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1. Introduction

In this paper, we are concerned with the periodic problem for a Rayleigh
egusation

z" + f(z') + g{t,2,2") =

Z0) = =(P), 2{0) = T) 0

Our aim is to study the siructure of the set of “mean values” $ for which
there exists at least one or at least two solutions of problemn (1). Such sets
: turn out to be intervals which can be bounded or unbounded.

The literature contains a large variety.of such resuits a example of which
is the classical Ambrosetti-Prodi problem {1], see also [6], [4] and the refe-
rences therein. Other related situations concern periodic noniinearities {sec
for instance [10], [8]) or in case of a Dirichlet problem, nonlinearities de-
pending only on the derivative {7]. Our main concern was to study similar
situations for periodic solutions of the Rayleigh equation (1) which seems to
be listle studied. We were also concerned with extension t0 equations which
sutisfy Carathéodory conditions. This forced us to write in Section 2 a the-

orers which relates the existence of ordered strict upper and lower solutions
with the degree of s suitabie operator. Such & result in the framework of
Carathéodory conditions does not seem to be cia.ssmal

In Section 3, we consider restoring forces g(¢, #,2') uniformly bounded by
L2-functions. This includes periodic nonlinearities such as in the penduluin
eauc,tiovs “In this case, the set of admissible “mean values” $ turns out to be

interval 7, which we can estimate for the damped pendulum equation. If
n,ut, z,z') is periodic in z, we prove existence of two solutions in the interior
of I. The proof of this resul* 13 baaed on the existence of strict upper and

o i
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335 P. Habets and P.J. Torres

lower solutions. This forced us to impose some uniform continuity condition
on the functicn g{t.z,z') {see condition (b) in Theorem 3). Some of our
results are related to J. Mawhin [9].

The last section deals with restoring forces bounced from below. Here,
we extend the Ambrosetti-Prodi type result in [6] to nonlinearities that sa-
tisfy Curathéodory conditions. In particular, we replace the usual condition
iM|p| 00 948, T, y) = +oo, uniformly in i and y, by the assumption that
g(t,z,y) can be broken into g(t,z,y} + hlt.z,y), where §(i,z.y) satisfies
such & uniform limit for |z| = oo and h{¢, 2,y) is bounded by a L*-function.
These assurptions are modeled from 4 phiysical system with a restoring fozce
g(t, ) and a forcing h € L2,

In the paper, we use the following notations. A function g : [0, Tix R =
R e said 10 be a Cerethéodory funclion if :

g(-,z,y) is measurable for all z, y € R and
g(t, -, -Jis continucus for almost all ¢ € [0, 7.
We call a function g(t, z, y) a L*- Curathéodory functionif it is a Carathéodory
function and for any R > 0 there exists a function h € L* such that

for almost all ¢ € [0,7], Vz € [-R,R], Yy € [-R,R], lg(t.z,y}i < &A(2).
We shall consider such nonlinearities throughout the paper, which implies
solutions are in W(G, 7"

We write || - {l, for the usual norm in ZP(C,T"). Also, we shall use the
spaces

X i={z € H2(0,T) | 2(0) = 5(T),='(0) = ='(T), JS zdt =0},
Y = {z e LI?(0,T) | [, zdt =0},

and the projector
1 7T
P:LZ{O,T)—}RL'HP«“::?/‘ zdt. (2)
1]

We shall often wriie Z = Pz and & = (I — P)z.

2. Strict W%'-lower and upper solutions

In this section, we consider the problem

z' + F(t,z,z') =0, 3)
2(0) = 2(T), #'(0) = ='(T). %

s

where the real function F(t, z,y) is defined for (¢,2,9) € [0,7; x R?. To state

the following basic definitions we extend F by periodicity for t € R

Definitions. A function a € C(0,7) is a strict W21 -lower solution of (3)
if it is not a solution on {0,7] and its periodic extension on R, defined by
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Muitiplicity Results for Periodic Solutions 337

a(ty = a{t +T), is such that, for any {5 € R,

either D_alty) < DT ally),

or there exist an open interval Iy and ¢y > 0 such that iy € Iy, « € W2+ (I)
snd, for almost every ¢ € Iy, for all u with a{t) < ©v < a(t) + ¢, and all v
with &' (¢} — &g < v < &'{¢) + €9, we have

a"{t) + F(t,u,v) > 0.

