1-10) /10114X.10F9.0/),
            13H SESPA(0-09):10F5.2/11HOREL!(1-4)=4F8.2/
    6 3HONEI5,6H TET:I5,&1H {ND(1m7)E7!3)
200 IFPKASE.LE, 1) GO PO 2O1
    00 205 1:1.10
    00 205 J.1.10
    PTT(l.J) = PYTP(!;J)
205 CONPINUE
201 NFP1 =0
    NIP1=0
    READ (5,PERSNL)
    IF ((NFP1.NE.111).OR.(N|P1,NE.1GI)) GO PO 9020
    |F{KASE ,NE, 1) GO PO 209
    DO 200 1:1.10
    DO 208 J=1.10
        PTYY(I:J) PTY(!%J)
208 CONYINUE
209 00 220 1.1.10
    00 210 J=2.10
    PTP(J,1)-PTT(J, \)&PTY(J=1,|)
210 CONPINUE
220 CONPINUE
225 IFPIND(1).EO: O .ON, IPER.GY, 1) OO YO 290
    WR!YE (6.8200)(FP1(|)|1 % 1.111),1 |P1(1).1 1.861)
8200 FORMAY (7HIWY =F7.1%8H SIGNT&F7.1/7H PPFQ wF7.2.8H PPMQ EF7.2,
    18H PPUQ =F7.217H SPFQ =F7.2,8H SPMO FF7.2.8H SPUQ EF7.2/7H MP1
    2 =F7.2,8H P&D =F7,1,BH 2PC FF7,2/14HOPTP(1-10,1) ह10F5.2,15H
    3PTT(1-10,2) =10F5,2/14H PTT(1-10,3) 110F5,2.15H PTT(1-10,4) E10F5
    4,2/14H PTY(1-10.5) g10F5.2.15H PFT(1-10.6) 110F5,2/$4H PYP(1-10,7
    5) E10F5.2.15m PYT(1-10.8) S10F5,2/14H PTP(1^10.9) =$0F5.2.15H PT
    6F(1-10,10)=10F5,2//13HOMEN(1-10/1):10!4.14H MEN(1-10.2)|1014/13H
    7MEN(1-10,3)=10!4,14M MEN(1-10,4):10/4/15HONO.OF SH!FTSE,16%,
    813H {DS(1-6, 1)=,6!4,5X,12H{DS(1-6, 2):,6!4,5X,12H{DS(1-6, 3):6!4/
    913H {DS(1-6, 4) =,6\4,5x,12H{DS(1-6, 5) 5,6|4,5x,12H(DS(1-6, 6):06|4/
```



```
    B13H [DS(1-6,10) =.6{4,3x,12HIDS({-6,11):,6!4,5X,12H{DS(1-6,12)=6\4/
    C13H (DS(1-6,13) =,6!4,5x,12H!DS(1-6,14)=,6(4,5X,12H{D5(1-6,15)=6 %4/
```



```
    E{3H {DS (1-6,19)=614,5X,12H1OS(1-6,20)=6!4)
290 IF(!TER,EQ.1) GO TO 300
    REWIND 10
            READ(10) NFP4,N!P4,NGQRE,(FP4(!),II1,NFP4!,(IP4(|),{81,N{P4|
            GO PO 301
300 NFP4 = 0
    NIP4 E O
    READ (5,EQREVT)
    NEQRE={P4(1)
    IF(N.LE, 1) GO TO 301
```

REWIND 10
WRIYE(10) NFP4,N!P4,NEQRE, (FP4(!), I(1, NFP4), (IP4(I),IE1,N!P4)
$301 \times K=2$
MM =1
IF IIND(1) .NE, O AND. ITER .LE, 1) WRITE (6.8329)
8329 FORMAT(1H1.90X,27HEQUIPMENT REPAIR EVENT DATA/
1 111H IQ DESCRIPTION
$\begin{array}{llll}2 \\ 3 & 98 H \\ 2\end{array}$
DO 3501 = 1 INEQRE
DO $305 \mathrm{~J}=1.12$
IDES(J)月(P4(KK)
$305 K K=K K+1$
TSR $=1 P_{4}(K K)$
PSR1 $=\{P 4(K K+1)$
1 $R E X=(P 4(K K+2)$
ใRE(1)=1REX
! $E F N X=1 P 4(K K+3)$
$K K=K K+3$
RELH(I) =FP4(MM)
PU! $(!)=F P 4(M M+1)$
C $\quad D T R(!)=F P 4(M M+2)$
$M M=M M+2$
$J=200+(l-1) * 12$
ITEM $=J$
DO $310 \quad J J=1, I R E X$
