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Foreword

The field of charge density determination and analysis provides a rare case of

fruitful long-term symbiosis between theoretical and experimental developments.

This is probably due to a temporal coincidence, since the introduction of the

Hansen–Coppens pseudoatom model in 1978, which paved the way toward modern

experimental achievements, was coetaneous to a renewed interest in the charge

density itself as a theoretical vehicle to chemical bonding issues, as pioneered by

the topological approach developed by R. Bader. Some 30 years after these initial

breakthroughs, the accuracy of experimentally derived charge densities may, in

favorable cases, rival that obtained with the most expensive quantum mechanical

simulations. On the ab initio frontier, a wealth of descriptors have been introduced

based on the electron density (or low-order reduced density matrices) that offer

bonding, even energetic insights using a framework that has been enthusiastically

adopted by the X-ray charge density community. Communication has been fluent

on both ends. Thus, useful indices not directly accessible from the charge density,

like electron localization functions, have been approximately expanded in terms of

the density and its derivatives. Similarly, sloppy concepts like the pseudoatom have

benefited from the space partitioning techniques developed by theoreticians.

If this partnership survives, the golden charge density era we are living in faces a

brilliant future. Newly derived global (i.e., domain integrated) descriptors provide

absolute (i.e., free of references) measures of concepts that range from bond orders

to total energies, passing through chemical reactivity and even aromaticity mea-

sures. If they are successfully mapped onto the charge density space in the near

future, we may envision a widened field that would allow access to all sort of

physical, thermodynamic, and chemical properties from charge density experi-

ments.

This volume focuses on state-of-the-art, theoretically oriented advancements in

the field and offers six very different, yet important contributions. In the first

chapter, Koritsanszky and coworkers revisit the pseudoatom model, which together

with the maximum entropy method constitutes the core of the discipline. Attention

is paid to the definition of the radial functions used in the multipole expansion of the

density, which are obtained here by projecting quantum-chemically derived

ix



Hirshfeld (or stockholder) atoms. The performance, transferability, and applicabil-

ity of the procedure are also critically analyzed. The next two chapters analyze two

important issues related to the quality of experimental densities. Obtaining reliable

physical properties from them has led to bitter debates in the last decade, particu-

larly as regards the magnitude of environmentally induced dipole moment enhance-

ments. This subject is tackled by Dittrich and Jayatilaka, who compare theoretically

and experimentally determined dipole moments using multipole, Hirshfeld, and

X-ray constrained wave function refinements. The trustability of theoretically

obtained densities and Laplacians, as well as their use as QSAR descriptors for

inhibitor drugs both in the case of weak and strong (covalent) drug–enzyme

interactions is studied in the chapter written by Engels and coworkers. Another

issue that has deserved much attention in recent times is the role of relativistic

effects on the charge density. It provides a very interesting case where the experi-

ment, fully relativistic by definition, may help choose among a plethora of compet-

ing theoretical models, at least until fully relativistic many electron calculations

become standardly available. The subtleties of relativistic electron densities, in-

cluding correlation effects, are beautifully presented by Fux and Reiher. Chapter 5

is devoted to the basics of residual density analysis. As Meindl and Henn show, this

tool which detects and models structures in residual maps may serve several

purposes in charge density refinement and modeling. The final chapter by Gatti is

a very good example of how a clever descriptor based on the density, in this case the

source function, may hold clues to many electron properties like bond orders and

p-conjugation, thus opening new avenues.

The contents of this volume show that there is still much room to be explored in

the field. Hopefully, some of its readers will find novel solutions to the problems

here examined.

Oviedo A. Martı́n Pendás

2011
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Preface

The electron density distribution is the ultimate observable for determining and

interpreting the properties of matter. Analysing the electron density and assigning

its features to properties will inevitably provide routes to rationally modifying the

desired properties of matter in a predictable manner. Fortunately, the electron

density may be analysed in two different and independent ways: firstly from

quantum theory which leads to the molecular wave functions and secondly from

the diffraction experiment. Therefore, ambiguities possibly introduced from model

bias may be minimized by reference to both sets of data. Results obtained from

X-ray diffraction which are subject to experimental errors may be validated by

those obtained from theoretical methods. Conversely, new theoretical approaches

inherently limited by computer power and memory size can be bench-marked using

data from diffraction experiments.

The collection of review articles published in Volumes 146 and 147 of the

Structure and Bonding Series provides a state-of-the-art overview of the experi-

mental and theoretical determination of charge densities written by leaders in the

field. We hope that their insights will motivate more scientists to take advantage of

the approach.

Göttingen Dietmar Stalke

April 2012
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New Directions in Pseudoatom-Based X-Ray

Charge Density Analysis

Tibor Koritsanszky, Anatoliy Volkov, and Michal Chodkiewicz

Abstract This chapter revisits critical aspects of pseudoatom interpretation of X-ray

Bragg diffraction data to derive the crystalline electron density experimentally. The

main focus is on the radial basis functions in the nucleus-centered multipole expan-

sion of the model density. Based on the direct-space projection of the stockholder-

partitioned quantum-chemical molecular density onto nucleus-centered spherical

harmonics, “bonded-atom” radial functions are derived, in terms of which the original

density can be reconstructed. The method allows for a quantitative access of errors

introduced by restrictions on the pseudoatom radial functions and for designing more

adequate basis sets than those routinely used in the standard model. The applicability

of the upgradedmultipole formalism to X-ray charge density analysis is demonstrated

through pseudoatom fitting of simulated and experimental data. The chemical trans-

ferability of stockholder pseudoatoms is analyzed through small-molecule model

studies. A protocol to build a stockholder-atom library and the feasibility of simple

data-refinement strategies using the databank radial functions is also discussed.

Keywords Electron density � Pseudoatom model � Radial functions � Stockholder
partitioning � X-ray diffraction
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1 Introduction

Diffraction techniques are the primary experimental sources of information on the

nuclear and electronic structure of solids. There is, however, no direct route from

data to the information they contain. This inversion problem necessarily involves

modeling the structure, the scattering process, and the intensity detection. The

reliability and completeness of information retrieved from the observations is

thus subject to the adequacy of the models applied. Coherent elastic diffraction is

the most developed technique. X-ray Bragg intensities are almost routinely ana-

lyzed nowadays, not only to derive crystal structures but also to extract the static

electron density (ED: rðrÞ) of solids [1, 2]. Since Bragg scattering is associated

with the average structure, the interpretation of these data must also include a model

for decoupling electronic and nuclear motions [3, 4]. This can be conveniently done

within the one-center approximation, such as the pseudoatom (PA) formalism [5, 6],

which is a nucleus-centered multipole expansion of the crystalline ED. To be

applicable to finite data fitting, the expansion must be finite and efficiently para-

meterized. These requirements pose severe restrictions on the PA radial functions

(RDF). In the most popular PA model [6], the RDFs assigned to the nonspherical

part of the density are in fact single Slater functions shared by all real spherical

harmonics (RSH) of the same order (l). The overall good data-fitting performance

of pseudoatoms and the meaningful chemical content of the corresponding fitted

static ED are thus somewhat unexpected. The majority of studies report a good

quantitative agreement between experimental and theoretical densities, especially

for covalent bonds in light-atom molecular crystals. The agreement in the internu-

clear regions occurs, however, only at the expense of disagreement in the nuclear

regions – a clear manifestation of the signal redistribution characteristic of the

Fourier transform. The chemically oriented scientific community applies high-

resolution crystallography with increasing confidence to study chemical bonding.

The number and complexity of the properties that are claimed to be reliably

accessible by routine application of the method have been increased significantly

over the past decade [7]. The objective of PA-based X-ray charge density investi-

gations has been shifted from semi-quantitative description of bonding features to

full topological analysis [8] of the model density and related properties, whose

spectrum has been extended even to energy densities [9–15]. Furthermore, recent

applications target systems of increasing size and complexity that include bio-

macromolecules [16, 17], extended solids [18–20], framework materials containing

heavy elements [21, 22], and organometalics [23–25]. The questions as to what

extent this increased confidence in the method is justifiable and whether different

errors indeed cancel each other favorably remain important to be addressed.

2 T. Koritsanszky et al.



2 Static Electron Density from X-Ray Structure Factors

Within the kinematic theory, single-crystal X-ray diffraction is treated as a coherent

elastic scattering of X-ray photons on electrons with periodic distribution (rðrÞ).
The key property relevant to this process is the Bragg structure factor (F(H))

which is the Fourier transform of the mean electron density ( rh i) in the unit cell

of volume Vc.

FðHÞ ¼
ð
Vc

rðrÞh iei2pHrdr ¼
X
A

f̂ AðHÞtAðHÞei2pHRA (1)

H is the scattering vector, with integral reciprocal-axis components (Miller

indices h, k and l), satisfying the Laue conditions (Ha* ¼ h, Hb* ¼ k, and Hc*

¼ l) dictated by the translation symmetry of the crystal density. Assuming that the

system remains in the ground electronic state during the scattering process, the

averaging is taken only over the vibrational states. The right-hand side of (1) is

obtained within the harmonic convolution approximation to thermal smearing [4],

which requires the static crystalline density to be partitioned into “atomic”

densities (r̂A), each of which rigidly follows the motion of a particular nucleus

at RA:

rðrÞ ¼
X
A

r̂AðrAÞ; rA ¼ r� RA (2)

The atomic scattering factor (f̂A) and the temperature factor (tA) are, respectively,
the Fourier transform of r̂A and the Gaussian probability density function (PðuAÞ)
of harmonic nuclear displacements with respect to the equilibrium configuration

(uA ¼ QA � RA):

PðuAÞ ¼ ð2pÞ�3=2
UAj j�1=2

e�
1
2
uA

0U�1
A uA (3)

The components of the mean-square displacement amplitude matrix

(UA ¼ uAu
0
A

� �
) are referred to as the atomic (anisotropic) displacement parameters

(ADP).

Atomicity is a driving concept of X-ray diffraction analysis. It is invoked at

different stages of the structure elucidation, starting from initial phase assignment,

through structure refinement, to accurate modeling of solid-state charge distribu-

tions. The conventional structure refinement is based on the promolecule density

(roðrÞ), which is the superposition of spherical atomic densities (roA) derived from

quantum-chemical calculations on isolated atoms:

roðrÞ ¼
X
A

roAðrAÞ (4)

New Directions in Pseudoatom-Based X-Ray Charge Density Analysis 3



Different one-center density models used for X-ray data fitting can be considered

as extensions of the promolecule to account for local deformations due to chemical

bonding.

3 Multipole Expansion of the Electron Density

Since the atomic Hamiltonian commutes with the square of the total angular

momentum operator, the physical density of an atom in a well-defined angular

momentum state (L,M) has a well-defined RSH ðylmð#;fÞ ¼ ylmðOÞÞ content [26]:

rðrÞ ¼
XL
l

r2l;0ðrÞy2l;0ðOÞ (5)

Due to the RSHs forming a complete orthogonal basis, the product of any two

can be written as a linear combination of a finite number of RSHs. Thus, the density

of an atom obtained within the orbital approximation also has a finite multipole

expansion, as best seen for a single-determinant wave function composed of

one-electron spin-functions. Within the LCAO-MO approximation, the molecular

density can be decomposed into one- and two-center orbital product [27]. The

multipole content of each one-center density, just like for an atom, is uniquely

determined by the orbital basis.

The many-centered finite multipole expansion of the molecular or crystalline ED

was introduced by Stewart [5]. In his formalism, the total density ðrðrÞÞ is decom-

posed into pseudoatoms:

rðrÞ ¼
X
A

XL
l;m

rAlmðrAÞylmðOAÞ (6)

whose RDFs (rAlm) can in principle be derived by minimization of the mean-square

residual (MSR: w2) between the target and model densities:

w2 ¼
ð

rðrÞ �
X
A

XL
l;m

rAlmðrAÞylmðOAÞ
 !2

dr ¼
ð1
0

w20ðrÞr2dr (7)

w20 is a positive definite radial MSR obtained by integrating w2 over the angular
variables. Its minimization with respect to each RDF leads to a set of inhomoge-

neous linear equations:

rlmðrAÞ ¼ r
�� yAlm� �

O ¼ rAlmðrAÞ þ
X
B 6¼A

XL
lm

rBlmðrBÞ yBlm

��� yAlmD E
O

(8)

4 T. Koritsanszky et al.



The molecular RDF (rlmðrAÞ) of the A-centered multipole expansion (l.h.s.) at

any radial grid point is given as a linear combination of pseudoatom RDFs (r.h.s.)

taken at the same radial grid point. The projection, driven by the angular overlap

integral of RSHs
��
yBlm j yAlmiO

�
, yields “exact” molecular moments up to L, without

necessarily reproducing the total density exactly. The procedure leads to deloca-

lized RDFs, each depending on the nuclear geometry and the level of expansion (L)

at each center [28].

4 The Standard Pseudoatom Formalism

Since the above derivation of RDFs from a finite set of X-ray structure factors is

not feasible, a parameterized version of the expansion has been developed. In the

popular Hansen–Coppens formalism [6] (referred to here as the standard or HC-

pseudoatom model (HC-PA), the RDFs are predefined as follows:

r00 ¼ rC þ P00rVðkrÞ; rlm ¼ PlmSlðk0rÞ; l > 0; �l � m � þl (9)

The monopole part is taken as a combination of the spherical Hartree–Fock

frozen-core (rC) and normalized valence densities [29] (rV) of the isolated atom,

while those in the deformation term (Sl) are density normalized Slater functions:

Sl ¼ �l
nlþ3

ðnl þ 2Þ! r
nle��lr (10)

The parameters (nl and �l) are deduced from energy-optimized single-zeta

Hartree–Fock (HF) atomic wave functions [30]. The radial deformation of the

valence density is accounted for by the expansion–contraction variables (k and k0).
The RSHs are density normalized and expressed in nucleus-centered local frames:ð

O

d0;mðOÞ
�� ��dO ¼ 1 and

ð
O

dl>0;mðOÞ
�� ��dO ¼ 2 (11)

The Fourier transform of the pseudoatom ED enters into the structure-factor

expression (1) as a complex but analytic scattering factor:

f ðHÞ ¼ fCðHÞ þ PVfVðH=kÞ þ 4p
X
l

ilJlðH=k0Þ
Xþl

m¼�l

PlmdlmðOHÞ (12)

where, fC and fV are the Fourier transform of rC and rV, respectively, Jl is the

l-order Fourier–Bessel transform of Sl, and OH encompasses the local polar angles

of the scattering vector (H). The static ED parameters, Plm, k and k0, are optimized,

together with the nuclear positions and ADPs, in a least-squares (LS) refinement

against a set of measured structure-factor amplitudes.
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The HC formalism was developed with the sole purpose of extracting the static

ED of crystalline materials from high-resolution X-ray data. The experimental

effort involved was technically demanding and much more time consuming than

nowadays. Since the accessible data are limited in resolution, the analysis requires

an economic model which performs reasonably well even with a small number of

fitting parameters (at least an order of magnitude smaller than the number of data

points to be fitted). The HC-PA effectively compromises between flexibility and

locality – an obvious reason for its success. The formalism has survived a period of

over 30 years during which it has been challenged by data of increased quality and

quantity. The first point to be emphasized is that the HC-PA is structure indepen-

dent, that is, no parameters related to the local connectivity or bonding of the atom

are included in its analytic expression (9). One of its obvious limitations is the

frozen-core approximation, that is, the core polarization, which plays an important

role in balancing electrostatic forces [31], is not accounted for directly. This effect

is expected to be pronounced for heavier elements, since the scattering power of

their atoms is dominated by the core electrons. The radial signals due to core

polarization are extremely sharp, localized in the vicinity of the nuclei, and thus

manifest themselves mainly in the high-order reflections, for which, however, the

experimental signal-to-noise ratio is low. The extent to which the frozen-core

approximation biases the valence density parameters is thus not readily, if at all,

accessible by X-ray diffraction.

The most important sources of bias are the restrictions imposed on the valence

RDFs. The expansion/contraction of rV upon charge gain/loss is accounted for by a

single scaling parameter (k). Simple chemical arguments, however, suggest that the

sub-shells are not uniformly deformed upon bond formations. It is also evident that

single Slater functions are not flexible enough to describe radial deformations in

molecules. Moreover, their direct construction from the ground-state minimal-basis

atomic orbitals is ambiguous. For example, no odd-order and hexadecapolar RDFs

can be assigned to a quadrupolar atom (s,p-valence shell) without mixing s and

p orbitals according to some hybridization scheme. For atoms with outermost d sub-
shell, the s and p contributions from the same shell can either be included (giving

rise to all RDFs up to l ¼ 4, but with mixed orbital contributions) or kept frozen

(leading to S2 and S4, but with pure d-orbital contribution). The RDF set deduced in

such a way is unbalanced, since rV is derived from the atomic wave functions of

near-HF-limit, while the deformation RDFs are constructed from single Slater

orbitals. Furthermore, these functions are m-independent, unlike those in the gen-

eral expansion (6). This means that poles with the same angular (l) but different
magnetic quantum number (m) share the same Sl. This restriction prohibits distin-

guishing between p-orbitals involved in p and s bonding, which was recognized as

an important requirement for an adequate basis set (split-valence) already at the

early stage of developments of routine molecular orbital (MO) calculations. Last

but not least, the same set of RDFs is assigned to centers with the same atomic

number, irrespective of their local bonding situation.

The adequacy of the HC formalism and the physical content/reliability of the ED

projected onto the model from a finite set of structure factors are frequently raised
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issues, which have directly motivated several investigations [32–34] and which are

addressed to a great extent in almost all X-ray charge density studies. The valida-

tion includes the comparison of a selected experimental result (a particular LS

solution) with a theoretical one, which is usually done in terms of a visual inspec-

tion of static deformation ED maps; one for the crystalline molecule extracted from

the experimental data, and one for the corresponding isolated molecule calculated

from an approximate wave function at the experimental geometry. The exhausting

analysis of “reference free” topological properties [35] derived by both methods has

become a common practice and is included in the larger body of published works

[7, 36]. This comparison is, however, more of a mandatory than a conclusive

exercise, since both methods have their own limitations which forbid unambiguous

tracking of the source of disagreement or, in fact, the reason for agreement. In other

words, it is difficult, if not impossible, to conclude whether the discrepancies are

due to artifacts or real physical effects.

Studies using synthetic data calculated via Fourier transform of theoretical

densities, obtained either from periodic or isolated molecule wave functions, are

becoming increasingly popular [37–39]. Such simulations can indeed reveal model

inadequacies, since the data are free of errors, correctly phased, and can be

generated to high resolution with or without thermal smearing. The method has

been used to explore the bias in the fitted PA density due to the restricted RDFs of

the standard model [40, 41] and to derive “theory-supported” PA parameters

adoptable in experimental studies [42, 43]. Depending on the quality of the target

density, simulations sometimes can lead to surprisingly good results for organic

molecules even in terms of local (rBCP, r2rBCP ¼ l1 þ l2 þ l3, where ls are the
principal curvatures of r at the Bond Critical Point: BCP) and integrated (Atoms in

Molecules) topological figures. The fitted density is, however, severely biased or

even meaningless if the target density is calculated using an extended basis set. An

extreme example is presented in Fig. 1 which compares the direct-space difference

density (rC � rHC�PA) with the HC-PA deformation density in the O–S–S plane of

the heptasulfur imide molecule (S7NH). The fitted PA density (rHC�PA) was

obtained by a phase-restricted multipole refinement of the static ED parameters,

using the default RDFs of the XD program package [44], against structure factors

generated at the MP2/cc-pvtz level of theory [45–47] for the isolated molecule at

the experimental geometry [48]. In spite of an excellent structure-factor fit

(R ¼ 0.24%), the absolute error map (Fig. 1a) exhibits features that are comparable

to those found on the deformation ED map (Fig. 1b), making thus such an interpre-

tation of bonding effects meaningless.

5 Pseudoatom RDFs from Molecular Densities

In view of the foregoing comments, efforts toward upgrading the standard HC-

PA model must focus on the development of RDFs from molecular rather than

atomic densities. A feasible approach, which adopts projection (7) but avoids its
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difficulties, is provided by a two-step procedure [49]; the target molecular ED (rC)
is first fragmented into fuzzy atomic densities (rA),

rC ¼
X
k

nkC2
k ) rC ¼

X
A

rA (13)

followed by the projection of each of these units onto RSHs:

RA
lmðrAÞ ¼

Ð
rAðrÞdAlmdOAÐ
rAðrÞdAlmdrA

(14)

The summation in (13) is over the number of occupied MOs (Ck), and the

integral in the denominator of (14) gives rise to the multipole populations (QA
lm).

The normalized RDFs obtained in such a way correspond to “bonded-atoms”

(derived from molecular rather than atomic wave function) and are uncorrelated

because of the orthogonality of the RSHs at the same center. The integrals are

calculated numerically, on a fine grid of the radial coordinate measured from the

nucleus, to allow for the use of any type of molecular density and partitioning. Each

numerical RDF is fitted with a combination of Slater primitives (10).

Different fuzzy-type decomposition schemes are expected to yield similar RDFs

because the MO density is dominated by the one-center orbital products. The results

discussed here are based on the stockholder partitioning method [50], which

Fig. 1 (a) Static difference electron density map (rC � rHC-PA) calculated for the heptasulfur
imide molecule in the N–S–S plane. The pseudoatom density was obtained via fitting the para-

meters of the HC-PA model to MP2/cc-pvtz structure factors. (b) Deformation electron density

map (rC � r0) in the same plane. Contour levels are 0.05 eÅ�3. Solid, dashed, and dotted lines are
positive, zero, and negative, respectively
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optimally compromises between locality and transferability [51]. This scheme

fragments the total ED (rC) into densities of “chemical atoms” (rA) in proportion

to their investments into the promolecule:

rAðrAÞ ¼
roAðrAÞ
roðrÞ rCðrÞ;

X
A

rAðrAÞ ¼ rCðrÞ (15)

The combination of (14) and (15) yields the unrestricted stockholder pseudoa-

toms (U-SPA), since their superposition can in principle reproduce the target

molecular density within an arbitrary accuracy that depends only on the level of

expansion (L):

rC ffi
X
A

XL
lm

QA
lmR

A
lmd

A
lm (16)

where, each RHS is augmented by an individual (m-dependent) RDF, just like in the
general pseudoatom expression (6). In order to mimic the standard model,

m-independent RDFs (Rl) can be derived using the technique of principal component

analysis. The transformation between the two sets of RDFs can be achieved by an

LS-projection:

Xþl

m¼�l

QlmRlmylm , Rl

Xþl

m¼�l

qlmdlm (17)

Taking the m-independent functions as linear combinations of m-dependent
functions,

Rl ¼
Xþl

m¼�l

ClmRlm (18)

the mixing coefficients (Clm) are obtained as the components of the eigenvector

corresponding to the largest eigenvalue of the overlap matrix formed by the Rlm set.

This approach leads to the best possible m-independent functions in the LS sense.

The corresponding model is referred here as the restricted stockholder pseudoatom

(R-SPA). The analytic representation of the SPA-RDFs requires several Slater

primitives, the actual number of which depends on the accuracy desired and on

the azimuthal quantum number (l). We have developed a fitting procedure that

literally “learns the shape” of these functions and derives the optimal number of

Slater primitives required for each Rlm or Rl. The Slater exponents are preoptimized

using an evolutionary algorithm. In order to arrive at a model closest to the HC-PA,

each Rl is to be fitted with only a single Slater function (�Sl), yielding the optimized
or 1STO-SPA.
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6 Absolute Error of the Pseudoatom Density

The methods outlined above allows for the evaluation of the absolute error in the

pseudoatom ED corresponding to all three models (U-, R-, and 1STO-SPA). In

what it follows, we show how the total density of a-glycine can be reconstructed

with different RDFs. The MO density was calculated at the experimental geometry

[52] with the ADF program package [53] using BLYP level of theory [54, 55] and a

quadruple-zeta polarized basis set (QZ4P) [56]. The projection of m-dependent
RDFs (Rlm) onto m-independent ones (Rl) was also done numerically to avoid

accuracy loss due to fitting.

Figure 2 displays residual EDs calculated in the plane of the carboxylate group

with reference to the target density at different level of expansions (L ¼ 0–4) using

the three sets of RDFs; Rlm (Fig. 2a), Rl (Fig. 2b), and �Sl (Fig. 2c).
It is clear that the U-SPA model terminated at the hexadecapolar level (L ¼ 4)

can reconstruct the target density within an overall accuracy of 0.05 e/Å3. The

maximum/minimum residual density of 0.043/�0.047 e/Å3 is located in the close

vicinity of the oxygen nuclei and rapidly diminishes as the level of expansion

increases. All bonding residual contours are less than 0.02 e/Å3, which can be

further reduced if the multipole expansion is extended to L ¼ 6. As expected, the

ED reconstructed by the R-SPAs has a lower accuracy; the residual density

amounts to about 0.05 e/Å3 in the C–O bonds, but it is much more pronounced

near to the oxygen nuclei. The most important finding is that these systematic

features cannot be accounted for even with the inclusion of higher-order multi-

poles, since the convergence stops already at the octupolar level (L ¼ 3). The

1STO-SPA model appears to be a relatively modest representation of the true ED,

especially in bonds of p character. We find residual ED peaks of 0.15 e/Å3 in the

C–O bonds and maximum/minimum residual EDs of 0.163/�0.235 e/Å3 near to

the oxygen nuclei.

Table 1 lists percentage errors in the Laplacian at the BCP of different bonds

obtained from the reconstructed U- and R-SPA densities, as well as from the

HC-PA model fitted to the structure factors corresponding to rC. The values are

calculated with reference to r2rc. While the U-SPA model (using Rlm up to

L ¼ 4) well accounts for the target density, the Laplacian is rather poorly

reproduced, especially in polar bonds. A detailed analysis reveals that this is

primarily due to the limit of the level of expansion; one must extend the U-SPA
model up to L ¼ 18 to obtain the “exact” Laplacian (r2rc) at the C–O bond

with four significant figures. Interestingly, the R-SPAs with m-independent
RDFs (L ¼ 4) can occasionally perform better in predicting the bond-parallel

curvature (l3) at the BCP than the U-SPAs. The error in the principal curvatures

due to the use of restricted RDFs and the error arising from the limited level of

expansion appear to cancel each other. The Laplacian values obtained from the

data-fitted HC density are, however, markedly less accurate, exhibit no correla-

tion with those from the R-SPAs, and strongly depend on the details of the

refinement.
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7 X-Ray Data Analysis with Theoretical Stockholder

Pseudoatoms

The direct-space projection technique described above not only provides an efficient

validation tool to access the bias in experimental properties but also helps design

new data-refinement strategies. A possible protocol for extracting the “left-over”

Fig. 2 Residual ED maps in the plane of the carboxylate group in a-glycine (rC � rSPA) at the
B3LYP/QZ4P level). (a) Stockholder pseudoatom with numerical m-dependent RDFs; (b)

restricted stockholder pseudoatom with m-independent numerical RDFs; (c) best-standard model

with m-independent RDFs each fitted by a single Slater function. Contours are drawn in steps of

0.05 e/Å3; solid positive, dotted negative. From left to right, the level of expansion is increasing

from L ¼ 0 to L ¼ 4
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information in experimental data of crystals of small-to-medium size molecules

starts where the HC-model-based refinement ends. The first step is to project a

quantum-chemical molecular density (rC) calculated at the HC-PA experimental

geometry onto SPAs. The refinement is then repeated using analytic bonded-atom

scattering factors obtained in such a way. One can initially fix the static density

while adjusting only the ADPs. Since the theoretical SPA exhibits the correct

behavior even near to its nucleus, the bias in the ADPs is most likely to be reduced.

There is also a good chance to refine the ADPs and/or the position of H-atoms.

Furthermore, this restricted protocol has the potential to identify anharmonic sites

and allows for using thermal motion models beyond the harmonic approximation –

an important feature that avoids the known difficulties associated with the joint

adjustment of higher-order displacement amplitudes and multipole populations

[57]. The final step is to refine the SPA density parameters with the hope of

revealing crystal-field effects by inspecting the fitted density relative to rC.
Having reanalyzed several small-molecule data sets, we tend to conclude that the

U-SPA model-based refinement is extremely stable. In all cases studied, a smooth

and fast convergence was achieved, even for the radial screening parameters (k0)
which usually exhibit a poor convergence when the standard HC-PA model is used.

Furthermore, it was almost always possible to refine individual parameters (k0l) for
individual SPA-RDFs of the non-hydrogen atoms. A related finding is that the final

parameter estimates are fairly independent on the details of refinement. This

robustness of fitting makes it unnecessary to monitor the “response of the data” to

the selection of and/or the constraints between the variables to be refined. The

parameter estimates are simply much less correlated than those obtained via the HC

model using the same data set. The data “filtering capability” of the U-SPAmodel is

also markedly better; the parameters are less biased because the model absorbs less

systematic errors.

The comparative X-ray charge density study of Bullvalene (C10H10) presents an

example which can be termed as typical, based on the limited number of prelimi-

nary investigations we pursued using medium-quality data sets. The HC-PA analy-

sis of the 100 K serial data [58] leads to BCP properties that well correlate with the

theoretical results calculated for the isolated molecule for the experimental geome-

try at the MP2/cc-pVTZ level. The molecule is a conjugated cage system exhibiting

Table 1 Percentage error of the Laplacian at the BCP for different bonds of a-glycine calculated
from the three pseudoatom densities at the hexadecapolar level of expansion. The values are taken

relative to those obtained for rC (BLYP/QZ4P). Units are in e and Å. The HC-PA density was

obtained by fitting the structure-factors corresponding to rC
Bond U-SPA R-SPA HC-PA

C(4)-O(1) 26.8 20.2 31.8

C(4)-O(2) 24.3 15.6 27.4

C(4)-C(5) 4.19 3.50 28.0

C(5)-N(3) 3.17 3.17 2.40

N(3)-H 12.1 19.2 52.2

C(5)-H 11.2 5.20 34.9
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three types of C–C bonds (single, double, and bent), but with intermediate bond-

orders due to extended p-electron delocalization. The refinement of ADPs, using

the U-SPAs projected from the MP2 density, yields basically the same reliability

factor as that obtained using the HC-PAs (Rw ¼ 2.32%) with 63 extra-adjusted

parameters, but a slightly better residual and a considerably different deformation

ED map (Fig. 3), especially in the plane of the cyclopropane ring. It is to be

emphasized that no density parameters were adjusted and the H-atom’s positions

and ADPs were fixed to their values derived by neutron diffraction. The subsequent

refinement, including the ADPs of H-atoms (still with the fixed SPA density), led

to thermal parameters in fair agreement with those derived from neutron data

Fig. 3 (a, c) Experimental Fourier residual and (b, d) static deformation density maps in the plane

of the cyclopropane ring of Bullvalene. Upper row: HC-PA refinement; lower row: ADP-only
refinement at the same geometry using MP2/cc-pVTZ stockholder pseudoatoms. Contour lines are
drawn at 0.05 and 0.1 eÅ�3 for the residual and the deformation maps, respectively. Solid, dashed,
and dotted lines are positive, zero, and negative, respectively
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collected at the same temperature. Similar results were obtained for other struc-

tures, indicating that the adequate modeling of the density (L ¼ 4) can indeed help

assign reasonable ADPs to the H-atom sites [59]. We also note that the all-

parameter refinement of the U-SPA model brings no significant improvement in

the quality of the fit or the static ED.

The analysis of experimental data of heptasulfur imide (Fig. 4d) leads to even

more drastic differences between the theoretical (MP2/cc-pvtz) U-SPA and the

fitted HC-PA model densities. Figure 4a, b depicting the residual Fourier maps

obtained by the two methods and the direct-space static difference map (Fig. 4c)

in the N–S–S plane of the molecule clearly demonstrates that the two markedly

different models exhibit equal statistical consistency with the same data.

Fig. 4 Experimental Fourier (a, b) and direct-space difference (rC-rHC-PA) maps (c) in the

N–S–S plane for the heptasulfur imide molecule (d). (a) HC-PA refinement; (b) ADP-only

refinement based on the MP2/cc-pVTZ U-SPAs at the same geometry. Contour lines are drawn

at 0.05 eÅ�3. Solid, dashed, and dotted lines are positive, zero, and negative, respectively
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This observation somehow questions the reliability of residual maps for model

validation. Indeed, current efforts to develop novel methods of residual analysis

[60] are initiated by the recognition that neither a good fit nor the lack of visually

detectable systematic features of the Fourier residual map can justify confidence in

the results.

8 Chemical Transferability of Stockholder RDFs

In order to develop SPA-RDFs applicable to routine X-ray charge density analysis,

it is important to explore their chemical transferability and dependence on the

quantum-chemical methods and basis sets (BS) used for the calculation of rC.
Our preliminary studies addressing the latter two issues indicate that methods

including electron correlation at the MP2 or B3LYP level and using triple-zeta

BSs are necessary to obtain SPA-RDFs consistent with higher-level calculations.

To study the transferability of the SPA-RDFs, a set of small organic molecules

[61], composed of atoms in similar bonding environments or functional groups,

were selected from the Cambridge Structural Database [62]. These include accu-

rately determined crystal structures (R < 5%) based on low-temperature X-ray or,

preferably, neutron data. For X-ray-based structures, the hydrogen positions were

modified by extending X�H distances (X ¼ C, N, O) to their standard neutron

diffraction values [63]. All wave-function calculations were performed at MP2/

aug-cc-pVTZ level of theory. The SPA-RDFs were generated and normalized via

numerical three-dimensional integration using a combination of angular and radial

quadratures; Lebedev-Laikov [64] grids for the former, while Gauss-Chebyshev
quadrature [65] with the Treutler-Ahlrichs M4 mapping [66] for the latter. In a

typical run, three-dimensional integration was done using 200 radial and 5,810

angular points, and the functions were evaluated in the interval of (0 � r � 2 Å)

with a grid spacing of 0.01 Å. The multipole populations and the corresponding

SPA-RDFs are averaged over chemically equivalent atoms found in the target set of

molecules. Two atoms are considered to be chemically equivalent if they have the

same connectivity (bonded to the same type of atoms) and similar bonding situa-

tion. For the clarity of the following rather technical discussion, we introduce a

compact notation; the SPA-RDF (Rlm) of an X-type pseudoatom (X ¼ H, C, N, andO)
in a local chemical environment (E) is designated as X_Rlm[E]. The environment

designation usually refers to a functional group. Two atoms of the same type but

with different bonding in a group are marked with different character style in the

group’s formula; O_Rlm[COOH], for example, refers to the SPA-RDF of the keto

O-atom in the carboxyl group. The averaging led to 8, 5, 4, and 7 groups of H, C, N,

and O atoms, respectively. The population analysis reveals that the stockholder

scheme gives atomic charges consistent with the chemical expectation. This is best

seen for the H-atoms; the monopole/bond-directed dipole population gradually

decreases/increases with the increase in the electronegativity of the X atom in the

X–H bond (Table 2). The deformation density of the C- and O-atoms is mainly of
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quadrupolar, that of the H-atoms is of dipolar, while that of the N-atom is of

octupolar symmetry.

Figure 5 depicts the H_R11–[COOH] and N_R11–[NH2] functions for which the

largest discrepancies are found before averaging. The peak-height differences

observed for some of the SPA-RDFs for “equivalent” atoms suggests that the

stockholder decomposition is quite sensitive to fine details in the chemical environ-

ment. The consistency in the peak locations, on the other hand, might imply that

these environmental differences manifest themselves only locally.

In general, the monopole SPA-RDFs show a high degree of chemical transfer-

ability. Even for the H-atoms, only relatively small variations of the H_R00[X–H]
functions with the neighboring atom type (X) are observed, but only near to the

proton’s position. Figure 6 displays SPA-RDFs averaged over chemical equivalents

and corresponding to the dominating deformation densities for each atom. The

averaged H_R10[X–H] functions associated with the bond-directed dipolar defor-

mation of the H-atoms have quite similar shape for all X–H bonds (Fig. 6a). The

location of the maxima (~0.25 Å) seems to be independent of the bonding situation,

but the peak-height scatters in a wide range (0.6–1.6) and correlates with the
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Fig. 5 Selected radial function for chemically similar stockholder atoms before averaging:
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Table 2 Significant multipole populations of hydrogen atoms averaged over equivalents. Nobs is

the number of entries for each set of different H-atom types

00 11� 10 22� 22þ 30 Nobs

CH 0.953(7) 0.072(2) 43

CH2 0.951(14) 0.071(4) 30

CH3 0.957(8) 0.069(3) 21

NH 0.881(9) 0.085(3) 0.011(3) 5

NH2 pyramidal 0.893(6) 0.084(2) �0.013(3) 14

NH2 planar 0.868(7) 0.091(2) 0.008(1) 20

NH3 0.820(13) 0.089(5) 18

COOH 0.802(4) 0.012(1) 0.099(2) �0.011(1) 5

OH 0.833(9) 0.008(2) 0.096(1) 0.009(2) �0.014(1) 7
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electronegativity of X. In other words, H_R10[C–H] is sharper than H_R10[O–H].
The higher-order SPA-RDFs seem to be more sensitive to the chemical environ-

ment and thus are less transferable than the monopoles and dipoles.

The best agreement between various types of N-atoms is found for the octupole

functions (Fig. 6b); the height of the maxima is very consistent, but their location is

slightly shifted closer to the N-nucleus in the nitro group. However, some higher-

order SPA-RDFs can be markedly different. For example, the N_R10[NH3
+] shows

a behavior that is opposite to that of N_R10[NH2]; the maxima and minima are

interchanged, while the locations of the extrema are preserved. The quadrupole

functions in the two types of amino groups (planar and pyramidal) are different not

only in terms of the height-maxima. For the nitro group, they depart considerably

from those in the two amino groups. The behavior of hexadecapole functions is

similar to that of quadrupoles.

All but three quadrupolar functions for the O-atoms (Fig. 6c) show very similar

radial behavior and peak almost at the same location, but may differ in the height-

maximum: O_R20[COO
�], O_R20[C¼O] and O_R20[NO2]. The main maximum of

the octupole SPA-RDFs is observed at the same distance from the nuclei

(r ~ 0.5 Å) for all types of O-atoms. Several of the octupole functions also show

a second maximum, sometimes separated by a node from the first one, while the

majority of the functions exhibit monotonic decay. A similar picture is observed for

haxadecapoles; most of these functions have only one maximum, change sign as
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approaching to zero. However, all three O_R42[E] functions (E ¼ CO2, COOH,
and C¼O) exhibit a well-defined second maximum at r ~ 1.2 Å.

For the C-atoms (Fig. 6d), the differences include second minima in

C_R11[C¼O] and C_R10[COO
�]. The quadrupole functions split into two groups:

one with a maximum close to 0.25 Å, and another with a maximum at around

0.5 Å. As in the case of N-atoms, the octupolar SPA-RDFs show maxima at

r ~ 0.5–0.6 Å, but unlike for the O-atom, no nodes are observed. The hexadecapolar

functions are closer in shape to those found for the N than for the O-atoms.

9 Stockholder Pseudoatom Databank

The fairly good chemical transferability of the SPA-RDFs suggests that it is

possible to design radial density basis sets for different type of atoms in a high

variety of bonding situations. Such a library appears to be of foremost importance

for experimental charge density research if data quality continues to improve at the

current rate. Similar efforts using the conventional model have shown that applica-

tion of HC-PA databanks can be beneficial for routine small- and macro-molecular

crystallography [67, 68] and even for molecular modeling [69]. Our approach to

SPA database building has many new elements. The density (rX½E�) of an X-type
SPA in a given bonding environment (E) is approximated by a combination of

a transferable part (�rX) and a correction to it (dX½E�):

rX½E� ¼ �rX þ dX½E� ¼ 1

NE

X
E

rXE þ
X
lm

QX
lmR

X
l dlm (19)

The transferable term is the average SPA taken over a set of equivalents

ð rXE
� �

NE
Þ derived from a large number of reference molecules each containing

the X-type embedded in slightly different bonding environments. The RDFs of the

nontransferable (dX½E�) part are derived via minimizing the RMS composed of

residual EDs not accounted for by the average term:

eX ¼
X
E

ð
rXE � �rX
� �� dX½E�� �2

dr (20)

The m-independent RDFs of the correction terms (dX½E�) are expanded over an

auxiliary Slater basis, which is derived by the principal component analysis of the

set of equivalent SPAs rXE
� �

NE
.

The database building is a five-step procedure:

1. Selection of reference molecules containing the atoms to be included in the

library. The current version was built from about 1,800 molecules composed of

second period (B–F) and some heavier elements, such as P, S, and Cl. Accurate

structures were taken from the CSD, as described above.
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2. Identification of and search for equivalent atoms. An automatic protocol scans

the reference structures and collects equivalent atoms using different structure

descriptors and similarity measures. These descriptors include the atomic num-

ber, the local connectivity graph and bond-order/aromaticity indices. Based on

the statistical agreement of similarity measures, a decision is made for each atom

whether it belongs to an existing group or it is to be considered as a new type.

For each atom, grouped in such a way, the descriptors are stored together with a

code referring to the molecule the atom originates from.

3. Ab initio electronic structure calculations on reference molecules containing

atoms picked up by the above protocol. The molecular densities, used to

construct the current databank, were generated at the B3LYP/aug-cc-pVTZ

level.

4. Calculation of the RDFs. For each type of SPAs, the RDFs are calculated from

the molecular wave functions on a fine radial grid. This step also performs a

statistical analysis and the fit to obtain the analytic SPA-RDFs of the average and

correction densities.

5. Building the ED of the target molecule of a known structure. Input atomic

positions and specific criteria for matching similarity indices are used by the

builder to construct both the average density (�rX) and the RDFs of the first-order
correction. The total charge is carried by the average term whose monopole

populations are scaled so as to re-establish the electro-neutrality.

The applicability of the SPA databank is being explored using both simu-

lated and experimental structure factors for molecules of 60–70 atoms, which

can still be challenging targets of X-ray charge density analyses. According to

(19), the library-based SPA protocol keeps the transferable density fixed and

completes the data analysis in terms of the nontransferable part. Since this

option is not yet implemented into XD, our preliminary studies used only the

averaged SPA component. Results of the interpretation of theoretical (B3LYP/

cc-pVTZ) and experimental data (100K, synchrotron radiation, at 1.25 Å�1

resolution [70]) of the Terbogrel (C23H27N5O2) molecule (Fig. 7d) are pre-

sented here as an example.

The structure factors calculated with the average SPAs drawn from the databank

are in an excellent agreement (R ¼ 0.52%) with those generated from the wave

function. Figure 7a displays the direct-space residual density for the guanidine

fragment, which exactly maps features unaccounted for by the zero-order (average)

database model. This is the section of the residual ED where the worst agreement

between the “exact” and the library densities was found, as seen by the pronounced

residual contours around the N and C-atoms of the –N–C�N group. The refinement

of multipole populations of the average density lowers the R-value to 0.38% and

removes the highest residual contour lines (Fig. 7b). No bonding features higher

than 0.05 eÅ�3 are left. While the accuracy of the fitted average density is quite

satisfactory, the remaining density features can be almost completely removed by

adjusting the multipole populations of dX½E� to the residual structure factors

ðFðrCÞ � Fð�rÞÞ. The ADP refinement of the average SPAs against the experimental
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data yields an R-value of 2.02%, which decreases to 1.65% after the refinement of

the SPA populations.

10 Summary

As demonstrated by the glycine simulation, the unrestricted SPA (L ¼ 4) model

provides an adequate representation of the MO density and the corresponding error-

free static structure factors. The study also implies that the application of bonded-

atom RDFs is necessary to reach the accuracy commonly claimed for experimental

pseudoatom densities. However, the accuracy reachable for the local topological

figures seems to be severely limited by the level of expansion. This could partially

Fig. 7 Direct-space difference density maps for Terbogrel (c) in the plane of the guanidine

fragment. (a) rC � rAVE, where rAVE is the average density built from the SPA data bank,

(b) the same map obtained after refinement of the populations of the average databank density. The

theoretical density was calculated at the B3LYP/cc-pVTZ level. Contour lines are drawn at

0.05 eÅ�3. Solid, dashed, and dotted lines are positive, zero, and negative, respectively
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be overcome with the inclusion of higher-order deformation functions in the model.

Stockholder pseudoatoms with m-independent RDFs cannot reconstruct the target

density to the same accuracy, yet fortuitous error cancellations can occasionally

yield better BCP estimates than those obtained via the unconstrained model.

The direct-space projection technique is an efficient validation tool applicable to

methodological developments in X-ray charge density research. Analyses of syn-

thetic (theoretical) structure factor data of increasing complexity can help optimize

the refinement protocol and minimize the bias in the fitted density. An important

problem to be studied is the deconvolution of thermal smearing effects from

structure factors. The stockholder decomposition, yielding a one-center representa-

tion of the target density, provides a relatively easy route to thermal smearing.

It becomes also possible to incorporate anharmonicity into the simulated structure

factor data and to analyze its effects on the fitted model density. An equally

important issue to be addressed is the extent to which crystal-field effects are

detectable via the pseudoatom model. This can be assessed in detail by interpreting

structure factors from periodic calculations in terms of the SPA representation of

the wave-function-based density of the isolated molecule.

Theoretical pseudoatoms allow for probing experimental structure factors of

small-molecule crystals against a known density of the isolated molecule and thus

help identify systematic errors and design refinement protocols to account for them.

The improved least-squares convergence and stability achieved using bonded-atom

RDFs is accompanied by a considerable decrease in correlation between the

parameter estimates, making thus possible to reduce, or even avoid, parameter

restrictions routinely invoked to condition the fit. Chemical constraints, for exam-

ple, are commonly enforced in the course of standard pseudoatom-based modeling,

not only to decrease the number of variables to be refined but also to eliminate

parameter indeterminacies. The latter issue is critical for non-centrosymmetric

structures [71], in which case the indeterminacy of the odd-order populations

usually results in an ill-conditioned least-squares matrix. In general, it is anticipated

that the interpretation of high-quality data with the upgraded multipole formalism

has the potential of accessing information that remains hidden for the standard

model due to its limited resolving power.

The two small-molecule examples presented here and other studies with similar

outcomes show, however, that even a medium-level ab initio density of the isolated

system can well account for a medium-quality and -resolution experimental data.

One might arrive at the conclusion that important signals of crystal-field effects can

stay below the experimental error level and/or “washed out” by thermal motion and

resolution effects. These observations suggest that the influence of weak intermo-

lecular interactions on the intramolecular ED should be interpreted with caution.

Theoretical pseudoatoms can provide a good starting model also for treating

polarized neutron data to derive the spin (magnetization) density of molecular

crystals. Such an analysis should use two sets of RDFs; one projected from the

majority (a) and one from the minority (b) spin densities calculated from the

corresponding spin-orbitals at the unrestricted level of theory. This spin-separated

pseudoatom formalism, yielding models for the charge and spin densities consistent

New Directions in Pseudoatom-Based X-Ray Charge Density Analysis 21



with the wave function, can be especially advantageous for a joint treatment of

X-ray and polarized neutron data [72]. The databank of theoretical pseudoatoms

can open new perspectives for routine X-ray charge density analyses, especially of

larger molecular systems, provided technical advancements further improve data

quality.
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71. Haouzi AE, Hansen NK, Hènass CLe, Protas J (1996) The phase problem in the analysis of

X-ray diffraction data in terms of electron-density distributions. Acta Cryst A52:291–301

72. Becker P, Coppens P (1985) About the simultaneous interpretation of charge and spin density

data. Acta Cryst A41:177–182

New Directions in Pseudoatom-Based X-Ray Charge Density Analysis 25



Struct Bond (2012) 147: 27–46
DOI: 10.1007/430_2012_78
# Springer-Verlag Berlin Heidelberg 2012
Published online: 27 March 2012

Reliable Measurements of Dipole Moments from

Single-Crystal Diffraction Data and Assessment

of an In-Crystal Enhancement

B. Dittrich and D. Jayatilaka

Abstract Using seven examples of high-quality data sets of amino acids it is shown

that accurate molecular dipole moments can be obtained from experimental diffrac-

tion data. Recommendations for practical modeling choices are given when using

the Hansen/Coppens multipole model. Multipole-model results, including those

from invariom refinement, are found to be less accurate than results from a basis-

set description. The question whether a molecular dipole-moment enhancement

in the solid state is fact or artifact is studied by a number of techniques: A theoretical

molecule embedded in a cluster of point-charges gives a substantial enhancement,

in agreement with Hirshfeld atom refinement with point charges and dipoles. The

experimental techniques, multipole refinement and wavefunction fitting, lead

to smaller dipole-moment enhancements than the theoretical predictions.

Keywords Single-crystal X-ray diffraction • molecular dipole moment • dipole-

moment enhancement • multipole model • wavefunction fitting • hirshfeld-atom

refinement
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1 Introduction

Intermolecular forces are of great interest in chemistry and physics. The classical

electrostatic interaction energy between two species can be expanded in a multipole

series. Its most important term (for neutral species) is the dipole moment [1]. The

dipole of a system is of fundamental and continuing interest.

When non-spherical scattering models were introduced in the late-1960s [2–4]

and optimized throughout the 1970s [5–7] it became possible to obtain dipole and

higher multipole moments from accurate single-crystal X-ray diffraction data. The

basic characteristic common to these different non-spherical scattering models is

that they provide an analytical description of the electron density distribution r(r)
(EDD) in terms of products of atom-centred radial and spherical harmonic angular

functions. Only the populations of the latter angular functions (and possibly a radial

scaling parameter k) are adjusted (via a least-squares procedure) to reproduce the

intensities of the diffraction experiment. The Hansen/Coppens approach [7] has

proven to be successful throughout the last decades in that it has enabled experi-

mental characterization of solid state electronic structure and bonding.

Lately, the multipole model [5, 7] has undergone significant development and

a change in philosophy. Instead of the multipole parameters being refined from the

X-ray data, they can alternatively be predicted by fitting to theoretical data obtained

from quantum mechanical calculations [8]. Not only the multipole parameters but

also H-atom vibration parameters (the atomic displacement parameters or ADPs)

can additionally be derived from theoretical calculations or other external sources

of information like neutron diffraction [9–11]. Programs and schemes have been

developed to transfer electron-density parameters from atoms in smaller molecules

into larger molecules where the chemical environment is similar. Thus, the tradi-

tional role of the experimental measurements determining bonding density has been

depreciated in favour of an emphasis on accurate geometric parameters, especially

for larger molecules. The significance of these developments on dipole-moment

determination from X-ray diffraction data requires substantial characterization.
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Even more recently, sophisticated quantum mechanical methods have been devel-

oped to refine the geometric and electronic parameters of the crystal structure. For

example, it is now possible to refine geometric parameters by using non-spherical

scattering models based on quantum mechanical calculations [12, 13] (so-called

Hirshfeld atom refinement). Remarkably, this leads to accurate X—H bond distances

in excellent agreement to distances from Neutron diffraction. It is also possible to

combine quantum mechanical methods directly with the least-squares refinement of

the electronic structure parameters describing the electron density (X-ray constrained

wavefunction methods) [8, 14–20]. Again, the impact of these methods on dipole-

moment determination from X-ray diffraction data merits further study.

Earlier studies aimed at obtaining an experimental dipole moment from diffrac-

tion data by refinement of multipole parameters have been comprehensively

reviewed in the past [21, 22]. A mathematical definition of the dipole moment

and detailed background information can also be found in these review articles. The

common consensus is that obtaining reliable dipole moments is a “challenging”

undertaking but certainly worthwhile, because the diffraction experiments “are

unrivalled in their potential to provide this information in such detail” [22]. This

latter comment refers to the fact that, unlike in many other experiments, all the

components of the dipole moment are determined from an X-ray diffraction study.

Further, dipole moments of molecular fragments can be obtained.

Nevertheless, dipole-moment determinations from multipole refinement

frequently remain unreliable, with enhancements in the dipole moment in excess

of �100% having been reported. Several reasons for this have been clearly

enunciated [22] including the fact that the definition of a dipole moment in a crystal

from a periodic charge density requires a well-defined partitioning of a molecule in a

crystal [23].1 Further limitations include data quality, especially for data pertaining

to non-centrosymmetric crystals where phases are less well determined [25, 26],

and – what is of interest in this paper – limitations in the modelling process.

In this article we seek to characterize the situations in which an accurate dipole

moment can be determined from X-ray diffraction data using the multipole model,

Hirshfeld-atom refinement and X-ray constrained wavefunctions. Several questions

are addressed:

• What are the expected accuracies for dipole moment magnitudes? Are there
possible pitfalls?
We investigate this question by fitting the multipole model to static structure

factors for 22 small organic molecules.

• What are the accuracies for dipole moments determined from multipole-model
scattering-factor databases?
Structure refinements with scattering-factor databases like the invariom database

[27] offer rapid access to dipole moments, and it is important to quantify their

performance with respect to dipole-moment evaluation. This is achieved by

comparison with experimental results (from refined multipoles) in Table 5.

1 It must be noted that definitions can be made for the unit-cell polarization, which are independent

of the charge density and hence are well defined for periodic systems [24].
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• What are the accuracies for dipole moments determined from experimental data
(refined multipoles/wavefunction fitting)? What in-crystal enhancements may be
expected when compared to the theoretical prediction (invarioms/single-point
calculation)? Can theory provide a benchmark to discern enhancements of
dipole moments being “fact or artefact”?
We address these issues by investigating the dipole moments for seven amino

acids for which X-ray diffraction data were obtained from the original authors or

were available in the literature. These are compared to reference values obtained

from invariom refinement, from ab initio quantum mechanical calculations

for isolated molecules and for molecules in a crystal environment. These latter

are obtained from self-consistent crystal-field embedded molecular ab initio

quantum mechanical calculations. We have also used the X-ray constrained

wavefunction method to produce benchmark dipole moments as an alternative

to the multipole model. Finally, variations in the dipole moment due to geometric

positions from different refinement models are investigated.

2 Experimental Datasets

The structures of the genetically encoded amino acids have been extensively stud-

ied. However, dipole moments from X-ray diffraction have not frequently been

reported for these molecules, with the exceptions of D,L-histidine and L-alanine [28,

29].We have therefore chosen to focus on accurate structure determinations of seven

amino acids previously reported in the literature for our study (Table 1). In all cases

only one single molecule crystallizes in the asymmetric unit. Molecules chosen are

L-alanine [30], L-cysteine [31], L-glutamine [32], D,L-serine [33], L-threonine [34],

D,L-aspartic acid [35] and D,L-histidine [28]. High-resolution data were provided by

the respective authors or were available electronically. In the case of L-cysteine,

high-resolution data were not determined.

2.1 Experimental Challenge: Hydrogen Scattering

Even when carefully modelling the information content of the Bragg data,

complications in determining dipole moments are likely to arise due to the X-ray

Table 1 Crystallographic details of the structures studied. The radiation (Rad.) used and the

resolution (Res.) reached (in sin y/l, i.e. in Å�1) are given

Structure Spacegr. Z, Z0 Temp. Rad. Res. Ref.

L-Alanine P212121 4,1 23 K Mo Ka 1.08 [30]

L-Cysteine P212121 4,1 30 K Mo Ka 0.72 [31]

L-Glutamine P212121 4,1 100 K Mo Ka 1.08 [32]

D,L-Serine P21/a 4,1 20 K Mo Ka 1.19 [33]

L-Threonine P212121 8,1 19 K Ag Ka 1.35 [34]

D,L-Aspartic Acid C2/c 8,1 20 K Ag Ka 1.37 [35]

D,L-Histidine P21/c 4,1 100 K Mo Ka 1.22 [28]
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scattering properties of hydrogen atoms. These properties, comparably weak scat-

tering with limited resolution in reciprocal space, for decades have been known to

cause concern regarding the reliability of properties based on least-squares refined

parameters of H-atoms [36]. Since H-atoms are often situated at the molecular

periphery and often far away from the centre of mass, their influence on the

molecular dipole moment can be significant.2 Accurate X–H bond distances are

therefore imperative. Neutron diffraction experiments are the preferred source of

accurate X–H bond distances; but results for particular molecules or bonding

environments are usually not available due to the considerable additional experi-

mental effort. Favourable developments with the advent of spallation Neutron

sources might change this situation in the future.

Technical improvements help to reduce the problem caused by the scattering

properties of hydrogen. A recent study used external information from periodic

calculations to try to limit the flexibility of the screening parameters [37] for C, N

and O. Scattering-factor databases [27, 38, 39] provide even more accurate

“hybrid” scattering factors, also for hydrogen atoms. For the theoretical databases

[27, 39] these hybrid scattering factors are obtained by combining fixed multipoles

from the database – with the order of the expansion l � 1 – with refined monopole

and dipole populations. In that sense hybrid scattering factors for H-atoms can be

seen in analogy to constraints or restraints, since they reduce the flexibility of the

least-squares refinement model by adding prior chemical information. Furthermore,

X–H distances from geometry optimizations can now be used. They are included in

the invariom database [27] and can be retrieved with the program INVARIOMTOOL

[40]. In Sect. 5.1 we show how hybrid hydrogen scattering factors and fixed X–H

bond distances can increase the reliability of the determination of dipole moments

from multipole refinements.

2.2 Experimental Challenge: Data Resolution

Apart from a careful treatment of hydrogen scattering, another requirement for the

determination of reliable dipole moments from multipole refinement of X-ray

diffraction is good quality low-temperature intensity data, preferably extending

high into reciprocal space. These are required in order to refine the large number of

possible least-squares parameters per atom (three positional, six displacement and

up to 25 multipole parameters up to lmax ¼ 4, not counting radial screening

parameters). Low temperature is mandatory, since experimental conditions are

more favourable, e.g. regarding the significant reduction of atomic displacements

and thermal diffuse scattering [41]. For further (experimental) requirements

concerning multipole refinements of X-ray diffraction we refer to [42].

2 One way to resolve the issue is to choose a sample devoid of hydrogen altogether.
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Since high-resolution data were not available in the case of L-cysteine, we use

recently introduced methodology [43] to obtain an experimental dipole moment

despite limitations in data resolution by including ADPs from a previous invariom

refinement [33] in a block-matrix refinement of L-cysteine. This procedure and the

low data-collection temperature of 30 K allowed to reach the same accuracy as

achieved for the other examples.

Requirements for data resolution are more modest for invariom refinements and

when using other databases. Nevertheless, despite the success of the suggested

block-matrix refinement procedure for L-cysteine, high-resolution data are certainly

preferred or even required for the multipole refinements used in our comparative

studies.

3 On the Ability of the Multipole Model to Reproduce

Theoretical Dipole Moments

The initial question raised is simple: How well does the multipole model allow to

reproduce theoretical dipole moments from a DFT calculation with the B3LYP

functional and the comparably extended basis-set D95++(3df,3pd)? In order to

answer this question twenty-two molecules exhibiting a dipole moment were

chosen (see Table 2 for details). They can be considered representative of organic

chemistry with some relevance to biological systems. The test set is neither

complete nor exhaustive; e.g. zwitterionic compounds are not part of it. For the

amino acids, which are zwitterionic in the solid state, multipole projections of the

isolated-molecular dipole moments are given in Sect. 5.1.

Geometries of the test-set molecules were optimized with tight convergence

criteria in the program GAUSSIAN [44] followed by a frequency calculation to make

sure the global minimum was reached. From the resulting wavefunction, real

structure factors for a unit cell with dimensions of 30 Å in space group P�1 were

calculated with the program TONTO [45], following a procedure introduced earlier

[46]. This way a “projection” of the isolated-molecular density onto the multipole

model was achieved. Multipole parameters were then refined using these static

theoretical structure factors, “simulating” experimental data. Typical R-Factors

from such a refinement are around 0.5% (better when heavier nuclei are present),

with residual electron density features less than 0.05 e/Å3. Better figures of merit

cannot be achieved with the standard Hansen/Coppens multipole model, since the

core density remains unadjusted unlike in a recent study [47], and since the order l
of the multipole expansion is limited to four for the valence region.

In all refinements a consistent refinement strategy was applied. Chemical

constraints and local-atomic site symmetry were used where possible. However,

it was assured that such choices did not affect the resulting dipole moments when

compared to a full refinement of all possible multipoles: differences were found to

be negligible. On the other hand, more substantial changes were caused by refining
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or not refining the scale factor – which should ideally be unity for theoretical data –

and the k/k0 parameters. Also, the order of the multipole expansion for H-atoms

considerably influenced the result obtained (see Table 2). In experimentalmultipole

refinements this order l is mostly chosen to be l � 1 for H, since multipoles with

larger l can usually not be refined: As discussed above, correlations and lack of

information due to H-atom scattering properties do not allow refinement.

Data resolution can also influence the results. In the currently developed version

of the invariom database, simulated data are calculated up to a resolution of

sin y/lmax ¼ 1.44 with limiting indices of h, k and l of 50, and cut to a more

spherical shell of data to 1.2 Å�1 resolution. This procedure was also used here.

Results of the different refinements are given in Table 2.

Keeping the level of the multipole expansion at l � 1 for H-atoms yields a better

average agreement for compounds consisting of only C, H, N and O. However,

when heavier elements are present, the agreement gets worse and including higher

multipoles for hydrogen atoms gives better bond distances in refinement with

Table 2 Ability of the multipole model to reproduce dipole moments from theory

Compound Formula sum m0 m1 m2 m3 m4 m5
Water H2O 1.9 1.5 1.5 2.0 1.6 1.5

Formaldehyde CH2O 2.4 2.1 2.0 2.2 2.1 2.0

Methanol CH4O 1.7 1.5 1.5 1.8 1.6 1.5

Methaneamine CH5N 1.3 1.2 1.2 1.4 1.2 1.2

Formamide CH3NO 4.0 3.5 3.3 3.7 3.6 3.4

Formic acid CH2O2 3.9 3.6 3.4 4.0 3.7 3.5

Ethanol C2H6O 1.6 1.2 1.2 1.5 1.3 1.2

Methoxymethane C2H6O 1.3 1.6 1.5 1.7 1.7 1.5

Ethaneamine C2H7N 1.3 1.1 1.1 1.3 1.2 1.1

Acetone C3H6O 3.1 2.8 2.4 3.0 2.9 2.6

Acetamide C2H5NO 3.9 3.6 3.3 3.7 3.7 3.5

Propane-2-ol C3H8O 1.6 1.4 1.3 1.8 1.5 1.3

Acetic acid C2H4O2 4.4 4.2 3.7 4.5 4.3 4.0

2-Methylpropan-2-ol C4H10O 1.6 1.6 1.4 1.9 1.6 1.5

Methanethiol CH4S 1.6 2.1 2.1 2.2 2.1 1.4

Phenol C6H6O 1.3 1.5 1.5 1.8 1.6 1.5

Aniline C6H7N 1.6 2.0 2.1 2.0 2.1 1.9

Ethanethiol C2H6S 1.7 2.6 2.7 2.7 2.4 1.5

Chloromethane CH3Cl 2.0 2.2 2.2 2.3 2.3 1.2

Propane-1-thiol C3H8S 1.8 3.0 3.1 3.0 2.7 1.3

Dichloromethane CH2Cl2 1.7 2.2 2.3 2.3 2.3 1.5

Chloroform CHCl3 1.1 1.7 1.9 1.7 1.7 1.2

Compounds are ordered according to their molecular size. Dipole moments are given directly for

the theoretical computation with B3LYP/D95++(3df,3pd) (m0), or for different multipole models:

m1 using k only, with lmax ¼ 4 for H, which is the default in the 2006 version of the invariom

database [27], m2 using an additional shared k0 for l � 1of all non-H atoms, m3 same as m1, but
limiting lmax ¼ 1 for H, m4, same as m1, but limiting data resolution to sin y/lmax ¼ 0.8 Å�1. Very

similar values than for m1 can be obtained when omitting the shared k0 for carbon atoms and were

obtained by keeping the scale factor at 1(m5), which improved agreement for S-containing

compounds

Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data 33



experimental data. Furthermore, significant changes in the dipole moments are

observed when the resolution is cut to 0.8 Å�1 and superior results are often (but

not always) obtained in that case.

Improvements with data cut to 0.8 Å�1 are probably due to the over-proportional

information content of valence electron density in low-order reflections, whereas

for heavier elements correlations [43] of the multipole parameters or the frozen core

approximation could cause the disagreements seen. It can be observed that dipoles

differ most when heavier nuclei like S and Cl are present, and that k0-parameters are

helpful for obtaining a more reliable estimate in such cases. Another factor are

Fourier truncations effects, which we are currently investigating. Since the results

can deviate by more than 70% (e.g. for chloroform), it is recommended to use fixed

k values from theory in experimental multipole refinements to avoid parameter

correlations. Either those fixed k/k0 values proposed earlier [37, 48] or values

obtained from, e.g., the invariom [27] or other databases [38, 39] should be used

in our opinion. Fixing the scale factor to unity leads to better agreement with

heavier elements present, pointing to the fact that the core density is not well

represented by the multipole models’ Slater functions in our data generated from

Gaussian basis sets. However, fixing some of the “sensitive” model parameters does

not generally aid in increasing model flexibility and the ability of the multipole

model in reproducing the theoretical dipole moments. It also reduces the character-

istic of providing an experimental result.

It is to be expected that the multipole-model dipole moments deviate from

the theoretical result, since the density representation used is quite different and

more sophisticated in ab initio calculations. In summary one needs to be aware

that the classical Hansen/Coppens multipole model cannot fit fine details of the

electron density distribution, thereby affecting the dipole moment. Even if an experi-

mental (thermally smeared) electron density might be fitted better than the static

structure factors used in this chapter, limitations of the experimental multipole-model

approach in accurately reproducing molecular dipole moments become evident.

4 Dipole-Moment Enhancements from Theory

Efforts to theoretically predict changes in the molecular dipole moment whenmoving

from the gas phase to the bulk have initially been challenging, since computations on

periodic systems were unfeasible. Nevertheless, elegant predictions based on lattice

sums [49, 50] provide good estimates of the effect of crystal packing and hydrogen

bonding on molecular electron density [51], despite the approximation of an average

uniform electric field, which might be inappropriate for larger molecules and strongly

hydrogen-bonded systems. The increase or decrease of the dipole moment has been

defined [22] as:

Dm ¼ 100ðmmol: in solid � msinglemol:Þ=msinglemol: (1)
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Another important step forward in obtaining theoretical solid-state dipole

moments was the introduction of Bader’s Quantum Theory of Atoms in Molecules

(QTAIM) [52], which provides an atomic partitioning scheme for isolated-

molecular as well as periodic EDD. One characteristic of Bader’s partitioning

scheme is that atomic fragments each have a dipole moment. Since the sum of

QTAIM fragments and their properties are additive, they reproduce space

completely, and a molecular dipole moment can be calculated from the sum of

the individual atoms in the gas phase or the bulk. Hence, QTAIM provides an

attractive route to accurate dipole moments and their possible enhancements from

first principles [53–55]. QTAIM results are not discussed in this study, but are

provided, e.g., in [53].

4.1 Dipole-Moment Enhancements from Simple
Theoretical Cluster Calculations

The simplest way to obtain dipole-moment enhancements from theory are

calculations on molecular clusters which we will now discuss. An obvious approxi-

mation made in such an approach is the choice of the distance threshold, for which

surrounding whole molecules are included.

For the seven zwitterionic organic molecules studied, a cluster based on a 3–5 Å

threshold was used. This corresponds to including all surrounding molecules that

are closer than this distance threshold to any atom of the central molecule. Typical

cluster sizes, including the examples of the amino acids studied here, are 14–21

molecules. Input files were generated with the program BAERLAUCH [56], and require

only atomic positions, a cut-off radius and the space group. To decide which cluster

size was required, we geometry optimized the central molecule in the field of

surrounding molecules using the ONIOM implementation [57] of quantum

mechanics/molecular mechanics (QM/MM) in all seven cases (results not shown

here). In case the optimization converged, the cluster size was considered to be

sufficient also in single-point cluster calculations. Computational details of the

ONIOM procedure for molecular crystals are given in [56].

Calculations with a field of point charges are not expensive to perform, since the

environment of the cluster is represented by few additional Gaussian functions.

In principle, the method and basis set chosen for the calculations can be as

sophisticated and extended as the computer permits. Computational requirements

are similar to single-point calculations. Cluster calculations with a field of point

charges yield a wavefunction file of an “isolated” molecule. This is in contrast to

ONIOM cluster calculations, where the geometry of the central molecule can

be optimized, but no isolated-molecule wavefunction file is written in GAUSSIAN

[44], since the phase relationship between the different level wavefunctions is

undefined. A projection onto the multipole model is technically only possible

Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data 35



when a wavefunction file exists. We therefore did not pursue the ONIOM procedure

to obtain dipole-moment enhancements in this study.

The main interest for performing single-point calculations in a cluster of point

charges was to get a simple estimate of dipole moments in a cluster, thereby

presenting a simple model of a crystal. Therefore, we also limited the size of the

basis set to 6-31 G(d,p) in the calculations reported in Table 3. The DFT functional

used was B3LYP.

The result from these simple calculations is that substantial dipole-moment

enhancements can be observed for all seven amino acids studied. Hence, one could

expect them to occur frequently when a molecule becomes part of a crystal lattice.

However, these results depend on the approximation of a finite inhomogenous field

around the molecule and do not include any experimental information except for the

molecular geometry. This result will therefore be verified by experiment and by more

sophisticated methodology comparing experiment and theory in Sect. 5.1.