In the same way, a function 8 € C(0,T) is a strict W2 -upper solution
of (3} if it is not a solution on [0, T] and its pericdic extension on X, defined
by B(t} = B(t + T}, is such that, for any ip € R,
either D= Blto) > Dy B(ko),
or there exist an open interval Jp and €p > 0 such that ¢ € Ty, 3 € W1 (Jp)
and, for almost every ¢ € Ty, for all u with 8{t) — ey < u < B(2}, and all v
with (8} — €0 < v < S'(t) + €9, we have

B'(t)+ F(t,u,v) <0

As a next step, we write (3) as a fixed point equation. To this aim, we
define the operator

T = KI _N, (4}
where
K : L'0,T) - Co, 7] (5)
is the Green operator corresponding to 2"’ —z+ f =0, z(0) = =(7T), 2'{0) =
(T}, and N : CY[0,T] — L}(0,T)is defined from Nz = F(.,z,2')} + z.
With these notations, the problem (3) is equivalent to

=T

Theorem 1 Let F: [0,T]xR? — R be a L -Carathéodory function. Assume
(i) there exist strict W2 -lower and upper soiutions a and 5 € W{(a,b}
of (3) such that a < f on {0,771,
(i) there exists R > max{}|dliccs ||#|lcc } such that any solution z of 2" +
F(t,z,2') =0, 2'(t0) = 0, with {p € {0,T) and a < x < 3, verifies
li2'lloe < R. (6)
Then,
deg(I — T,0) = 1, (7)

where T is defined in (4) and Q:={z € C[0,T]|a<z < B, gl

el —E
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338 P. Habets snd P.J. Torres

Proof. A modified problem. Let us consider the modified problem

g’ — g+ F(t,z,2') + 8(aft), s, 80)) = 0, (8)
2(0) = z(T), #'(0) = z'(T), :

where F(t,2,y) = F(t,6(al{t), z, B(#)), 0(— 1, ¥, R)) and

A if u < A4,
§(AuB)={ u HALu<B, ()
B fB<Lu

Claim 1 : Every solution z of (8) satisfies alt) < z(t) < B{t) on o, T1.
Assume on the contrary that for some & € 0, T,
min {z(t) — a(f)) = z(to) — &lto) < 0.
t£{0,T] _

Hence, z'{to) — D—c(to) £ 0 L a'(to) — D+ al(ty) and by definition of a strict
w2l jower solution D_a(io) = D™a(le) = 2'(to). Next, we chioose from this
definition an open interval Iy and ¢y > O and take them small enough so that
for any t € o,

oty < éaft),=(1),8() < ait) + €o,
_R< W) —e< o'W <)+ R

Whence, for almost every ¢ € Jto, 1
(1) + F(t, 2(2), 2 (1)) = a"(8) + Fit. 8la(t), 2(8), B(), 7' (1) 2 0.

Notice that as « is not a solution, g could have been chosen such that for
some #1 > i, &1 € Ip, we have z'(;) — &'{t1) > 0. 80 that the following
contradiction holds

Jip

21 %
< [ [=F(s,z(s),2'(s)) +T — olaft),z, B(t)) — &" ()] ds < 0.

ty
Similarly, we prove that V¢ € {0,177, z(t) < 8(t), whick proves the claim.

Claim 2 : Ewery solution z of (8) sutisfies '()] < R on [0,T]. If not,
there exists a solution z of (8), tp € [0,T] and #; € [0,T1], t1 > to, such that
7'(tg) = 0,i%'(31)] = Randforanyt € [to 11 12’ ()] £ R, at) < 2(t) < B(2).
Hence z satisfies 2" + F(t,z,2') = 0 on [to,¢1] and contradicts assumnption
(ii).

