
Mew/ 88 MUl Musk Card
See Story on

Page 3!
Photograph by S t e v e W e d e e r t

Compose Yoursetf with the Mew
By Thomas G. Schneider

M!TS Aitair 88-!V!U1
Through the gray gloom and the mid-

night mist swirling around the gnarled
branches of long-dead vegatation, the
castle loomed dark and foreboding on the
edge of a huge cliff. I viewed the scene
with some apprehension, but called to the
driver to move on. When the ancient creaky
carriage finally rumbled into the cobble-
Stoned courtyard, I thought that I heard
swells of medieval organ music booming
ominously through the stone walls. "How
gothic,." I quipped to myself, jumping
down from the carriage and peering suspi-
ciously at the "KILOBAUD Sold Here"
sign in the window.

Approaching the heavy wooden door
with large brass knockers, I had a funny
feeling of deja vu. Hmm. Maybe it was
that Gene Wilder movie about monsters I
had seen recently. Just then the door
opened abruptly, and a black-cloaked
gentleman with pointed teeth appeared.
Bowing, he introduced himself as the count.

"You've probably heard this line
before," he said in a slow, thick accent,
"but, good evening. Welcome to my
castle. Your rooms are awaiting. Dinner
will be served at 8:00. Afterwards, we will
give the demonstration," he said with a
ghoulish smile as he turned to leave.

c o n t i n u e d page2

Editor
Assistant Editor
Production
A! McCahon

Contributor!)
Thomas G. Schneider Bennett Inkles Susan Blumenthal Robert Lopez Steve Grider Thomas Durston Gale Schonfetd Gary Runyon Lee Wilkinson Doug Jones Ken Knecht Doyi Watson

1 9 7 7
a subsidiary of Pertec Computer Corporation

2450 Alamo SE, Albuquerque, NM 87106

C N / N o v e m b e r 1 9 7 7

in this issue
Compose Yourself With the New Altair'" 88 MU1 1
Increase Data Storage Up to 80M 3
Z-80 CPU Increases Processing Capabilities 5
Attair'" 88-16MCD Compatible With 8800A 5
Use The Interrupt Vector In Single-Level Interrupt Systems 6
Floppy Disk: Does Your Drive Buzz During A Mount? 6
Program Allows Disk Timesharing to
Read Non-Timesharing Diskettes 7
Practical Programming 8
Letter Writing Program Solves
Photographers Mailing Problems 9
Trace Program Simptifies Debugging For Altair'* 680 10
Destroying Klingons Can Be Music to Your Ears 16
String Character Editing Routine Runs in BASIC 20
Computer Evaluates Human Logic: Generalized Version of "Master Mind" for Computers 23 Audiosyncracies 27
"Important Note On Page 19

O n e

"Te!l me more," I implored.
"Very welt." he sighed and provided

me with the following information.
The Altair 88-MU1 is a polyphonic six-

channel note generator card. With it, the
user can generate, under complete soft-
ware control, six independent musical
sequences all running simultaneously in
real time. The 88-MU1 comes with a
sophisticated, high-level software package
with full composition and editing capabil-
ities. !t also includes output connectors
designed to connect to most stereo ampli-
fiers. The software package will run in any
Altair disk system with at least 16K of
memory.

line. These characters will control such
functions as envelope shaping, filtering,
and vibrato effects. After all channels of
the composition have been entered, the
composition can be played at a variety of
tempos determined by the user.

For those users desiring musical
effects, the 88-MU1 can also be easily
accessed by user routines written in mach-
ine code. Figure 1 shows what the 88-MU1
looks like to software. The base address
can be set from 0 to octal 360 in increments
of 16. For even more flexibility, the
88-MU1 can accept two external signals:
one is the reference frequency for the

Attair"* Note Synthesizer Board (88 MU1)

As 1 prepared for dinner, I wondered
what he had in store for me. Strange man,
this count . . .1 couldn't help but think I
knew him from somewhere else. Oh well,
the demonstration would be interesting.

After a delicious repast of undeter-
mined substance, the count led me down a
wooden cobwebbed stairway to what I
assumed could only be the dungeon.
"Don't mind the ba t s , " he said. "They
give the place character." He fumbled with
the heavy iron padlock and pushed against
the old dungeon door. My heart raced.
Finally, the door gave way and slowly
creaked open to reveal an amazing spec-
tacle.

1 had expected to see an immense pipe
organ of the kind usually seen only in well-
preserved European cathedrals, but I was
wrong. Occupying all four walls of the
dungeon and reaching almost to the ceiling
was the largest collection of sound equip-
ment 1 ha5 ever laid eyes upon. Completely
covering three walls were woofers, tweet-
ers. midranges, folded homs, ring radia-
tors. and all sorts of sound reproducing
devices. The fourth wall was obscured by
racks and racks of high-power audio ampli-
fiers, tape machines, equalizers, and other
audio processing equipment. "Listen care-
fully," he said, flipping up a bat-handle
toggle switch.

The machinery clicked, popped, and
buzzed for several mintues before I finally
heard what I had come all this way to
experience. Emanating simultaneously
from hundreds of speakers came the most
musically precise rendition of Johann
Sebastian Bach's Toccata and Fugue in
D Minor that I had ever heard. Every
massive chord, every subtle passage was
accurately reproduced. But from where???
None of the tape machines were running...
something strange was going on here. As
strains of the Fugue floated through the
dungeon I asked the count how it was all
done.

"Very simply," he replied, pointing to
an object in the corner.

"An Altair? What are you doing with
an Altair? Counting bats?!"

"Let's not be silly, my good man , " he
said, somewhat miffed. "Nowadays,
what self-respecting vampire would be
without a computer? Besides, how else
could I make such splendid music?"

"You must be joking. How can a
microcomputer do all this? "

"Very easily," he said. "Since my
friends at M1TS came up with the 88-MU1
and the MOS DOS software for composi-
tion, I can play just about anything using
my Altair!"

Composition using the 88-MU1 soft-
ware is simple. The software allows the
creation of six independent text files which
can be saved and recalled from disk. Each
group of six files can be given a common
name up to eight characters long. The 88-
MU1 software also incorporates a powerful
text editor for listing Hies, inserting or
deleting liqes. and renumbering files.

Listing 1 is a sample listing for one
channel of a six-channel composition.
Each line contains three fields describing
note, octave and timing parameters. For
example, line 1 specifies a C note in the
fourth octave lasting 1/8 of a second. Line
2 specifies a D note in the fifth octave last-
ing 1 /8+1 /16 of a second. (The period
after the eight specifies a dotted eighth
note.) Line 3 specifies an F# note in the
seventh and eighth octaves lasting one
second. The length of each channel of a
composition is limited only by the amount
of memory in the user 's machine.

Listing 1
1 C , 4 , 8
2 D , 5 , 8
3 F#, 78,1
As the system is expanded, special

characters may be added to the end of each

88-MUl's pitch generator. This signal is
normally derived from the Altair 8800's
two MHZ clock, but can also be externally
applied by the user. For example, input-
ting a one MHZ signal will cause the
88MUl's entire range to be shifted down
one octave. The other signal is the soft-
ware synchronization signal. It normally
occurs at a frequency of 128 HZ, but can be
externally applied, giving the user control
of the rate of the composition execution
speed.

"This 88-MU1 is fascinating," I said
to the count.

"Yes indeed, most remarkable. . .but
unfortunately, I must be leaving you now,"
he said. "I t ' s getting close to dawn, so I
must retire. I trust the demonstration
pleased you." he remarked as he escorted
me to the courtyard where the same black
carriage was waiting. "Most impressive. I
enjoyed every bit of i t . ' '

As the carriage started rolling, I
couldn't help but lean out the window and
shout. 'Fangs a lot for everything!" The
count grimaced painfully as the carriage *
moved through the castle gate. But I
hurried on, eager to get home and treat my
Altair to a brand new 88-MU1.

T w o C N / N o v e m b e r 1 9 7 7

tncrease Data Storage up to 80 MBytes with Attair Hard Disk System
By Bennett htheles

MiTS

The new Datakeeper Hard Disk Sys-
tem (88-HDSK) from MITS offers a unique
form of expanded mass storage for Altair
8800 series microcomputers. It consists of
the Altair Datakeeper Controller and a
Pertec D3422 Hard Disk Drive. The 88-
HDSK has a data storage capacity of
approximately 10 MBytes.
(A 20 MByte drive option is also available.
Business management, education, and
scientific applications are among the
numerous possibilities in which the
88-HDSK may be incorporated.

The following components make up
and are included with the purchase of the
Datakeeper Hard Disk System:

A. Altair Datakeeper Controller in a
self-contained cabinet.

B. 1 pair of interconnect cables for
controller to computer connection

C. 1 cable assembly for controller to
Pertec Hard Disk Drive connection,

D. 1 Pertec D3422 Hard Disk Drive
with Fixed Platter.

E. 1 5440 Removable Top Loading
Cartridge with Altair Datakeeper
BASIC.

F. 1 set of Bootstrap Loader PROMs
for system initialization.

G. Datakeeper Hard Disk System
Documentation

The Datakeeper Controller acts as the
interface between the Hard Disk Drive and
the Altair 8800 computer. Up to four disk
drives may be interfaced with one control-
ler allowing a total storage capacity of
approximately 40 MBytes. The controller
unit includes a five-slot, bus-oriented
motherboard, three plug-in interface
boards and power supply. The plug-in
Interface boards are :

A. Processor Board-contains a 8 x
300 bipolar processor, TTL ROM,
IK byte of buffer RAM for data
transfers, and two bidirectional
1/0 ports for communicating with
the computer.

C N / N o v e m b e r 1 9 7 7 con t inued page 4 Three

Increase Data Storage
con t inued

B. Disk Data Board-has serial to
parallel and parallel to serial con-
verters, FIFO Registers, CRC
generator/checker, and bit count-
ers.

C. Disk Interface Board-includes the
write data rate clock, I/O ports, and
line drivers for communicating
with the Hard Disk Drive.

The Altair computer communicates to the
Datakeeper Controller through two ports of
an 88-4-PIO.

The 88-HDSK utilizes the Pertec
D3422 Hard Disk Drive with 24 sectored
format. It allows for approximately 5
MBytes of storage using the Fixed Platter
and increases to 10 MBytes when the
Removable Top Loading Cartridge is
added.

To properly implement the 88-HDSK,
the Altair 8800 series mainframe requires:

A. 48 K bytes of RAM memory (three
each of either the Altair 88-16MCD
or88-16MCS)

B. 2 parallel ports (one each of Altair
88-4 PIO and 88-PP)

C. 1 PROM Memory Card (Altair 88-
PMC)

D. Serial 1/0 Board for terminal com-
munication (Altair 88-2SI0)

E. Terminal-CRT or Teletype ^
The Datekeeper Hard Disk System

design emphasizes operational reliability
and user convenience. Turnkey Operation
assures fast and efficient power-up and
program loading. Modular construction
permits future expansion and easy compo-
nent access. The Pertec D3000 series
Hard Disk Drives have been proven in the
field in a wide variety of applications and
environments. This combination of opti-
mum design and ' 'state of the a r t" technol-
ogy further extends the programming and
data manipulation possibilities for the
Altair 8800 series.

Controller Specifications
A. Power Requirements

70 watts typical, 120 watts maximum
Wired for 105-130V, 50/60 HZ
210-260 V, 50/60 Hz available on re-

quest

B. Physica) Specifications
Size-Height5.3 in (13.5cm)
Width 16.85 in (40.5 cm)
Depth 17.3 in (41.5 CM)
Weight 20 lbs. (9.1 Kg)
Cabinet styling matches the Altair
8800b and 8800b Turnkey. A keyswitch
on the front panel controls the power
switch, and CPU Reset and Run mode.

Drive Specifications
A. Drive Type

Pertec D3422-E024-M WU
B. Data Storage Capacity

1 each Fixed Platter
4,988,928 Data Bytes

1 each 5440 type Removable Cartridge
4,988,928 Data Bytes

TOTAL 9,977,856 Data Bytes
C. Physical Format

Tracks per inch 200
Cylinders 406
Disk Surfaces 4
Tracks 1624
Sectors 24
Data Bytes/Sector 256

D. Serial Data Transfer Rate
2.5MBits/second, determined by:
Spindle speed - 2400 RPM
Density -2200BPI

E. Access Time
1. Latency - Maximum 25.0 m s ± 1%

- Typical 12.5 m s + 1 %
2. Seek Time - Minimum (Adjacent

Track) 10 ms, Max.
Average (% Full Stroke) 40 ms,

Max.
Maximum (Full Stroke) 65 ms, Max.

3. Total maximum access time to read
a Sector: 92 ms (25 ms Latency,
65 ms Seek, 2 ms Read)

F. Power Requirements
1100 watts Peak (start/stop cycle

only)
400 watts typical
95-125V

or Must specify nominal voltage
190-250 V
48 to 52 Hz
or Must specify if nominal line

58 to 62 Hz frequency is 50 Hz
G. Physical Specifications

Height 8 % inches (22.2 cm)
Width 19 inches (48.3 cm)
Depth 29 H inches TOTAL (74.3 cm)
Weight 130 lbs. (59 Kg)

H. Reliability
Meantime between failure - MTBF -
4000 hrs.

Service life 5 years or 24,000 hrs.
Meantime to repair - 1 hr.

I. Recommended Preventive Maintenance
-Alignment check using CE pack
recommended after moving or every 3

months/1000 hrs.
-1000 hr /3 months inspection and
cleaning recommended

-2000 hr /6 months replace air Biter,
inspect for wear

NOTES
1. If using the Altair 8800 Turnkey, the

88-PMC and 88-2SI0 are not re-
quired.

2. The 88-HDSK System is not designed
to run with the Altair Floppy Disk or
Minidisk Systems.

Four C N / N o v e m b e r 1 9 7 7

Z-80 CPU !ncreases Processing Caoabitities
^ By Susan Btumentha) ACTS

Z 80 CPU

A!tair 8816!V!CD CompatiMe with 8800A
By Robert Lopez

MTTS

Since the introduction of the Altair
88-MCD, there has been some confusion
among many of our customers about
whether or not it's compatible with the
8800A and other Altair computer plug-in
boards. With a simple power supply modi-
fication to the 8800A, the 16MCD becomes
compatible with both the 8800A and all
Altair 8800 series plug-in boards.

The Power supply lines of the Altair
Bus System are unregulated supply lines,
i.e. the voltage present can vary depending
upon input A.C. line voltage and frequency
and the load power demand. Regulation
for each supply line is done individually on
each printed circuit board. An Altair
8800A should have bus lines #1 and #51 not
less than +7v. (+7.5 NOMINAL), bus
line #2 not less than +14v (+15 Nominal),
and Bus Line #52 not less than -14v (-15
Nominal).

Changes in technology lead to printed
circuit boards which loaded down the
+7.5v line to less than +7v. voltages less
than +7v cannot be regulated to a clean
+5v. The power supply modification

C N / N o v e m b e r 1 9 7 7

printed in the September 1975 CN allowed
increased loading.

Several changes have since been made
in the Altair 8800B which weren't incorpor-
ated in the 8800A. Bus lines #1 and #51 in
the 8800B should be not less than + 7v (+ 8
Nominal), line #2 should be not less than
+ 17v (+18 Nominal), and line #52 should
be not less than -17v (-18 Nominal).

The 16MCD was designed to run in
the Altair 8800B and the Altair 8800B
Turnkey, which has the same bus specifica-
tions as the 8800B. The requirement of the
16MCD which limits its operation to the
8800B is the +15V necessary for the
Mostek 4096 Rams. A 7815 regulator is
used to regulated the +15v. For complete
regulation, a 7815 requires a minimum of
+ 17v.

So to use the 16MCD in an 8800A, it's
necessary to convert to 8800A power
supply to 8800B specifications. In order to
accomplish this conversion, the 8800A
power transformer must be replaced
with MITS part #102621. Owners of Altair
8800A's who purchase a 16MCD will re-
ceive the new power transformer at no
cost.

MITS introduces a Z-80-based Control
Processing board to increase the proces-
sing capabilities of the Altair 8800 series
microcomputers.

Designed as a replacement for
the 8080 CPU, the Z-80 contains a powerful
extended instruction set in addition to the
standard 8080 instruction. It is compatible
with any Altair 8800 series microcom-
puter with complete compatibility. (The
Z-80 CPU Board is not compatible with the
88-PMC 8, 8K Prom Memory Card.) No
hardware modifications are necessary to
accomodate the board.

The internal hardware of the Z-80
microprocessor consists of:

-12 Genera! purpose registors
-- 2 Accumulators
- 2 Index registers

— 2 Flag registers.
The Z-80 operates under a variety of

software which includes:
Z-80 BASIC - a modified version of

Altair BASIC (all current versions
4K, 8K, Extended and Disk)

DOS (Disk Operating System)
Current available versions of DOS
will operate with the Z-80.

The Z-80 CPU provides all 78 of the
8080 microprocessor instructions and an

additional 80 instructions. Some of these
added valuable instructions include:

- A block transfer group
—A block search group
-Individual bit manipulation group.

The Z-80 includes all 8080 addressing
modes plus indexed and bit modes. With
the increased capabilities of a more com-
prehensive instruction set and addressing
modes, the amount of memory required for
machine language programs decreases.

The Z-80 CPU is available for $295
fully assembled and $275 in Kit form. It's
also available in a fully assembled Altair
microcomputer.

Specifications
Power Requirements: ,

5vdcat500MA
+ 12vdcat40MA

Instruction Cycie:
2 microseconds (minimum)

Block Transfer rate:
95,000 bytes per second including
increment and decrement overhead

Dimensions:
10" x 5"

continued on page Nineteen

Use the Interrupt Vector in Singte-Leve) tnterrupt
By Steve Gride

MITS Engineering Dept.
A number of new Attair "computer

users have said that they don't understand
how the interrupt system is used in the
Altair 8800 series. This has led to
a misunderstanding concerning single-
level interrupts; how are they generated,
and what happens during their acknowl-
edgement? Users also ask, "How can 1
change a single-level interrupt to jump to a
location other than 070(8)?" This article
will attempt to address these questions.

The Altair 8800 microcomputers use
an eight-level vectored interrupt system.
This system is based on the interrupt-
response vector built into the 8080 CPU
chip. It has the following effect: When an
interrupt occurs, the device generating the
interrupt creates a vector address, which
the CPU uses as a restart address during
the interrupt-acknowledge cycle. This
results in a call to one of the low-memory
restart areas

In the Altair system, the restart vector
address is usually created by the 88-VI
board (vectored interrupt board). This
board allows the prioritizing of up to eight
levels of interrupts in the restart area.
When this board is absent, however, it is
the responsibility of the interrupting device
to generate the interrupt address. This is
usually not done, resulting in a "floating"
input to the CPU during interrupt-acknowl-
edge time. These "floating" inputs look
like a vector-7 to the CPU, which acknowl-
edges with a restart to 070(8). So most
single-level interrupt systems automatically
generate a restart to level 7.
(Note: AH MITS standard software recog-
nizes single-ievel interrupts at level 7,
therefore, any hardware modifications will
require a corresponding change in soft-
ware.)

The way to jump to a different location
in the interrupt vector is illustrated schema-
tically in Figure 1. During the interrupt-
acknowledge cycle, the CPU generates the
status signals Ml and SINTA. When these
two signals occur concurrently, the restart
vector is gated onto the data bus.

This circuit may be built up ' piggy-
back" on the 1/0 or other board which will
use it, or it may be built on a separate
breadboard and plugged into the bus.

J Q ^ I J T I L -
/ ^ p . T

8 ST Id

* —

<6
S m i

F!G 1

By Thomas Durston
If your Floppy Disk Drive makes a loud

buzzing noise during Mounting of a disk-
ette, the problem can be eliminated by
adjusting a resistor on Floppy Disk Con-
troller Board #2.

The buzzing is caused by the Drive's
head trying to step in farther than it
should. This occurs during a Mount if an
error is detected when reading the track
number. The track number error causes
the track counter (software) to think it is
farther out than it should be, stepping the

head in and against the stop at the end of
the stepping shaft. The result is the
buzzing noise.

This buzzing noise occurs only on cer-
tain diskettes if the Head Load time
constant is less than 45 ms. It is a function
of the Mount routine which reads every
eight sectors.

To correct the problem, adjust R8 on
Controller Board #2 to yield a 50ms ± 4ms
pulse at I.C. B1 pin 13 (TP-6) during a
Mount command. The value of R8 will be
approximately 16K, and a 20K or 50K trim-
pot may be used for adjustment in place of
R8.

Six C N / N o v e m b e r 1 9 7 7

Program AMows Disk Timesharing to Read
Non-Timesharing Diskettes By: Gaie Schonfeld

MITS

Many of you are now sharing our
excitement over the new Aitair Timeshar-
ing BASIC. Those ofyou who have the disk
version may be perturbed about a problem
with loading 4.0 or 4.1 Disk BASIC pro-
gram files under Timesharing. However,
with only a few minutes of your time and
the computer's, the problem can be solved.

In the disk version of Timesharing
BASIC, an optional password may be
specified during SAVEing of a program. In
regular Disk BASIC, the password facility
is not provided. Therefore, the problem
may occur when a LOAD or RUN command
is issued in Timesharing for a program on a
regular BASIC disk. Timesharing may
respond to the command with PASSWORD
FOR FILE "XXX. . ."?, and the user will
not know with what password to answer.

This problem is due to the format of
the directory track on the diskettes. To
review, each sector of the directory track is
comprised of eight file name slots. Each
slot contains 16 bytes-eight bytes for the
file name, one byte for the track pointer,
one byte for the sector pointer, one byte
indicating whether the file is random or
sequential and in regular Disk BASIC, and
6ve unused bytes normally set to nulls. In
Timesharing Disk BASIC, these extra five
bytes are used for passwords. Occasional-
ly, "garbage" can get into these extra
bytes on the normal BASIC diskettes.
When Timesharing tries to access these
files, it "sees" a password which the user
is unaware. If all five bytes are null,
Timesharing realizes that a password is
not required.

