RE: Coastal Zone Management - ROW Pipeline - Shell Offshore Inc.

M.Boutwell@shell.com M.Boutwell@shell.com

Thu 1/12/2023 8:50 AM
To: Mobile Coastal Mail Coastal@adem.alabama.gov
Cc: Mickle, Sarila A sarila.mickle@adem.alabama.gov;Brown, Scott jsb@adem.alabama.gov
Please find attached the second batch of documentation in support of Shell's Rydberg ROW pipeline grant application.

Thank you,

Michael Boutwell | Regulatory Specialist
Shell Exploration \& Production | 701 Poydras St. New Orleans LA 70139
M.Boutwell@shell.com | Office: 504-425-6251 | Cell: 713-363-4001

From: Boutwell, Michael SEPCO-UPD/P/SF
Sent: Thursday, January 12, 2023 8:48 AM
To: Mobile Coastal Mail Coastal@adem.alabama.gov
Cc: Mickle, Sarila A sarila.mickle@adem.alabama.gov; 'Brown, Scott' jsb@adem.alabama.gov
Subject: RE: Coastal Zone Management - ROW Pipeline - Shell Offshore Inc.

Good Morning -

Shell Offshore Inc. is respectfully submitting the attached offshore ROW pipeline grant application to the Alabama Department of Environmental Management for coastal zone management consistency review. This ROW pipeline application is in support of our Rydberg drill center in MC 525 \& MC 569. A cover letter with additional details has been attached.

Please Note: Due to email size constraints, a second email will be sent with the second batch of documentation for this ROW pipeline.

If you have any questions, please let me know. We appreciate your time reviewing this application.

Thank you,
Michael Boutwell | Regulatory Specialist
Shell Exploration \& Production | 701 Poydras St. New Orleans LA 70139
M.Boutwell@shell.com | Office: 504-425-6251 | Cell: 713-363-4001

From: Brown, Scott jsb@adem.alabama.gov
Sent: Wednesday, December 14, 2022 9:47 AM
To: Boutwell, Michael SEPCO-UPD/P/SF M.Boutwell@shell.com
Cc: Mobile Coastal Mail Coastal@adem.alabama.gov; Mickle, Sarila A sarila.mickle@adem.alabama.gov
Subject: RE: Coastal Zone Management - ROW Pipeline - Shell Offshore Inc.
Think Secure. This email is from an external source.
Good morning:

Use the Mobile Coastal Mail mailbox as the official portal for all coastal review requests. You may always copy me and also copy Sarila Mickle as insurance.

v / r,

J. Scott Brown, Chief
Mobile Field Office| ADEM
3664 Dauphin Street, Suite B | Mobile, Alabama 36608
Telephones: 251.304.1176 Office| 334.850.4641 Cell
eMail: jsb@adem.alabama.gov
www.adem.alabama.gov

From: M.Boutwell@shell.com M.Boutwell@shell.com
Sent: Tuesday, December 13, 2022 3:25 PM
To: Brown, Scott jsb@adem.alabama.gov
Cc: Mobile Coastal Mail Coastal@adem.alabama.gov
Subject: Coastal Zone Management - ROW Pipeline - Shell Offshore Inc.

Good Afternoon -

Shell Offshore Inc. is preparing to submit ROW pipeline permits to the Bureau of Safety and Environmental Enforcement (BSEE) for our upcoming Rydberg development. The route for these ROW pipelines crosses through Alabama CZM blocks (MC 569, MC 525, MC 481, DC 441, DC 397, DC 353 \& MC 393). Can you please advise if submittals for Alabama's CZM consistency review are handled through an online portal, or if these should be submitted to a particular email address?

I appreciate any guidance you can provide.

Thank you,

Michael Boutwell

Regulatory Specialist
Shell Exploration \& Production Co.
701 Poydras St., New Orleans, LA 70139
Office: +1-504-425-6251 Cell: 1-713-363-4001
Email: m.boutwell@shell.com
Internet: http://sww.shell.com/ua/

CONFIDENTIALITY NOTICE: This e-mail communication, including any attachments, may contain privileged or confidential information for specific individuals. If you are not the intended recipient(s), you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited and you should delete this message and its attachments from your computer without retaining any copies. If you have received this communication in error, please reply to the sender immediately.
(土) Please print only if absolutely necessary.

United States Department of the Interior
Bureau of Safety and Environmental Enforcement
Gulf of Mexico OCS Region
Pipelines Section (GE1035A)
1201 Elmwood Park Boulevard
New Orleans, LA 70123-2394

January 5, 2023
Attn: Angie Gobert, Pipelines Section, Chief

```
SUBJECT: APPOMATTOX FPs Mississippi CANYON 437 Rydberg Subsea Field Route
Mississippi Canyon Block 393 / LEAse OCS-G 26254
DeSoto Canyon 353 / Lease OCS-G 25852
DeSoto Canyon 397 / Lease OCS-G 37243
DeSoto Canyon 441 / Lease OCS-G 35357
Mississippi Canyon 481 / UnLEASED
Mississippi Canyon Block 525 / LEASE OCS-G 31507
Mississippi Canyon Block 569 / LEASE OCS-G 31513
```


ROW Pipeline Grant Application

In accordance with 30 CFR 250 Subpart J regulations, Shell Offshore Inc. ("Shell") submits for your review and approval the enclosed ROW pipeline grant application for the installation and operation of a total of two (2) proposed segments: one (1) production flowline and one (1) dynamic umbilical.

Shell Offshore Inc. requests the following alternate compliance from the regulations:

1. Shell hereby requests an alternate compliance from the requirements of 30 CFR 250.1002(a) to use the provisions of API RP 1111 to calculate the internal design pressure of the proposed flowlines as per NTL No. 2009-G28.

Installation activities are estimated to begin between Q3-Q4 2023 with a dynamically positioned light subsea construction vessel without use of anchors.

No.	Proposed Segments	From	To	Pay.gov Tracking ID	Agency Tracking ID
20889	Production Flowline	MC 525 PLEM FLM-8610	MC 393 PLET FLT-8621	2737Q5BV	76344534131
20944	Dynamic Umbilical	MC 437 Appomattox Host	MC 525 \& MC 569 Rydberg XT 1 \& XT 2	Associated Umbilical	Associated Umbilical

We are submitting an electronic copy via TIMSWeb per 30 CFR 250.186(a)(3).

Should you have any questions or require additional information, please contact Michael Boutwell at m.boutwell@shell.com or Jason Shoemaker at jason.shoemaker@shell.com.

Sincerely,

Brian Rieth

Brian Rieth
Projects \& Production Manager - Regulatory Affairs

Subsea: Rydberg Project

Rydberg Drill Center: Mississippi Canyon (MC) Block 525, 569

Host: Appomattox Host Semi-Submersible, MC Block 437
Route:

Area Block	Lease
MC 393	OCS-G-26254
DC 353	OCS-G-25852
DC 397	OCS-G-37243
DC 441	OCS-G-35357
MC 481	Unleased
MC 525	OCS-G-31507
MC 569	OCS-G-31513

Table of Contents

I. General Description 3
a. Production Flowline System Description 4
b. Dynamic Umbilical 5
II. Cathodic Protection (CP) 6III.
External Coating System 7
IV. Internal Protective Measures 8
V. Specific Gravity of the Empty Pipe 9
VI. Maximum Source Pressures (MSP) and Temperature 10
VII. Maximum Allowable Operating Pressure and Internal Pressure Calculations 11
Hydrostatic Test Pressure, Medium, and Duration 12
VIII.
Worst Case Discharge Calculation 13
IX.14
Downstream Facilities and Design Pressure X.XI.Commencing Installation and Estimated Time for Construction15
XII. Protections of Subsea Pipeline Crossings, Subsea Valves, Tabs, and Manifold Assemblies 16
XIII. Standards Used 17
XIV. Pipeline and Component Specifications 18
XV. Connectors, Forgings, and Appurtenances 19
XVI. Appendices 20
Appendix I: Overall Field Layout 21
Appendix II: Safety Flow Schematic 22
Appendix III: Internal Design Pressure Calculations and Specific Gravity 23
Appendix IV: Worst Case Discharge Calculations 25
Appendix V: Survey Plats 27
Appendix VI: Archaeological and Hazards Assessment Survey Report 28
Appendix VII: Dynamic Umbilical Details 29
Appendix VIII: Letter of No Objection 31
Appendix IX: Subsea Structure Detailed Documents 32

I. General Description

Shell Offshore Inc. ("Shell") is developing the Rydberg Project as a subsea tie-in from the Rydberg field to the Appomattox host plafform in deep water Gulf of Mexico via a flowline to the existing Vicksburg manifold. The Rydberg drill center is located in MC Block 525 and 569 approximately 12 miles from the Vicksburg drill center in MC Block 393, and approximately 10 miles from the Appomattox host platform in MC Block 437. Rydberg will be developed as a two (2) well drill center (with option for one (1) additional well), with a single production flowline tying directly to a nominated slot on the existing Vicksburg manifold, supported by a single dynamic umbilical from Appomattox.
This pipeline permit application is for the installation and operation of a total of five (5) proposed segments: one (1) flowline jumper one, (1) production flowline, two (2) production well jumper, and one (1) dynamic umbilical

The scope of the Rydberg subsea system is visually depicted in Figure 1. Table 1 lists the proposed segments in this right of way pipeline permit application.

Figure 1: Rydberg Subsea Layout

Table 1: Proposed Rydberg Segments

No	Segment Number	Proposed Segments	BSEE Product Code Requested	From	To
1	20889	Production Flowline	Bulk Oil	Rydberg PLEM (FLM-8610) MC-525	Rydberg PLET (FLT-8621) MC-393
2	20944	Rydberg Dynamic Umbilical	Electrohydraulic Umbilical	Appomattox Host TUPA (SKD-4290) MC-437	QAY-8601 MC-525 QAY-8602
			MC-569		

a. Production Flowline System Description

The Rydberg production system is designed to transport produced well fluids from the Rydberg 1 and 2 well to the existing Phase 1 drill center and eventually to the Appomattox Host. The Rydberg Drill Center will be developed by two (2) subsea wells, producing through two (2) production well jumpers, one (1) production pipeline end manifold, one (1) production flowline, one (1) production pipeline end termination (PLET), and one (1) flowline jumper. The length of the production flowline is approximately 12 miles long.

The Rydberg production stream is expected to consist of oil, gas and produced water. Details of the transported commodity are described in the table below.

Table 2: Transported Commodity
$\left.\begin{array}{|c|c|}\hline \text { Target } & \text { Rydberg Reservoir } \\ \hline \text { Produced Hydrocarbon } & \text { Bulk Oil } \\ \hline \text { API Gravity (degree API @ } \\ \text { reservoir conditions) }\end{array}\right] 32.7$

b. Dynamic Umbilical

A dynamic umbilical will be installed from the Appomattox Host to the subsea Umbilical Termination Assembly to supply electrical power, communications, chemicals, and hydraulic power to the Rydberg Drill Center. The umbilical will distribute hydraulic and chemical injection fluids from the host to the Rydberg XT through Steel Flying Leads (SFLs) and power/communication from the host to the XTs through Electrical/Optical Flying Leads (EOFLs).

The dynamic umbilical tubes (16) are super duplex and the tubes, fittings, and connections will be designed for a maximum operating pressure of 15,000 psi. Details of the Dynamic Umbilical crosssection are included in Appendix VII, Dynamic Umbilical.

Table 3: Summary Dynamic Umbilical Information

Data	Value (SI units)
Outside Diameter	202.3 mm
Mass (empty)	$54.4 \mathrm{~kg} / \mathrm{m}$
Mass (full of water)	$61.2 \mathrm{~kg} / \mathrm{m}$
Submerged Weight (full \& flooded, water)	$32.9 \mathrm{kgf} / \mathrm{m}$

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

II. Cathodic Protection (CP)

In addition to external corrosion coating, cathodic protection of the Rydberg flowlines is planned to meet the design life of 30 years. The Production Flowline will receive CP over its entire length from PLEM to PLET using anodes mounted on subsea structures.

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

III. External Coating System

Primary protection from external corrosion will be provided by external coatings. See Table 4, below, with flowline's external coating systems.

Table 4: External Coating System

Segment	External Corrosion Coating	Thickness	Other Coating	Thickness
Production Flowline	FBE	0.6 mm	Insulation	63 mm

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

IV. Internal Protective Measures

Prevention of internal corrosion will be provided by a combination of corrosion inhibition, and corrosion allowance.

- Production Flowline and PLET: Corrosion inhibition, corrosion allowance
- Production PLEM: Internal cladding

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

V. Specific Gravity of the Empty Pipe

The specific gravity of the empty pipe relative to fresh water for each permitted segment of the production flowline system is shown in Table 5.

Table 5: Specific Gravity of Empty Pipe

No.	Proposed Segment	Specific Gravity of Empty Pipe
1	Production Flowline	1.96

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

VI. Maximum Source Pressures (MSP) and Temperature

Production System

The production system is designed for a maximum internal pressure of 12,200 psia for a Maximum Source Pressure (MSP) of 12,200 psia, based on the maximum shut-in tubing pressure (SITP) of the Vicksburg wells.

The maximum estimated source temperature is $323^{\circ} \mathrm{F}$. The maximum design temperature for the proposed system is $350^{\circ} \mathrm{F}$ for the jumpers and flowlines.

VII. Maximum Allowable Operating Pressure and Internal Pressure Calculations

The Rydberg production flowlines and jumpers have a design pressure of $12,200 \mathrm{psi}$.
Shell hereby requests to use API RP 1111 as alternate compliance from the requirements of 30 CFR 250.1002(a) utilizing Item 1 of NTL No. 2009-G28 to calculate the internal design pressure for the flowlines.

The Rydberg production flowline has been designed in accordance with API RP 1111 and NTL No. 2009-G28 with a requested MAOP of 12,200 psi. Detailed calculations are included in Appendix III and summarized in Table 6. The calculations show that the flowline design pressures $\left(\mathrm{P}_{\mathrm{d}}\right)$ per Equation (2) in API RP 1111 is greater than the requested MAOP of 12,200 psi for the Rydberg development.

Table 6: Allowable Design Pressure Determination

Parameter	Production Flowline
D (in)	8.625
\dagger (in)	1.26
Pipe Grade	X 65
P_{b} (psi)	21,770
P_{t} (psi)	17,634
P_{d} (psi)	14,107
$M A O P$ (psi)	12,200
$\mathrm{P}_{\mathrm{d}}>$	
MAOP?	Yes

Per API RP 1111:
(a) $D=$ nominal outside diameter of pipe
(b) $t=$ selected nominal wall thickness of pipe
(c) $P_{d}=$ maximum design pressure of pipe (internal - external), psi
(d) $P_{t}=$ maximum hydrostatic test pressure of pipe (internal -external), psi
(e) $P_{b}=$ specified minimum burst pressure of pipe, psi

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

VIII. Hydrostatic Test Pressure, Medium, and Duration

The proposed flowline segments will be hydrostatically pressure tested in accordance with 30CFR 250.1002(c)(2) as shown in Table 7 below.

Table 7: Production and Gas Lift Flowlines Offshore Hydrotest Summary

Segment No.	Proposed Segments	Hydrostatic Test Pressure (psi)	Basis of Hydrotest Pressure	Test Medium	Test Duration (hours)
20889	Production Flowline (FAY-631)	15,250	$1.25 \times$ MAOP	Water	8

IX. Worst Case Discharge Calculation

The maximum possible discharge of oil into the environment is calculated per 30 CFR 254.47.c1-3 and is considered the sum of the volume of oil discharged before all wells can be shut-in, plus the total volume of oil in the flowline released prior to pressure equalization.

This estimation assumes: a single horizontal pipeline segment and a full pipeline break or rupture. Though this ROW permit is only for the flowline segment of the production system (Appendix IV).
Vrel is the total released volume of oil for the production flowline system, which includes Vicksburg Flowline and Rydberg.

Table 8: Total Released Volume

No.	Proposed Segments	$V_{r e l}$
Vicksburg Flowline (19413)	Production Flowline and Riser (Segment 19413)	684 bbl
Rydberg Flowline	Production Flowline (FAY-8631 Segment 20889)	1006 bbl
Total Production System		1690 bbl

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

X. Downstream Facilities and Design Pressure

The proposed Rydberg production system will be tied-in to the existing Vicksburg subsea production system, which has an approved MAOP of 12,200 psi.

XI. Commencing Installation and Estimated Time for Construction

Production Flowline

The estimated time for installation of the production flowlines is approximately 2 weeks. The offshore installation window for this work is between Q3 2023 and Q4 2023. The method of installation will be from a reeled pipelay dynamically positioned (DP) vessel without anchors. Prior to installation, Shell will perform a pre-lay survey.

Dynamic Umbilical
The estimated time for installation of the Dynamic Umbilical is approximately 2 weeks. The offshore installation for this work is planned to occur from a dynamically positioned (DP) light construction vessel without anchors between Q3/Q4 2023. Prior to installation, Shell will perform a pre-lay survey.

XII. Protections of Subsea Pipeline Crossings, Subsea Valves, Tabs, and Manifold Assemblies

There are two crossings planned which will have 18in separation:

- Production flowline over existing Shell pipeline (Segment 19418) in block DC 353
- Production flowline over existing Shell umbilical (Segment 18685) in block DC 353

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

XIII. Standards Used

Standards incorporated in the design of the flowlines and jumpers, as per 30 CFR 250.198, are summarized in Table 9 below.

Table 9: Standards Used

Standard	Standard Title	
API RP 14C	Recommended Practice for Analysis, Design, Installation, and Testing of Basic Surface Safety Systems for Offshore Production Plafforms	For subsea devices of the subsea infrastructure shown in Appendix II.
API RP 1111	Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design) Fifth Edition, September 2015	For design pressure of the proposed segments
API Spec 6A	Specification for Wellhead and Christmas Tree Equipment	For subsea equipment listed in Section XV.
API Spec 17D	Design and Operation of Subsea Production Systems- Subsea Wellhead and Tree Equipment	For subsea equipment listed in Section XV.
API Spec 17E (ISO 13628-5)	Specification for Subsea Umbilicals	For dynamic umbilical

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

XIV. Pipeline and Component Specifications

Parameter	Production Flowline
Approximate Length	12 mi
Pipe System	Single
Pipe Specification	API 5L SMLS
Pipe Material Grade	X65
Outer Diameter (OD)	8.625 in
Wall Thickness (WT)	1.26 in

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

XV. Connectors, Forgings, and Appurtenances

The TFMC-provided forgings, valves, connectors, and PLET valves are designed in accordance with API Spec 6A and 17D and will be rated for 15,000 psi.

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

XVI. Appendices

Appendix I: Overall Field Layout
Appendix II: Safety Flow Schematic
Appendix III: Internal Design Pressure Calculations
Appendix IV: Worst Case Discharge Calculations
Appendix V: Survey Plats
Appendix VI: Archeological and Hazards Assessment Survey Report
Appendix VII: Umbilical Details
Appendix VIII: Letter of No Objection
Appendix IX: Subsea Structure Detailed Document
Appendix X: Buoyancy Details
Appendix XI: Crossing Details

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix I: Overall Field Layout

This is provided as a separate file for all the proposed segments.

PIF	$\xrightarrow[\text { PaF }]{ }$	${ }_{\text {P }}^{8}$	8

RYD-500-UA-4180-9 RYD-500-UA-4180-9 RYD-500-UA-4180-9 RYD-500-UA-4180-9
990002-000_004_1_p990001-000_004_1_p990003-000_004_1_p990005-000_004_1_p

Appendix II: Safety Flow Schematic

This is provided as a separate file.

SFD - Vicksburg DC

- APX-500-PX-2368-5
\square
SFD - Rydberg DC -
APX-500-PX-2368-55

Appendix III: Internal Design Pressure Calculations and Specific Gravity

	Production Flowline
D (in)	8.625
f (in)	1.26
Pipe Grade	X 65
$\mathrm{f}(\mathrm{d})$	0.9
$\mathrm{f}(\mathrm{t})$	0.9
$\mathrm{f}(\mathrm{e})$	1.0
$P_{b}(\mathrm{psi})$	21,770
$P_{t}(\mathrm{psi})$	17,634
$P_{d}(\mathrm{psi})$	14,107
MAOP (psi)	12,200
$\mathrm{P}_{\mathrm{d}}>\mathrm{MAOP}$?	Yes

Minimum Burst Pressure (P_{b})

The minimum burst pressure of the pipe is calculated in accordance with Equation (4) from API RP 1111, as follows:
$P_{b}=0.45 \times(S+U) \times \ln \left(\frac{D}{D-2 \times t}\right)$
where:
$P_{b}=$ specified minimum burst pressure of pipe, psi
$S=$ specified minimum yield strength of pipe material $=65,300 \mathrm{psi}$
$U=$ minimum ultimate tensile strength of pipe material $=77,600 \mathrm{psi}$

Hydrostatic Test Pressure (P_{t})

The hydrostatic test pressure that must not be exceeded for the pipe is calculated in accordance with Equation (1) of API RP 1111 , as follows:
$P_{t} \leq f_{d} \times f_{e} \times f_{t} \times P_{b}$
where:
$P_{t}=$ maximum hydrostatic test pressure of pipe (internal - external), psi
$P_{b}=$ specified minimum burst pressure of pipe, psi
$f_{d}=$ design factor $=0.9$ for flowlines, 0.75 for risers
$f_{e}=$ longitudinal joint factor $=1.0$ (seamless pipe)
$f_{t}=$ temperature derating factor $=>$ refer to table above

Design Pressure (P_{d})

The design pressure that must not be exceeded for the pipe is calculated in accordance with Equation (2) of API RP 1111 , as follows:

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

$$
\mathrm{P}_{\mathrm{d}} \leq 0.8 \times \mathrm{P}_{\mathrm{t}}
$$

where:
$P_{d}=$ maximum design pressure of pipe (internal - external), psi
$P_{t}=$ maximum hydrostatic test pressure of pipe (internal - external), psi

In accordance with the requirements of Item 1(a) within NTL No. 2009-G28, the calculations in Appendix III demonstrate that the production flowline and gas lift flowline design pressure (P_{d}) in Equation (2) in API RP 1111 is greater than the requested MAOP of 12,200 psi for the Rydberg development.

Specific Gravity Inputs

Inputs	Values
	Production
Content Density	42.9 pcf
Steel Density	490 pcf
Steel Young's Modulus	$2.90 \times 10^{\wedge 7} \mathrm{psi}$
Steel Shear Modulus	$1.17 \times 10^{\wedge 7} \mathrm{psi}$
Sea Water Density	64 pcf
Fresh Water Density	64 pcf
	Production
Outside Diameter	8.625 in
Nominal Wall Thickness	1.26 in
Coating	5 LPP
	Thickness -63.1 mm

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix IV: Worst Case Discharge Calculations

The maximum possible discharge of oil into the environment is calculated per 30 CFR 254.47.cl-3 and is considered the sum of the volume of oil discharged before all wells can be shut-in, plus the total volume of oil in the flowline released prior to pressure equalization.

This estimate assumes: a single horizontal pipeline segment and a full pipeline break or rupture.
Worst case discharge calculation
(c) For a pipeline facility, the size of your worst case discharge scenario is the volume possible from a pipeline break. You must calculate this volume as follows:
(1) Add the pipeline system leak detection time to the shutdown response time
$t_{l d}=$ leak detection time $=90 \mathrm{sec}$.
$t_{s d}=$ shutdown response time $=75 \mathrm{sec}$.
$t_{w c d}=$ worst case discharge duration $=t_{l d}+t_{s d}=165 \mathrm{sec}$.
(2) Multiply the time calculated in paragraph (c)(1) of this section by the highest measured oil flow rate over the preceding 12-month period. For new pipelines, you should use the predicted oil flow rate in the calculation.

$$
\begin{gathered}
Q_{\text {peak }}=\text { peak oil flow rate }=25,000 \text { bopd } \\
V_{d}=\text { dicharge volume }=Q_{\text {peak }} \times t_{w c d}=\frac{25,000}{86,400} \mathrm{bbl} / \mathrm{s} \times 165 \mathrm{~s}=47.74 \mathrm{bbl}
\end{gathered}
$$

(3) Add to the volume calculated in paragraph (c)(2) of this section the total volume of oil that would leak from the pipeline after it is shut in. Calculate this volume by taking into account the effects of hydrostatic pressure, gravity, frictional wall forces, length of pipeline segment, tie-ins with other pipelines, and other factors.