Claim 3 : deg(l — 7,9Q) =1. Define the operator ¥ = KN, where

(NVz)(t) = F,2(),2'(t)) + 3(e{t), =, B1)).
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Multiplicity Results for Periodic Solutions 339

1t is clear that 7 is bounded and for £ > 0 large enough and any A < [0,1],
deg(I — T, B(0, B)) = deg(I — AT, B(0, R)) = deg(I, B(0, R)) = i.
Also if R is large emough, 2 C B(0, 3:2) and from Claims 1 and 2 and the

excision property of the degree
deg(I — T, B(0, R)) = deg(J — T, 9Q) = deg(l - T,0) =1,

which proves the theorem. =

3. Bounded restoring forces
In this section, we consider a nonlinearity hounded by some function & &
L2(9,T). A first result describes the structure of the set of p for which the
periodic boundary value problem (1) has a solution.
Theorem 2 Let pe R, F: R = R be a continuous function end g : [0,T]
R? — R e a Corathéodory function such that for some h € L*{0,T) and all
(t,z,y) € 10,71 x B2,
lg(t,z, v)| < A(E).

Then, there ezists a nonempty interve! [, b] such that
(i if D & la,bi, problem (1) hes no solution,
rii) if p e {(a. b}, problem (1) has at least one solution.
Proof. Let M be the set of all § such that (1) has a solution.
Claim 1 : Let R > VT ||hlly. Then any solution = of (1) is such that

lz'lls < R. (10)

Multiplying the equation {1) by z’ and integrating on [0,7), we get

et

T
"B < = [ gltsz2")e" di < ||Bllati"ilz. (11)
& ()

Hence,
fl="ilz < [iAll2
and if we choose £y such that z'(fp) = 0, we have
t

()= &"(s)ds| < VTilz"|la < VT |All2 < R.

to
A modified problem. Consider the function
f@) = j(6(~R,y, R)),
with §(A,y, B) defined ia (9). Repeating the proof of Claim 1, it is clear that
any solution z of

z" + f(z') + glt.z,2') = B, (12)
2(0) = 2(T), '(0) = (T).

satisfies (1). Hence z is a solution of (1) if and only if it is a solutior: of (12).

|
|
i
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340 P. Habets and P.J. Torres

Claim 2 : M is non-empty. Let 7 = K(I—P)N, where K Y c L2(0,T) —
X C CY[0, T} is the compact inverse of the operator L: X C C*[0,T] - ¥ C
L0, T with Lz = —g”, P is defined from (2) and

N:CY0,T] = L*(0,T),z — Nz = f{z') + g{-, 2,2").

The operator 7 is completely continuous and bounded so that Schauder’s
fixed point Theorem provides a solution of the equation = 7z. This last
equation is equivalent to

—z" = f(z') + olt,z,2') - P(J(&') + 9(-,z,2"))
z{0) = z(T), 2’ (0) = 2'{T),
which proves that §:= P{f(z') + g(.,z,2")) € M.
Claim 3 : M is bounded. Direct integration of {12) shows that
: kliz
P < ilfllos - ;- k2

Cilaim 4 : M is an interval. Consider py, §» € M with §; < §» and let z;,
z3 be the correspording solutions of (1). Forp € (gll p2), the functions
and T are respectively upper ang lower qoimlons of (12} as

of + f{#4) + 9t,21,2]) —p=P —H <0
and

2 + f(z3) + g(t,22,25) —B=P2~ 5> 0.
It follows now from an easy extension of Theorem 4.1 in [4] (see also [2]),
that problem (12), and hence (1), has a solution. -+

Remark. Theorem 2 is best possible as follows from the following example

" + ez’ +arctan:s =7,
z(0) = #(T), 2'(0) = z*(T),

where ¢ # 0. Multiplying the equation by z' and integrating, one obtains
llz’|2 = 0. This implies the solutions are constant and we compute z{t) =
tanp. Hence, this pmhiem has exactly one solution for § € (=%, 3) and no
solution for § & (- 53

Remark. If ¢ is continuous and uniformly bounded, Claims 2, 3 and 4 follow
from Proposition 2.1 in {3].

In case the function g(t,z,y) is periodic in #, Theorem 2 can be substan-
tially improved, as it is shown by the next theorem.

