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1 Carleson measures for the Hardy spaces

Let 1 ∈ (1,∞). A positive Borel measure µ on D is a Carleson measure for
Hp(D) if the imbedding

i : Hp(D) → Lp(µ)

is everywhere defined and continuous. If such is the case, we write µ ∈ CM(Hp).
We let ‖µ‖CM(Hp) to be the norm of i.

Theorem 1 A measure µ is Carleson for Hp(D) if and only if there is C > 0
such that

µ(S(z)) ≤ C|I(z)|, ∀z ∈ D. (1)

Moreover, the least constant C for which (1) holds is comparable with ‖µ‖CM(Hp).

Theorem 1 will follow almost immediately from the analogous statement for the
harmonic Hardy spaces. Recall that

P [f ](z) =
∫ π

−π

Pz(eiθ)f(eiθ)
dθ

2π

is the Poisson extension of the function f (actually, it can be defined for a Borel,
bounded measure on S), and it is defined as soon as f ∈ L1(S). The maximal
function associated with P [f ] is

P ∗[f ](eiα) = sup
0≤r<1

P [|f |](reiα).

For z = reiα ∈ D, let I(z) = {eiθ : |α−θ|
2π ≤ 1−r

2 }, S(z) = {ρeiθ : eiθ ∈ I(z), r ≤
ρ < 1} and S(z) = S(z) ∪ I(z).

Theorem 2 Let µ ≥ 0 be a Borel measure in D and let p > 1. Then, TFAE.

(i) µ(S(z)) ≤ C|I(z)|.

(ii)
∫

D(P ∗[f ](z))pdµ ≤ Cp‖f‖p
Lp(S).

Moreover, if supp(µ) ⊆ D, (i) and (ii) are equivalent to∫
D
(P ∗[f ](z))pdµ ≤ Cp‖f‖p

Lp(S). (2)
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1 The proof that (i) =⇒ (ii) is divided in several steps.
Step 1. For f ∈ L1(S) and z = reiα, consider the averages

f̃(z) =
1

|I(z)|

∫
I(z)

|f(eiθ)| dθ

2π

and the Hardy-Littlewood-maximal function of f at reiθ ∈ D ∪ S,

Mf(reiθ) = sup
0≤ρ≤r

f̃(ρeiθ). (3)

Lemma 3 There is C > 0 such that, for all f ∈ L1(S) and z ∈ D ∪ S

P ∗[f ](z) ≤ C ·Mf(z).

Proof. Let z = reiα. The following esimate is elementary (and crucial):

Pz(eiθ) ≈ 1− r

max(1− r, |θ − α|)2
.

Thus,

P [|f |](z) =
∫ π

−π

Pz(eiθ)|f(eiθ)| dθ

2π

≤ C

∫ π

−π

1− r

max(1− r, |θ − α|)2
|f(eiθ)| dθ

2π

≤ C

log2
1

1−r∑
k=1

2−2k

1− r

∫
I((1−2k(1−r)eiα))

|f(eiθ)|dθ +
1

1− r

∫
I(reiα)

|f(eiθ)|dθ,

where we have split the integral over regions |θ − α| ≈ 2k(1− r), over which

Preiα(eiθ) ≈ 2−2k

1− r
.

The last line in the chain of inequalities is

≈
log2

1
1−r∑

k=1

2−k 1
|I ((1− 2k(1− r))eiα) |

∫
I((1−2k(1−r))eiα)

|f(eiθ)|dθ

≤ C sup
k

1
|I ((1− 2k(1− r))eiα) |

∫
I((1−2k(1−r))eiα)

|f(eiθ)|dθ

≤ Mf(reiα).

In particular, if µ is a positive, Borel measure on D,

∀λ > 0 : µ(z : |P [f ](z)| > λ) ≤ µ(z : Mf(z) > λ/C), (if sipp(µ) ⊂ D),

∀λ > 0 : µ(z : |P ∗[f ](z)| > λ) ≤ µ(z : Mf(z) > λ/C),

∀p > 0 :
∫

D
|P [f ](z)|pdµ(z) ≤ C

∫
D

Mf(z)pdµ(z),

etcetera...
1Insert here the trivial proof that (ii) =⇒ (2) =⇒ (i).
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Lemma 4 (Harnack’s inequality for the maximal function.) 2

∀D > 0∃C > 0 : d(z, w) ≤ D =⇒ c−1 ≤ Mf(z)
Mf(w)

≤ C.

Proof. It suffices to prove the statement for a fixed value of D, then using a
Harnack-chain argument. Thus, it suffices to consider the case where z, w ∈ Q,
Q a qube in D.

For w = (1 − ε)eiβ ∈ D, ε > 0, and C > 0, let δCw = (1 − Cε)eiβ . Observe
that d(w, δCw) ≈ log2 C.

Claim 5 ∃C > 1 : ∀z, w ∈ Q : I(z) ⊆ I(δCw).

