NIH ACTIV THERAPEUTICS CLINICAL TRIALS

- I. Overview and Updates
- II. Host Tissue-Directed Therapeutics

NIH Advisory Council to the Director Briefing

December 9, 2021

Rising to the Public Health Challenges of COVID-19 and Beyond: Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)

VISIONARY LEADERSHIP

Providing partnership, dedication, and support to ACTIV Therapeutic Clinical Enterprise

Francis Collins, M.D., Ph.D.

Paul Stoffels, M.D.

- Unparalleled public-private partnership
- Collaborative forum to identify most promising interventions and accelerate clinical testing
 - Launch and open sharing of master protocols for evaluating candidates
 - Improve clinical trial capacity/effectiveness by leveraging infrastructure and expertise from across NIH and non-NIH networks and CROs
- Accelerate evaluation of vaccine candidates to enable rapid authorization or approval
- Identify emerging variants and coordinate data sharing (TRACE WG)
- Unprecedented data sharing between academia and industry

ACTIV enterprise provides pathway and model for future preparedness efforts

NIH ACTIV THERAPEUTICS CLINICAL TRIALS: AT-A-GLANCE

ENROLLMENTS & ACTIVATION

13,813 Patients enrolled into ACTIV trials
700+ Sites in partnership with multiple
networks including ACTG, CONNECTS, DCRI,
INSIGHT, PETAL, CTSN, PCORnet, CTSA, IDeA
Sites, ACTT, and others

PUBLICATIONS

These publications have been **cited 478 times** (Google Scholar)

AGENT REVIEWS & AUTHORIZATIONS

800 + Total agents reviewed by ACTIV Tx-Clinical and CONNECTS WGs Agent Review Panels

Agents fully enrolled and completed testing through the ACTIV Master Protocols

Agents proven efficacious against COVID-19 in analysis of data from ACTIV Trials.

Other priority agents being tested

- EUA ACHIEVEMENTS:
 - Lilly monoclonal approval
 - Brii Bio rolling submission
 - AZ applying for EUA intending to have ACTIV outpatient data noted in the submission package
- Both the Merck and Pfizer compounds being assessed for EUA were originally selected for testing in ACTIV trials
- ACTIV-4 work on heparin and other anticoagulants changed clinical practice

NIH ACTIV THERAPEUTICS MASTER PROTOCOL DESCRIPTIONS

	Master Protocol	Protocol Description	Current Trial Status
	ACTIV-I	 Inpatient, RCT, Double-blind Phase III Master Protocol Host-targeted Immune Modulators NCATS TIN + DCRI + TRI + CRO Target Sample Size (Patients per Arm): 540 	 Trial launched on October 16, 2020 Agent(s) being tested: Abatacept, Cenicriviroc, Infliximab
	ACTIV-2	 Outpatient, RCT, Double-blind Phase II/III Master Protocol Neutralizing Monoclonal Antibodies (nMABs) and Oral Antivirals NIAID ACTG + CRO Target Sample Size (Patients per Arm): I 10 [Phase II] & 600 [Phase III] 	 Trial launched on August 3, 2020 Agent(s) being tested: nMABs (Lilly, Brii Bio, RU-BMS), IFN-beta (Synairgen), camostat (Sagent), nPAB (SAB)
	ACTIV-3	 Inpatient, RCT, Double-blind Phase III Master Protocol Neutralizing Monoclonal Antibodies and other (e.g., protease inhibitor) NIAID INSIGHT + NHLBI PETAL + NHLBI CTSN + VA + CRO Target Sample Size (Patients per Arm): 500 	 Trial launched on August 4, 2020 Agent(s) being tested: nMABs (Lilly, Brii, GSK-Vir, AZ), DARPin (Molecular Partners), protease inh. (Pfizer)
	ACTIV-3B	 Inpatient, RCT, Double-blind Phase III Master Protocol Host-targeted Immune Modulators NIAID INSIGHT + NHLBI PETAL + NHLBI CTSN + VA + CRO Target Sample Size (Patients per Arm): 310 	 Trial launched on April 21, 2021 Agent(s) being tested: Aviptadil (VIP) (NeuroRX) Agents in the Pipeline: Immune Modulators for ARDS