The following program, when exe-
cuted in 4.0 or 4.1 Disk BASIC, will correct
the directory track of a 4.0 or 4.1 diskette.
The functions of PASSCHEK are to set the
last five bytes of the file name slots to nulls
and recalculate the checksum of the sector
so it can be read by Timesharing. The
program PASSCHEK contains detailed
comments regarding its execution. The

remark statements can be left out when
entering the program in order to utilize a
minimum amount of memory.

To use PASSCHEK, enter it into
memory using 4.0 or 4.1 Disk BASIC. (It
will not run in Timesharing.) Place the
diskette you need to correct in Disk Drive
and MOUNT it. Now type RUN. PASS-
CHEK will run for approximately two to
three minutes, printing "DONE - CHECK
USING PIP DAT COMMAND" when it's
finished. If you wish to check using
P10. the format of the floppy disk is de-
scribed in Appendix H of the Altair BASIC
Manual.

For those of you who have old 3.4 Disk
BASIC program Hies that you want to run
under Timesharing Disk BASIC, a few
extra steps are needed before running
PASSCHEK on the 3.4 diskette. Since
Timesharing will read only 4.0 or 4.1
formatted files, you must convert your 3.4
files to the 4.0 format. This is easily done
by first LOADing and then re-SAVEing
all 3.4 program files in ASCII (e.g. SAVE
"XXX", 0 . A), using 3.4 Disk BASIC, and
then using the 4.0 PIP CNV command on
the diskette to convert the files to the
4.0/4.1 format. After this, you can run
PASSCHEK.

Program
10 CLEAR 5 0 0
20 ^

L I M E S 3 0 - 8 0 P 0 S T I 0 N DISK HEAD TO TRACK 7 0
3 0 D T = 7 0 ' D E S I R E D TRACK I S 7 0
4 0 I F < I N P < 8) AMD 6 4) < * 0 THEN WAIT 8 , 2 ; 2 : OUT 9 , 2 :

SOTO 4 0
5 0 ' T E S T FOF. TRACK 0 , I F NOT AT 0 STEP HEAD OUT ONE

TRACK AND TEST AGAIN
6 0 I F DT<0 OR D T * 7 6 THEN P R I N T " E R F 0 R " : S T 0 P
7 0 FOR K=1 TO DTiWAIT 2 , 2 : OUT 9 , I : NEXT K
8 0 ' S T E P DISK HEAD IM DT TPACKS, TO TRACK 7 0
9 0 '

L I N E S 1 0 0 - 1 6 0 GET EACH.SECTOR OF TRACK 7 0 AMD REPLACE
5 BYTES OF F I L E SLOT WITH NULLS

' G E T EACH SECTOR OF TRACK 7 0
'READ CURRENT SECTOR
' G E T EACH F I L E NAME SLOT (S S L O T S / S E C T O R)

100 FOR S C = 0 TO 3 1
I 10 A $ = D S K H (S C)
120 FOR S L = 0 TO 7
130 Y i = S T R I N G S (5 , 0)
1 4 0 M I D M A S , 1 9 + < S L * 1 6) , 5) = YS
150 ' R E P L A C E LAST 5 BYTES OF EACH F I L E NAME

SLOT WITH NULLS
160 NEXT SL ' G E T NEXT SLOT
170 '

L I N E S 1 9 0 - 2 9 0 CORRECT CHECKSUM BYTE OF EACH SECTOR AND
PUT M O D I F I E D S E C T 0 P BACK ON DISK

1 8 0 CK=0 ' S E T CHECKSUM COUNTER TO ZERO
190 FOR 1 - 6 TO 1 3 5 'ADD UP EYTES 6 THROUGH 1 3 5
2 0 0 C K = C K + A S C C M I D M A $, 1 , 1))
2 1 0 NEXT I
2 2 0 FOP. J = 3 TO 4 'ADD BYTEg 3 AND 4 TO THE SCI OF 6 - 1 3 5
2 3 0 CK=CK + A S C (M I D i (A t , J , !))
2 4 0 NEXT J
2 5 0 CK-CK AND 2 5 5 'MASK OUT HIGH 0PDER 8 B I T S SO THAT CHECK-

SUM I S ONLY ONE BYTE
2 6 0 M I D $ (A i , 5 , t) = C H R K C K) ' R E P L A C E BYTE 5 OF THE SECTOR WITH

NEW CHECKSUM BYTE
2 7 0 DSK0S A 3 , SC ' P U T M O D I F I E D SECTOR BACK ON DISK
2 8 0 NEXT SC ' G E T NEXT SECTOR
2 9 0 P R I N T "DONE - CHECK USING P I P DAT COMMAND"
3 0 0 END
OK

C N / N o v e m b e r 1 9 7 7 Seven

PRACTICAL PROGRAMMING
By Gary Runyon

MITS

This new column wiH discuss some of
the things we're learning in the MITS
Computing Services Department about
how to program in Altair Basic. Although
the articles will be aimed at the beginning
programmer, even the most advanced
programmer should find the column useful
and interesting. Complete listings of pro-
gramming aids we've developed (cross,
reference list program, variable name
replacement programs, etc.) will be in-
cluded when necessary. But,there will be
nothing about programming in machine
code, except possibly a few USR routines.

Each month's column will become a
chapter of the Computing Services Stan-
dard Practices Manual, which will be used
by programmers here at MITS.
LINE COUNTING

One of the first problems the begin-
ning programmer tangles with is line
counting, i.e. how to tell that you're at the
bottom of the page when printing a report
so that you know when to space to the top
of the next page. After much work, the
beginner's report program can decide
when to space to the next page, but for
some reason it spaces too far or not far
enough. By adding a patch, everything
works fine, except for an extra space be-
tween the first and second pages. A hokey
patch is added and all works well until the
program needs its first modification.

The solution? Adopt a convention,
understand it, and stick to it. Here at
MITS the variable name L9 is reserved for
line counting in all programs.
L9 points to the next line to be printed. It
is initialized to one plus the number of lines
printed at the exit of the page header rou-
tine. L9 is incremented by one for everv
line printed thereafter. For L9=L9T066:
LPRINT:NEXT is the routine for getting
from the bottom of a page to the top of the
next page.

The 66 in the routine comes from six
lines per inch, 11 inches per page. If you're
printing special forms (checks, invoices,

W2, etc.), or have a printer that doesn't
print six lines per inch, replace the 66 with
the appropriate lines per page. If you need
to print a really oddball form, such as three

checks, the trick is to throw in an extra
line every other check. The following will
handle three % " forms on a standard print-
er:

FORL9=L9T019:LPRINT:NEXT:IF A
THEN LPRINT:A=0 ELSE A = l .

Test for bottom of the page when you
have something to print. Testing for
bottom of page after printing can result in
an occasional sloppy header with no data at
end of report.

The usual test for bottom of page is:
IF L9>XX THEN GOSUB [space up and
print heading]. This results in XX lines
printed per page with 66-XX spaces
between the bottom and top of each page.

The test for bottom of page before
printing n lines when n is greater than one
is: IF L9>XX+l-n THEN GOSUBf]. For
example, if a report has three lines per
item, five lines of totals, and is not to go
below line 64, the test before printing each
item would be: IF L9>62THEN GOSUBQ;
the test before printing the totals would be:
IFL9>60THENGOSUB[].

In those cases where n is not a fixed
constant, the test for bottom of page will
appear in the form IF L9+n XX+1 THEN
GOSUB [] (see example program). The
concept is, "Will the hokey patch work well
until the program allowed value (XX+1)
after these n lines are printed?''

The example program PROGLIST
demonstrates how to line count. The
program reads a program saved in ASCII
and prints a listing with the program name,
the current date, and page YY of pages ZZ
at the top of each page. In order to provide
at least three blank lines between each
page, the program does not print past line
63.

The two clear statements in line 70
grab off as much string space as is avail-
able. This holds to a minimum the time

lost to string space garbage collection.
Line 100 allows you to input a file name
ending with a comma and number to speci-
fy Hies on other than disk drive zero. Line
120 checks for the null string that is at the
beginning of every ASCII Hie. Lines 140-
190 read through the Hie, duplicating what
will happen to L9 and the page count when
the Hie is listed. Line 220 prints the head-
ing at the top of the Hrst page.

The FORL9=L9T0132 in line 250
spaces the printer to the top of page twice,
leaving the listing where it can be easily
torn off.

Lines 290 and 300 show the standard
print out for one-line:

1. Test for bottom of page when
ready to print

2. Print
3. Increment the line counter

Lines 320-350 determine how many
lines will actually print when a program
line with the line feeds prints. Each part of
the line is loaded into the array L$ so that it
can be printed separately. This avoids
problems caused by line printers reacting
differently to the line feed carriage return
embedded in program lines.

Lines 360-370 show the standard print
out for more than one-line :

1. Test for bottom of page when
ready to print

2. Print
3. Increment the line counter

Line 390 is the standard to-to-top-of-
page routine.

Line 420 sets L9 to one plus the
number of lines printed in the header (one
information line and one blank line) before
exiting the heading routine.

To summarize, L9 is the next line on
the page to be printed. L9 is initialized to
one plus the number of header lines at the
exit from the header routine. L9 is incre-
mented by one after each line printed. The
test for bottom of page is executed when
the program is ready to print. The space to
top of page routine is:
FORL9=L9T066:LPRINT:NEXT

Eight C N / N o v e m b e r 1 9 7 7

Letter Writing Program Sotves Photographers Maiting Probtems By: Lee Wilkinson
2308 New Walland Hwy.
Maryville, Tennessee 37801

Wilkinson currently runs his own photography
studio. For the past 15 years he has been an avid
ham radio hobbyist but had no previous com
puter experience before purchasing an Aitair
8800 to use in his business, in addition to the
mainframe, his system now consists of 24K
memory, a Teletype, ADM-3, 8-PMC, 88-ACR,
88-SlOA, 88-S10B and wire wrap board for
morse code. Wiikinson has aiso recentiy pub-
iished three other software articles in KILOBAUD.

One of the most beneficia! and fre-
quency Used programs in my collection of
software is a letter writing program. When
used in conjuction with our regular direct
mail promotion program, it has been an
invaluable advertising aid.

Originally, we were sending about 200
letters each month to patents of new
babies, one year olds, and two year olds.
The parent's names were compiled from
the local newspaper, and the letters were
prepared on our printing press. Records of
appointments made show about a three

Practical Programming

PROGLIST
)0 ' 20 * 30 '
4 0 *
5 0 "
6 0 '
70 CLEAR 4 0 0 : E L F A R P R E (0) : t f $ - C H R $ (1 0) : ') I ' M . S (5 0) : ') E F I ' ! T &-Z
8 0 L I N E I N P U T " T 0 D \ Y ' S DATE ? " ; D A S
SO L I N E INPUT"PROCRAM NA'tE ? " ; N $
1 0 0 I ? ! l H i $ (N $, L E N (N $) - t , l) = " , " THEN R $ = R I C H T $ (N S , 1) :

I E " 0 " < - H S AN*) R $ < = " 9 " THEN " t $ = L E ? T S (N $, L E N (N $) - 2) : N = ? \ L (R $)
t 1 0 0 P E N " I " , 1 , N S , N
1 2 0 L I N E I N P U T % 1 , L $:

I F L E N < L $) THEM P R m T " A S C I I F I L E S ONLY PLEASE. ; ! ' :END HO '
1ETEHHINE # 0 ? PACES TO RE PRINTED

1 4 0 N P = 1 : L 9 = 3
1 5 Q ^ I F E O E (t) T H E N 2 0 0
1 6 0 L I N E I N P U T # l , L $: I = 0 : - ! = 0
1 7 0) f = ' t + l : I = I M S T R (t + l , L $, L P $) : l F I T H E N 1 7 0
1 8 0 I ? L 9 + - [> 6 4 THEM N P = N P + 1 : L 9 = 3
1 9 0 L 9 = L 9 + ' t : n O T 0 1 5 0
2 0 0 NP$ = ". 0 F " + S T R $ (N P)
2 1 0 '

START P R I N T I N O
2 20 QOSUR4 00
2 3 0 C L 0 S E : 0 P E N " I " , 1 , N $, N : L I N E I N P U T ^ 1 , L S
2 40 '

PEAT) UP L I N E S EOR PRINT
2 50 I ? - E O P (t) THEM F O R L 9 = L 9 T O 1 3 2 : L P R I N T : N E X T : C L O S E : C L E A R 2 0 0 : E N n
2 6 0 L I N E I N P H T % 1 , L $
2 7 0 I = I N E T R (L $, L F $) : I F I T ' 1 E N 3 2 0 2S0 '

L P R I N T NO L I N E FEED L I N E
2^0 I T L 9 > 6 3 THEN00Sn'!390
3 0 0 L P R I N T L $: L 9 = L 9 + 1 : 0 0 T 0 2 5 0
3 1 0 '

L P R I N T L I N E WITH E'lREMDED L I N E FEEDS
3 2 0 -1 = 1 :H=-1
3 3 0 I E I = H T H E N L $ (M) = " " E L S E L $ (H) = - ' t n $ (L $, H , 1 - H)
3 4 0 * := ' [+1 : H = I + 2 : I = I N S T R (H , L $, L F $) : I * ' I T H E N 3 3 0
3 50 I F I = H T ' 1 E N L $ (H) = " " E L S E L A (']) = - ! I D $ (L $, H)
3 6 0 I F L « + ' ! > A 4 T H F . N G 0 S U B 3 9 0
3 7 0 F n R l = l T O ' ! : L P R I N T L $ (I) : N E X T : L 9 = L 9 + M : O O T 0 2 5 0
3 80 '

SPACE TO READ OF FOR'! AND L P R I N T HEADER
3 9 0 F O R ! , 9 = I , ? T 0 6 6 : L P R I N T : N E X T
4 0 0 P 0 = P 0 + 1 : P 0 S - " P A 0 E " + S T R $ (P ! 3) + N P $
4 1 0 L P R I N T N $; " L I S T E D " ; D A $; T A R (7 5 - L E N (P O $)) ; P r ; $
4 2 0 L P R I N T : L 9 = 3 : R E T U R N

percent rate of response to this promotion.
This is about the national average for direct
mail advertising.

We used the Altair computer for print-
ing mailing labels for our children's promo-
tion campaign and for writing personalized
letters. Our first mailing brought a 17%
return. Needless to say, we continued with
this personalized type of mailing, and are
still enjoying the same increased response.

However, there were several problems
in preparing the mailings. First, the type
style of the Teletype wasn't appropriate,
and the standard roll paper wasn't a very
high quality. Remembering an old cliche,
"lemons can be turned into lemonade",
an idea came to mind. Why not get a
rubber stamp made that said "STUDI-O-
GRAM" and imprint each letter so that it
would look like a telegram? By using this
stamp and placing the letter in a window
envelope we created a personalized pack-
age that the recipient felt compelled to
open.

We've used the "STUDI-O-GRAM"
for the local births for about a year now and
still enjoy excellent success. We've
expanded the "STUDI-O-GRAM" to
include about every conceivable list we've
ever stored on cassette. This includes
doctors, realtors, past patrons, business-
men, little league coaches, and churches,
just to mention a few.

For those interested in adapting the
program for their own use, a sample listing
is enclosed. There's nothing really exotic
about the program, and users should have
no trouble following it. The body of the let-
ter is inserted from lines 200-279. Lines 500-
580 print the title (Mr., Mrs., Rev., etc.)
and the last name. Mailing labels can be
generated by the subroutine 600-690. The
label format can be altered by changing
lines 620 and 650-670. The inclusion of the
subroutine at lines 700-745 allows a "town
code" to be typed for the local area post
offices and saves much time and a great
deal of memory when typing local lists.
However, any city, state, and zip may be
typed on any data line (1000 and up), and
the program will recognize it. The subrou-
tine at 10000 switches from CRT (port
000// and 00/) to TTY (port 024 and 025 0)
and back to the CRT in my MITS 8K,
Ver. 4.0 BASIC.

One of these days I hope to replace the
ACR with a disk and a faster printer
and then really increase sales.

C N / N o v e m b e r 1 9 7 7 con t inued page 25 Nine

By Doug Jones
2271 North MM!
North East, PA 16428

Trace Program SimpHfies Debugging for Aitair 680b
The software interrupt instruction

(SWI hex 3F) in the Altair*680b computer
permits a rather unique method of setting
program breakpoints for debugging. The
PROM MONITOR manua! contains a
rather good discussion of this routine in
Section V, which aiso includes a very short
program to print out the contents of the
processor's registers each time a program
breakpoint occurs.

There are two methods of handling a
SWI by the MONITOR. (1) If you haven't
set a bit 7 of BRKADR (00F2), anytime a
SWI is executed in the assembled code, a
return is made to the MONITOR. Using
the (N)ext command, all registers may be
inspected and, if you wish, modified. Con-
tinuation of the program is made by the
(P)roceed command. Everything is return-
ed back from the stack, and processing
continues. (2) If bit 7 of BRKADR is set,
upon execution of the SWI, control is
vectored to address 0000 where a user
routine, such as the print register routine,
must be waiting.

Consider the program shown in the
sample run. Assume that this program is
giving you trouble, or perhaps you would
like to watch the values loaded into the A
register. To use the SWI, the program
would have to be opened up just before the
BEQ instruction, a SWI inserted, and then
one of the two methods described above
used to watch the A register contents.

Once the program error has been
corrected, it must either be reassembled to
remove the SWIs that you have used, or
they must be NOPed out.

DEBUG TRACE will co-exist in
memory with your program. It will wrap
itself around your program so to speak and
allow you to control its running. It will
replace every instruction encountered in
your program with a SWI, give you a dump
of register content if you want it, replace
your original instruction, and continue
processing through that instruction.

In abbreviated format, here are
particulars of the program:

Length IK.
Starting address (j) 4000.
Commands:
D Dump registers while in the

command mode.
M Return to MONITOR. After (M)

and (N)ing any part of memory, a
(P)roceed will return control to
DEBUG. Ten

J Jump to program. You will be
queried about the starting ad-
dress. Program execution from
that point on the will be under
control of DEBUG.

A/B/C/X allows you to set the indi-
cated register.

I Set instruction breakpoint. Zero
(0000) for none.

O Set operand breakpoint. Zero
for none.

T Set trace on and trace off addresses.
To kill trace, set to FFFF and
0000 respectively.

(ESC) Escape can be used any time
during controlled program run or
register dump for return to
command mode.

****CAUT10N****
Any address set or register set MUST

be valid hex characters or you will return to
MONITOR. A (J)ump command must be
executed back to DEBUG to return opera-
tion to normal.
PRINTOUTS

Type of dump:
D called by dump command (exten-

ded);
T trace dump;
B dump due to I or 0 breakpoint

(extended)
X illegal operation attempted

(extended).
I The instruction you are about to pro-

cess.
Operand will show none, one, or two

bytes, depending on the instruc-
tion.

Stack will show where the user's
program placed it.

Program counter will normally show
the address of the instruction you are
going into. It will show the destination
address if a jump or conditional branch is
executed.

Illegal operations are RTI ($3B), WAI
($3E). RTS ($39) will also be an illegal
operation if the number of returns exceeds
the number of subroutine calls.

Any return to DEBUG command mode
will normalize and cancel all subroutine
linkages. User program must be restarted
with a (J) XXXX.

Legal calls to MONITOR subroutines
OUTCH. INCH, OUTS, and OUT2H are
allowed, executed, and printed (with echo),
but are not traced.

As shown in Table 2, wherever the
user program defines the stack, approxi-
mately 11 bytes will be utilized by DEBUG.
All pointers will be returned to where you
left them.

DEBUG is volatile. In order to keep
the program length to 2 K or under, many
checks and cross-checks had to be elimi-
nated. One, for example, was a range
check that would stop all activity equal to
or above DEBUG's stack area. Some bells
and whistles also had to be excluded; for
example, the ability to proceed from a
breakpoint or an (ESC)ape.

The user's program will run with no
trace or breakpoints established and is
interruptable by (ESC). You will, however,
notice a 100-fold increase or greater in user
program run time.

Table 1 Printout Format.

Trace Only (extended)
Til 0000 SS SS CC BB AAXXXX PPPPTT TT
TTTTII1100 00
Operand breakpoint
Instruction breakpoint
Trace off
Trace on
Program counter
X-register
A-register
B-register
Condition code register
Stack pointer
Operand
Instruction
Type of dump C N / N o v e m b e r 1 9 7 7

TRACE PROGRAM cont inued
Table 2Memory Map.

