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Abstract. Satellite instruments provide high-temporal-
resolution data on a global scale, but extracting 3D infor-
mation from current instruments remains a challenge. Most
observational data are two-dimensional (2D), offering either
cloud top information or vertical profiles. We trained a neural
network (Res-UNet) to merge high-resolution satellite im-
ages from the Meteosat Second Generation (MSG) Spinning
Enhanced Visible and InfraRed Imager (SEVIRI) with 2D
CloudSat radar reflectivities to generate 3D cloud structures.
The Res-UNet extrapolates the 2D reflectivities across the
full disk of MSG SEVIRI, enabling a reconstruction of the
cloud intensity, height, and shape in three dimensions. The
imbalance between cloudy and clear-sky CloudSat profiles
results in an overestimation of cloud-free pixels. Our root
mean square error (RMSE) accounts for 2.99 dBZ. This cor-
responds to 6.6 % error on a reflectivity scale between −25
and 20 dBZ. While the model aligns well with CloudSat data,
it simplifies multi-level and mesoscale clouds in particular.
Despite these limitations, the results can bridge data gaps and
support research in climate science such as the analysis of
deep convection over time and space.

1 Introduction

Clouds and their interdependent feedback mechanisms have
been a source of uncertainty in Earth system models for
decades. Their influence on atmospheric gases and general
circulation patterns is evident (Rasp et al., 2018; Shepherd,
2014; Bony et al., 2015). In a world affected by climate

change, we require an accurate representation of cloud dy-
namics today more than ever (Norris et al., 2016; Stevens
and Bony, 2013; Vial et al., 2013).

In recent years, observational data from remote sensing in-
struments have been used to investigate cloud properties on
multiple scales (Jeppesen et al., 2019). Nevertheless, tech-
niques to detect three-dimensional (3D) cloud structures on
a large scale are not yet established (Bocquet et al., 2015).
Observations from passive sensors on geostationary satellites
have a high spatiotemporal coverage, but they are limited
to monitoring the uppermost atmospheric layer in 2D (Noh
et al., 2022). By using the satellite’s specificity at different
wavelengths (Thies and Bendix, 2011) and subjective label-
ing or fixed thresholds (Platnick et al., 2017), we can esti-
mate cloud physical properties like the cloud optical thick-
ness (Henken et al., 2011) or the effective radius (Chen et al.,
2020). In contrast, active radar penetrates the cloud top and
delivers information on the subjacent reflectivity distribution
(Barker et al., 2011). The radar receives detailed informa-
tion on the cloud column along a 2D cross section with a
high ground resolution and constant sun illumination. Due
to its sun-synchronous orbit, it observes the same spot at the
same local time. Compared to geostationary satellites, the ac-
tive radar does not provide a continuous spatial and temporal
coverage (Wang et al., 2023). Passive sensors can be used to
deliver an approximation of the cloud vertical column, but
their information density is reduced compared to active sen-
sors (Noh et al., 2022). Combining data sources can fill cur-
rent data gaps (Amato et al., 2020; Steiner et al., 1995). The
combined use of different instruments has been investigated
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before. This research comprises the usage of statistical al-
gorithms (Miller et al., 2014; Seiz and Davies, 2006; Noh
et al., 2022), the integration of radiative transfer approaches
(Forster et al., 2021; Zhang et al., 2012), or the derivation
of the multi-angle geometry of neighboring clouds (Barker
et al., 2011; Ham et al., 2015) to reconstruct the cloud verti-
cal column.

Emerging facilitators of data availability, like open-data
policies and improved technological standards, enable effec-
tive processing of memory-consuming data (Irrgang et al.,
2021; Rasp et al., 2018). This development promotes a fur-
ther integration of computer science methods in climate sci-
ence (Jeppesen et al., 2019; Liu et al., 2016). Ever-growing
quantities of data surpass the capability of the human mind
to extract explainable information efficiently (Lee et al.,
2021; Karpatne et al., 2019). Here, the usage of artificial
intelligence (AI) has been assigned a primary role (Runge
et al., 2019). Cloud properties have been analyzed before by
machine-learning (ML) algorithms (Reichstein et al., 2019;
Marais et al., 2020). The recent technological advances en-
able unprecedented operations (Amato et al., 2020). Deep-
learning (DL)-based networks are suitable for identifying
spatial, spectral, and temporal patterns in big data (Jeppesen
et al., 2019; Hilburn et al., 2020). In contrast to traditional
ML frameworks, they do not require manual feature engi-
neering (Le Goff et al., 2017). Adapting DL frameworks to
applications in climate science offers new perspectives for a
gain in knowledge (Rolnick et al., 2022; Jones, 2017).

So far, cloud properties have been investigated by DL al-
gorithms in various applications. These comprise the detec-
tion (Drönner et al., 2018) and segmentation of cloud fields
(Jeppesen et al., 2019; Lee et al., 2021; Le Goff et al., 2017;
Tarrio et al., 2020; Cintineo et al., 2020) or the classifica-
tion of distinct cloud types from meteorological satellites and
aerial imagery (Marais et al., 2020; Wang et al., 2023). Zant-
edeschi et al. (2022) used a neural network to bring together
information from an active radar and high-resolution satellite
images to reconstruct cloud labels. Regressive models were
used to predict rain rates (Han et al., 2022) or convective
onset (Pan et al., 2021) for an improved weather forecast.
These studies are often limited to reflecting horizontal pro-
cesses within the cloud field. Current studies by Hilburn et al.
(2020) and Leinonen et al. (2019) use AI techniques such
as convolutional neural networks (CNNs) and conditional
generative adversarial networks (CGANs) to address this is-
sue. They reconstruct the 1D cloud column (Hilburn et al.,
2020) or the 2D cross section of the input data (Wang et al.,
2023). To the best of our knowledge, no extrapolation of 2D
radar data to a large-scale 3D perspective was conducted be-
fore (Wang et al., 2023; Dubovik et al., 2021). Clouds move
within a 3D space. This limits the prediction of multi-layer
and mesoscale events by a 1D or 2D pixel-wise reconstruc-
tion (Hilburn et al., 2020). Models that do not consider the
spatial coherence between pixels fail to reconstruct compre-
hensive cloud structures (Hu et al., 2021). Image segmen-

tation approaches like the UNet (Ronneberger et al., 2015;
Jiao et al., 2020; Wieland et al., 2019) may reconstruct the
ground truth data more adequately. They can be used to pro-
vide the indicators for predicting clouds in 3D with their ad-
jacent boundaries, shadow locations, and geometries (Wang
et al., 2023). This can lead to a more realistic representation
of the predicted clouds (Jiao et al., 2020).