Table 3 Total dipole moment (in [D]), individual components and enhancement (in %) for seven

amino acids from a simple point charge model with basis-set B3LYP/6-31 G(d,p)

Iteration x y z Dipole Enhancement

0 0.3 0.4 �12.4 12.4 –

1 0.7 0.0 �14.4 14.4 16

2 0.7 0.0 �14.7 14.7 19

3 0.7 0.0 �14.8 14.8 19

0 2.5 0.9 11.0 11.3 –

1 3.5 0.5 14.2 14.6 29

2 3.6 0.3 15.0 15.4 36

3 3.7 0.2 15.2 15.7 39

0 10.5 5.0 �4.5 12.4 –

1 13.1 6.1 �4.6 15.2 23

2 13.7 6.2 �4.6 15.7 27

3 13.8 6.3 �4.6 15.9 28

0 �5.4 �11.8 4.8 13.8 –

1 �7.1 �14.9 5.7 17.4 26

2 �7.5 �15.5 5.9 18.2 32

3 �7.6 �15.7 5.9 18.4 33

0 7.7 �4.1 �6.5 10.9 –

1 9.8 �4.8 �8.5 13.8 27

2 10.2 �4.9 �9.2 14.6 34

3 10.3 �4.9 �9.2 14.7 35

0 �4.2 �3.8 �10.0 11.5 –

1 �4.8 �4.9 �12.1 13.9 21

2 �4.9 �5.2 �12.6 14.5 26

3 �4.9 �5.2 �12.7 14.6 27

0 14.3 �0.3 �6.6 15.8 –

1 19.9 1.0 �10.0 22.3 41

2 20.3 1.1 �10.4 22.8 44

3 20.4 1.1 �10.5 22.9 45

Iteration 0 refers to the single molecule only, whereas iteration 1,2 and 3 refer to a calculation,

where the atomic point charges from the previous iteration surround the central molecule
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4.2 Theoretical Estimate of Dipole-Moment Enhancements
with Cluster Charges and Dipoles

A better model for a crystal is accomplished when atomic point charges are

complemented by molecular dipole moments in generating the field around a

molecule. Like in Sect. 4.1 the purpose is to assess a possible dipole-moment

enhancement from a cluster calculation. Apart from including dipole moments of

surrounding molecules and from using the program TONTO [45, 46] rather than

GAUSSIAN [44], the procedure is analogous. Coordinates after invarioms refinement

were chosen as a suitable starting geometry. We note in passing that the HF dipole

moment (Table 4) can directly be compared to the invarioms and the DFT single-

point dipole moment reported in Table 5. Invarioms aim to reproduce the theoreti-

cal values from electron-density fragments. With the basis-set electron density

model available in TONTO we can also confirm the well known fact that the

Hartree–Fock theory overestimates the dipole moment when compared to

calculations that include electron correlation [58]. However, results in Table 4

show that the Hartree–Fock result is a valid estimate and even underestimates the

relative in-crystal enhancement seen for DFT. In perspective, molecules studied

here exhibit similar enhancement Dm in the bulk as seen for the point-charge model

reported above. Surroundingmoleculeswithin a radius of 8 Å were taken into account.

5 Dipole-Moment Enhancements by Combining Theory

and Experiment

Experimental determinations of dipole moments usually only provide the value

in the solid state. Dipole-moment enhancements from experiment can only be

obtained by comparing the dipole moment in the solid state with a single-molecule

Table 4 Dipole moments D in Debye from a Hartree–Fock and a DFT calculation on isolated

molecules as well as their counterparts in the bulk modelled by a 8 Å cluster of point charges and

dipoles

Structure Basis HF HFbulk Dm/[%] DFT DFTbulk Dm/[%]

L-Alanine DZP 12.6 17.1 +36 11.1 16.3 +47

cc-pVTZ 12.2 17.3 +42 10.6 16.6 +57

L-Cysteine DZP 11.7 16.4 +40 10.1 15.4 +52

cc-pVTZ 11.3 16.7 +48 9.8 15.7 +60

L-Glutamine DZP 12.7 17.7 +39 11.2 16.7 +49

cc-pVTZ 12.4 17.8 +44 10.8 17.0 +57

D,L-Serine DZP 14.0 19.2 +37 12.2 18.0 +48

cc-pVTZ 13.5 19.2 +42 11.7 18.3 +56

L-Threonine DZP 11.2 14.4 +29 10.0 13.6 +36

cc-pVTZ 10.9 14.5 +33 9.6 13.6 +42

D,L-Aspartic Acid DZP 11.6 14.9 +28 10.4 14.3 +38

cc-pVTZ 11.2 14.9 +33 10.0 14.4 +44

D,L-Histidine DZP 16.1 22.2 +38 14.1 20.8 +48

cc-pVTZ 15.6 22.2 +42 13.7 21.3 +55
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(gas-phase) reference value from theory. A convenient choice for obtaining refer-

ence dipole moments for results from experimental multipole refinements is

invariom modelling, since it allows a dipole-moment estimate even for large

molecules at negligible computational cost. By calculating the difference between

experimental dipole moment and the invariom result (1) an enhancement is

obtained. To allow a fair comparison between dipole moments from experimental

multipole refinement and invariom model we use the same multipole model [7] (i.e.

the same local atomic site symmetry and chemical constraints) in both cases. This

will be detailed below in the following section.

Invariom modelling is an attempt to apply the benefits of a scattering model

that is superior to the independent atom model (IAM) to general small-molecule

[33, 59] and ultra-high-resolution macromolecular crystallography [27, 60, 61].

Similar scattering-factor databases are available [38, 39]. In contrast to the experi-

mental multipole refinement, in invariom refinement theoretically predicted multi-

pole populations are kept fixed, so that the number of refinable parameters does

not increase with respect to the IAM. Like in the IAM, only positional and

displacement parameters are adjusted to the experimental Bragg data.

To put the following results into perspective we need to be aware that both

invariom modelling and experimental multipole refinement only permit to obtain

the molecular dipole moment within the accuracy the multipole model is capable to

provide, as discussed in Sect. 3.

5.1 Molecular Dipole Moments and Their Enhancement in
the Solid State from Experimental Multipole Refinement
and Invariom Refinement

An invariom refinement was performed for the seven datasets considered (Table 1).

The input files for invariom refinement were generated by the program INVARIOMTOOL

Table 5 Dipole moments D in Debye from invariom refinement (Dinv) and from a refinement of

multipole parameters (Dexp) using the same multipole model and geometry

Structure Dinv Dexp Dm [%] Theory Multipole projection Dm [%]

L-Alanine 12.1 12.5 +3 11.4 (9.9) +9

L-Cysteine 11.2 11.2 0.0 10.5 (9.4) +6

L-Glutamine 13.1 13.4 +2 11.5 (10.8) +14

D,L-Serine 13.5 12.9 �4 12.5 (11.1) +3

L-Threonine 11.9 12.0 +1 10.0 (9.2) +17

D,L-Aspartic Acid 13.1 11.4 �13 10.6 (8.8) +7

D,L-Histidine 15.7 17.9 +14 14.5 (12.3) +19

Results of a DFT single-point calculation (“Theory”) with the method/basis-set B3LYP/D95

++(3df,3pd) are given in the right column for comparison. Results from a multipole projection

of the DFT density are found to be systematically lower than the single-point results. Hence both

single-point (and even more so multipole projection) gives a more pronounced enhancement than

the invariom-database [27] fragments
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[40], which also generated input for our experimental multipole refinements.

Therefore, the same multipole parameters were adjusted to the experimental data

that were used as fixed scattering factors in invariom refinement. Chemical

constraints, which are used in the program XDLSM [62] to reduce the number of

least-squares parameters in case an identical chemical environment is assumed,

were assigned in those cases, where the same invariom scattering factor name was

found. Local-atomic site symmetry was chosen in analogy to the model compounds

used to generate the database parameters. This way we assured that invariom and

experimental multipole refinement were based on the same multipole model. In the

multipole refinement, hydrogen atoms were treated as a hybrid scattering factor,

where the radial screening parameters k and the higher multipoles with lmax � 1

were kept at the database values to increase the reliability of the dipole moments

obtained (see comments in Sect. 2.1). The invariom geometry was kept. X–H bond

distances were set to values obtained in geometry optimizations of model

compounds as used in the invariom database [27]. In Table 5 we list the magnitudes

of the dipole moments from both invariom and free multipole refinements.

For comparison, molecular dipole moments from a single-point calculation of the

experimental geometry are also given. The DFT basis was D95++(3df,3pd) and the

functional B3LYP. In analogy to Sect. 3 we include values for themultipole projection

of the single-point calculations, which are found to be systematically lower than

the values from the single-point calculation.Again, limitations of theHansen/Coppens

multipole model in accurately reproducing dipole moments become apparent.

On the positive side we can see immediately that the extreme spread of values

that was observed in a large number of studies [22] is absent. Experimental values

are quite close to the theoretical results and reliable estimates from measured

intensities are possible following our recommendations on H-atom treatment.

However, the accuracy of the multipole model does not allow to clarify whether

the enhancement itself is “fact or artefact.” This statement is supported by choosing

the theoretical single-point dipole moments as reference for assessing a possible

enhancement. Since these are systematically smaller than the invariom result,

which appears to always yield higher dipole moments than the single-point

result, the estimate of the enhancement is also systematically higher (Table 5,

right column). These results would be even more pronounced were multipole-

projection values (given in brackets in Table 5) of the single-point result taken,

which are again systematically lower than the invariom result. Causes for the

invariom result giving a higher dipole moment probably lie in the underlying

approximation of summing a molecular density from fragments. In conclusion,

a more flexible model is needed to answer the question of a possible enhancement.

Relying on the answer from theoretical computations (see Sect 4.2) is insufficient,

since theoretical calculations predict a pronounced dipole-moment enhancement in

all cases in disagreement with experimental findings. We therefore look at results

from X-ray constrained wavefunctions in the next section.

Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data 39



5.2 Molecular Dipole Moments and Their Enhancement from
Hirshfeld-Atom Refinement and Wavefunction Fitting

Wavefunction fitting [8, 15–18] can be expected to yield better accuracy for

properties derived from experimental Bragg data than those derived from the

multipole model, since a basis-set description of chosen sophistication can be

used to model the electron density. We have chosen the DZP basis [63] already

used in Sect. 4.1 (see Table 4). Wavefunction fitting requires a weighting of

the experimental data with a multiplier [8] to extract the information content

of the individual experimental observations and their standard uncertainties.

Hence, the fitting procedure is more demanding than a single-point cluster calcula-

tion and needs several repetitions, gradually increasing the multiplier. Geometries

obtained from Hirshfeld-atom refinement with cluster charges and dipoles were

used and kept fixed. Geometries were assured to be consistent with the basis set this

way, which would not have been achieved had invarioms geometries been used.

Also, effects on the geometry due to small changes in the dipole moment are

avoided.3 In Table 6 dipole moments obtained are given together with the

isolated-molecule result already reported in Table 4. Since the same geometry is

used, an enhancement or decrease is reported. A direct comparison to dipole-

moment enhancements derived using the Hansen/Coppens multipole model

(Table 5) is possible. Analogous to the multipole-model result a strong increase

of the in-crystal dipole moment is not observed as it was predicted from theory.

Trends from wavefunction fitting hence confirm the results obtained from the

multipole model.

Table 6 Dipole moments D in Debye from Hirshfeld-atom refinement (DHAR) and from X-ray

constrained wavefunctions (DXCW) from both Hartree–Fock and Density Functional Theory using

the in-cluster HAR geometry and the DZP basis set

Structure HF DFT

DHAR
3 DXCW Dm/[%] DHAR

3 DXCW Dm/[%]

L-Alanine 12.6 13.4 +6 11.0 11.9 +8

L-Cysteine 11.7 12.3 +5 10.1 10.7 +6

L-Glutamine 12.7 14.2 +12 11.2 12.8 +14

D,L-Serine 14.0 15.1 +8 12.2 13.1 +7

L-Threonine 11.2 12.9 +15 10.0 12.1 +21

D,L-Aspartic Acid 11.6 12.8 +10 10.4 11.4 +9

D,L-Histidine 16.1 17.1 +6 14.1 15.1 +7

3A change in dipole moment due to small adjustments of the geometry between Hirshfeld-atom

and invariom refinement can be studied by comparing the dipole to the value given in Table 4,

where the invariom geometry was used as input. It is found to be insignificant, with the largest

difference being 0.1 Debye for Alanine.
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6 Discussion: Agreement Between Experimental

and Theoretical Results

We would like to obtain an experimental estimate of the dipole moment using as

little prior information as possible, since the approximations used in theoretical

approaches benefit from independent validation. Unfortunately, experimental data

are necessarily limited in resolution. Therefore, a least-squares approach relying

on experimental data does not allow an infinite number of parameters to be refined.

This restriction leads to an inflexible model and consequently comparably

inaccurate dipole moments: when attempting to reproduce the theoretical results

limitations of the experimental multipole model approach become apparent.

Such restrictions do not apply to wavefunction fitting, since it combines theory

and experiment, using the experimental data as additional information weighted

by a multiplier. The quantum-chemical density model is required to fit the experi-

mental data, while simultaneously minimizing the energy of the – now experimen-

tal – wavefunction. This allows obtaining a more accurate result at the expense

of not providing an entirely experimental result in a strict sense. However, the

multipole model also uses a frozen core and fixed radial functions from atomic

calculations as input, so that the concept of a purely experimental result from X-ray

diffraction seems questionable in general, although this point of view might be

considered exaggerated. In spite of such technical details the following results

emerge:

1. Accurate in-crystal dipole moments can indeed be obtained from X-ray

diffraction.

2. The accuracy of the multipole model is limited, but it can nevertheless provide

an estimate of the in-crystal result from experiment after careful modelling.

3. Despite its shortcomings, the multipole-model estimate for the seven experi-

mental data sets studied here is satisfactory. It required taking into account

invariom database k-parameters and optimized X–H distances from model

compounds.

4. An estimate of the molecular dipole moment for the crystal geometry can also

be obtained entirely from scattering-factor databases without the need for

expensive calculations. The invariom result anticipates some of the in-crystal

enhancement when compared to single-point calculations for zwitterions.

5. For heavier nuclei (here: S, Cl) the multipole model fails to reproduce dipole

moments accurately. Inclusion of k0-parameter, which can often not be refined

in a reliable manner from experimental X-ray diffraction data, is helpful but no

remedy for the inaccuracy. Databases can provide k/k0 values for different

chemical environments. Fixing the scale factor in the multipole projection to

unity can considerably alter the result, e.g. for sulphur containing compounds.

6. Concerning the enhancement of the dipole moment from experiment in the

bulk, and for accurate determinations of dipole moments in general, studies

should be preferably based upon a basis-set density representation like it is
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used in wavefunction fitting. As a consequence, not only the accuracy but also

the computational effort for providing an answer in each particular case is

increasing.

7. Dipole moments from cluster calculations consistently predict a substantial

in-crystal enhancement. Experimental results, both using the multipole model

and wavefunction fitting, suggest a less pronounced enhancement for the amino

acids.

7 Conclusion

Seven measurements of high-resolution Bragg data on amino acids published

earlier were re-evaluated for a determination of their dipole moments with the

Hansen/Coppens multipole model and by a basis-set representation as used in

Hirshfeld-atom refinement/wavefunction fitting.

Initially, the general ability of the multiple model to reproduce dipole moments

of isolated-molecular calculations was studied by a projection of twenty-two small-

molecule electron densities with simulated structure factors. Theoretical dipole

moments are usually reproduced within �20% of the theoretical result, but can

deviate by more than 70% when heavier elements are involved. For the zwitterionic

amino acids a systematic underestimation of the dipole moment is seen in the

multipole projection. Choices in the treatment of the radial screening parameters

k/k0 as well as the hydrogen-atom scattering are relevant for obtaining a reasonable

estimate. Invariom modelling applied on the theoretical geometries – which is also

based on the multipole model – equally allows reproducing the dipole moment

within a similar range. Here, amino-acid dipole moments are overestimated with

respect to the gas phase. On the positive side, the computational effort to obtain

dipole moments from database density parameters is minimal. Molecular dipole

moments could and should therefore be a routine result of accurate structure

determinations. Design choices in the invariom database have been chosen to

enable reliable estimates as far as possible.

Refinement of multipole parameters with experimental data allows obtaining

the dipole moment of a molecule as part of the crystal. Based on refinements of the

seven data sets mentioned, we made suggestions how to make experimental

determinations more reliable. Hybrid scattering factors for H-atoms from database

approaches and inclusion of accurate optimized X–H bond distances increase the

reliability of the determination.

Comparing the experimental dipole and the theoretically predicted invariom

moment (or the single-point values) allows assessing dipole-moment enhancements

in the bulk, although model inaccuracies limit the reliability of the results. A similar

comparison of isolated-molecular calculations and wavefunction fitting using

a basis-set representation yields more accurate and consistent results. A density

functional theory treatment (BLYP functional) with the DZP basis was performed

for that purpose.
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To get an estimate on possible dipole-moment enhancements from theory,

molecular calculations embedding a central molecule in a field generated by a

surrounding cluster of point charges were carried out. These calculations took into

account crystal symmetry and used atomic coordinates from invariom refinement.

Whereas a considerable enhancement in the bulk is predicted by these theoretical

approaches, experimental multipole-model results seem to agree better with

isolated-molecular values and do not predict such a considerable enhancement.

To obtain the best possible theoretical estimate for dipole-moment enhance-

ments in the solid state while still taking into account the experimental diffraction

data, Hirshfeld-atom refinement within a cluster of point charges and dipoles using

density-functional theory and with Dunnings correlation consistent cc-pVTZ basis

[64] was performed. Hirshfeld-atom refinement is currently the most sophisticated

density model available to refine structural parameters from experimental diffrac-

tion data. Theoretical DFT dipole moments allowed putting the experimental

results into perspective. The method predicts a significant in-crystal dipole-moment

enhancement. However, the extent of the enhancement is a lot lower in wave-

function fitting (5–15% rather than 28–48% for DFT electron densities). It is

conceivable that inclusion of molecular van der Waals interactions as provided in

dispersion corrected density functionals [65] might bring theoretical estimates and

experiment measurements of dipole moments in the solid state closer together.

Our conclusion is that density models more sophisticated than the Hansen/

Coppens multipole model increase the reliability of dipole-moment determinations.

The accuracy of invariom-database predictions could probably benefit from more

accurate density descriptions as well. Wavefunction fitting can currently provide

the most accurate experimental in-crystal dipole moment in the presence of high-

quality data, albeit at a comparably high computational cost.

Note added in proof A recent experiment shone light on the discrepancy between Hirshfeld-atom

refinement within a cluster of point charges and wavefunction fitting of the molecules.

Current program updates in TONTO now allow to perform wavefunction fitting in the presence

of surrounding point charges. These lead to an additional enhancement with respect to fitting the

molecule only — in better agreement with the experimental data.

We ascribe this to an additional electron density polarization in the vicinity of the core region,

which cannot be retrieved with the frozen core in the standard Hansen/Coppens multipole model.
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Challenging Problems in Charge Density

Determination: Polar Bonds and Influence

of the Environment

Bernd Engels, Thomas C. Schmidt, Carlo Gatti, Tanja Schirmeister,

and Reinhold F. Fink

Abstract The review focuses on the influence of environments on electron den-

sities (ED) and their Laplacians. This is of interest for many applications which uses

EDs measured at hand of crystals of a given ligand to predict its pharmaceutical

properties. This comprises for example the questions if the ligand fits into the active

center of an enzyme and how strong it binds to this active side. This widely used

approximation strongly rely on the assumption that the active side of the enzyme

influences the ED of the ligand the same way the crystal environment does. This is

not obvious since enzymes represent systems made to catalyze reactions. So one

could assume that the active sides influence the EDs of ligands in a special way to

prepare them for a given reaction. The review shows that this is indeed the case for

E64c. Its inhibition properties result since it reacts with cathepsin B and forms a

covalently bonded cathepsin B–E64c complex. It clearly comes out that the reac-

tion only takes place since the ED of the ligand is influenced in a way which is not

found in the respective crystals. Nevertheless, the review also shows that the above

mentioned approximation holds for AMCHA which serves as a model compound

for reversible inhibitors. In the last part the review shows in detail that the source

function can be used to study the influence of the environment in more detail. In the
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first part the review summarizes investigations on the reliability of pure theoretical

approaches to ED and its Laplacians.

Keywords Electron density � Ab initio � QM/MM � Environmental effects � Source
function � E64c � Cathepsin B � AMCHA � Basis set effects
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1 Introduction

Dalton’s atomic hypothesis together with the work of van’t Hoff and Le Bel formed

the basics to the modern view of matter within which a chemical bonding network

links atoms to molecules, aggregates, liquids, or the solid state. This concept is the

most widely applied and fundamental model in chemistry and forms, e.g., the basis

of the Lewis notation, which provides a reasonable and generally accepted expla-

nation for the electronic and geometric structures of almost all molecules. However,

since the 1920s we know that chemical bonding can only be properly understood as

a quantum mechanical phenomenon. Furthermore, the work of Kohn and coworkers

[1, 2] proved that in principle the electron density (ED) determines all physical and

chemical properties of a given molecule [3–6]. The ED is also the underlying

quantity in density functional theory (DFT) [7, 8] and readily available from

wave-function-based approaches. Its interpretation in terms of bonding effects is

possible for example by the quantum theory of atoms in molecules (QTAIM) [9,

10]. This approach allows to quantify the nature of chemical interactions and

provides a solid quantum mechanical methodology which allows to interpret the

ED. Nevertheless, due to the inherent ambiguity of any interpretation of quantum

mechanical properties in terms of localized atomic quantities, QTAIM does not

provide an unique interpretation of chemical bonding. Hence, alternatives such as

valence bond-based methods [11], energy partitioning approaches [12], population

analyses [13, 14], and many others are also important tools.

The ED represents a physical observable as was first noticed by Debye [15].

However, as nicely highlighted in a recent article of Coppens [16], it took much

effort to develop an experimental machinery which allows to measure this property

with the required accuracy and efficiency. Due to simultaneous developments in

experimental setups and analyzing software tools [10], EDs of entire compound

classes [17–20] or proteins are today available [19, 21–29], and even more, the

routine application of ED measurements is in sight. However, from the literature it
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becomes evident that presently the ED, being a formal observable, is hardly

measured but reconstructed namely by fitting sophisticated theoretical models

to the experimental data, exploiting previous chemical–empirical wisdom [6, 30].

To make this clear in the following, we will talk about “experimentally derived

densities” rather than “experimental densities.” In principle, experimentally

determined electron densities could be used to analyze the shortcomings of theoret-

ical approaches, which, because of the complexity of the systems, use certain

approximations in particular with respect to electron correlation and relativistic

effects.

However, experimental electron densities can only be used to benchmark theo-

retical ones if they are only insignificantly biased by the procedures that are used to

analyze the measured quantities (i.e., angles and intensity distributions of Bragg

reflections). Indeed, various recent studies indicate that such a bias is introduced by

the Hansen–Coppens multipole formalism [6, 30], which is most frequently used to

derive EDs from experimental diffraction data [31–33]. However, more sophisti-

cated approaches are also biased to some extent [34–36]. This seems to happen

because the basis sets used to describe the ED distribution are not flexible enough to

reflect details of electron densities in polar bonds. This appears to be at least partly

the reason for the differences found between experimentally and theoretically

determined topological properties of the ED at the bond critical points (BCPs)

which occur in particular at polar bonds, where the densities and Laplacian dis-

tributions are strongly different between the bond partners [21–25, 27, 37–39]. For

nonpolar bonds, experimentally and theoretically derived bond topological values

are in excellent agreement [40, 41]. In most cases, experiment and theory provide

qualitatively the same results, for example, with respect to the number of BCPs or

the number of valence-shell charge concentrations (VSCCs) [42]. However, there

are many cases, for instance, in transition metal complexes or for weak interactions,

where the real situation is near a catastrophe point between different topologies,

different bond paths, and different numbers of BCPs. In such cases, slightly

different experimental or theoretical approaches yield qualitatively different

QTAIM-results [6, 43, 44]. A bias of experimental electron densities can also be

introduced if two or more parameter sets of the multipole model are of similar

quality in residual density and statistical quality. Such a nonuniqueness was

demonstrated, e.g., by Peres et al. [45]. Using experimentally derived densities

for the validation of theoretical densities is also problematic because the experi-

mental uncertainties – typically 0.1 e/Å3 for EDs and 4–5 e/Å5 for Laplacians

[17–19, 46–49] – are often of the same magnitude as the differences. Frequently,

the computed EDs give even more reasonable trends than the measured ones [50].

However, the disagreement between experiment and theory could also point to

shortcomings in the theoretical description. The Hartree–Fock approach for

instance is well known for overestimating the polar character of chemical bonds.

Thus, only if correlation effects are taken into account reliable densities can be

calculated [51–53]. The MP2 approach, however, already predicts topological

parameters in close agreement with even more sophisticated approaches such as

MP4 or QCISD [32, 54]. Similar densities are also obtained with DFT approaches if
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hybrid functionals are used whereupon the results depend on the percentage of

exact exchange. Results obtained with gradient-corrected functionals show larger

deviations. Also, the influence of the flexibility of the AO basis sets used in the

computations was tested to some extent [32, 51]. The observed basis set effects

were generally too small to explain the deviations between experimental results and

theory. However, in the recent work by Jayatilaka and Dittrich, it was found that the

differences between experiment and theory decrease if Slater-type basis functions

are used in the computations instead of Gaussian type [55]. In this context it is

important to mention that, with the exception of very small model systems, the

tested basis sets do not exceed triple-z quality although a sufficient number of

polarization functions is essential for convergence [32, 50, 51].

Besides the comparison of absolute numbers, an investigation of the correlations

between the topological parameters and the bonding type can also reveal important

information about the quality of the results. Such correlations are expected and are

used in many investigations [3, 4, 6, 38, 56]. One example is the position of the

BCP, which, as shown by Cremer and Kraka, correlates with the polarity of the

bond [57]. According to Bader’s QTAIM approach, correlations are expected

between the density, its second derivative along the bond path (l3), and the bond

ellipticity e, which is obtained from the second derivatives of the density perpen-

dicular to the bond paths (e ¼ l1/l2 � 1). The bond ellipticity e can provide

information about the delocalization of electrons within a molecule [39, 52].

Results which do not reveal the expected correlations are probably biased to

some extent. This is especially true if correlations are found for the less sensitive

parameters (e.g., density) but are missing for more sensitive ones (e.g., Laplacian values).

For the homoatomic C–C bonds of C60 fullerene derivatives, Wagner et al. [41]

found the expected correlations between the density at the BCP and the bond

distances as well as between the Laplacian at the BCP and the bond distances.

This shows that high-resolution synchrotron diffraction experiments provide very

accurate densities of these nonpolar covalent bonds. However, whether this also

holds true for polar bonds is unclear.

Another uncertainty is caused by the environment. High resolution X-ray experi-

ments are nowadays feasible, but crystals of extremely high purity and quality are

required for accurate results. The surrounding of a single molecule in such a crystal

differs quite significantly from that in gas phase or within a liquid. One would

expect that the environment influences the charge density of the given molecule.

Thus, the question arises if densities measured in a crystal can be used to discuss

chemical reactivities in solvents, in vacuum or within a protein, e.g., an enzyme.

The latter surrounding is of particular importance for rational drug design whose

success strongly depends on an intimate knowledge of the interactions between

target and active compound [58–62]. According to the Hohenberg–Kohn theorem,

these interaction forces are also a function of the ED. High resolution X-ray

measurements of the EDs of the enzyme–inhibitor complexes would be an ideal

tool to study such interactions as a function of the substitution pattern of the ligands

[17–19, 63, 64]. However, high-resolution X-ray diffraction experiments are not yet

routine for such large complexes. According to the best of our knowledge, such
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datasets are only available for a single protein–ligand complex: the human aldose

reductase with the inhibitor IDD594 [65–67].

For the reasons described above, EDs of inhibitors in enzyme–inhibitor complexes

can in general only be approximated by EDs obtained from crystals of the pure

inhibitor compound [17–19, 40, 68–72]. Although the stability of crystals of pure

compounds and enzyme–inhibitor complexes is governed by the same types of

intermolecular interactions (e.g., steric, electrostatic, hydrogen bonding, van der

Waals effects), it is by no means obvious that a crystalline environment is a good

approximation for that of an enzyme [73]. Support for this assumption comes from the

finding that in enzyme–inhibitor complexes as well as in crystals of the pure com-

pound, the interacting species often arrange in a way that bonding interactions are

optimized. Evidence, that the spatial orientations in crystals of small organic mole-

cules are indeed representative for arrangements of inhibitors in enzymes, is given in

studies which analyze the Cambridge structural data bank (CSD) to elucidate pre-

ferred orientations of functional groups with respect to each other [74]. These orienta-

tions were indeed shown to be in qualitative agreement with arrangements in

protein–inhibitor complexes from the RCSB protein data bank (PDB) [64, 75–77].

Nevertheless, due to the enormous catalytic power of enzymes, one would expect that

the enzyme environment will influence the ED of the inhibitor in a unique fashion.

Investigations comparing EDs obtained from crystals of the pure compound and from

enzyme–inhibitor complexes are not available. Such investigations may demonstrate

to which extent EDs of pure inhibitor crystals can be used to quantify the molecular

recognition process between an enzyme and an inhibitor. Insights into the expected

differences are also of interest for new approaches which use predetermined atomic

EDs to build up EDs of macromolecules, e.g., proteins [45, 78–80]. The quality of the

composed EDs might be substantially improved by including the expected influence

of the environment in the predetermined EDs [81, 82].

In the present review, we will report on recent results about the influence of

environments on the ED of inhibitors [83]. In these works, the EDs of agents in gas

phase, polar solvents, crystals, and enzyme environments were compared. These

are theoretical studies, since pure experimental approaches are yet not feasible and

a mixing of experimental and theoretical values is cumbersome and ambiguous.

The quality of the theoretical approach required to achieve this goal is discussed in

the first part of this review. As example, we use a series of sulfur–nitrogen bonds

possessing a varying degree of polarity. The studies used various theoretical

approaches to investigate the convergence of the ED and its topological properties

with respect to basis set size and theoretical methods. Furthermore, they focused on

the prediction of trends since this is sufficient for correct judgments of the environ-

mental influences.

Similar EDs do not necessarily result from similar environmental influences.

They may also be caused by a compensation of different effects. This can be

investigated using the source function [44, 84] which provides the contribution of

different atomic basins on the ED at any given point in space. Hence, in the last part

of the review we will report on the applicability of the source function for theoreti-

cal approaches that are frequently used to investigate enzyme–inhibitor complexes.
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2 The Accuracy of Theoretical and Experimental Electron

Densities

In the next chapter, we will report on theoretical investigations of environmental

influences on electron densities. This is only meaningful if the computed electron

densities are sufficiently reliable. Thus, in the present chapter we review studies that

considered the dependency of absolute values and trends on the theoretical level used.

As mentioned before, previous works showed that experimental and theoretical

EDs of nonpolar bonds are in excellent agreement. However, less agreement was

found for polar bonds. As an example, theoretical and experimental EDs of a set of

molecules containing S–N bonds of varying polarity were investigated [17, 50]. The

set consisted of methyl(diimido)-sulfinic acid H(NR)2SMe (1), methylene-bis(trii-
mido)sulfonic acid H2C{S(NR)2H(NR)}2 (2), sulfurdiimide S(NR)2 (3), and sulfur-

triimide S(NR)3 (4). With R¼H, R¼Me, and R¼tBu, the influence of substituents
on the computed densities was investigated. The molecular solid-state structures

are given in Fig. 1. In the solid-state structure, the methyl(diimido)sulfinic acid

emerges as dimeric unit. To test the influence of the dimerization, a monomeric

form of 1 was also computed (1a). Similar considerations lead to the investigation

of a quasi-monomeric form of 2, where one methylene-(triimido)sulfonic acid

moiety was replaced by a methyl group. This molecule is termed 2a. Gas phase

structures of the model compounds were optimized for different substituents R¼H,

R¼Me, and R¼tBu, respectively, using a great variety of theoretical methods.

Frequency calculations were performed to ensure that the optimized structures

represent stationary points. All calculations were performed with the Gaussian98

package [85].

Tables 1–4 show computed bond topological properties of some typical bonds of

the present set of model systems as a function of the method and basis set. The

S1¼N2 bond of compound 1a (R¼Me, Table 1) was chosen as an example for a

formal S¼N double bond, while the S1–N1 bond of the same compound was chosen

as a formal S–N single bond (Table 2). As a typical example for S–C and N–C

bonds to a methyl (or butyl) group, the bond topological properties of the S–C bond

of compound 1a (R¼Me, Table 3) were investigated. Table 4 shows the bond

topological properties of the formal S1–N1 bond of compound 3 (R¼H), which

represents another formal S¼N double bond, as a function of the basis set. The

tables contain the computed bond distance of the given bond, denoted as d, the
density, r, at the BCP, the value of the Laplacian of the ED at the BCP denoted as

r2r, and the eigenvalues of the Hessian of the density at the BCP, l1, l2, and l3. In
accordance with the usual notation, l1 and l2 indicate the values associated to the

two Hessian eigenvectors that are perpendicular to the bond path direction at BCP,

while l3 denotes the curvature value along the bond axis. Note that the Laplacian

r2r is identical to the sum of these eigenvaluesr2r ¼ l1 + l2 + l3. Furthermore,

the tables contain the ellipticity e ¼ l1/l2 � 1, and the distances of the BCP to

atom A, d(A), and to the other atom, d(B), as well as the ratios d(A)/d(B) and
l1j j l3= . The latter is expected to be smaller than one in ionic bonds [9].
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H(NtBu)2SMe (1) H2C{S(NtBu)2HNtBu}2(2)

S(NtBu)2 (3) S(NtBu)3 (4)

Fig. 1 Solid state geometries and Lewis-formulas of 1–4. The anisotropic displacement para-

meters are depicted at the 50% probability level. In these pictures, CH bonded hydrogen atoms are

omitted for clarity
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The bonds were selected as they possess different polarities. According to a

natural bond orbital/natural resonance theory (NBO/NRT) analysis [50] and on the

basis of the ratio l1j j l3= , the S1¼N2 double bond of compound 1a (R¼Me, Table 1)

possesses a quite polar character. The S1–N1 single bond of the same compound

has also a polar character, while the S–C bond of compound 1a is less polar.

Table 1 Bond topological properties at the BCP of the formal S1¼N2 double bond in 1a, R¼Me

– d r r2r l1 l2 l3 e dðNÞ d Sð Þ d Nð Þ
d Sð Þ

l1j j
l3

B3PW91

6-31G(d) 1.55 1.76 8.36 �10.01 �7.14 25.52 0.40 0.96 0.60 1.61 0.39

6-31G(d,p) 1.55 1.76 8.33 �10.02 �7.14 25.50 0.40 0.96 0.60 1.61 0.39

6-31G(2d,p) 1.54 1.83 �5.22 �11.25 �8.27 14.30 0.36 0.92 0.62 1.48 0.79

6-31G(3d,p) 1.53 1.86 1.46 �11.65 �8.57 21.68 0.36 0.92 0.61 1.52 0.54

6-31+G(d) 1.55 1.76 8.02 �10.01 �7.15 25.18 0.40 0.96 0.60 1.60 0.40

6-31+G(d,p) 1.55 1.76 7.89 �10.00 �7.15 25.04 0.40 0.96 0.60 1.60 0.40

6-311G(d,p) 1.54 1.80 6.14 �10.31 �7.51 23.96 0.37 0.95 0.60 1.58 0.43

6-311G(2d,p) 1.53 1.86 �6.68 �11.45 �8.44 13.21 0.36 0.91 0.63 1.46 0.87

6-311G(3d,p) 1.53 1.87 0.45 �11.70 �8.61 20.76 0.36 0.92 0.61 1.50 0.56

cc-pVDZ 1.56 1.67 9.25 �8.85 �6.46 24.58 0.37 0.96 0.60 1.60 0.36

cc-pVTZ 1.54 1.86 3.65 �11.02 �7.77 22.43 0.42 0.94 0.60 1.56 0.49

B3LYP

6-311G(d,p) 1.55 1.79 4.62 �10.31 �7.50 22.44 0.37 0.95 0.60 1.58 0.46

MP2

6-31G(d) 1.57 1.67 4.40 �9.09 �6.46 19.94 0.41 0.97 0.61 1.61 0.46

6-31G(2d,p) 1.57 1.71 �7.82 �9.98 �7.42 9.58 0.34 0.93 0.64 1.44 1.02

Exp. 1.53 2.24 �9.38 �12.58 �11.73 14.92 0.07 0.74 0.79 0.94 0.84

The geometry was optimized at the indicated level of theory. Distances are given in (Å), densities

are given in (e/Å3), and second derivatives are given in (e/Å5)

Table 2 Bond topological properties at the BCP of the formal S1–N1 single bond in 1a, R¼Me

– d r r2r l1 l2 l3 e d Nð Þ d Sð Þ d Nð Þ
d Sð Þ

l1j j
l3

B3PW91

6-31G(d,p) 1.75 1.31 �8.46 �6.94 �6.34 4.81 0.09 0.98 0.77 1.27 1.44

6-31G(2d,p) 1.74 1.30 �6.35 �7.10 �6.45 7.20 0.10 0.94 0.80 1.18 0.99

6-31G(3d,p) 1.73 1.36 �8.49 �7.32 �6.65 5.49 0.10 0.98 0.75 1.31 1.33

6-311G(d,p) 1.75 1.32 �8.58 �7.32 �6.71 5.45 0.09 0.95 0.80 1.19 1.34

6-311G(2d,p) 1.74 1.31 �6.67 �7.37 �6.64 7.34 0.11 0.92 0.82 1.13 1.00

6-311G(3d,p) 1.73 1.36 �8.85 �7.56 �6.86 5.56 0.10 0.95 0.77 1.23 1.36

cc-pVDZ 1.77 1.24 �6.25 �6.06 �5.55 5.36 0.09 0.99 0.78 1.28 1.13

cc-pVTZ 1.73 1.38 �9.95 �7.84 �6.98 4.88 0.12 0.94 0.79 1.20 1.61

B3LYP

6-311G(d,p) 1.75 1.30 �8.40 �7.32 �6.74 5.67 0.09 0.95 0.80 1.18 1.29

Exp. 1.68 1.76 �7.95 �10.26 �9.66 11.97 0.06 0.83 0.85 0.98 0.86

The geometry was optimized at the indicated level of theory. Distances are given in (Å), densities

in (e/Å3), and second derivatives in (e/Å5)
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The results provided by Tables 1–4 can be summarized as follows. Obviously,

for the Pople basis sets the results obtained with the (2d,p) polarization functions

deviate considerably from those obtained with other basis sets. But even if we

regard this basis as outlier, the Laplacian and the eigenvalues of the Hessian

converge slowly with the basis set. In all cases r2r converges worst, for the

S¼N double bond in 1a it sometimes even changes the sign. But also the eigenva-

lues li themselves vary by 20% or more. The values of l3 for the S1¼N1 double

bond of 3 (R¼H, Table 4) increase by about 20% going from the cc-pVQZ to the cc-

pV5Z basis. Forr2r the series cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z yields

the values 8.66, 2.62, 0.15, and 0.83 e/Å5, i.e., even highly demanding calculations

with extremely extended basis sets do not provide converged Laplacian values. This

is a real nightmare for reliable predictions of absolute numbers. As expected the

much smaller Pople basis sets do not show convergence either, even if the (2d,p)

Table 3 Bond topological properties at the BCP of the formal S1–C3 single bond in 1a, R¼Me

– d r r2r l1 l2 l3 e d Sð Þ d Cð Þ d Sð Þ
d Cð Þ

l1j j
l3

B3PW91

6-31G(d,p) 1.81 1.30 �8.65 �7.42 �7.02 5.79 0.06 0.96 0.85 1.13 1.28

6-31G(2d,p) 1.80 1.27 �6.69 �6.90 �6.50 6.71 0.06 0.95 0.85 1.12 1.03

6-31G(3d,p) 1.80 1.33 �8.98 �7.56 �7.12 5.69 0.06 0.95 0.85 1.12 1.33

6-311G(d,p) 1.81 1.29 �8.09 �7.52 �7.11 6.55 0.06 0.97 0.84 1.15 1.15

6-311G(2d,p) 1.80 1.25 �6.08 �7.01 �6.60 7.53 0.06 0.95 0.85 1.12 0.93

6-311G(3d,p) 1.80 1.32 �8.30 �7.62 �7.19 6.51 0.06 0.95 0.84 1.13 1.17

cc-pVDZ 1.81 1.29 �9.19 �6.99 �6.57 4.38 0.06 0.96 0.85 1.13 1.60

cc-pVTZ 1.80 1.32 �8.32 �7.82 �7.34 6.84 0.06 0.95 0.85 1.12 1.14

B3LYP

6-311G(d,p) 1.82 1.27 �7.69 �7.44 �7.06 6.81 0.05 0.97 0.85 1.14 1.09

Exp. 1.79 1.54 �8.70 �9.18 �8.72 9.20 0.05 0.99 0.80 1.24 1.05

The geometry was optimized at the indicated level of theory. Distances are given in (Å), densities

in (e/Å3), and second derivatives in (e/Å5)

Table 4 Bond topological properties at the BCP of the S1–N1 bond in 3 (R¼H), calculated with

the B3PW91 functional and indicated basis sets

– d r r2r l1 l2 l3
B3PW91

6-31G(d,p) 1.81 1.30 �8.65 �7.42 �7.02 5.79

6-31G(2d,p) 1.80 1.27 �6.69 �6.90 �6.50 6.71

6-31G(3d,p) 1.80 1.33 �8.98 �7.56 �7.12 5.69

6-311G(d,p) 1.81 1.29 �8.09 �7.52 �7.11 6.55

6-311G(2d,p) 1.80 1.25 �6.08 �7.01 �6.60 7.53

6-311G(3d,p) 1.80 1.32 �8.30 �7.62 �7.19 6.51

cc-pVDZ 1.81 1.29 �9.19 �6.99 �6.57 4.38

cc-pVTZ 1.80 1.32 �8.32 �7.82 �7.34 6.84

The geometry was optimized at the indicated level of theory. Distances are given in (Å), densities

in (e/Å3), and second derivatives in (e/Å5)

Challenging Problems in Charge Density Determination 55



polarization set is taken as an outlier. Additionally, variations of more than 20%

were found for topological data obtained with different functionals or the MP2

method. Similar trends were seen for all bonds. A somewhat better convergence

was observed for the S–C bond but also in this case the deviations from the

experimental data are quite large.

Having this strong dependency in mind, it is not astonishing that the topological

data of experimental EDs deviate significantly from the theoretical ones. Indeed, as

mentioned before, the Laplacians are very sensitive with respect to the theoretical

level. However, the same is also observed for the ED values which usually show

much weaker dependencies on basis set or method. In all cases, the experimentally

derived densities at the BCPs were found to lie above the theoretical ones. This

indicates that in the bonding region the computed density is considerably smaller

than the experimental one. It is interesting to note that a similar behavior is found at

the position of the nuclei [50]. Nevertheless, the slow convergence indicates

problems in the computations [24, 46–49].

The slow convergence of the bond topological data may be due to the compli-

cated electronic structures of the investigated molecules. However, this may not be

the case, as other molecular parameters such as the computed bond distances

converge as expected. The difference between experiment and theory could stem

from the influence of the crystal leading, for example, to slightly different bond

distances. To check this possibility, the bond topological data for the experimental

geometries were computed. The values are given in Table 5 for the S¼N double

bond of compound 4. Also in this case, a very slow convergence with respect to the

basis set was found. It is important to note that the deviation from the experiment is

even larger if the experimental geometry is used. The difference in the position of

the BCPs is quite remarkable. While the experimental BCPs are located almost

in the middle of the bond, d(N)/d(S) � 1, theory predicts them to be much closer to

the sulfur center, d(N)/d(S) � 1.5. In a similar case, Gatti and Bianchi improved the

agreement between experiment and theory by computing the properties at the same

location (e.g., at the experimental BCP) [86]. Similar results were obtained by

Table 5 Bond topological properties at the BCP of the formal S¼N double bond of compound 4

with R¼tBu (S(NtBu)0) computed at the experimental geometry

� r r2r l1 l2 l3 e d Nð Þ d Sð Þ d Nð Þ
d Sð Þ

STO-3G 1.49 21.67 �5.83 �3.53 31.04 0.65 0.93 0.59 1.58

SV 1.69 5.75 �7.86 �6.52 20.13 0.21 0.90 0.61 1.47

6-31G(d,p) 1.88 10.61 �11.00 �7.30 28.92 0.51 0.92 0.59 1.57

6-311G(d,p) 1.90 8.09 �11.15 �7.51 26.75 0.49 0.92 0.59 1.56

6-311G(2d,p) 1.94 �7.45 �12.09 �8.20 12.84 0.47 0.89 0.62 1.43

6-311G(3d,p) 1.93 �1.06 �12.09 �8.18 19.21 0.48 0.90 0.61 1.47

6-311++G(d,p) 1.90 8.64 �11.76 �7.54 27.36 0.56 0.92 0.59 1.57

Exp. 2.27 �10.56 �14.40 �11.83 15.69 0.22 0.78 0.74 1.05

6-311++G(d,p)a 1.95 �14.28 �11.26 �7.64 4.48 0.47 0.78 0.74 1.05

Distances are given in (Å), densities in (e/Å3), and second derivatives in (e/Å5)
aBond topological values at the position of the experimental BCP
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Hibbs et al. [19]. In these cases an improved agreement between theoretical and

experimentally derived densities and Laplacians were observed. Table 5 shows a

similar trend.

The strong deviations between experiment and theory may also result from the

replacement of sterically demanding substituents, which are often replaced by

smaller groups to lower the computational cost. These substituents are important

for the kinetic stability of the substances. It is generally assumed that the electronic

structure is not influenced by these groups. For less sensitive properties this

assumption is surely justified. For the more sensitive ones such as the Laplacian

at the BCP of a polar bond, it has to be tested whether this simplification within

theory is still justified. For the present model systems, the bond topological proper-

ties were found to be weak functions of the substitution patterns, as shown in

Table 6 for the formal S¼N double bonds of S(NR)3. Compound 3 was selected

as an example since the formal double bonds showed stronger sensitivities with

respect to basis set size and method. Similar variations were obtained for all other

compounds [50]. Using the 6-311G(d,p) basis set, the Laplacian varies in the series

R¼H, R¼Me, and R¼tBu from 3.54 to 3.95 e/Å5. This variation is smaller than the

one resulting from changes in the basis set. Also the ratio d(N)/d(S) remains nearly

unaffected. This indicates that the differences in the experimental and theoretical

bond topological properties do not result from the different substituents. A replace-

ment of bulky substituents by smaller ones (e.g., R¼Me) does not overly influence

the results. For the present cases, even R¼H seems to be a good approximation for

many cases [50].

The strong dependence of the bond topological data on the basis sets may be a

result of the fact that the atomic basis sets are centered at the atoms. Hence, the

regions around the nuclei are better described than the bonding region where the

BCP is located. However, as can be seen from Fig. 2, a different problem seems

to exist in the present case. The strong dependence of the l3 values on the method

of calculation seems to be connected with the position of the BCP. d(N)/d(S)
values around 1.5 were computed for the two formal S¼N double bonds, S1–N2

of compound 1 (R¼Me, Table 5) and S1–N1 of compound 3 (Table 4), i.e., the

BCP is located considerably closer to the sulfur than to the nitrogen center.

Table 6 Parameters derived from a linear regression between theoretically and experimentally

derived bond topological properties at the BCP, r(rBCP), and r2(rBCP) vs. bond distance d

– Calc. r ¼ a � d þ b r2r ¼ a � d þ b

– a b R2 a b R2

Experiment – �2.72 6.38 0.91 16.78 �38.47 0.11

B3PW91/6-311G(d,p) opta �2.02 4.94 0.98 �97.38 153.03 0.870

B3PW91/6-311G(d,p) spb �2.38 5.50 0.939 �28.37 45.35 0.046

PW91/6-311++G(d,p) spb �2.24 5.19 0.694 �91.89 144.58 0.633

For the density, eight different S–N and two S–C bonds were selected from compounds 1�4. For

the Laplacian values, only the eight different S–N bonds were taken into account
aThe optimization was performed with the methyl-substituted compounds
bSingle point (sp) calculations were performed using the experimental (solid state) geometry

(R¼tBu)
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Similar values are found for all formal S¼N double bonds of the present model

systems. For the S1–N1 bond in 1a (Table 2), ratios around 1.2 were computed,

while for the S–C bond in 1a the ratios are about 1.1. These values are typical for

formal single S–N and S–C bonds showing that going from formal S¼N double

bonds to formal single bonds the BCP moves away from the sulfur center toward

the middle of the bonds. The consequence for the density and for its second

derivatives with respect to the coordinates can be taken from Fig. 2 in which the

density and the li values are plotted along the S1–N1 bond path in compound 4

(R¼tBu). The data were calculated at the experimental geometry. For this formal

S¼N double bond, the BCP is located in a region where l1 and l2 are almost

constant, while the eigenvalue l3 varies strongly with the position of the BCP.

Thus, the BCP lies in the “rampant edge” of the Laplacian. A tiny displacement

of the BCP to the right changes the sign of the Laplacian, while a tiny displace-

ment to the left leads to a strong increase of its positive value. Consequently,

already the small variations in the position of the BCP discussed above lead to

large changes in the l3 value and in the Laplacian. This explains the exceptional

results of the (2d,p) set. For the 6-31G(2d,p) and the 6-311G(2d,p), the d(N)/d(S)
values are somewhat smaller than for the basis sets with 1d or 3d polarization

functions. For formal single bonds, the variations of the li values along the bond

path are similar, but the BCP is located close to the middle of the bonds where l3

Fig. 2 Eigenvalues li (empty circles) and the densities ( filled circles) along the bond path in 4,

R¼tBu, calculated at the B3PW91/6-311++G(d,p) level of theory with fixed experimental geom-

etry. At the BCP (origin of the coordinate system), the density is r(BCP) ¼ 1.90 e/Å3, the

Laplacian (r2r(BCP)) ¼ 8.26 e/Å5. The positions of the sulfur and nitrogen centers are at

�0.52 Å and 0.92 Å, respectively
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changes slowly. As a consequence, the value of the Laplacian is much less

influenced by details of the calculations.

While some of the differences between theory and experiment will result from

uncertainties in the measurements, the data discussed may be interpreted such that

computations are yet not good enough to predict topological properties of the

density. Hence, we have to ask if theory is appropriate to investigate more detailed

influences such as those of the environment. The slow convergence with respect to

method and basis sets is found for absolute values of the Laplacian of the density.

However, for an investigation of environmental influences, accurate predictions of

trends are sufficient. The set of molecules investigated above is ideally suited to

explore the capability of theory in this respect. Figure 3 shows the correlation of

experimentally and theoretically determined bond distances as well as densities and

Laplacians at the BCP. Figure 4 gives the correlation between the densities and the

Laplacian at the BCP with the bond distances. Table 6 collects the corresponding

linear regression parameters.

As expected, theory and experiment correlate quite nicely for the distances and

also for the densities at the BCP (Fig. 3a, b) a moderate correlation is found. The

best linear fit for the distances is y ¼ 1.20x � 0.29 with a sample correlation

coefficient of R2 ¼ 0.98. Experimental and theoretical densities at the BCP can

be linearly fitted with the line y ¼ 0.68x + 0.98. In this case, the sample correlation

coefficient is R2 ¼ 0.68. The S1–N1 single bond of compound 3 represents an

outlier in the correlation. No correlation is found between the experimental and the

theoretical Laplacians (Fig. 3c).

Figure 4 shows that both the experimental and the theoretical densities at the

BCP correlate with the bond distances (Fig. 4a). The linear fit for the experimental

data is y ¼ �3.12x + 7.01 with a sample correlation coefficient of R2 ¼ 0.75. For

the theoretical data, the best linear fit is given through y ¼ �2.14x + 5.12 (sample

correlation coefficient R2 ¼ 0.95). For the computed Laplacians, a similar but less

unambiguous correlation exists (y ¼ �94.09x + 147.90; R2 ¼ 0.86). Such a corre-

lation is not found for the experimental counterpart (y ¼ 16.53x � 38.09;

R2 ¼ 0.05). These data indicate that, at least for the given set of molecules,

computations are well suited to investigate correlations. As the present set of

molecules is a quite difficult example due to the polar character of the S–N

bonds, we expect that this finding can be generalized to other families of com-

pounds. Please note that these calculations were performed with basis sets of

moderate size [6-311(d,p)] and the B3LYP functional. This shows that correlations

of topological parameters of the ED among themselves and with bond distances do

not require very sophisticated theoretical approaches.

The investigation indicates that the correlations within the experimental data are

less clear. Taking again into account that the S–N bonds represent quite difficult

examples, this cannot be generalized to compounds with less polar bonds. The major

reason for the lack of correlations in the experimental data seems to be in this case

experimental error bars and uncertainties in the analysis of the experimental data.

Table 5 shows whether experimental geometries can be used for the computa-

tions. Although a good correlation between experimental and theoretical values can
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be found for small basis sets, in some cases extending the basis sets increases the

deviations significantly. However, these deviations may also arise from the proper-

ties of the Pople-basis sets (see Tables 1 and 4).

In summary, these investigations showed that a reliable and consistent determina-

tion of topological parameters of the ED is still problematic for polar bonds indepen-

dent of whether they are determined experimentally or with theoretical approaches.

The computed data depend strongly on the level of theory, while uncertainties within
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the measurements and approximations in the analysis of experimental data limit the

reliability of the experimental results. However, trends can be obtained much easier

than absolute values. The computed data reveal correlations between the densities at

the BCP and the bond distances. Theory also shows a correlation between the

corresponding Laplacians at the BCP and the bond distances. The experimental

data indicate a correlation between the ED at the BCP and the bond distances,

whereas for the Laplacians such a correlation was not found, probably due to

experimental uncertainties. Thus, despite the strong dependencies of the absolute

values, the following computational approximations are well suited to investigate

trends, e.g., the influence of different environments on density-related properties.

3 Environmental Effects on EDs of Biologically Active

Molecules

Due to the enormous catalytic power of enzymes, one may expect that the enzyme

environment will considerably influence the ED of ligands that are bound to the

active site. For rational drug design, the influence of the enzyme environment on
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the density of an inhibitor is of great interest. For irreversible inhibitors which

deactivate the enzyme by forming a chemical bond to the active site, the influence is

expected to be also strong since a chemical reaction takes place. The other type of

inhibitors, the so-called noncovalent reversible inhibitors, is attached to the active

site by weaker intermolecular interactions which may be too weak to cause a

noticeable influence on the ED. In the present text, we review recent theoretical

works which investigate whether the ED can be used as an indicator for the

inhibition potency of a substance. As discussed above, theoretical data should be

sufficiently accurate to reveal correct trends. Using theoretical and experimental

data simultaneously is unlikely to be of any advantage as the uncertainties on both

approaches are expected to be in the order of or larger than the effects of interest.

Additionally, experimental EDs are only available for a single enzyme–inhibitor

complex [65–67]. In the following, we will focus on the question whether the

electron densities of inhibitors in crystals of the pure compound are comparable

to those of the same compound in the active sites of enzymes [83]. The studies

required theoretical methods that simulate the influence of different surroundings

on EDs on an equal basis, i.e., the inhibitors within the enzyme or the crystal

environment. The method of choice to describe such complicated assemblies are

combined quantum mechanics/molecular mechanics (QM/MM) approaches [87]

since pure quantum chemical approaches are too expensive and MM approaches do

not provide an ED. QM/MM methods [88–92] divide the total system (enzyme,

solvent, and inhibitor) into the active center and the rest. The active site is described

by QM approaches, while the influence of the surrounding protein environment and

the solvent is captured at the MM level. The QM andMM regions interact with each

other through electrostatic and dispersive terms. In the work reviewed in the

following, the electrostatic QM/MM interactions are represented by an electronic

embedding scheme [93] incorporating the MM charges into the one-electron QM

Hamiltonian and thereby allowing the ED of the QM system to adapt to the field

exerted by the environment. Dangling bonds at the QM/MM boundary are capped

with hydrogen link atoms [94–98] in the framework of the charge shift method. For

the present applications, the inhibitor is described by quantum chemical methods

(QM part), while the environment is represented by a force field obtained from

molecular mechanical simulations (MM part). These potentials possess atomic

resolution, that is, they also contain finer details arising from the molecular nature

of the surrounding, for example, due to hydrogen bonds or salt bridges. The

geometrical arrangements of the inhibitors in crystals of the pure compound and/

or in enzyme–inhibitor complexes were derived from available crystal structures. In

addition to crystal and enzyme environments, the influence of polar solvents was

also studied using the conductor-like screening model (COSMO) [99, 100]. It

should be noted that COSMO is well suited to include the overall polarization by

a solvent but has problems to describe stronger interactions, e.g., hydrogen bond-

ing. Completely unpolarized EDs were determined by single molecule computa-

tions. This situation corresponds to the inhibitor molecule in vacuum and will be

designated as such in the following. The ED of a molecule is a strong function of its

geometrical structure. Thus, already different conformers may show strong
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variations in the ED. It is possible that such different conformers are found for the

structure of inhibitors in crystals of the pure compound and in enzyme environ-

ments. Thus, geometries were optimized in different surroundings to differentiate

between the direct influence of the environments on the EDs and these more

indirect structural effects. The computed data were used for a thorough discussion

of the influence of different environment on EDs, electrostatic potentials (ESPs),

and multipole moments. The EDs were analyzed with Bader’s theory of Atoms in

Molecules [9].

The inhibition process of most reversible inhibitors does not involve a chemical

reaction, and the noncovalent interactions between inhibitor and enzyme may be

too weak for significant variations of the EDs. This is investigated using trans-4-
(aminomethyl)cyclohexane-1-carboxylic acid (AMCHA, Fig. 5) as an example.

It forms a reversible inhibitor–enzyme complex with the recombinant kringle 1

domain of human plasminogen (K1Pg) [101]. The preparation of the enzyme–

inhibitor complex of AMCHA and K1Pg within the QM/MM framework was

obtained as follows: Starting from the 1CEB-crystal structure [101], the influence

of the surrounding solvent was incorporated by a water sphere with a radius of

50 Å. Counterions were added to make the system neutral overall. Then a series of

consecutive constrained optimizations and further solvation steps were performed

until equilibrium structures were reached. The preparation of the system was done

by means of fully classical MD simulations using the CHARMM force field and

program package [102, 103]. In the next step, the QM/MM approach was applied to

optimize the geometrical arrangement of the active site including the inhibitor at a

quantum mechanical level. Often a geometry optimization is necessary to obtain

reliable information about the ED at the BCP. The resulting structure is depicted in

Fig. 6a which includes additionally the numbering of the centers in the AMCHA

molecule. The molecular structure of the environment is indicated by sticks, while

AMCHA is shown in ball and stick representation. Some important geometrical

parameters are collected in Table 7. Finally, the ED of the inhibitor in this

reversible enzyme–inhibitor complex was computed. The QM/MM calculations

were performed with the ChemShell program [105] using the DL_POLY code

[106] for the MM and the TURBOMOLE program suite [107] for the QM part.

The EDs were obtained from single-point computations at the DFT/B3 [108]-LYP

[109, 110]/TZVP [111] level using the geometries described above. This DFT level

is well known to describe many properties with an excellent cost–benefit ratio

[112–116], but in other cases fail to provide the right answers [117–120].

a b c

Fig. 5 (a) AMCHA, (b) Loxistatinic acid (E64c), (c) Loxistatin (E64d)
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As discussed above, B3-LYP seems to be sufficiently accurate to determine

trends in EDs.

Methods that exploit the periodic symmetry of the crystal lattice are well

suited to study the influence of crystal environments. However, as the topologi-

cal properties of the ED and especially its Laplacian values are a strong

function of the chosen theoretical approximations, it is not appropriate to

compare data obtained from the QM/MM approach discussed above with data

computed with periodic boundary conditions. Thus, a QM/MM approach was

Fig. 6 Hydrogen bonds are indicated by arrows. Their lengths are given in Å. (a) Orientation

of trans-4-(aminomethyl)cyclohexane-1-carboxylic acid (AMCHA) in the reversible inhibitor–

enzyme complex with the K1Pg (1CEB-crystal structure) [101]. (b) Orientation of AMCHA in the

crystal of the pure compound [104]
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also used to study the ED in a crystal environment. The X-ray crystal structure

of AMCHA [121] was used. While the QM region was chosen as a single

AMCHA molecule, the influence of the crystal environment was taken into

account by about five shells of surrounding molecules which constituted

the MM region. Geometries and EDs were computed and analyzed as for the

enzyme–inhibitor complex. The geometrical arrangement is shown in Fig. 6b,

which also contains the numbering of the centers of the AMCHA molecule.

The environmental structure is again indicated by sticks, while the central

AMCHA molecule is shown in ball and stick representation. For a comparison

with the enzyme results, some selected geometrical parameters are collected in

Table 7.

The influence of a polar solvent was approximated with the COSMO [99, 100] as

implemented in the TURBOMOLE program package [107] (e ¼ 78). These com-

putations were accomplished at the same level of sophistication as for the QM part

of the enzyme–inhibitor complex. A comparison of the resulting geometrical

arrangement with the structures in the enzyme and the crystal can be taken from

Table 7. The different orientations of the carboxylate and of the ammonium group

in both environments are obvious, but all other geometrical parameters vary only

slightly.

In Fig. 6, the main interactions between the central AMCHA molecule and the

environments are indicated by arrows. The corresponding distances of the salt

bridges and hydrogen bonds are given in Å. While the interactions seem to be

quite similar at the first glance, a more detailed consideration reveals some differ-

ences. In crystals of the pure compound, the molecules interact with each other

through salt bridges between the carboxylate and the ammonium groups. Each

proton of the ammonium groups is involved in one salt bridge. The O1 center of the

carboxylate group forms two bridges to hydrogens of the ammonium groups of two

different neighbors. The second oxygen of the carboxylate group (O2) interacts

with only one hydrogen center of the ammonium group of a third neighbor.

In the AMCHA-K1Pg complex, the ammonium and the carboxylate group also

form salt bridges; however, a more detailed view shows some deviations.

Table 7 Selected geometrical parameters of AMCHA in different environments

Parameter Gas phase Solvent Crystal Protein

C–O1 (Å) 1.260 1.274 1.287 1.287

C–O2 (Å) 1.256 1.277 1.264 1.280

O1–C1–C2 (�) 114.5 118.2 118.6 119.6

O2–C1–C2 (�) 113.4 116.5 116.0 118.9

O1–C1–C2–C3 (�) 95.7 91.1 95.3 91.1

N–H1 (Å) 1.036 1.028 1.068 1.062

N–H2 (Å) 1.036 1.028 1.059 1.040

N–H3 (Å) 1.042 1.028 1.056 1.063

N1–C8–C7 (�) 110.4 112.3 113.7 114.6

N1–C8–C7–C6 (�) 175.0 171.5 168.9 170.7

Average C–C–bond length in hexane ring (Å) 1.546 1.548 1.549 1.549
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The ammonium group forms two salt bridges to the residue of Asp56 (through the

H3 center) and Asp54 (through the H1 center). The third proton (H2), however,

only builds up a hydrogen bond to a solvent water molecule. The O1 center of the

carboxylate group forms two salt bridges with the positively charged guanidinium

groups of Arg70 and of Arg34, i.e., its environment is very similar to the one

within crystals of the pure compound. As in the crystal, the O2 center is only

involved in one salt bridge to the guanidinium group of Arg34. However, a

second contact exists to the phenol group of Tyr63. Due to the differences in

the networks in crystals of the pure compound and in the enzyme–inhibitor

complex, one would expect stronger differences for O2 and H2. On the basis of

the numbers of salt bridges and hydrogen bonds, the data for O1, H1, and H3

should be very similar.

Tables 8–14 show the influence of the environments on the bonding properties

for the different bonds in AMCHA. The abbreviation geom/prop indicates in which
environment the geometry was computed and which environment was simulated for

the calculation of the property, respectively (g�gas phase, s�solvent, p�protein,

c�crystal). For example, p/s means that the geometry was taken from the protein

environment but for the computation of the properties a polar solvent surrounding was

modeled. The abbreviation p/p stands for the results taken from the AMCHA-K1Pg
complex, while c/c denotes results obtained for the crystal of pure AMCHA. Figure 7

gives contour plot representations ofr2r(r) of AMCHA in the plane spanned by the

carboxylate group. The geometries are optimized in the respective environment.

Figure 8 shows the corresponding Laplacians where the geometry is fixed to the

Table 8 Influence of the environment on topological properties of the density at the bond critical

point (BCP) of the C–O2 bond of AMCHA

Geom/propa r l1 l2 l3
g/g 2.53 �22.31 �20.65 29.09

s/s 2.50 �22.05 �20.93 29.58

p/p 2.43 �20.95 �20.30 25.30

p/g 2.45 �21.18 �19.21 23.04

p/s 2.43 �20.96 �19.82 24.84

c/c 2.49 �21.97 �20.70 29.71

Max:minb,c 4.3 6.5 7.5 29.0

p/p:c/cc �2.5 �4.6 �1.9 �14.8

p/p:p/gc �0.8 �1.1 5.7 9.8

p/p:p/sc 0.1 0.0 2.4 1.9

p/p:g/gc �6.6 �10.4 �4.2 �19.1

p/p:s/sc �2.7 �4.5 �1.4 �9.2

r is the ED at the BCP, while li denotes the eigenvalues of the Hessian of the ED at the BCP. EDs

are given in e/Å3, and Laplacians in e/Å5. The numbering of the centers can be taken from Fig. 6
aThe abbreviation geom/prop indicates in which environment the geometry was computed and

which environment was simulated in the calculation of the property, respectively (g � gas phase;

s � solvent; p � protein; c � crystal). For example, p/s means that the geometry was taken from

the protein environment but for the computation of the properties a polar solvent surrounding was

modeled
b[(maximal value � minimal value)/minimal value]*100
cChange with respect to p/p in percent
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Table 9 Influence of the environments on the bonding properties of the C–O1 bond of AMCHA

Geom/prop r(BCP) l1(BCP) l2(BCP) l3(BCP)
g/g 2.55 �22.67 �20.80 29.76

s/s 2.45 �21.26 �20.21 26.52

p/p 2.38 �20.30 �19.93 24.08

p/g 2.41 �20.67 �18.91 22.03

p/s 2.39 �20.45 �19.35 22.96

c/c 2.36 �20.07 �19.45 23.79

Max:min 8.0 11.5 10,0 35,0

p/p:c/ca 0.9 1.2 2.5 1.2

p/p:p/ga �1.0 1.8 5.4 9.3

p/p:p/sa �0.4 0.7 3.0 4.9

p/p:g/ga �6.6 �10.4 �4.2 �19.1

p/p:s/sa �2.7 �4.5 �1.4 �9.2

See Table 8 for further details
aChange with respect to p/p in percent

Table 10 Influence of the environment on the bonding properties of the N–H1 bond of AMCHA

Geom/prop r(BCP) l1(BCP) l2(BCP) l3(BCP)
g/g 2.19 �29.78 �29.69 19.81

s/s 2.22 �31.48 �31.43 19.14

p/p 2.02 �28.33 �28.20 17.57

p/g 2.04 �27.18 �27.13 19.38

p/s 2.04 �27.56 �27.49 18.91

c/c 1.99 �27.63 �27.59 17.46

Max:min 9.9 4.9 5.0 13.5

p/p:c/ca 1.5 2.5 2.2 0.6

p/p:p/ga �1.1 4.2 3.9 �9.3

p/p:p/sa �0.9 2.8 2.6 �7.1

p/p:g/ga �7.6 �4.9 �5.0 �11.3

p/p:s/sa �9.0 �10.0 �10.3 �8.2

See Table 8 for further details
aChange with respect to p/p in percent

Table 11 Influence of the environment on the bonding properties of the N–H2 bond of AMCHA

Geom/prop r(BCP) l1 l2 l3
g/g 2.18 �29.91 �29.80 19.70

s/s 2.22 �31.33 �31.26 19.32

p/p 2.16 �29.69 �29.56 19.18

p/g 2.16 �29.68 �29.62 19.61

p/s 2.16 �29.99 �29.91 19.20

c/c 2.05 �28.34 �28.27 18.05

Max:min 8.6 8.5 8.6 8.7

p/p:c/ca 5.5 4.8 4.6 6.3

p/p:p/ga 0.1 0.0 �0.2 �2.2

p/p:p/s 0.2 �1.0 �1.2 �0.1

p/p:g/ga �1.0 �0.7 �0.8 �2.7

p/p:s/sa �2.8 �5.2 �5.5 �0.7

See Table 8 for further details
aChange with respect to p/p in percent
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Table 13 Influence of the environment on the bonding properties of the C3–C5 bond of AMCHA

Geom/prop r(BCP) l1 l2 l3
g/g 1.57 �10.37 �10.35 7.68

s/s 1.60 �10.72 �10.67 7.74

p/p 1.59 �10.65 �10.58 7.72

p/g 1.58 �10.48 �10.44 7.68

p/s 1.59 �10.64 �10.58 7.72

c/c 1.60 �10.73 �10.66 7.73

Max:min 1.9 4.7 2.9 0.8

p/p:c/ca �0.5 �0.8 �0.7 �0.1

p/p:p/ga 0.8 1.6 1.3 0.6

p/p:p/sa 0.0 0.1 0.0 0.0

p/p:g/ga 1.3 2.7 2.2 0.5

p/p:s/sa �0.5 �0.7 �0.8 �0.3

See Table 8 for further details
aChange with respect to p/p in percent

Table 12 Influence of the environment on the bonding properties of the N–H3 bond of AMCHA

Geom/prop r(BCP) l1 l2 l3
g/g 2.15 �29.67 �29.58 19.44

s/s 2.22 �31.39 �31.32 19.24

p/p 2.02 �28.12 �28.07 17.61

p/g 2.05 �26.88 �26.80 19.61

p/s 2.03 �27.44 �27.39 18.91

c/c 2.06 �28.43 �28.37 18.22

Max:min 3.2 13.3 16.8 11.3

p/p:c/ca �2.2 �1.1 �1.0 �3.3

p/p:p/ga �1.3 4.6 4.7 �10.2

p/p:p/sa �0.8 2.5 2.5 �6.9

p/p:g/ga �6.1 �5.2 �5.1 �9.4

p/p:s/sa �9.2 �10.4 �10.4 �8.4

See Table 8 for further details
aChange with respect to p/p in percent

Table 14 Influence of the environment on the bonding properties of the C4–C6 bond of AMCHA

Geom/prop r(BCP) l1 l2 l3
g/g 1.58 �10.54 �10.46 7.68

s/s 1.60 �10.75 �10.68 7.74

p/p 1.60 �10.79 �10.69 7.73

p/g 1.59 �10.63 �10.56 7.68

p/s 1.60 �10.78 �10.71 7.74

c/c 1.59 �10.63 �10.53 7.71

Max:min 1.3 2.4 2.3 0.8

p/p:c/ca 1.1 1.5 1.6 0.2

p/p:p/ga 0.7 1.5 1.2 0.5

p/p:p/sa 0.0 0.0 �0.2 �0.1

p/p:g/ga 1.3 2.4 2.2 0.7

p/p:s/sa 0.2 0.3 0.1 �0.2

See Table 8 for further details
aChange with respect to p/p in percent
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situation in the crystal and the enzyme, respectively. This allows differentiating

between the variations that arise due to different geometry from those that are due

to electrostatic influences. The ESPs are presented in Figs. 9 and 10.

