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The Inverse Scattering Transform (IST) for the defocusing vector nonlinear
Schrödinger equations (NLS), with an arbitrary number of components and
nonvanishing boundary conditions at space infinities, is formulated by adapting
and generalizing the approach used by Beals, Deift, and Tomei in the
development of the IST for the N -wave interaction equations. Specifically,
a complete set of sectionally meromorphic eigenfunctions is obtained from
a family of analytic forms that are constructed for this purpose. As in the
scalar and two-component defocusing NLS, the direct and inverse problems
are formulated on a two-sheeted, genus-zero Riemann surface, which is then
transformed into the complex plane by means of an appropriate uniformization
variable. The inverse problem is formulated as a matrix Riemann-Hilbert
problem with prescribed poles, jumps, and symmetry conditions. In contrast to
traditional formulations of the IST, the analytic forms and eigenfunctions are
first defined for complex values of the scattering parameter, and extended to
the continuous spectrum a posteriori.

1. Introduction

Nonlinear Schrödinger (NLS) systems are prototypical dispersive nonlinear
partial differential equations derived in many areas of physics (such as
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water waves, nonlinear optics, soft-condensed matter physics, plasma physics,
etc.) and analyzed mathematically for over 40 years. The importance of
NLS-type equations lies in their universal character, because, generically
speaking, most weakly nonlinear, dispersive, energy-preserving systems give
rise, in an appropriate limit, to the NLS equation. Specifically, the NLS
equation provides a “canonical” description for the envelope dynamics of a
quasi-monochromatic plane wave propagating in a weakly nonlinear dispersive
medium when dissipation can be neglected.

There are two inequivalent versions of the scalar NLS equation, depending
on the dispersion regime: normal (defocusing) and anomalous (focusing).
The focusing NLS equation admits the usual, bell-shaped solitons, while
the defocusing NLS only admits soliton solutions with nontrivial boundary
conditions (BCs). These solitons with nonzero BCs are the so-called dark/gray
solitons that appear as localized dips of intensity on a nonzero background
field. The same is true for the vector (coupled) NLS (VNLS) equations.
However, in the vector case the soliton zoology is richer. The focusing VNLS
equation has vector bright soliton solutions, which, unlike scalar solitons,
interact in a nontrivial way and may exhibit a polarization shift (i.e., an energy
exchange among the components, cf. [1, 2]). The defocusing VNLS solitons
include dark–dark soliton solutions, which have dark solitonic behavior in all
components, as well as dark–bright soliton solutions, which have (at least) one
dark and one (or more than one) bright components. Such solutions where
first obtained by direct methods [3, 4, 5, 6], and spectrally characterized, in
the two-component case, in Ref. [7]. Dark–bright or dark–dark solitons in
two-component VNLS do not exhibit any polarization shift, but the situation
might be different if at least one dark and more than one bright channel are
present. This is one of the motivations for the present study of multicomponent
defocusing NLS systems.

While the Inverse Scattering Transform (IST) as a method to solve the
initial value problem for the scalar NLS equation was developed many years
ago, both with vanishing and nonvanishing BCs, the basic formulation of IST
has not been fully developed for the VNLS equation:

iqt = qxx − 2σ‖q‖2q, (1)

where q = q(x, t) is an N -component vector and ‖·‖ is the standard Euclidean
norm. The focusing case (σ = −1) with vanishing BCs in two components
was dealt with by Manakov in 1974 [8], and the formalism extends to an
arbitrary number of components in a straightforward way [9]. The IST for the
VNLS with nonzero boundary conditions (NZBCs) has been an open problem
for over 30 years, and only the two-component case was recently solved in
Ref. [7] (partial results were obtained in Ref. [10]). The goal of this work is
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to present the IST on the full line (−∞ < x < ∞) for the N -component
defocusing VNLS (1) with NZBCs as |x | → ∞: that is, q± = limx→±∞ q �= 0.

As is well-known, for either dispersion regime (1) admits a (N + 1) ×
(N + 1) Lax pair. Already in the scalar case N = 1, the IST for the NLS
equation with NZBCs is complicated by the fact that the spectral parameter
in the scattering problem is an element of a two-sheeted Riemann surface
(instead of the complex plane, as it is customary in the case of zero BCs). In
the scalar case, however, one still has two complete sets of analytic scattering
eigenfunctions, and the direct and inverse problems can be carried out in more
or less standard fashion, as shown in the early work by Zakharov and Shabat
[11] (see also Faddeev and Takhtajan [12] for a more detailed treatment). When
N > 1, however, 2(N − 1) out of the 2(N + 1) Jost eigenfunctions (defined as
usual via Volterra integral equations) are not analytic, and one must somehow
find a way to complete the eigenfunction basis. For the case N = 2, this last
task was accomplished in Ref. [7] by generalizing the approach suggested by
Kaup [13] for the three-wave interaction problem, and completing the basis
of eigenfunctions with cross products of appropriate adjoint eigenfunctions.
The major drawback of this approach, however, is that, at least in its present
formulation, it is restricted to the case N = 2.

An alternative approach, used in Refs. [14, 15] for the N -wave interactions,
makes use of Fredholm integral equations for the eigenfunctions. This approach,
however, cannot be generalized “as is” to VNLS with NZBCs, because the
BCs q± for the potential are in general different from each other. As a result,
even though bounded Green’s functions can be constructed, for instance, by
asymmetric contour deformation in the plane of the scattering parameter, the
convergence of an integral in x with either q−q− or q−q+ will be assured
only at one end. Therefore, to write down meaningful Fredholm integral
equations, one should then first replace the given potential with one decaying
smoothly at both ends, as suggested by Kawata and Inoue [16]. This process,
however, introduces an “energy-dependent” potential, that is, a potential with a
complicated (though explicit) dependence on the scattering parameter, and it
is not clear how to establish the analytic properties of eigenfunctions and
scattering data with such a potential. Moreover, when N ≥ 3, the eigenvalue
associated with the nonanalytic scattering eigenfunctions becomes a multiple
eigenvalue, with multiplicity N − 2, in contrast to the case of the N -wave
interaction, where all eigenvalues are assumed to be distinct.

The approach presented in this paper consists in generalizing to the VNLS
with NZBCs the methods developed by Beals et al. in Ref. [17] for general
scattering and inverse scattering on the line with decaying potentials. Broadly
speaking, the approach we propose is consistent with the usual development
of IST. Namely, for the direct problem: (i) Find complete sets of sectionally
meromorphic eigenfunctions for the scattering operator that are characterized
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by their asymptotic behavior. (ii) Identify a minimal set of data that describes
the relations among these eigenfunctions, and which therefore defines the
scattering data. For the inverse problem: reconstruct the scattering operator
(and in particular the potential) from its scattering data. On the other hand,
specific features of this approach, including those related to our extension of
Beals, Deift, and Tomei’s work, are

(a) A fundamentally different approach to direct and inverse scattering.
Typically, eigenfunctions and scattering data are defined for values of the
scattering parameter in the continuous spectrum (e.g., the real axis in the
case of NLS with zero BCs), and are then extended to the complex plane.
The approach used here will be exactly the opposite: the eigenfunctions are
first defined away from the continuous spectrum, and the appropriate limits
as the scattering parameter approaches the continuous spectrum are then
evaluated.

(b) The use of forms (tensors constructed by wedge products of columns of the
matrix eigenfunctions), which simplifies the investigation of the analyticity
properties of the eigenfunctions by reducing it to the study of Volterra
equations.

(c) Departure from L2-theory: as already pointed out and exploited in [7],
bounded eigenfunctions are insufficient to characterize the discrete spectrum
when the order of the scattering operator exceeds two.

The outline of this paper is the following. In Section 2 we state the problem
and we introduce most of our notation. In Section 3: we define two fundamental
tensor families associated with the scattering problem; we prove that they are
analytic functions of the scattering parameter (Theorem 1) as well as point-wise
decomposable (Lemma 2); we define the boundary data corresponding to the
fundamental tensors (Theorems 2 and 3), we reconstruct two fundamental
matrices of meromorphic eigenfunctions (Lemma 3, Theorems 4 and 5, and
Corollaries 1–3); and we define a minimal set of scattering data (Theorem 6,
Corollary 4, and Theorem 7). Finally, we describe the asymptotic behavior
of the fundamental eigenfunctions with respect to the scattering parameter,
and we discuss the symmetries of the scattering data. The inverse problem is
formulated and formally linearized in Section 4, and the time evolution of
the eigenfunctions and scattering data is derived in Section 5. In Section 6,
we compare the results obtained in Ref. [7] for the direct problem in the
two-component case with the construction via fundamental tensors developed
here. Section 7 offers some final remarks. Throughout, the body of the
paper contains the logical steps of the method. All proofs are deferred to
Appendix A, while Appendix B contains the derivation of the asymptotic
behavior of the eigenfunctions via WKB expansions.
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2. Scattering problem and preliminary considerations

2.1. Boundary conditions, eigenvalues and asymptotic eigenvectors

The Lax pair for the N -component defocusing VNLS equation [that is,
Equation (1) with σ = 1] is

vx = Lv, (2a)

vt = Tv, (2b)

with

L = ikJ + Q =
(

−ik qT

r ikIN

)
, (3a)

T = −2ik2J − iJQ2 − 2kQ − iJQx =
(

2ik2 + iqT r − 2kqT − iqT
x

−2kr + irx − 2ik2IN − irqT

)
,

(3b)

where the subscripts x and t denote partial differentiation throughout, v =
v(x , t , k) is an (N + 1)-component vector, IN is the N × N identity matrix,

J = diag(−1, 1, . . . , 1︸ ︷︷ ︸
N

), Q =
(

0 qT

r 0N

)
, (4a)

qT = (q1, . . . , qN ) , r = q∗, (4b)

the asterisk denotes the complex conjugate and the superscript T denotes
matrix transpose. The compatibility of the system of Equations (2) [i.e., the
equality of the mixed derivatives of the (N + 1)-component vector v with
respect to x and t], together with the constraints of constant k and r = q∗, is
equivalent to requirement that q(x, t) satisfies (1) with σ = 1. As usual, (2a) is
referred to as the scattering problem.

We consider potentials q(x, t) with NZBCs at space infinity, such that:

lim
x→±∞ Q(x, t) = Q±(t) ≡

(
0 qT

±(t)

r±(t) 0N

)
, (5)

with ‖q+‖ = ‖q−‖ = q0 ∈ R
+. Specifically, we restrict our attention to

potentials in which the asymptotic phase difference is the same in all
components, that is, solutions such that

q± = q0 eiθ±
, (6)
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with θ± ∈ R. While this constraint significantly simplifies the analysis, it does not
exclude multicomponent configurations with both vanishing and nonvanishing
boundary conditions (such as for dark–bright solitons). Moreover, we assume
that for all t ≥ 0 the potentials are such that (q(·, t) − q−(t)) ∈ L1(−∞, c) and
(q(·, t) − q+(t)) ∈ L1(c, ∞) for all c ∈ R, where the L1 functional classes are
defined as usual by

L1(a, b) =
{

f : (a, b) → C
n :

∫ b

a
‖f(x)‖ dx < ∞

}
. (7)

To deal efficiently with the above nonvanishing potentials as x → ±∞, it is
useful to introduce the asymptotic Lax operators

L± = ikJ + Q± (8)

and write the scattering problem in (2a) in the form

vx = L±v + (Q − Q±)v, (9)

where L± is independent of x and (Q − Q±) → 0 sufficiently rapidly as
x → ±∞ for all t ≥ 0. The eigenvalues of the asymptotic scattering problems
vx = L±v are the elements of the diagonal matrix i� where

�(k) = diag(−λ, k, . . . , k︸ ︷︷ ︸
N−1

, λ), (10)

and λ is a solution of

λ2 = k2 − q2
0 . (11)

The corresponding asymptotic eigenvectors can be chosen to be the columns
of the respective (N + 1) × (N + 1) matrix

E±(k) =
(

k + λ 01×(N−1) k − λ

ir± iR⊥
0 ir±

)
, (12)

where R⊥
0 is an N × (N − 1) matrix each of whose N − 1 columns is an

N -component vector orthogonal to r±, that is, according to (6):

r†0R⊥
0 = 01×(N−1), (13)

where the dagger signifies conjugate transpose. Then, by construction, it is

L±E± = E± i� . (14)

The condition (13) does not uniquely determine the matrix R⊥
0 . It will be

convenient to also require that the columns of R⊥
0 be mutually orthogonal, and

each of norm q0. That is, we take R⊥
0 to be such that (R⊥

0 )†R⊥
0 = q2

0 IN−1. This
ensures that all the corresponding columns of E± are orthogonal to each other,
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besides being orthogonal to its first and last columns. Note, however, that the
first and last columns of E± are not orthogonal to each other, which is a
consequence of the fact that the matrix L± is not normal. In fact, the scattering
matrix L in (3a) is only self-adjoint for k ∈ R, and, as a result, eigenvectors
corresponding to distinct eigenvalues are not necessarily orthogonal to each
other for k /∈ R. Note, however, that any two solutions v(x , t , k) and w(x , t , k)
of the scattering problem are such that

∂

∂x
(w†(x, t, k∗) J v(x, t, k)) = 0. (15)

Therefore, if the two eigenfunctions are J-orthogonal either as x → −∞ or as
x → ∞, their J-orthogonality is preserved for all x ∈ R.

2.2. Complexification

As in the scalar case [11, 12] and the two-component case [7], the continuum
spectrum of the scattering operator consists of all values of k such that
the eigenvalue λ(k) ∈ R, that is, all k ∈ R with |k| ≥ q0, with the possible
exception of the points ±q0. On the other hand, Equation (11) does not
uniquely define λ as a function of the complex variable k. To deal with the
resulting loss of analyticity and recover the single-valuedness of λ in terms
of k, it is therefore necessary to take k to be an element of a two-sheeted
Riemann surface Ĉ. As usual, this Riemann surface is defined by “gluing” two
copies of the complex k-plane, each containing a branch cut that connects the
two branch points ±q0 through the point at infinity. We refer to the two sheets
and to the branch cut, respectively, as CI, CII and

� = (−∞ + i0, −q0 + i0] ∪ [−q0 − i0, −∞ − i0)

∪ (∞ + i0, q0 + i0] ∪ [q0 − i0, ∞ − i0), (16)

where the order of the endpoints denotes the orientation of the half-lines. This
choice for the cut results in the relations:

Im λ(k) > 0 and Im(λ(k) ± k) > 0 ∀k ∈ CI,

Im λ(k) < 0 and Im(λ(k) ± k) < 0 ∀k ∈ CII .

(See [7] for further details.) Note that the construction of this Riemann surface
is also necessary in the development of the IST for both scalar NLS [11, 12]
and two-component VNLS [7].

Following [17], on each sheet of the Riemann surface we order the eigenvalues
and the corresponding eigenvectors by the decay rate of the corresponding
solution of the scattering problem as x → −∞. More precisely, the ordering of
the eigenvalues and eigenvectors implied by (10) and (12) provides maximal
decay when k ∈ CI, in the sense that for k �∈ � and n = 1, . . . , N + 1, the
eigenfunction associated with the eigenvalue λn decays at least as fast as the
one associated to λn+1 as x → −∞. For k ∈ CII, it is necessary to switch the
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first and last eigenvalue and the first and last eigenvector to achieve the desired
maximal decay. We then define the eigenvalue matrix on the entire Riemann
surface as:

� = diag(λ1, λ2, . . . , λN , λN+1) , (17)

where λ1, . . . , λN+1 are given by (10) for k ∈ CI [namely, λ1 = −λ and
λN+1 = λ], while λ1 = λ and λN+1 = −λ for k ∈ CII, and λ2 = · · · = λN = k
for all k ∈ Ĉ regardless of the sheet. Correspondingly, the associated matrices
of eigenvectors E±(k) are defined by (12) for k ∈ CI, and by

E±(k) =
(

k − λ 01×(N−1) k + λ

ir± iR⊥
0 ir±

)
, k ∈ CII . (18)

The (N + 1) × (N + 1) matrix that switches the order of the eigenvectors and
eigenvalues is simply

π = (eN+1, e2, . . . , eN , e1) =

⎛
⎜⎝

0 01×(N−1) 1

0(N−1)×1 IN−1 0(N−1)×1

1 01×(N−1) 0

⎞
⎟⎠ , (19)

where e1, . . . , eN+1 are the vectors of the canonical basis of C
N+1. That is,

�II = π�I π and EII
± = EI

± π , where the superscripts I and II denote the values
of the corresponding matrices on CI and CII. Note that π is symmetric and an
involution; that is, π−1 = πT = π .

Denoting the columns of E± by e±
1 , . . . , e±

N+1, the constraint (6) on the
boundary conditions implies the following relations among the asymptotic
eigenvectors E− and E+:

e+
n ≡ e−

n , ∀n = 2, . . . , N (20a)

while

(
e−

1 e−
N+1

) = (
e+

1 e+
N+1

) (η1,1 η1,2

η2,1 η2,2

)
, (20b)

or equivalently

(
e+

1 e+
N+1

) = e−i�θ
(
e−

1 e−
N+1

) ( η2,2 −η1,2

−η2,1 η1,1

)
, (20c)

with

η1,1(k) = 1

2λ1
[λ1 − k + (λ1 + k)ei�θ ], η1,2(k) = λ1 + k

2λ1
(ei�θ − 1), (21a)

η2,2(k) = 1

2λ1
[λ1 + k + (λ1 − k) ei�θ ], η2,1(k) = λ1 − k

2λ1
(ei�θ − 1), (21b)
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and where �θ = θ+ − θ− denotes the asymptotic phase difference in the
potential.