In this study, we employ a modified Res-UNet (Diakogian-
nis et al., 2020; Hu et al., 2021) to integrate 2D data from ac-
tive (polar-orbiting satellite, radar) and passive (geostation-
ary satellite, spectrometer) instruments to reconstruct a 3D
cloud field. Previous studies focused on reconstructing the
1D cloud column or 2D cross section. In contrast, our ap-
proach utilizes a DL framework to predict the radar reflec-
tivity, not only along the radar cross section, but also across
the entire satellite full disk (FD). We use the radar height
levels to extend 2D satellite channels to a 3D perspective.
The goal is to establish a spatiotemporally consistent cloud
tomography solely based on observational data. Predicted re-
flectivities can enhance the availability of 3D resolved cloud
structures, particularly in regions with limited data.

2 Methods

2.1 Data overview

Our approach uses observational data from two different re-
mote sensing sensors to predict a 3D cloud tomography. The
input data for the neural network originate from a geostation-
ary satellite. We use data from the European Organisation
for the Exploitation of Meteorological Satellites (EUMET-
SAT) Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) instrument on the Meteosat Second Generation (MSG)
satellite (EUMETSAT Data Services, 2023). This sensor ob-
serves the Earth from a height of 36 000 km and provides
2D satellite images at a high spatial and temporal resolu-
tion. The ground truth of the study is derived from an active
radar on board the CloudSat satellite which moves in a sun-
synchronous orbit (CloudSat Data Processing Center, 2023).
The 2D profiles along the track contain information on the
cloud reflectivity. In our study, we feed the MSG SEVIRI
data into a neural network to reconstruct the CloudSat radar
reflectivity and extrapolate the 2D profiles to a 3D perspec-
tive.

2.1.1 Geostationary satellite images

Satellite images from the MSG SEVIRI instrument display
the input for the network (later referred to as “imager data”)
(Schmetz et al., 2002). Observing the Earth’s surface in inter-
vals of 15 min and with a spatial resolution of 3 km at nadir,
MSG SEVIRI provides information in 12 channels centered
within wavelengths from 0.6 to 132 µm (Benas et al., 2017).
Depending on the wavelength and daytime of retrieval, the
channels are sensitive to reflected solar radiation or surface
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Table 1. Overview of the MSG SEVIRI channels (Schmetz et al.,
2002). “n/a” stands for “not available”.

Channel Center (µm) Range (µm) Type

VIS0.6 0.635 0.56–0.71 Solar reflective
VIS0.8 0.81 0.74–0.88 Solar reflective
NIR1.6 1.6 1.5–1.78 Solar reflective
IR3.9 3.92 3.48–4.36 Both
WV6.2 6.25 5.35–7.15 Thermal IR
WV7.3 7.35 6.85–7.85 Thermal IR
IR8.7 8.70 8.30–9.10 Thermal IR
IR9.7 9.66 9.38–9.94 Thermal IR
IR10.8 10.8 9.80–11.80 Thermal IR
IR12.0 12.0 11.00–13.00 Thermal IR
IR 13.4 13.4 12.40–14.40 Thermal IR
HRV n/a 0.5–0.9 Solar reflective

emissions (Table 1). They can be applied to approximate
cloud physical properties (Sieglaff et al., 2013). Our ap-
proach uses 11 channels. The high-resolution visible (HRV)
channel is excluded due to its different resolution and uncer-
tain added value. Three of the channels are sensitive to solar
radiation, which restricts us to using only daytime data. We
reformat all imager data onto a spatial grid with geographic
coordinates, employing the global reference system WGS84
(Drönner et al., 2018). Each pixel has a resolution of 0.03◦ in
both width (W ) and height (H ). To account for diminishing
accuracy from the Equator to the poles, we exclude the ar-
eas near the sensor boundaries (Bedka et al., 2010). The des-
ignated area of interest (AOI) extends 60◦ in all directions,
marking the boundaries of the new FD.

2.1.2 Radar data

Within the CloudSat (CS) GEOPROF-2B product, a nadir-
looking 94 GHz cloud profiling radar (CPR) delivers infor-
mation on the cloud reflectivity on the logarithmic dBZ (deci-
bel relative to Z) scale (later referred to as “radar data”)
(Stephens et al., 2008). The radar receives a 2D cross section
of the cloud column with a horizontal resolution of 1.1 km.
The vertical dimension (Z) comprises 125 height levels with
a bin size of 240 m (Guillaume et al., 2018). From the ground
surface to the lower stratosphere, the vertical extent covers
30 km. We use the reflectivity transects as the ground truth to
train and evaluate the model. In the subsequent steps, we ad-
just the height levels of the radar. The lower altitudes, specif-
ically those between 0 and 3 km, are influenced by the to-
pography and a radar signal weakening due to attenuation
(Marchand et al., 2008). To enhance the model performance,
we omit the 10 lowest height levels. Since we notice a signif-
icant imbalance between clear-sky and cloudy pixels, we ex-
clude the predominantly cloud-free areas within the upper 25
height levels (Stephens et al., 2008). The final Z dimension
encompasses 90 height levels ranging from 2.4 to 24 km. We

note that, due to the sun-synchronous orbit of CloudSat, it
has a reduced ability to account for diurnal variations within
specific regions of the AOI (Stephens et al., 2008).

2.1.3 Matching scheme

We obtain training data for our study by aligning MSG SE-
VIRI scenes with CloudSat radar data as shown in Fig. 1a.
To match the datasets, we compare their timestamps and lo-
cations. If the radar coordinates fall within the AOI, we deter-
mine the flight direction to identify whether CloudSat circles
the Earth in ascending or descending orbit. We then extract
images of 128×128 (H×W ) pixels from each MSG SEVIRI
channel along the radar coordinates using a moving-window
approach with a 50 % overlap between image–profile pairs
(Denby, 2020; Jeppesen et al., 2019).

