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Abstract

The study of genomic organization and regulatory elements of rRNA genes in

metazoan paradigmatic organisms has led to the most accepted model of rRNA

gene organization in eukaryotes. Nevertheless, the rRNA genes of microbial

eukaryotes have also been studied in considerable detail and their atypical

structures have been considered as exceptions. However, it is likely that these

organisms have preserved variations in the organization of a versatile gene that

may be seen as living records of evolution. Here, we review the organization of the

main rRNA transcription unit (rDNA) and the 5S rRNA genes (5S rDNA). These

genes are reiterated in the genome of microbial eukaryotes and may be coded

alone, in tandem repeats, linked to each other or linked to other genes. They may

be found in the chromosome or extrachromosomally in linear or circular units.

rDNA coding regions may contain introns, sequence insertions, protein-coding

genes or additional spacers. The 5S rDNA can be found in tandem repeats or

genetically linked to genes transcribed by RNA polymerases I, II or III. Available

information from about a hundred microbial eukaryotes was used to review the

unexpected diversity in the genomic organization of rRNA genes.

Introduction

The most recent phylogenetic model for relationships among

eukaryotes clusters them into six supergroups, probably

monophyletic (Simpson & Roger, 2004; Adl et al., 2005).

Microbial eukaryotes are found in all six groups and have

considerable morphological, ultrastructural and genetic diver-

sity. Several unique features have been described in these

organisms, such as trans-splicing and RNA editing in trypa-

nosomatids (Madison-Antenucci et al., 2002; Haile & Papa-

dopoulou, 2007) as well as DNA splicing and rearrangements

in the ciliate Tetrahymena (Prescott, 2000). Microsporidia

(Encephalitozoon cuniculi) possess genomes in the size range

of bacteria (Keeling & Slamovits, 2004), while the genomes of

dinoflagellates lack histones and nucleosomes (Moreno Dı́az

de la Espina et al., 2005). Cryptomonad and chlorarachnio-

phyte unicellular algae conserve a relict miniaturized nucleus

of a formerly independent alga (nucleomorph) (Cavalier-

Smith, 2002) and specialized infection organelles (rhoptries

and micronemes) are present in apicomplexans such as

Plasmodium (Kats et al., 2006) and Toxoplasma parasites

(Boothroyd & Dubremetz, 2008). Unusual characteristics

extend to the organization of rRNA genes, which evidence

the peculiarities, diversity and divergence of the genome

structure in microbial eukaryotes. An overview of the biology

of key microbial eukaryotes is given in Box 1.

The typical eukaryotic translation machinery, the ribosome,

is composed of two subunits with four rRNA species and 4 70

proteins. The large subunit (LSU) contains the 28S, the 5.8S and

the 5S rRNAs. The small subunit (SSU) contains the 18S rRNA

(SSU rRNA). The four rRNA mature molecules are coded in

two rRNA genes transcribed by two different RNA polymerases.

The 18S, 5.8S and 28S rRNAs are coded in a single transcription

unit called a ribosomal cistron or the main transcription unit,

transcribed by RNA polymerase I (pol I). The 5S rRNA gene is

not usually linked to the ribosomal cistron and is transcribed by

pol III (Mandal, 1984; Paule & White, 2000).

rRNA genes were among the first genes to be studied in

detail due to their highly repetitive nature, ease of manip-

ulation and biological importance (Miller & Beatty, 1969;
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Box 1. Characteristics of some microbial eukaryotes

We used the most recent and accepted classification of eukaryotes, based on multiple gene molecular phylogenies and structural analyses. This system divides
eukaryotes into six supergroups: Amoebozoa, Opisthokonta, Rhizaria, Plantae, Chromalveolata and Excavata (Simpson & Roger, 2004; Adl et al., 2005; Dacks
et al., 2008). Here, we describe key microorganisms of each supergroup (Margulis & Schwartz, 2000).

1. AMOEBOZOA: Organisms that show amoeboid locomotion with pseudopodia.
Pelomyxa palustris: Giant anaerobic amoeba that contains three types of bacterial endosymbionts that replace the functions of some lacking organelles such as
the mitochondria.
Acanthamoeba castellanii (Acanthamoebidae): Freeliving soil amoeba.
Entamoeba histolytica (Entamoebida): Uninucleate amitochondriate amoeba that infects the intestine of animals, causing amoebiasis.
Physarum polycephalum (Eumycetozoa, Myxogastria): Amoeboid cells that can differentiate into fungus-like reproductive structures. During its life cycle, a
diploid zygote divides repeatedly to form a multinucleated cytoplasmic mass called the plasmodium. Under dry conditions, the plasmodium may mature into
spore-producing organs.
Didymium iridis (Eumycetozoa, Myxogastria): Plasmodial slime mold.
Dictyostelium discoideum (Eumycetozoa, Dictyostelia): Land-dwelling cellular slime mold. Independent amoebas may aggregate into a slimy mass (slug) that
eventually transforms into a reproductive body that produces spores.

2. OPISTHOKONTA: Organisms with a single posterior flagellum in at least one stage of the life cycle.
Fungi: Dominant osmotrophs that play crucial roles as decomposers and as symbionts or parasites.

Ascomycota: Hold a microscopic reproductive structure called ascus.
Pneumocystis carinii (Ascomycota, Taphrinomycotina): Causes fatal pneumonia in immunocompromised humans.
Schizosaccharomyces pombe (Ascomycota, Taphrinomycotina, Schizosaccharomycetes): Fission yeast.
Saccharomyces cerevisiae (Ascomycota, Saccharomycetes): Budding yeast that ferments sugars to ethyl alcohol.
Candida albicans (Ascomycota, Saccharomycetes): Causes infections in humans.
Microsporidia: Intracellular asexual parasites that lack mitochondria. The microsporan resting stages are the chitinous spores, which contain a polar
filament and an infective body.
Encephalitozoon cuniculi: Parasites of warm-blooded vertebrates, holds one of the smallest known eukaryotic genomes (2.9 Mbp) (Biderre et al., 1997).
Nosema bombycis: causes disease in insects.

3. RHIZARIA: Organisms with pseudopodia of various types.
Foraminifera: Planktonic or benthic free-swimming organisms that have pore-studded shells. They show nuclear dimorphism and complex life cycles.

4. PLANTAE (ARCHAEPLASTIDA): Organisms that hold a photosynthetic plastid derived from a primary endosymbiosis with a cyanobacterium.
Rhodophyceae (Red algae): Mostly marine organisms that hold rhodoplasts (red plastids).

Cyanidoschyzon merolae: Unicellular organisms that inhabit sulfate-rich hot springs.
Chloroplastida: Organisms that hold green chloroplasts.

Acetabularia mediterranea (Chlorophyta, Ulvophyceae): Syncytial green algae.
Chlorella (Chlorophyta, Trebouxiphyceae).
Chlamydomonas (Chlorophyta, Chlorophyceae).

5. CHROMALVEOLATA: Organisms that contain a plastid that comes from a secondary endosymbiosis with an ancestral archaeplastid.
Bacillariophyta (Stramenopiles): Single cells or colonies covered by an elaborate, symmetrical two-part shell.
Alveolata:

Dinoflagellata (Dinozoa): Mostly unicellular marine plankton, holding two undulipodia and complex rigid walls (tests). Some species produce toxins.
Pfiesteria piscicida (Dinophyceae, Peridinophyceae).
Ciliophora: Unicellular organisms covered with cilia (short undulipodia). They have two types of nuclei: small genetic micronuclei (MIC, containing
standard chromosomes) and large transcriptionally active macronuclei (MAC, it develops from the micronuclei).
Euplotes (Intramacronucleata, Spirotrichea, Hypotrichia).
Paramecium (Intramacronucleata, Oligohymenophorea, Peniculia).
Tetrahymena (Intramacronucleata, Oligohymnophorea, Hymenostomatia).
Apicomplexa: Specialized obligate intracellular parasites named for the ‘apical complex’ that hold structures such as rhoptries and micronemes, the
specialized machinery used for invasion (Kats et al., 2006; Boothroyd & Dubremetz, 2008).
Plasmodium (Aconoidasida, Haemosporida): The causative agent of malaria exists in association with an invertebrate host (sexual stage in the mosquito)
and a vertebrate host (asexual stage). Plasmodium falciparum and Plasmodium vivax infect human red blood cells, while Plasmodium berghei infects rodents.
Babesia bovis (Aconoidasida, Piroplasmorida).
Theileria parva (Aconoidasida, Piroplasmorida).
Cryptosporidium (Conoidasida, Coccidiasina).
Eimeria (Conoidasida, Coccidiasina).

6. EXCAVATA: Organisms that typically have a suspension-feeding groove and flagella.
Giardia intestinalis (Fornicata, Eopharyngia, Diplomonadida, Giardiinae): A parasite of the small intestine of vertebrates through infective cysts. It has two
transcriptionally active karyomastigonts (nuclei attached to undulipodia by thin fibers), and lacks mitochondria and the Golgi apparatus.
Trichomonas vaginalis (Parabasalia, Trichomonadida): Amitochondriate parasite causative of trichomoniasis in humans. The organelles known as parabasal
bodies are involved in the synthesis, storage and transport of proteins.
Trichomonas tenax (Parabasalia, Trichomonadida): Infects the human mouth.
Tritrichomonas foetus (Parabasalia, Trichomonadida): Infects the urogenital tract of cattle.
Naegleria gruberi: (Heterolobosea, Vahlkampfiidae) Soil and freshwater freeliving amoeba that transforms into unduliopodiated cells.
Euglena gracilis (Euglenozoa, Euglenida, Euglenea): Unicellular organism living in stagnant water. It can be found with or without chloroplasts.

Kinetoplastea (Euglenozoa): Contain a large mitochondrion called a kinetoplast.
Trypanosoma (Metakinetoplastina, Trypanosomatida): The change of host and some differentiation steps are associated with characteristic movements of
the kinetoplast along the cell. Trypanosoma brucei infection (transmitted to humans through the bite of infected tsetse flies) causes the sleeping sickness,
while Trypanosoma cruzi infection (transmitted through the bite of infected reduviid bugs) leads to Chagas disease in humans.
Leishmania (Metakinetoplastina, Trypanosomatida): Parasite responsible for the leishmaniasis disease. It multiplies within the lysosomes of vertebrate
macrophages and within the digestive system of sand-flies.
Bodo saltans (Metakinetoplastina, Eubodonida): Freeliving bi-undulipodiated cell.
Crithidia (Metakinetoplastina, Trypanosomatida).