$J=J=1$
TS(J) a TSR
TSI(J) =TSR1
IETYP(J) = IPA (KK * 1)
$!P E(J)=\{P 4(K K+2\}$
!F(!PE(J).NE,O) !PE(J)=!PE(J)+!TEM
NX $(1, J)=\{P 4(K K+3)$
$N X(2, J)=\{P 4$ (KK * 4)
$N X(3, j)=1 P 4(K K$ - 5)
$N X(1, J)=N X(1, J)+!$ TEM
$N X(2, J)=N X(2, J)+I T E M$
$N X(3, J)=N X(3, J)+1$ TEM
RTU(J) $=\$$ P4 (KK * 6)
lFOI(J)
IEFN(J) =IEFNX
DTR(J) $=F P^{4}(\mathrm{MM})$
$P R B(1, J)=F P 4$ (MM - il
PRB(2,J) FPP4 (MM = 2)
PRB $(3, J)=F P 4$ (MM + 3)
dEDC(1,J)=FP($(M M+4)$
IEDC(2,J) $=F P A(M M+5)$
IEDC(3,J) $\mathrm{EFP}(M M+6)$
EDCV $(1, J)=F P(M M+7)$
$E D C V(2, J)=F P 4(M M+8)$
$\operatorname{EDCV}(3, J)=F P 4(M M+9)$
ST(J) $=0.0$
$T L(J)=24.0$
$K K \equiv K K+7$
$M M=M M+10$

```
    310 CONTINUE
        JJ=J
        KK = KK * 1
C MM = MM * 1
        |I=J-IREx*1
        IF (IND(1) .NE, O JAND, IPER ,LE, 1) WRIIE(6,8530)
    1 I,IDES,TSR, PSRI,RELH(I),YUI(I): IREX,(IETYD(J),(NX&K,J),K\I,S).
    2 (PRB(K,J),K=1,3);RPU|J), (IEDC(K,J),K=1,3),
    3 (EDCV(K,J),K=1,3)P{PG(J),{FO!(J),IEFN(J),DTR(J),J={!,JJ)
8330 FORMAT(1HO/15,2X,1246,13,16,F10.6,F7,2,15/
```



```
    350 CONPINUE
    399 IF\IPER,EO.1) GO TO 100
        NFP5=NEME*3
        N!PS=NEME*47
                READ(10) (FP5(1),1E&,NFP5),(|P5(|),!=1,N|P5)
                GO TO 401
    400 NFP5 = 0
        NIPS=0
        ZEAD (5,EMREVT)
        NEME = NFP5/3
        NFP3-NIP5/58
        IF(INFP5,NE.NEME*3),OR.(NIP5,NE.NFPS*58)) GO TO 004?
        IF(N.GT,1) WR!TE(10) (FP5{!),1B1,NFP5),(!P5{!},1=1,N!P5)
    401 kK ! 1
        MM =1
        IF (IND(1) .NE, O .AND. IPER .LE, 1) WR!TE{6,8429)
8429 FORMAT(1H1,90X,2OHEMERGENCY EVENY DATA/18M K IDENTIFIERY
    1 23H NDBE ARY ASDE DPE,58X.1OHIRCE(1-10),10X,3HPSE,3X,5HLODM
        2x,5HIESSE
    1/11X,11HNREQE(1-10),8X,51X,12HIRCE1 (1-10), 8X,GHPSE1,4X,3HIHE/
    3 11X,10HIECE(1-10) 11H )
        DO 450 1 = 1,NEME
        ARP(1) = FP5(KK)
        ASDE(i) - FPS(KK * 11
        DTE(I) = FF5(KK * 2)
        DO 405 JEI.12
        1DES(J)={P5(MM)
    405 MMEMM+1
        |ESSE(I)E!P5(MM)
        DO 110 J E1.10
        MM E MM * 1
    410 NREQE (J,l) E 1P5(MM)
        MMEMM*1
        LODME( \)=\P5(MM)
        00 420 J.1.10
        MM E MM + 1
    420 |RCE (J.l) = 1P5(MM)
        MM : MM * 1
        TSE(|) = {P5 (MM)
        DO 425 JE1,10
        MM MM * 1
    425 (RCEI(J.1) = {P5 PMM)
        PSE1(1) = 1PS(MM + 1 1
        \HE\!) & !P5 (MM * 2!
