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Abstract 
 
Hydroclimates like precipitation and streamflow are related to large-scale atmospheric 
variables via oceanic-atmospheric circulations. Unusual patterns of circulation are 
connected to changes in climatic conditions due to factors like population and technology 
growth, urbanization and economic development. El Niño and La Niña, defined as 
anomalous sea surface temperatures over the tropical Pacific Ocean, interrupt the Walker 
circulation and cause variability in hydroclimates and anomalous weather events. The case 
study (i.e. the Ping River Basin which is a sub-basin of the Upper Chao Phraya River 
Basin) is located in northern Thailand. The Ping River Basin covers an area of 33,899 km2. 
The climate is classified as tropical monsoon with all average monthly temperatures 
greater than 18°C, and the highest temperature occurs in a period prior to the monsoon 
season. Moreover, precipitation being less than 61 mm per month is found in one or more 
months. The Ping River Basin experiences dry season rainfall (from November to April) 
which is inversely related to air temperature in the summer season (i.e. March-April-May 
or MAM). From 1951 to 2007, an increasing trend in dry season rainfall (by 16.3 mm over 
57 years) is consistent with a decreasing trend of MAM temperature (drops by 0.6°C over 
57 years). Furthermore, a higher MAM temperature influences the land-sea temperature 
gradient and strengthens the monsoon. The pre-monsoon season rainfall (i.e. May-June-
July or MJJ) is inversely correlated to MAM temperature, whereas the monsoon season 
rainfall (i.e. August-September-October or ASO) is positively related to MAM 
temperature. In El Niño years, the MJJ and ASO rainfalls tend to decrease and vice versa 
in La Niña years  
 
Using correlation maps, seasonal rainfall (i.e. MJJ, ASO, NDJ and FMA) of the study 
basin can be statistically related to large-scale atmospheric variables (sea surface 
temperature, sea level pressure, surface zonal and meridian winds) at long lead times, 
varying from 4 to 15 months prior to the start of the season. Atmospheric predictors are 
identified over different regions (such as the Pacific and Indian Oceans) based on 
significant relationships with rainfall at 95% confidence levels. The gridded monthly data 
of identified predictors from 1961 to 2100 is obtained from a general circulation model 
(GCM) called GFDL-R30 and used in a statistical model to forecast and determine the 
effects of future climate on seasonal rainfall of the study basin. 
 
A modified k-nearest neighbor (k-nn) model is used to downscale the rainfall of the study 
basin from large-scale atmospheric variables. The modified k-nn model is a nonparametric 
approach, which locally fits a regression between dependent (e.g. rainfall) and independent 
variables (e.g. atmospheric predictors) using a small set of neighbors (k) at any given point. 
k and the order of polynomial (p) are selected using a generalized cross validation (GCV) 
method. In terms of the effects of future climate under two scenarios (A2 and B2), the 
2011-2100 MJJ and ASO rainfall of the Ping River Basin is predicted to decrease by 0.11-
6.16 mm per year. Increasing trends of 0.02-5.91 mm per year are associated with the 
2011-2100 dry season rainfall (i.e. NDJ and FMA). Furthermore, the monsoon season 
rainfall will have more chances of being dry and less chances of being wet. In contrast, 
future climate will affect more chances of wetness and less chances of dryness for the dry 
season rainfall. The wet season will tend to shift by two seasons, from ASO to FMA, under 
A2 and by one season, from ASO to NDJ, under B2. 
 
To compare two algorithms of rainfall-runoff models, the SIMHYD and HEC-HMS 
models have been studied. Both models are calibrated from April 1999 to March 2003 and 
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validated from April 2003 to March 2007. Four efficiency indexes (the deviation of 
volume (Dv), correlation coefficient (r), normalized root mean square error (NRMSE) and 
the Nash-Sutcliffe efficient index (E)) are used to evaluate the model performance. The 
SIMHYD model shows poor performance, due to the homogeneity of basin characteristics, 
in capturing average monthly streamflow at the stations that cover a large drainage area. 
Comparing the performance of these models at six gauging stations, the HEC-HMS model 
performs better than the SIMHYD model in capturing average monthly streamflow. 
Moreover, the HEC-HMS model can capture low flow better than the SIMHYD model. 
Although its performance is not consistent at all stations, more efficiency in high flow 
simulation is associated with the HEC-HMS model as it shows less NRMSE and greater E. 
Therefore, the HEC-HMS model has been selected to simulate the 2011-2100 daily 
streamflow using rainfall ensembles obtained from the multisite daily rainfall generator. 
 
The effects of future climate under both scenarios present decreasing average discharges in 
the dry and wet seasons. The shift in peak discharge from mid-September to the end of 
September or the beginning of October is expected to be observed. With the exception of 
Station P75, P67 and 061302, the dry spells will be shorter in the future compared to 
historical records. Less severity of shortage during the dry spell is also predicted for all 
stations except P67 and 061302. Under A2, with the exception of Station P24A, 061302 
and P14, the wet spells will be shorter. Under Scenario B2, wet spells will be shorter at all 
stations. The intensity of abundance is less than that seen in historical records. Anomalous 
low flow in the wet season and anomalous high flow in the dry season have also been 
examined using thresholds of the observed Q90 in the wet season (Q90,wet) and the observed 
Q10 in the dry season (Q10,dry). Due to future climate alterations, the magnitudes of 
simulated Q90,wet and Q10,dry will likely be lower than those of observations. With the 
exception of Station P75 and P21, dry spells in the wet season will be shortened. 
Anomalous low flow in the wet season during 2011-2100 is less severe than historical 
records. In terms of anomalous high flow in the dry season, a shorter duration of wet spells 
with lesser intensity of abundance will be found at four stations under A2 and at three 
stations under B2. 
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Chapter 1 
Introduction 

 
1.1 Background and statement of the problem 
The hydroclimates (e.g. precipitation) at a basin scale are influenced by oceanic-
atmospheric circulations. Seen over the eastern equatorial Pacific Ocean, the El Niño-
Southern Oscillation (ENSO) is an anomalous oceanic-atmospheric circulation in terms of 
sea surface temperature (SST), and it has been linked with changes in climate in the region.   
The changes in climate are caused by the increase in greenhouse gas concentration in the 
atmosphere due to population growth, urbanization, economic and technology 
development. Climate change causes variability of hydroclimates such as temperature over 
land and the sea, precipitation and the amount of water present in other forms (e.g. 
streamflow, underground water and ice glaciers) in a hydrologic cycle. A report of the 
Intergovernmental Panel of Climate Change (IPCC) estimated the variability of annual 
global surface temperature from 1956 to 2005 as varying from 0.10 to 0.16°C per decade 
(IPCC, 2007a). However, due to global warming, increasing trends in annual surface 
temperature were found in several regions. For average land temperatures (Figure 1.1), the 
temperature departures estimated with respect to 1961-1990 average temperature show a 
warmer trend after 1980. 
 

 
Figure 1.1: (a) Linear trends in global annual temperature from 1979 to 2005; and (b) 
Annual temperature anomalies estimated with respect to 1961-1990 average. 
Source: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/tssts-3-1-1.html 
 
Precipitation variability, as seen in the trends of annual global precipitation (Figure 1.2) 
from 1979 to 2005, shows a variation from -60% to +60% per decade (IPCC, 2007a). 
Several developing countries, especially in the arid and semi-arid regions of southern 

(a) 

(b) 
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Africa, the Mediterranean and part of southern Asia, observed decreasing trends. However, 
in some regions such as northern Europe, northern and central Asia and North and South 
America, increasing trends were found. The variability in hydroclimates encourages 
engineers, researchers and scientists to work on several related topics aiming at 
understanding the relationships between local hydroclimates and large-scale atmospheric 
variables, and at mitigating anomalous events like floods and droughts. In this study, the 
variability of hydroclimates is a motivation to address the problems stated below: 
(i) How does the variability of local hydroclimates relate to large-scale atmospheric 

variables? 
(ii)  How to develop a model with the incorporation of large-scale atmospheric 

information to forecast rainfall? 
(iii)  What could be the effects of future climate on rainfall and streamflow at the basin 

scale? 
 

 
Figure 1.2: (a) Linear trends in global annual precipitation from 1901 to 2005; (b) Linear 
trends in global annual precipitation from 1979 to 2005; and (c) Annual precipitation 
anomalies estimated with respect to 1961-1990 average. 
Source: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/tssts-3-1-3.html 

(a) 

(b) 

(c) 



 3 

 
Variability in hydroclimates at the basin scale can cause social and economic problems, 
especially in developing countries, because their economy is dependent upon the rain-fed 
agriculture. The total annual losses from extreme weather events are estimated more severe 
in the present (i.e. since 1990) than were in the past (IPCC, 2007a) because of more severe 
disasters in terms of intensity and frequency. These disasters have been associated with 
changes in climate, population growth, economic development and urbanization. Both 
tangible and intangible damages influence a discontinuity of economic growth and 
development. Moreover, the effects on the quantity and quality of water are directly 
connected to deteriorating living standards and degrading natural environment because 
water availability is also related to uses by the ecosystem and the environment. Therefore, 
the rationale of this study is to: 
(i) Understand the effects of oceanic-atmospheric circulation on the hydroclimates in a 

study basin. 
(ii)  Implement large-scale atmospheric variables into a forecasting model of 

hydroclimates. 
(iii)  Examine the effects of future climate on anomalous weather events. 
 
1.2 Objectives of the study 
The broad objectives of this study are to develop a model to forecast rainfall and 
streamflow with a set of selected predictors of large-scale atmospheric variables, and also 
to determine the effects of future climate on rainfall and streamflow using the developed 
model. The specific objectives of the study are as follows: 
(i) To understand and develop the statistical relationships between rainfall and large-

scale atmospheric variables. 
(ii)  To propose a statistical model to forecast rainfall with a set of selected large-scale 

atmospheric variables. 
(iii)  To downscale local rainfall from the large-scale atmospheric variables obtained from 

a general circulation model (GCM) and to determine the effects of future climate 
using the developed statistical model. 

(iv) To simulate streamflow using a rainfall-runoff model with the historical and 
downscaled rainfalls. 

(v) To determine anomalous streamflow events (i.e. low and high flow) that will occur 
due to future climate using downscaled rainfall and simulated streamflow. 

 
1.3 Scope of the study 
The objectives outlined above are pursued according to the following steps: 
(i) Data collection of hydroclimates (e.g. rainfall, streamflow and temperature) from 

several stations in the study basin (the Upper Chao Phraya River Basin, Thailand) 
and large-scale atmospheric information (e.g. SST, sea level pressure (SLP) and 
wind) over several locations in the Pacific and Indian Oceans. 

(ii)  Correlation and composite analysis to develop statistical relationships between 
rainfall and large-scale atmospheric variables and to identify predictors at long lead 
times that can be used to forecast rainfall. 

(iii)  Development of a statistical model to forecast rainfall with the predictor sets of large-
scale atmospheric variables identified from (ii). 

(iv) Downscaling rainfall from the large-scale atmospheric variables to determine the 
effects of future climate using the developed statistical model. 
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(v) Development of a conditioning daily rainfall generator to resample historical daily 
rainfall based on the probability density function (PDF) of downscaled rainfall 
obtained from (iv). 

(vi) Calibration and validation of rainfall-runoff models using observed streamflow in the 
study area. 

(vii)  Simulation of daily streamflow using downscaled rainfall under future climate 
scenarios. 

(viii)  Estimation of anomalous hydrological events based on the rainfall and streamflow 
simulations obtained from (v) and (vii). 

 
1.4  Organization of the report 
This study proposes two approaches of the hydrological simulation. The first one is a 
statistical model with the integration of large-scale atmospheric variables as the predictors 
to forecast rainfall. The criteria for potential predictors of atmospheric variables are: (i) 
significant correlation with rainfall; and (ii) a long leading relationship between rainfall 
and atmospheric variables. The second approach is a physical model to simulate 
streamflow. The streamflow simulations will respond to rainfall ensembles obtained from 
the statistical model. Data gleaned from both approaches to rainfall and streamflow 
simulation will aid in long-term planning of water resources and reservoirs in the study 
area. 
 
This report firstly introduces a review of literature in Chapter 2 (Figure 1.3) where 
variability of local hydroclimates in various areas and their links to atmospheric variables 
is shown. In addition, the implements of large-scale atmospheric variables in the 
forecasting models are also reviewed here. The case study (i.e. the Upper Chao Phraya 
River Basin) is described in Chapter 3. The development of a statistical relationship 
between rainfall in the study basin and large-scale atmospheric variables is also presented. 
Chapter 4 covers the selection of atmospheric predictors for the rainfall forecasting model 
based on significant statistical relationships. After identifying the potential predictors, a 
statistical stochastic model is proposed in Chapter 5. This chapter also includes: (i) a 
conditioning daily rainfall generator to resample the historical daily rainfall based on the 
PDF obtained from the statistical model; (ii) the evaluation of model performance of the 
statistical model and rainfall generator; and (iii) the downscaling of local rainfall from the 
atmospheric variables obtained from a general circulation model (GCM) using developed 
statistical model. The downscaling aims to determine the effects on rainfall under future 
climate scenarios proposed by IPCC. The streamflow simulation achieved from a rainfall-
runoff model using downscaled rainfall and the estimation of anomalous conditions 
associated with the downscaled rainfall and simulated streamflow are shown in Chapter 6 
and Chapter 7 respectively. Lastly, Chapter 8 addresses the conclusions of the entire work 
and suggests extensions of this research. 
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Figure 1.3: A flow chart of this study. 
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Chapter 2  
Review of Literature 

 
2.1  Anomalies in atmospheric conditions over the Pacific Ocean 
Under normal condition (Figure 2.1), the Walker circulation consists of trade winds 
moving warm-moist surface air from the east to the west, due to temperature gradients, 
across the tropical Pacific Ocean. The moist air rises above the western tropical Pacific 
Ocean, forms clouds, and falls down as precipitation in this region. After losing its 
moisture, the drier air blows from the west to the east and descends back to the surface in 
the eastern tropical Pacific Ocean to complete the Walker circulation. As per oceanic 
circulation, trade winds gather warm surface moisture on the west coast of the tropical 
Pacific Ocean or Indonesia, so the water surface temperature in the west is normally higher 
than in the east (Figure 2.2). In terms of thermocline (see also Figure 2.1), the sea levels 
along the west coast of the tropical Pacific Ocean are higher than the coast of South 
America, which causes an occurrence of nutrient-rich cold water along the coasts of Peru 
and Ecuador by upwelling the cold water from deeper levels. The maximum temperature 
gradients between sea surface temperature (SST) along the west and the east coasts of the 
tropical Pacific Ocean are observed during September and October due to minimum 
temperatures on the east coast. 
 

 
Figure 2.1: The Walker circulation under normal conditions. 
Source: www.absoluteastronomy.com/topics/Walker_circulation 
 
El Niño and La Niña are those oceanic-atmospheric phenomena which indicate anomalies 
of SST in the eastern equatorial Pacific Ocean. They are sometimes called El Niño-
Southern Oscillation (ENSO) because the effects of SST anomalies on oceanic circulation 
and atmospheric circulation are observed in the Southern Oscillation. The air pressure 
difference between Tahiti (southern Pacific Ocean) and Darwin (northern Australia) is one 
example of SST anomalies. During the El Niño phase, the weakening trade winds of the 
Walker circulation develop an unusual pattern of oceanic-atmospheric circulation (Figure 
2.3). Warm SST does not cover only the west coast, as during normal conditions, but also 
extends to the central and eastern tropical Pacific Ocean. As a consequence, SST anomalies 
are observed in these regions (Figure 2.4). These SST anomalies can interrupt oceanic 
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circulation and the upwelling of nutrient-rich cold water along the west coast of South 
America. The El Niño is defined as the averaged SST over the date line and the eastern 
tropical Pacific Ocean being above its normal temperature by more than 0.5°C for five 
consecutive months or longer. For a strong El Niño, the average SST anomaly is estimated 
around 2.0-3.5°C warmer than normal. 
 

 
Figure 2.2: Average sea surface temperatures (°C) under normal conditions. 
Source: www.cpc.noaa.gov/products/analysis_monitoring/ensocycle/meansst.shtml 
 

 
Figure 2.3: The Walker circulation in the presence of El Niño. 
Source: http://www.pmel.noaa.gov/tao/proj_over/diagrams/gif/nina_normal_nino.gif 
 



 8 

 
Figure 2.4: (a) Average sea surface temperatures (°C) from January to March 1998; and 
(b) Temperature departures (°C) under El Niño. 
Source: www.cpc.noaa.gov/products/analysis_monitoring/ensocycle/ensocycle.shtml 
 
The El Niño, based on historical records, can be observed once in 2-7 years; for example, it 
occurred in 1951, 1953, 1957-58, 1965, 1969, 1972-73, 1976, 1982-83, 1986-87, 1991-92, 
1994 and 1997-98. The regions used to define an anomalous condition can be divided into 
four locations between the date line and the eastern tropical Pacific Ocean (Figure 2.5). 
The different variables (e.g. SST and sea level pressure) measured over these regions are 
used to estimate the anomalies. The four regions located are described below (Schöngart 
and Junk, 2007): 
(i) NINO 1+2 covers the regions of the coast of Peru, Ecuador and Galápagos Islands in 

the equatorial Pacific Ocean. Its location is between 0°-10°S latitude and 90°-80°W 
longitude. 

(ii)  NINO 3 is located between 5°N-5°S latitude and 150°-90°W longitude, 
corresponding with the central equatorial Pacific Ocean. 

(iii)  NINO 3.4 is the overlapping region between NINO 3 and NINO 4, between 5°N-5°S 
latitude and 170°-120°W longitude (as shown in Figure 2.5). 

(iv) NINO 4 is located between 5°N-5°S latitude and 160°E-150°W longitude, which lies 
in the western equatorial Pacific Ocean. 

 

 
Figure 2.5: El Niño regions. 
Source: www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml 
 
During La Niña events (Figure 2.6 and 2.7), the Walker circulation is disrupted by below-
normal SST in the eastern tropical Pacific Ocean. This causes the atmospheric circulation 
to be stronger than normal, which promotes more rising air, cloudiness and precipitation 
over the western Pacific Ocean and Indonesia. Hence, there is more descending air over the 
eastern side of the Pacific Ocean. La Niña is said to be occurring basically if the average 

(a) (b) 
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SST over the eastern tropical Pacific Ocean is below the normal temperature by more than 
0.5°C for five consecutive months or longer. La Niña was observed in 1954-56, 1961-62, 
1964, 1970-71, 1973-76, 1988-89, 1995 and 1998-2000. Due to a strong La Niña, SST 
over the eastern Pacific Ocean is found to be 1.0-3.0°C colder than normal. The onset 
period of El Niño and La Niña is between June and August, and the peak often occurs from 
December to April. Then, they decay in the months of May, June and July of the following 
year. The total duration from the onset to decay covers 9-12 months. 

 

 
Figure 2.6: The Walker circulation in the presence of La Niña. 
Source: www.pmel.noaa.gov/tao/proj_over/diagrams/gif/nina_normal_nino.gif 

 

 
Figure 2.7: (a) Average sea surface temperatures (°C) from January to March 1989; and 
(b) Temperature departures (°C) under La Niña. 
Source: www.cpc.noaa.gov/products/analysis_monitoring/ensocycle/ensocycle.shtml 

 
The unusual pattern of oceanic-atmospheric circulation, i.e. ENSO, has to be carefully 
observed and its effects determined because ENSO has negative and positive relationships 
with regional hydroclimates, and this can affect various related activities directly or 
indirectly. Several researchers have attempted to study ENSO effects in different regions; 
however, it is difficult to determine with certainty the corresponding effects in the Pacific 
Ocean because of the nonlinear relationships and the asymmetrical responses of regional 
hydroclimates under El Niño and La Niña. 
 
 

(a) (b) 
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2.2  Effects of anomalous atmospheric conditions on hydroclimates 
In order to define an anomalous condition of the oceanic-atmospheric circulation, large-
scale atmospheric variables (e.g. sea surface temperature (SST), wind, sea level, changes in 
depth of thermocline, sea level pressure (SLP) and outgoing longwave radiation (OLR)) 
have to be monitored. Depending on measurable variables and locations, the anomalies 
associated with climatic circulation, known as teleconnections (Ropelewski and Halpert, 
1987; Garreaud and Battisti, 1999; Glantz, 2001; Chou et al., 2003; Frederiksen and 
Branstator, 2005; An et al., 2007; Anderson, 2007; Frankignoul and Sennéchael, 2007; Li 
et al., 2007; L. Wu et al., 2007), are defined by several indices such as El Niño-Southern 
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific North American (PNA) 
pattern, North Pacific (NP) index, Arctic Oscillation (AO) and North Atlantic Oscillation 
(NAO). Moreover, the anomalous conditions can be segregated under warm and cold 
phases, i.e. El Niño and La Niña, respectively. 
 
The oceanic-atmospheric circulation (e.g. Walker circulation) influences local 
hydroclimates such as temperature, precipitation and streamflow. Although the short-term 
variability of hydroclimates is influenced by various local factors (e.g. human activities 
and land uses), long-term variability experiences the influences of anomalous atmospheric 
conditions. Several studies have focused on anomalous SST over the tropical Pacific Ocean  
(E. M. Rasmusson and Carpenter, 1983; Mantua et al., 1997; Gong and Wang, 1999; 
Whitaker et al., 2001). To understand the relationships between local hydroclimates and 
large-scale atmospheric variables, the interdecadal (Y. Zhang et al., 1997; Mestas-Nuñez 
and Enfield, 2001), interannual and intraseasonal variability (Frederiksen and Branstator, 
2005; Keenlyside and Latif, 2007; Masih et al., 2011) of hydroclimates have been 
investigated. 
 
Moreover, variability and trends in terms of spatial coverage such as a global scale (Mason 
and Goddard, 2001; Frederiksen and Branstator, 2005), a regional scale (Orlanski, 2005; 
Goswami et al., 2006) and a basin scale (Mendoza et al., 2005; Yang et al., 2007) have also 
been estimated. Due to atmospheric circulation, the anomalous condition of large-scale 
atmospheric variables could affect hydroclimates over the regions which are located near 
or even at a distance from the anomalous sources (Saravanan and Chang, 2000; 
Harshburger et al., 2002; Tereshchenko et al., 2002). Under anomalous conditions, both 
positive and negative relationships between local hydroclimates and atmospheric variables 
have been witnessed, which were also associated with anomalous weather events like 
floods and droughts. The effects of the warm and cold phases of the anomalous conditions 
respond asymmetrically; El Niño may cause extremely dry conditions, whereas La Niña 
may affect wet conditions with a different level of anomaly (Gershunov, 1998; Mason and 
Goddard, 2001; A. Shrestha and Kostaschuk, 2005; An et al., 2007). Furthermore, in some 
regions, the relationship is hardly identifiable because local hydroclimates are also 
influenced by several oceans at a time; in this case, the Pacific, Indian and the Atlantic 
Oceans (R. Wu and Kirtman, 2004; Nagura and Konda, 2007). In addition, the lag from an 
anomalous event can be found several months after an anomalous event has occurred 
(Gutiérrez and Dracup, 2001; Sourza Filho and Lall, 2003; Grantz et al., 2005), which 
make the occurrence difficult to understand in isolation. However, lagging effects can be 
estimated by forecasting models of local hydroclimates and this forecasting can improve 
the effectiveness of water resources management and planning. 
 
This chapter presents a review of past studies that show the effects of anomalous 
atmospheric conditions on hydroclimates at global, regional and basin scales. A review of 
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hydroclimate forecasting models, with the incorporation of large-scale atmospheric 
variables to improve model performance, is also presented. 
 
2.2.1 Effects on global hydroclimates 
As for the influences of atmospheric circulation on global hydroclimates, several 
approaches such as the empirical method and the atmospheric general circulation model 
(AGCM) have been adopted to show ENSO-related global precipitation in Australia, North 
America, South America, the Indian subcontinent, Africa and Central America 
(Ropelewski and Halpert, 1987; Enfield and Alfaro, 1999; Giannini et al., 2000). For the 
11 strongest ENSO events, the effects of ENSO are recorded on a gridded monthly 
precipitation. These data, obtained from almost 12,000 stations around the world in post-
1951, show that seasonal land precipitation tends to be below normal when associated with 
El Niño and vice versa for La Niña (Mason and Goddard, 2001). Furthermore, the 
influence of La Niña on monthly precipitation covers more area than El Niño. From 
September to November, the influence of El Niño and La Niña covers the most widespread 
areas of 22% and 25% of total land areas respectively. The regions indicating a high 
frequency of below-normal precipitation due to El Niño are eastern Australia and 
Indonesia; the regions obtaining a high frequency of above-normal precipitation due to La 
Niña are the Middle East, east Africa and the U.S. 
 
On the other hand, using the empirical method, Ropelewski and Halpert (1987) found that 
the high frequencies of above-normal precipitation associated with La Niña can be also 
found in Indonesia and northern Australia, whereas below-normal precipitation can be 
observed in southeastern South America, northeastern Argentina, western Saudi Arabia, 
Kyrgyzstan and the equatorial Pacific islands. Subsequently, the relationships between 
global streamflow and ENSO have been investigated (Dettinger et al., 2000; Chiew and 
McMahon, 2002) using statistical, correlation and harmonic analyses. Anomalous weather 
events such as floods and droughts in some regions (e.g. Mexico and Colombia) show 
significant links to ENSO (Jain and Lall, 2001). 
 
2.2.2 Effects on regional hydroclimates 
The influence of anomalous atmospheric conditions such as ENSO on regional 
hydroclimates has been investigated over northeastern South America (NSA), southeastern 
South America (SSA), the U.S., Canada, Latin America and Asia. Ropelewski and Halpert 
(1987) found stronger effects of ENSO over NSA than over SSA. The below-normal 
precipitation associated with ENSO has been observed in north equatorial Brazil, French 
Guiana, Surinam, Guyana and Venezuela. However, above-normal precipitation has been 
observed in SSA, Uruguay and parts of northeastern Argentina. 
 
From theoretical arguments and modeling studies, hurricanes or cyclones over the Atlantic 
Ocean have been associated with SST anomalies, which in turn are related to the global 
mean surface air temperature (Emanuel, 2005; Webster, 2005). Using partial correlation 
and regression analysis, Elsner et al. (2006) found that the increasing hurricane intensity 
over the Atlantic Ocean due to a higher SST is partially compensated by a greater 
atmospheric stability. Moreover, greater atmospheric stability responds to the warm 
troposphere temperatures which are related to SST. The SST over the tropical Atlantic 
Ocean is remotely linked to NAO and ENSO (L. Wu et al., 2007). However, through the 
PNA pattern (Saravanan and Chang, 2000), the SST over the tropical Atlantic Ocean can 
be linked to ENSO solely, in particular, over the regions of central and eastern equatorial 
Pacific Ocean (Curtis and Hastenrath, 1995; Enfield and Mayer, 1997). Using AGCM, 
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Saravanan and Chang (2000) concluded that the warm tropical Atlantic Ocean is related to 
warm SST over the eastern tropical Pacific Ocean. Hence, the intensity and frequency of 
hurricanes over the Atlantic Ocean are influenced by ENSO, which can increase 
tropospheric temperature and subsequently increase SST over the Atlantic Ocean. 

 
The air temperatures in the U.S. and Canada are linked to both ENSO and PDO (E.M. 
Rasmusson and Carpenter, 1982; Mantua et al., 1997). Ropelewski and Halpert (1986) 
investigated ENSO effects on temperature and precipitation over North America. They 
found positive temperature anomalies over Alaska and western Canada from December to 
March in ENSO years, and negative temperature anomalies over southeastern U.S. from 
October to March. In addition, four regions; the mid Atlantic (MA), High Plains (HP), 
Great Basin (GB) and the Gulf and the Mexican Area (GM) present evidence of ENSO-
related precipitation. For about 81% of ENSO events, GM (GB) experiences above-normal 
precipitation from October to March (April to October). On the other hand, the HP 
precipitation from April to October is inconsistent with ENSO events although it indicates 
a link with ENSO. Giannini et al. (2001) found remote effects of El Niño over the tropical 
Pacific Ocean in decreasing trends of precipitation over the tropical Americas via the direct 
atmospheric bridge and the delayed response of SST in the tropical North Atlantic Ocean. 
In terms of the frequencies of anomalous weather events in the U.S., temperature and 
precipitation are correlated to SST and SLP (Gershunov, 1998) under the oceanic-
atmospheric circulation (Hu and Feng, 2001). During El Niño winters, the extreme 
precipitation frequency (EPF) tends to increase in the coastal Southeast, parts of the 
Southwest and the central plains of the U.S. Moreover, the extreme warm frequency 
(EWF) shows a significant and consistent decreasing trend in southern and eastern U.S. A 
significant and inconsistent decreasing trend of the extreme cold frequency (ECF) is 
observed in northern and northwestern U.S. On the other hand, during La Niña, EWF is 
found in Texas, New Mexico and parts of the surrounding states, but weak increases of 
ECF have been observed in the Northwest and the northern Rockies. 
To improve the seasonal snow forecasts in the Pacific Northwest and the Rockies of the 
U.S., Smith and O'Brien (2001) studied the composite snowfall quartiles associated with 
the warm, cold and neutral phases of ENSO during early, middle and late winters. The 
effect of ENSO on snowfall over the Pacific Northwest is found in early and mid-winter, 
but the influence over northern Rockies is observed only in mid-winter. More snowfall is 
expected in both regions during the cold phase rather than the neutral and warm phases of 
ENSO. In addition, the northern Great Lakes, southwest Montana and Wyoming 
experience ENSO-related snowfall during late winter. The northern Great Lakes indicate 
an increase in (decrease in) snowfall associated with a cold (warm) phase of ENSO. 
Surprisingly, both the warm and cold phases can decrease (increase) snowfall in southwest 
Montana (Wyoming). 
 
In Latin America, Mendoza et al. (2005) reported that the El Niño causes anomalous 
droughts in central Mexico. The historical data from 1450 to 1900 are used to define the 
region-specific drought situation which occurred in 1483, 1533, 1571, 1601, 1650, 1691, 
1730, 1818 and 1860. All the droughts in central Mexico are associated with strong and 
extremely strong El Niño. Furthermore, using the precipitation data obtained from 
approximately 1,000 stations distributed over Mexico, Pavia et al. (2006) showed that with 
the combination of PDO and El Niño, the wet condition in Mexico during summers 
(winters) is linked to low PDO (high PDO). In terms of ENSO and PDO effects on mean 
temperatures, the colder condition is associated with the summer La Niña and the winter El 
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Niño without PDO, but the warmer condition is related to the summer El Niño and high 
PDO. 
In central Chile and central-western Argentina, the water supply management is dependent 
upon streamflow due to the snowpack in the central Andes.  Masiokas et al. (2006) used 
the time series of snowpack from 1951 to 2005 and applied multiple regression to relate 
these with large-scale climate. More snow has a tendency to occur during El Niño years; 
however, the relationship between snowpack and atmospheric circulations is complicated 
and needs more analysis for better understanding and forecasting. 
The observed discharge obtained from 35 different Colombian rivers is used to correlate 
with five ENSO indices – i.e. US Southern Oscillation Index (SOI), Multivariate Index 
(MEI), and tropical Pacific Ocean SST indices, e.g. NINO 1+2, NINO 3 and NINO 4. The 
below- (above-) normal discharges are associated with El Niño (La Niña). In addition, 
from the cross-correlation analysis, the discharges of Colombian rivers are significantly 
related to MEI, SOI and NINO 4 by lag times of 4-6 months from the indices (Gutiérrez 
and Dracup, 2001). 

 
In Asia, the correlation between hydroclimates and large-scale atmospheric variables has 
been identified in several regions such as China (Gong and Wang, 1999; Y. Liu et al., 
2002; Jiang et al., 2006; Q. Zhang et al., 2007), India (Whitaker et al., 2001; Fasullo and 
Webster, 2002; Nagura and Konda, 2007), Bangladesh (Whitaker et al., 2001), Nepal (M. 
L. Shrestha, 2000; A. Shrestha and Kostaschuk, 2005), and Sri Lanka (Zubair, 2003a, 
2003b; Chandimala and Zubair, 2007). Significant parts of these relationships depend on 
the anomalous phases of atmospheric circulations. In China, decreasing precipitation is 
related to the warm phase of ENSO – i.e. El Niño (Gong and Wang, 1999). This study, 
based on statistical analysis, shows significant correlations between ENSO and rainfall in 
eastern China during winter and autumn. 
In Nepal, Shrestha (2000) and Shrestha and Kostaschuk (2005) studied the influence of 
ENSO on rainfall and streamflow respectively. Using harmonic analysis, aggregate 
composite and index time series analysis, the above- and below-normal rainfall and 
streamflow are associated with ENSO indices, e.g. MEI, SOI and NINO 3.4. The regions 
and periods of significant ENSO effects are also identified. According to the conclusions 
from both studies, El Niño brings a stronger effect over Nepal than La Niña, and La Niña 
effects cover wider areas than El Niño elsewhere. The significant influences of El Niño (La 
Niña) on streamflow are observed in the regions where a weak (strong) monsoon occurs. 
The temporal consistency of El Niño is less than that of La Niña. Compared to normal 
conditions, the decreasing discharges in western (eastern) Nepal are related to El Niño 
from July (June) to December, and the increasing discharges in western Nepal are 
correlated to La Niña from June to January.   
 
The Indian Ocean and the dipole pattern (i.e. the SST oscillation over western and eastern 
Indian Ocean) are affected by El Niño as an anomalous seasonal development of surface 
wind and SST over the equatorial eastern Indian Ocean (EEIO). When La Niña switches to 
the El Niño phase, the westerly zonal wind over the EEIO in spring changes towards the 
easterly direction. The anomalous wind produces negative SST anomalies over the EEIO 
during winter and over the eastern pole of the dipole pattern during fall. When the 
anomalous zonal wind delays until late summer or fall, negative SST anomalies over the 
EEIO are still observed during winter. However, SST anomalies over the eastern pole are 
not found in fall because of the decreasing amplitude of SST anomalies in summer (Nagura 
and Konda, 2007). Subsequently, based on the land-ocean temperature gradient (Goswami 
et al., 2006) and the dipole pattern of the Indian Ocean, the effects of El Niño on the Asian 
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summer monsoon are to be expected. The interannual and interdecadal variability of the 
Asian summer monsoon is strongly related to the dipole pattern of the Indian Ocean, 
anomalous SST gradients between the eastern and central equatorial Pacific Ocean, and the 
zonal vertical integrated moisture transport (Fasullo and Webster, 2002). 
 
2.2.3 Effects on basin hydroclimates 
In the Colorado River Basin (CRB), using the point frequency analysis and the empirical 
orthogonal function (EOF), the extremely wet and dry conditions can be related to the 
variability of atmospheric variables over the Pacific Ocean during El Niño years. However, 
during La Niña years, only extremely dry conditions are observed (Cañón et al., 2007). In 
terms of spatial coverage, the anomalous weather events, which indicate a higher tendency 
during the warm than cold season, are found in a small area of the CRB. However, from 
year to year, the spatial coverage is inconsistent. In terms of a temporal scale, the 
precipitation shows a 1-season lag relationship with PDO-SOI. Due to disparities in station 
records (e.g. inhomogeneity and inconsistency of observations in space and time), the 
Standardized Precipitation Index (SPI), which is a method of nonparametric approach to 
define precipitation anomalies, has been adopted (Kim et al., 2006). In the upper basin of 
the CRB, increasing summer precipitation is linked to a low ENSO phase. On the other 
hand, decreasing winter precipitation in the lower basin is related to a high ENSO phase. 
 
In Idaho, Harshburger et al. (2002) developed the relationship between hydroclimates (e.g. 
precipitation and streamflow) and standard ENSO indices (e.g. NINO 3, NINO 3.4, NINO 
4, SOI and PDO) using cross-correlation analysis. The negative correlations between 
NINO 3.4 and winter precipitation and spring discharge are obtained. The precipitation and 
streamflow are increased due to La Niña-negative PDO and are decreased due to El Niño-
positive PDO. However, the cold phase of ENSO more affects winter precipitation and 
spring streamflow than the warm phase, which indicates the asymmetrical responses 
mentioned earlier. In addition, topography may play a role in the relationship because 
significant correlations are obtained in mountainous areas. Yang et al. (2007) reported the 
opposite result in correlation between precipitation over the Great Plains in the U.S. and 
ENSO, showing a precipitation increase (decrease) during El Niño (La Niña). This is an 
instance of a positive correlation. The strongest relationship is found associated with SST 
anomalies over the tropical central-eastern Pacific Ocean (i.e. NINO 3.4) at one month lead 
time. 
 
By combining two basins (i.e. Sacramento River (SAC) in California and Blue River 
(BLU) in western Colorado), the joint drought condition, which is defined as low 
streamflow in both rivers, presents inconsistent relationships with ENSO or PDO in the 
20th century but shows significant relationships during some periods in the past (Meko and 
Woodhouse, 2005) as shown in Figure 2.8. This shows us nonlinear relationships. 
 
The influence of ENSO on precipitation variability in the Amazon River Basin (Latin 
America) is  relative to flood levels in the basin (Sombroek, 2001). Lower (higher) flood 
levels are observed during the warm (cold) phase of ENSO. Schöngart and Junk (2007) 
studied the flood-pulse of Central Amazonia related to SOI, NINO 1+2, NINO 3, NINO 
3.4 and NINO 4. During El Niño years, the aquatic phase of streamflow is shortened by 44 
days on an average due to lower maximum flood levels. In contrast, the aquatic phase 
during La Niña years is extended by 31 days because of higher flood levels. 
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Figure 2.8: Correlations and squared coherency* of reconstructed SAC and BLU as a 
function of time; (a) the product-moment correlations for 101-year periods offset by 25-
year periods; and (b) squared coherency (C2) from cross-spectral analysis using the same 
setting for sliding windows. 
*Squared coherency: correlation coefficient as a function of frequency. 
Source: Meko and Woodhouse (2005) 
 
On the other hand, the average streamflow of the Paraná River flowing through several 
countries in Latin America (Brazil, Paraguay and Uruguay) is higher due to El Niño than 
the streamflow due to La Niña (Berri et al., 2002). Furthermore, streamflow anomalies stay 
relevant to El Niño in the spring and autumn seasons of the following year (Camilloni and 
V.R., 2003). The discharge anomalies are positively correlated with spring SST anomalies 
over the eastern tropical Pacific Ocean and with autumn SST anomalies over the NINO 3 
region. However, any significant correlation between discharge anomalies and SST during 
summer is hardly found. 
 
Using the correlation analysis, the streamflow of the Nile River, which is the most 
important river in Africa and the longest river in the world, is correlated with Guinea 
precipitation in the previous year and 1-year leading SST over a few regions in the Pacific 
Ocean. As a result, these two variables can be used as the best climatic predictors of 
streamflow (Eldaw et al., 2003). 
 
In China, the streamflow of the two longest rivers (i.e. Yangtze River and Yellow River) is 
significantly related to ENSO. From the cross-wavelet analysis and wavelet coherence, the 
links between annual maximum streamflow in the Yangtze River and ENSO are dependent 
upon phases of relationships and locations of sub-basins. The in-phase and anti-phase 
relationships can be observed in the Lower and Upper Yangtze River Basins respectively; 

(a) 

(b) 
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however, an ambiguous relationship is seen in the Middle Yangtze River Basin (Jiang et 
al., 2006). Decreasing streamflow in the Upper Yellow River is associated with El Niño, 
and increasing streamflow corresponds to La Niña (Z. Liu and Yang, 2001). Hu et al. 
(2011) found the significant climate linkages between temperature and streamflow, and 
precipitation and streamflow in the source region of the Yellow River. 
 
The rainfall over the Kelani River Basin (Sri Lanka) shows a non-linear relationship with 
ENSO. A stronger correlation is observed from October to December, and a weaker 
relationship is found in January and February (Table 2.1 and 2.2). Moreover, from April to 
September, the relationship between streamflow and ENSO is stronger than that of rainfall 
and ENSO (Chandimala and Zubair, 2007). 
 
Table 2.1: Quarterly Characteristics of the Kelani Streamflow at Glencourse based on 
Records from 1950 to 2000 

 
Source: Chandimala and Zubair (2007) 
 
Table 2.2: Quarterly Characteristics of Rainfall in the Glencourse Catchment based on 
Averaged Rainfall Records for 10 Stations from 1950 to 2000 

 
Source: Chandimala and Zubair (2007) 
 
In conclusion, the variability of local hydroclimates such as surface temperature, 
precipitation and streamflow are linked with anomalies in large-scale atmospheric 
variables. Via oceanic-atmospheric circulations, anomalous conditions differently affect 
local hydroclimates. Some regions witness below-normal precipitation under El Niño and 
vice versa under La Niña. Anomalous weather events (flood and drought) in several basins 
are also affected by ENSO. The developed relationships between large-scale atmospheric 
variables with leading time and local hydroclimates present the leading predictability of a 
model. The long-range leading forecasts of hydroclimates are a useful tool to manage and 
plan water resources if an anomalous event were to occur. 
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2.3  Forecasting models with the cooperation of identified atmospheric variables 
To apply the development of relationships between large-scale atmospheric variables and 
hydroclimates to forecasting models, large-scale atmospheric variables are identified as the 
predictors of these models. Forecasting models, especially those based on the probabilistic 
(stochastic) approach, along with the incorporation of large-scale atmospheric predictors 
(Basson and Rooyen, 2001; Krzysztofowicz, 2001; Trenberth et al., 2006) show significant 
performance and give reliable forecasts. Precipitation and streamflow forecasts can be used 
in reservoir management (Hamlet et al., 2002; Steinemann, 2006), agricultural schedules 
and mitigation plans for anomalous weather events. 
 
Gershunov (1998) applied the statistical approach to 60-year daily data obtained from 168 
stations in the US to predict the frequencies of daily anomalous temperature and 
precipitation. The model performance depends on the season of ENSO and geographic 
locations of weather stations. From the predictions of anomalous precipitation frequency, a 
significant performance of the developed model is obtained along the Gulf Coast, the 
central plains, the Southwest and in the Ohio River Valley under the winter El Niño. The 
predictability of extreme warm frequency is associated with the southern and eastern 
regions also under the winter El Niño. Furthermore, artificial neural networks (ANNs) 
using standard indices of anomalous atmospheric variables (Table 2.3) such as SOI, NAO 
and PNA at several leading periods is adopted to forecast California precipitation 
(Silverman and Dracup, 2000). The performance of ANNs is significantly improved 
compared to the results at no lead. 
 
Table 2.3: Correlation between Observed and Predicted Precipitations with the Listed 
Variable Removed from the Training Set 

 
Source: Silverman and Dracup (2000) 
 
The performance of streamflow forecasting models also shows significant improvement 
when large-scale atmospheric predictors are used (Clark et al., 2001; Hamlet et al., 2002; 
McCabe and Dettinger, 2002; Wood et al., 2002). Grantz et al. (2005) identified the 
predictors of seasonal streamflow in the Truckee-Carson River (the U.S.) and applied them 
in a local regression model. The predictors identified by correlation maps are the snow 
water equivalent (SWE), 500-millibar (mb) geopotential height index and SST. The model 
performance increases corresponding to decreasing forecasting lead times; however, the 
model performance is significantly improved by up to a 5-month forecasting lead time 
(Figure 2.9). 
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Figure 2.9: Model performance scores of the forecasts issued on the first of each month 
from November to April for (a) the Truckee; and (b) the Carson Rivers. 
Source: Grantz et al. (2005) 
 
The streamflow of various rivers in Latin America is linked to large-scale atmospheric 
variables. The streamflow of the Cearra River (Brazil) develops a significant link with the 
Atlantic and Pacific Oceans (Sourza Filho and Lall, 2003). The streamflow of the 
Columbian River is correlated to MEI, SOI and NINO 4 at lead times of 4-6 months 
(Gutiérrez and Dracup, 2001). The flood-pulse of the Negro River (central Amazonia) is 
related to the February SOI and NINO 3.4 (Figure 2.10), which is a 4-month lead time 
from the occurrence of maximum flood levels in June (Schöngart and Junk, 2007). The 
lead time of identified predictors is a benefit for forecasting models (like the multiple 
regression model) aiming to forecast the flood-pulse of the Negro River (Figure 2.11). 
Simulated flood levels can be used to plan the annual water uses of this basin for fishery, 
agriculture and timber extraction. 
 
In Asia, Chandimala and Zubair (2007) used the March SST over the Indo-Pacific Ocean 
as the predictor of a principle component regression to forecast the streamflow of the 
Kelani River (Sri Lanka). Using a cross-validated method, a correlation coefficient 
between streamflow forecasts and observed data was estimated to be 0.5 after 1960. The 
results suggest that the streamflow should be divided into two halves of the season because 
of the nonlinear relationships between streamflow and large-scale atmospheric predictors. 
 
Consequently, using the identified large-scale atmospheric predictors, the forecasting 
models based on various approaches (e.g. the statistical model, artificial neural networks 
and local regression) present significant predictability of hydroclimates, particularly 
precipitation and streamflow. The model performance depends upon significant levels of 
developed relationships between hydroclimates and identified predictors, geographical 
locations of hydroclimate stations and forecasting lead time. 

(a) (b) 



 19 

 

 
Figure 2.10: Correlation between the maximum water level of the Negro River and ENSO 
indices for a 12-month period before the occurrence of the maximum flood level in June. 
Source: Schöngart and Junk (2007) 
 

 
Figure 2.11: Comparison between the observed (black line) and predicted (dotted line) 
maximum flood level of the Negro River. 
Source: Schöngart and Junk (2007) 
 
2.4  Studies of the effects of atmospheric teleconnection on Thailand hydroclimates 
The variability of hydroclimates over Asian regions has been investigated by many 
(Gutman et al., 2000; Ho and Wang, 2002; Meehl and Arblaster, 2002; Fasullo and 
Webster, 2003; Krishnan et al., 2003; Nodzu et al., 2006; Ogino et al., 2006; 
Krishnamurthy and Shukla, 2007). The possible forcing factors of hydroclimate variability 
include internal variables like land use changes (Croke et al., 2004) and deforestations 
(Kanae et al., 2001), and external variables like atmospheric circulation (Chu et al., 1999; 
Z. Liu and Yang, 2001). To determine hydroclimate variability, several studies cover 
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regions of interest over the Indian subcontinent, South Asia, Indochina and Southeast Asia 
(Y. Liu et al., 2002; Meehl and Arblaster, 2002; Yaremchuk and Qu, 2004), and Thailand 
is a part of the study areas. The variability of Asian hydroclimates shows links with 
anomalous atmospheric variables over the Indian and Pacific Oceans, and it is also related 
to the Indian monsoons, and the Asian and Pacific summer monsoons. 
 
Chang et al. (2005) reported that the annual cycle of Southeast Asian climate is dominated 
by interactions between a simple annual circulation of the surface monsoonal winds 
passing from the Indian Ocean to the South China Sea and the equatorial western Pacific 
Ocean, and the complex land terrain, and seascape. 
 
Krishnan et al. (2000) noted that a weakening convection over the Bay of Bengal, the 
eastern Indian Ocean, Indonesia, Southeast Asia and the equatorial western Pacific Ocean 
is influenced by the non-convective anomalies over the equatorial Indian Ocean. 
 
The climate of Indochina (i.e. Cambodia, Laos, Vietnam and Thailand), which is 
dependent upon the Indian and southeast-east Asian monsoon components, shows a 
significant relation between interannual variability of monsoon rainfall and NINO 3 (Chen 
and Yoon, 2000). The monsoon rainfall over Indochina is above (below) normal under the 
cold (warm) phase of the eastern tropical Pacific Ocean. In addition, the results suggest 
large-scale atmospheric variables such as NINO 3, outgoing longwave radiation (OLR) and 
velocity potential can be used for short-term forecasting of hydroclimates over the 
Indochina region. 
 
Arnell (1999) adopted the Hadley Centre climate models (HadCM2 and HadCM3) and a 
macro-scale hydrological model to simulate the streamflow of global rivers. By 2050, the 
average annual runoff in high latitude regions, equatorial Africa and Asia, and Southeast 
Asia including Thailand will increase, and the runoff will decrease in the mid-latitudes and 
subtropical regions. Also, the increasing trends in global temperature will decrease the 
intensity of snowfall and the duration of snow cover in several areas. Shifts in the wet 
season of streamflow due to snow melt will also be observed. 
 
Due to the geographical location and physical mechanisms of climate, Thailand 
hydroclimates respond to the anomalous conditions over the Indian and Pacific Oceans. 
The interannual and interdecadal variability of Thailand summer monsoon rainfall during 
the recent decades (post-1980) points to a significant correlation with standard anomalous 
indices (SOI and ENSO) and atmospheric variables over both oceans (Singhrattna et al., 
2005b). The relationship is largely dependent upon the phases and regions of ENSO. The 
below- (above-) normal monsoon rainfall is related to El Niño (La Niña) over the eastern 
equatorial Pacific Ocean. 
 
Further, the climatologic monsoon break (CMB) over Thailand in late June is associated 
with a drastic change of large-scale monsoon circulation in the seasonal duration. The 
Southeast Asian summer monsoon can be divided into two periods – the early and later 
monsoon (Takahashi and Yasunari, 2006). From the wavelet analysis using daily rainfall in 
1998, the duration of the early monsoon indicates a range of 30 to 60 days, and the 
duration of later monsoon ranges from 10 to 20 days. The later monsoon season is 
associated with the horizontal structures of atmospheric circulation called the Rossby wave 
and vertical structures in the troposphere (Yokoi and Satomura, 2005). The atmospheric 
variables (e.g. surface temperature and pressure) are identified as the potential predictors of 
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a forecasting model for Thailand summer monsoon rainfall. The incorporation of large-
scale atmospheric predictors in a statistical stochastic model shows a high level 
performance for a forecasting lead times of 2-5 months (Singhrattna et al., 2005a). 
 
Hence, Thailand hydroclimates have significant correlations with large-scale atmospheric 
variables. The monsoon rainfall tends to decrease under the warm phase of ENSO and vice 
versa for the cold phase. Using the identified large-scale atmospheric predictors, the 
forecasting models of Thailand monsoon rainfall give a reliable performance depending on 
the forecasting lead time. 
 
2.5  Summary 
The significant relationship between large-scale atmospheric variables and local 
hydroclimates based on the global, regional and basin scales have been examined in this 
chapter. The anomalous conditions of oceanic-atmospheric circulations are responsible for 
hydroclimate variability and anomalous weather events. Due to spatial and temporal 
coverage, the asymmetrical and inconsistent responses of hydroclimates can be observed 
under different phases, i.e. warm and cold phases of the anomalies. 
 
The interannual and interdecadal variability of Thailand summer monsoon rainfall is 
dependent on the anomalous conditions over the Indian and Pacific Oceans. The warm 
phase of ENSO is associated with below-normal monsoon rainfall and vice versa for the 
cold phase. For Thailand summer monsoon rainfall, several atmospheric variables such as 
NINO 3, OLR, velocity potential and SST over the eastern equatorial Pacific Ocean have 
been identified as potential predictors for forecasting models. 
 
Using identified atmospheric predictors, various approaches (e.g. statistical models, ANNs 
and multiple regressions) give a good performance in hydroclimate forecasting. Although 
the models are successful for short forecasting lead times (e.g. up to 4-5 months prior to 
the monsoon season), the long leading predictability by a forecasting model remains a gap. 
Therefore, subsequent steps of this study are (i) to detect a significant relationship between 
large-scale atmospheric variables and local hydroclimates like rainfall; (ii) to identify 
large-scale atmospheric predictors; and (iii) to develop a forecasting model using the 
identified predictors to forecast and downscale local hydroclimates from large-scale 
atmospheric variables for long lead times, i.e. more than 6 months prior to the start of the 
season. 
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Chapter 3 
Study Area Description and Climate Diagnostics 

 
3.1  Introduction 
Thailand is located between 5°-20°N latitude and 97°-106°E longitude, and between the 
water bodies of the Indian Ocean and the Gulf of Thailand, which is connected to the 
Pacific Ocean (Figure 3.1). Thailand covers an area of 513,115 km2 with a population of 
62.4 million people in 2005 (NSO, 2005). The major occupation in the country is 
agriculture, which accounts for 50-60% of the national economy. The natural water supply 
for agriculture is either direct rainfall or irrigation by water stored in reservoirs, which are 
also dependent on rainfall. Rainfall occurs during the annual monsoon season, from August 
to October, with the average annual rainfall in the country ranging from 1,200 to 1,600 mm 
per year. In terms of climate, Thailand is influenced by the Indian and Pacific Oceans in 
the form of land-ocean circulation. The summer season, lasting from mid-February to mid-
May, is responsible for developing the land-ocean temperature gradient that strengthens the 
Southwest monsoon from the Indian Ocean in the rainy season to follow. The rainy season, 
from mid-May to mid-October, is caused by the Inter Tropical Convergence Zone (ITCZ) 
and by the Southwest monsoon, which force heavy rainfall to occur in Thailand from 
August to October. During the winter season, Thailand gets dry and cool winds brought on 
by the Northeast monsoon from the mid-latitudes, between mid-October and mid-February. 
In terms of streamflow, Thailand receives about 289,000 million m3 (MCM) year-1 of the 
average runoff from 25 major river basins. However, the capacity of reservoirs in the 
country to store and supply water for various uses is estimated at 38,000 MCM year-1 or 
13.1% only of the annual runoff. 
 

