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RIBEIRO., L. D. X. (2017). Adaptive Kalman based Forecasting for electric load

and distributed generation. Dissertação de Mestrado em Engenharia Elétrica, Pu-

blicação 659/2017 DM PPGEE, Departamento de Engenharia Elétrica, Universidade
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RESUMO

PREVISÃO ADAPTATIVA DE CARGA E DE GERAÇÃO DISTRIBUÍDA

BASEADA EM FILTROS DE KALMAN

Autor: Lucas Dantas Xavier Ribeiro

Orientador: João Paulo Carvalho Lustosa da Costa

Programa de Pós-graduação em Engenharia Elétrica

Braśılia, abril de 2017

O desenvolvimento econômico está relacionado à disponibilidade de energia elétrica,

especialmente em virtude da dependência quase total que a maioria das indústrias e

dos serviços essenciais têm de seu uso. A disponibilidade de energia perene, barata e

confiável é de primordial importância econômica.

Dado que o conjunto de requerimentos encontrados pelas companhias de distribuição

constitui um cenário complexo, ferramentas robustas de previsão de demanda são ne-

cessárias para implementar planos de expansão e operações eficientes e razoáveis.

A inserção de geração distribúıda adiciona um novo ńıvel de complexidade a esta ta-

refa, pois não somente a geração descentralizada diminui a carga de modo aleatório e

intermitente, como também inevitavelmente produz alterações nas séries históricas de

carga usadas para fazer as previsões. Ambos os efeitos agem no sentido de aumentar

os erros de predição no curto e no longo prazo, ameaçando a eficiência operacional e,

no pior caso, a estabilidade do sistema.

Este trabalho apresenta a previsão de carga e geração como um problema de estimação

dinâmica de estado via filtros adaptativos de Kalman. As variáveis a serem estima-

das são das demandas de base, média e de pico, assim como a geração fotovoltaica.

Como medições e observações, são utilizadas previsões de tempo, datas e eventos de

calendário, tarifas de eletricidade, ı́ndices e estimativas econômicas e demográficas.

Combinações preprocessadas destas medições são usadas como as variáveis de entrada

para a previsão.

A metodologia proposta foi comparada com outras técnicas do estado da arte, sendo

os desempenhos avaliados com base nos critérios de Erro Médio Quadrático (MSE),

Raiz do Erro Médio Quadrático (RMSE), Coeficiente de correlação, Erro Médio Per-

centual (MAPE), Erro Médio Absoluto (MAE), Erro Médio de Tendência (MBE), Erro

Máximo Absoluto (MXE) e Erro Máximo Percentual (MPE). Na maioria dos cenários
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analisados, o sistema de predição adaptativo proposto superou as técnicas de referência

baseadas em redes neurais e espaço de estados.
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ABSTRACT

ADAPTIVE KALMAN BASED FORECASTING FOR ELECTRIC LOAD

AND DISTRIBUTED GENERATION

Author: Lucas Dantas Xavier Ribeiro

Supervisor: João Paulo Carvalho Lustosa da Costa

Programa de Pós-graduação em Engenharia Elétrica

Braśılia, abril de 2017

Economic development is related to the availability of electricity, especially because

most industries and basic services depend almost entirely on its use. The availability of

a source of continuous, cheap, and reliable energy is of foremost economic importance.

Since the set of requirements faced by power distribution utilities assemble a complex

scenario, robust load forecasting tools are needed to implement efficient and reasonable

expansion and operation plans.

The introduction of distributed generation adds a new level of complexity to this task,

as not only the decentralized generation reduces load in a random and intermittent

way, but also inevitably embeds in the historic loads used to forecast. Both effects act

to increase prediction errors in short and long term, jeopardizing operational efficiency

and, in worst case, system reliability.

This work presents the load and generation forecasting as a dynamic state estimation

problem by means of Kalman adaptive filters. The variables to be estimated are daily

base, average and peak electric load, as well as PV generation. As measurements and

observations, this work uses weather forecasts, calendar dates and events, energy tariffs,

economical and demographic indexes and estimatives. Preprocessed combinations of

these measurements are the input variables employed for forecasting.

The proposed methodology is compared with other state-of-art techniques, the perfor-

mances evaluated with base in error performance criteria such as Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), Correlation coefficient, Mean Average

Percentual Error (MAPE), Mean Absolute Error (MAE), Mean Bias Error (MAE),

Maximum Absolute Error (MXE) and Maximum Percentual Error (MPE). In most

evaluated scenarios, the proposed adaptive prediction system outperforms the bench-

mark techniques, based on state space and neural networks.
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1 INTRODUÇÃO

Mundialmente, o desenvolvimento econômico depende diretamente da disponibilidade

de energia elétrica, especialmente em virtude da dependência quase total que a maioria

das industrias e dos serviços essenciais têm de seu uso. A disponibilidade de uma fonte

de energia perene, barata e confiável é de primordial importância econômica.

Grandes montantes do suprimento energético são mundialmente destinados a setores

energeticamente intensivos, como o tratamento de água, irrigação, industria de trans-

formação e transportes. Em particular, os páıses mais ricos tem as maiores demandas

energéticas por habitante, uma vez que o Produto Interno Bruto (PIB) é altamente

correlacionado com a utilização de energia.

Esta dependência pode ser linearmente modelada ao se considerar dados de 2003 a 2007

[2]. A relação causal entre crescimento econômico, caracterizado em diversos indicado-

res, e o consumo de eletricidade é investigado em inúmeros artigos. O estudo apresen-

tado em [22] conclui que a causalidade é mais forte em paises desenvolvidos da OECD.

Várias variáveis são utilizadas para indicar as dependências entre consumo de energia e

atividades econômicas: Produto Interno Bruto (PIB), população e ı́ndices de preços [7].

Em [11], testes de Granger indicam relação de causalidade do consumo energético para

a renda na Índia e na Indonésia, ao passo que o mesmo teste aponta para uma relação

bidirecional para a Tailândia e as Filipinas. Esta dependência bidirecional aponta para

um sistema retroalimentado, no qual a disponibilidade de um suprimento barato de

energia promove o crescimento econômico, e então a atividade econômica aquecida de-

manda um consumo maior de eletricidade e/ou melhoria da eficiência energética. Deste

ponto de vista, as demandas energéticas devem ser analisadas não somente como um

serviço essencial, mas também como um indicador econômico.
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Tabela 1.1: Suprimento de Eletricidade Doméstico, PIB e população de 2000 a 2015 - Mundo
e Alemanha

DES DES PIB Pop. DES / Capita

Ano Mundo Alemanha Alemanha Alemanha Mundo — Alemanha

(TWh) (TWh) 109 US$ 106Hab. TWh /106Hab.

2000 15406,03 579,6 1949,95 82,21 2,52 — 7,05

2001 15638,45 585,1 1950,65 82,35 2,52 — 7,11

2002 16190,43 587,4 2079,14 82,49 2,58 — 7,12

2003 16793,16 600,7 2505,73 82,53 2,64 — 7,28

2004 17572,76 610,2 2819,25 82,52 2,73 — 7,39

2005 18333,46 614,1 2861,41 82,47 2,81 — 7,45

2006 19030,16 619,8 3002,45 82,38 2,89 — 7,52

2007 19922,93 621,5 3439,95 82,27 2,98 — 7,55

2008 20283,94 618,2 3752,37 82,11 3,00 — 7,53

2009 20123,69 581,4 3418,01 81,90 2,94 — 7,10

2010 21404,5 615,0 3417,30 81,78 3,09 — 7,52

2011 22050,91 606,1 3757,46 81,80 3,15 — 7,41

2012 22504,33 605,7 3543,98 80,43 3,17 — 7,53

2013 23092,66 603,8 3752,51 82,13 3,22 — 7,35

2014 24240,89 591,1 3879,28 80,98 3,34 — 7,30

2015 25893,62 595,1 3363,45 81,41 3,52 — 7,31

Os dados na Tabela 1.1 extráıdos de [4, 3] mostram a evolução de três indicadores

relacionados às economias mundial e alemã no peŕıodo de 2000 a 2012. As primeiras

duas colunas na Tabela 1.1 correspondem ao Suprimento de Eletricidade Doméstico no

mundo e na Alemanha (DES), do inglês Domestic Energy Supply. A terceira e quarta

coluna apresentam o PIB e a população em milhões de habitantes. A última coluna

na Tabela 1.1 apresenta o suprimento de eletricidade per capita (DES/capita) para o

mundo e para a Alemanha. É importante observar que a população alemã manteve-se

praticamente constante, embora o montante de energia suprida tenha crescido.

O consumo por habitante na Tabela 1.1 segue uma curva ascendente no peŕıodo entre

2000-2015, e isto indica a necessidade de cont́ınuos investimentos na rede elétrica. A

previsão de carga mostra-se, portanto, como uma ferramenta essencial para as compa-

nhias de distribuição de eletricidade. Devido às regulamentações de monopólio natural
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aprovadas na maioria dos páıses, estas empresas são obrigadas a cumprir variados

padrões contratuais relacionados à confiabilidade, eficiência, segurança e outros aspec-

tos da qualidade de energia. Além disto, as companhias devem igualmente levar em

consideração a escassez e a flutuação de preços dos recursos energéticos, e também

ações de responsabilidade ambiental como controles de emissão de CO2 [5]. Por fim, as

companhias devem também monitorar o crescimento da Geração Distribúıda (GD) no

lado da demanda, principalmente no que diz respeito à geração fotovoltaica, que está

em rápida expansão no mundo [73].

Essa geração distribúıda é tipicamente composta de unidades de geração com capa-

cidade nominal variando de frações de kW a até 5 MW, interconectadas ao sistema

de distribuição e instaladas juntamente com a carga do consumidor ou diretamente

conectadas ao sistema elétrico, utilizando a rede para prover energia a uma unidade

consumidora remota. Sistemas solares fotovoltaicos (FV) transformam a energia do

Sol em eletricidade. Semicondutores que exibem o efeito fotovoltaico, por exemplo

as células solares de siĺıcio tipo N ou tipo P, convertem a radiação solar em corrente

elétrica cont́ınua (DC). Inversores de frequência então são usados para converter a

geração DC em corrente alternada (AC), a qual é injetada no sistema de potência.

Conforme exposto na Figura 1.1, ocorreu um crescimento exponencial na capacidade

de renováveis na Alemanha, em particular de paineis fotovoltaicos [3]. Até 2010, cerca

de metade de toda a energia FV gerada na Europa foi produzida na Alemanha, mas

em virtude dos crescentes aumentos nos preços da energia e de poĺıticas de incentivo

à geração fotovoltaica adotadas por outros estados da União Européia, este percentual

foi ligeiramente diminuido nos anos seguintes. Em 2015, as fontes renováveis supriram

mais de 30 % do consumo de eletricidade na Alemanha.
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Figura 1.1: Oferta de eletricidade e geração renovável alemã em TWh, entre 2001 e 2015.
Fonte: [110], licença Creative Commons by SA 4.0.

De acordo com [52], no ano de 2014, a geração de eletricidade foi responsável por 23.815

TWh ou 18 % do consumo mundial de energia, partindo de 6.287 TWh ou 9.4 % em

1974. Combust́ıveis fósseis permanecem como a principal fonte primária da eletricidade,

uma vez que óleo, carvão e gás natural são responsáveis por 66,7 % da geração, menor

que os 75,2 % em 1974. Hidroelétrica é a maior fonte primária renovável, suprindo 16,4

% da geração em 2013, decaindo de 20,9 % em 1974. A participação da fissão nuclear

triplicou entre 1974 e 2014, indo de 3,3 % para 10,6 % da geração. Todas as outras

fontes combinadas, incluido solar e eólicas, foram em 2013 responsáveis por 6,3 % da

geração.

Um sistema elétrico é usualmente composto de três subsistemas: geração, transmissão

e distribuição. Geração representa a etapa de conversão da fonte primária de energia

em eletricidade, usualmente realizada em grandes usinas localizadas a uma distância

f́ısica considerável até os centros de carga. A transmissão é composta por linhas de

alta tensão, projetadas para transportar eficientemente grandes blocos de eletricidade

da geração até os sistemas de distribuição. As redes de distribuição são o último elo

com os consumidores no setor elétrico, sendo este subsistema responsável por reduzir

a tensão para os ńıveis padronizados de consumo para fins industriais e residenciais,

distribuindo eletricidade para um grande número de consumidores e garantindo que os

padrões de qualidade de energia são atendidos.
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Figura 1.2: Esquema simplificado de um sistema elétrico com geração distribúıda

Dado que o conjunto de requerimentos encontrados pelas companhias de distribuição

remontam a um cenário complexo, ferramentas robustas de previsão de demanda são

necessárias para implementar planos de expansão e operações eficientes e razoáveis. Os

sistemas elétricos atuais requerem um permanente equilibrio entre geração e carga, pois

sistemas de armazenamento de energia em larga escala ainda não atingiram viabilidade

econômica para a maioria das redes elétricas. Na ocorrência de um desequilibrio entre

geração e demanda de energia, a frequência do sistema passa a oscilar e as unidades

geradoras devem rapidamente aumentar ou diminuir a geração para se restabelecer

o equilibrio e restaurar a estabilidade de frequência do sistema. A reserva girante de

geração empregada para manter a estabilidade no presente é resultado do planejamento

e da previsão de carga realizados no passado. Os planos de operação que determinam

quando cada gerador permanece em modo de espera ou em geração nominal são também
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oriundos de estudos de previsão de demanda.

A inserção de geração distribúıda adiciona um novo ńıvel de complexidade a esta ta-

refa, pois não somente a geração descentralizada reduz a carga de modo aleatório e

intermitente, como também inevitavelmente produz alterações nas séries históricas de

carga usadas para fazer as previsões. Ambos efeitos agem no sentido de aumentar os

erros de predição no curto e no longo prazo, ameaçando a eficiência operacional e, no

pior caso, a estabilidade do sistema [26].

Ao passo que todas as fontes de geração distribúıda tem visto crescimento na sua ca-

pacidade instalada, a fonte solar fotovoltaica tem visto a maior taxa de implantação

nos últimos anos. Nos Estados Unidos, Fotovoltaicas constituem de 80 a 90% da capa-

cidade instalada dentre as instalações de GD com até 2 MW. Na Alemanha, de acordo

com [105], a energia fotovoltaica gerada somou 38,5 TWh e supriu aproximadamente

7,5 % do consumo ĺıquido de eletricidade da Alemanha em 2015, conforme ilustrado

na figura 1.3. Em dias úteis ensolarados, a energia fotovoltaica pode atender 35 % da

demanda instantânea, valor que sobe a 50 % em feriados e fins de semana. Ao fim de

2015, a capacidade nominal FV instalada na Alemanha foi de cerca de 40 GW distri-

buidos em 1,5 milhão de unidades geradoras. Com este ńıvel de grandeza, a capacidade

instalada em FV excede a de todas as demais fontes na Alemanha.

Figura 1.3: Percentual de energia renovável no consumo ĺıquido de eletricidade na Alemanha,
de 2005 a 2015. Em 2015 as fontes renováveis supriram 38 % do consumo. Fonte: [105]

Páıses em desenvolvimento e emergentes tem também experimentado tendências se-

melhantes. De acordo com a Agência Nacional de Energia Elétrica (ANEEL), desde a

publicação da Resolução Normativa 482/2012, tem havido um constante crescimento
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no número de novas unidades de geração distribúıda conectadas à rede de distri-

buição, conforme exposto na Figura 2.4. Esta Resolução Normativa regulamenta a

conexão de geração distribúıda às redes de distribuição, estabelecendo procedimentos

e as obrigações das empresas de distribuição e dos consumidores.

Figura 1.4: Evolução trimestral do número de unidades de geração distribúıda conectadas às
redes de distribuição brasileiras. Fonte: ANEEL

Semelhantemente ao observado na Alemanha e nos Estados Unidos, a geração solar

fotovoltaica é a maior fonte de geração distribúıda no Brasil, não somente em ca-

pacidade instalada como particularmente no número de unidades conectadas. Esta

predominância é mostrada na figura 1.5.

Figura 1.5: Capacidade instalada (esquerda) e número de unidades conectadas (direita) no
Brasil, divididas por fonte primária de energia. Fonte: ANEEL

Este crescimento mundial da geração fotovoltaica é uma consequência da curva de

aprendizado tecnológica e dos custos decrescentes, ilustrados na figura 2.6, que apre-

senta os preços de mercado na Alemanha. A fonte fotovoltaica tem experimentado
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rápido desenvolvimento tanto em custo quanto em performance. Nos Estados Unidos,

foi observado que os custos diminuiram 31 % de 2010 para 2014 [26], enquanto que na

Alemanha os custos cáıram em quase 75 % desde 2006.

Figura 1.6: Custo médio ĺıquido do sistema FV para o consumidor, considerando sistemas
para instalação em telhados com potência nominal entre 10 kWp e 100 kWp. Fonte: [105]

Portanto, os operadores de sistemas de potência devem empregar ferramentas adaptati-

vas que não somente são efetivas para prever a demanda, mas que também estão aptas

a rastrear a mudança no comportamento da demanda ocasionado pela crescente pre-

sença de GD. Por outro lado, os fatores relevantes que governam a geração fotovoltaica,

como a irradiação solar e a temperatura ambiente, são também correlacionados com

o consumo de energia, embora de modo não linear. Aprimorando as metodologias de

previsão para modelar e adaptar à presença de GD pode também melhorar ainda mais

o desempenho destes métodos quando efetuando previsões em sistemas convencionais.

1.1 Formulação do problema

A previsão de carga é uma importante ferramenta empregada para assegurar que a

energia suprida pelas distribuidoras está em equiĺıbrio com as cargas e com as perdas

de energia inerentes ao sistema elétrico. A previsão de carga é sempre definida como

a ciência ou arte de prever a carga futura em um dado sistema, por um peŕıodo de

tempo determinado. Estas predições podem prever a carga para as horas e minutos

seguintes, com o objetivo de auxiliar a operação, ou predizer a demanda a 20 anos
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para fins de planejamento da expansão. A crescente capacidade instalada de recursos

energéticos distribúıdos levanta novas questões para este campo de pesquisa, pois é

necessário prever não apenas o crescimento da capacidade como também a geração

intermitente associada à GD.

Com relação às escalas de tempo e ao alcance das predições, previsão de demanda pode

ser categorizada em três áreas [90]:

1. Previsão de longo prazo, que é utilizada para predizer as cargas para até 50 anos

no futuro, de modo que a suportar o planejamento para a expansão;

2. Previsão de médio prazo, que é utilizada para prever cargas semanais, mensais e

anuais a até 10 anos no futuro, permitindo o planejamento eficiente das operações

do sistema;

3. Previsão de curto prazo, que é empregada para prever cargas até uma semana no

futuro, de modo a minimizar custos das operações diárias e despachos de geração.

Nas três categorias precedentes, um modelo acurado é necessário para representar ma-

tematicamente a relação entre a carga e variáveis influentes, como datas, clima, fatores

econômicos, entre outros. A relação precisa entre a carga e estas variáveis é usualmente

determinada pelo seu papel no modelo de carga. Uma vez que este é constrúıdo, os

parâmetros do modelo são determinados por meio de técnicas de estimação. Existem

cinco componentes fundamentais em um problema de estimação [90]:

1. As variáveis a serem estimadas

2. As medições ou observações dispońıveis

3. O modelo matemático que descreve como as medições estão relacionadas com a

variável de interesse

4. O modelo matemático das incertezas de medição e estimação

5. O critério de avaliação de desempenho que irá julgar qual algoritmo é o “melhor”.

Nos últimos 50 anos, os algoritmos de estimação de parâmetros usados na previsão

de demanda limitaram-se à múltipla regressão baseada no critério de minimização de

9



erro dos mı́nimos quadrados [47]. Estes métodos evoluiram para os de séries temporais

estocásticas, a exemplo dos modelos Autorregressivos (AR) e de Médias Móveis (MA).

Atualmente, o estado da arte reside em modelos de espaço de estados finamente ajus-

tados e em sistemas especialistas, baseados em técnicas de aprendizado de máquina.

Além disso, as Redes Neurais Artificiais (RNA) têm mostrado sucesso como a base de

sistemas especialistas para a previsão de curto prazo. Contudo, o sistema especialista

utilizado por uma empresa não necessariamente é adequado para o uso em um sistema

elétrico diferente, no mı́nimo requerendo novo treinamento e algumas vezes a troca

de variáveis ou do próprio modelo matemático para tornar-se útil para uma empresa

diferente.

Este trabalho apresenta a previsão de carga e geração como um problema de estimação

dinâmica de estado. As variáveis a serem estimadas são as demandas base, média e de

pico, assim como a geração fotovoltaica. Como medições e observações, este trabalho

utiliza previsões de tempo, datas e eventos de calendário, tarifas de energia, ı́ndices e

estimativas econômicas e demográficas. Combinações preprocessadas destas medições

são usadas como as variáveis de entrada para a previsão. O modelo matemático é a

representação em espaço de estados, e as matrizes de covariância do filtro de Kalman

modelam as incertezas. Os critérios de performance incluem Erro Médio Quadrático

(MSE), Erro Médio Percentual (MAPE) e Erro Máximo Percentual (MPE). Além des-

tes, diferentes abordagens empregadas para solucionar este problema de estimação

dinâmica de estados são também discutidas, assim como são realizadas comparações

entre a solução propostas e outras soluções do estado da arte.

A presente dissertação contribui para este tópico de pesquisa ao propor e validar

ferramentas de análise para produzir, aprimorar e selecionar conjuntos relevantes de

variáveis de entrada, o que melhora a capacidade dos algoritmos de predição para pre-

ver carga e geração fotovoltaica. Um esquema de predição h́ıbrido baseado em filtros

de Kalman e modelos Grey é apresentado para com confiabilidade e precisão realizar a

predição de carga e geração distribúıda. Como um resultado secundário, a modelagem

de carga adotada neste trabalho pode ser empregada para sintetizar cargas estocásticas

e geradores distribúıdos em sistemas elétricos simulados.
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1.2 Organização da dissertação

Esta dissertação está dividida em seis caṕıtulos, bibliografia e quatro apêndices. Os

caṕıtulos apresentam os tópicos principais e as conclusões obtidas nesta pesquisa, en-

quanto que a base matemática e os conceitos úteis que suportam as proposições deste

trabalho estão organizados em apêndices.

O Caṕıtulo 2 contém uma versão desta introdução em inglês, ao passo que este Caṕıtulo

1 apresenta o mesmo conteúdo em lingua portuguesa.

O Caṕıtulo 3 trata da modelagem da carga elétrica e da geração fotovoltaica que

é desenvolvida neste trabalho. Premissas, suposições e conceitos aplicados ao longo

deste trabalho para construir modelos razoáveis para cada tipo de carga e de gerador

fotovoltaico podem ser encontrados neste caṕıtulo. Também existe, para cada tipo

de carga e gerador, uma discussão e os passos de preprocessamento necessários para

produzir os fatores relevantes que devem ser inclúıdos como variáveis de entrada no

algoritmo de predição.

O Caṕıtulo 4 propõe um esquema adaptativo de predição para planejamento e operação

de redes elétricas baseado em filtros de Kalman. Além do algoŕıtmo de predição, o

caṕıtulo também destaca o modelo de dados empregado, explicando a natureza e o

preprocessamento das variáveis exógenas que são selecionadas como dados de entrada,

assim como aborda o estado da arte em técnicas de predição de carga e de geração

fotovoltaica.

O Caṕıtulo 5 apresenta os resultados das previsões em diversos cenários. O algoŕıtmo

de previsão de demanda é utilizado para predizer as cargas de base, média e de pico

em dois sistemas elétricos distintos, um na Alemanha e outro no Brasil. A previsão de

geração fotovoltaica é realizada em dois locais, na Holanda e na Nova Zelândia. Um

comparativo é feito entre os algoritmos propostos e métodos do atual estado da arte.

O Caṕıtulo 6 sumariza as realizações e constatações obtidas por esta pesquisa, reali-

zando uma conclusão objetiva a respeito dos algoŕıtmos de predição, os comparativos

e as direções a serem tomadas em trabalhos subsequentes.

A bibliografia contém a listagem das referências bibliográficas que são citadas neste

trabalho, organizadas em ordem alfabética.
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O Apêndice A apresenta uma introdução para representações em espaço de estados e

filtros de Kalman, também demonstrando o modelo espećıfico e a estrutura de filtro

empregadas no método de previsão proposto. Apêndice B trata da modelagem da

irradiação solar e simulação empregada tanto para prever a geração fotovoltaica quanto

para aprimorar as previsões de demanda. Apêndice C fornece um sucinto fundamento a

respeito de Análise de Componentes Principais, a principal ferramenta empregada para

selecionar as variáveis de entrada para o algoŕıtmo proposto. O Apêndice D apresenta

um resumo das técnicas de redes neurais artificiais usadas nesta pesquisa.
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2 INTRODUCTION

Economic development, throughout the world, depends directly on the availability of

electric energy, especially because most industries and basic services depend almost

entirely on its use. The availability of a source of continuous, cheap, and reliable

energy is of foremost economic importance.

Large amounts of energy supply are set apart worldwide to energetically intensive

sectors such as water treatment, irrigation, transformation industry and transport. In

particular, the richest countries have the highest energetic demands per inhabitant

since Gross Domestic Product (GDP) is highly correlated with the energy demands.

This dependence can be linearly modeled considering data from 2003 to 2007 [2]. The

causal relationship between economic growth, characterized in diverse indicators, and

the electricity consumption is investigated in numerous of papers. The study presen-

ted in [22] conclude that causality is stronger in developed OECD countries than in

developing countries. Several variables are used to assert the dependencies between

energy consumption and economic activities: Gross Domestic Product (GDP), popu-

lation and price indexes [7]. In [11], Granger tests indicate short-run causality from

energy consumption to income for India and Indonesia, while the test points to bidi-

rectional relationship for Thailand and the Philippines. This bidirectional dependence

points towards a feedback loop, where the availability of cheap energy supply promotes

economic growth, and then the increased economic activity demands a even greater

energy consumption and/or improved energy efficiency. From this standpoint, energy

demands should be approached not only as a essential service, but also as an economic

issue.
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Table 2.1: Worldwide and Domestic German Energy Supply (DES), German Gross Domestic
Product (GDP) and Population from 2000 to 2015

DES DES GDP Pop. DES / Capita

Year World Germany Germany Germany World — Germany

(TWh) (TWh) 109 US$ 106Inhab. TWh /106Inhab.

2000 15406,03 579,6 1949,95 82,21 2,52 — 7,05

2001 15638,45 585,1 1950,65 82,35 2,52 — 7,11

2002 16190,43 587,4 2079,14 82,49 2,58 — 7,12

2003 16793,16 600,7 2505,73 82,53 2,64 — 7,28

2004 17572,76 610,2 2819,25 82,52 2,73 — 7,39

2005 18333,46 614,1 2861,41 82,47 2,81 — 7,45

2006 19030,16 619,8 3002,45 82,38 2,89 — 7,52

2007 19922,93 621,5 3439,95 82,27 2,98 — 7,55

2008 20283,94 618,2 3752,37 82,11 3,00 — 7,53

2009 20123,69 581,4 3418,01 81,90 2,94 — 7,10

2010 21404,5 615,0 3417,30 81,78 3,09 — 7,52

2011 22050,91 606,1 3757,46 81,80 3,15 — 7,41

2012 22504,33 605,7 3543,98 80,43 3,17 — 7,53

2013 23092,66 603,8 3752,51 82,13 3,22 — 7,35

2014 24240,89 591,1 3879,28 80,98 3,34 — 7,30

2015 25893,62 595,1 3363,45 81,41 3,52 — 7,31

The data in Table 2.1 extracted from [4, 3] shows the evolution of three indicators

related to the world and the German economies over the period from 2000 to 2012.

The first two columns in Table 2.1 correspond to the Domestic Energy Supply (DES)

in the world and in Germany, respectively, while the third and fourth columns are

the GDP and the population in millions of inhabitants in Germay. Finally, the last

column in Table I presents DES/Capita for the World and Germany. Note that Ger-

man population is practically constant although the amount of energy supplied has

increased.

The energy consumption per inhabitant (DES/Capita) in Table 2.1follows an ascen-

dant curve within 2000-2015, and that indicates the need for continuous investments

in the electric grid. Load forecasting comes up, therefore, as an essential tool for the

electricity distribution companies. Due to natural monopoly regulations enacted on
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most countries, these companies must comply with several contractual standards re-

lated to reliability, efficiency, safety and other power quality aspects. Moreover, the

companies should equally take into account the scarcity and fluctuation of energy re-

sources as much as environmental care such as CO2 emissions control [5]. Furthermore,

the companies should also take heed of the increase on distributed generation on the

demand side, mainly concerning photovoltaic generation, which is in rapid expansion

throughout the world.

These are typically comprised of generation units rated from fractional kW and up to

5 MW in nameplate capacity, interconnected to the distribution system and installed

either behind the consumer’s load or directly connected to the system, using the grid

to provide power to a remote consumer unit. Solar photovoltaic systems transform

solar energy into electric power. Semiconductors that exhibit the photovoltaic effect,

such as silicon-N or silicon-P solar cells, convert solar radiation into Direct Current

(DC) electricity. Solid state inverters then converts the DC generation into Alternate

Current (AC), which is injected into the power grid.

As depicted in Fig. 2.1, there has been an exponential growth in the installed capacity

of renewable sources in Germany, photovoltaic panels in particular [3]. Until 2010,

over half of the entire PV generated power in Europe came out from Germany, but

due to growing energy prices and PV friendly policies adopted by other EU states,

this percentange has slightly decreased in the following years. In 2015, the renewable

sources supplied more than 30 % of Germany’s electricity consumption.

Figure 2.1: German and European photovoltaic (PV) generated power in MW, between 2001
and 2015. Source: [110], Creative Commons license by SA 4.0.
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According to the [52], in year 2014, the electricity generation accounted for 23,815

TWh or 18 % of the World total energy consumption, up from 6,287 TWh or 9.4 %

in 1974. Fossil fuels are still the main primary source for electricity, as oil, coal and

natural gas accounts for 66.7 % of the generation, down from 75.2 %. Hydropower

is the main renewable source, supplying 16,4 % of the electricity generation in 2014,

down from 20.9 %. Nuclear fission share has increased threefold between 1974 and

2014, from 3.3% to 10.6 % of the generation. The other sources combined, including

solar and wind power, account for 6.3 % of the electricity production.

An electric system is usually composed of three subsystems: generation, transmission

and distribution. Generation represents the conversion of a primary energy source into

electricity, usually performed in large scale facilities at a considerable physical distance

from the consumption centers. Transmission is comprised of high voltage power lines,

designed to efficiently transport large blocks of electricity from generation to distri-

bution facilities. Distribution grids are the last link to the consumers in the electric

system, responsible to decreasing voltage for industrial and residential consumption

and distributing the electricity to several consumers while ensuring that power quality

standards are met.

Since the set of requirements faced by electricity distribution companies assemble a

complex scenario, robust load forecasting tools are needed to implement efficient and

reasonable expansion and operation plans. Current electric power systems require a

permanent balance between generation and load, since large scale energy storage has

not achieved economical feasibility in most power grids. At the onset of an unbalance

between load and generation, the system frequency starts to oscillate and generation

units must be quickly stepped up or down in order to reobtain balace and to restore

the system’s frequency stability. The generation spinning reserve used to keep stability

today is the result of planning and forecast performed several years prior. The opera-

tional plans that determine when each generator stays at stand by or at full power is

also a product of load forecasts.

The introduction of distributed generation adds a new level of complexity to this task,

as not only the decentralized generation reduces load in a random and intermittent

way, but also inevitably embeds in the historic loads used to forecast. Both effects act
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Figure 2.2: Simplified schematic of a electric power system with Distributed Energy Resources

to increase prediction errors in short and long term, jeopardizing operational efficiency

and, in worst case, system reliability [26].

While all DERs have seen growth in installed capacity, photovoltaic solar has seen the

largest adoption in recent years. In the US, photovoltaic constitutes 80 to 90 % of the

total installed capacity among DER installations two megawatts or less. In Germany,

according to [105], photovoltaic generated power amounted to 38.5 TWh and covered

approximately 7.5 % of Germany’s net electricity consumption in 2015, as depicted in

Figure 2.3. On sunny weekdays, PV power can cover 35 percent of the momentary

electricity demand, while on weekends and holidays the coverage rate of PV can reach

50 percent. At the end of 2015, the total nominal PV power installed in Germany was

circa 40 GW, distributed over 1.5 million power plants. With this figure, the installed
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PV capacity exceeds that of all other types of power plants in Germany.

Figure 2.3: Percentage of renewable energy in Germany’s net electricity consumption, from
2005 to 2015. In 2015 the renewable sources accounted for 38 % of the consumption. Source:
[105]

Developing and emergent countries are also experiencing similar trends. According

to the Brazilian Electricity Regulatory Agency (ANEEL), since the the normative

resolution 482/2012 was enacted, there has been a steady growth in the number of

DG units connected to the distribution grid, as shown in Figure 2.4. This normative

resolution regulates the connection of DER to the distribution grids, establishing the

procedures and obligations for the utilities and consumers.

Figure 2.4: Quarterly evolution of the number of DG units connected to the Brazilian grid.
Source: ANEEL.

Likewise Germany and United States, Solar photovoltaic is the largest distributed
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generation source in Brazil, not only in installed capacity but particularly in the number

of connections. This predominance is illustrated in Figure 2.5.

Figure 2.5: Installed capacity (left) and number of connections (right) of DG units in Brazil,
by energy source. Source: ANEEL.

This worldwide growth of PV is a consequence of the technological learning curve and

its decreasing costs, illustrated in figure 2.6, which depicts Germany’s market prices.

PV has experienced rapid development in terms of both cost and performance. In the

United States, it has been reported that costs decreased by 31 % from 2010 to 2014

[26], while in Germany costs have dropped by almost 75 % since 2006.

Figure 2.6: Average net system price to customer, for rooftop systems with nominal power
from 10 kWp to 100 kWp. Source: [105]

Therefore, power system operators must employ adaptive tools that not only can reli-

ably predict load, but also be able to track the change in the demand behavior caused

by the growing presence of Distributed Energy Resources (DER). On the other hand,
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the relevant factors that drive PV generation such as solar irradiation and ambient

temperature are also correlated to the electric load, albeit indirectly or nonlinearly.

Improving the forecasting methodologies to model and adapt to distributed PV gene-

ration could also further enhance the performance of such methods when predicting

conventional systems.

2.1 Problem formulation

Electrical load forecasting is an important tool used to ensure that the energy supplied

by utilities meets the load plus the energy lost in the system. Load forecasting is always

defined as basically the science or art of predicting the future load on a given system,

for a specified period of time ahead. These predictions may be just for a fraction of an

hour ahead for operation purposes, or as much as 20 years into the future for planning

purposes. The growing installed capacity of distributed energy resources raises new

questions to this research field, as not only the growth rate but also the intermittent

power generation must be predicted.

Regarding the time scales and prediction range, load forecasting can be categorized

into three subject areas, namely [90]:

1. Long term forecasting, which is used to predict loads as distant as 50 years ahead

so that expansion planning can be facilitated;

2. Medium term forecasting, which is used to predict weekly, monthly, and yearly

peak loads up to 10 years ahead so that efficient operational planning can be

carried out;

3. Short term forecasting, which is used to predict loads up to a week ahead so that

daily operations and dispatching costs can be minimized.

In the preceding three categories, an accurate load model is required to mathema-

tically represent the relationship between the load and influential variables such as

time, weather, economic factors, and so on. The precise relationship between the load

and these variables is usually determined by their role in the load model. After the

mathematical model is constructed, the model parameters are determined through the
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use of estimation techniques. There are five fundamental components of an estimation

problem [90]:

1. The variables to be estimated

2. The measurements or observations available - weather forecasts.

3. The mathematical model describing how the measurements are related to the

variable of interest.

4. The mathematical model of the uncertainties present.

5. The performance evaluation criterion to judge which estimation algorithms are

“best”.

Over the past 50 years, the parameter estimation algorithms used in load forecasting

have been limited to multiple variable regression based on the least error squares mini-

mization criterion [47]. These have evolved to stochastic time series approaches, such

as Autorregressive (AR) and Moving Average (MA). Currently, the state-of-art resides

in finely tuned Space state models and Expert systems, which are based in machine

learning techniques. Furthermore, the artificial neural network (ANN) had showed

success as the basis of expert systems for short term forecasting . However, the expert

system used by a utility is not necessarily suitable for a different power system, at least

requiring retraining and sometimes a change of variables or mathematical model to be

useful for other electric utility company.

This work presents the load and generation forecasting as a dynamic state estimation

problem. The variables to be estimated are daily base, average and peak electric load,

as well as PV generation. As measurements and observations, this work uses weather

forecasts, calendar dates and events, energy tariffs, economical and demographic inde-

xes and estimatives. Preprocessed combinations of these measurements are the input

variables employed for forecasting. The mathematical model is a State space repre-

sentation, and the Kalman filter covariance matrices model the uncertainties. The

performance criteria encompasses Mean Square Error (MSE), Mean Average Percen-

tual Error (MAPE) and Maximum Percentual Error (MPE). Furthermore, the different

approaches used to solve this dynamic estimation problem are also discussed, as well

as comparisons are performed between the proposed solution and other state-of-art

approaches.
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The present work contributes to this research subject by proposing and testing analysis

tools to produce, enhance and select a relevant set of input variables, enhancing the

predicting algorithms ability to forecast load and PV generation. A hybrid Kalman

based predicting scheme is presented in order to realiably and accuratelly forecast the

electric load and photovoltaic generation. As a side result, the load modelling adopted

in this work can be employed to synthesize stochastic electric loads and distributed

generators on simulated electrical systems.

2.2 Organization of this dissertation

This dissertation is divided in six chapters, bibliography and four appendices. The

chapters present the core topics and key findings of this research, while the mathema-

tical background and the useful concepts that support the proposals of this work are

organized in four appendices.

Chapter 1 portrays a version of this introduction in Portuguese, while this second

chapter has the same content in English language.

Chapter 3 comprises the load and PV generation modelling that is developed in this

work. Premises, assumptions and concepts envisaged in this research to build reasona-

ble models for each type of electric load and PV generator will be found in this chapter.

There is also, for each type of load and generator, a discussion and preprocessing steps

needed to produce the relevant factors that must be included as input variables in the

forecasting algorithm.

Chapter 4 proposes the Kalman based adaptive prediction scheme for electric grid

planning and operation. Besides the forecasting algorithm, the chapter also features the

data model used, explaining the nature and pre-processing of the exogeneous variables

which are adopted as inputs, as well as approaching the state-of-art in electric load

and PV generation forecasting.

Chapter 5 presents the forecasting results in several scenarios. The load forecasting

algorithm is used to predict base, average and peak load in two different power sys-

tems, one in Germany and the other in Brazil. The PV generation forecasting is also

performed in two locations, in Netherlands and in New Zealand. A comparison is made

between the proposed algorithm and current state-of-art methods.
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Chapter 6 summarizes the achievements and findings obtained by this research, ac-

complishing an objetive conclusion with respect to the forecasting algorithms, the

comparisons and directions for future work.

The bibliography contains the listing of the bibliographic references that are cited in

this work, sorted in alphabetical order.

Appendix A presents an introduction to State Space representations and Kalman filters,

also demonstrating the specific representation and filter structure employed in the

proposed forecasting method. Appendix B deals with the solar irradiation modelling

and simulation used both to predict PV generation and to enhance load forecasting.

Appendix C gives a succint primer about Principal Component Analysis, the main tool

for input variable selection featured in the proposed forecasting algorithm. Appendix

D presents an overview of the artificial neural network techniques used in this research.
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3 LOAD AND GENERATION MODELING

The objective of this chapter is to present the common mathematical foundations that

encompass most of the methods currently employed to forecast electrical load and PV

generation, as well as provide a detailed description of the exogenous variables that are

employed as inputs in thepredictors proposed in this dissertation. Section 3.1provides

an introduction, while Section 3.2 gives a succinct description of Generalized Additive

Models and their relationship with linear, time series, state space and Artificial Neural

Network approaches. Section 3.3 provides a description of the most important dri-

vers and variables related to the electric demand. Section 3.5 deals with photovoltaic

generation modelling.

3.1 Overview

Accurate load models in conjunction with efficient predictors are basic requirements for

the optimum economic operation of power systems. A prerequisite to the development

of an accurate load-forecasting model is an understanding of the characteristics of the

load to be modeled. This knowledge of load behavior is gained from experience with the

load and thorough statistical analysis of past demand time series. Utility companies

with similar cultural, climatic and economic contexts usually experience similar load

behavior, thus allowing load models developed for one utility to suit another company

with slight modifications.

The term “load” is a wide conception, assuming different meanings in the context

of power systems. In the strictest sense, load is the electrical device connected to a

power system that consumes energy. In the wider sense, it represents the total power

(active and/or reactive) consumed by all devices connected to a power system. In-

between these two meanings, load can also designate a portion of the system that is

not explicitly represented in a system model, but rather is treated as if it were a single

power-consuming device connected to a bus in the system model. This single device

can represent the electric devices in a building floor, an entire building, a feeder bus or

even an distribution network. In this dissertation, the term “load” refers to the electric

demand as measured in a distribution substation.
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Figure 3.1: From top left to bottom left: Load as an electric device, a building, a distribution
feeder, a distribution substation, a citywide distribution grid and as national load centers. In
specific contexts, load can refer to any of this six levels of aggregation.

A load model in this matter is a mathematical representation of the relationship

between power and exogenous variables causally related to the load, where the ac-

tive power is the output from the model and the exogenous variables are its inputs.

The system load is a random and non-stationary process composed of a very large

number of individual components. The load behavior is influenced by a number of

variables, such as weather, day of the week, the season, social, demographic and eco-

nomic factors, as well as other relevant inputs. A number of papers discussing load

modeling can be found in literature, presenting several techniques [47].

Linear models are widely adopted for the load forecasting problem, which include

linear regression models, stochastic process models, exponential smoothing and ARMA

models [12, 28, 73]. These methods model the load as a linear combination of its own

past values and the exogenous input variables. They are relatively simple and when

properly parametrized offer reasonable forecasting performance and interpretability

for its parameters, giving the operators insight about the load behavior. However,

the simplicity comes with a price, and as several studies report, without modifications

these techniques usually display poor adaptability to changing conditions and unreliable

performances when there unknown nonlinear dependencies.

ARMA load forecasting models can be converted to State space models and vice versa.
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One difference between the two methods is that the state space formulation often al-

lows a more concise presentation and manipulation. The state space load forecasting

method has many variations, but they all model the load as a function of state vari-

ables. These models can be employed as the base of online and adaptive predictors,

such as the Kalman filter, which adds robustness through the application of an inter-

nal noise model. Despite these advantages, state space models are not as common as

ARMA models for load forecasting, probably because ARMA requires fewer explana-

tory variables and parameters [40], such as the difficult to estimate noise covariance

matrices Q and R [74].

In the last decade, Artificial Neural Networks (ANNs) have received substantial attenti-

ons in load forecasting, with good performance reported in several papers [49, 61, 8, 9].

These techniques have the ability not only to learn the load series but also to mo-

del unspecified nonlinear relationship between load and the exogenous variables, being

particulary effective at modeling weather effects [47, 29]. Recently, machine learning

techniques and fuzzy logic approaches have also been used for load forecasting and

achieved relatively good performances [32, 109].