We prepare the matched image–profile pairs for further
processing. To do this, we combine the 11 MSG SEVIRI
channels into a single 3D array with dimensions 11× 128×
128 [C×H ×W ] pixels. CloudSat flies across a horizontal
transect within the satellite scene. It has a higher native res-
olution than MSG SEVIRI. To align the datasets, we down-
sample the radar pixels by aggregating them based on the
local maximum reflectivity. This adjusts the CloudSat pixels
to the MSG SEVIRI resolution of 0.03◦ but leads to some
loss of sharp contrast in radar pixels (Jordahl et al., 2020).
We standardize the data shape by transforming the 2D cross
section into a sparse 3D array of 125×128×128 [Z×H×W ]
pixels, representing reflectivities along the cross section. Af-
ter downsampling, the transect becomes 1 pixel wide. We
label pixels outside the transect as missing values to main-
tain the CloudSat data location during training. We use these
pixel indices to compute the loss between the CloudSat data
and the predicted cross section and to evaluate the model per-
formance.

2.1.4 Data processing

Before training the model, we process the extracted image–
profile pairs. We utilize a full year of data (2017) to in-
corporate seasonal variations into the modeling process. We
split the 30 000 matched image–profile pairs, with 75 % (Jan-
uary to September) used for training and 25 % (October to
December) for validation. Our test set is derived from data
in May 2016, from which the matching algorithm extracts
1500 image–profile pairs. We impute missing data in the 3D
MSG SEVIRI array by an interpolation of neighboring pix-
els (Troyanskaya et al., 2001). Afterwards, data from each
satellite channel x were normalized between [0,1] by

x′ =
x−µ

σ
(1)

using the arithmetic mean µ and standard deviation σ of
the training data (Leinonen et al., 2019). As described in
Sect. 2.1.2, we reduce the height levels of the CloudSat pro-
file from 125 to 90 (Fig. 1b). We use the CloudSat quality in-
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Figure 1. Workflow of the study. Panel (a) shows the moving-window approach used for matching the radar and the imager data. Steps
needed for the processing of both datasets are depicted in panel (b). In panel (c), the architecture of the proposed Res-UNet is illustrated.
The upper row shows an example of the input data, ground truth (with reduced 90 height levels and full transparency for values 5−25 dBZ),
and output, respectively. The location of the radar transect within the 3D output image is pictured with full opacity. The numbers alongside
the boxes in the architecture sketch refer to the feature channels (right) and image sizes (left) at the given model depth.

dex to identify noisy pixels. Pixels with a quality index lower
than 6 were set to a background value of −25 dBZ to reduce
noise (Marchand et al., 2008). All radar reflectivity values
ZdB were normalized between [−1,1] as follows:

Z′dB = 2
ZdB+ 35dB

55dB
− 1, (2)

where the maximum and minimum reflectivities are between
[−35,20] (Stephens et al., 2008; Leinonen et al., 2019). The
CloudSat data are highly skewed towards clear-sky samples.
We limit the percentage of cloud-free profiles to 10 % to
tackle this imbalance (Jeppesen et al., 2019).

2.2 Model architecture and training

Neural networks can capture highly complex relationships
between input and output data (Lee et al., 2021). The Res-
UNet used in this study displays a modified framework de-
signed for remote sensing data (Dixit et al., 2021). Additional
residual connections and continuous pooling operations aim
to reduce the dependence of the network on the input’s lo-
cation (Diakogiannis et al., 2020). Former studies using the
Res-UNet dealt with the classification of tree species (Cao
and Zhang, 2020) or the prediction of precipitation (Zhang
et al., 2023). The obtained results emphasize the ability of the
Res-UNet to adequately address the importance of the spatial

coherence in environmental research (Marais et al., 2020). In
this study, we derive the cloud reflectivities (dBZ) from the
satellite channels by a regression task (Hilburn et al., 2020;
Zhang et al., 2023).

As introduced by Ronneberger et al. (2015), the UNet and
its modifications provide an almost symmetrical architec-
ture. The network architecture of the Res-UNet is shown in
Fig. 1c. The parameters of the network are listed in Table A1
in Appendix A. Each box represents the layer sizes on the
encoder and decoder sides. On the right-hand side of each
box, the filter size is given. The respective height and width
are given on the left-hand side.

The Res-UNet consists of six residual blocks, each includ-
ing two 2D convolutions (3×3 kernel, stride 1) and rectified
linear unit (ReLU) activation (Diakogiannis et al., 2020). On
the encoder side, we add batch normalization. The output is
merged with a skip connection that consists of one 2D con-
volution (3× 3 kernel, stride 1) and a batch normalization.
Adding the skip connection and the convolutional layer rep-
resents the output of a residual block.

We increase the channel dimension of the initial imager
data from 11× 128× 128 pixels with a 1× 1 2D convolu-
tion to a feature map of size 32× 128× 128. In the encoder
branch, we then employ a sequence of three residual blocks
with doubling filter sizes, each followed by a 2×2 maximum
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pooling layer (Lee et al., 2021). We subsequently reduce the
feature map size to 256× 16× 16 pixels in the bottleneck
layer. Here, we apply two 2D convolution layers, followed
by batch normalization and ReLU activation.

The decoder side features three residual blocks, each with
an upsampling layer (2D convolution, 2× 2 kernel, stride 2)
and a corresponding skip connection from the encoder. After
upsampling, we apply a residual block with 2D convolution
(3× 3 kernel, stride 1) and ReLU activation, doubling the
spatial extent to match the skip connection while halving the
channel dimension (Li et al., 2018). The final 1× 1 convolu-
tion maps the output to 90× 128× 128 pixels, representing
the 90 height levels of the radar cross section (Jeppesen et al.,
2019). We remove the border pixels of the output, resulting
in a final radar reflectivity output of 90× 100× 100 pixels
(C×W×H ). Predicted reflectivities are scaled between−35
and 20 dBZ, with values below −25 dBZ considered cloud-
free (Leinonen et al., 2019).