NIH ACTIV THERAPEUTICS MASTER PROTOCOL DESCRIPTIONS

Master Protocol	Protocol Description	Current Trial Status	
ACTIV- 4A	 Inpatient, Pragmatic, Randomized, Open Label Phase III Master Protocol Host-tissue Directed Therapeutics including Anticoagulants, Anti-platelet, other Anti-thrombotics NHLBI CONNECTS Network Target Sample Size (Patients per Arm): 1000 	 Trial launched on September 17, 2020 Agent(s) being tested: LMWH, UFH, P2Y12 Inhibitors (Anti-platelet Agents); 	
ACTIV- 4B	 Outpatient, Randomized, Double-blind Phase III Master Protocol Host-tissue Directed Therapeutics: Anticoagulants, Anti-platelet, other Antithrombotics NHLBI CONNECTS Network Target Sample Size (Patients per Arm): 1750 	 Trial launched on September 17,2020 Agent(s) being tested: Low-dose Aspirin, Prophylactic-dose Apixaban, Therapeutic-dose Apixaban 	
ACTIV- 4C	 Outpatient, Convalescent, RCT, Double-blind Phase III Master Protocol Host-tissue Directed Therapeutics: Anticoagulants, Anti-platelet, other Antithrombotics NHLBI CONNECTS Network Target Sample Size (Patients per Arm): 2660 	 Trial launched on February 9, 2021 Agent(s) being tested: Apixaban 	
ACTIV- 4HT	 Inpatient, Pragmatic, Randomized, Open Label Phase II/III Master Protocol Host-tissue Targeted Therapies (Most focusing on RAAS Pathway Regulation) NHLBI CONNECTS Network Target Sample Size (Patients per Arm): 300+ 	 Trial launched on July 2021 Agent(s) being tested:TXA127,TRV027, Fostamatinib 	

NIH ACTIV THERAPEUTICS MASTER PROTOCOL DESCRIPTIONS

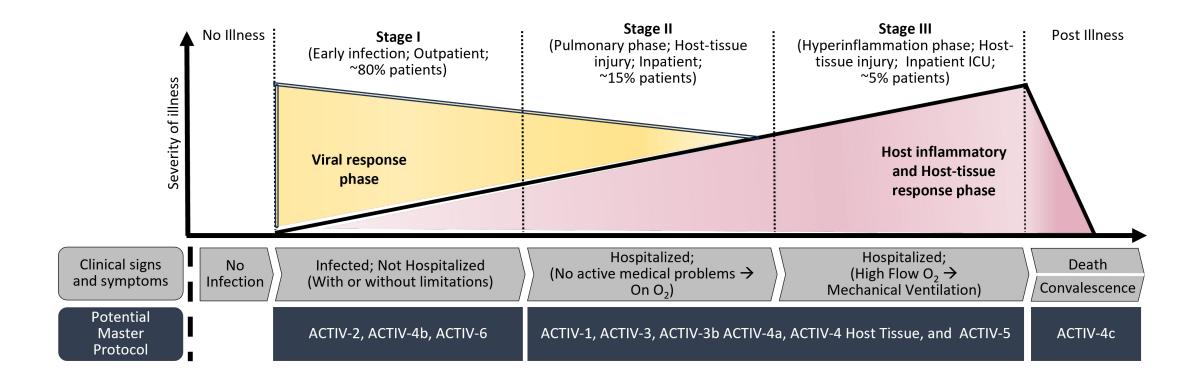
Master Protocol	Protocol Description	Current Trial Status
ACTIV-5	 Inpatient, Randomized, Double-blind Phase II Master Protocol Proof of Concept Study to Identify Promising Immuno Modulators NIAID + CRO Target Sample Size (Patients per Arm): 500 	 Trial launched on October 9, 2020 Agent(s) being tested: Risankizumab, Lenzilumab, Danicopan
ACTIV-6	 Outpatient, RCT, Double-blind Phase III Master Protocol Existing Prescription and Over-the-counter Medications NCATS + DCRI + PCORnet + SignalPath + CRO Target Sample Size (Patients per Arm): 300 	 Trial launch on July 1, 2021 Agent(s) being tested: Ivermectin, fluvoxamine, fluticasone

