WO2019107394A1 - Compounds having dibenzothiophene ring, liquid crystal composition, and liquid crystal display element - Google Patents

Compounds having dibenzothiophene ring, liquid crystal composition, and liquid crystal display element Download PDF

Info

Publication number
WO2019107394A1
WO2019107394A1 PCT/JP2018/043725 JP2018043725W WO2019107394A1 WO 2019107394 A1 WO2019107394 A1 WO 2019107394A1 JP 2018043725 W JP2018043725 W JP 2018043725W WO 2019107394 A1 WO2019107394 A1 WO 2019107394A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
independently
carbons
liquid crystal
replaced
Prior art date
Application number
PCT/JP2018/043725
Other languages
French (fr)
Japanese (ja)
Inventor
章博 高田
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Publication of WO2019107394A1 publication Critical patent/WO2019107394A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/18Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a liquid crystal compound, a liquid crystal composition, and a liquid crystal display device. More specifically, the present invention relates to a liquid crystal compound having a negative dielectric constant anisotropy having a dibenzothiophene ring, a liquid crystal composition containing the same, and a liquid crystal display device including the composition.
  • phase change PC
  • TN twisted nematic
  • STN super twisted nematic
  • EOB electrically controlled birefringence
  • OCB optically compensated bend
  • IPS modes are modes such as (in-plane switching), VA (vertical alignment), FFS (fringe field switching), and FPA (field-induced photo-reactive alignment).
  • PM passive matrix
  • AM active matrix
  • PM is classified into static, multiplex, etc.
  • AM is classified into thin film transistor (TFT), metal insulator metal (MIM), etc.
  • TFT thin film transistor
  • MIM metal insulator metal
  • a liquid crystal composition is enclosed in this element.
  • the physical properties of this composition relate to the characteristics of the device. Examples of physical properties of the composition include stability against heat and light, temperature range of nematic phase, viscosity, optical anisotropy, dielectric anisotropy, specific resistance, elastic constant and the like.
  • the composition is prepared by mixing many liquid crystal compounds. Physical properties necessary for the compound include high stability to environment such as water, air, heat, light, etc., wide temperature range of liquid crystal phase, small viscosity, appropriate optical anisotropy, large dielectric anisotropy, appropriate elastic constant And good compatibility with other liquid crystal compounds at room temperature and low temperature. Compounds having a high upper limit temperature of the nematic phase are preferred.
  • Compounds having a lower limit temperature in liquid crystal phase such as nematic phase, smectic phase and the like are preferred.
  • Compounds with low viscosity contribute to the short response time of the device.
  • the appropriate value of the optical anisotropy depends on the mode of the element.
  • Compounds having large positive or negative dielectric anisotropy are preferred to drive the device at low voltage.
  • Compounds having good compatibility with other liquid crystal compounds are preferred for preparing the composition.
  • Compounds that have good compatibility at low temperatures are preferred, as the devices may be used at temperatures below freezing.
  • liquid crystal compounds having large dielectric anisotropy have been synthesized.
  • Development of new liquid crystalline compounds is still continued. This is because the novel compounds are expected to have good physical properties which are not present in conventional compounds.
  • the novel compound may provide an appropriate balance between at least two physical properties in the composition.
  • the first problems are high stability against heat and light, high clearing point (or high upper limit temperature of nematic phase), lower lower limit temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference
  • the second problem is that the compound contains this compound and has high stability against heat and light, high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference
  • An object of the present invention is to provide a liquid crystal composition having an appropriate balance with respect to at least two physical properties.
  • the third problem is a liquid crystal display containing this composition and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a small flicker rate, and a long lifetime. It is providing a device.
  • the present invention relates to a compound represented by the formula (1), a liquid crystal composition containing the compound, and a liquid crystal display device containing the composition.
  • Rings N 1 and N 2 are independently 1,4-cyclohexylene, decahydronaphthalene-2,6-di
  • the first advantage is high stability to heat and light, high clearing point (or high upper limit temperature of nematic phase), lower lower limit temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference
  • the second advantage is that it contains this compound and has high stability to heat and light, high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference It is an object of the present invention to provide a liquid crystal composition satisfying at least one of physical properties such as anisotropy, large specific resistance, and a suitable elastic constant. An advantage of this is to provide a liquid crystal composition having an appropriate balance regarding at least two physical properties.
  • the third advantage is a liquid crystal display containing this composition and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a small flicker rate, and a long lifetime. It is providing a device.
  • liquid crystal compound liquid crystal composition
  • liquid crystal display element liquid crystal display element
  • compound liquid crystal phase
  • element physical properties of the composition
  • polymerizable compound is a compound to be added for the purpose of forming a polymer in the composition. Liquid crystalline compounds having an alkenyl are not polymerizable in that sense.
  • the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives are added to the composition for the purpose of further adjusting physical properties. Additives such as polymerizable compounds, polymerization initiators, polymerization inhibitors, optically active compounds, antioxidants, UV absorbers, light stabilizers, heat stabilizers, dyes, and antifoaming agents are added as necessary. Ru. Liquid crystal compounds and additives are mixed in such a procedure.
  • the proportion (content) of the liquid crystal compound is expressed as a weight percentage (% by weight) based on the weight of the liquid crystal composition not including the additive, even when the additive is added.
  • the proportion (addition amount) of the additive is represented by a weight percentage (% by weight) based on the weight of the liquid crystal composition without the additive. That is, the proportions of the liquid crystal compound and the additive are calculated based on the total weight of the liquid crystal compound. Parts per million by weight (ppm) may be used.
  • the proportions of the polymerization initiator and the polymerization inhibitor are exceptionally expressed based on the weight of the polymerizable compound.
  • the “clearing point” is the transition temperature of the liquid crystal phase to the isotropic phase in the liquid crystal compound.
  • the “lower limit temperature of the liquid crystal phase” is the transition temperature of the solid phase—liquid crystal phase (smectic phase, nematic phase, etc.) in the liquid crystal compound.
  • the “upper limit temperature of the nematic phase” is a transition temperature of the nematic phase-isotropic phase in the mixture of the liquid crystal compound and the base liquid crystal or the liquid crystal composition, and may be abbreviated as the “upper limit temperature”.
  • the “lower limit temperature of the nematic phase” may be abbreviated as the “lower limit temperature”.
  • the expression "increase the dielectric anisotropy” means that in the case of a composition having a positive dielectric anisotropy, the value increases positively, and a composition having a negative dielectric anisotropy. In the case of goods, it means that the value increases negatively.
  • the "high voltage holding ratio” means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit at the initial stage, and after a long period of use it shows a large voltage not only at room temperature but also at a temperature close to the upper limit. It means having a retention rate.
  • the characteristics of the composition or element may be examined before and after the aging test (including the accelerated aging test).
  • the compound represented by Formula (1) may be abbreviated as a compound (1). At least one compound selected from the group of compounds represented by formula (1) may be abbreviated as compound (1).
  • Compound (1) means one compound represented by Formula (1), a mixture of two compounds, or a mixture of three or more compounds. These rules also apply to compounds represented by other formulas. Further, in the ring A 1 and A 2 in the formula (1), adjacent R 1 , R 2 , Z 1 and Z 4 may be bonded to any carbon atom constituting the ring of A 1 and A 2 Good.
  • ring A 1 symbols such as A 1 , B 1 and C 1 surrounded by a circle or a hexagon are ring A 1 , respectively It corresponds to a ring such as ring B 1 and ring C 1 .
  • the hexagon represents a six-membered ring such as cyclohexane or benzene.
  • a hexagon may represent a fused ring such as naphthalene or a bridged ring such as adamantane.
  • the symbol of terminal group R 11 was used for a plurality of compounds.
  • two groups represented by any two R 11 may be identical or different.
  • R 11 of compound (2) is ethyl and R 11 of compound (3) is ethyl.
  • R 11 of compound (2) is ethyl and R 11 of compound (3) is propyl.
  • the same rule applies to the symbols, such as R 12, R 13, Z 11 , Z 12.
  • compound (24) when i is 2, two rings E 1 are present.
  • Two groups represented by two rings E 1 in this compound may be the same or different. When i is greater than 2, it also applies to any two rings E 1 . This rule also applies to other symbols.
  • At least one 'A' means that the number of 'A' is arbitrary.
  • at least one 'A' may be replaced by 'B'”, when the number of 'A' is one, the position of 'A' is arbitrary and the number of 'A' is two Also in the case of three or more, it means that those positions can be selected without limitation.
  • This rule also applies to the expression "at least one 'A' has been replaced by 'B'".
  • the expression “at least one 'A' may be replaced by 'B', 'C', or 'D'” is optional when any 'A' is replaced by 'B'.
  • two successive -CH 2 -be replaced by -O- to be -O-O- it is also not preferable that —CH 2 — of the methyl moiety (—CH 2 —H) is replaced by —O— to form —O—H.
  • R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in this alkyl and alkenyl, at least one —CH 2 — is replaced by —O— In these groups, at least one hydrogen may be replaced by fluorine ".
  • in these groups may be interpreted literally.
  • these groups mean alkyl, alkenyl, alkoxy, alkenyloxy and the like. That is, “these groups” represent all of the groups described earlier than the term “in these groups”. This common sense interpretation applies to the terms “in these monovalent groups” and “in these divalent groups”. For example, "these monovalent groups” represent all of the groups listed before the term “in these monovalent groups”.
  • the present invention includes the following items.
  • Rings N 1 and N 2 are independently 1,4-cyclohexylene, decahydronaphthalene-2,6-diyl or 1,4-phenylene, and in these groups, at least one —CH 2 — is And -O-
  • Item 3. The compound according to item 1, represented by formulas (1-1) to (1-3).
  • R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or 9 alkenyloxy;
  • Ring A 1 is 1,2-cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, or 1,3-cyclopentylene in which one —CH 2 — is replaced by —O—
  • Ring N 1 and ring N 2 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, Or tetrahydropyran-2,5-diyl;
  • Z 1 , Z 2 and Z 3 are independently a single bond or alkylene having 1 to 6 carbon atoms, and at
  • Item 4 In formulas (1-1) to (1-3), The compound according to Item 3, wherein ring A 1 is 1,2-cyclopropylene, 1,3-cyclobutylene or 1,3-cyclopentylene, and Z 2 and Z 3 are a single bond.
  • Item 5. The compound according to item 1, represented by any one of formulas (1-4) to (1-45).
  • R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or L 1 and L 2 are independently hydrogen or fluorine.
  • Item 7. The compound according to item 1, represented by formulas (1-46) to (1-51): In formulas (1-46) to (1-51), R 2 is alkoxy having 1 to 9 carbons.
  • Item 8 A liquid crystal composition containing at least one compound according to any one of Items 1 to 7.
  • Item 9. The liquid crystal composition according to item 8, further containing at least one compound selected from the group of compounds represented by formulas (2) to (4).
  • R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Also, in these groups, at least one hydrogen may be replaced by fluorine;
  • Ring B 1 , ring B 2 , ring B 3 and ring B 4 are each independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,5-difluoro- 1,4-phenylene, or pyrimidine-2,5-diyl;
  • Item 10 The liquid crystal composition according to item 8 or 9, further containing at least one compound selected from the group of compounds represented by formulas (5) to (13).
  • R 13 , R 14 and R 15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is —O—
  • at least one hydrogen may be replaced by fluorine and R 15 may be hydrogen or fluorine
  • Ring C 1 , ring C 2 , ring C 3 and ring C 4 are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, or at least one hydrogen optionally substituted by fluorine 4-phenylene, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6-diyl
  • Ring C 5 and ring C 6 are independently 1,4-cyclohexylene, 1,4
  • Item 11. The liquid crystal composition according to any one of items 8 to 10, further containing at least one compound selected from the group of compounds represented by formulas (21) to (23).
  • R 16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—, and these groups In which at least one hydrogen may be replaced by fluorine;
  • X 11 is fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 , -OCF 2 CHF 2 , or -OCF 2 CHFCF 3 ;
  • Ring D 1 , ring D 2 and ring D 3 are independently 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl 1,3-dioxan
  • Item 12. The liquid crystal composition according to any one of items 8 to 11, further containing at least one compound selected from the group of compounds represented by formula (24).
  • R 17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—, and these groups In which at least one hydrogen may be replaced by fluorine;
  • X 12 is -C ⁇ N or -C ⁇ C-C ⁇ N;
  • Ring E 1 is 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl Or pyrimidine-2,5-diyl;
  • Z 21 represents a single bond, -COO-, -CH 2 O-, -CF 2 O-, -OCF 2- , -CH
  • Item 13 A liquid crystal display device comprising the liquid crystal composition according to any one of items 8 to 12.
  • the present invention also includes the following items.
  • Item (a). A composition as described above, further comprising at least one optically active compound and / or polymerizable compound.
  • Item (b). A composition as described above which additionally comprises at least one antioxidant and / or UV absorber.
  • the present invention also includes the following items.
  • Item (c). One or two selected from the group of polymerizable compounds, polymerization initiators, polymerization inhibitors, optically active compounds, antioxidants, ultraviolet light absorbers, light stabilizers, heat stabilizers, dyes, and antifoaming agents Or a composition as described above which additionally contains at least three additives.
  • Item (d). The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy (measured at 25 ° C.) at a wavelength of 589 nm is 0.08 or more, and the dielectric anisotropy (measured at 25 ° C.) at a frequency of 1 kHz is ⁇
  • the above composition which is 2 or less.
  • the present invention also includes the following items.
  • Item (e). A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, FPA, or PSA.
  • Item (f). An AM device comprising the above composition.
  • Item (g). A transmission type element comprising the above composition.
  • Item (h). Use of the above composition as a composition having a nematic phase.
  • Item (i). Use as an optically active composition by adding an optically active compound to the above composition.
  • the compound (1) of the present invention has a dibenzothiophene ring and a three-membered ring, a four-membered ring or a five-membered ring structure.
  • This compound is extremely physically and chemically stable under the conditions in which the device is usually used, has a large dielectric anisotropy, and has good compatibility with other liquid crystal compounds.
  • the composition containing this compound is stable under the conditions in which the device is usually used. When the composition is stored at low temperature, the compound is less likely to precipitate as a crystal (or smectic phase).
  • This compound has the general physical properties necessary for the components of the composition, the appropriate optical anisotropy, and the appropriate dielectric anisotropy.
  • the compound (1) has a dibenzothiophene ring, and has advantages such as a high upper limit temperature and a low viscosity, as compared with a compound having a dibenzofuran ring in which the sulfur of the dibenzothiophene ring is oxygenated.
  • the terminal group R 1 and R 2 in the compound (1), the ring A 1 and A 2 , the ring N 1 and N 2 , the linking group Z 1 , Z 2 , Z 3 and Z 4 , and the lateral groups Y 1 and Y 2 Preferred examples are as follows. This example also applies to the subformula of compound (1).
  • physical properties can be arbitrarily adjusted by appropriately combining these groups.
  • Compound (1) may contain isotopes such as 2 H (deuterium) and 13 C in an amount larger than the natural abundance ratio, because there is no large difference in the physical properties of the compounds.
  • the definition of the symbol of compound (1) is as having described in the item 1.
  • R 1 or R 2 is independently hydrogen, alkyl, alkoxy, alkoxyalkyl, alkoxyalkoxy, alkylthio, alkylthioalkoxy, acyl, acylalkyl, acyloxy, acyloxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkenyl, alkenyloxy, Alkenyloxyalkyl, alkoxyalkenyl, alkynyl, alkynyloxy, silalalkyl, and dicyralalkyl.
  • at least one hydrogen may be replaced by fluorine or chlorine. This example includes groups in which at least two hydrogens have been replaced by both fluorine and chlorine.
  • Groups in which at least one hydrogen is replaced only by fluorine are more preferred. In these groups, straight chain is preferable to branched chain. Even when R 1 or R 2 is a branched chain, it is preferable when it is optically active. More preferred R 1 or R 2 is hydrogen, alkyl, alkoxy, alkoxyalkyl, alkenyl, alkenyloxy, monofluoroalkyl and monofluoroalkoxy.
  • the trans configuration is preferred in the alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl.
  • the cis configuration is preferred in the alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
  • R 1 or R 2 is independently hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, methoxymethyl , Methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, propoxymethyl, butoxymethyl, pentoxymethyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1- Pentanyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-propenyloxy, 2-butenyloxy, 2-pentenyloxy, 1-propynyl, and 1-pentenyl.
  • R 1 or R 2 is independently hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, methoxymethyl, ethoxymethyl, propoxymethyl, vinyl, 1-propenyl 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-propenyloxy, 2-butenyloxy and 2-pentenyloxy.
  • R 1 is hydrogen and most preferred R 2 is methyl, ethyl, propyl, butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy and hexyloxy.
  • Preferred rings A 1 and A 2 are independently 1,2-cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, 1,3-cyclopentenylene, 1,4-cyclopentenyl Lene is 3,5-cyclopentenylene, 2,4-tetrahydronyl or 2,5-tetrahydrofuranyl. Particularly preferred rings A 1 and A 2 are 1,3-cyclopentylene.
  • a and d are independently 0 and 1 and 1 ⁇ a + d ⁇ 2.
  • a compound having a large absolute value of dielectric anisotropy that is, a compound having a large polarity tends to deteriorate the low temperature compatibility.
  • compounds having rings A 1 and A 2 which are cycloalkylene having 3 to 5 carbon atoms, have dielectric anisotropy similar to this and are compared with compounds having no such cycloalkylene, It shows good compatibility with other liquid crystal compounds at low temperatures.
  • At least one hydrogen is fluorine, chlorine, -C ⁇ N, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F
  • Preferred examples of “which may be substituted” are divalent groups represented by the following formulas (26-1) to (26-71). Further preferred examples are formulas (26-1) to (26-4), formulas (26-6), formulas (26-10) to (26-15), and formulas (26-54) to (26-59). It is a bivalent group represented by).
  • rings N 1 and N 2 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro- 1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro -1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-2,5-diyl, decahydronaphthalene-2,6- Diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, and naphthalene-2,6-diyl.
  • rings N 1 and N 2 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2, 3-Difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyridine-2,5-diyl, and pyrimidine-2,5-diyl It is.
  • Most preferred ring N 1 and ring N 2 are 1,4-cyclohexylene and 1,4-phenylene.
  • Y 1 and Y 2 are independently hydrogen, fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F.
  • Preferred Y 1 and Y 2 are independently hydrogen or fluorine.
  • Particularly preferred Y 1 and Y 2 are fluorine.
  • b and c are independently 0, 1 or 2
  • b + c is 0, 1 or 2.
  • the compound (1) has one to three rings in total, excluding rings A 1 and A 2 which are three-, four-, or five-membered rings. Ring types include, in addition to ordinary six-membered rings, fused rings and bridged six-membered rings, and fused rings are counted as part.
  • the compatibility with other liquid crystal compounds is very good.
  • the viscosity is small.
  • the compound (1) has two or three rings, the upper limit temperature is high.
  • Physical properties such as optical anisotropy and dielectric anisotropy can be arbitrarily adjusted by appropriately selecting the terminal group, ring and linking group of compound (1).
  • Types of terminal groups R 1 and R 2 , rings A 1 and A 2 , rings N 1 and N 2 , side groups Y 1 and Y 2 , linking groups Z 1 , Z 2 , Z 3 and Z 4 are compounds ( The effects on the physical properties of 1) are described below.
  • the viscosity is small.
  • the viscosity is smaller.
  • the bonding group is —O— or —CH 2 O—, the dielectric anisotropy is large.
  • the compound (1) has a large dielectric anisotropy.
  • the viscosity is small when compound (1) has one or two rings as counted excluding rings A 1 and A 2 .
  • the upper limit temperature is high when the compound (1) is counted excluding rings A 1 and A 2 and has a bicyclic or tricyclic ring.
  • compounds having necessary physical properties can be obtained by appropriately selecting the types of terminal groups, rings, lateral groups, and linking groups. Therefore, the compound (1) is useful as a component of a composition used for a device having a mode such as PC, TN, STN, ECB, OCB, IPS, VA and the like.
  • MSG 1 is a monovalent organic group having one of a three-, four-, five-, six-membered or fused ring.
  • the monovalent organic groups represented by a plurality of MSG 1 (or MSG 2 ) used in the scheme may be identical or different.
  • Compounds (1A) to (1J) correspond to compound (1).
  • —CH CH—
  • the halide (32) is treated with n-butyllithium and then reacted with DMF (N, N-dimethylformamide) to obtain an aldehyde (38).
  • the phosphonium salt (37) synthesized by the known method is treated with a base such as potassium t-butoxide to generate a phosphorus ylide.
  • This phosphorus ylide is reacted with aldehyde (38) to synthesize compound (1D).
  • a cis form is formed, and if necessary, the cis form is isomerized to a trans form by a known method.
  • Decahydronaphthalene-2,6-dione (64) is the starting material for compounds with decahydronaphthalene-2,6-diyl.
  • This compound (64) is obtained by catalytic hydrogen reduction of diol (63) in the presence of ruthenium oxide and further oxidation with chromium oxide according to the method described in JP-A-2000-239564.
  • This compound is converted to compound (1) by a conventional method.
  • the structural unit of 2,3- (bistrifluoromethyl) phenylene is synthesized by the method described in Org. Lett., 2000, 2 (21), 3345.
  • Aniline (66) is synthesized by reaction of furan (65) with 1,1,1,4,4,4-hexafluoro-2-butyne at high temperature in a Diels-Alder type reaction. This compound is subjected to a Sandmeyer reaction according to the method described in Org. Synth. Coll., Vol. 2, 1943, 355 to obtain an iodide (67). This compound is converted to compound (1) by a conventional method.
  • the structural unit of 2-difluoromethyl-3-fluorophenylene is synthesized by the following method.
  • the hydroxyl group of compound (68) is protected with a suitable protecting group to give compound (69).
  • P represents a protecting group.
  • Compound (69) is reacted with s-butyllithium and subsequently reacted with N, N-dimethylformamide (DMF) to obtain aldehyde (70).
  • the compound is fluorinated with diethylaminosulfur trifluoride (DAST) and subsequently deprotected to give phenol (71). This compound is converted to compound (1) by a conventional method.
  • DAST diethylaminosulfur trifluoride
  • Synthetic Method of Compound (1) An example of a synthetic method of Compound (1) is shown below.
  • the hydroxyl group of compound (72) is protected with a suitable protecting group to give compound (73).
  • P represents a protecting group.
  • s-butyllithium is allowed to act on a compound (74) obtained from a known method, Reaction with trimethyl borate gives compound (75).
  • Compound (73) and compound (75) are coupled using a metal catalyst to synthesize compound (76). Subsequently, deprotection is performed to obtain a compound (77).
  • R 1 , R 2 , A 1 , A 2 , N 1 , N 2 , Y 1 , Y 2 , Z 1 , Z 2 , Z 3 , Z 4 , a, b, c and d Is the same as the definition of the symbol described in the item 1.
  • Liquid Crystal Composition 3-1 Component Compounds
  • the liquid crystal composition will be described.
  • This composition contains at least one compound (1) as component (a).
  • the composition may contain two or more compounds (1).
  • the component of the composition may be only the compound (1).
  • the composition preferably contains at least one of the compounds (1) in the range of 1% by weight to 99% by weight in order to develop good physical properties.
  • the preferred content of the compound (1) is in the range of 5% by weight to 60% by weight.
  • the content of the compound (1) is usually 30% by weight or less, preferably 20% by weight or less, more preferably 15% by weight based on the total weight of the liquid crystal composition.
  • % Or less more preferably 10% by weight or less, and usually 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more.
  • This composition contains compound (1) as component (a).
  • the composition preferably further contains a liquid crystal compound selected from components (b) to (e) shown in Table 1.
  • a liquid crystal compound selected from components (b) to (e) shown in Table 1.
  • the composition may contain liquid crystal compounds different from the compounds (1) to (13) and (21) to (24). This composition may not contain such a liquid crystal compound.
  • Component (b) is a compound in which the two end groups are alkyl or the like.
  • Preferred examples of component (b) include compounds (2-1) to (2-11), compounds (3-1) to (3-19), and compounds (4-1) to (4-7). be able to.
  • R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is —O And in these groups at least one hydrogen may be replaced by fluorine.
  • Component (b) has a small dielectric anisotropy and is near neutral.
  • the compound (2) has the effect of reducing the viscosity or adjusting the optical anisotropy.
  • Compounds (3) and (4) have the effect of extending the temperature range of the nematic phase or raising the optical anisotropy by raising the upper limit temperature.
  • Component (c) is compounds (5) to (13). These compounds have phenylene in which the lateral position is substituted with two halogens, such as 2,3-difluoro-1,4-phenylene.
  • Preferred examples of component (c) include compounds (5-1) to (5-9), compounds (6-1) to (6-19), compounds (7-1) and (7-2), compounds (c) 8-1) to (8-3), compounds (9-1) to (9-3), compounds (10-1) to (10-11), compounds (11-1) to (11-3), Compounds (12-1) to (12-3) and compound (13-1) can be mentioned.
  • R 13 , R 14 and R 15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — May be replaced by —O—, in these groups at least one hydrogen may be replaced by fluorine, and R 15 may be hydrogen or fluorine.
  • Component (c) has a large negative dielectric anisotropy.
  • Component (c) is used when preparing a composition for modes such as IPS, VA, PSA and the like.
  • the dielectric anisotropy of the composition is negatively increased but the viscosity is increased. Therefore, the smaller the content, the better, as long as the required value of the threshold voltage of the device is satisfied.
  • the content is preferably 40% by weight or more based on the total weight of the liquid crystal composition in order to achieve sufficient voltage driving.
  • the compound (5) is a bicyclic compound, it has an effect of lowering the viscosity, adjusting the optical anisotropy or improving the dielectric anisotropy.
  • Compounds (6) and (7) are tricyclic compounds, and compound (8) is a tetracyclic compound. Therefore, the effects of increasing the maximum temperature, optical anisotropy, or dielectric anisotropy are obtained. is there.
  • Compounds (9) to (13) have the effect of increasing the dielectric anisotropy.
  • Component (d) is a compound having a halogen or fluorine-containing group at the right end.
  • Preferred examples of the component (d) include the compounds (21-1) to (21-16), the compounds (22-1) to (22-116), and the compounds (23-1) to (23-59).
  • R 16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Well, in these groups, at least one hydrogen may be replaced by fluorine.
  • X 11 is fluorine, chlorine, -OCF 3 , -OCHF 2 , -CF 3 , -CHF 2 , -CH 2 F, -OCF 2 CHF 2 , or -OCF 2 CHFCF 3 .
  • the component (d) is used when preparing a composition for modes such as IPS, FFS, and OCB because the dielectric anisotropy is positive and the stability to heat and light is very good.
  • the content of component (d) is suitably in the range of 1% by weight to 99% by weight, preferably in the range of 10% by weight to 97% by weight, more preferably 40% by weight, based on the total weight of the liquid crystal composition. % To 95% by weight.
  • the content of component (d) is preferably 30% by weight or less.
  • Component (e) is a compound (24) in which the right terminal group is —C ⁇ N or —C ⁇ C—C ⁇ N.
  • Preferred examples of component (e) include compounds (24-1) to (24-64).
  • R 17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Well, in these groups, at least one hydrogen may be replaced by fluorine.
  • X 12 is —C ⁇ N or —C ⁇ C—C ⁇ N.
  • Component (e) is used when preparing a composition for a mode such as TN since the dielectric anisotropy is positive and the value thereof is large. By adding this component (e), the dielectric anisotropy of the composition can be increased.
  • the component (e) has the effect of widening the temperature range of the liquid crystal phase, adjusting the viscosity, or adjusting the optical anisotropy.
  • Component (e) is also useful for adjusting the voltage-transmittance curve of the device.
  • the content of component (e) is suitably in the range of 1% by weight to 99% by weight based on the total weight of the liquid crystal composition, and is preferably It is in the range of 10% by weight to 97% by weight, more preferably in the range of 40% by weight to 95% by weight.
  • the content of component (e) is preferably 30% by weight or less based on the total weight of the liquid crystal composition.
  • a liquid crystal composition satisfying at least one of physical properties such as) can be prepared.
  • a device comprising such a composition has a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a small flicker ratio, and a long lifetime.
  • the flicker rate (%) can be expressed by (
  • An element whose flicker rate is in the range of 0% to 1% is less likely to cause flicker on the display screen even when the element is used for a long time.
  • This flicker is related to image burn-in and is estimated to be generated by a potential difference between positive and negative frames when driven with an alternating current.
  • the composition containing the compound (1) is also useful for reducing the occurrence of flicker.
  • the liquid crystal composition is prepared by a known method. For example, the component compounds are mixed and dissolved together by heating.
  • additives may be added to the composition. Examples of the additives are a polymerizable compound, a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer, a dye, an antifoaming agent and the like. Such additives are well known to those skilled in the art and are described in the literature.
  • the composition contains a polymer.
  • the polymerizable compound is added in order to form a polymer in the composition.
  • a polymer is formed in the composition by polymerizing the polymerizable compound by irradiation with ultraviolet light in a state where a voltage is applied between the electrodes.
  • Preferred examples of the polymerizable compound are acrylates, methacrylates, vinyl compounds, vinyloxy compounds, propenyl ethers, epoxy compounds (oxiranes, oxetanes), and vinyl ketones. Further preferred examples are compounds having at least one acryloyloxy and compounds having at least one methacryloyloxy. Further preferred examples also include compounds having both acryloyloxy and methacryloyloxy.
  • R 25 to R 31 are independently hydrogen or methyl;
  • R 32 , R 33 and R 34 are independently hydrogen or alkyl having 1 to 5 carbon atoms, R 32 , At least one of R 33 and R 34 is alkyl having 1 to 5 carbons;
  • v, w and x are independently 0 or 1;
  • u and y are independently 1 to 10 Is an integer of L 21 to L 26 are independently hydrogen or fluorine;
  • L 27 and L 28 are independently hydrogen, fluorine or methyl.
  • the polymerizable compound can be rapidly polymerized by adding a polymerization initiator such as a photo radical polymerization initiator. By optimizing the reaction conditions, the amount of remaining polymerizable compound can be reduced.
  • a polymerization initiator such as a photo radical polymerization initiator.
  • photo radical polymerization initiators are TPO, 1173, and 4265 from Darrocure series of BASF, and 184, 369, 500, 651, 784, 819, 907, 1300, 1700, 1800, from Irgacure series. 1850 and 2959 can be mentioned.
  • polymerization After adding a photo radical polymerization initiator to the liquid crystal composition, polymerization can be performed by irradiating ultraviolet light in a state where an electric field is applied. However, unreacted polymerization initiator or decomposition products of the polymerization initiator may cause display defects such as image sticking to the device. In order to prevent this, photopolymerization may be performed without adding a polymerization initiator.
  • the preferred wavelength of the light to be irradiated is in the range of 150 nm to 500 nm. A further preferred wavelength is in the range of 250 nm to 450 nm, and the most preferred wavelength is in the range of 300 nm to 400 nm.
  • a polymerization inhibitor When storing the polymerizable compound, a polymerization inhibitor may be added to prevent polymerization.
  • the polymerizable compound is usually added to the composition without removing the polymerization inhibitor.
  • polymerization inhibitors are hydroquinone, hydroquinone derivatives such as methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
  • the optically active compound has an effect of inducing a helical structure in liquid crystal molecules and preventing reverse twist by providing a necessary twist angle.
  • the helical pitch can be adjusted by adding an optically active compound.
  • Two or more optically active compounds may be added in order to adjust the temperature dependency of the helical pitch.
  • the optically active compounds the following compounds (Op-1) to (Op-18) can be mentioned.
  • ring J is 1,4-cyclohexylene or 1,4-phenylene
  • R 28 is alkyl having 1 to 10 carbons.
  • the symbol * represents an asymmetric carbon.
  • Antioxidants are effective to maintain a large voltage holding ratio.
  • the antioxidant the following compounds (AO-1) and (AO-2); Irganox 415, Irganox 565, Irganox 1010, Irganox 1035, Irganox 3114, and Irganox 1098 (trade name; manufactured by BASF) can be mentioned.
  • UV absorbers are effective to prevent the lowering of the upper limit temperature.
  • UV absorbers are benzophenone derivatives, benzoate derivatives, triazole derivatives and the like, and specific examples thereof include the following compounds (AO-3) and (AO-4); Tinuvin 329, Tinuvin P, Tinuvin 326, Tinuvin 326, Tinuvin 213, Tinuvin 400 , Tinuvin 328, and Tinuvin 99-2 (trade name; BASF Corporation); and 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • AO-3 and AO-4 Tinuvin 329, Tinuvin P, Tinuvin 326, Tinuvin 326, Tinuvin 213, Tinuvin 400 , Tinuvin 328, and Tinuvin 99-2 (trade name; BASF Corporation); and 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • Light stabilizers such as sterically hindered amines are preferred to maintain high voltage holding rates.
  • the following compounds AO-5), (AO-6), and (AO-7); Tinuvin 144, Tinuvin 765, and Tinuvin 770 DF (trade name; BASF Corporation); LA-77Y and LA- 77G (trade name; ADEKA company) can be mentioned.
  • a heat stabilizer is also effective for maintaining a large voltage holding ratio, and a preferred example is Irgafos 168 (trade name; BASF Corporation).
  • a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition. Defoamers are effective to prevent foaming.
  • Preferred examples of the antifoaming agent are dimethyl silicone oil, methylphenyl silicone oil and the like.
  • R 40 is alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons, -COOR 41 , or -CH 2 CH 2 COOR 41 , wherein R 41 is a carbon number It is an alkyl of 1 to 20.
  • R 42 is alkyl having 1 to 20 carbons.
  • R 43 is hydrogen, methyl or O ⁇ (oxygen radical);
  • ring G 1 is an 1,4-cyclohexylene or 1,4-phenylene;
  • Compound (AO-7 In the above, ring G 2 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine;
  • compounds (AO-5) and (AO— In 7), z is 1, 2 or 3.
  • the liquid crystal composition has an operation mode such as PC, TN, STN, OCB or PSA, and can be used for a liquid crystal display element driven by an active matrix system.
  • This composition can be used also for a liquid crystal display element driven by a passive matrix method, having an operation mode such as PC, TN, STN, OCB, VA, IPS and the like.
  • These elements can be applied to any of reflective, transmissive, and semi-transmissive types.
  • the composition is also suitable for a nematic curvilinear aligned phase (NCAP) device, in which the composition is microencapsulated.
  • NCAP nematic curvilinear aligned phase
  • This composition can also be used for polymer dispersed liquid crystal display (PDLCD) and polymer network liquid crystal display (PNLCD).
  • PDLCD polymer dispersed liquid crystal display
  • PLCD polymer network liquid crystal display
  • a PSA mode liquid crystal display device is produced.
  • the preferred proportion is in the range of 0.1% by weight to 2% by weight.
  • a further preferred ratio is in the range of 0.2% by weight to 1.0% by weight.
  • the element in the PSA mode can be driven by a driving method such as an active matrix method or a passive matrix method. Such an element can be applied to any of reflective, transmissive and semi-transmissive types.
  • Compound (1) was synthesized by the following procedure.
  • the compound synthesized was identified by a method such as NMR analysis.
  • the physical properties of the compounds and compositions and the characteristics of the devices were measured by the following methods.
  • NMR analysis For measurement, DRX-500 manufactured by Bruker Biospin Ltd. was used. In the measurement of 1 H-NMR, the sample was dissolved in a deuterated solvent such as CDCl 3 and measured at room temperature, 500 MHz, under conditions of 16 times of integration. Tetramethylsilane was used as an internal standard. In the 19 F-NMR measurement, CFCl 3 was used as an internal standard, and the integration was performed 24 times.
  • s is singlet
  • d doublet
  • t triplet
  • q quartet
  • quin quintet
  • sex sextet
  • m multiplet
  • br is broad.
  • Gas chromatograph mass spectrometry For measurement, a QP-2010 Ultra type gas chromatograph mass spectrometer manufactured by Shimadzu Corporation was used. As a column, capillary columns DB-1 (length 60 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m) manufactured by Agilent Technologies Inc. were used. Helium (1 ml / min) was used as a carrier gas. The temperature of the sample vaporization chamber was set to 300 ° C., the temperature of the ion source to 200 ° C., the ionization voltage to 70 eV, and the emission current to 150 uA. The sample was dissolved in acetone to prepare a 1% by weight solution, and 1 ⁇ l of the resulting solution was injected into the sample vaporization chamber. A GCMSsolution system manufactured by Shimadzu Corporation was used as a recorder.
  • HPLC analysis For measurement, Prominence (LC-20AD; SPD-20A) manufactured by Shimadzu Corporation was used. As a column, YMC YMC-Pack ODS-A (length 150 mm, inner diameter 4.6 mm, particle diameter 5 ⁇ m) was used. As the eluate, acetonitrile and water were appropriately mixed and used. As a detector, a UV detector, an RI detector, a CORONA detector, etc. were used suitably. When a UV detector was used, the detection wavelength was 254 nm. The sample was dissolved in acetonitrile to prepare a 0.1% by weight solution, and 1 ⁇ L of this solution was introduced into the sample chamber. As a recorder, C-R7Aplus manufactured by Shimadzu Corporation was used.
  • UV-visible spectroscopy For measurement, PharmaSpec UV-1700 manufactured by Shimadzu Corporation was used. The detection wavelength was from 190 nm to 700 nm. The sample was dissolved in acetonitrile to prepare a 0.01 mmol / L solution, and placed in a quartz cell (optical path length: 1 cm) for measurement.
  • Measurement sample When measuring the phase structure and transition temperature (clearing point, melting point, polymerization initiation temperature, etc.), the compound itself was used as a sample. When physical properties such as the upper limit temperature of the nematic phase, viscosity, optical anisotropy, dielectric anisotropy and the like were measured, a mixture of the compound and the base liquid crystal was used as a sample.
  • the ratio of the compound to the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% It changed in order of%, and the physical property of the sample was measured in the ratio in which a crystal (or smectic phase) stopped precipitating at 25 degreeC.
  • the ratio of the compound to the mother liquid crystals is 15% by weight: 85% by weight unless otherwise specified.
  • the dielectric anisotropy of the compound was positive from zero (0 ⁇ )
  • the following mother liquid crystal (A) was used.
  • the proportions of the respective components were expressed as% by weight based on the total weight of the liquid crystal composition.
  • the dielectric anisotropy of the compound was negative ( ⁇ 0) from zero
  • the following mother liquid crystal (B) was used.
  • the proportions of the respective components were expressed as% by weight based on the total weight of the liquid crystal composition.
  • Measuring method The physical properties were measured by the following method. Many of these are described in the JEITA standard (JEITA ED-2521B), which is deliberately established by the Japan Electronics and Information Technology Industries Association (JEITA). A modified method of this was also used. A thin film transistor (TFT) was not attached to the TN device used for the measurement.
  • Phase structure The sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarization microscope (Mettler FP-52 hot stage). While heating this sample at a rate of 3 ° C./min, the phase state and its change were observed with a polarization microscope to identify the type of phase.
  • a polarization microscope Metal FP-52 hot stage
  • Transition temperature (° C.): For measurement, a scanning calorimeter manufactured by Perkin Elmer, a Diamond DSC system, or a high-sensitive differential scanning calorimeter manufactured by SII Nano Technology, X-DSC7000 was used. The temperature of the sample was raised and lowered at a rate of 3 ° C./min, and the transition point was determined by extrapolating the start point of the endothermic peak or exothermic peak associated with the phase change of the sample. The melting point of the compound and the polymerization initiation temperature were also measured using this apparatus.
  • the temperature at which a compound transitions from a solid to a liquid crystal phase such as a smectic phase or a nematic phase may be abbreviated as "the lower limit temperature of the liquid crystal phase”.
  • the temperature at which a compound transitions from liquid crystal phase to liquid may be abbreviated as the "clearing point”.
  • the crystal is designated C.
  • the smectic phase is represented by S and the nematic phase is represented by N.
  • a phase such as smectic A phase, smectic B phase, smectic C phase, and smectic F phase can be distinguished, they are represented as S A , S B , S C and S F respectively.
  • the liquid (isotropic) was designated as I.
  • the transition temperature is expressed as, for example, "C 50.0 N 100.0 I". This indicates that the transition temperature from crystal to nematic phase is 50.0 ° C., and the transition temperature from nematic phase to liquid is 100.0 ° C.
  • a sample was prepared by mixing the base liquid crystal and the compound such that the proportion of the compound was 10% by weight, 3% by weight, or 1% by weight.
  • the sample was placed in a glass bottle and stored in a ⁇ 10 ° C. freezer for a fixed period of time. It was observed whether the nematic phase of the sample was maintained or crystals (or smectic phase) were precipitated.
  • the conditions under which the nematic phase is maintained are used as a measure of compatibility.
  • the ratio of compounds and the temperature of the freezer may be changed as needed.
  • T NI or NI; ° C. Upper limit temperature of nematic phase
  • the sample was placed on the hot plate of a melting point apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when part of the sample changed from the nematic phase to the isotropic liquid.
  • TNI When the sample is a mixture of compound (1) and mother liquid crystals, it is indicated by the symbol TNI .
  • TNI When the sample is a mixture of compound (1) and compounds selected from compounds (2) to (13) and compounds (21) to (24), it is indicated by the symbol NI.
  • the upper limit temperature of the nematic phase may be abbreviated as "upper limit temperature”.
  • Lower limit temperature of nematic phase (T c ; ° C.): The sample having the nematic phase was placed in a glass bottle and stored in a freezer at 0 ° C, -10 ° C, -20 ° C, -30 ° C, and -40 ° C for 10 days, and then the liquid crystal phase was observed. For example, the sample remained in the -20 ° C. in a nematic phase, when changed to -30 ° C. At crystals or a smectic phase was described as ⁇ -20 ° C. The T C.
  • the lower limit temperature of the nematic phase may be abbreviated as "lower limit temperature”.
  • Viscosity Bulk viscosity; ;; measured at 20 ° C .; mPa ⁇ s
  • E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used.
  • VHR-1 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 ⁇ m.
  • the element was sealed with an adhesive that cures with ultraviolet light after the sample was placed.
  • a pulse voltage 60 microseconds at 5 V was applied to this element to charge it.
  • the decaying voltage was measured with a high-speed voltmeter for 16.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B is the area when not attenuated.
  • the voltage holding ratio was expressed as a percentage of the area A to the area B.
  • VHR-2 Voltage holding ratio (10) Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured by the above method except that measurement was performed at 80 ° C. instead of 25 ° C. The obtained result is shown by the symbol of VHR-2.
  • Flicker rate (measured at 25 ° C .;%): A multimedia display tester 3298F manufactured by Yokogawa Electric Corporation was used for the measurement. The light source was an LED. The sample was placed in a normally black mode FFS element in which the distance between two glass substrates (cell gap) was 3.5 ⁇ m and the rubbing direction was antiparallel. The device was sealed using an adhesive that cures with ultraviolet light. A voltage was applied to this device, and the voltage at which the amount of light transmitted through the device became maximum was measured. While applying this voltage to the element, the sensor unit was brought close to the element, and the displayed flicker rate was read.
  • the measurement method of physical properties may be different between a sample with positive dielectric anisotropy and a sample with negative dielectric anisotropy.
  • the measurement method when the dielectric anisotropy is positive was described in Measurement (12a) to Measurement (16a).
  • the dielectric anisotropy is negative, it was described in the measurement (12b) to the measurement (16b).
  • Viscosity Rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s; sample with positive dielectric anisotropy: The measurement was according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). The sample was placed in a TN device having a twist angle of 0 degree and a distance between two glass substrates (cell gap) of 5 ⁇ m. The device was applied stepwise in steps of 0.5 V from 16 V to 19.5 V. After 0.2 seconds of no application, application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
  • Viscosity (rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s; sample having negative dielectric anisotropy): The measurement was according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 20 ⁇ m. A voltage of 39 V to 50 V was applied stepwise to the device every 1 V. After 0.2 seconds of no application, application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured. These measurements and M. The rotational viscosity values were obtained from the article by Imai et al. And equation (8) on page 40. The dielectric anisotropy required for this calculation was measured in the section of dielectric anisotropy described below.
  • the dielectric constants ( ⁇ and ⁇ ) were measured as follows. (1) Measurement of dielectric constant ( ⁇ ): The polyimide solution was applied to the well-cleaned glass substrate. After firing the glass substrate, the obtained alignment film was rubbed. The sample was placed in a TN device in which the distance between two glass substrates (cell gap) was 9 ⁇ m and the twist angle was 80 degrees.
  • the dielectric constants ( ⁇ and ⁇ ) were measured as follows. (1) Measurement of dielectric constant ( ⁇ ): A solution of octadecyltriethoxysilane (0.16 mL) in ethanol (20 mL) was applied to the well-cleaned glass substrate. The glass substrate was rotated by a spinner and then heated at 150 ° C. for 1 hour.
  • a sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 4 ⁇ m, and this device was sealed with an adhesive cured with ultraviolet light. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant ( ⁇ ) in the major axis direction of liquid crystal molecules was measured.
  • threshold voltage (Vth; measured at 25 ° C .; V; sample with positive dielectric anisotropy):
  • Vth measured at 25 ° C .; V; sample with positive dielectric anisotropy
  • the light source was a halogen lamp.
  • the sample was placed in a normally white mode TN device in which the distance between two glass substrates (cell gap) is 0.45 / ⁇ n ( ⁇ m) and the twist angle is 80 degrees.
  • the voltage (32 Hz, rectangular wave) applied to this element was gradually increased by 0.02 V from 0 V to 10 V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum.
  • the threshold voltage was represented by the voltage at 90% transmittance.
  • Threshold voltage (Vth; measured at 25 ° C .; V; sample having negative dielectric anisotropy):
  • Vth measured at 25 ° C .; V; sample having negative dielectric anisotropy
  • the light source was a halogen lamp.
  • a sample is placed in a normally black mode VA device in which the distance between two glass substrates (cell gap) is 4 ⁇ m and the rubbing direction is antiparallel, and an adhesive for curing this device with ultraviolet light is used. Used and sealed.
  • the voltage (60 Hz, rectangular wave) applied to this element was gradually increased by 0.02 V from 0 V to 20 V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum.
  • the threshold voltage was represented by the voltage at 10% transmittance.
  • the rise time ( ⁇ r: millisecond) is the time taken for the transmittance to change from 90% to 10%.
  • the fall time ( ⁇ f: milliseconds) is the time taken to change from 10% transmission to 90% transmission.
  • the response time is represented by the sum of the rise time and the fall time obtained in this manner.
  • response time ( ⁇ ; measured at 25 ° C .; ms; sample with negative dielectric anisotropy):
  • measured at 25 ° C .; ms; sample with negative dielectric anisotropy
  • the light source was a halogen lamp.
  • the low pass filter (Low-pass filter) was set to 5 kHz.
  • the sample was placed in a normally black mode PVA element in which the distance between two glass substrates (cell gap) was 3.2 ⁇ m and the rubbing direction was antiparallel.
  • the device was sealed using an adhesive that cures with ultraviolet light.
  • a voltage slightly higher than the threshold voltage was applied to the device for 1 minute, and then ultraviolet light of 23.5 mW / cm 2 was applied for 8 minutes while applying a voltage of 5.6 V.
  • a rectangular wave 60 Hz, 10 V, 0.5 seconds was applied to this element.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. It was considered that the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum.
  • the response time is represented by the time (fall time; milliseconds) taken to change from 90% transmittance to 10% transmittance.
  • Step 2 Synthesis of Compound (T-4)
  • Compound (T-2) (53.6 g), Compound (T-3) (37.2 g), toluene (200 ml), ethanol (200 ml), under a nitrogen atmosphere
  • Water (200 ml) PdCl 2 (Amphos) 2 (Pd-132, 0.12 g), potassium carbonate (48.5 g), and tetrabutylammonium bromide (TBAB, 14.2 g) are charged to the reactor and Stir for 12 hours.
  • the reaction mixture was poured into water, extracted with toluene, washed with water and brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • Step 4 Synthesis of Compound (T-6)
  • Compound (T-5) (36.2 g), Ethyl 3-Mercaptopropionate (12.7 g), Toluene (200 ml), Bis (dibenzylideneacetone) under a nitrogen atmosphere )
  • Palladium (0) (4.2 g), bis [2- (diphenylphosphino) phenyl] ether (4.9 g), and potassium carbonate (31.2 g) were charged into the reactor and stirred at 90 ° C. for 12 hours .
  • the reaction mixture was poured into water, extracted with t-butyl methyl ether, washed with water and brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • Step 5 Synthesis of Compound (T-7)
  • Step 6 Synthesis of Compound (T-8)
  • compound (T-7) 9.6 g) and THF (200 mL) were charged into a reactor and cooled to -70.degree.
  • n-Butyllithium 1.6 M; n-hexane solution; 29.7 ml
  • Trimethyl borate 4.8 g was added, and the mixture was returned to room temperature and stirred for 12 hours.
  • Acetic acid 4.1 ml was added at room temperature and stirred for 30 minutes, then aqueous hydrogen peroxide (35 wt%; 6.2 ml) was added and stirred for 1 hour.
  • reaction mixture was poured into water, and the aqueous layer was extracted with toluene.
  • the combined organic layer was washed with water, aqueous sodium bisulfite solution and brine, then dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • Step 7 Synthesis of Compound (No. 17)
  • Compound (T-8) (5.0 g), cyclopentanol (1.5 g), triphenylphosphine (5.6 g), and THF (40 mL) under a nitrogen atmosphere ) was cooled in an ice bath.
  • Comparative Example 1 Comparison of physical properties The following compound (S-1) was selected as a comparison compound. This compound is described in JP-A-2015-205879 and is similar to the compound according to the embodiment of the present invention.
  • composition Examples The invention will be further described by way of examples. The present invention is not limited by the examples, as the examples are typical examples.
  • the present invention includes, in addition to the composition of Use Example, a mixture of the composition of Use Example 1 and the composition of Use Example 2.
  • the invention also includes mixtures prepared by mixing at least two of the compositions of the Use Examples.
  • the compounds in the use examples are represented by symbols based on the definition of Table 3 below. In Table 3, the configuration for 1,4-cyclohexylene is trans. In the example of use, the number in parentheses after the symbol represents the chemical formula to which the compound belongs.
  • the symbol ( ⁇ ) means a liquid crystal compound different from the compounds (1) to (13) and the compounds (21) to (24).
  • the proportion (percentage) of the liquid crystal compound is a weight percentage (% by weight) based on the weight of the liquid crystal composition containing no additive.
  • liquid crystal compound according to the embodiment of the present invention has good physical properties. Liquid crystal compositions containing this compound can be widely used for liquid crystal display devices such as personal computers and televisions.