In common, linear models, state space and most ANN and machine learning approaches

share the generalized additive model as their mathematical base. It is important to

highlight the origins of this model family in order to better understand the relationship

between the different approaches usually employed in load forecasting.

3.2 Generalized Additive Models, Neural Networks and Linear Regression

According to the Kolmogorov Superposition Theorem (KST) [63], every continuous

function f of n variables x1, x2, ..., xn can be represented as a superposition of conti-

nuous functions of one variable and the additive operation:

f (x1, ..., xn) =
2n∑
q=0

gq

(
n∑
p=1

ψpq (xp)

)
(3.1)

where gq and ψpq are continuous univariate functions on R and every ψpq is independent

of f .
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KST has applications in various fields, such as non-linear control circuit and system

theory, statistical pattern recognition, neural networks, image and multidimensional

signal processing [64, 79, 67]. Unfortunately, though the theorem asserts the existence

of this superposition form, it gives no tools for its construction. Certain constructive

proofs exist [37], but they tend to require highly complicated functions, which are not

suitable for modeling approaches due either to complexity or lack of interpretability.

An important subclass derived from the KST is the Generalized Additive Model (GAM)

[45]. Dropping the outer sum in Eq. (3.1), at the cost of universal generality the model

can be approximated by the simpler relationship shown in (3.2):

f (x1, ..., xn) = g

(
n∑
p=1

ψp (xp)

)
(3.2)

Equivalently, (3.2) can also be written in the form shown in (3.3):

g−1 (f (x1, ..., xn)) =
n∑
p=1

ψp (xp) (3.3)

Though not every phenomenon could be approximated by a GAM, every phenomenon

can be well approximated by a sum of GAMs. The choice of (3.2) or (3.3) is dictated

by the existence of previous knowledge about the link function g or its inverse g−1 and

whether it is easier to transform the raw variables xp or the projections f (x1, ..., xn).

The basic feed-forward Artificial Neural Network with one hidden layer can be obtained

from (3.3) by means of a variable substitution and a fixed choice of g−1 and ψp. Making

g−1 the identity function, choosing a logistic function for ψp and changing xp by the

linear combination of all raw variables plus a constant bias νp, substituting in (3.3)

gives:

f (x1, ..., xn) = a0 +
n∑
p=1

κpSp (WpX + νp) (3.4)

where κp is a constant and WpX =
[
wp1 wp2 · · · wpn

] [
x1 x2 · · · xn

]T
. Sp

represents the sigmoid function in the form S (δ) = (1 + exp (−δ))−1.
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When the projection represents the expectation of some observed quantity Y , equation

(3.3) can be rewritten as (3.5), which is the standard formulation for the GAM:

g−1 (E (y)) = a0 + ψ1 (x1) + ...+ ψn (xn) (3.5)

The backfitting algorithm is used to fit additive models [45]. It allows one to use an

arbitrary smoother (e.g., spline, Logistic functions, Loess, kernel) to estimate the ψp

and then find the optimum parameters to minimize modeling error. Due to its para-

metric nature, Neural networks can be trained by the backpropagation algorithm, an

iterative fitting technique. It is similar to backfitting, albeit faster because smoothing

is not required.

In the special case when ψp is linear, the resulting construction is called Generalized

Linear Model (GLM), as written in (3.6).

g−1 (E (y)) = a0 + a1x1 + ...+ anxn (3.6)

In the GLM, the sum of functions present in the GAM is substituted by a linear

combination of the raw variables. The link function g−1 allows the response variable

Y to have error distribution model different from the normal distribution. The GLM

is a flexible generalization of ordinary least squares regression, allowing the linear

model to be related to the response variable via a link function g. When modeling

stochastic processes, the link function provides the relationship between the linear

predictor θ = a0 + a1x1 + ... + anxn and the mean E(y) of the distribution function,

usually from the exponential family. There are many commonly used link functions,

and their choice is informed by several considerations [43]. The most common link

functions are presented in Table 3.1:
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Table 3.1: Common link functions of the Exponential family

Distribution Inverse g−1 (E(y)) Link g (θ) Link name

Normal θ = E(y) E(y) = θ Identity

Gamma θ = 1
E(y) E(y) = 1

θ Inverse

Inverse Normal θ =
(

1
E(y)

)2
E(y) = 1√

θ
Inverse squared

Poisson θ = ln (E(y)) E(y) = exp (θ) Log

Bernoulli θ = ln
(

E(y)
1−E(y)

)
E(y) = exp(θ)

1+exp(θ) Logit

Binomial (k terms) θ = ln
(

E(y)
k−E(y)

)
E(y) = k exp(θ)

1+exp(θ) Logit

Geometric θ = ln
(

E(y)
1+E(y)

)
E(y) = 1

1−exp(−θ) Sigmoid

In the special case when g−1 is the identity function, the GLM turns into the simple

multivariate linear regression, denoted in equation (3.7):

E (y) = a0 + a1x1 + ...+ anxn (3.7)

This link function is optimum when the raw variables present gaussian distribution,

and in this case the least squares estimator is also the optimum maximum likelihood

estimator. In the real world, the true regression function is hardly ever linear, and

thus the linear regression will always produce an linear approximation bias ε, even

with an infinite amount of training data. This is the main drawback of the linear

model. However, the main advantage of linear regression is that it reliably converges

as more data is obtained. According to the derivations presented in [104], the rate of

convergence for the estimation of a linear model with n + 1 parameters as a function

of the number of data points k is given by equation (3.8):

MSE = σ2 + ε2 +O
(
k−1
)

(3.8)

where MSE denotes the mean square error of the regression, σ2 is the intrinsic noise

around the true regression function, ε2 is the squared approximation bias, and O (k−1)

is the estimation variance.

The estimation variance is inversely proportional to the number of data points, and as

such tends to zero as k becomes very large. It is important to notice that the rate at
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which the estimation variance shrinks does not depend on the number of parameters.

One can conclude that the MSE of the linear model can never be smaller than σ2 + ε2,

but will converge to it with sufficiently large k. In the rare case where the true regression

function is linear, ε2 is equal to zero and the MSE will converge to the intrinsic noise

σ2, which can be related in real world to the measurement errors.

Comparing the linear model with the convergence rate of a very general sum of GAM,

important insights can be derived from the strengths and limitations of the more general

models. Picking the kernel regression as an example, for this method the limiting

approximation bias is actually zero, provided that a reasonable regression function is

chosen. However, the fitting algorithm converge more slowly, because the data points

must be used to optimize both the coefficients of a parametric model and the sheer

shape of the regression function. Again according to [104], the rate of convergence for

these models is given by (3.9):

MSE = σ2 +O
(
k−4/(p+4)

)
(3.9)

There two differences between (3.8) and (3.9). Provided a reasonable kernel is selected,

approximation bias in equation (3.9) can be equal to zero. This is the main advantage

of the Kernel regression over the simpler linear model. However, the rate of convergence

of the estimation variance is a function of the number of parameters present in Kernel’s

functions, in contrast with the parameter independent rate of convergence of the linear

case. As the number of parameters increase, the nonparametric rate gets slower, and

consequently the fully nonparametric estimate becomes imprecise for the same amount

of computing effort, yielding the infamous curse of dimensionality.

The GAM offer a trade-off between these two extremes. Not every regression function

is additive, so they generally have an approximation bias. But each ψp can be estimated

by a simple one-dimensional smoothing, which converges at O
(
k−4/5

)
, which is almost

as fast as the linear case.

MSE = σ2 + (εGAM)2 +O
(
k−4/5

)
(3.10)

Since linear models are a sub-class of additive models, εGAM ≤ ε. Henceforth, GAM

models are preferred when k is large, as in this condition the difference between O (k−1)
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and O
(
k−4/5

)
becomes smaller than the difference between εGAM and ε. In the con-

dition where k is small, the decreased prediction bias does not offset the increased

estimation variance the GAM has over the linear model. This is important for system

of a very large number of input variables, as in this case the number of data points k

must be much bigger in order to fit a reasonable model to the large number of inputs.

Thus, linear models also have a slight advantage when the number of raw variables is

large.

Linear regression is the one of most widely used statistical technique for electric load

forecasting. Proposed methods of this type are usually used to model the relationship

of load consumption and other factors such as weather, day type, and customer class.

However, the presence of periodical load components, autocorrelation between conse-

cutive days, nonlinearities and trends deserves special attention, as these effects and

phenomenons must also be taken into account in the electric load model. It is possible

to decrease the model bias of a linear regressor by means of extracting part of the

nonlinearities from the model, however the increase in the number of input variables

tend to increase the

The main objective of this work is to find a compromise between the simple linear

model and a complex sum of GAM, such as an artificial neural network. Starting from

the linear model baseline illustrated in Figure 3.2 column (a), the forecasting algorithm

begins with a relatively small parameter estimation error O(k) but a large model bias

error due to the nonlinearities. In contrast, the baseline ANN has a small model bias

error but a larger parameter estimation error, usually not large enough to offset the

advantage over the linear regression as shown in Figure3.2 (e). It is important to

note that estimation error is directly proportional to the number of model parameters

and inversely proportional to the amount of training data, and it can be reduced by

decreasing the number of parameters or increasing the training period in terms of

number of time steps. The first option has the drawback of increasing model bias

error, while the latter is not always feasible due to insufficiency in the gathered data

or the time variant nature of the system.

In this work, the main strategy is to reduce both the linear bias error and the parameter

estimation error by means of a selection of nonlinearly generated input variables and

feature selection through principal component analysis.
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Figure 3.2: Comparison of the forecasting error among five scenarios. The intrisic noise,
which is oftenly related to measurement errors, is independent of the forecasting algorithm
and is constant among all cases.

Using the ample knowledge and data collected over decades about the nonlinear depen-

dencies between electric load and PV generation to certain variables, the model bias

error can be decreased by means of decoupling nonlinearities from the linear estimator,

expanding Equation (3.7) to the form shown in Equation (3.11):

E (y) = a0 + a1x1 + ...+ anxn + ...+ ψ1 (x1) + ...+ ψm (xm) (3.11)

However, as the number of parameters increases from n to n+m, the decrease in model

bias is obtained at the cost of increased estimation error, as illustrated in Figure 3.2

column (b).

Principal component analysis is a tool for extracting features from a given input set,

reducing dimensionality while maintaining a large fraction of the set’s variance. The

decreased number of dimensions reduces the number of input variables, which results

in a lower parameter estimation error. However, some information is discarded in the

process, slightly increasing the model bias error as shown in Figure 3.2 column (c).
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The goal of this research is to carefully combine both approaches as illustrated in

3.2 column (d), employing additional variables and PCA feature selection to obtain a

simple linear forecasting system that is competitive with more ellaborate model, such

as ANN and support vector machines.

3.3 Electric load dynamics

Electric load time series can show several patterns accordingly to the types of customers

connected the system. Residential, business, industrial and public energy consumers

displays typical load patterns over a day, a week and a year. Also, external factors

such as weather, demographics and economic output do influence the consumption of

electricity. These patterns and dependencies have been documented for some loca-

tions [54, 21], and can usually be recognized by their load pattern over a day. For

residential and commercial customers, load series show a strong seasonal behavior as

well as dependence on local weather conditions. On the other hand, load series with

an industrial profile are more irregular because the energy consumption is determined

by operational decisions in a production or manufacturing facility. It is not unusual

to have large industrial customers supplied by dedicated substations. To produce ac-

curate forecasts for such industrial substations, it may be necessary to monitor have

information regarding operational decisions taken by plant managers.

Figure 3.3: Peak load in Brasilia from 2001 to 2010. Weakly variation is visible in y axis
(Day of the week), while the demand growth trend superposed to the seasonal variation is
visible in the x axis (Week).
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As well documented as these load patterns may be, however, the exact composition

of residential, commercial, and industrial customers connected to the system is always

changing and mostly unknown. For the type of load series under study, building a

model for load forecasting must take into account trends and seasonal patterns at

multiple levels. A growth trend, a winter-summer pattern and a weekly pattern are

shown in figure 3.3. These patterns also interact with external variables that affect

the load, such as weather fluctuations and tariff changes. When the weather is cold,

there is a requirement for heating, which translates into an increase in energy demand.

Hot days in summer trigger the use of air conditioning equipment, also increasing

the demand. Power consumption behavior in holidays is markedly different from the

workday patterns. The load on different weekdays also can behave differently. For

example, Mondays and Fridays being adjacent to weekends, may have structurally

different loads than Tuesday through Thursday. This is particularly true during the

summer time. Holidays are more difficult to forecast than non-holidays because of their

relative infrequent occurrence.

In order to work under these circumstances, linear time series based methods such as

Box Jenkins models are based on the assumption that the data have an internal struc-

ture, such as autocorrelation, trend, or seasonal variation. These forecasting methods

detect and explore such a structure. Box Jenkins approaches have been used for deca-

des in the load forecasting field, in particular ARMAX (autoregressive moving average

with exogenous variables) and ARIMAX (autoregressive integrated moving average

with exogenous variables) are the most often used classical time series methods [33].

ARMA models are usually used for stationary processes while ARIMA is an extension

of ARMA to nonstationary processes. ARMA and ARIMA use the time and load as

the only input parameters. Since load generally depends on the weather and time of

the day, ARIMAX is the most natural tool for load forecasting among the classical

time series models.

If adaptability to changing conditions or recursive formulation is needed, an ARMA

model can be converted to a State Space model in conjunction with a predicting tech-

nique, such as the Kalman filter [100, 99]. The state-space model provides a flexible

approach to time series analysis, especially for ease in estimation and in handling mis-

sing values.

The use of Artificial Neural Networks has been a widely studied electric load forecas-

ting technique since 1990 [84]. Neural networks are essentially nonlinear circuits that
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have the demonstrated capability to do nonlinear curve fitting. In applying a neural

network to electric load forecasting, one must select one of a number of architectures

(e.g. Hopfield, Multilayer Perceptron, Boltzmann machine), the number and connec-

tivity of layers and elements, use of bi-directional or uni-directional links, and the

number format (e.g. binary or continuous) to be used by inputs and outputs. Thus,

Neural Networks are well suited to provide electric load forecasting with none or little

modifications in their basic formulation. The most popular artificial neural network

architecture for electric load forecasting is Multilayer Perceptron (MLP), whose for-

mulation is a linear combination of the artificial neurons described in equation (3.4).

Back propagation is a supervised training algorithm for MLP neural networks. The

learning step is a phase where the actual numerical parameters assigned to element

inputs are determined by matching historical data (such as time and weather) to desired

outputs (such as historical electric loads) in a pre-operational training session. In

general, ANN offer great adaptability and native nonlinear fitting support, at the

cost of higher computational complexity than a linear model with the same number of

parameters and higher susceptibility to the curse of dimensionality, an effect that limits

the ANN precision if a large number inputs are needed. Also, even in the simpler ANNs,

their internal parameters can sum up to a very large number, thus giving this kind of

model a Black Box characteristic, with very little system insight or interpretability for

the user.

Despite the advantages ANN have over linear and State Space approaches, carefully

designed linear models still have an advantage in forecasting performance [47], mainly

due to the large amount of data used and precise adjustment formulas built in the

models for discovering nonlinearity patterns [31]. Variants of linear models are still

being perfected and employed by system operators in order to forecast the electric

load [20]. These advanced linear approaches mostly feature artificially produced input

variables based on weather, tariffs and calendar. Knowledge about the variables and

factors that influence the electric system load are thus essential to build a robust and

precise linear forecasting method.

3.4 Factors influencing electric load

Several factors are known to affect energy demand: temperature, climate events, elec-

tricity tariffs, demographic indicators, economic indexes, social conventions and cultu-
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ral traditions. A succint illustration of these main factors and their main effects over

electricity demand are shown in Figure 3.4.

Figure 3.4: Factors and their main effects over the electricity demand.

Worldwide, with the ample access to information technology, a diversity of data can

be collected and substantial volumes of time series related to electricity demand can

be processed. In Subsection 3.4.1, weather forecasts are presented, while in Subsection

3.4.2, socioeconomic variables are shown. In Subsection 3.4.3 and 3.4.4, the variables

related to energy tariffs and calendar-weather events are described, respectively. In

Subsection 3.4.5, the derivations discussed in the previous subsections are joined in for

the load model proposed in this dissertation.

3.4.1 Weather Variables

The influence of weather on electricity consumption is a topic of research since the first

half of the 20th century. In the discussion presented in [35], the impact of changing

weather conditions over the South East England power system was presented, stressing

the effects of decreased temperature over mean and peak load.

The effects of weather on load are usually modeled by expressing the load as a regres-

sion of explanatory meteorological factors such as temperature, wind speed, humidity,

and others [83]. Although it is recognized that an extremely wide variety of explana-

tory weather variables is required to totally represent the effects of weather, studies

have shown that a few basic meteorological factors usually account for most of the

weather-dependent load. Furthermore, temperature do affect the electrical properties
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and efficiency of semiconductor devices, meaning that it is also a relevant factor when

the energy source is connected to the grid through inverters, such as small wind power;

or when it is entirely based on semiconductor devices, such as a solar photovoltaic

system.

The specific weather variables that are normally used to model weather-dependent

load are temperature, wind speed, humidity, and daylight illumination. The latter

is usually the least significant of these weather variables, and because its metering is

difficult and costly, it is usually omitted from most models [91, 74]. In this dissertation,

an alternative methodology to estimate sunlight and natural illumination is presented.

For forecasting photovoltaic generation, the main driver is the amount of global solar

irradiation arriving at the panel, with temperature being a second order factor.

The history of weather data can be collected from the METeorological Aerodrome Re-

ports (METAR), as measured in airports located near the load centers. METAR is the

primary observation code used in the United States to satisfy requirements for repor-

ting surface meteorological data [80]. It has worldwide adoption and most aerodrome

stations provide their reports online at specialized internet sites. A METAR contains

a report of wind, visibility, runway visual range, present weather, sky condition, tem-

perature, dew point, and altimeter setting collectively referred to as “the body of the

report”. The report presents hourly information about the weather variables, as me-

asured or observed in the surface. The reports also feature measurements of cloud

cover and indicative codes for weather phenomena such as fog, rain, thunderstorms

and snow. Table 3.2 lists the 22 standard measurements and observations presented in

a METAR.
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Table 3.2: List of METAR’s measurements and observations

ID Measurement/Observation Unit

1 Maximum Temperature Celsius

2 Mean Temperature Celsius

3 Minimum Temperature Celsius

4 Maximum Dew Point Celsius

5 Mean Dew Point Celsius

6 Min Dew Point Celsius

7 Maximum Relative Humidity Adimensional (%)

8 Mean Relative Humidity Adimensional (%)

9 Minimum Relative Humidity Adimensional (%)

10 Maximum Pressure at Sea Level hPa

11 Mean Pressure at Sea Level hPa

12 Minimum Pressure at Sea Level hPa

13 Maximum Visibility km

14 Mean Visibility km

15 Minimum Visibility km

16 Maximum Wind Speed km/h

17 Mean Wind Speed km/h

18 Maximum Wind Shear km/h

19 Precipitation mm

20 Cloud Cover Octas

21 Events (Fog, Rain, Snow, Thunderstorm)

22 Wind Direction Degrees

The effects of temperature, humidity, wind speed, solar irradiation and weather events

over electric load are different and as such require to be accounted in specific ways. The

remainder of this subsection is further divided in subsubsections aimed at discussing

the effects of each type of weather variable. Subsubsection 3.4.1.1 explains how tem-

perature affect the electricity demand, as well as explain the concept of degree days.

Subsubsection 3.4.1.2 deals with the effects of humidity and the concept of latent heat

load, which is parametrized by Enthalpy degree days. Subsubsection 3.4.1.3 presents

a formulation for the effect of wind speed and direction in the heat flow over buildings

walls. Subsubsection 3.4.1.4 presents the modeling employed to estimate the natural

illumination over buildings and open spaces, while subsubsection 3.4.1.5 deals with the

heating effects over buildings that is caused by the Sun‘s irradiance.
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3.4.1.1 Temperature, Log-Temperature, Heating and Cooling Degree Days

There are several types of electrical devices whose power consumption is temperature

dependent. Common examples comprise refrigerators, heaters/ovens and Heating, Ven-

tilation and Air Conditioning equipment (HVAC).

Refrigerators and freezers are ubiquitious at both residences and industries. Their load

is dependent of the indoor temperature, and usually they have thermal controls that

keep the refrigerator interior just above 0 Celsius, while the freezer set point is below

freezing point, around negative 25 Celsius. The power needed to keep this temperature

generally adds to the base load of a electric system. Each time the appliance door is

opened, the loss of cold air to the environment temporally increases the power con-

sumption, adding an user dependent and random component to the device’s demand.

Heaters and ovens, similar to refrigerators, have their energy consumption linked to the

interior temperature. Usually they are employed to add heat to a medium or recipient

until a preset temperature is reached. Examples include electric boilers, showers and

ovens. In Brazil, water heating by electric showers is prevalent. This load behavior

require higher reference temperatures, as water has a far higher thermal conductivity

than air and requires to be warmer to ensure comfort.

HVAC devices are employed to keep a comfortable thermal environment inside a buil-

ding. The average human being feels thermal comfort in a narrow range of tempera-

ture and humidity, as shown in figure 3.5. Through it is possible to keep a building

in the comfort zone by means of energy efficient architecture and special operational

strategies, at temperature and humidity extremes the use of conventional heating, air

conditioning and humidity controls is required. The building insulation quality dic-

tates the amount of power needed to keep comfortable conditions once the set points

are reached. Human controlled devices tend to be activated while out of comfort zone,

then deactivated only when exiting the comfort envelope at the opposite extreme.
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Figure 3.5: This chart is a summary of the human comfort zone as a function of am-
bient conditions (weather and climate). Modified from the original in Wikimedia Com-
mons, license CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0), acessible at
https://commons.wikimedia.org/wiki/File%3APsychrometricChart.SeaLevel.SI.svg.

Considering the temperature measurements present in a METAR, a first attempt at

modeling the temperature driven component yT of the load can be constructed by the

simple expression shown in (3.12):

yT = bT1TAvg + bT2TMin + bT3TMax (3.12)

where TAvg, TMin and TMax denotes average, minimum and maximum temperature,

respectively.

However, the load demand response to temperature is known to behave nonlinearly,

specially at cold and hot extremes [72, 68]. This can be seen in Fig. 3.6, a scatter

plot of mean daily temperature and power demand. Dispersion increases at lower

temperatures, while in this example there is a possible inflection point above 20 degrees

Celsius. In order to transform raw weather variables such as temperature and humidity
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in more meaningful inputs for a forecasting algorithm, some pre-processing is needed.

In this dissertation, both logarithm and degree days parametrizations are employed.

Figure 3.6: Scatter plot of mean temperature and mean demand in Megawatts (MW). Five
polynomial best fitting showcases the large residuals and diverse possibilities from nonlinear
behavior.

The logarithm of the mean temperature can be calculated by simply converting the

value in Celsius to Kelvin, and then calculating the natural logarithm of the Kelvin

value. The logarithm transformation model the transient response of the human skin to

a rapid change in temperature. A common finding in many studies of thermal sensation

thresholds is that despite the variability in thresholds across the body, all regions are

more sensitive to cold than to warmth. In general, the threshold for detecting a decrease

in temperature (cold) is half that of detecting an increase in skin temperature (warmth),

and the better a site is at detecting cold, the better it is at detecting warmth [94]. The

logarithm function mimics part of this sensory characteristic by nonlinearly reducing

the amplitude variation at the warmer extremes. Fig. 3.7 depicts the sequence of daily

results for 1095 data points of average temperature collected in Leipzig.
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Figure 3.7: Logarithm of the absolute temperature, as measured in Leipzig from 2001 to 2003

Updating the temperature-driven load model gives (3.13):

yT = bT1TAvg + bT2TMin + bT3TMax + bT4 ln (T0 + TAvg) (3.13)

where T0 denotes the absolute zero at the employed temperature scale.

The concept of degree-day relates to the necessity of finding a variable that measures

the amount of energy needed to heat or cool a building to a comfortable temperature,

given the external temperature. Since the last quarter of the 20th century, degree-days

are used as tool for energy consumption forecast, as showcased in [93, 27]. Currently,

heating (HDD) and cooling degree-days (CDD) have been featured in several load

forecast methods, such as [72, 29].

The Heating Degree-Days (HDD) is a measure of the severity and duration of cold we-

ather, which relates to the heating requirements. HDD is defined as the integral sum

of the subtraction between a given reference heating temperature (not much different

than choosing a temperature set point for a heater) and the ambient temperature over

time. Since this continuous time definition is not compatible with the daily tempera-

ture time series collected in METARs, the HDD values are estimated by the United

Kingdom Meteorological Office (MET Office) method [102], that is simpler yet reaso-
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nably accurate [23] and only requires minimum and maximum temperatures. Table 3.3

presents the Estimation Formulas for each condition.

Table 3.3: Approximate calculation of the heating degree-days

Condition Estimation Formula

Tmin > Tref HDD = 0
TMax+TMin

2
> Tref HDD =

TRef−TMin

4

TMax ≥ Tref HDD =
TRef−TMin

2
− TMax−TRef

4

TMax < Tref HDD = Tref − TMax+TMin

2

Figure 3.8 shows the resultant daily values for the 1095 days of years 2001-2003. The

value of 18◦C is chosen in this example as the heating reference temperature.

Figure 3.8: Heating Degree Days at 18 Celsius reference, as measured in Leipzig from the
2001 to 2003. The heating peaks are measured in the winter season.

The relationship between the HDD and the electric demand is stronger than the un-

processed temperature value. Fig. 3.9 presents a scatter plot that illustrates the

correlation between the two variables.
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Figure 3.9: Scatter plot of HDD and mean demand in MW, as measured in Leipzig from
the 2001 to 2003. Five polynomial best fitting curves showcase the more straightforward
dependence, yet nonlinear.

However, in hot climates such as Brasilia’s, HDD requires a different parametrization

than those performed to model building heating demand. In Brazil, water heating

by electric showers is prevalent. Compared to ambient heating, which is prevalent in

Leipzig, water heating require higher reference temperatures, as water has a far higher

thermal condutivity than air and must be kept closer to the human body temperature

to not cause discomfort. Subtropical and mildly temperate climates may need HDD

parametrizations for both ambient and water heating (WHDD).

Similarly, the Cooling Degree-Days (CDD) is a measure of the severity and duration

of hot weather, which relates to the cooling requirements. CDD was also estimated by

the United Kingdom Meteorological Office method [102], as depicted in Table 3.4.

Table 3.4: Approximate calculation of the cooling degree-days

Condition Estimation Formula

Tmax < Tref CDD = 0
TMax+TMin

2
< Tref CDD =

TMax−TRef

4

TMin ≤ Tref CDD =
TMax−TRef

2
− Tref−TMin

4

TMin > Tref CDD = TMax+TMin

2
− Tref

The relationship between the CDD and the electric demand is also stronger than the

unprocessed temperature value. Fig. 3.10 presents a scatter plot that illustrates the
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correlation between the two variables.

Figure 3.10: Scatter plot of CDD and peak demand in MW, as measured in Braśılia from
2001 to 2003. Because the large number of noncorrelated points stays at zero degree-days,
they do not affect the determination of the CDD coefficient.

In a load forecasting system, multiple CDD and HDD variables can be created, each one

with different reference temperatures. In combination, these multiple variables model

the nonlinear relationship of cooling and heating requirements to the electric demand

as a piecewise linear function. Adding this variables to the regression presented in

(3.13) gives expression (3.14):

yT = bT1TAvg + bT2TMin + bT3TMax + bT4 ln (T0 + TAvg) (3.14)

+ bT5ϑCDD + bT6ϑHDD + bT7ϑWHDD
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yT =
[
bT1 bT2 bT3 bT4 bT5 bT6 bT7

]


TAvg

TMin

TMax

ln (T0 + TAvg)

ϑCDD

ϑHDD

ϑWHDD


(3.15)

yT = BTUT (3.16)

where ϑCDD denotes the cooling degree days variables, ϑHDD the heating degree days

and ϑWHDD the water heating degree days. Not shown in (3.14), several CDD or HDD

variables can be employed, requiring only different reference temperatures. Also, some

of these variables can be discarded if the climate is very warm or cold.

3.4.1.2 Humidity and Enthalpy Degree Days

Atmospheric humidity is a measure of water held in the air as a gas. Water can be

solid (ice), liquid (water) or a gas (vapor). The vapour component makes up about

99% of all water held in the atmosphere. Relative Humidity (RH) is the most common

measure of humidity. It measures how close the air is to being saturated - that is how

much water vapor there is in the air compared to how much there could be at that

temperature. Figure 3.11 shows the maximum water vapor content the air can carry

accordingly to its temperature. Warmer air can hold more water vapor because there

is more energy available. If the RH of the air is 100% then it is fully saturated.
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Figure 3.11: Maximum water vapor content of air as a function of temperature. This is the
reference to calculation of Relative Humidity.

In warm temperatures, air with very high RH is very uncomfortable, as the saturated

air affects the human body cooling mechanism. The air cannot easily absorb more water

vapor and so cannot effectively evaporate the sweat from the skin. In cool temperatures,

air with very high RH can make humans feel cooler. This is because there is more

water vapor in contact with skin and since vapor is a much better heat conductor than

dry air, there is greater heat flux from the body to the atmosphere, giving the cold

sensation. As many HVAC loads are human operated, the change in sensation caused

by humidity can lead to activation or deactivation of electric devices. Considering the

humidity measurements present in a METAR, a first attempt at modeling the moisture

driven component yH of the load is given by (3.17):

yH = bH1HumAvg + bH2HumMin + bH3HumMax (3.17)

where HumAvg, HumMin and HumMax denotes average, minimum and maximum re-

lative humidity, respectively.

Added to the change of human perception, the latent heat present in humid environ-

ment is greater than in dry air, increasing energy requirements to either cool or heat

this environment. Moist air is a mixture of dry air and water vapor. Consequently,

the enthalpy of humid air includes the sensible enthalpy of the dry air and the latent

enthalpy of the evaporated water. The total enthalpy - sensible and latent - is used

when calculating cooling and heating processes. If there is no non-expansion work on
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the system and the pressure is still constant, then the change in enthalpy is equal to

the heat consumed or released by the system.

Enthalpy latent days (ELD) indicates the amount of energy required to remove exces-

sive moisture from the outdoor air without reducing the indoor air temperature, but

lowering the indoor humidity to an acceptable level [88]. Eq. (3.18) defines Enthalpy

latent days as the summation of positive enthalpy differences between the outdoor air

enthalpy h0 with relative humidity x0, and enthalpy hb with indoor reference relative

humidity xb. Both enthalpies at the outdoor air temperature θ0. The reference hu-

midity is set in this load forecasting system as 50%, which is standard in most air

conditioning equipment:

ELD =
24∑
t=1

[h0 (θ0, x0[t])− hb (θ0, xb)] (3.18)

Where h0 and hb are calculated by the expressions [71]:

h0 = 1, 007θ0 +M0 (2501 + 1, 84θ0) (3.19)

hb = 1, 007θ0 +Mb (2501 + 1, 84θ0) (3.20)

M0 and Mb are the water vapor concentration (kg/kg) at relative humidity x0 and xb,

respectively. They are calculated from the saturated water vapor concentration in air

Ms and from humidity degree days HuDD.

M0 = Ms
HuDD

100
(3.21)

Mb = Ms
xb

100
(3.22)

Humidity degree days are calculated with the MET office method, using the reference

xb, minimum xMin, and maximum relative humidity xMax, as shown in Table 3.5:
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Table 3.5: Approximate calculation of the heating degree-days

Condition Estimation Formula

xmin > xb HuDD = 0
xMax+xMin

2
> xb HuDD = xb−xMin

4

xMax ≥ xb HuDD = xb−xMin

2
− xMax−xb

4

xMax < xb HuDD = xb − xMax+xMin

2

The saturated water vapor concentration in air Msis obtained from air pressure P and

water vapor partial pressure PS at temperature θ0:

Ms = 0.62198
PS

P − PS
(3.23)

The partial pressure is calculated from the temperature θ0:

PS = 610.78 exp

(
17, 2694θ0

238, 3 + θ0

)
(3.24)

The humidity driven load expression denoted in (3.17) can then be complemented with

th ELD variable, giving the final expression for the humidity related load in this model:

yH = bH1HumAvg + bH2HumMin + bH3HumMax + bH4ELD (3.25)

yH =
[
bH1 bH2 · · · bH4

] [
HumAvg HumMin HumMax ELD

]T
(3.26)

yH = BHUH (3.27)

Similarly to the HDD and CDD parametrization of temperature, multiple ELD varia-

bles can be employed, specially if the forecasting area has several humidity controlled

spaces with custom moisture levels, such as clean rooms for electronics manufacturing

or biopharmaceutical research.
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3.4.1.3 Wind speed and convection heat transfer

The energy performance of HVAC equipment depends on the heat transfer coefficients

existent between the interior controlled enviroment and the exterior ambient. These

coefficients dictate how much the HVAC must absorb or emit heat to keep indoor

conditions at the programmed setpoints. The temperature, heating and cooling degree

day inputs are mostly related to the conduction heat flux. However, when the incident

wind speed is considerable, the effects of the forced convection can become the dominant

mode of heat flux. As a consequence, the wind can have observable effects in electricity

consumption.

By definition, the heat transfer is defined by expression (3.28):

q̇ = hcS(T − T0) (3.28)

where the heat transferred per unit time q̇ is a function of the convective heat transfer

coefficient hc, the contact area S and the diference between T and T0, respectively the

temperatures of the object and the fluid.

For the forced convective flow regime, the convection coefficient is usually correlated

to the wind speed at a reference location. Usually, the mean wind speed in the undis-

turbed flow at a height of 10 m above the ground is employed, which is the standard

arrangement for weather station anemometers. The wind speed correlation is mostly

reported as linear or power-law correlations in papers [25], whose studies are both

based on measurements, wind tunnel simulations and Computational Fluid Dynamics

(CFD).

The convection coefficient is also dependent of the wind direction [70]. Not only the

contact surface shape and area change accordingly to the wind direction, as also the

landscape is hardly symetrical and near obstacles can further change the effective shape

and area either by shadowing or concentrating the air flux in the contact surface. In

the impossibility of mapping the coefficient at every recorded direction, it is possible

to decompose the mean wind speed and wind direction information contained in the

METAR in four directional wind inputs, arbitrarily chosen to be aligned with the

cardinal points.
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To model such dependencies, the directional wind inputs are transformed by means of

power laws to provide the convection coefficients hc for the heat transfer modelling,

which is shown in Eqs (3.28) and (3.29).

hc = ρ (v)α (3.29)

where this power law approximation relates the coefficient hc to the air speed vw raised

to power of α, and ρ is a proportionality constat. Literature reports a narrow range

for exponents, usually between 0.8 and 0.9. In close agreement with the results found

in [25, 30, 17], the exponent α = 0.82 is chosen to create four additional variables to

model heat convection on facades oriented to each compass point. The resulting model

for the wind dependent load becomes:

yv = bv1 (vN)0.82 + bv2 (vS)0.82 + bv3 (vE)0.82 + bv4 (vW )0.82 (3.30)

where vN , vS, vE and vW denotes the wind speed component at North, South, East

and West directions, respectively.

The effect of natural ventilation can also be important. Exponent α = 2 is empi-

rically employed in maximum wind and average wind nondirectional inputs to model

human confort psycometric functions. This exponent is also related to distributed wind

turbines, which if existent do act as a negative load. The final equation is given by

(3.31):

yv = bv1 (vN)0.82+bv2 (vS)0.82+bv3 (vE)0.82+bv4 (vW )0.82+bv5 (vAvg)
2+bv6 (vMax)

2 (3.31)

yv =



bv1

bv2

bv3

bv4

bv5

bv6



T 

(vN)0.82

(vS)0.82

(vE)0.82

(vW )0.82

(vavg)
2

(vMax)
2


= BvUv (3.32)
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where vAvg and vMax represent the nondirectional average and maximum wind speeds

obtained from METAR.

3.4.1.4 Natural illumination

The lighting load is a consequence of the human need for illumination, in order to

enhance task safety and performance, improve the appearance of an area or have posi-

tive psychological effects on its occupants. Individual lighting systems can be controlled

by several means, from simple switches to complex automated systems. There are also

lighting systems that are kept permanently lit, such as signaling and some emergency

lights in escape routes.

The main driver of lighting load is the amount of sunlight reaching a given area. Below a

certain threshould, electric lights are activated in order to provide artificial illumination.

Generally, lights are kept off during the day and activated in the night. Cloud cover

can reduce sunlight during daytime, leading increasing demand for lighting. Lack of

daylight, however, is not the sole factor influencing the lighting load. Due to lack of

natural illumination, rooms in large buildings require lights to be activated during the

entire work hours. Lights are also employed as a mean to emphasize business signs,

outdoor ads and to aesthetically improve the appearance of monuments and buildings.

In order to model the natural illumination, one must account for the amount of global

clear sky irradiation arriving at a surface, after being filtered by the cloud cover and

by the human eye sensivity, the latter strongly dependent on wavelength. The global

clear sky irradiation arriving at a surface can be calculated with the SPCTRL2 model.

The SEDES2 cloudy sky model is then applied to account for the effect of clouds over

natural lights. More details about the SPCTRL2 and SEDES2 models are presented

in Appendix B.

The determination of the illumination surfaces, however, is a complex task. Daylight

has a ample access to outdoor areas, while inside buildings the specific size and layout

of windows and translucid ceiling apparattus is determinant to the amount of natural

light received. Furthermore, the internal room layout, room height, wall and floor

colors and furnitures do affect the internal reflection of natural light. Thus, the exact

modeling of natural illumination inside a single building is a complex task. A simpler

approach is needed in order to obtain a feasible load model.
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Figure 3.12: Natural illumination model. The five “window” surfaces are
used to approximate the sunlight incident into buildings and open spa-
ces. Modified from original provided by By TWCarlson [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons. Accessible at
https://upload.wikimedia.org/wikipedia/commons/f/f7/Azimuth-Altitude schematic.svg

The objective is not to model the natural lighting in a given building, but in a very large

number of buildings and outdoor areas. Certainly, every single building has unique

shape, windows, walls, ceilings and interior details. However, for a very large set of

structures, these variations tend to cancel out and an average value for the daylight can

be calculated, yielding a much simpler approximation for the natural lighting modeling.

Only the effect of the sun direction must then be accounted. This is accomplished

by approximating the total incident daylight by the sum of five components: one

perpendicular to the surface, pointed to the zenith, and four paralel to the surface,

each pointed to a compass point. The sunlight dependent component of the load Yφ

can then be approximated by the linear relationship shown in equation (3.33):

yφ = bφ1φN + bφ2φS + bφ3φE + bφ4φW + bφ5φZ (3.33)

yφ =
[
bφ1 bφ2 bφ3 bφ4 bφ5

] [
φN φS φE φW φZ

]T
(3.34)

yφ = BφUφ (3.35)

where φN , φS, φE, φW and φz denotes the illuminance component at North, South,

East, West and Zenith (Up) directions, respectively.
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However, as the load component yφ is a function of illuminance (φ), the SPCTRL2 and

SEDES2 have outputs measured in irradiance. Illuminance represents the light power

of a source incident over a surface as perceived by the human eye. The sky irradiance

models only deal with the absolute incident power density, measured in Watts per

square meter. In order to model the human perception, the human eye standard

sensivity is applied to transform the radiometric (energy related) units obtained from

SPCTRL2 and SEDES2 to photometric units (perception related).

Figure 3.13: (a) Cross section through a human eye. (b) Schematic view of the retina and
its photoreceptors (adapted from Encyclopedia Brittannica, 1994 edition)

The reference recipient of natural light is the human eye, which is illustrated in Figure

3.13. The inside of the eyeball is clad by the retina, which is the light-sensitive part

of the eye. The illustration also shows the fovea, a cone-rich central region of the

retina which affords the high acuteness of central vision. The schematic shows the

cell structure of the retina including the light-sensitive rod cells and cone cells. Also

shown are the ganglion cells and nerve fibers that transmit the visual information to

the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods

are sensitive over the entire visible spectrum. There are three types of cone cells,

namely cone cells sensitive in the red, green, and blue spectral range. The cone cells

are therefore denoted as the red-sensitive, green-sensitive, and blue-sensitive cones, or

simply as the red, green, and blue cones.

The eye operates at three different vision regimes, related to the type of receptors

which are activated. Photopic vision relates to human vision at high ambient light

levels (e.g. during daylight conditions) when vision is mediated by the cones. The

photopic vision regime applies to luminance levels greater than 3 cd/m2 . Scotopic

vision relates to human vision at low ambient light levels (e.g. at night) when vision is

mediated by rods. Rods have a much higher sensitivity than the cones. However, the
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sense of color is essentially lost in the scotopic vision regime. At low light levels such

as in a moonless night, objects lose their colors and only appear to have different gray

levels. The scotopic vision regime applies to luminance levels smaller 0.003 cd/m2 .

Mesopic vision relates to intermediary light levels between the photopic and scotopic

vision regime.

Figure 3.14: Normalized spectral sensivity of rod and cone cells. By Maxim Razin [CC BY-SA
3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons. Accessible
at https://commons.wikimedia.org/wiki/File:Cone-response.svg

The approximate spectral sensitivity functions of the rods and three types or cones are

shown in Fig. 3.14. Night-time vision (scotopic vision) is weaker in the red spectral

range and thus stronger in the blue spectral range as compared to photopic vision. As

the scotopic vision is usually activated only in extremely dark environments, it has little

chance to be used in plain daylight or even in twilight. Hanceforth, for the derivations

needed to obtain the sensivity curve for lighting load forecast, only the photopic regime

is considered.

The physical properties of electromagnetic radiation are characterized by radiometric

units. Using radiometric units, light is characterized in terms of physical quantities:

the number of photons, photon energy, and optical power. However, the radiometric

units are irrelevant when it comes to light perception by a human being. For example,

infrared radiation causes no luminous sensation in the eye. To characterize the light

and color sensation by the human eye, different types of units are needed. These units

are called photometric units. The luminous intensity, which is a photometric quantity,
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represents the light intensity of an optical source, as perceived by the human eye.

The luminous intensity is measured in units of candela (cd), which is a base unit of

the International System of Units. A monochromatic light source emitting an optical

power of 1/683 watt at 555 nm into the solid angle of 1 steradian (sr) has a luminous

intensity of 1 candela (cd). All other photometric units are shown in Table 3.6, which

also compares then with the respective radiometric units.

Table 3.6: Photometric and corresponding radiometric units

Photometric unit Unit Radiometric unit Dimension/Symbol

Luminous Flux lm (Lumen) Radiant Flux Watt (W )

Luminous Intensity cd = lm/sr (Candela) Radiant intensity W/sr

Illuminance lux = lm/m2(Lux) Irradiance W/m2

Luminance cd/m2 Radiance W/ (sr ·m2)

The conversion between radiometric and photometric units is provided by the luminous

efficiency function or eye sensitivity function, known as V (λ). This function was first

evaluated in 1924, giving rise to the CIE 1931 photometric standard. A modified

V (λ) function was introduced by [103] and this modified formulation is known as the

CIE 1978 V (λ). This function, which is largely employed in visual perception studies

[107] and can be considered the most accurate description of the eye sensitivity in the

photopic vision regime, is shown in Figure 3.15.
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Figure 3.15: Eye sensivity function. The values of CIE 1978 V (λ) are shown
in the left-hand ordenate, while the correspondent luminous efficacy (conversion fac-
tor for Watts to lumens) are shown in the right-hand ordenate. Both are ma-
ximum in 555 nm wavelenght. By Jordanwesthoff (Own work) [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons. Accessible at
https://commons.wikimedia.org/wiki/File%3AHuman photopic response.jpg

In order to convert the irrandiance to illuminance, the following integration must be

made:

φd = 683

∫
Λ

V (λ)ICλ(λ)dλ (3.36)

where φd represents the Illuminance at direction d, Λ represents the interval of visible

light wavelenghts and ICλ(λ) the irradiance at wavelenght λ as calculated by SPCTRL2

and SEDES2. Applying this expression to the North, South, East, West and Zenith

directions gives the values of φN , φS, φE, φW and φz denoted in equation (3.33).