Theorem 3 Let p€ R, f: R — R be a continuous function and g : [0,T] x
®? — R be u Carathéodory function such that
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Muitiplicity Results for Periodic Solutions 341

{a) for almost all t € [0,T) and all (z,y) € B2, g(t,z,%) = ¢(¢,z + 27, ¥),
(b} for allto € 10,T), {wo,y0) € R* and € > 0, there exists § > 0 such that
it — toi < 6, |.’£_$[_)§< 5; |§“‘1«'0T<5 = {g{t'lx'ly)_g(t?mn!ye:}i <¢
e} for some h € L2(0,T), almost ¢l t € [0,7] and all {z,y) € B,
94, ,)] < A(t).
Then, there exigts a nonempty interval [a, b] such that
(i} if p € la,b], problem (1) has ne solution,
(ii) if 9 € [a,b], problem (1) has at least one solution.
(ii;) if 5 € (a,d), problem (1) has et least two solutions non-differing by «
maultiple of 27.

Remark. Note that assumption (3) is equivalent to

(b'} given continvous functions u, v in [0,77], to € [0,T] and € > 0 there
exists & > 0 such that for any functions u, v, defined in 0,T], saticfying
122 = tillos < 8, |[v = V]leo < J, the inequalities

[g{t? u“)?'”(ﬂ) i .‘?{t:#(t)i Vit}j; <€,
holds almost everywhere in {tg — 6,45 + 81 N0, T].
A gimple example in which this may be checked is g{¢, z,y) = a(t)+b(t) vz, v)
with @ € £2(0,7), b € L*= and ¢ € C(R?).

Proof. Trom Theorem 2, the set M of § such that (1) has at least onc
solution is & bounded interval, i.e. ¢lM = [a, b].

A - Cloim : M is closed. Let (pp)n be a sequence in M converging to p
and {zn)n be the corresponding solutions of (1). From the periodicity, we
can assume (adding a multiple of 27 to z, if necessary) that =,(0) € [0, 27.
1t follows now from (10) that :

t
l2n (8] = l2a(0) + f 2.(s)ds| < 2 + RT
0

which, using (11), gives that the sequence (Zn). is boundec in H2(0, 7).
As H?(0,T) is compactly embedded in C'[0, T}, a subsequence converges 10
some function u € C*[0,T] and going to the limit in (1) (with § = paj, it
follows that « is a solution of (1) with p=p.

B - Egistence of strict W2 -lower and upper solutions of (12} for p € (a,b).
Consider the modified problem {12}, where B > 0 is defined from {10). Let
z, and zp be the solutions of (1) with § = ¢ and p = b respectively. As g is
periodic, we can choose £ £ Z such that o := 2, < 8 1= z, + 27 and for
some t. € {0,T),

alt.) + 27 > B(t.). (13)

Let us show that for & < b the function « is a strict W21-lower solution.
Given tg € [0,77], we can pick an open interval Iy and ep > 0 small enough so
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342 P. Hahets and P.J. Torres

that ¢y € Iy and for almost every t € Ip, for all u with a(t) < u < aft) + €,
and all v with &/(t) — ¢ < 2 < &'{t) + €. we have

<

[(v) - fla (*))I<—’J, l9(t ) — glt,a(t). &/ (D) < 5~

It foilows that for such ¢, w and v

o’ () + fv) + olt, u,v)
= b+ (f(v) = Fl' (1) + {g(t, u.v) — g(t, a(t), &' (2)))

>b- (-7 =7

Similarly, we can prove that a{t) + 27 is a strict W*!-lower solution of (12}
if # < b and that G{t) and B(t) + 27 are strict W2 '-upper solutions if 5 > a.
C - Claim : If p € (a,b), problem (1) has at least two solutions non-differing
by a multiple of 2c. Define the sets
0, :={z € C*[0,T] |Vt € [0,T), alt) < z(t) < B(¢), |’ (t}] < R},

Qs = {z € C*0,T] |Vt € {0, T}, aft) + 27 < z(t) < B{t) + 2w, |2’ (2)] < R},
and

Q3 :={z € C*[0,T) iVt € [0,T), aft) < z(t) < B(2) + 2=, |2'(t)| < R}-
Let Tz := KNz, where K is defined in (5) and Nz = 5— f(2') - g(-,z,2') —
z. Theorem 1 applies,

deg(f = 7,83) =deg(I — T,%2) =deg(i — 7,83) =1,
and by the excision property
deg(7 — 7,805\ (R U)) = —1.