Abstract

The present invention addresses the problem of providing a liquid crystal compound that satisfies at least one physical property including a low minimum temperature for the liquid crystal phase, a low viscosity, a suitable optical anisotropy, a large negative dielectric constant anisotropy, and an excellent compatibility with other liquid crystal compounds at room temperature and low temperatures; a liquid crystal composition containing this compound; and a liquid crystal display element containing this composition. The problem is addressed by, for example, a compound represented by formula (1). Herein, for example, R1 and R2 are hydrogen, alkyl having 1 to 10 carbons, or alkoxy having 2 to 9 carbons; rings A1 and A2 are cycloalkylene having 3 to 5 carbons; Y1 and Y2 are, e.g., hydrogen or fluorine; Z1, Z2, Z3, and Z4 are, e.g., a single bond or alkylene having 1 to 6 carbons; rings N1 and N2 are, e.g., 1,4-cyclohexylene or 1,4-phenylene; a and d are 0 or 1 and 1 ≤ a + d ≤ 2; and b and c are 0, 1, or 2.

Description

ジベンゾチオフェン環を有する化合物、液晶組成物および液晶表示素子Compound having dibenzothiophene ring, liquid crystal composition and liquid crystal display device
 本発明は液晶性化合物、液晶組成物、および液晶表示素子に関する。さらに詳しくは、ジベンゾチオフェン環を有する誘電率異方性が負の液晶性化合物、これを含有する液晶組成物、およびこの組成物を含む液晶表示素子に関する。 The present invention relates to a liquid crystal compound, a liquid crystal composition, and a liquid crystal display device. More specifically, the present invention relates to a liquid crystal compound having a negative dielectric constant anisotropy having a dibenzothiophene ring, a liquid crystal composition containing the same, and a liquid crystal display device including the composition.
 液晶表示素子において、液晶分子の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、ECB(electrically controlled birefringence)、OCB(optically compensated bend)、IPS(in-plane switching)、VA(vertical alignment)、FFS(fringe field switching)、FPA(field-induced photo-reactive alignment)などのモードである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PMは、スタティック(static)、マルチプレックス(multiplex)などに分類され、AMは、TFT(thin film transistor)、MIM(metal insulator metal)などに分類される。 In liquid crystal display devices, classification based on the operation mode of liquid crystal molecules is as follows: phase change (PC), twisted nematic (TN), super twisted nematic (STN), electrically controlled birefringence (ECB), optically compensated bend (OCB), IPS These modes are modes such as (in-plane switching), VA (vertical alignment), FFS (fringe field switching), and FPA (field-induced photo-reactive alignment). The classification based on the driving system of elements is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into thin film transistor (TFT), metal insulator metal (MIM), etc.
 この素子には液晶組成物が封入される。この組成物の物性は、素子の特性に関連する。組成物における物性の例は、熱や光に対する安定性、ネマチック相の温度範囲、粘度、光学異方性、誘電率異方性、比抵抗、弾性定数などである。組成物は多くの液晶性化合物を混合して調製される。化合物に必要な物性は、水、空気、熱、光などの環境に対する高い安定性、液晶相の広い温度範囲、小さな粘度、適切な光学異方性、大きな誘電率異方性、適切な弾性定数、室温および低温における他の液晶性化合物との良好な相溶性などである。ネマチック相の高い上限温度を有する化合物は好ましい。ネマチック相、スメクチック相などの液晶相において低い下限温度を有する化合物は好ましい。小さな粘度を有する化合物は素子の短い応答時間に寄与する。光学異方性の適切な値は素子のモードによって異なる。低い電圧で素子を駆動するには正または負に大きな誘電率異方性を有する化合物が好ましい。組成物を調製するには他の液晶性化合物との良好な相溶性を有する化合物が好ましい。素子を氷点下の温度で使うこともあるので、低い温度で良好な相溶性を有する化合物が好ましい。 A liquid crystal composition is enclosed in this element. The physical properties of this composition relate to the characteristics of the device. Examples of physical properties of the composition include stability against heat and light, temperature range of nematic phase, viscosity, optical anisotropy, dielectric anisotropy, specific resistance, elastic constant and the like. The composition is prepared by mixing many liquid crystal compounds. Physical properties necessary for the compound include high stability to environment such as water, air, heat, light, etc., wide temperature range of liquid crystal phase, small viscosity, appropriate optical anisotropy, large dielectric anisotropy, appropriate elastic constant And good compatibility with other liquid crystal compounds at room temperature and low temperature. Compounds having a high upper limit temperature of the nematic phase are preferred. Compounds having a lower limit temperature in liquid crystal phase such as nematic phase, smectic phase and the like are preferred. Compounds with low viscosity contribute to the short response time of the device. The appropriate value of the optical anisotropy depends on the mode of the element. Compounds having large positive or negative dielectric anisotropy are preferred to drive the device at low voltage. Compounds having good compatibility with other liquid crystal compounds are preferred for preparing the composition. Compounds that have good compatibility at low temperatures are preferred, as the devices may be used at temperatures below freezing.
 これまでに、大きな誘電率異方性を有する数多くの液晶性化合物が合成されてきた。新しい液晶性化合物の開発は今でも続けられている。新規な化合物には、従来の化合物にはない良好な物性が期待されるからである。また、新規な化合物が組成物における少なくとも2つの物性に適切なバランスを付与することもあるからである。 Heretofore, many liquid crystal compounds having large dielectric anisotropy have been synthesized. Development of new liquid crystalline compounds is still continued. This is because the novel compounds are expected to have good physical properties which are not present in conventional compounds. Also, the novel compound may provide an appropriate balance between at least two physical properties in the composition.
 特許文献2(特開2015-205879号公報)の段落〔0095〕の表1-1には以下の化合物(S-1)が開示されている。この化合物は大きな誘電率異方性、大きな光学異方性を有するが、低温における相溶性が十分ではなかった。
Figure JPOXMLDOC01-appb-C000011
The following compounds (S-1) are disclosed in Table 1-1 of paragraph [0095] of Patent Document 2 (Japanese Patent Application Laid-Open No. 2015-205879). This compound has large dielectric anisotropy and large optical anisotropy, but the compatibility at low temperature is not sufficient.
Figure JPOXMLDOC01-appb-C000011
特表2004-529867号公報Japanese Patent Publication No. 2004-529867 特開2015-205879号公報JP, 2015-205879, A
 第一の課題は、熱や光に対する高い安定性、高い透明点(またはネマチック相の高い上限温度)、液晶相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、適切な弾性定数、室温および低温における他の液晶性化合物との良好な相溶性などの物性の少なくとも1つを充足する液晶性化合物を提供することである。類似の化合物と比較して、大きな誘電率異方性を有し、さらに、低温において他の液晶性化合物との良好な相溶性を有する化合物を提供することである。
 第二の課題は、この化合物を含有し、熱や光に対する高い安定性、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、適切な弾性定数などの物性の少なくとも1つを充足する液晶組成物を提供することである。この課題は、少なくとも2つの物性に関して適切なバランスを有する液晶組成物を提供することである。
 第三の課題は、この組成物を含み、素子を使用できる広い温度範囲、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、小さなフリッカ率、および長い寿命を有する液晶表示素子を提供することである。
The first problems are high stability against heat and light, high clearing point (or high upper limit temperature of nematic phase), lower lower limit temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference It is an object of the present invention to provide a liquid crystal compound which satisfies at least one of physical properties such as linearity, an appropriate elastic constant, and good compatibility with other liquid crystal compounds at room temperature and low temperature. It is to provide a compound having large dielectric anisotropy as compared with similar compounds and further having good compatibility with other liquid crystal compounds at a low temperature.
The second problem is that the compound contains this compound and has high stability against heat and light, high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference It is an object of the present invention to provide a liquid crystal composition satisfying at least one of physical properties such as anisotropy, large specific resistance, and a suitable elastic constant. An object of the present invention is to provide a liquid crystal composition having an appropriate balance with respect to at least two physical properties.
The third problem is a liquid crystal display containing this composition and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a small flicker rate, and a long lifetime. It is providing a device.
 本発明は、式(1)で表される化合物、この化合物を含有する液晶組成物、この組成物を含む液晶表示素子に関する。
Figure JPOXMLDOC01-appb-C000012
式(1)において、
 RおよびRは独立して、水素または炭素数1から10のアルキルであり、このアルキルにおいて、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
 環AおよびAは独立して、炭素数3から5のシクロアルキレンであり、このシクロアルキレンにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-で置き換えられてもよく;
 環NおよびNは独立して、1,4-シクロヘキシレン、デカヒドロナフタレン-2,6-ジイル、または1,4-フェニレンであり、これらの基において、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-CH=N-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素、塩素、-C≡N、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFで置き換えられてもよく;
 YおよびYは独立して、水素、フッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFであり;
 aおよびdは独立して0または1であり、1≦a+d≦2であり、
 bおよびcは独立して、0、1、または2であり、b+c≦2であり;
 Z、Z、ZおよびZは独立して、単結合または炭素数1から6のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-S-、または-CO-で置き換えられてもよく、1つまたは2つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。
The present invention relates to a compound represented by the formula (1), a liquid crystal composition containing the compound, and a liquid crystal display device containing the composition.
Figure JPOXMLDOC01-appb-C000012
In equation (1),
R 1 and R 2 are independently hydrogen or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —CO— or —SiH 2- and at least one -CH 2 CH 2 -may be replaced by -CH = CH- or -C≡C-, and in these groups, at least one hydrogen is fluorine May be replaced;
Rings A 1 and A 2 are independently cycloalkylene having 3 to 5 carbon atoms, and in this cycloalkylene, at least one —CH 2 — may be replaced by —O—, at least one — CH 2 CH 2 -may be replaced by -CH = CH-;
Rings N 1 and N 2 are independently 1,4-cyclohexylene, decahydronaphthalene-2,6-diyl or 1,4-phenylene, and in these groups, at least one —CH 2 — is And -O-, -S-, -CO-, or -SiH 2- , and at least one -CH 2 CH 2 -is replaced by -CH = CH- or -CH = N- In these divalent groups, at least one hydrogen may be fluorine, chlorine, -C≡N, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 , or -OCH May be replaced by 2 F;
Y 1 and Y 2 are independently hydrogen, fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F;
a and d are independently 0 or 1, and 1 ≦ a + d ≦ 2,
b and c are independently 0, 1 or 2, and b + c ≦ 2;
Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond or alkylene having 1 to 6 carbon atoms, and in this alkylene, at least one —CH 2 — is —O—, —S—, Or —CO— and one or two of —CH 2 CH 2 — may be replaced by —CH = CH— or —C≡C—, and in these divalent groups, at least One hydrogen may be replaced by fluorine.
 第一の長所は、熱や光に対する高い安定性、高い透明点(またはネマチック相の高い上限温度)、液晶相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、適切な弾性定数、他の液晶性化合物との良好な相溶性などの物性の少なくとも1つを充足する液晶性化合物を提供することである。類似の化合物と比較して、低温において他の液晶性化合物との良好な相溶性を有する化合物を提供することである(比較例1)。
 第二の長所は、この化合物を含有し、熱や光に対する高い安定性、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、適切な弾性定数などの物性の少なくとも1つを充足する液晶組成物を提供することである。この長所は、少なくとも2つの物性に関して適切なバランスを有する液晶組成物を提供することである。
 第三の長所は、この組成物を含み、素子を使用できる広い温度範囲、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、小さなフリッカ率、および長い寿命を有する液晶表示素子を提供することである。
The first advantage is high stability to heat and light, high clearing point (or high upper limit temperature of nematic phase), lower lower limit temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference It is an object of the present invention to provide a liquid crystal compound which satisfies at least one of physical properties such as linearity, an appropriate elastic constant, and good compatibility with other liquid crystal compounds. It is to provide a compound having good compatibility with other liquid crystal compounds at a low temperature as compared with similar compounds (Comparative Example 1).
The second advantage is that it contains this compound and has high stability to heat and light, high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, appropriate optical anisotropy, negative large dielectric constant difference It is an object of the present invention to provide a liquid crystal composition satisfying at least one of physical properties such as anisotropy, large specific resistance, and a suitable elastic constant. An advantage of this is to provide a liquid crystal composition having an appropriate balance regarding at least two physical properties.
The third advantage is a liquid crystal display containing this composition and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a small flicker rate, and a long lifetime. It is providing a device.
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施形態の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. The following embodiments are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited thereto. In addition, the present invention can be implemented with arbitrary modifications without departing from the scope of the invention.
 この明細書における用語の使い方は、次のとおりである。「液晶性化合物」、「液晶組成物」、および「液晶表示素子」の用語をそれぞれ「化合物」、「組成物」、および「素子」と略すことがある。「液晶性化合物」は、ネマチック相、スメクチック相などの液晶相を有する化合物、および液晶相を有しないが、上限温度、下限温度、粘度、誘電率異方性のような組成物の物性を調節する目的で添加する化合物の総称である。この化合物の分子構造は棒状(rod like)である。「液晶表示素子」は液晶表示パネルおよび液晶表示モジュールの総称である。「重合性化合物」は、組成物中に重合体を生成させる目的で添加する化合物である。アルケニルを有する液晶性化合物は、その意味では重合性ではない。 The usage of the terms in this specification is as follows. The terms "liquid crystal compound", "liquid crystal composition" and "liquid crystal display element" may be abbreviated as "compound", "composition" and "element", respectively. "Liquid crystalline compound" is a compound having a liquid crystal phase such as a nematic phase or smectic phase, and has no liquid crystal phase, but controls physical properties of the composition such as upper limit temperature, lower limit temperature, viscosity, dielectric anisotropy Is a generic term for compounds added for the purpose of The molecular structure of this compound is rod-like. "Liquid crystal display element" is a generic term for liquid crystal display panels and liquid crystal display modules. The "polymerizable compound" is a compound to be added for the purpose of forming a polymer in the composition. Liquid crystalline compounds having an alkenyl are not polymerizable in that sense.
 液晶組成物は、複数の液晶性化合物を混合することによって調製される。この組成物に、物性をさらに調整する目的で添加物が添加される。重合性化合物、重合開始剤、重合禁止剤、光学活性化合物、酸化防止剤、紫外線吸収剤、光安定剤、熱安定剤、色素、および消泡剤のような添加物が必要に応じて添加される。液晶性化合物や添加物は、このような手順で混合される。 The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives are added to the composition for the purpose of further adjusting physical properties. Additives such as polymerizable compounds, polymerization initiators, polymerization inhibitors, optically active compounds, antioxidants, UV absorbers, light stabilizers, heat stabilizers, dyes, and antifoaming agents are added as necessary. Ru. Liquid crystal compounds and additives are mixed in such a procedure.
 液晶性化合物の割合(含有量)は、添加物を添加した場合であっても、添加物を含まない液晶組成物の重量に基づいた重量百分率(重量%)で表される。添加物の割合(添加量)は、添加物を含まない液晶組成物の重量に基づいた重量百分率(重量%)で表される。すなわち、液晶性化合物や添加物の割合は、液晶性化合物の全重量に基づいて算出される。重量百万分率(ppm)が用いられることもある。重合開始剤および重合禁止剤の割合は、例外的に重合性化合物の重量に基づいて表される。 The proportion (content) of the liquid crystal compound is expressed as a weight percentage (% by weight) based on the weight of the liquid crystal composition not including the additive, even when the additive is added. The proportion (addition amount) of the additive is represented by a weight percentage (% by weight) based on the weight of the liquid crystal composition without the additive. That is, the proportions of the liquid crystal compound and the additive are calculated based on the total weight of the liquid crystal compound. Parts per million by weight (ppm) may be used. The proportions of the polymerization initiator and the polymerization inhibitor are exceptionally expressed based on the weight of the polymerizable compound.
 「透明点」は、液晶性化合物における液晶相-等方相の転移温度である。「液晶相の下限温度」は、液晶性化合物における固体相-液晶相(スメクチック相、ネマチック相など)の転移温度である。「ネマチック相の上限温度」は、液晶性化合物と母液晶との混合物または液晶組成物におけるネマチック相-等方相の転移温度であり、「上限温度」と略すことがある。「ネマチック相の下限温度」を「下限温度」と略すことがある。「誘電率異方性を上げる」の表現は、誘電率異方性が正である組成物のときは、その値が正に増加することを意味し、誘電率異方性が負である組成物のときは、その値が負に増加することを意味する。「電圧保持率が大きい」は、素子が初期段階において室温だけでなく上限温度に近い温度でも大きな電圧保持率を有し、そして長時間使用したあと室温だけでなく上限温度に近い温度でも大きな電圧保持率を有することを意味する。組成物や素子では、経時変化試験(加速劣化試験を含む)の前後で特性が検討されることがある。 The “clearing point” is the transition temperature of the liquid crystal phase to the isotropic phase in the liquid crystal compound. The “lower limit temperature of the liquid crystal phase” is the transition temperature of the solid phase—liquid crystal phase (smectic phase, nematic phase, etc.) in the liquid crystal compound. The “upper limit temperature of the nematic phase” is a transition temperature of the nematic phase-isotropic phase in the mixture of the liquid crystal compound and the base liquid crystal or the liquid crystal composition, and may be abbreviated as the “upper limit temperature”. The “lower limit temperature of the nematic phase” may be abbreviated as the “lower limit temperature”. The expression "increase the dielectric anisotropy" means that in the case of a composition having a positive dielectric anisotropy, the value increases positively, and a composition having a negative dielectric anisotropy. In the case of goods, it means that the value increases negatively. The "high voltage holding ratio" means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit at the initial stage, and after a long period of use it shows a large voltage not only at room temperature but also at a temperature close to the upper limit. It means having a retention rate. The characteristics of the composition or element may be examined before and after the aging test (including the accelerated aging test).
 式(1)で表される化合物を化合物(1)と略すことがある。式(1)で表される化合物の群から選択された少なくとも1つの化合物を化合物(1)と略すことがある。「化合物(1)」は、式(1)で表される1つの化合物、2つの化合物の混合物、または3つ以上の化合物の混合物を意味する。これらのルールは、他の式で表される化合物についても適用される。
 また、式(1)において、環AおよびAにおいて、隣接するR、R、Z、Zは、A、Aの環を構成する何れの炭素原子と結合してもよい。また、式(1)から(13)および式(21)から(24)、およびその下位式において、円形や六角形で囲んだA、B、Cなどの記号はそれぞれ環A、環B、環Cなどの環に対応する。六角形は、シクロヘキサンやベンゼンのような六員環を表す。六角形がナフタレンのような縮合環や、アダマンタンのような架橋環を表すことがある。
 また、式(1)を除く式において、上記AおよびAのうちAの環のみを有する構造(d=0の場合)のみを示すが、これらの構造にAの環を導入した構造(d=1の場合)についても、液晶性化合物に含まれる。なお、a=1、d=0である態様を好ましく挙げることができる。
The compound represented by Formula (1) may be abbreviated as a compound (1). At least one compound selected from the group of compounds represented by formula (1) may be abbreviated as compound (1). "Compound (1)" means one compound represented by Formula (1), a mixture of two compounds, or a mixture of three or more compounds. These rules also apply to compounds represented by other formulas.
Further, in the ring A 1 and A 2 in the formula (1), adjacent R 1 , R 2 , Z 1 and Z 4 may be bonded to any carbon atom constituting the ring of A 1 and A 2 Good. Also, in the formulas (1) to (13) and the formulas (21) to (24) and sub formulas thereof, symbols such as A 1 , B 1 and C 1 surrounded by a circle or a hexagon are ring A 1 , respectively It corresponds to a ring such as ring B 1 and ring C 1 . The hexagon represents a six-membered ring such as cyclohexane or benzene. A hexagon may represent a fused ring such as naphthalene or a bridged ring such as adamantane.
In addition, although only the structure having only the ring of A 1 (in the case of d = 0) among the above A 1 and A 2 is shown in the formulas except for the formula (1), the ring of A 2 is introduced into these structures The structure (in the case of d = 1) is also included in the liquid crystal compound. In addition, the aspect which is a = 1 and d = 0 can be mentioned preferably.
 成分化合物の化学式において、末端基R11の記号を複数の化合物に用いた。これらの化合物において、任意の2つのR11が表す2つの基は同一であってもよく、または異なってもよい。例えば、化合物(2)のR11がエチルであり、化合物(3)のR11がエチルであるケースがある。化合物(2)のR11がエチルであり、化合物(3)のR11がプロピルであるケースもある。このルールは、R12、R13、Z11、Z12などの記号にも適用される。化合物(24)において、iが2のとき、2つの環Eが存在する。この化合物において2つの環Eが表す2つの基は、同一であってもよく、または異なってもよい。iが2より大きいとき、任意の2つの環Eにも適用される。このルールは、他の記号にも適用される。 In the chemical formulas of component compounds, the symbol of terminal group R 11 was used for a plurality of compounds. In these compounds, two groups represented by any two R 11 may be identical or different. For example, there is a case where R 11 of compound (2) is ethyl and R 11 of compound (3) is ethyl. In some cases, R 11 of compound (2) is ethyl and R 11 of compound (3) is propyl. The same rule applies to the symbols, such as R 12, R 13, Z 11 , Z 12. In compound (24), when i is 2, two rings E 1 are present. Two groups represented by two rings E 1 in this compound may be the same or different. When i is greater than 2, it also applies to any two rings E 1 . This rule also applies to other symbols.
 「少なくとも1つの‘A’」の表現は、‘A’の数が任意であることを意味する。「少なくとも1つの‘A’は、‘B’で置き換えられてもよい」の表現は、‘A’の数が1つのとき、‘A’の位置は任意であり、‘A’の数が2つ以上のときも、それらの位置は制限なく選択できることを意味する。このルールは、「少なくとも1つの‘A’が、‘B’で置き換えられた」の表現にも適用される。「少なくとも1つの‘A’が、‘B’、‘C’、または‘D’で置き換えられてもよい」という表現は、任意の‘A’が‘B’で置き換えられた場合、任意の‘A’が‘C’で置き換えられた場合、および任意の‘A’が‘D’で置き換えられた場合、さらに複数の‘A’が‘B’、‘C’、および/または‘D’の少なくとも2つで置き換えられた場合を含むことを意味する。例えば、「少なくとも1つの-CH-が、-O-または-CH=CH-で置き換えられてもよいアルキル」には、アルキル、アルコキシ、アルコキシアルキル、アルケニル、アルコキシアルケニル、アルケニルオキシ、アルケニルオキシアルキルが含まれる。なお、連続する2つの-CH-が、-O-で置き換えられて、-O-O-のようになることは好ましくない。アルキルなどにおいて、メチル部分(-CH-H)の-CH-が、-O-で置き換えられて-O-Hになることも好ましくない。 The expression "at least one 'A'" means that the number of 'A' is arbitrary. In the expression “at least one 'A' may be replaced by 'B'”, when the number of 'A' is one, the position of 'A' is arbitrary and the number of 'A' is two Also in the case of three or more, it means that those positions can be selected without limitation. This rule also applies to the expression "at least one 'A' has been replaced by 'B'". The expression “at least one 'A' may be replaced by 'B', 'C', or 'D'” is optional when any 'A' is replaced by 'B'. If A 'is replaced by' C ', and any' A 'is replaced by' D ', then more' A 'may be' B ',' C ', and / or' D ' It is meant to include the case where at least two are replaced. For example, "alkyl at least one of -CH 2 -may be replaced by -O- or -CH = CH-" includes alkyl, alkoxy, alkoxyalkyl, alkenyl, alkoxyalkenyl, alkenyloxy, alkenyloxyalkyl Is included. In addition, it is not preferable that two successive -CH 2 -be replaced by -O- to be -O-O-. In alkyl and the like, it is also not preferable that —CH 2 — of the methyl moiety (—CH 2 —H) is replaced by —O— to form —O—H.
 「R11およびR12は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよい」の表現が使われることがある。この表現において、「これらの基において」は、文言どおりに解釈してよい。この表現では、「これらの基」は、アルキル、アルケニル、アルコキシ、アルケニルオキシなどを意味する。すなわち、「これらの基」は、「これらの基において」の用語よりも前に記載された基の総てを表す。この常識的な解釈は、「これらの一価基において」や「これらの二価基において」の用語にも適用される。例えば、「これらの一価基」は、「これらの一価基において」の用語よりも前に記載された基の総てを表す。 “R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in this alkyl and alkenyl, at least one —CH 2 — is replaced by —O— In these groups, at least one hydrogen may be replaced by fluorine ". In this expression, "in these groups" may be interpreted literally. In this expression, "these groups" mean alkyl, alkenyl, alkoxy, alkenyloxy and the like. That is, "these groups" represent all of the groups described earlier than the term "in these groups". This common sense interpretation applies to the terms "in these monovalent groups" and "in these divalent groups". For example, "these monovalent groups" represent all of the groups listed before the term "in these monovalent groups".
 ハロゲンは、フッ素、塩素、臭素、およびヨウ素を意味する。好ましいハロゲンは、フッ素および塩素である。さらに好ましいハロゲンは、フッ素である。液晶性化合物のアルキルは、直鎖状または分岐状であり、環状アルキルを含まない。直鎖状アルキルは、一般的に分岐状アルキルよりも好ましい。これらのことは、アルコキシ、アルケニルなどの末端基についても同様である。1,4-シクロヘキシレンに関する立体配置は、上限温度を上げるためにシスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンは、下記の2つの二価基を意味する。化学式において、フッ素は左向き(L)であってもよいし、右向き(R)であってもよい。このルールは、テトラヒドロピラン-2,5-ジイルのような、環から水素を2つ除くことによって生成した非対称な二価基にも適用される。
Figure JPOXMLDOC01-appb-C000013
Halogen means fluorine, chlorine, bromine and iodine. Preferred halogens are fluorine and chlorine. A further preferred halogen is fluorine. The alkyl of the liquid crystal compound is linear or branched and does not contain cyclic alkyl. Linear alkyls are generally preferred over branched alkyls. The same is true for end groups such as alkoxy and alkenyl. The configuration of 1,4-cyclohexylene is preferably trans rather than cis in order to increase the maximum temperature. 2-fluoro-1,4-phenylene means the following two divalent groups. In the chemical formula, fluorine may be leftward (L) or rightward (R). This rule also applies to asymmetric bivalent groups generated by removing two hydrogens from the ring, such as tetrahydropyran-2,5-diyl.
Figure JPOXMLDOC01-appb-C000013
 本発明は、下記の項などである。 The present invention includes the following items.
項1.
 式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000014
式(1)において、
 RおよびRは独立して、水素または炭素数1から10のアルキルであり、このアルキルにおいて、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
 環A、Aは独立して、炭素数3から5のシクロアルキレンであり、このシクロアルキレンにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-で置き換えられてもよく;
 環NおよびNは独立して、1,4-シクロヘキシレン、デカヒドロナフタレン-2,6-ジイル、または1,4-フェニレンであり、これらの基において、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-CH=N-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素、塩素、-C≡N、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFで置き換えられてもよく;
 YおよびYは独立して、水素、フッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFであり;
 aおよびdは独立して、0または1であり、1≦a+d≦2であり、
 bおよびcは独立して、0、1、または2であり、b+c≦2であり;
 Z、Z、ZおよびZは独立して、単結合または炭素数1から6のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-S-、または-CO-で置き換えられてもよく、1つまたは2つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。
Item 1.
The compound represented by Formula (1).
Figure JPOXMLDOC01-appb-C000014
In equation (1),
R 1 and R 2 are independently hydrogen or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —CO— or —SiH 2- and at least one -CH 2 CH 2 -may be replaced by -CH = CH- or -C≡C-, and in these groups, at least one hydrogen is fluorine May be replaced;
Rings A 1 and A 2 are independently cycloalkylene having 3 to 5 carbon atoms, and in this cycloalkylene, at least one —CH 2 — may be replaced by —O—, at least one — CH 2 CH 2 -may be replaced by -CH = CH-;
Rings N 1 and N 2 are independently 1,4-cyclohexylene, decahydronaphthalene-2,6-diyl or 1,4-phenylene, and in these groups, at least one —CH 2 — is And -O-, -S-, -CO-, or -SiH 2- , and at least one -CH 2 CH 2 -is replaced by -CH = CH- or -CH = N- In these divalent groups, at least one hydrogen may be fluorine, chlorine, -C≡N, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 , or -OCH May be replaced by 2 F;
Y 1 and Y 2 are independently hydrogen, fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F;
a and d are independently 0 or 1, and 1 ≦ a + d ≦ 2,
b and c are independently 0, 1 or 2, and b + c ≦ 2;
Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond or alkylene having 1 to 6 carbon atoms, and in this alkylene, at least one —CH 2 — is —O—, —S—, Or —CO— and one or two of —CH 2 CH 2 — may be replaced by —CH = CH— or —C≡C—, and in these divalent groups, at least One hydrogen may be replaced by fluorine.
 上記の化合物(1)の好ましい態様として、下記の項2~7を示す。 The following items 2 to 7 are shown as preferable embodiments of the above compound (1).
項2.
 式(1)において、
 RおよびRが独立して、水素、炭素数1から10のアルキル、炭素数1から9のアルコキシ、炭素数2から9のアルコキシアルキル、炭素数2から10のアルケニル、または、炭素数2から9のアルケニルオキシであり;
 環NおよびNが独立して、1,4-シクロヘキシレンまたは1,4-フェニレンであり、これらの基において、少なくとも1つの-CH-は、-O-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素で置き換えられてもよく;
 YおよびYが独立して、水素またはフッ素であり;
 bおよびcが独立して、0または1であり、b+c≦1であり;
 Z、Z、Z、およびZが独立して、単結合または炭素数1から6のアルキレンであり、少なくとも1つの-CH-が、-O-で置き換えられてもよい項1に記載の化合物。
Item 2.
In equation (1),
R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or From 9 alkenyloxy;
Rings N 1 and N 2 are independently 1,4-cyclohexylene or 1,4-phenylene, and in these groups, at least one —CH 2 — may be replaced by —O— At least one —CH 2 CH 2 — may be replaced by —CH = CH—, and in these divalent groups, at least one hydrogen may be replaced by fluorine;
Y 1 and Y 2 are independently hydrogen or fluorine;
b and c are independently 0 or 1, and b + c ≦ 1;
And Z 1 , Z 2 , Z 3 and Z 4 independently represent a single bond or alkylene having 1 to 6 carbon atoms, and at least one —CH 2 — may be replaced by —O— The compound as described in.
