Electric Switch Mechanisms

Installation and Operating Manual

Series A, B, C,
D, E, F,
L, M, N,
O, Q, S,
T, 2, and 3
with
Aluminum,
Carbon Steel,
or
Cast Iron
Housings

Read this Manual Before Installing

This manual provides information on Electric Switch Mechanisms. It is important that all instructions are read carefully and followed in sequence. Detailed instructions are included in the Installation section of this manual.

Conventions Used in this Manual

Certain conventions are used in this manual to convey specific types of information. General technical material, support data, and safety information are presented in narrative form. The following styles are used for notes, cautions, and warnings.

Notes

Notes contain information that augments or clarifies an operating step. Notes do not normally contain actions. They follow the procedural steps to which they refer.

Cautions

Cautions alert the technician to special conditions that could injure personnel, damage equipment, or reduce a component's mechanical integrity. Cautions are also used to alert the technician to unsafe practices or the need for special protective equipment or specific materials. In this manual, a caution indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

Warnings

Warnings identify potentially dangerous situations or serious hazards. In this manual, a warning indicates an imminently hazardous situation which, if not avoided, could result in serious injury or death.

WARNING! Explosion hazard. Do not connect or disconnect equipment unless power has been switched off or the area is known to be non-hazardous.

Low Voltage Directive

For use in Installation Category II, Pollution Degree 2. If equipment is used in a manner not specified by manufacturer, protection provided by equipment may be impaired.

Notice of Copyright and Limitations
 Copyright © 2006 Magnetrol International.
 All rights reserved.

Magnetrol reserves the right to make changes to the products described in this manual at any time without notice. Magnetrol makes no warranty with respect to the accuracy of the information in this manual.

Warranty

All Magnetrol/STI mechanical level and flow controls are warranted free of defects in materials or workmanship for five full years from the date of original factory shipment.

If returned within the warranty period; and, upon factory inspection of the control, the cause of the claim is determined to be covered under the warranty; then, Magnetrol will repair or replace the control at no cost to the purchaser (or owner) other than transportation.

Magnetrol/STI shall not be liable for misapplication, labor claims, direct or consequential damage or expense arising from the installation or use of equipment. There are no other warranties expressed or implied, except special written warranties covering some Magnetrol/STI products.

Quality Assurance

The quality assurance system in place at Magnetrol/STI guarantees the highest level of quality throughout the company. Magnetrol/STI is committed to providing full customer satisfaction both in quality products and quality service.

Magnetrol's quality assurance system is registered to ISO 9001 affirming its commitment to known international quality standards providing the strongest assurance of
 product/service quality available.

Electric Switch Mechanisms

Table of Contents

1.0 Reference Information 1
1.1 Principle of Operation1
1.2 Operating Cycle 1
1.3 Description 2
1.3.1 Mercury switches A, E, N and T 2
1.3.2 Mercury switches L, M, 2 and 3 2
1.3.3 Dry contact switches B, C, D, O, Q and S 3
1.3.4 Hermetically sealed switch 3
2.0 Installation 4
2.1 Replacing Switch Mechanism 4
2.2 Replacing Mercury Switches.4
2.2.1 Series A, L, M, N and 3 4
2.2.2 Series E, T and 2 5
2.3 Replacing Dry Contact Switches 6
2.3.1 Series B, C, D, F, O, Q, and S6
2.4 Vibration Service Adjustment 7
2.4.1 Series E, T and 2 7
3.0 Wiring 8
3.1 SPDT Terminal Connections 8
3.1.1 Single float with one switch or single stage displacer 8
3.1.2 Single float with two switches or dual stage displacer 8
3.1.3 Single float with three switches or three stage displacer 9
3.2 DPDT Terminal Connections 10
3.2.1 Single float with one switch or single stage displacer 10
3.2.2 Single float with two switches or dual stage displacer 10
3.2.3 Three stage displacer 11
4.0 Switch Specifications 12
5.0 Replacement Switch Mechanisms. 13
5.0.1 Switch selection 13
5.0.2 Magnet strength 13
5.1 Yellow Dot Magnet Replacement Mechanisms 14
5.1.1 Series A, B, C, D, E, L, N, O, Q, S and T.. 14
5.1.2 Series 2, 3 and M 15
5.2 Red, Black and Blue Dot Magnet Replacement Mechanisms 15
5.2.1 Series A, B, C and E 15
5.2.2 Series 2, 3 and M Red 16
5.2.3 Series 2, 3 and M Red/Black/Blue 16
6.0 Replacement Switch Housing Assemblies 17
6.0.1 Aluminum housings 17
6.0.2 Cast iron housings 18
6.0.3 Carbon steel housings. 18
6.1 Replacement Housing Kits 19
6.1.1 Referred by eighth, ninth and tenth digit. 19
6.1.2 Referred by description 19
6.2 Replacement Gaskets and Hardware 19
7.0 Manual Reset Option 20
7.1 Parts Breakdown and Identification. 20
7.2 Field Installation Instructions. 21
8.0 Switch and Housing Model Codes 22

1.0 Reference Information

1.1 Principle of Operation

Figures $1 \& 2$ illustrate the simple, reliable operating principle of a float level switch. Switching action is obtained through the use of a magnetic sleeve (4) and a float (3), displacer or flow sensing element and a switching mechanism (2). These two basic component assemblies are separated by a non-magnetic, pressure tight enclosing tube (5). The switch (2) and magnet (1) are assembled to a mechanism with a swinging arm which operates on precision stainless steel pivots.

1.2 Operating Cycle

Figure 1
Rising Level

Figure 2 Falling Level

As level of a liquid in a vessel rises (Figure 1), the float rides on the liquid surface moving the magnetic sleeve upward in the enclosing tube and into the field of the switch mechanism magnet. As a result, the magnet is drawn in tightly to the enclosing tube causing the switch to tilt, making or breaking the electrical circuit. As the liquid level recedes (Figure 2), the float and magnetic sleeve moves downward until the switch magnet releases and is drawn outward, away from the enclosing tube by a tension spring. This in turn tilts the switch in an opposite direction, thus reversing switch action.
Switch mechanisms may include a single switch or multiple switches, depending on operational requirements and switching action desired.

Rather than tilting, dry contact switches are actuated by the movement of the swinging arm against the actuation arm of the switch.

1.3 Description

Magnetrol level controls are available with a range of different switch mechanisms-each designed for specific service conditions. A brief description of the individual switch mechanisms and their applications are given below.

1.3.1 Mercury Switches A, E, N, and T

Mercury switches offer the advantage of quick visual inspection of contact conditions and have a maximum liquid temperature rating of $+550^{\circ} \mathrm{F}\left(+288^{\circ} \mathrm{C}\right)$.

- Series A switches are heavy duty with high load carrying capability, see Figure 3.
- Series E switches are specially designed to provide vibration resistance.
- Series \mathbf{N} switches are heavy duty with high load carrying capability, used only in model C10 and C15 units, see Figure 3.
- Series T switches are specially designed to provide vibration resistance, used only in model C10 and C15 units.

1.3.2 Mercury Switches L, M, 2, and 3

These high temperature switches offer the advantage of quick visual inspection of contact conditions. They feature nickel/copper bare wire and ceramic beaded insulation allowing use in applications with process temperatures up to $+750^{\circ} \mathrm{F}\left(+399^{\circ} \mathrm{C}\right)$ or for the Model B40 only, up to $+1000^{\circ} \mathrm{F}\left(+538^{\circ} \mathrm{C}\right)$.

- Series \mathbf{L} switches are heavy duty with high load carrying capability and are specially designed to provide vibration resistance. They are used only in model B40 units with process temperatures up to $+1000^{\circ} \mathrm{F}\left(+538^{\circ} \mathrm{C}\right)$, see Figure 4.
- Series M Switches are heavy duty with high load carrying capability, used only on units requiring manual reset, see Figure 5.
- Series 2 switches are specially designed to provide greater vibration resistance.
- Series 3 switches are heavy duty with high load carrying capability, see Figure 5.

Figure 5
Series M and 3 High Temperature Mercury Switches

1.3.3 Dry Contact Switches B, C, D, O, Q, and S

Figure 6
Series B, C, D, O and Q Dry Contact Switches

Figure 7
Series S Snap Switch

Figure 8
Series F Hermetically Sealed Switch

Dry contact switches are specified in applications where mercury must be avoided.

- Series B switches are general purpose with a maximum liquid temperature rating of $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$, see Figure 6.
- Series C switches are general purpose with a maximum liquid temperature rating of $+450^{\circ} \mathrm{F}\left(+232^{\circ} \mathrm{C}\right)$, see Figure 6.
- Series D switches are designed for DC current applications with a maximum liquid temperature rating of $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$, see Figure 6.
- Series \mathbf{O} switches are general purpose with a maximum liquid temperature rating of $+300^{\circ} \mathrm{F}\left(+149^{\circ} \mathrm{C}\right)$, used only in model C10 and C15 units, see Figure 6.
- Series \mathbf{Q} switches are general purpose with a maximum liquid temperature rating of $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$, used only in model C10 and C15 units, see Figure 6.
- Series \mathbf{S} switches are general purpose with a maximum liquid temperature rating of $+550^{\circ} \mathrm{F}\left(+288^{\circ} \mathrm{C}\right)$, or designed for DC current applications with a maximum liquid temperature of $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$, used only in model B40 units, see Figure 7.

1.3.4 Hermetically Sealed Switch

Hermetically sealed switches are for use in special applications where hermetically sealed contacts are required.

- Series \mathbf{F} switches are well suited for use in process temperatures up to $+750^{\circ} \mathrm{F}\left(+399^{\circ} \mathrm{C}\right)$, see Figure 8.

NOTE: See bulletin 42-694 for series HS \& H1 hermetically sealed switches

2.0 Installation

Figure 9
Mounting Screw

Figure 10
Baffle Plate Screw

Figure 11
Replacing Mercury Bulb

2.1 Replacing Switch Mechanism

Caution: Before attempting to remove a switch mechanism, be certain to pull disconnect switch or otherwise assure that electrical circuit through control is de-energized.