2.3. Uniformization coordinate

Following [7, 12], to deal effectively with the Riemann surface we define a map
from Ĉ to the complex plane via the variable z (global uniformizing parameter):

z = k + λ(k), (22a)

with inverse mapping

k = 1

2

(
z + q2

0

/
z
)
, λ = z − k = 1

2

(
z − q2

0

/
z
)
. (22b)

With this mapping:

(i) The branch cut � on the two sheets of the Riemann surface is mapped
onto the real z-axis.

(ii) The sheet CI is mapped onto the upper half of the complex z-plane, while
CII is mapped to the lower half plane.

(iii) A half-neighborhood of k = ∞ on either sheet is mapped onto a
half-neighborhood of either z = ∞ or z = 0, depending on the sign of Im k.

(iv) The transformation k − i0 → k + i0 for k ∈ � (which changes the value
of any function to its value on the opposite edge of the cut) is equivalent
to the transformation z → q2

0/z on the real z-axis.
(v) The segments [ − q0, q0] in CI and CII are mapped, respectively, onto the

upper and lower half of the circle C0 of radius q0 centered at the origin.

In terms of the uniformization variable z, the matrix of asymptotic
eigenvectors E± is

E±(z) =
(

z

ir±

01×(N−1)

iR⊥
0

q2
0

/
z

ir±

)
, Im z > 0 , (23a)

E±(z) =
(

q2
0

/
z

ir±

01×(N−1)

iR⊥
0

z

ir±

)
, Im z < 0 . (23b)

Moreover, (21) gives

η1,1(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z2 − q2
0 ei�θ

z2 − q2
0

Im z > 0,

z2ei�θ − q2
0

z2 − q2
0

Im z < 0,

(24)
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with similar expression for the other coefficients. The uniformization coordinate
simplifies the description of the asymptotic behavior of the eigenfunctions
with respect to the scattering parameter (cf. Section 3.5), and it is crucial in
our formulation of the inverse problem (cf. Section 4).

3. Direct problem

3.1. Fundamental matrix solutions

As usual, in the direct and inverse problems the temporal variable t is kept
fixed. Consequently, we will systematically omit the time dependence of
eigenfunctions and scattering data. As mentioned earlier, our approach for the
direct problem will be to define complete sets of scattering eigenfunctions
off the cut, that is, for k ∈ Ĉ \ �, and then to consider the limits of the
appropriate quantities as k → � from either sheet. More specifically, the
problem of determining complete sets of analytic/meromorphic eigenfunctions
is formulated as follows.

For a given k ∈ Ĉ \ �, we seek to determine a matrix solution �(x, k) of
the scattering problem

�x = L−� + (Q − Q−)�, (25a)

with the asymptotic properties

lim
x→−∞ �(x, k) e−i�(k)x = E−(k), (25b)

lim sup
x→+∞

‖�(x, k) e−i�x‖ < ∞, (25c)

where the asymptotic Lax operator is given by (8) and the asymptotic boundary
condition (25b) is specified by (12) for k ∈ CI and by (18) for k ∈ CII. Similarly,
we seek to determine a matrix solution �̃(x, k) of

�̃x = L+�̃ + (Q − Q+)�̃, (26a)

with the asymptotic properties

lim
x→+∞ �̃(x, k) e−i�(k)x = E+(k), (26b)

lim sup
x→−∞

‖�̃(x, k) e−i�x‖ < ∞ . (26c)

As usual, it is convenient to rewrite these problems without the asymptotic
exponentials. Hence, we define
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�(x, k) = μ(x, k) ei�(k)x , (27a)

�̃(x, k) = μ̃(x, k) ei�(k)x . (27b)

With these substitutions, the problems (25) and (26) can be stated as follows.
Given k ∈ Ĉ \ �, we want to determine matrix functions μ(x, k) and μ̃(x, k)
such that

∂xμ = L−μ − iμ � + (Q − Q−) μ, (28a)

lim
x→−∞ μ(x, k) = E−(k), (28b)

μ(x, k) is bounded for all x , (28c)

while

∂x μ̃ = L+μ̃ − iμ̃ � + (Q − Q+)μ̃, (29a)

lim
x→∞ μ̃(x, k) = E+(k), (29b)

μ̃(x, k) is bounded for all x . (29c)

We then give the following definition:

DEFINITION 1. A fundamental matrix solution (or simply fundamental
matrix) for the operator L and the point k ∈ Ĉ \ � is either a solution μ(x, k)
of (28) or a solution μ̃(x, k) of (29).

We emphasize that, even though (28a) and (29a) are both an (N + 1)-order
linear system of differential equations, the respective sets of (N + 1) boundary
conditions (28b) and (29b) are not, in general, sufficient to uniquely determine
a solution. For example, a term proportional to the first column of μ, which
corresponds to the solution of (2a) with maximal decay as x → −∞, can be
added to any of the other columns without affecting the boundary conditions
(28b). (This situation is often expressed by referring to such contributions as
“subdominant” terms.) In general, however, these solutions will grow without
bound as x → ∞. Hence, the additional requirement of boundedness (28c) is
imposed to remove the degeneracy and uniquely determine a solution. Similar
considerations hold for (29). The following lemma asserts the uniqueness of
such solutions:
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LEMMA 1. For k ∈ Ĉ \ �, each of the problems (28) and (29) has at most
one solution.

Because ∂x [det μ] = ∂x [det μ̃] = 0 and det E± �= 0 for any k ∈ Ĉ \ {±q0},
the columns of the fundamental matrices are linearly independent for all x ∈ R.
Therefore, consistent with our terminology, any solution of (28a) or (29a)
(which are, in fact, equivalent) can be written in terms of either the fundamental
matrix μ or of μ̃. A similar statement applies to the solutions of (25a) and (26a).

As with the eigenvector matrices, we use subscripts to denote the columns
of the fundamental matrix solutions. That is, we write μ = (μ1, . . . , μN+1)
and μ̃ = (μ̃1 . . . , μ̃N+1), where μn and μ̃n denote the nth columns of μ and
μ̃, respectively. For k ∈ Ĉ \ �, the corresponding vectors satisfy the following
differential equations:

∂xμn = [L− − iλnI + (Q − Q−)]μn, (30a)

∂x μ̃n = [L+ − iλnI + (Q − Q+)]μ̃n, (30b)

for all n = 1, . . . , N + 1. From these equations, one could formulate Volterra
integral equations whose solutions satisfy the original differential equations
as well as the boundary conditions corresponding to either (28b) or (29b).
Unfortunately, with the exception of the solutions with maximal asymptotic
decay as either x → −∞ or x → +∞ (i.e., μ1 and μ̃N+1), the resulting
Volterra integral equations cannot, in general, be shown to admit solutions
when k �∈ �. Hence, to construct a complete set of analytic/meromorphic
eigenfunctions, we are required to use a different approach.

3.2. Fundamental tensors

Let us begin by recalling some well-known results in tensor algebra [18]. The
elements of the exterior algebra

∧
(CN+1) = N+1⊕

n=1

∧n(CN+1)

are n-forms (with n = 1, . . . , N + 1) constructed from the vector space C
N+1

via the wedge product. Linear operators on C
N+1 can be extended to act on the

elements of the algebra. Specifically, a linear transformation A : C
N+1 → C

N+1

defines uniquely two linear maps from
∧

(CN+1) onto itself:

• a map A(n) such that, for all u1, . . . , un ∈ C
N+1,

A(n)(u1 ∧ · · · ∧ un) =
n∑

j=1

u1 ∧ · · · ∧ u j−1 ∧ Au j ∧ u j+1 ∧ · · · ∧ un ; (31)
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• a map A such that, for all u1, . . . , un ∈ C
N+1,

A(u1 ∧ · · · ∧ un) = Au1 ∧ · · · ∧ Aun, (32)

where, with a slight abuse of notation, we used the same symbol to denote
both the original operator and its extension to the tensor space.

With these definitions, one can extend linear systems of differential equations
such as (25) and (26) to the tensor algebra

∧
(CN+1). We next show that such

extended differential equations can be shown to admit unique solutions.
Given the columns of the fundamental matrices μ and μ̃, we can define the

(totally antisymmetric) tensors:

fn = μ1 ∧ μ2 ∧ · · · ∧ μn, (33a)

gn = μ̃n ∧ μ̃n+1 ∧ · · · ∧ μ̃N+1, (33b)

for all n = 1, . . . , N + 1. In the absence of an existence proof for the
vector solutions μ1, . . . , μN+1 and μ̃1, . . . , μ̃N+1 (which is the object of the
analysis), the aforementioned definition is only formal. Nonetheless, via this
construction, the differential equations (30) imply that the above tensors (if
they exist) satisfy the extended differential equations

∂x fn = [L(n)
− − i(λ1 + · · · + λn)I] fn + [Q(n) − Q(n)

− ] fn, (34a)

∂x gn = [
L(N−n+2)

+ − i(λn + · · · + λN+1)I
]
gn + [

Q(N−n+2) − Q(N−n+2)
+

]
gn,

(34b)

respectively, where L(n)
± , �(n), Q(n), and Q(n)

± denote the nth order extensions
(31) of L±, �, Q, and Q± to

∧n(CN+1). Similarly, the boundary conditions
(28b) and (29b) imply that

lim
x→−∞ fn(x, k) = e−

1 ∧ · · · ∧ e−
n , (35a)

lim
x→∞ gn(x, k) = e+

n ∧ · · · ∧ e+
N+1, (35b)

respectively, where (as above) e±
j denotes the j th column of the matrix E±.

We now reverse the logic and use the tensor differential equations (34) and
boundary conditions (35) as a definition of fn and gn, namely:

DEFINITION 2. A fundamental tensor family for the operator L and a point
k ∈ Ĉ \ � is a set of solutions { fn , gn}n=1, ... ,N+1 to (34) and (35).
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Unlike the vectors defined by equations (30) (or the equivalent integral
equations), the elements of the fundamental tensor family are analytic functions
of k, as described by the following theorem:

THEOREM 1 (Fundamental tensors). For each k ∈ Ĉ \ � there exists a
unique fundamental family of tensors for L. On each of the sheets CI \ �

and CII \ �, the elements of the family are analytic functions of k. Moreover,
the elements of the family extend smoothly to � from each sheet, and these
extensions also satisfy the boundary conditions (35).

As a “stand in” for the boundary conditions for the fundamental matrix
solutions, the two parts of the fundamental family (namely, the fn and the gn)
are defined by boundary conditions at opposite limits of x . Thus, equations
that relate the members of the two parts of the family will provide a kind
of spectral data (dependent on k, but independent of x) for the scattering
potential. The following theorem defines and describes such data.

THEOREM 2 (Spectral data). There exist scalar functions �1(k), . . . , �N (k),
analytic on Ĉ \ �, with smooth extensions to �\{ ± q0} from each sheet and
such that, for all n = 1, . . . , N ,

fn(x, k) ∧ gn+1(x, k) = �n(k)γn(k)e1 ∧ · · · ∧ eN+1, (36)

where

γn(k) = det
(
e−

1 , . . . , e−
n , e+

n+1, . . . , e+
N+1

) = 2iλ1q N
0 η1,1e−iθ+ . (37)

Moreover, for all k ∈ Ĉ and all x ∈ R,

fN+1(x, k) ≡ e−
1 ∧ · · · ∧ e−

N+1 = ei�θ e+
1 ∧ · · · ∧ e+

N+1, (38a)

g1(x, k) ≡ e+
1 ∧ · · · ∧ e+

N+1 = e−i�θ e−
1 ∧ · · · ∧ e−

N+1 . (38b)

Considering f N+1 and g1 to be the extensions of the left-hand side of (36)
to n = N + 1 and n = 0, respectively, we define, consistently with the
aforementioned theorem:

�0(k) = 1, �N+1(k) = 1, (39a)

γ0 = det E+ = 2iλ1 det
(
R⊥

0 , r+
) = 2iλ1q N

0 e−iθ+, (39b)

γN+1 = det E− = 2iλ1 det
(
R⊥

0 , r−
) = 2iλ1q N

0 e−iθ− . (39c)

Note that (36) defines the �n(k)’s only for those values of k for which
γ n(k) �= 0. Therefore, in principle, it would be necessary to exclude the points
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of Ĉ \ � where η1,1(k) = 0, that is, the points k = q0cos (�θ/2) on each
sheet. These points, however, will not play any role in what follows, as the �n

will be multiplied by either γ n or η1,1, or they will appear in ratios such that
the behavior at these points cancels out.

On the other hand, the behavior at the branch points, k = ±q0, warrants
some attention. In the scalar case, for instance, Faddeev and Takhajan [12]
showed that, while the eigenfunctions are continuous also at the branch points,
the scattering coefficients generically have simple poles at k = ±q0. (When
the residues are zero, such that the poles are absent, the branch points are
called virtual levels.) Here, as in Ref. [7], we assume that all scattering data
are also continuous at the branch points.

Next we determine the asymptotic behavior of the fundamental tensors in
the limit where x goes to the opposite infinity. This behavior is considerably
more complex than in the scalar and two-component cases, due to the fact that
ik is an eigenvalue of the scattering problem with multiplicity N − 2. As a
result, the boundary conditions satisfied by the fundamental tensors contain a
summation of terms in the subspace of the eigenvectors associated with the
repeated eigenvalue, as described in the following theorem:

THEOREM 3 (Boundary data). For all k ∈ Ĉ \ � it is

lim
x→+∞ f1(x, k) = δ∅ e+

1 , (40a)

lim
x→+∞ fn(x, k) =

∑
2≤ j2< j3<···< jn≤N

δ j2,..., jn e+
1 ∧ e+

j2
∧ · · · ∧ e+

jn
, n = 2, . . . , N ,

(40b)

and

lim
x→−∞ gN+1(x, k) = δ̃∅ e−

N+1, (41a)

lim
x→−∞ gn(x, k) =

∑
2≤ jn< jn+1<···< jN ≤N

δ̃ jn,..., jN e−
jn

∧ · · · ∧ e−
jN

∧ e−
N+1,

n = 2, . . . , N , (41b)

where the functions δ j2,..., jn (k) and δ̃ jn,..., jN (k) are all analytic on Ĉ \ � with
smooth extensions to �\{ ± q0} from each sheet.

Finally, for all n = 1, . . . , N − 1 it is

δ̃n+1,...,N (k) = e−i�θη1,1�n, (42a)

and for all n = 2, . . . , N it is

δ2,...,n(k) = η1,1�n. (42b)
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Equations (42a) and (42b) also hold for n = N and n = 1, respectively, in
which case the function on the left-hand side reduces, respectively, to δ̃∅ and to
δ∅. On the other hand, we emphasize that the asymptotic behaviors (40) and
(41) do not, in general, hold on �, despite the fact that both the tensors fn and
gn and the functions δ j2,..., jn and δ̃ jn,..., jN can be extended smoothly onto the cut
from each sheet.

3.3. Reconstruction of the fundamental matrices

The next step is to reconstruct fundamental matrices [i.e., solutions of (28)
and (29)] from the fundamental tensors. To do so, we exploit the fact that
these tensors are point-wise decomposable to extract vector-valued function
“factors” from the wedge-products that define these tensors.

LEMMA 2. For all k ∈ Ĉ \ �, and for all x ∈ R, there exist two sets of
smooth functions v1(x , k), . . . , vN+1(x , k) and w1(x , k), . . . , wN+1(x , k) such
that, for all n = 1, . . . , N + 1,

fn(x, k) = v1 ∧ · · · ∧ vn, gn(x, k) = wn ∧ · · · ∧ wN+1. (43)

Moreover, these functions have smooth extensions to � from each sheet.

As an aside, note that, because of Lemma 2, the fundamental tensors fn and
gn are also decomposable asymptotically, that is, as |x | → ∞. Therefore,
the boundary data introduced in Theorem 3 satisfy Plücker relations (e.g., cf.
[19]): for all 2 ≤ j2 < · · · < jn−1 ≤ N and all 2 ≤ i2 < · · · < in+1 ≤ N , it is

n+1∑
s=2

(−1)sδ j2,··· , jn−1,is δi2,··· ,is−1,is+1,in+1 = 0, (44)

where the indices are rearranged in increasing order, if necessary, taking into
account the signature of the corresponding permutation (i.e., each of the
coefficients δ j2,··· , jn is assumed to be a totally antisymmetric function of its
indices). A similar set of conditions obviously holds for the boundary data
δ̃ jn+1,...,N . Consequently, the number of scattering coefficients does not grow
factorially with the number N of components, in contrast to what (40b) and
(41b) might seem to suggest.

The components vj and wj of the decomposition (43) are not uniquely
defined. To fix the decomposition, one could impose J-orthogonality conditions
on the factors. That is, one could require v

†
j J vn = 0 and w

†
j J wn = 0 for all

j �= n, excluding j = 1 and n = N + 1, or vice versa. Then, by choosing
v1 = f 1 = μ1 and wN+1 = gN+1 = μ̃N+1, we would have, for all n = 2, . . . , N ,
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fn−1 ∧ [(∂x − ikJ − Q + iλn)vn] = 0, (45a)

[(∂x − ikJ − Q + iλn)wn] ∧ gn+1 = 0. (45b)

The factors vn and wn so defined would therefore be “weak” eigenfunctions,
in the sense that they do not satisfy the differential equations (30), but rather
equations (45), where the differential operator is wedged by f n−1 and gn+1,
respectively. The columns of a fundamental solution, however, must satisfy the
differential equations in the usual sense. To obtain strong solutions of the
scattering problem from the fundamental tensor family, we therefore rely on
the following:

LEMMA 3. Given a tensor family { fn, gn}n=1, ... ,N+1, for each n = 1, . . . ,
N + 1 and for all k ∈ Ĉ \ � such that f n−1∧gn �= 0, there exist two unique
analytic functions mn(x , k) and m̃n−1(x, k) such that, ∀x ∈ R,

fn = fn−1 ∧ mn, mn ∧ gn = 0, (46a)

gn−1 = m̃n−1 ∧ gn, fn ∧ m̃n = 0 . (46b)

Note that, owing to (36), the condition f n−1∧gn �= 0 in Lemma 3 holds for
generic k ∈ Ĉ \ �. The location of the exceptional points is discussed in detail
in Theorem 4 immediately below.