A picture shows that the claim holds with C = 2.
So, if L > 1, then I(δLz) ⊆ I(δLCw) when z, w ∈ D. (This is just a change

of scale).
Thus,

1
|I(δLz)|

∫
I(δLz)

|f |dθ ≤ 1
|I(δLz)|

∫
I(δLCw)

|f |dθ

=
|I(δLCw)|
|I(δLz)|

1
|I(δLCw)|

∫
I(δLCw)

|f |dθ

= C
1− |w|
1− |z|

1
|I(δLCw)|

∫
I(δLCw)

|f |dθ

≤ C ′ 1
|I(δLCw)|

∫
I(δLCw)

|f |dθ

≤ C ′Mf(w),

and passing to suprema,
Mf(z) ≤ C ′Mf(z).

Lemma 6 3 Suppose that µ satisfies (ii) in Theorem 2 and let µ̃(Q) = µ(Ql)+
µ(Q) + µ(Qr), where Ql and Qr are the qubes immediately to the left and right
of Q4. Let M0 be the dyadic maximal function on T 5. Then, ∃C > 1:

∀λ > 0 : λ·µ(z ∈ D : Mf(z) > λ) ≤ C[λ·µ̃(z ∈ D : M0f(z) > λ/C)+‖f‖L1(S)].
(4)

Proof. For θ ∈ [0, 2π], let r(θ) be the infimum of those r > 0 s.t.

1
|I(reiθ)|

∫
I(reiθ)

|f | dθ

2π
> λ,

hence, the infimum of the r’s for which Mf(reiθ) > λ.
Let Q(r(θ)eiθ) be the qube containing r(θ)eiθ. Fiz then the family F of the

stopping qubes: if Q ∈ F and Q′ > Q in T , then Q′ /∈ F . Then,
2Do we ever make use of this?
3This lemma is not really useful, but just instructive. We might directly prove the weak

inequality for the maximal function without moving to the tree!
4More formal definition?
5Definition!
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(a) ∀Q ∈ F∀z ∈ Q : Mf(z) > λ/C (Harnack)6

(b) ∀Q ∈ F∃zQ ∈ Q : 1
|I(zQ)|

∫
I(zQ)

|f | > λ, since Q = Q(r(θ)eiθ) for some θ.

(c) Mf > λ =⇒ w ∈
⋃

Q∈F S(Q)7

Consider Q ∈ F . Then,

λ|I(Q)| ≈ λ|I(zQ)|

<

∫
I(zQ)

|f |

=
∫

I(zQ)∩I(Ql)

|f |+
∫

I(zQ)∩I(Q)

|f |+
∫

I(zQ)∩I(Qr)

|f |

=⇒ 1
|I(Ql)|

∫
I(Ql)

|f | > λ/3 or
1

|I(Q)|

∫
I(Q)

|f | > λ/3

or
1

|I(Qr)|

∫
I(Qr)

|f | > λ/3

=⇒ M0(Ql) > λ/3 or M0(Q) > λ/3 or M0(Qr) > λ/3.

Select of the three qubes the one satisfying the last inequality and call it ϕ(Q):
µ(Q) ≤ µ̃(ϕ(Q)). Each cube Q′ is selected at most three times (Q′ = ϕ(Q′) or
Q′ = ϕ(Q′

l) or Q′ = ϕ(Q′
r)

8), hence

µ

 ⋃
Q∈F

Q

 ≤ C
∑
Q∈F

µ(Q)

≤ C
∑
Q∈F

µ̃(Q)

≤ 3Cµ̃

 ⋃
Q∈F

ϕ(Q)


≤ 3Cµ̃(M0f > λ/C).

We have now to take into account the qubes in S(Q), Q ∈ F . Here, we use that
µ(S(Q)) ≤ C|I(Q)|.

λ
∑
Q∈F

µ(S(Q)) ≤ Cλ
∑
Q∈F

|I(Q)|

≤ C
∑
Q∈F

∫
ϕ(Q)

|f |

≤ 3C‖f‖L1(S),

where we used again the fact that Q′ = ϕ(Q) for at most three qubes Q.
The inequality is then proved.9

6We don’t need this in the proof below.
7S(Q) =

S
Q′∈T, Q′≥Q Q′ is the Carleson box below Q.

8This is an elementary covering argument: in the extensions of the theory, these arguments
can be very subtle.

9Indeed, the last string of inequalities proves directly that (ii) =⇒ that µ is a Carleson
measure!
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2 A general theorem about Carleson measures

Let T be a tree (not necessarily the dyadic tree we have been considering so
far) and let o ∈ T be a fixed vertex, called the root of T . We say that y ≥ x,
x, y ∈ T , if x ∈ [o, y]. The boundary of T , denoted ∂T , is the set of all the
infinite geodesics starting at o. The compactification of T is T = T ∪ ∂T . If
x ∈ ω ∈ ∂T , we say that ω > x. For x ∈ T ,

S(x) = {y ∈ T : y ≥ x}, ∂S(x) = {ω ∈ ∂T : ω > x}, S(x) = S(x) ∪ ∂S(x).

