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Opening Remarks

Bioinformatics is the science of managing, mining, and in-
terpreting information from biological entities. Genome se-
quencing projects have contributed to an exponential growth
in complete and partial sequence databases. The structural
genomics initiative aims to catalog the structure-function
information for proteins. Advances in technology such as
microarrays have launched the subfield of genomics and pro-
teomics to study the genes, proteins, and the regulatory
gene expression circuitry inside the cell. What characterizes
the state of the field is the flood of data that exists today
or that is anticipated in the future; data that needs to be
mined to help unlock the secrets of the cell. Knowledge ex-
tracted from such analysis can be used effectively to better
design new drugs, offer better medical care via diagnostic
tests that combine information from multiple sources, and
improve scientific and clinical practice.

While tremendous progress has been made over the years,
many of the fundamental problems in bioinformatics, such
as protein structure prediction or gene finding, are still open.
Data mining will play a fundamental role in understanding
gene expression, drug design and other emerging problems
in genomics and proteomics. Furthermore, text mining will
be fundamental in extracting knowledge from the growing
literature in bioinformatics.

The goal of this workshop was to encourage KDD re-
searchers to take on the numerous challenges that Bioinfor-
matics offers. The workshop features an invited talk from
a noted expert in the field, and the latest data mining re-
search in bioinformatics from world class researchers. We en-
couraged papers that propose novel data mining techniques
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for tasks such as: Gene expression analysis; Protein/RNA
structure prediction; Phylogenetics; Sequence and structural
motifs; Genomics and Proteomics; Gene finding; Drug de-
sign; RNAi and microRNA Analysis; Text mining in bioin-
formatics; Modeling of biochemical pathways; and Biomed-
ical and clinical informatics.

These proceedings contain 10 papers (5 long and 5 short),
out of 20 submissions that were accepted for presentation at
the workshop. Each paper was reviewed by at least three
members of the program committee. In some cases where
there was a wide variance in reviews a fourth was sought.
Each long paper selected had at least two strong supporters
and no strong detractor. Each short paper selected had at
least one strong supporter and typically no strong detractor.
As a result along with a distinguished invited talk, we were
able to assemble a very exciting program.

We would like to thank all the authors, invited speaker,
and attendees for contributing to the success of the work-
shop. Special thanks are due to the program committee for
help in reviewing the submissions.

This workshop follows the previous four highly success-
ful workshops: BIOKDDO04, held in Seattle, BIOKDDO03,
held in Washington, DC; BIOKDD(2, held in Edmonton,
Canada; and BIOKDDO1 held in San Francisco, CA. We
expect BIOKDDO05 to be equally successful.
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Motif Discovery for Proteins Using Subsequence
Clustering

Hardik A. Sheth
School of Informatics
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hsheth@indiana.edu

ABSTRACT

We propose an algorithm for discovering motifs using clus-
tering of subsequences. In our previous approach, we were
successful in guiding motif discovery by sampling subse-
quences and inputting them to an existing motif discovery
tool MEME. In this paper, we show that clustering sub-
sequences can also detect motifs without using other mo-
tif discovery tools. Generally, motif discovery algorithms
do not perform well when the input set consists of non-
homogeneous sequences. Clustering tools have the inherent
ability to generate clusters of homogeneous sequences when
the input sequences are non-homogeneous. For this reason,
we use our clustering algorithm to generate aligned subse-
quence clusters and then rank them according to their infor-
mation contents to produce final motifs. The algorithm was
tested with PROSITE database and the results suggest that
the algorithm is very effective in finding motifs even when
input sequences are from different protein families.

Categories and Subject Descriptors
1.5.1 [Pattern Recognition]: Models - Statistical

General Terms

Algorithms, Performance, Experimentation

Keywords
Motif Discovery, Subsequences, Clustering, Pattern, Motif

1. INTRODUCTION

Motifs are short, conserved subsequences that are part
of a family of sequences. The use of protein sequence pat-
terns (or motifs) to determine the function of proteins is an
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essential tool for sequence analysis. The sequence of an un-
known function might not be closely related to any protein
of known structure to detect similarity by overall sequence
alignment, but it can be found sometimes more accurately
by the occurrence in its sequence of a particular cluster of
residue types a.k.a pattern, motif, signature, or fingerprint.
Some regions are conserved because of particular require-
ments on the structure of specific region of a protein which
may be important, for example, for their binding properties
or for their enzymatic activity.

Motifs can be discovered as subsequences that are com-
mon to the family of sequences from sequence patterns (sub-
sequences). Since the dramatic increase of genetic data,
clustering and motif finding techniques have become essen-
tial to the analysis of protein and nucleic acid sequences.
As a result, a number of different clustering algorithms and
motif discovery algorithms have been developed. Although
these two techniques are being well studied, little work has
been done to combine them and make an optimized motif
discovery tool for general sequence analysis purposes. In
this paper, we demonstrate how clustering of sequences can
be used for motif prediction.

