Carleson measures for the Hardy space

N.A.

1 Carleson measures for the Hardy spaces

Let $1 \in(1, \infty)$. A positive Borel measure μ on \mathbb{D} is a Carleson measure for $H^{p}(\mathbb{D})$ if the imbedding

$$
i: H^{p}(\mathbb{D}) \rightarrow L^{p}(\mu)
$$

is everywhere defined and continuous. If such is the case, we write $\mu \in C M\left(H^{p}\right)$. We let $\|\mu\|_{C M\left(H^{p}\right)}$ to be the norm of i.

Theorem $1 A$ measure μ is Carleson for $H^{p}(\mathbb{D})$ if and only if there is $C>0$ such that

$$
\begin{equation*}
\mu(S(z)) \leq C|I(z)|, \forall z \in \mathbb{D} \tag{1}
\end{equation*}
$$

Moreover, the least constant C for which (1) holds is comparable with $\|\mu\|_{C M\left(H^{p}\right)}$.
Theorem 1 will follow almost immediately from the analogous statement for the harmonic Hardy spaces. Recall that

$$
P[f](z)=\int_{-\pi}^{\pi} P_{z}\left(e^{i \theta}\right) f\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}
$$

is the Poisson extension of the function f (actually, it can be defined for a Borel, bounded measure on \mathbb{S}), and it is defined as soon as $f \in L^{1}(\mathbb{S})$. The maximal function associated with $P[f]$ is

$$
P^{*}[f]\left(e^{i \alpha}\right)=\sup _{0 \leq r<1} P[|f|]\left(r e^{i \alpha}\right)
$$

For $z=r e^{i \alpha} \in \mathbb{D}$, let $I(z)=\left\{e^{i \theta}: \frac{|\alpha-\theta|}{2 \pi} \leq \frac{1-r}{2}\right\}, S(z)=\left\{\rho e^{i \theta}: e^{i \theta} \in I(z), r \leq\right.$ $\rho<1\}$ and $\overline{S(z)}=S(z) \cup I(z)$.

Theorem 2 Let $\mu \geq 0$ be a Borel measure in $\overline{\mathbb{D}}$ and let $p>1$. Then, TFAE.
(i) $\mu(\overline{S(z)}) \leq C|I(z)|$.
(ii) $\int_{\overline{\mathbb{D}}}\left(P^{*}[f](z)\right)^{p} d \mu \leq C^{p}\|f\|_{L^{p}(\mathbb{S})}^{p}$.

Moreover, if $\operatorname{supp}(\mu) \subseteq \mathbb{D}$, (i) and (ii) are equivalent to

$$
\begin{equation*}
\int_{\overline{\mathbb{D}}}\left(P^{*}[f](z)\right)^{p} d \mu \leq C^{p}\|f\|_{L^{p}(\mathbb{S})}^{p} \tag{2}
\end{equation*}
$$

${ }^{1}$ The proof that (i) \Longrightarrow (ii) is divided in several steps.
Step 1. For $f \in L^{1}(\mathbb{S})$ and $z=r e^{i \alpha}$, consider the averages

$$
\tilde{f}(z)=\frac{1}{|I(z)|} \int_{I(z)}\left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

and the Hardy-Littlewood-maximal function of f at $r e^{i \theta} \in \mathbb{D} \cup \mathbb{S}$,

$$
\begin{equation*}
M f\left(r e^{i \theta}\right)=\sup _{0 \leq \rho \leq r} \tilde{f}\left(\rho e^{i \theta}\right) \tag{3}
\end{equation*}
$$

Lemma 3 There is $C>0$ such that, for all $f \in L^{1}(\mathbb{S})$ and $z \in \mathbb{D} \cup \mathbb{S}$

$$
P^{*}[f](z) \leq C \cdot M f(z)
$$

Proof. Let $z=r e^{i \alpha}$. The following esimate is elementary (and crucial):

$$
P_{z}\left(e^{i \theta}\right) \approx \frac{1-r}{\max (1-r,|\theta-\alpha|)^{2}}
$$