1. Disconnect wiring from supply side of terminal block on switch mechanism. Note and record lead wire terminal locations.
2. Loosen screw in split mounting clamp until mechanism slides freely on enclosing tube, refer to Figure 9.
3. Remove small round head screw securing lower switch mechanism to baffle plate, refer to Figure 10.
4. Slide switch mechanism off of enclosing tube. If mechanism is to be reused, ensure that it is placed on a clean surface, free of metallic particles that may be attracted to the switch magnet.
5. Loosen mounting screw so that switch frame will fit over e-tube. Install switch mechanism by sliding it over the enclosing tube. Slide mechanism down until the bottom of the frame and terminal block are resting on the baffle plate. The baffle plate should be resting on the hub of the housing base.
6. Install and tighten baffle plate screw so that the switch mechanism may not be separated from the baffle plate. Tighten the mechanism mounting screw so that the mechanism is firmly clamped to the enclosing tube.
7. Swing magnet assembly in and out by hand, checking carefully for any signs of binding.
8. Reattached supply-side wiring to the terminal block and check switch function by varying liquid level in the vessel.

2.2 Replacing Mercury Switches

2.2.1 Series A, L, M, N and 3

1. Disconnect the control from power supply.
2. Disconnect switch leads from terminal block, noting terminal post numbers marked on switch mechanism.

NOTE: Before removing existing mercury switch, loosen cement holding switch by gently prying between switch clips and glass tube.
3. Remove mercury switch from clips, Figure 11.
4. Place new mercury switch into clips, making certain that switch legs are positioned to help prevent fouling of leads.

Figure 12 Vibration Resistant Mercury Switch
5. Glue switch to clips, using a cement such as DuPont Duco, Goodyear Pliobond ${ }^{\circledR}$, shellac or equivalent, refer to Figure 11.
6. Connect switch leads to terminal block on identical post positions as those in the original assembly.
7. Check to be certain that the switch leads do NOT cross over or under one another.
8. Swing magnet assembly in and out by hand, checking carefully for any sign of binding. Assembly should require minimum force to move through its full swing. Contact factory if binding is observed.

NOTE: DPDT mechanisms have "left hand" and "right hand" switches, as viewed facing terminal block of mechanism. Refer to Figure 3. Follow all steps for switch replacement and adjustment described above. Reconnect power supply, and test switch action by varying liquid level in the vessel or by "blowing down" float chamber.

2.2.2 Series E, T and 2

Follow instructions for Series A except:

1. Replace new mercury switch into clips making certain that a space of $3 /{ }^{\prime \prime}$ exists from edge of clip to point where lead wires attach to glass tube. Refer to Figure 12. Lead wires should project downward at 90% angle from horizontal plane.
2. Glue switch to clips using a cement such as DuPont Duco, Goodyear Pliobond ${ }^{\circledR}$, Shellac or equivalent.

NOTE Some vibration resistant switch bulbs may be held in place with retaining springs. Simply slide replacement switch under spring and position as required.
3. Connect switch leads to terminal block on identical post positions as used in the original assembly.

NOTE: Check to be certain that switch glass tube is not resting on the upper switch lead, and that switch leads drape loosely when switch magnet is in the "swing out" position. Glass tube may be slid forward in clips toward terminal block to correct such conditions.
4. Check new mercury switch carefully to see that it makes and breaks circuit properly.
a. Slowly swing switch magnet through its operating angle. Mercury must make and break contact between electrodes before magnet comes to its IN stop or OUT stop.
b. If action is incorrect, contact factory for replacement.

NOTE: A properly adjusted mercury switch will have equal overtravel tilt in both directions after switch actuation.
5. DPDT switch mechanisms have two mercury switches carried by the pivoted magnet. Follow all steps 1 through 4.
Reconnect power supply and test switch action by varying liquid level in the vessel or by "blowing down" float chamber.

2.3 Replacing dry contact switches

2.3.1 Series B, C, D, F, O, Q and S

1. Disconnect control from power supply.
2. Disconnect switch leads from terminal block. Note and record terminal connections of switch to be replaced.
3. Remove two mounting screws holding existing switch, refer to Figure 13.
4. Remove existing switch and install replacement switch in the same position, tightening mounting screws securely.

NOTE: For proper operation of the replacement switch, it must actuate in the middle portion of the pivoted magnet's swing.
5. Check switch action and adjust as follows:
a. Slowly rotate the pivoted magnet by hand, back and forth through its angle of swing, listening closely for the actuating click of the switch in each direction.
b. Check to see if there is equal overtravel of magnet in its swing after the switch click in either direction.
c. If switch actuation is not correct, change adjustment of actuating screw using a $1 / 60$ hexagon key wrench, refer to Figure 13.

NOTE: If a single switch is being replaced on a DPDT mechanism, lever of second switch must be depressed and held to allow for the audible adjustment of new switch, as described above.
d. With new switch in adjustment, release lever of second switch and perform fine-tuning of both switches to provide simultaneous actuation (clicks).
6. Reconnect power supply and test switch action by varying liquid level in the vessel or by "blowing down" float chamber.

2.4 Vibration Service Adjustment

2.4.1 Series E, T and 2

Level controls are frequently used on applications where vibration is encountered, such as on scrubbers in oil field installations. Switch mechanisms may require repositioning to prevent sloshing of mercury in switches. This position is usually best at right angles to the direction of vibration. The direction of vibration may be determined by the arrangement of connections to the vessel or the vessels mounting method. Accordingly, the vibration will tend to be in one direction only.

Upon determining the vibration direction, switch mechanism(s) may be rotated from an incorrect position (as shown in Figure 14, illustration is shown as looking at a control from above), to a correct position as follows:

Caution: Before attempting to remove a switch mechanism, be certain to pull disconnect switch or otherwise assure that electrical circuit through control is de-energized.

1. Disconnect control from power supply.
2. Loosen screw in split mounting clamp until mechanism turns freely on enclosing tube, refer to Figure 9 on page 4.
3. Rotate entire mechanism and bottom baffle plate together to the correct position.

Caution: Be certain power supply wires retain some slack at new position. Do not pull wires taut.

NOTE: Amount of rotation required will vary with each installation and may not be as much as shown in illustration.
4. Check action of mercury in switch at new position. When mercury sloshes from side to side in glass tube, instead of end to end, correct position has been attained.
5. Tighten clamp screw on switch mechanism.
6. Reconnect power supply, and test switch action under operating conditions.

3.0 Wiring

Circuits shown are for direct acting level switches and are reversed in side mounting float-in-tank models, which utilize a reversing float pivot.

NOTE: See bulletin 42-694 for wiring diagrams for "HS" Series hermetically sealed switches.

3.1 SPDT Terminal Connections

3.1.1 Single float with one switch or single stage displacer

1. Rising level closes contacts 5 \& 6, see Figure 15.
2. Falling level closes contacts $4 \& 5$.
3. Wiring Diagram is reversed (high level actuation becomes low level actuation, etc.) when this switch mechanism is used on side mounted float switches employing a reversing pivot (Models B40, T52, T62, T63, etc.).

3.1.2 Single float with two switches or dual stage displacer

1. Rising level closes contacts $5 \& 6$ and $2 \& 3$, see Figure 16.
2. Falling level closes contacts $4 \& 5$ and $1 \& 2$.
3. Wiring diagram is reversed (high level actuation becomes low level actuation, etc.) when this switch mechanism is used on side mounted float switches employing a reversing pivot (Models B40, T52, T62, T63, etc.).
4. On units with tandem floats, the top float operates the bottom mechanism while the bottom float actuates the top mechanism.

Figure 15
Single Float with One Switch or Single Stage Displacer

Figure 16
Single Float with Two Switches or Dual Stage Displacer

3.1.3 Single float with three switches or three stage displacer:

1. Rising level closes contacts $5 \& 6$ and $2 \& 3$, see Figure 17.
2. Falling level closes contacts $4 \& 5$ and $1 \& 2$.
3. Unit is shipped with switches positioned for proper function. Do not change switch spacing.

Figure 17
Single Float with Three Switches
or Three Stage Displacer

3.2 DPDT Terminal Connections

3.2.1 Single float with one switch or single stage displacer

1. Rising level closes contacts $5 \& 6$ and $2 \& 3$, see Figure 18 .
2. Falling level closes contacts $4 \& 5$ and $1 \& 2$.
3. Double pole action is obtained by simultaneous operation of the right and left side single pole double throw switches.
4. Wiring diagram is reversed (close on high becomes close on low, etc.) when this switch mechanism is used on side mounted float switches employing a reversing pivot. (Models B40, T52, T62, T63, etc.)

3.2.2 Single float with two switches or dual stage displacer

1. Rising level closes contacts $5 \& 6$ and $2 \& 3$, see Figure 19.
2. Falling level closes contacts $4 \& 5$ and $1 \& 2$.
3. Double pole action is obtained by simultaneous operation of the right and left side single pole switches.
4. Wiring diagram is reversed (close on high becomes close on low, etc.) when this switch mechanism is used on side mounted float switches employing a reversing pivot. (Models B40, T52, T62, T63, etc.)
5. On units with tandem floats, the top float operates the bottom mechanism while the bottom float actuates the top mechanism.

Lower stage operates lower switch mechanism

Upper stage operates upper switch mechanism

Single Float with Two Switches or Dual Stage Displacer

3.2.3 Three Stage Displacer

1. Rising level closes contacts $5 \& 6$ and $2 \& 3$, see Figure 20.
2. Falling level closes contacts $4 \& 5$ and $1 \& 2$.
3. Double pole action is obtained by simultaneous operation of the right and left side single pole switches.