We note that the (sectional) analyticity of all members of the fundamental
tensor family is, by itself, insufficient to guarantee that the factors from which
they are composed are themselves analytic. Nonanalytic terms in the factors
can be “killed” by the wedge product. Nonetheless, we show immediately
below that the vector valued functions defined by (46) contain only analytic
terms, and are, at the same time, solutions of the differential equations (30).

THEOREM 4 (Analytic eigenfunctions. I). For all n = 1, . . . , N + 1, the
functions mn(x , k) and m̃n(x, k) are uniquely defined by Lemma 3 for all
k ∈ Ĉ \ � such that�n−1(k) �= 0 and �n(k) �= 0, respectively, and they satisfy
the differential equations

[∂x − L− + iλnI − (Q − Q−)] mn = 0, (47a)

[∂x − L+ + iλnI − (Q − Q+)] m̃n = 0, (47b)

together with the weak boundary conditions

lim
x→−∞ e−

1 ∧ · · · ∧ e−
n−1 ∧ mn = e−

1 ∧ · · · ∧ e−
n , (48a)
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lim
x→+∞ m̃n ∧ e+

n+1 ∧ · · · ∧ e+
N+1 = e+

n ∧ · · · ∧ e+
N+1, (48b)

and with the following asymptotic behavior at the opposite infinity:

lim
x→∞ mn ∧ e+

n+1 ∧ · · · ∧ e+
N+1 = γn

γn−1

�n

�n−1
e+

n ∧ · · · ∧ e+
N+1. (49a)

lim
x→−∞ e−

1 ∧ · · · ∧ e−
n−1 ∧ m̃n = γn−1

γn

�n−1

�n
e−

1 ∧ · · · ∧ e−
n . (49b)

Moreover, the functions mn(x , k) and m̃n(x, k) depend smoothly on x and are
analytic functions of k for all values of k where they are defined.

In particular, (47a) and (47b) in Theorem 4 imply that, for all k off the
cut for which they are defined, the vector functions mn(x , k) and m̃n(x, k)
are analytic eigenfunctions of the modified scattering problem (30). We next
consider their limiting values on the cut. We will denote the limit of each
quantity as k → �\{ ± q0} with the superscripts ± depending on whether the
limit is taken from CI or CII (i.e., from above or below the cut), respectively.

THEOREM 5 (Analytic eigenfunctions. II). For all n = 1, . . . , N + 1, the
eigenfunctions mn(x , k) and m̃n(x, k) admit smooth extensions on �, which
we denote, respectively, by m±

n (x, k) and by m̃±
n (x, k) where the plus/minus

sign denotes whether the limit is taken from the upper or the lower sheet. For
k ∈ �, the functions m±

n (x, k) and m̃±
n (x, k) are also both solution of the

differential equation (47a), with weak boundary conditions:

lim
x→−∞

(
e−

1

)± ∧ · · · ∧ (
e−

n−1

)± ∧ m±
n = (e−

1 )± ∧ · · · ∧ (e−
n )±, (50a)

lim
x→+∞ m̃±

n ∧ (
e+

n+1

)± ∧ · · · ∧ (
e+

N+1

)± = (
e+

n

)± ∧ · · · ∧ (
e+

N+1

)±
, (50b)

and with the asymptotic behavior:

lim
x→∞ m±

n ∧ (
e+

n+1

)± ∧ · · · ∧ (
e+

N+1

)± = γ ±
n

γ ±
n−1

�±
n

�±
n−1

(
e+

n

)± ∧ · · · ∧ (
e+

N+1

)±
,

(51a)

lim
x→−∞

(
e−

1

)± ∧ · · · ∧ (
e−

n−1

)± ∧ m̃±
n = γ ±

n−1

γ ±
n

�±
n−1

�±
n

(
e−

1

)± ∧ · · · ∧ (
e−

n

)±
.

(51b)

The results of Theorem 4 can be strengthened off the cut, as far as the
boundary conditions are concerned. In fact, taking into account the asymptotic
behavior of the fundamental tensors obtained in Theorem 3, the following
holds:
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COROLLARY 1. For generic k ∈ Ĉ \ �, and for all n = 1, . . . , N + 1, the
functions mn(x , k) and m̃n(x, k) are solutions of the differential equations (30)
with the following boundary conditions:

lim
x→−∞ m(x, k) = E−(k) αo(k), lim

x→+∞ m(x, k) = E+(k) βo(k), (52a)

lim
x→−∞ m̃(x, k) = E−(k) α̃o(k), lim

x→+∞ m̃(x, k) = E+(k) β̃o(k), (52b)

where the matrices αo(k) and α̃o(k) are upper triangular while βo(k) and
β̃o(k) are lower triangular, and their entries are given below. The diagonal
elements are

αn,n = β̃n,n = 1, n = 1, . . . , N + 1, (53a)

α̃n,n = δ̃n,··· ,N/δ̃n+1,··· ,N = γn−1�n−1/(γn�n), n = 1, . . . , N + 1, (53b)

βn,n = δ2,··· ,n/δ2,··· ,n−1 = γn�n/(γn−1�n−1), n = 1, . . . , N + 1. (53c)

The off-diagonal elements in the first row of and last column of αo and α̃o

are zero, as are the off-diagonal elements in the first column and last row of
βo and β̃o:

α1,n = α̃1,n = βn,1 = β̃n,1 = 0, n = 2, . . . , N + 1, (54a)

αn,N+1 = α̃n,N+1 = βN+1,n = β̃N+1,n = 0, n = 1, . . . , N . (54b)

Finally, the nonzero off-diagonal terms are given by

α j,n = δ̃ j,n+1,...,N

δ̃n,...,N
, α̃ j,n = δ̃ j,n+1,...,N

δ̃n+1,...,N
,

j = 2, . . . , n, n = 2, . . . , N ,

(55a)

β j,n = δ2,...,n−1, j

δ2,...,n−1
, β̃ j,n = δ2,...,n−1, j

δ2,...,n
,

j = n, . . . , N , n = 2, . . . , N .

(55b)

From Theorem 3 it then follows that, for all n = 2, . . . , N and all j = 2, . . . , n,
the coefficients αj,n and α̃ j,n (which are the only nonzero off-diagonal entries
of αo and α̃o) are meromorphic functions of k, and, in accordance with (42),
their poles are located , respectively, at the zeros of �n−1 and at those of �n,
independently of j . Similarly, for all n = 2, . . . , N and j = n, . . . , N + 1, the
coefficients β j,n and β̃ j,n (which are the only nonzero off-diagonal entries of
βo and β̃o) are meromorphic functions of k, and their poles are located at the
zeros of �n−1 and at those of �n, respectively, independently of j . Moreover,
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each of the diagonal entries α̃n,n and βn,n, for n = 1, . . . , N + 1, is also a
meromorphic function of k, with poles, respectively, at the zeros of �n and
�n−1. (The entries αn,n and β̃n,n are obviously entire functions.)

Explicitly, (52) are

lim
x→−∞ m1 = e−

1 , lim
x→∞ m1 = η1,1�1e+

1 ,

lim
x→−∞ m N+1 = e−

N+1, limx→∞ m N+1 = ei�θ

η1,1�N
e+

N+1, (56a)

lim
x→∞ m̃ N+1 = e+

N+1, lim
x→−∞ m̃ N+1 = e−i�θη1,1�N e−

N+1,

lim
x→∞ m̃1 = e+

1 , limx→−∞ m̃1 = 1

η1,1�1
e−

1 ,
(56b)

as well as, for all n = 2, . . . , N ,

lim
x→−∞ mn =

n∑
j=2

α j,n e−
j , lim

x→+∞ mn =
N∑

j=n

β j,n e+
j ,

lim
x→+∞ m̃n =

N∑
j=n

β̃ j,n e+
j , lim

x→−∞ m̃n =
n∑

j=2

α̃ j,n e−
j . (56c)

Importantly, however, the above strong limits do not apply on the cut, as we
discuss below in Section 3.4. The following result relates the behavior of the
two sets of eigenfunctions away from the discrete spectrum:

COROLLARY 2. For all x ∈ R, the (N + 1) × (N + 1) matrices

m(x, k) = (m1, . . . , m N+1) , m̃(x, k) = (m̃1, . . . , m̃ N+1) , (57)

are analytic functions of k ∈ Ĉ \ (� ∪ Z ) where Z is the discrete set

Z = N∪
n=1

Zn, Zn = {k ∈ Ĉ \ � : �n(k) = 0} . (58)

Moreover, ∀k ∈ Ĉ \ (� ∪ Z ) it is

m(x, k) = m̃(x, k)D(k), (59)

where

D(k) = diag

(
γ1

γ0

�1

�0
, . . . ,

γN+1

γN

�N+1

�N

)
. (60)

Finally, m(x, k) and m̃(x, k) extend smoothly to � from either sheet.

Recall that the definition of the eigenfunctions mn and m̃n in terms of the
fundamental tensors implies that both m and m̃ contain contributions both
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from solutions defined by asymptotic BCs as x → −∞ as well as from those
defined by asymptotic BCs as x → ∞. Moreover, (59) amounts to saying that
the columns of the two matrices m and m̃ differ only up to a normalization.
Therefore, either one of the two matrices is sufficient, by itself, to formulate
the inverse problem. This situation is the same as in the work by Beals, Deift,
and Tomei [17], and is another instance in which the present approach differs
from the usual one in inverse scattering theory.

Together, Corollaries 1 and 2 pave the way for the reconstruction of the
fundamental matrices μ and μ̃, as shown by the following Corollary:

COROLLARY 3. For generic k ∈ Ĉ \ �, the fundamental matricesμ(x, k)
and μ̃(x, t) in Definition 1 can be obtained from

m(x, k) = μ(x, k) αo(k), m̃(x, k) = μ̃(x, k) β̃o(k) . (61)

Explicitly, the aforementioned equations yield

μ1 = m1, μN+1 = m N+1, μ̃1 = m̃1, μ̃N+1 = m̃ N+1, (62a)

while, for all n = 2, . . . , N , one can obtain the μn and μ̃n recursively from

μn := mn −
n−1∑
j=2

α j,nμ j , μ̃n := m̃n −
N∑

j=n+1

β̃ j,nμ̃ j . (62b)

One can easily show by induction that the columns μ1, . . . , μN+1 and
μ̃1, . . . , μ̃N+1 of the fundamental matrix eigenfunctions also satisfy

f1 = μ1, fn = fn−1 ∧ μn, n = 2, . . . , N + 1, (63a)

gN+1 = μ̃N+1, gn−1 = μ̃n−1 ∧ gn, n = 2, . . . , N + 1 . (63b)

As shown by (61) aforementioned, however, in general the matrices m
and μ (and, correspondingly, m̃ and μ̃) do not coincide. Nonetheless, the
aforementioned relations establish the one-to-one correspondence between the
two complete sets of eigenfunctions.

The construction obviously simplifies significantly when m ≡ μ (and,
correspondingly, m̃ ≡ μ̃), which is equivalent to the conditions

δ̃ j,n+1,...,N = 0, n = 3, . . . , N , j = 2, . . . , n − 1, (64a)

δ2,...,n−1, j = 0, n = 3, . . . , N , j = n + 1, . . . , N . (64b)

In general, however, the two sets of matrices enjoy different properties: μ(x, k)
and μ̃(x, k) are fundamental matrices in that, for generic k �∈ �, they have the
simple asymptotic behavior as either x → −∞ or as x → ∞ prescribed
in (28) and (29). However, their analyticity properties in k (specifically, the
location of the poles of each column vector) are in general more involved than
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those of m(x, k) and m̃(x, k), as follows from (61). Conversely, m(x, k) and
m̃(x, k) have a more complicated asymptotic behavior for large |x |, but their
analyticity properties are simpler (cf. Section 3.4 regarding the location of the
poles). In the formulation of the inverse problem it is more convenient to deal
with m(x, k) and m̃(x, k), while determining the asymptotic behavior of the
eigenfunctions with respect to the scattering parameter via a WKB expansion
is more easily achieved for the fundamental matrices μ(x, k) and μ̃(x, k) (see
Section 3.5). For this reason, in the following, we will keep both sets of
eigenfunctions, using either one or the other depending on the calculation to be
performed, and we will invoke relations (61) to go from one set to the other.

3.4. Characterization of the scattering data

As usual, the scattering data is the minimal set of spectral data necessary
to reconstruct the eigenfunctions and the potential. As will be shown in
Section 4, this is the data that describe the poles as well as the data that
describes the jump relations of the matrices m(x, k) and m̃(x, k) across the
cut. For simplicity, we will restrict the singularities of m(x, k) and m̃(x, k) by
restricting the zeros of the functions �1, . . . , �N as follows:

DEFINITION 3. We say that the scattering operator L is generic if the
functions �1(k), . . . , �N (k): (i) have no common zeros and no multiple zeros
in CI ∪ CII, and (ii) have neither zeros nor accumulation points of zeros on �.

Note that because they are sectionally analytic, with �n → 1 as |k| → ∞
[see (84) further], a consequence of the genericity assumption is that each �n

has only finitely many zeros. The following theorem specifies the behavior of
the eigenfunctions at each point k ∈ Z :

THEOREM 6 (Residues). Suppose that, for some n = 1, . . . , N , the
function�n(k) has a simple zero at ko ∈ Ĉ \ � and �n+1(ko)�n−1(ko) �= 0.
Then there exists a complex constant bo �= 0 such that, ∀x ∈ R,

m̃n+1(x, ko) = bo ei(λn(ko)−λn+1(ko))x mn(x, ko) . (65)

Moreover, mn+1(x , k) has a simple pole at k = ko with residue

Res
k=ko

[mn+1(x, k)] = co ei(λn(ko)−λn+1(ko))x mn(x, ko) (66)

where co = bo[γn+1�n+1/(γn�
′
n)]k=ko �= 0.

It is then clear that: (i) the elements of the set Z in (58) play the role of the
discrete eigenvalues; (ii) co �= 0 is the (scalar) norming constant associated
with the discrete eigenvalue ko ∈ Zn; and (iii) the eigenfunctions m(x, k) and
m̃(x, k) are meromorphic at all of these points. As an immediate consequence
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of Theorem 6, the behavior of m(x, k) at each of such poles is characterized as
follows:

COROLLARY 4 (Discrete spectrum). Under the hypotheses of Theorem 6,
for each n = 1, . . . , N and each ko ∈ Zn there exists a unique constant
co ∈ C \ {0} such that

m(x, k)

(
I − co

k − ko
ei�(ko)x Dne−i�(ko)x

)
(67)

is regular at k = ko, where Dn = (δn,n+1) and δn,n′ is the Kronecker delta.

Next we derive the jump condition of the sectionally meromorphic matrix
m(x, k) across �, which will be used in Section 4 to formulate the inverse
problem for the fundamental eigenfunctions. To this end it is convenient to
introduce the matrix eigenfunction

ϕ(x, k) = m(x, k) ei�(k)x , (68)

which, as the name implies, is a matrix solution of the original scattering
problem (2a). Hereafter we will denote the limits of each quantity as k → �

from the upper/lower sheet of the Riemann surface with the subscripts ±,
respectively. We have

THEOREM 7 (Jump matrix). For all k ∈ �, there exists a unique matrix
S(k) such that

m+(x, k) π = m−(x, k) ei�−(k)x S(k) e−i�−(k)x , (69a)

or, equivalently,

ϕ+(x, k) = ϕ−(x, k)Ŝ(k), (69b)

with Ŝ(k) = S(k)π .

Equation (69b) is an analogue of the usual scattering relation in the
traditional version of the IST, but it differs from it because the asymptotic
behavior of ϕ±(x, k) as x → ±∞ is more complicated than that of the Jost
solutions, as already evident from Corollary 1. In particular, for k ∈ � one
has ϕ±(x, k) = m±(x, k) ei�±(k)x , with m±(x, k) given by Theorem 8 further.
Equation (69b) yields the matrix elements of Ŝ(k) as

Ŝn, j (k) = Wr
[
ϕ−

1 , . . . , ϕ−
j−1, ϕ

+
n , ϕ−

j+1, . . . , ϕ
−
N+1

]
Wr[ϕ−

1 , . . . , ϕ−
N+1]

, n, j = 1, . . . , N + 1.