3.4.1.5 Solar irradiation

The Sun’s irradiation has two principal effects over the electricity consumption. As well

as being the main factor for artificial illumination, the global solar irradiance incident
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on buildings also increases cooling loads or decreases heating loads.

The problem formulation and modelling difficulties that arise when estimating the

solar irradiation induced thermal load is similar to the ones faced when analysing

natural illumination. To simulate the induced thermal load irradiated by the Sun over

a single building, several factors should be taken into consideration, such as shape and

orientation of roof and external walls, their thermal insulation and albedo (absortivity).

However, again the goal of this estimation is to model the induced load over a very

large number of buildings, not the exact model for a single structure.

Figure 3.16: Natural solar irradiation. The roof and four wall surfa-
ces are used to approximate the heat absorption by irradiation into buil-
dings. Modified from original provided by By TWCarlson [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons. Accessible at
https://upload.wikimedia.org/wikipedia/commons/f/f7/Azimuth-Altitude schematic.svg

Similar to the illumination case, only the effect of the sun direction must then be

computed. This is accomplished by approximating the total incident irradiation by

the sum of five components: one “roof” perpendicular to the surface, pointed to the

zenith, and four “wall” paralel to the surface, each pointed to a compass point. The

irradiation dependent component of the load yI can then be approximated by the linear

relationship shown in equation (3.37):

yI = bI1IN + bI2IS + bI3IE + bI4IW + bI5IZ (3.37)

yI =
[
bI1 bI2 bI3 bI4 bI5

] [
IN IS IE IW IZ

]T
(3.38)
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yI = BIUI (3.39)

where IN , IS, IE, IW and Iz denotes the irradiance component at North, South, East,

West and Zenith (Up) directions, respectively. These are all calculated by means of

the SPCTRL2 and SEDES2 models.

3.4.2 Socioeconomic variables

Other important aspects of electricity demand are associated with social and economic

facts. Economic growth, industrial production and running stock of electric appliances.

The causal relationship between economic growth, characterized in diverse indicators,

and the electricity consumption is investigated in numerous of papers. In [11], Granger

tests indicate short-run causality from energy consumption to income for India and

Indonesia, while the test points to bidiretional relationship for Thailand and the Phi-

lippines. The study presented in [22] conclude that causality is stronger in developed

OECD countries than in developing countries. Several variables are used to assert the

dependencies between energy consumption and economic activities: Gross Domestic

Product (GDP), population and price indexes [7].

The use of socioeconomic variables to load forecast is not novel. In reference [36],

aggregate energy supply, macroeconomic data such as gross domestic product (GDP),

population growth, buildings construction and demolition rate are employed to forecast

hourly demand in the city of Abu Dhabi. In developing countries whose economies are

continuously growing, the trend in GDP is highly correlated to long term trends in

electric demand [89]. According to reference [46], residential load density is dependent

on socioeconomic factors such as population, income level, living space per person,

household appliances capacity. The commercial load density is influenced by the ur-

ban GDP, international economic situation, speed of urban economic development,

commercial cyclical fluctuation. The industrial load density is influenced by technical

progress, energy saving policy and production output. Some studies also link industrial

consumption to GDP [15]

For the population input, time series can usually be obtained in the regional or national

statistical database. Since these time series usually have monthly or annual values,
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daily values must be obtained through curve fitting or forecast. Generally, daily values

can be determined by means of exponential smoothing, Grey models or cubic splines.

The agricultural load density is influenced by farmland area, technical progress.

A similar approach is executed for the GDP input. Dividing GDP by the population,

one can obtain the per capita GDP. A modified rolling grey algorithm as described

in [98] is applied to simulate forecasts of these candidate input variables, as most

of these indicators cannot be collected in real time. Additional variables are taken

into account, such as inflation indicators, dollar exchange rate, the fraction of low

income households, the relative sales volume index and the energy intensity indicator

for industries with low, medium and high specific energy consumption, relative imports

and export indexes, life expectancy at birth, basic sanitation at residences and birth

rate.

Table 3.7: List of Socioeconomic variables obtained per Case study

Symbol Variable Braśılia Leipzig

SE1 Population Yes Yes

SE2 GDP Yes Yes

SE3 GDP per capita Yes Yes

SE4 Price Index Yes No

SE5 Currency Exchange rate Yes Yes

SE6 Light Industry Energy Intensity Yes No

SE7 Medium Industry Energy Intensity Yes No

SE8 Heavy Industry Energy Intensity Yes No

SE9 Sales volume index Yes No

SE10 Low income households Yes No

SE11 Relative import index Yes No

SE12 Relative export index Yes No

SE13 Life Expectancy Yes No

SE14 Basic Sanitation Yes No

SE15 Birth rate Yes No

A regression similar to the models presented in [76, 14] is proposed. The socioeconomic

dependent load ySE is then estimated by the linear combination of the variables listed

in Table 3.7:
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ySE = bSE1SE1 + bSE2SE2 + ...+ bSE15SE15 (3.40)

ySE =
[
bSE1 bSE2 · · · bSE15

] [
SE1 SE2 · · · SE15

]T
(3.41)

ySE = BSEUSE (3.42)

3.4.3 Electricity tariffs

Increasing prices of goods and services often leads to decreased demand. However, as

electricity is an essential service, its price elasticity may be very low. This translates

in reduced price sensivity on the consumer part, specially from residential customers.

On the other hand, industries and large consumers tend to be attentive and prudent

with their energy consumption, as increased costs could shrink profit margins.

This capacity on part of the consumer to curtail part of its consumption due to higher

prices is a object of study, as this fact can be a new tool to keep generation and

load in balance. Known as Demand Response (DR), this practice has been suggested

as a potentially valuable resource in future electricity systems, as it could constitute

an alternative to potentially more costly means of system operation, such as backup

generation, network expansion and physical electricity storage [41].

The benefits of DR programs are market-wide. An overall electricity price reduction

is expected because of a more efficient utilization of the available infrastructure, redu-

cing demand from expensive electricity generating units and avoiding losses on busy

distribution feeders during peak load. Moreover, DR programs can increase short-term

capacity using market-based programs, which in turn, results in an avoided or deferred

capacity costs [6]. However, all demand response programs require hourly meter rea-

dings, which in practice necessitate automatic meter reading systems and a deregulated

spot market for energy, at last for part of the consumer classes. Not every country has

both technical and regulatory prerequisites to operate DR programs. Without a real

time, Smart Grid like environment, it is not known how quickly does the consumer

react to changes in electricity prices.
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In Brazil, currently there is no hourly metering for low voltage consumers, neither a real

time energy market. In 2015 the Brazilian Electricity Regulatory Agency (ANEEL)

approved a monthly variable economic signal in the energy price called Tariff Flags.

The Flags are Green, Yellow and Red (two levels), in analogy with traffic lights. They

represent tariff differences to the small consumer and impart extra fees to the energy

price, giving the consumer an economic indicator to conserve energy when the genera-

tion is costlier. It aims to minimize eventual differences between costs and revenues of

the utilities and contribute to the optimization of the system’s electricity and energy

resources.

In a analysis of the Tariff Flag program, it was noticed that the intensity of the demand

response of each economic sector depends not only on price elasticity, but also on the

energy tariff that is applied. The industrial sector is expected to be the most affected,

with reductions in the order of 3.5% and 7.0% (including fees) according to the Yellow

and Red flags, respectively [69]. Thus, a monthly change in tariff can cause visible load

reductions in a few months, a relatively short term. This gives motivation to investigate

the impact of regular changes in the electricity tariff as a variable for short-term load

forecast.

Brazilian electricity tariff system is complex. Low voltage customers only have access

to the conventional monomial tariff, in which there is a fixed tariff for energy ($/kWh).

High voltage clients must adhere to a binomial tariff contract, in which there two rates:

one for energy ($/kWh) and another for demand ($/kW). There is a surtax if the

demanded power is higher than the contract limit. The tariff type can be conventional,

hourly seasonal type green or hourly seasonal type blue, moving from fixed rates for

demand, energy and surtaxes to different rates due to seasons and peak hours. As

there is a 60 day delay between measurements and the payment of energy bill, 60 day

moving averages are employed to smooth the transitions. In Fig. 3.17 a moving average

representation of tariffs (conventional type) by consumer classes is presented.
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Figure 3.17: 60 day moving average of electricity tariffs in Braśılia, in Brazilian Reais (BRL)
per MWh, by consumer class

In the period from 2001 to 2010, due to the multitude of classes, types and seasonal

periods, the historic tariffs time series is composed of 75 candidate variables, being 11

low voltage conventional, 10 high voltage conventional, 18 hourly seasonal type green

and 36 hourly seasonal type blue. Variables represent the full set of unitary cost of

energy, demand and overdemand fee, at each tariff type and voltage level. Attributing

each variable a coefficient, the tariff dependent load component yτ is given by (3.43):

yτ = bτ1τ1 + bτ2τ2 + ...+ bτ75τ75 (3.43)

yτ =
[
bτ1 bτ2 · · · bτ75

] [
τ1 τ2 · · · τ75

]T
(3.44)

yτ = BτUτ (3.45)

In the german forecasting scenario, the tariff history was not found in an online da-

tabase. Due to lack of data, the tariff variables are only are used in the Brazilian

forecasting scenario.

3.4.4 Calendar and Weather events

The load profiles have markedly distinct behavior in working days, holidays and we-

ekends. There are also atypical days [24] with different load curves, such regular day
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preceding or following a holiday. Large media and sports events can also lead to un-

common behavior in the electricity demand.

While introducing additional variability to the forecasting problem, calendar events

have the advantage of being previsible, which can be represented as a binary variable.

These can be described as boolean time series that have a true value when the event

is expected, being it false otherwise. The use of this type of input in load forecasting

methodologies is not new [82, 90, 81]. Some scholars advocate that the workday-holiday

parametrization can be improved if all seven days of the week are separately described

in the variables[75].

Table 3.8: List of event variables

Symbol Variable

e1 Monday

e2 Tuesday

e3 Wednesday

e4 Thursday

e5 Friday

e6 Saturday

e7 Sunday

e8 Holiday

e9 Attypical day

e10 Summer Saving Time

e11 Fog

e12 Rain

e13 Thunderstorm

e14 Snow

Expanding on other papers characterizations, for this load forecasting system there are

binary variables for each day of the week, for summer saving time, for holidays and

attypical days. The latter are classified as such due to proximity to other holidays or

the occurrence of major media or sports events, such as soccer matches. Also present

are boolean variables for the four weather events informed by the METAR: Fog, Rain,

Snow and Thunderstorm. These weather phenomenons do alter energy consumption

due to outages, increased heating and lighting demand. The event dependent load

component ye is then estimated by:
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ye = be1e1 + be2e2 + ...+ be14e14 (3.46)

ye =
[
be1 be2 · · · be14

] [
e1 e2 · · · e14

]T
(3.47)

ye = BeUe (3.48)

3.4.5 The Load Model

Time-series approaches are among the oldest methods applied in load forecasting [47].

These were developed in order to directly incorporate a specific time-dependent struc-

ture in the analysed data, i.e. the dependence of a variable on its previous values [18].

This approach presents advantages, as it can model trends and periodical variations

in a time series without requiring detailed knowledge about the inner dynamics of the

system. A very simple class are the so-called autoregressive moving average or ARMA

models, depicted in expression (3.49):

y[k + 1] =
n∑
i=1

aky[k − i+ 1] + z[k] +

q∑
i=1

ckz[k − i+ 1] (3.49)

where Y [k] is the time series to be modeled, Y [k − i] are its previous values and

z[k] is a white noise component with zero mean and σ2 variance. The model order

n (autoregressive part) and q (Moving Average) must be determined, and then the

coefficients ai and ci are calculated by Maximum Likelihood or Least Squares variants.

This model can be expanded to includem exogenous variables, giving the autoregressive

moving average exogenous (ARMAX) model:

y[k+1] =
n∑
i=1

aiy[k− i+1]+
m∑
j=1

p∑
i=1

bijuj[k− i+1]+z[k+1]+

q∑
i=1

ciz[k− i+1] (3.50)
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Some considerations about the nature of load measurements can be made to simplify

this expression. Supposing that z[k] is a measurement error and that its previous values

do not affect the current measurement Y [k] gives:

y[k + 1] =
n∑
i=1

aiy[k − i+ 1] +
m∑
j=1

p∑
i=1

bijuj[k − i+ 1] + z[k + 1] (3.51)

In terms of electric load modeling, equation (3.51) can be understood as a linear depen-

dence of the future output y[k + 1] to an autoregressive term yAR[k], to an exogenous

input term yU [k] with p delays and the noise z[k + 1]:

y[k + 1] = yAR[k] +

p∑
i=1

(yU [k − i+ 1]) + z[k + 1] (3.52)

Rewriting (3.51) in vectorial form yields:

y[k + 1] =


a1

a2

...

an


T 

y[k]

y[k − 1]
...

y[k − n+ 1]

+

p∑
i=1




bi1

bi2
...

bim


T 

u1[k − i+ 1]

u2[k − i+ 1]
...

um[k − i+ 1]



+ z[k + 1]

(3.53)

The summation term can be equivalently rewritten as a product of two vectors p times

stacked:
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y[k] =


a1

a2

...

an


T 

y[k]

y[k]
...

y[k − n+ 1]

+



b11

b12

...

b1m

b21

b22

...

b2m

...

bp1

bp2
...

bpm



T 

u1[k]

u2[k]
...

um[k]

u1[k − 1]

u2[k − 1]
...

um[k − 1]
...

u1[k − p+ 1]

u2[k − p+ 1]
...

um[k − p+ 1]



+ z[k + 1] (3.54)

In the previous subsections, the main exogenous variables affecting electric load have

been defined. The input dependent load yU [k] is obtained by the following expressions:

yU [k] = yT [k] + yH [k] + yv[k] + yφ[k] + yI [k] + ySE[k] + yτ [k] + ye[k] (3.55)

where yT is obtained in equation (3.15), yH in (3.27), yv in (3.32), yφ in (3.35), yI in

(3.39), ySE in (3.42), yτ in (3.45) and ye in (3.48). Substituting yields:

p∑
i=1

(yU [k − i+ 1]) =

p∑
i=1





BiT

BiH

Biv

Biφ

BiI

BiSE

Biτ

Bie



T 

UT [k − i+ 1]

UH [k − i+ 1]

Uv[k − i+ 1]

Uφ[k − i+ 1]

UI [k − i+ 1]

USE[k − i+ 1]

Uτ [k − i+ 1]

Ue[k − i+ 1]




(3.56)
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p∑
i=1

(yU [k − i+ 1]) =

p∑
i=1

(
B̃iŨ [k − i+ 1]

)
(3.57)

p∑
i=1

(yU [k − i+ 1]) =
[
B̃1 B̃2 · · · B̃p

]


Ũ [k]

Ũ [k − 1]
...

Ũ [k − p+ 1]

 (3.58)

By inspection of (3.54) and (3.58), it is possible to define the coupling vector B̃ and

input vector U [k] and input coupling matrix B:

B̃U [k] =



b11

b12

...

b1m

b21

b22

...

b2m

...

bp1

bp2
...

bpm



T 

u1[k]

u2[k]
...

um[k]

u1[k − 1]

u2[k − 1]
...

um[k − 1]
...

u1[k − p+ 1]

u2[k − p+ 1]
...

um[k − p+ 1]



=
[
B̃1 B̃2 · · · B̃p

]


Ũ [k]

Ũ [k − 1]
...

Ũ [k − p+ 1]



(3.59)

Defining the state vectorX[k], and decomposing the noise term z[k] into a measurement

component v[k] and a process noise W [k], both gaussian i.i.d.:
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X[k + 1] =


y[k + 1]

y[k]
...

y[k − n+ 1]

 ; X[k] =


y[k]

y[k − 1]
...

y[k − n]

 ;

z[k + 1] = v[k + 1] +


1

0
...

0


T

W [k]

(3.60)

It is now possible to transform the difference equation (3.54) in a State Space model

in the companion form, expressed in matricial form as:

X[k + 1] =



a1 a2 · · · an+1 an

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


X[k] +


b11 b12 · · · bpm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

U [k] +W [k] (3.61)

The output equation is given by expression (3.62):

y[k + 1] =
[
1 0 · · · 0

]
X[k + 1] + v[k + 1] (3.62)

Rewriting the equations in matricial form gives the final load State space model:

X[k + 1] = AX[k] + BU [k] +W [k] (3.63)

Y [k + 1] = CX[k + 1] + v[k + 1] (3.64)

The State space formulation is preferred because it allows a more concise presentation

and manipulation. Unlike Box-Jenkins models, there is no need for stationarity for
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the load and inputs time series, permiting he use of a large set of exogenous variables

of different types, such as boolean, integer and real valued. State space is also the

base of online and adaptive Kalman filter predictors, which adds robustness through

the application of an double state/measurement noise model. There are, however,

additional difficulties to estimate two noise covariance matrices [74].

3.5 Photovoltaic Generation Model

Photovoltaic (PV) energy is one of the most promising renewable generation techno-

logies. The cost of PV modules decreased fivefold between 2008 and 2013, while the

cost of full PV systems decreased by 66% in the same period. The levelised cost of

electricity of decentralised solar PV systems is approaching or falling below the utilities

energy tariffs in some markets, across residential and commercial segments. As such,

cumulative PV capacity grew at a rate of 49% per year from 2003 to 2013 [51], as

illustrated in figure 3.18.

Figure 3.18: Global cumulative growth of PV capacity. Source: reproduced from IEA Solar
photovoltaic roadmap 2014 [51]

PV cells are the most basic unit in a photovoltaic power producing device, typically

available in 12,5 cm and 15 cm square sizes. In general, these can be classified as

either silicon-based crystalline (monocrystaline and polycrystalline silicon), Thin-film,

or organic. Currently, crystalline silicon technologies account for more than 94% of the

overall cell production in the IEA countries participating into the Photovoltaic Power

System Programme [86].

Monocrystaline silicon (mono-Si) cells are produced from a single crystal growth method,
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having commercial efficiencies between 16% and 25%. Polycrystalline silicon (poly-Si)

cells are usually manufactured from a cheaper cast solidification process, produced by

cooling and solidifying molten silicon, then cutting it into thin plates. The solidification

of the material results into cells that contain many crystals, making the surface of the

poly-Si cell less perfect than a mono-Si device. Due to these defects, polycrystalline are

also less efficient than mono-Si. However, they have remained popular because they

are less expensive but cost-effective, with average conversion efficiency around 14-18%.

Thinfilm cells are formed by the deposition of extremely thin layers of photovoltaic

semiconductor materials onto a inert substrate material such as glass, stainless steel

or plastic. They are potentially less expensive to manufacture than crystalline cells,

but have conversion efficiencies slightly below poly-Si, in average. Some expensive high

end Thin-film have efficiencies comparable to mono-Si. Thin-film semiconductor mate-

rials commercially used are cadmium telluride (CdTe), and Copper-Indium-(Gallium)-

Selenide (CIGS and CIS). In the past, amorphous silicon (a-Si) had a significant market

share but lately failed behind in both cost reductions and efficiency gains. In terms of

efficiencies, in 2016, CdTe cells reached 22% in labs.

Organic thin-film PV cells, using dye or organic semiconductors, have created interest

and research, development and demonstration activities are underway. In recent years,

perovskites solar cells have reached efficiencies higher than 20% in labs but have not

yet resulted in stable market products.

Figure 3.19: Apparent difference between module types. From left to right. Polycrystaline
Silicon module, Monocrystaline Silicon and Thin Film module.

Excepting extreme latitudes and locations under prolonged shadow due to geographical
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features, solar power is available worldwide and, unlike thermal power sources, pho-

tovoltaic systems’ efficiencies do not substantially decrease from a utility sized plant

to a rooftop residential system. Due to these characteristics favoring decentralized

deployment, PV power is the main power source for distributed generation directly

connected to the distribution network. In grid-connected PV systems, an inverter is

used to convert electricity from direct current (DC) to the alternating current (AC)

supplied to the electricity network. Conversion efficiency is in the range of 95% to

99%, varying with inverter size and temperature. Most inverters incorporate a Maxi-

mum Power Point Tracker (MPPT), which continuously adjusts the load impedance

to provide the maximum power from the PV array. At the end of 2015, 227 GWp

of photovoltaic panels have been installed worldwide. Germany, Greece and Italy had

more of 7% of their electricity demand supplied by photovoltaic arrays [85]. Variability

of solar resource poses difficulties in grid management as solar penetration rates rise

continuously. This level of PV penetration can substantially alter the electric load

behavior, adding a new variable to the load forecasts conducted by the power system

operators to ensure stability and economical dispatch.

In order to forecast solar photovoltaic power, a realistic yet concise model of this

electricity source is required. Forecasting methodologies can be largely characterized as

physical or statistical. The physical approach combines solar irradiation and PV system

models to predict generation, whereas the statistical approach primarily confides on

past data to generate forecast, with little or no reliance on irradiance and PV models.

Predictions could be for short-term, done up to one week ahead, medium term covering

one week to one month, and long-term for forecasting months or years ahead. Literature

favors statistical approaches for short-term forecast, while physical methods are well

suited to perform long-term prediction [108]. There are also hybrid-physical methods

that combine statistical with a simplified physical input set to improve performance.

Very similar to the tools employed for load forecasting, examples of statistical approa-

ches for predicting PV generation include the persistence (naive) model, linear regres-

sions, ARMA time series, exponential smoothing, Artificial Neural Networks, support

vector approaches and fuzzy inference set. Artificial Neural Networks in several variants

is the model of choice for almost 25% of the recent papers, while regression and ARMA

derived approaches amount to 18%. Hybrid-physical modeling has comparatively few

publications, comprising 6% of the studies reviewed in [10].

A hybrid-physical adaptive PV generation modeling framework consisting of an State
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space linear representation feeded with weather variables and simulated physical inputs

is proposed in this research. The first step simulates the solar radiation in clear sky

conditions, the second step simulates the radiation in cloudy conditions, the third

calculates the PV panel generation per area accordingly to a defined model, and the

fourth and final step simulates the growth rate of the installed area in order to simulate

the total mean and maximum PV generation. The framework box diagram is shown

in Fig. 3.20.

Figure 3.20: Box diagram of the solar photovoltaic simulational framework

Each step generates its outputs using its specific inputs, which in turn are either static

parameters related to PV panel and growth model, daily weather measurements or

outputs generated by the previous step. This simulational framework determines the

mean and maximum PV generation for a given day, so it must be executed once for

every time step of the predicting algorithms. The relationship between these inputs,

outputs and simulation steps are shown in Table 3.9, as well as the data flow.
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Table 3.9: Inputs and outputs per PV forecasting step

Step Inputs Outputs

Clear Sky

Diffuse Irradiation

Geometry/Site parameters (Clear)

Humidity Parameters Direct Normal Irradiation

(Clear)

Cloudy Sky

Cloud Cover Parameter Diffuse Irradiation

Diffuse Irradiation (Clear) (Cloudy)

Direct Normal Irradiation (Clear) Direct Normal Irradiation

(Cloudy)

Solar Panel

Diffuse Irradiation (Cloudy)

Direct Normal Irradiation (Cloudy)

Cell and Surface material

Temperature Simulated PV generation

Cell temperature coefficient Conversion efficiency

Panel effective area

Fill factor

Simulated PV generation

State Space Model Weather variables Forecasted PV generation

State/Covariance Updates

3.5.1 The Solar irradiation model

A slightly modified Bird Simple Spectral Model (SPCTRL2) is applied in this forecas-

ting/simulation algorithm to compute the solar irradiation source [16]. Its results are

then modified by the SEDES2 Cloud Cover model, and the resulting spectra is then

used as input to the Photovoltaic Panel model, in order to compute the electricity

generation. These models are chosen because of its public nature, relative simplicity

and open license [1, 77]. Mostly, they do not require access to detailed or special me-

teorological data and its results offer acceptable agreement with more strict/detailed

models and field measurements, after some calibration in its input parameters.

SPCTRL2, in its original implementation, it computes clear sky spectral direct beam,

hemispherical diffuse, and hemispherical total irradiances on a tilted or horizontal

receiver plane at a single point in time. For tilted planes, the user specifies the tilt and

62



azimuth of the plane, geometric properties displayed in figure 3.21.

Figure 3.21: Sun azimuth angle and elevation angle. Azimuth reference is the geo-
graphical north pole. Modified from original provided by By TWCarlson [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons. Accessible at
https://upload.wikimedia.org/wikipedia/commons/f/f7/Azimuth-Altitude schematic.svg

The wavelength spacing is irregular, covering 122 wavelengths from 305 nm to 4000 nm.

Aerosol optical depth, total precipitable water vapor (cm), and equivalent ozone depth

(cm) must be specified by the user. The model does not take into account variations

in atmospheric structure or constituents, and it also lacks a separate computation of

circumsolar radiation, as the direct irradiance is assumed to contain this radiation

component within a 5 degree solid angle.

The Clear Sky model was implemented in MATLAB environment and made to recursi-

vely calculate the irradiances over several points in time, in order to be able to compute

daily, weekly or yearly irradiation spectra. The model inputs are: Latitude, Longitude,

Panel tilt and Azimuth angles, Atmospheric Pressure, time step, Precipitable Water

Vapor, Albedo, Ozone Column thickness and Aerosol Optical Depth. Outputs are

Direct Normal (shown in figure 3.22), Diffuse and Global solar irradiation with clear

skies.
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Figure 3.22: Direct Normal Irradiation as a function of time and wavelength

Special care was taken with the Albedo, Precipitable Water Vapor Column, Ozone

Column Thickness and Aerosol Optical Depth, as those are not readily available neither

straightforwardly measured in weather stations.

The Albedo input is related to the diffuse reflectivity of the nearby environment. It

typically varies from 5% from asphalt pavement up to 55% from fresh concrete [34].

Typical albedo values for western cities range from 10 to 20% [97]. Proximity to deserts

could increase albedo significantly, on the other hand proximity to deep water bodies

tends to decrease it. Given complete weather station data, occurrence of snow could

be accounted in the algorithm by increasing the base albedo value for a few percent,

accordingly to [19] research on satellite imaging over Hartford, USA.

As shown in [34], the seasonal albedo variation in a large city without snow events is

relatively small, although diurnal variation can be as high as 50%. However, there is

little need to correct base Albedo values in cities without snow as the variation mostly

occurs near sunrise and sunset, and there is a approximate linear slope around 12PM.

As there is an approximate symmetry in the daily irradiation pattern between late

morning and early afternoon, this kind of albedo variation cancels itself out for PV

generation purposes.

The Ozone Column was estimated through Latitude and Longitude inputs by means

of the Heuklon empirical model [48]. The Heuklon model parameters, however, were

updated accordingly with data shown in [57].

As the original model reaches numerical singularities when computing sunrise and sun-
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set irradiation, a logical switch was implemented in order to make a linear interpolation

when those singularities are calculated at high zenith angles (Sun near or below ho-

rizon). This procedure introduces computation errors, but those are negligible when

considering the much lower magnitude of irradiation at those extreme angles of inci-

dence and a sufficiently small type step, typically smaller than 15 minutes.

A direct and diffuse solar spectrum is achievable in function of the location, date and

hour of the day 1. Climatic relevant information for PV power generation are obtained
2 from METARs, as well as historic of events related to raining, snow, haze, mean

visibility, air pressure and relative air humidity.

Applying the SPCTRL2 model as described in Appendix B, daily solar incidence is

simulated, obtaining the values of direct, diffuse and global solar radiation spectrum.

This irrandiance represents the solar power arriving at a tilted plane in a cloudless sky.

The spectral global irradiance on an tilted surface is represented by the expression

shown in (B.34):

Iλ = Idλ cos (θ) + Isλ

{
Idλ cos (θ)

H0λD cos (Z)
+

[(
1 + cos (T )

2

)(
1− Idλ

H0λD

)]}
+ (3.65)

+
(Idλ + Isλ) rgλ (1− cos (T ))

2

The angle of incidence θdepends on the solar zenith angle Z, tilt angle T , Sun azimuth

A and surface azimuth Aϕ, as shown in equation (B.35):

θ = cos−1 (cos(Z) cos(T ) + sin(Z) cos(A− Aϕ) sin(T )) (3.66)

The SEDES2 model, also described in Appendix B, modifies this irrandiance spectrum

according to the reported cloud cover index in order to account for the additional

scattering and reflections. These modifiers use a quadratic equation with the clearness

index Kt and six empirically derived constants, as shown in (B.36):

1http://www.nrel.gov/solar radiation/data.html
2http://www.wunderground.com/
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ICλ =

[
A1λ +

A2λ
cos (Z)

+

(
B1λ +

B2λ
cos (Z)

)
Kt +

(
C1λ +

C2λ
cos (Z)

)
K2
t

]
Iλ (3.67)

where the clearness index is defined as the ratio between the Global Horizontal Irradi-

ance (H) and the extraterrestrial irrandiance H0 projected over the surface area:

Kt =
H

H0 cos (Z)
(3.68)

In practice, the clearness index Kt is approximated from the cloud cover Cw by means

of the approximated model studied in [95]:

H = H0

[
z1

(√
TMax − TMin

)
+ z2

(√
1− Cw

8

)]
(3.69)

Equation (3.69) was developed as a method to provide estimates of daily global radi-

ation as input for the Crop Growth Monitoring System of the European Union. Tmax

and TMin denote the maximum and minimum daily temperature as informed in the

METAR. The cloud cover index Cw in this formulation must be given in octas, a me-

asurement of how many eighths of the sky are obscured by clouds. The coefficients z1

and z2 have to be fitted to the observations, as they are location and season depen-

dent. Denoting the temperature variation as ∆T and the complement of Cw as Cw,

substituting (3.69) in (B.36) yields:

ICλ =

[
A1λ +

A2λ
cos (Z)

+

(
B1λ +

B2λ
cos (Z)

)([
z1

(√
∆T
)

+ z2

(√
Cw

)])
sec (Z)

]
Iλ+

(3.70)

+

[(
C1λ +

C2λ
cos (Z)

)([
z1

(√
∆T
)

+ z2

(√
Cw

)])2

sec2 (Z)

]
Iλ
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ICλ = Iλ



A1λ + A2λ sec (Z)

(B1λ +B2λ sec (Z))
√

∆T

(B1λ +B2λ sec (Z))
√
Cw

2 (C1λ + C2λ sec (Z))
√

∆TCw

(C1λ + C2λ sec (Z)) ∆T

(C1λ + C2λ sec (Z))Cw



T 

1

z1

z2

z1z2

(z1)2

(z2)2


(3.71)

where the coefficients z1 and z2 are seasonally updated by means of the model op-

timization routine. In practice, the model optimizes the six irradiation components

denoted in (3.71) according to the recent weather and generation history. The spectral

profile determined by the wavelenght dependent coefficients A1λ, A2λ, B1λ, B2λ, C1λ

and C2λ is shown in the Appendix B. If there uncertainties about the solar panels’

azimuth and tilt angle, multiple cloudy skies spectral irradiation profiles ICλcan be

used as inputs, calculated with slightly different geometric parameters.

3.5.2 PV panel model

In order to estimate the daily power density (W/m2), the cloudy sky irradiance ICλ

calculated by SPCTRL2 and SEDES2 must be further modified by solar panels’ spectral

response, electrical and thermal parameters. The solar panel is an array of solar cells

electrically interconnected. The cells are protected from weather and intemperism

by an inert encapsulment material, while a protective film coating is applied on the

backside to provide chemical stability. The glass coating in the Sun facing side provides

chemical protection and additional mechanical support. There is a hard frame that

provides structural integrity to the panel and support to its electric output terminals.

The schematic of a crystaline solar panel is shown in figure 3.23.
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Figure 3.23: Schematic of a crystalline silicon solar panel

The reflectivity of the glass coating is the first component that modifies the incident

irradiation, directly reflecting a fraction of it back to the sky. It is modelled by the

reflectivity profile of the glass, which is a function of wavelength. Silicon and glass

reflective coefficients are provided by [39].

The spectral response is an important cell characteristic that informs how much energy

is absorbed from a photon in a given wavelength. It peaks at the optimum wavelength,

the point which the photon has the exact energy to move an electron over the band-

gap to the conduction band. Shorter wavelengths have excess energy that dissipates

through emission of new photons with lower energy and bigger wavelengths. Too large

wavelengths simply do not have enough energy to move the electron to the conduction

band. The typical spectral response of a silicon cell is shown in Fig. 3.24.
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Figure 3.24: Typical spectral response of the polycrystalline silicon cell (blue) and glass
reflectivity per wavelenght (red)

In order to predict PV power generation, the first step is to encounter the typical

spectral response of a polycrystalline Silicon panel. Points3 were captured and, by

means of simple linear interpolation, the response coefficients for each wavelength can

be obtained, giving an approximation of the spectral response function g(λ). The

imperfections in the ability of solar cells to convert photons into electricity is modeled by

the External Quantum Efficiency ηEQE (EQE). The maximum EQE of a photosensitive

device refers to the percentage of photons hitting the device’s photo-reactive surface

that produce charge carriers at the peak of the spectral response. It is typically circa

80% for most monocrystalline Silicon, 2 to 3% lower to poly-Si. Maximum quantum

efficiency for thin film solar cells depends on the photovoltaic material, and is usually

lower than both mono-Si and poly-Si. Due to different semiconductor bandgaps, the

optimum wavelengths also depends on the material.

Combining the sky’s irradiance ICλ, the response function g(λ), the cell maximum

External Quantum Efficiency (EQE) ηEQE and the glass spectral reflectivity function

r(λ) gives the average power absorbed by the cell during a given period of time:

uCELL =
1

τ

∫ τ

0

∫
Λ

ICλ(λ)ηEQEg(λ)r(λ)dλdτ (3.72)

The set of results is then integrated in time (24 hours) in order to bring forth the

average daily PV power density, using a 15 minute window, giving the PV absorbed

spectrum, illustrated in figure 3.25. This model employs information contained in the

3http://sst-solar.com/images/downloads/solarsysdatenblattqcellsQ6LTT.pdf
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solar panel’s data-sheet, and is applicable to mono-Si, Poly-Si cells. Thin film cells can

also be simulated, as long as spectral and quantum efficiency data is available.

Figure 3.25: Example of Extraterrestrial Solar irradiation (AM0), ASTM Standard Spectrum
(AM1,5) in cloudless sky and Absorbed Spectrum by a typical poly-Si cell (AM1,5)

Equation (3.72) models the photovoltaic absorption an losses. Further electric losses

occur in the solar panel and inverter due to The model parameters are the effective area,

the solar cell fill factor and the panel and inverter thermal coefficients. The resulting

solar panel power can then be written in (3.73) as a function of these parameters:

uPV = AeffηFFη∆TyCELL (3.73)

The effective area Aeff is the solar panels’ light absorbing area, which is the total area

minus the area occupied by electric contacts and structural elements. Most data-sheets

for mono-Si and poly-Si cells presents planform drawings of the solar panels which can

be employed to obtain the effective area. Due to the different manufacturing process

employed for the thin film cells, electrical contacts are not always visible and are

sometimes not shown in these data-sheet drawings. An estimate must be made at this

case employing information from handbooks or from another data-sheet of a cell made

with the same material and with similar efficiency. For the crystalline silicon solar

panels simulated in this article, the value of 93% was found by averaging the effective

area calculated from three different solar cell manufacturers. The total area can be

either taken from the solar plant specifications or estimated from its parameter and

PV generation history.
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The cell fill factor measures the squareness of the solar cell current-voltage curve. It

is a reasonable indirect measurement of the internal quantum and electrical losses, as

the physical phenomenons that limit voltage and current at maximum power point are

related to charge carrier recombination and internal thermodynamic losses, internal and

electrical contact joule effect losses (shunt and series resistance). It can be calculated

with the cell’s nominal Short Circuit Current ISC , Open Circuit Voltage VOC and

Nominal Peak Power PNom, accordingly to the relation shown in equation (3.74):

ηFF =
PNom
VOCISC

(3.74)

As most semiconductor materials have properties highly dependent on temperature and

the standards usually demands the panel to be tested at 25 degrees Celsius, temperature

coefficients kT are usually given in data-sheets and are employed to model the efficiency

variation due to ambient temperature.

η∆T = 1− kT∆T (3.75)

where ∆T is the difference between the ambient temperature and the 25 Celsius refe-

rence.

The maximum quantum efficiency measures the percentage of electrons that get into

conduction band for each absorbed photon in the optimum wavelength.

Gathering all these information, we have validated our estimation for the overall panel

efficiency by comparing the simulations to the real efficiency of the module under the

pattern spectrum AM 1.5. The real efficiency and the simulations results stood in a

narrow range around 15%.

3.5.3 State space representation

State space models are relatively rare in papers, but recently scholars have been em-

ploying this tool to produce hybrid-physical PV forecasting algorithms [10]. Usually,

state space approaches employ the Kalman filter to provide the entire forecast [101],

71



tuning parameters for ANN or machine learning approaches [13], or to simplify and

evaluate solar irradiation models [44].

In this dissertation, the Kalman filter is used to combine the PV generation history,

weather measurements and estimates of the PV production based on solar irradiation

and solar panel models featured in subsections 3.5.1 and 3.5.2. Mathematically, equa-

tion (3.51) represents the next day PV generation yPV [k + 1] as linearly dependent

of an autoregressive term yAR[k], an exogenous input term u[k] with p delays and the

noise z[k + 1]:

yPV [k + 1] = yAR[k] +

p∑
i=1

(u[k − i+ 1]) + z[k + 1] (3.76)

The input term u[k] is a linear combination of the several weather variables provided by

the METARs (Table 3.2), the solar irradiance calculated with SPCTRL2 and SEDES2

shown in equation (3.71), and the estimated PV generation as calculated in equation

(3.73). It is advisable to produce more than one estimation of PV generation, using

multiple combinations azimuth and tilt angles in order to account for unknown geome-

tric parameters or positioning errors. Unknown parameters require wider separation

of the azimuth and tilt pairs, while when compensating positioning uncertainties, the

parameters just need to be in the vicinity of the measured instalation angles.

As shown in subsection 3.4.5, it is possible to transform the difference equation (3.76)

in a state space model in the companion form, expressed in matricial form as:

XPV [k + 1] =



a1 a2 · · · an+1 an

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


XPV [k] +


b11 b12 · · · bpm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

U [k] +W [k]

(3.77)

The output equation is given by expression (3.78):
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yPV [k + 1] =
[
1 0 · · · 0

]
XPV [k + 1] + v[k + 1] (3.78)

Rewriting the equations in matricial form gives the final load State space model:

XPV [k + 1] = AXPV [k] + BU [k] +W [k] (3.79)

yPV [k + 1] = CXPV [k + 1] + v[k + 1] (3.80)

For the PV generation forecast, the state space formulation allows a wider degree of

freedom when manipulating inputs. There is no need for stationarity for the generation

and inputs time series, as is required by ARMA and other Box-Jenkins derived methods.

Due to its linear formulation, it is more resilient to the curse of dimensionality than

ANN and machine learning approaches. State space also is used in conjunction with

Kalman filter predictors, which adds robustness through the application of an double

state/measurement noise model and is a dependable data fusion technique, a useful

trait for adaptive hybrid-physical forecasting with several input variables.
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4 LOAD AND GENERATION FORECASTING

Economic development, throughout the world, depends directly on the availability of

electric energy, especially because most industries depend almost entirely on its use.

The availability of a source of continuous, cheap, and reliable energy is of foremost

economic importance. Load forecasting is vitally important for the electric industry

in the deregulated economy. It has many applications including energy purchasing

and generation, load switching, contract evaluation, and infrastructure development.

A large variety of mathematical methods have been developed for load forecasting. In

this chapter, various approaches to load forecasting are discussed.

High renewable energy penetration grids are challenging to balance due to inheren-

tly variable generation weather-dependent energy resources. Forecasting photovoltaic

generation is a tool for mitigating resource uncertainty and reducing the need for sche-

duling of ancillary generation. Several forecasting methodologies have been developed

to target different forecast time horizons.

The objective of this chapter is to study the dynamic state estimation problem and its

applications to electric power system analysis. Furthermore, the different approaches

used to solve this dynamic estimation problem are also discussed in this chapter. Sec-

tion 4.1 proposes the Kalman based forecasting algorithm, while Section 4.2 deals with

photovoltaic generation forecasting.

4.1 Load Forecasting

Load forecasting is way of estimating what future electric load will be for a given

forecast horizon based on the available information about the system. The forecast

horizon refers to the prediction time horizon, which can be long-term, medium-term or

short-term. While there are not normative boundaries between these three horizons,

authors usually define long term as forecasts aiming at load prediction for more than

a year ahead, medium term from one week and up to one year ahead, and short term

forecasts as predictions targeting the next hours and up to one week in the future

[47, 90]. In this work, only short-term load forecasting is analysed.
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In short-term load forecasting (STLF), the future load on a power system is predicted

by extrapolating a predetermined relationship between the load and its influential vari-

ables, namely time and/or weather. Determining this relationship is a two stage process

that requires identifying the relationship between the load and the related variables

and quantifying this relationship through the use of a suitable parameter estimation

technique. A prerequisite to the development of an accurate load-forecasting model

is an in-depth understanding of the characteristics of the load to be modeled. This

knowledge of the load behavior is gained from experience with the load and through

statistical analysis of past load data. Utilities with similar climatic and economic envi-

ronments usually experience similar load behavior, and load models developed for one

utility can usually be modified to suit another.

However, as shown in Chapter 3, the number of variables which are are related to the

load and/or the photovoltaic generation can amount to a very large number of inputs.

This poses a risk of overfitting the model due to the so-called curse of dimensionality,

and relates to the fact that the convergence of any estimator to the true value of a

smooth function defined on a space of high dimension is very slow [60], requiring an

unpractical volume of data to optimize the model parameters. In that sense, it is

advisable to perform a feature selection procedure to reduce the dimensionality of the

prediction problem.

In this work, a methodology that combines feature selection by means of Principal

Component Analysis (PCA), prediction by a modified Kalman filter with series Gray

regression and full variance tracking is proposed. The forecasting system is illustrated

in the schematics shown in Figure 4.1:

The general data model assumes three main sets of variables: input, output and mea-

surement variables, as shown in Figure 4.1. The raw input vector Û [k] drive the real

system, while the forecasting scheme is driven by the U [k] input, a transformation

of Û [k] that creates new variables through the nonlinear transformations discussed in

Chapter 3, then applies a normalization procedure and perform principal component

analysis to reduce dimensionality. The input U [k] can be corrupted by the noise term

W [k], which represents uncertainties about the filter state. The measurement variable

y[k] represent the output of the real system corrupted by a measurement noise v[k].

