WO2011052759A1 - Novel nitroxyl radical compound and process for production thereof - Google Patents

Novel nitroxyl radical compound and process for production thereof Download PDF

Info

Publication number
WO2011052759A1
WO2011052759A1 PCT/JP2010/069385 JP2010069385W WO2011052759A1 WO 2011052759 A1 WO2011052759 A1 WO 2011052759A1 JP 2010069385 W JP2010069385 W JP 2010069385W WO 2011052759 A1 WO2011052759 A1 WO 2011052759A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
compound represented
substituted
formula
Prior art date
Application number
PCT/JP2010/069385
Other languages
French (fr)
Japanese (ja)
Inventor
内海英雄
酒井浄
山田健一
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2011538512A priority Critical patent/JP5911131B2/en
Publication of WO2011052759A1 publication Critical patent/WO2011052759A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/10Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/20Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/20Spiro-condensed systems

Definitions

  • the present invention relates to a 2,6-position substituted piperidine nitroxyl radical and a novel synthesis method thereof.
  • Nitroxyl radicals are known as relatively stable radicals, but they react sensitively to various active oxygen and redox substances, so that the effects of nitroxyl radicals on various diseases involving free radicals are reduced. Expected.
  • nitroxyl radicals have been reported to react with ascorbic acid, thiols (metal-catalyzed reactions), mitochondrial respiratory chain, NADPH, cytochrome P450, and the like in cells, inducing apoptosis and via cytochrome P450. It has been reported that production of H 2 O 2 and the like cause cytotoxicity.
  • nitroxyl radicals having a tetraethyl group have been reported to have a significantly reduced reactivity with ascorbic acid.
  • the conventional method has many reaction steps and is complicated, and therefore, there is a problem that the yield of 2,6-substituted nitroxy radical is very low.
  • development of a method for synthesizing a nitroxy radical in which various substituents are introduced into the 2,6-positions in a simple and high yield is desired.
  • the inventors have conducted various studies in order to solve the above problems, and as a result, have developed a simple and high-yield synthesis method for 2,6-position substituted piperidine-based nitroxyl radicals. Furthermore, when the effectiveness of the nitroxyl radical obtained by the production method was examined, it was revealed that it has a gastric mucosal damage suppressing effect and a blood pressure lowering effect in an adjuvant arthritis model rat.
  • a feature of the present invention is that a 2,6-substituted piperidine having an alkyl group such as a methyl group on a nitrogen atom is used.
  • 1,2,2,6,6-pentamethylpiperidin-4-one having a methyl group on nitrogen is used, it is remarkable compared to 2,2,6,6-tetramethylpiperidin-4-one An increase in yield and a reaction promoting effect were observed. Therefore, in this reaction, it is most important to use a piperidine compound in which an alkyl group such as a methyl group is substituted on nitrogen as a starting material.
  • Examples of the ketone used in the production method of the present application include cyclic / chain carbonyl compounds such as cyclohexanone, pyran ring, thiopyran ring, acetaminophen, and benzaldehyde.
  • Table 2 shows specific carbonyl compounds and corresponding products (piperidone).
  • the carbonyl compound having a cyclic structure and the linear carbonyl compound have different selectivity for the pyrrolidone product. That is, when a carbonyl compound having a ring structure is used as a raw material, a disubstituted product is obtained as a main product, whereas when a linear carbonyl compound is used as a raw material, a monosubstituted product is mainly used. Obtained as product. In the case of a carbonyl compound having a phenyl group, a mono-substituted product is selectively obtained. Furthermore, when 2-adamantanone is used as the carbonyl compound, both mono- and di-substituted products are obtained.
  • ammonium chloride is used as the base used in the production step of the piperidone derivative, but is not limited thereto.
  • the oxidation of piperidone derivatives to nitroxy radical derivatives generally uses a tungsten catalyst and hydrogen peroxide, but is not limited thereto.
  • MCPBA is used for oxidation to the 2,6-positioned adamantane-substituted nitroxyl radical.
  • the ESR parameter was calculated by dissolving the nitroxy radical derivative obtained by the production method of the present invention in 10 mM PB (pH 7.4) (50 ⁇ M) and measuring at room temperature. However, 12 contains 0.5% EtOH from the viewpoint of solubility. The results are shown in the table below.
  • the method is A compound represented by Formula 2,
  • R 5 to R 8 are independently a compound represented by Formula 2, which is C 1 -C 20 alkyl; A compound represented by Formula 3,
  • a compound produced by the above production method is provided.
  • the compound can be used for the treatment of gastric mucosal damage (gastric ulcer) or hypertension.
  • a pharmaceutical composition comprising the above compound and a pharmaceutically acceptable carrier.
  • a method for treating gastric mucosal damage comprising the step of administering the compound to a subject, and treating hypertension
  • a method comprising the step of administering the compound to a subject.
  • the compound is preferably administered in an amount of about 0.0001-4 g / day.
  • gastric mucosal damage when the compound is 18 mM, it can be administered at a dose of 90 ⁇ mol / kg.
  • FIG. 1 is a graph showing the evaluation of cytotoxicity of a nitroxyl radical compound according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the effect of the nitroxyl radical compound according to one embodiment of the present invention on the gastric mucosa.
  • FIG. 3 is a graph showing the effect of a nitroxyl radical compound according to an embodiment of the present invention on blood pressure fluctuations.
  • Reagents were purchased from Sigma-Aldrich, Wako Pure Chemical Industries, Ltd. and used without purification.
  • the melting point was measured using a micro melting point measuring device MP-500P (Yanaco).
  • Mass spectrometry was measured with JMS-600H (JEOL), and 3-nitrobenzyl alcohol was used as a matrix.
  • the IR spectrum was measured by a solution method or a total reflection method using FT / IR-4200 (JASCO).
  • 1 H-NMR was measured using Unity INOVA 400 (Varian), and tetramethylsilane (TMS) was used as a standard substance.
  • the chemical shift ( ⁇ ) was based on TMS (0 ppm), and the coupling constant was expressed in Hz. Elemental analysis was requested from Kyushu University Faculty of Science, Central Elemental Analysis Laboratory.
  • Method B 1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one (2) and 2.94 g (30 mmol) of cyclohexanone (a) were dissolved in 15 ml of DMSO, and 3.21 g (60 mmol) of NH 4 Cl. ) was added at room temperature. The solution was stirred at 60 ° C. for 5 hours. The reaction mixture was diluted by adding 40 mL of water and acidified with 7% aqueous hydrochloric acid. This was washed with ether and the aqueous layer was made alkaline with 10% K 2 CO 3 aqueous solution.
  • Methyl 3- (2,6,6-trimethyl-4-oxopiperidin-2-yl) propanoate (3g) According to Method B, cyclohexanone was changed to methyl levulinate (g). This compound has been obtained as a mixture with a disubstituted product and has not yet been isolated. The structure was identified by methyl 3- (2,6,6-trimethyl-4-oxoperidin-1-oxyl-2-yl) propanoate (4 g) obtained by oxidizing 3 g.
  • 2,2-dimethyl-6,6-dipropyl-4-oxo-piperidin-1-yl 1-oxyl (4) According to Method A, 2,2-dimethyl-6,6-dipropyliperidin-4-one (3) 59 mg (0.28 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 ⁇ 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 38 mg (yield: 60%) of an orange oily substance.
  • 2,2-dibutyl-6,6-dimethyl-4-oxo-piperidin-1-yl 1-oxyl (6) According to Method A, 2,2-dibutyl-6,6-dimethylpiperidin-4-one (5) 100 mg (0.42 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 ⁇ 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 53 mg (yield: 50%) of an orange oily substance.
  • 2-butyl-2,6,6-trimethyl-4-oxo-piperidin-1-yl 1-oxyl (8) According to Method A, 2-butyl-2,6,6-trimethylpiperidin-4-one (7) (199 mg, 1.01 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 ⁇ 2H 2 O were appropriately added. After extraction, the residue was purified by silica gel column chromatography (hexane / ethyl acetate, 95: 5) to obtain 68 mg (yield: 32%) of an orange oily substance.
  • 2,6-dibutyl-2,6-dimethyl-4-oxo-piperidin-1-yl-oxyl 10
  • 2,6-dibutyl-2,6-dimethylpiperidin-4-one 9 77 mg (0.32 mmol) was used as a starting material.
  • the reaction solution was stirred overnight at room temperature.
  • the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 ⁇ 2H 2 O were appropriately added.
  • the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 25 mg (yield: 31%) of an orange oily substance.
  • 2,2,6-trimethyl-6-octyl-4-oxo-piperidin-1-yl 1-oxyl 12
  • 2,2,6-trimethyl-6-octipeliperidin-4-one (11) 100 mg (0.39 mmol) was used as a starting material.
  • the reaction solution was stirred overnight at room temperature.
  • the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 ⁇ 2H 2 O were appropriately added.
  • the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 78 mg (yield: 74%) of an orange oily substance.
  • Cytotoxic nitroxyl radicals have been reported to react with ascorbic acid, thiols (metal-catalyzed reactions), mitochondrial respiratory chain, NADPH, cytochrome P450, etc. in cells, inducing apoptosis and via cytochrome P450 It has been reported that production of H 2 O 2 and the like cause cytotoxicity.
  • the present inventors have reported that the reactivity with the ascorbic acid of the nitroxyl radical having a tetraethyl group is significantly reduced. Therefore, the cytotoxicity of the synthesized nitroxyl radical compound was evaluated.
  • HUVEC human umbilical vein endothelial cells
  • a CO 2 incubator at 37 ° C. under 5% CO 2 using Brett Kit EGM as a medium.
  • HUVEC were subcultured at regular intervals to maintain a logarithmic growth phase, and the period between 2 and 5 passages was used for the experiment.
  • HUVEC 5000 cells / well
  • Mycobacterium tuberculosis H37 RA was ground in an agate mortar, and heavy minor oil was added dropwise thereto, and further ground to 10 mg / ml.
  • This tuberculosis-killed oil suspension was sonicated for 3 minutes and then taken into a 1 ml syringe, and 100 ⁇ L was administered into the left footpad of a 5-week-old DA rat under isoflurane anesthesia to induce adjuvant arthritis.
  • In the negative control group only heavy mineral oil was administered into the left footpad.
  • DA rats were fasted in the breeding cage on day 13 after administration of the adjuvant. However, drinking water was free drinking.
  • indomethacin (20 mg / kg) was orally administered to rats to create gastric ulcers.
  • the same amount of 5% NaHCO 3 was orally administered as a vehicle.
  • the nitroxyl radical compound was orally administered 5 minutes before administration of indomethacin.
  • Tempol (see FIG. 2), a known nitroxyl radical compound, shows an inhibitory action at a concentration of 900 ⁇ mol / kg, but the nitroxyl radical compound synthesized according to the present invention (compounds A and B in FIG. 2). ) was also shown to have significant inhibitory action on gastric mucosal damage at a concentration of up to 1/10 compared to Tempol, and it became clear that it showed an inhibitory effect at a lower concentration than known compounds .
  • TEMPO-based nitroxyl radical compounds such as Tempol, a blood pressure lowering action of nitroxyl radical, have a blood pressure lowering action and are widely used in hypertension research. Although the cause of the blood pressure lowering action has not yet been clarified, it is considered that it is due to the ability to scavenge active oxygen because it has a correlation with the SOD-like action. Therefore, we clarify the blood pressure lowering action of the newly synthesized nitroxyl radical compound.
  • FIG. 3 shows changes in blood pressure over time after administration of the nitroxyl radical compound.
  • the blood pressure lowering action exhibited by the newly developed nitroxyl radical compound (compound C) was significantly higher than that of Tempol, which is a known nitroxyl radical compound.
  • the duration of the blood pressure lowering action lasts for a long time when the novel nitroxyl compound (Compound C) is compared with Tempol.

Abstract

Disclosed are: a process for producing a novel nitroxyl radical; and the compound. The nitroxyl radical produced by the process has a therapeutic effect on gastric ulcer and hypertension.