43FF

4000
Debug

Debug stack for return links

User program

00FF

0.1.2

Monitor exec area

Reserved for vector

Possible user's stack
Borrowed

Normal stack

OBJECT CODE 30030000444542554720202020
S i 0 4 0 0 F 3 F F 0 9 .
S i i E 4 0 0 0 B F 4 3 9 D 0 7 B 7 4 . 3 A 6 C E 4 3 7 S 8 D 5 7 B E 4 3 9 D B F 4 3 A 4 C E 3 F F F F F 4 3 9 6 7 F 4 3 9 A 6 A
S i i E 4 0 i B F E 4 3 9 B B 6 4 3 A 0 A 7 0 0 7 F 4 3 9 B C E 4 3 7 2 8 D 3 8 C E 4 2 3 9 D F 0 1 8 6 7 E 9 7 0 0 4 3 9 7 2 7
S i i E 4 0 3 S F 2 B D 4 3 0 7 C E 4 3 B 5 E S 0 0 2 7 0 E F i 4 3 9 F 2 7 0 5 0 8 0 8 0 8 2 0 F 2 E E 0 i 6 E 0 0 C E 4 3 F A
Si i E 4 0 5 i 8 E S D 0 F 2 Z B 6 B 7 4 3 9 F 8 6] i B 7 4 3 4 D B D 4 3 i A 2 0 F i E 6 0 0 2 7 0 S B D F F 8 ! 0 8 2 0 3 6
S i i E 4 0 6 C F 6 3 9 D 7 F 3 D 7 F 2 3 F 7 E 4 0 0 7 8 D i 8 F F 4 3 A D 8 M 3 F F 4 3 A F 2 0 D F 8 D 0 C F F 4 3 B i B F
S i i E 4 0 8 7 2 0 F 7 8 O 0 5 F F 4 3 B 3 2 0 F 0 C E 4 3 8 i B D 4 0 6 3 7 E 4 2 F 8 B D 4 3 t 3 F 7 4 3 A 6 2 0 D F B D i 3
S i i E 4 0 A 2 4 3 i 3 F 7 4 3 A 7 2 0 F 6 B D 4 3 i 3 F 7 4 3 A 8 2 0 E E 8 D E 3 F F 4 3 A 9 2 0 E 7 8 D D 6 A 6 0 0 B 7 8 D
S i i E 4 0 B D 4 3 A 0 7 E 4 2 5 6 B D 4 2 E i F 7 4 i 2 C 7 F 4 i 2 B F E 4 i 2 B B D 4 2 9 3 C 6 0 2 2 0 i 9 B D 4 2 E E D 2
Si i E 4 0 D 8 B 6 4 3 A 0 F E 4 3 A ! F F 4 i 2 B B D 4 2 9 3 8 i 7E2 7 i . C 8 i B D 2 7 2 i C 6 0 3 F E 4 3 A B 5 D 2 7 5 0
S H E 4 0 F 3 0 4 0 8 5 A 2 0 F 9 F F 4 2 C D 7 E 4 2 B 4 F E 4 3 A B B D 4 i 4 7 F E 4 i 2 B F F 4 3 A B 5 F 2 0 E i 8 C 3 9

' . . ' . S i i E 4 i 0 E F F 8 1 2 7 0 F 8 C F F S & 2 7 0 A 8 C F F 0 0 2 7 0 5 8 C F F 8 2 2 6 D D B D 4 2 F F B g 4 3 A S F 6 4 3 i 4
St i E 4 ! 2 9 A 7 B 3 3 2 2 J 3 7 4 3 A 8 F 7 4 3 A 7 B D 4 3 0 2 B D 4 2 7 4 F E 4 3 A B 0 8 0 8 0 S A 6 0 0 B 7 4 3 A 0 D 7
S i i E 4 i 4 4 7 E 4 2 5 6 0 8 0 8 0 S F F 4 2 C D B F 4 3 9 8 B E 4 3 9 S B 6 4 2 C E 3 6 B S 4 2 C D 3 S B F 4 3 9 6 B E A 2
S i i E 4 ! 5 F 4 3 9 8 7 C 4 3 9 A 3 3 B $ 4 3 A 0 8 1 8 D 2 7 i 5 8 i 8 C 2 7 0 B 8 i 8 E 2 7 0 7 8 i C E 2 7 0 3 7 E 4 0 3 E
S i i E 4 i 7 A C 2 B D 4 2 E E 7 E 4 0 E C F E 4 3 A B 8 D C 2 7 E 4 2 i 2 B D 4 2 D C F 6 4 3 A 0 C i 3 9 2 7 i 6 C) 3 B D 9
S H E 4 t 9 5 2 7 0 D C t 3 E 2 7 0 9 C ! 3 F 2 7 0 5 C 6 0] 7 E 4 0 E E 8 6 5 8 7 E 4 0 5 S 7 D 4 3 9 A 2 7 F S 7 A 4 3 E 3
S i i E 4 i B 0 9 A B F 4 3 9 8 B E 4 3 9 6 3 2 B 7 4 2 C D 3 2 B 7 4 2 C E F E 4 2 C D F F 4 3 A B B F 4 3 9 6 B E 4 3 9 8 0 9
S i i E 4 i C B 7 E 4 0 F 8 B D 4 2 E i F E 4 3 A 9 F F 4 i 2 B 0 C 5 F B 6 4 3 A i 8 D t 7 B 6 4 3 A 0 8] A D 2 7 0 7 S i C B
S i i E 4 i E 5 6 E 2 7 0 9 7 E 4 0 C E F E 4 3 A B B D 4 1 4 8 7 E 4 ! 0 4 B B 4 i 2 C F 9 4 i 2 B B 7 4 i 2 C F 7 4 i 2 B 8 7
S i i E 4 2 0 i 3 9 B B 4 i 2 C 2 4 0 5 F B 4 i 2 B 2 0 E F F B 4 i 2 B 5 A 2 0 E 9 B O 4 2 E i F E 4 3 A B 0 S 0 8 F F 4 i B 8
S H E 4 2 1 C 2 B B 6 4 3 A 0 B 7 4 2 2 7 B 6 4 3 A 6 0 6 0 0 0 2 2 0 B E 0 C 5 F B 6 4 3 A t 2 A 0 3 8 D C E g C 8 D B E B 6
S i i E 4 2 3 7 2 0 B 9 F E 4 3 9 B B S 4 3 A 3 A 7 0 0 8 S 0 7 C E 4 3 A 6 3 3 E 7 0 0 0 8 4 A 2 6 F 9 B F 4 3 A 4 8 D i A 5 7

r S l i E 4 2 5 2 F E 4 3 A B 0 9 F F 4 3 A B B 6 4 3 A 0 8 4 F 0 4 4 4 4 4 4 C E 4 3 D 3 0 8 4 A 2 A F C E E 0 0 6 E 0 0 B D i B '.
S i i E 4 2 S D F F 2 4 2 4 0 A B D F F 0 4 C i i B 2 6 0 3 7 K 4 0 0 7 3 9 B C 4 3 B i 2 7 2 E B S 4 3 A E F 6 4 3 A D 8 0 0 C
S t i E 4 2 8 8 0 i C 2 0 0 B 0 4 i 2 C F 2 4 i 2 B 2 5 0 6 B C 4 3 B 3 2 7 i 7 3 9 B 6 4 3 B 0 F 6 4 3 A F B 0 4 i 2 C F 2 E 5
S i i E 4 2 A 3 4 i 2 B 2 5 F i 8 6 5 4 B 7 4 3 9 F 7 E 4 3 ! A 8 6 4 2 7 E 4 0 5 6 B E 4 3 A 4 8 6 0 7 C E 4 3 A C E 6 0 0 7 B
S i i E 4 2 B E 3 7 0 9 4 A 2 6 F 9 F E 4 3 A B F F 4 i 2 B B D 4 2 7 C C E 0 0 0 0 A 6 0 0 B 7 4 3 A 0 8 6 3 F A 7 0 0 F F E D
Si t E 4 2 D 9 4 3 9 B 3 B 4 F B 7 4 3 A 3 3 9 8 6 0 i 8 D F 8 F E 4 3 A B E 6 0 i F 7 4 3 A] 3 9 8 6 0 2 8 D F ! E 6 0 2 A 7
S H E 4 2 F 4 F 7 4 3 A 2 3 9 8 D 0 5 B D F F 6 2 2 0 0 3 8 6 0 3 8 C S 6 F F 9 7 F 3 3 9 8 D F 6 B D F F 0 0 F 7 4 3 9 F 4 E
S i i E 4 3 0 F 8 D 5 2 2 0 E F 8 D E A B D F F 5 3 2 0 E 8 G E 4 3 8 A B D 4 0 6 3 F 6 4 3 9 F 8 D 3 B B 6 4 3 A 0 8 D 4 3 0 F
S i i E 4 3 2 A B 6 4 3 A 3 2 7 i 4 B 6 4 3 A i J 3 D F F 6 D B 6 4 3 A 3 4 A 2 7 0 A B 6 4 3 A 2 B D F F 6 D 2 0 0 4 8 D 2 4 2 A
Si i E 4 3 4 5 8 E 2 2 8 B 2 0 C E 4 3 A 4 C S 0 9 2 7 0 A A 6 0 0 3 7 8 C i 8 3 3 0 8 5 A 2 0 F 4 8 6 0 9 B 7 4 3 4 C 3 9 0 E
S i i E 4 3 6 0 B D F F 8 i B D F F 8 2 7 E 4 2 6 C 8 D F 8 2 0 F 6 B D F F 6 D 2 0 F i 0 D 0 A F F 4 0 2 0 0 0 0 D 0 A F F 3 6 ^ . ^ ' r .
S i i E 4 3 7 B 4 4 4 5 4 2 5 5 4 7 0 0 2 0 4 i 4 4 4 4 5 2 2 0 3 F 2 0 0 0 0 D 0 A F F 0 0 2 A 4 5 5 2 5 2 4 F 5 2 2 A 0 0 0 E

" * S i i E 4 3 9 S 3 F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 F 0 F F F F 0 0 0 0 8 D
Si t E 4 3 B i 0 0 0 0 0 0 0 0 4 D 4 0 6 E 4 3 4 0 9 9 4 2 4 0 A i 4 i 4 0 A 9 5 8 4 0 B i 5 4 4 0 7 6 4 F 4 0 8 9 4 9 4 0 9 5
S i i E 4 3 C C 8 2 4 A 4 0 B 8 4 4 4 0 5 9 0 0 4 i 8 9 4 i S 9 4 2 i 2 4 i 8 9 4 i S 9 4 i 8 9 4 i C E 4 0 D 5 4 i 6 5 4 0 E t
S H 0 4 3 E 7 C 2 4 1 C E 4 0 D 5 4 i S 5 4 0 C 2 4 i C E 4 0 B 5 i 3
Si 0 4 0 0 F3 0 3 0 5
S 9 0 3 0 0 0 0 F C
TOTAL ERRORS 0 0 0 0 0
ENTER PASS cont inued on p a g e n

C N / N o v e m b e r 1 9 7 7 continued on page Nineteen

Trace Program Simplifies Debugging
Source Listing

F F E F M
NAM DEBUG

*
t S O U R C E i . 2 . 0 *

* J U N E ! 9 7 7 DLJ *
OPT NOG

ORG i 0 0 F 3
F C B $ F F

* I N S T R U C T I O N S :

*
* D = CD) UMP R E G I S T E R S
* M = (M) ONI TOR RETURN
* J = (J) U M P
* A / B / C / X / I / O / T =
* SET R E G I S I E R S / B R E A K P O I NTS/TRACE
*
BADDR EQU t F F 6 2
BRKADR EQU $ 0 0 F 2
BYTE EQU t F F 5 3
ECHO EQU $ 0 0 F 3
INCH EQU $ F F 0 0
0UT2H EQU $ F F S D
OUTCH B 3 U $ F F 8 !
OUTS EQU $ F F 8 2
POLCAT EQU $ F F 2 4 *

ORG $ 4 0 0 0
START fQ-S STKSV SAVE I T

TPA
STA A CCREG

DEBUG LDX # M E S ! SEND ' D E B U G '
BSR MSG

*

EXEC LDS STKSV
S I S STKHI
LDX # S I A R I - !
STX MYSTK
CLR SUBCNI
LDX SWIADR
LDA A I N S T
STA A X
CLR SWIADR

LDX # P R M P I POP OUT A 8
BSR MSG
LDX #RUNVCI SET RUN VECTOR
S I X ! STORE AT SWI
LDA A # $ 7 E LOAD A JMP
STA A 0 STORE I T AT SWI
COM A SET HIGH B I T
STA A BRKADR AT BREAK ADDR
J S R I N GET A CHRCIR

LDX iPJMPTS JUMP TABLE
EXEC1 LDA B X GET LIR

BEQ BUM DONE:
CMP B WHAT MATCH?
BEQ JMPCMD
I NX TO NEXT LTR
I NX
I NX
BRA EXEC!

JMPCMD LDX i , X TAKE I T
JMP X

*

BUM LDX #EM BUMMER
BSR MSG

BUM) BRA EXEC BACK YOU GO *
DMP! STAA WHAT
DMP LDA A # $! !

STA A HMNY SET FOR B I G DMP
DMP3 J S R PRNTRG-
DMP2 BRA BUM) EXEC

MSG LDA B 0 , X
BEQ MSG!
J S R OUTCH
I NX
BRA MSG

MSG! RTS *
MONII STA B ECHO

STA B BRKADR
SWI BACK TO MONITOR
JMP DEBUG READY FOR (P) R O C E E D

*
TSET BSR ADPRM TRACE SET GET ADDR

S I X ION IHACE ON ADR
BSR ADPRM
S I X TOFF TRACE OFF ADR

I S ! BRA DMP2 EXEC *
BI BSR ADPRM I N S T BREAKPT

S I X BIADR
BRA I S ! EXEC

BO BSR ADPRM OPRND B K P I
STX BOADR

BRA I S !
*
ADPRM LDX #MES2
ADPRM! J S R MSG
ADPRM2 JMP BAD i R I R N *
S I C J S R BY CNDTN REG

STA B CCREG
S I C ! BRA I S ! *
S I B J S R BY BREG

STA B BREG
BRA S I C !

*

STA J S R BY AREG
STA B AREG
BRA S I C !

*

S I X BSR ADPRM2 XREG
S I X XREG

*
ST5 BRA S I C ! EXEC *
JMPXX BSR ADPRM GET ADR

LDA A X GET I N S T
STA A I N S T
JMP RUN2

*

DIR J S R P O P ! LOAD OPRND
S I A B CKADR+i
CLR CKADR
LDX CKADR

D I R 3
J S R EXMOP

D I R 2 LDA B # 2 NEXT SWI
BRA EXT!A

*
EXT J S R P 0 P 2 LOAD OPRND

LDA A I N S T
LDX I N S T + 1 GET ADR

S I X CKADR
J S R EXMOP

CMP A # $ 7 E J M P ?
BEQ EXI2

CMP A # i B D J S R ?
BEQ EXT3

E X I I LDA B # 3 NEXT SWI
EXT! A LDX PCREG
E X H B TST B

BEQ E X H C
I NX
DEC B

BRA EXT!B
E X H C S I X HERE

JMP REPAK
EXI2 B LDX PCREG

J S R SAVLK3
EXI2 LDX CKADR

STX PCREG SWAP
CLR B NEXT SWI
BRA EXT!A

E X I 3 CPX * O U I C H
BEQ D O I I
CPX # 0 U I 2 H
BEQ DOIT
CPX iPINCH
BEQ DOIT
CPX j f O U I S
BNE EXI2B

D O I I JSR EON
LDA A AREG
LDA B BREG * * * * * * * * * *
FCB $BD J S R

CKADR FCB 0 , 0
* * * * * * * * * *

STA A AREG
STA B BREG
J S R EOF

J S R CKHUM3 ESCAPE?
LDX PCREG NO
I NX PAST J S R
I NX
I NX
LDA A X
STA A I N S I
JMP RUN2

*

SAVLK3 I NX SAVE LINK
SaVLK2 I NX
SAVLK I NX

STX HERE
STS S I K I M P
LDS MYSIK
LDA A HERE+!
PSH A
LDA A HERE
PSH A
S I S MYSIK
LDS S I K I M P
INC SUBCNI
R I S

*
IMM LDA A I N S I

CMP A H M D B S R ?
BEQ BSIMM
CMP A j f $ 8 C CPX?
BEQ IMM3
CMP A # $ 8 E LDS?
BEQ IMM3

CMP A j f i C E LDX?
BEQ IMM3
J M P DIR

IMM3 J S R P 0 P 2 OK
JMP EXT]

BSIMM LDX PCREG
BSR SAVLK2
JMP REL

<* ' .
INHER J S R POP0 F I L L OPRND

LDA B I N S I
CMP B < f i 3 9 R I S
BEQ I N H !
CMPB * $ 3 B R I I
BEQ INHOUI
CMPB # $ 3 E WAI
BEQ INHOUT
CMP B # $ 3 F SWI
BEQ INHOUT
LDA B *]
JMP E X H A

INHOUI LDA A # ' X WON'T ALLOW
JMP DMPt P R I N T & EXEC

I N H ! 1ST SUBCNI
BEQ INHOUT TOO MANY R T S ?
DEC SUBCNI
S T S S I K I M P
LDS MYSIK
PU

L
A

S I A A HERE
PUL A
S I A A HERE+!

Tweive con t inued

for A!tair680b
LDX HERE
STX PCREG
STS MYSIK
LOS S I K I M P
JMP E X H C

*
INDX J S R POP! LOAD OPRND

LDX XREG

STX CKADR

CLC

CLR 8

LDA A INST+i LOAD INDEX VALUE

BSR ADDM

INDXS LDA A INST

CMP A #$AD

J S R ?

BEQ INDX4

CMP A # $ 6 E JMP

BEQ INDX5

IMDX3 JMP D I R i

INDX4 LDX PCREG

JSR SAVLK2
INDX5 JMP EXT2
*

ADDM ADD A CKADR+! LS B I T S

ADCB CKADR HS B I T S

ADDM! S IA A CKADR+!

STA B CKADR

RTS
*
SUBM ADD A CKADR+i

BCC SUB!

ADD B CKADR

BRA ADDM!

SUB! ADD B CKADR

DEC B

BRA ADDMt
*
REL JSR POP! OPRND

LDX PCREG

I NX

I NX

U)A A INST GET READY FOR JUMP

S IA A PSEUDO

LDA A CCREG LOAD CNDINS

TAP
* * * * * * * * * *

PSEUDO FCB 0 , 2
* * * * * * * * * *

BRA INDX3 DOES NOT JMP

REL2 CLC DOES JMP

CLR B

IDA A I N S I + i

BPL REL3 I S JMP POS OR ME6

BSR SUBM

FCS $8C CPX

REL3 BSR ADDM

REL4 BRA INDX5 MAKE SWAP
*

RUNVCI LDX SWIADR RESTORE I N S I R

LDA A INST

S I A A X

LDA A # 7

LDX #CCREG

SAVI PUL B

S IA B X

I NX

DEC A

BNE SAVi

STS STKHI

BSR CKHUM CHECK HUMAN

RUN LDX PCREG

DEX DUE TO SWI

RUNS STX PCREG

LDA A INST

AND A %SF0 CLEAR JNK

LSR A

LSR A

LSR A

LDX #TABLE-t SET FOR JMP

R ! INX

DEC A

BPL R i

LDX X

JMP X TAKE JMP
*

c o n t i n u e d

ESCAPE?

CKHUM JSR POLCAT HUMAN WANT CONTROL?

BCC CKHUMS NO

CKHUM! JSR INCH*-4

CKHUM3 CMP B # $! B

BNE CKHUM2 NOPE

JMP DEBUG SCRAM

CKHUM2 R I S BACK YOU GO
*

EXMDR CPX BIADR INST BKPN I ?

BEQ B K P I

LDA A ION4-!

LDA B TON

SUB A # ! CRRCT FOR CARRY

SBC B #0

SUB A CKADR+!

SBC B CKADR

EXMOP CPX BOADR OPRND BKPNT?

BEQ B K P I

EX! RTS

EX2 IDA A TOFF+!

LDA B TOFF

SUB A CKADR+I

SBC B CKADR

BCS EX!

EX3 LDA A % ' I

JMP PRNTRG DMP 4 R I R N
*
BKP I LDA A # *B

JMP DMP! PRINT & EXEC
*
REPAK LDS STKHI REPAK STACK

LDA A #7

LDX #PCRE8+!

REP! LDA B X

PSH 8

DEX

DEC A

BNE REP !

LDX PCREG ANYTHING GOING ON?

STX CKADR

J S R EXMDR GO SEE

FCB $CE LDX *

HERE FCB 0 , 0

LDA A X
S IA A I N S I
LDA A # $ 3 F
S IA A X
S I X SWIADR
RTI

*

POP0 CLR A NO OPRND

STA A ASCFG

POP! LDA A

BSR POP0+!

LDX PCREG

LDA B i , X

STA B INST+!

POPS LDA A #2

BSR POPi+2

LDA B 2 , X

STA B I NST*2

RTS
*

BAD BSR EON ECHO ON

JSR BADDR GET ADDR

BRA EOF
*
EOM LDA A %$03

FCB $8C CPX

EOF LDA A # $ F F

STA A ECHO

RTS
*
IN BSR EON

JSR INCH

STA B WHAT

BSR PNIS

BRA EOF
*

BY BSR EON

JSR BYTE

BRA EOF
*

PRNTRG LDX #MES4

JSR MSB

LDA B WHAT WHAT TYPE DMP

BSR PNT!

LDA A INST INST

BSR OUT2

LDA A ASCFG OPRND?

BEQ PRN3 NONE

LDA A I N S I * !

JSR 0UT2H

LDA A ASCFG MORE?

DEC A

BEQ PRN2 NOPE

LDA A INS I+2

JSR 0UT2H

BRA PRN!

PRN3 BSR XX

PRN2 BSR XX

PRN! BSR XX

LDX * S I K H I
* * * * * * * * * *

FCB $C6 (LDA B #)

HMNY FCB 9
* * * * * * * * * *

PRNLP BEQ PRN4
LDA A X
PSH B
BSR 0UT2
PUL B
INX
DEC B
BRA PRNLP

PRN4 LDA A #9 FORM RESET
STA A HMNY
R I S

*

PNT! JSR OUTCH
PNTS JSR OUTS

PNTC JMP CKHUM
*

XX BSR PNIS

BRA PNTS
*

OUI2 JSR 0UT2H

BRA PNIS
*

PRMPT FCB $ 8 D , $ 0 A

FCB $FF

FCC / § /

FCB 0

*
MES! FCB M D , $ 0 A

FCB $FF

FCC /DEBUG/

FCB 0
*

MES2 FCC / ADDR ? /

FCB 0
*
MESA FCB M D , M A

FCB $ F F , 0
*

EM FCC / * E R R O R * /

FCB 0
*

MYSTK FDB START-!