Trypanoplasma (Metakinetoplastina, Parabodonia).
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Long & Dawid, 1980; Sollner-Webb & Mougey, 1991). The

thorough study and description of genomic organization

and regulatory elements in the rRNA genes of Xenopus,

Drosophila and mouse led to the most accepted model of

rRNA gene organization in eukaryotes (Long & Dawid,

1980; Mandal, 1984; Sollner-Webb & Mougey, 1991) (Fig.

1). The rRNA genes of microbial eukaryotes have also been

intensively studied, although they were considered to be the

exception to the rule, as their organization differs from the

general models (Long & Dawid, 1980; Mandal, 1984). Here,

we focus on the rRNA gene organization of microbial

eukaryotes where many examples of gene diversity can be

found. This work also summarizes the variability of motifs

present in the rDNA intergenic region (IGR), which may

include general and species-specific elements. For simplicity,

in this review, the ribosomal cistron is referred to as rDNA

and the term 5S rDNA is used for the 5S rRNA gene.

Overview of the eukaryotic rRNA genes

The ribosomal cistron (rDNA)

In most species, the rDNA is present in multiple copies

organized as tandem head-to-tail repeats. The rDNA unit is

composed of a transcribed region and an IGR (also called

the intergenic spacer) consisting of a nontranscribed spacer

(NTS) 2–30 kbp long and an external transcribed spacer.

The NTS contains most of the regulatory elements for

transcription, while the external transcribed spacer is part

of the primary transcript (pre-rRNA, 7–14 kb long) (Soll-

ner-Webb & Mougey, 1991) (Fig. 1).

Several regulatory elements may be found in the IGR such

as enhancers, spacer promoters, a proximal terminator and

the gene promoter. This region may also contain several

repetitive sequences that may improve the transcription

efficiency, with additive effects (Paule & White, 2000). A

schematic representation of the Xenopus laevis rDNA is

shown in Fig. 1a and b as an example of the ‘typical’

eukaryotic rDNA organization (Sollner-Webb & Mougey,

1991). The rDNA pol I core promoter and other nonre-

peated rDNA regulatory elements have been described and

studied in detail in some unicellular eukaryotes such as

Trypanosoma cruzi, Acanthamoeba castellanii and yeast

(Kownin et al., 1985; Neigeborn & Warner, 1990; Wai et al.,

2000; Figueroa-Angulo et al., 2006).

Transcription of the rDNA proceeds from the promoter

through the 50 external transcribed spacer – 18S rRNA –

internal transcribed spacer-1 (ITS-1) – 5.8S rRNA – ITS-2

and 28S rRNA, until pol I comes across a transcription

termination signal (Long & Dawid, 1980). In most cases, the

rDNA primary transcript is post-transcriptionally processed

in three rRNA mature molecules: 18S, 5.8S and 28S, result-

ing from the elimination of the external transcribed spacers

ITS-1 and ITS-2 (Fig. 1) (Long & Dawid, 1980). Additional

processing of the rRNAs into several smaller molecules has

also been described. As most eukaryotic LSU rRNAs (eLSU

Fig. 1. General organization of the ribosomal main transcription unit (rDNA) and 5S rDNA. (a) Schematic representation of Xenopus laevis rDNA. About

600 U of the ribosomal cistron are encoded in the chromosome in head-to-tail tandem repeats. Each unit contains a coding region (red) and an IGR. (b)

A single unit of the X. laevis rDNA. The 18S, 5.8S and 28S rRNA molecules are transcribed as a single RNA precursor that is post-transcriptionally

processed to produce the mature rRNA molecules. Transcription regulatory elements for RNA polymerase I are found in the NTS: tandem-repeated

sequences (R), spacer promoters (SP), transcription terminators (T) and the promoter (P). The IGR comprises both the NTS and the ETS. (c) Organization

of somatic 5S rDNA in X. laevis. The 5S rDNA is organized in tandem head-to-tail repeats that include a coding region (green box) and an intergenic

sequence (black line). The 5S rDNA promoter is internal to the coding region (light green box). Arrows represent the transcription start point. ETS,

external transcribed spacer.

FEMS Microbiol Rev 34 (2010) 59–86 c� 2009 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

61Ribosomal RNA genes in eukaryotic microorganisms

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/34/1/59/590747 by guest on 18 April 2024



rRNAs) are fragmented by removal of ITS-2, the eLSU rRNA

should be defined as 5.8S128S rRNA. Because the term LSU

rRNA has been used as equivalent to bacterial 23S rRNA,

here we refer to the 5.8S128S rRNA as eLSU rRNA.

The 5S rRNA gene (5S rDNA)

The 5S rDNA is reiterated in the eukaryotic genome in

tandem head-to-tail arrays (Paule & White, 2000) (Fig. 1c).

The 5S rDNA promoter (Internal Control Region) is found

downstream of the transcription start point and within the

transcribed region. Upstream regulatory elements can also

be found in some 5S rDNAs that may be necessary for

transcription. The Internal Control Region is sufficient for

transcription of 5S rRNA in Xenopus (Bogenhagen et al.,

1980; Sakonju et al., 1980) whereas in Saccharomyces cerevi-

siae two upstream regulatory elements (start site element

and upstream promoter element) are necessary for its

efficient transcription in vivo (Lee et al., 1997).

Redundancy and relative ratio of the rRNA genes

rRNA genes are reiterated in almost every eukaryotic

genome studied, and the gene copy number is maintained

at a characteristic constant level for each organism. In most

organisms, not all of the rDNA copies are transcribed

(Conconi et al., 1989), suggesting that the total rDNA copy

number is not directly related to the synthesis of rRNA

(Kobayashi et al., 1998; Grummt, 2003; Raska et al., 2004). It

has been proposed that the rDNA may participate in roles

other than transcription, such as maintenance of the nu-

cleolar structure and rDNA stability (Nogi et al., 1991;

Oakes et al., 1993).

A considerable variation in the rDNA and 5S rDNA gene

copy number exists among eukaryotes (Table 1): the rDNA

copy number can range from one and two copies in the

Ascomycota Pneumocystis carinii and the Apicomplexa Thei-

leria parva to 4800 copies in the green alga Acetabularia

mediterranea and 9000 copies in the ciliate Tetrahymena

thermophila. The 5S rDNA copies can range from three in

the red alga Cyanidioschyzon merolae to about one million in

the ciliate Euplotes eurystomus. In the slime mold Dictyoste-

lium discoideum and in the yeast S. cerevisiae, the rDNA and

5S rDNA genes are present in equal numbers, although a

strict relationship between both types of genes is not always

observed. For example, Euglena gracilis has 800–4000 copies

of rDNA and only 300 copies of the 5S rDNA; in contrast,

110 copies of the rDNA are present in the genome of the

kinetoplastid T. cruzi, while the 5S rDNA is repeated 1600

times. The copy number of rRNA genes in some microbial

eukaryotes and the rDNA/5S rDNA ratio are given in Table

1. The considerable variability in this ratio suggests that

different species may have particular regulatory mechanisms

to maintain the 18S, 5.8S, 28S and 5S rRNA homeostasis for

the efficient synthesis of ribosomes.

The ribosomal cistron: localization, gene
linkage and IGR

The typical rDNA organization

Chromosomally localized tandem head-to-tail repeats of

rDNA units containing a coding region and an IGR repre-

sent the typical rDNA organization in eukaryotes. Some

microbial organisms of various phylogenetic branches share

this general organization, as shown in Fig. 2 and Table 2.

Tandem rDNA units may be located in a single chromosome

and locus (e.g. Kluyveromyces lactis and Trichomonas vagi-

nalis), or in various chromosomes and loci (e.g. T. cruzi).

Atypical tail-to-tail and head-to-head rDNA repeats (inter-

spersed with typical tandem head-to-tail repeats) are ob-

served in Acetabularia exigua (Berger et al., 1978; Spring

et al., 1978). In various yeast species such as K. lactis and

S. cerevisiae, tandem rDNA units are genetically linked to the

5S rDNA. In these cases, the 5S rDNA can be coded either in

a sense or an antisense orientation relative to the rDNA

coding strand (Table 2, Fig. 2b and c).

Depending on the species (and isolate) studied, several

tandemly repeated sequences may be found in the IGR with

variations in size, sequence and number (Table 3). For

example, the IGR of Leishmania species contain a 60–64 bp

repeated element reiterated between 16 and 275 times,

causing length variations in the IGR that range from 4 to

12 kbp. The size, number and sequence of these motifs are

species- and isolate-specific elements in Leishmania spp.

(Gay et al., 1996; Uliana et al., 1996; Yan et al., 1999;

Martı́nez-Calvillo et al., 2001; Orlando et al., 2002) (Table 3

and Fig. 2g).

Unlinked and heterogeneous rDNA

rDNAs with heterogeneous coding and intergenic sequences

are characteristic of the Apicomplexa group and may be

found unlinked (located in nonadjacent loci) and in low

copy number (Table 4). For example, Plasmodium spp. may

have four to eight rDNA copies per haploid genome.

Plasmodium falciparum and Plasmodium berghei have two

types of rDNA units (Waters et al., 1989; Waters, 1994): A-

type and S-type (also known as C-type in P. berghei) code for

different SSU and eLSU rRNAs that correlate with the

production of ribosomes with different GTPase activity

(Rogers et al., 1996; Velichutina et al., 1998). The expression

of rDNA genes is tightly linked to the progression of

Plasmodium life cycle: the A-type rRNA is expressed pre-

dominantly in the vertebrate host (asexual development),

whereas the S-type rRNA is expressed in the mosquito stage

(sexual development) (Mercereau-Puijalon et al., 2002) (Fig.
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Table 1. rRNA genes: copy number, unit size and organization

Organism

rDNA

copies

rDNA unit

size (kbp) and

organization

5S rDNA

copies

5S rDNA unit

size (kbp) and

organization

rDNA/5S

rDNA copy

ratio References

Excavata

Crithidia fasciculata 11–12 (T) 250–300 0.23 (T) Köck & Cornelissen (1990),

Schnare et al. (2000)

Diplonema papillatum 0.68 and 1.7 (T) Sturm et al. (2001)

Euglena gracilis 800–4000 (C),

4(chr)

11.5 (C) 330 0.6 (T) 2.42–12.12 Ravel-Chapuis (1988), Keller

et al. (1992)

Herpetomonas 0.6 (T) Aksoy (1992)

Leishmania donovani 166 12.5 (T) Yan et al. (1999), León et al.