We conducted the training for 50 epochs with a batch size
of 4 and a weight decay of 0.00001 (see Table A1 in Ap-
pendix A). We have 1 893 328 total trainable parameters. The
estimated total size of the model is 194.27 MB (see Table B1
in Appendix B). We use the adaptive moment estimation
(ADAM) method for model optimization due to its fast con-
vergence rate (Kingma and Ba, 2014). The learning rate is
initially set to 0.001 (see Table A1 in Appendix A). It is re-
duced by a learning rate scheduler during the training process
when reaching a plateau. To enhance the number of training
data, we give all input data a chance of 25 % of being rotated
by 90◦ (Jeppesen et al., 2019). These flipped images are per-
ceived as new samples. The goal is to increase the model
invariance to the orientation of the radar cross section.

2.3 Evaluation

2.3.1 Analyzing and comparing the model performance

The model performance is quantified during training (loss
function) and is evaluated afterwards by calculating the root
mean square error (RMSE) (see Table A1 in Appendix A).
The RMSE is equally able to penalize misses and false
alarms (Lee et al., 2021). As described in Sect. 2.1.3, we pre-
serve the pixel indices of the CloudSat cross section within
each image–profile pair during training. We use the locations
of these pixels to filter the observed and predicted transects.
The RMSE is calculated along the filtered cross sections.
Since it is only evaluated on a small subset of 10 % of all the
pixels, we have a sparse regression task (Wang et al., 2020).
We cannot quantify the model performance on the full 3D
prediction of the cloud field.

The results of the Res-UNet are compared against two
competitive methods (Drönner et al., 2018). First, we predict
the radar reflectivity by an ordinary least squares model with
multiple regression outputs (OLS). The 11 satellite channels
were used as independent predictor variables. The output is a

1D cloud column. Second, a random-forest (RF) regression
is applied (Breiman, 2001). The RF is a supervised ML al-
gorithm suitable when working with environmental datasets
in the natural sciences (Boulesteix et al., 2012). Its feasibil-
ity for complex meteorological data was investigated before.
For example, McCandless and Jiménez (2020) used a RF re-
gression to detect clouds. Our study uses a setup with 100
trees, each choosing a random subset of satellite channels to
predict the reflectivity along a 1D cloud column. We use the
same training, validation, and test split as for the Res-UNet.
For each image–profile pair, we filter the 3D array to locate
the radar cross section. This transect is separated into 1D
cloud columns. For every pixel along the cross section, we
receive a ground truth in the form of 90× 1 [Z× (H,W)].
The 3D array containing the satellite channels was filtered
by the radar profile location and was divided into images of
size 11× 1 [C,(H,W)]. The OLS and RF map the imager
data to an output size of 90×1 pixels [Z× (H,W)]. We cal-
culate the RMSE between the observed and predicted cloud
columns and scale the output between −35 and 20 dBZ. We
reconstruct the 2D transect by the preserved index of each
pixel of the cross section. These profiles are compared to the
output of the Res-UNet.

2.3.2 Merging 3D reflectivities on the FD

We predict the radar reflectivity for each MSG SEVIRI file
in the test dataset (May 2016) using the trained Res-UNet.
The result is a contiguous 3D cloud tomography for every
15 min time step. The MSG SEVIRI FD covers an extent of
2400×2400 pixels. For the FD prediction, we divide the FD
into overlapping subsets of 128× 128 pixels. These subsets
are processed and fed into the network. The output is a 3D re-
flectivity image of 90×100×100 pixels [Z×H×W ], which
equals 2.5◦ on the MSG SEVIRI grid. We merge the tiles to
cover the whole satellite AOI. Between the tiles, there is no
overlap. The goal is to evaluate the network’s ability to ex-
trapolate a large-scale cloud field from single tiles.

2.3.3 Computing the cloud top properties

To the best of our knowledge, there exist no comparable
datasets on the 3D cloud tomography in this study. Instead
of a quantitative evaluation of the reflectivity, we evaluate
the predictions based on their ability to derive the cloud top
height (CTH) (Wang et al., 2023). We use the FD predic-
tions for the test dataset (May 2016) for the computation. The
CTH is defined as the distance between the ground surface
and the uppermost cloud layer for every 1D vertical column
(Huo et al., 2020). This calculation requires conversion of the
height levels to a kilometer scale. We use a fixed threshold
of −15 dBZ to differentiate a cloudy pixel from a clear-sky
pixel (Marchand et al., 2008). The result is a binary classifi-
cation for each pixel in the 3D cloud field. In this dataset, we
extract the CTH as the cloud top signal in each 1D cloud col-
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Figure 2. Height-dependent reflectivity distribution for every height bin between 2.4 and 24 km for the CloudSat data (CS CPR) (a), the
Res-UNet (b), the ordinary least squares model (OLS) (c), and the random-forest (RF) regression (d) (n= 1500).

umn of the FD. We aggregate the results on a monthly scale
and compare the predicted CTH to the operational product
CLAAS-V002E1 (CLoud property dAtAset using SEVIRI,
Edition 2) (Finkensieper et al., 2020). It is based on the MSG
SEVIRI channels and additional model data and provides
information on the macrophysical and microphysical cloud
properties. We use a monthly aggregate with a resolution of
0.05◦ on the MSG SEVIRI FD.

3 Results

3.1 Evaluating the reflectivity distribution

We analyze the ability of the three models (Res-UNet, OLS,
and RF) to reconstruct the cloud vertical distribution for the
test dataset in May 2016 (Sect. 2.3.1). The OLS and RF pre-
dict a 1D column, whereas the output of the Res-UNet com-
prises a 3D image of the cloud field. We filter all outputs
by the preserved location of the radar cross sections to de-
rive the original 2D transect. At first, we compute the height-
dependent reflectivity distribution of the CloudSat data and

the three models. Due to the applied quality flag (Sect. 2.1.4),
we have few observations below 5 km height (Fig. 2a). This
leads to a shift in low height levels. The models overestimate
cloud-free values below −25 dBZ. The CloudSat reflectivi-
ties have a peak at 0–10 dBZ between 5 and 7 km. A second,
weaker peak is observed between 12 and 15 km for reflec-
tivities < 0 dBZ. All the predictions underestimate the first
peak > 0 dBZ. Instead, they overestimate the occurrence of
reflectivities <−20 dBZ (Fig. 2b–d). The OLS shows an es-
pecially high shift towards low reflectivities. The Res-UNet
predicts low reflectivities <−20 dBZ along all the height
levels between 5 and 15 km, whereas we observe a distinct
peak at 5 km for the RF.