STKTMP FCB 0 , 0

SUBCNI FCB a

SWIADR FCB 0 , 0

STKSV FCB 0 , 0
*

WHAT FCB B

INST FCB t 3 F , 0 , 0

ASCFG FCB 0

STKHI FCB 0 , 0

CCREG FCB 0

BREG FCB 0

AREG FCB 0

XREG FCB 0 , 0

PCREG FCB 0 , 0

TON FCB $ F F , $ F F

TOFF FCB 0 , 0

BIADR FCB 0 , 0

BOADR FCB 0 , 0
*

JMPIB FCC / M / MONITOR

FDB MONIT

FCC / C / CREG

FDB STC

FCC / B / BREG

C N / N o v e m b e r 1 9 7 7
con t inued on pagei4 Thir teen

Trace Program Simptifies Debugging
Source Listing

c o n t i n u e d

FDB STB
FCC / A / AREU
FDB STA
FCC / X / XREG
FDB STX
FCC / I / TRACE
FDB TSET
FCC / 0 / OPR BKPT
FDB B 0
FCC / I / I N S T BKPT
FDB B I
FCC / J / JMP
FDB J MP XX
FCC / D / D%P REG
FDB DMP
FCB 0

*
TABLE FDB INHER

FDB INHER
FDB REL
FDB INHER
FDB INHER
FDB INHER
FDB INDX
FDB EXT
FDB I MM
FDB DIR
FDB I NDX
FDB EXT
FDB IMM
FDB DIR
FDB INDX
FDB EXT

*
ORG $ 0 0 F3
FCB $ 0 3

*

END

Assembted Listing
0 0 0 0 i NAM DEBUG
8 0 0 0 2
0 0 0 0 3 t S O U R C E ! . 2 . 0
0 0 0 0 4 *
0 0 0 0 5 * J U N E ! 9 7 7 DLJ
0 0 0 0 6 *
0 0 0 0 7 OPT NOG
0 0 0 0 8 *
0 0 0 0 9 0 0 F3 ORG $ 0 0 F3
0 0 0 ! 0 0 0 F 3 FF FCB $ F F
0 0 0) i *
0 0 0 ! 2 * I N S T R U C T I O N S :
0 0 0 ! 3 *
0 0 0 ! 4 * D = (D) UMP R E G I S T E R S
0 0 0 ! 5 * M = (M) ONI TOR RETURN
0 0 0 ! 6 * J = (J) UMP
0 0 0 ! 7 * A / B / C / X / I / O / T
0 0 0) 8 * SET R E G I S T E R S / B R E A K P O I N I S / I R A C E
0 0 0) 9 *
0 0 0 2 0 F F 6 2 BADDR EQU $ F F 6 2
0 0 0 2) 0 0 F2 BRKADR EHU $ 0 0 F 2
0 0 0 2 2 F F 5 3 BYTE EQU $ F F 5 3
0 0 0 2 3 0 0 F3 ECHO EQU $ 0 0 F3
0 0 0 2 4 F F 0 0 INCH EQU $ F F 0 0
0 0 0 2 5 FF6D 0UT2H EQU $ F F 6 D
0 0 0 2 S F F 8) OUTCH EQU $ F F S)
0 0 0 2 7 F F 8 2 OUTS EQU $ F F S 2
0 0 0 2 S F F 2 4 POLCAT EQU $ F F 2 4
0 0 0 2 9 *

0 0 0 3 0 4 0 0 0 ORG $ 4 0 0 0
0 0 0 3) 4 0 0 0 B F 4 3 9 D START STS STKSV SAVE 1 1
0 0 0 3 2 4 0 0 3 0 7 TPA
0 0 0 3 3 4 0 0 4 B7 4 3 A 6 STA A CCREG
0 0 0 3 4 *
0 0 0 3 6 4 0 0 7 CE 4 3 7 8 DEBUG LDX #MESi SEND ' D E B U G '
0 0 0 3 7 4 0 0 A 3 D 5 7 BSR MSG
0 0 0 3 8 *
0 0 0 3 9 4 0 0 C BE 4 3 9 D EXEC LDS STKSV
0 0 0 4 0 4 0 0 F B F 4 3 A 4 S I S STKHI
0 0 0 4) 4 0 ! 2 CE 3 F F F LDX y S I A R I - i
0 0 0 4 2 4 0 ! 5 FF 4 3 9 6 STX MYSTK
0 0 0 4 3 4 0) 8 7 F 4 3 9 A CLR SUBCNI
0 0 0 4 4 4 0 I B FE 4 3 9 B LDX SWIADR
0 0 0 4 5 4 0 ! E B6 4 3 A 0 LDA A I N S T
0 0 0 4 S 4 0 2 ! A7 0 0 STA A X
0 0 0 4 7 4 0 2 3 7 F 4 3 9 B CLR SWIADR
0 0 0 4 8 4 0 2 6 CE 4 3 7 2 LDX # P R M P I POP OUT A 9
0 0 0 4 9 4 0 2 9 3 D 3 8 BSR MSG
0 0 0 5 0 4 0 2 B CE 4 2 3 9 LDX *RUNVCl SET RUN VECTOR
0 0 0 5 ! 4 0 2 E DF 0 ! STX ! STORE AT SWI
0 0 0 5 2 4 0 3 0 8 6 7 E LDA A # $ 7 E LOAD A JMP
0 0 0 5 3 4 0 3 2 9 7 0 0 STA A 0 STORE I T AT SWI
0 0 0 5 4 4 0 3 4 4 3 COM A S E T HIGH B I T
0 0 0 5 5 4 0 3 5 9 7 F2 S I A A BRKADR AT BREAK ADDR
0 0 0 5 6 4 0 3 7 BD 4 3 0 7 J S R IN GET A CHRCIR
0 0 0 5 7 4 0 3 A CE 4 3 B 5 LDX j fJMPTB JUMP T A B L E '
0 0 0 5 8 4 0 3 D E6 0 0 EXEC) LDA B X GET L I R
0 0 0 5 9 4 0 3 F 2 7 0 E BEQ BUM DONE?
0 0 0 5 0 4 0 4) F ! 4 3 9 F CMP B WHAT MATCH?
0 0 0 6 ! 4 0 4 4 2 7 0 5 BEQ JMPCMD
0 0 0 6 2 4 0 4 6 0 8 INX TO NEXT LTR
0 0 0 6 3 4 0 4 7 0 8 INX
0 0 0 6 4 4 0 4 8 0 8 1 NX
0 0 0 6 5 4 0 4 9 2 0 F2 BRA EXEC!
0 0 0 6 6 4 0 4 B EE 0 ! JMPCMD LDX ' , X TAKE I T
0 0 0 6 7 4 0 4 D 6 E 0 0

JMP X
0 0 0 6 8 *
0 0 0 6 9 4 0 4 F CE 4 3 8 E BUM LDX #EM BUMMER
0 0 0 7 0 4 0 5 2 8 D 0 F BSR M5G
0 0 0 7) 4 0 5 4 2 0 B6 BUM! BRA EXEC BACK YOU GO
0 0 0 7 2 *
0 0 0 73 4 0 5 6 B7 4 3 9 F DMP! S I A A WHAT
0 0 0 7 4 4 0 5 9 8 6 ! ! DMP LDA A %$) i
0 0 0 7 5 4 0 5 B B7 4 3 4 D S I A A HMNY SET FOR B I G DMP
0 0 0 7 6 4 0 5 E BD 4 3 ! A DMP3 J S R PRNTRG
0 0 0 7 7 4 0 6) 2 0 F! DMP2 BRA BUM) EXEC
0 0 0 7 8 *
0 0 0 7 9 4 0 6 3 E6 0 0 MSG LDA B 0 , X
0 0 0 8 0 4 0 6 5 2 7 0 6 BEQ MSG!
0 0 0 8 ! 4 0 6 7 BD F F 8 ! J S R OUTCH
0 0 0 8 2 4 0 6 A 0 8 INX
0 0 0 8 3 4 0 6 B 2 0 F6 BRA MSG
0 0 0 8 4 4 0 6 D 3 9 MSG! RTS 00085

c o n t i n u e d
F o u r t e e n C N / N o v e m b e r 1 9 7 7

for Attair 680b
0 0 0 8 6 4 0 6 E D7 F3 M0NIT S I A B ECHO
0 0 0 8 7 4 0 7 0 0 7 F2 S I A B BRKADR
0 0 0 8 8 4 0 7 2 3 F SHI BACK TO MONITOR
0 0 0 8 9 4 0 7 3 7 E 4 0 0 7 JMP DEBUG READY FOR (P) R O C E E D
0 0 0 9 0 *

0 0 0 9 1 4 0 7 6 S D) 8 I S E I BSR ADPRM TRACE SET GET ADDR
0 0 0 9 2 4 0 7 8 FF 43AD S I X ION TRACE ON ADR
0 0 0 9 3 4 0 7 B 8D) 3 BSR ADPRM
0 0 0 9 4 4 0 7 D F F 4 3 A F S I X TOFF TRACE OFF ADR
0 0 0 9 5 4 0 8 0 2 0 OF I S i BRA DMP2 EXEC
0 0 0 9 6 *
0 0 0 9 7 4 0 8 2 8 D 0C B I BSR A0PRM I N S T BREAKPI
0 0 0 9 8 4 0 8 4 F F 4 3 B) S I X BIADR
0 0 0 9 9 4 0 8 7 2 0 F7 BRA TS1 EXEC
0 0 i 0 0 *

0 0 i 0 i 4 0 8 9 8 D 0 5 B 0 BSR ADPRM 0PRND B K P I
0 0 i 0 2 4 0 8 B FF 4 3 B 3 S I X BOADR
0 0 1 0 3 4 0 8 E 2 0 F0 BRA I S i
0 0 i 0 4 *
0 0 i 0 5 4 0 9 0 CE 4 3 8) ADPRM LDX #MES2
0 0 i 0 6 4 0 9 3 B0 4 0 6 3 ADPRtti J S R MSB
0 0 i 0 7 4 0 9 6 7 E 4 2 F8 ADPRM2 JMP BAD & RIRN
0 0 1 0 8 *

0 0 1 0 9 4 0 9 9 BD 4 3 1 3 S I C J S R BY CNDTN REG
0 0 i l 0 4 0 9 C F7 4 3 A 6 STA B CCREG
0 0 i i i 4 0 9 F 2 0 DF S I C) BRA I S)
0 0 i t 2 *
0 0 i i 3 4 0 A i BD 4 3 i 3 S I B

J S R BY BREG
0 0 i ! 4 4 0 A 4 F7 4 3 A 7 STA B BREG
0 0 1 1 5 4 0 A 7 2 0 F6 BRA S I C)
0 0 i t 6 *
0 0 ! i 7 4 0 A 9 BD 4 3) 3 STA J S R BY AREG
0 0] t 8 4 0 AC F 7 4 3 A 8 STA B AREG
0 0 i i 9 4 0 A F 2 0 EE BRA S I C)
0 0 i 2 0 *
0 0 i 2 i 4 0 B 1 8 0 E3 S I X BSR ADPRM2 XREG
0 0 1 2 2 4 0 B 3 FF 4 3 A 9 S I X XREG
0 0 i 2 3 *
0 0 i 2 4 4 0 B 6 2 0 E7 S I 5 BRA S I C) EXEC
0 0 1 2 5 *
0 0 i 2 6 4 0 B 8 8 D D6 JMPXX BSR ADPRM GET ADR
0 0 i 2 7 40BA A6 0 0 LDA A X GET I N S T --
0 0 i 2 8 40BC B 7 4 3 A 0 S I A A I N S T
0 0 i 2 9 4 0 B F 7 E 4 2 5 6 JMP RUN2
0 0 i 3 0 *
0 0 i 3 i 4 0 C 2 BD 4 2 E) 01R J S R POP) LOAD 0PRND
0 0 i 3 2 4 0 C 5 F7 4 1 2 C S I A B CKADR+)
0 0 i 3 3 4 0 C 8 7 F 4 i 2 B CLR CKADR
0 0 1 3 4 40CB FE 4) 2 B LDX CKADR
0 0 i 3 5 4 0 C E BD 4 2 9 3 D I R 3 J S R EXMOP

NEXT SWI 0 0 i 3 6 4 0 D 1 C6 0 2 DIR2 LDA B # 2 NEXT SWI
0 0 1 3 7 4 0 D 3 2 0) 9 BRA E X D A
0 0 1 3 8 *

LOAD 0PRND 0 0 1 3 9 4 0 0 5 BD 4 2 EE EXI J S R P 0 P 2 LOAD 0PRND
0 0) 4 0 4 0 D8 B 6 4 3 A 0 LDA A I N S T
0 0 i 4 1 40DB FE 4 3 A 1 LDX I N S I +) GET A0R
0 0 1 4 2 4 0 D E FF 4) 2 B S I X CKADR
0 0 1 4 3 4 0 E 1 BD 4 2 9 3 J S R EXMOP
0 0 i 4 4 4 0 E4 8) 7 E CMP A # i 7 E J M P ?
0 0 i 4 5 4 0 E6 2 7 t c BEQ EXT2

J S R ? 0 0 i 4 6 4 0 E S 8) BD CMP A # $ B D J S R ?
0 0 i 4 7 4 0 E A 2 7 2) BEQ EXT3

NEXT SWI 0 0 i 4 8 4 0 E C C6 0 3 EXT1 LDA B # 3 NEXT SWI
0 0 i 4 9 4 0 E E FE 43AB E X D A LDX PCREG
0 0 1 5 0 4 0 F) 5D E X H B 1ST B

EXT)C 0 0 i 5 i 4 0 F 2 2 7 0 4 BEQ EXT)C
0 0 ! 5 2 4 0 F 4 0 8 INX
0 0 i 5 3 4 0 F 5 5A DEC B
0 0 i 5 4 4 0 F 6 2 0 F9 BRA EXTtB
0 0) 5 5 4 0 F 8 FF 4 2 C 0 EXI1C S I X HERE
0 0 1 5 6 4 0 F B 7 E 4 2 B 4 JMP REPAK
0 0 1 5 7 4 0 F E FE 43AB EXI2B LDX PCREG
0 0) 5 8 4) 0) BD 4) 4 7

J S R SAVLK3
0 0) 5 9 4) 0 4 FE 4) 2 B EXT2 LDX CKADR

SWAP 0 0 1 6 0 4) 0 7 F F 43AB S I X PCREG SWAP
0 0) 6 1 4) 0 A 5 F CLR B NEXT SWI
0 0 1 6 2 4) 0 B 2 0 E) BRA E X D A
0 0 1 6 3 4) 0 D 8C F F 8) EXI3 CPX # O U I C H
0 0 1 6 4 4)) 0 2 7 0 F BEQ DOIT
0 0) 6 5 4)) 2 8C FF6D CPX # 0 U I 2 H
0 0 1 6 6 41) 5 2 7 0A BEQ D 0 I I
0 0 1 6 7 4)) 7 8C F F 0 0 CPX # 1 NCH
0 0 1 6 8 4))A 2 7 0 5 BEQ DOIT

con t inued on page<8

BAS!C BUSINESS SOFTWARE
Disc Sort $195
interactive sys tem genera tes customized job-
s t ream sort module for sequential or random
files.
Correspondence Processor $195
Manipulates text and name /add re s s disc files
with p rompts and error checking. Very easy
to use.
Keyto^Disc $195
Interactive sys tem genera tes cus tom module
with user defined CRT/disc formats , validity
checks and automat ic entry duplicate or in-
crement .
Supplied on diskette with user manual and pro-
gram documenta t ion . S e e your Altair dealer
or con tac t us.

THE SOFTWARE STORE
706 Chippewa Square Marquet te Ml 49855

Master Charge - 906/228-7622 - VISA

Ctass i f i ed
Ads

For Sale
Altair'"8800
Fully assembled, tested-runs beautifully.
16K memory, serial 1/0, RS2321/0,
Clock Vectored Interrupt, flexible disk.
All documentation and many programs,
including Op. Sys., Assem., Edit,
BASIC and games.
$3200
Contact:

Computer Solutions
17922 Sky Park Cr.
Suite L
Irvine, CA 92714
(714) 751-5040

Correction
GLITCHES, p. 19, Oct. CN

The last line in the second paragraph
should read, "Kits and assembled units
will use 74LS13 for ICA and B. There's no
such chip as a 74SL5153.

Also, note that a separate 25-pin
DB connector is used for RS-232 (wired as
before), and a separate 25DB connector is
used for the TTY printer.

C N / N o v e m b e r 1 x 7 7 Fifteen

Destroying Kiingons Can
Audio Star Trek Using the 88-MU1
By Thomas G. Schneider

RUTS
Bleep-Bleep!
Klingon at sector 4-8, Captain. I

recommend immediate action.
Blow him away, Sulu!
BZZZZZZZZZZZZZT.. Poot!
Klingon destroyed, Captain!
Wouldn't computer Star Trek be really

far-out if it actually made those sounds?
Let's face it, watching those K's disappear
on your screen quietly and undramatically
leaves a lot to be desired. But now, with
the new Altair^88-MUl, you can produce
almost any sound effects for practically any
purpose, including Star Trek.

Listing 1 is a version of Star Trek
modified for sound effects. These effects
are generated by the subroutines listed at
the end of the program. Sounds are pro-
duced for maps, warp engines, photon tor-
pedos, phasors, destruction of stars and
kiingons, and command prompts. As an
added feature, an appropriate melody is
played to insult the user who misses a
klingon. If you want to modify Star Trek
even more radically, refer to listing 2,
which shows where the sound routines are
called.

So plug in your new 88-MU1, load up
audio Star Trek, turn up your amplifier,
and get those kiingons.

9 GOSUB1500
to DIM D(5),K1(7).K2(7)<K3(7),S(7.7),Q(7.7),D$(5)
30 a%=".EKB*"
30 D*(0)="WARP ENGINES"
40 D*<1)="SH0RT RANGE SENSORS"
50 D%(2)="L0NG RANGE SENSORS"
60 D*(3)="PHASERS"
70 D*<4)="PH0T0N TORPEDOES":D%<5)="GALACTIC RECORDS"
SO INPUT"PLEASE ENTER A RANDOM NUMBER". E3:I=ASC<E$)
90 I=I-1HMNT(I/11):F0R J=0 TO I:K=RND(1):NEXT:PRINT"MQRKING-"
too DEF FND(N)=SQR((K1(I)-S1)"2+(K2(I)-S2)"2)
110 GOSUB 610: GOSUB 450:Q1=X:Q2=Y:X=8:Y=1:X1=. 207S:Y1=6. 28:X2=3. 28
120 Y3=1.S:A=.96:C=100:M=10:K9=0:B9=0:S9=400:T9=3451:G0T0 140
130 K=K+(N<X2)-KN<Y2) + (N<. 28)+(NC. 08) + (NC. 03) + (NC. 01): K9=K9-K: GOTO 160
140 T0=3421:T=TO:EO=4O0O:E=EC:PO=lO:P=PO:FOR 1=0 TO 7
150 FOR J=0 TO 7:K=0:N=RND(Y):IF N<X1 THEN N=N*64:K=(N<Y1)-Y:C0T0 130
160 B=(RND(Y)>A):B9=B9-B.Q(I.J)=K*C+B*W-INT(RND(Y)*X+Y):NEXT J.I
170 IF K9XT9-T0) THEN T9=T0+K9
ISO IF B9>0 THEN 200
190 GOSUB 450:Q(X, Y)=Q(X<Y)-10:B9=1
200 PRINT LEFT3("STARTREK ADAPTED BY L.E.COCHRAN 2/29/76".8):K0=K9
210 PRINT"OBJECTIVE: DESTROY";K9;"KLINGON BATTLE CRUISERS IN";T9-TO;
22CPRINT"YEARS.":PRINT" THE NUMBER OF STARBASES IS";B9
230 A=0:IF Q1C0 OR 81 >7 OR 32C0 OR 02:-7 THEN N=0:S=0:K=0:G0T0 250
240 N=ABS(Q(Q1<Q2)):Q(Q1,Q2)=N:S=N-INT(N/10)*10:K=INT(N/100)
250 B=INT(N/10-K#10):GOSUB 450:S1=X:S2=Y
260 FOR 1=0 TO 7: FOR J=0 TO 7:S(I.J)=1:NEXT J, I:S(S1,S2)=2
270 FOR 1=0 TO 7:K3(I)=0:X=8:IF K K THEN GOSUB 460:S (X,Y)=3:K3(I)=S9
280K1(I)=X:K2(I)=Y:NEXT:I=S
290 IF B>0 THEN GOSUB 460:S(X. Y)=4
300 IF I>0 THEN GOSUB 460:S(X. Y)=5:I=I-1:G0T0 300
310 GOSUB 550:IF A=0 THEN GOSUB 480
320 IF E<=0 THEN 1370
330 1=1:IF D(I)>0 THEN 620
340 FOR 1=0 TO 7: FOR J=0 TO 7*: PRINT MIDSfQ*. S(I.J).l);" ";:G0SUB1700:NEXT J
350 PRINT" ";:0N I GOTO 380,390,400.410,420,430,440
360 PRINT"YEARS =";T9-T
370 NEXT:GOTO 650
3S0 PRINT"STARDATE=";T:GOTO 370
390 PRINT"CONDITION: "iC$:GOTO 370
400 PRINT"QUADRANT=";Q1+1;"-";Q2+1:G0T0 370
410 PRINT"SECTOR =";S1 + 1;"-";S2+1:G0T0 370
420 PRINT"ENERGY=";E:COTO 370
430 PRINT DS(4);" = ";P:G0T0 370
440 PRINT"KLINGONS LEFT=";K9:G0T0 370
450 X=INT(RND(1)#8):Y=INT(RND(1)^8):RETURN
460 GOSUB 450: IF S(X<Y)>1 THEN 460
470 RETURN
480 IF K<1 THEN RETURN
490 IF C*="DOCKED" THEN PRINT"STARBASE PROTECTS ENTERPRISE":RETURN
500 FOR 1=0 TO 7:IF K3(I)<=0 THEN NEXT:RETURN
510 H=K3(I)*. 4*RND(l):K3(I)=K3(I)-H:H=H/(FND(0)-\ 4):E=E-H
520 E%="ENTERPRISE FROM":N=E:GOSUB 530:NEXT.RETURN
530 PRINT Hi "UNIT HIT ON ";ES," SECT0R";K1(I) + 1;"-";K2(I) + 1;
540 PRINT" (";N; "LEFT)": RETURN
550 FOR I=S1-1 TO S1+1:F0R U=S2-1 TO S2+1
560 IF ICO OR I>7 OR J<0 OR j:-7 THEN 580
570 IF S(I.J)=4 THEN C%="DOCKED":E=EO:P=PO:GOSUB 610:RETURN
580 NEXT J.I:IF K>0 THEN C$="RED":RETURN
590 IF ECEO*.1 THEN CS="YELLOW":RETURN
600 C^="GREEN":RETURN
610 FOR N=0 TO 5:D(N)=0:NEXT:RETURN
620 PRINT D*(I)i" DAMAGED":
630 PRINT" ";D(I); "YEARS ESTIMATED FOR REPAIR":PRINT
640 IF A=1 THEN RETURN
650 F0RLL=1T07:PRINTMID%("COMMAND".LL.1);:GOSUB1600:NEXT:GOSUB1500:INPUTA
660 IF A<1 OR A>6 THEN 680
670 ON A GOTO 710.310.1250.1140,690.1300
680 FOR 1=0 TO 3:PRINT 1 + 1;"= ";DS(I):NEXT:GOTO 630
690 IF D!4)^0 THEN PRINT"SPACE CRUD BLOCKING TUBES.";:1=4:GOTO 630
700 N=15.IF P<1 THEN PRINT"NO TORPEDOES LEFT":GOTO 630
710 IF A=5 THEN PRINT"TORPEDO ";
720 INPUT"COURSE (1-8.9)";C:IF C<1 THEN 650
730 IF C>=9 THEN 710
740 IF A=3 THEN P=P-1:G0SUB1900:PRINT"TRACK:";:G0T0 900
750 INPUT"WARP (0-12) ";M: IF M<=0 OR M>12 THEN 710
760 IF M<= 2 OR D(0)<=0 THEN 780
770 1=0: PRINT DS(I);" DAMAGED, MAX IS .2 ";:GOSUB 630:G0T0 750