 
Figure 3.1: The Kingdom of Thailand. 
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Nakhon Sawan 

 
The Chao Phraya River Basin, the largest basin among the 25 major basins in the country, 
covers an area of 178,000 km2 or 35% of the country land area (Figure 3.2). Four major 
tributaries – i.e. the Ping, Wang, Yom and Nan Rivers merge at Nakhon Sawan and form 
the Chao Phraya River. The Upper Chao Phraya River Basin is the portion above the 
confluence at Nakhon Sawan, whereas the portion below the confluence is called the 
Lower Chao Phraya River Basin. The upper basin covers an area of 102,635 km2 or 58% of 
the watershed area, whereas the lower basin covers the capital (i.e. Bangkok), and 
government, business and agricultural areas. The average area irrigated by the Chao Phraya 
River Basin is 6,878 km2. The domestic and total water demands are estimated by 2,240 and 
11,000 MCM year-1, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: The Chao Phraya River Basin. 

 
The Ping River Basin, located in northern Thailand, lies between 15°-19°N latitude and 
98°-100°E longitude and covers an area of 33,899 km2 in five provinces (Chiang Mai, Lam 
Phun, Tak, Kamphaeng Phet and Nakhon Sawan). The river is 740 km long and originates 
from Pee Pan Nam mountain range in Chiang Dao district (Chiang Mai). The streamflow 
flows to the south, passing Chiang Mai to Lam Phun, and then to the Bhumipol dam in the 
Sam Ngao district (Tak). The Lower Ping River, downstream of the Bhumipol dam, flows 
to the plain areas in Tak and merges with the Wang River. Subsequently, the Ping passes 
Kamphaeng Phet before joining the Yom and Nan Rivers to form the Chao Phraya River at 
the Pak Nam Pho district (Nakhon Sawan). The elevation of the Ping River Basin is shown 
in Figure 3.3. 
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Figure 3.3: Topographic map of the Ping River Basin. 
 
The five main tributaries of the Ping River are Mae Ngad, Mae Taeng, Mae Kuang, Mae Li 
and Mae Cham. The description of the tributaries is as follows: 
1) The Mae Ngad originates from the Dan Laos mountain range and joins the Ping River 

in the Mae Taeng district (Chiang Mai). The Mae Ngad Storage Dam (also called the 
Mae Ngad Somboonchol Dam), located on the Mae Ngad, was initiated in 1977 by 
the Royal Irrigation Department (RID) of Thailand and started to operate in 1984. 
The dam is 59 m high and 1,950 m long with a maximum storage capacity of 265 
MCM. In 1985, a hydropower plant with an annual generation capacity of 19 million 
kWh was constructed here by the Electricity Generating Authority of Thailand 
(EGAT).  

2) The Mae Taeng also originates from the Dan Laos mountain range and joins the Ping 
River at the Mae Taeng district (Chiang Mai). The total length of the Mae Taeng is 
154 km. 

3) The Mae Kuang also originates from the Dan Laos mountain range and joins the Ping 
River in Lam Phun. 
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4) The Mae Li flows from the Li district (Chiang Mai) up north and joins the Ping River 
in the Chom Thong district (Chiang Mai). 

5) The Mae Cham originates from the Thanon Thongchai mountain range in the 
northwest of the Ping River and joins the Ping in the Hot district (Chiang Mai). 

 
The Ping River Basin receives an annual runoff of 8,700 MCM to serve an annual water 
demand of 6,127 MCM. The Ping River Basin can be divided into 20 sub-basins (Figure 
3.4). The area coverage of each sub-basin is shown in Table 3.1. There are many storage 
dams located on the Ping River and its tributaries. The most important dam, the Bhumipol 
dam was constructed for the multiple purposes of generating hydropower, irrigating 
agriculture, fishery, water transportation and flood mitigation. The dam height is 154 m, 
with a length of 486 m. The maximum storage capacity is 13,462 MCM, and it receives an 
annual average inflow of 5,900 MCM from the Ping River Basin. Its hydropower capacity 
is about 780 MW. In terms of land use, 71.46% of the basin area is covered by forests 
located in the upstream where the Ping River originates. The remaining area is water 
sources and the plain areas on both banks of the Ping River and the flood plain 
downstream, which is covered by agricultural and residential users. The irrigated area of 
the Ping River Basin is estimated to be 2,332 km2. 
 
3.2  Data collection 
The daily data of hydroclimates (like rainfall, streamflow, temperature and evaporation) 
used in this study are provided by the Royal Irrigation Department (RID) of Thailand, the 
Thailand Meteorology Department (TMD), the Department of Water Resources (DWR), 
and the Electricity Generating Authority of Thailand (EGAT). The list of 208 rainfall 
stations located in and around the Ping River Basin is presented in Appendix A1. Figure 
3.5(a) shows the locations of the rainfall stations. Out of the 208 rainfall stations, the 50 
stations that have been selected for the study are the ones that have data of more than 30 
recent years with less than 5% incomplete data. The list of the 50 selected rainfall stations 
is presented in Appendix A2. The time series of these 50 stations range from 31 to 86 years. 
 
The streamflow data are obtained from 45 gauging stations, which are operated by the 
RID, DWR and EGAT, and are listed in Appendix A3. The 12 streamflow stations selected 
from 45 stations are the ones that have no incomplete data during a consecutive period 
which is consistent among all the selected stations. The consecutive period which has no 
incomplete data in the 12 selected stations runs from April 1999 to March 2007 (i.e. eight 
years). The list of these 12 selected stations is shown in Appendix A4, and the locations are 
presented in Figure 3.5(b). 
 
For temperature and evaporation, the daily data are obtained from 11 and 18 stations 
respectively (Appendix A5), which are located in and around the Ping River Basin (Figure 
3.5(c)). The stations are operated by the RID and TMD. The data length of daily 
temperature (evaporation) varies from 16 to 57 years (12 to 38 years). 
 
3.3  Climate diagnostics 
Since the cross-correlations of monthly temperature (rainfall) from 11 (50) selected 
stations are significant at a 95% confidence level by Fisher’s Transformation (Haan, 2002), 
the averages over the selected stations have been estimated fairly accurately. Appendix B1 
(B2) shows the average monthly and annual temperature (rainfall) from 1951 (1950) to 
2007. 
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Figure 3.4: Sub-basins of the Ping River Basin. 
 
Table 3.1: Descriptions of the selected 20 Sub-basins of the Ping River Basin 

Sub-basin 
code 

Sub-basin name Basin 
area 

(km2) 

Sub-basin 
code 

Sub-basin name Basin 
area 

(km2) 
0602 Upper Ping Part 2,018 0612 Upper Mae Cham 1,912 
0603 Mae Ngad 1,260 0613 Lower Mae Cham 1,926 
0604 Mae Taeng 1,761 0614 Mae Had 535 
0605 2nd Ping Part 1,624 0615 Mae Tuen 3,143 
0606 Mae Rim 584 0616 4th Ping Part 2,940 
0607 Mae Kuang 1,165 0617 Huai Mae Toa 2,151 
0608 Mae Ngan 1,711 0618 Klong Wang Chao 647 
0609 Mae Li 1,956 0619 Klong Mae Ra Ka 882 
0610 Mae Klang 600 0620 Klong Suan Mak 1,069 
0611 3rd Ping Part 3,071 0621 Lower Ping Part 2,944 
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Figure 3.5: Locations of (a) rainfall stations; (b) streamflow gauging stations; and (c) 
temperature and evaporation stations. 
 

(a) (b) 

(c) 
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3.3.1 Interannual variability 
The annual cycles of air temperature and rainfall of the Ping River Basin are shown in 
Figure 3.6. The summer season occurs during March-April-May (MAM) with a maximum 
temperature of 30.2°C in April. The minimum temperature, 22.9°C, occurs in December. 
From 1951 to 2007, the maximum MAM temperature of 30.7°C was observed in 1958, and 
the minimum of 28.0°C was observed in 2000 and 2007 (see also Appendix B1). 
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Figure 3.6: The annual cycle of temperature and rainfall. 
 
As for the annual cycle of rainfall, Figure 3.6 shows the bi-modal regime with two peaks: 
one in May and another in September. The primary peak occurs during August-September-
October (ASO), which is the monsoon or rainy season in Thailand. The secondary peak 
occurs during May-June-July (MJJ), which is the pre-monsoon season or the transition 
period from the summer to the rainy season. Two peaks of the annual cycle are caused by 
ITCZ and the Southwest monsoon. The secondary peak corresponds with ITCZ and the 
Southwest monsoon moving from the Indian Ocean to Thailand in May and passing to the 
South China Sea and central China in mid-June. The primary peak is associated with ITCZ 
as it moves back to cover Thailand during ASO. From the rainfall data of 58 years (1950-
2007), the maximum MJJ and ASO rainfall have been observed in 1950, at 651.8 and 
948.3 mm respectively. The minimum MJJ (ASO) rainfall at 254.0 (387.7) mm was 
recorded in 1997 (2004). The total annual rainfall varies from 843.0 to 1,605.6 mm per 
year (see also Appendix B2 and B3). The pre-monsoon (MJJ) and monsoon (ASO) seasons 
have about 88% of the total annual rainfall. The remaining, 12%, is the dry season rainfall, 
which falls from November to April of the following year and ranges from 49.4 to 295.2 
mm. 
 
3.3.2 Interseason variability 
Air temperature is related to rainfall in terms of a developing land-sea temperature gradient 
which subsequently strengthens a monsoon. In this study, the summer season temperature 
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is averaged over MAM (Appendix B1). The MAM temperature develops in an inverse 
relationship with the dry season (November to April) rainfall (Figure 3.7). The more (less) 
the dry season rainfall; the cooler (warmer) the land and atmosphere, and this decreases 
(increases) MAM air temperature. The increment of the dry season rainfall by 100 mm 
decreases MAM air temperature by 0.1°C. The MAM temperature subsequently 
strengthens or weakens a monsoon due to the development of the land-sea temperature 
gradient.  
 
Figure 3.8(a) and (b) show the relationship between MAM temperature and MJJ rainfall, 
and MAM temperature and ASO rainfall, respectively. As expected, the temperature 
gradient is not fully developed during the pre-monsoon season (MJJ). As a result, an 
inverse relationship between MAM temperature and MJJ rainfall can be observed. 
Increasing (decreasing) MAM temperature brings about less (more) MJJ rainfall. On the 
other hand, when the temperature gradient is fully developed during the monsoon season 
(ASO), the increasing MAM temperature can strengthen a monsoon and bring more ASO 
rainfall to the study basin. Increasing MAM temperature by 1.0°C affects the MJJ and 
ASO rainfalls by -16.1 and +18.3 mm respectively. The relationship between MAM 
temperature and rainfall during MJJ and ASO is confirmed by the correlation maps (Figure 
3.9). The MJJ and ASO rainfalls are correlated with MAM air temperature over the study 
basin with a significance of 95% confidence level (i.e. the upper and lower bounds of the 
significant correlations are +0.3 and -0.3 respectively) which is consistent with the 
developed relationship shown in Figure 3.8. Under the full development of the temperature 
gradient, the positive (negative) relationship between ASO rainfall and surface land (sea) 
MAM temperature is stronger than that between MJJ rainfall and surface land (sea) MAM 
temperature. Furthermore, during the monsoon season, a significant relationship between 
rainfall and MAM temperature over the South China Sea can be derived. 
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Figure 3.7: Scatter plots between dry season (November to April) rainfall (R) and MAM 
air temperature (T). 
 
To investigate the variability of hydroclimates, a linear trend is adopted. Over 57 years (i.e. 
1950-2006), the dry season rainfall shows a slightly increasing trend of 16.3 mm (Figure 
3.10(a)). Due to the inverse relationship between the dry season rainfall and MAM 
temperature, the increasing trend of the dry season rainfall is responsible for the decreasing 
trend of MAM temperature, as shown in Figure 3.11. From 1951 to 2007, MAM 
temperature shows a decreasing trend (by 0.6°C) which is statistically significant at 95% 
confidence level by the standard t-test (Haan, 2002). Although the pre-monsoon season 
(MJJ) rainfall develops in an inverse relationship with MAM temperature, Figure 3.10(b) 
shows a slightly decreasing trend of MJJ rainfall by 35.4 mm over 58 years. For the 
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monsoon season (ASO) rainfall (Figure 3.10(c)), due to positive relationship with MAM 
temperature, a decreasing trend of 105.8 mm is obtained from 1950 to 2007 which is 
significant at a 95% confidence level. The decreasing trends of MAM temperature and 
ASO rainfall over the study basin are consistent with global trends as shown in Figure 1.1. 
These are also corroborated by Trenberth et al. (2007), who present a decreasing trend of 
precipitation since 1970 over the area of 10° to 30°N latitude based on historical data from 
1900 to 2005. 
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Figure 3.8: Scatter plots between MAM temperature (T) and rainfall (R) during (a) the 
pre-monsoon season (MJJ); and (b) the monsoon season (ASO). 
 
To initially investigate the effects of anomalous atmospheric circulations, e.g. ENSO, on 
the variability of rainfall over the study basin, Figure 3.12 shows the standardized rainfall 
anomalies associated with ENSO years (Table 3.2). Out of the 20 events of El Niño, the 
dry season rainfall experiences 11 (9) events of above- (below-) normal rainfall. Out of the 
15 events of La Niña, the dry season rainfall experiences 8 (7) events of above- (below-) 
normal rainfall. On the other hand, the MJJ (ASO) rainfall indicates 16 (11) events of 
below-normal rainfall during El Niño years. Under La Niña, there are 11 events of above-
normal rainfall during MJJ and ASO. Therefore, the effects of ENSO on dry season rainfall 
are inconsistent. However, the below-normal pre-monsoon and monsoon season rainfall 
coincide with the warm phase of ENSO, i.e. El Niño, and vice versa for the cold phase. 
Furthermore, the MJJ and ASO rainfalls show different and asymmetrical responses with 
both phases of ENSO. 
 
3.4  Summary 
The study basin, the Ping River Basin, is located in northern Thailand (Southeast Asia). 
The basin has an area of 33,899 km2, and 71.46% of this area is covered with forests. In 
terms of climate, the temperature during the summer season (i.e. MAM) helps to develop 
the land-sea temperature gradient, which in turn strengthens the monsoons over this region. 
The annual cycle of rainfall shows a bi-modal variability with two peaks. One peak is in 
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May which is associated with the pre-monsoon season during MJJ. Another peak is in 
September and corresponds with the monsoon season during ASO. The annual cycle of 
rainfall is caused by ITCZ and the Southwest monsoon. The remaining period (i.e. 
November to April of the following year) is defined as the dry season. 
 
The dry season rainfall develops an inverse relationship with MAM air temperature where 
more (less) dry season rainfall tends to decrease (increase) MAM air temperature. In 
addition, MAM temperature is negatively (positively) correlated with MJJ (ASO) rainfall. 
Over 57 years, dry season rainfall has tended to increase by 16.3 mm, which is consistent 
with a decreasing trend of MAM air temperature by 0.6°C due to their inverse relationship. 
Furthermore, the pre-monsoon (MJJ) and monsoon (ASO) season rainfall show decreasing 
trends (by 35.4 and 105.8 mm over 57 years respectively). It is also important to note that 
the below-normal MJJ and ASO rainfall is associated with El Niño and vice versa for La 
Niña. However, the effects of warm and cold phases of ENSO on MJJ and ASO rainfall are 
inconsistent and asymmetrical. 
 

 
Figure 3.9: Correlation maps between (a) MAM air temperature and MJJ rainfall; and (b) 
MAM air temperature and ASO rainfall from 1950 to 2007. The 95% confidence levels of 
the correlations are ±0.3. 
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Figure 3.10: Time series of rainfall (P) during (a) the dry season (November to April); (b) 
the pre-monsoon season (MJJ); and (c) the monsoon season (ASO). 
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Figure 3.11: Time series of MAM temperature (T). 
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Figure 3.12: Time series of standardized anomalies of rainfall during (a) the dry season 
(November to April); (b) the pre-monsoon season (MJJ); and (c) the monsoon season 
(ASO).  
 
Table 3.2: El Niño and La Niña Years Defined by the Climate Prediction Center (CPC) 
and the Center for Ocean-Atmospheric Prediction Studies (COAPS) 

Phase Year 
El Niño 1951, 1957, 1963, 1965, 1968-69, 1972, 1976, 1982-83, 1986-87, 1991-92, 

1994, 1997-98, 2002, 2004, 2006 
La Niña 1954-56, 1964, 1967, 1970-71, 1973-75, 1988-89, 1995, 1999, 2000 
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Chapter 4 
Predictor Identification for Rainfall in the Study Basin 

 
4.1  Introduction 
The objective of this chapter is to identify large-scale atmospheric predictors and optimal 
sets of predictors at long lead times to develop a statistical model which can simulate and 
downscale rainfall from atmospheric variables. First, a statistical relationship between 
rainfall and large-scale atmospheric variables has been developed using the correlation 
maps provided by the Physical Sciences Division (PSD). Based on a seasonal temporal 
scale, the correlation maps are created for different lead times of large-scale atmospheric 
variables from rainfall in order to investigate the long leading relationship between 
atmospheric variables and rainfall and to provide long-range predictability of the 
forecasting model. Second, the identified predictors are selected from correlation maps 
based on a significant relationship at long lead times. Then, the annual and decadal 
variability of identified predictors is determined using the observed data of the 
NCEP/NOAA and the projected data for the future by simulating a general circulation 
model (GCM) under several future climate scenarios. Finally, the optimal subsets of 
predictors, which are composed of the minimum members of mutually exclusive variables, 
are identified by an objective function like generalized cross validation (GCV), likelihood 
and Akaike criterion (AIC). In this study, GCV has been adopted. The identified 
combinations of predictors are subsequently used to develop a statistical model to forecast 
rainfall.  
 
4.2 Predictor identification by correlation maps 
4.2.1 Atmospheric variable description 
To identify the predictors for rainfall using the statistical approach, the large-scale 
atmospheric variables used in this study are obtained from the reanalysis derived data 
provided by the NCEP/NOAA (Kalney et al., 1996). The daily and monthly data from 
1948 to the present of several atmospheric variables (e.g. temperature, pressure, 
geopotential height and outgoing longwave radiation (OLR)) are available online (PSD, 
2007a). The observed data obtained from different sources (e.g. ships, satellites and ground 
stations) cover the global grid of 2.5°latitude x 2.5°longitude. Data are also provided for 
various vertical levels such as surface, two velocity levels (at 0.2101 and 0.995 sigma) and 
17 pressure levels from 10 to 1,000 millibar (mb). Correlation maps are developed between 
rainfall and the four principal atmospheric variables, which play a vital role in influencing 
the convection over Thailand and in strengthening the monsoon downpour. Monthly data 
recorded from 1948 to 2007 of surface air temperature (SAT), sea level pressure (SLP), 
surface zonal wind (SXW) – i.e. wind blowing in the latitudinal direction, and surface 
meridian wind (SYW) – i.e. wind blowing in the longitudinal direction, are used in this 
study. 
 
4.2.2 Methodology 
The correlation analysis in terms of Pearson’s product moment correlation coefficient (r) 
(shown in Equation 4.1) is the determination of linear dependency between two variables: 
dependent (yi) and independent (xi) variables. The coefficients vary from -1.0 to +1.0. A 
value of -1.0 (+1.0) indicates a strong linear negative (positive) relationship between the 
two variables – i.e. increasing yi corresponds to decreasing (increasing) xi and vice versa 
for decreasing yi. 
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Based on Pearson’s r, correlation maps are adopted to develop a statistical relationship 
between rainfall averaged over 50 selected stations and large-scale atmospheric variables. 
The correlation maps are online interactive plots and analyses provided by the Earth 
System Research Laboratory (ESRL) of PSD (ESRL, 2008). The rainfall during the pre-
monsoon season (MJJ), monsoon season (ASO) and dry seasons (i.e. NDJ and FMA) from 
1950 to 2007 has been cross-correlated to the gridded SAT, SLP, SXW and SYW provided 
by the NCEP/NOAA. Analysis has also been carried out at several lead times of 
atmospheric variables ranging from 4 to 15 months prior to the start of the season. 
Predictors are selected over potential regions (e.g. the study basin, the Pacific Ocean, the 
Indian Ocean and the South China Sea) based on two criteria: (i) a significant relationship 
with rainfall at 95% confidence levels; and (ii) the long lead periods of each predictor. 
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where x  and y  are the averages of xi and yi respectively, and n is the total number of pairs 
obtained from the data. 
 
To test the criterion of significant relationships, the significance of a correlation coefficient 
is tested using Fisher’s Transformation (z′ ), as shown in Equation 4.2 (Haan, 2002). Using 
Fisher’s Transformation, the data set, which may not be normally distributed, is converted 
into a modified data set, which is Gaussian distributed. Subsequently, the deviation from 
the mean (i.e. upperz′ and lowerz′ ) of the modified data set can be estimated by standard normal 

distribution (z) based on a desired significance level (p), as shown in Equation 4.3. Then, 
the upper and lower bounds of the correlation coefficient can be calculated by Equation 4.2 
to convert the values of upperz′ and lowerz′ to r. For example, the upper and lower bounds of a 

significant correlation at a 95% confidence level for n=58 (i.e. the data from 1950 to 2007) 
are +0.26 and -0.26 respectively. 
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where r is the correlation coefficient between two variables, zp/2 is the standard normal 
distribution at a significance level (p), and n is the amount of data. 
 
According to the correlation analysis at several long lead periods of predictors, the 
consistent and slow development of linear relationships between rainfall and large-scale 
atmospheric variables, in particular SAT, can be observed (Sahai et al., 2003). The 
developed long leading relationships can provide long-range predictability in a forecasting 
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model which is, in turn, useful in water resources planning, agricultural practices and 
insurance policy making for anomalous weather events. 
 
4.2.3 Predictor selection 
From the correlation maps, the non-linear relationship between four large-scale 
atmospheric variables and rainfall during MJJ, NDJ and FMA are observed but no 
significant relationships can be found from 1950 to 2007. However, the relationships 
developed in post-1980 are significant at a 95% confidence level (i.e. the upper and lower 
bounds for n=28 from 1980 to 2007 are +0.37 and -0.37 respectively) over potential 
regions such as the study basin and the South China Sea. The non-linear relationships over 
decades are influenced by the shift in the spatial coverage by anomalous SST in the Pacific 
Ocean (i.e. ENSO regions). Anomalous SST, which is observed over the dateline Pacific 
Ocean during pre-1980, tends to expand over the equatorial eastern Pacific Ocean during 
post-1980. As a result, the convection of the Walker circulation brings a greater effect of 
SST anomalies from the eastern Pacific Ocean to Thailand and Southeast Asia in the post-
1980 period (Singhrattna et al., 2005b; Krishna Kumar et al., 1995). However, the 
influence of shifted ENSO regions on the monsoon season rainfall (i.e. ASO rainfall) is not 
as strong as the significant relationships that can be observed during 1950 to 2007. 
Therefore, a statistical relationship between four large-scale atmospheric variables and 
MJJ, NDJ and FMA rainfalls is developed for the time period of 1980 to 2007, whereas the 
relationship with ASO rainfall is established for the period of 1950 to 2007. 
 
Figure 4.1 to 4.4 show the correlation maps between atmospheric variables and rainfall 
during MJJ, ASO, NDJ and FMA respectively. More correlation maps, done for 12 lead 
times of atmospheric variables, are presented in Appendix C1 to C15. Based on significant 
correlations at 95% confidence levels, the predictors for monsoon rainfall (i.e. MJJ and 
ASO rainfall) are identified over the study basin and nearby seas, such as the South China 
Sea and the Andaman Sea. The SAT over the study basin (i.e. northern Thailand) is 
positively correlated with MJJ rainfall, whereas decreasing SLP over the Gulf of Thailand 
is associated with increasing MJJ rainfall. Furthermore, significant correlations between 
the pre-monsoon season (MJJ) rainfall and SXW (SYW) can be found over the equatorial 
Indian Ocean (the eastern equatorial Pacific Ocean). For the monsoon season (ASO) 
rainfall, a higher SAT (SLP) over the South China Sea (northern Thailand) is associated 
with decreasing ASO rainfall. Moreover, stronger winds blowing in the latitudinal and 
longitudinal directions (SXW and SYW) from the Gulf of Thailand and the Andaman Sea 
respectively, bring more moisture and convection to the study basin and subsequently 
increase ASO rainfall. 
 
On the other hand, the predictors of the dry season rainfall (i.e. NDJ and FMA rainfall) are 
identified over more distant regions like northeastern India and Java (Indonesia). This 
shows the influence of remote atmospheric circulations on local hydroclimates 
(Harshburger et al., 2002; Tereshchenko et al., 2002). Higher SAT over the southeast coast 
of Sumatra (Indonesia) corresponds to an increasing NDJ rainfall. SXW and SYW over the 
Indian Ocean and northeastern India respectively present significant remote influences on 
NDJ rainfall. Furthermore, positive significant relationships between FMA rainfall and 
SAT (SLP) are observed over the regions of Java in Indonesia (the western Pacific Ocean). 
A stronger SXW over the eastern Pacific Ocean and a weaker SYW over the Indian Ocean 
are also significantly related to increasing FMA rainfall. 
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In terms of lead periods of large-scale atmospheric predictors, monsoon rainfall (i.e. MJJ 
and ASO rainfall) is correlated with atmospheric variables at longer lead times than the dry 
season rainfall (i.e. NDJ and FMA rainfall). A significant relationship between MJJ rainfall 
and the four atmospheric variables can be found at lead times varying from 5 to 14 months, 
whereas ASO rainfall is significantly correlated with SAT, SLP, SXW and SYW at the 
longest lead time of 15 months. For NDJ rainfall, a long leading relationship is observed at 
6-12 months. Moreover, significant links between FMA rainfall and large-scale 
atmospheric variables have lead times of 7-14 months. 
 

 

 

 
 

Figure 4.1: Correlation maps between MJJ rainfall and (a) MJJ SAT; (b) NDJ SLP; (c) 
OND SXW; and (d) MJJ SYW. The 95% confidence levels of the correlations are ±0.37 
(n=28 from 1980 to 2007). 
 

(a) 

(b) 

(c) 
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Figure 4.1 (cont). 
 

 

 
 

Figure 4.2: Correlation maps between ASO rainfall and (a) MJJ SAT; (b) JJA SLP; (c) 
OND SXW; and (d) SON SYW. The 95% confidence levels of the correlations are ±0.26 
(n=58 from 1950 to 2007). 
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(c) (d) 
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Figure 4.3: Correlation maps between NDJ rainfall and (a) FMA SAT; (b) MJJ SXW; and 
(c) NDJ SYW. The 95% confidence levels of the correlations are ±0.37 (n=28 from 1980 
to 2007). 
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Figure 4.4: Correlation maps between FMA rainfall and (a) JJA SAT; (b) JFM SLP; (c) 
DJF SXW; and (d) MJJ SYW. The 95% confidence levels of the correlations are ±0.37 
(n=28 from 1980 to 2007). 
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Hence, atmospheric predictors have been selected over the identified regions based on their 
significant relationships with rainfall at 95% confidence levels and at long lead times of the 
predictors. The developed statistical relationship between rainfall and large-scale 
atmospheric variables shows the influence of atmospheric-oceanic circulations on seasonal 
rainfall in the Ping River Basin. This confirms the observation that the variability of 
atmospheric-oceanic circulations brings its effects on local hydroclimates over those 
regions located near or even at a distance from these sources. 
 
Moreover, a consistent and significant relationship associated with monsoon rainfall (MJJ 
and ASO) can be developed at long lead times of large-scale atmospheric variables, in 
particular of surface temperature, which is corroborated by Sahai et al. (2003) and Nicholls 
(1983). Sahai et al. (2003) showed the significant lead time relationships between Indian 
summer monsoon rainfall (ISMR) and SST. The significant relationships show a slow and 
consistent temporal evolution, which indicates a lead time of four years prior to the 
monsoon season. Likewise, Nicholls (1983) found a lead time of 16 months from the 
relationships between ISMR and SST near Indonesia. However, the dry season rainfall 
(NDJ and FMA) of the study basin is influenced by unstable local conditions for a finer 
time scale. These local conditions include increasing surface temperature and humidity on 
an hourly and daily basis. The significant relationship between atmospheric variables and 
rainfall during NDJ and FMA are observed at shorter lead periods than those of MJJ and 
ASO rainfall (TMD, 2007). Table 4.1 summarizes the identified predictors of MJJ, ASO, 
NDJ and FMA rainfall based on significant relationships at long lead times. It is also 
important to note that significant relationships between NDJ rainfall and SLP are hardly 
found over the regions under study here. Furthermore, observed rainfall (RAIN) is 
included in the list of predictors because the lag autocorrelations or correlogram of RAIN 
(Figure 4.5) show significant correlation coefficients at 95% confidence levels associated 
with 6- and 12-month lags. This suggests a long leading predictability of forecasting 
models using RAIN as a predictor. Therefore, five predictors (i.e. SAT, SLP, SXW, SYW 
and RAIN) are identified for MJJ, ASO and FMA rainfall, and four predictors (i.e. SAT, 
SXW, SYW and RAIN) are selected for NDJ rainfall. 
 
4.3  Predictors from a General Circulation Model (GCM) 
This study aims to determine the effects of future climate on hydroclimates like rainfall in 
the study basin. A statistical model has been developed using large-scale atmospheric 
variables as predictors to simulate rainfall under various conditions of future climate. The 
IPCC presents the variability of oceanic and atmospheric variables such as precipitation, 
temperature and pressure achieved from different general circulation models (GCMs) 
which run under various scenarios of future climate. GCMs are of two types: the 
atmospheric general circulation model (AGCM) and the oceanic general circulation model 
(OGCM). For this reason, GCMs are also called coupled atmosphere-ocean general 
circulation models (AOGCMs) and are used to simulate the climate under several scenarios 
of increasing greenhouse gas (GHG) concentrations. The emission scenarios of GHG are 
obtained by keeping in consideration possible climatic, socio-economic and environmental 
changes. The results from a GCM represent future climate projections that are expected in 
feasible environmental systems and to chart out human activities in terms of economic, 
demographic and technological growth. However, working under the assumption that 
GCMs show better performance in simulating atmospheric variables at the upper air level 
rather than at the surface level, downscaling approaches are adopted to spatially downscale 
local hydroclimates from the large-scale atmospheric variables. The downscaled models 
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also aim at determining the effects of future climate on hydroclimates such as precipitation 
and streamflow.  
 
Table 4.1: The Identified Predictors for MJJ, ASO, NDJ and FMA Rainfall 

Identified region Season of 
rainfall 

Atmospheric 
variables Latitude Longitude 

MJJ SAT 20.0°N 97.5°-102.5°E 
 SLP 7.5°-10.0°N 102.5°-107.5°E 
 SXW 0° 82.5°-87.5°E 
 SYW 0°-2.5°N 172.5°-175.0°E 
 RAIN 15.30°-19.36°N 98.05°-100.70°E 
ASO SAT 2.5°-5.0°N 107.5°-110.0°E 
 SLP 17.5°-20.0°N 97.5°-100.0°E 
 SXW 10.0°N 100.0°-102.5°E 
 SYW 10.0°N 95.0°-97.5°E 
 RAIN 15.30°-19.36°N 98.05°-100.70°E 
NDJ SAT 2.5°-7.5°S 97.5°-102.5°E 
 SXW 2.5°-5.0°S 62.5°-67.5°E 
 SYW 20.0°-22.5°N 85.0°E 
 RAIN 15.30°-19.36°N 98.05°-100.70°E 
FMA SAT 7.5°S 110.0°-112.5°E 
 SLP 15.0°N 187.5°-192.5°W 
 SXW 17.5°N 140.0°-150.0°E 
 SYW 2.5°S-2.5°N 95.0°-97.5°E 
 RAIN 15.30°-19.36°N 98.05°-100.70°E 

MJJ: May-June-July; ASO: August-September-October; NDJ: November-December-January; 
FMA: February-March-April. 
SAT: surface air temperature; SLP: sea level pressure; SXW: surface zonal or latitudinal wind; 
SYW: surface meridian or longitudinal wind; RAIN: observed rainfall over the study basin. 
 

 
Figure 4.5: Correlogram or lag autocorrelation (ACF) of rainfall time series from 1950 to 
2007. The blue-dotted lines represent significant correlations at 95% confidence levels. 
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In this study, GCM data used are based on the IPCC Third Assessment Report (TAR) 
conducted in 2001 (IPCC, 2001). The descriptions of GCMs provided in the IPCC TAR 
are presented in Table 4.2. The smallest model resolution (i.e. 2.8°latitude x 2.8°longitude) 
is provided by ECHAM4/OPYC3, NCAR-CSM and NCAR-PCM. In contrast, the largest 
dimension (i.e. 5.6°latitude x 5.6°longtitude) is presented by CCSR/NIES AGCM+CCSR 
OGCM, which also provides the longest duration of simulation from 1890 to 2100. In 
general, the length of simulation by GCMs varies from 100 to 211 years. In this study, a 
GCM is selected, and its simulated results are used to downscale and to determine the 
effects of future climate on seasonal rainfall in the Ping River Basin. 
 
Table 4.2: Description of the GCMs corresponding to the IPCC TAR 

Model name Center Country Scenario Model 
resolution 

Temporal 
coverage 

ECHAM4/ 
OPYC3 

Max Planck Institüt 
für Meteorologie 
(MPlfM) 

Germany A2, B2 2.8° x 2.8° 1990-
2100 

HadCM3 Hadley Centre for 
Climate Prediction 
and Research 
(HCCPR) 

UK A1Fl, 
A2, A2b, 
A2c, B1, 
B2, B2b 

3.75° x 2.5° 1950-
2099 

CSIRO-MK2 Australia’s 
Commonwealth 
Scientific and 
Industrial Research 
Organisation 
(CSIRO) 

Australia A1, A2, 
B1, B2 

5.6° x 3.2° 1961-
2100 

NCAR-CSM National Centre for 
Atmospheric 
Research (NCAR) 

USA A2 2.8° x 2.8° 2000-
2099 

NCAR-PCM NCAR USA A1B, 
A2, B2 

2.8° x 2.8° 1980-
2099 

GFDL-R30 Geophysical Fluid 
Dynamics 
Laboratory 
(GFDL) 

USA A2, B2 3.75° x 
2.25° 

1961-
2100 

CGCM2 Canadian Center 
for Climate 
Modelling and 
Analysis (CCCma) 

Canada A2, A2b, 
A2c, B2, 
B2b, B2c 

3.75° x 
3.75° 

1900-
2100 

CCSR/NIES 
AGCM+CCSR 
OGCM 

Center for Climate 
System 
Research/National 
Institute for 
Environmental 
Studies 
(CCSR/NIES) 

Japan A1, 
A1Fl, 
A1T, A2, 
B1, B2 

5.6° x 5.6° 1890-
2100 

 
4.3.1 Description of atmospheric variables from the GFDL-R30 
As mentioned above, large-scale atmospheric predictors for rainfall during MJJ, ASO, NDJ 
and FMA identified by the correlation maps include SAT, SLP, SXW, SYW and RAIN 
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(see also Table 4.1). Based on the criterion of the availability of identified predictors 
(Table 4.3), GFDL-R30, which provides simulated data of all the identified predictors, has 
been selected. 
 
Table 4.3: Availability of Data (●) from the GCMs according to the Identified Predictors for 
Rainfall 

Model Scenario SAT SLP SXW SYW RAIN 
ECHAM4/OPY3 A2 ● ●   ● 
 B2   ● ●  
HADCM3 A2 ● ● a a ● 
 A2b ●  a a ● 
 A2c ●  a a ● 
 B2 ● ● a a ● 
CSIRO-Mk2 A1 ● ● a, b a, b ● 
 A2 ● ● a, b a, b ● 
 B1 ● ● a, b a, b ● 
 B2 ● ● a, b a, b ● 
NCAR-CSM A2 ● ●   ● 
NCAR-PCM A1b ● ● a a ● 
 A2 ● ● a a ● 
 B2 ● ● a a ● 
GFDL-R30 A2 ● ● ● ● ● 
 B2 ● ● ● ● ● 
CGCM2 A2 ● ● a, b a, b ● 
 B2 ● ● a, b a, b ● 

A1 ● ● b b ● 
A1Fl ● ● b b ● 
A1T ● ● b b ● 
A2 ● ● b b ● 
B1 ● ● b b ● 

CCSR/NIES 
AGCM+CCSR 
OGCM 

B2 ● ● b b ● 
SAT: surface air temperature; SLP: sea level pressure; SXW: surface zonal or latitudinal wind; 
SYW: surface meridian or longitudinal wind; RAIN: observed rainfall over the study basin. 
a: only mean wind at 10 m is available; b: only wind at 200 hPa and higher levels is available. 
 
GFDL-R30, which is a coupled AOGCM of the Geophysical Fluid Dynamics Laboratory 
(GFDL), is composed of four components: an atmospheric spectral GCM, an OGCM, a 
simple model of sea ice, and a model of land surface processing. The atmospheric 
component has a spatial resolution of 2.25°latitude x 3.75°longtitude covering 7,680 global 
grids. It also covers 14 vertical levels. The ocean component has double the number of 
global grids with a resolution of 1.125°latitude x 3.75°longtitude and 18 vertical levels 
(Delworth et al., 2002). Functioning with the prediction that atmospheric CO2 
concentration will double by 2100, GFDL-R30 simulates two scenarios of future climate: 
A2 and B2 scenarios. In term of demographic growth, both scenarios are characterized by a 
continuously increasing human population. However, the population under A2 changes at a 
rate faster than under B2 (Table 4.4). Based on the population projection of the 
International Institute for Applied System Analysis (IIASA), the population growth under 
A2 is defined as slow fertility transition projection with high fertility and mortality rates. 
The 1995-2100 population growth under B2 is based on the UN 1998 medium long range 
projection (Arnell, 2004). Both scenarios emphasize improving per capita income and 
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additional slow technological changes. In terms of economic growth, regionally oriented 
development is used to describe Scenario A2 with self-reliant and independent nations, 
whereas the economic growth under B2 is more focused on locally oriented development 
rather than global economic stability. 
 
Table 4.4: Summary of the IPCC Emission Scenarios 
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Source: Arnell (2004) and NIC (2009) 
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The IPCC-Data Distribution Center (IPCC-DDC) provides the results of atmospheric 
variables simulated by GFDL-R30 from 1961 to 2100 (IPCC-DDC, 2009). Table 4.5 
shows the details of GFDL-R30 grid coverage corresponding to the identified regions of 
predictors for MJJ, ASO, NDJ and FMA rainfall. The largest spatial coverage (i.e. eight 
grids between 3.35397°S-3.35397°N latitude and 93.75°-97.50°E longitude) is associated 
with SYW of FMA rainfall predictors. In contrast, the identified region of SXW of ASO 
rainfall predictors covers only one grid of GFDL-R30, that between 10.06192°N latitude 
and 101.25°E longitude. The monthly data from 1961 to 2100, which are averaged over 
selected grids, are used in this study. 
 
Table 4.5: Grid Coverage of the GFDL-R30 corresponding to the Identified Predictors for 
Rainfall 

Identified region by correlation 
maps 

Numbers of 
grid 

Grid coverage of GFDL-R30 Predictor 

Latitude Longitude (Lat. x Long.) Latitude Longitude 
MJJ rainfall 
SAT 20.0°N 97.5°-102.5°E 2 (1 x 2) 19.00583°N 97.50°-101.25°E 
SLP 7.5°-10.0°N 102.5°-107.5°E 6 (2 x 3) 7.82514°-

10.06192°N 
101.25°-108.75°E 

SXW 0° 82.5°-87.5°E 4 (2 x 2) 1.11799°S-
1.11799°N 

82.50°-86.25°E 

SYW 0°-2.5°N 172.5°-175.0°E 6 (3 x 2) 1.11799°S-
3.35397°N 

172.50°-176.25°E 

RAIN 15.30°-
19.36°N 

98.05°-100.70°E 6 (3 x 2) 14.53387°-
19.00583°N 

97.50°-101.25°E 

 
Table 4.5 (cont) 
ASO rainfall 
SAT 2.5°-5.0°N 107.5°-110.0°E 2 (2 x 1) 3.35397°-

5.58995°N 
108.75°E 

SLP 17.5°-20.0°N 97.5°-100.0°E 4 (2 x 2) 16.76985°-
19.00583°N 

97.50°-101.25°E 

SXW 10.0°N 100.0°-102.5°E 1 (1 x 1) 10.06192°N 101.25°E 
SYW 10.0°N 95.0°-97.5°E 2 (1 x 2) 10.06192°N 93.75°-97.50°E 
RAIN 15.30°-

19.36°N 
98.05°-100.70°E 6 (3 x 2) 14.53387°-

19.00583°N 
97.50°-101.25°E 

NDJ rainfall 
SAT 2.5°-7.5°S 97.5°-102.5°E 6 (3 x 2) 7.82594°S-

3.35397°N 
97.50°-101.25°E 

SXW 2.5°-5.0°S 62.5°-67.5°E 4 (2 x 2) 5.58995°-
3.35397°S 

63.75°-67.50°E 

SYW 20.0°-22.5°N 85.0°E 3 (3 x 1) 19.00583°-
23.47778°N 

86.25°E 

RAIN 15.30°-
19.36°N 

98.05°-100.70°E 6 (3 x 2) 14.53387°-
19.00583°N 

97.50°-101.25°E 

FMA rainfall 
SAT 7.5°S 110.0°-112.5°E 2 (1 x 2) 7.82594°N 108.75°-112.50°E 
SLP 15.0°N 187.5°-192.5°W 2 (1 x 2) 14.53387°N 187.50°-191.25°W 
SXW 17.5°N 140.0°-150.0°E 4 (1 x 4) 16.76985°N 138.75°-150.00°E 
SYW 2.5°S-2.5°N 95.0°-97.5°E 8 (4 x 2) 3.35397°S-

3.35397°N 
93.75°-97.50°E 

RAIN 15.30°- 98.05°-100.70°E 6 (3 x 2) 14.53387°- 101.25°E 
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19.36°N 19.00583°N 
MJJ: May-June-July; ASO: August-September-October; NDJ: November-December-January; 
FMA: February-March-April. 
SAT: surface air temperature; SLP: sea level pressure; SXW: surface zonal or latitudinal wind; 
SYW: surface meridian or longitudinal wind; RAIN: observed rainfall over the study basin. 
 
4.3.2 Model performance of the GFDL-R30 
To evaluate the performance of GFDL-R30, criteria such as annual statistics, the 
coefficient of determination (R2) and the normalized root mean square error (NRMSE) are 
adopted. The monthly data from 1961 to 2007 of the observed and modeled predictors 
obtained from GFDL-R30 are used to estimate all the criteria. The monthly observed data 
consist of two data sets: (i) observed SAT, SLP, SXW and SYW provided by 
NCEP/NOAA; and (ii) observed RAIN obtained from historical data averaged over 50 
selected stations. The annual statistics adopted to evaluate the performance of the GFDL-
R30 are the arithmetic mean (x ) and standard deviation (SD), as shown in Equation 4.4 
and 4.5 respectively. 
 

1

1 n

i
i

x x
n =

= ∑                Equation 4.4 

 

2

1

1
( )

n

i
i

SD x x
n =

= −∑                    Equation 4.5 

 
where xi is the time series of monthly data from 1961 to 2007, and n is the total amount of 
data. 
 
The confidence intervals (CI) for x  and SD of the observed data are calculated using 
Equation 4.6 and 4.7 respectively. A good performance of  GFDL-R30 on capturing the 
statistics of historical data can be presented by x  and SD estimated from the modeled data 
falling into the upper and lower bounds of CI for x  and SD of the observed data 
respectively. 
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−
=         Equation 4.7(b) 

 
where α is the significance level – i.e. 95% in this case, ( /2, 1)nt α − is the critical value from t-

distribution with n-1 degree of freedom, and 2( /2, 1)nαχ − and 2
(1 /2, 1)nαχ − − are the upper and lower 

critical values respectively of the Chi Squared distribution with n-1 degree of freedom. 
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Furthermore, R2 and NRMSE are estimated using Equation 4.8 and 4.9 respectively. R2 is a 
method to measure the goodness-of-fit of a model. It presents the proportion of the 
variation of one data set (e.g. modeled results) over the variation of another set (e.g. 
observed data). R2 varies from 0 to +1.0. On the other hand, NRMSE stands for the global 
error or residuals of the model simulation and is calculated by measuring the difference 
between simulated results and observations. An R2 value tending towards +1.0 and a small 
NRMSE indicate the good performance of a model. 
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where ix  and iy  are observed and modeled data respectively, and n is the number of pairs 

of data. xmax and xmin are, respectively, the maximum and minimum values of observed 
data. 
 
From Figure 4.6(a), the x of 1961-2007 simulated variables by GFDL-R30 under A2 and 
B2 falls outside the CI for x of the observed data except when the x of SYW is associated 
with the predictor of ASO rainfall – i.e. SYW over the Andaman Sea.  
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Figure 4.6: Annual statistics of the observed and modeled data (a)x ; and (b) SD. The vertical lines extending from x and SD of observed data 
represent the upper and lower bounds of CI. 

(a) 

(b) 
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Based on significant lag autocorrelations shown in Figure 4.5, RAIN, which is the average 
rainfall over the study basin, is also selected to be a predictor of rainfall. The GFDL-R30 
gives poor performance in simulating RAIN under A2 (B2) with a mean estimated 310.5 
(308.7) mm per month compared to a mean of 94.3 mm per month of the 1961-2007 
observed rainfall. In terms of SD (Figure 4.6(b)), the modeled SLP under A2 and B2 
associated with the predictors of MJJ and FMA rainfall can capture the SD of 1961-2007 
observed SLP. The SD of simulated RAIN, which is estimated at 337.6 (337.8) mm 
corresponding to A2 (B2), exhibits a large difference from the SD of historical data, i.e. 
84.8 mm. 
 
Based on the maximum R2 of SAT, SLP, SXW and SYW under A2 and B2 (Figure 4.7), a 
better performance of GDFL-R30 is associated with the predictors of ASO rainfall. Under 
A2 (B2), the R2 corresponding to these predictors of ASO rainfall indicates that 70-78% 
(67-78%) of the observed data can be explained by the modeled results from GFDL-R30. 
However, the minimum R2 of SAT, SLP and SYW, ranging from 3 to 8%, can be found 
corresponding to the predictors of FMA rainfall, whereas the minimum R2 of SXW is 
associated with the predictor of MJJ rainfall which is identified over the equatorial Indian 
Ocean. The R2 of RAIN indicates that only 47% (46%) of historical rainfall can be 
explained by GFDL-R30 simulation under A2 (B2). 
 
As expected, minimum NRMSE is consistent with maximum R2. The minimum NRMSE 
of SAT, SXW and SYW under A2 (Figure 4.8(a)), varying from 0.16 to 0.49, corresponds 
to the ASO rainfall predictors. However, the minimum NRMSE of SLP under A2, 
estimated at 0.28, is associated with the predictor of FMA rainfall.  
 
Moreover, from Figure 4.8(b), the minimum NRMSE from B2 is consistent with the 
minimum NRMSE from A2, except the minimum NRMSE of SYW which is associated 
with the predictor of MJJ rainfall. NRMSE presents the error of the GFDL-R30 on RAIN 
simulation by 1.03 under both A2 and B2. 
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Figure 4.7: R2 between observed and GFDL-R30 data under (a) A2; and (b) B2. 
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Figure 4.8: NRMSE of GFDL-R30 under (a) A2; and (b) B2. 
 
To summarize, the simulated data of identified predictors from 1961 to 2100 can be 
collected from a GCM named GFDL-R30. GFDL-R30 is a coupled AOGCM which runs 
under two scenarios of future climate: A2 and B2. To evaluate the performance of the 
GFDL-R30, the observed and simulated data from 1961 to 2007 are used to calculate the 
annual statistics (i.e. mean and standard deviation), R2 and NRMSE. The model lacks the 
capability to capture the means and standard deviations of observed atmospheric variables 
over the identified regions. However, the modeled results associated with the predictors of 
ASO rainfall (e.g. SAT over the South China Sea and SLP over northern Thailand) present 
maximum R2 and minimum NRMSE when these values are compared among the 
predictors of rainfall during other seasons. 67 to 78% of the observed data of the ASO 
rainfall predictors can be explained by the GFDL-R30 data. Furthermore, as expected, 
GFDL-R30 shows better performance in simulating the atmospheric variables at the upper 
air level (e.g. temperature) than those at the surface level (e.g. rainfall). Under both 
scenarios, the GFDL-R30 presents large differences in means and standard deviations 
between observed and simulated rainfall over the study basin. Only 46 to 47% of historical 
rainfall can be explained by the simulated rainfall of GFDL-R30. 
 
4.3.3 Annual and decadal variability of the predictors 
The variability of large-scale atmospheric predictors is determined using the observed data 
from 1948 to 2007 and the projected data from 2011 to 2100 simulated by the GFDL-R30 
under Scenario A2 and B2. For the predictors of MJJ rainfall (Figure 4.9), the annual 
observed SAT anomalies estimated with respect to the observed SAT values averaged from 
1961 to 1990 show that during 1990s, the surface temperature over the identified region 
(i.e. northern Thailand) was warmer than in the earlier century. 
 
From 1948 to 2007, the trend of the annual observed SAT is estimated at +0.0041°C per 
year or +0.41°C per century. It is less than the trend in global surface temperature, which 
indicates a range from +0.01 to +0.02°C per year (IPCC, 2007b; Hansen et al., 2010; 
Jenkins et al., 2008). Moreover, the GFDL-R30 suggests that by the end of the 21st century, 
SAT over northern Thailand will be warmer by 2 to 5°C with an increasing linear trend of 
3.47 °C (1.93°C) per century according to A2 (B2). Both trends are significant at a 99.9% 
confidence level by the standard t-test (Haan, 2002), as shown in Equation 4.10. 
 

(a) (b) 
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0
ˆ

t
SE

β β−
=              Equation 4.10 

 

where β̂ is the slope of a linear trend or a fitting regression ˆ( )i i iy xα β ε= + + , 0β is a 

specific value for testing, i.e. 0 in this case, and SE is the standard error ( )iε  of the least-
squares of the estimates. 
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Figure 4.9: Annual anomalies of the four observed predictors of MJJ rainfall (1948-2007), 
and the 5-year running mean from observed and GFDL-R30 simulated data (2011-2100). 
The anomalies are estimated with respect to 1961-1990 observed or simulated average 
values. 
 
The annual observed SLP identified over the Gulf of Thailand as the predictor of MJJ 
rainfall shows an increasing trend from 1948 to 2007 by 0.32 mb per century. The negative 
anomalies of SLP are found during pre-1980, whereas during post-1980, positive 
anomalies can be observed. In addition, projected SLP values by the GFDL-R30 tend to 
gradually increase with a significant rate at a 99% (99.5%) confidence level by 0.40 (0.54) 
mb per century under A2 (B2). 
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The identified regions for SXW and SYW are over the equatorial Indian Ocean and the 
eastern equatorial Pacific Ocean respectively. The increasing trends of observed SXW and 
SYW are estimated at 0.87 and 0.76 m s-1 per century respectively. These trends are also 
significant at 90 and 99.5% confidence levels. However, from GFDL-R30, the annual 
SXW under A2 (B2) from 2011 to 2100 shows slightly increasing trends by 0.03 (0.08) m 
s-1 per century and 0.18 (0.03) m s-1 per century for the annual SYW. 
 
