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1 Representation theory

1.1 Representations of the group of finite adeles and of
global Hecke algebras.

In Chapter III we encountered admissible representations of the adele group

ρ : G(Af ) → Gl(V )

which are defined by the property that for any open compact subgroup Kf ⊂
G(Af ) the space of invariants V Kf has finite dimension and V is the union of
all these subspaces of invariants, which become bigger and bigger if Kf becomes
smaller and smaller. In other words

V = lim
Kf

V Kf .

Any such finite dimensional vector space is a module under the Hecke algebra
HKf

= Cc(G(Af//Kf ), this are the compactlly supported functions on G(Af ),
which are biinvariant under Kf . We say that Kf is a level subgroup for V if
V Kf 6= {0}. We indicated that a G(Af )- representation V, for which Kf is
a level subgroup, is absolutely irreducible, if and only if V Kf is an absolutely
irreducible HKf

-module. If our level subgroup Kf =
∏

pKp then an absolutely
irreducible HKf

-module V Kf is a tensor product

V Kf
∼−→

⊗
p

Vp.

where the Vp are absolutely irreducible HKp-modules. Recall that we have seen
that for almost all primes the local Hecke algebra is of commutative and hence
dimV Kp = 1 for almost all p

This then implies that the representation of the group G(Af ) is also a tensor
product

V
∼−→

⊗′
Ṽp.

where the prime indicates that the space is generated by tensors v = ⊗pvp

where almost all vp ∈ V K′
p for some K ′f =

∏
pK
′
p. We need some level of

understanding of the local theory, and we will give an informal outline of it in
this section.

1.2 Admissible representations

This leads us to the following definition. Let F be a field of charcteristic zero,
let V be an F -vector space. An admissible representation of the group G(Qp)
is an action of G(Qp) on V which has the following two properties

(i) For any open compact subgroup Kp ⊂ G(Qp) the space V Kp of Kp

invariant vectors is finite dimensional.
(ii) For any vector v ∈ V we can find an open compact subgroup Kp so that

v ∈ V Kp in other words V = limKp
V Kp .
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Then is is clear that the vector spaces V Kp are modules for the Hecke algebra
HKp

. An admissible G(Qp) -module V is irreducible if it does not contain an
invariant proper submodule. Given such an irreducible module V 6= (0), we can
find a Kp such that V Kp 6= (0). I claim that then V Kp is an irreducible HKp-
module. To see this we take the identity element eKp in our Hecke algebra, it
induces a projector on V and a decomposition V = V Kp ⊕ V ′ = eKp

V ⊕ (1 −
eKp

)V. Let assume we have a proper HKp
-invariant submodule W ⊂ V Kp Now

we convince ourselves that the G(Qp)-invariant subspace W̃ generated by the
elements gw is a proper subspace. We compute the integral∫

Kp

kgwdk =
∫

Kp×Kp

k1gk2wdk2dk1.

The first integral gives us the projection to V Kp , the second integral is the
Hecke operator, hence the result is in W . We conclude that eKpW̃ ⊂W and tis
shows that (0) 6= W̃ 6= V .

Now it is not hard to see, that the assignment

V → V Kp

from irreducible admissble G(Qp)-modules with V Kp 6= (0) to finite dimen-
sional irreducible HKp

-modules induces an bijection between the isomorphism
classes of the respective types of modules. If we start from V Kp we can recon-
struct V by a appropiate form of induction.

1.3 Characters

The local Hecke algebra Cc(G(Qp)//Kp) depends on the choice of the level Kp,
we can define the Hecke algebra of all compactly supported smooth functions.

Cc(G(Qp)) = lim
Kp

Cc(G(Qp)//Kp)

this the algebra of compctly supported functions, which are locally constant.
It is clear that an admissible G(Qp) module V is also a module for Cc(G(Qp)).
For an element h ∈ Cc(G(Qp)) we can find an open compact subgroup Kp such
that h ∈ Cc(G(Qp)//Kp). Then we can decompose V = V Kp ⊕ V ′ and the
endomorphism

Th(v) =
∫

G(Qp)

h(x)xvdx

is zero on V ′ and induces an endomorphism also called Th on V Kp . We define
the trace

tr(Th|V ) = tr(Th|V Kp).

This gives us a linear form

trV : Cc(G(Qp)) → L, h 7→ trV (h|V )

which is called the character of the module V .
Of course this character depends on the choice of a measure.
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We can modify this definition slightly. An admissible irreducible represen-
tation πp on a vector space V has a central character ωp = ωπp

. We define a
modified space of functions Cc,ω−1

p
(G(Qp)) which of those functions which sat-

isfy h(zg) = ω−1
p (z)h(g) and which have compact support modulo the center.

For h ∈ Cc,ω−1
p

(G(Qp)) we define as before

Th(v) =
∫

G(Qp)/Z(Qp)

h(x)xvdx.

Again we can define the trace of such an operator and the linear form

trπp
: Cc,ω−1(G(Qp)) → L, h 7→ trπp

(h|V )

It this point we want to make a technical remark. Let V be an absolutely
irreducible admissible module for G(Qp) with central character ω. We have
seen in Chap III.1.1 that we have the isogeny µ from the central torus C/Qp to
the quotient torus C ′ = G/G(1)/Qp. On the group of rational points this gives
a homomorphism also called µ which has finite kernel and finite kokernel. let
d : G(Qp) → C ′(Qp) be the projection. If we consider any admissible character
η : C ′(Qp) → C× then we can consider the twist of V by η, this is the module V
but the group acts by v 7→ η(d(g))gv. We denote the twisted module by V (η).
Then this changes the central character into ω · η ◦ µ. Most of the interesting
properties of the module V are invariant under such twists. Therefore we can
try to get the central character trivial, this is possible if and only if ω restricted
to the kernel of µ is trivial. If we are in the special case, that F = C, then we
can find a twist, so that ω · η ◦ µ becomes unitary, i.e. takes values in the unit
circle. It is sometimes useful to have this assumption.

2.1.2.1 Intermission: Measures
At this point a few remarks concerning the choice of measures are in order.

Before we always chose dx so that Kp has volume one with respect to this
measure. But now we consider Kp as variable and then this becomes awkward.
We describe another way of constructing measures, which depend on the choice
of a differential form of highest degree.

Let V/Qp be any smooth affine variety, or more generally a smooth scheme of
finite type. Let us also assume that V/Qp is irreducible, hence it has a dimension
n = dim(V ). Let ω be a non zero differential form of highest degree on V . On
V (Qp) we have the analytic p-adic topology. For any point a ∈ V (Qp) we can
find an open neighborhood Ua and an analytic isomorphism (p-adic version of
implicit functions)

F : Ua
∼−→ U

where U is a compact open neighborhood of F (a) in Qn
p . On Qn

p we have the
standard translation invariant measure |dx1dx2 . . . dxn| which gives volume 1 to
Zn

p . We find a form ω′ = f(x1, x2, . . . , xn)dx1 ∧ dx2 ∧ . . . dxn on U such that
ω = F ∗(ω′). Then we define

∫
Ua

h(y)|ω|(dy) =
∫

U

(h ◦ F−1)(x)|f(x1, x2, . . . , xn)|pdx1dx2 . . . dxn
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These measures have all the properties of the measures in real analysis. We
have the transformation rule. The advantage here is that we do not need an
orientation.

If our variety over Qp is a linear algebraic group G/Qp then this group
has a Lie algebra g = Lie(G) and this Lie algebra is identified to the tangent
space of G at the identity. The group acts by right translations on itself, we
use this to identify the tangent at any point to g. Hence any non zero element
ω ∈ Hom(Λn(g),Qp) yields an invariant nowhere vanishing form onG/Qp, which
is also called ω. Hence we can define the right invariant measure |ω| on G(Qp).
This measure is also left invariant if G/Qp is reductive.

At this point it seems to be appropriate to mention a slight generalization of
this construction. Let us assume that H/Qp ⊂ G/Qp. We can form the quotient
space H\G, we have the projection

G
π−→ H\G.

If ē = π(e) is the image of the identity, then we can identify the tangent space
TH\G,ē = g/h = Lie(G)/Lie(H). The we have with n = dim(G), r = dim(H)

Λn(g) = Λr(h)⊗ Λn−m(g/h).

Hence we see that any choice of non zero alternating forms of highest degree
ωG, ωH defines an alternating form ωH\G in the point ē such that

ωG = ωH ⊗ ωH\G.

If we now assume that the adjoint action of H on Λn−m(g/h) is trivial,
then we can transport it by right translation to any point in H\G. We get an
invariant non zero form also called ωH\G on H\G.

This defines a measure |ωH\G| on H\G(Qp) we will write

|ωH\G| =
|ωG|
|ωH |

We now assume that our character is defined with respect to some measure
|ωG|. The character only depends on the isomorphism type of the module. For
an absolutely irreducible module V over L whose isomorphism type is πp we
denote its character by chπp .

We have the following result by Harish-Chandra

The character chπp
of an absolutely irreducible module of G(Qp) is given by

integration (with respect to |ωG|) against a function which is locally constant on
the open subset of regular semi simple elements.

Hence we call this function also chπp
and then we get

tr(h|V ) =
∫

G(Qp)

h(g)chπp
(g)|ωG|(dg).

This also holds for functions in Cc,ω−1
πp

if we replace the domain of integration
by G(Qp)/Z(Qp)). It is also clear that the function chπp

, does not depend on
the choice of the measure.
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These characters are the natural generalizations of the characters of rep-
resentations of finite or compact groups. To see this we choose a decreasing
family of open compact subgroups K(1)

p ⊃ K
(2)
p ⊃ . . . which converges to Id,

this means that for any open compact subgroup Kp we find an index ν such
that Kp ⊃ K

(ν)
p Then we can decompose our module

V = V K(1)
p ⊕ V1 = V K(1)

p ⊕ V
K(2)

p

1 ⊕ V2 = . . .

and we choose ”increasing” basis

< v1, v2, . . . , vi, · · · >

where increasing means, that the first vectors form a basis of V K(1)
p , resp.WK(1)

p ,

the next few vectors form a basis of V
K(2)

p

1 , resp.W
K(2)

p

1 and so on. We also
introduce the dual basis < φ1, φ2, · · · > on the contragredient spaces V ∨.

Now I want to justify

chπp
(g) =

∑
< gvi, φi > .

This sum is of course infinite and if we evaluate at g = Id we get ∞. The
definition of the distribution chπp says∫

G(Qp)

chπp(g)h(g)dg = tr(
∫

G(Qp)

h(g)gdg)

The function h is biinvariant under the action of a a suitably small group
K

(ν)
p and we noticed already that

Th : v 7→
∫

G(Qp)

h(g)gv

induces an endomorphism of V K(ν)
p and is zero on the complement. Hence we

defined

tr(Th|V ) =
∑

i∈I(ν)

∫
G(Qp)

< gvi, φi > h(g)dg =
∫

G(Qp)

∑
i∈I(ν)

< gvi, φi > h(g)dg

But in the sum in the middle we may extend the summation to all indices
because the integral

∫
G(Qp)

< gvi, φi > h(g)dg is zero for i 6∈ I(ν).

1.4 An overview over the irreducible representations, cus-
pidal and supercuspidal representations

1.4.1 Irreducible admissible representations of T (Qp)

If we have an absolutely irreducible admissible representation G(Qp) → Gl(V ),
then it follows from Schurs lemma, that the center Z(Qp), which is by definition
the group of rational points of a torus, acts by a character ω, this means that ω :
Z(Qp) → F× is a homomorphism. Of course it may be that our group is itself a
torus T (Qp), then the absolutely irreducible admissible representations are such
characters. We know that as an abstract topological group T (Qp)

∼−→ KT
p ×Zr
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where KT
p is the maximal compact subgroup and r is the split rank of the torus.

Then it is clear that any character is of the form χ = χc × χs, where χc is a
character of finite order on the compact factor, and χs : Zr → F×. The module
of rational characters X∗(T ) = Hom(T,Gm) is a module for the Galois group
Gal(Q̄p/Qp). If Tc/Qp ⊂ T/Qp is the maximal anisotropic subtorus the the
quotient T/Tc = Tsplit is split and X∗(Tsplit)

∼−→ Zr with trivial action of the
Galois group. Any rational character γ ∈ X∗(Tsplit), induces a homomorphism
γ : T (Qp) → Q×p and this defines a character t 7→ |γ|p(t) ∈ F×. Now we embed
F into C, then we get a homomorphism

X∗(Tsplit)⊗ C → Hom(T (Qp),C×)

which is defined by ∑
γi ⊗ zi 7→ {t 7→

∏
|γi|zi}.

These are the unramified characters on T (Qp), because they vanish on the max-
imal compact subgroup T (Zp) ⊂ T (Qp). Clearly we can find a product decom-
position

T (Qp) = T (Zp)× Zr,

hence we see that any admissible character can be written as χc×(
∑
γi⊗zi),

the zi are not unique, but it is easy to see when
∑
γi⊗zi gives a trivial character.

Therefore we have a complete description of the irreducible representations
of T (Qp).

1.4.2 Induced representations

Let P/Qp ⊂ G/Qp be a parabolic subgroup, let U/Qp be its unipotent radical,
let M = P/U be its reductive quotient. The group M/Qp acts on U and hence
on the Lie algebra u by the adjoint action.Therefore it acts on Λdim(U)u by a
rational character which is called 2ρP . Then this defines a rational character
|ρP | : M(Qp) → F×, where it may be necessary to adjoin the

√
p to F .

Let σ : M(Qp) → Gl(W ) be an irreducible admissible representation, it
defines also a representation of P (|Qp). We define

IndG(Qp)

P (Qp)σ = {f : G(Qp) →W |f(pg) = σ(p)|ρP |(p)f(g)},

where the group G(Qp) acts by translations from the right. We have to specify
some restriction on the functions f. To do this we recall that we can find a
maximal compact subgroup Kp such that G(Qp) = P (Qp)Kp. Then a function
f as above is determined by its restriction to Kp. If our field F = C then we may
allow for f all functions in L2(Kp). Then we get a Hilbert space, but this will not
be admissible. Therefore it is better at this point to allow only functions whose
restriction to Kp will be locally constant. Therefore we make this requirement
and then it is easy to see that we get an admissible representation IndG(Qp)

P (Qp)σ.
These representations have a finite composition series and in general they

are even irreducible. What happens when is a difficult problem.
We consider the special case Gl2/Qp. In this case we choose for our parabolic

subgroup the Borel subgroup B/Qp, the group M/Qp is the maximal torus, we
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identify it to {
(
t1 0
0 t2

)
. Then our character χ, which assume to be C valued-

can be written as

χ :
(
t1 0
0 t2

)
→ µ1(t1)µ2(t2),

and then we get the induced representation

Iχ = IndG(Qp)

B(Qp)χ = {f : G(Qp) → C×|f(bg) = χ(b)|ρB |(p)f(g)}.