項3.
 式(1-1)から(1-3)で表される、項1に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
式(1-1)から(1-3)において、
 RおよびRは独立して、水素、炭素数1から10のアルキル、炭素数1から9のアルコキシ、炭素数2から9のアルコキシアルキル、炭素数2から10のアルケニル、または炭素数2から9のアルケニルオキシであり;
環Aは、1,2-シクロプロピレン、1,3-シクロブチレン、1,3-シクロペンチレン、または1つの-CH-が、-O-で置き換えられた1,3-シクロペンチレンであり;
 環Nおよび環Nは独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルであり;
 Z、ZおよびZは独立して、単結合または炭素数1から6のアルキレンであり、少なくとも1つの-CH-が、-O-で置き換えられてもよい。
Item 3.
Item 4. The compound according to item 1, represented by formulas (1-1) to (1-3).
Figure JPOXMLDOC01-appb-C000015
In formulas (1-1) to (1-3),
R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or 9 alkenyloxy;
Ring A 1 is 1,2-cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, or 1,3-cyclopentylene in which one —CH 2 — is replaced by —O— And
Ring N 1 and ring N 2 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, Or tetrahydropyran-2,5-diyl;
Z 1 , Z 2 and Z 3 are independently a single bond or alkylene having 1 to 6 carbon atoms, and at least one —CH 2 — may be replaced by —O—.
項4.
 式(1-1)から(1-3)において、
 環Aが1,2-シクロプロピレン、1,3-シクロブチレン、または1,3-シクロペンチレンであり、ZおよびZが単結合である、項3に記載の化合物。
Item 4.
In formulas (1-1) to (1-3),
The compound according to Item 3, wherein ring A 1 is 1,2-cyclopropylene, 1,3-cyclobutylene or 1,3-cyclopentylene, and Z 2 and Z 3 are a single bond.
項5.
 式(1-4)から(1-45)のいずれか1つで表される、項1に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
式(1-4)から(1-45)において、
 RおよびRは独立して、水素、炭素数1から10のアルキル、炭素数1から9のアルコキシ、炭素数2から9のアルコキシアルキル、炭素数2から10のアルケニル、または炭素数2から9のアルケニルオキシであり;LおよびLは独立して、水素またはフッ素である。
Item 5.
Item 4. The compound according to item 1, represented by any one of formulas (1-4) to (1-45).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
In formulas (1-4) to (1-45),
R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or L 1 and L 2 are independently hydrogen or fluorine.
項6.
 式(1-4)から(1-45)において、
 Rが水素であり、Rが炭素数1から10のアルキル、炭素数1から9のアルコキシ、または炭素数2から10のアルケニルである、項5に記載の化合物。
Item 6.
In formulas (1-4) to (1-45),
The compound according to item 5, wherein R 1 is hydrogen and R 2 is alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, or alkenyl having 2 to 10 carbons.
項7.
 式(1-46)から(1-51)で表される、項1に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
式(1-46)から(1-51)において、Rは炭素数1から9のアルコキシである。
Item 7.
Item 6. The compound according to item 1, represented by formulas (1-46) to (1-51):
Figure JPOXMLDOC01-appb-C000019
In formulas (1-46) to (1-51), R 2 is alkoxy having 1 to 9 carbons.
項8.
 項1から7のいずれか1項に記載の化合物を少なくとも1つ含有する液晶組成物。
Item 8.
Item 8. A liquid crystal composition containing at least one compound according to any one of Items 1 to 7.
項9.
 式(2)から(4)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、項8に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000020
式(2)から(4)において、
 R11およびR12は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよく;
 環B、環B、環B、および環Bは独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、またはピリミジン-2,5-ジイルであり;
 Z11、Z12、およびZ13は独立して、単結合、-COO-、-CHCH-、-CH=CH-、または-C≡C-である。
Item 9.
Item 9. The liquid crystal composition according to item 8, further containing at least one compound selected from the group of compounds represented by formulas (2) to (4).
Figure JPOXMLDOC01-appb-C000020
In equations (2) to (4),
R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Also, in these groups, at least one hydrogen may be replaced by fluorine;
Ring B 1 , ring B 2 , ring B 3 and ring B 4 are each independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,5-difluoro- 1,4-phenylene, or pyrimidine-2,5-diyl;
Z 11 , Z 12 and Z 13 are independently a single bond, -COO-, -CH 2 CH 2- , -CH = CH-, or -C≡C-.
項10.
 式(5)から(13)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、項8または9に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000021
式(5)から(13)において、
 R13、R14およびR15は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよく、そしてR15は、水素またはフッ素であってもよく;
 環C、環C、環C、および環Cは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、またはデカヒドロナフタレン-2,6-ジイルであり;
 環Cおよび環Cは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、またはデカヒドロナフタレン-2,6-ジイルであり;
 Z14、Z15、Z16、およびZ17は独立して、単結合、-COO-、-CHO-、-OCF-、-CHCH-、または-OCFCHCH-であり;
 L11およびL12は独立して、フッ素または塩素であり;
 S11は、水素またはメチルであり;
 Xは、-CHF-または-CF-であり;
 j、k、m、n、p、q、r、およびsは独立して、0または1であり、k、m、n、およびpの和は、1または2であり、q、r、およびsの和は、0、1、2、または3であり、tは、1、2、または3である。
Item 10.
Item 10. The liquid crystal composition according to item 8 or 9, further containing at least one compound selected from the group of compounds represented by formulas (5) to (13).
Figure JPOXMLDOC01-appb-C000021
In equations (5) to (13),
R 13 , R 14 and R 15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is —O— Optionally substituted, in these groups at least one hydrogen may be replaced by fluorine and R 15 may be hydrogen or fluorine;
Ring C 1 , ring C 2 , ring C 3 and ring C 4 are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, or at least one hydrogen optionally substituted by fluorine 4-phenylene, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6-diyl;
Ring C 5 and ring C 6 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6 -Is diil;
Z 14, Z 15, Z 16 , and Z 17 are independently a single bond, -COO -, - CH 2 O -, - OCF 2 -, - CH 2 CH 2 -, or -OCF 2 CH 2 CH 2 -Is;
L 11 and L 12 are independently fluorine or chlorine;
S 11 is hydrogen or methyl;
X is -CHF- or -CF 2- ;
j, k, m, n, p, q, r, and s are independently 0 or 1, and the sum of k, m, n, and p is 1 or 2, q, r, and The sum of s is 0, 1, 2 or 3 and t is 1, 2 or 3.
項11.
 式(21)から(23)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、項8から10のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000022
式(21)から(23)において、
 R16は、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
 X11は、フッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、-OCFCHF、または-OCFCHFCFであり;
 環D、環D、および環Dは独立して、1,4-シクロヘキシレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
 Z18、Z19、およびZ20は独立して、単結合、-COO-、-CHO-、-CFO-、-OCF-、-CHCH-、-CH=CH-、-C≡C-、または-(CH-であり;
 L13およびL14は独立して、水素またはフッ素である。
Item 11.
11. The liquid crystal composition according to any one of items 8 to 10, further containing at least one compound selected from the group of compounds represented by formulas (21) to (23).
Figure JPOXMLDOC01-appb-C000022
In equations (21) to (23),
R 16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—, and these groups In which at least one hydrogen may be replaced by fluorine;
X 11 is fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 , -OCF 2 CHF 2 , or -OCF 2 CHFCF 3 ;
Ring D 1 , ring D 2 and ring D 3 are independently 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl;
Z 18, Z 19, and Z 20 are independently a single bond, -COO -, - CH 2 O -, - CF 2 O -, - OCF 2 -, - CH 2 CH 2 -, - CH = CH- , -C≡C-, or - (CH 2) 4 - a and;
L 13 and L 14 are independently hydrogen or fluorine.
項12.
 式(24)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、項8から11のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000023
式(24)において、
 R17は、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
 X12は、-C≡Nまたは-C≡C-C≡Nであり;
 環Eは、1,4-シクロヘキシレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
 Z21は、単結合、-COO-、-CHO-、-CFO-、-OCF-、-CHCH-、または-C≡C-であり;
 L15およびL16は独立して、水素またはフッ素であり;
 iは、1、2、3、または4である。
Item 12.
Item 12. The liquid crystal composition according to any one of items 8 to 11, further containing at least one compound selected from the group of compounds represented by formula (24).
Figure JPOXMLDOC01-appb-C000023
In equation (24),
R 17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—, and these groups In which at least one hydrogen may be replaced by fluorine;
X 12 is -C≡N or -C≡C-C≡N;
Ring E 1 is 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl Or pyrimidine-2,5-diyl;
Z 21 represents a single bond, -COO-, -CH 2 O-, -CF 2 O-, -OCF 2- , -CH 2 CH 2- , or -C≡C-;
L 15 and L 16 are independently hydrogen or fluorine;
i is 1, 2, 3 or 4;
項13.
 項8から12のいずれか1項に記載の液晶組成物を含む液晶表示素子。
Item 13.
Item 13. A liquid crystal display device comprising the liquid crystal composition according to any one of items 8 to 12.
 本発明は、次の項も含む。
項(a).少なくとも1つの光学活性化合物および/または重合性化合物をさらに含有する、上記の組成物。
項(b).少なくとも1つの酸化防止剤および/または紫外線吸収剤をさらに含有する、上記の組成物。
The present invention also includes the following items.
Item (a). A composition as described above, further comprising at least one optically active compound and / or polymerizable compound.
Item (b). A composition as described above which additionally comprises at least one antioxidant and / or UV absorber.
 本発明は、次の項も含む。
項(c).重合性化合物、重合開始剤、重合禁止剤、光学活性化合物、酸化防止剤、紫外線吸収剤、光安定剤、熱安定剤、色素、および消泡剤の群から選択された1つ、2つ、または少なくとも3つの添加物をさらに含有する、上記の組成物。
項(d).ネマチック相の上限温度が70℃以上であり、波長589nmにおける光学異方性(25℃で測定)が0.08以上であり、そして周波数1kHzにおける誘電率異方性(25℃で測定)が-2以下である、上記の組成物。
The present invention also includes the following items.
Item (c). One or two selected from the group of polymerizable compounds, polymerization initiators, polymerization inhibitors, optically active compounds, antioxidants, ultraviolet light absorbers, light stabilizers, heat stabilizers, dyes, and antifoaming agents Or a composition as described above which additionally contains at least three additives.
Item (d). The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy (measured at 25 ° C.) at a wavelength of 589 nm is 0.08 or more, and the dielectric anisotropy (measured at 25 ° C.) at a frequency of 1 kHz is − The above composition, which is 2 or less.
 本発明は、次の項も含む。
項(e).上記の組成物を含有し、そしてPC、TN、STN、ECB、OCB、IPS、VA、FFS、FPA、またはPSAのモードを有する素子。
項(f).上記の組成物を含むAM素子。
項(g).上記の組成物を含む透過型の素子。
項(h).上記の組成物を、ネマチック相を有する組成物としての使用。
項(i).上記の組成物に光学活性な化合物を添加することによって光学活性な組成物としての使用。
The present invention also includes the following items.
Item (e). A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, FPA, or PSA.
Item (f). An AM device comprising the above composition.
Item (g). A transmission type element comprising the above composition.
Item (h). Use of the above composition as a composition having a nematic phase.
Item (i). Use as an optically active composition by adding an optically active compound to the above composition.
 化合物(1)の態様、化合物(1)の合成、液晶組成物、および液晶表示素子について順に説明する。 The aspect of compound (1), the synthesis of compound (1), the liquid crystal composition, and the liquid crystal display device will be described in order.
1.化合物(1)の態様
 本発明の化合物(1)は、ジベンゾチオフェン環および三員環、四員環、または五員環の構造を有する。
 この化合物は、素子が通常使用される条件下において、物理的および化学的に極めて安定であり、誘電率異方性が大きく、そして他の液晶性化合物との相溶性が良好である。この化合物を含有する組成物は、素子が通常使用される条件下で安定である。この組成物を低い温度で保管したとき、この化合物が結晶(または、スメクチック相)として析出する傾向が小さい。この化合物は、組成物の成分に必要な一般的物性、適切な光学異方性、そして適切な誘電率異方性を有する。
1. Embodiments of Compound (1) The compound (1) of the present invention has a dibenzothiophene ring and a three-membered ring, a four-membered ring or a five-membered ring structure.
This compound is extremely physically and chemically stable under the conditions in which the device is usually used, has a large dielectric anisotropy, and has good compatibility with other liquid crystal compounds. The composition containing this compound is stable under the conditions in which the device is usually used. When the composition is stored at low temperature, the compound is less likely to precipitate as a crystal (or smectic phase). This compound has the general physical properties necessary for the components of the composition, the appropriate optical anisotropy, and the appropriate dielectric anisotropy.
 化合物(1)は、ジベンゾチオフェン環を有しており、ジベンゾチオフェン環の硫黄が酸素になったジベンゾフラン環を有する化合物と比較し、上限温度が高い、粘度が低い等の利点を有する。 The compound (1) has a dibenzothiophene ring, and has advantages such as a high upper limit temperature and a low viscosity, as compared with a compound having a dibenzofuran ring in which the sulfur of the dibenzothiophene ring is oxygenated.
 化合物(1)における末端基RおよびR、環AおよびA、環NおよびN、結合基Z、Z、ZおよびZ、側方基YおよびYの好ましい例は、以下のとおりである。この例は化合物(1)の下位式にも適用される。
 化合物(1)において、これらの基を適切に組み合わせることによって、物性を任意に調整することが可能である。化合物の物性に大きな差異がないので、化合物(1)は、H(重水素)、13Cなどの同位体を天然存在比の量より多く含んでもよい。なお、化合物(1)の記号の定義は、項1に記載したとおりである。
Figure JPOXMLDOC01-appb-C000024
The terminal group R 1 and R 2 in the compound (1), the ring A 1 and A 2 , the ring N 1 and N 2 , the linking group Z 1 , Z 2 , Z 3 and Z 4 , and the lateral groups Y 1 and Y 2 Preferred examples are as follows. This example also applies to the subformula of compound (1).
In the compound (1), physical properties can be arbitrarily adjusted by appropriately combining these groups. Compound (1) may contain isotopes such as 2 H (deuterium) and 13 C in an amount larger than the natural abundance ratio, because there is no large difference in the physical properties of the compounds. In addition, the definition of the symbol of compound (1) is as having described in the item 1.
Figure JPOXMLDOC01-appb-C000024
 式(1)において、RおよびRは独立して、水素または炭素数1から10のアルキルであり、このアルキルにおいて、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよい。 In formula (1), R 1 and R 2 are independently hydrogen or alkyl having 1 to 10 carbon atoms, and in this alkyl, at least one —CH 2 — is —O—, —S—, — CO— or —SiH 2 — may be replaced, and at least one —CH 2 CH 2 — may be replaced by —CH = CH— or —C≡C—, and in these groups at least One hydrogen may be replaced by fluorine.
 好ましいRまたはRは独立して、水素、アルキル、アルコキシ、アルコキシアルキル、アルコキシアルコキシ、アルキルチオ、アルキルチオアルコキシ、アシル、アシルアルキル、アシルオキシ、アシルオキシアルキル、アルコキシカルボニル、アルコキシカルボニルアルキル、アルケニル、アルケニルオキシ、アルケニルオキシアルキル、アルコキシアルケニル、アルキニル、アルキニルオキシ、シラルアルキル、およびジシラルアルキルである。これらの基において、少なくとも1つの水素がフッ素または塩素で置き換えられてもよい。
 この例は、少なくとも2つの水素がフッ素および塩素の両方で置き換えられた基を含む。少なくとも1つの水素がフッ素だけで置き換えられた基はさらに好ましい。これらの基において、分岐鎖よりも直鎖の方が好ましい。RまたはRが分岐鎖であっても、光学活性であるときは好ましい。さらに好ましいRまたはRは、水素、アルキル、アルコキシ、アルコキシアルキル、アルケニル、アルケニルオキシ、モノフルオロアルキルおよびモノフルオロアルコキシである。
Preferred R 1 or R 2 is independently hydrogen, alkyl, alkoxy, alkoxyalkyl, alkoxyalkoxy, alkylthio, alkylthioalkoxy, acyl, acylalkyl, acyloxy, acyloxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkenyl, alkenyloxy, Alkenyloxyalkyl, alkoxyalkenyl, alkynyl, alkynyloxy, silalalkyl, and dicyralalkyl. In these groups, at least one hydrogen may be replaced by fluorine or chlorine.
This example includes groups in which at least two hydrogens have been replaced by both fluorine and chlorine. Groups in which at least one hydrogen is replaced only by fluorine are more preferred. In these groups, straight chain is preferable to branched chain. Even when R 1 or R 2 is a branched chain, it is preferable when it is optically active. More preferred R 1 or R 2 is hydrogen, alkyl, alkoxy, alkoxyalkyl, alkenyl, alkenyloxy, monofluoroalkyl and monofluoroalkoxy.
 アルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランス配置が好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシス配置が好ましい。 The preferred configuration of —CH = CH— in alkenyl depends on the position of the double bond. The trans configuration is preferred in the alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl. The cis configuration is preferred in the alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
 具体的なRまたはRは独立して、水素、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、メトキシメチル、メトキシエチル、メトキシプロピル、エトキシメチル、エトキシエチル、エトキシプロピル、プロポキシメチル、ブトキシメチル、ペントキシメチル、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、2-プロペニルオキシ、2-ブテニルオキシ、2-ペンテニルオキシ、1-プロピニル、および1-ペンテニルである。 Specific R 1 or R 2 is independently hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, methoxymethyl , Methoxyethyl, methoxypropyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, propoxymethyl, butoxymethyl, pentoxymethyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1- Pentanyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-propenyloxy, 2-butenyloxy, 2-pentenyloxy, 1-propynyl, and 1-pentenyl.
 好ましいRまたはRは独立して、水素、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、メトキシメチル、エトキシメチル、プロポキシメチル、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、2-プロペニルオキシ、2-ブテニルオキシおよび2-ペンテニルオキシである。最も好ましいRは水素であり、最も好ましいRは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシおよびヘキシルオキシである。 Preferred R 1 or R 2 is independently hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, methoxymethyl, ethoxymethyl, propoxymethyl, vinyl, 1-propenyl 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-propenyloxy, 2-butenyloxy and 2-pentenyloxy. Most preferred R 1 is hydrogen and most preferred R 2 is methyl, ethyl, propyl, butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy and hexyloxy.
 式(1)において、環AおよびAは独立して、炭素数3から5のシクロアルキレンであり、このシクロアルキレンにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-で置き換えられてもよい。 In Formula (1), rings A 1 and A 2 are independently cycloalkylene having 3 to 5 carbon atoms, and in this cycloalkylene, at least one —CH 2 — is replaced by —O— Well, at least one -CH 2 CH 2 -may be replaced by -CH = CH-.
 好ましい環AおよびAは独立して、1,2-シクロプロピレン、1,3-シクロブチレン、1,3-シクロペンチレン、1,3-シクロペンテニレン、1,4-シクロペンテニレン、3、5-シクロペンテニレン、2,4-テトラヒドロニル、または2,5-テトラヒドロフラニルである。特に好ましい環AおよびAは、1,3-シクロペンチレンである。 Preferred rings A 1 and A 2 are independently 1,2-cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, 1,3-cyclopentenylene, 1,4-cyclopentenyl Lene is 3,5-cyclopentenylene, 2,4-tetrahydronyl or 2,5-tetrahydrofuranyl. Particularly preferred rings A 1 and A 2 are 1,3-cyclopentylene.
 aおよびdは独立して、0、1であり、1≦a+d≦2である。
 a=1、d=0である態様を好ましく挙げることができる。
a and d are independently 0 and 1 and 1 ≦ a + d ≦ 2.
An embodiment in which a = 1 and d = 0 can be preferably mentioned.
 通常、誘電率異方性の絶対値が大きい、つまり、極性の大きい化合物は、低温相溶性が悪化する傾向がある。しかし、炭素数3から5のシクロアルキレンである環A、Aを有する化合物は、これと同程度の誘電率異方性を有し、これらのシクロアルキレンを有さない化合物と比較し、低温において他の液晶性化合物との良好な相溶性を示す。 In general, a compound having a large absolute value of dielectric anisotropy, that is, a compound having a large polarity tends to deteriorate the low temperature compatibility. However, compounds having rings A 1 and A 2 , which are cycloalkylene having 3 to 5 carbon atoms, have dielectric anisotropy similar to this and are compared with compounds having no such cycloalkylene, It shows good compatibility with other liquid crystal compounds at low temperatures.
 式(1)において、環NおよびNは独立して、1,4-シクロヘキシレン、デカヒドロナフタレン-2,6-ジイル、または1,4-フェニレンであり、これらの基において、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-CH=N-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素、塩素、-C≡N、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFで置き換えられてもよい。 In the formula (1), the rings N 1 and N 2 are independently 1,4-cyclohexylene, decahydronaphthalene-2,6-diyl or 1,4-phenylene, and at least one of these groups is And one —CH 2 — may be replaced by —O—, —S—, —CO—, or —SiH 2 —, and at least one —CH 2 CH 2 — is —CHCHCH— or —CH = it may be replaced by N-, in these divalent groups, at least one of hydrogen, fluorine, chlorine, -C≡N, -CF 3, -CHF 2 , -CH 2 F, -OCF 3, - It may be replaced by OCHF 2 or -OCH 2 F.
「これらの基において、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-CH=N-で置き換えられてもよく」の好ましい例は、下記の式(25-1)から(25-50)で表される二価基である。さらに好ましい例は、式(25-1)から(25-4)、式(25-15)、式(25-23)、式(25-27)から(25-29)、式(25-36)、式(25-39)、および式(25-45)で表される二価基である。 “In these groups, at least one —CH 2 — may be replaced by —O—, —S—, —CO—, or —SiH 2 —, and at least one —CH 2 CH 2 — is Preferred examples of “—CHCHCH— or —CH = N—” are bivalent groups represented by the following formulas (25-1) to (25-50). Further preferable examples are formulas (25-1) to (25-4), formulas (25-15), formulas (25-23), formulas (25-27) to (25-29) and formulas (25-36). And a divalent group represented by Formula (25-39) and Formula (25-45).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 「これらの二価基において、少なくとも1つの水素は、フッ素、塩素、-C≡N、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFで置き換えられてもよい」の好ましい例は、下記の式(26-1)から(26-71)で表される二価基である。さらに好ましい例は、式(26-1)から(26-4)、式(26-6)、式(26-10)から(26-15)、および式(26-54)から(26-59)で表される二価基である。 "In these divalent groups, at least one hydrogen is fluorine, chlorine, -C≡N, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F Preferred examples of “which may be substituted” are divalent groups represented by the following formulas (26-1) to (26-71). Further preferred examples are formulas (26-1) to (26-4), formulas (26-6), formulas (26-10) to (26-15), and formulas (26-54) to (26-59). It is a bivalent group represented by).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 さらに好ましい環NおよびNは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5-トリフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、3-フルオロピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリダジン-2,5-ジイル、デカヒドロナフタレン-2,6-ジイル、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル、およびナフタレン-2,6-ジイルである。1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置は、シスよりもトランスが好ましい。 Further preferred rings N 1 and N 2 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro- 1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5-trifluoro -1,4-phenylene, pyridine-2,5-diyl, 3-fluoropyridine-2,5-diyl, pyrimidine-2,5-diyl, pyridazine-2,5-diyl, decahydronaphthalene-2,6- Diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, and naphthalene-2,6-diyl. The configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis.
 特に好ましい環NおよびNは独立して、1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、およびピリミジン-2,5-ジイルである。最も好ましい環Nおよび環Nは、1,4-シクロヘキシレンおよび1,4-フェニレンである。 Particularly preferred rings N 1 and N 2 are independently 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2, 3-Difluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyridine-2,5-diyl, and pyrimidine-2,5-diyl It is. Most preferred ring N 1 and ring N 2 are 1,4-cyclohexylene and 1,4-phenylene.
 式(1)において、Z、Z、ZおよびZは独立して、単結合または炭素数1から6のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-S-、または-CO-で置き換えられてもよく、1つまたは2つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。 In formula (1), Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond or alkylene having 1 to 6 carbon atoms, and in this alkylene, at least one —CH 2 — is —O -, -S-, or -CO-, and one or two of -CH 2 CH 2 -may be replaced by -CH = CH- or -C≡C-; In divalent radicals, at least one hydrogen may be replaced by fluorine.
 Z、Z、ZおよびZの具体的な例は、独立して、単結合、-O-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH-、-CHCH-、-CH=CH-、-CF=CH-、-CH=CF-、-CF=CF-、-C≡C-、-CHCO-、-COCH-、-(CH-、-(CHCOO-、-(CHOCO-、-OCO(CH-、-COO(CH-、-(CHCFO-、-(CHOCF-、-OCF(CH-、-CFO(CH-、-(CHO-、または-O(CH-である。-CH=CH-、-CF=CF-、-CH=CH-CHO-、および-OCH-CH=CH-のような結合基の二重結合に関する立体配置は、シスよりもトランスが好ましい。 Specific examples of Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond, -O-, -COO-, -OCO-, -CH 2 O-, -OCH 2- , -CF 2 O -, - OCF 2 - , - CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CF = CH -, - CH = CF -, - CF = CF -, - C≡C- , -CH 2 CO-, -COCH 2 -,-(CH 2 ) 4 -,-(CH 2 ) 2 COO-,-(CH 2 ) 2 OCO-, -OCO (CH 2 ) 2- , -COO ( CH 2) 2 -, - ( CH 2) 2 CF 2 O -, - (CH 2) 2 OCF 2 -, - OCF 2 (CH 2) 2 -, - CF 2 O (CH 2) 2 -, - ( CH 2 ) 3 O- or -O (CH 2 ) 3- . The configuration of double bonds of linking groups such as -CH = CH-, -CF = CF-, -CH = CH-CH 2 O-, and -OCH 2 -CH = CH- is more trans than cis than cis preferable.
 好ましいZ、Z、ZおよびZは独立して、単結合、-O-、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、-CH-、-CHCH-、-CH=CH-、-CF=CF-、-C≡C-、および-(CH-である。さらに好ましいZおよびZは独立して、単結合、-O-、-CHO-、-CH-、および-CHCH-である。最も好ましいZおよびZは独立して、-O-および-CHO-であり、最も好ましいZおよびZは独立して、単結合、-CHO-および-OCH-である。 Preferred Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond, -O-, -COO-, -OCO-, -CH 2 O-, -OCH 2- , -CF 2 O-,- OCF 2 -, - CH 2 - , - CH 2 CH 2 -, - CH = CH -, - CF = CF -, - C≡C-, and - (CH 2) 4 - a. More preferably Z 1 and Z 4 are each independently a single bond, -O -, - CH 2 O -, - CH 2 -, and -CH 2 CH 2 -. Most preferred Z 1 and Z 4 are independently -O- and -CH 2 O-, and most preferred Z 2 and Z 3 are independently single bond, -CH 2 O- and -OCH 2- is there.
 YおよびYは独立して、水素、フッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFである。好ましいYおよびYは独立して、水素またはフッ素である。特に好ましいYおよびYはフッ素である。 Y 1 and Y 2 are independently hydrogen, fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F. Preferred Y 1 and Y 2 are independently hydrogen or fluorine. Particularly preferred Y 1 and Y 2 are fluorine.
 式(1)において、bおよびcは独立して、0、1または2であり、b+cは0、1、または2である。化合物(1)は、三員環、四員環、または五員環である環A、Aを除いて数えて一環から三環を有する。環の種類には、通常の六員環に加えて、縮合環や架橋された六員環も含まれ、縮合環も一環として数える。化合物(1)が一環であるときは、他の液晶性化合物との相溶性が非常に良好である。化合物(1)が一環または二環を有するときは、粘度が小さい。化合物(1)が二環または三環を有するときは、上限温度が高い。 In formula (1), b and c are independently 0, 1 or 2, and b + c is 0, 1 or 2. The compound (1) has one to three rings in total, excluding rings A 1 and A 2 which are three-, four-, or five-membered rings. Ring types include, in addition to ordinary six-membered rings, fused rings and bridged six-membered rings, and fused rings are counted as part. When the compound (1) is a part, the compatibility with other liquid crystal compounds is very good. When the compound (1) has one or two rings, the viscosity is small. When the compound (1) has two or three rings, the upper limit temperature is high.
 化合物(1)の末端基、環および結合基を適切に選択することによって、光学異方性、誘電率異方性などの物性を任意に調整することが可能である。末端基RおよびR、環AおよびA、環NおよびN、側方基YおよびY、結合基Z、Z、ZおよびZの種類が、化合物(1)の物性に及ぼす効果を以下に説明する。 Physical properties such as optical anisotropy and dielectric anisotropy can be arbitrarily adjusted by appropriately selecting the terminal group, ring and linking group of compound (1). Types of terminal groups R 1 and R 2 , rings A 1 and A 2 , rings N 1 and N 2 , side groups Y 1 and Y 2 , linking groups Z 1 , Z 2 , Z 3 and Z 4 are compounds ( The effects on the physical properties of 1) are described below.
 化合物(1)において、RまたはRが直鎖であるときは、液晶相の温度範囲が広くそして粘度が小さい。RまたはRが分岐鎖であるとき、他の液晶性化合物との相溶性が良好である。RまたはRが光学活性基である化合物は、キラルドーパントとして有用である。この化合物を組成物に添加することによって、素子に発生するリバース・ツイスト・ドメイン(Reverse twisted domain)を防止することができる。RまたはRが光学活性基でない化合物は、組成物の成分として有用である。RまたはRがアルケニルであるとき、好ましい立体配置は、二重結合の位置に依存する。好ましい立体配置を有するアルケニル化合物は、高い上限温度または液晶相の広い温度範囲を有する。Mol. Cryst. Liq. Cryst., 1985, 131, 109およびMol. Cryst. Liq. Cryst., 1985, 131, 327に詳細な説明がある。 In the compound (1), when R 1 or R 2 is linear, the temperature range of the liquid crystal phase is wide and the viscosity is small. When R 1 or R 2 is a branched chain, the compatibility with other liquid crystal compounds is good. Compounds in which R 1 or R 2 is an optically active group are useful as chiral dopants. By adding this compound to the composition, it is possible to prevent the reverse twist domain generated in the device. Compounds in which R 1 or R 2 is not an optically active group are useful as components of the composition. When R 1 or R 2 is alkenyl, the preferred configuration depends on the position of the double bond. An alkenyl compound having a preferred configuration has a high upper temperature limit or a wide temperature range of liquid crystal phase. A detailed description is given in Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327.
 環AおよびAが独立して、1,2-シクロプロピレン、1,3-シクロブチレンまたは1,3-シクロペンチレンであるとき、粘度が小さい。 When the rings A 1 and A 2 are independently 1,2-cyclopropylene, 1,3-cyclobutylene or 1,3-cyclopentylene, the viscosity is small.
 環NおよびNが独立して、少なくとも1つの水素がフッ素または塩素で置き換えられてもよい1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリダジン-3,6-ジイルであるとき、光学異方性が大きい。環NおよびNが、1,4-シクロヘキシレン、1,4-シクロヘキセニレンまたは1,3-ジオキサン-2,5-ジイルであるとき、光学異方性が小さい。 1,4-phenylene in which rings N 1 and N 2 may be independently substituted with at least one hydrogen with fluorine or chlorine, pyridine-2,5-diyl, pyrimidine-2,5-diyl, or pyridazine- When it is 3,6-diyl, the optical anisotropy is large. When the rings N 1 and N 2 are 1,4-cyclohexylene, 1,4-cyclohexenylene or 1,3-dioxane-2,5-diyl, the optical anisotropy is small.
 結合基Z、Z、ZおよびZが独立して、単結合、-CHO-、-CFO-、-OCF-、-CHCH-、-CH=CH-、-CF=CF-、または-(CH-であるとき、粘度が小さい。結合基が単結合、-OCF-、-CFO-、-CHCH-、または-CH=CH-であるときは粘度がより小さい。結合基が-O-または-CHO-であるとき、誘電率異方性が大きい。 Binding groups Z 1, Z 2, Z 3 and Z 4 are independently a single bond, -CH 2 O -, - CF 2 O -, - OCF 2 -, - CH 2 CH 2 -, - CH = CH- The viscosity is small when —CF = CF— or — (CH 2 ) 4 —. When the linking group is a single bond, -OCF 2- , -CF 2 O-, -CH 2 CH 2- , or -CH = CH-, the viscosity is smaller. When the bonding group is —O— or —CH 2 O—, the dielectric anisotropy is large.
