

BRRTS#: 026000095 7D#. 460134950

Wisconsin Public Service Corporation

700 North Adams Street P.O. Box 19001 Green Bay, WI 54307-9001

www.wisconsinpublicservice.com

August 22, 2019

Mr. Pablo Valentín
Project Manager
United States Environmental Protection Agency
77 W. Jackson Boulevard
Chicago, Illinois 60604-3590

RE: July 2019 Monthly Progress Report

Campmarina Former Manufactured Gas Plant

Sheboygan, Wisconsin

Wisconsin Public Services Corporation

CERCLA Docket No. V-W-07-C-862, CERCLIS ID - WIN000510058

Dear Mr. Valentín:

Wisconsin Public Services Corporation (WPSC) is providing this monthly progress report for the WPSC Former Campmarina Manufactured Gas Plant (MGP) Site.

1) PROGRESS MADE DURING THE PAST MONTH

 Prepared and submitted June 2019 Monthly Progress Report to United States Environmental Protection Agency (USEPA) by July 26, 2019.

2) ANALYTICAL AND OTHER TESTING RESULTS RECEIVED

 Groundwater analytical results from the June 17, 2019 sampling event and a site map have been included with this monthly progress report.

3) PROJECTED WORK

WPSC Actions

Submit monthly progress report to USEPA by the 26th of the month.

USEPA Actions

None

4) PROBLEMS OR POTENTIAL PROBLEMS ENCOUNTERED

None

5) ACTUAL OR PLANNED RESOLUTION OF PROBLEMS OR POTENTIAL PROBLEMS

None

If you have any questions, please don't hesitate to contact me at (920) 433-2643 or brian.bartoszek@wecenergygroup.com.

Sincerely,

Brian F. Bartoszek, P.E.

Director Land Quality - Environmental

Enclosures:

Site Map

June 2019 Groundwater Sample Results

For distribution to:

Mr. John Feeney, WDNR (US Mail and email)

Mr. Andrew Cawrse, OBG, Part of Ramboll (email)

PROJECT NO. FIGURE NO. 67971

BRRTS #02-60-000095 CAMP MARINA MANUFACTURED GAS PLANT SHEBOYGAN, WISCONSIN

JJW 04/09/13 APPROVED BY: DATE: JMK 05/17/13 DRAWING NO: 1313-8-B.3.d-Monitoring Wells