We analyze the difference between the observed and pre-
dicted reflectivities by a 2D joint distribution plot. For this
purpose, we calculate the density distribution of the reflec-
tivity between 2.4 and 24 km. Here, we use a bin size of
1 dBZ and 240 m height, respectively (Steiner et al., 1995).
All the distributions are calculated on the test dataset and
are normalized by the distribution size (n= 1500). Predic-
tions differ from the original radar data, especially for val-
ues > 0 dBZ and at low altitudes (Fig. 3). In the joint plot,
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the highest agreement appears in the form of a curved line
between low reflectivities > 15 km and high reflectivities at
7 km. The results indicate an overestimation of high reflectiv-
ities and an underestimation of low reflectivities, especially
for low-level clouds. Since we observe few clouds at high al-
titudes (Fig. 2a), the distribution differences become smaller
above 15 km. The joint plot shows a similar distribution for
the Res-UNet and the RF, whereas the error of the Res-UNet
is slightly lower for reflectivities between −15 and 0 dBZ
(Fig. 3a and c). We observe few predictions > 0 dBZ and
a strong overestimation of reflectivities <−20 dBZ for the
OLS (Fig. 3b).

3.2 Height-dependent model performance

We analyze the model error (RMSE) along the vertical cloud
column. For all the models, we calculate the mean RMSE
on the test dataset between 2.4 and 24 km. The results show
an overall lower RMSE for the Res-UNet than for the OLS
and RF (Fig. 4). The mean RMSE varies between 2.99 dBZ
(Res-UNet), 4.1 dBZ (RF), and 4.58 dBZ (OLS). On a dBZ
scale between−25 and 20 dBZ, this is equivalent to errors of
10.1 % (OLS), 9.1 % (RF), or 6.6 % (Res-UNet). Between
2.4 and 5 km, the RMSE is 0. This is due to the lack of
CloudSat observations after filtering noisy pixels (Fig. 2a).
Between 5 and 7 km, the RMSE increases to up to 8 dBZ
for the Res-UNet, 10 dBZ for the RF, and 12 dBZ for the
OLS (Fig. 4). At higher altitudes, the performance of all the
models improves. The RMSE decreases to 4 dBZ (5.7 dBZ,
6 dBZ) for the Res-UNet (RF, OLS) at 15 km and reaches its
minimum at 22 km (24 km for OLS and RF). Above 15 km,
we have few CloudSat observations > 15 dBZ (Fig. 2a). We
observe a lower model error (Fig. 4) and reduced the differ-
ence between the distributions (Fig. 3) at these height lev-
els for all three models. The improved performance can be
traced back to the superior number of background reflectiv-
ities or the presence of more uniform clouds, like extended
tropical cirrus. Over all the height levels, the Res-UNet has
the lowest RMSE of the three models. Compared to the OLS
(RF), the mean RMSE of the Res-UNet is reduced by 34,8 %
(27,1 %).

Figure 5 shows the predicted and observed reflectivities
along the radar transect for four randomly chosen samples.
For all the models, the reconstructed cloud signal is predicted
at the right horizontal location along the cross section. Clear-
sky situations of−25 dBZ are recognized without noise. The
cross sections in Fig. 5a are created using processed Cloud-
Sat reflectivities with a resolution of 0.03◦. Although the
radar pixels lose some sharp contrasts after the downsam-
pling, we observe a higher blurriness for the predictions. The
edges of individual clouds smear out for all three models.
Even though all the transects were labeled “cloudy”, we see
a high percentage of background pixels.

For the Res-UNet, we observe a RMSE between 3.3 and
8.2 dBZ. The overall shape and increased intensification to-

wards the cloud’s core follow the radar, even though edges
are blurred, and peak reflectivities remain underestimated
(Fig. 5b). This issue is reflected within the reflectivity dis-
tribution of the DL model (Fig. 2b). While the Res-UNet ac-
curately identifies single-layer clouds, it misses sharp edges
of multi-layer clouds, especially at mid altitudes. Clouds
over multiple height levels are blurry and show a reduced
small-scale accuracy in the vertical dimension (Fig. 5III).
The lower height levels of multi-layer clouds are only partly
represented (Fig. 5II and IV). Instead, we observe a simplifi-
cation of these cloud layers.

For the OLS and the RF, the underestimation of the cloud
core reflectivities resembles the Res-UNet (Fig. 5II and III).
All four examples show a higher RMSE for the OLS and RF
than for the Res-UNet (Fig. 5c and d). The difference varies
between 0.1 (I) and 2.7 (IV) dBZ. While the error is predomi-
nantly similar for all three models, the shape of the predicted
clouds differs (I, III). The OLS (RF) fails to accurately re-
construct the vertical extent in all the transects. Instead, the
reflectivity is uniform along the cloud column. We see a con-
tinuous cloud signal between 5 and 15 km (Fig. 5c). In con-
trast, the Res-UNet predicts the vertical variability more pre-
cisely (Fig. 5b). While the 2D profiles of the Res-UNet are
smooth, the RF and OLS lead to a fragmented structure with
a high value variability between the single pixels of the tran-
sect (I, IV). The examples show an inaccurate reconstruction
of shallow clouds and multi-layer clouds for the OLS and RF.

3.3 Geographic analysis of the 3D cloud tomography

With the trained Res-UNet, we predict clouds on the MSG
SEVIRI AOI. Since the network was trained using visible-
spectrum (VIS) channels, we cannot provide an accurate rep-
resentation of the nocturnal cloud field. An exemplary 3D
cloud tomography is predicted for 6 May 2016 at 13:00 UTC.
For that purpose, the satellite scene was divided into small
subsets of overlapping 128× 128 pixel images as described
in Sect. 2.3.2. After feeding each subset into the network, the
output tiles of 90× 100× 100 pixels were merged into a FD
scene of 90×2400×2400 pixels for the whole AOI (Fig. 6a).