(70)

The next step is to express the elements of the jump matrix S(k) in terms of
the boundary data derived in Sections 3.2 and 3.3. As we briefly mentioned in
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Section 3.3, for k ∈ � the asymptotic behavior of the eigenfunctions contains
additional contributions from subdominant terms compatible with the weak
asymptotic conditions (50a) and (51a). (These terms would instead vanish
asymptotically in the limit x → − ∞ or x → ∞ for all k �∈ �.) More
specifically, we have

THEOREM 8 (Subdominance). For all k ∈ � it is

m±(x, k) ∼ E±
−(k) ei�±(k)xα±(k) e−i�±(k)x as x → −∞, (71a)

m±(x, k) ∼ E±
+(k) ei�±(k)xβ±(k) e−i�±(k)x as x → +∞, (71b)

where α±(k) and β±(k) are, respectively, upper triangular and lower triangular
matrices, with

α±
n,n(k) = lim

k→�±
αn,n, β±

n,n(k) = lim
k→�±

βn,n, n = 1, . . . , N + 1, (72a)

α±
j,n(k) = lim

k→�±
α j,n, j = 2, . . . , n, n = 2, . . . , N , (72b)

β±
j,n(k) = lim

k→�±
β j,n, j = n, . . . , N , n = 2, . . . , N , (72c)

where k → �± denote the one-sided limits from the upper/lower sheet of Ĉ,
and where the meromorphic functions αj,n and β j,n are defined, respectively, in
(55a) and (55b).

Note that (53) and (72a) yield

det α±(k) = 1, det β±(k) =
N+1∏
n=1

γ ±
n

γ ±
n−1

�±
n

�±
n−1

= ei�θ . (73)

Importantly, however, note that not all entries of α±(k) and β±(k) are
obtained from those of αo(k) and βo(k). Explicitly, off-diagonal terms in the
first column and the last row of α±(k) and the first row and last column of
β±(k) [that is, the coefficients α±

1,n(k) and β±
n,1(k) for all n = 2, . . . , N + 1 and

α±
j,N+1(k) and β±

N+1, j (k) for all j = 1, . . . , N ] are not limits of meromorphic
functions [recall that the corresponding entries of αo(k) and βo(k) are zero],
and therefore in general they cannot be extended off the cut. The presence of
the subdominant terms in (71) is a manifestation of the fact that in general the
limits x → ±∞ and k → �± do not commute.

COROLLARY 5. For all k ∈ � it is

S(k) = (
β−)−1

πβ+π = (
α−)−1

πα+π . (74)

Consequently, det S(k) = 1 for all k ∈ �.
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The significance of Corollary 5 is that it relates the spectral data [providing the
jump of the sectionally meromorphic matrix m(x, k) across �, as given in
(69a)] to the boundary (or scattering) data [expressing the behavior of the
eigenfunctions as x → ±∞ when k ∈ �, cf. (71)].

The asymptotic behavior at large x of the matrices m±(x, k) in (71),
suggests the introduction, for all k ∈ �, of matrices satisfying simple boundary
conditions as x → −∞, for example, by means of the following definition:

m±(x, k) = M±(x, k)ei�±(k)x α±(k)e−i�±(k)x (75)

(A similar definition can obviously be given of eigenfunctions satisfying fixed
boundary conditions as x → ∞.) It is easy to show that the columns of the
matrices M±(x, k) are (up to normalizations, see Section 6 for details) the
analogues of the modified eigenfunctions introduced in Ref. [7] for the two-
component case. Indeed, it is trivial to see that, for all k ∈ �, the columns of the
matrices φ±(x, k) = M±(x, k) ei�±(k)x are solutions of the original scattering
problem (2a). Moreover, (71) imply that their asymptotics at large x is given by

φ±(x, k) ∼ E±
−(k) ei�±(k)x as x → −∞, (76a)

φ±(x, k) ∼ E±
+(k) ei�±(k)x A±(k) as x → +∞, (76b)

with

A±(k) = β±(k)(α±(k))−1. (77)

The columns of φ±(x, k) are therefore the analogues of the Jost solutions
of the problem, and the matrices A±(k) are the analogues of the traditional
scattering matrices (up to the switching of the first and last eigenfunctions
when crossing the cut). We emphasize, however, that, in general, the matrices
φ±(x, k) and M±(x, k) do not admit analytic extension off the cut, unlike
ϕ±(x, k) and m±(x, k) and also unlike μ±(x, k), even though the boundary
conditions satisfied by φ±(x, k) on the cut are formally equivalent to those
satisfied by �(x, k) = μ(x, k) ei�(k)x off the cut [cf. (25b) and (25c)].

3.5. Asymptotics of eigenfunctions and scattering data as z → 0, ∞
We now discuss the asymptotic behavior of the fundamental eigenfunctions
with respect to the uniformization variable z introduced in Section 2.3. As
clarified in Section 3.4, to formulate the inverse problem we only need one
of the two fundamental matrices, say μ(x, z). Therefore, we will derive the
asymptotic behavior of the fundamental eigenfunctions μn(x , z), n = 1, . . . ,
N + 1, both for z → ∞ and for z → 0. It is worth pointing out that there is no
conceptual distinction between the points z = 0 and z = ∞ in the z-plane, as
they are both images of k → ∞ on either sheet of the Riemann surface, and one
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can change one into the other by simply defining the uniformization variable as
z = k − λ instead of z = k + λ. Due to the ordering of the eigenvalues, for the
eigenfunctions μ1(x , z) and μN+1(x , z) it will be necessary to specify in which
half-plane (Im z > 0 or Im z < 0) the asymptotic expansion is being considered.

The details of the calculations, performed using suitable WKB expansions,
are given in Appendix B. The results are the following:

μ1(x, z) =
(

z + O(1)

ir(x) + O(1/z)

)
z → ∞, Im z > 0, (78a)

μ1(x, z) =
(

qT (x)r−/z + O(1/z2)

ir− + O(1/z)

)
z → ∞, Im z < 0, (78b)

μ1(x, z) =
(

z qT (x)r−
/

q2
0 + O(z2)

ir− + O(z)

)
z → 0, Im z > 0, (79a)

μ1(x, z) =
(

q2
0

/
z + O(1)

ir(x) + O(z)

)
z → 0, Im z < 0 . (79b)

For n = 2, . . . , N the behavior of the eigenfunctions is the same in both
half-planes, and given by

μn(x, z) =
(

qT (x)r⊥
0,n−1

/
z + O(1/z2)

ir⊥
0,n−1 + O(1/z)

)
z → ∞, (80)

μn(x, z) =
(

z qT (x)r⊥
0,n−1

/
q2

0 + O(z2)

ir⊥
0,n−1 + O(z)

)
z → 0, (81)

where r⊥
0,1, . . . , r⊥

0,N−1 denote the columns of the matrix R⊥
0 defined by (13).

Finally,

μN+1(x, z) =
(

qT (x)r−/z + O(1/z2)

ir− + O(1/z)

)
z → ∞, Im z > 0, (82a)

μN+1(x, z) =
(

z + O(1)

ir(x) + O(1/z)

)
z → ∞, Im z < 0, (82b)

μN+1(x, z) =
(

q2
0

/
z + O(1)

ir(x) + O(z)

)
z → 0, Im z > 0, (83a)
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μN+1(x, z) =
(

z qT (x)r−
/

q2
0 + O(z2)

ir− + O(z)

)
z → 0, Im z < 0 . (83b)

Taking into account the constraint (6) on the boundary values of the potentials,
(23) and the first of (63a), and assuming that the limits as x → ∞ and as
z → ∞ [or z → 0] can be interchanged, Equations (40a) and (78) [or (79)] yield:

δ∅(z) ∼
{

1 z → ∞, Im z > 0,

ei�θ z → ∞, Im z < 0,

while

δ∅(z) ∼
{

ei�θ z → 0, Im z > 0,

1 z → 0, Im z < 0.

From the second of Equations (42) for n = 1, and the limiting values of η1,1

in (24), we then obtain �1(z) → 1 both as z → ∞ and as z → 0. We can
then use (63a), (40b) and the aforementioned asymptotic behavior to show by
induction that, provided the limits as x → ∞ and as z → ∞ [respectively,
z → 0] can be interchanged, for all n = 2, . . . , N :

δ2,...,n(z) ∼
{

1 z → ∞, Im z > 0,

ei�θ z → ∞, Im z < 0,

and

δ2,...,n(z) ∼
{

ei�θ z → 0, Im z > 0,

1 z → 0, Im z < 0,

while

δ j2,..., jn (z) → 0 both as z → ∞ and as z → 0 ,

for any {2 ≤ j2 < j3 < · · · < jn ≤ N } �= {2, . . . , n}. The dual result for the
boundary data δ̃ jn,..., jN , that is

δ̃ jn,..., jN (z) → 0 both as z → ∞ and as z → 0 ,

for any {2 ≤ jn < · · · < jN ≤ N } �= {n, . . . , N } is proved analogously. As a
consequence, (42) imply that for all n = 1, . . . , N it is

�n(z) → 1 both as z → ∞ and as z → 0 . (84)

Altogether, the above asymptotic expansions and the definitions (55a) show
that for all n = 3, . . . , N and all j = 2, . . . , n − 1

αn, j (z) → 0 both as z → ∞ and as z → 0 . (85)
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Therefore, according to (62b), the matrix m(x, z) has the same asymptotic
behavior in z as μ(x, z), that is, as z → ∞, with Im z > 0:

m(x, z) ∼
(

z qT (x)r⊥
0,1

/
z · · · qT (x)r⊥

0,N−1

/
z qT (x)r−/z

ir(x) ir⊥
0,1 · · · ir⊥

0,N−1 ir−

)
. (86a)

Similarly, as z → 0 with Im z > 0:

m(x, z) ∼
(

z qT (x)r−
/

q2
0 z qT (x)r⊥

0,1

/
q2

0 · · · z qT (x)r⊥
0,N−1

/
q2

0 q2
0

/
z

ir− ir⊥
0,1 · · · ir⊥

0,N−1 ir(x)

)
.

(86b)

As usual, the first and last columns of (86) are interchanged when either
z → ∞ or z → 0 with Im z < 0.

3.6. Symmetries

As in the scalar and two-component case, the scattering problem admits two
symmetries, which relate the value of the eigenfunctions on different sheets of
the Riemann surface. As usual, these symmetries translate into compatibility
conditions (constraints) on the scattering data, and play a fundamental role in
the solution of the inverse problem.

First symmetry: upper/lower-half plane. Consider the transformation
(k, λ) → (k∗, λ∗), that is, z → z∗: When the potential satisfies the symmetry
condition r = q∗, one has Q† = Q, and (15) implies

∂x [ϕ†(x, z∗)J ϕ(x, z)] = 0.

Evaluating the asymptotic values of the bilinear form ϕ†(x, z∗)J ϕ(x, z) as
x → −∞ and as x → ∞ then yields, for z ∈ R:

[α∓(z)]† e−i�∓(z)x
[
E∓

−(z)
]†

JE±
− (z) ei�±(z)xα±(z)

= [β∓(z)]† e−i�∓(z)x
[
E∓

+(z)
]†

JE±
+ (z) ei�±(z)xβ±(z). (87)

Note that

[
E−

−(z)
]†

JE+
−(z) =

⎛
⎜⎝

0 01×(N−1) q2
0 − q4

0

/
z2

0(N−1)×1 q2
0 IN−1 0(N−1)×1

q2
0 − z2 01×(N−1) 0

⎞
⎟⎠ (88)

and

e−i�∓(z)x
[
E∓

−(z)
]†

JE±
−(z) ei�±(z)x = q2

0 e−i�∓(z)x	±(z) ei�±(z)x = q2
0	±(z), (89)

where

	+(z) = πdiag
(
1 − z2

/
q2

0 , 1, . . . , 1, 1 − q2
0

/
z2
)
, 	−(z) = π	+(z)π . (90)
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It then follows that, ∀z ∈ R,

[α∓(z)]†	±(z)α±(z) = [β∓(z)]†	±(z)β±(z). (91)

This symmetry is the generalization to arbitrary N of the one that was obtained
in [7] using the “adjoint” problem. Note that for the scattering matrices A±(z)
defined in (76) and (77), this first symmetry can be written as:

[A∓(z)]† = 	±(z)A±(z)[	±(z)]−1. (92)

For all analytic scattering coefficients, the above symmetry is also extended off
the cut in the usual way.

Second symmetry: inside/outside the circle. The scattering problem also
admits another symmetry that relates values of eigenfunctions and scattering
coefficients at points (k, λ) and (k, −λ) on the two sheets of Ĉ or across
the cut. In terms of the uniform variable z, this symmetry corresponds to
z → q2

0/z, which couples points inside and outside the circle C0, centered
at the origin and of radius q0. Indeed, the scattering problem is manifestly
invariant with respect to the exchange (k, λ) → (k, −λ). By looking at the
boundary conditions off the real axis we thus have immediately

ϕ(x, z) = ϕ
(
x, q2

0

/
z
)
. (93)

Then, when z ∈ R, the comparison of the asymptotic values as x → −∞ yields

α±(z) = α∓(q2
0

/
z
)
, β±(z) = β∓(q2

0

/
z
)
. (94)

Discrete spectrum. The combination of the two symmetries implies that
discrete eigenvalues appear in symmetric quartets:{

z j , z∗
j , q2

0

/
z j , q2

0

/
z∗

j

}
, j = 1, . . . , J.

(In particular, in the scalar case, discrete eigenvalues can only exist on the
circle C0.) Moreover, the first and second symmetries above can be used to
derive the corresponding symmetry relations of the norming constants in the
usual way.

4. Inverse problem

The starting point for solving the inverse problem is the jump condition (69b),
which we now write in terms of the uniformization variable:

m+(x, z) = m−(x, z) ei�−(z)x Ŝ(z) e−i�+(z)x ∀z ∈ R, (95)

where the superscripts ± denote the limits Im z → 0 from the upper/lower half
plane of the complex z-plane, as before.
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In agreement with the genericity hypothesis in Definition 3, in what follows
we assume that, for each n = 1, . . . , N , the function �n(z) has simple zeros at
points {zn, j } j=1,...,Jn and {z̄n, j } j=1,..., J̄n

, respectively, in the upper half-plane
and in the lower half-plane, with J 1 + · · · + JN = J and J̄1 + · · · + J̄N = J̄ .
As a consequence, from Theorems 4 and 7, and from the asymptotic behavior
as z → 0 and as z → ∞ in (86), we have that: (i) m1(x , z) is a sectionally
analytic function for all z ∈ C with a jump across the real z-axis and a simple
pole at z = ∞; (ii) mn(x , z) for all n = 2, . . . , N are sectionally meromorphic
functions of z with simple poles at the zeros of �n−1(z); (iii) mN+1(x , z) is a
sectionally meromorphic function of z with simple poles at the zeros of �N (z)
and a simple pole at z = 0.

Equation (95) then defines a matrix Riemann–Hilbert problem (RHP) with
poles. To suitably normalize the problem, we rewrite the jump condition for
each vector eigenfunction by subtracting out the asymptotic behavior of the
functions in the right-hand side as z → ∞ as well as the residue at z = 0 in
the upper half-plane:

m+
1

z
−

(
1
0

)
− 1

z

(
0

ir−

)
= −

(
1
0

)
− 1

z

(
0

ir−

)

+ m−
N+1

z
+

N+1∑
j=1

ei(λ−
j −λ+

1 )x m−
j

Vj,1

z
, (96a)

m+
n −

(
0

ir⊥
0,n−1

)
= −

(
0

ir⊥
0,n−1

)
+ m−

n +
N+1∑
j=1

ei(λ−
j −λ+

n )x m−
j Vj,n,

n = 2, . . . , N ,
(96b)

m+
N+1 −

(
0

ir−

)
− 1

z

(
q2

0

0

)
= −

(
1

ir−

)
− 1

z

(
q2

0

0

)
+ m−

1

+
N+1∑
j=1

ei(λ−
j −λ+

N+1)x m−
j Vj,N+1, (96c)

where V(z) = (
Vi, j (z)

) = (S(z) − I) π , and π is the permutation matrix defined
in (19). We then introduce the Cauchy projectors as follows:

P±[ f ](z) = 1

2π i

∫ ∞

−∞

f (ζ )

ζ − (z ± i0)
dζ. (97)

These operators are well defined for any function f that is integrable on the
real line, and they are such that P±[ f ±](z) = ± f (z) and P∓[ f ±](z) = 0 for
any function f ±(z) that is analytic for ± Im z ≥ 0 and decays as z → ∞ (e.g.,
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see [20]). Considering first Im z > 0, we apply the projector P+ to both sides
of the aforementioned equations. Taking into account the analyticity of the
eigenfunctions, and regularizing as usual by adding and subtracting the residues
of each column using (66) [which expresses the residue of each eigenfunction
at each pole in terms the previous eigenfunction], we obtain for all Im z > 0:

m1(x, z) =
(

z
ir−

)
+

J̄N∑
j=1

c̄N , j ei(λN (z̄N , j )−λN+1(z̄N , j ))x
z m N (x, z̄N , j )

z̄N , j (z − z̄N , j )

+ z

2π i

N+1∑
j=1

∫ ei(λ−
j (ζ )−λ+

1 (ζ ))x m−
j (x, ζ )Vj,1(ζ )

ζ (ζ − z)
dζ,

(98a)

m2(x, z) =
(

0
ir⊥

0,1

)
+

J1∑
j=1

c1, j ei(λ1(z1, j )−λ2(z1, j ))x
m1(x, z1, j )

z − z1, j

+
J̄1∑

j=1

c̄1, j ei(λ1(z̄1, j )−λ2(z̄1, j )x
m1(x, z̄1, j )

z − z̄1, j

+ 1

2π i

N+1∑
j=1

∫
ei(λ−

j (ζ )−λ+
2 (ζ ))x

m−
j (x, ζ )Vj,2(ζ )

ζ − z
dζ,

(98b)

mn(x, z) =
(

0

ir⊥
0,n−1

)
+

Jn−1∑
j=1

cn−1, j
mn−1(x, zn−1, j )

z − zn−1, j
+

J̄n−1∑
j=1

c̄n−1, j
mn−1(x, z̄n−1, j )

z − z̄n−1, j

+ 1

2π i

N+1∑
j=1

∫
ei(λ−

j (ζ )−λ+
n (ζ ))x

m−
j (x, ζ )Vj,n(ζ )