(1978)

Leishmania major 63 14 (T) Martı́nez-Calvillo et al. (2001),

Ivens et al. (2005)

Trypanosoma brucei 56 (T) 1500 0.75 0.04 Hasan et al. (1984), Berriman

et al. (2005)

Trypanosoma cruzi 110 30 (T) 1600 0.48 (T) 0.07 Castro et al. (1981),

Hernández-Rivas et al. (1992),

Hernández et al. (1993)

Trypanosoma rangeli 330 0.9 Aksoy et al. (1992)

Trypanosoma vivax 0.72 Roditi (1992)

Naegleria gruberi 3000–5000 (C) 14 (C) Clark & Cross (1988)

Giardia intestinalis 60 (H), 300 5.6 (T) Le Blancq et al. (1991)

Trichomonas tenax (T) 0.01% � 0.307 and 0.316 (T) Torres-Machorro et al. (2009)

Trichomonas vaginalis 6 (T) 0.1% � 0.334 and 0.335 (T) López-Villaseñor et al. (2004),

Torres-Machorro et al. (2006)

Tritrichomonas foetus 12 6 (T) 0.04%� 0.86 and �1.3 (T) Chakrabarti et al. (1992),

Torres-Machorro et al. (2009)

Trypanoplasma borreli 0.59 Maslov et al. (1993)

Chromalveolates

Babesia bigemina 3 10.65, 10.8 and

13.35 (U)

Reddy et al. (1991)

Babesia bovis 3 7 Dalrymple (1990)

Babesia canis 4 Dalrymple et al. (1992)

Cryptosporidium parvum 5 (H) 6.5 (T) 6 0.55 and 0.79, 3 (T),

3(U)

0.83 Taghi-Kilani et al. (1994), Le

Blancq et al. (1997)

Eimeria tenella 140 (T) 500 0.73 (T) 0.28 Stucki et al. (1993), Shirley

(2000)

Plasmodium berghei 4 (U) 3 (T) 1.33 Dame & McCutchan (1983),

Waters (1994)

Plasmodium falciparum 5–8 (U) 3 1.67–2.67 Shippen-Lentz & Vezza

(1988), Gardner et al. (2002)

Plasmodium lophurae 6 (U) Unnasch & Wirth (1983)

Plasmodium vivax 7 (U) Li et al. (1997)

Theileria parva 2 (U) 3 0.67 Kibe et al. (1994), Gardner

et al. (2005)

Toxoplasma gondii 110 7.5 (T) 110 1 Guay et al. (1992)

Perkinsus andrewsi 7.7–7.8 Pecher et al. (2004)

Euplotes crassus 7 (L) Erbeznik et al. (1999)

Euplotes eurystomus 1 000 000 0.93 (L) Roberson et al. (1989)

Glaucoma chattoni 9.3 (L) Challoner et al. (1985)

Oxytricha fallax 7.49 (L) 0.69 (L) Rae & Spear (1978), Swanton

et al. (1982)

Paramecium tetraurelia 9 (T,L,C) Preer et al. (1999)

Tetrahymena pyriformis 200 MAC

(H), 1 MIC

350 MAC,

350 MIC (H)

0.28 0.29 Kimmel & Gorovsky (1976),

Kimmel & Gorovsky (1978)

Tetrahymena thermophila 9000 MAC,

1MIC

21 (L,P) 150 MAC,

150 MIC (H)

0.25–0.29 30 Yao & Gall (977), Allen et al.

(1984), Eisen et al. (2006)
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3). During the transfer of Plasmodium from the vertebrate

host to the mosquito, drastic changes in glucose concentra-

tion and temperature are involved in regulating the expres-

sion of A- and S-type rDNA genes from different promoter

elements (Mack et al., 1979; Fang & McCutchan, 2002; Fang

et al., 2004). A third type, the O-type rDNA (oocyst), has

been described in the human malaria parasite Plasmodium

vivax, whose synthesis takes place in ookinetes inside the

mosquito’s gut (Li et al., 1997). Comprehensive reviews of

rRNA genes from Plasmodium describe in detail the char-

acteristic organization and function of these genes (Waters,

1994; McCutchan et al., 1995). Other Apicomplexa species

with a similar rDNA organization are described in Table 4, as

well as the non-Apicomplexa red alga C. merolae. This

organism has only three unlinked rDNA units in two

different chromosomes, with similar rRNA coding se-

quences (Matsuzaki et al., 2004).

Telomeric rDNA

The microsporidian obligate intracellular parasite E. cuniculi

has 22 rDNA units located as single copies in all telomeres of

its 11 chromosomes (Brugère et al., 2000). Candida albicans

rDNA is found in two subtelomeric loci (Dujon et al., 2004),

Table 1. Continued.

Organism

rDNA

copies

rDNA unit

size (kbp) and

organization

5S rDNA

copies

5S rDNA unit

size (kbp) and

organization

rDNA/5S

rDNA copy

ratio References

Amoebozoa

Acanthamoeba castellanii 24(H), 600 12 (T) 480 (U) 1.25 Zwick et al. (1991), Yang et al.

(1994)

Dictyostelium discoideum 180 (L), 1 (chr) 88 (L,P) 180 88 (L,P) 1 Cockburn et al. (1978),

Hofmann et al. (1993)

Didymium iridis 20 (L) Johansen et al. (1992)

Entamoeba histolytica

(HM-1:IMSS)

200 (C), 0 (chr) 24.5 (C) Huber et al. (1989), Bagchi

et al. (1999)

Physarum polycephalum 1� 1011 4 60 (L,P) 0.68 Campbell et al. (1979)

Plantae

Acetabularia mediterranea 3500–4800 (T) Spring et al. (1978)

Cyanidioschyzon merolae 3 (U) 3 (U) 1 Maruyama et al. (2004),

Matsuzaki et al. (2004)

Opisthokonta

Candida albicans 100 (C), 200 (chr) 11.6–12.5 (T) Huber & Rustchenko (2001)

Candida glabrata 4115 (T) 4230 0.5 Maleszka & Clark-Walker

(1993), Bergeron & Drouin

(2008)

Hansenula polymorpha 50–60 8 (T) 50–60 1 Ramezani-Rad et al. (2003)

Kluyveromyces lactis 60 8.6 (T) 60 1 Verbeet et al. (1984)

Pneumocystis carinii 1 Tang et al. (1998), Fischer

et al. (2006)

Saccharomyces cerevisiae 100–200 9.1 (T) 100–200 1 Rubin & Sulston (1973),

Rustchenko & Sherman (1994)

Schizosaccharomyces

pombe

100–120 10.4 (T) 30 (U) 3.33–4 Wood et al. (2002)

Yarrowia lipolytica 100 7.7 and 8.7 (T) 108 (U) 0.93 van Heerikhuizen et al. (1985),

Acker et al. (2008)

Encephalitozoon cuniculi 22 8.9 (tel) 3 (U) 7.33 Peyretaillade et al. (1998),

Katinka et al. (2001)

Nosema apis 18 (T) Gatehouse & Malone (1998)

Nosema bombycis 4.3 (T) Huang et al. (2004)

All copy numbers are approximate, mainly based on quantitative hybridization analyses. If the rDNA is chromosomal, the unit size corresponds to the

complete unit containing the rDNA coding region and the intergenic spacer.

If the rDNA unit is extrachromosomal, the unit size corresponds to the whole molecule size.
�In trichomonads the percentage of the genome sequence that corresponds to the 5S rRNA coding region is indicated.

C, extrachromosomal circle; chr, chromosomal; H, haploid; L, extrachromosomal linear molecule; MAC, macronucleus; MIC, micronucleus; P,

palindrome; T, tandem; tel, telomeric; U, unlinked and nontandem.
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while Yarrowia lipolytica and Giardia intestinalis rDNA units

are positioned in seven and six subtelomeric loci, respec-

tively (Le Blancq et al., 1991; Dujon et al., 2004). The

G. intestinalis chromosome I varies 5–20% in size due to

subtelomeric rearrangements including variations in rDNA

copy number and size (Hou et al., 1995), while some

subtelomeric rDNA copies are linked to transcriptional gene

units, including protein-coding genes such as ankyrin. Some

of these regions may also hold incomplete rDNA sequences

(Upcroft et al., 2005). Interestingly, fragments of the rDNA

unit are found in all chromosomal ends in D. discoideum.

These regions encode complex repeated sequences (transpo-

sable elements–rDNA junctions) that generate novel telo-

meric structures (Eichinger et al., 2005).

The subtelomeric localization of rDNA sequences as those

found in E. cuniculi, D. discoideum and G. intestinalis

suggests a physiological role for these elements. Telomeres

have an ordered structure in the nucleus and can be

clustered or associated with the nuclear matrix, at least in

some stage during the life cycle (Pryde et al., 1997).

Telomeres are regions of great plasticity within a heterochro-

matic context, with dynamics that allow for the amplification

and/or variation in the number of telomeric genes and

repeated sequences. It is not known whether subtelomeric

rDNA is involved in the maintenance of the characteristic

telomeric structure or whether the rDNA exploits this

particular structure to regulate its expression and to main-

tain the sequence and copy number (Pryde et al., 1997).

rDNA may be located extrachromosomally

Extrachromosomal rDNA has been found in ciliates,

cellular and plasmodial slime molds and in yeasts (Table 5).

The polyploid somatic macronucleus of the ciliate T. ther-

mophila contains about 9 000 copies of a palindromic self-

replicating linear minichromosome, which codes for two

rDNA units (Fig. 4a and Table 5). The IGR of this palin-

drome contains six types of repeated sequences (Fig. 4a and

Fig. 2. Different organization of tandem head-to-tail rDNA repeats in microbial eukaryotes. (a) Eimeria tenella (Apicomplexa) exemplifies microbial

eukaryotes with the typical rDNA organization. (b, c) rDNA copies in Saccharomyces cerevisiae (Ascomycota) and Toxoplasma gondii (Apicomplexa) are

linked to the 5S rDNA (green), but in opposite polarities. Intergenic short direct repeats present in S. cerevisiae are shown as colored bars (see also Table

3). (d) In Giardia intestinalis (Diplomonadida), a 32-kDa antigenic protein (dark blue arrow) is coded in the complementary rDNA strand. (e) In

Acanthamoeba castellanii (Acanthamoebidae), the mature eLSU rRNA is fragmented into three molecules: 5.8S, 26Sa (2.4 kb) and 26Sb (2 kb); the IGR

contains six repeats of a 140-bp element (R, aqua boxes). (f, g) In Trypanosoma cruzi and Leishmania major (kinetoplastids), the eLSU rRNA is

fragmented into seven molecules. The T. cruzi IGR contains a 172-bp repeated sequence (orange boxes). In Leishmania spp., the IGR is characterized by

the presence of multiple repeated units (yellow). Leishmania major Friedlins e region is duplicated once. Drawings are not to scale. The size of rDNA units

is shown in Table 1. Arrows show the polarity of transcription.
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Table 3). The rDNA organization in Tetrahymena pyriformis

is similar to the T. thermophila rDNA palindrome, with

variations in the intergenic repeated motifs (Tables 3 and 5).