        MM & MM * 3
```

```
        00430 J =1.10
    IECE(J.1) = {P5 (MM)
    430 MM = MM + 1
    NDBE(l) = {PS (MM)
    MM = MM * 1
    KK E KK + 3
    IETYP(I*560):-1
    ST(I+560)=0.
    TL(I+560)=24.0
    TS(I+560)= TSE(I)
    TS1(1+560)= PSE1(1)
    RTU(!+560)=1
    [50|(1+560)=1
    IEFN(l+560)=0
    NIF {l+560)=1
    IEDC(1,1*560)=0.
    IEDC(2,1+560)=0.
    IEDC(3,1+560)=0.
    IF | IND(1) ,NE, O ,AND, ITER ,LE, 1)
    1WRIPE (6,6449) {,IDES,NDBE(|),ART(I),ASDE(|), DTE(|),\\RCE(J,I),JFI
    1 .10),TSE(!).LODME(!)*
    IESSE(l).
```



```
    4 lHE(l),(IECE(J,I),J&1,10)
6449 FORMAT(14,8X,12A6/16,55,2,F7,2,55,2,8X,10F7,0,13,58,0,17/
    110!3,2X,1017,12,F8.0/10F6.0)
    450 CONPINUE
    601 IF(ITER,GY.1) GO TO 651
            NFP5%0
            NIPS=0
    READ(5,TYPE)
    |F(IND(1),NE,O .AND,IVER.LE.1) NR|TE(6.9601)
9601 FORMAY(1H1/50X,15HEVENT TYPE DATA/IBH J IDENTIFIER,
```



```
    3(1-10),22x,9HIRC(1-10)/15x,9HIEC(1-10),36X,10H(RC1(1-10))
        NTYPES=N{P5/65
        MM E 1
        KK 1
        DO 650 IS1,NPYPES
        DO 605 JE1,12
        lDES(J)=\P5(MM)
    605 MMEMM+1
        IESS=IPS(MM)
        MMSMM+1
        ADUR E FP5 (KK)
        ASD & FP5 (KK * 1)
        DO 610 J=1.10
        NREQ(J)={P5 (MM)
    610 MM MM * 1
        LODM = (P5 (MM)
        KE IP5 ( MM * 1)
    INT = IP5 (MM * 2\
    MM = MM + 3
    DO 615 JE1,10
    |RC (J) [P5 (MM)
```

```
    |RCI(J) E IP5 (MM * 10)
    615 MM . MM * 1
    |H={P5(MM+10)
    MMEMM+11
    DO 620 J=1.10
    IEC (J)= [P5 (MM)
    620 MM MM 1
    NIQR = [P5 ( MM)
    DO 625 J=1,6
    MM MM - 1
625 (QR(J) = {P5 (MM)
    ICLASS = {P5 (MM * 1)
    WR!PE(12'!,ERR=9060) ADURIO
    |F{|ND(1),NE,O .AND, {TER,LE,1)
    1 WRITE(6,9650) !,IDES;ADUR,ASD,ICLASS,NIQR, (IQR(J),JW1,6),IESS,
    1 LODM,KE,\NY,IH, (NREQ(J),JE1,10), (!RC(J),J:1,10), (!EC(J),JEI,10
    2): (|RC1(J),J=1,10)