The entire length of the Rydberg segment is considered

$$
L=66,000 \mathrm{ft} .
$$

The volume contained in the Rydberg segment is

$$
V_{p}=L \times \frac{\pi D^{2}}{4}=66,000 \mathrm{ft} . \times 12 \frac{\mathrm{in}}{\mathrm{ft}} \times \frac{\pi(6.105)^{2}}{4} \mathrm{in}^{2}=23.2 E 6 \mathrm{in}^{3}=2392 \mathrm{bbl}
$$

The volume contained in the Phase 1 segment, per the Phase 1 RoW permit is:

	$V_{\text {line }}=\left(\frac{I D_{\text {line }}}{24}\right)^{2} x L_{\text {line }} x \pi$
Flowline	PROD
$L_{\text {f }}(\mathrm{ft})$	12,200
$\mathrm{~V}_{\text {fl }}\left(\mathrm{ft}^{3}\right)$	528
Riser	PROD
$\mathrm{L}_{\text {scr } 1}(\mathrm{ft})$	10766
$\mathrm{~V}_{\text {scr } 1}\left(\mathrm{ftr}^{3}\right)$	510

Release Volume Fraction:

$$
\begin{aligned}
\Delta P_{\text {rel }}=\frac{P_{\text {pipe }}}{P_{\text {ambient }}} & =4 \\
P_{\text {ambient }}=0.446533 * d & =1786 \mathrm{psi}
\end{aligned}
$$

From Table 1.3 in the Calculation Guide:

At Max Water Depth					$G_{\max }$	$f_{G O R}$
$\Delta P_{\text {rel }}$	0.47	$505 \mathrm{scf} / \mathrm{stb}$	0.85			
4						
At Top of Riser	$f_{\text {rel }}$	$G_{\max }$	$f_{G O R}$			
$\Delta P_{\text {rel }}$	0.77	$505 \mathrm{scf} / \mathrm{stb}$	0.85			
4						

Total release of volume (Eq. 1.1):

$$
V_{V x B}=\left(0.1787 * V_{f l} * f_{G O R} * f_{r e l}\right)+\left(0.1787 * V_{\text {scr } 1} * f_{G O R} * f_{\text {rel }}\right)+V_{\text {pre-shut }}=684 \mathrm{bbl}
$$

Thus, the worst-case discharge is

$$
V_{t o t}=V_{R y d}+V_{V x B}=1006 \mathrm{bbl}+684 \mathrm{bbl}=1690 \mathrm{bbl}
$$

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix V: Survey Plats

This is provided as a separate file for all the proposed segments.

220210-OII-DRW-PR 220210-OII-DRW-PR
M-002-00-R0.pdf M-001-00-R0.pdf

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix VI: Archaeological and Hazards Assessment Survey Report

This is provided as a separate file for all the proposed segments.

Appendix VII: Dynamic Umbilical Details

Item no.	Component Type	Quantity	ID $(\mathbf{m m})[\mathrm{in}]$	WT $(\mathbf{m m})[\mathrm{in}]$	Description
$1-10$	Tube Type 1	10	$25.40[1]$	$4.34[0.171]$	SDSS
$11-13$	Tube Type 2	3	$15.88[0.63]$	$2.60[0.102]$	SDSS
$14-16$	Tube Type 3	3	$12.70[0.50]$	$2.08[0.082]$	SDSS
$17-18$	LV Cable	2	-	-	$16 \mathrm{~mm}^{2}$ TQBrd
$19-20$	FO Cable	2	-	-	12 SM, Armoured
-	10 mm Solid Round (Natural)	3	-	-	Polymer
-	26 mm Solid Round (Natural)	1	-	-	Polymer
-	33 mm Solid Round (Natural)	3	-	-	Polymer
-	Shaped - A (Natural)	2	-	-	Polymer
-	Shaped - B (Natural)	3	-	-	Polymer
-	Shaped - C (Natural)	4	-	-	Polymer
-	Shaped (Blue)	1	-	-	Polymer
-	Shaped (Yellow)	1	-	-	Polymer
-	Shaped (Black)	1	-	-	Polymer

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Parameter and UOM	Value
Outer Diameter (mm) [in]	$202.3[7.96]$
Mass in Air Lines Empty (kg/m) [lb/ft]	$54.4[36.58]$
Mass in Air Lines Full with Fluid, Interstices Empty $(\mathrm{kg} / \mathrm{m})[\mathrm{lb} / \mathrm{ft}]$	$61.2[41.14]$
Mass Filled with Fluid and Flooded with Sea Water $(\mathrm{kg} / \mathrm{m})[\mathrm{lb} / \mathrm{ft}]$	$65.8[44.22]$
Submerged Weight Filled with Fluid (kgf/m) [lbf/ft]	$28.3[19]$
Submerged Weight Filled with Fluid and Flooded with Sea Water (kgf/m) [lbf/ft]	$32.9[22.08]$
Specific Weight Ratio	2.0
Submerged Weight to Diameter Ratio	162.5
Max. Allowable Axial Compression (kN)	5

Appendix VIII: Letter of No Objection

\square
Transmittal Letter to CNOOC - Rydber!

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix IX: Subsea Structure Detailed Documents

The Rydberg production flowline terminates to a PLEM/PLET on either side.
For these structures, PE Stamped Geotechnical analysis, structural analysis and GA Drawings will be submitted.

Appendix X: Buoyancy Details

Buoyancy modules will be used at 15 locations along the flowline route. A total of 16 buoyancy modules will be installed at each location called out on the overall field layout. The modules will be installed on the reel lay installation vessel using 2 straps to clamp 2 half shells together. See below for Buoyancy Module GA.

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix XI: Crossing Details

Appendix XI Crossing 2.pdf

Appendix XI Crossing 1.pdf

Rydberg Project

	TechnipFMC	Shell	
Document Title:	Rydberg - Overall Field Layout - Flowline \& Umbilical		
Document No.:	SHSHRYD-200-DW-5516-1000	RYD-500-UA-4180-9990001-000	
Document Status:	Issued for Review		
Revision:	E	004	
Revision Date:	14-September-2022		
Vendor Doc Code:			
ECCN:		EAR99	

Purchase Order No.:	$\mathbf{4 5 1 3 8 6 6 0 0 4}$
Purchase Order Title:	
Equip/Tag No(s):	GAY-8610, FAY-8631, FLT-8621, UMB-8600
Purchaser review and comments shall not be assumed to indicate either responsibility or liability for accuracy and completeness of this document or to alter any contractual terms and	

Shell Review Code and Status	
\square	Code 1-Final Certified Approved - Resubmit final Approved drawing /document.
\square	Code 2 - Accepted With Comments. Incorporate Comments, Up-Rev And Resubmit. Work may proceed.
\square	Code 3- Review Not Required/For Information - Do Not Resubmit.
\square	Code 4 - Rejected - Incorporate Comments, Up-Rev and Resubmit. Work may NOT proceed.

Rydberg Project

	TechnipFMC	Shell	
Document Title:	Rydberg - Detail Layout - Rydberg Drill Center		
Document No.:	SHSHRYD-200-DW-5516-1002	RYD-500-UA-4180-9990003-000	
Document Status:	Issued for Review		
Revision:	E	004	
Revision Date:	14-September-2022		
Vendor Doc Code:			
ECCN:			

Purchase Order No.:	4513866004
Purchase Order Title:	
Equip/Tag No(s):	GAY-8610, FAY-8631, UMB-8600
Purchaser review and comments shall not be assumed to indicate either responsibility or liability for accuracy and completeness of this document or to alter any contractual terms and	

Shell Review Code and Status

\square	Code 1-Final Certified Approved - Resubmit final Approved drawing /document.
\square	Code 2-Accepted With Comments. Incorporate Comments, Up-Rev And Resubmit. Work may proceed.
\square	Code 3- Review Not Required/For Information - Do Not Resubmit.
\square	Code 4-Rejected - Incorporate Comments, Up-Rev and Resubmit. Work may NOT proceed.

Rydberg Project

	TechnipFMC		
Shell			
Document Title:	Rydberg - Detail Layout - Dynamic Umbilical Approach at Host Platform		
Document No.:	SHSHRYD-200-DW-5516-1004	RYD-500-UA-4180-9990005-000	
Document Status:	Issued for Review		
Revision:	E	004	
Revision Date:	14-September-2022		
Vendor Doc Code:			
ECCN:			

Purchase Order No.:	$\mathbf{4 5 1 3 8 6 6 0 0 4}$
Purchase Order Title:	
Equip/Tag No(s):	UMB-8600
Purchaser review and comments shall not be assumed to indicate either responsibility or liability for accuracy and completeness of this document or to alter any contractual terms and	

Shell Review Code and Status

\square	Code 1-Final Certified Approved - Resubmit final Approved drawing /document.
\square	Code 2-Accepted With Comments. Incorporate Comments, Up-Rev And Resubmit. Work may proceed.
\square	Code 3- Review Not Required/For Information - Do Not Resubmit.
\square	Code 4-Rejected - Incorporate Comments, Up-Rev and Resubmit. Work may NOT proceed.

FLT-8621

PSV, FSV, PST, PSL ARE SACCD OUI FOR A FA1 PER AII RP I4C.

. THE RREE IS RAEO FOR 4OOF, BUT THE FION WOOUE IS RAED FOR S5O.

BSEE Right of Way Pipeline Permit Application: Rydberg Systems

Appendix IV: Worst Case Discharge Calculations

The maximum possible discharge of oil into the environment is calculated per 30 CFR 254.47.cl-3 and is considered the sum of the volume of oil discharged before all wells can be shut-in, plus the total volume of oil in the flowline released prior to pressure equalization.

This estimate assumes: a single horizontal pipeline segment and a full pipeline break or rupture.
Worst case discharge calculation
(c) For a pipeline facility, the size of your worst case discharge scenario is the volume possible from a pipeline break. You must calculate this volume as follows:
(1) Add the pipeline system leak detection time to the shutdown response time
$t_{l d}=$ leak detection time $=90 \mathrm{sec}$.
$t_{s d}=$ shutdown response time $=75 \mathrm{sec}$.
$t_{w c d}=$ worst case discharge duration $=t_{l d}+t_{s d}=165 \mathrm{sec}$.
(2) Multiply the time calculated in paragraph (c)(1) of this section by the highest measured oil flow rate over the preceding 12-month period. For new pipelines, you should use the predicted oil flow rate in the calculation.

$$
\begin{gathered}
Q_{\text {peak }}=\text { peak oil flow rate }=25,000 \text { bopd } \\
V_{d}=\text { dicharge volume }=Q_{\text {peak }} \times t_{w c d}=\frac{25,000}{86,400} \mathrm{bbl} / \mathrm{s} \times 165 \mathrm{~s}=47.74 \mathrm{bbl}
\end{gathered}
$$

(3) Add to the volume calculated in paragraph (c)(2) of this section the total volume of oil that would leak from the pipeline after it is shut in. Calculate this volume by taking into account the effects of hydrostatic pressure, gravity, frictional wall forces, length of pipeline segment, tie-ins with other pipelines, and other factors.

The entire length of the Rydberg segment is considered

$$
L=66,000 \mathrm{ft} .
$$

The volume contained in the Rydberg segment is

$$
V_{p}=L \times \frac{\pi D^{2}}{4}=66,000 \mathrm{ft} . \times 12 \frac{\mathrm{in}}{\mathrm{ft}} \times \frac{\pi(6.105)^{2}}{4} \mathrm{in}^{2}=23.2 E 6 \mathrm{in}^{3}=2392 \mathrm{bbl}
$$

The volume contained in the Phase 1 segment, per the Phase 1 RoW permit is:

	$V_{\text {line }}=\left(\frac{I D_{\text {line }}}{24}\right)^{2} x L_{\text {line }} x \pi$
Flowline	PROD
$L_{\text {f }}(\mathrm{ft})$	12,200
$\mathrm{~V}_{\text {fl }}\left(\mathrm{ft}^{3}\right)$	528
Riser	PROD
$\mathrm{L}_{\text {scr } 1}(\mathrm{ft})$	10766
$\mathrm{~V}_{\text {scr } 1}\left(\mathrm{ftr}^{3}\right)$	510

Release Volume Fraction:

$$
\begin{aligned}
\Delta P_{\text {rel }}=\frac{P_{\text {pipe }}}{P_{\text {ambient }}} & =4 \\
P_{\text {ambient }}=0.446533 * d & =1786 \mathrm{psi}
\end{aligned}
$$

From Table 1.3 in the Calculation Guide:

At Max Water Depth					$G_{\max }$	$f_{G O R}$
$\Delta P_{\text {rel }}$	0.47	$505 \mathrm{scf} / \mathrm{stb}$	0.85			
4						
At Top of Riser	$f_{\text {rel }}$	$G_{\max }$	$f_{G O R}$			
$\Delta P_{\text {rel }}$	0.77	$505 \mathrm{scf} / \mathrm{stb}$	0.85			
4						

Total release of volume (Eq. 1.1):

$$
V_{V x B}=\left(0.1787 * V_{f l} * f_{G O R} * f_{r e l}\right)+\left(0.1787 * V_{\text {scr } 1} * f_{G O R} * f_{\text {rel }}\right)+V_{\text {pre-shut }}=684 \mathrm{bbl}
$$

Thus, the worst-case discharge is

$$
V_{t o t}=V_{R y d}+V_{V x B}=1006 \mathrm{bbl}+684 \mathrm{bbl}=1690 \mathrm{bbl}
$$

SHELL

ARCHAELOGICAL AND GEOHAZARD ASSESSMENT

PROPOSED 8.625-INCH PRODUCTION FLOWLINE ROUTE PROPOSED 8.5-INCH DYNAMIC UMBILICAL ROUTE BLOCKS 525 TO 393 AND 437, MISSISSIPPI CANYON AREA GULF OF MEXICO

${ }^{\circledR}$

OCEANEERNG

\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Oceaneering } \\
\text { Document Number: }\end{array} & \text { 220210-OII-RPT-AAG-01 } & \begin{array}{l}\text { Project } \\
\text { Date } \\
\text { Range: }\end{array} & \begin{array}{l}\text { 31 March to 19 April 2011 \& } \\
24 \text { December 2016 to } \\
7 \text { January 2017 }\end{array}
$$

\hline \begin{array}{l}Client Document

Number:\end{array} \& N/A \& Location: \& MC525 to MC393 \& MC437\end{array} \right\rvert\, $$
\begin{array}{llll}\text { M/V Ocean Project }\end{array}
$$\right]\)| Shell Exploration and Production |
| :--- |
| Company |\quad Vessel: | R/V Fugro Enterprise |
| :--- |

REVISION HISTORY

Rev	Reason for Issue	Author	Reviewed	Approved	Rev Date
A	Client Review	B. Broussard, R. Church	A. Breaux	C. Baker	02 Aug 2022
0	Final For Use	B. Broussard, R. Church	A. Breaux	C. Baker	27 Sep 2022

Signature Box

Brittany Broussard
Geoscientist

Robert Church
Senior Marine Archaeologist

TABLE OF CONTENTS

ABBREVIATIONS AND ACRONYMS 4
1.0 GEOHAZARD ASSESSMENT 6
1.1 INTRODUCTION. 6
1.1.1 PURPOSE AND SCOPE 6
1.1.2 PROJECT PERSONNEL 9
1.1.3 PROPOSED ROUTES 9
1.2 SURVEY DESCRIPTION 10
1.2.1 ACQUISITION DATES AND WEATHER CONDITIONS 10
1.2.2 GEOPHYSICAL AND SURVEY EQUIPMENT 10
1.2.3 SURVEY METHODS AND DESIGN 10
1.2.4 HORIZONTAL DATUM 11
1.2.5 VERTICAL DATUM 11
1.2.6 CORING PROCEDURES 12
1.3 REGIONAL GEOLOGIC SETTING 12
1.3.1 BATHYMETRY 14
1.3.2 SEAFLOOR FEATURES 14
1.3.3 SUBSURFACE GEOLOGY 15
1.3.4 ASSESSMENT OF DEEPWATER BENTHIC COMMUNITIES. 20
1.3.5 MAN-MADE FEATURES 20
1.3.6 BOX AND PISTON CORING 22
1.4 GEOHAZARDS CONCLUSIONS AND RECOMMENDATIONS 23
1.5 REFERENCES 24
2.0 ARCHAEOLOGICAL ASSESSMENT 25
2.1 INTRODUCTION 25
2.1 HISTORIC BACKGROUND 26
2.2 HISTORIC POTENTIAL 30
2.3 ASSESSMENT OF DATA 30
2.3.1 BATHYMETRY RECORD 30
2.3.2 SIDE SCAN SONAR RECORD 31
2.4 CONCLUSIONS AND RECOMMENDATIONS 32
2.5 REFERENCES 33

LIST OF FIGURES

Figure 1. Regional map of the survey area. 7
Figure 2. Vicinity map of the survey area 8
Figure 3. Deepwater depositional environments of the northern Gulf of Mexico Slope (Modified from Bryant et al., 1991). 13
Figure 4. Subsurface Geologic Conditions in MC393 showing buried MTDs 16
Figure 5. SSS Line 528 Showing Seafloor Conditions in DC397 (FGSI) 17
Figure 6. Hemipelagic drape, seafloor irregularities, and MTD A along the centerline (Line 103.1.b) of the proposed flowline route 18
Figure 7. MTD B along the centerline (Line 103.1.a) of the proposed flowline route near box core BC-02 19
Figure 8. Gulf of Mexico shipping routes, 1763-1821 (Modified from Pearson et al., 2003). 27
Figure 9. Gulf of Mexico shipping routes, 1821-1862 (Modified from Pearson et al., 2003) 28
Figure 10. Side scan sonar data showing Sonar Contact No. 4, which is considered a potential archaeological resource. 32
LIST OF TABLES
Table 1. Key Office Personnel 9
Table 2. Lease Blocks Crossed by the Proposed Routes. 9
Table 3. Geodetic Parameters 11
Table 4. Interpreted MTDs within the Rydberg Survey Area. 15
Table 5. Existing Infrastructure within Rydberg Survey Area. 21
Table 6. Existing Pipelines and Umbilical's Within the Rydberg Survey Area 21
Table 7. Box and Piston Core Locations and Water Depth 22
Table 8. Shipwrecks reported within 10 nautical miles of the survey area 30
Table 9. Archaeological Avoidances 33
APPENDICES
APPENDIX A: SONAR CONTACT TABLEs \& REPORTs 35
APPENDIX B: SURVEY CONFIGURATION DIAGRAM, EQUIPMENT DESCRIPTIONS, INSTRUMENT SETTINGS, \& CREW LIST. 41
APPENDIX C: OII SURVEY LOGS 64
APPENDIX D: FGSI SURVEY LOGS 85
APPENDIX E: SOUND VELOCITY PROFILES \& TIDE CURVES. 107
STUDY MAPS

Proposed 8.625-inch Oil Flowline Route (Sheets 1-2) Horizontal Scale $1^{\prime \prime}=1,000$
Vertical Scale 1" = 100'

Proposed 8.5-inch Dynamic Umbilical Route (Sheets 3-4)
Horizontal Scale $1^{\prime \prime}=1,000^{\prime}$ Vertical Scale $1^{\prime \prime}=100^{\prime}$

DIGITAL DELIVERABLES

Report and Maps (PDF), AutoCAD (DWG) and associated files, ArcGIS Files

ABBREVIATIONS AND ACRONYMS

AUV	Autonomous Underwater Vehicle
APE	Area of Potential Effect
BML	Below Mud Line
BOEM	Bureau of Energy Management
BSEE	Bureau of Safety and Environmental Enforcement
DC	Desoto Canyon
DGPS	Differential Global Positioning System
DVL	Doppler Velocity Log
FGSI	Fugro
GOM	Gulf of Mexico
HiPAP	High Precision Acoustic Positioning System
INS	Inertial Navigation System
MBES	Multibeam Echosounder
MC	Mississippi Canyon
MSL	Mean Sea Level
MTD	Mass Transport Deposit
M/V	Motor Vessel
NAD27	North American Datum of 1927
NTL	Notice to Lessees
OII	Oceaneering International Inc.
R/V	Research Vessel
SBP	Subbottom Profiler
Shell	Shell Exploration and Production Co.
SSS	Side Scan Sonar
SVP	Sound Velocity Profile
USBL	Ultra-Short Base Line
UTM	Universal Transverse Mercator
XTF	Extended Triton Format

${ }^{\circledR}$

EXECUTIVE SUMMARY

- Shell Exploration and Production Co. (Shell), contracted Oceaneering International, Inc. (OII) to perform a deepwater AUV Archaeological and Geohazard Assessment for a proposed 8.625 -inch Oil Flowline route and 8.5-inch Dynamic Umbilical route within Blocks 569, 525, 393, and 437, Mississippi Canyon Area (MC), Gulf of Mexico and Blocks 353, 397, and 441, Desoto Canyon Area (DC), Gulf of Mexico.
- Additional data was utilized for the proposed routes and will be mentioned throughout this report. Water depths within the survey area range from 7,415 feet MSL to 7,560 feet MSL.
- This assessment is based on three previous assessments. The first is AUV geophysical survey data acquired by Fugro Enterprise between March 31 and April 1-19, 2011. The second is an Archaeological, Engineering, and Hazard Assessment based on the interpretation of geophysical data collected by Oll from December 24th to 28th, 2016. The third is seafloor infrastructure data acquired by TechnipFMC between June 3 and June 6 through 7, 2022. The AUV geophysical data include multibeam bathymetry, side scan sonar, and subbottom profiler.
- The length of the proposed 8.625 -inch Oil Flowline route is $64,046.10$ U.S. Survey Feet (12.13 statute miles). The length of the proposed 8.5 -inch Umbilical route is $53,957.17$ U.S. Survey Feet (10.22 statute miles).
- The multibeam bathymetric data depicts a smooth and slightly undulating seafloor topography which slopes gently to the east-southeast at an average gradient of between 1° and 5°. There were no gradients of greater than 2° identified along either proposed routes.
- The seabed is covered by a 6-to-10-foot hemipelagic clay drape underlain by alternating beds of silt and clay. Buried mass transport deposits are the most common subsurface feature occurring within the survey corridor. There were no other seafloor or subsurface geohazards to pipeline installation activities noted along either route.
- Two unidentified sonar contacts (Nos 8 and 14) are located within 100 feet of the proposed routes. Sonar Contact No. 8, measuring 13.4×5.1 with no measurable height, is located between the proposed Umbilical and Flowline routes in MC481. It is 54 feet from the proposed Flowline route and over 130 feet from the proposed Umbilical route. Contact No. 14, measuring 16.6×12.4 with no measurable height, is located 80 feet from the proposed Flowline route in DC397.
- Sonar contact No. 4 in MC525 is a potential archaeological resource and has a recommended 100foot radius archaeological avoidance zone. The other ten sonar contacts in the Oll sonar contact list are at a recommended 30 -foot radius hazard avoidance. The one sonar contact recorded within the route corridor from Fugro has no determined hazard avoidance zone. Sonar Contact No. 8 lies 130 feet east of the proposed Umbilical and 54 feet west of the proposed Oil Flowline. Sonar Contact No. 5 is located 80 feet east of the proposed Oil Flowline.
- Two existing lines are crossed by the proposed 8.625-inch Oil Production Flowline route; the S-19685 Shell 1-8-inch Umbilical and S-19418 Shell 12", both in DC353. There are no crossing locations along the proposed 8.5 -inch Dynamic Umbilical route.
- There were no features identified along either route that had potential to support deepwater benthic (chemosynthetic or coral) communities.
- Thirteen box core samples were collected along the proposed routes onboard Oll's M/V Ocean Project between December 28, 2016 and January 6, 2017. One piston core was collected on June 15, 2017.

1.0 GEOHAZARD ASSESSMENT

1.1 INTRODUCTION

Shell Exploration and Production Co. (Shell), contracted Oceaneering International, Inc. (OII) to perform a deepwater AUV Geohazard and Archaeological Assessment for a proposed 8.625-inch Oil Flowline route and a proposed 8.5 -inch Dynamic Umbilical route between Mississippi Canyon Area (MC) and Desoto Canyon Area (DC), Gulf of Mexico, within MC393, MC437, MC525, MC569, DC353, DC397, and DC441. The proposed 8.625 -inch Oil Flowline route extends from MC525 to MC393, and the proposed 8.5 -inch Dynamic Umbilical route extends from MC437 to MC525. The study area is located approximately 145 statute miles southeast of Fourchon, Louisiana, and is displayed on the Regional and Vicinity Maps (Figure 1 and Figure 2).

Previous survey assessments utilized for this assessment were completed by Fugro Geoservices, Inc. (FGSI) (Fugro Report No. 2411-500, 2011) and OII (Project No. 180110, 2017). This assessment is based on the AUV surveys conducted by OII and FGSI and designed to meet current hazard and archaeological regulatory requirements. The survey work and reporting comply with the U.S. Department of Interior's Bureau of Ocean Energy Management (BOEM) and Bureau of Safety and Environmental Enforcement (BSEE) Notice to Lessees (NTL) No. 2008-G05 (Shallow Hazards Program), NTL No. 2005G07 (Archaeological Resource Surveys and Reports), NTL No. 2011-JOINT-G01 (Revisions to the List of OCS Blocks Requiring Archaeological Resource Surveys and Reports), NTL No. 2009-G34 (Ancillary Activities), NTL No. 2014-G04 BOEM (Military Warning and Water Test Areas), and NTL No. 2009-G40 (Deepwater Benthic Communities). The NTLs are current as BOEM NTL No. 2015-N01 and BSEE NTL No. 2014-N01 eliminate the expiration dates for NTLs pending review and reissuance.

Appendix A of this report contains the sonar contact report and table. Appendix B contains all equipment specifications, instrument settings, and a crew list. Appendix C contains the Oll survey logs and Appendix D contains Fugro survey logs. Appendix E contains the Sound Velocity Profiles (SVP) and tide curves used to correct the multibeam bathymetry data.

1.1.1 PURPOSE AND SCOPE

The purpose of this Archaeological and Geohazard assessment is to characterize the nature of the site and to identify potential geological and man-made hazards, constraints to construction-related activities, potential biological communities, and determine the general seafloor and subsurface conditions within the study area. Geological hazards within the study area may include, but are not limited to, features such as slumps, areas of outcropping (hard grounds), pockmarks, seafloor depressions, faults, fluid or gas saturation zones, expulsion features, and potential for deepwater benthic (chemosynthetic and coral) communities. Potential man-made hazards may include shipwrecks, pipeline infrastructure, wells, and extraneous debris associated with lease developments and maritime activities.