The results contain a 3D cloud field along 90 height bins
between 2.4 and 24 km. As shown in Fig. 6a, the top view of
the maximum reflectivity per cloud column demonstrates the
absence of hard borders between single prediction tiles. Even
though CloudSat data are only available at the radar tran-
sects, we can extrapolate smooth cloud structures on the FD.
The example tiles (b)–(d) show a fluid transition between the
edges of single prediction tiles (Fig. 6). Each example spans a
horizontal extent of> 2.5◦ (100×100 pixels) to demonstrate
the absence of artifacts between the tiles. High-reaching con-
vective complexes (b) and large-scale structures (c, d) are ex-
trapolated at the FD scale regardless of their location. Even
though the overall reflectivity is underestimated, low-level
and multi-layer clouds are displayed as contiguous entities.

https://doi.org/10.5194/amt-17-961-2024 Atmos. Meas. Tech., 17, 961–978, 2024



968 S. Brüning et al.: AI-derived 3D cloud tomography from 2D data

Figure 3. Joint plot of the normalized difference between the observed and predicted reflectivities on the test dataset (n= 1500). For each
height bin between 2.4 and 24 km, we compare the CS CPR to the distribution of the Res-UNet (a), OLS (b), and RF regression (c).

Figure 4. Height-dependent RMSE for every height bin and the mean RMSE for all the models calculated on the test dataset (n= 1500).

We visualize the mean RMSE between 60◦ N and 60◦ S
to investigate zonal variations for the test dataset. The ge-
ographic analysis is used to evaluate the reliability of the
3D cloud tomography. The RMSE shows a high-latitudinal
variability. At 30–50◦ N, we observe the highest RMSEs of
6–7 dBZ (Fig. 7a). The RMSE at mid latitudes in the South-
ern Hemisphere is lower than in the Northern Hemisphere.
Nevertheless, the lowest RMSE is achieved in the tropics be-
tween 20◦ N and 20◦ S. We analyze the RMSE in relation to
the number of image–profile pairs originating in the match-
ing scheme in Sect. 2.1.3. Most image–profile pairs are lo-
cated around the Equator and at the mid latitudes (Fig. 7b).
Few pairs are matched around 10◦ N and 30◦ S. Regions at
the mid latitudes have the highest RMSE and the highest
number of observations. In the tropics, the RMSE is lower.
Here, we obtain a high number of image–profile pairs from
the matching scheme. The predicted cloud field shows high
geographic variability of the RMSE. We observe a higher
RMSE for the Northern Hemisphere than for the Southern
Hemisphere. Clouds in the subtropics are more accurately

represented than clouds at high latitudes. At the same time,
we lack observations here. The analysis emphasizes the im-
portance of the geographic location for the model predictions
as well as the influence of the CloudSat orbit.

3.4 Comparison of the predicted CTH

To evaluate the quality of the Res-UNet predictions, we com-
pare the reflectivity distribution between CloudSat and the
Res-UNet predictions. In a second step, we calculate the
CTH on the test dataset. The reflectivities in Fig. 8a are
provided on a logarithmic scale due to the high proportion
of cloud-free pixels around −25 dBZ (Fig. 8a and c). Val-
ues<−15 dBZ are visualized with a grey background. They
lie below the threshold used to determine a cloud signal for
the calculation of the CTH (Sect. 2.3.3). The distribution
of CloudSat and predicted reflectivities is similar for up to
−10 dBZ. For higher reflectivities, the distributions diverge.
As demonstrated in Fig. 2, the network fails to accurately re-
construct high reflectivities. The difference increases for re-
flectivities > 0 dBZ. Both reflectivity distributions are dom-
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Figure 5. Reconstructing the radar cross section for four random examples of the test dataset (n= 1500). Values 5−25 dBZ are displayed
transparently. We compare the reflectivity between the processed CloudSat cross sections (a) and the predictions of the Res-UNet (b),
OLS (c), and RF (d) for each transect (I)–(IV). The RMSE describes the error between the CloudSat data and the predicted profile.

inated by cloud-free pixels of −25 dBZ (Fig. 8c). The com-
parison shows the importance of the background value for
the whole distribution. For values>−15 dBZ, the difference
between the distributions decreases. The shift of the distribu-
tion is reflected in the CTH in Fig. 8b. Both datasets display
a maximum CTH at 7 km height. This first peak is overesti-
mated by the model. A second peak around 12–15 km height
is underestimated by the Res-UNet. The difference between
the predicted CTH is reflected within Fig. 8d. The mismatch
between the two peaks is about the same size. The under-
estimated second peak can be traced back to the inaccuracy
of the predicted reflectivities. The Res-UNet overestimates
reflectivities <−15 dBZ at all height levels up to 15 km. It
misses high reflectivities responsible for the peak of the CTH
at 12–15 km (Fig. 3b). Instead, we see an overall surplus of
background values in the FD prediction.

Calculating the CTH on the FD predictions substantially
increases the number of available data points compared to the
CloudSat data. Predicted images surpass the radar observa-
tions by a factor of 10 000. We use the 3D cloud tomography
to derive the FD CTH on the test dataset. For each time step,

we calculate the CTH on the FD and aggregate the results to
a monthly mean. These values are compared to the CLAAS-
V002E1 product with a resolution of 0.05◦ (Finkensieper
et al., 2020). The predicted CTH has a resolution of 0.03◦.
Due to this mismatch, our predictions show more fragmented
structures (Sect. 2.3.3). CloudSat faces sensor limitations at
low and high altitudes of the troposphere (Sect. 2.1.2). While
our analysis reveals an overall high agreement, the lack of,
e.g., thin clouds within the radar data can lead to a reduced
similarity between the CLAAS-V002E1 data and the pre-
dicted CTH. We observe a connection between the similarity
of the datasets and the hemisphere. In the Northern Hemi-
sphere, the highest number of image–profile pairs and the
highest CTH difference occur between 0 and 20◦ N. Between
the tropics of the Southern Hemisphere, the number of ob-
servations is similar, whereas the CTH difference is consid-
erably lower. The variability between the hemispheres can be
traced back to the distribution of land masses. A higher pro-
portion of oceans in the Southern Hemisphere and a modified
solar zenith angle affect the formation of clouds (Bruno et al.,
2021). The result is an increased model performance which
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Figure 6. Prediction of 3D cloud structures from the Res-UNet along the FD MSG SEVIRI domain with a top view of the maximum cloud
column reflectivity for each pixel on 6 May 2016 at 13:00 UTC (a). The detailed views in panels (b–d) span several tiles of 100×100 pixels
(2.5◦ on the geographic grid) to show the absence of artifacts between predictions.

might be caused by the existence of either more uniform or
less complex clouds.