Status Summary of ACTIV Agents: Completed and Currently Under Study

Continuing Enrollment

Ceased Enrollment

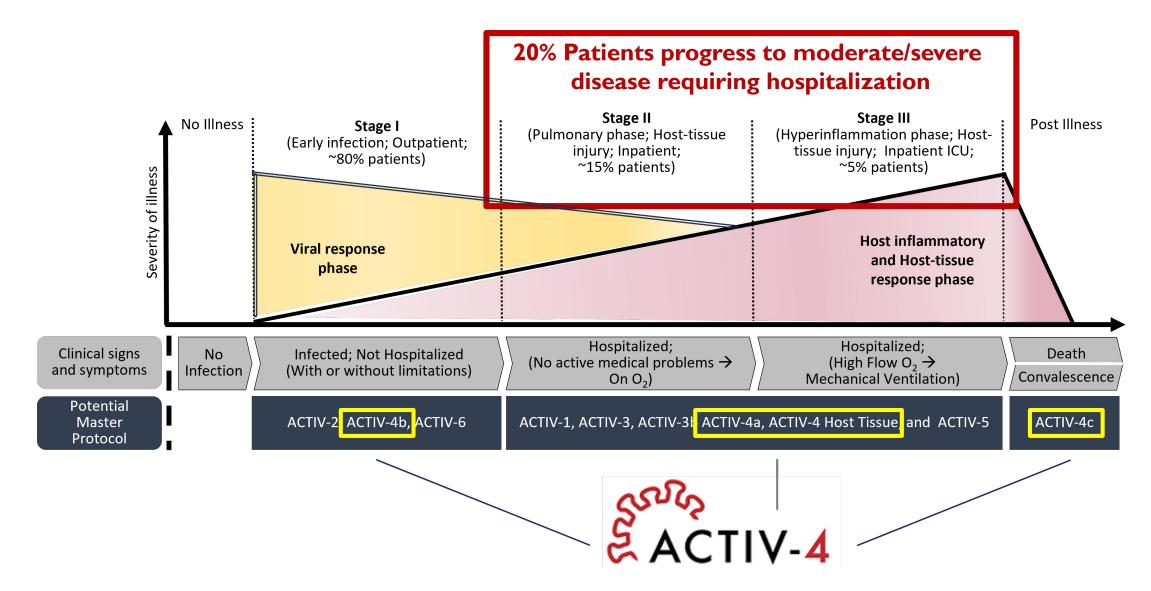
	Reviewed for Efficacy / Futility	(due to futility / low clinical value)	(i.e., passed interim futility assessment)	Completed Enrollment
ACTIV-I		• Cenicriviroc ¹	• Infliximab • Abatacept	
ACTIV-2/2B		• AZD7442 (IM)* • AZD7442 (IV)* • Camostat Mesylate ¹ • BMS-986414/BMS-986413 ¹	• SAB-185 • SNG001 IFN-beta	• Brii-196/Brii-198 ² • LY-CoV-555 ²
ACTIV-3/3B	Aviptadil and/or Remdesivir Pfizer PF-07304814	 LY-CoV-555¹ Brii-196/Brii-198¹ VIR-7831¹ DARPin MP0420¹ 		• AZD7442 (IV) (awaiting topline data)
ACTIV-4A		 Therapeutic Heparin and P2Y12 Inhibitors in Moderately-ill Pts¹ 	 Prophylactic Heparin and P2Y12 Inhibitors in Critically-ill Pts 	 Un-fractionated and Low Molecular Weight Heparin²
ACTIV-4B		• Aspirin¹ • Apixaban¹		
ACTIV-4C			• Apixaban	
ACTIV-4HT	TXA127TRV027Fostamatinib			
ACTIV-5	• Danicopan		• Lenzilumab	• Risankizumab <i>(awaiting topline data)</i>
ACTIV-6	FluvoxamineFluticasone		• Ivermectin	


^{*}Enrollment ceased at company's request

Enrolling But Not Yet

¹Denotes agent lack of efficacy

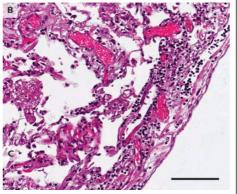
²Denotes proven agent efficacy

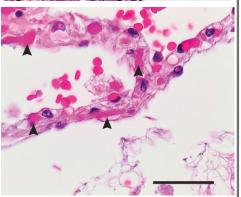

NIH ACTIV CLINICAL TRIALS TARGETING STAGES OF DISEASE

Iterative learning process: Determining which therapeutic strategies work/don't work in which clinical setting/stage of disease/patient group

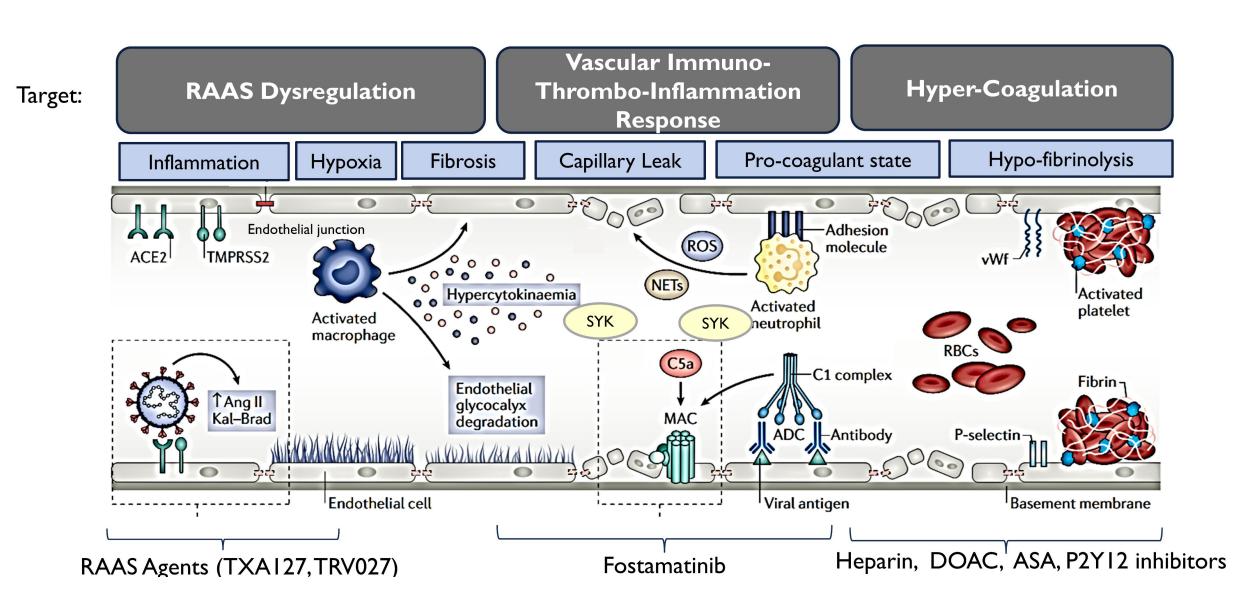
NIH ACTIV CLINICAL TRIALS TARGETING STAGES OF DISEASE

Host Tissue-Directed Therapeutics: A Critical Component of COVID-19 and Pandemic Preparedness Armamentarium

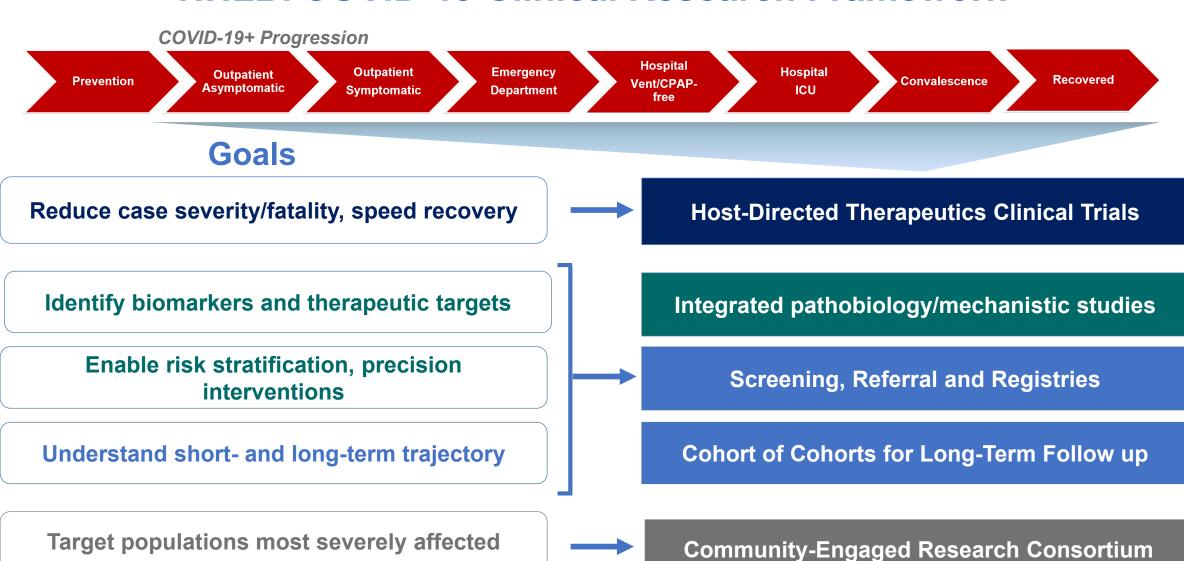

- Majority (~80%) of SARS-CoV-2 infected patients experience mild to moderate symptoms resolving w/in 6–10 days
- ~20% of patients develop severe illness w/ typical interstitial bilateral pneumonia and ARDS; associated w/high fatality rate
- Progression to more severe disease due to multi-tissue/organ dysfunction
 - Endothelial dysfunction, systemic coagulopathy and complement-induced thrombosis with development of systemic microangiopathy and thromboembolism
- **Host tissue and organ targets:** lung epithelium, vascular endothelium, brain, kidney, gut, heart, and eye (among others)
- Therapeutic interventions targeting host-tissue responses are a critical complement to direct anti-virals and passive immune strategies



COVID-19 MULTI-TISSUE/MULTI-ORGAN INJURY: PATHOGENIC PATHWAYS


Host-tissue example: Lung

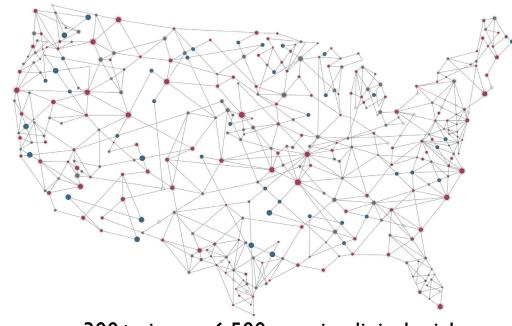
- Progressive COVID-19 characterized by severe inflammatory response, hypoxia, multi-tissue/organ injury due to direct and indirect viral mediated effects; high endothelial cell expression of ACE2
 - Vascular endotheliopathy and prothrombotic/coagulant state with high rates of thrombotic complications
- Poor prognosis consistently associated with dysregulation of:
 - Renin-angiotensin-aldosterone system (RAAS) leading to oxidative stress, vasoconstriction, endothelial dysfunction, release of P-selectin, and vWF activation
 - Immune response activating complement, neutrophil extracellular traps, and mitogen activated protein kinase pathways
 - Coagulation cascade, thrombosis, and fibrinolysis throughout macro- and microvasculature


Angiotensin 1-7

ACTIV-4 Host Tissue-Directed Therapeutics

Targeting Host-tissue Dysfunction Following SARS-CoV-2 Infection

NHLBI COVID-19 Clinical Research Framework

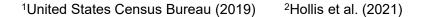


CMINECTS

"Collaborating Network of Networks for Evaluating COVID-19 and Therapeutic Strategies"

Goal: Leverage and expand NHLBI's national clinical research networks to rapidly and nimbly respond to emerging research and clinical needs for COVID-19

- Part of NIH ACTIV
- Collaboration with NINDS, other ICs
- Leveraging existing assets, data and studies and forging new partnerships
- Comprehensive, expandable platform linking trial network, registries, mechanistic studies, and cohorts
- Facilitating case finding, clinical trial accrual, longitudinal studies, and community engagement



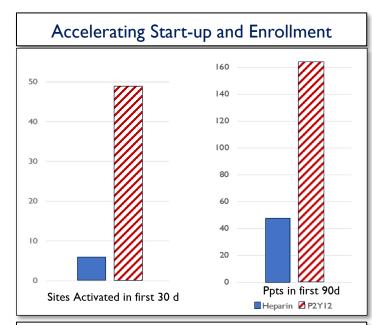
~300+ sites, ~ 6,500 ppts in clinical trials, ~58,000 ppts in longitudinal studies

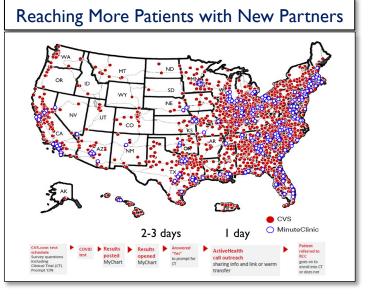
ENGAGEMENT AND PARTICIPATION OF DIVERSE POPULATIONS

Enriching enrollment of disproportionately affected communities by leveraging community-engagement, multi-disciplinary partnerships across the NIH, and collaboration with patient groups

	% U.S. Population ¹	% U.S. COVID Cases ²	% Ppts in CONNECTS Clinical Trials
Hispanic / Latinx	18.5	27.3	25
Black	13.4	16.4	22
Asian	5.9	2.4	3
Native Hawaiian & Pacific Islander	0.2	0.5	0
American Indian / Alaska Native	1.3	1.4	I

HOST TISSUE-DIRECTED CLINICAL TRIAL PLATFORM STRATEGY


REMAP-CAP Trial
Non-Anticoagulation
Therapy Domains


REMAP-CAP Trial
Anticoagulation
domain

ACTIV-4A
Multiplatform
RCT
Data Integration
w/Separate DSMB

ACTIV-4A
Trial

- Collaborating with and leveraging international studies examining same classes of agents:
 - Data integration
 - DSMB collaboration
- Learning system: e.g., strategies to enhance trial start up and completion:
 - I0-fold increase # sites activated and 4-fold increase # participants
 - Reaching more patients throughnew partners: Outreach through local pharmacies (e.g., CVS)

ACTIV-4A: A Phase III Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of Antithrombotic and Additional Strategies in Hospitalized Adults with COVID-19

Prevention

Outpatient Symptomatic

Outpatient Symptomatic

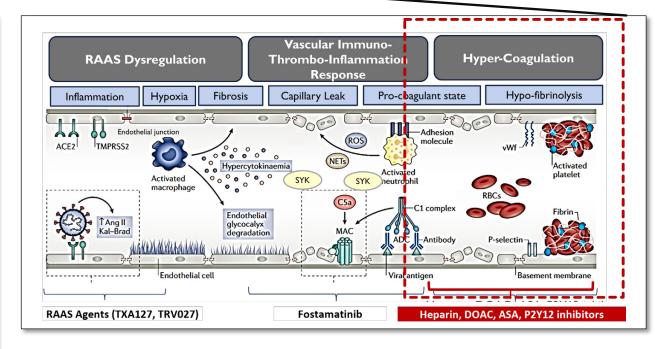
Department

Hospital Hospital Vent/CPAP-free

Convalescence

Recovered

Patient Population: Moderately and severely ill hospitalized patients (+/- ventilatory support)


Interventions/Agents: Heparin, P2Y12 Inhibitors; (Planned: P-Selectin

inhibitor (Crizanlizumab,) SGLT2 Inhibitor)

Primary Endpoint: Organ Support Free Days (OSFD)

Secondary Endpoints:

- Death, respiratory support, cardiovascular support, renal replacement therapy
- Composite endpoint (discharge or 28 days, whichever occurs first):
 - Death, PE, systemic arterial thromboembolism, MI, ischemic stroke
- Other Secondary Endpoints:
 - Acute kidney injury, 1° & 2°endpoint components, death during hospitalization, WHO clinical scale, 90-day mortality

Does targeting the pro-thrombotic/pro-coagulant state and endotheliopathy of COVID-19 improve clinical outcomes for hospitalized patients?

ACTIV-4A: A Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of Antithrombotic and Additional Strategies in Hospitalized Adults with COVID-19

Prevention

ESTABLISHED IN 1812

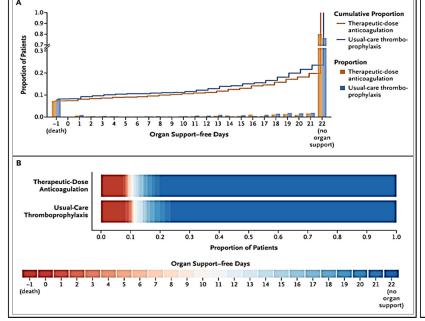
Outpatient Asymptomatic

Outpatient Symptomatic

Emergency Department

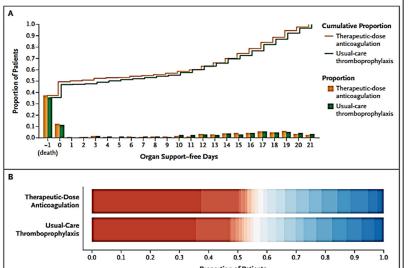
Hospital Vent/CPAP-free

Hospital ICU


Convalescence

Recovered

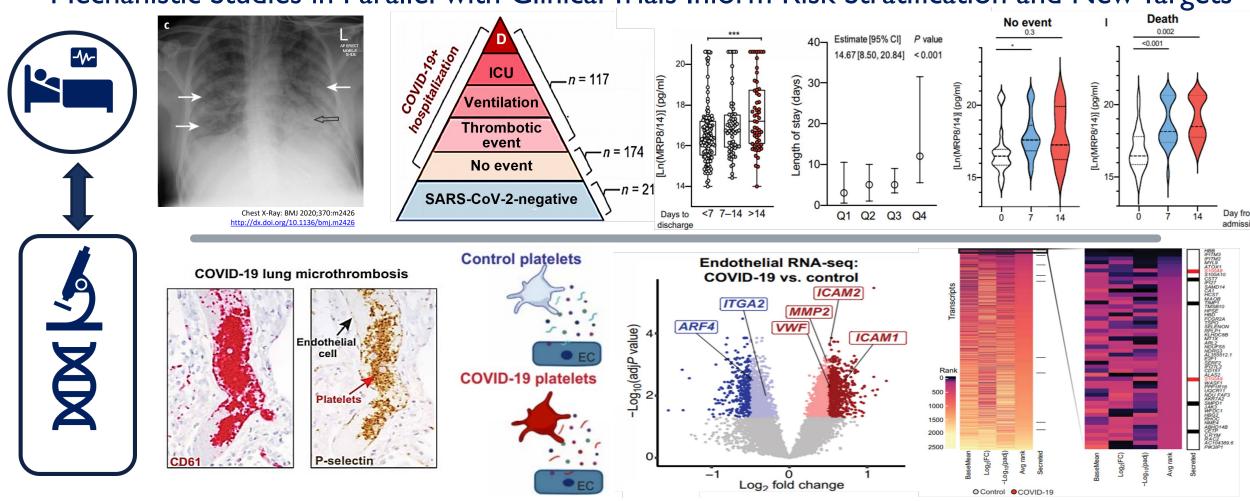
AUGUST 26, 2021


Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19

ESTABLISHED IN 1812 AUGUST 26, 2021 VOL. 385 NO. 9

Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19

Organ Support-free Days


Intervention: Prophylactic or therapeutic dose Heparin

Therapeutic-dose anticoagulation improved
survival without need for
organ support in
moderately ill (noncritical) hospitalized
patients but not in
critically ill patients

Mechanistic Studies in Parallel with Clinical Trials Inform Risk Stratification and New Targets

Demonstrated that platelet-derived factors promote an inflammatory hypercoagulable phenotype, and are significant contributors to poor clinical outcomes in COVID-19 patients

Testing anti-platelet agents

ACTIV-4HT: A Phase III Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of RAAS and other HT-directed Agents in Hospitalized Adults with COVID-19

Prevention

Outpatient Symptomatic

Outpatient Symptomatic

Department

Hospital Hospital Vent/CPAP +

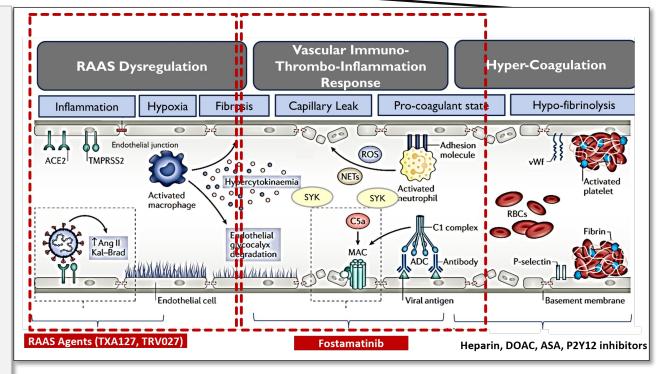
Convalescence

Recovered

Patient Population: Moderately and severely ill adult hospitalized patients treated with oxygen for hypoxemia

Interventions/Agents (Arms):

Patients on O₂


- Renin-Angiotensin-Aldosterone System (RAAS) Agents:
 - TXA127 and TRV027
- Inhibition of vascular inflammation:
 - Fostamatinib (spleen tyrosine kinase (SYK) inhibitor)
- Placebo

Target enrollment: 300 per arm

Primary Endpoint: Oxygen-free days from randomization through

28d

Secondary Endpoint: Mortality, WHO 8-point ordinal scale, support-free days through 28d

https://clinicaltrials.gov/ct2/show/NCT04924660?term=NCT04924660&draw=2&rank=1

Can RAAS-targeting agents and/or Fostamatinib prevent COVID-19 host-tissue responses: vascular injury, inflammation, fibrosis, capillary leakage, and thrombosis?

ACTIV-4HT: A Phase III Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of RAAS and other HT-directed Agents in Hospitalized Adults with COVID-19

Prevention Outpatient Symptomatic Emergency Hospital Hospital Vent/CPAP + Convalescence Recovered

Hospitalized Patients
On Oxygen

Intervention: Fostamatinib (Spleen tyrosine kinase inhibitor)

Builds upon Phase II NHLBI study:

Clinical Infectious Diseases

MAJOR ARTICLE

Fostamatinib for the Treatment of Hospitalized Adults With Coronavirus Disease 2019: A Randomized Trial

Jeffrey R. Strich, ^{1,2} Xin Tian, ³ Mohamed Samour, ³ Christopher S. King, ⁴ Oksana Shlobin, ⁴ Robert Reger, ³ Jonathan Cohen, ⁵ Kareem Ahmad, ⁴ A. Whitney Brown, ⁴ Vikramjit Khangoora, ⁴ Shambhu Aryal, ⁴ Yazan Migdady, ³ Jennifer Jo Kyte, ³ Jungnam Joo, ³ Rebecca Hays, ⁴ A. Claire Collins, ⁴ Edwinia Battle, ⁴ Janet Valdez, ^{2,3} Josef Rivero, ^{2,3} Ick-Ho Kim, ^{2,3} Julie Erb-Alvarez, ^{2,3} Ruba Shalhoub, ³ Mala Chakraborty, ³ Susan Wong, ³ Benjamin Colton, ⁶ Marcos J. Ramos-Benitez, ^{1,8} Seth Warner, ¹ Daniel S. Chertow, ^{1,2,7} Kenneth N. Olivier, ³ Georg Aue, ³ Richard T. Davey, ⁷ Anthony F. Suffredini, ¹ Richard W. Childs, ^{2,3,*} and Steven D. Nathan ^{4,*}

Phase II Trial of Fostamatinib:
Safe in hospitalized patients requiring
oxygen and associated w/ trend to clinical
and biochemical improvement (esp. in
severely ill patients)

ACTIV-4B: COVID-19 Outpatient Thrombosis Prevention Trial: A Multi-center Adaptive Randomized Placebo-controlled Platform Trial Evaluating the Efficacy and Safety of Anti-thrombotic Strategies in COVID-19 Adults Not Requiring Hospitalization at Time of Diagnosis