From a simple visual inspection, the differences between the p/p and c/c cases

should arise for the C–O2 and the N–H2 bonds. Their environments differ in the

kind of the bonding environment or the number of interactions. For N–H2, a salt

bridge to a neighbored carboxylate group (in crystal) is replaced by a hydrogen

bond to a solvent water molecule (in the enzyme). For C–O2, one salt bridge to an

ammonium group (in the crystal) is replaced by a similar salt bridge plus a hydrogen

bond to a phenyl group (in the enzyme). The differences are actually reflected in the

topological properties of the EDs shown in Tables 8 and 10. The l3 values of

the C–O2 bond differ for the p/p and c/c calculations by about 15%, while the

corresponding difference is only about 1% for the C–O1 bond (Table 9). For the l3
value of the N–H2 bond the variation is about 15% (Table 10), while only 2–5% are

found for the other N–H bonds (Tables 11 and 12). The corresponding changes at

the C–C bonds and C–H bonds within the molecule are smaller than 2% for the ED

Fig. 7 Contour plot representations of r2r(r) of AMCHA in the plane spanned by the atoms of

the carboxylate group (black lines negative, green lines positive values). All geometries are

optimized in the respective environment
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and smaller than 5% for the Laplacians (Tables 13 and 14). Again it is found that the

ED is less affected than the Laplacian and the related eigenvalues of the Hessian of

the density. This underlines that the ED is a rather insensitive property.

The results from above show that the calculated topological properties of the ED

exhibit small but systematic changes due to the environment. Thus, the question

Fig. 8 Contour plot representations of r2r(r) of AMCHA in the plane spanned by the atoms of

the carboxylate group (black lines negative, green lines positive values). The geometries are

optimized for the crystal (left) and the protein (right), respectively. The environment in which the

EDs are computed is also indicated
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arises whether such differences can be measured experimentally. According to

Luger, the experimental uncertainties are about 0.1 e/Å3 for EDs and 4–5 e/Å5

for Laplacians [24]. In the calculations, the largest absolute differences are found

for the l3 curvature of the C–O2 bond. The computations predict 25.3 e/Å5 for the

p/p environment, while 29.7 e/Å5 is computed for c/c. This difference is just as

large as the experimental error bars. Taking into account that the determination

of EDs in protein crystals is substantially more difficult, it is obvious that this

difference is presently much too small to be detected experimentally. Note that all

other differences are even smaller. In summary, experimental EDs of the reversible

inhibitor–enzyme complex between AMCHA and K1Pg and of the AMCHA-crystal

are predicted to be virtually identical. This is also seen if the contour plots (Figs. 7

and 8) and the ESPs (Figs. 9 and 10) of the c/c and the p/p situation are compared.

While the c/c and p/p situations are essentially identical, larger differences are

seen if both datasets are compared with pure gas phase results (g/g). Let us

concentrate on the C–O1 bond that forms two salt bridges within crystal and protein

environments. The l3 values obtained for the p/p and the g/g situation differ by

about 20% (Table 9). If the ED is computed at the protein geometry for a gas phase

Fig. 9 Electrostatic potentials of AMCHA as computed in the indicated surroundings. All

geometries were optimized in the respective environment
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environment, the difference reduces to about 9% showing that both geometry and

environment influence the density properties in a similar manner. The absolute

difference (24.1 vs. 29.8 e/Å5) is again smaller than the experimental error bars.

Fig. 10 Influence of the environment on the electrostatic potential of AMCHA. The geometries

were optimized for the crystal (left) and the protein (right), respectively. The environment in which

the EDs were computed is also indicated. The last row gives gas phase values at different

geometries
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An excellent approximation for the protein environment is the p/s situation. It

uses the geometry of the enzyme–inhibitor complex but approximates the environ-

ment through a continuum approach (COSMO, e ¼ 78) which simulates a polar

solvent. For the C–O2 bond, this approach deviates even less from the p/p results

than the data computed for crystals of the pure compound (c/c). In all other cases

both approaches are very similar. Their deviations from the protein data are well

below 10%.

The computed dipoles (Table 15) reveal similar trends as the bonding parameters.

Compared to the gas phase (g/g), we compute dipole enhancements of 46% for the

protein environment and 37% for the surrounding inside of crystals of the pure

compound. The latter increase resembles values compiled in a recent overview from

Spackmann et al. [20] and matches those found by Gatti et al. for urea [122] crystals,

which, analogously to AMCHA, contains C¼O and NH2 groups interacting through

H-bonds. The environment inside crystals of the pure compound mimics the influ-

ence of the protein surrounding very accurately despite the differences in the geo-

metries of AMCHA. As already found for the ED and its Laplacian, the p/s situation

represents an excellent approximation to the p/p computation. A comparison between

s/s and p/s shows that the strong dipole enhancement in the protein results partly from

the geometry of AMCHA in the protein.

Table 16 offers a more detailed picture about the influence of the environments

on the charge distribution of AMCHA. The table collects atomic charges computed

with the Roby–Davidson partitioning [123, 124]. If the gas phase is compared with

the protein environment, a slight increase in the absolute values of the partial

charges of the carboxylate and the ammonium group can be found. In this case

the partial charge of the carboxylate changes from �0.56 to �1.02, i.e., for about

0.5 units. An increase of about 0.1 is found for the ammonium group. These

changes are consistent with the results on the ESPs (Figs. 9 and 10). The increase

due to the protein environment is strongest, but the surrounding in crystals of the

pure compound and the polar solvent environment yield comparable enhancements,

i.e., both represent very good approximations of the protein surrounding.

As also found for enzyme–substrate reactions, the inhibition mechanisms of

irreversible inhibitors include covalent bond formation and rupture. Thus, it seems

likely that enzyme environments influence EDs of irreversible inhibitors in a

similar way as they do for substrates. However, the enzyme environments have

Table 15 Influence of the

environment on the dipole

moment of AMCHA

Geom/prop Dipole moment/a.u.

g/g 10.6

s/s 14.1

p/p 15.5

p/g 11.1

p/s 14.5

c/c 14.5

c/g 11.1

c/s 14.0

All values are given in (a.u.). An explanation of the abbrevia-

tions can be taken from Table 8

Challenging Problems in Charge Density Determination 73



been optimized for the reaction with the substrate in the evolutionary process which

is not the case for irreversible inhibitors. Their inhibition potency may result from

their inherent chemical reactivity and less from the influence of the enzyme. In this

case, the influence of the enzyme environment on the EDs could be as small as for

reversible inhibitors. As first test examples, we chose E64-derived compounds

(Fig. 5). They are irreversible inhibitors of cysteine proteases, which represent

promising drug targets for osteoporosis [125], arthritis [104], cancer [126], and

Alzheimer’s disease [125]. They react in a two-step mechanism (Scheme 1) [127,

128]. In the first step, a reversible noncovalent enzyme–inhibitor complex EI is

formed. The stability of this complex arises from reversible interactions between

ligand and enzyme. The second step is initiated by the nucleophilic attack of the

negatively charged Cys thiolate at Ca of the epoxide moiety. Subsequently, a ring

opening reaction happens in which a new S–Ca bond is formed while the Ca–O

bond of the epoxide is broken.

The investigations for the E64c compounds started from the crystal structure of

the covalently bonded cathepsin B–E64c complex (1ITO) [129], which is the final

product of the two-step mechanism (Scheme 1). The preparation of the system was

performed as described for AMCHA. The resulting structure is shown in Fig. 11.

The molecular structure of the environment is indicated by sticks, while E64c is

shown in ball and stick representation. The numbering of the centers of E64c is also

given. The main interactions between E64c and the active site of cathepsin B are

indicated by arrows.

E + I EI E-I
Ki kiScheme 1 Two-step model

for irreversible inhibition of

enzymes. E enzyme, EI
reversible, noncovalent

enzyme–inhibitor complex,

E–I irreversible, covalent
enzyme–inhibitor complex

Table 16 Influence of the environment on atomic charges (Roby–Davidson scheme) [123, 124] of

AMCHA

Center or group g/g s/s p/p p/g p/s c/c

O1 �0.43 �0.44 �0.52 �0.32 �0.46 �0.53

O2 �0.56 �0.50 �0.50 �0.40 �0.49 �0.46

C1 0.43 �0.02 �0.01 �0.02 �0.03 0.03

Carboxylate �0.56 �0.96 �1.02 �0.74 �0.98 �0.95

N1 0.13 0.18 0.06 0.11 0.15 0.04

H1 0.13 0.16 0.22 0.15 0.16 0.22

H2 0.16 0.15 0.15 0.14 0.16 0.20

H3 0.14 0.15 0.22 0.14 0.17 0.19

Ammonium 0.56 0.64 0.66 0.54 0.64 0.66

Cyclohexane ring �0.11 0.23 0.23 0.14 0.20 0.22

All values are given in (a.u.). The numbering of the centers can be taken from Fig. 1; further

abbreviations from Table 8
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However, not the irreversible but the reversible enzyme–inhibitor complex EI

(Scheme 1) must be considered as reactant of the inhibition reaction. It is needed for

the investigation since, according to the Hammond postulate, the energetically

higher reactant tells us more about the transition state and, thus, about the reactivity,

than the product. However, X-ray data from this complex are not available since the

epoxide moiety is too reactive. To determine the reversible enzyme–inhibitor

complex, we computed the reaction path backwards from product (irreversible

complex) to the reactant (reversible complex). QM/MM reaction path calculations

were performed using DFT at the RIDFT [130] B [108]-LYP [109, 110]/TZVP

[111] level for the QM part and the CHARMM force field for the MM part. In these

computations, the QM part comprises the inhibitor and the residues of the Cys29

and of the His199 moieties. The rest of the active site is in the MM-part.

Fig. 11 Prepared structure of the irreversibly inhibited cathepsin B enzyme. The preparation

started from the 1ITO X-ray structure [129]
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The resulting structure of the reversible enzyme–inhibitor complex is given in

Fig. 12. In this figure, we use the same representation as in Fig. 11.

The structure of the computed reversible inhibitor–enzyme complex cannot be

directly compared with experimental data as X-ray experiments are not feasible.

However, the computed data for the inhibition reaction agreed with all relevant

experimental results about the regio [131] – and the stereochemistry [132] of the

inhibition process, the influence of the pH value of the environment [133], and

trends in the potencies of the inhibitors. The agreement for this multitude of

properties strongly supports the reliability of the computed structure. Further details

on the preparation procedure and the computations of the reaction paths are

described elsewhere [134].

In the next step, the QM/MM approach was applied to compute the EDs of the

inhibitor in the reversible enzyme–inhibitor complex. The calculations were per-

formed as for AMCHA. For a comparison of the situation within the enzyme with

the one in vacuum and solvent, E64c was also computed for these environments.

The geometrical arrangements are given elsewhere [83].

Fig. 12 Structure of the reversible enzyme–inhibitor complex. As indicated, the thiolate may

attack at the Ca and Cb (C2 and C3) carbon atoms
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Unfortunately, the crystal structure of the pure E64c compound is not available.

Hence, we used the known crystal structure of E64d [135] to compare the crystal

environment with the enzyme surrounding. In biological systems, E64d is the

precursor that is hydrolyzed by esterases to the active compound E64c [127,

128]. Thus, for E64d X-ray scattering data of the enzyme–inhibitor complex are

not available.

As indicated in Fig. 12 the ring opening reaction can be induced by an attack of

the thiolate group of the Cys29 moiety at the a- or the b-carbon center of the

epoxide ring. In a polar solvent, the b-attack is preferred for epoxide carboxylates

reacting with phenylthiolate. Within the cathepsin B environment, E64c reacts only

via a-attack, i.e., the enzyme environment flips the regioselectivity of the reaction.

As already discussed previously [131], strong interactions between E64c and the

active site of cathepsin B result from the carboxylate group (C16–O17–O18) which

interacts with the oxy-anion hole (residue of Gln23 and backbone NH-group of

Cys29) and the protonated His199 residue. These interactions have a strong effect

on the kinetics of the inhibition reaction since they pull the inhibitor into the active

site toward the attacking thiolate group of the Cys29 residue. As can be seen from

the geometrical data summarized in Table 17, the distance between the reacting

species becomes so small that the ring already starts to open in the reactant valley

(see the distance C2–O1 and the angle O1–C3–C2). In comparison to gas phase

or solvent data in the enzyme–inhibitor complex the C2–O1 bond is elongated and

the angle O1–C3–C2 is enlarged indicating a strong distortion of the reactant

structure toward the product arrangement. The single interactions connected with

the peptidomimetic side chain are considerably smaller but in sum lead to a more

pronounced regiospecificity [131] and determine the stereoselectivity [132] of the

inhibition process.

According to the AIM theory developed by Bader and co-workers [9], regions

with r2r(r) > 0 represent domains with charge depletion. Upon chemical combi-

nation, the atomic region of VSCC, withr2r(r) < 0, may be punctured and locally

destroyed, leading to the formation of regions of relative charge depletion within

the VSCC, often characterized by positive Laplacian values. The (3,+1)r2r(r) ring
critical points associated with the triangles formed by (3,�3) bonded or non-bonded

Table 17 Selected geometrical parameters of E64c in different environments

Parameter (E64c) Gas phase Solvent Protein

C16–O18 (Å) 1.27 1.27 1.28

C16–O17 (Å) 1.26 1.27 1.25

C2–O1 (Å) 1.47 1.47 1.53

C3–O1 (Å) 1.43 1.45 1.45

O18–C16–C2 (�) 111.6 113.9 117.7

O17–C16–C2 (�) 116.9 118.3 119.1

O18–C16–C2–C3 (�) �128.7 �128.7 166.8

O1–C2–C3 (�) 57.7 58.5 58.1

O1–C3–C2 (�) 60.0 59.8 64.0

C16–C2–C3–C4 (�) 141.9 147.5 156.3
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charge concentrations as vertices are typically characterized by less negative or

even positive Laplacian values and represent the positions where a nucleophile will

attack with highest probability. The r2r(r) value at the (3,+1) critical point with

higher and positive Laplacian thus provides a measure for the electrophilicity of the

atomic center to which it is related and can be used to discuss trends.

Test computations for a smaller model system 8 consisting of the epoxide and

the carboxylate substituent (Fig. 13 left-hand side) reveal that the orientation of the

carboxylate group influences the r2r(r) values at the (3,+1) critical points signifi-
cantly (Fig. 14). The values computed for the geometry taken in the E64c–cathepsin

B complex differ from the corresponding values in the solvent since the enzyme

–inhibitor interactions lead to additional distortions in the epoxide ring (Table 17).

The inhibitor adopts different geometries in different surroundings. To distinguish

between the direct influence of the environment on the ED and more indirect effects

Fig. 13 Potential energy curve for the rotation of the carboxylate group by the torsional angle y.
The computations were performed for the substituted epoxide 8

Fig. 14 Variation of the

Laplacian value of 8 (Fig. 13)

at the (3,+1) critical point at

the a (red) and b center (blue)
as a function of the torsional

angle y. The computations are

performed for a polar solvent.

In the solvent, the equilibrium

geometry is found for

y ¼ 55�. The black line is the
difference between the

Laplacians values of the a and

b centers. The crosses depict
the values obtained for the

protein structure
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which are caused by the different geometries, the E64c molecule was fixed at its

geometry in the enzyme–inhibitor complex, and the ED and its derivates were

computed for gas phase (p/g), polar solvent (p/s), and two different enzyme environ-

ments. The abbreviation p/p(S�1) denotes the real situation in the enzyme, i.e., the

thiolate is negatively charged. For p/p(S0), the charge of the thiolate is artificially set to

�0.07 e. This variation allows analyzing how such a strong change in the environment

influences the ED of the inhibitor. Figure 15 shows the corresponding contour plot

Fig. 15 Contour plot representation of the Laplacian of E64c in the epoxide plane. The values of

the (3,+1) critical points are given. Abbreviations for geometry/environment can be taken from

Table 16
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representations of the Laplacian of E64c in the epoxide plane and gives the values

of r2r(r) at the (3,+1) critical points. For comparison, we also included the values

obtained if geometry and ED are determined in gas phase (g/g) or polar solvent (s/s),

respectively.

While Fig. 15 shows influences of the environment on the values ofr2r(r) at the
(3,+1) critical points, the general shape of r2r(r) does not change significantly in

comparison to data obtained for the protein geometry. Additionally, the sequence of

the electrophilicity of the carbon centers is not changed, i.e., Cb always represents

the more electrophilic center. Ther2r(r) values at the (3,+1) critical points increase
significantly if the gas phase environment (p/g) is replaced by a polar solvent (p/s)

or if the charge of the thiolate is changed from �0.07 (p/p S0) to �1 (p/p S�1).

The latter effect owes to the repulsion of the negatively charged thiolate and the

electron cloud of the epoxide ring. Since the thiolate-Ca distance is smaller, the

r2r(r) value at Ca increases stronger than the one at Cb. As found for AMCHA,

the polar solvent mimics the protein environment considerably better than the gas

phase approach.

The distortion of the epoxide ring induced by the protein environment is

clearly reflected in r2r(r). The Ca–O1 bond (�C2–O1 bond) is considerably

weakened. The Cb–O1 bond, on the other hand, is not affected. Combining the

present data with previous computations [131, 132] about the kinetics, a clear

picture emerges as of how the interaction in the enzyme–inhibitor complex

influences the course of the subsequent reaction. Due to the strong bonding

interactions between the carboxylate group and the oxyanion hole and the

His199 residue, the epoxide ring is pulled so close to the thiolate that the epoxide

ring is strongly distorted toward the product structure. Due to the position of the

thiolate and the strongly weakened Ca–O1 bond, only the a-attack takes place

despite the higher electrophilicity found for Cb. This effect is strengthened by the

interactions between the enzyme and the peptidomimetic side chain. They clamp

E64c into the active site so that the b-attack is additionally disfavored. In total a

reaction barrier of only 1–2 kcal/mol was computed for the a-attack, while for the
b-attack a barrier or 15 kcal/mol was predicted. Within the picture of a potential

energy surface, the regiospecificity is caused by the fact that the reactants are

pushed along the reaction coordinate toward the transition state. Looking at the

ED of the reactants, the significantly elongated Ca–O1 bond is one of the main

reasons for the regiospecificity. Such special influences can, of course, not be

mimicked in pure gas phase (g/g) or solvent computations (s/s). Most probably it

is also not possible to deduce them from measurements performed for crystals of

the pure compound.

X-ray measurements of the crystal structure of E64c are not available. Hence, to

get a rough insight into the influence of the crystal environment on the electronic

structure of the epoxide moiety, we used X-ray data of E64d (Fig. 5). In E64d the

carboxylate group of E64c is replaced by an ester moiety. The geometrical arrange-

ments of the units in crystals of pure E64d are depicted in Fig. 16. Figure 17

summarizes the corresponding contour plot representations of r2r(r) and the
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values at the (3,+1) critical points. In difference to E64c, the Ca carbon atom is the

stronger electrophilic center in E64d. This is in line with the experimental result

that the a-attack is faster than the b-reaction for ester-substituted epoxides [136,

137]. This changed electrophilicity of Ca and Cb as compared to E64c can be

explained by the substitution of the negatively charged carboxylate of E64c which

had a strong influence on the epoxide ring by a neutral ester substituent in E64d.

Going from gas phase to a polar solvent, the computed value of the Laplacian

increases by about 20–25% while an additional rise of 10–15% is obtained for the

environment inside of the crystals of E64d (Fig. 17). This shows that also in this

case a polar solvent provides a much better approximation of a crystal environment

than the gas phase.

For the E64c–enzyme complex, the total effects are much stronger but a consid-

erable part results from the heavily distorted ring structure and the orientation of the

carboxylate group. If the geometry taken within the protein–inhibitor complex is

also adopted for the polar solvent environment, the Laplacian values obtained for

solvent (Fig. 15 p/s) and protein environment [Fig. 15 p/s(S�1)], respectively, differ

by 20% (b-center) and about 50% (a-center). This shows that the influence of the
crystal environment on the b-center of E64d is similar to the influence of the protein

Fig. 16 Orientation of E64d (Loxistatin) in crystals of the pure compound [135]
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environment on the b-center of E64c (increase of about 15% as compared to an

increase of about 20%). The stronger difference found for the a-centers (increase of
about 10% vs. increase of about 50%) is caused by the negatively charged thiolate

which is only present in the protein. Such influences in enzymes can obviously not

be foreseen from X-ray measurements of the pure compound.

Fig. 17 Contour plot

representation of the

Laplacian of E64d in the

epoxide plane. The values of

the (3,+1) critical points are

given. Abbreviations for

geometry/environment can be

taken from Table 16
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4 On the Applicability of the Source Function

in QM/MM Investigations

Bader and Gatti [44, 84] have shown that the ED at any point r within a system may

be regarded as consisting of contributions from a local source, LS(r,r0), which
operates at all other points of the space:

rðrÞ ¼
Z

LSðr; r0Þ � dr0

The local source, given by LSðr; r0Þ ¼ �ð4p � r � r0j jÞ�1 � r2rðr0Þ, discloses
how the cause, the Laplacian of the density at r0, gives rise to the effect, the ED

at r. By integrating the local source over atomic basins O defined according to

Bader’s theory, the ED at r may be equated to a sum of contributions S(r;O), each
of which is termed as the source function contribution from the atomic basin O to

r(r) [84]. A full account of the derivation, properties, and potential uses of the

source function approach is given in a separate chapter of this Structure and

Bonding volume [44]. The source function represents a measure of how an atom

or group of atoms O contributes to determine the density at r, relative to the

contributions from the other atoms or group of atoms in the system. Because of

this property, the source function seems to be a convenient instrument to measure

influences of the environment on the ED of a biologically active compound within

an enzyme. However, it was developed for purely quantum mechanical EDs, or for

densities derived from experiment, which, at least in their origin, are also quantum

mechanical objects. For that purpose, it must be assured first that the source

function delivers reliable results within the QM/MM approach described in the

previous chapter. The QM/MM method accounts for the interactions between QM

and MM region by an electrostatic embedding scheme [93] which incorporates the

MM charges into the one-electron QM Hamiltonian and thereby allows the QM

system to adapt to the field exerted by the environment. Dangling bonds at the QM/

MM boundary are capped with hydrogen link atoms [138] in the framework of the

charge shift method. Point charges do not act as sources for positions other than

their own locations and thus do not contribute in a direct manner to the source

function, but only indirectly through their effect on the one-electron part of the

Hamiltonian and consequently on the ED of the part of the global system modeled

through QM. Hence, the source function can only be applied reasonably if all

contributions to the density at the investigated point r are included in the QM

part. The same holds true for the treatment of dangling bonds by the hydrogen link

atoms method. To gain information about the necessary size of the QM part for

source function applications, we studied several model systems. Hydrocarbon

chains are investigated to study the influence of the hydrogen capping treatment.

The situation for hydrogen bonding networks described by the electrostatic embed-

ding is examined by water clusters.
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As the local source contributions (positive or negative, as a function of the local

Laplacian value) have a ð r� r0j jÞ�1
dependence [84], the largest positive and

negative contributions to a selected point in the ED should arise from the atoms

in the near vicinity and should decrease with larger distances. However, taken

separately they possess well-known slow convergence. If they are considered

together, a more rapid convergence of atomic SF values with distance from the rp

is obtained because of the vanishing of the integrated Laplacian within an atomic

basin. Indeed, for very large distances of a basin from the reference point r, the

importance of the different local weighting of Laplacian values with ð r� r0j jÞ�1

decreases and at the limit one may replace ð r� r0j jÞ�1
with 1/r which results, in this

limiting case, in a null SF contribution (since 1/r may be taken out from the integral

and, by definition, the integral of the Laplacian over a QTAIM basin is zero). To test

the actual decay, we analyzed the topological parameters of the terminal C–H and

C–C bond for the series of hydrocarbons ranging from methane to decane. All

structures were chosen in an almost linear zigzag conformation and fully optimized

at the B3LYP/TZVP level of theory. The resulting EDs were analyzed for critical

points according to the QTAIM theory, and selected BCPs were chosen for the

source function analysis. These BCPs were those of a terminal C–H bond and the

C–C bond between a terminal methyl group and the adjacent CH2 unit (see Fig. 18).

The results are summarized in Tables 18a and 19a. The computations showed

that the value of the ED at the BCP of the terminal C–H bond BCPA are almost

constant at 1.86 e/Å3 throughout the complete series. A similar behavior can be found

for BCPB at the terminal C–C bond for which the EDs are found to be 1.64 e/Å3.

The source function analysis shows that for both critical points, the major contribu-

tions to the ED arise from the two atoms forming the corresponding bond. Never-

theless, about 12% of the contributions to BCPA and 23% of those to BCPB come

from the remaining atoms. As expected and especially so for covalently bonded

atoms, the contribution of an atom to the ED decreases rapidly with its distance to

the considered BCP. Already the contributions of atoms further than two bonds

away from the BCP are almost negligible.

Fig. 18 Structure of the decane molecule and the two bond critical points, one along the terminal

C-H bond BCPA, the other along the bond between the terminal methyl group and the next atom

BCPB
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To differentiate between direct effects and the influence of the geometry, we

took decane and successively shortened the chain by replacing the terminal methyl

group by a hydrogen atom. The molecular structure was not optimized but frozen at

the decane geometry. The results are also collected in Tables 18b and 19b. As

shown in these tables, the ED at the terminal C–H bond does not change at all.

Furthermore, for chains longer than ethane, also the major contributions stay nearly

constant. A small variation is only observed between ethane and methane. Due to

the substitution of the alkyl chain by a hydrogen atom, the terminal CH bond is

artificially elongated, whereby the contribution of this hydrogen atom is lowered by

Table 18 Analysis of the ED at the BCP of the terminal CH bond (BCPA). EDs are given in

(e/Å3), Laplacians in (e/Å5), and the contributions in percent

r BCPð Þ r2r BCPð Þ Source function contributions to the ED at the BCP

Adjacenta One bondb Two bondsb Three or more bondsb

(a) Structures fully optimized
Methane 1.86 �22.39 90 10 – –

Ethane 1.87 �22.45 89 9 3 –

Propane 1.87 �22.43 89 8 2 1

Butane 1.87 �22.41 89 8 2 1

Pentane 1.87 �22.42 89 8 2 1

Hexane 1.87 �22.41 89 8 2 1

Heptane 1.87 �22.41 89 8 2 1

Octane 1.87 �22.41 89 8 2 1

Nonane 1.87 �22.41 89 8 2 1

Decane 1.86 �22.40 89 8 2 1

(b) Truncated systems at the geometry of decane, saturated with hydrogen
Methane 1.87 �22.79 92 8 – –

Ethane 1.86 �22.34 89 9 2 –

Propane 1.86 �22.41 89 8 2 1

Butane 1.87 �22.42 89 8 2 1

Pentane 1.87 �22.41 89 8 2 1

Hexane 1.87 �22.41 89 8 2 1

Heptane 1.87 �22.40 89 8 2 1

Octane 1.87 �22.40 89 8 2 1

Nonane 1.86 �22.40 89 8 2 1

Decane 1.86 �22.40 89 8 2 1

(c) Truncated systems at the geometry of decane saturated with hydrogen, missing atoms replaced
by point charges

Methane 1.88 �22.99 92 8 – –

Ethane 1.86 �22.43 89 9 2 –

Propane 1.87 �22.49 89 8 2 1

Butane 1.87 �22.48 89 8 2 1

Pentane 1.87 �22.46 89 8 2 1

Hexane 1.87 �22.44 89 8 2 1

Heptane 1.87 �22.43 89 8 2 1

Octane 1.87 �22.42 89 8 2 1

Nonane 1.87 �22.43 89 8 2 1

Decane 1.86 �22.40 89 8 2 1
aSum of contributions of the atoms which form the bond
bSum of contributions of the atoms being x covalent bonds away
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a factor of two. This loss is compensated by an increased contribution arising from

the remaining carbon atom, so that the overall density remains constant. A similar

trend can be found for the terminal C–C bond (Table 19b) for structures starting

from ethane.

As expected, the variations in the contributions are even smaller if the hydrogen-

linked atom method is used (Tables 18c and 19c). In summary, the investigations

showed that for the present kind of systems and chemical interactions (this conclu-

sion for instance would not necessarily hold for some transition metal complexes)

the source function can be used in QM/MM if the second neighbors are included in

the QM part. Qualitatively reasonable data are already obtained if only the next

neighbors are included in the QM part.

Table 19 Analysis of the ED at the BCPB of the terminal C–C bond. EDs are given in (e/Å3),

Laplacians in (e/Å5), and the contributions in percent

r BCPð Þ r2r BCPð Þ Source function contributions to the ED at the BCP

Adjacenta One bondb Two bondsb Three or more bondsb

(a) Structures fully optimized
Ethane 1.86 �22.40 79 21 – –

Propane 1.63 �14.29 78 20 3 –

Butane 1.64 �14.38 78 19 2 1

Pentane 1.64 �14.37 78 19 2 1

Hexane 1.64 �14.37 78 19 2 1

Heptane 1.64 �14.38 78 19 2 1

Octane 1.64 �14.39 78 19 2 1

Nonane 1.64 �14.39 78 19 2 1

Decane 1.64 �14.39 79 21 0 0

(b) Truncated systems at the geometry of decane, saturated with hydrogen
Ethane 1.64 �14.41 81 19 – –

Propane 1.64 �14.35 78 20 2 –

Butane 1.64 �14.41 78 19 2 1

Pentane 1.64 �14.45 78 19 2 1

Hexane 1.64 �14.45 78 19 2 1

Heptane 1.64 �14.45 78 19 2 1

Octane 1.64 �14.45 78 19 2 1

Nonane 1.64 �14.45 78 19 2 1

Decane 1.64 �14.45 78 19 2 1

(c) Truncated systems at the geometry of decane, saturated with hydrogen, missing atoms replaced
by point charges

Ethane 1.64 �14.44 81 19 – –

Propane 1.64 �14.33 78 20 2 –

Butane 1.64 �14.40 78 19 2 1

Pentane 1.64 �14.44 78 19 2 1

Hexane 1.64 �14.45 78 19 2 1

Heptane 1.64 �14.45 78 19 2 1

Octane 1.64 �14.45 78 19 2 1

Nonane 1.64 �14.45 78 19 2 1

Decane 1.64 �14.45 78 19 2 1
aSum of contributions of the atoms which form the bond
bSum of contributions of the atoms being x covalent bonds away
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The decay of the contributions to the density of a given point in space across

hydrogen bonded networks was tested through computations of water clusters

(Fig. 19). The common motif of all clusters is the central dimer of two molecules

of water forming a hydrogen bond (Fig. 19a). As environment, this dimer is

surrounded by up to nine additional water molecules, arranged in such a way that

the number of hydrogen bonds toward the central dimer is maximized. Thereby, the

central dimer molecules form four hydrogen bonds, clearly more than the average

value found for liquid water. Nevertheless, this structure is ideally suited for the

intended investigations. The complete system (see Fig. 19c) comprising 11 water

molecules was fully optimized at the B3LYP/TZVP level. The system including

only the first shell of water molecules around the dimer is shown in Fig. 19b.

Starting from the structure in Fig. 19c, 63 smaller clusters were obtained by

replacing more and more of the surrounding molecules. The structures were not

further optimized to avoid a bias due to a change in the geometry. To account for the

different approaches frequently used for investigations of protein–inhibitor sys-

tems, the EDs for all clusters were computed in three different ways. In a first

model, the EDs were determined in pure gas phase calculation, only considering the

atoms of the given truncated cluster. The second approach uses a polarizable

continuum model approximating surrounding liquid water with the standard

parameters provided by the GAUSSIAN03 Package [139]. The third system models

the surrounding water molecules by means of a QM/MM approach, using a field of

point charges to describe the electrostatic influence on the QM system. In these

calculations, the deleted atoms in the truncated clusters were replaced by the point

charges used in the DL_POLY code [106]. For all systems, the EDs were computed

at the B3 [108]-LYP [109, 110]/TZVP [111] level, partitioned according to the

QTAIM theory and analyzed with the source function. The analysis was carried

out at two BCPs, one along the covalent OH bond between the oxygen atom O1

and the hydrogen atom H2 (BCPA), the second BCP (BCPB) along the hydrogen

bond linking the two molecules of the central dimer. These BCPs are shown in

Fig. 19a.

Fig. 19 Geometry of the water clusters under investigation. (a) Structure of the central dimer

containing the two BCPs of interest. (b) Cluster with all surrounding water molecules of the first

water shell. (c) Optimized structure of the whole (H2O)11 cluster (first and second shell)
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The datasets are collected in Table 20. It summarizes the computed densities,

Laplacians, and contributions for model 1, i.e., pure gas phase calculations, only

considering the atoms of the given cluster. We refrain from giving the values for

models 2 (using COSMO) and 3 (using point charges) since the values do not differ

significantly from those obtained in model 1. As expected, the EDs at the covalent

BCPA (about 2.09 e/Å3) are almost six times higher than those at the H-bond BCPB
(about 0.34 e/Å3). This reflects the different nature of the two bonds. The deviations

of these values along the series of clusters are almost negligible (�0.07 e/Å3 for

BCPA and less than �0.01 e/Å3 for BCPB), although the surrounding changes

dramatically from a complete coverage in the largest clusters to the bare dimer.

This is in line with the low sensitivity of the density that is generally observed with

respect to environmental changes. Unexpectedly, the same also holds for the

Laplacians.

The source function was used to obtain a deeper insight into possible differences

of the environmental influences on the ED. As for the hydrocarbon chains, more

than 95% of the total contributions to BCPA originate from the two atoms (O1 and

H2) which form the bond. Even the first shell of surrounding atoms contributes less

than 5%.

The ED at the H-bonded BCPB behaves somewhat different. In contrast to the

covalent bond, the ED at this point is mainly determined by the heavy atoms in the

vicinity, namely O1 and O4 (see Fig. 19a). Each of them contributes roughly 40%

to the ED. Although the atom H2 is the nearest atom to the BCPB and even though it

is directly involved in forming the bond, its contribution to the ED is very small, in

most cases even negative. This is in agreement with the results of Gatti [47] for the

pure dimer, where the corresponding hydrogen atom H2 has also been found to act

as a sink in the range of the equilibrium distance.

For the BCPB of the hydrogen bond, the first shell of the surrounding water

molecules contributes about 10% of the ED. Hence, describing the electronic

structure in the hydrogen bonding network between enzyme and inhibitor requires

only the residues of the protein to be included in the QM part which are directly

involved in forming the hydrogen bond.

Table 20 Analysis of the ED at the BCPA within a single molecule (a) and at the BCPB of the

hydrogen bond linking two molecules (b)

r BCPð Þ r2r BCPð Þ Source function contributions to the ED at the

BCP

Dimer 1st shell 2nd shell

(a)

Dimer 2.07 �46.68 2.07 �46.68 100

Dimer + 1st shell 2.06 �46.45 2.06 �46.45 98

Dimer + 1st and 2nd shell 2.06 �46.46 2.06 �46.46 98

(b)

Dimer 0.34 3.16 100 – –

Dimer + 1st shell 0.34 3.04 90 11 0

Dimer + 1st and 2nd shell 0.34 3.01 90 10 2

EDs are given in (e/Å3), Laplacians in (e/Å5), and the contributions in percent
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Using more sophisticated models (replacing the missing water molecules by

COSMO or point charges) yields almost identical values. Hence, we refrain from

further discussions which would give no additional insights.

5 Summary and Conclusions

This chapter reviews works that examined how different environments affect EDs

and related properties. The first part summarized investigations on the reliability

of pure theoretical approaches which showed that while absolute numbers for

electron densities and Laplacian values are not easily obtained by such theoretical

methods, they are suitable for a reasonable reproduction of the trends related to

the properties of EDs. The second part considers whether properties of the ED

can be used to understand the inhibition potency of possible drugs. The examples

of AMCHA, a reversible inhibitor, and of E64c or E64d, as prototypes for

irreversible inhibitors, were discussed in detail. AMCHA binds to the target

enzyme via intermolecular interactions such as hydrogen bonds, salt bridges, or

hydrophobic effects, whereas the latter inhibitors form strong covalent bonds to

their target enzyme. In both cases, EDs and properties were computed in four

different environments: gas phase, polar solvent, crystal, and inhibitor–enzyme

complex. Polar solvents were mimicked by the COSMO method which accounts

for the polarizability of the surrounding medium. For crystal and protein sur-

rounding, the atomistic nature of the environment was explicitly represented by a

QM/MM approach. To distinguish between direct environmental influences and

variations which result more indirectly from different geometries, various model

systems were investigated.

In all cases, the influence of the environment on the ED increases in the order

gas phase < polar solvent < crystal < protein. This shows again that proteins

can polarize molecules stronger than environments inside of crystals of the pure

compound. For the reversible inhibitor, AMCHA, the deviations due to different

environments are reflected in the computed data, but they are smaller than the

uncertainties of high resolution X-ray experiments (0.1 e/Å3 for EDs, 4–5 e/Å5

for Laplacians). This supports the assumption that for such inhibitors the ED

taken from high-resolution X-ray measurements of crystals of the pure compound

can be transferred to related enzyme–inhibitor complexes. It also explains why

data taken from the Cambridge structure database are useful for scoring functions

used in docking procedures. The differences found for the irreversible inhibitor

E64c are much stronger. Hence, the very strong intermolecular bonding interac-

tions between the carboxylate and the enzyme–environment pull the inhibitor

onto the thiolate. As a result, the Ca–O bond of the epoxide is considerably

weakened and the reactant structure is strongly distorted. The resulting change in

the ED is so strong that it cannot be foreseen by measurements or computations

in other surroundings. Hence, prediction of the reactivity of irreversible inhibitors
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on the basis of high-resolution X-ray measurements of the pure compound might

give wrong results.

The computations indicate that gas phase results often deviate quite strongly

from the corresponding crystal or enzyme–inhibitor complex data. The agreement

improves if the geometrical arrangement of the inhibitor–enzyme complex is used

for the gas phase calculations, but the deviations are still considerable. A much

better approximation is obtained if the environmental effects are mimicked by the

influence of a polar solvent via continuum models. The resulting EDs include

polarizations which approximate the situation in crystals or enzyme–inhibitor

complexes very well as long as the geometries do not differ too much. Deviations

between the less expensive COSMO computation and the QM/MM calculations are

often smaller than 1% if the computation is performed for the geometrical structure,

which the inhibitor adopts in the crystal of the pure compound or in the inhibitor–

enzyme complex. Hence, the former approach would be very useful for databases of

average multipole populations or aspherical atomic density functions.

Finally, the Source Function descriptor was scrutinized for its potential to

disentangle the effect of the environment on the charge density distribution of the

inhibitor species. A preliminary investigation on hydrocarbon linkages and water

clusters of increasing size showed that the inclusion of the second neighbors in the

QM part allows replicating the effects of the surrounding on the ED features of

typical covalent or hydrogen bonded interactions.
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Abstract In this work, we review the theory of the electron density in quantum

chemistry and discuss to which extent relativistic effects are recovered by approxi-

mate relativistic Hamiltonians. For this purpose, we give an overview on different

approximations to the fully relativistic many-electron Hamiltonian. In addition, we

present new results, considering correlation effects on the electron density of a

transition metal complex.
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1 Introduction

Electron densities obtained from quantum chemical calculations and from experi-

ments, especially from X-ray diffraction, are a powerful quantity for structure and

reactivity studies in chemistry. Topological analyses of these electron densities and

their negative Laplacian provide a deeper understanding of bonding in molecules

and complexes [1–5]. The importance of X-ray diffraction experiments for structure

determination is obvious from its early history. The discovery of X-ray diffraction

in crystals by von Laue et al. [6] was followed by Bragg’s idea [7] that one may

determine the arrangement of the atoms in a crystal with this new technique. Once

the tremendous potential of X-ray diffraction experiments for structure determina-

tion was recognized, also organic compounds (urotropine [8]) as well as biological

systems like proteins (e.g., sperm whale myoglobin [9]) were investigated in X-ray

diffraction experiments. Experimental electron densities are determined from a

diffraction pattern from which one can calculate generalized structure factors [10]

that depend on a scattering vector and are described by an intensity amplitude and a

phase factor. The amplitudes of the phase factors are obtained from experiment,

whereas the phase information is missing. This “phase problem” was solved by

Hauptman and Karle [11, 12], who developed direct methods for the calculation

of the phase factors. For systems that contain heavy nuclei, there exists also the

so-called Patterson method [13, 14]. In practical applications, one usually does not

use these Fourier transform methods but a different approach, in which structure

factors are first estimated from a guess density for the sought-for structure which is

constructed from the atomic densities. The charge density and the structural para-

meters are then adjusted in a fitting procedure to the experimentally obtained

parameters, using either the method of least squares or entropy maximization [15].

In theory, the many-electron wave function Cn(r1,. . ., rN, t), with ri denoting a

vector containing the coordinates of electron i and n being the index of the

electronic state (which we, however, skip in the following for the sake of brevity),

is the central object for the calculation of molecular properties in quantum chemis-

try. Hence, also the electron density of any molecule or solid can be calculated from

this wave function. In principle, a system containing a given number of electrons

and atomic nuclei is fully determined by its wave function, which has no physical

meaning in the sense that it is not an observable. On the other hand, the external

potential (and therefore the energy) of a system is – owing to the first Hohenberg–

Kohn theorem [16] – fully determined by its ground-state electron density r0(r)
which is an observable available in theory and experiment.
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The Hohenberg–Kohn theorems are the foundation for the development of

density functional theory (DFT) [17] and its extensions, e.g., time-dependent

DFT, conceptual DFT, current DFT, and subsystem DFT. These methods are

based on the electron density rather than on the wave function as central

quantity for the calculation of molecular properties and chemical descriptors.

All contributions to the total energy are represented by functionals which

depend on the electron density only such that the total energy and in principle

even the wave function C(r1, . . . , rN, t) ¼ C[r(r, t)] are given as functionals of

the density. Early attempts to define such density functionals were made by

Thomas [18] and by Fermi [19] presenting the first kinetic energy density

functionals in 1927/1928. Molecular properties and chemical descriptors are

then defined as derivatives of the total-energy density functional E[r] with

respect to external perturbations.

In practice, the electron density is usually calculated from a wave function (even

within DFT ! Kohn–Sham DFT). For this, one has to choose a suitable approxi-

mate Hamiltonian operator and an ansatz for the wave function. In order to arrive at

a consistent theory that overcomes all pitfalls and covers all interactions and effects

important for the chemistry of the whole periodic table, including heavy atoms, one

must apply a theory which is based on the Dirac equation [20, 21]. A comprehen-

sive description of matter is therefore solely given by the Dirac–Coulomb–Breit or

the Dirac–Coulomb Hamiltonian [22] which we use as the standard reference when

we investigate the performance or accuracy of any approximate relativistic method

(the electron–electron interaction is usually approximated by the instantaneous

Coulomb interaction). The most important approximate Hamiltonian operators

will be discussed in detail in the theory section of this work.

Different types of many-electron functions are known as approximations to the

exact wave function and are built from one-electron functions, i.e., from orbitals

ci(r). Such an independent-particle model in which the wave function can be

assembled from an antisymmetrized product of N one-electron functions entirely

neglects the correlated motion of the electrons and causes therefore errors in the

description of systems containing more than one electron. It is therefore important

to carry out a systematic analysis of the method-inherent approximations to ensure

that a sufficiently high accuracy for electron densities obtained from quantum

chemical calculations can be guaranteed (correlation effects on the electron density

will be discussed in Sect. 4.2 of this work).

This work is organized as follows. In Sect. 2, we demonstrate how equations for

the electron density are derived from fundamental principles to analyze in the next

section how these equations depend on the choice of the Hamiltonian and the ansatz

for the wave function. Then we proceed in Sect. 4 with the analysis of approximate

electron densities obtained from different choices for the Hamiltonian with the

focus on relativistic effects. In Sect. 5, we regard the electron density at the position

of the nucleus, which is prone to errors for most of the approximate Hamiltonians.

Section 6 deals with the electron density in the context of conceptual DFT and

atoms in molecules in combination with relativistic electronic structure methods.

Electron Density in Quantum Theory 101



In the last section, we have a closer look on a particular branch of DFT, namely

frozen-density embedding (FDE) which is a subsystem formulation of DFT that

can, for instance, be used to describe a molecule embedded in a crystal, hence

allowing for crystal-packing effects on the electron density.

2 Definition of the Electron Density Distribution

For the simplest case, i.e., for a system containing only one electron, the square of

the absolute value of the wave function can – according to Born [23] – be inter-

preted as a probability density distribution from which one can determine the prob-

ability of finding the electron at a given infinitesimally small volume at position

r ¼ (x,y,z) in space. In order to determine the probability in a finite volume,

integration is necessary. The probability of finding the electron anywhere in

space must be equal to one at any time:ðþ1

�1
d3r Cðr; tÞj j2 ¼ 1: (1)

Born’s interpretation of the wave function of a single electron can be generalized

to an N-electron system, described by the normalized wave function C(r1, r2, . . . ,
rN,t) ¼ C({ri},t):

r rð Þ¼! N
ðþ1

�1
d3r2 � � �

ðþ1

�1
d3rN C rif g; tð Þj j2 (2)

(note that spin coordinates are not considered, at this stage because these somewhat

artificial coordinates are not present in relativistic theory; see below). Quantum

mechanics states that for any observable a corresponding operator exists, which

yields a set of eigenvalues being the possible results of a measurement. Therefore,

an operator can also be assigned to the electron density. The expectation value of

this density operator

rr ¼
XN
i¼1

dð3Þ r � rið Þ (3)

yields the particle density at a given position r. Here, d(3)(r � ri) ¼ d(x � xi)d
(y � yi)d(z � zi) denotes the three-dimensional delta distribution. The electron

density can then be expressed as an expectation value of this density operator

r rð Þ¼! C rif g; tð Þ rrj jC rif g; tð Þh i

¼
ðþ1

�1
d3r1

ðþ1

�1
d3r2 � � �

ðþ1

�1
d3rN C� rif g; tð Þrr C rif g; tð Þ; (4)
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where in contrast to the first definition of the electron density the integration is

now carried out over all dynamical variables. The charge density rc is directly

related to the electron density via the negative elementary charge: rc(r) ¼ �er(r).
The propagation of this expectation value in time can then be described by the

Ehrenfest theorem, which allows us to express the total time derivative of an expecta-

tion value as an expectation value of the partial time derivative of the operator and an

expectation value of the commutator of the operator with the Hamiltonian:

dr r; tð Þ
dt

¼ d C rif g; tð Þ rrj jC rif g; tð Þh i
dt

¼ C rif g; tð Þ @rr
@t

����
����C rif g; tð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

þ i

�h
C rif g; tð Þ H; rr½ �j jC rif g; tð Þh i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�r� j

: (5)

The partial derivative of the density operator with respect to time vanishes

in this equation, because this operator does not depend on time. If one chooses

a Hamiltonian and a wave function, the second term can be evaluated and yields the

negative divergence of the current density. Because the position r does not depend
on the time t, the total derivative in (5) is equal to the partial derivative dr(r,t)/
dt ¼ ∂r(r, t)/∂t, and one therefore arrives at the continuity equation

@r r; tð Þ
@t

þr � j ¼ 0; (6)

which is the fundamental equation defining both the electron density and the

current density j [22]. The deduction of the continuity equation from the expecta-

tion value of the density operator C rif g; tð Þ rrj jC rif g; tð Þh i uniquely defines the

density distribution of an N-particle system. The continuity equation can alterna-

tively be deduced from the Heisenberg equation of motion written for the density

operator [22], which is omitted here for the sake of brevity.

3 Dependence on Wave Function and Hamiltonian

From the continuity equation, it is clear that one has to choose a wave function and

a Hamiltonian operator [see (5)] to resolve the electron density and the current

density. We will therefore give a brief overview on approximations to the electronic

wave function and on the different Hamiltonians relevant to chemistry before

proceeding with the analysis of the electron density.

3.1 The Wave Function

The most general ansatz for the total wave function of a molecule consisting of N
electrons and M nuclei,

Electron Density in Quantum Theory 103



C r1; . . . ; rN;R1; . . .RM; tð Þ ¼ C rif g; RIf g; tð Þ; (7)

depends on all nuclear coordinates, the coordinates of the electrons, and time (if an

absolute time frame is assumed). Since we are interested in the calculation of the

stationary electron density, we look for a time-independent wave function that

depends only parametrically on the nuclear coordinates. After the separation of

time (by a product ansatz) and of the nuclear coordinates (Born–Oppenheimer

approximation [24–26]), one arrives at the time-independent electronic wave func-

tion Cm({ri}) for electronic state m, which has to be approximated. A simple

product ansatz (Hartree product) of one-electron functions (orbitals) violates the

Pauli exclusion principle, because the wave function is no longer antisymmetric

with respect to the exchange of any two electronic coordinates. A corrected ansatz

explicitly implements the Pauli exclusion principle and can also be expressed as

a normalized determinant of a set of all N occupied orbitals,

Yk rif gð Þ ¼ Â
YN
i¼1

cki
rið Þ ¼ 1ffiffiffiffiffi

N!
p

ck1
r1ð Þ � � � ck1

rNð Þ
..
. . .

. ..
.

ckN
r1ð Þ � � � ckN

rNð Þ

�������
�������; (8)

with Â denoting the antisymmetrization operator given by

Â ¼ 1ffiffiffiffiffi
N!

p 1�
X
ij

Pij þ
X
ijk

Pijk � � � �
 !

; (9)

where Pij stands for all permutations of the two electrons i and j, Pijk for all possible

permutations of the electrons i, j, and k, and so forth. The so-called Slater determinant

Yk contains either the N orbitals with the lowest energy (corresponding to the ground

state in a one-determinant picture) or orbitals with higher orbital energy. In practical

applications, a basis set is introduced to represent the one-electron functions.

In general, linear combinations of Slater determinants can be set up to yield

eigenfunctions of the squared spin operator. These linear combinations are called

configuration state functions (CSFs)

Fl ¼
X
k

blkYk; (10)

with {blk} being known expansion coefficients. The single-determinant or single-

CSF ansatz can be improved by subsequently adding more and more CSFs. If all

(infinitely many) possible determinants are considered in the linear combination,

one obtains the so-called full configuration interaction (FCI) wave function

CFCI
m rif gð Þ ¼

X
l

clmFl rif gð Þ ¼
X
l

X
k

clmblk Â
YN
i¼1

cki rið Þ
 !

; (11)
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with {clm} denoting the CI expansion coefficients of the CSFs. With such a com-

plete many-electron basis set of CSFs, any many-electron function can be expressed

as a linear combination of these many-electron basis functions. The FCI wave

function covers therefore all electron correlation effects.

However, FCI calculations are only feasible for small molecules, since

the number of excited determinants for m one-electron basis functions and N
electrons is given by 2m

N

� �
[27]. For this reason, the FCI wave function is appro-

ximated to be able to perform calculations also for larger molecules. As a

first step, the expansion of the FCI wave function is rewritten in a systematic

way by grouping the CSFs according to the degree of orbital substitution (called

excitation):

CFCI
m ¼ cm;0F0 þ

X
aj;ijð Þ

cm; aj; ij
� �

Fij
aj
þ

X
aj;ijð Þ; ak ;ikð Þ

cm; aj; ij
� �

; ak;ik
� �

Fij;ik
aj;ak

þ � � �;

(12)

with
	
Fij

aj



denoting all singly excited determinants which can be obtained from

the ground-state determinant,
	
Fij;ik

aj;ak



all doubly excited determinants, and so

forth. Obviously, the simplest approximation is obtained by truncating the expan-

sion after a certain class of terms (truncated CI). Taking all singly excited determi-

nants into account is referred to as CIS (CI-Singles), whereas incorporating also

the doubly excited determinants yields CISD (CI-Singles-Doubles), and so forth.

A major drawback is the violation of size consistency in the truncated CI approach,

i.e., the energy of two identical molecules at infinite separation is not equal to two

times the energy of a single molecule.

Different variants of truncated CI approaches exist. In truncated CI, the excited

determinants are all obtained from the ground-state determinant. If also from other

reference determinants excited determinants are produced, we arrive at the multi-

reference CI (MRCI) approach. Sometimes, it is also convenient to define a

restricted orbital space (active space), incorporate all excited determinants within

this space, and reoptimize the orbital basis which is known as complete-active-

space self-consistent-field approach (CASSCF).

There exists an approximation to the FCI wave function which overcomes the size-

consistency problem of the truncated CI approach. This is the coupled-cluster

approach. For the coupled-cluster approximation,we first define an excitation operator:

T ¼
X1
k¼1

Tk; (13)

which contains all possible excitations from the ground-state determinant such that

the operator Tk, when acting on the ground-state determinant, produces a linear

combination of all possible k-fold excited determinants,

TkY0 ¼
X

a1;i1ð Þ... ak;ikð Þ
ti1;...;ika1;...ak

Yi1;...;ik
a1;...;ak

; (14)
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with the expansion coefficients ti1;...;ika1;...; ak
called cluster amplitudes (they can be related

to the CI coefficients). The coupled-cluster wave function is then obtained through

an exponential ansatz:

CCC
0 ¼ expðTÞY0 (15)

which can be Taylor expanded:

expðTÞ ¼
X1
n¼0

1

n!

X1
k¼1

Tk

" #n

¼ 1þ T1 þ T2 þ � � � þ 1

2!
T2
1 þ T1T2 þ 1

3!
T3
1 þ � � � : (16)

If the summations are not truncated, the coupled-cluster wave function is equal

to the FCI wave function. Even if the excitation operator T is truncated after single

excitations T ¼ T1 (CCS) or double excitations T ¼ T1 þ T2 (CCSD), the expan-
sion of the exponential function contains higher excitations than a corresponding

truncated CI through products of excitation operators like T1T2, the so-called

disconnected clusters. This is also the reason why the coupled-cluster method is

size consistent even in its truncated form. Practical applications, using a truncated

excitation operator, require expressions that contain a finite number of terms. This

can be achieved using a Baker–Campell–Hausdorff expansion leading to a series of

nested commutators such that the electronic energy is calculated as:

E¼ F0 Hþ H;T½ � þ 1

2!
H;T½ �;T½ � þ 1

3!
H;T½ �;T½ �;T½ �

����
�

þ 1

4!
H;T½ �;T½ �;T½ �;T½ �

����F0

�
:

(17)

Because the coupled-cluster approach is nonlinear in the amplitudes as can be

deduced from (16), the corresponding equations for the calculations of the ampli-

tudes are solved by projection.

3.2 The Hamiltonian Operator

The Hamiltonian for a system of M nuclei and N electrons, including all one-

electron terms and two-particle interactions, is given by:

H ¼
XM
I¼1

tnðIÞ þ
XN
i¼1

teðiÞ þ
XM
I¼1

XM
J¼Iþ1

vnn I;Jð Þ

þ
XN
i¼1

XN
j¼iþ1

vee i; jð Þ þ
XM
I¼1

XN
i¼1

vne I; ið Þ
(18)
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with tn(I) and te(i) denoting the kinetic energy operators for nuclei I and electrons i.
vnn(I, J) is the repulsion energy operator between nuclei I and J, vee(i, j) the electron–
electron repulsion operator of electrons i and j, and vne(I, J) describes the attraction of
electron i and nucleus I. The explicit form of the expressions for the operators

is defined through the basic physics on which an approximation to the exact

Hamiltonian relies. When one aims at an adequate description of all elements in

the periodic table, including heavy metal atoms like actinides, the Dirac–Coulomb–

Breit (DCB) Hamiltonian is the most suitable choice for chemistry. It is deduced from

the Einsteinian relativity principle using classical electromagnetic fields [22]. There

may exist extreme cases, where quantum electrodynamical (QED) corrections play a

role [i.e., where a quantization of the electromagnetic field (photons) is necessary],

but we consider these cases to be unimportant for general chemistry.

For the DCB Hamiltonian, we first introduce the one-electron Dirac Hamiltonian

hD(i) for an electron in an external potential. It contains all one-electron operators

and the Coulomb interaction between the single electron and the nuclei (in Gaussian

units; used throughout):

hDðiÞ ¼ cai � pi þ
e

c
A

� �
þ bi � 1ð Þmec

2 � ef�
XM
I¼1

ZIe
2

ri � RIj j : (19)

External electromagnetic fields, represented by the vector potential A and the

scalar potential f, are introduced via minimal coupling which ensures Lorentz

covariance of the one-electron Dirac equation of motion. For an isolated atom,

molecule, or crystal, we have A ¼ 0 and f ¼ 0. In the more general case of a

system containing M nuclei and N electrons, the DCB Hamiltonian includes the

one-electron Dirac Hamiltonian as:

HDCB ¼
XM
I¼1

p2I
2mI

þ
XN
i¼1

cai � pi þ
e

c
A

� �
þ bi � 1ð Þmec

2 � ef�
XM
I¼1

ZIe
2

ri � RIj j

" #

þ
XM
I¼1

XM
J¼Iþ1

ZIZJe
2

RI � RJj j þ
XN
i¼1

XN
j¼iþ1

g i; jð Þ ð20Þ

with I and i being the particle indices, RI and ri the coordinates, ZI � e and �e the
charges, pI and pi the momenta, and mI and me the masses of the nuclei and

the electrons, respectively. The speed of light is denoted as c. ai is a Dirac a
matrix for the i-th electron, where a ¼ (ax, ay, az) is a three-dimensional vector of

four-by-four matrices:

ax ¼

0 0

0 0
sx

sx
0 0

0 0

0
BBB@

1
CCCA; ay ¼

0 0

0 0
sy

sy
0 0

0 0

0
BBB@

1
CCCA; az ¼

0 0

0 0
sz

sz
0 0

0 0

0
BBB@

1
CCCA;

(21)
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which are built from the Pauli spin matrices s ¼ (sx, sy, sz):

sx ¼ 0 1

1 0

 �
; sy ¼ 0 i

�i 0

 �
; sz ¼ 1 0

0 �1

 �
(22)

and bi ¼ diag(1,1,�1,�1) is a diagonal matrix. There are different levels of

approximation for the electron–electron interaction. The Coulomb–Breit operator

reads [22]:

g i; jð Þ ¼ e2

ri � rj
�� �� 1� ai � aj

2
� ai � ri � rj

� �� �
aj � ri � rj

� �� �
2 ri � rj
�� ��2

" #
: (23)

It is often convenient to employ to Gaunt operator [28, 29] to approximate the

Breit operator. A rigorous approximation to the DCB Hamiltonian is obtained in the

nonrelativistic limit by substituting the Coulomb–Breit operator by the instanta-

neous Coulomb interaction (which we already adopted for the electron–nucleus

interaction). The resulting DC Hamiltonian neglects retardation effects of the

electron–electron interaction which arise from the transmission of the interaction

due to the finite value of the speed of light.

Since the ai and bi parameters in the one-electron Dirac Hamiltonian have

a 4 � 4 structure, it immediately follows that the one-electron functions have

four components. Owing to the 2 � 2 superstructure of the Hamiltonian [see

(21)], they are grouped into two 2-spinors, which are for historical reasons denoted

as large (L) and small (S) component:

ci ¼

c1
i

c2
i

c3
i

c4
i

0
BBBB@

1
CCCCA ¼ cL

i

cS
i

 !
: (24)

Since the Dirac Hamiltonian possesses a 2 � 2 superstructure, any other opera-

tor O can also be expressed as:

O ¼ OLL OLS

OSL OSS

 �
: (25)

The Dirac equation for a single electron yields two sets of solutions, namely

positive (electronic) and negative (positronic) energy eigenstates. The electronic

eigenstates describe either freely moving electrons or electrons that are bound by an

external potential, whereas the positronic states lead to conceptual and practical

difficulties. Dirac interpreted all the positronic states to be occupied by electrons

such that the excitation of an electron from this “sea of electrons” produces
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a positively charged “hole” (Dirac hole theory). With this interpretation, Dirac

predicted the existence of an antiparticle, which contains the same mass as the

electron but carries the opposite charge. In practice, the positronic states are not

occupied in a quantum chemical calculation. The positronic states lead to the

consequence that the Hamiltonian is no longer bounded from below because any

electron can in principle take an infinitely large negative energy, which may result

in a variational collapse during the optimization of the wave function. Another

related pathology of the Dirac formalism is known as the Brown–Ravenhall [30]

disease, or continuum dissolution. In fully relativistic calculations, these patholo-

gies are circumvented by technical tricks that can be formalized in terms of

iteratively optimized projection operators.

However, the positronic solutions are not relevant to chemistry, and their

calculation is therefore an unnecessary burden. We now discuss two possibilities

to avoid the calculation of these positronic states by decoupling the large and the

small components of the spinor. Eliminating two components from the spinor yields

efficient two-component methods. Either they can be projected out, e.g., using the

generalized Douglas–Kroll–Hess (DKH) unitary transformation technique [31–33]

or they are eliminated in the so-called regular approximations [34]. Recently,

efficient four-component formulations of the unitary block-diagonalization in one

shot hold promises for future routine applications [35–40]. However, low-order

regular approximations and DKH schemes are sufficiently accurate, efficient, and

well embedded in quantum chemistry program packages tailored for routine quan-

tum chemical calculations (like, e.g., MOLCAS [41] or ADF [42, 43]).

The DKH transformation technique is based on an idea by Douglas and Kroll

[44] which was later rediscovered and turned into a practical method by Hess [31].

The DKH formalism has then further been developed by Reiher and Wolf [32, 33,

45–49]. The general unitary DKH transformation block-diagonalizes the Dirac

Hamiltonian:

hbd ¼ UhDU
y ¼

hþ
0 0

0 0
0 0

0 0
h�

0
B@

1
CA; (26)

resulting in two decoupled two-component matrix operators h+ and h� for the

electronic and the positronic eigenstates, respectively. The unitary transformation

is constructed as a product of infinitely many unitary transformations U ¼
U1. . .U3U2U1U0 each Taylor expanded in terms of an antihermitian operator. In

practical applications, the expansion of the unitary transformation is usually

truncated.

Also the wave function ~c ¼ Uc must be transformed in the same way. If

expectation values of hermitian operators are calculated in the DKH picture, one

must take care that the operators are transformed, too. The neglect of these

transformations leads to the so-called picture change error (PCE) [50–52]. As a

consequence, the electron density in the DKH picture is not obtained by simply
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summing up weighted squares of the DKH orbitals. The PCE for any operator O is

given by:

PCE Oð Þ ¼ ~C
L ~O

LL
��� ��� ~CL

D E
� ~C

L
OLL
�� �� ~CL

D E
; (27)

whereOLL denotes the upper left block ofO [see (25)], while ~OLL denotes the upper

left block of the transformed operator ~O. The notation reads then as DKH(n, m),
with n being the order of the DKH transformation of the wave function and m the

order of the DKH transformation of the property operator. If no property operator

is used, the notation is simply given by DKHn, with n being the order of the

transformation of the wave function.

A second way to reduce the four-component Dirac Hamiltonian to a two-

component Hamiltonian is given by the regular approximation approach, which

was introduced in 1986 by Heully et al. [53], Durand [54], and Chang et al. [55], and

rediscovered by van Lenthe, van Leeuwen, Baerends, and Snijders [34, 56–59]. It

relates the small component of the four-component wave function via the energy-

dependent X-operator to the large component. The starting point for the regular

approximation is the Dirac equation in split notation after applying an energy shift

of mec
2:

cs � pcS
i þ VcL

i ¼ i�h
@

@t
� mec

2

 �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

!ei

cL
i ; (28)

cs � pcL
i � 2mec

2cS
i þ VcS

i ¼ i�h
@

@t
� mec

2

 �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

!ei

cS
i : (29)

The energy-dependent X(ei) operator is obtained from the lower part of the Dirac

equation as:

cS
i ¼ cs � p

ei � V þ 2mec
2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

X eið Þ

cL
i ¼ cs � p

2mec2 � V
1� ei

V � 2mec2

� ��1

cL
i

¼ cs � p
2mec2 � V

X1
k¼0

ei
V � 2mec2

 �k

cL
i

(30)

and can then in the next step be expanded in a geometric series with the expansion

parameter ei/(V � 2mec
2). The expanded form of the X-operator is then inserted in

the upper part of the Dirac equation and yields:

V þ s � pð Þc2
2mec2 � V

X1
k¼0

ei
V � 2mec2

 �k
" #

s � pð Þ
 !

cL
i rð Þ ¼ eic

L
i rð Þ: (31)
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Truncation of the X-operator after the zeroth-order term X0 ¼ cs·p/(2mec
2 � V)

leads then to the two-component ZORA Hamiltonian:

hZORA ¼ s � p c2

2mec2 � V
s � pþ V: (32)

The order of the regular approximation is thus determined by the order of the

expansion of the energy-dependent X-operator in terms of ei/(V � 2mec
2). The

derivation of the ZORA Hamiltonian is related to a Foldy–Wouthuysen transfor-

mation [60, 61]:

U0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

y
0X0

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

y
0X0

q X
y
0

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X0X

y
0

q X0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X0X

y
0

q

0
BBBBB@

1
CCCCCA; (33)

yielding

U0hDU
�1
0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
y
0X0

q hZORA
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
y
0X0

q : (34)

The ZORA Hamiltonian is then obtained by truncating the expansion of the

reciprocal square root 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

y
0X0

q
¼ 1� 1=2X

y
0X0 þ � � � after the zeroth order

term which is simply unity. Since only the four-component wave function is

normalized and not the large component, it has to be normalized such that

cZORA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

y
0X0

q
cL describes the normalized ZORA wave function.

The DKH and the ZORA Hamiltonian reduce the number of components in the

wave function from four to two. So-called scalar-relativistic one-component meth-

ods are obtained by neglecting all spin-dependent terms in the DKH and the ZORA

Hamiltonian. A further approximation, which also reduces the dimension to one, is

given by the nonrelativistic limit of the Dirac equation, where the speed of light

approaches infinity. The result is the one-component many-electron Schr€odinger
equation with the corresponding Hamiltonian:

Hnon�rel: ¼
XM
I¼1

p2I
2mI

þ
XN
i¼1

p2i
2me

þ
XM
I¼1

XM
J¼Iþ1

ZIZJe
2

RI � RJj j

þ
XN
i¼1

XN
j¼iþ1

e2

ri � rj
�� ���X

N

i¼1

XM
I¼1

ZIe
2

ri � RIj j ; (35)

being the standard reference for nonrelativistic calculations.
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3.3 Electron Density Distribution for Different Choices
of Hamiltonian and Wave Function

The next step in the calculation of the electron density and the current density is to

choose and insert a Hamiltonian operator and an ansatz for the wave function into

the continuity equation (5), which contains the commutator of the Hamiltonian and

the density operator. First, we discuss the case in which the many-electron wave

function is approximated by a single Slater determinant. The electron density r(r) is
then calculated by inserting the definition of the Slater determinant given by (8). By

applying the Slater–Condon rules [62, 63] for the calculation of matrix elements,

the integrals containing the Slater determinants collapse to a sum of one-electron

integrals:

r rð Þ ¼ Y rif gð Þ rrj jY rif gð Þh i ¼ Y rif gð Þ
XN
i¼1

dð3Þ r � rið Þ
�����

�����Y rif gð Þ
* +

¼
XN
i¼1

ci sð Þ dð3Þ r � sð Þ
��� ���ciðsÞ

D E
; (36)

for which we choose the arbitrary integration variable s. The sum of these one-

electron integrals yields the trace of the density matrix, whose diagonal elements

define orbital densities:

r rð Þ ¼
XN
i¼1

ci sð Þ dð3Þ r � sð Þ
��� ���ci sð Þ

D E

¼
XN
i¼1

cyi rð Þci rð Þ ¼
XN
i¼1

ci rð Þj j2; (37)

where cyi denotes the transposed and complex conjugate of the four-component

orbital ci (if ci denotes a one-component orbital, then the dagger { is replaced by a
star * for complex conjugation as transposing is inapplicable). Proceeding now with

the insertion of the DCB Hamiltonian in the right-hand side of the continuity

equation in (5), all multiplicative operators cancel in the commutator so that it

reads:

@ C rrj jCh i
@t

¼ i

�h
C
XN
i¼1

cai � pi; dð3Þ r � rið Þ
h i�����

�����C
* +

¼ �r � cN C a1d
ð3Þ r � r1ð Þ

��� ���CD E
: (38)

From this equation, we can define the current density jDCB ¼! cNhCja1d
ð3Þ

ðr � r1ÞjCi for any type of four-component wave function. Hence, in the case of
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a single Slater determinant (SD), the electron density and the current density are

then given as:

rSDDCB rð Þ ¼
XN
i¼1

cyi rð Þ � ci rð Þ ¼
XN
i¼1

cL
i rð Þ�� ��2 þ cS

i rð Þ�� ��2; (39)

jSDDCB rð Þ ¼ c
XN
i¼1

cyi rð Þ � a � ci rð Þ: (40)

In contrast to the DCB Hamiltonian, the electron density in the DKH framework

is not obtained as the sum of squared DKH orbitals. The latter deviates from the

electron density, especially in the region around the nucleus. At larger distances

from the nucleus, these errors decrease [64, 65]. It is possible to relate the square of

the Dirac 4-spinors to the square of the two-component DKH spinor by the

introduction of a position-dependent error Dri(r):

ci;4comp rð Þ�� ��2 ¼ ci;DKH rð Þ
��� ���2 þ Dri rð Þ: (41)

Considering the evaluation of expectation values over operators with a trans-

formed wave function, one must not forget to transform the operator, too. The

position-dependent error Dr(r) in the calculation of the electron density vanishes

when the transformed (picture-change corrected) density operator ~rr is used [66].

The electron density obtained in this way is then equal to the Dirac electron density.

The continuity equation is obtained in the same way as for the Dirac–Coulomb–

Breit Hamiltonian, but with the transformed density operator and Hamiltonian

applied. Then, the continuity equation reads:

@

@t
UC UrrU

y��� ���UCD E
¼ �r � cN UC Uð1Þa1d

ð3Þ r � r1ð ÞUð1Þy��� ���UCD E
: (42)

The electron density and the current density are therefore obtained as:

rSDDKH rð Þ ¼
XN
i¼1

~C Udð3Þ r � rið ÞUy
��� ��� ~CD E

; (43)

jSDDKH rð Þ ¼ c
XN
i¼1

~C UðiÞaid
ð3Þ r � rið ÞUðiÞy��� ��� ~CD E

: (44)

In the case of more than one electron, the unitary transformation is given as the

direct product of N unitary transformations U ¼ �N
i¼1U

ðiÞ:
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Similar to DKH, the calculation of the electron density causes problems in the

ZORA approach [50]. The electron density and the current density obtained from

rSDZORA rð Þ ¼
XN
i¼0

cyi;ZORA rð Þ � ci;ZORA rð Þ (45)

jSDZORA rð Þ ¼ c
XN
i¼0

cyi;ZORA rð Þ � a � ci;ZORA rð Þ (46)

are only approximations to the Dirac densities, since the elimination of the small

component causes a picture change and introduces therefore an error. An improved

ZORA electron density (ZORA-4 density) is obtained by a backtransformation of

the small component and the introduction of a scaling factor. Following van Lenthe

and Baerends [50], a small and a large component density are defined for each

orbital:

rSi rð Þ ¼ c2 s � pici;ZORAðrÞ
� �y

s � pici;ZORA rð Þ� �
2c2 � Vð Þ2 ; (47)

rLi rð Þ ¼ cyi;ZORA rð Þ � ci;ZORA rð Þ: (48)

The ZORA-4 density, which is normalized to one, is then calculated as:

rSDZORA�4 ¼
XN
i¼0

rLi þ rSi
1þ Ð rSi d3r: (49)

Inserting the nonrelativistic Schr€odinger Hamiltonian into the continuity

equation:

@ C rrj jCh i
dt

¼ �h

2mei

XN
i¼1

r2
iC d 3ð Þ r � rið Þ
��� ���CD E

� C dð3Þ r � rið Þ
��� ���r2

iC
D Eh i

(50)

yields the nonrelativistic (NR) electron density and current density. In the case of

a wave function approximated by a single Slater determinant, it is given by:

rSDNR rð Þ ¼
XN
i¼1

c�
i rð Þci rð Þ ¼

XN
i¼1

ci rð Þj j2; (51)

jSDNR rð Þ ¼ �h

2mei

XN
i¼1

c�
i rð Þrci rð Þ � rci rð Þð Þ�ci rð Þ� �

: (52)
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3.4 Methodological Aspects: Density Functional Theory
and Current-Density Functional Theory

In the introduction, it was mentioned that the ground state of a system is fully

determined not only by its ground-state electronic wave function C0 but also by

its ground-state electron density r0(r). Since the wave function depends on 3N
spatial coordinates (plus N additional spin coordinates), and since it is a fairly

complicated object to handle, it would be preferable to have a theory which is

solely based on the electron density, depending only on three spatial coordinates.