Both are also inputs for both the modified Kalman filter and the Grey model predictor.

The Grey model produces a forecast ŷG[k] that is used to enhance predictions for the

modified Kalman filter state. If the filter contains a reasonable state space model of

75



Figure 4.1: Proposed data model for Load forecasting

the real system, its output ŷ[k] is a forecast of the real system output. The prediction

error e[k] can be obtained by subtracting ŷ[k] of y[k]. In this paper, k denotes the

process time step, which is equal to a day.

The load prediction is performed for two different electric distribution systems, located

in the cities of Brasilia and Leipzig, in Brazil and Germany, respectively. Brasilia’s time

series contains information about peak, average and base load for the period between

2001 and 2010, aggregated as a single substation. Leipzig demand history contains

similar data from 2001 to 2003, however measured in eight substations.

For both cities, the forecasting system employs an extensive set of candidate input

variables. Eight different input sets are used to evaluate the impact of the additional

variables. These sets are labeled from “A” to “Z” in order to shorten the notation

in the Chapter 5. The nine input sets, their designation, where they are listed, the

number of variables and their labels are shown in Table 4.1:

Input set A is only concerned with temperatures, and represent the classical short-term

load forecast variables. Input set B uses all variables present in the METAR reports,

taking full advantage of the several measurements taken in the aerodrome weather

stations. Input set C contains the temperature in both logarithm and degree-days

parametrizations. Input set D contains all weather variables discussed in subsection

3.4.1, set E the variables discussed in subsection 3.4.2, set F concerns tariffs and is
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Table 4.1: Listing of the candidate input variables

Set description Variables listed in Size Input Sets

Temperatures Eq. (3.12) 3 A

METARs Table 3.2 22 B

Degree-days Eq. (3.14) 10 C

Full weather Eqs. (3.14), (3.25), (3.31), (3.33) and (3.37) 39 D

Socioeconomic Table 3.7: 15/3 E

Tariffs Eq. (3.43) 75/0 F

Events Table 3.8 14 G

Sunlight Eq. (3.33) and Eq.(3.37) 10 H

All All variables from input sets D, E, F and G. 153/66 Z

discussed in subsection 3.4.3 and input set G the event variables described in subsec-

tion 3.4.4. Set H deals with solar irradiation and illuminance variables, described in

subsections3.4.1.4 and 3.4.1.5. The last input set, “Z”, is the union of sets D, E, F, G

and H. For load forecasting in Brasilia, all inputs are available, amounting to 153 va-

riables in input set Z. For Leipzig, forecasts are done with a maximum of 66 variables,

because tariff history is not available and only 3 socioeconomic variables are employed:

population, GDP and GDP per capita.

The state space model can accomodate input delays in the form of extra inputs gene-

rated by cascade lag operators. In the proposed forecasting algorithm, however, the

state space model parameters are unknown. Every additional input means an additi-

onal coefficient that requires periodical optimization. Adding too much inputs is thus

detrimental to the quality of the parameter fitting, either increasing the estimation er-

rors in the model coefficients or requiring a larger set of data to obtain a given precision

in the parameter optimization. It is thus advisable to reduce the model dimensionality

to enhance its computability and forecast accuracy, which is accomplished by means

of preprocessing and feature selection.

The underlying nonlinearities of a power system and some of its physical parameters are

usually known a priori. However, some of the, mostly minor, nonlinearities cannot be

modelled accurately due to the system complexity and constraints on physical ability

to measure. This is thus seen as a partially known system and may be modelled as a

grey box [59]. The proposed forecasting algorithm employs an autoregressive modified

rolling grey model to account part of these nonlinearities and unknown dynamics. This

grey box model adds its prediction as an additional input to the Kalman filters.
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The remainder of this section is divided in three parts. In subsection 4.1.1, the prepro-

cessing and feature selection steps are explained. In subsection 4.1.2, the Grey model

predictor is presented. Subsection 4.1.3 details the Kalman filter application used to

provide the load forecasts.

4.1.1 Preprocessing and Feature selection

The feature selection routine begins with a preprocessing step that prepares the can-

didate variables to be combined and selected in the principal component analysis,

normalizing mean and variance of the candidate inputs.

The mean and variance normalization is a simple procedure designed to enforce unifor-

mity in the amplitude scale of the candidate variables, except for those boolean. This

is important to minimize numerical errors. Taking a sample of a given length n of the

ith candidate variable Û0i, which has mean U0i and variance σ2
0i, it can be normalized

to zero mean and unitary variance by the linear operation as follows:

Û1i =
(Û0i − U0i)

σ0i

(4.1)

This forecasting system employs PCA to search and select the input variable set that

better explains the variance in electric demand, by means of linear combination of the

candidate variables that generate a set of orthogonal inputs, called principal compo-

nents. A method to reduce dimensionality is to select the j components with higher

variance that explain a given percentage of the candidate set total variance, discarding

the other components altogether.

Composed of more than two hundred variables, the original set displays high crosscor-

relation between the input themselves, as presented in Fig. 4.2.

PCA is applied at a training sample of the d0 candidate variables, assembled in this

forecasting system from their previous training period values. The size of d0 can be as

high as 280, when all candidate inputs presented in Chapter 3 are used. The objective

is to reduce the dimensionality of the input set from d0 to d.
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Figure 4.2: Correlation between several candidate variables and peak demand, which corres-
ponds to the projection in the planes x = 0 or y = 0

By means of a SVD decomposition, the left-singular vectors, the singular values and

the right-singular vectors are obtained. The d singular values that represent a given

percentage of the total variance are selected, their quantity determining the dimension

in the selected input set. The left and right-singular vectors are then employed to

produce the transformation matrix T . Size of d is chosen by exhaustive search, as a

compromise between the mean and maximum error metrics, mitigating overestimation.

For prediction, as the next day d0 values of the candidate variables become available,

they are transformed by T in a optimized input of d variables, which are used for the

prediction of next day electric load.

In order to adapt to seasonal variations, this process is repeated at every model update

iteration. Illustrating the reduction in dimensionality, the crosscorrelation of an opti-

mized input set with 126 variables is shown in Fig. 4.3, obtained from 280 candidate

inputs at the first iteration.

4.1.2 Grey model forecasting

During the last two decades, the grey systems theory has been showcased in several

papers [59]. Its main advantage is the ability to deal with partially parametrized non-

linear systems without requiring vast amounts of high quality information. It has been

widely and successfully applied to various systems in the most diverse fields, such as

science, technology, economics, finance, sociology and forecasting. In [38], a Grey-
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Figure 4.3: Correlation between the 126 selected variables and peak demand, which corres-
ponds to the projection in the planes x = 0 or y = 0

regression variable weight combination model achieves good precision for MTLF and

LTLF without needing additional explicative variables. [106] proposes a grey model

with a time varying weighted generating operator to extract information concealed in

recent data. The method is validated in five case studies, the first regarding hourly

prediction of a grid connected photovoltaic system and the third applying the method

to forecast Russia’s yearly energy consumption.

In this work, the Grey model is employed to enhance the Kalman based predicti-

ons, adding robustness and support to nonlinearities and unknown dynamics. As this

algorithm is executed in series with the Kalman filter and also requires parameter op-

timizations, the simplest autoregressive case is chosen, leaving the input processing to

the State space model.

Using the same state vector X[k] (size N) defined in equation (3.60) as the Grey input,

the second step recursively employs the FGM(1,1) model presented in [98] to forecast

the next day load. In order to extract more information from the Grey input, a constant

is concatenated as the first entry in X to form XF , as shown in eq. (4.2).

XF [i] =

0 i = 1

X[i− 1] i = 2, 3, ..., N + 1
(4.2)

The accumulated generating operation (AGO) is then applied to the grey input by

means of eq. (4.3) to generate the intermediate variable XG:

XG(i) =
i∑

j=1

XF (j), i = 1, 2, ..., N (4.3)
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The Grey exponential model, based on XG is generated by eq. (4.4):

dXG[k]

dk
+ αXG[k] = β (4.4)

Eq. (4.4) is called the first order Grey differential equation, where the Grey develop-

mental coefficient α and Grey control parameter β constants have to be estimated.

The solution with initial condition XF [1] = 0 is given by eq. (4.5):

XG[k + 1] =
β

α

(
1− e−αk

)
(4.5)

The developmental coefficient and Grey control parameter are determined by least-

squares method in eq. (4.6):

[α, β]T = (F TF )−1F TXG (4.6)

where F is defined by (4.7):

F =


−0.5(XG(1) +XG(2)) 1

−0.5(XG(2) +XG(3)) 1
...

...

−0.5(XG(N) +XG(N + 1)) 1

 (4.7)

With α and β obtained, eq. (4.5) can be used to forecast a future value of the inter-

mediate variable XG. As the first element of the state vector X[k] is also the output

variable, performing an inverse AGO (eq. (4.8) ) over the predicted XG[k+ 1] yields a

forecast ŶG[k + 1] for the future electric load Y [k + 1]:

ŶG[k + 1] = XG[k + 1]−XG[k] (4.8)

The grey prediction ŶG[k+ 1] is then used as an additional input in the Kalman based

predicting algorithm.
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4.1.3 Proposed Kalman based adaptive prediction scheme

Unlike the batch filters, which consider the complete set of data in order to assemble

a model and then forecasting future data, Kalman filters are adaptative. Therefore,

after each prediction step, new values for state space parameters are updated in Kalman

filters. Such feature reduces considerably the computational complexity of the Kalman

filter in comparison with Box-Jenkins time series approaches, such as AR and ARMA

models.

In addition, the input variables of AR and ARMA filters should be stationary and

unbiased. The bias is frequently removed by means of differentiation, which cannot

be applied to data with exponential behavior, as population. Kalman filters, instead,

are able to work with every sort of data without previous mathematical treatment.

However, the large amount of input variables would end up bringing distortion to the

comparison between batch and Kalman filters. Therefore, a first step was adopting

the same set of batch filters inputs for Kalman ones. This prevents that different data

structure leds to misleading conclusions.

The Kalman filter, in its most basic form, is a linear recursive data processing algorithm

that makes optimum estimates of a variable of interest by combining the knowledge

of system dynamics (embedded in its state-space model), the statistical description of

system noises and measurement errors and the information about the initial conditions

of the system [56]. The state-space representation is a discrete time domain model

that relates inputs, output and state variables through two sets of difference equations,

shown in (4.9) and (4.10).

X[k + 1] = AKX[k] +BKU[k] + W[k] (4.9)

Y[k + 1] = CKX[k + 1] +DKU[k + 1] + V[k + 1] (4.10)

This work presents an application of the discrete-time Kalman Filter as a load fore-

casting tool that does not need information about the distribution grid topology. This
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filter combines the state space model, initial conditions, the previous electricity de-

mand time series and its related exogenous input variables as presented in Appendix

A. The output is a daily recursive prediction for electricity demand in the next day.

The processing is done in 4 phases and 8 steps.

• Phase Zero - Model Optimization

– Step 1: Calculate State Space Model Coefficients

• Phase I - Prediction (occurs before the observation)

– Step 2: State Vector Estimation;

– Step 3: Error Covariance Matrix Estimation;

• Phase II - Filter Update (occurs after the observation)

– Step 4: Kalman Gain determination;

– Step 5: State Vector update with output observation;

– Step 6: Error Covariance Matrix update with output observation;

• Phase III - Variance Estimation

– Step 7: R vector Estimation;

– Step 8: Q Matrix Estimation.

In the predicting scheme, each time step represents a day. At the very first time

step, an initialization procedure is executed in order to set the filter model order and

initial conditions. Phase Zero is not performed at every time step, as it is the most

computationally expensive phase. It is perfomed for the first filter iteration, and then

at every T -nth time step it is executed in order to update the state space model

coefficients. Phases I to III are recursively performed at each time step. The process

flow is shown in Fig. 4.4.:

Each phase produces its outputs using its specific inputs, which in turn are measure-

ment values or the outputs previously generated by the other phases. The relationship

between these inputs, outputs and predicting phases are shown in Table 4.2, as well as

the data flow.
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Figure 4.4: Box Diagram of the proposed Kalman based predicting scheme

Table 4.2: Inputs and outputs per predicting phase

Phase Inputs Outputs

Initialization
Demand history Model Order

Exogenous inputs history Initial conditions

Phase Zero

Model Order

Initial conditions Model parameters

Previous Demand

Previous exogenous inputs

Phase I

Model parameters

Initial conditions Demand Prediction

Updated state vector State vector estimate

Updated error covariance Error covariance estimate

Q matrix estimate

Phase II

State vector estimate Updated state vector

Error covariance estimate Updated error covariance

Demand Measurement Kalman Gain

R covariance estimate

Phase III

State vector estimate

Updated state vector Q matrix estimate

Demand Prediction R covariance estimate

Demand Measurement
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The initialization procedure requires a sizeable sample of both demand and exogenous

inputs historical time series in order to select the model order and provide reasonable

initial conditions for Phase Zero and Phase I. These initial conditions are only needed

for the first time step, while the selected model order is permanently used by the

predicting scheme. For the second time step onwards, Phase Zero employs previous

values of demand and exogenous inputs, which were sampled during the predicting

scheme operation. Phase I relies on the corrected state vector, error covariance and

estimated Q matrix, which provide all the information needed to perform the prediction

steps.

4.1.3.1 State space Model

The Kalman filter [50, 56] requires a state-space representation of the system. It is a

discrete time domain model that relates inputs, output and state variables through two

sets of difference equations, shown in (4.9) and (4.10). In this Kalman based predicting

scheme, the following choices and premises were chosen to simplify the optimization of

the model parameters:

1. The state variables are the last N values of the Electricity Demand, where N is

the model order;

2. The first state variable is a linear combination of all state variables and the inputs;

3. The inputs only affect the first state variable;

4. The first state variable is also the Prediction Output

5. The inputs do not affect the Prediction Output (no instant transmission term).

Analisys of the electricity demand time series shows that there is a correlation between

the demand in a particular day and the demand of the previous days. Also there is

correlation between it and some exogenous variables related to climate, population

and economy. The core of this predicting scheme is to represent the demand as a

linear combination of its previous values and the exogenous inputs. The particular

choice of state variables is employed in order to permit direct calculation of this linear

combination. That also justifies why the first state variable is modelled to be the

predicted output. As the exogenous inputs can not affect the demand of the previous
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days, those inputs could only act over the current prediction. Lastly, as the output and

the first state variable, there is no need for direct coupling between inputs and output.

A state-space model that perfectly fits this situation is one in the canonical controllable

form, except for the lack of normalization towards Matrix BK . The first state variable

is updated at every time step as a linear combination of all state variables and inputs.

The other state variables are the last N − 1 values of the output. The output at every

step is arbitrarily set as equal to the first state variable, and no instant transmission

term (Matrix DK) is employed. Mathematically, this model has the representation

shown in (4.11) and (4.12).

X[k + 1] = AKX[k] +BKU[k] + W[k] (4.11)

Y[k + 1] = CKX[k + 1] + V[k + 1] (4.12)

Disregarding the noise inputs W[k] and V[k], the matricial representation for this

model is shown in equations (4.13) and (4.14):


x1[k + 1]

x2[k + 1]
...

xn[k + 1]

 =



a1 a2 · · · an−1 an

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





x1[k]

x2[k]
...

xn−1[k]

xn[k]



+


b1 b2 · · · bm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




u1[k]

u2[k]
...

um[k]

 (4.13)

y[k + 1] =
[
1 0 · · · 0

]

x1[k + 1]

x2[k + 1]
...

xn[k + 1]

 (4.14)
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In equations (4.9) and (4.13), Matrix AK models the dependence of the next state (and

consequently the next output) with the current system states. In a comparison with

the batch Schemes, it models the autorregressive behaviour of the system. Matrix BK

models the dependence of the next state with the current system inputs. The remaining

W[k] terms models the imperfections in the state-space model, as uncertainties in the

inputs, non-linearities and intrisic stochastic process that occur in the real system.

Ideally, W[k] approaches a normally distributed random vector with zero mean and

covariance matrix Q. In equation (4.10) and (4.14), Matrix CK models the coupling

between the output and the system state. The variable V[k] models noise in the energy

demand measurements, as well as imperfections in the state to output coupling. Ideally,

V[k] approaches a normally distributed random variable with zero mean and variance

R.

4.1.3.2 Initialization and Phase Zero

The initialization procedure sets the initial parameters that the Kalman based predic-

ting scheme needs in order to operate reliably. The first parameter to be set is the

model order, which sets how many state variables are to be employed. As the training

dataset, the scheme needs from 180 to 365 time steps of past data, which are the pre-

vious electricity demand and exogenous input time series. A range of candidate model

orders is then simulated over the training dataset, and total squared error (TSE) of

predictions is calculated. The candidate model order N that achieves the lowest sum of

TSE’s is selected for the predicting scheme. The system state, error covariance matrix,

Q and R parameter values are stored in order to provide initialization values for the

forthcoming processing phases.

Phase Zero is performed after the scheme’s initialization and at every t time steps.

Its objective is to optimize the coefficients of the state space model. Having defined

the model order N , it is needed to determine the matrices’ elements. Due to the

specific state space representation that is employed for the predicting scheme, shown

in (4.13) and (4.14), only the elements in the first row of AK and BK matrices must

be determined by linear least squares. Isolating the first row terms in equation (4.13)

and ignoring the noise terms, one obtains equation (4.15):
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x1[k + 1] =


a1

...

an


T 

x1[k]
...

xn[k]

+


b1

...

bm


T 

u1[k]
...

um[k]

 (4.15)

From (4.15) and due to the structure of CK , it is straightforward that:

y[k + 1] =



y[k]
...

y[k + 1− n]

u1[k]
...

um[k]



T 

a1

...

an

b1

...

bm


(4.16)

For the sake of stability and precision, the elements are computed via an iterative

Generalized Minimum Residual (GMRES) method.

4.1.3.3 Phase I - Prediction

Phase I is performed in two steps, resulting in a estimate of the system state X̂[k +

1], a prediction ŷ[k + 1] for the electricity demand in next day and in a estimate of

the error covariance matrix P̂[k + 1]. electricity demand prediction for the next day.

It is important to notice that Phase I occurs before observation, which means that

the estimates and prediction are calculated before the measurement of the electricity

demand y[k + 1] is available.

The first step employs equations (4.17) and (4.18) to estimate the system state X̂[k+1]

and calculate the predicted output ŷ[k+1] for next time-step. This estimation employs

the stored data X[k] of current time-step state and the exogenous inputs U [k]. Climate

variables are calculated with the forecasted values of temperature for the next day,

population variable is extrapolated from the census trends and the calendar variables

have exact values.

X̂[k + 1] = AKX[k] +BKU[k] (4.17)
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ŷ[k + 1] = CKX̂[k + 1] (4.18)

The second step evaluates the impact of the system noise over the predictions. This

objective is reached with the estimation of a Error Covariance Matrix P̂[k + 1] for the

estimated values of the state variables. The estimation employs the AK matrix, the

corrected Error Covariance Matrix calculated in the previous time-step P[k] and Q[k],

the current estimation for covariance of W[k]. The step is shown in equation (4.19).

P̂[k + 1] = AKP[k]AK
T +Q[k] (4.19)

4.1.3.4 Phase II - Filter Update

The Filter update phase occurs after the measurement of electricity demand, performed

in three steps. It compares the prediction ŷ[k + 1] with the measured value y[k + 1]

and with this information the estimated state X̂[k + 1] and error covariance matrix

P̂[k + 1]are respectively updated toX[k + 1] and P[k + 1].

The first step evaluates the probable impact of the observation’s variance to the cor-

rection of the state estimation. The Kalman Gain is the wheighting factor by which

it is determined how much the observation will be taken into account when updating

the State Vector and the Error Covariance Matrix. The higher the observation error

variance R[k], less confidence will be placed over the observation values to update the

filter state. The Kalman Gain can be obtained by equation (4.20):

K[k + 1] = P̂[k + 1]CK
T (CKP̂[k + 1]CK

T +R[k])
−1

(4.20)

The second step corrects the estimated system state with the observation information

wheighed in by the Kalman Gain, which is given in (4.21).

X[k + 1] = X̂[k + 1] + K[k + 1](Y[k + 1]− CKX̂[k + 1]) (4.21)
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The third step of Phase II updates the state estimate error covarianceP with the

observation information, also weighed in by the Kalman Gain, as shown in Eq. (4.22).

P[k + 1] = (I −K[k + 1]CK)P̂[k + 1] (4.22)

In (4.22), I represents the Identity Matrix.

4.1.3.5 Phase III - Variance Estimation

One of the biggest challenges to Kalman filtering schemes is the determination of suita-

ble values for the Q and R covariance terms. Previous knowledge of these parameters

is seldom available, specially when the model does not represent a definite physical

system. Phase III adresses this shortcoming in this proposed Kalman based predicting

scheme. There is a recursive procedure that estimates the most probable value for R

and Q at every time step.

In the first step, a R variance tracking routine was employed based on the estimation

of V [k]. Isolating it in (4.10) gives the equation (4.23):

V[k] = y[k]− CKX[k] (4.23)

It is then possible to estimate V[k] by subtracting the predicted output CKX[k] of

the measured output Y[k]. By definition, R is the variance of theV[k] from the first

to the k-th time step. As the demand measurements are consequence of a very high

number of stochastic process (multiple loads, multiple measurement systems, faults,

grid losses and reading errors), one can suppose that abrupt changes in statistical

parameters of a isolated process does not necessarily translates into a abrupt change

of the statistical parameters of the measurement process. As it is very unlikely that

several of those stochastic processes will change in coordination, one can conclude

that abrupt variations in the R parameter are also improbable. This approximate

continuity is modelled in the tracking routine by weighing in the value of R estimated

for the previous step, as shown in (4.24):
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R[k + 1] = k−1R[k] + (k − 1)k−1V ar(V[k]) (4.24)

In the second step, the estimation of the Q Covariance Matrix starts by isolating the

W[k] vector from its definition:

W[k] = X[k]− X̂[k] (4.25)

Also by definition, Q is the covariance matrix of the vector W[k]. Considering also that

Q does not change abruptly, a similar weighing routine is employed to determine it.

However, X[k] is a function of the Kalman Gain (4.21), which in its turn is a function

of R. As by definition Q and R measure diferent model imperfections, they are thus

modelled as independent variables and it is necessary to subtract theR variance from

Q in the innovation 4Q:

4Q =

√
(V ar(W[k])− In · V ar(V[k]))2

Q[k + 1] = k−1Q[k] + (k − 1)k−14Q (4.26)

Where In denotes the identity Matrix of order n. After this last update, the algorithm

can move ahead to the next Time Step (which would bek + 2) and repeat the process,

starting from step 1.

4.2 Photovoltaic Generation Forecasting

It is a widely reported fact that photovoltaic (PV) energy has been undergoing a rapid

development in recent years [85, 105]. Unlike conventional power sources, PV electricity

output is not dispatchable, as it depends entirely on the solar irradiance incident over

the solar panels, which is a stochastic variable. Integration of this kind of intermittent

energy sources is challenging in terms of power system management in both large and
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small grids. Indeed, PV energy is a variable resource that is difficult to predict due to

meteorological uncertainty. As such, being able to predict the future behavior of a PV

plant is very important in order to schedule and manage the alternative supplies and

the reserves.

The main challenge of forecasting PV generation is its variability. Apart from occa-

sional technical failures, conventional sources are easily dispatchable in the sense that

future production can be precisely planned. This is not the case with PV power, which

closely depend on the solar resource, site geography and weather conditions. Extensive

reviews of the state of the art in solar power forecasting are available in [10]. Forecas-

ting methodologies can be largely characterized as physical or statistical. The physical

approach combines solar irradiation and PV system models to predict generation, whe-

reas the statistical approach primarily confides on past data to generate forecast, with

little or no reliance on irradiance and PV models. Hybrid approaches employ both

irradiation and PV modeling with time series analisys.

In this work, a Kalman based adaptive method for day ahead short-term PV genera-

tion forecasting is presented. Very similar to the methodology developed to electric

load forecasting, the predicting algorithm combines feature selection with PCA, au-

toregressive Grey box modeling and a modified adaptive Kalman filter, producing a

robust yet computationally light algorithm to forecast PV production. Expanding on

recent applications of Kalman filters and state space modeling for photovoltaic forecast

[44, 13, 101], the proposed method employs extended input sets comprised of weather

measurements and solar irradiation estimations obtained from SPCTRL2 and SEDES2

models [16, 77]. The input set can be generated from either a single weather or from

a group of weather stations. The forecasting system is illustrated in the schematics

shown in Figure 4.5:

The general data model assumes three main sets of variables: input, output and mea-

surement variables, as shown in Figure 4.1. The raw input vector Û [k] drive the real

system, while the forecasting scheme is driven by the U [k] input, a transformation

of Û [k] that creates new variables through the nonlinear transformations detailed in

Apendix B and discussed in Section 3.5, then applies a normalization procedure and

perform principal component analysis to reduce dimensionality. Û [k] is approximated

by the weather measurements taken from one or from several weather stations. The

input U [k] can be corrupted by the noise term W [k], which represents uncertainties

about the filter state. The measurement variable y[k] represent the output of the real
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Figure 4.5: Proposed data model for Load forecasting

PV system corrupted by a measurement noise v[k]. Both are also inputs forthe modi-

fied Kalman filter and the Grey model predictor. The Grey model produces a forecast

ŷG[k] that is used to enhance predictions for the modified Kalman filter state. If the

filter contains a reasonable state space model of the real system, its output ŷ[k] is a

forecast of the real PV system generation. The prediction error e[k] can be obtained

by subtracting ŷ[k] of y[k]. In this paper, k denotes the process time step, which is

equal to a day.

4.2.1 Grey box model for PV

In this work, the Grey model is employed to enhance the Kalman based predicti-

ons, adding robustness and support to nonlinearities and unknown dynamics. As this

algorithm is executed in series with the Kalman filter and also requires parameter op-

timizations, the simplest autoregressive case is chosen, leaving the input processing to

the State space model.

Equations (4.2) to (4.7) are evaluated at each time step, yielding the Grey box predic-

tion for the PV generation:
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ŶG[k + 1] = XG[k + 1]−XG[k] (4.27)

4.2.2 Proposed Kalman based adaptive PV prediction scheme

The Kalman filter [56] is a time domain technique that relates inputs, output and

state variables through two sets of difference equations, (4.9) and (4.12). In this PV

application, the predicting algorithm consists of the recursive repetition of Eqs. (4.28)

to (4.33). Symbols with a hat stand for predictions, while its absence represent a

corrected estimation. K is the Kalman gain, P is the error covariance matrix for the

state estimate X, and IN denotes the identity matrix of order N .

X̂[k + 1] = AX[k] +BU[k] (4.28)

ŷ[k + 1] = CX̂[k + 1] (4.29)

P̂[k + 1] = AP[k]AT + Q[k] (4.30)

Note that Eqs. (4.28) to (4.30) are calculated before the measurement of the elec-

tricity demand, while the remaining filter equations improve the predictions with the

information gained by the measurement.

K[k + 1] = P̂[k + 1]CT (CP̂[k + 1]CT +R[k])
−1

(4.31)

X[k + 1] = X̂[k + 1] + K[k + 1](Y[k + 1]− CX̂[k + 1]) (4.32)

P[k + 1] = (I−K[k + 1]C)P̂[k + 1] (4.33)
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Adding to the original set of Kalman filter equations, the predicting block also employs

variance estimation steps, shown in Eqs. (4.34) to (4.38)

V[k] = y[k]− CX[k] (4.34)

R[k + 1] = k−1R[k] + (k − 1)k−1V ar(V[k]) (4.35)

W[k] = X[k]− X̂[k] (4.36)

4Q =
√

(V ar(W[k])2 − IN · V ar(V[k])2) (4.37)

Q[k + 1] = k−1Q[k] + (k − 1)k−14Q (4.38)

After Eq. (4.38), the algorithm moves ahead to the next time step and repeat the

process, starting from Eq. (4.28). The load forecasting system has the input set and

state space model refreshed at every 60 to 120 time steps, depending on the number

of available weather stations.
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5 RESULTS

In order to validate the proposed load forecasting systems performance, the load time

series have been forecast by concurrent methods of linear and nonlinear natures. Se-

veral state-of-art methods were tested. Results have been divided between electric

load forecast and photovoltaic generation forecast, presented in Sections 5.1 and 5.2,

respectively.

5.1 Electric load forecasting

In order to validate the proposed load forecasting systems performance, the load time

series have been forecast by concurrent methods of linear and nonlinear natures. Several

state-of-art methods were tested, such as:

1. Kalman Filter with PCA (PKF),

2. Classical Kalman Filter (KF) without PCA,

3. Classical multilayer perceptron Artificial Neural Network trained by Backpropa-

gation (BP),

4. MLP ANN trained by BP with PCA (PBP),

The above described benchmark models are used to forecast peak, average and base

load. Peak forecasting is directly related to the maximum power that will be demanded

for the system in a given day, which is important to plan the operation at its power

limits, spinning reserves and ancillary systems. Average load is more related to the

energy demand in the day, directly related to the electric energy supplied through

contracts or hydraulic/fuel reserves. Base load is necessary to plan the operation at

light loads, optimizing the shutdown of generation units and grid equipments with high

operation and maintenance cost.
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For each prediction the Mean Squared Error (MSE), Mean Average Percentual Error

(MAPE), Maximum Percentual Error (MPE) and Correlation Coefficient (r2) error

metrics are calculated, using equations (5.1), (5.2), (5.3) and (5.4) respectively.

MSE =
1

n

n∑
k=1

(y[k]− ŷ[k])2 (5.1)

MAPE =
100

n

n∑
k=1

∣∣∣∣y[k]− ŷ[k]

y[k]

∣∣∣∣ (5.2)

MPE =
100

n
max
k

∣∣∣∣y[k]− ŷ[k]

y[k]

∣∣∣∣ (5.3)

r2 =
cov (y, ŷ)

σyσŷ
=

∑n
k=1 (ŷ[k]− y)2∑n
k=1 (y[k]− y)2 (5.4)

where y[k] and ŷ[k] respectively denote the measured and forecasted electric load for

day k, y is the time series mean of the loads, σy and σŷ the standard deviation from

mean in the measurements and predictions.

Three forecasting scenarios are used, based on real power systems. The first scenario

comprises 8 power substations in Leipzig, from years 2001 to 2003, and its results are

presented in Subsection 5.1.1. The second scenario features Brasilia, also from years

2001 to 2003 during an electricity crysis period. These results are shown in Subsection

5.1.2. The third showcases the electric load demanded by Brasilia, from years 2004 to

2010, a period of huge populational and economic growth. The forecasting results for

the third scenario are listed in Subsection 5.1.3.

5.1.1 First forecasting scenario - Leipzig 2001-2003

Leipzig is the largest city in the german state of Saxony, with a population of more

than 570.000 inhabitants. In 1930 the population reached its historical peak of over

700,000. It decreased steadily from 1950 until 1989 to about 530,000. In the 1990s

the population decreased rather rapidly to 437,000 in 1998. This reduction was mostly
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due to outward migration and suburbanization. After almost doubling the city area by

incorporation of surrounding towns in 1999, the number stabilized and started to rise

again with an increase of 1,000 in 2000, as shown in Figure 5.1.

Figure 5.1: Leipzig population and population growth rate from 1990 to 2015. The 1999
growth peak is due to the incorporation of surrounding towns. Credits: EUROSTATs

The city has a temperate climate. Winters are variably mild to cold, with an average

around 1 Celsius. Summers are generally warm, albeit not hot, averaging 19 Celsius

with daytime maxima of 24 Celsius. Precipitation is higher in the summer, but there

is no dry season in the winter. The amount of sunshine differs quite between winter

and summer, with an average of 51 hours of sunshine in December and 229 hours of

sunshine in July.

Figure 5.2: Locations of the eight substations in Leipzig. Credits: Jayme Milanezi Jr. [73]

The proposed and benchmark prediction methods are employed to forecast daily electric

demand in power substations of Leipzig’s distribution system, without any information
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about the topology or electrical parameters of the grid. The measurement variable

is comprised of historical demand data, collected from eight substations located in

different neighborhoods, as shown in Fig. 5.2. It contains daily values of minimum,

mean and maximum demand from year 2001 to 2004, as illustrated in Figure 5.3.

Figure 5.3: Evolution of electric load in Substation S1, from 2001 to 2004. Base load is
plotted in black, Average load in blue and Peak load in red.

The corresponding historical weather data has been collected from the Leipzig-Halle

(LEJ) weather station. Due to a gap in the METAR time series which occurred in

January 2004, load predictions for this year have not been attempted in this work.

As such, the training period ranges from January 2001 to December 2001, while the

prediction period comprises 730 days between January 2002 and December 2003. Error

metrics are calculated exclusively for the prediction period.

Two Kalman based predicting schemes are used, the proposed PCA-Kalman and the

classical State space Kalman filter approach. For these methods, in the initialization

procedure simulations were made with model orders ranging from one and twenty one,

employing the year 2001 data. Considering the squared error metric, the best results

are found when using a model order with seven state variables, as shown in Fig. 5.4.

Model orders lower than seven fail to predict the weekly variations, while higher model

orders are more computationally cumbersome, prone to numerical instabilities and

numerical oscillations that seems to degrade forecasting performance.
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Figure 5.4: Sum of the Total Squared Error for the 8 substations as a function of Model
Order. The minimum is achieved when the Order is set to 7.

The T parameter is set to 365, which determines that Phase Zero will be executed

once at every year of prediction. The period of 365 days was chosen in order to model

the yearly cycles shown in both electricity demand and temperature time series, as

well as allowing the required number of data points to optimize the filter parameters

with hundreds of inputs. Larger periods could not be reliably evaluated, given that

there were only 3 years worth of data, and shorter periods are more prone to numerical

oscillations due to data insufficiency. For the least squares optimization, the error

tolerance was set to 10−11, and the GMRES iterations are used to make the least

squares fitting of the filter coefficients to the previous 365 days of electrical demand

and input data.

The same model order adopted for the Kalman filter methods is used for the modified

autoregressive Grey Box Model. This simple method is used to demonstrate the ca-

pabilities of a time series approach without exogenous inputs, and presents a baseline

performance for both Kalman and neural network methodologies.

The two artificial neural network approaches employ MLP with Backpropagation (BP)

supervised learning. The weight parameters are calculated by the Levenberg-Marquardt

algorithm. The multilayer perceptron architecture employs a single hidden layer, con-

taining 10 neurons. The PCA enhanced ANN employs the same feature selection used

by the PCA-Kalman approach, while the standard BP ANN employs the raw inputs

also used by the classic Kalman filter method. Results in this scenario are presented
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per substation, in the following subsubsections. The results are presented in tables

showing the forecasting methods’ performance over the 9 different input sets described

in Table 4.1, as measured by the selected error metrics. The performance analisys

covers the best method and input set for each combination, as well as the best method

when employing the complete input set Z. Input set F is marked as not available (N/A)

because the tariff history of Leipzig has not been obtained. The description of each

substation’s neighborhood is obtained from [66].

5.1.1.1 Substation S1

Substation S1 lies in the Meusdorf district, southeast of Leipzig. This neighborhood

has a very low demographic density, and on average has between 1,9 and 2,0 inhabitants

per house. Population growth in this area is estimated to be 9 % to 15 % between 1999

and 2003. In average, 70 % of these residents are economically active. Tables 5.1, 5.2

and 5.4 present the forecasting results for base, average and peak load, respectively.

Table 5.1: Error metrics for Base load, Substation S1

Metric Method A B C D E F G H Z

MSE

PKF 5,5 3,6 4,1 3,4 5,6 N/A 5,1 5,0 3,7

KF 4,8 3,6 4,3 4,2 4,8 N/A 5,1 4,4 4,3

PBP 7,3 14,7 15,8 13,9 11,0 N/A 11,8 13,0 18,5

BP 9,9 12,8 18,1 18,8 5,5 N/A 9,8 13,9 16,0

MAPE

PKF 5,01 3,99 4,27 3,81 5,09 N/A 4,74 4,66 3,66

KF 4,69 3,95 4,39 4,30 4,61 N/A 4,63 4,20 4,08

PBP 5,70 8,17 8,50 8,10 7,14 N/A 7,36 7,73 9,92

BP 6,81 7,63 9,18 9,43 4,97 N/A 7,11 7,77 8,60

MPE

PKF 23,2 25,2 28,9 22,9 23,0 N/A 37,7 33,5 33,2

KF 17,7 32,2 20,7 28,5 20,0 N/A 35,1 31,3 35,5

PBP 27,2 44,2 59,9 39,2 37,0 N/A 34,6 53,9 45,9

BP 26,1 38,3 55,0 56,9 22,7 N/A 29,8 49,9 51,1

r2

PKF 0,872 0,917 0,906 0,922 0,870 N/A 0,881 0,885 0,918

KF 0,888 0,917 0,901 0,902 0,888 N/A 0,884 0,900 0,903

PBP 0,836 0,749 0,693 0,740 0,746 N/A 0,717 0,733 0,597

BP 0,812 0,738 0,668 0,524 0,879 N/A 0,773 0,686 0,675
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For base load forecasting, the proposed PCA-Kalman has the best performance with

input set D, followed by classic Kalman filter and standard MLP trained by Back-

propagation. Overall, set E provides the better performance for the ANN methods.

Restricting the input set to Z, the PCA-Kalman slightly outperforms the classic Kal-

man filter, followed by the PCA BP and the standard Backpropagation ANN. The

predictions provided by the PCA-Kalman are compared to the real values in figure 5.5:

Figure 5.5: Prediction (red line) plotted against the measured base load in Substation S1
(blue line) over 360 days of observation.

Table 5.2: Error metrics for Average load, Substation S1

Metric Method A B C D E F G H Z

MSE

PKF 21,8 13,4 17,7 12,2 22,2 N/A 14,9 19,2 8,3

KF 14,6 10,1 13,9 12,0 15,3 N/A 21,3 11,8 11,5

PBP 54,3 51,2 76,5 73,2 38,2 N/A 41,7 64,6 69,6

BP 27,1 81,6 43,0 54,3 27,6 N/A 44,6 92,3 60,1

MAPE

PKF 5,25 3,99 4,68 3,87 5,25 N/A 4,23 4,85 3,04

KF 4,20 3,42 4,08 3,77 4,28 N/A 4,41 3,84 3,80

PBP 8,13 7,96 9,47 9,57 6,88 N/A 7,26 8,84 9,11

BP 5,46 10,31 7,12 8,41 5,60 N/A 7,49 10,81 8,54
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Table 5.3: Error metrics for Average load, Substation S1 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 35,1 27,0 27,0 27,1 39,7 N/A 26,8 29,1 19,6

KF 20,9 19,8 21,6 19,3 20,0 N/A 47,7 18,8 19,7

PBP 45,7 54,4 50,9 58,4 34,6 N/A 33,7 49,1 46,0

BP 33,1 65,7 34,2 44,0 31,4 N/A 38,7 61,2 54,8

r2

PKF 0,882 0,929 0,905 0,935 0,879 N/A 0,921 0,898 0,957

KF 0,922 0,947 0,926 0,937 0,919 N/A 0,890 0,938 0,939

PBP 0,712 0,769 0,628 0,680 0,809 N/A 0,783 0,720 0,696

BP 0,861 0,516 0,808 0,752 0,856 N/A 0,785 0,683 0,690

For average load, the best performance is obtained by the proposed PCA-Kalman filter

using the input set Z, followed by the classic Kalman filter using input set B. Using

Z inputs, the classic Kalman filter outperforms the PCA Backprogation method and

the classic BP, which seems to perform poorly with too many inputs. The forecasts

obtained from the PCA-Kalman are compared to the real values in figure 5.6:

Figure 5.6: Prediction (red line) plotted against the measured average load in Substation S1
(blue line) over 360 days of observation.
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Table 5.4: Error metrics for Peak load, Substation S1

Metric Method A B C D E F G H Z

MSE

PKF 70,0 47,3 54,6 42,6 67,0 N/A 58,2 63,1 40,2

KF 58,0 44,2 56,0 51,6 57,1 N/A 81,3 47,2 47,5

PBP 120,1 173,0 236,0 163,1 121,6 N/A 174,0 196,5 97,5

BP 88,8 178,0 184,4 202,1 47,3 N/A 128,5 157,7 98,2

MAPE

PKF 6,15 4,80 5,17 4,51 5,97 N/A 5,47 5,59 4,11

KF 5,55 4,55 5,28 5,08 5,48 N/A 5,66 4,77 4,71

PBP 8,14 9,68 10,99 9,59 8,21 N/A 10,15 10,54 7,30

BP 7,02 10,15 9,63 10,46 4,69 N/A 8,25 9,29 7,26

MPE

PKF 28,1 39,9 32,3 34,1 27,5 N/A 28,7 28,6 56,3

KF 27,6 40,2 31,1 30,5 21,0 N/A 62,2 24,5 26,3

PBP 38,0 40,2 41,9 51,2 43,2 N/A 55,8 45,1 37,6

BP 34,7 45,3 48,1 50,1 23,8 N/A 47,0 41,3 37,2

r2

PKF 0,877 0,919 0,906 0,927 0,882 N/A 0,898 0,892 0,933

KF 0,899 0,924 0,903 0,911 0,900 N/A 0,862 0,919 0,918

PBP 0,797 0,746 0,619 0,739 0,801 N/A 0,674 0,677 0,824

BP 0,848 0,671 0,728 0,709 0,928 N/A 0,776 0,760 0,830

Forecasting peak loads, the better method is the PCA-Kalman filter with input set Z,

followed by the classic Kalman filter. In this case, the classic BP ANN outperforms

the PCA enhanced ANN when equipped with input set Z. The peak load predictions

provided by the PCA-Kalman are compared to the real values in figure 5.7:
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Figure 5.7: Prediction (red line) plotted against the measured peak load in Substation S1
(blue line) over 360 days of observation.

5.1.1.2 Substation S2

Substation S2 is located in the Gohlis-Mitte district, center of Leipzig. This neigh-

borhood has a high demographic density, and on average has between 2,2 or more

inhabitants per house. Population growth in this area is estimated to be 9 % to 15 %

between 1999 and 2003. In average, 70 % of these residents are economically active.

Tables 5.5, 5.6 and 5.7 present the forecasting results for base, average and peak load,

respectively.
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Table 5.5: Error metrics for Base load, Substation S2

Metric Method A B C D E F G H Z

MSE

PKF 7,1 5,5 5,1 4,2 7,5 N/A 6,2 5,6 4,3

KF 6,1 5,0 5,5 5,2 6,3 N/A 23,9 4,9 4,7

PBP 16,8 17,2 27,6 15,3 16,5 N/A 13,2 19,3 17,8

BP 4,0 27,1 28,9 14,9 7,9 N/A 19,6 18,3 24,9

MAPE

PKF 3,59 2,97 2,81 2,60 3,66 N/A 3,27 3,14 2,42

KF 3,30 2,81 3,18 3,05 3,31 N/A 3,86 2,84 2,73

PBP 5,62 5,47 7,15 5,46 5,50 N/A 4,91 5,81 5,67

BP 2,73 6,94 6,81 5,22 4,16 N/A 5,99 5,65 6,71

MPE

PKF 15,8 24,8 34,5 25,3 16,5 N/A 14,9 16,6 24,6

KF 14,9 19,3 14,3 18,3 21,8 N/A 86,8 19,3 20,7

PBP 26,7 34,6 28,5 24,7 21,4 N/A 23,5 37,9 35,9

BP 14,8 30,6 36,4 27,8 20,4 N/A 26,3 31,6 39,0

r2

PKF 0,921 0,939 0,943 0,953 0,913 N/A 0,929 0,937 0,952

KF 0,931 0,944 0,938 0,941 0,928 N/A 0,793 0,945 0,947

PBP 0,808 0,806 0,684 0,836 0,806 N/A 0,848 0,818 0,814

BP 0,964 0,635 0,693 0,844 0,954 N/A 0,783 0,790 0,735

Forecasting base load in this substation, the lowest MSE overall is obtained by the

standard Backpropagation ANN, using input set A, closely followed by the proposed

PCA-Kalman method input set D. Comparing methods with input set Z, PCA-Kalman

is the best option, offering a very slight performance penalty over the classic BP method

at its best input set. The predictions provided by the PCA-Kalman are compared to

the real values in figure 5.8:

106



Figure 5.8: Prediction (red line) plotted against the measured base load in Substation S2
(blue line) over 360 days of observation.