Prevention

Outpatient Asymptomatic

Outpatient **Symptomatic**

Emergency Department

Hospital Vent/CPAP-free Hospital ICU

Convalescence

Recovered

Clinically Stable Symptomatic Outpatients

JAMA | Original Investigation

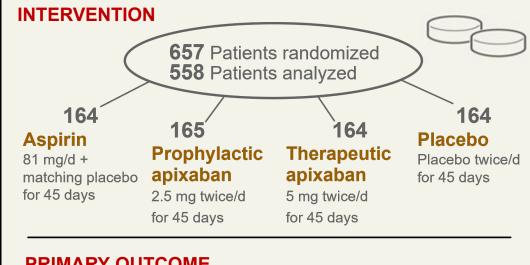
Effect of Antithrombotic Therapy on Clinical Outcomes in Outpatients With Clinically Stable Symptomatic COVID-19

The ACTIV-4B Randomized Clinical Trial

JAMA November 2, 2021 Volume 326, Number 17

POPULATION

388 Women **269 Men**



Outpatients with symptomatic COVID-19, platelet count >100,000/mm³, and estimated glomerular filtration rate >30 mL/min/1.73m² Median age: 54 years

LOCATIONS

52 Sites in the US

PRIMARY OUTCOME

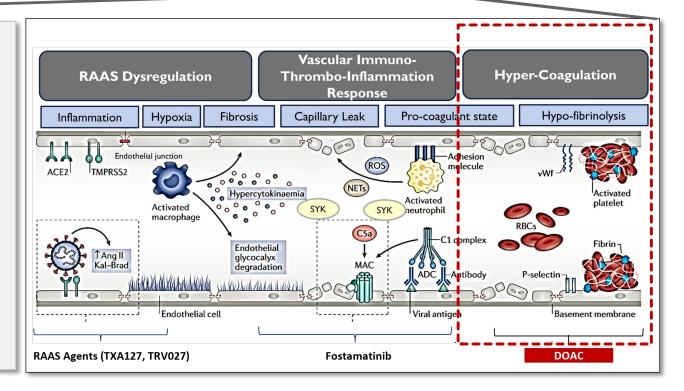
Composite of all-cause mortality, symptomatic venous or arterial thromboembolism, myocardial infarction, stroke, or hospitalization for cardiovascular or pulmonary cause

Anti-thrombotic prophylaxis (ASA, **DOAC)** is not indicated to reduce adverse cardiopulmonary outcomes in symptomatic but clinically stable **COVID-19 outpatients**

ACTIV-4C: A Phase III Multicenter, Adaptive, Randomized Platform Trial Evaluating the Safety and Efficacy of Antithrombotic strategies in COVID-19 Patients Following Hospital Discharge

Prevention Outpatient Symptomatic Emergency Department Vent/CPAP-free Hospital ICU Convalescence Recovered

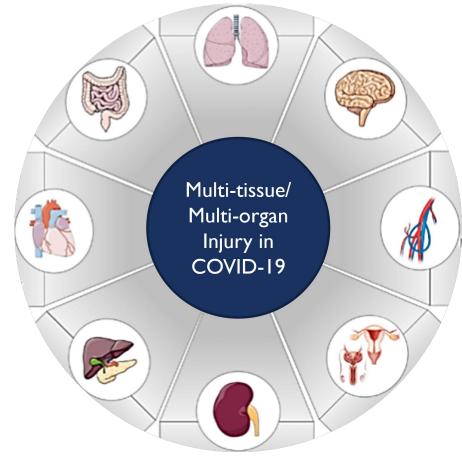
Intervention/Agent: Apixaban


Patient Population: Enrolling adults > 18 years of age with COVID-19 who are hospitalized ≥ 48 hours and ready for discharge

Primary Endpoint: Thrombotic Event; Binary composite endpoint of venous and arterial thrombotic complications and all-cause mortality

Secondary Endpoint: Individual outcomes of the composite primary endpoint, the time-to-event for the composite primary endpoint, and a clinical rank-based score

Clinicaltrials.gov:


https://clinicaltrials.gov/ct2/show/NCT04650087

Can anti-thrombotic therapy in the post-acute setting prevent thrombo-embolic events and improve survival after hospital discharge?

Development of Host Tissue-Directed Therapeutics: Vital to Future Pandemic Preparedness

- I. Initial phase of a viral pandemic: specific anti-viral agents (i.e. vaccines, anti-virals, or monoclonals) not readily available
- 2. Later phases: Even in presence of specific antiviral reagents, delays in effective protection to all components of the population
- 3. Subsequent phase of a viral pandemic: Pathogen evolves, is able to evade specific antigen recognition upon which vaccine and passive immunization strategies rely, and/or is able to circumvent mechanisms of, for example, specific protease inhibitors
- 4. Post-acute infection phase may be associated with significant host tissue sequelae which will require monitoring and development of therapeutic and prophylactic interventions

Adapted from: Front. Physiol., 28 January 2021; https://doi.org/10.3389/fphys.2021.593223