For this reason, we give here a brief overview on DFT and its relativistic

extension, namely current DFT, which are in the Kohn–Sham formulation both

single-determinant methods. As discussed in the introduction, all properties of a

system (especially the total energy) can be expressed as functionals of r0(r). The
major drawback of DFT is that the analytical expressions for some of the energy

contributions are not known, and thus some parts of the total energy must be

approximated. Contemporary DFT is therefore not suited for highly accurate

calculations, because the achievable accuracy strongly depends on the choice of

the approximate density functionals. On the other hand, DFT is a simple, compu-

tationally not very demanding method which even includes electron correlation

effects via an additional energy functional, and it allows one to perform calcula-

tions on large molecules.

The most widespread implementations of DFT are within the Kohn–Sham (KS)

formalism [17], in which an artificial reference system of noninteracting electrons is

introduced that yields exactly the same electron density as the interacting system.

The energy contributions are partitioned in the following way (in Hartree atomic

units):

Etot r½ � ¼ Ts r½ � þ Vext r½ � þ J r½ � þ EXC½r� þ ENN

¼ �
XN=2
i¼1

cKS
i r2
�� ��cKS

i

� �þ ð d3r rðrÞvextðrÞ
þ
ð ð

d3r d3r0
r rð Þr r0ð Þ
r � r0j j þ EXC r½ � þ ENN: (53)

with Ts[r] denoting the kinetic energy of the noninteracting reference system,

Vext[r] the external potential energy which is caused by the nuclei, J[r] the Coulomb

interaction of the electrons, ENN the nuclear repulsion energy, vext the external

potential, and EXC[r] being a sum of the nonclassical part of the electron–electron

interaction and the difference between the kinetic energy of the noninteracting

reference system and that of the interacting system. The exchange-correlation

functional is the only unknown term in this expression, and hence its approximation

determines the accuracy of the whole calculation. The (nonrelativistic) KS orbitals

are calculated from the Kohn–Sham equations:
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� �h2

2me

r2
i þ vext rð Þ þ

ð
d3r

r rð Þ
r � r0j j þ

dEXC r½ �
dr rð Þ

� �
cKS
i rð Þ ¼ eic

KS
i rð Þ; (54)

which are obtained using the Lagrange method of undetermined multipliers to the

variational procedure applied to the energy expression. The KS equations are one-

electron equations that exhibit many similarities to the Hartree–Fock equations

which are the basis of almost all wave function-based methods.

There exists a relativistic generalization of DFT called current DFT, which is

based on fundamental relativistic concepts. The first requirement for this extension

is a generalization of the Hohenberg–Kohn theorems which has been given by

Rajagopal and Callaway [67]. The functionals then depend not only on the electron

density r(r) but also on the current density j(r). Both combine to the relativistic

4-current j � (cr, j). The total electronic energy in a four-component Kohn–Sham

model then reads:

Etot r; j½ � ¼ Ts r; j½ � þ Vext r; j½ � þ J r; r½ � þ EXC r; j½ �: (55)

Following Rajagopal and Callaway [67], the most general form of the relativistic

KS-DFT equations reads:

ca � pþ e

c
Aeff rð Þ

� �
þ bmec

2 � efeff rð Þ
h i

ci rð Þ ¼ eici rð Þ; (56)

where the Dirac Hamiltonian is clearly visible and supplemented by effective

electromagnetic potentials defined as:

feff rð Þ ¼ fext rð Þ � e

c

ð
d3r0

r r0ð Þ
r � r0j j þ c

dEXC r; j½ �
dr rð Þ ;

Aeff rð Þ ¼ Aext rð Þ � e

c

ð
d3r0

jðr0Þ
r � r0j j þ c

dEXC r; j½ �
dj rð Þ ;

(57)

where the external potentials fext and Aext represent the interaction between the

electron and the nuclei in the case of isolated molecules.

4 Analysis of Approximate Electron Densities

Approximate wave functions and the specific choice of the Hamiltonian operator

can cause errors in the calculation of the electron density, which have to be

investigated systematically. The first part of this section focuses on the effect of

approximate Hamiltonian operators, whereas the second part deals with the effects

of the correlated motion of the electrons on the electron density.
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4.1 Effect of the Approximate Hamiltonians

After the publication of the Dirac equation in 1928, Hartree [68] was the first to

analyze the distribution of the charge and current in the Dirac formalism, but his

publication did not contain any graphical representations of the electron density.

The first graphical representation of the four-component Dirac electron density was

then presented by White [69, 70], who investigated the angular distribution of the

charge density for hydrogen-like atoms (highly positively charged one-electron

ions). He presented normalized radial charge densities for different orbitals and

made a few qualitative comments on the difference between the Schr€odinger and
the Dirac electron densities. After these pioneering studies, it took more than three

decades until the first more detailed comparison between relativistic and nonrela-

tivistic charge densities was presented by Burke and Grant [71] considering a

hydrogen-like atom with a nuclear charge number Z ¼ 80, i.e., Hg79+. These

authors compared the radial densities obtained with the Dirac–Coulomb Hamilto-

nian to nonrelativistic ones and drew general conclusions from it. The radial density

D(r) is given by:

DðrÞ ¼ r2
ðp
0

ð2p
0

sin #d# d’Cy rð ÞC rð Þ ¼ P2ðrÞ þ Q2ðrÞ; (58)

which is thus equal to the sum of the squares of the radial functions Q(r) and P(r) of
the four-component wave function. The most general observation corresponds to a

contraction of the relativistic density profiles toward the nucleus, which is most

pronounced for the core-penetrating s- and p1/2-shells. The degree of the contraction
is affected by the absolute value of the relativistic azimuthal quantum number

analog kj j ¼ jþ 1
2
. For large |k| values, the relativistic density profiles resemble

strongly the nonrelativistic ones, whereas the contraction is largest for |k| ¼ 1.

A second observation concerns the nodes of the radial wave function, where the

normalized radial electron density vanishes in the nonrelativistic case, but not in the

relativistic one. The relativistic radial electron density is zero only at r ¼ 0.

A number of publications appeared in the following years which investigated

how relativistic effects affect the electron density [72–76], i.e., the differences

between the Dirac and the Schr€odinger picture. In 1993, van Lenthe, Baerends,

and Snijders reported the regular approximations [34, 56, 57, 59] to the Dirac

Hamiltonian and compared the r-weighted square root of the electron density for

different orbitals of an uranium atom. For all of the outer shells, the relativistic

contraction is fully recovered and r
ffiffiffiffiffiffiffiffiffi
rðrÞp

obtained from the ZORA Hamiltonian

can hardly be distinguished from the Dirac results, except at the position of the

minima, where it approaches zero in contrast to the Dirac result, which is always

larger than zero. The only significant difference is observed for the innermost shell,

where the ZORA Hamiltonian is able to recover a large part of the relativistic

contraction, but not all of it. Furthermore, the maximum for the 1s1/2 orbitals is too
large compared to the Dirac result. Another study by Autschbach and Schwarz [77]
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compares the relativistic change of the radial density for hydrogen-like atoms with

a nuclear charge number of Z ¼ 1 and Z ¼ 100. These authors compare the Dirac

density to two different approximations, namely the Pauli (which is not discussed

here as it is only of historical importance) and the ZORA Hamiltonians arriving at a

similar conclusion as van Lenthe, Baerends, and Snijders.

DKH electron densities were presented by van W€ullen and Michauk [78] who

emphasize in a brief discussion that the electron density obtained from the two-

component wave functions (neglecting picture-change effects) is not equal to the

Dirac density due to the picture-change error. As explained above, the DKH

electron density, approximated by the sum of the squared DKH orbitals, is suffi-

ciently accurate for the valence region of an atom, but the error increases, the

smaller the distance from the nucleus is (this subject is further analyzed in Sect. 5).

Picture-change-affected DKH density were also analyzed in [65], considering a

hydrogen-like mercury atom with Z ¼ 80.

Eickerling et al. [64] presented the first systematic investigation of the effects

of an approximate two-component Hamiltonian and the scalar-relativistic DKH10

Hamiltonian on the electron density and its topology by comparing to the four-

component Dirac Hamiltonian and to the nonrelativistic limit, namely the

Schr€odinger Hamiltonian. The study features a comparison of difference electron

densities obtained from three relativistic and the nonrelativistic Hamiltonian for a

homologous series of acetylene complexes M–C2H2 with M ¼ Ni,Pd,Pt and in

addition an analysis of the negative Laplacian at the bond critical points (BCPs),

which are minima of the electron density on the bonding axis and maxima on the

axis perpendicular to the bonding axis. The most significant difference between the

four-component Dirac density and the nonrelativistic one, considering all BCPs, is

observed for the M–C2H2 BCP in the case of M ¼ Pt, where it amounts to

0.06 eÅ�3. The study concludes that scalar-relativistic methods cover most relativ-

istic effects, though there are still differences to the electron densities obtained from

two-component methods. Concerning the negative Laplacians, the deviations can

be larger which makes it a more sensitive measure than the electron density itself.

Furthermore, the size of the relativistic effects is estimated to be of almost the same

size as correlation effects in four-component DFT calculations.

In order to provide a closer look at the accuracy of approximate relativistic

Hamiltonians, we discuss the results for the homologous acetylene complexes given

by Eickerling et al. [64] in more detail. The difference electron densities rrel.(r) �
rnonrel.(r) obtained from four-component Dirac, ZORA-SO (including spin–orbit

effects), and scalar-relativistic DKH10 calculations are shown in Fig. 1a, d, g.

Although the relativistic effects are expected to be most pronounced for the case

of M ¼ Pt, one can observe significant differences even for the nickel complex.

The difference electron density map for the nickel complex contains different

circular minima and maxima due to the changes in the radial extension of the

atomic sub-shells. The innermost circular region of positive difference exhibits four

maxima around the nickel atom, from which the one oriented in the direction of the

acetylene ligand is more pronounced in the case of DKH10 than for the ZORA-SO

or the four-component Dirac density. These maxima correspond to local charge
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concentrations of the valence region of the nickel atom. Moreover, the scalar-

relativistic DKH10 Hamiltonian yields two more contour lines of negative differ-

ence than the Dirac or the ZORA-SO difference densities in the region around the

carbon atoms of the acetylene ligand. From the results of the nickel complex, one

obtains a first indication that the scalar-relativistic DKH10 Hamiltonian recovers

less of the relativistic effects than the ZORA-SO Hamiltonian.

The difference density maps for the palladium complex are depicted in Fig. 1b,

e, h. Here the situation is very similar to the nickel complex, but the relativistic

effects are more pronounced. The four maxima in the valence region of the metal
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Fig. 1 Difference densities in the molecular plane, r4comp(r) � rnonrel(r) for (a) Ni(C2H2), (b) Pd

(C2H2), (c) Pt(C2H2); rZORA(r) � rnonrel(r) for (d) Ni(C2H2), (e) Pd(C2H2), (f) Pt(C2H2); and

rDKH10(r) � rnonrel(r) for (g) Ni(C2H2), (h) Pd(C2H2), (i) Pt(C2H2). Values of positive and

negative difference densities are indicated by solid and dashed lines, respectively. Contour lines
are drawn at 	2, 	4, 	6, 	8 � 10n eÅ�3 with n ¼ 0, 1, 2. Note that the axes labels denote grid

points. (The figure is reprinted with permission from [64]. Copyright 2010 American Chemical

Society)
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atom are also present in this case, and two additional maxima are observed in the

metal–ligand binding region that are not present in the nickel complex. The scalar-

relativistic DKH10 results show deficiencies in the maximum which is oriented

toward the acetylene ligand as for the case of the nickel complex, and also the two

maxima in the bonding region of the Dirac difference density map are better

recovered by the ZORA-SO result than by the DKH10 one.

The difference density for M ¼ Pt is shown in Fig. 1c, f, i. As expected, the

relativistic effects are the largest for this complex, which contains only one

maximum in the positive difference region around the Pt atom, on the opposite

site of the acetylene ligand. This maximum is only present in the case of the four-

component Dirac and the ZORA-SO result, but not in the scalar-relativistic DKH10

one, which points to the importance of spin–orbit effects on the electron density.

When comparing to the other two complexes, the maximum is almost one order of

magnitude larger.

4.2 Significance of Electron Correlation: Fe(NO)2+

as an Example

In Sect. 3.1, it was mentioned that an independent-particle model used for the

electronic wave function (Hartree–Fock theory) does not consider effects in the

wave function which arise due to the correlated motion of the electrons. Early

studies analyzing correlation effects on the electron density were presented by

Bader and Chandra [79] for the H2 molecule, which was also subject of a later

study by Baerends et al. [80]. Bader and Chandra compared electron densities

obtained from extended Hartree–Fock and Hartree–Fock (HF) calculations to

understand how correlation effects affect the electron density. Following their

paper, the electron density is in the case of HF overestimated in the central bonding

region, whereas it is underestimated in the region around the nuclei. The authors

also presented difference density plots for the Li2 molecule arriving at the conclu-

sion that in this case, the correlation effects on the charge density are negligible,

because they are of the same magnitude as the accuracy of the density distribution

itself. Smith [81] extended the study of Bader and Chandra, incorporating Hþ
3
in a

comparison of CI and HF electron densities, regarding also the difference between

the atomic densities obtained from these calculations.

During the 1980s, various studies [82–85] presented correlation densities of

systems larger than H2. Stephens et al. [82] analyzed the influence of electron

correlation on the partitioning of the electron density into atomic contributions

(a decomposition to be discussed in Sect. 6.2) using BeO and CO as model systems.

The study states that the so-called zero-flux surfaces (compare Sect. 6.2) are not

very much affected by electron correlation. Gatti et al. [85] started then a systema-

tical study investigating correlation effects on the charge density as well as on the

Laplacian and on atomic properties of many three-atomic molecules. These authors
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compared the electron density obtained from CI calculations to HF calculations,

drawing similar conclusions as Bader and Chandra [79]. The electron density in the

bonding region is decreased by the consideration of correlation effects.

In 1991, Kraka, Gauss, and Cremer [86] undertook the systematic investigation

of correlation effects in Moller–Plesset perturbation theory of n-th order (MPn).
They took into account calculations up to fifth order and compared also MP2 to

HF for the CO molecule. The correlation corrections to the electron density

oscillate up to fifth order. The effects are smaller at the equilibrium geometry

and grow with interatomic distance. Cremer and He [87, 88] then published two

further studies that consider electron correlation as covered by DFT in compari-

son to wave function-based methods. Within the local density approximation

(LDA), electron density is enhanced in the bonding region and around the nuclei.

Compared to gradient-corrected density functional calculations, the effects of the

LDA functional are partially reduced, because electron density is shifted back

from the bonding region and the region around the nuclei into the valence region

of the molecule.

The study of Eickerling et al. [64] also contains a part that considers correlation

effects on the topology of the electron density. The authors use the same model

systems as for the study of relativistic effects and present a comparison with results

obtained from Dirac–Hartree–Fock (DHF) and DFT calculations. Incorporation of

correlation effects lowers the values of the density at the C–C and the C–H BCPs

for all model systems, which is in good agreement with the studies of Bader and

Chandra [79] and of Gatti et al. [85]. For the case of the M–C BCPs, there is no clear

trend visible. Considering M ¼ Pt and M ¼ Ni, the electron density is also lowered

at this BCP, whereas due to an error cancellation the values for M ¼ Pd are almost

equal for DHF and DFT.

Two very recent papers by Jankowski et al. [89, 90] investigate dynamical

correlation effects on the electron density for DFT calculations considering the

noble gas atoms neon and argon. The authors state that even though dynamical

correlation effects on the electron density are weak, the shape of the curves is very

sensitive to the changes in the electron density. Dynamical correlation effects are

not well represented by density functionals which contain either the VWN5 [91] or

the LYP [92] correlation functional. Better results are obtained when orbital-

dependent OEP2-f [93] correlation functionals are used.

We shall here present new results for correlation densities [rCASSCF(r) � rHF(r),
and rDFT(r) � rHF(r)] obtained from CASSCF and DFT calculations for transition
metal complexes. We choose a linear and a bent Fe(NO)2+ structure as model

systems. The result from a CAS(13,13) calculation shall serve as reference density,

in which static correlation is included, but the CAS can be considered sufficiently

large to cover also a substantial amount of dynamic correlation as is evident from a

detailed study of the spin density of [Fe(NO)]2+ [94] (for the consideration of

additional dynamic correlation effects CASPT2 calculations would be required).

Considering the Hartree–Fock orbital energies, the largest CAS feasible was cho-

sen, including the 13 orbitals depicted in Fig. 2 for the linear complex and in Fig. 3

for the bent one. The aim of this investigation is to finally compare DFT results to
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the CASSCF reference to analyze to which extent correlation effects are covered by

(semi-empirical) DFT.

The correlation density rCASSCF(r) � rHF(r) in the plane of the bonding axis for
the linear nitrosyl complex is shown in Fig. 4a. It takes values between �0.10 and

Fig. 2 DKH2-HF molecular orbitals 14–26 of the linear Fe(NO)2+ complex, which were used in

the CAS(13,13) calculation

Fig. 3 DKH2-HF molecular orbitals 14–26 of the bent Fe(NO)2+ complex, which were used in the

CAS(13,13) calculation
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0.05 e/Bohr3 which already shows that the correlation effects on the electron

density are not very large as noted in the previous studies [89, 90]. Around the

iron atom, the correlation density exhibits four minima on the bonding axis and the
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Fig. 4 Difference densities along the bonding axis of a linear Fe(NO)2+ complex, for DKH(2,0)

calculations. (a) rCASSCF(r) � rHF(r), (b) rDFT,BP86(r) � rHF(r), and (c) rCASSCF(r) � rDFT,
BP86(r). Values of positive difference correspond to red solid lines, whereas values of negative
difference are indicated by blue dashed lines and the solid black line denotes the region of zero-

difference. Contour lines are drawn at 	2, 	4, 	8 � 10n eÅ�3 with n ¼ �2, �3, �4, �5. The

contour values start at 	2 � 10�5 eÅ�3 and are then always doubled until 	8 � 10�2 eÅ�3
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axis perpendicular to it. These minima are surrounded by four maxima, such that

one can conclude that electron density is shifted from the bonding axis to regions

around the nuclei. The correlation density of the nitrogen and the oxygen atoms
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Fig. 5 Difference densities along the bonding axis of a bent Fe(NO)2+, for DKH(2,0) calculations.

(a) rCASSCF(r) � rHF(r), (b) rDFT,BP86(r) � rHF(r), and (c) rCASSCF(r) � rDFT,BP86(r). Values of
positive difference correspond to red solid lines, whereas values of negative difference are

indicated by blue dashed lines and the solid black line denotes the region of zero-difference.

Contour lines are drawn at 	2, 	4, 	8 � 10n eÅ�3 with n ¼ �2, �3, �4, �5. The contour

values start at 	2 � 10�5 eÅ�3 and are then always doubled until 	8 � 10�2 eÅ�3

124 S. Fux and M. Reiher



shows in contrast to the iron atom a different behavior. Here the difference density

exhibits minima on the axis perpendicular to the bonding axis, but for larger

distances also maxima can be observed. There is one minimum on the bonding

axis between the nitrogen and the oxygen atom. The difference density rDFT(r) �
rHF(r) and the difference between both correlation densities are shown in Fig. 4b, c.
In general, DFT recovers most of the regions of positive and negative differences

from the CASSCF correlation density. At the four maxima around the iron atom,

DFT overestimates the correlation density, whereas the minima on the bonding axis

are broader than in the case of the CASSCF reference. Summarizing our results, it

can be stated that the major part of the differences in the correlation density is

located directly around the atoms, but there are also four regions close to the iron

nucleus where the correlation density vanishes totally. At larger distances, the

correlation density tends to decrease quickly.

In the case of the bent structure, the correlation density rCASSCF(r) � rHF(r)
along the bonding axis is shown in Fig. 5a. The absolute size of the correlation

effects on the electron density is comparable to the one for the linear geometry. In

the region around the iron atom, the situation is reversed, as the maxima are now

located on the bonding axis and the axis perpendicular to it. Considering the

nitrogen and the oxygen atoms, part of the electron density is shifted from the

N–O bonding region to the nuclei as for the linear geometry. In addition, electron

density is shifted from both ends of the nitrosyl ligand to the axis perpendicular to

the N–O bonding axis. The difference density rDFT(r) � rHF(r) and the difference

between both correlation densities are shown in Fig. 5b, c. As for the linear

geometry, DFT recovers the correlation density reasonably well, except of some

deficiencies at the iron and the oxygen atom. Therefore, the difference density

distributions around the nuclei are almost identical when comparing CASSCF and

DFT for both geometries. They exhibit maxima directly at the nuclei, surrounded by

minima at intermediate distances, followed again by maxima which are located on

the bonding axis and perpendicular to it.

5 The Most Difficult Case: Contact Densities

The picture-change-affected DKH electron density and the electron density

obtained with the ZORA approach exhibit large deficiencies at the position of the

nucleus. The electron density at this position is called contact density and plays an

important role in the model theory of many spectroscopic techniques. An adequate

theoretical description of the field shift in electronic transitions in high-resolution

atomic electron spectra (first achieved by Ehrenfest [95, 96] and further developed

by Rosenthal et al. [97] and Breit [98]) is for instance closely related to the dif-

ference of the contact densities of the atom for both electronic states that are

involved in the transition. The isotopic field shift in the rotational spectra of a

diatomic molecule is proportional to the first derivative of the contact density with

respect to the equilibrium distance of the nuclei, whereas the isotopic field shift in
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the vibrational energy depends on the second derivative [99, 100]. The contact

density plays also an important role in M€ossbauer spectroscopy, because it can be

related to the chemical isomer shift [73, 74, 101], which was discovered in 1960

[102]. It depends on the differences of the contact density of the emitter source and

the probe [103]. A more detailed description of the basic principles of M€ossbauer
spectroscopy and contact densities can be found in [104]. In order to be able to

calculate these properties for atoms of the whole periodic table, one must ensure

that the contact density can be calculated with sufficient accuracy.

The contact density is dominated by the core-penetrating s-orbitals that are

strongly affected by relativistic effects. An adequate description requires therefore

a fully relativistic treatment of the electrons. In addition, the choice of the nuclear

charge distribution model has an effect on the accuracy of the calculated electron

density. In the nonrelativistic picture, the nuclei are considered to be point charges,

because it can be shown that the different nuclear charge distribution models

usually yield negligible energy differences when compared to point-like nuclei –

even for heavy nuclei [105]. The electron density features in this case a cusp at the

location of the nucleus which is described by Kato’s cusp condition [106]. In a fully

relativistic description, the choice of the nuclear charge distribution model becomes

important. For heavy atoms, the point-like description of the nuclei causes signifi-

cant errors, whereas the differences between the available nuclear charge distribu-

tion models are small. For a comprehensive review on the available models, we

recommend [107]. There are in general two possibilities to include these models

into calculations. Either the calculation is performed for point-like nuclei and

effects of finite nuclei are considered via perturbation theory, or they are directly

incorporated in the calculation. The perturbation theory approach can be found in

early studies [97, 98] on contact densities, whereas the direct consideration should

be more consistent [108, 109]. For the major part of the practical applications, it is

sufficient to use a simple model for the positive charge distribution in the atomic

nucleus [105, 110]. Two simple models are the homogeneous charge distribution

and the Gaussian charge distribution [108]. Also the three parameter Fermi model

[111] has been used.

The first attempts to obtain fully relativistic electron density distributions con-

sidering finite-nucleus effects can be dated back to Rosenthal et al. [97] and Breit

[98], who included the effects of a finite nuclear charge distribution via perturbation

theory. A direct treatment of the finite nuclear charge distribution model using a

three parameter Fermi model was then first presented by Fricke and Waber [108],

who calculated M€ossbauer isomer shifts.

In the case of solids, properties are calculated within solid-state density functional

theory, where mostly the simple model of an uniformly charged sphere is used, e.g.,

as shown by Svane and Antoncik [112]. A recent study by Mastalerz et al. [109]

investigated the basis set convergence for the calculation of contact densities at

finite nuclei. A most recent fully relativistic investigation of correlation effects on

the contact density with CCSD(T) was presented for mercury compounds in [113].

As a final remark to the calculation of the isomer shift, we refer to an alternative
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way to calculate it within DFT by expressing it as a function of the derivative of the

total energy with respect to the nuclear radius [101, 114].

In the context of approximate relativistic Hamiltonians, Mastalerz et al. [66]

analyzed the DKH electron density at the position of the nucleus for different orders

of the DKH transformation and investigate the effect of picture-change corrections

and different nuclear charge distribution models. We select some results of this

study considering the hydrogen-like Hg79+ highly charged ion for a more detailed

discussion. Because the study [66] focused on the electron density at the position of

the nucleus, the authors decided to analyze the 1/r2 weighted radial density [of

(58)], which is depicted in Fig. 6 for the Hg79+ ion. The authors compared the

weighted radial density obtained from fully numerical four-component and scalar-

relativistic DKH(2,0), DKH(5,0), DKH(2,2), and DKH(9,9) calculations. The

curves for point-charge nuclei feature in both cases [Dirac and DKH(n,0)] the

weak singularity at the position of the nucleus, and the position-dependent error

is clearly visible. The DKH(2,0) and DKH(5,0) curves cannot be distinguished

from each other. Hence, already a low-order transformation of the orbitals is

very accurate. In the case of a finite-nucleus model, the weighted radial density

approaches finite values at the position of the nucleus in all cases, which can easily
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Fig. 6 1/r2-weighted radial electron densities r1s1=2 rð Þ ¼ P2
1s1=2

rð Þ=r2 þ Q2
1s1=2

rð Þ=r2 Diracð Þ and
h

r1s rð Þ ¼ P2
1s rð Þ=r2 DKHð Þ n; 0ð Þ� of Hg+79 calculated with different nuclear models and basis sets.

The DKH(n,0) curves are picture-change affected. The abbreviations “pn” and “fn” denote a point-
charge nucleus and a finite Gaussian charge distribution model, respectively. “lbs” indicates that

the calculation has been performed with a larger basis set that includes more steep functions.

For comparison, the electronic energy in Hartree atomic units is given. Moreover, picture-change-

corrected DKH(2,2) and DKH(9,9) data of the contact density is included. (The figure is reprinted

with permission from [66]. Copyright 2010 Elsevier)
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be reproduced by Gauss-type basis functions. The picture-change-affected DKH

(n,0) curves exhibit large errors in the close vicinity of the nucleus and are located

above the Dirac curve, whereas the picture-change-corrected DKH(n,n) contact

densities match the Dirac contact densities [as would the picture-change-corrected

DKH(n,n) and Dirac curves], even for the second-order DKH transformation of the

property operator.

6 Electron Density in Conceptual Theories

6.1 Conceptual Density Functional Theory

Many principles of chemical reactivity such as electronegativity, chemical hard-

ness/softness and frontier orbital theory had been proposed mostly as rather phe-

nomenological descriptive concepts some decades ago. Many pioneering studies

discussed for instance the Mulliken electronegativity [115–118], the hard and soft

acid and base (HSAB) principle [119–123], and frontier molecular orbital concepts

[124–129]. These concepts were then later unified and rigorously defined in the

framework of conceptual DFT. Conceptual DFT was defined by Parr and coworkers

[130], who recognized that the electronegativity can be defined as the negative of

the derivative of the energy with respect to the number of electrons for a constant

external potential. A detailed description of the history of conceptual DFT and

various reactivity descriptors can be found in [131]. In principle, conceptual DFT

relies on a Taylor series expansion of the total-energy density functional [132] with

respect to perturbations in the external potential v(r) and the number of electrons N:

E v rð Þ þDv rð Þ;NþDN½ �

¼ E v rð Þ;N½ � þDN
@E

@N

 �
v rð Þ

þ
ð

dE
dv rð Þ
 �

N

Dv rð Þd3rþ 1

2
DNð Þ2 @2E

@N2

 �
v rð Þ

þ 1

2

ðð
d2E

dv rð Þdv r0ð Þ
 �

N

Dv rð Þð Þ2d3rd3r0 þDN

ð
d@E

dv rð Þ@N
 �

Dv rð Þd3rþ � � �:

(59)

The external potential and the number of electrons are both functionals of the

electron density. The derivatives of the energy with respect to either the external

potential or the number of electrons or both of them can be identified with several

chemical descriptors, shown in Table 1, that are related to chemical reactivity.

Themixed derivative which is first order in the external potential and in the number

of electrons is called the Fukui function f(r). It can be interpreted in two different

ways. The definition as a derivative of the electron density implies that it represents

the change in the electron density r(r) at the point r when the number of particles N
changes. However, the Fukui function characterizes also the response of the chemical
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potential with respect to a perturbation in the external potential. One distinguishes

between left- and right-hand derivatives of the electron density with respect to N:

fþ ¼ @r rð Þ
@N

 �þ

v rð Þ

 rNþ1 rð Þ � rN rð Þ (60)

f� ¼ @r rð Þ
@N

 ��

v rð Þ

 rN rð Þ � rN�1 rð Þ; (61)

where f + describes a nucleophilic and f� an electrophilic attack. Both can be appro-

ximated by a finite differences formula, expressing them as differences of the

electron density of the system in the initial state and after the addition or subtraction

of an electron (at the geometry of the neutral system). Other approaches for the

calculation of the Fukui function can be found in [133, 134].

Because the chemical reactivity descriptors (especially the Fukui function)

are useful tools in the analysis of chemical reactions also for those mediated by

heavy metal containing catalysts [135], it is important to investigate the influence

of relativistic effects on them. For the Fukui function, i.e., for the reactivity

toward nucleophilic and electrophilic attacks, such a study was carried out by De,

Krishnamurty, and Pal [136], who investigated two gold clusters (Au19 and Au20),

focusing on relativistic effects on vibrational frequencies and on the Fukui function.

The authors used effective core potentials (ECPs) to replace the core electrons of the

gold atoms in both the relativistic and the nonrelativistic calculations. They find that

the incorporation of relativistic effects results in minor changes of the Fukui function.

Table 1 Descriptors defined within conceptual DFT as energy derivatives

Symbol Descriptor Energy derivative

m Chemical potential @E

@N

 �
v rð Þ

w Electronegativity � @E

@N

 �
v rð Þ

r(r) Electron density dE
dv rð Þ
 �

N

w(r,r0) Linear response function d2E
dv rð Þdv r 0ð Þ
 �

N

¼ dr rð Þ
dv rð Þ

 �
N

� Chemical hardness @2E

@N2

 �
v rð Þ

¼ @m
@N

 �
v rð Þ

S Chemical softness 1

�
¼ @N

@m

 �
v rð Þ

f(r) Fukui function d@E
dv rð Þ@N
 �

¼ @r rð Þ
@N

 �
v rð Þ
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A second, more detailed study by Sablon et al. [137] investigates the effect of

relativistic Hamiltonians on the Fukui function and presents a comparison of four-

component Dirac–Coulomb, scalar-relativistic ZORA, spin–orbit ZORA, ECP, and

nonrelativistic calculations. PbCl2, Bi2H4, and (CH3)2SAuCl were chosen as model

systems. In contrast to the first study of De et al. [136], Sablon and coworkers report

changes in the reactivity, when incorporating relativistic effects in molecules other

than gold compounds. The scalar-relativistic calculations and the ECP calculations

describe the model systems equally well. The two-component spin–orbit ZORA

Hamiltonian and the four-component DC Hamiltonian yield similar results. Compar-

ing these to the scalar-relativistic results shows only minor variations.

From the dataset which is used in [137], Fig. 7 was created, which depicts the

Fukui function f�(r) (reactivity toward an electrophilic attack) for the 0.0004 a.u.

iso-density surface of the three above-mentioned model systems. The results

(CH3)2SAuCl

Bi2H2

PbCl2

non−relativisticrelativistic

a

c

fe

d

b

Fig. 7 The Fukui function f�(r) mapped on the 0.0004 a.u. iso-density surface. The relativistic

results have been obtained with the spin–orbit relativistic ZORA approach for PbCl2, the four-

component methodology for Bi2H2, and the scalar-relativistic ZORA approximation for

(CH3)2AuCl. The color scales are chosen in such a way that red (f�(r) values not higher than

1.0 � 10�4 a.u. for (a) and (b), 3.0�10�5 a.u. for (c) and (d), and 5.0 � 10�5 a.u. for (e) and (f)

indicates regions of poor reactivity toward electrophilic attacks, whereas blue [f�(r) values not
lower than 2.0 � 10�4 a.u. for (a) and (b), 1.5 � 10�4 a.u. for (b) and (c) and 1.7 � 10�4]

corresponds to highly reactive zones. (Figure created from data presented on [137])
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obtained from two-component spin–orbit ZORA (PbCl2), four-component Dirac

(Bi2H4), scalar-relativistic ZORA [(CH3)2SAuCl], and nonrelativistic calculations

(all model systems) are shown in this Fig. 7. In the case of PbCl2, the major

changes in the Fukui function when using a relativistic Hamiltonian are observed

directly at the Pb atom, where the relativistic effects are expected to be most

pronounced. The nonrelativistic results predict the Pb atom to be the preferred

position for an electrophilic attack, whereas the spin–orbit ZORA calculations

indicated the opposite, i.e., an attack at one of the two chlorine atoms. For the

case of Bi2H4, the four-component Dirac calculations predict a high reactivity at

both bismuth atoms on the opposite side of the hydrogen atoms. Regarding the

nonrelativistic results, the reactivity on the whole isosurface is significantly

lowered. Only in the case of the gold complex, the scalar-relativistic result

exhibits only minor changes at the gold and the chlorine atoms when comparing

to the nonrelativistic calculations.

6.2 The Quantum Theory of Atoms in Molecules

Bader’s atoms in molecules (AIM) theory [1, 138] is an interpretative theory which

divides the electron density in a molecule into atomic basins {Oi} such that it is

possible to define properties G(Oi) of an atom i in a molecule, which can then be

determined as integrals over the property density rG(r) of the corresponding basin:

G Oið Þ ¼
ð
O

d3rrGðrÞ: (62)

These “atomic” properties are then additive and sum up to molecular properties

if all basins are taken into account. In the limiting case of a single atom, the AIM

property must be equal to the corresponding property of the free, unbound atom.

The individual atoms in a molecule are in this context separated from each other by

the interatomic surfaces (IAS), which are usually called zero-flux surfaces. At each

point of the IAS, the normal vector n(r) is orthogonal to the gradient of the electron
density, which is expressed through the so-called zero-flux boundary condition

n rð Þ � rr rð Þ ¼ 0: (63)

AIM was first formulated by Bader [1] as a nonrelativistic theory and then later

studied by Cioslowski and Karwowski [139] within the relativistic regime. In the

nonrelativistic case, the partitioning of the molecule is uniquely defined in terms of

open quantum systems (atoms) through the zero-flux boundary condition, which

follows from the properties of the Lagrangian density. Due to a certain arbitrariness

in the expression for the relativistic Lagrangian density, the partitioning of the

atoms is no longer uniquely defined in four-component theory [139].
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7 Electron Density in Embedding Schemes

Usually, quantum chemical calculations focus on the calculation of molecular

properties like the electron density for a single molecule. Experimental electron

densities, however, are obtained from a molecular crystal, in which crystal-packing

effects may play a nonnegligible role and have to be considered in the calculation

[140–142]. In order to ensure an adequate accuracy in such calculations, the system

under investigation might be “embedded” in a suitable environment to include such

environment effects [143–148]. This can be achieved by dividing a large molecule

of a molecular crystal into smaller pieces such that calculations on each subsystem

are feasible. In the optimization of the orbitals of a subsystem, the interaction with

the other subsystems of the “environment” can be modeled by an embedding

potential. Due to this partitioning, calculations on the full system are avoided,

which decreases the computational effort.

One example for such an embedding scheme being a subsystem version of

DFT is FDE, which was introduced by Cortona [149] to study properties of solids

within DFT. It was then further developed by Wesolowski and Warshel [150], who

extended the FDE formalism such that it can also be applied to molecules parti-

tioned into smaller building blocks. The density of the full N-electron system is then

partitioned into an “active” subsystem r1, and a second subsystem r2, representing
the environment (“frozen” subsystem):

rtot rð Þ ¼ r1 rð Þ þ r2 rð Þ: (64)

The total energy Etot[rtot], appearing in (53), can then be rewritten as a bifunc-

tional [151] which depends on both subsystem electron densities r1 and r2:

Etot r1; r2½ � ¼ENN þ
ð
d3r r1 rð Þ þ r2 rð Þð Þ vnuc1 rð Þ þ vnuc2 rð Þ� �

þ 1

2

ð ð
d3r d3r0

r1 rð Þ þ r2 rð Þð Þ r1 r0ð Þ þ r2 r0ð Þð Þ
r � r0j j þ Exc r1 þ r2½ �

þ Ts r1 þ r2½ �;
(65)

where vnuc1 rð Þ and vnuc2 rð Þ are the electrostatic potentials of the nuclei of the

subsystems.

Except for a few special cases, the subsystems cannot be expressed in terms of

canonical Kohn–Sham orbitals of the full system with the consequence that the

kinetic energy cannot be partitioned entirely. There always remains a term which

depends on both subsystem electron densities, the so-called nonadditive part of the

kinetic energy:

Tnadd
s r1; r2½ � ¼ Ts rtot½ � � Ts r1½ � � Ts r2½ �: (66)

132 S. Fux and M. Reiher



Tnadd
s r1; r2½ � is commonly approximated by a kinetic energy density functional.

For a given environmental density (e.g., obtained from a KS-DFT calculation of the

isolated subsystem), the total energy bifunctional can then be minimized with

respect to the active subsystem using the Lagrange method of undetermined multi-

pliers with the constraint that the number of electrons in the subsystem is constant.

The electron density r1 can then be expressed in terms of canonical (subsystem)

Kohn–Sham orbitals:

r1 rð Þ ¼ 2
XN1=2

i¼1

cð1Þ
i rð Þ

��� ���2: (67)

These orbitals can be evaluated by solving the Kohn–Sham equations with

constraint electron density (KSCED):

� 1

2
r2

i þ vKSCEDeff r1; r2½ � rð Þ
� �

cð1Þ
i rð Þ ¼ eic

ð1Þ
i rð Þ; (68)

where the effective potential vKSCEDeff r1; r2½ � rð Þ ¼ vKSeff r1½ � rð Þ þ vemb
eff r1; r2½ � rð Þ is

divided into a sum of a KS effective potential and an effective embedding potential

which read:

vKSeff r1½ � rð Þ ¼ vnuc1 rð Þ þ
ð
d3r0

r1 rð Þ
r � r0j j þ

dExc r1½ �
dr1

vemb
eff r1; r2½ � rð Þ ¼ vnuc2 rð Þ þ

ð
d3r0

r2 r0ð Þ
r � r0j j þ

dEnadd
xc r1; r2½ �
dr1

þ dTnadd
s r1; r2½ �
dr1

:

(69)

The FDE approach is in principle equivalent to KS-DFT, given that the exact

expression for either the nonadditive kinetic energy or the corresponding kinetic

energy potential is known. Because both of them are unknown, the accuracy of FDE

strongly relies on the choice of the approximate kinetic energy functional. In order

to improve on the quality of the obtained electron density, Wesolowski and cow-

orkers [151] proposed the use of so-called freeze-and-thaw cycles, in which the

active and the frozen subsystems are exchanged in an iterative fashion.

Since FDE has been proposed, a number of studies investigate the accuracy of

FDE in an indirect way, in terms of criteria as for instance interaction energies

[151–156], equilibrium geometries [157], solvent effects [158–160], and molecular

properties [161] like dipole moments [162–165] and ESR hyperfine coupling

constants [166, 167]. A more detailed review on the applications of FDE can be

found in [168–172]. However, only very few studies analyze explicitly the electron

density and compare them with reference electron densities obtained from KS-DFT

calculations on the full model system.

The first studies dealing with embedding electron densities were presented

in 1996 by Stefanovich and Truong [173] who chose the Li+···H2O complex as

a model system and compare the electron deformation density which is defined as
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the difference between the total electron density and the sum-of-fragments electron

density for both FDE and KS-DFT results. Wesolowski et al. [152] investigated the

hydrogen bonded system (FH···NCH) presenting also electron deformation densi-

ties. These publications contain only a brief discussion of the electron densities and

do not systematically analyze the influence of different factors on its accuracy.

The first more detailed study concerning the accuracy of the electron density

obtained from embedding calculations was presented by Kiewisch et al. [174]. This

study focuses on a systematical investigation of different factors like the choice

of the basis set, the use of supermolecular basis set expansion (including basis

functions, located at the positions of the nuclei of the frozen subsystem) for the

optimization of the active subsystem, the number of freeze-and-thaw cycles, and

the choice of the exchange-correlation functional as well as the kinetic energy

functional. In addition, the changes in the topology of the electron densities were

taken into account by analyzing the negative Laplacian at the BCP of the model

systems, which can, according to Bader [1], be used to characterize the type of a

chemical bond. The study focuses on weakly bound systems, namely H2O···F
�,

F�H�F�, and an adenine–thymine DNA base pair, in which the subsystems

are connected by hydrogen bonds of different strength. The study states that the

choice of the kinetic energy functional, which is used for the approximation of

Tnadd
s r1; r2½ �, plays only a minor role, whereas the application of ghost basis

function leads to a significant improvement in the accuracy of the electron density.

In general, FDE works quite well for such weakly interacting model systems and

the accuracy which is reached when applying an adequate supermolecular basis set

in combination with the PW91k kinetic energy density functional is sufficient for

many practical applications when about five freeze-and-thaw cycles are applied.

The major part of the deficiencies of the embedding density is located in the

bonding region, which contains the border between the subsystems and arise due

to approximation of Tnadd
s r1; r2½ �.

The scope of this electron density study was then further expanded in [175] to

systems containing coordination bonds and ionic bonds, adopting the conditions

from the previous study by Kiewisch et al. (PW91k, supermolecular basis set and

five freeze-and-thaw cycles). Ammonia borane was chosen as a model system for

donor–acceptor bonds, whereas titanium tetrachloride and chromium hexacarbonyl

were incorporated to study ionic bonds of different strength. Even though the

electron density for ammonia borane is reproduced acceptably in the bonding

region between the subsystems, the negative Laplacian at the corresponding BCP

exhibits a wrong sign, which is a strong indication that FDE is not able to give an

adequate description for the coordination bond, while the magnitude of the density

is qualitatively correct. In contrast to ammonia borane, the density and the negative

Laplacian obtained for titanium tetrachloride exhibit fairly less deficiencies. Since

both fragments are charged and due to well-known peculiarities of the embedding

potential at the frozen subsystem, the so-called “electron leak” problem [163, 173],

an unphysical charge transfer between the Cl� fragment to TiClþ3 subsystem took

place, which could be overcome by additional position-dependent correction terms
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proposed by Jacob et al. [164]. In the case of chromium hexacarbonyl, which

contains even stronger metal–ligand bonds than titanium tetrachloride, recovering

the KS-DFT electron density is a challenge for FDE, because p-backdonation
becomes an important effect, which leads to significant covalent contributions in

the Cr–C bond. FDE, using the PW91k density functional for the approximation of

Tnadd
s r1; r2½ �, fails in the description of carbonyl complexes, because it is not even

possible to recover the expected orbital order and the electron density exhibits huge

deficiencies. Since still a lot of effort is put into the development of new kinetic

energy density functionals [176], these problems might be solved by the next

generation of kinetic energy density functionals.

Because ionic bonds play an important role in crystals of inorganic and metal-

lorganic species, we shall provide a closer look on the titanium tetrachloride

example from [175]. Titanium tetrachloride is a tetrahedral complex with strong

ionic interactions between the central metal atom and the ligands. A BP86/TZP

optimized structure, using the above-mentioned position-dependent correction,

is depicted in Fig. 8a, whereas contour plots of the electron density for the super-

molecular and the FDE calculation can be found in Fig. 8b, c. The major part of the
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Fig. 8 (a) BP86/TZP optimized structure of titanium tetrachloride (TiCl4). The double labeling of
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overlay in the picture, (b) supermolecular KS-DFT density, (c) embedding density, (d) difference
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Elsevier)
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deficiencies of the embedding density has its origin in the complex formation,

where electron density is shifted from the Cl� fragment toward the titanium atom.

These changes are not fully recovered in the region of the border between both

subsystems. The largest changes are observed between both subsystems directly

next to the TiClþ3 fragment on the axis perpendicular to the bonding axis. The

difference density between the KS-DFT reference calculation of the full system and

the embedding density is shown in Fig. 8e.

Considering the topology of the electron density of titanium tetrachloride, four

BCPs are found of which two are located in the plane that is depicted in Fig. 8.

BCP1 is located directly next to the border between the subsystems. The two BCPs

in the plane are located at the same positions in both the supermolecular density

and the embedding density. The values of the electron density and the negative

Laplacian at the BCP1, taken from Table 2, differ only by ~0.03 and 0.25 eÅ�5,

respectively. In contrast to the result for ammonia borane, the negative Laplacian

has the correct sign at both BCPs.

8 Conclusion

In this work, we reviewed important issues related to the calculation of the electron

density in quantum theory. We discussed the definition of the quantities “electron

density” and “current density” as defined by a continuity equation depending on the

many-electron Hamiltonian and wave function. In practice, both types of densities

are calculated from (quasi)relativistic Hamiltonians and wave function approxima-

tions. For this reason, we discussed the most important Hamiltonians – namely the

relativistic Dirac–Coulomb–Breit reference, the Dirac–Coulomb, the Douglas–

Kroll–Hess, the ZORA and the nonrelativistic Schr€odinger Hamiltonians – and

wave functions.

In an analysis of approximate electron densities, the most important observations

to make regarding the accuracy of approximate Hamiltonians are that in most cases

scalar-relativistic variants of the approximate Hamiltonian operators as ZORA and

DKH are sufficient to obtain a reasonable description of the electron density. The

differences to two-component Hamiltonians including spin–orbit effects are negli-

gible as long as one considers quantities that do not primarily feature spin–orbit

effects. These approximate Hamiltonian operators are in general reliable but may

produce densities deviating from the fully relativistic reference at the position of the

nucleus. For the innermost atomic shells, ZORA and picture-change-affected DKH

Table 2 Values of r(r) in
eÅ�3 and L(r) in eÅ�5 at the

bond critical point BCP1 of

titanium tetrachloride

BCP1 r(r) L(r)

Supermolecular 0.65 �1.73

Embedding 0.62 �1.98

Difference 0.03 0.25
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densities show significant errors. In the case of the DKH density, these can be

overcome by considering a picture-change transformation of the density operator.

Even for interpretive means – such as conceptual DFT – relativistic effects play

a significant role as highlighted for the prediction of an electrophilic attack to heavy

metal containing molecules and complexes. Although the changes in the Fukui

function f� for the lead and the bismuth complexes are significant, one can hardly

detect any differences between relativistic and nonrelativistic Fukui functions in the

case of the gold complex.

Finally, we emphasized that FDE is a helpful tool in the analysis of systems,

which are embedded in an environment, as is the case for a molecule in a crystal or a

molecule in a solvent. We reviewed results for a TiCl4 complex, which was divided

into a positively charged TiClþ3 and a negatively charged Cl� fragment to show that

with FDE even for subsystems connected by an ionic bond, reasonable results for

the electron density can be obtained.

9 Computational Methodology

All Hartree–Fock, CISD, CASSCF, and DFT calculations presented in Sect. 4.2

were performed with the MOLPRO2009.1 [177] quantum chemical software package

in combination with the second-order DKH Hamiltonian [31, 44, 45] and the

atomic natural orbital basis sets (ANO-RCC) [178–180] for which the second set

of polarization functions was omitted. In the DFT calculations, the BP86 [181,

182] density functional was used to approximate the exchange-correlation energy.

Owing to the large size of the basis set, a counter-poise correction was not

considered. The electron densities were calculated with MOLPRO (not including

the picture-change effects) and obtained on a cubic grid with step-size 0.02 Bohr

(not optimized for relativistic calculations) and then visualized with MATHEMACIA

[183]. The coordinates of the linear Fe(NO)2+ was obtained from a BP86/TZVPP

geometry optimization with TURBOMOLE [184, 185], whereas the coordinates for the

bent Fe(NO)2+ complex were taken as a subset from a larger complex from [186].
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Residual Density Analysis

Kathrin Meindl and Julian Henn

Abstract In this chapter the foundations and applications of the Residual Density

Analysis (RDA) are shown. The RDA is a concept for the detection and quantifica-

tion of features from residual density grids. These may be from XD, MoPro,

TONTO, or BayMEM. It can be used in radial function development, data proces-

sing and data reduction development, in the development of refinement strategies,

as a fingerprint method for systematic errors and their imprint onto the residual

density, and in day-to-day applications to the density and thermal motion models.

In particular, the RDA is used as a stopping criterion in Multipole Modeling as it

gives a measure for structural information (features) in the residual density distri-

bution. When no more features are present, thermal motion and density models fit

the experimental data with residuals distributed according to a Gaussian and only

noise remains in the residual density. The RDA cannot give a proof for the

correctness of a model, but it can disprove the expected matching with Gaussian

residuals between model and data. Applications of the RDA to electron reconstruc-

tions from Multipole Models and from an application of the Maximum Entropy

Method are given. Section 3.8 gives an application of the RDA as a fingerprint

method.
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r0 Residual density, difference density. Synonyms for the density obtained

from a Fourier synthesis with Fourier absolute coefficients from the

difference of the absolute structure factors and phases from the model

w Extinction coefficient; also weighted residual sum (w2) for least

squares fitting

1 Motivation

1.1 Special Needs in Charge-Density Studies

It is an easy task to give the bee-line distance between Göttingen and Berlin to an

accuracy of several 10 km; it is a harder task to give the distance between the

“Gänseliesl” in Göttingen and the “Brandenburger Tor” in Berlin to the accuracy of

several meters, and it is almost impossible to give the distance between the bill of

the goose and a detail of the “Brandenburger Tor” like the tip of the nose of Viktoria

to the accuracy of a few millimeters.

Also, the possible sources of error are very different for these tasks. While in

the first case not even the curvature of earth’s surface has to be taken into

account, nor differences in altitude, in the second case both will have to be

considered. In the third case, one might find that this distance is not even well

defined and changes with time due to tidal forces or local oscillations caused by

heavy traffic.

A similar situation arises when comparing standard structure determination for

small molecules to charge-density studies and finally to the topological analysis

with the typical discussion of the second derivatives of the electron density: while

standard structure determinations are rather robust and still give chemically mean-

ingful results also when structure parameters are affected by measurement errors

and parameter correlation, this need not be the case for charge-density studies, and

for the Laplacian it might even be questioned whether this is a well-defined

quantity, when static densities are constructed by deconvolution from a time- and

space average, the dynamic density.

When aiming at the highest accuracy, the emphasis shifts from avoiding coarse

mistakes to measurement, assessment, and control of all possible sources of error.

Also, instruments are needed to discriminate between true “measured” properties

of the electron density and artifacts from random- or systematic errors. The

quotation marks are used, because in reality the electron density is not measured,

but reconstructed from the diffraction data. Reconstruction implies use of diffrac-

tion-, density-, and thermal motion-models, all of which may contain several

simplifications. In the end, there may be chemically and physically different

solutions to the density reconstruction problem, which fit the diffraction data

equally well.

These considerations are made a bit more explicit in the following paragraphs.
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1.2 The Limited Use of R-Values

There are a variety of statistical descriptors and quality measures available in

crystallography. The probably most important single concept in use is the compari-

son or agreement between measured and predicted entities such as intensities or

moduli of structure factors. Several definitions are used differing in the entity they

refer to (intensities or structure factors) and in the weights assigned to individual

terms. These are called R-values, where the “R” abbreviates “residuals” – the part of
the data, that is left over, or which remains undescribed by the model. As the

residuals may be positive and negative, the absolute residuals or the residuals

squared are considered. These are summed up to the absolute residual sum, giving

a positive number or zero.

R1 ¼
P

hkl jjFobsj � jFcalcjjP
hkl jFobsj ; (1)

wR1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

hkl wjjFobsj � jFcalcjj2P
hkl wjFobsj2

s
; (2)

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

hkl ðIobs � IcalcÞ2P
hkl ðIobsÞ2

s
; (3)

wR2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

hkl wðIobs � IcalcÞ2P
hkl wðIobsÞ2

s
: (4)

Also, the “Goodness of Fit,” GoF, and the Rfree use similar residual sums. One

might think of these R-values in terms of a distance of the actual model from the

experimental data. Perfect agreement would result in each R-value being zero. But

perfect agreement is not expected, as the experimental data unavoidably contain

noise [2]. Furthermore, there may be a large number or even infinite many density

models with the same R-value (even if the R-value is zero!), as the phase informa-

tion is lost in these measures. And finally, the reconstruction process implies fitting

of a model to the data. For the fitting procedure, a choice must be made, which

entity (which R-value) is used for minimizing the distance between the experimen-

tal data and the model. Note that different choices lead to different “best models”.

1.2.1 Smaller R-Value: Better Model?

It has been emphasized above that the resulting model depends on the entities

considered (intensities or structure factors) for the comparison and, furthermore, in

which way measured and calculated entities are compared (unit- or other weights).
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This already makes clear that there is no strong correspondence between the quality

of a model and its R-values, because parameter changes affect different entities

such as intensities and structure factor moduli differently, resulting in different

“optimum models”.

To give an example: let us assume the experimenter decides to fit the density

model with respect to the agreement between measured and predicted structure

factor moduli. He finally gets a resulting R1-value of W. Now he wants to compare

the quality of these results with other published data, however, these were given

as R2-values. So he calculates what the R1-value means, when translated to an

R2-value and gets a result X. After reexpressing his results, he has the idea to do the
refinement again, this time directly with respect to the intensities, instead of the

structure factor moduli and he gets a result R2 ¼ Y. We kindly ask the reader to stop

here for some 30 s and think about the following question: is this result Y greater,

equal or smaller than X? Please make an educated guess before you continue

reading.

Before we come back to this question, we briefly discuss another situation.

Suppose there is excellent high-resolution data and an independent atom model

(IAM) is fitted to the data. Let us assume the atoms move only harmonically. After

the model converged to its final values, anharmonic motion parameter refinement

is included for all heavy atoms, which are still considered to be spherically

symmetric. The R-values will fall further, however, the resulting density model

is not necessarily better, as anharmonic motion parameters will artificially

account partly for the aspheric electron density due to chemical bonding, to

compensate for the inadequate spherical static density model. In this case, a

smaller R-value just expresses that the experimentally and theoretically obtained

intensities are in better agreement; however, they are in better agreement for the

wrong reasons. This kind of error, to obtain better agreement for the wrong

reason, is very important in charge-density studies. Although this last example

may be a bit trivial, however, it expresses one point very clearly: R-values do not

say anything about how physically or chemically reasonable a model is. R-values
do not prove a model to be better than another one, they just indicate agreement

but the agreement can be achieved by any combination of density- and thermal

motion parameters, which need not be physically and chemically meaningful.

This is of special importance in charge-density studies, with highly flexible

models, correlating model parameters, and small R-value differences between

competing models.

Now back to the other example. Did you make a guess? You still can, if you do

not read on. But now we have to go on and solve the riddle. The R2-value

obtained for a refinement against structure factor moduli was X, while the

R2-value for a refinement against intensities was Y. Of course, Y will in general

be smaller than X. That is because it makes a difference when refining against |F|
or against I and an optimum for one case is not necessarily also an optimum for

the other case.

When the experimenter now decides to compute the R1-value from R2 ¼ Y, he
will obtain a result Z that is in general larger than W.
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1.2.2 Global and Local Measures

Despite the shortcomings of R-values already mentioned, there is yet another aspect

of quality measures that becomes increasingly important in charge-density studies.

This is the question of local and global measures.

In charge-density studies, typical questions are about the details of the electron

density: is there a positive or a negative charge at this atom? Are there VSCCs at a

given atom? And so on. Two different charge-density models may have more in

common than differences, e.g., when one model employs an Al3þ scattering factor,

whereas in another model the Al atom is considered to be neutral. Or in one model

anharmonic motion of an atom is considered, and in the other not. Or two models

just differ in the set of radial screening parameters for the spherical core density k or

for the aspheric valence density k0.
Because the changes in the models are so small, the R-values, which measure the

total or global agreement, also change only little. It would sometimes be helpful if

the local description also could be compared, i.e., if the local environment of an

atom or a group of atoms could be analyzed with respect to the influence of certain

parameters like those above mentioned.

Summary: R-values just measure global agreement, but there may be many different

density models, which all agree to the same degree with the data, even in the case of

vanishing R-values. In contrast to standard structure determination, in charge-density

studies R-values are also not able to establish the superiority of one model over another.

As a consequence, further quality criteria in addition to R-values are needed.

1.3 The Residual Density: Flat and Featureless?

What is known about the properties of the residual density? In the relevant litera-

ture, one finds the phrase that the residual density should be “flat and featureless”

[3] and that this is the most important single criterion. But what exactly does this

mean? “Flat” is easy to understand, it means that the absolute values of residual

density peaks and holes should be as small as possible. But how is the content of

features in the residual density assessed? How is it possible to prove the presence of

features in the residual density?

To show that the residual density does not contain features is of importance for

several reasons. First of all, it proves that the model is able to describe the experi-

mental findings in the whole unit cell and that the model parameter values have been

adjusted appropriately. Features in the residual density are a hint toward an incom-

plete or inappropriate model, wrong parameter values, or hidden sources of error.

Similar to the R-values, also the absence of features in the residual density does not
prove the model to be correct in a mathematical sense, but the opposite holds:

features in the residual density prove inappropriateness in the model-to-data rela-

tionship. The source may be in the experiment (data measurement, data processing)

or in the theoretical and modeling part (inappropriate density- or thermal motion
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model, oversimplified diffraction theory). We will come to the possible sources of

error later more explicitly. The most important thing here is: as long as the residual

density contains features, there is information in the residual density about a

mismatch between data and model. This information can be used to identify and

eliminate sources of error, which makes the final results more accurate and reliable.

For this, however, it must be clear how to measure features in the residual density.

The residual density should be flat and featureless. But how can it be shown that a given

residual density is flat and featureless?

1.4 Learning from Mistakes

1.4.1 Software Handling Errors

Although this topic does not seem to be of scientific interest, it is, however, of

practical interest, especially for those, who actually do the refinements. As science

is not taking place in an ideal world with ideal working conditions but in the real

world, with sometimes short notice of deadlines, high expectations of the results

and over hours, fixed-term contracts, with changes in the scientific staff, it is only

natural, that handling errors occur. The interest here is of course in those handling

errors, which are not automatically detected by the software. An example for this in

a multipole refinement is given when a multipole model is set up in a way that resets

hydrogen bond distances to preassigned values from neutron diffraction data, but

accidentally the RESET command is not invoked. The hydrogen atoms are then not

reset; however, their positions are also not refined. This introduces an error which

might not be detected as errors stemming from hydrogen atoms often have seem-

ingly only a low impact. One could easily go on in the refinement without realizing

that something went wrong. When finally, at the end of the whole refinement, the

error is detected, it might not be sufficient to just activate the RESET command and

much of the work has to be redone. This example might appear a little specialized,

however, many more such handling errors exist and are sometimes not detected.

If the residual density distribution was concomitantly analyzed, this kind of errors

can be avoided. This, however, requires an easy-to-use and easy-to-interpret analy-

sis tool.

1.4.2 Disorder

Another topic of interest is disorder, which might not be obvious, when the molecule

under consideration is large and has bulky groups, such as tBu, when the occupation

number is close to one or when a disordered atom is in a bond. Disorder may,

nevertheless, have a significant impact on the model due to parameter correlations.
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A spatially well-localized error in the model may influence all other parameters due

to parameter restrictions and correlations. As an example, one may think of the

monopole parameters. These are interconnected by the restriction that they sum up

to the total number of electrons, which is constant during the refinement. If disorder

is present but not taken into account, the monopole values (and with high probability

other model parameters, too) of the disordered part are wrong. This also affects the

other monopole values via the above-mentioned constraint. If disorder is present, it

needs to be described. The problem may be to detect disorder in the first place.

1.4.3 Overfitting

The number of model parameters and observed data needs to be in balance. For

many parameters and few observations, there may be many parameter value

combinations, which fit the experimental data all very well. Not a single set of

parameter values out of these needs to be physically or chemically meaningful.

A problem of this kind would arise, for instance, when the diffraction data are not of

the resolution needed for a charge-density study, however, a multipole expansion is

performed. Despite this inappropriateness of the model, the R-values would of

course decrease. This may sound trivial, but it is not, because high-resolution

data may be sufficient for the refinement of dipoles of the heavy atoms, however,

for quadrupoles and higher moments, the data may not be sufficient. Where exactly

is this border between overfitting and appropriate parameterization? Also in these

cases, it would be helpful to analyze the residual density locally and globally. If the

local analysis does not indicate progress in the fitting, the atom is probably over-

fitted. Analysis tools may help in these cases also to mark the border between

predicted density parameter values such as the ones obtained from an Invariom

refinement [4] and parameter values derived from the data.

1.4.4 Sharing Experiences

In the day-to-day work of charge-density refinements, the search for systematic

errors has to be done over and over again for each individual refinement. There are

individual errors, which will probably repeat and there are errors more specific to

the charge-density problem at hand. How much easier would it be, if there was an

indicator warning of certain mistakes or systematic errors. It would be helpful if one

could picture the effect of an error and would know immediately, what is going on,

because the characteristic imprint of this error was described earlier in the literature.

One would learn faster not only from own mistakes, but also from those made by

others. The refinement process would become more efficient. Moreover, one would

learn the more, the more mistakes are made. The word “mistake” should be taken

here without valuation, as a neutral word describing a probably unexpected mis-

match or discrepancy between predicted and measured values or between predicted
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and reconstructed charge-density distributions. The charge-density community

would take advantage of such indicators as a whole, because everybody would

learn from everybody else, if those indicators existed and if the charge-density

community as a whole was open enough to discuss such “critical” things.

1.5 1001 Hidden Sources of Error

Some sources of error were already given above. What else may cause a mismatch

between predicted and measured entities? This list might get quite long. The reason

is that the more accurate the experiment gets the finer the effects are that disturb or

even destroy the results – sometimes without a warning and with no obvious sign.

Whereas standard structure determination is rather robust and may forgive small

systematic errors, the situation differs in charge-density studies. Two examples are

given in the following.

Suppose there are Renninger [5] reflections in the measured data. In standard

structure determination, these play a role mainly by preventing the determination of

the correct space group, as systematic absences are obstructed by multiple dif-

fracted intensities. Once the correct space group has been established, the problem

of Renninger reflections can in most cases safely be ignored, although these diffract

not only in otherwise systematic absent reflections but in others, too. Also, the

missing intensity from the strong reflection that is multiply diffracted does not play

a crucial role. In charge-density studies, however, all of these errors will affect the

values of model parameters, e.g., the monopole values.

The other example is thermal diffuse scattering (TDS). It is well known that TDS

may account for more than 25% of the intensities of the weak reflections [6].

In standard structure determination, this will not affect bond distances, but thermal

motion parameters. These are, however, affected only little. In charge-density studies,

these artificially large intensities may be described by artificially induced changes in

the mono- and multipoles and will certainly affect the anharmonic motion parameters

(if refined), which values are determined mainly from the high order data.

Both topics (and many more), Renninger reflections and TDS, will become more

and more important in future charge-density studies as for higher and higher accuracy

these effects will be more and more disturbing. By now, there may be hundreds of

experimental data sets waiting for new methods to correct the data a posteriori or the

theory for these effects. More, possibly hidden, sources of error are:

l Errors on operating the diffractometer, the data processing software or the

refinement software
l Accidental disturbance of the measurement by temporary power supply break-

down, temperature fluctuations at the detector, the crystal or at the X-ray source,

cosmic rays, natural radioactivity
l Errors in absorption and extinction corrections, Renninger reflections
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l Errors in Lorentz and polarization corrections
l Errors in the error model
l Thermal diffuse scattering
l Limited flexibility of the density model
l Disorder and libration
l Anharmonic motion
l Signal overflow at the detector
l Electric noise in the detector, dark currents
l Radiation damage of the crystal
l Wrong scattering factors, e.g., nonrelativistic for heavy atoms
l Beam impurities such as l/2 scattering, diverging beam, nonflat beam profile

or spectral truncation
l Higher order diffraction
l Crystal not bathing in the beam, not adequately centered, moving during mea-

surement, chemically instable, etc.
l Wrong, missing or inappropriate incident beam correction
l Inappropriate conversion factors for the detector
l Data scaling
l Additional diffraction by ice, the pin holding the crystal, oil, air, the beam stop,

or the monochromator
l Data integration errors

Admittedly, some effects have been mentioned several times now, however, it is

also obvious that the list is not complete. Some of the systematic errors should be

attributed to the theory. As an example, let us take again the Renninger reflections.

Their appearance is a natural consequence of a very high crystal quality and strong

intensities and is expected. However, the simplified theory used does not include

the description of Renninger reflections, therefore the standard theory applied,

which provides the connection between the electron density distribution in the

unit cell and the diffraction pattern, should be extended to include these effects.

This, however, is not accomplished on the fly.

One may optimistically assume that extinction corrections are small for small

extinction coefficients w << 1 (for a definition of w, see Equation (26)). It has been
shown, however, that this is not true [1]. For an extinction coefficient of w ¼ 0.049,

the “correction” is much larger than all changes induced by employing a multipole

model instead of the spherical IAM. As a consequence, little errors or only a little

imprecision in the correction method might have a large effect on the density

model. We will come back to this example later.

If one tries to minimize a systematic error by changing the experimental con-

ditions, one almost always reinforces another error. For example, the lower the

experimental temperature, the better rotation disorder of methyl groups is pre-

vented; however, at the same time the probability for extinction effects rises due

to the lower thermal motion and accordingly better diffraction.

Also, some of the systematic errors will compensate each other at least partly.

A hypothetical example: when the background signal is measured too strong, it may
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compensate for some reflections with the presence of TDS, which peaks under the

Bragg signals. In this case of error compensation, the effective deletion of one

source of error may deteriorate the situation as long as the counteracting source of

systematic errors is not deleted, too.

May this be as it is, the validity of the experimental results is limited by the

systematic errors. This situation is in charge-density studies much more demanding

than in conventional crystallography.

Any one of the above-mentioned possible sources of error has the potential to

completely spoil a charge-density study. This might not even be obvious, as small

R-values and good fitting statistics may give the impression that everything is fine.

It is therefore of increasing importance to assess, control, and quantify these

errors as the wind needs to be tempered to the shorn lamb.

1.6 The “Traditional” Approach for Evaluating the Quality
of a Refinement

Until recently, it was common to “prove” that the residual density is flat and

featureless by showing difference density plots in selected planes, often chosen in

a way as to contain the heaviest atoms. Sometimes, these plots were calculated for a

resolution well below of the experimental one, insinuating explicitly, or, more

frequently, implicitly, that features appearing at higher resolutions are pure artifacts

from experimental noise – which is not the case. The selection of the planes and the

step width of the contour lines were chosen freely. If the plane containing the

highest difference peak and the deepest hole, which also often appear in the vicinity

of the heaviest atom, was not shown, usually nobody would ask for it.

This situation has come about since there was a common understanding that

difference densities need to be featureless, but no generally accepted standard

procedure how to prove that a difference density is without features was known.

There were just no general standards available. It is, however, well known that the

largest peak and deepest hole need not appear in a molecular plane, and that features

tend to accumulate at special positions or symmetry axes in the unit cell. For this

reason alone, it is important to analyze the whole unit cell and not only subjectively

selected planes. Furthermore, there should be a criterion available, which tells

whether features in the residual density are of truly statistical random error. If

they are not, this means that the model is inadequate and all properties derived from

the model may be spoiled. It is even more problematic that it is impossible to tell

which of the model-derived properties are not affected. But as indicated in the

introduction, as a rule of thumb one can regard standard structure parameters as

being relatively robust, whereas the second derivatives of the charge-density and

the Laplacian are regarded as most sensitive. The Laplacian, however, is most

important when the electron density is interpreted chemically, as it is connected to

the valence shell charge concentrations (VSCCs).
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2 Basic Ideas and Aims of the RDA

It would go much too far to state that the RDA is able to solve all the above-

mentioned problems, but it is true that the RDA touches these in one way or the

other. For example, the RDA allows for an assessment of the whole residual density

in the unit cell. The RDA plots allow for an estimate to which degree maximum

peak and deepest hole fit naturally in the residual density distribution. How “flat”

and “featureless” the residual density is can be seen from an RDA plot. The

difference between an MM or a MEM refinement and an IAM refinement can be

quantified in terms of “gross residual electrons” or in “percentage of features”

(POF). The influence of data processing such as extinction correction can be

translated to a number of gross residual electrons. This number may be compared

to the difference in gross residual electrons from IAM and MM or IAM and MEM,

thereby giving an impression of how sensitive the output of an MM or MEM

refinement is with respect to extinction correction procedures. In summary, the

RDA is a first step toward unifying and standardizing the description of experimen-

tal (and data processing) sources of error.