 側方基YおよびYがFのとき、化合物(1)は、誘電率異方性が大きい。 When the side groups Y 1 and Y 2 are F, the compound (1) has a large dielectric anisotropy.
 化合物(1)が環A、Aを除いて数えて、一環または二環を有するときは粘度が小さい。化合物(1)が環A、Aを除いて数えて、二環または三環を有するときは上限温度が高い。以上のように、末端基、環、側方基、および結合基の種類を適当に選択することにより必要な物性を有する化合物を得ることができる。したがって、化合物(1)はPC、TN、STN、ECB、OCB、IPS、VAなどモードを有する素子に用いられる組成物の成分として有用である。 The viscosity is small when compound (1) has one or two rings as counted excluding rings A 1 and A 2 . The upper limit temperature is high when the compound (1) is counted excluding rings A 1 and A 2 and has a bicyclic or tricyclic ring. As described above, compounds having necessary physical properties can be obtained by appropriately selecting the types of terminal groups, rings, lateral groups, and linking groups. Therefore, the compound (1) is useful as a component of a composition used for a device having a mode such as PC, TN, STN, ECB, OCB, IPS, VA and the like.
 化合物(1)の好ましい例として、項3に記載した化合物(1-1)~(1-3)が挙げられ、特に好ましくは化合物(1-1)である。さらに好ましい例は、項4などにおいて下位式で示した化合物である。
 また、化合物(1)は、VA、IPS、PSAなどのモードを有する素子に適している。
Preferred examples of the compound (1) include the compounds (1-1) to (1-3) described in Item 3, and the compound (1-1) is particularly preferable. Further preferable examples are the compounds represented by the subformulae in Item 4 and the like.
The compound (1) is also suitable for devices having modes such as VA, IPS and PSA.
2.化合物(1)の合成
 以下、化合物(1)の合成法を説明する。以下の合成法は、本発明の実施形態の一例(代表例)であり、本発明はこれらに限定されるものではない。化合物(1)は、有機合成化学の方法を適切に組み合わせることによって合成できる。必要とする末端基、環および結合基を出発物に導入する方法は、「オーガニック・シンセシス」(Organic Syntheses, John Wiley & Sons, Inc.)、「オーガニック・リアクションズ」(Organic Reactions, John Wiley & Sons, Inc.)、「コンプリヘンシブ・オーガニック・シンセシス」(Comprehensive Organic Synthesis, Pergamon Press)、「新実験化学講座」(丸善)などの成書に記載されている。
2. Synthesis of Compound (1) Hereinafter, a synthesis method of compound (1) will be described. The following synthetic methods are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited thereto. Compound (1) can be synthesized by appropriately combining the methods of synthetic organic chemistry. Methods to introduce the required end groups, rings and linking groups into the starting material are “Organic Synthesis” (Organic Syntheses, John Wiley & Sons, Inc.), “Organic Reactions” (Organic Reactions, John Wiley & Sons) , Inc.), “Comprehensive Organic Synthesis” (Pergamon Press), “New Experimental Chemistry Course” (Maruzen), etc.
2-1.結合基Z、Z、ZおよびZの生成
 結合基Z、Z、ZおよびZを生成する方法に関して、最初にスキームを示す。
 次に、方法(1)から(11)でスキームに記載した反応を説明する。このスキームにおいて、MSG(またはMSG)は、三員環、四員環、五員環、六員環または縮合環の一つを有する一価の有機基である。スキームで用いた複数のMSG(またはMSG)が表わす一価の有機基は、同一であってもよいし、または異なってもよい。化合物(1A)から(1J)は化合物(1)に相当する。
2-1. On how to generate bonding groups Z 1, Z 2, Z 3 and generate bonding groups Z 1 to Z 4, Z 2, Z 3 and Z 4, illustrating a first scheme.
Next, the reactions described in the schemes in methods (1) to (11) will be described. In this scheme, MSG 1 (or MSG 2 ) is a monovalent organic group having one of a three-, four-, five-, six-membered or fused ring. The monovalent organic groups represented by a plurality of MSG 1 (or MSG 2 ) used in the scheme may be identical or different. Compounds (1A) to (1J) correspond to compound (1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(1)単結合の生成
 公知の方法で合成されるアリールホウ酸(31)とハロゲン化物(32)とを、炭酸塩およびテトラキス(トリフェニルホスフィン)パラジウムのような触媒の存在下で反応させて、化合物(1A)を合成する。この化合物(1A)は、公知の方法で合成されるハロゲン化物(33)に、n-ブチルリチウムを、次いで塩化亜鉛を反応させ、ジクロロビス(トリフェニルホスフィン)パラジウムのような触媒の存在下でハロゲン化物(32)を反応させることによっても合成される。
(1) Formation of a single bond The aryl boric acid (31) and the halide (32) synthesized by a known method are reacted in the presence of a carbonate and a catalyst such as tetrakis (triphenylphosphine) palladium, Compound (1A) is synthesized. This compound (1A) is obtained by reacting n-butyllithium and then zinc chloride with a halide (33) synthesized by a known method, and halogen in the presence of a catalyst such as dichlorobis (triphenylphosphine) palladium. It is also synthesized by reacting the compound (32).
(2)-COO-の生成
 ハロゲン化物(33)に、n-ブチルリチウムを、続いて二酸化炭素を反応させてカルボン酸(34)を得る。公知の方法で合成される化合物(35)とカルボン酸(34)とを、DDC(1,3-ジシクロヘキシルカルボジイミド)とDMAP(4-ジメチルアミノピリジン)の存在下で脱水させて化合物(1B)を合成する。
(2) Formation of -COO- The halide (33) is reacted with n-butyllithium and then carbon dioxide to obtain a carboxylic acid (34). Compound (35) and carboxylic acid (34) synthesized by a known method are dehydrated in the presence of DDC (1,3-dicyclohexylcarbodiimide) and DMAP (4-dimethylaminopyridine) to give compound (1B) Synthesize.
(3)-CFO-の生成
 化合物(1B)をローソン試薬のような硫黄化剤で処理して、チオノエステル(36)を得る。チオノエステル(36)を、フッ化水素ピリジン錯体とNBS(N-ブロモスクシンイミド)とでフッ素化し、化合物(1C)を合成する。M. Kuroboshi et al., Chem. Lett., 1992,827.を参照。化合物(1C)は、チオノエステル(36)をDAST((ジエチルアミノ)サルファートリフルオリド)でフッ素化しても合成される。W. H. Bunnelle et al., J. Org. Chem. 1990, 55, 768.を参照。Peer. Kirsch et al., Angew. Chem. Int. Ed. 2001, 40, 1480. に記載の方法によってこの結合基を生成させることも可能である。
(3) Formation of —CF 2 O— Compound (1B) is treated with a sulfurizing agent such as Lawesson's reagent to give thiono ester (36). The thionoester (36) is fluorinated with hydrogen fluoride pyridine complex and NBS (N-bromosuccinimide) to synthesize compound (1C). See M. Kuroboshi et al., Chem. Lett., 1992, 827. The compound (1C) can also be synthesized by fluorinating the thionoester (36) with DAST ((diethylamino) sulfur trifluoride). See W. H. Bunnelle et al., J. Org. Chem. 1990, 55, 768. It is also possible to generate this linking group by the method described in Peer. Kirsch et al., Angew. Chem. Int. Ed. 2001, 40, 1480.
(4)-CH=CH-の生成
 ハロゲン化物(32)をn-ブチルリチウムで処理した後、DMF(N,N-ジメチルホルムアミド)と反応させてアルデヒド(38)を得る。公知の方法で合成されるホスホニウム塩(37)を、カリウムt-ブトキシドのような塩基で処理してリンイリドを発生させる。このリンイリドをアルデヒド(38)に反応させて化合物(1D)を合成する。反応条件によってはシス体が生成するので、必要に応じて公知の方法によりシス体をトランス体に異性化する。
(4) Formation of —CH = CH— The halide (32) is treated with n-butyllithium and then reacted with DMF (N, N-dimethylformamide) to obtain an aldehyde (38). The phosphonium salt (37) synthesized by the known method is treated with a base such as potassium t-butoxide to generate a phosphorus ylide. This phosphorus ylide is reacted with aldehyde (38) to synthesize compound (1D). Depending on the reaction conditions, a cis form is formed, and if necessary, the cis form is isomerized to a trans form by a known method.
(5)-CHCH-の生成
 化合物(1D)をパラジウム炭素のような触媒の存在下で水素化することにより、化合物(1E)を合成する。
(5) Formation of —CH 2 CH 2 — Compound (1E) is synthesized by hydrogenating compound (1D) in the presence of a catalyst such as palladium carbon.
(6)-(CH-の生成
 ホスホニウム塩(37)の代わりにホスホニウム塩(39)を用い、方法(4)の方法に従って-(CH-CH=CH-を有する化合物を得る。これを接触水素化して、化合物(1F)を合成する。
(6) Formation of (CH 2 ) 4-Using phosphonium salt (39) in place of phosphonium salt (37), a compound having-(CH 2 ) 2 -CH = CH- according to the method of method (4) obtain. This is catalytically hydrogenated to synthesize a compound (1F).
(7)-CHCH=CHCH-の生成
 ホスホニウム塩(37)の代わりにホスホニウム塩(40)を、アルデヒド(38)の代わりにアルデヒド(41)を用い、方法(4)の方法に従って、化合物(1G)を合成する。反応条件によってはトランス体が生成するので、必要に応じて公知の方法によりトランス体をシス体に異性化する。
(7) Formation of -CH 2 CH = CHCH 2 -According to the method of method (4), using phosphonium salt (40) instead of phosphonium salt (37) and aldehyde (41) instead of aldehyde (38), Compound (1G) is synthesized. Depending on the reaction conditions, a trans form is formed, and if necessary, the trans form is isomerized to a cis form by a known method.
(8)-C≡C-の生成
 ジクロロパラジウムとハロゲン化銅との触媒存在下で、ハロゲン化物(33)に、2-メチル-3-ブチン-2-オールを反応させた後、塩基性条件下で脱保護して化合物(32)を得る。ジクロロパラジウムとハロゲン化銅との触媒存在下、化合物(42)をハロゲン化物(32)と反応させて、化合物(1H)を合成する。
(8) Formation of -C≡C- After reacting 2-methyl-3-butyn-2-ol with halide (33) in the presence of a catalyst of dichloropalladium and copper halide, basic conditions Deprotection below gives compound (32). The compound (42) is reacted with a halide (32) in the presence of a catalyst of dichloropalladium and copper halide to synthesize a compound (1H).
(9)-CF=CF-の生成
 ハロゲン化物(33)をn-ブチルリチウムで処理したあと、テトラフルオロエチレンを反応させて化合物(43)を得る。ハロゲン化物(32)をn-ブチルリチウムで処理した後、化合物(43)と反応させて化合物(1I)を合成する。
(9) Formation of —CF = CF— After treating the halide (33) with n-butyllithium, tetrafluoroethylene is reacted to obtain a compound (43). A halide (32) is treated with n-butyllithium and then reacted with a compound (43) to synthesize a compound (1I).
(10)-OCH-の生成
 アルデヒド(38)を水素化ホウ素ナトリウムなどの還元剤で還元して、化合物(44)を得る。化合物(44)を臭化水素酸などで臭素化して、臭化物(45)を得る。炭酸カリウムなどの塩基存在下で、臭化物(45)を化合物(46)と反応させて化合物(1J)を合成する。
(10) Formation of —OCH 2 — The aldehyde (38) is reduced with a reducing agent such as sodium borohydride to give a compound (44). Compound (44) is brominated with hydrobromic acid or the like to give bromide (45). Bromide (45) is reacted with compound (46) in the presence of a base such as potassium carbonate to synthesize compound (1J).
(11)-(CF-の生成
 J. Am. Chem. Soc., 2001, 123, 5414. に記載された方法に従い、ジケトン(-COCO-)を、フッ化水素触媒の存在下、四フッ化硫黄でフッ素化して、-(CF-を有する化合物を得る。
Formation of (11)-(CF 2 ) 2-According to the method described in J. Am. Chem. Soc., 2001, 123, 5414. diketone (-COCO-) in the presence of a hydrogen fluoride catalyst, Fluorination with sulfur tetrafluoride gives compounds with-(CF 2 ) 2- .
2-2.環Nおよび環Nの生成
 次に、環Nおよび環Nに関する生成法を説明する。1,4-シクロヘキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイルなどの環に関しては、出発物が市販されているか、または生成法がよく知られている。そこで、下に示した化合物(64)、(67)、および(71)について説明する。
2-2. Generating ring N 1 and ring N 2 will now be described generation method related to the ring N 1 and ring N 2. 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, pyridine-2 For rings such as 5, 5-diyl, pyrimidine-2, 5-diyl, etc., starting materials are commercially available or methods of production are well known. Thus, compounds (64), (67) and (71) shown below will be described.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 デカヒドロナフタレン-2,6-ジオン(64)は、デカヒドロナフタレン-2,6-ジイルを有する化合物の出発物である。この化合物(64)は、特開2000-239564号公報に記載された方法に従って、ジオール(63)を酸化ルテニウム存在下で接触水素還元し、さらに酸化クロムで酸化することによって得られる。この化合物は通常の方法によって化合物(1)に変換する。 Decahydronaphthalene-2,6-dione (64) is the starting material for compounds with decahydronaphthalene-2,6-diyl. This compound (64) is obtained by catalytic hydrogen reduction of diol (63) in the presence of ruthenium oxide and further oxidation with chromium oxide according to the method described in JP-A-2000-239564. This compound is converted to compound (1) by a conventional method.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 2,3-(ビストリフルオロメチル)フェニレンの構造単位は、Org. Lett., 2000, 2 (21), 3345 に記載された方法で合成する。フラン(65)と1,1,1,4,4,4-ヘキサフルオロ-2-ブチンとを高温でディールス・アルダー型の反応をさせることによってアニリン(66)を合成する。この化合物に、Org. Synth. Coll., Vol. 2, 1943, 355 に記載された方法にしたがい、ザンドマイヤー型反応を行ってヨウ化物(67)を得る。この化合物は通常の方法によって化合物(1)に変換する。 The structural unit of 2,3- (bistrifluoromethyl) phenylene is synthesized by the method described in Org. Lett., 2000, 2 (21), 3345. Aniline (66) is synthesized by reaction of furan (65) with 1,1,1,4,4,4-hexafluoro-2-butyne at high temperature in a Diels-Alder type reaction. This compound is subjected to a Sandmeyer reaction according to the method described in Org. Synth. Coll., Vol. 2, 1943, 355 to obtain an iodide (67). This compound is converted to compound (1) by a conventional method.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 2-ジフルオロメチル-3-フルオロフェニレンの構造単位は、次のような方法で合成する。化合物(68)の水酸基を適切な保護基で保護して化合物(69)を得る。Pは、保護基を意味する。化合物(69)にs-ブチルリチウムを作用させ、続いてN,N-ジメチルホルムアミド(DMF)を反応させてアルデヒド(70)を得る。この化合物をジエチルアミノサルファートリフルオリド(DAST)でフッ素化し、続いて脱保護してフェノール(71)を得る。この化合物は、通常の方法によって化合物(1)に変換する。 The structural unit of 2-difluoromethyl-3-fluorophenylene is synthesized by the following method. The hydroxyl group of compound (68) is protected with a suitable protecting group to give compound (69). P represents a protecting group. Compound (69) is reacted with s-butyllithium and subsequently reacted with N, N-dimethylformamide (DMF) to obtain aldehyde (70). The compound is fluorinated with diethylaminosulfur trifluoride (DAST) and subsequently deprotected to give phenol (71). This compound is converted to compound (1) by a conventional method.
2-3.環A、Aの導入
 次に、環A、Aに関する生成法を説明する。シクロプロパンメタノール、シクロブタンメタノール、シクロペンタノン、シクロペンタノール、ブロモシクロペンタン、4-ブロモシクロペンテン、3-ブロモシクロペンテン、1-ブロモシクロペンテン、2-ブロモテトラヒドロフラン、3-ブロモテトラヒドロフランなどの出発物が市販されているか、または生成法がよく知られており、通常の方法によって化合物(1)の合成に用いることができる。
2-3. The introduction of rings A 1, A 2 will now be described generation method relates to ring A 1, A 2. Starting materials such as cyclopropanemethanol, cyclobutanemethanol, cyclopentanone, cyclopentanol, bromocyclopentane, 4-bromocyclopentene, 3-bromocyclopentene, 1-bromocyclopentene, 2-bromotetrahydrofuran, 3-bromotetrahydrofuran are commercially available Or the methods of production are well known and can be used for the synthesis of compound (1) by conventional methods.
2-4.ジベンゾチオフェン環の生成
 ジベンゾチオフェン環の生成法は良く知られており、特開2015-205879号公報に記載の方法などを参考にして合成することができる。
2-4. Formation of Dibenzothiophene Ring A method for forming a dibenzothiophene ring is well known, and can be synthesized with reference to the method described in JP-A-2015-205879.
2-5.化合物(1)の合成法
 化合物(1)の合成法の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000035
 化合物(72)の水酸基を適切な保護基で保護して化合物(73)を得る。Pは、保護基を意味する。結合基Z、Z、ZおよびZの生成法や環NおよびNの生成法を参考にし、公知の方法から得られる化合物(74)に、s-ブチルリチウムを作用させ、ホウ酸トリメチルを反応させ化合物(75)を得る。化合物(73)と化合物(75)を、金属触媒を用いてカップリングさせ化合物(76)を合成する。続いて脱保護を行ない、化合物(77)を得る。化合物(77)に無水トリフルオロメタンスルホン酸を反応させ化合物(78)を得る。化合物(78)を金属触媒の存在下で3-メルカプトプロピオン酸エチルと反応させ、化合物(79)を得る。化合物(79)をカリウムt-ブトキシドの存在下で加熱して環化させることにより、化合物(80)を得る。化合物(80)にn-ブチルリチウムを作用させ、ホウ酸トリメチル、過酸化水素と反応させ化合物(81)を得る。この化合物は通常の方法により化合物(1)に変換する。これらの化合物において、R、R、A、A、N、N、Y、Y、Z、Z、Z、Z、a、b、cおよびdの定義は、項1に記載した記号の定義と同一である。
2-5. Synthetic Method of Compound (1) An example of a synthetic method of Compound (1) is shown below.
Figure JPOXMLDOC01-appb-C000035
The hydroxyl group of compound (72) is protected with a suitable protecting group to give compound (73). P represents a protecting group. With reference to a method of forming linking groups Z 1 , Z 2 , Z 3 and Z 4 and a method of forming rings N 1 and N 2 , s-butyllithium is allowed to act on a compound (74) obtained from a known method, Reaction with trimethyl borate gives compound (75). Compound (73) and compound (75) are coupled using a metal catalyst to synthesize compound (76). Subsequently, deprotection is performed to obtain a compound (77). Compound (77) is reacted with trifluoromethanesulfonic anhydride to give compound (78). Compound (78) is reacted with ethyl 3-mercaptopropionate in the presence of a metal catalyst to give compound (79). Compound (79) is heated in the presence of potassium t-butoxide to cyclize to give compound (80). Compound (80) is reacted with n-butyllithium, reacted with trimethyl borate and hydrogen peroxide to obtain compound (81). This compound is converted to compound (1) by a conventional method. In these compounds, the definitions of R 1 , R 2 , A 1 , A 2 , N 1 , N 2 , Y 1 , Y 2 , Z 1 , Z 2 , Z 3 , Z 4 , a, b, c and d Is the same as the definition of the symbol described in the item 1.
3.液晶組成物
3-1.成分化合物
 液晶組成物について説明をする。この組成物は、少なくとも1つの化合物(1)を成分(a)として含有する。この組成物は、2つまたは3つ以上の化合物(1)を含有してもよい。組成物の成分が化合物(1)のみであってもよい。組成物は、化合物(1)の少なくとも1つを、1重量%から99重量%の範囲で含有することが、良好な物性を発現させるために好ましい。誘電率異方性が負である組成物において、化合物(1)の好ましい含有量は5重量%から60重量%の範囲である。誘電率異方性が正である組成物において、化合物(1)の含有量は、液晶組成物の全重量に基づいて、通常30重量%以下、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下であり、また、通常1重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上である。
3. Liquid Crystal Composition 3-1. Component Compounds The liquid crystal composition will be described. This composition contains at least one compound (1) as component (a). The composition may contain two or more compounds (1). The component of the composition may be only the compound (1). The composition preferably contains at least one of the compounds (1) in the range of 1% by weight to 99% by weight in order to develop good physical properties. In the composition having negative dielectric anisotropy, the preferred content of the compound (1) is in the range of 5% by weight to 60% by weight. In the composition having positive dielectric anisotropy, the content of the compound (1) is usually 30% by weight or less, preferably 20% by weight or less, more preferably 15% by weight based on the total weight of the liquid crystal composition. % Or less, more preferably 10% by weight or less, and usually 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 この組成物は、化合物(1)を成分(a)として含有する。この組成物は、表1に示す成分(b)から(e)のうちから選択された液晶性化合物をさらに含有することが好ましい。この組成物を調製するときには、誘電率異方性の正負と大きさとを考慮して、成分(b)から(e)を選択することが好ましい。この組成物は、化合物(1)から(13)および(21)から(24)とは異なる液晶性化合物を含有してもよい。この組成物は、そのような液晶性化合物を含有しなくてもよい。 This composition contains compound (1) as component (a). The composition preferably further contains a liquid crystal compound selected from components (b) to (e) shown in Table 1. When preparing this composition, it is preferable to select components (b) to (e) in consideration of the plus and minus of the dielectric anisotropy and the size. The composition may contain liquid crystal compounds different from the compounds (1) to (13) and (21) to (24). This composition may not contain such a liquid crystal compound.
 成分(b)は、2つの末端基がアルキルなどである化合物である。成分(b)の好ましい例として、化合物(2-1)から(2-11)、化合物(3-1)から(3-19)、および化合物(4-1)から(4-7)を挙げることができる。これらの化合物において、R11およびR12は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。 Component (b) is a compound in which the two end groups are alkyl or the like. Preferred examples of component (b) include compounds (2-1) to (2-11), compounds (3-1) to (3-19), and compounds (4-1) to (4-7). be able to. In these compounds, R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is —O And in these groups at least one hydrogen may be replaced by fluorine.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 成分(b)は、小さな誘電率異方性を有し、また、中性に近い。化合物(2)は、粘度を下げるまたは光学異方性を調整する効果がある。化合物(3)および(4)は、上限温度を上げることによってネマチック相の温度範囲を広げる、または光学異方性を調整する効果がある。 Component (b) has a small dielectric anisotropy and is near neutral. The compound (2) has the effect of reducing the viscosity or adjusting the optical anisotropy. Compounds (3) and (4) have the effect of extending the temperature range of the nematic phase or raising the optical anisotropy by raising the upper limit temperature.
 成分(b)の含有量を増加させるにつれて、組成物の粘度は小さくなるが誘電率異方性が小さくなる。そこで、素子のしきい値電圧の要求値を満たす限り、含有量は多いほうが好ましい。IPS、VAなどのモード用の組成物を調製する場合には、成分(b)の含有量は、液晶組成物の全重量に基づいて、好ましくは30重量%以上、さらに好ましくは40重量%以上である。 As the content of component (b) is increased, the viscosity of the composition decreases but the dielectric anisotropy decreases. Therefore, as long as the required value of the threshold voltage of the device is satisfied, it is preferable that the content be as high as possible. When preparing a composition for a mode such as IPS or VA, the content of the component (b) is preferably 30% by weight or more, more preferably 40% by weight or more based on the total weight of the liquid crystal composition. It is.
 成分(c)は、化合物(5)から(13)である。これらの化合物は、2,3-ジフルオロ-1,4-フェニレンのように、ラテラル位が2つのハロゲンで置換されたフェニレンを有する。成分(c)の好ましい例として、化合物(5-1)から(5-9)、化合物(6-1)から(6-19)、化合物(7-1)および(7-2)、化合物(8-1)から(8-3)、化合物(9-1)から(9-3)、化合物(10-1)から(10-11)、化合物(11-1)から(11-3)、化合物(12-1)から(12-3)、および化合物(13-1)を挙げることができる。これらの化合物において、R13、R14、およびR15は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよく、そしてR15は、水素またはフッ素であってもよい。 Component (c) is compounds (5) to (13). These compounds have phenylene in which the lateral position is substituted with two halogens, such as 2,3-difluoro-1,4-phenylene. Preferred examples of component (c) include compounds (5-1) to (5-9), compounds (6-1) to (6-19), compounds (7-1) and (7-2), compounds (c) 8-1) to (8-3), compounds (9-1) to (9-3), compounds (10-1) to (10-11), compounds (11-1) to (11-3), Compounds (12-1) to (12-3) and compound (13-1) can be mentioned. In these compounds, R 13 , R 14 and R 15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — May be replaced by —O—, in these groups at least one hydrogen may be replaced by fluorine, and R 15 may be hydrogen or fluorine.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 成分(c)は、誘電率異方性が負に大きい。成分(c)は、IPS、VA、PSAなどのモード用の組成物を調製する場合に用いられる。成分(c)の含有量を増加させるにつれて組成物の誘電率異方性が負に大きくなるが、粘度が大きくなる。そこで、素子のしきい値電圧の要求値を満たす限り、含有量は少ないほうが好ましい。誘電率異方性が-5程度であることを考慮すると、充分な電圧駆動をさせるには、液晶組成物の全重量に基づいて、含有量が40重量%以上であることが好ましい。 Component (c) has a large negative dielectric anisotropy. Component (c) is used when preparing a composition for modes such as IPS, VA, PSA and the like. As the content of the component (c) is increased, the dielectric anisotropy of the composition is negatively increased but the viscosity is increased. Therefore, the smaller the content, the better, as long as the required value of the threshold voltage of the device is satisfied. Considering that the dielectric anisotropy is about -5, the content is preferably 40% by weight or more based on the total weight of the liquid crystal composition in order to achieve sufficient voltage driving.
 成分(c)のうち、化合物(5)は二環化合物であるので、粘度を下げる、光学異方性を調整する、または誘電率異方性を向上させる効果がある。化合物(6)および(7)は三環化合物であり、化合物(8)は四環化合物であるので、上限温度を上げる、光学異方性を上げる、または誘電率異方性を上げるという効果がある。化合物(9)から(13)は、誘電率異方性を上げるという効果がある。 Among the components (c), since the compound (5) is a bicyclic compound, it has an effect of lowering the viscosity, adjusting the optical anisotropy or improving the dielectric anisotropy. Compounds (6) and (7) are tricyclic compounds, and compound (8) is a tetracyclic compound. Therefore, the effects of increasing the maximum temperature, optical anisotropy, or dielectric anisotropy are obtained. is there. Compounds (9) to (13) have the effect of increasing the dielectric anisotropy.
 IPS、VA、PSAなどのモード用の組成物を調製する場合には、成分(c)の含有量は、液晶組成物の全重量に基づいて、好ましくは40重量%以上であり、さらに好ましくは50重量%から95重量%の範囲である。成分(c)を誘電率異方性が正である組成物に添加する場合は、成分(c)の含有量は30重量%以下が好ましい。成分(c)を添加することにより、組成物の弾性定数を調整し、素子の電圧-透過率曲線を調整することが可能となる。 When preparing a composition for a mode such as IPS, VA, or PSA, the content of component (c) is preferably 40% by weight or more based on the total weight of the liquid crystal composition, and more preferably It is in the range of 50% by weight to 95% by weight. When component (c) is added to a composition having a positive dielectric anisotropy, the content of component (c) is preferably 30% by weight or less. By adding the component (c), it is possible to adjust the elastic constant of the composition and adjust the voltage-transmittance curve of the device.
 成分(d)は、右末端にハロゲンまたはフッ素含有基を有する化合物である。成分(d)の好ましい例として、化合物(21-1)から(21-16)、化合物(22-1)から(22-116)、化合物(23-1)から(23-59)を挙げることができる。これらの化合物において、R16は、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。X11は、フッ素、塩素、-OCF、-OCHF、-CF、-CHF、-CHF、-OCFCHF、または-OCFCHFCFである。 Component (d) is a compound having a halogen or fluorine-containing group at the right end. Preferred examples of the component (d) include the compounds (21-1) to (21-16), the compounds (22-1) to (22-116), and the compounds (23-1) to (23-59). Can. In these compounds, R 16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Well, in these groups, at least one hydrogen may be replaced by fluorine. X 11 is fluorine, chlorine, -OCF 3 , -OCHF 2 , -CF 3 , -CHF 2 , -CH 2 F, -OCF 2 CHF 2 , or -OCF 2 CHFCF 3 .
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 成分(d)は、誘電率異方性が正であり、熱や光に対する安定性が非常に良好であるので、IPS、FFS、OCBなどのモード用の組成物を調製する場合に用いられる。成分(d)の含有量は、液晶組成物の全重量に基づいて、1重量%から99重量%の範囲が適しており、好ましくは10重量%から97重量%の範囲、さらに好ましくは40重量%から95重量%の範囲である。成分(d)を誘電率異方性が負である組成物に添加する場合、成分(d)の含有量は、30重量%以下が好ましい。成分(d)を添加することにより、組成物の弾性定数を調整し、素子の電圧-透過率曲線を調整することが可能となる。 The component (d) is used when preparing a composition for modes such as IPS, FFS, and OCB because the dielectric anisotropy is positive and the stability to heat and light is very good. The content of component (d) is suitably in the range of 1% by weight to 99% by weight, preferably in the range of 10% by weight to 97% by weight, more preferably 40% by weight, based on the total weight of the liquid crystal composition. % To 95% by weight. When component (d) is added to a composition having a negative dielectric anisotropy, the content of component (d) is preferably 30% by weight or less. By adding the component (d), it is possible to adjust the elastic constant of the composition and adjust the voltage-transmittance curve of the device.
 成分(e)は、右末端基が-C≡Nまたは-C≡C-C≡Nである化合物(24)である。成分(e)の好ましい例として、化合物(24-1)から(24-64)を挙げることができる。これらの化合物において、R17は、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。X12は、-C≡Nまたは-C≡C-C≡Nである。 Component (e) is a compound (24) in which the right terminal group is —C≡N or —C≡C—C≡N. Preferred examples of component (e) include compounds (24-1) to (24-64). In these compounds, R 17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Well, in these groups, at least one hydrogen may be replaced by fluorine. X 12 is —C≡N or —C≡C—C≡N.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 成分(e)は、誘電率異方性が正であり、その値が大きいので、TNなどのモード用の組成物を調製する場合に用いられる。この成分(e)を添加することにより、組成物の誘電率異方性を上げることができる。成分(e)は、液晶相の温度範囲を広げる、粘度を調整する、または光学異方性を調整する、という効果がある。成分(e)は、素子の電圧-透過率曲線の調整にも有用である。 Component (e) is used when preparing a composition for a mode such as TN since the dielectric anisotropy is positive and the value thereof is large. By adding this component (e), the dielectric anisotropy of the composition can be increased. The component (e) has the effect of widening the temperature range of the liquid crystal phase, adjusting the viscosity, or adjusting the optical anisotropy. Component (e) is also useful for adjusting the voltage-transmittance curve of the device.
 TNなどのモード用の組成物を調製する場合には、成分(e)の含有量は、液晶組成物の全重量に基づいて、1重量%から99重量%の範囲が適しており、好ましくは10重量%から97重量%の範囲、さらに好ましくは40重量%から95重量%の範囲である。成分(e)を誘電率異方性が負である組成物に添加する場合、成分(e)の含有量は、液晶組成物の全重量に基づいて、30重量%以下が好ましい。成分(e)を添加することにより、組成物の弾性定数を調整し、素子の電圧-透過率曲線を調整することが可能となる。 When preparing a composition for a mode such as TN, the content of component (e) is suitably in the range of 1% by weight to 99% by weight based on the total weight of the liquid crystal composition, and is preferably It is in the range of 10% by weight to 97% by weight, more preferably in the range of 40% by weight to 95% by weight. When component (e) is added to a composition having negative dielectric anisotropy, the content of component (e) is preferably 30% by weight or less based on the total weight of the liquid crystal composition. By adding the component (e), it is possible to adjust the elastic constant of the composition and adjust the voltage-transmittance curve of the device.
 上記の成分(b)から(e)のうちから適切に選択された化合物と化合物(1)とを組み合わせることによって、熱や光に対する高い安定性、高い上限温度、低い下限温度、小さな粘度、適切な光学異方性(すなわち、大きな光学異方性または小さな光学異方性)、正または負に大きな誘電率異方性、大きな比抵抗、適切な弾性定数(すなわち、大きな弾性定数または小さな弾性定数)などの物性の少なくとも1つを充足する液晶組成物を調製することができる。このような組成物を含む素子は、素子を使用できる広い温度範囲、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、小さなフリッカ率、および長い寿命を有する。 By combining a compound appropriately selected from the above components (b) to (e) and the compound (1), high stability to heat and light, high upper limit temperature, low lower limit temperature, small viscosity, suitable Optical anisotropy (ie large optical anisotropy or small optical anisotropy), positive or negative large dielectric anisotropy, large specific resistance, appropriate elastic constant (ie large elastic constant or small elastic constant) A liquid crystal composition satisfying at least one of physical properties such as) can be prepared. A device comprising such a composition has a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, a small flicker ratio, and a long lifetime.
 素子を長時間使用すると、表示画面にフリッカ(flicker)が発生することがある。フリッカ率(%)は、(|正の電圧を印加したときの輝度-負の電圧を印加したときの輝度|)/平均輝度)×100、によって表すことができる。フリッカ率が0%から1%の範囲である素子は、素子を長時間使用しても、表示画面にフリッカ(flicker)が発生しにくい。このフリッカは、画像の焼き付きに関連し、交流で駆動させる際に、正フレームと負フレームの間の電位差によって発生すると推定される。化合物(1)を含有する組成物は、フリッカの発生を低減させるのにも有用である。 When the device is used for a long time, flicker may occur on the display screen. The flicker rate (%) can be expressed by (| luminance when applying a positive voltage−luminance when applying a negative voltage |) / average luminance) × 100. An element whose flicker rate is in the range of 0% to 1% is less likely to cause flicker on the display screen even when the element is used for a long time. This flicker is related to image burn-in and is estimated to be generated by a potential difference between positive and negative frames when driven with an alternating current. The composition containing the compound (1) is also useful for reducing the occurrence of flicker.
