

STRUCTURAL AND THERMAL LOADS FOR HYPERSONIC HEXAFLY-INT VEHICLE

Domenico Cristillo⁽¹⁾, Roberto Scigliano⁽¹⁾, Sara Di Benedetto⁽¹⁾, Salvatore Cardone⁽²⁾, Attila Jasko, Matteo Appolloni, Johan Steelant⁽³⁾

⁽¹⁾ Italian Aerospace Research Centre (CIRA), Via Maiorise snc, 81043 Capua, Italy,
⁽²⁾ TecnoSistem(TET), Vico II S. Nicola alla Dogana 9, 80133 Naples, Italy,
⁽³⁾ European Space Agency (ESA-ESTEC), Noordwijk, Netherlands

3rd International Symposium on Hypersonic Flight Air Force Academy (Pozzuoli), Italy, May 30-31, 2019

AAA – Sez. Roma Due "Luigi Broglio"

Objective

During trajectory, the structure is subjected to the static, random, sinusoidal acceleration (due to launcher environment) and to the thermal loads.

2. A structural global layout definition

FE Model Description

□ <u>The FE Model has been provide by ESA on the full stack:</u> <u>EFTV+ESM+LVSM+fairing</u>

Real Eigenvalue Analysis

1/4

MODAL EFFECTIVE MASS FRACTION [%]									
MODE ID	1								
Freq [Hz]	8.25								
X DIR	0.000								
Y DIR	39.035								
Z DIR	3.169								

MODAL EFFECTIVE MASS FRACTION [%]									
MODE ID	2								
Freq [Hz]	8.36								
X DIR	0.010								
Y DIR	3.291								
Z DIR	38.676								

Real Eigenvalue Analysis

MODAL EFFECTIVE MASS FRACTION [%]								
MODE ID	3							
Freq [Hz]	15.21							
X DIR	0.021							
Y DIR	0.004							
Z DIR	11.472							

MODAL E MASS FRA	FFECTIVE CTION [%]
MODE ID	4
Freq [Hz]	15.32
X DIR	0.000
Y DIR	11.503
Z DIR	0.002

Real Eigenvalue Analysis

	MODAL E MASS FRAC	FFECTIVE CTION [%]
	MODE ID	27
	Freq [Hz]	43.92
	X DIR	0.468
	Y DIR	0.049
	Z DIR	14.526

MODAL E MASS FRAC	FFECTIVE CTION [%]
MODE ID	28
Freq [Hz]	45.45
X DIR	0.102
Y DIR	19.676
Z DIR	0.012

Inputs for Loads Calculation

□ The values of Steady State Acceleration are reported in the following table:

Static Acceleration								
Longitudinal [g] Lateral [g]								
10	1							

□ For Sinusoidal Vibration analysis the following table is used as input:

Given Series and Seri

Equivalent Static Loads

	Load Application Direction	Response Direction	Values [g]	Combinatio	on Loads [g]	
	V Direction	x	34.65		V Direction	
Sine Vibration Response	[g]	Y	1.08	36.57	A Direction	
		Z	3.24		IR]	
	Y Direction [g]	x	1.47		V Direction	
		Y	3.04	15.83	[g]	
		Z	11.33			
	7 Dive stieve	x	0.44		7 Direction	
	2 Direction	Y	11.72	17.52	2 Direction	
	IRI	Z	2.95		lgj	

Random Vibration Response											
RMS VALUES [g]											
X	Direction Inpu	ut	Y	Direction Inpu	ut	Z	Direction Inpu	ut			
X Direction	Y Direction	Z Direction	X Direction	Y Direction	Z Direction	X Direction	Y Direction	Z Direction			
Response	Response	Response	Response	Response	Response	Response	Response	Response			
1.76	0.05	0.15	0.19	0.13	0.39	0.04	0.45	0.09			
			3	SIGMA VALUE	S						
5.29	0.16	0.46	0.56	0.38	1.17	0.12	1.34	0.28			
Combination Loads [g]											
	5.32			1.40			1.29				

3rd Internation Symposium on Hypersonic Flight. May 30, 2019

EFTV+ESM - Sinusoidal Vibration

EFTV+ESM - Random Vibration

Dynamic Loads Combination

□ Sinusoidal Vibrations (SL_{SINE}) and Random Vibrations (RVL) Combination

DYNAMIC LINEAR $(QD) = \sqrt{((SL_{SINE})^2 + (RVL)^2)}$

Quasi-Static Load (Q_{SL}) and Dynamic Loads Q_D Combination

Lateral Direction (Y)	Lateral Direction (Z)	Axial Direction (X)
$\pm (Q_{SL}(Y) \pm Q_D)$	$\pm (Q_{SL}(Y) \pm Q_D)$	$\pm (Q_{\rm SL}({\rm Y}) \pm Q_{\rm D})$