The basic idea is that the residual density contains extremely valuable informa-

tion about modeling errors and modeling inadequacies. Modeling in this context

comprises also data collection and reduction as well as the scattering theory, the

density- and the thermal motion models, and all theories, assumptions, approaches,

and simplifications entering at any stage, e.g., assumptions about the background

signals or spot profiles. Why is data collection and reduction a part of modeling?

Because the data collected is supposed to be Bragg data corresponding to mono-

chromatic X-rays deflected from a crystal with perfect periodicity.

The basis idea is further to extract this information from the residual density,

i.e., to analyze the residual density, hence Residual Density Analysis. In the

second step, the information gain should be used to improve the modeling, if

necessary.

A very important aim is also to give the term “featureless” a meaning, i.e., to

derive a quality criterion that tells whether or not the residual density distribution in

the whole unit cell can be considered featureless. The development of these ideas

was continuously accompanied by the question how things would be in an ideal

world. This sharpens the expectations and makes it easy to differentiate between the

general and the special cases. So, for deriving the residual density descriptors, we

just follow this line and start with answering the question:

How would the residual density look like after a refinement in an ideal world?

In a very ideal world without noise and background signals and with a perfect

diffractometer, with a perfect detector and a perfect scattering theory, a perfect

imperfect crystal and unlimited resolution, there are no residuals at all and

correspondingly no peaks and holes in the residual density. If you try to picture

this residual density distribution in the unit cell in your mind, you will see a

completely flat “distribution” with only one value, which is zero and which

completely fills the unit cell. Mathematically, this situation can be described
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either as a probability density distribution with probability one for the residual

density value zero and with probability zero for other residual density values.

It can also be described as a three-dimensional manifold of the residual density

value zero completely filling the unit cell. For the next paragraph, we will stick to

the second meaning.

What follows from this picture when there are small imperfections in the

experiment, say, a little noise in the data? The resulting residual density distribution

cannot be a three-dimensional manifold any more, because there will be holes in

this distribution with positive as well as negative residual density values, separated

by the zero residual density manifold. The zero residual density manifold will

topologically reduce to a surface that is wrapped into the unit cell. This zero

residual density surface, when unwrapped, may comprise a very large surface,

much larger than any unit cell surface. If this area approaches infinity, which will

happen when the surface is bent forth and back on every spatial scale, then the

three-dimensional manifold is approached again. On the other hand, if this surface

becomes approximately as large as a unit cell surface (in an order of magnitude

sense), the topological surface also approaches a two-dimensional manifold. In all

other cases, a manifold with a dimensionality between 2 and 3 is approached.

Which value is approached exactly can be measured in the framework of fractals,

fractal dimensions, or, more precisely, fractal dimensionality [7]. The word “fractal”

is Greek and means “broken.” This refers to the dimensionality of the manifolds,

which, in contrast to the Euclidian, topological dimensions we are used to (zero, one,

two, and three) may, but need not, assume “broken,” that is noninteger values.

Of course, the residual density value zero is just an example, the dimensionality

can be determined for all values between the deepest residual density hole, r0,min, and

the largest residual density peak, r0,max. As a final result, one gets the fractal

dimension distribution, df(r0) (more accurately it would be termed fractal dimension-

ality distribution, however, the idea was coined a “fractal dimension” concept and

that is the term to be used here), of the residual density in the whole unit cell.

2.1 The Fractal Dimension Approach

2.1.1 Why Fractals?

Should the reader search for a deeper rooting of the RDA in the area of fractals, he

or she will sooner or later be disappointed. There is no deeper connection of these

topics as the connection already mentioned: For an ideal model, and ideal, noise-

free data, and unlimited resolution, the zero residual density manifold will be a

three-dimensional continuous manifold completely filling the unit cell. Any devia-

tion from this ideal situation therefore must result in a manifold with dimensionality

smaller than three. That is it!

The fractal dimension approach was just the access that was chronologically

chosen first. Other approaches also exist. For example, in Sect. 3.2 the improper

Residual Density Analysis 155



probability density approach will be discussed. Both approaches are completely

equivalent.

2.1.2 The Residual Density Descriptors egross, enet, and d f(r0)

The residual density descriptors should be able to describe the residual density

distribution conclusively. Therefore, these descriptors should give answers to

the questions: What is the total error? Is there an excess or a deprivation of

electrons in a part of the unit cell? Is the residual density flat? Is the residual

density featureless?

2.1.3 The Total Error and egross

The total error, including the noise, is described by the number of “gross residual

electrons”:

egross ¼ 1

2

ð
V

jr0ðrÞjd3r: (5)

When every electron is in its correct place, only noise is left over and the

number of gross residual electrons will be at a minimum value. This measure may,

but need not, be evaluated for the whole unit cell. If evaluated for the whole unit

cell, the number of gross residual electrons is a global measure of quality.

If evaluated for a part of the unit cell, e.g., in a box around the heaviest atom, it

is a local measure.

2.1.4 Local Excess Electrons and enet

The total number of electrons in the unit cell is described by F000, which corre-

sponds to the undeflected beam that is not measured and to the constant term in the

Fourier sum. By scaling, it is assured that DF000 ¼ F000,obs � F000,calc ¼ 0, such

that by definition there will never be excess electrons or a lack of electrons in the

whole unit cell. When, however, only a part of the unit cell is considered, the

number of “net residual electrons,” enet, may assume a positive or a negative

number.

enet ¼
ð
V

r0ðrÞd3r: (6)
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While egross is always a positive number, enet may be positive or negative or zero.

From the definitions follows

� egross � 1

2
enet � egross: (7)

When one of the equal signs holds, all errors in the volume under consideration

stem from missing or excess electrons.

2.1.5 Features in the Residual Density and d f(r0)

First, it is explained how the fractal dimension is defined and then how it is

implemented.

For a given manifold to calculate its fractal dimension, one divides the manifold

in cuboids (or in quadrangles) of characteristic length e. Then the number N of

cuboids is counted, which contain the part of the structure of interest. In this

application, this structure would be a residual density iso-value r0. The fractal

dimension of this residual density iso-value is then defined as:

dfðr0; eÞ ¼
logðNðeÞÞ
logð1=eÞ (8)

with

1=e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðnx � 1Þ ðny � 1Þ ðnz � 1Þ3

q
(9)

and nx, ny, nz being the number of residual density grid values in x, y, and z
direction.

The determination of N(e) is important. The residual density grid mesh is

assumed to be so fine that all values between two adjacent residual density grid

points are taken only once.

Although this concept can be used to quantify features more precisely, as will be

shown later, the most important information is just drawn from a graphical repre-

sentation of the fractal dimension for all residual density values: If the shape is a

parabola, the residuals are distributed according to a Gaussian. The residuals are not

systematic then and there is no structural information contained in it. On the other

hand, if there are shoulders, if the distribution is asymmetric or not a parabola, this

clearly indicates that the residual density contains information for improvement of

the refinement.

For the importance of the logarithmic scale, see Figs. 1 and 2. These refer to the

same data, however, presented in different ways. A residual density grid was

calculated for the multipole refinement of experimental high-resolution data of

S(NtBu)3 [8]. In Fig. 1, the frequency of residual density values has been counted
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and represented in form of a histogram. The reader should now have a look at the

figure and try to estimate, whether or not the distribution of the histogram shows a

Gaussian curve, before proceeding with reading.

Fig. 1 Frequency f of residual density values r0 after multipole refinement of S(NtBu)3. Is it a

Gaussian, yes or no?

Fig. 2 Logarithm of the frequency f of residual density values r0 after multipole refinement of

S(NtBu)3. If the residuals were distributed according to a Gaussian, the shape of this logarithmic

representation would be a parabola
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Many readers will hopefully agree that the shape is clearly reminiscent of

a Gaussian: there is only one maximum, the distribution is symmetric, and there is

the typical change in curvature. Only in the periphery, the symmetry is not main-

tained strongly and there are small gaps, but this may as well be so just by accident.

The logarithm of the frequency distribution is shown in Fig. 2. In the range

close to the center, it resembles a parabola, however, in the periphery the devi-

ations from the parabolic shape are quite distinct and they do not give the

impression of random statistical fluctuations but of being systematically too

large. This is indeed the case.

While Figs. 1 and 2 demonstrate the importance of the logarithmic scale, there

are still two important steps missing to convert Fig. 2 into an RDA plot. The

difference in the RDA is what is counted and how it is counted. Let us start with

the latter. Whereas in Fig. 1 and 2 it was counted how many grid values are within a

given small range, e.g., between 0.10 and 0.11 eÅ�3, i.e., the data were binned, in

the RDA it is counted which residual density values are between neighboring

residual density grid points, i.e., the data are not binned.

For example, when at adjacent grid points, say in x-direction, the residual density
values are�0.1682 and �0.0976 eÅ�3 then in the frequency table the values for all

integer multiples of 0.01 eÅ�3 between these limits are incremented by one. That is

for the residual density values �0.16, �0.15, �0.14, �0.13, �0.12, �0.11,

�0.10 eÅ�3. This is done for each of the three independent directions. So far for

the “how”, now for the “what”.

While in the histogram approach small grid volumes are counted (i.e., grid points

with attached volume, with a residual density value within certain limits), in the

RDA the faces of grid points containing certain residual density values (such as all

positive and negative integer multiples of 0.01 eÅ�3) are counted. For an example,

see Fig. 3. The blue line represents the residual density value zero as an example
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Fig. 3 (a) Residual density value zero (blue curved line) and residual density grid (straight gray
lines) of an arbitrary example structure. (b) Evaluation of a residual density plane. The short black

lines contribute to df(r0 ¼ 0)
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and the gray lines represent the grid (Fig. 3a). The short black lines in Fig. 3b

indicate those gridlines, which are intersected by the residual density value zero. For

the fractal dimension determination of the residual density value zero df(r0 ¼ 0)

only those short black lines contribute. For a three-dimensional grid, the borders

between adjacent grid points are no longer lines but surfaces.

Equations (8) and (9) still depend on e, which is a bit of a drawbackwhen onewants
to have an absolute scale. However, for comparisons of different density or thermal

motion models fitted to the same experimental data, this is already sufficient.

The dependence on e raises the question: is there a natural choice for the

residual density grid? On the one hand, the grid should be fine enough to show

all relevant details, however, it also needs to be in balance with the experimental

resolution.

2.1.6 Resolution in Real and in Reciprocal Space

When diffraction data are collected up to a given resolution and the collected data are

Fourier-transformed to restore the original function, the high frequency components

above the resolution threshold are missing, one has effectively applied a low-pass

filter. Therefore, the restored function shows less detail, it is smoother. Accordingly,

if this restored function is sampled in real space, there is a minimum threshold for the

spacing, which, when used, will enable to exactly reproduce the Fourier coefficients.

If the spacing is made finer, only computing power and memory is wasted.

For example, an audio CD is sampled with a rate of approximately 42 kHz. This

is sufficient to restore all frequencies in the music up to 21 kHz, which is assumed to

be satisfactory for most people.

The connection between sampling frequency and the maximum frequency

reconstructible, the bandwidth limit, is given by the Nyquist sampling theorem

[9]. This theorem imposes restrictions on the choice of nx, ny, and nz in (8) and (9).
We are now going to have a look what the Nyquist sampling theorem implies for

the RDA.

Suppose the data were measured completely up to a resolution now given in the

maximum indices h, k, and l. From the Nyquist sampling theorem, we can immedi-

ately tell the spatial resolution to be chosen for the residual density grid.

nx ¼ 2 hj jmax

ny ¼ 2 kj jmax:

nz ¼ 2 lj jmax

(10)

2.1.7 Expectation Value for d f(0)

If we take (10) as a convention, we can put it into (8) and (9) for the calculation of

an expectation value for df(r0 ¼ 0). How many times can the residual density value

zero be assumed in a residual density grid?

160 K. Meindl and J. Henn



There are (ny � 1)(nz � 1) faces of cuboids in one x-layer and (nx � 1) of those

layers, which we chose to match (2|h|max � 1), resulting in the appearance of the

residual density value zero to be at most (2|h|max � 1)(ny � 1)(nz � 1) for the

x-direction. Similar formulas can be derived for the y- and z-directions, leading in

total to

Nmaxðr0 ¼ 0Þ ¼ ð2 hj jmax � 1Þ ðny � 1Þ ðnz � 1Þ
þ ð2 kj jmax � 1Þ ðnz � 1Þ ðnx � 1Þ
þ ð2 lj jmax � 1Þ ðnx � 1Þ ðny � 1Þ (11)

which is the maximum number. We are, however, interested in the average number.

This is derived from (11) by taking the half, because every time a border is crossed

between two adjacent residual density grid values, there is a chance of ½ that the

residual density sign changes. If it changes, the residual density value zero has been

assumed at least once somewhere between the grid points (although the value itself

need not appear as a grid value).

Nðr0 ¼ 0Þh i ¼ 1

2
Nmaxðr0 ¼ 0Þ: (12)

Taking (8)–(12) together, it is possible to calculate the expectation value of df(0)
with a pocket calculator from the maximum indices in h, k, and l. For example, for

|h|max ¼ |k|max ¼ |l|max ¼ 25 one obtains:

logð0:5� 3� 493Þ
1
3
logð3� 493Þ ¼ 2:83721: (13)

To test the derived formula, a grid of 50 � 50 � 50 Gaussian distributed

random numbers was generated 20 times with mean value zero. The grid was

analyzed with the Residual Density Analysis software jnk2RDA [10], which addi-

tionally to the numbers egross and enet gives d
f(0) and a plot of df(r0). The mean

value and standard deviation were: df(0) ¼ 2.83723 � 0.00041, which is in good

agreement with the predicted value from (13).

2.1.8 Quantification of Features: Percentage of Features

The results from the last paragraph can be employed to quantify the amount of

features. It was shown that the value df(0) scatters, although only little, around its

mean value. Therefore, the ratio of the actual value and the expected value may give

values slightly over 100%, which is counterintuitive.

It is therefore suggested to use the following definition as a measure of the POF

in the residual density distribution:

POF ¼ 100 1� dfð0Þ
dfð0Þh i

����
����; (14)
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with the choice of the grid to be analyzed in accordance with (10). Applied to the

20 random grids from above, the POF gives at most 0.034% features and the

minimum value is 0.001%. Up to one digit, there are 0.0% features in these grids

which is expected for random grids. For an application to experimental data, see

Sect. 3.

2.2 The Improper Probability Density Approach: egross and |DF|

As mentioned earlier, there is another way to perceive the fractal distribution of the

residual density. Suppose it is known how the residual density is distributed in the

unit cell from a probability or frequency point of view, i.e., it is known how many

times each residual density value appears. This is a one-dimensional function and

therefore of less information content than the whole three-dimensional residual

density distribution in the unit cell. If this function is normalized, i.e., if the area of

the histogram or under the curve is chosen to equal unity by an appropriate choice

of the normalization constant, the function may serve as a probability density

function (p.d.f.).

Now, it is important to realize that this reduced knowledge is already sufficient

to calculate all properties we are interested in via the usual formulas of statistical

expectation values. As an example, we take egross and define it now from the

statistical point of view rather than in (5). This leads to

egross ¼ 1

2
V jr0ðrÞjh i (15)

and

r0j jh i ¼
ð1

�1
pðr0Þ r0j jdr0: (16)

If the p.d.f. p(r0) is known, it can be substituted into (16) and the result into (15)
for the calculation of egross.

There is a nice application of (15) and (16) for the limiting case we are most

interested in, that is when the refinement is at or close to the optimum and the p.d.f.

is a Gaussian:

pðr0Þdp ¼ 1

s
ffiffiffiffiffiffi
2p

p e�
r0

2

2s2dp: (17)

Substituted in (16), this yields after integration:

r0j jh i ¼
ffiffiffi
2

p

r
s: (18)
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On the other hand, also the second moment can be calculated from the p.d.f.,

r0j j2
D E

¼
ð1

�1
pðr0Þ r0j j2dr0; (19)

which yields in the special case of (17)

r0j j2
D E

¼ s2: (20)

From (18) and (20) follows [1]:

r0j jh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
r0j j2

D Er
: (21)

There is another way to calculate the mean value of the modulus squared of a

function whose Fourier series is known by means of Parseval’s theorem:

r0j j2
D E

¼
X
hkl

DFj j2; (22)

which leads, when substituted into (15) and (21), to the handy formula:

egross
��
VUC

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p

X
hkl

jDFj2
s

: (23)

Equation (23) gives the connection between the numbers of gross residual

electrons (i.e., the total error including noise) in the whole unit cell and the structure

factor differences. Equation (23) is valid in the case of a Gaussian p.d.f. of the

residual density. Please note that this measure is identical to wR1|w=1 [i.e., wR1,

where the weights have been chosen to be unit weights, see (2)], if the factor of

proportion is chosen accordingly. Unit weights are in accordance with the expan-

sion of a function in an orthogonal and normalized basis set like in a Fourier series.

However, while wR1 is a global measure, egross can also be evaluated locally on a

residual density grid.

This result gives a different view on the definition of the fractal dimension of the

residual density distribution. The RDA plot can also be interpreted as the logarithm

of an improper (not normalized to unity) probability density function.

3 Applications . . .

In the following, some examples of applications of the RDA are given. As these

examples represent different states of development of the theory, they are not at the

same stage. For example, in Sec. 2.2 “the improper probability density approach:
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egross and |DF|”, it has been shown that egross can be evaluated from the absolute

modulus of the difference structure amplitudes for the case that the residual density

obeys a Gaussian distribution. Obviously, this number can be compared to the

number obtained from summing over the grid. Equality of these numbers is another,

independent indicator of a Gaussian distribution of the residuals, additional to the

parabolic shape and to the expectation value for df(0).
For the evaluation of the residual density grids, the software jnk2RDA [10]

was used throughout. It accepts residual density grids from XD, MoPro [11, 12],

TONTO [13], and BayMEM [14]. For BayMEM, the grid format has to be

modified before evaluation. Output data is a Postscript file with an RDA-plot,

i.e., a plot df(r0) versus r0 for a range �1.0 to þ1.0 eÅ�3. Additionally, the

values for df(0), r0,min, r0,max, and their difference Dr0 ¼ r0,max � r0,min are

given. If the data were in XD format, some additional information from

the master file is automatically extracted, like the unit cell data for calculation

of the volume. The multipole model used, the grid size of the residual density

grid and the XDFOUR section are printed into the Postscript file. From version

1.4 also the entropy S of the absolute values of the residual density distribution is

given [for a definition of S see (25)]. This software is available for Unix/Linux

and Windows machines.

3.1 . . . to Idealized Distributions

To check the basic assumptions and to have a look at how noise appears in the

RDA-plot, ideal, noise-free data are generated from a multipole model for S(NtBu)3
up to a resolution of siny/l = 1.14 Å�1. These data have been added to Gaussian

noise with mean value zero according to the following equations:

Inoisehkl ¼ Iidealhkl þ Ierrorhkl

Ierrorhkl ¼ p1

ffiffiffiffiffiffiffiffiffi
Iidealhkl

q
RandomGaussðxÞ

RandomGauss ðxÞ ¼ 1ffiffiffiffi
2p

p
s
e
�ðx�mÞ2

2s2

s ¼ 1

m ¼ 0
The noise increases with p1. In Fig. 4, the RDA-plot is shown for four different

values of the noise control parameter p1: 0.000, 0.222, 0.444, 0.888, and in Table 1
the residual density descriptors are given. Additionally, there is a horizontal and a

vertical red bar drawn in Fig. 4. The horizontal bar indicates the flatness (actually

only, when drawn at df(r0) ¼ 0), Dr0 ¼ r0,max � r0,min. This value depends

explicitly solely on the following four factors:

(1) The experimental resolution

(2) The residual density grid resolution

(3) The density and thermal motion model

(4) The noise in the data
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Of course, there is an implicit dependency on the data processing, too, which is

ignored for this discussion. For a fixed experimental resolution and residual density

grid, and a perfect model, the baseline is in proportion to the noise. This is exactly

what Fig. 4 shows: the more noise, the broader the distribution. The figure also

shows deviations from the ideal parabolic shape in the periphery. This just

expresses the usual statistical fluctuations, which do not play a role for a very

large number of data points (like in the center at r0 ¼ 0), but become increasingly

dominant with a decreasing number of data points.

The vertical red line, which shows the difference between the actual value of the

zero residual density value df(0) and the ideal value df(0) ¼ 3.0 depends on the

Fig. 4 Ideal parabolic shape for the fractal dimension distribution (RDA-plot) in the presence of

Gaussian noise and absence of model errors. For a discussion of the distributions and the horizontal
and vertical red bars, see the text. Black square: p1 ¼ 0.000; red circles: p1 ¼ 0.222; green
triangles: p1 ¼ 0.444; blue rhombuses: p1 ¼ 0.888

Table 1 Residual density descriptors applied to simulated data on S(NtBu)3 for differing levels of

Gaussian noise as quantified by the noise control parameter p1

p1 df(0) egross �r0,min r0,max Dr0
[e] [eÅ�3] [eÅ�3] [eÅ�3]

0.000 2.7956 0.34 0.00 0.00 0.00

0.222 2.7693 8.38 0.12 0.12 0.24

0.444 2.7678 16.41 0.22 0.23 0.45

0.888 2.7647 30.92 0.41 0.46 0.87
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same factors (1)–(4) given above. The dependency on these factors is discussed in

detail in [10]. Additionally, this value df(r0) is related to the features in the residual
density, as has been shown in Sect. 2.1.8.

The RDA-plot shows the formerly separated properties “flatness” and “features”

of the residual density in one graphic. Under ideal circumstances, when no system-

atic errors are present, this distribution is parabolic in shape.

Table 1 shows an increasing number of gross residual electrons and an increasing

difference between maximum peak and deepest hole for increasing noise, whereas

the fractal dimension at the residual density value zero simultaneously decreases

a little bit, which is expected under the assumption that strong noise also tends

to spread spatially wider than weak noise. Even for no noise, p1 ¼ 0.000, egross
remains finite, although one would of course expect it to approach zero. This

difference is explained by the observation that in XD the structure factor calculation

does not yield identical results between input structure factors and output structure

factors, when no refinement is performed, despite using the correct input file for the

model parameters. Instead, changes in the last digit occur for a number of structure

factors. These little differences add up to a nonzero value for egross.

3.2 . . . to Experimental Resolution Truncation

As already mentioned above, the experimental resolution is sometimes truncated

for the difference density plots. For the determination of the parameters from a

least-squares fit, however, the whole data is used. It has also been mentioned

that this procedure is not advisable, as there exists valuable information about

the adequateness of the model to the data in the high-frequency data. It is indeed

that this data reveals best otherwise hidden sources of error. To demonstrate

the effect of experimental resolution truncation, again the S(NtBu)3 data is used.

The fully refined model is used for the calculation of 50 � 50 � 50 residual

density grids, however, the resolution is truncated from 1.14 to 1.00 and

0.80 Å�1, respectively. The same model parameters are used throughout. Figure 5

shows the RDA-plots for the whole unit cell and contour plots in the molecular plane.

Themore the resolution is truncated the smoother andmore acceptable the residual

density appears. The model, however, has not been changed and the valuable infor-

mation in the high-frequency data that indicates a nonperfect model and systematic

differences between model and data is suppressed by the cutoff.

3.3 . . . to Quantify Features in a Model Refined Against
Experimental Data

In this example, POFs of an IAM refinement and of an MM refinement against

experimental data of S(NtBu)3 are calculated. These data have been used for the

histograms in Figs. 1 and 2.
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Additionally, for a comparison the percentage of features of an ideal data set of

structure factors, with the same resolution and a comparable number of gross

residual electrons, are calculated, too. The gross residual electrons are then caused
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Fig. 5 Effect of the truncation of the experimental resolution on the difference density maps.

Left: RDA-plots for the whole unit cell. Right: Contour plots through the molecular plane. Blue
solid lines: positive residual density, red dashed lines: negative residual density, gray dotted
lines: zero residual density. The contour spacing is 0.1 e Å�3. Resolution 1.14 (a, b), 1.00 (c, d),

0.80 (e, f) Å�1
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Fig. 5 (continued)
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solely by noise. The procedure of adding noise to the structure factors was

described in Sect. 3.1, the noise control parameter was set to p1 ¼ 0.222, because

this noise level generates approximately as many gross residual electrons (7.36) as

exist in the experimental data after the MM (7.21). This provides a check of how the

RDA-plot would appear in the case when all errors come from noise only at a

constant experimental R-value (Tables 2 and 3).

The maximum values in h, k, and l were 21, 21, and 24, which leads to nx ¼ 42,

ny ¼ 42, nz ¼ 48 for the residual density grid. The expectation value dfð0Þ� �
from

Equation (14) is calculated to be 2.83198. This leads to percentage features of 5.3%

(IAM), 4.4% (MM, exp.), and 1.9% (MM, theo.). For RDA-plots, see Fig. 6.

The MM reduced the features by only approximately 0.9%. This is in accordance

with the small reduction in egross from 11.55 e (IAM) to 7.21 e (MM) and with the

final distribution of df(0), which is not parabolic. The little progress is due to a small

disorder of the whole molecule. The corresponding occupation factor was, how-

ever, smaller than 1% and could not be refined (see also Fig. 7 and text in Sect. 3.4,

where the same experimental data was used). The POF of the ideal model, however,

is with 1.9% also higher than naively expected. A similar behavior was found in the

previous section for egross, which did not reduce to zero despite using ideal data with
zero noise. The same effect might take place here. The ideal expectation value is

also calculated under the assumption of 100% completeness of the data, which is

only approximately given.

From the previous discussion, it can be seen that the POF-values indicate that a

reduction is still feasible, at least in principle.

For a comparison with other measures of features, the entropy S of the modulus

of the residual density distribution was calculated according to

S ¼
X
r0

r0j j lnð r0j jÞ: (25)

Table 3 Residual density descriptors including entropy S and percentage of features POF for

experimental IAM and MM refinements and for a perfect MM refinement on synthetic data with

comparable total error egross and therefore comparable wR1|w=1 values as in the experimental MM

refinement

df(r0) egross �r0,min r0,max Dr0 S POF

[e] [eÅ�3] [eÅ�3] [eÅ�3] [%]

IAM (exp.) 2.6826 11.55 0.73 0.59 1.32 69,564 5.3

MM (exp.) 2.7076 7.21 0.24 0.31 0.55 30,574 4.4

MM (theo.) 2.7786 7.36 0.10 0.11 0.21 35,489 1.9

Table 2 Residual density descriptors for identical models at different experimental resolution

Cutoff resolution df(0) egross �r0,min r0,max Dr0
[Å�1] [e] [eÅ�3] [eÅ�3] [eÅ�3]

1.14 (no cutoff) 2.7366 8.39 0.32 0.37 0.69

1.00 2.6989 7.25 0.23 0.32 0.55

0.80 2.6543 6.27 0.15 0.21 0.36
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The summation goes over all integer positive and negative multiples of

0.01 eÅ�3. The entropy is then a positive number, which should be as small as

possible for the residual density distributed as uniformly as possible. S decreases

Fig. 6 RDA-plots (left) from a 42 � 42 � 48 grid and residual density contour representations of

the zero residual density value (right) from a 50 � 50 � 1 grid from refinements against experi-

mental data (top: IAM, middle: MM) and against ideal data (bottom). For simplicity, only the zero

residual density line is depicted in the contour plots
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Fig. 6 (continued)
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Fig. 6 (continued)
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indeed from the IAM to the MM refinement from 69,564 to 30,574, indicating

that the residual density distribution after the MM refinement is flatter than that

after IAM refinement. In the MM refinement against theoretical data, however

S increases again. Obviously, the definition of flatness from the RDA, which just

uses Dr0 and from an entropy functional S, which takes into account the whole

distribution, have a different meaning: the p.d.f. corresponding to Fig. 6e is more

peaked than the broad p.d.f. corresponding to Fig. 6c. This leads to the increase in

the entropy for Fig. 6e. Please note that both have the same wR1|w¼1 value as they

have the same number of gross residual electrons. It must be concluded that the

above functional prefers a non-Gaussian distribution of the residuals to minimize

the entropy for a given, small, fixed total amount of errors.

3.4 . . . to a Multipole Refinement

To monitor the effect on the residual density distribution of a multipole model

refinement against experimental data of S(NtBu)3 [8], a 50 � 50 � 50 residual

density grid of the whole unit cell was calculated with XDFOUR and analyzed after

each individual refinement step with jnk2RDA. The distributions of the residual

densities viewed through the glasses of the Residual Density Analysis approach are

shown in Fig. 7 and the corresponding residual density descriptors in Table 4.

The scale factor was refined in each step. The multipole model started with the

refinement of a scale factor and coordinates of all atoms, anisotropic displacement

Fig. 7 Fractal dimension distribution for the individual steps of a multipole refinement on S(NtBu)3
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parameters for nonhydrogen and isotropic displacement parameters for hydrogen

atoms from SHELX (IAM, green open circles) (Fig. 7). This refinement results in

a large shoulder of the RDA-plot for negative residual density values due to the

neglect of chemical interactions between the atoms. The error as given by egross
equals 11.54 e. All following steps aim at reducing this error until noise is

left only. The flatness (difference between maximum peak and deepest hole)

Dr0 ¼ 1.29 eÅ�3 and the fractal dimension for the residual density value zero

equals df(r0 ¼ 0) ¼ 2.6681.

A high order refinement of the scale factor, the coordinates and the vibration

parameters of the nonhydrogen atoms follows with siny/l > 0.6 Å�1 (xyz þ Uij

non-H (siny/l > 0.6 Å�1), blue filled circles), which dramatically improves all

residual density descriptors and the RDA-plot. This, however, is only due to data

truncation and effective increase of the flexibility of the model by adjusting its

parameters to fewer observations.

Thereafter the scale factor, monopole populations Pn and k values for nonhydro-

gen atoms were refined against all data with I > 3s(I) for the whole resolution range
(Pn þ k non-H, red open triangles) leading to a pronounced reduction in the mono-

pole values for the sulfur and carbon atoms, and to a slight increase of those for the

nitrogen and hydrogen atoms. This step leads to a reduction of the negative residual

density shoulder in the RDA-plot and it reduces Dr0 to 0.85 eÅ�3, however, egross
increases to its maximum value (13.47 e) and df(r0 ¼ 0) decreases to its minimum

value in the whole refinement (2.6111), i.e., Dr0 indicates a progress, whereas egross
and df(r0 ¼ 0) indicate a deterioration. These seemingly contradicting descriptors

are interpreted as follows: the reduction in Dr0 indicates that the new model that

allows for charge transfer but not for atomic polarization is more appropriate than the

spherical neutral atom model, whereas the increase in egross indicates the need for

additional parameters to account for the asphericities. This is a counterexample for

the often quoted sentence that anything can be fitted with an increasing number of

model parameters, as in this case the R-values increase despite additional parameters.

In accordance with the expectations, all residual density descriptors indicate

progress when also the multipoles are refined (Pn þ Plm all, turquoise filled trian-

gles) and the positive residual density shoulder in the RDA-plot decreases for the

first time in the course of the refinement.

Table 4 Residual density descriptors as obtained from an RDA of the individual steps of a

multipole refinement on S(NtBu)3

df(0) egross �r0,min r0,max Dr0
[e] [eÅ�3] [eÅ�3] [eÅ�3]

IAM 2.6681 11.54 0.74 0.55 1.29

xyz þ Uij non-H (siny/l >0.6 Å�1) 2.7669 4.96 0.19 0.26 0.45

Pn þ k non-H 2.6111 13.47 0.33 0.52 0.85

Pn þ Plm all 2.6592 9.07 0.31 0.40 0.71

k0 non-H 2.6596 8.93 0.29 0.42 0.71

xyz þ Uij non-H þ RESET 2.6133 12.10 0.25 0.42 0.67

Pn þ k þ Plm 2.6918 7.38 0.26 0.35 0.61

Pn þ Plm þ k þ k0 2.6922 7.20 0.24 0.33 0.57
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Only a slight change in the residual density distribution and its descriptors is

induced by also allowing the aspherical deformation density expansion/contraction

parameters k0 to change (k0 non-H, pink open squares).

In the next refinement step the hydrogen atoms were shifted to distances derived

from neutron diffraction experiments (1.085 Å) and the scale factor as well as the

coordinates of all heavy atoms and the anisotropic displacement parameters for the

nonhydrogen atoms and isotropic displacement tensors for the hydrogen atoms

were refined (xyz þ Uij non-H þ RESET, orange filled squares). The resulting

flatness is Dr0 ¼ 0.67 eÅ�3, the smallest value apart from the refinement where

only a part of the experimental resolution was used, and which therefore is not

comparable to the other refinements, but now the mono- and multipole values of the

hydrogen atoms do not fit to the changed coordinates anymore causing a shoulder in

the positive residual density region. This leads to an increase in egross toward

12.10 e (and a small value in df(r0 ¼ 0) ¼ 2.6133).

When the scale factor, the multipole parameters for all atoms and the k parame-

ters for the nonhydrogen atoms are refined together, themodel is given the opportunity

to account for charge transfer and atomic density polarization for all atoms simulta-

neously (Pn þ k þ Plm, purple open rhombuses), which leads to a pronounced

reduction in the total residual density as given by egross ¼ 7.38 e, the smallest

comparable value, and also Dr0 ¼ 0.61 eÅ�3 reaches its lowest comparable value.

Finally, the refinement of the scale factor, mono- and multipole parameters for

all atoms together with a k refinement for all and a k0 refinement for nonhydrogen

atoms (Pn þ Plm þ k þ k0, olive filled rhombuses) leads to the largest value for

df(r0 ¼ 0) ¼ 2.6922, the lowest value for egross ¼ 7.20 e, and the smallest value

for Dr0 ¼ 0.57 eÅ�3. From the RDA-plot, however, it can be seen that there is still

potential for improving the model, as the final distribution still is not of parabolic

shape. This may stem from a disorder of the whole molecule (rotation by 60� about
the central axis through the sulfur atom) with an occupation factor smaller than 1%.

For a comparison with the more traditional residual density plots through

the molecular plane, see Fig. 8, which shows the residual density before and

after the multipole refinement. In the latter features remain in all three bisectors

of the N–S–N angles. These indicate the positions of the N atoms in the disordered

part.

3.5 . . . to an Electron Density Reconstruction with the MEM

An independent alternative approach for the Multipole Model is the Maximum

Entropy Method (MEM). In this approach, the dynamic density is reconstructed on

a grid by maximization of an entropy functional subject to the constraint of fitting the

diffraction data. Other additional constraints exist as well, such as the “prior derived

F-constraints” [15] (PDCs), which are used for stabilizing the reconstruction process

and leading to chemically and physically sensible electron density distributions.
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In the example given here, the resulting residual density grids from an application

of the MEM to 23 K X-ray Mo-Ka data from a-glycine in the space group P21/n with
a resolution of siny/l ¼ 1.15 Å�1 [16] were subjected to an RDA. Residual density

grids from a MEM reconstruction with PDC for the whole unit cell were analyzed.
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Fig. 8 Residual density representation as contour plots in the molecular plane. (a) IAM refinement.

This model corresponds to the first line in Table 4. (b) After multipole refinement. This model

corresponds to the last line in Table 4. Blue solid lines: positive residual density, red dashed lines:
negative residual density, gray dotted lines: zero residual density. The contour spacing is 0.1 eÅ�3
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To allow for a comparison of the experimental findings with idealized data, we

used the coordinates and anisotropic displacement parameters from the experiment

to generate a reflection file with the same resolution. Noise was added to the

structure factors until the experimental number of gross residual electrons was

approximately obtained. The reflection file was imported into XD and residual

density grids were calculated from IAM refinements of these data. The RDA-plot of

the experimental results with PDC (blue filled circles) and of the theoretical data

(green open circles) is shown in Fig. 9.

Theoretical and experimental RDA-plots are in good agreement. Differences

occur for Dr0 and df(0): both are smaller for the theoretical data and the difference

in df(0) is very large. In MM, it was frequently observed that df(0) from the

experimental data was smaller than from theoretical data. A possible explanation

for these observations is that again the p.d.f. of the residual density is influenced by the

entropymaximization procedure such that it leads to this spiked distribution. A similar

behavior is observed for the entropy minimization of the modulus of the residual

density distribution further above. That the resulting p.d.f. is more spiked in this

case whereas it was broader in the above case need not be a contradiction as the

preferred p.d.f. from the entropy functional may well be a function of the total error.

Another possible explanation is that experimental noise was fitted by the MEM

procedure, which would also lead to a redistribution of the residual density and

possibly to a deviation from the Gaussian distribution. This example shows that an

RDA may be useful for an evaluation of the properties of the entropy functional

Fig. 9 RDA-plot of experimental MEM data (blue filled circles) and theoretical data (green open
circles) with approximately the same number of gross residual electrons (3.4 e)

178 K. Meindl and J. Henn



and for establishing appropriate stopping criteria for individual MEM processes

(Table 5).

3.6 . . . to Extinction Problems

Extinction is taken into account in SHELXL [17] by an empirical correction

according to

Fcalc;corr ¼ k
Fcalc

1þ 0:001� w� F2
calc � l3=sin 2y

� �1
4

; (26)

with the scale factor k, the wave length l, the diffraction angle y, and the extinction
coefficient w. For w ¼ 0, no extinction correction occurs.

To study the effects of extinction, the experimental data (l ¼ 1.54178 Å, 100 K)

of bullvalene trisepoxide (C10H10O3) [18] were treated in two different ways: in one

IAM refinement, the data were not corrected for extinction effects and in the other

case the data were corrected for extinction effects. The resulting reflections were

used in XD [3] for least-squares refinements against F2. The model used was again a

conventional, spherical atom model with anisotropic harmonic thermal motion

parameters, and exclusion of anomalous dispersion and extinction refinement

(MODEL �2 2 1 0). Residual density grids with 50 � 50 � 50 points were

calculated with XDFOUR and analyzed with jnk2RDA.

Figure 10 shows the distributions in terms of df(r0) (RDA-plots) and Table 6

gives the residual density descriptors.

The effect of the extinction correction (w ¼ 0.04935(240)) is large. The differ-

ence between the largest peak and deepest hole Dr0 (flatness) decreases from 0.65

to 0.28 eÅ�3, while the total error as given by egross decreases from 30.26 to

11.03 e. Please note that this change of almost 19 gross residual electrons due to

modeling of extinction is much larger than the total change in gross residual

electrons induced by a multipole refinement of in total 4.3 e as discussed for

S(NtBu)3 in Sect. 3.4. As a consequence, the extinction needs to be modeled very

accurately to avoid systematic errors. It is again the very special needs in charge-

density studies, which shine through this discussion. It may well be the case that

an extinction correction according to Equation (26) is absolute satisfactory for

standard structure determinations, but this does not imply that it is necessarily

satisfactory for charge-density studies, too.

Table 5 Residual density descriptors for MEM data and theoretical data

df(0) egross �r0,min r0,max Dr0
[e] [eÅ�3] [eÅ�3] [eÅ�3]

Exp. MEM data 2.7941 3.40 0.14 0.12 0.26

Theoretical data 2.5845 3.35 0.11 0.11 0.22
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Fig. 10 Fractal dimension distribution of the residual density of bullvalene trisepoxide after IAM

refinement without extinction correction (a), and with empirical extinction correction (b)
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3.7 . . . to Statistical Disorder

Disorder of solvent, molecules, or parts of molecules is of particular importance in

charge-density studies. As has been mentioned earlier, the presence of unmodeled

disorder influences the model parameters and in this way distorts the density model

in a way not easy to control. Conversely, if disorder is taken into account and if it

can be shown that the remaining residual density does not contain any structural

information except for noise (at the given experimental resolution), one has a

stopping criterion for the refinement and a quality control. Of course, this still

does not prove the model to be correct, but the converse is true: features in the

residual density disprove the model to be correct. Therefore, among all models only

those with a statistical residual density are acceptable.

The example considered here is from 100 K Mo-Ka data of N-phenylpyrrole
H4C4N(C6H6) crystallizing in the noncentrosymmetric orthorhombic space group

P212121 with one molecule in the asymmetric unit, which is disordered by a 2-fold

rotation axis (see Fig. 11). The occupation factors are approximately 0.9 and 0.1.

More details can be found in [1, 19, 20].

Table 6 Residual density descriptors applied to experimental data for bullvalene trisepoxide to

study the effects of the extinction correction as implemented in SHELXL

Correction for df(0) egross �r0,min r0,max Dr0
extinction [e] [eÅ�3] [eÅ�3] [eÅ�3]

Off 2.4129 30.26 0.36 0.29 0.65

On 2.5228 11.03 0.16 0.12 0.28

Fig. 11 N-phenylpyrrole (PP) in its disordered state. The main domain with occupation factor 0.9

is plotted in black, the minor domain in white. The anisotropic displacement parameters are shown

at the 50% probability level
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A conventional multipole refinement of the dominant domain and a multipole

refinement taking the disorder into account have been performed and residual

density grids have been calculated and analyzed.

A 100 � 60 grid was used for the plane with edge lengths 10 and 6 Å in Fig. 12a

and a 56 � 76 � 176 grid was used for the RDA-plot in Fig. 12b. Both graphics

clearly indicate that the residual density is far from being flat and featureless.

The unmodeled disorder is clearly visible as positive residual density between

the atomic positions of the model and as negative residual density (red dashed lines)

around the atomic positions. The positive residual density at the atomic positions of

the first domain stems from too large anisotropic displacement parameters, which

artificially increased during the refinement to account for the other (unmodeled)

domain. Too large values for the Uij generate circular areas of negative residual

density around the atomic positions. These are also seen in Fig. 12a. A study on how

unphysical values of anisotropic displacement parameters affect the whole residual

density distribution and planes through the molecule can be found in [1]. The

unmodeled domain of PP contributes to the positive residual density shoulder in

Fig. 12b, whereas the too large occupation factor (1.0 instead of 0.9) contributes

most to the negative residual density shoulder.

After taking the statistical disorder into account, the residual density distribution

changes drastically. In Fig. 13, again a plane through the molecule is depicted as

well as the RDA-plot taking into account the residual density in the whole unit cell.

The fractal dimension df(r0 ¼ 0) increases from 2.5770 to 2.6286, which, in view

of the logarithmic scale involved in the definition of the fractal dimension of the

residual density, is interpreted as a rather large change. The total error decreases

from 16.08 to 6.74 gross residual electrons. Finally, the difference between maxi-

mum peak and deepest hole decreases from 0.98 to 0.27 eÅ�3. The additional

refinement of the second domain describes the total electron density in the whole

unit cell to a very good degree. A good description, i.e., a description that fits the

experimental observations, is a necessary condition for an acceptable model.

Whether or not this model is physically acceptable (and chemically meaningful)

is out of the scope of the residual density analysis, for questions of this kind clearly

physical, and not only statistical, measures of quality need to be developed and

applied and the resulting density is to be analyzed with respect to information about

electrostatic forces (Tables 7 and 8).

3.8 . . . to an Anharmonic Motion Problem

One main application of the RDA(-plot) is to prove absence of features in the

residual density distribution to show that the density and thermal motion model is

among the acceptable models. This was also the way the RDA was applied in the

preceding section about static statistical molecular disorder.

Here, we describe in detail a case where the thermal nuclear motion model was

crucial. The experimental results are already discussed in a chapter of Electron
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Fig. 12 Residual density of PP after refinement of the main domain. (a) blue solid lines: positive
residual density, red dashed lines: negative residual density, gray dotted lines: zero residual

density. Contour spacing 0.1 eÅ�3. (b) RDA-plot. The values of the residual density descriptors

are given in Table 7
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Fig. 13 Residual density of PP after refinement of main and minor domain. (a) blue solid lines:
positive residual density, gray dotted lines: zero residual density. Contour spacing 0.1 eÅ�3. (b)

RDA-plot. The values of the residual density descriptors are given in Table 7
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Density and Chemical Bonding I. The chemical interpretation of the resulting

electron density is also discussed there.

Here, we focus on the methodological aspect. The question to be tackled is:

provided, anharmonic motion is definitely present and provided the electron density

can be modeled appropriately by a multipole expansion and provided anharmonic

nuclear motion is neglected in the model: are there signs in the refinement warning

us for this deficiency? The application of such knowledge is straightforward.

To answer these questions, theoretical structure factors from a known multipole

model are used and the density is convoluted with anharmonic nuclear motion

parameters for the two heaviest atoms P and Al as determined from the experiment

and the corresponding anisotropic displacement parameters for the remaining

atoms. Gaussian noise is added to the structure factors. The amount of noise

added is such that the experimental R-value is fitted. The data correspond to a

resolution of siny/l ¼ 1.15 Å�1 and the experimental temperature was 100 K.

More information about the experimental setup and conditions leading to this

model can also be found in the above-mentioned chapter and in [21], more about

the theoretical approach and all GC coefficients with estimated standard uncertain-

ties can be found in [22]. As the true density- and thermal motion parameter values

were known due to using simulated data, we were also able to monitor the

difference between the true density- and thermal motion parameters and those

derived from a least-squares refinement of a reduced model that lacks anharmonic

motion parameters to different degrees, e.g., lack of 4th order at the P atom, lack of

4th order at the P, and of 3rd order at the Al atom and total neglect of anharmonic

motion. This monitoring is done by the parameter R-value, which is defined as the

sum of absolute difference between the true reference model density parameters

and those resulting from a least-squares fit. As we are mainly interested in the

aspheric distribution around the nuclei and as the parameter R-value is dominated

by little changes in the monopole parameter, we excluded the monopole from the

calculation of the parameter R-value. Therefore, a parameter R-value of zero for an

Table 8 Residual density descriptors, crystallographic R-value, and parameter R-values for a

refinement of a multipole model excluding (first row) and including (second row) anharmonic

nuclear motion at the P and Al atom, respectively

3rd ord. 4th ord. R1 POF df(0) Dr0 egross Rdip Rquad Roctu Rhexa Rsum

GC GC [%] [%] [eÅ�3] [e]

Off Off 1.56 1.34 2.68 0.54 16.00 0.07 0.06 0.10 0.11 0.30

P/Al P 1.54 1.29 2.68 0.27 15.83 0.03 0.03 0.07 0.12 0.19

Table 7 Residual density descriptors for N-phenylpyrrole with inclusion and exclusion of minor

domain refinement

Refinement df(0) egross �r0,min r0,max Dr0
of disorder [e] [eÅ�3] [eÅ�3] [eÅ�3]

No 2.5770 16.08 0.34 0.64 0.98

Yes 2.6286 6.74 0.12 0.15 0.27
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atom would mean that this atom has the same density shifts as the reference atom,

but it still may have a different monopole value. The parameter R-value is defined in
the following equation, where “dip” abbreviates dipole, “quad” quadrupole, “octu”

octupole, and “hexa” hexadecapole.

Rpara ¼ Rdip þ Rquad þ Roctu þ Rhexa;

Rlm ¼
Xþl

m¼�l

Plm;reference � Plm;model

�� ��; l ¼ 1; 2; 3; 4:
(27)

When a multipole refinement is performed, one usually tries to avoid anharmo-

nic nuclear motion refinement, as this might introduce severe parameter correla-

tions. Figure 14 shows the deepest hole and highest peak in the residual density

together with the resulting VSCCs close to the P atom from such a refinement

excluding anharmonic motion.

The residual density peak and hole are closer to the P atom than the VSCCs and

they are lying on a line through the nucleus of the P atom. Due to the close vicinity of

the residual density features and the VSCCs naturally the question arises whether

these are influenced by the peak and hole. We will see that this is indeed the case: two

of the VSCCs are artificial and occur only due to the neglect of present anharmonic

nuclear motion of the P atom.When anharmonic motion is taken into account and the

Gram–Charlier parameters are refined, these artificial VSCCs disappear and the

absolute values of residual density peak and hole become smaller.

Figure 15 compares the final model that takes anharmonic motion into account

and the model that neglects anharmonic motion.

Fig. 14 Largest peak (0.23 eÅ�3) and deepest hole (�0.21 eÅ�3), in the residual density (small
red spheres), and VSCCs (white spheres) in the vicinity of the P atom (green sphere) after a
multipole refinement excluding anharmonic motion
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The neglect of 3rd and 4th order Gram–Charlier coefficients at the P atom and of

3rd order at the Al atom has only a little effect on the R-values: the reference model

R1-value was 1.54% and the R1-value corresponding to the refinement neglecting

3rd order Gram–Charlier coefficients was 1.56%, the total difference being only

0.02%. For the introduction of 35 new parameters (10 for each set of 3rd order

coefficients and 15 for the 4th order), this is a rather small gain in the R1-value.

The R1-value, however, is not the only quality criterion to be applied in charge-

density studies. There is a distinct effect on the residual density distribution as given

by the RDA-plots: neglect of Gram–Charlier coefficients leads to shoulders in the

fractal dimension distribution of the residual density (see Fig. 15e, f).

A more detailed analysis shows that the neglect of 4th order GC coefficients at

the P atom induces one artificial VSCC and the neglect of 3rd order GC coefficients

induces another one. The neglect of 3rd order GC coefficients is predominantly

causing the residual density peak and hole at the P atom, which also causes the

“shashlik”-like residual density iso-surface with alternating positive and negative

values and with the P atom in a nodal plane.

The small difference in the crystallographic R1-values between the models is

reflected in small or (to the given figures) no differences for df(0) and egross.

Fig. 15 Comparison of refinements against theoretical data neglecting anharmonic motion (left)
and taking anharmonic motion into account (right). (a) and (b): residual iso-density representation
at the 0.09 (green) and the �0.11 (red) eÅ�3 residual density level. (c) and (d): Valence shell

charge concentrations (white spheres) in the vicinity of the P atom. (e) and (f): RDA-plots
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Fig. 15 (continued)
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The parameter R-values differ more and for the model excluding anharmonic

nuclear motion all individual parameter R-values but Rhexa are larger compared to

the full model. As the parameter R-values for the appropriate model (second row)

are solely determined by the noise, this may be a sign that the hexadecapoles fit

experimental noise efficiently in this case. May this be as it is, the total parameter R-
value is larger for the model lacking anharmonic nuclear motion. Introduction of

anharmonic nuclear motion parameters reduces Dr0 from 0.54 to 0.27 eÅ�3.

The neglect of anharmonic nuclear motion may lead to artificial VSCCs in the electron

density. When the highest residual density peak and deepest hole are on a straight line

through a nucleus, this may be an indicator for the neglect of 3rd order GC coefficients.

A shashlik-like pattern in the residual density with alternating signs and with an atom in a

nodal plane may also indicate neglect of 3rd order GC coefficients.

4 Future Developments

The RDA is only a little step toward more transparency in the detection, classifica-

tion, and elimination of density model and thermal motion model inadequacies, in

data processing and data reduction inadequacies, and so forth. As a comparative

method, it cannot state that either the data or the model is wrong, but it can detect

systematic discrepancies between data and model. For the plausibility of the

resulting density and thermal motion models, other than purely statistical measures

of quality need to be used.

4.1 Physical Measures of Quality

The statistical measures only give a degree of agreement between the theoretically

and experimentally obtained values. Nothing is said about the physics. Therefore, a

model with very high agreement still could be “unphysical.”

For structure determination, the statistical measures are completely sufficient;

however, when describing the electron density distribution in great detail, it might

be helpful to have additional measures of quality and/or additional knowledge,

which could be used as extra observations in the refinement. Why not using

physical measures of quality?

For example, due to the thermal motion (and the Heisenberg uncertainty princi-

ple), the nuclei in the crystal change their place all the time slightly, however, on

macroscopic time scales they do not move (crystal damage is not considered here).

The forces acting on the atoms are such that they drive the atoms back to their mean

locations, which do not change with time. It is an equilibrium situation. An equilib-

rium situation is established when the macroscopic properties do not change with the

course of time. Microscopically, however, changes may occur all the time.
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Now, if the density and thermal motion models result in strong net forces acting

onto the nuclei, these forces would shift the nuclei until equilibrium was obtained.

The model is unphysical in this case, as the crystal is in equilibrium.

Of course, it would be desirable to have vanishing electrostatic forces as the

result of the refinement without forcing the model to obey such constraints in the

first place. It must be said, however, that the experimental refinement procedure is

not of that quality and virtually every experimentally obtained model is prone to

violate equilibrium conditions.

On the other hand, obeying the equilibrium conditions still does not prove the

model to be the best possible model. But, and that is important, the violation of any

equilibrium condition proves the model to be unphysical and therefore unaccept-

able for describing an equilibrium system. That is why physical measures of quality

should be available in the future.

4.2 Further Tools for Analysis, Advanced Theories,
and Adjustments to Charge-Density Needs

There has been a large progress in X-ray detection with the area detectors and in the

data processing capabilities by the improved IT technologies. These have been used

to make data collection and standard structure determination faster, and to enable

charge-density studies, however, for the special needs of charge-density applications,

there needs to be a similar progress in the data processing, error analysis, and model

building. Model building again comprises not only density and thermal motion

models but also the scattering model, which at present neglects TDS and Renninger

reflections. In future, it might be necessary to identify and quantify the Renninger

contributions to individual reflections and to handle the TDS more accurately if we

want to be in control of the sources of error. It might also be necessary to investigate

and recalibrate incident beam corrections and photon conversion rates for individual

experimental setups. Whether this is necessary or not depends on how accurate and

precise the experimental results are required to be. Also, scaling and merging

techniques should be revised to assure appropriateness for charge-density studies.

One example was given above where it has been shown that an empirical extinction

correction influences the data such that errors of 10% in this empirical correction

would amount to approximately 4 gross residual electrons, which may be the whole

difference between an IAM and a multipole model refinement.

Another example is given here: Suppose a weighting scheme is used for identi-

fying and subsequent downweighting of outliers. What does this imply for weak

and zero intensity observations? As the minimum error is given by the counting

statistics, this obviously means that there is no easy way of identifying outliers for

weak and zero intensity observations, as these do not have a sharp expectation

value. The concept of an outlier cannot be easily applied to weak and zero intensity

observations. This holds also in the case of zero background. If outlier treatment is
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applied nevertheless, there is a danger of obtaining too significant reflections by an

artificial reduction of the standard deviations.

Another example: in [23], a scaling scheme is given by iterative least-squares

fitting to minimize

w2 ¼
X
h

wh

Fhj jmeas

Fhj j2
D E1

2

� k�1 e�2p2 u2h i=dh2D E0
B@

1
CA
2

; (28)

where the denominator in the first term in brackets is evaluated by an application of

Wilson’s statistics [24]. The scaling factor to be determined is k and the displace-

ment parameters are hidden in the exponent. When in a charge-density experiment,

the data has been scaled according to Equation (28) and there is no disorder and a

high quality of the model, then one could in a postprocessing step rescale the data

where Wilson’s statistic is replaced by the statistics derived from the model. This

would lead to a correction and to a self-consistent procedure. The reader might

think that the scaling is then biased toward the model used and therefore the

proposed procedure should not be accepted. One can see it the other way round,

too: If scaling is performed according to (28), then the scaling is biased toward

Wilson’s statistics, which implicitly assumes uniform random atoms at rest on no

special positions. Wilson’s statistics might be a good starting point, when not much

is known about the structure. However, when the structure is known in great detail,

Wilson’s statistics might not be a good assumption any more, in particular when

atomic numbers vary heavily or when heavy atoms are on special positions. Then

the known IAM structure is a better prior knowledge thanWilson’s statistics. In any

case, the proposed procedure is applicable only as a postprocessing step for very

high quality data and very good density models in the absence of disorder.

The discussion of this section shows that there is a shift from the straightforward

application of (over?)-simplified scattering theories toward complex simulations

and deeper analysis of potential and actual sources of error. This effort might not be

necessary for every charge-density experiment. On the other hand, if it allows the

determination of the electron density more accurately also for weakly diffracting

compounds, it might well be worth the effort. As a by-product, there is much to

learn about the physics of the scattering process, machines and detectors, about the

statistics useful in data reduction processes and so forth.

4.3 A Common Effort

The most important question is that of learning together. As an individual one just

adds to the work, but being part of a larger community acting in concert means that

the individual efforts will be multiplied and the rewards will be for the individuals

contributing and for the charge-density community as a whole. This is the spirit of
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the RDA. And this is the reason we ask anyone who applies the RDA, to return at a

time a nice example of a problem that was described or solved with it. These

examples will be collected and published as soon as enough interesting problems

(and solutions!) are collected. The focus is mainly on the characteristic distribution

of df(r0), but any example is welcome. This will help beginners to become more

experienced and it will help the experienced to identify and possibly remove, but at

least to discuss sources of systematic errors, leading to more reliable charge-density

distributions for all.
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The Source Function Descriptor as a Tool to

Extract Chemical Information from Theoretical

and Experimental Electron Densities

Carlo Gatti

Abstract This chapter deals with the source function (SF) descriptor, originally put

forth by Bader and Gatti back in 1998. After a brief review on how this descriptor is

defined andwhat it physically represents, the various forms through which the SFmay

be analyzed are presented in some detail. The relationships between atomic SF

contributions and chemical bond nature are analyzed in some prototypical cases,

and the capability of the SF to neatly reveal p-electron conjugation directly from

the electron distribution and independently from anyMO scheme or decomposition is

introduced. Applications of the SF to chemistry from the literature are reviewed and

critically discussed, including the use of the SF to assess chemical transferability or to

describe chemical bonding in challenging situations, like for instance the short-strong

hydrogen bonds in p-conjugated frameworks or the metal–metal and metal–ligand

interactions in the organometallic complexes. Comparison with the insight obtained

from other bond topological descriptors is given, emphasizing the special role the SF

has of being directly derivable from experimental electron density distributions and to

so provide an ideal tool to compare experiment and theory. The robustness of the SF

descriptor against changes in the models used to derive electron densities from theory

of experiment is detailed. First results on using the SF to define an unambiguous full

population analysis are outlined. The possible ways of further decomposing the atomic

SF in chemically meaningful additive pieces, such as core and valence atomic con-

tributions, are analyzed in view of their potential insight and degree of arbitrariness.
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Abbreviations

�CAHB Positively(negatively) charge-assisted hydrogen bond

Bcp Bond critical point (in RFW Bader’s theory)

BP Bond path (in RFW Bader’s theory)

Bza Benzoylacetone

CC Charge concentration

Cp Critical point (in RFW Bader’s theory)

DAFH Domain-averaged Fermi hole

DFT Density functional theory

ELF Electron localization function

HB Hydrogen bond

HF Hartree–Fock

HS Hirshfeld surfaces (M Spackman’s definition)

IAM Independent atom model

IAS Interatomic surface (in RFW Bader’s theory)

ICP Interchanged population

IHB Isolated hydrogen bond

IP Ignored population

IQA Interacting quantum atoms

LBHB Low-barrier hydrogen bond

LS Local source function
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MM Multipole model

MMED Multipole model experimental density

MMPD Multipole-modeled primary density

Mp Midpoint (along an internuclear axis)

MPA Mulliken’s population analysis

NBO Natural bond order

Nma Nitromalonamide

PAHB Polarization-assisted hydrogen bond

PD Primary density (usually from ab initio computations)

QTAIM Quantum theory of atoms in molecules (RFW Bader’s theory)

RAHB Resonance-assisted hydrogen bond

Rcp Ring critical point (in RFW Bader’s theory)

Rp Reference point

SF Source function

SSHB Short-strong hydrogen bond

TMM Trimethylenemethane complex

VSCC Valence shell charge concentration (RFW Bader’s theory)

1 Introduction

This chapter reviews a new chemical descriptor, first proposed by Bader and Gatti

in 1998 [1], and whose peculiar properties are by nature profoundly germane to the

main focus of this book relating electron density and chemical bonding. The source
function enables one to view chemical bonding and other chemical paradigms from

a totally new perspective and using only information from the electron density

observable and its derivatives. It is completely independent from the tools used to

obtain the electron density, which may be derived either through experimental

techniques or with one of the many available quantum mechanical models at

different levels of complexity. While the SF has been previously introduced in

very concise sections of two general reviews [2, 3] and of a book chapter [4], this

represents the first dedicated, comprehensive, and critical overview on the subject.

2 The Source Function: Basic Aspects

This section briefly summarizes the main aspects of the source function (SF),

showing how it is mathematically derived and how it can be physically interpreted.

Some necessary terminology is introduced, related to the different forms (local,

integrated, or double integrated) this function may be used. Potential applications

using one of these forms are also outlined.
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2.1 Mathematical Derivation and Physical Interpretations

More than 10 years ago, Bader and Gatti showed [1] that the electron density at any

point r within a system may be regarded as consisting of contributions from a local

source, LS(r, r0), which operates at all other points of the space:

rðrÞ ¼
Z

LSðr; r0Þ � dr0: (1)

The local source, given by LSðr; r0Þ ¼ �ð4p � r� r0j jÞ�1 � r2rðr0Þ, where

ð4p � r� r0j jÞ�1 is a Green’s function or an influence function [5], representing

the effectiveness of how the cause, the Laplacian of the density at r0,r2r(r0), gives
rise to the effect, the electron density at r, r(r). If the local source is integrated over
an atomic basin or a group of atomic basins defined as in the quantum theory of

atoms in molecules (QTAIM) [6], that is over those regions of space O bounded by

surfaces S which are never crossed by rr(r) vectors rrðrÞ � nðrÞ ¼ 0 8r 2 SO½ �;
then the electron density at rmay be equated to a sum of contributions S(r;O), each
of which is termed as the source function from the atom or group of atomsO to r(r).
When compared to r(r), it represents a measure of how this atom or group of atoms

O contributes to determine the density at r, relative to the contributions from other

atoms or group of atoms in the system. One may visualize the electron density at a

point within a given basin O as determined by an internal SF self-contribution and

by a sum of SF contributions from the remaining atoms or groups of atoms within a

molecule:

rðrÞ ¼ Sðr;OÞ þ
X

O0 6¼O Sðr;O0Þ: (2)

Decomposition afforded by (2) enables one to view the properties of the density

from a new perspective and anticipates the SF as a tool able to provide chemical

insight. Let us consider, for instance, the well-known and highly debated concept of

bond path (BP) [7, 8] in Bader’s theory. Topologically, a BP is associated with the

only two atoms it connects [6], but its shape and the values of the electron density at

any point along the path, including the so-called bond critical point (bcp), clearly

depend, though to different extents, on the whole set of physical interactions present

in a system and accounted for by its Hamiltonian operator. Using the SF, such an

apparent inconsistency automatically fades away since, according to (2), the elec-

tron density at the bcp, taken as the most representative density point for the two

bonded atoms [6], is determined not only from the contributions of these two atoms

but also, in principle, from those of all the remaining atoms in the system, so

bringing to the fore interesting “nonlocal” roles into the bonding. One immediately

envisages that the more covalently will be two atoms bonded to each other, the

higher will be their relative contributions to the density value at their intervening

bcp [9].
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Clearly, the integration on the whole space in (1) may be apportioned among the

pieces of any conceivable mutually exclusive partitioning of space or in terms of

one of the many proposed fuzzy boundary partitioning schemes [10]; however,

since the QTAIM basins have the unique property of being proper open quantum

systems and have also been amply demonstrated to be the atoms or group of atoms

of “chemistry” [6], only such a specific partitioning may ensure an unbiased and

quantum-mechanically rigorous association of S(r;O) with the atoms or group of

atoms of a system.

A closer inspection to (1) and to the definition of the local source LS reveals

[1] that r(r) is given by an expression that resembles that for the electrostatic

potential at r due to the electron distribution at all other points of the space,

with ð4pÞ�1 � r2rðr0Þ replacing r(r0) in the numerator of the integrand. Indeed,

both the electrostatic potential Velec and r(r) are a solution [11]

’ðrÞ ¼
Z
ð4p � r� r0j jÞ�1 � qðr0Þdr0; (3)

of the Poisson’s equationr2’ðrÞ ¼ �qðrÞ, with ’ being, respectively, Velec or r, q
being, respectively, r or r2r, and exploiting the definition of Velec in terms of

Poisson’s equation, r2VelecðrÞ ¼ þ4p � rðrÞ:1 The electron density r(r) may thus

be seen as the potential generated by its Laplacian distribution [1], in agreement

with the physical interpretation given earlier as of r2r(r0) causing or determining

r(r).
It has been recently claimed that [12] one should focus more on the physical

interpretation of the SF, namely that the Laplacian distribution determines the

electron density at any point in space, rather than on the “formal” mathematical

interpretation of (2) that a basin contributes to the density. Although we believe not
be responsible of any serious misconception in this regard, it seems yet worth

spending few words to further clarify the point. Since the Laplacian distribution

determines r at any point in space, integration of such a distribution within an

atomic basin, weighted by the influence function, just singles out the distinct

contribution from the basin to the determination of r.2 It is in this sense that, within
the SF approach, an atom gives its contribution to r(r), and not clearly in terms of

the direct contributions from its basis functions to the total density, even admitting

one could always define them (which is not the case, for instance, for electron

densities given numerically on a grid). An interpretation of the SF (and of its

integrated form, see infra) in terms of a standard population analysis would also

be totally at odd with the exhaustive and mutually exclusive partitioning of the

space adopted within the SF approach.

1The right-hand member has a positive sign since the electron density r(r) is taken as a positive

quantity, despite the electron is negatively charged.
2Incidentally, one should note that a uniform distribution has no sources, since r2r would vanish

everywhere in this case and the only source for the density at point r is the point itself.
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Use of the local expression of the virial theorem [6]

1

4
� r2rðrÞ ¼ 2GðrÞ þ VðrÞ; (4)

enables one to express the local source in terms of the positively defined kinetic

energy density, G(r), and of the electronic potential energy or virial density, V(r),

and to so introduce [1] a further interesting interpretation of the local source

LSðr; r0Þ ¼ � 1

p
� 2GðrÞ þ VðrÞ

r� r0j j ¼ LGðr; r0Þ þ LVðr; r0Þ: (5)

Equation (5) discloses that LS is related to the failure to locally satisfy the virial

relationship between twice the integrated kinetic energy and the virial field den-

sities. It also shows that LS may be seen [13] as given by the sum of a kinetic

energy, LG, and of an electron potential energy, LV, local source contribution.3

Molecular regions, where the electron density is concentrated (r2r(r0) < 0) and

where the potential energy dominates over the kinetic energy, act as a positive

source for the electron density at a point r, whereas regions of charge depletion,

(r2r(r0) > 0), and of dominant kinetic energy act as a negative source, a sink, for
the same point. The effectiveness of the electron density at r0 to be source or sink for
the electron density at another point r is then related to the magnitude of its charge

concentration or depletion at r0, weighted by the inverse of the distance of these two
points.

A given atomic source function value, S(r;O), will always be the result of the

sum of local positive and negative contributions and can thus be either globally

positive or negative. As r(r) is positive everywhere, S(r;O) will also be positive at

any r for an isolated atom, since its own basin is the only one determining the

density. For an atom in a polyatomic system, the local sources are usually found to

beat the local sinks in determining the electron density at its intervening bcps, but

the opposite may also hold true in specific circumstances. A typical example is the

source from the hydrogen atom involved in standard hydrogen bonds to the electron

density at the hydrogen bcp (see Sect. 3.3).

This section ends by introducing a second powerful formula for the density at a

point in terms of external sources and by showing how both (1) and this formula

may easily be derived from a single mathematical theorem. The alternative expres-

sion for r(r) is given by [1]

rðrÞ ¼ �ð1 4pÞ= �
Z
O

r2rðr0Þ
r� r0j j dr

0 þ
I
SO

dSðrSÞ � r r� rSj j�1rðrSÞ
� �

; (6)

3LS could also be expressed in terms of local contributions related to the total electronic energy

density H(r) [6] and to the kinetic energy density G(r) since ¼r2r ¼ 2G(r)þ V(r)¼ G(r)þ H(r).
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where the density at a point r within an atom O is seen as determined by the sum

of two contributions: the basin average of the potential at r exerted by the

Laplacian of the density (the basin average of the local source LS), plus the flux

through the surface of O of the electric field density at r due to the electron density

on the surface boundary, r(rs).
4 For an isolated molecule or a molecular complex,

Omay be clearly taken as the whole space and (6) becomes identical to (1), as the

electron density vanishes at infinity. Formula given in (6) should be applied to

those systems which have finite boundaries, like a (unit) cell in a crystal or any of

its composing atoms or group of atoms. It should also be used for large molecular

systems, or for convenient and well-defined part of them. One could so replace the

integration of the LS over all (potentially infinite) atoms of the system, with just

one basin’s and one surface’s integration. For instance, the effect of the environ-

ment on a cluster of molecules within a liquid or crystal might be conveniently

investigated, through the SF approach, using the surface boundary of the cluster

in (6). The surface integral can then be envisaged as a sum of contributions

from each of the interatomic surfaces S(O,O0) composing the total surface S(O)
bounding O.

As shown in [1], (6) may be obtained in several ways: through the use of

the equation of motion for the generator r� r0j j�1for a proper open system O
(a QTAIM basin), or by solving Poisson’s equation for a potential given by the

density r(r), or also in a purely mathematical manner, using the Green’s theorem

Z
A

ður2v� vr2uÞ � dr0 ¼
I
SA

dS � ðurv� vruÞ; (7)

with A being an arbitrary basin and SA its enclosing surface. By making use of

the well-known [5] identity, r2ð r� r0j jÞ�1 ¼ �ð4p � dðr� r0Þ and by setting

u ¼ r� r0j j�1 and v ¼ rðr0Þ, one easily gets (6) provided the basin A fulfills the

QTAIM zero-flux recipe rrðrÞ � nðrÞ ¼ 0 8r 2 SA½ �, to get rid of the surface term
urv.

2.2 Local and Integrated Forms of the Source Function:
Definitions and Use

In Sect. 2.1, the local form of the source function, (8)

LSðr; r0Þ ¼ �ð4p � r� r0j jÞ�1 � r2rðr0Þ; (8)

4In fact, r(jr – rsj)�1 r(rs) ¼ �(r � rs)/jr � rsj3 r(rs) ¼ e (r, rs), with e (r, rs) being the electric

field density at r due to the electron density at rs.
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and its integration over a basin O

Sðr;OÞ ¼
Z
O

LSðr; r0Þ � dr0; (9)

were introduced and termed, respectively, Local Source (LS) function and

(integrated) Source Function (SF) for the electron density at r. They express the

contribution in determining r(r) of a local source at r0 or of the sum of this source at

all points within O, respectively.
A standard use of the SF approach [1, 9, 14] involves the evaluation of the SF

contribution of an atomic basin or of a convenient union of atomic basins (e.g., a

chemical group) in determining the density at r, chosen as a reference point (rp).

Typically, the bcp is used as the least biased choice for the point representative of a

bonding interaction. Analogously to the calculation of the atomic population N(O),
integration of the LS is usually performed using nucleus-centered spherical coordi-

nates. Therefore, the SF contribution from a given group of atoms is conveniently

performed [1, 9, 14] by summing up the individual S(r,O) contributions of the

various atoms composing the group, rather than by a direct integration over the

basin of the whole group.