3-2.添加物
 液晶組成物は公知の方法によって調製される。例えば、成分化合物を混合し、そして加熱によって互いに溶解させる。用途に応じて、この組成物に添加物を添加してよい。添加物の例は、重合性化合物、重合開始剤、重合禁止剤、光学活性化合物、酸化防止剤、紫外線吸収剤、光安定剤、熱安定剤、色素、消泡剤などである。このような添加物は当業者によく知られており、文献に記載されている。
3-2. Additives The liquid crystal composition is prepared by a known method. For example, the component compounds are mixed and dissolved together by heating. Depending on the application, additives may be added to the composition. Examples of the additives are a polymerizable compound, a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer, a dye, an antifoaming agent and the like. Such additives are well known to those skilled in the art and are described in the literature.
 PSA(polymer sustained alignment;高分子支持配向)モードを有する液晶表示素子では、組成物が重合体を含有する。重合性化合物は、組成物中に重合体を生成させる目的で添加される。電極間に電圧を印加した状態で紫外線を照射して、重合性化合物を重合させることによって、組成物の中に重合体を生成させる。この方法によって、適切なプレチルトが達成されるので、応答時間が短縮され、画像の焼き付きが改善された素子が作製される。 In a liquid crystal display device having a PSA (polymer sustained alignment) mode, the composition contains a polymer. The polymerizable compound is added in order to form a polymer in the composition. A polymer is formed in the composition by polymerizing the polymerizable compound by irradiation with ultraviolet light in a state where a voltage is applied between the electrodes. By this method, an appropriate pretilt is achieved, so that the response time is shortened and an element with improved image sticking is produced.
 重合性化合物の好ましい例は、アクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、およびビニルケトンである。さらに好ましい例は、少なくとも1つのアクリロイルオキシを有する化合物、および少なくとも1つのメタクリロイルオキシを有する化合物である。さらに好ましい例には、アクリロイルオキシとメタクリロイルオキシの両方を有する化合物も含まれる。 Preferred examples of the polymerizable compound are acrylates, methacrylates, vinyl compounds, vinyloxy compounds, propenyl ethers, epoxy compounds (oxiranes, oxetanes), and vinyl ketones. Further preferred examples are compounds having at least one acryloyloxy and compounds having at least one methacryloyloxy. Further preferred examples also include compounds having both acryloyloxy and methacryloyloxy.
 さらに好ましい例は、化合物(M-1)から(M-18)である。これらの化合物において、R25からR31は独立して、水素またはメチルであり;R32、R33、およびR34は独立して、水素または炭素数1から5のアルキルであり、R32、R33、およびR34の少なくとも1つは、炭素数1から5のアルキルであり;v、w、およびxは独立して、0または1であり;uおよびyは独立して、1から10の整数である。L21からL26は独立して、水素またはフッ素であり;L27およびL28は独立して、水素、フッ素、またはメチルである。 Further preferred examples are compounds (M-1) to (M-18). In these compounds, R 25 to R 31 are independently hydrogen or methyl; R 32 , R 33 and R 34 are independently hydrogen or alkyl having 1 to 5 carbon atoms, R 32 , At least one of R 33 and R 34 is alkyl having 1 to 5 carbons; v, w and x are independently 0 or 1; u and y are independently 1 to 10 Is an integer of L 21 to L 26 are independently hydrogen or fluorine; L 27 and L 28 are independently hydrogen, fluorine or methyl.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 重合性化合物は、光ラジカル重合開始剤等の重合開始剤を添加することによって、速やかに重合させることができる。反応条件を最適化することによって、残存する重合性化合物の量を減少させることができる。光ラジカル重合開始剤の例としては、BASF社のダロキュアシリーズからTPO、1173、および4265であり、イルガキュアシリーズから184、369、500、651、784、819、907、1300、1700、1800、1850、および2959が挙げられる。 The polymerizable compound can be rapidly polymerized by adding a polymerization initiator such as a photo radical polymerization initiator. By optimizing the reaction conditions, the amount of remaining polymerizable compound can be reduced. Examples of photo radical polymerization initiators are TPO, 1173, and 4265 from Darrocure series of BASF, and 184, 369, 500, 651, 784, 819, 907, 1300, 1700, 1800, from Irgacure series. 1850 and 2959 can be mentioned.
 さらに、光ラジカル重合開始剤として、4-メトキシフェニル-2,4-ビス(トリクロロメチル)トリアジン、2-(4-ブトキシスチリル)-5-トリクロロメチル-1,3,4-オキサジアゾール、9-フェニルアクリジン、9,10-ベンズフェナジン、ベンゾフェノン/ミヒラーズケトン混合物、ヘキサアリールビイミダゾール/メルカプトベンズイミダゾール混合物、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ベンジルジメチルケタール、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2,4-ジエチルキサントン/p-ジメチルアミノ安息香酸メチル混合物、ベンゾフェノン/メチルトリエタノールアミン混合物を用いることもできる。 Furthermore, 4-methoxyphenyl-2,4-bis (trichloromethyl) triazine, 2- (4-butoxystyryl) -5-trichloromethyl-1,3,4-oxadiazole, 9 as photo radical polymerization initiators -Phenylacridine, 9,10-benzphenazine, benzophenone / Michler's ketone mixture, hexaarylbiimidazole / mercaptobenzimidazole mixture, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzyldimethyl Ketal, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2,4-diethylxanthone / methyl p-dimethylaminobenzoate mixture, benzophenone / methyltriethanolamine mixture It can also be used .
 液晶組成物に光ラジカル重合開始剤を添加したあと、電場を印加した状態で紫外線を照射することによって重合を行うことができる。しかし、未反応の重合開始剤または重合開始剤の分解生成物は、素子に画像の焼き付きなどの表示不良を引き起こすかもしれない。これを防ぐために、重合開始剤を添加しないまま光重合を行ってもよい。照射する光の好ましい波長は150nmから500nmの範囲である。さらに好ましい波長は250nmから450nmの範囲であり、最も好ましい波長は300nmから400nmの範囲である。 After adding a photo radical polymerization initiator to the liquid crystal composition, polymerization can be performed by irradiating ultraviolet light in a state where an electric field is applied. However, unreacted polymerization initiator or decomposition products of the polymerization initiator may cause display defects such as image sticking to the device. In order to prevent this, photopolymerization may be performed without adding a polymerization initiator. The preferred wavelength of the light to be irradiated is in the range of 150 nm to 500 nm. A further preferred wavelength is in the range of 250 nm to 450 nm, and the most preferred wavelength is in the range of 300 nm to 400 nm.
 重合性化合物を保管するとき、重合を防止するために重合禁止剤を添加してもよい。重合性化合物は、通常は重合禁止剤を除去しないまま組成物に添加される。重合禁止剤の例は、ヒドロキノン、メチルヒドロキノンのようなヒドロキノン誘導体、4-t-ブチルカテコール、4-メトキシフェノール、フェノチアジンなどである。 When storing the polymerizable compound, a polymerization inhibitor may be added to prevent polymerization. The polymerizable compound is usually added to the composition without removing the polymerization inhibitor. Examples of polymerization inhibitors are hydroquinone, hydroquinone derivatives such as methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
 光学活性化合物は、液晶分子にらせん構造を誘起して、必要なねじれ角を与えることによって逆ねじれを防ぐ、という効果を有する。光学活性化合物を添加することによって、らせんピッチを調整することができる。らせんピッチの温度依存性を調整する目的で2つ以上の光学活性化合物を添加してもよい。光学活性化合物の好ましい例として、下記の化合物(Op-1)から(Op-18)を挙げることができる。化合物(Op-18)において、環Jは1,4-シクロヘキシレンまたは1,4-フェニレンであり、R28は炭素数1から10のアルキルである。*印は不斉炭素を表す。 The optically active compound has an effect of inducing a helical structure in liquid crystal molecules and preventing reverse twist by providing a necessary twist angle. The helical pitch can be adjusted by adding an optically active compound. Two or more optically active compounds may be added in order to adjust the temperature dependency of the helical pitch. As preferred examples of the optically active compounds, the following compounds (Op-1) to (Op-18) can be mentioned. In the compound (Op-18), ring J is 1,4-cyclohexylene or 1,4-phenylene, and R 28 is alkyl having 1 to 10 carbons. The symbol * represents an asymmetric carbon.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 酸化防止剤は、大きな電圧保持率を維持するために有効である。酸化防止剤の好ましい例として、下記の化合物(AO-1)および(AO-2);Irganox415、Irganox565、Irganox1010、Irganox1035、Irganox3114、およびIrganox1098(商品名;BASF社)を挙げることができる。
 紫外線吸収剤は、上限温度の低下を防ぐために有効である。紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などであり、具体例として、下記の化合物(AO-3)および(AO-4);Tinuvin329、TinuvinP、Tinuvin326、Tinuvin234、Tinuvin213、Tinuvin400、Tinuvin328、およびTinuvin99-2(商品名;BASF社);および1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)を挙げることができる。
Antioxidants are effective to maintain a large voltage holding ratio. As preferable examples of the antioxidant, the following compounds (AO-1) and (AO-2); Irganox 415, Irganox 565, Irganox 1010, Irganox 1035, Irganox 3114, and Irganox 1098 (trade name; manufactured by BASF) can be mentioned.
UV absorbers are effective to prevent the lowering of the upper limit temperature. Preferred examples of UV absorbers are benzophenone derivatives, benzoate derivatives, triazole derivatives and the like, and specific examples thereof include the following compounds (AO-3) and (AO-4); Tinuvin 329, Tinuvin P, Tinuvin 326, Tinuvin 326, Tinuvin 213, Tinuvin 400 , Tinuvin 328, and Tinuvin 99-2 (trade name; BASF Corporation); and 1,4-diazabicyclo [2.2.2] octane (DABCO).
 立体障害のあるアミンのような光安定剤は、大きな電圧保持率を維持するために好ましい。光安定剤の好ましい例として、下記の化合物(AO-5)、(AO-6)、および(AO-7);Tinuvin144、Tinuvin765、およびTinuvin770DF(商品名;BASF社);LA-77YおよびLA-77G(商品名;ADEKA社)を挙げることができる。熱安定剤も大きな電圧保持率を維持するために有効であり、好ましい例としてIrgafos168(商品名;BASF社)を挙げることができる。GH(guest host)モードの素子に適合させるために、アゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に添加される。消泡剤は、泡立ちを防ぐために有効である。消泡剤の好ましい例は、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどである。 Light stabilizers such as sterically hindered amines are preferred to maintain high voltage holding rates. As preferable examples of the light stabilizer, the following compounds (AO-5), (AO-6), and (AO-7); Tinuvin 144, Tinuvin 765, and Tinuvin 770 DF (trade name; BASF Corporation); LA-77Y and LA- 77G (trade name; ADEKA company) can be mentioned. A heat stabilizer is also effective for maintaining a large voltage holding ratio, and a preferred example is Irgafos 168 (trade name; BASF Corporation). In order to conform to a guest host (GH) mode device, a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition. Defoamers are effective to prevent foaming. Preferred examples of the antifoaming agent are dimethyl silicone oil, methylphenyl silicone oil and the like.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 化合物(AO-1)において、R40は、炭素数1から20のアルキル、炭素数1から20のアルコキシ、-COOR41、または-CHCHCOOR41であり、ここでR41は炭素数1から20のアルキルである。化合物(AO-2)および(AO-5)において、R42は、炭素数1から20のアルキルである。化合物(AO-5)において、R43は、水素、メチルまたはO(酸素ラジカル)であり;環Gは、1,4-シクロヘキシレンまたは1,4-フェニレンであり;化合物(AO-7)において、環Gは、1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレンであり;化合物(AO-5)および(AO-7)において、zは、1、2、または3である。 In compound (AO-1), R 40 is alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons, -COOR 41 , or -CH 2 CH 2 COOR 41 , wherein R 41 is a carbon number It is an alkyl of 1 to 20. In compounds (AO-2) and (AO-5), R 42 is alkyl having 1 to 20 carbons. In the compound (AO-5), R 43 is hydrogen, methyl or O · (oxygen radical); ring G 1 is an 1,4-cyclohexylene or 1,4-phenylene; Compound (AO-7 In the above, ring G 2 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by fluorine; compounds (AO-5) and (AO— In 7), z is 1, 2 or 3.
4.液晶表示素子
 液晶組成物は、PC、TN、STN、OCB、PSAなどの動作モードを有し、アクティブマトリックス方式で駆動する液晶表示素子に使用できる。この組成物は、PC、TN、STN、OCB、VA、IPSなどの動作モードを有し、パッシブマトリクス方式で駆動する液晶表示素子にも使用することができる。これらの素子は、反射型、透過型、半透過型のいずれのタイプにも適用ができる。
4. Liquid Crystal Display Element The liquid crystal composition has an operation mode such as PC, TN, STN, OCB or PSA, and can be used for a liquid crystal display element driven by an active matrix system. This composition can be used also for a liquid crystal display element driven by a passive matrix method, having an operation mode such as PC, TN, STN, OCB, VA, IPS and the like. These elements can be applied to any of reflective, transmissive, and semi-transmissive types.
 この組成物は、NCAP(nematic curvilinear aligned phase)素子にも適しており、ここでは組成物がマイクロカプセル化されている。この組成物は、ポリマー分散型液晶表示素子(PDLCD)や、ポリマーネットワーク液晶表示素子(PNLCD)にも使用できる。これらの組成物においては、重合性化合物が多量に添加される。一方、重合性化合物の割合が、液晶組成物の全重量に基づいて、10重量%以下であるとき、PSAモードの液晶表示素子が作製される。好ましい割合は、0.1重量%から2重量%の範囲である。さらに好ましい割合は、0.2重量%から1.0重量%の範囲である。PSAモードの素子は、アクティブマトリックス方式、パッシブマトリクス方式のような駆動方式で駆動させることができる。このような素子は、反射型、透過型、半透過型のいずれのタイプにも適用ができる。 The composition is also suitable for a nematic curvilinear aligned phase (NCAP) device, in which the composition is microencapsulated. This composition can also be used for polymer dispersed liquid crystal display (PDLCD) and polymer network liquid crystal display (PNLCD). In these compositions, a large amount of polymerizable compound is added. On the other hand, when the proportion of the polymerizable compound is 10% by weight or less based on the total weight of the liquid crystal composition, a PSA mode liquid crystal display device is produced. The preferred proportion is in the range of 0.1% by weight to 2% by weight. A further preferred ratio is in the range of 0.2% by weight to 1.0% by weight. The element in the PSA mode can be driven by a driving method such as an active matrix method or a passive matrix method. Such an element can be applied to any of reflective, transmissive and semi-transmissive types.
1.化合物(1)の実施例
 実施例により本発明をさらに詳しく説明する。実施例は典型的な例であるので、本発明は実施例によって制限されない。化合物(1)は、下記の手順により合成した。合成した化合物は、NMR分析などの方法により同定した。化合物や組成物の物性、および素子の特性は、下記の方法により測定した。
1. Examples of Compound (1) The present invention will be described in more detail by way of examples. The present invention is not limited by the examples, as the examples are typical examples. Compound (1) was synthesized by the following procedure. The compound synthesized was identified by a method such as NMR analysis. The physical properties of the compounds and compositions and the characteristics of the devices were measured by the following methods.
 NMR分析:
 測定には、ブルカーバイオスピン社製のDRX-500を用いた。H-NMRの測定では、試料をCDClなどの重水素化溶媒に溶解させ、室温、500MHz、積算回数16回の条件で測定した。テトラメチルシランを内部標準として用いた。19F-NMRの測定では、CFClを内部標準として用い、積算回数24回で行った。核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。
NMR analysis:
For measurement, DRX-500 manufactured by Bruker Biospin Ltd. was used. In the measurement of 1 H-NMR, the sample was dissolved in a deuterated solvent such as CDCl 3 and measured at room temperature, 500 MHz, under conditions of 16 times of integration. Tetramethylsilane was used as an internal standard. In the 19 F-NMR measurement, CFCl 3 was used as an internal standard, and the integration was performed 24 times. In the description of nuclear magnetic resonance spectrum, s is singlet, d is doublet, t is triplet, q is quartet, quin is quintet, sex is sextet, m is multiplet, br is broad.
 ガスクロマト分析:
 測定には、島津製作所製のGC-2010型ガスクロマトグラフを用いた。カラムは、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ60m、内径0.25mm、膜厚0.25μm)を用いた。キャリアーガスとしてはヘリウム(1mL/分)を用いた。試料気化室の温度を300℃、検出器(FID)の温度を300℃に設定した。試料はアセトンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。記録計には島津製作所製のGCSolutionシステムなどを用いた。
Gas chromatography analysis:
For measurement, a GC-2010 gas chromatograph manufactured by Shimadzu Corporation was used. As a column, capillary columns DB-1 (length 60 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Agilent Technologies Inc. were used. Helium (1 mL / min) was used as a carrier gas. The temperature of the sample vaporization chamber was set to 300 ° C., and the temperature of the detector (FID) was set to 300 ° C. The sample was dissolved in acetone to prepare a 1% by weight solution, and 1 μl of the resulting solution was injected into the sample vaporization chamber. As a recorder, GCSolution system made by Shimadzu Corporation etc. was used.
 ガスクロマトグラフ質量分析:
 測定には、島津製作所製のQP-2010Ultra型ガスクロマトグラフ質量分析計を用いた。カラムは、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ60m、内径0.25mm、膜厚0.25μm)を用いた。キャリアーガスとしてはヘリウム(1ml/分)を用いた。試料気化室の温度を300℃、イオン源の温度を200℃、イオン化電圧を70eV、エミッション電流を150uAに設定した。試料はアセトンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。記録計には島津製作所製のGCMSsolutionシステムを用いた。
Gas chromatograph mass spectrometry:
For measurement, a QP-2010 Ultra type gas chromatograph mass spectrometer manufactured by Shimadzu Corporation was used. As a column, capillary columns DB-1 (length 60 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Agilent Technologies Inc. were used. Helium (1 ml / min) was used as a carrier gas. The temperature of the sample vaporization chamber was set to 300 ° C., the temperature of the ion source to 200 ° C., the ionization voltage to 70 eV, and the emission current to 150 uA. The sample was dissolved in acetone to prepare a 1% by weight solution, and 1 μl of the resulting solution was injected into the sample vaporization chamber. A GCMSsolution system manufactured by Shimadzu Corporation was used as a recorder.
 HPLC分析:
 測定には、島津製作所製のProminence(LC-20AD;SPD-20A)を用いた。カラムはワイエムシー製のYMC-Pack ODS-A(長さ150mm、内径4.6mm、粒子径5μm)を用いた。溶出液は、アセトニトリルと水とを適宜混合して用いた。検出器としてはUV検出器、RI検出器、CORONA検出器などを適宜用いた。UV検出器を用いた場合、検出波長は254nmとした。試料はアセトニトリルに溶解して、0.1重量%の溶液となるように調製し、この溶液1μLを試料室に導入した。記録計としては、島津製作所製のC-R7Aplusを用いた。
HPLC analysis:
For measurement, Prominence (LC-20AD; SPD-20A) manufactured by Shimadzu Corporation was used. As a column, YMC YMC-Pack ODS-A (length 150 mm, inner diameter 4.6 mm, particle diameter 5 μm) was used. As the eluate, acetonitrile and water were appropriately mixed and used. As a detector, a UV detector, an RI detector, a CORONA detector, etc. were used suitably. When a UV detector was used, the detection wavelength was 254 nm. The sample was dissolved in acetonitrile to prepare a 0.1% by weight solution, and 1 μL of this solution was introduced into the sample chamber. As a recorder, C-R7Aplus manufactured by Shimadzu Corporation was used.
 紫外可視分光分析:
 測定には、島津製作所製のPharmaSpec UV-1700用いた。検出波長は190nmから700nmとした。試料は、アセトニトリルに溶解して、0.01mmol/Lの溶液となるように調製し、石英セル(光路長1cm)に入れて測定した。
UV-visible spectroscopy:
For measurement, PharmaSpec UV-1700 manufactured by Shimadzu Corporation was used. The detection wavelength was from 190 nm to 700 nm. The sample was dissolved in acetonitrile to prepare a 0.01 mmol / L solution, and placed in a quartz cell (optical path length: 1 cm) for measurement.
 測定試料:
 相構造および転移温度(透明点、融点、重合開始温度など)を測定するときには、化合物そのものを試料として用いた。ネマチック相の上限温度、粘度、光学異方性、誘電率異方性などの物性を測定するときには、化合物と母液晶との混合物を試料として用いた。
Measurement sample:
When measuring the phase structure and transition temperature (clearing point, melting point, polymerization initiation temperature, etc.), the compound itself was used as a sample. When physical properties such as the upper limit temperature of the nematic phase, viscosity, optical anisotropy, dielectric anisotropy and the like were measured, a mixture of the compound and the base liquid crystal was used as a sample.
 化合物を母液晶と混合した試料を用いた場合は、次のように測定した。化合物15重量%と母液晶85重量%とを混合して試料を調製した。この試料の測定値から、次の等式にしたがって外挿値を算出し、この値を記載した。〈外挿値〉=(100×〈試料の測定値〉-〈母液晶の重量%〉×〈母液晶の測定値〉)/〈化合物の重量%〉 In the case of using a sample in which the compound was mixed with mother liquid crystals, measurement was performed as follows. A sample was prepared by mixing 15% by weight of the compound and 85% by weight of mother liquid crystals. From the measured value of this sample, the extrapolated value was calculated according to the following equation, and this value was described. <Extrapolated value> = (100 × <measured value of sample> − <weight% of mother liquid crystal> × <measured value of mother liquid crystal>) / <weight% of compound>
 この割合で結晶(または、スメクチック相)が25℃で析出する場合には、化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、結晶(または、スメクチック相)が25℃で析出しなくなった割合で試料の物性を測定した。なお、特に断りのない限り、化合物と母液晶との割合は、15重量%:85重量%である。 When crystals (or smectic phase) precipitate at 25 ° C. in this ratio, the ratio of the compound to the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% It changed in order of%, and the physical property of the sample was measured in the ratio in which a crystal (or smectic phase) stopped precipitating at 25 degreeC. The ratio of the compound to the mother liquid crystals is 15% by weight: 85% by weight unless otherwise specified.
 化合物の誘電率異方性がゼロより正(0<)であるときは、下記の母液晶(A)を用いた。各成分の割合を、液晶組成物の全重量に対する重量%で表した。
Figure JPOXMLDOC01-appb-C000052
When the dielectric anisotropy of the compound was positive from zero (0 <), the following mother liquid crystal (A) was used. The proportions of the respective components were expressed as% by weight based on the total weight of the liquid crystal composition.
Figure JPOXMLDOC01-appb-C000052
 化合物の誘電率異方性がゼロより負(<0)であるときは、下記の母液晶(B)を用いた。各成分の割合を、液晶組成物の全重量に対する重量%で表した。
Figure JPOXMLDOC01-appb-C000053
When the dielectric anisotropy of the compound was negative (<0) from zero, the following mother liquid crystal (B) was used. The proportions of the respective components were expressed as% by weight based on the total weight of the liquid crystal composition.
Figure JPOXMLDOC01-appb-C000053
 測定方法:
 物性の測定は下記の方法で行った。これらの多くは、社団法人電子情報技術産業協会(JEITA;Japan Electronics and Information Technology Industries Association)で審議制定されるJEITA規格(JEITA・ED-2521B)に記載されている。これを修飾した方法も用いた。測定に用いたTN素子には、薄膜トランジスター(TFT)を取り付けなかった。
Measuring method:
The physical properties were measured by the following method. Many of these are described in the JEITA standard (JEITA ED-2521B), which is deliberately established by the Japan Electronics and Information Technology Industries Association (JEITA). A modified method of this was also used. A thin film transistor (TFT) was not attached to the TN device used for the measurement.
(1)相構造:
 偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に試料を置いた。この試料を、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、相の種類を特定した。
(1) Phase structure:
The sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarization microscope (Mettler FP-52 hot stage). While heating this sample at a rate of 3 ° C./min, the phase state and its change were observed with a polarization microscope to identify the type of phase.
(2)転移温度(℃):
 測定には、パーキンエルマー社製の走査熱量計、Diamond DSCシステムまたはエスアイアイ・ナノテクノロジー社製の高感度示差走査熱量計、X-DSC7000を用いた。試料は、3℃/分の速度で昇降温し、試料の相変化に伴う吸熱ピークまたは発熱ピークの開始点を外挿により求め、転移温度を決定した。化合物の融点、重合開始温度もこの装置を使って測定した。化合物が固体からスメクチック相、ネマチック相などの液晶相に転移する温度を「液晶相の下限温度」と略すことがある。化合物が液晶相から液体に転移する温度を「透明点」と略すことがある。
(2) Transition temperature (° C.):
For measurement, a scanning calorimeter manufactured by Perkin Elmer, a Diamond DSC system, or a high-sensitive differential scanning calorimeter manufactured by SII Nano Technology, X-DSC7000 was used. The temperature of the sample was raised and lowered at a rate of 3 ° C./min, and the transition point was determined by extrapolating the start point of the endothermic peak or exothermic peak associated with the phase change of the sample. The melting point of the compound and the polymerization initiation temperature were also measured using this apparatus. The temperature at which a compound transitions from a solid to a liquid crystal phase such as a smectic phase or a nematic phase may be abbreviated as "the lower limit temperature of the liquid crystal phase". The temperature at which a compound transitions from liquid crystal phase to liquid may be abbreviated as the "clearing point".
 結晶はCと表した。結晶を二種類に区別できる場合は、それぞれをCまたはCと表した。スメクチック相はS、ネマチック相はNと表した。スメクチックA相、スメクチックB相、スメクチックC相、およびスメクチックF相のような相の区別がつく場合は、それぞれS、S、S、およびSと表した。液体(アイソトロピック)はIと表した。転移温度は、例えば、「C 50.0 N 100.0 I」のように表記した。これは、結晶からネマチック相への転移温度が50.0℃であり、ネマチック相から液体への転移温度が100.0℃であることを示す。 The crystal is designated C. When the crystals can be distinguished into two types, each is represented as C 1 or C 2 . The smectic phase is represented by S and the nematic phase is represented by N. When a phase such as smectic A phase, smectic B phase, smectic C phase, and smectic F phase can be distinguished, they are represented as S A , S B , S C and S F respectively. The liquid (isotropic) was designated as I. The transition temperature is expressed as, for example, "C 50.0 N 100.0 I". This indicates that the transition temperature from crystal to nematic phase is 50.0 ° C., and the transition temperature from nematic phase to liquid is 100.0 ° C.
(3)化合物の相溶性:
 化合物の割合が、10重量%、3重量%、または1重量%となるように母液晶と化合物とを混合した試料を調製した。試料をガラス瓶に入れ、-10℃の冷凍庫で一定期間保管した。試料のネマチック相が維持されたか、または結晶(またはスメクチック相)が析出したかを観察した。ネマチック相が維持される条件を相溶性の尺度として用いた。必要に応じて化合物の割合や冷凍庫の温度を変更することもある。
(3) Compatibility of compounds:
A sample was prepared by mixing the base liquid crystal and the compound such that the proportion of the compound was 10% by weight, 3% by weight, or 1% by weight. The sample was placed in a glass bottle and stored in a −10 ° C. freezer for a fixed period of time. It was observed whether the nematic phase of the sample was maintained or crystals (or smectic phase) were precipitated. The conditions under which the nematic phase is maintained are used as a measure of compatibility. The ratio of compounds and the temperature of the freezer may be changed as needed.
(4)ネマチック相の上限温度(TNIまたはNI;℃):
 偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。試料が化合物(1)と母液晶との混合物であるときは、TNIの記号で示した。試料が化合物(1)と、化合物(2)から(13)および化合物(21)から(24)から選択された化合物との混合物であるときは、NIの記号で示した。ネマチック相の上限温度を「上限温度」と略すことがある。
(4) Upper limit temperature of nematic phase (T NI or NI; ° C.):
The sample was placed on the hot plate of a melting point apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when part of the sample changed from the nematic phase to the isotropic liquid. When the sample is a mixture of compound (1) and mother liquid crystals, it is indicated by the symbol TNI . When the sample is a mixture of compound (1) and compounds selected from compounds (2) to (13) and compounds (21) to (24), it is indicated by the symbol NI. The upper limit temperature of the nematic phase may be abbreviated as "upper limit temperature".
(5)ネマチック相の下限温度(T;℃):
 ネマチック相を有する試料をガラス瓶に入れ、0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、Tを<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。
(5) Lower limit temperature of nematic phase (T c ; ° C.):
The sample having the nematic phase was placed in a glass bottle and stored in a freezer at 0 ° C, -10 ° C, -20 ° C, -30 ° C, and -40 ° C for 10 days, and then the liquid crystal phase was observed. For example, the sample remained in the -20 ° C. in a nematic phase, when changed to -30 ° C. At crystals or a smectic phase was described as <-20 ° C. The T C. The lower limit temperature of the nematic phase may be abbreviated as "lower limit temperature".
(6)粘度(バルク粘度;η;20℃で測定;mPa・s):
 測定には、東京計器株式会社製のE型回転粘度計を用いた。
(6) Viscosity (bulk viscosity; ;; measured at 20 ° C .; mPa · s):
For measurement, an E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used.
(7)光学異方性(屈折率異方性;25℃で測定;Δn):
 測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率(n∥)は、偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は、偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性(Δn)の値は、Δn=n∥-n⊥、の等式から計算した。
(7) Optical anisotropy (refractive index anisotropy; measured at 25 ° C .; Δn):
The measurement was performed using an Abbe refractometer with a polarizing plate attached to the eyepiece, using light at a wavelength of 589 nm. After rubbing the surface of the main prism in one direction, a sample was dropped on the main prism. The refractive index (n∥) was measured when the direction of polarization was parallel to the direction of rubbing. The refractive index (n⊥) was measured when the direction of polarization was perpendicular to the direction of rubbing. The value of optical anisotropy (Δn) was calculated from the equation Δn = nn−n⊥.
(8)比抵抗(ρ;25℃で測定;Ωcm):
 電極を備えた容器に試料1.0mLを注入した。この容器に直流電圧(10V)を印加し、10秒後の直流電流を測定した。比抵抗は次の等式から算出した。(比抵抗)={(電圧)×(容器の電気容量)}/{(直流電流)×(真空の誘電率)}。
(8) Specific resistance (ρ; measured at 25 ° C .; Ω cm):
A sample of 1.0 mL was injected into a container equipped with an electrode. A direct current voltage (10 V) was applied to the container, and a direct current after 10 seconds was measured. The specific resistance was calculated from the following equation. (Specific resistance) = {(voltage) × (electric capacity of container)} / {(direct current) × (dielectric constant of vacuum)}.
(9)電圧保持率(VHR-1;25℃で測定;%):
 測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmであった。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。この素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率で表した。
(9) Voltage holding ratio (VHR-1; measured at 25 ° C .;%):
The TN device used for the measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 μm. The element was sealed with an adhesive that cures with ultraviolet light after the sample was placed. A pulse voltage (60 microseconds at 5 V) was applied to this element to charge it. The decaying voltage was measured with a high-speed voltmeter for 16.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined. The area B is the area when not attenuated. The voltage holding ratio was expressed as a percentage of the area A to the area B.