Additionally, this assessment aims to identify potential submerged archaeological and cultural resources that could be impacted by lease development activities (See Section 2.0). This hazard assessment is intended to assess seafloor hazards and engineering constraints for the installation, construction, and integrity of the proposed flowline and umbilical.

Figure 1. Regional map of the survey area.

N	SURVEY AREA																																														
5	22	${ }^{23}$		24	25	28		2.2	${ }^{28}$	20	30			32	क	3			36		38	s					2	3			5	-		s	\%	10	n	12	13	${ }_{14}$	15	18	"	18	19	20	21
*	∞	67		a	\%	20	7	,	72	r	74	75	75	76	π	78		79	∞		82	33	\&		es	${ }_{4}^{4}$	to	-	${ }^{\circ}$		\%	s	81	22	5	54	5	56	5	5	59	8	${ }^{8}$	62	63	4	65
109	${ }_{\text {H0 }}$	"		${ }_{12}$	m	14	115	15	10	${ }^{17}$	" ${ }^{\text {c }}$	${ }_{15}$	19	120	13	12	122	128	${ }^{12}$		126	${ }_{17}{ }^{12}$	12	${ }^{28}$	129	9	5	9	92		9	-	${ }^{25}$	0	9	9	9	100	101	102	103	104	105	106	107	108	108
153	18	185		150	137	188	188	sor	130	${ }^{180}$	162		ω		105	180	16	/67	188	180	No	\%	12	/2	17	F3	13	135	13		m	138	139	100	14	18	143	14	145	146	187	148	149	150	151	152	153
${ }_{49}$	198	19		200	20%	202	203	20320	204	228	mo	20	or 2	228	208	210	27	21				215	21		$2 m$	m	78	178	rea		\%	182	108	${ }^{18}$	185	186	187	188	189	180	19	192	${ }_{193}$	189	195	196	197
24	22	208		*4	35	246	220	a	N8	298	230	35	35	232	285					25		239	20		28.2	22	222	23	22		${ }^{228}$	228	23	228	228	20	231	222	23	23	255	236	237	23	229	260	241
285	200	237		2	280	20	38	1	=	238	${ }^{29}$	288	35	230	${ }^{277}$	${ }^{238}$		489	20020	20	302		30		308	${ }^{265}$	268	287	zee		\%	270	271	272	273	276	275	278	2π	27	279	280	281	232	239	28.	${ }^{235}$
329	330	33		123	33	34	335	25	но	3 3	د8		38	4	34	\pm		03	34	\%					49	308	310	31	32		3	IT4	315	310	317	378	39	220	${ }^{321}$	32	323	324	35	32	327	32	${ }^{39}$
323	30	${ }^{35}$		ज50 5	31	sa	ग\%	7930	130	30	352			384	35	30	30	307	1298	38	30	31			5	9	354	355	35		sst	3se	38	350	351	302	33	36	35	30	387	368	309	370	37	372	${ }^{37}$
47	218	218		220	${ }^{22}$	182	42	23	12	${ }^{235}$	220	122	22	428	28	40	4	(3)	${ }^{32}$	${ }^{43}$	43	435	4		4		388	39	4∞		yor	402	± 3	\pm	405	206	407	488	48	110	411	412	${ }_{4} 13$	414	415	410	417
${ }^{44^{4}}$	Cl_{2}	4		m	465	48	167	67. 4	${ }^{46}$	4					${ }^{23}$	${ }^{*}$	${ }^{2}$	4	76	m	${ }^{48}$	79	38		${ }^{1}$	A	42	43	\cdots		45	46	${ }^{47}$	148	44	48	45	T0	433	458	${ }^{45}$	${ }^{45}$	457	458	459	480	461
506	500			508	598	510	51	31	312							518	518	19	220	321	52	123		24.	4	${ }^{35}$	488	487	18		180	50	19	22	430				297	48	${ }^{49}$	500	501	502	503	500	508
$\begin{aligned} & \text { Exprof } \\ & \text { uMPINe } \end{aligned}$		Wr		${ }_{3} 5$	350	584	558	55	sac						351	32	56	56	584	sss	586	507	50			${ }^{22}$	500	ss	32		320	34	230	230	537	5		ON	ss1	52	503	54	35	sab	s7	358	59
				508	597	590	5	\cdots	80	80					008	sob	+0)	-or	sos	cos	\%ro	\%t				37	5rd	575	57		\%	720	5ro	300	381	30	30	${ }^{3}$	ses	596	387	500	Sos	590	591	592	593
	0	Pros		∞	orr	os2	as	43		oss	0.6			sas	59	050		351	45	${ }^{658}$	es	ess					sto	119	62		23		023	624	ers	828	${ }^{62}$	ous	+00	00	ar	62	${ }^{033}$	*0	${ }^{205}$	000	637
er	\%en	683		sea	ess	880	ser	ar	as	589	000	189	0	032	889	68	68	\%s	cos	son	en	69	70			sor	es2	∞	8		105	50	∞	\%ee	808	oro	\%7	02					\%r	Er	679	800	${ }^{20 \%}$
725	72	${ }^{27}$		23	78	70	m	ar	32	73	${ }^{34}$	33	3	me	${ }^{32}$	3		${ }^{39}$	76	24	72	73	${ }^{7}$		14	os	208	\%or	ra		\%	710	tr	72	713	74	778	76	तr	70						120	
8	mo	m		m_{2}	m	π	7	75	mo	m	mb	7	79	70	781	182		${ }^{*}$	m	78	78	727	18		798	148	780	75	75		780	74	785	780	${ }^{787}$	zes	788	780	78	72	78	76	785	780			
8	814	.		${ }^{\text {H0 }}$	${ }^{17}$	A 8	418	\%	420	82	82	122	22		az8	${ }^{826}$	127	27	${ }^{228}$	229	200	${ }^{3}+$				793	78	795			57	79	720	${ }_{0} 80$	801	808	403	800	008	000	007	008	009	810	N1	812	81
857	\%s8	\%		200	${ }^{\text {Brer}}$	\%62	\%es	65	304	288	880	080	ar	308	309	aro		${ }^{27}$	372	${ }^{23}$	Br	378	\%			33	330	29	or		\cdots	al2	0×0	su	245	308	${ }^{31}$	нв	\%90	250	ast	358	053	4sa	355	sso	${ }^{357}$
sor	922	200		00	205	200	208	br x^{2}	200	300	920				313	94		-18	910	917		919	22		${ }^{221}$		\pm	200	38		${ }^{3} 5$	30	ber	300	\%00	+00	38	082	003	3	205	380	397	wer	030	+ \times	201
96	200	arz		40	29	200	${ }_{5} 35$	$5{ }^{56}$	${ }^{062}$	253	254	9s0		930	25 7	9se		59	200 ${ }^{2}$	301	352	20	8		20s	${ }^{22}$	326	927	22		∞	330	20.	932	930	93	235	230	37	328	330	20	9	2×2	23	244	9
	980	981		92	283	90	985	35	850	997	938		9		1200	1002		100910	2004 10	1008	toos	100		20as 1000		ss		271	197		3	934	975	976	9r	978	979	230	289	98	983	984	985	986	\%87	989	989

Figure 2. Vicinity map of the survey area.

1.1.2 PROJECT PERSONNEL

The following table (Table 1) identifies key Oceaneering office personnel.
Table 1. Key Office Personnel

Name	Company	Position
Jason Duplechin	OII	Sr. Manager, Data Management
Chris Baker	OII	Manager, Geoscience Reporting
Andrew Mayet	OII	GIS \& Mapping Analyst
Robert Church	OII	Archaeologist
Brittany Broussard	OII	Geoscientist

1.1.3 PROPOSED ROUTES

The survey area is located approximately 145 miles east-southeast of Fourchon, Louisiana. The survey area is within the bounds of Military Warning Area EWTA-1. Table 2 lists the Outer Continental Shelf (OCS) blocks crossed by the proposed routes with the current Lease Operator.

Table 2. Lease Blocks Crossed by the Proposed Routes

EASE BLOCK	OCS LEASE NUMBER	LEASE OPERATOR
NUMBER	OCS-G-26254	Shell
MC393	OCS-G-33733	Shell
MC437	Relinquished	N/A
MC481	OCS-G-31507	Shell
MC525	OCS-G-25852	Shell
DC353	OCS-G-25853	Shell
DC397	OCS-G-35357	Shell
DC441		

Proposed 8.625-inch Oil Flowline Route

The proposed 8.625 -inch Oil Flowline route originates at a proposed PLEM 3 Hub in MC525 (X: $1,334,196.00$ ', Y: $10,327,700.00$ ') in a water depth of approximately 7,522 feet MSL. The proposed route traverses north-northeast to Block 397, DeSoto Canyon Area (DC), then turns north, and northwest terminating at the Rydberg Production PLET 1 Hub in MC393 (X: 1,345,795.66' Y: 10,385,357.82') in a water depth of approximately 7,405 feet MSL. The total route length is $64,046.10$ feet (12.13 statute miles). The proposed 8.625 -inch Oil Flowline route is presented on the enclosed Sheets 1 and 2.

Proposed 8.5-inch Dynamic Umbilical Route

The proposed 8.5-inch Dynamic Umbilical route originates at the Appomattox "A" FPS in MC437 (X: $1,340,839.23$ ', Y: $10,370,308.76^{\prime}$) in a water depth of approximately 7,420 feet MSL. The proposed route traverses southeast to DC397, then turns south-southwest, terminating at a UTA in MC525 (X: $1,333,990.49$ ' Y: $10,327,766.66$) in a water depth of approximately 7,515 feet MSL. The total route length is $53,957.17$ feet or 10.22 statute miles. The proposed 8.5 -inch Dynamic Umbilical route is presented on the enclosed Sheets 3 and 4.

1.2 SURVEY DESCRIPTION

1.2.1 ACQUISITION DATES AND WEATHER CONDITIONS

Fugro conducted field operations aboard the R/V Fugro Enterprise between March 31, and April 1-19, 2011. Sea conditions aboard the R/V Fugro Enterprise were between calm to 6 feet during the FGSI AUV survey. Oll conducted a geophysical assessment and geotechnical field operations aboard the M/V Ocean Project from December 24 to 28, 2016, and from January 3 to 6, 2017. Sea conditions aboard the M/V Ocean Project during the survey operations were 1 to 8 feet with winds varying in direction with speeds ranging from calm to 27 knots. Although surface conditions affect AUV deployment and recovery operations, they have no effect on the data acquisition or data quality.

1.2.2 GEOPHYSICAL AND SURVEY EQUIPMENT

For the FGSI survey, the acoustically-aided inertial navigation system (INS), coupled with an acoustic Doppler velocity speed log and USBL (Ultra Short Base Line) positioning from the survey vessel, is used for primary positioning of the AUV. Data collected during the AUV survey include side-scan sonar (SSS), subbottom profiler (SBP), multibeam echosounder bathymetry and backscatter (MBES), and velocimeter cast data. Horizontal positioning of the survey vessel was accomplished with the FUGRO STARFIX® Differential Global Positioning System, which has a field accuracy of ± 3 meters. In addition, the AUV is tracked with an USBL system and receives position updates via an acoustic modem to continually augment the INS navigation. The AUV performed pre-programmed survey missions collecting 200 kHz multibeam bathymetry and backscatter, 120 and 410 kHz chirp side-scan sonar, and $2-12 \mathrm{kHz}$ chirp subbottom profiler data.

For the Oll surveys, acquired geophysical instruments onboard the O-Surveyor III included the Simrad EM 2040 Multibeam Echosounder (200, 300 and 400 kHz), an EdgeTech Full Spectrum 2200M Chirp Dual Frequency Side Scan Sonar ($120 / 410 \mathrm{kHz}$), and an EdgeTech DW106 Chirp Subbottom Profiler ($1.5-10.0 \mathrm{kHz}$). All raw digital data were logged utilizing proprietary software developed by OII.

1.2.3 OII SURVEY METHODS AND DESIGN

Survey Vessel and AUV Positioning

Vessel headings were accomplished using two Meridian Surveyor Gyrocompasses and surface positioning was accomplished using OII's C-Nav 3050 L-band globally corrected DGPS with an integrated C-Nav/RTK Extended Receiver. C-Nav utilizes two independent satellite communications (NET1 and NET2) for its high accuracy global DGPS data, delivering positions in real time at sub-meter accuracy.

Underwater positioning of the O-Surveyor III AUV was accomplished using acoustically aided INS. AUV positions were calculated using a Kalman filter algorithm, which utilizes input data from a Kongsberg HiPAP, INS, and DVL systems. The inertial navigation system consists of a precision gyro and accelerometers to maintain the AUV-track mission plan. The AUV positions were recorded continuously with navigational fixes generated at 125 -meter (~ 410-foot) intervals. The post-processed positions for the $A U V$ are accurate to within ± 4 meters (~ 13 feet).

Survey Grid and Coverage

Survey tracklines were designed for overlapping coverage with the side scan sonar and multibeam systems, and representative coverage for the subbottom profiler system. The majority of the survey grid for the proposed route consists of a centerline, a 50-meter offset line, and two 200-meter wing lines. Several additional survey lines were run for route development and to provided additional survey coverage. The centerline for the proposed umbilical route is Line 203. The centerline for the proposed
flowline route is Line 202 from MC525 to DC397. Coverage for the proposed flowline from DC397 to MC393 is provided from multiple survey lines including the FGSI 2011 survey. The FGSI 2011 survey lines providing coverage for the route corridor include 33 main tracklines (518-550) run east-west at 200meter lines spacing and two tie-lines (605 and 606) run north-south at 900 -meter lines spacing. Shot points (event marks) are annotated every 125 meters (~ 410 feet) on all tracklines.

1.2.4 HORIZONTAL DATUM

The geodetic datum used to generate the study maps is the North American Datum of 1927 (NAD27) on the Clarke 1866 ellipsoid and projected using the Universal Transverse Mercator (UTM), Zone 16 North (16N). NADCON software version 2.1 was utilized to convert the GPS positions from the WGS84 datum to the local NAD27 datum. All coordinates referenced on the study maps and within this report are presented in this projection. All grid units, scales and measurements are in U.S. Survey Feet. The geodetic survey parameters are listed in Table 3.

Table 3. Geodetic Parameters

Parameter	Data Acquisition	Oll Reporting and Maps
Geodetic Datum	WGS84	NAD27
Ellipsoid	WGS84	Clarke 1866
Grid Units	Meters	U.S. Survey Feet
Projection	Universal Transverse Mercator	Bureau of Land Management
Zone	16 N	16 N
Central Meridian	$87^{\circ} 00^{\prime} \mathrm{W}$	$87^{\circ} 00^{\prime} \mathrm{W}$
False Easting	500,000 meters at C.M	$1,640,416.67$ feet at C.M.

1.2.5 VERTICAL DATUM

The MBES data were processed at a 3-meter grid cell size and corrected for the field-measured water column harmonic mean velocity and predicted tides for the days of data collection. Predicted tides were generated from the NASA Goddard Global Ocean Tide Model. Additionally, barometric pressure readings were logged during the survey and corrections were applied to the recorded pressure sensor depth data in the AUV. The resulting water depth values are referenced to MSL. These data are provided herein with units in feet.

1.2.6 Mapping

The geodetic datum used to generate the study maps is the North American Datum of 1927 (NAD27) on the Clarke 1866 ellipsoid and projected using the Universal Transverse Mercator (UTM), Zone 16 North (16N). NADCON software version 2.1 was utilized to convert the GPS positions from the WGS84 datum to the local NAD27 datum. All coordinates referenced on the study maps and within this report are presented in this projection. All grid units, scales and measurements are in U.S. Survey Feet. The geodetic survey parameters are listed in Table 3.

The survey results are presented on the enclosed alignment charts for the proposed flowline and umbilical routes. The alignment charts are at a horizontal scale of 1 inch $=1,000$ feet and consist of four panels each. The first panel contains the color shaded bathymetry overlain with contours at 5 -foot intervals. The second panel exhibits the interpreted seafloor and subbottom features. The third panel displays the side scan sonar mosaic. The fourth panel shows the seafloor profile at a vertical scale of 1 inch $=$ 100 feet.

1.2.6 CORING PROCEDURES

All core locations mentioned in this report were predetermined by Shell and are presented on the AE\&H Maps. Coring procedures commenced from the back deck of the M/V Ocean Project and utilized a modified Grab Sample Box Corer and a Kullenberg Piston Corer on December 28th, 2016, January 6th, 2017, and June 15th, 2017. In survey area Rydberg coring operations were performed in water depths ranging from 7,411 to 7,607 feet MSL.

The piston coring device used on the M/V Ocean Project consists of a 20-foot long, 3-inch diameter steel pipe (core barrel) equipped with a hard metal nose piece (core cutter) at one end and a vane with dead weights added toward the other end. The corer is lowered with an electro-hydraulic winch until a tripping mechanism (30'-50' weighted line) senses the ocean bottom, releasing the corer so that the last part of the descent is made in free fall. Drag across the vane stabilizes the corer during the free fall and the weights drive the core barrel into the sediments. To facilitate the extraction of the sediment core, the barrel is equipped with a plastic liner, which can be slipped out and sealed to retain the core sample for analysis. A piston, located inside the liner and toward the core cutter, moves up the liner as the core barrel penetrates the sediments, permitting hydrostatic pressures to draw in the sample while removing the water. A brass, orange-peel like core catcher is located between the core cutter and the liner, preventing the sediment sample from washing out during retrieval. Each piston core sample is cut into 3 -foot sections. All samples are retained and labeled. Samples that meet the depth requirement undergo offshore geotechnical analyses, including visual inspection of the sediments, handheld torvane and miniature vane shear strengths (undisturbed, residual, and remolded), density, moisture contents, and carbonate contents.

The Grab Sampler Box Corer device used on the M/V Ocean Project consists of a 2 -foot wide, 3-foot long rectangular steel corer. The box core has dead weights on both sides and is lowered with an electrohydraulic winch to the seafloor. Upon retrieval, steel jaws located at the base of the box core close shut and a lid at the top of the box core falls into place, ensuring that the sediment does not wash out during retrieval. The retrieved box core was inspected for sufficient recovery and approved before undergoing geotechnical analyses.

Two T-bar tests were conducted to measure shear strength on the M/V Ocean Project. The first T-bar testing method consisted of full penetration and full extraction, and the second test consisted of penetration and extraction at a depth of approximately 1 foot with an amplitude of $+/-4$ inches. A miniature vane machine was then attached to the box core, and shear strength limits were recorded at 2 -inch intervals to the full recovery depth of the core sample. A vacuum pump was used to preserve integrity of the samples as four (4) 3-inch diameter sub-sample sediment tubes were extruded from each box core. Three (3) sub-sample sediment tubes were sealed, labeled, and preserved for onshore geotechnical laboratory testing, while the fourth sub-sample underwent field geotechnical testing onboard the vessel. Field tests included density and moisture content analysis. The results of said onshore laboratory analyses were to be provided to Shell as a stand-alone report from a 3rd party entity. Oll has submitted a Geotechnical Operations Report detailing the offshore geotechnical procedures, test results, and photographs.

1.3 REGIONAL GEOLOGIC SETTING

The Gulf of Mexico is a semi-enclosed basin that has been receiving sediment influx dominated by the Mississippi River since the Late Jurassic. Mesozoic and Cenozoic sediments have attained a thickness in excess of 9 miles (Coleman et al., 1991). The prograde shelf sequence consists of intercalated coastal plain, delta, estuarine, and marine sediments. Sediment deposition along the northern rim of the Gulf of

Mexico resulted in particularly thick Tertiary and Quaternary sections. These rapidly deposited sediments have prograde the Cretaceous shelf-edge up to 185 miles basin ward. The exceptionally high rate of shelf-edge progradation is on the order of 3.0 to 3.7 miles per 1,000 years.

The near surface geology across the Gulf Coast region is the product of fluctuating sea levels associated with climatic variations over the past 20,000 years. During this time, low sea levels left the continental shelf exposed to subaerial weathering and other erosional processes. Streams and rivers meandered and down cut into the exposed landmass, depositing their bedload along the modern-day shelf break. Fan systems were formed, and mass movement events were common as deltaic sediments were deposited on the steep upper continental slope. As the climate warmed, seas transgressed, and marine sediments were deposited on the shelf.

Deepwater Depositional Environments

Deepwater depositional environments as referred to in this report are the regions that lie beyond the shelf break in the northern Gulf of Mexico. They extend predominantly southward across the continental slope into bathyal and abyssal depths. The northern Gulf of Mexico can be broken up into three unique deepwater depositional environments: the Mississippi Canyon and Fan regions, the Texas-Louisiana Slope region, and the Rio Grande Slope region (Bryant et al., 1991, Figure 3). The study area is located within an area defined as the Mississippi Canyon and Fan region, which is described as follows.

Figure 3. Deepwater depositional environments of the northern Guif of Viexico Slope (ivoditied from Bryant et al., 1991).

Mississippi Canyon and Fan Region

The survey area is located in the eastern portion of the recent Mississippi Fan. The Mississippi Fan is a large, regional, deepwater feature that exists in the east-central Gulf of Mexico. The fan is a channel-levee-overbank complex that is approximately 350 miles long and up to 373 miles wide. It extends southeast from the base of the continental slope at a depth of approximately 1,000 feet at the base of the slope and 10,500 feet on the abyssal plain. The fan has been described as a broad, arcuate submarine fan comprised of several fan lobes separated by pelagic oozes or muddy sediment (Bouma et al., 1989).

The Mississippi Fan is split into three sections: upper fan, middle fan, and lower fan. The upper fan has a slightly convex shaped surface with a wide channel at its apex, which is flanked by laterally discontinuous reflectors believed to be over bank deposits. The middle fan holds the greatest accumulation of sediment and is imaged on sonar data as a leveed, sinuous channel complex that averages 0.7 to 1.6 miles wide. Less prominent channel complexes that undergo rapid channel abandonment define the lower fan. It can be assumed similar fans have been active during the geologic past in the entire Mississippi Canyon, Atwater Valley, Lloyd Ridge, and Lund Areas. Deposits in the channels consist of fining upward turbidite sequences (gravel to clay size) with the base of the gravel representing the time of the episodic event (Bouma et al., 1989).

The Mississippi Canyon formed approximately 30,000 years ago and continues to serve as a transport pathway moving sediment from the Mississippi River and continental shelf to a vast offshore fan that covers thousands of square kilometers and is over 3,000 meters thick.

1.3.1 BATHYMETRY

Fugro used a Kongsberg EM2000 Multibeam Bathymetric System which was utilized to determine accurate water depths across the survey area. Oll used a Kongsberg EM 2040 Swath Bathymetry System which was utilized to determine accurate water depths across the survey area. Water depths are referenced to MSL and are shown at 5 -foot intervals on the Color Shaded Bathymetry Maps (Sheets $1-4)$. Water depths range from 7,415 feet to 7,560 feet MSL within the study area.

Water depths along the proposed 8.625 -inch Oil Flowline Route measure approximately 7,522 feet MSL at the beginning of the route at a proposed PLEM 3 Hub in MC525 to 7,405 feet MSL at the proposed termination point at the Rydberg Production PLET 1 Hub in MC393.

Water depths along the proposed 8.5 -inch Dynamic Umbilical route measure approximately 7,420 feet MSL at the beginning of the route at the Appomattox "A" FPS in MC437 to 7,515 feet MSL at the proposed termination point at a UTA in MC525.

The seafloor is relatively flat across the entire study area with gradients averaging less than 2° and water depths gently decreasing to the east-southeast. Throughout this survey area the seafloor has mounded areas and buried MTDs, with gradients of up to 5° noted along these features. The largest gradient observed along either route measures 2.0° at Mile Point (MP) 11.5 along the proposed oil flowline route.

1.3.2 SEAFLOOR FEATURES

Color shaded bathymetry and side scan sonar data were used to delineate seafloor features across the survey area (Sheets 1-4). This survey area has smooth to slightly irregular topography. Slightly irregular seafloor is likely related to past events of regional and local mass transport and deposition as well as mini-basin sediment infill, many of which are buried beginning at 8 feet below mudline (BML) (Figure 4). Side scan sonar imagery along the proposed route displays low to moderate acoustic reflectivity indicative of fine-textured seafloor sediments.

In 2011 Fugro reported drag scars present in Block 397, Desoto Canyon Area. In Olls investigation in 2017 no drag scars were identified. In Report No. 2411-5001 these drag scars were interpreted to be related to seafloor disturbance from the installation of the anchor piles in DC397. These drag scars can be seen in Figure 5.

1.3.3 SUBSURFACE GEOLOGY

The SBP recorded high-resolution subsurface stratigraphy up to depths of approximately 175 feet BML. Subsurface features interpreted from the SBP data are presented on the Seafloor and Subbottom Features Panel. In general, the stratigraphy is comprised of alternating high- and low-amplitude parallel reflectors with interspersed MTDs. These reflectors represent deposition of hemipelagic clay drape underlain by cyclic deposition of slay and silty turbidites with exception of locations with cyclic deposition interrupted by mass transport deposits (MTDs) and ponded sediments.