For the predictors of ASO rainfall (Figure 4.10), in the post-1980, the observed SAT, 
which is identified over the South China Sea, is warmer than in the pre-1980 period with 
an increasing trend of 0.0209°C per year or 2.09°C per century, and significant at a 99.9% 
confidence level. Due to changes in future climate, the projected SAT from GFDL-R30 
shows that the temperature over the South China Sea from 2011 to 2100 will increase with 
linear trends of 2.57 and 1.65°C per century in A2 and B2 scenarios respectively. These 
trends are significant at a 99.9% confidence level. In addition, by the end of 21st century, 
the annual SAT over the South China Sea will be 9 to 10°C warmer than the 1961-1990 
average annual temperature. 
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Figure 4.10: Same as Figure 4.9 but for the predictors of ASO rainfall. 
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For the SLP identified over northern Thailand, the annual observed data from 1948 to 2007 
indicate an increasing trend of 3.03 mb per century, which is significant at a 99.9% 
confidence level. Below- (above-) normal SLP over northern Thailand found in pre- (post-) 
1980 are consistent with the SLP anomalies over the Gulf of Thailand – i.e. the predictor of 
MJJ rainfall. From 2011 to 2100, an increasing trend of projected SLP under A2 (B2) from 
the GFDL-R30 is significant at a 99.9% (99.5%) confidence level with an increase of 0.83 
(0.71) mb per century. 
On the other hand, the observed SXW, which is identified over the Gulf of Thailand, 
shows a deceasing trend by 0.18 m s-1 per century. Likewise, the GFDL-R30 indicates that 
SXW will decrease (increase) with a linear trend of 0.14 (0.18) m s-1 per century with 
respect to A2 (B2). For the SYW over the Andaman Sea, a decreasing trend, estimated at 
1.00 m s-1 per century with the significance at 99.9% confidence level, is calculated from 
observed data. SYW anomalies indicate that the annual winds during pre-1960 were 
stronger than post-1960. Under Scenario A2 (B2) of future climate, GFDL-R30 presents a 
significant decreasing trend at a 90% (99%) confidence level in SYW by 0.20 (0.29) m s-1 
per century from 2011 to 2100. 
 
The identified predictors of NDJ rainfall are SAT over the east coast of Sumatra 
(Indonesia), SXW over the Indian Ocean and SYW over northeastern India. From Figure 
4.11, the annual observed SAT over the east coast of Sumatra from 1948 to 2007 shows an 
increase by a linear rate of 1.31°C per century; however, from 2011 to 2100, the increasing 
trends in SAT are estimated at 2.48 and 1.53°C per century corresponding to the simulated 
SAT from GFDL-R30 under A2 and B2 respectively. These trends in observed and 
modeled data are significant at 99.9% confidence levels. By the end of the 21st century, the 
air temperature over the east coast of Sumatra will become warmer than the average annual 
temperature recorded from 1961 to 1990 by 5-9°C, and this increase will be caused by the 
doubling of atmospheric CO2 concentration. 
An increasing trend of 0.85 m s-1 per century (significant at 99% confidence levels) in 
SXW over the Indian Ocean over the period of 1948-2007 is also observed. From 2011 to 
2100, the projected SXW derived from GFDL-R30 under A2 (B2) presents a slightly 
increasing trend by 0.26 (0.18) m s-1 per century. In terms of SYW over northeastern India, 
the annual observed SYW from 1948 to 2007 tends to decrease by 1.28 m s-1 per century, 
which is significant at a 99.9% confidence level. With respect to the 1961-1990 average 
annual SYW, the positive and negative anomalies from the observed SYW are exhibited 
during pre- and post-1980 respectively. From GFDL-R30, the projected SYW under A2 
and B2 from 2011 to 2100 presents an increasing trend by 0.52 and 0.18 m s-1 per century 
respectively. 
 
Figure 4.12 shows the variability and trends of predictors of FMA rainfall. The SAT is 
identified over a region of Java, Indonesia. The 1948-2007 observed temperature over this 
region tends to increase by 0.49°C per century. Under a condition of doubled atmospheric 
CO2 concentration by 2100, the increasing trends in SAT during 2011 to 2100 are 
estimated at 4.27 and 3.09°C per century under A2 and B2 respectively. These trends are 
significant at 99.9% confidence levels. By 2100, the SAT over Java will be 4 to 6°C higher 
than 1961-1990 average temperature. 
In terms of SLP over the western Pacific Ocean, a slightly increasing trend of 0.35 mb per 
century is observed in the historical data during 1948 to 2007. However, the 2011-2100 
projected SLP from the GFDL-R30 tends to decrease by 0.37 and 0.28 mb per century 
corresponding to Scenario A2 and B2 respectively. 
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The SXW, which is identified over the eastern Pacific Ocean, shows negative anomalies 
with respect to the 1961-1990 average observed SXW. The 1948-2007 observed SXW 
presents a linear trend of +0.60 m s-1 per century. Under A2 (B2), the decreasing trend is 
estimated by 0.14 (0.20) m s-1 per century. The SYW of the FMA rainfall predictor is 
identified over the Indian Ocean. The decreasing trend of 1948-2007 observed SYW is 
calculated to be 0.53 m s-1 per century. In the period of 2011 to 2100, a decreasing trend is 
also found under A2 by 0.14 m s-1 per century. However, with respect to B2, the 2011-
2100 simulated SYW over the Indian Ocean tends to slightly increase by 0.04 m s-1 per 
century. 
 
In terms of RAIN (Figure 4.13) over the study basin, the annual observed RAIN obtained 
from 50 selected stations from 1950 to 2007 shows an annual variability with a decreasing 
trend of 2.42 mm per year. The negative anomalies estimated with respect to the 1961-
1990 annual observed rainfall are exhibited during 1980 to 2000. Simulated RAIN from 
GFDL-R30 indicates that from 2011 to 2100, the rainfall over the study basin will tend to 
increase by 3.84 mm per year corresponding to A2, but a deceasing trend (at 0.31 mm per 
year) in annual rainfall will be observed under B2. 
 

1940 1960 1980 2000 2020 2040 2060 2080 2100

-4

-2

0

2

4

6

A
n

n
u
a

l S
Y

W
 a

n
o

m
a
ly

 (
m

 s
-1

)

-4

-2

0

2

4

A
n

n
u

a
l

 
S

X
W

 
a

n
o

m
a

l
y

 
(

m
 

s
-1)

Observed anomalies

5-year running mean (obs)

5-year running mean (A2)

5-year running mean (B2)

-4

0

4

8

12

A
n

n
u
a
l S

A
T

 a
n
o

m
a
ly

 (
°C

)

1940 1960 1980 2000 2020 2040 2060 2080 2100

 
Figure 4.11: Same as Figure 4.9 but for the predictors of NDJ rainfall. 
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Figure 4.12: Same as Figure 4.9 but for the predictors of FMA rainfall. 
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Figure 4.13: Annual anomalies of observed RAIN (1950-2007), and the 5-year running 
mean from observed and GFDL-R30 simulated data (2011-2100). The anomalies are 
estimated with respect to the period of 1961-1990 observed or simulated average values. 
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Therefore, the variability and trends of large-scale atmospheric variables, which are 
identified as the predictors of rainfall, are observed in the 1948-2007 historical data and in 
the 2011-2100 GFDL-R30 data. The 1948-2007 observed SAT over the four identified 
regions (i.e. northern Thailand for MJJ rainfall, the South China Sea for ASO rainfall, the 
east coast of Sumatra for NDJ rainfall and Java for FMA rainfall) tends to increase ranging 
from 0.41 to 2.09°C per century. From 2011 to 2100, the increasing trends in modeled 
SAT under A2 vary from 2.48 to 4.27°C per century and are observed with significance at 
99.9% confidence levels. Under B2, the SAT over the four regions obtained from GFDL-
R30 is also found to have significant trends at 99.9% confidence levels, and the SAT varies 
from 1.53 to 3.09°C per century. The 1948-2007 observed SLP over the Gulf of Thailand, 
northern Thailand and the western Pacific Ocean associated with the predictors of MJJ, 
ASO and FMA rainfall respectively, tends to increase from 0.32 to 3.03 mb per century. 
With respect to A2 and B2 scenarios, the increasing trends of simulated SLP between 2011 
and 2100 over these regions is also observed, except for modeled SLP over the western 
Pacific Ocean – i.e. the predictor of FMA rainfall. The annual trends in observed and 
modeled SXW and SYW are inconsistent, and they depend upon the identified regions and 
scenarios of future climate. The selection of optimal combinations of predictors based on 
an objective function will be presented in next section. 
 
4.3.4 Combination cases of the predictors 
Based on significant relationships with rainfall, five predictors (i.e. SAT, SLP, SXW, SYW 
and RAIN) have been selected. The simulated data of atmospheric predictors from 1961 to 
2100 are achieved from the GFDL-R30 associated with the identified regions of these 
predictors. To avoid the redundancy of predictors, an optimal combination is selected. The 
optimal subset is a predictor set which is composed of the minimum number of mutually 
exclusive variables. For k multiple independent variables, there are 2k-1 combination cases 
in total. Hence, from five identified predictors, a total of 31 combination cases can be set. 
Among these 31 cases, one combination set is selected as the optimal subset of predictors 
using a criterion function like cross validation (CV), likelihood or the Akaike criterion 
(AIC). In this study, generalized cross validation (GCV) with the leave-one-out technique 
is applied to select the optimal subset. GCV estimates the error from a fitting regression 
following the equation shown below. 
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where iy  is observed data (i.e. seasonal rainfall in this case) at the dropped point (ix ) based 

on the leave-one-out technique, iy′  is the estimation from the fitting regression at the 

dropped point ix , n is the total number of data, and m is the number of independent 

variables or predictors used to fit the regression. 
 
In this case, GCV is calculated using the 1961-2007 simulated data by GFDL-R30 as the 
independent variable (x) of fitting regression and the observed rainfall averaged over 50 
selected stations as the dependent variable (y). GCV estimation is done separately between 
Scenario A2 and B2. The GCV of each combination case of predictors is also calculated 
under a condition of varying lead periods of predictors from 4 to 15 months prior to the 
start of the rainfall season. Appendix D1 to D4 show the GCV scores associated with all 
the combination cases of predictors for MJJ, ASO, NDJ and FMA rainfall corresponding to 
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A2 and Appendix D5 to D8 show these scores corresponding to B2. Based on a minimum 
GCV, a best combination case is selected. Table 4.6 summarizes the selected optimal 
subset of predictors. According to A2, all selected optimal subsets consist of two 
predictors, except the selected combination case for NDJ rainfall, which has one predictor 
– SXW. The predictors of MJJ and ASO rainfall (i.e. monsoon rainfall) are identified with 
respect to lead times of 6 and 4 months respectively. However, the lead times of selected 
predictors for the dry season rainfall (i.e. NDJ and FMA rainfall) are longer than those of 
monsoon rainfall. They can be indicated 15 months prior to onset of the season. On the 
other hand, the selected optimal subsets of predictors associated with B2 are identified as 
cases with one predictor, except the selected subset for ASO rainfall which includes SAT 
and SLP. The long lead time of predictors (i.e. 14 months) is associated with the selected 
subset of ASO rainfall. In contrast, the short lead times are found corresponding to the 
predictors of MJJ and the dry season rainfall. 
 
Table 4.6: Summary of the Optimal Subset of Predictors for Rainfall during MJJ, ASO, 
NDJ and FMA 

Rainfall Optimal subset of 
predictors 

Season of 
predictors 

Lead time 
(month) 

A2    
MJJ SLP and SXW NDJ 6 
ASO SXW and SYW AMJ 4 
NDJ SXW ASO 15 
FMA SAT and SLP NDJ 15 
B2    
MJJ SLP NDJ 6 
ASO SAT and SLP JJA 14 
NDJ SAT MAM 8 
FMA SXW ASO 6 

SAT: surface air temperature; SLP: sea level pressure; SXW: surface zonal or latitudinal wind; 
SYW: surface meridian or longitudinal wind. 
 
4.4  Summary 
The predictors of MJJ, ASO, NDJ and FMA rainfall are identified by correlation maps 
based on significant linear relationships at long lead times with seasonal rainfall. The 
developed relationships show the influence of atmospheric circulations on local 
hydroclimates, e.g. rainfall, over the regions located nearby and distant from the source. 
The leading relationships of predictors suggest the predictability of a forecasting model. 
Five predictors each for MJJ, ASO and FMA rainfall, which include SAT, SLP, SXW, 
SYW and RAIN, are selected over different regions (namely the study basin, the South 
China Sea, the Pacific and the Indian Oceans). Moreover, there are four identified 
predictors for NDJ rainfall (i.e. SAT, SXW, XYW and RAIN). To determine the effects of 
future climate on rainfall, gridded monthly data from 1961 to 2100 is obtained of identified 
predictors, which are simulated by a GCM called the GFDL-R30 under the condition of 
doubled atmospheric CO2 concentration by 2100, and the GFDL-R30 is used to develop a 
statistical model. The optimal subsets of predictors are selected using generalized cross 
validation with the leave-one-out technique. The selected subsets are composed of 1-2 
predictors for lead times varying from 4-15 months. 
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Chapter 5 
Development of a Statistical Downscaling Model to Simulate Rainfall 

 
5.1  Introduction 
The objectives of this chapter are to develop a statistical model to simulate and downscale 
seasonal rainfall from large-scale atmospheric predictors, and to develop a multisite daily 
rainfall generator to resample daily rainfall from historical data. The seasonal rainfall of 
the Upper Chao Phraya River Basin shows a significant relationship with the large-scale 
atmospheric variables presented in Chapter 4. The identified predictors at long-range lead 
times are selected based on their significant correlations with the regions at a 95% 
confidence level. Optimal combinations of predictors from GFDL-R30 are identified based 
on GCV. The methodology of the statistical model, which uses optimal combinations of 
predictors as independent variables, is described in 5.2.1, and the conditioning rainfall 
generator and the multisite daily rainfall generator are explained in sections 5.2.2 and 5.2.3 
respectively. The performance of both models is evaluated by statistical criteria such as 
goodness-of-fit and likelihood skill score. The obtained results describe the effects of 
future climate on seasonal rainfall in the Ping River Basin. 

 
5.2 Methodology 
5.2.1 The modified k-nearest neighbor (k-nn) model 
The nonparametric approach, which is a function to fit the relationship between dependent 
(y) and independent (x) variables, has been developed to improve the performance of 
fitting regression in the parametric approach. Although the parametric approach is widely 
adopted, due to the ease of use when fitting a regression between two variables, there are 
some drawbacks of this fitting regression. One drawback is that a prior assumption of 
relationships between two variables (i.e. linear regression) is required, which causes 
difficulty in fitting some arbitraries such as the bivariate and multivariate regressions. 
Another drawback is global fitting, in which all points of data are used to fit a regression. 
An individual point of regression gets heavily influenced by other points of data to 
minimize the residuals from fitting.  
Nonparametric regression, on the other hand, does not carry these drawbacks. The 
nonparametric regression function is shown in Equation 5.1. 
 

exxxxfy k += ),...,,,( 321              Equation 5.1 

 
where f is the regression function to fit independent variables (i.e. univariate or 
multivariate): x1, x2, x3,…., xk; y is the dependent variable; and e is the error or residual of 
the fitting regression which is assumed to be normally distributed with mean=0 and 
variance=σ. 
 
Nonparametric regression does not require a prior assumption of relationship between two 
data sets. The fitting function (f) can locally capture the relationship using a small set of 
neighbors (k) at a given point (xi). So, the function is flexible and able to describe the 
relationship better than parametric regression. Moreover, the drawback of parametric 
regression in terms of global fitting can be solved by the nonparametric approach using a 
small set of neighbors. There are several approaches of nonparametric regression. One, 
which has been developed for a derivative curve which contains discontinuities, is the 
spline approach. Another, which can locally apply a regression at a given point (xi) of data 
and its neighbors, is called local polynomials. This approach includes locally weighted 
polynomials (Loader, 1999) and k-nearest neighbor (k-nn) local polynomials (Owosina, 
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1992; Rajagopalan and Lall, 1999). Two parameters (i.e. the size of the neighborhood (k) 
called bandwidth and the order of polynomials (p)) are required for the development of a 
fitting regression. A criteria objective method such as GCV and likelihood can be used to 
determine both parameters. 
 
The steps of fitting regression and ensemble simulation of the modified k-nn model are 
described as follows: 
1) For the fitting process, the size of the neighbors (k) and the order of the polynomial 

(p) (Figure 5.1), which is normally 1 or 2,  are selected and associated with the 
combination of k and p so as to obtain minimum GCV. The GCV is estimated by 
Equation 5.2. 
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Figure 5.1: Fitting process and ensemble simulation of the modified k-nn model. 
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where ei is the error from the developed regression using k and p, n is the number of 
data points, and m is the number of parameters. 

2) The regression is locally fitted with the obtained k and p.  
3) The dependent variables (y) according to the developed fitting regression are then 

estimated and called mean estimations (1 2 3, , ,..., ny y y y ). Then, the residuals 

( neeee ,...,,, 321 ) are computed. 

4) The simulation or forecast of a dependent variable is required at each new point of an 
independent variable (xnew). The mean estimation (newy ) is calculated from the 

developed regression. 
5) A simulating ensemble is obtained by adding a residual (ei) to newy . The residual (ei) 

is associated with one of the k-nearest neighbors (k-nn) of xnew which is randomly 
selected using a weight function, presented in Equation 5.3. 
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where W(j) is a weight of a neighbor of xnew and its distance from xnew falls in the j th 
rank, and k is the size of neighbors which can be different from k for the fitting 

process. The formula 1−n  is, in practice, used to estimate k where n is the total 
number of xi. It is also noted from Equation 5.3 that the nearest neighbor has more 
weight, and the farthest neighbor has less weight. Moreover, the distance between 

newx  and all the points of xi needs to be estimated. There are several methods to 

calculate the distance between two points of data such as the Euclidean distance and 
the Mahalanobis distance. In this study, Euclidean distance has been adopted 
(Equation 5.4(a) and 5.4(b)) for its simplicity. 
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where i=1, 2, 3, …, n, and m is the number of independent variables. 

6) Repeat step 5) as many times as required to achieve the N ensembles or a number of 
simulations. 

7) Repeat step 4) to 6) for each simulation point (xnew). 
 
In this study, the dependent variable (y) is the rainfall averaged over 50 selected stations in 
the Ping River Basin during the pre-monsoon (MJJ), monsoon (ASO) and dry seasons (i.e. 
NDJ and FMA). The independent variables (x) are the optimal combinations of predictors 
during the seasons, as shown in Table 4.6, and are univariate (e.g. SXW predictor for NDJ 
rainfall under A2) or multivariate data (e.g. SLP and SXW predictors for MJJ rainfall 
under A2). Rainfall simulation is done separately for each rainfall season and for the two 
future climate scenarios: A2 and B2. Seasonal rainfall is simulated for the period of 2011 
to 2100 in order to determine the effects of climate in the future. Furthermore, the 300 
ensembles are simulated for each year in order to estimate a probability density function 
(PDF). The non-exceedence and exceedence probabilities of anomalous events (e.g. dry 
and wet) can be calculated from the PDF based on the defined threshold of events 
(described in 5.4.2). The probabilities of anomalous events are a useful tool for decision 
making for water resource planning, agricultural practices, reservoir operations and 
insurance policies. 
 
5.2.2 The conditioning daily rainfall generator 
The conditioning daily rainfall generator is a stochastic model aiming to generate or 
resample a series of daily observed rainfall which is used as the input for a multisite daily 
rainfall generator. Firstly, the historical seasonal rainfall averaged over 50 selected stations 
is divided into three categories based on the defined thresholds, which, in this case, are the 
20th and 80th percentiles. The 20th (80th) percentiles of MJJ, ASO, NDJ and FMA rainfall 
from 1950 to 2007 are estimated at 381.7 (528.9), 498.2 (624.8), 15.8 (79.0) and 53.9 
(114.5) mm respectively. Rainfall which is less than the 20th percentile falls into a category 
of below-normal rainfall or a dry condition (D). Rainfall which is greater than the 80th 
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percentile is defined as above-normal rainfall or a wet condition (W). The rainfall which 
does not fall into either category is termed normal rainfall (N). Appendix B3 shows the 
classifications of historical rainfall from 1950 to 2007. 
Historical rainfall is then randomly selected from three categories. Out of a number of total 
required samples (G), the number of samples selected from each category is associated 
with categorical probabilities, which are estimated from the PDF of N rainfall ensembles 
simulated by the modified k-nn model. Note that the categorical probabilities of ensembles 
are calculated with respect to the same thresholds – i.e. the 20th and 80th percentiles of 
historical seasonal rainfall. Then, a series of G samples of daily rainfall developed by the 
conditioning daily rainfall generator is used in the multisite daily rainfall generator. For 
example, in this study, a series of 100 samples (i.e. G=100) is developed separately for 
each rainfall season. Assuming that the categorical probabilities obtained from the PDF of 
the 300 MJJ rainfall ensembles are D:N:W=0.6:0.1:0.3, then 60, 10 and 30 samples out of 
the total 100 required samples are randomly selected with replacement from the dry, 
normal and wet categories respectively of historical MJJ rainfall. Hence, the 100 samples 
of daily rainfall during MJJ (i.e. 92 days: [R]NDxG=[R]92x100) are applied in the multisite 
daily rainfall generator. It is important to note that in this case, the daily rainfall in the 
developed series is the averaged value from the 50 selected stations. In other words, this is 
spatially averaged daily rainfall. 
                             
5.2.3 The multisite daily rainfall generator 
The historical daily rainfall at several selected rainfall stations in the study basin is 
resampled by the multisite daily rainfall generator.  The resampling is based on the state of 
rainfall, which is also bootstrapped by the model. The multisite daily rainfall generator has 
two components: (i) a Markov Chain to generate the state of daily rainfall (e.g. dry, wet 
and extremely wet) based on the transition probabilities of climatology; and (ii) a Monte 
Carlo approach to resample the amount of daily rainfall (i.e. spatially averaged values over 
several rainfall stations) associated with the rainfall state obtained from (i). Daily rainfall at 
multiple stations is also achieved from the multisite daily rainfall generator. 
 
Firstly, the daily observed rainfall averaged over 50 selected stations (see also Figure 3.5) 
is divided into three states by the thresholds which can be defined by the users of the 
model. In this study, the thresholds are defined at the 10th and 90th percentiles in order to 
focus on anomalous events of daily rainfall. Table 5.1 presents the thresholds at the 10th 
and 90th percentiles which are estimated separately for each month using the daily 
observed data from 1950 to 2007. Daily rainfall less than the 10th percentile is defined as a 
dry (d) state, whereas rainfall in a single day greater than the 90th percentile is denoted as 
an extremely wet (e) state. Daily rainfall which does not fall under either of these states is 
defined as the wet (w) state. 
 
Table 5.1: Defined Thresholds (mm d-1) at the 10th and 90th Percentiles of the 1950-2007 
Daily Rainfall 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
P10

th 0.0 0.0 0.0 0.0 0.5 0.7 0.7 1.1 1.1 0.0 0.0 0.0 
P90

th 0.2 0.7 1.9 5.3 13.1 9.4 10.3 13.4 16.9 12.4 3.4 0.4 
 
Then, the unconditional and transition probabilities of the three states are calculated. The 
unconditional probability of a state (i.e. Pd, Pw and Pe) is the proportion of daily rainfall 
falling into that state. Table 5.2 shows the unconditional probabilities of the three states (d, 
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w and e) of the 1950-2007 daily observed rainfall based on the thresholds outlined in Table 
5.1. 
 
Table 5.2: Unconditional Probabilities of the Three States of the 1950-2007 Daily Rainfall 

Probability (Pi) Probability (Pi) Month 
Pd Pw Pe 

Month 
Pd Pw Pe 

Jan 0.844 0.556 0.100 Jul 0.101 0.800 0.099 
Feb 0.763 0.139 0.098 Aug 0.111 0.789 0.100 
Mar 0.619 0.283 0.098 Sep 0.105 0.796 0.099 
Apr 0.326 0.575 0.099 Oct 0.124 0.776 0.100 
May 0.100 0.800 0.100 Nov 0.537 0.366 0.097 
Jun 0.113 0.788 0.099 Dec 0.841 0.070 0.089 

Pd: probability of dry state; Pw: probability of wet state; Pe: probability of extremely wet state. 
 
The transition probability (i.e. Pi-j) from state i at the previous time step (t-1) to state j at 
the current time step (t) is estimated based on conditional probability and the total 
probability theorem. Conditional probability (i.e. )( 1−tt SSP ) is the probability of the state 

of a current time step (St) which occurs when a state of the previous time step (St-1) has also 
occurred (Equation 5.5). If there are three states each of previous (t-1) and current (t) time 
steps (i.e. dry (d), wet (w) and extremely wet (e)), the transition probability of each state at 
a current time step (Equation 5.6) can be calculated using the total probability theorem. 
Note that transition probability can be estimated for each month as shown in this study 
(Table 5.3), or for other temporal scales like a week, bi-weekly, or a season. 
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P(St,e (St−1,d ∪St−1,w ∪St−1,e)) = P(St,e St−1,d ) * P(St−1,d ) +

P(St,e St−1,w) * P(St−1,w) + P(St,e St−1,e) * P(St−1,e)
   Equation 5.6(c) 

 
Subsequently, a state of daily rainfall is generated by the three-state, first-order Markov 
Chain. Figure 5.2 shows the schematics of a Markov Chain. The steps require generating a 
state of daily rainfall are: 
1) A series of uniform random number from 0 to 1 are generated (Qi where i=1, 2, 3, …, 

ND, and ND is the number of days required for generating a state. For example, 
ND=92 days for a series of daily rainfall during the pre-monsoon season (MJJ). 

2) The rainfall state of day 1 (S1) is dry, corresponding to Q1≤Pd Table 5.2 or wet, 
corresponding to Pd<Q1≤(Pd+Pw), or extremely wet otherwise. For example, if a 
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rainfall state in the month of May is required and Q1=0.580, then S1 is wet since 
0.100<Q1≤0.900. 

3) The rainfall state of day 2 (S2) depends on S1 and Q2. As seen in Table 5.3, if S1 
is dry, then Pd-d, Pd-w and Pd-e are compared to Q2. If Q2≤Pd-d, then S2 is dry, or 
if Pd-d<Q2≤(Pd-d+Pd-w), then S2 is wet. Otherwise, S2 is extremely wet. On the other 
hand, if S1 is wet, then Pw-d, Pw-w and Pw-e are compared to Q2. If Q2≤Pw-d, then S2 is 
dry, or if Pw-d<Q2≤(Pw-d+Pw-w), then S2 is wet. Otherwise, S2 is extremely wet. Likewise, 
if S1 is extremely wet, then Pe-d, Pe-w and Pe-e are compared to Q2. If Q2≤Pe-d, then S2 is 
dry. If Pe-d<Q2≤(Pe-d+Pe-w), then S2 is wet; otherwise, S2 is extremely wet. 

4) Repeat step 3) to generate rainfall states for a required sequence of days (S1, S2, S3,…, 
SND). 

5) Repeat step 1) to 4) for G simulations ([S]NDxG), i.e. 100 simulations in this case. 
 
Table 5.3: Transition Probabilities of the Three States of the 1950-2007 Daily Rainfall 

Transition probability (Pi-j) Transition probability (Pi-j) 
State d w e State d w e 
d Pd-d Pd-w Pd-e d Pd-d Pd-w Pd-e 
w Pw-d Pw-w Pw-e w Pw-d Pw-w Pw-e 
e Pe-d Pe-w Pe-e e Pe-d Pe-w Pe-e 
Jan 0.924 0.030 0.046 Jul 0.380 0.585 0.035 
 0.546 0.212 0.243  0.079 0.832 0.088 
 0.324 0.145 0.531  0.035 0.630 0.335 
Feb 0.870 0.086 0.044 Aug 0.336 0.644 0.020 
 0.540 0.284 0.176  0.096 0.816 0.088 
 0.274 0.294 0.432  0.022 0.646 0.333 
Mar 0.795 0.168 0.037 Sep 0.410 0.548 0.042 
 0.430 0.439 0.131  0.078 0.832 0.090 
 0.143 0.451 0.406  0.030 0.656 0.314 
Apr 0.675 0.302 0.023 Oct 0.587 0.344 0.070 
 0.197 0.700 0.103  0.060 0.865 0.075 
 0.056 0.637 0.307  0.069 0.555 0.377 
May 0.401 0.566 0.034 Nov 0.766 0.218 0.016 
 0.074 0.851 0.074  0.334 0.584 0.083 
 0.016 0.622 0.362  0.045 0.442 0.513 
Jun 0.301 0.650 0.050 Dec 0.933 0.043 0.024 
 0.100 0.818 0.081  0.574 0.158 0.269 
 0.055 0.589 0.357  0.295 0.196 0.509 

Pi-j: transition probability from state i at the previous time step to state j at the current time step; d: 
dry state; w: wet state; e: extremely wet state. 
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Figure 5.2: Schematic of the multisite daily rainfall generator. 
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Figure 5.2 (cont). 
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After obtaining a series of rainfall states from the Markov Chain, the amount of daily 
rainfall associated with the generated states are bootstrapped using the Monte Carlo 
approach. The algorithm of Monte Carlo is presented in Figure 5.2. It is important to note 
that the input of Monte Carlo leads to a series of spatially averaged daily rainfall ([R]NDxG) 
developed by the conditioning daily rainfall generator (described in 5.2.2). So, the initial 
results from Monte Carlo are the averaged daily rainfall over the 50 selected rainfall 
stations. The amount of daily rainfall at each station is then obtained based on the 
following algorithm. 
1) The daily rainfall developed by the conditioning daily rainfall generator ([R]NDxG) is 

defined under a rainfall state based on the thresholds outlined in Table 5.1. 
2) The amount of rainfall at a current time step (Ot) is bootstrapped corresponding to the 

states of previous (St-1) and current (St) time steps which are obtained by the Markov 
Chain. For examples, the states of previous and current time steps from the Markov 
Chain indicate wet and dry (w-d) respectively. All pairs of daily rainfall in [R]NDxG 
which also indicate the state as w-d have been chosen. One pair is randomly selected, 
and Ot is obtained corresponding to the selected pair. 

3) The daily rainfall at all stations (ST), i.e. the 50 selected stations in this case, is 
simultaneously obtained corresponding to the historical day of averaged daily rainfall 
selected in step 2). 

4) Repeat step 2) and 3) to bootstrap the amount of daily rainfall for a required sequence 
of days (O1, O2, O3,.., OND) at multiple stations. 

5) Repeat step 2) to 4) for G simulations ([O]NDxGxST), i.e. 100 simulations in this case. 
 
5.3  Evaluation of the model performance 
5.3.1 The modified k-nn model 
The modified k-nn model is developed and evaluated from 1962 to 2007 using identified 
predictors (from the GFDL-R30 model under Scenario A2 and B2) as independent 
variables. Using the leave-one-out cross validation, the modified k-nn model is evaluated 
separately for each rainfall season (i.e. MJJ, ASO, NDJ and FMA) and each future climate 
scenario. Based on the leave-one-out cross validation, one pair of observations is dropped 
out from the data set of dependent and independent variables. Then, the regression is fitted 
using the remaining data. Using the developed regression, the rainfall at the dropped point 
is estimated. The leave-one-out cross validation is applied at all points of observation for 
the duration of 1962 to 2007 (i.e. 46 years). Note that there are 300 simulations of each 
year obtained from the modified k-nn model. The criteria used to evaluate the performance 
of the modified k-nn model are (i) the annual variability of seasonal rainfall; (ii) the annual 
statistics of seasonal rainfall including mean, median, and standard deviation (SD), 
interquartile range (IQR) and coefficient of skew (skew); (iii) the absolute bias; and (iv) 
the likelihood skill score (LLH). 
 
Under A2 and B2, the annual variability of observed rainfall from 1962 to 2007, along with 
the box plots of rainfall ensembles, are presented separately for MJJ, ASO, NDJ and FMA 
rainfall. The box plot of each year is estimated from the 300 simulated members obtained 
from the modified k-nn model. A box is defined by the quartile range of ensembles 
between the upper quartile (QU) or the 75th percentile, and the lower quartile (QL) or the 
25th percentile. The median value is presented by the horizontal line within each box. The 
caps of upper and lower whiskers indicate outlier values as calculated by Equation 5.7. The 
solid lines with marks represent the observed values. 
 

1.5* ( )uppercap QU QU QL= + −        Equation 5.7(a) 
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1.5*( )lowercap QL QU QL= − −          Equation 5.7(b) 
 
The annual variability of observed MJJ rainfall from 1962 to 2007 ranges from 254.0 to 
631.3 mm, with the minimum and maximum found in 1997 and 1978 respectively. The 
annual variability of observed ASO rainfall varies from 387.6 to 715.4 mm. The minimum 
ASO rainfall is observed in 2004, whereas the maximum was seen in 1962. For the 
observed NDJ (FMA) rainfall, the minimum and maximum were 0.0 mm in 1979 and 
184.4 mm in 2002 (14.5 mm in 1983 and 187.1 mm in 2006) respectively. Hence, a wide 
variation in the amounts of seasonal rainfall and the timing of anomalous occurrences 
among the four seasons can be detected from historical observation. 
 
From Figure 5.3, the rainfall ensembles of all the four seasons from 1962 to 2007 under A2 
fairly well capture the annual variability of observations. Out of the 46 validating years, the 
modified k-nn model can capture historical observation for 30-35 years. The simulations 
under B2 (Figure 5.4) can preserve the annual variability of seasonal observed rainfall. 
 
A better performance of the modified k-nn model is associated with B2, rather than A2. 
The large spread of ensembles (i.e. the quartile range in the box plots) is found in some 
years’ simulation under both scenarios. As the result, the modified k-nn model performs 
moderately well as far as capturing the annual variability of seasonal rainfall is concerned. 
 
The annual statistics (mean, median, SD, IQR and skew) of 1962-2007 seasonal rainfall are 
calculated separately for the observed and modeled rainfall. The annual statistics of 
observations are plotted in black dots overlaying the box plots of annual statistics estimated 
from 300 simulations corresponding to A2 (Figure 5.5) and B2 (Figure 5.6). Under A2 and 
B2, the annual means and medians of observed rainfall in the four seasons are well 
captured by the modified k-nn model. The consistency in capturing both annual statistics is 
highlighted by the small spread of values (i.e. the quartile range in the box plots). 
Furthermore, the modified k-nn model under both scenarios can well preserve the annual 
SD and IQR of observations. The model performance indicates more consistency in 
capturing the annual SD than IQR. The coefficients of skew are also well captured by the 
modified k-nn model under A2 and B2. Hence, the modified k-nn model presents a good 
performance in capturing the annual statistics of seasonal rainfall under both scenarios of 
future climate. 
 
An additional index, i.e. the bias, is computed to evaluate the model performance and is 
intended as the absolute difference in annual mean of the 1962-2007 estimations from the 
observations (Equation 5.8). 
 

,
1 1

nyears nyears

m g m
m m

g

Y O
bias

nyears
= =

−
=
∑ ∑

             Equation 5.8 

 
where Ym,g is the estimation during year m of simulation g with m=1, 2, 3,…., n years and 
g=1, 2, 3,…., N simulations, and Om is the observation at year m. 
 
The absolute bias expressed as the percentage of annual averaged rainfall ranges from 0 to 
+∞. A smaller value of bias indicates a better performance of model and vice versa for a 
greater value.  



 71 

100

200

300

400

500

600

700

800

900
M

JJ
 R

a
in

fa
ll 

(m
m

)

1965 1970 1975 1980 1985 1990 1995 2000 2005   
 

300

400

500

600

700

800

900

A
S

O
 

R
a

i
n

f
a

l
l

 
(

m
m

)

1965 1970 1975 1980 1985 1990 1995 2000 2005  
Figure 5.3: Box plots of 1962-2007 rainfall during (a) MJJ; (b) ASO; (c) NDJ; and (d) FMA estimated from 300 ensemble members simulated 
by the modified k-nn model under A2. The solid lines with marks represent the annual observations. 
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Figure 5.4: Same as Figure 5.3 but for simulations under B2. 
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Figure 5.6: Same as Figure 5.5 but for simulations under B2. 
 
The box plots of absolute biases estimated from the 300 ensemble members are presented 
for each season of rainfall. Under A2 (Figure 5.7(a)), the absolute biases are under 32% for 
all four seasons. The smallest absolute biases (ranging from 0.01% to 3.59%) are 
associated with ASO rainfall simulations, whereas the absolute biases of NDJ rainfall 
ensembles, varying from 0.06% to 31.35%, are the largest. 
On the other hand, the absolute biases of simulations under B2 (Figure 5.7(b)) are within 
30%. The absolute biases corresponding to ASO rainfall simulations, which are estimated 
to be 0.02-5.33%, are the smallest. As is the case with A2, the largest absolute bias 
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corresponds to NDJ rainfall simulations with a range of 0.06-29.92%. Based on the 
absolute bias, the modified k-nn model performs better when simulating monsoon rainfall 
(i.e. MJJ and ASO rainfall) rather than the dry season rainfall (NDJ and FMA rainfall). 
This is because of a stronger relationship between large-scale atmospheric predictors and 
monsoon rainfall than that between the predictors and the dry season rainfall (as has been 
presented in Chapter 4). 
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Figure 5.7: Box plots of absolute biases of annual mean from 300 simulated members 
under (a) A2; and (b) B2. 
 
The likelihood skill score (LLH) is used to evaluate a statistical stochastic model for 
capturing the PDF of climatology. First, the observations are divided into three categories 
based on the defined thresholds, which in this case are set at the 33rd and 67th percentiles. 
Rainfall below the 33rd percentile is defined as below-normal rainfall while rainfall above 
the 67th percentile falls into the category of above-normal rainfall. Rainfall which does not 
fall into either category is denoted as normal rainfall. The second step is to calculate the 
categorical probabilities of climatology, which are the proportion of historical rainfall in 
each category. In this case, since historical rainfall is divided at the 33rd and 67th percentile, 
the categorical probability of all three categories is 1/3. Then, in a given year, the N 
simulated ensembles are also divided into three categories using the same thresholds. The 
categorical probabilities of ensembles in a given year, which are the proportion of rainfall 
ensembles in each category, are computed. Subsequently, LLH is estimated using Equation 
5.9. 
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where n is the number of years, j is the category of the observed value in the year t, 

tjP ,
ˆ with )ˆ,...,ˆ,ˆ,ˆ(ˆ

,,3,2,1, tkttttj PPPPP = is the probability of rainfall ensembles for category j in 

the year t, where k is the number of categories, and tcjP ,  is the categorical probability of 

climatology for category j in the year t, which in this case is the same value for all three 
categories, i.e. 1/3 each. 
 
LLH varies from 0.0 to a number of categories, like +3.0 in this study. The score of +1.0 
indicates no difference between the model performance and reference simulated 
climatology. A score of less than +1.0 indicates a weaker performance of the model 
compared to climatology. On the other hand, a better performance than climatology is 
associated with LLH greater than +1.0. The score of +3.0 indicates the perfect performance 
of the model. In the study case, LLH is estimated separately for each season of rainfall, 
validating year and scenario of future climate. 
 
Figure 5.8 and 5.9 show the LLH of rainfall ensembles during the four seasons from 1962 
to 2007 under A2 and B2 scenarios respectively. The darker shading represents a better 
performance of the modified k-nn model. A dry year (D) is defined by rainfall below the 
20th percentile from the 1950-2007 observations, whereas a wet year (W) is denoted by 
rainfall above the 80th percentile. The threshold values at the 20th (80th) percentiles of 
1950-2007 MJJ, ASO, NDJ and FMA rainfall are computed as 381.7 (528.9), 498.2 
(624.8), 15.8 (79.0) and 53.9 (114.5) mm respectively. As seen in Figure 5.8, under A2, the 
median LLH of 1962-2007 MJJ (ASO) rainfall simulations is calculated to be 1.12 (1.23). 
The 1962-2007 NDJ and FMA rainfall ensembles indicate median LLH as 1.29 and 1.13 
respectively. Based on LLH greater than +1.0, the modified k-nn model performs well over 
anomalous events (i.e. dry and wet), in particular for ASO and NDJ rainfalls. 
On the other hand, the modified k-nn model under B2 (Figure 5.9) performs worse than 
under A2. The median LLH of 1962-2007 MJJ and ASO rainfall simulations are 1.12 and 
0.79 respectively. The dry season rainfall has a median LLH less than +1.0, i.e. 0.79 for 
NDJ rainfall and 0.99 for FMA rainfall. The model performance over anomalous events is 
not consistent among the four seasons. 
 
5.3.2 The multisite daily rainfall generator 
The performance evaluation of a multisite daily rainfall generator involves two separate 
simulations. First, the daily rainfall generator is evaluated by applying its results to the 
daily rainfall averaged over 50 selected stations for the period of 1950 to 2007. In this 
study, 100 daily rainfall ensembles for each year of 58 years are generated. Second, from 
1950 to 2007, the multisite generator simulates 100 ensembles of daily rainfall separately 
for each selected station. The evaluation of the model performance is done in conjunction 
with daily generations in all the 50 stations. 
 
The first kind of simulation (i.e. the daily rainfall generator) is evaluated using three 
indexes: (i) the transition probabilities of daily rainfall which can be used to evaluate the 
Markov Chain on fitting the transition probabilities of observations; (ii) the dry- and wet-
spell lengths of daily rainfall by month which can present the performance of the Markov 
Chain on capturing the number of dry and wet days, and the lengths of dry and wet spells 
of historical daily rainfall; and (iii) the statistics of daily rainfall month-by-month in terms 
of mean, median, SD, IQR, skew and lag-1 autocorrelation, which are then used to 
diagnose the performance of the Monte Carlo approach on capturing the statistics of the 
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daily observations. All indexes are estimated separately for each month using simulated 
results and presented by box plots. A box plot is computed from 100 ensembles. A box is 
defined by the 75th percentile (the upper quartile or QU) and the 25th percentile (the lower 
quartile or QL). The horizontal line within the box presents a median of 100 ensembles. 
The caps of upper and lower whiskers indicate the extreme values (Equation 5.7). The 
outliers are represented by dots above or below the caps. The historical values are also 
shown along with the box plots by the solid lines with marks. 
 
Figure 5.10 shows the evaluation of the model in terms of transition probabilities. From 
100 daily rainfall ensembles for each year of 58 years, the Markov Chain can capture well 
the nine transition probabilities of observations in all the 12 months. The consistency of 
performance corresponding to the small spread of values (i.e. the quartile range in a box 
plot) is observed especially for Pw-d, Pw-w and Pw-e in the months from May to October, 
which cover the pre-monsoon and monsoon seasons. 
 
As expected, the Markov Chain can also perform well when capturing the average dry and 
wet days of historical rainfall (Figure 5.11(a) and (b)). However, since the dry and wet 
spells of observations can be smoothened out by the three-state, first-order Markov Chain, 
the average dry- and wet-spell lengths (Figure 5.11(c) and (d)) are underestimated in some 
months, like in May and June. From Figure 5.11(e) and (f), the maximum dry-spell lengths 
of some months: in particular July, August and September, are not well reproduced. 
However, the model can capture well maximum wet-spell lengths. 
 
The Monte Carlo algorithm generates the amount of daily rainfall based on the rainfall 
states obtained from the three-state, first-order Markov Chain. Figure 5.12 shows the 
performance of the daily rainfall generator using the Monte Carlo method on preserving 
the statistics of daily observations. The model can capture well the means and medians of 
daily rainfall. However, the means corresponding to the daily rainfall ensembles in April 
and December are slightly underestimated, whereas an overestimation associated with the 
October simulations has been found. Similarly, underestimation in medians is observed in 
the simulations of April, May and July. For the daily rainfall simulations in June, the 
medians are slightly overestimated. The SD, IQR and skew of 1950-2007 daily 
observations is captured accurately by Monte Carlo. On the other hand, the lag-1 
autocorrelations in all 12 months are underestimated because, as previously mentioned, 
daily rainfall during any consecutive days is resampled based on the rainfall states 
generated by the Markov Chain. 
 
For the multisite generator, the model performance is evaluated at 50 rainfall stations using 
100 simulated ensembles of daily rainfall from 1950 to 2007. Two criteria are applied: one 
is the statistics of the 1950-2007 daily rainfall, and another is spatial cross-correlations 
among the 50 selected stations. In terms of statistics, the mean, SD and skew of the 1950-
2007 daily rainfall at each station are estimated using both, the observations and 
simulations. The box plots of statistics of simulated results are used to diagnose the 
performance of the multisite generator on capturing the spatial distribution of the statistics 
of daily observed rainfall. Moreover, the spatial cross-correlations, which are the 
correlations between daily rainfall recorded in a pair of stations, are used to evaluate the 
model performance in preserving the linear relationship of daily rainfall among the 50 
stations. The spatial cross-correlations of observations are estimated using daily historical 
rainfall, whereas the cross-correlations of simulations are calculated using averaged values 
over 100 ensembles of daily modeled results. 
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Figure 5.8: LLH of rainfall ensembles during the four seasons from 1962 to 2007 under A2. D: dry year; W: wet year. 
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Figure 5.9: Same as Figure 5.8 but for simulations under B2. 
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Figure 5.10: Box plots of transition probabilities of 1950-2007 daily rainfall from 100 
ensembles simulated by the daily rainfall generator. The dots above or below the caps of 
whiskers represent the outlier values. The solid lines with marks represent the transition 
probabilities of 1950-2007 daily observations. 
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Figure 5.11: Box plots of spell statistics of 1950-2007 daily rainfall from 100 ensembles 
simulated by the daily rainfall generator. The dots above or below the caps of whiskers 
represent the outlier values. The solid lines with marks represent the spell statistics of 
1950-2007 daily observations. 
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Figure 5.12: Box plots of basic statistics of 1950-2007 daily rainfall from 100 ensembles 
simulated by the daily rainfall generator. The dots above or below the caps of whiskers 
represent the outlier values. The solid lines with marks represent the statistics of 1950-
2007 daily observations. 
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Figure 5.13 to 5.15 respectively show the box plots of daily means, SD and skew of 1950-
2007 rainfall from 100 ensembles along with the corresponding statistics of observations at 
50 rainfall stations. From Figure 5.13, the means of daily observed rainfall ranging from 
2.4 to 4.7 mm d-1, indicate a wide variation in the averages of daily rainfall among the 50 
stations. The variability of means is well captured by the multisite generator. However, the 
daily means at Station 060101, 17032 and 17074 are slightly underestimated, whereas 
overestimated means are found at Station 400201, 07082 and 26102. 
 
The multisite generator can also preserve the SD of observations (Figure 5.14). Moreover, 
at all rainfall stations, the skew of daily rainfall (Figure 5.15) is well reproduced by the 
multisite generator with the exception of Station 327301 and 07072, where an 
overestimation is observed. 
 
As for cross-correlations among all the stations, Figure 5.16 shows the relationship 
between distance and spatial cross-correlations of daily observed rainfall among pairs of 
stations. Nonlinear relationships between distance and spatial correlations can be observed, 
which reflect the influence of topography on station distribution. A greater distance 
between two stations is associated with a smaller correlation and vice versa for stations 
nearer to one another. The maximally distant stations estimated to be 530.68 km apart, 
which are Station 07492 (19°59´47˝N latitude and 99°15´33˝E longitude) and Station 
400301 (15°21´00˝N latitude and 100°30´00˝E longitude), show a spatial correlation of 
0.11. On the other hand, a maximum correlation of 0.85 is found between the daily rainfall 
of the station 060101 (17°03´00˝N latitude and 99°04´00˝E longitude) and Station 63022 
(17°02´46˝N latitude and 99°04´34˝E longitude) and it can be associated with the fact that 
these two are the closest stations, only 1.09 km apart from one another. 
 
Figure 5.17 presents the comparison by month between spatial cross-correlations of 
historical data and the modeled results. The multisite generator performs well when 
preserving cross-correlations among pairs of stations, in particular from May to November. 
However, in the dry season (i.e. from December to April), the cross-correlations among 
stations cannot be well reproduced, as shown by the sparse points of correlations. 
 
5.4  Results and discussion 
5.4.1 Effects of future climate on annual variability and trends in seasonal rainfall 
The modified k-nn model is adopted to simulate 300 rainfall ensembles for each season 
(i.e. MJJ, ASO, NDJ and FMA) from 2011 to 2100. The model is developed so as to 
downscale seasonal rainfall in the study basin from large-scale atmospheric variables, 
which are obtained from a GCM named GFDL-R30. The modified k-nn model also aims to 
determine the effects of future climate on seasonal rainfall under two scenarios (i.e. A2 and 
B2). From 300 simulated rainfall ensembles, the medians are estimated. The seasonal 
rainfall anomalies from 2011 to 2100 are then calculated with respect to the observed 
1961-1990 average seasonal rainfall and plotted along with the anomalies of observed 
rainfall during 1950 to 2007.  
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Figure 5.13: Box plots of means of 1950-2007 daily rainfall at 50 rainfall stations from 100 ensembles simulated by the multisite generator. The 
dots above or below the caps of whiskers represent the outlier values. The solid lines with marks represent the daily means of 1950-2007 
observations. 
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Figure 5.14: Same as Figure 5.13 but for SD. 
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Figure 5.15: Same as Figure 5.13 but for skew. 
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Figure 5.16: Scatter plot between distance (D) and spatial correlations (r) of 1950-2007 
daily observed rainfall at the 50 selected stations. 
 
A linear trend of 1950-2007 observed MJJ rainfall (Figure 5.18(a)) is -0.69 mm per year. 
The maximum and the minimum observed MJJ rainfall are 651.9 and 254.0 mm, which are 
seen in 1950 and 1997 respectively. The rainfall anomalies corresponding to the observed 
1961-1990 average MJJ rainfall range from -2.1 to +2.5 mm. Pre-1980, the observed MJJ 
rainfall tended to be above-normal and vice versa post-1980. Under A2, the MJJ rainfall 
from 2011 to 2100 tends to decrease by 0.11 mm per year (Figure 5.18(a)). A maximum of 
759.8 mm and a minimum of 279.6 mm will be observed in 2015 and 2050 respectively. 
Moreover, the above-normal MJJ rainfall, with respect to the observed 1961-1990 
averaged MJJ rainfall, will occur during the 2020s and 2070s and vice versa for the 
remaining periods. On the other hand, the 2011-2100 MJJ rainfall under B2 tends to 
decrease with a linear trend of 0.17 mm per year. Maximum MJJ rainfall will be observed 
in 2022 at 600.2 mm, showing an anomaly of +1.9 mm. It is also important to note that the 
decreasing trends of 2011-2100 simulated MJJ rainfall are less than the decreasing trends 
of 1950-2007 observed MJJ rainfall. These results suggest that future climate under both 
scenarios influences decreasing MJJ rainfall with a slower rate in the future than it did in 
earlier periods. However, the results from GCMs under A1B scenario reported by NIC 
(2009) were different. From 2049 to 2069, the average precipitation in summer monsoon 
season (i.e. June-July-August: JJA) over Asia will tend to increase varying from 2.6% to 
3.4%. From IPCC (2007a), JJA rainfall over the Ping River Basin under A1B will tend to 
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increase less than 5%. Compared to precipitation in Indonesia, Boer and Faqih (2003) 
studied changes in future precipitation through 2080 using several GCMs such as CCSR, 
CSIRO and HadCM3 under A2 and B2 scenarios. The increasing and decreasing 
precipitation will be observed depending on model and scenario. The inconsistency in 
precipitation trends cannot generally conclude the effects of future climate on precipitation 
across Indonesia. 
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Figure 5.17: Comparison by month between spatial cross-correlations of daily observed 
and simulated rainfall among pairs of the 50 rainfall stations. 
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Figure 5.18: Annual anomalies of the 1950-2007 observed rainfall and the 5-year running 
mean from observed and modified k-nn simulated (2011-2100) rainfall during (a) MJJ; (b) 
ASO; (c) NDJ; and (d) FMA. The anomalies are estimated with respect to the observed 
1961-1990 averaged seasonal rainfall.  
 