The SF values, S(r,O), are often reported [9, 14] in terms of their percentage

contribution to the electron density at r,

S%ðr;OÞ ¼ Sðr;OÞ
rðrÞ

� �
� 100: (10)

It is worth noting that the S(r,O) and S% (r,O) quantities have a quite distinct

meaning. For instance, in the case the rp corresponds to a bcp, S(r,O) is strictly
related both to the nature and strength of the associated interaction, as conveyed

by the electron density at bcp, rb, and by the relative “contribution” from O to rb.
On the other hand, S%(r,O) just expresses the percentage share from O to rb, and it
is therefore in principle independent on how strong or weak the interaction is.

S(r,O) may be very small or large, despite S%(r,O) being, respectively, very close

to and even larger than 100%5 or definitely much less than so. As we will show

S%(r,O) reflects the localized vs. delocalized character of a given chemical inter-

action, with the two bonded atoms having large S%(r,O) values when the interaction
is localized and quite small when highly delocalized. Both quantities, S(r,O) and
S%(r,O), will be used and analyzed in the examples discussed in the next sections.

With respect to its integral forms, the local SF brings further detail. The LS

is currently analyzed [13] by evaluating its profile along a line and using a con-

venient point as rp. When the line is a bond path, the bcp is usually taken as the rp.

5Negative S(r,O) values are not uncommon and S%(r,O) may thus be negative, which implies that

the percentage contributions from other atoms may occasionally become greater than 100.
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In this way, atomic regions yielding positive and negative contributions to rb
become clearly visible along the bond [13, 14] and may be associated with the

corresponding regions of charge concentration and charge depletion as obtained

from the radial profile of r2r in the isolated atom [6]. Comparison of LS profiles

for the same system and for the same rp, but using electron densities coming from

different models, allows one to get a deeper understanding of the changes brought

in by the various adopted models into the description of bonding at the bcp [13–15].

Comparison of LS profiles may also disclose interesting differences in how the

electron density is determined at a bcp or at this same location when two atoms are

linked or not linked by a bond path. Examples of such an use of the LS profiles are

detailed in Sects. 3.4.2 and 4, where the application of the SF tool to the study of

metal–metal bond and of the multipole bias in charge density investigations from

X-ray structure refinements is, respectively, discussed.

Analogously to the LS profile along a line, one may also investigate S(r,O) or
S%(r,O) along this same line [13, 14] (see Sects. 3.1 and 3.4.2). The resulting

profile clearly bears a quite different interpretation, since in this case, at variance

with the LS profile, it is the rp that is changing along the line and not the LS

contributing point. The S(r, O) or S%(r, O) profiles thus give information on how

the total or percentage “contribution” from O to r(r) varies as a function of the

position of r along the line. If the line is a bond path linking O and O0, the
“contribution” from O0 will generally increase on going from O to O0. Participa-
tion from other atoms will also vary, with a generally larger importance in regions

around the bcp and far from either of the two linked nuclei. The relative small or

large weight of contributions from atoms other than O or O0, in the region around

the bcp, may be respectively related to the high or low covalent character of the

interaction O–O0.
Although only partly explored thus far [3, 16], the SF tool may also be used to

define the extent to which a basin contributes to determine both its own electron

population N(O) and that of the remaining basins in the system. By integrating (2)

over O

NðOÞ ¼
Z
O

rðrÞdr ¼
Z
O

Sðr;OÞdrþ
X
O0 6¼O

Z
O

Sðr;O0Þdr ¼ NiðOÞ þ NoðOÞ; (11)

or, analogously, (6)

NðOÞ ¼
Z
O

rðrÞdr

¼ � 1

4
p �

Z
O

Z
O

r2rðr0Þ
r� r0j j dr

0 þ
I
SO

dSðrSÞ � r r� rSj j�1rðrSÞ
8<
:

9=
;dr

¼ NiðOÞ þ NoðOÞ; (12)
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N(O) turns out to be decomposable in an inner, Ni(O), and an outer, No(O),
contributions, which in the case of (11) may be then both conveniently expressed in

terms of the elements of an electron “population” matrix M.

NðOÞ ¼ NiðOÞ þ NoðOÞ ¼ MðO;OÞ þ
X
O0 6¼O

MðO;O0Þ: (13)

M(O,O) represents the contribution of O to determining the electron population

of its own basin, while M(O,O0) is the contribution to this same population from

basin O0. M(O0,O), instead, represents the contribution of O in determining the

population of O0 and, usually, M(O,O0) 6¼ M(O0,O). At variance with standard

population analyses, the matrix M is thus generally not symmetric, although it

will be clearly so in specific cases (e.g., the homonuclear diatomics). In the case of

(12), the outer contribution would consist of a sum over the interatomic surfaces of

O of the global contributions from each chemical residue R linked to O (Scheme 1).

The matrix M (13) defines a full “population analysis,” based only on the

observable r2r and without resorting, as it is generally the case, to any discrete

representation of the one electron density matrix on atomic bases and to population

analyses derived thereof (e.g., Mulliken Population analysis, MPA) [17]. As antici-

pated earlier, the quotes enclosing “population analysis” signify the profound

difference between an atomic population given in terms of a sum of contributions

to the density from the atomic basis set functions (e.g., MPA) and the present one

given in terms of contributions from well-defined portion of spaces determining that
population. For the sake of simplicity, we will, however, omit the quotes from now

on when referring to either type of populations. The matrix M, analogously to the

local source and to the source function, can be obtained from experimental electron

densities. It thus represents a unique chance to compare theoretical and experimen-

tal electron populations on an unbiased basis, regardless of the different descriptions

– atomic basis sets, pseudoatom densities [10], etc. – adopted to derive them. It is

worth noting the formal analogy between the proposed population analysis and that

one would obtain by defining the boundaries of atoms according to the Hirshfeld

surfaces (HS) introduced by Spackman and Byrom [18], and by then using the

so-called Hirshfeld’s stockolder partitioning [19] to apportion, among the various

atoms, the electron density within the HS bounded basins. This procedure would

automatically lead to a nonsymmetricMmatrix formally analogous to that obtained

by the double integration of the local source and would equally be applicable, on the

same grounds, to both theoretical and experimental densities. An interesting aspect

R4

R1

R2

R3

W
Scheme 1 Atomic group O
and its linked chemical

residues R

202 C. Gatti



is that this population analysis would be definitely much faster and easy to calculate,

but it also has significant drawbacks respect to that based on the source function.

First, the atomic boundaries and the apportioning among atoms of the density within

them would be biased by the independent atom model (IAM) [10] approach, which

is arbitrary and also not unique. Second, the so-defined atoms would not be quantum

objects. Third the HS space partitioning is not necessarily exhaustive, which would

imply the existence of basins – the voids of usual HS studies [18] – not associated

with any nucleus. In any case, the analogy between these two populations would be

only formal since the one making use of HS surfaces and the stockolder recipe is

defined, as usual, in terms of direct contributions to the density, while that based on

the double integration of the local source, in terms of contributions determining the
density. Preliminary results and numerical difficulties and problems using (11)–(13)

are reported in Sect. 5.1.

2.3 Which Other Reference Points, Beyond the Bond
Critical Points?

Before concluding this general introduction to the LS and the SF, it is worth

spending few words on the choice of the more relevant reference points when

using these functions. Needless to say this problem does not come up when the LS

is used in its double integrated form.

As discussed above, both the LS and the SF often use bcps as reference points,

but clearly any reasonable choice may be exploited and proved to be useful. The

case of the SF profile along a bond path has already been introduced earlier. Among

the many other possible and convenient choices, we mention (a) the positions of

maximum local charge concentrations or depletions [6], so as to explore in an

atomic-wise detail how their Laplacian values are affected by chemical substitu-

tion, and (b) the points along a line perpendicular to the bond path and directed

above and below the molecular s-plane in a p-conjugated system. This latter option

is expected to provide information on how p-conjugation is mirrored by the SF.

In fact, even though s- and p-distributions are well known to be self-consistently

interrelated [6, 20], p orbitals do not yield direct contributions to the electron

density in the molecular s-plane for those systems where symmetry allows for a

complete s and p separation. Hence, one anticipates an increase in the S%

contribution from atoms other than the two linked by a bond path when the relative

contribution from p-orbitals to the total density rises on moving out from the

molecular plane. An example of such behavior is shown in Sect. 3.2.2.

As we discussed in [21], in reply to a question by Professor Bultinck, use of the

ring critical points (rcp) [6] in aromatic systems as rp’s could reveal different S%

(rcp,O) contributions from the various atoms in the ring and so provide a measure of

departure, if any, from the perfect atomic symmetry necessarily present in benzene.

Such a departure, although not yet extensively analyzed, might be used to define an

alternative (local) index of benzenoid character [22].
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The points associated with the attractors of nonnuclear basins [23, 24], that is the

maxima of r(r) at positions other than nuclei, have also been used [9] as rp’s so as

to explore whether the SF is able to distinguish between these peculiar maxima,

with anticipated highly delocalized character for their density sources, and those

associated with the nuclei, presumably characterized by very localized sources.

Gatti et al. [9] surveys the results obtained by applying such an analysis to a number

of alkali metal clusters exhibiting nonnuclear basins in their electron distribution.

Other rp’s choices are clearly possible besides those listed, but a discriminating

point needs to be mentioned [14]. The relative accuracy by which r(r) is obtained
as a sum of atomic sources, (2), is given [14] by the quantity ER%(r)

ER%ðrÞ ¼
rðrÞ �P

O
Sðr;OÞ

rðrÞ

������
������ � 100; (14)

which turns out to be usually less than 1% when r(r) is greater than 10�2 au, but
which may increase up to about 5% when r(r) is one order of magnitude lower. For

regions of very low density, r(r)< 10�4 au, reconstruction of r(r) through (2) often

becomes problematic. The modulus of the sum of atomic sources
P
O
Sðr;OÞ

����
����hardly

becomes lower than 10�5 au, or, in some case, even than 10�4 au, which easily

explains why ER%(r) is rapidly increasing up to and above 100% for rp’s with very

low density values. This accuracy problem clearly sets a minimum density value

constraint (�10�3 au) on the choice of possible rps. It has also been shown [14] that
the ability of reconstructing the density through (2) is strictly related to the

departure of the integrated atomic Laplacian magnitudes,
R
O
r2rðrÞ � dr

�����
�����; from

their required value of zero. For instance, in the isolated H atom, with an integrated

Laplacian magnitude less than 10�11 au, r(r) values as small as 10�10 au are found
to be reconstructed with ER% less than 10%, while for the H2 molecule, with an

integrated Laplacian of about 10�5 au, ER% values become already noticeable for

r(r) values as large as 10�4 au. More details on the problem of reconstructing the

electron density from atomic sources and on the numerical techniques which have

been devised to increase the overall reconstruction accuracy are discussed in [14].

3 The Source Function: Only a Mathematical Identity

or Also an Interesting Chemistry Descriptor?

This section enters into the realm of the source function applications to chemistry.

The main concern we had [1, 9] since the first proposal of such a function in 1998

was to explore whether (2) was indeed able to provide chemical insight or whether

it represented just a mathematical identity for a trivial “tautological reconstruction
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of the electron density” [12]. The physical interpretations of the source function

discussed in the previous section foresee this function as capable to mirror in some

way the effects that typical chemistry changes, such as chemical bonding, chemical

substitution, and chemical environment, or paradigms, such as chemical transfer-

ability and the notion of chemical groups, bring into the electron density. We

challenge, in the following, whether such an anticipated ability is warranted.

We start by considering how the SF may provide an innovative and peculiar

view of how transferability realizes in chemistry; we next move to the SF analysis

of very simple and well-established prototypical chemical bond patterns so as to get

some feeling on how the SF describe and possibly distinguish their different nature.

Later, hydrogen-bonded systems and metal–metal or metal–ligand interactions in

organometallics are inspected to challenge the information the SF is able to provide

in less conventional bonding cases.

3.1 Chemical Transferability and the Source Function

Usually, chemical transferability of a given piece of matter – e.g., a group of atoms

or a molecule – is examined in terms of the constancy, to a given extent, of a

number of its properties despite the different chemical environment in which it is

placed. Perfect transferability is achieved when the electron density of such a piece
of matter is fully transferable [6], while (partial) transferability of only some of its

properties may realize through what has been termed compensatory transferability
[25, 26]. This might be for instance the case of a constant electron population for an

atomic group, which realizes either because of a compensation of charge transfers

within the atoms of the group, or even through self-charge polarization mechanisms

within one or more atoms of the group. The group population remains the same, but

the electron density of the group is not fully transferable in such a case.

The source function is of use in determining individual group contributions to

the density in the study of transferability and may also serve to reveal the con-

sequences of the transferability of the properties of a functional group, since, as said

earlier, the extent of transfer of these properties from one molecule to another is a

consequence of a corresponding transferability of the group’s electron density. For

instance, the SF enables one to determine the extent to which changes in atoms

neighboring the group in question selectively contribute to the change in its density.

Using the SF, one may also see transferability from a new and deeper perspective.
The electron density decomposition afforded by (2) reveals that the perfect transfer-

ability of a group property, expressible in terms of its density, implies a constancy not

only in the electron density of the group but also in the sum of contributions to this

density from the remaining atoms in the system. Concisely, if on passing from one

system to another, a group’s electron density remains constant, so need to be both the

“internal” and “external” contributions to this density, at any of its points.

In what follows, we briefly review a case where an almost perfect transferability

realizes and other two where the SF approach reveals interesting compensatory

transferability mechanisms.
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Richard Bader has repeatedly shown how transferability of form and properties

is particularly evident for atomic groupings corresponding to the building block of

biological macromolecules [25, 27] or of some series of molecules, like the hydro-

carbons [6]. In particular, the terminal methyl group in n-alkanes, past ethane, is
characterized by very transferable atomic properties, regardless of the length of the

chain, and including its energy, electron population, volume, and spectroscopic

behavior [6]. Transferability does not only show up in the integrated properties, but

it is so good that, for instance, a constant value of 0.2827 au for rb at the unique

C–H bond of the terminal methyl group is also detected (RHF/6-311G** level).

Analysis of SF contributions to this density value in the ethane, propane, butane,

and pentane series leads [1], Table 1, to two important results: (a) the “internal”

contributions from the atoms in the methyl group are actually constant at 0.270 au

throughout the series, with the two equivalent methyl group hydrogen atoms

contributing 0.0210 au in all four molecules, and (b) the “external” contribution

remains also almost constant, regardless of the length of the chain. The two SF

conditions of a perfect transferability are thus both fulfilled for the methyl group, at

least at its C–H bcp. The constancy of the external contribution implies that the

ethyl group in propane has to contribute the same as the propyl group in butane

or the butyl group in pentane. It is this constraint that leads the H and C atoms of

the methyl group to exhibit characteristic properties in hydrocarbons. The trend

Table 1 Source function (SF) and atomic group transferability. Source contributions to the

H–CH2 bcp density in CH3(CH2)nCH3 (n ¼ 0–3) and to the Li–X bcp density in the Li–X
(X ¼ F, O, N, Cl, H) Seriesa

n-hydrocarbons, CH3(CH2)nCH3

N rb(H–CH2) S(rb; ext)
b S(rb, O)

b

0 0.2830 0.0126 H–CH2� � �� � �CH2� � �� � � H

0.2704 0.0100 0.0026

1 0.2827 0.0126 H–CH2� � �� � �CH2� � �� � � CH3

0.2701 0.0091 0.0035

2 0.2827 0.0127 H–CH2� � �� � �CH2� � �� � � CH2� � �� � � CH3

0.2701 0.0091 0.0020 0.0016

3 0.2827 0.0127 H–CH2� � �� � �CH2� � �� � � CH2� � �� � � CH2� � �� � � CH3

0.2702 0.0090 0.0019 0.0008 0.0009

Li–X series

Li–X [Re (RLi)]
c rb S(rb, Li) S%(rb, Li) N(Li)d �E(Li)d

Li–F 2.935 (1.128) 0.078 0.033 42.9 2.059 7.3419

Li–O (2P) 3.158 (1.175) 0.067 0.028 41.6 2.066 7.3467

Li–N (3S) 3.477 (1.242) 0.054 0.022 39.9 2.075 7.3565

Li–Cl 3.846 (1.294) 0.045 0.018 39.8 2.065 7.3274

Li–H 3.039 (1.347) 0.040 0.016 40.0 2.086 7.3655
aData from [1, 3, 9], all quantities in au
bS(rb; ext) is the sum of “external” source contributions to rb (H–CH2), i.e., those other than from

the methyl group. It is thus given by the sum of the atomic group source contributions listed, for

each molecule, in the last column minus S(rb, O ¼ H–CH2)
cRe and (RLi) are the equilibrium distance and the distance from the Li nucleus to the bcp
dN(Li) and E(Li) are the electron population and the atomic energy of Li
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reported in Table 1 is much more than a simple falloff in the source contributions

with chain length increase. The value of the source function for each succeeding

increment is predetermined as it must equal the contribution of the hydrogen atom it

replaces.

In our second example [9], we examine the Li–X (X ¼ F, O, N, Cl, H) diatomics

where the Li atom is known to exhibit almost constant and transferable integral

properties, including its net charge and atomic energy, through the series [6, 28].

Before introducing the SF view of transferability along this series, it is worth

remembering that the charge distributions of Li–H, Li–O, and Li–F were used

back in 1972 by Bader as the examples to “illustrate the all important observation

that the transferability of atom’s density is accompanied by a paralleling transfer-

ability in its kinetic energy density” [28]. Indeed, the paralleling behavior of r(r)
and G(r) was the “crucial observation” that eventually led to the QTAIM [6], next

the demonstration [29] that the virial theorem not only holds for a system in its

entirety, but also applies to each of its regions of space bounded by a zero-flux

surface in rr. Constancy of Li integral properties also serves as a simple example

of the most important observation at the basis of the concept of a functional group:

“that atoms or linked groupings can exhibit characteristics forms and properties in

spite of gross changes in their immediate neighbors” [25].

In the limit of perfect transferability of the Li basin electron distribution, the

source contribution from Li to the density at the bcp, S(rb,Li), should remain

constant, regardless of the nature of X and of the corresponding value of rb [9].

Within the limit above, changes in the rb value should only be determined by

corresponding changes in the source contribution from the X atom, S(rb,X). Table 1
shows, instead, that the S(rb,Li) value provides a more sensitive measure of

departure from perfect transferability of the Li basin than its integral properties.

S(rb,Li) is found to decrease with decreasing electronegativity through the series

and to become in LiH about half the value in LiF, the first member of the series. The

decrease in S(rb,Li) parallels the corresponding decrease in the rb values, whereas
both the atomic electron population N(Li) and the energy E(Li) remain almost

unvaried through the series. Interestingly, an almost constant source percentage

contribution from Li at the bcp density, S%(rb,Li) � 40%, is also observed

(Table 1). The constancy in Li energy and net population through the series is

translated in the SF language in a constancy of the percentage share of the electron

density at the bcp, rather than in an unaffected SF contribution. The chemical

cationic nature of Li in the series thus implies a constant share of the bcp density

and not a constant rb value, which also confirms how the information provided by

S(rb,O) and S%(rb,O) may substantially differ in many cases, as anticipated earlier.

The source function is also able to reveal that a mechanism of compensatory

transferability operates within the Li basin to ensure constant integral properties.

These latter are preserved in the series (Table 1) through a noticeable basin

expansion toward X with decreasing X’s electronegativity. Figure 1 shows that

the S(r,Li) profiles along the Li–X axis for the various members of the series

coincide up to a distance from the Li nucleus almost equal to that of the closest

bcp to Li (LiF, RLi ¼ 1.128 au) and then start to only slightly differ after this
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distance. It is the shift in the bcp position along the series and not the small

difference in the S(r,Li) profiles which lead to the observed trend in the S(rb,Li)

values and which ensures a constancy in S%(rb,Li) and in N(Li). The decrease in S

(r,Li) with increasing distance from the Li nucleus is clearly evident from Fig. 1. It

results from the increasing weight of the positive Laplacian regions when the rp

moves toward X [9].

The third example on transferability reviewed in this section concerns the series

of heteromolecules HCH2–CH2B with B ¼ H, CH3, NH2, OH, and F [1]. Energies

of this series of molecules are found to equal the arithmetic mean of the energies of

the corresponding homomolecules HCH2–CH2H and BCH2–CH2B to within a few

Kcal/mol or less, computationally and experimentally [1, 30]. These additivity rules

suggest that the groups HCH2j and BCH2j (with vertical bars indicating the zero-

flux surface of the C–C bond) undergo small changes in forming the heteromole-

cule. The largest density perturbations, when HCH2–CH2B is formed, should occur

in the vicinity of the new C–C interatomic surface and in particular at its highest

density value rb. Table 2 reports rb values at the C–C bcp and their departures, Drb,

Fig. 1 Profile of source con-

tributions from the Li atom,

S(r, Li), to the electron density

along the internuclear Li–X
(X ¼ F, O, N, Cl, H) axis.

The Li nucleus is at r ¼ 0.0.

Source function contributions

in the region of the bcps are

enlarged in the inset where

the vertical bar denotes the

position of the LiF bcp,

which is the closest to the Li

nucleus. The observed

changes in S(r, Li) with X,
despite the almost constant

Li electron population, are

due to the bcp shift toward X
through the series (repro-

duced from Fig. 3 with per-

mission from [9], Copyright

2003, Wiley-VCH Verlag

GmbH & Co, KGaA)
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from the arithmetic mean of the homosubstituted values. The Drb are very small

relative to rb and increase with the electronegativity of B. The SF analysis reveals

that the small Drb values are the result of much larger perturbations which almost

compensate each other to yield very small deviations from the arithmetic

mean additivity rule. DS(H–CH2) and DS(CH2–B) in Table 2 represent the

deviations of source contributions to C–C rb from the HCH2jand BCH2jgroups
in H–CH2–CH2B with respect to the values of these sources in the corresponding

homomolecules. Their values are almost equal in magnitude but have a different

sign and are from three to five times larger in magnitude than Drb. Table 2 also

shows that both DS(H–CH2) and DS(CH2–B) are dominated by the changes

experienced by the carbon atoms involved in the investigated C–C bond. The

sources from the HCH2j and BCH2j groups, and the corresponding sources from

the C atoms of the C–C bond, are found to, respectively, increase, relative to

ethane, and decrease, relative to B–CH2–CH2B, by similar amounts so as to yield

the final small Drb values.
Although the discussed results seem quite promising, application of the SF

analysis to the study of transferability is certainly still in its infancy. The SF

capability to reveal and detail external, possibly long-distance contributions in

determining the electron density and its changes at relevant points, upon chemical

substitution or perturbation by the environment, might become of some interest in

pharmacological and biological studies. For instance, as an interesting tool for drug

design or in the analysis of how close to the actual drug/receptor interactions are the

models taken from their simplified and perturbed interactions in crystal assemblies

[31]. A preliminary work along these directions, aimed at exploring whether the SF

descriptor is able to finely disentangle the effect of the environment on the charge

distribution of inhibitor species, is included in the chapter by Bernd Engels et al.

[32] of the present book.

Table 2 Source function (SF) and compensatory transferability. Source contributions to the C–C

bcp in the H–CH2–CH2B (B ¼ CH3, NH2, OH, F) series
a,b

B rb (rb)av (Drb) DS(H–CH2)
c DS(CH2–B)

c DS(C)d DS(H2)
d

H 0.2514 – – – – –

CH3 0.2532 0.2532 (0.0000) 0.0006 �0.0006 0.0007 (�0.0008) �0.0002 (0.0001)

NH2 0.2592 0.2581 (0.0011) 0.0044 �0.0033 0.0040 (�0.0032) 0.0002 (0.0000)

OH 0.2651 0.2632 (0.0019) 0.0078 �0.0059 0.0067 (�0.0047) 0.0004 (�0.0005)
F 0.2688 0.2652 (0.0036) 0.0108 �0.0072 0.0092 (�0.0060) 0.0007 (�0.0005)
aData from [1], all quantities in au
b(rb)av is the mean of the rb value for C–C bond in HCH2–CH2H and in BCH2–CH2B, while Drb
represents the deviation from the mean value, Drb ¼ rb � (rb)av
cDS(H–CH2) and DS(CH2–B) are the source differences for these groups in H–CH2–CH2B and in

the corresponding homomolecules, HCH2–CH2H and BCH2–CH2B
dDS(C) and DS(H2) are the changes in the source contributions from the C and H2 in the H–CH2

group with respect to the values for the same group in HCH2–CH2H. In parenthesis, the

corresponding changes in the CH2B group with respect to the values for the same group in

BCH2–CH2B

The Source Function Descriptor as a Tool to Extract Chemical Information 209



3.2 Source Function Description of Simple
and Well-Established Chemical Bonds

This section reviews the use of the SF for studying chemical bond features, starting

from few very simple and well-known chemical bonds. We show how the SF

describes what has been already largely investigated using either the molecular

orbital approach or one of the various available topological tools. As anticipated

earlier, exploring a further method like the SF is primarily justified by its possible

application, on the same ground, to both experimental and theoretical densities, and

second by the reasonable curiosity to inspect whether such a peculiar method is able

to provide any chemical insight.

3.2.1 CHn–CHn (n ¼ 1–3) Hydrocarbons, B2H6, BH3, BH3–PH3

Figure 2 shows the SF contributions at the bcp for a number of compound with

either increasing covalent bond order (the C–C bonds in the ethane, ethene and

Fig. 2 Percentage source function contributions. Top (from left to right): ethane, ethene, ethyne,
rp: C–C bcp.Middle (from left to right): B2H6 (rp: B–Hbridge bcp), B2H6 (rp: B–Hterminal bcp), BH3

(rp: B–H bcp); Bottom (from left to right): B2H6 (rp: rcp) and BH3–PH3. The rp position is

indicated by a black dot. Each atom O is displayed as a sphere with volume proportional to the

SF percentage contribution from O to the electron density at the shown rp (adapted from Fig. 3

with permission from [14]. http://pubs.rsc.org/en/Content/ArticleLanding/2007/FD/b605404h.

Copyright 2007, The Royal Society of Chemistry (RSC) and from Figs. 4 and 5 with permission

from [33])
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ethyne series), or with not enough electrons for a Lewis structure to be written (the

3c–2e bridging bonds in diborane) or instead forming a dative bond in a typical

Lewis acid–base adduct (BH3–PH3). Atoms in Fig. 2 are displayed as spheres with

volume proportional to their percentage source function contribution, S%(rp,O), at
the selected bcp.

As expected for a well-known covalent bond, most of the SF contributions to the

C–C bcp density come from the two neighboring C atoms, with percentage con-

tributions increasing with increased formal bond order from one to three (78.6%,

89.4%, and 95.8%), increased bcp density and C atom population (Fig. 2; Table 3)

[9, 14]. The collective percentage contribution from the H atoms accordingly

decreases along the series and so also does the percentage contribution from a

single H atom, being 3.6% in ethane, 2.6% in ethene, and only 2.1% in ethyne,

although the H source remains almost constant and small in value through the series

(Table 3). Since both the percentage contributions from C and the density at bcp

increase, the source function contributions from C significantly boost along the

series, being doubled in ethyne, S(C) ¼ 0.182 au, with respect to ethane, S(C) ¼
0.091 au (Table 3). Both C and H SF contribution and percentage trends agree with

the increased strength, s character, and localization of C–C bonds along the series.

Comparing the bridging and terminal B-H bonds in diborane, one immediately

notices [14] important differences in the source contributions from the two linked

atoms. They exceed 80% for the terminal B-H bond, analogously to the B–H bond

in BH3 (Fig. 2), while they are as low as 54.3% for the bridging bond, with the

residual contribution, except for a fourth of it, being shared almost equally among

the other Hbridge atom and each of the two terminal H atoms closest to the reference

bcp. Note that for both bonds and contrary to the case of C-C bond in hydrocarbons,

the contributions from the two bonded atoms is largely asymmetric, the more

electronegative atom – the hydridic H – contributing in both cases over 60% of

the bcp density determined by these two atoms.

Despite being involved in the so-called 3c–2e bond, the contribution to the

density at the B–Hbridge bcp from the other B0 atom is less than 3%. A similar

description arises, however, when the delocalization indices d(O,O0) [38] are

analyzed, although delocalization indices and source function contributions are

not physically related in a direct way [14]. Delocalization indices are obtained

through double integration of the pair density p(r, r0) over the basins of atom O and

O0, with the electrons being kept in separate basins and provide a quantitative

Table 3 Source function description of C–C bonds in CHn–CHn (n ¼ 1–3) hydrocarbonsa,b

System N(C) Re, Å rb S(rb,C) S(rb,H) S%(rb,C+C
0)

Ethane 6.013 1.542 0.233 0.091 0.008 78.6

Ethene 6.075 1.349 0.331 0.148 0.009 89.4

Ethyne 6.159 1.225 0.380c 0.182c 0.007 96.0c

aSome of the data from [14]; if not otherwise stated, all quantities in au; rp is the C–C bcp
bDFT/BP86 [34–36] D95V Dunning–Hay basis set [37]
cThere is a nonnuclear attractor [23] at the C–C midpoint; the reported source from each C atom

includes half the contribution from the central nonnuclear basin
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measure of the electron sharing between basins A and B. They convey information

about the special electronic connection between two basins, whereas the S(r, O)
values simply relate the Laplacian electron distribution in one basin with its

contribution to the electron density value at a single, given point. However, when

this reference point is the bcp, taken as the most representative point for the

interaction between two linked atoms, one may envisage that delocalization indices

and source function contributions might empirically be related in some way and

under special circumstances. For instance, when bond covalency is known to increase

along a series of related compounds, one anticipates that both the delocalization index

between the covalently bonded atoms and their source function contributions to the

electron density at the associated bcp will correspondingly increase along the series.

In the hydrocarbon series discussed earlier, we indeed found [14] that the increased

SF percentage contributions from the C atoms is paralleled by an increased delocali-

zation index, from 1.03 in ethane, to 1.92 in ethane and 2.76 in ethyne. Conversely,

the very small source function percentage contribution from the C atom to the bcp

density of the C0–H0 bond (1.7%, 4.0%, and 4.7% for the three members of the series)

is paralleled by a corresponding d(C, H0) value as low as 0.042, 0.062, and 0.084,

in ethane, ethene, and ethyne, respectively. Coming back to the diborane case, the

d(B,B0) value is 0.084, while the electronic share between the B and the bridged

hydrogen is about four times as large, d(B,Hbridge) ¼ 0.332. Moreover, both the

electron share between the two bridged hydrogens, d(Hbridge,H
0
bridge) ¼ 0.214 and

that between a terminal and a bridged H, d(Hbridge,H) ¼ 0.109, are (much) greater

than the electron sharing between the two B atoms. All these results are in line with

the delocalized nature of SF contributions to the density at the B–Hbridge bcp and the

small SF contribution to such density from the other B atom. Conversely, the

localized description of source contributions to the bcp density of the terminal B–H

bond properly complies with a delocalization index value for this pair of bonded

atoms, d(B,H) ¼ 0.59, which is almost twice as big as that for the B and the bridged

hydrogen atom. Figure 2 also shows the large delocalization of source contributions

to the electron density at the diborane ring critical point.

A spread of sources is also observed in the case of the Lewis adduct, suggesting

that its formation involves the two molecules in their entirety, rather than the

electron-rich and the electron-deficient atoms only. Indeed, the BH3 and PH3

moieties are found to determine to similar extent the density at the bcp of the

adduct, with even larger contribution from the acidic moiety, S(BH3) ¼ 58% [33].

However, despite being much closer to the bcp, the electron-deficient B atom

contributes only about one half the source from the P atom and are the much larger

sources due to its three linked hydridic H, as compared to those due to the acidic H

linked to P, that eventually lead to the dominance of the acid moiety contributions.

3.2.2 Cyclic Conjugated and Aromatic Hydrocarbons

Table 4 lists source contributions to the C–C bonds in three cyclic conjugated and

aromatic hydrocarbons (see Scheme 2 for atomic numbering). As anticipated earlier
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(cfr Sect. 2.3), the interesting question arises as of whether the SF tool might be able

or not to mirror the model of p-conjugation in some way.

Part of the results listed in the Table 4 were presented by us at the Gordon

Research Conference on Electron Distribution and Chemical Bonding in Oxford in

1998 and are reviewed and expanded here to challenge a recent too rigid assertion

according to which “the p-electron delocalization in the benzene ring is not manifest

in the SF when the rp is taken at the C–C bcp” [12]. The reasoning behind this

statement was the null contribution from p molecular orbitals to the electron density

in their nodal plane. However, as we discussed earlier in Sect. 2.3, s- and p-distribu-
tions are not independent, but self-consistently interrelated [6, 20], and one may thus

argue that some, perhaps small effect of electron conjugation be manifest also when

the rp lies in the p-nodal plane, even though p-orbitals do not obviously yield direct
contributions to the electron density in this plane. Results shown in Table 4 demon-

strate that this is actually the case. Consider first the C–C bcp for the shortest bond(s)

in each system, i.e., the one(s) with largest double-bond character. Both the SF and

the S% contributions from the C atoms other than those directly involved in such a

bond decrease with increasing double-bond character and electron localization. The

S% contribution from the nearest neighbor C atoms decreases from 5.3% in benzene,

down to 3.2% in cyclohexadiene, and to 2.5% in cyclohexene, while that from the

two next-nearest neighbor C atoms is definitely smaller and decreases even faster

with decreasing p-electron delocalization (1.4%, 0.8%, and 0.1%). Conversely, the

contributions from the two atoms involved in the bond increase both in value and

percentage through the series. All these trends nicely fit with a decreased p-electron
delocalization and enhanced localized nature of the shortest C–C bond along the

series. Also, the C1–C6 bond adjacent to the two double bonds in cyclohexadiene

shows a very large SF contribution from the two nearest neighbor C atoms, C2 and

C5, in agreement with the decreased bond length, 1.474 Å, with respect to standard

single bond and partial double-bond character due to the p-electron delocalization

mechanism. As shown in Table 4, SF and S% contributions from the nearest neighbor

C atoms to the bcp density of the three unique C–C “single” bonds in cyclohexadiene

decrease with increasing bond length distance and decreasing partial double-bond

character, again in agreement with a parallel decreased importance of the p-electron
resonance forms involving these bonds.

We move now one step further. We showed that the SF tool translates p-electron
delocalization in enhanced S% contributions to the C–C bond bcp density from

neighboring C atoms related to such a bond by electron delocalization mechanisms.

Enhancement trends nicely follow an increased ability to realize p-electron

Scheme 2 Atomic

numbering in benzene,

cyclohexadiene, and

cyclohexene
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delocalization. One argues that such an increased S% contribution should become

even more evident when analyzed using reference points for which the effect of p-
electron conjugation takes place directly through p-electron distribution, rather than
indirectly through s–p electron interdependency. Table 4 indeed shows that the S%

contributions to the C–C bond bcp density from the neighboring C atoms increase

dramatically in benzene when the rp is moved along a line perpendicular to the

bond path and directed above (or below) the molecular plane. The S% contribution

from the nearest neighbor C atoms increases from 5.3% to 8.9% at 1 au above the

molecular plane and becomes as large as 24.3% at 2 au above such plane. Contri-

bution from the next-nearest neighbor C atoms is smaller, but also largely increases

with increasing distance from the molecular plane, reaching a value of about 10% at

2 au above the plane.

Note that this ability of the SF to reflect p-electron conjugation is totally

independent from a s and p separation of the electron density since the SF tool

has been applied to the total density. Were this separation not realizable, the same

results shown in the Table 4 could have been obtained by analyzing an equivalent

density distribution, albeit expressed in a completely different form, e.g., numeri-

cally or in terms of multipole model pseudoatom contributions. This observation is

of great importance in view of the possibility to recover and quantify electron

conjugation effects both when using electron densities derived experimentally

(hence without s and p separation being allowed) and when a departure from

perfect symmetry would inhibit anyhow a proper separation of s and p electron

contributions. Such a use of the SF has not yet been explored in detail despite it

appears to be very promising. Clearly the same would hold true for more complicate

situations, like in organometallics, where a mixing of s, p, and d contributions can

be envisaged for some bonds.

Since we deal here with densities derived from a molecular orbital approach, the

separate, though interrelated, s and p contributions to the source function values

can also be precisely quantified. These are listed in Table 4, in the second-row entry

for each of the considered distances from the molecular plane. The s% and p%
contributions from two bonded C atoms to the density at their bcp in benzene are

shown to significantly decrease and, respectively, increase with distance from the

molecular plane, as anticipated from the different relative weight of the associated

electron distributions with such a distance. The corresponding SF contributions

from the nearest neighbor C atoms show that the observed five times increase of

their percentage total contribution to the density, on passing from the C–C bcp on

the molecular plane (5.3%) to a point 2.0 au above this plane (24.3%) is the result of

a less than a two times increase (from 3.4 to 5.8%) in the s% contribution and of a

dominant ten times increase in the p% contribution (from 1.9 to 18.5%). It is thus

this latter contribution which leads to an increasingly importance of the nearest

neighbor C atoms in determining the electron density of the benzene C–C bond

when the rp for this bond is moved above or below the molecular plane. Note that

the contributions from the nearest neighbor H atoms follow an opposite trend.

Although their total S% contribution also increases with increasing distance from

the molecular plane, the observed enhancement is the result of a seven time increase
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of the s% contribution, which largely exceeds the increasingly negative p%
contribution. The opposite s% and p% contributions trend for next neighbor C

and H atoms is clearly a consequence of the presence in the former and lack in the

latter of the p atomic orbitals and electrons.6

3.2.3 Second-Row Diatomic Hydrides

In Sect. 3.1, application of the SF to the Li–X (X ¼ F, O, N, Cl, H) series was

reviewed to show how such a tool is able to assess whether an almost perfect or only

a compensatory chemical transferability of the Li atom – the fixed element through

the series – characterizes the given set of related compounds. In the following, the

SF description of the second-row diatomics H–X (X ¼ Li, Be, B, H, C, N, O, F)

is instead briefly reviewed [9] to inspect how this function is able to account for

the well-known change of nature of the H atom – the fixed element of this series –

with the change in the electronegativity of X. Figure 3 shows contour maps of

Fig. 3 H–X diatomics: contour maps of L(r) ¼ �r2r dashed red contours, L(r) < 0, indicate

regions of charge depletion and solid blue contours, L(r) > 0, denote regions of charge concentra-

tion. The bond path and the intersection of the interatomic surface with the plane of the map are

shown for each diagram. The H-basin shape and the position of the bcp reflect the transition

through the series from closed-shell to shared atomic interactions and from a cationic to anionic

nature of the hydrogen. Changes in the H-basin shape and in its L(r) distribution significantly

affect both S(rb,H) and the percentage contribution of the H atom to the bcp electron density (see

Table 5) (adapted from Fig. 1 with permission from [9], Copyright 2003, Wiley-VCH Verlag

GmbH & Co, KGaA)

6Although H atoms do not possess p-electrons, H basins as defined by QTAIM, may nonetheless

contain p-electron MO contributions to their electron density.
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L(r) ¼ �r2r and the intersections of the interatomic LijX surface with the plan of

the map for all investigated diatomics. Changes in the H-basin shape and in its L(r)
distribution are anticipated to have a significant effect on both the SF value and its

percentage contribution to the bcp electron density. The shape of the H-basin and

the position of the bcp reflect the transition through the series from closed-shell to

shared atomic interactions and from a cationic to an ionic nature of the H atom. On

going from H–Li to H–F, the bcp moves from a region closer to the X nucleus of

negative L, hence positive Laplacian, to a region closer to the H nucleus and with

increasingly smaller Laplacian values (this is detailed in Table 5, where the symbol

RH denotes the distance from the H nucleus to the bcp). As a consequence, the

S(rb,H) value is found to increase from 0.02 au in HLi up to about 0.140 au in HO

and HF. However, the rb value increases along this series by a quantity about three
times as large, namely from 0.033 au to 0.354 au, leading to a monotonic decrease

in the S%(rb, H) values along the series from about 60% in HLi to 38.8% in HF.

Therefore, the decreasing electron population of H, from 1.874 e� for the hydridic

H in HLi to the only 0.399 e� for the almost cationic H in HF and the corresponding

increase of X’s electronegativity, translates into a significantly decreased H’s source

function percentage contribution to the bcp density through the series. Attention has

been called [9] to the fact that the decreasing percentage share from H atom with

increasing electronegativity of X complies with the previously described parallel

decrease of the local Shannon entropy in the H-basin, taken as an indication of an

increasingly structured and localized H-atom’s density along the series [39].

The LS, LG, and LV profiles along the bond path have been analyzed in detail

for the H–X series [13], with the bcp being taken as rp. Only the main conclusions of

that study by Gatti and Bertini are reviewed here. The LS profiles were found to

show an increasing asymmetry, with respect to the bcp location, as the X’s electro-
negativity increases through the series. The observed behavior was proposed to set

up a clear and sensitive indicator of the increased (decreased) asymmetry and polar

character of a bond along a series or of the changes of these features when the bond

is placed in different chemical environments. From HC to HF, the LS asymmetry is

the result of a corresponding asymmetry of LV, the term related to the potential

Table 5 Bond critical point properties and source contributions to its density rb in the second-row
diatomic hydridesa

H–X Re RH%
b q(H)b rb r2rb S%(rb,H)

H–Li (1S+) 3.016 54,1 �0.874 0.033 0.155 60.1

H–Be (2S+) 2.538 56,4 �0.798 0.083 0.188 60.3

H–B (1S+) 2.328 53,1 �0.574 0.163 �0.488 52.2

H–H (1Sg
+) 1.400 50,0 0 0.243 �1.012 50.0

H–C (2P) 2.116 37,6 �0.052 0.245 �0.664 44.8

H–N (3S�) 1.958 30,2 0.219 0.305 �1.161 43.2

H–O (2P) 1.833 23,7 0.450 0.340 �1.548 41.0

H–F (1S+) 1.733 20,2 0.601 0.354 �1.686 38.8
aData from [9], all quantities in au
bRH% is the distance from the H nucleus to the bcp, expressed as bond length percentage; q(H) is

the QTAIM net charge of H atom
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energy, which was found to dominate LS for these systems around the bcp. Instead,

the opposite holds true for HLi and HBe molecules where it is the sink contribution

related to the kinetic energy, LG, which largely imparts a form to their LS profiles

close to the bcp. In shared interactions, where electronic charge is accumulated

along the bond, the LV term dominates in regions around the bcp and so determines

positive source contributions at this point. On the other hand, small and negative

local source contributions from these same regions are expected in the case of the

nonshared interactions (HLi, HBe), where the electronic charge is removed from

the internuclear space and separately accumulated (or transferred) within the two

interacting basins, and the LG term prevails. Needless to say, this result complies

with the standard picture of the r2rb classification of these extreme classes of

chemical interactions. The LS, LG, and LV profiles serve as a magnification lens for

the above-mentioned features and for those associated with an asymmetric sharing

of density from the two interacting partners. Gatti and Bertini [13] also commented

that the use of the LS, LG, and LV profiles adds to and detracts from the central

role of the bcp in bond classification schemes, since the profiles use this point as a

rp, but at the same time bring information on the effect on sources of all remaining

points along the bond, thus avoiding the drawback of restricting the attention to

the bcp only.

3.3 SF Description of Hydrogen-Bonded Systems

The hydrogen bond is with no doubt the most important intermolecular interaction

[40]. It is ubiquitous in nature, from molecular aggregates in gas phase and in

solutions, to inorganic materials and to biologically active macromolecules, playing

a fundamental role in determining the stability, dynamical and reactivity properties

of all these systems. The hydrogen bond (HB), which may be designated as a

D–H���A interaction, shows an extraordinary variety of geometries and of dominat-

ing energetic contributions, according to the nature of the H-donor, D, and that of

the H-acceptor atoms, A [40]. The HB energies are known to extend from 15 to

50 kcal/mol for the very short strong hydrogen bonds (SSHB), down to 1–4 kcal/

mol for the weak bonds, i.e., from bond strengths typical of the covalent or ionic

bonds bond to those characterizing the weak electrostatic or the van der Waals

interactions. Relationships among the geometrical, energetic, electronic, and reac-

tivity features of the various classes of HBs have been largely investigated by

combining a variety of techniques [40], including, among other, structural determi-

nations through X-ray and neutron diffraction, thermochemical measurements,

infrared, RAMAN and NMR spectra, ab initio computations, topological studies

of the electron density [41–44], or using other more sophisticated descriptors [45]

and approaches [46]. Given these premises, why should one introduce one more

descriptor, the source function, to characterize this widely studied interaction?

Using a simple tool which may be applied with no change to both experimental

and theoretical densities and exploring whether the SF contributions are able to
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reflect the diverse nature of HBs certainly represented two good motivations behind

such a test [9]. Enhanced SF contributions to the HB bcp density from the atoms

most directly involved in the H-bond (D–H���A) and a parallel decrease of those

from the remaining atoms, with increasing energy, covalency, and local character

of the HB, could perhaps be anticipated. However, the extremely varying role of the

H atom involved in the HB with change in the HB nature [9], or the existence of

specific signatures for the low-barrier hydrogen bonds (LBHB) [47] and for the p-
bond cooperativity mechanism controlling resonance-assisted hydrogen bonds

(RAHBs) [9, 48] were certainly less trivial and predictable outcomes.

In the following, we review the main results derived from the only five HB

studies [9, 13, 47, 49, 50] that, to the best of our knowledge, have thus far made use

of the SF approach. We also add a number of new results, especially for the RAHBs

systems, that come from closer examination of or from comparison among these

studies. Not surprisingly, in view of the postulated relevant role of the LBHBs in

enzymatic catalysis, the first paper due to Overgaard et al. [47] concerned the

comparison of the SF contributions for two small molecules taken as examples of

a low-barrier and of a single-well HB (benzoylacetone and nitromalonamide,

respectively). Appreciation of the results of this pioneering study is facilitated by

reviewing first the main outcome of a systematic study on a number of paradigmatic

HB systems carried on by Gatti et al. [9].

Evaluation of the SF contributions to the density at the HB bcp along the reaction

path for two water molecules, which approach each other within the linear dimer Cs

constraint, served as a model to study the effect on the localizability or spread of

atomic sources when the H���O and O���O distances change from the values typical

of the weak isolated HBs to those characteristic of the charge-assisted H-bonds

[48]. Gatti et al. [9] found that, despite an almost constant and comparable source

function contribution from the donor and the acceptor water molecules, the atomic

S% contributions vary radically along the bond path (Table 6). The S%(H) clearly

Table 6 Source contributions to the hydrogen-bond bcp density in a number of prototypical

hydrogen-bonded complexesa

Systemb RO���O, Å RH���O(RO–H),
Å

r2rb S%
(H)

S%
(D)

S%
(A)

S%
(HþA)

S%
(HþDþA)

1þ(CAHB) 2.409 1.204 (1.204) �0.415 31.4 9.6 51.7 83.1 92.7
2 – (CAHB) 2.430 1.216 (1.214) �0.392 32.1 8.3 49.9 82.0 90.3
4 (RAHB)*c 2.370 1.209 (1.209) �0.425 32.2 8.5 48.8 80.9 89.5
3 (RAHB) 2.538 1.639 (1.008) 0.148 2.1 34.7 34.0 36.1 70.8
5 (PAHB) 2.749 1.850 (0.984) 0.092 �14.4 53.1 31.0 16.6 69.7
6 (IHB) 3.020 2.077 (0.943) 0.067 �72.3 106.6 18.7 �53.7 53.0

2.750d 1.809 (0.941) 0.124 �35.5 74.2 32.2 �3.2 71.0
2.500d 1.564 (0.936) 0.216 �12.5 55.4 41.1 28.6 83.9
2.250d 1.327 (0.923) 0.333 þ2.8 39.6 46.2 49.1 88.7
2.000d 1.110 (0.890) 0.208 þ13.1 29.6 50.8 63.8 93.5

aData from [9]. If not otherwise stated, all quantities in au. D and A are the H-donor and H-

acceptor oxygen atoms, while H is the hydrogen atom involved in the H-bond
bH-bonded complexes are numbered as in Fig. 4c and classified according to [48]
cTransition state for the H atom migration in malonaldeyde
dPoints along the reaction path for the approach of two water molecules within the linear dimer Cs

constraint
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appeared as the most characteristic marker of the HB nature along the reaction

path, being largely negative at equilibrium distance (O���O ¼ 3.020 Å) and

becoming progressively less negative and finally positive for very short O���O
and H���O distances. Furthermore, the sum of the percentage contributions from

the H and the acceptor O atoms to the density at their HB critical point bcp was

found to change from a very negative value at equilibrium distance, to a value

almost of zero at distances (O���O ¼ 2.750 Å) typical of the long chains of

O–H���O bonds in water and alcohols where s-bond cooperativity effects take

place [51], and to finally change to positive values, yet as large as only 50%, at the

O���O ¼ 2.250 Å distance typical of the charge-assisted H-bonds [48]. This result

clearly contrasts the standard situation of covalent bonds where the sum of S%

contributions from the two bonded atoms to their bcp density is usually 80–90%

or more. One gets comparable percentage sources only when the percentage

contribution from the donor O atom is also included in this sum (Table 6) and

for O���O distances below 2.5 Å, indicating that even at such (short) distances the

HB retains at least a three-center nature [40, 48]. At equilibrium distance, atoms

other than the three atoms more directly involved in the H-bond determine almost

half of the density at the HB critical point, a result that clearly provides a fairly

delocalized picture of sources for such a bond at equilibrium. The source spread

has been related [9] to the dominant electrostatic nature of the H-bond at these

distances, to be contrasted with the partial covalent character of the bond when

the S(HþAþD)% value becomes dominant and the atomic sources much more

localized.7

Figure 4a, b display the percentage atomic sources for three representative points

along the HO–H���O–H2 reaction path and the corresponding contour maps of the

negative Laplacian L(r) in the symmetry plane containing the donor water molecule

and the HB bond path.

The dramatic change of sources with changes in the H-donor to H-acceptor

distance is clearly evident from the picture. Inspection of the L(r) contour maps

(Fig. 4b) around the H atom involved in the HB reveals why the S% contribution

from this atom changes from highly negative to moderately positive along the bond

path [9]. At equilibrium distance, where S%(H) is as negative as �72.3%, the H

atom exhibits a truly asymmetric shape and a clearly inhomogeneous L(r) distribu-
tion within its basin. A small region of charge concentration includes and surrounds

the O–H bcp, yielding a standard positive S(H) contribution to this point, while the

HB bcp lies in a much larger region of positive Laplacian, so providing negative

7Delocalization of sources should not automatically be always associated with an electrostatic

interaction. It may clearly also occurs for weak van der Waals interactions or for the source

contributions to the density at a rcp of a n-membered ring, with n greater than 4 and at a molecular

geometry far from a structural catastrophe point. When more than the two bonded atoms are

present, localization of sources is instead certainly related to a (partial) covalent character for the

investigated bond; p-conjugation, as discussed earlier in this chapter, leads to an enhanced site-

specific delocalization of sources with respect to a corresponding case where it is not operating.
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local source contributions to the HB bcp density.8 Because of the larger size and

closer proximity of this region to the HB bcp, the negative local source contribu-

tions largely override the positive ones coming from the farther and smaller region

of charge concentration. Conversely, as the O���O distance diminishes and the O–H

and H���O distances become more similar one to the other, the shape of the H atom

and the L(r) distribution within its basin become both more and more symmetric,

with the region of charge concentration and that of charge depletion, respectively,

increasing and decreasing in their relative sizes. These changes clearly explain why

the S%(H) contribution to the HB bcp density turns out to be less and less negative

with decreasing donor to acceptor oxygen separation and becomes eventually

Fig. 4 Source function in hydrogen-bonded systems. (a) SF atomic contributions to the electron

density at the hydrogen bond bcp (denoted by a dot) as a function of the donor to acceptor oxygen
atom distance along the reaction path for the approach of two water molecules. Atoms are

displayed as spheres whose volume is proportional to the SF percentage contribution from O to

the electron density at bcp. Positive (negative) sources in blue (yellow). (b) Portraits of the

negative Laplacian, L(r), in a plane containing the H-donor molecule and the O���O internuclear

axis for the corresponding systems reported in the first row. (c) SF atomic contributions to the

electron density at the hydrogen bond bcp in a series of prototypical hydrogen-bonded complexes

(identified by the same numerical labels listed in Table 6) (adapted from Figs. 5–7 with permission

from [9]. Copyright 2003, Wiley-VCH Verlag GmbH & Co, KGaA)

8Note that regardless of the relative size of the negative and positive L(r) regions, the integrated L
(H) value should vanish because of the zero-flux QTAIM condition. The region of charge

concentration is smaller because it is on average more concentrated than the region of charge

depletion is on average diluted.
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positive at the shortest displayed O���O distance. In brief, the complex variation

occurring to shape, size, and Laplacian distribution of the H atom along the reaction

coordinate RO���O is nicely summarized by and translated into the change of a single-

valued function of RO���O.
When the SF tool was applied to a series of prototypical HB complexes, most of

the qualitative conclusions from the model study on water dimer were retained, but

important new and subtle facets also emerged [9]. The investigated complexes are

shown in Fig. 4c and classified according to Gilli and Gilli [48] as charge-assisted

hydrogen bonds, [þCAHB, 1: (H2O���H��OH2)
þ; –CAHB, 2: the open form of the

formic acid-formate anion complex], resonance-assisted hydrogen bonds [RAHB,

malonaldeyde, in its Cs equilibrium form, 3, and in its C2v transition state, 4, for the

H-atom transfer between the two oxygen atoms], polarization-assisted hydrogen

bond [PAHB; 5: cyclic homodromic9 water trimer], and isolated hydrogen bond

[IHB; 6: water dimer at equilibrium geometry]. The SF percentage contributions

listed in Table 6 and displayed in Fig. 4c neatly confirm S%(H) as a clear indicator

of the H-bond nature. Its value shows even more pronounced variations with change

in the donor to acceptor atom distance than found for corresponding distance

changes along the approach of two water molecules. Enhanced changes with

increasing or decreasing RO���O are similarly found for the percentage sources

from other atoms or group of atoms. For instance, S%(H) and S%(HþA) are already
as large as about 32% and 82% for systems 1, 2 at an RO���O distance of about 2.4 Å,

while they amount to about only 3% and 49% in the water dimer at the much shorter

2.25Å RO���O distance. The percentage source from the two H-bonded atoms,

S%(HþA), clearly denotes a marked covalent character for this bond in the

�CAHB systems, while it is not so for the neutral water dimer system when com-

pressed at similar or even shorter donor to acceptor atom separations. At variance

with the compressed water dimer, �CAHB complexes exhibit equal or almost

equal O–H and H���O distances, and it is this symmetric location of the H involved

in the HB that leads to the enhanced percentage source contribution from H and to

the pronounced covalent character of their HBs.

Analysis of the SF contributions for the RAHB in malonaldeyde, 3, revealed

quite an interesting fact [9]. The sum of percentage SF contributions from the triad

of atoms directly involved in the RAHB did not follow the trend one would have

expected from the HBs in the other members of the series, but rather showed a

value, S% (HþDþA) ¼ 70.8, which is comparable to that found in the cyclic water

trimer, 5, or in the water dimer at RO���O 2.750 Å, despite RO���O being in 3 shorter by

0.250 Å. A similar S%(HþDþA) contribution decrease, with respect to the

expected trend, was also observed for the RAHB in the malonaldeyde TS, 4. Its S

%(HþDþA) value was found to be comparable and even slightly smaller than that

for CAHBs 1 and 2, despite their larger O���O separations.

9A cyclic (H2O)n water polymer is called sequential or homodromic if each O atom is acting

contemporarily as an H-donor and as an H-acceptor.
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RAHBs are known [40, 48] to be characterized by the mechanism of p-bond
cooperativity. It relies on the positive synergism between HB strengthening and p-
delocalization enhancement that occurs when the H-donor and the H-acceptor

atoms are connected by a short chain of conjugated single and double bonds.

Such a p-bond cooperativity is revealed in 3 by a particularly large source function

percentage contribution, S%(C)¼ 8.3, from the carbon atom linked by a conjugated

formal double bond to the acceptor oxygen atom. It is this large S% value, also

clearly evident in Fig. 4c, the main cause of the decreased percentage SF contribu-

tion from the triad of atoms directly involved in the H-bond. The source contribu-

tions from the C atom linked to the oxygen donor is, instead, less than half as large,

S%(C) ¼ 3.8, despite the two C atoms are almost equally distant (3.3 and 3.8 Å,

respectively) from the HB bcp. The different source function contributions from

these two carbon atoms seem to clearly reflect the diverse role these two atoms have

in the p-delocalization mechanism leading to the tautomer of 3 through TS 4. The C

atom with greater S%(C) value releases its shared p-electron pair to form the O–H

bond in the tautomer of 3, while the other carbon, with an halved S%(C) value, can

contribute to this electron pair shift only in an indirect way through p-electron
conjugation. Although the HB bcp lies in the nodal plane of the p distribution, this

distribution has an indirect effect on the s density, hence on the charge density at

the HB bcp, as already documented for the conjugated hydrocarbon systems in this

review (cf. Sect. 3.2.2). Also in this case, the analysis of SF contributions along a

line perpendicular to the molecular plane and passing through the HB bcp could

magnify the enhancement of delocalization of sources, which is induced by the

p-electron delocalization mechanisms leading to RAHBs.

Based on the results obtained from the investigated series of hydrogen-bonded

prototypical complexes, Gatti et al. [9] proposed the following classification of

OH���O interactions, in terms of the SF tool: (a) IHBs have typically a highly

negative SF contribution from H, S%(H) < �70, highly positive S%(D) value,

much larger than S%(A), and SF percentage contributions as big as about 50% from

atoms other than the D,H,A triad, in agreement with a dominant electrostatic nature

for such bonds; (b) PAHBs still exhibit a negative S%(H) value, but almost halved

with respect to IHBs, and are characterized by a S%(D) value greater than the S%

(A) value, but less than twice as big, and by a substantially smaller external

percentage source contribution than found for IHBs; (c) RAHBs are distinguished

by a very small, but positive source from H, comparable sources from the donor and

acceptor oxygen atoms, and in particular by a SF contribution from atoms other

than the D þ H þ A triad that, being similar to that found for PAHBs despite the

significantly smaller O���O separation in RAHBs, nicely agrees with the p-electron
delocalization mechanisms proposed [52, 53] for such peculiar class of HBs; (d)

�CAHB show large and positive S%(H) values (about 30%), an SF contribution

from the acceptor oxygen atom which is about five times as large as that from the

donor oxygen atom, and extremely high SF contributions from the two atoms linked

in the H-bond, S(AþH) >80%, consistently with the localized and largely covalent

nature of the H���A interaction in these charged complexes. The correspondence

between this HB classification and the one proposed [45] using the ELF [54–56]
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topological approach was also highlighted. The reader is addressed to the original

paper [9] for details.

Gatti et al. [9] also examined HB systems where either the D or the A atom, or

both of them are no longer O atoms. Although based on a limited number of cases, it

was shown that the relative weights of the SF contributions from atoms in the HB

complexes are related not only to the D and A atoms distances but also to the

specific nature of the H-donor and H-acceptor atoms. The conclusion that “the

source function seems sensitive enough to discriminate between different donor–

acceptor pairs, despite similar donor to acceptor distances and that it constitutes a

very suitable tool to get insights into the hetero-nuclear H-bonds” [9] is likely to be

a valid one, but certainly would warrant a more systematic investigation. A fortiori

this holds true for more subtle aspects like the discussed capability of the SF tool to

disclose the signature of p-bond mechanisms leading to RAHBs, for which a

comparative study of systems showing p-bond cooperativity or anticooperativity

effects [57] could be definitely more compelling. Equally important would be

exploring in some detail whether also the mechanisms of s-bond cooperativity

can be revealed by the SF tool, as the noticeable source contribution to the H-bond

density from an hydrogen atom involved in a different HB of the homodromic water

trimer would seemingly suggest (Fig. 4c).

We are now ready to review those results of the paper by Overgaard et al. [47]

that are of relevance for the application of the SF tool to HBs. In their effort to

provide an answer to the very important question of what causes the formation of an

LBHB, the authors investigated three short NH���OHBs in a cocrystallized complex

of betaine, imidazole, and picric acid, which serves as a model for the active site

(the catalytic triad) in the serine protease class of enzymes. The occurrence of an

LBHB had in the past been postulated as a condition for TS stabilization in the

catalytic triad, which is in turn necessary to increase the proteases rate constant

[47]. As anticipated earlier, Overgaard et al. also studied the OH���O bond in

benzoylacetone (bza) and nitromalonamide (nma) as simple examples of an

LBHB and of a single-well HB, respectively. This spectrum of HBs thus covered

the complete range of strong HBs, that is “localized”10 HB (the H atom was indeed

found to be firmly localized in the “nitrogen wells” in all the three NH���O bonds of

the catalytic triad), LBHB (bza), and single-well HB (nma). Clearly, it is not simply

the donor–acceptor distance that determines the HB type, since, for instance, the

authors noticed that citrinin has a localized HB, while bza exhibits a LBHB,

notwithstanding their almost identical O���O separation. Moreover, based on the

H���O distance and the topological properties at bcps, one HB in the catalytic triad

complex was proved to be stronger and more covalent than the other two NH���O
bonds, despite its largest O���O distance. The authors thus speculate that there must

be differences in the chemical environment that change the potential energy surface

10Note that this definition of localized HBs refers to the shape of the DH���A potential well and to

the consequent localization of the H close to the D atom, rather than to a “localization” of sources

and related H���A covalency as described earlier for the strongest prototypical HBs.
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of the hydrogen atom, and that such a surrounding effect on the HB character could

be possibly traced out using the SF tool. Table 7 reports geometrical data for the five

strong HBs investigated and compares their S% atomic contributions to the electron

density at the HB bcp, while Fig. 5 displays the L(r) portraits leading to such

contributions.

The LBHB in bza, having an HB distance only slightly larger, 1.329 Å, than that

of the very elongated O–H bond, 1.245 Å, exhibits a quite symmetric L(r) distribu-
tion around the H atom, which translates in an impressively large SF contribution

from H to the HB bcp density. Its value is 38% larger than in nma and represents

30.4% of the bcp density, to be compared with a corresponding value of only 23.4%

for nma, despite this latter molecule exhibits much shorter RO. . .O and slightly

shorter HB distances (Table 7).11 The LBHB is thus characterized by an enor-

mously increased H atom source contribution, while the contributions from the

atoms not directly involved in the HB are almost similar in the two systems (14.1%

and 15.5% in bza and nma, respectively). The diminished percentage contribution

from the donor–acceptor atom [S%(D) ¼ 9% and 17% in bza and nma] compen-

sates for the higher S%(H) contribution in bza due to the presence of an LBHB.

The strong, but localized HBs in the catalytic triad complex show, instead, the

usual asymmetric L(r) distribution around the H atom, with a shared region of

negative Laplacian between the donor N atom and its covalently bonded H atom. As

a consequence, the source percentage contribution from H at the HB bcp density is

small, close to zero and even negative for HB3 (Table 7). HB energy wells leading

to strong localized HBs are thus characterized by a much smaller source from H

than for single-well or low barrier HBs and by a more than doubled, about 40%, SF

percentage contribution from the surroundings (atoms other than D, A, or H).

Despite its largest N���O separation, 2.684 Å, HB2 was found to have an L(r)
distribution slightly more polarized toward the acceptor atom and the largest source

contribution from H, both in magnitude and percentage value, in agreement with

Table 7 Geometrical data and source contributions to the hydrogen-bond (HB) bcp density in a

number of systems with strong HBsa

System HBb RH���A(RD–H), Å RD���A, Å rb S%(D) S%(D+A)

Betaine, imidazole

and picric acid

complex [47]

HB1 ¼ N1A–H1A···O1A 1.630 (1.046) 2.614 0.051 1.1 57.9

HB2 ¼ N3A–H3A···O8 1.635 (1.057) 2.684 0.054 4.9 56.6

HB3 ¼ N1B–H1B···O1B 1.681 (1.048) 2.676 0.046 �2.3 57.3

nmac O1–H(X)···O3 1.308 (1.140) 2.391 0.122 23.4 61.1

bzac O2–H(X1)···O1 1.329 (1.245) 2.502 0.129 30.4 55.5
aData from [47]. If not otherwise stated, all quantities in au. D and A are the H-donor and

H-acceptor, while H is the hydrogen atom involved in the H-bond
bLabeling of atoms involved in the HBs according to Fig. 5
cnma and bza are nitromalonaldeyde and benzoylacetone, respectively

11Note also that S%(H) in bza is dramatically larger than in malonaldeyde 3 (RO���O¼ 2.538 Å) and

in water dimer at RO���O ¼ 2.5 Å, despite a quite similar donor to acceptor separation, RO���O (bza)

¼ 2.502 Å.
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the stronger and more covalent character assigned to this bond on the basis of the

bcp topological properties. Overgaard et al. [47] could thus conclude that HB2 can

be characterized as an intermediate between localized HBs and delocalized LBHBs.

The merit of their study was to show that the nature and strength of an HB are not

“unambiguously determined by the geometrical parameters which define the sys-

tem” [47], and that the formation of an LBHB is revealed by a dramatic increase in

the H atom source contribution to the HB bcp density, whereas the changes in the

contributions from the surrounding seem to be more subtle. While the SF neatly

summarizes the changes in the L(r) distribution around the H atom due to the

formation of an LBHB, it yet appears not to be able to reveal the causes leading

to the onset of an LBHB potential well. Further studies in this direction are surely

required.

Another more recent study by S€orensen et al. [49] concerned the environmental

influence on the electronic character of the HBs in a b-diketone, 2-acetyl-1,

Fig. 5 Portraits of the negative Laplacian, L(r), in a series of HBs covering the complete range of

strong HBs: localized HB (top: HB1, HB2, and HB3 in the cocrystallized complex of betaine,

imidazole, and picric acid), single-well HB (bottom left nitromalonaldeyde, nma), and Low Barrier

HBs (bottom right benzoylacetone, bza). The different L(r) portraits around the H atom involved

in the HB lead to different S(H) and S%(H) values for the diverse HB types (see Table 7). The L(r)
portraits are obtained from ab initio computations, analogously to the source function contribu-

tions data reported in Table 7 (adapted from Fig. 4.1.4 of [58] and Fig. 4 with permission from

[47], Copyright 2001, Wiley-VCH Verlag GmbH & Co, KGaA)
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8-dihydroxy-3,6-dimethylnaphtalene, 1 (Fig. 6), studied by low-temperature synchro-

tron X-ray diffraction and DFT calculations. Two short intramolecular O–H���O
interactions are found in 1, with one O���O distance being extremely short,

2.393 Å, similar to that found in nma, and the other being 2.598 Å short. Due to

system’s neutrality, both interactions should be termed as RAHBs, though the very

short one lies outside the range typically associated with this class of HBs. However,

at variance with nma, which has a perfectly symmetric keto–enol fragment despite a

highly nonsymmetric HB, the keto–enol fragment in 1 is far from being symmetric
and represents a severe outlier relative to published RAHB correlations [48, 52].

Furthermore, the two OH���O HBs were found structurally quite different, though

being part of rings formed by the same kind and sequence of atoms. Investigation of

system 1 thus served two very interesting purposes. On one hand, to shed light on

why a very short O���O distance combined with apparent p-localization may realize,

in contrast to the widely acknowledged belief that very strong HBs in neutral systems

require to be assisted by resonance. On the other hand, to challenge the question of

which chemical environment forces the neat distinction between the two HBs in the

molecule. The SF tool was adopted, along with other investigative tools, to address

these two issues.

To fully account for the experimentally observed structure and to also model the

effect on HBs features of alternative p-bonding structures, DFT calculations were

performed on molecule 1, its quinone-like tautomer 2, lying about 1 kcal/mole

higher in energy, and their interconnecting TS 3. (Fig. 6). Table 8 lists the bond

C8C1C 11

O1
O O O

HH

O O O
HH

O O O
HH

O2O3

H2H1 1

2

3 TS

1 1 45 60
0 1 40 60
0 1 42 60

-1   0  -11   35
0  -1    -4   35
0  -1    -8   36

17  34  4  0
34  20  0  0
33  29  1  0

41   2   1   0
55  19  2   0
51  11  2   0  

5  1  2  0
2  1  1  0
2  1  1  0  

1  1  3   0
1  4  7  0
1  2  6  0  

22  57
3   44
7   48

25 0
29 0
27 0

0 0  2 1
0 0  2 1
0 0  2 1

Fig. 6 Source function percentage contributions from the eight labeled atoms to the four O···H

bonds of structure 1, its quinone-like tautomer 2, and their interconnecting TS, 3. Sources are listed

in matrices with rows corresponding to structures 1, 2, and 3 and columns 1–4 corresponding to the

four O···H bonds, from left to right (O3···H1, H1···O2, O2···H2, H2···O1). O···H bond distances are

listed for each structure in Table 8. Sources from atoms contributing less than 1% are not shown

(adapted from Chart 1, with permission from [49], Copyright 2006, American Chemical Society)
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distances and bcp density values of the four O–H, or O���H interactions shown in the

Fig. 6, which also displays the corresponding percentage SF atomic contributions

from atoms contributing more than 1%. The SF analysis clearly distinguishes

O2���H2 bond from the remaining O���H or O–H interactions, in all structures

1–3. The sum of SF percentage contributions from O2, H2, and O1 atoms to the

O2���H2 bcp density is only 59%, 65% and 61% in 1, 2, 3, while the corresponding

contributions for the other three bonds in all the three structures always exceed 80%

of their bcp density. These results classify O1–H2���O2 as a short normal electro-

static HB and the others H���O bonds as short HBs with large covalent character

(O1–H2 in 1–3 is a normally covalent O–H bond). Hence, despite the similarities of

the six-membered rings to which they belong, H1 and H2 exhibit completely

different S%(H) values. The former atom contributes largely to the bcp density of

both bonds with its linked O atoms, while H2 shows a high and negative SF

percentage contribution to the bcp density of the O2���H2 bond, typical of an

electrostatic HB. The positive and large S%(H) values for H1 in 1 (17% and 34%

for O3���H1 and H1–O2, respectively) denotes a partially symmetric L(r) distribu-
tion for such an atom associable with a low-barrier or single-well HB. Indeed,

high-level DFT calculations on structures 1–3, including zero-point vibrational

corrections, suggested the O3���H1 hydrogen bond to be a double-well potential,

with a very low barrier between the two minima, so that in practice the H1 sits in a

single-well potential. S€orensen et al. [49] also noticed the large differences in the

contributions from O2, the only O atom common to the two rings, to the bcp

densities of the distant O3–H1 and O1–H2 bonds. In none of the three structures

does O2 contribute to the normal O1–H2 interaction, while it contributes signifi-

cantly to the O3–H1 interaction in all three structures, and in particular in 1, in

which it provides 22%. These striking differences in S%(O2) denote electron

delocalization only in the left keto–enol fragment and may be easily rationalized

in terms of the HB classification based on the SF tool given by Gatti et al. (see
earlier). The p-delocalization is, however, only partial since this fragment is far

from being symmetric, as stated earlier. In order to retain the fully delocalized

naphthalene structure, C11–O3 has to be mostly of double-bond character and

C1–O2 must be a single bond, which is closely realized in 1. Comparison of the S%

contributions from the C atoms linked by a formal double bond to the H-acceptor

Table 8 Geometrical data and O···H bcp density in 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphta-

lene, 1, its diphenolic tautomer 2 and their interconnecting TS, 3a

Bond 1, Re (rb) 2, Re (rb) 3, TS ; Re (rb)
O3···H1 1.419 (0.098) 1.065 (0.264) 1.153 (0.205)

H1···O2 1.040 (0.282) 1.366 (0.112) 1.229 (0.165)

O2···H2 1.749 (0.040) 1.689 (0.048) 1.715 (0.044)

H2···O1 0.977 (0.349) 0.988 (0.337) 0.984 (0.341)

O3···O2 2.393 2.372 2.333

O2···O1 2.598 2.573 2.588
aData from [49]. See Fig. 6 for molecular structure drawings. Distances in Å, bcp densities in

atomic units (au). Ab initio theoretical data
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O atoms in 1 and in malonaldeyde (Fig. 4) reveals how the SF tool reflects the

departure of 1 from a real RAHB system. As discussed earlier, the contribution

from the carbonyl C atom in malonaldeyde is quite significant, S%(C) ¼ 8.3, while

that of C11 in 1 is only 5.0%. Analogously, the contributions from the C linked to

the O donor atom are as big as 3.8% in malonaldeyde and only 1.0% for 1.