Description

新規ニトロキシルラジカル化合物及びその製造方法Novel nitroxyl radical compound and method for producing the same
 本出願は、2009年10月29日付出願の米国仮出願第61/256,184号に対して優先権を主張するものであり、前記仮出願の開示内容はすべて、本願発明に組み込まれるものである。 This application claims priority to US Provisional Application No. 61 / 256,184, filed Oct. 29, 2009, the entire disclosure of which is incorporated herein. is there.
 本発明は、2,6位置換ピペリジン系ニトロキシルラジカル及びその新規合成法に関する。 The present invention relates to a 2,6-position substituted piperidine nitroxyl radical and a novel synthesis method thereof.
 ニトロキシルラジカルは、比較的安定なラジカルとして知られているが、種々の活性酸素や酸化還元物質に対して鋭敏に反応することから、フリーラジカルが関与する様々な疾患に対するニトロキシルラジカルの効果が期待されている。 Nitroxyl radicals are known as relatively stable radicals, but they react sensitively to various active oxygen and redox substances, so that the effects of nitroxyl radicals on various diseases involving free radicals are reduced. Expected.
 フリーラジカルが関与する疾患は、疾患の原因となるフリーラジカル種が異なるため、特定の疾患に特異的に働く有効なラジカル補足種が望まれている。これまでの研究により、ニトロキシルラジカルの基本骨格や側鎖の違いにより、その反応性が異なることが知られている(F.Vianello,et al.,Kinetics of nitroxide spin label removal in biological systems:An in vitro and in vivo ESR study.Magn Reson Imag, 1995.13(2):219-226.;W.R.Couet,et al.,Influence of chemical structure of nitroxyl spin labels on their reduction by ascorbic acid. Tetrahedron, 1985.41(7):1165-1172.;K. Takeshita, et al., Kinetic study on ESR signal decay of nitroxyl radicals,potent redox probes for in vivo ESR spectroscopy,caused by reactive oxygen species.Biochim Biophys Acta,2002.1573(2):156-64.)。例えば、ニトロキシルラジカルは、細胞内で、アスコルビン酸やチオール(金属が触媒する反応)、ミトコンドリア呼吸鎖、NADPH、シトクロムP450などと反応することが報告され、アポトーシスの誘発や、シトクロムP450を介したHの産生などが細胞毒性の原因となっていると報告されている。一方、テトラエチル基を有するニトロキシルラジカルは、アスコルビン酸との反応性が顕著に低下していることが報告されている。 Diseases involving free radicals are different in free radical species that cause the disease, and therefore, effective radical scavenging species that specifically act on specific diseases are desired. It is known that the reactivity differs depending on the basic skeleton and side chain of the nitroxyl radical according to previous studies (F. Vianello, et al., Kinetics of nitroxide spin label removal in biological systems: An in vitro and in vivo ESR study.Magn Reson Imag, 1995.13 (2): 219-226 .; WR Couette, et al., Inflation of chemical structure of sci- tives in vitro. 1985.41 (7): 1165-1172; . Eshita, et al, Kinetic study on ESR signal decay of nitroxyl radicals, potent redox probes for in vivo ESR spectroscopy, caused by reactive oxygen species.Biochim Biophys Acta, 2002.1573 (2): 156-64).. For example, nitroxyl radicals have been reported to react with ascorbic acid, thiols (metal-catalyzed reactions), mitochondrial respiratory chain, NADPH, cytochrome P450, and the like in cells, inducing apoptosis and via cytochrome P450. It has been reported that production of H 2 O 2 and the like cause cytotoxicity. On the other hand, nitroxyl radicals having a tetraethyl group have been reported to have a significantly reduced reactivity with ascorbic acid.
 近年、イソインドリン骨格のニトロキシルラジカルのα位の置換基をエチル基にすることによって、TEMPOと比較して、p-フェニレンジアミン(N.Kocherginsky and H.M.Swartz,Chemical reactivity of nitroxides,in Nitroxide Spin Labels:Reactions in Biology and Chemistry,N.Kocherginsky and H.M.Swartz,Editors.1995,CRC Press: Boca Raton.p.27-66.)やアスコルビン酸(L. Marx,et al.,A comparative study of the reduction by ascorbate of 1,1,3,3-tetraethylisoindolin-2-yloxyl and of 1,1,3,3-tetramethylisoindolin-2-yloxyl. J Chem Soc, Perkin Trans 1,2000:1181.)による還元に対して抵抗性が増すことが報告されている。また、イミダゾール骨格のニトロキシルラジカルのα位の炭素をエチル基に置換したものが、アスコルビン酸に対して還元抵抗性を示すことが報告されている(A.A.Bobko,et al.,Reversible reduction of nitroxides to hydroxylamines:roles for ascorbate and glutathione.Free Radic Biol Med,2007.42(3):404-12.)。このように、ニトロキシルラジカルのα位の置換基を変えることによって、様々な物質に対する反応性を制御できると考えられる。 In recent years, p-phenylenediamine (N. Kocherginsky and HM Swartz, Chemical reactivity of nitroxides, in, compared with TEMPO by replacing the α-position substituent of the nitroxyl radical of the isoindoline skeleton with an ethyl group. Nitroxide Spin Labels: Reactions in Biology and Chemistry, N. Kocherginsky and HM Swartz, Editors. 1995, CRC Press: Boca Raton.p.27.66. competitive study of the reduction by as resistance to reduction by orbate of 1,1,3,3-tetraethylindolinin-2-yloxyl and of 1,1,3,3-tetramethylisoindolinin-2-yloxyl.J Chem Soc, Perkin Trans 1,2000: 1181.) It has been reported that it increases. In addition, it has been reported that a substance in which the carbon at the α-position of the nitroxyl radical of the imidazole skeleton is substituted with an ethyl group exhibits reduction resistance against ascorbic acid (AA Bobko, et al., Reverseable). reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione.Free Radic Biol Med, 2007.42 (3): 404-12.). Thus, it is thought that the reactivity with respect to various substances can be controlled by changing the substituent at the α-position of the nitroxyl radical.
 2,6位置換ニトロキシルラジカルの従来の合成法を下記に示す。 The conventional synthesis method of the 2,6-position substituted nitroxyl radical is shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 図に示すように、従来法は、反応ステップが多く煩雑であり、そのため2,6位置換ニトロキシラジカルの収率が非常に低いという課題が挙げられる。この課題を解決するために、簡便かつ高収率で2,6位に様々な置換基を導入するニトロキシラジカルの合成法の開発が望まれている。 As shown in the figure, the conventional method has many reaction steps and is complicated, and therefore, there is a problem that the yield of 2,6-substituted nitroxy radical is very low. In order to solve this problem, development of a method for synthesizing a nitroxy radical in which various substituents are introduced into the 2,6-positions in a simple and high yield is desired.
 また、当該発明者により開発されたニトロキシラジカルの製造方法が、国際特許公開第WO2008/093881号に開示されており、本特許出願は、この参照により本願明細書に組み込まれるものである。 Also, a method for producing a nitroxy radical developed by the inventor is disclosed in International Patent Publication No. WO2008 / 093881, and this patent application is incorporated herein by this reference.
 発明者らは、上記課題を解決するために、様々な検討を重ねた結果、2,6位置換ピペリジン系ニトロキシルラジカルの簡便且つ高収率合成方法を開発した。さらに、当該製造方法により得られたニトロキシルラジカルの有効性を検討したところ、アジュバンド関節炎モデルラットにおける胃粘膜損傷抑制効果、並びに血圧降下作用を有することが明らかとなった。 The inventors have conducted various studies in order to solve the above problems, and as a result, have developed a simple and high-yield synthesis method for 2,6-position substituted piperidine-based nitroxyl radicals. Furthermore, when the effectiveness of the nitroxyl radical obtained by the production method was examined, it was revealed that it has a gastric mucosal damage suppressing effect and a blood pressure lowering effect in an adjuvant arthritis model rat.
 当該発明方法によると、1,2,2,6,6-ペンタアルキルピペリジン-4-オンを出発原料として、アンモニウム塩の存在下、カルボニル化合物を反応させると、2及び6位が置換されたピペリドンが生成され、更に、この化合物を酸化することにより、2及び6位が置換されたニトロキシラジカルが得られる。 According to the method of the present invention, when 1,2,2,6,6-pentaalkylpiperidin-4-one is used as a starting material and a carbonyl compound is reacted in the presence of an ammonium salt, piperidone substituted at the 2- and 6-positions Further, by oxidizing this compound, a nitroxy radical substituted at the 2- and 6-positions can be obtained.
 本願発明の特徴としては、窒素原子上にメチル基などのアルキル基を有する、2,6置換ピペリジンを用いることである。窒素上にメチル基を有する1,2,2,6,6-ペンタメチルピペリジン-4-オンを用いた場合、2,2,6,6-テトラメチルピペリジン-4-オンと比べて、顕著な収率の上昇並びに反応促進効果が見られた。従って、当該反応は、窒素上にメチル基などのアルキル基が置換されているピペリジン化合物を出発物質として用いることが最も重要である。 A feature of the present invention is that a 2,6-substituted piperidine having an alkyl group such as a methyl group on a nitrogen atom is used. When 1,2,2,6,6-pentamethylpiperidin-4-one having a methyl group on nitrogen is used, it is remarkable compared to 2,2,6,6-tetramethylpiperidin-4-one An increase in yield and a reaction promoting effect were observed. Therefore, in this reaction, it is most important to use a piperidine compound in which an alkyl group such as a methyl group is substituted on nitrogen as a starting material.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本願製造方法に使用される前記ケトンとしては、例えば、シクロヘキサノン、ピラン環、チオピラン環、アセトアミノフェンなどの環状・鎖状カルボニル化合物やベンズアルデヒドなどが用いられる。 Examples of the ketone used in the production method of the present application include cyclic / chain carbonyl compounds such as cyclohexanone, pyran ring, thiopyran ring, acetaminophen, and benzaldehyde.
 具体的なカルボニル化合物と対応する生成物(ピペリドン)を表2に示す。 Table 2 shows specific carbonyl compounds and corresponding products (piperidone).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記表から明らかなように、環状構造を有するカルボニル化合物と、直鎖状カルボニル化合物では、ピロリドン生成物に対して異なる選択性が見られる。つまり、環構造を有するカルボニル化合物を原料として用いた場合、二置換体が主生成物として得られるのに対して、直鎖状のカルボニル化合物を原料として用いた場合には、一置換体が主生成物として得られる。また、フェニル基をもつカルボニル化合物の場合では、一置換体が選択的に得られる。さらに、2-アダマンタノンをカルボニル化合物として用いた場合、一置換体と二置換体の両方が得られる。 As is apparent from the above table, the carbonyl compound having a cyclic structure and the linear carbonyl compound have different selectivity for the pyrrolidone product. That is, when a carbonyl compound having a ring structure is used as a raw material, a disubstituted product is obtained as a main product, whereas when a linear carbonyl compound is used as a raw material, a monosubstituted product is mainly used. Obtained as product. In the case of a carbonyl compound having a phenyl group, a mono-substituted product is selectively obtained. Furthermore, when 2-adamantanone is used as the carbonyl compound, both mono- and di-substituted products are obtained.
 上述したように、ケトンの立体構造により、ピぺリドン誘導体生成物に対する一置換体及び二置換体の選択性が異なること、並びに、NHClを15NHClに変えてTEMPONEを出発物質に用いて当該発明を行うと、[15N]TEMPONEが得られることなどから、以下のスキームで示される反応機構が推測される。 As described above, the selectivity of mono- and di-substituents with respect to the piperidone derivative product varies depending on the steric structure of the ketone, and TEMPONE is changed from NH 4 Cl to 15 NH 4 Cl. When the invention is carried out using the above, the reaction mechanism shown in the following scheme is presumed because [ 15 N] TEMPONE is obtained.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 当該発明の製造方法において、ピぺリドン誘導体の生成工程において用いられる塩基は、塩化アンモニウムが使用されるが、これに限られるものではない。 In the production method of the present invention, ammonium chloride is used as the base used in the production step of the piperidone derivative, but is not limited thereto.
 また、塩化アンモニウムと共に、水酸化セシウム(CsOH)、又はベンジルトリメチルアンモニウムヒドロキシド(トリトンB)を用いた場合、収率の向上が見られる。 In addition, when cesium hydroxide (CsOH) or benzyltrimethylammonium hydroxide (Triton B) is used together with ammonium chloride, the yield is improved.
 ピぺリドン誘導体からニトロキシラジカル誘導体への酸化は、一般に、タングステン触媒と過酸化水素が用いられるが、これに限られるものではない。2,6位アダマンタン置換ニトロキシルラジカルへの酸化には、MCPBAが用いられる。 The oxidation of piperidone derivatives to nitroxy radical derivatives generally uses a tungsten catalyst and hydrogen peroxide, but is not limited thereto. MCPBA is used for oxidation to the 2,6-positioned adamantane-substituted nitroxyl radical.
 当該発明の製造方法により得られるニトロキシラジカル誘導体を、10mM PB(pH7.4)に溶解し(50μM)、室温下測定することで、ESRパラメーターを算出した。ただし、溶解性の点から、12は0.5%EtOHを含む。結果を下記表に示した。 The ESR parameter was calculated by dissolving the nitroxy radical derivative obtained by the production method of the present invention in 10 mM PB (pH 7.4) (50 μM) and measuring at room temperature. However, 12 contains 0.5% EtOH from the viewpoint of solubility. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 本発明の一実施形態によると、当該発明は、化学式1で示されるニトロキシラジカル化合物の製造方法であって、
Figure JPOXMLDOC01-appb-C000017
 式中、
 R~Rは、独立して、C~C10のアルキルであるか、或いは、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHSO(CH、(CHNX(CH、(CHCY(CH
 Xは、CHCO、CFCO、又はRCOであり、
 Yは、酸素(=O)、(OCHであり、
 nは2~4の整数であり、
 当該方法は、
 化学式2で示される化合物であって、
Figure JPOXMLDOC01-appb-C000018
According to one embodiment of the present invention, the present invention is a method for producing a nitroxy radical compound represented by Formula 1,
Figure JPOXMLDOC01-appb-C000017
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, or R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2) n O (CH 2) n, (CH 2) n SO 2 (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer from 2 to 4,
The method is
A compound represented by Formula 2,
Figure JPOXMLDOC01-appb-C000018
 式中、
 R~Rは、独立して、C~C20のアルキルである、化学式2で示される化合物と、
 化学式3で示される化合物であって、
Figure JPOXMLDOC01-appb-C000019
Where
R 5 to R 8 are independently a compound represented by Formula 2, which is C 1 -C 20 alkyl;
A compound represented by Formula 3,
Figure JPOXMLDOC01-appb-C000019
 式中、
 R~Rは、独立して、C~C10のアルキル、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHS(CH、(CHNX(CH、(CHCY(CH
 Xは、CHCO、CFCO、又はRCOであり、
 Yは、酸素(=O)、(OCHであり、
 nは2~4の整数である、化学式3で示される化合物と
 をアンモニウム塩の存在下にて反応させることにより、2,6置換-4-ピペリドン誘導体を生成させる工程と、
 前記2,6置換-4-ピペリドン誘導体を酸化させる工程と、
 を有する、前記ニトロキシラジカル化合物の製造方法が提供される。
Where
R 1 to R 4 are independently C 1 to C 10 alkyl, R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2 ) n O ( CH 2) n, (CH 2 ) n S (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
X is CH 3 CO, CF 3 CO, or R 1 CO;
Y is oxygen (= O), a (OCH 2) n,
n is an integer of 2 to 4, and a compound represented by Chemical Formula 3 is reacted in the presence of an ammonium salt to produce a 2,6-substituted-4-piperidone derivative;
Oxidizing the 2,6-substituted-4-piperidone derivative;
A process for producing the nitroxy radical compound is provided.
 また、本発明に係る他の一実施形態によれば、上記製造方法によって製造された化合物が提供される。この場合、この化合物は、胃粘膜損傷(胃潰瘍)又は高血圧の治療に使用されることができる。 Also, according to another embodiment of the present invention, a compound produced by the above production method is provided. In this case, the compound can be used for the treatment of gastric mucosal damage (gastric ulcer) or hypertension.
 さらに、本発明に係る別の一実施形態によれば、上記化合物と薬学的に許容可能な担体とを有する医薬組成物が提供される。 Furthermore, according to another embodiment of the present invention, there is provided a pharmaceutical composition comprising the above compound and a pharmaceutically acceptable carrier.
 また、本発明に係る他の一実施形態によれば、胃粘膜損傷(胃潰瘍)を治療する方法であって、この方法は、上記化合物を対象に投与する工程を含むものである方法、並びに高血圧を治療する方法であって、この方法は、上記化合物を対象に投与する工程を含むものである方法が提供される。この場合、当該2つの方法において、前記化合物は、約0.0001~4g/日の量で投与されることが好ましい。さらに、胃粘膜損傷(胃潰瘍)を治療する際に、当該化合物が18mMである場合、90μmol/kgの用量で投与されることができる。 In addition, according to another embodiment of the present invention, a method for treating gastric mucosal damage (gastric ulcer), the method comprising the step of administering the compound to a subject, and treating hypertension A method is provided comprising the step of administering the compound to a subject. In this case, in the two methods, the compound is preferably administered in an amount of about 0.0001-4 g / day. Further, in treating gastric mucosal damage (gastric ulcer), when the compound is 18 mM, it can be administered at a dose of 90 μmol / kg.
図1は、本発明の一実施形態に係るニトロキシルラジカル化合物の細胞毒性の評価を示すグラフである。FIG. 1 is a graph showing the evaluation of cytotoxicity of a nitroxyl radical compound according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るニトロキシルラジカル化合物の胃粘膜に与える影響を示すグラフである。FIG. 2 is a graph showing the effect of the nitroxyl radical compound according to one embodiment of the present invention on the gastric mucosa. 図3は、本発明の一実施形態に係るニトロキシルラジカル化合物の血圧変動に及ぼす影響を示すグラフである。FIG. 3 is a graph showing the effect of a nitroxyl radical compound according to an embodiment of the present invention on blood pressure fluctuations.
 以下に、実施例を用いて本発明について説明するが、本発明は、これらに限定されるものではないことが理解される。 Hereinafter, the present invention will be described with reference to examples, but it is understood that the present invention is not limited thereto.
 試薬はSigma-Aldrich、和光純薬工業株式会社より購入し、精製せず用いた。融点は微量融点測定装置MP-500P(Yanaco)を用いて測定した。質量分析はJMS-600H(JEOL)にて測定し、3-ニトロベンジルアルコールをマトリックスとして用いた。IRスペクトルはFT/IR-4200(JASCO)を用い、溶液法または全反射法にて測定した。H-NMRはUnity INOVA 400(Varian)を用いて測定し、標準物質としてtetramethylsilane(TMS)を用いた。化学シフト(δ)はTMS(0ppm)を基準とし、カップリング定数はHz単位で示した。元素分析は九州大学理学部中央元素分析所に測定を依頼した。 Reagents were purchased from Sigma-Aldrich, Wako Pure Chemical Industries, Ltd. and used without purification. The melting point was measured using a micro melting point measuring device MP-500P (Yanaco). Mass spectrometry was measured with JMS-600H (JEOL), and 3-nitrobenzyl alcohol was used as a matrix. The IR spectrum was measured by a solution method or a total reflection method using FT / IR-4200 (JASCO). 1 H-NMR was measured using Unity INOVA 400 (Varian), and tetramethylsilane (TMS) was used as a standard substance. The chemical shift (δ) was based on TMS (0 ppm), and the coupling constant was expressed in Hz. Elemental analysis was requested from Kyushu University Faculty of Science, Central Elemental Analysis Laboratory.