The 1950-2007 observed ASO rainfall (Figure 5.18(b)) tends to decrease by 2.29 mm per 
year. This trend is significant at a 99.5% confidence level by the standard t-test (Haan, 
2002). A maximum of 948.3 mm and a minimum of 387.6 mm were seen in 1950 and 2004 
respectively. The positive anomalies of ASO rainfall, calculated corresponding to the 
observed 1961-1990 averaged ASO rainfall, are found during pre-1980, whereas negative 
anomalies are observed post-1980. These are consistent with the anomalies of 1950-2007 
observed MJJ rainfall. The 2011-2100 ASO rainfall under A2 tends to decrease by 1.09 
mm per year which is significant at 97.5% confidence levels. A maximum of 908.4 mm 

(a) 

(b) 

(c) 

(d) 
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will be observed in 2027 with an anomaly of +4.1 mm. Minimum ASO rainfall at 346.4 
mm will occur in 2095. Under B2, a decreasing linear trend of 2011-2100 ASO rainfall is 
6.16 mm per year with significance at a 99.9% confidence level. In 2013, a maximum of 
598.7 mm will be observed, with a rainfall anomaly of +0.4 mm. Negative rainfall 
anomalies are observed especially after 2040. Hence, from 2011 to 2100, the predicted 
effects of future climate will cause a drastic decrease of monsoon season rainfall in the 
study basin, in particular under Scenario B2. The decreasing trends in ASO rainfall may be 
caused by the reducing tropical cyclone frequency over Southeast Asia (Wu and Wang, 
2004). However, the frequency and intensity of tropical cyclones are influenced by ENSO, 
which changes in ENSO are not consistent (IPCC, 2007a). 
 
In contrast, from 1950 to 2007, the observed NDJ rainfall (Figure 5.18(c)) tends to increase 
slightly (by 0.03 mm per year). In 2002, a maximum of 184.4 mm was recorded, with an 
anomaly of +2.8 mm, in conjunction with the observed 1961-1990 average NDJ rainfall. A 
minimum of 0.0 mm was observed in 1979 and is associated with a rainfall anomaly of 
-1.4 mm. Under A2, an increasing trend of 2011-2100 NDJ rainfall is estimated by 0.07 
mm per year. A maximum of 135.7 mm, associated with rainfall anomaly of +1.7 mm, will 
be seen in 2013, whereas a minimum of 3.0 mm will be observed in 2018 with an anomaly 
of -1.3 mm. Furthermore, with significance at a 99.9% confidence level, the 2011-2100 
NDJ rainfall under B2 will tend to increase by 5.91 mm per year. A maximum of 905.9 
mm and a minimum of 28.4 mm will be observed in 2098 and 2019, associated with 
rainfall anomalies of +18.9 and -0.7 mm respectively. High positive anomalies will be 
observed especially after 2040. The increasing trends of NDJ rainfall are similar to the 
results provided by NIC (2009). From 2049 to 2069, the winter season precipitation (i.e. 
December-January-February) over Asia will tend to increase by 2.9% to 3.5% under A1B 
emission scenario. The decreasing ASO rainfall and the increasing NDJ rainfall trends 
during post-2040 suggest that climate in the future will affect a shift in the monsoon 
season. The delay in monsoon onset date is also found from the study of Bhaskaran and 
Mitchell (1998) who examined the effects of changing climate on Southeast Asian 
monsoon precipitation from 1990 to 2100 using HadCM2. They found the 10-15 day delay 
in monsoon onset date over the regions of Thailand, Cambodia, Laos and Vietnam. 
 
For the observed 1950-2007 FMA rainfall (Figure 5.18(d)), an increasing trend of 0.43 mm 
per year is estimated. A maximum of 187.1 mm was observed in 2006, and a minimum of 
5.5 mm was found in 1950. Rainfall anomalies calculated with respect to the observed 
1961-1990 average FMA rainfall range from -2.4 to +3.6 mm. During the recent decades 
(i.e. after 1990), positive anomalies associated with above-normal rainfall are greater than 
they were in earlier centuries. Under A2, the 2011-2100 FMA rainfall tends to increase 
(with significance at 99.9% confidence level) by 1.09 mm per year. A maximum 
(minimum) of 312.5 (31.5) mm will be observed in 2095 (2052), corresponding to a 
rainfall anomaly of +7.7 (-1.5) mm. The above-normal rainfall suggests an increase in 
FMA rainfall in the study basin especially after 2070. On the other hand, under B2, FMA 
rainfall from 2011 to 2100 tends to only moderately increase by 0.02 mm per year. A 
maximum of 134.1 mm and a minimum of 34.7 mm will be found in 2077 and 2076 
respectively. The rainfall anomalies here range from -1.4 to +1.9 mm. 
 
In conclusion, the effects of future climate on seasonal rainfall during 2011 to 2100 suggest 
decreasing trends of pre-monsoon (MJJ) and monsoon (ASO) season rainfall, and 
increasing trends of dry (NDJ and FMA) season rainfall. The decreasing trends of MJJ and 
ASO rainfall vary from 0.11 to 6.16 mm per year, whereas the increasing trends of NDJ 
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and FMA rainfall range from 0.02 to 5.91 mm per year. Compared to A2, future climate 
Scenario B2 suggests more severe effects on ASO and NDJ rainfall. However, the opposite 
is observed for FMA rainfall under Scenario A2. In addition, it is important to note that 
under B2, the monsoon season in the Ping River Basin tends to shift by one season from 
ASO to NDJ after 2040 and this shift is associated with drastically decreasing ASO rainfall 
(i.e. negative anomalies) and increasing NDJ rainfall (i.e. positive anomalies). 
 
5.4.2 Effects of future climate on anomalous weather events 
From 300 ensembles simulated for each season and each year, the median has been 
estimated, and the PDF of median rainfall from 2011 to 2100 under A2 and B2 are plotted, 
overlaid by the PDF of climatology from 1950 to 2007 (Figure 5.19). Subsequently, the 
probabilities of anomalous weather events (i.e. dry and wet conditions) are calculated from 
the PDF based on the thresholds at the 20th and 80th percentile of climatology. Rainfall less 
than the 20th percentile is defined as below-normal rainfall or causing a dry condition, 
whereas rainfall greater than the 80th percentile is denoted as above-normal rainfall or as 
wet condition. The 20th (80th) percentiles of MJJ, ASO, NDJ and FMA rainfall during 1950 
to 2007 are estimated at 381.7 (528.9), 498.2 (624.8), 15.8 (79.0) and 53.9 (114.5) mm 
respectively. 
 

 

 
Figure 5.19: PDF of 2011-2100 median rainfall estimated from 300 rainfall ensembles 
during (a) MJJ; (b) ASO; (c) NDJ; and (d) FMA. 
 

(d) 

(a) (b) 

(c) 
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From the climatological PDF of MJJ rainfall, the chance of MJJ rainfall being less than 
381.7 mm (i.e. dry condition) is 20%. Under A2 (B2), MJJ rainfall from 2011 to 2100 has 
higher chances of falling under the dry category, by 26.4% (33.3%). The 1950-2007 MJJ 
rainfall had a 20% chance of being wet, whereas the 2011-2100 MJJ rainfall shows 
probabilities of rainfall greater than 528.9 mm (i.e. wet condition) by 16.6% and 15.2% 
under A2 and B2 respectively. On the other hand, compared to a chance of 20% obtained 
from climatology, a probability of 39.7% (84.5%) is associated with the 2011-2100 ASO 
rainfall, with a higher chance of ASO rainfall being dry under A2 (B2). The probability 
that the 2011-2100 ASO rainfall will be above 624.8 mm (i.e. the wet condition) is 
estimated at 22% under A2 and 5.1% under B2. As expected, NDJ rainfall under A2 (B2) 
during 2011- 2100 has a lower chance of being dry by 15.9% (8.2%), versus a 20% chance 
of climatological NDJ rainfall. However, the 2011-2100 NDJ rainfall indicates more 
chances of being wet, by 21.6% and 83.3% under A2 and B2 respectively. For FMA 
rainfall, the PDF of climatology has a chance of being dry by 20%; however, the PDF of 
2011-2100 FMA rainfall presents a chance of being dry by only 9.4% in A2 and 12.2% 
under B2. The probabilities of FMA rainfall greater than 114.5 mm (the wet condition) are 
estimated at 50.7% and 19.2% under A2 and B2 respectively. 
 
To consider the probabilities of anomalous weather events in each year of simulation, the 
PDF of 300 rainfall ensembles for each simulation year are computed. The probabilities are 
calculated at the same thresholds as previously mentioned. A rainfall ensemble below the 
20th percentile is defined as below-normal or dry, whereas a rainfall ensemble above the 
80th percentile is denoted as above-normal or wet. Otherwise, rainfall falls into the normal 
category. Out of 300 ensembles in each simulation year, the probability of each category 
depends on the proportion of rainfall members falling into that category. A probability of 
100% for a category shows that the all 300 ensembles fall into that category. Figure 5.20 
and 5.21 show probabilities of more than 50% for all the three categories under A2 and B2 
scenarios respectively. 
 
From Figure 5.20, we can see that with a high probability of occurrence (>70%), MJJ 
rainfall from 2011 to 2100 will be below 381.7 mm in 10 years and will be above 528.9 
mm in 8 years under A2 scenario. Out of the 8 years of being above-normal, 5 years (2015, 
2029, 2043, 2073 and 2079) indicate a chance of occurrence above 90%. Also with a high 
probability (>70%), ASO rainfall under A2 from 2011 to 2100 shows 20 dry years (or 
below-normal) and 11 wet years (or above-normal). With a chance of occurrence greater 
than 90%, there are 7 (9) years out of these dry (wet) years of ASO rainfall. In the period 
of 2011-2100, dry NDJ and FMA rainfalls under A2 will be hardly observed. However, 
with a probability of occurrence of above 70%, above-normal NDJ and FMA rainfalls will 
be seen in 8 and 29 years respectively. Above-normal FMA rainfall tends to occur after 
2070, which is consistent with the rainfall anomalies seen in Figure 5.18(d). There are 21 
years out of 29 years of above-normal FMA rainfall obtained at a probability greater than 
90% and also indicating a 4-year consecutive period of the wet condition from 2085 to 
2088. 
 
On the other hand, under B2 (Figure 5.21), 18 out of 90 simulation years show that MJJ 
rainfall will be below 381.7 mm with a probability greater than 70%. Out of these 18 dry 
years, there are 9 years showing the probability of occurrence greater than 90%. Above-
normal MJJ and ASO rainfall with a probability above 60% will not be found during 2011 
to 2100. However, with a probability greater than 90%, below-normal ASO rainfall will be 
observed in several years especially during a long consecutive period from 2046 to 2100 – 
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i.e. 55 years. In contrast, from 2011 to 2100, below-normal NDJ and FMA rainfall is 
hardly found with a high probability of occurrence (>70%). The above-normal condition 
will occur with high probability, especially for NDJ rainfall, which indicates a long period 
of the wet condition after 2045. The high probabilities of below-normal ASO rainfall and 
above-normal NDJ rainfall in a long consecutive period after 2046 are consistent with the 
annual anomalies shown in Figure 5.18(b) and (c). 
 
Therefore, the effects of future climate on anomalous weather events during 2011- 2100 
indicate more (less) chances of rainfall being below-normal (above-normal) during the wet 
seasons (i.e. MJJ and ASO). In contrast, for rainfall during dry seasons (i.e. NDJ and 
FMA), the effects of future climate suggest more (less) chances of the rainfall being above-
normal (below-normal). Moreover, anomalous weather events will occur during several 
years from 2011 to 2100 with a probability greater than 70%. In particular under B2, 
monsoon rainfall will tend to be delayed by one season from ASO to NDJ, associated with 
a significant decreasing (increasing) trend of ASO (NDJ) rainfall and a long consecutive 
period of below-normal (above-normal) conditions from 2046 to 2100.  
 
5.5  Summary 
The modified k-nn model is a statistical model applied to downscale seasonal rainfall in the 
Ping River Basin from large-scale atmospheric variables and to assess the effects of future 
climate. Under the two scenarios of future climate (A2 and B2), the modified k-nn model 
performs moderately well when capturing the annual variability of seasonal observed 
rainfall from 1962 to 2007. The model also has the capability of preserving annual 
statistics (i.e. mean, median, SD, IQR and skew) of seasonal observed rainfall. The 
absolute biases of simulation are below 32%. Moreover, the median LLH score of 1962-
2007 rainfall simulations is greater than +1.0, which indicates better performance of the 
model in capturing PDF than climatology. 
The multisite daily rainfall generator is developed to resample the historical daily rainfall 
at several rainfall stations. It performs well when capturing transition probabilities, the dry- 
and wet-spell statistics and basic statistics of observations in all 12 months. The multisite 
generator can also preserve basic statistics and cross-correlations among pairs of rainfall 
stations. 
 
Under both scenarios of future climate, the 2011-2100 rainfall in the Ping River Basin 
during wet seasons (MJJ and ASO) tends to decrease by 0.11-6.16 mm per year, whereas 
the 2011-2100 rainfall of dry seasons (NDJ and FMA) tends to increase by 0.02-5.91 mm 
per year. As for anomalous weather events, the effects of future climate suggest more 
chances of being below-normal and less chances of being above-normal for the wet season 
rainfall. On the other hand, the dry season rainfall shows more chances of being above-
normal and less chances of being below-normal. Future climate also seems to have an 
effect on the monsoon schedule as the monsoon period shifts by one season from ASO to 
NDJ. 
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Figure 5.20: Probabilities of anomalous weather events annually in simulations from 2011 to 2100 under Scenario A2 of future climate. 
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Figure 5.21: Same as Figure 5.20 but for Scenario B2 of future climate. 
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Chapter 6 
Hydrologic Behavior of River Basins  

 
6.1  Introduction 
To show model dependency of the daily streamflow simulation for determining the effects 
of future climate on streamflow, this chapter compares the performance of two proposed 
rainfall-runoff models, i.e. the SIMHYD (Chiew et al., 1996) and the HEC-HMS (U.S. 
Army Corps of Engineers, 2000) models. The best model is then selected based on a better 
performance as per four efficiency indexes, i.e. deviation of volume, correlation 
coefficient, normalized root mean square error (NRMSE) and the Nash-Sutcliffe efficient 
index. The selected rainfall-runoff model has been adopted in Chapter 7 to simulate 
streamflow in the Ping River Basin using 2011-2100 daily rainfall ensembles obtained 
from the multisite daily rainfall generator (Chapter 5). 
 
6.2  Data description 
6.2.1 Basin data 
The Ping River Basin can be divided into 20 sub-basins (see also Figure 3.4 and Table 3.1) 
of which 14 sub-basins are located upstream of the Bhumipol Dam. The rainfall-runoff 
simulation for the study is done within these 14 sub-basins and aims to apply the modeled 
results in the operation of the Bhumipol Dam and the management of the reservoir. The 
area of the 14 sub-basins ranges from 535 to 3,143 km2 (Table 6.1). This area is covered by 
agriculture, urban development, forests, water resources, irrigated agriculture and 
miscellaneous land use activities (Figure 6.1). The forests are estimated to cover 55.60% to 
97.22% of the sub-basin area. Based on the soil classification done by the Land 
Development Department (LDD) of Thailand (LDD, 2011), the soil type of the Ping River 
Basin is a slope complex (SC) that is not suitable for agriculture since the slope is more 
than 35% and there is a high degree of erosion of the soil surface. 
 
Table 6.1: Description of the 14 Sub-basins Located Upstream of the Bhumipol Dam 

Land use coverage (%) Sub-
basin 
code 

Sub-basin 
name 

Area 
(km2) A U F W IA M 

Soil 
type 

0602 Upper Ping 
Part 

2,018 9.51 0.73 89.28 0.32 0.00 0.16 SC 

0603 Mae Ngad 1,260 7.18 0.79 91.38 0.38 0.00 0.28 SC 
0604 Mae Taeng 1,761 10.13 0.70 89.07 0.05 0.03 0.02 SC 
0605 2nd Ping Part 1,624 30.21 10.71 55.60 0.43 0.00 3.04 SC 
0606 Mae Rim 584 6.11 1.28 92.51 0.11 0.00 0.00 SC 
0607 Mae Kuang 1,165 19.84 5.41 73.12 0.55 0.00 1.08 SC 
0608 Mae Ngan 1,711 7.23 1.62 90.53 0.11 0.00 0.51 SC 
0609 Mae Li 1,956 12.84 1.63 82.80 0.11 0.00 2.61 SC 
0610 Mae Klang 600 8.47 0.90 89.30 0.08 0.00 1.25 SC 
0611 3rd Ping Part 3,071 3.69 0.63 92.60 1.83 0.00 1.25 SC 
0612 Upper Mae 

Cham 
1,912 2.53 0.16 97.22 0.00 0.00 0.09 SC 

0613 Lower Mae 
Cham 

1,926 4.57 0.25 94.96 0.08 0.00 0.14 SC 

0614 Mae Had 535 6.25 0.61 92.29 0.39 0.00 0.45 SC 
0615 Mae Tuen 3,143 3.31 0.09 96.02 0.57 0.00 0.01 SC 

A: agriculture; U: urban; F: forest; W: water resource; IA: irrigated agriculture; M: miscellaneous; 
SC: slope complex. 
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Figure 6.1: Land use map of the Ping River Basin. 
 
6.2.2 Rainfall data 
The rainfall daily data from 50 selected stations is used in the rainfall-runoff models (see 
also Appendix A2 and Figure 3.5). The average daily values over the area of each sub-
basin are calculated using the Thiessen method (Linsley et al., 1988; Gupta, 1989). A 
weighting factor for each rainfall station is assigned proportionately in a representative 
polygon for the total sub-basin area. The dimension of the assigned polygon is based on the 
non-uniform distribution of rainfall stations. The average rainfall computed by the 
Thiessen method is more accurate than the arithmetical average; however, the Thiessen 
method is not flexible enough for the changes in the rainfall station network. The 
representative polygon for a station has to be re-assigned when a new rainfall station is 
installed within the basin, or if the location of an existing station is changed. 
 
6.2.3 Evaporation data 
Daily evaporation from 1969 to 2007 is measured by a class A pan in 18 meteorological 
stations located in and around the Ping River Basin (see also Appendix A5 and Figure 3.5). 
The daily and monthly evaporation are averaged over the 18 stations. Minimum 



 98 

evaporation is observed in December with an average of 3.2 mm d-1 (Figure 6.2), while the 
highest evaporation occurs during the summer season, i.e. from March to May. Maximum 
evaporation is found in April, estimated at 6.1 mm d-1. To compute potential 
evapotranspiration (ETp), Chankaew (1996) and Michalczyk (2008) suggest using a class 
A pan with a coefficient equal to 0.7 for Thailand. 
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Figure 6.2: Annual cycle of evaporation from a class A pan. 
 
6.2.4 Streamflow data 
Out of 45 gauging stations located in the Ping River Basin (Appendix A3 and Figure 3.5), 
12 streamflow stations have been selected based on the criteria of no incomplete daily data 
during a consecutive period which is consistent among all the stations. Station P12B is 
located at the Bhumipol Dam to measure the inflow. It is noted that an annual water cycle 
of streamflow in Thailand starts in the driest month (i.e. April) and ends in March of the 
following year. The consecutive period which has no incomplete data available from the 12 
selected stations is from April 1999 to March 2007 (i.e. eight water years). The drainage 
area (D.A.) of the 12 selected stations ranges from 460 to 26,396 km2 (Table 6.2). The 
minimum and maximum of 1999-2007 average annual runoff are estimated at 142.76 and 
6,029.89 MCM at Station P21 (i.e. the Mae Rim Basin) and P12B (Bhumipol Dam Station) 
respectively. The peak runoff (i.e. wet season) is observed from August to November 
(ASON) (Figure 6.3) corresponding to the monsoon season (i.e. August-September-
October: ASO). The runoff during the wet season is estimated to be 58-73% of the total 
annual runoff. The runoff in the dry season from December to April is calculated to be 8-
23%. The remaining runoff is observed from May to July (MJJ), i.e. in the pre-monsoon 
season. Appendix E1 to E12 present the hydrographs of daily observed streamflow at the 
12 gauging stations from April 1999 to March 2007. 
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Table 6.2: List of the 12 Selected Streamflow Stations 

Station Sub-basin Stream/ 
River 

Drainage 
area 

(km2) 

Averaged 
daily 

discharge* 
(m3 s-1) 

Averaged 
annual runoff* 

(MCM) 

P75 Upper Ping Part 
and Mae Ngad 

Ping 3,080 24.01 757.93 

P4A Mae Taeng Mae Taeng 1,902 13.42 423.66 
P67 - Ping 5,289 45.01 1,420.68 
P21 Mae Rim Mae Rim 515 4.52 142.76 
P1 - Ping 6,355 51.93 1,639.13 
P71 Mae Ngan Mae Khan 1,771 11.01 347.47 
P24A Mae Klang Mae Klang 460 4.99 157.45 
P73 - Ping 13,353 131.83 4,160.51 
061302 Upper Mae 

Cham 
Mae Cham 1,946 22.14 698.94 

P14 - Mae Cham 3,853 36.89 1,164.40 
061501 Mae Tuen Mae Tuen 1,470 24.03 758.53 
P12B - Ping 26,396 191.06 6,029.89 

* from 1st April 1999 to 31st March 2007. 
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Figure 6.3: Annual cycle of streamflow at the 12 selected stations.  
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6.3  Methodology 
To compare different algorithms of rainfall-runoff models and to show model dependency 
of the daily streamflow simulation, two models have been proposed in this study: the 
SIMHYD and HEC-HMS models. The parameters of both models are calibrated for the 
period of 1st April 1999 to 31st March 2003 and validated from 1st April 2003 to 31st March 
2007. The model performances are evaluated using four efficiency indexes (deviation of 
volume (Dv), correlation coefficient (r), normalized root mean square error (NRMSE), and 
the Nash-Sutcliffe efficiency index (E)). The model with better performance is ultimately 
selected to simulate daily streamflow from 2011 to 2100 in order to determine the effects 
of future climate. The methodology for both models is described as follows. 
 
6.3.1 The SIMHYD model 
The SIMHYD model is a lumped conceptual rainfall-runoff model developed by the 
Cooperative Research Center for Catchment Hydrology (CRCCH), Australia. It is included 
in a software package called the Rainfall Runoff Library (RRL), which contains five 
rainfall-runoff models – AWBM, Sacramento, SIMHYD, SMAR and TANK. Each model 
has different objectives; for example, the AWBM model computes the water balance of a 
basin for flood hydrograph modeling. The RRL is a free software and available at 
http://www.toolkit.net.au/Tools/RRL. 
 
The SIMHYD model simulates daily streamflow using the continuous time series of daily 
rainfall and average areal potential evapotranspiration (Podger, 2004; Chiew et al., 1996). 
The SIMHYD model has nine parameters: baseflow coefficient, impervious threshold, 
infiltration coefficient, infiltration shape, interflow coefficient, pervious fraction, rainfall 
interception store capacity (RISC), recharge coefficient, and soil moisture store capacity 
(SMSC). The default values of the nine parameters are shown in Table 6.3. 
 
Table 6.3: Default Values of the Nine Parameters of the SIMHYD Model 

Parameter Default value Default minimum Default maximum 
Baseflow coefficient (-) 0.3 0.0 1.0 
Impervious threshold (-) 1.0 0.0 5.0 
Infiltration coefficient (-) 200.0 0.0 400.0 
Infiltration shape (-) 3.0 0.0 10.0 
Interflow coefficient (-) 0.1 0.0 1.0 
Pervious fraction (-) 0.9 0.0 1.0 
RISC (mm) 1.5 0.0 5.0 
Recharge coefficient (-) 0.2 0.0 1.0 
SMSC (mm) 320.0 1.0 500.0 

 
The algorithm of the SIMHYD model is presented in Figure 6.4. Rainfall and potential 
evapotranspiration (ETp) are specified as the inputs for the model. The total runoff of a 
basin is a sum of the runoff from pervious and impervious areas. The runoff from the 
pervious areas involves the infiltration excess runoff, the saturation excess runoff or 
interflow and the baseflow. In pervious areas, the rainfall first satisfies ETp by intercepting 
ET which comes from trapped water by interception storage like a canopy. Then, the 
throughfall moisture, which is the rainfall remaining after interception ET, infiltrates to the 
soil. The infiltration excess runoff is estimated depending on the infiltration coefficient and 
infiltration shape. Subsequently, based on the interflow coefficient, recharge coefficient 
and SMSC, the infiltrated moisture is diverted to the river in terms of either saturation 
excess runoff or interflow, depending upon the current state of soil wetness. The baseflow 
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is calculated using a baseflow coefficient. In the impervious area, the runoff is estimated as 
the moisture that exceeds ET in the impervious area (i.e. impervious ET). 
 

 
Figure 6.4: Structure of the SIMHYD model. 
 
The SIMHYD model provides several methods of parameter optimization. Optimization is 
a function of automatic calibration of nine parameters that give the best value of the 
objective functions. The primary objective functions involve the Nash-Sutcliffe, sum of 
square of errors (SSE), root mean square error (RMSE), root mean square (RMS) 
difference about bias, absolute value of bias, the sum of square roots, the sum of the 
squares of the difference of square roots, and the sum of the differences of logs. Moreover, 
optional secondary objective functions include the runoff difference in percentage, flow 
duration curve and baseflow method 2. Among several optimization methods, the simplest 
method is uniform random sampling (Podger, 2004). Other methods are pattern search 
(single- and multi-start), Rosenbrock (single- and multi-start), the genetic algorithm and 
shuffled complex evolution (SCE-UA). In this study, the pattern search multi-start has 
been applied to optimize the nine parameters of the SIMHYD model. The pattern search 
multi-start is a simple and quick method for optimization that can overcome the problem of 
reaching local optimums by finding global optimums. 
 
Due to a small number of model parameters and the provided parameter optimization, the 
SIMHYD model is easy to apply. Calibration and validation using SIMHYD in this study 
are done at six streamflow stations (P4A, P21, P71, P24A, 061302 and 061501) which are 
located at the outlets of certain sub-basins (Mae Taeng, Mae Rim, Mae Ngan, Mae Klang, 
Upper Mae Cham and Mae Tuen respectively). At other six gauging stations that measure 
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combined flow from several sub-basins, the SIMHYD model, which is a lumped 
conceptual model, is not suitable for application due to its algorithm meant for a basin with 
homogeneous characteristics. 
 
6.3.2 The HEC-HMS model 
The Hydrologic Modeling System (HMS) is a free software developed by the Hydrologic 
Engineering Center (HEC) of the U.S. Army Corps of Engineers, USA and available at 
http://www.hec.usace.army.mil/software/hec-hms. The HEC-HMS model simulates 
continuous streamflow or runoff over longer periods of time using precipitation like 
rainfall and snow and ETp as the input (U.S. Army Corps of Engineers, 2000). The HEC-
HMS model provides both: lumped simulation and spatially distributed simulation using a 
grid cell depiction of the basin characteristics. In the model, the outflow of a basin is 
computed as the sum of the direct runoff (i.e. surface flow) and baseflow (i.e. subsurface 
flow). To compute direct runoff and baseflow, the HEC-HMS model has four components: 
loss, transform, baseflow and routing. 
 
The loss component provides seven optional methods to calculate the total loss of a basin 
including actual evapotranspiration (ETa), surface depression and soil infiltration. The 
seven methods are deficit constant, initial constant, exponential, Green and Ampt, SCS 
curve number, soil moisture accounting (SMA) and Smith Parlange. The gridded loss is 
also available in the deficit constant, Green and Ampt, SCS curve number and SMA. In the 
transform component, five methods (the Clark unit hydrograph, kinematic wave, 
ModClark, SCS unit hydrograph and Snyder unit hydrograph) are provided to transform 
excess precipitation into surface runoff. The hydrograph of the transform component can 
also be specified by users with two available options: (i) the user-specified S-graph; and 
(ii) the user-specified unit hydrograph. To estimate the baseflow of a basin, there are five 
methods provided in the baseflow component of the HEC-HMS model. These include 
bounded recession, the constant monthly baseflow, the linear reservoir, the nonlinear 
Boussinesq and recession. Furthermore, the routing component calculates the outflow in an 
open channel which combines several inflows coming from one or more elements (sub-
basins) in the basin. The routing component has six optional methods: kinematic wave, lag, 
modified pulse, Muskingum, Muskingum Cunge and straddle stagger. Each method of the 
four components (loss, transform, baseflow and routing) requires different parameters 
(Appendix F1) which can be calibrated automatically by optimization trials. Two methods 
(i.e. univariate gradient, and Nelder and Mead) are available to determine the optimal 
parameters that give the best value of an objective function. The objective functions 
include the peak-weighted RMS error, sum of squared residuals, sum of absolute residuals, 
percentage error in peak flow, percent error in volume, RMS log error and time-weighted 
function (U.S. Army Corps of Engineers, 2000). 
 
Figure 6.5 shows the algorithm of the HEC-HMS model. The total runoff is the total of the 
runoff from pervious and impervious surfaces. The runoff from pervious surfaces is subject 
to losses such as ET and infiltration, whereas the runoff from impervious surfaces is 
estimated without considering ET, infiltration and other losses. In this process, the 
precipitation on pervious surfaces is trapped by canopy interception storage on trees, 
shrubs and grasses. Then, the moisture in the canopy storage which cannot reach the soil 
surface evaporates to the atmosphere. It is also important to note that ET loss is estimated 
on no precipitation days and cannot exceed atmospheric ETp. So, the canopy loss depends 
on maximum canopy storage and ETp. Subsequently, precipitation which is not trapped by 
the canopy interception storage reaches the ground surface and is captured by surface 
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interception storage. Based on the maximum soil storage capacity and infiltration rate, the 
moisture stored in the surface depressions either infiltrates the soil or evaporates into the 
atmosphere. The remaining depth from the total loss is defined as precipitation excess, and 
is ultimately transformed into surface runoff. Furthermore, the baseflow that is calculated 
based on a selected method is added to the surface runoff to obtain the total runoff. 
 

 
Figure 6.5: Structure of the HEC-HMS model. 
 
Figure 6.6 presents the schematic of a HEC-HMS model for the Ping River Basin. In this 
study, the HEC-HMS model is calibrated and validated at 12 streamflow stations. Six 
stations are located at the outlets of different sub-basins to measure the streamflow of 
tributaries (e.g. Station P4A measures streamflow of the Mae Taeng (see also Table 6.2) 
before the streamflow drains into the main river, Ping. Six other stations are located on the 
Ping River to measure combined flow from several sub-basins (e.g. Station P75 measures 
combined streamflow from the Upper Ping part Basin and the Mae Ngad Basin). The 
inflow of the Bhumipol Dam coming from the Ping River Basin is observed at Station 
P12B. The streamflow simulation at this station can be used for the development of 
management strategies of the reservoir and operational purposes of the Bhumipol Dam in 
accordance with the available inflow. 
 
In this study, the deficit and constant method is adopted to compute total loss in each sub-
basin. This method has eight parameters (Table 6.4) related to canopy interception loss, 
surface depression loss and infiltration loss. The Clark unit hydrograph is selected to 
transform excess rainfall into surface runoff. Two parameters are involved in this method. 
The recession method is used to compute baseflow with three parameters. The lag method 
having one parameter is applied for the routing component. 
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Figure 6.6: Schematic of the HEC-HMS model for the Ping River Basin. 
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Table 6.4: List of the Adopted Method of Each Component in the HEC-HMS Model and 
Its Parameters 

Component/Method Parameter 
Loss component  

Deficit and constant Initial canopy storage (%) 
 Maximum canopy storage (mm) 
 Initial surface storage (%) 
 Maximum surface storage (mm) 
 Initial deficit (mm) 
 Maximum deficit (mm) 
 Infiltration constant rate (mm h-1) 
 Imperviousness (%) 
Transform component  

Clark unit hydrograph Time of concentration (h) 
 Storage coefficient (h) 
Baseflow component  

Recession Initial discharge (m3 s-1) 
 Recession constant (-) 
 Ratio to peak (-) 
Routing component  

Lag Lag time (min) 
 
6.4  The model performances 
The SIMHYD and HEC-HMS models are calibrated from 1st April 1999 to 31st March 
2003 and validated from 1st April 2003 to 31st March 2007. The performance of both 
models is evaluated based on four efficiency indexes, including the deviation of volume 
(Dv), correlation coefficient (r), normalized root mean square error (NRMSE), and the 
Nash-Sutcliffe efficient index (E) as shown in Equation 6.1-6.4 respectively. 
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where Qm,t and Qo,t are the daily modeled and observed discharges on day t, and mQ  and oQ  
are the averages of daily modeled and observed discharge respectively. 
Dv is applied to determine the underestimation or overestimation of average simulated 
streamflow compared to the observations. Dv ranges from -∞ to +∞; however, a value 
nearly 0 indicates a better performance of the model. Underestimation and overestimation 
are defined as the negative and positive values respectively of Dv. 
r is used to test the relation between simulated and observed streamflow. It varies from -1.0 
to +1.0; a value of +1.0 denotes a perfect fit between simulated and observed streamflow. 
However, a value of r greater than +0.7 can indicate satisfactory simulation (Lévesque et 
al., 2008). 
NRMSE represents the deviation of error obtained from simulation. A smaller NRMSE 
with a value close to 0 denotes a small error from a model. 
E can also determine standardized error. It ranges from -∞ to +1.0. The value of 0 
represents no difference of the model performance over the average of observed 
streamflow. The best fit is associated with a value nearly equal to +1.0; however, a value 
above +0.5 indicates a satisfactory efficiency of the model (Lévesque et al., 2008). 
 
In this study, the model performance in capturing the variability of low and high 
streamflow has been evaluated. The means and medians of historical data during 
calibration and validation (Table 6.5) are used as the thresholds of low and high 
streamflow. Daily discharge that is less than the mean (median) is defined as low flow, i.e. 
below-mean (below-median) streamflow. Otherwise, the daily discharge is denoted as high 
flow, i.e. above-mean (above-median) streamflow. The efficiency indexes (Dv, NRMSE 
and E) are then adopted and computed separately for each category. 
 
Table 6.5: Statistics of the Daily Historical Streamflow 

(a) Calibration (b) Validation Station 
Mean 

(m s-1) 
Median 
(m s-1) 

CV Skew Mean 
(m s-1) 

Median 
(m s-1) 

CV Skew 

P75 19.04 14.20 1.04 3.65 28.97 20.00 1.16 3.83 
P4A 11.71 4.28 1.52 3.11 15.14 4.38 1.86 4.17 
P67 34.57 21.78 1.20 3.63 55.45 25.92 1.45 3.98 
P21 4.51 3.17 1.36 4.45 4.54 2.14 1.54 3.94 
P1 42.95 29.80 1.07 3.44 60.91 33.20 1.36 3.81 
P71 12.43 5.41 1.78 4.62 9.59 3.20 2.14 5.07 
P24A 5.70 2.69 1.89 6.00 4.27 1.81 1.98 6.53 
P73 128.96 63.85 1.43 3.00 134.69 59.50 1.46 2.71 
061302 21.50 13.30 1.21 5.85 22.78 12.80 1.63 7.03 
P14 37.33 22.74 1.12 3.56 36.45 19.90 1.78 7.54 
061501 28.28 11.50 1.59 3.79 19.79 9.08 1.57 4.61 
P12B 197.63 118.40 1.30 3.04 184.48 79.75 1.52 2.90 

Calibration: 1st April 1999 to 31st March 2003; validation: 1st April 2003 to 31st March 2007. 
CV: coefficient of variation=standard deviation/mean. 
 
6.4.1 Calibration and validation of the SIMHYD model 
The SIMHYD model is calibrated with the primary objective of preserving the variability 
of average monthly streamflow. For calibration (i.e. from April 1999 to March 2003), 
taking advantage of parameter optimization, nine parameters of the SIMHYD model are 
optimized by the pattern search multi-start method with the secondary objective of 
maximizing the Nash-Sutcliffe efficient index (E), which happens to be one of the 
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objective functions provided by the model. At six gauging stations, calibration is done 
separately for each streamflow station. As shown in Figure 6.7, the SIMHYD model 
cannot capture the variability of average monthly streamflow except at Station P21 and 
061302. Automatic calibration computes a large amount of actual evapotranspiration (ETa) 
even during the monsoon season (i.e. ASO). Hence, the overestimation of loss is observed 
at all stations. In the SIMHYD model, ETa is a sum of interception ET, impervious ET and 
soil ET; however, ETa is primarily estimated by interception ET which depends upon a 
parameter, namely the rainfall interception store capacity (RISC (mm)). To improve ETa 
calculation, manual calibration should be done together with optimization. Since ETa is 
overestimated to begin with, the optimization of the SIMHYD model compensates and 
matches daily observed streamflow by adding baseflow. Overall, 85-97% of total simulated 
runoff is accounted for by the baseflow. The remaining runoff is composed of impervious 
runoff, infiltration excess runoff and interflow runoff.  
 
On account of a large baseflow on the simulated discharge, the most sensitive parameters 
in this case include the infiltration coefficient, infiltration shape, and pervious fraction. A 
range of infiltration coefficients which significantly influences the model performance (i.e. 
E) is from 0 to 20. The higher the infiltration coefficient, the better the performance of the 
model. A value of infiltration shape above 1.0 also moderately influences the performance 
of the SIMHYD model. An increasing value of the infiltration shape is associated with a 
decreasing E. In contrast, a higher E is obtained with respect to an increasing pervious 
fraction. Large changes in E are associated with the pervious fraction varying from 0 to 
0.6. 
 
As seen in Table 6.6(a), the underestimation in the mean of daily streamflow (i.e. negative 
Dv) during the calibration period is obtained at Station P21, P24A, 061302 and 061501, 
whereas overestimation (i.e. positive Dv) is observed at other two stations (i.e. P4A and 
P71). Dv varies from -5% to 156%. The large Dv percentage at Station P4A and P71 is 
associated with the high variability of observed streamflow – i.e. the CV are estimated at 
1.52 and 1.78 respectively (see Table 6.5) – in the large drainage areas (i.e. 1,902 and 
1,771 km2 respectively). Among the six streamflow stations, the best performance of the 
SIMHYD model is obtained at Station 061302 with the maximum r and E estimated at 
0.78 and 0.60 respectively, and with a minimum NRMSE computed at 0.76. Station 
061302 has a drainage area of 1,946 km2 with 97.22% of the basin area covered by forests. 
On the other hand, the worst performance is observed at Station P4A which has a drainage 
area of 1,902 km2 with forests covering around 89.07% of the basin area. Note that the 
homogeneity of land use (i.e. basin characteristics) may play a role on the model 
performance (Chiew and Siriwardena, 2005). Therefore, the SIMHYD model has difficulty 
in calibrating the high varied streamflow in large basins because of its simple mathematical 
computation and an assumption of homogeneity throughout the basin, which cannot well 
represent water balance of a large catchment. However, the model efficiency is not linearly 
related to the percentage of land use at all streamflow stations. The hydrographs of daily 
simulated streamflow from the SIMHYD model during calibration and overlaid by 
observations at six gauging stations are presented in Appendix G1 to G6. 
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Figure 6.7: Annual variability of simulated (Qmodel) and observed (Qobs) streamflow from 
the calibration of the SIMHYD model at six gauging stations: (a) P4A; (b) P21; (c) P71; 
(d) P24A; (e) 061302; and (f) 061501. 
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Table 6.6: Performance of the SIMHYD Model 

(a) Calibration (b) Validation Station 
Dv (%) r NRMSE E Dv (%) r NRMSE E 

P4A 156.15 0.48 2.25 -1.19 127.59 0.57 2.08 -0.25 
P21 -4.67 0.66 1.03 0.42 -12.89 0.65 1.25 0.35 
P71 60.69 0.68 1.65 0.14 51.20 0.74 1.98 0.15 
P24A -16.97 0.75 1.26 0.55 -53.26 0.56 1.73 0.24 
061302 -9.79 0.78 0.76 0.60 -32.36 0.72 1.21 0.45 
061501 -25.37 0.59 1.31 0.32 -20.46 0.65 1.24 0.38 

Calibration: 1st April 1999 to 31st March 2003; validation: 1st April 2003 to 31st March 2007. 
 
During validation (i.e. from April 2003 to March 2007), the SIMHYD model faces 
difficulty in capturing the average monthly streamflow at all the six gauging stations. The 
underestimation of streamflow in the wet season, especially from August to October, is 
observed at Station P24A, 061302 and 061501, and vice versa for Station P4A, P21 and 
P71. Moreover, the underestimation of streamflow in the dry season (i.e. during December 
to March) is consistent in all stations with the exception of Station P4A. Overall, 
underestimation and overestimation are observed at the same stations as those where 
underestimation and overestimation are obtained while calibrating (Table 6.6(b)). Dv 

ranges from -53% to 128% and r varies from 0.56 to 0.74. A satisfactory agreement 
between simulations and observations (r>0.7) is found at Station P71 and 061302. The 
minimum and maximum NRMSE are estimated to be 1.21 and 2.08 respectively. The 
larger residuals correspond to higher magnitudes of observed streamflow. Furthermore, E 
is used to evaluate the model performance with more focus on the model capability for 
capturing outliers rather than the values close to average streamflow (Krause et al., 2005). 
The E at all stations is not satisfactory because the SIMHYD model cannot preserve the 
peaks of hydrographs (i.e. the outliers). However, a maximum E value of 0.45 is obtained 
at Station 061302. Hence, the model efficiency in validation is not significantly better than 
that of calibration. 
 
6.4.2 Calibration and validation of the HEC-HMS model 
The parameters of the HEC-HMS model at 12 streamflow stations were also calibrated 
from April 1999 to March 2003 with the primary objective of preserving the variability of 
average monthly streamflow and the secondary objective of attaining no bias (i.e. Dv=0) 
when calculating the mean of daily streamflow. During the calibration period, the HEC-
HMS model can fairly capture the variability of average monthly streamflow at all stations 
(Figure 6.8). The calibration has difficulty fitting the monthly streamflow during the pre-
monsoon season (i.e. MJJ), which is influenced by several parameters related to ETa 
including the canopy maximum storage (mm), surface maximum storage (mm), infiltration 
constant rate (mm h-1), and imperviousness (%). The increasing canopy and surface 
maximum storage, which provide more water for ETa, influence decreasing simulated MJJ 
streamflow. With a higher infiltration constant rate, the modeled MJJ streamflow will also 
decrease due to soil infiltration loss. However, the increasing simulated MJJ streamflow is 
due to a greater imperviousness. For the wet season streamflow (i.e. ASON), the three 
most sensitive parameters are surface maximum storage, infiltration constant rate and 
imperviousness. Furthermore, the dominant parameters of streamflow in the dry season 
(i.e. from December to April) are associated with baseflow calculation (e.g. recession 
constant and ratio to peak). 
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Figure 6.8: Annual variability of simulated (Qmodel) and observed (Qobs) streamflow from 
the calibration of the HEC-HMS model at 12 gauging stations: (a) P75; (b) P4A; (c) P67; 
(d) P21; (e) P1; (f) P71; (g) P24A; (h) P73; (i) 061302; (j) P14; (k) 061501; and (l) P12B. 
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Figure 6.8 (cont). 
 
As seen in Figure 6.8(k), the poor performance of the HEC-HMS model is found at Station 
061501 as the model cannot capture September streamflow. The high peak of observed 
streamflow in September corresponds to positive anomalies in September 2000 and 2002 
(see Figure 6.9 and Appendix H1 to H12 for more plots of the monthly anomalies at other 
stations). Note that the monthly anomalies of rainfall and streamflow are estimated with 
respect to the 1999-2007 average monthly values. 

(g) (h) 

(i) (j) 

(k) (l) 
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Figure 6.9: Monthly anomalies of observed rainfall and streamflow at Station 061502 from April 1999 to March 2003. The monthly anomalies 
are estimated with respect to the 1999-2007 averaged values of each month. 
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At Station 061501, the HEC-HMS model hardly captures the extremely high daily 
streamflow of September 2000 and 2002 (i.e. positive anomalies) as shown in the 
hydrographs of daily discharge (Figure 6.10). Other indexes indicating poor performance at 
this station (r=0.62, NRMSE=1.25, and E=0.39) have also been obtained (Table 6.7(a)). 
While calibration at Station 061501 can be done to capture the September peak with Dv=0, 
worse performances for other indexes suggests that this approach is not efficient for this 
particular station. 
 
In contrast, at other streamflow stations, the overall calibration results from the HEC-HMS 
model are satisfactory with correlations (r) between daily simulated and observed 
streamflow varying from 0.67 to 0.93. The minimum NRMSE is calculated to be 0.48 at 
Station P1 that measures daily streamflow of the Ping River which has a drainage area of 
6,355 km2. In terms of the Nash-Sutcliffe efficient index (E), a satisfactory calibration 
(E>0.5) is found at seven stations (P67, P1, P71, P24A, P73, P14 and P12B) where most of 
the stations measure streamflow combined with the main river. The maximum E is 
estimated at 0.85 at Station P73 which receives the runoff from a drainage area of 13,353 
km2. From the above results, it can be inferred that the HEC-HMS model performs well 
when capturing the variability of daily streamflow in small or large catchments. However, 
the model has difficulties in preserving the anomalies of daily streamflow, especially in the 
wet season. The hydrographs of daily simulated streamflow from the calibration of the 
HEC-HMS model along with daily observations are shown in Appendix I1 to I12. 
 
In the validation process from April 2003 to March 2007 (Table 6.7(b)), the 
underestimation in mean daily streamflow (i.e. negative Dv) is observed at all stations 
except at Station P14 and 061501. Dv varies from -30% to 4%. In terms of r, worse 
performance is obtained when validating than when calibrating in all stations except P4A, 
P21, 061302 and 061501. However, excluding Station P24A and 061501, the overall 
results in validation are satisfactory (r>0.7). NRMSE ranges from 0.70 at Station P12B to 
1.66 at P24A. The maximum E for validation is estimated at 0.79 at Station P12B, which 
measures the inflow of the Bhumipol Dam. Satisfactory efficiency in both calibration and 
validation at this station (P12B) ensures the possibility of implementing the model results 
in reservoir management and planning. It can be concluded that considering r, NRMSE and 
E, the efficiency of the HEC-HMS model in less in validation than during calibration. 
 
6.4.3 Performance in capturing low and high streamflows 
From Figure 6.11(a), we can see that during the calibration of the SIMHYD model, 
overestimation in the mean of low streamflow (i.e. below-mean and below-median 
streamflow) is addressed in all stations excluding P24A and 061302. In contrast, the 
underestimation in the mean of high streamflow (i.e. above-mean and above-median 
streamflow) is observed at all gauging stations with the exception of P4A and P71. The 
overestimation (underestimation) in the mean of low (high) streamflow is caused by a large 
overestimation of ETa and baseflow. Overall, the SIMHYD model better captures the 
variability of high discharge rather than low discharge, and this behavior is consistent with 
all efficiency indexes (Figure 6.11(a)-(c)). The model performance shows that parameter 
optimization of the SIMHYD model focuses more on matching peak discharges during the 
wet season more than during the low discharges in the dry season.  
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Figure 6.10: Hydrographs of daily simulated (Qmodel) and observed (Qobs) discharge from the calibration of the HEC-HMS model. 
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Table 6.7: Performance of the HEC-HMS Model 

(a) Calibration (b) Validation Station 
Dv (%) r NRMSE E Dv (%) r NRMSE E 

P75 0.003 0.85 0.76 0.47 -23.744 0.78 0.95 0.33 
P4A -0.001 0.70 1.12 0.46 -15.062 0.77 1.22 0.57 
P67 0.002 0.90 0.58 0.77 -30.276 0.86 0.80 0.69 
P21 0.001 0.67 1.10 0.34 -5.792 0.73 1.18 0.42 
P1 0.004 0.92 0.48 0.80 -25.904 0.88 0.71 0.73 
P71 0.000 0.77 1.22 0.53 -3.728 0.70 1.58 0.46 
P24A 0.001 0.78 1.25 0.56 -17.799 0.56 1.66 0.29 
P73 0.004 0.93 0.55 0.85 -23.649 0.88 0.74 0.74 
061302 -0.002 0.71 0.92 0.42 -14.991 0.74 1.11 0.53 
P14 -0.004 0.82 0.66 0.65 3.488 0.70 1.26 0.49 
061501 -0.001 0.62 1.25 0.39 3.652 0.65 1.29 0.32 
P12B 0.003 0.90 0.58 0.81 -11.556 0.90 0.70 0.79 

Calibration: 1st April 1999 to 31st March 2003; validation: 1st April 2003 to 31st March 2007. 
 
It is also observed that based on NRMSE (Figure 6.11(b)), at Station P21 and 061302, the 
residuals corresponding to low and high simulated streamflows are slightly different. It is 
also noted that when comparing all the stations in the Ping River Basin, the 1999-2003 
daily observed streamflow in these stations varies slightly – as in, CV is 1.36 and 1.21 
respectively (see also Table 6.5). Therefore, this can confirm that the SIMHYD model 
hardly simulates daily streamflow with large variability due to its simpler mathematical 
computation. 
 
On the other hand, in the calibration of the HEC-HMS model, the overestimation 
(underestimation) in the mean of low (high) streamflow is consistent in all the stations 
except at Station P1 (Figure 6.12(a)). The small errors noted there are associated with the 
simulations of high streamflow (Figure 6.12(b)). However, at several stations (P75, P67, 
P21, P1, P73, 061302, P14 and P12B), the errors in low and high simulated streamflow are 
not significantly different. Hence, the HEC-HMS model presents the same skill in the 
simulation of both low and high streamflow. Based on E, we can infer that the HEC-HMS 
model shows better performance in capturing high streamflow more than low streamflow 
(Figure 6.12(c)). A satisfactory value of E (E>0.5) is obtained at Station P67, P1, P73 and 
P12B. Overall, the HEC-HMS model performs well when capturing high discharges in the 
wet season (i.e. from August to November) but fails to efficiently capture the variability in 
low streamflow. This poor performance is related to the estimation of total loss and 
baseflow that influences daily simulated runoff. Improving the model efficiency needs 
obtaining more data of the soil profile, soil property, land use coverage and 
imperviousness. 
 
6.5  Comparison of models 
The SIMHYD model is a lumped rainfall-runoff model. Its algorithm is a simple 
computation of water balance in a basin. The model uses nine parameters to estimate 
losses, baseflow and runoff. The nine parameters can be optimized by a given optimizer 
with specified objective functions. The SIMHYD model is easy to apply because of its 
small number of parameters and its available parameter optimizations.  
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Figure 6.11: Efficiency indexes between below-mean (-median) and above-mean (-
median) streamflow in the calibration of the SIMHYD model. The indexes are: (a) Dv; (b) 
NRMSE; and (c) E. The plots in the right panel are the zoomed-in plots of the ones on the 
left panel. 
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Figure 6.12: Same as Figure 6.11 but for the HEC-HMS model. 
 
The HEC-HMS model is more complex than the SIMHYD model. The HEC-HMS model 
provides four components: loss, transform, baseflow and routing. Within each component, 

(c) (c) 

(b) (b) 

(a) (a) 
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several methods of mathematical computations are used to estimate ETa, infiltration, 
baseflow and runoff. The users can select a method based on the available data of model 
parameters. In this study, the comparison of the SIMHYD and HEC-HMS model 
performances has been done at six stations (P4A, P21, P71, P24A, 061302 and 061501). 
Depending on their efficiency, one model has been selected. 
 