Hence, we obtain two solutions z; € Q; and 22 € 03\ (2; UQs) of (12). As
this probiem is equivalent to (1) on each of the sets §2;, z; and z, are also
solutions of (1). Notice that z; =2nx ¢ Q3\ (1 UQe) forn = 1,2,... since we
have {using (13)) o (#.)—2n7 < B(t.)=2n7 < a{t.)-2(n—-1)7 < o{t.). Also
xy+2nm, withn = 1,2,... cannot be in 3\ (2; U§Y;) since 23+ 2n7 > a+27.
Hence zo € O3\ (1 U Q2) cannct differ frora z; by a multiple of 27, i)

A classical example of differential equation with periodic nonlinearity is
the pendulum eguation

2" + f{2') + Asinz = §+ 5{t). (i4)

Following the ideas of [13], the next result gives some estimates on the set
M of admissible p.
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Progosmon 4 Let f - R —= R be 6 continuous function, A € R and K €
(0,7). Then foralip € Y with ’fp[iz = Ky 5"’ , there emb.sze 2o € R finde-
pendent of A) with

: £
170! < max{|£(3)] < v} < 4/ 75 16ll2} (15)

such that (14) has ot least ¢ T-periodic solution for any § with
- K

1D — |<As*n

g,

(16)
and two T -periodic solutions if the ineguaiity is strict.

Proof. From Schauder’s fixed point Theorer, there exists a solution up € X
of

ug =p~ Flufy+ Pflug). (17)
Multiplying by wuj and .ntegratmg we get llugll2 < liplla. Further, we obtain

from classical estimates {juplleo Lilulilly (see [12] p. 215) so that, for

any #, and tp,

ores 13\/5

T

fu{ts) — wo{t2)] < Juo{t)! + lua(t2)] < v 18]l < XK.

Let gp := P f{uy). Direct integration of (17) gives Tpp = T flug) dt and

5} follows as
; I . T
[uglje _<. \/ ﬁlf_?glf’z < il

Let us now pick constants ¢; and ¢g so that aft) := up(f) + 1 € (5 —
B z+ 8 and B(t) == uo(t) +c2 € 32— £, 32 + £1 We also fix p according
to (16). It is then easy to check that @ and 3 are lower and upper solutions
for (14) so that the existence of a T-periodic solution is proved. Finally, the

multiplicity resuls is a direct consequence of Theorem 3. =
If the friction force is linear, we obtain the following result.

Corollary 5 Letc € R, A€ R and X € (0,n). Then, foraellp € Y with

1Blle < K ;I-—:‘é; and any p such that

77 —
2 i 1
[9] € Asin 3

the equation
2" +ca' + Asinz =+ p{t)
has at least o T-periodic somtwn, and two if the inequality is strict.

Proof. One has to see that ﬁn P(uo) = 0. B

e

P e 1 e B A
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344 P. Habets and P.J. Torres

4. Restoring forces bounded from below

This section is concerned with the study of the nuruber of T-periodic solutions
of & Rayisigh equation with an unbounded norlinearity.
Consider the periodic boundary value problem

z" + f(z') + g{t, %, %) = B+ h{t,z,z'), (18)

#{0) = z(T), ='{0) = 2'(T). $
The first resuit of this section is the following theorem of Ambrosetti-Prodi
type in the case of sublinear friction.

Theorem 6 Let § : R — R be continuous and ¢,k : [0,T) x B2 — R
be Corathéodory functions such that for elmost all tp € [0,7] and jor all
(zo,%) € R x R and € > 0, there exists 6 > 0 such that
|t =16l <9, joe—20| <6, jy—wol <9
= |g{t.z.y) — o(t, 20, %0)] < € end |Alt, 7, y) — A{t. 20, )| <&
The following conditions are assumed:

(A) There exist d > ¢ > 0 such that

)

c<
Y

<d

forallye R

(B} There exist functions ky, kg € L?(0,T) such that for almost all t € [0,T]
and ali {z,y) € B2

h{t,2,y)| S ka(h), glt,2,y) 2 k2{2)-

there exists a function k& € L%°(0,T), such that for

(C) For any R > 0,
€ (0,7} and all (z,y) € [-R, Rl X R,

almost ail ¢
l9(t, 2z, )i < k{2)-
(D) i liim alt,z,y) = +00, uniformly int und y.
I|—+o0
Then, there exists a € R such that
(i) if B < e, problem (18} has no solution.
{ii) if b = a, problem (18) has at least one solution.