 7-Azadispiro[5.1.5.3]hexadecan-15-one(3a)
 方法A
 2,2,6,6-テトラメチルピペリジン-4-オン(1)1.55g(10mmol)とシクロヘキサノン(a)2.94g(30mmol)をDMSO 15mlに溶解し、NHCl 3.21g(60mmol)を室温下で加えた。この溶液を60℃で20時間撹拌した。水を40mL加え希釈し、7%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層を10%KCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、水洗を行い、有機層を硫酸ナトリウム乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、再結晶を行い白色結晶376mg(収率:16%)を得た。
7-Azadispiro [5.1.5.3] hexadecan-15-one (3a)
Method A
1.55 g (10 mmol) of 2,2,6,6-tetramethylpiperidin-4-one (1) and 2.94 g (30 mmol) of cyclohexanone (a) were dissolved in 15 ml of DMSO, and 3.21 g (60 mmol) of NH 4 Cl. ) Was added at room temperature. The solution was stirred at 60 ° C. for 20 hours. The reaction mixture was diluted by adding 40 mL of water and acidified with 7% aqueous hydrochloric acid. This was washed with ether and the aqueous layer was made alkaline with 10% K 2 CO 3 aqueous solution. Further, this was extracted with ethyl acetate, washed with water, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the residue was purified by silica gel column chromatography (hexane, ethyl acetate) and recrystallized to obtain 376 mg (yield: 16%) of white crystals.
 方法B
 1,2,2,6,6-ペンタメチルピペリジン-4-オン(2)1.69g(10mmol)とシクロヘキサノン(a)2.94g(30mmol)をDMSO15mlに溶解し、NHCl3.21g(60mmol)を室温下で加えた。この溶液を60℃で5時間撹拌した。水を40mL加え希釈し、7%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層を10%KCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、水洗を行い、有機層を硫酸ナトリウム乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、再結晶を行い白色結晶799mg(収率:34%)を得た。
mp:103℃(hexane-EtOAc,lit.mp 101-103℃[19]);
MS(FAB):236.3(M+1);
νmax/cm-1:1689(C=O);
H-NMR(400MHz;CDCl)δ(ppm):1.36-1.46(8H,m),1.47-1.56(8H,m),1.68-1.71(4H,m),2.31(4H,s);
Found:C,76.51;H,10.68;N,5.93%.Calc.forC1525NO:C,76.55;H,10.71;N,5.95%.
Method B
1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one (2) and 2.94 g (30 mmol) of cyclohexanone (a) were dissolved in 15 ml of DMSO, and 3.21 g (60 mmol) of NH 4 Cl. ) Was added at room temperature. The solution was stirred at 60 ° C. for 5 hours. The reaction mixture was diluted by adding 40 mL of water and acidified with 7% aqueous hydrochloric acid. This was washed with ether and the aqueous layer was made alkaline with 10% K 2 CO 3 aqueous solution. Further, this was extracted with ethyl acetate, washed with water, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the product was purified by silica gel column chromatography (hexane, ethyl acetate) and recrystallized to obtain 799 mg (yield: 34%) of white crystals.
mp: 103 ° C. (hexane-EtOAc, lit. mp 101-103 ° C. [19]);
MS (FAB + ): 236.3 (M ++ 1);
ν max / cm −1 : 1689 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.36-1.46 (8H, m), 1.47-1.56 (8H, m), 1.68-1.71 (4H) , M), 2.31 (4H, s);
Found: C, 76.51; H, 10.68; N, 5.93%. Calc. forC 15 H 25 NO: C, 76.55; H, 10.71; N, 5.95%.
 7-Aza-3,11-dioxadispiro[5.1.5.3]hexadecan-15-one (3b)
 方法Bに従って、シクロヘキサノン(a)をテトラヒドロ-4H-ピラン-4-オン(b)3.00g(30mmol)に変えて行った。得られた結晶はHexane-EtOAcから再結晶した。
収率:32%; 
mp:167℃;
MS(FAB):240.1 (M+1); 
νmax/cm-1:1692(C=O); 
H-NMR(400MHz;CDCl)δ(ppm):1.64(8H,t,J=5.6Hz),2.40(4H,s),3.54-3.60(4H,m),3.81-3.87(4H,m);
Found:C,65.17;H,8.85;N,5.86%.Calc.for C1321NO:C,65.25;H,8.84;N,5.85%.
7-Aza-3,11-dioxadaspiro [5.1.5.3] hexadecan-15-one (3b)
According to Method B, cyclohexanone (a) was changed to 3.00 g (30 mmol) of tetrahydro-4H-pyran-4-one (b). The obtained crystals were recrystallized from Hexane-EtOAc.
Yield: 32%;
mp: 167 ° C;
MS (FAB + ): 240.1 (M ++ 1);
ν max / cm −1 : 1692 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.64 (8H, t, J = 5.6 Hz), 2.40 (4H, s), 3.54 to 3.60 (4H, m ), 3.81-3.87 (4H, m);
Found: C, 65.17; H, 8.85; N, 5.86%. Calc. for C 13 H 21 NO 3: C, 65.25; H, 8.84; N, 5.85%.
 7-Aza-3,11-dithiadispiro[5.1.5.3]hexadecan-15-one(3c)
 方法Bに従ってシクロヘキサノン(a)をテトラヒドロ-4H-チオピラン-4-オン(c) 3.49g(30mmol)に変えて行った。
収率:30%; 
mp:155-157℃(EtOAc);
MS(FAB):272.2(M+1); 
νmax/cm-1:1697(C=O); 
H-NMR(400MHz;CDCl)δ(ppm):0.8(1s,br s),1.75-1.90(8H,m),2.27(4H,s),2.43-2.50(4H,m),2.88-2.95(4H,m); 
Found:C,57.54;H,7.78;N,5.11%.Calc.for C1321NOS:C,57.52;H,7.80;N,5.16%.
7-Aza-3,11-dithiadispiro [5.1.5.3] hexadecan-15-one (3c)
According to Method B, cyclohexanone (a) was changed to 3.49 g (30 mmol) of tetrahydro-4H-thiopyran-4-one (c).
Yield: 30%;
mp: 155-157 ° C. (EtOAc);
MS (FAB + ): 272.2 (M ++ 1);
ν max / cm −1 : 1697 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 0.8 (1 s, br s), 1.75-1.90 (8 H, m), 2.27 (4 H, s), 2.43 -2.50 (4H, m), 2.88-2.95 (4H, m);
Found: C, 57.54; H, 7.78; N, 5.11%. Calc. for C 13 H 21 NOS 2: C, 57.52; H, 7.80; N, 5.16%.
 3,11-Diacetyl-3,7,11-trithiadispiro[5.1.5.3]hexadecan-15-one (3d)
9-Acetyl-2,2-dimethyl-1,9-diazaspiro[5.5]undecan-4-one(3d’)
 方法Bと同様に1,2,2,6,6-ペンタメチルピペリジン-4-オン(2)0.845 g (5mmol)、1-アセチル-4-ピペリドン(d)2.12g(15mmol)、NHCl 1.61g(30mmol)、DMSO 12mlの混合物を58~62℃で8時間加熱撹拌する。水40mLで希釈し、7%塩酸水溶液で酸性にした後、エーテルで中性部分を抽出除去した。水層を10%KCO水溶液でpH 9~10に調整し、クロロホルムで抽出し、硫酸ナトリウムで乾燥した。溶媒を減圧下、留去して得られた油状物質を、シリカゲルカラムクロマトグラフィー(1~5%MeOH/CHCl)で精製し、hexane-EtOAcから再結晶を行い、3d 328mg、3d’556mgを得た。
3d;
収率:21%; 
mp:164.2℃;
MS(FAB):322.3(M+1); 
νmax/cm-1:1687(C=O),1634(N-Ac); 
H-NMR(400MHz;CDCl)δ(ppm):1.58-1.66(8H,m),2.08(6H,s),2.38(4H,s),3.37-3.71(8H,m);
Found:C,62.92;H,8.62;N,12.12%.Calc.for C1727:C,63.53;H,8.47;N,13.07%.
3d’;
収率:47%; 
mp:80.4℃(hexane-EtOAc); 
MS(FAB):239.2(M+1);
H-NMR(400MHz;CDCl)δ(ppm):1.21(6H,d,J=13.6Hz),1.50-1.69(4H,m),2.05(3H,s),2.28(4H,d,J=9.2Hz),3.34-3.78(4H,m);
Found:C,64.86;H,9.28;N,11.67%.Calc.for C1322:C,65.51;H,9.30;N,11.75%.
3,11-Diacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3d)
9-Acetyl-2,2-dimethyl-1,9-diazaspiro [5.5] undecan-4-one (3d ′)
As in Method B, 1,2,2,6,6-pentamethylpiperidin-4-one (2) 0.845 g (5 mmol), 1-acetyl-4-piperidone (d) 2.12 g (15 mmol), A mixture of 1.61 g (30 mmol) of NH 4 Cl and 12 ml of DMSO is heated and stirred at 58 to 62 ° C. for 8 hours. After diluting with 40 mL of water and acidifying with 7% aqueous hydrochloric acid, the neutral part was extracted and removed with ether. The aqueous layer was adjusted to pH 9-10 with 10% K 2 CO 3 aqueous solution, extracted with chloroform, and dried over sodium sulfate. The oily substance obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (1-5% MeOH / CHCl 3 ) and recrystallized from hexane-EtOAc to obtain 3d 328 mg, 3d′556 mg. Obtained.
3d;
Yield: 21%;
mp: 164.2 ° C;
MS (FAB + ): 322.3 (M ++ 1);
ν max / cm −1 : 1687 (C═O), 1634 (N- Ac );
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.58-1.66 (8H, m), 2.08 (6H, s), 2.38 (4H, s), 3.37- 3.71 (8H, m);
Found: C, 62.92; H, 8.62; N, 12.12%. Calc. for C 17 H 27 N 3 O 3: C, 63.53; H, 8.47; N, 13.07%.
3d ′;
Yield: 47%;
mp: 80.4 ° C. (hexane-EtOAc);
MS (FAB + ): 239.2 (M ++ 1);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.21 (6H, d, J = 13.6 Hz), 1.50-1.69 (4H, m), 2.05 (3H, s ), 2.28 (4H, d, J = 9.2 Hz), 3.34-3.78 (4H, m);
Found: C, 64.86; H, 9.28; N, 11.67%. Calc. for C 13 H 22 N 2 O 2: C, 65.51; H, 9.30; N, 11.75%.
 1,4,14,17-Tetraoxa-9-azatetraspiro[4.2.1.2.4.2.3.2]tetracosan-21-one(3e)
 方法Bに従ってシクロヘキサノン(a)を1,4-シクロヘキサンジオンモノエチレンアセタール(e)4.69g(30mmol)に変えて行い、Hexane-EtOAcから再結晶を行い3e 1.12gを得た。
収率:32%;
mp:190.6℃;
MS(FAB):352.4(M+1).
νmax/cm-1:1699(C=O),1083(-O-CH-CH-O-);
H-NMR(400MHz;CDCl)δ(ppm):1.56-1.74(12H,m),1.85-1.92(4H,m),2.32(4H,s),3.93(8H,t,J=2.8Hz);
Found:C,64.95;H,8.30;N,4.05%.Calc.for C1929NO:C,64.93;H,8.32;N,3.99%.
1,4,14,17-Tetraoxa-9-azetraspiro [4.2.1.2.4.2.3.2] tetracosan-21-one (3e)
According to Method B, cyclohexanone (a) was changed to 4.69 g (30 mmol) of 1,4-cyclohexanedione monoethylene acetal (e) and recrystallized from Hexane-EtOAc to obtain 3e 1.12 g.
Yield: 32%;
mp: 190.6 ° C;
MS (FAB <+> ): 352.4 (M ++ 1).
ν max / cm −1 : 1699 (C═O), 1083 (—O—CH 2 —CH 2 —O—);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.56-1.74 (12H, m), 1.85-1.92 (4H, m), 2.32 (4H, s), 3.93 (8H, t, J = 2.8 Hz);
Found: C, 64.95; H, 8.30; N, 4.05%. Calc. for C 19 H 29 NO 5: C, 64.93; H, 8.32; N, 3.99%.
 2,2,6-Trimethyl-6-phenylpiperidin-4-one (3f)
 方法Bに従ってシクロヘキサノン(a)をアセトフェノン(f) 3.60 g (30 mmol)に変えて行った。
収率:16%;
mp:109.5℃(EtOAc);
MS(FAB):218.2(M+1).
H-NMR(400MHz;CDCl)δ(ppm):1.20(3H,s),1.31(3H,s),2.23-2.50(4H,m),2.34(3H,s),4.17-4.20(1H,m),7.11-7.33(4H,m);
Found:C,77.92;H,8.78;N,6.44%.Calc.for C1929NO:C,77.38;H,8.81;N,6.45%.
2,2,6-Trimethyl-6-phenylpiperidin-4-one (3f)
According to Method B, cyclohexanone (a) was changed to 3.60 g (30 mmol) of acetophenone (f).
Yield: 16%;
mp: 109.5 ° C. (EtOAc);
MS (FAB <+> ): 218.2 (M ++ 1).
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.20 (3H, s), 1.31 (3H, s), 2.23 to 2.50 (4H, m), 2.34 ( 3H, s), 4.17-4.20 (1H, m), 7.11-7.33 (4H, m);
Found: C, 77.92; H, 8.78; N, 6.44%. Calc. for C 19 H 29 NO 5: C, 77.38; H, 8.81; N, 6.45%.
 Methyl 3-(2,6,6-trimethyl-4-oxopiperidin-2-yl)propanoate(3g)
 方法Bに従ってシクロヘキサノンをレブリン酸メチル(g)に変えて行った。この化合物は、二置換体との混合物が得られており、単離には至っていない。構造の同定は、3gを酸化して得られるMethyl 3-(2,6,6-trimethyl-4-oxopiperidin-1-oxyl-2-yl)propanoate(4g)で行った。
Methyl 3- (2,6,6-trimethyl-4-oxopiperidin-2-yl) propanoate (3g)
According to Method B, cyclohexanone was changed to methyl levulinate (g). This compound has been obtained as a mixture with a disubstituted product and has not yet been isolated. The structure was identified by methyl 3- (2,6,6-trimethyl-4-oxoperidin-1-oxyl-2-yl) propanoate (4 g) obtained by oxidizing 3 g.
 2,2-Dimethyl-6-p-tolylpiperidin-4-one(3h)
 方法Bに従ってシクロヘキサノン(a)をp-トルアルデヒド(h)3.60g(30mmol)に変えて行った。
収率:10%;
mp:109.5℃(hexane);
MS(FAB):218.2(M+1);
νmax/cm-1:1693(C=O);
H-NMR(500MHz;CDCl)δ(ppm):1.20(3H,s),1.31(3H,s),1.53(1H,brs),2.25-2.50(4H,m),2.34(3H,s),4.18(1H,dd,J=11.5Hz,J=3.5Hz),7.16(2H,d,J=8.0Hz),7.29(2H,d,J=8.0Hz);
Found:C,77.55;H,8.82;N,6.53%.Calc.for C1419NO:C,77.38;H,8.81;N,6.45%.
2,2-Dimethyl-6-p-tolypiperidin-4-one (3h)
According to Method B, cyclohexanone (a) was changed to 3.60 g (30 mmol) of p-tolualdehyde (h).
Yield: 10%;
mp: 109.5 ° C (hexane);
MS (FAB + ): 218.2 (M ++ 1);
ν max / cm −1 : 1693 (C═O);
1 H-NMR (500 MHz; CDCl 3 ) δ (ppm): 1.20 (3H, s), 1.31 (3H, s), 1.53 (1H, brs), 2.25 to 2.50 ( 4H, m), 2.34 (3H, s), 4.18 (1H, dd, J 1 = 11.5 Hz, J 2 = 3.5 Hz), 7.16 (2H, d, J = 8.0 Hz) ), 7.29 (2H, d, J = 8.0 Hz);
Found: C, 77.55; H, 8.82; N, 6.53%. Calc. for C 14 H 19 NO: C , 77.38; H, 8.81; N, 6.45%.
 3,11-Trifluoroacetyl-3,7,11-trithiadispiro[5.1.5.3]hexadecan-15-one(3i)
9-Trifluoroacetyl-2,2-dimethyl-1,9-diazaspiro[5.5]undecan-4-one(3i’)
 方法Bに従ってシクロヘキサノン(a)を1-トリフルオロアセチル-4-ピペリドン(i)5.85g(30mmol)に変えて行った。EtOAcで中性部分を抽出除去し、pH9~10に調整後、CHClで抽出した。Hexane-EtOAcから再結晶し、3i 192mg、3i’126mgを得た。
3i;
収率:4%; 
mp:172.6-173.2℃;
MS(FAB):430.2(M+1);
νmax/cm-1:1688(-N-CO-CF);
H-NMR(400MHz;CDCl)δ(ppm):1.64-1.77(8H,m),2.42(4H,s),3.57-3.82(8H,m);
Found:C,47.62;H,5.01;N,9.79%.Calc.for C1721:C,47.56;H,4.93;N,9.79%.
3i’;
収率:4%; 
mp:85.8-86.4℃(hexane-EtOAc);
MS(FAB):293.1(M+1);
νmax/cm-1:1692(-N-CO-CF);
H-NMR(400MHz;CDCl)δ(ppm):1.23(3H,s),1.25(3H,s),1.62-1.80(4H,m),2.30(2H,s),2.33(2H,s),3.54-3.96(4H,m),;
Found:C,53.30;H,6.44;N,9.58%.Calc.for C1319:C,53.42;H,6.55;N,9.58%.
3,11-Trifluoroacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3i)
9-Trifluoroacetyl-2,2-dimethyl-1,9-diazaspiro [5.5] undecan-4-one (3i ′)
According to Method B, cyclohexanone (a) was changed to 5.85 g (30 mmol) of 1-trifluoroacetyl-4-piperidone (i). The neutral part was removed by extraction with EtOAc, adjusted to pH 9-10, and extracted with CHCl 3 . Recrystallization from Hexane-EtOAc gave 3i 192 mg, 3i ′ 126 mg.
3i;
Yield: 4%;
mp: 172.6-173.2 ° C;
MS (FAB + ): 430.2 (M ++ 1);
ν max / cm −1 : 1688 ( —N—CO 2 —CF 3 );
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.64-1.77 (8H, m), 2.42 (4H, s), 3.57-3.82 (8H, m);
Found: C, 47.62; H, 5.01; N, 9.79%. Calc. for C 17 H 21 F 6 N 3 O 3: C, 47.56; H, 4.93; N, 9.79%.
3i ';
Yield: 4%;
mp: 85.8-86.4 ° C (hexane-EtOAc);
MS (FAB + ): 293.1 (M ++ 1);
ν max / cm −1 : 1692 ( —N—CO 2 —CF 3 );
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.23 (3H, s), 1.25 (3H, s), 1.62-1.80 (4H, m), 2.30 ( 2H, s), 2.33 (2H, s), 3.54-3.96 (4H, m),
Found: C, 53.30; H, 6.44; N, 9.58%. Calc. for C 13 H 19 F 3 N 2 O 2: C, 53.42; H, 6.55; N, 9.58%.
 方法C
 7-Aza-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4a)
 7-Azadispiro[5.1.5.3]hexadecan-15-one(3a)235mg(0.99mmol)をエタノール10mLに溶解し、NaWO・2HO 50mg(0.15mmol)を加え、この溶液にH(30%)2mLを徐々に加えた。これを室温下、24時間撹拌した。その後、KCOを加えクエンチし、クロロホルムで抽出した。続いて、溶媒を完全に留去し、再結晶(ヘキサン)により精製し、微黄色鱗片状結晶208mg(収率:83%)を得た。
mp:114.2°C(lit.mp 114-116°C);
MS (FAB):250.3(M); 
νmax/cm-1:1717(C=O); 
Found:C,71.86;H,9.62;N,5.57%.Calc.for C1524NO:C,71.96;H,9.66;N,5.59%.
Method C
7-Aza-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4a)
235 mg (0.99 mmol) of 7-Azadispiro [5.1.5.3] hexadecan-15-one (3a) was dissolved in 10 mL of ethanol, and 50 mg (0.15 mmol) of Na 2 WO 4 · 2H 2 O was added, To this solution was slowly added 2 mL of H 2 O 2 (30%). This was stirred at room temperature for 24 hours. Then quenched added K 2 CO 3, and extracted with chloroform. Subsequently, the solvent was completely distilled off and purified by recrystallization (hexane) to obtain 208 mg (yield: 83%) of slightly yellow scale crystals.
mp: 114.2 ° C (lit. mp 114-116 ° C);
MS (FAB <+> ): 250.3 (M <+> );
ν max / cm −1 : 1717 (C═O);
Found: C, 71.86; H, 9.62; N, 5.57%. Calc. for C 15 H 24 NO 2: C, 71.96; H, 9.66; N, 5.59%.
 7-Aza-3,11-dioxa-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4b)
方法Cに従って7-Aza-3,11-dioxadispiro[5.1.5.3]hexadecan-15-one(3b)130mg(0.54mmol)を原料として行った。EtOAcから再結晶し、4b 110mg(0.43mmol)を得た。
収率:80%;
mp:149.5°C;
MS(FAB):255.2(M+2);
νmax/cm-1:1717(C=O); 
Found:C,61.23;H,7.97;N,5.40%.Calc.for C1320NO:C,61.40;H,7.93;N,5.51%.
7-Aza-3,11-dioxa-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4b)
According to Method C, 7-Aza-3,11-dioxadaspiro [5.1.5.3] hexadecan-15-one (3b) 130 mg (0.54 mmol) was used as a starting material. Recrystallization from EtOAc gave 4 mg 110 mg (0.43 mmol).
Yield: 80%;
mp: 149.5 ° C;
MS (FAB <+> ): 255.2 (M < + > + 2);
ν max / cm −1 : 1717 (C═O);
Found: C, 61.23; H, 7.97; N, 5.40%. Calc. for C 13 H 20 NO 4: C, 61.40; H, 7.93; N, 5.51%.
 7-Aza-3,11-dithia-3,3,11,11,15-pentaoxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4c)
 7-Aza-3,11-dithiadispiro[5.1.5.3]hexadecan-15-one(3c)210mg(0.78mmol)、NaWO・2HO 118mg(0.36mmol)、MeOH 3ml、及び、H(30%)1mLを混合し、室温で48時間撹拌した。KCOを加え、CHCl:MeOH=3:1の混合溶媒で抽出し、溶媒を留去した。これを、水から再結晶し4c 80mg(0.23mmol)を得た。
収率:29%;
mp:212.5-214.2°C;
MS(FAB):351.0(M+1);
νmax/cm-1:1712(C=O),1287(SO),1122(SO);
Found:C,44.38;H,5.79;N,3.93%.Calc.for C1321NO:C,44.56;H,5.75;N,4.00%.
7-Aza-3,11-dithia-3,3,11,11,15-pentaoxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4c)
7-Aza-3,11-dithiadispiro [5.1.5.3] hexadecan-15-one (3c) 210 mg (0.78 mmol), Na 2 WO 4 .2H 2 O 118 mg (0.36 mmol), MeOH 3 ml And 1 mL of H 2 O 2 (30%) were mixed and stirred at room temperature for 48 hours. K 2 CO 3 was added, extraction was performed with a mixed solvent of CHCl 3 : MeOH = 3: 1, and the solvent was distilled off. This was recrystallized from water to obtain 80 mg (0.23 mmol) of 4c.
Yield: 29%;
mp: 212.5-214.2 ° C;
MS (FAB <+> ): 351.0 (M ++ 1);
ν max / cm −1 : 1712 (C═O), 1287 (SO 2 ), 1122 (SO 2 );
Found: C, 44.38; H, 5.79; N, 3.93%. Calc. for C 13 H 21 NO 5 S 2: C, 44.56; H, 5.75; N, 4.00%.
 3,11-Diacetyl-15-oxo-3,7,11-trithiadispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4d)
 方法Cに従って3,11-Diacetyl-3,7,11-trithiadispiro[5.1.5.3]hexadecan-15-one(3d)を原料として行った。
mp:162-163°C;
MS(FAB):337.3(M+1);
νmax/cm-1:1720(C=O),1637(-N-CO-CH);
3,11-Diacetyl-15-oxo-3,7,11-trithiadispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4d)
According to Method C, 3,11-Diacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3d) was used as a starting material.
mp: 162-163 ° C;
MS (FAB + ): 337.3 (M ++ 1);
ν max / cm −1 : 1720 (C═O), 1637 ( —N—CO 2 —CH 3 );
 1,4,14,17-Tetraoxa-9-aza-21-oxotetraspiro[4.2.1.2.4.2.3.2]tetracos-9-yl-9-oxyl(4e)
 方法Cに従って1,4,14,17-Tetraoxa-9-azatetraspiro[4.2.1.2.4.2.3.2]tetracosan-21-one(3e)を原料として行った。
mp:183.2-184.2°C;
MS(FAB):367.3(M+1);
νmax/cm-1:1713(C=O);