The MTDs in this survey area are considered buried gravity flows composed of chaotic, unconsolidated sediments likely related to a massive landside from the shelf during the last sea level regression. An extensive mass transport deposit is buried 115 to 140 feet below the seafloor (BSF) and blankets the entire survey corridor (Figure 6). In shallower units of the subbottom there are much smaller MTDs present. MTD A in DC353 and DC397 occurs below the hemipelagic drape, buried 7 to 10 feet BSF and MTD B in MC525 ranges in depth from 83 to 90 feet BSF (Figure 6 and Figure 7). Zones of microfracturing and dewatering are present near the larger of these features MTD B and are considered to have a negligible effect on pipeline construction activities. The shallow depth of MTD A should be considered when operating in the vicinity. Another buried MTD is located along the southern border between MC393 and DC353, and is buried approximately 75 feet below the seafloor. This MTD ranges in thickness around 20 feet. (Figure 6). Interpreted MTDs along both routes are shown within Panel 4 of the enclosed maps.

Table 4. Interpreted MTDs within the Rydberg Survey Area.

Name	Top of MTD Depth Rance (ft BML)	Location
Buried MTD	75	MC393 and DC353
MTD A	7 to 10 feet BSF	DC353 and DC397
MTD B	83 to 90 feet BSF	MC525

Figure 4. Subsurface Geologic Conditions in MC393 showing buried MTDs

Figure 5. SSS Line 528 Showing Seafloor Conditions in DC397 (FGSI)

Figure 6. Hemipelagic drape, seafloor irregularities, and MTD A along the centerline (Line 103.1.b) of the proposed flowline route

Figure 7. MTD B along the centerline (Line 103.1.a) of the proposed flowline route near box core BC-02

1.3.4 ASSESSMENT OF DEEPWATER BENTHIC COMMUNITIES

The Notice to Lessees (NTL), Operators and Pipeline Right-of-Way Holders No. 2009-G40 became effective on January 27, 2010. The BOEM/BSEE issued this NTL for oil and gas companies operating in water depths greater than 300 meters (984 feet) implementing measures to detect and protect highdensity deep-water benthic (chemosynthetic and coral) communities in the Gulf of Mexico Outer Continental Shelf (OCS) region.

Deepwater chemosynthetic communities were first discovered in the central Gulf of Mexico in 1984. These communities typically exist in water depths greater than 300 meters (984 feet) and consist of assemblages of tubeworms, clams, mussels, bacterial mats, and a variety of associated organisms. They feed on a carbon source independent of photosynthesis and are therefore independent of the photosynthetic food chain (MacDonald et al., 1990). While most of these communities support low densities of organisms, high-density chemosynthetic communities have been noted where hydrocarboncharged sediments and acoustic void zones are associated with surface faulting. Anomalous mounds or knolls and gas or oil seeps may also support high-density chemosynthetic communities. The presence of high-density chemosynthetic communities is often linked with zones of seafloor fluid vents, accumulations of hydrates, and outcrops of authigenic carbonate rock in the Gulf of Mexico (Behrens, 1988). Hydrocarbon flow rate through the seafloor is important in sustaining healthy chemosynthetic communities (Roberts, 2001). However, not all areas of high seafloor amplitudes surrounded by other contributing features will support high-density chemosynthetic communities. Visual inspection of areas of high-amplitude seafloor reflectors is necessary to confirm the presence of high-density chemosynthetic communities.

Deepwater coral communities have been known to occur in the Gulf of Mexico for several decades. Various environmental factors including availability of suitable substrate, water temperature, current speed, organic input, and seepages of hydrocarbons have been proposed to regulate deep-water corals (CSA International, Inc., 2007). The known occurrences of deep-water corals in the Gulf of Mexico are almost exclusively on hard substrate of authigenic carbonate created by chemosynthetic communities although limited observations and sample collections indicate the corals are probably widely distributed. Common species include the scleractinian corals Lophelia pertusa and Madrepora oculata, the gorgonian Callogorgia americana delta, antipatharians, sponges, anemones, and various crustaceans. Lophelia has been found in water depths as shallow as 309 meters (1,014 feet) in the Gulf of Mexico and reported in water depths up to 3,000 meters (9,842 feet) in some parts of the world. Deepwater coral colonization can be on scattered small solitary features or spread over larger areas. These complex communities form three-dimensional structures that create habitat hot-spots of biodiversity.

Features or areas that could support deepwater benthic (chemosynthetic or coral) communities were not identified within the survey area. Therefore, impact to potential deep-water benthic communities is considered negligible.

1.3.5 MAN-MADE FEATURES

A review of Oll's proprietary database and BOEM/BSEE public databases indicate there are several LBL acoustic transponder frames and one well within the bounds of the Rydberg survey area that are all active. A review of these LBL acoustic transponders and Vicksburg well can be seen in Table 5. Details of all existing pipelines and umbilicals within the Rydberg survey area can be found in Table 6.

Eleven unidentified sonar contacts from the OII 2016 survey are recorded within the survey corridor (Nos. $1-4,6-9$ and $14-16)$. One unidentified sonar contact from the FGSI 2011 survey is recorded within the
survey corridor (No. 19). Most sonar contacts are relatively small measuring less than 25 feet in length or width, except Sonar Contact No. 4 (Figure 10). Sonar Contact No. 4, measuring 42.5×23.3 with no measurable height, is located near the eastern edge of the survey corridor in MC525 and approximately 685 feet from the proposed Flowline route. The original archeological assessment that accompanied the 2016 survey determined Sonar Contact No. 4 had archaeological potential and a 100-foot avoidance was recommended. More information is detailed in the Archeological Assessment portion of this report (Section 2.0).

Two unidentified sonar contacts (Nos 8 and 14) are located within 100 feet of the proposed routes. Sonar Contact No. 8, measuring 13.4×5.1 with no measurable height, is located between the proposed Umbilical and Flowline routes in MC481. It is 54 feet from the proposed Flowline route and over 130 feet from the proposed Umbilical route. Contact No. 14, measuring 16.6×12.4 with no measurable height, is located 80 feet from the proposed Flowline route in DC397.

Sonar Contact No. 19 from the FGSI 2011 survey, measuring 15.7×7.8 feet with no measurable height, is associated with an anchor drag scar and is likely a depression with a low sedent mound from a former anchor location. The remaining sonar contact are interpreted as modern debris or geological in origin.

Table 5. Existing Infrastructure within Rydberg Survey Area.

Name	Type of Infrastructure	Block Location	Active	Easting (X) (ft)	Nothing (Y) (ft)
OCS-G-	Vicksburg well	MC393	Yes	$1,345,535$	$10,385,322$
VX1	LBL acoustic transponder	MC393	Yes	$1,345,127$	$10,386,409$
VX2	LBL acoustic transponder	MC393	Yes	$1,346,223$	$10,386,161$
VX3	LBL acoustic transponder	MC393	Yes	$1,346,649$	$10,385,277$
VX4	LBL acoustic transponder	MC393	Yes	$1,346,104$	$10,384,468$
VX5	LBL acoustic transponder	MC393	Yes	$1,344,902$	$10,384,482$
VX6	LBL acoustic transponder	MC393	Yes	$1,344,882$	$10,385,600$

Table 6. Existing Pipelines and Umbilical's Within the Rydberg Survey Area

PIPELINES AND UMBILICALS	BLOCK(s)
S-19419 SHELL 20"	MC431
S-19416 SHELL 21" Water	MC432
S-19410 SHELL 10"	MC433
S-19409 SHELL 10"	MC434
S-19415 SHELL 12" Water	MC435
S-19686 SHELL 1"-4" Umb	MC436
S-19686 SHELL 1"-4" Umb	MC437
S-19682 SHELL 1"-8" Umb	MC437 AND MC388
S-19683 SHELL 1"-8" Umb	MC437 AND MC389
S-19684 SHELL 1"-8" Umb	MC437 AND MC390
S-19411 SHELL 10"	MC437 AND MC391
S-19412 SHELL 10"	MC437 AND MC392
S-19417 SHELL 8"	MC437 AND MC393
S-19413 SHELL 10"	MC437 AND MC394
S-19414 SHELL 10"	MC437 AND MC395
S-19418 SHELL 12"	MC437, MC393, AND DC353
S-19685 SHELL 1"-8" Umb	MC437, MC393, AND DC353

Two existing lines are crossed by the proposed 8.625-inch Oil Production Flowline route; the S-19685 Shell 1-8-inch Umbilical and S-19418 Shell 12", both in DC353. There are no crossing locations along the proposed 8.5-inch Dynamic Umbilical route.

1.3.6 BOX AND PISTON CORING

Between December 28th, 2016 and January 6th, 2017 thirteen box core samples were collected along the proposed routes onboard Oll's M/V Ocean Project. On June 15th, 2017 one piston core was collected. All coring operations were performed in water depths ranging from 7,411 to 7,607 feet MSL. Field visual classifications and geotechnical analyses were performed on each sample onboard the vessel.

The seabed soils were interpreted to be medium to light brown, very soft, slightly sandy clays. The soil color transitioned from brown to gray as tests were performed at increasing depths of four-inch intervals for the box core samples. The piston core maintained the same color throughout the entire core sample but stiffness increased with depth. The geotechnical tests generally indicated stiffer soil at increasing depths. Oll provided the test results for all the box cores to Shell in a standalone Geotechnical Operations Report. Oll will submit a separate Geotechnical Operations Report for the one piston core collected. Table 7 presents the location and water depths of each core.

Table 7. Box and Piston Core Locations and Water Depth

CORE NO.	EASTING (X) (ft)	NORTHING (Y) (ft)	WATER DEPTH (ft)
BC-01	$1,334,153$	$10,327,753$	7,520
BC-02	$1,338,604$	$10,335,749$	7,520
BC-03	$1,342,764$	$10,343,060$	7,522
BC-04	$1,348,383$	$10,353,227$	7,553
BC-05c	$1,353,375$	$10,362,894$	7,525
BC-06	$1,353,235$	$10,376,490$	7,510
BC-07d	$1,346,033$	$10,385,177$	7,411
BC-08	$1,346,943$	$10,367,580$	7,479
BC-09	$1,341,373$	$10,335,620$	7,541
BC-10	$1,348,805$	$10,343,899$	7,556
BC-11	$1,355,842$	$10,351,739$	7,607
BC-12	$1,358,068$	$10,361,826$	7,562
BC-13b	$1,350,482$	$10,368,511$	7,482
PC-01	$1,334,221$	$10,327,708$	7,526

The geotechnical investigation along the proposed routes recovered thirteen successful box core samples and one successful piston core location. Field visual classifications and geotechnical analyses were performed on each sample onboard the vessel. The seabed soils were interpreted to be medium to light brown, very soft, slightly sandy clays. The soil color transitioned from brown to gray as tests were performed at increasing depths of four-inch intervals for the box core samples. The piston core maintained the same color throughout the entire core sample but stiffness increased with depth. The geotechnical tests generally indicated stiffer soil at increasing depths. Oll provided the test results for all the box cores to Shell in a standalone Geotechnical Operations Report. Oll will submit a separate Geotechnical Operations Report for the one piston core collected. Table 6 presents the actual location and water depths of each core.

1.4 GEOHAZARDS CONCLUSIONS AND RECOMMENDATIONS

Oll conducted an Archaeological and Geohazard assessment for a proposed 8.625-inch Oil Flowline route from MC525 to MC393 and a proposed 8.5-inch Dynamic Umbilical route from MC437 to MC525.

The proposed 8.625 -inch Oil Flowline route originates at a proposed PLEM 3 Hub in MC525 (X: $1,334,196.00^{\prime}, \mathrm{Y}: 10,327,700.00$ ') in a water depth of approximately 7,522 feet MSL. The proposed route traverses north-northeast to Block 397, DeSoto Canyon Area (DC), then turns north, and northwest terminating at the Rydberg Production PLET 1 Hub in MC393 (X: 1,345,795.66' Y: 10,385,357.82') in a water depth of approximately 7,405 feet MSL. The total route length is $64,046.10$ feet (12.13 statute miles).

The proposed 8.5-inch Dynamic Umbilical route originates at the Appomattox "A" FPS in MC437 (X: $1,340,839.23$ ', Y: $10,370,308.76$ ') in a water depth of approximately 7,420 feet MSL. The proposed route traverses southeast to DC397, then turns south-southwest, terminating at a UTA in MC525 (X: $1,333,990.49$ ' Y: $10,327,766.66$) in a water depth of approximately 7,515 feet MSL. The total route length is $53,957.17$ feet or 10.22 statute miles.

This assessment is based on three previous surveys/assessments. The first is an AUV geophysical survey data acquired by Fugro Enterprise between March 31 and April 1-19, 2011. The second is an Archaeological, Engineering and Hazard Assessment based on the interpretation of geophysical data collected by Oll's from December 24th to 28th, 2016. The third is seafloor infrastructure data acquired by TechnipFMC between June 03, 2022, and June 06 through 07, 2022. AUV geophysical data includes multibeam bathymetry, side scan sonar, and subbottom profiler.

The multibeam bathymetric data depicts a smooth and slightly undulating seafloor topography which slopes gently to the east-southeast at an average gradient of between 1° and 5°. There were no gradients of greater than 2° identified along either proposed routes.

The primarily low to moderate acoustic reflectivity displayed on the multibeam backscatter and side scan sonar data suggests the seabed composition is primarily made of fine-grained sediments.

The seabed is covered by a 6-to-10-foot hemipelagic clay drape underlain by alternating beds of silt and clay. Buried mass transport deposits are the most common subsurface feature occurring within the survey corridor. There were no other seafloor or subsurface geohazards to pipeline installation activities noted along either route.

Two unidentified sonar contacts (Nos 8 and 14) are located within 100 feet of the proposed routes. Sonar Contact No. 8, measuring 13.4×5.1 with no measurable height, is located between the proposed Umbilical and Flowline routes in MC481. It is 54 feet from the proposed Flowline route and over 130 feet from the proposed Umbilical route. Contact No. 14, measuring 16.6×12.4 with no measurable height, is located 80 feet from the proposed Flowline route in DC397.

Two existing lines are crossed by the proposed 8.625-inch Oil Production Flowline route; the S-19685 Shell 1-8-inch Umbilical and S-19418 Shell 12", both in DC353. There are no crossing locations along the proposed 8.5 -inch Dynamic Umbilical route.

There were no features identified which could support deepwater benthic (chemosynthetic or coral) communities.

1.5 REFERENCES

Behrens, E. Williams, 1988. Geology of a Continental Slope Oil Seep, Northern Gulf of Mexico. The American Association of Petroleum Geologists Bulletin, v. 72, n. 2, pp. 105-114.

Bouma A.H., Coleman J.M., 1985. DSDP Leg 96 Shipboard Scientists Mississippi Fan: Leg 96 Program and Principal Results. In: Bouma A.H., Normark W.R., Barnes N.E. (eds) Submarine Fans and Related Turbidite Systems. Frontiers in Sedimentary Geology. Springer, New York, NY

Bouma, A.H. and Bryant, W.R., 1994. Physiographic features on the northern Gulf of Mexico continental slope. Geo-Marine Letters 14: 252-263.

BSEE, 2008. Notice To Lessees (NTL) No. 2008-G05, "Shallow Hazards Program." U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement. New Orleans, Louisiana.

BSEE, 2009. Notice To Lessees (NTL) No. 2009-G40, "Deepwater Benthic Communities." U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement. New Orleans, Louisiana. Bryant, W.R., Bryant, J.R., Feeley, M.H., and Simmons, G.R., 1991. Physiography and bathymetric characteristics of the continental slope, northwest Gulf of Mexico. Geo-Marine Letters, v. 10, pp. 182199.

Cairns, Stephen D., 2007. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bulletin of Marine Science, v. 81, n. 03, pp. 311-322.

Coleman, J.M., Roberts, H.H., and Bryant W.R., 1991. Late Quaternary Sedimentation, in Salvador, A., The Gulf of Mexico Basin: Boulder, Colorado, Geological Society of America, The Geology of North America, v. J.

MacDonald, I.R., N.L. Guinasso, Jr., J.F. Reilly, J.M. Brooks, W.R. Callender, and S.G. Gabrielle. 1990a. Gulf of Mexico hydrocarbon seep communities: VI. Patterns in community structure and habitat. GeoMar. Let., v. 10 :4, pp. 244-252.

Del Grosso, V.A. 1972. Speed of sound in sea water samples, pp. 961-974.
Ray, R. D. (1999). A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2.
Roberts, H.H. 2001. Improved geohazards and benthic habitat evaluations: Digital acoustic data with ground truth calibrations: OCS Study Minerals Management Service 2001-2005, U.S. Department of the Interior, Minerals Management Services, Gulf of Mexico outer continental shelf (OCS) Regional, New Orleans, Louisiana, 166 p. plus appendices. Chen, C., F.S. Millero. 1977. Speed of sound in seawater at high pressures, p. 62, and pp. 1129-1135.

Wilson, W. D. (1959). Speed of sound in distilled water as a function of temperature, pressure, pp. 10671072.

2.0 ARCHAEOLOGICAL ASSESSMENT

2.1 INTRODUCTION

Shell Exploration and Production Company (Shell) contracted Oceaneering International, Inc. (OII) to perform an Archaeological and Geohazard Assessment for a proposed 8.625-inch Oil Flowline route and proposed 8.5-inch Dynamic Umbilical Route between Block 393, 437 and 525, Mississippi Canyon Area (MC), Gulf of Mexico. Regional and Vicinity maps of the study area are shown as Figures 1 and 2, respectively. This assessment is based on Autonomous Underwater Vehicle (AUV) surveys completed by OII in 2016 and 2017 (OII Job No. 180110) and Fugro GeoServices, Inc. (FGSI) in 2011 (FGSI Job No. 2408-5022). The purpose of this assessment was to identify potential submerged archaeological resources that could be impacted by proposed construction activities. The survey fieldwork and this report comply with the U.S. Department of Interior's Bureau of Ocean Energy Management (BOEM) and Bureau of Safety and Environmental Enforcement (BSEE) Notice-To-Lessees (NTL) No. 2005-G07 for Archaeological Resource Survey and Reports. The survey was carried out in blocks designated by the BOEM/BSEE as having a high probability for historic shipwrecks.

Proposed 8.625-inch Oil Flowline Route

The proposed 8.625 -inch Oil Flowline route originates at a proposed PLEM 3 Hub in MC525 (X: $1,334,196.00$ ', Y: $10,327,700.00^{\prime}$) in a water depth of approximately 7,522 feet MSL. The proposed route traverses north-northeast to Block 397, DeSoto Canyon Area (DC), then turns north, and northwest terminating at the Rydberg Production PLET 1 Hub in MC393 (X: 1,345,795.66' Y: 10,385,357.82') in a water depth of approximately 7,405 feet MSL. The total route length is $64,046.10$ feet (12.13 statute miles). The proposed 8.625 -inch Oil Flowline route is presented on the enclosed Sheets 1 and 2.

Proposed 8.5-inch Dynamic Umbilical Route

The proposed 8.5-inch Dynamic Umbilical route originates at the Appomattox "A" FPS in MC437 (X: $1,340,839.23$ ', Y: $10,370,308.76$ ') in a water depth of approximately 7,420 feet MSL. The proposed route traverses southeast to DC397, then turns south-southwest, terminating at a UTA in MC525 (X: $1,333,990.49$ ' $Y: 10,327,766.66$) in a water depth of approximately 7,515 feet MSL. The total route length is $53,957.17$ feet or 10.22 statute miles. The proposed 8.5 -inch Dynamic Umbilical route is presented on the enclosed Sheets 3 and 4.

Oll field operations were conducted aboard the M/V Ocean Project between December 24, and 28, 2016 using the O-Surveyor III AUV and box cores collected between January 3 and 6, 2017. During the survey, the sea conditions were between 1 to 8 feet and winds varied in direction with speeds ranging from calm to 27 knots. Although surface conditions do not affect geophysical data collection or quality, it can affect AUV launch and retrieval operations.

FGSI field operations were conducted aboard the R/V Fugro Enterprise between March 31, and April 19, 2011. Sea conditions were between calm to 6 feet during the FGSI AUV survey. The FGSI 2011 survey provides supplemental coverage for a portion of the Flowline route that passes through MC393, DC353, and DC397. An assessment of the FGSI data is provided by Shell in a report by FGSI marine archaeologists Mark Melancon on August 4, 2011. Those survey results are included in the following assessment.

Survey tracklines were designed for overlapping coverage with the side scan sonar and multibeam systems, and representative coverage for the subbottom profiler system. The majority of the survey grid for the proposed route consists of a centerline, a 50-meter offset line, and two 200-meter wing lines. Several additional survey lines were run for route development and to provided additional survey
coverage. The centerline for the proposed Umbilical route is Line 203. The centerline for the proposed flowline route is Line 202 from MC525 to DC397. Coverage for the proposed Flowline from DC397 to MC393 is provided from multiple survey lines including the FGSI 2011 survey. The FGSI 2011 survey lines providing coverage for the route corridor include 33 main tracklines (518-550) run east-west at 200meter lines spacing and two tie-lines (605 and 606) run north-south at 900-meter lines spacing. Shot points (event marks) are annotated every 125 meters (~ 410 feet) on all tracklines.

The Sonar Contact Reports and Tables listing all unidentified sonar contacts are in Appendix A. The specifications and instrument settings for the survey equipment used for data acquisition, survey configuration, and a listing of field personnel involved in this project are in Appendix B. Appendix C contains the Oll survey logs. Appendix D contains the FGSI Oll survey logs. Appendix E contains the water column sound velocity profiles and tide curves used to correct the bathymetric data.

The O-Surveyor III AUV was deployed from the M/V Ocean Project using inertial navigation as the primary positioning system. Geophysical instruments integrated into the O-Surveyor III AUV and used for the survey include a Kongsberg EM 2040 Multibeam Echosounder (200 kHz), EdgeTech 2200M Full Spectrum Chirp Dual Frequency Side Scan Sonar (120 kHz), and EdgeTech DW106 Chirp Subbottom Profiler ($1.5-4.5 \mathrm{kHz}$). All the raw digital data were logged utilizing Oll's proprietary software.

Surface positioning of the M/V Ocean Project was accomplished using C-NAV ${ }^{\circledR}$ L-Band globally corrected differential GPS (DGPS). C-NAV ${ }^{\circledR}$ provided positions in real time with sub-meter accuracy. Underwater positioning of the O-Surveyor III AUV was accomplished with acoustically aided inertial positioning. AUV positions were calculated using a Kalman filter algorithm, which uses input data from a Kongsberg HiPAP (High Precision Acoustic Positioning) USBL (Ultra-Short Base Line) System, inertial navigation, and Doppler Velocity Log (DVL). The post-processed positions for the AUV are accurate to within ± 4 meters.

The FGSI AUV was deployed from the R/V Fugro Enterprise using inertial navigation coupled with Doppler velocity logger. Surface positioning of the R/V Fugro Enterprise was accomplished using FUGRO STARFIX ${ }^{\circledR}$ DGPS, which provides accuracy of ± 3 meters. The AUV was tracked using a USBL system and the positions were updated using an acoustic modem. Geophysical instruments integrated into the FGSI AUV and used for the survey include Multibeam Echosounder, Side Scan Sonar, and a Subbottom Profiler.

The geodetic datum used to generate the study maps is the North American Datum 1927 (NAD27) on the Clarke 1866 ellipsoid and projected using the Universal Transverse Mercator (UTM), Zone 16 North (16N). NADCON version 2.1 was utilized to convert the GPS positions from the WGS84 datum to the local NAD27 datum. All coordinates given are presented in this projection on the study maps and referenced within this report. All grid units, scales and measurements are in U.S. Survey Feet.

2.1 HISTORIC BACKGROUND

The northern coast of the Gulf of Mexico (GOM) has a long history of maritime activity. The Spanish were active in Louisiana waters by the early sixteenth century. In 1519, the Governor of Jamaica, Francisco Garay, sent Alonzo Alvarez de Piñeda to explore the northern coast. The governor hoped he might discover the Strait of Anián, a mythical waterway that supposedly could be followed to the Orient. During his voyage, Piñeda charted the coastline from the tip of La Florida to the general area near the present-day city of Tampico, Mexico (Mahan, 1967).

Alvar Nuñez Cabeza de Vaca's account of the ill-fated expedition led by Pánfilo de Narváez is also one of the earliest recorded accounts of Spanish explorers in the region. After exploring the interior of Florida,
the expedition tried to sail across the GOM in four sailing barges, which were constructed from local resources. All four vessels were lost, most likely along the coast of Texas. Although Narváez's party originally numbered 400, only Cabeza de Vaca and three other survivors reached Mexico (Weddle, 1985; Pearson et al., 1989).

Spanish treasure fleets regularly sailed through Gulf waters transporting raw materials and treasure from the New World back to Spain. Three vessels from the 1554 Nueva España Flota, under the command of Captain-General Bartolomé Carreño, the Santa María de Yciar, the Espiritu Santo; and the San Estebán wrecked in a violent storm off Padre Island, Texas. The Texas Antiquities Committee subsequently located and excavated the San Estebán between 1972 and 1975 (Arnold and Weddle, 1978; Keith, 1988).

The French turned their attention to the GOM by the end of the seventeenth century. In 1685, the French explorer, Rene Robert Sieur de La Salle, received a royal commission to establish a colony near the mouth of the Mississippi River. La Salle headed to the Gulf with four ships loaded with colonists and supplies. The expedition ended in failure after the Spanish captured one of the vessels and two others were lost along the coast of Texas. The supply ship L'Aimable, laden with 4,500 pounds of lead, 60 kegs of wine, muskets, tools and everything else the Frenchmen needed to establish a new colony, ran aground and sank off Pass Caballo while entering Matagorda Bay in February 1685. The following year, the barque La Belle wrecked in Matagorda Bay during a storm (Arnold, 1997; Bruseth and Turner, 2005).