9650 FORMATI/14,3X,12A6T 2F7,3,16,!6,614/15,58,0,2:4,F4,0,10!3.
    1 10F7.0/10F5,0,9x,1017)
    KK KK * 2
    650 MM M MM * 2
    651 RETURN
    ENPRY DINPUT
        IF(IYER,EQ.1) GO TO 500
        READ(10) ND,NOSE;(DUMY(I),1=1.11)
    475 NFP3=NOSE.11
    VIP\aNOSE*11
        READ(10) (FP3(1);!E1,NFP3),1!P3(1),1=1,N!P3)
        GO TO 501
    500 NFPS =0
    NIPJ=0
    READ (5,8500)ND,NOSE, (DUMY(1),1 = 1,11)
8500 FORMAT (2I3.1146)
    READ (5,SCHEVT)
    |F((NFPJ,NE.NOSE*11).OR,SNIPJ,NE,NOSE*11)) GO P0 9050
        IF (N.LE,1) GO TO 50&
        WR!TE(10) ND,NOSEY(DUMY(1),\:1,1$)
        WR!TE(10) (FP3(!),|E!,NFP3),(!P3(!),!日1,N!P3)
    501 KK - 1
    MM - 1
    DO 560 : = 1,NOSE
    |EYYP(!) E!P3(KK)
    |PG(1)=1P3(KK+1)
    PS(|)=1P3(KK+2)
    PS&(|)={P3(KK+3)
    RTU(|)={P3(KK*4)
    |FOI(I)=1P3(KK*5)
    N[F(|)={P3(KK+6)
    |EFN(I):!PJ(KK&7)
    KKEKK+8
    FL(!)=FP3(MM)
    ST(l)=FP3(MM&1)
    MM=MM+2
    DO 510 J = 1,3
    NX(J,I)=!P3(KK)
    PRQ(J,1)EFP3(MM)
```

```
    MMEMM + 1
    510 KK : KK*1
    DO 520 J=1.3
    IEDC(J,I)=FP3(MM)
    EDCV(J,I)=FP3(MM+3)
    520 MM = MM * 1
    MM MM + 3
560 CONTINUE
    \F{IND(1) .EQ: O ,OR, ITER . GT, 1) QO PO 4999
    WRIFE (6,8501)ND,NOSE,(DUMY(1),1 E 1.11)
8501 FORMAT (1H1.90X,2OHSCHEDULED EVENT DATA/
    14H ND={3,5X,5HNOSE=|3,4X,11A6//83H IE IETYI FS TSI IFO| NIF
    2 IEFN NX(1-3) PRB(1-3) IPE RYU ,5X,8HYL SY/
    DO 8600 1. 1,NOSE
    3 5X,9HIEDC(1-3),9HEDCV(1-3))
```



```
    1 (NX(J,!),J=1,3), YPRB(J,1),JE1,3),IPE(|),RTUR!),PL(!),ST(!),
    2 (|EDC(J,l),J=1,3)*
    2. (EDCV(J,1),J=1,3)
8600 CONTINUE
8560 FORMAT(1HO/1H ,13,18,14,15,316,315,3F6.2,215,1X,2F6.2,1
    1 1H,4X,3(3,3F1O,ठ)
4 9 9 9 ~ C O N P I N U E ~
5000 &F (IERR,EQ.O) RETURN
    STOP
9010 \ERR=1
    WRIPE (6,9011)
9011 FORMAT ISOHIERROR IN FOLLOWING INPUY LIST/25MPROGRAM WILL NOY CON.
    1:NUE)
        WRIPE (6,PARAM)
    GO FO 200
9020 lERR = 1
    WRIPE (6,9011)
    WRIPE (6,PERSNL)
    60 PO 300
9030 IERR = 1
    WRIPE (6,9011)
    WRITE (6,EQREVT)
    GO PO 400
9040 IERR = 1
    WR!TE (6,9011)
    WRIFE (6,EMREVY)
    GO FO 601
9050 |ERR=1
    WRIFE (6,9011)
        WRITE(6,SCHEVY)
        GO TO 5000
9060 WRITE(6,9012)
9012 FORMAT (2OH1D:
    A. ERROR=-QUIT )
    RETURN
        EN!