Found:C,62.18;H,7.38;N,3.88%.Calc.for C1928NO:C,62.28;H,7.70;N,3.82%.
1,4,14,17-Tetraoxa-9-aza-21-oxotetraspiro [4.2.1.2.4.2.3.2.2] tetracos-9-yl-9-oxyl (4e)
According to Method C, 1,4,14,17-Tetraoxa-9-azetratraspiro [4.2.1.2.4.2.3.2.2] tetracosan-21-one (3e) was used as a starting material.
mp: 183.2-184.2 ° C;
MS (FAB + ): 367.3 (M ++ 1);
ν max / cm −1 : 1713 (C═O);
Found: C, 62.18; H, 7.38; N, 3.88%. Calc. for C 19 H 28 NO 6: C, 62.28; H, 7.70; N, 3.82%.
 7-Aza-3,11,15-trioxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4e’)
 1,4,14,17-Tetraoxa-9-azatetraspiro[4.2.1.2.4.2.3.2]tetracosan-21-one(3e)536mg(1.53mmol)を水2mLと酢酸5mLに溶解し、10%HClを滴下し、70℃で撹拌した。この溶液を水で希釈し、pHを7に調整し、酢酸エチルで抽出した。有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィーhexane/EtOAc,1:4)で分離精製し、再結晶(ヘキサン、酢酸エチル)により7-Aza-3,11,15-trioxodispiro[5.1.5.3]hexadecaneの白色個体330mg(1.25mmol)を得た。
収率:82%
mp:99.7℃;
MS(FAB):264.2(M+1);
νmax/cm-1:1705(C=O); 
H-NMR(400MHz;CDCl)δ(ppm):1.24(1H,brs),1.87-2.05(8H,m),2.29-2.67(8H,m),2.49(4H,s);
Found:C,76.51;H,10.68;N,5.93%.Calc.for C1525NO:C,76.55;H,10.71;N,5.95%.
 続いて、得られた7-Aza-3,11,15-trioxodispiro[5.1.5.3]hexadecane 215mg(0.82mmol)を方法Cに従って酸化し、4e’170mg(0.61mmol)を得た。
収率:75%
mp:161.5℃;
MS(FAB):279.3(M+1);
νmax/cm-1:1708(C=O);
Found:C,64.71;H,7.25;N,5.06%.Calc.for C1520NO:C,64.73;H,7.24;N,5.03%.
7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4e ')
1,4,14,17-Tetraoxa-9-azetratraspiro [4.2.1.2.4.2.3.2.2] tetracosan-21-one (3e) (536 mg, 1.53 mmol) in water (2 mL) and acetic acid (5 mL) 10% HCl was added dropwise and stirred at 70 ° C. The solution was diluted with water, the pH was adjusted to 7, and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and the solvent was completely distilled off. Thereafter, the product was separated and purified by silica gel column chromatography hexane / EtOAc, 1: 4), and recrystallized (hexane, ethyl acetate) from 7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadecane. 330 mg (1.25 mmol) of white solid was obtained.
Yield: 82%
mp: 99.7 ° C;
MS (FAB + ): 264.2 (M ++ 1);
ν max / cm −1 : 1705 (C═O);
1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.24 (1H, brs), 1.87-2.05 (8H, m), 2.29-2.67 (8H, m), 2.49 (4H, s);
Found: C, 76.51; H, 10.68; N, 5.93%. Calc. for C 15 H 25 NO: C , 76.55; H, 10.71; N, 5.95%.
Subsequently, 215 mg (0.82 mmol) of the obtained 7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadecane was oxidized according to Method C to obtain 4e′170 mg (0.61 mmol). It was.
Yield: 75%
mp: 161.5 ° C;
MS (FAB + ): 279.3 (M ++ 1);
ν max / cm −1 : 1708 (C═O);
Found: C, 64.71; H, 7.25; N, 5.06%. Calc. for C 15 H 20 NO 4: C, 64.73; H, 7.24; N, 5.03%.
 Methyl 3-(2,6,6-trimethyl-4-oxopiperidin-1-oxyl-2-yl)propanoate(4g)
 方法Cに従ってMethyl 3-(2,6,6-trimethyl-4-oxopiperidin-2-yl)propanoate(3g)と二置換体の混合物147mgを原料として用い、赤色油状物質を得た37mg(0.15mmol)。
MS(FAB):242.2(M);
νmax/cm-1:1720(C=O);
Found:C,58.93;H,8.27;N,5.65%.Calc.for C1220NO:C,59.49;H,8.32;N,5.78%.
Methyl 3- (2,6,6-trimethyl-4-oxopiperidin-1-oxyl-2-yl) propanoate (4g)
According to Method C, a mixture of 147 mg of methyl 3- (2,6,6-trimethyl-4-oxoperidin-2-yl) propanoate (3 g) and a disubstituted product was used as a raw material to obtain 37 mg (0.15 mmol) ).
MS (FAB <+> ): 242.2 (M <+> );
ν max / cm −1 : 1720 (C═O);
Found: C, 58.93; H, 8.27; N, 5.65%. Calc. for C 12 H 20 NO 4: C, 59.49; H, 8.32; N, 5.78%.
 3,11-Trifluoroacetyl-3,7,11-trithia-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4i)
 方法Cに従って3,11-Trifluoroacetyl-3,7,11-trithiadispiro[5.1.5.3]hexadecan-15-one(3i)130mg(0.30mmol)を原料として行い、4i 57mg(0.13mmol)を得た。
収率:42%
MS(FAB):445.1(M+1);
Found:C,44.90;H,4.46;N,9.25%.Calc.for C1720:C,45.95;H,4.54;N,9.46%.
3,11-Trifluoroacetyl-3,7,11-trithia-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4i)
According to Method C, 3,11-Trifluoroacetyl-3,7,11-trithiadispiro [5.1.5.3] hexadecan-15-one (3i) 130 mg (0.30 mmol) was used as starting material, and 4i 57 mg (0.13 mmol) )
Yield: 42%
MS (FAB + ): 445.1 (M ++ 1);
Found: C, 44.90; H, 4.46; N, 9.25%. Calc. for C 17 H 20 F 6 N 3 O 4: C, 45.95; H, 4.54; N, 9.46%.
 7-[ 15 N]-Aza-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(5a)
 NHClを15NHClに変えて、7-Aza-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4a)と同様に行った。
mp:115.4-117.4℃(hexane);
MS(FAB):251.3(M+1);
νmax/cm-1:1717(C=O);
Found:C,71.67;H,9.79;N,5.67%.Calc.for C1524 15NO:C,71.68;H,9.62;N,5.57%.
7- [ 15 N] -Aza-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (5a)
NH 4 Cl was changed to 15 NH 4 Cl, and the same procedure as in 7-Aza-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4a) was performed.
mp: 115.4-117.4 ° C. (hexane);
MS (FAB + ): 251.3 (M ++ 1);
ν max / cm −1 : 1717 (C═O);
Found: C, 71.67; H, 9.79; N, 5.67%. Calc. for C 15 H 24 15 NO 2 : C, 71.68; H, 9.62; N, 5.57%.
 7-[ 15 N]-Aza-3,11-Dioxa-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(5b)
 NHClを15NHClに変えて、7-Aza-3,11-Dioxa-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4b)と同様に行った。
mp:171.7-172.0℃(EtOAc);
MS(FAB):256.23(M+1);
νmax/cm-1:1719(C=O);
Found:C,61.18;H,7.90;N,5.52%.Calc.for C1320 15NO:C,61.16;H,7.90;N,5.48%.
7- [ 15 N] -Aza-3,11-Dioxa-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (5b)
Change in the same manner as 7-Aza-3,11-Dioxa-15-oxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4b), changing NH 4 Cl to 15 NH 4 Cl. It was.
mp: 171.7-172.0 ° C. (EtOAc);
MS (FAB <+> ): 256.23 (M ++ 1);
ν max / cm −1 : 1719 (C═O);
Found: C, 61.18; H, 7.90; N, 5.52%. Calc. for C 13 H 20 15 NO 4 : C, 61.16; H, 7.90; N, 5.48%.
 7-[ 15 N]-Aza-3,11,15-trioxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(5c)
 NHClを15NHClに変えて、7-Aza-3,11,15-trioxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl(4e’)と同様に行った。
mp:165.8℃(Hexane-EtOAc);
MS(FAB):280.22(M+1);
νmax/cm-1:1707(C=O);
Found:C,64.47;H,7.22;N,5.01%.Calc.for C1520 15NO:C,64.50;H,7.22;N,5.01%.
7- [ 15 N] -Aza-3,11,15-trioxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (5c)
NH 4 Cl was changed to 15 NH 4 Cl, and the same procedure as 7-Aza-3,11,15-trioxodispiro [5.1.5.3] hexadec-7-yl-7-oxyl (4e ′) was performed. .
mp: 165.8 ° C. (Hexane-EtOAc);
MS (FAB + ): 280.22 (M ++ 1);
ν max / cm −1 : 1707 (C═O);
Found: C, 64.47; H, 7.22; N, 5.01%. Calc. for C 15 H 20 15 NO 4 : C, 64.50; H, 7.22; N, 5.01%.
 2,2-diethyl-6,6-dimethylpiperidin-4-one (1)
 1,2,2,6,6-ペンタメチルピペリジン-4-オン1.69g(10mmol)と3-ペンタノン5.16g(60mmol)をDMSO 28mlに溶解し、CsOH 1.50g(10mmol)、NHCl 3.22g(60mmol)を室温下で加えた。この溶液を80℃で4時間攪拌した。水を適量加えて希釈し、7~8%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層をKCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、淡黄色油状物質25mg(収率:1%)を得た。
2,2-diethyl-6,6-dimethylpiperidin-4-one (1)
1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one and 5.16 g (60 mmol) of 3-pentanone were dissolved in 28 ml of DMSO, and 1.50 g (10 mmol) of CsOH, NH 4 Cl 3.22 g (60 mmol) was added at room temperature. The solution was stirred at 80 ° C. for 4 hours. An appropriate amount of water was added for dilution, and the solution was acidified with a 7-8% aqueous hydrochloric acid solution. This was washed with ether and the aqueous layer was made alkaline with aqueous K 2 CO 3 solution. Further, this was extracted with ethyl acetate, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the residue was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 25 mg (yield: 1%) of a pale yellow oily substance.
 方法B
 2,2-dimethyl-6,6-dipropylpiperidin-4-one (3)
 1,2,2,6,6-ペンタメチルピペリジン-4-オン1.69g(10mmol)と4-ヘプタノン3.43g(30mmol)をDMSO 16mlに溶解し、TritonB 2ml(4.40mmol)、NHCl 2.68g(50mmol)を室温下で加えた。この溶液を50℃で4.5時間攪拌した。水を適量加えて希釈し、7~8%塩酸水溶液で酸性にした。これを、エーテルで洗浄し、水層をKCO水溶液でアルカリ性にした。さらに、これを酢酸エチルで抽出し、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をヘキサンから再結晶し、淡黄色針状結晶368mg(収率:17%)を得た。mp:53.4-55.0℃;MS(FAB):212.2(M+1);vmax/cm-1:1690(C=O);H-NMR(300MHz;CDCl)δ(ppm):0.88(6H,t,J=7.05Hz),1.21(6H,s),1.26-1.45(8H,m),2.23(2H,s),2.26(2H,s);Found:C,73.74;H,11.88;N,6.67%.Calc.for C1325NO:C,73.88;H,11.92;N,6.63%.
Method B
2,2-dimethyl-6,6-dipropyliperidin-4-one (3)
1.69 g (10 mmol) of 1,2,2,6,6-pentamethylpiperidin-4-one and 3.43 g (30 mmol) of 4-heptanone were dissolved in 16 ml of DMSO, 2 ml (4.40 mmol) of Triton B, NH 4 2.68 g (50 mmol) of Cl was added at room temperature. The solution was stirred at 50 ° C. for 4.5 hours. An appropriate amount of water was added for dilution, and the solution was acidified with a 7-8% aqueous hydrochloric acid solution. This was washed with ether and the aqueous layer was made alkaline with aqueous K 2 CO 3 solution. Further, this was extracted with ethyl acetate, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Then, it refine | purified by silica gel column chromatography (hexane, ethyl acetate), and the obtained crystal was recrystallized from hexane to obtain 368 mg (yield: 17%) of pale yellow needle-like crystals. mp: 53.4-55.0 ° C .; MS (FAB + ): 212.2 (M + +1); v max / cm −1 : 1690 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0.88 (6H, t, J = 7.05 Hz), 1.21 (6H, s), 1.26-1.45 (8H, m), 2.23 (2H, s) 2.26 (2H, s); Found: C, 73.74; H, 11.88; N, 6.67%. Calc. for C 13 H 25 NO: C , 73.88; H, 11.92; N, 6.63%.
 2,2-dimethyl-6,6-dipropyl-4-oxo-piperidin-1-yl 1-oxyl(4)
 方法Aに従って、2,2-dimethyl-6,6-dipropylpiperidin-4-one(3)59mg(0.28mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質38mg(収率:60%)を得た。MS(FAB):226.3(M);vmax/cm-1:1720(C=O);Found:C,68.95;H,10.76;N,6.28%.Calc.for C1324NO:C,68.99;H,10.69;N,6.19%.
2,2-dimethyl-6,6-dipropyl-4-oxo-piperidin-1-yl 1-oxyl (4)
According to Method A, 2,2-dimethyl-6,6-dipropyliperidin-4-one (3) 59 mg (0.28 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 38 mg (yield: 60%) of an orange oily substance. MS (FAB + ): 226.3 (M + ); vmax / cm- 1 : 1720 (C = O); Found: C, 68.95; H, 10.76; N, 6.28%. Calc. for C 13 H 24 NO 2: C, 68.99; H, 10.69; N, 6.19%.
 2,2-dibutyl-6,6-dimethylpiperidin-4-one (5)
 方法Bに従って、4-ヘプタノンを5-デカノン4.27g(30mmol)に変えて行った。反応溶液は、60℃の水浴中で4時間攪拌した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル,85:15)で精製し、淡黄色油状物質106mg(収率:4%)を得た。MS(FAB):240.3(M+1);vmax/cm-1:1705(C=O);H-NMR(300MHz;CDCl)δ(ppm):0.89(6H,t,J=6.7Hz),1.25(6H,s),1.24-1.56(12H,m),2.23(2H,s),2.26(2H,s);Found:C,74.83;H,11.96;N,5.97%.Calc.for C1529NO:C,75.26;H,12.21;N,5.85%.
2,2-dibutyl-6,6-dimethylpiperidin-4-one (5)
According to Method B, 4-heptanone was changed to 4.27 g (30 mmol) of 5-decanone. The reaction solution was stirred in a 60 ° C. water bath for 4 hours. Purification by silica gel column chromatography (hexane / ethyl acetate, 85:15) gave 106 mg (yield: 4%) of a pale yellow oily substance. MS (FAB + ): 240.3 (M + +1); v max / cm −1 : 1705 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0.89 (6H, t, J = 6.7 Hz), 1.25 (6H, s), 1.24-1.56 (12H, m), 2.23 (2H, s), 2.26 (2H, s); : C, 74.83; H, 11.96; N, 5.97%. Calc. for C 15 H 29 NO: C , 75.26; H, 12.21; N, 5.85%.
 2,2-dibutyl-6,6-dimethyl-4-oxo-piperidin-1-yl 1-oxyl(6)
 方法Aに従って、2,2-dibutyl-6,6-dimethylpiperidin-4-one(5)100mg(0.42mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質53mg(収率:50%)を得た。MS(FAB):254.3(M);vmax/cm-1:1720(C=O);Found:C,70.55;H,11.05;N,5.24%.Calc.for C1528NO:C,70.82;H,11.09;N,5.51%.
2,2-dibutyl-6,6-dimethyl-4-oxo-piperidin-1-yl 1-oxyl (6)
According to Method A, 2,2-dibutyl-6,6-dimethylpiperidin-4-one (5) 100 mg (0.42 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 53 mg (yield: 50%) of an orange oily substance. MS (FAB + ): 254.3 (M + ); v max / cm −1 : 1720 (C═O); Found: C, 70.55; H, 11.05; N, 5.24%. Calc. for C 15 H 28 NO 2: C, 70.82; H, 11.09; N, 5.51%.
 2-butyl-2,6,6-trimethylpiperidin-4-one (7)
2,6-dibutyl-2,6-dimethylpiperidin-4-one (9)
 方法Bに従って、4-ヘプタノンを2-ヘキサノン3.00g(30mmol)に変えて行った。反応溶液は、50℃の水浴中で2.5時間攪拌した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル,9:1)で精製し、淡黄色油状物質(7)239mg(収率:12%)と淡黄色油状物質(9)98mg(収率:4%)を得た。(7):MS(FAB):198.3(M+1);vmax/cm-1:1703(C=O);H-NMR(300MHz;CDCl)δ(ppm):0.90(3H,t,J=7.1Hz),1.16(3H,s),1.23(6H,s),1.29-1.33(6H,m),2.22-2.26(4H,m);Found:C,72.83;H,11.63;N,7.02%.Calc.for C1223NO:C,73.04;H,11.75;N,7.10%.(9):MS(FAB):240.4(M+1);vmax/cm-1:1706(C=O);H-NMR(300MHz;CDCl)δ(ppm):0.91(6H,t,J=3.3Hz),1.14(6H,s),1.28-1.46(12H,m),2.18-2.31(4H,m);Found:C,75.15;H,12.11;N,5.75%.Calc.for C1529NO:C,75.26;H,12.21;N,5.85%.
2-butyl-2,6,6-trimethylpiperidin-4-one (7)
2,6-dibutyl-2,6-dimethylpiperidin-4-one (9)
According to Method B, 4-heptanone was changed to 3.00 g (30 mmol) of 2-hexanone. The reaction solution was stirred in a 50 ° C. water bath for 2.5 hours. After extraction, the product was purified by silica gel column chromatography (hexane / ethyl acetate, 9: 1) to obtain 239 mg (yield: 12%) of a pale yellow oily substance (7) and 98 mg (yield: 4) of a pale yellow oily substance (9). %). (7): MS (FAB + ): 198.3 (M + +1); v max / cm −1 : 1703 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0. 90 (3H, t, J = 7.1 Hz), 1.16 (3H, s), 1.23 (6H, s), 1.29-1.33 (6H, m), 2.22-2. 26 (4H, m); Found: C, 72.83; H, 11.63; N, 7.02%. Calc. for C 12 H 23 NO: C , 73.04; H, 11.75; N, 7.10%. (9): MS (FAB + ): 240.4 (M + +1); v max / cm −1 : 1706 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0. 91 (6H, t, J = 3.3 Hz), 1.14 (6H, s), 1.28-1.46 (12H, m), 2.18-2.31 (4H, m); Found: C, 75.15; H, 12.11; N, 5.75%. Calc. for C 15 H 29 NO: C , 75.26; H, 12.21; N, 5.85%.
 2-butyl-2,6,6-trimethyl-4-oxo-piperidin-1-yl 1-oxyl(8)
 方法Aに従って、2-butyl-2,6,6-trimethylpiperidin-4-one(7)199mg(1.01mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル,95:5)で精製し、橙色油状物質68mg(収率:32%)を得た。MS(FAB):212.3(M);vmax/cm-1:1720(C=O);Found:C,68.01;H,10.44;N,6.53%.Calc.for C1222NO:C,67.89;H,10.44;N,6.60%.
2-butyl-2,6,6-trimethyl-4-oxo-piperidin-1-yl 1-oxyl (8)
According to Method A, 2-butyl-2,6,6-trimethylpiperidin-4-one (7) (199 mg, 1.01 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the residue was purified by silica gel column chromatography (hexane / ethyl acetate, 95: 5) to obtain 68 mg (yield: 32%) of an orange oily substance. MS (FAB +): 212.3 ( M +); v max / cm -1: 1720 (C = O); Found: C, 68.01; H, 10.44; N, 6.53%. Calc. for C 12 H 22 NO 2: C, 67.89; H, 10.44; N, 6.60%.
 2,6-dibutyl-2,6-dimethyl-4-oxo-piperidin-1-yl-oxyl(10)
 方法Aに従って、2,6-dibutyl-2,6-dimethylpiperidin-4-one(9)77mg(0.32mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質25mg(収率:31%)を得た。MS(FAB):254.3(M);vmax/cm-1:1720(C=O);Found:C,70.94;H,10.98;N,5.18%.Calc.for C1528NO:C,70.82;H,11.09;N,5.51%.
2,6-dibutyl-2,6-dimethyl-4-oxo-piperidin-1-yl-oxyl (10)
According to Method A, 2,6-dibutyl-2,6-dimethylpiperidin-4-one (9) 77 mg (0.32 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 25 mg (yield: 31%) of an orange oily substance. MS (FAB + ): 254.3 (M + ); v max / cm −1 : 1720 (C═O); Found: C, 70.94; H, 10.98; N, 5.18%. Calc. for C 15 H 28 NO 2: C, 70.82; H, 11.09; N, 5.51%.
 2,2,6-trimethyl-6-octylpiperidin-4-one (11)
 方法Bに従って、4-ヘプタノンを2-デカノン4.69g(30mmol)に変えて行った。反応溶液は、50℃の水浴中で4時間攪拌した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、淡黄色油状物質137mg(収率:5%)を得た。MS(FAB):254.3(M+1);vmax/cm-1:1708(C=O);H-NMR(300MHz;CDCl)δ(ppm):0.87(3H,t,J=5.7Hz),1.16(3H,s),1.22(6H,s),2.16-2.29(4H,m);Found:C,75.57;H,12.15;N,5.09%.Calc.for C1631NO:C,75.83;H,12.33;N,5.53%.
2,2,6-trimethyl-6-octipeliperidin-4-one (11)
According to Method B, 4-heptanone was changed to 4.69 g (30 mmol) of 2-decanone. The reaction solution was stirred in a 50 ° C. water bath for 4 hours. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 137 mg (yield: 5%) of a pale yellow oily substance. MS (FAB + ): 254.3 (M + +1); v max / cm −1 : 1708 (C═O); 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 0.87 (3H, t, J = 5.7 Hz), 1.16 (3H, s), 1.22 (6H, s), 2.16-2.29 (4H, m); Found: C, 75.57; H, 12.15; N, 5.09%. Calc. for C 16 H 31 NO: C, 75.83; H, 12.33; N, 5.53%.
 2,2,6-trimethyl-6-octyl-4-oxo-piperidin-1-yl 1-oxyl(12)
 方法Aに従って、2,2,6-trimethyl-6-octylpiperidin-4-one(11)100mg(0.39mmol)を原料として行った。反応溶液は、室温で一晩攪拌した。また、反応の進行をTLCで確認し、HとNaWO・2HOを適宜追加した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、橙色油状物質78mg(収率:74%)を得た。MS(FAB):268.3(M);vmax/cm-1:1721(C=O);Found:C,71.45;H,11.13;N,5.10%.Calc.for C1630NO:C,71.59;H,11.27;N,5.22%.
2,2,6-trimethyl-6-octyl-4-oxo-piperidin-1-yl 1-oxyl (12)