Dictyostelium discoideum and Physarum polycephalum

rDNA is also encoded in palindromic extrachromosomal

molecules (Fig. 4 and Table 5). Both rDNA minichromo-

somes contain several repeated sequence elements (Table 3).

In the D. discoideum rDNA palindrome, two 5S rDNA copies

are present near the telomeric ends, in the same polarity as

the rDNA unit (Fig. 4b) (Cockburn et al., 1978). Addition-

ally, a single rDNA palindrome is located in chromosome IV

(Sucgang et al., 2003). Even though D. discoideum has six

chromosomes, a seventh ‘chromosome’ can be observed in

some chromosomal spreads. This additional ‘chromosome’

corresponds to a chromosome-sized cluster of palindromic

rDNA minichromosomes (Sucgang et al., 2003), which

suggests a physical interaction of the extrachromosomal

rDNA. This particular organization may play a role in the

expression and segregation of mitotic rDNA.

Extrachromosomal linear molecules containing one

rDNA unit are found in Didymium iridis (Fig. 4 and Table

5). Ciliates such as Euplotes crassus and Glaucoma chattoni

have extrachromosomal rDNA copies in single gene-

sized linear molecules within the macronucleus with

characteristic intergenic repeated elements (Tables 3 and 5).

Finally, tandem rDNA genes in Paramecium tetraurelia

can be found both in circular and in linear extrachromoso-

mal molecules (Table 5), which can contain 4 13 rDNA

copies.

rDNA units coded in extrachromosomal circular plas-

mids may be found in Amoebozoa (Entamoeba histolytica)

and Excavata (E. gracilis and Naegleria gruberi) (Fig. 5 and

Table 5). The most-studied E. histolytica isolate HM-1:IMSS

lacks an rDNA chromosomal copy (Bagchi et al., 1999) but

possesses about 200 copies of an extrachromosomal circular

molecule, with two inverted rDNA units and repeated

sequences in the IGR (Table 3 and Fig. 5a). This molecule

starts replication at multiple sites; the primary replication

origins are located near the pol I promoters, but other

replication origins found all the way through the circle are

activated under stress conditions (Ghosh et al., 2003).

Interestingly, a 0.7-kb RNA of unknown function is encoded

in the upstream region of one rDNA unit (Bhattacharya

et al., 1998) (Fig. 5a). Depending on the isolate, variations

are found in the size and organization of the rDNA circular

molecules: the 200:NIH E. histolytica isolate has a

Table 2. Organisms with typical rDNA organization

Organism Localization

IGS repeated

elements

5S

linkage References

Excavata

Crithidia fasciculata Yes X Schnare et al. (2000)

Leishmania spp. 1Ch, 1L Yes X Uliana et al. (1996), Yan et al. (1999), Martı́nez-Calvillo et al.

(2001), Orlando et al. (2002), de Andrade Stempliuk & Floeter-

Winter (2002)

Trypanosoma brucei 4Ch X X Hasan et al. (1984), Melville et al. (1998)

Trypanosoma cruzi Z2Ch Yes X Hernández et al. (1993)

Giardia spp. 6L (intestinalis) intestinalis and

muris

X Edlind & Chakraborty (1987), Boothroyd et al. (1987), van Keulen

et al. (1992), Upcroft et al. (1994)

Trichomonas tenax X X Torres-Machorro et al. (2009)

Trichomonas vaginalis 1Ch, 1L X X López-Villaseñor et al. (2004), Torres-Machorro et al. (2009)

Tritrichomonas foetus 1Ch, 1L X X Torres-Machorro et al. (2009)

Chromalveolates

Eimeria tenella 1Ch, 1L X X Shirley (2000)

Toxoplasma gondii X Sense Guay et al. (1992)

Amoebozoa

Acanthamoeba castellanii Yes X D’Alessio et al. (1981), Yang et al. (1994)

Opisthokonta

Hansenula polymorpha X Linked Klabunde et al. (2002)

Kluyveromyces lactis 1Ch, 1L X Antisense Verbeet et al. (1984)

Saccharomyces cerevisiae 1Ch, 1L Yes Antisense Rubin & Sulston (1973), Skryabin et al. (1984), Srivastava &

Schlessinger (1991), Dujon et al. (2004), Kim et al. (2006)

Schizosaccharomyces pombe 1Ch, 2L X X Schaak et al. (1982), Wood et al. (2002)

Torulopsis utilis X Antisense Tabata (1980)

Yarrowia lipolytica 7L Yes X van Heerikhuizen et al. (1985)

Nosema apis X Sense Gatehouse & Malone (1998), Iiyama et al. (2004)

IGS, intergenic spacer; X, not identified or not present; Ch, chromosome; L, locus or loci.
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Table 3. Repeated sequences in the ribosomal cistron intergenic spacer

Organism

Size of repeated

sequences

Number of

repeated sequences Function

Intergenic

region

size (kb) References

Excavata

Crithidia fasciculata 19 bp 28 Schnare et al. (2000)

55 bp� 4 3.5

Euglena gracilis 14 bp, imperfect repeat 6 Greenwood et al. (2001)

30 bp imperfect

palindromes

2

Leishmania major 63 bp 16–275 4–12 Martı́nez-Calvillo et al.

(2001)

Leishmania amazoniensis 60 bp 35–70 Uliana et al. (1996)

Leishmania chagasi 64 bp 9 Enhancer-like Gay et al. (1996)

Leishmania infantum 63 bp 40 4–12 Requena et al. (1997)

LiR3 348 bp Transcription

termination?

Leishmania donovani 64 bp 39 5.8 Yan et al. (1999)

63 bp 12 4

Leishmania hoogstraali 63 bp 40 5.5 Orlando et al. (2002)

Trypanosoma cruzi 172 bp 2–8 Pulido et al. (1996)

Giardia intestinalis 78 bp 2 in GS strain, 3 in GK

strain

Recombination? Upcroft et al. (1994)

Giardia muris 73 bp Varies, 6 min van Keulen et al. (1992)

Chromalveolates

Euplotes crassus I. �30 bp Erbeznik et al. (1999)

IV. �17 bp

Glaucoma chattoni I. 32 bp (50) 3 Spacer promoter? Challoner et al. (1985)

II. 14–24 bp (50) 7 Enhancer?

III. 18 bp (50) 1

IV. 17 bp (30) 9 Termination?

V. 130 bp (30) 3 Gene packing?

Tetrahymena thermophila I. 32 bp (50)w 4 Spacer promoter? 1.9 Challoner et al. (1985)

II.20–21 bp (50) 13 Enhancer?

III. 20 bp (50) 7

430 bp (50) 4 (2 tandem in each

chromosome half)

Replication, include

type I and III repeats

IV. 17 bp (30) 5 Termination?

V. 130 bp (30)z 4 Gene packing?

Tetrahymena pyriformis I. 33 bp (50) 3 Spacer promoter? Challoner et al. (1985)

II. 10–24 bp (50) 11 Enhancer?

III. 14–21 bp (50) 5

IV. 17 bp (30) ND

V. 130 bp (30) ND

Perkinsus andrewsi 15 bp approximately 8 Coss et al. (2001)

Pfiesteria piscicida 9 bp Saito et al. (2002)

Amoebozoa

Acanthamoeba castellanii 106–174 bp 6 UBF binding 2.33 Yang et al. (1994)

Dictyostelium discoideum 29 bp (30) 4 Sucgang et al. (2003)

50 ‰

Entamoeba histolytica DraI 170 bp (30) 10 ARS-like sequences 9.2 (50) Huber et al. (1989), Mittal

et al. (1992), Bhattacharya

et al. (1998)

ScaI 144 bp (30) 7 3.5 (30)

ScaI 144 bp (50) 6

PvuI 145 bp (50) 11 Pathogenic-specific

sequence

HinfI 653 bp (50)z 2 and 4 Recombination

74 bp (50) 2

AvaII 153 bp (50) 5

1408 bp (50) 2
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palindromic circular organization (25.9 kb), while the HK-9

(15.3 kb) and the Rahman (18.3 kb) isolates possess single

rDNA units in their circular extrachromosomal molecules

(Sehgal et al., 1994; Bhattacharya et al., 1998).

Most E. gracilis rDNA is found in extrachromosomal

circular molecules that code for a single rDNA unit (Fig. 5b

and Table 5). The whole E. gracilis rDNA circle is tran-

scribed, suggesting a read-around transcription without the

need for transcriptional terminators (Greenwood et al.,

2001). Naegleria gruberi rDNA plasmid contains two ORFs:

a large one downstream of the 28S rRNA (similar to a

homing endonuclease gene, HE gene) and a short one that

codes for a hypothetical protein (Maruyama & Nozaki,

2007) (Fig. 5c and Table 5).

The yeast C. albicans possesses both chromosomal and

extrachromosomal rDNA. About 200 copies in tandem,

Table 3. Continued.

Organism

Size of repeated

sequences

Number of

repeated sequences Function

Intergenic

region

size (kb) References

Physarum polycephalum I. 130 bp (50) Z22 Hattori et al. (1984)

I0. 130 bp (30)

II. 50 bp (50) 16

II 0. 52 bp (30) 6

Opisthokonta

Saccharomyces cerevisiae I. 6 bp (50) 3 1.1 (50) Skryabin et al. (1984)

II. 16 bp (50) 2 1.25 (30)

III. 8 bp (50) 3

IV. 11 bp (30) 2

V. 9 bp (30) 2

VI. 9 bp (30) 2

Yarrowia lipolytica 140–150 bp Varies van Heerikhuizen et al.