Middle stage operates middle switch mechanism

Figure 20
Three Stage Displacer

4．0 Switch Specifications

SWITCH SERIES	SWITCH TYPE	$\begin{aligned} & \text { PROCESS } \\ & \text { TEMP. RANGE } \\ & { }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	LOAD	RATING					
				Volts AC			Volts DC		
				120	240	480	24	120	240
A 3	Mercury	-20 to $+5500^{(2)}$ $(-29 \text { to }+288)^{2}$ -20 to +750 $(-29$ to +399$)$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 13.00 \\ 9.80 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 6.50 \\ & 4.90 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 2.50 \\ & 1 / 2 \end{aligned}$	$\begin{gathered} 10.00 \\ - \end{gathered}$	$\begin{gathered} 10.00 \\ 5.20 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 2.60 \\ & 1 / 2 \end{aligned}$
B	Snap	$\begin{gathered} -40 \text { to }+250 \\ (-40 \text { to }+121) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 8 \end{gathered}$	$\begin{aligned} & 15.00 \\ & 15.00 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 15.00 \\ & 15.00 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.03 \end{aligned}$
C	Snap	$\begin{gathered} -40 \text { to }+450 \\ (-40 \text { to }+232) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 10 \end{gathered}$	$\begin{aligned} & 15.00 \\ & 15.00 \end{aligned}$	$\begin{aligned} & 15.00 \\ & 15.00 \end{aligned}$	$\begin{array}{r} 10.00 \\ 5.00 \end{array}$	$\begin{aligned} & 1.00 \\ & 0.50 \end{aligned}$	$\stackrel{0.50}{-}$
D	Snap	$\begin{gathered} -40 \text { to }+250 \\ (-40 \text { to }+121) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 10.00 \\ 3.80 \\ 1 / 8 \end{gathered}$			10.00	$\begin{gathered} 10.00 \\ 2.20 \\ 1 / 8 \end{gathered}$	$\begin{aligned} & 1.50 \mathrm{~min} . \\ & 3.00 \mathrm{max} . \\ & - \end{aligned}$
E	Vibration Resistant Mercury	-20 to +550 $(-29$ to +288$)$ 20 to +750 $(-29$ to +399$)$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{aligned} & 4.00 \\ & 3.80 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 1.90 \\ & 1 / 8 \end{aligned}$	$\stackrel{1.00}{-}$	二	$\begin{gathered} 4.00 \\ 2.40 \\ 1 / 6 \end{gathered}$	$\begin{gathered} 2.00 \\ 1.20 \\ 1 / 6 \end{gathered}$
F （followed by letter）	Hermetic	$\begin{gathered} -50 \text { to }+750 \\ (-46 \text { to }+399) \end{gathered}$	Resistive Amp Inductive Amp	$\begin{aligned} & 2.50 \\ & 2.50 \end{aligned}$	－	二	$\begin{aligned} & 4.00 \text { (3) } \\ & 2.00 \text { (3) } \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	－
F （followed by number）	Hermetic	$\begin{aligned} & -50 \text { to }+250 \\ & (-46 \text { to }+121) \end{aligned}$	Resistive Amp Inductive Amp	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	－	二	$\begin{aligned} & 15.00 \text { (3) } \\ & 10.00 \text { 3 } \end{aligned}$	－	－
LA LD LK LN	Mercury	$\begin{aligned} & -20 \text { to }+1000 \\ & (-29 \text { to }+538) \end{aligned}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 13.00 \\ 9.80 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 6.50 \\ & 4.90 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 2.50 \\ & 1 / 2 \end{aligned}$	二	$\begin{gathered} 10.00 \\ 5.20 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 2.60 \\ & 1 / 2 \end{aligned}$
$\begin{aligned} & \text { LB } \\ & \text { LE } \\ & \text { LL } \\ & \text { LO } \end{aligned}$	Mercury Vibration Resistant	$\begin{aligned} & -20 \text { to }+1000 \\ & (-29 \text { to }+538) \end{aligned}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{aligned} & 4.00 \\ & 3.80 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 1.90 \\ & 1 / 8 \end{aligned}$	1.00	二	$\begin{aligned} & 4.00 \\ & 2.40 \\ & 1 / 6 \end{aligned}$	$\begin{gathered} 2.00 \\ 1.20 \\ 1 / 6 \end{gathered}$
M	Mercury Manual Reset	$\begin{gathered} -20 \text { to }+750 \\ (-29 \text { to }+399) \end{gathered}$	Same ratings as Series 3 switch－Limited to a NEMA 1 enclosure If multiple switches，only bottom mechanism will be manual reset．						
N	Mercury	$\begin{aligned} & -20 \text { to }+550 \\ & (-29 \text { to }+288) \end{aligned}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 13.00 \\ 9.80 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 6.50 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 2.50 \\ & 1 / 2 \end{aligned}$	二	$\begin{gathered} 10.00 \\ 5.20 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 2.60 \\ & 1 / 2 \end{aligned}$
0	Snap	$\begin{gathered} -40 \text { to }+450 \\ (-40 \text { to }+232) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 10 \end{gathered}$	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 6 \end{gathered}$	$\begin{array}{r} 15.00 \\ 15.00 \\ - \end{array}$	－	$\stackrel{1.00}{-}$	$\stackrel{0.50}{-}$
Q	Snap	$\begin{gathered} -40 \text { to }+250 \\ (-40 \text { to }+121) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{aligned} & 15.00 \\ & 15.00 \\ & 1 / 8 \end{aligned}$	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 4 \end{gathered}$	$\begin{aligned} & 15.00 \\ & 15.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.30 \end{aligned}$
$\begin{aligned} & \text { SA } \\ & \text { SD } \\ & \text { SK } \end{aligned}$ SN	Snap	$\begin{gathered} -40 \text { to }+550 \\ (-40 \text { to }+288) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 10 \end{gathered}$	$\begin{gathered} 15.00 \\ 15.00 \\ 1 / 6 \end{gathered}$	$\begin{aligned} & 15.00 \\ & 15.00 \\ & \hline \end{aligned}$	－	1.00 0.50	0．50
$\begin{aligned} & \text { SB } \\ & \text { SE } \\ & \text { SL } \\ & \text { SO } \end{aligned}$	Snap	$\begin{gathered} -40 \text { to }+250 \\ (-40 \text { to }+121) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{gathered} 10.00 \\ 3.80 \\ 1 / 8 \end{gathered}$	－	－	10.00	$\begin{gathered} 10.00 \\ 2.20 \\ 1 / 8 \end{gathered}$	1.50 min ． 3.00 max ． －
T	Mercury	$\begin{gathered} -20 \text { to }+500 \\ (-29 \text { to }+260) \end{gathered}$	Non－Inductive Amp Inductive Amp Horsepower	$\begin{aligned} & 4.00 \\ & 3.80 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 1.90 \\ & 1 / 8 \end{aligned}$	1.00	二	4.00 2.40 $1 / 6$	$\begin{aligned} & 2.00 \\ & 1.20 \\ & 1 / 6 \end{aligned}$

（1）Process temperatures based on $+100^{\circ} \mathrm{F}\left(+38^{\circ} \mathrm{C}\right)$ ambient temperature．
Continued on next page
（2）On steam applications，use beaded lead mercury switches，Series 3 \＆ 2.
（3） 28 VDC

SWITCH SERIES	SWITCH TYPE	PROCESS TEMP. RANGE ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	LOAD	RATING (amps)					
				VOLTS AC			VOLTS DC		
				120	240	480	24	120	240
$\begin{gathered} (\mathrm{X}) \mathrm{B} \\ \text { (X=gold contacts) } \end{gathered}$	Snap Gold Contacts	$\begin{gathered} -40 \text { to }+250 \\ (-40 \text { to }+121) \end{gathered}$	Non-inductive Inductive	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	二	-	-	-	-
$\begin{gathered} (\mathrm{X}) \mathrm{F} \\ \text { (X=gold contacts) } \end{gathered}$	Hermetic Snap Gold Contacts	$\begin{gathered} -50 \text { to }+750 \\ (-46 \text { to }+399) \end{gathered}$	Non-inductive Inductive	-	-	-	$\begin{aligned} & 1.00 \\ & 0.25 \end{aligned}$	-	-
$\begin{gathered} (\mathrm{X}) \mathrm{HS} \\ \text { (x=gold contacts) } \end{gathered}$	Hermetic Snap Gold Contacts	$\begin{aligned} & -50 \text { to }+550 \\ & (-46 \text { to }+288)(4) \end{aligned}$	Non-inductive Inductive	1.00	-	-	$\begin{aligned} & 2.00 \\ & 1.00 \end{aligned}$	-	-

(4) On steam applications, temperature down-rated to $+400^{\circ} \mathrm{F}\left(+204^{\circ} \mathrm{C}\right)$ at $+100^{\circ} \mathrm{F}\left(+38^{\circ} \mathrm{C}\right)$ ambient.

5.0 Replacement Switch Mechanisms

5.0.1 Switch Selection

When replacing a switch only, determine whether the switch is the left or right hand switch by orienting the switch mechanism with the terminal block toward you.

5.0.2 Magnet strength

Switch mechanisms are provided with different strength magnets as determined by the characteristics of the level switch. A red, red/yellow or yellow, black or blue dot is visible on each magnet. When ordering replacement switch mechanisms, be certain to determine the color dot on the magnet. For these types of switches, the tenth digit of the model number identifies the magnet used on the control. The correct magnet dot color may be chosen by finding the tenth digit of your model number at the top of the chart. Any model numbers preceded with an ' X ' are specially modified controls. Contact the factory for replacement part numbers.

5.1 Yellow Dot Magnet Replacement Mechanisms

5.1.1 Series A, B, C, D, E, F, L, N, O, S \& T - Yellow

Switch Series	Contacts	Quantity	8th \& 9th Digit	10th Digit			Switch Only		
				E, F, Y, M, W, Q, B, S, K					
				Bottom Mech	Middle Mech	Top Mech	Right Hand	Left Hand	
A	SPDT	1	AA, AK	89-7401-012	N/A	N/A	89-7101-013	N/A	
		2	AB, AL		89-7401-009				
		3	AC, AM			89-7401-012			
	DPDT	1	AD, AN	89-7401-055	N/A	N/A		89-7101-014	
		2	AE, AO			89-7401-055			
B	SPDT	1	BA, BK	89-7401-104	N/A	N/A	89-7101-020	N/A	
		2	BB, BL		89-7401-103				
		3	BC, BM			89-7401-104			
	DPDT	1	BD, BN	89-7401-122	N/A	N/A		89-7101-020	
		2	BE, BO			89-7401-122			
C	SPDT	1	CA, CK	89-7401-110	N/A	N/A	89-7101-022	N/A	
		2	CB, CL		89-7401-109				
		3	CC, CM			89-7401-110			
	DPDT	1	CD, CN	89-7401-125	N/A			89-7101-022	
		2	CE, CO			89-7401-125			
D	SPDT	1	DA, DK	89-7401-106	N/A	N/A	89-7101-024	N/A	
		2	DB, DL		89-7401-105				
		3	DC, DM			89-7401-106			
	DPDT	1	DD, DM	89-7401-123	N/A	N/A		89-7101-024	
		2	DE, DO			89-7401-123			
E	SPDT	1	EA, EK	89-7401-068	N/A	N/A	89-7101-015	N/A	
		2	EB, EL		89-7401-063				
		3	EC, EM			89-7401-068			
	DPDT	1	ED, EN	89-7401-052	N/A	N/A		89-7101-015	
		2	EE, EO			89-7401-052			
F	SPDT	1	FA, FK	89-7401-095	N/A	N/A	89-7101-041	N/A	
		2	FB, FL			89-7401-096			
	DPDT	1	FD, FN	89-7401-098	N/A	N/A		89-7101-041	
		2	FE, FO			89-7401-098			
L	SPDT	1	LA, LK	89-7401-015	N/A		89-7101-042	N/A	
	DPDT	1	LD, LN	89-7401-024			89-7101-043		
L (vibr res)	SPDT	1	LB, LL	89-7401-155	N/A			89-7101-033	N/A
	DPDT	1	LE, LO	89-7401-156			89-7101-044		
N	SPDT	3	NC, NM	89-7401-012	89-7401-009	89-7401-012	89-7101-013	N/A	
	DPDT	3	NE, NK	89-7401-055	89-7401-055	89-7401-055		89-7101-014	
0	SPDT	3	OC, OM	89-7401-110	89-7401-109	89-7401-110	89-7101-022	N/A	
	DPDT	3	OE, OK	89-7401-125	89-7401-125	89-7401-125		89-7101-022	
Q	SPDT	3	QC, QM	89-7401-104	89-7401-103	89-7401-104	89-7101-020	N/A	
	DPDT	3	QE, QK	89-7401-122	89-7401-122	89-7401-122		89-7101-020	
S	SPDT	1	SA, SK	89-7401-126	N/A		89-7101-022	N/A	
	DPDT	1	SD, SN	89-7401-128			89-7101-022		
S (DC volt)	SPDT	1	SB, SL	89-7401-129	N/A			89-7101-024	N/A
	DPDT	1	SE, SO	89-7401-127			89-7101-024		
T	SPDT	3	TC, TM	89-7401-068	89-7401-063	89-7401-068	89-7101-015	N/A	
	DPDT	3	TE, TK	89-7401-052	89-7401-052	89-7401-052		89-7101-015	