Table 5.6: Error metrics for Average load, Substation S2

Metric Method A B C D E F G H Z

MSE

PKF 25,0 17,5 22,2 18,2 27,0 N/A 17,6 21,5 10,7

KF 17,3 11,7 16,8 14,4 18,5 N/A 38,4 14,3 13,6

PBP 56,7 76,4 97,6 80,9 44,3 N/A 64,9 70,3 110,2

BP 50,3 84,8 74,7 85,5 39,6 N/A 69,1 61,3 63,9

MAPE

PKF 3,50 2,90 3,01 2,78 3,72 N/A 2,94 3,30 2,13

KF 2,95 2,40 2,92 2,68 3,09 N/A 3,24 2,62 2,53

PBP 5,41 6,11 7,23 6,47 4,87 N/A 5,97 6,13 7,43

BP 4,94 6,36 6,30 6,86 3,91 N/A 6,05 5,94 5,96

MPE

PKF 17,0 24,9 53,1 38,7 18,3 N/A 16,9 19,0 17,2

KF 16,7 13,8 21,2 15,0 18,9 N/A 52,2 16,4 15,6

PBP 25,5 47,3 33,6 39,4 19,7 N/A 22,8 32,0 40,5

BP 26,2 41,6 37,9 31,7 28,2 N/A 23,3 27,5 35,6

r2

PKF 0,924 0,947 0,932 0,945 0,916 N/A 0,946 0,935 0,968

KF 0,947 0,965 0,949 0,956 0,943 N/A 0,889 0,956 0,959

PBP 0,831 0,763 0,738 0,782 0,859 N/A 0,790 0,808 0,717

BP 0,852 0,745 0,807 0,758 0,897 N/A 0,767 0,813 0,811
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For average load, the best performance is obtained by the PCA-Kalman filter using

the input set Z, followed by the classic Kalman using input set B. Using Z inputs,

the classic Kalman filter outperforms the classic Backprogation method and the PCA

enhanced BP. The forecasts obtained from the PCA-Kalman are compared to the real

values in figure 5.9:

Figure 5.9: Prediction (red line) plotted against the measured average load in Substation S2
(blue line) over 360 days of observation.

Table 5.7: Error metrics for Peak load, Substation S2

Metric Method A B C D E F G H Z

MSE

PKF 193,3 160,8 158,6 153,5 187,8 N/A 136,7 166,2 119,3

KF 142,3 117,5 148,2 138,5 139,3 N/A 468,8 117,1 114,1

PBP 401,1 549,7 740,4 570,1 571,3 N/A 565,3 492,4 302,0

BP 290,9 607,9 689,3 489,4 164,0 N/A 440,1 446,2 366,5

MAPE

PKF 6,07 5,09 5,29 4,87 5,92 N/A 5,05 5,44 3,98

KF 5,15 4,31 5,01 4,80 5,13 N/A 5,67 4,49 4,34

PBP 8,92 10,69 12,02 10,71 10,66 N/A 11,00 10,37 7,88

BP 8,05 11,53 11,89 9,96 5,75 N/A 9,52 10,38 8,80
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Table 5.8: Error metrics for Peak load, Substation S2 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 33,9 37,8 40,3 38,4 37,1 N/A 29,4 46,7 34,0

KF 30,8 35,6 36,6 39,5 32,3 N/A 100,0 29,3 29,9

PBP 39,2 54,4 81,5 43,9 45,6 N/A 69,3 40,2 31,6

BP 41,0 49,6 77,4 58,2 27,6 N/A 43,5 49,0 42,8

r2

PKF 0,890 0,910 0,911 0,914 0,893 N/A 0,923 0,907 0,935

KF 0,920 0,934 0,917 0,922 0,921 N/A 0,771 0,935 0,937

PBP 0,767 0,701 0,671 0,697 0,713 N/A 0,671 0,716 0,820

BP 0,839 0,671 0,681 0,740 0,907 N/A 0,739 0,730 0,783

Forecasting peak load, the better method is the classic Kalman filter using input set Z,

very closely followed by the PCA-Kalman method with the same input set. BP ANN

method performs almost as good as the Kalman filters when using input set E. The

peak load predictions provided by the PCA-Kalman are compared to the real values

in figure 5.10:

Figure 5.10: Prediction (red line) plotted against the measured peak load in Substation S2
(blue line) over 360 days of observation.
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5.1.1.3 Substation S3

Substation S3 is located in the Gohlis-Nord district, northern center of Leipzig. This

neighborhood has a very high demographic density, and on average has between 2,2

or more inhabitants per house. Population growth in this area is estimated to be 9 %

to 15 % between 1999 and 2003. In average, 80 % of these residents are economically

active. Tables 5.9, 5.10 and 5.11 present the forecasting results for base, average and

peak load, respectively.

Table 5.9: Error metrics for Base load, Substation S3

Metric Method A B C D E F G H Z

MSE

PKF 13,6 10,2 9,7 9,5 14,3 N/A 11,9 12,6 9,6

KF 11,6 9,2 10,5 9,8 11,2 N/A 45,5 9,7 9,6

PBP 23,8 39,8 31,3 42,0 22,1 N/A 20,5 33,2 28,1

BP 20,8 31,3 30,4 36,5 8,5 N/A 19,2 17,5 33,9

MAPE

PKF 2,76 2,29 2,24 2,19 2,82 N/A 2,48 2,55 1,98

KF 2,52 2,12 2,40 2,29 2,47 N/A 2,96 2,26 2,22

PBP 3,76 4,68 4,18 4,81 3,66 N/A 3,32 4,30 4,03

BP 3,49 4,23 4,25 4,34 2,15 N/A 3,29 3,19 4,42

MPE

PKF 13,6 17,7 15,3 14,2 15,5 N/A 14,7 16,6 19,5

KF 14,8 17,6 13,3 13,3 13,2 N/A 69,7 12,9 14,2

PBP 13,6 23,7 16,9 28,1 16,0 N/A 21,2 19,2 22,3

BP 17,2 19,7 19,7 33,6 10,4 N/A 13,1 12,6 24,5

r2

PKF 0,847 0,886 0,892 0,896 0,833 N/A 0,866 0,860 0,899

KF 0,868 0,897 0,882 0,890 0,872 N/A 0,687 0,891 0,892

PBP 0,699 0,640 0,654 0,602 0,733 N/A 0,777 0,696 0,712

BP 0,799 0,713 0,687 0,642 0,905 N/A 0,775 0,797 0,692

For base load, classic BP with input set E is the method that provides the lowest MSE,

followed by the classic Kalman filter with input set B. Using the Z input set, PKF

and classic KF perform similarly. The predictions provided by the PCA-Kalman are

compared to the real values in figure 5.11:
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Figure 5.11: Prediction (red line) plotted against the measured base load in Substation S3
(blue line) over 360 days of observation.

Table 5.10: Error metrics for Average load, Substation S3

Metric Method A B C D E F G H Z

MSE

PKF 68,1 45,3 57,9 48,4 74,5 N/A 55,3 63,1 35,8

KF 50,3 37,8 47,7 43,0 54,6 N/A 136,5 39,3 38,1

PBP 112,7 199,6 183,3 169,0 187,2 N/A 142,8 225,5 174,5

BP 59,6 190,4 191,8 234,3 61,5 N/A 137,2 335,5 219,4

MAPE

PKF 3,42 2,66 3,02 2,58 3,67 N/A 3,01 3,21 2,32

KF 2,97 2,46 2,91 2,72 3,12 N/A 3,33 2,59 2,57

PBP 4,57 6,07 5,74 5,70 5,76 N/A 4,97 6,56 5,68

BP 3,27 5,71 5,96 6,49 3,27 N/A 4,86 7,18 6,13

MPE

PKF 16,6 25,0 34,2 31,2 23,5 N/A 18,4 25,8 17,8

KF 15,5 15,0 20,8 16,6 18,7 N/A 59,2 12,4 14,9

PBP 21,5 29,9 36,6 26,2 27,3 N/A 24,8 31,5 37,1

BP 15,0 37,2 27,2 35,8 15,9 N/A 22,1 40,3 31,1

r2

PKF 0,908 0,939 0,922 0,935 0,898 N/A 0,926 0,916 0,953

KF 0,932 0,951 0,936 0,943 0,926 N/A 0,837 0,948 0,949

PBP 0,848 0,786 0,769 0,813 0,740 N/A 0,805 0,747 0,777

BP 0,924 0,781 0,778 0,739 0,921 N/A 0,810 0,563 0,726
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For average load, PCA-Kalman with input set Z is the method that provides the

lowest MSE, closely followed by the classic Kalman with input set B. Among the ANN

methods, the BP approach has the best performance using input set E, but compares

poorly with the Kalman filters. The forecasts obtained from the PCA-Kalman are

compared to the real values in figure 5.12:

Figure 5.12: Prediction (red line) plotted against the measured average load in Substation
S3 (blue line) over 360 days of observation.

Table 5.11: Error metrics for Peak load, Substation S3

Metric Method A B C D E F G H Z

MSE

PKF 267,7 186,2 191,8 177,3 254,5 N/A 217,7 238,1 135,3

KF 211,8 163,4 197,0 184,8 208,5 N/A 565,6 172,6 167,3

PBP 269,5 723,4 747,9 695,5 607,3 N/A 1140,7 650,0 428,1

BP 496,3 670,0 699,7 612,7 268,8 N/A 477,4 487,0 750,8

MAPE

PKF 4,47 3,63 3,65 3,48 4,39 N/A 3,90 4,10 2,89

KF 4,00 3,34 3,74 3,66 4,00 N/A 4,28 3,54 3,43

PBP 4,49 7,34 7,66 7,12 6,76 N/A 9,52 6,79 5,75

BP 6,21 7,12 7,07 6,72 4,36 N/A 6,07 6,15 7,47
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Table 5.12: Error metrics for Peak load, Substation S3 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 23,3 26,6 25,1 22,1 20,5 N/A 22,6 28,8 24,6

KF 22,8 23,1 21,5 23,2 19,5 N/A 68,8 22,4 23,9

PBP 18,9 39,0 40,9 41,0 39,6 N/A 43,5 52,9 25,4

BP 29,1 35,5 39,3 42,0 20,9 N/A 32,0 36,0 30,0

r2

PKF 0,947 0,964 0,963 0,966 0,950 N/A 0,958 0,954 0,974

KF 0,959 0,969 0,962 0,964 0,959 N/A 0,895 0,967 0,968

PBP 0,949 0,863 0,857 0,869 0,881 N/A 0,751 0,874 0,919

BP 0,901 0,885 0,875 0,887 0,947 N/A 0,906 0,902 0,877

Forescasting peak load, the PCA-Kalman method offers the better performance when

combined with input set Z, followed by classic Kalman with input set B. The better

ANN alternative is the classic BP ANN, using input set E. The peak load predictions

provided by the PCA-Kalman are compared to the real values in figure 5.13:

Figure 5.13: Prediction (red line) plotted against the measured peak load in Substation S3
(blue line) over 360 days of observation.
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5.1.1.4 Substation S4

Substation S4 is located in the Schonefeld-ost district, center-northeast of Leipzig. This

neighborhood has a medium demographic density, and on average has between 2,2 or

more inhabitants per house. Population growth in this area is estimated to be 3 % to 9

% between 1999 and 2003. In average, 60% of these residents are economically active.

Tables 5.13, 5.14 and 5.15 present the forecasting results for base, average and peak

load, respectively.

Table 5.13: Error metrics for Base load, Substation S4

Metric Method A B C D E F G H Z

MSE

PKF 2,6 1,7 2,1 1,8 2,5 N/A 2,3 2,3 1,5

KF 2,2 1,6 1,9 1,8 2,1 N/A 4,3 1,9 1,9

PBP 3,9 6,7 5,6 7,5 3,4 N/A 5,9 5,4 6,4

BP 5,3 6,2 6,8 5,4 3,5 N/A 6,0 5,2 7,7

MAPE

PKF 3,48 2,73 2,93 2,69 3,50 N/A 3,25 3,28 2,43

KF 3,28 2,66 3,05 2,96 3,21 N/A 3,38 2,95 2,91

PBP 4,34 5,67 5,18 6,16 4,05 N/A 5,58 5,29 5,73

BP 5,07 5,55 5,84 5,15 4,00 N/A 5,56 5,00 6,27

MPE

PKF 32,9 18,9 28,3 22,5 31,7 N/A 28,6 26,0 23,4

KF 26,9 17,2 23,5 21,6 30,2 N/A 53,0 24,6 25,5

PBP 34,8 27,5 24,1 51,5 41,4 N/A 29,2 37,1 32,1

BP 54,7 53,9 27,4 53,9 47,7 N/A 50,1 42,3 40,7

r2

PKF 0,833 0,892 0,864 0,886 0,830 N/A 0,850 0,854 0,903

KF 0,853 0,902 0,877 0,885 0,858 N/A 0,751 0,879 0,880

PBP 0,726 0,680 0,697 0,603 0,764 N/A 0,580 0,684 0,594

BP 0,605 0,618 0,617 0,690 0,755 N/A 0,562 0,634 0,514

The PCA-Kalman filter using input set Z very slightly outperforms the classic Kalman

method. The better ANN method turns out to be the PCA-BP using input set E. The

predictions provided by the PCA-Kalman are compared to the real values in figure

5.14:
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Figure 5.14: Prediction (red line) plotted against the measured base load in Substation S4
(blue line) over 360 days of observation.

Table 5.14: Error metrics for Average load, Substation S4

Metric Method A B C D E F G H Z

MSE

PKF 90,8 88,1 102,5 93,5 86,2 N/A 83,8 87,6 56,0

KF 66,0 58,4 58,4 59,0 63,4 N/A 236,7 69,9 58,5

PBP 176,8 189,5 278,6 230,6 159,8 N/A 186,2 230,5 151,2

BP 84,8 305,0 278,2 388,5 103,2 N/A 157,0 299,0 131,7

MAPE

PKF 6,53 5,68 6,12 5,66 6,26 N/A 5,55 6,04 4,55

KF 5,46 4,91 5,23 5,12 5,48 N/A 6,17 4,92 4,95

PBP 9,25 9,69 11,88 10,69 9,63 N/A 9,99 10,69 8,76

BP 7,02 12,72 11,78 13,93 6,99 N/A 9,25 12,74 8,17

MPE

PKF 46,8 59,8 48,4 53,3 47,2 N/A 44,3 40,9 35,1

KF 38,1 34,7 33,4 30,6 39,2 N/A 100,0 30,3 31,4

PBP 46,1 53,9 57,7 62,7 52,0 N/A 54,3 57,4 48,0

BP 30,9 58,0 80,1 73,8 39,3 N/A 50,9 70,9 36,3

r2

PKF 0,883 0,889 0,870 0,882 0,889 N/A 0,893 0,889 0,930

KF 0,916 0,927 0,926 0,926 0,920 N/A 0,741 0,915 0,927

PBP 0,759 0,775 0,606 0,726 0,789 N/A 0,753 0,739 0,798

BP 0,909 0,656 0,705 0,629 0,867 N/A 0,788 0,714 0,826
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Forecasting average loads, the PCA-Kalman method with input set Z slightly outper-

forms the classic-Kalman method with input set H. Classic BP performs better with

input set A. The forecasts obtained from the PCA-Kalman are compared to the real

values in figure 5.15:

Figure 5.15: Prediction (red line) plotted against the measured average load in Substation
S4 (blue line) over 360 days of observation.

Table 5.15: Error metrics for Peak load, Substation S4

Metric Method A B C D E F G H Z

MSE

PKF 14,5 10,4 12,5 11,6 15,7 N/A 11,2 14,5 7,1

KF 10,2 7,8 10,0 8,8 11,2 N/A 16,4 8,9 8,8

PBP 34,9 42,2 44,4 41,3 32,0 N/A 31,2 55,2 44,4

BP 43,9 55,6 52,4 54,3 16,4 N/A 23,5 25,4 42,9

MAPE

PKF 4,39 3,50 3,82 3,54 4,51 N/A 3,91 4,30 2,84

KF 3,77 3,11 3,66 3,44 3,87 N/A 4,06 3,38 3,33

PBP 7,36 7,57 7,98 7,73 7,04 N/A 7,01 8,98 8,32

BP 8,23 9,23 8,84 9,07 4,73 N/A 5,85 6,40 7,79
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Table 5.16: Error metrics for Peak load, Substation S4 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 34,8 23,3 26,8 29,9 31,7 N/A 25,1 27,1 23,4

KF 25,1 21,3 19,9 24,4 25,0 N/A 46,1 24,6 24,2

PBP 43,1 35,5 52,8 55,3 40,6 N/A 45,4 43,3 58,5

BP 80,8 56,3 62,8 44,1 21,7 N/A 38,9 54,7 47,6

r2

PKF 0,844 0,891 0,868 0,879 0,830 N/A 0,881 0,845 0,927

KF 0,892 0,919 0,895 0,908 0,881 N/A 0,828 0,907 0,909

PBP 0,641 0,587 0,635 0,617 0,662 N/A 0,652 0,564 0,608

BP 0,536 0,584 0,473 0,526 0,836 N/A 0,755 0,731 0,612

The PCA-Kalman filter with input set Z offers the better performance when forecasting

peak load, followed by the classic Kalman using input set B. The peak load predictions

provided by the PCA-Kalman are compared to the real values in figure 5.16:

Figure 5.16: Prediction (red line) plotted against the measured peak load in Substation S4
(blue line) over 360 days of observation.
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5.1.1.5 Substation S5

Substation S5 is located in the Paunsdorf district, east of Leipzig. This neighborhood

has a medium demographic density, and on average has between 2,2 or more inhabitants

per house. Population growth in this area is estimated to be -3 % to 3 % between 1999

and 2003. In average, 60 % of these residents are economically active. Tables 5.17, 5.18

and 5.19 present the forecasting results for base, average and peak load, respectively.

Table 5.17: Error metrics for Base load, Substation S5

Metric Method A B C D E F G H Z

MSE

PKF 1,6 1,3 1,3 1,4 1,6 N/A 2,6 1,6 1,3

KF 1,3 1,0 1,3 1,1 1,3 N/A 12,6 1,1 1,0

PBP 4,7 5,1 4,5 4,8 3,3 N/A 4,5 4,3 4,7

BP 1,7 6,2 5,2 6,1 1,8 N/A 2,8 5,4 6,5

MAPE

PKF 3,16 2,70 2,69 2,63 3,18 N/A 3,17 2,95 2,39

KF 2,84 2,42 2,72 2,55 2,84 N/A 3,86 2,48 2,39

PBP 5,43 5,84 5,30 5,49 4,58 N/A 5,48 5,30 5,45

BP 3,38 6,38 5,64 6,42 3,39 N/A 4,27 5,82 6,60

MPE

PKF 18,4 19,9 19,5 25,5 17,0 N/A 40,0 24,3 27,8

KF 14,9 21,2 16,9 14,9 15,4 N/A 100,0 17,2 17,0

PBP 28,2 32,7 26,3 28,8 21,4 N/A 23,6 25,0 33,7

BP 15,8 42,6 37,4 35,4 20,8 N/A 23,6 33,7 34,9

r2

PKF 0,930 0,943 0,942 0,939 0,926 N/A 0,887 0,930 0,945

KF 0,941 0,954 0,944 0,951 0,941 N/A 0,642 0,953 0,956

PBP 0,807 0,803 0,811 0,827 0,853 N/A 0,799 0,831 0,816

BP 0,924 0,766 0,803 0,782 0,918 N/A 0,878 0,765 0,781

For base load forecasting, the classic Kalman filter with input sets B or Z outperforms

the PCA-Kalman filter at the input B, C or Z. Classic BP performs better with input

set A. The predictions provided by the PCA-Kalman are compared to the real values

in figure 5.17:
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Figure 5.17: Prediction (red line) plotted against the measured base load in Substation S5
(blue line) over 360 days of observation.

Table 5.18: Error metrics for Average load, Substation S5

Metric Method A B C D E F G H Z

MSE

PKF 13,0 12,3 13,4 12,3 14,8 N/A 9,1 12,9 7,8

KF 9,5 8,2 8,8 8,5 8,9 N/A 12,9 8,1 7,8

PBP 32,5 49,4 53,8 42,8 37,5 N/A 35,9 38,1 40,4

BP 18,0 65,0 38,6 54,0 25,1 N/A 32,3 53,8 46,2

MAPE

PKF 4,92 4,17 4,37 4,02 5,03 N/A 3,79 4,72 3,16

KF 4,00 3,43 3,92 3,73 3,85 N/A 4,11 3,53 3,54

PBP 7,66 9,87 11,15 9,41 8,98 N/A 8,86 9,12 9,18

BP 5,64 11,52 8,97 10,48 7,02 N/A 8,56 10,81 9,60

MPE

PKF 31,5 34,8 54,4 43,8 36,5 N/A 30,4 34,7 34,5

KF 31,4 31,4 26,7 27,7 27,2 N/A 45,6 31,2 31,1

PBP 29,1 43,4 45,6 38,2 36,1 N/A 31,6 33,3 39,6

BP 30,8 71,0 53,9 80,0 36,0 N/A 34,4 56,5 52,7

r2

PKF 0,849 0,861 0,848 0,861 0,825 N/A 0,897 0,851 0,913

KF 0,891 0,907 0,899 0,904 0,898 N/A 0,857 0,911 0,912

PBP 0,676 0,548 0,535 0,615 0,587 N/A 0,609 0,578 0,605

BP 0,792 0,273 0,625 0,564 0,701 N/A 0,641 0,524 0,534
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For average load, the PCA-Kalman filter with input set Z is the method with lower

MSE, followed closely by the classic Kalman filter with input set Z, also. The forecasts

obtained from the PCA-Kalman are compared to the real values in figure 5.18:

Figure 5.18: Prediction (red line) plotted against the measured average load in Substation
S5 (blue line) over 360 days of observation.

Table 5.19: Error metrics for Peak load, Substation S5

Metric Method A B C D E F G H Z

MSE

PKF 135,4 109,3 117,3 101,6 129,4 N/A 81,6 129,7 71,5

KF 76,0 72,8 78,8 82,0 76,3 N/A 192,5 66,0 62,6

PBP 403,4 322,9 349,6 286,7 287,4 N/A 250,5 377,0 218,4

BP 158,8 269,7 353,5 384,7 148,2 N/A 254,7 242,5 328,6

MAPE

PKF 8,96 7,33 7,66 6,97 8,80 N/A 6,77 8,22 5,46

KF 6,85 6,24 6,70 6,68 6,83 N/A 7,37 5,99 5,86

PBP 16,02 14,10 14,69 13,65 13,11 N/A 12,10 15,45 11,14

BP 9,59 13,09 15,13 15,16 9,11 N/A 13,23 11,47 13,84
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Table 5.20: Error metrics for Peak load, Substation S5 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 40,5 44,9 65,1 59,1 47,7 N/A 42,4 58,5 44,9

KF 38,2 43,9 50,4 44,2 42,2 N/A 100,0 35,3 30,8

PBP 105,4 84,0 78,2 52,4 47,5 N/A 57,4 73,6 41,6

BP 58,4 62,1 54,1 81,5 42,6 N/A 61,1 45,1 57,6

r2

PKF 0,800 0,844 0,832 0,856 0,807 N/A 0,883 0,814 0,902

KF 0,891 0,897 0,888 0,884 0,891 N/A 0,757 0,907 0,912

PBP 0,632 0,640 0,522 0,605 0,594 N/A 0,587 0,418 0,667

BP 0,768 0,677 0,623 0,550 0,792 N/A 0,560 0,647 0,515

For peak load, the Kalman filter with input set Z is the better method, followed by

the PCA-Kalman approach with the same input set. The better ANN method is the

BP using input set E. The peak load predictions provided by the PCA-Kalman are

compared to the real values in figure 5.19:

Figure 5.19: Prediction (red line) plotted against the measured peak load in Substation S5
(blue line) over 360 days of observation.
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5.1.1.6 Substation S6

Substation S6 is located in the Heiterblick district, east of Leipzig. This neighborhood

has a medium demographic density, and on average has 1,9 inhabitants per house.

Population growth in this area is negative, estimated to below -3 % between 1999 and

2003. In average, 50 % of these residents are economically active. Tables 5.21, 5.22

and 5.23 present the forecasting results for base, average and peak load, respectively.

Table 5.21: Error metrics for Base load, Substation S6

Metric Method A B C D E F G H Z

MSE

PKF 7,1 4,8 5,1 4,2 7,4 N/A 6,1 7,4 3,2

KF 5,3 3,7 4,9 4,4 5,5 N/A 36,3 4,3 4,4

PBP 11,4 15,5 11,2 20,2 11,3 N/A 20,8 18,3 14,8

BP 9,6 19,9 16,0 21,7 7,4 N/A 10,9 11,3 15,9

MAPE

PKF 3,49 2,88 2,90 2,67 3,57 N/A 3,15 3,34 2,28

KF 3,01 2,53 2,93 2,77 3,10 N/A 3,96 2,67 2,65

PBP 4,30 5,29 4,47 6,20 4,41 N/A 5,87 5,80 5,25

BP 4,17 5,86 5,37 6,18 3,55 N/A 4,27 4,47 5,36

MPE

PKF 16,2 16,7 26,5 20,3 18,2 N/A 20,3 25,5 15,4

KF 16,3 15,4 13,3 15,9 16,3 N/A 100,0 14,7 18,2

PBP 21,4 24,2 22,9 28,7 16,5 N/A 29,4 39,0 25,1

BP 20,0 31,9 29,8 22,1 25,9 N/A 18,0 26,3 25,3

r2

PKF 0,874 0,914 0,909 0,925 0,865 N/A 0,890 0,870 0,944

KF 0,904 0,935 0,912 0,922 0,900 N/A 0,635 0,924 0,923

PBP 0,802 0,711 0,808 0,687 0,790 N/A 0,545 0,655 0,780

BP 0,821 0,691 0,720 0,586 0,871 N/A 0,798 0,789 0,747

The proposed PCA-Kalman method with input set Z offers the lowest MSE when

forecasting base load, followed by the Kalman filter with input set B. The better ANN

method is the standard BP using input set E. The predictions provided by the PCA-

Kalman are compared to the real values in figure 5.20:
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Figure 5.20: Prediction (red line) plotted against the measured base load in Substation S6
(blue line) over 360 days of observation.

Table 5.22: Error metrics for Average load, Substation S6

Metric Method A B C D E F G H Z

MSE

PKF 65,3 54,5 56,3 53,8 67,2 N/A 30,9 66,6 26,6

KF 33,1 25,4 30,1 27,1 33,1 N/A 31,9 28,1 30,2

PBP 205,6 173,1 193,6 193,5 136,6 N/A 173,8 231,9 176,3

BP 70,6 220,6 238,9 249,3 91,2 N/A 146,5 237,3 223,5

MAPE

PKF 4,83 4,06 4,38 3,96 4,89 N/A 3,18 4,68 2,73

KF 3,35 2,84 3,23 3,03 3,32 N/A 3,15 3,03 3,07

PBP 8,93 8,13 8,70 8,74 7,22 N/A 8,23 9,45 8,29

BP 5,36 9,44 9,62 9,90 6,03 N/A 7,61 9,23 9,36

MPE

PKF 38,1 38,0 45,6 39,7 32,5 N/A 37,1 30,8 32,2

KF 35,9 26,4 34,1 30,9 30,1 N/A 36,7 27,9 27,5

PBP 47,6 37,6 56,4 51,4 37,0 N/A 45,7 65,7 47,9

BP 27,4 65,5 51,2 48,6 36,3 N/A 41,3 77,2 46,4

r2

PKF 0,741 0,795 0,780 0,801 0,726 N/A 0,884 0,747 0,904

KF 0,875 0,906 0,888 0,899 0,875 N/A 0,882 0,895 0,888

PBP 0,279 0,402 0,280 0,306 0,401 N/A 0,185 0,304 0,413

BP 0,734 0,148 0,293 0,378 0,595 N/A 0,257 0,243 0,349

123



The PCA-Kalman with input set Z is also the better method to forecast average load,

followed by the Kalman filter with input set B. The better ANN method is again the

BP using input set A. The forecasts obtained from the PCA-Kalman are compared to

the real values in figure 5.21:

Figure 5.21: Prediction (red line) plotted against the measured average load in Substation
S6 (blue line) over 360 days of observation.

Table 5.23: Error metrics for Peak load, Substation S6

Metric Method A B C D E F G H Z

MSE

PKF 223,0 154,5 162,7 148,6 208,1 N/A 190,7 233,4 126,2

KF 170,1 136,1 169,4 164,2 180,3 N/A 671,2 149,6 154,0

PBP 382,1 644,3 481,9 524,1 463,1 N/A 606,3 431,4 316,8

BP 282,1 560,8 440,5 491,0 135,3 N/A 562,4 407,0 333,6

MAPE

PKF 5,62 4,55 4,82 4,44 5,45 N/A 5,10 5,54 4,05

KF 5,02 4,20 4,91 4,77 5,08 N/A 5,79 4,54 4,46

PBP 7,81 10,05 8,57 8,77 8,90 N/A 10,13 8,09 6,93

BP 6,52 9,39 8,31 8,63 4,19 N/A 9,43 8,08 7,12
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Table 5.24: Error metrics for Peak load, Substation S6 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 35,0 35,4 36,2 35,5 31,0 N/A 32,8 40,7 28,7

KF 23,3 39,2 39,1 39,0 30,1 N/A 100,0 31,9 33,2

PBP 30,2 52,6 57,5 50,0 45,6 N/A 46,5 38,2 27,1

BP 37,4 46,2 40,8 56,9 35,3 N/A 41,3 32,5 32,8

r2

PKF 0,861 0,906 0,901 0,911 0,870 N/A 0,881 0,860 0,924

KF 0,895 0,917 0,896 0,900 0,888 N/A 0,673 0,909 0,907

PBP 0,784 0,642 0,752 0,721 0,677 N/A 0,544 0,771 0,793

BP 0,841 0,637 0,756 0,739 0,920 N/A 0,594 0,725 0,783

The PCA-Kalman with input set Z outperforms the other methods predicting peak

load, closely followed by the BO with input set E. The peak load predictions provided

by the PCA-Kalman are compared to the real values in figure 5.22:

Figure 5.22: Prediction (red line) plotted against the measured peak load in Substation S6
(blue line) over 360 days of observation.
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5.1.1.7 Substation S7

Substation S7 is located in the Grunau Siedlung district, west of Leipzig. This neigh-

borhood has a high demographic density, and on average has 2,2 or more inhabitants

per house. Population growth in this area is estimated to be above 15 % between 1999

and 2003. In average, 50 % of these residents are economically active. Tables 5.25, 5.26

and 5.27 present the forecasting results for base, average and peak load, respectively.

Table 5.25: Error metrics for Base load, Substation S7

Metric Method A B C D E F G H Z

MSE

PKF 27,4 17,3 17,6 15,7 34,0 N/A 27,1 25,9 16,1

KF 23,2 16,1 22,4 19,3 27,6 N/A 78,2 18,9 17,3

PBP 58,6 99,3 108,0 114,0 48,1 N/A 92,7 91,8 112,3

BP 38,6 98,5 75,0 137,4 58,7 N/A 123,4 81,6 89,4

MAPE

PKF 5,13 4,13 4,04 3,86 5,43 N/A 4,96 4,86 3,63

KF 4,85 3,85 4,66 4,38 5,08 N/A 5,68 4,21 4,11

PBP 7,75 9,97 10,66 10,93 6,86 N/A 9,87 9,75 10,63

BP 6,29 9,61 8,78 12,14 5,92 N/A 12,01 9,13 9,58

MPE

PKF 28,2 29,7 25,9 29,4 29,9 N/A 26,0 50,1 39,9

KF 21,4 33,1 24,5 19,2 25,1 N/A 100,0 19,4 24,3

PBP 44,2 54,6 93,7 53,6 32,7 N/A 67,8 53,0 86,8

BP 44,1 58,5 54,6 104,3 62,7 N/A 50,9 54,3 52,2

r2

PKF 0,967 0,979 0,978 0,981 0,958 N/A 0,967 0,969 0,981

KF 0,972 0,980 0,973 0,976 0,966 N/A 0,909 0,977 0,979

PBP 0,931 0,886 0,875 0,864 0,942 N/A 0,883 0,884 0,873

BP 0,953 0,892 0,908 0,873 0,934 N/A 0,841 0,899 0,894

PCA-Kalman with input set Z and the Kalman filter with input set B perform similarly.

Best ANN approach is BP with input set A. The predictions provided by the PCA-

Kalman are compared to the real values in figure 5.23:
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Figure 5.23: Prediction (red line) plotted against the measured base load in Substation S7
(blue line) over 360 days of observation.

Table 5.26: Error metrics for Average load, Substation S7

Metric Method A B C D E F G H Z

MSE

PKF 66,5 50,4 51,4 46,3 72,7 N/A 43,5 58,9 26,8

KF 41,6 32,4 44,0 37,5 47,4 N/A 105,4 35,5 33,6

PBP 212,1 226,9 224,0 150,4 134,2 N/A 194,0 198,5 220,8

BP 147,8 216,6 237,0 198,8 63,9 N/A 130,3 181,8 355,2

MAPE

PKF 4,85 4,07 4,09 3,78 5,00 N/A 3,73 4,41 2,86

KF 3,64 3,24 3,63 3,44 3,80 N/A 4,23 3,27 3,18

PBP 8,77 9,60 9,61 7,69 7,33 N/A 8,72 9,04 9,03

BP 6,95 9,49 9,83 9,13 4,56 N/A 7,20 8,54 12,74

MPE

PKF 39,8 32,7 54,0 38,5 41,1 N/A 32,7 40,2 25,1

KF 38,9 24,1 39,4 31,2 41,4 N/A 80,1 33,8 32,0

PBP 67,6 46,0 66,8 31,0 44,9 N/A 51,2 53,2 67,6

BP 68,4 51,5 52,1 48,1 25,3 N/A 29,7 37,0 51,6

r2

PKF 0,943 0,957 0,956 0,960 0,936 N/A 0,962 0,949 0,977

KF 0,964 0,972 0,962 0,968 0,959 N/A 0,914 0,970 0,971

PBP 0,828 0,824 0,818 0,870 0,881 N/A 0,827 0,845 0,836

BP 0,876 0,840 0,789 0,842 0,946 N/A 0,883 0,833 0,654
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The PCA-Kalman method with input set Z predicts the average load with the lowest

MSE, followed by the classic Kalman with input set B. The forecasts obtained from

the PCA-Kalman are compared to the real values in figure 5.24:

Figure 5.24: Prediction (red line) plotted against the measured average load in Substation
S7 (blue line) over 360 days of observation.

Table 5.27: Error metrics for Peak load, Substation S7

Metric Method A B C D E F G H Z

MSE

PKF 266,4 193,2 226,4 185,5 272,8 N/A 154,8 249,4 112,1

KF 153,7 113,9 147,9 130,4 163,6 N/A 313,8 126,4 118,6

PBP 592,6 859,6 923,2 723,1 504,4 N/A 539,3 926,1 529,1

BP 463,9 816,1 825,2 1200,1 288,3 N/A 633,0 1019,7 552,4

MAPE

PKF 6,90 5,64 6,15 5,54 6,96 N/A 5,22 6,43 4,08

KF 5,21 4,39 5,04 4,77 5,38 N/A 5,71 4,67 4,50

PBP 10,70 12,43 12,97 11,33 9,69 N/A 10,13 13,06 10,19

BP 9,42 12,34 12,11 16,50 7,42 N/A 11,54 14,11 10,53
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Table 5.28: Error metrics for Peak load, Substation S7 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 41,0 46,9 42,9 48,6 38,3 N/A 28,5 53,3 41,7

KF 26,6 33,3 27,8 36,2 27,4 N/A 76,9 25,2 31,0

PBP 47,1 56,1 54,2 54,6 36,9 N/A 37,9 68,6 48,2

BP 87,6 61,9 73,7 84,7 53,9 N/A 49,6 71,6 53,6

r2

PKF 0,908 0,934 0,922 0,936 0,905 N/A 0,947 0,915 0,963

KF 0,947 0,961 0,950 0,956 0,944 N/A 0,897 0,957 0,960

PBP 0,800 0,729 0,740 0,769 0,833 N/A 0,804 0,732 0,815

BP 0,832 0,755 0,752 0,590 0,906 N/A 0,765 0,704 0,812

The PCA-Kalman approach with input set Z very slightly outperforms the classic

Kalman with input set B. The peak load predictions provided by the PCA-Kalman are

compared to the real values in figure 5.25:

Figure 5.25: Prediction (red line) plotted against the measured peak load in Substation S7
(blue line) over 360 days of observation.
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5.1.1.8 Substation S8

Substation S8 is located in the Lausen Grunau district, west of Leipzig. This neigh-

borhood has a very low demographic density, and on average has less than 1,9 inhabi-

tants per house. Population growth in this area is estimated to be between 9 % and 15

% between 1999 and 2003. In average, 60 % of these residents are economically active.

Tables 5.29, 5.31 and 5.31 present the forecasting results for base, average and peak

load, respectively.

Table 5.29: Error metrics for Base load, Substation S8

Metric Method A B C D E F G H Z

MSE

PKF 6,8 5,9 4,7 6,9 7,3 N/A 6,3 6,7 4,2

KF 5,2 4,3 4,7 4,5 5,6 N/A 45,7 5,6 4,1

PBP 13,0 12,2 20,2 21,6 14,4 N/A 11,2 19,8 20,7

BP 9,2 20,3 13,2 21,1 8,9 N/A 10,8 13,4 14,8

MAPE

PKF 2,15 1,86 1,77 1,81 2,22 N/A 1,95 2,02 1,54

KF 1,88 1,59 1,75 1,70 1,92 N/A 2,48 1,63 1,59

PBP 3,09 2,90 3,74 4,03 3,16 N/A 2,85 3,67 3,96

BP 2,55 3,71 3,08 3,87 2,55 N/A 2,79 3,02 3,18

MPE

PKF 12,9 22,4 10,4 32,8 10,6 N/A 14,7 17,7 28,3

KF 10,8 15,5 11,3 11,8 11,7 N/A 77,3 9,4 11,8

PBP 13,4 15,5 20,5 15,2 15,5 N/A 15,5 21,6 18,5

BP 10,5 20,1 14,5 16,2 11,9 N/A 13,0 16,8 14,4

r2

PKF 0,790 0,835 0,860 0,817 0,763 N/A 0,808 0,798 0,873

KF 0,839 0,874 0,858 0,866 0,826 N/A 0,455 0,851 0,878

PBP 0,613 0,615 0,504 0,276 0,586 N/A 0,662 0,556 0,406

BP 0,693 0,334 0,655 0,478 0,720 N/A 0,634 0,579 0,590

Forecasting base loads, the Kalman filter approach with input set Z slightly the PCA-

Kalman with this same input set. The predictions provided by the PCA-Kalman are

compared to the real values in figure 5.26:
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Figure 5.26: Prediction (red line) plotted against the measured base load in Substation S8
(blue line) over 360 days of observation.

Table 5.30: Error metrics for Average load, Substation S8

Metric Method A B C D E F G H Z

MSE

PKF 44,9 33,0 48,0 38,9 48,4 N/A 35,8 46,4 27,2

KF 34,3 26,3 33,6 30,5 37,1 N/A 36,6 31,2 31,7

PBP 107,3 102,3 137,6 145,5 97,0 N/A 113,3 122,2 103,0

BP 67,5 156,0 122,0 166,9 50,7 N/A 75,8 89,0 105,5

MAPE

PKF 3,27 2,56 2,88 2,59 3,30 N/A 2,78 3,07 2,17

KF 2,80 2,27 2,74 2,55 2,87 N/A 2,73 2,48 2,45

PBP 5,08 4,97 5,65 5,87 5,02 N/A 5,20 5,52 4,99

BP 4,03 5,92 5,56 6,88 3,51 N/A 4,35 4,66 5,20

MPE

PKF 14,6 19,5 40,7 32,3 16,5 N/A 15,9 26,0 21,5

KF 14,6 19,0 16,0 19,6 15,2 N/A 22,1 18,1 21,4

PBP 25,7 31,4 33,1 54,8 24,5 N/A 28,0 24,6 27,7

BP 17,1 28,3 21,4 29,3 19,8 N/A 24,0 20,1 27,8

r2

PKF 0,861 0,900 0,854 0,884 0,848 N/A 0,890 0,860 0,919

KF 0,895 0,921 0,898 0,908 0,886 N/A 0,889 0,906 0,904

PBP 0,689 0,741 0,670 0,626 0,683 N/A 0,590 0,663 0,672

BP 0,781 0,408 0,751 0,533 0,855 N/A 0,766 0,713 0,722
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For average loads, the Kalman filter approach with input set B slightly outperforms the

PCA-Kalman with input set Z. BP with input set E has the best performance among

ANN. The forecasts obtained from the PCA-Kalman are compared to the real values

in figure 5.27:

Figure 5.27: Prediction (red line) plotted against the measured average load in Substation
S8 (blue line) over 360 days of observation.

Table 5.31: Error metrics for Peak load, Substation S8

Metric Method A B C D E F G H Z

MSE

PKF 384,8 330,7 355,2 357,9 392,8 N/A 217,7 379,6 154,3

KF 201,6 164,6 202,2 216,8 205,4 N/A 970,7 176,8 168,9

PBP 980,2 1400,8 1488,6 986,1 946,6 N/A 1024,4 1167,8 756,3

BP 800,5 1351,2 1155,2 1569,2 594,4 N/A 815,3 717,9 785,2

MAPE

PKF 5,60 4,74 5,07 4,65 5,61 N/A 4,26 5,29 3,40

KF 4,14 3,55 4,08 4,06 4,19 N/A 5,13 3,62 3,51

PBP 9,85 11,64 11,61 10,17 9,25 N/A 10,04 10,81 8,28

BP 8,75 12,35 11,27 12,77 8,08 N/A 8,64 8,37 8,44
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Table 5.32: Error metrics for Peak load, Substation S8 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 37,5 40,5 47,3 45,6 44,8 N/A 31,4 46,5 31,9

KF 26,6 30,8 37,4 32,8 26,7 N/A 100,0 29,3 32,9

PBP 44,6 55,0 75,6 39,8 43,7 N/A 47,4 56,3 37,2

BP 33,5 48,1 46,9 74,2 31,8 N/A 44,4 38,2 40,3

r2

PKF 0,883 0,902 0,894 0,895 0,881 N/A 0,936 0,889 0,955

KF 0,940 0,952 0,940 0,936 0,939 N/A 0,764 0,948 0,950

PBP 0,679 0,644 0,671 0,660 0,721 N/A 0,695 0,688 0,783

BP 0,737 0,595 0,674 0,582 0,861 N/A 0,753 0,785 0,756

The PCA-Kalman with input set Z outperforms all methods forecasting peak loads,

followed by the Kalman filter with input set B. The better ANN method is the BP,

using the input set E. The peak load predictions provided by the PCA-Kalman are

compared to the real values in figure 5.28:

Figure 5.28: Prediction (red line) plotted against the measured peak load in Substation S8
(blue line) over 360 days of observation.

