Carleson measures for the Hardy space

N.A.

07

1 Carleson measures for the Hardy spaces

Let $1 \in (1,\infty)$. A positive Borel measure μ on \mathbb{D} is a *Carleson measure for* $H^p(\mathbb{D})$ if the imbedding

$$i: H^p(\mathbb{D}) \to L^p(\mu)$$

is everywhere defined and continuous. If such is the case, we write $\mu \in CM(H^p)$. We let $\|\mu\|_{CM(H^p)}$ to be the norm of *i*.

Theorem 1 A measure μ is Carleson for $H^p(\mathbb{D})$ if and only if there is C > 0 such that

$$\mu(S(z)) \le C|I(z)|, \ \forall z \in \mathbb{D}.$$
(1)

Moreover, the least constant C for which (1) holds is comparable with $\|\mu\|_{CM(H^p)}$.

Theorem 1 will follow almost immediately from the analogous statement for the harmonic Hardy spaces. Recall that

$$P[f](z) = \int_{-\pi}^{\pi} P_z(e^{i\theta}) f(e^{i\theta}) \frac{d\theta}{2\pi}$$

is the Poisson extension of the function f (actually, it can be defined for a Borel, bounded measure on \mathbb{S}), and it is defined as soon as $f \in L^1(\mathbb{S})$. The maximal function associated with P[f] is

$$P^*[f](e^{i\alpha}) = \sup_{0 \le r < 1} P[|f|](re^{i\alpha}).$$

For $z = re^{i\alpha} \in \mathbb{D}$, let $I(z) = \{e^{i\theta} : \frac{|\alpha-\theta|}{2\pi} \le \frac{1-r}{2}\}$, $S(z) = \{\rho e^{i\theta} : e^{i\theta} \in I(z), r \le \rho < 1\}$ and $\overline{S(z)} = S(z) \cup I(z)$.

Theorem 2 Let $\mu \ge 0$ be a Borel measure in $\overline{\mathbb{D}}$ and let p > 1. Then, TFAE.

- (i) $\mu(\overline{S(z)}) \le C|I(z)|.$
- (ii) $\int_{\overline{\mathbb{D}}} (P^*[f](z))^p d\mu \leq C^p \|f\|_{L^p(\mathbb{S})}^p.$

Moreover, if $supp(\mu) \subseteq \mathbb{D}$, (i) and (ii) are equivalent to

$$\int_{\overline{\mathbb{D}}} (P^*[f](z))^p d\mu \le C^p \|f\|_{L^p(\mathbb{S})}^p.$$

$$\tag{2}$$

¹ The proof that (i) \implies (ii) is divided in several steps. **Step 1**. For $f \in L^1(\mathbb{S})$ and $z = re^{i\alpha}$, consider the averages

$$\tilde{f}(z) = \frac{1}{|I(z)|} \int_{I(z)} |f(e^{i\theta})| \frac{d\theta}{2\pi}$$

and the Hardy-Littlewood-maximal function of f at $re^{i\theta} \in \mathbb{D} \cup \mathbb{S}$,

$$Mf(re^{i\theta}) = \sup_{0 \le \rho \le r} \tilde{f}(\rho e^{i\theta}).$$
(3)

Lemma 3 There is C > 0 such that, for all $f \in L^1(\mathbb{S})$ and $z \in \mathbb{D} \cup \mathbb{S}$

$$P^*[f](z) \le C \cdot Mf(z).$$

Proof. Let $z = re^{i\alpha}$. The following esimate is elementary (and crucial):

$$P_z(e^{i\theta}) \approx \frac{1-r}{\max(1-r,|\theta-\alpha|)^2}.$$

Thus,

$$\begin{split} P[|f|](z) &= \int_{-\pi}^{\pi} P_{z}(e^{i\theta}) |f(e^{i\theta})| \frac{d\theta}{2\pi} \\ &\leq C \int_{-\pi}^{\pi} \frac{1-r}{\max(1-r, |\theta-\alpha|)^{2}} |f(e^{i\theta})| \frac{d\theta}{2\pi} \\ &\leq C \sum_{k=1}^{\log_{2} \frac{1}{1-r}} \frac{2^{-2k}}{1-r} \int_{I((1-2^{k}(1-r)e^{i\alpha}))} |f(e^{i\theta})| d\theta + \frac{1}{1-r} \int_{I(re^{i\alpha})} |f(e^{i\theta})| d\theta, \end{split}$$

where we have split the integral over regions $|\theta - \alpha| \approx 2^k (1 - r)$, over which

$$P_{re^{i\alpha}}(e^{i\theta}) \approx \frac{2^{-2k}}{1-r}.$$

The last line in the chain of inequalities is

$$\approx \sum_{k=1}^{\log_2 \frac{1}{1-r}} 2^{-k} \frac{1}{|I((1-2^k(1-r))e^{i\alpha})|} \int_{I((1-2^k(1-r))e^{i\alpha})} |f(e^{i\theta})| d\theta$$

$$\leq C \sup_k \frac{1}{|I((1-2^k(1-r))e^{i\alpha})|} \int_{I((1-2^k(1-r))e^{i\alpha})} |f(e^{i\theta})| d\theta$$

$$\leq Mf(re^{i\alpha}).$$

In particular, if μ is a positive, Borel measure on $\overline{\mathbb{D}}$,

$$\begin{aligned} \forall \lambda > 0: \ \mu(z: \ |P[f](z)| > \lambda) &\leq \mu(z: \ Mf(z) > \lambda/C), (\text{if sipp}(\mu) \subset \mathbb{D}), \\ \forall \lambda > 0: \ \mu(z: \ |P^*[f](z)| > \lambda) &\leq \mu(z: \ Mf(z) > \lambda/C), \\ \forall p > 0: \ \int_{\mathbb{D}} |P[f](z)|^p d\mu(z) &\leq C \int_{\mathbb{D}} Mf(z)^p d\mu(z), \end{aligned}$$

etcetera...

¹Insert here the trivial proof that (ii) \implies (2) \implies (i).

Lemma 4 (Harnack's inequality for the maximal function.) 2

$$\forall D > 0 \exists C > 0: \ d(z, w) \le D \implies c^{-1} \le \frac{Mf(z)}{Mf(w)} \le C.$$

Proof. It suffices to prove the statement for a fixed value of D, then using a Harnack-chain argument. Thus, it suffices to consider the case where $z, w \in Q$, Q a qube in \mathbb{D} .

For $w = (1 - \epsilon)e^{i\beta} \in \mathbb{D}$, $\epsilon > 0$, and C > 0, let $\delta_C w = (1 - C\epsilon)e^{i\beta}$. Observe that $d(w, \delta_C w) \approx \log_2 C$.

Claim 5 $\exists C > 1 : \forall z, w \in Q : I(z) \subseteq I(\delta_C w).$

A picture shows that the claim holds with C = 2.

So, if L > 1, then $I(\delta_L z) \subseteq I(\delta_{LC} w)$ when $z, w \in \mathbb{D}$. (This is just a change of scale).

Thus,

$$\begin{aligned} \frac{1}{|I(\delta_L z)|} \int_{I(\delta_L z)} |f| d\theta &\leq \frac{1}{|I(\delta_L c)|} \int_{I(\delta_L cw)} |f| d\theta \\ &= \frac{|I(\delta_L cw)|}{|I(\delta_L cw)|} \frac{1}{|I(\delta_L cw)|} \int_{I(\delta_L cw)} |f| d\theta \\ &= C \frac{1 - |w|}{1 - |z|} \frac{1}{|I(\delta_L cw)|} \int_{I(\delta_L cw)} |f| d\theta \\ &\leq C' \frac{1}{|I(\delta_L cw)|} \int_{I(\delta_L cw)} |f| d\theta \\ &\leq C' M f(w), \end{aligned}$$

and passing to suprema,

$$Mf(z) \le C'Mf(z).$$

Lemma 6 ³ Suppose that μ satisfies (ii) in Theorem 2 and let $\tilde{\mu}(Q) = \mu(Q_l) + \mu(Q) + \mu(Q_r)$, where Q_l and Q_r are the qubes immediately to the left and right of Q^4 . Let M_0 be the dyadic maximal function on T^5 . Then, $\exists C > 1$:

$$\forall \lambda > 0: \ \lambda \cdot \mu(z \in \overline{\mathbb{D}}: \ Mf(z) > \lambda) \le C[\lambda \cdot \tilde{\mu}(z \in \overline{\mathbb{D}}: \ M_0f(z) > \lambda/C) + \|f\|_{L^1(\mathbb{S})}].$$

$$\tag{4}$$

Proof. For $\theta \in [0, 2\pi]$, let $r(\theta)$ be the infimum of those r > 0 s.t.

$$\frac{1}{|I(re^{i\theta})|}\int_{I(re^{i\theta})}|f|\frac{d\theta}{2\pi}>\lambda,$$

hence, the infimum of the r's for which $Mf(re^{i\theta}) > \lambda$.

Let $Q(r(\theta)e^{i\theta})$ be the qube containing $r(\theta)e^{i\theta}$. Fiz then the family \mathcal{F} of the stopping qubes: if $Q \in \mathcal{F}$ and Q' > Q in T, then $Q' \notin \mathcal{F}$. Then,

⁴More formal definition?

 5 Definition!

 $^{^{2}}$ Do we ever make use of this?

 $^{^{3}}$ This lemma is not really useful, but just instructive. We might directly prove the weak inequality for the maximal function without moving to the tree!

- (a) $\forall Q \in \mathcal{F} \forall z \in Q$: $Mf(z) > \lambda/C$ (Harnack)⁶
- (b) $\forall Q \in \mathcal{F} \exists z_Q \in Q : \frac{1}{|I(z_Q)|} \int_{I(z_Q)} |f| > \lambda$, since $Q = Q(r(\theta)e^{i\theta})$ for some θ .
- (c) $Mf > \lambda \implies w \in \bigcup_{Q \in \mathcal{F}} S(Q)^7$

Consider $Q \in \mathcal{F}$. Then,

$$\begin{split} \lambda |I(Q)| &\approx \quad \lambda |I(z_Q)| \\ &< \quad \int_{I(z_Q)} |f| \\ &= \quad \int_{I(z_Q)\cap I(Q_l)} |f| + \int_{I(z_Q)\cap I(Q)} |f| + \int_{I(z_Q)\cap I(Q_r)} |f| \\ &\implies \quad \frac{1}{|I(Q_l)|} \int_{I(Q_l)} |f| > \lambda/3 \text{ or } \frac{1}{|I(Q)|} \int_{I(Q)} |f| > \lambda/3 \\ &\text{ or } \quad \frac{1}{|I(Q_r)|} \int_{I(Q_r)} |f| > \lambda/3 \text{ or } M_0(Q) > \lambda/3 \text{ or } M_0(Q_r) > \lambda/3. \end{split}$$

Select of the three qubes the one satisfying the last inequality and call it $\varphi(Q)$: $\mu(Q) \leq \tilde{\mu}(\varphi(Q))$. Each cube Q' is selected at most three times $(Q' = \varphi(Q'))$ or $Q' = \varphi(Q'_l)$ or $Q' = \varphi(Q'_r)^8$, hence

$$\mu \left(\bigcup_{Q \in \mathcal{F}} Q \right) \leq C \sum_{Q \in \mathcal{F}} \mu(Q)$$

$$\leq C \sum_{Q \in \mathcal{F}} \tilde{\mu}(Q)$$

$$\leq 3C \tilde{\mu} \left(\bigcup_{Q \in \mathcal{F}} \varphi(Q) \right)$$

$$\leq 3C \tilde{\mu}(M_0 f > \lambda/C).$$

We have now to take into account the qubes in $S(Q), Q \in \mathcal{F}$. Here, we use that $\mu(S(Q)) \le C|I(Q)|.$

$$\begin{split} \lambda \sum_{Q \in \mathcal{F}} \mu(S(Q)) &\leq C\lambda \sum_{Q \in \mathcal{F}} |I(Q)| \\ &\leq C \sum_{Q \in \mathcal{F}} \int_{\varphi(Q)} |f| \\ &\leq 3C \|f\|_{L^{1}(\mathbb{S})}, \end{split}$$

where we used again the fact that $Q' = \varphi(Q)$ for at most three qubes Q. The inequality is then proved.⁹

 $^{^6\}mathrm{We}$ don't need this in the proof below.

 $^{{}^{7}}S(Q) = \bigcup_{Q' \in T, Q' \ge Q} Q'$ is the Carleson box below Q. ⁸This is an elementary *covering argument*: in the extensions of the theory, these arguments can be very subtle.

⁹Indeed, the last string of inequalities proves directly that (ii) \implies that μ is a Carleson measure!

2 A general theorem about Carleson measures

Let T be a tree (not necessarily the dyadic tree we have been considering so far) and let $o \in T$ be a fixed vertex, called the *root* of T. We say that $y \ge x$, $x, y \in T$, if $x \in [o, y]$. The *boundary* of T, denoted ∂T , is the set of all the infinite geodesics starting at o. The *compactification of* T is $\overline{T} = T \cup \partial T$. If $x \in \omega \in \partial T$, we say that $\omega > x$. For $x \in T$,

$$S(x) = \{y \in T : y \ge x\}, \ \partial S(x) = \{\omega \in \partial T : \omega > x\}, \ \overline{S(x)} = S(x) \cup \partial S(x).$$

We endow \overline{T} with the topology having as basis the class of the sets $\overline{S(x)}$, $x \in T$.¹⁰ Let $\nu \geq 0$ be a nonnegative, Borel measure on \overline{T} . For $f \geq 0$, measurable, or $f \in L^1(\overline{T})$, define $(\zeta \in \overline{T})$

$$M_T f(\zeta) = \sup_{o \le x \le \zeta, \ x \in T} \frac{1}{\nu(\overline{S(x)})} \int_{\overline{S(x)}} |f| d\nu.$$
(5)

The definition extends to positive measures σ :

$$M_T(d\sigma)(\zeta) = \sup_{o \le x \le \zeta, \ x \in T} \frac{1}{\nu(\overline{S(x)})} \int_{\overline{S(x)}} d\sigma.$$

Observe that if T is a dyadic tree and $\nu(S(x)) = |I(x)|^{11}$, then $M_T = M_0$ is the dyadic maximal function.

Theorem 7 For $1 , <math>f \ge 0$ measurable, ν, σ Borel measures on \overline{T} , we have

$$\int_{\overline{T}} (M_T f)^p d\sigma \le C(p)^p \int \overline{T} f^p \cdot M_T(d\sigma) d\nu.$$
(6)

Proof. We first show that M_T is $s(\infty, \infty)$. Let $d\lambda = M_T(d\sigma)d\nu$. There is $\zeta \in \overline{T}$ s.t. $M_T(d\sigma)(\zeta) = 0$ iff $\sigma \equiv 0$. Assume $\sigma \neq 0$. Then, $f \in L^{\infty}(d\lambda)$ iff $f \in L^{\infty}(d\nu)$ iff $f \leq ||f||_{L^{\infty}(\nu)} \nu$ -a.e. Hence, $M_T f(\zeta) \leq ||f||_{L^{\infty}(\nu)} \forall \zeta$, thus $M_T f \leq ||f||_{L^{\infty}(d\sigma)} \sigma$ -a.e.

We now show that M_T is w(1,1). Let $\lambda > 0$ and let $E = \{\zeta \in \overline{T} : M_T f(\zeta) > \lambda\}$. Let $\Omega \subset T$ be the set of the minimal points of E. Then,

$$E = \cup_{z \in \Omega} \overline{S(z)},$$

the union being disjoint.¹² Then,

$$\sigma(E) \quad = \quad \sum_{x \in \Omega} \sigma(\overline{S(x)}) = \sum_{x \in \Omega} \frac{\sigma(S(x))}{\nu(\overline{S(x)})} \nu(\overline{S(x)})$$

$$D(\zeta_1, \zeta_2) \le \max(D(\zeta_1, \zeta_3), D(\zeta_3, \zeta_2))$$

holds. With respect to such metric, T and ∂T are compact, ∂T is totally disconnected and it coincides with its accumulation set.

¹¹This should be explained with a bit more details.

¹²Details of this step. $x \in E \cap T \implies \overline{S(x)} \subseteq E$ because $M_t f$ increases, by definition. Also, $\omega \in E \implies \exists x \in \omega : x \in E$, again by definition of M_T . Hence, $E = \bigcup_{x \in E \cap T}$. It is clear that $\Omega \subset T$ and that $x \neq y \in \Omega \implies \overline{S(x)} \cap \overline{S(y)} = \emptyset$.

¹⁰We can metrize this topology. For $\zeta_1, \zeta_2 \in \overline{T}$, let $\zeta_1 \wedge \zeta_2$ be the maximal element of T which is above ζ_1 and ζ_2 . Define $D(\zeta_1, \zeta_2) = 2^{-d(\zeta_1 \wedge \zeta_2, o)}$. Then, D is a metric on \overline{T} . More, the relation

$$\leq \sum_{x \in \Omega} \frac{\sigma(\overline{S(x)})}{\nu(\overline{S(x)})} \frac{1}{\lambda} \int_{\overline{S(x)}} |f| d\nu$$

$$\leq \frac{1}{\lambda} \sum_{x \in \Omega} \int_{\overline{S(x)}} |f| \cdot M_T(d\sigma) d\nu$$

$$\leq \frac{\|f\|_{L^1(M_T(d\sigma)d\nu)}}{\lambda},$$

as wished. \blacksquare

Two special instances of Theorem 7 contain the hardware for characterizing the Carleson measures for the Hardy and the Dirichlet spaces.

Theorem 8 If $supp(\nu) \subseteq \partial T$, then TFAE

- (i) $\int_{\overline{T}} (M_T f)^p d\sigma \leq c_0 \int_{\partial T} f^p d\nu.$
- (*ii*) $\sigma(\overline{S(x)}) \le c_1 \nu(\partial S(x)).$

Proof. (ii) $\implies M_T(d\sigma) \leq c_1 \implies$ (i) holds with $c_0 = C(p)^p c_1$.

(i) and $f = \chi_{\partial S(x)} \implies$ (ii) holds with $c_1 = c_0$.

Observe that we never really used $supp(\nu) \subseteq \partial T$.

Before we state the second theorem, we introduce the *Hardy's operator* and the *adjoint Hardy's operator* on T. Let μ be a positive, bounded Borel measure on \overline{T} .

$$\mathcal{I}g(y) = \sum_{o \le x \le y} g(y), \ \mathcal{I}^*_{\mu}f(x) = \int_{\overline{S(x)}} f(\zeta)d\mu(\zeta).$$
(7)

Theorem 9 *TFAE for a measure* μ *on* \overline{T} *and a measure* ρ *on* T*:*

- (i) $\sum_{x \in T} (\mathcal{I}^*_{\mu}g)^p(x)\rho(x)^{1-p} \leq c_0 \int_{\overline{T}} g^p d\mu$ whenever $g \geq 0$ on \overline{T} .
- (ii) $\mathcal{I}_1^*(\rho^{1-p}(\mathcal{I}^*\mu)^p) \leq c_1 \cdot \mathcal{I}^*\mu$ holds pointwise in T.
- (iii) $\int_{\overline{T}} (\mathcal{I}f)^{p'} d\mu \leq c_2 \sum_{y \in T} f^{p'} \rho$ holds for all $f \geq on T$.

Proof. Sketch. (iii) $\iff L^{p'}(\rho) \xrightarrow{\mathcal{I}} L^{p'}(\mu)$ is bounded $\iff L^p(\mu) \xrightarrow{\mathcal{I}^*_{\mu}} L^p(\rho^{1-p})$ is bounded \iff (i).

(i) and $g = \chi_{\overline{S(x)}} \implies$ (ii).

(ii) and Theorem 8 with $\sigma = \rho^{1-p} (\mathcal{I}^* \mu)^p$ imply

$$\int_{\overline{T}} g^p d\mu \ge \sum_T (M_T g)^p \rho^{1-p} (\mathcal{I}^*_\mu)^p \ge \sum_T (\mathcal{I}^*_\mu g)^p \rho^{1-p},$$

which is (i). \blacksquare