5.1.2 Series 2, 3 \& M - Yellow

Switch Series	Contacts	Quantity	8th \& 9th Digit	10th Digit				Switch Only	
				E, Y, Q, S	F, M, W, B, K				
				Single Mech	Bottom Mech	Middle Mech	Top Mech	Right Hand	Left Hand
2	SPDT	1	2A, 2K	89-7401-150	89-7401-150	N/A	N/A	89-7101-033	N/A
		2	2B, 2L	N/A		89-7401-149			
		3	2C, 2M				89-7401-150		
	DPDT	1	2D, 2N	89-7401-154	89-7401-154	N/A	N/A		89-7101-044
		2	2E, 20	N/A			89-7401-154		
3	SPDT	1	3A, 3K	89-7401-147	89-7401-147	N/A	N/A	89-7101-042	N/A
		2	3B, 3L	N/A		89-7401-146			
		3	3C, 3M				89-7401-147		
	DPDT	1	3D, 3N	89-7401-148	89-7401-148	N/A	N/A		89-7101-043
		2	3E, 30	N/A			89-7401-148		
M	SPDT	1	MA	89-7401-147	89-7401-147	N/A	N/A	89-7101-042	N/A
		2	MB	N/A		89-7401-146			
		3	MC				89-7401-147		
	DPDT	1	MD	89-7401-148	89-7401-148	N/A	N/A		89-7101-043
		2	ME	N/A			89-7401-148		

5.2 Red, Black and Blue Dot Magnet Replacement Mechanisms

5.2.1 Series A, B, C \& E - Red, Red/Yellow

Switch Series	Contacts	Quantity	8th \& 9th Digit	10th Digit			Switch Only	
				G, H, R, D, V, P, A, T, J				
				Bottom Mech	Middle Mech	Top Mech	Right Hand	Left Hand
A	SPDT	1	AA, AK	89-7401-006	N/A	N/A	89-7101-013	N/A
		2	AB, AL		89-7401-003			
		3	AC, AM	89-7401-173				
	DPDT	1	AD, AN	89-7401-018	N/A	N/A		89-7101-014
		2	AE, AO			89-7401-018		
B	SPDT	1	BA, BK	89-7401-102	N/A	N/A	89-7101-020	
		2	BB, BL		89-7401-101			N/A
		3	BC, BM		89-7401-101	89-7401-102		
	DPDT	1	BD, BN	89-7401-121	N/A	N/A		89-7101-020
		2	BE, BO			89-7401-121		
C	SPDT	1	CA, CK	89-7401-108	N/A	N/A	89-7101-022	
		2	CB, CL		89-7401-107			N/A
		3	CC, CM			89-7401-108		
	DPDT	1	CD, CN	89-7401-124	N/A	N/A		89-7101-022
		2	CE, CO			89-7401-124		89-7101-022
E	SPDT	1	EA, EK	89-7401-078	N/A	N/A	89-7101-015	N/A
		2	EB, EL		89-7401-073			
		3	EC, EM		89-7401-177			
	DPDT	1	ED, EN	89-7401-046	N/A	N/A		89-7101-015
	DPD	2	EE, EO			89-7401-046		89-7101-015
F	SPDT	1	FA, FK	89-7401-093	N/A	N/A	89-7101-041	N/A
		2	FB, FL			89-7401-094		
	DPDT	1	FD, FN	89-7401-097		N/A		89-7101-041
	DPD	2	FE, FO	89-7401-097		89-7401-097		

5.2.2 Series 2, 3 and M - Red, Red/Yellow

Switch Series	Contacts	Quantity	8th \& 9th Digit	10th Digit				Switch Only	
				G, R, P, T	H, D, V, A, J				
					Bottom Mech	Middle Mech	Top Mech		
				Single Mech				Right Hand	Left Hand
2	SPDT	1	2A, 2K	89-7401-152	89-7401-152	N/A	N/A	89-7101-033	N/A
		2	2B, 2L	N/A		89-7401-174			
		3	2C, 2M		89-7401-177				
	DPDT	1	2D, 2N	89-7401-153	89-7401-153	N/A	N/A		89-7101-044
		2	2E, 20	N/A			89-7401-153		
3	SPDT	1	3A, 3K	89-7401-158	89-7401-158	N/A	N/A	89-7101-042	N/A
		2	3B, 3L	N/A		89-7401-170			
		3	3C, 3M		89-7401-173				
	DPDT	1	3D, 3N	89-7401-159	89-7401-159	N/A	N/A		89-7101-043
		2	3E, 30	N/A			89-7401-159		
M	SPDT	1	MA	89-7401-158	89-7401-158	N/A	N/A	89-7101-042	N/A
		2	MB	N/A		89-7401-170			
		3	MC		89-7401-173				
	DPDT	1	MD	89-7401-159	89-7401-159	N/A	N/A		89-7101-043
		2	ME	N/A			89-7401-159		

5.2.3 Series 2, 3 and M - Red/Black/Blue

Switch Series	Contacts	Quantity	8th \& 9th Digit	10th Digit			Switch Only	
				E, G				
				Bottom Mech	Middle Mech	Top Mech	Right Hand	Left Hand
2	SPDT	1	2A, 2K	N/A			89-7101-033	N/A
		2	2B, 2L	89-7401-152	89-7401-174	N/A		
		3	2C, 2M	89-7401-152	89-7401-174	89-7401-175		
	DPDT	1	2D, 2N	N/A				89-7101-044
		2	2E, 20					
3	SPDT	1	3A, 3K	N/A			89-7101-042	N/A
		2	3B, 3L	89-7401-158	89-7401-170	N/A		
		3	3C, 3M	89-7401-158	89-7401-170	89-7401-171		
	DPDT	1	3D, 3N	N/A				89-7101-043
		2	3E, 30					
M	SPDT	1	MA	N/A			89-7101-042	N/A
		2	MB	89-7401-158	89-7401-170	N/A		
		3	MC	89-7401-158	89-7401-170	89-7401-171		
	DPDT	1	MD	N/A				89-7101-043
		2	ME					

6.0 Switch Housing Replacement Assemblies

When ordering replacement parts for an existing Magnetrol instrument, please specify:

1. Model and serial numbers of control.
2. Description and part number of replacement kit.

The proper replacement switch housing kit and parts can be determined by the last three characters of the model number. In section 6.1.1 on page 19, locate the eighth and ninth digits of your model number at the left side of the chart. Follow the appropriate row across the page while locating the tenth digit of your model number at the top of the chart. In section 6.1.2 on page 19, the chart lists the replacement housing kits according to description.

6.0.1 Aluminum Housings

Die cast aluminum NEMA 4X housing replacements are available for general purpose or weather proof installations. Explosion proof NEMA 4X/7/9 and Class I, Div 1, Group B housing replacements are available for hazardous atmosphere locations. Die cast aluminum housings are finished with a baked-on polyester powder coat paint.

NOTE: Consult your local representative on applications to meet NEMA and other codes not covered in this bulletin.

Figure 21
Aluminum Housing Assembly

6.0.2 Cast Iron Housings

Cast Iron NEMA 7/9 housing replacements are available for hazardous atmosphere locations. Both Class I, Div. 1, Groups C \& D and Group B versions are available. The grey iron cover and base are finished with a baked-on polyester powder coat paint.

NOTE: Consult your local representative on applications to meet NEMA and other codes not covered in this bulletin.

Figure 22
Cast Iron Housing Assembly

6.0.3 Carbon Steel Housings

Carbon steel NEMA 4X switch housings are available for general purpose and weather proof installations. The housing base is cast from aluminum while the cover is made from cold rolled steel. The housings are finished with a baked-on polyester powder coat paint.

NOTE: Consult your local representative on applications to meet NEMA and other codes not covered in this bulletin.

Figure 23
Carbon Steel Housing Assembly

6.1 Replacement Housing Kits

6.1.1 Referenced by eighth, ninth and tenth digit

Eighth Digit	Ninth Digit	Tenth Digit						
		E, G, Y, R	P, Q	S, T	F, H, D, M	A, B	J, K, G	V, W
$\begin{gathered} \text { 2, 3, A, B, C, D, E, } \\ \text { F, G, H, I, L, S } \end{gathered}$	A, B, C, D, E	89-6509-003*	89-6582-023	N/A	89-6510-003*	89-6582-024	N/A	N/A
	K, L, M, N, O	89-6582-002	89-6582-023	89-6582-032	89-6582-005	89-6582-024	89-6582-033	89-6582-008
	U, V, W, X, Y	89-6582-003	89-6582-028	N/A	89-6582-006	89-6582-029	N/A	N/A
M	A, B, C, D, E	89-6511-003*	N/A		89-6512-003*	N/A		
N, O, Q, T	A, B, C, D, E	N/A			89-6528-003	89-6582-025		
	K, L, M, N, O				89-6578-001	89-6582-025		

* Cover kit only. Housing base must be ordered separately by P/N 89-6505-003.