cont inued

Sixteen C N / N o v e m b e r 1 9 7 7

Bring Music to Your Ears
780 G0SUB2000:GOSUB 480:IF E<=0 THEN 1370
790 IF RND(H:-. 25 THEN 870
800 X=INT{RND(1)*6):IF RND<1)>.5 THEN 830
810 DtX)=D(X)+INT(6-RND(l)*5):PRINT"**SPACE STORM, ";
820 PRINT D$(X); " DAMAGED**":I=X:G0SUB 630:D(X)=D(X)+1:GOTO 870
830 FOR I=X TO 5: IF 3 (I > :<0 THEN 860
840 NEXT
850 FOR 1=0 TO X:IF D(I)<=0 THEN NEXT:G0T0 870
860 o; I)=. 5: PRINT"**SPOCK USED A NEU REPAIR TECHNIQUE**"
870 FOR 1=0 TO 5:IF D(I)=0 THEN 890
880 D(I)=D(I)-1:IF D(I)<=0 THEN D(I)=0:PRINT D%(I);" ARE FIXED!"
890 NEXT:N=INT(M*B):E=E-N-N+. 3:T=T+1:S(S1,S2)=1
900 Y1=S1+.5:X1=S3+ 5:IF T>T9 THEN 1370
910 Y=(C-1)*.783398:X=C0S(Y):Y=-SIN(Y)
920 FOR 1=1 TO N:Y1=Y1+Y:X1=X1+X:Y2=INT(Y1):X2=INT(X1)
930 IF X2C0 OR X2;-7 OR Y2C0 OR Y2>7 THEN 1110
940 IF A=5 THEN PRINT Y2+1;"-";X2+1<
950 IF S(Y2,X2)=l THEN NEXT:GOTO 1060
960 PRINT:IF A=1 THEN PRINT"BLOCKED BY "i
970 ON S(Y2. X2)-3 GOTO 1040.1020
980 PRINT"KLINGON"; : IF A=1 THEN 1050
990 FOR 1=0 TO 7:IF Y 2 0 K K I) THEN 1010
1000 IF X2=K2<I) THEN K3(I)=0
1010 NEXT:K=K-1:K9=K9-1:GOTO 1070
1020 PRINT"STAR";:IF A=5 THEN S=S-1:G0T0 1070
1030 GOTO 1050:2L29E76C
1040 PRINT"STARBASE";.IF A=5 THEN B=2:G0T0 1070
1050 PRINT" AT SECT0R";Y2+1;"-";X2+1:Y2=INT<Y1-Y):X2=INT(X1-X)
1060 S1=Y2:S2=X2:S(S1.S2)=2:A=2:G0T0 310
1070 PRINT" DESTROYED!";:GOSUB2200:IF B=2 THEN B=0:PRINT". . .GOOD MORH!";
1080 PRINT: S<Y2,X2) = l:Q<Ql,a2)=mH00+B*10+S: IF H9<1 THEN 1400
1090 GOSUB 480:IF E<=0 THEN 1370
1100 GOSUB 550:GOTO 650
1110 IF A=5 THEN PRINT"MISSED! ": G0SUB3300: GOTO 1090
1120 01=INT (a i+W*Y+(Sl+.5)/8):Q2=INT(Q2+M*X+(S2+.5)/8)
1130 a i=Ql-<Ql<0) - K a i^7):Q2 = a 2-(Q2<0) + (Q2>7):G0Ta 230
1140 1=3:IF D(I)>0 THEN 620
1150 INPUT"PHASERS READY: ENERGY UNITS TO FIRE";X:IF X<=0 THEN 650
1160 IF X>E THEN PRINT"ONLY GOT";E:GOTO 1150
1163 G0SUB2100
1170 E=E-X:Y=K:FOR 1=0 TO 7:IF K3(I)<=0 THEN 1230
1180 H=X/(Y*(FND(0)-. 4)):K3(I)=)43(I)-H
1190 E%="KLINGON AT":N=K3(I):GOSUB 530
1200 IF K3(Ii>0 THEN 1230
1210 PRINT"**HLINGON DESTROYED**":G0SUB2200
1220 K=K-1:K9=K9-1:S(K1(I) ,K2<I))=1: 0(81. Q 2) = a (a i < Q 2) - 1 0 0
1230 NEXT:IF K9<1 THEN 1400
1240 GOTO 1090
1250 1=2:IF D(I)>0 THEN 620
1260 PRINT D3(I);" FOR aUADRANT " ; a i+l;"-";a2+l
1270 FOR 1=01-1 TO ai+l.FOR J=Q2-1 TO a2+l:PRINT" ";
1280 IF I<0 OR 1^7 OR J<0 OR J>7 THEN PRINT"***"; :GOTU 13SO
1290 Q(I,J)=ABS(Q(I,J)):GOTO 1340
1300 1=5:IF D(I)>0 THEN 620
1310 PRINT"CUMULATIVE GALACTIC MAP FOR STAHDATE";T
1320 FOR 1=0 TO 7:FOR J=0 TO 7:PRINT" ";
1330 IF 3(1, J X O THEN PRINT"***"; :GOTO 1350
1340 ES=STR3<a<I,J)):E9i="00"+MID9KE*<2):PRrNTRICHT!ME!t,3);
1345 G0SUB1800
1350 NEXT J:PRINT:NEXT I:GOTO 650
1360 PRINT:PRINT-IT IS STARDATE";T:RETURN
1370 GOSUB 1360:PRINT"THANKS TO YOUR BUNGLING, THE FEDERATION MILL BE"
1380 PRINT"CONaUERED BY THE REMAINING";K9;"KLING0N CRUISERS!"
1390 PRINT"YOU ARE DEMOTED TO CABIN BOY!":GOTO 1430
1400 GOSUB 1360:PRINT"THE FEDERATION HAS BEEN SAVED!"
1410 PRINT"YOU ARE PROMOTED TO ADMIRAL":PRINT KO;"KLINGONS IN";
1420 PRINT T-TO; "YEARS. RATING=";INT(KO/(T-T0)*1000)
1430 INPUT'TRY AGAIN";E$:IF LEFT%(E$.1)="Y" THEN 110
1500 REM SS-MU1 INITIALIZE
1510 0UT&0363,128:OUT&0367,128:0UT&0373,128
1520 RETURN
1600 REM COMMAND BEEPER
1605 aa=i
1610 0=3
1620 N=INT(255*RND(a0))AND&0360
1630 0UTE-.0360, 0:0UTM)362, N
1640 F0RDD=CT014:NEXT
1650 RETURN
1700 REM MAP #2 SOUND
1705 IFS(I. JX2THENRETURN
1706 IFS(I,J)C>3THEN1710
1707 0UT&.03&1, 12S: OUTM360, 128: 0UT&0362, 16: FORDD=OT0100: NEXT: GOSUBISOO: RETURN

con t inued on p a g e 18 ^
C N / N o v e m b e r 1 9 7 7 Seventeen

Destroying KHngons Can Bring Music to c o n t i n u e d

1710 0UTX=0361.S(I. J)
1720 0UT&0362,2"I
1730 C0SUB1500
1740 RETURN
1S00 REM MAP #3 AND #6 SOUND
1S05 IFQd.JKlOOTHENlBlO
1806 0UT!-0361. 12S: 0UT&0360, 123: OUT&0362, 16:
1310 0UT!!0361.Q(I.J)
1820 0UT&0362. 2*̂ 1
1830 50SUB1500
1840 RETURN
1900 REM PHOTON TORPEDO SOUND
1905 0=128
1910 0=0/2
1920 FORN=OTOH
1930 OUT&0362, N:0UT&0361.0
1940 NEXT: IF001THEN1910
1945 C0SUB1500
1950 RETURN
2000 REM WARP SOUND
2005 F0RK*=1T03
2010 0UT&0361.M300
2015 0UT&0360. E<040
2020 F0RN=0TQ11
2021 NN=N*16:0UT&0362.NN+N
2025 F0RDD=0T050:NEXT
2040 NEXT
2045 NEXT
2090 0UT&0360,O:0UT&0361.0:RETURN
2100 REM PHASOR SOUNDS
2110 F0RPP=1T0200
2112 0UT&0361.3
2115 PN=ABS(PN-1)
2116 0UT&0362.PN
2130 NEXT
2140 OUH0361.0
2150 RETURN
2200 REM DEAD ITEM SOUND
2205 OUTM361.&0300
2210 F0RN=11T00STEP-1
2215 F0RDD=0T040:NEXT
2220 0UT!t0362. N
2230 NEXT
2240 0UT&0361.0: RETURN
2300 REM INSULT MELODY
2310 READN, TT
2315 IFTT=0THEN2350
2320 0UTM361.M10:0UT&0362. N
2330 FORD=OTOTT:NEXT
2340 COT02310
2350 0UT&0361.0: RESTORE: RETURN
3000 DATA3.100
3001 DATA12,4
3002 DATA3.100
3003 DATAO.100
3004 DATA5,100
3005 DATA3,200
3006 DATAO.200
3010 DATAO.O

FORDD-OTOlOO:NEXT.C0SUB1500:RETURN

TRACE PROGRAM
Assemb!ed Listing c o n t i n u e d

0 0) 6 9 4 1 1 C 8C F F 8 2 CPX ^ OUTS
0 0) 7 0 41 1 F 2 6 DD BNE EXT2B
0 0) 7 1 4 1 2 1 BD 4 2 F F DOIT J S R EON
0 0) 7 2 4) 2 4 B6 4 3 A 8 LDA A AREG
0 0 1 7 3 4 1 2 7 F6 4 3 A 7 LDA B BREG
0 0 1 7 4
0 0 1 75 4 1 2 A BD FCB $BD J S R
0 0 1 76 4 1 2 B 0 0 CKADR FCB 0 , 0
0 0) 7 7 * * * * * * * * * *

0 0) 78 4 1 2 D B7 4 3 A 8 STA A AREG
0 0) 7 9 4 1 3 0 F7 4 3 A 7 STA B BREG
0 0) 8 0 4 1 3 3 BD 4 3 0 2 J S R EOF
0 0) 8 1 4) 3 6 BD 4 2 7 4 J S R CKHUM3 E S C A P E ?
0 0 1 8 2 4 1 3 9 FE 43AB LDX PCREG NO
0 0) 8 3 4 I 3 C 0 8 INX PAST J S R
0 0 1 8 9 4 1 3 E 0 8 INX
0 0 1 8 6 4 1 3 F A6 0 0 LDA A X
0 0) 8 7 4 1 4) B7 4 3 A 0 STA A I N S I
0 0) 8 8 4) 4 4 7 E 4 2 5 6 JMP RUN2
0 0) 8 9 *

SAVE LINK 0 0) 9 0 4 1 4 7 0 8 SAVLK3 INX SAVE LINK
0 0) 9) 4 1 4 8 0 8 SAVLK2 INX
0 0) 9 2 4 1 4 9 0 8 SAVLK1 INX
0 0) 9 3 4 1 4 A FF 4 2 C D STX HERE
0 0) 9 4 4) 4 D B F 4 3 9 8 S T S S I K I M P
0 0) 9 5 4 1 5 0 BE 4 3 9 6 LDS MYSTK
0 0) 9 6 4 1 5 3 B 6 4 2 C E LDA A HERE+)
0 0) 9 7 4) 5 6 3 6 PSH A
0 0) 9 8 4) 5 7 B6 4 2 C D LDA A HERE
0 0) 9 9 4) 5 A 3 6 PSH A
0 0 2 0 0 4 1 5 B B F 4 3 9 6 S I S MYSTK
0 0 2 0 1 4 1 5 E BE 4 3 9 8 LDS STKTMP
0 0 2 0 2 4 1 6 1 7C 4 3 9 A INC SUBCNI
0 0 2 0 3 4 1 6 4 3 9 RTS
0 0 2 0 4 *

0 0 2 0 5 4 1 6 5 B6 4 3 A 0 IMP! LDA A I N S I
0 0 2 0 6 4 1 6 8 8) 8 D CMP A # $ 8 D B S R ?
0 0 2 , 0 7 4) 6 A 2 7 1 5 BEQ BSIMM
0 0 2 0 8 4) 6 C 8 1 8C CMP A # $ 8 C C P X ?
0 0 2 0 9 4) 6 E 2 7 0B BEQ IMM3
0 0 2) 0 4 1 7 0 8 1 8 E CMP A # $ 8 E L D S ?
0 0 2 1 1 41 72 2 7 0 7 BEQ IMM3
0 0 2) 2 4) 7 4 8 1 CE CMP A * $ C E LDX?
0 0 2) 3 4 1 7 6 2 7 0 3 BEQ IMM3
0 0 2 1 4 4 1 7 8 7 E 4 0 C 2 JMP DIR
0 0 2 1 5 4 1 7 B BD 4 2 EE IMM3 J S R P 0 P 2 OK
0 0 2) 6 4) 7 E 7 E 4 0 EC JMP EXT1
0 0 2 1 7 4 1 8) FE 43AB BSIMM LDX PCREG
0 0 2 1 8 4 1 8 4 8 D C2 BSR SAVLK2
0 0 2 1 9 4 1 8 6 7 E 4 2) 2

JMP REL
0 0 2 2 0 *

0 0 2 2 1 4 1 8 9 BD 42DC INHER J S R POP0 F I L L OPRND
0 0 2 2 2 4 1 8 C F6 4 3 A 0 LDA B I N S T
0 0 2 2 3 4 1 8 F CI 3 9 CMP B # $ 3 9 RTS
0 0 2 2 4 4 1 9 1 2 7 1 6 BEQ INH1
0 0 2 2 5 4) 9 3 CI 3B CMP B * $ 3 B R T I
0 0 2 2 6 4 1 9 5 2 7 0D BEQ INHOUT
0 0 2 2 7 4 1 9 7 CI 3 E CMP B * $ 3 E MAI
0 0 2 2 8 4 1 9 9 2 7 0 9 BEQ INHOUT
0 0 2 2 9 4 1 9 B CI 3 F CMP B * $ 3 F SMI
0 0 2 3 0 4) 9 D 2 7 0 5 BEQ INHOUI
0 0 2 3 1 4 1 9 F C 6 01 LDA B # 1
0 0 2 3 2 41 At 7 E 4 0 EE JMP EXT1A
0 0 2 3 3 4 1 A 4 8 6 5 8 INHOUT LDA A ' 'X MON'T ALLOM
0 0 2 3 4 4 1 A 6 7 E 4 0 5 6 JMP DMP1 P R I N T i EXEC
0 0 2 3 5 41 A9 7D 4 3 9 A INH1 1 S T SUBCNI
0 0 2 3 6 41AC 2 7 F6 BEQ INHOUI TOO MANY R I S
0 0 2 3 7 4 1 A E 7A 4 3 9 A DEC SUBCNI
0 0 2 3 8 4 1 B 1 B F 4 3 9 8 STS S I K I M P

c o n t i n u e d
Eighteen C N / N o v e m b e r 1 9 7 7

TRACE PROGRAM
Assembled Listing con t inued

0 0 2 3 9 4 ! B 4 BE 4 3 9 6 LDS MYSIK
0 0 2 4 0 4 ! B 7 3 2 PUL A
0 0 2 4) 4 1 B 8 B 7 42CD S I A A HERE
0 0 2 4 2 4 1 B B 3 2 PUL A
0 0 2 4 3 4 ! B C B 7 4 2 C E STA A HERE+)
0 0 2 4 4 4) B F FE 42CD LDX HERE
0 0 2 4 5 4) C 2 F F 43AB STX PCREG
0 0 2 4 6 4) C 5 B F 4 3 9 6 . S I S MYSIK
0 0 2 4 7 4 1 C 8 BE 4 3 9 8 ' LDS STKIMP
0 0 2 4 8 4) C B 7 E 4 0 F 8 JMP EXT)C
00249 *
0 0 2 5 0 4) C E BD 4 2 E) INDX J S R P O P ! LOAD OPRND
0 0 2 5 1 4) 0) FE 4 3 A 9 LDX XREG
0 0 2 5 2 4) D 4 F F 4) 2 B STX CKADR
0 0 2 5 3 4) D 7 0C CLC
0 0 2 5 4 4) D6 5 F CLR B
0 0 2 5 5 4) D 9 B 6 4 3 A) LDA A I N S T + 1 LOAD INDEX VALUE
0 0 2 5 5 4) D C 8 D) 7 BSR ADDM
0 0 2 5 7 4 ! D E B 6 4 3 A 0 INDX2 LDA A I N S T
0 0 2 5 8 4) El 8) AD CMP A # t A D J S R ?
0 0 2 5 9 4 1 E3 2 7 0 7 BEQ INDX4
0 0 2 6 0 41 E5 8 1 6 E CMP A # $ 6 E JMP
0 0 2 6 1 41 E7 2 7 0 9 BEQ INDX5
0 0 2 6 2 41 E9 7 E 4 0 C E INDX3 JMP D I R 3
0 0 2 6 3 4!E!C FE 43AB INDX4 LDX P C R E 8
0 0 2 6 4 4 1 E F BD 4 1 4 8 . J S R SAVLK2
0 0 2 6 5 4 1 F2 7 E 4 1 0 4 INDX5 JMP EXT2
00266, * '
0 0 2 6 7 4 1 F 5 BB 4 1 2 C ADDM ADD A CKADR+! LS B I T S
0 0 2 6 8 4 1 F 8 F9 4 1 2 3 ADC B CKADR MS B I T S
0 0 2 6 9 41 FB B 7 4 ! 2 C ADDM1 STA A CKADR+)
0 0 2 7 0 4] FE F7 4 1 2 B STA B CKADR
0 0 2 7 1 4 2 0 1 3 9 RTS <30272^- *
0 0 2 7 3 4 2 0 2 BB 4 1 2 C SUBM ADD A CKADR+1
0 0 2 7 4 4 2 0 5 2 4 0 5 BCC S U B !
0 0 2 75 4 2 0 7 FB 4) 2 B ADD B CKADR
0 0 2 76 4 2 0 A 2 0 E F BRA ADDM1
0 0 2 7 7 4 2 0 C FB 4 ! 2 B SUB! ADD B CKADR
0 0 2 78 4 2 0 F 5 4 DEC B
0 0 2 7 9 4 2) 0 2 0 E9 BRA ADDM! 00280, . *, '*:"*.,.::-:'.;
0 0 2 8 1 4 2 ! 2 BD 4 2 El RL J S R POP! OPRND
0 0 2 3 2 4 2 ! 5 FE 43AB t D X PCREGi
0 0 2 S 3 4 2 ! 8 0 8 I NX 00284 4 2) 9 08 . : : : - INX " . . ' ' : .
0 0 2 8 5 4 2) A FF 4) 2 B S I X CKADR
0 0 2 8 6 4 2 1 D B 6 4 3 A 0 LDA A I N S T GET READY FOR JUMP
0 0 2 8 7 4 2 2 0 B7 4 2 2 7 STA A PSEUDO
0 0 2 8 8 4 2 2 3 B 6 4 3 A 6 LDA A CCREG LOAD CNDINS
0 0 2 8 9 4 2 2 6 0 6 ^ ^ ' V TAP - ; '
0 0 2 9 0 ' * * * * * * * * * *
0 0 2 9 1 4 2 2 7 0 0 PSEUDO FCB 3 , 2 00292 '' ********** .."''.'. - / ' : ' . '
0 0 2 9 3 4 2 2 9 2 0 BE BRA INDX3 DOES NOT JMP
0 0 2 9 4 4 2 2 B 0C REL2 CLC DOES JMP
0 0 2 9 5 4 2 2 C 5 F CLR B
0 0 2 9 6 4 2 2 D B 6 4 3 A ! LDA A I N S T +)
0 0 2 9 7 4 2 3 0 2A 0 3 BPL REL3 I S JMP POS OR NEG
0 0 2 9 8 4 2 3 2 8 D C E BSR SUBM
0 0 2 9 9 4 2 3 4 8C FCB $ 8 C CPX
0 0 3 0 0 4 2 3 5 8D BE REL3 BSR ADDM
0 0 3 0) 4 2 3 7 2 0 B9 REL4 BRA INDX5 MAKE SWAP '00302. Ml ' - . . . -* ; . . M ' " * . '
0 0 3 0 3 4 2 3 9 FE 4 3 9 B RUNVCT LDX SWI ADR RESTORE I N S I R
0 0 3 0 4 4 2 3 C B 6 4 3 A 0 LDA A I N S T i
0 0 3 0 5 4 2 3 F A7 0 0 S I A A X
0 0 3 0 6 4 2 4) 8 6 0 7 LDA A ^ 7
0 0 3 0 7 4 2 4 3 CE 4 3 A 6 LDX * C C R E 6
0 0 3 0 8 4 2 4 6 3 3 SAV! PUL B
0 0 3 0 9 4 2 4 7 E7 0 0 S I A B X
0 0 3) 0 4 2 4 9 0 8 I NX
0 0 3)) 4 2 4 A 4A DEC A
0 0 3) 2 4 2 4 B 2 6 F9 BNE SAV1
0 0 3) 3 4 2 4 D B F 4 3 A 4 S I S S I K H I
0 0 3) 4 4 2 5 0 8 D)A BSR CKHUM
0 0 3) 5 4 2 5 2 FE 43AB RUN LDX PCREG
0 0 3 1 6 4 2 5 5 0 9 DEX
0 0 3) 7 4 2 5 6 F F 4 3 A B RUN2 STX PCREG
0 0 3) 8 4 2 5 9 B6 4 3 A 0 LDA A I N S T
0 0 3) 9 4 2 5 C 8 4 F0 AND A i f S F 0
0 0 3 2 0 4 2 5 E 4 4 LSR A
0 0 3 2) 4 2 5 F 4 4 LSR A
0 0 3 2 2 4 2 6 0 4 4 LSR A
0 0 3 2 3 4 2 6) CE 4 3 D 3 LDX L I A B L E -) S E T FOR JMP
0 0 3 2 4 4 2 6 4 0 8 R) INX
0 0 3 2 5 4 2 6 5 4A DEC A

CHECK HUMAN
DUE TO SWI

CLEAR JNK

COMPUTER NOTES IS
MOVING. . .