133



5.1.1.9 All substations combined

In order to evaluate the forescasting of a larger power system, the load of the eight

substations is combined by means of simple summation. Tables 5.33, 5.34 and 5.35

present the forecasting results for base, average and peak load, respectively.

Table 5.33: Error metrics for Base load, Substation S9

Metric Method A B C D E F G H Z

MSE

PKF 108,9 76,9 68,0 66,0 130,8 N/A 97,5 97,2 57,3

KF 81,2 61,0 75,7 69,2 89,6 N/A 1149,5 61,2 65,8

PBP 216,8 289,9 367,2 360,5 311,0 N/A 296,9 349,2 267,4

BP 129,1 389,6 387,3 278,2 76,0 N/A 542,2 438,2 395,3

MAPE

PKF 1,70 1,35 1,28 1,24 1,82 N/A 1,47 1,51 1,06

KF 1,43 1,18 1,39 1,32 1,49 N/A 2,06 1,24 1,16

PBP 2,27 2,66 2,89 2,90 2,80 N/A 2,64 3,00 2,68

BP 1,83 3,10 3,00 2,54 1,41 N/A 3,30 3,18 3,18

MPE

PKF 8,5 7,3 7,7 9,9 9,6 N/A 10,2 12,3 16,8

KF 6,5 13,1 6,1 8,0 6,6 N/A 75,2 7,3 6,4

PBP 14,4 16,5 20,7 22,2 12,3 N/A 16,5 12,7 11,0

BP 8,2 14,4 19,6 20,5 7,8 N/A 34,4 20,2 14,3

r2

PKF 0,938 0,957 0,961 0,963 0,924 N/A 0,944 0,946 0,968

KF 0,953 0,966 0,957 0,961 0,948 N/A 0,662 0,965 0,965

PBP 0,874 0,839 0,786 0,817 0,814 N/A 0,822 0,803 0,852

BP 0,926 0,771 0,830 0,857 0,962 N/A 0,728 0,778 0,791

The BP approach with input set E has the lowest MSE when predicting base load.

The PCA-Kalman filter with set Z performs better than the classic Kalman at input

set B, followed by standard BP with input set E. The predictions provided by the

PCA-Kalman are compared to the real values in figure 5.29:
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Figure 5.29: Prediction (red line) plotted against the measured base load in Substation S9
(blue line) over 360 days of observation.

Table 5.34: Error metrics for Average load, Substation S9

Metric Method A B C D E F G H Z

MSE

PKF 832,3 557,7 962,6 651,7 934,6 N/A 654,2 761,2 422,7

KF 587,4 432,8 587,5 513,4 667,9 N/A 1097,9 503,1 484,9

PBP 1689,5 3077,0 3876,6 3363,2 2342,4 N/A 4050,1 2440,4 3327,9

BP 732,7 2898,0 3616,8 3471,4 731,1 N/A 2113,0 4223,7 2770,3

MAPE

PKF 2,44 1,85 2,13 1,79 2,62 N/A 2,05 2,28 1,48

KF 2,01 1,64 1,97 1,80 2,12 N/A 2,20 1,80 1,74

PBP 3,53 4,75 5,26 4,96 4,20 N/A 5,45 4,23 4,80

BP 2,39 4,70 5,03 5,09 2,15 N/A 3,93 5,47 4,64

MPE

PKF 15,7 16,3 45,9 36,4 17,9 N/A 17,8 16,7 18,7

KF 12,3 11,0 17,8 15,1 14,9 N/A 32,0 10,9 10,7

PBP 17,5 24,1 33,7 22,3 20,6 N/A 24,1 22,3 24,0

BP 11,6 19,4 31,6 26,5 12,5 N/A 18,3 31,1 16,9

r2

PKF 0,945 0,963 0,937 0,957 0,937 N/A 0,957 0,950 0,972

KF 0,961 0,972 0,961 0,966 0,956 N/A 0,929 0,967 0,968

PBP 0,883 0,818 0,752 0,818 0,864 N/A 0,697 0,850 0,794

BP 0,954 0,805 0,798 0,815 0,967 N/A 0,858 0,801 0,823
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The PCA-Kalman approach with input set Z is slightly better than the Kalman filter

with input set B, followed by the BP approach with input set E. The forecasts obtained

from the PCA-Kalman are compared to the real values in figure 5.30:

Figure 5.30: Prediction (red line) plotted against the measured average load in Substation
S9 (blue line) over 360 days of observation.

Table 5.35: Error metrics for Peak load, Substation S9

Metric Method A B C D E F G H Z

MSE

PKF 4205,2 3729,3 3540,2 3390,2 4445,6 N/A 2258,3 3776,8 1498,0

KF 2100,7 1641,0 2123,1 2223,7 2272,7 N/A 11699,6 1605,6 1508,3

PBP 8294,1 9237,8 8934,9 9249,0 7270,0 N/A 7876,6 9155,3 8257,6

BP 4764,5 15478,5 5087,3 9413,8 2680,1 N/A 8314,9 7535,8 11484,1

MAPE

PKF 3,38 2,85 2,98 2,74 3,51 N/A 2,48 3,09 1,85

KF 2,47 2,03 2,39 2,27 2,57 N/A 2,96 2,09 2,01

PBP 4,82 5,26 5,01 5,12 4,36 N/A 4,71 5,07 4,93

BP 3,73 7,32 3,83 5,27 2,62 N/A 4,64 4,56 5,84
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Table 5.36: Error metrics for Peak load, Substation S9 (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 21,2 30,6 25,1 30,3 18,8 N/A 23,9 19,8 22,4

KF 15,9 14,4 20,3 22,6 17,3 N/A 69,6 15,7 14,5

PBP 25,8 24,4 28,9 24,3 31,8 N/A 31,7 24,1 22,2

BP 19,8 28,8 18,2 47,9 21,0 N/A 27,6 25,8 24,3

r2

PKF 0,957 0,962 0,964 0,966 0,954 N/A 0,977 0,962 0,986

KF 0,979 0,983 0,978 0,978 0,977 N/A 0,891 0,984 0,985

PBP 0,914 0,904 0,909 0,905 0,924 N/A 0,917 0,906 0,914

BP 0,952 0,830 0,948 0,900 0,973 N/A 0,915 0,921 0,880

Forecasting peak loads, the PCA-Kalman approach with input set Z slightly outper-

forms the Kalman filter with the same input set. The better ANN method is the

standard BP, when using input set E. The peak load predictions provided by the PCA-

Kalman are compared to the real values in figure 5.31:

Figure 5.31: Prediction (red line) plotted against the measured peak load in Substation S9
(blue line) over 360 days of observation.
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5.1.2 Second load forecasting scenario - Brasilia 2001-2003

Brasilia is the federal capital of Brazil. Located at coordinates 15.78S - 47.83W, it was

founded in 1960, purpose built to serve as the new national capital closer to Brazil’s

geographic center. Currently, Brasilia and its metro area are estimated to be the 4th

most populous city in Brazil, and it has the highest GDP per capita among major

Latin American cities. The evolution of both population and GDP is shown in Figure

5.32.

Figure 5.32: Evolution of Brasilia’s population and GDP between 1999 and 2014. Credits:
CODEPLAN

Besides being the political center, Brasilia is an important economic center, represen-

ting 3.76% of the total Brazilian GDP. The main economic activity of the federal capital

results from its administrative function, with services accounting for more than 90% of

the city’s GDP. The public sector is the largest employer, providing around 40% of the

city jobs. Besides the government, the city also hosts the headquarters of important

companies, such as the two biggest public banks, the Brazilian postal service and a

large telecommunications company.

Located in the middle of the Brazilian highlands, Brasilia has a tropical savanna climate

with two distinct seasons. The rainy season occurs from October to April, while the dry

season spans from May to September. September is also the hottest month, averaging

21.7 Celsius and maximas of 28.3 Celsius. The coldest month is July, averaging 18.3

Celsius and 12.9 Celsius minima. Relative Humidity oftenly drops below 50% between

July and September. Average insolation hours vary from 138 in December to 266 in

July, mainly determined by the presence of clouds in the sky.
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Figure 5.33: Location of Juscelino Kubistchek International Airport relative to Brasilia and
the Federal District. Credits: Google Maps

The historical weather data has been collected from the Juscelino Kubistchek Inter-

national Airport METeorological Aerodrome Reports (METAR), located in a central

position relative to the larger load centers as shown in Fig. 5.33. Similarly to what

occurred in Leipzig weather measurements, METAR data regarding January 2004 is

unavailable. As such, the forecasting of Brasilia electric load has been divided in two

scenarios: from July 1st 2001 to December 2003 and from February 2004 to June 2010.

Coincidently, the first period is concurrent with an electricity supply crysis, while the

second coincides with a strong economic growth cycle. The first period is analised in

this Subsection, while the second period is the third forecasting scenario analised in

Subsection 5.1.3. Peak, average and base load in the first period are illustrated in

Figure 5.34.

Figure 5.34: Evolution of electric load in Brasilia, from July 2001 to December 2003. Base
load is plotted in black, Average load in blue and Peak load in red.
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The proposed and the benchmark forecasting methods are used to predict the total

load supplied by Brasilia’s distribution company. This scenario uses a shorter training

period of 182 days, between July 1st 2001 to December 31st 2001, while the prediction

period comprises 729 days between January 2002 and December 2003. Error metrics

are calculated exclusively for the prediction period.

In order to validate the proposed PCA-Kalman load forecasting system (PKF) per-

formance, similarly to the Leipzig scenario, the load time series have been forecast by

concurrent methods of linear and nonlinear natures. A classical Kalman Filter (KF)

without PCA and variance estimation represent the linear approaches, while a classical

BP double layer Artificial Neural Network (BP) and a PCA enhanced BP ANN (PBP)

are employed to showcase the performance of these nonlinear methods. The Kalman

filter methods employ an model order estimation in the initialization phase, in this

scenario eight is selected as the size of the state vector, as shown in Figure 5.35.

Figure 5.35: Total Squared Error for the second scenario, as a function of Model Order. The
minimum is achieved when the Order is set to 8.

The above described benchmark models are used to forecast base, average and peak

demand. For each prediction the four error metrics are calculated. Nine input sets

are tested, each designated by a capital letter. The input sets have been described in

Chapter 4, Table 4.1. Over the results presented in [87], this work expands the scope by

adding the input set H, which includes solar resource and natural illumination inputs.

The forecasting period starts at January 1st 2002 and comprises 729 days. Tables

5.37, 5.38 and 5.39, respectively, summarize results for base, average and peak load

forescasting.
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Table 5.37: Error metrics for Base load, Brasilia first period

Metric Method A B C D E F G H Z

MSE

PKF 162,8 91,4 114,9 76,4 234,3 189,3 92,1 40,5 39,7

KF 155,1 92,3 137,3 88,1 251,4 218,7 92,1 322,5 322,5

PBP 177,8 336,4 517,0 474,0 130,6 110,5 321,4 392,1 354,8

BP 137,4 348,6 353,4 500,4 165,3 94,3 252,6 388,8 397,7

MAPE

PKF 3,05 2,33 2,63 2,12 3,47 3,29 2,26 1,45 1,45

KF 2,99 2,30 2,86 2,24 3,53 3,07 2,26 4,45 4,45

PBP 3,32 4,49 5,64 5,14 2,90 2,69 4,23 4,90 4,55

BP 2,92 4,57 4,47 5,55 3,31 2,39 3,65 4,74 4,80

MPE

PKF 20,8 11,8 13,1 11,1 24,6 19,6 15,1 10,7 9,8

KF 20,3 14,5 16,6 14,3 30,4 35,9 15,1 21,5 21,5

PBP 19,3 18,4 21,6 37,4 13,2 13,2 18,9 20,6 18,5

BP 11,8 18,8 20,7 23,0 13,0 11,4 17,7 22,7 22,0

The predictions provided by the PCA-Kalman are compared to the real values in figure

5.36:

Figure 5.36: Prediction (red line) plotted against the measured base load in Brasilia (2001-
2003 period) over 360 days of observation.
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Note that all input sets provide reasonable forecasting performance. For the state space

approaches, set C slightly outperforms input set A, as D also outperforms B, giving

evidence that the performed preprocessing is beneficial to linear predicting algorithms.

The ANN methods, however, are negatively affected. Input set F works well with the

neural networks. Input set Z combined with the PCA-Kalman load forecasting system

provide the best performance.

Table 5.38: Error metrics for Average load, Brasilia first period

Metric Method A B C D E F G H Z

MSE

PKF 579,0 339,2 454,4 302,2 1403 631,6 204,2 77,4 73,6

KF 554,2 343,4 484,8 338,7 851,8 640,2 204,2 991,7 991,7

PBP 1247 1780 1306 1999 1544 1152 1945 1343 1435

BP 1567 2597 1685 1988 1170 1220 1648 1522 1449

MAPE

PKF 3,62 2,90 3,26 2,59 4,71 3,87 2,14 1,06 1,02

KF 3,51 2,89 3,37 2,81 4,16 3,57 2,14 3,90 3,90

PBP 5,79 7,48 6,23 7,72 6,71 5,91 7,33 4,52 4,62

BP 6,69 9,13 7,09 7,54 6,06 6,02 6,75 4,97 4,64

MPE

PKF 40,8 18,3 23,4 22,8 54,9 37,0 22,1 6,4 6,9

KF 40,4 18,4 33,6 19,3 39,9 37,0 22,1 38,7 38,7

PBP 28,2 28,8 21,3 33,7 35,2 29,9 30,0 21,1 31,4

BP 36,1 26,4 31,0 40,5 30,9 30,8 25,2 27,0 24,2

Overall, the prediction of average load displays the largest error metrics, probably due to

the larger quantity of outliers in this particular time series. The only exception is the PCA-

Kalman system, as it shows smaller relative errors at the cost of increased maximum error, as

compared with the base load prediction problem. ANN do not seem to perform well in this

scenario, displaying large error metrics. The forecasts obtained from the PCA-Kalman

are compared to the real values in figure 5.37:
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Figure 5.37: Prediction (red line) plotted against the measured average load (blue line) in
Brasilia (2001-2003 period) over 360 days of observation.

Table 5.39: Error metrics for Peak load, Brasilia first period

Metric Method A B C D E F G H Z

MSE

PKF 501,8 294,2 389,2 263,3 1046,3 529,3 189,9 77,4 73,6

KF 491,0 289,5 413,4 275,4 786,4 494,4 189,9 991,7 991,7

PBP 646,0 1365 1079 1476 813,3 550,0 1627 1343 1435

BP 666,1 1988 808,2 1630 587,2 561,5 1205 1522 1449

MAPE

PKF 2,63 2,06 2,30 1,88 3,11 2,72 1,69 1,06 1,02

KF 2,60 2,06 2,38 1,98 2,98 2,43 1,69 3,90 3,90

PBP 3,22 4,68 4,20 4,75 3,50 2,99 5,20 4,52 4,62

BP 3,15 5,74 3,63 5,15 3,06 2,79 4,13 4,97 4,64

MPE

PKF 27,0 15,4 18,3 14,2 39,4 28,0 8,8 6,4 6,9

KF 27,0 14,8 22,5 14,3 31,5 28,0 8,8 38,7 38,7

PBP 22,4 25,5 16,5 23,5 19,5 15,2 21,6 21,1 31,4

BP 24,5 23,0 17,0 26,7 15,2 25,2 25,6 27,0 24,2

The proposed PCA-Kalman based approach vastly outperforms the other methods for

peak load prediction. The KF achieves a MSE almost three times larger, yet forecasting
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with good accuracy. ANN methods produce better results when employing input set

F.

Overall, the proposed system displays good forecasting performance, being capable of

daily predicting demands with MAPE lower than 2 % in all scenarios. In comparison,

the linear and nonlinear predictors employed as benchmark could only achieve MAPE

lower than 2.5%, at best. The peak load predictions provided by the PCA-Kalman are

compared to the real values in figure 5.38:

Figure 5.38: Prediction (red line) plotted against the measured peak load (blue line) in
Brasilia (2001-2003 period) over 360 days of observation.

5.1.3 Third load forecasting scenario - Brasilia 2004-2010

The third load forecasting scenario is also performed with Brasilia, starting at February

1st 2004. As explained in subsection 5.1.2, this time period in Brasilia is characterized

by strong growth in both population and economic output. As a consequence, in

contrast with the mild increasing trend shown in Figure, in this scenario the electric

loads increase by circa 30% in the time period, as illustrated in Figure 5.39.
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Figure 5.39: Evolution of electric load in Brasilia, from February 2004 to June 2010. Base
load is plotted in black, Average load in blue and Peak load in red. Two outliers in the Peak
load are not visible in this graph.

The proposed and the benchmark forecasting methods are used to predict the total

load supplied by Brasilia’s distribution company. This scenario uses a training period

of 365 days, between February 1st 2001 to January 31st 2002, while the prediction

period comprises 1977 days between Februart 2002 and June 2003. Error metrics are

calculated exclusively for the prediction period. Similarly to Leipzig forecasts, seven

is selected as chosen as the model order of the Kalman based methods, as shown in

Figure 5.40.

Figure 5.40: Total Squared Error for the second scenario, as a function of Model Order. The
minimum is achieved when the Order is set to 8.

The forecasting period starts at February 1st 2002 and comprises 1977 days. Tables

5.40, 5.41 and 5.42, respectively, summarize results for base, average and peak load
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forescasting.

Table 5.40: Error metrics for Base load, Brasilia second period

Metric Method A B C D E F G H Z

MSE

PKF 399,6 290,5 307,5 262,8 1427,5 418,2 224,9 364,8 184,8

KF 373,0 257,6 454,5 236,2 610,7 382,9 226,7 588,8 206,1

PBP 208,2 501,4 391,5 599,5 257,6 202,5 613,7 291,4 414,6

BP 203,9 395,4 288,7 680,5 242,4 200,7 551,8 278,0 715,8

MAPE

PKF 3,48 2,85 3,10 2,65 4,73 3,61 2,55 3,26 2,11

KF 3,39 2,68 3,19 2,60 3,84 3,39 2,56 3,87 2,38

PBP 2,53 4,19 3,23 4,59 2,89 2,52 4,34 3,13 3,81

BP 2,36 3,66 2,91 4,55 2,86 2,36 4,07 2,99 4,56

MPE

PKF 258,1 109,4 162,6 97,1 255,3 276,5 232,5 242,3 125,4

KF 244,9 128,3 176,4 151,5 254,9 185,1 232,5 218,6 232,1

PBP 204,1 203,2 210,9 155,5 186,8 197,5 281,7 204,9 190,3

BP 124,3 202,1 220,1 146,2 172,5 159,8 212,9 212,9 259,3

r2

PKF 0,918 0,942 0,937 0,948 0,764 0,914 0,955 0,925 0,963

KF 0,924 0,948 0,910 0,952 0,876 0,922 0,954 0,880 0,958

PBP 0,954 0,898 0,921 0,910 0,949 0,960 0,871 0,943 0,914

BP 0,957 0,921 0,949 0,862 0,953 0,961 0,884 0,946 0,851

Forecasting base load, the PCA-Kalman filter with input set Z obtains the lowest

MSE, followed by the BP ANN with input set F. The predictions provided by the

PCA-Kalman are compared to the real values in figure 5.41:
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Figure 5.41: Prediction (red line) plotted against the measured base load (blue line) in Brasilia
(2004-2010 period) over 360 days of observation.

Table 5.41: Error metrics for Average load, Brasilia second period

Metric Method A B C D E F G H Z

MSE

PKF 1218,6 918,9 1028,3 842,9 4288 1345,3 387,5 1123,1 313,6

KF 1167,4 884,7 1454,9 1057,4 5072,7 1369,8 389,2 3190,9 375,8

PBP 2110 1286 1508 1711 1675 1636 2726 2158 3090

BP 1990 1484 1914 2733 2162 2083 3116 1160 3156

MAPE

PKF 3,96 3,29 3,67 3,05 5,72 4,20 2,10 3,75 1,87

KF 3,90 3,22 3,81 3,24 5,44 4,04 2,11 6,34 2,13

PBP 5,74 4,68 5,03 5,34 5,45 5,36 6,54 5,89 7,17

BP 5,71 5,04 5,70 6,94 6,01 5,86 7,16 4,48 7,20

MPE

PKF 37,6 36,9 53,2 45,4 118,7 37,9 25,0 51,0 23,5

KF 37,3 41,0 100,0 80,9 241,3 44,0 25,2 111,0 23,5

PBP 76,3 33,2 38,6 58,9 40,6 30,6 40,9 63,1 43,8

BP 42,9 42,0 42,3 50,4 71,0 58,5 40,6 30,6 55,9

r2

PKF 0,904 0,930 0,920 0,936 0,737 0,893 0,970 0,912 0,976

KF 0,908 0,932 0,890 0,919 0,711 0,893 0,970 0,754 0,971

PBP 0,828 0,904 0,880 0,866 0,865 0,868 0,781 0,826 0,749

BP 0,838 0,884 0,848 0,770 0,822 0,832 0,754 0,918 0,751
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For the average load, the PCA-Kalman method vastly outperforms the ANN approa-

ches, also obtaining a 20 % lower MSE than the Kalman filter. The forecasts obtained

from the PCA-Kalman are compared to the real values in figure 5.42:

Figure 5.42: Prediction (red line) plotted against the measured average load (blue line) in
Brasilia (2004-2010 period) over 360 days of observation.

Table 5.42: Error metrics for Peak load, Brasilia second period

Metric Method A B C D E F G H Z

MSE

PKF 1218,6 918,9 1028,3 842,9 4288 1345,3 387,5 1123,1 313,6

KF 1640,1 1186,5 1850,8 1435,4 3363,8 1686,3 1411,3 2581,8 1609,8

PBP 1950 3751 6340 5500 2421 1860 3292 2705 3130

BP 2192 5703 3287 3890 2489 2303 3311 3278 4039

MAPE

PKF 3,96 3,29 3,67 3,05 5,72 4,20 2,10 3,75 1,87

KF 6,02 6,02 6,02 6,02 6,02 6,02 6,02 6,02 6,02

PBP 5,57 8,02 10,36 9,63 6,41 5,69 7,56 6,77 7,19

BP 6,09 9,75 7,35 7,91 6,57 5,88 7,14 7,20 8,27
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Table 5.43: Error metrics for Peak load, Brasilia second period (continuation)

Metric Method A B C D E F G H Z

MPE

PKF 37,6 36,9 53,2 45,4 118,7 37,9 25,0 51,0 23,5

KF 47,0 47,0 47,0 47,0 47,0 47,0 47,0 47,0 47,0

PBP 73,3 45,0 58,6 56,4 58,7 49,4 42,3 43,0 56,8

BP 45,1 70,8 49,4 57,2 62,7 110,0 43,2 41,2 57,0

r2

PKF 0,904 0,930 0,920 0,936 0,737 0,893 0,970 0,912 0,976

KF 0,818 0,818 0,818 0,818 0,818 0,818 0,818 0,818 0,818

PBP 0,840 0,683 0,315 0,605 0,811 0,851 0,734 0,780 0,761

BP 0,823 0,631 0,720 0,724 0,800 0,812 0,747 0,759 0,668

In the peak load forecasting, the PCA-Kalman filter with input set Z achieves the

lowest MSE of the comparison. All other methods perform relatively poorly in this

case the second best being the classic Kalman. The peak load predictions provided by

the PCA-Kalman are compared to the real values in figure 5.43:

Figure 5.43: Prediction (red line) plotted against the measured peak load (blue line) in
Brasilia (2004-2010 period) over 360 days of observation.
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5.2 Photovoltaic generation forecasting

The forecasting methodologies are applied to forecast generation in 17 different photo-

voltaic systems installed in three continents. These PV generators are chosen due to

the online availability of production data and proximity to airport weather stations,

allowing the analisys of both electricity production and weather time series. The sys-

tems capacity range from 0.625 kWp to 24.5 kWp, installed in residential units and

directly connected to the distribution grid.

Figure 5.44: The European sites selected for the forecast. Credits: Google Earth.

The proposed PCA-Kalman based forecasting procedure is compared with four different

benchmark methods, including a classical State space Kalman filter approach (KF), a

autoregressive modified Grey box method (FGM) and Backpropagation artificial neural

networks, in a standard implementation (BP) and in a PCA enhanced approach (PBP).

Five error performance metrics are employed: Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), Mean Bias Error (MBE), Maximum Absolute Error (MXE) and

Correlation coefficient (r2), as denoted in equations (5.5), (5.6), (5.7), (5.8) and (5.9),

respectively. The absence of relative or percentual error metrics is a consequence of the

oftenly occurring “null production” days, which precludes the use of the MAPE and

MPE metrics as these relative indicators are ill-defined when the reference approaches
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zero.

RMSE =

√√√√ 1

n

n∑
k=1

(y[k]− ŷ[k])2 (5.5)

MAE =
1

n

n∑
k=1

|y[k]− ŷ[k]| (5.6)

MBE =
1

n

n∑
k=1

(y[k]− ŷ[k]) (5.7)

MXE = max
k

(|y[k]− ŷ[k]|) (5.8)

r2 =
cov (y, ŷ)

σyσŷ
=

∑n
k=1 (ŷ[k]− y)2∑n
k=1 (y[k]− y)2 (5.9)

where y[k] and ŷ[k] respectively denote the measured PV generation and forecasted

PV generation for day k, y is the time series mean of the PV generation, σy and σŷ the

standard deviation from mean in the measurements and predictions.

Other relative indicators are possible, employing plant capacity or typical day ge-

neration as reference. However, they are intrisically biased towards the PV system

optical and technical parameters, as capacity factors and spectral efficiency do change

according to geographical location, instalation geometry, local climate, the type of

photovoltaic cells and inverter arrangements employed. As such, absolute and unbi-

ased error performance metrics are widely used when comparing different forecasting

methodologies [108].
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Figure 5.45: Location of the Australian sites selected for the forecast. Credits: Google Earth

The analysed PV systems are grouped in the seven “sites”, named from A1 to A7,

regarding their geographical region, presence of other PV systems in a 10 kilometers

radius and relative position with respect to weather stations. Their locations are

pictured in Figures 5.44, 5.45 and 5.46. Sites A1, A4, A5 and A6 are located in

Europe, A2 and A3 in Oceania and site A7 in North America. These sites present

varying conditions for PV generation, ranging from semi-arid to subtropical climates,

urban and rural landscapes, coastal and inland enviroments.
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Figure 5.46: Location of the North American generation site selected for the forecast. Credits:
Google Earth

The results for each site are presented in Subsections 5.2.1 to 5.2.7.

5.2.1 Site A1 - Oss region, Netherlands

This site is approximately located at coordinates 51.732N - 5.516E and contains four

photovoltaic systems, as described in Table 5.44. Site A1 represents a light residential

(suburban) enviroment, several kilometers inland and with a humid temperate climate

without dry season. It is located ten kilometers south of Oss center, a dutch medium

sized city. System capacities range from 0.625 to 7.1 kWp. System A1a is the smallest

generator forecasted in this work.

Table 5.44: PV Systems in site A1

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A1a 7 155 35 0.625

A1b 9 180 45 7.100

A1c 8 225 1 2.500

A1d 7 156 45 1.560
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As illustrated in Figure 5.47, six weather stations encircle the region and are used to

provide both weather and solar resource parameters for the predictions. The weather

stations are designated by their IATA codes, the closest being the EHVK airport.

Figure 5.47: Site A1 and the six airport weather stations used for the forecast. Credits:
Google Earth

5.2.1.1 Forecasting results, single weather station

Most forecasting methods seem to provide good forecasts to systems A1a, A1b and

A1d. Errors are bigger for system A1c. Tables 5.45 and 5.46 list the error performance

at different criteria for these systems.
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Table 5.45: Results for Systems A1a and A1b, single station

System Metric\Method PKF FGM KF PBP BP

A1a

RMSE 0,441 0,979 0,383 0,879 0,956

MAE 0,351 0,757 0,301 0,688 0,744

MBE 0,018 0,181 -0,005 0,064 -0,053

MXE 1,380 3,349 1,460 2,700 3,036

r2 0,922 0,372 0,943 0,664 0,656

A1b

RMSE 5,413 11,389 4,724 8,671 10,259

MAE 4,282 8,873 3,736 6,966 8,548

MBE 1,014 4,596 0,881 -0,371 -0,905

MXE 16,528 43,397 13,330 25,912 26,009

r2 0,925 0,535 0,942 0,729 0,660

Table 5.46: Results for Systems A1c and A1d, single station

System Metric\Method PKF FGM KF PBP BP

A1c

RMSE 2,867 6,282 2,475 2,697 3,009

MAE 2,288 3,334 1,953 2,166 2,432

MBE 0,013 1,123 0,061 0,029 0,519

MXE 12,606 102,686 10,573 11,158 10,278

r2 0,744 0,393 0,797 0,788 0,723

A1d

RMSE 0,520 4,741 0,584 1,978 1,949

MAE 0,409 2,008 0,445 1,505 1,479

MBE -0,011 0,675 0,015 0,274 -0,026

MXE 1,971 102,211 3,474 8,038 7,845

r2 0,978 0,331 0,974 0,696 0,698

RMSE-wise, the PCA-Kalman filter is better method for system A1d, but is slightly

outperformed by the classic Kalman filter in the other systems.
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Figure 5.48: Error graphs for forecasts in Systems A1a and A1b, from left to right. Single
station.

Figure 5.49: Error graphs for forecasts in Systems A1c and A1d, from left to right. Single
station

5.2.1.2 Forecasting results, multiple weather stations

Using information from all avaliable stations, a much larger set of inputs for PV fore-

casting inputs are fed into the prediction methodologies. Table 5.47 lists the results

for System A1a and A1b, Table 5.48 for A1c and A1d.
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Table 5.47: Results for Systems A1a and A1b, multiple stations

System Metric\Method PKF FGM KF PBP BP

A1a

RMSE 0,396 0,979 0,661 0,923 0,964

MAE 0,314 0,757 0,522 0,721 0,757

MBE -0,038 0,181 -0,055 0,031 0,013

MXE 1,460 3,349 2,535 2,587 2,933

r2 0,942 0,372 0,865 0,638 0,658

A1b

RMSE 5,795 11,389 8,586 11,917 11,101

MAE 4,189 8,873 6,690 9,359 8,320

MBE 1,733 4,596 -0,429 -4,253 3,291

MXE 17,852 43,397 22,781 29,586 42,021

r2 0,933 0,535 0,805 0,501 0,551

Table 5.48: Results for Systems A1c and A1d, multiple stations

System Metric\Method PKF FGM KF PBP BP

A1c

RMSE 2,450 6,282 2,885 2,666 3,686

MAE 1,883 3,334 2,238 2,198 2,994

MBE 0,000 1,123 0,106 -0,038 0,212

MXE 11,806 102,686 18,423 9,243 11,317

r2 0,823 0,393 0,762 0,785 0,554

A1d

RMSE 0,501 4,741 1,585 2,088 2,047

MAE 0,387 2,008 1,173 1,610 1,577

MBE 0,001 0,675 0,004 0,176 0,066

MXE 2,194 102,211 10,616 9,246 10,924

r2 0,980 0,331 0,810 0,657 0,655

Using multiple weather stations, the PCA-Kalman provides the lowest RMSE overall

at all systems.

157



Figure 5.50: Error graphs for forecasts in Systems A1a and A1b, from left to right. Multiple
stations.

Figure 5.51: Error graphs for forecasts in Systems A1c and A1d, from left to right. Multiple
stations.

The predictions provided by the PCA-Kalman algorithm are compared to the measured

PV generation values in figures 5.52,5.53, 5.54 and 5.55::
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Figure 5.52: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A1a over 360 days of observation.

Figure 5.53: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A1b over 360 days of observation.
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Figure 5.54: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A1c over 360 days of observation.

Figure 5.55: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A1d over 360 days of observation.
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5.2.2 Site A2 - Queensland, Australia

This site is located in the Australian state of Queensland, at coordinates 27.61S -

152.74E. Site A2 represents a residential (urban) enviroment, several kilometers inland

and with a humid subtropical climate without dry season. It is located close to Ipswich

center, a city with 200.000 citizens southwest of Brisbane metropolitan area. System

capacities range from 6 to 7 kWp.

Table 5.49: PV Systems in site A2

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A2a 25 0 15 6.080

A2b 25 357 30 7.000

As illustrated in Figure 5.56, two weather stations in the neighboor regions are used to

provide both weather and solar resource parameters for the predictions. The weather

stations are designated by their IATA codes, the closest being the YAMB airfield.

Figure 5.56: Site A2 and the two airport weather stations used for the forecast. Credits:
Google Earth
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5.2.2.1 Forecasting results, single weather station

Most forecasting methods seem to provide good forecasts to systems A2a, A2b. Tables

5.50 and 5.51 list the error performance at different criteria for these systems.

Table 5.50: Results for Systems A2a and A2b, single station

System Metric\Method PKF FGM KF PBP BP

A2a

RMSE 3,957 10,950 4,385 7,942 8,093

MAE 3,062 8,371 3,346 6,288 6,261

MBE -0,033 1,484 -0,027 -0,731 0,065

MXE 16,810 40,684 22,361 27,907 29,916

r2 0,922 0,378 0,902 0,655 0,635

A2b

RMSE 3,088 9,539 4,160 6,945 6,294

MAE 2,283 7,210 2,982 5,477 4,732

MBE 0,072 0,495 0,030 -1,638 -1,030

MXE 19,820 38,101 29,523 27,830 30,465

r2 0,937 0,434 0,874 0,636 0,707

PCA-Kalman offers the lowest RMSE and MXE, followed by the classic Kalman.

Figure 5.57: Error graphs for forecasts in Systems A2a and A2b, from left to right. Single
station.

5.2.2.2 Forecasting results, multiple weather stations

Using information from all avaliable stations, a much larger set of inputs for PV fore-

casting inputs are fed into the prediction methodologies. Table 5.51 lists the results

for System A2a and A2b.
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Table 5.51: Results for Systems A2a and A2b, multiple stations

System Metric\Method PKF FGM KF PBP BP

A2a

RMSE 3,529 10,950 5,620 8,984 9,037

MAE 2,704 8,371 4,140 6,772 7,066

MBE -0,011 1,484 -0,011 0,447 -0,145

MXE 18,496 40,684 45,717 36,373 34,239

r2 0,935 0,378 0,838 0,573 0,482

A2b

RMSE 2,986 9,539 4,984 8,073 7,287

MAE 2,152 7,210 3,606 6,173 5,657

MBE 0,052 0,495 0,183 -0,536 -1,294

MXE 23,331 38,101 32,874 36,355 30,764

r2 0,940 0,434 0,848 0,547 0,578

PCA-Kalman improves its results over the single weather station case, and offers the

lowest RMSE overall, followed by the classic Kalman.

Figure 5.58: Error graphs for forecasts in Systems A2a and A2b, from left to right. Multiple
stations.

The predictions provided by the PCA-Kalman algorithm are compared to the measured

PV generation values in figures 5.59 and 5.60.
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Figure 5.59: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A2a over 360 days of observation.

Figure 5.60: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A2b over 360 days of observation.
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5.2.3 Site A3 - South Australia, Australia

This site is located in South Australia, at coordinates 34.68S - 138.65E, just north of

Adelaide metropolitan area. Site A3 represents a rural-suburban enviroment, close to

the coast and with a mediterranean climate. It is located close to Blakeview, a city

with 4.000 citizens. System capacities in the three analysed generators range from 3

to 6.2 kWp.

Table 5.52: PV Systems in site A3

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A3a 25 45 22 5.280

A3b 25 315 20 3.055

A3c 26 90 24 6.200

As illustrated in Figure 5.61, a sole weather station is used to provide both weather

and solar resource parameters for the predictions. The weather stations is designated

by its IATA code YPAD, which is Adelaide’s international airport.

Figure 5.61: Site A3 and the airport weather station used for the forecast. Credits: Google
Earth
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5.2.3.1 Forecasting results, single weather station

Using information from a single weather stations, performances are better in systems

A3b and A3c than in A3a. Table 5.53 lists the results.

Table 5.53: Results for Systems A3a, A3b and A3c, single station

System Metric\Method PKF FGM KF PBP BP

A3a

RMSE 5,750 8,175 5,339 6,992 7,608

MAE 4,503 6,090 4,158 5,687 6,330

MBE 0,001 1,252 0,033 0,335 0,366

MXE 23,448 35,167 22,279 24,275 27,799

r2 0,837 0,703 0,860 0,775 0,733

A3b

RMSE 1,666 4,781 1,689 3,606 3,635

MAE 1,259 3,659 1,218 2,920 2,913

MBE 0,008 0,601 -0,132 -0,187 -0,034

MXE 7,545 17,640 11,624 13,080 15,061

r2 0,955 0,635 0,941 0,777 0,768

A3c

RMSE 2,238 7,869 3,001 6,351 6,622

MAE 1,721 5,923 2,136 5,095 5,127

MBE 0,021 0,853 -0,310 0,324 0,325

MXE 11,928 29,937 17,707 24,632 30,885

r2 0,969 0,728 0,955 0,806 0,791
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Figure 5.62: Error graphs for forecasts in Systems A3a (top left), A3b (top right) and A3c
(bottom). Single station.

PCA Kalman performs slightly better in systems A3b and A3b, but is outperformed in

system A3a. The predictions provided by this algorithm are compared to the measured

PV generation values in figures 5.63,5.64, 5.65 and 5.55::
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Figure 5.63: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A3a over 360 days of observation.

Figure 5.64: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A3b over 360 days of observation.
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Figure 5.65: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A3c over 360 days of observation.

5.2.4 Site A4 - Utrecht region, Netherlands

This site is located in the Randstad conurbation, central Netherlands, at coordinates

52.03N - 5.08E, circa ten kilometers south of Utrecht center. Site A4 represents an

urban enviroment, close to the coast and with a oceanic climate without dry season.The

sole system in analysed in this site has 4.62 kWp and is a rooftop generator in a

residential building.

Table 5.54: PV Systems in site A4

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A4a 3 0 8 4.620

As illustrated in Figure 5.66, a sole weather station is used to provide both weather

and solar resource parameters for the predictions. The weather stations is designated

by its IATA code YPAD, which is Adelaide’s international airport.
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Figure 5.66: Site A4 and the six airport weather stations used for the forecast. Credits:
Google Earth

5.2.4.1 Forecasting results, single weather station

Using information from the nearest station, the different methods are applied to forecast

the PV generation. Table 5.55 lists the results for system A4a .

Table 5.55: Results for System A4a, single station

System Metric\Method PKF FGM KF PBP BP

A4a

RMSE 2,583 5,248 1,925 3,862 4,381

MAE 1,888 3,765 1,401 2,930 3,273

MBE -0,020 0,583 -0,215 -0,131 0,041

MXE 10,898 21,162 10,756 15,451 17,953

r2 0,947 0,797 0,969 0,881 0,850

The Kalman filter slightly outperforms the PCA-Kalman method. ANN methods also

perform close to the linear filters.
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Figure 5.67: Error graphs for forecasts in System A4a. Single station.

5.2.4.2 Forecasting results, multiple weather stations

Using information from all six stations, a much larger set of inputs for PV forecasting

inputs are fed into the prediction methodologies. Table 5.56 lists the results for system

A4a .

Table 5.56: Results for System A4a, multiple stations

System Metric\Method PKF FGM KF PBP BP

A4a

RMSE 1,257 5,248 3,653 5,370 5,492

MAE 0,968 3,765 2,653 4,111 3,946

MBE 0,074 0,583 0,157 -0,622 0,008

MXE 5,556 21,162 15,376 19,749 21,658

r2 0,984 0,797 0,902 0,753 0,774

Figure 5.68: Error graphs for forecasts in System A4a. Multiple stations.

The forecasts provided by the PCA-Kalman algorithm with multiple weather stati-

ons are the most accurate. A comparison between predictions and the measured PV

generation values is shown in figure 5.69.
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Figure 5.69: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A4a over 360 days of observation.

5.2.5 Site A5 - Amsterdam region, Netherlands

Site A5 is located just south of Schipol airport, close to Amsterdam region, at coor-

dinates 52.03N - 5.08E, circa ten kilometers south of Utrecht center. Similarly to A4,

site A5 represents a suburban enviroment, very close to the coast and with a humid

oceanic climate, without dry season.The sole system in analysed in this site has 3.68

kWp and is a rooftop generator in a residential building.

Table 5.57: PV Systems in site A5

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A5a -4 220 45 3.680

As illustrated in Figure 5.70, six weather stations is used to provide both weather and

solar resource parameters for the predictions. The weather stations are designated by

its IATA code, the closest being Schipol’s airport EHAM.
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Figure 5.70: Site A5 and the six airport weather stations used for the forecast. Credits:
Google Earth

5.2.5.1 Forecasting results, single weather station

Using information from the nearest station, the algorithms provide the performance

summarized in Table ,5.58, which lists the results for system A5a .

Table 5.58: Results for System A5a, single station

System Metric\Method PKF FGM KF PBP BP

A5a

RMSE 3,832 7,582 3,451 3,673 4,064

MAE 2,788 4,412 2,448 2,823 3,242

MBE -0,150 1,385 -0,038 -0,050 0,521

MXE 16,830 126,610 16,364 12,452 13,179

r2 0,863 0,608 0,890 0,876 0,846

Except for the Grey autoregressive model, the methodologies perform very similar at

most criteria. PCA-BP has a advantage in maximum error, while classic Kalman has

a very slightly better RMSE performance.
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Figure 5.71: Error graphs for forecasts in System A5a. Single station.

5.2.5.2 Forecasting results, multiple weather stations

Using information from all six stations, the prediction methodologies are performed

with a larger set of inputs. Table 5.59 lists the results for system A4a .

Table 5.59: Results for System A5a, multiple stations

System Metric\Method PKF FGM KF PBP BP

A5a

RMSE 3,508 7,582 3,678 4,597 4,779

MAE 2,481 4,412 2,656 3,630 3,736

MBE -0,123 1,385 0,006 -0,131 0,135

MXE 18,496 126,610 15,541 15,943 17,436

r2 0,886 0,608 0,874 0,785 0,765

Employing more information, the PCA-Kalman outperforms the other methods in

RMSE criteria, but still does not achieve better performance than the Kalman filter

with the single station inputs.

Figure 5.72: Error graphs for forecasts in System A5a. Multiple stations.
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A comparison between the PCA-Kalman forecasts and the measured PV generation

values is shown in figure 5.73.

Figure 5.73: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A5a over 360 days of observation.

5.2.6 Site A6 - Apeldoorn region, Netherlands

This site is located in Apeldoorn region, at coordinates 52.2N - 5.96E, near Apeldoorn’s

city center, a medium sized dutch city. Site A6 represents a light residential urban

enviroment, several kilometers inland and with a humid temperate climate, without

dry season.The two systems analysed in this site have capacities ranging from 1.44 to

3.64 kWp.