Thus,

$$
\begin{aligned}
P[|f|](z) & =\int_{-\pi}^{\pi} P_{z}\left(e^{i \theta}\right)\left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \\
& \leq C \int_{-\pi}^{\pi} \frac{1-r}{\max (1-r,|\theta-\alpha|)^{2}}\left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \\
& \leq C \sum_{k=1}^{\log _{2} \frac{1}{1-r}} \frac{2^{-2 k}}{1-r} \int_{I\left(\left(1-2^{k}(1-r) e^{i \alpha}\right)\right)}\left|f\left(e^{i \theta}\right)\right| d \theta+\frac{1}{1-r} \int_{I\left(r e^{i \alpha}\right)}\left|f\left(e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

where we have split the integral over regions $|\theta-\alpha| \approx 2^{k}(1-r)$, over which

$$
P_{r e^{i \alpha}}\left(e^{i \theta}\right) \approx \frac{2^{-2 k}}{1-r}
$$

The last line in the chain of inequalities is

$$
\begin{aligned}
& \approx \sum_{k=1}^{\log _{2} \frac{1}{1-r}} 2^{-k} \frac{1}{\left|I\left(\left(1-2^{k}(1-r)\right) e^{i \alpha}\right)\right|} \int_{I\left(\left(1-2^{k}(1-r)\right) e^{i \alpha}\right)}\left|f\left(e^{i \theta}\right)\right| d \theta \\
& \leq C \sup _{k} \frac{1}{\left|I\left(\left(1-2^{k}(1-r)\right) e^{i \alpha}\right)\right|} \int_{I\left(\left(1-2^{k}(1-r)\right) e^{i \alpha}\right)}\left|f\left(e^{i \theta}\right)\right| d \theta \\
& \leq M f\left(r e^{i \alpha}\right) .
\end{aligned}
$$

■ In particular, if μ is a positive, Borel measure on $\overline{\mathbb{D}}$,

$$
\begin{gathered}
\forall \lambda>0: \mu(z:|P[f](z)|>\lambda) \leq \mu(z: M f(z)>\lambda / C),(\text { if } \operatorname{sipp}(\mu) \subset \mathbb{D}), \\
\forall \lambda>0: \mu\left(z:\left|P^{*}[f](z)\right|>\lambda\right) \leq \mu(z: M f(z)>\lambda / C) \\
\forall p>0: \int_{\mathbb{D}}|P[f](z)|^{p} d \mu(z) \leq C \int_{\mathbb{D}} M f(z)^{p} d \mu(z)
\end{gathered}
$$

etcetera...

[^0]
Lemma 4 (Harnack's inequality for the maximal function.) ${ }^{2}$

$$
\forall D>0 \exists C>0: d(z, w) \leq D \Longrightarrow c^{-1} \leq \frac{M f(z)}{M f(w)} \leq C
$$

Proof. It suffices to prove the statement for a fixed value of D, then using a Harnack-chain argument. Thus, it suffices to consider the case where $z, w \in Q$, Q a qube in \mathbb{D}.

For $w=(1-\epsilon) e^{i \beta} \in \mathbb{D}, \epsilon>0$, and $C>0$, let $\delta_{C} w=(1-C \epsilon) e^{i \beta}$. Observe that $d\left(w, \delta_{C} w\right) \approx \log _{2} C$.
Claim $5 \exists C>1: \forall z, w \in Q: I(z) \subseteq I\left(\delta_{C} w\right)$.
A picture shows that the claim holds with $C=2$.
So, if $L>1$, then $I\left(\delta_{L} z\right) \subseteq I\left(\delta_{L C} w\right)$ when $z, w \in \mathbb{D}$. (This is just a change of scale).