According to method A, 2,2,6-trimethyl-6-octipeliperidin-4-one (11) 100 mg (0.39 mmol) was used as a starting material. The reaction solution was stirred overnight at room temperature. Moreover, the progress of the reaction was confirmed by TLC, and H 2 O 2 and Na 2 WO 4 · 2H 2 O were appropriately added. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain 78 mg (yield: 74%) of an orange oily substance. MS (FAB + ): 268.3 (M + ); v max / cm −1 : 1721 (C═O); Found: C, 71.45; H, 11.13; N, 5.10%. Calc. for C 16 H 30 NO 2: C, 71.59; H, 11.27; N, 5.22%.
 2,2-dimethyl-6-spiro-2’-tricyclo[3.3.1.1 3’,7’ ]decanepiperidine-4-one(13)
2,6-dispiro-2’,2’-ditricyclo[3.3.1.1 3’,7’ ]decanepiperidine-4-one(16)
 方法Bに従って、4-ヘプタノンを2-アダマンタノン4.51g(30mmol)に変えて行った。反応条件はTableに示した。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をヘキサンからそれぞれ再結晶し、白色針状結晶(13)と淡黄色鱗片状結晶(16)を得た。(13):収率:(粗結晶);mp:92.5-92.6℃;MS(FAB):248.3(M+1);vmax/cm-1:1699(C=O);H-NMR(300MHz;CDCl)δ(ppm):1.23(6H,s),1.50-1.95(14H,m),2.27(2H,s),2.53(2H,s);Found:C,77.65;H,10.12;N,5.60%.Calc.for C1625NO:C,77.68;H,10.19;N,5.66%.(16):収率:0.62%(2.5時間50℃)(粗結晶);mp:131.2-131.5℃;MS(FAB):340.4(M+1);vmax/cm-1:1709(C=O);H-NMR(400MHz;CDCl)δ(ppm):1.25(brs),1.56-1.69(m),1.79-1.92(m),2.33(brs),2.36(brs),2.61(4H,s);Found:C,81.30;H,9.77;N,4.07%.Calc.for C2333NO:C,81.37;H,9.80;N,4.13%.
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-one (13)
2,6-dispiro-2 ′, 2′-dilyticcyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-one (16)
According to Method B, 4-heptanone was changed to 4.51 g (30 mmol) of 2-adamantanone. The reaction conditions are shown in Table. After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate), and the resulting crystals were recrystallized from hexane to obtain white needle crystals (13) and pale yellow scale crystals (16). (13): Yield: (crude crystals); mp: 92.5-92.6 ° C .; MS (FAB + ): 248.3 (M + +1); v max / cm −1 : 1699 (C═O 1 H-NMR (300 MHz; CDCl 3 ) δ (ppm): 1.23 (6H, s), 1.50-1.95 (14H, m), 2.27 (2H, s), 2. 53 (2H, s); Found: C, 77.65; H, 10.12; N, 5.60%. Calc. for C 16 H 25 NO: C, 77.68; H, 10.19; N, 5.66%. (16): Yield: 0.62% (2.5 hours at 50 ° C.) (crude crystals); mp: 131.2-131.5 ° C .; MS (FAB + ): 340.4 (M + +1); v max / cm −1 : 1709 (C═O); 1 H-NMR (400 MHz; CDCl 3 ) δ (ppm): 1.25 (brs), 1.56-1.69 (m), 1.79 -1.92 (m), 2.33 (brs), 2.36 (brs), 2.61 (4H, s); Found: C, 81.30; H, 9.77; N, 4.07 %. Calc. for C 23 H 33 NO: C , 81.37; H, 9.80; N, 4.13%.
 方法C
 2,2-dimethyl-6-spiro-2’-tricyclo[3.3.1.1 3’,7’ ]decane-4-oxo-piperidin-1-yl 1oxyl (14)
2,2-dimethyl-6-spiro-2’-tricyclo[3.3.1.13’,7’]decanepiperidine-4-one(13)410mg(1.66mmol)をクロロホルム30mlに溶解し、氷浴中で攪拌した。MCPBA371mg(1.66mmol)を加え、15分後に室温に戻し、さらに2時間攪拌を続けた。クロロホルムで抽出を行い、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をジイソプロピルエーテルから再結晶し、橙色鱗片状結晶172mg(収率:40%)を得た。mp:134.7-135.3℃;MS(FAB):262.3(M);vmax/cm-1:1709(C=O);Found:C,73.13;H,9.14;N,5.29%.Calc.for C1624NO:C,73.25;H,9.22;N,5.34%.
Method C
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane-4-oxo-piperidin-1-yl 1oxyl (14)
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-one (13) 410 mg (1.66 mmol) was dissolved in chloroform 30 ml, ice Stir in the bath. 371 mg (1.66 mmol) of MCPBA was added, and after 15 minutes, the temperature was returned to room temperature, and stirring was further continued for 2 hours. Extraction was performed with chloroform, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Then, it refine | purified by silica gel column chromatography (hexane, ethyl acetate), and the obtained crystal | crystallization was recrystallized from diisopropyl ether, and 172 mg (yield: 40%) of the orange scale-like crystal | crystallization was obtained. mp: 134.7-135.3 ° C .; MS (FAB + ): 262.3 (M + ); v max / cm −1 : 1709 (C═O); Found: C, 73.13; H, 9 .14; N, 5.29%. Calc. for C 16 H 24 NO 2: C, 73.25; H, 9.22; N, 5.34%.
 2,2-dimethyl-6-spiro-2’-tricyclo[3.3.1.1 3’,7’ ]decane -4-hydroxy-piperidin-1-yl 1oxyl (15)
2,2-dimethyl-6-spiro-2’-tricyclo[3.3.1.13’,7’]decane-4-oxo-piperidin-1-yl 1oxyl(14)180mg(0.73mmol)をエタノール5mlに溶解し、水浴中で攪拌した。NaBH34mg(0.91mmol)を加え、室温に戻し、一晩攪拌を続けた。また、反応の進行をTLCで確認し、NaBHを適宜追加した。これをクロロホルムで抽出し、有機層を硫酸ナトリウムで乾燥し、溶媒を完全に留去した。その後、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール,99:1)で精製し、得られた結晶を酢酸エチルから再結晶し、赤紫色鱗片状結晶89mg(収率:46%)を得た。mp:132.0-133.6℃;MS(FAB):264.3(M);vmax/cm-1:3407(br,OH);Found:C,72.55;H,9.89;N,5.36%.Calc.for C1624NO:C,72.69;H,9.91;N,5.30%.
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane-4-hydroxy-piperidin-1-yl 1oxyl (15)
2,2-dimethyl-6-spiro-2′-tricyclo [3.3.1.1 3 ′, 7 ′ ] decane-4-oxo-piperidin-1-yl 1oxyl (14) 180 mg (0.73 mmol) Dissolved in 5 ml of ethanol and stirred in a water bath. NaBH 4 34 mg (0.91 mmol) was added, the temperature was returned to room temperature, and stirring was continued overnight. Further, the progress of the reaction was confirmed by TLC, and NaBH 4 was appropriately added. This was extracted with chloroform, the organic layer was dried over sodium sulfate, and the solvent was completely distilled off. Thereafter, the product was purified by silica gel column chromatography (chloroform / methanol, 99: 1), and the obtained crystal was recrystallized from ethyl acetate to obtain 89 mg (yield: 46%) of reddish purple scaly crystals. mp: 132.0-133.6 ° C .; MS (FAB + ): 264.3 (M + ); v max / cm −1 : 3407 (br, OH); Found: C, 72.55; H, 9 .89; N, 5.36%. Calc. for C 16 H 24 NO 2: C, 72.69; H, 9.91; N, 5.30%.
2,6-dispiro-2’,2’-ditricyclo[3.3.1.1 3’,7’ ]decanepiperidine-4-oxo-piperidin-1-yl 1-oxyl(17)
方法Cに従って、2,6-dispiro-2’,2’-ditricyclo[3.3.1.13’,7’]decanepiperidine-4-one(16)149mg(0.439mmol)を原料として行った。抽出後、シリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、得られた結晶をヘキサンから再結晶し、紫色球状結晶18mg(収率:12%)を得た。mp:154.6-160.9℃;MS(FAB):354.3(M);vmax/cm-1:1705(C=O);Found:C,77.67;H,9.03;N,3.76%.Calc.for C2332NO:C,77.92;H,9.10;N,3.95%.
2,6-dispiro-2 ′, 2′-dilyticcyclo [3.3.1.1 3 ′, 7 ′ ] decane piperidine-4-oxo-piperidin-1-yl 1-oxyl (17)
According to Method C, 149 mg (0.439 mmol) of 2,6-dispiro-2 ′, 2′-diisticcyclo [3.3.1.1 3 ′, 7 ′ ] decanepiperidine-4-one (16) was used as a starting material. . After extraction, the product was purified by silica gel column chromatography (hexane, ethyl acetate), and the obtained crystals were recrystallized from hexane to obtain 18 mg of purple spherical crystals (yield: 12%). mp: 154.6-160.9 ° C .; MS (FAB + ): 354.3 (M + ); v max / cm −1 : 1705 (C═O); Found: C, 77.67; H, 9 .03; N, 3.76%. Calc. for C 23 H 32 NO 2: C, 77.92; H, 9.10; N, 3.95%.
 細胞毒性
 ニトロキシルラジカルは、細胞内で、アスコルビン酸やチオール(金属が触媒する反応)、ミトコンドリア呼吸鎖、NADPH、シトクロムP450などと反応することが報告され、アポトーシスの誘発や、シトクロムP450を介したHの産生などが細胞毒性の原因となっていると報告されている。一方、テトラエチル基を有するニトロキシルラジカルは、アスコルビン酸との反応性が顕著に低下していることを、本発明者らは報告している。そこで、合成したニトロキシルラジカル化合物の細胞毒性を評価した。
Cytotoxic nitroxyl radicals have been reported to react with ascorbic acid, thiols (metal-catalyzed reactions), mitochondrial respiratory chain, NADPH, cytochrome P450, etc. in cells, inducing apoptosis and via cytochrome P450 It has been reported that production of H 2 O 2 and the like cause cytotoxicity. On the other hand, the present inventors have reported that the reactivity with the ascorbic acid of the nitroxyl radical having a tetraethyl group is significantly reduced. Therefore, the cytotoxicity of the synthesized nitroxyl radical compound was evaluated.
 方法
 HUVEC(ヒト臍帯静脈内皮細胞)はブレットキットEGMを培地として用いて、37℃、5%CO下、COインキュベーターで培養した。また、HUVECは対数増殖期を維持するために、一定の間隔で継代を行い、2~5代培養の間を実験に用いた。HUVEC(5000cells/well)は、コラーゲンIコートした透明平底プレートを用いて、各濃度のニトロキシルラジカルを添加後、24時間インキュベートし、細胞生存率をWST-1法により解析した。24時間インキュベート後、WST-1試薬を各ウェル10μlずつ添加し、3時間インキュベート後、450nmの吸光度をプレートリーダーにて測定した。ポジティブコントロールに2%Tween20、ネガティブコントロールにPBSを用い、データはコントロールに対する相対値(%)で表した。
Method HUVEC (human umbilical vein endothelial cells) were cultured in a CO 2 incubator at 37 ° C. under 5% CO 2 using Brett Kit EGM as a medium. In addition, HUVEC were subcultured at regular intervals to maintain a logarithmic growth phase, and the period between 2 and 5 passages was used for the experiment. HUVEC (5000 cells / well) was incubated for 24 hours after adding each concentration of nitroxyl radical using a collagen I-coated transparent flat bottom plate, and the cell viability was analyzed by the WST-1 method. After 24 hours of incubation, 10 μl of WST-1 reagent was added to each well, and after 3 hours of incubation, the absorbance at 450 nm was measured with a plate reader. 2% Tween 20 was used as a positive control, PBS was used as a negative control, and data was expressed as a relative value (%) to the control.
 結果
 HUVEC細胞にニトロキシルラジカル化合物を添加し、24時間後の細胞増殖能を測定した。その結果、Oxo-TEMPO、Tempolは、濃度依存的な細胞増殖能抑制効果を示した。一方、テトラエチル基を導入した化合物では、1mMの濃度まで細胞増殖能抑制効果は認められず、脂溶性が高いにも関わらず低毒性であることが示された(図1を参照)。
Results A nitroxyl radical compound was added to HUVEC cells, and the cell growth ability after 24 hours was measured. As a result, Oxo-TEMPO and Tempol showed a concentration-dependent cell growth inhibitory effect. On the other hand, a compound having a tetraethyl group introduced showed no inhibitory effect on cell growth ability up to a concentration of 1 mM, indicating that it was low in toxicity despite its high fat solubility (see FIG. 1).
 胃潰瘍モデル動物を用いた薬効評価
 アジュバント関節炎ラットの作成
 ニトロキシルラジカルが、アジュバント関節炎ラット(AAラット)におけるインドメタシン惹起胃潰瘍を抑制するか否か検討した。
Evaluation of drug efficacy using gastric ulcer model animals Creation of adjuvant arthritic rats It was investigated whether nitroxyl radical suppresses indomethacin-induced gastric ulcers in adjuvant arthritic rats (AA rats).
 方法
 結核死菌Mycobacterium tuberculosis H37 RAを瑪瑙乳鉢中で磨砕し、この中にheavy mineral oilを滴下しつつ加え、さらに磨砕し10mg/mlとした。この結核死菌-oil懸濁液を3分間超音波処理後1ml容量のシリンジにとり、イソフルラン麻酔下、5週齢のDAラットの左足蹠皮内に100μL投与し、アジュバント関節炎を惹起した。陰性対照群は、heavy mineral oilのみを左足蹠皮内に投与した。
Method Mycobacterium tuberculosis H37 RA was ground in an agate mortar, and heavy minor oil was added dropwise thereto, and further ground to 10 mg / ml. This tuberculosis-killed oil suspension was sonicated for 3 minutes and then taken into a 1 ml syringe, and 100 μL was administered into the left footpad of a 5-week-old DA rat under isoflurane anesthesia to induce adjuvant arthritis. In the negative control group, only heavy mineral oil was administered into the left footpad.
 DAラットは、アジュバント投与後13日目に飼育ケージ内にて絶食させた。ただし、飲料水は自由飲水とした。絶食開始から24時間後にインドメタシン(20mg/kg)をラットに経口投与して胃潰瘍を作成した。コントロールでは、vehicleとして5%NaHCOを同量経口投与した。ニトロキシルラジカル化合物は、インドメタシン投与5分前に経口投与した。 DA rats were fasted in the breeding cage on day 13 after administration of the adjuvant. However, drinking water was free drinking. After 24 hours from the start of fasting, indomethacin (20 mg / kg) was orally administered to rats to create gastric ulcers. As a control, the same amount of 5% NaHCO 3 was orally administered as a vehicle. The nitroxyl radical compound was orally administered 5 minutes before administration of indomethacin.
 胃粘膜損傷面積計測
 インドメタシンによる胃潰瘍惹起4時間後、ラットを過麻酔下頚椎脱臼により処理し、直ちに胃を食道、小腸側をそれぞれ約1cmずつ残して切断し摘出した。幽門部側を鉗子で固定し、1%ホルマリン溶液を10ml注入後、噴門部側を鉗子で固定した。これを10-20分間浸し続けることにより胃壁を両側面から固定した。固定後、大湾部に沿って胃を切開し、胃腔内膜をデジタルカメラで撮影した。画像処理ソフトImage Jを用いて胃底部粘膜に発生した損傷面積を計測した。
Measurement of gastric mucosal damage area 4 hours after induction of gastric ulcer by indomethacin, the rat was treated by cervical dislocation under overanaesthesia, and the stomach was immediately cut and excised leaving about 1 cm each of the esophagus and the small intestine. The pylorus part side was fixed with forceps, 10 ml of 1% formalin solution was injected, and the cardia part side was fixed with forceps. The stomach wall was fixed from both sides by continuing soaking for 10-20 minutes. After fixation, the stomach was incised along the Great Bay, and the gastric lumen was photographed with a digital camera. Using the image processing software Image J, the damaged area generated in the gastric floor mucosa was measured.
 結果
 インドメタシンによる胃潰瘍惹起の程度を、インドメタシンを経口投与したAAラットの胃底部粘膜損傷面積で評価した結果、ニトロキシルラジカル化合物を投与していないAAラットでは、損傷面積が高い値を示し、胃潰瘍を惹起していること、つまり胃底部粘膜に炎症が起きていることが確認された。一方、ニトロキシルラジカル化合物を投与したAAラットでは、ニトロキシルラジカル化合物を投与していないAAラットと比較して損傷面積が有為に減少していることが示され、ニトロキシルラジカル化合物が、胃潰瘍における粘膜損傷を有為に抑制していることを示した。
Results The degree of gastric ulcer induced by indomethacin was evaluated by the damage area of the gastric fundus mucosa of the AA rat to which indomethacin was orally administered. That is, i.e., inflammation of the gastric floor mucosa was confirmed. On the other hand, the AA rats administered with the nitroxyl radical compound showed a significantly reduced damage area compared to the AA rats not administered with the nitroxyl radical compound. It showed that mucosal damage was significantly suppressed.
 既知のニトロキシルラジカル化合物であるTempol(図2を参照)は、900μmol/kgの濃度で抑制作用を示しているが、本発明に基づき合成されたニトロキシルラジカル化合物(図2における化合物A及びB)は、Tempolと比較して最大1/10の濃度で有為な胃粘膜損傷の抑制作用を有していることも示され、既知化合物より低濃度で抑制効果を示すことが明らかとなった。 Tempol (see FIG. 2), a known nitroxyl radical compound, shows an inhibitory action at a concentration of 900 μmol / kg, but the nitroxyl radical compound synthesized according to the present invention (compounds A and B in FIG. 2). ) Was also shown to have significant inhibitory action on gastric mucosal damage at a concentration of up to 1/10 compared to Tempol, and it became clear that it showed an inhibitory effect at a lower concentration than known compounds .
 ニトロキシルラジカルの血圧降下作用
 TempolなどTEMPO系ニトロキシルラジカル化合物は、血圧降下作用を有し、高血圧研究に広く用いられている。血圧降下作用の原因は未だ明らかにはなっていないが、SOD様作用と相関があることから、活性酸素消去能によるものではないかと考察されている。そこで、今回新たに合成したニトロキシルラジカル化合物の血圧降下作用を明らかにする。
TEMPO-based nitroxyl radical compounds such as Tempol, a blood pressure lowering action of nitroxyl radical, have a blood pressure lowering action and are widely used in hypertension research. Although the cause of the blood pressure lowering action has not yet been clarified, it is considered that it is due to the ability to scavenge active oxygen because it has a correlation with the SOD-like action. Therefore, we clarify the blood pressure lowering action of the newly synthesized nitroxyl radical compound.
 方法
 日周リズムへの影響を避けるために、実験は全て9:00から16:00の間に行った。自然発症高血圧モデルラット(SHR;♂、208-330g)は、イソフルランを用いて麻酔を施した。平均血圧(MAP)は、大腿部の動脈にポリエチレンチューブ(PE-50)をカニュレーション後、transducer(MLT0670 BP Transducer,ADinstruments,Sydney,Australia)とamplifier(ML117 BP Amp,ADinstruments,Sydney,Australia)にて計測した。ニトロキシルラジカル溶液(60μmol/kg)を1ml/minの速度で大腿静脈より投与し、投与後20分間血圧と心拍数を測定した。
Method All experiments were performed between 9:00 and 16:00 in order to avoid effects on the diurnal rhythm. Spontaneously hypertensive model rats (SHR; ♂, 208-330 g) were anesthetized with isoflurane. Mean blood pressure (MAP) cannulated polyethylene tube (PE-50) in femoral artery, then transducer (MLT0670 BP Transducer, ADinstruments, Sydney, Australia) and amplifier (ML117 BP Amp, Australia) Measured at. Nitroxyl radical solution (60 μmol / kg) was administered from the femoral vein at a rate of 1 ml / min, and blood pressure and heart rate were measured for 20 minutes after administration.
 結果
 ニトロキシルラジカル化合物を投与後の経時的な血圧変化を図3に示す。今回新たに開発したニトロキシルラジカル化合物(化合物C)が示す血圧降下作用は、既知のニトロキシルラジカル化合物であるTempolと比較して有為に高い作用を示した。また、血圧降下作用の持続時間は、新規ニトロキシル化合物(化合物C)は、Tempolと比較し長時間にわたって持続することも示された。
Results FIG. 3 shows changes in blood pressure over time after administration of the nitroxyl radical compound. The blood pressure lowering action exhibited by the newly developed nitroxyl radical compound (compound C) was significantly higher than that of Tempol, which is a known nitroxyl radical compound. Moreover, it was also shown that the duration of the blood pressure lowering action lasts for a long time when the novel nitroxyl compound (Compound C) is compared with Tempol.
 尚、上述の実施例は本発明の好適な実施の一例ではあるが、その範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。 The above-described embodiment is an example of a preferred embodiment of the present invention, but the scope thereof is not limited, and various modifications can be made without departing from the gist of the present invention.
 下記に本願発明に係る参照文献を記載するが、これらは、この参照により本願明細書に完全に組み込まれるものである。
(参照文献)
(1)B. Halliwell, Oxidative stress and cancer: have we moved forward? Biochem J, 2007. 401(1): 1-11.
(2)T. Sano, et al., Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia, 1998. 41(11): 1355-60.
(3)M. Yamato, T. Egashira, and H. Utsumi, Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med, 2003. 35(12): 1619-31.