The main editorial office

of Computer Notes will be loca-

ted at Pertec offices in Cali-

fornia.

Due to the change in location

and editorial staff the publi-

cation of the November and

December issues has been

delayed.

Manuscripts and letters may

still be sent to the MITS

address. Match the upcoming

issues of CN for the new mail-

ing address.

CN /November 1977 con t inued on p a g e Nineteen

String Character Editing Routine
By Ken Knecht

1240 W. 3rd St.
Space 135
Yuma, Arizona 85364

If you read my article ("Writing Ma-
chine Helps Prepare Manuscripts") in the
July '77 Computer Notes, then you might
have noticed that I mentioned plans to
write a string character editing routine for
my word processor program. I also said
that I didn't see how it could be done in
BASIC. Well, it can. and the following
article explains how to do it.

The heart of the program is lines 6500-
6510. This subroutine inputs a character
from the terminal without echoing it. The
routine supports a subset of the MITS SI0A
Rev. 1 1/0 board. Changes of the pott
numbers and status flags will enable you to
use the 2SI0 board.

Essentially, the program supports a
subset of the MITS BASIC character edit-
ing function. This version recognizes (n)C,
(n)D, L, Q. I, H, and X. These are usually
ample foremost editing requirements. The
S would also be useful, so I may add it
later. The routine also recognizes the
delete (rubout, backarrow, or whatever)
command when in the insert mode (or after
X or H). Edit commands can be in upper or
lower case. As in MITS BASIC, editor
command letters and numbers are not
echoed.
Line Description
6000 ED=1: Set edit flag in my pro-

gram. The query gets the identi-
fying number of the string to be
edited in C. We transpose that
to D for the program, set some
program flags you don't need to
be concerned with, get the length
of the string in Z4, and initialize
the variable.

Here we get the character iTnr<+
without echo in routine 6500.

Here we get the EDIT command in
upper or lower case.

Error signal (bell); if input is not in
edit routine repertoire, then the
bell is sounded, and we go back
to 6010 for a valid input.

Space input; if LE (length of edited
string is greater than Z4 (length
of original string), then 6120.

Space input; print next character in
string and transfer it to the edited
string. Increment edited string
character count. Go get next
input character.

Runs in BAStC

6010
6020-
6110
6120

6130

6140

6150

6160
6170
6171
6172

6173

Numeric input; Zl$ contains the
numeric characters received so
far. Put number Zl$ or add to
number already there.

Get next character input.
C input; if no number prefix (Zl$).

then 6174.
C input; set up for (n) changes of C.
C input; get next character. Print

it. Add it to edited string.
C input; back to 6171 if more char-

acters to change. When finish-
ed, add new characters to edited
string count. Put null in Zl$
(numeric input). Get a new
command.

L I S T 6 8 0 0 -

6174 C input with no numeric prefix;
print new character. Add to
edited string character count.
Add edited character to edited
string. Get new command.

6180 D input; if no numeric prefix then
6220.

6190 D input with numeric prefix. Print
initial " / " . Set up character
deletion corresponding to nu-
meric input.

6200 Print deleted characters as per
numeric input.

c o n t i n u e d

6010
6020
6 0 3 0
6 0 4 0
6 0 5 0
6060
6 0 7 0
6 0 8 0
6 0 9 0
6100
6110
6120
6 1 3 0
6 1 4 0
6 1 5 0
6160
6 1 7 0
6 1 7 1
6 1 7 2
6 1 7 3
6 1 7 4
6180
6 1 9 0
6200
6210
6220
6 2 3 0
6 2 4 0
6 2 5 0
6 2 6 3
6 2 7 0
6 2 7 2
6 2 7 4
6 2 7 5
6280
6 2 9 0
6 3 0 0
6 3 1 0
6 3 2 0
6 3 3 0
2 7 0
6 3 4 0
6 3 5 0
6 3 6 0
6 3 7 0
6 3 8 0
6 3 9 0
6 4 0 0
6 5 0 0
6 5 1 0
OK

E D = 1 : P R I N T " M H A T I S THE L I N E N U M B E R ? " : I N P U T C : D = C : Z = Z + 1 : C H (Z , 0) = C :
GOSUB 3 0 1 0 : Z 4 = L E N (C $) : L E = 1 : D $ = " " : Z 1 $ = " "

GOSUB 6 5 0 0
I F Z $ = " "THEN 6 1 3 0
I F Z $ = > " 1 " A N D Z $ < = " 9 " T H E N 6 1 5 0
I F Z $ = " C " OR Z $ = " c " THEN 6 1 7 0
I F Z $ = " D " OR Z $ = " d " T H E N 6 1 8 0
I F Z $ = " L " OR Z $ = " 1 " T H E N 6 2 3 0
I F Z $ = " Q " OR Z $ = " q " T H E N 6 2 6 0
I F Z $ = " I " OR Z $ = " i " THEN 6 2 7 0
I F Z $ = " X " OR Z $ = " x " THEN 6 2 9 0
I F Z $ = " H " OR Z $ = " h " T H E N 6 3 2 0
I F Z $ = C H R $ (1 3) THEN 6 3 3 0
P R I N T C H R $ (7) ; : G O T O 6 0 1 0
I F L E > Z 4 THEN 6 1 2 0
P R I N T M I D $ (C $, L E , 1) ; : D $ = D $ + M I D $ (C $, L E , 1) : L E = L E + 1 : G 0 T 0 6 0 1 0
I F Z 1 $ < > " " T H E N Z 1 $ = Z 1 $ + Z $ ELSE Z 1 $ = Z $
GOTO 6 0 1 0
I F Z 1 $ = " " T H E N 6 1 7 4
FOR Z2%=LE TO L E + V A L (Z 1 $) - 1
GOSUB 6 5 0 0 : P R I N T Z $; : D $ = D $ + Z $
N E X T : L E = Z 2 4 : Z 1 $ = " " : G 0 T 0 6 0 1 0
GOSUB 6 5 0 0 : P R I N T Z $; : L E = L E + 1 : D $ = D $ + Z $: G 0 T 0 6 0 1 0
I F Z 1 $ = " " T H E N 6 2 2 0
P R I N T " \ " ; : F O R Z2%=LE TO L E + V A L (Z l $) - l
P R I N T M I D $ (C $, Z 2 % , 1) ; : N E X T
P R I N T " \ " ; : L E = Z 2 % : Z 1 $ = " " : G O T O 6 0 1 0
P R I N T " \ " ; : P R I N T M I D $ (C $, L E , l) ; : P R I N T " \ " ; : L E = L E + l : G O T O 6 0 1 0
FOR Z2%=LE TO Z4
P R I N T M I D $ (C $, Z 2 % , 1) ; : D $ = D $ + M I D $ (C $, Z 2 % , 1)
N E X T : C $ = D $: D $ = " " : P R I N T : Z 4 = L E N (C $) : L B = l : G O T O 6 0 1 0
P R I N T : D $ = " " : G O T O 2 7 0
GOSUB 6 5 0 0
I F Z $ = C H R $ (1 2 7) T H E N 6 3 7 0
I F Z $ = C B R $ (2 7) T H E N 6 0 1 0
I F Z $ = C H R $ (1 3) T H E N 6 3 3 0
P R I N T Z $; : D $ = D $ + Z $: G O T O 6 2 7 0
FOR Z 2 t = L E TO Z4
P R I N T M I D $ (C $, Z 2 % , 1) ; : D $ = D $ + M I D $ (C $, Z 2 % , 1)
N E X T : L E = Z 4 : G O T O 6 2 7 0
Z 4 = L E : G O T O 6 2 7 0
I F L B = > Z 4 THEN P R I N T C H R $ (1 3) : D $ = D $ + C H R $ (1 3) : C $ = D $: G O S U B 3 1 2 0 : G O T O
FOR Z2%=LE TO Z4
P R I N T M I D $ (C $, Z 2 % , 1) ; : D $ = D $ + M I D $ (C $, Z 2 % , 1)
N E X T : P R I N T C H R $ (1 3) : D $ = D $ + C H R $ (1 3) : C $ = D $: G O S U B 3 1 2 0 : G O T O 2 7 0
P R I N T "
P R I N T M I D $ (D $, L E N (D $) , 1) ; : D $ = L E F T $ (D $, L E N (D $) - 1)
GOSUB 6 5 0 0 : I F Z $ = C H R $ (1 2 7) T H E N 6 3 8 0
P R I N T " \ " ; : G O T O 6 2 7 4
WAIT 0 , & O 1 , & O 1
Z 2 = I N P (1) A N D & 0 1 7 7 : Z $ = C H R $ (Z 2) : R E T U R N

T w e n t y C N / N o v e m b e r 1 9 7 7

6210 Finisheddeletion. Print " / " . Add
deleted character count to point-
er for original string. Put null in
Zl$, Get next comma or charac-
character.

6220 D input with no numeric prefix.
Print initial " / " . Print deleted
character. Pring final " / " .
Incremented original string
pointer. Get next command.

6230 L input; set up move to the end of
the string.

6240 Print all characters in the original
string to end and add to edited
string.

6250 Transfer edited string to original
string variable. Initialize varia-
bles to new string. Get next
command.

6260 Q input; put null in edited string.
Return to calling program.

6270 I input; get next command or char-
acter.

6272 I input; if rubout, then 6370.
6274 I input; if escape, then get next

command.
6275 I input; if carriage, return then

6330.
6280 I input; if none of above, then print

character. Add to edited string.
Get next character or command
at 6270.

6290 X input; set up loop to print re-
mainder of the line.

6300 X input; print next character in
original string. Add to edited
string.

6310 X input; loop to get next character.
If finished, set last character to
end of string. Go to 6270 and
insert mode.

6320 H input; Make end of edited string
end of string. Go to 6270 and
insert mode.

6330 Carriage return. If at end of origi-
nal string, add carriage return to
edited string. Return to calling
program.

6340 Carriage return. If not at end of
original string, set up loop to
print remaining character.

6350 Carriage return. Print next charac-
ter in original string. Add to
edited string.

6360 Loop back for next character. If
finished, print carriage return.
Add carriage return to edited
string. Return to calling pro-
gram.

6370 Rubout mode. P r i n t " / " ,
6380 Print last character. Delete last

character from edited string.
6390 Rubout mode. Get next character

or command. If rubout, go to
6370.

6400 Rubout mode. If character input in
6380 is not a rubout, then print
" / " . Return to insert mode.

6500 Wait for a character input from
terminal &01 is octal 1.

6510 Character received. Mask to 7 bits
with octal 177. Change to single
character string. Return.

END

TRACE PROGRAM Assembled Listing con t inued

00326 4266 2A FC BPL R!
0032 7 4268 EE 00 LDX X
00328 426A 6E 00 JMP X TAKE JMP
00329 *
00330 426C BD FF24 CKHUM JSR POLCAT HUMAN WANT C
00331 426 F 24 0A BCC CKHUM2 NO
00332 427! BD FF04 CKHUM! JSR INCH^4
00333 42 74 Ci IB CKHUM3 CMP B #$!B ESCAPE?
00334 42 76 26 03 BNE CKHUM2 NOPE
00335 4278 7E 4007 JMP DEBUG SCRAM
00336 42 7B 39 CKHUM2 RTS BACK YOU GO
0033 7 *
00338 42 7C BC 43B! EXMDR CPX BIADR INST BKPNT?
00339 427F 27 2E BEQ BKPT
00340 428! B6 43AE LDA A T0N+!
0034! 4384 F6 43AD LDA B TON
00342 4287 80 0! SUS A # ! CRRCT FOR CA
00343 4289 C2 00 SBC B #0
00344 42SB B0 4!2C SUB A CKADR+!
00345 428 E F2 4!2B SBC B CKADR
00346 429! 25 06 BCS EX2
0034 7 4293 BC 43B3 EXMOP CPX BOADR OPRND BKPNT?
00348 429S 27 !7 BEQ BKPT
00349 4298 39 EX! RTS
00350 4299 B6 43B0 EX2 LDA A TOFF+]
0035! 429C F6 43AF LDA B TOFF
00352 429 F B0 4!2C SUB A CKADR+1
00353 42A2 F2 4!2B SBC B CKADR
0035 4 42A5 25 F! BCS EX!
00355 42A7 86 54 EX3 LDA A '1
09356 42A9 B7 439F STA A WHAT
0035 7 42AC 7E 43! A JMP PRNTRG DMP & RTRN
00358 *
00359 42AF 86 42 BKPT LDA A # 'B
00360 42B! 7E 405 6 JMP DMP1 PRINT & EXEC
0036! *
00362 42B4 BE 43A4 REPAK LDS STKHI REPAK STACK
00363 42B7 86 07 LDA A #7
00364 42B9 CE 43AC LDX #PCRE3H
00365 42BC E6 00 REP! LDA B X
00366 42BE 37 PSH B
00367 42BF 09 DEX
00368 42C0 4A DEC A
00369 42C! 26 F9 BNE REP!
003 70 42C3 FE 43AB LDX PCREG ANYTHING GOIi
003 7! 42C6 FF 4!2B STX CKADR
003 72 42 C9 BD 42 7C JSR EXMDR GO SEE
003 73 42CC CE FCB $CE LDX <?
003 74 42 CD 00 HERE FCB 0,0
00375 42CF A6 00 LDA A X
003 76 42 D! B7 43A0 STA A INST
003 77 42 D4 86 3F LDA A #t3F
003 78 42 D6 A7 00 STA A X
003 79 42 D8 FF 439B STX SWIADR
00330 42 !B 3B RTI
0038! *
00382 42 DC 4F POP0 CLR A NO OPRNO

cont inued on p a g e 22
C N / N o v e m b e r 1 9 7 7 continued on page Nineteen

TRACE PROGRAM Assembted Listing con t inued

0 0 3 8 3 42DD B 7 4 3 A 3 STA A ASCFG 0 0 4 6 6 4 3 7 7 0 0
0 0 3 8 4 4 2 E0 3 9 R I S 0 0 4 6 7
0 0 3 8 5 4 2 E! 8 6 0) iPOPi ^ LDA A 0 0 4 6 8 4 3 7 8 0 D
0 0 3 8 6 4 2 E 3 8 D F8 BSR P O P 0 + ! 0 0 4 5 9 4 3 7A FF
0 0 3 8 7 4 2 E5 FE 43AB LDX PCREG 0 0 4 7 0 4 3 7B 4 4
0 0 3 8 8 4 2 E 8 E6 0) LDA B i . X 0 0 4 7 ! 4 3 8 0 0 0
0 0 3 8 9 42EA F ? 4 3 A ! STA B I N S T +) 0 0 4 7 2
0 0 3 9 0 4 2 ED 3 9 R I S 0 0 4 7 3 4 3 8 ! 2 0
0 0 3 9 1 4 2 EE 8 6 0 2 POPS LDA A . # 2 0 0 4 74 4 3 8 9 0 0
0 0 3 9 2 4 2 F0 8D F) BSR P 0 P 1 + 2 0 0 4 75
0 0 3 9 3 4 2 F2 E6 0 2 LDA B 2 , X 0 0 4 7 6 4 3 8 A 0 D
0 0 3 9 4 4 2 F4 F7 4 3 A 2 S I A B 1 N S I + 2 0 0 4 7 7 4 3 8 C FF
0 0 3 9 5 4 2 F 7 3 9 R I S 0 0 4 7 8
0 0 3 9 6 * ' \ 0 0 4 7 9 4 3 8 E 2A
0 0 3 9 7 4 2 F8 8 D 0 5 BAD BSR EON ECHO ON . 0 0 4 8 0 4 3 9 5 0 0
0 0 3 9 8 4 2 FA BD F F 6 2 J S R BADDR GET SDDR 0 0 4 8 !
0 0 3 9 9 4 2 FD 2 0 0 3 BRA 0 0 4 8 2 4 3 9 5 3 F F F
0 0 4 0 0 * * - 0 0 4 8 3 4 3 9 8 0 0
0 0 4 0 1 4 2 FF 8 6 0 3 EON LDA A . # $ 0 3 , 0 0 4 8 4 4 3 9 A 0 0
0 0 4 0 2 4 3 0 ! 8C FCB $ 8 C CPX 0 0 4 8 5 4 3 9 B 0 0
0 0 4 3 3 4 3 0 2 8 6 F F EOF LDA A # $ F F .: 0 0 4 8 6 4 3 9 D 0 0
0 0 4 0 4 4 3 0 4 9 7 F 3 . S I A A 0 0 4 8 7
0 0 4 0 5 4 3 0 S 3 9 R I S 0 0 4 8 8 4 3 9 F 0 0
0 0 4 0 6 ' 0 0 4 8 9 4 3 A 0 3 F
0 0 4 0 7 4 3 0 7 S D F6 IN BSR 0 0 4 9 0 4 3 A 3 0 0
0 0 4 0 8 4 3 0 9 BD F F 0 0 J S R INCH 0 0 4 9 ! 4 3 A 4 0 0
0 0 4 0 9 4 3 0 C F7 4 3 9 F STA B WHAT 0 0 4 9 2 4 3 A 6 0 0
0 0 4 i 0 4 3 0 F 8 D 5 2 : BSR P N I S 0 0 4 9 3 4 3 A 7 0 0
0 0 4 1 1 4 3 1 ! 2 0 „EF BRA EOF 0 0 4 9 4 4 3 A 8 0 0
0 0 4 1 2 * 0 0 4 9 5 4 3 A 9 0 0
0 0 4 1 3 4 3 1 3 8 D EA BY BSR EON 0 0 4 9 6 43AB 0 0
0 0 4 i 4 4 3) 5 BD F F 5 3 J S R BYTE 0 0 4 9 7 43AD FF
0 0 4 1 5 4 3 1 8 2 0 B3 BRA . EOF 0 0 4 9 8 4 3 A F 0 0
0 0 4 1 6 * 0 0 4 9 9 4 3 B ! 0 0
0 0 4 ! 7 4 3 I A CE 4 3 8 A PRNTRG LDX *MES4 0 0 5 0 0 4 3 B 3 0 0
0 0 4] 8 4 3 ! D BD 4 0 6 3