```

No. of Copies

1 Commander
Naval Sea Systems Command Washington, DC 20360
Attn: PMS302-631
1 Commander
Naval Sea Systems Command
Washington, DC 20360
Attn: PMS302-43
1 Evaluation Associates, Inc. GSB Bldg., 1 Belmont Ave. Bala Cynwyd, PA 19004

1 Tracor, Inc.
117 North 19th Street
Arlington, VA 22209
1 Commanding Officer
U.S. Navy Underwater Systems Center
New London Laboratory
New London, CT 06320
Attn: Code 2241 (Mr, D. Aldrich)
1 Comm ander
Naval Sea Systems Command
Washington, DC 20360
Attn: Code 2052 Library
1 Commanding Officer
Naval Underwater Research and
Development Center
San Diego, CA 92132
Attn: J. Hammond
10 Defense Documentation Center
Cameron Station
Alexandria, VA 22314
1 Chief of Naval Research
Department of the Navy
Arlington, VA 22217
Attn: Code 455
2 Manager, Anti-Submarine
Warfare Systems Project
Department of the Navy
Washington, DC 20360
Attn: CDR J.W. Bowen
LCDR P. Nelson ASW 241

No. of

Copies
1 Commanding Officer
Naval Underwater Systems Center
Newport Laboratory
Newport, RI 02840
1 Commanding Officer
Naval Research Laboratory
Washington, DC 20390
Attn: Dr. A. Gerlach
1 Commanding Officer
Naval Ship Research and
Development Center
Panama City, FL 32401
Attn: W.J. Zehner, Sr.
U. S. Navy Research and

Development Center
Annapolis Division
Annapolis, MD 21402
1 Commander
Naval Electronic Laboratory
271 Catalina Boulevard
San Diego, CA 92132
Attn: Head, Human Factors
Division
Commanding Officer
Naval Underwater Research and
Development Center
San Diego, CA 92132
Attn: Mr. R. Betsworth
National Academy of Sciences 2101 Constitution Avenue, NW Washington, DC 20419
Attn: Committee on Underwater Warfare, (CHABA)

1 Fleet Sonar Training School
U.S. Naval Base

Key West, FL 33040
1 Human Factors Division
Naval Air Development Center
Johnsville
Warminster, PA 18974
1

6707 Kingspoint West
Austin, TX 78723
Attn: H. Boehme

TRW Systems Group
7600 Colshire Drive
Westgate Research Park
Mclean, VA 22101
Attn: A.J. Delange
3 Commander
Naval Electronics Systems Command
Display Systems Branch
Attn: 0474. EP03, 0544
1 Commanding Officer
Naval Air Development Center
Warminster, PA 10974
2 Commanding Officer
Naval Training Device Center
U.S. Naval Base

Orlando, FL 32813
Attn: W. P. Lane
Dr. J.J. Regan Code 55
1 RCA
Front and Cooper Streets
Camden, NJ 08102
Attn: F. A. Milillo
1 Raytheon Company
Submarine Signal Division
Box 360
Portsmouth, RI 02871
Attn: J.T. Kroenert
1 Radian Corporation
8407 Research Boulevard
Austin. TX 78751
Attn: J. D. Jones
1 Sperry Gyroscope Division Sperry Rand Corporation Mail Station E-37
Great Neck, NY 11020
Attn: H. Courter
1 Singer-Librascope
808 Western Avenue
Glendale, CA 91201
Attn: J.R. Drugan
1 Sanders Associates, Inc.
95 Canal Street
Nashua, NH 03060
Attn: J. Lang

No. of
Copies
Scripps Institution of Oceanography University of California - San Diego San Diego, CA 92152
Attn: V.C. Anderson
1 Honeywell, Inc.
5303 Shilshole Avenue, NW
Seattle, WA 48107
Attn: R.D. Isaak
1 Hughes Aircraft Company
Ground Systems Group
P.O. Box 3310

Fullerton, CA 92634
Attn: C.W. Ericson, Jr
1 Human Factors Research, Inc.
Santa Barbara Research Park
Goleta, CA 93017
Attn: R.R. Mackie
1 Hydrospace Research Corporation 5541 Nicholson Lane
Rockville, MD 20852
Attn: F. P. Falci, Jr.