Thus,

$$
\begin{aligned}
\frac{1}{\left|I\left(\delta_{L} z\right)\right|} \int_{I\left(\delta_{L} z\right)}|f| d \theta & \leq \frac{1}{\left|I\left(\delta_{L} z\right)\right|} \int_{I\left(\delta_{L C} w\right)}|f| d \theta \\
& =\frac{\left|I\left(\delta_{L C} w\right)\right|}{\left|I\left(\delta_{L} z\right)\right|} \frac{1}{\left|I\left(\delta_{L C} w\right)\right|} \int_{I\left(\delta_{L C} w\right)}|f| d \theta \\
& =C \frac{1-|w|}{1-|z|} \frac{1}{\left|I\left(\delta_{L C} w\right)\right|} \int_{I\left(\delta_{L C} w\right)}|f| d \theta \\
& \leq C^{\prime} \frac{1}{\left|I\left(\delta_{L C} w\right)\right|} \int_{I\left(\delta_{L C} w\right)}|f| d \theta \\
& \leq C^{\prime} M f(w)
\end{aligned}
$$

and passing to suprema,

$$
M f(z) \leq C^{\prime} M f(z)
$$

Lemma $6{ }^{3}$ Suppose that μ satisfies (ii) in Theorem 2 and let $\tilde{\mu}(Q)=\mu\left(Q_{l}\right)+$ $\mu(Q)+\mu\left(Q_{r}\right)$, where Q_{l} and Q_{r} are the qubes immediately to the left and right of Q^{4}. Let M_{0} be the dyadic maximal function on T^{5}. Then, $\exists C>1$:
$\forall \lambda>0: \lambda \cdot \mu(z \in \overline{\mathbb{D}}: M f(z)>\lambda) \leq C\left[\lambda \cdot \tilde{\mu}\left(z \in \overline{\mathbb{D}}: M_{0} f(z)>\lambda / C\right)+\|f\|_{L^{1}(\mathbb{S})}\right]$.

Proof. For $\theta \in[0,2 \pi]$, let $r(\theta)$ be the infimum of those $r>0$ s.t.

$$
\frac{1}{\left|I\left(r e^{i \theta}\right)\right|} \int_{I\left(r e^{i \theta}\right)}|f| \frac{d \theta}{2 \pi}>\lambda,
$$

hence, the infimum of the r 's for which $M f\left(r e^{i \theta}\right)>\lambda$.
Let $Q\left(r(\theta) e^{i \theta}\right)$ be the qube containing $r(\theta) e^{i \theta}$. Fiz then the family \mathcal{F} of the stopping qubes: if $Q \in \mathcal{F}$ and $Q^{\prime}>Q$ in T, then $Q^{\prime} \notin \mathcal{F}$. Then,

[^1](a) $\forall Q \in \mathcal{F} \forall z \in Q: M f(z)>\lambda / C$ (Harnack) 6
(b) $\forall Q \in \mathcal{F} \exists z_{Q} \in Q: \frac{1}{\left|I\left(z_{Q}\right)\right|} \int_{I\left(z_{Q}\right)}|f|>\lambda$, since $Q=Q\left(r(\theta) e^{i \theta}\right)$ for some θ.
(c) $M f>\lambda \Longrightarrow w \in \bigcup_{Q \in \mathcal{F}} S(Q)^{7}$

Consider $Q \in \mathcal{F}$. Then,

$$
\begin{aligned}
\lambda|I(Q)| & \approx \lambda\left|I\left(z_{Q}\right)\right| \\
& <\int_{I\left(z_{Q}\right)}|f| \\
& =\int_{I\left(z_{Q}\right) \cap I\left(Q_{l}\right)}|f|+\int_{I\left(z_{Q}\right) \cap I(Q)}|f|+\int_{I\left(z_{Q}\right) \cap I\left(Q_{r}\right)}|f| \\
& \Longrightarrow \frac{1}{\left|I\left(Q_{l}\right)\right|} \int_{I\left(Q_{l}\right)}|f|>\lambda / 3 \text { or } \frac{1}{|I(Q)|} \int_{I(Q)}|f|>\lambda / 3 \\
& \text { or } \frac{1}{\left|I\left(Q_{r}\right)\right|} \int_{I\left(Q_{r}\right)}|f|>\lambda / 3 \\
& \Longrightarrow M_{0}\left(Q_{l}\right)>\lambda / 3 \text { or } M_{0}(Q)>\lambda / 3 \text { or } M_{0}\left(Q_{r}\right)>\lambda / 3 .
\end{aligned}
$$

Select of the three qubes the one satisfying the last inequality and call it $\varphi(Q)$: $\mu(Q) \leq \tilde{\mu}(\varphi(Q))$. Each cube Q^{\prime} is selected at most three times $\left(Q^{\prime}=\varphi\left(Q^{\prime}\right)\right.$ or $Q^{\prime}=\varphi\left(Q_{l}^{\prime}\right)$ or $\left.Q^{\prime}=\varphi\left(Q_{r}^{\prime}\right)^{8}\right)$, hence

$$
\begin{aligned}
\mu\left(\bigcup_{Q \in \mathcal{F}} Q\right) & \leq C \sum_{Q \in \mathcal{F}} \mu(Q) \\
& \leq C \sum_{Q \in \mathcal{F}} \tilde{\mu}(Q) \\
& \leq 3 C \tilde{\mu}\left(\bigcup_{Q \in \mathcal{F}} \varphi(Q)\right) \\
& \leq 3 C \tilde{\mu}\left(M_{0} f>\lambda / C\right) .
\end{aligned}
$$

We have now to take into account the qubes in $S(Q), Q \in \mathcal{F}$. Here, we use that $\mu(S(Q)) \leq C|I(Q)|$.

$$
\begin{aligned}
\lambda \sum_{Q \in \mathcal{F}} \mu(S(Q)) & \leq C \lambda \sum_{Q \in \mathcal{F}}|I(Q)| \\
& \leq C \sum_{Q \in \mathcal{F}} \int_{\varphi(Q)}|f| \\
& \leq 3 C\|f\|_{L^{1}(\mathbb{S})}
\end{aligned}
$$

where we used again the fact that $Q^{\prime}=\varphi(Q)$ for at most three qubes Q.
The inequality is then proved. ${ }^{9}$

[^2]
2 A general theorem about Carleson measures

Let T be a tree (not necessarily the dyadic tree we have been considering so far) and let $o \in T$ be a fixed vertex, called the root of T. We say that $y \geq x$, $x, y \in T$, if $x \in[o, y]$. The boundary of T, denoted ∂T, is the set of all the infinite geodesics starting at o. The compactification of T is $\bar{T}=T \cup \partial T$. If $x \in \omega \in \partial T$, we say that $\omega>x$. For $x \in T$,

$$
S(x)=\{y \in T: y \geq x\}, \partial S(x)=\{\omega \in \partial T: \omega>x\}, \overline{S(x)}=S(x) \cup \partial S(x)
$$

We endow \bar{T} with the topology having as basis the class of the sets $\overline{S(x)}, x \in T .{ }^{10}$ Let $\nu \geq 0$ be a nonnegative, Borel measure on \bar{T}. For $f \geq 0$, measurable, or $f \in L^{1}(\bar{T})$, define $(\zeta \in \bar{T})$

$$
\begin{equation*}
M_{T} f(\zeta)=\sup _{o \leq x \leq \zeta, x \in T} \frac{1}{\nu(\overline{S(x)})} \int_{\overline{S(x)}}|f| d \nu \tag{5}
\end{equation*}
$$

The definition extends to positive measures σ :

$$
M_{T}(d \sigma)(\zeta)=\sup _{o \leq x \leq \zeta,} \frac{1}{x \in T} \frac{\int_{\overline{S(x)})} d \sigma . . \overline{S(x)} d \sigma . . .}{}
$$

Observe that if T is a dyadic tree and $\nu(S(x))=|I(x)|^{11}$, then $M_{T}=M_{0}$ is the dyadic maximal function.

Theorem 7 For $1<p \leq \infty, f \geq 0$ measurable, ν, σ Borel measures on \bar{T}, we have

$$
\begin{equation*}
\int_{\bar{T}}\left(M_{T} f\right)^{p} d \sigma \leq C(p)^{p} \int \bar{T} f^{p} \cdot M_{T}(d \sigma) d \nu \tag{6}
\end{equation*}
$$

Proof. We first show that M_{T} is $s(\infty, \infty)$. Let $d \lambda=M_{T}(d \sigma) d \nu$. There is $\zeta \in \bar{T}$ s.t. $M_{T}(d \sigma)(\zeta)=0$ iff $\sigma \equiv 0$. Assume $\sigma \neq 0$. Then, $f \in L^{\infty}(d \lambda)$ iff $f \in L^{\infty}(d \nu)$ iff $f \leq\|f\|_{L^{\infty}(\nu)} \nu$-a.e. Hence, $M_{T} f(\zeta) \leq\|f\|_{L^{\infty}(\nu)} \forall \zeta$, thus $M_{T} f \leq\|f\|_{L^{\infty}(d \sigma)}$ σ-a.e.

We now show that M_{T} is $w(1,1)$. Let $\lambda>0$ and let $E=\left\{\zeta \in \bar{T}: M_{T} f(\zeta)>\right.$ $\lambda\}$. Let $\Omega \subset T$ be the set of the minimal points of E. Then,

$$
E=\cup_{z \in \Omega} \overline{S(z)}
$$

the union being disjoint. ${ }^{12}$ Then,

$$
\sigma(E)=\sum_{x \in \Omega} \sigma(\overline{S(x)})=\sum_{x \in \Omega} \frac{\sigma(\overline{S(x)})}{\nu(\overline{S(x)}} \nu(\overline{S(x)}
$$

[^3]\[

$$
\begin{aligned}
& \leq \sum_{x \in \Omega} \frac{\sigma(\overline{S(x)})}{\nu(\overline{S(x)}} \frac{1}{\lambda} \int_{\overline{S(x)}}|f| d \nu \\
& \leq \frac{1}{\lambda} \sum_{x \in \Omega} \int_{\overline{S(x)}}|f| \cdot M_{T}(d \sigma) d \nu \\
& \leq \frac{\|f\|_{L^{1}\left(M_{T}(d \sigma) d \nu\right)}}{\lambda}
\end{aligned}
$$
\]

as wished.
Two special instances of Theorem 7 contain the hardware for characterizing the Carleson measures for the Hardy and the Dirichlet spaces.

Theorem 8 If $\operatorname{supp}(\nu) \subseteq \partial T$, then TFAE
(i) $\int_{\bar{T}}\left(M_{T} f\right)^{p} d \sigma \leq c_{0} \int_{\partial T} f^{p} d \nu$.
(ii) $\sigma(\overline{S(x)}) \leq c_{1} \nu(\partial S(x))$.

Proof. (ii) $\Longrightarrow M_{T}(d \sigma) \leq c_{1} \Longrightarrow$ (i) holds with $c_{0}=C(p)^{p} c_{1}$.
(i) and $f=\chi_{\partial S(x)} \Longrightarrow$ (ii) holds with $c_{1}=c_{0}$.

Observe that we never really used $\operatorname{supp}(\nu) \subseteq \partial T$.
Before we state the second theorem, we introduce the Hardy's operator and the adjoint Hardy's operator on T. Let μ be a positive, bounded Borel measure on \bar{T}.

$$
\begin{equation*}
\mathcal{I} g(y)=\sum_{o \leq x \leq y} g(y), \mathcal{I}_{\mu}^{*} f(x)=\int_{\overline{S(x)}} f(\zeta) d \mu(\zeta) \tag{7}
\end{equation*}
$$

Theorem 9 TFAE for a measure μ on \bar{T} and a measure ρ on T :
(i) $\sum_{x \in T}\left(\mathcal{I}_{\mu}^{*} g\right)^{p}(x) \rho(x)^{1-p} \leq c_{0} \int_{\bar{T}} g^{p} d \mu$ whenever $g \geq 0$ on \bar{T}.
(ii) $\mathcal{I}_{1}^{*}\left(\rho^{1-p}\left(\mathcal{I}^{*} \mu\right)^{p}\right) \leq c_{1} \cdot \mathcal{I}^{*} \mu$ holds pointwise in T.
(iii) $\int_{\bar{T}}(\mathcal{I} f)^{p^{\prime}} d \mu \leq c_{2} \sum_{y \in T} f^{p^{\prime}} \rho$ holds for all $f \geq$ on T.

Proof. Sketch. (iii) $\Longleftrightarrow L^{p^{\prime}}(\rho) \xrightarrow{\mathcal{I}} L^{p^{\prime}}(\mu)$ is bounded $\Longleftrightarrow L^{p}(\mu) \xrightarrow{\mathcal{I}_{\mu}^{*}} L^{p}\left(\rho^{1-p}\right)$ is bounded \Longleftrightarrow (i).
(i) and $g=\chi_{\overline{S(x)}} \Longrightarrow$ (ii).
(ii) and Theorem 8 with $\sigma=\rho^{1-p}\left(\mathcal{I}^{*} \mu\right)^{p}$ imply

$$
\int_{\bar{T}} g^{p} d \mu \geq \sum_{T}\left(M_{T} g\right)^{p} \rho^{1-p}\left(\mathcal{I}_{\mu}^{*}\right)^{p} \geq \sum_{T}\left(\mathcal{I}_{\mu}^{*} g\right)^{p} \rho^{1-p}
$$

which is (i).

[^0]: ${ }^{1}$ Insert here the trivial proof that $(\mathrm{ii}) \Longrightarrow(2) \Longrightarrow(\mathrm{i})$.

[^1]: ${ }^{2}$ Do we ever make use of this?
 ${ }^{3}$ This lemma is not really useful, but just instructive. We might directly prove the weak inequality for the maximal function without moving to the tree!
 ${ }^{4}$ More formal definition?
 ${ }^{5}$ Definition!

[^2]: ${ }^{6}$ We don't need this in the proof below.
 ${ }^{7} S(Q)=\bigcup_{Q^{\prime} \in T, Q^{\prime} \geq Q} Q^{\prime}$ is the Carleson box below Q.
 ${ }^{8}$ This is an elementary covering argument: in the extensions of the theory, these arguments can be very subtle.
 ${ }^{9}$ Indeed, the last string of inequalities proves directly that $($ ii $) \Longrightarrow$ that μ is a Carleson measure!

[^3]: ${ }^{10}$ We can metrize this topology. For $\zeta_{1}, \zeta_{2} \in \bar{T}$, let $\zeta_{1} \wedge \zeta_{2}$ be the maximal element of T which is above ζ_{1} and ζ_{2}. Define $D\left(\zeta_{1}, \zeta_{2}\right)=2^{-d\left(\zeta_{1} \wedge \zeta_{2}, o\right)}$. Then, D is a metric on \bar{T}. More, the relation

 $$
 D\left(\zeta_{1}, \zeta_{2}\right) \leq \max \left(D\left(\zeta_{1}, \zeta_{3}\right), D\left(\zeta_{3}, \zeta_{2}\right)\right)
 $$

 holds. With respect to such metric, T and ∂T are compact, ∂T is totally disconnected and it coincides with its accumulation set.
 ${ }^{11}$ This should be explained with a bit more details.
 ${ }^{12}$ Details of this step. $x \in E \cap T \Longrightarrow \overline{S(x)} \subseteq E$ because $M_{t} f$ increases, by definition. Also, $\omega \in E \Longrightarrow \exists x \in \omega: x \in E$, again by definition of M_{T}. Hence, $E=\cup_{x \in E \cap T}$. It is clear that $\Omega \subset T$ and that $x \neq y \in \Omega \Longrightarrow \overline{S(x)} \cap \overline{S(y)}=\emptyset$.