We endow T with the topology having as basis the class of the sets S(x), x ∈ T .10

Let ν ≥ 0 be a nonnegative, Borel measure on T . For f ≥ 0, measurable, or
f ∈ L1(T ), define (ζ ∈ T )

MT f(ζ) = sup
o≤x≤ζ, x∈T

1
ν(S(x))

∫
S(x)

|f |dν. (5)

The definition extends to positive measures σ:

MT (dσ)(ζ) = sup
o≤x≤ζ, x∈T

1
ν(S(x))

∫
S(x)

dσ.

Observe that if T is a dyadic tree and ν(S(x)) = |I(x)|11, then MT = M0 is the
dyadic maximal function.

Theorem 7 For 1 < p ≤ ∞, f ≥ 0 measurable, ν, σ Borel measures on T , we
have ∫

T

(MT f)pdσ ≤ C(p)p

∫
Tfp ·MT (dσ)dν. (6)

Proof. We first show that MT is s(∞,∞). Let dλ = MT (dσ)dν. There is ζ ∈ T
s.t. MT (dσ)(ζ) = 0 iff σ ≡ 0. Assume σ 6= 0. Then, f ∈ L∞(dλ) iff f ∈ L∞(dν)
iff f ≤ ‖f‖L∞(ν) ν-a.e. Hence, MT f(ζ) ≤ ‖f‖L∞(ν) ∀ζ, thus MT f ≤ ‖f‖L∞(dσ)

σ-a.e.
We now show that MT is w(1, 1). Let λ > 0 and let E = {ζ ∈ T : MT f(ζ) >

λ}. Let Ω ⊂ T be the set of the minimal points of E. Then,

E = ∪z∈ΩS(z),

the union being disjoint.12 Then,

σ(E) =
∑
x∈Ω

σ(S(x)) =
∑
x∈Ω

σ(S(x))
ν(S(x)

ν(S(x)

10We can metrize this topology. For ζ1, ζ2 ∈ T , let ζ1 ∧ ζ2 be the maximal element of T
which is above ζ1 and ζ2. Define D(ζ1, ζ2) = 2−d(ζ1∧ζ2,o). Then, D is a metric on T . More,
the relation

D(ζ1, ζ2) ≤ max(D(ζ1, ζ3), D(ζ3, ζ2))

holds. With respect to such metric, T and ∂T are compact, ∂T is totally disconnected and it
coincides with its accumulation set.

11This should be explained with a bit more details.
12Details of this step. x ∈ E∩T =⇒ S(x) ⊆ E because Mtf increases, by definition. Also,

ω ∈ E =⇒ ∃x ∈ ω : x ∈ E, again by definition of MT . Hence, E = ∪x∈E∩T . It is clear that

Ω ⊂ T and that x 6= y ∈ Ω =⇒ S(x) ∩ S(y) = ∅.
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≤
∑
x∈Ω

σ(S(x))
ν(S(x)

1
λ

∫
S(x)

|f |dν

≤ 1
λ

∑
x∈Ω

∫
S(x)

|f | ·MT (dσ)dν

≤
‖f‖L1(MT (dσ)dν)

λ
,

as wished.
Two special instances of Theorem 7 contain the hardware for characterizing

the Carleson measures for the Hardy and the Dirichlet spaces.

Theorem 8 If supp(ν) ⊆ ∂T , then TFAE

(i)
∫

T
(MT f)pdσ ≤ c0

∫
∂T

fpdν.

(ii) σ(S(x)) ≤ c1ν(∂S(x)).

Proof. (ii) =⇒ MT (dσ) ≤ c1 =⇒ (i) holds with c0 = C(p)pc1.
(i) and f = χ∂S(x) =⇒ (ii) holds with c1 = c0.
Observe that we never really used supp(ν) ⊆ ∂T .
Before we state the second theorem, we introduce the Hardy’s operator and

the adjoint Hardy’s operator on T . Let µ be a positive, bounded Borel measure
on T .

Ig(y) =
∑

o≤x≤y

g(y), I∗µf(x) =
∫

S(x)

f(ζ)dµ(ζ). (7)

Theorem 9 TFAE for a measure µ on T and a measure ρ on T :

(i)
∑

x∈T (I∗µg)p(x)ρ(x)1−p ≤ c0

∫
T

gpdµ whenever g ≥ 0 on T .

(ii) I∗1 (ρ1−p(I∗µ)p) ≤ c1 · I∗µ holds pointwise in T .

(iii)
∫

T
(If)p′dµ ≤ c2

∑
y∈T fp′ρ holds for all f ≥ on T .

Proof. Sketch. (iii) ⇐⇒ Lp′(ρ) I→ Lp′(µ) is bounded ⇐⇒ Lp(µ)
I∗µ→ Lp(ρ1−p)

is bounded ⇐⇒ (i).
(i) and g = χ

S(x)
=⇒ (ii).

(ii) and Theorem 8 with σ = ρ1−p(I∗µ)p imply∫
T

gpdµ ≥
∑
T

(MT g)pρ1−p(I∗µ)p ≥
∑
T

(I∗µg)pρ1−p,

which is (i).
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