6.1.2 Referenced by description

Cover Height	Housing Material	NEMA 1	NEMA 4X	$\begin{aligned} & \text { NEMA } \\ & 4 X / 7 / 9 \end{aligned}$	NEMA 7/9	Group B	NEMA 4X/7/9 with drain	NEMA 7/9 with drain
Short	CS cover, aluminum base	89-6511-003*	89-6509-003*	N/A	N/A	N/A		N/A
	Cast aluminum	N/A	89-6582-023	89-6582-023		89-6582-032	89-6582-028	
	Cast Iron		N/A		89-6582-002	N/A		89-6582-003
Tall	CS cover, aluminum base	89-6512-003*	89-6510-003*	N/A	N/A	N/A		N/A
	Cast aluminum	N/A	89-6582-024	89-6582-024		89-6582-033	89-6582-029	
	Cast Iron		N/A		89-6582-005	89-6582-008	N/A	89-6582-006
X-Tall	CS cover, aluminum base	N/A	89-6528-003	N/A	N/A	N/A	N/A	N/A
	Cast aluminum		89-6582-025	89-6582-025				
	Cast Iron		N/A		89-6578-001			

* Cover kit only. Housing base must be ordered separately by P/N 89-6505-003.

Lexan Cover Kit	$89-6522-001^{*}$

6.2 Replacement Gaskets and Hardware

Housing Material	Enclosure Type	Ninth Digit	Tenth Digit	Gasket	O-ring	Baffle Plate*	Cover Hardware
CS cover, aluminum base	NEMA 4X	A, B, C, D, E	D, E, F, G, H, M, R, Y	N/A	N/A	36-5303-001	89-6508-001
Cast aluminum	NEMA 4X	All	A, B, P, Q	12-2201-253	12-2201-116	05-6657-001	N/A
	NEMA 4X/7/9	All	A, B, E, P, Q				
	Group B	All	G, J, K, S, T				
Cast iron	NEMA 7/9	K, L, M, N, O	D, M, R, Y	12-2201-249			
	7/9 w/drain	$\mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}$	D, M, R, Y				
	All	All	V, W				

* For models with manual reset options, see page 20 for parts

7.0 Manual Reset Option

7.1 Parts Breakdown and Identification

Part No. 89-6507-001, on Boiler Controls Equipped with Series M Switch Mechanism (*denotes included in kit)

Figure 24

7.2 Field Installation Instructions

Caution: Before attempting work on any level control, be certain to pull disconnect switch or otherwise assure that electrical circuit through control is de-energized.

1. Remove switch cover by loosening fastening screw (or nut).
2. Drill a $1 / 4 /$ diameter hole in cover at $7 / 8 "$ up from bottom edge, as shown.
3. Disconnect wiring from supply side of terminal strip on switch mechanisms.

NOTE: Measure location of switch mechanism(s) on enclosing tube and record for reference use during reassembly. (Measure from top of enclosing tube to top of mounting clamp on switch mechanism[s]).
4. Loosen screw in split mounting clamp of switch mechanism(s) until assembly moves freely on enclosing tube.
5. Remove small round head screw securing baffle plate to switch mechanism.
6. Carefully lift off switch mechanism(s) and baffle plate. Place on a clean surface, free of any metal particles that may be attracted onto the magnet(s).
7. Install a new baffle plate assembly, with manual reset mechanism, and carefully replace switch mechanism(s) in reverse of steps 3 through 6 above.
8. Replace switch cover, lining up drilled hole with hole in reset actuating mechanism. Do not tighten cover fastening screw (or nut) at this point.
9. Thread reset plunger into actuating mechanism through drilled hole in switch cover and thumb tighten securely. Reposition switch cover as necessary to be certain it does not bind reset plunger.
10. Tighten fastening screw (or nut) on switch cover and check action of plunger to see that it moves freely.
11. Blow down float chamber to test operation of manual reset mechanism.

NOTE: Boiler level controls should not start firing equipment when boiler water level has returned to normal (safe point) until reset plunger has been manually depressed. If control starts firing equipment, magnet stop arm on switch mechanism must be bent out on switch frame $1 / 32$ " allowing magnet to swing further from enclosing tube arm and into the field of the reset magnet.

Caution: If it is necessary to reposition manual reset plunger, entire switch mechanism(s) must be loosened and rotated on enclosing tube to desired position (refer to step 4). Do not attempt to position plunger by twisting switch cover or damage to switch mechanism(s) will result.

8.0 Switch and Housing Model Codes

The following charts identify the switch and housing model codes used with the buoyancy products. The eighth, ninth and tenth digit combinations may be used to identify the type and number of switches, number of contacts, switch magnet strength as well as housing type, size and options. The switch and housing codes in bold are currently valid and available in combination with various buoyancy products. The unbolded codes are no longer valid and should be replaced by the appropriate valid code.
example model number:
$\square \square \square-\square \square \square \square-\mathrm{A} \boldsymbol{\mathrm { A }} \mathrm{E}$

$\begin{gathered} \text { NEMA } \\ 4 \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	NEMA 4X Carbon Steel	$\begin{aligned} & \hline \text { NEMA } \\ & 7 / 9 \\ & \text { Cast } \\ & \text { Iron } \end{aligned}$	NEMA 4X Cast Alum.	NEMA 4X/7/9 Cast Alum.	Group B Cast Iron	ATEX Cast Iron 3/4" NPT	NEMA 4X/7/9 Group B Cast Alum	ATEX Cast Alum 1" NPT	Magnet Dot Color	Set Points	Switch Contacts	Housing Height and Options	Switch Type
AAE	AAY	AKY	AAQ	AKQ	-	-	AKS	AA9	Yellow			Short	
AAG	AAR	AKR	AAP	AKP	-	-	AKT	AAC	Red				
AAF	AAM	AKM	AAB	AKB	AKW	AU5	AKK	AC9	Yellow	1			
AAH	AAD	AKD	AAA	AKA	AKV	AU7	AKJ	ACC	Red		SPDT		
ABF	ABM	ALM	ABB	ALB	ALW	AV5	ALK	AD9	Yellow		SPDT	Tall	
ABH	ABD	ALD	ABA	ALA	ALV	AV7	ALJ	ADC	Red	2		Tal	
ACF	ACM	AMM	ACB	AMB	AMW	A75	AMK	AE9	Yellow	3			
ACH	ACD	AMD	ACA	AMA	AMV	A77	AMJ	AEC	Red	3			
ADE	ADY	ANY	ADQ	ANQ	-	-	ANS	AB9	Yellow			Short	
ADG	ADR	ANR	ADP	ANP	-	-	ANT	ABC	Red	1			
ADF	ADM	ANM	ADB	ANB	ANW	AW5	ANK	AF9	Yellow		DPDT		
ADH	ADD	AND	ADA	ANA	ANV	AW7	ANJ	AFC	Red		DPDT	Tall	
AEF	AEM	AOM	AEB	AOB	AOW	AY5	AOK	AG9	Yellow	2		Tall	
AEH	AED	AOD	AEA	AOA	AOV	AY7	AOJ	AGC	Red				
-	-	AUY	-	AUQ	-	-	-	-	Yellow			Short	
-	-	AUR	-	AUP	-	-	-	-	Red	1		w/Drain	
-	-	AUM	-	AUB	-	-	-	-	Yellow				
-	-	AUD	-	AUA	-	-	-	-	Red		SPDT		
-	-	AVM	-	AVB	-	-	-	-	Yellow	2		Tall	
-	-	AVD	-	AVA	-	-	-	-	Red				
-	-	AWM	-	AWB	-	-	-	-	Yellow	3			Mercury
-	-	AWD	-	AWA	-	-	-	-	Red				
-	-	AXY	-	AXQ	-	-	-	-	Yellow				
-	-	AXR	-	AXP	-	-	-	-	Red	1		w/Drain	
-	-	AXM	-	AXB	-	-	-	-	Yellow	1	DPDT		
-	-	AXD	-	AXA	-	-	-	-	Red			Tall	
-	-	AYM	-	AYB	-	-	-	-	Yellow	2		w/Drain	
-	-	AYD	-	AYA	-	-	-	-	Red				
AFE	AFY	APY	AFQ	APQ	-	-	-	-	Yellow				
AFG	AFR	APR	AFP	APP	-	-	-	-	Red	1		w/Heater	
AFF	AFM	APM	AFB	APB	-	-	-	-	Yellow				
AFH	AFD	APD	AFA	APA	-	-	-	-	Red		SPDT		
AGF	AGM	AQM	AGB	AQB	-	-	-	-	Yellow	2			
AGH	AGD	AQD	AGA	AQA	-	-	-	-	Red			w/Heater	
AHF	AHM	ARM	AHB	ARB	-	-	-	-	Yellow				
AHH	AHD	ARD	AHA	ARA	-	-	-	-	Red	3			
AIE	AIY	ASY	AIQ	ASQ	-	-	-	-	Yellow				
AIG	AIR	ASR	AIP	ASP	-	-	-	-	Red	1		w/Heater	
AIF	AIM	ASM	AIB	ASB	-	-	-	-	Yellow		DPDT		
AIH	AID	ASD	AIA	ASA	-	-	-	-	Red		DPDT	Tall	
AJF	AJM	ATM	AJB	ATB	-	-	-	-	Yellow			w/Heater	
AJH	AJD	ATD	AJA	ATA	-	-	-	-	Red	2			
BAE	BAY	BKY	BAQ	BKQ	-	-	BKS	BA9	Yellow			Short	
BAG	BAR	BKR	BAP	BKP	-	-	BKT	BAC	Red	1		Short	
BAF	BAM	BKM	BAB	BKB	BKW	BU5	BKK	BC9	Yellow				
BAH	BAD	BKD	BAA	BKA	BKV	BU7	BKJ	BCC	Red		SPDT		
BBF	BBM	BLM	BBB	BLB	BLW	BV5	BLK	BD9	Yellow	2		Tall	Contact
BBH	BBD	BLD	BBA	BLA	BLV	BV7	BLJ	BDC	Red			Talt	
BCF	BCM	BMM	BCB	BMB	BMW	B75	BMK	BE9	Yellow				
BCH	BCD	BMD	BCA	BMA	BMV	B77	BMJ	BEC	Red	3			