(10)電圧保持率(VHR-2;80℃で測定;%):
 25℃の代わりに、80℃で測定した以外は、上記の方法で電圧保持率を測定した。得られた結果をVHR-2の記号で示した。
(10) Voltage holding ratio (VHR-2; measured at 80 ° C .;%):
The voltage holding ratio was measured by the above method except that measurement was performed at 80 ° C. instead of 25 ° C. The obtained result is shown by the symbol of VHR-2.
(11)フリッカ率(25℃で測定;%):
 測定には横河電機(株)製のマルチメディアディスプレイテスタ3298Fを用いた。光源はLEDであった。2枚のガラス基板の間隔(セルギャップ)が3.5μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のFFS素子に試料を入れた。この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に電圧を印加し、素子を透過した光量が最大になる電圧を測定した。この電圧を素子に印加しながらセンサ部を素子に近づけ、表示されたフリッカ率を読み取った。
(11) Flicker rate (measured at 25 ° C .;%):
A multimedia display tester 3298F manufactured by Yokogawa Electric Corporation was used for the measurement. The light source was an LED. The sample was placed in a normally black mode FFS element in which the distance between two glass substrates (cell gap) was 3.5 μm and the rubbing direction was antiparallel. The device was sealed using an adhesive that cures with ultraviolet light. A voltage was applied to this device, and the voltage at which the amount of light transmitted through the device became maximum was measured. While applying this voltage to the element, the sensor unit was brought close to the element, and the displayed flicker rate was read.
 誘電率異方性が正の試料と負の試料とでは、物性の測定法が異なることがある。誘電率異方性が正であるときの測定法は、測定(12a)から測定(16a)に記載した。誘電率異方性が負の場合は、測定(12b)から測定(16b)に記載した。 The measurement method of physical properties may be different between a sample with positive dielectric anisotropy and a sample with negative dielectric anisotropy. The measurement method when the dielectric anisotropy is positive was described in Measurement (12a) to Measurement (16a). When the dielectric anisotropy is negative, it was described in the measurement (12b) to the measurement (16b).
(12a)粘度(回転粘度;γ1;25℃で測定;mPa・s;誘電率異方性が正の試料):
 測定は、M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。ツイスト角が0度であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。この素子に16Vから19.5Vまで0.5V毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件とで印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)とを測定した。これらの測定値とM.Imaiらの論文、及び40頁の等式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度を測定した素子を用い、以下に記載した方法で求めた。
(12a) Viscosity (rotational viscosity; γ1; measured at 25 ° C .; mPa · s; sample with positive dielectric anisotropy):
The measurement was according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). The sample was placed in a TN device having a twist angle of 0 degree and a distance between two glass substrates (cell gap) of 5 μm. The device was applied stepwise in steps of 0.5 V from 16 V to 19.5 V. After 0.2 seconds of no application, application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured. These measurements and M. The rotational viscosity values were obtained from the article by Imai et al. And equation (8) on page 40. The value of dielectric anisotropy required for this calculation was determined by the method described below using the device for which this rotational viscosity was measured.
(12b)粘度(回転粘度;γ1;25℃で測定;mPa・s;誘電率異方性が負の試料):
 測定は、M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料を入れた。この素子に39Vから50Vまで1V毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件とで印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)とを測定した。これらの測定値とM.Imaiらの論文、及び40頁の等式(8)とから回転粘度の値を得た。この計算に必要な誘電率異方性は、下記の誘電率異方性の項で測定した。
(12b) Viscosity (rotational viscosity; γ1; measured at 25 ° C .; mPa · s; sample having negative dielectric anisotropy):
The measurement was according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 20 μm. A voltage of 39 V to 50 V was applied stepwise to the device every 1 V. After 0.2 seconds of no application, application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured. These measurements and M. The rotational viscosity values were obtained from the article by Imai et al. And equation (8) on page 40. The dielectric anisotropy required for this calculation was measured in the section of dielectric anisotropy described below.
(13a)誘電率異方性(Δε;25℃で測定;誘電率異方性が正の試料):
 誘電率異方性の値は、Δε=ε∥-ε⊥、の等式から計算した。誘電率(ε∥およびε⊥)は次のように測定した。
(1)誘電率(ε∥)の測定:
 よく洗浄したガラス基板にポリイミド溶液を塗布した。このガラス基板を焼成した後、得られた配向膜にラビング処理をした。2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(10V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。
(2)誘電率(ε⊥)の測定:
 よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板の間隔(セルギャップ)が4μmであるVA素子に試料を入れ、この素子を紫外線で硬化する接着剤で密閉した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。
(13a) dielectric anisotropy (Δε; measured at 25 ° C .; sample with positive dielectric anisotropy):
The value of dielectric anisotropy was calculated from the equation of Δε = ε∥−ε⊥. The dielectric constants (ε∥ and ε⊥) were measured as follows.
(1) Measurement of dielectric constant (ε∥):
The polyimide solution was applied to the well-cleaned glass substrate. After firing the glass substrate, the obtained alignment film was rubbed. The sample was placed in a TN device in which the distance between two glass substrates (cell gap) was 9 μm and the twist angle was 80 degrees. Sine waves (10 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant (ε∥) in the major axis direction of liquid crystal molecules was measured.
(2) Measurement of dielectric constant (ε⊥):
A solution of octadecyltriethoxysilane (0.16 mL) in ethanol (20 mL) was applied to the well-cleaned glass substrate. The glass substrate was rotated by a spinner and then heated at 150 ° C. for 1 hour. A sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 4 μm, and this device was sealed with an adhesive cured with ultraviolet light. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant (⊥) in the minor axis direction of liquid crystal molecules was measured.
(13b)誘電率異方性(Δε;25℃で測定;誘電率異方性が負の試料):
 誘電率異方性の値は、Δε=ε∥-ε⊥、の等式から計算した。誘電率(ε∥およびε⊥)は次のように測定した。
(1)誘電率(ε∥)の測定:
 よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板の間隔(セルギャップ)が4μmであるVA素子に試料を入れ、この素子を紫外線で硬化する接着剤で密閉した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。
(2)誘電率(ε⊥)の測定:
 よく洗浄したガラス基板にポリイミド溶液を塗布した。このガラス基板を焼成した後、得られた配向膜にラビング処理をした。2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。
(13b) dielectric anisotropy (Δε; measured at 25 ° C .; sample with negative dielectric anisotropy):
The value of dielectric anisotropy was calculated from the equation of Δε = ε∥−ε⊥. The dielectric constants (ε∥ and ε⊥) were measured as follows.
(1) Measurement of dielectric constant (ε∥):
A solution of octadecyltriethoxysilane (0.16 mL) in ethanol (20 mL) was applied to the well-cleaned glass substrate. The glass substrate was rotated by a spinner and then heated at 150 ° C. for 1 hour. A sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 4 μm, and this device was sealed with an adhesive cured with ultraviolet light. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant (ε∥) in the major axis direction of liquid crystal molecules was measured.
(2) Measurement of dielectric constant (ε⊥):
The polyimide solution was applied to the well-cleaned glass substrate. After firing the glass substrate, the obtained alignment film was rubbed. The sample was placed in a TN device in which the distance between two glass substrates (cell gap) was 9 μm and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant (⊥) in the minor axis direction of liquid crystal molecules was measured.
(14a)弾性定数(K;25℃で測定;pN;誘電率異方性が正の試料):
 測定には横河・ヒューレットパッカード株式会社製のHP4284A型LCRメータを用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである水平配向素子に試料を入れた。この素子に0Vから20V電荷を印加し、静電容量(C)および印加電圧(V)を測定した。これらの測定値を「液晶デバイスハンドブック」(日刊工業新聞社)、75頁にある等式(2.98)、等式(2.101)を用いてフィッティングし、等式(2.99)からK11およびK33の値を得た。次に、171頁にある等式(3.18)に、先ほど求めたK11およびK33の値を用いてK22を算出した。弾性定数Kは、このようにして求めたK11、K22、およびK33の平均値で表した。
(14a) elastic constant (K; measured at 25 ° C .; pN; sample with positive dielectric anisotropy):
For measurement, an HP4284A LCR meter manufactured by Yokogawa-Hewlett-Packard Co. was used. The sample was placed in a horizontal alignment device in which the distance between two glass substrates (cell gap) was 20 μm. A charge of 0 V to 20 V was applied to the device, and the capacitance (C) and the applied voltage (V) were measured. These measured values are fitted using the equation (2.98) and equation (2.101) in “Liquid Crystal Device Handbook” (Nippon Kogyo Shimbun Co., Ltd.), page 75, and from equation (2.99) The values of K 11 and K 33 were obtained. Then, the equation (3.18) on page 171, to calculate the K 22 using the values of K 11 and K 33 was determined previously. The elastic constant K was represented by the average value of K 11 , K 22 and K 33 determined in this manner.
(14b)弾性定数(K11およびK33;25℃で測定;pN;誘電率異方性が負の試料):
 測定には株式会社東陽テクニカ製のEC-1型弾性定数測定器を用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである垂直配向素子に試料を入れた。この素子に20Vから0V電荷を印加し、静電容量(C)および印加電圧(V)を測定した。これらの値を、「液晶デバイスハンドブック」(日刊工業新聞社)、75頁にある等式(2.98)、等式(2.101)を用いてフィッティングし、等式(2.100)から弾性定数の値を得た。
(14b) elastic constant (K 11 and K 33 ; measured at 25 ° C .; pN; negative dielectric anisotropy sample):
For measurement, an EC-1 type elastic constant measuring device manufactured by Toyo Technology Co., Ltd. was used. The sample was placed in a vertical alignment device in which the distance between two glass substrates (cell gap) was 20 μm. A charge of 20 V to 0 V was applied to the device, and the capacitance (C) and the applied voltage (V) were measured. These values are fitted using the equation (2.98) and equation (2.101) in “Liquid Crystal Device Handbook” (Nippon Kogyo Shimbun Co., Ltd.), page 75, and from equation (2.100) The value of the elastic constant was obtained.
(15a)しきい値電圧(Vth;25℃で測定;V;誘電率異方性が正の試料):
 測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。2枚のガラス基板の間隔(セルギャップ)が0.45/Δn(μm)であり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に印加する電圧(32Hz、矩形波)は0Vから10Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が90%になったときの電圧で表した。
(15a) threshold voltage (Vth; measured at 25 ° C .; V; sample with positive dielectric anisotropy):
For measurement, an LCD 5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used. The light source was a halogen lamp. The sample was placed in a normally white mode TN device in which the distance between two glass substrates (cell gap) is 0.45 / Δn (μm) and the twist angle is 80 degrees. The voltage (32 Hz, rectangular wave) applied to this element was gradually increased by 0.02 V from 0 V to 10 V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. A voltage-transmittance curve was created in which the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum. The threshold voltage was represented by the voltage at 90% transmittance.
(15b)しきい値電圧(Vth;25℃で測定;V;誘電率異方性が負の試料):
 測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。2枚のガラス基板の間隔(セルギャップ)が4μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のVA素子に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に印加する電圧(60Hz、矩形波)は、0Vから20Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が10%になったときの電圧で表した。
(15b) Threshold voltage (Vth; measured at 25 ° C .; V; sample having negative dielectric anisotropy):
For measurement, an LCD 5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used. The light source was a halogen lamp. A sample is placed in a normally black mode VA device in which the distance between two glass substrates (cell gap) is 4 μm and the rubbing direction is antiparallel, and an adhesive for curing this device with ultraviolet light is used. Used and sealed. The voltage (60 Hz, rectangular wave) applied to this element was gradually increased by 0.02 V from 0 V to 20 V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. A voltage-transmittance curve was created in which the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum. The threshold voltage was represented by the voltage at 10% transmittance.
(16a)応答時間(τ;25℃で測定;ms;誘電率異方性が正の試料):
 測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。ローパス・フィルター(Low-pass filter)は5kHzに設定した。2枚のガラス基板の間隔(セルギャップ)が5.0μmであり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に矩形波(60Hz、5V、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。立ち上がり時間(τr:rise time;ミリ秒)は、透過率が90%から10%に変化するのに要した時間である。立ち下がり時間(τf:fall time;ミリ秒)は透過率10%から90%に変化するのに要した時間である。応答時間は、このようにして求めた立ち上がり時間と立ち下がり時間との和で表した。
(16a) response time (τ; measured at 25 ° C .; ms; sample with positive dielectric anisotropy):
An LCD 5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement. The light source was a halogen lamp. The low pass filter (Low-pass filter) was set to 5 kHz. The sample was placed in a normally white mode TN device in which the distance between two glass substrates (cell gap) was 5.0 μm and the twist angle was 80 degrees. A rectangular wave (60 Hz, 5 V, 0.5 seconds) was applied to this element. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. It was considered that the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum. The rise time (τr: millisecond) is the time taken for the transmittance to change from 90% to 10%. The fall time (τf: milliseconds) is the time taken to change from 10% transmission to 90% transmission. The response time is represented by the sum of the rise time and the fall time obtained in this manner.
(16b)応答時間(τ;25℃で測定;ms;誘電率異方性が負の試料):
 測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。ローパス・フィルター(Low-pass filter)は5kHzに設定した。2枚のガラス基板の間隔(セルギャップ)が3.2μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のPVA素子に試料を入れた。この素子を紫外線で硬化する接着剤を用いて密閉した。この素子にしきい値電圧を若干超える程度の電圧を1分間印加し、次に5.6Vの電圧を印加しながら23.5mW/cmの紫外線を8分間照射した。この素子に矩形波(60Hz、10V、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。応答時間は透過率90%から10%に変化するのに要した時間(立ち下がり時間;fall time;ミリ秒)で表した。
(16b) response time (τ; measured at 25 ° C .; ms; sample with negative dielectric anisotropy):
For measurement, an LCD 5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used. The light source was a halogen lamp. The low pass filter (Low-pass filter) was set to 5 kHz. The sample was placed in a normally black mode PVA element in which the distance between two glass substrates (cell gap) was 3.2 μm and the rubbing direction was antiparallel. The device was sealed using an adhesive that cures with ultraviolet light. A voltage slightly higher than the threshold voltage was applied to the device for 1 minute, and then ultraviolet light of 23.5 mW / cm 2 was applied for 8 minutes while applying a voltage of 5.6 V. A rectangular wave (60 Hz, 10 V, 0.5 seconds) was applied to this element. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. It was considered that the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum. The response time is represented by the time (fall time; milliseconds) taken to change from 90% transmittance to 10% transmittance.
[合成例1]
化合物(No.17)の合成
Figure JPOXMLDOC01-appb-C000054
Synthesis Example 1
Synthesis of Compound (No. 17)
Figure JPOXMLDOC01-appb-C000054
第1工程:化合物(T-2)の合成
 窒素雰囲気下、化合物(T-1)(40.6g)、イミダゾール(31.8g)、およびジクロロメタン(300mL)を反応器に入れ、氷浴上で冷却した。クロロトリエチルシラン(35.2g)を少量ずつ加え、室温にもどし1時間攪拌した。反応終了後、反応混合物を水に注ぎ、水層をジクロロメタンで抽出した。一緒にした有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製することにより、化合物(T-2)(53.6g;79%)を得た。
First Step: Synthesis of Compound (T-2) In a nitrogen atmosphere, Compound (T-1) (40.6 g), imidazole (31.8 g), and dichloromethane (300 mL) were placed in a reactor, and then placed on an ice bath It cooled. Chlorotriethylsilane (35.2 g) was added little by little and the mixture was returned to room temperature and stirred for 1 hour. After completion of the reaction, the reaction mixture was poured into water and the aqueous layer was extracted with dichloromethane. The combined organic layer was washed with brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (heptane) to give compound (T-2) (53.6 g; 79%).
第2工程:化合物(T-4)の合成
 窒素雰囲気下、化合物(T-2)(53.6g)、化合物(T-3)(37.2g)、トルエン(200ml)、エタノール(200ml)、水(200ml)、PdCl(Amphos)(Pd-132,0.12g)、炭酸カリウム(48.5g)、およびテトラブチルアンモニウムブロミド(TBAB,14.2g)を反応器に入れ、72℃で12時間攪拌した。反応混合物を水に注ぎ、トルエンで抽出した、水、食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(容積比、酢酸エチル:ヘプタン=1:2)で精製することにより、化合物(T-4)(39.2g;83%)を得た。
Step 2: Synthesis of Compound (T-4) Compound (T-2) (53.6 g), Compound (T-3) (37.2 g), toluene (200 ml), ethanol (200 ml), under a nitrogen atmosphere Water (200 ml), PdCl 2 (Amphos) 2 (Pd-132, 0.12 g), potassium carbonate (48.5 g), and tetrabutylammonium bromide (TBAB, 14.2 g) are charged to the reactor and Stir for 12 hours. The reaction mixture was poured into water, extracted with toluene, washed with water and brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (volume ratio, ethyl acetate: heptane = 1: 2) to give compound (T-4) (39.2 g; 83%).
第3工程:化合物(T-5)の合成
 窒素雰囲気下、化合物(T-4)(39.2g)、ピリジン(17.3g、17.7ml)、およびテトラヒドロフラン(THF,200mL)を反応器に入れ0℃に冷却した。トリフルオロメタンスルホン酸無水物(49.5g、29.6ml)を滴下し、1時間攪拌した。反応終了後、反応混合物を飽和重曹水に注ぎ、水層をトルエンで抽出した。合わせた有機層を水、食塩水にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(容積比、酢酸エチル:ヘプタン=1:7)で精製することにより、化合物(T-5)(41.2g;70%)を得た。
Step 3: Synthesis of Compound (T-5) Under a nitrogen atmosphere, compound (T-4) (39.2 g), pyridine (17.3 g, 17.7 ml), and tetrahydrofuran (THF, 200 mL) were placed in a reactor The mixture was cooled to 0 ° C. Trifluoromethanesulfonic anhydride (49.5 g, 29.6 ml) was added dropwise and stirred for 1 hour. After completion of the reaction, the reaction mixture was poured into saturated aqueous sodium bicarbonate and the aqueous layer was extracted with toluene. The combined organic layer was washed with water and brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (volume ratio, ethyl acetate: heptane = 1: 7) to give compound (T-5) (41.2 g; 70%).
第4工程:化合物(T-6)の合成
 窒素雰囲気下、化合物(T-5)(36.2g)、3-メルカプトプロピオン酸エチル(12.7g)、トルエン(200ml)、ビス(ジベンジリデンアセトン)パラジウム(0)(4.2g)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(4.9g)、および炭酸カリウム(31.2g)を反応器に入れ、90℃で12時間攪拌した。反応混合物を水に注ぎ、t-ブチルメチルエーテルで抽出した、水、食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(容積比、酢酸エチル:ヘプタン=1:4)で精製することにより、化合物(T-6)(15.5g;36%)を得た。
Step 4: Synthesis of Compound (T-6) Compound (T-5) (36.2 g), Ethyl 3-Mercaptopropionate (12.7 g), Toluene (200 ml), Bis (dibenzylideneacetone) under a nitrogen atmosphere ) Palladium (0) (4.2 g), bis [2- (diphenylphosphino) phenyl] ether (4.9 g), and potassium carbonate (31.2 g) were charged into the reactor and stirred at 90 ° C. for 12 hours . The reaction mixture was poured into water, extracted with t-butyl methyl ether, washed with water and brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (volume ratio, ethyl acetate: heptane = 1: 4) to give compound (T-6) (15.5 g; 36%).
第5工程:化合物(T-7)の合成
 窒素雰囲気下、化合物(T-6)(19.9g)、カリウムt-ブトキシド(7.0g)、THF(150ml)を反応器に入れ、70℃で3時間攪拌した。反応終了後、反応混合物を室温にもどした後に水に注ぎ、トルエンで抽出した、食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(容積比、酢酸エチル:ヘプタン=1:3)で精製した。さらに、ソルミックス(登録商標)A-11とヘプタンの混合溶媒(容積比、1:1)からの再結晶により精製し、化合物(T-7)(9.4g)を得た。
Step 5: Synthesis of Compound (T-7) In a nitrogen atmosphere, compound (T-6) (19.9 g), potassium t-butoxide (7.0 g), THF (150 ml) were put in a reactor, and 70 ° C. The mixture was stirred for 3 hours. After completion of the reaction, the reaction mixture is cooled to room temperature, poured into water, extracted with toluene, washed with brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (volume ratio, ethyl acetate: heptane = 1: 3). Furthermore, purification was performed by recrystallization from a mixed solvent (volume ratio, 1: 1) of Solmix (registered trademark) A-11 and heptane to obtain a compound (T-7) (9.4 g).
第6工程:化合物(T-8)の合成
 窒素雰囲気下、化合物(T-7)(9.6g)およびTHF(200mL)を反応器に入れ、-70℃に冷却した。n-ブチルリチウム(1.6M;n-ヘキサン溶液;29.7ml)を加え、2時間攪拌した。ホウ酸トリメチル(4.8g)を加え、室温に戻し12時間攪拌した。室温で酢酸(4.1ml)を加え、30分攪拌した後、過酸化水素水(35wt%;6.2ml)を加え1時間攪拌した。反応終了後、反応混合物を水に注ぎ、水層をトルエンで抽出した。合わせた有機層を水、亜硫酸水素ナトリウム水溶液、および食塩水にて洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(容積比、酢酸エチル:ヘプタン=1:2)で精製することにより、化合物(T-8)(10.0g;95%)を得た。
Step 6: Synthesis of Compound (T-8) In a nitrogen atmosphere, compound (T-7) (9.6 g) and THF (200 mL) were charged into a reactor and cooled to -70.degree. n-Butyllithium (1.6 M; n-hexane solution; 29.7 ml) was added and stirred for 2 hours. Trimethyl borate (4.8 g) was added, and the mixture was returned to room temperature and stirred for 12 hours. Acetic acid (4.1 ml) was added at room temperature and stirred for 30 minutes, then aqueous hydrogen peroxide (35 wt%; 6.2 ml) was added and stirred for 1 hour. After completion of the reaction, the reaction mixture was poured into water, and the aqueous layer was extracted with toluene. The combined organic layer was washed with water, aqueous sodium bisulfite solution and brine, then dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (volume ratio, ethyl acetate: heptane = 1: 2) to give compound (T-8) (10.0 g; 95%).
第7工程:化合物(No.17)の合成
 窒素雰囲気下、化合物(T-8)(5.0g)、シクロペンタノール(1.5g)、トリフェニルホスフィン(5.6g)、およびTHF(40mL)を反応器に入れ氷浴上で冷却した。アゾジカルボン酸ジエチル(DEAD,2.2M;トルエン溶液;9.7ml)を加え、室温で12時間攪拌した。反応終了後、反応混合物を水に注ぎ、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(容積比、トルエン:ヘプタン=2:1)で精製し、さらにヘプタンからの再結晶により精製して、化合物(No.17)(4.0g、65%)を得た。
Step 7: Synthesis of Compound (No. 17) Compound (T-8) (5.0 g), cyclopentanol (1.5 g), triphenylphosphine (5.6 g), and THF (40 mL) under a nitrogen atmosphere ) Was cooled in an ice bath. Diethyl azodicarboxylate (DEAD, 2.2 M; toluene solution; 9.7 ml) was added and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was poured into water, and the aqueous layer was extracted with toluene. The combined organic layer was washed with brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography (volume ratio, toluene: heptane = 2: 1) and further purified by recrystallization from heptane to give compound (No. 17) (4.0 g, 65%).
 H-NMR(CDCl;δppm):7.69-7.66(m,2H)、7.12-7.09(m,2H)、4.91-4.89(m,1H)、4.22(q,J=7.0Hz,2H)、1.99-1.83(m,6H)、1.69-1.61(m,2H)、1.49(t,J=7.0Hz,3H). 1 H-NMR (CDCl 3 ; δ ppm): 7.69-7.66 (m, 2H), 7.12 to 7.09 (m, 2H), 4.91 to 4.89 (m, 1H), 4.22 (q, J = 7.0 Hz, 2 H), 1.99-1.83 (m, 6 H), 1.69-1.61 (m, 2 H), 1.49 (t, J = 7) .0 Hz, 3 H).
 相転移温度:C1 53.4℃ C2 69.8℃ C3 76.7℃ I.上限温度(NI)=46.3℃;誘電率異方性(Δε)=-11.6;光学異方性(Δn)=0.200;粘度(η)=72.8mPa・s. Phase transition temperature: C1 53.4 ° C. C2 69.8 ° C. C3 76.7 ° C. I. Maximum temperature (NI) = 46.3 ° C .; dielectric anisotropy (Δε) = − 11.6; optical anisotropy (Δn) = 0.200; viscosity (η) = 72.8 mPa · s.
[合成例2]
化合物(No.26)の合成
Figure JPOXMLDOC01-appb-C000055
Synthesis Example 2
Synthesis of Compound (No. 26)
Figure JPOXMLDOC01-appb-C000055
 化合物(T-8)(5.0g)を原料として用い、合成例1の第7工程と同様の方法により化合物(No.26)(3.7g;57%)を合成した。 Using compound (T-8) (5.0 g) as a raw material, compound (No. 26) (3.7 g; 57%) was synthesized in the same manner as in the seventh step of Synthesis Example 1.
 H-NMR(CDCl;δppm):7.67-7.64(m,2H)、7.11-7.07(m,2H)、4.20(q,J=7.0Hz,2H)、4.00(d,J=7.0Hz,2H)、2.47-2.38(m,1H)、1.90-1.84(m,2H)、1.70-1.58(m,4H)、1.48(t,J=7.0Hz,3H)、1.45-1.35(m,2H). 1 H-NMR (CDCl 3 ; δ ppm): 7.67-7.64 (m, 2H), 7.11-7.07 (m, 2H), 4.20 (q, J = 7.0 Hz, 2H) ), 4.00 (d, J = 7.0 Hz, 2 H), 2.47-2.38 (m, 1 H), 1.90 to 1.84 (m, 2 H), 1.70 to 1.58 (M, 4 H), 1.48 (t, J = 7.0 Hz, 3 H), 1.45-1. 35 (m, 2 H).
 相転移温度:C 94.0℃ I.上限温度(NI)=62.3℃;誘電率異方性(Δε)=-10.1;光学異方性(Δn)=0.200;粘度(η)=71,7mPa・s. Phase transition temperature: C 94.0 ° C. I. Maximum temperature (NI) = 62.3 ° C .; dielectric anisotropy (Δε) = − 10.1; optical anisotropy (Δn) = 0.200; viscosity (() = 71, 7 mPa · s.
 合成例に記載された方法や、「2.化合物(1)の合成」の項を参考にしながら、公知の方法により以下に示す化合物を合成することが可能である。 The compounds shown below can be synthesized by known methods, referring to the method described in the synthesis examples and the section of “2. Synthesis of compound (1)”.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[比較例1]
物性の比較
 比較化合物として下記の化合物(S-1)を選んだ。この化合物は、特開2015-205879号公報に記載されており、本発明の実施形態に係る化合物に類似しているからである。
Figure JPOXMLDOC01-appb-C000066
Comparative Example 1
Comparison of physical properties The following compound (S-1) was selected as a comparison compound. This compound is described in JP-A-2015-205879 and is similar to the compound according to the embodiment of the present invention.
Figure JPOXMLDOC01-appb-C000066
 H-NMR(CDCl;δppm):7.70-7.68(m,2H)、7.13-7.10(m,2H)、4.22(q,J=7.0Hz,2H)、4.15(t,J=6.5Hz,2H)、1.87-1.81(m,2H)、1.58-1.47(m,5H)、1.00(t,J=7.3Hz,3H). 1 H-NMR (CDCl 3 ; δ ppm): 7.70-7.68 (m, 2 H), 7.13-7. 10 (m, 2 H), 4.22 (q, J = 7.0 Hz, 2 H) ), 4.15 (t, J = 6.5 Hz, 2 H), 1.87-1.81 (m, 2 H), 1.58-1.47 (m, 5 H), 1.00 (t, J) = 7.3 Hz, 3 H).
 相転移温度:C 80.5℃ I.上限温度(NI)=79.0℃;誘電率異方性(Δε)=-11.6;光学異方性(Δn)=0.200;粘度(η)=51.1mPa・s. Phase transition temperature: C 80.5 ° C. I. Maximum temperature (NI) = 79.0 ° C; dielectric anisotropy (Δε) = -11.6; optical anisotropy (Δn) = 0.200; viscosity (η) = 51.1 mPa · s.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 低温相溶性について、合成例1で得られた化合物(No.17)と、合成例2で得られた化合物(No.26)と、比較化合物(S-1)との比較を行なった。結果を表2に示す。母液晶(B)中に化合物(No.17)が10重量%になるよう加えた組成物(X-1)や化合物(No.26)を10重量%になるように加えた組成物(X-2)は、-10℃のフリーザー中で30日経過後もネマチック相を維持していたのに対し、比較化合物(S-1)は、10重量%になるように加えた組成物(X-3)で結晶の析出が観察され、3重量%になるよう加えた組成物(X-6)でも結晶の析出が観察された。これは、本願の化合物(No.17)および(No.26)が比較化合物(S-1)よりも低温において母液晶に対する溶解性が優れていることを示している。 The low temperature compatibility was compared between the compound (No. 17) obtained in Synthesis Example 1 and the compound (No. 26) obtained in Synthesis Example 2 and the comparison compound (S-1). The results are shown in Table 2. Composition (X-1) in which compound (No. 17) was added to 10 wt% to mother liquid crystals (B) or composition (X in which compound (No. 26) was added to 10 wt% -2) maintains the nematic phase even after 30 days in a freezer at -10 ° C, while the comparative compound (S-1) is added in a proportion of 10 wt% (X- Precipitation of crystals was observed in 3), and precipitation of crystals was also observed in the composition (X-6) added to 3% by weight. This indicates that the compounds (No. 17) and (No. 26) of the present application are superior in solubility to the base liquid crystal at a lower temperature than the comparative compound (S-1).
2.組成物の実施例
 実施例により本発明をさらに詳しく説明する。実施例は典型的な例であるので、本発明は実施例によって制限されない。例えば、本発明は、使用例の組成物に加えて、使用例1の組成物と使用例2の組成物との混合物を含む。本発明は、使用例の組成物の少なくとも2つを混合することによって調製した混合物をも含む。使用例における化合物は、下記の表3の定義に基づいて記号により表した。表3において、1,4-シクロヘキシレンに関する立体配置はトランスである。使用例において、記号の後にあるかっこ内の番号は、化合物が属する化学式を表す。(-)の記号は、化合物(1)から(13)および化合物(21)から(24)とは異なる液晶性化合物を意味する。液晶性化合物の割合(百分率)は、添加物を含まない液晶組成物の重量に基づいた重量百分率(重量%)である。最後に、組成物の物性値をまとめた。物性は、先に記載した方法にしたがって測定し、測定値を(外挿することなく)そのまま記載した。
2. Composition Examples The invention will be further described by way of examples. The present invention is not limited by the examples, as the examples are typical examples. For example, the present invention includes, in addition to the composition of Use Example, a mixture of the composition of Use Example 1 and the composition of Use Example 2. The invention also includes mixtures prepared by mixing at least two of the compositions of the Use Examples. The compounds in the use examples are represented by symbols based on the definition of Table 3 below. In Table 3, the configuration for 1,4-cyclohexylene is trans. In the example of use, the number in parentheses after the symbol represents the chemical formula to which the compound belongs. The symbol (−) means a liquid crystal compound different from the compounds (1) to (13) and the compounds (21) to (24). The proportion (percentage) of the liquid crystal compound is a weight percentage (% by weight) based on the weight of the liquid crystal composition containing no additive. Finally, the physical properties of the composition were summarized. Physical properties were measured according to the method described above, and the measured values were described as they were (without extrapolation).
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
[使用例1]
Cp-Odbt(4F,6F)-O2 (No.17)  4%
 