(1985), Fournier et al.

(1986)

11 bp 14

Encephalitozoon cuniculi 29 bp (50) 2 Peyretaillade et al. (1998)

19 bp (50) 8

51 bp (30)

43 bp (30)

Repeated sequences may not be identical.
�The 55-bp repeat has an internal repeated inverted sequence.
wType I and III repetitions are within a 430-bp repeated segment involved in the replication of the minichromosome.
zInverted repeat.
‰Two blocks of highly repetitive DNA bracket the transcribed region.
zPolymorphic locus with a 65-bp internal inverted repeated sequence.

ND, not determined; UBF, upstream binding factor; IGS, intergenic spacer.

Table 4. Organisms with unlinked rDNA units

Organism Copy number Chromosomal localization and rDNA types References

Chromalveolates

Babesia bigemina 3 Reddy et al. (1991)

Babesia bovis 3 Two in chr III and one in chr IV Dalrymple (1990), Brayton et al. (2007)

Babesia canis 4 Two in one chr and two in the other chr Dalrymple et al. (1992)

Cryptosporidum parvum 5 3 tandem, 2 alone in different chr Le Blancq et al. (1997)

Theileria parva 2 A and B units in different chr Kibe et al. (1994), Bishop et al. (2000)

Plasmodium berghei 4 Type A in chr XII and VII; Type C in chr VI and V Waters (1994)

Plasmodium falciparum 5–8 Subtelomeric: Type A in chr V and VII; Type S in

chr XI and XIII

Langsley et al. (1983), Mercereau-Puijalon

et al. (2002), Gardner et al. (2002)

Plasmodium lophurae 6 (7–9) Unnasch & Wirth (1983)

Plasmodium vivax 7 A, S and O rDNA types van Spaendonk et al. (2000)

Plantae

Cyanidioschyzon merolae 3 3 different loci, two in chr XVII and one in chr

XVIII

Maruyama et al. (2004)

Chr, chromosome.
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varying in size, are present in chromosome R while roughly

100 copies are found in an �1.2 Mbp autonomously repli-

cating circle. Some rDNA sequences are also found in

50–150-kbp linear molecules (Huber & Rustchenko, 2001).

rDNA plasmids have only been observed in old

S. cerevisiae cell cultures. During the aging process, the

tandem rDNA copies are excised from the chromosome

and replicate autonomously. The accumulation of rDNA

circles leads to yeast sterility and shortening of the life span.

An association between rDNA locus instability and loss of

epigenetic silencing has also been observed (Sinclair &

Guarente, 1997).

The ribosomal cistron: the coding region

The typical eukaryotic rDNA coding region is composed of

the 18S, 5.8S and 28S rRNA coding sequences separated by

ITS-1 and ITS-2. The rDNA coding sequence consists of a

common core of domains that may be interspersed with a

distinct set of variable regions (also called expansion

Table 5. Extrachromosomal rDNA units

Organism

Lineal/

circular Size Organization

Copy

number

Additional copies

in chromosome References

Excavata

Euglena gracilis C 11.5 kbp Single 800–4000 4 Ravel-Chapuis (1988), Schnare

et al. (1990)

Naegleria gruberi C 14 kbp Single 300–5000 None Clark & Cross (1987)

Chromalveolates

Euplotes crassus L 7 kbp Single gene MIC Erbeznik et al. (1999)

Glaucoma chattoni L 9.3 kbp Single gene MIC Katzen et al. (1981), Challoner

et al. (1985)

Nyctotherus ovalis L Single gene MIC Ricard et al. (2008)

Oxytricha fallax L 7.49 kbp Single gene MIC Rae & Spear (1978), Swanton

et al. (1982)

Oxytricha nova L 7.49 kbp Single gene MIC Swanton et al. (1982)

Paramecium tetraurelia C and L � Tandem MIC Findly & Gall (1978)

Stylonychia mytilus L Single gene MIC Lipps & Steinbrück (1978)

Tetrahymena pyriformisL Palindrome 200/haploid MAC 1 Engberg et al. (1976), Yao & Gall

(1977), Niles et al. (1981)

Tetrahymena

thermophila

L 21 kbp Palindrome 9000 MAC Engberg (1985), Eisen et al. (2006)

Amoebozoa

Dictyostelium

discoideum

L 88 kbp Palindrome 90 1 Palindrome Cockburn et al. (1978), Hofmann

et al. (1993), Eichinger et al.

(2005)

Didymium iridis L 20 kbp Single Johansen et al. (1992)

Entamoeba histolytica

HM-1:IMSS

C 24.5 kbp Palindrome 200/haploid None Huber et al. (1989), Bhattacharya

et al. (1998), Bagchi et al. (1999)

Physarum

polycephalum

L 4 60 kbp Palindrome 1� 1011 Vogt & Braun (1976), Campbell

et al. (1979)

Opisthokonta

Candida albicans C and L 1.2 Mbp Tandem 100 200 Huber & Rustchenko (2001)

�The size depends on the number of rDNA repeats.

MAC, macronucleus; MIC micronucleus.

Fig. 3. rDNA organization in Plasmodium berghei. Four unlinked rDNA copies are coded in the telomeres of P. berghei. Type-A rDNAs contain a mature

eLSU rRNA fragmented into three molecules (5.8S, 28Sa and 28Sb) and are expressed during the asexual stage in vertebrate hosts. Type-C rDNAs (with a

nonfragmented 28S rRNA) are expressed during the sexual development in mosquitoes. The differential expression of rDNAs is regulated by specific

promoter sequences (purple and pink boxes). Drawings are not to scale. The size of rDNA units is shown in Table 1.
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segments; Dover, 1988). Ten and 18 variable regions have

been identified in the SSU and LSU rRNAs of all organisms

(Raué et al., 1988). Three types of sequence insertions have

been found within these variable regions: (1) expansion

segments, encoding RNA sequences conserved in the mature

molecule; (2) group I introns, located within highly con-

served regions and removed after transcription; and (3)

transcribed spacers, sequences removed from the mature

rRNA, thus producing fragmented eLSU rRNA molecules

(Clark et al., 1984). Babesia bovis (Dalrymple et al., 1992),

Cryptosporidium parvum (Le Blancq et al., 1997), D. dis-

coideum (Frankel et al., 1977), E. histolytica (Huber et al.,

1989), G. intestinalis (Healey et al., 1990), K. lactis (Verbeet

et al., 1984), S. cerevisiae (Bell et al., 1977), Toxoplasma

gondii (Gagnon et al., 1996) and T. vaginalis (López-

Villaseñor et al., 2004) are microbial eukaryotes with the

typical rDNA organization of the coding region (Fig. 2a–e).

Insertions of expansion segments in the SSU

The average length of eukaryotic SSU rRNA is 2 kb. Unu-

sually long SSU rRNAs have been found in Pelobionta

(Pelomyxa palustris), Foraminifera (Hemisphaerammina bra-

dyi) and Euglenozoa (Distigma sennii) (Table 6). The longest

SSU rRNA known is found in the Euglenid D. sennii,

comprising 4 4.5 kb. In most cases, the insertions are

found in the SSU rRNA variable regions V2, V4 and V7.

The only exceptions are an extended V5 region in

A. castellanii and an expansion in a nonvariable region in

P. palustris (Gunderson & Sogin, 1986; Milyutina et al.,

2001). The rRNA variable regions are located in the mature

ribosome surface and their evolutionary implications are

unknown (Katz & Bhattacharya, 2006).

Group I introns and twintrons

Group I introns can be found as insertions in the SSU and

eLSU rRNA coding regions that are removed from the

mature molecule by means of a self-splicing reaction (Einvik

et al., 1998), generating a completely functional rRNA

molecule (Mandal, 1984). The ribozymes encoded in group

I introns have conserved secondary structures of 10 base-

paired segments, as well as some additional paired segments

depending on the intron subclass (Michel & Westhof, 1990).

The splicing reaction initiates with a nucleophilic attack of a

guanosine cofactor at the 50 splice site and, after two

sequential transesterification reactions, the exons are ligated

and the RNA intron is removed (Einvik et al., 1998).

Group I introns are widely distributed in nature and can

be found in bacteria, mitochondrial and chloroplast gen-

omes, and in the eukaryotic nucleus (Johansen et al., 2007).

Group I introns may interrupt the SSU rRNA coding

sequence in 40 distinct conserved sites of several microbial

eukaryotes (Jackson et al., 2002) such as Acanthamoeba

griffini and the green alga Characium saccatum. These

introns may also be present in the eLSU rRNA, as is the case

Fig. 4. Linear extrachromosomal rDNA units in microbial eukaryotes. (a) rDNA is coded in extrachromosomal linear palindromes in Tetrahymena

thermophila. Two head-to-head rDNA units are coded in a macronuclear minichromosome that contains typical telomeric sequences (black dots).

Upstream and downstream IGRs contain various types of repeated sequences (colored bars; see also Table 3). A group I intron (blue square) is found

within the eLSU rRNA. (b) The rDNA and 5S rDNA in Dictyostelium discoideum are linked and coded in extrachromosomal linear palindromes containing

telomeres (black dots). (c) rDNA in Physarum polycephalum is coded in palindromic head-to-head units in a minichromosome with various repeated

sequences both in the 50 and 30 IGRs (see also Table 3). The eLSU rRNA is interrupted by two group I introns (blue squares), and a third group I intron that

includes an HE gene (purple square). (d) In Didymium iridis the rDNA is coded in linear minichromosomes containing one rDNA unit. The SSU rRNA

contains a twintron (purple box) and two group I introns are found within the 28S rRNA (blue boxes). Drawings are not to scale. The size of rDNA units is

shown in Table 1. Arrows show the polarity of transcription.
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for P. falciparum A-type eLSU rRNA and the 26S rRNA of

some Tetrahymena isolates (Fig. 4a, Table 7). It is interesting

that some organisms may have both the SSU and the eLSU

rRNAs interrupted by group I introns (e.g. P. carinii,

Chlorella ellipsoidea and D. iridis, Fig. 4d). Table 7 describes

some of the introns found in the rDNA of several microbial

eukaryotes.

Twintrons are more complex insertions in the rDNA that

consist of two group I introns (ribozymes) and an ORF

encoding an HE (Einvik et al., 1998; Johansen et al., 2007).