ζ − z
dζ, n = 3, . . . , N ,

(98c)

m N+1(x, z) =
(

q2
0

/
z

ir−

)
+

JN∑
j=1

cN , j ei(λN (z1, j )−λN+1(z1, j ))x
m N (x, zN , j )

z − zN , j

+ 1

2π i

N+1∑
j=1

∫
ei(λ−

j (ζ )−λ+
N+1(ζ ))x

m−
j (x, ζ )Vj,N+1(ζ )

ζ − z
dζ,

(98d)

where all integrals run over the whole real ζ -axis, and where cn,j and c̄n, j

for n = 1, . . . , N and j = 1, . . . Jn are the norming constants associated,
respectively, to the discrete eigenvalue zn,j in the upper-half plane and z̄n, j

in the lower-half plane, as defined in (66). [The reason why the equation
for m2(x , z) is slightly different from those for m3(x , z), . . . , mN (x , z) is
that the two exponentials in (66) cancel for all n = 3, . . . , N , but not for
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n = 2.] The value of the various λn(z) appearing in the sums depends on
whether they are evaluated at a point on the upper-half or lower-half plane,
respectively. Explicitly, λ−

1 = −λ+
1 = λ+

N+1 = −λ−
N+1 = λ = (z − q2

0/z)/2,
while λ±

n = k = (z + q2
0/z)/2 for all n = 2, . . . , N . Similarly, recalling that

k + λ = z and k − λ = q2
0/z, all exponentials appearing in the integrals in

(98) are easily written in terms of z:

λ−
1 − λ+

1 = −λ−
N+1 + λ+

N+1 = 2λ = z − q2
0

/
z, (99a)

λ−
n − λ+

1 = −λ−
N+1 + λ+

n = k + λ = z, n = 1, . . . , N , (99b)

λ−
n − λ+

N+1 = −λ−
1 + λ+

n = k − λ = q2
0

/
z, n = 1, . . . , N , (99c)

λ−
N+1 − λ+

1 = λ−
1 − λ+

N+1 = 0, λ−
j − λ+

n = 0, j, n = 2, . . . , N . (99d)

Similarly, for all Im z < 0 we apply a P− projector to both sides of the
jump equations after regularization, and obtain

m N+1(x, z) =
(

z
ir−

)
+

J̄N∑
j=1

c̄N , j ei(λN (z̄N , j )−λN+1(z̄N , j ))x
z m N (x, z̄N , j )

z̄N , j (z − z̄N , j )

+ z

2π i

N+1∑
j=1

∫ ei(λ−
j (ζ )−λ+

1 (ζ ))x m−
j (x, ζ )Vj,1(ζ )

ζ (ζ − z)
dζ,

(100a)

m2(x, z) =
(

0

ir⊥
0,1

)
+

J1∑
j=1

c1, j ei(λ1(z1, j )−λ2(z1, j ))x
m1(x, z1, j )

z − z1, j

+
J̄1∑

j=1

c̄1, j ei(λ1(z̄1, j )−λ2(z̄1, j ))x
m1(x, z̄1, j )

z − z̄1, j

+ 1

2π i

N+1∑
j=1

∫ ei(λ−
j (ζ )−λ+

2 (ζ ))x m−
j (x, ζ )Vj,2(ζ )

ζ − z
dζ, (100b)

mn(x, z) =
(

0

ir⊥
0,n−1

)
+

Jn−1∑
j=1

cn−1, j
mn−1(x, zn−1, j )

z − zn−1, j
+

J̄n−1∑
j=1

c̄n−1, j
mn−1(x, z̄n−1, j )

z − z̄n−1, j

+ 1

2π i

N+1∑
j=1

∫ ei(λ−
j (ζ )−λ+

n (ζ ))x m−
j (x, ζ )Vj,n(ζ )

ζ − z
dζ, n = 3, . . . , N ,

(100c)
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m1(x, z) =
(

q2
0

/
z

ir−

)
+

JN∑
j=1

cN , j ei(λN (zN , j )−λN+1(zN , j ))x
m N (x, zN , j )

z − zN , j

+ 1

2π i

N+1∑
j=1

∫ ei(λ−
j (ζ )−λ+

N+1(ζ ))x m−
j (x, ζ )Vj,N+1(ζ )

ζ − z
dζ . (100d)

The resulting linear-algebraic system is closed, as usual, by evaluating the
aforementioned equations at the location of the various discrete eigenvalues
that appear in the right-hand side. The potential is then reconstructed, for
instance, by the large-z expansion of m1(x , z) in the upper half-plane of z,
which corresponds to the first column in (86a), whose last N -components
allow one to recover r(x):

r(x) = ir− +
J̄N∑

n=1

c̄N ,n ei(λN (z̄N , j )−λN+1(z̄N , j ))x
m N (x, z̄N ,n)

z̄N ,n

− 1

2π i

N+1∑
n=1

∫
ei(λ−

n (ζ )+λ(ζ ))x m−
n (x, ζ )Vn,1(ζ )

ζ 2
dζ. (101)

[Of course the potential q(x) is obtained by simply taking the complex
conjugate of r(x).]

5. Time evolution

To deal more effectively with the NZBCs, it is convenient to define a rotated
field as q′(x, t) = q(x, t) e−2iq2

0 t . It is then easy to see that the asymptotic
values of the potential q′

± = limx→±∞ q′ are now time-independent, and that
q′ solves the modified defocusing VNLS equation

iq′
t = q′

xx + 2
(
q2

0 − ‖q′‖2
)
q′ . (102)

Equation (102) is the compatibility condition of the modified Lax pair

vx = L′v, vt = T′v, (103a)

where L′ has the same expression as L in (3a) except that Q is replaced by Q′,
and where

T′(x, t, k) = i
(
q2

0 − 2k2
)
J − iJQ′2 − 2kQ′ − iJQ′

x . (104)

Because the scattering problem is the same as in Sections 3 and 4, the formalism
developed the direct and inverse problem remains valid. Nonetheless, the change
allows one to obtain the time dependence of the eigenfunctions very easily, as
we show next. For simplicity we will drop the primes in the rest of this section.
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Because Q → Q± as x → ±∞ the time dependence of the scattering
eigenfunctions is asymptotically given by

T±(k) = lim
x→±∞ T(x, t, k) = i

(
q2

0 − 2k2
)
J − iJQ2

± − 2kQ± . (105)

Note, however that [L±, T±] = 0, and therefore the matrices L± and T± can
be diagonalized simultaneously. (This is not a coincidence, of course, because
the compatibility condition of the Lax pair, which yields the VNLS equation,
is Lt − Tx + [L, T] = 0. The vanishing of the above commutator is then
simply the limit of the compatibility condition as x → ±∞ when the BCs for
the transformed potential are time-independent.) Indeed, it is easy to verify
that the eigenvector matrices E±(k) of L± [cf. (14)], are also the eigenvector
matrices of the asymptotic time evolution operator T±:

T±E± = −iE± 
, (106a)

where


(k) = diag
( − 2kλ, 2k2 − q2

0 , . . . , 2k2 − q2
0︸ ︷︷ ︸

N−1

, 2kλ
)
. (106b)

Aswith�(k) inSection2, theaboverelationsapplyfork ∈ CI, andareextended
to CII by defining 
(k) = diag(ω1, . . . , ωN+1) ∀k ∈ Ĉ, where ω1, . . . , ωN+1

are given by (106b) for k ∈ CI, and the corresponding values for k ∈ CII are
obtained by simply switching ω1 and ωN+1. [i.e., 
I is given by (106b), and

II = π
Iπ is obtained by switching the first and last diagonal entries of 
I].
We can therefore account for the time evolution of the Jost solutions �(x, t, k)
and �̃(x, t, k) defined in (25) and (26) by simply replacing the boundary
conditions (25b) and (26b), respectively, with

lim
x→−∞ �(x, t, k) e−i(�(k)x−
(k)t) = E−(k), (107a)

lim
x→+∞ �̃(x, t, k) e−i(�(k)x−
(k)t) = E+(k). (107b)

In other words, with the above definitions �(x, t, k) and �̃(x, t, k) become
simultaneous solutions of both parts of the Lax pair.

It should then be clear that, if one changes the definition of the fundamental
matrix solutions correspondingly, replacing (27) with

�(x, t, k) = μ(x, t, k) ei(�(k)x−
(k)t), (108a)

�̃(x, t, k) = μ̃(x, t, k) ei(�(k)x−
(k)t), (108b)

all the results in Section 3 carry through when t �= 0 with only trivial
changes. In particular the scattering relation (69b) [which expresses the
proportionality relation between two fundamental solutions of the scattering
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problem] remains valid, as long as the definition (68) of the sectionally
meromorphic eigenfunctions is changed, as appropriate, to

ϕ(x, t, k) = m(x, t, k) ei(�(k)x−
(k)t) .

Correspondingly, (69a) becomes simply

m+(x, t, k) π = m−(x, t, k) ei(�−(k)x−
−(k)t)S(k) e−i(�−(k)x−
−(k)t). (109)

It is then immediate to see that, with these definitions, all scattering coefficients
contained in S(k) are independent of time. And, as a result, so are the discrete
eigenvalues and the norming constants.

Similar changes allow one to carry over the time dependence to the inverse
problem. In particular, it is straightforward to see that all the equations in
Section 4 remain valid for t �= 0 as long as all terms (λj − λn)x appearing in
(98) and (100) are replaced with (λj − λn)x − (ωj − ωn)t for all j , n = 1, . . . ,
N + 1, where, similarly as before, the various ωn(z) appearing in the sums
depend on whether they are evaluated at a point on the upper-half or lower-half
plane, respectively. Explicitly, in terms of the uniformization variable, it is
ω−

1 = ω+
N+1 = −ω+

1 = −ω−
N+1 = (z2 − q2

0/z2)/2, while ω±
n = z2 + q4

0/z2 for
all n = 1, . . . , N . Similarly, the differences appearing in the integrals are

ω−
1 − ω+

1 = −ω−
N+1 + ω+

N+1 = 4kλ = z2 − q4
0

/
z2, (110a)

ω−
n − ω+

1 = ω−
N+1 − ω+

n = 2k(k + λ) − q2
0 = z2, n = 2, . . . , N , (110b)

ω−
n − ω+

N+1 = ω−
1 −ω+

n = 2k(k − λ) − q2
0 = q4

0

/
z2, n = 2, . . . , N , (110c)

ω−
N+1 − ω+

1 = ω−
1 −ω+

N+1 = 0, ω−
j − ω+

n = 0, j, n = 2, . . . , N . (110d)

6. Comparison with the “adjoint problem” formulation of the IST
for the Makanov system

It is instructive to compare the present formulation of the IST to the one
that was developed in Ref. [7] for the two-component case. in Ref. [7], the
scattering eigenfunctions were introduced for k ∈ �, defined by the following
boundary conditions:

as x → −∞ :

φ1(x, k) ∼ w−
1 (k)e−iλx , φ2(x, k) ∼ w−

2 (k)eikx , φ3(x, k) ∼ w−
3 (k)eiλx ;

(111a)

as x → +∞ :

ψ1(x, k) ∼ w+
1 (k)e−iλx , ψ2(x, k) ∼ w+

2 (k)eikx , ψ3(x, k) ∼ w+
3 (k)eiλx ,

(111b)
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with

w±
1 (k) =

(
λ + k

ir±

)
, w±

2 (k) =
(

0
−ir⊥

±

)
, w±

3 (k) =
(

λ − k

−ir±

)
, (112)

where r± and q± are now two-component vectors [assumed to be real], and
r⊥
± is such that r†±r⊥

± = 0. The solutions with fixed boundary conditions with
respect to x were denoted by

M1(x, k) = eiλxφ1(x, k), M2(x, k) = e−ikxφ2(x, k), M3(x, k) = e−iλxφ3(x, k),
(113a)

N1(x, k) = eiλxψ1(x, k), N2(x, k) = e−ikxψ2(x, k), N3(x, k) = e−iλxψ3(x, k),
(113b)

and it was shown that, for all x ∈ R, the vector functions M1(x , ·) and N 3(x , ·)
can be analytically continued on the upper sheet of the Riemann surface,
M3(x , ·) and N 1(x , ·) on the lower sheet. The functions M2(x , ·) and N 2(x , ·),
however, in general do not admit analytic continuation for k off �. Note that
the eigenfunctions M = (M1, M2, M3) do not precisely coincide with the ones
introduced in (75) because of slightly different choices of normalization.
Nonetheless, they are equivalent objects, in the sense that they are scattering
eigenfunctions defined for k ∈ � by fixing their behavior as x → ±∞.

On the other hand, recall that, independently of the number of components
(and therefore also when N = 2), the construction in Section 3 provides the
3 × 3 fundamental matrices μ(x, k) and μ̃(x, k) for all k �∈ � and with boundary
conditions fixed as x → −∞ and as x → +∞, respectively. In particular,
μ1(x , k) [the first column of μ(x, k)] and μ̃3(x, k) [the last column of μ̃(x, k)]
are analytic everywhere on Ĉ \ �, with a discontinuity across �. The remaining
columns are, in general, sectionally meromorphic functions of k, also with a
discontinuity across �. At the same time, in the two-component case there is
no additional term in any of equations (61), and as a result μ(x, k) = m(x, k).
The comparison between the boundary conditions (111)–(113) and (28), (29)
then gives

μ1(x, k) =
{

M1(x, k) k ∈ CI \ �,

−M3(x, k) k ∈ CII \ �,

μ̃3(x, k) =
{−N3(x, k) k ∈ CI \ �,

N1(x, k) k ∈ CII \ �,

(114)

which means that for the limiting values on � from either sheet the following
relations hold: for all k ∈ �,

μ+
1 (x, k) = M1(x, k), μ−

1 (x, k) = −M3(x, k),

μ̃+
3 (x, k) = −N3(x, k), μ̃−

3 (x, k) = N1(x, k) .
(115)
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Moreover, (114) imply that the asymptotic behavior of μ̃3(x, k) as
x → +∞ when k ∈ CI \ � and k ∈ CII \ � coincides, respectively, with that
of the following eigenfunctions:

−N3(x, k) ∼
(

k − λ

ir+

)
, N1(x, k) ∼

(
λ + k
ir+

)
while from (56b) it follows that, as x → −∞, μ̃3(x, k) behaves as

−N3(x, k) ∼ e−i�θη1,1�2(k)

(
k − λ

ir−

)
, N1(x, k) ∼ e−i�θη1,1�2(k)

(
λ + k
ir−

)
,

respectively, for k ∈ CI \ � and k ∈ CII \ �. Importantly, the last two equations
acquire subdominant terms when k ∈ �. Explicitly, according to (59) and (71),
one has

ei�θ

η±
1,1�

±
2 (k)

μ̃±
3 (x, k) ∼ α±

1,3

(
k ± λ

ir−

)
e∓2iλx + α±

2,3

(
0

ir⊥
0

)
e−i(±λ−k)x

+
(

k ∓ λ

ir−

)
as x → −∞. (116)

Similarly, (114) fix the behavior of μ1(x , k) is fixed for x → −∞. Specifically,

M1(x, k) ∼
(

λ + k
ir−

)
, −M3(x, k) ∼

(
k − λ

ir−

)
, (117)

respectively, for k ∈ CI \ � and k ∈ CII \ �, while from (56a) it follows that,
as x → ∞, μ1(x , k) follows the behavior of

M1(x, k) ∼ η1,1�1(k)

(
k + λ

ir+

)
, −M3(x, k) ∼ η1,1�1(k)

(
k − λ

ir+

)
, (118)

again, respectively, for k ∈ CI \ � and k ∈ CII \ �. Again, the limiting values
of these last two relations contain subdominant terms when k ∈ �. Explicitly,
according to (71), one has

μ±
1 (x, k) ∼ β±

1,1(k)

(
k ± λ

ir+

)
+ β±

2,1(k)

(
0

ir⊥
0

)
ei(±λ+k)x

+ β±
3,1(k)

(
k ∓ λ

ir+

)
e±2iλx as x → +∞. (119)

Regarding the middle column μ2(x , k) of μ(x, k), from (56c) we have, for k �∈ �,

μ2(x, k) ∼
(

0
ir⊥

0

)
as x → −∞, μ2(x, k) ∼ �2(k)

�1(k)

(
0

ir⊥
0

)
as x → ∞,

(120)
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while for k ∈ � it is

μ±
2 (x, k) ∼ β±

2,2(k)

(
0

ir⊥
0

)
+ β±

3,2(k)

(
k ∓ λ

ir+

)
e−i(±λ−k)x as x → +∞,

(121a)

μ±
2 (x, k) ∼

(
0

ir⊥
0

)
+ α±

1,2

(
k ∓ λ

ir−

)
ei−(±λ+k)x as x → −∞ . (121b)

For the remaining columns of μ(x, k) and μ̃(x, k) [namely, μ3(x , k),
μ̃1(x, k), and μ̃2(x, k)], we can use (59) to obtain

μ3(x, k) = ei�θ 1

η1,1�2(k)
μ̃3(x, k), μ̃1(x, k) = 1

η1,1�1(k)
μ1(x, k),

μ̃2(x, k) = �1(k)

�2(k)
μ2(x, k), (122)

valid for all k ∈ Ĉ \ � for which �1(k)�2(k) �= 0.
On the other hand, recall that in Ref. [7] two additional analytic eigenfunctions

χ (x , k) and χ̄ (x, k) were obtained via cross products of analytic eigenfunctions
of the “adjoint” scattering problem. These eigenfunctions, analytic, respectively,
in the upper and lower sheet of the Riemann surface, satisfy for all k ∈ � the
following relations:

χ (x, k) e−ikx = 2λb3,3(k)N2(x, k) − 2λb3,2(k) ei(λ−k)x N3(x, k)

= 2λa1,1(k)M2(x, k) − 2λa1,2(k) e−i(λ+k)x M1(x, k)
(123a)

χ̄(x, k) e−ikx = 2λb1,2(k) e−i(λ+k)x N1(x, k) − 2λb1,1(k)N2(x, k)

= 2λa3,2(k) ei(λ−k)x M3(x, k) − 2λa3,3(k)M2(x, k)
(123b)

where A(k) = (ai, j (k)) is a matrix of scattering data such that

φ(x, k) = ψ(x, k)A, (124)

and B(k) = (bi, j (k)) = A−1(k). [To avoid confusion we should point out that
the definition of the scattering matrix was the transpose of the one appearing
in (124).] The coefficients a1,1(k) and b3,3(k) [respectively, a3,3(k) and b1,1(k)]
were shown to be analytic on the upper [respectively, lower] sheet of the
Riemann surface. Finally, comparing the asymptotic behavior of μ±

2 (x, k) as
x → −∞ in (121b) and the relations (123), we obtain

μ2(x, k) = −χ (x, k) e−ikx

2λa1,1(k)
e−iθ⊥

− ∀k ∈ CI,

μ2(x, k) = χ̄ (x, k) e−ikx

2λa3,3(k)
e−iθ⊥

− ∀k ∈ CII,
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which shows the correspondence between the analytic eigenfunctions constructed
via the adjoint problem, and the meromorphic eigenfunction provided by the
construction via tensors described in this article.