Table 5.60: PV Systems in site A6

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A6a 20 180 34 3.640

A6b 22 200 36 1.440
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As illustrated in Figure 5.74, six weather stations is used to provide both weather and

solar resource parameters for the predictions. The weather stations are designated by

its IATA code, the closest being EHDL.

Figure 5.74: Site A6 and the six airport weather stations used for the forecast. Credits:
Google Earth

5.2.6.1 Forecasting results, single weather station

Using information from the nearest station, the different methods are applied to forecast

the PV generation. Table 5.61 lists the results for system A6a and A6b .
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Table 5.61: Results for Systems A6a and A6b,single station

System Metric\Method PKF FGM KF PBP BP

A6a

RMSE 2,743 6,117 4,242 4,394 5,670

MAE 2,002 4,424 3,092 3,405 4,532

MBE -0,119 1,177 0,255 0,030 0,624

MXE 12,252 24,282 25,595 13,954 20,217

r2 0,889 0,529 0,724 0,717 0,523

A6b

RMSE 0,747 1,356 0,765 1,020 1,058

MAE 0,498 0,926 0,522 0,798 0,806

MBE 0,084 0,202 0,089 -0,030 0,007

MXE 4,114 5,440 3,889 3,614 4,290

r2 0,940 0,769 0,941 0,858 0,845

PCA-Kalman outperforms the other methods, achieving the lowest RMSE.

Figure 5.75: Error graphs for forecasts in Systems A6a and A6b, from left to right. Single
station.

5.2.6.2 Forecasting results, multiple weather stations

Using information from all six stations, the prediction methodologies are performed

with a larger set of inputs. Table 5.62 lists the results for system A6a and A6b.
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Table 5.62: Results for Systems A6a and A6b, multiple stations

System Metric\Method PKF FGM KF PBP BP

A6a

RMSE 2,743 6,117 4,242 4,610 5,414

MAE 2,002 4,424 3,092 3,619 4,101

MBE -0,119 1,177 0,255 0,033 -0,181

MXE 12,252 24,282 25,595 14,850 21,007

r2 0,889 0,529 0,724 0,678 0,583

A6b

RMSE 0,725 1,356 1,407 1,080 1,505

MAE 0,481 0,926 0,930 0,854 1,137

MBE 0,111 0,202 0,211 0,121 0,208

MXE 3,730 5,440 8,997 3,683 6,480

r2 0,944 0,769 0,799 0,834 0,716

PCA-Kalman outperforms the other methods, offering slightly improved performance

over the single station case.

Figure 5.76: Error graphs for forecasts in Systems A6a and A6b, from left to right. Multiple
stations.

The predictions provided by this algorithm are compared to the measured PV genera-

tion values in figures 5.77 and 5.78:
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Figure 5.77: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A6a over 360 days of observation.

Figure 5.78: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A6b over 360 days of observation.
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5.2.7 Site A7 - California, USA

Site is located in south California, northeast of San Diego, at coordinates 32.87N -

116.9W, near Lakeside. Site A7 represents a light residential suburban enviroment in

a hilly terrain, a few kilometers inland and with a warm summer climate containing

dry seasons. The two systems analysed in this site have capacities ranging from 8.16

to 24.5 kWp, the latter being the largest systems forecasted in this work.

Table 5.63: PV Systems in site A7

System
Elevation Azimuth Tilt Capacity

(m) (degrees) (degrees) (kWp)

A7a 128 270 20 24.150

A7b 200 270 1 8.160

As illustrated in Figure 5.79, two weather stations are used to provide both weather

and solar resource parameters for the predictions. The weather stations are designated

by its IATA code, the closest being KSEE.

Figure 5.79: Site A7 and the two airport weather stations used for the forecast. Credits:
Google Earth
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5.2.7.1 Forecasting results, single weather station

Using information from the nearest station, the different methods are applied to forecast

the PV generation. Table 5.64 lists the results for system A7a and A7b .

Table 5.64: Results for Systems A7a and A7b, single station

System Metric\Method PKF FGM KF PBP BP

A7a

RMSE 19559,6 34098,8 20755,2 19226,1 20076,7

MAE 13052,6 24801,0 14953,0 14418,2 14853,7

MBE -88,2 1842,4 565,2 -1453,1 -557,5

MXE 107909,5 222982,0 110496,6 79656,6 100092,7

r2 0,846 0,563 0,819 0,852 0,828

A7b

RMSE 2355,642 8268,054 4426,103 6468,202 5597,456

MAE 1729,417 5767,199 3081,713 4751,885 4121,103

MBE -17,045 391,755 34,506 156,529 -103,300

MXE 13968,052 33237,852 27830,000 32601,750 28100,815

r2 0,975 0,750 0,884 0,817 0,869

The PCA-Kalman method performs better for both systems, albeit with a minor per-

formance edge in System A7a

Figure 5.80: Error graphs for forecasts in Systems A6a and A6b, from left to right. Single
stations.

5.2.7.2 Forecasting results, multiple weather stations

The forecasting methods are now tried with inputs derived from two weather stations.

Table 5.65 lists the results for system A7a and A7b .
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Table 5.65: Results for Systems A7a and A7b, multiple stations

System Metric\Method PKF FGM KF PBP BP

A7a

RMSE 16687,0 34098,8 22711,9 20055,6 20978,1

MAE 11212,7 24801,0 16400,8 15379,7 15723,5

MBE 90,2 1842,4 899,0 -1196,7 -1496,4

MXE 103080,4 222982,0 112216,2 84368,9 95141,3

r2 0,889 0,563 0,786 0,831 0,804

A7b

RMSE 2257,938 8268,054 5583,472 5827,108 5982,462

MAE 1523,411 5767,199 3852,952 4246,379 4491,408

MBE -84,758 391,755 -78,006 143,069 -244,528

MXE 20638,529 33237,852 29779,699 28008,626 25235,103

r2 0,975 0,750 0,874 0,860 0,849

PCA-Kalman benefits from the second weather station, improving the forecasting per-

formance in all systems, but this effect is more noticeable in system A7a.

Figure 5.81: Error graphs for forecasts in Systems A6a and A6b, from left to right. Multiple
stations.

The forecasts provided by the PCA-Kalman algorithm are compared to the measured

PV generation values in figures 5.82 and 5.83:
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Figure 5.82: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A7a over 360 days of observation.

Figure 5.83: Prediction (red line) plotted against the measured PV Generation (blue line) in
site A7b over 360 days of observation.
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6 CONCLUSIONS

This Chapter is aimed at summarizing the results, point the key findings and conclu-

sions of this work. Section 6.1 deals with the general conclusions. Sections 6.2 and

6.3, respectively, are concerned about specific analysis and commentaries about the

load forecasting and photovoltaic generation forecasting. Section 6.4 provides some

directions for future research..

6.1 General conclusions

The electric load usually grows due to increasing population or energy intensity. There

is also a strong dependence between electrical losses and network reliability with the

system load: usually, losses get higher and reliability gets lower with increasing load.

As energy prices rise and technology costs decrease, photovoltaic generation increasin-

gly becomes more attractive as an option to provide electricity. The only way to comply

with these requirements over time is through a carefully planned network expansion,

keeping reliability and quality of service despite increased loads and intermitent, so-

metimes bidirectional energy flows.

The proposed PCA-Kalman linear model is proven to be satisfactory as being capable of

predicting both electric load and PV generation, outperforming a classic Kalman filter

and multilayer perceptron (MLP) artificial neural networks and achieving coefficients

of correlation oftenly above 90 %. Real data from 33 load forecasting case studies and

15 PV generation case studies has been used to simulate forecasts. Using PCA feature

selection, the proposed model benefitted from the additional information provided by

a large number of inputs, while the other methods presented loss of performance due

to the curse of dimensionality.

Due to their state space mathematical formulation, Kalman filters are intrisically ef-

ficient from the computational standpoint. In contrast, backpropagation becomes a

cumbersome task when the number of input variables is large. Such theoretical suppo-

sition was noticed along the developed analysis, as shown in Table 6.1.
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Table 6.1: ANN and Kalman filter processing time ratio.

Scenario Kalman CPU time ANN CPU time Ratio Input Size

LEJ Set B 46,40% 53,60% 1,155082664 20

PV A6 (Single) 16,29% 83,71% 5,137984129 35

PV A7 (Multi) 20,61% 79,39% 3,851038475 70

BSB Set D 22,93% 77,07% 3,360307076 90

PV A4 (Multi) 7,48% 92,52% 12,36396936 210

PV A5 (Multi) 6,87% 93,13% 13,56342289 210

BSB Set Z 6,74% 93,26% 13,82768111 306

Figure 6.1: Scatter plot of the ANN to Kalman filter processing time ratio, as a function of
the input size.

In Figure 6.1, the ANN to Kalman processing time ratio is plotted as a scatter graph.

It is noticeable that the ratio gets larger as the size of the input set increases. However,

it must be noted that this particular Kalman filter implementation in the MATLAB

environment does not have a graphical user interface (GUI), as does the ANN toolbox

in the same computational environment. A more fair comparison would require an

ANN implementation coded without GUI or assistant wizards.

Considering both the forecasting performance and computational effort, the compari-

sons performed in this work show that the proposed PCA-Kalman methods compared

favourably with the benchmark approaches.
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Table 6.2: Summary of results - Leipzig scenario. Best methods per substation and load type.

Load type\Substation S1 S2 S3 S4 S5 S6 S7 S8 S9

Base load PKF BP BP PKF KF PKF PKF-KF KF BP

Average load PKF PKF PKF PKF PKF PKF PKF KF PKF

Peak load PKF PKF PKF PKF PKF PKF PKF PKF PKF

Table 6.3: Summary of results - Leipzig scenario. Best input sets per substation and load
type.

Load type\Substation S1 S2 S3 S4 S5 S6 S7 S8 S9

Base load D A E Z Z-B Z Z-B Z E

Average load Z Z Z Z Z Z Z B Z

Peak load Z Z Z Z Z Z Z Z Z

6.2 Load forecasting conclusions

The proposed PCA-Kalman forecasting has been compared with other methods in 3

different scenarios, concerning the distribution systems in the cities of Leipzig and

Brasilia. Leipzig has nine substations analysed in a time period comprising years 2001-

2003, while Brasilia’s entire load is forecasted in two different time periods: from year

2001 to 2003, and from 2004 to 2010. Load time series in all scenarios are forecasted

at its base, average and peak values.

Summarizing the results presented in section 5.1, Table 6.2 presents the best methods

for each substation and type of load time series. PKF represents the proposed PCA-

Kalman, KF the classic Kalman filter, PBP the PCA-Backpropagation adjusted mul-

tilayer perceptron ANN and BP the standard Backpropagation adjusted MLP ANN.

The proposed method achieves the lowest mean squared error in 21 out of the 27

substation and load type combinations. The classic Kalman filter provides the better

performance in 4 out of 27, while the BP is the better method in 3 out of the 27 cases.

Nine different input sets are analysed in this work, as listed in Chapter 4, Table 4.1.

Table 6.3 presents the best input sets for each substation and type of load time series.

Despite the increased number of dimensions and the consequent risk of overestimation

due to the curse of dimensionality, input set Z provides the better performance overall

in 22 out of the 27 cases studies. In almost all of these cases, this input set is paired
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Table 6.4: Summary of results - Brasilia scenarios. Best methods per substation and load
type.

Load type\Time period 2001-2003 2004-2010

Base load PKF PKF

Average load PKF PKF

Peak load PKF PKF

Table 6.5: Summary of results - Brasilia scenarios. Best input sets per substation and load
type.

Load type\Time period 2001-2003 2004-2010

Base load Z Z

Average load Z Z

Peak load Z Z

with the proposed PCA-Kalman method, suggesting that this combination can decrease

mean squared errors when compared to smaller inputs sets without feature selection.

However, it also must be noted that the BP ANN provided no better performance than

the standard BP, even with this input set.

From the analysis of the results obtained from Brasilia’s two time periods, Tables 6.4

and 6.5 are constructed.

Similar to the Leipzig scenario, in mean squared error criteria the proposed PCA-

Kalman method outperforms all the benchmark approaches at all cases.

The input set Z, again in combination with the proposed method, manages to achieve

the lowest mean squared errors in forecasting.

Considering the extensiveness of the case studies performed, this work concludes that

the proposed PCA-Kalman load forecasting algorithm realiably outpeforms the bench-

mark methods. The Mean Average Percentual Error (MAPE) achieved by the proposed

model, around 2 % for citysized systems and 4 % for substations, compare favourably

with the values given in literature reviews [47], considering the power systems scale.

The other methods in the comparison also perform with similar figures to what is pre-

sented as state of art, indicating that their performances are adequate to benchmark

the proposed forecasting system.
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Table 6.6: Summary of results - PV forecasting scenarios. Best methods per system.

PV System\Weather station inputs Single Multiple Better combination

A1a KF PKF KF -Single

A1b KF PKF KF -Single

A1c KF PKF PKF-Multi

A1d PKF PKF PKF-Multi

A2a PKF PKF PKF-Multi

A2b PKF PKF PKF-Multi

A3a KF N/A PKF-Single

A3b PKF N/A PKF-Single

A3c PKF N/A PKF-Single

A4a KF PKF PKF-Multi

A5a KF PKF KF-Single

A6a PKF PKF PKF-Single/Multi

A6b PKF PKF PKF-Multi

A7a PKF PKF PKF-Multi

A7b PKF PKF PKF-Multi

6.3 PV Generation forecasting conclusions

Summarizing the results presented in section 5.2, Table 6.6 presents the best methods

for each combination of PV system and number of weather stations. PKF represents the

proposed PCA-Kalman, KF the classic Kalman filter, PBP the PCA-Backpropagation

adjusted MLP ANN and BP the standard MLP ANN. N/A denotes that the multiwe-

ather station approach is not performed.

Interpreting the results by the Root Mean Squared Error criteria, it can be noticed

that the proposed PCA-Kalman approach outperform the benchmarks in 12 out of the

15 cases, while the classic KF is the better method in the remaining 3 cases. Com-

paring input data from single or multiple weather stations, it is noticed that in 9 out

of 15 the additional inputs provided by the multiple weather stations is beneficial to

the forecasting, while in 4 out of the 15 the single weather station approach is more

accurate. In a single case, the results among single and multiple weather stations are

practically equal. The proposed PCA-Kalman filter performed better with multiple we-

ather inputs, while the classic Kalman forecasted more accuratelly with single weather

inputs.
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The proposed method averaged a coefficient of correlation between prediction and

measurements above 90 % in most of the cases, while all except one of the benchmark

methods averaged between 75-85 %. The autoregressive Gray model, without inputs,

averaged less than 70 %. Except for the latter method, both benchmark and proposed

methods performed reasonably, considering the plant size and uncertainties in the solar

resource [10, 108].

6.4 Directions for future research

Further research must focus on expanding the sets of candidate variables and investigate

the possibility to develop universal types of nonlinear transformations, applicable to

the full set of candidate variables.

The attempt of combining PCA and multilayer perceptron ANN adjusted by Back-

propagation (BP) does not present an advantage in error performances. The probable

cause is that the number of dimensions is chosen accordingly to the Kalman filter’s

performance, while the ANN can have difficulties optimizing all parameters in a high

dimensionality scenario. This becomes more clear when thre results show the ANN

methods performing better with the smaller input sets, such as A, E and F.

There are opportunities to employ the PCA to also help determine the model order.

Figures 6.2 and 6.3 depict the singular values in bar charts over the principal com-

ponents, as calculated from Leipzig and PV Site 5, respectively. It is noticeable that

there are transitions in the components around the chosen model order for each case.

In future works, the model order selection can be obtained by means of Bayesian or

Akaike criteria applied to the principal components.

More advanced feature selection procedures either substituting or complementing PCA

should be attempted, in order to further reduce complexity and avoid overestimation.

A promising candidate is the MinMax technique.

The effect of rapidly growing distributed generation, grid storage and demand response

over the performance of this load forecasting system might also be a topic for future

work, given availability of applicable time series data.
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Figure 6.2: Principal components horizontally sorted in decreasing order of singular value.
There are noticeable discontinuities around the first, the seventh and eighth component.
Model order in this case has been selected as 7.

Figure 6.3: Principal components horizontally sorted in decreasing order of singular value.
There are noticeable discontinuities around the first and the tenth component. Model order
in this case has been selected as 10.
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A The Kalman filter

This appendix contains a more complete description and derivation of the Kalman

filter, including:

1. An extended overview;

2. State space representation;

3. Filter derivation;

4. Variance tracking.

Each of these topics will be described in sections A.1 to A.4.

A.1 Overview

In 1960, Rudolf E. Kalman published his famous paper describing a recursive solution to

the discrete-data linear filtering problem. Since that time, due in large part to advances

in digital computing, the Kalman filter has been the subject of extensive research

and application, particularly in the area of autonomous or assisted navigation, data

fusion and forecasting of stochastic systems. Typical uses of the Kalman filter include

smoothing noisy data and providing estimates of parameters of interest. Applications

include global positioning system (GPS) receivers, phaselocked loops (PLL) in radio

equipment, smoothing the output from touchpads and touchscreens, and many more.

The Kalman filter is over 50 years old but is still one of the most important and common

data fusion algorithms in use today, due to its small computational requirement, elegant

recursive properties, and its status as the optimal estimator for one-dimensional linear

systems with Gaussian error statistics.

Theoretically the Kalman filter is an estimator for the linear-quadratic problem, which

is the problem of estimating the instantaneous state of a linear dynamic system per-

turbed by white noise. In this sentence, state relates to the so-called state-space repre-

sentation of a dynamic system, a concise mathematical model based on a finite system
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of differential equations. Precisely, state can be defined as the values assumed by the

state variables, which in turn are related to the degrees of freedom presented by system

of differential equations. An important property of the state space representation is

that given knowledge of the state at the present instant t0, this information embodies

all previous history of the system’s states and inputs. The future outputs of the system

are entirely determined by the state at t0 and by the future values of the inputs.

An estimator is a system that calculates as output a parameter or variable of interest,

having sequence of observations as inputs. The Kalman filter is a recursive estimator

that calculates a minimum variance estimate for a state that evolves in time as a linear

function of variables related to this state. Recursive means that only the previous time

step state needs to be stored in memory. The Kalman filter is optimum with respect to

diverse criteria, provided some specific hypothesis about process and observation noise

are true.

A.2 State space representation

In the general case, the state space model of a dynamic system can be derived from

two sets of differential equations: the first shown in Eq. (A.1) relating the m input

variables ui to the n state variables xj at a given instant t, and the latter reffered in Eq.

(A.2) relating ui and xjto the p output variables yqat a given instant t. ẋj represents

the first derivative of xj.


ẋ1(t)

ẋ2(t)
...

ẋn(t)

 =


F1(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t))

F2(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t))
...

Fn(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t))

 (A.1)


y1(t)

y2(t)
...

yp(t)

 =


H1(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t))

H2(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t))
...

Hp(x1(t), x2(t), ..., xn(t), u1(t), u2(t), ..., um(t))

 (A.2)

Note that this definition does not require a linear relationship between the variables,

and that a Multiple Input Multiple Output (MIMO) system is described. Also note
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that this representation does not handle systems with delays and those defined by

partial differential equations. Delayed input variables, however, can be easily added as

additional input variables.

If the n functions Fi and p functions Hp are linear, eqs (A.1) and (A.2) can also be

expressed as Eqs. (A.3) and (A.4):


ẋ1(t)

ẋ2(t)
...

ẋn(t)

 =


a11x1(t) + a12x2(t) + ...+ a1nxn(t) + b11u1(t) + b12u2(t) + b1mum(t)

a21x1(t) + a22x2(t) + ...+ a2nxn(t) + b21u1(t) + b22u2(t) + b2mum(t)
...

an1x1(t) + an2x2(t) + ...+ annxn(t) + bn1u1(t) + bn2u2(t) + bnmum(t)


(A.3)


y1(t)

y2(t)
...

yp(t)

 =


c11x1(t) + c12x2(t) + ...+ c1nxn(t) + d11u1(t) + d12u2(t) + d1mum(t)

c21x1(t) + c22x2(t) + ...+ c2nxn(t) + d21u1(t) + d22u2(t) + d2mum(t)
...

cn1x1(t) + cn2x2(t) + ...+ cpnxn(t) + dp1u1(t) + dp2u2(t) + dpmum(t)


(A.4)

These two sets of equations can be expressed in matricial form, by the following group-

ment of variables in vectors and parameters in matrices:

Ẋ(t) =


ẋ1(t)

ẋ2(t)
...

ẋn(t)

 ; X(t) =


x1(t)

x2(t)
...

xn(t)

 ; Y (t) =


y1(t)

y2(t)
...

yp(t)

 ; U(t) =


u1(t)

u2(t)
...

um(t)

 ;

Ac =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 ; Bc =


b11 b12 · · · b1m

b21 b22 · · · b2m

...
...

. . .
...

bn1 bn2 · · · bnm

 ;
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C =


c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cp1 cp2 · · · cpn

 ; D =


d11 d12 · · · d1m

d21 d22 · · · d2m

...
...

. . .
...

dp1 dp2 · · · dpm

 ;

where X(t) ∈ Rn is the state vector and Ẋ(t) is its derivative, Y (t) ∈ Rp is the

measurements and/or output vector, and U(t) ∈ Rm is the input vector. Ac ∈ Rn×n

is the system or dynamics matrix (continuous time), Bc ∈ Rn×m is the input matrix

(continuous time), C ∈ Rp×n is the output or sensor matrix, and D ∈ Rp×m is the

direct transmission or feedthrough matrix.

With this more succint description, one can write Eqs. (A.3) and (A.4) as:

Ẋ(t) = AcX(t) + BcU(t) (A.5)

Y (t) = CX(t) + DU(t) (A.6)

Note that Eqs. (A.5) and (A.6) describe a dynamic system in continuous time. For

many practical problems, however, one is only interested in knowing the state of a

system at a discrete set of times tk ∈ {t1, t2, t3, ...}. Considering that t1, t2 and t3 are

equally spaced in time by a period τ , it is convenient to order the times tk according

to their integer subscripts:

x(t1) = x[1]

x(t2) = x[2]
...

x(tk) = x[k]

For problems with discrete time of this type, it suffices to define the state as a recursive

relation of difference equations, instead of differential equations. If τ is small relative

to the system dynamics and consequently the input remains approximately constant

during each timestep (zero order hold), it is possible to employ the approximation of

the first derivate presented in Eq. (A.7):
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Ẋ(tk+1) ≈ X[k + 1]−X[k]

τ
(A.7)

Substituting Eq. (A.7) in (A.5) yields:

X[k + 1]−X[k]

τ
= AcX[k] + BcU [k]

X[k + 1] = X[k] + τAcX[k] + τBcU [k]

X[k + 1] = (In + τAc)X[k] + τBcU [k]

X[k + 1] = AX[k] + BU [k] (A.8)

Y [k] = CX[k] + DU [k] (A.9)

where A = In + τAc and B = τBc. In denotes the identity matrix of order n. Notice

that C and D are not affected in this discretization procedure.

A.2.1 Obtaining a discrete state space representation from a difference

equation

It is possible to convert a nth order linear difference equation of a Multiple Input Single

Output (MISO) system to a state space model by means of the so-called companion

model. Starting with the difference equation (A.10):

y[k+1]+α1y[k]+α2y[k−1]+...+αn−1y[k−n−2]+αny[k−n−1] = β1u1[k]+β2u2[k]+...+βmum[k]

(A.10)
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Defining the state and output vectors in the companion forms:

X[k + 1] =


y[k + 1]

y[k]
...

y[k − n]

 ; X[k] =


y[k]

y[k − 1]
...

y[k − n− 1]

 ; U [k] =


u1[k]

u2[k]
...

um[k]


and using the fundamental relationship between the past and present values of y[k],

when the timestep k is increased by 1:

y[k] = y[k − 1]

y[k − 1] = y[k − 2]
...

y[k − n] = y[k − n− 1]

Equation (A.10) can be rewritten in the matricial form:

X[k+1] =



−α1 −α2 · · · −αn−2 −αn−1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


X[k]+


β1 β2 · · · βm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

U [k] (A.11)

Defining the system output Y [k] as y[k], one could also write the output matrix equa-

tion:

Y [k] =
[
1 0 · · · 0

]
X[k] (A.12)

By inspection, it can be noticed that Eqs. (A.11) and (A.12) are equivalent to Eqs.

(A.8) and (A.9), respectively. In this case, the direct transmission matrix D is equal

to zero.
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An important observation is that the companion form can lead to a poorly conditioned

system in the numerical sense. This is a direct consequence of concentrating all system

information in a single row. If the coefficients αj and βi differ in value by several

orders of magnitude, rounding errors and numerical issues may arise. In order to

mitigate these problems, it is advisable to employ preconditioning and robust numerical

methods, such as Generalized Minimal RESidual (GMRES) when evaluating or solving

these equations.

A.3 Filter derivation

The Kalman filter is a set of mathematical equations that provides an efficient compu-

tational (recursive) means to estimate the state of a process, in a way that minimizes

the mean of the squared error. The filter is very powerful in several aspects: it supports

estimations of past, present, and even future states, and it can do so even when the

precise nature of the modeled system is unknown.

The Kalman filter addresses the general problem of trying to estimate the state X[k+

1] ∈ Rn of a discrete-time controlled process that is governed by the linear stochastic

difference equation (A.13) with a measurement Y [k] ∈ Rp of the systems output given

by equation (A.14):

X[k + 1] = AX[k] + BU [k] +W [k] (A.13)

Y [k + 1] = CX[k + 1] + V [k + 1] (A.14)

The random variablesW [k] ∈ Rn andR[k] ∈ Rp represent the process and measurement

noise (respectively). They are assumed to be independent (of each other), white,

and with normal probability distributions respectively given by equations (A.15) and

(A.16):

p(W ) ∼ N(0,Q) (A.15)
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p(V ) ∼ N(0,R) (A.16)

In practice, the process noise covariance Q and measurement noise covariance R ma-

trices might change with each time step or measurement, however here we assume they

are constant.

Defining X̂[k+ 1|k] as the a priori state estimate at step k+ 1 given knowledge of the

process at step k, and X̂[k+ 1|k+ 1] the a posteriori state estimate at step k+ 1 given

measurement Y [k+ 1]. One can then define a priori and a posteriori estimation errors

e[k + 1|k] and e[k + 1|k + 1] as:

e[k + 1|k] = X[k + 1]− X̂[k + 1|k] (A.17)

e[k + 1|k + 1] = X[k + 1]− X̂[k + 1|k + 1] (A.18)

Estimation error covariance matrices for the a priori and a posteriori estimation errors,

respectively P̂ and P, can be obtained by application of the expectation operator in

equations (A.19) and (A.20):

P̂ = E(e[k + 1|k]eT [k + 1|k]) (A.19)

P = E(e[k + 1|k + 1]eT [k + 1|k + 1]) (A.20)

The goal of the Kalman filter is to find an equation that computes an a posteriori

state estimate X̂[k+ 1|k+ 1] as a linear combination of an a priori estimate X̂[k+ 1|k]

and a weighted difference between an actual measurement Y [k+1] and a measurement

prediction as shown in equation (A.21):

X̂[k + 1|k + 1] = X̂[k + 1|k] + K(Y [k + 1]−CX̂[k + 1|k]) (A.21)
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The n× p matrix K in (A.21) is chosen to be the gain that minimizes the a posteriori

error covariance. This minimization can be accomplished by first substituting (A.21)

into equation (A.18), giving (A.22):

P = E
{(
X[k + 1]− X̂[k + 1|k + 1]

)(
X[k + 1]− X̂[k + 1|k + 1]

)
T
}

(A.22)

Then, the expectation indicated in (A.20) must be performed to obtain (A.23):

P = E{(X[k + 1]− X̂[k + 1|k]−KY [k + 1] + KCX̂[k + 1|k]) (A.23)

· (X[k + 1]− X̂[k + 1|k]−K(Y [k + 1] + KCX̂[k + 1|k])T}

Substituting (A.14) in (A.23):

P = E{(X[k + 1]− X̂[k + 1|k]−KCX[k + 1] + KV [k + 1] + KCX̂[k + 1|k])

· (X[k + 1]− X̂[k + 1|k]−KCX[k + 1] + KV [k + 1] + KCX̂[k + 1|k])T}

Factoring some common terms yields:

P = E{((In −KC)(X[k + 1]− X̂[k + 1|k]) + KV [k + 1])}

·
(

(In −KC)(X[k + 1]− X̂[k + 1|k]) + KV [k + 1]
)
T

Taking the expectations, substituting equation (A.19) and remembering that the me-

asurement error V [k] is uncorrelated with e[k + 1|k], gives:

P =
(

(In −KC)P̂(In −KC)T
)

+ KRKT (A.24)

As it is desired to minimize the trace of P, which relates to the mean square error

of the estimation, it then proceeds to taking the derivative with respect to K, setting

that result equal to zero, and then solving for K gives:
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∂P

∂K
= 0 = −2(In −KC)P̂CT + 2KR

−P̂CT + K
(
CP̂CT + R

)
= 0

K = P̂CT
(
CP̂CT + R

)−1

(A.25)

The matrix K is also known as Kalman gain. By inspection of (A.25), it can be noted

that as the measurement error covariance R approaches zero, the actual measurement

Y [k+ 1] is “trusted” more and more, while the predicted measurement CX̂[k+ 1|k] is

trusted less and less. Conversely, as the a priori estimate error covariance P̂ approaches

zero the actual measurement is trusted less and less, while the predicted measurement

is trusted more and more.

The expression of the optimum a posteriori estimate error covariance P when the

optimum Kalman Gain K is calculated can be obtained by substituing (A.25) in (A.24):

P =

(
(In −

(
P̂CT

(
CP̂CT + R

)−1)
C)P̂(In −

(
P̂CT

(
CP̂CT + R

)−1)
C)T

)
+

(
P̂CT

(
CP̂CT + R

)−1)
R

(
P̂CT

(
CP̂CT + R

)−1)T

This expression can be simplified to:

P = P̂− P̂CT
(
CP̂CT + R

)

P = (In −KC)P̂ (A.26)

It is important to notice that while equation (A.26) is valid only for optimum K,

equation (A.24) represents the general case. This can have implications when there

211



uncertainties due to unknown or time varying R and/or rounding and numerical errors

due to poor conditioning.

Thus, employing equation (A.21) and substituting the calculated Kalman Gain K given

by equation (A.25) leads to the optimum estimation of the system state X̂[k+1|k+1].

However, at time step k + 2, in order to incorporate the measurement Y [k + 2] into

the state estimation, one will need the values of the estimationX̂[k + 2|k + 1] and

the corresponding updated error estimation covariance P̂. The a priori estimation

X̂[k + 2|k + 1] can be obtained from equation (A.13).

X̂[k + 2|k + 1] = AX̂[k + 1|k + 1] + BU [k + 1] (A.27)

Notice that the process noise W [k+1] is omitted. This variable can be ignored because

it has zero mean and its values are uncorrelated in time due to its normal distribution.

Henceforth, the estimation error covariance matrix associated with X̂[k + 2|k + 1] is

given by substitution of equation (A.27) into (A.17), and then in (A.19):

e[k + 2|k + 1] = X[k + 2]− X̂[k + 2|k + 1]

e[k+2|k+1] = (AX[k + 1] + BU [k + 1] +W [k + 1])−
(
AX̂[k + 1|k + 1] + BU [k + 1]

)

e[k + 2|k + 1] = Ae[k + 1|k + 1] +W [k + 1]

P̂ = E(e[k + 2|k + 1]eT [k + 2|k + 1])

P̂ = E
(

(Ae[k + 1|k + 1] +W [k + 1]) (Ae[k + 1|k + 1] +W [k + 1])T
)

(A.28)

As W [k+1] and e[k+1|k+1] are uncorrelated, after simplifications the equation (A.28)

can be rewritten as:
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P̂ = APAT + Q (A.29)

In its classical rendition, the recursive Kalman filter algorithm is executed by the step-

by-step evaluation of equations (A.27), (A.29), (A.25), (A.21) and (A.20). The first

two expressions are dubbed as the time update equations, while the latter three are

known as measurement update equations.

A.4 Variance tracking

One of the biggest challenges to Kalman filtering schemes is the determination of suita-

ble values for the Q and R covariance terms. Previous knowledge of these parameters

is seldom available, especially when the model does not represent a definite physical

system. Phase III addresses this shortcoming in this proposed Kalman based predic-

ting scheme. There is a recursive procedure that estimates the most probable value for

Q and R at every time step.

In the first step, a R variance tracking routine was employed based on the estimation

of V [k]. Isolating it in (A.14) gives the following expression:

V [k] = Y [k]−CX[k] (A.30)

It is then possible to estimate V [k] by subtracting the predicted output CX[k] of the

measured output Y [k]. By definition, R is the variance of V [k] from the first to the kth

time step. As the measurements are usually consequence of a very high number of sto-

chastic process (errors in measurement systems, reading errors, random fluctuations),

one can suppose that abrupt changes in statistical parameters of an isolated process

does not necessarily translates into an abrupt change of the statistical parameters of

the measurement process. As it is very unlikely that several of those stochastic pro-

cesses will change in coordination, one can conclude that abrupt variations in the R

parameter are also improbable. This approximate continuity is modelled in the trac-

king routine by weighing in the value of R estimated for the previous step, as shown

in (A.31):

R[k + 1] = k−1R[k] + (k − 1)k−1V ar(V [k]) (A.31)
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Where V ar(V [k]) indicates the variance operator. In the second step, the estimation

of the Q Covariance Matrix starts by isolating the W [k] vector from its definition:

W [k] = X[k]− X̂ [k] (A.32)

Also by definition, Q is the covariance matrix of the vector W [k]. Considering also that

Q does not change abruptly, a similar weighing routine is employed to determine it.

However, X[k] is a function of the Kalman Gain (A.21), which in its turn is a function

of R. As by definition Q and R measure different model imperfections, they are thus

modelled as independent variables and it is necessary to subtract the R variance from

Q in the innovation 4Q:

4Q =
√

(V ar(W [k])2 − In · V ar(V [k])2) (A.33)

Q[k + 1] = k−1Q[k] + (k − 1)k−14Q (A.34)
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B The SPCTRL2 Radiative Transfer Model and SEDES2

Cloud Cover Modifier

This appendix contains a description and derivation of the Simple Solar Spectral Mo-

del (SPCTRL2) for Cloudless Atmospheres’ and the SEDES2 empirical Cloud Cover

Modifier, including:

1. An introduction;

2. Key concepts;

3. Direct Normal Irradiance;

4. Diffuse Irradiance;

5. Cloud Cover

Each of these topics will be described in sections B.1 to B.6.

B.1 Introduction

This introduction is comprised of some basic information about electromagnetic radi-

ation, solar radiation, solar spectrum in Earth’s surface and the relevant factors: sun’s

position and atmospheric composition.

Electromagnetic (EM) radiation is a form of transmitted energy, whose name arises

from the electric and magnetic fields that simultaneously oscillate in planes mutually

perpendicular to each other and to the direction of propagation through space, as

shown in fig. B.1. Whenever charged particles are accelerated, EM waves are produced

and can subsequently interact with any charged particles. EM waves carry energy,

momentum and angular momentum away from their source particle and can impart

those quantities to matter with which they interact.
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Figure B.1: Electromagnetic wave propagating from left to right. The electric field is in a
vertical plane and the magnetic field in a horizontal plane. The electric and magnetic fields
are always in phase and at 90 degrees to each other.

Electromagnetic radiation has a propagation speed of approximately 300.000 km/s,

known as speed of light, constant and absolute for all referentials according to the

theory of relativity. Due to the particle-wave duality, it can can also be described in

terms of a stream of photons, massless particles traveling in a wave-like pattern at the

speed of light. The larger the amount of photons, larger the energy flux. Also, each

photon contains a certain amount of energy, which are related to the wavelenghts and

define the different types of radiation. The set of all wavelengths define the electro-

magnetic spectrum, shown in fig. B.2. Radio waves have photons with low energies,

microwave photons have a little more energy than radio waves, infrared photons have

still more, then visible, ultraviolet, X-rays, and, the most energetic of all, gamma-rays.

The irradiance of an EM wave source is defined as the received power per unit area at

all wavelengths.

Figure B.2: Electromagnetic spectrum expressed in terms of energy and wavelength. In
detail, the visible spectrum perceived by the human eyes as colors.

Most electromagnetic radiation from space is unable to reach the surface of the Earth,

as shown in fig. B.3. Radio frequencies, visible light and some ultraviolet light makes
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it all the way to sea level. The higher the altitude, more rarefied the atmosphere and

larger the fraction of the EM spectrum that becomes visible to instruments. This is

the reason why many telescopes are built on mountain tops in order to better observe

infrared wavelengths. Balloon experiments can reach 35 km above the surface and

can operate for months. Rocket flights can take instruments all the way above the

Earth’s atmosphere, but only for a few minutes before they fall back to Earth. Satellite

and spacecraft based instruments can access the entire EM spectrum for long term

observations.

Figure B.3: Atmospheric Opacity as a function of the EM radiation wavelength. Note that
the atmosphere is highly transparent to the visible spectrum.

By far the brightest object in the sky, the Sun is the main source of energy in Earth.

Almost all energy sources harnessed by the human society have originated from the

sunlight, except for the nuclear, geothermal and tidal plants. The sunlight powers

photosynthesis, responsible for directly or indirectly feeding most lifeforms present in

the planet. When stored in organic compounds such as hydrocarbonates, this energy

can be chemically released through combustion, the basis of most thermoelectric units,

fossil and biomass fueled. It globally creates temperature gradients that drives the at-

mospheric circulation, which can be converted in electricity by means of wind turbines.

The sunlight also powers the water cycle, causing evaporation, clouds and rainfall, the

drivers of hydroelectric generation. Finally, the solar radiation can be directly con-

verted to heat and/or electricity by means of solar heaters, concentrating solar power

plants and photovoltaic panels.

Observed in the space, outside the Earth’s atmosphere, the sunlight spectrum is similar
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to that of a blackbody at approximately 5800 K, as shown in fig. B.4. At a distance

of 1 A.U. (Astronomic Unit), which is the average radius of Earth’s orbit, the sun’s

full spectrum irradiance at a perpendicular plane has been measured at 1.367 kW/m2.

Both spectrum and irradiance change dramatically when observed in Earth’s surface,

because the atmosphere scatters and absorbs EM radiation. The presence of clouds

can further decrease or in some cases increase the incident irradiation, as they reflect

sunlight away from or in direction to the observer.

Figure B.4: Solar irradiance at space (yellow) and at sea level (red). For comparison, the
gray line corresponds to the blackbody spectrum at 5778 K.

The atmospheric scattering is responsible for dividing the sunlight into two components:

the direct and the diffuse solar radiation. As the name implies, the direct radiation is

component imparted when the Sun is in line of sight. At zenith in a cloudless sky, this

component’s irradiance amounts to about 1.05 kW/m2. The diffuse radiation is the

component that does not travel in a straight line: its trajectory is changed after being

scattered by molecules or aerosols in atmosphere. The amount of scattering is a func-

tion of the atmospheric composition, angle of incidence and wavelength. Indeed, the

daytime sky is blue and sunsets/sunrises are red because air scatters short-wavelength

light more than longer wavelengths.

As marked in fig. B.4, at some specific wavelenghts the sunlight is strongly absorbed by

atmospheric constituents, such as molecular Ozone (O3), Oxygen (O2), Carbon Dioxide

(CO2) and Water (H2O). These molecules absorb the sunlight’s energy and later emit

EM radiation at a random direction and longer wavelength, further attenuating the

direct insolation and changing its spectral components.

As it determines the angle of incidence, the Sun’s position in sky is a relevant factor

when onde tries to measure the solar radiation’s energy imparted over a surface. The
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Sun path in the sky is mainly determined by the Earth’s orbit, its rotation and axial

tilt.

Slightly elliptical, Earth’s distance to the Sun changes from circa 152 million kilometers

at apoapsis (also known as aphelion) to 147 million at periapsis (perihelion). Due to the

free space attenuation, the irradiance is inversely proportional to the distance squared,

which corresponds to approximately 6.5% of variation between the orbital extremes.

Earth’s axial tilt is responsible for the occurrence of the yearly seasons, as during

summer it exposes the northern or southern hemispheres to the sunlight for more than

12 hours in a day, while the converse is true in the winter. At autumn and spring, both

hemispheres receive approximately 12 hours of sunlight.

Earth’s rotation makes the Sun to rise at the east and to set at the west, giving rise

to the days and nights. In figure B.5 these facts are illustrated.

Figure B.5: Dates for seasons, apoapsis and periapsis of Earth’s orbit. The elliptical form is
exagerated.

Observed from Earth, the path of the Sun across the sky varies throughout the year.

The shape described by the Sun’s position, considered at the same time each day for a

complete year, is called the analemma and resembles a “8” aligned along a North/South

axis. While the most obvious variation in the Sun’s apparent position through the year

is a North/South swing over 47 degrees of angle (due to the 23.5-degree tilt of the Earth

with respect to the Sun), there is an East/West component as well. The North/South

swing in apparent angle is the main source of seasons on Earth. Figure B.6 plots a

graph of the annalemma as seen in the Greenwich observatory.
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Figure B.6: Analemma plotted as seen at noon GMT from the Royal Observatory, Greenwich
(latitude 51.48◦ north, longitude 0.0015◦ west).

Atmospheric radiative transfer models have significantly improved in the years. They

can be classified as simple, moderately complex, and rigorous, depending on the balance

between empirical and theoretical principles incorporated into them.

Complex, rigorous atmospheric transmission models such as MODTRAN are not ap-

propriate for all applications, such as solar energy system engineering. A simpler para-

meterized or semi-empirical model can usually meet the user needs. Models have been

published in the literature [35-40], based on the transmittance model of Leckner [41].

In particular, the SPCTRL2 model developed by Bird and colleagues at SERI/NREL

[16], has been extensively distributed and evaluated [44].

SPCTRL2 relies on the product of empirical, closed-form transmission functions for

the most important elements of atmospheric extinction: air molecules, ozone, water

vapor, uniformly mixed gases, and aerosols. The product of the transmission functions

modifies the extraterrestrial spectral direct beam irradiance to produce direct beam

radiation. Simple theoretical relations are used to estimate the distribution of sky and

ground reflected radiation. The model produces spectral results for 122 irregularly

spaced wavelengths from 300 nm to 4000 nm. The equations are simple enough to

be entered in personal computer spreadsheets, and can be quickly processed in mobile

processors.
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B.2 Key concepts

As used in this appendix this section provides definitions and explanations for several

key concepts to the understanding of a solar irradiance and atmospheric radiative

transfer model.

Albedo(rg)—The albedo of a surface is the ratio of radiation reflected from the surface

to the incident radiation. Its dimensionless nature lets it be expressed as a percentage

and is measured on a scale from zero (no reflection) of a perfectly black surface to 1

for perfect reflection of a white surface. Because albedo is the ratio of all reflected

radiation to incident radiation, it will include both the diffuse and direct radiation

reflected from an object. Figure B.7 shows the annual clear sky and total Earth albedo

as measured by the Ceres Probe in 2003 and 2004.