Figure 8. Gulf of Mexico shipping routes, 1763-1821 (Modified from Pearson et al., 2003)

In 1699, the French sent Pierre le Moyne, Sieur de Iberville to colonize the lower Mississippi Valley. Iberville established a French settlement at Biloxi Bay in 1699. After 1701, the settlement was moved to Mobile Bay. In 1718, Iberville's brother, Jean Baptiste le Moyne, Sieur de Bienville established a colony at New Orleans. Four years later, the seat of French government was transferred from Biloxi to New Orleans (Pearson et al., 1989).

In 1762, the French ceded control of the Louisiana Territory to Spain. As Spain's interests in the Gulf increased, Spanish vessels became more numerous along the coast and archaeological examples from that period have been periodically discovered. Researchers documented the remains of El Nuevo Constante, which wrecked off the Louisiana coast in 1766. El Nuevo Constante was a Spanish merchant vessel referred to as a frigate in contemporary documents. A second vessel of the fleet, Corazón de Jesús y Santa Bárbara, was also lost during the same storm, but remains undiscovered (Pearson et al., 1989; Pearson and Hoffman, 1995).

In 1800, Napoleon Bonaparte secretly bargained control of Louisiana from Spain. Thomas Jefferson, fearing Napoleon's control of the Mississippi outlet could pose a serious threat to American shipping in the Gulf, dispatched Robert Livingston to Paris. Livingston successfully negotiated the sale of the Louisiana Territory to the United States in April 1803. The boundaries of the territory were left vague giving the United States a strong claim to Texas and "West Florida." From 1810 to 1813, the American government laid claim to the Florida parishes of Louisiana, the coast of Mississippi, Alabama, and West Florida (Tindall, 1988).

Figure 9. Gulf of Mexico shipping routes, 1821-1862 (Modified from Pearson et al., 2003)

Prior to 1812, most waterborne commerce in the central part of the Gulf was centered on New Orleans. On January 10, 1812, the first steamboat arrived at New Orleans from Pittsburgh. Soon after the introduction of steam vessels, maritime commerce in the Gulf of Mexico increased dramatically. By the dawn of the Civil War, several major steamship lines were servicing New Orleans (Pearson et al., 1989). The growth in maritime activity led to a proportionate increase in ship losses and several examples from that period have been documented. Salvors located a mid-nineteenth century steam vessel off High Island, Texas. The wreck site was the side-wheeler, New York, which operated between New Orleans and Galveston, and was lost during a hurricane on September 7, 1846 (Irion, 1998). Seventeen of her passengers and crew drowned, including five young children, while 36 people survived by holding onto debris until rescued two days later by the S.S. Galveston (Bowers, 2008). Today, the ship's bell and other artifacts recovered from the steamship New York are on public display at the Bayou Teche Museum located in downtown New Iberia, Louisiana.

Between 1997 and 1999, MMS Archaeologists identified the nineteenth century steamship Josephine, which sank off the coast of Mississippi in 1881 (Irion and Ball, 2001). J. Barto Arnold III (1997) and others also discovered several nineteenth century steamships in Matagorda Bay, Texas while looking for La Salle's ships.

During the Civil War, the Gulf of Mexico was also a theater of conflict for Union blockaders, daring blockade-runners, and Confederate "commerce raiders" or privateers. Early in the war, U.S. President Abraham Lincoln proclaimed a blockade of Southern ports. Confederate President Jefferson Davis responded to this action by issuing letters of marque to Confederate privateers allowing them to attack Union shipping. In June 1861, the converted mail steamer CSS Sumter, under the command of Raphael Semmes, breached the blockade at New Orleans and by January 1862, had captured or destroyed eighteen Union merchant ships on her cruise to Gibraltar. Semmes was promoted to captain and placed in command of CSS Alabama. Semmes and his crew sank the steamer USS Hatteras off the coast of Galveston, Texas in the summer of 1862. CSS Alabama sank a record 76 vessels before being sunk by the USS Kearsarge off the coast of Cherbourg, France on June 19, 1864 (Semmes, 1869; Watts, 1988).

After the Civil War, the presence of stern-wheelers began to increase in frequency. Throughout the last half of the nineteenth century a variety of sailing crafts such as schooners, clippers, and "New Orleans" luggers were in use along the northern Gulf coast. The need for steam propulsion decreased with the beginning of oil production in Louisiana and Texas at the onset of the twentieth century. By c. 1915, steam engines and paddle wheelers began to fade away to diesel engines and screw propellers (Pearson et al., 1989).

By the start of World War II, steel hull ships powered by petroleum driven screws were plying the Gulf. Several German U-boats also operated in the Gulf of Mexico during World War II. U-507 under the command of Korvettenkapitän Harro Schacht claimed the first victim in Gulf waters with the sinking of the freighter Norlindo on May 4, 1942 off Key West, Florida (Wiggins, 1995). Other U-boats soon joined the onslaught in the Gulf, including U-166, commanded by Kapitänleutnant Hans-Günther Kühlmann. U-166 took up position off the mouth of the Mississippi River to lay mines and attack merchant shipping. Kühlmann sank the passenger freighter SS Robert E. Lee approximately 45 miles southeast of the Mississippi River on July 30, 1942. PC-566, the naval vessel escorting the freighter, then in turn sank U166. In all, 17 U-boats sank 56 vessels and damaged 14 others over the course of approximately one year with only one U-boat lost in the Gulf of Mexico (Church and Warren, 2002). Although many of these war casualties have been found, many others have yet to be discovered.

2.2 HISTORIC POTENTIAL

Typically, there is a direct correlation between shipwreck locations and traditional shipping routes. Sailing vessels used routes that passed near the project area since roughly the 1760s and steamships have been using routes north of the area after the early 1820s (Figure 8 and Figure 9, Pearson et al., 2003).

BOEM records list seven shipwrecks within 10 nautical miles of the proposed routes (Table 8). Three of shipwrecks are known to be historic (50 years or older). The Onion Bottle Wreck (or Desoto Canyon Wreck) is a late seventeenth to early eighteenth-century shipwreck site located approximately three nautical miles east of the proposed routes. Further to the east, the steam sidewheeler, Vanderbilt (or Black Hawk; Black Joker) was lost while enroute from New Orleans to Havana, Cuba in March 1862. Vanderbilt's located reliability is poor, and the vessel may be several files away from its reported location. Approximately seven nautical miles south of the proposed routes, is a late nineteenth century sailing vessel referred to as the $7,000-$ Foot Wreck. Also, another unidentified wreck is listed over 9 nautical miles northwest of the proposed routes. The date of the vessel is unknown and therefore potentially historic.

In additional, there are three modern shipwrecks listed: Callisto, Providence, and USS Peterson. Callisto was a small sailing vessel lost in 1994. Providence was a fishing vessel lost in 1982. The Spruanceclass destroyer USS Peterson (DD-969) was a decommissioned naval vessel intentionally sunk by the US Navy during fleet training exercises in February 2004.

Table 8. Shipwrecks reported within 10 nautical miles of the survey area

Name	Date Built	Date of Loss	Location Reliability*
Onion Bottle Wreck	c. late $17^{\text {th }}$ to early $18^{\text {th }}$ Century	Unknown	1
USS Peterson	1975	2004	1
Vanderbilt	1837	1862	4
$7,000-$ Foot Wreck	c. late $19^{\text {th }}$ Century	Unknown	1
Callisto (Tentative ID)	Unknown	1994	1
Providence	Unknown	1982	4
Unidentified Shipwreck	Unknown	Unknown	1

*Location reliability based on scale 1 to 4, 1 being reliable, and 4 being unreliable.
Deepwater areas such as the Mississippi Canyon and Desoto Canyon Areas were thought to have a low potential for undocumented shipwrecks, although the silty clay sediment found in the area should allow for good preservation of submerged cultural resources. The recent discoveries, however, of undocumented well-preserved historical wrecks in the Green Canyon, Mississippi Canyon, DeSoto Canyon, Ewing Bank, and Viosca Knoll Areas suggest the shipwreck potential for deep-water areas of the GOM are higher than originally estimated.

2.3 ASSESSMENT OF DATA

2.3.1 BATHYMETRY RECORD

Multibeam bathymetric data were used to determine water depths across the study area. Water depths are referenced to Mean Sea Level (MSL) and contoured at 5 -foot intervals on the Color Shaded

Bathymetry Panels of the enclosed study maps. Water depths within the survey corridor range from 7,385 feet MSL in MC393 to 7,575 feet MSL in DC397 and DC441. Water depth near the Rydberg Production PLET 1 Hub in MC393 is 7,405 feet MSL. Water depth near the Appomattox FPS in MC437 is 7,420 feet MSL. Water depths near the southern end point of the routes range from 7,515 to 7,525 feet MSL in MC525.

2.3.2 SIDE SCAN SONAR RECORD

The side scan sonar imagery showed low to moderate acoustic reflectivity through most of the survey area, suggesting predominantly fine-textured sediments with isolated areas of higher reflectivity likely representing coarser sediments. Eleven unidentified sonar contacts from the Oll 2016 survey are recorded within the survey corridor (Nos. 1-4, 6-9 and 14-16). One unidentified sonar contact from the FGSI 2011 survey is recorded within the survey corridor (No. 19). The majority of sonar contacts are relatively small measuring less than 25 feet in length or width, except Sonar Contact No. 4 (Figure 10). Sonar Contact No. 4, measuring 42.5×23.3 with no measurable height, is located near the eastern edge of the survey corridor in MC525 and approximately 685 feet from the proposed Flowline route. The original archeological assessment that accompanied the 2016 survey determined Sonar Contact No. 4 had archaeological potential and a 100-foot avoidance was recommended.

Two unidentified sonar contacts (Nos 8 and 14) are located within 100 feet of the proposed routes. Sonar Contact No. 8, measuring 13.4×5.1 with no measurable height, is located between the proposed Umbilical and Flowline routes in MC481. It is 54 feet from the proposed Flowline route and over 130 feet from the proposed Umbilical route. Contact No. 14, measuring 16.6×12.4 with no measurable height, is located 80 feet from the proposed Flowline route in DC397.

Sonar Contact No. 19 from the FGSI 2011 survey, measuring 15.7×7.8 feet with no measurable height, is associated with an anchor drag scar and is likely a depression with a low sedent mound from a former anchor location. The remaining sonar contact are interpreted as modern debris or geological in origin.

One of the sonar contacts is potentially archaeologically significant and is recommended for investigation or avoidance. An Archaeological Avoidances table with avoidance criteria is listed below. An image, location, description and details of each of the unidentified sonar contacts are shown in the Side Scan Sonar Contact Reports located in Appendix A. The unidentified sonar contacts are listed in the Unidentified Sonar Contact Tables in Appendix A and depicted on the Archaeological and Geohazard Maps.

Figure 10. Side scan sonar data showing Sonar Contact No. 4, which is considered a potential archaeological resource.

2.4 CONCLUSIONS AND RECOMMENDATIONS

The Archaeological and Geohazard Route Survey revealed 12 total unidentified sonar contacts within the survey corridor. Most of the unidentified sonar contacts are interpreted as modern debris or possibly natural seafloor features. One sonar contact (No. 4) is recommended for avoidance based on archaeological potential. A recommended avoidance of 100 feet is from the original Archeological Assessment Report authored June 2017 and listed in Table 9. Archaeological Avoidances below.

There is a possibility that shipwreck remains could be undetected or unidentified within the survey area. If any material that could possibly be related to a shipwreck is encountered during construction or other lease development or construction activities, the BOEM/BSEE archaeologists must be contacted within 48 hours for an assessment of any antiquities. Material indicating the presence of a historic shipwreck may include, but is not limited to wooden ship beams, hull planking, rigging, anchors, ceramics, or other possible cultural material. In this event, no activities should be conducted near the area of discovery until
advised by the appropriate BOEM/BSEE personnel (See NTL No. 2005-G07, Archaeological Resource Surveys and Reports, Sections "Authority" through "Required Notification of the Discovery of Shipwrecks on the Seafloor").

Table 9. Archaeological Avoidances

$\begin{aligned} & \text { SSS } \\ & \text { Ref. No. } \end{aligned}$	Area	Block	Dimensions (ft)			Shape	NAD 27		Avoidance (ft)
			Length	Width	Height		Latitude	Longitude	
4	MC	525	42.5	23.3	0.0	Irregular	28.491660	-87.928859	100

2.5 REFERENCES

Arnold, J. Barto, III. 1997. The mystery of Matagorda Bay: An Archaeological Discovery. The Philosophical Society of Texas.

Arnold, J. Barto, III. and Robert Weddle. 1978. The Nautical Archaeology of Padre Island: The Spanish Shipwrecks of 1554. Academic Press. New York.

BOEM. 2005. Notice to Lessees (NTL) No. 2005-G07, "Archaeological Resource Survey and Reports." U.S. Department of the Interior, Bureau of Ocean Energy Management. New Orleans, Louisiana.

Bowers, David Q. 2008. The Treasure Ship S.S. New York - Her Story 1837-1846. New York: Stacks, LLC.

Bruseth, James E. and Toni S. Turner. 2005. From a Watery Grave: The Discovery and Excavation of La Salle's Shipwreck, La Belle. Texas A\&M University Press. College Station, Texas.

Church, Robert A. and Daniel J. Warren. 2002. Unraveling the Mystery: The Discovery of the U-166. Proceedings of the Information Transfer Meeting (ITM). Minerals Management Services. New Orleans, Louisiana.

Irion, Jack B., and Ball, David A. 2001. "The New York and the Josephine: Two Steamships of the Charles Morgan Line." The International Journal of Nautical Archaeology 30.1:48-56.

Irion, Jack. 1998. Paper presented at the Annual Gulf of Mexico Information Transfer Meeting. U.S. Department of the Interior, Minerals Management Service. New Orleans, Louisiana.

Keith, D. H., 1988. "Shipwrecks of the Explorers" in George F. Bass. Ships and Shipwrecks of the Americas: A History Based on Underwater Archaeology. Thames and Hudson Ltd., London.

Mahan, William. 1967. Padre Island: Treasure Kingdom of the World. Texian Press. Waco, Texas.
Pearson, Charles E. and Hoffman, Paul E. 1995. The last voyage of El Nuevo Constante: the wreck and recovery of an eighteenth-century Spanish ship off the Louisiana coast. Baton Rouge: Louisiana State University Press.

Pearson, Charles E., George. Castille, Donald. Davis, Thomas. E. Redard, Allen. R. Saltus. 1989. A History of Waterborne Commerce and Transportation within the U.S. Army Corps of Engineers New Orleans District and an Inventory of Known Underwater Cultural Resources. U.S. Army Corps of Engineers New Orleans District.
(R)

Page 33 of 116

Pearson, Charles E., Stephen R. James, Jr., Michael C. Krivor, S. Dean El Darragi, Lori Cunningham. 2003. Refining and Revising the Gulf of Mexico Outer Continental Shelf Region High Probability Model for Historic Shipwrecks. Volume II: Technical Narrative. OCS Study MMS 2003-061. U. S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office. New Orleans, Louisiana.

Semmes, Raphael. 1869. Memoirs of service afloat, during the war between the states. Baltimore: Kelly, Piet \& Company.
Tindall, George Brown. 1988. America, a Narrative History. Vol. I. W. W. Norton and Company. New York.

Watts, Gordon P., Jr. 1988. The Civil War at Sea: Dawn of an Age of Iron and Engineering. in George F. Bass. Ships and Shipwrecks of the Americas: A History Based on Underwater Archaeology. Thames and Hudson Ltd., London.

Weddle, Robert S. 1985. The Spanish Sea: The Gulf of Mexico in North American Discovery, 1500-1685. Texas A\&M University Press. College Station, Texas.

Wiggins, Melanie. 1995. Torpedoes in the Gulf, Galveston and the U-boats, 1942-1943. Texas A\&M University Press, College Station, Texas.

APPENDIX A: SONAR CONTACT TABLES \& REPORTS

Side Scan Sonar Contact Report

Target Image	Target Info	User Entered Info
	4 - Sonar Time at Target: 12/26/2016 04:47:55.020 - Click Position (Lat/Lon Coordinates) 28.4916604958-87.9288585153 (WGS84) - 28.4914156097-87.9288744739 (NAD27) - Click Position (Projected Coordinates) (X) 1342137.88 (Y) 10340591.91 - Map Proj: UTM27-16F - Ping Number: 126064 - Range to Target: 159.02 meters - Fish Height: 41.80 meters - Heading: 209.020 degrees - Event Number: 43 - Line Name: 102e.1.a.0.et.low	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 42.5 US Feet - Target Shadow: 0.0 US Feet - Target Width: 23.3 US Feet - Mag Anomaly: NA - Avoidance Area: 100-foot radius - Classification 1: Debris - Area: Mississippi Canyon - Block: 525 - Description: Irregular shape Target has potential to be an archaeological resource
	6 - Sonar Time at Target: 12/25/2016 20:03:37.910 - Click Position (Lat/Lon Coordinates) 28.4989525271-87.9245628103 (WGS84) 28.4987078564 87.9245788240 (NAD27) - Click Position (Projected Coordinates) (X) 1343537.76 (Y) 10343231.80 - Map Proj: UTM27-16F - Ping Number: 37672 - Range to Target: 195.10 meters - Fish Height: 41.80 meters - Heading: 31.010 degrees - Event Number: 50 - Line Name: 103.1.a.0.et.low	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 14.3 US Feet - Target Shadow: 0.0 US Feet - Target Width: 5.2 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Mississippi Canyon - Block: 525 - Description: Rectangular shape
	7 - Sonar Time at Target: 12/27/2016 16:50:24.840 - Click Position (Lat/Lon Coordinates) 28.4989556715-87.9238340317 (WGS84) 28.498710998987.9238500729 (NAD27) - Click Position (Projected Coordinates) (X) 1343771.78 (Y) 10343231.14 - Map Proj: UTM27-16F - Ping Number: 126606 - Range to Target: 76.72 v - Fish Height: 41.38 meters - Heading: 28.880 degrees - Event Number: 50 - Line Name: 101.1.a.0.et.low	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 7.5 US Feet - Target Shadow: 0.0 US Feet - Target Width: 5.4 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Mississippi Canyon - Block: 525 - Description: Square shape

Target Image	Target Info	User Entered Info
	8 - Sonar Time at Target: 12/25/2016 20:11:12.520 - Click Position (Lat/Lon Coordinates) 28.5061411675-87.9225483409 (WGS84) - 28.5058967141 -87.9225643399 (NAD27) - Click Position (Projected Coordinates) (X) 1344204.72 (Y) 10345839.79 - Map Proj: UTM27-16F - Ping Number: 38938 - Range to Target: 15.53 meters - Fish Height: 43.08 meters - Heading: 28.250 degrees - Event Number: 56 - Line Name: 103.1.a.0.et.high	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 13.4 US Feet - Target Shadow: 0.0 US Feet - Target Width: 5.1 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Mississippi Canyon - Block: 481 - Description: Irregular shape
	9 - Sonar Time at Target: 12/27/2016 16:59:39.020 - Click Position (Lat/Lon Coordinates) - 28.5067640242-87.9193186511 (WGS84) - 28.5065195810-87.9193347645 (NAD27) - Click Position (Projected Coordinates) (X) 1345243.44 (Y) 10346058.23 - Map Proj: UTM27-16F - Ping Number: 128176 - Range to Target: 54.96 meters - Fish Height: 43.23 meters - Heading: 28.920 degrees - Event Number: 58 - Line Name: 101.1.a.0.et.high	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 7.1 US Feet - Target Shadow: 0.0 US Feet - Target Width: 5.2 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Mississippi Canyon - Block: 481 - Description: Irregular shape
	14 - Sonar Time at Target: 12/25/2016 21:08:11.060 - Click Position (Lat/Lon Coordinates) 28.5540436277-87.8957464991 (WGS84) 28.5538005782 87.8957629347 (NAD27) - Click Position (Projected Coordinates) (X) 1352940.38 (Y) 10363186.38 - Map Proj: UTM27-16F - Ping Number: 48468 - Range to Target: 162.80 meters - Fish Height: 41.59 meters - Heading: 13.540 degrees - Event Number: 104 - Line Name: 103.1.b.0.et.low	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 16.6 US Feet - Target Shadow: 0.0 US Feet - Target Width: 12.4 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Desoto Canyon - Block: 397 - Description: Irregular shape

Target Image	Target Info	User Entered Info
	15 - Sonar Time at Target: 12/26/2016 08:25:12.190 - Click Position (Lat/Lon Coordinates) $28.5680646340-87.9068264965$ (WGS84) 28.5678220509 - 87.9068423407 (NAD27) - Click Position (Projected Coordinates) (X) 1349423.09 (Y) 10368309.58 - Map Proj: UTM27-16F - Ping Number: 162615 - Range to Target: 127.05 meters - Fish Height: 41.17 meters - Heading: 279.430 degrees - Event Number: 135 - Line Name: 302.1.b.0.et.low	Dimensions and attributes - Target Height: $=1.5$ US Feet - Target Length: 7.9 US Feet - Target Shadow: 5.0 US Feet - Target Width: 6.0 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Desoto Canyon - Block: 397 - Description: Rectangular shape
	16 - Sonar Time at Target: 12/26/2016 00:43:38.990 - Click Position (Lat/Lon Coordinates) 28.6048503095 87.9096564684 (WGS84) 28.6046088726-87.9096717592 (NAD27) - Click Position (Projected Coordinates) (X) 1348616.71 (Y) 10381687.63 - Map Proj: UTM27-16F - Ping Number: 84812 - Range to Target: 208.95 meters - Fish Height: 42.22 meters - Heading: 136.446 degrees - Event Number: 155 Line Name: 102a.1.a.0.et.low	Dimensions and attributes - Target Height: $=0.0$ US Feet - Target Length: 9.8 US Feet - Target Shadow: 0.0 US Feet - Target Width: 7.9 US Feet - Mag Anomaly: NA - Avoidance Area: 30-foot radius - Classification 1: Debris - Area: Desoto Canyon - Block: 353 - Description: Irregular shape

Target Image	Target Info	User Entered Info
	19 - Sonar Time at Target: 04/08/2011 - Click Position (Lat/Lon Coordinates) 28.574564000-87.900291000 (WGS84) $28.574322000-87.900307000$ (NAD27) - Click Position (Projected Coordinates) (X) 1351538.04 (Y) 10370656.20 - Map Proj: UTM27-16F - Ping Number: Unknown - Range to Target: 103.75 meters - Fish Height: ~42.00 meters - Heading: ~ 90.000 degrees - Event Number: 142 - Line Name: ssl-528-20110408-091457-LF	Dimensions and attributes - Target Height: = 0.0 US Feet - Target Length: 15.7 US Feet - Target Shadow: 0.0 US Feet - Target Width: 7.8 US Feet - Mag Anomaly: NA - Avoidance Area: none - Classification 1: Debris - Area: Desoto Canyon - Block: 397 - Description: Rectangular shape

Oll SONAR CONTACT TABLE										
Ref. No.	Block	Dimensions LxWxH	Shape	ZONE: 16 NORTH, $090^{\circ} \mathrm{W}$ TO $084^{\circ} \mathrm{W}, \mathrm{CM}: 087^{\circ} \mathrm{W}$						Avoid. Dist. (ft)
				NAD 27		NAD 27		NAD 83		
				X (ft)	Y (ft)	Lat. (${ }^{\circ}$)	Long. $\left(^{\circ}\right.$)	Lat. (${ }^{(}$)	Long. $\left(^{\circ}\right.$)	
1	MC569	4.1'x3.2'x1.4'	Rectangular	1334125	10326924	28.453642	-87.953486	28.453888	-87.953470	30
2	MC569	$23.0{ }^{\prime} \times 8.2{ }^{\prime} \times 0.0{ }^{\prime}$	Irregular	1335501	10327458	28.455142	-87.949216	28.455388	-87.949200	30
3	MC525	4.9 'x3.0'x0.0'	Square	1337533	10332119	28.468008	-87.943007	28.468254	-87.942991	30
4	MC525	42.5'x23.3'x0.0'	Irregular	1342138	10340592	28.491416	-87.928874	28.491660	-87.928859	100
6	MC525	14.3 'x5.2'x0.0'	Rectangular	1343538	10343232	28.498708	-87.924579	28.498953	-87.924563	30
7	MC525	$7.51 \times 5.4{ }^{\prime} \times 0.0{ }^{\prime}$	Square	1343772	10343231	28.498711	-87.923850	28.498956	-87.923834	30
8	MC481	13.4'x5.1'x0.0'	Irregular	1344205	10345840	28.505897	-87.922564	28.506141	-87.922548	30
9	MC481	$7.1{ }^{\prime} \times 5.2{ }^{\prime} \times 0.0{ }^{\prime}$	Irregular	1345243	10346058	28.506520	-87.919335	28.506764	-87.919319	30
14	DC397	$16.6^{\prime} \times 12.4{ }^{\prime} \times 0.0$ '	Irregular	1352940	10363186	28.553801	-87.895763	28.554044	-87.895747	30
15	DC397	7.9'x6.0'x1.5'	Rectangular	1349423	10368310	28.567822	-87.906842	28.568065	-87.906826	30
16	DC353	$9.8{ }^{\prime} \times 7.9{ }^{\prime} \times 0.0{ }^{\prime}$	Irregular	1348617	10381688	28.604609	-87.909672	28.604850	-87.909656	30

FGSI SONAR CONTACT TABLE										
Ref. No.	Block	Dimensions LxWxH	Shape	ZONE: 16 NORTH, $090{ }^{\circ} \mathrm{W}$ TO $084^{\circ} \mathrm{W}, \mathrm{CM}: 087^{\circ} \mathrm{W}$						Avoid. Dist. (ft)
				X (ft)	Y (ft)	Lat. (${ }^{\circ}$)	Long. $\left(^{\circ}\right.$)	Lat. (${ }^{(}$)	Long. $\left(^{\circ}\right.$)	
19	DC397	$15.7^{\prime} \times 7.8^{\prime} \times 0.0{ }^{\prime}$	Irregular	1351538	10370656	28.574322	-87.900307	28.574564	-87.900291	none

APPENDIX B: SURVEY CONFIGURATION DIAGRAM, EQUIPMENT DESCRIPTIONS, INSTRUMENT SETTINGS, \& CREW LIST

O-Surveyor III AUTONOMOUS UNDERWATER VEHICLE (AUV)

The O-Surveyor III Autonomous Underwater Vehicle (AUV) was designed to collect deepwater, highresolution geophysical data for site and route surveys in water depths of up to 4,500 meters. Kongsberg produces the base platform and Oceaneering upgraded the AUV from more than 12 years of AUV operating experience. The system is designed for portability and survey work from vessels of opportunity (Figure 1).