Defining r⊥
± = r⊥

0 eiθ⊥
± to account for the phase difference in the normalizations

(18) and (112), and comparing the asymptotic behavior as x → −∞ of
μ±

1 (x, k) in (119) and of M1(x , k) and M3(x , k) as given by (111), (113), and
(124), according to (115) we obtain, for all k ∈ �,

a1,1(k) = β+
1,1(k) = η+

1,1�
+
1 (k),

a2,1(k) = −β+
2,1(k) e−iθ⊥

− , a3,1(k) = −β+
3,1(k), (125)

as well as

a3,3(k) = β−
1,1(k) = η−

1,1�
−
1 (k),

a2,3(k) = −β−
2,1(k) e−iθ⊥

− , a1,3(k) = −β−
3,1(k), (126)

showing that indeed the zeros of �1(k) in each sheet play the same roles
of the zeros of a1,1(k) on CI and of a3,3(k) on CII, and are therefore the
discrete eigenvalues in the sense of [7]. On the other hand, comparing the
asymptotic behavior of μ±

3 (x, k) and of N 1(x , k) and N 3(x , k) as x → −∞
yields, according to (116), (111), (113) and the inverse of (124),

b3,3(k) = e−i�θη+
1,1�

+
2 (k), b1,1(k) = e−i�θη−

1,1�
−
2 (k), (127)

for all k ∈ �, which confirms that the zeros of �1(k) and �2(k) are paired,
according to the symmetry relations derived in Ref. [7]. Note that, in terms
of the uniformization variable z, the genericity assumption in Definition 3
corresponds to the requirement that for each quartet

{
zn, z∗

n, q2
0/zn, q2

0/z∗
n

}
of

discrete eigenvalues (half of which are inside and half outside the circle of
radius q0), each of them is a simple zero of one (and only one) of the functions
a1,1(z) and b3,3(z) in the upper-half z-plane and a3,3(z) and b1,1(z) in the
lower-half z-plane.

7. Concluding remarks

The general methodology developed and presented in this paper works
regardless of the number of components. Even in the two-component case,
however, the present approach allows one to establish more rigorously various
results that were only conjectured in Ref. [7], or to clarify issues that were not
adequately addressed there. Among them are the functional class of potentials
for which the scattering eigenfunctions are well-defined, and the analyticity of
the scattering data.
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On the theoretical side, a few issues remain that still need to be clarified.
For example, the behavior of the eigenfunctions and scattering coefficients at
the branch points must still be rigorously established, as well as the limiting
behavior of the eigenfunctions at the opposite space limit as resulting from
the Volterra integral equations. Also needed is a more complete investigation
of trace formulae, Hamiltonian structure, conserved quantities and complete
integrability (in particular, the action-angle variables). On a more practical
side, the results of this work open up a number of interesting problems:

(i) A detailed analysis of the three-component case, which is the simplest
case that was previously unsolved.

(ii) A derivation of explicit solutions and study of the resulting soliton
interactions.

(iii) In particular, an interesting question is whether solutions exist that exhibit a
nontrivial polarization shift upon interaction, like in the focusing case [1].

(iv) A study of the long-time asymptotics of the solutions using the nonlinear
steepest descent method [21, 22].

All of these issues are left for future work.

Appendix A: Proofs

Proof of Lemma 1: Suppose that μ(x, k) and μ′(x, k) are two solutions of
(28). Because det μ(x, k) is a nonzero constant, the matrix μ(x, k) is invertible
for all x . A simple computation then shows that

∂

∂x
(μ−1μ′) = [i�, μ−1μ′].

The solution of the aforementioned matrix differential equation is readily
obtained as

μ−1(x, k)μ′(x, k) = ei�x A e−i�x , (A.1)

where A = μ−1(0, k)μ′(0, k). One could also solve (A.1) for A in terms of
μ−1μ′. It is not possible to directly evaluate the resulting expression in the
limit x → −∞, because some of the entries of e±i�x diverge in that limit. On
the other hand, because μ and μ′ are bounded for all x , so are μ−1 and the
product μ−1μ′. Hence any terms in the right-hand side of (A.1) that diverge
either as x → −∞ or as x → ∞ must have a zero coefficient. It is easy to see
that this implies that A must be block-diagonal with the same block structure
as �. Then, taking the limit as x → −∞ and using the boundary conditions
(28b) yields A = I, and therefore μ ≡ μ′. The proof of the uniqueness of the
solution of (29) is obtained following similar arguments. �
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Proof of Theorem 1: It is straightforward to see that the columns μ1 and
μ̃N+1 of the fundamental matrices μ and μ̃ can be written as solutions of the
following Volterra integral equations:

μ1(x, k) = e−
1 +

∫ x

−∞
e(x−y)(L−−iλ1I)[Q(y) − Q−]μ1(y, k) dy,

μ̃N+1(x, k) = e+
N+1 −

∫ ∞

x
e(x−y)(L+−iλN+1I)[Q(y) − Q+]μ̃N+1(y, k) dy.

Standard Neumann series arguments show that, due to the ordering of the
eigenvalues, the above integral equations have a unique solution, and such
solution is an analytic function of k, if the potentials q − q− and q − q+ are,
respectively, in the functional classes L1( − ∞, c) and L1(c, ∞) for all c ∈ R

[cf. (7)]. This estabilishes the analyticity of f 1 = μ1 and gN+1 = μ̃N+1 for
all k ∈ Ĉ \ �, with well-defined limits to � from either sheet, including the
branch points ±q0. We next show that, for all n = 2, . . . , N + 1, the forms fn

and gn are also solutions of Volterra integral equations that are well-defined
∀k ∈ Ĉ \ � with well-defined limits to �.

The operators appearing in the extended differential Equations (34), namely,

An(k) = L(n)
− − i(λ1 + · · · + λn)I, Bn(k) = L(N−n+2)

+ − i(λn + · · · + λN+1)I,

can be diagonalized as follows:

An(k) = E−Ãn(E−)−1, Bn(k) = E+B̃n(E+)−1, (A.2)

where the matrix multiplication is performed according to (32), and Ãn and B̃n

are the normal operators

Ãn = �(n) − i(λ1 + · · · + λn)I, B̃n = �(N−n+2) − i(λn + · · · + λN+1)I.

The relations (A.2) follow from the definition of the extensions L(n)
± and �(n)

and from (14). Moreover, it is easy to check that the standard basis tensors

{e j1 ∧ · · · ∧ e jn : 1 ≤ j1 < j2 < · · · < jn ≤ N + 1}
for

∧n(CN+1) [where as before e1, . . . , eN+1 are the vectors of the canonical
basis of C

N+1] are eigenvectors of Ãn and B̃n , and that the spectrum of Ãn and
B̃n is given by, respectively

spec(Ãn) = {λ j1 + · · · + λ jn − λ1 − · · · − λn : j1 < j2 < · · · < jn},
spec(B̃n) = {λ jn + · · · + λ jN+1 − λn − · · · − λN+1 : jn < jn+1 < · · · < jN+1}.
Due to the ordering of the eigenvalues, the real part of the spectrum of Ãn is
therefore always nonpositive, whereas the real part of the spectrum of B̃n is
always nonnegative.
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To take advantage of the above diagonalization, it is convenient to introduce
the following transformation of the fundamental tensor families:

f #
n = (E−)−1 fn, g#

n = (E+)−1gn .

It should be clear that fn and gn are solutions of the differential problem (34)
if and only if f #

n and g#
n are solutions of

∂x f #
n = Ãn f #

n + Q#,−
n f #

n , lim
x→−∞ f #

n = e1 ∧ · · · ∧ en, (A.3a)

and

∂x g#
n = B̃ng#

n + Q#,+
N−n+2g#

n, lim
x→∞ g#

n = en ∧ · · · ∧ eN+1, (A.3b)

where

Q#,±
n = (E±)−1

[
Q(n) − Q(n)

±
]
E±, (A.4)

and again the matrix multiplication is performed according to (32). Because of
its k-dependence, the term Q#,±

n becomes an energy-dependent potential.
The 2(N + 1) problems (A.3) above can all be analyzed via a single abstract

model [namely, (A.6) further] for a normal operator in a finite-dimensional
Hermitian vector space V with norm ‖·‖. More precisely, let A be a normal
operator on such a vector space, which plays the role of either Ãn or B̃n , and
let q(x , z) be a linear operator on V of the form

q(x, z) = z

z2 − q2
0

2n∑
j=−2n

z j q j (x), (A.5)

which plays the role of the energy-dependent potential (A.4). Here and below, z is
the uniformization variable introduced in Section 2.3. The explicit z-dependent
factor in front of the summation in (A.5) reflects the presence of a factor 1/λ in
E−1

± coming from the determinant of E±, while the summation reflects the fact
that all remaining terms in E± and its inverse have degree no larger than 1 and
no less than −1 in z [cf. (23)]. Moreover, the fact that q − q− ∈ L1(−∞, c)
and q − q+ ∈ L1(c, ∞) implies similar properties for the qj(x)’s. Then, for a
fixed z ∈ C \ � and a fixed u0 ∈ ker A, consider the “model problem”

∂x u = A(z)u + q(x, z)u, lim
x→−∞ u(x) = u0. (A.6)

The problem for gn can be brought to this form by simply changing x to
−x . Correspondingly, u plays the role of either f #

n or g#
n . If u satisfies the

differential equation in (A.6), for any real s and x it is also a solution of the
linear Volterra integral equation

u(x) = e(x−s)A(z)u(s) +
∫ x

s
e(x−y)A(z)q(y, z)u(y) dy.
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The result of the theorem then follows from the fact that A(z) is a normal
operator with non positive real part, and therefore eA(z)t has norm less than or
equal to 1 for all t ≥ 0. We may thus take the limit of the above integral
equation as s → −∞ and apply the boundary conditions in (A.6) to obtain

u(x) = u0 +
∫ x

−∞
e(x−y)A(z)q(y, z)u(y) dy. (A.7)

Conversely, any solution of the Volterra integral equation (A.7), which is
bounded as x → −∞, solves (A.6). Applying the usual Picard iteration
procedure then proves the existence, uniqueness and analyticity in z of the
solution. �

Proof of Theorem 2: Consider the maximal-rank tensors hn = fn ∧ gn+1,
for all n = 1, . . . , N . Each of these tensors satisfies a differential equation of
the form

∂x hn = [
L(N+1)

± − ik(N − 1)I + (
Q(N+1) − Q(N+1)

±
)]

hn.

For any linear operator A acting on C
N+1, the extension A(N+1) is equivalent

to scalar multiplication by the trace of A. Because the trace of the operator on
the right-hand side of the above equation is zero, we have that each of the hn is
a function of k only. Moreover, in C

N+1, any (N + 1)-form can be written as
C e1∧. . .∧eN+1 for some scalar C . Therefore, (36) defines uniquely a function
�n(k) wherever the function γ n(k) is nonzero.

Analogously, (38) hold because both f N+1 and g1 are maximal rank
tensors, which, with similar arguments as aforementioned, can be shown to be
independent of x . Therefore, their value must coincide with their asymptotic
limit as either x → −∞ or x → ∞.

The specific value of γ n(k) follows from the fact that, thanks to our choice
of normalization for R⊥

0 , the N × N matrix (R⊥
0 , r±) has mutually orthogonal

columns, each with norm q0. Finally, the �n(k) defined by (36) are analytic on
Ĉ \ � because the fn’s and gn’s are analytic there, and for the same reason
they admit smooth extensions to �\{±q0} from each sheet. �

Proof of Theorem 3: As a solution of (34a), the tensor fn is in the
kernel of the operator ∂x − L(n) + i(λ1 + · · · + λn)I. But because Q → Q+ as
x → ∞, in this limit fn is asymptotically in the kernel of

∂x − L(n)
+ + i(λ1 + · · · + λn)I .

Because this kernel is spanned by the collection of all tensors of the form
e+

1 ∧ e+
j2

∧ · · · ∧ e+
jn

for 2 ≤ j2 < . . . < jn ≤ N , equations (40) then follow.
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By similar arguments we have that, as x → −∞, the tensor gn must
asymptotically be in the kernel of the operator

∂x − L(N−n+2)
− + i(λn + · · · + λN+1)I ,

whichisspannedbythecollectionofall tensorsof theforme−
jn

∧ · · · ∧ e−
jN

∧ e−
N+1,

for 2 ≤ jn < · · · < jN ≤ N . Equations (41) then follow.
To prove (42), note that (36) and (40) imply hn = �n e−

1 ∧ · · · ∧ e−
n ∧

e+
n+1 ∧ · · · ∧ e+

N+1 for all n = 1, . . . , N . Because hn is independent of x ,
however, it equals its limits as x → ±∞. That is,

lim
x→−∞ hn = e−

1 ∧ · · · ∧ e−
n ∧

⎡
⎣ ∑

2≤ jn+1< jn+2<···< jN ≤N

δ̃ jn+1,..., jN e−
jn+1

∧ · · · ∧ e−
jN

∧ e−
N+1

⎤
⎦

= lim
x→∞ hn =

⎡
⎣ ∑

2≤ j2< j3<···< jn≤N

δ j2,..., jn e+
1 ∧ e+

j2
∧ · · · ∧ e+

jn

⎤
⎦ ∧ e+

n+1 ∧ · · · ∧ e+
N+1 .

All terms but one in the sums above have at least one repeated vector. Hence,
taking into account the decompositions (20), we conclude that relations (42)
follow. �

Proof of Lemma 2: Recall first that if u1, . . . , un are vectors in C
N+1 such

that u1∧. . .∧un �= 0 and g ∈ �n+1
(
C

N+1
)
, then, the equation

u1 ∧ · · · ∧ un ∧ v = g

has a solution v if and only if uj ∧ g = 0 for all j = 1, . . . , n. Using the
aforementioned result, we next prove by induction that there exist smooth
functions, v1, . . . , vN+1 : R → C

N+1 such that, for all n = 1, . . . , N ,

v1 ∧ · · · ∧ vn = fn, (A.8a)

vn ∧ f j = 0, ∀ j = n, . . . , N + 1, (A.8b)

fn−1 ∧ [(∂x − ikJ − Q + iλn)vn] = 0. (A.8c)

The induction is anchored with the choice v1 = f 1, which implies that
(A.8a) and (A.8c) are satisfied trivially. We therefore need to show that (A.8b)
holds for n = 1 and j = 1, . . . , N + 1. To this end, note that, for any j =
1, . . . , N + 1, the product v1∧ fj is a solution of the following homogeneous
differential equation:[

∂x − L( j+1)
− + iλ1 + i(λ1 + · · · + λ j ) − (Q − Q−)( j+1)

]
(v1 ∧ f j )

= {[∂x − L− + iλ1 − (Q − Q−)]v1} ∧ f j

+ v1 ∧ [
∂x − L( j)

− + i(λ1 + · · · + λ j ) − (Q − Q−)( j)
]

f j = 0,
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because v1 = f 1 and fj both satisfy (34a). Moreover, v1∧ fj satisfies the zero
boundary condition:

lim
x→−∞ v1(x, k) ∧ f j (x, k) = e−

1 ∧ e−
1 ∧ e−

2 ∧ · · · ∧ e−
j = 0 .