(4)H.Utsumi, et al., Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats. J Pharmacol Exp Ther, 2006. 317(1): 228-35.
(5)K. Yamada, I. Yamamiya, and H. Utsumi, In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue. Free Radic Biol Med, 2006. 40(11): 2040-6.
(6)H. Sano, et al., A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med, 2000. 28(6): 959-69.
(7)T. Herrling, et al., UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radic Biol Med, 2003. 35(1): 59-67.
(8)D.J. Lurie, et al., Proton-electron double magnetic resonance imaging of free radical solutions. J Magn Res, 1988. 76: 366-370.
(9)K. Yamada, et al., Synthesis of nitroxyl radicals for Overhauser-enhanced magnetic resonance imaging. Arch Pharm (Weinheim), 2008. 341(9): 548-53.
(10)M.C. Krishna, et al., Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci U S A, 2002. 99(4): 2216-21.
(11)H. Utsumi, et al., Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci U S A, 2006. 103(5): 1463-8.
(12)J.M. Metz, et al., A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res, 2004. 10(19): 6411-7.
(13)Y. Miura, N. Nakamura, and I. Taniguchi, Low-temperature "living" radical polymerization of styrene in the presence of nitroxides with spiro structures. Macromolecules, 2001. 34(3): 447-455.
(14)C. Wetter, et al., Steric and electronic effects in cyclic alkoxyamines--synthesis and applications as regulators for controlled/living radical polymerization. Chemistry, 2004. 10(5): 1156-66.
(15)M.J. Aroney, et al., Molecular Polarisability. The Molecular Conformations of Some Substituted 4- Piperidones as Solutes. J Chem Soc, 1966: 98.
(16) M. Cygler, et al., CONFORMATION OF THE PIPERIDINE RING Part IV. Investigations of 4-tert-butyl-4-hydroxy-2,2,6,6-tetramethylpiperidine derivatives. J Mol Struct, 1980. 68: 161-171.
(17) Z. Ma, Q. Huang, and J.M. Bobbitt, Oxoammonium Salts. 5. A New Synthesis of Hindered Piperidines Leading to Unsymmetrical TEMPO-Type Nitroxides. Synthesis and Enantioselective Oxidations with Chiral Nitroxides and Chiral Oxoammonium Salts. J Org Chem, 1993. 58: 4837-43.
(18)J.E. Baker, et al., Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic Biol Med, 1997. 22(1-2): 109-15.
(19)H. Hu, G. Sosnovsky, and H.M. Swartz, Simultaneous measurements of the intra- and extra-cellular oxygen concentration in viable cells. Biochim Biophys Acta, 1992. 1112(2): 161-6.
(20)J.B. Feix, J.J. Yin, and J.S. Hyde, Interactions of 14N:15N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry, 1987. 26(13): 3850-5.
(21)木下祐一, 生体内レドックスメカニズム解析に向けた新規スピンプローブ剤の開発. 修士論文, 2007
(22)E. Sartori, et al., A time-resolved electron paramagnetic resonance investigation of the spin exchange and chemical interactions of reactive free radicals with isotopically symmetric (14N-X-14N) and isotopically asymmetric (14N-X-15N) nitroxyl biradicals. J Am Chem Soc, 2007. 129(25): 7785-92.
(23)J.F.W. Keana, Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chem Rev, 1978. 78(1): 37.
(24)大矢博昭、山内淳, 電子スピン共鳴, 講談社サイエンティフィク. 1989: 講談社.
(25)B.S. Winkler, S.M. Orselli, and T.S. Rex, The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med, 1994. 17(4): 333-49.
(26)S. Morris, et al., Chemical and electrochemical reduction rates of cyclic nitroxides (nitroxyls). J Pharm Sci, 1991. 80(2): 149-52.
(27)M. Shibuya, M. Tomizawa, and Y. Iwabuchi, TEMPO/NaIO4-SiO2: a catalytic oxidative rearrangement of tertiary allylic alcohols to beta-substituted alpha,beta-unsaturated ketones. Org Lett, 2008. 10(21): 4715-8.
(28)X. Wang, et al., TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Chemistry, 2008. 14(9): 2679-85.
(29)K. Nakahara, et al., Rechargeable batteries with organic radical cathodes. Chem Phys Lett, 2002. 359(5-6): 351-354.
(30)A. Dhanasekaran, et al., Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med, 2005. 39(5): 567-83.
(31)A.A. Bobko, et al., 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem Biophys Res Commun, 2005. 330(2): 367-70.
(32)A. Modica, D.J. Lurie, and M. Alecci, Sequential, co-registered fluorine and proton field-cycled Overhauser imaging at a detection field of 59 mT. Phys Med Biol, 2006. 51(3): N39-45.
(33)R. Murugesan, et al., Fluorine electron double resonance imaging for 19F MRI in low magnetic fields. Magn Reson Med, 2002. 48(3): 523-9.
(34)C. Buhrmester, et al., The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. J Electrochem Soc, 2006. 153(10): A1800-A1804.
References relating to the present invention are set forth below and are fully incorporated herein by this reference.
(References)
(1) B. Halliwell, Oxidative stress and cancer: have we moved forward? Biochem J, 2007. 401 (1): 1-11.
(2) T.W. Sano, et al. , Oxidative stress measurement by in vivo electro spin spin resonance spectroscopy with rats streptozotocin-induced diabetics. Diabetologia, 1998. 41 (11): 1355-60.
(3) M.M. Yamato, T .; Egashira, and H.E. Utsumi, Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med, 2003. 35 (12): 1619-31.