REFERENCE: SEE INFO BLOCK

Table 1 - June 2019 Groundwater Sample Results

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Campmarina

732 Water Street, Sheboygan, Wisconsin

BRRTS#: 0260000095 FID#: 460134950 USEPA#: WIN000510058

			PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
9-digit Code	Sample Location	Sample Date	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs (Lab Calc)
		Reporting Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
			Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag
		Complete to St	NC	T NC	l aic	l NC	2.000	N.C.			T NC	NC	0.2	NS	400	400	NS	100	3,000	250	NS
	\A/I /	Groundwater SL: Groundwater PAL:	NS NS	NS NS	NS NS	NS NS	3,000 600	NS NS	0.2 0.02	0.2 0.02	NS NS	NS NS	0.2 0.02	NS NS	80	80	NS NS	100	NS NS	50	NS NS
	VVIV	Tap Water RSL:	1.1	36	530	530	1,800	0.03	0.025	0.25	120	2.5	25	0.025	800	290	0.25	0.17	1,800	120	NS
		rup water not.	1.1	30	350	330	1,000	0.00	0.023	0.23	120	2,0		0,020							
061719001	MW-709R	06/17/2019	<0.0058 U	<0.0048 U	<0.0060 U	<0.0049 U	<0.010 U	<0.0074 U	<0.010 U	<0.0056 U	<0.0066 U	<0.0074 U	<0.013 U	<0.0098 U	<0.010 U	<0.0078 U	<0.017 U	<0.018 U	<0.014 U	<0.0075 U	0.032
061719002	MW-708	06/17/2019	<0.0062 U	<0.0052 U	<0.0064 U	<0.0052 U	<0.011 U	<0.0079 U	<0.011 U	<0.0060 U	<0.0071 U	<0.0079 U	<0.014 U	<0.011 U	<0.011 U	<0.0084 U	<0.019 U	<0.019 U	<0.015 U	<0.0081 U	0.024
061719003	MW-707R	06/17/2019	107	6.3	30.9	0.90	2.5	<0.24 U	<0.33 U	<0.18 U	<0.22 U	<0.24 U	<0.41 U	<0.32 U	0.48 J	12.1	<0.56 U	<u>398</u>	7.9	0.61 J	567
061719004	PZ-703	06/17/2019	0.070	0.012 J	0.44	0.014 J	0.018 J	<0.0078 U	<0.011 U	<0.0059 U	<0.0070 U	<0.0078 U	<0.013 U	<0.010 U	<0.011 U	0.10	<0.018 U	0.040 J	0.053 J	0.010 J	0.76
061719005/061719006 (N)	MW-701R	06/17/2019	158	96.9	101	<0.49 U	14.0	<0.74 U	<1.0 U	<0.56 U	<0.66 U	<0.74 U	<1.3 U	<0.98 U	2.3 J	21.2	<1.7 U	994	33.7	3.2 J	1,420
061719007	PZ-701	06/17/2019	0.0092 J	<0.0049 U	<0.0060 U	<0.0049 U	<0.010 U	<0.0075 U	<0.010 U	<0.0057 U	<0.0067 U	<0.0075 U	<0.013 U	<0.0099 U	0.011 J	<0.0079 U	<0.017 U	0.045 J	0.018 J	0.011 J	0.11
061719008	PZ-702	06/17/2019	0.014 J	<0.0049 U	<0.0060 U	<0.0049 U	<0.010 U	<0.0075 U	<0.010 U	<0.0057 U	<0.0067 U	<0.0075 U	<0.013 U	<0.0099 U	<0.011 U	<0.0079 U	<0.017 U	0.049 J	<0.014 U	<0.0076 U	0.074
061719009	MW-706	06/17/2019	168	107	6.9	71.7	5.8 J	<1.5 U	<2.1 U	<1.1 U	<1.3 U	<1.5 U	<2.6 U	<2.0 U	2.1 J	17.9	<3.5 U	<u>1,680</u>	20.7	2.9 J	2,080
061719010	Equipment Blank	06/17/2019								-	,							'			-
061719011	Trip Blank	06/17/2019															<u> </u>				
	1 -								Ι		I 0	I 0	· ·	Ι ο	Ι ο	Ι ,	Ι ,	Ι ,	8		
Total Number of Samples Analyzed: Number of Detections:			8 ,	8	8 4	8	8	8	8	8	8	8	8	8	8	8	l °	6	5	5	8
Min:			0.0092	0.012	0.44	0.014	0.018	0	0	0	0	0	0	0	0.011	0.1	0	0.04	0.018	0.01	0.024
Max:			168	107	101	71.7	14	0	0	0	0	0	0	0	2.3	21.2	0	1,680	33.7	3.2	2,080
Groundwater SL:			NS	NS	NS	NS	3,000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	3,000	250	NS
Number of Samples that Exceed Groundwater SL:			0	0	0	0	0	0	0	0	0	0	0	0	0	0	O NC	3	0 NS	50	O NS
WI Groundwater PAL:			NS 0	NS 0	NS 0	NS 0	600	NS 0	0.02	0.02	NS 0	NS 0	0.02	NS 0	80	80	NS 0	10	0	0	0
Number of Samples that Exceed WI Groundwater PAL: Tap Water RSL:			1.1	36	530	530	1,800	0.03	0.025	0.25	120	2.5	25	0.025	800	290	0.25	0.17	1,800	120	NS
Numb	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0		

Sorted by 9-digit Code

Screening Levels:

Analyte concentration exceeds the standard for:

BOLD	Groundwater SL
<u>Underline</u>	WI Groundwater PAL
Italic	Tap Water RSL

Yellow Highlighting in Statistics = detected Exceedances

Pink highlighting in the table= a GW SL exceedance;

results only exceeding the PAL and/or Tap Water criteria are not highlighted.

Statistics exclude the quality control samples (Equipment and Trip Blanks)

-- = Analysis not performed

< = Concentration is less than reported limit

 $\mu \text{S/cm} = \text{microsiemens per centimeter}$ (aka micromhos per centimeter)

μg/L = micrograms per liter

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius

J = Estimated Concentration

mg/L = milligrams per liter

(N) = Normalized sample locations created from combining parent and field

duplicate samples following EPA protocol

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017.

Since that time, three revisions of the RSLs have been published by EPA in November 2017, May 2018, and November 2018. As a result of these three

revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

The Groundwater SL presented is the more conservative of the State and MCL values from the RAF Addendum Revision 6.

PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (Feb 2017)

NS = No Screening Level

NO2 + NO3 = nitrite plus nitrate NTU = Nephelometric Turbidity Unit

PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit; results that attain or exceed this criteria are considered in exceedance of the PAL

PNA - Preventive Action Limit, results that attain or exceed this criteria are co

RNA = Remediation by Natural Attenuation (lab and field)

RSL = Regional Screening Level

s.u. = standard units

SL = Screening Level

U = Concentration was not detected above the reported limit

Lab comments and definitions can be found in associated laboratory reports.

Table 1 - June 2019 Groundwater Sample Results

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Campmarina

732 Water Street, Sheboygan, Wisconsin

BRRTS#: 0260000095 FID#: 460134950 USEPA#: WIN000510058

			BTEX	(ВТЕХ	E	STEX	ВТЕХ		Inorganic	Inorganic	Organic	RNA	RNA	RNA	RNA	RNA	RNA	RNA
9-digit Code	Sample Location	Sample Date	Benzene		Ethylbenzene		Toluene	Xylenes, Total		Nitrogen, NO2 + NO3, Total	Sulfate, Total	Methane	Dissolved oxygen	Groundwater, depth to	Oxidation Reduction Potential	pH, Field	Specific Conductance, Field	Temperature, Water	Turbidity, Quantitative
		Reporting Units:	μg/l		μg/L		ıg/L	μg/L	\neg	μg/L	μg/L	μg/L	mg/L	feet	millivolts	s.u.	μS/cm	Deg C	NTUs
			Result	Flag	Result Flag	Resu	ılt Flag	Result Fla	ag R	esult Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag
			HUMBER															4	
	1411	Groundwater SL:	5		700		800	2,000	-	NS	NS 425,000	NS	NS	NS	NS	NS	NS	- NS	NS
	WI	Groundwater PAL: Tap Water RSL:	0.5 0.46		140 1.5	_	160 ,100	400 190	-	2,000 NS	125,000 NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
		Tup Water KSL:	0.46		1.5	1	,100	190		IVS	143	IVS	IVS	743	1//3	N3	1//3	N3	NS
061719001	MW-709R	06/17/2019	<0.25	U	<0.22 U	0.8	1 J	3.6	Τ.	<95 U	5,500	3,540	0.27	4.34	-72.2	6.91	2122.1	10.90	29.86
061719002	MW-708	06/17/2019	<0.25	U	<0.22 U	<0.1	.7 U	<1.5 U		110 J	50,400	<1.4 U	3.68	9.98	178.5	7.15	2841.3	11.40	33.20
061719003	MW-707R	06/17/2019	2,630		2,570	30.	2 J	<u>636</u>	١.	<95 U	47,700	6,730	0.10	3.80	-178.8	6.93	1545.5	11.41	44.73
061719004	PZ-703	06/17/2019	363		209	10.	5 J	94.0	١.	<95 U	<1,000 U	1,560	0.18	3.96	-156.6	7.22	574.8	12.28	1.45
061719005/061719006 (N)	MW-701R	06/17/2019	3,130		278	13.) J	152	1	<95 U	<5,000 U	12,300	0.09	5.02	-140.4	6.23	1825.6	11.22	739.55
061719007	PZ-701	06/17/2019	<0.25	U	<0.22 U	<0.1	.7 U	<1.5 U	J :	390	112,000	5.6	0.30	4.87	-31.1	7.11	633.8	13.61	75.91
061719008	PZ-702	06/17/2019	<0.25	U	<0.22 U	<0.1	.7 U	<1.5 U	. ار	<95 U	1,500 J	<1.4 U	2.71	6.04	15.2	7.45	198.8	16.09	1.62
061719009	MW-706	06/17/2019	2,670		<u>480</u>	1,64	<u>o</u>	<u>648</u>		<95 U	89,300	5.8	0.13	7.74	-162.2	7.02	1017.4	15.17	4.43
061719010	Equipment Blank	06/17/2019	<0.25	U	<0.22 U	<0.1	.7 U	<1.5 L	J										
061719011	Trip Blank	06/17/2019	<0.25	U	<0.22 U	<0.1	.7 U	<1.5 U	J			<1.4 U							
			8										1100						
Total Number of Samples Analyzed:					8	8		8	- 1	8	8	8	8	8	8	8	8	8	8
Number of Detections: Min:			4 363		4 209	5 0.8		5 3.6		2 110	6 1,500	6 5.6	0.09	8 3.8	8 -178.8	8 6.23	8 198.8	8 10.9	8 1.45
Max:			3,130		2,570	1,64		648		390	112,000	12,300	3.68	9.98	178.5	7.45	2,841	16.09	739.55
Groundwater SL:			5		700	800	NAME OF TAXABLE PARTY.	2,000	STATUTE OF THE PERSON	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
Number of Samples that Exceed Groundwater SL:			4		1	1	-	0		0	0	0	0	0	0	0	0	0	0
WI Groundwater PAL:			0.5		140	160)	400	THE REAL PROPERTY.	,000	125,000	NS	NS NS	NS	NS	NS	NS	NS	NS
Number of	Samples that Exceed WI	And the second of the second o	4		<u>4</u>	1		<u>2</u>	OTHER DESIGNATION	0	0	0	0	0	0	0	0	0	0
Tap Water RSL:			0.46		1.5	1,10	0	190		NS	NS	NS	NS	NS	NS	NS 0	NS O	NS 0	NS O
Numi	ber of Samples that Excee	ea Tap Water RSL:	4		4	1		2		0	0	0	0	0	0	1 0			19, QC: EDP 7/30/19]

Sorted by 9-digit Code

Analyte concentration exceeds the standard for:

BOLD	Groundwater SL
<u>Underline</u>	WI Groundwater PAL
Italic	Tap Water RSL

Yellow Highlighting in Statistics = detected Exceedances

Pink highlighting in the table= a GW SL exceedance;

results only exceeding the PAL and/or Tap Water criteria are not highlighted.

Statistics exclude the quality control samples (Equipment and Trip Blanks)

-- = Analysis not performed

< = Concentration is less than reported limit

μS/cm = microsiemens per centimeter (aka micromhos per centimeter)

 μ g/L = micrograms per liter

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius

J = Estimated Concentration

mg/L = milligrams per liter

(N) = Normalized sample locations created from combining parent and field

duplicate samples following EPA protocol

Screening Levels:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, three revisions of the RSLs have been published by EPA in November 2017, May 2018, and November 2018. As a result of these three revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

The Groundwater SL presented is the more conservative of the State and MCL values from the RAF Addendum Revision 6.

PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (Feb 2017)

NS = No Screening Level

NO2 + NO3 = nitrite plus nitrate

NTU = Nephelometric Turbidity Unit

PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit; results that attain or exceed this criteria are considered in exceedance of the PAL

RNA = Remediation by Natural Attenuation (lab and field)

RSL = Regional Screening Level

s.u. = standard units

SL = Screening Level

U = Concentration was not detected above the reported limit

Lab comments and definitions can be found in associated laboratory reports.