Clearly the SF analysis alone is not able to provide an answer to what causes a

strong O3–H1 bond in 1 despite the partial lack of the usual RAHB mechanisms.12

Nor it may offer alone an answer to the occurrence of two quite different O���H
interactions in the two six-membered rings of 1. Yet, despite these limitations, it

sheds important light on and quantifies the different involvement of the various atoms

in determining the densities at the two HB bcps. One may assume these differences

be related to the environmental influence on the HB geometry and strength.

The very recent study by Schmidtmann et al. [50] on polymorphic isocotinami-

de–oxalic acid molecular complexes with strong O���H���N hydrogen bonds has the

great merit of applying, for the first time for HBs, the SF tool to both experimental

and theoretical Laplacian distributions. To avoid inconsistencies between the two

distributions due to the shortcomings of the multipole model, the theoretical

structure factors obtained from the periodic calculation were refined using the

same multipole model adopted for the experimental data. SF calculations were

then performed with the XD2006 package [59], taking as input the parameters

refined from either the experimental or the theoretical structure factors. Figure 7

displays experimental and theoretical L(r) plots for the O���H���N SSHB between

Fig. 7 Plots of the experimental (left) and theoretical (right) negative Laplacian L(r) in the

C1–O1–N1 planes of the O1···H1···N1 SSHB in the stable polymorph of the isonicotinamide–

oxalic acid molecular complex. Source function percentage contributions to the density at the

H1···N1 bcp are reported for the O1, H1, and N1 atoms (adapted from Figs. 4 and 5, with

permission from [50], Copyright 2009, American Chemical Society)

12The decrease of the carbonyl atom contribution with respect to malonaldeyde could be compen-

sated for by a distributed contribution from the carbon atoms of the conjugated naphthalene ring.
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the acid and the pyridine base in the energetically stable polymorph of the

complex.

It also reports the S% contributions from the O, H, and N atoms to the H���N
bcp density. Both experiment and theory describe this HB as strong and largely

covalent, with a high percentage source function contribution from the H,

S%(H1) ¼ 26.2 and 27.2, respectively, and also a high combined source

contribution from the atoms comprising the HB, S%(O1 þ H1 þ N1) ¼ 77.7

and 78.4, respectively.

The almost perfect agreement of SF values between theory and experiment

seems apparently contradicted by the qualitative difference one observes in the

L(r) plots. The experimental map shows a continuous shared region of positive

L(r) enclosing both the H and the N nuclei, while such a region, regarded by

Schmidtmann et al. [50] as a strong evidence for the covalent character of the

H���N bond, is no longer continuous in the theoretical map. One should note,

however, that qualitative topological changes may often occur as a consequence

of small quantitative changes in the distribution of a scalar [2, 6, 8, 60].

A careful examination clearly reveals how close to a separation in two disjoint

regions is the continuous region of charge concentration encompassing the H

and N nuclei in the experimental map. Hence, this feature is neither stable – it is

absent in the theoretical map and close to disappear in the experimental one –

nor necessary for assigning a partial covalent character to this SSHB, as testified

by the SF analysis and other examined bond properties. We will discuss later in

this review (Sect. 4) how the SF descriptor, being based on a basin average of

L(r), often reveals itself [15] as a more robust descriptor of bond features

against changes in the way L(r) is obtained, than prove to be the L(r) distribu-
tion itself or other commonly used topological indices. We therefore partly

disagree with the authors’ conclusion that the most convincing sign they

provide for the covalent stabilization of the H���N SSHB, rather than coming

from the characteristics of the SF or from the topological properties of the

charge density, derives perhaps from the visualization of the Laplacian, showing

a continuous region of charge concentration in the H���N bonds. This is a

discontinuous sign and analogously to other important topological indices

such as the presence or not of a bond path linking a couple of atoms whenever

alternative pair of atoms compete for such a path [8], may be largely instable in

given circumstances. Instead, the SF tool provides a smoothed description

enabling one to meaningfully compare the larger or smaller covalent character

of a series of related HBs.

We conclude this section on HB systems by briefly mentioning the use of the

local source (LS) profiles to get a position space insight into the effects of HB

intermolecular interactions on charge density distributions [13]. Gatti et al. [13,

44] have shown repeatedly that deformation densities (crystal density minus

IAM density) and interaction densities (crystal density minus superposition of

molecular densities) reach absolute minimum values in regions close to the HB

critical point, being instead much larger in regions closer to the H nucleus or to
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the nuclei of the heavier atoms involved in the HB. It thus appears that the

properties at the HB critical point and in the region close to it contain the least

information on the electron density polarization due to intermolecular interac-

tion (and also to molecular formation, if IAM density is taken as reference).

This observation clearly raises serious doubts about the use of the bcp properties

only when discussing intermolecular interactions in crystals. Changes in atomic

properties and related molecular properties, e.g., the molecular dipole, may be

much more significant than changes in the HBs bcp densities [61, 62]. The

analysis of the differences in the local source contributions to the HB critical

point density using the crystal density or one of the model densities introduced

earlier (IAM and superposition of the molecular densities) enables one to single

out those remote molecular regions which mostly contribute to determining the

small density changes at the HB critical point. Gatti and Bertini [13] discuss

such changes by examining the difference LS profiles along the juxtaposition of

the D–H and H���A (D¼N, A¼O) bond paths in the urea crystal. Conversely,

analysis of these same LS difference profiles, but referred to rps located in those

regions showing the largest variations in the crystal L(r) distribution with

respect to the model densities, might reveal those molecular regions which

contribute more in determining such maximal changes. The interaction density

has always be considered as a rather elusive quantity, and a number of studies

have discussed [63, 64] whether it could be amenable to experimental determi-

nation. The combined DLS profile studies sketched above should permit to

individuate the causes and magnify the density changes leading to the interac-

tion density. The preliminary investigation reported in [13] certainly deserves to

be deepened.

3.4 SF Description of Metal–Metal and Metal–Ligand Bonds
in Organometallics

3.4.1 Why Exploiting the SF for Organometallics?

The relationships between the geometrical and electronic structure of transition

metal complexes and the description of how metal atoms get bonded to one another

or to the ligands have been the source of lively and debated discussions in literature

through the years and are still the subject of a growing number of ongoing theoreti-

cal and experimental investigations [2, 14, 60, 65–79]. The ligands customarily

provide the necessary glue for the energy stabilization of transition metal com-

plexes, and the study of the interplay and/or competition between metal–metal and

metal–ligand bonding is an interesting and challenging subject.

For a number of reasons detailed below, the SF has enjoyed an increasing

attention as a useful tool to be exploited in this area, and especially so when used

in combination with other techniques. SF applications have in particular concerned
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the metal–metal (M–M) bond and the metal–ligands (M–L) interactions in polynu-

clear transition or alkaline-earth metal compounds [14, 77, 80–82], and also the

M–L interactions in mononuclear metal complexes involving p-bonded unsaturated
hydrocarbyl ligands [72, 83] or s-bonded ligands [84].

Topological approaches to the description of chemical bonding have revealed

how many traditional bonding paradigms become no longer appropriate when

applied to organometallics [85–87]. Moreover, it has become evident that the

well-consolidated bonding classification schemes derived from the various topo-

logical approaches also need to be critically analyzed and even revised when

metal–metal (M–M) bonds or metal–ligand (M–L) interactions are concerned [2,

66, 85, 86]. Problems involve in a first instance the choice of a suitable criterion to

establish which atoms are actually bonded to one another – eventually leading to the

so-called molecular structure – and, second, the characterization and classification

of the resulting chemical bonds.

When translated to common “chemical thinking,” the very successful and

“universal” bond path criterion [7], which defines whether two atoms are bonded

to one another, appears, in the case of organometallics, not completely free of

limitations [2, 60, 66, 72]. For these systems, continuous rather than discontinuous

bonding indicators and descriptions seem to be perhaps more appropriate. Very soft

potential energy surfaces – hence often very flat electron densities – characterize

the M–M and M–L interactions in organometallics, so that the resulting structural

diagrams exhibit an enormous sensitivity to computational or experimental details

[2, 66, 88]. And, as a consequence, the presence or lack of these interactions, when

judged solely by the bond path criterion, may in some instance be a rather subtle

and controversial issue. On top of this, structure diagrams of organometallics are

often at or very close [66, 72, 80, 83, 88, 89] to bifurcation or conflict catastrophe

points so that their structures typically travel from one structural region to another

one just for very small displacements along one of their softer vibrational modes.

As a challenging example, a system, whose structure diagram evolves for a number

of reasons through a conflict mechanism by moving through points of the nuclear

configuration space in the immediate neighborhood of the conflict catastrophe

point, will exhibit two alternative pair of atoms competing for a bond path, despite

the electron sharing for these two pairs of atoms –measured by the delocalization

index – will be almost physically indistinguishable. However, according to the

bond path criterion and the electron density topology, one pair will be termed as

“bonded” and the other one as “not bonded.” Even when the structure is not so

topologically unstable, interpretation problems may arise. Gatti and Lasi [14]

showed, for instance, that the electron sharing between the metal atoms in unsup-

ported binuclear metal carbonyls may be comparable or even smaller than in the

corresponding bridged carbonyl compounds, notwithstanding a bond path is found

to connect the metal atoms in the former and not in the latter compounds. This

observation is obviously tied to the intrinsic inability of the bond path criterion to

directly detect multicenter bonding [60]. Bonding through the bridging ligands and

direct M–M bonds are usually alternative and competitive options using the bond
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path criterion [60], but they are not necessarily so when continuous descriptors of

bonding, like the delocalization indices or other tools discussed below, are used.13

Within interacting quantum atoms (IQA) theory [90], for instance, this dichot-

omy may be interpreted [8] as a delicate case of exchange energy competition,

where a bond path is found to link which of the two alternative atom pairs, M–M or

M–L, has a dominant interatomic exchange energy; the existence of a possibly

notable electron sharing and covalent interaction also between the “nonbonded”

pair of atoms is not denied within this approach, but, rather precisely defined and

quantitatively evaluated [8].

The domain-averaged Fermi hole (DAFH) analysis [91–93] is another very

useful interpretive tool adopted in this area. When applied to the highly debated

case of the triply bridged Fe2(CO)9 coordination complex, where the 18-electron

rule would predict a direct Fe–Fe bond, the DAFH approach rather than this direct

M–M interaction suggests the existence of a multicenter 3c–2e character of the

bonding of the bridging ligands [60, 65]. This view nicely fits with the nonnegli-

gible electron sharing found between the two metal atoms, despite the absence of a

direct Fe–Fe bond, since the existence of nonvanishing delocalization indices

between all pair of atoms has been proved to be a necessary requirement for the

presence of 3c–2e bonding in any A–B–C fragment [94].

The ELF approach [54, 55], instead, distinguishes among different bonding

schemes by assigning a synaptic order to each of the recovered ELF valence basins

and by finding the number and type of core basins with which they have a boundary

[95, 96]. For instance, disynaptic valence basins are associated with conventional

two-center bonds and trisynaptic basins with 3c–2e bonds. Electron populations of

such ELF valence basins then denote their hierarchical importance.

Another tool, able to overcome the problems inherent to the possibly discontin-

uous description of bonding provided by the electron density topology and the bond

path criterion, is clearly the SF. Although lacking the very important physical

meanings associated with either the delocalization indices or the IQA, DAFH,

and ELF analyses, the SF has the great advantage of not requiring the pair density

(or at least the first density matrix if single determinant theoretical approaches are

used) for its application and for being so, as repeatedly mentioned in this review,

immediately applicable to both experimental and theoretical electron densities.

This is an important mark since until recently the most decisive features of the

experimental studies of bonding in organometallics were often derived from com-

plementary theoretical calculations – a situation that clearly raises the question of

whether it is indeed worth performing the more time-consuming experimental

determinations for such systems [14].

13It is worth noting that there is nothing wrong nor contradictory in the QTAIM description of

these bonds; simply, different though complementary views emerge when, using such theory,

information from the position space, where bond paths are made manifest, is combined with that

derived from the six-dimensional pair density space, where electron sharing among atomic basins

and electron localization within atomic basins take place and compete between themselves.
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Once the important interactions in an organometallic structure have been

detected, the problem arises of how to categorize them [2, 66]. The dichotomous

classification [2, 97] of bonding interactions based on the sign of the Laplacian of

the electron density at the bcp, r2rb, is known to be inappropriate [2, 66] for

bonding between atoms whose atomic r2r distributions lack the outermost

regions of charge depletion and concentration, as it is the case for most of the

transition metal atoms. On top (and partly because) of this peculiar trait of the M

atomic Laplacian distributions, M–M bonds are often characterized by a very low

r2rb value, implying the practical indeterminacy of the r2rb sign and the

adoption of the sign and value of r2rb as a sole classification index largely

misleading [70, 71]. Other bond indices, like those related to the continuous

descriptors mentioned earlier or those derived from the virial and kinetic energy

densities at the bcp, e.g., the energy density Hb ¼ Vb þ Gb, [98], have often been

used for organometallics [67, 71] and their performance on this kind of com-

pounds critically analyzed [2, 14, 66]. However, these indices are also not directly

amenable to experimental determination. They are customarily derived [99]

through an approximate formula from DFT theory using the experimental density,

its gradient and Laplacian and can thus hardly be regarded as true experimental

outcomes. In addition, questionable appears the reliability of the approximated

values of such indices when bonding interactions characterized by very different

values and consequently a very distinct nature are scrutinized. Indeed, if the

“exact” quantum mechanical values for Vb and Gb are compared with the corres-

ponding estimates from the approximate DFT formula, one typically observes a

very unbalanced replica of the exact data, with values for closed-shell interactions

being in an almost quantitative agreement and those of typical shared interactions

being very poorly, if not at all reproduced [2, 44, 99].

Another increasingly used path to the experimental determination of quantities

derivable from a single-determinant wavefunction (including, inter alias, delocali-
zation indices, Vb, Gb, exchange energies, ELF and DAFH distributions, etc.) is that

of obtaining a wavefunction fitted to experiment by constraining the theoretical

wavefunction of a model system for the crystal to reproduce the crystal experimen-

tal structure factor data within a given accuracy [100, 101]. Despite the relevance

and merits of such an approach, one cannot deny that substantial theoretical

contamination may affect the experimental model wavefunction and the quantities

derived thereof. Not less importantly, the practical application of the constrained

wavefunction method implies some kind of arbitrariness, in particular in the choice

of a suitable model system for computing the theoretical wavefunction and in the

selection of the optimal weight to be given to the experimental data when con-

straining the wavefunction to such data.

All in all, exploiting the SF for organometallics meets three very important

prerequisites: (a) to take advantage of a tool capable of detecting both proximal and

distant contributions to a chemical bond, thus overcoming the restrictive two-center

view of bonding; (b) to adopt a continuous rather than a discontinuous descriptor of

bonding interactions, hence apt to analyze them also in systems often characterized

by topological structural instabilities; (c) to make use of an approach which is
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applicable on the same ground to both experimental and theoretical electron

densities and without any approximation on either side.

3.4.2 Metal–Metal and Metal–Ligands Interactions in Polynuclear

Transition Metal and in Alkaline-Earth Metal Compounds

Gatti and Lasi [14] have applied the SF tool to a set of saturated [M2(CO)x, M¼Mn,

Fe, Co, Ni, x ¼ 10–7] and unsaturated [Co2(CO)x, x ¼ 8–5] binuclear 3d metal

carbonyls, and to the M2(formamidinate)4 (M¼Nb, Mo, Tc, Ru, Rh, and Pd)

binuclear 4d metal complexes, using ab initio electron densities. Their study

focused on a number of questions listed below:

(a) How the SF describes the rather elusive M–M bonding interaction in the 3d
series and how differentiates this interaction from the supposedly stronger M–M

bonding in the 4d binuclear metal complexes?

(b) Does the SF reveal any difference between the M–M bonding in the saturated

and in the variedly unsaturated 3d binuclear metal carbonyls? If it does, how this

relates with changes in the formal bond order?

(c) How does the SF description compare with that provided by the usual local

bond indices or by more sophisticated descriptors such as the delocalization indices

or the ELF?

(d) Can the SF distinguish the case of a direct M–M interaction from that of an

indirect metal–metal bond occurring through the bridging ligands?

Selected answers to such questions are summarized in the following, through a

number of worked examples.

Figure 8 (top) shows the atomic SF percentage contributions to the Mn–Mn,

(Mn–C)eq, and (CO)eq bcps in Mn2(CO)10.
14 Comparison of sources displayed in

Fig. 8 immediately reveals the profound difference in nature among these bonds.

While the dative Mn–C bonds and in particular the stronger C–O bonds have

fairly localized or very localized sources, with percentage contributions from the

two bonded atoms to the bcp density equal to 67% and 97–98%, respectively,

sources for the Mn–Mn interaction look dramatically different. Contrary to all

bonds examined thus far, the two Mn bonded atoms yield a negative contribution

(�50%) to the bcp density, and the required positive rb value is determined by the

largely outweighing positive contributions from the carbonyl groups linked to the

metal atoms (12.5% and 15.7% from each axial and each equatorial group, respec-

tively). Even in the case of the non-covalent OH���O bond, the negative source from

the H involved in this bond is already compensated for by the positive source from

the H-acceptor atom or, for the weakest bonds, when this source is summed up to

that from the H-donor atom. Hence, while the three atoms directly involved in the

14Data for the axial Mn–C and C–O bonds are reported in [14] and are negligibly different from

those for the corresponding equatorial bonds, with changes which closely parallel the observed

bond length differences.
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H-bond always suffice to ensure a positive contribution to the HB bcp density, it is

the sum of contributions from all atoms other than the bonded ones that ensures the

necessary positive density at the Mn–Mn bcp in Mn2(CO)10. This result neatly

complies with the dominant role the ligands have in causing the two metal atoms to

be bonded to one another and characterizes the M–M interaction as a multicenter

one or, perhaps more correctly, as a one determined by a multicenter synergic

cooperation.

Interaction with the carbonyl ligands polarizes the metal atomic Laplacian

distribution in such a way that the metal determines a subtraction rather than a

positive contribution to the density at the Mn–Mn bcp. Inspection of the profiles of

the SF (Fig. 8, bottom left) and of the LS (Fig. 9) along the Mn–Mn bond path

enables one to have a deeper understanding on how this negative density contribu-

tion at the Mn–Mn bcp from the Mn atoms originates.

In Fig. 8 (bottom left), profiles of the SF contributions from the metal atoms and

from the two axial and the eight equatorial carbonyl groups are compared for

Mn2(CO)10 (blue curves) and a model system made by two noninteracting Mn

(CO)5 fragments (red curves), placed in the same geometry as in Mn2(CO)10.

Noninteracting fragments mean that the electron density rearrangement due to the

Mn–Mn bond formation has been switched off, while each fragment retains its DFT

self-consistently determined electron distribution. The SF contribution from the
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Fig. 8 Bis(pentacarbonylmanganese) Mn2(CO)10. Top: Source function percentage contributions

to the M–Mn (left), Mn–Ceq (middle), and (C–O)eq (right) bcp densities. Bottom: Source function
profiles (left) along the Mn–Mn internuclear axis for Mn2(CO)10 (blue lines) and the model system

composed by two noninteracting Mn(CO)5 fragments (red lines); delocalization indices (right).
In part and adapted from Figs. 4 and 5, with permission from [14], http://pubs.rsc.org/en/Content/

ArticleLanding/2007/FD/b605404h Copyright 2007, The Royal Society of Chemistry (RSC)
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carbonyl groups remains always positive and smoothly varying along the whole

bond path with the contributions from the axial and equatorial carbonyls roughly

paralleling their different numerical consistency and with no significant changes

between the real and the model system (the blue and the red lines are almost

superposed). On the other hand, the SF contributions from the metal atoms – that

largely overcome those from the carbonyls up to 0.9 Å from the nuclei – are shown

to decrease steeply on moving to the Mn–Mn midpoint and to become even

negative in a large interval of about 0.8 Å around such point. The effect is more

evident when the Mn–Mn bond formation is switched on, even though the polari-

zation due to the ligands in the Mn(CO)5 fragments already suffices to yield

negative, yet smaller SF contributions from the Mn atoms in a narrower interval

around the midpoint.

Analysis of the local source (LS) profiles introduces further detail and provides

additional insight. Figure 9 displays (panel a) LS, r, and r2r profiles along the

Mn–Mn bond path for Mn2(CO)10 and (panel b) their differences DX (X ¼ LS,

r, and r2r) with respect to the model system with no Mn–Mn bond. The atomic

Laplacian distribution for the fourth row atoms from Sc to Ge – thus comprisingMn –

lacks the outermost N-shell of charge depletion and concentration, and the bcp in

Mn2(CO)10 falls in the region of charge depletion (CD) of the M atomic shell [14].

Hence, the LS (with the Mn–Mn bcp taken as rp) becomes already negative at about

0.46 Å from the Mn nucleus, where the region of charge concentration of the M
shell has its end, and so provides negative local contributions to the density at the

bcp for a very large interval of the bond path. The same holds true for a model

system composed by two noninteracting Mn atoms placed at the same distance as in

Mn2(CO)10 (Fig. 6a in [14]). However, we know that each of these noninteracting

Mn atoms has to necessarily yield a positive SF contribution to the density at

the Mn–Mn midpoint (mp), equal to 0.5 rmp, since no other atoms are present in

the system. When the LS profile for this model system is compared to that for

10
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Fig. 9 Mn2(CO)10. (a) Profiles of the local source (LS), r2r and r along the bond path;

(b) difference D of the profiles in Mn2(CO)10 and in the model system composed by two

noninteracting Mn(CO)5 fragments for the same properties shown in the left panel; (c): difference
profiles as in (b), but magnified by a factor of 100 around the bcp. DLG and DLV are differences in

the kinetic and potential energy local source contributions profiles. For LS, LG, and LV properties,

the bcp is selected as reference point [partly adapted from Fig. 6, with permission from [14], http://

pubs.rsc.org/en/Content/ArticleLanding/2007/FD/b605404h Copyright 2007, The Royal Society

of Chemistry (RSC)]
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Mn2(CO)10, it turns out that the negative S(rmp,Mn) value in Mn2(CO)10 is clearly

the result of a notably shrunk M-shell charge concentration region and of signifi-

cantly less negative Laplacian values within this region. Similar changes, though

slightly less evident, are found when the comparison is made with respect to the

model system of the two noninteracting Mn(CO)5 fragments (Fig. 9b). All in all,

when the Mn–Mn bond formation is enabled, the M-shell charge concentration

(CC) region becomes smaller and less concentrated, so becoming less effective in

producing a final positive source contribution at the Mn–Mn mp with respect to the

two studied model systems. This result seems to contradict the expected charge

concentration increase, in the metal–metal internuclear region, when Mn–Mn bond

is enabled. Inspection of Fig. 9c, where difference profiles around the bcp are

magnified by a factor of 100 with respect to those in Fig. 9b, solves this apparent
dilemma. Even though enabling the Mn–Mn interaction affords a negative chemical

deformation density along the whole bond path (Dr remains always negative),

Dr2r – that was largely positive in the M shell concentration region – becomes

now slightly negative. In a region of about 1 Å around the bcp, charge is thus less

depleted in the bonded system than it is in the model system where Mn–Mn bonding

is disabled. At midpoint, the Laplacian of the density is one order of magnitude less

positive in Mn2(CO)10 (r2rb ¼ 0.3 � 10�2 a.u.) than it is in the model system

made by the two Mn(CO)5 fragments [r2r(mp) ¼ 2.7 � 10�2 a.u.]. Accordingly,
DLS becomes positive in this region, indicating that when the Mn–Mn bond is

enabled, less charge is subtracted from the mp density by this region.15 This result

may be further dissected in terms of the local kinetic and potential energy density

contributions to the local sources for the two analyzed systems. The less negative

LS of Mn2(CO)10 around the bcp is the result of a larger decrease in the kinetic

energy density as compared to the parallel decrease in the magnitude of the

potential energy density in this system.16 As a consequence, DLG is more positive

than DLV is negative around the bcp,17 so disclosing the physics behind the less

negative local source contribution when the metal–metal bonding is allowed. The

less positive Laplacian, less negative LS, and the higher local dominance of the

potential energy density [|V|/G (mp) ¼ 1.92 in Mn2(CO)10 and 1.53 in the model

system] are all signs of an increased local electron pairing or covalency when

bonding is permitted. In conclusion, the following two opposing factors come to

play when bonding is enabled, as for the SF contribution from the Mn atom to the

Mn–Mn bcp density: (a) theM-shell charge concentration region shrinks in volume

and decreases its average charge concentration and (b) the electronic charge

becomes less depleted in a vast region around the bcp. The more negative S(Mn)

15The DLS spike at the Mn–Mn mp results from r2r being one order of magnitude greater in

Mn2(CO)10 at this point than in the model system with no Mn–Mn bond.
16G and Vj j are lower in Mn2(CO)10 than in the model system with no metal–metal bond because

r at mp is lower in the former than is in the latter system (2.6 � 10�2 vs. 3.3 � 10�2 au).
17Remember that LG or LV are both related to the negative of the kinetic or potential energy

densities; hence, DLG and DLV have opposite sign with respect to the differences of the kinetic or

potential energy densities in the Mn2(CO)10 and in the system with no Mn–Mn bond.
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values for Mn2(CO)10 with respect to those of the model system where the bond

between the two Mn atom is hindered (Fig. 8, bottom left) simply reveal that the

decrease in the charge depletion around the bcp is not large enough to compensate

for the effects of the accompanying charge concentration decrease in theM shell of

the metal. Analysis of the LS profiles enables one to dissect the diverse modifica-

tions occurring in the various atomic shell regions of the metal when the metal

atoms get bonded to one another and to disclose how these local changes affect the

overall metal source contribution to the density at the bcp.

Figure 8d displays delocalization index values d showing how electrons are

shared among vicinal and 1,3 atomic pairs in Mn2(CO)10. These indices were

already introduced in Sect. 3.2.1, where the description provided by the SF and

by the d in a number of prototypical systems was compared, and where the

necessary caveats related to this kind of comparison were pointed out. Keeping in

mind that delocalization indices and source function contributions are not physi-

cally related in a direct way, it is yet worth noting a number of evident correspon-

dences. The small magnitude of the S%(bcp,Mn) value complies with the very low

d(Mn,Mn0) value of 0.28 (Table 9), which is clearly quite far from that expected for

a formal single bond.18 It is rather comparable to that found between Mn and either

the axial or the equatorial oxygen atoms (d¼ 0.22 and 0.17 respectively), which are

both only 1,3 indirectly bonded to Mn through their corresponding C atoms. The

relatively large number of electrons shared between the Mn atom and the carbonyl

O atoms goes with the important S% contributions from the O atoms to the Mn–Mn0

bcp density. As discussed earlier, Mn–C and C–O bonds are characterized by much

higher S% contributions from the bonded atoms than is for the bond between metal

atoms and so, not surprisingly, the d(O,O0) values are close to 1 and to about 1.6 for
the Mn–C and the C–O bonds, respectively. Moreover, the d for the equatorial or

axial bonds is found to be ordered in value as are the sums of the percentage SF

contributions from the two bonded atoms [14].

Table 9 summarizes M–M0 bond properties for the binuclear 3d and 4d metal

complexes mentioned at the beginning of this section. Metal complexes in this table

and from now on in this section are identified as M.x.FBO.nb, where M is the metal,

x the total number of ligand in the complex, FBO the formal bond order based on

the 18-electron rule, and nb the number of bridged ligands (nb¼ 0 for an unbridged

system). For instance, Mn2(CO)10 and Fe2(CO)9 are thus denoted as Mn.10.1.0 and

Fe.9.1.3, since both have a formal bond order of one but 0 and 3 bridging ligands,

respectively.

Among the saturated binuclear 3d metal carbonyls, only the two unbridged

compounds Mn.10.1.0 and Co.8.1.0 exhibit an M–M bcp, despite all systems

share the same formal bond order of one. Features of metal–metal bonding in the

two unbridged compounds are qualitatively alike, with the M atoms in both

18The fact that S(bcp,Mn) is not only small but also negative is due to the polarization of ther2r
distribution into the Mn basin induced by Mn–Mn bonding and to a minor extent to bonding to

ligands, as shown earlier in this chapter. No special relationship may be sought instead between a

negative S% value and d, which is necessarily 	0 by definition.
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compounds determining a negative contribution to the density at bcp and with the

carbonyl groups largely compensating such a density subtraction from the bcp. The

smaller negative S%(bcp,M) in Co.8.1.0 complies with a larger d(M, M0) value
(0.437 vs. 0.285) and a smaller net charge on the metal (q(M) ¼ 0.658 vs. 0.952) in

this compound. The net charge on the M atom decreases along the whole series with

the decrease in the number of linked ligands, and the S%(bcp or mp,M) values

correspondingly increase, when the trends for the bonded and not bonded systems

are examined separately. In fact both the ligands and, in particular, the M–M

bonding concur in decreasing the S%(M)19 value, as discussed earlier by comparing

Table 9 Topological metal–metal (M–M0) bond properties, source function percentage contribu-

tion from metals to the M–M0 bond critical point, and M–M0 delocalization indices in a number of

binuclear 3d and 4d metal complexesa

M.x.FBO.
nbb

RM–M0

Å

rb�102 r2rb�102 jVbj/Gb Gb/rb Hb�102 Hb/rb q(M) S%

(M)

d(M,M0)

Saturated binuclear 3d metal carbonyls, M2(CO)x

Mn.10.1.0 2.949 2.62 0.27 1.91 0.29 �0.71 �0.27 0.952 �25.0 0.285

Fe.9.1.3 2.515 4.80*c 9.30 1.36 0.77 �1.34 �0.28 0.862 �5.2 0.355

Co.8.1.2 2.548 4.61*c 8.72 1.37 0.75 �1.29 �0.28 0.705 0.6 0.356

Co.8.1.0 2.691 3.61 0.20 1.95 0.35 �1.19 �0.33 0.658 �4.4 0.437

Ni.7.1.1 2.663 3.70*c 6.21 1.36 0.65 �0.86 �0.23 0.609 4.5 0.226

Unsaturated binuclear Co metal carbonyls, Co2(CO)x

Co.7.2.0 2.486 4.94 3.77 1.67 0.57 �1.89 �0.38 0.636 7.3 0.394

Co.7.2.1 2.394 5.79*c 8.55 1.50 0.74 �2.17 �0.37 0.645 14.6 0.783

Co.6.3.2 2.254 7.19 15.31 1.40 0.90 �2.61 �0.36 0.616 18.5 0.726

Co.5.4.1 2.168 7.85 23.56 1.31 1.09 �2.70 �0.34 0.530 27.9 0.976

M2(formamidinate)4 binuclear 4d metal complexes, M2(HNCHNH)4

Nb.4.3.4 2.284 13.00 35.46 1.37 1.07 �5.09 �0.39 1.413 40.4 2.507

Mo.4.4.4 2.141 16.57 51.79 1.36 1.22 �7.33 �0.44 1.360 40.6 2.930

Tc.4.3.4 2.122 16.40 50.16 1.36 1.20 �7.08 �0.43 1.208 40.8 2.713

Ru.4.2.4 2.540 7.32 6.59 1.63 0.61 �2.81 �0.38 1.042 28.2 1.316

Rh.4.1.4 2.501 7.27 6.93 1.61 0.61 �2.71 �0.37 0.962 29.3 1.035

Pd.4.0.4 2.730 4.16 14.99 1.12 1.04 �0.53 �0.13 0.815 17.1 0.294
aData from [14]. If not otherwise stated, all quantities in au. Vb, Gb, and Hb are the potential energy

density, the positive-definite kinetic energy density, and the energy density at the M–M bcp or at

the M–M midpoint (see point c)
bEach studied system is denoted as M.x.FBO.nb, where M is the metal, x the total number of

ligands in the complex, FBO the formal M–M bond order based on the 18-electron rule, and nb the

number of bridged ligands, with nb ¼ 0 in the case of an unbridged system. For the isostructural

M2(formamidinate)4 binuclear 4d metal complexes, x and nb are fixed to 4, while the FBO varies

from 0 in the Pd compound to 4 in the Mo complex. For those systems, Ni.7.1.0 and Co.7.2.0, with

two nonequivalent M atoms, averaged M atom values are reported for FBO, q(M) and S%(M)
cThe asterisk, if present, denotes metal complexes lacking an M–M bcp. If this occurs, properties

are evaluated at the M–M midpoint or, for the S%(M) value, using this point as the rp

19S%(M) is here used for either S%(bcp,M) or S%(mp,M) according the system has or not has an

M–M bcp.
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the Mn.10.1.0 system with the two model systems where either M–M bonding or

also the effect of the carbonyl ligands was disabled. The metal sources for the M–M

bonded systems are comparatively more negative because of the enhanced decrease

in the charge concentration within the metal atomic M shell due to M–M bonding.

It is worth emphasizing, however that, irrespective of the lack or presence of a

bcp, the picture of a nonlocalized M–M interaction with features quite different

from those of a conventional covalent bond emerges. The electron sharing between

metals is small through the whole series [d(M, M0) ¼0.29–0.44] and quite far from

one, and the S%(M) values are also small, with the electron density at the M–M bcp

or mp being largely determined by atoms other than the metals. As anticipated

earlier, the nonvanishing d(M,M0) values for the systems with no M–M bond is a

necessary consequence of the indirect 3c–2e M–M bonding through the bridging

ligands [60, 94].

The unbridged (D3d, Co.8.1.0) and the double-bridged (C2v, Co.8.1.2) Co2(CO)8
isomers offer the possibility to compare direct and indirect M–M bonding features

for two systems having the same metal atoms and number of CO ligands. Figure 10

shows that for both systems the electron density at bcp or at the Co–Co mp is

essentially determined by the carbonyl groups and in particular by the carbonyl

Fig. 10 Source function percentage contributions at the Co–Co midpoint (left) and local source

(LS), r2r and r profiles along the Co–Co internuclear axis (right) for the unbridged D3d (top)
and the double-bridged C2v (bottom) Co2(CO)8 isomers. Bcp and midpoint locations are denoted

by a star and a triangle, respectively. The Co–Co bcp or midpoint is used as reference point for the

LS profiles [adapted from Fig. 7, with permission from [14], http://pubs.rsc.org/en/Content/

ArticleLanding/2007/FD/b605404h Copyright 2007, The Royal Society of Chemistry (RSC)]
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oxygen atoms. However, the relative contributions from these groups clearly vary

between the two isomers, as the two bridging carbonyl groups in the C2v form bring

a notably enhanced S% contribution, equal to 44.2%, and almost comparable to that

from all other six carbonyl ligands (S% ¼ 54.6). In the unbridged isomer, instead,

the average contribution from each carbonyl group amounts to 11.6% and with no

large difference between contributions from each axial (S% ¼ 14.6) or equatorial

carbonyl group (S% ¼ 10.6). Both the direct and the indirect M–M bonds exhibit a

delocalization of sources for the density at the Co–Co mp, but the largely enhanced

source from the bridging ligands in Co.8.1.2 clearly illustrates how the SF tool

reflects the special role these specific ligands have into the indirect M–M bonding.

Despite the lack of a Co–Co bcp, the electron density at the Co–Co mp is

higher in the bridged (4.6 � 10�2 au) than is in the Co–Co bonded isomer

(3.6 � 10�2 au), as likely the result of the shorter Co–Co distance in the former

(Table 9). However, direct metal bonding leads to a small increase in the electron

sharing in the unbridged isomer [compare d(Co, Co0) values in Table 9], despite the
0.15 Å increase in the Co–Co separation.

As discussed earlier at length for Mn2(CO)10, polarization of the metal atom

distribution induced by M–M bonding leads to a S(Co) value slightly larger in the

bridged (þ0.03 � 10�2 au) than is in the Co–Co bonded isomer (�0.7 � 10�2 au),
where it becomes even a little negative. Yet, analysis of the profiles of r2r and of

the LS along the Co–Co internuclear axis (Fig. 10) reveals complementary and

quite distinct features for the direct and indirect M–M bonding cases. For both

isomers, the Laplacian remains positive in a very large interval (>2 Å) around the

Co–Co mp, and hence the LS referred to mp turns out to be there everywhere

negative for either systems. However, since in a smaller interval of about 0.8 Å

around the midpoint,r2r is about one order of magnitude smaller in the unbridged

than is in the bridged system, and the two isomers largely differ as for their

corresponding negative contributions to the mp electron density. The LS profiles

for the two isomers are thus clearly distinct around the Co–Co mp (Fig. 10). Both

profiles are traced within the same distance from the mp, which is obviously a

singular point for the LS, so that their different forms just magnify the difference in

the Laplacian profiles for the two isomers around the midpoint. The more positive

Laplacian for the isomer with no Co–Co bond path is mirrored in a LS sudden drop

around the Co–Co mp rather than in the smooth LS curve observed for the bonded

isomer.20 This difference may be interpreted as a sign of larger local covalency in

the unbridged isomer, despite its larger Co–Co separation and the somewhat lower

electron density values along the internuclear axis (Fig. 10). The very small and not

dissimilar percentage source contribution from the Co atom to the r value at the

Co–Co mp in the two isomers results from a compensation. Regions close to

20Note that these LS profile comparisons are meaningful only on a relative basis and when the LS
are plotted within the same distance from the rp! Decreasing this distance could make the bonded

system also exhibit a clear drop in LS, since this function has a singularity at the rp. This warning is

given here because some confusion has recently arisen in the literature as for such a use of the LS

to discuss bonding in delicate cases.
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the Co–Co mp determine more negative LS contributions to the mp density in the

bridged than in the unbridged isomer, whereas the opposite holds true at the

extremes of the LS profiles shown in Fig. 10. Indeed, far from the mp, the region

of charge depletion related to the atomicM-shell is a bit more locally depleted in the

unbridged system, so determining slightly more negative sources contributions

from this region and for this isomer at the Co–Co bcp.

All in all, combined information from the integrated and local form of the source

function discloses notable and interesting differences in the direct and indirect

schemes of metal–metal bonding, differences which may be hidden or even lead

to apparently contradictory results when descriptors like the electron density at the

M–M mp, the S(M) or S%(M) values, and the d(M,M0) values are examined

separately.

The [Co2(CO)x, x¼ 7–5] series covers the case of unsaturated binuclear 3dmetal

carbonyls, having the same metal atom and where the number of CO ligands

decreases with increasing formal bond order from two to four through the series

(Table 9). By including also the two saturated Co2(CO)8 isomers, we can review a

set of systems having a formal bond order extending from one to four. All systems

exhibit a Co–Co bcp, except the bridged ones with x ¼ 7 and 8 (Co.7.2.1 and

Co.8.1.2). The presence of bridging ligands does not instead inhibit the formation of

a Co–Co bcp for the two systems with highest bond order and shortest bond length,

Co.6.3.2 and Co.5.4.1.21

The S%(Co) for the density at the Co–Co bcp increases from �4.4% in Co.8.1.0

to a maximum of 27.9% in Co.5.4.1, on passing from a formal bond order value of

one up to four. The S%(Co) value regularly increases through the series with the

decrease in the net positive charge on the Co atom and of the number of CO ligands

(Table 9). The SF contribution from the two Co atoms exceeds that from the ligands

only for the highest formal bond order (55.8% and 44.2%), whereas for a formal

bond order of two or even three, the contribution from the ligands largely dominates

[89% on average for the two considered Co2(CO)7 systems and 63% for Co.6.3.2].

The S% from the two bonded atoms in Co.5.4.1 is still far even from that of a
standard single covalent bond, despite a formal bond order of four. The peculiar

nature of the M–M interaction in the 3d binuclear metal carbonyls anticipated by

the SF analysis is corroborated, also for the unsaturated series, by the Co–Co

delocalization indices. The number of shared pairs of electrons does not reach

one even for the system with a formal bond order of four where it amounts to 0.976

pairs only, instead of four. Fine details as for the almost paralleling trends of

S%(Co) and d(Co, Co0) values through the series are discussed in [14]. Here, we

emphasize the interesting result that a description of Co–Co bonding, thoroughly at

variance with that provided by the 18-electron rule, can be already obtained using

a tool which is based only on the electron density and on the electron density

Laplacian.

21Note that also in the case of the bridged Co2(CO)8 isomer a Co–Co bcp occurs when the Co–Co

distance is decreased by about 0.2 Å with respect to equilibrium [60].
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We examine now briefly how the local bond properties customarily used within

QTAIM describe the saturated and unsaturated binuclear 3d metal carbonyls listed

in Table 9, and how this description confronts with or complements that provided

by the SF. We consider first the saturated systems. As anticipated earlier, all show a

positive r2r value at the M–M midpoint, but with magnitudes one to two order of

magnitude lower for the metal–metal bonded systems. Also the kinetic energy

density per electron, G/r, and the |V|/G ratio at the M–M bcp or mp clearly

distinguish the M–M bonded from the M–M indirectly bonded systems, with G/r,
having significantly lower and |V|/G notably higher values for the former com-

pounds. Note that the |V|/G ratio predicts all systems in the series to fall in the

transit region for incipient covalent bond formation, according to the proposal

made by Espinosa et al. [102] on the basis of a systematic topological study of a set

of neutral, positively and negatively charged X–H���F–Y gas-phase systems, and

combined with a natural bond order (NBO) analysis of their wavefunctions.

Assuming that an NBO analysis on M–M bonds would confirm the same interval,

1 
 |V|/G 
 2, for the transit region of incipient covalent bond formation,22 one

observes that the |V|/G value in Mn.10.1.0 and Co.8.1.0 is close (1.91 and 1.95) to

the border with the shared-shell region, whereas it is not so far from the border with

the closed-shell region (1.36–1.37) for the compounds without a M–M bcp. Analo-

gously to the percentage source function contribution from the metal S(M), and to

the delocalization index d(M,M0), the energy density, H, and in particular the

energy density per electron, H/r, appear as unable to neatly distinguish direct

from indirect M–M bond. Both quantities are negative, denoting a (partial) covalent

character for the M–M interaction, regardless of its direct or indirect nature. H/r,
also called covalence degree [102], remains almost stable through the series,

whereas H slightly oscillates around �1 � 10�2 au and reaches the highest values

for two out of the three bridged systems, possibly because of their shorter M–M

distance. A similar behavior is observed for the r values at the M–M bcp or

midpoint location. In summary, in the case of saturated systems, a number of

bond properties at this location, such as r2r, G/r, the |V|/G ratio, and the LS

(rp � mp) seem to be associated with the local extent of electron sharing between

the metal atoms, whereas the S%(M), the (M,M0) delocalization indices, the H, and
H/r descriptors appear to be more related to a cumulative estimate of such sharing

and regardless of whether it takes place directly or through the bridging ligands.

Combined use of the SF and of the LS tools enables one to merge these two

complementary descriptions in a unified picture, as also already shown for the

two Co2(CO)8 isomers.

22To be rigorous, the transit region as defined by Espinosa et al [102] has thus far been proved to

correspond to the bonding molecular orbital formation only for the H···F interaction. For other

pairs of interacting atoms, the interval where this association takes place could be more or less

displaced toward either the shared shell or the closed-shell regions, according to the specific nature

of the interacting atomic pair. One anticipates that the above correspondence should hold true for

chemically related interactions such as the NH···O, OH···O and CH···O hydrogen bonds, but, for

instance, not necessarily for M–M bonds.
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In the case of unsaturated systems, the local property values listed in Table 9

exhibit quite unexpected trends versus the formal bond order. To include the case of

a formal bond order of one, the Co.8.1.0 saturated system with a Co–Co bcp and

formal bond order of one is added to the unsaturated series [Co2(CO)x, x ¼ 7–5] in

this part of the discussion. Ther2r value is always positive and regularly increases

with increasing formal bond order. Despite being at odds with the dichotomous

classification based onr2r, this trend is clearly anticipated. For all systems, the bcp

or mp falls within the M-shell charge depletion region of the isolated atom, and the

Laplacian past the maximum of depletion in this region has to decay monotonically

down to zero with increasing distance from the nucleus. The shorter the Co–Co

distance is, the more positive will thus be the Laplacian at the Co–Co mp or bcp.

The bond classification index based on the |V| /G ratio decreases monotonically

along the unsaturated series reaching a value of 1.31 in the system with formal bond

order of four. The largest value of 1.95 is instead observed for the saturated bonded

Co.8.1.0 isomer with formal bond order of one. This is clearly the opposite trend

one would have expected from this descriptor, which appears to depict as very close

to a shared interaction the system with a formal bond order of one and as close to the

closed-shell regime that with a formal bond order of four. On top of this, all systems

in the [Co2(CO)x, x ¼ 8–5] series are described as lying in the transit region for

incipient covalent bond formation, despite the noticeable decrease in the Co–Co

bond distance through the series. The bond degree, Hb/rb, is almost constant

through this series, with almost equal values for the first (�0.33) and the last

(�0.34) term of the series. The kinetic energy per electron, Gb/rb, monotonically

rises along the series, as found also for standard covalent bonds (0.23, 0.39, and

0.68 in ethane, ethene, and ethyne). However, the last term of the series has a Gb/rb
value greater than one, which is normally regarded [6] as a sign of a closed-shell

interaction or of an interaction with large polarization and/or charge transfer (which

is obviously not the case here). Taken as a whole, use of standard local descriptors

for the M–M bonding in the unsaturated [Co2(CO)x, x ¼ 8–5] series appears

problematic and leading to apparent contradictions with respect to the known

behavior of such indices for bonds between atoms of the first three rows of the

periodic table. Conversely, the S%(M) and the d(M,M0) values lead to a qualita-

tively similar and meaningful description, which features a notable departure from

the formal bond order classification based on the 18-electron rule model.

The M2(formamidinate)4 (M ¼ Nb, Mo, Tc, Ru, Rh, and Pd) binuclear 4d metal

complexes form a series of isostructural compounds which differ only for the nature

of their metal atom and exhibit formal bond orders varying from zero (M¼Pd) up to
four (M¼Mo) as a function of the number of electrons available for the M–M bond.

The notation we adopt for these tetra-bridged systems, which have a paddlewheel

structure, is analogous to that used for the 3d binuclear metal carbonyls. For

instance, Ru.4.2.4 will denote the M2(formamidinate)4 complex with M ¼ Ru

and formal bond order of 2. The number of ligands, four, and their bridging nature

are clearly fixed through the series.

The study of these complexes enables us to examine M–M bonding between 4d
metal atoms and to observe whether this bonding has distinct features from that
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between M atoms in the binuclear 3d metal carbonyls. Full details of this study

may be found in [14], while only the main results are reviewed here. As shown in

Table 9, each complex exhibits an M–M bcp, even the one with M¼ Pd and a zero

formal M–M bond order. Furthermore, the rb, S(M) and S%(M) values are much

larger than those found for the M–M bond in the saturated binuclear 3d metal

carbonyls or in the unsaturated binuclear Co carbonyls series with corresponding

M–M formal bond orders. The Mo atom determines more than 40% of the density

at the Mo–Mo bcp in Mo.4.4.4, analogously to what observed for the bonded

atoms in a standard covalent single bond between second-row atoms, and defi-

nitely more than the contribution (27.9%) the Co atom yields to the Co–Co bcp

density in Co2(CO)5, despite both systems do share an equal M–M formal bond

order of four. The sum of the S% contributions from the two M atoms in Rh.4.1.4

almost reaches 60, while that for the binuclear metal carbonyls having the same

formal bond order of one oscillates around zero and is even largely negative in

Mn.10.1.0.

The notably larger S%(M) contribution to the M–M bcp density in the M2(for-

mamidinate)4 (M¼ 4d transition metal) compounds relative to that in the saturated/

unsaturated binuclear Co carbonyl series with corresponding M–M formal bond

orders fits with the documented enhancement in the M–M bond strength down a

group, arising from the greater spatial extension of d orbitals in heavier atoms

[103]. For the bulk metals, the M–M bonds in the d-block are strongest in the 4d and
5d series, and this feature is known to carry over into their compounds [103]. In nice

compliance with the largely enhanced S%(M) values, also the metal–metal delo-

calization indices for the M2(formamidinate)4 series are much greater than for the

cobalt carbonyls series (Table 9). For Mo.4.4.4, d(Mo,Mo0) amounts to 2.930, a

value about three times as large as that found [d(Co,Co0) ¼ 0.976] for the binuclear

Co compound sharing the same formal bond order of four, while Rh.4.1.4, having a

formal bond order of 1, shows a d(Rh,Rh0) value very close to one to be compared

with an average value of about 0.4 for the two Co2(CO)8 isomers with analogous

formal bond order. It is worth noting that the d(M,M0) values are ordered as the

formal bond orders for the M2(formamidinate)4 series, whereas the corresponding

S%(M) values do not seem to clearly distinguish the compound with formal bond

order of four (M ¼ Mo) from the two systems with a value of three for such order

(M¼ Nb and Tc) and the compound with formal bond order of two ( M¼ Ru) from

Rh.4.1.1 having one as formal bond order. However, for these specific cases the

observed d differences amount on average to about 0.3 and are therefore much

lower than the difference of one between the corresponding formal bond orders

(Table 9). One may thus safely conclude that the trends of the S%(M) and d(M,M0)
values almost agree also within this M2(formamidinate)4 series. Both trends concur

with a largely enhanced covalent character (electron sharing) with respect to the

two investigated 3d metal series and with a similar covalency for the compounds

having formal bond orders of 3 and 4 or of 1 and 2 in the M2(formamidinate)4
series. Note that this apparently anomalous behavior, with respect to the formal

bond orders, for both the d(M,M0) and S%(M) values fits extremely well with the

corresponding known anomalies [85] of the M–M bond lengths in the series.
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Indeed the S(M) values exhibit an almost perfect linear correlation (R2¼ 0.98) with

the M–M equilibrium distances through the series [14].

According to the molecular orbital theory, the decrease in the formal bond order

in the M2(formamidinate)4 series past M ¼ Mo is due to the progressive filling of

the antibonding s, p, and d orbitals. Is this view reflected in the changes observed

for d(M,M0) and S%(M) through the series? And if so, how is it? The sum of d(O,O)
and half of d(O,O0) over all atoms O in a molecule yields its total number of

electrons [38]. One finds that for O ¼M in the M2(formamidinate)4 series, the sum

of d(M,M) and of half the delocalization indices with all atoms linked to M, 0.5�
[d(M,M0) þ 4·d(M,N)] recovers the M electron population within 0.2–0.3 electrons.

The percentage of electron localization EL within the metal basin,23 EL%(M) ¼
[d(M,M)/N(M)]·100, decreases from Nb to Mo [EL%(M)¼ 79.2 and 76.8] and then

increases on going from Mo to Pd [EL(M)% ¼ 76.8, 80.0, 84.1, 87.2, 90.4], in

nice compliance, respectively, with the filling of the last available bonding MO in

the Mo compound and with the progressive filling of the antibonding MOs past

M¼Mo. Hence, the number of localized electrons on the metal past Mo has to

increase more rapidly than does its total electron population. The number of

electrons shared by the metal with its four bonded N atoms, 0.5·[4·d(M,N)],

shows instead only limited changes through the series, as it varies between 1.1

and 1.4 and it is so roughly independent from the nature of M. Combining the two

results, it becomes evident that d(M,M0) has to decrease through the series past Mo

mainly because of a largely enhanced percentage of electrons localized on the

metal, which is not compensated for neither by the almost stable electron sharing

with the ligands nor by the continuous moderate decrease of the positive charge on

the metal (Table 9). Progressive filling of antibonding orbitals through the series

past Mo translates into an enhanced localization of electrons within the M basin and

a decreased electron sharing betweenM andM0. The two processes lead to a general
parallel decrease in the S%(M) values, although not in a such clear way as shown by

the trends of decreasing d(M,M0) and increasing EL%(M) values.

The 4d M2(formamidinate)4 complexes were previously studied by Llusar et al.

[85] using an ELF approach. It is interesting to explore whether the ELF description

of the M–M bond in such compounds has some point of contact with that provided

by the SF analysis. It was found that the most important ELF topological feature

characterizing the M–M bond in this series is the abnormally high value for the

M–M core covariance, denoting that the fluctuations of the core basin populations

of the twoM are highly correlated one to another. A second, although less important

ELF topological feature in these complexes is the occurrence of disynaptic metal

valence basins. They are, in fact, characterized by extremely low populations and

are even missing for M ¼ Tc (besides M ¼ Pd). Indeed, the population of the M

core basins embodies more than 98% of the QTAIM metal electron population for

23The percentage of localized electron is computed with respect to the M pseudopotential valence

electron population (in the case of the isolated atom, this is 14 electron for Mo, for instance).
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all compounds in the series, with metal d-electron being almost completely included

within these basins. The d-electrons are thus largely involved in the electron delocal-
ization between ELF cores and considered as those electrons mainly responsible for

the M–M interaction [85]. The somewhat unusual picture of bonding seems not at

odds from that offered by the SF.

The net positive SF contribution from the metal to the density at the M–M bcp is

the result of large positive LS contributions from atomic regions lying far apart

from the bcp region, and not overriden by the smaller negative contributions arising

from the region of positive Laplacian around the bcp. The smaller the distance from

the bcp of the region of positive LS contributions, the larger is the expected SF

positive contribution from the metal to the density at bcp. Analysis of the LS

profiles along the M–M bond path with the bcp taken as rp indeed shows that the

distance from bcp of the maxima of positive LS shows a nice inverse correlation

with the S% values [14]. The more the N shell charge concentration region of the

metal expands toward the bcp, the larger is expected to be the correlation of the

electron fluctuations between the ELF core basins. Note that Llusar et al. [85] found

an excellent correlation between the M–M distances and the core basin covariances,

analogously to what we recovered between these same distances and the S(M)

contributions at the bcp density.

The local bonding properties for the M–M bond in the M2(formamidinate)4
series are listed in Table 9. Examination of such properties shows once more

unexpected trends versus the formal bond order. A positive r2rb is found for

each M, with the lowest value for M¼Ru and with the Pd compound, with formal

bond order of zero and lowest d(M,M0) and S%(M) values, havingr2rb value about
twice as large as that for M¼Ru and M¼Rh. It is thus clear that one cannot relate
this indicator to the extent of electron sharing in the examined series, even if the

dichotomous classification based on the sign of r2rb is taken with a reversed scale

– the more positive ther2rb value, the greater the M–M bond strength – bearing in

mind the missing outermost valence shell regions in the atomic Laplacian distribu-

tions of each M. Conversely, the |Vb|/Gb ratio listed in Table 9 would describe all

systems as featuring a M–M interaction which lies in the transit region for incipient

covalent bond formation, even for the complexes with formal bond order of three

and four and in spite of their very high d(M,M0) and S%(M) values. On top of this,

the highest |Vb|/Gb ratio of 1.6 is not found for the M ¼ Mo compound which has

the highest d(M,M0) and formal bond order values, but it is observed for the M¼ Ru

and Rh complexes having d(M,M0) values only one third as large and formal bond

orders of 2 and 1, respectively. Finally, the rb and the Hb descriptors – and less so

the covalence degree Hb/rb – roughly follow the trend of d(M,M0) and S(M) values.

Taken as a whole, one may conclude that a special care should be used when

relating the 4d M–M bond nature to the (trend of) values of the local descriptors

listed in Table 9, especially so if classification schemes based on the experience

gained on bonding between atoms of the first three rows are adopted. A similar

warning was evinced from the study of the saturated and, in particular, of the

unsaturated binuclear 3d metal carbonyls. Other results common to such studies

are recapped below.
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The empirical relationships observed among d(M,M0) and the S% contributions

from the bonded metals M to the electron density at their intervening bcp have a

particular relevance in view of the prominent role that the localization/delocaliza-

tion index descriptors play in characterizing the M–M bonding in organometallic

materials [66]. The possibility to get S% values directly from experiment adds an

obvious importance to such a parallelism.

Even when the M–M bond is lacking and the M–M midpoint is used as an rp for

evaluating the SF contributions, low d(M, M0) values seem to come along with low

S%(M) magnitudes. Implications of such an observation for the mechanism of

indirect M–M bonding through 3c–2e interactions with the bridging ligands have

been pointed out. In spite of not too unlike S%(M) magnitudes for bonded and

unbonded M–M systems, the occurrence or lack of a M–M bcp is, however, clearly

signaled by the quite distinct features of the LS profiles along the M–M internuclear

axis in the two cases.

Four very recent studies [77, 80–82] have applied for the first time the SF

analysis to the experimental electron densities of a number of binuclear metal

complexes. A comparison with SF data derived from theoretical approaches was

also provided in a number of cases. The main outcomes from such studies are

briefly reviewed below, as for the insight drawn from the SF tool.

Overgaard et al. [80] carried out accurate diffraction experiments on a binuclear

Co complex, composed of two Co(CO)3 dimers bridged by an alkyne bearing one

hydrogen and one cyclohexanol group. The charge density of the complex, which

crystallizes with two molecules in the asymmetric unit, was determined using

multipolar refinement of single-crystal X-ray diffraction data collected either with

a synchrotron source at very low T (25 K) or using a conventional source at an

intermediate T (100 K). The study thus offers several interesting potential opportu-

nities. It allows for the comparison of the SF description in identical molecules

using a single data set or the comparison of the SF description for each of the two

molecules in the asymmetric unit using two data sets, obtained from different X-ray

sources and collection temperatures. In addition, ab initio complete active space

and DFT gas-phase calculations performed on one of the two molecules in the

asymmetric unit permit a comparison between theory and experiment. Both agree as

for the lack of a Co–Co bcp in the complex, whereas it proved impossible [80, 104]

to locate in the experimental density24 all of the four expected and theoretically

found Co–C(alkyne) interactions. The S%(Co) contributions to the density at the

Co–Co mp were small for both molecules and for all examined densities and in line

with the values found for the binuclear Co complexes with similar Co–Co distances

[14]. The S%(Co) values for the two molecules, whose structures may almost be

perfectly overlaid and differ only in the relative orientations of the cyclohexanol

moiety, are very much alike and slightly negative (about �18%/�16%) in the case

24It was indeed demonstrated that the extreme flatness of r in the CoC2 triangles prevents the

consistent location of the expected ring and bond CP in this region because their hypothetical

experimental density differences would be surely much smaller than the typical multipole model

residual density in the area.
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of the experimental densities. The S%(Co) values are even smaller in magnitude

and positive at about 4% for the single molecule studied theoretically. Interestingly,

some of the atoms belonging to the other molecule in the asymmetric unit yield a

small but nonnegligible contribution to the experimental density at the Co–Co mp,

which may be one of the reasons for the observed S%(Co) difference respect to the

theoretical value (the interaction with the other molecule in the asymmetric unit and

in general the crystal field effects are clearly not taken into account in the gas-phase

ab initio computation). Conversely, a comparison between the SF values obtained

from the two experimental data sets would have enabled one to get a rough idea of

how stable are the SF values with respect to the change of collected reflections and

of the multipole model parameters refined thereof. Unfortunately, as for the scope of

the present review, such a comparison was not reported in the paper, whereas one

would argue that it could have been interesting in its own, in view of the assessment

of the intrinsic stability of the SF description against those changes. One of the main

reason that led Overgaard et al. [80] to analyze only the topological properties from

the synchrotron data set, starting from page 3839 onward of their paper, was the

closer match with theory observed for the density and Laplacian profiles along the

various C–O bonds of the molecule, and in particular close to the bcp. Whether an

assessment of the relative quality of two data sets against theory must be based on a

comparison among local rather than integral quantities like the S% values is clearly

debatable. Especially so, if one considers that local quantities are often too sensitive

to otherwise small changes in the model approaches or data. An analysis of the

different sensitivity of local and integral topological properties such as the SF

values to moderate changes in the data and/or in their multipole refinement is briefly

discussed in Sect. 4, using synthetic data from ab initio calculations [15].

Overgaard et al. examined the profiles of the LS along the Co–Co internuclear

axis which showed for all densities and for both molecules a drop around the mp

similar to that observed for the double-bridged Co2(CO)8 complex and compara-

tively missing in the M–M bonded unbridged form of the complex (see earlier).

Such a similarity of the LS profiles in systems which lack a Co–Co bcp was taken

by the authors as a clear corroborating sign of the absence of a direct Co–Co

interaction in their investigated complex. Although probably correct, an “internal”

comparison with a reference system having a Co–Co bcp is required to support this

belief. The observed analogy with the results of the study by Gatti and Lasi [14] is

also not stringent enough, since, as discussed earlier, the shapes of the profiles

around the LS singularity can be safely compared among each other only when

traced within the same distance from the singularity.25

Another interesting example in this area is due to Farrugia et al. [81]. These

authors applied the SF, among other tools, to the study of a series of three binuclear

Cu(II) coordination complexes [Cu2(ap)2(L)2], (ap ¼ 3-aminopropanolate, L ¼
nitrite, nitrate, and formate), using both experimental and theoretical electron

densities. The complexes contain the same centrosymmetric alxoxy-bridged

25Information about the value of such a distance is not reported in [80].
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motif, where each strongly Jahn-Teller distorted Cu(II) ion is ligated in its primary

coordination sphere to three O atoms and one N atom in a square planar arrange-

ment and with Cu–X (X¼ O, N) distances all below 2.05 Å. One axial coordination

site is occupied by an oxygen atom of a pendant L� anion from an adjacent complex

in the lattice, while the other coordination site could potentially be considered as

occupied by an additional O atom from the L� anion already O-bonded to Cu(II) in

the primary coordination sphere. For this second axial site, the angle subtended at

the Cu(II) center is, however, much smaller than 90�. The Cu���O axial interactions

all lie in the 2.45–2.70 Å range, suggesting their weakly coordinating nature.

Graphical representations of the S% contributions for the various bcps in the

examined complexes visibly and markedly distinguish the strong interaction of

the Cu(II) ion with the ligators in the first coordination sphere from the much

weaker ones in the secondary sphere (see Fig. 9 of [81]). Those for the former

interactions are fairly localized and denoted by similar contributions from the

bonded Cu and X ¼ N, O atoms, summing up to about 65–70% of the bcp density

and typical of strong metal–ligand interactions. Instead, those in the secondary

sphere involve quite delocalized sources which extend over large parts of the

complex and with S% contribution from the Cu atom opposite in sign to that of

all atoms of the weakly linked ligand. The strikingly different portrait of sources in

the two coordination spheres denote the shared nature of the metal–ligand interac-

tions in the former and their largely polarized, non-shared nature in the latter.

The two Cu(II) centers, lying about 3 Å far apart, are known to be strongly

antiferromagnetically coupled [81] but the lack of a Cu���Cu bcp and bond path

suggests the absence of any direct metal–metal interaction in the complex. The

molecular graph rather provides an experimental support for an exchange pathway

via the bridging O-atoms, as also clearly suggested by the plot of the spin density in

the plane of the Cu2(m–O)2 unit. When the rp is taken at the Cu���Cu midpoint, that

is at the rcp of this unit, the S% contributions appear fairly delocalized, with the

four atoms in the ring determining about 40% of the density at the rcp and with

the largest contributions being those from each Cu atom, amounting to about 13%.

The small sources from the metal atoms agree with the insignificant value of 0.02

found for the d(Cu,Cu0) delocalization index and with the lack of a shared direct

interaction between the two metal atoms. The d(Cu, X; X¼N, O) values are instead

close to 0.5, corroborating the large difference observed for the SF portraits of the

Cu���Cu and Cu–X interactions.

In their work on the dinuclear borylene complex [{Cp(CO)2Mn}2(m-BtBu)]
(Cp ¼ C5H5), Flierler et al. [77] have applied, among other tools, also the SF

analysis to discuss the nature of the Mn–Mn bonding in a system that represents a

model compound for such kind of investigations in bridged and nonbridged organ-

ometallic complexes. The 18-electron rule would predict a bond between the

two Mn atoms, as would be suggested also by their short internuclear distance of

2.78 Å and by the lack of any evidence for unpaired electrons in the complex.

However, no bond path was recovered between the two Mn atoms, neither using the

electron density derived from the low-temperature high-resolution X-ray diffraction
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experiment nor that from a gas-phase ab initio calculation. A dominance of

delocalized bonding via the bridging ligand was thereby suggested [77].

The S% values comply with a delocalized picture of sources when the Mn–Mn

mp is taken as rp. The two Mn atoms are found to determine a small negative

contribution to the electron density at the Mn–Mn mp, with S% from each Mn atom

being about �8.5%. More than 50% of the density at the mp is instead determined

by the carbonyl groups. The B atom also serves as a sink (S%(B) ¼ �11.6%), as

likely the result of the polarization of its Laplacian density due to bonding to the

more electronegative C atom.26 One anticipates, however, a large and positive S%

contribution from the global BtBu ligand, analogously to that found for the bridging
carbonyls in the dinuclear carbonyl complexes, though an exact estimate of such a

cumulative contribution from the ligand cannot be exactly deduced from [77] (the

expected small S% contribution from the two Cp groups is not quoted).

A comparison between the LS profiles in Mn2(CO)10 and [{Cp(CO)2Mn}2
(m-BtBu)], along the Mn–Mn internuclear axis and with the Mn–Mnmp taken as a rp,

was also not reported in the paper, though it might provide interesting insights. One

could likely observe a comparatively larger drop of the negative LS around the mp

in the borylene complex. Indeed Table 2 of [77] reports a positive Laplacian value

at the Mn–Mn mp for the Mn2(CO)10 compound which is halved with respect to the

one in the borylene complex, and the Laplacian is found to become even slightly

negative for Mn2(CO)10 using the theoretical density. Hence, analogously to the LS

profiles comparison reported earlier for the unbridged and the double-bridged

Co2(CO)8 compounds, a close examination of the mentioned Mn–Mn LS profiles

would allow to provide further evidence for indirect metal–metal bonding in the

borylene complex.27

A parallel paper by Goetz et al. [78], with some common authors to [77], has

examined the theoretical electron densities in a number of gas-phase dinuclear

manganese complexes. These include, among other, two borylene-bridged com-

pounds, one of which coincides with that studied experimentally by Flierler et al.

[77] in the crystalline state. Both papers raise the important question of whether the

bridging boron ligand may be better described as a substituted borane or as a true

bridging borylene with an electron lobe from the B atom being directed at the

Mn–Mn mp. Goetz et al. [78] found that the preference between the two bonding

situations shows a large dependence on the adopted theoretical level. As a function

of the exact-exchange admixture in the DFT functional, the boron bridge may

involve either delocalized 3c bonding across the bridge or bonding through two

26Indeed, in the dinuclear carbonyl complexes, the large S% contribution from the CO ligands to

the M–M mp or bcp is due to the dominant SF contribution from the indirectly bonded but more

electronegative O atom, rather than from the directly bonded, but relatively less electronegative, C

atom that exhibits negligible or sometimes even negative S% values (see for instance, Fig. 8).
27Note that these LS profiles comparisons are meaningful only because the bridged and unbridged

forms share similar M–M distances. If it were not so, comparison of the Laplacian values and of LS

profiles should take into account that the atomic Laplacian is smoothly decreasing in value with

increasing distance from the metal.
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2c separate bonds. Exact-exchange (hybrid functionals) seems to clearly favor the

former situation. A given bonding scheme is assigned by Goetz et al. [78] on the

basis of the number of �r2r maxima in the valence shell charge concentration

(VSCC) [6] of B or by inspecting the synaptic character of the ELF valence basins;

3c bonding is defined through the presence of one charge concentration maximum

directed toward the M–M axis and of only one trisynaptic valence ELF basin,

while the 2c bonding scheme is typified by the occurrence of one –r2rmaximum

along each Mn–B direction or by the presence of two additional disynaptic ELF

basins, besides the trisynaptic one. Note that the “borylene” compound discussed

by Flierler et al. [77] is rather classified as a substituted borane, on the basis of the

VSCC portrait of the B atom in the experimental Laplacian distribution. It thus

appears that the precise assignment to one of the two bonding situations is quite

challenging, since even small changes in the DFT functional or in the choice of

multipole model expansion may cause the shift from one bonding scheme to the

other. This is the typical case where distinction between two alternative bonding

descriptions is given in terms of local properties, which may possibly undergo

abrupt changes if the examined systems are characterized by distributions close to

bifurcation catastrophe points (in this case of the –r2r and ELF scalar fields). We

thus propose that more insight on the borylene/borane debate could perhaps come

from comparing the profiles of the SF contribution from the B atom to the electron

density along the B–Mn and the B–(Mn–Mn mp) lines for any pair of complexes

which are classified as substituted borane and borylene, respectively, in terms of

the number of their boron VSCC –r2r maxima. Examination of such profiles

should allow to establish and quantify how diverse are in reality the bonding

situations in the two systems. If a complex is close to a bifurcation point in its

Laplacian distribution, so that tiny changes in the DFT or multipole model may

shift it from the “borane” to the “borylene” assignment, one easily anticipates that

very small changes in both the Mn–B and B–(Mn–Mn mp) profiles will be

manifest between the two kinds of bonding schemes. Conversely, if the –r2r
maximum (a) is (are) quite evident, both profiles should show clearly distinct

features in the two bonding cases. Also informative (and quite less computation-

ally expensive) could be the comparison of the LS profiles along the same Mn–B

and B–(MN–Mn mp) lines and taking the Mn–B bcp and the Mn–Mn mp as

reference points, respectively. SF studies of such type have, however, not yet been

performed.