(4) H. Utsumi, et al. , Noninvasive mapping of reactive oxygen species by in vivo electro spin spin resonance spectroscopy in inducinated intensives. J Pharmacol Exp Ther, 2006. 317 (1): 228-35.
(5) K.K. Yamada, I .; Yamamiya, and H.K. Utsumi, In vivo detection of free radicals induced by diethyl nitrosamine in rat liver tissue. Free Radic Biol Med, 2006. 40 (11): 2040-6.
(6) H. Sano, et al. , A new nitroxy-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med, 2000. 28 (6): 959-69.
(7) T.W. Herring, et al. , UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using neurons. Free Radic Biol Med, 2003. 35 (1): 59-67.
(8) D. J. et al. Lurie, et al. Proton-electron double magnetic resonance imaging of free radical solutions. J Magn Res, 1988. 76: 366-370.
(9) K. Yamada, et al. , Synthesis of nitroxyl radicals for Overhauser-enhanced magnetic resonance imaging. Arch Pharm (Weinheim), 2008. 341 (9): 548-53.
(10) M.M. C. Krishna, et al. , Overhauled enhanced magnetic resonance imaging for tumor oximetry: coordination of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci USA, 2002. 99 (4): 2216-21.
(11) H. Utsumi, et al. , Simulaneous molecular imaging of redox reactions monitored by by Overhauser-enhanced MRI with 14N-and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci USA, 2006. 103 (5): 1463-8.
(12) J. et al. M.M. Metz, et al. , A phase I study of topical Tempor for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res, 2004. 10 (19): 6411-7.
(13) Y. Miura, N .; Nakamura, and I.I. Taniguchi, Low-temperature “living” radical polymerisation of style in the presence of nitroxides with spiro structures. Macromolecules, 2001. 34 (3): 447-455.
(14) C.I. Wetter, et al. , Steric and electronic effects in cyclic alkamines--synthesis and applications as regulators for controlling / living radial polymerization. Chemistry, 2004. 10 (5): 1156-66.
(15) M.M. J. et al. Aroney, et al. , Molecular Polarisability. The Molecular Configurations of Some Substituted 4-Piperidones as Solutions. J Chem Soc, 1966: 98.
(16) M.M. Cygler, et al. , CONFORMATION OF THE PIPERIDINE RING Part IV. Investigations of 4-tert-butyl-4-hydroxy-2,2,6,6-tetramethylpiperidine derivatives. J Mol Struct, 1980. 68: 161-171.
(17) Z. Ma, Q. Huang, and J.H. M.M. Bobbitt, Oxoammonium Salts. 5. A New Synthesis of Hindered Piperidines Leading to Unsymmetrical TEMPO-Type Nitroxides. Synthesis and Enantioselective Oxidations with Chiral Nitroxides and Chiral Oxammonium Salts. J Org Chem, 1993. 58: 4837-43.
(18) J. et al. E. Baker, et al. , Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic Biol Med, 1997. 22 (1-2): 109-15.
(19) H. Hu, G.G. Sosnovsky, and H.S. M.M. Swartz, Simulaneous measurements of the intra- and extra-cellular oxygen concentration in viable cells. Biochim Biophys Acta, 1992. 1112 (2): 161-6.
(20) J. Org. B. Feix, J.M. J. et al. Yin, and J.J. S. Hyde, Interactions of 14N: 15N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry, 1987. 26 (13): 3850-5.
(21) Yuichi Kinoshita, Development of a novel spin probe agent for in vivo redox mechanism analysis. Master thesis, 2007
(22) E.E. Sartori, et al. , A time-resolved electron paramagnetic resonance investigation of the spin exchange and chemical interactions of reactive free radicals with isotopically symmetric (14N-X-14N) and isotopically asymmetric (14N-X-15N) nitroxyl biradicals. J Am Chem Soc, 2007. 129 (25): 7785-92.
(23) J. et al. F. W. Keana, Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chem Rev, 1978. 78 (1): 37.
(24) Hiroaki Ohya, Kei Yamauchi, Electron Spin Resonance, Kodansha Scientific. 1989: Kodansha.
(25) B. S. Winkler, S.M. M.M. Orselli, and T.R. S. Rex, The redox couple between glutathione and ascorbic acid: a chemical and physical perspective. Free Radic Biol Med, 1994. 17 (4): 333-49.
(26) S.M. Morris, et al. , Chemical and electrochemical reduction rates of cyclic nitroxides (nitroxyls). J Pharm Sci, 1991. 80 (2): 149-52.
(27) M.M. Shibuya, M .; Tomizawa, and Y.K. Iwabuchi, TEMPO / NaIO4-SiO2: a catalytic oxidative rearrangement of tertiary allochols to beta-substituted alpha, beta-unsaturated. Org Lett, 2008. 10 (21): 4715-8.
(28) X. Wang, et al. , TEMPO / HCl / NaNO2 catalyst: a-transition-metal-free-approach-to-efficient-aerobic-oxidation-of-aldehydes-and-ketons-under-cond. Chemistry, 2008. 14 (9): 2679-85.
(29) K.M. Nakahara, et al. , Rechargeable batteries with organic radical cathodes. Chem Phys Lett, 2002. 359 (5-6): 351-354.
(30) A. Dhanasekaran, et al. , Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondria. Free Radic Biol Med, 2005. 39 (5): 567-83.
(31) A. A. Bobko, et al. , 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem Biophys Res Commun, 2005. 330 (2): 367-70.
(32) A. Modica, D.M. J. et al. Lurie, and M.M. Alexi, Sequential, co-registered fluorine and proton field-cycled overhauser imaging at a detection field of 59 mT. Phys Med Biol, 2006. 51 (3): N39-45.
(33) R.M. Murugesan, et al. , Fluorine electron double resonance imaging for 19F MRI in low magnetic fields. Magn Reson Med, 2002. 48 (3): 523-9.
(34) C.I. Buhrmester, et al. , The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. J Electrochem Soc, 2006. 153 (10): A1800-A1804.