The D. iridis and N. gruberi SSU twintrons contain a small

ribozyme (GIR1), followed by the HE ORF inserted into a

second ribozyme (GIR2). Two different isolates of D. iridis

have two types of introns, containing an HE gene in both

polarities relative to the SSU rRNA gene (Fig. 6) (Johansen

et al., 2007). The twintron contains the HE ORF (I-DirI) in

the same polarity as the 18S rRNA coding region. GIR2 is a

self-splicing ribozyme that releases the HE transcript. A

second intron encoding a ribozyme (GIR1) is also found

within the twintron. GIR1 modifies the 50 end of the HE

transcript to form a 2050cap that increases its translational

efficiency (Fig. 6a) (Einvik et al., 1998; Johansen et al.,

2007). In contrast, the intron II contains an HE gene (I-

DirII) in opposite polarity relative to the SSU rRNA and

ribozyme-coding sequences (Johansen et al., 2006). Tran-

scription of I-DirII is established from a pol II-like promoter

located immediately upstream of the HE gene (Fig. 6b)

(Johansen et al., 2006). Both D. iridis HE transcripts are

processed through the nuclear spliceosomal complex to

remove a 50-nt noncoding spliceosomal intron, found with-

in the HE coding sequences, and are polyadenylated (Vader

et al., 1999; Johansen et al., 2007).

Physarum polycephalum eLSU rDNA contains an optional

group I intron holding an HE gene (Ruoff et al., 1992). The

full-length RNA intron can be excised or alternatively

processed (immediately downstream of the HE gene) to

produce a smaller transcript. Only the full-length RNA

intron (lacking a 50cap and a poly-A tail) is translated into

the HE I-PpoI protein (Ruoff et al., 1992). The cleavage of

this transcript in the internal processing site seems to

downregulate HE I-PpoI expression by decreasing the

stability of the transcript in yeast transintegrated introns

(Johansen et al., 2007). Table 7 summarizes rDNA group I

introns and HE gene insertions.

Fig. 5. Circular extrachromosomal rDNA units in microbial eukaryotes.

(a) In Entamoeba histolytica extrachromosomal self-replicating molecules

encode two palindromic rDNA units (red). The upstream and down-

stream IGRs contain several repeated sequences (coloured boxes, de-

tailed in Table 3). The 50 IGR also encodes a 0.7-kb mRNA (grey arrow). In

the HM1 strain, four hemolysine virulence proteins (HLYs) are coded

within the rRNA coding region, in antisense orientation relative to the

rRNA coding strand (navy blue arrows). (b) In Euglena gracilis the rDNA is

coded in circular plasmids and the eLSU is fragmented in 14 segments. (c)

The Naegleria gruberi rDNA plasmid encodes one rDNA unit containing

one twintron in 18S rRNA (purple box) and three type-I introns in the

eLSU rRNA (blue boxes). The IGR contains two ORFs (dark blue arrows).

Black arrows show the polarity of transcription.

Table 6. Variations in the size of the SSU rRNA due to insertions

Organism

SSU

size (kb) References

Excavata

Astasia curvata 2.56 Busse & Preisfeld (2002)

Astasia torta 2.9 Busse & Preisfeld (2002)

Distigma curvatum 3.4–3.7 Busse & Preisfeld (2002)

Distigma elegans 3.9 Busse & Preisfeld (2002)

Distigma sennii 4.5 Busse & Preisfeld (2002)

Ploeotia costata 2.4 Busse & Preisfeld (2003)

Euglena gracilis 2.3 Gunderson & Sogin (1986)

Amoebozoa

Acanthamoeba castellanii 2.3 Gunderson & Sogin (1986)

Acanthamoeba griffini 2.9 Gast et al. (1994)

Acanthamoeba lenticulata 3 Schroeder-Diedrich et al. (1998)

Pelomyxa palustris 3.5 Milyutina et al. (2001)

Phreatamoeba balamuthi 2.74 Hinkle et al. (1994)

Entamoeba histolytica 2.3 Loftus et al. (2005)

Plantae

Ankistrodesmus stipitatus 2.2 Dávila-Aponte et al. (1991)

Rhizaria

Foraminifera 2.3–4 Katz & Bhattacharya (2006)
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The ITS-1 and -2

The rDNA transcript is generally post-transcriptionally

processed in three rRNA mature molecules: 18S, 5.8S and

28S rRNAs that result from elimination of ETS, ITS-1 and

ITS-2 from the precursor transcript (Fig. 1). In microbial

eukaryotes, ITS-1 ranges from 100 to 400 bp, while ITS-2 is

200–500 bp. Unusually long ITSs are found in the red alga

C. merolae (Maruyama et al., 2004), where ITS-1 and ITS-2

average sizes are 862 and 1738 bp, respectively. Euglena

gracilis has the largest known ITS-1, 1188 bp in length

(Schnare et al., 1990). The dinoflagellate Cochlodinium

polykrikoides ITS-1 contains a 101-bp sequence in six

tandem repeats, resulting in an ITS-1 length of 813 bp (Ki

& Han, 2007). Yarrowia and Giardia have the shortest

known ITSs in microbial eukaryotes: the sum of ITS-1 and

ITS-2 lengths in Y. lipolytica is only 150 bp (van Heerikhui-

zen et al., 1985), while the G. intestinalis ITS-1 and ITS-2 are

37 and 52 bp in length, respectively (Boothroyd et al., 1987).

Some Microsporidia species completely lack the ITS-2 (Fig.

7) (Vossbrinck & Woese, 1986), as discussed below. The

biological relevance of the ITSs’ length and the presence of

internal repeats are currently unknown, although their

sequence has been useful in molecular phylogenetic studies

of closely related species.

Additional ITSs generate fragmented eLSU rRNA

Some microbial eukaryotes process the pre-rRNA into more

than three mature molecules due to the presence of addi-

tional ITSs. Well-known examples of fragmented rRNA are

found among kinetoplastids, with the eLSU rRNA fragmen-

ted in seven molecules. The nomenclature of these rRNAs

varies according to the organism, the size of the rRNA

Table 7. Group I rDNA introns

Organism Location

Number

of introns Size HE gene References

Excavata

Ploeotia costata SSU rRNA 1 494 bp Busse & Preisfeld (2003)

Naegleria gruberi SSU rRNA 1 I-NgrI Wikmark et al. (2006)

LSU rRNA 3 Einvik et al. (1998)

Chromalveolates

Plasmodium falciparum LSU rRNA 1 � Langsley et al. (1983)

Tetrahymena pigmentosa LSU rRNA 1 400 bp Wild & Gall (1979)

Tetrahymena thermophila LSU rRNA 1 370–410 bp Sogin et al. (1986)

Amoebozoa

Acanthamoeba griffini SSU rRNA 1 519 bp Gast et al. (1994)

Acanthamoeba lenticulata SSU rRNA 1 656 bp Gast et al. (1994)

Didymium iridis SSU rRNA 1 1.43 kbp I-DirI and I-DirIIw Johansen & Vogt (1994), Johansen et al.

(2006), Johansen et al. (2007)

LSU rRNA 2 688 and 573 bp Johansen et al. (1992)

Physarum polycephalum LSU rRNA 3 0.7, 0.6 and 0.94 kbp I-PpoIz Ruoff et al. (1992), Johansen et al.

(2007)

Plantae

Ankistrodesmus stipitatus SSU rRNA 1 334 bp Dávila-Aponte et al. (1991)

Characium saccatum SSU rRNA 1 477 bp Wilcox et al. (1992)

Chlorella ellipsoidea SSU rRNA 1 442 bp Aimi et al. (1994)

LSU rRNA 1 445 bp Aimi et al. (1993)

Dunaliella parva SSU rRNA 2 381 and 419 bp Van Oppen et al. (1993), Wilcox et al.

(1992)

Dunaliella salina SSU rRNA 1‰ 397/8 bp Van Oppen et al. (1993), Wilcox et al.

(1992)

Opisthokonta

Candida albicans LSU rRNA 1 379 bp Miletti-González & Leibowitz (2008)

Pnemocystis carinii SSU rRNA 1 390 bp Sogin & Edman (1989)

LSU rRNA 1 Lin et al. (1992), Liu et al. (1992)

Histoplasma capsulatum SSU rRNA 1 403–425 bp Okeke et al. (1998), Lasker et al. (1998)

Nosema bombycis SSU rRNA 1 Iiyama et al. (2004)

�Only in one of the eight LSU rRNA copies.
wDepends on the isolate.
zCoded in the 0.94-kbp intron.
‰Can have two types of intron differing in sequence.
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molecule and the position in the coding region. The eLSU

rRNA of Leishmania spp. is fragmented into seven elements,

which are cotranscribed in the pre-rRNA and processed by

exo- and endonucleolytic activities to produce the func-

tional eLSU fragments: 5.8S, LSUa, g, LSUb, d, z and e
(Martı́nez-Calvillo et al., 2001) (Fig. 2g). Trypanosoma cruzi

and Crithidia fasciculata also code for an eLSU rRNA

fragmented into seven elements: 5.8S, 24Sa, S1, 24Sb, S2,

S6 and S4 in T. cruzi (Fig. 2f) (Hernández et al., 1988), and

rRNAs 5.8S, c, d, e, f, g and j in C. fasciculata (Spencer et al.,

1987).

Processing of the eLSU rRNA into several fragments has

also been found in nonkinetoplastid eukaryotes (e.g.

P. berghei and Plasmodium chabaudi blood stages and

A. castellanii) (D’Alessio et al., 1981; da Silveira & Mercer-

eau-Puijalon, 1983; Johansen et al., 1992) (Figs 2e and 3).

Euglena gracilis has the most fragmented eLSU rRNA

currently known with 14 mature molecules that result from

the processing of 14 ITSs (ITS-1 to ITS-14, Fig. 5b) (Schnare

et al., 1990).

Protein-coding regions within the rDNA coding
region

A correlation has been observed between the virulence of

E. histolytica isolates and the sequence composition of the

rDNA circular molecule described above (Clark & Dia-

mond, 1991; Zindrou et al., 2001). Virulence associates with

the striking presence of genes encoding hemolysins (pro-

posed as virulence factors) within and overlapping the rRNA

coding sequence, but in opposite polarity. Three hemolysins

overlap with the eLSU coding region, while the fourth

(HLY4) is coded in the ITS-1 between the SSU and 5.8S

rRNAs (Jansson et al., 1994) (Fig. 5a). In G. intestinalis, a

gene coding for a 32-kDa flagellum antigen has been

identified in the rDNA IGR that overlaps the 30 region of

the 28S rRNA (Fig. 2d). The motif that directs transcription

of this gene seems to be a hybrid pol II/pol III promoter

(Upcroft et al., 1990).