Figure 6.13(a), shows that as expected, the HEC-HMS model performs better when 
preserving the average of daily streamflow at all stations compared to the SIMHYD model 
for the ideal parameter of Dv=0 in model calibration. In terms of agreement between 
simulated and observed discharge (i.e. r) (Figure 6.13(b)), HEC-HMS performs better in 
calibration (validation) except in Station 061302 (P71). However, in this station (061302), 
the value of r obtained from both models is slightly different: for calibration (validation), 
r=0.78 (0.74) from SIMHYD, and r=0.71 (0.70) from HEC-HMS. As for calibration and 
validation, the significant difference in r between both models is observed at Station P4A 
which presents a better performance of the HEC-HMS model than SIMHYD. So, overall, 
the HEC-HMS model better captures the variability of daily streamflow as compared to the 
SIMHYD model. 
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Figure 6.13: Comparison of performance between the SIMHYD and HEC-HMS models. 
The indexes of comparison are: (a) absolute Dv; (b) r; (c) NRMSE; and (d) E. 
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The residuals of simulation (i.e. NRMSE) (Figure 6.13(c)) from calibration and validation 
also indicate a greater efficiency of the HEC-HMS model than the SIMHYD model, in 
particular at Station P4A and P71. Additionally, the value of E from both calibration and 
validation (Figure 6.13(d)) is consistent with NRMSE. It is also important to note that the 
SIMHYD model has difficulties in streamflow simulation at Station P4A and P71 because 
these stations cover very large drainage areas and the heterogeneity of basin characteristics 
play a major role in model efficiency. At these stations, the daily observed streamflow 
during calibration and validation shows high variability (see also Table 6.5). Therefore, 
although the HEC-HMS model requires several parameters to drive its components, it can 
better capture the variability of daily observed streamflow than the SIMHYD model. 
Among several mathematical computation methods in the HEC-HMS model, the users can 
select a method of each component which well represents water balance in a specific basin 
and gives greater accuracy in the estimation of ETa, infiltration, baseflow and runoff. 
 
The performance corresponding to the low (i.e. below-mean) and high (i.e. above-mean) 
streamflow has also been evaluated, as shown in (Figure 6.14). The efficiency indexes, 
including Dv, NRMSE and E prove that the HEC-HMS model performs better when 
capturing the variability of low streamflow, especially in Station P4A and P71. A severe 
problem in the SIMHYD model found in Station P4A is in the simulation of low flow. The 
calibration of Dv=838%, NRMSE=9.86 and E=-58.31 is highly unsatisfactory. For 
validation, the comparison between both models shows results consistent with calibration. 
It can be argued that the separated and complex computation components (such as loss and 
baseflow) in the HEC-HMS model are more flexible and more efficient in fitting low 
streamflow of daily observations. Even for high streamflow, a smaller Dv from calibration 
and validation at all stations is obtained with HEC-HMS. However, at some stations, the 
NRMSE and E are inconsistent with Dv because Dv is a rough efficiency index used to 
evaluate a model performance only in capturing mean daily streamflow over a specific 
period, whereas NRMSE and E evaluate the model at each point of daily data recording. 
For calibration, the HEC-HMS model indicates higher efficiency at three gauging stations: 
P4A, P71 and 061501. As expected, since the SIMHYD model performs most inefficiently 
at Station P4A amongst the three stations, HEC-HMS is a better option for P4A. As for 
validation, although NRMSE is not significantly different between the two models, the 
HEC-HMS model performs better when capturing the variability of high streamflow than 
the SIMHYD model at four stations. E also confirms the better performance of the HEC-
HMS model at these stations. 
 
Hence, the SIMHYD model is more difficult to deal with heterogeneity of basin 
characteristics than the HEC-HMS model because of its simple mathematical computation 
of water balance. The SIMHYD model provides one method of each component (i.e. initial 
loss, infiltration and baseflow) to calculate runoff, which cannot well represent water 
balance of a large and heterogeneous basin. In contrast, the HEC-HMS model has several 
methods of mathematical computations within each component. The users can select a 
method that well captures water balance of a basin. In particular, compared to the 
SIMHYD model, the HEC-HMS model computes initial loss with a separation of the 
canopy interception loss and the surface interception loss, which better represents water 
balance of heterogeneous basin. 
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Figure 6.14: Same as Figure 6.13 but for the below-mean streamflow (left) and above-
mean streamflow (right): (a) absolute Dv; (b) NRMSE; and (c) E. 
 
In terms of model dependency, Figure 6.7 and 6.8 show the performance of the SIMHYD 
and HEC-HMS model in preserving the variability of monthly streamflow. The 

(a) (a) 

(b) (b) 

(c) (c) 
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performance of both models is slightly different. However, the HEC-HMS model performs 
better in capturing daily streamflow, in particular low flow and high flow, than the 
SIMHYD model (Figure 6.13 and 6.14). Thus, the model dependency cannot be observed 
in monthly streamflow simulation, but it is found in the simulation of finer time scale. 
Consequently, the HEC-HMS model is selected to simulate daily streamflow to determine 
the effects of future changing climate. 
 
6.6  The performance of the HEC-HMS model in capturing the frequency-duration-
curve (FDC) 
To confirm the performance of the HEC-HMS model as ideal for this part of the study, 
simulations using the 1999-2007 daily observed rainfall were done with the model 
parameters as obtained from calibration. At 12 gauging stations, the daily averages of 
simulated streamflow were calculated for a water year from April to March and plotted 
along with the daily average streamflow of observations (see Figure 6.15). The 1999-2007 
simulation indicates that the HEC-HMS model can fairly well capture daily average 
streamflow at all stations. However, an underestimation of the daily average streamflow 
from December to April, or the dry season, is observed at Station P75 and P4A. 
 
The frequency-duration-curve (FDC) presents the relationship between exceedence 
probabilities or frequencies of occurrence and magnitudes of discharges. The FDC for a 
specific period (like calendar years, seasons and months) can be computed using 
discharges at the required time scale (such as daily, monthly and seasonal). In this study, 
the FDC for a water year from April to March (i.e. a 365-day period) is established 
separately for 12 gauging stations using daily average discharges. First, the daily averages 
of observed discharges are computed. The 365 daily averages are then sorted in a 
descending order. Subsequently, a rank (m) is assigned for each value of the averaged 
discharge. Out of the 365 daily averages, the maximum discharge is associated with the 
first rank (m=1), and the minimum discharge corresponds to the last rank (m=365). The 
exceedence probability (p) of a discharge is then calculated using Equation 6.5. 
 

*100%
1

m
p

n
=

+
                 Equation 6.5 

 
where p is the exceedence probability of a given discharge, m is its rank, and n is the total 
number of discharges. The FDC provides an exceedence probability or frequency of 
occurrence according to a given magnitude of discharge. For example, Q90=7.5 m3 s-1 
means that 90% of the observed discharges exceed or equal 7.5 m3 s-1. In terms of 
frequency also, it can be implied that discharges above or equal to 7.5 m3 s-1 can be 
observed for 90% of the time. 
 
The exceedence probability of a simulated discharge is also computed in this study. The 
FDC of 1999-2007 simulations are then plotted along with the FDC of observations in 
Figure 6.16. In general, the overestimation of discharge above Q10 can be observed, 
especially at Station P21, P1 and P24A. The HEC-HMS model presents a good 
performance in capturing the FDC of discharge below Q90, excluding Station P75 where it 
gives an underestimation. At Station P24A (061501), the underestimation (overestimation) 
of discharge between Q10 and Q40 (Q30 and Q60) has been found. As a result, it can be 
concluded that the HEC-HMS model can fairly capture the FDC of historical discharge at 
all stations. 
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Figure 6.15: Daily averaged streamflow for a water year from 1st April to 31st March at the 
12 gauging stations: (a) P75; (b) P4A; (c) P67; (d) P21; (e) P1; (f) P71; (g) P24A; (h) P73; 
(i) 061302; (j) P14; (k) 061501; and (l) P12B. 
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Figure 6.15 (cont). 
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Figure 6.16: Frequency-duration-curve (FDC) for a water year of daily average discharges 
at the 12 gauging stations: (a) P75; (b) P4A; (c) P67; (d) P21; (e) P1; (f) P71; (g) P24A; (h) 
P73; (i) 061302; (j) P14; (k) 061501; and (l) P12B. 
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Figure 6.16 (cont). 
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6.7  Summary 
The SIMHYD and HEC-HMS models were proposed in this study for the Ping River Basin 
streamflow observation. Both were calibrated from April 1999 to March 2003 and 
validated from April 2003 to March 2007 at six and 12 gauging stations respectively. The 
model performances were evaluated using four efficiency indexes, namely the deviation of 
volume (Dv), the correlation coefficient (r), the normalized root mean squared error 
(NRMSE), and the Nash-Sutcliffe efficient index (E). It can be observed that the lack of 
homogeneity of basin characteristics may cause the efficiency of the SIMHYD model to go 
down at those stations that cover large drainage areas with high variability of daily 
streamflow because the SIMHYD model provides a simple mathematical computation of 
water balance. Each component in the SIMHYD model that has one method to compute 
runoff cannot well represent water balance of a complex basin. In contrast, the HEC-HMS 
model can capture well the variability of average monthly streamflow. However, the 
overestimation of low flow and underestimation of high flow can be observed in the 
simulations of both models. Furthermore, the performance of both models in capturing 
high streamflow is better than when capturing low streamflow. 
 
To select one model, the performances of both models were compared. The SIMHYD and 
HEC-HMS models perform well in preserving the variability of monthly streamflow; 
however, overall, the HEC-HMS model can better capture the daily observed streamflow. 
This shows model dependency of the daily streamflow simulation. Moreover, the initial 
loss computation of the HEC-HMS model with a separation of the canopy and surface 
interception can better deal with the heterogeneity of basin characteristics than the 
SIMHYD model. Although the efficiency corresponding to capturing low streamflow is 
slightly different between both models, the low flow is also better captured by the HEC-
HMS model, which provides the separate component of baseflow to simulate streamflow 
during the dry season. For high streamflow as well, the HEC-HMS model can better 
preserve the average streamflow as compared to the SIMHYD model. NRMSE and E show 
that HEC-HMS has greater efficiency for high flow simulation, but this is not consistent at 
all stations. Notwithstanding minor dips in performance, the HEC-HMS model works well 
for this study, and hence it has been selected to simulate daily streamflow in the Ping River 
Basin using 2011-2100 rainfall ensembles. The simulation results are presented in the 
following chapter. 
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Chapter 7 
Effects of Future Climate on Streamflow in the Ping River Basin 

 
7.1  Introduction 
As seen in the previous chapter, although the performance of the HEC-HMS and SIMHYD 
models in capturing monthly streamflow is slightly different (Figure 6.7 and 6.8), the 
HEC-HMS model performs better in preserving the variability of daily observed 
streamflow in particular low flow and high flow (Figure 6.14). This indicates a model 
dependency of the results for determining the effects of future climate on daily streamflow. 
Thus, the HEC-HMS model is best suited to simulate streamflow in the Ping River Basin 
using the 2011-2100 daily rainfall ensembles, which are obtained from the multisite daily 
rainfall generator presented in Chapter 5. Based on the assumption that the model 
parameters obtained from calibration are valid for basin characteristics in the present and 
future, rainfall-runoff simulation aims to determine the effects of future climate on 
streamflow under two scenarios of future climate, Scenario A2 and B2. Anomalous 
streamflow events like low and high flows are analyzed using defined thresholds. Defined 
thresholds are estimated from the frequency-duration-curve (FDC) of daily averages of the 
observed discharges. Moreover, seasonal anomalies like low flow in a wet season and high 
flow in a dry season are determined using thresholds from the FDC of average discharges 
in the wet and dry seasons respectively. The analysis of anomalous events caused by future 
climate can be utilized to plan adaptation strategies for agriculture and reservoir operations 
with the aim of reducing loss to agricultural production, reducing damages to 
infrastructure, cutting down the number of deaths and eliminating discontinuity of 
economic growth in the study basin, all of which are caused by anomalous streamflow 
events. 
 
7.2  Data description 
7.2.1 The 2011-2100 daily rainfall 
The daily rainfall data used in this study is gained from a multisite daily rainfall generator 
which simulates daily rainfall at 50 selected stations based on two scenarios of future 
climate. The length of rainfall time series at each station is 90 years, from 1st January 2011 
to 31st December 2100. Using the Thiessen method, the average daily rainfall is computed 
for each sub-basin in the Ping River Basin. The 2011-2100 daily rainfall is used as the 
input for the HEC-HMS model, whose parameter calibration and validation have been 
presented in Chapter 6.  
 
7.2.2 Daily observed streamflow data 
The parameters of the HEC-HMS model are calibrated at 12 gauging stations located in the 
Ping River and its tributaries. With no missing data, the length of daily time series at the 
relevant stations ranges from 8 to 31 years (Table 7.1). In this study, the daily observed 
streamflows are used to define thresholds for anomalous streamflow events like low flows 
and high flows. The daily observed data is also used in the analysis of anomalous events to 
determine the effects of future climate. The variability of observed streamflows is 
investigated and then compared to the simulated discharges under future climate scenarios 
A2 and B2. 
 
7.3  Methodology 
Daily streamflow is simulated by the HEC-HMS model using the 2011-2100 daily 
modeled rainfall under two scenarios of future climate, A2 and B2. The parameters of the 
HEC-HMS model at 12 gauging stations are calibrated during April 1999 to March 2003 
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and validated from April 2003 to March 2007, as shown in Chapter 6. Based on an 
assumption that the calibrated parameters are valid for both recent and future basin 
characteristics, the effects of future climate on daily streamflow, in particular for 
anomalous streamflow events, are addressed by comparing simulated and historical 
streamflow. 
 
Table 7.1: List of the 12 Gauging Stations 

Station Sub-basin Stream/ 
River 

Length 
of data 
(year) 

Start date End date 

P75 Upper Ping Part 
and Mae Ngad 

Ping 8 1st April 1999 31st December 2007 

P4A Mae Taeng Mae Taeng 26 1st April 1981 31st December 2007 
P67 - Ping 11 1st April 1996 31st March 2007 
P21 Mae Rim Mae Rim 26 1st April 1981 31st December 2007 
P1 - Ping 26 1st April 1981 31st December 2007 
P71 Mae Ngan Mae Khan 11 1st April 1996 31st December 2007 
P24A Mae Klang Mae Klang 26 1st April 1981 31st December 2007 
P73 - Ping 9 1st April 1998 31st December 2007 
061302 Upper Mae Cham Mae Cham 25 1st January 1983 31st December 2007 
P14 - Mae Cham 26 1st April 1981 31st December 2007 
061501 Mae Tuen Mae Tuen 31 1st January 1977 31st December 2007 
P12B - Ping 26 1st April 1981 31st December 2007 

 
7.3.1 Low and high flow analysis 
Anomalous streamflow events, i.e. low and high flows, are determined using thresholds 
that are obtained from the frequency-duration-curve (FDC) of observed streamflow. In this 
study, using daily averaged discharge, a separate FDC is established for each of the12 
streamflow stations. Q90 and Q10 obtained from the FDC for a water year (i.e. from April to 
March) are the thresholds used to define what an anomalous streamflow event is. Low flow 
is defined by a daily discharge that is below or equal the Q90 obtained from the FDC of 
observations. Although low flow analysis depends upon defined thresholds that are not 
classified by any standard, several researchers have suggested using Q90 to determine a low 
flow or streamflow drought (Edossa et al., 2010; Fleig et al., 2006). On the other hand, 
daily discharge above Q10 of the observations represents a high flow. This can be defined 
as a flooding event, even if the flood situation in a basin also depends on the capacity of 
the channel and flood plain, the current wetness of soil during consecutive wet days and 
the water level of the aquifer. In this study, considering only daily discharges at 12 gauging 
stations without other information, a daily discharge that is above the observed Q10 is 
denoted as high flow or anomalous event. 
 
7.3.2 Seasonal anomaly analysis 
An anomalous event of daily discharge in a specific season is defined using thresholds 
obtained from the FDC for that season. In this study, the anomalous events in wet and dry 
seasons are examined. The FDC for a wet season is computed using daily average 
discharges from 1st August to 30th November (i.e. a 122-day period), whereas the FDC for 
a dry season is developed using daily average discharges from 1st December to 30th April 
(i.e. a 151-day period). The FDC for wet and dry seasons are done separately for each 
gauging station. The Q90 obtained from the FDC of observations during a wet season (i.e. 
Q90,wet) and Q10 achieved from the FDC during a dry season (i.e. Q10,dry) are used to define  
anomalous events in both seasons. A daily discharge that is below or equal to Q90,wet is 
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denoted as an anomalous low flow in a wet season. On the other hand, anomalous high 
flow in a dry season is defined by a daily discharge that is above Q10,dry. 
 
7.4  Results and discussion 
The 2011-2100 daily rainfall under two scenarios of future climate (A2 and B2), which is 
obtained from a multisite daily rainfall generator, is used in the HEC-HMS model to 
simulate daily discharges. Then, daily simulated streamflow under future climate scenarios 
are averaged over the period of 2011-2100 and plotted along with the daily average 
streamflow of observations (Figure 7.1). The effects of future climate on daily average 
streamflow from 2011 to 2100 are slightly different between the two scenarios. Under A2 
and B2, at the 12 gauging stations, the daily average streamflow during the dry season, 
especially in December and January, decreases. However, at some stations (e.g. Station 
061302, P14 and P12B), daily streamflow during the pre-monsoon season (i.e. May-June-
July) shows an increase. Moreover, the effects of future climate under both scenarios on 
decreasing streamflow during the wet season (i.e. from August to November) can be 
observed at all stations. However, the magnitudes of peak discharge at Station 061302 or 
the Upper Mae Cham Basin and P14 or the Mae Cham Basin (Figure 7.1(i) and (j) 
respectively) associated with A2 are higher than the magnitudes of peak discharge under 
B2. The temporal shift of peak discharge from mid-September to end of September or 
beginning of October is also found at all stations with the exception of Station P4A (the 
Mae Taeng Basin), P21 (the Mae Rim Basin), P71 (the Mae Ngan Basin) and 061501 (the 
Mae Tuen Basin). 
 
The FDC of 2011-2100 simulated streamflow at 12 stations is computed. From Figure 7.2, 
low flow (i.e. Qt≤Q90) due to changes in future climate has more chances of occurrence 
than what observations suggest. However, a higher probability of low flow occurrence 
from 2011 to 2100 is not consistent among all stations. At Station 061501 (P12B), from 
historical records, Q90 is estimated at 2.57 (16.55) m3 s-1. Daily observations over 31 (26) 
years suggest that the number of low flow days is averaged at 67 (88) days per year, 
whereas out of the 90 projected years, a daily discharge less than 2.57 (16.55) m3 s-1 cannot 
be observed under both scenarios of future climate. At other stations, the averages of low 
flow days from daily observations vary from 58 to 116 days per year. Due to changes in 
future climate, from 2011 to 2100, the averages of low flow days under A2 (B2) scenario 
range from 4 to 167 days (1 to 178 days) per year. 
 
In contrast, at the 12 gauging stations, there is less chance of a high flow (i.e. Qt>Q10) 
occurrence during the 2011- 2100 period as compared to historical records. In the Mae 
Taeng Basin (Station P4A), the Mae Rim Basin (Station P21) and the Mae Ngan Basin 
(Station P71), the Q10 of observed discharges is calculated at 27.25, 8.86 and 26.99 m3 s-1 
respectively. The number of high flow days indicates an average of 43, 39 and 30 days per 
year respectively. However, under A2 and B2, the 2011-2100 daily streamflow above Q10 
cannot be found at these stations. At other stations, the averages of high flow days 
associated with observations vary from 29 to 40 days per year, whereas due to changes in 
future climate, the number of high flow days averaged during 2011- 2100 ranges from only 
1 to 15 days per year. 
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Figure 7.1: Daily averaged streamflow for a water year from 1st April to 31st March at the 
12 gauging stations: (a) P75; (b) P4A; (c) P67; (d) P21; (e) P1; (f) P71; (g) P24A; (h) P73; 
(i) 061302; (j) P14; (k) 061501; and (l) P12B. 
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Figure 7.1 (cont). 
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Figure 7.2: Frequency-duration-curve (FDC) for a water year of daily averaged discharges 
at the 12 gauging stations: (a) P75; (b) P4A; (c) P67; (d) P21; (e) P1; (f) P71; (g) P24A; (h) 
P73; (i) 061302; (j) P14; (k) 061501; and (l) P12B. 
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Figure 7.2 (cont). 
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7.4.1 Effects of future climate on low flow 
A daily discharge below or equal to the observed Q90 is classified as low flow. The 
comparison between the Q90 magnitude of daily observed and simulated streamflow under 
both scenarios of future climate is presented in Table 7.2 (see also Figure 7.2). Due to 
changes in future climate, the magnitude of Q90 will decrease at Station P75, P67, P1 and 
061302. Under A2 (B2), the maximum decrease in the magnitude of Q90, which is 
observed at Station P75, is estimated to be 61.6% (65.6%) of the observed Q90. However, 
at the remaining stations, an increasing magnitude of simulated Q90 is found compared to 
the observed Q90. Moreover, the maximum increasing Q90 under A2 (B2) is found at the 
Bhumipol Dam Station (i.e. P12B) equal to 107.3% (112.9%) corresponding to the 
observed Q90. As a result, the effects of future climate on decreasing and increasing 
magnitudes of Q90 show an inconsistency among the stations in the study basin. 
 
Table 7.2: Q90 (m

3 s-1) of the Daily Observed and Simulated Streamflow at the 12 Gauging 
Stations 

Station Observation A2 B2 Station Observation A2 B2 
P75 11.16 4.28 3.84 P24A 0.63 0.66 0.63 
P4A 0.63 0.93 0.81 P73 11.59 17.35 17.93 
P67 9.50 5.46 4.93 061302 4.97 2.91 3.23 
P21 0.50 0.78 0.76 P14 7.17 8.75 9.12 
P1 10.48 7.08 6.64 061501 2.57 5.28 5.45 
P71 0.72 1.19 1.23 P12B 16.55 34.31 35.23 

 
In terms of low flow duration, discharges below Q90 are observed during the dry season 
(from December to April). However, an event of low flow with an anomalous temporal 
extension may start early around the end of the wet season (i.e. in November) or may end 
late around the beginning of the following pre-monsoon season (i.e. in May). Historical 
records of low flows based on Q90 at the 12 stations are presented in Table 7.3. During the 
longest spell of low flow, the shortage volume is the difference between Q90 and the 
discharge on a specific day. The total volume of the shortage is the sum of shortage volume 
during the longest spell. The intensity of shortage is computed as the total volume of 
shortage divided by the number of days corresponding to the longest spell of low flow. 
 
From historical records (Table 7.3), the longest spell of low flow ranges from 77 days at 
Station P14 (from 12th March to 27th May 1983) to 211 days at Station P1 (from 26th 
December 1991 to 23rd July 1992). The longest spell of low flow in the study basin is 
consistent with the years of El Niño (see also Table 3.2), especially so for the strongest El 
Niño effects seen in 1982-83, 1991-92 and 1997-98. This makes it evident that decreasing 
rainfall in the study basin is influenced by atmospheric anomalies (see also Chapter 3). 
Additionally, the maximum total shortage volume is estimated to be 208.53 MCM at the 
Bhumipol Dam Station (P12B) with an intensity of shortage equal to 1.345 MCM per day. 
 
Under A2, the longest spell of low flow observed at Station P75, P67 and 061302 will be 
longer compared to the observations and vice versa for other stations (Table 7.4). 
However, low flow cannot be observed from 2011 to 2100 at Station 061501 and P12B. 
Among the other 10 gauging stations, the longest spell will occur during 2nd November 
2096 to 2nd May 2097 (i.e. 182 days) at Station P75, with a shortage intensity of 0.505 
MCM per day. Also, under A2, the severity of shortage during the longest spell of low 
flow will decrease compared to historical records and this is reflected in the lower intensity 
of the shortage. However, more intense of shortage situations can be found at two gauging 
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stations: P67 and 061302. The shortage intensity at Station P67 will slightly increase by 
1.74% more than that indicated by historical intensity. Moreover, the most severe shortage 
during the longest spell of low flow will be found at Station 061302 with an increasing 
intensity of shortage equal to 72.03% more than that of historical intensity. 
 
Table 7.3: Low Flow Characteristics of the Historical Data at the 12 Gauging Stations 

Station Longest spell 
of low flow 

(day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

P75 121 24-Nov-1999 23-Mar-2000 70.12 0.580 
P4A 128 14-Dec-1998 20-Apr-1999 5.34 0.042 
P67 99 27-Dec-1996 4-Apr-1997 28.38 0.287 
P21 102 3-Mar-1992 12-Jun-1992 4.10 0.040 
P1 211 26-Dec-1991 23-Jul-1992 89.48 0.424 
P71 138 25-Mar-1998 9-Aug-1998 7.36 0.053 
P24A 145 8-Dec-2003 30-Apr-2004 5.95 0.041 
P73 154 8-Dec-1998 10-May-1999 131.03 0.851 
061302 105 4-Feb-2005 19-May-2005 15.01 0.143 
P14 77 12-Mar-1983 27-May-1983 16.12 0.209 
061501 115 15-Dec-1998 8-Apr-1999 11.22 0.098 
P12B 155 30-Nov-2003 2-May-2004 208.53 1.345 

MCM: million m3. 
 
Table 7.4: Low Flow Characteristics of the 2011-2100 Simulated Streamflow under A2 at 
the 12 Gauging Stations 

Station Longest spell 
of low flow 

(day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

P75 182 2-Nov-2096 2-May-2097 91.83 0.505 
P4A 38 25-Jan-2027 3-Mar-2027 0.74 0.019 
P67 147 6-Dec-2081 1-May-2082 42.96 0.292 
P21 31 11-Feb-2021 13-Mar-2021 0.34 0.011 
P1 142 6-Dec-2029 26-Apr-2030 37.39 0.263 
P71 55 14-Feb-2072 8-Apr-2072 2.00 0.036 
P24A 94 9-Jan-2088 11-Apr-2088 2.80 0.030 
P73 26 16-Feb-2088 12-Mar-2088 4.60 0.177 
  6-Feb-2097 3-Mar-2097 4.02 0.155 
061302 139 12-Dec-2099 29-Apr-2100 34.17 0.246 
P14 65 29-Jan-2040 2-Apr-2040 8.40 0.129 
061501 0 n/a n/a 0 0 
P12B 0 n/a n/a 0 0 

MCM: million m3. 
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The low flow under Scenario B2 (Table 7.5) is consistent with the results of Scenario A2. 
From 2011 to 2100, the longest spell of low flow at Station P75, P67 and 061302 will be 
extended by 185, 156 and 138 days respectively. However, the longest spell at other 
stations will be shortened, as compared to historical records. Daily discharge below 2.57 
(16.55) m3 s-1 (i.e. Q90 of the observations) will not be observed at Station 061501 (P12B). 
From 2011 to 2100, among the other 10 stations, the longest spell of 185 days will be seen 
at Station P75. It will last from 4th November 2078 to 7th May 2079, when a water shortage 
of 88.68 MCM in total volume and a shortage intensity of 0.479 MCM per day will be 
experienced. At Station P67, 061302 and P14, the shortage situation will be more severe 
than the historical situation was. Compared to historical intensity, the shortage intensity 
will increase by 16.72%, 81.12% and 28.23% respectively for each station mentioned 
above. 
 
Table 7.5: Low Flow Characteristics of the 2011-2100 Simulated Streamflow under B2 at 
the 12 Gauging Stations 

Station Longest spell 
of low flow 

(day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

P75 185 4-Nov-2078 7-May-2079 88.68 0.479 
P4A 50 6-Feb-2080 26-Mar-2080 1.21 0.024 
P67 156 26-Nov-2086 30-Apr-2087 52.26 0.335 
P21 38 18-Feb-2083 27-Mar-2083 0.51 0.013 
P1 142 10-Dec-2069 30-Apr-2070 36.69 0.258 
P71 32 29-Jan-2021 1-Mar-2021 0.78 0.024 
  30-Jan-2030 2-Mar-2030 0.61 0.019 
P24A 72 26-Dec-2049 7-Mar-2050 1.30 0.018 
P73 9 22-Feb-2083 2-Mar-2083 0.27 0.031 
061302 138 18-Dec-2015 3-May-2016 35.80 0.259 
P14 74 25-Jan-2030 8-Apr-2030 19.81 0.268 
061501 0 n/a n/a 0 0 
P12B 0 n/a n/a 0 0 

MCM: million m3. 
 
When comparing between A2 and B2 (Figure 7.3), the different effects of future climate on 
low flow in the study basin can be observed at all stations. At Station P71 (the Mae Ngan 
Basin), P24A (the Mae Klang Basin) and P73, a longer spell of low flow with a greater 
intensity of shortage is associated more closely with results under A2 than B2. However, at 
Station P4A (the Mae Taeng Basin), P67, P21 (the Mae Rim Basin) and P14 (the Mae 
Cham Basin), the effects of future climate under A2 indicate a shorter spell with a lower 
intensity of shortage than the effect under B2. Moreover, at the remaining stations, the 
effects of future climate in terms of the spell of low flow and an intensity of shortage are 
not consistent between the two scenarios. 
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Figure 7.3: Dry spell of daily observed streamflow and 2011-2100 simulated streamflow at 12 gauging stations under scenarios: (a) A2; and (b) 
B2 of future climate. 

(a) 

(b) 
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7.4.2 Effects of future climate on high flow 
High flow is denoted as a daily discharge that is greater than the Q10 of observations. Table 
7.6 presents the comparison between Q10 magnitudes of the daily observed and simulated 
discharges under A2 and B2. Due to changes in climate, a decrease can be observed in Q10 
magnitudes that are consistent among all stations. Under A2 (B2), the maximum decrease 
in the magnitude of Q10 is observed in the Mae Ngan Basin or Station P71 and corresponds 
to 47.9% (56.1%) of the Q10 from daily observed discharges. However, the minimum 
decrease in the magnitude of Q10 under A2 (B2) found at Station 061302 (P24A) is 
estimated to be 14.7% (25.5%) of the Q10 of historical data. At all stations, the Q10 under 
A2 is greater than Q10 under B2 except at Station P4A of the Mae Taeng Basin. Therefore, 
future climate influences on high flow (i.e. Qt>Q10) in the study basin is evident in the 
decreasing Q10 magnitude. Greater decreases in Q10 magnitudes are associated more 
closely with B2 than with A2. 
 
Table 7.6: Q10 (m

3 s-1) of the Daily Observed and Simulated Streamflow at the 12 Gauging 
Stations 

Station Observation A2 B2 Station Observation A2 B2 
P75 46.61 29.14 23.13 P24A 11.51 8.60 8.57 
P4A 27.25 15.73 16.39 P73 307.15 162.75 151.72 
P67 86.39 63.08 55.97 061302 43.85 37.38 29.95 
P21 8.86 6.47 6.03 P14 76.55 62.82 53.60 
P1 99.62 72.44 64.54 061501 50.00 36.08 35.82 
P71 26.99 14.06 11.84 P12B 451.38 260.73 240.12 

 
In terms of duration, in general, discharges above Q10 are observed in the wet season (i.e. 
from August to November). The spell of high flow can be anomalously extended from an 
early start around the end of the pre-monsoon season (i.e. in July). Based on Q10, Table 7.7 
shows the longest spell of high flow according to historical records at the gauging stations 
considered in this study. During the longest spell, an abundant volume is denoted as the 
daily discharge that is greater than the observed Q10. The total abundant volume is the sum 
of abundant water during the longest spell of high flow. The intensity of abundance is 
estimated as the total abundant volume divided by the number of days corresponding to the 
longest spell. 
 
From Table 7.7, in the historical records, the longest spells of high flow occur in La Niña 
years (see also Table 3.2), in particular during the strongest La Niña effects in 1995 and 
2006. This is because the monsoon season rainfall in the study basin tends to increase 
during La Niña years. The longest spell of high flow is found at Station P1 and lasts from 
31st July to 14th October 1995 (i.e. 76 days). The maximum abundant volume can be 
observed at Station P73 and is estimated to be 1,549.74 MCM with an intensity of 
abundance equal to 32.973 MCM per day. 
 
Under A2 (Table 7.8), from 2011 to 2100, daily simulated discharges above the observed 
Q10 cannot be found in the Mae Taeng Basin (Station P4A), the Mae Rim Basin (Station 
P21) and the Mae Ngan Basin (Station P71). Among the remaining stations, the longest 
spell of high flow will be observed at Station 061302 or the Upper Mae Cham Basin and 
will last from 6th August to 8th October 2040 (i.e. 64 days) with an intensity of abundant 
water equal to 4.064 MCM per day. The high flow spells at Station P24A, 061302 and P14 
will be of more duration than what appears in historical records and vice versa for the other 
stations. Considering the decreasing volume and weaker intensity of abundance, the high 
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flow situation at all stations except Station 061302 (the Upper Mae Cham Basin) can be 
classified as under a more temperate condition than that seen in observations. In the Upper 
Mae Cham Basin, the total volume of abundant water during the longest spell of high flow 
will increase by 102.97% more than that of historical records. Consequently, the Upper 
Mae Cham Basin will have a higher tendency of flooding under A2. 
 
Table 7.7: High Flow Characteristics of Historical Data at the 12 Gauging Stations 

Station Longest spell 
of high flow 

(day) 

Start date End date Total 
abundant 

volume 
(MCM) 

Intensity of 
abundance 
(MCM d-1) 

P75 59 26-Aug-2005 23-Oct-2005 295.23 5.004 
P4A 58 15-Aug-1994 11-Oct-1994 263.88 4.550 
P67 49 31-Aug-2005 18-Oct-2005 692.48 14.132 
P21 53 16-Aug-1994 7-Oct-1994 46.89 0.885 
P1 76 31-Jul-1995 14-Oct-1995 682.78 8.984 
P71 23 8-Sep-2006 30-Sep-2006 78.40 3.409 
P24A 38 10-Sep-2006 17-Oct-2006 78.02 2.053 
P73 47 24-Aug-2002 9-Oct-2002 1,549.74 32.973 
061302 56 20-Aug-1994 14-Oct-1994 128.15 2.288 
P14 45 30-Aug-1995 13-Oct-1995 313.01 6.956 
061501 68 15-Jul-1994 20-Sep-1994 450.37 6.623 
P12B 58 16-Aug-1995 12-Oct-1995 1,358.96 23.430 

MCM: million m3. 
 
Table 7.8: High Flow Characteristics of the 2011-2100 Simulated Streamflow under A2 at 
the 12 Gauging Stations 

Station Longest spell 
of high flow 

(day) 

Start date End date Total 
abundant 

volume 
(MCM) 

Intensity of 
abundance 
(MCM d-1) 

P75 46 20-Aug-2040 4-Oct-2040 208.86 4.540 
P4A 0 n/a n/a 0 0 
P67 45 20-Aug-2040 3-Oct-2040 210.15 4.670 
P21 0 n/a n/a 0 0 
P1 44 21-Aug-2040 3-Oct-2040 199.45 4.533 
P71 0 n/a n/a 0 0 
P24A 45 31-Aug-2027 14-Oct-2027 50.64 1.125 
P73 38 27-Aug-2040 3-Oct-2040 353.65 9.307 
  27-Aug-2093 3-Oct-2093 400.87 10.549 
061302 64 6-Aug-2040 8-Oct-2040 260.10 4.064 
P14 63 6-Aug-2040 7-Oct-2040 293.58 4.660 
061501 8 14-Sep-2033 21-Sep-2033 1.84 0.230 
P12B 39 28-Aug-2073 5-Oct-2073 531.98 13.640 

MCM: million m3. 
 
Under B2 (Table 7.9), the high flow at Station P4A, P21 and P71 is consistent with A2. In 
other words, the daily modeled discharge that is above Q10 of historical data cannot be 
observed from 2011 to 2100. However, at the remaining gauging stations, the duration of 
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high flow spells is shorter as compared to durations in historical records. The longest spell 
of high flow is found in the Mae Cham Basin (Station P14) and will last from 4th 
September to 4th October 2013 (i.e. 31 days). At Station P75, P67 and P12B, the long spell 
of high flow will be observed in several years. However, the total volume and intensity of 
abundant water at all stations is less than those of observations. As results, from 2011 to 
2100 show, the study basin has lower tendency of flooding under Scenario B2. 
 
Table 7.9: High Flow Characteristics of the 2011-2100 Simulated Streamflow under B2 at 
the 12 Gauging Stations 

Station Longest spell 
of high flow 

(day) 

Start date End date Total 
abundant 

volume 
(MCM) 

Intensity of 
abundance 
(MCM d-1) 

P75 29 5-Sep-2021 3-Oct-2021 81.51 2.811 
  6-Sep-2049 4-Oct-2049 69.76 2.405 
  5-Sep-2079 3-Oct-2079 96.94 3.343 
P4A 0 n/a n/a 0 0 
P67 28 6-Sep-2021 3-Oct-2021 87.48 3.124 
  7-Sep-2049 4-Oct-2049 67.63 2.416 
  6-Sep-2079 3-Oct-2079 101.20 3.614 
P21 0 n/a n/a 0 0 
P1 28 6-Sep-2021 3-Oct-2021 81.90 2.925 
P71 0 n/a n/a 0 0 
P24A 18 18-Sep-2013 5-Oct-2013 12.44 0.691 
P73 19 15-Sep-2033 3-Oct-2033 67.88 3.572 
061302 21 13-Sep-2025 3-Oct-2025 72.01 3.429 
P14 31 4-Sep-2013 4-Oct-2013 89.49 2.887 
061501 5 14-Sep-2014 18-Sep-2014 1.66 0.332 
P12B 15 20-Sep-2013 4-Oct-2013 117.38 7.825 
  20-Sep-2038 4-Oct-2038 105.59 7.040 
  20-Sep-2041 4-Oct-2041 76.99 5.133 
  20-Sep-2052 4-Oct-2052 108.04 7.203 

MCM: million m3. 
 
When comparing A2 and B2 (Figure 7.4), the duration of high flow spells under B2 is 
shorter than that under A2. At some stations (e.g. P75, P67 and P12B), the long spells of 
high flow under B2 will be observed more frequently from 2011 to 2100. The total volume 
and the intensity of abundant water associated with B2 are less than those with A2. 
Therefore, the effects of future climate under B2 on high flow in the study basin are 
temperate compared to the effects under A2. 
 
Consequently, in terms of low flow, the effects of future climate under both scenarios 
indicate a decrease in the magnitude of Q90 compared to observations at Station P75, P67, 
P1 and 061302 and vice versa for other stations. In terms of low flow spells from 2011 to 
2100, under both A2 and B2, the length of a spell of low flow at Station P75, P67 and 
061302 will be longer than that shown in historical records and vice versa for other 
stations. Furthermore, low flows will not occur at two stations – 061501 and P12B. 
Comparing A2 and B2, the effects of future climate on daily streamflow in terms of the 
duration of low flow spells and an intensity of shortage are not consistent among all the 
streamflow stations in the study basin. 
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Figure 7.4: Wet spell of daily observed streamflow and 2011-2100 simulated streamflow at 12 gauging stations under scenarios: (a) A2; and (b) 
B2 of future climate. 

(a) 

(b) 
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As for high flow, the magnitudes of Q10 at all stations decrease under both scenarios of 
future climate. The duration of high flow spells at Station P24A, 061302 and P14 will be 
extended under A2 and vice versa for other stations. However, the duration of high flow 
spells at all stations will be shortened under B2. Moreover, under B2, consecutive days of 
high flow will occur more often at some stations (e.g. P75, P67 and P12B) than others. 
Based on larger volume and higher intensity of abundant water, the effects of future 
climate on high flow under A2 are more severe than the effects under B2. 
 
7.4.3 Effects of future climate on seasonal anomalies: anomalous low flow in a wet 
season 
An anomalous low flow in a wet season (i.e. from 1st August to 30th November) is defined 
as a daily discharge below or equal to Q90,wet of the observed streamflow. As seen in Table 
7.10, the decreasing magnitudes of Q90,wet and Q10,dry at the 12 stations are influenced by 
changes in climate under both scenarios. Comparing A2 and B2, the effects of future 
climate on Q90,wet and Q10,dry are a little different from each other. However, the magnitudes 
of Q90,wet associated with A2 are slightly higher than those with B2 at all stations with the 
exception of Station P73 and 061501. The Q10,dry magnitudes under A2 are also slightly 
greater than those under B2, except at Station P24A, P73 and P12B. 
 
Table 7.10: Q90,wet and Q10,dry of the Daily Observed and Simulated Streamflow at the 12 
Gauging Stations 

Q90,wet (m
3 s-1) Q10,dry (m

3 s-1) Station 
Observation A2 B2 Observation A2 B2 

P75 20.70 11.00 9.75 16.17 7.76 6.72 
P4A 14.13 3.10 2.84 12.26 3.11 3.02 
P67 37.06 15.15 13.75 24.64 9.74 8.64 
P21 4.71 1.15 1.14 2.86 1.49 1.38 
P1 52.31 17.18 15.82 31.42 11.37 11.04 
P71 9.11 2.91 2.75 5.07 3.34 3.00 
P24A 5.25 2.38 2.18 3.36 1.71 1.76 
P73 114.52 46.50 46.94 54.01 31.80 32.72 
061302 23.07 10.39 6.59 14.21 8.22 6.27 
P14 40.73 20.25 16.03 21.77 16.97 16.06 
061501 19.65 9.95 10.73 10.54 12.38 12.14 
P12B 222.10 78.12 75.31 87.01 61.83 62.50 

 
Of the 122 days in a wet season, the average low flow days in historical data when 
Qt≤Q90,wet at the 12 stations range from 38 to 57 days per season. The longest spell of 
anomalous low flow in a wet season varies from 28 to 83 days (Table 7.11). The longest 
spell from 9th September to 30th November 1998 is observed at Station 061501 with an 
intensity of shortage equal to 1.175 MCM per day. The maximum intensity of shortage 
corresponding to Station P12B is estimated to be 14.675 MCM per day. 
 
Under A2, over 90 simulation years, a minimum (maximum) of average low flow days in a 
wet season is observed at Station 061501 (P4A) and is estimated to be 28 (62) days per 
season. Comparing this to historical records, the spell of low flow is shortened at all 
stations except Station P75 and P21 (Appendix J1). Due to changes in future climate, the 
onset date of low flow spells in a wet season, which starts around the beginning of October 
or November, is later than the onset date of observations (i.e. around mid-September). In 
addition, low flow spells during a wet season at various stations like P21, 061302 and 
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061501 will be observed in several years during 2011-2100 with a lower intensity of 
shortage than the observations indicate. Overall, under A2, the severity of anomalous 
shortage in the wet season is temperate compared to historical records, with the exception 
of Station P75. 
 
Table 7.11: Characteristics of Anomalous Low Flow in Wet Season from Historical Data 
at the 12 Gauging Stations 

Station Longest spell 
of anomalous 

low flow (day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

P75 28 6-Oct-1999 2-Nov-1999 14.52 0.519 
P4A 79 13-Sep-1998 30-Nov-1998 86.97 1.101 
P67 78 14-Sep-1998 30-Nov-1998 187.02 2.398 
P21 52 13-Sep-1998 3-Nov-1998 15.12 0.291 
P1 78 14-Sep-1998 30-Nov-1998 255.38 3.274 
P71 78 14-Sep-1998 30-Nov-1998 52.06 0.667 
P24A 71 21-Sep-1998 30-Nov-1998 24.53 0.346 
P73 75 17-Sep-1998 30-Nov-1998 513.37 6.845 
061302 74 18-Sep-1998 30-Nov-1998 83.41 1.127 
P14 75 17-Sep-1998 30-Nov-1998 150.65 2.009 
061501 83 9-Sep-1998 30-Nov-1998 97.56 1.175 
P12B 71 21-Sep-1998 30-Nov-1998 1,041.90 14.675 

MCM: million m3. 
 
Out of 122 days in a wet season, the average low flow days over 90 simulation years at 12 
streamflow stations vary from 27 to 69 days per season under B2. From 2011 to 2100, the 
longest spell of anomalous low flow in a wet season under B2 is consistent with A2. 
Comparing the observations, the duration is shortened at all stations with the exception of 
Station P75 and P21 (Appendix J2). Among the 12 stations, the longest spell of anomalous 
low flow in a wet season, corresponding to Station P4A, lasts from 1st October to 30th 
November (i.e. 61 days) in several years ( 2013, 2015, 2019 and 2020). The shortest spell 
of anomalous low flow in a wet season of 29 days (i.e. from 2nd November to 30th 
November 2060) is associated with Station 061501. The onset date of the spell shows a 
shift by 0.5-1.5 months from mid-September in the observed streamflow to the beginning 
of October or November in the simulated streamflow. However, at Station P24A, an 
anomalous low flow can be observed during the beginning of the wet season (i.e. from 1st 
August to 1st September). Anomalous low flow in the wet season under B2 is temperate, 
with a shortage intensity ranging from 0.030 to 7.446 MCM per day. 
 
When comparing A2 and B2, a longer spell of anomalous low flow during the wet season 
under B2 corresponds to Station P14 of the Mae Cham Basin and Station 061501 of the 
Mae Tuen Basin. Otherwise, a shorter period is observed at other stations. The frequency 
of occurrence of anomalous low flow in a wet season is inconsistent among the 12 
streamflow stations. From 2011 to 2100, anomalous low flow associated with A2 at Station 
P75, P67, P21, P1 and 061501 will be observed more frequently in the wet season than B2; 
however, at Station P4A, P71, P24A 061302 and P14, anomalous low flow under B2 will 
occur more often than under A2. In terms of the severity of shortage in the wet season, the 
shortage intensity is not significantly different between both scenarios. 
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7.4.4 Effects of future climate on seasonal anomalies: anomalous high flow in a dry 
season 
Anomalous high flow in a dry season (i.e. from 1st December to 30th April) is defined as a 
daily discharge greater than Q10,dry of the historical streamflow. In terms of the number of 
high flow days in the dry season (i.e. Qt>Q10,dry), the average of high flow days from the 
observed discharges at 12 stations ranges from 12 to 49 days per dry season. At some 
stations, the anomalous high flow in the dry season has not been observed for several years 
(such as 1978-80, 1985, 1990 and 2004 at Station 061501). From historical records, the 
longest spell of anomalous high flow at 12 stations varies from 28 to 103 days (Table 
7.12). The longest spell from 18th January to 30th April 2006 is observed at Station P75 
with the intensity of abundance of 0.616 MCM per day. At Station P73, a maximum of 
abundant volume during consecutive high flow days in the dry season is estimated to be 
362.34 MCM. 
 
Table 7.12: Characteristics of Anomalous High Flow in Dry Season from Historical Data 
at the 12 Gauging Stations 

Station Longest spell 
of anomalous 

high flow 
(day) 

Start date End date Total 
abundant 

volume 
(MCM) 

Intensity of 
abundance 
(MCM d-1) 

P75 103 18-Jan-2006 30-Apr-2006 63.43 0.616 
P4A 41 1-Dec-2002 10-Jan-2003 29.70 0.724 
P67 50 1-Dec-2002 19-Jan-2003 124.63 2.493 
P21 54 1-Dec-2002 23-Jan-2003 14.29 0.265 
P1 51 1-Dec-2002 20-Jan-2003 119.82 2.350 
P71 72 1-Dec-2002 10-Feb-2003 34.45 0.479 
P24A 51 1-Dec-1981 20-Jan-1982 13.86 0.272 
P73 54 1-Dec-2002 23-Jan-2003 362.34 6.710 
061302 40 1-Dec-1985 9-Jan-1986 15.75 0.394 
P14 46 1-Dec-2002 15-Jan-2003 40.50 0.880 
061501 43 1-Dec-2002 12-Jan-2003 38.82 0.903 
P12B 28 1-Dec-1981 28-Dec-1981 149.34 5.333 

MCM: million m3. 
 
Under A2, anomalous high flow in the dry season from 2011 to 2100 can only be observed 
at four stations (Station 061302, P14, 061502 and P12B). The average high flow days over 
90 simulation years vary from 0.2 to 25 days out of the 151 days in a dry season. Among 
the four stations mentioned above, the longest spell of anomalous high flow in the dry 
season is estimated to be 33 days, from 29th March to 30th April 2090, at Station 061501 
with an intensity of abundance of 0.188 MCM per day. However, the shortest spell of 
anomalous high flow in the dry season lasts five consecutive days, from 1st to 5th December 
2040. It will be observed at Station P12B with a maximum intensity of abundance of 0.431 
MCM per day. 
 
On the other hand, the effects of future climate under B2 on anomalous high flow in the 
dry season from 2011 to 2100 will be observed solely at three stations (P14, 061501 and 
P12B). With an intensity of abundance of 0.198 MCM per day, the longest spell of 
anomalous high flow in the dry season covers 30 days in April 2036 at Station 061501. The 
shortest period of 2 consecutive days (1st and 2nd December 2079) will occur at Station 
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P12B. During the spell of high flow, a maximum intensity of abundance is estimated to be 
0.221 MCM per day at Station P14. 
 
7.5  Summary 
The HEC-HMS model is adopted to simulate daily streamflow at 12 gauging stations using 
the 2011-2100 daily rainfall at 50 rainfall stations. The data is acquired from a multisite 
daily rainfall generator. The effects of future climate under A2 and B2 are determined 
using observed and modeled streamflow. In terms of magnitude, the daily average 
streamflow in the dry season (especially in December and January) and in the wet season 
from 2011 to 2100 will decrease at all stations under both scenarios. The peak discharge, 
which is found in mid-September from observed streamflow, will shift to the end of 
September or the beginning of October due to changes in future climate. 
 
The Q90 and Q10 from the FDC of daily observed discharges are used to define low and 
high flows respectively. A daily discharge that is below or equal (above) to Q90 (Q10) of the 
observations is defined as low (high) flow. Under A2 and B2, the magnitudes of Q90 of 
modeled streamflow are greater than those of observations at some stations; however, the 
magnitude of Q10 of simulated discharge is lower than the Q10 of observations at all 
stations. From 2011 to 2100, the spell of low flow at Station P75, P67 and 061302 will be 
longer than that seen in historical records. In the 90 simulation years, a low flow event will 
not occur at Station 061501 and P12B. More severity of shortage during low flow spells 
due to changes in future climate is found at Station P67 and 061302. On the other hand, the 
spell of high flow will be extended (shortened) at Station P24A, 061302 and P14 (all 
stations) under A2 (B2) compared to observations. However, from 2011 to 2100, a high 
flow event will not occur at Station P4A, P21 and P71 under both scenarios. The intensity 
of abundance due to changes in future climate is lower than that seen in historical records 
at all stations with the exception of Station 061302. 
 
Daily discharge less (more) than Q90,wet (Q10,dry) from the FDC of daily observed 
streamflow is defined as anomalous low (high) flow in the wet (dry) season. At 12 gauging 
stations, the magnitudes of Q90,wet and Q10,dry associated with 2011-2100 simulated 
discharges under two scenarios of future climate are less than those of the observed 
discharges. Due to changes in future climate, the spell of anomalous low flow in a wet 
season will be shortened at all stations except Station P75 and P21. However, anomalous 
low flow in the wet season will be observed in several years during the 2011-2100 periods 
under both scenarios. The effects of future climate also indicate a delay, from historical 
records, of the onset date of anomalous low flow in the wet season by 0.5-1.5 months. The 
severity of shortage in the wet season will decrease at all stations, as compared to 
observations. On the other hand, from 2011 to 2100, anomalous high flow in the dry 
season with a shorter duration of consecutive high flow days than the observations will 
only occur at four (three) gauging stations under A2 (B2). Furthermore, the intensity of 
abundance is less than that in historical records. Hence, based on the variability of 
streamflow and availability of water, agricultural practices and water resource plans will 
have to be developed to handle with the problems of anomalous streamflow events due to 
climate in the future. 
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Chapter 8 
Conclusions and Recommendations 

 
8.1  Conclusions 
The overall objective of the dissertation was to develop a model to forecast rainfall and 
streamflow with the identified predictors of atmospheric variables and to determine the 
effects of future climate on rainfall and streamflow in the study basin. Significant 
relationships between rainfall in a basin of the Upper Chao Phraya River Basin, namely the 
Ping River Basin, and large-scale atmospheric variables were investigated to identify 
predictors for a statistical forecasting model. Using correlation maps, four predictors (i.e. 
surface air temperature, sea level pressure, and the surface zonal and meridian winds) over 
different regions were selected based on significant correlations with rainfall during pre-
monsoon (May-June-July: MJJ), monsoon (August-September-October: ASO) and dry 
(November-December-January: NDJ and February-March-April: FMA) seasons. Based on 
the availability of data, the 1961-2100 gridded monthly data of identified predictors from a 
selected general circulation model (the GFDL-R30) was used to develop a statistical model 
and to determine the effects of future climate on rainfall in the study basin under two 
scenarios, A2 and B2. The optimal combination of predictors is indicated using generalized 
cross validation to avoid redundancy of predictors. 
 