(iii} if B > a, problem (18) has at least two selutions.

Proof. Claim I : Given py there exist Ry > 0 and Ry, > 0 so that eny
solution z of (18) with P < Pg is such thut

ll#)lec < Roy |lz'llec £ Ra- (19)
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Let {(z')+(t) = max{2'(?),C}. If we multiply eguation (18) by (z'); and
integrate, we obtain

T 3
of @rd < [ B+ IEE + (oltma) - @)
1] o U

0
= | [P+ hlt.z,2") - ka(t){e); dt
v 0D

< (o] T2 + Hkrilz + ik2ll2) 1)+ |-
'This gives a bound K; on ||(z’)+{]z and therefore |{(x) )+ ih < VTK;. More-
over, ¥ we define (z")-(t) = max{~2'(t),0}, then 0 = [&'dt = |{{z’)=||: —
iz’ )_‘,1, so we have also [J#'{} = 2|I(2))+1h < 2VT K.
, take Kz 1= 2{BoT + !|MH2\/—+ d2v/TXK;). By assumption (D),
thcre exis‘cs sore v > 0 such that g(t,z,y) > K, for every {z! > v. I z{{) is
a solution of (18}, direct integration gives ;

T
[ stmsa =T+ f [h(t,2,2") — f(z")] dt
e 0
T
smT+uhm¢?+df o't
(4]

< 50T + |ik1||oVT + d2VTK; = KoT.

Hence, for any solution z of {18) we can choose tp such that jz()] < v.
Thus,

pT

iz(t)] < |z(2o)l +/ [2'(t)dt < v+ 2VTK;y =: Ry

0
From hypothesis (C), there is a function & € L*°{0,T) such that for almost
every t € (0,77 and all {z,y) € [, Rp] x R,

y(t,z,y)| < k(L)

Now, if we multiply (18) by 2", integrate and take into account the bound
on z(t), we obtain

= o
2[5 = [ (r(t, 2,2") — g(t, 2,2 Y2" dt < (lika]lz + [kl]2)Hiz" i2
v

Hence llz""]2 is bounded by k1|2 + ||kll2 and as there exists ty such that
z'(tp) = 0 we deduce

4
') < J,f 12" ds < [|2"2VT < (klf2 + [JElla)VT =: Ry
ta

Claim 2 : Equation (18) has a solution for some py large enough. Let study
the equation

2" + @'Y+ k() = Py (20)

i

;
i
!
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It is known {sce [11]) that there exists some Pr such that egueiion (20) has a
family of 7-periodic solutions u + € with C € R. If yp 1s the eiement of this
family such that @y = 0, using the arguments of the proof of Proposition 4
we obtain that

VT T

[Juollee < m\/gﬂklf.?za Hugileo < Y 'ﬁii’iﬂﬁiz'

.‘— .
Fix § > pr + max{g{t,z,y) : |z £ %%“fg“kl“m ¥l < \/%Hﬁ:giig}. Then, we

ciaim that ug is an upper solution of (18). Indeed,

ug << «"; (“EJ) 23 g{t? uﬂ:‘ué)) 5= h’(t: to, u’(J} \ a
< ul + Flub) + g(t, uo ub) + ka () = B + g(t, w0, up) < B

On the other hand, it is possible to get an ordered lower solution by consi-
dering the equation -

2" + (&)~ ka(8) = . (21)

There exists some Pp such that equation (21) has a family of T-periodic
solutions u -~ C, with C € R. Choose u; := u — C with C large enough such
vhat for every ¢, %1 {t) < ug(t) and g(¢,us,ul} + P2 > P (this is possible from
(D). Then,

uff + flul) + gt us, ul) — h(2, uz,ul)
2 uflz T f(u;.) a5 Q(t,ﬁhui) = ki(t) = ;32 7R 9(t) “1?1‘;) > ﬁ

Ciaim 2 follows then from Claim 1 and the fact that u: and up are ordered
lower and upper solutions of (18).