Here we will sometimes pass to a different notation and write χ(b) = bχ, so we
find χ(b)|ρB |(b) = bχ+|ρB | = µ1(t1)µ2(t2)| t1t2 |

1/2
p . This means that we use the

additive notation for the group of characters.
The central character ωχ of Iχ is µ1(t)µ2(t) = tµ1+µ2 . If we twist Iχ by a

character g 7→ η(det(g)) then the central character changes to t 7→ tµ1+µ2−2η.
Now it is easy to see that we have two cases where our induced representation

is not irreducible. Of course we notice that reducibily is invariant under twists,
and twisting by η changes µi → µi + η. If it now happens that

µ1

µ2
(t)|t|p = 1 (sub)

then we see we can find a character η : Q×p → C× such that

µ1(t1)µ2(t2)|
t1
t2
|1/2
p = η(t1t2)

and then it is clear that IndG(Qp)

B(Qp)χ contains the one dimensional space spanned
by the function g 7→ η(det(g)) and this subspace is invariant. We get an exact
sequence of G(Qp)-modules

0 → Cχ ◦ det → Iχ → Stχ → 0,

the quotient module is irreducible and it is called the Steinberg module. Perhaps
we should denote it by Stη.

Let w =
(

0 1
−1 0

)
, this is the non trivial element in the Weyl group of T .

Conjugating by it exchanges t1 and t2. Given χ we define χw(b) = µ2(t1)µ1(t2),
then it is well known that we have an pairing

Iχ × Iχw(−ωχ) → C,

which is defined by ( Kp = Gl2(Zp))

(f, g) 7→
∫

Kp

f(k)g(k)dk.

(One has to verify that this is invariant (See[Cass], [Go], .......).
If we have for our character χ the relation

µ2

µ1
(t)|t|p = 1 (quot),

then we see that χw satisfies (sub) and hence we get the sequence
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0 → Cχw ◦ det → Iχw → Stχw → 0.

If we now use the pairing then we get a sequence

0 → St∨χ → Iχ → Cη′ ◦ det → 0.

It turns out that

The induced representation Iχ is irreducible unless we are in the case (sub)
or (quot).

The modules Stχ and St∨χw are irreducible and isomorphic

The Steinberg-module also exists for general reductive groups, then the sit-
uation is more complicated.

1.4.3 Unitary representations

Let us still assume that F = C. An admissible module V for G(Qp) is called
unitary or unitarylisible if we can find a positive definite hermitian form, which
is invariant under the action of G(Qp). In our example above the modules Iχ
are unitary, if the character χ is unitary. It is clear that for unitary characters
χ we have

Iχ̄ = Iχ−1 = Iχw(−ωχ)

and then the above pairing yields the hermitian form. These representations
are the representations of the unitary principal series.

This is a special case of a more general result, we refer to [Cass].

1.4.4 Supercuspidal representations

We do not get all the irreducible admissible representation by induction from
smaller parabolic subgroups. We consider the category of admissible G(Qp)-
modules of finite length. For any parabolic subgroup P/Qp with unipotent
radical U/Qp we consider the Jacquet functor V → VU where VU is the quotient
of V divided by the subspace, which is generated by all elements of the form
{v − uv|v ∈ V, u ∈ U(Qp)}. If again M = P/U , then it is clear that VU is
in fact a M(Qp)-module. If X is any M(Qp)-module and if we consider it as
P (Qp)-module, then we can define VU by

HomP (Qp)(V,X) = HomM(Qp)(VU , X).

We have the following theorem by Jacquet

Theorem:If V is a admissible G(Qp)-module of finite length and if P is a
parabolic subgroup, then VU is an admissible M(Qp)− module of finite length.

For a proof and a more detailed discussion of the theory of Jacquet functors
I refer to [Cass].

I want to consider the case of the representations Iχ for Gl2(Qp). Let us
assume that X = Cλ is a one dimensional T (Qp)-module on which T (Qp) acts
by the character λ. Then we look at

HomB(Qp)(V,Cλ) = HomT (Qp)(VU ,Cλ).
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Let us forget the character λ for a moment, we look at U(Qp)- invariant linear
maps Ψ : Iχ → C. Of course it is clear that the evaluation of f ∈ Iχ at the
identity element gives us such a map

Ψe : f 7→ f(e).

To get a second map, we restrict f to the open cell B(Qp)wU(Qp). It is clear
this gives us a space of functions on U(Qp) on which U(Qp) acts by translations.
The only possible way to get a U(Qp) invariant linear map to C is to take the
integral

Ψw : f 7→
∫

U(Qp)

f(wu)du.

Then it is an easy to see that Ψe is a T (Qp) linear map to C(χ+ |ρB |) and Ψw

is a map to C(χw + |ρB |). We can reformulate and say

(Iχ)U
∼−→ C(χ+ |ρB |)⊕ C(χw + |ρB |)

we do not discuss what happens if the integral is not convergent and what
happens if χ = χw (See Chap.V ???).

We call an irreducible admissible G(Qp)− module V supercuspidal if VU = 0
for all proper parabolic subgroups P/Qp ⊂ G/Qp. If G/Qp = T/Qp is a torus
then all admissible modules are supercuspidal. More precisely we can say that
all irreducible G(Qp)-modules are supercuspidal of the semi simple component
G(1)/Qp is anisotropic.

Now we do the following: Given V we look for a parabolic subgroup P/Qp

such that VU 6= 0. If we do not find any then V is supercuspidal. If not
then we know that VU is an M(Qp) of finite length. We look at its irreducible
subquotients in a Jordan Hölder series. If there is any subquotient, which is
not supercuspidal we proceed and eventually we will find a reductive quotient
M1(Qp) and a supercuspidal σ : M1(Qp) → Gl(W ). Then we have the following
theorem, which is also due to Jacquet:

Theorem:If the irreducible G(Qp)-module V is not supercuspidal, then we
can find a parabolic subgroup P1/Qp and an irreducible M1(Qp)− module σ :
M1(Qp) → Gl(W ) such that V occurs as a subquotient in IndG(Qp)

P1(Qp)σ

This tells us that we have two tasks:
Understand the supercuspidal representations for any given reductive group

G/Qp and understand the composition series of the induced IndG(Qp)

P1(Qp)σ repre-
sentations, where σ is supercuspidal.

Coming back to the group Gl2/Qp we have tackled successfully the the second
task, but so far we have not seen any supercuspidal representation of Gl2(Qp).
We will see later that there must be some.

1.4.5 Asymptotic behavior of matrix coefficients

Let V be an admissible module for G(Qp), let Kp be a maximal compact sub-
group in G(Qp). We have the sequence {K(ν

p )}ν=1,2,... of congruence subgroups,
where the entries are congruent mod pν . They are normal subgroups in Kp.

Let K̂p the set of isomorphism classes of irreducible representations of Kp. For
any θ ∈ K̂p we say we have a largest ν such that θ|K(ν)

p is trivial. We get a

10



partial order on the set K̂p, we say that θ ≤ θ′ if the level of θ is less or equal
to the level of θ′.

We have a direct sum decomposition into isotypical components under Kp

V =
⊕

θ∈K̂p

V (θ)

and we know that dimV (θ) <∞.
We may choose an ”increasing” basis < v1, v2, . . . , vi, · · · > of V . This is a

basis where all basis vectors lie in an isotypical component, and where we fill
up the V (θ) according to their size.

We may also define the dual V ∨ of our admissible module. First we consider
the ”full” dual space V ∗ = HomF (V, F ) =

∏
θ HomF (V (θ), F ). We have the

usual pairing (v, φ) 7→< v, φ > between these spaces. On V ∗ we have an action
of G(Qp) for which < gv, gφ >=< v, φ >. Inside this space we consider the
Kp finite vectors φ = (. . . , φθ, . . . )θ∈K̂p

. This subspace is our V ∨, it is invariant
under G(Qp). For this space we have the dual basis < φ1, φ2, . . . , φi, · · · > .

We notice that the central characters of V and V ∨ are inverse to each other.
If we pick a vi and a g ∈ G(Qp) then we can write by definition

gvi =
∑

i

< gvi, φj > vj ,

the sum is finite. The functions ci,j : G(Qp) → F, ci,j(g) =< gvi, φj > are
called the matrix coefficients of the module V . The space of functions generated
by these matrix coefficients is independent of the choice of the basis. We are
interested to understand the ”asymptotic” behavior of the matrix coefficients if
g →∞, of course we have to say first, what we mean by that.

Let us consider the case G/Qp = Gl2/Qp. The group Kp = Gl2(Zp). We
consider a matrix coefficient g 7→< gvi, φj >, where we assume that vi ∈ V (θ)
and φj ∈ V ∨(θ′). Then it is clear that for k1, k2 ∈ Kp we have

< k1gk2vi, φj >=< gk1vi, k
−1
2 φj >=

∑
ν,µ

bi,ν(k1)cµ,j(k−1
2 ) < gvνφµ >

where Vν , φµ run over the finite set of basis elements in V (θ), V (θ′.
We think, that we understand the coefficients bi,ν(k1)cµ,j(k−1

2 ). Since we
have the well known Cartan decomposition (elementary divisor theorem)

Gl2(Qp) = KpAKp where A = {
(
pa 0
0 pb

)
|a ≥ b},

we denote the elements in A by t and we want to understand the functions

t 7→< tvi, φj > .

If our module is absolutely irreducible, then it has a central character ω and

we can restrict our attention to t =
(
pa 0
0 1

)
with a ≥ 0. We are interested to

know what happens if a → ∞, this means |t|p → 0. Since it is so easy I prove
the following theorem for our special case

11



Theorem: The matrix coefficients of an absolutely irreducible supercuspidal
representation have compact support modulo the center.

Proof: (For Gl2) Let us look at < tvi, φj >. Since our module is supercusp-
idal we can write vi as a finite sum

vi =
∑

(Id−
(

1 uν

0 1

)
)vµ,

and then

< t
∑

(Id−
(

1 uν

0 1

)
)vµ, φj >=<

∑
(Id−

(
1 tuν

0 1

)
)tvµ, φj >=

∑
< tvµ, (Id−

(
1 −tuν

0 1

)
)φj > .

But now tuµ converges to zero, hence (Id−
(

1 −tuν

0 1

)
)φj >= 0 for |t|p << 1.

This proves the assertion.
Actually we can do better, we illustrate this again in the case Gl2/Qp, for

the detailed argument I refer to [Cass]. Our module is Iχ. We send our element
vi into VU then it will be a linear combination v̄i = c1eχ + cweχw , where the e?
are basis vectors of the eigenspaces. Then ¯tvi = c1eχt

χ+|ρ| + cweχw tχ
w+|ρ| and

this suggests that we get by a similar argument as above: There are constants
c̃? such that

< tvi, φj >= c̃1t
χ+|ρ| + c̃wt

χw+|ρ|

for all t with |t|p << 1. This is indeed true and shown in [Cass].

We are interested in this asymptotic behavior, because we want to know
whether for two irreducible admissible modules V,W , with equal central char-
acters, expressions of the form∫

G(Qp)/Z(Qp)

< gvi, φj >< wν , gψµ > dg (scalprod)

make sense. This is of course clear provided one of the two modules is super-
cuspidal.

If neither of them is supercuspidal, then we assume that our field F is C. We
assume that the central character is unitary, we can achieve this by twisting. Let
us assume in addition that our character χ is unitary, i.e. it takes values in the
unit circle S1. Then we see that the absolute value | < tvi, φj > |C ≤ C1|t|1/2

p ,
this gives us the rate of decay if |t|p → 0. This gets worse if χ is not unitary, in

other words if |χ(
(
p 0
0 1

)
)|C 6= 1, because one of the terms decays slower. We

will come back to that further down.
If we consider the surjective map m : Kp×A×Kp → G(Qp) then the inverse

of the Haar measure on G(Qp) is

m∗(dg) = a−2|ρB |dk1d
∗adk2,

12



where dki are the Haar measures on Kp and d∗a is the multiplicatively in-
variant measure. In simple terms we get that the volume of a double coset

Kp

(
pa 0
0 1

)
Kp is pa. Hence we see that the integral of the product of two

matrix coefficients as above is given by

∫
Kp×Kp

C(k1, k2)dk1dk2

∞∑
a=0

pa <

(
pa 0
0 1

)
vi, φj >< wν ,

(
pa 0
0 1

)
ψµ >,

where the function C(k1, k2) is computed from the product of matrix coefficients
of θ and θ′ and does not depend on a. Hence if our two modules V = Iχ,W = Iχ′
then the rate of decay of the product of the matrix coefficients and the factor
pa cancel and we should not expect convergence. If χ, χ′ are unitary, then we
get

∑∞
a=0 1 = ∞. If one of the characters is not unitary the situation becomes

worse.
But there is one important exception. We saw that besides the supercuspidal

representations and the irreducible Iχ we have the case that χ satisfies (sub) or
(quot) and then we get a one dimensional module Cη ◦ det and the Steinberg
module Stη. If we now look at the asymptotic behavior of the matrix coefficients
or what amounts to the same at the values of the Jacquet functor then we see,
that

Cη ◦ detU = Cη ◦ det,StU = C(η ◦ det+2|ρB |).

Now one checks easily, that under the assumption that the central character
is unitary, it follows that η is unitary, i.e. we have |η(pa)|C = 1, the ma-
trix coefficient Cη ◦ det does not decay at infinity. But in turn we see that

|η(pa)|2|ρB |(
(
pa 0
0 1

)
)|p = p−a decays faster.

It is not fast enough to give that the matrix coefficients of a unitary Steinberg
module is integrable. But it is fast enough to show that the scalar product
in (scalprod) converges, if one of the factors is a Steinberg module and the
other one is in the unitary principal series. If the first factor is the matrix
coefficient of a Steinberg module, then the only case, where we do not have
convergence of (scalprod) is when the second factor is the matrix coefficient of
a one dimensional representation. There is a remedy in this case, we can replace
the matrix coefficient by the Euler-Poincare function (See 2.5)

1.5 Orthogonality relations for matrix coefficients

In the theory of representations of a finite (or more generally compact group)
G the orthogonality relations play a fundamental role. They can be derived
rather easily from the lemma of Schur. Since they involve the integration over
the group they can not be true word for word here.