Primary survey sensors found in the system payload include a Kongsberg EM 2040 Swath Multibeam Sonar (200 kHz), an EdgeTech 2200-M Side Scan Sonar (120 kHz) and a custom EdgeTech DW106 Subbottom Profiler (Chirp 1 to 4.5 kHz) with four projectors and six receive hydrophones. An acoustically aided inertial navigation system coupled with an acoustic Doppler velocity speed log and USBL (Ultra Short Base Line) positioning from the survey vessel is used for primary positioning of the AUV. Ancillary sensors include survey precision depth sensors, altimeter, and Seabird CTD (Conductivity, Temperature and Depth) probes. A Kongsberg HiPAP 350P System is typically implemented for tracking the AUV acoustically. A Linkquest Acoustic Modem provides data communications and data through the Acoustic Command Link (ACL) and the Acoustic Data Link (ADL). The shipboard operator communicates with and controls the AUV through the ACL and the ADL provides bandwidth for obtaining subsets of the geophysical data. A Lithium Ion Polymer Battery powers the AUV, allowing operational times of up to 35 to 40 hours. Emergency ascent systems include drop weights and an air bag. An emergency acoustic transponder, GPS system, wireless Ethernet, flashing strobe light and Iridium phone system output visual and remote sensing aids for locating the AUV in the event communications are

Fig 1. O-Surveyor III recovery lost with the survey ship.

Three computers control the system functions onboard O-Surveyor III. These computing centers are referred to as the HUGIN (High-Precision Untethered Geosurvey and Inspection), payload and navigation processors. These processors use artificial intelligence algorithms based on feedback returned from more than 75 sensors to monitor system health and make real-time decisions regarding performance, maneuverability and data collection. The computers, data storage and sensor electronics are housed in two titanium spheres designated as the payload and control.

Three topside workstations are dedicated to continuous communications with the vehicle while on missions. The HUGIN Operator Station monitors all AUV sensors related to the vehicle health and maneuverability. The monitoring software warns operators when values are outside of optimal range.

The Payload Operator Station computer provides graphical views of reduced data subsets of subbottom, bathymetry and side scan sonar. The user can turn the geophysical systems on or off, adjust instrument settings and control the data bandwidth as needed. The HiPAP Operator Station provides real-time graphic displays of the O-Surveyor III position and the survey ship, which normally follows the AUV on the surface while collecting data.

Oceaneering's C-NAV DGPS signals provide the survey ship position during AUV missions. The track line acquisition sequence is downloaded to the onboard computer system prior to deployment. The AUV
vehicle positions are calculated with a complex Kalman filter algorithm using statistically weighted inputs from the DGPS, Ultra-Short Base Line (USBL) acoustics, inertial navigation and Doppler velocity speed log. The inertial system consists of a precision gyro and accelerometers to maintain the AUV track for the mission plan.

The Kongsberg EM 2040 Bathymetry System collects soundings in a ~ 210-meter swath underneath the AUV vehicle when operating at 40 m altitude. The EM 2040 is capable of frequency ranges of 200 kHz or 400 kHz . The beam pattern at 400 kHz is $0.7^{\circ} \times 0.7^{\circ}$ over a 140° swath yielding ~ 256 beams.

The AUV normally maintains an altitude of 40 meters above the seabed. An onboard velocimeter records water column velocity corrections and provides real-time data at the transducer face to maintain proper beam forming of the acoustic transmissions. The data are normally processed and filtered with Oceaneering's proprietary HydroMap

Figure 2. Multibeam bathymetry imagery of 12 m high mud volcano software, or QPS' Qimera software. A survey precision depth sensor provides the vehicle depth that is added to the raw multibeam soundings. Atmospheric pressure is recorded aboard the survey vessel and applied as a depth sensor corrector in post-processing. Tidal corrections are applied using the Goddard deepwater ocean tide model (Ray, 1999). The final bathymetric dataset is normally delivered at a 3meter bin size (Figure 2), however, 2-meter bin size processing is becoming more frequent.

The O-Surveyor III is equipped with a dual frequency EdgeTech 2200-M Side Scan Sonar that employs a calibrated wide band, digital frequency modulated (FM) signal to provide high resolution, low-noise images. This sonar is capable of simultaneously transmitting linearly swept frequency modulated pulse centered at two discrete frequencies: 120 kHz and 410 kHz . The raw data files are post-processed and converted to XTF (eXtended Triton Format) for digital interpretation and hardcopy generation.

The seismic profiles onboard Oll's O-Surveyor III are collected with a custom high power EdgeTech Chirp Subbottom Profiler (DW106). The four subbottom transducers are capable of transmitting a frequency modulated, high power pulse in the bandwidth between 1 kHz and 6 kHz . The source pulse used on most surveys is between 1.5 kHz and 10 kHz . The source pulse is convolved with the recorded trace to prevent source ringing and to remove the source signature from the response of near seabed strata. The four-transducer system provides significantly more penetration and resolution than a single transducer system.

The raw seismic data can be post processed to create SEG-Y or XTF datasets. The SEG-Y data can be written with static or variable length traces

O-SURVEYOR III SENSOR SPECIFICATIONS

AUV Vessel

Depth Rating: 4,500 meters (2.8 miles)
Length: 6.4 meters (20.5 feet)
Maximum Diameter: 1.0 meter (3.3 feet)
Normal Speed: 3.5-3.8 knots
Underwater Endurance @ 3.8 knots: ~35 hours
Power: Lithium Battery

Ancillary Sensors

Inertial Navigation
Kongsberg HiPAP USBL
Doppler Velocity Log
Fiber Optic Gyro
Motion Reference Unit
DigiQuartz Depth Unit
Single-Beam Altimeter
DGPS
Acoustic Communications
Command and Control (Low Speed Acoustic Modem)
Data Uplink (High Speed Acoustic Modem)
Kongsberg EM 2040 Multibeam Echosounder

Frequency	200 kHz
Maximum Ping Rate	70 Hz
Number of Beams per Ping	256
Beamwidth	$1.5^{\circ} \times 1.5^{\circ} @ 200 \mathrm{kHz}$
Beam Spacing	Equiangle or equidistant
Coverage Sector	140°
Range Resolution	0.5% of AUV altitude
Sonar Head Depth Rating	6,000 meters (3.7 miles)

EdgeTech 2200-M Side Scan Sonar

Modulation Full spectrum chirp frequency modulated pulse with amplitude and phase weighting
Dual Frequency Combinations $\quad 120$ or 410 kHz
Common
Vertical Beam Width 50°
Depression Angle 20° from horizontal
Dynamic Range
20 Bits Effective
Sample Rate
$\sim 2,000$ samples per channel
Frequency Specific
Center Frequency $\quad 120 \mathrm{kHz} \quad 410 \mathrm{kHz}$
Pulse Length 4 msec . 2.4 msec .
Range Scale Selection (per side) 100-250 meters (328-820 ft) 75-125 meters ($246-410 \mathrm{ft}$)
Maximum Ping Rate
30 pps 41 pps
Range Resolution
Horizontal 3 dB Beam Width
Transmit Power
3.8 cm (1.5 in) 2 cm (0.8 in)
$0.75^{\circ} \quad 0.75^{\circ}$
2 Joules 2 Joules

Page 44 of 116

Peak Source Level (ref = $1 \mu \mathrm{~Pa}$ @ 1 m)	210 dB	210 dB
Receiver Sensitivity (ref $=1 \mathrm{~V} / \mu \mathrm{Pa}$ @ center frequency)	$-190 \mathrm{~dB}$	-196 dB
EdgeTech DW106 Chirp Subbottom Profiler		
Modulation	Frequency modulated pulse with amplitude and phase weighting	
Ping Rate	3 Hz average	
Calibration	Each system is acoustic tank tested to calibrate for reflection coefficient measurements	
Frequency Band	$1-6 \mathrm{kHz}$ (normal operation is 1.5 to 4.5 kHz)	
Number of Hydrophone Arrays	6	
Resolution	$6-10 \mathrm{~cm}$ (2.4-3.9 in)	
Beam Width	$15^{\circ}-25^{\circ}$	
Peak Source level	216 db ref $1 \mu \mathrm{~Pa}$ @ 1 m	

AUV INSTRUMENT SETTINGS

Shell Exploration \& Production Company

Blocks 437 to 525 to 393, Mississippi canyon Area

KONGSBERG EM 2040 MULTIBEAM ECHOSOUNDER (MBES)

Frequency	200 kHz
Ping Rate	3 Hz at 40 m
Beams per Ping	256
Beam width	$1.5^{\circ} \times 1.5^{\circ}(200 \mathrm{kHz})$
Pulse Type	Short CW
Depth Resolution	$10 \mathrm{~cm}(4 \mathrm{in})(40-$ meter or 131 -foot AUV altitude $)$
Range Sampling Rate	10 kHz

EDGETECH FULL SPECTRUM CHIRP DUAL FREQUENCY SIDE SCAN SONAR (SSS)

Frequency $\quad 120 \mathrm{kHz}$ and 400 kHz
Ping Rate
Acoustic Source Level
3.0 Hz

Receiver Sensitivity
Range
Pulse Bandwidth
Pulse Length
Setback

$$
210 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa} @ 1 \mathrm{~m}
$$

-190 dB re $1 \mathrm{~V} / \mu \mathrm{Pa} @$ center frequency
~200 meters (660 feet) per channel
120 kHz
12 milliseconds

EDGETECH CHIRPED SUBBOTTOM PROFILER (SBP)

Frequency
Ping Rate
Acoustic Source Level
Beam Width
Record Length
Delay
Setback
1.5 kHz-10.0 kHz (Chirped/Frequency Modulated)
3.0 Hz

216 dB re $1 \mu \mathrm{~Pa}$ at 1 meter
$28^{\circ}-36^{\circ}$
175 meters (1,500 meters/second or 5,000 feet/second)
Variable in meters
None (acoustically positioned)

SURVEY VESSEL

AUV O-Surveyor III Avg. Survey Speed Altitude
3.8 knots

40 meters

C-Nav® DIFFERENTIAL GPS

C-Nav ${ }^{\circledR}$ is a globally corrected differential GPS system owned and operated by Oceaneering International, Inc. The C-Nav ${ }^{\circledR}$ GPS Receiver combines a dual-frequency, geodetic grade, GPS Receiver with an integrated L-BAND communication RF detector and decoder all linked by an internal microprocessor. $\mathrm{C}-\mathrm{Nav}^{\circledR}$ uses monitoring stations strategically located around the globe to provide worldwide accuracies on the order of 0.10 meters (4 inches).

Infrastructure:

The system utilizes the GPS satellite system, L-band communication satellites, and a worldwide network of referencing stations to deliver real time high precision positioning. To provide this unique service, CNav^{\circledR} has built a global network of dual frequency reference stations, which constantly receive signals from the GPS satellites that orbit the earth. Data from these reference stations are input to the USA processing centers in Torrance, California, and Moline, Illinois and processed to generate the differential corrections. The correction data are uploaded via redundant and independent communication links to satellite uplink stations at Laurentides, Quebec, Canada; Perth, Australia; Burum, the Netherlands; Santa Paula, California; Auckland, New Zealand; and Southbury, Connecticut for rebroadcast via the geostationary satellites.

The key to the accuracy and convenience of the C-Nav ${ }^{\circledR}$ system is the source of SBAS corrections. GPS satellites transmit navigation data on two L-band frequencies. The C-Nav ${ }^{\circledR}$ reference stations are all equipped with geodetic-quality, dual-frequency receivers. These reference receivers decode GPS signals and send precise, high quality, dual-frequency pseudorange and carrier phase measurements back to the processing centers together with the data messages, which all GPS satellites broadcast. At the processing centers, $\mathrm{C}-\mathrm{Nav}^{\circledR}{ }^{\circledR}$, proprietary differential processing techniques used to generate real time precise orbits and clock correction data for each satellite in the GPS constellation. This proprietary Wide Area DGPS (WADGPS) algorithm is optimized for a dual frequency system such as the C-Nav ${ }^{\circledR}$ Correction Service in which dual frequency ionospheric measurements are available at both the reference receivers and the user receivers. It is the use of dual-frequency receivers at both the reference stations and the user equipment together with the advanced processing algorithms, which makes the exceptional accuracy of the $\mathrm{C}-\mathrm{Nav}^{\circledR}$ system possible.

Creating the corrections is the first part. Differential corrections are sent to the Land Earth Station (LES) for uplink to L-band communications satellites. The uplink sites for the network are equipped with C-Navbuilt modulation equipment, which interfaces to the satellite system transmitter and uplinks the correction data stream to the satellite that broadcasts it over the coverage area. Each L-band satellite covers more than a third of the earth. Users equipped with a C-Nav ${ }^{\circledR}$ precision GPS receiver actually have two receivers in a single package; a GPS receiver, and an L-band communications receiver, both designed by the C-Nav ${ }^{\circledR}$ for this system. The GPS receiver tracks all the satellites in view and makes pseudorange measurements to the GPS satellites. Simultaneously, the L-band receiver receives the correction messages broadcast via the L-band satellite. After corrections are applied to the GPS measurements, a position measurement of unprecedented real-time accuracy is produced.

Reliability:

The entire system meets or exceeds a target availability of 99.99%. In order to achieve this, every part of the infrastructure has a built-in backup system. All the reference stations are built with duplicate receivers, processors and communication interfaces, which switch automatically or in response to a remote-control signal from the processing centers.

The data links from the reference stations use the Internet as the primary data link and are backed up by dedicated communications lines, but in fact, the network is sufficiently dense that the reference stations effectively act as backup for each other. If one or several fails, the net effect on the correction accuracy is not impaired.

There are two continuously running processing centers, each receiving all the reference site inputs and each with redundant communications links to the uplink LES. The LESs are equipped with two complete and continuously operating sets of uplink equipment arbitrated by an automatic failover switch. Finally, a comprehensive team of support engineers maintains round the clock monitoring and control of the system. The network is a fully automated self-monitoring system. To ensure overall system integrity, an
independent integrity monitor receiver, similar to a standard $\mathrm{C}-\mathrm{Nav}^{\circledR}$ user receiver, is installed at every reference station to monitor service quality. Data from these integrity monitors is sent to the two independent processing hubs in Torrance, California and Moline, Illinois. Through these integrity monitors, the network is continuously checked for overall SBAS positioning accuracy, L-band signal strength, data integrity, and other essential operational parameters.

C-Nav3050 ${ }^{\circledR}$

Technical Specifications

Features

". All-in-view parallel tracking with 66-channels
» Satellite-based augmentation system (SBAS) tracking (WAAS / EGNOS / MSAS / GAGAN]
*) Built-in $\mathrm{C}-\mathrm{NavC}^{1 \infty}$ and $\mathrm{C}-\mathrm{NavC}^{20}$ L-Band receiver

* C-NavC ${ }^{20}$ operating mode with automatic failsafe to C-NavC ${ }^{\text {º }}$
* $\mathrm{C} / \mathrm{A}, \mathrm{P} 1, \mathrm{P} 2, \mathrm{~L} 2 \mathrm{C}, \mathrm{L}, \mathrm{G}, \mathrm{G}$, and G 2 code tracking
» L1, L2, L5, G1 and G2 full wavelength carrier phase tracking
» C-Nav corrections over Internet
* High-sensitivity / low-signal level tracking
» Fast signal acquisition / re-acquisition
* Superior interference suppression Iboth inand out-of-band) using custom tuned antennas
" Patented multipath rejection
* RTK Extend ${ }^{T M}$
* C-Nav over-the-air activation capabilities
* Configurable as real time kinematic (RTK) base or rover
* Programmable output rates
* Event marker input / 1 pulse-per-second (PPS) output
" 2GB internal data storage
* C-Setup PC control software included

- Formore information: oceaneering.com/cnav
oceaneering.com/cnav

Dimensions/weight	
Length	$6.47 \mathrm{in} / 164 \mathrm{~mm}$
Wieth	$4.60 \mathrm{~m} / 117 \mathrm{~mm}$
Height	$2.37 \mathrm{in} / 60 \mathrm{~mm}$
Weaght	$1.116 / 0.5 \mathrm{~kg}$

Front status indication
Power/GNSS Status, correction service status, interface stalus, and Bluetooth slatus

External power	
\|npul	AC / DC Adapter 110 /220 VAC 12 VDC Nominal 0.5 A (9.0V to 32 VDCt$)$
Connectors	
1/0 ports	2×9 pin Positronic
DC ports	1×9 pin Positronic
RF conniector	TNC Iwith 5VDC bras for anterina / LNAL
Temperature (ambient)	
Operaling	$=40^{\circ} \mathrm{F} 10158^{\circ} \mathrm{F} /-40^{\circ} \mathrm{C}$ 10.70 ${ }^{\circ} \mathrm{C}$
Humidity	95\% non-condensing

Accuracy (RMS) horizontal/vertical

RTK [<40km)	$1 \mathrm{~cm}+0.5 \mathrm{ppm} / 2 \mathrm{~cm}+1 \mathrm{ppm}$
C-Nav services (95%)	$8 \mathrm{~cm} / 15 \mathrm{~cm}$
Code DGNSS $(\leqslant 200 \mathrm{~km})$	$40 \mathrm{~cm}+3 \mathrm{ppm} / 90 \mathrm{~cm}+3 \mathrm{ppm}$
Velocify	0.01 ms
RTK extend (z 15 mins $]$	$3 \mathrm{~cm}+1 \mathrm{ppm} / 6 \mathrm{~cm}+2 \mathrm{ppmm}$

User programmable output rate

Position/valocity/time	$1,5,10,25,50$, or 100 Hz
Raw data	$1,5,10,25,50$, or 100 Hz

Data latency
Position/valocity/lime
Rawidata 10 ms al all rates

Time-to-first-fix	
Gold/warm/hot	$\begin{aligned} & \angle 60 \mathrm{~s} /<50 \mathrm{~s} / \circ 20 \mathrm{~s} \\ & \text { ITypical values measured per ION. } \\ & \text { STD } 101 \text {. } \end{aligned}$
1/0 connector assignments	
Qata inter Faces	$\begin{aligned} & 2 \times \text { RS232 (1-changeable to RS422, } \\ & 4800-115200 \text { baud rates) } \\ & 1 \times \text { USB } 2,0 \text { (host or device) } \\ & \text { Bluetooth } \\ & \text { Ethernel (10T / } 1000 \text {) } \end{aligned}$

Input/output data messages

NMEA-0183	ALM, BES, GGA, GLL, GRS, GSA, GST, GSV, RMC, RRE, VTO, ZDA, GFA, DTM, GNS, MLA
Dilierential correction	RTCM 2.3 and 3,0, SBAS and C-Nay (proprietary)
RTK connection	CMR / CMR+, RTCM, NavCom Ulira RTK
Receiver control	NavCom proprietary commands \|ASCIII

Compliance/Approvals

IM0 performance standard for 6PS: IEC 60524
IMQ performance standard for GNSS; IEC 61108-1:2003
NMEA-0183 compatibulity up to $\sqrt{4} .1$
FCC Pant 15 Class B, CE
QC message strings comply with the recommendationsin OGP 373-19 and IMCA S015 [July 2011]

MBRTK - Range and Bearing Option
High-accuracy range and bearing data between vessels
Multiple rovers can use a common base
RTK levels of accuracy for range, irrespective of dilferential correctors
Converter available to emulate a fanbeam output
Heading accuracy (degrees at 4 Eigma) $+0.6 /$ baseline length in meters.
Baseline horizontal accuracy $+1 \mathrm{~cm}+1$ ppri
MBRTKNMEA-0183 Outputs: HOT. TTM. ROT

SEACAT SBE 19-01

The Seacat SBE 19-01 Profiler from Sea-Bird Electronics, Inc., measures electrical conductivity and temperature versus pressure (depth) in marine environments to depths up to 6,800 meters (22,309 feet). The maximum sampling rate is two scans per second. Self-powered and self-contained, the SBE 19 features proven Sea-Bird conductivity and temperature sensors and a precision semiconductor straingauge pressure transducer. A 64-kilobyte solid-state memory allows 1.5 hours of recording (six hours with optional 256 -kilobyte memory) while sampling at two scans per second. Set-up, check-out, and data extraction are performed without opening the housing. Simultaneous real time monitoring is possible using the Seacat Profiler's two wire RS-232C transmit capability. Sea-Bird's powerful Seasoft CTD software derives salinity, density, sound velocity, and other ocean parameters from stored CTD (conductivity, temperature, depth) and may be used for data analysis, plotting and archival. Small external sensors may be powered, and frequency or voltage outputs acquired by the SBE 19.

Seacat Profiler options include 1) aluminum housings for use to 3,400 or 6,800 meters (11,154 feet or 22,309 feet); 2) 256 kilobyte memory; 3) an extra bulkhead connector for auxiliary inputs; 4) SBE 5 submersible pump for pumped conductivity; 5) an opto-isolated junction box for supplying power and interconnecting Seacat Profiler and a companion computer necessary in real-time mode.

Use of conductivity, temperature, and depth measurement for determination of sound velocity is appealing because these instruments are simpler, more rugged and resolution, accuracy, and stability lead to better precision than can be obtained with direct sound velocity measuring devices. Three equations are widely used for deriving sound velocity from CTD data (Wilson, 1959; Del Grosso, 1972; Millero and Chen, 1977). Absolute sound velocities derived from these equations differ on the order of .5 meter/second for various combinations of water temperature, salinity, and pressure. The work of Millero and Chen is the most modern and builds upon and attempts to incorporate the work of the earlier investigators. Millero and Chen's 1977 equation is used in the Sea-Bird Seasoft software and is the one which is endorsed by the UNESCO/SCOR/ICES/IASPO Joint Panel on Oceanographic Tables and Standards which comprises the internationally recognized authority for measurements of ocean parameters.

Specifications:

	Measurement Range	Initial Accuracy	Resolution	Sensor Calibration
Conductivity	0 to $7 \mathrm{~S} / \mathrm{m}$	$+/-0.001 \mathrm{~S} / \mathrm{m}$	$+/-0.0001 \mathrm{~S} / \mathrm{m}$	$0-7 \mathrm{~S} / \mathrm{m}$ Physical calibration over the range 1.4 to $6 \mathrm{~S} / \mathrm{m}$, plus zero conductivity (air)
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-5 to +35	$+/-0.01$	$+/-0.001$	-1 to +31 (Measurements outside this range may be at slightly reduced accuracy due to extrapolation errors)
Depth	68 to $1,000 \mathrm{~m}$	$+/-0.25 \%$	$+/-0.015 \%$	Minimum 5 values between 0 and full scale

DUAL TSS MERIDIAN SURVEYOR GYROCOMPASS

The Meridian Surveyor boasts a wide range of interfaces to enable use on any marine vessel. The unit utilizes a dry tuned element (DTG) gyro element which provides exceptional performance with accuracy unmatched by even the latest fiber optic designs. Unlike conventional spinning mass gyrocompasses, the Meridian Surveyor uses a DTG that removes the need for routine maintenance thereby significantly reducing cost of ownership.

Remarkably stable heading can be maintained for turn rates in excess of 200° per second making the system ideal for use on fast survey craft and in river/harbor environments.

- IMO and Wheelmark certified
- Innovative chassis design incorporating state-of-the art digital electronics for improved reliability
- Maintenance-free DTG element
- Dynamic heading accuracy of $\pm 0.2^{\circ}$
- Static heading accuracy of 0.05°
- <40 minutes settling time
- Start-up power requirement of 1.8 A
- Comprehensive range of analogue and digital output options
- MTBF of 30,000 hours
- High turn rate of 200° per second
- User friendly digital set up and self-test

SBE-19PLUS V2 SEACAT PROFILER CTD (OVER-THE-SIDE)

The SBE 19plus is the next generation Personal CTD, bringing numerous improvements in accuracy, resolution (in fresh as well as salt water), reliability, and ease-of-use to the wide range of research, monitoring, and engineering applications pioneered by its legendary SEACAT predecessor. The 19plus samples faster (4 Hz vs 2 Hz), is more accurate (0.005 vs 0.01 in $T, 0.0005$ vs 0.001 in C , and 0.1% vs 0.25% - with seven times the resolution - in D) and has more memory (8 Mbyte vs 1 Mbyte). There is more power for auxiliary sensors (500 ma vs 50), and they are acquired at higher resolution (14-bit vs. 12-bit). Cabling is simpler and more reliable due to four differential auxiliary inputs on two separate connectors, and a dedicated connector for the pump. All exposed metal parts are titanium, instead of aluminum, for long life and minimum maintenance.