Although the small-scale accuracy of the predicted CTH is
improvable, the results allow an investigation of regional dif-
ferences on the large scale. These differences arise especially
around the Equator and at mid to high latitudes (Fig. 9). At
mid latitudes, the CTH over water bodies is overestimated in
the Southern Hemisphere and underestimated in the North-
ern Hemisphere. These differences can be traced back to an
increased RMSE in these regions (Fig. 7). In contrast, a low
RMSE in the subtropics increases the accuracy of the pre-
dicted CTH. The model is biased toward predicting lower
clouds than the observational data. Overall, the Res-UNet
overestimates the occurrence of clouds in 6–8 km while un-
derestimating high clouds (Fig. 8b).

This issue is reflected within Fig. 10. Here, we visualize
the geographic distribution of the CTH difference (Fig. 10a).
The mean difference over all the pixels accounts for 1.28 km.
While the data show an overall agreement, the pixel-wise
difference rises to a maximum of 10 km. This applies es-

pecially to regions in the subtropics. We observe an under-
estimation of the predicted CTH over land. Above the At-
lantic Ocean, especially in the tropics, the predictions are too
high. The highest difference occurs in the subtropics in the
Northern Hemisphere (Fig. 10b). At 20◦ N, the mean dif-
ference accounts for 5 km. Around the tropics and mid lat-
itudes, both datasets are in higher agreement. The distribu-
tion of the CTH difference is inversely proportional to the
number of matched image–profile pairs (Fig. 7b). The CTH
difference decreases with an increasing number of observa-
tional data from CloudSat. This applies to predictions over
land and sea. Since we lack ground truth in the subtropics,
the performance of the predictions decreases. The geograph-
ical differences are only partly in accordance with the dis-
tribution of the RMSE (Fig. 7a). While the RMSE is lower
in the northern subtropics, the error of the predicted CTH
reaches its peak (Fig. 10b). The RMSE alone does not ap-
pear to be a suitable measure for defining the reliability of
the predicted reflectivity on the FD. This is due to the influ-
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Figure 7. Zonal RMSE of the Res-UNet (a) and number of matched image–profile pairs used for model evaluation (b) for latitudes between
60◦ N and 60◦ S (n= 1500).

Figure 8. Comparing the reflectivity distribution and the derived CTH for CloudSat and the Res-UNet predictions. Data are calculated on
the test dataset and aggregated to a monthly mean (n= 1500). The upper-row frequencies (a) and (b) display the dBZ and computed CTH
for observed and predicted data. Lower-row images (c) and (d) show the difference between the observed and predicted data. Grey areas in
plots (a) and (c) contain reflectivities below the threshold of −15 dBZ applied for the CTH analysis.

ence of the skewed reflectivity distribution on the RMSE and
its geographic variability.

Even though the comparison of the CTH shows regional
differences, the predictions can be used to represent the CTH
pattern on the FD. The CLAAS-V002E1 data are computed
using the MSG SEVIRI imager data as well as derived prod-
ucts and additional data. Each of them brings its own bias,
potentially multiplying their effects on the final CTH. In con-
trast, our CTH is only based on the predicted reflectivity. In
that way, we can minimize the influence of additional data
sources.

4 Discussion

The Res-UNet makes predictions based on the MSG SE-
VIRI channels, preserving the spatial details and global con-
text during training (Wang et al., 2022). The error of the
model varies depending on cloud structure within the radar
cross section. Compared to pixel-based approaches like OLS,
the Res-UNet better reconstructs the pixel connectivity. The
OLS and RF operate on 1D cloud columns. This limits their
ability to extrapolate cloud information to a larger scale, re-
sulting in fragmented reconstructions (Fig. 5c and d). While
the RMSE and the reflectivity distribution are similar across
all the models, only the Res-UNet predicts a contiguous radar
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Figure 9. Monthly aggregation for the derived CTH for May 2016 (a) compared to CLAAS-V002E1 CTO (b).

Figure 10. Difference between CLAAS-V002E1 CTO and the computed CTH for May 2016. Panel (a) shows the geographic distribution on
the FD, panel (b) the zonal error.

cross section. Choosing a DL framework eliminates the need
for prior predictor variable selection (Kühnlein et al., 2014;
Leinonen et al., 2019). This can reduce the user bias in the
input data (Jeppesen et al., 2019; Jiao et al., 2020).

The Res-UNet shows a 30 % improvement in the mean
RMSE (Fig. 4). We could potentially further enhance the
model performance by utilizing a more complex architec-
ture. Our input data differ from typical grey-scale or RGB
images, as they comprise multiple input channels and re-
sult in 3D output (Drönner et al., 2018). Given the demands
of our data and resource constraints, we adapted a standard
UNet architecture rather than using a pre-trained model (Am-
ato et al., 2020). Selecting the RMSE as a loss function can
increase the blurriness in the results, particularly as model
bias grows (Mathieu et al., 2016). This issue becomes ap-
parent as all the models struggle to predict high reflectivities
(Fig. 2b–d). The predictions are influenced by an imbalance
within the CloudSat data, with the distribution of all the mod-

els skewed toward low reflectivities. A resolution mismatch
between CloudSat and MSG SEVIRI exacerbates this imbal-
ance, causing peak reflectivities to blur out (Fig. 5b–d).