But they are also valid in the theory of admissible representations of G(Qp)
if take some precautions and we restrict ourselves to a certain subclass of repre-
sentations, namely the representations of the discrete series (see further down).
The supercuspidal representation belong to this class, but there will be more.
For instance the Steinberg modules Stχ belong to this class.

Let V,W be two absolutely irreducible, admissible G(Qp)-modules over some
field L of characteristic zero, let us assume, that the have the same central
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character. We try to write down an intertwining operator L : V → W , i.e. a
linear map, which is compatible with the action of the group. To do this we
write down any linear map Ψ : V →W and then we consider∫

G(Qp)/Z(Qp)

g−1Ψ(gv)dg,

if this integral makes any sense, then this will be an element∫
Ψ ∈ HomG(Qp)(V,W ).

We want to find out under what conditions this integral makes sense. We
choose ”increasing” basises on both spaces

< v1, v2, . . . , vi, · · · >,< w1, w2, . . . , wi, · · · > .

We also introduce the dual basises < φ1, φ2, · · · >,< ψ1, ψ2, · · · > on the con-
tragredient spaces V ∨,W∨. Now we choose our starting linear map such that
it has finite support, it vanishes on basis vectors with a high index.

Then we have gvi =
∑

j < gvi, φj > vj and Ψ(gvi) =
∑

j < gvi, φj > Ψ(vj)
where the last sum is finite. Then

g−1Ψ(gvi) =
∑

j

< gvi, φj > g−1Ψ(vj) =
∑
j,ν

< gvi, φj >< g−1Ψ(vj), ψν > wν =

∑
j,ν

< gvi, φj >< Ψ(vj), gψν > wν

The central character drops out, we see that we can perform the integration, if
one of the modules is supercuspidal and therefore has matrix coefficients with
compact support, or if both matrix coefficients are in L2. We write down the
integral and get gvi =

∑
j < gvi, φj > vj and Ψ(gvi) =

∑
j < gvi, φj > Ψ(vj)

where the last sum is finite. Then∫
G(Qp)/Z(Qp)

g−1Ψ(gvi)dg =
∑
j,ν

∫
G(Qp)/Z(Qp)

< gvi, φj >< Ψ(vj), gψν > dg wν .

Now we have two possibilities: The two modules may be non isomorphic, then
the operator

∫
Ψ must be zero for any choice of Ψ. We can choose our Ψ = Ej,µ

where this linear map sends vj to wµ and all other basis elements to zero. Then
we get

Let V,W be two non isomorphic admissible absolutely irreducible G(Qp) mod-
ules, one of them is supercuspidal or both are in L2 and if our basises are chosen
as above, then∫

G(Qp)/Z(Qp)

< gvi, φj >< wµ, gψν > dg = 0 for all i, j, µ, ν.

If now V,W are isomorphic, then we choose an isomorphism, this means we
assume that V = W. Of course the we also choose the wi = vi, φi = ψi.

14



The same reasoning yields that
∫

Ψ(vi) = l(ψ)vi for all i, because the op-
erator must be a scalar( Schurs lemma). Again we apply this to Ψ = Ej,µ and
get ∫

G(Qp)/Z(Qp)

< gvi, φj >< vµ, gφν > dg = l(Ej,µ)δi,ν .

But now we can rewrite the integral, we move the g inside the < , > to the other
side and use the invariance of the measure, i.e. dg = dg−1. Then we see that
our integral is also equal to l(Ei,ν)δj,µ. We conclude that l(Ej,µ) = 0 if j 6= µ
and l(Ej,j) is independent of j. This constant depends only on the isomorphism
class πp of our irreducible module V and the choice of the measure, it is non
zero and its inverse is called the formal degree d(πp). Hence we get in the case
V = W the relation∫

G(Qp)/Z(Qp)

< gvi, φj >< vµ, gφν > dg =
1

d(πp)
δi,νδj,µ.

Here we always have to be aware that the formal degree depends on the
choice of a measure on G(Qp). If compare these orthogonality relations to the
orthogonality relations for finite (or compact groups) G then we have a natural
choice of such a measure, namely the one that gives volume 1 to G. In that
case we have that all irreducible representations are finite dimensional, we get
exactly the same relations and the formal degree turns out to be the dimension
of the irreducible representation.

But here we do not have an obvious candidate for a normalized measure. We
may choose a maximal compact subgroup K̄p ⊂ G(Qp)/Z(Qp) in give volume
one to it. But in general these maximal compact subgroups are not necessarily
conjugate, so there is still a choice. (See section on Bruhat-Tits buildings).

1.5.1 The formal degree of the Steinberg module

It is not so difficult to compute the formal degree of the Steinberg module
......................................................................................
........................................................................................

1.5.2 Characters of principal series representations

They can be written rather explicitely in terms of the inducing data, we can
verify Harish-Chandras theorem directly

..............................................................................................

...........................................................................................

2 Orbital integrals

2.1 Conjugacy classes

We consider an algebraic group G/k over an arbitrary field k of characteristic
zero. For any g ∈ G(k̄) we can consider the set {x−1gx|x ∈ G(k̄)}. It is known
that this set is the set of k̄ valued points of a locally closed subvariety C[g]
which is defined over k̄. If this set C[g](k̄) is invariant under the action of the
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Galois group Gal(k̄/k) then C[g] is called a rational conjugacy class and the
locally closed subvariety is defined over k. Sometimes we denote such a rational
conjugacy class simply by C/k, i.e. we drop the reference to the point g. We
should be aware that it can happen that C(k) = ∅ and in general the action of
G(k) on C(k) will not be transitive (See also Chap V).

I suggest to call these classes geometric conjugacy classes, if such class C
is rational then we call the set C(k) of rational points a geometric conjugacy
class, even if it is empty. Such a geometric conjugacy class decomposes into
several conjugacy classes under the action of G(k). These conjugacy classes will
be called arithmetic conjugacy classes, they are of course the G(k) conjugacy
classes of the abstract group G(k).

If we consider the special case of the group Gl2/k then we can consider the
trace and the determinant, this gives us a map

(det, tr) : Gl2 → Gm × A1.

This map is constant on the geometric conjugacy classes. In our special
situation the central elements map to the subset Z ⊂ Gm×A1 which is defined
by the equation Z = {(y, x)|x2 = 4y}. The open subset Gm × A1 \ Z =
(Gm × A1)reg is called the set of regular classes. The inverse image of this set
is the Zariski-open dense subset Gl2ss,reg set of semi simple regular elements.
For a regular point a ∈ Gm × A1(k̄) the fiber Ca = (det, tr)−1(a) consists of
semi-simple elements and this is a conjugacy class. The inverse image of these
conjugacy classes are closed, such a class Ca is defined over k if and only if
a ∈ k. We can say that (Gm × A1)reg is the quotient of Gl2ss,reg by the action
of conjugation. So the set of semi simple, regular classes has the structure of an
affine algebraic variety.

For a central element z ∈ Z(k̄) the fiber (det, tr)−1(a) is not a a conjugacy

class. If z =
(
z 0
0 z

)
is an element in the center then

(det, tr)−1((z2, 2z)) = C[
(
z 0
0 z

)
] ∪ C[

(
z 1
0 z

)
]

is the union of two conjugacy classes. The second class is called a unipotent
class and it is not closed. Its closure is the fiber.

We can define the subset Gl2reg as the subset of elements whose centralizer
has dimension one, in this case this is simply the complement of the center.
Then we see that we get a smooth morphism

(det, tr) : Gl2reg → Gm × A1 .

We return to the case of a general reductive group G/k. Inside G we have the
Zariski open subset of regular semi-simple elements Gss,reg. It is true in general
that the quotient by the adjoint action Gss,reg/ ∼conj= Creg is an affine variety.
The fibers of

π : Gss,reg → Creg

are the semi-simple regular conjugacy classes.
To see this in general we may start from a maximal torus T/k. Then it is well

known that any semi simple regular element x ∈ G(k̄) is conjugate to a regular
element t ∈ T (k̄), two elements in T (k̄) are conjugate if they are conjugate by
an element in the Weyl group W . This suggests the definion of a morphism
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π : T ×k T\G→ G, π : (t, x) 7→ x−1tx.

Inside T/k we have the open subset of regular elements Treg. Inside G we
have the regular semi-simple elements Gss,reg. It is well known (and a basic fact
in linear algebra for Gln) that the restriction

Treg ×k T\G→ Gss,reg

is an etale covering whose Galois group is the Weyl group W . We may reformu-
late this by saying that πT : Treg → Creg is an etale covering with Galois group
W . We take the fiber product of πT and the morphism p, then our morphism
π as provides an isomorphism

Treg ×Creg Gss,reg
∼−→ Treg ×k T\G,

we have a trivialization of the G bundle Gss,reg → Creg after taking the pull back
over πT .

Finally I want to remark that the center of the group acts by translations on
the group and induces an action of the center on the set of conjugacy classes.
Any connected reductive group G/k has a finite covering

π : S ×k G
(1) → G,

where S/k is the connected component of the center, and where G(1) is a simply
connected cover over the derived group of the center. The kernel µ of π is a
finite group scheme of multiplicative type. Then we get a morphism

π(1) : S ×k G
(1) → S × Ar,

where the first component is the identity and the second component is given by
the traces of the fundamental representations (we have to assume that G/k is
an inner form). This gives us also a morphism

π : G→ S × Ar/µ.

We denote the quotient by C = CG, inside this quotient we have the open subset
Creg of regular elements, the fibers π−1(s) for s regular are the regular semi
simple conjugacy classes. So we can not say that C is the variety of conjugacy
classes, this object does not exist. But we can say that Creg is the variety of
semi simple conjugacy classes.

If our group G/k = Gln/k then the covering is

π : Gm ×k Sln,

which sends (z, g) 7→ diag(z)g and

π : g 7→ (det(g), a1(g), . . . , an−1(g))

where the ai are the coefficients of the characteristic polynomial.
In this case we know that for a regular element s ∈ C(k) the fiber π−1(s) is

a conjugacy class under G(k).
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2.2 Orbital integrals

A conjugacy class C[g] is always smooth, its tangent space in the point g can be
identified to the quotient of Lie algebras a = Lie(G)/Lie(Zg), where Zg is the
centralizer of g. The centralizer Zg acts by the adjoint action on a. If we now
assume that our group G/k is semi-simple then it is known that Zg acts trivially
on the highest exterior power Λdim aa. This implies that we can find a non zero
invariant form ωC of highest degree on C = C[g]. If now our ground field is Qp

(or any p-adic field) then a Qp rational conjugacy class is C provides a p-adic
manifold C(Qp). If we select a non zero ωC on C, then this defines a measure
|ωC | on C(Qp). For any function h in the Hecke algebra we can consider the
integral

O(h,C) =
∫

C(Qp)

h(x)|ωC |(dx).

This is a so called stable orbital integral. It is clear that this integral is
convergent if the conjugacy class is closed, because we assumed that h has a
compact support. We will discuss the convergence problem for non closed orbits
later.

We want to consider these integrals as functions in the variable C. This
requires to put some structure on the set of conjugacy classes and then to make
a consistent choice of the measures ωC , which is compatible with this structure.
We return to the considerations in 2.1. and consider the morphism π.

For any geometric point (t, x) the derivative induces an isomorphism of tan-
gent spaces

Dπ : TT,t ⊕ TT\G,x
∼−→ TG,x−1tx

If g = x−1tx then we can identify TG,g = g by using the right translation by g.
On the left hand side we also have an action of T ×k G from the right and we
get an identification

t⊕ a = Lie(T )⊕ Lie(G)/Lie(T ) ∼−→ TT,t ⊕ TT\G,x
∼−→ TG,x−1tx,

This identification of a with TT\G,x depends on the the first variable t.
On T ×k T\G we get a T ×k G invariant form, if we choose top degree

forms ωT , ωT\G on t,a and extend them by translations to invariant forms on
T and T\G, which we can pull back to forms on T ×k T\G. On G we get
an invariant form in top degree if we choose a top degree form ωG on g. We
assume that we adapted these forms, this means on the Lie algebra we have
ωT ⊗ ωT\G = ωG. Then we will get a formula on the set of regular, semi simple
elements π∗(ωG) = fωT ∧ ωT\G, where f is a regular function on T ×k T\G. A
formula for this function is easy to find. The element t defines via the adjoint
action an automorphism Ad(t) : a → a. Since t is regular this automorphism
does not have the eigenvalue 1, in other words −Ad(t) + Id is an isomorphism
of a. Then we get Weyls formula for the invariant differential forms

π∗(ωG) = ±det(−Ad(t) + Id)ωT ∧ ωT\G.

We introduce the notation

D(t) = det(−Ad(t) + Id).
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Now our ground field is Qp we have our reductive group G/Qp and a maximal
torus T/Qp in this group, then we can consider the map on the Qp valued points

T (Qp)× T (Qp)\G(Qp) → G(Qp).

In the regular points this map is a local isomorphism for the p-adic topology
these are the points (t, x) ∈ Treg(Qp)× T (Qp)\G(Qp).

The image consists of those regular semi simple elements, which are conju-
gate under G(Qp) to an element in Treg(Qp). This is an open subset Treg(Qp)G ⊂
G(Qp). The number of elements in the fiber over a point in Treg(Qp)G is
[NT (Qp) : T (Qp)], where NT is the normalizer of T. The choice of a top de-
gree form ωT\G on a and the resulting invariant form on T\G, which we denote
by the same letter yields an invariant measure|ωT\G| on T\G(Qp). One knows-
and we will later in the sections on stabilization- that T (Qp)\G(Qp) is an open
subset in (T\G)(Qp). ( Later I will remove the brackets T\G = (T\G).)

We get Weyls formula: For any locally constant compactly supported func-
tion h on G(Qp) ∫

Treg(Qp)G

h(g)|ωG|(dg) =

1
[NT (Qp) : T (Qp)]

∫
T (Qp)

|D(t)|p
(∫

T (Qp)\G(Qp)

h(x−1tx)|ωT\G|(dx)
)
|ωT |(dt).