Design Limit Loads [g]									
X Di	rection	Y D	irection	Z Direction					
±	70.43	±	25.34	±	27.86				
±	70.43	±	25.34	±	24.86				
±	70.43	±	22.34	±	27.86				
±	70.43	±	22.34	±	24.86				
±	40.43	±	25.34	±	24.86				
±	40.43	±	25.34	±	27.86				
±	40.43	±	22.34	±	27.86				
±	40.43	±	22.34	±	24.86				

Thermal analysis input

- Initial temperature of 20°C;
- Radiation to external ambient for all the materials (emissivity of 0.8 for CMC components and 0.88 for the other components coated by an high emissivity paint)

Thermal analysis input

• Radiative heat flux from fairing internal wall ($T_{fairing}$ from 20°C to 150°C from take-off -0 s to fairing opening -139 s) to uniformly applied on EFTV from 0 to 1400 W/m²

Trajectory B-Viscous

0 s < t < 139 s 139 s < t < 300.52 s 300.52 s < t < 840 s Vehicle under fairing (only radiative heat transfer between surfaces)

- Vehicle exposed to fully laminar flow
- Vehicle exposed to fully turbulent flow

INPUTS: CFD Test Matrix Block #9 for B_viscous trajectory

	Run ID	time (s)	Altitude (m)	Vel (m/s)	FPA (deg)	Pdyn (kPa)	ho (kg/m3	T(K)	Mach no.	AoA (deg)	P (Pa)	delta (deg)	ReL	HO (MJ/kg)
EFTV/ESM separation	EFTV-065	273,50	49942,00	2333,80	-20,53	2,82	0,00104	270,65	7,076	6,83	80,359	-5,46	4,665E+05	2,99
	EFTV-066	288,14	37716,85	2337,68	-20,13	15,30	0,00560	244,03	7,465	12,00	392,181	-15,44	2,746E+06	2,98
maximum Mach	EFTV-067	290,39	35947,24	2325,39	-19,20	19,78	0,00732	239,14	7,501	12,00	502,252	-15,39	3,630E+06	2,94
maximum heat flux@nosetip	EFTV-068	294,44	33059,99	2288,09	-16,49	30,01	0,01147	231,14	7,507	12,00	760,605	-15,38	5,754E+06	2,85
maximum AoA, g-load	EFTV-069	300,52	29936,43	2187,90	-9,36	44,50	0,01859	226,45	7,253	12,00	1208,457	-15,72	9,075E+06	2,62
maximum L/D	EFTV-070	305,49	28652,17	2136,93	-5,12	51,75	0,02267	225,17	7,104	3,62	1465,014	-2,02	1,086E+07	2,51
	EFTV-071	309,55	28040,09	2112,00	-3,13	55,58	0,02493	224,57	7,030	1,63	1606,457	-0,68	1,182E+07	2,46
maximum dyn. pressure, ReL	EFTV-072	318,37	27461,55	2066,64	-0,84	58,23	0,02727	223,99	6,888	-0,66	1753,112	0,41	1,269E+07	2,36
	EFTV-073	350,00	27444,96	1928,32	0,13	50,82	0,02734	223,98	6,427	-1,63	1757,515	0,64	1,187E+07	2,08
	EFTV-074	500,05	28854,96	1446,28	-0,27	22,97	0,02197	225,37	4,806	0,51	1421,038	-2,25	7,115E+06	1,27
	EFTV-075	649,95	25720,26	1034,27	-1,51	19,14	0,03580	222,27	3,461	0,97	2283,671	-5,04	8,388E+06	0,76
end of mission	EFTV-076	793,56	20384,69	591,17	-4,91	14,61	0,08360	216,97	2,002	1,31	5206,060	-6,17	1,142E+07	0,39

- 1. fairing ejection at about 82 Km
- 2. payload release at apogee (90 Km)
- 3. ESM separation at about 50 Km

INPUT from ESA: Curved Trajectory

This trajectory follows a banking manoeuvre. Load case is **not symmetrical**.

3D Mesh implemented

HEX20, Pyr13, Wed15 and TET10 are used. More than 50% of elements has an element quality superior than 0.95. Finally, about <u>3 million nodes and 800000 elements</u> have been implemented

Launcher phase (t=0 s up to t = 139s)

Temperature map for the different point of view at fairing open instant (t=139s)

Thermal map at maximum temperature time t=292s

Component Thermal Assessment: Nose @ time= 409.95 s

FLAP at t=292s

3rd Internation Symposium on Hypersonic Flight. May 30, 2019

Component Thermal Assessment: Wing critical area t= 269,69

3rd Internation Symposium on Hypersonic Flight. May 30, 2019

Component Thermal Assessment: Wing critical area @ t= 269,69

3rd Internation Symposium on Hypersonic Flight. May 30, 2019

Conclusions

- The dynamic response of the system was obtained and showed that:
 - Launcher loads are in line with literature similar cases;
 - The most significant contribution to structural loads is due to sinusoidal vibration input.
 - Thermal loads have been evaluated and the actual structural configuration works on the thermal point of view
 - Only some specific critical area must be further analyzed