1-BB-3                 (2-8)    6%
1-BB-5                 (2-8)    7%
2-BTB-1                (2-10)   3%
3-HHB-1                (3-1)    8%
3-HHB-O1               (3-1)    5%
3-HHB-3                (3-1)   12%
3-HHB-F                (22-1)   4%
2-HHB(F)-F             (22-2)   7%
3-HHB(F)-F             (22-2)   7%
5-HHB(F)-F             (22-2)   7%
3-HHB(F,F)-F           (22-3)   5%
3-HHEB-F               (22-10)  4%
5-HHEB-F               (22-10)  4%
2-HB-C                 (24-1)   5%
3-HB-C                 (24-1)  12%
 NI=95.0℃;η=19.8mPa・s;Δn=0.111;Δε=4.3.
 
[Example 1]
Cp-Odbt (4F, 6F) -O2 (No. 17) 4%

1-BB-3 (2-8) 6%
1-BB-5 (2-8) 7%
2-BTB-1 (2-10) 3%
3-HHB-1 (3-1) 8%
3-HHB-O1 (3-1) 5%
3-HHB-3 (3-1) 12%
3-HHB-F (22-1) 4%
2-HHB (F) -F (22-2) 7%
3-HHB (F) -F (22-2) 7%
5-HHB (F) -F (22-2) 7%
3-HHB (F, F) -F (22-3) 5%
3-HHEB-F (22-10) 4%
5-HHEB-F (22-10) 4%
2-HB-C (24-1) 5%
3-HB-C (24-1) 12%
NI = 95.0 ° C .; = 1 = 19.8 mPa · s; Δn = 0.111; Δε = 4.3.
[使用例2]
Cp-1Odbt(4F,6F)-O2 (No.26) 3%
 
3-HH-4                 (2-1)   12%
7-HB-1                 (2-5)    3%
5-HB-O2                (2-5)    4%
5-HBB(F)B-2            (4-5)    5%
5-HBB(F)B-3            (4-5)    5%
3-HB-CL                (21-2)  12%
3-HHB(F,F)-F           (22-3)   3%
3-HBB(F,F)-F           (22-24) 29%
5-HBB(F,F)-F           (22-24) 24%
 NI=71.2℃;η=21.1mPa・s;Δn=0.117;Δε=5.2.
 
[Example 2]
Cp-1 Odbt (4F, 6F)-O2 (No. 26) 3%

3-HH-4 (2-1) 12%
7-HB-1 (2-5) 3%
5-HB-O2 (2-5) 4%
5-HBB (F) B-2 (4-5) 5%
5-HBB (F) B-3 (4-5) 5%
3-HB-CL (21-2) 12%
3-HHB (F, F) -F (22-3) 3%
3-HBB (F, F) -F (22-24) 29%
5-HBB (F, F) -F (22-24) 24%
NI = 71.2 ° C; = 2 = 21.1 mPa · s; Δn = 0.117; Δε = 5.2.
[使用例3]
Cp-Odbt(4F,6F)-O2 (No.17)  6%
Cp-1Odbt(4F,6F)-O2 (No.26) 6%
 
1V2-HH-1               (2-1)    3%
1V2-HH-3               (2-1)    4%
7-HB(F,F)-F            (21-4)   3%
2-HHB(F)-F             (22-2)   8%
3-HHB(F)-F             (22-2)   8%
5-HHB(F)-F             (22-2)   8%
2-HBB-F                (22-22)  4%
3-HBB-F                (22-22)  4%
5-HBB-F                (22-22)  3%
2-HBB(F)-F             (22-23)  8%
3-HBB(F)-F             (22-23)  7%
5-HBB(F)-F             (22-23) 14%
3-HBB(F,F)-F           (22-24)  5%
5-HBB(F,F)-F           (22-24)  9%
 NI=80.9℃;η=29.6mPa・s;Δn=0.122;Δε=3.4.
 
[Example 3]
Cp-Odbt (4F, 6F) -O2 (No. 17) 6%
Cp-1 Odbt (4F, 6F)-O2 (No. 26) 6%

1V2-HH-1 (2-1) 3%
1V2-HH-3 (2-1) 4%
7-HB (F, F) -F (21-4) 3%
2-HHB (F) -F (22-2) 8%
3-HHB (F) -F (22-2) 8%
5-HHB (F) -F (22-2) 8%
2-HBB-F (22-22) 4%
3-HBB-F (22-22) 4%
5-HBB-F (22-22) 3%
2-HBB (F) -F (22-23) 8%
3-HBB (F) -F (22-23) 7%
5-HBB (F) -F (22-23) 14%
3-HBB (F, F) -F (22-24) 5%
5-HBB (F, F) -F (22-24) 9%
NI = 80.9 ° C .; = 2 = 29.6 mPa · s; Δn = 0.122; Δε = 3.4.
[使用例4]
Cp-Odbt(4F,6F)-O4 (No.19)  6%
 
2-HH-3                 (2-1)    4%
3-HH-4                 (2-1)   11%
1O1-HBBH-5             (4-1)    3%
5-HB-CL                (21-2)  15%
3-HHB-F                (22-1)   4%
3-HHB-CL               (22-1)   3%
4-HHB-CL               (22-1)   4%
3-HHB(F)-F             (22-2)   9%
4-HHB(F)-F             (22-2)   8%
5-HHB(F)-F             (22-2)   9%
7-HHB(F)-F             (22-2)   8%
5-HBB(F)-F             (22-23)  3%
3-HHBB(F,F)-F          (23-6)   2%
4-HHBB(F,F)-F          (23-6)   3%
5-HHBB(F,F)-F          (23-6)   3%
3-HH2BB(F,F)-F         (23-15)  3%
4-HH2BB(F,F)-F         (23-15)  2%
 
[Example 4]
Cp-Odbt (4F, 6F) -O4 (No. 19) 6%

2-HH-3 (2-1) 4%
3-HH-4 (2-1) 11%
1O1-HBBH-5 (4-1) 3%
5-HB-CL (21-2) 15%
3-HHB-F (22-1) 4%
3-HHB-CL (22-1) 3%
4-HHB-CL (22-1) 4%
3-HHB (F) -F (22-2) 9%
4-HHB (F) -F (22-2) 8%
5-HHB (F) -F (22-2) 9%
7-HHB (F) -F (22-2) 8%
5-HBB (F) -F (22-23) 3%
3-HBBB (F, F) -F (23-6) 2%
4-HBBB (F, F) -F (23-6) 3%
5-HBBB (F, F) -F (23-6) 3%
3-HH2BB (F, F) -F (23-15) 3%
4-HH2BB (F, F) -F (23-15) 2%
[使用例5]
Cp-dbt(4F,6F)-O4 (No.3)    5%
 
V-HBB-2                (3-4)   10%
1O1-HBBH-4             (4-1)    4%
1O1-HBBH-5             (4-1)    3%
3-HHB(F,F)-F           (22-3)   8%
3-H2HB(F,F)-F          (22-15)  7%
4-H2HB(F,F)-F          (22-15)  8%
5-H2HB(F,F)-F          (22-15)  8%
3-HBB(F,F)-F           (22-24) 10%
5-HBB(F,F)-F           (22-24) 20%
3-H2BB(F,F)-F          (22-27)  9%
5-HHBB(F,F)-F          (23-6)   3%
3-HH2BB(F,F)-F         (23-15)  3%
5-HHEBB-F              (23-17)  2%
 
[Example 5]
Cp-dbt (4F, 6F) -O4 (No. 3) 5%

V-HBB-2 (3-4) 10%
1O1-HBBH-4 (4-1) 4%
1O1-HBBH-5 (4-1) 3%
3-HHB (F, F) -F (22-3) 8%
3-H2HB (F, F) -F (22-15) 7%
4-H2HB (F, F) -F (22-15) 8%
5-H2HB (F, F) -F (22-15) 8%
3-HBB (F, F)-F (22-24) 10%
5-HBB (F, F) -F (22-24) 20%
3-H2BB (F, F) -F (22-27) 9%
5-HBBB (F, F) -F (23-6) 3%
3-HH2BB (F, F) -F (23-15) 3%
5-HHEBB-F (23-17) 2%
[使用例6]
Cp-Odbt(4F,6F)H-3 (No.100) 4%
 
5-HBBH-3               (4-1)    3%
3-HB(F)BH-3            (4-2)    3%
5-HB-F                 (21-2)  12%
6-HB-F                 (21-2)   9%
7-HB-F                 (21-2)   7%
2-HHB-OCF3             (22-1)   7%
3-HHB-OCF3             (22-1)   7%
4-HHB-OCF3             (22-1)   7%
5-HHB-OCF3             (22-1)   5%
3-HHB(F,F)-OCF2H       (22-3)   4%
3-HHB(F,F)-OCF3        (22-3)   4%
3-HH2B-OCF3            (22-4)   3%
5-HH2B-OCF3            (22-4)   4%
3-HH2B(F)-F            (22-5)   3%
3-HBB(F)-F             (22-23)  8%
5-HBB(F)-F             (22-23) 10%
 
[Example 6]
Cp-Odbt (4F, 6F) H-3 (No. 100) 4%

5-HBBH-3 (4-1) 3%
3-HB (F) BH-3 (4-2) 3%
5-HB-F (21-2) 12%
6-HB-F (21-2) 9%
7-HB-F (21-2) 7%
2-HHB-OCF3 (22-1) 7%
3-HHB-OCF3 (22-1) 7%
4-HHB-OCF3 (22-1) 7%
5-HHB-OCF3 (22-1) 5%
3-HHB (F, F) -OCF2H (22-3) 4%
3-HHB (F, F) -OCF3 (22-3) 4%
3-HH2B-OCF3 (22-4) 3%
5-HH2B-OCF3 (22-4) 4%
3-HH2B (F) -F (22-5) 3%
3-HBB (F) -F (22-23) 8%
5-HBB (F) -F (22-23) 10%
[使用例7]
Cp-Odbt(4F,6F)B-3 (No.98)  4%
 
3-HH-4                 (2-1)    4%
2-HH-5                 (2-1)    5%
5-B(F)BB-2             (3-8)    4%
5-HB-CL                (21-2)  10%
3-HHB(F,F)-F           (22-3)   8%
3-HHEB(F,F)-F          (22-12)  9%
4-HHEB(F,F)-F          (22-12)  3%
5-HHEB(F,F)-F          (22-12)  3%
3-HBB(F,F)-F           (22-24) 20%
5-HBB(F,F)-F           (22-24) 14%
2-HBEB(F,F)-F          (22-39)  3%
3-HBEB(F,F)-F          (22-39)  4%
5-HBEB(F,F)-F          (22-39)  3%
3-HHBB(F,F)-F          (23-6)   6%
 
[Example 7]
Cp-Odbt (4F, 6F) B-3 (No. 98) 4%

3-HH-4 (2-1) 4%
2-HH-5 (2-1) 5%
5-B (F) BB-2 (3-8) 4%
5-HB-CL (21-2) 10%
3-HHB (F, F) -F (22-3) 8%
3-HHEB (F, F) -F (22-12) 9%
4-HHEB (F, F)-F (22-12) 3%
5-HHEB (F, F) -F (22-12) 3%
3-HBB (F, F) -F (22-24) 20%
5-HBB (F, F) -F (22-24) 14%
2-HBEB (F, F) -F (22-39) 3%
3-HBEB (F, F) -F (22-39) 4%
5-HBEB (F, F) -F (22-39) 3%
3-HBBB (F, F) -F (23-6) 6%
[使用例8]
Thf(3)-Odbt(4F,6F)-O5 (No.45) 3%
 
V2-HHB-1               (3-1)    5%
3-HB-CL                (21-2)   5%
5-HB-CL                (21-2)   4%
3-HHB-OCF3             (22-1)   4%
V-HHB(F)-F             (22-2)   5%
5-HHB(F)-F             (22-2)   5%
3-H2HB-OCF3            (22-13)  5%
5-H2HB(F,F)-F          (22-15)  5%
5-H4HB-OCF3            (22-19) 15%
3-H4HB(F,F)-CF3        (22-21)  8%
5-H4HB(F,F)-CF3        (22-21) 10%
5-H4HB(F,F)-F          (22-21)  7%
2-H2BB(F)-F            (22-26)  5%
3-H2BB(F)-F            (22-26) 10%
3-HBEB(F,F)-F          (22-39)  4%
 NI=70.8℃;η=24.1mPa・s;Δn=0.096;Δε=7.8.
 
[Example 8]
Thf (3) -Odbt (4F, 6F) -O5 (No. 45) 3%

V2-HHB-1 (3-1) 5%
3-HB-CL (21-2) 5%
5-HB-CL (21-2) 4%
3-HHB-OCF3 (22-1) 4%
V-HHB (F) -F (22-2) 5%
5-HHB (F) -F (22-2) 5%
3-H2HB-OCF3 (22-13) 5%
5-H2HB (F, F) -F (22-15) 5%
5-H4HB-OCF3 (22-19) 15%
3-H4HB (F, F) -CF3 (22-21) 8%
5-H4HB (F, F) -CF3 (22-21) 10%
5-H4HB (F, F) -F (22-21) 7%
2-H2BB (F) -F (22-26) 5%
3-H2BB (F) -F (22-26) 10%
3-HBEB (F, F) -F (22-39) 4%
NI = 70.8 ° C .; = 2 = 24.1 mPa · s; Δn = 0.096; Δε = 7.8.
[使用例9]
Cp-Odbt(4F,6F)-O3V (No,64) 5%
 
3-HH-4                 (2-1)   10%
3-HH-5                 (2-1)    5%
3-HB-O2                (2-5)   14%
3-HHB-1                (3-1)    8%
3-HHB-O1               (3-1)    5%
5-HB-CL                (21-2)  16%
7-HB(F,F)-F            (21-4)   2%
2-HHB(F)-F             (22-2)   6%
3-HHB(F)-F             (22-2)   7%
5-HHB(F)-F             (22-2)   7%
3-HHB(F,F)-F           (22-3)   6%
3-H2HB(F,F)-F          (22-15)  5%
4-H2HB(F,F)-F          (22-15)  4%
 
[Example 9]
Cp-Odbt (4F, 6F) -O3V (No, 64) 5%

3-HH-4 (2-1) 10%
3-HH-5 (2-1) 5%
3-HB-O2 (2-5) 14%
3-HHB-1 (3-1) 8%
3-HHB-O1 (3-1) 5%
5-HB-CL (21-2) 16%
7-HB (F, F) -F (21-4) 2%
2-HHB (F) -F (22-2) 6%
3-HHB (F) -F (22-2) 7%
5-HHB (F) -F (22-2) 7%
3-HHB (F, F) -F (22-3) 6%
3-H2HB (F, F) -F (22-15) 5%
4-H2HB (F, F) -F (22-15) 4%
[使用例10]
Cpe(1)-1Odbt(4F,6F)-O5 (No.58) 5%
 
3-HH-4                 (2-1)    9%
3-HH-5                 (2-1)   10%
4-HH-V                 (2-1)   14%
5-HB-CL                (21-2)   3%
7-HB(F)-F              (21-3)   6%
2-HHB(F,F)-F           (22-3)   4%
3-HHB(F,F)-F           (22-3)   5%
3-HHEB-F               (22-10)  7%
5-HHEB-F               (22-10)  8%
3-HHEB(F,F)-F          (22-12)  9%
4-HHEB(F,F)-F          (22-12)  5%
3-GHB(F,F)-F           (22-109) 4%
4-GHB(F,F)-F           (22-109) 6%
5-GHB(F,F)-F           (22-109) 5%
 
[Usage example 10]
Cpe (1) -1Odbt (4F, 6F) -O5 (No. 58) 5%

3-HH-4 (2-1) 9%
3-HH-5 (2-1) 10%
4-HH-V (2-1) 14%
5-HB-CL (21-2) 3%
7-HB (F) -F (21-3) 6%
2-HHB (F, F) -F (22-3) 4%
3-HHB (F, F) -F (22-3) 5%
3-HHEB-F (22-10) 7%
5-HHEB-F (22-10) 8%
3-HHEB (F, F) -F (22-12) 9%
4-HHEB (F, F)-F (22-12) 5%
3-GHB (F, F) -F (22-109) 4%
4-GHB (F, F) -F (22-109) 6%
5-GHB (F, F) -F (22-109) 5%
[使用例11]
3-Cp(1,3)dbt(4F,6F)-O2 (No.4) 3%
 
3-HH-VFF               (2-1)    4%
5-HH-VFF               (2-1)   25%
2-BTB-1                (2-10)   9%
3-HHB-1                (3-1)    4%
VFF-HHB-1              (3-1)    8%
VFF2-HHB-1             (3-1)   10%
3-H2BTB-2              (3-17)   5%
3-H2BTB-3              (3-17)   4%
3-H2BTB-4              (3-17)   4%
3-HB-C                 (24-1)  18%
1V2-BEB(F,F)-C         (24-15)  6%
 
[Example 11 of use]
3-Cp (1, 3) dbt (4F, 6F)-O2 (No. 4) 3%

3-HH-VFF (2-1) 4%
5-HH-VFF (2-1) 25%
2-BTB-1 (2-10) 9%
3-HHB-1 (3-1) 4%
VFF-HHB-1 (3-1) 8%
VFF2-HHB-1 (3-1) 10%
3-H2BTB-2 (3-17) 5%
3-H2BTB-3 (3-17) 4%
3-H2BTB-4 (3-17) 4%
3-HB-C (24-1) 18%
1V2-BEB (F, F) -C (24-15) 6%
[使用例12]
Cpr-1Odbt(4F,6F)-O2 (No.72) 4%
 
3-HH-V                 (2-1)   34%
3-HH-V1                (2-1)    4%
5-HH-V                 (2-1)    5%
3-HHB-1                (3-1)    4%
V-HHB-1                (3-1)    5%
2-BB(F)B-3             (3-6)    5%
3-HHEH-5               (3-13)   3%
1V2-BB―F               (21-1)   3%
3-BB(F,F)XB(F,F)-F     (22-97)  9%
3-BB(2F,3F)XB(F,F)-F   (22-114) 3%
3-HHBB(F,F)-F          (23-6)   3%
3-HBBXB(F,F)-F         (23-32)  3%
5-HB(F)B(F,F)XB(F,F)-F (23-41)  4%
3-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
4-BB(F)B(F,F)XB(F,F)-F (23-47)  5%
5-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
 
[Example 12 of use]
Cpr-1 Odbt (4F, 6F)-O2 (No. 72) 4%

3-HH-V (2-1) 34%
3-HH-V1 (2-1) 4%
5-HH-V (2-1) 5%
3-HHB-1 (3-1) 4%
V-HHB-1 (3-1) 5%
2-BB (F) B-3 (3-6) 5%
3-HHEH-5 (3-13) 3%
1V2-BB-F (21-1) 3%
3-BB (F, F) XB (F, F) -F (22-97) 9%
3-BB (2F, 3F) XB (F, F)-F (22-114) 3%
3-HBBB (F, F) -F (23-6) 3%
3-HBBXB (F, F) -F (23-32) 3%
5-HB (F) B (F, F) XB (F, F) -F (23-41) 4%
3-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
4-BB (F) B (F, F) X B (F, F)-F (23-47) 5%
5-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
[使用例13]
Cb-1Odbt(4F,6F)-O2 (No.71) 4%
 
3-HH-V                 (2-1)   30%
3-HH-V1                (2-1)    6%
V-HH-V1                (2-1)    5%
3-HHB-1                (3-1)    4%
V-HHB-1                (3-1)    5%
1-BB(F)B-2V            (3-6)    4%
3-HHEH-5               (3-13)   3%
1V2-BB―F               (21-1)   3%
3-BB(F,F)XB(F,F)-F     (22-97)  5%
3-HHXB(F,F)-CF3        (22-100) 3%
3-GB(F,F)XB(F,F)-F     (22-113) 4%
3-GB(F)B(F,F)-F        (22-116) 4%
3-HHBB(F,F)-F          (23-6)   3%
3-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
4-BB(F)B(F,F)XB(F,F)-F (23-47)  7%
5-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
3-GB(F)B(F,F)XB(F,F)-F (23-57)  4%
 
[Example 13 of use]
Cb-1 Odbt (4F, 6F)-O2 (No. 71) 4%

3-HH-V (2-1) 30%
3-HH-V1 (2-1) 6%
V-HH-V1 (2-1) 5%
3-HHB-1 (3-1) 4%
V-HHB-1 (3-1) 5%
1-BB (F) B-2V (3-6) 4%
3-HHEH-5 (3-13) 3%
1V2-BB-F (21-1) 3%
3-BB (F, F) XB (F, F) -F (22-97) 5%
3-HHXB (F, F) -CF3 (22-100) 3%
3-GB (F, F) XB (F, F) -F (22-113) 4%
3-GB (F) B (F, F)-F (22-116) 4%
3-HBBB (F, F) -F (23-6) 3%
3-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
4-BB (F) B (F, F) X B (F, F)-F (23-47) 7%
5-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
3-GB (F) B (F, F) X B (F, F)-F (23-57) 4%
[使用例14]
3-Cp(1,3)Bdbt(4F,6F)-O2 (No.164) 4%
 
3-HH-V                 (2-1)   35%
3-HH-V1                (2-1)    4%
3-HHB-1                (3-1)    3%
V-HHB-1                (3-1)    5%
3-HBB-2                (3-4)    5%
V2-BB(F)B-1            (3-6)    5%
3-HHEH-3               (3-13)   3%
3-HHEH-5               (3-13)   3%
1V2-BB―F               (21-1)   3%
3-BB(F,F)XB(F,F)-F     (22-97)  4%
3-GB(F,F)XB(F,F)-F     (22-113) 3%
3-HHBB(F,F)-F          (23-6)   2%
3-HBB(F,F)XB(F,F)-F    (23-38)  3%
3-BB(F)B(F,F)XB(F)-F   (23-46)  3%
4-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
5-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
3-GB(F)B(F,F)XB(F,F)-F (23-57)  5%
4-GB(F)B(F,F)XB(F,F)-F (23-57)  2%
5-GB(F)B(F,F)XB(F,F)-F (23-57)  2%
 
[Example 14]
3-Cp (1, 3) Bdbt (4F, 6F)-O2 (No. 164) 4%

3-HH-V (2-1) 35%
3-HH-V1 (2-1) 4%
3-HHB-1 (3-1) 3%
V-HHB-1 (3-1) 5%
3-HBB-2 (3-4) 5%
V2-BB (F) B-1 (3-6) 5%
3-HHEH-3 (3-13) 3%
3-HHEH-5 (3-13) 3%
1V2-BB-F (21-1) 3%
3-BB (F, F) XB (F, F) -F (22-97) 4%
3-GB (F, F) XB (F, F) -F (22-113) 3%
3-HBBB (F, F) -F (23-6) 2%
3-HBB (F, F) XB (F, F) -F (23-38) 3%
3-BB (F) B (F, F) X B (F)-F (23-46) 3%
4-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
5-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
3-GB (F) B (F, F) X B (F, F)-F (23-57) 5%
4-GB (F) B (F, F) X B (F, F)-F (23-57) 2%
5-GB (F) B (F, F) X B (F, F)-F (23-57) 2%
[使用例15]
Cp-Odbt(4F,6F)-O2 (No.17) 5%
 
3-HH-V                 (2-1)   35%
3-HH-V1                (2-1)    3%
3-HHB-1                (3-1)    4%
V-HHB-1                (3-1)    3%
V2-BB(F)B-1            (3-6)    4%
3-HHEH-5               (3-13)   3%
3-HHEBH-3              (4-6)    4%
1V2-BB―F               (21-1)   3%
3-BB(F)B(F,F)-F        (22-69)  3%
3-BB(F,F)XB(F,F)-F     (22-97)  5%
3-HHBB(F,F)-F          (23-6)   3%
5-HB(F)B(F,F)XB(F,F)-F (23-41)  4%
4-BB(F)B(F,F)XB(F,F)-F (23-47)  4%
5-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
2-dhBB(F,F)XB(F,F)-F   (23-50)  1%
3-dhBB(F,F)XB(F,F)-F   (23-50)  3%
3-GBB(F)B(F,F)-F       (23-55)  3%
4-GBB(F)B(F,F)-F       (23-55)  3%
3-BB(F,F)XB(F)B(F,F)-F (23-56)  4%
 NI=81.5℃;η=20.1mPa・s;Δn=0.104;Δε=4.3.
 