Figure B.7: CERES-Aqua 2003-2004 mean annual clear sky and total sky albedo. Clear sky
albedo is the fraction of the incoming solar radiation that is reflected back into space by
regions of the Earth on cloud-free days. Total sky albedo include cloudy days. Data source:
http://daac.gsfc.nasa.gov/giovanni/
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Aerosol Optical Depth (AOD, τaλ )—(also called “optical thickness” or “turbidity”)

the wavelength-dependent total extinction (scattering and absorption) by aerosols in

the atmosphere. AOD at 500 nanometers (nm) is commonly reported.

Air mass (AM)—Ratio of the mass of the atmosphere in the actual sun-observer path

to the mass that would exist if the sun were directly overhead.

Relative air mass (AMR)— AMR is the ratio of the observed path length through the

atmosphere to the path length through the atmosphere directly overhead. AMR varies

as secant of the zenith angle, Z.

Absolute Air Mass (AMA)— AMA varies with the zenith angle and local barometric

pressure, P . Using P0 to indicate standard atmospheric pressure, it is calculated by

(B.1).

AMA ≈ P

P0

sec(Z) (B.1)

Air mass zero (AM0)—solar radiation quantities outside the Earth’s atmosphere at the

mean Earth-Sun distance (1 Astronomical Unit).

Azimuth Angle (A)— The azimuth angle is an angular measurement in a spherical

coordinate system. The azimuth is the angle formed between a reference direction

(usually north or south) and a line from the observer to a point of interest projected

on the same plane as the reference direction orthogonal to the zenith. For an observer

in Earth surface, the azimuth angle of the Sun defines its direction as projected over

the ground plane. An diagram showing Azimuth, Zenith and Tilt angles is shown in

figure B.8.
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Figure B.8: Solar Azimuth and Elevation (complement of Zenith Angle) angles. Panel Azi-
muth and tilt angles. Azimuth reference is the geographical south pole.

Circumsolar radiant energy—radiation scattered by the atmosphere from an area of

the sky immediately adjacent to the sun, the solar aureole.

Diffuse solar irradiance, diffuse, Is —downward scattered solar flux received on a hori-

zontal surface from a solid angle of 2π-steradian (hemisphere) with the exception of a

conical solid angle with a 100 mrad (approximately 6◦) included plane angle centered

on the sun’s disk Figure B.9 displays a photography that depicts Diffuse, Direct and

Global irradiance.

Direct solar irradiance, direct, Id —solar flux coming from the solid angle of the sun’s

disk on a surface perpendicular to the axis of that solid angle. Also referred to as

“direct normal irradiance”. Figure B.9 displays a photography that depicts Diffuse,

Direct and Global irradiance.

Global or Hemispherical Irradiance (GHI), I —the solar radiant flux received from

within the 2π steradian field of view of a given plane from the portion of the sky dome

and the foreground included in the plane’s field of view, including both diffuse and

direct solar radiation. For the special condition of a horizontal plane the hemispherical

solar irradiance is properly termed global solar irradiance, IH . The adjective global

should refer only to hemispherical solar radiation on a horizontal surface. Figure B.9

displays a photography that depicts Diffuse, Direct and Global irradiance.

Integrated irradiance Iλ1−λ2—spectral irradiance integrated over a specific wavelength
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interval from λ1 to λ2, measured in Wm−2.

Figure B.9: Burning a dry leaf with a magnifier lens. The bright spot over the smo-
king leaf is concentrated Direct irradiation of the Sun. The daylit ground is illumi-
nated by the Global irradiance. The shadowed areas are dimly illuminated by the
Diffuse irradiation component. Photography credits go to Dave Gough, available at
https://www.flickr.com/photos/spacepleb/1505372433 (CC BY 2.0 license)

Rayleigh Scattering— the process of elastic scattering of light or other electromagnetic

radiation by particles much smaller than the wavelength of the radiation. The particles

may be individual atoms or molecules, and results from the electric polarizability of

the particles. It can occur when light travels through transparent solids and liquids,

but is most prominently seen in gases. The oscillating electric field of a light wave acts

on the charges within a particle, causing them to move at the same frequency. The

particle therefore becomes a small radiating dipole whose radiation we see as scattered

light.

Solar constant—the total solar irradiance at normal incidence on a surface in space

(AM0) at the earth’s mean distance from the sun. (1 astronomical unit, or AU =

1.496 x 1011 m). The current accepted value of the solar constant is 1366.1± 7Wm-2

[13]. The AM0 solar flux at the Earth varies by ±3.5% about the solar constant as the

earth-sun distance varies through the year, and with the solar sunspot activity.

Spectral solar irradiance, Iλ—solar irradiance I per unit wavelength interval at a given

wavelength λ (unit: Watts per square meter per nanometer, Wm−2nm−1)

Spectral passband— the effective wavelength interval within which spectral irradiance

is considered to pass, as through a filter or monochromator. The convolution integral

of the spectral passband (normalized to unity at maximum) and the incident spectral

irradiance produces the effective transmitted irradiance. Spectral passband may also

be referred to as the spectral bandwidth of a filter or device. Passbands are specified

as the interval between wavelengths at which one half of the maximum transmission of

the filter or device occurs, or as Full-Width at Half-Maximum, FWHM.
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Spectral interval—the distance in wavelength units between adjacent spectral irradi-

ance data points.

Spectral resolution—the minimum wavelength difference between two wavelengths that

can be unambiguously identified.

Tilt Angle (T )— The angle between the ground plane and an inclined surface. As

such, the tilt angle is zero for a horizontal surface and 90◦ for a vertical surface. An

diagram showing Azimuth, Zenith and Tilt angles is shown in figure B.8.

Total precipitable water—depth of a column of water with a section of 1 cm2 equivalent

to the condensed water vapor in a vertical column from the ground to the top of the

atmosphere. (Unit: atm− cm or g/cm2)

Total ozone— depth of a column of ozone equivalent to the total of the ozone in a

vertical column from the ground to the top of the atmosphere. (Unit: atm− cm)

Total nitrogen dioxide— depth of a column of pure nitrogen dioxide (NO2) equivalent to

the total of the NO2 in a vertical column from the ground to the top of the atmosphere.

(Unit: atm− cm)

Wavenumber— a unit of frequency, ν, in units of reciprocal centimeters (symbol cm−1)

commonly used in place of wavelength, λ. The relationship between wavelength and

frequency is defined by λν = c, where c is the speed of light in vacuum. To convert

wavenumber to nanometers, λ nm = 107/ν cm−1.

Zenith Angle (Z)— For an observer in Earth surface, the zenith angle is the angular

distance between a point in the sky and the zenith, which is an imaginary point directly

above a particular location. It is the complement of the elevation angle. An diagram

showing Azimuth, Zenith and Tilt angles is shown in figure B.8.

B.2.1 Local solar position

For an observer in Earth surface, the Sun’s position in the sky is completely determined

by its zenith and azimuth angles.

The zenith angle Z is calculated from the expression presented in (B.2):
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Z = cos−1 (cos(φ) cos(δ) cos(ω) + sin(φ) sin(δ)) (B.2)

where φ is the site latitude, δ the Sun declination and ω the true local solar time, all

angles in radians. The true local solar time takes into account the local timezone and

the difference between the apparent solar time (sundial time) and the mean solar time

(equally spaced noons by 24 hours), and is calculated from the equation of time E, the

site longitude in degrees ψD and the local time t (in hours past midnight and fractions)

by means of expression (B.3). The term tz represent the time zone, in hours to be

added to Greenwich Meridian Time (GMT) to obtain the standard local time.

ω = E +
π

12

(
t+

ψD
15
− tz

)
(B.3)

The equation of time describes the discrepancy between apparent solar time (sundial

time) and the mean solar time, and is approximated by equation (B.4):

E = a0 + a1 cos(ϕ) + b1 sin(ϕ) + a2 cos(2ϕ) + b2 sin(2ϕ) (B.4)

The Sun’s declination is calculated approximately by the equation (B.5), which is a

truncated Fourier series:

δ = a0 + a1 cos(ϕ) + b1 sin(ϕ) + a2 cos(2ϕ) + b2 sin(2ϕ) + a3 cos(3ϕ) + b3 sin(3ϕ) (B.5)

where the constants a0 to a3 and b1 to b3 for the Equation of Time (E) and Sun

Declination (δ) are shown in Table B.1:
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Table B.1: Coefficients for the Equation of Time and for the Sun declination

i Equation of Time (E) Declination (δ)

a0 0.000075 0.006918

a1 0.001868 - 0.399912

b1 - 0.032077 0.070257

a2 - 0.014615 - 0.006758

b2 - 0.040849 0.000907

a3 0 - 0.002697

b3 0 0.00148

The day angle ϕ represent the position of the Sun relative to stars. In radians, ϕ is a

function of the day number d of the year (from 1 to 365), represented by (B.6):

ϕ =
2π(d− 1)

365
(B.6)

The azimuth angle A is a function of the site latitude φ, the Sun declination δ and the

true local solar time ω. It is calculated by equation ():

A = ATAN2 (cos(ω) sin(φ)− cos(φ) tan(δ), sin(ω)) (B.7)

where ATAN2(x, y) denotes the four quadrant arctangent function, which gives the arc

tangent of y/x, taking into account which quadrant the point (x, y) is in.

B.3 Direct Normal Irradiance

The direct irradiance Idλ on a surface normal to the direction of the sun at ground

level for wavelength λ is modelled by equation (B.8):

Idλ = H0λDTrλTaλTwλTOλTuλ (B.8)
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The parameter H0λ is the extraterrestrial irradiance at the average Earth-Sun distance

for wavelength λ, D is the correction factor that accounts for variations in this distance

due to the elliptical nature of Earth’s orbit, while the other parameters are related to

the transmitance factors of the atmosphere at wavelength λ due to five relevant effects.

Trλ is the transmittance function for molecular (Rayleigh) scattering, Taλ for aerosol

scattering, Twλ is the function for water vapor absorption, TOλ for Ozone absorption

and Tuλ for uniformly mixed gas absorption. Thus, equation (B.8) models the direct

irradiance for wavelength λ for a surface directly pointed to the Sun.

In order to obtain the direct irradiance Id on a horizontal surface, one must consider

the zenith angle Z as in equation (B.9):

Id = Idλ cos(Z) (B.9)

The extraterrestrial spectral irradiance employed is the same used by the SPCTRL2,

as illustrated in fig. B.10. It is composed of 122 irregularly spaced wavelengths from

300 nm to 4000 nm. It is based on the standard spectrum presented in [42].

Figure B.10: SPCTRL2 Extraterrestial Solar Radiation.

These values are valid when Earth is exactly at the average orbital distance to the

Sun. This only happens twice a year. In order to correct the variation due to the

elliptical orbit, reference [92] indicates the following distance factor D, derived from

Fourier series approximation, also a function of day angle ϕ:
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D = 1.00011 + 0.034221 cos(ϕ) + 0.00128 sin(ϕ) + 0.000719 cos(2ϕ) + 0.000077 sin(2ϕ)

(B.10)

B.3.1 Rayleigh Scattering

Reference [62] provides an expression to calculate the atmospheric transmittance after

Rayleigh scattering:

Trλ = exp
(
−M ′λ2

∣∣115.6406λ2 − 1.3366
∣∣) (B.11)

where M ′is the pressure-corrected air mass, which is a function of the surface atmosphe-

ric pressure P and zenith angle Z. Given P0 as the sea level atmospheric pressure, the

relative air mass as calculated by reference [58] is:

M ′ =
P

P0 |cos(Z) + 0.15(93.885− Z)−1.253|
(B.12)

The relative air mass M is obtained if the pressure correction is not applied in (B.12):

M =
1

|cos(Z) + 0.15(93.885− Z)−1.253|
(B.13)

B.3.2 Aerosol Scattering and Absorption

The aerosol transmittance is a function of atmospheric aerosol turbidity τaλ and the

relative air mass M , as given by equation (B.14):

Taλ = exp (−τaλM) (B.14)

where τaλ is calculated by:
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τaλ = βnλ
−αn (B.15)

In the SPCTRL2 model, the aerosol transmittance is modeled as a piecewise biexpo-

nential function. Hence, two αn are used: α1 = 1.0274 if λ < 0.5µm and α2 = 1.2060

otherwise. Two parameteres βn are then appropriately chosen for each wavelength in

order to match the turbidity values at λ = 0.5µm as calculated by (B.15) with α1 and

α2.

B.3.3 Water Vapor, Ozone and Uniformly Mixed Gas Absorption

SPCTRL2 adopts the water vapor transmittance expression derived in [65], which has

the form:

Twλ = exp

(
−0.2385awλWM

(1 + 20.07awλWM)0.45

)
(B.16)

where W is the precipitable water vapor over a vertical column of atmosphere in cm

and awλ is the water vapor absorption coefficient as a function of wavelength. The

SPCTRL2 model, however does not employ every value of awλ as tabulated in [65].

They use an adjusted set for this parameter, in order to improve agreement with

rigorous atmospheric transfer models [16].

Similarly the expression derived in [65] is used to model Ozone transmittance equation:

TOλ = exp (−aOλO3MO) (B.17)

where aOλ is the ozone absorption coefficient as a function of wavelength and the ozone

mass MO. Reference [53] gives an expression for determining of MO as a function of

the zenith angle Z and the height of maximum ozone concentration hO.

MO =
1 + hO

6370(
cos2 (Z) + 2hO

6370

)0.5 (B.18)
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In absence of direct measurements of the ozone ammountO3 in atm−cm, the SPCTRL2

model employs the Van Heuklon models [48]. More recent research has updated some

of its parameters [57].

The expression for the transmittance of uniformly mixed gas is given by [65]:

Tuλ = exp

(
−1.41auλM

′

(1 + 118.3awλM ′)0.45

)
(B.19)

where auλ is a combined gaseous amount and absorption coefficient.

B.4 Diffuse Irradiance

The diffuse irradiance is difficult to determine accurately with the simple paramete-

rization methods that were used to calculate direct normal irradiance in the previous

section. The SPCTRL2 model uses tabulated correction factors to make the simple

formulation for the diffuse irradiance presented in [96] match the results from a ri-

gorous radiative transfer code. The correction factors are adjusted versions of those

presented in the formulations shown in [55], which have changed the diffuse formulation

and obtained reasonable agreement with rigorous code results without using tabulated

correction factors.

The SPCTRL2 simplifies the computation of diffuse irradiance by dividing it in th-

ree independent terms: the Rayleigh scattering component Irλ, the aerosol scattering

component Iaλ, and the component that accounts for multiple reflection of irradiance

between the ground and the air Igλ. The scattered (diffuse) irradiance Isλ on a hori-

zontal surface is given by the summation of these terms.

Isλ = (Irλ + Iaλ + Igλ)CS (B.20)

The wavelength dependent correction term CS employed in SPCTRL2 is given by

equation (B.21):
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CS =

(λ+ 0.55)1.8 ; λ ≤ 0.45 µm

1.0 λ > 0.45 µm
(B.21)

B.4.1 Rayleigh scattering term

The Rayleigh scattering term Irλis calculated by means of equation (B.22), as a function

of the Extraterrestrial irradiation H0λ, the correction factor D, the zenith angle Z and

the atmospheric transmittances defined in Section B.3.

Irλ = H0λD cos(Z)TwλTOλTuλTaaλ
(1− T 0.95

rλ )

2
(B.22)

where Taaλ is the aerosol absorptance transmittance component, determined by equa-

tion (B.23):

Taaλ = exp (−ωλτaλM) (B.23)

where in turn, τaλ is defined in (B.15), M in (B.13), and ωλ is the aerosol single

scattering albedo, given by (B.24):

ωλ = ω0.4 exp

(
−ω′ ln2

(
λ

4

))
(B.24)

ω0.4 is the single scattering albedo at 0.4 µm wavelength and ω′ is the wavelength

variation factor, which for the standard rural aerosol model are respectivelly equal to

0.945 and 0.095.

B.4.2 Aerosol scattering term

The aerosol scattering term Iaλis calculated by means of equation (B.25):

Iaλ = H0λD cos(Z)TwλTOλTuλTaaλT
1.5
rλ (1− Tasλ)FS (B.25)
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where Tasλ is the aerosol scattering transmittance component calculated by (B.26) and

FS is the ratio of forward to total scattering calculated by (B.27).

Tasλ = exp (−(1− ωλ)τaλM) (B.26)

FS = 1− exp ((AFS +BFS cos(Z)) cos(Z))

2
(B.27)

Note that Taλ = TasλTaaλ. The terms AFS and BFS are related to the asymetric

nature of aerosol scattering and calculated by (B.28) and (B.29):

AFS = ALG(1.459 + ALG(0.1595 + 0.4129ALG)) (B.28)

BFS = ALG(0.0783 + ALG(−0.3824− 0.5874ALG)) (B.29)

where ALG is a function of the aerosol symmetry factor ASYM , whose typical value

in rural model is 0.65:

ALG = ln (1− ASYM) (B.30)

B.4.3 Ground and sky reflectance term

The ground and sky reflectance term accounts for multiple reflection of irradiance

between the ground and the air. It is modeled as a function of the direct irradiation

Idλ, Rayleigh scattering component, aerosol scattering component, the ground albedo

rgλ and the sky reflectivity rsλ, as shown in equation (B.31).

Igλ =
(Idλ cos(Z) + Irλ + Iaλ) rsλrgλ

1− rsλrgλ
(B.31)
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The ground albedo rgλ depends on several factors, such as the surface material com-

position, wavelength, state of motion (if it is a liquid surface), the angle of incidence

of the multiple irradiation components, temperature (for some materials), and others.

Consequently, it is very hard and usually not feasible to strictly model the albedo

coefficient in a given point at all directions and sun positions. The SPCTRL2 em-

ploys tabulated values of wavelength independent typical ground albedo as measured

in different environments, as listed in Table B.2.

Table B.2: Typical sample values of Albedo for different surfaces/enviroments

Surface Typical Albedo

Fresh asphalt 0.04

Open ocean 0.06

Worn asphalt 0.12

Conifer forest (Summer) 0.09 to 0.15

Deciduous trees 0.15 to 0.18

Bare soil 0.17

Green grass 0.25

Desert sand 0.40

New concrete 0.55

Urban Enviroment 0.10 to 0.45 (typ. 0.25)

Ocean ice 0.5–0.7

Fresh snow 0.80–0.90

The sky reflectivity rsλ is calculated as the sum of the Rayleigh reflectance and the

aerosol reflectance, as shown in equation (B.32).

rsλ = T ′wλT
′
OλT

′
aaλ [0.5 (1− T ′rλ) + (1− F ′S)T ′rλ (1− T ′asλ)] (B.32)

The primed atmospheric transmitance terms T ′wλ, T
′
Oλ, T

′
aaλ, T

′
rλ and T ′asλ are the

regular terms evaluated at M = 1.8. Likewise, the primed ratio of forward to total

scattering F ′S is calculated by equation (B.33):

F ′S = 1−
exp

((
AFS + BFS

1.8

)
1

1.8

)
2

(B.33)
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B.5 Global irradiance on tilted surfaces

The direct and diffuse componentes calculated in Sections B.3 and B.4 model the

global irradiance over a horizontal surface. Using these two irradiation components,

the SPCTRL2 model calculates the global irradiance I over a tilted surface for any

given Sun position.

The spectral global irradiance on an tilted surface is represented by the expression

shown in (B.34):

Iλ = Idλ cos (θ)+Isλ

{
Idλ cos (θ)

H0λD cos (Z)
+

[(
1 + cos (T )

2

)(
1− Idλ

H0λD

)]}
+

(Idλ + Isλ) rgλ (1− cos (T ))

2
(B.34)

The angle of incidence θdepends on the solar zenith angle Z, tilt angle T , Sun azimuth

A and surface azimuth Aϕ, as shown in equation (B.35):

θ = cos−1 (cos(Z) cos(T ) + sin(Z) cos(A− Aϕ) sin(T )) (B.35)

B.6 Cloud cover modifiers

The SPCTRL2 radiative transfer model provides a value for global irradiance on tilted

surfaces. However, this specific model is only accurate when there are no clouds in the

sky. Solar radiation is attenuated, further scattered and even reflected to the surface

of interest by the presence of clouds in the sky. This complex and difficult to model

process depends on the type of cloud, their thickness, and the number of cloud layers.

The online measurement and prediction of the instantaneous cloud cover effect over the

global horizontal irradiance requires the use of expensive and extensive sensors, such

as all sky imagers, IR-Visible-UV cameras, weather radars and satellite imaging. This

difficulty arises because scattering and reflections are geometrically dependent, which

in turn are a consequence of the position, movement, depth and formation rate of all

clouds present in the visible sky.

235



However, the problem is simplified when a average modifier is required to model the

cloud effects over a time period, such as a minute, a hour or a day. Parametrical

models have been developed to simulate the cloud cover using simpler measurements,

such as Clearness index or the related Sky cloud relative coverage, the latter given in the

METARs provided by airports stations. A widely used model is the SEDES2. Based

on solar resource measurements taken in the SEDES data acquisition center, a remote

monitoring station of the Centre for Solar Energy and Hydrogen Research (ZSW)

from Germany, this Cloud Cover Modifier (CCM) accounts for the effects of clouds by

transforming the clear sky’s spectral global irradiance, using empirically determined

coefficients [77]. These modifiers use a quadratic equation with the clearness index Kt

and six empirically derived constants, as shown in (B.36):

ICλ =

[
A1λ +

A2λ
cos (Z)

+

(
B1λ +

B2λ
cos (Z)

)
Kt +

(
C1λ +

C2λ
cos (Z)

)
K2
t

]
Iλ (B.36)

where the clearness index is defined as the ratio between the Global Horizontal Irradi-

ance (GHI) and the extraterrestrial irrandiance H0 projected over the surface area:

Kt =
GHI

H0 cos (Z)
(B.37)

The coefficients A1λ, A2λ, B1λ, B2λ C1λ and C2λ are wavelength dependent and have

been empirically determined. Their values are shown in Tables B.3, B.4 and B.5.

236



Table B.3: SEDES2 Coefficients by wavelenght (1st part)

Wavelength (nm) A1λ A2λ B1λ B2λ C1λ C2λ

320 1,28572 0,30679 -0,29613 -0,58516 0,02063 0,20915

330 1,2351 0,26201 -0,28377 -0,53864 0,01073 0,20649

340 1,20617 0,2502 -0,25258 -0,51989 0,00432 0,20461

350 1,13974 0,24268 -0,19222 -0,49821 -0,01184 0,20133

360 1,09164 0,24421 -0,13386 -0,48722 -0,0272 0,20077

370 1,03373 0,2515 -0,07915 -0,48133 -0,04285 0,20297

380 0,99718 0,24386 -0,0655 -0,45039 -0,03607 0,19192

390 0,99795 0,2275 -0,08976 -0,40715 -0,01039 0,17371

400 0,99057 0,2054 -0,12091 -0,35735 0,01808 0,15208

410 0,98402 0,19311 -0,13671 -0,32748 0,0344 0,1407

420 0,97139 0,17787 -0,15584 -0,29288 0,05175 0,12755

430 0,97645 0,1594 -0,18434 -0,25421 0,07213 0,11271

440 0,9732 0,14208 -0,20773 -0,21836 0,08869 0,09857

450 0,97979 0,12932 -0,22806 -0,19197 0,10337 0,08717

460 0,98578 0,11921 -0,24438 -0,1714 0,11745 0,07671

470 0,99861 0,10918 -0,26163 -0,15113 0,1326 0,06607

480 1,00532 0,09968 -0,27866 -0,13004 0,14722 0,05576

490 1,01968 0,08958 -0,30482 -0,10709 0,16626 0,04513

500 1,0244 0,08052 -0,32229 -0,0875 0,17951 0,03647

510 1,03159 0,06907 -0,34795 -0,06441 0,19687 0,02547

520 1,04937 0,05644 -0,38233 -0,04055 0,21881 0,01373

530 1,06394 0,04632 -0,40907 -0,02121 0,23612 0,0042

540 1,07155 0,0383 -0,42769 -0,00587 0,24841 -0,00299

550 1,07039 0,03185 -0,43045 0,00449 0,25183 -0,00768

560 1,06283 0,02634 -0,41879 0,012 0,24665 -0,01046

570 1,04584 0,02469 -0,37226 0,00943 0,22308 -0,00801

580 1,03747 0,02347 -0,33927 0,00897 0,20751 -0,0069

590 1,02608 0,0233 -0,3141 0,00815 0,19573 -0,00518
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Table B.4: SEDES2 Coefficients by wavelenght (2nd part)

Wavelength (nm) A1λ A2λ B1λ B2λ C1λ C2λ

600 1,04038 0,01568 -0,34917 0,02434 0,21889 -0,01426

610 1,05082 0,00666 -0,38518 0,04176 0,24156 -0,02411

620 1,05164 0,00029 -0,39171 0,05103 0,24639 -0,02902

630 1,04029 -0,00264 -0,36449 0,05087 0,23063 -0,02769

640 1,04091 -0,00243 -0,35577 0,05171 0,22554 -0,02653

650 1,04068 -0,00316 -0,34746 0,05376 0,22107 -0,02611

660 1,06505 -0,00775 -0,38644 0,0686 0,24625 -0,0347

670 1,08171 -0,0102 -0,40061 0,07729 0,25748 -0,04034

680 1,07724 -0,00697 -0,36968 0,07159 0,24056 -0,03716

690 1,04041 -0,00413 -0,28523 0,05231 0,18754 -0,02455

700 1,01641 -0,00067 -0,23359 0,03604 0,15018 -0,01227

710 1,00652 -0,00416 -0,21335 0,03074 0,13058 -0,00725

720 1,01501 -0,00986 -0,20643 0,03345 0,12001 -0,00709

730 1,11212 -0,03985 -0,3703 0,0868 0,19893 -0,03506

740 1,25964 -0,07938 -0,63633 0,16789 0,33604 -0,08023

750 1,3597 -0,10681 -0,82757 0,2273 0,43503 -0,11411

760 1,36413 -0,10886 -0,84101 0,23364 0,44006 -0,11907

770 1,4135 -0,12491 -0,91952 0,26268 0,4804 -0,13497

780 1,47211 -0,14378 -1,00406 0,29132 0,52458 -0,14918

790 1,46014 -0,14248 -0,96339 0,281 0,49994 -0,14149

800 1,39708 -0,12613 -0,83251 0,24255 0,42831 -0,11892

810 1,30322 -0,09812 -0,64065 0,18469 0,32541 -0,08646

820 1,23119 -0,08347 -0,50422 0,14974 0,25354 -0,06661

830 1,27897 -0,09801 -0,59564 0,17914 0,30194 -0,08288

840 1,3946 -0,12999 -0,82226 0,2486 0,42466 -0,12262

850 1,48684 -0,15767 -1,02211 0,30973 0,53383 -0,15811

860 1,53306 -0,17332 -1,12535 0,34335 0,58958 -0,17738

870 1,54842 -0,17691 -1,14042 0,35056 0,59708 -0,18138

880 1,50916 -0,16271 -1,02979 0,31961 0,53667 -0,1636

890 1,39819 -0,1247 -0,77108 0,24298 0,40087 -0,1215
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Table B.5: SEDES2 Coefficients by wavelenght (3rd part)

Wavelength (nm) A1λ A2λ B1λ B2λ C1λ C2λ

900 1,17612 -0,06824 -0,34215 0,12086 0,17627 -0,05349

910 0,98685 -0,01315 0,01589 0,01561 -0,00784 0,00326

920 0,83041 0,03159 0,28469 -0,06127 -0,14019 0,04291

930 0,61123 0,09701 0,6077 -0,15086 -0,28158 0,08258

940 0,36913 0,13744 0,9204 -0,22796 -0,42836 0,12211

950 0,30638 0,13226 1,01793 -0,25108 -0,50619 0,14486

960 0,42764 0,0848 0,85788 -0,20327 -0,46987 0,13276

970 0,65012 0,0345 0,60052 -0,12507 -0,37126 0,09766

980 0,84369 -0,01411 0,35246 -0,04375 -0,26576 0,0582

990 1,01871 -0,05584 0,11521 0,03298 -0,16069 0,01951

1000 1,11071 -0,08242 -0,02662 0,08182 -0,09732 -0,00507

1010 1,15831 -0,09845 -0,10842 0,1117 -0,0598 -0,02013

1020 1,18779 -0,10971 -0,17215 0,13436 -0,02617 -0,03236

1030 1,21662 -0,12039 -0,24681 0,15777 0,01821 -0,04635

1040 1,24295 -0,13007 -0,3248 0,17951 0,06846 -0,06071

1050 1,24295 -0,13007 -0,3248 0,17951 0,06846 -0,06071

The SEDES2 model is an simple and effective approximation for an otherwise excee-

dingly complex phenomenon and researchs show that reasonable spectral accuracy of

about 10% is obtainable. However, the approximation is not exception, and the model

performs poorly for weather some events such as snow. Differing cloud climatology and

variable albedo and aerosol optical depth atmospheric conditions can lead to spectral

model differences in the order of 30-40% [78].
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C Principal Component Analysis

Principal Components Analysis (PCA) is a linear transformation that can be used

to both reduce dimensionality and crosscorrelation between a given candidate set of

input variables. PCA is a well-known technique in statistical data analysis, aimed at

expressing the data in such a way that highlight their similarities and differences.

The main goal of a PCA analysis is to identify patterns in data, as it detects the

correlation between variables and attempt to reduce the dimensionality. PCA can be

interpreted as a method to find the directions of maximum variance in high-dimensional

data and project it onto a smaller dimensional subspace, while retaining most of the

information.

The remainder of this appendix is divided as follows. Section C.1 deals with the

required normalization that the must be given to the input data prior to PCA. Section

C.2 presents the Singular Value Decomposition technique which is used the obtain the

Principal components, while Section C.3 concerns the transformation of the original

dataset into the

C.1 Data standardization

PCA is a statistical technique whose purpose is to condense the information of a large

set of correlated variables into a few uncorrelated variables called Principal Compo-

nents. These components are derived as a linear combination of variables of the data

set, with weights chosen so that the principal components become mutually uncorre-

lated.

Defining a n × m matrix dataset M0 as the concatenation of m input vectors u0i of

size n, PCA will provide a transformation matrix T that projects the data to a new

coordinate system such that the sucessive coordinates reflects the direction in which

there is greater variances. In this projection, the first coordinate, also called the first

principal component, carries the greatest variance, the second coordinate the second

greatest variance, the pattern repeating until the m-th dimension is reached, in which

is contained the smallest amount of variation. Since the first few components contain
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most of the information, they are retained for further use while the last components

can be discarded, thus reducing the dimensionality.

However, it is not advisable to apply PCA directly to M0. Normalization is important,

since it is a variance maximizing exercise. The obtained components will be biased

if the mean and variance of the input vectors are not normalized to same values. As

such, all input vectors are first normalized to unitary variance and zero mean with help

of equation (C.1):

ui =
(u0i − u0i)

σ0i

(C.1)

where ui is the normalized input vector, u0i and σ0i are respectively the mean and the

standard deviation of the input vector u0i. The normalized matrix dataset M is then

construted by concatenating the m input vectors ui, which can then decomposed by

Singular Value Decomposition in order to obtain the transformation matrix T.

C.2 Singular Value Decomposition

There are two main methods to perform PCA over a given dataset. The dataset’s cor-

relation matrix can be calculated, which is then subjected to eigenvalue decomposition

to yield the transformation matrix. Principal components can also be obtained directly

from the normalized dataset matrix M, by means of the Singular Value Decomposition

(SVD).

SVD is a matrix factoration technique in which the normalized dataset matrix M is

decomposed as a product three matrices, denominated U, Σ and V:

M = UΣV∗ (C.2)

If UΣV∗ is a singular value decomposition of M, then U is a n × m matrix with

orthonormal columns, V is a m ×m orthonormal matrix and Σ is a diagonal matrix

with real positive or zero elements, which are called singular values. Columns of U and

V are respectively called left and right singular vectors. Two positive-definite matrices

can be constructed from M: MM∗and M∗M. Substituting (C.2) yields:
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MM∗ = UΣV∗ (UΣV∗)∗ = UΣV∗VΣU∗ (C.3)

M∗M = (UΣV∗)∗UΣV∗ = VΣU∗UΣV∗ (C.4)

As U and V are orthonormal, their conjugate product is equal to the identity, i.e. has

U∗U = I. and V∗V = I. Substituting in (C.3) and (C.4):

MM∗ = UΣ2U
∗

(C.5)

M∗M = VΣ2V
∗

(C.6)

Supposing n ≥ m, it is possible to show that MM∗and M∗M share m eigenvalues,

and the remaining n −m eigenvalues of MM∗ are zero. Starting from the decompo-

sition shown in (C.6), the columns of V and squared diagonal elements of Σ2 can be

identified as the eigenvectors and eigenvalues of M∗M, denoted respectively as V and

γ2. Rewriting (C.6) for a single eigenvector and eigenvalue pair yields:

M∗MV = γ2V (C.7)

multiplying both sides by M gives:

MM∗MV = γ2MV (C.8)

By inspection, it is visible in (C.7) that there is an eigenvector U = MV and an eigen-

value γ2 for the matrix MM∗, which proves that MM∗and M∗M share m eigenvalues.

It remains to be demonstrated that the remaining n−m eigenvalues of MM∗ are zero.

Considering an eigenvector-eigenvalue pair U⊥ and δ2 for MM∗, where U⊥ is non zero

and orthogonal to the m eigenvectors Ui = MVi already determined. As a consequence

U∗U⊥ = 0, and equation (C.9) can be written:
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MM∗U⊥ = δ2U⊥ (C.9)

Using the decomposition MM∗ = UΣ2U
∗

yields:

UΣ2U
∗
U⊥ = δ2U⊥

0 = δ2U⊥ (C.10)

As U⊥ is non zero, it is demonstrated that all eigenvalues δ2 must be zero. Thus, U,

V and Σ can be manually evaluated from the eigenvalue decomposition of MM∗and

M∗M . In practice, more computationally efficient algorithms are employed in analy-

sis software, such as QR decomposition, householder reductions, bidiagonal matrix

factoring, and others .

C.3 Projection Matrix

This section concerns about the construction of projection matrix T, which is necessary

to transform the original dataset M to obtain a k-dimensional feature subspace M̂.

The PCA finds the directions in the data with the most variation, i.e. the eigenvectors

corresponding to the largest eigenvalues of the covariance matrix, and project the

data onto these directions. The motivation for doing this is that the most variance,

i.e. second order information, are in these directions. The choice of the number of

directions are often guided by trial and error, but principled methods also exist.

Denoting by T the matrix of left singular vectors sorted according to its respective

eigenvalue, it is possible to perform a transformation M̃ in the data by means of a

simple multiplication:

M̃ = T∗M (C.11)
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The eigenvectors, in this case, are called Principal Components. Selecting only the

first d rows of M̃, one obtains the projection M̂ of M in the d-dimensional feature

subspace, performing the Principal Component Analysis.
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D Artificial Neural Networks

A neural network is a computing system made up of a number of simple, highly in-

terconnected processing elements, which process information by their dynamic state

response to external inputs. Artificial Neural Networks (ANN) are composed of multi-

ple nodes, which mimic biological neurons of human brain. The neurons are connected

by links and they interact with each other. The nodes can take input data and perform

simple operations on it, the result being passed ahead to other neurons. The output

at each node is called its activation or node value.

One of the key elements of a neural network is its ability to learn. A neural network

is not just a complex system, but a complex adaptive system, meaning it can change

its internal structure based on the information flowing through it. Typically, neural

networks are trained so that a particular input leads to a specific target output, based

on a comparison of the output and the target, until the network output matches the

target. Generally, a large amount of input and target data is required to train a

network. Typically, this is achieved through the adjusting of weights, a number that

controls the signal gain between the two neurons. If the network generates a “good”

output according to the training cost function, there is no need to adjust the weights.

However, if the network generates a “poor” output, then the system alters the weights

in order to adapt and improve subsequent results.

In the last years, Neural networks have been used to perform complex functions in

various fields, including time series forecasting, pattern recognition, identification, clas-

sification, speech, vision, and control systems. In this appendix, an overview of a Mul-

tilayer Perceptron trained via supervised learning by the backpropagation algorithm.

Section D.1 explains the perceptrons and the multilayer perceptron structure usually

employed to forecast time series, Section D.2 concerns the definitions and parameters

applicable to supervised training, and Section D.3 presents an basic backpropagation

algorithm.
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D.1 Multilayer perceptron

The perceptron is the simplest neural network possible: a computational model of a

single neuron. A perceptron consists of one or more inputs, a processor, and a single

output.

Figure D.1: Perceptron with 3 inputs and bias. From left to right: inputs, weights, summation
block, activation function and output.

A perceptron follows the feed-forward model, meaning inputs are sent into the neuron,

are processed, and result in an output. In the diagram above, this means the neuron

reads from left to right: inputs come in, are weighted and summed, processed by the

activation function generating an output. In single perceptrons, the on-off boolean

activation function is one of the simplest and most employed. When arranged in

networks, the neurons can use other activation functions, usually nonlinear, such as

sigmoid function, hyperbolic, radial basis functions, and others.

An array of perceptrons, the Multilayer Perceptron (MLP) can be viewed as a regression

classifier where the input is first transformed using a learnt nonlinear transformation,

then linearly processed in the output layer. This transformation projects the input data

into a space where it becomes linearly separable. This intermediate layer is referred

to as a hidden layer. A single hidden layer is sufficient to make MLPs a universal

approximator. Figure D.2 illustrates a MLP:
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Figure D.2: Schematic of Multilayer Perceptron. From left to right, the input layer (light
blue), the hidden layer (yellow) and output layer (green).

D.2 Supervised learning

Learning algorithms can be divided into supervised and unsupervised methods. Su-

pervised learning denotes a method in which some input vectors are collected and

presented to the network. The output computed by the network is observed and the

deviation from the expected answer is measured. The weights are corrected according

to the magnitude of the error in the way defined by the learning algorithm. This kind

of learning is also called learning with a teacher, since a control process knows the

correct answer for the set of selected input vectors.

When training multilayer networks, the general practice is to first divide the data

into three subsets. The first subset is the training set, which is used for computing

the gradient and updating the network weights and biases. The second subset is the

validation set. The error on the validation set is monitored during the training process.

The validation error normally decreases during the initial phase of training, as does the

training set error. However, when the network begins to overfit the data, the error on

the validation set typically begins to rise. The network weights and biases are saved

at the minimum of the validation set error.

During training, the progress is constantly monitored in order to access the perfor-

mance, the magnitude of the performance gradient and the number of failures in vali-

dation checks. The magnitude of the gradient and the number of validation checks can

be used to terminate the training, instead of the raw performance metric. The gradient

will become very small as the training reaches a minimum of the performance. A lower

threshould can be assigned, and if the magnitude of the gradient decreases below this

limit, the training will stop. The number of validation checks represents the number of
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successive iterations that the validation performance fails to decrease. If this number

reaches an also assigned maximum value, the training will stop.

D.3 Backpropagation algorithm

The backward propagation of errors or backpropagation, is a common method of trai-

ning artificial neural networks and used in conjunction with an optimization method

such as gradient descent. The algorithm repeats a two phase cycle, propagation and

weight update. When an input vector is presented to the network, it is propagated

forward through the network, layer by layer, until it reaches the output layer. The

output of the network is then compared to the desired output, using a loss function,

and an error value is calculated for each of the neurons in the output layer. The error

values are then propagated backwards, starting from the output, until each neuron

has an associated error value which roughly represents its contribution to the original

output.

Backpropagation requires a known, desired output for each input value in order to

calculate the loss function gradient – it is therefore usually considered to be a supervised

learning method; nonetheless, it is also used in some unsupervised networks such as

autoencoders. It is a generalization of the delta rule to multi-layered feedforward

networks, made possible by using the chain rule to iteratively compute gradients for

each layer. Backpropagation requires that the activation function used by the artificial

neurons be differentiable.

J(Θ) = − 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log(hΘ(x(i)))k + (1− y(i)

k log(1− (hΘ(x(i)))k)

]
+ ... (D.1)

+
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
ji )2

where K is the number of output elements, i selects ith element, J(Θ) is the cost

function, an inner sum over k output units. Regularization term sums over Θ
(l)
ji terms

but don’t sum over 0th, bias, term.
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1. Pick a network architecture

(a) Number of input units: Dimension of features x(i)

(b) Number of output units: Number of outputs

(c) reasonable default for number of hidden layers: 1, or if ¿1 have same

number of hidden units in every layer (usually the more the better but

more computationally expensive)

2. Randomly initialize weights

3. Implement forward propagation to get hΘ(x(i))for any x(i)

4. Implement computation of cost function J(Θ)

5. Implement backdrop to compute partial derivatives ∂

∂Θ
(l)
jk

J(Θ)

(a) for i=1:m

i. Perform forward propagation and backpropagation using example

(x(i), y(i))

(Get activations a(l)and delta terms δ(l)for l = 2, ..., L)

ii. compute delta terms

∆(l) := ∆(l) + δ(l+1)(a(l))T

(b) compute derivative terms
∂

∂Θ
(l)
jk

J(Θ)

6. Use gradient checking to compare ∂

∂Θ
(l)
jk

J(Θ) computed using backpropagation

vs. using numerical estimate of gradient of J(Θ)

Then disable gradient checking code.

7. Use gradient descent or advanced optimization method with backpropagation to

try to minimize J(Θ) as a function of parameters Θ.

If J(Θ)- is non-convex, it can get stuck in a local minimum.

Algorithm 1: Backpropagation - preparation
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Minimizing the cost function J(Θ) evaluating its gradients ∂

∂Θ
(l)
ij

J(Θ), weight

matrix element Θ
(l)
ij ∈ R.

1. Apply forward propagation.

• a(1) = x

• z(2) = Θ(1)a(1)

• a(2) = g(z(2)) (add a
(2)
0 )

• z(3) = Θ(2)a(2)

• a(3) = g(z(3)) (add a
(3)
0 )

• z(4) = Θ(3)a(3)

• a(4) = hΘ(x) = g(z(4))

2. Compute gradient by using backpropagation. Then compute the error in the

activation of node j in layer l: δ
(l)
j .

3. Compute error in last layer: δ
(4)
j = a

(4)
j − yj.

(a) Each of δ, a, y’s dimension is equal to the number of output units in the

network.

4. Compute δ terms for the earlier terms in the network.

δ(3) = (Θ(3))T δ(4). ∗ g′(z(3))

δ(2) = (Θ(2))T δ(3). ∗ g′(z(2))

5. Evaluate g′(z(3)) = a(3). ∗ (1− a(3))

There is no δ(1)term.

6. To calculate backpropagation given a training set
{

(x(1), y(1), ..., (x(m), y(m))
}

.

Set ∆
(l)
ij = 0 (∀l, i, j)eventually this will be used to compute the derivative term

∂

∂Θ
(l)
ij

J(Θ).

Then loop through the training set:

For i = 1to m

set a(1) = x(i)

7. Perform forward propagation to compute a(l)for l = 2, 3, ..., L

Using output label y(i)from a specific example, compute the error term

δ(L) = a(L) − y(i) for the output layer L. a(L)is what the hypothesis outputs,

minus what the target label was, y(i)

Use backprop algo to compute δ(L−1), δ(L−2), ..., δ(2)

Next, accumulate the partial derivative terms from previous

line∆
(l)
ij := ∆

(l)
ij + a

(l)
j δ

(l+1)
i .

8. Compute gradient matrices D:

D
(l)
ij := 1

m
∆

(l)
ij + λΘ

(l)
ij if j 6= 0

D
(l)
ij := 1

m
∆

(l)
ij if j = 0

Algorithm 2: Backpropagation algorithm
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