Claims (13)

  1.  化学式1で示されるニトロキシラジカル化合物の製造方法であって、
    Figure JPOXMLDOC01-appb-C000001
     式中、
     R~Rは、独立して、C~C10のアルキルであるか、或いは、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHSO(CH、(CHNX(CH、(CHCY(CH
     Xは、CHCO、CFCO、又はRCOであり、
     Yは、酸素(=O)、(OCHであり、
     nは2~4の整数であり、
     当該方法は、
     化学式2で示される化合物であって、
    Figure JPOXMLDOC01-appb-C000002
     式中、
     R~Rは、独立して、C~C20のアルキルである、化学式2で示される化合物と、
     化学式3で示される化合物であって、
    Figure JPOXMLDOC01-appb-C000003
     式中、
     R~Rは、独立して、C~C10のアルキル、R及びR、又はR及びRが共に結合して、(CH、(CHO(CH、(CHS(CH、(CHNX(CH、(CHCY(CH
     Xは、CHCO、CFCO、又はRCOであり、
     Yは、酸素(=O)、(OCHであり、
     nは2~4の整数である、化学式3で示される化合物と
     をアンモニウム塩の存在下にて反応させることにより、2,6置換-4-ピペリドン誘導体を生成させる工程と、
     前記2,6置換-4-ピペリドン誘導体を酸化させる工程と、
     を有する、前記ニトロキシラジカル化合物の製造方法。
    A method for producing a nitroxy radical compound represented by Chemical Formula 1,
    Figure JPOXMLDOC01-appb-C000001
    Where
    R 1 to R 4 are independently C 1 to C 10 alkyl, or R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2) n O (CH 2) n, (CH 2) n SO 2 (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
    X is CH 3 CO, CF 3 CO, or R 1 CO;
    Y is oxygen (= O), a (OCH 2) n,
    n is an integer from 2 to 4,
    The method is
    A compound represented by Formula 2,
    Figure JPOXMLDOC01-appb-C000002
    Where
    R 5 to R 8 are independently a compound represented by Formula 2, which is C 1 -C 20 alkyl;
    A compound represented by Formula 3,
    Figure JPOXMLDOC01-appb-C000003
    Where
    R 1 to R 4 are independently C 1 to C 10 alkyl, R 1 and R 2 , or R 3 and R 4 are bonded together to form (CH 2 ) n , (CH 2 ) n O ( CH 2) n, (CH 2 ) n S (CH 2) n, (CH 2) n NX (CH 2) n, (CH 2) n CY (CH 2) n,
    X is CH 3 CO, CF 3 CO, or R 1 CO;
    Y is oxygen (= O), a (OCH 2) n,
    n is an integer of 2 to 4, and a compound represented by Chemical Formula 3 is reacted in the presence of an ammonium salt to produce a 2,6-substituted-4-piperidone derivative;
    Oxidizing the 2,6-substituted-4-piperidone derivative;
    A process for producing the nitroxy radical compound, comprising:
  2.  請求項1記載の方法において、前記アンモニウム塩は、塩化アンモニウムである、方法。 2. The method of claim 1, wherein the ammonium salt is ammonium chloride.
  3.  請求項1記載の方法において、前記2,6置換-4-ピペリドン誘導体を生成させる工程は、水酸化セシウムを含むものである、方法。 2. The method according to claim 1, wherein the step of producing the 2,6-substituted-4-piperidone derivative includes cesium hydroxide.
  4.  請求項1記載の方法において、前記2,6置換-4-ピペリドン誘導体を生成させる工程は、ベンジルトリメチルアンモニウムヒドロキシド(トリトンB)を含むものである、方法。 2. The method according to claim 1, wherein the step of producing the 2,6-substituted-4-piperidone derivative comprises benzyltrimethylammonium hydroxide (Triton B).
  5.  化学式2で示される化合物であって、
    Figure JPOXMLDOC01-appb-C000004
     式中、
     R~Rは、C~C20のアルキルである、化学式2で示される化合物と、
     化学式3で示される化合物であって、
    Figure JPOXMLDOC01-appb-C000005
    式中、
     R~R10は、C~C10のアルキル、R及びR10が共に結合して、(CH、(CHO(CH、(CHS(CH、(CHNX(CH、(CHCY(CH
     Xは、CHCO、CFCO、又はRCOであり、
     Yは、酸素(=O)、(OCHであり、
     nは2~4の整数である、化学式3で示される化合物と
     をアンモニウム塩の存在下にて反応させることにより、2,6置換-4-ピペリドン誘導体を生成させる工程と、
     前記2,6置換-4-ピペリドン誘導体を酸化させる工程と、
     を含む方法により製造される、化学式1
    Figure JPOXMLDOC01-appb-C000006
    で示される化合物。
    A compound represented by Formula 2,
    Figure JPOXMLDOC01-appb-C000004
    Where
    R 5 to R 8 are C 1 to C 20 alkyl, the compound represented by Formula 2,
    A compound represented by Formula 3,
    Figure JPOXMLDOC01-appb-C000005
    Where
    R 9 to R 10 are C 1 to C 10 alkyl, R 9 and R 10 are bonded together to form (CH 2 ) n , (CH 2 ) n O (CH 2 ) n , (CH 2 ) n S (CH 2 ) n , (CH 2 ) n NX (CH 2 ) n , (CH 2 ) n CY (CH 2 ) n ,
    X is CH 3 CO, CF 3 CO, or R 1 CO;
    Y is oxygen (= O), a (OCH 2) n,
    n is an integer of 2 to 4, and a compound represented by Chemical Formula 3 is reacted in the presence of an ammonium salt to produce a 2,6-substituted-4-piperidone derivative;
    Oxidizing the 2,6-substituted-4-piperidone derivative;
    Chemical formula 1 produced by a method comprising
    Figure JPOXMLDOC01-appb-C000006
    A compound represented by
  6.  請求項5記載の化合物であって、この化合物は、以下の化学式、
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
     で示されるニトロキシラジカル化合物。
    6. The compound of claim 5, wherein the compound has the following chemical formula:
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    A nitroxy radical compound represented by
  7.  請求項5記載の化合物であって、この化合物は、胃粘膜損傷の治療に使用されるものである、化合物。 6. The compound according to claim 5, wherein the compound is used for treatment of gastric mucosal damage.
  8.  請求項5記載の化合物であって、この化合物は、高血圧の治療に使用されるものである、化合物。 6. The compound according to claim 5, wherein the compound is used for the treatment of hypertension.
  9.  請求項5記載の化合物と薬学的に許容可能な担体とを有する、医薬組成物。 A pharmaceutical composition comprising the compound according to claim 5 and a pharmaceutically acceptable carrier.
  10.  胃粘膜損傷を治療する方法であって、この方法は、請求項5記載の化合物を対象に投与する工程を含むものである、方法。 A method for treating gastric mucosal damage, comprising the step of administering the compound of claim 5 to a subject.
  11.  請求項10記載の方法において、前記化合物は、約0.0001~4g/日の量で投与されるものである、方法。 11. The method of claim 10, wherein the compound is administered in an amount of about 0.0001-4 g / day.
  12.  高血圧を治療する方法であって、この方法は、請求項5記載の化合物を対象に投与する工程を含むものである、方法。 A method for treating hypertension, the method comprising the step of administering the compound of claim 5 to a subject.
  13.  請求項12記載の方法において、前記化合物は、約0.0001~4g/日の量で投与されるものである、方法。 13. The method of claim 12, wherein the compound is administered in an amount of about 0.0001-4 g / day.
PCT/JP2010/069385 2009-10-29 2010-10-29 Novel nitroxyl radical compound and process for production thereof WO2011052759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538512A JP5911131B2 (en) 2009-10-29 2010-10-29 Novel nitroxyl radical compound and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25618409P 2009-10-29 2009-10-29
US61/256,184 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052759A1 true WO2011052759A1 (en) 2011-05-05

Family

ID=43922181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069385 WO2011052759A1 (en) 2009-10-29 2010-10-29 Novel nitroxyl radical compound and process for production thereof

Country Status (2)

Country Link
JP (1) JP5911131B2 (en)
WO (1) WO2011052759A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026610A (en) * 1999-05-11 2001-01-30 Sankyo Co Ltd Preparation of polymer and polymerization mediator
JP2001081076A (en) * 1999-07-09 2001-03-27 Sankyo Co Ltd Polymerization mediator and production of polystyrene
WO2008093881A1 (en) * 2007-01-31 2008-08-07 Kyushu University, National University Corporation Method for synthesis of nitroxyl radical

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026610A (en) * 1999-05-11 2001-01-30 Sankyo Co Ltd Preparation of polymer and polymerization mediator
JP2001081076A (en) * 1999-07-09 2001-03-27 Sankyo Co Ltd Polymerization mediator and production of polystyrene
WO2008093881A1 (en) * 2007-01-31 2008-08-07 Kyushu University, National University Corporation Method for synthesis of nitroxyl radical

Also Published As

Publication number Publication date
JP5911131B2 (en) 2016-05-11
JPWO2011052759A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP6401771B2 (en) Compounds for the modification of hemoglobin and their use
CA3153529A1 (en) Brd9 bifunctional degraders and their methods of use
CN116120314A (en) Compositions and methods for modulating hair growth
JP2016516696A (en) Compounds for the modification of hemoglobin and their use
Zhou et al. Semi-synthesis and anti-tumor activity of 5, 8-O-dimethyl acylshikonin derivatives
CN113801073B (en) 14-chloro-beta-elemene nitric oxide donor type derivative and preparation and application thereof
JP2022502510A (en) Nitroxoline prodrug and its use
WO2020156189A1 (en) Camptothecin derivative and water-soluble prodrug thereof, pharmaceutical composition containing same, preparation method, and use
CN112384503A (en) Lactic acid enhancing compounds and uses thereof
CN108794423B (en) Urea derivatives
CN104447322B (en) Single Demethoxycurcumin soluble derivative and its production and use
JP2515556B2 (en) Hydroxybutenolide derivative and method for producing the same
JP5911131B2 (en) Novel nitroxyl radical compound and method for producing the same
EP3904357A1 (en) Spiro compound and medical uses thereof
CN111166745A (en) Composition containing racemic oxypyramine or salt thereof and application
CN113768915B (en) Application of chrysin derivative in preparation of medicines
LU80680A1 (en) NOVEL CINNAMOYLES PIPERAZINES AND HOMOPIPERAZINES, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN THERAPEUTICS
CN113773293B (en) Chrysin derivative and preparation method thereof
WO2011047530A1 (en) Carotenoid derivatives, preparation method and use thereof
JP4541879B2 (en) Cinnamic acid dimer, process for its production and its use for the treatment of degenerative brain disease
KR101457637B1 (en) A dihydropyrazolecarbothioamide derivative, Method of preparing the same, and anti-cancer agent comprising the same
CN114957222B (en) Compound and preparation method and application thereof
US6660745B1 (en) Purine derivative dihydrate, drugs containing the same as the active ingredient and intermediate in the production thereof
CN114907323B (en) Quinoxalinone compounds, preparation method and application thereof
CN113185483B (en) Osthole derivatives and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826889

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011538512

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826889

Country of ref document: EP

Kind code of ref document: A1