The 19plus can be operated without a computer from even the smallest boat, with data recorded in non-volatile FLASH memory and processed later on PC. Simultaneous with recording, real time data can be transmitted over single-core, armored cable directly to your PC's serial port (maximum transmission distance dependent on number of auxiliary sensors, baud rate, and cable properties). The 19plus' faster sampling and pump-controlled TC-ducted flow configuration significantly reduces salinity spiking caused by ship heave and allows slower descent rates for improved
 resolution of water column features. Auxiliary sensors for dissolved oxygen, pH , turbidity, fluorescence, and PAR can be added.

Use of conductivity, temperature, and depth measurement for determination of sound velocity is appealing because these instruments are simpler, more rugged, and resolution, accuracy, and stability lead to better precision than can be obtained with direct sound velocity measuring devices. Three equations are widely used for deriving sound velocity from CTD data (Wilson, 1959; Del Grosso, 1972; Millero and Chen, 1977). Absolute sound velocities derived from these equations differ on the order of 0.5 meter/second for various combinations of water temperature, salinity, and pressure. The work of Millero and Chen is the most modern and builds upon and attempts to incorporate the work of the earlier investigators. Millero and Chen's 1977 equation is used in the Sea-Bird Seasoft software and is the one endorsed by the UNESCO/SCOR/ICES/IASPO Joint Panel on Oceanographic Tables and Standards which comprises the internationally recognized authority for measurements of ocean parameters.

Specifications:

	Measurement Range	Initial Accuracy	Resolution	Sensor Calibration
Conductivity	0 to $9 \mathrm{~S} / \mathrm{m}$	$+/-0.0005 \mathrm{~S} / \mathrm{m}$	$+/-0.00005 \mathrm{~S} / \mathrm{m}$	Physical calibration over range 1.4 to 6 S/m, plus zero conductivity (air)
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-5 to +35	$+/-0.005$	$+/-0.0001$	-1 to +31
Depth	$7,000 \mathrm{~m}$	$+/-0.25 \%$	$+/-0.015 \%$	Min 5 values between 0 and full scale

SBE-49 FASTCAT CTD SENSOR (AUV)

SUMMARY

- Conductivity, Temperature, and Pressure, at 16 Hz (16 samples/second).
- Pump-controlled, T-C ducted flow to minimize salinity spiking.
- RS-232 serial interface, no memory or batteries - intended for use on vehicles that can supply power and acquire data.
- Unique flow path, pumping regimen, and (optional) expendable anti-foulant devices, for maximum bio-fouling protection.
- Depths to 350 meters (plastic housing) or 7000 meters (titanium housing).

DESCRIPTION

The SBE 49 FastCAT is an integrated CTD sensor intended for use as a modular component in towed vehicles, ROVs, AUVs, or other autonomous platforms that can supply DC power and acquire serial data. FastCAT's pump-controlled / TC-ducted flow feature minimizes salinity spiking, and its 16 Hz sampling provides very high spatial resolution of oceanographic structures and gradients.

FastCAT's temperature thermistor and conductivity cell are the same as used in our premium 911 plus CTD system. The strain-gauge pressure sensor is offered in eight full scale ranges from 20 to 7000 dbars . Sophisticated interface circuitry provides very high resolution and accuracy.

FastCAT is an easy-to-use, light, and compact instrument ruggedly made of titanium and other low-maintenance (plastic) materials; it is well suited to even the smallest vehicle. There are straightforward commands for continuous (full rate or averaged) or single sample acquisition. EEPROM-stored calibration coefficients permit data output in ASCII engineering units (degrees C, Siemens/m, decibars, Salinity [PSU], and sound velocity [$\mathrm{m} / \mathrm{sec}$]), or the user can select raw data output if desired.
FastCAT must be externally powered, and its RS-232C data logged or telemetered by the vehicle to which it is mounted. As FastCAT does not support auxiliary sensors, where such sensors are required the user's vehicle must be equipped to acquire their signals independently.

SAMPLING MODES

FastCAT has two sampling modes:

- Autonomous sampling - FastCAT runs continuously, sampling at sixteen scans per second (16 Hz). It can be set to average up to 255 samples, transmitting only the averaged data. Programmable real-time processing (aligning, filtering, and correcting for conductivity cell thermal mass effects) provides high quality data for applications where post-processing is not feasible. FastCAT can be programmed to begin autonomous sampling when power is applied or on command.
- Polled sampling - On command, FastCAT takes one sample and transmits the data.

CONFIGURATION

A standard FastCAT is supplied with titanium housing for depths to 7000 meters, straingauge pressure sensor, internal pump and T-C Duct, and XSG 4-pin I/O bulkhead connector. FastCAT options include:

- Plastic housing for depths to 350 meters
- MCBH Micro connector in lieu of XSG
- Expendable anti-foulant devices

SOFTWARE

FastCAT is supplied with a powerful Win 2000/XP software package, Seasoff ${ }^{(\ominus)} \mathrm{V} 2$, Seasoft's modular programs include:

- Seaterm - terminal program for instrument setup and data display
- Seasave - real-time data acquisition and display.
- SBE Data Processing - filtering, aligning, averaging, and plotting of CTD data and derived variables.

KONGSBERG HIPAP 350 USBL ACOUSTIC POSITIONING SYSTEM

System features

The right system for your application

The HiPAP family of underwater positioning systems lets you choose the right system level for your application. HiPAP 350 has been developed to provide the market's best accuracy where HiPAP 500 extreme accuracy and longrange capabilities are not required.
With this unique transducer array, measuring only 320 mm in diameter (and thus smaller than HiPAP 500), the HiPAP 350 can be used with all existing HPR gate valves.

Acoustic beam pointing control

The HiPAP 350 uses the unique tech-
nology of narrow pointing beams. This minimizes the effect of noise from propellers and thrusters. This technology gives the system maximum Signal-to-Noise ratio, and this is the major key to successful acoustic performance. The curved transducer creates a narrow beam pointed towards the transponder(s) within a large sector below the vessel. Outside this sector, the pointing beam will increase in width. Data from roll, pitch and heading sensors are used to compensate for vessel movements.

Super-Short Base Line functionality

The Super-Short Base Line (SSBL) principle has the obvious advantage that it only requires installation of one hull-mounted transducer and one subsea transponder to establish a three-dimensional position of the transponder. To provide this position, the SSBL system measures both the horizontal and vertical angles, as well as the range to the transponder.

Long Base Line functionality

At some point of range, depending on the application, the SSBL principle will have accuracy limitation. Long Base Line (LBL) accuracy is independent of range. An LBL system can position more accurately, but only within an array of seabed transponders.
The HiPAP with the optional LBL features is a very flexible system combining the advantages of both the SSBL and LBL principles.
The HiPAP has better long range performance than traditional wider beam systems. This is because the Signal-to-Noise ratio of the detected seabed transponders' replies are higher than when using one wide beam that needs to cover the seabed footprint of a transponder array.

Multi vessel positioning

The Multi-User LBL (MULBL) function enables several individual vessels and ROV units to position themselves using the same seabed transponder array.

LBL for subsea construction

Kongsberg Simrad introduced the LBL system in 1992, and has since become the market leader in supplying LBL and combined LBL / SSBL systems for vessel positioning.
The current LBL systems use intelligent, instrumented transponders and deep water transceivers and transducers. These are all rated for 3000 m water depth, and fulfil any requirements within subsea construction, survey and metrology.

Accuracy a function of transducer size
Accuracy is always dependent on the beam width and the "active surface" of any transducer. The HiPAP 350 will therefore have some reduced performance compared to the more accurate HiPAP 500 which has several more transducer elements.

Automatic compensation for ray bending and sound velocity errors

The HiPAP takes input of the local sound velocity profile, calculates, error compensates and displays the effect of the physical phenomena of sound velocity differences in the water column.

"World Record" in transponder channels
The HiPAP systems can operate with up to 56 transponder channels, and feature transponder telemetry communication for use with transponder release, sensor readings and all LBL functionalities.

Typical applications

The HiPAP 350 has been developed for use in situations where positioning is within a sector of $+/-60$ degrees below the vessel, but will also perform outside this sector at some reduced accuracy and range capability. This level of functionality makes the HiPAP 350 ideal for drill-rigs, ROV tracking and dynamic positioning reference. It is also ideal for other operations where the underwater positioning is relatively directly below, and where extreme accuracy, shallow water horizontial positioning and ultra deep performance are not required.

HiPAP 350 - ideal for HPR upgrades

The HiPAP 350 system is without question the ideal solution for upgrade of older HPR systems. With its small diameter, the HiPAP 350 transducer can be used with all HPR system gate valves, and may also be installed on the existing hull units to replace the HPR transducer. The upgrade is limited to a minimum of cabling and work.

Typical HiPAP ${ }^{\text {® }} 350$ configuration The HiPAP® 350 system operates with the transducer mounted on a hull unit. Several hull unit models are available, these enable the transducer to be lowered approximately 1.5 to 5.5 m below the keel. A Transceiver Unit containing the transmitter, preamplifier and beamforming electronics is mounted close to the hull unit. The system can be configured with one or two hull mounted transducers. The use of two transducers will increase accuracy and redundancy.
The system operation is performed on a Windows XP® based operator station.

Technical specifications

HiPAP 350 basic specifications

Gate valve size required:	350 mm (14 inches)
Transducer diameter:	320 mm
Acoustic operating area:	$+/-60^{\circ}$ (Recommended)
Number of active elements:	46
Angle accuracy: $:$	$0 \mathrm{~dB} \mathrm{~S} / \mathrm{N}: 0.40^{\circ}$
	$10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}: 0.23^{\circ}$
	$20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}: 0.18^{\circ}$
Range detection accuracy: ${ }^{1)}$	$<20 \mathrm{~cm}$
Typical operating range: $:^{1)}$	1 to 3000 m
Narrow pointing receiver beam:	$+/-7.5^{\circ}$

Note that the technical specifications are subject to change without prior notice.

HiPAP 350 standard features

56 transponder channels
Hull unit for transducer deployment
Windows $\mathrm{XP}^{(8)}$ based operating system
Receive frequency band: $\quad 27,0-30,5 \mathrm{kHz}$
Telemetry frequency band: $\quad 24,5-27,0 \mathrm{kHz}$
Transmit frequency band: $\quad 21,0-24,5 \mathrm{kHz}$
Comprehensive on-line help
Automatic transducer alignment calibration
Compensation for ray-bending
Display of ray-bending
External Depth sensor interface
Position and angle alarm limits
Responder mode
Telegram output to dynamic positioning system
Telegram output to survey system
Transponder Telemetry for full utilization
DGPS Interface

1) The specifications are based on; Line of sight from transducer to transponder, no influence from ray bending, Signal-to-Noise ratio as specified in water in the 250 Hz receiver band, no error from heading / roll / pitch sensors, and use of correct sound velocity. Operating ranges are typical and conservative, and are assumed by using sufficient transponder source level (up to 206 dB dependant on range).

HiPAP 350 optional features

Beacon Mode
Compass Transponder Mode
Depth Sensor Transponder Mode
Inclinometer Transponder Mode
Long Base Line (LBL) functionality
Geographical LBL Calibration
Multi-User LBL functionality (MULBL)
Operator Station Master / Slave function
Blow Out Preventer (BOP) telemetry function
Offshore Loading Telemetry function
Submerged Turret Loading function
Fast LBL Transponder Positioning mode *
LBL Accurate Metrology mode*
(* standard in LBL fimction)

INERTIAL MOTION UNIT (IMU)

The following are excerpts from Kongsberg's Hydroacoustic Aided Inertial Navigation Instruction Manual (Kongsberg, 2014):

The base of inertial navigation is the inertial measurement unit (IMU) which measures the acceleration and angular rate in all three dimensions. This is normally done by having three perpendicular gyroscopes and accelerometers. The IMU consists of three accelerometers and three gyros that measure the vehicle's accelerations and rotation in three axes.

Navigation on inertial measurement is based on knowing the initial values of position, orientation, and velocity, and integrating the measurements from the IMU from these initial values. This means that the angular rates are integrated to give orientation; the accelerations are integrated to give velocities; and the calculated velocities are integrated to give positions.

Technical Specifications:

Depth Rating: 4,000 meters
Dynamic Range, Gyros: +-500\%s
Dynamic Range, Accelerometers: +-30 g
Power Requirements: 24 Vdc
Power Consumption: 12 W
Configuration: Serial (RS-422 preferably)
Data rate: 100 Hz
Parity: N
Databits: 8
Stopbits: 1
Baudrate: 115200 kbs

O-Surveyor III Survey Configuration

Enterprise Survey Configuration

Oll Survey Field Personnel

AUV \& GEOTECHNICAL SURVEY CREW					
Position			Name		Company
	Last	First			
AUV Offshore Manager	Hollie	Beau	Oceaneering Survey Services		
Hydrostation Operator Days (Shift Leader)	Patin	Todd	Oceaneering Survey Services		
COS Operator Days	Melancon	Jonah	Oceaneering Survey Services		
Hydrostation Operator Nights	Picard	Jed	Oceaneering Survey Services		
COS Operator Nights (Shift Leader)	Gates	All	Oceaneering Survey Services		
Operator	Snyder	Justin	Oceaneering Survey Services		
AuV Offshore Technical Manager	Perez	Felix	Oceaneering Survey Services		
AUV Technician	Havens	Dan	Oceaneering Survey Services		
AUV Technician	Boudreaux	Brian	Oceaneering Survey Services		
AUV Data Analyst	Tobeck	John	Oceaneering Survey Services		
Geologist	Olivier	Ross	Oceaneering Survey Services		
Marine Geologist	Fournet	Stephen	Contract- OSS		
Geotechnical Engineer	Dobias	John	GEMS/Forum		
Geotechnical Engineer	Svrcek	Ivan	TDI-Brooks		
Medic	Erwin	Robert	SMS/Acadiarr		
Client Representative	Neurauter	Thornas	SHELL		
HSE Representative	Thomas	Colby	SHELL		

MN OCEAN PROJECT VESSEL CREW			
Position			
	Name	Cast	First
Master	Burns	Lowell	Oceaneering Marine
Chief Mate	Fulton	David	Oceaneering Marine
Chief Engineer	Rodgers	Russell	Oceaneering Marine
Assistant Engineer	Ekundare	Oluyinka	Oceaneering Marine
AB	Sutherlin	Timmy	Oceaneering Marine
AB	Labell Jr	Jack	Oceaneering Marine
O/S Oiler	Bellow	Lance	Oceaneering Marine
O/S Oller	Lawlon	Corey	Oceaneering Marine
Chief Cook	Holloway	Madeline	Oceaneering Marine
Galley Hand	Poindexter	Cleodis	Oceaneering Marine

FGSI Survey Field Personnel

FUGRO AUV SURVEY CREW			
Position	Name		Company
	Last	First	
Party Manager	Harris	Marc	Fugro
Technical Coordinator	Boudreaux	John	Fugro
AUV Assistant Technical Coordinator	Smith	Wyatt	Fugro
AUV Shift Supervisor	McDowell	Daniel	Fugro
Shift Supervisor	Wootan	Lane	Fugro
AUV Tech	Williams	John	Fugro
AUV Tech	Brashear	Daniel	Fugro
AUV Tech	Gabik	Koral	Fugro
AUV Tech	Miller	Mitch	Fugro
AUV Tech/ HSE Officer	Corkin	Brian	Fugro
AUV Tech	Boullard	Brian	Fugro
AUV Tech	Jackson	Derrick	Fugro
Navigator	Chaumont	Brad	Fugro
Navigator	King	Don	Fugro
Processor	Smith	Darrel	Fugro
Processor	Bridges	Matt	Fugro
Medic	Tony Pippin	Tony	Fugro
Client Rep (QC)	Landry	Laura	Fugro
Client Rep (HSE)	Hamm	Greg	Fugro
1st Captain	Haltom	John	Fugro
2nd Captain	Reeves	Richard	Fugro
3rd Captain	Naquin	Joe	Fugro
Engineer	Liner	Thomas	Fugro
Cook	Bush	Ed	Fugro
Deckhand	Jolivette	Larry	Fugro
Deckhand	Dupuy	Mike	Fugro

APPENDIX C: OII SURVEY LOGS

OCEANEERING SURVEY SERVICES HYDROSTATION SURVEY LOG									Page No. 7
$\begin{array}{\|l\|} \hline \text { JobNo: } \\ 180110 \\ \hline \end{array}$	Client: Shell Offshore Inc.				Vessel: M/N Ocean Project Remote Vessel: C-Surveyor-III TM		Survey Equipment: DGPS, Inertial Navigation, HiPAP, Doppler Speed Log		
Date: (UTC) 12/28/2016	Areas: MC/DC Blocks: $525-393 / 441$ - 353 Units: Meters			Mission:	Datum: NAD27 Projection: UTM Zone: 16N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM 2040 (200, 300, 400 kHz)			
Time (UTC (-6 to Loca	C) al) H (eading	Water Depth	$\begin{aligned} & \text { Fix } \\ & \text { No. } \end{aligned}$	Line Name	Remarks				
0020					Lat: $28^{\circ} 37.260986$ Lon: $-87^{\circ} 54.404640$				
---					$\mathrm{X}: 411357.55 \mathrm{~m}$ ($\mathrm{Y}: 3166133.63 \mathrm{~m}$				
0054					CTD on deck				
0112					Preparing for box cores / Safety meeting				
0256					$\mathrm{BC}-07$ in the water				
0321					BC-07 on bottom - WD: 2269 m				
----					$\mathrm{X}: 410272.47$ Y: 3165421.39				
----					Lat: $28^{\circ} 36.871078$ Lon: $-87^{\circ} 55.067223$				
0403					BC-07 on deck, failed to actuate				
0432					BC-07 in the water				
0506					BC-07 on bottom - WD: 2266m				
----					$\mathrm{X}: 410279.66$ Y: 3165420.08				
--					Lat: $28^{\circ} 36.870125$ Lon: $-87^{\circ} 55.062801$				
0545					BC-07 on deck, failed to actuate				
0600				WX	Winds: SE 5-8kts		Seas: 2-3ft Bar:		
0622					BC-07 in the water				
0643					BC-07 on bottom - WD: 2262m				
---					$\mathrm{X}: 410250.35 \quad \mathrm{Y}: 3165418.64$				
---					Lat: $28^{\circ} 36.869225$		Lon: $-87^{\circ} 55.080764$		
0723					$\mathrm{BC}-07$ on deck - analyzing sample				
---					Sample invalid - short 2 inches of recovery				
---					Adding 8 lead bricks				
0855					BC-07 attempt 4 in the water				
0919					BC-07 on bottom - WD: 2266 m				
----					Lat: $28^{\circ} 36.863632$		Lon: $-87^{\circ} 55.067585$		
---					X: 410271.77		Y: 3165408.15		
1000					Box Core On Deck - Analyzing Sample				
					Sample is Good - Analyzing, Transit To BC - 06				
1200				WX	Winds: SE 4-6kts		Seas: 2-4ft	Bar: 1020.16 mb	
1621					BC-06 in the water				
1648					BC-06 on bottom - WD: 2291				
---					Lat: $28^{\circ} 33.438828$		Lon: $-87^{\circ} 53.708286$		

OCEANEERING SURVEY SERVICES HYDROSTATION SURVEY LOG								Page No. 9
JobNo: 180110	Client: Shell Offshore Inc.				Vessel: M/N Ocean Project Remote Vessel: C-Surveyor-III т		Survey Equipment: DG Navigation, HiPAP, Dopp	
$\begin{array}{\|l} \hline \text { Date: (UTC } \\ 01 / 04 / 2017 \end{array}$	Areas: MC / DC Blocks:525-393/441- 353 Units: Meters			Mission: Line Name	Datum: NAD27 Projection: UTM Zone: 16 N	$\begin{aligned} & \hline \text { Geo } \\ & (1.5 \\ & (120 \\ & \mathrm{kHz}) \\ & \hline \end{aligned}$	hysical Equipment: Edge -10 kHz), Edgetech Dual F \& 410 kHz), Simrad EM 20	Profiler SS 0,400
$\begin{array}{\|l\|l\|} \hline \hline \text { Time (UTC) } \\ (-6 \text { to Local) }) & \text { Heading } \\ \hline \end{array}$		Water Depth	$\begin{aligned} & \hline \text { Fix } \\ & \text { No. } \end{aligned}$				Remarks	
0000				New Day	04 January 2017			
---					Lat: 28.569189	Lo	g: -87.960901	
---					X: 406017.07	Y:	160432.92	
---				Wx	Winds: W 1-3 kts	Sea	: 2-4ft Bar: 1013 mb	
0030					Arrive at BC-08,	first b	x core location - Lower	ram
0045					HiPAP ram lowe	-	reparing for box cores	eting
0137					BC -08 in the wat			
0208					BC-08 on bottom	- W	: 2283	
---					Lat: $28^{\circ} 33.9603$	92	Lon: $-87^{\circ} 54.872$	
---					X: 410549.14		Y: 3160044.80	
0250					BC-08 on deck,	nalyz	ing sample, Transit to BC	
0652					BC -05 in the wat			
0724					BC-05 on bottom	- wc	2301 m - blk: DC397	
----					Lat: $28^{\circ} 33.1961$	25	Lon: $-87^{\circ} 53.665$	
---					X: 412505.13		Y: 3158618.71	
0804					BC-05 on deck,	ailed	to trigger	
----					Transit to BC-05	for se	cond attempt	
0844					BC-05 (second a	ttemp) in the water	
0908					BC-05 on bottom	- wc	2301m - blk: DC397	
----					Lat: $28^{\circ} 33.1907$	65	Lon: $-87^{\circ} 53.668$	
---					X: 412500.30		Y: 3158608.86	
0947					BC-05 on deck,	ailed	trigger, transit to BC-05	
1020					BC-05 (third atte	mpt)	the water	
1049					BC-05 on bottom	- wc	2299 m - blk: DC397	
----					Lat: $28^{\circ} 33.1949$		Lon: $-87^{\circ} 53.663$	
----					X: 412509.62		Y: 3158616.53	
1128					BC-05 on deck,	nalyz	ing sample, transit to BC-	
1200				WX	Winds: NW 8kts	Sea	: 3-4ft Bar: 1012mb	
1532					$\mathrm{BC}-12$ in the wat			
1559					BC-12 on bottom	- wd	2309 - blk: DC397	
----					Lat: $28^{\circ} 33.0243$	7	Lon: $-87^{\circ} 52.784$	
---					X: 413939.97		Y: 3158290.96	

OCEANEERING SURVEY SERVICES HYDROSTATION SURVEY LOG								$\begin{aligned} & \hline \text { Page } \\ & \text { No. } 12 \end{aligned}$
JobNo: 180110	Client: Shell Offshore Inc.				Vessel: M/V Ocean Project Remote Vessel: C-Surveyor-III ${ }^{\mathrm{TM}}$		Survey Equipment: DGPS, Inertial Navigation, HiPAP, Doppler Speed Log	
$\begin{array}{\|l} \hline \text { Date: (UTC) } \\ 06 / 13 / 2017 \end{array}$	Areas: MC/DC Blocks:525-393/441-353Units: Meters			Mission:	Datum: NAD27 Projection: UTM Zone: 16 N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM $2040(200,300,400 \mathrm{kHz})$		
$\begin{array}{\|l} \text { Time (UTC) } \\ (-5 \text { to Local) } \\ \hline \end{array}$	Heading	Water Depth	$\begin{gathered} \text { Fix } \\ \mathbf{N o}, \end{gathered}$	Line Name	Remarks			
0000				New Day	06-13-2017 - Switch From Job 182844			
---				Vessel In Transit To Piston Core Location				
---				Lat: $27^{\circ} 35.423363$ Lon: -90 47.291416m				
---				X: $125978.38 \mathrm{~m} \quad \mathrm{Y}: 3057361.59 \mathrm{~m}$				
---				WX	Winds: E 15-20 kts Seas: $2-4 \mathrm{ft}^{\text {Bar: } 1014.01}$			
0600				WX	Winds: E 15-20 kts Seas: 3-4 ft Bar: 1014.59			
1045				Shift Change: J. Page, R. Hargroder				
0600				WX	Winds: E 5 kts Seas: 2-3 ft Bar: 1015.76			
1045				Shift Change: J. Page, R Hargroder				
1200				WX	Winds: ESE 5-10 Knots Seas: 2-3 Feet Bar: 1015			
1700				Vessel On Location - Setup For Coring				
---				And CTD Operations				
1744				Going Down With CTD				
1800				WX	Winds: SE 0-6 Knots Seas: 1-3 Feet			
1810		2292		CTD On Bottom 170614A - MC569				
---				LAT: $28^{\circ} 27.3480 \quad$ LON: $-87^{\circ} 57.1743$				
---				X: 406699.21 Y: 3147864.30				
1840				CTD On Deck - Rigging For Coring Operations				
---				CTD 170614A1 Applied APOS				
1902				JSEA For Coring Dart Crane Ops				
1939				Coring Dart In Trough - Crane Ops Complete				
---				Continue Rigging For Coring				
2135				Rigging Completed - Deploying Core PC01				
2142				Going Down With PC01				
2209		2292		PC01 On Bottom - Blk: MC525				
---				Lat: $28{ }^{\circ} 27.538446$ Lent - 87057.191582				
---				X: 406444.96 Y: 3148217.87				
---				Updated Position - HiPAP Tracing Lost				
---				At Time Of Position Fix				
---				Lat: $28^{\circ} 27.3692804$ Lon: - 8757.191582				
---		2292		X:406671.27 Y: 3147891.73				
2250				Piston Core 01 On Deck				
---				Analyzing Piston Core				