Then the problem has the unique solution v1∧ fj ≡ 0. The induction is thus
anchored. Suppose now that v1, . . . , vn−1 have been determined according
to (A.8). Note that f n−1 = v1∧. . .∧vn−1 is generically nonzero because it
solves a first-order differential equation with nonzero boundary condition. The
equation f n−1∧v = fn then has a solution vn provided vs∧ fn = 0 for all s =
1, . . . , n − 1. But this condition is part of the induction assumption, so there
exists a solution vn that satisfies (A.8a). We thus need to show that such vn

also satisfies (A.8b) and (A.8c). First, note that

fn−1 ∧ [∂x − L− + iλn − (Q − Q−)]vn

= [
∂x − L(n)

− + i(λ1 + · · · + λn) − (Q − Q−)(n)
]

fn

−{[
∂x − L(n−1)

− + i(λ1 + · · · + λn−1) − (Q − Q−)(n−1)
]

fn−1
} ∧ vn = 0,

where we used that fn = f n−1∧vn and Equations (34a). This proves (A.8c).
Moreover, as a consequence we have, for all x ∈ R,

[∂x − L− + iλn − (Q − Q−)]vn ∈ span{v1, . . . , vn−1}. (A.9)

Finally, for all j = n, . . . , N + 1 then we have[
∂x − L( j+1)

− + i(λn + λ1 + · · · + λ j ) − (Q − Q−)( j+1)
]
(vn ∧ f j )

= {[∂x − L− + iλn − (Q − Q−)]vn} ∧ f j

+ vn ∧ [
∂x − L( j)

− + i(λ1 + · · · + λ j ) − (Q − Q−)( j)
]

f j . (A.10a)

The first term in the right-hand side of (A.10), however, vanishes because of
(A.9) and the induction assumption (A.8b). And the second term vanishes
because the fj’s satisfy (34a). Moreover,

lim
x→−∞ vn(x, k) ∧ f j (x, k) = lim

x→−∞ vn ∧ e−
1 ∧ · · · ∧ e−

j

= lim
x→−∞ vn ∧ fn ∧ e−

n+1 ∧ · · · ∧ e−
j

= lim
x→−∞ vn ∧ v1 ∧ · · · ∧ vn ∧ e−

n+1 ∧ · · · ∧ e−
j = 0, (A.10b)

where we used (A.8a) as well as the boundary conditions (A.8a). The unique
solution of the homogeneous differential equation plus boundary conditions
(A.10) is therefore vn∧ fj = 0, which proves (A.8b) for j ≥ n and thus
completes the induction. The proof of existence for the wn’s can be carried out
analogously. �
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Proof of Lemma 3: We prove the results for the mn’s. The dual results
for the m̃n’s are proved in a similar way. For a fixed n = 1, . . . , N + 1
we know that f n−1 and gn are point-wise decomposable. We can write these
decompositions as

fn−1 = u1 ∧ · · · ∧ un−1, gn = un ∧ · · · ∧ uN+1.

For instance, we can take uj = vj for j = 1, . . . , n − 1 and uj = wj for j = n, . . . ,
N + 1, where vn and wn are the vectors in Lemma 2. Then, if f n−1 ∧ gn �= 0,
the N + 1 vectors {un}n=1, ... ,N+1 are linearly independent and thus form a
basis of C

N+1. We can therefore express vn as a linear combination of them:

vn =
N+1∑
j=1

c j u j ,

for some unique choice of coefficients c1, . . . , cN+1. Because fn = f n−1∧vn,
imposing the first condition in (46a) [namely fn = f n−1∧mn] gives

u1 ∧ · · · ∧ un−1 ∧
⎛
⎝N+1∑

j=n

c j u j

⎞
⎠ = u1 ∧ . . . un−1 ∧ mn .

In turn, this implies

mn −
N+1∑
j=n

c j u j ∈ span {u1, . . . , un−1} .

Thus, we can express mn as

mn =
N+1∑
j=n

c j u j +
n−1∑
j=1

b j u j ,

with coefficients b1, . . . , bn−1 to be determined. But imposing now the second
of (46a) [namely the condition mn ∧ gn = 0] implies b1 = . . . = bn−1 = 0
(due to the decomposition of gn). Therefore, we have determined the unique
solution of (46a).

To show that such a mn is a meromorphic function of k, we use the canonical
basis and the standard inner product on

∧(
C

N+1
)
, and express (46a) as

〈( fn − fn−1 ∧ mn), e j1 ∧ · · · ∧ e jn 〉 = 0,

〈mn ∧ gn, e j1 ∧ · · · ∧ e jN−n+3〉 = 0.

These conditions provide an over-determined linear system of equations for
the coefficients of mn with respect to the standard basis of C

N+1. Because it
has a unique solution, some subset of N + 1 equations among these has
nonzero determinant. Solving this subsystem gives the coefficients of mn (with
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respect to the standard basis) as rational functions of those of f n−1, fn, and gn.
And, according to Theorem 2, the latter are analytic functions of k on Ĉ/�. �

Proof of Theorem 4: For n = 1, equations (47a), (48a) and (49a) follow
from the fact that m1 = f 1. So consider a fixed n = 2, . . . , N + 1. According
to Lemma 3, there exists a unique mn(x , k) such that (46a) holds. Because
such an mn depends smoothly on f n−1 and gn, it is a smooth bounded function
of x . Together with (34a), Equations (46a) give [using similar methods to
those in Lemma 2]

fn−1 ∧ [∂x − iL− + iλn − (Q − Q−)]mn = 0,

gn ∧ [∂x − iL− + iλn − (Q − Q−)]mn = 0 .

But wherever f n−1∧gn �= 0, these equations imply (47a) [because the term to
the right of both wedge signs must be in the span of two linearly independent set
of vectors, and therefore is identically zero]. Moreover, the limit as x → −∞
of f n−1 ∧ mn = fn gives (48a) for n = 2, . . . , N + 1.

To prove (49a), we first show below that the second of (46a) implies, for
n = 2, . . . , N ,

mn ∧ gn+1 = cngn, (A.11)

where cn(x , k) is a scalar function. In fact, the decomposition gn =
wn ∧ . . .∧ wN+1 [from Lemma 2] and the condition mn ∧ gn = 0 imply
mn = ∑N+1

j=n c jw j , and therefore

mn ∧ gn+1 =
⎛
⎝N+1∑

j=n

c jw j

⎞
⎠ ∧ wn+1 ∧ · · · ∧ wN+1,

from which (A.11) follows trivially. Thus, for all n = 2, . . . , N ,

cn fn−1 ∧ gn = fn−1 ∧ mn ∧ gn+1 = fn ∧ gn+1, (A.12)

and because both f n−1 ∧ gn and fn ∧ gn+1 are independent of x , we conclude
that cn must also be independent of x . (But in general it depends on
k, obviously.) If we now consider the limit of (A.12) as x → −∞,
taking into account (36) we obtain cn�n−1e−

1 ∧ · · · ∧ e−
n−1 ∧ e+

n ∧ . . . e+
N+1 =

�ne−
1 ∧ · · · ∧ e−

n ∧ e+
n+1 ∧ . . . e+

N+1, that is, for all n = 2, . . . , N ,

cn�n−1γn−1 = �nγn . (A.13)

From (A.11) and (A.13) we therefore conclude

mn ∧ gn+1 = γn

γn−1

�n

�n−1
gn n = 2, . . . , N . (A.14)

[Note that �n−1 �= 0 because of (36) and f n−1 ∧ gn �= 0.] The limit of the
aforementioned equation as x → +∞ yields (49a) for n = 2, . . . , N .
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To establish (49a) for n = N + 1 [for which (A.11) obviously does not
apply], we first observe that, putting together the results of Lemmas 2 and 3,
for the first and the last of the mn’s and m̃n’s one has the following. Because
m̃1 ∧ f1 = 0 and m1 ≡ f 1, it follows that m̃1 ∧ m1 = 0, that is,

m1 = d1m̃1 , (A.15a)

where d1 is a scalar function depending, in principle, on both x and k. Note
however that m1 and m̃1 satisfy the same differential equation [this uses (47b)
in Theorem 4, which is proved exactly as aforementioned], implying that d1(k)
is independent of x . Similarly, mN+1 ∧ gN+1 = 0 and m̃ N+1 = gN+1 imply
m̃ N+1 ∧ m N+1 = 0, that is,

m N+1 = dN+1m̃ N+1, (A.15b)

with dN+1 again a scalar function of k only (for the same reasons as (A.15a)
above). Using (A.15b), as well as (41a) and (42), we then obtain

lim
x→+∞ m N+1 = dN+1(k)e+

N+1 , lim
x→−∞ m N+1 = dN+1(k)e−i�θη1 1�N e−

N+1 .

On the other hand because (48a) is also valid for n = N + 1, it
is e−i�θη1,1dN+1�N = 1. Then, recalling �N+1 = 1, we have dN+1 =
ei�θ/ [η1,1�N ] = [γ N+1�N+1]/[γ N�N ], which completes the proof of (49a).

The analyticity of mn wherever f n−1 ∧ gn �= 0 was already established
in Lemma 3. Finally, (36) implies immediately that the only points k �∈ �

such that f n−1(x , k) ∧ gn(x , k) = 0 but �n−1(k) �= 0 are those for which
γ 1(k) = · · · = γ N (k) = 0. As discussed earlier, these are points k = q0cos (�θ/2)
on each sheet, where η1,1(k) = 0. It is relatively easy to see, however, that at
these two points one can simply define mn by analytic continuation.

Similar arguments allow one to prove (47b) and the corresponding boundary
conditions and asymptotic behavior for the m̃n’s and to establish their analyticity
properties. �

The proof of Theorem 5 follows similar methods as that of Theorem 4
earlier.

Proof of Corollary 1: The results follow by taking the limits as x → ±∞
of (46a), using the boundary conditions established in Theorem 3 and solving
the resulting over-determined linear system. The solvability conditions of the
system correspond to Plücker relations such as (44). Consider, for example,
the limit as x → −∞ of mn(x , k) for some n = 2, . . . , N . For k �∈ �, from
Theorem 3 it follows that

lim
x→−∞ gn(x, k) =

∑
2≤ jn< jn+1<···< jN ≤N

δ̃ jn,..., jN e−
jn

∧ · · · ∧ e−
jN

∧ e−
N+1,
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and therefore the condition mn ∧ gn = 0 implies that as x → −∞, mn is
asymptotically in the span of e−

2 , . . . , e−
N+1, that is,

lim
x→−∞ mn =

N+1∑
j=2

αn, j e−
j .

Moreover, taking into account that f n−1 ∧ mn = fn and using the limits of fn

and f n−1 as x → −∞ as given in Theorem 3, we have

e−
1 ∧ · · · ∧ e−

n−1 ∧
N+1∑
j=2

αn, j e−
j = e−

1 ∧ · · · ∧ e−
n ,

which implies αn,j ≡ 0 for j > n and αn,n = 1, that is, the first of (56c).
Finally, the coefficients αn,j can be expressed in terms of the functions δ̃ jn,..., jN .
Indeed, the condition mn ∧ gn = 0, evaluated in the limit x → −∞, yields, for
all n = 2, . . . , N :∑

2≤ jn< jn+1<···< jN ≤N

δ̃ jn,..., jN

n∑
j=2

αn, j e−
j ∧ e−

jn
∧ · · · ∧ e−

jN
∧ e−

N+1 = 0,

with αn,n = 1. The terms that are not identically zero due to repeated factors in
the wedge products give an over-determined linear system for the coefficients
αn,j in terms of δ̃ jn,..., jN , whose solution in expressed by the first of (55a). The
proof for the remaining eigenfunctions is carried out in a similar way. The
specific values of the diagonal coefficients in (53) follow from (42). �

Proof of Corollary 2: The analyticity properties of the matrices m and m̃
are an immediate consequence of their construction, together with the earlier
results about the fundamental tensors fn and gn. The relation (59), defining
the transition matrix d(k), follows from the fact that for generic k ∈ Ĉ \ �,
and for each n = 1, . . . , N + 1, the matrices mn and m̃n satisfy the same
differential equation. Moreover, it is straightforward to verify that, thanks to
Corollary 1 and (53), their boundary values as x → −∞ and as x → ∞ are
proportional to each other with the same proportionality constant. Hence the
two solutions must be proportional to each other for all x . Namely,

γn−1(k)�n−1(k) mn(x, k) = γn(k)�n(k) m̃n(x, k), n = 1, . . . , N + 1 .(A.16)

Taking into account the value of the γ n(k) one then has (59) and (60). �

Proof of Corollary 3: The result is a straightforward consequence of
Corollary 1 and of the definitions (28) and (29). �

Proof of Theorem 6: By the genericity assumption, �n(k) is the only one
among �1, . . . , �N+1 that vanishes at ko, and it has a simple zero. The results of
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the aforementioned sections show that, for all j = 1, . . . , N + 1 with j �= n + 1,
the columns mj(x , k) are analytic near ko, while mn+1(x , k) is undefined there.

We start by proving (65). Let {vn, wn}n=1, ... ,N+1 be two sets of vectors
as in Lemma 2. We know (from the proof of Lemma 3) that mn(x, k) ∈
span {wn, . . . , wN+1}. Moreover, because �n(ko) = 0, (36) implies that, at
k = ko,

0 = fn ∧ gn+1 = fn−1 ∧ mn ∧ gn+1 = cn fn−1 ∧ gn,

where the last identity follows because mn ∧ gn+1 = cngn [cf. (A.11)],
with cn(k) = (γ n�n)/(γ n−1�n−1). Note however that cn(ko) = 0
because �n(ko) = 0, while f n−1(x , ko) ∧ gn(x , ko) �= 0 because by
assumption �n−1(ko) �= 0. On the other hand, (A.11) also implies that
mn − cnwn ∈ span{wn+1, . . . , wN+1} because gn = wn ∧ ··· ∧wN+1 for all n =
1, . . . , N + 1 [cf. (43)]. Therefore at a point ko where cn(k) vanishes one has
mn(x, ko) ∈ span{wn+1, . . . , wN+1}. Moreover, span{wn+1, wn+2, . . . , wN+1} =
span{m̃n+1, wn+2, . . . , wN+1}, because m̃n+1 ∧ gn+2 = gn+1 [cf. (46b)]. This,
together with (43), implies that m̃n+1 ∈ span{wn+1, . . . , wN+1}. Therefore we
finally conclude that, at k = ko,

mn ∈ span {m̃n+1, wn+2, . . . , wN+1} .

In a similar way one can show that, at k = ko,

m̃n+1 ∈ span {v1, . . . , vn−1, mn} .

It then follows that there exist scalar functions b1(x) and
b2(x) such that m̃n+1 − b1mn ∈ span {v1, . . . , vn−1} and m̃n+1 − b2mn ∈
span{wn+2, . . . , wN+1}, that is,

m̃n+1 − b1mn =
n−1∑
j=1

d jv j , m̃n+1 − b2mn =
N+1∑

j=n+2

d̃ jw j . (A.17)

We next show that these two functions coincide. Taking the wedge product of
both these vectors with f n−1 ∧ gn+2, we obtain

(m̃n+1 − b1mn) ∧ fn−1 ∧ gn+2 =
n−1∑
j=1

d jv j ∧ v1 ∧ . . . vn−1 ∧ gn+2 = 0,

(m̃n+1 − b2mn) ∧ fn−1 ∧ gn+2 =
N+1∑

j=n+2

d̃ jw j ∧ fn−1 ∧ wn+2 ∧ · · · ∧ wN+1 = 0,

so that m̃n+1 ∧ fn−1 ∧ gn+2 = b1 mn ∧ fn−1 ∧ gn+2 and m̃n+1 ∧ fn−1 ∧ gn+2 =
b2 mn ∧ fn−1 ∧ gn+2. Therefore b1 mn ∧ f n−1 ∧ gn+2 = b2 mn ∧ f n−1 ∧ gn+2,
that is,

b1 fn ∧ gn+2 = b2 fn ∧ gn+2 .
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But fn ∧ gn+2 �= 0 because fn ∧ vn+1 ∧ gn+2 = f n+1 ∧ gn+2 �= 0. Hence b1 =
b2 := b(x).

The aforementioned argument, together with (A.17), implies that m̃n+1 −
b mn ∈ span {v1, . . . , vn−1} and also m̃n+1 − b mn ∈ span {wn+2, . . . , wN+1}.
Then, because these two sets are linearly independent, it follows that

m̃n+1(x, k) = b(x)mn(x, k) .

The differential equations (47a) and (47b) satisfied by mn(x , k) and m̃n+1(x, k)
then imply that b(x) has form given in (65).

To prove (66), note that, for k �= ko and for all j = 1, . . . , N + 1 it is
γ j−1� j−1 m j = γ j� j m̃ j [cf. (A.16)]. Evaluating this relation for j = n + 1,
combining this relation with (65) and taking the limit k → ko one then obtains
(66). �

Corollary 4 is an immediate consequence of Theorem 6.

Proof of Theorem 7: The argument is the same as for the basic
uniqueness result. Indeed, the choice of π gives π�+π = �− [or, equivalently,
π�−π = �+]. Therefore, both m+π and m− satisfy the same matrix differential
equation, namely

∂x G = ikJ G − iG �− − Q G,

so that

∂x ((m−)−1m+π) = i[�−, (m−)−1m+π ].

Requiring boundedness both as x → −∞ and as x → ∞ then implies
that

(
m−)−1

m+π has the form ei�−(k)x S(k) e−i�−(k)x , which in turn yields
immediately (69a).

To obtain (69b), recall that the matrix π defined in (19) interchanges
eigenvalues and eigenvectors from CI to CII. Thus, eix�− = π eix�+

π . Using this
relation to replace the last exponential in (69a) [and recalling that π−1 = π ],
one then obtains the jump condition defining the scattering data as (69b). �

Proof of Theorem 8: We know from Theorem 5 that the columns of
m(x, k) are solutions of the differential equation (47a) also in the limit
k → �. Hence the columns of ϕ±(x, k) are solutions of the scattering problem
(2a). Recalling that the scattering problem vx = Lv admits the fundamental
matrix solutions �(x, k) and �̃(x, k) whose asymptotic behavior as x → ±∞
is given, respectively, by E± ei�x (evaluated on either side of the cut), we can
write the asymptotic behavior of ϕ±(x, k) as x → −∞ and as x → ∞,
respectively, as

ϕ±(x, k) ∼ E±
− ei�±x C±

−, ϕ±(x, k) ∼ E±
+ ei�±x C±

+,
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for some constant [i.e., x-independent] matrices C±
−(k) and C±

+(k). [To avoid
confusion, recall that the superscript ± indicates whether the limit k → � is
taken from above or below the cut, while the subscript ± denotes whether one is
considering the limit x → ∞ or x → −∞.] It then follows that the asymptotic
behavior of m±(x, k) as x → −∞ and as x → ∞ is given, respectively, by

m±(x, k) ∼ E±
− ei�±x C±

−e−i�±x , m±(x, k) ∼ E±
+ ei�±x C±

+e−i�±x .