8.1.1 Statistical approach 
A modified k-nn model has been developed to forecast rainfall and to downscale rainfall in 
the Ping River Basin from the large-scale atmospheric variables by an optimal combination 
of predictors. The model also aims to determine the effects of future climate on seasonal 
rainfall under Scenario A2 and B2. The model performance was evaluated from 1962 to 
2007 using leave-one-out cross validation with four criteria: (i) the annual variability of 
rainfall; (ii) the annual statistics of seasonal rainfall – i.e. mean, median, standard deviation 
(SD), interquartile range (IQR) and coefficient of skew (skew); (iii) absolute bias; and (iv) 
the likelihood skill score (LLH). Using large-scale atmospheric variables under both 
scenarios of future climate as independent variables, the modified k-nn model performs 
fairly well in capturing the annual variability of the 1962-2007 seasonal rainfall. As seen in 
the study, the model can also preserve the annual statistics of seasonal observed rainfall 
with an absolute bias below 32%. Furthermore, the modified k-nn model shows a better 
performance than climatology in capturing the probability density function (PDF) with 
LLH scores greater than +1.0. 
 
The multisite daily rainfall generator resamples historical daily rainfall at 50 selected 
rainfall stations which are located in and around the Ping River Basin. Daily rainfall, which 
is used as input for the multisite daily rainfall generator, is randomly selected by a 
conditioning daily rainfall generator. The random selection of the conditioning daily 
rainfall generator is done based on categorical probabilities, which are estimated from the 
PDF of seasonal rainfall ensembles obtained from the modified k-nn model. The 
performance of the multisite daily rainfall generator is evaluated by its preservation of 
transition probabilities, spell statistics (e.g. the dry- and wet-spell lengths) and basic 
statistics (e.g. mean, SD and skew) of daily observed rainfall. It is also evaluated based on 
how well it can capture spatial cross-correlations among the 50 rainfall stations. The 
multisite daily rainfall generator can accurately preserve the transition probabilities of daily 
observations. However, the underestimation of dry- and wet-spell lengths occurs in May 
and June. Overall, the multisite daily rainfall generator can capture well the basic statistics 
of daily observed rainfall. Furthermore, the linear relationships of daily rainfall among the 
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50 selected stations are also well maintained by the multisite generator. The results from 
the multisite daily rainfall generator are simultaneously applied in a rainfall-runoff model 
to simulate daily streamflow under A2 and B2 scenarios of future climate.  
 
8.1.2 Physical approach 
Two rainfall-runoff models have been proposed in this study: one is the SIMHYD model, 
and the other is the HEC-HMS model. The SIMHYD model is a lumped conceptual 
rainfall-runoff model and has nine parameters. Several parameter optimizations are 
provided in this approach with various objective functions. In this study, pattern search 
multi-start is adopted under an objective function of the Nash-Sutcliffe efficient index. The 
HEC-HMS model has four components (loss, transform, baseflow and routing 
components) to simulate streamflow using a continuous time series of precipitation and 
area averaged evapotranspiration. Each component provides several mathematical 
methods; the loss component, for instance, consists of seven optional methods to compute 
the total loss in a basin. In this study, the deficit and constant, the Clark unit hydrograph, 
recession and lag methods are adopted in the loss, transform, baseflow and routing 
components respectively.  The SIMHYD (HEC-HMS) model is calibrated from April 1999 
to March 2003 and validated from April 2003 to March 2007 at six (12) gauging stations. 
The model performance is evaluated based on four efficiency indexes: (i) the deviation of 
volume; (ii) the correlation coefficient; (iii) the normalized root mean square error; and (iv) 
the Nash-Sutcliffe efficient index. 
 
The performance of the SIMHYD model is influenced by the homogeneity of basin 
characteristics as the model has difficulty in preserving average monthly streamflow, 
especially at stations that cover large drainage areas with high variability of streamflow. 
Based on the four efficiency indexes, the HEC-HMS model can capture well the variability 
of daily streamflow. Both models perform better when simulating high streamflow rather 
than low streamflow. Overall, the HEC-HMS model performs better than the SIMHYD 
model, as per the four indexes associated with the HEC-HMS model. Hence, HEC-HMS is 
selected to simulate daily streamflow during the 2011- 2100 period. 
 
The simulation of daily streamflow at the 12 gauging stations located in the Ping River 
Basin is done using the 2011-2100 daily rainfall at the 50 selected stations, the data of 
which is obtained from the multisite daily rainfall generator. The HEC-HMS model is 
applied in this study based on an assumption that the model parameters from calibration 
are valid for basin characteristics in both, recent and future, periods. The objective of 
simulation is to determine the effects of future climate on daily streamflow in the study 
basin. Based on the defined thresholds at Q90 and Q10 obtained from the frequency-
duration-curve (FDC) of the average daily observations, the anomalous events (low and 
high streamflow) are investigated under A2 and B2 scenarios of future climate. Using 
Q90,wet (Q90 of daily observed discharges in the wet season) and Q10,dry (Q10 of daily 
observed discharges in dry season) as thresholds, seasonal anomalies (i.e. low flow in a wet 
season and high flow in a dry season) have also been studied. 
 
8.1.3 Effects of future climate 
Under both scenarios of future climate, the 2011-2100 rainfall in the Ping River Basin in 
the wet (dry) season tends to decrease (increase) by 0.11-6.16 (0.02-5.91) mm per year. 
The effect of future climate on rainfall in the wet season indicates more chances of dryness 
than wetness. However, the influence of changing climate on 2011-2100 rainfall in the dry 
season indicates a higher chance of wetness and a lower chance of dryness. Under A2, the 
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delay in the monsoon season by two seasons (i.e. from ASO to FMA) is also an effect of 
future climate. Under B2, the 1-season delay of monsoon season (i.e. from ASO to NDJ) 
will be observed. 
 
The magnitudes of Q90 of simulated streamflow under A2 and B2 at some stations are 
higher than those suggested by observations; however, the magnitudes of Q10 of simulated 
discharge at all stations are less than the Q10 of the observations. At Station P75, P67 and 
061302, the dry spell from 2011 to 2100 is longer than the duration suggested by historical 
records, whereas at Station 061501 and P12B, streamflow below Q90 will not occur at all. 
Compared to daily observed discharges, the low streamflow due to changes in future 
climate will be more severe at Station P67 and 061302 with higher intensities of shortage. 
At Station P24A, 061302 and P14, the wet spell from 2011 to 2100 under A2 will be 
extended as compared to observations, whereas the wet spell under B2 at all stations will 
be shortened. Under both scenarios, high streamflow will not occur at Station P4A, P21 
and P71. Lower intensities of abundant water are found at all stations except at Station 
061302. 
Under A2 and B2, the magnitudes of Q90,wet and Q10,dry of the 2011-2100 simulated 
streamflow at all stations are lower than those of the observed streamflow. A shorter period 
of dry spell in the wet season will be observed at 12 stations with the exception of Station 
P75 and P21. The severity of shortage at all stations will decrease compared to historical 
records. Anomalous high flow in the dry season under A2 (B2) will be observed at four 
(three) stations, with a shorter period of wet spell and lesser intensity of abundance. 
 
Therefore, from this study, the annual and decadal variability of hydroclimate such as 
temperature and rainfall were more investigated. The statistical relationships between 
rainfall and large-scale atmospheric variables enhanced the understanding of influences of 
the atmospheric circulations. The development of long-lead links aimed to identify 
predictors, which could be used in a forecasting model. The assessment of effects of the 
future changing climate on 2011-2100 rainfall in the study basin was clearly quantified by 
the linear trends of seasonal rainfall and the probabilities of occurrence of the anomalous 
weather events. The results will be a useful tool of decision making on the anomalous 
situations. The effects of future climate on 2011-2100 daily streamflow were also 
determined by the dry and wet spells with the availability of runoff. The results ultimately 
extended the understanding in influences of changing climate following the IPCC emission 
scenarios. 
 
8.2  Recommendations 
8.2.1 Adaptation and strategic plans 
Since rainfall and streamflow in the Ping River Basin are influenced by an anomalous 
atmospheric condition that will change severely in the future, an adaptation and sustainable 
strategy has to be planned for water-related activities in order to deal with a pending water 
crisis. The analysis results show variability of rainfall and streamflow in terms of an 
uncertainty of water availability, a shift in the onset of monsoon season and anomalous 
hydrological events. Aiming to decrease tangible and intangible damages from an 
anomalous weather event (dry or wet), governmental departments such as the Royal 
Irrigation Department of Thailand, the National Disaster Warning Center and the 
Electricity Authority of Thailand should set up an initial long-term plan to manage water 
resources and water storage facilities in this basin including water allocation for all uses as 
the supply adaptation. Although the priority of water allocation in the Ping River Basin 
under a normal situation is the irrigation and hydropower, to deal with a dry condition in 
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the future, the management of irrigated water and reallocation for other uses, in particular 
domestic demand will be required with a limited portion of withdrawn water for each use. 
Under normal and anomalous conditions, the water rights of all uses in water withdrawal 
from the resources should be initially conducted to meet their demand. To reduce the cost 
of water supply and treatment that is subsidized by the government and to raise the public 
awareness of water crisis, the water pricing policies and the compensation schemes should 
be also developed. 
 
In terms of demand adaptation, agricultural practices need to be altered to water 
availability and the changing onset period of the monsoon season. The low water use crops 
such as onion and lettuce should be introduced to farmers in order to decrease water 
scarcity. However, the selection of alternative crops depends on soil type, climate in each 
season, technical experience of farmers, cost of the alternative crops and market 
opportunity, which the Ministry of Agriculture and Cooperatives has to provide and assist 
farmers in the essential information. The efficient agricultural practices such as drip 
irrigation and recycled water should be utilized to increase the irrigation efficiency. 
Industries and households could be encouraged to save water with reuse and recycle 
technologies. Moreover, the policies and plans on reduction of the water loss and leakage 
such as lining canals and pipe maintenance are required. 
 
On the other hand, the mitigation strategy for a wet situation – including a warning system 
before the occurrence, an evacuation plan during the occurrence and an insurance policy to 
cover damages after the occurrence – should be addressed in the governance systems. The 
climate monitoring and reliable forecasting are one measure of the adaptation. The 
upgraded equipments of existing monitoring system, improved techniques of a forecasting 
model and enhanced understanding of staffs will help to deal with future changing climate. 
Future development of water resources and reservoirs needs to be made keeping in mind 
the multiple purposes of water storage during dry and wet events. The participation of 
stakeholders can reduce a conflict in the development of adaptation and mitigation plans. 
However, all defined measures need to be more studied. 
 
8.2.2 Extension of the research 
In terms of spatial coverage, this study was done only for the Ping River Basin. The extent 
of this dissertation should cover the investigation of all river basins in Thailand and aim to 
initiate an integrated national water management and development plan. This study also 
suggests applying the statistical method in other basins outside Thailand, which can 
confirm the model performance in capturing variability of hydroclimates and defining the 
model limitations. In terms of temporal coverage, this dissertation provided the 
investigation of statistical links between rainfall and large-scale atmospheric variables to 
identify predictors and ultimately develop a forecasting model of seasonal rainfall (i.e. 
MJJ, ASO, NDJ and FMA). A study of relationships between rainfall and atmospheric 
information in a finer time scale, e.g. monthly and daily is recommended aiming to identify 
predictors for a statistical model to forecast monthly or daily rainfall. However, there are 
some limitations of predictor identification in a finer time scale as follows: 
(i) The correlation maps used to identify predictors in this study are the online analysis 

provided by ESRL, which are available in monthly. The daily analysis is not 
applicable. 

(ii)  The predictors of large-scale atmospheric variables may not be identified due to any 
significant relationships from correlation analysis in the finer time scale, particular in 
dry season (i.e. from November to March). 
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Thus, the extension of research should propose a new methodology of predictor 
identification in a finer time scale. Not only the predictor identification but also the 
forecasting model should be developed to suit the temporal coverage. 
 
The large-scale atmospheric variables and rainfall in the study basin should have to be 
updated in the modified k-nn model using observed data from the meteorological stations 
or results from a GCM following the most recent IPCC report. Subsequently, the 
evaluation of updated model is suggested to clarify the improving in model performance. 
The changes in effects of future climate on rainfall should also be determined. 
Furthermore, the future research should cooperate a selected downscaling and bias 
correction method of the atmospheric predictors with the modified k-nn model. The 
evaluation and comparison of model performance will indicate a better application of 
simulated GCM data. A part of future study should also cover the investigation of 
statistical relationships between streamflow and large-scale atmospheric variables to 
understand the variability of streamflow under the anomalous conditions of oceanic-
atmospheric circulations. The long-lead significant links will be useful in developing a 
model to forecast streamflow with a set of large-scale atmospheric predictors. 
 
The effects on water-related components on natural environment, agricultural production, 
economic growth and living standards due to the variability of precipitation and 
streamflow should be determined and should also be part of future research. The studies of 
adaptation and mitigation (e.g. alternative crops, recycled and reused water, and water 
allocation) for the vulnerability of climate are suggested to address the appropriate 
measures for the Ping River Basin, which will deal with anomalous weather events in the 
future. Even without changing climate, the measures are still beneficial in the water 
demand and supply management. Lastly, a pilot project of selected adaptation strategies 
should be implemented and evaluated to account the efficiency of the research. 
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A1: List of the rainfall stations located in and around the Ping River Basin 

Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

1 327301 CM 18.91667 99.00000 JAN 1969 DEC 2007 39 0 TMD Sep 2007 

2 327501 CM 18.79000 98.97694 JAN 1951 DEC 2007 57 0 TMD  

3 07013 CM 18.83972 98.97556 APR 1952 MAR 2006 55 153 RID 1 Jul-30 Nov 2004 

4 07022 CM 18.71333 99.04139 APR 1952 MAR 2006 55 1745 RID 1-30 Jun 1956, 1 Sep-31 
Oct 1957,1 May-31 Jul 
1960, 1-31 May 1961, 1-
31 Jul 1961, 1-31 Oct 
1961, 1-31 May 1962, 1 
May-30 Jun 1963, 1-31 
May 1964, 1-31 Oct 1964, 
1-31 May 1965, 1-31 Oct 
1967, 1-31 Oct 1973, 1-31 
May 1977, 1 Aug-31 Oct 
1982, 1983-1984, 1-31 
Oct 1987, 1 May-31 Jul 
1991, 1 Sep-31 Oct 1991, 
1 May-30 Jun 1992, 1-31 
Jul 1993, 1-31 Oct 1994, 
1 May-30 Jun 1997 

5 07032 CM 18.74417 99.12444 APR 1952 MAR 2006 55 1316 RID 1-31 May 1958, 1 Sep-31 
Oct 1962, 1-31 May 1963, 
1 May-31 Jul 1968, 1 
Aug-31 Oct 1973, 1974-
1975, 1 May-31 Oct 1976, 
1-31 Oct 1981, 1 Aug-31 
Oct 1994, 1 Apr-30 Nov 
1996, 1 May-30 Jun 1997, 
1 Jun-30 Nov 1999, 1 Jul-
30 Nov 2001, 1 May-30 
Jun 2003 

6 07042 CM 18.84750 99.04833 APR 1952 MAR 2006 55 1523 RID 1979-1982, 1-31 May 
1991, 1-31 May 1992 

7 07052 CM 18.86889 99.13944 APR 1952 MAR 2006 55 181 RID 1-30 Nov 1997, 1-30 Apr 
1998, 1 Sep-30 Nov 2003, 
1-30 Nov 2005 

8 07062 CM 18.91306 99.94778 APR 1952 MAR 2006 55 977 RID 1-31 May 1991, 1-31 Oct 
1993, 1-30 Sep 1994, 1 
Aug-30 Nov 1996, 1 
May-30 Jun 1997, 1 Oct-
30 Nov 1997, 1-30 Jun 
1999, 1 Aug-30 Nov 
1999, 1 May-31 Aug 
2001, 1 Oct-30 Nov 2002, 
1 Oct-30 Nov,2003, 1 
Oct-30 Nov 2004, 1 May-
31 Jul 2005, 1 Sep-30 
Nov 2005 

9 07072 CM 18.68611 98.92194 APR 1952 MAR 2005 54 641 RID 1 May-31 Oct 1974, 1 
Jun-30 Nov 1997, 1 Jun-
30 Nov 1999, 1 Sep-30 
Nov 2004 

10 07082 CM 18.62694 98.89889 APR 1952 MAR 2006 55 548 RID 1-31 Oct 1965, 1-30 Sep 
1966, 1-31 May 1972, 1-
30 Jun 1975, 1980, 1-30 
Nov 2003, 1-30 Nov 2005 

11 07092 CM 18.19056 98.61444 APR 1952 MAR 2004 53 336 RID 1-31 May 2001, 1 Aug-30 
Nov 2001, Apr 2003, 1 
Jul-30 Nov 2003 

12 07102 CM 19.91722 99.21667 APR 1952 MAR 2006 55 1219 RID 1-31 May 1965, 1-31 Oct 
1970, 1973, 1 May-30 Jun 
1974, 1984-1985 

13 07112 CM 19.11889 98.94778 APR 1952 MAR 2006 55 487 RID 1-31 Oct 1977, 1-31 Oct 
1979, 1 Apr-30 Jun 1997, 
1 Oct-30 Nov 1997, 1-30 
Nov 1999, 1 May-30 Jun 
2003, 1 Sep-30 Nov 2003, 
1-30 Nov 2004, 1 Jun-31 
Jul 2005 

14 07122 CM 19.36444 99.20472 APR 1952 MAR 2006 55 244 RID 1-31 Aug 1992, 1-30 Sep 
1993, 1 Jun-30 Nov 2003 

15 07132 CM 19.36472 98.96667 APR 1952 MAR 2006 55 1500 RID 1 May-31 Oct 1969, 1-31 
Oct 1971, 1-31 Oct 1973, 
1 Jul-30 Sep 1974, 1 Jul-
31 Aug 1975, 1-31 Oct 
1975, 1 Sep-31 Oct 1976, 
1-31 Oct 1980, 1-31 Oct 
1982, 1-31 Oct 1983, 
1984-1985, 1 May-31 Oct 
1986 

16 07142 CM 18.84778 98.73583 APR 1952 AUG 2007 56 92 RID 1-31 Jul 1954, 1 May-30 
Jun 1956 
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Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

17 07152 CM 18.49833 98.36500 APR 1952 MAR 2006 55 429 RID 1 Sep-31 Oct 1958, 1-31 
Oct 1959, 1 Jun-31 Oct 
1963, 1 Sep-31 Oct 1966, 
1 May-30 Jun 1968, 1-31 
Oct 1976, 1-31 May 1998 

18 07162 CM 17.79583 98.36000 APR 1952 AUG 2007 56 1315 RID 1 Jun-31 Oct 1953, 1 
Aug-31 Oct 1954, 1-31 
Oct 1955, 1956-1957, 1-
30 Jun 1958, 1-31 Aug 
1960, 1 Jun-31 Jul 1961, 
1-31 May 1963, 1 Jul-31 
Aug 1967, 1-31 Oct 1967, 
1 Jul-31 Aug 1972 

19 07172 CM 19.95972 99.16056 APR 1952 MAR 2006 55 93 RID 1-31 May 1952, 1-31 May 
1969, 1 May-31 Aug 2003 

20 07182 CM 18.41583 98.67972 APR 1952 MAR 2006 55 124 RID 1-31 May 1962, 1-31 May 
1963, 1-31 Oct 1973, 1-31 
Oct 1984 

21 07192 CM 18.05000 98.64528 APR 1959 MAR 2005 47 887 RID 1 May-31 Aug 1959, 1 
May-30 Nov 1994, 1 Jan-
31 May 1995, 1-30 Nov 
1995, 1 Jul-31 Aug 1997, 
1-31 Oct 1998, 1 May-31 
Aug 1999, 1-31 May 
2003, 1 Aug-30 Nov 2004 

22 07202 CM n/a n/a  APR 1959 MAR 1969 11 n/a RID < 30 years 

23 07212 CM n/a n/a  APR 1959 MAR 1968 10 n/a RID < 30 years 

24 07222 CM 19.85000 99.21250 APR 1959 MAR 2006 48 2411 RID 1 May-31 Oct 1959, 
1961-1962, 1968, 1-31 
Aug 1969, 1-31 Oct 1969, 
1 May-31 Jul 1971, 1 
Sep-31 Oct 1973, 1974, 1 
May-30 Jun 1975, 1-31 
Oct 1980, 1-31 May 1992, 
1-31 Oct 1992, 1 May-31 
Oct 1993, 1 Apr-30 Sep 
1994, 1-30 Jun 1997 

25 07232 CM 19.26000 98.92194 APR 1961 MAR 1973 13 n/a RID < 30 years 

26 07242 CM 18.80278 98.92500 APR 1961 AUG 2007 47 123 RID 1 May-31 Aug 1961 

27 07252 CM 19.26861 98.97556 APR 1964 AUG 2007 44 245 RID 1 May-30 Sep 1965, Sep-
Oct 1968, 1-31 May 1975 

28 07262 CM 18.80667 98.90333 APR 1965 MAR 2006 42 1524 RID 1 May-30 Sep 1965, 1 
Aug-31 Oct 1968, 1969-
1970, 1989, 1 May-31 Oct 
1991 

29 07272 CM 18.83333 98.86667 APR 1966 MAR 1978 13 n/a RID < 30 years 

30 07282 CM 18.15028 98.39306 APR 1966 AUG 2007 42 123 RID 1 May-31 Aug 1966 

31 07292 CM 18.61111 98.90056 APR 1962 MAR 2006 45 154 RID 1 May-31 Aug 1962, 1-31 
Oct 1992 

32 07303 CM 18.89667 99.01083 APR 1973 MAR 2006 34 1583 RID 1-30 Sep 1987, 1988-
1991, 1-31 Oct 1993, 1 
Sep-31 Oct 1996 

33 07314 CM 18.74361 98.92222 APR 1959 MAR 1965 7 n/a RID < 30 years 

34 07322 CM     APR 1970 MAR 1975 6 n/a RID < 30 years 

35 07331 CM 19.21250 98.87000 APR 1952 MAR 1981 30 n/a RID < 30 years 

36 07341 CM 18.91778 99.13056 APR 1964 MAR 2004 41 4238 RID 1 May-30 Sep 1964, 1-31 
May 1972, 26 May 1981, 
1-31 Oct 1990, 1 May-31 
Jul 1991, 1 Sep-31 Oct 
1991, 1992-1997, 1 May-
31 Aug 1998, 1999-2002, 
1-31 May 2003, 1 Jul-31 
Aug 2003 

37 07361 CM n/a n/a  APR 1968 MAR 1999 32 6698 RID 1980-1997, 1 May-31 
Aug 1998 

38 07391 CM 18.78917 99.01694 APR 1971 MAR 2006 36 215 RID 1-31 Jul 1980, 1-31 May 
1997, 1-31 Aug 1999, 1-
30 Jun 2000, 1 Jun-31 
Aug 2002 

39 07420 CM 18.99556 98.98333 APR 1952 MAR 2004 53 5309 RID 1 Jun-31 Jul 1953, 1-31 
Oct 1953, 1-31 Oct 1954, 
1-30 Jun 1955, 1 Jun-31 
Oct 1956, 1 May-30 Jun 
1957, 1 May-31 Oct 1958, 
1 May-31 Oct 1959, 1 
Aug-31 Oct 1964, 1-31 
Aug 1965, 1 May-31 Jul 
1966, 1 May-31 Oct 1968, 
1-31 Oct 1979, 1 Jun-31 
Jul 1990, 1 Oct-30 Nov 
1990, 1 May-31 Jul 1991, 
1 Sep-31 Oct 1991, 1992-
1997, 1 May-31 Aug 
1998, 1999-2002, 1-31 
May 2003, 1 Jul-31 Aug 
2003 
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Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

40 07430 CM 18.90167 99.02056 APR 1952 MAR 2004 53 5091 RID 1 Jun-31 Jul 1953, 1-31 
Oct 1953, 1-31 Oct 1954, 
1-30 Jun 1955, 1 Jun-31 
Oct 1956, 1 May-30 Jun 
1957, 1958, 1 Aug-31 Oct 
1964, 1 May-31 Jul 1966, 
1-31 Oct 1966, 1-31 Oct 
1980, 1 Jun-31 Jul 1990, 1 
Oct-30 Nov 1990, 1 May-
31 Jul 1991, 1 Sep-31 Oct 
1991, 1992-1997, 1 May-
31 Aug 1998, 1999-2002, 
1 Jul-31 Aug 2003 

41 07440 CM 19.04250 98.98111 APR 1952 MAR 2004 53 5428 RID 1 Jun-31 Jul 1953, 1-31 
Oct 1953, 1-31 Oct 1954, 
1-30 Jun 1955, 1 Jun-31 
Oct 1956, 1 May-30 Jun 
1957, 1 May-31 Oct 1958, 
1 May-31 Oct 1959, 1 
Aug-31 Oct 1964, 1 May-
31 July 1966, 1 May-31 
Oct 1968, 1 Jun-31 Jul 
1990, 1-31 Oct 1990, 1 
May-31 Jul 1991, 1 Sep-
31 Oct 1991, 1992-2002, 
1 Jul-31 Aug 2003 

42 07450 CM 18.93250 99.00056 APR 1952 MAR 2004 53 5610 RID 1 Jun-31 Jul 1953, 1-31 
Oct 1953, 1-31 Oct 1954, 
1-30 Jun 1955, 1 Jun-31 
Oct 1956, 1 May-30 Jun 
1957, 1958, 1 May-31 Oct 
1959, 1 Aug-31 Oct 1964, 
1 May-31 July 1966, 
1968, 1-31 Oct 1980, 1 
Jun-31 Jul 1990, 1-31 Oct 
1990, 1 May-31 Jul 1991, 
1 Sep-31 Oct 1991, 1992-
1997, 1 May-31 Aug 
1998, 1999-2002, 1-31 
May 2003, 1 Jul-31 Aug 
2003 

43 07460 CM 18.87778 99.08556 APR 1960 MAR 2004 45 4420 RID 1 Aug-31 Oct 1964, 1 
May-31 Jul 1966, 1 Sep-
31 Oct 1980, 1-31 May 
1987, 1 Jun-31 Jul 1990, 1 
Oct-30 Nov 1990, 1 May-
31 Jul 1991, 1 Sep-31 Oct 
1991, 1992-1997, 1 May-
31 Aug 1998, 1999-2002, 
1-31 May 2003, 1 Jul-31 
Aug 2003 

44 07472 CM 17.91667 98.68333 APR 1969 MAR 2006 38 549 RID 1-30 Sep 1989, 1 Jul-31 
Oct 1990, 1991, 1-31 Aug 
1994 

45 07480 CM 19.10222 98.95583 APR 1952 MAR 2004 53 4635 RID 1 May-30 Jun 1957, 1 
May-31 Oct 1958, 1 May-
31 Oct 1959, 1 Aug-31 
Oct 1964, 1 Jun-31 Jul 
1990, 1-31 Oct 1990, 1 
May-31 Jul 1991, 1 Sep-
31 Oct 1991, 1992-1997, 
1 May-31 Aug 1998, 
1999-2002, 1-31 May 
2003, 1 Jul-31 Aug 2003 

46 07492 CM 19.99639 99.25917 APR 1970 MAR 2006 37 276 RID 1 May-31 Aug 1970, 1 
May-30 Sep 2005 

47 07502 CM 19.06667 99.21667 APR 1972 MAR 2006 35 460 RID 1 May-31 Oct 1972, 1 
May-31 Aug 1984, 1 
May-31 Aug 1995, 1-30 
Jun 1997 

48 07510 CM 18.68944 98.97222 APR 1970 MAR 2004 35 6302 RID 1-31 May 1970, 1971-
1974, 1990-2002, 1 Jul-31 
Aug 2003 

49 07520 CM 19.15444 98.92278 APR 1974 MAR 2004 31 4599 RID 1 May-31 Oct 1974, 1-30 
Jun 1977, 1-30 Nov 1977, 
1 Sep-30 Nov 1990, 1 
May-31 Oct 1991, 1992-
2002, 1 Jul-31 Aug 2003 

50 07530 CM 18.87639 99.14667 APR 1974 MAR 2004 31 3537 RID 1 May-31 Oct 1974, 1-31 
Aug 1987, 1-31 Oct 1990, 
1 May-31 July 1991, 1 
Sep-31 Oct 1991, 1992-
1997, 1 May-31 Aug 
1998, 1999-2002, 1-31 
May 2003, 1 Jul-31 Aug 
2003 

51 07540 CM 18.82139 99.17556 APR 1974 MAR 2004 31 4237 RID 1 May-31 Oct 1974, 1-31 
Oct 1990, 1 May-31 July 
1991, 1 Sep-31 Oct 1991, 
1992-1997, 1 May-31 
Aug 1998, 1999-2002, 1-
31 May 2003, 1 Jul-31 
Aug 2003 
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Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

52 07550 CM 18.74056 99.16028 APR 1959 MAR 2004 46 4267 RID 1 May-31 Oct 1959, 1-30 
Jun 1983, 1-31 Oct 1990, 
1 May-31 July 1991, 1 
Sep-31 Oct 1991, 1992-
1997, 1 May-31 Aug 
1998, 1999-2002, 1-31 
May 2003, 1 Jul-31 Aug 
2003 

53 07562 CM 18.82056 98.57389 APR 1976 MAR 1979 4 n/a RID < 30 years 

54 07574 CM 18.62306 98.51167 APR 1975 MAR 1977 3 n/a RID < 30 years 

55 07581 CM 18.85722 99.28667 APR 1977 MAR 1986 10 n/a RID < 30 years 

56 07591 CM 18.61667 98.74528 APR 1979 MAR 2000 22 n/a RID < 30 years 

57 07605 CM 19.38333 98.71833 APR 1972 MAR 1995 24 n/a RID < 30 years 

58 07614 CM 19.23000 98.81333 APR 1972 MAR 1995 24 n/a RID < 30 years 

59 07625 CM 18.28917 98.32000 APR 1971 MAR 1980 10 n/a RID < 30 years 

60 07634 CM 18.49778 98.36306 APR 1970 MAR 1982 13 n/a RID < 30 years 

61 07645 CM 18.22500 98.46667 APR 1971 MAR 1992 22 n/a RID < 30 years 

62 07652 CM 18.51667 98.82250 APR 1982 MAR 2004 23 n/a RID < 30 years 

63 07665 CM 19.15000 99.03333 APR 1983 MAR 2003 21 n/a RID < 30 years 

64 07670 CM 19.16944 99.05250 APR 1984 MAR 2002 19 n/a RID < 30 years 

65 07680 CM 19.71111 99.21389 APR 1986 MAR 1993 8 n/a RID < 30 years 

66 07695 CM n/a n/a  APR 1985 MAR 1998 14 n/a RID < 30 years 

67 07702 CM 19.55750 98.64028 APR 1989 MAR 2006 18 n/a RID < 30 years 

68 07714 CM 18.30694 98.36583 APR 1988 MAR 2006 19 n/a RID < 30 years 

69 07722 CM 19.41667 98.96667 APR 1989 MAR 2006 18 n/a RID < 30 years 

70 07731 CM 17.78361 98.37528 APR 1990 MAR 2006 17 n/a RID < 30 years 

71 07740 CM 19.11944 98.94639 APR 1986 MAR 1998 13 n/a RID < 30 years 

72 07751 CM 19.63667 98.63889 APR 1995 MAR 2006 12 n/a RID < 30 years 

73 07760 CM n/a n/a  APR 2001 MAR 2006 6 n/a RID < 30 years 

74 07770 CM n/a n/a  APR 2001 MAR 2006 6 n/a RID < 30 years 

75 07780 CM n/a n/a  APR 2001 MAR 2006 6 n/a RID < 30 years 

76 07792 CM n/a n/a  APR 2001 MAR 2006 6 n/a RID < 30 years 

77 07801 CM 18.65222 98.69056 APR 2002 MAR 2006 5 n/a RID < 30 years 

78 07810 CM n/a n/a  APR 2003 MAR 2006 4 n/a RID < 30 years 

79 07826 CM 19.26639 98.76722 APR 2004 MAR 2005 2 n/a RID < 30 years 

80 07846 CM 19.14000 98.65833 APR 2004 MAR 2005 2 n/a RID < 30 years 

81 07856 CM 19.19889 99.17500 APR 2003 MAR 2005 3 n/a RID < 30 years 

82 07866 CM 19.01417 98.88389 APR 2004 MAR 2005 2 n/a RID < 30 years 

83 07876 CM 18.92750 98.76194 APR 2004 MAR 2005 2 n/a RID < 30 years 

84 07886 CM 18.82667 98.57333 APR 2003 MAR 2005 3 n/a RID < 30 years 

85 07896 CM 19.68222 98.96333 APR 2003 MAR 2005 3 n/a RID < 30 years 

86 07906 CM 19.61667 98.96167 APR 2003 MAR 2005 3 n/a RID < 30 years 

87 07916 CM 19.55333 99.06667 APR 2003 MAR 2005 3 n/a RID < 30 years 

88 07936 CM 18.67833 98.38194 APR 2003 MAR 2005 3 n/a RID < 30 years 

89 07956 CM 18.25000 98.20000 APR 2003 MAR 2005 3 n/a RID < 30 years 

90 07966 CM 18.16667 98.45000 APR 2003 MAR 2005 3 n/a RID < 30 years 

91 07976 CM n/a n/a  APR 2003 MAR 2005 3 n/a RID < 30 years 

92 07982 CM 18.61111 98.77778 APR 2003 MAR 2006 4 n/a RID < 30 years 

93 07992 CM 18.62306 98.51167 APR 2003 MAR 2006 4 n/a RID < 30 years 

94 071A2 CM 18.74361 98.92222 APR 2004 MAR 2006 3 n/a RID < 30 years 

95 060201 CM 19.32667 98.94000 OCT 1988 DEC 2004 17 0 DWR < 30 years; Station 
installed on 18 October 
1988 

96 060301 CM 19.44833 99.21500 APR 1979 DEC 2004 26 365 DWR < 30 years; Station 
installed on 1 April 1979; 
1985 

97 060401 CM 19.63167 98.58333 JUNE 1980 DEC 2004 25 0 DWR < 30 years; Station 
installed on 20 June 1980 

98 060406 CM 19.40250 98.72750 OCT 1987 DEC 2004 18 0 DWR < 30 years; Station 
installed on 20 October 
1987 
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Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

99 060602 CM 19.03000 98.84000 OCT 1988 DEC 2004 17 0 DWR < 30 years; Station 
installed on 7 October 
1988 

100 060804 CM 18.66667 98.62333 JAN 1990 DEC 2004 15 0 DWR < 30 years; Station 
installed on 3 January 
1990 

101 061006 CM 18.28833 98.52167 JAN 1991 DEC 2004 14 0 DWR < 30 years; Station 
installed on 1 January 
1991 

102 061202 CM 18.72833 98.40000 OCT 1987 DEC 2004 18 0 DWR < 30 years; Station 
installed on 22 October 
1987 

103 061302 CM 18.54833 98.35833 SEP 1982 DEC 2004 23 0 DWR < 30 years; Station 
installed on 1 September 
1982 

104 061501 CM 17.38667 98.47167 NOV 1978 DEC 2004 27 31 DWR < 30 years; Station 
installed on 25 November 
1978; 1-31 May 1999 

105 329201 LP 18.56667 99.03333 JAN 1981 DEC 2007 27 0 TMD < 30 years 

106 17012 LP 18.57722 99.00944 APR 1952 MAR 2006 55 1737 RID 1-31 May 1954, 1-31 Oct 
1955, 1957-1960, 1 May-
31 Oct 1961, 1-30 Sep 
1980 

107 17022 LP 17.80028 98.95472 APR 1955 MAR 2006 52 1766 RID 1 May-30 Jun 1955, 1977, 
1-31 Oct 1979, 1983-
1984, 1-30 Jun 1989, 1 
Sep-31 Oct 1989, May 
1992, 1 Jun-30 Nov 1999, 
1-30 Nov 2000, 1 Apr-30 
Jun 2002, 1 Sep-30 Nov 
2002, 1 Oct-30 Nov 2003 

108 17032 LP 18.52361 98.94389 APR 1955 MAR 2006 52 945 RID 1 May-30 Jun 1955, 1956-
1957, 1-31 May 1963, 1-
30 Jun 1997, 1-31 Aug 
2000, 1 Oct-30 Nov 2005 

109 17042 LP 18.45972 99.13722 APR 1952 AUG 2007 56 245 RID 1 May-31 Aug 1953, 1-31 
Oct 1957, 1 May-31 Jul 
1959, 1-30 Jun 1960 

110 17052 LP 18.31444 98.82250 APR 1962 MAR 2006 45 883 RID 1969, 1 Jul-31 Oct 1970, 
1971, 1-30 Apr 2005 

111 17062 LP 17.65556 98.77500 APR 1959 AUG 2007 49 123 RID 1 May-31 Aug 1959 

112 17074 LP 17.95194 98.89917 APR 1973 MAR 2006 34 31 RID 1-31 Oct 1984 

113 17081 LP 17.88750 99.08889 APR 1978 MAR 2004 27 306 RID < 30 years; 1 May-31 Aug 
1978, 1 Oct-30 Nov 1978, 
May 1997, 1-30 Jun 1999, 
1-31 Aug 1999, 1-30 Jun 
2000 

114 17093 LP 18.58333 99.03333 APR 1980 MAR 2006 27 n/a RID < 30 years 

115 17101 LP 18.58667 99.15750 APR 1983 MAR 1999 17 n/a RID < 30 years 

116 17111 LP 18.38639 99.01028 APR 1986 MAR 1988 3 n/a RID < 30 years 

117 17120 LP n/a n/a  APR 2003 MAR 2004 2 n/a RID < 30 years 

118 17130 LP n/a n/a  APR 2003 MAR 2004 2 n/a RID < 30 years 

119 17140 LP n/a n/a  APR 2003 MAR 2004 2 n/a RID < 30 years 

120 17150 LP n/a n/a  APR 2003 MAR 2004 2 n/a RID < 30 years 

121 17160 LP n/a n/a  APR 2003 MAR 2004 2 n/a RID < 30 years 

122 17181 LP 18.13972 98.89944 APR 2003 MAR 2006 4 n/a RID < 30 years 

123 17196 LP 18.50000 99.26667 APR 2003 MAR 2005 3 n/a RID < 30 years 

124 17206 LP 18.41722 98.99611 APR 2003 MAR 2005 3 n/a RID < 30 years 

125 061101 LP 17.58694 98.81111 OCT 1988 DEC 2004 17 0 DWR < 30 years; Station 
installed on 10 October 
1988 

126 376201 TK 16.88333 98.11667 JAN 1955 JUL 2007 53 36 TMD 25-29 Aug 1959, 1-31 
Aug 1988 

127 376202 TK 16.65917 98.55083 JAN 1951 JUL 2007 57 33 TMD 1-2 Oct 1962, 1-31 Aug 
1988 

128 376203 TK 17.23333 98.05306 JAN 1961 JUL 2007 47 762 TMD 1967-1968, 1-31 Aug 
1988 

129 376301 TK 16.75000 98.93333 JAN 1992 JUL 2007 16 0 TMD < 30 years 

130 376401 TK 16.01583 98.86556 JAN 1977 DEC 2007 31 0 TMD  

131 63013 TK 16.88056 99.12667 APR 1921 MAR 2006 86 706 RID 1-30 Sep 1925, 1-31 May 
1928, 1-31 Aug 1929, 1-
31 Oct 1930, 1-31 May 
1931, 1-31 May 1934, 1-
31 Oct 1942, 1 Jun-31 
Aug 1950, 1 Jul-31 Aug 
1952, 1 Jul-31 Oct 1980, 
1-30 Nov 2003, 1 Jun-30 
Nov 2004 
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Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

132 63022 TK 17.04611 99.07611 APR 1921 MAR 2006 86 1529 RID 1-31 Aug 1927, 1-31 May 
1931, 1-31 May 1935, 
1939, 1-30 Jun 1940, 
1945, 1-30 Jun 1946, 1-31 
May 1947, 1-31 Oct 1947, 
1-31 May 1948, 1-31 Oct 
1948, 1 May-30 Jun 1949, 
1950, 1-31 May 1951, 1-
31 Oct 1959, 1 Aug-31 
Oct 1969, 1-31 Oct 1973, 
1-31 Jul 1975, 1-31 Oct 
1975, 1 May-30 Sep 
2002, 1 Apr-31 May 2003 

133 63033 TK 16.71194 98.57583 APR 1921 MAR 2006 86 5542 RID 1929-1932, 1937-1939, 1-
31 Oct 1940, 1-31 Jul 
1941, 1 Sep-31 Oct 1942, 
1 Aug-31 Oct 1943, 1944-
1950, 17 Nov 1998, 1-30 
Nov 2003, 1 Jun-30 Nov 
2004 

134 63042 TK 16.01611 98.86667 APR 1923 MAR 2006 84 4663 RID 1929-1932, 1-31 Oct 
1933, 1939, 1-31 Aug 
1941, 1-31 Oct 1941, 1-31 
Aug 1943, 1-31 Oct 1943, 
1944, 1-31 Jul 1945, 1-31 
Oct 1945, 1 May-31 Jul 
1946, 1-31 Jul 1947, 
1948-1950, 1-31 May 
1951, 1 Sep-31 Oct 1968, 
1-31 Oct 1969, 1974-
1975, 1 Jun-30 Nov 2004 

135 63052 TK 16.98056 98.52056 APR 1921 AUG 2007 87 5760 RID 1-31 May 1921, 1-30 Sep 
1921, 1-31 Oct 1923, 1-31 
Oct 1928, 1 Aug-31 Oct 
1929, 1930-1933, 1 May-
30 Jun 1934, 1-31 Oct 
1936, 1939-1940, 1 Aug-
31 Oct 1941, 1-31 Jul 
1942, 1-30 Sep 1942, 
1943-1946, 1-31 Oct 
1947, 1948-1950, 1-31 
May 1951, 1-31 May 
1963, 1-31 Oct 1966, 1 
Aug-30 Sep 1971, 1972 

136 63062 TK 17.24222 99.02444 APR 1944 MAR 2006 63 2685 RID 1-31 May 1944, 1 May-31 
Jul 1946, 1-31 Jul 1947, 1 
Sep-31 Oct 1948, 1-31 
Oct 1949, 1950, 1956-
1957, 1-30 Jun 1964, 1 
Sep-31 Oct 1968, 1969, 1 
Aug-31 Oct 1981, 1983, 
1-31 Jul 1986, 1-31 Jul 
1987, 1-30 Jun 1990, 1 
Jul-31 Aug 1994, 1-31 
Oct 1994, 1-31 Jul 2000, 
1 Oct-30 Nov 2000, 1 
May-31 Aug 2004, 1-30 
Nov 2005 

137 63075 TK 17.24167 99.06250 APR 1959 MAR 2006 48 1190 RID 1-31 Aug 1963, 1 May-31 
Oct 1967, 1-31 Oct 1968, 
1999-2000, 1-30 Nov 
2003, 1 Jun-30 Nov 2004 

138 63082 TK 16.76667 98.93056 APR 1961 MAR 2001 41 2894 RID 1-31 May 1961, 1973-
1975, 1 May-31 Oct 1976, 
1996-1999, 1 May-31 
Aug 2000 

139 63092 TK 17.22444 98.22806 APR 1967 MAR 2006 40 122 RID 1 Sep-31 Oct 1983, 1-31 
Oct 1991, 1-30 Jun 1992 

140 63100 TK n/a n/a  APR 1955 MAR 1958 4   RID < 30 years 

141 63111 TK 17.24167 99.01250 APR 1952 MAR 1963 12   RID < 30 years 

142 63120 TK 16.92417 99.30250 APR 1971 MAR 2002 32 3775 RID 1 Jul-31 Oct 1989, 1990-
1999 

143 63132 TK 17.24972 98.86583 APR 1971 MAR 2006 36 1161 RID 1-30 Jun 1975, 1-31 Oct 
1975, 1 May-30 Jun 1976, 
1-30 Jun 1977, 1978, 1 
Jun-31 Jul 1979, 1-31 Oct 
1979, 1-31 Oct 1984, 1 
Sep-31 Oct 1985, 1 May-
31 Oct 1986, 1-31 May 
1987, 1-31 May 1991, 1 
Oct-30 Nov 2002, 1 May-
31 Aug 2003, 1-30 Apr 
2004 

144 63142 TK 16.76667 98.93333 APR 1972 MAR 1995 24 n/a RID < 30 years 

145 63152 TK 16.91667 98.11667 APR 1972 MAR 2006 35 762 RID 1 May-31 Aug 1972, 1 
Sep-31 Oct 1976, 1977, 1 
Oct-30 Nov 1997, 1-30 
Jun 2002, 1 Aug-30 Nov 
2003 

146 63162 TK 17.33333 98.88333 APR 1968 MAR 2006 39 1859 RID 1-31 May 1968, 1-31 May 
1969, 1977-1979, 1 Aug-
31 Oct 1980, 1983, 1 Oct-
30 Nov 2002, 1 May-31 
Aug 2003, 1 Apr-31 May 
2004 
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Location Period 
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Station 
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Province 
Latitude Longitude From To 

Length 
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Incomplete 
Data (days) 

Data 
Source 

Period of Incomplete Data 

147 63172 TK 17.01667 98.66667 APR 1977 MAR 2006 30 428 RID < 30 years; 1 Apr-30 Jun 
1977, 1 Aug-30 Nov 
1977, 1 Jun-31 Oct 1981, 
1-31 Oct 1982, 1-31 Aug 
2003 

148 63181 TK 16.76222 98.75389 APR 1977 MAR 2006 30 92 RID < 30 years; 1 May-30 Jun 
1977, 1-31 May 1999 

149 63192 TK 16.76667 99.03333 APR 1986 MAR 2006 21 n/a RID < 30 years 

150 63202 TK 16.37444 98.68528 APR 1986 MAR 2006 21 n/a RID < 30 years 

151 63215 TK n/a n/a  APR 1987 MAR 1995 9 n/a RID < 30 years 

152 63225 TK n/a n/a  APR 1987 MAR 1995 9 n/a RID < 30 years 

153 63235 TK n/a n/a  APR 1991 MAR 2006 16 n/a RID < 30 years 

154 63242 TK 16.75000 98.93333 APR 1995 MAR 1996 2 n/a RID < 30 years 

155 060101 TK 17.05000 99.06667 SEP 1971 DEC 2007 37 0 DWR Station installed on 31 
August 1971 

156 380201 KP 16.48333 99.53333 JAN 1981 JUL 2007 27 0 TMD < 30 years 

157 12012 KP 16.48222 99.52389 APR 1952 MAR 2001 50 4812 RID Jun 1957, Oct 1959, Jul 
1978, May 1985, 1987-
1994, Apr-Nov 1995, 
1996-1999, May 2000, 
Aug 2000 

158 12022 KP 16.21444 99.72111 APR 1952 MAR 2006 55 3237 RID 1956, May 1957, Sep-Oct 
1959, Jul-Oct 1961, 1962, 
May-Jul 1963, May-Jul 
1970, Jul & Oct 1979, 
May-Sep 1982, May-Oct 
1986, Jul-Oct 1987, Jul-
Oct 1988, 1990-1991, Oct 
1992, Jul-Oct 1994, Jan-
Nov 1995, Sep-Nov 2001, 
Jun-Aug 2002 

159 12032 KP 16.66333 99.59194 APR 1953 MAR 2006 54 214 RID May-Oct 1957, Nov 2005 

160 12042 KP 16.06028 99.86361 APR 1953 MAR 2006 54 367 RID May-Jun 1953, Jun 1956, 
Jun-Sep 1961, Aug & Oct 
1962, May-Jul 1963 

161 12052 KP 16.46667 99.65000 APR 1966 MAR 2006 41 153 RID Sep-Oct 1979, Sep-Oct 
1997, Jul 2003 

162 12061 KP 16.44833 99.43250 APR 1971 MAR 1998 28 337 RID < 30 years; May-Aug 
1974, May-Jun & Oct 
1993, Apr 1994, Jun-Aug 
1997 

163 12081 KP 15.90278 99.47917 APR 1970 MAR 2006 37 31 RID Jul 1972 

164 12091 KP 16.07278 99.40500 APR 1976 MAR 2002 27 246 RID < 30 years; May & Oct 
1976, Oct 1979, Sep 
1983, Oct 1987, May 
1999, Oct-Nov 2000 

165 12102 KP 16.45000 99.88333 APR 1980 MAR 2006 27 214 RID < 30 years; May-Oct 
1980, Nov 2005 

166 12113 KP n/a n/a  APR 1980 MAR 2006 27 367 RID < 30 years; May-Oct 
1980, Jun-Nov 2004 

167 12121 KP 16.33417 99.27472 APR 1984 MAR 2006 23 62 RID < 30 years; May 1989, 
May 1999 

168 12132 KP 16.24639 99.33028 APR 1986 MAR 2005 20 489 RID < 30 years; May-Oct 
1986, Jul 1990, May-Oct 
1991, Apr & Nov 2001, 
Nov 2004 

169 12142 KP 16.70944 99.85111 APR 1986 MAR 2006 21 215 RID < 30 years; May-Oct 
1986, Oct 2001 

170 12152 KP 16.45111 99.50194 APR 1994 MAR 2006 13 215 RID < 30 years; May-Aug 
1994, May & Aug-Sep 
1997 

171 12161 KP n/a n/a  APR 2000 MAR 2006 7 31 RID < 30 years; Jul 2000 

172 12176 KP n/a n/a  APR 2003 MAR 2006 4 215 RID < 30 years; May-Aug 
2003, May 2004, May-Jun 
2005 

173 12186 KP n/a n/a  APR 2003 MAR 2006 4 215 RID < 30 years; May-Aug 
2003, May 2004, May-Jun 
2005 

174 12196 KP n/a n/a  APR 2003 MAR 2006 4 215 RID < 30 years; May-Aug 
2003, May 2004, May-Jun 
2005 

175 12206 KP n/a n/a  APR 2003 MAR 2006 4 215 RID < 30 years; May-Aug 
2003, May 2004, May-Jun 
2005 

176 12216 KP n/a n/a  APR 2003 MAR 2006 4 215 RID < 30 years; May-Aug 
2003, May 2004, May-Jun 
2005 

177 400201 NK 15.80000 100.16667 JAN 1951 JUL 2007 57 6 TMD 30-31 May 1960, 1-3, 10 
& 13 Jun 1960 

178 400301 NK 15.35000 100.50000 JAN 1969 JUL 2007 39 123 TMD Jul-Oct 1982 

179 26013 NK 15.80000 100.16667 APR 1921 MAR 2006   86 1218 RID 1925, Sep-Oct 1942, 
1944-1945, Oct 1949, 28 
Oct 1998, Nov 2003 
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Period of Incomplete Data 

180 26022 NK 15.87944 100.30667 APR 1921 MAR 2006 86 5177 RID Aug 1923, Oct 1925, May 
1926, Oct 1930, May 
1931, May 1934, Oct 
1936, 1938, 1940-1951, 
Sep 1965, Jun 1996, Apr 
& Oct 1997, Nov 1999, 
Oct-Nov 2005 

181 26032 NK 15.60000 100.51667 APR 1921 MAR 2006 86 3410 RID 1928-1930, Oct 1936, Oct 
1938, 1939-1940, 1942, 
Sep 1943, 1945, May-Jul 
1946, Sep-Oct 1947, Jul 
& Oct 1948, 1949, Oct 
1950, May-Jun 1951, 2 & 
4-31 Dec1998, May-Jun 
1999 

182 26042 NK 15.51667 100.08333 APR 1921 MAR 2006 86 2835 RID Jul 1923, May 1926, 
1930, Jun-Jul 1931, Oct 
1940, Sep-Oct 1942, Aug-
Oct 1944, 1945-1947, Oct 
1948, Jul 1949, 1950, 
May-Jun 1951, Oct 1994, 
Oct-Nov 1995, Nov 1996, 
Apr-Jul & Sep-Nov 1997, 
May-Nov 1999, Nov 2000 

183 26052 NK 15.41667 100.16667 APR 1921 MAR 2006 86 2173 RID May 1924, Oct 1925, Jul 
& Oct 1927, Sep-Oct 
1928, 1930, May 1934, 
Oct 1935, Jul 1941, Sep 
1942, May & Oct 1943, 
Oct 1944, Sep-Oct 1945, 
Aug 1946, May-Oct 1948, 
May-Jul 1951, May 1962, 
Oct 1965, Oct 1969, Jul & 
Oct 1972, Nov 1995, Nov 
1997, Oct-Nov 1999, Jun 
1999, May-Aug 2002, 
Apr-Sep & Nov 2003, 
Apr-Oct 2005 

184 26062 NK 15.88333 100.01667 APR 1920 MAR 2006 87 5488 RID Jul & Oct 1925, 1927-
1929, Aug 1930, May 
1934, Sep 1936, 1943-
1951, May-Jun 1952, Sep 
1959, Oct 1979, May-Oct 
1993, May-Oct 1994, Jul 
1995, Oct-Nov 1996, 
May-Aug & Oct 1997, 
May-Aug 1998, Apr-Jun 
1999 

185 26072 NK 15.70000 99.81667 APR 1931 MAR 2006 76 1007 RID Oct 1943, 1944, May-Jul 
1945, Oct 1946, Jul 1948, 
1951, Sep-Oct 1953, Nov 
2005 

186 26082 NK 15.21667 100.35000 APR 1921 MAR 2006 86 4092 RID Oct 1921, Jun 1924, Oct 
1925, Oct 1927, 1929, Oct 
1934, Jul 1938, Jul 1941, 
Jun 1942, Jun & Oct 
1943, 1945, May & Oct 
1946, May-Jul 1951, Oct 
1960, Oct 1961, Sep-Oct 
1962, May-Oct 1963, 
1966, May-Jul 1967, May 
1977, Jun-Oct 1990, Aug-
Oct 1991, May-Oct 1992, 
May-Oct 1993, 1994-
1996, May-Aug & Oct 
1997, Apr & Aug-Nov 
1998, Apr-Jun 1999 

187 26092 NK 15.65000 100.16667 APR 1936 MAR 2006 71 4083 RID Oct 1938, Oct 1940, 
1941-1946, Oct 1947, Sep 
1948, Oct 1949, 1951-
1953, Oct 1954, Oct 1979, 
1991, May-Oct 1992, Jun 
2002 

188 26102 NK 15.86417 100.58861 APR 1952 MAR 2006 55 549 RID 1978, Oct 1979, Sep-Oct 
1984, Jun & Oct 1991, 
Oct 1993 

189 26112 NK n/a n/a  APR 1960 MAR 1983 24 184 RID < 30 years; May-Oct 1960 

190 26122 NK 15.56667 100.70000 APR 1967 MAR 2006 40 428 RID Jun & Oct 1967, May-Oct 
1968, May 1993, Nov 
1995, Oct-Nov 1999, Jul 
2003, Nov 2005 

191 26134 NK n/a n/a  APR 1958 MAR 1976 19 3714 RID < 30 years; 1965-1974, 
May & Oct 1975 

192 26142 NK 15.35000 100.50000 APR 1981 MAR 2006 26 2196 RID < 30 years; May-Oct 
1981, Jun-Oct 1982, 
1983-1987, May 1988, 1 
Nov 1998 

193 26154 NK n/a n/a  APR 1971 MAR 1973 3 123 RID < 30 years; Jul-Oct 1972 

194 26164 NK n/a n/a  APR 1935 MAR 1951 17 400 RID < 30 years; Sep 1940, Oct 
1942, May-Aug & Oct 
1945, May-Jul & Oct 
1946, Jul & Oct 1950 

195 26170 NK n/a n/a  APR 1965 MAR 2006 42 793 RID Oct 1979, Oct 1992, 1999, 
2001 

196 26180 NK n/a n/a  APR 1965 MAR 2006 42 366 RID 1999 
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197 26190 NK n/a n/a  APR 1965 MAR 2006 42 397 RID May 1987, 1999 

198 26200 NK n/a n/a  APR 1965 MAR 2006 42 397 RID May 1987, 1999 

199 26210 NK n/a n/a  APR 1964 MAR 2006 43 797 RID May-Jun 1988, Jul 1994, 
Jul-Aug 1996, 1999, May 
2002, May 2003, Jun-Aug 
2004, May-Aug 2005 

200 26220 NK n/a n/a  APR 1964 MAR 2005 42 611 RID May-Jun 1988, Jun 1991, 
Jul 1994, 1999, May 
2002, Jun-Aug 2004 

201 26230 NK n/a n/a  APR 1964 MAR 2005 42 581 RID May-Jun 1988, 1999, May 
2002, May 2003, Jun-Aug 
2004 

202 26252 NK n/a n/a  APR 1970 MAR 1973 4 62 RID < 30 years; Jul-Aug 1972 

203 26262 NK 15.78333 99.68333 APR 1970 MAR 2006 37 457 RID 1991, Nov 1999, May & 
Nov 2005 

204 26271 NK n/a n/a  APR 1975 MAR 2006 32 184 RID Jun-Jul 1975, May-Jun 
1996, Jul 1997, Jul 2004 

205 26281 NK n/a n/a  APR 1975 MAR 2006 32 61 RID Jun-Jul 1975 

206 26292 NK 15.76667 100.08333 APR 1975 MAR 2006 32 1346 RID May-Oct 1975, Oct 1979, 
Jul 1980, Oct 1985, Sep-
Oct 1986, 1987, 1991, 
May-Oct 1992, Oct 1998 

207 26301 NK n/a n/a  APR 1991 MAR 2006 16 4143 RID < 30 years; May-Oct 
1991, May-Jul & Sep 
1992, May-Oct 1993, 
1995-2004 

208 26311 NK n/a n/a  APR 2000 MAR 2006 7 0 RID < 30 years 

CM: Chiang Mai; LP: Lam Phun; TK: Tak; KP: Kamphaeng Phet; NK: Nakhon Sawan. 
RID: Royal Irrigation Department of Thailand; TMD: Thailand Meteorological Department; DWR: 
Department of Water Resources. 
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A2: List of the 50 selected rainfall stations 

Location Period Station 
code 

Province 
Latitude Longitude From To 

Length 
(years) 

Data 
source 

327301 CM 18.91667 99.00000 1969 2007 39 TMD 
327501 CM 18.79000 98.97694 1951 2007 57 TMD 
07052 CM 18.86889 99.13944 1952 2006 55 RID 
07072 CM 18.68611 98.92194 1952 2005 54 RID 
07082 CM 18.62694 98.89889 1952 2006 55 RID 
07112 CM 19.11889 98.94778 1952 2006 55 RID 
07122 CM 19.36444 99.20472 1952 2006 55 RID 
07142 CM 18.84778 98.73583 1956 2007 52 RID 
07172 CM 19.95972 99.16056 1952 2006 55 RID 
07242 CM 18.80278 98.92500 1961 2007 47 RID 
07252 CM 19.26861 98.97556 1975 2007 33 RID 
07262 CM 18.80667 98.90333 1965 2006 42 RID 
07292 CM 18.61111 98.90056 1962 2006 45 RID 
07391 CM 18.78917 99.01694 1971 2006 36 RID 
07492 CM 19.99639 99.25917 1970 2006 37 RID 
07502 CM 19.06667 99.21667 1972 2006 35 RID 
07092 CM 18.19056 98.61444 1952 2004 53 RID 
07152 CM 18.49833 98.36500 1952 2006 55 RID 
07162 CM 17.79583 98.36000 1972 2007 36 RID 
07182 CM 18.41583 98.67972 1952 2006 55 RID 
07282 CM 18.15028 98.39306 1966 2007 42 RID 
07472 CM 17.91667 98.68333 1969 2006 38 RID 
17012 LP 18.57722 99.00944 1952 2006 55 RID 
17032 LP 18.52361 98.94389 1955 2006 52 RID 
17042 LP 18.45972 99.13722 1960 2007 48 RID 
17052 LP 18.31444 98.82250 1962 2006 45 RID 
17062 LP 17.65556 98.77500 1959 2007 49 RID 
17074 LP 17.95194 98.89917 1973 2006 34 RID 
376201 TK 16.88333 98.11667 1960 2007 48 TMD 
376203 TK 17.23333 98.05306 1961 2007 47 TMD 
63022 TK 17.04611 99.07611 1921 2006 86 RID 
63042 TK 16.01611 98.86667 1923 2006 84 RID 
060101 TK 17.05000 99.06667 1971 2007 37 DWR 
12032 KP 16.66333 99.59194 1953 2006 54 RID 
12042 KP 16.06028 99.86361 1964 2006 43 RID 
12052 KP 16.46667 99.65000 1966 2006 41 RID 
12081 KP 15.90278 99.47917 1973 2006 34 RID 
400201 NK 15.80000 100.16667 1951 2007 57 TMD 
400301 NK 15.35000 100.50000 1969 2007 39 TMD 
26022 NK 15.87944 100.30667 1921 2006 86 RID 
26032 NK 15.60000 100.51667 1921 2006 86 RID 
26072 NK 15.70000 99.81667 1931 2006 76 RID 
26102 NK 15.86417 100.58861 1952 2006 55 RID 
26122 NK 15.56667 100.70000 1967 2006 40 RID 
26180 NK  n/a n/a 1965 2006 42 RID 
26190 NK  n/a n/a 1965 2006 42 RID 
26200 NK  n/a n/a 1965 2006 42 RID 
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Location Period Station 
code 

Province 
Latitude Longitude From To 

Length 
(years) 

Data 
source 

26262 NK 15.78333 99.68333 1970 2006 37 RID 
26271 NK  n/a n/a 1975 2006 32 RID 
26281 NK  n/a n/a 1976 2006 31 RID 

CM: Chiang Mai; LP: Lam Phun; TK: Tak; KP: Kamphaeng Phet; NK: Nakhon Sawan. 
RID: Royal Irrigation Department of Thailand; TMD: Thailand Meteorological Department; DWR: 
Department of Water Resources. 
 
 
 



 172 

A3: List of the streamflow gauging stations in the Ping River Basin 

Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Data 
Source 

Period of Incomplete Data 

1  P1 CM 18.78583 99.00806 Apr 1921 Mar 2007 87 RID Jun 1932 
2  P2A TK 16.85389 99.13056 Apr 1952 Mar 2005 54 RID   
3  P4A CM 19.12083 98.94750 Apr 1955 Mar 2007 53 RID Aug 1966/1-11 Feb 1974/1977/31 

Jan, 31 Mar 2008 
4  P5 LP 18.57556 99.01222 Apr 1954 Mar 2007 54 RID 1969-1977/1993-2004/Aug 

2005/16-18, 28 Sep 2005/6,9 Mar 
2008 

5  P7A KP 16.47722 99.51833 Apr 1978 Mar 2005 28 RID   
6 P12 TK 17.24167 99.01250 Apr 1952 Mar 1994 43 RID 1969-1971/14-20 Jan 1977/3-6 Jul, 

4-11 Aug 1978 
7 P12A TK 17.24444 98.96472 Apr 1952 Mar 1994 43 RID 1969-1971/14-20 Jan 1977/3-6 Jul, 

4-11 Aug 1978 
8 P12B TK 17.24083 99.02500 Apr 1996 Mar 2006 11 EGAT   
9  P14 CM 18.23028 98.55972 Apr 1954 Mar 2007 54 RID 31 Mar 1958/1963/Apr-May 1965 
10 P19 CM 18.42083 98.69806 Apr 1958 Mar 1992 35 RID   
11  P21 CM 18.92472 98.94278 Apr 1954 Mar 2007 54 RID Jul 1959/Jan, 1-3 Feb, 24 Apr-26 

May 1976 
12 P24 CM 18.38750 98.68083 Apr 1955 Mar 2004 50 RID Sep, 1-10, 24-31 Oct, 1-14 Nov 

1955/1-26 Jan, 29 Feb, May-3 Jun 
1956/6-19, 21, 23-25 May 1957/31 
May 1959/15 Jul 1973-31 Mar 
1974 

13  P24A CM 18.41694 98.67472 Apr 1973 Mar 2007 35 RID 31 Jan, 31 Mar 2008 
14  P35 KP 16.07278 99.40500 Apr 1974 Mar 2001 28 RID   
15  P47 KP 16.33417 99.27472 Apr 1983 Mar 2005 23 RID 1 Apr-25 May 1983 
16  P56A CM 19.28389 99.19028 Apr 1999 Mar 2005 7 RID 4 Jun, 15-17, 20-29 Jul, 2, 13-21, 

31 Aug, 1-6, 9-30 Sep, 1-21, 28-31 
Oct, 1-11 Nov, 6-11 Dec 2005 

17  P64 CM 17.78361 98.37528 Apr 1990 Mar 2005 16 RID 1 Apr-11 Sep 1990/2003/Sep, 3 Oct 
2005 

18  P65 CM 19.63611 98.63861 Apr 1992 Mar 2004 13 RID 1 Apr-27 Jun 1992/2002-2003 
19 P67 CM 19.01972 98.96167 Apr 1996 Mar 2007 12 RID May 2007/31 Jan, 2 Feb, 31 Mar 

2008 
20 P70 CM 19.65222 98.66944 Apr 1995 Mar 2000 6 RID   
21 P71 CM 18.53722 98.86306 Apr 1996 Mar 2007 12 RID 31 Jan, 31 Mar 2008 
22 P73 CM 18.28833 98.65306 Apr 1998 Mar 2007 10 RID 31 Jan, 31 Mar 2008 
23 P75 CM 19.14778 99.01000 Apr 1999 Mar 2007 9 RID 31 Jan, 31 Mar 2008 
24 P76 LP 18.13972 98.89944 Apr 2000 Mar 2005 6 RID  
25 P77 LP 18.43250 99.08333 Apr 1999 Mar 2005 7 RID Nov 2005 
26 P85 LP 18.36389 98.77556 Apr 2003 Mar 2007 5 RID  
27 060101 TK 17.05000 99.06667 Jan 1972 Dec 2004 33 DWR 1979 
28 060201 CM 19.32667 98.94000 Jan 1986 Dec 2004 19 DWR  
29 060202 CM 19.48667 98.72750 Jan 1983 Dec 2004 22 DWR  
30 060301 CM 19.44833 99.21500 Jan 1977 Dec 2004 28 DWR 1-14 Jan 1977/27 Sep-13 Oct 1982 
31 060302 CM 19.37333 99.24833 Jan 1986 Dec 2004 19 DWR  
32 060401 CM 19.63167 98.58333 Jan 1983 Dec 2004 22 DWR  
33 060406 CM 19.40250 98.72750 Jan 1985 Dec 2004 20 DWR  
34 060602 CM 19.03000 98.84000 Jan 1983 Dec 2004 22 DWR 1-3 Aug 1983/15-19 Sep 1994 
35 060603 CM 19.02333 98.88000 Jan 1985 Dec 2004 20 DWR  
36 060701 CM 18.96500 99.27667 Jan 1983 Dec 2004 22 DWR 18 Aug-13 Nov 1987 
37 060704 CM 18.98250 99.33944 Jan 1983 Dec 2004 22 DWR  
38 060804 CM 18.66667 98.62333 Jan 1983 Dec 2004 22 DWR  
39 060808 CM 18.61083 98.85444 Jan 1983 Dec 2004 22 DWR  
40 061001 CM 18.54000 98.59500 Jan 1983 Dec 2004 22 DWR  
41 061006 CM 18.28833 98.52167 Jan 1991 Dec 2004 14 DWR  
42 061101 LP 17.58694 98.81111 Jan 1984 Dec 2004 21 DWR 2000 
43 061202 CM 18.72833 98.40000 Jan 1985 Dec 2004 20 DWR  
44 061302 CM 18.54833 98.35833 Jan 1983 Dec 2007 25 DWR 6-12 Sep, 23 Sep-3 Oct 1995 
45 061501 CM 17.38667 98.47167 Jan 1977 Dec 2007 31 DWR   

CM: Chiang Mai; LP: Lam Phun; TK: Tak; KP: Kamphaeng Phet. 
RID: Royal Irrigation Department of Thailand; DWR: Department of Water Resources; EGAT: 
Electricity Generating Authority of Thailand. 
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A4: List of the 12 selected streamflow stations 

Location Period Station 
code 

Province 
Latitude Longitude From To 

Length 
(years) 

Data 
source 

P1 CM 18.78583 99.00806 1921 2007 87 RID 
P4A CM 19.12083 98.94750 1955 2007 53 RID 
P12C TK 17.24083 99.02500 1996 2006 11 EGAT 
P14 CM 18.23028 98.55972 1954 2007 54 RID 
P21 CM 18.92472 98.94278 1954 2007 54 RID 

P24A CM 18.41694 98.67472 1973 2007 35 RID 
P67 CM 19.01972 98.96167 1996 2007 12 RID 
P71 CM 18.53722 98.86306 1996 2007 12 RID 
P73 CM 18.28833 98.65306 1998 2007 10 RID 
P75 CM 19.14778 99.01000 1999 2007 9 RID 

061302 CM 18.54833 98.35833 1983 2007 25 RID 
061501 CM 17.38667 98.47167 1977 2007 31 RID 

CM: Chiang Mai; TK: Tak. 
RID: Royal Irrigation Department of Thailand; EGAT: Electricity Generating Authority of 
Thailand. 
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A5: List of the meteorological stations located in and around the Ping River Basin 

Location Period 
No. 

Station 
Code 

Province 
Latitude Longitude From To 

Length 
(years) 

Type of 
Data 

Data 
Source 

Period of 
Incomplete 
Data 

1 327301 CM 18.91667 99.00000 1969 2007 39 T/E TMD 27-28 Feb 
1981, 12-30 
Sep 2007 

2 327501 CM 18.79000 98.97694 1952 2007 56 T/E TMD Jan 1952, 2 
Feb 1953, 18-
19 Mar 1953, 
14-16 Oct 
1956, 10 Sep 
1965, 28 Dec 
1976 

3 329201 LP 18.56667 99.03333 1981 2007 27 T/E TMD   

4 376201 TK 16.88333 99.11667 1955 2007 53 T/E TMD 25-29 Aug 
1959, Aug 
1988 

5 376202 TK 16.65917 98.55083 1951 2007 57 T/E TMD 21-22 Aug 
1952, 20-31 
Oct 1957, 
Nov-Dec 
1957, Jan-
Apr 1958, 1-
25 May 1958, 
27 May 1958, 
30-31 May 
1958, 29-30 
Sep 1962, 1-2 
Oct 1962, 27-
29 Feb 1976, 
1-9 Mar 
1976, 11-31 
Aug 1980, 
Aug 1988 

6 376203 TK 17.23333 99.05306 1961 2007 47 T/E TMD 1967-68, 9 
Feb 1969, 
Aug 1988 

7 376301 TK 16.75000 98.93333 1992 2007 16 T/E TMD 24 Oct 2005 

8 376401 TK 16.01583 98.86556 1978 2007 30 T/E TMD 28-30 Sep 
1981, Oct 
1981 

9 380201 KP 16.48333 99.53333 1981 2007 27 T/E TMD   

10 400201 NK 15.80000 100.16667 1951 2007 57 T/E TMD   

11 400301 NK 15.35000 100.50000 1969 2007 39 T/E TMD   

12 060101 TK 17.05000 99.06667 1971 2004 34 E DWR  

13 060401 CM 19.63167 98.58333 1980 2004 25 E DWR  

14 060804 CM 18.66667 98.62333 1990 2004 15 E DWR  

15 061501 CM 17.38667 98.47167 1979 2004 26 E DWR  

16 07391 CM 18.78917 99.01694 1978 2006 29 E RID  

17 07591 CM 18.61667 98.74528 1979 1992 14 E RID  

18 07731 CM 17.78361 98.37528 1991 2006 16 E RID  

CM: Chiang Mai; LP: Lam Phun; TK: Tak; KP: Kamphaeng Phet; NK: Nakhon Sawan. 
T: temperature; E: Class A pan evaporation. 
RID: Royal Irrigation Department of Thailand; TMD: Thailand Meteorological Department; DWR: 
Department of Water Resources. 
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Appendix B: Monthly, Seasonal and Annual Hydroclimate Diagnostics 
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B1: Monthly, annual and MAM temperature (°C) averaged over the 11 selected 
stations  

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual MAM 
1951 24.1 25.7 29.1 31.0 30.3 27.9 27.6 27.3 28.1 27.5 27.0 24.6 27.5 30.1 
1952 24.8 26.6 27.7 29.2 30.0 28.3 27.5 27.5 26.9 27.2 26.1 22.1 27.0 29.0 
1953 23.7 26.4 28.3 29.2 28.6 28.1 27.6 26.0 27.3 27.3 25.5 22.9 26.7 28.7 
1954 22.9 25.5 27.6 30.2 28.5 28.2 27.7 27.5 27.2 26.6 25.1 22.7 26.6 28.8 
1955 21.5 25.3 27.9 29.3 29.0 27.6 27.7 27.5 27.4 26.8 24.5 21.0 26.3 28.7 
1956 21.9 25.8 28.8 29.6 28.2 27.8 27.6 27.2 27.3 26.7 24.1 22.4 26.5 28.9 
1957 23.2 24.3 28.1 30.6 31.3 28.4 27.9 27.7 27.6 26.9 25.6 23.9 27.1 30.0 
1958 23.8 25.8 30.1 31.0 31.2 28.8 27.7 28.0 27.6 27.2 24.3 21.2 27.2 30.7 
1959 23.2 25.9 28.0 30.8 29.5 28.9 27.6 27.1 27.1 26.8 25.9 25.5 27.2 29.4 
1960 24.0 25.3 28.6 31.7 29.6 28.3 28.0 27.6 27.6 26.9 26.3 22.8 27.2 30.0 
1961 22.7 27.1 28.7 30.6 28.7 27.6 27.3 26.9 26.8 26.5 25.6 23.7 26.8 29.3 
1962 22.3 24.4 28.8 30.9 30.3 28.4 28.0 27.7 27.2 26.6 25.3 22.0 26.8 30.0 
1963 20.5 24.9 28.1 30.6 31.9 28.3 27.0 27.8 27.5 26.9 26.2 23.1 26.9 30.2 
1964 23.7 25.9 28.8 30.7 28.7 28.4 27.9 27.7 27.4 27.0 24.3 22.1 26.9 29.4 
1965 21.4 25.9 28.0 30.8 29.8 27.4 27.9 27.7 27.3 26.8 25.5 24.8 26.9 29.5 
1966 24.9 27.0 29.3 31.6 29.4 28.2 28.2 27.8 27.2 27.1 25.8 25.2 27.6 30.1 
1967 23.3 25.3 28.3 30.1 29.3 29.1 28.4 27.5 27.3 26.5 25.3 16.8 26.4 29.2 
1968 22.9 25.1 28.8 29.6 29.0 28.2 28.2 27.7 27.9 26.9 26.5 24.8 27.1 29.1 
1969 24.8 25.9 29.4 31.0 30.1 28.7 27.6 27.1 27.3 27.0 24.3 22.3 27.1 30.1 
1970 23.8 25.6 28.8 29.4 28.9 27.9 27.3 27.1 27.4 26.5 25.2 24.1 26.8 29.0 
1971 22.0 24.8 27.7 29.8 29.0 27.6 27.0 27.0 27.3 25.7 23.1 23.0 26.2 28.8 
1972 21.9 25.8 27.4 28.9 30.3 28.5 28.1 27.6 27.8 27.3 26.0 24.0 27.0 28.9 
1973 22.9 26.5 28.3 31.1 28.9 28.6 28.1 27.3 27.3 26.9 24.3 21.3 26.8 29.4 
1974 21.7 24.4 27.7 29.2 28.4 27.7 27.7 27.4 27.2 27.2 25.1 24.0 26.5 28.4 
1975 23.5 25.4 28.8 31.0 29.0 28.2 27.6 27.6 27.2 27.0 24.8 20.9 26.8 29.6 
1976 20.9 25.3 28.2 30.1 28.1 28.1 28.0 26.9 27.4 27.2 24.7 23.5 26.5 28.8 
1977 23.5 24.6 27.5 29.2 28.7 29.3 28.3 28.1 27.1 27.1 24.5 23.6 26.8 28.5 
1978 23.7 25.6 28.3 30.6 29.4 28.8 27.4 27.3 27.1 26.6 25.1 23.3 26.9 29.4 
1979 25.2 26.8 29.2 30.7 29.8 28.5 28.6 27.3 27.7 26.4 24.3 23.2 27.3 29.9 
1980 23.4 25.8 29.2 31.3 30.5 28.3 28.0 27.8 26.9 26.9 25.6 23.9 27.3 30.3 
1981 22.6 26.1 28.4 29.7 29.0 27.5 27.3 27.2 27.9 27.4 25.3 21.8 26.7 29.0 
1982 22.3 25.4 28.7 29.2 29.4 28.0 27.7 27.0 27.1 27.0 26.1 21.5 26.6 29.1 
1983 22.4 26.1 28.7 31.9 30.8 28.9 29.0 28.0 27.6 26.9 23.7 21.8 27.1 30.5 
1984 22.7 27.0 28.2 30.4 29.3 27.9 27.6 27.4 27.3 26.3 25.2 23.2 26.9 29.3 
1985 24.6 26.4 28.9 30.5 29.1 27.6 27.3 27.6 27.3 26.6 25.4 22.7 27.0 29.5 
1986 22.2 25.7 27.2 30.1 28.5 28.4 27.6 28.0 27.7 27.1 25.4 23.5 26.8 28.6 
1987 23.9 25.8 28.0 30.2 30.5 28.8 28.5 28.2 27.8 27.6 26.8 19.0 27.1 29.6 
1988 24.0 27.2 29.1 30.1 28.9 28.0 28.1 27.8 28.0 26.9 23.5 22.4 27.0 29.4 
1989 24.7 25.6 28.2 30.9 29.7 28.1 28.2 28.0 27.8 26.8 25.3 22.0 27.1 29.6 
1990 24.8 26.4 28.4 30.3 29.0 28.4 27.8 28.5 27.9 27.1 25.7 23.3 27.3 29.2 
1991 24.9 25.9 29.8 31.1 30.9 28.2 28.4 27.6 28.2 27.0 24.5 23.2 27.5 30.6 
1992 22.1 23.7 27.7 30.9 30.6 28.8 27.4 27.3 27.2 25.1 23.3 21.9 26.4 29.7 
1993 22.5 23.7 27.9 29.6 29.3 28.8 28.5 27.2 27.1 26.4 24.8 22.6 26.5 28.9 
1994 24.3 27.1 27.5 30.0 28.5 27.6 26.9 26.5 27.3 25.8 24.5 23.9 26.7 28.7 
1995 23.8 24.6 29.1 30.9 28.9 28.5 27.4 27.2 27.2 26.8 24.7 22.0 26.8 29.6 
1996 22.5 24.1 28.3 29.3 28.4 27.8 27.5 27.1 26.9 26.5 25.5 22.5 26.4 28.7 
1997 22.3 24.5 27.7 28.1 29.9 29.1 27.6 27.3 27.0 27.1 25.6 24.7 26.7 28.6 
1998 24.7 26.2 29.2 30.8 30.4 29.4 28.1 28.0 27.7 27.2 25.6 24.1 27.6 30.1 
1999 24.5 26.4 28.5 28.9 27.5 27.5 27.6 27.0 27.2 26.4 25.3 20.8 26.5 28.3 
2000 24.0 25.0 27.3 28.9 27.8 27.5 27.3 27.5 26.7 27.0 24.5 24.4 26.5 28.0 
2001 25.0 25.9 27.3 30.9 27.8 27.8 27.4 27.5 27.5 27.1 23.5 24.0 26.8 28.7 
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual MAM 
2002 23.3 26.2 28.0 30.1 28.6 28.2 27.5 27.1 26.9 26.6 25.5 24.8 26.9 28.9 
2003 23.0 25.4 27.3 30.1 29.4 27.6 27.8 27.6 27.3 27.2 25.9 22.7 26.8 29.0 
2004 23.8 25.2 28.9 31.0 28.7 27.6 27.5 27.5 27.3 26.6 25.8 22.3 26.8 29.6 
2005 24.0 27.2 28.2 30.3 30.1 28.3 27.9 27.3 27.3 27.6 25.8 23.4 27.3 29.5 
2006 23.8 26.3 29.1 29.5 27.7 28.1 27.3 27.2 27.4 27.0 25.9 23.2 26.9 28.8 
2007 22.6 24.6 27.8 29.5 26.8 27.9 26.9 26.3 25.9 25.8 23.2 22.4 25.8 28.0 
Mean 23.3 25.7 28.4 30.2 29.3 28.2 27.7 27.4 27.3 26.8 25.1 22.9 26.9 29.3 
MAM: March-April-May. 
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B2: Monthly and annual rainfall (mm) averaged over the 50 selected stations 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

1950 0.0 0.0 0.0 5.5 280.8 266.0 105.1 237.7 265.4 445.2 0.0 0.0 1605.6 

1951 16.8 2.3 12.6 20.9 207.2 118.8 215.2 184.1 276.4 244.9 81.6 5.2 1386.0 

1952 0.0 5.9 68.8 14.9 130.6 165.6 150.0 233.6 223.0 163.8 16.6 1.4 1174.2 

1953 22.6 86.3 12.9 71.6 142.8 203.2 223.9 191.3 306.5 151.9 79.9 3.4 1496.4 

1954 1.4 9.9 31.9 33.2 195.9 118.8 99.4 213.1 254.5 137.4 13.4 2.3 1111.3 

1955 1.4 13.9 31.7 98.5 139.7 185.5 121.5 199.6 216.6 63.5 33.8 0.0 1105.7 

1956 0.2 21.6 11.0 69.4 234.0 106.8 209.0 180.4 270.0 114.4 11.0 2.3 1230.1 

1957 5.5 7.9 28.3 54.3 80.9 185.1 162.3 198.3 243.7 105.6 11.6 0.0 1083.4 

1958 19.4 4.4 35.6 45.9 95.2 171.3 157.3 174.5 265.0 107.8 4.0 0.0 1080.5 

1959 6.3 9.0 18.3 48.5 150.4 113.1 188.4 152.4 300.4 55.9 7.4 1.5 1051.5 

1960 28.7 0.4 4.8 21.3 134.8 120.0 153.5 238.9 217.5 173.2 30.9 35.1 1159.1 

1961 0.6 12.1 31.0 63.8 234.0 123.6 150.8 232.9 232.1 190.1 8.4 24.1 1303.4 

1962 2.6 0.8 11.5 41.2 117.8 100.4 190.2 200.2 322.3 192.9 3.9 1.7 1185.4 

1963 0.2 4.2 11.4 35.3 58.9 163.0 130.5 228.0 238.2 241.6 78.1 9.9 1199.4 

1964 1.7 4.3 9.5 50.8 237.9 100.4 190.1 141.6 281.7 187.9 23.0 7.3 1236.2 

1965 0.4 17.7 24.8 21.2 128.3 140.3 86.0 213.7 212.8 171.1 37.6 18.3 1072.1 

1966 22.2 9.0 17.8 21.7 237.5 87.7 137.4 245.4 183.4 175.3 28.3 12.3 1178.1 

1967 3.9 5.2 5.4 62.4 162.8 101.7 140.5 175.0 315.0 90.9 60.2 0.5 1123.5 

1968 3.9 7.9 12.6 109.5 127.0 154.2 131.5 130.2 157.2 104.7 21.3 0.6 960.7 

1969 17.8 0.0 11.3 38.3 168.9 129.6 132.3 216.5 273.7 100.6 23.7 6.8 1119.4 

1970 2.2 3.8 53.9 69.6 240.4 168.1 156.0 249.8 223.4 123.2 22.5 42.6 1355.5 

1971 3.2 10.6 22.5 55.8 207.1 135.3 174.8 294.1 167.0 116.1 14.3 14.1 1214.9 

1972 0.6 5.2 13.5 98.3 71.1 126.8 97.6 166.7 224.6 138.2 117.7 18.6 1078.8 

1973 0.0 0.7 62.7 12.2 190.3 146.2 162.9 275.3 292.2 60.2 22.1 0.1 1225.0 

1974 0.4 1.8 31.8 97.3 160.1 99.2 142.7 154.8 250.1 202.3 79.4 2.5 1222.5 

1975 87.7 4.8 16.4 24.9 152.5 150.0 177.4 250.5 225.3 190.2 46.2 29.2 1355.1 

1976 0.1 3.6 16.0 41.4 156.9 103.4 124.3 222.5 187.8 189.8 25.6 10.6 1082.1 

1977 42.9 0.6 23.0 82.3 124.8 67.9 122.5 178.4 251.5 129.8 11.6 32.4 1067.7 

1978 24.1 35.1 1.5 31.6 178.6 118.8 333.9 168.8 277.1 105.7 5.6 2.6 1283.5 

1979 0.8 2.6 3.0 48.9 152.4 172.0 110.1 127.2 223.0 69.7 0.0 0.0 909.8 

1980 0.0 3.0 22.5 33.7 226.2 179.9 174.6 152.7 260.2 151.1 28.5 24.9 1257.3 

1981 0.0 8.5 19.1 65.7 186.9 126.5 210.3 166.0 175.1 99.3 134.2 13.6 1205.2 

1982 1.0 1.8 8.2 59.8 151.2 117.3 86.9 124.4 268.4 105.0 26.2 2.1 952.3 

1983 6.7 0.2 2.6 11.7 130.9 123.2 143.1 211.3 207.9 252.5 113.5 11.7 1215.3 

1984 0.8 20.7 5.5 52.4 115.0 131.6 133.2 113.2 191.6 125.7 5.6 0.4 895.9 

1985 7.6 6.7 5.3 77.5 159.9 125.1 136.1 127.9 254.0 164.1 124.8 1.1 1190.0 

1986 0.0 1.5 5.1 67.4 189.4 109.8 125.2 172.7 158.3 105.5 25.1 25.7 985.8 

1987 0.8 7.5 28.7 69.5 70.9 145.9 64.7 223.9 262.6 87.3 96.8 0.0 1058.6 

1988 0.3 10.3 9.9 102.7 192.0 213.7 169.6 190.6 168.1 206.5 44.6 0.3 1308.6 

1989 6.3 1.4 12.1 13.0 150.9 110.2 154.5 146.0 157.5 195.3 11.1 0.0 958.5 

1990 1.4 9.9 27.1 30.0 239.0 89.2 84.6 147.9 176.5 186.2 35.0 0.1 1026.8 

1991 1.3 0.1 14.6 43.9 93.0 118.3 76.3 241.4 147.3 135.7 21.9 5.1 899.0 

1992 3.7 23.3 0.0 17.2 55.2 102.9 192.4 178.7 215.6 166.3 13.4 57.0 1025.5 

1993 0.8 0.2 22.2 51.9 135.0 67.4 101.3 122.2 229.8 112.0 0.1 0.2 843.0 

1994 0.1 1.7 118.3 50.1 212.2 175.5 125.7 244.5 193.4 70.2 20.8 17.1 1229.3 

1995 0.5 0.0 18.3 36.9 164.5 111.1 216.0 262.0 244.5 85.9 41.8 0.2 1181.7 

1996 0.6 39.4 10.4 94.9 131.2 172.6 106.5 191.7 247.6 124.0 88.3 2.6 1209.9 

1997 1.1 0.8 30.7 57.0 69.3 38.5 146.2 169.5 212.1 112.3 12.6 0.1 850.0 

1998 2.9 12.1 12.8 30.9 147.0 102.3 143.8 177.1 153.8 82.6 48.0 3.0 916.3 

1999 14.4 23.0 28.2 111.4 292.9 119.3 124.2 173.7 199.7 220.7 68.2 8.5 1384.1 

2000 1.5 31.7 31.3 118.4 205.3 156.0 99.9 146.1 184.5 190.8 3.7 5.6 1174.6 

2001 3.5 1.0 77.9 13.9 228.6 106.2 147.3 214.5 152.9 165.8 14.9 8.9 1135.3 
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

2002 8.3 10.3 14.2 39.8 205.0 124.1 87.8 219.9 348.4 134.7 128.9 45.2 1366.6 

2003 10.3 9.2 60.9 40.6 104.4 146.1 124.1 146.1 241.2 47.0 2.7 0.0 932.6 

2004 6.2 15.7 2.4 31.6 217.4 144.7 167.1 122.1 239.1 26.4 13.0 0.3 986.1 

2005 0.2 2.3 27.9 67.8 91.5 172.1 155.4 141.9 304.1 115.5 62.0 16.6 1157.5 

2006 0.0 8.9 15.7 162.5 226.7 182.6 190.3 224.5 280.4 144.3 5.1 0.0 1441.0 

2007 0.5 0.0 6.8 49.2 317.6 145.9 110.0 159.4 251.7 171.0 39.5 0.0 1251.6 

Mean 6.9 9.4 22.0 53.3 165.7 134.5 146.1 189.4 232.8 143.6 37.1 9.2 1149.9 
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B3: Seasonal rainfall (mm) and its classification during 1950 to 2007 

Year MJJ Classification ASO Classification NDJ Classification FMA Classification 
1950 651.9 W 948.3 W 16.8 N 5.5 D 
1951 541.2 W 705.4 W 86.8 W 35.8 D 
1952 446.2 N 620.4 N 40.6 N 89.6 N 
1953 569.9 W 649.7 W 84.7 W 170.8 W 
1954 414.1 N 605.0 N 17.1 N 75.0 N 
1955 446.7 N 479.7 D 34.0 N 144.1 W 
1956 549.8 W 564.8 N 18.8 N 102.0 N 
1957 428.3 N 547.6 N 31.0 N 90.5 N 
1958 423.8 N 547.3 N 10.3 D 85.9 N 
1959 451.9 N 508.7 N 37.6 N 75.8 N 
1960 408.5 N 629.6 W 66.6 N 26.5 D 
1961 508.4 N 655.1 W 35.1 N 106.9 N 
1962 408.5 N 715.4 W 5.8 D 53.5 D 
1963 352.4 D 707.8 W 89.7 W 50.9 D 
1964 528.4 N 611.2 N 30.7 N 64.6 N 
1965 354.6 D 597.6 N 78.1 N 63.7 N 
1966 462.6 N 604.1 N 44.5 N 48.5 D 
1967 405.0 N 580.9 N 64.6 N 73.0 N 
1968 412.7 N 392.1 D 39.7 N 130.0 W 
1969 430.8 N 590.8 N 32.7 N 49.6 D 
1970 564.5 W 596.4 N 68.3 N 127.3 W 
1971 517.2 N 577.2 N 29.0 N 88.9 N 
1972 295.5 D 529.5 N 136.3 W 117.0 W 
1973 499.5 N 627.7 W 22.6 N 75.6 N 
1974 402.0 N 607.2 N 169.6 W 130.9 W 
1975 480.0 N 666.0 W 75.5 N 46.1 D 
1976 384.6 N 600.1 N 79.1 W 61.0 N 
1977 315.2 D 559.7 N 68.1 N 105.9 N 
1978 631.3 W 551.6 N 9.0 D 68.2 N 
1979 434.5 N 419.9 D 0.0 D 54.5 N 
1980 580.7 W 564.0 N 53.4 N 59.3 N 
1981 523.7 N 440.4 D 148.8 W 93.3 N 
1982 355.4 D 497.8 D 35.0 N 69.8 N 
1983 397.2 N 671.7 W 126.0 W 14.5 D 
1984 379.8 D 430.5 D 13.6 D 78.6 N 
1985 421.1 N 546.0 N 125.9 W 89.5 N 
1986 424.4 N 436.5 D 51.6 N 74.0 N 
1987 281.5 D 573.8 N 97.1 W 105.7 N 
1988 575.3 W 565.2 N 51.2 N 122.9 W 
1989 415.6 N 498.8 N 12.5 D 26.5 D 
1990 412.8 N 510.6 N 36.4 N 67.0 N 
1991 287.6 D 524.4 N 30.7 N 58.6 N 
1992 350.5 D 560.6 N 71.2 N 40.5 D 
1993 303.7 D 464.0 D 0.4 D 74.3 N 
1994 513.4 N 508.1 N 38.4 N 170.1 W 
1995 491.6 N 592.4 N 42.6 N 55.2 N 
1996 410.3 N 563.3 N 92.0 W 144.7 W 
1997 254.0 D 493.9 D 15.6 D 88.5 N 
1998 393.1 N 413.5 D 65.4 N 55.8 N 
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Year MJJ Classification ASO Classification NDJ Classification FMA Classification 
1999 536.4 W 594.1 N 78.2 N 162.6 W 
2000 461.2 N 521.4 N 12.8 D 181.4 W 
2001 482.1 N 533.2 N 32.1 N 92.8 N 
2002 416.9 N 703.0 W 184.4 W 64.3 N 
2003 374.6 D 434.3 D 8.9 D 110.7 N 
2004 529.2 W 387.6 D 13.5 D 49.7 D 
2005 419.1 N 561.5 N 78.6 N 98.0 N 
2006 599.6 W 649.2 W 5.6 D 187.1 W 
2007 573.5 W 581.0 N n/a n/a 56.0 N 
Mean 446.3  565.8  53.4  84.6  
P(20th) 381.7  498.2  15.8  53.9  
P(80th) 528.9  624.8  79.0  114.5  
MJJ: May-June-July; ASO: August-September-October; NDJ: November-December-January; 
FMA: February-March-April. 
W: wet; N: normal; D: dry. 
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Appendix C: Correlation Maps between Rainfall and Large-Scale Atmospheric 
Variables 
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C1: Correlation maps between MJJ rainfall and SAT at lead times varying from 15 to 
4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively. 
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C2: Correlation maps between MJJ rainfall and SLP at lead times varying from 15 to 4 months 

 

 

 

 
 

Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, respectively. 
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C3: Correlation maps between MJJ rainfall and SXW at lead times varying from 15 to 4 months 

 

 

 

 
 

Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, respectively. 
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C4: Correlation maps between MJJ rainfall and SYW at lead times varying from 15 to 4 months 

 

 

 

 
 

Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, respectively. 
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C5: Correlation maps between ASO rainfall and SAT at lead times varying from 15 
to 4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively.
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C6: Correlation maps between ASO rainfall and SLP at lead times varying from 15 to 
4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively.
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C7: Correlation maps between ASO rainfall and SXW at lead times varying from 15 
to 4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively.
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C8: Correlation maps between ASO rainfall and SYW at lead times varying from 15 
to 4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively. 
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C9: Correlation maps between NDJ rainfall and SAT at lead times varying from 15 to 
4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively.
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C10: Correlation maps between NDJ rainfall and SXW at lead times varying from 15 to 4 months 

 

 

 

 
 

Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, respectively. 
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C11: Correlation maps between NDJ rainfall and SYW at lead times varying from 15 
to 4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively. 
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C12: Correlation maps between FMA rainfall and SAT at lead times varying from 15 
to 4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively.
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C13: Correlation maps between FMA rainfall and SLP at lead times varying from 15 to 4 months 

 

 

 

 
 

Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, respectively. 
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C14: Correlation maps between FMA rainfall and SXW at lead times varying from 15 to 4 months 

 

 

 

 
 

Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, respectively. 
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C15: Correlation maps between FMA rainfall and SYW at lead times varying from 
15 to 4 months 

 
 

 
 

 
 

 
 

 
Note: The upper and lower bounds of 95% significant levels of correlation are +0.3 and -0.3, 
respectively. 
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Appendix D: Combination Cases of the Predictors 
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D1: GCV of the combination cases of predictors for MJJ rainfall under A2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
L

P
 

S
X

W
 

S
Y

W
 

R
A

IN
 

JFM 
(4) 

DJF 
(5) 

NDJ 
(6) 

OND 
(7) 

SON 
(8) 

ASO 
(9) 

JAS 
(10) 

JJA 
(11) 

MJJ 
(12) 

AMJ 
(13) 

MAM 
(14) 

FMA 
(15) 

CASE 1 X     9573.7 9595.0 9564.7 10670.8 10064.2 10004.7 10270.6 10385.1 9859.4 9601.8 9309.0 11093.9 
CASE 2  X    8569.1 8731.9 8653.0 9728.7 9048.3 8875.0 9388.0 9085.5 9910.2 10091.3 9308.9 9549.3 
CASE 3   X   9085.2 8874.9 8154.0 10111.4 9453.4 9646.6 10258.2 9522.3 10355.7 8689.8 10068.4 10088.8 
CASE 4    X  8689.6 9792.2 9691.3 9698.6 8624.3 8239.2 8777.8 8917.3 9389.1 9407.8 10808.1 9811.4 
CASE 5     X 8885.4 8943.9 9362.8 11199.3 9904.7 9793.2 9428.6 9621.4 9383.9 9264.9 9046.2 9613.8 
CASE 6 X X    10017.9 10993.3 10570.9 12837.7 11588.5 11249.7 11313.3 8603.9 13304.9 12462.9 11755.0 13194.2 
CASE 7 X  X   11955.8 15850.7 8923.1 11268.5 11702.4 12142.2 12375.7 13079.3 11987.1 10011.4 8913.3 12293.4 
CASE 8 X   X  10382.7 11326.4 11606.4 17485.1 12061.4 9475.6 10096.5 9302.0 9829.3 9655.2 11745.3 15873.3 
CASE 9 X    X 10327.5 11294.0 10802.7 13194.8 12988.5 11448.9 11800.7 14032.7 11781.5 10451.3 9690.5 13085.8 
CASE 10  X X   9146.3 9572.5 7692.5 11119.3 10485.4 12686.0 10121.4 11401.1 12989.2 9959.4 11587.8 10646.1 
CASE 11  X  X  9317.8 11186.6 10548.9 11381.3 9167.5 8290.6 10463.3 10493.7 12180.4 13301.9 13769.0 11173.4 
CASE 12  X   X 9808.1 8450.2 9820.2 12860.4 9538.1 10875.3 8744.7 11552.8 13462.9 12000.3 11433.0 11617.1 
CASE 13   X X  9661.2 10793.6 10191.9 13220.0 11226.9 10588.9 11055.5 10427.1 10376.3 8924.2 10705.3 11542.9 
CASE 14   X  X 9730.4 9562.4 8939.5 11582.6 11640.5 16270.1 9896.5 11509.8 11645.4 10460.6 11326.2 10982.1 
CASE 15    X X 9069.9 10312.3 13814.3 15009.2 10181.4 10064.8 10187.5 10034.8 10241.7 10851.6 11118.2 11088.7 
CASE 16 X X X   13886.0 17517.0 8525.5 13027.2 14658.3 17023.2 16136.7 12067.5 22671.6 13125.5 10374.4 14321.4 
CASE 17 X X  X  15039.4 15129.7 13389.7 21888.8 12420.5 11178.6 13067.1 11452.2 12818.4 13922.8 17889.9 18944.3 
CASE 18 X X   X 11538.7 14893.1 11161.0 15635.6 16429.7 13080.3 10988.8 14125.0 17204.9 15878.6 13358.5 19481.4 
CASE 19 X  X X  15241.4 15953.2 13269.8 18678.7 17003.6 15975.9 13165.9 11735.2 13669.5 11824.3 12763.6 16765.9 
CASE 20 X  X  X 13009.5 22125.6 9890.5 14942.0 17043.9 25623.6 16904.4 21015.7 15194.7 12822.7 11167.4 16176.7 
CASE 21 X   X X 11199.0 13294.9 12517.1 22041.6 13329.3 13223.8 12190.9 14724.2 12087.7 12274.8 15278.1 17050.0 
CASE 22  X X X  10831.3 12935.4 9210.5 13636.9 13902.9 23185.6 14226.2 12830.5 16769.6 10847.9 15765.4 12615.9 
CASE 23  X X  X 12969.2 10108.3 8886.6 12166.3 11822.5 13694.7 10329.4 14242.2 17919.2 14903.5 15276.8 14702.5 
CASE 24  X  X X 11695.3 9527.5 10801.2 14055.1 10775.5 13768.2 9510.9 13769.2 15301.7 16988.7 18147.9 13123.9 
CASE 25   X X X 10945.0 10205.8 13592.6 14035.4 12872.3 10068.2 15654.3 12909.5 12824.0 13937.6 16484.0 13172.1 
CASE 26 X X X X  23239.5 22370.2 12327.2 15010.4 17954.2 24662.0 16813.9 14362.3 29265.4 14261.1 17930.3 20995.2 
CASE 27 X X X  X 18527.6 23859.3 9107.0 20996.2 23670.5 24500.3 11855.7 22300.5 22499.1 20608.3 14427.5 17938.1 
CASE 28 X X  X X 20705.9 12934.9 12301.8 21414.9 17808.9 18253.4 12217.6 19942.9 19943.4 19298.3 24640.1 23451.3 
CASE 29 X  X X X 16425.4 18075.8 25202.1 21304.6 17404.3 17724.4 13676.0 14810.0 14380.4 13605.8 20105.4 23922.7 
CASE 30  X X X X 14117.2 10866.0 10099.3 13490.7 13782.9 15305.1 18198.5 17426.4 21215.3 20014.6 25617.7 16117.9 
CASE 31 X X X X X 22428.5 19355.3 13503.6 20435.5 26312.3 32715.7 23268.4 19672.8 31467.6 23356.7 27810.8 29105.3 
Minimum GCV 8569.1 8450.2 7692.5 9698.6 8624.3 8239.2 8744.7 8603.9 9383.9 8689.8 8913.3 9549.3 
Selected Case CASE 2 CASE 12 CASE 10 CASE 4 CASE 4 CASE 4 CASE 12 CASE 6 CASE 5 CASE 3 CASE 7 CASE 2 
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D2: GCV of the combination cases of predictors for ASO rainfall under A2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
L

P
 

S
X

W
 

S
Y

W
 

R
A

IN
 

AMJ 
(4) 

MAM 
(5) 

FMA 
(6) 

JFM 
(7) 

DJF 
(8) 

NDJ 
(9) 

OND 
(10) 

SON 
(11) 

ASO 
(12) 

JAS 
(13) 

JJA 
(14) 

MJJ 
(15) 

CASE 1 X         7930.4 6729.2 6629.3 6765.6 6274.8 7351.1 9789.1 9399.6 8891.3 7993.5 7939.0 8406.5 
CASE 2   X       7263.5 7768.2 7623.4 7011.4 5558.5 5860.7 6683.3 7830.6 7813.9 7664.3 6991.3 7578.9 
CASE 3     X     6449.8 7225.3 6861.4 6360.4 7860.8 7844.6 8266.3 8161.9 7590.0 7348.9 7652.8 7318.2 
CASE 4       X   7483.4 7279.7 6802.9 7157.3 8141.9 7550.4 8419.4 7778.3 8365.0 7916.5 8217.3 7512.8 
CASE 5         X 7987.4 7595.8 7646.4 7547.1 7923.2 7850.8 8824.5 8742.7 7868.6 8027.1 7733.6 7963.3 
CASE 6 X X       8997.2 9946.5 10195.5 7807.7 7615.1 7471.7 8170.5 9800.9 10148.2 9849.1 11364.8 9748.8 
CASE 7 X   X     6940.0 7479.0 5909.9 8705.2 8985.2 8390.1 14421.4 13058.7 10598.5 8138.5 9217.4 9944.4 
CASE 8 X     X   8637.4 7985.5 7298.2 6502.4 7789.8 8961.1 12270.4 8102.4 9364.3 9497.5 18455.1 9633.5 
CASE 9 X       X 9600.9 6801.7 7421.8 7185.7 8059.1 9269.7 11095.6 7141.0 8844.4 9969.8 9688.6 10381.0 
CASE 10   X X     7450.7 9716.7 7477.4 7744.1 8345.7 9829.8 7912.9 9071.4 9506.3 8946.8 7657.0 8799.4 
CASE 11   X   X   8671.8 10836.2 7357.0 8918.1 11539.6 6540.2 8904.9 9196.9 9018.7 8992.0 8824.0 9130.4 
CASE 12   X     X 7622.6 12045.8 9307.6 8186.8 6350.9 8802.5 10244.6 10352.7 8791.5 8889.4 7584.2 8586.8 
CASE 13     X X   5404.6 7414.4 7033.8 6945.8 11643.9 9861.5 11214.7 10402.4 8896.4 7803.7 8924.8 8504.8 
CASE 14     X   X 6226.8 7497.9 7567.8 7621.5 9544.8 10868.9 10838.9 9076.9 8945.9 9867.3 8649.6 9064.2 
CASE 15       X X 8325.0 9625.3 7826.0 8871.4 9332.0 9355.9 10777.3 9908.1 9232.4 10129.1 8103.0 8181.1 
CASE 16 X X X     9924.6 10806.0 9401.2 9202.6 13272.8 11981.9 12669.3 11519.3 7820.8 13283.8 13194.1 12381.5 
CASE 17 X X   X   12091.8 9776.3 11271.5 8988.3 14365.3 9704.9 11862.3 11562.8 11091.2 13020.8 21136.0 11562.3 
CASE 18 X X     X 9631.4 11037.4 12823.6 9726.7 10033.7 11841.5 10107.4 8716.0 12937.1 11823.0 13837.3 12922.3 
CASE 19 X   X X   6009.3 9250.1 6986.3 6859.7 11009.0 13404.3 13482.7 11070.1 9976.5 9301.0 14962.5 11865.6 
CASE 20 X   X   X 7575.3 7267.3 7018.6 10610.2 12247.7 16960.0 14299.3 7244.3 9916.7 10620.6 11006.0 13188.9 
CASE 21 X     X X 9782.4 9545.0 9548.8 8314.5 10856.0 12378.2 14037.1 7897.2 13214.5 13380.8 14827.3 10784.2 
CASE 22   X X X   8974.1 11008.7 9266.6 9925.6 12046.8 11946.7 9187.6 14060.2 11956.2 14762.8 12017.7 13113.6 
CASE 23   X X   X 9037.7 19891.4 10831.5 10353.6 10453.8 10397.3 12388.3 11159.6 10461.0 10919.5 9101.3 11692.5 
CASE 24   X   X X 9127.3 18160.7 12215.0 11569.4 8728.3 8903.9 11987.2 12972.6 11548.4 13928.2 8772.1 11403.8 
CASE 25     X X X 5478.8 9875.1 8110.8 8955.9 11739.9 13680.8 14009.2 11735.6 11391.4 10104.1 10140.2 11617.4 
CASE 26 X X X X   14622.7 12423.0 13562.3 12552.8 16173.9 17266.0 12204.5 17113.2 10499.4 31329.8 20507.5 21757.2 
CASE 27 X X X   X 13509.2 15307.7 15909.7 12809.3 19531.5 18142.1 9658.1 9237.5 8364.2 17705.8 14504.5 18230.8 
CASE 28 X X   X X 13100.3 18938.7 19232.0 16986.0 16529.9 14112.4 13598.6 12098.7 13584.6 20764.4 20684.4 22072.0 
CASE 29 X   X X X 7354.2 10063.7 8509.9 11832.1 15112.3 26037.6 15219.3 9899.2 15181.9 24067.4 21869.2 25894.8 
CASE 30   X X X X 12397.8 17286.2 14982.5 13859.8 11971.8 14269.0 17268.0 16007.7 13450.2 17823.4 12561.3 25346.3 
CASE 31 X X X X X 21200.4 16384.0 23401.8 20824.8 34220.4 33152.6 17459.2 15942.0 12350.6 52413.5 30538.0 58057.5 
Minimum GCV 5404.6 6729.2 5909.9 6360.4 5558.5 5860.7 6683.3 7141.0 7590.0 7348.9 6991.3 7318.2 
Selected Case CASE 13 CASE 1 CASE 7 CASE 3 CASE 2 CASE 2 CASE 2 CASE 9 CASE 3 CASE 3 CASE 2 CASE 3 



 201 

D3: GCV of the combination cases of predictors for NDJ rainfall under A2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
X

W
 

S
Y

W
 

R
A

IN
 

JAS 
(4) 

JJA 
(5) 

MJJ 
(6) 

AMJ 
(7) 

MAM 
(8) 

FMA 
(9) 

JFM 
(10) 

DJF 
(11) 

NDJ 
(12) 

OND 
(13) 

SON 
(14) 

ASO 
(15) 

CASE 1 X    3114.5 3723.8 2698.4 2671.9 2872.3 2834.0 2638.9 2988.7 2967.1 2516.3 2632.5 2958.1 
CASE 2  X   2811.6 2951.6 2883.7 2239.0 2490.8 3125.4 3196.1 2793.4 2349.7 2771.0 4119.2 1937.2 
CASE 3   X  2642.7 3650.2 2926.3 2828.2 4234.6 2919.5 3027.3 3246.1 3778.0 5685.0 3997.0 3534.4 
CASE 4    X 4086.6 2704.0 3218.2 2849.6 3394.3 2537.5 2880.9 2879.0 2954.7 6138.7 2625.1 2437.5 
CASE 5 X X   4163.4 4253.6 3389.1 4876.7 3206.3 4896.2 3997.4 3533.0 2696.4 2710.4 3247.8 9276.4 
CASE 6 X  X  4076.2 4513.5 2817.2 3923.8 6359.4 4635.0 4198.5 4977.6 5031.6 7971.3 3131.3 4334.7 
CASE 7 X   X 4667.8 3952.6 4218.3 3899.2 4235.7 2729.8 3430.9 4187.0 3727.2 6119.9 3305.8 4329.6 
CASE 8  X X  3967.5 4614.8 4569.3 2618.1 5695.3 3397.1 2649.3 5503.5 6673.2 6923.5 5766.1 2582.3 
CASE 9  X  X 5572.3 3713.0 4163.5 4950.2 3849.1 3404.1 3770.1 3903.6 12681.7 6227.7 6178.7 6555.7 
CASE 10   X X 8102.6 3350.7 4870.4 3802.4 5159.9 3110.2 4439.7 3833.5 5302.9 10444.7 3718.5 3648.2 
CASE 11 X X X  6737.4 7826.8 17419.2 4333.0 8661.8 4562.1 6310.7 8961.0 11156.4 10930.3 4792.2 11428.8 
CASE 12 X X  X 7977.3 7422.9 7362.1 5485.5 4799.0 5446.5 4656.5 8146.6 4941.6 5086.2 3107.7 6802.3 
CASE 13 X  X X 9370.2 6817.6 11374.0 8547.1 9195.9 4144.1 6678.5 5741.8 8757.3 8412.7 4783.6 5756.5 
CASE 14  X X X 16416.4 6690.0 8244.0 12384.1 7332.7 4898.1 4217.2 6357.9 10180.0 14136.0 5011.3 7641.0 
CASE 15 X X X X 33322.1 15103.0 33631.5 12010.0 16551.9 25460.3 8201.3 19729.6 33368.3 17780.4 6719.9 21246.1 
Minimum GCV 2642.7 2704.0 2698.4 2239.0 2490.8 2537.5 2638.9 2793.4 2349.7 2516.3 2625.1 1937.2 
Selected Case CASE 3 CASE 4 CASE 1 CASE 2 CASE 2 CASE 4 CASE 1 CASE 2 CASE 2 CASE 1 CASE 4 CASE 2 
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D4: GCV of the combination cases of predictors for FMA rainfall under A2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
L

P
 

S
X

W
 

S
Y

W
 

R
A

IN
 

OND 
(4) 

SON 
(5) 

ASO 
(6) 

JAS 
(7) 

JJA 
(8) 

MJJ 
(9) 

AMJ 
(10) 

MAM 
(11) 

FMA 
(12) 

JFM 
(13) 

DJF 
(14) 

NDJ 
(15) 

CASE 1 X     2274.5 2623.6 4407.1 2287.9 2959.0 4062.9 3029.0 2608.0 2735.1 2642.0 2135.6 1847.9 
CASE 2  X    2645.9 2436.8 2831.0 2592.6 2629.5 2421.5 2756.7 1827.9 2699.2 3120.1 2703.5 2706.1 
CASE 3   X   2621.3 2750.9 2802.1 2687.8 2543.5 2678.9 1999.9 2308.0 3298.5 4756.2 2765.7 3003.0 
CASE 4    X  2410.3 2290.2 2883.0 2783.6 2435.3 2686.8 2735.0 2543.4 2362.3 2550.8 2690.2 3212.0 
CASE 5     X 2811.1 2473.4 2892.0 2825.2 2141.1 2017.6 1920.8 2676.2 3190.2 2455.7 2630.6 10860.5 
CASE 6 X X    3562.0 6018.2 4746.5 3910.2 5487.4 5788.3 3805.0 3433.6 5413.0 5211.0 2193.8 1569.0 
CASE 7 X  X   3184.0 5319.0 3224.7 4378.6 4127.4 4482.3 4322.8 3395.6 3471.2 9203.7 2984.9 2801.0 
CASE 8 X   X  3930.6 3573.1 8850.0 3351.5 4953.3 6534.9 4723.3 4439.6 3318.4 3169.7 2442.6 2972.6 
CASE 9 X    X 3326.6 3456.9 6174.6 3702.6 4125.2 3564.9 2871.0 3040.2 3037.9 3660.2 3064.6 8566.8 
CASE 10  X X   3716.8 3304.8 4581.3 3293.2 2974.5 3280.0 3049.6 5179.4 5383.9 5171.1 3597.2 2685.9 
CASE 11  X  X  5438.2 4347.3 3944.3 3166.7 3011.0 3335.9 3903.9 3413.9 3028.4 3567.7 3940.4 3816.2 
CASE 12  X   X 3378.1 2924.7 5681.3 2910.9 2927.8 2386.2 2314.1 2968.3 5555.1 4004.9 3407.3 16065.8 
CASE 13   X X  3864.1 6043.3 3364.2 3448.5 2923.4 3450.2 2643.8 2971.7 4445.1 6075.3 4251.1 3967.4 
CASE 14   X  X 4579.8 3072.3 4728.7 3585.3 2283.9 2727.2 2475.7 3088.1 5118.4 4494.8 3073.2 14712.1 
CASE 15    X X 3056.8 5277.0 4056.9 3280.4 3196.8 2575.4 3354.0 11236.6 3160.1 2692.2 3505.2 12756.1 
CASE 16 X X X   5723.3 17330.8 4935.4 6527.0 8611.5 6684.5 4000.5 7871.0 5859.6 18257.2 5773.2 2292.6 
CASE 17 X X  X  5100.5 8869.7 30991.4 3594.6 10774.6 10549.2 5559.6 7171.9 6806.7 7379.0 2874.1 4641.8 
CASE 18 X X   X 7820.2 7173.3 6968.3 3879.2 5759.7 4302.2 4375.0 4975.6 5047.1 7967.8 4186.5 10670.0 
CASE 19 X  X X  5623.9 4031.5 7880.0 6098.2 5960.1 8006.6 6257.7 7737.8 7094.8 15939.7 4517.9 5368.9 
CASE 20 X  X  X 5333.1 5945.2 7881.1 5101.5 5301.4 4155.8 4155.1 4603.3 4988.9 8943.4 3899.9 14040.0 
CASE 21 X   X X 3752.6 6421.0 10199.2 5366.6 6161.1 5966.0 5560.7 9942.5 4802.1 8372.2 4938.2 5878.1 
CASE 22  X X X  8047.7 11152.3 6282.5 4365.9 5838.6 5190.2 3704.3 9014.0 8586.8 9848.1 12929.5 4212.0 
CASE 23  X X  X 6534.5 4614.5 9105.8 5175.8 3812.1 3680.5 3656.8 5613.9 11920.3 7462.6 4373.0 7301.2 
CASE 24  X  X X 5341.2 22894.8 4600.1 3525.5 4076.4 3327.7 7426.8 9520.3 4080.1 5640.3 5479.7 15829.5 
CASE 25   X X X 7488.5 14780.0 6096.1 4187.1 4815.0 3832.2 7710.8 18995.7 7252.6 6653.3 5088.6 16579.2 
CASE 26 X X X X  18980.1 27510.6 67689.7 13406.6 52440.1 28236.6 11994.1 12360.2 19896.2 25680.2 8129.8 4480.6 
CASE 27 X X X  X 19605.5 25344.4 16318.8 8564.6 12917.7 5633.3 11461.9 13744.5 16496.3 21502.1 6844.8 11229.0 
CASE 28 X X  X X 14344.7 23269.1 19204.3 5666.9 14008.4 9393.8 11144.4 15084.5 8993.2 13489.1 9808.8 19352.1 
CASE 29 X  X X X 11805.9 15141.9 20782.5 8977.3 17205.6 13131.4 17215.1 35125.6 5735.7 19000.4 5859.0 14865.8 
CASE 30  X X X X 18854.0 17268.0 11022.6 10185.2 8442.7 8041.4 7790.6 14769.3 13920.0 12636.5 8732.0 24878.4 
CASE 31 X X X X X 60464.4 68964.3 131736.8 18214.6 39704.8 38007.9 18159.2 23913.3 26362.0 64537.2 28863.1 144228.4 
Minimum GCV 2274.5 2290.2 2802.1 2287.9 2141.1 2017.6 1920.8 1827.9 2362.3 2455.7 2135.6 1569.0 
Selected Case CASE 1 CASE 4 CASE 3 CASE 1 CASE 5 CASE 5 CASE 5 CASE 2 CASE 4 CASE 5 CASE 1 CASE 6 
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D5: GCV of the combination cases of predictors for MJJ rainfall under B2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
L

P
 

S
X

W
 

S
Y

W
 

R
A

IN
 

JFM 
(4) 

DJF 
(5) 

NDJ 
(6) 

OND 
(7) 

SON 
(8) 

ASO 
(9) 

JAS 
(10) 

JJA 
(11) 

MJJ 
(12) 

AMJ 
(13) 

MAM 
(14) 

FMA 
(15) 

CASE 1 X     9280.8 9618.9 9734.1 11091.4 10457.4 9685.6 9308.9 10868.5 9536.9 8998.3 8815.4 9499.3 
CASE 2  X    9250.5 9987.9 7544.0 9128.9 10155.1 9630.2 11019.8 9259.9 9581.4 10448.1 10469.6 10052.4 
CASE 3   X   9835.2 7872.0 9152.7 8915.3 9700.3 11670.6 8488.1 8753.9 11136.9 11111.3 9779.4 9583.1 
CASE 4    X  8286.0 9333.5 9319.7 10082.6 9742.3 9639.3 9295.2 9550.5 9649.4 9905.8 9165.5 10312.9 
CASE 5     X 9611.1 8685.9 8386.1 10266.0 10342.7 9721.8 9542.1 8240.1 9667.9 9473.2 9933.9 10215.0 
CASE 6 X X    12783.7 11868.1 9446.2 12028.7 13877.7 11941.5 13363.0 13133.7 10932.3 12825.1 11751.1 11910.0 
CASE 7 X  X   11696.5 9428.7 10311.7 11559.6 11330.9 13323.1 8974.8 15813.2 13110.1 12157.4 10458.2 11697.1 
CASE 8 X   X  9891.9 10836.2 11572.4 14997.4 12738.5 11539.4 11680.8 12364.8 10623.0 8982.9 9565.6 15304.0 
CASE 9 X    X 10830.8 10350.7 14571.3 14381.7 12368.5 11332.6 12530.2 11617.3 11761.7 11048.7 9895.3 11998.2 
CASE 10  X X   11997.2 11239.4 8426.9 12505.0 13120.6 13992.9 12204.7 16113.5 15061.9 14792.8 12616.2 11155.4 
CASE 11  X  X  10372.0 11662.0 10198.5 10299.9 12076.1 12720.8 13417.6 10722.8 11976.1 12504.3 11305.6 14508.7 
CASE 12  X   X 15351.6 10840.6 7724.6 11122.8 14058.2 15909.1 12311.0 10353.7 10989.3 11136.0 12148.7 14208.3 
CASE 13   X X  8629.1 9633.2 10009.1 12428.5 11457.5 12284.9 8416.5 9682.4 14842.9 14018.7 11889.7 12573.7 
CASE 14   X  X 11514.9 8223.9 8772.4 11722.4 11815.8 12957.9 25399.5 12286.9 13014.1 11502.7 11214.5 16630.9 
CASE 15    X X 11115.7 9767.0 24890.9 12691.9 11176.8 10895.3 11886.1 8602.3 10224.9 11590.7 10531.4 26656.1 
CASE 16 X X X   17349.2 11311.4 10958.7 13774.9 23652.8 16314.6 14258.6 22970.8 18121.1 19474.0 14707.1 14615.6 
CASE 17 X X  X  13079.2 15308.1 12545.6 16720.6 18643.0 18106.8 17084.9 15063.6 13330.5 12887.5 11370.4 18102.0 
CASE 18 X X   X 23953.2 13630.7 27678.8 14663.9 17935.6 19978.4 14630.6 13182.4 13838.9 15207.9 12479.5 17555.2 
CASE 19 X  X X  11133.2 12358.2 13987.9 14588.8 15274.8 14470.8 18561.8 14621.5 19659.3 11361.3 11565.2 18213.5 
CASE 20 X  X  X 14429.8 9675.0 12449.3 17796.0 14094.6 15596.2 42959.6 23687.5 17751.4 14147.0 13176.2 21546.0 
CASE 21 X   X X 17358.2 12370.1 32261.2 19806.3 16052.9 14146.9 19544.6 12049.3 10686.2 10549.6 11125.6 29817.4 
CASE 22  X X X  11014.0 16106.0 11665.3 15425.4 18017.6 16692.6 13468.8 15785.5 21387.6 18942.0 15946.6 15455.2 
CASE 23  X X  X 21193.0 10806.9 16641.1 13186.7 18899.3 23104.4 32682.0 22064.9 19740.7 16505.4 16005.5 27167.7 
CASE 24  X  X X 15181.7 13794.2 21032.9 11326.3 16754.7 27043.8 18265.5 10932.2 11989.8 15011.4 11904.1 38481.5 
CASE 25   X X X 14124.5 11673.1 20844.8 13650.7 12598.2 16481.4 40342.0 13570.1 13718.5 15924.4 13245.0 51660.1 
CASE 26 X X X X  18978.0 18440.7 21362.6 19158.7 28208.1 20635.6 29519.1 22165.4 26243.7 22483.7 16126.1 26637.9 
CASE 27 X X X  X 28946.4 13180.3 42100.4 18782.5 24019.8 30733.7 34686.5 29759.1 29572.1 22659.5 18959.3 39377.2 
CASE 28 X X  X X 28240.1 17057.5 60572.7 19829.4 26857.5 37322.9 23969.3 12297.9 16763.1 16632.6 13917.8 21086.5 
CASE 29 X  X X X 23556.6 20400.5 46738.0 24108.0 18606.2 27619.4 75304.3 25870.6 15749.6 14088.0 17328.2 58995.7 
CASE 30  X X X X 24556.3 18195.4 29669.9 19921.5 22504.3 36172.8 52733.0 20165.8 26073.7 23235.4 16692.4 82917.4 
CASE 31 X X X X X 60277.2 58534.9 61959.0 29019.1 38552.1 68569.9 62640.2 18059.3 36902.7 25460.0 24750.4 57253.9 
Minimum GCV 8286.0 7872.0 7544.0 8915.3 9700.3 9630.2 8416.5 8240.1 9536.9 8982.9 8815.4 9499.3 
Selected Case CASE 4 CASE 3 CASE 2 CASE 3 CASE 3 CASE 2 CASE 13 CASE 5 CASE 1 CASE 8 CASE 1 CASE 1 
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D6: GCV of the combination cases of predictors for ASO rainfall under B2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
L

P
 

S
X

W
 

S
Y

W
 

R
A

IN
 

AMJ 
(4) 

MAM 
(5) 

FMA 
(6) 

JFM 
(7) 

DJF 
(8) 

NDJ 
(9) 

OND 
(10) 

SON 
(11) 

ASO 
(12) 

JAS 
(13) 

JJA 
(14) 

MJJ 
(15) 

CASE 1 X     7862.3 8080.5 7496.8 7458.7 7712.7 7616.9 7325.0 7404.3 7305.5 6632.6 6192.0 6965.2 
CASE 2  X    7795.2 6450.8 8489.2 7896.5 7685.8 7676.5 7930.0 7733.4 13058.2 7865.6 8285.8 8072.7 
CASE 3   X   7810.5 7834.7 7139.1 7786.7 7698.7 7680.9 7080.9 7481.7 7655.7 7715.0 7583.0 7555.9 
CASE 4    X  7976.2 8091.9 7411.8 7720.0 8053.1 8011.9 7781.7 7796.1 7971.3 7936.0 8311.2 6811.3 
CASE 5     X 7964.1 12919.2 6828.4 8030.8 7804.2 7138.4 7944.7 8655.0 8641.7 8673.4 7008.4 8555.0 
CASE 6 X X    7732.4 8191.0 9966.4 8165.7 9594.0 7694.9 8872.3 8988.7 13153.5 7663.3 5998.3 9945.2 
CASE 7 X  X   9090.3 8491.6 7890.8 7950.3 9710.9 8894.5 8044.5 8045.4 8042.4 7806.5 7397.1 8291.2 
CASE 8 X   X  9154.3 9248.9 8384.0 8266.8 8368.6 8239.5 8740.6 8800.3 9264.6 7319.3 7342.7 7257.4 
CASE 9 X    X 10217.2 12439.8 7580.5 8861.5 8470.4 9085.5 9915.2 9324.8 9214.2 8329.0 6783.3 9882.6 
CASE 10  X X   9011.8 7927.2 9269.2 9709.2 10518.7 8565.5 8874.9 8681.0 11402.2 9566.0 11054.9 10388.2 
CASE 11  X  X  9336.8 7863.3 9313.4 8892.0 10957.4 9266.4 9278.5 9025.1 14540.6 9182.5 9366.3 8074.2 
CASE 12  X   X 9833.7 11182.0 7496.9 9557.2 9176.4 8103.8 9574.2 9769.2 14609.2 11740.0 8044.4 8926.3 
CASE 13   X X  8760.1 9418.6 8183.5 9567.7 9152.7 8601.7 7872.9 8074.7 8602.3 9891.4 11197.1 9012.7 
CASE 14   X  X 10862.0 16861.1 7037.8 9464.8 8676.6 8040.0 9027.2 11383.7 10740.4 9134.0 9318.0 8623.9 
CASE 15    X X 9381.8 17354.9 8109.8 9628.9 11495.2 8191.5 9308.2 10260.4 9885.6 10379.6 8140.7 7782.2 
CASE 16 X X X   9779.7 15446.5 14585.6 9364.1 12413.2 10121.6 10504.6 11564.3 11531.1 11920.8 8638.6 12226.6 
CASE 17 X X  X  10293.0 10507.8 11621.2 10197.2 16113.5 9746.4 12721.7 12607.7 14827.0 9872.3 7699.6 7968.2 
CASE 18 X X   X 10279.3 11204.1 9889.1 11749.4 11880.0 9620.5 11823.8 11478.7 13584.4 9235.2 7461.0 13281.3 
CASE 19 X  X X  10750.1 12188.9 9985.2 9968.8 10847.4 11349.7 10984.5 10146.3 9965.9 10622.8 10021.4 9333.5 
CASE 20 X  X  X 14234.8 15478.2 13952.1 13956.5 11859.2 10520.6 12156.0 11402.2 8917.5 8928.5 9562.5 9314.2 
CASE 21 X   X X 13037.2 14680.8 11354.6 11781.0 11949.8 10439.2 14078.2 12136.5 10638.2 8617.5 8081.9 9930.7 
CASE 22  X X X  11460.8 10282.6 11595.1 12311.0 13588.3 11498.5 11243.2 12658.5 16909.8 13002.1 14009.3 11029.7 
CASE 23  X X  X 17711.7 12745.9 12313.9 12106.7 14333.6 10762.5 12935.5 11352.6 16098.7 12893.2 12054.4 12892.9 
CASE 24  X  X X 11775.3 13066.7 8709.0 17175.6 18749.6 10620.7 11834.1 12252.7 16212.1 13965.9 9404.7 8730.9 
CASE 25   X X X 13946.1 18199.7 8215.7 16650.4 25057.6 13764.3 11843.5 13457.8 11652.8 11743.4 12359.3 13461.8 
CASE 26 X X X X  15303.7 23836.9 18941.1 12888.8 17234.4 13171.2 19950.2 24295.2 18420.1 14146.3 12942.0 11048.2 
CASE 27 X X X  X 16637.9 21190.5 22170.6 17140.5 13936.9 14138.5 17240.4 13802.0 15477.4 11824.6 11281.8 12862.1 
CASE 28 X X  X X 14709.9 13694.8 14402.8 23101.4 17710.3 13225.5 18062.1 17416.0 16228.3 9823.6 9290.9 10038.5 
CASE 29 X  X X X 22211.2 14269.5 26282.1 25930.1 27336.8 17292.1 24718.7 14337.7 14811.6 8622.5 13937.3 12046.0 
CASE 30  X X X X 23912.6 17541.8 13863.2 28067.8 28751.2 27630.4 18848.6 16892.2 20870.7 15632.6 15575.2 19770.3 
CASE 31 X X X X X 27925.2 30668.1 43395.6 44569.0 24641.4 13615.5 29415.6 32271.3 26811.9 12703.7 16215.8 15745.1 
Minimum GCV 7732.4 6450.8 6828.4 7458.7 7685.8 7138.4 7080.9 7404.3 7305.5 6632.6 5998.3 6811.3 
Selected Case CASE 6 CASE 2 CASE 5 CASE 1 CASE 2 CASE 5 CASE 3 CASE 1 CASE 1 CASE 1 CASE 6 CASE 4 
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D7: GCV of the combination cases of predictors for NDJ rainfall under B2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
X

W
 

S
Y

W
 

R
A

IN
 

JAS 
(4) 

JJA 
(5) 

MJJ 
(6) 

AMJ 
(7) 

MAM 
(8) 

FMA 
(9) 

JFM 
(10) 

DJF 
(11) 

NDJ 
(12) 

OND 
(13) 

SON 
(14) 

ASO 
(15) 

CASE 1 X    2849.3 3829.4 3583.3 2780.9 2087.3 2754.9 2844.9 2569.9 2781.8 2815.2 2775.5 2574.8 
CASE 2  X   3446.0 2692.1 2559.8 3092.8 2672.8 3120.2 2512.7 2987.6 2711.0 2581.9 3366.1 2543.2 
CASE 3   X  2647.1 3546.6 3055.3 2596.7 2974.7 3435.0 3129.8 2843.8 3241.0 2905.8 4901.0 3135.7 
CASE 4    X 3003.3 3077.7 3335.5 3088.9 2949.8 2404.8 3091.1 3923.4 2611.3 2970.2 3061.0 2762.3 
CASE 5 X X   2926.5 3018.9 2865.1 4086.0 3606.5 4750.2 3766.0 3743.2 2642.3 3770.3 3982.6 4324.7 
CASE 6 X  X  3711.2 6321.6 4854.8 3743.7 2582.8 4882.9 3213.5 3681.7 4889.0 4254.2 11848.3 3808.3 
CASE 7 X   X 3055.9 4417.2 6461.8 3247.3 3317.1 5286.1 4735.6 5408.8 4039.1 4788.7 4192.5 3113.9 
CASE 8  X X  2452.2 5416.0 4835.3 4726.2 3785.3 5566.4 4414.2 4615.9 5115.4 3164.0 9836.8 25336.4 
CASE 9  X  X 4140.2 3513.3 4440.0 3952.4 3372.3 4354.8 4531.2 5214.2 3089.8 3588.2 4754.6 4122.5 
CASE 10   X X 5953.0 3976.1 4416.6 4625.8 2671.8 2632.5 3837.7 5074.3 3678.5 1482.3 3563.4 5598.0 
CASE 11 X X X  3659.7 4241.1 7404.6 8200.0 7178.4 7737.2 7233.2 6761.8 6911.5 11739.5 9962.8 64315.0 
CASE 12 X X  X 2890.8 3943.2 6110.5 5377.8 3955.2 5398.2 6040.9 10307.5 8612.2 6159.9 10563.5 4865.7 
CASE 13 X  X X 8292.3 3657.3 10035.4 4868.1 3997.4 4667.3 7605.1 7012.4 5588.7 2720.6 9094.4 5257.3 
CASE 14  X X X 9446.3 6492.7 9185.6 9002.2 3256.2 4144.7 10146.0 7757.4 4790.8 2309.7 28998.6 5569.2 
CASE 15 X X X X 12367.0 5440.9 16964.9 17369.2 6685.7 20371.4 18723.1 11619.5 19341.1 13194.3 10739.4 39863.6 
Minimum GCV     2452.2 2692.1 2559.8 2596.7 2087.3 2404.8 2512.7 2569.9 2611.3 1482.3 2775.5 2543.2 
Selected Case     CASE 8 CASE 2 CASE 2 CASE 3 CASE 1 CASE 4 CASE 2 CASE 1 CASE 4 CASE 10 CASE 1 CASE 2 
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D8: GCV of the combination cases of predictors for FMA rainfall under B2 

Variable Season of predictors (Lead time in months) 

CASE 
S

A
T

 

S
L

P
 

S
X

W
 

S
Y

W
 

R
A

IN
 

OND 
(4) 

SON 
(5) 

ASO 
(6) 

JAS 
(7) 

JJA 
(8) 

MJJ 
(9) 

AMJ 
(10) 

MAM 
(11) 

FMA 
(12) 

JFM 
(13) 

DJF 
(14) 

NDJ 
(15) 

CASE 1 X     2440.5 2616.1 3023.9 2541.9 2532.6 3396.6 3756.4 3183.3 3001.9 2636.1 2602.3 2676.5 
CASE 2  X    2565.3 4742.5 2508.8 2625.8 2493.2 2668.9 2525.0 2402.8 2766.2 2946.5 2651.4 2651.3 
CASE 3   X   2406.5 2300.1 1974.6 2390.3 2054.4 3030.1 2461.8 2142.0 3508.2 4460.8 2735.4 2879.5 
CASE 4    X  2496.1 2475.4 2349.1 2979.5 2170.1 2115.8 2404.3 2333.3 2572.1 2785.4 2303.9 2324.4 
CASE 5     X 2610.1 2903.3 3371.3 2554.1 3159.6 2934.3 2609.9 2803.6 2465.3 2661.3 2692.6 2442.1 
CASE 6 X X    19345.6 10649.2 8403.0 4050.3 3248.5 4914.0 5492.2 9873.5 6752.3 3963.0 3438.6 3504.7 
CASE 7 X  X   4001.7 2783.7 4331.3 2985.0 2215.2 7024.1 3886.9 4824.6 5453.5 8217.4 3565.1 6071.7 
CASE 8 X   X  3128.2 4867.1 4993.5 4550.1 2729.2 4765.0 4233.9 7296.3 7311.0 3602.8 4241.6 6094.9 
CASE 9 X    X 3046.0 4692.4 8597.7 3038.9 5013.8 4050.2 2644.2 5446.1 4346.2 3535.4 4522.2 3205.0 
CASE 10  X X   3138.8 8432.8 5576.4 4047.3 2591.9 3566.8 6675.3 2941.2 3871.3 4670.7 2499.3 4217.5 
CASE 11  X  X  3017.7 5442.6 3500.2 3884.2 2852.9 3026.4 3239.6 3202.0 3331.9 4473.1 3045.5 4579.7 
CASE 12  X   X 3089.9 3404.0 4565.1 2395.7 3258.0 3459.0 3464.5 3382.7 4107.5 6479.5 8344.9 3127.4 
CASE 13   X X  2857.0 3029.3 2478.3 4622.5 2230.6 3897.5 3435.3 2696.0 4181.7 5503.2 2429.4 4170.2 
CASE 14   X  X 3277.9 4497.8 3467.3 3667.7 4207.7 4642.5 3087.8 4840.3 2998.0 6265.9 6192.1 3485.1 
CASE 15    X X 3520.6 3090.3 5227.7 5024.8 3980.0 3488.2 3105.8 4561.6 5603.0 3985.9 3364.8 15983.1 
CASE 16 X X X   48777.7 10546.5 6758.1 7602.4 3765.6 10564.7 4291.5 12328.2 7373.5 6558.3 5176.6 4642.8 
CASE 17 X X  X  20842.5 12639.9 16688.0 6018.5 6539.7 6666.3 4918.0 12429.4 13527.5 3447.3 6726.0 5523.8 
CASE 18 X X   X 11864.1 8629.3 6660.1 4730.1 4108.9 6301.3 5993.8 16607.6 14935.3 7023.7 7831.7 7183.1 
CASE 19 X  X X  4885.6 6650.3 6499.8 5889.7 3861.6 7409.2 8131.1 10152.0 8938.1 11081.1 4508.2 12780.8 
CASE 20 X  X  X 5273.6 8085.9 12308.7 4556.2 7052.4 4637.4 3570.8 8643.1 8321.1 6404.9 8697.2 7020.6 
CASE 21 X   X X 6279.3 5930.4 20098.3 5761.7 9094.6 5558.6 6148.0 12194.0 7567.6 6191.0 6327.1 25609.7 
CASE 22  X X X  5891.1 7344.7 10859.9 8117.7 3239.3 4941.3 22630.9 6141.7 9244.8 7630.5 7089.9 4952.3 
CASE 23  X X  X 3283.1 6249.0 4699.7 3577.6 4148.9 6762.5 5008.5 7681.5 5981.9 7724.9 9350.4 8787.7 
CASE 24  X  X X 4489.7 13767.2 6052.3 4004.8 6872.3 4580.7 3707.7 8037.3 22867.4 7497.9 18987.0 22336.5 
CASE 25   X X X 3129.9 5181.7 10218.6 6184.1 8200.9 5913.2 5123.4 8578.3 4370.7 10589.3 8059.3 47839.5 
CASE 26 X X X X  46448.0 26455.8 12762.3 14757.5 11504.1 12206.7 13646.8 9853.5 23842.7 28885.2 9994.5 10242.6 
CASE 27 X X X  X 24409.0 20787.9 4221.5 6052.8 7506.1 15200.2 21004.9 17570.8 21023.6 8630.8 12434.3 27032.9 
CASE 28 X X  X X 15856.2 28403.0 24147.7 7996.8 15346.3 11742.5 16296.7 40681.1 38539.1 16379.9 29518.7 17472.5 
CASE 29 X  X X X 5565.0 15083.0 37622.8 7134.5 34829.8 10510.4 16477.2 8163.2 71410.4 15531.6 13039.9 71335.5 
CASE 30  X X X X 3837.0 27190.3 6705.0 11205.1 13140.9 6966.6 7361.1 27733.1 35118.7 18060.8 20075.0 119612.3 
CASE 31 X X X X X 53132.9 293039.7 12729.2 26376.5 73322.5 38773.8 39523.7 10564.5 346095.5 61829.1 53327.2 70349.4 
Minimum GCV 2406.5 2300.1 1974.6 2390.3 2054.4 2115.8 2404.3 2142.0 2465.3 2636.1 2303.9 2324.4 
Selected Case CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 4 CASE 4 CASE 3 CASE 5 CASE 1 CASE 4 CASE 4 
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Appendix E: Hydrographs of the Daily Observed Streamflow at 12 Stations from 
April 1999 to March 2007 
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E1: Station P75 
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E2: Station P4A 
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E3: Station P67 
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E4: Station P21 
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E5: Station P1 
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E7: Station P24A 

Ju
n
-9

9

S
e
p
-9

9

D
e
c-

9
9

M
a
r-

0
0

Ju
n
-0

0

S
e
p
-0

0

D
e
c-

0
0

M
a
r-

0
1

Ju
n
-0

1

S
e
p
-0

1

D
e
c-

0
1

M
a
r-

0
2

Ju
n
-0

2

S
e
p
-0

2

D
e
c-

0
2

M
a
r-

0
3

Ju
n
-0

3

S
e

p
-0

3

D
e

c-
0

3

M
a

r-
0

4

Ju
n
-0

4

S
e

p
-0

4

D
e

c-
0

4

M
a

r-
0

5

Ju
n
-0

5

S
e

p
-0

5

D
e

c-
0

5

M
a

r-
0

6

Ju
n
-0

6

S
e

p
-0

6

D
e

c-
0

6

M
a

r-
0

7

80
70
60
50
40
30
20
10
0

R
a
in

fa
ll (m

m
)

Ju
n
-9

9

S
e

p
-9

9

D
e

c-
9

9

M
a

r-
0

0

Ju
n
-0

0

S
e

p
-0

0

D
e

c-
0

0

M
a

r-
0

1

Ju
n
-0

1

S
e

p
-0

1

D
e

c-
0

1

M
a

r-
0

2

Ju
n
-0

2

S
e

p
-0

2

D
e

c-
0

2

M
a

r-
0

3

Ju
n

-0
3

S
e
p

-0
3

D
e
c-

0
3

M
a
r-

0
4

Ju
n

-0
4

S
e
p

-0
4

D
e
c-

0
4

M
a
r-

0
5

Ju
n

-0
5

S
e
p

-0
5

D
e
c-

0
5

M
a
r-

0
6

Ju
n

-0
6

S
e
p

-0
6

D
e
c-

0
6

M
a
r-

0
7

0

50

100

150

D
i

s
c

h
a

r
g

e
 

(
m

3
 
s

-1
)

P24A

 



 215 
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E12: Station P12B 
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Appendix F: Model Parameters 
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F1: List of the parameters of HEC-HMS model 

Component Method Parameter 
Loss Initial deficit (mm) 
 Maximum deficit (mm) 
 Constant rate (mm h-1) 
 

Deficit and constant 

Impervious (%) 
 Initial range (mm) 
 Initial coefficient ((mm h-1)1-x) 
 Coefficient ratio (-) 
 Exponent (-) 
 

Exponential 

Impervious (%) 
 Initial content (-) 
 Saturated content (-) 
 Suction (mm) 
 Conductivity (mm h-1) 
 

Green and Ampt 

Impervious (%) 
 Initial loss (mm) 
 Constant rate (mm h-1) 
 

Initial and constant 

Impervious (%) 
 Initial abstraction (mm) 
 Curve number (-) 
 

SCS curve number 

Impervious (%) 
 Initial content (-) 
 Residual content (-) 
 Saturated content (-) 
 Bubbling pressure (mm) 
 Pore distribution (-) 
 Conductivity (mm h-1) 
 Impervious (%) 
 

Smith Parlange 

Time series of temperature 
 Soil (%) 
 GW#1, 2 (%) 
 Maximum infiltration (mm h-1) 
 Impervious (%) 
 Soil storage (mm) 
 Tension storage (mm) 
 Soil percolation (mm h-1) 
 GW#1, 2 storage (mm) 
 GW#1, 2 percolation (mm h-1) 
 

SMA 

GW#1, 2 coefficient (h) 
Transform Time of concentration (h) 
 

Clark unit hydrograph 
Storage coefficient (h) 

 Length (m) 
 Slope (m m-1) 
 Manning’s n (-) 
 Number of sub-reaches (-) 
 Shape (-) 
 Bottom width (m) 
 

Kinematic wave 

Side slope (H:V) 
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Component Method Parameter 
Transform Area of collector and sub-collector (km2) 
 Roughness (-) 
 

Kinematic wave 

Number of routing steps (-) 
 Time of concentration (h) 
 

ModClark 
Storage coefficient (h) 

 Graph type: standard or Delmarva 
 

SCS unit hydrograph 
Lag time (min) 

 Method: standard, Ft worth district or Tulsa 
district 

 Standard lag (h) 
 

Snyder unit hydrograph 

Peaking coefficient (-) 
Baseflow Initial type: discharge or discharge per area 
 Initial value (m3 s-1 or m3 s-1 km-2) 
 Recession constant (-) 
 

Bounded recession 

Monthly values (m3 s-1) 
 Constant monthly Monthly values (m3 s-1) 
 Initial type: discharge or discharge per area 
 GW#1, 2 initial value (m3 s-1 or m3 s-1 km-2) 
 GW#1, 2 coefficient (-) 
 

Linear reservoir 

GW#1, 2 number of reservoirs (-) 
 Initial type: discharge or discharge per area  
 Initial value (m3 s-1 or m3 s-1 km-2) 
 Threshold type: ratio to peak or threshold 

discharge 
 Threshold value: ratio (-) or flow (m3 s-1) 
 Length (m) 
 Conductivity (mm h-1) 
 

Nonlinear Boussinesq 

Porosity (-) 
 Initial type: discharge or discharge per area 
 Initial value (m3 s-1 or m3 s-1 km-2) 
 Recession constant (-) 
 Threshold type: ratio to peak or threshold 

discharge 
 

Recession 

Threshold value: ratio (-) or flow (m3 s-1) 
Routing Length (m) 
 Slope (m m-1) 
 Manning’s n (-) 
 Invert (m) 
 Number of sub-reaches (-) 
 Shape: circle, deep, rectangle, trapezoid, 

triangle 
 Bottom width (m) 
 

Kinematic wave 

Side slope (H:V) 
 Lag Lag (min) 
 Storage-discharge function (-) 
 Number of sub-reaches (-) 
 Initial condition: discharge or 

inflow=outflow 
 

Modified puls 

Initial value (m3 s-1) 
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Component Method Parameter 
Routing Elevation-discharge function (-) 
 

Modified puls 
Invert (m) 

 Muskingum K (h) 
 Muskingum X (-) 
 

Muskingum 

Number of sub-reaches (-) 
 Length (m) 
 Slope (m m-1) 
 Manning’s n (-) 
 Invert (m) 
 Shape: circle, deep, rectangle, trapezoid, 

triangle 
 Bottom width (m) 
 

Muskingum-Cunge 

Side slope (H:V) 
 Lag (min) 
 

Straddle stagger 
Duration (min) 
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Appendix G: Hydrographs of Daily Simulated Streamflow at Six Stations from April 
1999 to March 2003 by SIMHYD Model 

 



 225 

G1: Station P4A 
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G2: Station P21 
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G3: Station P71 
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G4: Station P24A 
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G5: Station 061302 
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G6: Station 061501 
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Appendix H: Monthly Anomalies of Observed Rainfall and Streamflow from April 
1999 to March 2003 
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H1: Station P75 

Ju
n
-9

9

S
e
p
-9

9

D
e
c-

9
9

M
a
r-

0
0

Ju
n
-0

0

S
e
p
-0

0

D
e
c-

0
0

M
a
r-

0
1

Ju
n
-0

1

S
e
p
-0

1

D
e
c-

0
1

M
a
r-

0
2

Ju
n
-0

2

S
e
p
-0

2

D
e
c-

0
2

M
a
r-

0
3

-2

-1

0

1

2

3

A
n

o
m

a
l

y

Discharge
P75

 
 

H2: Station P4A 
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H3: Station P67 
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H4: Station P21 
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H5: Station P1 
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H6: Station P71 
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H7: Station P24A 
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H8: Station P73 
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H9: Station 061302 
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H10: Station P14 
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H11: Station 061501 
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H12: Station P12B 
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Appendix I: Hydrographs of Daily Simulated Streamflow at 12 Stations from April 
1999 to March 2003 by HEC-HMS Model 
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I1: Station P75 
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I2: Station P4A 

Ju
n
-9

9

S
e
p
-9

9

D
e

c-
9

9

M
a
r-

0
0

Ju
n
-0

0

S
e
p
-0

0

D
e
c-

0
0

M
a
r-

0
1

Ju
n
-0

1

S
e

p
-0

1

D
e

c-
0

1

M
a

r-
0

2

Ju
n
-0

2

S
e

p
-0

2

D
e

c-
0

2

M
a

r-
0

3

70

60

50

40

30

20

10

0

R
a
in

fa
ll (m

m
)

Ju
n
-9

9

S
e

p
-9

9

D
e

c-
9

9

M
a

r-
0

0

Ju
n
-0

0

S
e

p
-0

0

D
e

c-
0

0

M
a

r-
0

1

Ju
n

-0
1

S
e
p

-0
1

D
e
c-

0
1

M
a
r-

0
2

Ju
n

-0
2

S
e
p

-0
2

D
e
c-

0
2

M
a
r-

0
3

0

50

100

150

200

D
i

s
c

h
a

r
g

e
 

(
m

3
 
s

-1
)

Qmodel

Qobs

P4A

 



 241 

I3: Station P67 
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I4: Station P21 
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I5: Station P1 
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I6: Station P71 
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I7: Station P24A 
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I8: Station P73 
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I9: Station 061302 
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I10: Station P14 

Ju
n

-9
9

S
e
p

-9
9

D
e
c-

9
9

M
a
r-

0
0

Ju
n

-0
0

S
e
p

-0
0

D
e
c-

0
0

M
a
r-

0
1

Ju
n

-0
1

S
e

p
-0

1

D
e

c-
0

1

M
a

r-
0

2

Ju
n

-0
2

S
e

p
-0

2

D
e

c-
0

2

M
a

r-
0

3

0

100

200

300

400

500

600

D
i

s
c

h
a

r
g

e
 

(
m

3
 
s

-1
)

Qmodel

Qobs

P14

 
 
 
 
 
 
 



 249 

I11: Station 061501 
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I12: Station 12B 
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Appendix J: Effects of Future Climate on Anomalous Events 
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J1: Characteristics of the anomalous low flow in wet season from the 2011-2100 
simulated streamflow under A2 at the 12 gauging stations 

Station Longest spell 
of anomalous 

low flow (day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

P75 62 30-Sep-2029 30-Nov-2029 51.06 0.824 
  30-Sep-2096 30-Nov-2096 49.23 0.794 
P4A 71 21-Sep-2014 30-Nov-2014 45.85 0.646 
P67 58 4-Oct-2029 30-Nov-2029 75.40 1.300 
  4-Oct-2096 30-Nov-2096 70.07 1.208 
P21 59 3-Oct-2014 30-Nov-2014 12.29 0.208 
  3-Oct-2015 30-Nov-2015 12.42 0.210 
  3-Oct-2016 30-Nov-2016 11.42 0.194 
  3-Oct-2021 30-Nov-2021 12.36 0.209 
  3-Oct-2022 30-Nov-2022 11.09 0.188 
  3-Oct-2029 30-Nov-2029 12.17 0.206 
  3-Oct-2037 30-Nov-2037 11.63 0.197 
  3-Oct-2039 30-Nov-2039 11.36 0.193 
  3-Oct-2070 30-Nov-2070 11.09 0.188 
  3-Oct-2071 30-Nov-2071 11.96 0.203 
  3-Oct-2074 30-Nov-2074 13.03 0.221 
  3-Oct-2091 30-Nov-2091 12.21 0.207 
  3-Oct-2099 30-Nov-2099 10.21 0.173 
P1 59 3-Oct-2029 30-Nov-2029 133.59 2.264 
  3-Oct-2096 30-Nov-2096 127.15 2.155 
P71 34 28-Oct-2026 30-Nov-2026 13.97 0.411 
  28-Oct-2088 30-Nov-2088 14.80 0.435 
P24A 55 7-Oct-2054 30-Nov-2054 10.13 0.184 
P73 46 16-Oct-2071 30-Nov-2071 190.70 4.146 
061302 59 3-Oct-2071 30-Nov-2071 60.01 1.017 
  3-Oct-2083 30-Nov-2083 54.64 0.926 
  3-Oct-2095 30-Nov-2095 54.70 0.927 
P14 56 6-Oct-2046 30-Nov-2046 72.86 1.301 
  6-Oct-2082 30-Nov-2082 69.50 1.241 
  6-Oct-2098 30-Nov-2098 76.20 1.361 
061501 28 3-Nov-2011 30-Nov-2011 22.97 0.820 
  3-Nov-2023 30-Nov-2023 23.01 0.822 
  3-Nov-2031 30-Nov-2031 22.11 0.790 
  3-Nov-2035 30-Nov-2035 21.66 0.774 
  3-Nov-2037 30-Nov-2037 21.37 0.763 
  3-Nov-2039 30-Nov-2039 23.16 0.827 
  3-Nov-2042 30-Nov-2042 23.12 0.826 
  3-Nov-2051 30-Nov-2051 20.71 0.740 
061501 28 3-Nov-2052 30-Nov-2052 22.53 0.805 
  3-Nov-2054 30-Nov-2054 22.19 0.792 
  3-Nov-2055 30-Nov-2055 22.54 0.805 
  3-Nov-2056 30-Nov-2056 21.85 0.780 
  3-Nov-2057 30-Nov-2057 21.52 0.769 
  3-Nov-2058 30-Nov-2058 21.56 0.770 
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Station Longest spell 
of anomalous 

low flow (day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

061501 28 3-Nov-2060 30-Nov-2060 21.21 0.757 
  3-Nov-2064 30-Nov-2064 22.82 0.815 
  3-Nov-2069 30-Nov-2069 19.01 0.679 
  3-Nov-2075 30-Nov-2075 21.38 0.764 
  3-Nov-2078 30-Nov-2078 22.86 0.816 
  3-Nov-2080 30-Nov-2080 23.14 0.826 
  3-Nov-2087 30-Nov-2087 21.08 0.753 
  3-Nov-2088 30-Nov-2088 20.14 0.719 
  3-Nov-2090 30-Nov-2090 21.52 0.769 
  3-Nov-2095 30-Nov-2095 21.73 0.776 
  3-Nov-2096 30-Nov-2096 19.52 0.697 
  3-Nov-2097 30-Nov-2097 21.44 0.766 
P12B 55 7-Oct-2096 30-Nov-2096 424.79 7.723 

MCM: million m3. 
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J2: Characteristics of the anomalous low flow in wet season from the 2011-2100 
simulated streamflow under B2 at the 12 gauging stations 

Station Longest spell 
of anomalous 

low flow 
(day) 

Start date End date Total 
volume of 

shortage 
(MCM) 

Intensity of 
shortage 

(MCM d-1) 

P75 60 2-Oct-2086 30-Nov-2086 53.56 0.893 
P4A 61 1-Oct-2013 30-Nov-2013 44.06 0.722 
  1-Oct-2015 30-Nov-2015 40.81 0.669 
  1-Oct-2019 30-Nov-2019 41.62 0.682 
  1-Oct-2020 30-Nov-2020 41.51 0.681 
  1-Oct-2023 30-Nov-2023 44.92 0.736 
  1-Oct-2032 30-Nov-2032 44.65 0.732 
  1-Oct-2069 30-Nov-2069 47.94 0.786 
P67 55 7-Oct-2086 30-Nov-2086 76.65 1.394 
P21 59 3-Oct-2011 30-Nov-2011 10.66 0.181 
  3-Oct-2015 30-Nov-2015 10.79 0.183 
  3-Oct-2069 30-Nov-2069 13.09 0.222 
P1 57 5-Oct-2086 30-Nov-2086 132.55 2.325 
P71 34 28-Oct-2013 30-Nov-2013 15.40 0.453 
  28-Oct-2051 30-Nov-2051 15.54 0.457 
  28-Oct-2088 30-Nov-2088 14.57 0.428 
P24A 32 1-Aug-2047 1-Sep-2047 1.29 0.040 
  1-Aug-2080 1-Sep-2080 1.23 0.039 
  1-Aug-2090 1-Sep-2090 0.95 0.030 
P73 42 20-Oct-2029 30-Nov-2029 168.75 4.018 
061302 59 3-Oct-2023 30-Nov-2023 60.49 1.025 
  3-Oct-2028 30-Nov-2028 59.54 1.009 
  3-Oct-2039 30-Nov-2039 53.90 0.914 
  3-Oct-2057 30-Nov-2057 65.40 1.109 
  3-Oct-2059 30-Nov-2059 63.31 1.073 
  3-Oct-2071 30-Nov-2071 64.48 1.093 
  3-Oct-2073 30-Nov-2073 65.56 1.111 
  3-Oct-2077 30-Nov-2077 63.70 1.080 
  3-Oct-2078 30-Nov-2078 68.06 1.154 
  3-Oct-2094 30-Nov-2094 61.71 1.046 
  3-Oct-2095 30-Nov-2095 62.25 1.055 
  3-Oct-2097 30-Nov-2097 62.87 1.066 
P14 57 5-Oct-2023 30-Nov-2023 78.62 1.379 
  5-Oct-2028 30-Nov-2028 74.02 1.299 
  5-Oct-2043 30-Nov-2043 85.34 1.497 
  5-Oct-2063 30-Nov-2063 76.41 1.340 
  5-Oct-2071 30-Nov-2071 82.46 1.447 
  5-Oct-2073 30-Nov-2073 84.59 1.484 
  5-Oct-2077 30-Nov-2077 77.39 1.358 
  5-Oct-2078 30-Nov-2078 87.30 1.532 
  5-Oct-2082 30-Nov-2082 81.74 1.434 
  5-Oct-2085 30-Nov-2085 80.74 1.416 
  5-Oct-2095 30-Nov-2095 75.72 1.328 
061501 29 2-Nov-2060 30-Nov-2060 16.53 0.570 
P12B 54 8-Oct-2023 30-Nov-2023 402.08 7.446 

MCM: million m3. 
 
 