[Example 15 of use]
Cp-Odbt (4F, 6F) -O2 (No. 17) 5%

3-HH-V (2-1) 35%
3-HH-V1 (2-1) 3%
3-HHB-1 (3-1) 4%
V-HHB-1 (3-1) 3%
V2-BB (F) B-1 (3-6) 4%
3-HHEH-5 (3-13) 3%
3-HHEBH-3 (4-6) 4%
1V2-BB-F (21-1) 3%
3-BB (F) B (F, F)-F (22-69) 3%
3-BB (F, F) XB (F, F) -F (22-97) 5%
3-HBBB (F, F) -F (23-6) 3%
5-HB (F) B (F, F) XB (F, F) -F (23-41) 4%
4-BB (F) B (F, F) X B (F, F)-F (23-47) 4%
5-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
2-dhBB (F, F) XB (F, F) -F (23-50) 1%
3-dhBB (F, F) XB (F, F) -F (23-50) 3%
3-GBB (F) B (F, F)-F (23-55) 3%
4-GBB (F) B (F, F)-F (23-55) 3%
3-BB (F, F) XB (F) B (F, F) -F (23-56) 4%
NI = 81.5 ° C .; = 2 = 20.1 mPa · s; Δn = 0.104; Δε = 4.3.
[使用例16]
Cp-1Odbt(4F,6F)-O2 (No.26) 5%
 
3-HH-V                 (2-1)   35%
3-HH-V1                (2-1)    4%
3-HHB-1                (3-1)    3%
V-HHB-1                (3-1)    5%
V2-BB(F)B-1            (3-6)    4%
3-HHEH-5               (3-13)   3%
1V2-BB―F               (21-1)   3%
3-BB(F)B(F,F)-CF3      (22-69)  3%
3-BB(F,F)XB(F,F)-F     (22-97)  5%
3-HHXB(F,F)-F          (22-100) 4%
3-GB(F,F)XB(F,F)-F     (22-113) 3%
3-GB(F)B(F)-F          (22-115) 3%
3-HHBB(F,F)-F          (23-6)   3%
4-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
5-BB(F)B(F,F)XB(F,F)-F (23-47)  3%
3-GB(F)B(F,F)XB(F,F)-F (23-57)  3%
3-GBB(F,F)XB(F,F)-F    (23-58)  2%
4-GBB(F,F)XB(F,F)-F    (23-58)  2%
5-GBB(F,F)XB(F,F)-F    (23-58)  2%
3-GB(F)B(F)B(F)-F      (23-59)  2%
 NI=77.2℃;η=16.8mPa・s;Δn=0.098;Δε=5.0.
 
[Example 16]
Cp-1 Odbt (4F, 6F)-O2 (No. 26) 5%

3-HH-V (2-1) 35%
3-HH-V1 (2-1) 4%
3-HHB-1 (3-1) 3%
V-HHB-1 (3-1) 5%
V2-BB (F) B-1 (3-6) 4%
3-HHEH-5 (3-13) 3%
1V2-BB-F (21-1) 3%
3-BB (F) B (F, F)-CF3 (22-69) 3%
3-BB (F, F) XB (F, F) -F (22-97) 5%
3-HHXB (F, F) -F (22-100) 4%
3-GB (F, F) XB (F, F) -F (22-113) 3%
3-GB (F) B (F)-F (22-115) 3%
3-HBBB (F, F) -F (23-6) 3%
4-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
5-BB (F) B (F, F) X B (F, F)-F (23-47) 3%
3-GB (F) B (F, F) X B (F, F)-F (23-57) 3%
3-GBB (F, F) XB (F, F) -F (23-58) 2%
4-GBB (F, F) XB (F, F) -F (23-58) 2%
5-GBB (F, F) XB (F, F) -F (23-58) 2%
3-GB (F) B (F) B (F)-F (23-59) 2%
NI = 77.2 ° C .; = 1 = 16.8 mPa · s; Δn = 0.098; Δε = 5.0.
 本発明の実施形態に係る液晶性化合物は、良好な物性を有する。この化合物を含有する液晶組成物は、パソコン、テレビなどの液晶表示素子に広く利用できる。 The liquid crystal compound according to the embodiment of the present invention has good physical properties. Liquid crystal compositions containing this compound can be widely used for liquid crystal display devices such as personal computers and televisions.

Claims (13)

  1.  式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、
     RおよびRは独立して、水素または炭素数1から10のアルキルであり、このアルキルにおいて、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
     環AおよびAは独立して、炭素数3から5のシクロアルキレンであり、このシクロアルキレンにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-で置き換えられてもよく;
     環NおよびNは独立して、1,4-シクロヘキシレン、デカヒドロナフタレン-2,6-ジイル、または1,4-フェニレンであり、これらの基において、少なくとも1つの-CH-は、-O-、-S-、-CO-、または-SiH-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-または-CH=N-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素、塩素、-C≡N、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFで置き換えられてもよく;
     YおよびYは独立して、水素、フッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、または-OCHFであり;
     aおよびdは独立して、0または1であり、1≦a+d≦2であり、
     bおよびcは独立して、0、1、または2であり、b+c≦2であり;
     Z、Z、ZおよびZは独立して、単結合または炭素数1から6のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-S-、または-CO-で置き換えられてもよく、1つまたは2つの-CHCH-は、-CH=CH-または-C≡C-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素で置き換えられてもよい。
    The compound represented by Formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In equation (1),
    R 1 and R 2 are independently hydrogen or alkyl having 1 to 10 carbons, and in this alkyl, at least one —CH 2 — is —O—, —S—, —CO— or —SiH 2- and at least one -CH 2 CH 2 -may be replaced by -CH = CH- or -C≡C-, and in these groups, at least one hydrogen is fluorine May be replaced;
    Rings A 1 and A 2 are independently cycloalkylene having 3 to 5 carbon atoms, and in this cycloalkylene, at least one —CH 2 — may be replaced by —O—, at least one — CH 2 CH 2 -may be replaced by -CH = CH-;
    Rings N 1 and N 2 are independently 1,4-cyclohexylene, decahydronaphthalene-2,6-diyl or 1,4-phenylene, and in these groups, at least one —CH 2 — is And -O-, -S-, -CO-, or -SiH 2- , and at least one -CH 2 CH 2 -is replaced by -CH = CH- or -CH = N- In these divalent groups, at least one hydrogen may be fluorine, chlorine, -C≡N, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 , or -OCH May be replaced by 2 F;
    Y 1 and Y 2 are independently hydrogen, fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 or -OCH 2 F;
    a and d are independently 0 or 1, and 1 ≦ a + d ≦ 2,
    b and c are independently 0, 1 or 2, and b + c ≦ 2;
    Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond or alkylene having 1 to 6 carbon atoms, and in this alkylene, at least one —CH 2 — is —O—, —S—, Or —CO— and one or two of —CH 2 CH 2 — may be replaced by —CH = CH— or —C≡C—, and in these divalent groups, at least One hydrogen may be replaced by fluorine.
  2.  式(1)において、
     RおよびRが独立して、水素、炭素数1から10のアルキル、炭素数1から9のアルコキシ、炭素数2から9のアルコキシアルキル、炭素数2から10のアルケニル、または炭素数2から9のアルケニルオキシであり;
     環NおよびNが独立して、1,4-シクロヘキシレンまたは1,4-フェニレンであり、これらの基において、少なくとも1つの-CH-は、-O-で置き換えられてもよく、少なくとも1つの-CHCH-は、-CH=CH-で置き換えられてもよく、これらの二価基において、少なくとも1つの水素は、フッ素で置き換えられてもよく;
     YおよびYが独立して、水素またはフッ素であり;
     bおよびcが独立して、0または1であり、b+c≦1であり;
     Z、Z、Z、およびZが独立して、単結合または炭素数1から6のアルキレンであり、少なくとも1つの-CH-が-O-で置き換えられてもよい請求項1に記載の化合物。
    In equation (1),
    R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or 9 alkenyloxy;
    Rings N 1 and N 2 are independently 1,4-cyclohexylene or 1,4-phenylene, and in these groups, at least one —CH 2 — may be replaced by —O— At least one —CH 2 CH 2 — may be replaced by —CH = CH—, and in these divalent groups, at least one hydrogen may be replaced by fluorine;
    Y 1 and Y 2 are independently hydrogen or fluorine;
    b and c are independently 0 or 1, and b + c ≦ 1;
    Z 1 , Z 2 , Z 3 and Z 4 are independently a single bond or alkylene having 1 to 6 carbon atoms, and at least one —CH 2 — may be replaced by —O— The compound as described in.
  3.  式(1-1)から(1-3)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    式(1-1)から(1-3)において、
     RおよびRは独立して、水素、炭素数1から10のアルキル、炭素数1から9のアルコキシ、炭素数2から9のアルコキシアルキル、炭素数2から10のアルケニル、または炭素数2から9のアルケニルオキシであり;
     環Aは、1,2-シクロプロピレン、1,3-シクロブチレン、1,3-シクロペンチレン、または1つの-CH-が、-O-で置き換えられた1,3-シクロペンチレンであり;
     環Nおよび環Nは独立して、1,4-シクロへキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルであり;
     Z、ZおよびZは独立して、単結合または炭素数1から6のアルキレンであり、少なくとも1つの-CH-が、-O-で置き換えられてもよい。
    The compound according to claim 1, which is represented by formulas (1-1) to (1-3).
    Figure JPOXMLDOC01-appb-C000002
    In formulas (1-1) to (1-3),
    R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or 9 alkenyloxy;
    Ring A 1 is 1,2-cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, or 1,3-cyclopentylene in which one —CH 2 — is replaced by —O— And
    Ring N 1 and ring N 2 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, Or tetrahydropyran-2,5-diyl;
    Z 1 , Z 2 and Z 3 are independently a single bond or alkylene having 1 to 6 carbon atoms, and at least one —CH 2 — may be replaced by —O—.
  4.  式(1-1)から(1-3)において、
     環Aが1,2-シクロプロピレン、1,3-シクロブチレン、または1,3-シクロペンチレンであり、ZおよびZが単結合である、請求項3に記載の化合物。
    In formulas (1-1) to (1-3),
    The compound according to claim 3, wherein ring A 1 is 1,2-cyclopropylene, 1,3-cyclobutylene or 1,3-cyclopentylene, and Z 2 and Z 3 are a single bond.
  5.  式(1-4)から(1-45)のいずれか1つで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    式(1-4)から(1-45)において、
     RおよびRは独立して、水素、炭素数1から10のアルキル、炭素数1から9のアルコキシ、炭素数2から9のアルコキシアルキル、炭素数2から10のアルケニル、または炭素数2から9のアルケニルオキシであり;LおよびLは独立して、水素またはフッ素である。
    The compound according to claim 1, which is represented by any one of formulas (1-4) to (1-45).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    In formulas (1-4) to (1-45),
    R 1 and R 2 independently represent hydrogen, alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, alkoxyalkyl having 2 to 9 carbons, alkenyl having 2 to 10 carbons, or L 1 and L 2 are independently hydrogen or fluorine.
  6.  式(1-4)から(1-45)において、
     Rが水素であり、Rが炭素数1から10のアルキル、炭素数1から9のアルコキシ、または炭素数2から10のアルケニルである、請求項5に記載の化合物。
    In formulas (1-4) to (1-45),
    The compound according to claim 5, wherein R 1 is hydrogen and R 2 is alkyl having 1 to 10 carbons, alkoxy having 1 to 9 carbons, or alkenyl having 2 to 10 carbons.
  7.  式(1-46)から(1-51)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    式(1-46)から(1-51)において、Rは炭素数1から9のアルコキシである。
    The compound according to claim 1, which is represented by formulas (1-46) to (1-51).
    Figure JPOXMLDOC01-appb-C000006
    In formulas (1-46) to (1-51), R 2 is alkoxy having 1 to 9 carbons.
  8.  請求項1から7のいずれか1項に記載の化合物を少なくとも1つ含有する液晶組成物。 A liquid crystal composition comprising at least one compound according to any one of claims 1 to 7.
  9.  式(2)から(4)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項8に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000007
    式(2)から(4)において、
     R11およびR12は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよく;
     環B、環B、環B、および環Bは独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、またはピリミジン-2,5-ジイルであり;
     Z11、Z12、およびZ13は独立して、単結合、-COO-、-CHCH-、-CH=CH-、または-C≡C-である。
    The liquid crystal composition according to claim 8, further comprising at least one compound selected from the group of compounds represented by formulas (2) to (4).
    Figure JPOXMLDOC01-appb-C000007
    In equations (2) to (4),
    R 11 and R 12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is replaced by —O— Also, in these groups, at least one hydrogen may be replaced by fluorine;
    Ring B 1 , ring B 2 , ring B 3 and ring B 4 are each independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,5-difluoro- 1,4-phenylene, or pyrimidine-2,5-diyl;
    Z 11 , Z 12 and Z 13 are independently a single bond, -COO-, -CH 2 CH 2- , -CH = CH-, or -C≡C-.
  10.  式(5)から(13)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項8または9に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000008
    式(5)から(13)において、
     R13、R14およびR15は独立して、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素で置き換えられてもよく、そしてR15は、水素またはフッ素であってもよく;
     環C、環C、環C、および環Cは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、またはデカヒドロナフタレン-2,6-ジイルであり;
     環Cおよび環Cは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、またはデカヒドロナフタレン-2,6-ジイルであり;
     Z14、Z15、Z16、およびZ17は独立して、単結合、-COO-、-CHO-、-OCF-、-CHCH-、または-OCFCHCH-であり;
     L11およびL12は独立して、フッ素または塩素であり;
     S11は、水素またはメチルであり;
     Xは、-CHF-または-CF-であり;
     j、k、m、n、p、q、r、およびsは独立して、0または1であり、k、m、n、およびpの和は、1または2であり、q、r、およびsの和は、0、1、2、または3であり、tは、1、2、または3である。
    The liquid crystal composition according to claim 8 or 9, further comprising at least one compound selected from the group of compounds represented by formulas (5) to (13).
    Figure JPOXMLDOC01-appb-C000008
    In equations (5) to (13),
    R 13 , R 14 and R 15 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — is —O— Optionally substituted, in these groups at least one hydrogen may be replaced by fluorine and R 15 may be hydrogen or fluorine;
    Ring C 1 , ring C 2 , ring C 3 and ring C 4 are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, or at least one hydrogen optionally substituted by fluorine 4-phenylene, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6-diyl;
    Ring C 5 and ring C 6 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6 -Is diil;
    Z 14, Z 15, Z 16 , and Z 17 are independently a single bond, -COO -, - CH 2 O -, - OCF 2 -, - CH 2 CH 2 -, or -OCF 2 CH 2 CH 2 -Is;
    L 11 and L 12 are independently fluorine or chlorine;
    S 11 is hydrogen or methyl;
    X is -CHF- or -CF 2- ;
    j, k, m, n, p, q, r, and s are independently 0 or 1, and the sum of k, m, n, and p is 1 or 2, q, r, and The sum of s is 0, 1, 2 or 3 and t is 1, 2 or 3.
  11.  式(21)から(23)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項8から10のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000009
    式(21)から(23)において、
     R16は、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
     X11は、フッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、-OCFCHF、または-OCFCHFCFであり;
     環D、環D、および環Dは独立して、1,4-シクロヘキシレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
     Z18、Z19、およびZ20は独立して、単結合、-COO-、-CHO-、-CFO-、-OCF-、-CHCH-、-CH=CH-、-C≡C-、または-(CH-であり;
     L13およびL14は独立して、水素またはフッ素である。
    The liquid crystal composition according to any one of claims 8 to 10, further comprising at least one compound selected from the group of compounds represented by formulas (21) to (23).
    Figure JPOXMLDOC01-appb-C000009
    In equations (21) to (23),
    R 16 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—, and these groups In which at least one hydrogen may be replaced by fluorine;
    X 11 is fluorine, chlorine, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , -OCHF 2 , -OCF 2 CHF 2 , or -OCF 2 CHFCF 3 ;
    Ring D 1 , ring D 2 and ring D 3 are independently 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl 1,3-dioxane-2,5-diyl, or pyrimidine-2,5-diyl;
    Z 18, Z 19, and Z 20 are independently a single bond, -COO -, - CH 2 O -, - CF 2 O -, - OCF 2 -, - CH 2 CH 2 -, - CH = CH- , -C≡C-, or - (CH 2) 4 - a and;
    L 13 and L 14 are independently hydrogen or fluorine.
  12.  式(24)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する、請求項8から11のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000010
    式(24)において、
     R17は、炭素数1から10のアルキルまたは炭素数2から10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH-は、-O-で置き換えられてもよく、これらの基において、少なくとも1つの水素はフッ素で置き換えられてもよく;
     X12は、-C≡Nまたは-C≡C-C≡Nであり;
     環Eは、1,4-シクロヘキシレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
     Z21は、単結合、-COO-、-CHO-、-CFO-、-OCF-、-CHCH-、または-C≡C-であり;
     L15およびL16は独立して、水素またはフッ素であり;
     iは、1、2、3、または4である。
    The liquid crystal composition according to any one of claims 8 to 11, further comprising at least one compound selected from the group of compounds represented by formula (24).
    Figure JPOXMLDOC01-appb-C000010
    In equation (24),
    R 17 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—, and these groups In which at least one hydrogen may be replaced by fluorine;
    X 12 is -C≡N or -C≡C-C≡N;
    Ring E 1 is 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl Or pyrimidine-2,5-diyl;
    Z 21 represents a single bond, -COO-, -CH 2 O-, -CF 2 O-, -OCF 2- , -CH 2 CH 2- , or -C≡C-;
    L 15 and L 16 are independently hydrogen or fluorine;
    i is 1, 2, 3 or 4;
  13.  請求項8から12のいずれか1項に記載の液晶組成物を含む液晶表示素子。 A liquid crystal display device comprising the liquid crystal composition according to any one of claims 8 to 12.
PCT/JP2018/043725 2017-11-30 2018-11-28 Compounds having dibenzothiophene ring, liquid crystal composition, and liquid crystal display element WO2019107394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017230593A JP2021028299A (en) 2017-11-30 2017-11-30 Compound having dibenzothiophene ring, liquid crystal composition and liquid crystal display element
JP2017-230593 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107394A1 true WO2019107394A1 (en) 2019-06-06

Family

ID=66665033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043725 WO2019107394A1 (en) 2017-11-30 2018-11-28 Compounds having dibenzothiophene ring, liquid crystal composition, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP2021028299A (en)
TW (1) TW201925435A (en)
WO (1) WO2019107394A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779025A (en) * 2020-01-07 2021-05-11 默克专利股份有限公司 Liquid-crystalline medium
CN113234045A (en) * 2021-06-17 2021-08-10 烟台显华化工科技有限公司 Liquid crystal compound with negative dielectric anisotropy, liquid crystal composition and liquid crystal display device
CN113667493A (en) * 2020-05-15 2021-11-19 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device
CN113667489A (en) * 2020-05-15 2021-11-19 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device
CN113845920A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device
CN113845921A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device thereof
CN113845919A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device thereof
CN113845927A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device
WO2022023399A1 (en) * 2020-07-31 2022-02-03 Merck Patent Gmbh Dibenzofuran and dibenzothiophene derivatives
US11254873B2 (en) * 2019-01-29 2022-02-22 Shijiazhuang Chengzhi Yonghua Display Material, Co., Ltd. Liquid crystal composition, liquid crystal display element and liquid crystal display
CN114105940A (en) * 2020-08-27 2022-03-01 北京八亿时空液晶科技股份有限公司 Negative liquid crystal compound and preparation method and application thereof
CN114105941A (en) * 2020-08-27 2022-03-01 北京八亿时空液晶科技股份有限公司 Novel liquid crystal compound and preparation method and application thereof
CN114262323A (en) * 2021-11-24 2022-04-01 西安近代化学研究所 Negative dielectric anisotropy liquid crystal compound, composition and display element
CN114573550A (en) * 2020-12-01 2022-06-03 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof
CN114686242A (en) * 2020-12-28 2022-07-01 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof
US11466214B2 (en) * 2018-05-18 2022-10-11 Shijiazhuang Chengzhi Yonghua Display Material Co., Ltd. Positive dielectric anisotropic liquid crystal composition and liquid crystal display device
JP7372827B2 (en) 2018-12-10 2023-11-01 メルク パテント ゲーエムベーハー liquid crystal medium
CN114686242B (en) * 2020-12-28 2024-05-10 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652097B (en) * 2018-05-18 2023-06-02 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN109666485B (en) * 2018-05-18 2021-08-27 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN112980460A (en) * 2019-12-13 2021-06-18 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof
CN111320991A (en) * 2020-04-09 2020-06-23 Tcl华星光电技术有限公司 Liquid crystal composition, liquid crystal display panel and preparation method thereof
CN113528152B (en) * 2020-04-21 2023-08-04 江苏和成新材料有限公司 Liquid crystal compound, liquid crystal composition thereof and liquid crystal display device
CN113527242B (en) * 2020-04-21 2023-09-15 江苏和成新材料有限公司 Liquid crystal compound, liquid crystal composition thereof and liquid crystal display device
TWI769856B (en) * 2020-06-28 2022-07-01 大陸商江蘇和成顯示科技有限公司 A liquid crystal composition comprising dibenzo derivatives and liquid crystal display device
CN113845923A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device thereof
CN113881443A (en) * 2020-07-01 2022-01-04 北京八亿时空液晶科技股份有限公司 Liquid crystal compound containing dibenzothiophene structure and application thereof
CN112111283B (en) * 2020-09-01 2022-06-10 北京八亿时空液晶科技股份有限公司 Liquid crystal composition with quick response and application thereof
CN112175629B (en) * 2020-09-14 2023-03-24 北京八亿时空液晶科技股份有限公司 Terphenyl-containing fast response liquid crystal composition and application thereof
CN114437736A (en) * 2020-11-02 2022-05-06 北京八亿时空液晶科技股份有限公司 Liquid crystal composition containing terphenyl and application thereof
CN115216305A (en) * 2021-04-15 2022-10-21 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device thereof
CN115247067B (en) * 2021-04-27 2024-04-23 江苏和成显示科技有限公司 Liquid crystal compound, liquid crystal composition thereof and liquid crystal display device
CN115247069A (en) * 2021-04-27 2022-10-28 江苏和成显示科技有限公司 Liquid crystal composition and application thereof
CN115247070A (en) * 2021-04-27 2022-10-28 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device comprising same
CN115247072A (en) * 2021-04-27 2022-10-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and application thereof
CN115477950A (en) * 2021-05-31 2022-12-16 北京八亿时空液晶科技股份有限公司 Negative dielectric anisotropy liquid crystal composition and application thereof
CN113913194B (en) * 2021-10-22 2023-04-14 北京云基科技股份有限公司 Fluorine-containing liquid crystal compound and application thereof
CN116064052A (en) * 2021-11-01 2023-05-05 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device thereof
CN114350380A (en) * 2022-01-13 2022-04-15 烟台显华科技集团股份有限公司 Negative dielectric anisotropy liquid crystal composition, optical anisotropic medium and liquid crystal display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236992A (en) * 1997-02-25 1998-09-08 Chisso Corp Liquid crystal compound having negative anisotropic value of dielectric constant, liquid crystal composition containing the same and liquid crystal display element using the composition
JP2007535506A (en) * 2004-04-14 2007-12-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Benzofuran derivatives, dibenzothiophene derivatives, and fluorene derivatives
JP2015205879A (en) * 2014-04-22 2015-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 4,6-difluorodibenzothiophene derivatives
JP2015206042A (en) * 2014-04-22 2015-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium
JP2016199543A (en) * 2015-04-13 2016-12-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Fluorinated dibenzofuran and dibenzothiophene derivatives
CN106883861A (en) * 2015-12-16 2017-06-23 北京八亿时空液晶科技股份有限公司 A kind of liquid-crystal compounds, composition and its application
CN107841315A (en) * 2017-10-31 2018-03-27 晶美晟光电材料(南京)有限公司 The liquid-crystal compounds of negative permittivity, the liquid crystal compound comprising the liquid-crystal compounds and its application
CN108034433A (en) * 2017-11-17 2018-05-15 晶美晟光电材料(南京)有限公司 A kind of negative type liquid crystal mixture and its application
CN108264498A (en) * 2017-08-16 2018-07-10 石家庄诚志永华显示材料有限公司 Compound, the liquid crystal media comprising the compound and its application
WO2018228968A1 (en) * 2017-06-14 2018-12-20 Merck Patent Gmbh Dibenzofuran derivatives and dibenzothiophene derivatives

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236992A (en) * 1997-02-25 1998-09-08 Chisso Corp Liquid crystal compound having negative anisotropic value of dielectric constant, liquid crystal composition containing the same and liquid crystal display element using the composition
JP2007535506A (en) * 2004-04-14 2007-12-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Benzofuran derivatives, dibenzothiophene derivatives, and fluorene derivatives
JP2015205879A (en) * 2014-04-22 2015-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 4,6-difluorodibenzothiophene derivatives
JP2015206042A (en) * 2014-04-22 2015-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium
JP2016199543A (en) * 2015-04-13 2016-12-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Fluorinated dibenzofuran and dibenzothiophene derivatives
CN106883861A (en) * 2015-12-16 2017-06-23 北京八亿时空液晶科技股份有限公司 A kind of liquid-crystal compounds, composition and its application
WO2018228968A1 (en) * 2017-06-14 2018-12-20 Merck Patent Gmbh Dibenzofuran derivatives and dibenzothiophene derivatives
CN108264498A (en) * 2017-08-16 2018-07-10 石家庄诚志永华显示材料有限公司 Compound, the liquid crystal media comprising the compound and its application
CN107841315A (en) * 2017-10-31 2018-03-27 晶美晟光电材料(南京)有限公司 The liquid-crystal compounds of negative permittivity, the liquid crystal compound comprising the liquid-crystal compounds and its application
CN108034433A (en) * 2017-11-17 2018-05-15 晶美晟光电材料(南京)有限公司 A kind of negative type liquid crystal mixture and its application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWABATA, K. ET AL., MACROMOLECULES, vol. 46, 2013, pages 2078 - 2091 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466214B2 (en) * 2018-05-18 2022-10-11 Shijiazhuang Chengzhi Yonghua Display Material Co., Ltd. Positive dielectric anisotropic liquid crystal composition and liquid crystal display device
JP7372827B2 (en) 2018-12-10 2023-11-01 メルク パテント ゲーエムベーハー liquid crystal medium
US11254873B2 (en) * 2019-01-29 2022-02-22 Shijiazhuang Chengzhi Yonghua Display Material, Co., Ltd. Liquid crystal composition, liquid crystal display element and liquid crystal display
CN112779025A (en) * 2020-01-07 2021-05-11 默克专利股份有限公司 Liquid-crystalline medium
CN113667493A (en) * 2020-05-15 2021-11-19 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device
CN113667489A (en) * 2020-05-15 2021-11-19 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device
CN113845921A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device thereof
CN113845920A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device
CN113845919A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition containing dibenzo derivative and liquid crystal display device thereof
CN113845927A (en) * 2020-06-28 2021-12-28 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device
WO2022023399A1 (en) * 2020-07-31 2022-02-03 Merck Patent Gmbh Dibenzofuran and dibenzothiophene derivatives
CN114105940A (en) * 2020-08-27 2022-03-01 北京八亿时空液晶科技股份有限公司 Negative liquid crystal compound and preparation method and application thereof
CN114105941A (en) * 2020-08-27 2022-03-01 北京八亿时空液晶科技股份有限公司 Novel liquid crystal compound and preparation method and application thereof
CN114105941B (en) * 2020-08-27 2024-03-08 北京八亿时空液晶科技股份有限公司 Novel liquid crystal compound and preparation method and application thereof
CN114573550A (en) * 2020-12-01 2022-06-03 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof
CN114686242A (en) * 2020-12-28 2022-07-01 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof
CN114686242B (en) * 2020-12-28 2024-05-10 北京八亿时空液晶科技股份有限公司 Liquid crystal compound and preparation method and application thereof
CN113234045A (en) * 2021-06-17 2021-08-10 烟台显华化工科技有限公司 Liquid crystal compound with negative dielectric anisotropy, liquid crystal composition and liquid crystal display device
CN114262323B (en) * 2021-11-24 2023-09-08 西安近代化学研究所 Negative dielectric anisotropic liquid crystal compound, composition and display element
CN114262323A (en) * 2021-11-24 2022-04-01 西安近代化学研究所 Negative dielectric anisotropy liquid crystal compound, composition and display element

Also Published As

Publication number Publication date
TW201925435A (en) 2019-07-01
JP2021028299A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7078030B2 (en) Compounds with dibenzofuran rings, liquid crystal compositions and liquid crystal display devices
WO2019107394A1 (en) Compounds having dibenzothiophene ring, liquid crystal composition, and liquid crystal display element
JP6627515B2 (en) Liquid crystal compound having negative dielectric anisotropy having 3,6-dihydro-2H-pyran, liquid crystal composition, and liquid crystal display device
JP7127295B2 (en) Compound having fluorodibenzofuran ring, liquid crystal composition and liquid crystal display element
JP6566031B2 (en) Liquid crystalline compound having benzothiophene, liquid crystal composition, and liquid crystal display device
JP7160050B2 (en) Polymerizable compound having methoxymethyl acrylic group, liquid crystal composition, and liquid crystal display element
JP6784069B2 (en) Liquid crystal compounds, liquid crystal compositions and liquid crystal display devices
JP6623567B2 (en) Dihydropyran compound, liquid crystal composition and liquid crystal display device
JP6850410B2 (en) Liquid crystal compounds, liquid crystal compositions and liquid crystal display devices with benzothiophene
JP2020158503A (en) Liquid crystalline compound having dibenzothiophene ring, liquid crystal composition and liquid crystal display element
JP6939241B2 (en) Compounds with dibenzothiophene rings, liquid crystal compositions, and liquid crystal display devices
JP2020066580A (en) Mesomorphism compound having methyl group, liquid crystal composition, and liquid crystal display element
JP6435923B2 (en) Dihydropyran compound, liquid crystal composition, and liquid crystal display device
JP6511975B2 (en) Liquid crystal composition and liquid crystal display device containing dihydropyran compound
JP2017132693A (en) Compound having difluorocyclohexane ring, liquid crystal composition, and liquid crystal display element
JP2019048780A (en) Liquid crystalline compound having negative dielectric anisotropy having fluorobiphenyl, liquid crystal composition and liquid crystal display element
JP6919394B2 (en) Liquid crystal compounds having fluorene and CF2O, liquid crystal compositions and liquid crystal display devices
JP6738046B2 (en) Liquid crystalline compound having biphenylene, liquid crystal composition and liquid crystal display device
JP6766556B2 (en) Liquid crystal compounds, liquid crystal compositions and liquid crystal display devices
WO2020026583A1 (en) Liquid crystal compound comprising benzothiazole ring and cf2o ligand, liquid crystal composition, and liquid crystal display element
JP7234728B2 (en) Liquid crystalline compound, liquid crystal composition and liquid crystal display element
JP6738044B2 (en) Liquid crystalline compound having benzopyran skeleton, liquid crystal composition, and liquid crystal display device
WO2021193708A1 (en) Compound, liquid crystal composition, and liquid crystal display element
TW202400759A (en) Compound, liquid crystal composition and liquid crystal display element
JP2017007986A (en) Compound having anthracene skeleton, liquid crystal composition and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP