

High Efficiency, Low Noise

In the 1960s, Eaton began manufacturing gear pumps and gear motors for the growing aerospace industry. Today, we deliver gear products to worldwide customers in most mobile and industrial applications. Gear pumps are used in drive trains, hydrostatic transmissions, open and closed circuit piston applications, and charge pump applications. These products are integral to most construction, agriculture, lift trucks, fork trucks, bus, and material handling equipment.

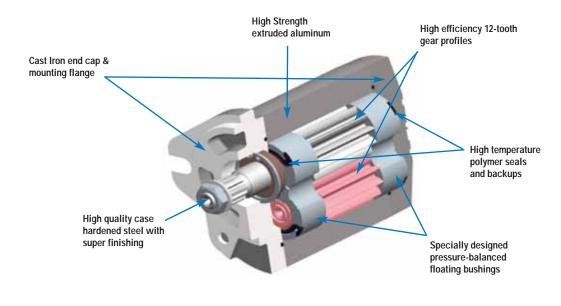
Eaton Global Gear Products (GGP) have a small footprint and high torque, ideal for small multiple sections, have high efficiency gear which yield high efficiency and are extremely quiet. They have a broad range of shaft and port options. Integral cartridge valves for lift, lower and hold, cross over relief, relief and priority flow are available.

Eaton Gear Products combine state of the art innovation and manufacturing processes. These products are designed to satisfy global customer requirements for higher pressure, quiet operation, long life, and a full range of options and features. The Group 2 aluminum series is a floating bushing, pressure balanced design with a high strength extruded aluminum body and cast iron end cap and mounting flange.

Applications for Eaton Gear Products

- Turf care
- Agriculture tractors and harvesters
- Lift trucks
- Skidsteer loaders
- Fan drive systems
- Steering circuits
- Salt and sand spreaders
- Auxiliary work circuits
- Industrial

GGP A-Aluminum (Group 2) Pumps



Features

- High efficiency gear profiles
- 12 tooth low noise and pressure ripple gear design
- Continuous operating pressures to 276 bar [4000 psi]
- Rated operating speeds to 4000 rpm
- 10 displacements available from 5.3cc [.32cid] to 33.4cc [2.04cid]
- Input shaft torques up to 160Nm (1418 lb-in)
- SAE, DIN, & ISO flange, shaft, and porting styles
- · Field reversibility
- Built to ISO 9001 standards

Customizing Options

- Single and multiple section pumps
- Isolated sections for applications requiring separate fluids or reservoirs
- Common and separate inlets
- Relief valve and priority control valve options
- Auxiliary mounting features

SAE A Frame (Group 2) Competitor Cross Reference

Eaton GGP A- AL

Parker® PGP511

Sauer® SNP2

Haldex™ W900

Cassapa™ Polaris™ PLP20

Rexroth[™] Series F

Marzocchi™ Series 2

Parker is a registered trademark of Parker Intangibles, LLC.

Sauer is a registered trade mark of Sauer-Danfoss Inc.

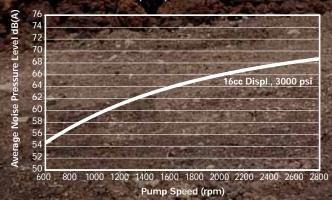
Haldex is a trademark of Haldex.

Cassapa is a trademark of Cassapa Fluid Power Design.

Rexroth is a trademark of

Bosch Rexroth Corporation.

Marzocchi is a trademark of Marzocchi Group.



Noise Reduction in Hydraulic Systems

Noise Pressure Level

Measured in a low noise room to ISO 4412, part 1 Distance of noise sensor to pump = 1 m (3.2 ft)., ISO32 fluid @ 48C (120F)

It's a fact of life. Mechanical equipment makes noise. Some noise is unavoidable, such as when hardened materials make sudden contact. Other kinds of unwanted sound, such as airborne noise from hydraulic vibration, can be reduced through design improvements. Eaton gear pumps provide high performance at lower decibel levels, which reduces operator fatigue and provides better working conditions for employees and visitors.

How Noise Is Created

Fluid power systems apply pressure to liquids in closed hydraulic circuits. That pressure is created by gear pumps, which convert rotary power into fluid power. When hydraulic fluid passes through the gears of a pump, it carries a waveform produced by the interaction of the gears. This pulsing results in vibration that can shake the hydraulic circuit and create noise. Often, the pulsing itself is audible. Even without affecting other components, a gear pump can generate sounds that distract.

How Eaton Reduces Noise

The size and shape of the wave created in the gear pump depends on the way the gears fit together. As more fluid is trapped between the gear teeth and then released, a larger wave is created, one with higher peaks and deeper valleys.

By refining the fit of the teeth between gears—Eaton has reduced the size of the wave, resulting in lower vibration and less airborne noise.

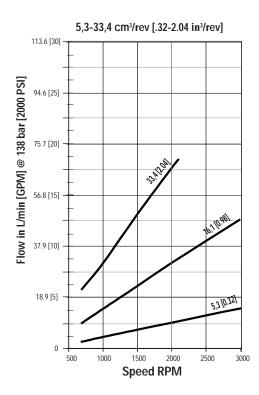
Eaton Gear Pumps

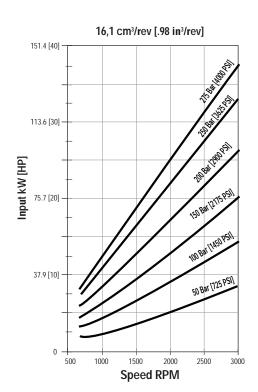
The design of any fluid power system will have many requirements. You select components based on their capabilities and compatibility. When you specify a gear pump, look for more than output. For reliable performance with reduced vibration and noise, choose gear pumps from Eaton.

Performance Data

GGP A MOUNT ALUMINUM

Displacement	cm³/r in³/r	5.3 0.32	6.5 0.40	8.3 0.51	10.3 0.63	12.9 0.79	16.1 0.98	20.0 1.22	24.0 1.46	28.4 1.73	33.4 2.04	
Max Continuous Pressure	bar psi	276 4000	276 4000	276 4000	276 4000	276 4000	276 4000	250 3625	235 3400	200 2900	170 2465	
Max Intermittent Pressure	bar psi	305 4425	305 4425	305 4425	305 4425	305 4425	305 4425	276 4002	270 3920	220 3190	190 2750	
Rated Speed		4000	4000	4000	3600	3300	3000	2800	2600	2300	2100	
Min Rated Speed		700	700	700	700	700	700	700	700	700	700	
Min Output Flow at Continuous Rated Speed & Pressure	LPM GPM	18.7 4.9	22.9 6.0	29.2 7.7	32.6 8.6	37.5 9.9	44.4 11.7	51.5 13.6	57.4 15.2	60.1 15.9	64.5 17.0	
Input Power at Continuous Rated Speed & Pressure	kW HP	11.6 15.6	14.3 19.1	18.2 24.4	20.4 27.3	23.4 31.3	26.5 35.6	27.5 36.8	28.8 38.6	25.6 34.4	23.4 31.4	

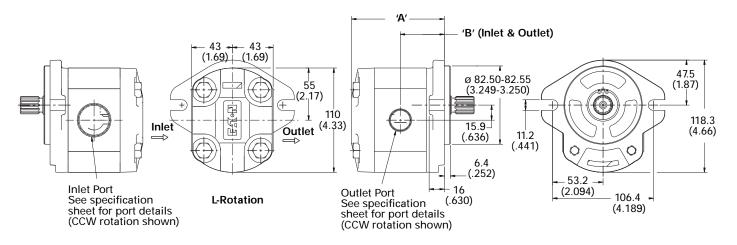

Note: Performance data was collected using a mineral based oil with a viscosity of 133 SUS at 49°C (120°F)


General Specifications

DATA

Ditiit					
Mounting flange	SAE 2 Bolt A	Max. Rotating Torque at 0 Pressure (single section)	5.5 N-m (4.0 ft-lb)		
	SAE 2 Bolt B	Max Continuous Inlet Temperature	80°C (180°F)		
	European Rectangular	Min. Operating Temperature	-29°C (- 20°F)		
Max. Continuous Pressure	276 bar (4000 psi)*	6 bar (4000 psi)* Max. Inlet Vacuum at Operating Condition			
Max. Intermittent Pressure	305 bar (4400 psi)*				
Min. Speed at Constant Pressure	700 RPM				
Operating Viscosity	8 cSt Min. 2000 cSt Max. at start up under load (16-40 cSt optimum)				

^{*} Displacements can vary with respect to pressure and speed capability. See table for individual ratings.



Stocked Prototype Products

The following products has been developed to offer preferred configuration features for the GGP A AL pump. These products are locally stocked and have shorten leadtimes. Please contact your local customer service representative for leadtime questions.

SAE A Mount (A), 9Tooth 16/32p Shaft (01)

Model Code:

AEG (L,R) A (DISP) 00000101 (AB, AC) 0000000000A000AA

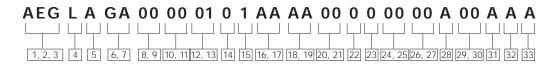
DISPLACEMENT	ORDERING-NUI	MBER	DIMENSIONS A	В	WEIGHT	INLET PORT	OUTLET PORT
cm³/r (in³/r)	Left	Right	mm (in)	mm (in)	Kg (lb.)		
5.3 (.32) (GA)	221AD00126A	221AD00002A	93.6 (3.68)	44.1 (1.74)	3.6 (7.90)	1 1/16"-12 UN	7/8"-14 UN (AB)
6.5 (.40) (GB)	221AD00127A	221AD00010A	93.6 (3.68)	44.1 (1.74)	3.6 (7.90)	1 1/16"-12 UN	7/8"-14 UN (AB)
8.3 (.51) (GC)	221AD00129A	221AD00018A	98.2 (3.86)	46.4 (1.88)	3.7 (8.20)	1 1/16"-12 UN	7/8"-14 UN (AB)
10.3 (.63) (GD)	221AD00165A	221AD00026A	99.2 (3.90)	47.9 (1.89)	3.8 (8.40)	1 1/16"-12 UN	7/8"-14 UN (AB)
12.9 (.79) (GE)	221AD00132A	221AD000 33 A	105.1 (4.14)	49.9 (1.96)	3.9 (8.60)	1 5/16"-12 UN	7/8"-14 UN (AC)
16.1 (.98) (GF)	221AD00134A	221AD00041A	108.0 (4.25)	52.3 (2.06)	4.0 (8.80)	1 5/16"-12 UN	7/8"-14 UN (AC)
20.0 (1.22) (GG)	221AD00136A	221AD00049A	113.9 (4.49)	55.3 (2.18)	4.3 (9.50)	1 5/16"-12 UN	7/8"-14 UN (AC)
24.0 (1.46) (GH)	221AD00138A	221AD00057A	120.0 (4.72)	58.3 (2.30)	4.4 (9.70)	1 5/16"-12 UN	7/8"-14 UN (AC)
28.4 (1.73) (GJ)	221AD00139A	221AD00065A	128.7 (5.07)	61.7 (2.43)	4.6 (10.10)	1 5/16"-12 UN	7/8"-14 UN (AC)
33.4 (2.04) (GK)	221AD00141A	221AD00073A	134.3 (5.29)	65.5 (2.58)	4.9 (10.80)	1 5/16"-12 UN	7/8"-14 UN (AC)

SAE A Mount (A), 5/8" Straight Shaft (02)

Model Code:

AEG (L,R) A (DISP) 00000201 (AB, AC) 0000000000A000AA

DISPLACEMENT	ORDERING-NUI	MBER	DIMENSIONS A	В	WEIGHT	INLET PORT	OUTLET PORT
cm³/r (in³/r)	Left	Right	mm (in)	mm (in)	Kg (lb.)		_
5.3 (.32) (GA)	221AD00164A	221AD00008A	93.6 (3.68)	44.1 (1.74)	3.6 (7.90)	1 1/16"-12 UN	7/8"-14 UN (AB)
6.5 (.40) (GB)	221AD00128A	221AD00016A	93.6 (3.68)	45.0 (1.77)	3.6 (7.90)	1 1/16"-12 UN	7/8"-14 UN (AB)
8.3 (.51) (GC)	221AD00130A	221AD00024A	98.2 (3.86)	46.4 (1.88)	3.7 (8.20)	1 1/16"-12 UN	7/8"-14 UN (AB)
10.3 (.63) (GD)	221AD00131A	221AD00032A	99.2 (3.90)	47.9 (1.89)	3.8 (8.40)	1 1/16"-12 UN	7/8"-14 UN (AB)
12.9 (.79) (GE)	221AD00133A	221AD00039A	105.1 (4.14)	49.9 (1.96)	3.9 (8.60)	1 5/16"-12 UN	7/8"-14 UN (AC)
16.1 (.98) (GF)	221AD00135A	221AD00047A	108.0 (4.25)	52.3 (2.06)	4.0 (8.80)	1 5/16"-12 UN	7/8"-14 UN (AC)
20.0 (1.22) (GG)	221AD00137A	221AD00055A	113.9 (4.49)	55.3 (2.18)	4.3 (9.50)	1 5/16"-12 UN	7/8"-14 UN (AC)
24.0 (1.46) (GH)	221AD00166A	221AD00063A	120.0 (4.72)	58.3 (2.30)	4.4 (9.70)	1 5/16"-12 UN	7/8"-14 UN (AC)
28.4 (1.73) (GJ)	221AD00140A	221AD00071A	128.7 (5.07)	61.7 (2.43)	4.6 (10.10)	1 5/16"-12 UN	7/8"-14 UN (AC)
33.4 (2.04) (GK)	221AD00142A	221AD00079A	134.3 (5.29)	65.5 (2.58)	4.9 (10.80)	1 5/16"-12 UN	7/8"-14 UN (AC)


Preferred Products Model Code

The following 33 digit coding system has been developed to identify preferred feature options for the GGP A AL pump. Use this code to

specify a pump with the desired features. All 33-digits of the code must be present to release a new product number for ordering.

Please contact your local customer service representative for leadtime questions.

This model code shows Preferred Products only. For a complete model code listing all available options, please refer to Doc. No. E-PUGE-MR002-E1.

1, 2, 3 Global Gear Pump

AEG - A Mount Aluminum

4 Input Rotation

L - Left-Hand Rotation CCW

R - Right-Hand Rotation CW

5 Mounting Features (Front) **A** – SAE J744 82-2

(SAE A) 2 Bolt

6, 7 Displacement (Front)

GA -5.3 cm³/r [.32 in³/r]

GB – 6.5 cm³/r [.40 in³/r] **GC** – 8.3 cm³/r [.51 in³/r]

GD – 10.3 cm³/r [.63 in³/r]

GE - 12.9 cm³/r [.79 in³/r]

GF - 16.1 cm³/r [.98 in³/r]

GG $- 20.0 \text{ cm}^3/\text{r} [1.22 \text{ in}^3/\text{r}]$

GH $- 24.0 \text{ cm}^3/\text{r} [1.46 \text{ in}^3/\text{r}]$

 $GJ - 28.4 \text{ cm}^3/\text{r} [1.73 \text{ in}^3/\text{r}]$

GK - 33.4 cm³/r [2.04 in³/r]

8, 9 Displacement (Center for triple only)

00 - None

GA – 5.3 cm³/r [.32 in³/r] **GB** – 6.5 cm³/r [.40 in³/r]

 $GC - 8.3 \text{ cm}^3/\text{r} [.51 \text{ in}^3/\text{r}]$

GD – 10.3 cm³/r [.63 in³/r]

 $GE - 12.9 \text{ cm}^3/\text{r} [.79 \text{ in}^3/\text{r}]$

 $GF - 16.1 \text{ cm}^3/\text{r} [.98 \text{ in}^3/\text{r}]$

GG – 20.0 cm³/r [1.22 in³/r]

GH $- 24.0 \text{ cm}^3/\text{r} \left[1.46 \text{ in}^3/\text{r} \right]$

 $GJ - 28.4 \text{ cm}^3/\text{r} [1.73 \text{ in}^3/\text{r}]$

GK - 33.4 cm³/r [2.04 in³/r]

10, 11 Displacement (Rear for double and triple)

00 - None

GA - 5.3 cm³/r [.32 in³/r]

GB - 6.5 cm³/r [.40 in³/r]

 $GC - 8.3 \text{ cm}^3/\text{r} [.51 \text{ in}^3/\text{r}]$

GD – 10.3 cm³/r [.63 in³/r]

 $GE - 12.9 \text{ cm}^3/\text{r} [.79 \text{ in}^3/\text{r}]$

 $GF - 16.1 \text{ cm}^3/\text{r} [.98 \text{ in}^3/\text{r}]$ **GG** – 20.0 cm³/r [1.22 in³/r]

GH - 24.0 cm³/r [1.46 in³/r]

 $GJ - 28.4 \text{ cm}^3/\text{r} [1.73 \text{ in}^3/\text{r}]$

GK – 33.4 cm 3 /r [2.04 in 3 /r]

12, 13 Input Shaft

01 - SAE A - 9 Tooth 16/32 Spline

02 - SAE A 5/8" Straight **Keyed Shaft**

03 - SAE A - Tapered Shaft

04 – 11 Tooth 16/32 Spline

08 - 3/4" Straight Keyed Shaft

Auxialliary Mounting Features

0 – No Rear mounting

15 Port Location

1 - Suction Side. Pressure Side

16, 17 Suction and Pressure (Front)

AA - .875-14 UNF-2B SAE O-Ring Port (SAE #10); .750-16 UNF-2B SAE O-Ring Port (SAE #8)

AB - 1.0625-12 UN-2B SAE O-Ring Port (SAE #12); .875-14 UNF-2B SAE O-Ring Port (SAE #10)

AC - 1.3125-12 UN-2B SAE O-Ring Port (SAE #16); .875-14 UNF-2B SAE O-Ring Port (SAE #10) (for valve options also)

18, 19 Suction and Pressure (Center for triple only)

00 - None

AA - .875-14 UNF-2B SAE O-Ring Port (SAE #10); .750-16 UNF-2B SAE O-Ring Port (SAE #8)

AB - 1.0625-12 UN-2B SAE O-Ring Port (SAE #12); .875-14 UNF-2B SAE O-Ring Port (SAE #10)

AC - 1.3125-12 UN-2B SAE O-Ring Port (SAE #16); .875-14 UNF-2B SAE O-Ring Port (SAE #10) (for valve options also)

20, 21 Suction and Pressure (Rear for double and triple)

00 - None

AA - .875-14 UNF-2B SAE O-Ring Port (SAE #10); .750-16 UNF-2B SAE O-Ring Port (SAE #8)

AB - 1.0625-12 UN-2B SAE O-Ring Port (SAE #12); .875-14 UNF-2B SAE O-Ring Port (SAE #10)

AC - 1.3125-12 UN-2B SAE O-Ring Port (SAE #16); .875-14 UNF-2B SAE O-Ring Port (SAE #10) (for valve options also)

22 Valve Style

0 - No Relief Valve

23 Secondary Pressure Port (Flow Divider)

0 – No Secondary Pressure Port

24, 25 Priority Flow Divider Setting

00 - No Flow Setting

26, 27 Relief Valve Setting

00 - No Flow Setting

28 Seal Type

A - Buna-N Seal

29, 30 Special Features

00 - No Special Features

31 Paint

0 - No Paint

A - Primer per Spec 209-13A

B - Black per spec 209-13B

32 Identification

A - Eaton Number and Nameplate

33 Design Code

 $\mathbf{A} - A$

Eaton Hydraulics Operations USA 14615 Lone Oak Road Eden Prairie, MN 55344 USA Tel: 952-937-9800

www.hydraulics.eaton.com

Fax: 952-294-7722

Eaton
Hydraulics Operations Europe
Route de la Longeraie 7
1110 Morges
Switzerland
Tel: +41 (0) 21 811 4600

Tel: +41 (0) 21 811 4600 Fax: +41 (0) 21 811 4601 Eaton
Hydraulic Operations Asia Pacific
11th Floor Hong Kong New World Tower
300 Huaihai Zhong Road
Shanghai 200021
China

Tel: 86-21-6387-9988 Fax: 86-21-6335-3912