The fact that the matrices C±
− and C± are, respectively, upper triangular and

lower triangular follows by enforcing the weak boundary conditions (50a) and
(51a). Finally, the fact that some of the coefficients of C±

− and C±
+ have the form

specified in (55) results from the continuity of the weak boundary conditions
(50a) and (51a). �

Proof of Corollary 5: Equation (74) follows from Theorem 8 by taking
into account (71), the limiting values as |x | → ∞ of (69a), and using the fact
that

(
E−

±
)−1

E+
± = π

(
E+

±
)−1

E+
± = π , as well as e−i�−xπ ei�+x = π . �

Appendix B: WKB expansion

We first consider the asymptotic behavior of the fundamental eigenfunction
μ1(x , z) of the scattering problem (2a). In terms of the uniformization variable
z introduced in Section 2.3, the system of differential equations becomes, for
Im z > 0,

∂xμ
(1)
1 (x, z) = −i

q2
0

z
μ

(1)
1 (x, z) +

N∑
j=1

q ( j)(x)μ( j+1)
1 (x, z), (B.1a)

∂xμ
( j)
1 (x, z) = i z μ

( j)
1 (x, z) + r ( j−1)(x)μ(1)

1 (x, z), j = 2, . . . , N + 1, (B.1b)

where the superscript ( j) denotes the j th component of a vector. We start with
the following ansatz for the expansion of μ1(x , z) as z → ∞ with Im z > 0:

μ
(1)
1 (x, z) = z μ

(1),−1
1,∞ (x) + μ

(1),0
1,∞ (x) + μ

(1),1
1,∞ (x)

z
+ O(1/z2)

μ
( j)
1 (x, z) = μ

( j),0
1,∞ (x) + μ

( j),1
1,∞ (x)

z
+ O(1/z2), j = 2, . . . , N + 1.

Substituting these expressions into (B.1a), and matching the terms of the same
order in z, we obtain ∂xμ

(1),−1
1,∞ (x) = 0, implying μ

(1),−1
1,∞ (x) = 1, using the
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knowledge of the asymptotic behavior as x → −∞. Moreover,

∂xμ
(1),0
1,∞ (x) = −iq2

0 +
N∑

j=1

q ( j)(x)μ( j),0
1,∞ (x).

Substituting the above expansions into (B.1b) yields μ
( j+1),0
1,∞ (x) = ir ( j)(x) and

∂xμ
( j+1),0
1,∞ (x) = iμ( j+1),1

1,∞ (x) + r ( j)(x)μ(1),0
1,∞ (x), j = 1, . . . , N ,

so that

μ
(1),0
1,∞ (x) = i

∫ x

−∞

[‖q(x ′)‖2 − q2
0

]
dx ′,

where again we fixed the integration constant to match the asymptotic behavior.
Then, for all j = 1, . . . , N ,

μ
( j+1),1
1,∞ (x) = ∂xr ( j)(x) − r ( j)(x)

∫ x

−∞

[‖q(x ′)‖2 − q2
0

]
dx ′.

Proceeding iteratively one can, in principle, determine all the coefficients of
the asymptotic expansion.

The differential equations satisfied by μ1(x , z) in the lower-half z-plane
differ from (B.1), and are

∂xμ
(1)
1 (x, z) = −i z μ

(1)
1 (x, z) +

N∑
j=1

q ( j)(x)μ( j+1)
1 (x, z), (B.2a)

∂xμ
( j)
1 (x, z) = i

q2
0

z
μ

( j)
1 (x, z) + r ( j−1)(x)μ(1)

1 (x, z), j = 2, . . . , N + 1. (B.2b)

The appropriate ansatz for the expansion as z → ∞ with Im z < 0 is then:

μ
(1)
1 (x, z) = μ

(1),1
1,∞ (x)

z
+ O(1/z2),

μ
( j)
1 (x, z) = μ

( j),0
1,∞ (x) + μ

( j),1
1,∞ (x)

z
+ O(1/z2), j = 2, . . . , N + 1.

Substituting into (B.2) and matching the terms of the same order in z we get,
for the leading order coefficients, μ

(1),1
1,∞ (x) = qT (x)r−, as well as μ

( j),0
1,∞ (x) =

ir ( j−1)
− for all j = 2, . . . , N + 1.
Recall that, to properly formulate the inverse problem, we also need to

compute the behavior of the eigenfunctions as z → 0. In this case, for Im z > 0
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we use the ansatz

μ
(1)
1 (x, z) = z μ

(1),1
1,0 (x) + z2μ

(1),2
1,0 (x) + O(z3),

μ
( j)
1 (x, z) = μ

( j),0
1,0 (x) + z μ

( j),1
1,0 (x) + O(z2), j = 2, . . . , N + 1.

Substituting this into (B.1) yields, for the leading order coefficients of the
expansion

μ
(1),1
1,0 (x) = qT (x)r−

/
q2

0 , μ
( j+1),0
1,0 (x) = ir ( j)

− , j = 1, . . . , N .

In the lower half z-plane, the ansatz for the expansion of μ1(x , z) about z = 0
will be

μ
(1)
1 (x, z) = 1

z
μ

(1),−1
1,0 (x) + μ

(1),0
1,0 (x) + z μ

(1),1
1,0 (x) + O(z2),

μ
( j)
1 (x, z) = μ

( j),0
1,0 (x) + z μ

( j),1
1,0 (x) + O(z2), j = 2, . . . , N + 1,

as z → 0 with Im z < 0. Replacing into the differential equations (B.2) and
matching the corresponding powers of z yields

μ
(1),−1
1,0 (x) = q2

0 , μ
( j),0
1,0 (x) = ir ( j−1)(x) j = 2, . . . , N + 1. (B.3)

Consider now the eigenfunction μN+1(x , z), whose components satisfy the
following system of ordinary differential equations (ODEs) for Im z > 0:

∂xμ
(1)
N+1 = −i z μ

(1)
N+1 +

N∑
j=1

q ( j)μ
( j+1)
N+1 , (B.4a)

∂xμ
( j+1)
N+1 = i

q2
0

z
μ

( j)
N+1 + r ( j)(x)μ(1)

N+1, j = 1, . . . , N , (B.4b)

we then make the following ansatz for the behavior of μN+1(x , z) as z → 0
with Im z > 0:

μ
(1)
N+1(x, z) = μ

(1),−1
N+1,0(x)

z
+ μ

(1),0
N+1,0(x) + z μ

(1),1
N+1,0(x) + O(z2), (B.5a)

μ
( j+1)
N+1 (x, z) = μ

( j+1),0
N+1,0 (x) + z μ

( j+1),1
N+1,0 (x) + O(z2), j = 1, . . . , N . (B.5b)

Substituting these expansions into (B.4) and matching the terms of the
corresponding powers of z, we get, from the first few orders, ∂xμ

(1),−1
N+1,0(x) = 0,

implyingμ
(1),−1
N+1,0(x) = q2

0 ,togetherwithμ
( j+1),0
N+1,0 (x) = ir ( j)(x)forall j =1, . . . , N .

For Im z < 0, the components of μN+1(x , z) solve the system of ODEs

∂xμ
(1)
N+1 = −i

q2
0

z
μ

(1)
N+1 +

N∑
j=1

q ( j)μ
( j+1)
N+1 , (B.6a)
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∂xμ
( j+1)
N+1 = i z μ

( j)
N+1 + r ( j)(x)μ(1)

N+1, j = 1, . . . , N . (B.6b)

The ansatz for the behavior of μN+1 as z → 0 with Im z < 0 is then:

μ
(1)
N+1(x, z) = z μ

(1),1
N+1,0(x) + O(z2), (B.7a)

μ
( j+1)
N+1 (x, z) = μ

( j+1),0
N+1,0 (x) + z μ

( j+1),1
N+1,0 (x) + O(z2), j = 1, . . . , N . (B.7b)

Substituting these expansions into (B.6) and matching the terms of the
corresponding powers of z, we get ∂xμ

( j),0
N+1,0 = 0 for all j = 1, . . . , N and

μ
(1),1
N+1,0(x) = −i

N∑
j=1

q ( j)(x)μ( j+1),0
N+1,0 (x)

/
q2

0 .

Taking into account the asymptotic behavior as x → −∞, the first condition
yields μ

( j+1),0
N+1,0 (x) = ir ( j)

− for all j = 1, . . . , N , and the second one gives

μ
(1),1
N+1,0(x) = qT (x)r−/q2

0 . Similarly, as z → ∞ with Im z > 0 we consider the
ansatz

μ
(1)
N+1(x, z) = μ

(1),1
N+1,∞(x)

z
+ μ

(1),2
N+1,∞(x)

z2
+ O(1/z3), (B.8a)

μ
( j+1)
N+1 (x, z) = μ

( j+1),0
N+1,∞(x) + m( j+1),1

N+1,∞(x)

z
+ O(1/z2), j = 1, . . . , N . (B.8b)

Substituting into (B.4) we obtain ∂xμ
( j+1),0
N+1,∞(x) = 0, implying μ

( j+1),0
N+1,∞(x) =

ir ( j)
− , and μ

(1),1
N+1,∞(x) = qT (x)r−. The ansatz for the behavior of μN+1 as

z → ∞ with Im z < 0 is:

μ
(1)
N+1(x, z) = z μ

(1),−1
N+1,∞(x) + μ

(1),0
N+1,∞(x) + O(1/z), (B.9a)

μ
( j+1)
N+1 (x, z) = μ

( j+1),0
N+1,∞(x) + 1

z
μ

( j+1),1
N+1,∞(x) + O(1/z2), j = 1, . . . , N . (B.9b)

Replacing into the differential equations (B.6) yields ∂xμ
(1),−1
N+1,∞(x) = 0,

implying μ
(1),−1
N+1,∞(x) = 1, and μ

( j),0
N+1,∞(x) = ir ( j−1)(x) for all j = 2, . . . , N .

The eigenfunctions μn(x , k) with n = 2, . . . , N satisfy the same differential
equations on both half-planes. Namely, for each n = 2, . . . , N ,

∂xμ
(1)
n (x, k) = −i

(
z + q2

0

/
z
)
μ(1)

n (x, k) +
N∑

j=1

q ( j)(x)μ( j+1)
n (x, k),

∂xμ
( j+1)
n (x, k) = r ( j)(x)μ(1)

n (x, k), j = 1, . . . , N .
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We make the ansatz

μ(1)
n (x, z) = μ(1),0

n,∞ (x) + μ
(1),1
n,∞ (x)

z
+ μ

(2),1
n,∞ (x)

z2
+ O(1/z3),

μ( j+1)
n (x, z) = μ( j+1),0

n,∞ (x) + μ
( j+1),1
n,∞ (x)

z
+ O(1/z2), j = 1, . . . , N .

Substituting into the system of ODEs and matching we get μ
(1),0
n,∞ (x) = 0, and

iμ(1),1
n,∞ (x) =

N∑
j=1

q ( j)(x)μ( j+1),0
n,∞ (x), μ( j+1),0

n,∞ (x) = ir⊥,( j)
0,n−1 (B.10a)

∂xμ
(1),1
n,∞ (x) =

N∑
j=1

q ( j)(x)μ( j+1),1
n,∞ (x) − iμ(1),2

n,∞ (x), (B.10b)

[where, as usual, we used the large-x behavior to fix the values of the
constants]. We then substitute the second of (B.10a) into the first, to obtain
μ

(1),1
n,∞ (x) = qT (x)r⊥

0,n−1. The ansatz for the behavior as z → 0 is (in both
half-planes)

μ(1)
n (x, z) = μ

(1),0
n,0 (x) + z μ

(1),1
n,0 (x) + z2μ

(1),2
n,0 (x) + O(z3)

μ( j+1)
n (x, z) = μ

( j+1),0
n,0 (x) + z μ

( j+1),1
n,0 (x) + O(z2), j = 1, . . . , N .

Substitution into the system of ODEs yields μ
(1),0
n,0 (x) = 0, as expected, and

iq2
0μ

(1),1
n,0 (x) =

N∑
j=1

q ( j)(x)μ( j+1),0
n,0 (x) . (B.11)

Fromtheequationsfortheothercomponentsonealsoobtainsμ
( j+1),0
n,0 (x) = ir⊥,( j)

0,n−1

and ∂xμ
( j+1),1
n,0 (x) = r ( j)(x)μ(1),1

n,0 (x). Taking into account the behavior of

μ
( j+1),0
n,0 , (B.11) finally gives

μ
(1),1
n,0 (x) =

N∑
j=1

q ( j)(x)r⊥,( j)
0,n−1

/
q2

0 ≡ qT (x)r⊥
0,n−1 . (B.12)

Acknowledgments

We thank Mark Ablowitz, Thanasis Fokas, and Robert Maier for many valuable
comments and discussions. This work was partially supported by the National



Multi-Component NLS Equation with NZBCs 301

Science Foundation under Grants Nos. DMS-0908399 (GB), DMS-1009248
(BP), and DMS-1009517 (ADT).

References

1. M. J. ABLOWITZ, B. PRINARI, and A. D. TRUBATCH, Soliton interactions in the vector
NLS equation, Inv. Probl. 20:1217–1237 (2004).

2. R. RADHAKRISHNAN, M. LAKSHMANAN, and J. HIETARINTA, Inelastic collision and
switching of coupled bright solitons in optical fibres, Phys. Rev. E 56:2213–2216
(1997).

3. Y. S. KIVSHAR and S. K. TURITSYN, Vector dark solitons, Opt. Lett. 18:337–339
(1993).

4. Q. H. PARK and H. J. SHIN, Systematic construction of multicomponent optical solitons,
Phys. Rev. E 61:3093 (2000).

5. R. Radhakrishnan and M. Lakshmanan, Bright and dark soliton solutions to coupled
nonlinear Schrödinger equations, J. Phys. A 28:2683–2692 (1995).

6. A. P. SHEPPARD and Y. S. KIVSHAR, Polarized dark solitons in isotropic Kerr media,
Phys. Rev. E 55:4773–4782 (1997).

7. B. PRINARI, M. J. ABLOWITZ, and G. BIONDINI, Inverse scattering transform for the
vector nonlinear Schrödinger equation with non-vanishing boundary conditions, J. Math.
Phys. 47:1–33 (2006).

8. S. V. MANAKOV, On the theory of two-dimensional stationary self-focusing electromagnetic
waves, Sov. Phys. JETP 38:248–253 (1974).

9. M. J. ABLOWITZ, B. PRINARI, and A. D. TRUBATCH, Discrete and continuous nonlinear
Schrödinger Systems, London Mathematical Society Lecture Note Series, Vol. 302,
Cambridge University Press, Cambridge, 2004.

10. V. S. GERDZHIKOV and P. P. KULISH, Multicomponent nonlinear Schrödinger equation in
the case of nonzero boundary conditions, J. Soviet Math. 85:2261 (1983).

11. V. E. ZAKHAROV and A. B. SHABAT, Interaction between solitons in a stable medium,
Sov. Phys. JETP 37:823–828 (1973).

12. L. D. FADDEEV and L. A. TAKHTAJAN, Hamiltonian Methods in the Theory of Solitons,
Springer-Verlag, Berlin, Heidelberg and New York, 1987.

13. D. J. KAUP, The three-wave interaction—A nondispersive phenomenon, Stud. Appl.
Math. 55:9–44 (1976).

14. R. BEALS and R. R. COIFMAN, Scattering and inverse scattering for first order systems,
Comm. Pure Appl. Math. 37:39–90 (1984).

15. R. BEALS and R. R. COIFMAN, Inverse scattering and evolution equations, Comm. Pure
Appl. Math. 38:29–42 (1985).

16. R. KAWATA and R. R. INOUE, Inverse scattering method for the nonlinear
evolution equations under nonvanishing conditions, J. Phys. Soc. Jpn. 44:1722–1729
(1979).

17. R. BEALS, P. DEIFT, and C. TOMEI, Direct and Inverse Scattering on the Line, American
Mathematical Society, Providence, 1988.

18. E. NELSON, Tensor Analysis, Princeton University Press, Princeton, 1974.
19. T. YOKONUMA, Tensor Spaces and Exterior Algebra, American Mathematical Society,

Providence, 1992.
20. M. J. ABLOWITZ and A. S. FOKAS, Complex Variables: Introduction and Applications,

Cambridge University Press, Cambridge, 1997.



302 B. Prinari et al.

21. P. DEIFT, S. VENAKIDES, and X. ZHOU, New results in small dispersion KdV by an
extension of the steepest descent method for Riemann-Hilbert problems, Int. Math. Res.
Notices 6:286–299 (1997).

22. P. DEIFT and X. ZHOU, A steepest descent method for oscillatory Riemann-Hilbert
problems, Bull. Am. Math. Soc. 26:119–123 (1992).

UNIVERSITY OF COLORADO AT COLORADO SPRINGS, UNIVERSITÀ DEL SALENTO AND SEZIONE INFN
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