1 IBM-FSD
Owego, NY 13827
Attn: R.M. Evanson
1 Interstate Electronics Corporation 707 East Vermont Avenue
Anaheim. CA 92803
Attn: J. Watson
1 Philco-Ford Corporation 3900 Welsh Road
Willow Grove, PA 19090
1 Presearch, Inc.
8720 Georgia Avenue
Silver Spring, MD 20807
Attn: R.D. Byrd

Technical Director
Personnel Research and
Development Laboratory
Washington Navy Yard
Washington, DC 20390
Attn: Code 93
Commanding Officer
Naval Personnel and Training
Research Lab
San Diego, CA 92152
Anacapa Sciences, Inc.
226 East De La Guerra
Santa Barbara, CA 93101
Attn: E.L. Parker

Bendix Corporation
11600 Sherman Way
North Hollywood, CA 48075
Bendix Corporation Bendix Center
Southfield, MI 48075
Attn: R.K. Mueller
Bolt Beranek \& Newman, Inc. 21120 Vanowen Street
Canoga Park, CA 91303
Attn: R.L. Spooner
Challenger Research, Inc. Rockville, MD 20852
Attn: J.J. Bowerman
Chesapeake Instruments, Inc. Shadyside, MD 20852
Atin: S.G. Lemon
Lelco Electronics
General Motors Corporation
Santa Barbara Research Park
Goleta, CA 93017
Attn: R. F. Podlesny

Diagnostic/Retrieval Systems, Inc. 237 West Lincoln Avenue
Mount Vernon, NY 10550
Attn: D.E. Gross
1 Charles S. Drater Laboratories MIT
Cambridge, MA 02138
Attn: Steven E. Heeger
1 Edo Corporation
College Point, NY 11356
Attn: \& P. Callahan
General Dynamics Corporation Electric Boat Division
Groton, CT 06340
Attn: A.J. VanWoerkom
General Electric Corporation
HMED
Farrell Road Plant
Syracuse, NY 13205
Atin: P.E. Pedley
Honeywell, Inc.
1200 East San Bernadion Road
West Covina, CA 91790
Attn: M.H. Stephenson

Comm ander

Submarine Development Group II
U. S. Naval Submarine Base (NLON)

Groton, CT 06340

Comm ander
Anti-Submarine Warfare Force
U. S. Atlantic Fleet

Norfolk, VA 23511
1
commander
Anti-Submarine Warfare Force
U.S. Pacific Fleet

FPO, San Francisco, CA

No. of
Copies
Commanding Officer, Naval Intelligence Support Center
4301 Suitland Road
Washington, DC 20390
1 Project Manager
SSN 688 Class Submarine
Project (PM-13)
Department of the Navy
Washington, DC 20360
1 Commanding Officer
Atlantic Fleet ASW Tactical
School
Norfolk, VA 24511
1 Chesapeake Instruments Corporation Shadyside, MD 20852
Attn: R. Santin
1 Commander. ASW Forces
Atlantic Fleet
Scientific Advisory Team
Norfolk, VA 23511
Attn: Code 71
1 Commanding Officer
Naval Personnel Training and
Research Laboratory
San Diego, CA 92152
1 Human Factors Engineering Branch
Attn: Dr. George Moeller
Submarine Medical Research Lab
Naval Submarine Base
Groton, CT 06340
1 USN Post Graduate School
Monterey, CA 93940
Attn: J. Arima
1 Cornmander
Naval Electronics Systems Command
Washington, DC 20362
Attn: Code 03

No. of
Copies
Dr. A. L. Slafkesky
Scientific Advisor
Commandant of the Marine Corps
Code AX
Washington, DC 20380
ommander
Human Factors Engineering Branch
Code 5342
Point Mugu, CA 93041
1 Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202
Attn: Dr. H. W. Sinaiko
1 U.S. Navy Post Graduate School
Monterey, CA 93940
Attn: Library
1 Cornell Aeronautical Laboratory. Inc
Avionics Departmen
Buffalo, NY 14211
Attn: Dr. A. Zavala

Director
Strategic Systems Project Office
(PM-1)
Department of the Navy
Washington, DC 20362

Project Manager
Anti-Submarine Warfare Systems
Project (PM4)
Department of the Navy
Washington, DC 20362
Attn: ASW 13, ASW 55
1 Unitech, Inc.
1005 East Street Elmo Road
Austin, TX 78745
Altn: R.J. Musci

410645

405