Unusual rDNA coding regions

Microsporidia are obligate intracellular eukaryotes that pos-

sess many prokaryotic characteristics in their rRNA genes

(Weiss, 2001). The rDNA units are smaller than the standard

eukaryotic size and lack the ITS-2; consequently, the 5.8S

rRNA is fused to the 50 region of the 28S rRNA, as is found

in bacteria (Vossbrinck & Woese, 1986) (Fig. 7). Microspor-

idia are the only eukaryotes known to lack an individual

5.8S rRNA molecule (e.g. E. cuniculi and Vairimorpha

necatrix (Vossbrinck & Woese, 1986; Peyretaillade et al.,

1998). The relevance of this eukaryotic 5.8S–28S rRNA

fusion is unknown. In addition to these characteristics,

Nosema bombycis and Nosema spodopterae have an unusual

rDNA gene organization (Huang et al., 2004; Iiyama et al.,

2004; Tsai et al., 2005) because the LSU rRNA is coded and

transcribed upstream to the SSU rRNA (Fig. 7b) in contrast

to the almost universal order of the rRNA coding regions

(Fig. 1).

Fig. 6. Group I introns that contain an HE gene. (a) Twintron present in

Didymium iridis: the DiGIR2 intron (purple) is encoded in the SSU rRNA

and transcribed by pol I as part of the pre-rRNA; it self-splices to generate

the HE pre-mRNA (splicing sites are represented as black bars). Subse-

quently, DiGIR1 intron (blue) self-splices and processes the I-Dir I HE pre-

mRNA in the 50 side, producing a 2050-cap. The I-DirI HE pre-mRNA is

additionally processed by the removal of spliceosomal intron SI (white

box) and polyadenylation of the 30 side to generate a functional I-Dir I HE

mRNA (yellow region). (b) Intron II present in D. iridis: the I-Dir II HE RNA

found within the DiGIR2 intron is coded in antisense orientation and is

transcribed from a pol II promoter. The HE pre-mRNA is processed by pol

II-associated factors to generate a typical 50-cap and a 30 polyadenylated

tail. The spliceosomal intron SI is removed by the spliceosome machinery.

Fig. 7. Unusual rDNA organization in Microsporidia. Microsporidia lack a 5.8S rRNA mature molecule and the typical 5.8S rRNA sequence is fused to

the 23S rRNA. (a) Single telomeric rDNA units are surrounded by different repeated sequences in Encephalitozoon cuniculi (see also Table 3) and the

rDNA lacks ITS-2. (b) Some Nosema species have an atypical rDNA coding organization, with the LSU rRNA coded upstream of the 16S rRNA. The typical

5.8S rRNA sequence is fused to the 23S rRNA and the 5S rDNA is linked to the rDNA unit.
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Different rDNA genes may be found within an
organism

As has been mentioned, the rRNA genes within one organ-

ism are generally conserved in the coding region with an

occasional sequence variation in the IGRs and with little

variation in the coding sequences. Sequence variability in

the IGRs may result from sequence divergence or disparity

in the number of repeated sequences, involved in both up-

and downregulation of rDNA transcription. Therefore, the

heterogeneous composition of rDNA units may influence

rDNA expression. Sequence divergence in the coding region

and/or IGR within the same organism has led to a classifica-

tion of rDNA units. For example, different types of rDNA

may be found in Paramecium, Y. lipolytica and the Apicom-

plexa group. A detailed description of this variability is

included in Table 8.

The 5S rDNA

The organization of the 5S rDNA is simpler than that of the

rDNA. Most 5S rDNAs are found in tandem head-to-tail

repeats consisting of a conserved �120-bp coding region

and an IGR of variable size and sequence. An internal pol III

promoter is present in all 5S rDNA studied to date

(Schramm & Hernandez, 2002) (Fig. 1c).

The 5S rDNAs are found as tandem head-to-tail
repeats

The 5S rDNA in T. cruzi, Trypanosoma brucei, T. vaginalis,

Trichomonas tenax, C. fasciculata, Eimeria tenella and

C. parvum is typically organized in tandem head-to-tail

repeats. Tritrichomonas foetus has two types of 5S rDNAs,

while P. falciparum has only three 5S rDNA copies in

tandem, differing in the length of the IGRs. The main

characteristics of the 5S rDNA tandem head-to-tail repeats

of several organisms are described in Table 9.

The 5S rDNA may be interspersed with genes
transcribed by any of the three RNA polymerases

The 5S rDNA has been found linked to the rDNA (tran-

scribed by pol I) in an alternate distribution in T. gondii,

Hansenula polymorpha, Perkinsus andrewsi and various

Nosema species (Guay et al., 1992; Coss et al., 2001;

Klabunde et al., 2002; Huang et al., 2004; Iiyama et al.,

2004; Tsai et al., 2005; Liu et al., 2008) (Figs 2c and 7b). Two

tandem 5S rDNA copies are linked to each repeated rDNA

unit in Candida glabrata (Dujon et al., 2004). In contrast,

the 5S rDNA is linked to the rDNA in opposite polarity in

various yeast species, such as Torulopsis utilis, K. lactis and

S. cerevisiae (Fig. 2b, Table 2). Two copies of the 5S rDNA are

coded in the extrachromosomal DNA molecule in

Table 8. Variability found in the rDNA

Organism rDNA types� Localization of variability References

Chromalveolates

Babesia bigemina 2 IGR and SSU coding region Reddy et al. (1991), Dalrymple et al. (1992)

Babesia bovis A, B and C ITS and SSU coding region Laughery et al. (2009)

Cryptosporidium parvum At least 2 ITS and coding region Le Blancq et al. (1997), Spano & Crisanti (2000)

Plasmodium berghei A and C IGR, promoter and coding regions Waters (1994)

Plasmodium falciparum A and S IGR, promoter and coding regions Waters (1994)

Plasmodium vivax A, S and O IGR, promoter and coding regions Li et al. (1997)

Theileria parva 2 ITS and LSU coding region Bishop et al. (2000)

Toxoplasma gondii IGR and SSU coding region Fazaeli et al. (2000)

Oxytricha fallax 2 LSU coding region Doak et al. (2003)

Paramecium tatraurelia 6 MAC/ 4 MIC IGR Preer et al. (1999)

Perkinsus andrewsi A and B IGR and coding regions Pecher et al. (2004)

Plantae

Dunaliella salina 2 Group I introns Wilcox et al. (1992)

Opisthokonta

Saccharomyces cerevisiae IGR Skryabin et al. (1984), Jemtland et al. (1986)

Candida albicans 2 Intron-containing and intronless LSU Miletti-González & Leibowitz (2008)

Yarrowia lipolytica 2–5 IGR van Heerikhuizen et al. (1985), Fournier et al.

(1986), Clare et al. (1986)

Nosema apis At least 3 IGR Gatehouse & Malone (1998)

Nosema bombi At least 2 ITS O’Mahony et al. (2007)

�The number or names of the rDNA types for each species are shown.

IGR, intergenic region; MAC, macronucleus; MIC, micronucleus.
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D. discoideum, in the same polarity as the two rDNA copies

(Hofmann et al., 1993) (Fig. 4b). Finally, a S. cerevisiae 5S

rDNA variant is found in five repeats of 3.6 kbp, located next

to the rDNA tandem cluster locus, in the centromere-distal

side (McMahon et al., 1984).

Some Trypanosoma species such as Trypanosoma vivax

and Typanosoma rangeli have the 5S rDNA copies linked to

the spliced-leader (SL) tandem repeated genes, transcribed

by pol II. SL transcripts are necessary to process the mRNAs

in kinetoplastids by a trans-splicing reaction (Simpson et al.,

2006). A similar linkage has been found in other Euglenozoa

such as Diplonema papillatum and Bodo caudatus. In Trypa-

noplasma borreli and Trypanosoma avium, the 5S rDNA is

coded in opposite polarity relative to the SL gene (Table 10).

Interestingly, the T. borreli SL can also be linked to 5S rRNA

pseudogenes (with a truncated 50 end) (Maslov et al., 1993).

Some 5S rDNA units in T. pyriformis and T. foetus are

associated with ubiquitin genes transcribed by pol II (Fig.

8b). Table 10 describes the relative polarity of the 5S rDNA

linked to the genes transcribed by pol II.

Some 5S rDNA copies in E. histolytica and one copy in

Leishmania tarentolae are linked to tRNA genes (Shi et al.,

1994; Clark et al., 2006), also transcribed by pol III.

Interestingly, 48 of the 108 5S rDNA copies of Y. lipolytica

produce pol III dicistronic transcripts: tRNA–5S rRNA

hybrid molecules. The synthesis of an �200-nt transcript is

driven by the tRNA pol III promoter, resulting in a

transcription independent of the 5S rDNA-specific tran-

scription factor, TFIIIA. The dicistronic transcripts, as

well as a unique tricistronic transcript [Lys(CTT) tRNA–

Glu(CTC) tRNA–5S rDNA] are post-transcriptionally pro-

cessed to generate the typical mature RNA molecules: tRNAs

and 5S rRNA (Acker et al., 2008) (Fig. 8c).

Nontandem 5S rDNA copies are found dispersed

throughout the genome of some microbial eukaryotes.

Some examples are A. castellanii (Zwick et al., 1991),

Table 9. Typical 5S rDNA organization

Organism 5S rDNA types� Localization of variability Other References

Excavata

Trichomonas tenax A and B IGR and coding region Type B IGR palindrome Torres-Machorro et al. (2009)

Trichomonas vaginalis A and B IGR IGS 10-bp palindrome Torres-Machorro et al. (2006)

Tritrichomonas foetus A and B IGR, repeated sequences vs.

ubiquitin gene

Torres-Machorro et al. (2009)

Trypanosoma brucei Lenardo et al. (1985)

Trypanosoma cruzi 6 Sp1 binding sites in IGR Hernández-Rivas et al. (1992)

Chromalveolates

Cryptosporidium parvum IGR Taghi-Kilani et al. (1994)

Eimeria tenella Stucki et al. (1993)

Plasmodium falciparum 3 IGR lengths Shippen-Lentz & Vezza (1988)

Tetrahymena pyriformis IGR Some linked to ubiquitin genes Guerreiro et al. (1993)

Tetrahymena thermophila IGR lengths IGR 12 and 16-bp palindromes Allen et al. (1984)

�The number or names of the 5S rDNA types for each species are shown.