8.0 Switch and Housing Model Codes

$\begin{gathered} \text { NEMA } \\ 4 \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	NEMA 4X Carbon Steel	NEMA 7/9 Cast Iron	NEMA 4X Cast Alum.	NEMA 4X/7/9 Cast Alum.	$\begin{gathered} \text { Group } \\ \text { B } \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	ATEX Cast Iron 3/4" NPT	NEMA 4X/7/9 Group B Cast Alum	ATEX Cast Alum 1" NPT	Magnet Dot Color	Set Points	Switch Contacts	Housing Height and Options	Switch Type
BDE	BDY	BNY	BDQ	BNQ	-	-	BNS	BB9	Yellow		DPDT		Dry Contact
BDG	BDR	BNR	BDP	BNP	-	-	BNT	BBC	Red	1		Short	
BDF	BDM	BNM	BDB	BNB	BNW	BW5	BNK	BF9	Yellow			Tall	
BDH	BDD	BND	BDA	BNA	BNV	BW7	BNJ	BFC	Red				
BEF	BEM	BOM	BEB	BOB	BOW	BY5	BOK	BG9	Yellow	2			
BEH	BED	BOD	BEA	BOA	BOV	BY7	BOJ	BGC	Red				
-	-	BUY	-	BUQ	-	-	-	-	Yellow			Short	
-	-	BUR	-	BUP	-	-	-	-	Red	1		w/Drain	
-	-	BUM	-	BUB	-	-	-	-	Yellow	1			
-	-	BUD	-	BUA	-	-	-	-	Red		SPDT	Tall w/Drain	
-	-	BVM	-	BVB	-	-	-	-	Yellow	2			
-	-	BVD	-	BVA	-	-	-	-	Red	2			
-	-	BWM	-	BWB	-	-	-	-	Yellow	3			
-	-	BWD	-	BWA	-	-	-	-	Red	3			
-	-	BXY	-	BXQ	-	-	-	-	Yellow			Short	
-	-	BXR	-	BXP	-	-	-	-	Red	1		w/Drain	
-	-	BXM	-	BXB	-	-	-	-	Yellow		DPDT		
-	-	BXD	-	BXA	-	-	-	-	Red		DPD	Tall	
-	-	BYM	-	BYB	-	-	-	-	Yellow	2		w/Drain	
-	-	BYD	-	BYA	-	-	-	-	Red				
BFE	BFY	BPY	BFQ	BPQ	-	-	-	-	Yellow		SPDT	Short	
BFG	BFR	BPR	BFP	BPP	-	-	-	-	Red			w/Heater	
BFF	BFM	BPM	BFB	BPB	-	-	-	-	Yellow	1		Tall w/Heater	
BFH	BFD	BPD	BFA	BPA	-	-	-	-	Red				
BGF	BGM	BQM	BGB	BQB	-	-	-	-	Yellow	2			
BGH	BGD	BQD	BGA	BQA	-	-	-	-	Red				
BHF	BHM	BRM	BHB	BRB	-	-	-	-	Yellow	3			
BHH	BHD	BRD	BHA	BRA	-	-	-	-	Red	3			
BIE	BIY	BSY	BIQ	BSQ	-	-	-	-	Yellow		DPDT	Short	
BIG	BIR	BSR	BIP	BSP	-	-	-	-	Red	1		w/Heater	
BIF	BIM	BSM	BIB	BSB	-	-	-	-	Yellow	1		Tall w/Heater	
BIH	BID	BSD	BIA	BSA	-	-	-	-	Red				
BJF	BJM	BTM	BJB	BTB	-	-	-	-	Yellow	2			
BJH	BJD	BTD	BJA	BTA	-	-	-	-	Red				
CAE	CAY	CKY	CAQ	CKQ	-	-	CKS	CA9	Yellow		SPDT		Dry Contact
CAG	CAR	CKR	CAP	CKP	-	-	CKT	CAC	Red			Short	
CAF	CAM	CKM	CAB	CKB	CKW	CU5	CKK	CC9	Yellow	1		Tall	
CAH	CAD	CKD	CAA	CKA	CKV	CU7	CKJ	CCC	Red				
CBF	CBM	CLM	CBB	CLB	CLW	CV5	CLK	CD9	Yellow	2			
CBH	CBD	CLD	CBA	CLA	CLV	CV7	CLJ	CDC	Red	2			
CCF	CCM	CMM	CCB	CMB	CMW	C75	CMK	CE9	Yellow	3			
CCH	CCD	CMD	CCA	CMA	CMV	C77	CMJ	CEC	Red	3			
CDE	CDY	CNY	CDQ	CNQ	-	-	CNS	CB9	Yellow		DPDT		
CDG	CDR	CNR	CDP	CNP	-	-	CNT	CBC	Red			Short	
CDF	CDM	CNM	CDB	CNB	CNW	CW5	CNK	CF9	Yellow	1		Tall	
CDH	CDD	CND	CDA	CNA	CNV	CW7	CNJ	CFC	Red				
CEF	CEM	COM	CEB	COB	cow	CY5	COK	CG9	Yellow				
CEH	CED	COD	CEA	COA	cov	CY7	COJ	CGC	Red	2			
-	-	CUY	-	CUQ	-	-	-	-	Yellow	1	SPDT		
-	-	CUR	-	CUP	-	-	-	-	Red			w/Drain	
-	-	CUM	-	CUB	-	-	-	-	Yellow			Tall w/Drain	
-	-	CUD	-	CUA	-	-	-	-	Red				
-	-	CVM	-	CVB	-	-	-	-	Yellow	2			
-	-	CVD	-	CVA	-	-	-	-	Red				
-	-	CWM	-	CWB	-	-	-	-	Yellow	3			
-	-	CWD	-	CWA	-	-	-	-	Red				
-	-	CXY	-	CXQ	-	-	-	-	Yellow	1	DPDT		
-	-	CXR	-	CXP	-	-	-	-	Red			w/Drain	
-	-	CXM	-	CXB	-	-	-	-	Yellow			Tall w/Drain	
-	-	CXD	-	CXA	-	-	-	-	Red				
-	-	CYM	-	CYB	-	-	-	-	Yellow	2			
-	-	CYD	-	CYA	-				Red	2			

8.0 Switch and Housing Model Codes

$\begin{gathered} \hline \text { NEMA } \\ 4 \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	$\begin{gathered} \text { NEMA } \\ 4 \mathrm{X} \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	$\begin{gathered} \hline \text { NEMA } \\ 7 / 9 \\ \text { Cast } \\ \text { Iron } \end{gathered}$	NEMA 4X Cast Alum.	NEMA 4X/7/9 Cast Alum.	$\begin{gathered} \text { Group } \\ \text { B } \\ \text { Cast } \\ \text { Iron } \end{gathered}$	ATEX Cast Iron 3/4" NPT	NEMA 4X/7/9 Group B Cast Alum	$\begin{aligned} & \text { ATEX } \\ & \text { Cast Alum } \\ & \text { 1" NPT } \end{aligned}$	Magnet Dot Color	Set Points	Switch Contacts	Housing Height and Options	Switch Type
CFE	CFY	CPY	CFQ	CPQ	-	-	-	-	Yellow		SPDT		Dry Contact
CFG	CFR	CPR	CFP	CPP	-	-	-	-	Red			Short	
CFF	CFM	CPM	CFB	CPB	-	-	-	-	Yellow	1		w/Heater	
CFH	CFD	CPD	CFA	CPA	-	-	-	-	Red				
CGF	CGM	CQM	CGB	CQB	-	-	-	-	Yellow	2			
CGH	CGD	CQD	CGA	CQA	-	-	-	-	Red			Tall	
CHF	CHM	CRM	CHB	CRB	-	-	-	-	Yellow	3		w/Heater	
CHH	CHD	CRD	CHA	CRA	-	-	-	-	Red	3			
CIE	CIY	CSY	CIQ	CSQ	-	-	-	-	Yellow	1	DPDT	Short	
CIG	CIR	CSR	CIP	CSP	-	-	-	-	Red			w/Heater	
CIF	CIM	CSM	CIB	CSB	-	-	-	-	Yellow				
CIH	CID	CSD	CIA	CSA	-	-	-	-	Red			Tall	
CJF	CJM	CTM	CJB	CTB	-	-	-	-	Yellow	2		w/Heater	
CJH	CJD	CTD	CJA	CTA	-	-	-	-	Red	2			
DAE	DAY	DKY	DAQ	DKQ	-	-	DKS	DA9		1	SPDT	Short	DC Voltage Dry Contact
DAF	DAM	DKM	DAB	DKB	DKW	DU5	DKK	DC9				Tall	
DBF	DBM	DLM	DBB	DLB	DLW	DV5	DLK	DD9		2			
DCF	DCM	DMM	DCB	DMB	DMW	D75	DMK	DE9		3			
DDE	DDY	DNY	DDQ	DNQ	-	-	DNS	DB9		1	DPDT	Short	
DDF	DDM	DNM	DDB	DNB	DNW	DW5	DNK	DF9				Tall	
DEF	DEM	DOM	DEB	DOB	DOW	DY5	DOK	DG9		2			
-	-	DUY	-	DUQ	-	-	-	-		1	SPDT	Shrt w/Drn	
-	-	DUM	-	DUB	-	-	-	-				Tall w/Drain	
-	-	DVM	-	DVB	-	-	-	-		2			
-	-	DWM	-	DWB	-	-	-	-	Yellow	3			
-	-	DXY	-	DXQ	-	-	-	-		1	DPDT	Shrt w/Drn	
-	-	DYM	-	DYB	-	-	-	-		2		w/Drain	
DFE	DFY	DPY	DFQ	DPQ	-	-	-	-		1	SPDT	Shrt w/Htr	
DFF	DFM	DPM	DFB	DPB	-	-	-	-				Tall w/Heater	
DGF	DGM	DQM	DGB	DQB	-	-	-	-		2			
DHF	DHM	DRM	DHB	DRB	-	-	-	-		3			
DIE	DIY	DSY	DIQ	DSQ	-	-	-	-		1	DPDT	Shrt w/Htr	
DIF	DIM	DSM	DIB	DSB	-	-	-	-				Tall	
DJF	DJM	DTM	DJB	DTB	-	-	-	-		2		w/Heater	
EAE	EAY	EKY	EAQ	EKQ	-	-	EKS	EA9	Yellow	1	SPDT	Short	Vibration Resistant Mercury
EAG	EAR	EKR	EAP	EKP	-	-	EKT	EAC	Red			Short	
EAF	EAM	EKM	EAB	EKB	EKW	EU5	EKK	EC9	Yellow			Tall	
EAH	EAD	EKD	EAA	EKA	EKV	EU7	EKJ	ECC	Red				
EBF	EBM	ELM	EBB	ELB	ELW	EV5	ELK	ED9	Yellow	2			
EBH	EBD	ELD	EBA	ELA	ELV	EV7	ELJ	EDC	Red	2			
ECF	ECM	EMM	ECB	EMB	EMW	E75	EMK	EE9	Yellow	3			
ECH	ECD	EMD	ECA	EMA	EMV	E77	EMJ	EEC	Red	3			
EDE	EDY	ENY	EDQ	ENQ	-	-	ENS	EB9	Yellow	1	DPDT	Short	
EDG	EDR	ENR	EDP	ENP	-	-	ENT	EBC	Red				
EDF	EDM	ENM	EDB	ENB	ENW	EW5	ENK	EF9	Yellow			Tall	
EDH	EDD	END	EDA	ENA	ENV	EW7	ENJ	EFC	Red				
EEF	EEM	EOM	EEB	EOB	EOW	EY5	EOK	EG9	Yellow	2			
EEH	EED	EOD	EEA	EOA	EOV	EY7	EOJ	EGC	Red				
-	-	EUY	-	EUQ	-	-	-	-	Yellow	1	SPDT		
-	-	EUR	-	EUP	-	-	-	-	Red			w/Drain	
-	-	EUM	-	EUB	-	-	-	-	Yellow			Tall w/Drain	
-	-	EUD	-	EUA	-	-	-	-	Red				
-	-	EVM	-	EVB	-	-	-	-	Yellow	2			
-	-	EVD	-	EVA	-	-	-	-	Red				
-	-	EWM	-	EWB	-	-	-	-	Yellow	3			
-	-	EWD	-	EWA	-	-	-	-	Red				
-	-	EXY	-	EXQ	-	-	-	-	Yellow	1	DPDT	Short w/Drain	
-	-	EXR	-	EXP	-		-		Red				

8.0 Switch and Housing Model Codes

$\begin{gathered} \hline \text { NEMA } \\ 4 \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	$\begin{gathered} \hline \text { NEMA } \\ 4 \mathrm{X} \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	$\begin{gathered} \hline \text { NEMA } \\ 7 / 9 \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	NEMA 4X Cast Alum.	NEMA 4X/7/9 Cast Alum.	$\begin{gathered} \text { Group } \\ \text { B } \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	ATEX Cast Iron 3/4" NPT	NEMAA 4X/7/9 Group B Cast Alum	ATEX Cast Alum 1" NPT	Magnet Dot Color	Set Points	Switch Contacts	Housing Height and Options	Switch Type
-	-	EXM	-	EXB	-	-	-	-	Yellow	1	DPDT	Tall w/Drain	Dry Contact
-	-	EXD	-	EXA	-	-	-	-	Red				
-	-	EYM	-	EYB	-	-	-	-	Yellow				
-	-	EYD	-	EYA	-	-	-	-	Red	2			
EFE	EFY	EPY	EFQ	EPQ	-	-	-	-	Yellow		SPDT	Short	
EFG	EFR	EPR	EFP	EPP	-	-	-	-	Red	1		w/Heater	
EFF	EFM	EPM	EFB	EPB	-	-	-	-	Yellow			Tall w/Heater	
EFH	EFD	EPD	EFA	EPA	-	-	-	-	Red				
EGF	EGM	EQM	EGB	EQB	-	-	-	-	Yellow	2			
EGH	EGD	EQD	EGA	EQA	-	-	-	-	Red	2			
EHF	EHM	ERM	EHB	ERB	-	-	-	-	Yellow	3			
EHH	EHD	ERD	EHA	ERA	-	-	-	-	Red	3			
EIE	EIY	ESY	EIQ	ESQ	-	-	-	-	Yellow	1	DPDT	Short	
EIG	EIR	ESR	EIP	ESP	-	-	-	-	Red			w/Heater	
EIF	EIM	ESM	EIB	ESB	-	-	-	-	Yellow			Tall w/Heater	
ElH	EID	ESD	EIA	ESA	-	-	-	-	Red				
EJF	EJM	ETM	EJB	ETB	-	-	-	-	Yellow				
EJH	EJD	ETD	EJA	ETA	-	-	-	-	Red	2			
FAE	FAY	FKY	FAQ	FKQ	-	-	FKS	FA9	Yellow	1	SPDT	Short	
FAG	FAR	FKR	FAP	FKP	-	-	FKT	FAC	Red			Short	
FAF	FAM	FKM	FAB	FKB	FKW	FU5	FKK	FC9	Yellow			Tall	
FAH	FAD	FKD	FAA	FKA	FKV	FU7	FKJ	FCC	Red				
FBF	FBM	FLM	FBB	FLB	FLW	FV5	FLK	FD9	Yellow				
FBH	FBD	FLD	FBA	FLA	FLV	FV7	FLJ	FDC	Red	2			
FDE	FDY	FNY	FDQ	FNQ	-	-	FNS	FB9	Yellow	1	DPDT	Short	
FDG	FDR	FNR	FDP	FNP	-	-	FNT	FBC	Red				
FDF	FDM	FNM	FDB	FNB	FNW	FW5	FNK	FF9	Yellow			Tall	
FDH	FDD	FND	FDA	FNA	FNV	FW7	FNJ	FFC	Red				
FEF	FEM	FOM	FEB	FOB	FOW	FY5	FOK	FG9	Yellow	2			
FEH	FED	FOD	FEA	FOA	FOV	FY7	FOJ	FGC	Red				
GAF	GAM	GKM	-	-	GKW	GU5	-	-	Yellow	1	SPDT	Tall	Dual Magnet Dry Contact
GAH	GAD	GKD	-	-	GKV	GU7	-	-	Red		SPDT		
GDF	GDM	GNM	-	-	GNW	GW5	-	-	Yellow				
GDH	GDD	GND	-	-	GNV	GW7	-	-	Red		DPDT		
-	-	GUM	-	-	-	-	-	-	Yellow		SPDT	Tall w/Drain	
-	-	GUD	-	-	-	-	-	-	Red		SPDT		
-	-	GXM	-	-	-	-	-	-	Yellow				
-	-	GXD	-	-	-	-	-	-	Red		DPDT		
HAF	HAM	HKM	-	-	HKW	HU5	-	-	Yellow	1	SPDT	Tall	Dual Magnet Dry Contact
HAH	HAD	HKD	-	-	HKV	HU7	-	-	Red				
HDF	HDM	HNM	-	-	HNW	HW5	-	-	Yellow				
HDH	HDD	HND	-	-	HNV	HW7	-	-	Red		DPDT		
-	-	HUM	-	-	-	-	-	-	Yellow		SPDT	Tall w/Drain	
-	-	HUD	-	-	-	-	-	-	Red		SPDT		
-	-	HXM	-	-	-	-	-	-	Yellow		DPDT		
-	-	HXD	-	-	-	-	-	-	Red				
IAF	IAM	IKM	-	-	IKW	IU5	-	-	Yellow	1	SPDT	Tall	DC Dual Magnet Dry Contact
IAH	IAD	IKD	-	-	IKV	IU7	-	-	Red		SPDT		
IDF	IDM	INM	-	-	INW	IW5	-	-	Yellow		DPDT		
IDH	IDD	IND	-	-	INV	IW7	-	-	Red		DPDT		
-	-	IUM	-	-	-	-	-	-	Yellow		SPDT	Tall w/Drain	
-	-	IUD	-	-	-	-	-	-	Red				
-	-	IXM	-	-	-	-	-	-	Yellow Red		DPDT		