OCEANEERING SURVEY SERVICES COS SURVEY LOG									Page No. 2 nertial peed
Job No: 18011 Mission Name	10	[1		Client: Shell Offshore Inc.			Vessel: M/V Ocean Project Remote Vessel: C-Surveyor III	Survey Equipment: Navigation, HiPAP, D Log	
Date: 12/25/16		Area: MC/DC Blocks: $525-$ $393 / 441-$ 353		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM $2040(200,300,400 \mathrm{kHz}$)		
$\begin{aligned} & \text { Time (UTC) } \\ & (-5 \text { to Local) } \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \hline \text { Fix } \\ & \text { No. } \end{aligned}$	Line Name			Remarks		
1817					AUV at 2200 m				
1818					AUV sent to 2250 m depth				
1820					AUV at 2250 m				
1821					Altitude mode 40m				
1826					Activated external guidance				
1833	299	2290	5	401	SOL				
1840	299	2279	0	401	EOL				
1844	119	2281	0	402	SOL				
1851	119	2292	5	402	EOL				
1903	029	2283	0	103	SOL				
2228	316	2250	170	103	EOL				
2233	180	2252	0	1001	SOL				
2240	180	2254	5	1001	EOL				
2243	000	2256	5	1003	SOL				
2250	000	2254	0	1003	EOL				
2253	180	2253	0	1002	SOL				
2300	180	2252	5	1002	EOL				
2302	000	2255	5	1001A	SOL				
2310	000	2253	0	1001A	EOL				
2313	180	2254	0	1003A	SOL				
2320	180	2255	5	1003A	EOL				
2327	270	2255	5	1005	SOL				

OCEANEERING SURVEY SERVICES COS SURVEY LOG									Page No. 3 Inertial peed
$\text { Job No: } 18011$ Mission Name	$\begin{aligned} & 10 \\ & \text { e: run1612 } \end{aligned}$			Client: Shell Offshore Inc.			Vessel: M/N Ocean Project Remote Vessel: C-Surveyor III	Survey Equipment: Navigation, HiPAP, Log	
Date: 12/25/16		Area: MC/DCBlocks: $525-$$393 / 441$ -353		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM 2040 (200, 300, 400 kHz)		
$\begin{aligned} & \text { Time (UTC) } \\ & \text { (}-5 \text { to Local) } \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \hline \text { Fix } \\ & \text { No. } \\ & \hline \end{aligned}$	Line Name			Remarks		
2335	270	2250	0	1005	EOL				
2338	090	2249	0	1004	SOL				
2345	090	2256	5	1004	EOL				
2350	226	2256	7	409	SOL				
0000	226	2253	0	409	EOL/ New Day 12/26/16				
0004	046	2255	0	408	SOL				
0014	046	2257	7	408	EOL				
0024	136	2249	170	102A	SOL				
0108	164	2288	135	102A	EOL				
0115	250	2287	5	407	SOL				
0123	250	2268	0	407	EOL				
0130	160	2286	137	102B	SOL				
0213	197	2291	103	102B	EOL				
0223	102	2285	0	406	SOL				
0233	102	2294	7	406	EOL				
0239	195	2290	105	102C	SOL				
0316	209	2280	76	102C	EOL				
0323	299	2302	5	405	SOL				
0331	299	2277	0	405	EOL				
0338	209	2300	78	102D	SOL				
0416	209	2289	48	102D	EOL				
0424	119	2286	0	404	SOL				

OCEANEERING SURVEY SERVICES COS SURVEY LOG									Page No. 4 nertial peed
Job No: 18011 Mission Name	10	25_1		Client: Shell Offshore Inc.			Vessel: M/N Ocean Project Remote Vessel: C-Surveyor III	Survey Equipment: Navigation, HiPAP, D Log	
Date: 12/26/16		Area: MC/DC Blocks: 525-393/441353		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM $2040(200,300,400 \mathrm{kHz})$		
$\begin{aligned} & \text { Time (UTC) } \\ & \text { (}-5 \text { to Local) } \\ & \hline \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \text { Fix } \\ & \text { No. } \end{aligned}$	Line Name			Remarks		
0431	119	2292	5	404	EOL				
0438	209	2289	50	102E	SOL				
0536	209	2289	4	102E	EOL				
0539	042	2287	0	302	SOL				
0545					Shift Change: J. Picard, A. Gates				
0856	281	2253	160	302	EOL				
0902	024	2255	0	412	SOL				
0910	024	2259	5	412	EOL				
0913	204	2261	5	411	SOL				
0920	204	2257	0	411	EOL				
0929	101	2254	160	303A	SOL				
1005	104	2276	132	303A	EOL				
1011	191	2276	5	417	SOL				
1019	191	2286	0	417	EOL				
1026	101	2278	134	303B	SOL				
1101	162	2302	107	303B	EOL				
1109	072	2301	0	416	SOL				
1115	072	2306	5	416	EOL				
1122	161	2303	109	303C	SOL				
1159	222	2315	80	303C	EOL				
1206	312	2317	5	415	SOL				
1213	312	2313	0	415	EOL				

OCEANEERING SURVEY SERVICES COS SURVEY LOG									Page No. 5 nertial peed
Job No: 1801 Mission Name:	10	25_1		Client: Shell Offshore Inc.			Vessel: M/N Ocean Project Remote Vessel: C-Surveyor III	Survey Equipment: Navigation, HiPAP, D Log	
Date: Dec-26-2016		Area: MC/DC Blocks: $525-$ $393 / 441-$ 353		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM 2040 ($200,300,400 \mathrm{kHz}$)		
$\begin{aligned} & \text { Time (UTC) } \\ & \text { (}-5 \text { to Local) } \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \hline \text { Fix } \\ & \text { No. } \\ & \hline \end{aligned}$	Line Name			Remarks		
1221	221	2316	82	303d	SOL				
1256	222	2299	54	303d	EOL				
1303	132	2299	0	414	SOL				
1311	132	2302	5	414	EOL				
1317	222	2300	56	303E	SOL				
1354	222	2296	27	303E	EOL				
1359	299	2298	10	403	SOL				
1413	299	2289	0	403	EOL				
1420	132	2291	0	413	SOL				
1434	132	2298	10	413	EOL				
1441	222	2296	29	303F	SOL				
1517	222	2289	0	303F	EOL				
1525	029	2283	0	203	SOL				
1745					Shift Change: J. Melancon, T. Patin				
1814	294	2257	140	203	EOL				
1816	114	2257	140	202A	SOL				
1842	114	2280	120	202A	EOL				
1850	024	2276	0	410	SOL				
1901	024	2275	8	410	EOL				
1911	114	2277	122	202B	SOL				
1946	207	2297	122	202B	EOL				
1947					Stopped external guidance				

OCEANEERING SURVEY SERVICES COS SURVEY LOG										Page No. 6
Job No: 180110Mission Name: run161225_1				Client: Shell Offshore Inc.				Vessel: M/V Ocean Project Remote Vessel: C-Surveyor III	Survey Equipment: DGPS, Inertial Navigation, HiPAP, Doppler Speed Log	
$\begin{aligned} & \text { Date: } \\ & 12 / 26 / 16 \end{aligned}$		ea: MC/ cks: 525		Survey Unit Meters		Datum: NAD27 Projection: UTM Zone: 16 N		Geophysical Equipment: Edgete $(1.5-10 \mathrm{kHz})$, Edgetech Dual Fr $(120 \& 410 \mathrm{kHz})$, Simrad EM 20	FSSB Profiler $(200,300,400 \mathrm{kHz})$	
$\begin{aligned} & \hline \text { Time (UTC) } \\ & \text { (}-5 \text { to Local) } \\ & \hline \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \text { Fix } \\ & \text { No. } \\ & \hline \end{aligned}$	Line Name				Remarks		
1949						reference 60 m				
1952						mode 2230 m				
1954						sent to 600 m depth				
2042						@ 600m \quad P: -0.6	R: -0.6	SP: 0.8 D: 599.5 m		
2053						on emergency ascent				
2108						on surface - recover A				
2227						in van - split pin in				
2234						download started				
2337						download complete				
2339						down. Battery swap				
0000						Day 12/27/16				
0300						pre dive				
0320						leted pre dive				
0323						in armed state				
0324:29						pin pulled				
0325						in the water				
0326						running n surface				
0327						appears to have dove				
0331						comms established				
0332						tic Towfish in water				
0333						comms established				
0334						comms established				

OCEANEERING SURVEY SERVICES COS SURVEY LOG											Page No. 7 nertial peed
Job No: 1801 Mission Nam	$\begin{aligned} & 10 \\ & \text { e: run1612 } \end{aligned}$	-1		Client: Shell Offshore Inc.				Vessel: MV Ocean Project Remote Vessel: C-Surveyor III		Survey Equipment: DGPS, Inertial Navigation, HiPAP, Doppler Speed Log	
$\begin{aligned} & \hline \text { Date: } \\ & 12 / 27 / 16 \end{aligned}$		ea: MC/ cks: 52 /441- 3		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16 N		Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM 2040 ($200,300,400 \mathrm{kHz}$)			
$\begin{aligned} & \hline \text { Time (UTC) } \\ & \text { (-5 to Local) } \\ & \hline \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \text { Fix } \\ & \text { No. } \end{aligned}$	Line Name				Remarks			
0350					$\begin{array}{lllll}\text { AUV at } 600 \mathrm{~m} & \mathrm{P}:-1.8 & \mathrm{R}: 0.0 & \mathrm{SP}: 0.3 & \mathrm{D}: 599.2\end{array}$						
0359					AUV sent to 1200 m depth						
0406					Course change 180						
0418					AUV at 1200m \quad P:-1.9 \quad R:0.1 $18 \mathrm{SP:0.3} \mathrm{D}: 1199.2$						
0420					Course change 270						
0423					AUV sent to 2100 m depth						
0444					Course change 000						
0453					AUV at 2100 m						
0454					AUV sent to 2250 m depth						
0500					Altitude mode 40 m						
0501					Activated external guidance						
0511	004	2291	100	201	SOL						
0545					Shift Change: J. Picard, A. Gates						
0604	294	2257	140	201	EOL						
0608	114	2255	140	204	SOL						
0900	209	2282	0	204	EOL						
0908	042	2290	1	304	SOL						
1225	281	2256	160	304	EOL						
1242	101	2272	148	301	SOL						
1528	221	2292	12	301	EOL						
1549	029	2284	0	101	SOL						
1745					Shift Change: J. Melancon, T. Patin						

OCEANEERING SURVEY SERVICES COS SURVEY LOG										Page No. 8 Inertial peed
Job No: 1801 Mission Nam	$\begin{aligned} & 10 \\ & \text { e: run161? } \end{aligned}$			Client: Shell Offshore Inc.			Vesse Remot III	M/N Ocean Project Vessel: C-Surveyor	Survey Equipment: Navigation, HiPAP, D Log	
$\begin{aligned} & \hline \text { Date: } \\ & 12 / 27 / 16 \end{aligned}$		Area: MC/DCBlocks: $525-$$393 / 441$ -353		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16N	Geophysical Equipment Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM $2040(200,300,400 \mathrm{kHz})$			
$\begin{aligned} & \text { Time (UTC) } \\ & \text { (-5 to Local) } \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \hline \text { Fix } \\ & \text { No. } \end{aligned}$	Line Name			Remarks			
1916	316	2249	170	101	EOL					
1921	136	2247	170	104	SOL					
2047	204	2289	0	104	EOL					
2040					Stopped external guidance					
2049					Height reference 70m					
2051					Course change 000					
2053					Depth mode 2220m					
2054					AUV sent to 600m depth					
2140					$\begin{array}{llllll}\text { AUV at } 600 \mathrm{~m} & \mathrm{P}:-0.7 & \mathrm{R}: 0.0 & \mathrm{SP}: 0.7 & \mathrm{D}: 599.5\end{array}$					
2146					AUV entered MP line 24					
2155					$\begin{array}{lllll}\text { AUV at } 300 \mathrm{~m} & \mathrm{P}:-0.3 & \mathrm{R}: 0.0 & \mathrm{SP}: 1.5 & \mathrm{D}: 299.5\end{array}$					
2156					AUV on final ascent to surface					
2159					Acoustic Towfish on deck					
2206					AUV on surface - recover AUV					
2256					AUV in van - split pin in					
2259					Data download started					
2327					Data download completed					
2333					CP is down					
0000					New Day 12/28/16					
0112					Begin coring procedures					
0545					Shift change: A. Gates, J. Picard					
1745					Shift change: T. Patin, J. Melancon					

OCEANEERING SURVEY SERVICES COS SURVEY LOG									Page No. 9
Job No: 18011 Mission Name				Client: Shell Offshore Inc.			Vessel: M/V Ocean Project Remote Vessel: C-Surveyor III	Survey Equipment: Navigation, HiPAP,	rtial eed Log
Date: $12 / 29 / 16$		Area: MC/DC Blocks: 525-393/441- 353		Survey Units: Meters		Datum: NAD27 Projection: UTM Zone: 16 N	Geophysical Equipment: Edgetech FSSB Profiler ($1.5-10 \mathrm{kHz}$), Edgetech Dual Frequency SSS (120 \& 410 kHz), Simrad EM $2040(200,300,400 \mathrm{kHz})$		
$\begin{aligned} & \text { Time (UTC) } \\ & \text { (}-5 \text { to Local) } \\ & \hline \end{aligned}$	Heading	Water Depth	$\begin{aligned} & \hline \text { Fix } \\ & \text { No. } \\ & \hline \end{aligned}$	Line Name			Remarks		
0000					New Day 12/29/16				
0545					Shift change: A. Gates, J. Picard				
1745					Shift change: T. Patin, J. Melancon				

APPENDIX D: FGSI SURVEY LOGS

Page 85 of 116

APPENDIX E: SOUND VELOCITY PROFILES \& TIDE CURVES

BeaBird SBE-19 SN: 317 Water Depth: 2340m
Lat: 28.45499100 Lon: -87.38414700 NAD27 UTM 15N
$\begin{array}{ll}\text { X- } 413134.86 m & \text { V. } 3148810.69 m\end{array}$
\qquad

- Measured Sound Velocity Calculated Harmonic Mean

Sound Velocity Profile

Cast 161227A1

December 27, 2016 UTC
SeaBird SBE-19 SN: 3176
Water Depth: 2317 m
Lat: 28.53693800 Lon: - 87.38373990 NAD27 UTM 16N
X: $41353756 \mathrm{~m} \quad$ Y: 3156700.59 m

- Measured Sound Velocity Calculated Harmonic Mean

Goddard Global Ocean Tide Model

Page 111 of 116

Goddard Global Ocean Tide Model
Lat: 28.54339244 Lone-87.91601175

Page 112 of 116

Goddard Global Ocean Tide Model

Goddard Global Ocean Tide Model
Lat: 28.54339244 Lon: -87.91601175

Page 114 of 116

Goddard Global Ocean Tide Model
Lat: 28.54339244 Lon: - 87.91601175

Page 115 of 116

Page 116 of 116

Shell Offshore Inc.

VIA ELECTRONIC MAIL AND FACSIMILE

CNOOCUSGoMCommercial@cnoocltdusa.com
+1 (832) 769-3047

CNOOC Petroleum Offshore U.S.A. Inc.
Attn: CNOOC US GoM Commercial
945 Bunker Hill Road, Suite 1400
Houston, TX 77024

150 N. Daily Ashford Rd
Houston, TX 77079
United States of America
Tel +832-337-0357
Fax +1 8323375646
Email: john.munroe@shell.com

April 13, 2022

SUBJECT: REQUEST FOR LETTER OF NO OBJECTION FOR RYDBERG FLOWLINES TO BE INSTALLED FROM MC 325 to MC393
 NORPHLET AREA DEVELOPMENT
 OFFSHORE GULF OF MEXICO

To Whom It May Concern:
Shell Offshore Inc. ("Shell") and its affiliates are in the process of applying to the Bureau of Safety and Environmental Enforcement ("BSEE") for the installation of the Rydberg flowlines to be installed across Blocks MC 325, DC353, DC397, DC441, MC451, MC 481, MC525, MC393, a portion of which crosses leasehold where you are a co-working interest owner.

In accordance with BSEE requirements, enclosed is a copy of the proposed pipeline route for your review. Updated plats can be provided upon your request, if and when available.

Please indicate that you have no objection to this proposed pipeline installation by signing the letter in the space provided below and returning to my attention. Should you have any questions, please do not hesitate to give me a call at +1 832-337-0357 or send me an email at john.munroe@shell.com.

Kind regards,
SHELL OFFSHORE INC.
By: Shell Exploration \& Production Company, pursuant to applicable Service Level Agreements

John Munroe - Commercial Operations

CONSENT GRANTED THIS 27th DAY OF April, 2022
CNOOC PETROLEUM OFFSHORE U.S.A. INC.

BY:

NAME: Ariel Schneider

TITLE: VP Finance, Production \& Planning

Shell Responses to 2020 NOAA Biological Opinion BOEM/BSEE Request for Information (RFI) Rydberg Installation Permit

Pipeline Installation/Modification Questions:

1. Information on any proposed explosive-severance charges and/or New or Unusual Technology (NUT).

There will be no explosive severance operations and no New and Unusual Technology (NUT), as defined by BSEE, used in these activities.
2. Additional vessel identification and information if you propose use of the vessel's moon pool(s).

Shell's pipelay activities will be conducted using the Deep Energy. The Umbilical will be installed using the Skandi Africa. Pipelay and umbilical support activities will be performed by the Olympic Challenger. The Jumper segments will be installed using the Ocean Evolution or Cade Candies (Or similar pending vessel availability).

Information for the two moon pools is below.
Deep Energy:

- Moon pool dimensions: Pipelay Moonpool - 7.5 m wide $\times 15.2 \mathrm{~m}$ long; ROV Moonpool -4.8 m wide $\times 3.28 \mathrm{~m}$ long
- Hatches: No bottom hatch
- Cameras: Cameras in the moonpool area for monitoring pipelay/moonpool activities Skandi Africa:
- Moon pool dimensions: Moonpool - 9.4 m wide $\times 7.2 \mathrm{~m}$ long
- Hatches: No bottom hatch
- Cameras: Cameras in the moonpool area for monitoring pipelay/moonpool activities Olympic Challenger:
- Moon pool dimensions: Pipelay Moonpool - 7.2 m wide $\times 7.2 \mathrm{~m}$ long and ROV Moonpool - 4.8 m wide $\times 4.8 \mathrm{~m}$ long
- Hatches: No bottom hatch
- Cameras: To be confirmed*

Ocean Evolution:

- Moon pool dimensions: $23^{\prime} \times 23^{\prime}$ square feet
- Hatches: No bottom hatch, with 3 separate sections for the top cover. All 3 sections can be independently removed as needed for the project.
- Cameras: a back-deck camera is available to monitor the moon pool, if the moon pool needs to be used to support the activities.
Cade Candies:
- Moon pool dimensions: $25^{\prime} \times 21^{\prime} 8^{\prime \prime}$ square feet
- Hatches: No bottom hatch
- Cameras: A back deck camera is available for watching the moonpool, if the moon pool needs to be used to support the activities.

Note *: We will not know camera details until we get more information on those vessels as they are third party vessels. However, if we do use those moonpools there is very likely we will have cameras in the area for monitoring work.

3. Information on equipment that may have an entanglement or entrapment risk (e.g., flexible lines/ropes) to ESA-listed species.

The umbilical will be deployed from the installation vessel using a crane wire with deployment rigging (slings/shackles/masterlinks, etc.) connected to the umbilical head. ROVs will be in the water to monitor activities with their cameras and assist with the landing and connection of the ends. The umbilical head will be transferred to a topsides winch and pulled into the Appomattox asset. All rigging will be recovered.

Initiation pile will be deployed using the Olympic Challenger or Deep Energy main crane wire to lower to transfer depth. Pile will be lowered to depth using either the 360 or 150 Te winch wires. ROVs will be in the water to monitor activities with their cameras and assist with the landing and suction/pumping for pile into/out of seabed. Pile will be recovered along with all rigging.

Rigid Flowlines will be deployed using the Deep Energy A\&R wire. ROVs will be in the water to monitor activities with their cameras and assist with the landing of the PLETs. Once the PLETs are landed, all rigging will be recovered to surface on the A\&R. There is no intent to leave any rigging on the structures after installation is complete.

EFL Frames will be deployed using the LCV crane. Those will be landed on the seabed and recovered once the EFLs are installed. ROV will do a visual inspect to ensure no species are on those items prior to recovery. All rigging will be recovered with the frames.

Concrete Mattresses will be deployed through the splash zone using a mattress frame with synthetic slings from the Olympic Challenger Crane for deployment to the seabed. Once the mattresses are installed, the frame will be recovered to surface along with all rigging. ROV will monitor slings during disconnection to endure no entanglement during sling recovery. There is no intent to leave any rigging on the lines after installation is complete.

Sleepers will be installed with a spreader bar and deployment rigging (slings/ shackles/masterlinks, etc.) using the Olympic Challenger crane for lift and deployment through splash zone. ROV will monitor slings during disconnection to endure no entanglement during sling recovery. All rigging will be recovered to surface on the A\&R wire. There is no intent to leave any rigging on the structures after installation is complete.

Note: ROV cages also have cameras to ensure that no species is within the cages prior to recovery.

The vessels used by Shell will comply with the GOM Marine and Trash Requirements in Appendix B and GOM Vessel Strike Avoidance and Protected Species Reporting Requirements in Appendix C of the 2020 NMFS BiOp and all other BOEM/BSEE Regulations.
4. Information on any impact/pile hammers you may require for installation of subsea components. If required, a pin pile clump weight to assist with the installation of the pin piles to full penetration. The clump weight will sit on the top of the pile but will not have any repetitive impact force like seen in hammers. Below is drawing of the existing clump weight. Weight is approximately 40 Te .

5. Details on the proposed decommissioning-in-place of any infrastructure (manifolds, pumps, sleds, PLETs, etc.) or facility other than a pipeline. If an SSTI is present, will the SSTI be abandoned in place or will the SSTI remain in service with another pipeline? N/A
6. Please provide a vicinity map, to support your application under 30CFR§250.1751(a) or §250.1752(a), to include all associated support bases proposed for your operations and provide a statement to note if any vessels supporting your proposed activities, including pipelay, supply, and crew vessels, will require crossing or entering the Bryde's whale area (see attached map).

No vessels will transit the Bryde's whale area.
7. Any additional information associated with your proposed operation s that can assist BOEM in the review of your application as it related to the protection of ESA-listed species and their critical habitat, as outlined in the 2020 Biological Opinion and the applicable Appendices (A, B, C, and J) referenced below. The Biological Opinion can be found here:
https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico. The Appendices may be found here:
(https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico).

Appendix A: No seismic survey activities will take place with these vessels.
Appendix B: Shell will comply with GOM Marine and Trash Requirements in Appendix B 2020 NMFS BiOp and BOEM/BSEE Regulations.

Appendix C: Shell will comply with GOM Vessel Strike Avoidance and Protected Species Reporting Requirements in Appendix C and BOEM/BSEE Regulations.

Appendix J: There will be no explosive severance operations or trawling supporting decommissioning conducted from the vessel that may result in potential for entanglement or entrapment of endangered marine species requiring resuscitation measures. For all other operations, we will apply Appendix J in circumstances where we are advised by NMFS to do so, as long as it can be applied without compromising safety of personnel and operations.
8. NOAA (NMFS) is requesting additional information regarding the Diver Activities. Please provide specific information related to the following:

1. Specific activity diver will be involved in.

There will be no diver activity associated with this activity. The activities are supported by ROVs launched from the back deck of the vessels.
2. How the line will be weighted, moored or attached.

Not applicable
3. Whether there separate descent lines that are also loose or if the divers freedescending/swimming to the activity area.

Not applicable
4. Whether divers and/or tenders would be able to monitor lines.

Not applicable
5. How long lines are expected to be in the water.

Not applicable
6. How many hours/days the activity will last.

Not applicable.

Appendix B

COASTAL ZONE MANAGEMENT PROGRAM CONSISTENCY CERTIFICATION FORMAT

Consistency certification format for all right-of-way pipeline applications that affect Gulf and Atlantic States.

COASTAL ZONE MANAGEMENT PROGRAM CONSISTENCY CERTIFICATION

The proposed activities described in detail in this right-of-way pipeline application comply with the enforceable policies of [Alabama] approved Coastal Management Program(s) and will be conducted in a manner consistent with such Program(s).

Shell Offshore Inc.
Right-of-way Applicant
Buin A. Rith
Certifying Official

January 5, 2023
Date