IGR, intergenic region.

Table 10. 5S rRNA gene linkage to pol II transcribed genes

Organism Pol II gene Orientation References

Excavata

Trypanosoma vivax Spliced leader Sense Roditi (1992)

Trypanosoma rangeli Spliced leader Sense Aksoy et al. (1992)

Bodo saltans Spliced leader Sense Santana et al. (2001)

Bodo caudatus Spliced leader Sense Campbell (1992)

Diplonema papillatum Spliced leader Sense Sturm et al. (2001)

Herpetomonas spp. Spliced leader Sense Aksoy (1992)

Trypanoplasma borreli Spliced leader Antisense Maslov et al. (1993)

Trypanosoma avium Spliced leader Antisense Santana et al. (2001)

Euglena gracilis Spliced leader Sense Keller et al. (1992)

Tritrichomonas foetus Ubiquitin Sense Torres-Machorro et al. (2009)

Chromalveolates

Tetrahymena pyriformis Ubiquitin Sense Guerreiro et al. (1993)
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Y. lipolytica and Schizosaccharomyces pombe (Tabata, 1981;

Dujon et al., 2004). The 5S rDNA may also be found in

extrachromosomal DNA. Noteworthy, ciliate organisms

such as Oxytricha fallax have single 5S rDNA copies coded

in macronucleus extrachromosomal molecules (Rae &

Spear, 1978; Roberson et al., 1989). Moreover, about one

million copies of the 5S rDNA are coded in linear mini-

chromosomes flanked by telomeres in E. eurystomus (Ro-

berson et al., 1989).

Concluding remarks

Ribosomes are complex organelles that require the intricate

collaboration of three types of RNAs (rRNA, mRNA and

tRNA) and 4 70 proteins for the synthesis of proteins.

rRNAs must maintain their convoluted structural motifs in

order to be functional. It is therefore not surprising that

their sequence is highly conserved among related organisms

and this similarity is gradually lost as organisms diverge. For

this reason, sequence comparison of the SSU rRNA has been

widely used in the field of molecular phylogeny (Van de Peer

et al., 2000).

The ‘typical’ eukaryotic rDNA genomic organization was

proposed 4 30 years ago, based on the analysis of the rDNA

in higher eukaryotes (Long & Dawid, 1980). The tandemly

repeated head-to-tail organization has been considered the

standard for eukaryotic rDNA. Surprisingly, analyses of the

genomic organization of ribosomal genes in microbial

eukaryotes demonstrate that although some organisms do

hold the typical rDNA configuration, the majority reveal

unusual characteristics. As shown in this review, the eukar-

yotic rDNA may be arranged in a wide variety of genomic

configurations, suggesting the existence of several regulatory

mechanisms (probably species-specific) within a conserved

rDNA regulatory context.

Reiteration is one of the most conserved rDNA character-

istics. The rDNA copy number is extremely variable and

appears to be highly regulated within species. Nevertheless,

the total number of rDNA repeats does not always correlate

with the rate of rRNA synthesis (French et al., 2003),

implying that individual rDNA units may hold different

epigenetic marks that result in variable transcriptional rates

(Grummt, 2007). rDNA structure and transcription are also

important in the establishment of the nucleolar structure,

which also plays regulatory roles at the cellular level (Car-

mo-Fonseca et al., 2000). Dictyostelium discoideum, T. gondii

and some yeast species have equal numbers of rDNA and 5S

rDNA copies. This organization was considered coherent, as

the pool for rRNA molecules was supposed to hold equimo-

lar amounts of 18S, 5.8S, 28S and 5S rRNA mature mole-

cules for the efficient synthesis of ribosomes (Prokopowich

et al., 2003). However, rDNA and 5S rDNA are transcribed

by different RNA polymerases with dissimilar transcription

rates and number of transcriptionally open rDNA units.

Therefore, the rDNA/5S rDNA dosage is not directly related

to the stoichiometry of the total rRNA pool and expression

process. The rDNA/5S rDNA dosage varies widely through-

out evolution. The processes that allow the maintenance of

the pool of rRNA mature molecules in appropriate stoichio-

metry must be a complex network including epigenetic,

Fig. 8. The 5S rDNA may be linked to pol II or pol III transcribed genes. (a) In Tritrichomonas foetus the 5S rDNA is linked to a multigenic ubiquitin family.

(b) In Euglena gracilis the 5S rDNA is linked to the SL gene. (c) In Yarrowia lipolytica dicistronic genes consisting of a tRNA gene (pink) and a 5S rDNA

(green) are dispersed in the genome. One tricistronic gene: Lys(CTT) tRNA–Glu(CTC) tRNA–5S rDNA is also found. These genes are transcribed from the

pol III promoter of the tRNA gene. Dispersed, single 5S rDNAs are also found (green).
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transcriptional, post-transcriptional and structural mechan-

isms that may vary according to the rDNA/5S rDNA dosage.

Additionally, the location of the rDNA and 5S rDNA in the

genome may be related to its expression and physiology. The

chromosomal context, together with different chromatin

environments, may be involved in the maintenance of gene

copy number, recombination frequency, sequence conserva-

tion and transcription regulation of rDNA.

The organization of rDNA in extrachromosomal mole-

cules may be associated with the cellular need for quick

changes in the rDNA copy number under stress conditions.

Some organisms have most of their rDNA in self-replicating

extrachromosomal molecules, but retain additional copies

in the chromosome probably as a backup. Interestingly,

some organisms hold the totality of their rDNA in extra-

chromosomal molecules. It has been shown that the accu-

mulation of extrachromosomal rDNA copies in old S.

cerevisiae cultures affects cells’ health. Therefore, cells that

hold most or all rDNA copies extrachromosomally may have

special mechanisms to allow for the accumulation of large

rDNA minichromosomes without affecting the cell fitness.

However, it is possible that yeasts lack this mechanism,

resulting in cell damage when episomes accumulate.

Post-transcriptional processing of ITS-1 and ITS-2 is

observed in almost all eukaryotes. However, some organisms

possess additional ITS sequences in the 28S rRNA that

generate fragmented rRNA molecules that maintain the core

rRNA active elements in the mature ribosome. It has been

found that some organisms possess additional sequences in

variable regions internal to the SSU rRNA coding sequence

that remain in the mature molecule, thus generating unu-

sually large SSU rRNAs. It is interesting to note that the SSU

rRNA has not been found as a fragmented molecule in

nuclear genomes; in contrast, the fragmented eLSU rRNA

could be regarded as 28S molecules that have processed their

variable regions. The structure and functionality of these

rRNAs in the ribosome may help to understand the im-

portance of variable regions and the differences/restrictions

between subunits.

The rDNA coding region of several microbial eukaryotes

is interrupted by group I introns. Different transcriptional

and post-transcriptional mechanisms are involved in the

processing of introns and HE transcripts. Some C. albicans

strains have heterogeneous rDNA populations with both

intron-containing and intron-less rDNA units. Because no

function related to rDNA expression has been proposed for

group I introns, C. albicans may provide a good model to

study the role (if any) of these introns in rRNA expression,

processing and stability.

The linkage of 5S rDNA to a variety of tandem repeated

families may be the result of homogenizing mechanisms

responsible for concerted evolution (Drouin & de Sá, 1995).

The finding that the 5S rDNA can be linked to all polymer-

ase transcribed genes, coded alone in different chromosomal

loci or coded in extrachromosomal molecules underscores

the possibility of various mechanisms acting to regulate the

expression of different types of 5S rDNAs. The simultaneous

expression of pol I, pol II and pol III transcribed genes in a

particular locus may alter the chromatin context as well as

the availability of transcription factors in the proximity.

Nevertheless, the significance of the linkage between multi-

genic families and 5S rDNA has not been studied. The

presence of unlinked 5S rDNA copies is also interesting

because the chromosomal context for each gene may affect

its regulation.

Widespread rDNA characteristics present among eukar-

yotic supergroups as well as particular features predominat-

ing in some eukaryotic subgroups reflect the complexity of

evolution. The typical tandem head-to-tail organization of

the rDNA and 5S rDNA is found in all eukaryotic super-

groups (Fig. 9), suggesting that the eukaryotic common

ancestor held this organization. Later on, the evolutionary

process probably led to a specialization and divergence of

the rDNA structure, resulting in the different variants

described here. Other features, such as the group I introns,

were acquired by horizontal transfer and are therefore wide-

spread among microbial eukaryotes (Fig. 9) (Sogin et al.,

1986; Van Oppen et al., 1993).

Some particular rDNA characteristics are conserved

among related species, suggesting that the common ancestor

for each group held these traits before current speciation.

Examples of this can be found in the unlinked differentially

expressed rDNA units in Apicomplexa, the extralong SSU

rRNAs in Amoebozoa and Foraminifera, the extrachromo-

somal rDNA and 5S rDNA in ciliates and Amoebozoa, the

5.8S–23S rRNA fusion in Microsporidia and both the SL–5S

rDNA linkage and the eLSU fragmentation in Euglenozoa.

The 5S rDNA nontandem organization as well as the linkage

between 5S rDNA with the ribosomal cistron can also be

seen as predominant in the Fungi group (Fig. 9). Particular

traits such as the 28S rRNA fragmentation could have

appeared more than once and independently, leading to

non-Euglenozoa organisms containing fragmented rRNAs

such as A. castellanii and Plasmodium. Distinctive character-

istics shared among non-closely related species may repre-

sent phylogenetic evidence of yet unknown linkages among

eukaryotic subgroups and species. Nevertheless, a thorough

and integrated comparative characterization of rRNA genes

in poorly or nonstudied eukaryotes may help to understand

the diversity and relationship among different forms of life.

Many unanswered questions regarding the regulation of

rRNA gene expression still remain, for example, the me-

chanism(s) that determine which rRNA gene copies will be

transcriptionally and/or epigenetically active (Lawrence

et al., 2004; Grummt, 2007) or the relevance of the genomic

context that surrounds the rRNA genes. Finally, it should be
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pointed out that the rDNA organization is only one funda-

mental step in its regulation, because its expression is

interrelated with most, if not all, of the cell’s regulation

levels (Paule & White, 2000; Schramm & Hernandez, 2002;

Grummt, 2003).
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