Here we have to observe a very subtle point. I mentioned already that G(Qp)
does not act transitively on T\G(Qp), we will see in Chap.V that we have a finite
number of (open) orbits.

If we pick any t ∈ Treg(Qp) then we get an isomorphism of algebraic varieties

T\G ∼−→ Ct

where Ct is the semi simple regular conjugacy class containing t. Our differential
form ωT\G yields an differential form of highest degree ω̃T\G on Ct. If d is the
dimension of Ct, then the object ω̃T\G is actually a relative invariant form in
Ωd

Gss,reg/Creg(Gss,reg). By definition the linear map

(−Id + Ad(t)) : Lie(G)/Lie(T ) → TCt,t

is an isomorphism and

ωT\G(X1, X2, . . . , Xd) = ω̃T\G(t)((−Id + Ad(t))(X1), . . . , (−Id + Ad(t))(Xd))

This relative differential form defines an invariant measure |ω̃T\G| on Ct(Qp)
and now we look again at the integral

O(h,Ct) =
∫

Ct(Qp)

h(x)|ω̃T\G|(dx).

This is again the stable orbital integral, but now the measure |ω̃T\G| depends
in a consistent way on t, it is clear that we get a locally constant function
in the variable t ∈ Treg(Qp). Finally we observe that these orbital integrals
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are invariant under the action of the center. If we translate h by an element
z ∈ Z(Qp), i.e. Lz(h)(g) = h(zg), then

O(Lz(h), t) = O(h, zt)

we say that these orbital integrals are homogenous.

We can go one step further. The top degree alternating form ωG on g can
be chosen once for all. If we pick a maximal torus T/Qp we also choose ωT . We
say that two maximal tori T, T1/Qp are in the same inner splitting class, if we
can find an element g ∈ G(Q̄p), which conjugates T into T1 in such a way that
the isomorphism Ad(g) : T ∼−→ T1 is defined in Qp.

If now x ∈ T\G(Qp) then the stabilizer of x in G/Qp is a maximal torus
Tx/Qp. This torus Tx is not necessarily conjugate to T/Qp by an element
in G(Qp). But we can find an element g ∈ G(Q̄p), which maps to x under
the projection G → T\G. Then clearly Tx = g−1Tg and the isomorphism
Ad(g) : T ∼−→ Tx is defined over Qp. Hence we see, that the maximal tori over
Qp which in the same inner class as a given torus T/Qp are all of the form Tx

with x ∈ T\G(Qp).
But the correspondence x → Tx is not one-to-one. We consider the Weyl

group WT = N(T )/T , this is a finite algebraic group over Qp. Let W (Qp) be
its group of rational points. Here is a caveat: In general we may have strict
inclusions N(T )(Qp)/T (Qp) ⊂ WT (Qp) ⊂ WT (Q̄p). If we have chosen ωT and
if T1/Qp is in the same inner splitting class, then choose a g ∈ G(Q̄p) which
defines a Qp isomorphism Ad(g) : T ∼−→ T1 and get a corresponding ωT1 . This
ωT1 , is unique up to a sign( the Weyl group WT (Q̄p) has a non trivial sign
homomorphism whose restriction to WT (Qp) can be non trivial. This means
that for all T1/Qp in a given inner splitting class we can choose forms ωT1 of
top degree, which are determined up to a sign. Therefore we also get a choice
of quotient forms ωT1\G, which are unique up to a sign.

This implies

If we choose an ωT on one of the tori in an inner splitting class, then we
get a consistent family of measures |ωT1\G| on the quotients T1\G(Qp) for all
T1 inner the same inner splitting class. By consistent we mean: Let t ∈ T1(Qp)
be a regular element. It defines a regular conjugacy class C = C(t). We get G-
isomorphism

T1\G
∼−→ C.

Via this isomorphism we get a measure |ω̃T1\G| on C(Qp), this measure only
depends on the choice of ωT and not on the choice of T1 or t1 ∈ T1(Qp)

If we pick a system of representatives y1, . . . , yr for the orbits of G(Qp) on
T\G(Qp) then we can write

O(h,Ct) =
∫

Ct(Qp)

h(x)|ω̃T\G|(dx) =
∑
yi

∫
Tyi

(Qp)\G(Qp)

h(x−1tx)|ωT\G|(dx))

our stable orbital integral is a sum over orbital integrals.
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2.3 Measures on tori

If we have a torus T/Qp, then have two natural choices for an invariant measure
on T (Qp). First of all we recall, that T (Qp) contains a unique maximal compact
subgroup, which is open, we call it T (Zp). This suggests to choose a form ωarith

T

in such a way that ∫
T (Zp)

|ωarith
T |(dt) = 1.

This is not always the optimal choice. Another construction uses the concept
of schemes. It is well known, that we can extend T/Qp to a flat group scheme
T /Zp such that T (Zp) = T (Zp). This extension is unique, and and we have
its Lie-algebra t = Lie(T ). The extension is smooth, if the torus splits over a
tamely ramified extension. In general it may be not smooth, this means that
t may have torsion. If we divide by the torsion, then we get a free Zp module
of rank r = dim(T ). Then Λr(t) is free of rank 1, we choose a form ωT which
has value one on a generator. Since this form is unique up to a unit in Zp,
we get a second measure |ωT |, which is also canonically defined. If the torus
splits over an unramified extension, then the measure ωT behaves well under
base extension.

It is not difficult to compare these two measures. In the simple case, where
T/Qp splits over an unramified extension F/Qp, the extension T /Zp is still a
torus. Then the reduction T ×Fp is a torus over the finite field Fp and we have
simple formulas for the number of points of T (Fp) in terms of the action the
action of the Frobenius on the character module X∗(T ). We find∫

T (Zp)

|ωT |(dt) =
#T (Fp)
pd

In the other case we compute the orders the finite groups T (Zp)/(ps)). It is
not difficult to see that the ratio #T (Zp/(ps))/psd becomes constant for s >> 0
and then we have ∫

T (Zp)

|ωT |(dt) =
#T (Zp/(ps))

psd
.

If the torus splits over a tamely ramified extension, then we may take s = 1.

If we now fix a rule to choose a measure on any maximal torus, we decide
for the second option. Then we have a choice of an invariant measures on all
the regular semi simple conjugacy classes. The complement of the set of regular
semi simple elements in G(Qp) is a set of measure zero.

We can of course write down a very ”natural” measure on C(Qp). We go
back to 2.1. where we identified C to S × Ar/µ. First of all we have can write
the form

ωC = ωS ∧ dx1 ∧ . . . dxr

on S ×Ar, there is still some arbitrariness in the choice of ωS . This form is not
invariant under the action of µ, but it is clear that is is clear that |ωC | descends
to a unique measure also called |ωC | on C. Now we have of course the morphism
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πT : T → C which is finite. I claim that there is a constant aT such that at a
point t ∈ T (Qp) we get

π∗T (|ωC |)(t) = aT |D(t)|−1/2
p |ωT |(t).

To any c ∈ C(Qp)reg corresponds an inner splitting class of tori, we define
a(c) = aT where T/Qp is any torus in this splitting class.

Then Weyls formula becomes∫
G(Qp)

h(g)|ωG|(dg) =

∑
T

1
[NT (Qp) : T (Qp)]

∫
T (Qp)

|D(t)|p
(∫

T (Qp)\G(Qp)

h(x−1tx)|ωT\G|(dx)
)
|ωT |(dt) =

∫
C(Qp)reg

a(c)|D(c)|1/2
p

∫
π−1(c)(Qp)

h(x)|ω̃T\G|(dx)|ωC |(dc)

A want to discuss the constants for the case of tori, which are attached to
quadratic extensions F/Qp. For simplicity we assume, that p > 2. We have the
torus T = RF/Qp

(Gm), essentially it is given by the rule T (L) = Gm(F ⊗L) for
any field extension L/Qp. Then we have the norm map NF/Qp

: T → Gm and
the kernel gives us a one dimensional subtorus T (1) ⊂ T .

The quadratic extension can be written as F = Qp[
√
u] where u ∈ Zp, ordp(u) =

0 or 1. Then Zp[
√
u] is the ring of integers in that field, this is also called the

maximal order. We consider the matrix Au =
(

0 1
u 0

)
∈M2(Zp) and then our

torus T/Qp (resp. T (1)/Qp is the centralizer of this matrix in Gl2/Qp (resp
Sl2/Qp). The Lie algebra of T/Qp is generated by the identity matrix Z0 and
Au, the Lie algebra of T (1) is generated by Aω alone. It is clear that we get
the flat extension of our two tori, if we take the centralizer of the same matrix
in Gl2/Zp (resp. Sl2/Zp), then the respective Lie algebras are free Zp modules
generated by Z0, Au resp. Au alone. Hence we may choose for our differential
form ωT the form that takes value 1 on (Z0, Au) and ωT (1) the form that has
value 1 on Au. We can make a short list for the values of the volumes of the
maximal compact subgroups

∫
T (Zp)

|ωT |(dt) =


(p−1)2

p2 if u is a square
p2−1

p2 if u is a unit and not a square
p−1

p if ordp(u) = 1

and

∫
T (1)(Zp)

|ωT (1) |(dt) =


p−1

p if u is a square
p+1

p if u is a unit and not a square
2 if ordp(u) = 1

.

I propose to call this number vT .
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2.3.1 The arithmetic measures

We can also work with the arithmetic measures. If do this we start from ex-
tension of G/Qp to a smooth semi simple group scheme G/Zp. This may not be
always possible, but in any case we can extend G/Qp to a smooth Bruhat-Tits
group scheme. At this point I do not explain what this means, for our group
Gl2/Qp we have the first option. If we have a maximal torus T ⊂ G/Qp then
we always can replace it by another torus such that the flat extension T is a
subtorus of G, especially we have T (Zp) = G(Zp) ∩ T (Qp).

I point out that under these assumptions the Lie algebra Lie(G) is free of
rank dim(G) over Zp and we may choose for our form ωG a generator

ωG ∈ Hom(Λdim(G),Zp),

this gives us a well defined measure on G(Qp). Basically we followed the same
rule when we selected the form ωT . Hence these data provide a well defined
family of measures

|ω̃T\G|

on the regular semi simple conjugacy classes covered by T/Qp. It is not difficult
to see that these measures do not depend on the choice of G/Zp and T/Qp.

The choice of G/Qp provides a second family of measures. We choose |ωarith
G |

so that vol|ωarith
G |(G(Zp)) = 1. Then we get a quotient measure ω̃arith = ωarith

T\G .

This pair of measures also provides a quotient measure |ωarith
T \G | and we get

|ωT \G | =
#G(Fp)
#T (Fp)

p−d|ωarith
T \G |

Here d = dim(G) − dim(T ), here we assume that our torus splits over a
tamely ramified extension (see above).

2.3.2 The geometric family of measures

Now we discuss another choice of a family of consistent measures on the con-
jugacy classes, which in some sense is better, it is obtained from a geometric
construction. We discuss this construction for the group Gl2 (and in principle
also for Sl2).

We consider the subset Greg ⊂ Gl2 The projection

p : Greg → Gm × A1 = C

is surjective and smooth. This morphism has now a section, this is the Steinberg
morphism

St : C → Greg

which is defined by

St : (x, y) 7→
(
y −1
x 0

)
.
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We have a basis of the Lie algebra of G :

Lie(G) =< Z0,

(
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
>=< Z0,H,E+, E− >,

it is also the tangent space of G at the identity. For any point c = (y, x) ∈ C(Qp)
the tangent space is generated by y ∂

∂y ,
∂
∂x . In the point a = St(y, x) the tangent

space of G at a is identified to the Lie algebra Lie(G) by the derivative of the
right translation g 7→ ga. It decomposes into two subspaces:

The vertical subspace, which is the tangent space TCa,a of the conjugacy
class Ca at the point a, and the horizontal part, which we define as the subspace
spanned by Z0, E. An easy calculation shows that the vertical subspace TCa,a =
Qp(H − x

yE+) ⊕ Qp(yE− + E+) under our identification with the Lie algebra.
We define an invariant form ωG/C(c) by

ωG/C(a)(H − x

y
E+, yE− + E+) = 1.

On Greg we have the sheaf Ω2
Greg/C of relative differential forms. We define a

sheaf L of invariant sections on C. Its sections over any Zariski open set U ⊂ C
are the invariant global sections Ω2

Greg/C(p
−1(U)). This is clearly a line bundle.

Then ωG/C is a global section, which trivializes L. Note that this form is defined
without any reference to a form ωG.

Now this form ωG/C provides another family of measures on the conjugacy
classes in Greg: For any c ∈ C(Qp) we have the measure |ωG/C(c)|.

This measure has its advantages over the previous ones. Firstly it extends
to a measure on all regular conjugacy classes. Secondly we observe that the
horizontal tangent vectors Z0,−E− map to y ∂

∂y ,
∂
∂x . If we choose ωG so that

ωG(Z0,H,E+, E−) = 1, then

ωG = ωG/C ∧ p∗(
dy

y
∧ dx),

The second factor is the ”natural” measure on C(Qp).

Hence we get a new family of measures |ωG/C | on the regular conjugacy
classes. For regular values of c we define modified orbital integrals

Õ(h, c) =
∫

p−1(c)(Qp)

h(w)|ωG/C |(dw).

This integral can also be considered for singular c if we define more generally

Õ(h, c) =
∫

p−1(c)(Qp)reg

h(w)|ωG/C |(dw).

But for singular c we have to show convergence. We will do this later. It is
important to understand the behavior of the function c 7→ Õ(h, c) if c approaches
the singular set.

Our above formula for the differential forms yield another version of Weyls
formula ∫

G(Qp)

h(g)|ωG|(dg) =
∫
C(Qp)

Õ(h, c)|dy
y
∧ dx|(dc).
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We want to relate the new orbital integrals to our previous definition of

orbital integrals. Let Ta be the centralizer of St(c) = St(y, x) = a =
(
x −1
y 0

)
,

on this torus we choose in accordance with the rules in 2.3 a form ωTa . It is
unique up to a unit in Z×p . To get this form we have to find the element u in
2.3. It is easily seen that in the matrix ring(

xId + 2
(
x −1
y 0

))2 =
(
x2 − 4y 0

0 x2 − 4y

)
and hence with m =

[ordp(x2−4y)
2

]
we may choose

u = p−m(xId + 2
(
x −1
y 0

)
).

Hence we see that the Lie algebra of the flat extension of Ta is generated by
Z0, p

−m(xH − 2E+ + 2yE−), therefore ωTa(Z0, p
−m(xH − 2E+ + 2yE−)) = 1.

The Lie algebra Lie(G) has the basis (Z0, xH − 2E+ + 2yE−,H,E−) and
ωG(Z0, xH−2E++2yE−,H,E−) = 2. The first two entries span the Lie algebra
of Ta, the second two entries form a basis of Lie(G)/Lie(Ta). Hence we get
ωTa(Z0, xH − 2E+ + 2yE−)ωTa\G(H,E−) = 2. We conclude that

ωTa\G(H,E−) = p−m/2.

On the other hand we find easily that

(−Id+Ad(a))(H) = −2H+
2x
y
E+, (−Id+Ad(a))(E−) = x(−H+

x

y
E+)−E+−yE),

and this yields

ωTa\G(H,E) = ω̃Ta\G(−2H +
2x
y
E+, x(−H +

x

y
E+)− E+ − yE−) =

ω̃Ta\G(−2H +
2x
y
E+, E+ + yE−) = p−m/2.

Now we consider the resulting measures, we assumed p > 2. Let ε(a) = 0 if
the torus Ta splits over an unramified extension, otherwise ε(a) = 1. Then we
have by definition |D(c)|1/2

p = p−mp−ε(a)/2 and we get

|ωG/C(c)| = p−ε(a)/2|D(c)|1/2
p |ωTa\G|

and hence we get for our orbital integrals

O(h, c) = pε(a)/2|D(c)|−1/2
p |Õ(h, c)

We can define the same orbital integrals for functions h which invariant under
the action of the center Z(Qp), and which have compact support modulo the cen-
ter. For such a function we may also consider the integral

∫
G(Qp)/Z(Qp)

h(g)|ωG|(dg),
where dg is now a quotient measure. The orbital integrals of h are defined by
the same expression. Now the integrals O(h, c), Õ(h, c) are invariant under the
action of Z(Qp) on C(Qp). Hence we get a modified Weyls formula
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∫
G(Qp)/Z(Qp)

h(g)|ωG|(dg) =
∫
C(Qp)/Z(Qp))

∫
p−1(c)(Qp)

h(w)|ωG/C |(dw)|dy
y
∧dx/dz|(dc)

It is an important questions to understand the behavior of the functions
Õ(h, c) as functions in the variable c ∈ C(Qp). It is rather clear, that the
restriction of Õ(h, c) to Creg(Qp) is locally constant. The interesting question is
what happens if we approach elements in Z(Qp).

We can summarize. We have three different ways of defining the orbital
integrals. The two definitions

Oarith(h, c) =
∫

p−1(c)(Qp)reg

h(w)|ωarith
T \G |(dw), O(h, c) =

∫
p−1(c)(Qp)reg

h(w)|ωT \G |(dw),

depend on the choice of an extension of G/Qp to a semi-simple group scheme and
a suitable choice of T , and they differ by a multiplicative constant depending
on the isomorphism class of the torus T , it is determined by c and let us call
this isomorphism class < c > . We denote the constant by A(< c >). Its value
can be read of from our table above. Hence we get

Oarith(h, c) = A(< c >)O(h, c).

Note that < c > is the same object as a quadratic extension F/Qp. The third
one

Õ(h, c) =
∫

p−1(c)(Qp)reg

h(w)|ωG/C |(dw)

is the most geometric definition. It differs from the two definition by a multi-
plicative constant times the regularizing factor |D(c)|1/2

p . This orbital integral
can, as we will see in section 2.6, be extended to a reasonable function on C(Qp).

We discuss some special cases.

2.4 The orbital integrals on hyperbolic regular elements

We recall the situation from Chap. III 1.2.2. For any hp ∈ Hp in the unramified
Hecke (???) algebra we have its Fourier transform defined by∫

G(Qp)

φλ(gx)hp(x)dx = ĥp(λ)φλ(g),

we want to relate this Fourier transform to orbital integrals on hyperbolic ele-
ments. We compute the above integral by starting from the Iwasawa decompo-
sition

U(Qp)× T (Qp)×Kp → G(Qp),

under this map the bi-invariant measure onG(Qp) becomes the measure t−2ρ
p dup×

dtp × dkp, where the volumes of U(Zp), T (Zp),Kp are equal 1. Hence we have
to compute ∫

U(Qp)×T (Qp)×Kp

t−2|ρ|
p φλ(uptpkp)dup × dtp × dkp.
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The integrand does not depend on kp and we now the value of φλ, hence we
have to compute ∫

U(Qp)×T (Qp)

t−|ρ|p h(uptp)dup × dtp.

In the variable tp these functions only depend on T (Qp)/T (Zp) = Z×Z, we can
write ∑

a,b∈Z
p(a−b)/2(α′p)

a(β′p)
b

∫
h(up

(
pa 0
0 pb

)
)dup =

∑
a,b∈Z

p(a−b)/2αa
pβ

b
pp
−(a+b)/2

∫
h(up

(
pa 0
0 pb

)
)dup =

∑
a,b∈Z

αa
pβ

b
p p
−b

∫
h(up

(
pa 0
0 pb

)
)dup.

Now the terms for a 6= b can be expressed in terms of orbital integrals. In this

case the centralizer of
(
pa 0
0 pb

)
is the maximal torus T/Qp itself and we can

consider the orbital integral∫
T (Qp)\G(Qp)

h(ḡ−1
p

(
pa 0
0 pb

)
ḡp)dḡp = Oarith(hp,

(
pa 0
0 pb

)
)

The Iwasawa decomposition yields

T (Qp)× U(Qp)×Kp → G(Qp),

this time the invariant measure becomes dtp × dup × dkp. On T (Qp)\G(Qp) we
get the measure dup × dkp, the variable kp drops out again and we get

Oarith(hp,

(
pa 0
0 pb

)
) =

∫
h(u−1

p

(
pa 0
0 pb

)
up)dup.

Now recall that up =
(

1 up

0 1

)
and hence our integral is

∫
h(

(
1 (pa−b − 1)up

0 1

) (
pa 0
0 pb

)
)dup =

|pa−b − 1|−1
p

∫
h(

(
1 up

0 1

) (
pa 0
0 pb

)
)dup.

Hence we get∫
h(

(
1 up

0 1

) (
pa 0
0 pb

)
)dup = |pa−b − 1|pOarith(hp,

(
pa 0
0 pb

)
)

The absolute value of the factor in front is 1 if a > b and pb−a if a < b. Hence
we define m(a, b) = −b if a > b and m(a, b) = −a if a < b then we find

ĥp(λ) =
∑

a,b∈Z,a6=b

αa
pβ

b
p p

m(a,b)Oarith(hp,

(
pa 0
0 pb

)
)+

∑
a∈Z

αa
pβ

a
p

∫
hp(up

(
pa 0
0 pa

)
)dup
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Of course this is always a finite sum.

For any tp =
(
t1 0
0 t2

)
, where t1, t2 have different valuations, the orbital

integral O(h, t) only depends on these two valutions and is equal up to a power

of p to a Fourier coefficient in the expansion of ĥ(λ). If tp =
(
upa 0
0 vpa

)
with

u, v ∈ Z×p , u 6= v then the same calculation yields∫
h(

(
1 up

0 1

) (
upa 0
0 vpa

)
)dup = |u

v
− 1|pOarith(hp, tp),

the term on the let hand side does not depend on u, v and hence we get∫
h(

(
1 up

0 1

) (
pa 0
0 pa

)
)dup = |u

v
− 1|pOarith(hp, tp)

The ratio u/v is equal to the value of the simple root α on tp. Hence we get

the formula: For tp =
(
upa 0
0 vpa

)
we get (germ expansion???)

|α(tp)− 1|−1
p

∫
h(

(
1 up

0 1

) (
pa 0
0 pa

)
)dup = Oarith(hp, tp)

We can conclude that a function hp in the Hecke algebra is determined by
its orbital integral on regular hyperbolic elements. On the other hand we can
prescribe these values of orbital integrals, if we take the following precautions:
On the elements tp with α(tp) not a unit they only depend on tp mod T (Zp),
and on the elements where α(tp) is a unit the number |α(tp)− 1|pOarith(hp, tp)
only depends on |det(tp)|p. Of course almost all of them in the appropriate
sense must be zero.

Finally I want to mention that this computation also allows us to compute
the orbital integrals for regular p-hyperbolic elements in higher dimensional
groups.

We observe that orbital integrals Oarith(hp, tp) go to infinity if tp tends to
a central element, but the asymptotic behavior is very simple. The function
tp 7→ ∆(tp) = (u

v − 1)( v
u − 1) has an interpretation in terms of the adjoint

action: If t, resp.g are the Lie-algebras of the torus T resp. the group G then
∆(tp) is the determinant of the endomorphism Ad(tp) − Id on g/t (Ref ???).
This quantity can also be defined for other semi simple regular elements and
the function tp → |∆(tp)|−1/2 plays an inportant role for the desription of the
behavior of orbital integrals if tp → central element

If we take also for our function hp simply the characteristic function of the
maximal compact subgroup Kp = Gl2(Zp) then our formula for the orbital
integral becomes

Oarith(hp, tp) =

{
0 if |∆(tp)| > 1
|∆(tp)|−1/2 else

where for the second line we use that∫
h(

(
1 up

0 1

)
dup = 1
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We may also choose for the function h the characteristic function of another
open compact subgroup Kp ⊂ Gl2(Zp), this belongs to a larger Hecke algebra.
We can write Gl2(Zp) =

⋃
ξ ξKp.

Then our orbital integral is zero if tp 6∈ T (Zp). If tp ∈ T (Zp) is regular then

Oarith(hp, tp) =
1

[Gl2(Zp) : Kp]

∑
ξ

|∆(tp)|−1/2

∫
hξ(tp

(
1 up

0 1

)
)dup

where hξ is the characteristic function of ξKpξ
−1 ⊂ Gl2(Zp).

We may for instance choose Kp = K0,p(p) = {
(
a b
c d

)
∈ Gl2(Zp)|c ≡ 0

mod p}, then we can take is system of representatives the matrices

Ξ =
{
{
(

1 0
ν 1

)
}ν=1,...,p−1,

(
0 1
−1 0

)}
Now we see that for ξ = Id, i.e. ν = 0, we have

hξ(tp

(
1 up

0 1

)
) = 1 if and only if up ∈ Zp

and in for the other cases we have

hξ(tp

(
1 up

0 1

)
) = 1 if and only if up ∈ pZp.

Hence we get for this special choice of hp as characteristic function of Kp,0(p)

Oarith(hp, tp) =
2

p+ 1
|∆(tp)|−1/2.

We may consider the difference of characteristic functions

hB
p = χGl2(Zp) −

p+ 1
2

χKp,0(p),

then we see that this function has vanishing orbital intergals for all p-hyperbolic
elements and has the non zero constant value p−1

2 in a neigborhood of the
identity.

2.5 The Bruhat-Tits building

A decisive tool for the computation of orbital integrals is provided by the Bruhat-
Tits building. The Bruhat-Tits building for the group Gl2(Qp) is a tree whose
vertices are the rank 2 free Zp submodules e = M ⊂ Q2

p up to homothethy, the
edges are pairs σ = M ⊃M ′ such that M/M ′ = Z/pZ again up to homothethy.
The vertices of an edge σ are the two free lattices M and M ′. The edges at a
vertex e are the p + 1 submodules M ′ of index p. The edges can be identified
to the intervall [0, 1].

A vertex M defines a maximal compact subgroup Gl2(M) = Ke, namely
the stabilizer of M in Gl2(Qp), it can be vied as the group of Zp-valued points
of a semi-simple group scheme extension of Gl2/Qp. If we denote this semi
simple group scheme by G/Zp, then the edges ending in M are in one to one

29



correspondence to the Borel subgroups B ⊂ G ×Zp
Fp. Is σ = (M,M ′) an edge

ending at e then we define the open compact subgroup Kσ as the invers image
of B(Fp) in Ke. It is a so called Iwahori subgroup.

The group G(Qp) acts on this building, the action on the set of vertices is
extended linearily to the edges. It acts transitively on the vertices and the edges.
The stabilizer of a vertex e is Ke, the stabilizer of an edge σ is a subgroup K̃σ,
which contains Kσ as a subgroup of index 2. If we take as a standard edge the
module M0 = Zp ⊕ Zp ⊂ Qp ⊕ Qp, then the stabilizer is Gl2(Zp). A standard
submodule of index p is M ′ = Zp ⊕ pZp and then for σ0 = (M0,M

′) is the
congruence subgroup

Kσ = {
(
a b
c d

)
|c ≡ 0 mod p}.

The group K̃σ contains the element
(

0 1
p 0

)
which conjugates M ′ into pZp ⊕

Zp = pM ′.
The fundamental fact is

This complex BT(Gl2/Qp) is i t a tree, it has no non trivial closed loops.
Any two points are joined by a unique shortes path. It is a perfect p-adic analog
of the symmetric space attached to a semi-simple group over R.

Any p elliptic element γ ∈ Gl2(Qp) can be is conjugate to an element in
Gl2(Zp) hence it has a fixed point in BT(Gl2/Qp). From the assertion above it
is clear

The fixed point set F (γ) of a p-elliptic element is contractible

The above element
(

0 1
p 0

)
fixed the edge (M0,M

′) but not pointwise. Its

fixed point is the central point of the edge.
On the groups K̃σ we define the sign homomorphism sgnσ : K̃σ → ±1 which

has value 1 on Kσ and −1 the complement.
Following Kottwitz we define the Euler-Poincare function in the Hecke al-

gebra. We consider the characteristic functions χKe0
= χGl2(Zp) and χK̃σ0

and
put

hEP
p = χKe0

− p+ 1
2

χK̃σ0
sgnσ0

.

This is almost the function we looked at in the previous section. We notices
that the factor in front can be interpretet as the index of K̃σ0 in Ke0 .

This function has very nice orbital integrals. First of all it is clear

The orbital integrals of hEP
p on regular p-hyperbolic elements are still zero.

Any regular p-elliptic element tp can be conjugated into a torus T/Qp such
that T (Qp) ⊂ Z(Qp)Ke0 . The T (Qp) is the centralizer of tp. We normalize
the measure dgp on Gl2(Qp) such that Ke0 has volume one and the maesure
on T (Qp) such that T (Zp) has volume one. With respect to these measures we
define the quotient measures dxT

p on T (Qp)\Gl2(Qp) and with respect to these
measures we have:
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For all regular p elliptic elements we have

Oarith(hEP
p , tp) = 1

We leave the proof to the reader. It follows by interpretation that the value
of the orbital integral is exactly the Euler characteristic of the fixed point set
of tp on the Bruhat-Tits building. Since this fixed point set is contractible this
Euler characteristic is 1.(See [Kott])

We can modify these functions slightly. We observe that they have a constant

value on Z(Zp). We can translate them by an element
(
pa 0
0 pa

)
in the center

and take the sum

h̃EP
p =

∑
a∈Z

(
pa 0
0 pa

)
hEP

p .

This function may now be twisted by an (admissible) character η : Q×p → C×,
we define

h̃EP
p,η (g) =

∑
a∈Z

hEP
p (g

(
pa 0
0 pa

)
)η(det(g)).

This function satisfies

h̃EP
p,η (zg) = h̃EP

p,η (g)η(det(z)) for all z ∈ Z(Qp), g ∈ G(Qp).

It is clear that Oarith(hEP
p , tp) = Oarith(̃hEP

p , tp).

2.5.1 Orbital integrals of supercuspidal matrix coefficients

..............................................
...............................................

2.6 Shalikas germ expansion

Now we come and investigate the asymptotic behavior of orbital integrals Õ(h, c)
if c approaches the singular set. We discuss the special case Gl2/Qp. I think
that in this situation it is best to work with the geometric measure ωG/C because
it extends to all regular elements.

We distinguish two cases, at first we assume that h vanishes on Z(Qp).
Then h has compact support in C(Qp)reg and we can write down the integral
defining Õ(h, x) for all x. Simple arguments with the p-adic implicit function
theorem and measures show that Õ(h, x) extends to a locally constant function
from C(Qp)reg to C(Qp). Hence we see that for c = (y, x) ∈ C(Qp), for which
|x2 − 4y|p is sufficiently small, we get

Õ(h, c) = Õ(h,
(

1 1
0 1

)
) = Õ(h, (1, 1))

where we allowed ourselves to represent a conjugacy class by an element.
Now we drop the assumption that h has support in G(Qp)reg. I briefly recall

the discussion at the beginning of this section. An element c = (y, x) ∈ C(Qp)reg
defines a maximal torus and this torus defines an inner splitting class. In our
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specific case this inner splitting class is simply determined by the extension
F = Qp(

√
x2 − 4y). This defines a partition of C(Qp)reg into subsets C(Qp)F .

Let us denote by χF the characteristic function of C(Qp)F .
We pick an element z0 ∈ Z(Qp), we choose an integer a large enough and

we consider the congruence subgroup K(a) of elements in G(Zp) which are con-
gruent to the identity mod pa. Then K(a)z0 is an open neighborhood of z0.
The image of K(a)z0 ∩ Z(Qp) under (det, tr) is denoted by W (z0, a). We con-
sider the characteristic function χz0,a of K(a)z0. We observe that for any func-
tion h in the Hecke algebra we can find zi, ai and coefficients czi,ai

such that
h−

∑
zi,ai

czi,aiχai,zi vanishes on the center. Hence we have to study the inte-
grals

Õ(χz0,a, c)

and see what happens if c approaches the singular set W (z0, a).
This integral - for c ∈ C(Qp)reg- is of course equal to the volume of X(c) =

p−1(c)(Qp) ∩K(a)z0, with respect to the measure |ωH\G|. This fiber X(c) is a
compact analytic manifold as long as we stay away from the singular set. But for

c = (z2, 2z) ∈ W (z0, a) it has an isolated singularity, this is the point
(
z 0
0 z

)
.

If we remove this point we still have an analytic variety, we call it X(c)0, it is
not compact anymore.

Now we have to compute some p-adic integrals, the computation of these
integrals comes down to the counting of the number of solutions of diophantine
equations. I will discuss this in more detail in the section on the fundamental
lemma.

First of all we observe that

Õ(χz0,a,

(
z 1
0 z

)
) = vol(X(c)0)

is finite, it is given by a convergent geometric series. It does not depend on z
of course.

Then we compute the difference

Õ(χz0,a,

(
z 1
0 z

)
)− Õ(χz0,a, c)

if c → (z2, 2z). This is in principle very elementary, as I said before we have
count numbers of solutions of diophantine equations. The result depends the
inner splitting class of c, i.e. on the F for which c ∈ C(Qp)F . We get :

For any F there is an explicitly computable constant cF such that for a > 0
(perhaps a > 1 for p = 2 ) and c ∈ C(Qp)F we have

Õ(χz0,a,

(
z 1
0 z

)
)− Õ(χz0,a, c) = cF |D(c)|1/2

p

We will show this and compute the constants in the section on the funda-
mental lemma.
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Putting everything together we get the germ expansion of Shalika: For any
function h in the Hecke algebra we have for all c close enough to an element
(z2, 2z) in the singular set (close enough depends on h)

Õ(h, c) = Õ(h, (z2, 2z)) + |D(c)|1/2
p

∑
F

cFχF (c)h(
(
z 0
0 z

)
).

This tells us that Õ(h, c) is a sum locally constant function + a function
that has a simple asymptotic behavior if c approaches the singular set.

Of course we can rewrite this for the original orbital integrals and get

O(h, c) = pε(c)/2|D(c)|−1/2
p O(h, (z2, 2z)) +

∑
F

cF p
ε(c)/2χF (c)h(

(
z 0
0 z

)
).

for c→ (z2, 2z).

We can apply this to the Euler-Poincare function hEP , it has the following
properties

(i) For z ∈ Z(Qp) we have h(z) = 1−p
2 for z ∈ Z(Zp) and zero else.

(ii) Its orbital integrals on hyperbolic and on regular unipotent elements are
zero.

(iii) For any quadratic extension F/Qp - in other words any non split splitting
class - we have

Oarith(hEP , c) = 1

This gives us the values of the constants cF for the different quadratic ex-
tensions. We consider the germ expansion of Õarith(hEP , c), since the unipotent
orbital integrals vanish we get

Oarith(hEP , c) =
∑
F

A(< c >)cFχF (c)h(
(
z 0
0 z

)
)

and we conclude that A(< c >)cF = 1−p
2 . The values of A(< c >) have been

computed in 2.3
In this context the arithmetic orbital integrals have the nicest behavior.
At this point I want to keep attention, that the situation is different, if we

consider other groups. Already for the case Sl2/Qp there is some change. We
can not construct an Euler-Poincare function, which takes different values at
the two central elements, so the above procedure does not give the constants.
We discuss this in the section on the fundamental lemma.

2.7 Orthogonality relations for characters of the discrete
series

2.7.1 Intermission: A useful global result

Given our group G/Qp we can find a discrete, torsion free subgroup Γ ⊂ G(Qp),
such that Γ\G(Qp) is compact. This is easy to see for a torus, hence we may
assume, that G/Qp is semi simple. Then we look for a suitable totally real
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number field K/Qp, which has a finite place p above p, such that Kp = Qp.
Now we construct a group scheme G∞/OK such that G∞ × (K ⊗R) is compact
and such that G×Kp

∼−→ G/Qp. (To do this construction we may have to take
a field which is larger than Q). We define the group

Γ = {γ ∈ G(K)|γ ∈ G(Oq) for all finite places q 6= p}.

Then it follows from strong approximation and reduction theory that Γ has
the required properties, possibly up to torsion freeness. Here we observe that
we can construct subgroups of finite index of Γ if we put some congruence
conditions outside p. This makes it clear that we cam get Γ torsion free.

If we now choose any compact open subgroup Kp ⊂ G(Qp) then the double
coset space Γ\G(Qp)/Kp is finite. Since Γ is torsion free we also know that
Γ ∩ g−1Kpg = e for all g ∈ G(Qp). Let π be the projection map G(Qp) →
Γ\G(Qp)/Kp.

We choose a field F of characteristic zero, at this moment we assume that it
is a finite extension of Q. We assume that the functions in the Hecke algebra take
values in F . We get a representation of the Hecke algebra H(G(Qp)//Kp) on
the space A(Γ\G(Qp)/Kp) of F -valued functions on Γ\G(Qp)/Kp. We choose
the measure that gives volume 1 to Kp. Now we apply a simple form of the
trace formula. We derive this simple version here, the general version of the
(topological) trace formula uses the same principles.

Let us assume that h is the characteristic function of the double cosetKpaKp.
We choose representing elements gi for the finitely many elements x1, . . . xm in
Γ\G(Qp)/Kp. Let δxi be the Dirac delta function at xi. Then

Th(δxi) =
∑

ξ∈aKpa−1∩Kp

δxi(π(giξa) =
∑

j

Th(δxi(xj)δxj .

Then we get for the trace of Th

tr(h|A(Γ\G(Qp)/Kp) =
∑

i

Th(δxi
)(xi).

For a given index i we have to compute the number of elements ξ such that we
can find a γ ∈ Γ such that γgi ∈ giξaKp. It is rather easy to see that in case
of such a solution the element γ and the element ξ determine each other. Since
∪ξξKp = KpaKp we get that the trace is equal to∑

i

#{γ |g−1
i γgi ∈ KpaKp} =

∑
i

∑
γ∈Γ

h(g−1
i γgi).

This is clearly a finite sum. Now we want to have a more canonical expression. If
we replace gi by another representative, then we have to replace γ by a conjugate
element. Therefore the summation over Γ can be replaced by a summation over
conjugacy classes and the summation over i is an summation over Γ\G(Qp)/Kp,
we get for the trace ∑

γ∈Γ/∼

∫
G(Qp)

h(g−1γg)dg.

Finally we introduce the centralizer Zγ of γ and we put Γγ = Γ ∩ Zγ(Qp).
Then Zγ(Qp)/Γγ is compact. Now the function g 7→ h(g−1γg) is invariant
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under g 7→ zg if z ∈ Zγ(Qp). We choose a measure dz on Zγ(Qp) and define the
quotient measure dḡ on Zγ(Qp)\G(Qp). Then we get the final form of the trace
formula

tr(h|A(Γ\G(Qp)/Kp) =
∑

γ∈Γ/∼

voldz(Γγ\Zγ(Qp))
∫

Zγ(Qp)\G(Qp)

h(ḡ−1γḡ)dḡ.

2.7.2 Applications of the useful global result

We apply this trace formula to a matrix coefficient h =< gvi, φi > (resp. the
Euler-Poincare function h = hEP

χ ) of a supercuspidal (resp. in the case Gl2
Steinberg representation Stχ. )

Since our group Γ does not contain any elliptic non central element, we get
by Selbergs principle or the properties of the Euler-Poincare function that

For any γ ∈ Γ \ Z(Qp)we have
∫

Zγ(Qp)\G(Qp)

h(ḡ−1γḡ)dḡ = 0.

We can conclude

tr(h|A(Γ\G(Qp)/Kp) = h(e)voldg(Γ\G(Qp)).

On the other hand for a supercuspidal representation πp the trace of h on
πp is equal to 1

d(πp) . If mΓ(πp) is the multiplicity of πp in A(Γ\G(Qp)/Kp), we
get

h(e)voldg(Γ\G(Qp)) =
m(πp)
d(πp)

.

The number h(e) = 1 if πp is supercuspidal.

(i) If πp is a supercuspidal representation with π
Kp
p 6= {0} then it occurs

with strictly positive multiplicity in A(Γ\G(Qp)/Kp). Especially it follows that
the number of discrete series representations of level Kp (this means of course
π

Kp
p 6= {0}) is finite.

(ii) The formal degrees d(πp) are integer multiples of

1
h(e)voldg(A(Γ\G(Qp))

In the case of the Steinberg representation we get for the two sides

1−m(Stχ) =
1− p

2
because the trivial representation sits in our space.

If πp is not supercuspidal, then we consider only the case Gl2. We give
a second application. We choose an embedding of F into C. On the space
A(Γ\G(Qp)/Kp)C of C valued functions a positive definite hermitian scalar prod-
uct:
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< f, g >=
∫

Γ\G(Qp)

f(x)g(x)dx.

If we pass to a subgroup Γ′ of finite index, then we get a covering Γ′\G(Qp)/Kp →
Γ\G(Qp)/Kp and an inclusion A(Γ\G(Qp)/Kp)C ↪→ A(Γ′\G(Qp)/Kp)C and for
f, g ∈ A(Γ′\G(Qp)/Kp)C we define the scalar product

< f, g >==
1

[Γ : Γ′]

∫
Γ′\G(Qp)

f(x)g(x)dx

which gives us the same value for functions in the smaller space as before. Let
us denote by [Γ] the directed family of congruence subgroups.

Therefore we can even pass to the projective limit

lim
← Γ∈[Γ]

Γ′\G(Qp)/Kp,

this is a profinite set and on this space we have the locally constant functions

A∞([Γ]\G(Qp)/Kp)C = lim
Γ′
A(Γ′\G(Qp)/Kp).

Clearly we have a positive definite scalar product on this space, we can
complete it to a Hilbert space A2([Γ]\G(Qp)/Kp)C. It is also clear that the the
Hecke algebra acts on both spaces by convolution. Furthermore it is also easy
to see that the action on the two spaces is faithful, i.e. the homomorphism

H(G(Qp)//Kp) → End(A∞([Γ], G(Qp)/Kp)C)

is an injection. Finally it follows by a standard argument, that the operators
on the Hilbert space are in fact compact.

We can define an involution on the Hecke algebra h(x) 7→ h(x−1) = h∗(x)
so that < Thf, g >=< f, Th∗g >. Hence we see that our Hecke algebra can be
identify to a subalgebra of compact operators on A2(G(Qp)/Kp). This algebra is
closed under adjunction and this implies by a standard argument in functional
analysis that our Hilbert space decomposes into a discrete direct sum of irre-
ducible modules, where each isomorphism type occurs with finite multiplicity.
We write

A2([Γ], G(Qp)/Kp)C =
⊕
πp

H
m(πp)
πp .

The πp denote the isomorphism types, let us call the set of isomorphism types
Ĥ[Γ](G(Qp)/Kp). We may decompose this set into a discrete part and a part
coming from principal series representations (or irreducible representations which
are induced from a supercuspidal representation):

Ĥ[Γ](G(Qp)/Kp) = Ĥ[Γ],princ ∪ Ĥ[Γ],disc.

The discrete part is finite, it occurs already for any choice of Γ ∈ [Γ], provided
it is torsion free. We have projectors to the discrete and the non discrete part,
accordingly we can decompose

H(G(Qp)//Kp)C = H(G(Qp)//Kp)C,princ

⊕
H(G(Qp)//Kp)C,disc
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The second summand is a finite dimensional semi simple algebra, which is
a direct sum of full matrix algebras. The summands correspond to the el-
ements πp ∈ H[Γ],disc. We have a system of orthogonal idempotents eπp

∈
H(G(Qp)//Kp)C)disc so that we get a decomposition into full matrix algebras

H(G(Qp)//Kp)C,disc =
⊕

πp∈Ĥ[Γ],disc

H(G(Qp)//Kp)Ceπp
.

(Here it may be necessary to discuss discrete series representations, which
are not supercuspidal more carefully. For Gl2/Qp we only have the Steinberg
module, which is easy to understand in this case.)

2.7.3 Characters and orbital integrals

Now we consider the case Gl2/Qp, our consideration are also true in general,
but the discussion becomes more complicated, since we have to consider the
composition series of induced representations more carefully.

We can give a different description of the discrete summand. We consider
the linear map given by the orbital integral

Õ : H(G(Qp)//Kp) → C(Qp),

we may restrict the functions Õ(h, t) to the regular elements and then to the
different regions, which are given by the conjugacy classes of maximal tori. Let
Õ(h, t)split be the restriction to the split regular semisimple classes.

Let us assume that we have an element h ∈ H(G(Qp)//Kp) for which
Õ(h, t)split = 0. Then for any πp ∈ Ĥ[Γ],princ we get

tr(h|πp) =
∫
C(Qp)

Õ(h, c)chπp
(c)|dx|(dc) = 0,

because we have seen, that the character chπp vanishes on non elliptic regular
semi simple elements. Hence we can conclude, that h ∈ H(G(Qp)//Kp)C,disc.

We return to the characters. An irreducible admissible representation πp

of G(Qp) has a central character ωπp
= ωp. In the following we fix the central

character of our representations, let us denote it by ωp. We consider the space
Cc,ω−1

p
. For any h ∈ Cc,ω−1

p
we defined the trace tr(h|πp). We apply Harish-

Chandra theorem and get

tr(h|πp) =
∫

G(Qp)/Z(Qp)

h(g)chπp
(g)dg.

Now we have to show a little bit of courage and apply Weyls formula and get

tr(h|πp) =
∫

G(Qp)/Z(Qp)

h(g)chπp
(g)dg =

∫
C(Qp)/Z(Qp)

Õ(h, c)chπp
(c)|dx|(dc).

We want to plug in suitable functions h into this formula. Such functions h
will be a contragredient matrix coefficients h(g) =< vi, gφj >π′p of supercuspidal
representations π′p or suitable Euler-Poincare function hEP

χ .
We have the following fact
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The hyperbolic orbital integrals and the regular unipotent orbital integrals of
these functions h vanish.

Then we can conclude from the Shalika germ expansion that the orbital
integrals of our functions h are locally constant on (C(Qp)/Z(Qp))reg. They are
even locally constant with compact support if we restrict them to the closure of
any C(Qp)F .

From here it is not so difficult any more to derive the following facts

(i) For all h in our space of functions we have

tr(h|πp) = 0 if πp is in the principal series

(ii) If h =< vi, gφj >π′p for a supercuspidal representation π′p then tr(h|πp) =
0 if πp is not equivalent to π′p or if i 6= j.

(iii) If πp = π′p and i = j then tr(h|πp) = 1
d(πp)

(iv) If h = hEP
χ then tr(h|πp) = 0 if πp 6= Stχ and equal to 1 else

This implies that for a supercuspidal πp

O(< vi, gφj >π′p , c) =
1

d(πp)
chπp(c) for all c ∈ C(Qp)reg

and similarly

O(hEP
χ , c) = chSt,χ(c).

This proves orthogonality relations for characters in the discrete series:
For two discrete series representations πp, π

′
p we have∫

C(Qp)reg/Z(Qp)

chπ∨p (c)chπ′p(c)|dx|(dc) =

{
1 for πp = π′p
0 else

2.7.4 The orbital integrals of the identity element

We now choose the measure that has volume one on Gl2(Zp), then the charac-
teristic function h0 of Gl2(Zp) is the identity in the unramified Hecke algebra.

We represent the conjugacy classes of semi simple elements by matrices γ =

γa,b =
(
a −1
b 0

)
. Since we want to have non zero orbital integrals we assume

that b ∈ Z×p and a ∈ Zp. Our local integral is∫
Zγ(Qp)\G(Qp)

χGl2(Zp)(ḡ−1
p γḡp)dḡp =∑

ḡp∈Zγ(Qp)\G(Qp)/Kp

[KZ
p,max : KZ

p (gp)]χGl2(Zp)(ḡ−1
p γḡp) = Oarith(h0, γ).

Now we observe that the condition χGl2(Zp)(ḡ−1
p γḡp) = 1 means that for a

representative gp of ḡp the free Zp module gpZ2
p ⊂ Q2

p is in fact a Zp[γ] module.
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Two such Zp[γ] modules gpZ2
p, g
′
pZ2

p are the same if and only if gp ∈ g′pGl2(Zp)
and the are isomorphic if and only if gp ∈ Zγ(Qp)g′p. Hence we see that our
orbital integral is equal to the sum∑

[Mp]

voldzp
(Aut(Mp))−1

over the isomorphism classes of Zp[γ] submodulesM ⊂ Q2
p which are Zp modules

of rank 2.
It is a tedious computation to evaluate these sums. I want to give a brief

outline how this can be done. We have to consider the case of p-elliptic elements.
In this case we can conjugate our torus into a torus T/Qp such that T (Zp) ⊂
Gl2(Zp) and γa gets conjugated into an element γ ∈ T (Zp).

Now it is clear, that the fixed point set of T (Zp) on the Bruhat-Tits building
is

BT(Gl2/Qp)T (Zp) = the module Z2
p,

if the torus splits over the unramified extension. If the torus splits over a
ramified extension, then we should remember that we can identify Z2

p = OF

and the modules that are fixed by T (Zp) are the ideals. Hence we see two fixed
points in the building namely OF and the maximal prime ideal, which defines
a sublattice of index p. This two fixed points are joined by an edge, which also
consists of fixed points. This edge is the fixed point set.

Now our element γ ∈ T (Zp) has a set of fixed points on BT(Gl2/Qp)), the
vertices in this fixed point set are exactly the modules Mp which are Zp[γ]
modules.

Hence it becomes clear that∑
[Mp]

voldzp
(Aut(Mp))−1 = #BT(Gl2/Qp)γ

and to compute the orbital integral we have to count the number of fixed points.
A similar reasoning can be applied in the the case of a split torus. In this

case the fixed point set of T (Zp) is an apartment in BT(Gl2/Qp) this means in
concrete terms it is the set of lattices

{Zp ⊕ pνZp}ν∈Z.

On this fixed point set we have the action of T (Qp)/T (Zp) = Z2, where
the central elements act trivially. Hence we can argue as before, but we have
to divide the fixed point set BT(Gl2/Qp)γ by the action of Z and then we
have to count the fixed points. This also explains the vanishing of the Euler
characteristic in 2.7. in this case.

We say that γ is maximal at p if Zp[γ] is a maximal order. For γ maximal
at p the value of the orbital integral is equal to 1. If p 6= 2 then the element γ
is maximal at p if p2 does not divide a2 − 4b.

We conclude that for a maximal element γ we have

Oarith(h, γ) = 1

in all cases(???).
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In general let pd(γ) be the exact power of p dividing a2 − 4b and let s(γ) =
[d(γ)

2 ] the Gauss bracket.

We begin with the case p > 2 then we find for the orbital integrals

ps(γ)+1 + ps(γ) − 2
p− 1

if d(γ) is even and Qp(
√
a2 − 4b) is a field

ps(γ) if d(γ) is even and Qp(
√
a2 − 4b) is Qp ⊕Qp

ps(γ)+1 − 1
p− 1

if d(γ) is odd

For p = 2 we get

1 if a is odd (a2 − 4b is odd )

Now we consider the case that d(γ) is even, then we get the values

2s(γ)+1 + 2s(γ) − 2 if Q2(
√
a2 − 4b) is an unramified field extension

2s(γ) − 1 if Q2(
√
a2 − 4b) is a ramified field extension

2s(γ) if Q2(
√
a2 − 4b) is split

Finally we find

2s(γ) − 1 if m(a, 2) is odd

Let me just observe that the orbital integral at p becomes large if the eigen-
values of γ are p- adically close to each other. We also check easily that the
extension Qp(

√
a2 − 4b) can only split if d(γ) is even and then it is also clear

that ps(γ) = |α(γ)−1)|p and in the split case we get our previous results. (germ
expansion)

2.8 The case h = tpm

Recall that tpm is the characteristic function of G(Zp)
(
pm 0
0 1

)
G(Zp). In this

case we put γ =
(
a −
1 pm

)
0. We want to compute

O(tpm , γ) =
∫

Zγ(Qp)\G(Qp)

tpm(ḡpγḡ
−1
p )dḡp

Let pt be the highest power of p dividing a. Let us assume that 2t < m, this
is the easy case. Then

√
a2 − 4pm = a

√
1− 4pm/a2 and pm/a2 is still divisible

by p. This implies that the square root exists in Qp and hence γ splits. It is
easy to see that the two eigenvalues have p adic order t and m − t, where we
know m− t > t. Hence 3.2.1 applies and we get under our assumption 2t < m

O(tpm , γ) =

{
1 if t = 0
pt(1− 1

p ) if t > 0
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I have not yet checked the other cases, but I think I know the answer for
p > 3.

We define

χ(a, p) =


1 If the extension Qp(

√
a2 − 4pm) is split

0 If the extension Qp(
√
a2 − 4pm) is ramified

−1 If the extension Qp(
√
a2 − 4pm) is unramified non split

.

Then let ν(a) be the highest power of p dividing a. We set ν(a) =
[
m/2

]
for

a = 0. Then at least in the cases p > 3 we have

O(tpm , γ) = pν(a)−1(p− χ(a, p))

2.9 The fundamental lemma

This fundamental lemma is an assertion, which tells us that we have a lot of
cancellations between the expressions, which give us the two orbital integrals
which sum up to the stable orbital integral. We go back to Chap. V 3.2.3., where
we considered the group Gl2/Qp and gave the values for the orbital integrals

of the characteristic function of Gl2(Zp) at the matrix γa =
(
a −1
1 0

)
. We

observe that this orbital is stable and equal to the stable orbital integral for the
characteristic function h1 of Sl2(Zp). The centralizer of γa is a maximal torus
T (1)/Qp. Let us consider the case that T (1) ⊂ Sl2/Qp is an anisotropic torus,
which corresponds to the unramified quadratic extension F/Qp. We assume that
T (1)(Zp) ⊂ Sl2(Zp). Then we have D(γa)) = a2 − 4 and |D(γa)|p = p−d(γa)) =
p−2s(γa)). l.

In the previous section we stated that the value of the orbital integral
Oarith(h, γa) is given by

ps(γ)+1 + ps(γ) − 2
p− 1

.

This is the sum of two instable orbital integrals, the stable class decomposes
into two G(Qp) conjugacy classes. This decomposition is given by

ps(γ)+1

p− 1
− 1
p− 1

and
ps(γ)

p− 1
− 1
p− 1

.

If we now take the difference, then this is the κ-orbital integral and we get
simply

ps(γ)+1 − ps(γ)

p− 1
= ps(γ).

This values has to be divided by |D(γa)|−1/2
p and the value of the κ-orbital

becomes constant, it does not depend on a. This is the assertion b) ii in the
statement of the fundamental lemma for the special case of the function h1. We
observe that we get a remarkable simplification.

To get a better understanding of these simplification we have to discuss the
Shalika germ expansion for the group Sl2. In this group we have several conju-
gacy classes of regular unipotent elements, they are represented by matrices{(

1 ξ
0 1

)
| ξ ∈ Q×p , ξ mod (Q×p )2

}
.
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If we now take a quadratic extension F/Qp, then we know that p−1(C(Qp)F

decomposes into two sets: We pick a c ∈ C(Qp)F and a γ ∈ p−1(c)(Qp). Its
centralizer is a maximal torus T/Qp, we have a second torus T ′/Qp in the same
inner class, but which is not conjugate to T/Qp. Then we get the decomposition

p−1(C(Qp)F = C ∪ C ′

where C (resp. C ′) consists of the elements which are conjugate to an element
in T (Qp)(resp.T ′(Qp)). At this point the roles of C,C ′ and the roles of these
two tori are totally symmetric, we can not distinguish between them.

The closure of C (resp. C ′) contain conjugacy classes of regular unipotent
elements, but each of the closures only contains one half of the regular unipotent
elements. We need to understand this decomposition into two subsets.

I recall that we also have chosen a semi simple integral structure G/Zp =
Sl2/Zp, we also recall that up to conjugation we have two such choices. We also
selected a pair of maximal tori T/Qp, T

′/Qp, for any inner splitting class, which
is given by a field extension F/Qp. We always make our choice so that T (Zp) ⊂
G(Zp). To this second torus corresponds the non trivial class in Q×p /NF/Qp

F×.
To see what happens we have to distinguish between the two cases

A) The torus T/Qp splits over the unramified quadratic extension. In this
case it is clear that T ′(Zp) 6⊂ G(Zp). This tells us that in this case the choice of
the integral structure G gives us a rule to distinguish between C and C ′. If we
choose a conjugacy class of regular unipotent elements, which we represent by

an element
(

1 ξ
0 1

)
, then we get regular semi simple elements which are closed

to the given unipotent element if we write down(
1 0
η 1

) (
1 ξ
0 1

)
=

(
1 ξ
η ηξ + 1

)
,

where ordp(η) >> 0. This element has trace 2 + ξη = c, which is close to 2 and
it is regular if η 6= 0. Now we ask, when are two such elements(

1 ξ
η ηξ + 1

)
,

(
1 ξ′

η′ η′ξ′ + 1

)
with the same trace are actually conjugate in Sl2(Qp). It is clear that they are

conjugate in Gl2(Qp) and the conjugating matrix is
(
ξ/ξ′ 0
0 1

)
. It is clear that

we may choose for our torus T/Qp the centralizer of any element
(

1 1
η η + 1

)
,

provided it corresponds to the unramified extension. If we replace this element

by
(

1 ξ
ηξ−1 η + 1

)
, then the conjugacy class of its centralizer corresponds to

ξ ∈ Q×p /NF/Qp
F× = Z/2Z, the non trivial class is given by the prime element

{p}. This tells us that in this case

The the unipotent classes in the closure of C are represented by
(

1 ξ
0 1

)
where ξ ∈ Z×p . The the unipotent classes in the closure of C ′ are represented

by
(

1 ξ
0 1

)
where ξ ∈ pZ×p .
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The other case is
B) The torus T/Qp splits over a ramified extension F/Qp. Actually we may

proceed in the same way, we choose our torus T/Qp so that T (Zp) ⊂ G(Zp).
Again we know that the other torus is obtained from the non trivial class in
Q×p /NF/Qp

F×. But now we can represent this non trivial class by a unit ξ0 ∈ Z×p .
This implies that our second torus T ′/Qp can also be chosen in such a way that
T (Zp) ⊂ G(Zp). (This means that the integral structure G does not provide a
rule to distinguish between T and T ′ and this is more or less the reason for the
assertion (ii) in the fundamental lemma.)

We find a unit u ∈ Zpt, such that up is a norm and then

The the unipotent classes in the closure of C are represented by
(

1 ξ
0 1

)
where ξ ∈ Zpt

2 or ξ ∈ upZpt
2. The the unipotent classes in the closure of C ′

are represented by
(

1 ξξ0
0 1

)
where ξ ∈ Zpt

2 or ξ ∈ upZpt
2.

Now we are in the position to discuss the Shalika expansion for the group
Sl2/Zp. For any anisotropic torus T1/Qp and any regular unipotent conjugacy
class O we define

χ(T1,O) =

{
1 if O ⊂ C̄1

0 else

where C1 is the class which is determined by the conjugacy class of T1/Qp.
Then the Shalika germ expansion will give us for any h in the Hecke algebra

an asymptotic expansion: A regular anisotropic element defines a torus T =
T (γ) and if γ is close to one of the central elements z ∈ Z(Qp) then

Õ(h, γ) =
∑
O
χ(T,O)O(h,O) + |D(γ)|1/2

p cTh(z)

with some constant cT .
If we replace our torus by the other torus in the inner class we get

Õ(h, γ′) =
∑
O
χ(T ′,O)O(h,O) + |D(γ′)|1/2

p cT ′h(z)

The κ− orbital integral is then the difference of these two terms multiplied
by |D(γ′)|p, hence we get for this κ-orbital integral the asymptotic expansion∑

O
χ(T,O)Õ(h,O)−

∑
O
χ(T ′,O)Õ(h,O) + |D(γ)|1/2

p (cT − cT ′)h(z).

The first term does not depend on γ. Hence it becomes quite clear that the
continuity in the assertion of the fundamental lemma is equivalent to cT = cT ′ .

To get this equality of the constants and therefore the continuity it suffices
to compute these constants for any function, which is non zero at the central
elements. We consider the congruence subgroup

K(1) =
{
γ =

(
1 + px py
pz 1 + pu

)
|x, y, z, u ∈ Zp

}
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of Sl2(Zp) let h be its characteristic function. We want to compute the orbital
integrals O(h, γ) for γ ∈ K(1). We assume that p > 2.The determinant condition
allows us to eliminate one of the variables, we get

u =
−x+ pyz

1 + px
,

then the Tamagawa measure on K(1) is

|dx ∧ dy ∧ dz|
p3

.

The trace maps K(1) to 2 + pZp, we put

u+ x =
−x+ pyz

1 + px
+ x = p

x2 + yz

1 + px
= pv

and hence

v =
x2 + yz

1 + px
.

Then the trace of the matrix is 2 + p2v and |D(γ)|p = p−2−ordp(v). We get the
relation among differentials

(1 + px)dv = (−vp+ 2x)dx+ zdy + ydz.

Then except for the singular point (x, y, z) = (0, 0, 0) one of the factors on
the right hand side is non zero hence on Greg we can eliminate locally one of
the differentials dx, dy, dz and then it becomes clear that outside the set y = 0,
which is of measure zero, we get

|ωH\G| =
1

p3|y|p
dx ∧ dy

Hence we see: If we fix the value of v ∈ Zp, then the value of the stable
orbital integral is (we forget the factor 1/p3 for a while)∫

{(x,y,z)|v(1+px)=x2+yz}

|dx ∧ dy|
|y|p

.

The domain of integration needs some explanation. It contains the variable z,
but it is quite clear that z is uniquely determined by the algebraic relation.
Hence we are integrating over x, y, but we must be able to solve the relation in
z. This means that we have to compute the volume of the domain

{(x, y)|ordp(v(1 + px)− x2) ≥ ordp(y)}.

We distinguish cases. If v = 0, then we compute the volume of the regular
unipotent orbit intersected with K(1), this regular unipotent orbit is given by
yz + x2 = 0, where the central elements are removed. We write the integral
over y as an infinite sum, we group according to the order of y. The volume of
any annulus {y|ordp(y) = ν} with respect to the measure dy

|y|p is 1− 1
p hence the

summation gives us
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(1− 1
p
)
∞∑

ν=0

∫
Zp

{x|2ordp(x) ≥ ν}|dx|(dx)

= (1− 1
p
)(1 +

1
p
)
∞∑

ν=0

p−ν = 1 +
1
p
.

This is the stable orbital integral over the regular unipotent elements.

We compute the instable orbital integrals over the unipotent classes. As we
know the set of regular unipotent elements in G(Qp) decomposes into orbits
under G(Qp) these correspond to the classes in Q×p /(Q×p )2, a unipotent element

γ =
(

1 + px py
pz 1− px

)
lies in the class py or pz, one of the two elements is non zero, if both are non zero
then their product is x2p2, hence they represent the same class. Therefore to get
the orbital integrals of h over the individual conjugacy classes ξ ∈ Q×p /(Q×p )2

we have to pick a ν and to replace the factor (1− 1
p ) by vol|dy|/|y|p({y ≡ ξ}). We

can define ordp(ξ) mod 2, then this factor is zero if ordp(ξ) 6≡ ν+1 mod 2 and
(1− 1

p )/2 else. Hence we get for the orbital integrals over the different unipotent
classes (we still assume p > 2){

1
2 if ordp(ξ) ≡ 1
1
2p else

.

We look at the case v 6= 0 we go back to the stable integrals. We consider
the stable integral first. We have

ordp(v(1+px)−x2) =

{
min(ordp(v(1 + px)), ordp(−x2)) if the orders are different
ordp(v − x2

1+px ) if these orders are equal .

The second case can only happen if ordp(v) is even, and then only if we can
solve the quadratic equation x2 − (1 + px)v = 0, i.e. if v is a square, and this
means that the torus splits.

We assume that the torus is not split. Then we see that our summation
gives us

(1− 1
p
)
ordp((v)∑

ν=0

vol|dx|{x|2ordp(x) ≥ ν} =

(1− 1
p
)
∞∑

ν=0

vol|dx|{x|2ordp(x) ≥ ν}−

(1− 1
p
)

∞∑
ν=ordp(v)+1

vol|dx|{x|2ordp(x) ≥ ν}

The first term is again the unipotent orbital integral. To compute the second
term we observe that
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vol|dx|{x|2ordp(x) ≥ ν} =

{
p−

ν
2 if ν is even

p−
ν+1
2 if ν is even

If ordp(v) + 1 is even, then the infinite sum is

(1− 1
p
)p−

ordp(v)+1
2 (1 + 2(

1
p

+
1
p2

+ . . . )) = (1 +
1
p
)p−

ordp(v)+1
2

If ordp(v) + 1 is odd, then we get

2(1− 1
p
)p−

ordp(v)+2
2 (1 +

1
p

+
1
p2

+ . . . )) = 2p−
ordp(v)+2

2

The torus defined by v is unramified if and only if v is even. Recall that for
a matrix γ with a given trace tr(γ) = 2 + p2v we have

|D(γ)|1/2
p = p−1−ordp(v)/2.

Therefore we define for an anisotropic torus T/Qp ⊂ Sl2/Qp the constant

cT =

{
2 if the torus is unramified
(1 + 1

p )p1/2 else

The factor in front depends only on the inner splitting class defined by v. Hence
we proved the Skalika germ expansion for the stable orbital integrals and we
computed the constants.

If we consider the instable orbital integrals, then we have to divide the regions

{x|2ordp(x) ≥ ν}

into the two parts corresponding to the two conjugacy classes ( v is given). If the
extension is unramified, then this division is according to the parity of ordp(x).
But if we look at the infinite sum which gives us the second term, we see that
all powers of p occur twice, and each power of p is obtained once from an x with
ordp(x) even and from another x with ordp(x) odd. We conclude that the two
constants for the two conjugacy classes of unramified tori are equal to one.

For the ramified tori we consider the quadratic character χF attached to the
field. We find a unit u0 ∈ Z×p such that χF (u0p) = 1. For any x ∈ Zp \ {0} we
look at the value

ccF (x) = χF (x/(u0p)ordp(x))

which is ±1 and decides in which conjugacy class the element γ lies. Hence
it is clear that any of our sets {x|2ordp(x) ≥ ν} is divided in two classes of equal
volume. This means that the constants for the two conjugacy classes of an inner
splitting class are just half of the constants for the stable germ expansion.

This gives us the fundamental lemma for the characteristic function of K(1),
more precisely we get it asymptotically for γ approaching central elements. But
it is clear that it is valid for all elements γ ∈ K(1).

We may also do our computation for the split torus, actually it is not nec-
essary because we know that in this case the value of the trace determines the
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conjugacy class. But the computation is a little bit amusing. We know that
ordp(v) must be even. We have that for ν ≤ ordp(v) we have the equality of the
two sets

{x|ordp(v(1 + px)− x2) ≥ ν} = {x|2ordp(x) ≥ ν}.
If ν > ordp(v), then in the case of a non split torus, the set on the left hand side is
empty, therefore the summation above stopped at ν = ordp(v). But in the split
case we can find two element x1, xx which solve the equation v(1+pxi)−x2

i = 0,
these elements satisfy ordp(xi) = ordp(v)/2. Then we get for ν > ordp(v)

{x|ordp(v(1 + px)− x2) ≥ ν} = {x = xi + pνz|i = 1, 2, z ∈ Zp}.

The volume of this set is p−µ. and we see that the terms in the summation
are exactly the same as the summations for the unipotent orbital integrals, we
find that the constant is 0.

Hence it remains to show the assertion concerning the values of the κ-orbital
integrals for the elements h in the unramified Hecke algebra. Here we check them
for elements γ ∈ T (Qp) which are close to central elements, we get

Õ(h, γ, κ) =
∑
O
χ(T,O)Õ(h,O)−

∑
O
χ(T ′,O)Õ(h,O)

and this value is constant. To compute this value we have to compute the orbital

integrals Õ(h,
(

1 ξ
0 1

)
) for the different choices of ξ. To do this we recall the

computation in Chap III. (ref ). Let T0/Qp be the standard split maximal torus.
We recall the Iwasawa decomposition

U(Qp)× T0(Qp)×Kp → G(Qp),

under this map the bi-invariant measure onG(Qp) becomes the measure |t−2ρ
p |dup×

dtp×dkp, where the volumes of U(Zp), T (Zp),Kp are equal 1. This pair of mea-
sures induces the measure ω̃arith

T0\G on the set of regular split semi simple conjugacy
classes. Recall that 2ρ = α, this is the positive root. This measure relates to
our geometric measure by

ω̃arith
T0\G(c) = |D(c)|−1/2

p

p+ 1
p

ωG/C(c).

We write g ∈ G(Qp) as g = utk then g−1

(
1 ξ
0 1

)
g = k−1t−1

(
1 ξ
0 1

)
tk. As

usual we write t =
(
t 0
0 t−1

)
and we find for our orbital integral

Õ(h,
(

1 ξ
0 1

)
) = |ξ|p

∫
T (1)(Qp)

∫
K

h(k−1t−1

(
1 ξ
0 1

)
tk)|t|−2

p dkdt

= |ξ|p
∫

T (1)(Qp)

h(t−1

(
1 ξ
0 1

)
t)|t|−2

p dt = |ξ|p
∫

T (1)(Qp)

h(
(

1 α−1(t)ξ
0 1

)
)|t|−2

p dt.

Now it is clear that the value h(
(

1 α−1(t)ξ
0 1

)
) only depends on |α−1(t)ξ|p,

hence our integral becomes an infinite sum
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p−ordp(ξ)
∑
ν∈Z

h(
(

1 p−2νξ
0 1

)
)p2ν .

Now we assume that our function h is the characteristic function of the double

coset Sl2(Zp)
(
pm 0
0 p−m

)
Sl2(Zp). We have to find out when(

1 p−2νξ
0 1

)
∈ Sl2(Zp)

(
pm 0
0 p−m

)
Sl2(Zp)

If m = 0 then this means that ordp(ξ) ≥ 2ν and our sum is

p−ordp(ξ)
∑

2ν≤ordp(ξ)

p2ν =

{
p2

p2−1 if ordp(ξ) is even
p

p2−1 else
.

In the ramified case we have χ(T,O) = 1 for exactly one of the classes with
ordp(ξ) = 0 and exactly one of the classes with ordp(ξ) = 1. For the remainig
two classes the other torus contributes, i.e. we have χ(T ′,O) = 1. Hence we see
that

Õ(h, γ, κ) =
∑
O
χ(T,O)Õ(h,O)−

∑
O
χ(T ′,O)Õ(h,O) = 0

In the unramified case we have χ(T,O) = 1 for the two classes where ξ ∈ Z×p ,
and χ(T ′,O) for the two classes in pZ×p . We get

Õ(h, γ, κ) =
∑
O
χ(T,O)Õ(h,O)−

∑
O
χ(T ′,O)Õ(h,O) =

p

p+ 1

This yields

|D(γ)|1/2
p (Oarith(h, γ)−Oarith(h, γ′)) = 1

at least if γ is close to one. This is the asymptotic assertion of the fundamental
lemma for the identity element. But it is clear that the asymptotic version
is good enough for γ ∈ K(1), the other elements γ are maximal and then the
assertion is also proved.

If m > 0, then it is an easy calculation that our condition is satisfied if and
only if −ordp(ξ) + 2ν = m hence (I will do this later)
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