Our study covers a large-scale AOI spanning 60◦ in all di-
rections. In contrast to the studies of Leinonen et al. (2019) or
Hilburn et al. (2020), we incorporate a diverse landscape into
our training. While Hilburn et al. (2020) focused on radar
signal reconstruction over the USA using land-based radar,
Leinonen et al. (2019) concentrated on radar cross-sectional
prediction over the sea. In our study, we match image–profile
pairs over land and the sea to achieve model invariance in
the topography. The performance of our Res-UNet is simi-
lar to their results. Nevertheless, we observe regional differ-
ence, especially for the CTH. We use a geographical analysis
to highlight the importance of the topography and land–sea
distribution and their impact on cloud microphysics (Wang
et al., 2023).
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We emphasize the influence of the geographic location
and the CloudSat orbit, particularly in regions farther from
the Equator, where sensor accuracy diminishes (Fig. 7). Cur-
rently, we estimate the model error to be mainly influenced
by the data imbalance and chosen loss function. In the fu-
ture, addressing the cloud parallax shift in high-angle satel-
lite observations could enhance the results by a more ac-
curate image–profile matching (Bieliński, 2020). The most
accurate predictions fall between 25◦ N and 25◦ S (Fig. 7),
while mid and high latitudes exhibit a higher RMSE. This is
likely due to the land–sea distribution and connected cloud
patterns. Over ocean bodies, the model overestimates the re-
flectivity (Fig. 10a). Using the water vapor channels could
lead to this distortion. Improved predictions are evident over
the Southern Hemisphere. Since CloudSat operates in a sun-
synchronous orbit, it misses diurnal variations in each region
(Sect. 2.1.2). In this study, we only derive daytime predic-
tions. This is due to the influence of solar radiation in VIS
channels (Hilburn et al., 2020; Jeppesen et al., 2019). Addi-
tional distortions may arise from VIS channels, as imager
data only represent the uppermost cloud layer. Depending
on the location, they can be highly influenced by the surface
albedo (Drönner et al., 2018). Training a model without the
VIS channels can help to achieve predictions independent of
the daytime. Reducing the extent of the AOI can mitigate the
geographic performance differences but limits the applica-
bility of the network. Training regional models and adjusting
the loss function and model architectures offer potential so-
lutions to improve the results of the 3D cloud tomography.

The reconstructed CloudSat cross sections are comparable
to results achieved by Leinonen et al. (2019). For both stud-
ies, the RMSE varies between 0 and 1 dBZ for cloud-free
samples, between 3 and 7 dBZ for more uniform clouds, and
by more than 10 dBZ for multi-layer clouds. A common lim-
itation is accurately representing multi-layer clouds. Using
the satellite channels to derive this information may be lim-
ited (Schmetz et al., 2002; Thies and Bendix, 2011). High
reflectivities tend to be underestimated due to noise near the
ground (Stephens et al., 2008). To mitigate this, we exclude
affected height levels, but this results in incomplete model
predictions between 0 and 5 km (Fig. 2). Reducing noise is
crucial for improving the performance of DL applications
in remote sensing (Enitan and Ilesanmi, 2021). Our results
are significantly influenced by the resolution difference be-
tween CloudSat and MSG SEVIRI as well as the choice of
the loss function (Sect. 2.1.3). The aggregation of CloudSat
pixels blurs the contrast within individual clouds (Fig. 5a),
which is further reflected in the increased RMSE. In con-
trast, Leinonen et al. (2019) use data from the MODIS satel-
lite. It has a higher spatial resolution than the MSG SEVIRI
data, allowing for sharper predictions along the radar tran-
sect. However, polar-orbiting satellites like MODIS lack the
spatiotemporal coverage of geostationary satellites (Dubovik
et al., 2021). In their study, Wang et al. (2023) derive 24 000
training samples for matching CloudSat and MODIS over

6 years. By using MSG SEVIRI data, we amplify the vol-
ume of the training data. We have extracted approximately
30 000 training samples from 1 year of imager data, which
results in a ratio of about 1 : 7.

Currently, a compromise on the resolution is necessary to
obtain predictions for Europe and Africa. However, promis-
ing new instruments are emerging. While data from com-
parable sources like the GOES-R series and the Himawari
8/9 satellites already offer a 1 km resolution, the recently
launched Meteosat Third Generation satellite by EUMET-
SAT allows us to close the gap and enables a more precise
representation of individual clouds (Holmlund et al., 2021).
Although our approach currently focuses on a region cen-
tered around 0◦ longitude, we can apply the same frame-
work to other geostationary satellites, potentially achieving
global 3D cloud coverage throughout the troposphere. The
predicted cloud field can be valuable for time series anal-
ysis, enabling the tracking of clouds in four dimensions
across space and time. Our results facilitate the identifica-
tion of large-scale cloud patterns. They offer various appli-
cations, such as analyzing cloud organizational structures,
pinpointing lightning locations, or conducting precipitation
onset analyses. While we use CloudSat radar data as our
ground truth, we need to evaluate whether this approach can
be adapted to other 2D transect data sources, such as aerosol
measurements. Former studies already derived aerosol prop-
erties from imager data (Carrer et al., 2010). The DL frame-
work could help to achieve a full 3D retrieval of aerosols.

5 Conclusions

With the help of a neural network, we demonstrate for the
first time the potential to infer comprehensive 3D radar re-
flectivities from 2D geostationary satellite images. While for-
mer studies were confined to a smaller region or the recon-
struction of the 2D radar transect, we provide a framework
to model the 3D cloud field at a high spatiotemporal reso-
lution. The study is focused on Africa and Europe, but the
approach can be used to predict the radar reflectivity on a
global scale. Using only the predicted reflectivity, we derive
the CTH without external data sources. Overall, the approach
accurately reconstructs cloud structures under varying envi-
ronmental conditions on the FD. Although the results are af-
fected by sensor-specific and technical limitations, a vast po-
tential for applications in atmospheric and climate sciences
is apparent. With steadily growing data and the emergence
of improved instruments, the results can close the existing
global data gap. We emphasize the benefit of extrapolating a
3D cloud field, especially in remote oceanic regions. Future
work will focus on extending the proposed network by data
with an enhanced spatial and temporal resolution and inves-
tigating 3D cloud processes in active applications.
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Appendix A: Overview of Res-UNet parameters

Table A1. Hyperparameters and training parameters of the Res-UNet.

Type Parameter Value

Hyperparameters Depth 4
Input channels 11
Output channels 90
Filter size 3× 3
Pooling size 2× 2
Dropout 0
Activation function ReLU

Training parameters Number of epochs 50
Batch size 4
Input size 128× 128
Crop size 100× 100
Initial learning rate 0.001
Learning rate (LR) scheduler (factor) 0.1
Optimizer ADAM
Weight decay 0.00001
Loss function RMSE
Augmentation (horizontal flip) Randomness= 50%

Appendix B: Summary of trainable model parameters

Table B1. Total number of Res-UNet model parameters.

Total number of trainable parameters Estimated total size (MB)

1 893 328 194.27
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