Claimn 3 : The set M of all the p such thet (18) has a solution is bounded
below. From Claim 2, M is not empty. Let 5 € M and x{f) be a solution
of {18) with p < Py. From Claim 1, a direct integration of {18) leads to

P>k — ks —sup{|fly)| : ly] < R:}.

Ciaim 4 : For every Po € M, the set MN] — 0,P0] i a compact interval.
Define the functions n -
Hy) = fo(~R,y, Raj),
and

é{t' Z, y) = g@& 5(_Rﬂa Zy RO), 5{_-&1 y Uy RI})
where 6(4,u, B) is defined in (9) and Ry and R, are given by Claim L.
Repeating the proof of Claim 1 for the modified equation

o' + f(:c’) + g(t,z,z') = p+ hll,z,2'), (22)
z(0) = #(T), 2'(0) = 2'(T),
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is clear that  is a soluticn of (i8) with $ < @, if and only ¥ it is a solution
of f:ﬂ‘}.

Now, repeating the proofs in Theorem 2 and 3, we can show that M} —
oo, Po] is & closed interval. Finally, Claim 3 shows that MN]—o0. o] = [a. o)

for some a.

Claim & : If p € int M, eguation (18) hes two solutions.

Let p: and P2 € M be such that 57 < p < H2. Then we prove as in
Part B of the proof of Theorem 3 that the solution of (18) with = p; is a
ssrict W2i-upper solution, call it 8(2), nd that an ordered strict W2 -lower
solution a(t) can be obtained by the argument in Claim 2. Hence, writing
problem (18) as a fixed point protlem z = 7Tz, we have using Theorer: 1

deg(7 - 7,Q) =1,

where @ = {z € C*0,T] | a < z < B,|z'| < R} and R; is obtained from
Claim 1. Further, we can find R > 0 large enough so that £ C B(0, R) and
for 211 < P problem {18) has no soluiion on the boundary of B(0. R} C
C*[0,T]. 1t is easy to see that

deg(7 — T;B(O, .R}} =0

and now the existence of a second solution in 3{0, R}\2 follows from classical
properties of the degree. #

Theorem 6 can be applied directly to the problem

'+ f(&") + glz) =5 + h(t,z,2'), (23}
20 = 2(T 2 (D) =='{T). i
However, condition (A) on f is quite restrictive. From the physical point
of wiew, it is very interesting to get results about superlinear damping. For
instance, quadratic damping f(y) = |yly appear very often in applications
(see [13] and the references Lerein). Hence, our purpose in the following
result is to cover the model case

z' +clz'|Pz’ + 2 = p+ h(2),
z{0)="z(P)rz'(0)=z'(T),

with k€ L? and p > 0.

Theorem 7 Let f,9: R > R be coutinuous functions, h : [0,7] xR* = R
te a Carathéodory function such thet jor almost all t5 € [0, .T“] and for all
(zg,90) € R x R and € > 0, there ezists > 0 such that

it —tol < 8, lz — 2ol <6, |ly=yol <8 = |h{,2,y) — &, z0,y0)i <€
The following conditions are assumed:

st

ey e ek Bt
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(A} There ezist d 2 ¢ > 0 and p > U such that

e < lf—g?‘-’-)- <d
}yl#y
for ally e R.

(B) There exists a funciion k; € L*(0,7) such that
Ih{t,z,¥)} < ka(2)

for almost ali t € [0,T] and all (z,y) € R®.
C) lim g(z} = +o0.

|zl —oo
Then, there exists a € R such that
{ij if p < a, problem (23) kas no solution,
(i) if p = a, problem (23) has at leasi one solution.
(#3) if B > a, problem (23) hes ot least two solutions.