8.0 Switch and Housing Model Codes

$\begin{gathered} \hline \text { NEMA } \\ 4 \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { NEMA } \\ 4 \mathrm{X} \\ \text { Carbon } \\ \text { Steel } \\ \hline \end{array}$	$\begin{gathered} \hline \text { NEMA } \\ 7 / 9 \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NEMA } \\ 4 \mathrm{X} \\ \text { Cast } \\ \text { Alum. } \end{gathered}$	NEMA 4X/7/9 Cast Alum.	$\begin{gathered} \hline \text { Group } \\ \text { B } \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	ATEX Cast Iron 3/4" NPT	NEMA 4X/7/9 Group B Cast Alum	ATEX Cast Alum 1" NPT	Magnet Dot Color	$\begin{gathered} \text { Set } \\ \text { Points } \end{gathered}$	Switch Contacts	Housing Height and Options	$\begin{aligned} & \text { Switch } \\ & \text { Type } \\ & \hline \end{aligned}$
LAF	LAM	LKM	-	-	LKW	-	-	-			SPDT		High
LDF	LDM	LNM	-	-	LNW	-	-	-	Yellow		DPDT	Tall	temp
LBF	LBM	LLM	-	-	LLW	-	-	-	Yellow	1	SPDT		Merc For
LEF	LEM	LOM	-	-	LOW	-	-	-			DPDT		B40
MAE	MAY	-	-	-	-	-	-	-	Yellow			Short	
MAG	MAR	-	-	-	-	-	-	-	Red	1		Short	
MAF	MAM	-	-	-	-	-	-	-	Yellow				
MAH	MAD	-	-	-	-	-	-	-	Red				
MBF	MBM	-	-	-	-	-	-	-	Yellow		SPDT		
MBH	MBD	-	-	-	-	-	-	-	Red	2			High
-	MBE	-	-	-	-	-	-	-	R/B/B			Tall	Temp
MCF	MCM	-	-	-	-	-	-	-	Yellow				mercury
MCH	MCD	-	-	-	-	-	-	-	Red	3			with
-	MCE	-	-	-	-	-	-	-	R/B/B				Manual
MDE	MDY	-	-	-	-	-	-	-	Yellow			Short	
MDG	MDR	-	-	-	-	-	-	-	Red	1			
MDF	MDM	-	-	-	-	-	-	-	Yellow				
MDH	MDD	-	-	-	-	-	-	-	Red		DPDT	Tall	
MEF	MEM	-	-	-	-	-	-	-	Yellow	2			
MEH	MED	-	-	-	-	-	-	-	Red				
NCF	NCM	NMM	NCB	NMB	NMI	-	NMN	-			SPDT	X-Tall	
NEF	NEM	NKM	NEB	NKB	NKI	-	NKN	-			DPDT	x-Tall	
NHF	NHM	NRM	NHB	NRB	-	-	-	-	Yellow	3	SPDT	X-Tall	for
NJF	NJM	NLM	NJB	NLB	-	-	-	-		3	DPDT	w/Heater	C10/C15
-	-	NWM	-	NWB	-	-	-	-			SPDT	X-Tall	
-	-	NNM	-	NNB	-	-	-	-			DPDT	w/Drain	
OCF	OCM	OMM	OCB	OMB	OMI	-	OMN	-			SPDT	X-Tall	
OEF	OEM	OKM	OEB	OKB	OKI	-	OKN	-			DPDT	x-Tall	Dry
OHF	OHM	ORM	OHB	ORB	-	-	-	-	Yellow	3	SPDT	X-Tall	Contact
OJF	OJM	OLM	OJB	OLB	-	-	-	-	Yellow	3	DPDT	w/Heater	for
-	-	OWM	-	OWB	-	-	-	-			SPDT	X-Tall	C10/C15
-	-	ONM	-	ONB	-	-	-	-			DPDT	w/Drain	
QCF	QCM	QMM	QCB	QMB	QMI	-	QMN	-			SPDT	X-Tall	
QEF	QEM	QKM	QEB	QKB	QKI	-	QKN	-			DPDT	x-Talı	Dry
QHF	QHM	QRM	QHB	QRB	-	-	-	-	Yellow	3	SPDT	X-Tall	Contact
QJF	QJM	QLM	QJB	QLB	-	-	-	-		3	DPDT	w/Heater	for
-	-	QWM	-	QWB	-	-	-	-			SPDT	X-Tall	C10/C15
-	-	QNM	-	QNB	-	-	-	-			DPDT	w/Drain	
SAF	SAM	SKM	SAB	SKB	SKW	-	SKK	-			SPDT		Dry
													Contact for B40
SDF	SDM	SNM	SDB	SNB	SNW	-	SNK	-	Yellow	1	DPDT	Tall	for B40
SBF	SBM	SLM	SBB	SLB	SLW	-	SLK	-			SPDT		DC Dry Contact
SEF	SEM	SOM	SEB	SOB	sow	-	SOK	-			DPDT		for B40
TCF	TCM	TMM	TCB	TMB	TMI	-	TMN	-			SPDT	X-Tall	
TEF	TEM	TKM	TEB	TKB	TKI	-	TKN	-			DPDT		Vibration Resistant
THF	THM	TRM	THB	TRB	-	-	-	-		3	SPDT	X-Tall	Mercury
TJF	TJM	TLM	TJB	TLB	-	-	-	-	Yellow	3	DPDT	w/Heater	Mercury
-	-	TWM	-	TWB	-	-	-	-			SPDT	X-Tall	C10/C15
-	-	TNM	-	TNB	-	-	-	-			DPDT	w/Drain	

8.0 Switch and Housing Model Codes

8.0 Switch and Housing Model Codes

$\begin{gathered} \hline \text { NEMA } \\ 4 \\ \text { Carbon } \\ \text { Steel } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NEMA } \\ 4 \mathrm{X} \\ \text { Carbon } \\ \text { Steel } \end{gathered}$	$\begin{gathered} \hline \text { NEMA } \\ 7 / 9 \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	NEMA 4X Cast Alum.	$\begin{gathered} \hline \text { NEMA } \\ \text { 4X } / 7 / 9 \\ \text { Cast } \\ \text { Alum. } \end{gathered}$	$\begin{gathered} \text { Group } \\ \text { B } \\ \text { Cast } \\ \text { Iron } \\ \hline \end{gathered}$	ATEX Cast Iron 3/4" NPT	NEMA 4X/7/9 Group B Cast Alum	$\begin{aligned} & \text { ATEX } \\ & \text { Cast Alum } \\ & \text { 1" NPT } \\ & \hline \end{aligned}$	Magnet Dot Color	$\begin{gathered} \text { Set } \\ \text { Points } \end{gathered}$	Switch Contacts	Housing Height and Options	$\begin{aligned} & \text { Switch } \\ & \text { Type } \end{aligned}$
3AE	3AY	3KY	3AQ	3KQ	-	-	3KS	3 A 9	Yellow			Short	
3AG	3AR	3KR	3AP	3KP	-	-	3KT	3AC	Red	1		Short	
3AF	3AM	3KM	ЗАВ	3KB	3KW	3 U	3KK	3C9	Yellow	1			
3AH	3AD	3KD	3AA	3KA	3KV	3U7	3KJ	3CC	Red				
3BF	3BM	3LM	3BB	3LB	3LW	3V5	3LK	3D9	Yellow				
3BH	3BD	3LD	3BA	3LA	3LV	3V7	3LJ	3DC	Red	2	SPDT	Tall	
-	-	-	-	3LE	-	-	3LG	-	R/B/B				
3CF	3CM	3MM	3СВ	3MB	3MW	375	3MK	3E9	Yellow				
3 CH	3CD	3MD	3CA	3MA	3MV	377	3MJ	3EC	Red	3			
-	-	-	-	3ME	-	-	3MG	-	R/B/B				
3DE	3DY	3NY	3DQ	3NQ	-	-	3NS	3B9	Yellow			Short	
3DG	3DR	3NR	3DP	3NP	-	-	3NT	3BC	Red	1		Short	
3DF	3DM	3NM	3DB	3NB	3NW	3W5	3NK	$3 \mathrm{F9}$	Yellow		DPDT		
3DH	3DD	3ND	3DA	3NA	3NV	3W7	3NJ	3FC	Red		DPDT		
3EF	3EM	30M	3EB	30B	30W	3Y5	30K	3G9	Yellow	2		Tall	
3EH	3ED	30D	3EA	30A	30 V	3Y7	30J	3GC	Red				
-	-	3 Y	-	3UQ	-	-	-	-	Yellow			Short	
-	-	3UR	-	3UP	-	-	-	-	Red	1		w/Drain	
-	-	3UM	-	3UB	-	-	-	-	Yellow				
-	-	3UD	-	3UA	-	-	-	-	Red				
-	-	3VM	-	3VB	-	-	-	-	Yellow	2	SPDT	Tall	
-	-	3VD	-	3VA	-	-	-	-	Red			w/Drain	High Temp
-	-	3WM	-	3WB	-	-	-	-	Yellow	3			Temp Mercury
-	-	3WD	-	3WA	-	-	-	-	Red	3			
-	-	3XY	-	3XQ	-	-	-	-	Yellow				
-	-	3XR	-	3XP	-	-	-	-	Red	1		w/Drain	
-	-	3XM	-	3XB	-	-	-	-	Yellow		DPDT		
-	-	3XD	-	3XA	-	-	-	-	Red		DPDT		
-	-	3YM	-	3YB	-	-	-	-	Yellow	2		w/Drain	
-	-	3YD	-	3YA	-	-	-	-	Red	2			
3FE	3FY	3PY	3FQ	3PQ	-	-	-	-	Yellow				
3FG	3FR	3PR	3FP	3PP	-	-	-	-	Red	1		w/Heater	
3FF	3FM	3PM	3FB	3PB	-	-	-	-	Yellow	1			
3FH	3FD	3PD	3FA	3PA	-	-	-	-	Red				
3GF	3GM	3QM	3GB	3QB	-	-	-	-	Yellow	2	SPDT		
3GH	3GD	3QD	3GA	3QA	-	-	-	-	Red			w/Heater	
3HF	3HM	3RM	3 HB	3RB	-	-	-	-	Yellow				
3HH	3HD	3RD	3HA	3RA	-	-	-	-	Red	3			
3IE	3IY	3SY	31Q	3SQ	-	-	-	-	Yellow				
3IG	3IR	3SR	3 IP	3SP	-	-	-	-	Red	1		w/Heater	
3 IF	31M	3SM	31 B	3SB	-	-	-	-	Yellow	1			
31H	3ID	3SD	31A	3SA	-	-	-	-	Red		DPDT		
3JF	3JM	3TM	3JB	3TB	-	-	-	-	Yellow			w/Heater	
3JH	3JD	3TD	3JA	3TA	-	-	-	-	Red	2			

Service Policy

Owners of Magnetrol/STI controls may request the return of a control or any part of a control for complete rebuilding or replacement. They will be rebuilt or replaced promptly. Controls returned under our service policy must be returned by Prepaid transportation. Magnetrol/STI will repair or replace the control at no cost to the purchaser (or owner) other than transportation if:

1. Returned within the warranty period; and
2. The factory inspection finds the cause of the claim to be covered under the warranty.
If the trouble is the result of conditions beyond our control; or, is NOT covered by the warranty, there will be charges for labor and the parts required to rebuild or replace the equipment.
In some cases it may be expedient to ship replacement parts; or, in extreme cases a complete new control, to replace the original equipment before it is returned. If this is desired, notify the factory of both the model and serial numbers of the control to be replaced. In such cases, credit for the materials returned will be determined on the basis of the applicability of our warranty.
No claims for misapplication, labor, direct or consequential damage will be allowed.

Return Material Procedure

So that we may efficiently process any materials that are returned, it is essential that a "Return Material Authorization" (RMA) number be obtained from the factory, prior to the material's return. This is available through Magnetrol's/STI's local representative or by contacting the factory. Please supply the following information:

1. Company Name
2. Description of Material
3. Serial Number
4. Reason for Return
5. Application

Any unit that was used in a process must be properly cleaned in accordance with OSHA standards, before it is returned to the factory.
A Material Safety Data Sheet (MSDS) must accompany material that was used in any media.
All shipments returned to the factory must be by prepaid transportation.

All replacements will be shipped F.O.B. factory.

5300 Belmont Road • Downers Grove, Illinois 60515-4499 • 630-969-4000 • Fax 630-969-9489 • www.magnetrol.com 145 Jardin Drive, Units 1 \& 2 • Concord, Ontario Canada L4K 1X7 • 905-738-9600 • Fax 905-738-1306
Heikensstraat $6 \cdot$ B 9240 Zele, Belgium • 052 45.11.11 • Fax 052 45.09.93
Regent Business Ctr., Jubilee Rd. • Burgess Hill, Sussex RH15 9TL U.K. • 01444-871313 • Fax 01444-871317

BULLETIN: 42-683.12
EFFECTIVE: April 2006
SUPERSEDES: January 2005