J S R MSG
0 0 5 0 !
0 0 5 0 2 4 3 B 5 4D

0 0 4) 9 4 3 2 0 F6 4 3 9 F LDA B WHAT WHAT TYPE DMP 0 0 5 0 3 4 3 B 5 4 0 6 E
0 0 4 2 0 4 3 2 3 8 D 3B BSR PNT) 0 0 5 0 4 4 3 B 8 4 3
0 0 4 2 ! 4 3 2 5 B 6 4 3 A 0 LDA A I N S T I N S I 0 0 5 0 5 4 3 B 9 4 0 9 9
0 0 4 2 2 4 3 2 8 8 D 4 3 BSR 0UT2 0 0 5 0 6 43BB 4 2
0 0 4 2 3 4 3 2 A B 6 4 3 A 3 LDA A ASCFG OPRND? 0 0 5 0 7 4 3 B C 4 0 A !
0 0 4 2 4 4 3 2 D 2 7 14 B E 3 PRN3 NONE 0 0 5 0 8 4 3 B E 4 !
0 0 4 2 5 4 3 2 F B 6 4 3 A) LDA A I N S I *) 0 0 5 0 9 4 3 B F 4 0 A 9
0 0 4 2 6 4 3 3 2 , B D FF6D J S R 0 U I 2 H 0 0 5) 0 4 3 C 1 5 8
0 0 4 2 7 4 3 3 5 B 6 4 3 A 3 LDA A ASCFG MORE? 0 0 5) ! 4 3 C 2 4 0 8 !
0 0 4 2 8 4 3 3 8 4A DEC A 0 0 5 ! 2 4 3 C4 5 4
0 0 4 2 9 4 3 3 9 2 7 0A BES PRN2 NOPE 0 0 5 ! 3 4 3 C5 4 0 7 6
0 0 4 3 0 4 3 3 B B6 4 3 A 2 LDA A 1 N S I + 2 0 0 5 ! 4 4 3 C 7 4 F
0 0 4 3 ! 4 3 3 E BD FF6D J S R 0 U I 2 H 0 0 5) 5 4 3 C S 4 0 8 9
0 0 4 3 2 4 3 4 ! 2 0 04 BRA PRN! 0 0 5 1 6 43CA 4 9
0 0 4 3 3 4 3 4 3 3 D 2 4 PRN3 BSR XX 0 0 5 ! 7 43CB 4 0 8 2
0 0 4 3 4 4 3 4 5 8 D 2 2 PKN2 BSR XX 0 0 5 ! 8 4 3 C D 4A
0 0 4 3 5 4 3 4 7 8 D 2 0 PRN) BSR XX 0 0 5 ! 9 4 3 C E 4 0 B 8
0 0 4 3 6 4 3 4 9 CE 4 3 A 4 LDX # S T K H I 0 0 5 2 0 4 3 D 0 4 4
0 0 4 3 7 0 0 5 2 ! 4 3 D ! 4 0 5 9
0 0 4 3 8 4 3 4 C C 6 FCB $ C 6 (LDA B #) 0 0 5 2 2 4 3 D 3 0 0
0 0 4 3 9 4 3 4 D 0 9 HMNY FCB 9 0 0 5 2 3 0 0 4 4 0 * * * * * * * * * * 0 0 5 2 4 4 3 D 4 4) 8 9
0 0 4 4 ! 4 3 4 E 3 7 0A PRNLP B E S PRN4 0 0 5 2 5 4 3 D 6 4) 8 9
0 0 4 4 2 4 3 5 0 A6 0 0 LDA A X 0 0 5 2 6 4 3 DS 4 2) 2
0 0 4 4 3 4 3 5 2 3 7 PSH B 0 0 5 2 7 43DA 4) 8 9
0 0 4 4 4 4 3 5 3 8 D ! 8 BSR 0 U I 2 0 0 5 2 8 43DC 4) 8 9
0 0 4 4 5 4 3 5 5 3 3 PUL B 0 0 5 2 9 4 3 D E 4) 8 9 0 0 4 4 6 4 3 5 6 0 8 INX 0 0 5 3 0 4 3 E0 4) C E 0 0 4 4 7 4 3 5 7 5A DEC B 0 0 5 3) 4 3 E 2 4 0 D5
0 0 4 4 8 4 3 5 8 2 0 F4 BRA PRNLP 0 0 5 3 2 4 3 E 4 4 ! 6 5
0 0 4 4 9 4 3 5 A 8 6 0 9 PRN4 LDA A ' 9 FORM RSET 0 0 5 3 3 4 3 E 6 4 0 C 2 0 0 4 5 0 4 3 5 C 8 7 4 3 4 D S I A A HMNY 0 0 5 3 4 4 3 E8 4 ! C E
0 0 4 5 ! 4 3 5 F 3 9 R I S 0 0 5 3 5 4 3 E A 4 0 D 5 0 0 4 5 2 * 0 0 5 3 5 4 3 EC 4) 6 5 0 0 4 5 3 4 3 6 0 BD F F S I PNT! J S R OUTCH 0 0 5 3 7 4 3 EE 4 0 C 2 0 0 4 5 4 4 3 6 3 BD F F 8 2 P N I S J S R OUTS 0 0 5 3 8 4 3 F0 4 I C E 0 0 4 5 5 4 3 6 6 7 E 4 2 6 C PNIC JMP CKHUM 0 0 5 3 9 4 3 F2 4 0 D 5 0 0 4 5 5 * 0 0 5 4 0

4 3 F2 4 0 D 5

0 0 4 5 7 4 3 6 9 8 D F8 ' XX BSR PNTS 0 0 5 4 ! 0 0 F3
0 0 4 5 8 43.SB 2 0 F6 BRA P N I S 0 0 5 4 2 0 0 F3 0 3
0 0 4 5 9 * ' : 0 0 5 4 3
0 0 4 6 0 4 3 5 D BD FF6D 0 U I 2 J S R 0UT2H 0 0 5 4 4
0 0 4 6 ! 4 3 7 0 2 0 F) BRA PNTS
0 0 4 6 2

4 3 7 2 0D
* .

- $ 0 D , $ 0 A
TOTAL ERRORS 0 0 0 0 0

0 0 4 6 3 4 3 7 2 0D PRMPT FCB - $ 0 D , $ 0 A
0 0 4 6 4 4 3 7 4 F F FCB $ F F ENTER PASS
0 0 4 6 5 4 3 7 5 4 0 FCC / 9 /

MESi

*
MES2

*
MES4

*
EM
*
MYSIK
S I K I M P
SUBCNI
SWIADR
STKSV *
WHAT
I N S T
ASCFG
STKHI
CCREG
BREG
AREG
XREG
PCREG
ION
TOFF
BIADR BOADR *
JMPTB

TABLE

FCB
FCB
FCB
FCC
FCB
FCC
FCB
FCB
FCB
FCC
FCB
FOB
FCB
FCB
FCB
FC8
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCC
FDB
FCB

FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
ORG
FCB
END

TRACE PROGRAM con t inued on page32

0 -
$ 0 D , $ 0 A
/ D E B U G / 0 '.rl.'s.^'.' '
/ ADDR ? / 0
$ 0 D , $ 0 A
$ F F , 0
/ * E R R O R * / 0 ; .
S T A R T - I
0 , 0
0 0,0
0,0
0 .
$ 3 F , 0 , 0
0
0,0 , 0
0
0
0,0
0,0
$ F F , $ F F
0,0
0 , 0
0,0

/ M / MONITOR
MONIT
/ C / CREG
S I C
/ B / BREG
S I B
/ A / AREG
STA
/ X / XREG
/ I / TRACE
I S E I
/ O / OPR BKPT
BO
/ I / I N S T BKPT
B I
/ J / JMP
JMPXX
/ D / DMP REG
DMP
0

INHER
INHER
REL
INHER
INHER
INHER
INDX
EXT
I MM
DIR
INDX
EXT
I MM
DIR
INDX
EXT
$ 0 0 F 3
$ 0 3

Twenty-Two C N / N o v e m b e r 1 9 7 7

Computer Evaiuates
A Generatized Version of
"Master Mind" for Computers

Human Logic

By DoyI Watson
MITS

Master Mind is a popular board game
marketed by Invicta Plastics LTD. of Lei-
cester England. Based on logic, it involves
two players--the code maker and code
breaker. Since the Altair*microcomputer is
an idea! code maker which can easily eval-
uate each play the code breaker makes,
I've adapted Master Mind into the follow-
ing computer program. Because it's more
general than the board version, it's even
more challenging and fun.

The object of the game is for the code
breaker to guess a sequence of colors
which has been preset by the code maker.
Each time the code breaker tries guessing
the ordered list of colors, the code maker
responds with the score or evaluation for
that guess. The score consists of two
numbers: (1) the number of colors that
have been guessed correctly and in the
correct positions, and (2) the number of
additional colors that have been guessed
but incorrectly positioned. At the end of
each round, the number of guesses taken
by the code breaker is tallied and then used
as a criterion for how well the player has
done. For a given number of positions and
colors, two code breakers can compare the
number of guesses that they used to break
the code.

For example, you've already request-
ed that the computer set up a secret color
code using three colors and three positions.
Suppose that code is, "RED, BLACK,
BLACK." (Notice that repititions are
allowed.) Now suppose your first guess is,
"BLACK, WHITE, BLACK". The compu-
ter would then respond with three num-
bers. First, the number of correct colors
in the right positions =1 ; (BLACK in the
third position of the code matches the
BLACK in the third position of the guess.)
The second number representing addition-
al correct colors in the wrong places is 1.
(BLACK in the second position of the code
matches BLACK in the first position of the
guess.)

The following program enables the
computer to set up a pseudo-random color
code when the code breaker enters the
number of colors and the number of posi-
tions he or she is willing to guess from.
(Obviously, difficulty increases with the
number of colors or with the number of
positions.) The code breaker also must

enter a random number from 1 to 10. The
computer will then ask "What is your
guess." The breaker will respond with a
guess, and the computer will then evaluate
the guess. The game proceeds accordingly
until the code breaker has built up a table
of enough guesses and evaluations to
deduce the color code.

SAMPLE GAME PRINTOUT

INSTRUCTIONS FOR ' L O G I C ' : DEDUCE THE SECRET COLOR CODE
AFTER ENTERING T R I A L L I S T S OF COLORS. ENTER THE
F I R S T 3 LETTERS (AT LEAST) OF EACH COLOR
SEPERATING E N T R I E S BY COMMAS.

WHEN COMPUTER RESPONDS WITH THE EVALUATION FOR EACH GUESS,
' T R U ' I S THE NUMBER OF CORRECT COLORS WHICH ARE ALSO IN
THE TRUE P O S I T I O N S . ' X T R ' I S THE NUMBER OF ADDITIONAL
COLOR MATCHES WHICH ARE IN THE INCORRECT P O S I T I O N S .
' G S S ' I S THE NUMBER OF GUESSES THAT HAVE BEEN TAKEN.

ENTER: NUMBER OF COLORS, NUMBER OF P O S I T I O N S ? 6 , 4
ENTER A RANDOM NUMBER FROM 1 TO 10
? 3
COLORS B L A C K , W H I T E , R E D , Y E L L O W , G R E E N , B L U E
ENTER YOUR GUESS HERE EVALUATIONS APPEAR HERE
? B L A , BLU, GRE, YEL
? B L A , WHI, YEL, RED
? Y E L , Y E L , WHI, BLA
?WHI , YEL, YEL, BLA
? W H I , YEL, BLA, YEL

YOU ARE C O R R E C T ! ! ! IN 5 G U E S S E S .

TRU- 1 X T R - I G S S - 1
TRU- 0 X T R - 3 G S S - 2
TRU- 1 X T R - 3 G S S - 3
TRU- 2 X T R - 2 G S S - 4

C N / N o v e m b e r 1 9 7 7 Twenty-Three

Program
Logic "Master Mind"

cont inued

-MAIN PROGRAM-

NUMBER OF COLORS, NUMBER OF P O S I T I O N S "

Twenty-e .gnt

10 P R I N T " I N S T R U C T I O N S FOR ' L O G I C : DEDUCE THE SECRET COLOR CODE
2 0 P R I N T " AFTER ENTERING T R I A L L I S T S OF COLORS. ENTER THE"
3 0 P R I N T " F I R S T 3 LETTERS (AT L E A S T) OF EACH COLOR
4 0 P R I N T " SEPERATING E N T R I E S BY COMMAS."
5 0 PRINT"WHEN COMPUTER RESPONDS WITH THE EVALUATION FOR EACH G U E S S , "
6 0 P R I N T " ' T R U ' I S THE NUMBER OF CORRECT COLORS WHICH ARE ALSO I N "
70 P R I N T " THE TRUE P O S I T I O N S . ' X T R ' I S THE NUMBER OF A D D I T I O N A L "
8 0 P R I N T " COLOR MATCHES WHICH ARE IN THE INCORRECT P O S I T I O N S . "
9 0 P R I N T " ' G S S ' I S THE NUMBER OF GUESSES THAT HAVE BEEN T A K E N . "
9 5 REM
1 0 0 REM
H O REM
1 2 0 P R I N T
1 3 0 P R I N T " E N T E R :
1 4 0 I N P U T C . N
1 5 0 I F C = 1 T H E N S T $ = " B L A C K " : G 0 T 0 2 5 0
1 6 0 I F C = 2 T H E N S T $ = " B L A C K , W H I T E " : G 0 T 0 2 5 C
1 7 0 I F C = 3 T H E N S T $ = " B L A C K , W H I T E , R E D " : G Q T 0 2 5 0
1 8 0 I F C = 4 T H E N S T $ = " B L A C K , W H I T E , R E D , Y E L L O W " : G O T O 2 5 0
1 9 0 I F C = 5 T H E N S T $ = " B L A C K , W H I T E , R E D , Y E L L O W , G R E E N " : G O T O 2 5 0
2 0 0 I F C = 6 T H E N S T $ = " B L A C K , W H I T E , R E D , Y E L L O W , G R E E N , B L U E " ; G 0 T 0 2 5 0
2 1 0 I F C = 7 T H E N S T $ = " B L A C K , W H I T E , R E D , Y E L L O W , G R E E N , B L U E , O R A N G E " : G 0 T 0 2 5 0
2 2 0 I F C = 8 T H E N S T $ = " B L A C K , W H I T E , R E D , Y E L L O W , G R E E N , B L U E , O R A N G E , P U R P L E " : G O T O 2 5 0
2 3 0 I F C = 9 T H E N S T $ = " B L A C K , W H I T E , & E D , Y E L L O W , G R E E N , B L U E , O R A N G E , P U R P L E , G O L D "
2 4 0 I F C = 1 0 T H E N S T $ = " B L A C K , W H I T E , R E D , Y E L L O W , G R E E N , B L U E , O R A N G E , P U R P L E , G O L D , G R A Y "
2 5 0 P R I N T " E N T E R A RANDOM NUMBER FROM 1 TO 1 0 "
2 6 0 I N P U T R
2 7 0 GOSUB 7 7 0 : REM GET COLOR CODE.
2 8 0 P R I N T " C O L O R S " ; S T $
2 9 0 P R I N T " E N T E R YOUR GUESS H E R E " ; T A B (4 8) ; " E V A L U A T I O N S APPEAR HERE" _ . . .
3 0 0 F O R J J =] . T O N
3 1 0 C C $ (J J) = M $ (C , 1 + A B S (J J - R)) : R E M . CODE GENERATOR
3 2 0 N E X T J J
3 3 0 REM GUESSES ENTERED H O R I Z O N T A L L Y . . SEFERATED BY COMMAS.
3 4 0 I F N = 1 T H E N I N P U T G $ (1) : G O T 0 4 4 0
3 50 I F N = 2 T H E N I N P U T G $ (1) , G $ (2) : G O T O 4 4 0
3 6 0 I F N = 3 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) : G C T 0 4 4 0
3 70 I F N = 4 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , G $ (4) : G O T 0 4 4 0
3 80 I F N = 5 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , G $ (4) , G $ (5) : G O T 0 4 4 0
3 9 0 I F N = 6 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , G $ (4) , G $ (5) , G $ (6) : G O T O 4 4 0
4 0 0 I F N = 7 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , G $ (4) , G $ (5) , G $ (6) , G $ (7) : G O T 0 4 4 0
4 1 0 I F N = 8 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , G $ (4) , G $ (5) , G $ (6) , G $ (7) , G $ (8) : G C T 0 4 4 0
4 2 0 I F N = 9 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , G $ (4) , G $ (5) , G $ (6) , G $ (7) , G $ (8) , G $ (9)
4 3 0 I F N = 1 0 T H E N I N P U T G $ (1) , G $ (2) , G $ (3) , C $ (4) , G $ (5) , G $ (6) , G $ (7) , G $ (8) , G $ (9) , G $ (1 0)
4 4 0 G Q S U B 5 3 0 :REM MAKE EVALUATION OF THE G U E S S .
4 5 0 I F B = N G 0 T 0 4 8 0 : REM GUESS I S CORRECT.
4 6 0 P R I N T T A B (4 8) ; " T R U = " ; B ; " X T R = " ; W ; " G S S = " ; T
4 7 0 G C T 0 3 0 0
4 8 0 P R I N T " YOU ARE C O R R E C T ! ! ! IN " ; T ; " G U E S S E S . "
4 9 0 END
5 0 0 REM
5 1 0 REM - G U E S S EVALUATION-
5 2 0 REM
5 3 0 B - 0 : W = 0
5 4 0 F 0 R K = 1 T 0 N
5 5 0 REM F I R S T 3 L E T T E R S OF GUESS COMPARED TO F I R S T 3 OF ANSWER.
5 6 0 I F C C $ (K) O L E F T $ (G $ (K) , 3) T H E N G 0 T 0 6 2 a
5 7 0 B - B + l
5 8 0 REM P O S I T I O N S ALREADY MATCHED ARE MADE UNIQUE SO T H A T -
5 9 0 REM NO E N T R Y , I S T A L L I E D T W I C E .
6 0 0 C C $ (K) = C H R $ (K + 1 1)
6 1 0 G $ (K) = C H R $ (K + 2 2)
6 2 0 NEXTK
6 3 0 F 0 R K = 1 T 0 N
6 4 0 F 0 R J = 1 T 0 N
6 5 0 I F C C $ (K) O L E F T $ (G $ (J) , 3) T H E N G 0 T 0 7 0 0
6 6 0 W-W+l
6 7 0 C C $ (K) = C H R $ (K + 1 1)
6 8 0 G $ (J) = C H R $ (K + 2 2)
6 9 0 J=N
7 0 0 N E X T J : N E X T K
7 1 0 T = T + 1
7 2 0 RETURN
7 3 0 REM
7 4 0 REM -RANDOM DATA-
7 5 0 REM
7 6 0 REM DATA SHOULD BE CHANGED OCCASIONALLY.
7 7 0 F O R P - I T O I O
7 8 0 F 0 R Q = 1 T 0 1 0
7 9 0 R E A D M $ (P , Q)
8 0 0 NEXTQ:NEXTP
8 1 0 D A T A B L A , B L A , B L A , B L A , B L A , B L A , B L A , B L A , B L A , B L A
8 2 0 D A T A W H I , B L A , W H I , B L A , W H I , B L A , B L A , W H I , W H I , B L A
8 3 0 D A T A R E D , B L A , R F , D , W H I , R E D , B L A , B L A , W H ' I , R E D , R E D
8 4 0 D A T A B L A , R E D , B L A , R E D , Y E L , Y E L , W H I , W H I , K E D , W H I
85 0 D A T A G R E , Y E L , Y E L , B L A , R E D , W H I , B L A , R E D , R E D , Y E L
86 0 D A T A B L A , Y E L , W H I , R E D , G R E , B L U , G R E , B L A , B L U , B L U
87 0 D A T A O R A , Y E L , G R E , R E D , W H I , B L A , B L A , O R A , R E D , Y E L
8 8 0 D A T A B L U , B L U , B L U , G R E , O R A , R E D , W H I , P U R , R E D , B L U
8 9 0 D A T A Y B L , G R E , P U R , O R A , B L A , C O L , W H I , G R E , B L U , W H I
9 0 0 D A T A G O L , G R A , R E D , Y E L , P C R , O R A , B L A , G R E , R E D , G O L
9 1 0 RETURN C N / N o v e m b e r 1 9 7 7

Letter Wr i t i ng P r o g r a m S o i v e s P h o t o g r a p h e r s Ma i ! i ng P r o b ! e m s

10 REM LETTER WRITING PROGRAM—INSERT LETTER BODY FROM 200 TO
IS REM 279. DATA FROM 1000 AMD UP
20 PRINT "FUNCTI0NS:"jTAB<15)"t!) LIST DATA STATEMENTS"
25 PRINT TAB(!5)"<2) PRINT MAILING LABELS":PRINT TAB(!5)"t3) WRITE LETTE
RS"
30 PRINT TAB(15)"<4) PRINT 'TOWN CODE'"
3 5 INPUT "FUNCTION < 1,2,3, OR 4)"iK
40 IF K-l THEN GOSUB !OOO0:LIST 999
45 IF K-2 THEN RUN 6B0
5H IF K*3 THEN RUN 95
55 IF K-4 THEN GOTO 65
60 PRINT"PLEASE ANSWER !, 2, 3* OR 4":60TO 35
65 GOSUB 10OO0:PRINT:PRINT"— TOWN CODE — "
67 FOR J-t TO 10:PRINT J;" --
70 ON J GOSUB 700,705,710,715,720,725,730,735,740,745
75 PRINT C$(J)
80 NEXT J
6 5 GOSUB 10020
9 0 GOTO 35
95 INPUT"DATE"iD$:GOSUB 10000
97 <J=6
100 READ At,BS, CS
101 IF A!-"END" THEN GOSUB [0020 103 J-VAUCi)
104 IF J-0 THEN GOTO 110
106 ON J GOSUB 700,705,710,715,720,725,730,735,740,745
108 Ci-CMJ)
110 FOR 1-1 TO !0:PRINT!NEXT I
120 FOR 1=1 TO 72: PRINT"*"; !NEXT I
[30 PRiNT:PRINT: PRINT Dt
140 FOR 1=1 TO 4:PRINT:NEXT I
150 PRINT"VILKtNSON STUDI0":PRINT"2308 NEW WALLAND HWY"
160 PRINT"MARYVILLE, TN. 37801"
170 FOR I-) TO 7tPRINT!NEXT I
180 PRINT A H PRINT B H PRINT C!
185 PRINT!PRINT
190 PRINT"DEAR "itGOSUB 500;:PRINT
199 PRINT ! REM BODY OF LETTER FROM 200 TO 279
280 PRINT:PRINT"SINCERELY, ":PRINT
S90 PRINT"LEE WILKINSON": PRINT"PHONE 982-6703"
300 FOR I-1 TO 11:PRINT:NEXT I
305 GOTO 100
500 FOR 1-1 TO 8!PRINT MIDHAt, I,
505 C-a
510 IF MIDMA*, 1,1)=" " THEN 1-8
520 NEXT I
530 X=LEN(Ai)
540 FOR 1-X TO 1 STEP -1
5 50 C-C+l
560 IFMIDSCA$,I,!)-" " THEN 1=1
570 NEXT I
580 PRINT RI6HTKA*,C)J:RBTUHN
598 REM SUB ROUTINE FOR MAILING LABELS -- TYPE END, END* END FOP THE
599 REM LAST THREE LINES IN THE DATA STATEMENTS --
600 GOSUB 10000
605 DIM AK2),BS(2),CS(2)
610 I-0!j-O
620 FOR 1-1 TO 2
630 READ Am),B*<I),CS<I)
632 T-VAL(Ctd))
634 IF T-0 THEN GOTO 640
636 ON T GOSUB 700,705,710,715, 720,725,730,735,740,745
638 C K D - C H J)
640 NEXT I
650 PRINT A K i) TAB(38) A K S)
660 PRINT B!(l) TAB(38) BSC2)
670 PRINT C H I) TAB<38) Ct<2)
675 IF A$(2)-"END" THEN GOSUB 10020
680 PRINT!PRINT: PRINT! REM SPACES BETWEEN LABELS
690 GOTO 620
699 REM DATA FOR CITY CODES
700 CS<J)="MARYVILLE, TN. 37801":RETURN
705 CS<J)-"ALCOA, 119. 37701":RETURN
7 10Ct(J)-"FRIENDSVILLE, TN. 37737":RETURN
7 15 Ct< J)-"GREENBACK, TN. 37742")RETURN
720 C:{J)-"LOUISVILLE, TN. 37777":RETURN
725 CHJ)-"MENTOR, TN. 37808":RETURN
730 CS(J)-"ROCKFORD, TN. 37853")RETURN
7 35 C5(J)-"SEYM0UR, IM. 37865":RETURN
740 CHJ)-"TOWNSEND, TN. 37882":RETURN
7 45 CHJ)-"WALLAND, TN. 37886":RETURN
999 REM DATA STATEMENTS FROM 1000 AND UP
9997 REM

c o n t i n u e d o n p a g e 26
C N / N o v e m b e r 1 9 7 7 Twenty- f ive

L e t t e r W r i t i n g P r o g r a m S o t v e s P h o t o g r a p h e r ' s M a i i i n g P r o b t e m s
con t inued

9 9 9 8 REM
9 9 9 9 REM SUB-ROUTINES FOR HARD COPY * * * * *
: % e 3 6 INPUT"WANT HARD C O P Y " I H $

1 0 0 0 5 I F L E F T $ (H $, 1) < > " Y " THEM RETURN
1 0 0 0 8 PRINT"TURN ON P R I N T E R — P R E S S SPACE BAR" :WAIT 0 , 1 , 1
1 0 0 ! 0 POKE 1 3 5 2 , 2 0 : POKE 1 3 6 0 , 2 1 : POKE 1 3 6 7 , 2 0) POKE 1 3 7 4 , 2 ! : PETUPN
! 0 B 2 0 P O K E 1 3 5 2 , 0 : P O K E 1 3 6 0 , 1 : P O K E 1 3 6 7 , 0 : P O K E 1 3 7 4 , ! :RETURN
OK

Sample Le t te r

OCTOBER 1 $ 9 7 7

WILKINSON STUDIO
2 3 8 8 NEW WALLAND HWY
MARYVILLE, TN. 3 7 8 0 !

MRS. CEORGE J O N E S
! 3 3 ANYSTRBBT
MARYVILLE, TN. 3 7 8 0 !

DEAR MRS. J O N E S :
* * * * * HAPPY BIRTHDAY TO BABY * * * * *

TO HELP CELEBRATE B A B Y ' S BIRTHDAY WE HAVE A S P E C I A L OFFER
FOR YOUR FAMILY.

* * 6 MONTH BIRTHDAY S F E C I A L * *
1 - 8 X 10 COLOR PORTRAIT FOR YOURSELVES
2 - 5 X 7 COLOR PORTRAITS FOR GRANDPARENTS
ALL FOR ONLY $ 1 9 - 9 5 * * * * *
AND MRS. J O N E S , I F Y O U ' L L CALL US WITHIN 3 DAYS OF R E C E I P T
OF T H I S L E T T E R WE WILL INCLUDE WITH YOUR BIRTHDAY S P E C I A L
PACKAGE, ABSOLUTELY FREE, 8 COLOR WALLETS.
REMEMBER MRS. J O N E S , TIME F L I E S SO CALL US TODAY !
S I N C E R E L Y ,
L E E WILKINSON
PHONE 9 8 2 - 6 7 0 3

Sample Lis t ing
L I S T 1 9 9
! 9 9 P R I N T : REM BODY OF LETTER FROM 2 0 0 TO 2 7 9
2 0 0 P R I N T " * * * * * HAPPY BIRTHDAY TO BABY * * * * * ' -
2 i 6 P R I N T : PRIMT"TO HELP CELEBRATE B A B Y ' S BIRTHDAY WE HAVE A SPECIAL OFFE
R "
S S 9 P R I N T " F O R YOUR FAMILY. " : P R I N T
2 3 0 P R I N T T A B < 2 0) " * * 6 MONTH BIRTHDAY S P E C I A L * * " : P R I N T
2 3 5 P R I N T " ! - 3 X 10 COLOR PORTRAIT FOR YOURSELVES"
2 4 8 P R I N T ' S - 5 X 7 COLOR PORTRAITS FOR GRANDPARENTS":PRINT
2 4 5 P R I N T " A L L FOR ONLY $ 1 9 - 9 5 * * * * * - ' : PRINT
2 5 3 PRINT"AND :GOSUB 5 0 0 : P R I N T " , I F YOU'LL CALL US WITHIN 3 DAYS OF PE
C E I P T "
2 5 5 P R 1 N T " 0 F T H I S LETTER WE WILL INCLUDE WITH YOUR BIRTHDAY S P E C I A L "
2 6 3 P R I N T " P A C K A 6 E , ABSOLUTELY F R E E . 8 COLOP W A L L E T S - "
2 6 5 P R I N T : PRINT"REMEMBER " * : 3 0 S U B 5 0 0 : P R I N T " , TIME F L I E S SO CALL US TO DA
Y ! "
2 8 0 P R I N T : P R I N T " S I N C E R E L Y , " : P R I N T
2 9 0 P R I N T " L E E W I L K I N S O N " : P R I N T " P H O N E 9 8 2 - 6 7 0 3 "

Twenty-e .gnt C N / N o v e m b e r 1 9 7 7

AUD!OSYNCRAC!ES
Unique Audio Processing Applications of the 88-AD/DA

AUDIOSYNCRACIES Is a three-part
series devoted to exploring unconventional
applications of the Altair 88-AD/DA board.
Hardware and software theory and Imple-
mentation of the board In the Altair 8800
series mocrocomputers will be covered.

Part 1 includes: Theory of the audio
delay line, a shnpie aadio delay line for
producing echo effects, and a description
of Interface circuitry for this and sub-
sequent audio appiication articles.

Audio signal processing is one of the
more fascinating applications of the Altair
88-AD/DA board. This board's high speed
of analog to digital conversion makes it
particularly suitable for good quality digi-
talization of audio information.

One especially interesting application
if the creation of audio delays using the
88-AD/DA board. By taking an audio
signal, delaying it, and then recombining it
with the original signal, a variety of inter-
esting echo and reverberation effects can
be produced. In the past, echo effects were
produced by a tape loop. A diagram of this
method is shown in Figure 1. The audio
signal is recorded onto the magnetic tape
loop by the record head and then played
back off the tape by the multiple playback
heads. The distance between the record
and playback heads determines the amount
of time that passes until an echo is heard.
The number of echos that are heard is
determined by how many playback heads
the tape passes over after it passes the
record head. There is a disadvantage
to this method: it requires a tape trans-
port, and magnetic tape is one of those
mediums that deteriorates with age.

In this first article, we will explore the
advantages of using the 88-AD/DA and the
Altair computer to implement a solid-state
no-moving-parts system which will per-
form this echo function in addition to pro-
ducing several other interesting effects.
SOFTWARE

The method for producing the echo
effect is shown in flowchart form in Figure
2. After briefly studying the flowchart, you
will notice that we are essentially imitating
the tape loop echo method, but the medium

C N / N o v e m b e r 1 9 7 7

is the memory of the computer, and the
"record" and "playback" head functions
are implemented in software. The "re-
cord" function is accomplished by using
pointer HL to write the digitalized audio
information into memory. The "playback"
function is accomplished by using pointer
DE to retrieve the information from
memory. Both pointers are simultaneously
stepped through memory, but pointer DE
runs behind pointer HL. The time it takes
for pointer DE to reach and read data from
the same point in memory that pointer HL
has written data into, determines the delay
time until the echo of the original signal is
heard. As each pointer reaches the top
limit of memory, it is reset back to the
beginning, giving us a continually running
loop. The amount of time that passes until
the echo of the original signal is heard is
determined by the difference in starting
points of pointers HL and DE. The offset
can be any value you choose, so a wide
variety of delay times are possible. The
maximum amount of delay is, of course,
limited by the amount of memory in the
computer. To obtain the maximum delay
time, set pointer HL to the middle of the
memory space and set pointer DE to the
beginning of the memory space. For this
first experiment, we will produce only one
echo. The machine code program for our
delay function is shown in Listing 1.

. .HARDWARE. ' -
To properly interface the 88-AD/DA

with real world audio signals, you need to
construct one relatively simple circuit.
(See Figure 3.) The top half of this circuit
takes a real world audio signal and shifts it
into the voltage range acceptable by the
88-AD/DA's input. The voltage at the
input of the 88-AD/DA must not be lower
than ground and higher than 10 volts.
Since audio signals usually go both above
and below ground, the input conditioning
circuit shifts the entire audio signal up-
wards so that all signals are above ground
and below 10 volts. The two diodes at the
output of the circuit ensure that the signal
reaching the 88-AD/DA doesn't exceed the
0-10 volt range. The OP-AMP in this
circuit can be just about any general pur-

By Thomas G. Schneider
' MITS .':

pose OP-AMP, like the 741, for example.
The bottom half of the circuit in Figure 3 is
used to mix the output of D/A convertor
and the original input signal before these
signals go out to the real world.

To adjust this interfacing circuitry, use
the following procedure. Adjust the origi-
nal signal gain pot and the delay gain pot
to their positions of highest resistance.
Adjust the input signal gain pot to its posi-
tion of least resistance. With no input
signal applied, adjust the offset pot so that
5 volts appears at the output of the OP-
AMP. Apply an audio signal typical of
what you will be running into the system
and adjust the input signal gain pot so that
the voltage at the output of the OP-AMP
swings no more than about seven volts
peak-to-peak. After toggling in the pro-
gram, hit run and adjust the output mixing
pots to obtain a pleasant mix of the original
and delayed audio signals.

Referring again to the software, you
can easily change the delay time by in-
creasing or decreasing the starting address
of the HL register. To run this software in
your Altair computer, it may be necessary
to change a few things in the program, de-
pending on how much memory is available.
The contents of the following addresses are
important:

41 and 42 contain the starting address
of the write pointer.

44 and 45 contain the starting address
of the read pointer.

53 and 64 contain the most significan
byte of the highest memory addres:
used as storage space.

When modifying this program to suit
your memory size, be careful not to write
over the program. One thing to remember
about audio modification programs...don't
be afraid to modify the program itself.
You may be surprised with some bizarre
and unusual results!

Next month. AUDIOSYNCRACIES
will cover a more flexible software routine
for the audio delay line and interface
circuitry modifications for producing con-
tinuously recirculating echo effects.

continued on page 28
Twenty-seven

AUD)OSYNCRAC!ES
FIGURE 1

Twenty-e .gnt C N / N o v e m b e r 1 9 7 7

AUDIO
MIXER

5*
TAPE MOTION

AUDIO
OUT

MAGNETIC TAPE LOOP

PLAYBACK HEADS RECORD HEAD

AUDIO IN

AUD!OSYMCRAC)ES
V.

4<oV
4

) j 1
+ ioV

(C^r^r /)

^ &(—*- +!0V

^ 1 / c A (Dcz^r f ^
- i) — I . 1 *

FIGURE 3
con t inued on p a g e 30

C N / N o v e m b e r 1 9 7 7 Twenty-nine

AUD!OSYNCRAC!ES
W D 10 DELAY SOFTWARE < ASSUMES A/D-D/A BOARD IS AT OCTAL ADDRESS 100)

0 257 tNIT, XRA A PROGRAM LINES 0 - 3 3 INITIALIZE

1 ̂ ; 323 OUT 100 THE A/D--D/A BOARD

a 100

3' . 323 OUT 101

"'4 . 101

5 323 OUT 102

6 102

7 323 OUT 104

10 104

11 323 OUT 106

12 106

13 057 'C'MA

14 323 OUT 103

15 103

16 323 OUT 105

17 105

20 323 OUT 107

21 107

22 076 MOV A, 054

23 054

24 323 OUT lOO

25 100

26 323 OUT 102

27.'.; 102

30 323 OUT 104 .

31 104

32 323 OUT 106

33 106

34 000 NOP

35 000 NOP '.'.''''-<

36 000 ;" 'NOP' .
37 000 NOP. .'

40 041 START, LXI H.020/000 LOAD HL WITH WRITE

41 000 POINTER STARTING ADDRESS

42 020

43 021 LXI D. 001/000 LOAD DE WITH READ

44 000 POINTER STARTING ADDRESS

con t inued
Thirty C N / N o v e m b e r 1 9 7 7

AUD)OSYNCRAC!ES

45 001

46 257 CONV. XRA A OUTPUT A 0 TO PORT 103

47 323 OUT 103 TO START CONVERSION

50 103

51 174 CHKH, MOV A.H SEE IF HL POINTER HAS

52 376 CPI 200 REACHED THE TOP OF

53 200 MEMORY SPACE

54 302 JNZ CHKD IF NOT, CHECK THE DE

4B 062 POINTER

56 000

57 076 MVI A,001 LOAD H WITH 1

60 001

61 147 MOV H.A

62 172 CHKD, MOV A, D SEE IF DE POINTER

63 376 CPI 200 REACHED THE TOP OF

64 200 MEMORY SPACE

65 302 JNZ INPT IF NOT, GET AUDIO INPUT

66 073

67 000

70 076 MVI A,001 PUT 001 IN D

71 001

72 127 MOV D. A

73 333 INPT, INP 101 GET AUDIO INPUT FROM A/D

74 101

75 167 MOV M, A AND MOVE IT TO MEMORY

76 353 XCHG SWAP POINTERS HL & DE

77 176 MOV A, M GET DATA FROM MEMORY

100 323 OUT 105 AND OUTPUT IT TO D/A

101 105

102 353 XCHG SWAP POINTERS BACK

103 043 INX H INCREMENT HL POINTER

104 023 INX D INCREMENT DE POINTER

105 303 JMP CONV

106 000

107 000

C N / N o v e m b e r 1 9 7 7 continued on page Nineteen

TRACE PROGRAM c o n t i n u e d PROGRAM USED TO

DEMONSTRATE SAMPLE RUN

0 0 0 0 t NAM SHOWEM
0 0 0 0 2 OPT NOG,M .
0 0 0 0 3 3 0 0 0 ORG $ 3 0 0 0
0 0 0 0 4 *
0 0 0 0 5 *SHOWEM - A SAMPLE PROGRAM
0 0 0 0 6 * T O SHOW RUNNING FEATURES OF
0 0 0 0 7 *
0 0 0 0 8 3 0 0 0 CE 3 0 0 E XX LDX STABLE
0 0 0 0 9 3 0 0 3 A6 0 0 zz LDA A 0 , X 0 0 0] 0 3 0 0 5 2 7 FE BE3 *
0 0 0 1 i 3 0 0 7 BD 3 0 0 C J S R YY
0 0 0) 2 3 0 0 A 2 0 F7 BRA ZZ 0 0 0 1 3 *
0 0 0) 4 3 0 0 C 0 8 YY INX
0 0 0) 5 3 0 0 D 3 9 RTS
0 0 0) 6 *
0 0 0) 7 3 0 0 E 4) TABLE FCC / A B C /
0 0 0) 8 3 0)) 0 0 FCB 0
0 0 0) 9 END
TOTAL ERRORS 0 0 0 0 0
ENTER PASS X

SAMPLE RUN OF DEBUG PROGRAM

J 4 0 0 0
DEBUG
@ T ADDR ? 3 0 0 0 ADDR ? 3 0])
@ D
D 3 F 00 Ft D0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 0 H 0 0 0 0 0 0 0 0 5

J ADDR ? 3 0 0 C
T 0 8 0 0 F ! D0 0 0 0 0 0 0 0 0 3 0 0C
X 3 9 0 0 F] D0 0 0 0 0 0 0 0 t 3 0 0D 3 0 0 0 3 0 i i 0 0 0 0 0 0 0 0
@ J ADDR ? 3 0 0 0
I CE 3 0 0 E 0 0 F1 D0 0 0 0 0 0 0 0) 3 0 0 0
T AS 0 0 0 0 F! D0 0 0 0 0 3 0 0 E 3 0 03
I 2 7 FE 0 0 Ft D0 0 0 4) 3 0 0 E 3 0 0 5
I BD 3 0 0 C 0 0 Ft D0 0 0 4) 3 0 0 E 3 0 0C
T 0 8 0 0 Ft D0 0 0 4 t 3 0 0 E 3 0 0C
I 3 9 0 0 Ft D0 0 0 4) 3 0 0 F 3 0 0A
T 2 0 F7 0 0 F t D0 0 0 4 t 3 0 0 F 3 0 0 3
T A6 0 0 0 0 Ft D0 0 0 4 ! 3 0 0 F 3 0 0 3
T 2 7 FE 0 0 Ft D0 0 0 4 2 3 0 0 F 3 0 0 5
T BD 3 0 0 C 0 0 Ft D0 0 0 4 2 3 0 0 F 3 0 0C
T 0 8 0 0 Ft D0 0 0 4 2 3 0 0 F 3 0 0C
I 3 9 0 0 Ft D0 0 0 4 2 3 0] 0 3 0 0A
I 2 0 F7 0 0 Ft D0 0 0 4 2 3 0 t 0 3 0 0 3
T A6 0 0 0 0 Ft D0 0 0 4 2 3 0 t 0 3 0 0 3
I 2 7 FE 0 0 Ft D0 0 0 4 3 3 0] 0 3 0 0 5
T BD 3 0 0 C 0 0 Ft D0 0 0 4 3 3 0 t 0 3 0 0C
T 0 8 0 0 Ft D0 0 0 4 3 3 0] 0 3 0 0C
I 3 9 0 0 Ft D0 0 0 4 3 3 0 t t 3 0 0A
I 2 0 F7 0 0 Ft D0 0 0 4 3 3 0 H 3 0 0 3
I A6 0 0 0 0 Ft D0 0 0 4 3 3 0 t t 3 0 0 3
T 2 7 FE 0 0 Ft D4 0 0 0 0 3 0 t t 3 0 0 5
I 2 7 FE 0 0 Ft D4 0 0 0 0 3 0 t t 3 0 0 5
I 2 7 FE 0 0 Ft D4 0 0 0 0 3 0 t t 3 0 0 5
I 2 7 FE 0 0 Ft D4 0 0 0 0 3 0 t t 3 0 05
T 2 7 FE 0 0 Ft D4 0 0 0 0 3 0 t t 3 0 0 5
1 2 7 FE 0 0 Ft D4
DEBUG
@ C 7 7
@ B 8 8
6 A 9 9
@ X AAAA
9 I ADDR ? BBBB
9 0 ADDR ? CCCC
@ D
D 2 7 FE 0 0 Ft 7 7 8 8 9 9 AA AA 3 0 0 5 3 0 0 0 3 0 t l BB BB CC CC
@ M

Thirty-two C N / N o v e m b e r 1 9 7 7

A Definition of Terms:
sub-scribe /, seb-'scrib/ yb sub-scribed; sub-scrib ing [MEs^scr/berjl: to sign
one's name to a document (as a cou-
pon; as the one be!ow) 2: to enter
one's name for a pubiication (as CN-
Computer Notes; one year for $5.00/
$20.00 per year overseas) 3: to fee!
favorabiy disposed syn ASSENT ant
bogg!e sub-scrib-er /i

^ - c o m p u t e r n o t e s
2450 A l amo S . E .
Albuquerque . New Mexico 87106

P l e a s e s e n d m e a 1 y e a r s u b s c r i p t i o n t o Computer Notes.

$ 5 . 0 0 p e r y e a r in U.S. $ 2 0 . 0 0 p e r y e a r o v e r s e a s .

N A M E :
A D D R E S S -
CITY : _ . S T A T E : ZIP-
C O M P A N Y / O R G A N I Z A T I O N

V .

a C h e c k E n c l o s e d M C o r B A C / V i s a # -
Q M a s t e r C h a r g e E x p D a t e
D B a n k A m e r i c a r d / V i s a S i g n a t u r e