Proof. The proof of Theorem 6 is valid except for the a priori bounds on
sclutions of {23) obtained on Claim 1.
First, muitiplying (23) by 2’ and integrating, we obtain

ip+2

REPATT'S v PT ! i " e alat
ellz < j Hz )y di = hit,z,2' )z dt
0 0

T
< [ lkyz'ldt < Jikfj o2 il2"]| pras
Jo p¥I

whence
o . e
Il < (Zltillzgg )™ =k

Now, take Kz := »(5T + ||k1|l2vT + dKP+1T53), By assumption {C),
there exists some v > 0 such that g{z) > K> for every |z{ > v. If z(t) is a
solution of (18), direct integration gives

I <
[ g(:r:} dt =pT'+ f [h(ts I, I') = f{xf:‘] dt
JD Jo i

T
<aT+{kalvT+d [ falrtiae
0

< 50T + Ik ||oVT + dKPHITH7 = K,T.

Hence, for any solution z of (18) we can choose ig such that |z(¢)] < v.
Thus,

T EY
()] < lotta)l + [ 10} < v KaTHR = R

and repeating step by step the argﬁTméilté of Theorem 6 the result is proved.
=
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Tinally, we are going tc enlarge the set of admissible f assuming a uniform
bound on the derivative of g. Moare precisely, the following result can be
proved.

Theorermn 8 Let f : R — R be continuous, g : R — R have a conlinuous
derivative and h: {0,71 x B2 — R be a Cerathéodory function such that for
almost all 1y € [0,7] and for all (zo,y0) € RxK and e > 0, there exists & > U
such thal

B—to} <4, o —xo| <6 ly—gol <& = [Alt,z,y) — AlL,To.po)| <€
The following conditions are assumed:
{A) There ezist ¢ > 0 and p > 0 such that for all y € R, f(yly = clylrt? .
/B) There ezists a function ky € L*(0,T) such that

ih(t! Z, y)’ < kl (t}
for almost cll ¢ € [0,T] and all (z,y) € R2.
/C) G =supfle’(z)] : z € R} < +00.
/D) lim g(z)= +o0.
;2 i=+00
Then, there ezists a € R such thal

i) if B < a, problem (23; has ne solution,
(%} if p = a, problem (23) has at least one solution.

.....

fiiey if D > a, probiem (23} has at ieast two solutions.

Proof. As before, the key idea is how to compute a priori bounds on the
derivative of the solutions of (23). Multiplying {23) by z’ and integrating,
we obtain :

; rT T
Al < [ fehee= [ heoad
T

o | el o B s,
I . g

whence
5 \ 7
2’| lp+2 < (Ellkﬂl% =: K;.

Now, muitiplying the equatioa by z" and integrating over a period, we obtain
- T
izl + [ glz)z"dt = / h(t,z, 2"}z dt;
Ja a

but an integration by parts gives fOT g(z)z"dt = — fDT g'(z)(z')?dt, so that
T
1R < alllle”l+1 7 o @) e

0 »
< lkallellz”|l2 + Gile'lla < llkallal<”]l2 + GKIT 72

st L R A

|
1
i
j

. ¥ e

.
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Hence, there exists some K > 0 such that ||z”]]z < K3, and in conclusion
He'llee < VT K =: K.
With this bound, we can define the truncated function

f(y} o= f{éi—Kmy, K3D:
problem (23) is equivalent to the truncated problem

- o +f(l") +9(-7") =p+ h(i,ﬂ:, z'), (24)
2(0) = 2(T), /(0) = (T) )

arnd we are in the “bounded” case studied above. &

Further remarks. In the case of Corollary 8, it is possible to adcd &
damping term fo(y) with the only assumption that fo(y)y > 0 for any y,
which means simply that the “friction force” is opposed to the movement.

Is is not hard to state “dual” versions cf the results of Section 4 by
considering restoring forces bounded from above.

n the other hand, it is possible to extend all the results of this paper
to equations with a discontinuous friction force f. The physical model of
this kind of nonlinesarities is the dry or Coulomb friction, a phenomenon that
is modeled by the sign of the derivative. Then, the differential equation
must be considered as a differential inclusion {(see for example {§]). and the
same method of approximation by single-valued functions developed in [13]
is available, since the a priori bounds obtained in the proofs above guarantec
convergence of the sequence of solutions by Arzeld-Ascoli theorem.
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