We conclude this section by mentioning a recent communication by Overgaard

et al. [82] on an ongoing experimental electron density study of the Mg–Mg

bonding character in Mg(I) dimer complexes, containing anion-stabilized Mg2
2+

entities. Discovery [105] of thermally stable and relatively strong (~ 45 Kcal

mol�1) Mg–Mg s-bond interactions in these complexes is unprecedented and

shows that the remarkable case of decamethyldizincocene [106], which possesses

a Zn(I)–Zn(I) single bond, can also be extended to the group 2 metal Mg. In view

of the novelty and impact of Mg–Mg bonding, Overgaard et al. [82] analyzed a

number of topological features for such bond, which shows a corresponding bcp

with very small rb and r2rb values amounting to about 0.015 and 0.010 au.
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Evaluation of the S% contributions from the Mg at the Mg–Mg bcp reveals that

the two Mg atoms determine about 30% of the bcp density, which is a small

amount if compared to that of a normal shared covalent interaction like C–C

having a d(C,C0) value close to one, but large if compared to M–M bonding in the

3d dinuclear metal carbonyls and of similar size as that found for the insaturated

dinuclear Co carbonyl with formal bond order of two. A comparison with

corresponding values for model systems featuring homonuclear bonding between

neutral and variably charged third row atoms would be helpful to place on a

relative scale the observed S%(Mg) value. Also important would be to know the

d(Mg,Mg0) from a gas-phase calculation of the dimer. Precious further insight on

bonding could then be obtained by evaluation of the S%(Mg) contributions for a

model density made by the sum of the electron densities of the two noninteracting

monomers, placed as in Mg(I) dimer complex. Operating this way, the effect of

Mg–Mg bonding formation could be singled out and evaluated as we did previ-

ously for Mn2(CO)10 [14].

Overgaard et al. also discuss the LS profile along the Mg–Mg bond path showing

“an intermediate-sized drop near the bcp (Fig. S7 in the supporting information of

[82])” and noting that this drop should disappear with the onset of chemical

bonding. This observation is probably not particularly meaningful in its own, as it

should be supplemented by an LS profile study on a comparative scale, for instance

on the Mg(I) dimer complex and on the corresponding noninteracting dimer, as

performed for Mn2(CO)10 [14]. The remark is not to be meant as a criticism, but just

as a suggestion for further work on this important, newly discovered metal–metal

interaction.

3.4.3 Metal–Ligand (M–L) Interactions in Single Metal p-Hydrocarbyl

Complexes and in Metal–Silane s-Complexes

This section deals with the application of the SF approach to the interesting cases

of (a) the delocalized interactions between transition metal (TM) atoms and open

or close-conjugated p-systems [72, 83], and (b) the nature of metal silane s-bond
interactions in complexes formed by �2 coordination of a ligand Si–H bond to a

TM center, to provide an insight into the mechanism of Si–H bond activation

within these complexes [84]. As we will show, it is the fairly delocalized and

nonclassical character of all such interactions that makes SF a quite attractive tool

for their study.

The nature of the chemical bond between transition metals and p-hydrocarbyl
ligands has been the subject of several MO investigations, and it is in general

considered to be well understood within this specific model approach (see [83] and

references therein). Conversely, the well-known fluxional mobility of ligands in

such systems challenges the usual QTAIM description of bonding in terms of two-

center interactions and of corresponding lines of maximum accumulation of density

(bond paths) between bonded pair of nuclei. Indeed, the very low barrier commonly

observed in the gas phase for the rotation of ligands makes the actual structure
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adopted in the crystal phase by the p-hydrocarbyl complexes to depend on kinetic

as well as thermodynamic factors [83, 107, 108]. For instance, in the case of

metallocenes such as ferrocene, (�5C5H5)2Fe, examples of staggered, eclipsed,

and in-between ring geometries may be found in the Cambridge Structural Data-

base [109] for this complex included as a guest in the lattice. Even in the gas phase,

the search for the ground state minimum geometry of metallocenes is often criti-

cally dependent on the level of computation – the adequate treatment of electron

correlation being a stringent condition for their correct geometry determination

[110]. Because of the characteristic potential energy surface flatness for the metal-

(p-hydrocarbyl) interactions, fewer M–C bond paths than expected on the basis of

the formal hapticity are normally recovered, and their actual number is neither

usually predictable nor easily explainable [83].28 It is thus not surprising that based

on a number of theoretical studies on metal-(p-hydrocarbyl) complexes [111, 112],

Richard Bader et al. were led to conclude that “the bonding of a metal atom to an

unsaturated ring is not well represented in terms of a set of individual bond paths,

but rather by a bonded cone of density. . .” so that such bonding “. . . is best viewed
as involving an interaction with the delocalized density of the entire ring perimeter,

a picture that is conceptually similar to that conventionally used to denote the

interaction of a metal with an unsaturated ring in chemical structure diagrams”

[111]. Does the SF description reflect such a delocalized picture of bonding in metal

p-hydrocarbyl complexes? How does it relate with the bond path view or with the

nature of the interatomic electron sharing indicated by the corresponding delocali-

zation indices?

Through a sequence of two outstanding papers, Farrugia et al. [72, 83] have

given illuminating answers to all these questions. In the earlier one, a combined

experimental and theoretical charge density study of the trimethylenemethane

(TMM) complex (Fe(�4-C{CH2}3)–(CO)3) was performed [72]. The complex pro-

vides an example of a delocalized p-hydrocarbyl system where the unsaturated C–C

bonds are arranged in a stellated fashion rather than in a ring or chain. Agreement

between the theoretical and experimental topologies was excellent. Curiously

enough, both density topologies found only one bond path between the TMM

ligand and the Fe atom, from the Ca atom, whereas none of such paths was

recovered between the metal and any of the three Cb atoms (Fig. 11a, b).

According to the bond path criterion, the complex should be described as a �1-
complex, but normal-mode analysis, ESCA and photoelectron spectra, NMR bar-

rier to rotation of the TMM ligand in the complex, and qualitative analysis of the

Kohn-Sham orbitals seem to all suggest a significant p-interaction with the C–C

bonds ([72] and references therein). The available physicochemical evidences, save

28It was noted, however, that the virial graphs, at variance with the molecular graphs, do reflect in

general the formal hapticity in metal p-hydrocarbyl complexes [83]. Virial graphs are the analo-

gous of molecular graphs for rV replacing rr [6]. Because of their general homeomorphism,

these two vector fields usually exhibit topologically equivalent graphs, but this may not hold true

when the equilibrium structure is close to a catastrophe point for at least one of the two fields.
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the molecular graph, would so imply a significant interaction of iron also with the

Cb atoms and a consequent classification of the complex as a �4 one.29

It was thus not surprising that a picture at odds with that provided by the bond

path criterion emerged from the (Fe,C) delocalization indices and the SF analysis

(both were only performed on the gas-phase theoretical densities). Instead of being

negligible, the d(Fe,Cb) value, 0.571, is large and about 40% larger than the d(Fe,
Ca) value, equal to 0.369. Similarly, the atomic SF contributions to the density at

the Fe–Ca bcp exhibit a pattern which closely resembles that obtained when the rp

is taken at the Fe–Cb midpoint (mp) (Fig. 11a, b). Even more, the percentage

contribution from Cb to the Fe–Ca bcp density is larger than the corresponding

one from Ca to the Fe–Cb mp density. In both cases the sources are fairly deloca-

lized, with cumulative contributions from the three methylene groups being equal

to about 60% of the total rp density, to be compared with a contribution from the

central C atom of about 7–10% only. The sum of contributions from the iron atom

and the bonded Ca atom is small and about 20% for both rp densities, while that

from the iron and the pertinent Cb atom is also approximatively constant but

slightly larger, amounting to about 27%. Not insignificant is also the contribution

from the three carbonyl groups (about 20% for both rps). All these values imply a

delocalized picture for the metal-(p-hydrocarbyl) interaction with a significant

p-interaction with the C–C bonds and a clear involvement of the methylenic H

atoms as well.
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Fig. 11 Source function percentage contributions from atomic basins in the trimethylenemethane

(TMM) complex (Fe(�4–C{CH2}3)–(CO)3) to the electron density at different reference points

(denoted by a small yellow sphere). These are (a) the Fe–Ca bcp; (b) the Fe–Cb midpoint (mp);

(c) the Fe–Cb bcp for a slightly deformed geometry of the complex, where the Fe–Ca–Cb angle is

reduced from the optimized equilibrium value of 76.6� to 73�, while retaining the original C3v

symmetry. This small geometry change yields to the formation of three new bond paths linking

iron to the Cb carbons also (adapted from Fig. 7 and Fig. S11, with permission from [72],

Copyright 2006, American Chemical Society)

29The (TMM) complex, analogously to what found in other metal p-hydrocarbyl complexes,

represents the uncommon case of the absence of a bond path where chemical intuition would

expect a bond, which is an opposite situation to the more common recovery of many bond paths

where chemists would not draw any bond line.
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The experimental and the gas-phase ab initio geometries of (Fe(�4-C
{CH2}3)–(CO)3) are close to structural instability; that is, new structures may

occur even for small geometry changes. By decreasing the Fe–Ca–Cb angle from

the optimized equilibrium value of 76.6� down to 73�, while retaining the original

C3v symmetry, three new bond paths linking iron to the Cb carbons appear [72].

Despite this evident structural change – namely from a �1 to a �4 complex,

according to the bond path criterion – the (Fe,Ca) and the (Fe,Cb) delocalization

indices are hardly changed, as they decrease to 0.351 and increase to 0.609,

respectively. Analogously, no significant change is observed in the SF pattern

when the rp is taken at the Fe–Cb bcp in the distorted geometry, rather than at the

Fe–Cb mp in the minimum energy structure (Fig. 11c). Overall, due to the proxim-

ity of the optimized geometry to structural catastrophe, the SF contributions look

almost the same, whether a Fe–Cb bcp is present or lacking. In both cases, the

contributions from the Cb atoms to the density at the rp are greater than observed

from the Ca atom. It is thus gratifying that the delocalization indices and the SF

provide pictures of bonding in this complex, which nicely fit within each other and

also with the other available experimental evidences. Clearly the occurrence or lack

of a bond path is also a physical outcome, and the bond path criterion should not be

ignored because of its apparently contrasting conclusions. Simply, the nonlocal

descriptors seem more appropriate for describing an inherently nonlocal interaction

such as that of TMs with the delocalized p-hydrocarbyl ligands, as pointed out

earlier for other interactions characterized by flat energy surfaces and electron

densities.

Similar conclusions were drawn by Farrugia et al. in their combined experimen-

tal and theoretical charge density study [83] of three different metallocenes (�5-
C5H5)Mn(CO)3, (�6-C6H6)Cr(CO)3, and (E)-{(�5-C5H4)CF¼CF(�5-C5H4)}(�

5-

C5H5)2Fe2. For the sake of conciseness, we focus here only on the first of such

compounds whose experimental molecular graph and SF percentage sources for a

number of representative rps are shown in Fig. 12. The molecular graph (Fig. 12a)

shows only four Mn–C bond paths, one less than expected on the basis of formal

hapticity. Curiously enough, the bond path is missing for the shortest (Mn–C7)

rather than for the longest Mn–Cring distance.

The Mn–C5 bond path is rather curved, and its bcp is 0.02 Å close to the

C4–C5–Mn rcp, indicating that these two CPs are proximal to coalesce to yield a

structural evolution. Indeed, this bond path was even not recovered with some of

the investigated multipole models, whereas the theoretical density for the gas-

phase-optimized structure exhibits the number of bond paths expected from the

formal hapticity of the complex [83]. Similar discrepancies were found also for the

other studied systems, which illustrate once more the difficulties encountered when

using a bond path approach to characterize the delocalized metal-(p-hydrocarbyl
ligands) bonding.

The experimental SF patterns shown in Fig. 12b–f are instead very similar to

those obtained from the ab initio density (Fig. 9 of [83]) and visibly distinguish the

quite different types of chemical interactions present in the complex. The SF

contributions to Mn–C(O) bcp (Fig. 12b) are typical for such interaction and very
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much alike to those found for terminal M–C(O) bonds in the dinuclear metal

carbonyls. The two bonded atoms yield about 68% of the bcp density and the

carbonyl O atom an additional 13%. As shown by Farrugia et al. [72], the large

contribution from the carbonyl O atom is not to be simply interpreted as a signal of

Mn–CO p back-bonding, since similar percentage source contributions are found

for the B–C bcp in the adduct H3B CO where no B–C p back-bonding is possible.

In our view, this large SF contribution from the carbonyl O atom results from the

nonnegligible portion of the 3s HOMO lone pair orbital of CO lying into the O

basin ([103] and page 10061 of [12]) and the dominant role that such orbital plays in

the dative s bond to the metal [103].

When the rp is placed at the C–O bcp, the global contribution from the two

bonded atoms rises to about 98% (Fig. 12c) as found for all other metal-carbonyls

thus far investigated. It is not just the sum which is transferable, but also the

separate contribution to this sum from the C and the O atoms, equal to about 41%

and 57%. The Mn–Cring bcps and the rcps pertaining to the three-membered rings

formed by the Mn and any two metal-bonded neighboring C atoms of the p-
hydrocarbyl ligand lie on an annulus of almost constant electron density and

Fig. 12 Metal–ring and other chemical interactions in (�5-C5H5)Mn(CO)3 using the bond path

and the SF percentage descriptors; (a) the experimental molecular graph (bcps are shown in red,
rcps in yellow, and cage critical point in green); (b–f) source function percentage contributions

from atomic basins to the experimental electron density at different reference points (denoted by a

small yellow sphere). These are (b) the Mn–C2 bcp; (c) the C2–O bcp; (d) the Mn–C(Cp) bcp; (e)

the Mn–C(Cp) rcp; (f) the C–C bcp. Absolute source contributions less than 0.5% are not shown

(adapted from Figs. 2 and S23, with permission from [83], Copyright 2009, American Chemical

Society)
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vanishing density gradient [83]. The SF contributions patterns nicely reflect such a

delocalized nature of the Mn-ring interaction. All basins of the p-hydrocarbyl
ligand determine in a significant way the electron density in the annulus, and

relative contributions from all basins are almost unchanged regardless the rp is at

a bcp (Fig. 12d) or at an rcp (Fig. 12e). As a consequence, the SF pattern for the

Mn–C7 interaction, which lacks a bcp, was found to be almost indistinguishable

from that of the remaining four bonded Mn–Cring interactions, provided the

corresponding rp is also taken to lie in the annulus. The SF contribution from

the Mn(CO)3 group is significant too and independent of the rp position within the

annulus. It amounts to about 30%, one third of it coming from the Mn atom. Taken

as a whole, the SF patterns for the metal–ring bonding suggest not only that such

interaction is delocalized through the whole ring, but that it involves, besides the

metal atom, also the carbonyl ligands bonded to the metal. Finally, Fig. 12f shows

the S% pattern when the rp is taken at the (C–C)ring bcp. The two bonded C atoms

determine about 84% of the density at their bcp, which is consistent with that found

for benzene (84.7%, Table 4). Even contributions from the other C atoms in the ring

and from the H atoms are very much alike to those obtained for benzene. According

to Farrugia et al. [83], the dominant S% contribution of the two bonded Cring atoms

to their bcp density may be seen as surprising, given the delocalization of the p
density in these conjugated rings. However, we did already show in Sect. 3.2.2 that

the effect of p-conjugation is visible through the SF approach, though it is clearly

dampened when analyzed by placing the rp in the nodal plane. In that case, only the

indirect effect of p-conjugation on the s-distribution becomes manifest, which is to

a good approximation the situation being analyzed in Fig. 12f (the ring plane may

be roughly considered as a “nodal” plane since the metal–ring interaction is a small

perturbation with respect to the strong covalent interactions within the ring, as the

likeness with the SF pattern found for benzene would confirm). In order to get

further insight on the perturbing effect of the metal–ring interaction on the electron

distribution of the hydrocarbyl ring (and in particular that of “p-electrons”), we
suggest to compare the SF patterns when the rp is displaced above and below the

(C–C)ring bcp as we did for benzene. Differences in S% patterns when the rp is

closer or farther to the metal atom would allow to estimate the perturbation of the

p-electron conjugation and distribution which is caused by the onset of the metal–

ring interaction.

Discussion in [83] is supplemented with the SF analysis of the theoretical

densities of a homologous series of 18-electron model compounds having the

formula (�nCnHn)M(CO)3 and varying ring sizes which range from n ¼ 3 to

n ¼ 8, according to the change of the metal from Co(n ¼ 3) down to Ti (n ¼ 8)

along the first TM series. Also for these model compounds, an unpredictable

number of metal–Cring bond paths are observed, and fewer M–C bond paths than

expected from the formal hapticity are found, for ring sizes greater than four.

However, both delocalization indices and S% patterns agree in describing a similar

level of bonding for all M–Cring interactions, regardless of the presence or lack of a

corresponding bond path and in full compliance with the expected chemical picture.

The reader is addressed to the original paper for more details.
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Farrugia et al. [83] also investigated a number of cases where the geometrical

distortion in the metal–�n-hydrocarbyl interaction is sufficiently large to yield a

formal reduction in the hapticity. In such cases, it was pleasingly found that both the

delocalization indices and the SF patterns clearly discriminate the formally bonded

from the formally nonbonded M–Cring interactions.

One minor point remains to be clarified concerning this otherwise excellent

paper by Farrugia et al. [83]. When discussing the (E)-{(�5-C5H4)CF¼CF(�5-
C5H4)}(�

5-C5H5)2Fe2 system, it is mentioned that the weak C–H���F interaction

provides an interesting case, with “characteristics and highly delocalized” sources

and with the three interacting basins all acting as very large “sinks” for the density,

while the other F atom provides the single largest source. We are not interested here

in the discussion of this specific SF pattern, but concerned with the physical

interpretation that was given for atoms acting as “sinks.” Farrugia et al. indeed

note that “when a basin acts as a sink, the kinetic energy dominates over the

potential energy density when averaged over that basin.” Clearly this is not true,

since for the very definition of QTAIM basins, the kinetic energy density and the

potential energy densities, when averaged over O, fulfill the atomic virial theorem,

and the ratio of their averaged magnitudes has to be always equal at equilibrium to

the virial ratio of 1:2 as it is for the global system. As shown in (5), an atom yields a

negative source if LG dominates over LV when averaged over its basin. Although

LG and LV are related to G and V, they clearly differ from them because of their

Green’s or influence function term (Sect. 2.1). It is this term which causes an atom

to act as a source or as a sink, depending on the position of the rp, as shown earlier

in this chapter (Sect. 3.3) for the H atom involved in weak or moderate strength

OH���O bonds.

The chemistry of s-bond complexes formed by �2 coordination of a ligand E–H
bond (E ¼ C, Si, H, B, Sn or Ge) to a TM center has been the subject of intense

interest over the past three decades, as these systems provide an insight into the

E–H activation of E–H bonds by TM centers [113]. Silane s-bond complexes,

which were the first to be isolated and recognized back in 1969 [114], presently

represent the second largest class of s-bond complexes after molecular hydrogen

systems and serve also as a model for their more ephemeral alkane s-bond cousins

and for C–H activation [115]. Recently, Mc Grady et al. [84] have investigated the

nature of metal silane s-bond interaction in a number of key systems by a range of

experimental and computational techniques, including an SF analysis, which is

briefly reviewed below. In particular, their study focused on three simple Schubert-

type [116] complexes [Cp0Mn(CO)2(�
2-HSiXY2)], with X ¼ H, F, and Cl, respec-

tively, and Y being Ph for X ¼ H, F or being Cl for X ¼ Cl (the molecular scheme

and structure for X ¼ F, Y ¼ Ph is shown in Fig. 13a, b). This series of complexes

may be viewed as “snapshots” at various stages along the reaction coordinate for

oxidative addition of the Si–H bond to the metal, although the determination of the

actual reaction stage in a given complex turns out to be difficult because X-ray

diffraction fails to locate the H atoms with sufficient accuracy. Earlier topological

analyses of the charge density [111] and photoelectron spectra ([117] and note 17 of

[84]) have indeed classified the compound with X ¼ Y ¼ Cl as a nearly complete
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oxidative silane addition product, with only a negligible residual Si–H interaction,

while the other two complexes with X ¼ H or F were identified as silane s-bond
complexes at an early stage of Si–H bond addition [118]. In contrast to these earlier

reports, Mc Grady et al. [84] found that the Mn–Si–H bonding in the last two

complexes is not fundamentally different from that in the X ¼ Y ¼ Cl compound

which possesses more than one electronegative ligand at Si. In spite of a shorter

Mn–Si bond, the Si–H and in particular the Mn–H interactions appear not signifi-

cantly weaker than for the X ¼ H or F compounds. Mc Grady et al. [84] could

arrive to these conclusions on the basis of their neutron diffraction study of the

complex with X ¼ H,30 the available neutron structure for the complex with X ¼ F

[119], and careful X-ray diffraction and DFT charge density studies for all the three

complexes. Furthermore, inspection of the MOs of each complex and of the frontier

H

a

d e f

b c

OC

OC
Mn

Me

SiPh2F

Fig. 13 Nature of the bonding in the metal–silane s-complex [Cp0Mn(CO)2(�
2-HSiFPh2)] (Cp

0 ¼
�5-C5H4Me); (a) molecular scheme; (b) molecular structure; (c) r2r(r) contour map in the

Mn–H–Si plane. Negative and positive values are marked by solid and dashed lines, respectively.
Bcps and Rcps are marked by closed circles and squares, respectively; the bond paths are shown

by solid lines; (d–f) source function percentage contributions from atomic basins to the electron

density at different reference points (denoted by a small black sphere). These are (d) the Mn–H

bcp; (e) the Mn–Si bcp; (f) the Si–H bcp. The reported values are derived from the experimental

and from the DFT (in parenthesis and in italic) electron density distributions (adapted from

Scheme 1, Fig. 7, and Table of Contents, with permission from [84], Copyright 2009, American

Chemical Society)

30Note that this is the only example of a neutron structure for a complex containing both a

coordinated and an uncoordinated Si–H moiety in the vicinity of the metal atom.
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orbitals of their silane and metal fragment moieties led Mc Grady et al. [84] to

formulate a new and more sophisticated Mn (�2-SiH) bonding model, improving

and replacing the previously established s(Mn–H) ! s*(Si–X) mechanism to

explain the electronic influence of the auxiliary X ligand trans to the activated

Si–H bond. It was found that the Mn (�2-SiH) bonding in all of these systems occurs

through an asymmetric oxidative addition reaction coordinate in which the Mn–H

bond is formed at an early stage, whereas Mn–Si bonding is being controlled and

enforced by the extent of Mn! s*(X–Si–H) p-back donation. This electron flow

from a filled metal orbital of proper symmetry into a three-center ligand orbital

displaying both Si–X and Si–H antibonding character results in a simultaneous

activation of both the �2-coordinating Si–H bond and the Si–X bond in trans
position. As a consequence, the control role exerted by the trans-oriented X ligand

on the geometry of the Mn(�2-SiH) moiety becomes manifest: the higher the

electron-withdrawing character of X, the greater the Si–X and Si–H bond activation,

owing to the increased Mn! ligand p-back donation. This MO model interpreta-

tion (clearly available only at a theoretical level) was, however, unequivocally

corroborated by an SF analysis on both the experimental and theoretical charge

densities of the three investigated complexes. Figure 13d–f displays S% contribu-

tions from atomic basins to the electron density at different bcps of the Mn(�2-
HSiFPh2) moiety. When the rp is at the Mn–H bcp (Fig. 13d), the dominant

contributions come from the Mn atom (27%; 29%, experimental values in italic)
and the H atom (39%; 39%), whereas the contribution of Si is indeed small (3%;

3%) as expected for a strongly localized Mn–H bond. Note also that almost

unchanged percentage contributions are found for the other two studied complexes.

This result confirms that the oxidative addition of the silane ligand to Mn is an

asymmetric process in which the Mn–H is formed at an early stage and that such

bond, as expected, cannot be significantly affected by the extent of the Mn ! s*
(X–Si–H) p-back donation. The situation appears quite different when the rp is

placed at the Mn–Si bcp (Fig. 13e). Here Mn, Si, and H each contribute to a very

similar extent to the bcp density (13%, 19%, 18%; 16%, 21%, 15%, for Mn, Si, and

H, respectively, and with experimental values in italic). Such delocalized sources

imply a strongly delocalized interaction, with formation of the Mn–Si bond affect-

ing directly the Si–H bond (hence the H atom percentage contribution) because of

the p-back donation from the metal into the antibonding s*(X–Si–H) orbital.

Analogously, when the rp is placed at the Si–H bcp (Fig. 13f), very delocalized

sources are again observed, with a nonnegligible contribution from the Mn atom.

According to the Mn! s*(X–Si–H) model, the S%(Mn) was found to theoretically

increase from X ¼ H (5%), to X ¼ F (6%) and to X ¼ Cl (9%), confirming that the

back-donation from Mn to Si increases as the Si center becomes more positive.

The SF analysis “translates” to a set of percentage atomic contributions the

information in Fig. 13c, where the Laplacian distribution of the density in the

Mn–H–Si–F plane, overlaid with the bond paths within the Mn(�2-HSiF) moiety,

is displayed. It is gratifying to see that the SF provides not only a precious chemical

insight into an intriguing bonding scenario, but also a physical validation, both at a

theoretical and at an experimental level, of the MO model interpretation of bonding
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in Schubert-type complexes. Si–Mn bonding, which dictates the strength of the Mn

(�2-SiH) interaction, is found to be the result of a complex interplay of contributions

from all four atoms of the Mn(�2-HSiX) moiety.

4 Is the Source Function a “Robust” Descriptor?

Local descriptors derived from the topological analysis of various scalar fields –

including the electron density as the most relevant one – play a central role in the

majority of the existing schemes for classifying chemical interactions in gas phase

and in crystals [2]. Use of local descriptors is simple, immediate, and computation-

ally inexpensive, but it has the drawback of emphasizing the role of the properties

of the scalar field under examination at the few selected points (e.g., bcps) only.

Thus, the approach not only assumes that these points be the most representative for

the entire bonding interaction – which instead in general involves a not too

localized rearrangement of the scalar field distribution with respect to the sum of

the atomic distributions – but also suffers from the usually high sensitivity of a local

property to changes in the way the associated scalar field is derived. For instance, if

the dichotomous classification [97] based on the sign of r2r is used, with shared

and closed-shell type interactions being characterized in terms of negative and

positiver2rb values, a very large dependence on the model used to build r(r) may

be observed on r2rb. The Laplacian at bcp is given by the sum of the three

curvatures of the density at this point, and significant changes in these curvatures,

in particular in the one parallel to the bond path, are found to occur when different

multipole models, or Hamiltonian and basis sets are adopted for experimental and

theoretical electron densities, respectively [2, 32]. The electron density difference

between an ab initio density and the one derived from multipole modeling of the

former density projected onto structure factors allows for a direct estimate of the

bias introduced by the multipole model (MM) refinement step. Hereinafter in this

section, the original density and that derived from it through the MM will be

referred to as the primary density (PD) and the multipole-modeled primary density

(MMPD), respectively. In the unattainable limit of zero bias, the two densities will

be equivalent, but in practice their difference may often be relevant. Differences in

their associated rr and r2r fields, which define the position of the bcps and the

r2rb values, respectively, may be at fortiori very significant and were indeed found
unacceptably large in several cases [15].

The less will be affected by changes in the way r(r) is obtained, the more robust

and informative will be a given local bond descriptor, provided these changes

lead to otherwise physically similar electron densities and with similar general

accuracy. Changes in r(r) and in its derivatives will clearly influence also the SF

and to an extent dependent on the way it is being analyzed (i.e., in terms of atomic,

percentage atomic, or local contributions). When comparing SF results from PD

and MMPD densities or from any two different r(r) distributions, three major

interrelated sources of discrepancies may come to the play – the change of r(r)
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within an atomic basin, the variation of its basin boundaries, and the shift in the bcp

position.

The robustness of the SF descriptor against changes in the way r(r) is obtained
and/or against the bias introduced by multipole modeling on a PD has been

investigated in a recent preliminary study by Lo Presti and Gatti [15]. Three test

systems were considered: (a) a small organic molecule (hexafluorocyclobutene,

C4F6); (b) carbon monoxide, CO, and (c) bis(pentacarbonylmanganese),

Mn2(CO)10. In all three cases, the PD for a crystal made of noninteracting mole-

cules and the corresponding MMPD density, using different MMs, were compared.

In addition, diverse PDs were considered for CO to test the effect of the choice of

the Hamiltonian and of the basis set, whereas for Mn2(CO)10 the multipole model

experimental density (MMED) obtained from the MM refinement of a set of

experimental structure factors [71] was also included in the comparison. The

main results obtained are briefly reviewed below, while the reader is addressed to

the original paper [15] for more technical details.

Table 10 reports rb and r2rb values for C4F6 and CO at their various bcps (see

Scheme 3 for C4F6 atomic labeling) and the corresponding atomic S% contributions

to rb.
Comparing PD and MMPD data for C4F6, one observes that the S% contribu-

tions are generally very much alike: the largest discrepancies concern the polar C–F

bonds, but even for these bonds the percentage differences never exceed 6 points,

and for both densities the F atom yields a much larger density contribution at bcp

than does its bonded partner. Conversely, differences in the rb values may be as big

as 24% with the largest ones being, as expected, for the C–F bonds. Discrepancies

between PD and MMPD data become impressive and hardly acceptable when the

r2rb values are compared. Deviations as large as 600% in magnitude are observed

for C–F bonds, for which the PD Laplacian values are far less negative than

following the MM treatment. In the case of the F1–C2 interaction, the MM bias

even leads to a change in the r2rb sign, notwithstanding an appreciably positive

PDr2rb value. It is remarkable that the S% contributions from C and F to the F–C

bcp densities differ by a maximum of 6 points31 only after the MM refinement of

theoretical data, given that these contributions are evaluated in terms of the

Laplacian distributions which show such impressive discrepancies at the C–F bcps.

Before analyzing why the S% appears as a much more robust descriptor than it

is, in particular,r2rb, we comment the results obtained on CO. The electric dipole

moment for this molecule is known to be quite small, despite the significantly high

net atomic charges. The capability of reproducing the experimental dipole moment,

which amounts to 0.11 Debye [123] and is directed from carbon to oxygen �C�O+,

is known to be very sensitive to the employed theoretical model (see for instance

31As explained in detail at page 311 of [15], changes in S% values are given as percentage point

changes, rather than as percentage changes as done for rb and r2rb, because the S% values are

already defined on a relative basis.
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Table 10 Comparison of X–Y bond critical properties and atomic source function percentage

contributions at X–Y bcp in C4F6 and in CO as derived from a theoretical primary density (PD) and

its corresponding multipole-modeled primary density (MMPD)a,b

System/

modelc
X–Y R, Å mz(D)

d rb
(e Å�3)

r2rb
(e Å�5)

S%(X) S%(Y) S%(X þ Y)

C4F6 F2–C1 1.327 – 1.79 �3.8 45.5 35.1 80.6

2.22 �31.3 51.7 33.7 85.4

(+23.9%) (+724%) (+6.2) (�1.4) (þ4.8)
C1–C10 1.543 – 1.70 �14.7 34.5 – 69.0

1.86 �16.8 35.1 – 70.2

(+9.4%) (+14.2%) (+0.6) – (+1.2)

C2–C20 1.315 – 2.33 �23.8 41.8 – 83.6

2.51 �26.6 42.2 – 84.4
(+7.7%) (+11.8%) (+0.4) – (+0.8)

C1–C2 1.493 – 1.83 �16.3 35.3 38.9 74.2

1.93 �17.2 34.9 39.9 74.8

(+5.5%) (5.5%) (�0.4) (+1.0) (+0.6)

F1–C2 1.298 – 1.85 +6.2 47.6 39.1 86.7

2.27 �29.0 52.7 37.2 89.9

(+22.7%) (�568%) (+5.1) (�1.9) (+3.2)

CO

BVWNe/

Valenzanof

C–O 1.136 �0.134 3.36 �3.8 42.2 57.8 –

3.47 �24.2 44.2 55.8 –

(3.3%) (+537%) (+2.0) (�2.0) –

CO

BVWNe

/cc-pVDZg

1.146 þ0.237 3.06 39.1 40.9 59.1 –

3.30 �32.2 46.1 53.9 –

(7.9%) (�182.4%) (+5.2) (�5.2) –

CO

HF/cc-pVDZg

1.110 �0.146 3.35 53.2 38.9 61.1 –

3.40 9.8 40.7 59.3 –

(1.5%) (�81.7%) (+1.8) (�1.8) –
aData from [15]
bFor bond topological properties and S% contributions, the first row refers to PD and the second

row (italic) to MMPD data. The third row lists the percentage difference [(MMPD-PD)/PD]*100

between MMPD and PD values in the case of the bond topological properties, while for the SF

percentages, it reports the percentage points difference between the PD and MMPD S% values
cIn the case of the CO system, different combinations of Hamiltonian and basis sets have been

investigated (see text)
dmz is the dipole moment component along the internuclear axis. It is taken as positive if the C atom

is negatively charged
eBVWN is the DFT functional composed by Becke’s exchange functional [34] and Wosko Wilk

and Nusair correlation functional [120]
f[121]
g[122]

Scheme 3 Atomic labeling

in C4F6
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[124]). The bcp properties of CO, for either the isolated molecule or the molecule

acting as a ligand, depend even more strongly on the chosen computational scheme

or MM refinement of structure factors [2, 6, 125]. Ther2rb value for CO is indeed

extremely sensitive to the location of the bcp, which most often lies close to the

nodal r2r surface separating the core-shell charge depletion region of the carbon

from the single, merged VSCC of CO. Despite numerous evidences of a shared

interaction character of the C–O bond [125],r2rb is found often positive, but even
very small environmental or modeling changes, capable to slightly shift the bcp

toward the oxygen atom, may lead to negative r2rb values [2, 66]. The three

PD models listed in Table 10 for CO differ as for their minimum energy geometry

and dipole moment estimate. The corresponding S% results are rather stable, with

differences in values among the three models not exceeding 3 points, whereas rb
and in particular r2rb show a much larger variability. The electron density values

at the C–O bcp differ among each other by a maximum of about 10%, but the largest

jr2rbj value is 14 times higher in magnitude and with sign reversed than the lowest

one. When PDs data are compared with the corresponding MMPD results, one

observes that the bias due to the multipole model refinement leads to acceptably

limited changes on the rb and S% values, the largest ones being about 7.9% and

5 points, respectively. Conversely, the r2rb values are not at all reproduced, with
changes even as large as 530% in one case and with a value qualitatively similar in

magnitude, but reversed in sign in another case. Table 10 reports MMPD data for

the MM with refined k and k0 screening parameters [10]. Adoption of standard

unitary screening parameters, though leading to quite different numerical values for

r2rb, does not qualitatively affect the picture [15]. It is worth noting that, despite

the large variations observed for the r2rb magnitudes with changes in the PD

models or following the MM refinement of their corresponding structure factors,

the S% values remain reasonably stable for such shared and partially polar bond.

This holds true even when the r2rb sign changes. The large and positive QTAIM

net charge of C and the location of the bcp closer to the C than to the O nucleus

easily explain why the S%(O) always exceeds that from C.

The results obtained for C4F6 and CO seem to indicate that the S% values are

carrying a more robust and thus more chemically meaningful information than do

the rb and, in particular, the r2rb local descriptors. Indeed, being the result of

integration over an atomic basin, the SF or the S% contribution averages out the

local bias introduced by the MM refinement or by the PD model change on the LS

integrand (which is defined through the Laplacian). One also observes that since the

SF contributions simply reconstruct the electron density, PD and MMPD SF results

should roughly differ as their electron densities do. However, rather then being

related to the rb values, the S% contributions express how rb is comparatively

shared between the two linked atoms. Because of the dependence on the relative

contribution to rb rather than to the rb magnitude itself, the S% descriptor turns out

to be generally more stable than it is rb (and a fortiori r2rb) against both the MM

bias and the changes due to different theoretical approaches or multipole model

treatments.
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The case of bis(pentacarbonylmanganese) deserves some further specific com-

ments. As reported in Table 4 of [15], the S% contributions obtained from the PD,

the multipole-modeled primary (MMPD) and experimental (MMED) densities

agree very well among each other for both the Mn–C and the C–O bonds.

Deviations are generally very small (about 0–2 points) and never exceed the

4 points. The Mn–Mn interaction exhibits instead a quite different behavior. The SF

contribution from the Mn atom to the Mn–Mn bcp density is negative for all three

densities, but the S% value for the investigated [15] PD density, �20.5%, differs

significantly from that obtained after the MM refinement (�42.7%) or from the

MMED (�47%). Since a large discrepancy with the PD S% estimate persists

whether the MM refinement is applied to the PD or to the experimental structure

factors, Lo Presti and Gatti [15] argued that its very origin is to be ascribed just to

the bias introduced by the MM. By inspecting the differences in the r2r and LS

profiles along the Mn–Mn bond path, with the rp being held fixed at the Mn–Mn

bcp, they could conclude that the larger S% negative contribution for the MM

refined densities is basically due to a noteworthy MM bias in the r2r distribution

of the outermost core regions of the Mn basin. In fact, in the interval of the atomic

L andM (s,p and not d) Mn shells,r2r (MMPD or MMED) was found to be much

less negative than r2r (PD), which results in larger negative contributions to the

bcp density from either MMPD or MMED in this interval. It was also found that

refinement of the k, k0 screening parameters slightly reduced the S%(PD-MMPD)

difference, relative to using standard unitary parameters. However, such a differ-

ence can be much more significantly lowered, and even down to few percentage

points, by diminishing the higher order of the MM expansion from lmax ¼ 4 to lmax

¼ 1 or even lmax ¼ 0 (Fig. 4 of [15]). Apparently, the higher are the poles refined

on the TM atoms, the larger is the MM bias for the Mn–Mn interaction. Since

higher poles are, however, deemed necessary for a proper description of p and d
electrons in such metals, this clearly unpleasant result could simply reveal a

different problem. Diminishing of such specific MM bias by lowering the order

of the MM expansion is likely the result of compensatory errors, rather than a

clear signal that such an order need to be decreased, if a trustable electron density

is searched for. Lo Presti and Gatti [15] also noted that in Mn2(CO)10 the MMPD

rb values are all similarly affected by the MM bias when compared to their

corresponding PD reference estimates. Indeed, jDrb(MMPD-PD)j magnitudes

for the Mn–Mn bcp (0.046 eÅ�3) do not significantly differ from the corres-

ponding averaged values for the Mn–C (0.069 eÅ�3) and the C–O (0.025 eÅ�3)
bcps. However, since the electron density at bcp is about 4 and 15 times smaller at

Mn–Mn than it is at the Mn–C and C–O bcps, respectively, the mentioned similarity

among the MM biases on the rb values does not hold true when applied on a relative
scale. The corresponding percentage Drb differences are thus very large for the

Mn–Mn bond (24%) and smaller or significantly smaller for Mn–C (9%) and C–O

(1%). The need to reconstruct a much lower rb value is the most likely reason behind

the unexpected sensitivity of the S%(Mn) value to the MM bias. Looking at the S%

contributions, rather than at the SF values, emphasizes theMMbias in the case of the

Mn–Mn bond, rather than dampening it as found for all other bonds in C4F6, CO, and
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Mn2(CO)10 itself. One expects such a different behavior to be the rule, rather than the

exception, for bcps characterized by very low electron density values. That is to say,

the lower is the density at the bcp and the higher is the delocalization of sources, the

lower is expected to be the otherwise impressive robustness generally observed for the

S% descriptor.

5 Double Integrating the Local Source: An Unambiguous

Position-Space “Population Analysis”

In Sect. 2.2, a population analysis based on the SF approach was introduced.

Preliminary results for the second-row H–X diatomics and numerical difficulties

met with this position-space electron population scheme are concisely summar-

ized in Sect. 5.1 below. A standard SF analysis for the H–X series was presented

earlier in Sect. 3.2.3, where the relationship between the shape of the Laplacian

distributions along the series and the values of the atomic source contributions at

bcp densities was highlighted. By double integrating the LS functions defined

through these same Laplacian distributions, an electron population analysis

matrix M, having 2 � 2 dimensions for diatomics, is obtained. In general, each

element of M is evaluated by letting the r coordinate to span one atomic basin

and the rp coordinate r0 to span either this same basin (diagonal elements of M)

or a different atomic basin (out-of-diagonal elements of M ). Operating this way

on H–X diatomics, one obtains the elements M(A,A) (A ¼ H or X) representing
the self-contributions to the atomic electron population of A, N(A), and the

elements M(A,B) (A,B ¼ H or X with A 6¼ B) defining the contributions to the

electron population of H from X or vice versa (13). In practice, the evaluation of

the full M matrix is simpler than that. It just requires a standard 3D integration

over each atomic basin as usually performed to get the various N(O) values,

provided one stores in advance the whole set of integration grid points for all

atoms in the molecule. By integrating the LS(r, r0) within O with r running over

the grid points of O and r0 running over the whole set of integration grid points

of all atoms, one immediately gets and separately stores the elements of a full

row of the M matrix, M(O,O0; O0 ¼ 1, N with N being the total number of atoms

in the molecule). Summing up the elements over the row equals N(O); hence
with just one standard 3D atomic integration, one obtains both the atomic

population of O and its decomposition in a self-contribution and in external

contribution terms to this population from the remaining atoms in the system.

However, this apparently simple procedure becomes often very challenging from

a numerical point of view. A serious problem arises as for the “correct” assign-

ment of atomic sources for those elements of volume integration which are

characterized by very low average electron density values and electron popula-

tions (see infra).

268 C. Gatti



5.1 Preliminary Results for the Second-Row Hydride Series
and Comparisons with Mulliken’s Population Analysis
Scheme

The SF population analysis results for the second-row diatomics H–X series are

detailed in Table 11, whereas Fig. 14 concisely illustrates the trends of values

through the series for the elements of the population matrix M. A comparison with

values for the corresponding terms in Mulliken’s scheme [17] is also shown in the

same figure. Indeed, the number of electrons Ne in the system may be written as

[17, 124]:

Ne ¼
XNbasis

mn

PmnSmn ¼
XNbasis

mn

PmnSnm ¼ tr ðPSÞ (15)

Table 11 Population analysis from the double atomic basin integration of the local source

function in the second-row diatomic hydridesa

H–X N(O) M(O, O)b M(O, O0)b ICPb M(O, O)/
N(O)

IP(O)c DEV(O)c DEVM(O)c

H 1.901 0.23 1.65 0.39 0.12 0.081 0.063 0.063

Li 2.090 1.92 0.16 0.92 0.006 �0.009 0.036

H 1.874 0.43 1.42 0.98 0.23 0.035 0.005 0.007

Be 3.125 2.50 0.55 0.80 0.053 �0.021 0.033

H 1.787 0.67 1.09 1.48 0.38 0.024 0.000 0.004

B 4.213 3.34 0.81 0.79 0.037 �0.027 0.034

H 1.053 0.77 0.27 1.76 0.73 0.016 0.002 0.003

C 5.947 4.93 0.99 0.83 0.033 �0.002 0.031

H 0.663 0.62 0.04 1.47 0.94 0.010 0.002 0.002

N 7.337 6.46 0.86 0.88 0.028 0.010 0.030

H 0.386 0.42 �0.04 1.04 1.09 0.006 0.001 0.001

O 8.614 7.97 0.62 0.93 0.023 0.001 0.037

H 0.242 0.29 �0.05 0.71 1.20 0.004 0.000 0.001

F 9.758 9.30 0.42 0.95 0.017 �0.021 0.047
aHF/6-31G** wavefunction
bM(O, O) represents the contribution of O to determining the electron population of its own basin,

whileM(O,O0) is the contribution to this same population from basinO0, with O0 being XwhenO¼
H and vice versa; ICP is the interchanged electron population between O and O0, ICP ¼M (O,O0)
þ M(O0, O), that is the sum of the contribution to the electron population of O from O0 and of the

contribution to the electron population of O0 from O
cAll these parameters are related to the numerical accuracy of the population analysis. IP(O)
represents the ignored atomic electron population, that is the atomic sum of the electron population

of those volume elements within O that due to their too low average electron density could not be

used in the evaluation of the elements of the matrixM (see text). The quantity DEV(O) is given by
the atomic integration of the local deviation of the r reconstructed through the SF from the exact

r value; DEVM(O) is given by this same atomic integration but taking the module of the integrand

(see text)
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where Nbasis is the number of basis set functions and P and S are the first-order

density and the overlap matrix representations over that basis, respectively. These

matrices are both symmetric, so that (15) may be also written as:

Ne ¼
X
A

X
m2A;n2A

PmnSmn þ 2 �
X

m2A;n2B 6¼A
PmnSmn

" #

¼
X
A

MðA;AÞM þ
X

B 6¼A ½ðMðA;BÞ þMðB;AÞ�M
n o

; (16)

where the contribution to the number of electrons due to basis functions only

centered on A is named [M(A, A)]M, and that due to one basis function centered

on A and the other on B is called [M(A, B)þM(B, A)]M. The subscript “M” denotes

that these quantities are defined within a Mulliken’s scheme and a basis set

approach. Note that [M(A,B)þM(B,A)]M corresponds to the Mulliken’s total

Fig. 14 Population analysis from the double atomic basin integration of the local source function

in the second-row diatomic hydrides H–X and comparison with corresponding terms in the

Mulliken’s scheme. (a) Out-of-diagonal terms of the electron population matrix M as obtained

from the SF approach:M (H,X) +M(X,H) ¼ ICP, the interchanged electron population between H

and X, given by the sum of the contribution to the electron population of H from X and of the

contribution to the electron population of X from H; (b) comparison between the ICP as obtained

from the SF approach and the corresponding overlap term [M (H,X) + M(X,H)]M in Mulliken’s

analysis. Note that by definition M(H,X) ¼ M(X,H) in Mulliken’s analysis; (c) contributions of H

and X basins to determining their own electron populations in the SF approach; (d) as in (c) but for

formally corresponding terms in the Mulliken’s scheme (this figure is adapted, with permission,

from material presented by the authors in [16, 33])
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overlap population between atoms A and B [124]. Due to their definition, it is

natural to make a formal association between these quantities and the

corresponding elements of the matrix M defined through the SF approach.

Figure 14a shows that the interchanged population (ICP) ¼ M(X,H) + M(H,X)
increases with increasing covalency along the series. It so reaches a maximum of

about 1.7 e� at X ¼ C and then monotonically decreases to about 0.8 e� at X ¼ F.

Note that the curve is not symmetric with respect to X ¼ C, the central member of

the series, because, at variance with Li–H, the H–F molecule retains a significant

covalent character (compare the Laplacian distributions in Fig. 3).

The M matrix defined through the SF approach is not symmetric and therefore

the two curvesM(X,H) andM(H,X) differ between each other with the contribution
from X to the population of H exceeding that of H to X, except for LiH. It is pleasing
that the external contributions to the population follow a similar trend, both

increasing/decreasing with covalency increase/decrease through the series. Inspec-

tion of Fig. 3 easily explains why the two external contributions need to be

generally different. Using their expression given by the surface term in (12), one

observes that both contributions are evaluated on the same Xj H interatomic surface

and using the same electron density on this surface. However, the two contributions

do not simply and necessarily differ in sign as would naively suggest the opposite

direction of their normals to the surface, but differ in value because the electron

density on the surface is weighted by a term involving the gradient of the scalar

1/jr – rsj. This term reflects both the size and shape of the basin being integrated

which are in turn related also to the convex or concave nature of the interatomic

surface (IAS). Concave shapes are typical of anionic-like atomic basins, whereas

convex ones characterize those of cations. The contribution of one atom to the

population of an atom bonded to it and the magnitude of such contribution relative

to the corresponding one from the linked atom is therefore deeply related to the

nature of the associated bonding interaction. Contrary to what observed for other

members of the series, the H-basin in LiH is largely anionic, exhibits a clearly

concave IAS, and thus found to contribute more to the Li population than Li does to

that of the H atom.

Figure 14b compares the trend of the ICP values with those of the formally

associated overlap Mulliken’s populations [M(X,H) þ M(H,X)]M. It is gratifying

that the former values appear quite more realistic. They exhibit much larger and

chemically reasonable values in general, and with comparatively larger values for

the shared interactions than for the ionic ones. The Mulliken’s overlap populations,

instead, show not only a quite erratic behavior but also an unrealistic larger overlap

for ionic than for shared interactions. Figure 14c, d compares the self-population

contributions in the two population schemes. The M(H,H) values decrease with

increasing X electronegativity and show a clearly sharper decrease in the central

part of the graph where the nature of the H changes from anionic to cationic,

whereas theM(H,H)M values exhibit an unexpected peak for X ¼ B before decreas-

ing with increasing electronegativity of X. The M(X,X)M values, instead, show the

expected monotonic increase with increasing Z, analogously to the M(X,X) values.

The Source Function Descriptor as a Tool to Extract Chemical Information 271



The preliminary results obtained using this position-space unambiguous popu-

lation analysis look indeed promising. Apart from a conference talk [16] and a MSc

thesis [33], they are presented here for the first time in the literature. Several other

systems have been tested by us, including a number of polyatomic molecules, but,

despite its undoubtedly physical appeal, a general application of the approach

appears at the moment unfeasible. The method is in fact often numerically instable,

besides being very time consuming. While one always recovers with great accuracy

(13) the atomic electron population N(O) in terms of the sum of the internal, Ni(O),
and external contributions, No(O), evaluating the relative weight of such contribu-

tions may often become a true nightmare because of the difficulties inherent to the

SF reconstruction of the electron density in regions characterized by extremely low

density values. As mentioned in Sect. 2.3, when r(r) falls below 10�4 au the density
reconstruction through (2) is problematic. If such a difficulty simply limits the

choice of possible rps in standard SF analysis, it makes instead extremely challeng-

ing the precise atomic assignment of sources for the electron population of the

volume elements characterized by very low density. These elements may play a

dominant role since they generally cover a very large portion of the atomic basin,

and their cumulative electron population is often far from being negligible. We

have explored many viable strategies to afford this problem. A first, apparently

obvious solution is to not assign any source when the electron density at a given

grid integration point turns out to be poorly reconstructed [large ER% value in

(14)]. However, due to the unbounded nature of the atomic sources – they may be

either positive or negative – one often encounters the case of a very good recon-

struction of the density (very small ER% values) in spite of unacceptable uncer-

tainties in the values of the composing sources. As a consequence, the relative

weight of the internal and external contributions may become quite unstable and

disappointingly sensitive to the choice of otherwise irrelevant computational para-

meters. The most successful approach devised thus far is to set a threshold on the

lowest accepted density value for a safe reconstruction of the density and to not

assign the electron population of those volume elements associated with the grid

integration points having a density value below such a threshold. Although the

resulting total ignored population (IP) was never found to be negligible, it was yet

thought to be “acceptable” in several cases. Using a threshold on r of 5 � 10�4 au,
IP(O) values for the H–X series never exceeds 0.08 e� and are in most cases as low

as or even lower than 0.01 e� (see Table 11). Usually, the threshold on r was

chosen as the lowest possible r value for which the relative weight of internal and

external contributions to N(O) remains stable. The overall quality of the atomic

electron population decomposition (11) was then judged by integrating over O the

local deviation of the reconstructed density from the exact r value, for those

integration points with r values above the selected threshold. The value of such

an integral and of that obtained by taking the module of the integrand are respec-

tively reported as DEV(O) and DEVM(O) in Table 11. Both quantities were

generally tolerably small in magnitude for the H–X series, the larger values not

exceeding 0.06 e�.
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On the whole, the population analysis based on the SF appears promising, but it

is to be considered in its infancy as for a general application. At present, we are

unable to say whether it is just conceptually relevant or also practically feasible. As

discussed in Sect. 2.2, it would represent a unique, unambiguous tool for comparing

populations derived from experimental and theoretical densities.

6 Orbital and Core–Valence Decompositions of the Atomic

SF Contributions

In a very recent paper [12], entitled On the Interpretation of the Source Function,
Farrugia and Macchi critically analyzed the “chemical” information present in the

SF in several case studies. In the following, we concisely illustrate their adopted

approach and review some of the results obtained along with the main conclusions

which were drawn from such study. We also discuss a number of issues that in our

opinion would deserve a different interpretation and propose alternative, possibly

more apt ways for partitioning the atomic SF.

Farrugia and Macchi (F&M) were essentially aimed at verifying “whether the SF

in fact carries information comparable with other well-established decomposition

schemes that relate, more or less straightforwardly, to commonly accepted chemical

concepts,” in particular the electron delocalization. A quantitative and physically

sound measure of the latter is provided by the delocalization indices, which yields

the average fractional number of electron pairs shared between two atomic basins,

as discussed repeatedly in this review. As no formal relationship exists between the

SF and the delocalization indices [14], F&M proposed to test it inductively by

comparing these two indicators in terms of corresponding composing contributions.

Namely, in the case of electron densities derived from DFT calculations, they

examined how the SF and the d(O,O0) decompose in terms of the canonical valence

and core Kohn-Sham MOs, or also in terms of the individual MOs.32 For the

“synthetic” or experimental densities, given in terms of complex static X-ray

structure factors, delocalization indices are generally unavailable, unless using

the wavefunction constrained method [100] or, in principle, one of the proposed

forms of density matrix refinements ([126] and references therein). A core/valence

decomposition of the SF, formally analogous to that performed on DFT densities, is

anyhow possible. F&M used the XD2006 program suite [59] and the Hansen–

Coppens multipole formalism [10] to obtain and decompose the aspherical electron

density of each atom in terms of a spherical core and of an aspherical (spherical þ
deformation) valence density, from which the corresponding contributions to the

atomic SF were calculated.

32A similar SF decomposition, in terms of s and p MOs, was reported earlier in this chapter,

(Sect. 3.2.2), when discussing whether the SF may in some way reflect p-electron conjugation.
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As a first example, F&M examined, at the theoretical level, the case of the C3v

borane carbonyl BH3CO, a simple model for carbonyl coordination to a strong

Lewis acid and, by extension, to transition metals. A comparison was made first

between the MO’s decomposition of the B–C, C–O, and B–H bcp densities, and that

of the delocalization indices for these same pairs of atoms. By definition, the

electron density at a point r, r(r), equals S(r, all space), the SF contribution from

the whole space, with the rp taken at r. While it was noted that the two descriptors

d(B,H) and S(bcpB–H, all space) have very similar overall MO contributions, this

was obviously not the case for the two bonds (C–O and B–C) whose bcp lies on the

symmetry axis and which have p-components. For instance, the major contributions

to d(C,O) come from an E pair of p-bonding MOs essentially localized around the

C–O bond, whereas these same orbitals, because of their symmetry, cannot clearly

contribute to rb(C–O), and hence to S(bcpC–O, all space). When the MO’s decom-

position is applied to the SF contributions from the atomic basins, a very similar

picture is obtained, since the E pair of p-bonding MOs localized around the C–O

bond yields again a negligible, though nonzero contribution, to rb(C–O).
33 F&M

thus argue that, at variance with d(C,O), essentially “no information about the

extent of p-bonding or p-back donation is contained in the SF at rb(C–O)” [12].

This observation on C–O was then generalized by observing that “when the rp is

close to the nodal plane of an orbital, this orbital makes a low to negligible

contribution to the SF which has clear implications for the interpretation of p-
interactions” [12]. Of course, we agree with the indirect suggestion by F&M that

moving the rp out from the nodal plane enables such an orbital to enhance its

contribution to the SF, so providing insights on the p-bonding mechanisms, as we

demonstrated for benzene in Sect. 3.2.2. However, while the F&M observation is

correct in a, let to say, “zero-order” approach (direct effect), it is no longer so if

higher-order, indirect effects are considered. Indeed, “essential to the orbital theory

of electronic structure is the property of self-consistency – that each orbital be

determined by its interaction with the average Coulomb and exchange potential

generated by electrons in the other occupied orbitals. Thus the density distributions

derived from s and p orbitals are not independent of one another” ([6]; p. 76) at any

point of the molecular space. The interdependence of s and p electron distributions

is a well-known, documented fact in the literature [20, 127] and was already

exploited earlier in this chapter (Sect. 3.2.2) when analyzing whether the SF

contributions may be affected in some way by p-electron conjugation when the rp

lies in the p-nodal plane. As said earlier, if a bcp lies in the nodal surface of a p-
orbital, this latter will be unable to provide a direct contribution to the density at

that point, but it will supply an indirect one through its interaction with the other

orbitals, including those of s-symmetry, able to contribute to the electron density at

bcp. A very simple gedanken example on the C2H4
+n (n ¼ 0–4) series illustrates

33It is the integration over the whole space that results in a null contribution to the rb(C–O) density
from the p-bonding MOs. Separate integration over the atomic basins may yield non-zero values

(typically less than 1% of the |rb| value) which are constrained to sum up to zero.
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this behavior. Although the p-orbitals do not contribute to the electron density at the
C–C bcp, removing electrons from them while keeping the geometry fixed and

allowing for self-consistency has a great effect on the contributions from the s-
orbitals. To compensate for the increasing positive charge and the concomitant lack

of occupied bonding p-orbitals along the series, the s-ones are found to increase

their overall contribution at the bcp, hence to rb, despite the total number of

electron in the system is being drastically decreased through the series. The increase

is relevant, rb being 0.344 au for n ¼ 0, rising to 0.361 and 0.381 au for n ¼ 1 and

2 and reaching 0.395 au for n ¼ 4 (DFT/B3LYP 6-311++G** level). All in all, the

contribution of p-orbitals and p-bonding at points lying on the nodal surface may be

revealed to some extent by the SF through the effect the p-orbitals have on the

values of the s-orbitals contributions at these points. The SF description for rps

lying on the nodal surface will be clearly unchanged whether an electron density

given in terms of MOs or an equivalent one, like for instance a numerical electron

density obtained from maximum entropy method for which s/p separation is

unavailable, is used. Both densities will contain those physical effects that are

translated into the s–p model using a MO formulation, and the SF will simply

reflect such effects, regardless a s/p decomposition may be actually realized or not.

The merit of the MO model and of the SF decomposition in terms of MOs is that

these approaches solicit and drive to explore rps other than the bcps and out from

the nodal plane(s), and then they offer a rationale for interpreting the resulting,

often significantly varied, atomic SF patterns (see, e.g., Sect. 3.2.2). Hence,

although it is in principle false that “the SF taken at the C–O bcp cannot provide

any information about the extent of C–O p-bonding” [12], one may anticipate a

large enhancement of the effect of such bonding scheme on the atomic SF values

when the rp is moved out from the p-orbital nodal plane.
F&M also noted that, at variance from the localization indices, a substantial

contribution to the SF at the C–O bcp comes from the core electrons. Percentage

orbital contributions to d(C, O) from the three MO core orbitals is less than 1%,

whereas the MO core orbital 2, which is essentially the unhybrized 1s orbital of C,
yields the dominant source from C (19.0% out of a total of 39.8%) and a non-

negligible negative sink from O (�12.5% out of a total of 58.4%). According to

F&M, this “reinforces the idea that the d(O, O0) is more closely reproducing the

concepts of electron sharing” [12]. While we clearly have no doubt that d(O,O0) are
more intimately connected to electron sharing, we also believe that one should

never ask to a descriptor under exam, i.e., the SF in this case, to comply with what

one would expect to deduct from it, but rather focus on what it is actually observed.

As we will discuss below, the large source and sink arising from the core orbital

2 when this orbital is respectively integrated over the C and O atoms is a natural,

physical consequence of the large electronegativity difference of these two atoms

and of the consequent large shift of the C–O bcp position toward the more

electropositive C. The net charges of C and O in BH3CO amount to þ0.88 and

�1.09 e�, respectively. The bcp lies so close to the atomic core-shell depletion

region of C that the C 1s core MO contribution to the bcp density from C will be

totally different from that found for standard, nonpolar C–C bonds in hydrocarbons.
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Indeed, F&M found that in acetamide the C–C bcp density is clearly dominated by

the valence density, with core contributions lower than 1%. The bcp in C–O lies at

0.39 Å from the C nucleus and, as mentioned above, within the atomic K shell

(core) depletion region of C which ends at about 0.43 Å from the C nucleus,

whereas for a less polarized bond the bcp is normally located at a much larger

distance from the C nucleus (0.6–0.75 Å in hydrocarbons) and well inside the

region of the atomic VSCC of carbon. The SF from C and the large magnitude of

the core “contribution” to the SF from C takes precisely into account this differ-

ence. When integrated over the O basin, the core orbital 2 yields instead a negative

source at bcp because this basin may only include that outer part of the C 1s MO

where the associated Laplacian is positive.34 The “odd” contributions from the C 1s

MO should therefore not be taken as a “problem” of the SF, but rather as a very

interesting property of this approach. The SF demonstrates to be capable of

discriminating the way a given atom determines the density at its various bcps as

a function of the relative electronegativity of the atoms to which it is bonded.

In particular, one should never forget that the SF yields two, usually different,

values for the density contribution of two bonded atoms O–O0 at their intervening
bcp, while the number of shared pair of electrons between these atoms is repre-

sented by just a single d(O,O0) value. On top of not being physically related among

them in a direct way, delocalization indices and SF values need to differ in given

circumstances. For instance, the latter are by nature able to distinguish whether two

bonded atoms are playing similar or quite distinct roles in their bonding interaction.

F&M properly recognize that, while useful for relating the SF to chemical

concepts expressed in a MO framework model, the decomposition of an observable

like r in terms of molecular orbitals is arbitrary and subject to the particular choice

of MO settings (canonical, localized, etc). As an obvious consequence, the SF

decomposition in terms of MOs is arbitrary as well. Because of this, F&M propose

to examine the decomposition of the atomic SF into core and valence contributions,

as another, potentially more useful, approach. In the case of BH3CO, which is

characterized by largely polar bonds, the core densities provide important contribu-

tions from individual basins toward the total SF, but for other two investigated

systems (acetamide and thiocumarin), including second and third period atoms and

generally much less polar interactions, the valence density was found to provide the

determining contributions, as for the delocalization indices. The only notable

exception was for the polarized C–O and C–S bonds, which further confirms the

interpretation given earlier for the core contributions in borane carbonyl. For

heavier elements such as the iron atom in Fe(CO)5, the core density plays a

significant role, if a large [Ar] core description is used for such a density. Indeed

the [Ar] core density provides a source from iron which amounts to about 40/49%

of the Fe–C bcp density, whereas the valence part acts as a moderate sink,

34The large negative source obtained at the bcp density when the C 1sMO is integrated over the O

basin demonstrates that such orbital cannot be longer safely identified as a C 1sMO in a molecular

context. This is just an example of the limits of the MO model interpretation.
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�8.7/�18.6% (the two entries refer to the equatorial and axial bonds, respectively).

But if the small [Ne] core description of the valence is adopted (as customarily done

when performing careful effective core potential calculations on these 3d transition
elements), the core contribution becomes almost negligible, since the overall Fe

basin contribution for the Fe–C bcp density derives almost entirely from the

relatively diffuse 3s and 3p density. This clearly opens the problem of what should

be considered the “real” core for these elements, since different core/valence

partitionings of MOs lead to completely different conclusions. The fact that a

small [Ne] core is suggested in several PP schemes for the 3d elements seems to

comply with a nonnegligible role in bonding of the 3s and 3pmetal electrons. F&M

report that “the role of (n � 1)s and (n � 1)p orbitals in the electron sharing of

transition metal complexes is generally quite negligible, according to many parti-

tioning schemes” [12]. However, although referred to the metal–metal rather than

to the metal–ligand interactions in these complexes, two evidences, already dis-

cussed in this chapter, seem in contrast with such a claim. The first is the relative

depletion of the atomic (n – 1) (M-shell for Fe) charge concentration shell which

we observed to occur when the metal–metal bond is allowed to form (Sect. 3.4.2),

suggesting that metal–metal bonding in these complexes may imply a substantial

rearrangement in the (n � 1) shell. The second evidence is the very large impor-

tance of the metal–metal core covariance, which was found using the ELF analysis

on the M2(formamidinate)4 complexes and which denotes that the fluctuations of

the core basin populations of the two metal are highly correlated one to another

[85]. The ELF core basins include the (n – 1)s and (n – 1)p electrons, besides most

of the d electrons. On the whole, it looks like that a precise assignment to core of

those electrons that do not participate to bonding is quite challenging in the case of

the TM elements, and that this choice may depend on the way bonding is analyzed

(position-space descriptors vs. orbital models).

F&M conclude their paper [12] by recommending caution in associating some

chemical concepts with features of the SF and especially so for heavier elements.

While they admit that the “SF might contain some information about chemical

bonding,” they also found that “it is often distinct from that of electron delocaliza-

tion between two or more atomic basins” and they accordingly warn the reader that

its interpretation may not be so straightforward. We mostly agree on these points

and in particular on the need of a thoughtful use of the SF. In this section, we also

examined at length the issues F&M believe should be considered by scientists

making use of the SF for an electron density analysis. We concur, for instance, on

the need to explore other rps besides the bcps in given circumstances and on the

observation that the SF contributions may emphasize the role of internal electrons

because of the significant shift of the bcp toward one atom in a bonded pair typical

of polar bonds.

We wish to recall, however, that any functional decomposition of the electron

density is intimately related to the way it is calculated, and it is therefore essentially

arbitrary. Even the interpretive useful s/p separation is tied to the LCAO-MO

formalism. When using a density on a grid, one will never be able to discriminate

the s and p contributions/effects, but will simply register what happens to the total
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density (in terms of various position-space descriptors, including the density values

at the bcps, the density curvatures at these same points, the SF contributions, etc.)

when the chemical environment changes, in a series of related systems. One may

then interpret these same density changes using an equivalent electron density

which allows for a s/p separation. But, despite its usefulness, this will be just one

out of the many possible interpretations. Analogously, a similar, though more

limited, arbitrariness would exist for the core/valence separation when performed

on a functional space.

On the whole, when commenting the ability of the SF descriptor to “contain

some information about chemical bonding,” we should always be cautious that one

is basing his or her judgment on a preconception of bonding which is derived from

given, more or less arbitrary, models. A more correct position is perhaps that of

observing and accepting what the SF descriptor is telling us in the various circum-

stances and of not blaming its possible inhability to comply with “commonly

accepted chemical concepts” based on such models. It is also true, however, that

comparison with other physically well-defined descriptors (e.g., delocalization

indices) or even interpretation through arbitary formalisms (e.g., MOs) may

enhance our understanding of the SF descriptor and of how to make a better

use of it.

6.1 Alternative Decompositions of the Atomic SF Contributions
and of Localization and Delocalization Indices

The possible decompositions of the atomic SF are clearly not only limited to those

performed in the functional space in which the density is represented. Since the SF

is defined on the basis of an observable in-position space, the most natural sub-

partitioning of the atomic SF contributions should probably also be realized in such

a space. Indeed, it is well known that canonical core MOs have tails in the valence

MO’s regions and vice versa, which leads to significant local overlaps and may

clearly affect the interpretation of the resulting decomposition in SF contributions.

We are currently exploring an atomic-shell subpartitioning of the atomic SF con-

tributions in position space, using the shell radii derived from the atomic Laplacian

distributions. Clearly, such an approach represents the best way to compare experi-

mental and theoretical decompositions of the SF atomic contributions, since any

dependence from the functional space used to express the electron density is

avoided. By operating this way, a core/valence decomposition of the atomic SF

contributions in the position space becomes immediately available (and, in case of

TM elements, for any large- or small-core description one is interested to). If the

atomic-shell subpartitioning is also applied to the delocalization indices, one may

compare these latter with the atomic SF contributions, and within a similar position-

space decomposition scheme. Quite interestingly, when the partitioning of the

localization or delocalization indices is fully carried out in the position rather
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than in the combined position and functional spaces, mixed terms related to one

electron being located in one shell when the other is in another shell occur. For

instance, a d(O,O0) delocalization index can be partitioned in four contributions,

two of which are mixed core–valence terms, while the other two are the core–core

and the valence–valence terms. If not negligible, the mixed core–valence terms

enhance the importance of the core in yielding a given d(O,O0) value, an effect

which cannot be revealed by a standard MO decomposition of the delocalization

indexes.

Recently, Francisco et al. [128] demonstrated that the one-electron functions

derived from the diagonalization of the Fermi hole averaged over an atomic basinO
have quite relevant properties. When the eigenvalues of these DAFH orbitals [92]

are close to 1.0 or 0.0, these orbitals are almost fully localized in O [128] or in its

complementary space, and can be simply ignored in computing d(O,O0), because
they do not contribute to the chemical bonding between the two fragments. On the

other hand, eigenvalues close to 0.5 correspond to maximally delocalized orbitals

that participate significantly to the bonding. In a way, when properly ordered in

terms of their eigenvalues, the DAFH orbitals enable one to obtain the fastest

convergent expression for d(O,O0). A comparison of the atomic SF contributions

and delocalization indices in terms of a partitioning based on DAFH orbitals could

represent a particularly suited orbital-based approach to enhance our understanding

of the physical difference between these two descriptors.

The alternative decomposition schemes we have put forth in this session lack

any arbitrariness inherent to the partitioning based on the MOs, and they will be

both explored. While the first is applicable to both experimental and theoretical

densities, the second requires the knowledge of the pair density matrix in some

form.
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Relativistic effects, 99

Residual density analysis (RDA), 143

Resonance-assisted hydrogen bonds (RAHBs),

219

Ring critical points (rcp), 203

Roby–Davidson partitioning, 73

R-values, 146

S

S(NtBu)3, 164

Scalar-relativistic one-component methods,

111

Short strong hydrogen bonds (SSHB), 218

Single-crystal X-ray diffraction, 27

Slater–Condon rules, 112

Slater determinant, 104, 113

Source function, 47, 83, 193, 195, 200

Stockholder partitioning, 1, 8

Stockholder pseudoatom databank, 18

Sulfurdiimide/sulfurtriimide, 52

Systematic sources of error, 143

T

Terbogrel, 19

Thermal diffuse scattering (TDS), 151

Titanium tetrachloride, 134

Topology, 143

Total error, 156

Transferability, 205

Transition metal complexes, 121, 254

Trimethylenemethane (TMM), 255

U

Unrestricted stockholder pseudoatoms (U-

SPA), 9

V

Valence-shell charge concentrations (VSCCs),

49, 153

W

Wave function, 103

fitting, 27, 40

X

X-ray diffraction, 1

Z

Zero-flux surfaces, 131

Zn(I)–Zn(I) single bond, 253

ZORA, 99, 111

ZORA-4 density, 114
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