1.1 Background

Existing motif discovery algorithms can be classified into
two groups, one group of algorithms, such as PRATT[4]
and TEIRESIASI9], that search for motifs by combinatorial
enumeration of patterns and another group of algorithms,
such as MEME[1] and GIBBS[6], that search for motifs that
are statistically significant. Our interest in this paper is to
further develop the second group of algorithms that search
for statistically significant sequence patterns. Among them,
Gibbs and MEME are the most widely used ones. Although
these algorithms have been successful in predicting biologi-
cally meaningful sequence patterns, no algorithm works per-
fect as the motif discovery problem is very difficult to solve.
The problem with MEME is that it takes a lot of time to
find motifs because it uses multiple rounds of expectation
maximization technique in search of motifs. The Gibbs al-
gorithm has a random search behavior and each execution
generates different motifs.

A more serious problem is that motif discovery algorithms
do not perform well when the input set consists of non-
homogeneous sequences. In particular, it is a challenge for
all existing motif discovery algorithms to detect motifs when



the input set contains sequences from multiple families since
a motif occurs only in a subset of the input sequences and
the number of motifs to be discovered is not known a priori.
The problem can be stated as follows.

In a statistical sense, motif discovery is to look for signals
compared to noise in the input sequences.

lOg ( M motif )
noise
where M0+ 5 is a model for the motif and Mposse represents
the model for background noise.

Different input sequences affect both Moti5 and Myoise.
M0¢if Tequires selection of subsequences that will construct
candidate motifs and Myoise is largely determined by the in-
put sequences. More specifically, both models are character
frequencies at specific positions as shown in Table 2 and
these character frequencies are determined, with some prior
knowledge, by counting the number of characters in a spe-
cific column. Thus they are directly influenced by selection
of subsequences and the input sequence set.

1.2 Research Question & Motivation

The question that we are looking to answer here can be
stated as follows -

Can there be an efficient tool that discovers motifs from
a heterogeneous set of sequences when -

1. Width of each motif is not known
2. Number of motifs to be found is not known ?

We try to explore this problem by applying the techniques
of clustering and applying it to motif discovery question. We
have been successful in guiding motif discovery by cluster-
ing sequences[3] and by sampling subsequences[11]. In this
paper, we combine these two approaches in a different con-
text. Once subsequences are selected by a method proposed
in [11](see also Section 2.1 in this paper for an improved
subsequence selection method), it is assumed that there is a
single motif. However, it is possible that there may be more
than one motif in the set of subsequences. To deal with this
problem, we used a sequence clustering algorithm inspired
by our previous approach[3]. Instead of clustering the in-
put sequences directly as in, a set of subsequences of equal
length are generated and then clustered using our clustering
algorithm as described in Sections 2.2, 2.3, and 2.4. This
procedure does not require information about how many
motifs need to be sought, which is a unique feature of our
motif algorithm.

2. METHODOLOGY

Given a large data set of N protein sequences S1, 53, ..., Sn,

the goal is to identify the conserved regions that represent
this data set. Our algorithm is designed to proceed in the
following manner -

1. Extract an initial set of patterns.
2. Select subsequences and align them.
3. Cluster those subsequences.

4. Extract conserved regions from shared ranges for each
cluster.

5. Extend/Merge the conserved regions.

6. Rank those conserved regions based on information
content.

7. Filter and select motifs.

2.1 [Initial Pattern Discovery

From the set of input sequences, a set of initial patterns
is collected. The set of initial patterns are exact patterns of
a fixed length I that satisfy two conditions -

1. Patterns are statistically significant.

2. Patterns are present in certain number of input se-
quences.

In our experiments, [ is fixed to 10 which is an empirically
determined value - exact patterns longer than 10 do not
occur frequently even in the conserved motif regions. The
statistical significance of patterns is required since motifs
will occur significantly more frequently than random pat-
terns, which is the basis for most statistical motif discovery
algorithm. The second condition is required since motifs are
recurring patterns common in multiple sequences; patterns
that occur multiple times in a single sequence but do not
occur in any other sequences are not qualified.

In addition to the two conditions, the set of patterns
should represent all input sequences while multiple different
patterns can be sampled around motif regions. For this rea-
son, we use a procedure that iteratively discards the top half
of sequences where patterns are already sampled while look-
ing for patterns that meet the two conditions as described
in Section 2.1.2.

2.1.1 Two Conditions for Patterns.

The condition for statistical significance of a pattern in our
previous paper was based on the first order Markov model.
We improve this by using the second order Markov model.
The challenge is that it is difficult to measure the second or-
der dependency for a short pattern. For example, only the
third character, or after, in a pattern of length 6 can have
two proceeding characters. Given that the second order de-
pendency cannot be measured for the first two characters, it
is not very effective to use the second order Markov model
for a short pattern. Thijs et al[10] used characters pro-
ceeding the motif, i.e., those outside the motif, to compute
higher order Markov dependency and used the higher order
model as background model to improve the performance of
the Gibbs motif algorithm. Inspired by this work, we mod-
ified our statistical significance condition to use the second
order Markov model as follows.

Let x be a sequence of amino acids, e.g. © = z122... 2.
The probability of x for a given second order Markov model
M is

Pu(z) = Iy Pas|zimoxio1)

where P(z1|z_120) = P(z1) and P(zs|z120) = P(22|21) if
o and x_; are not available. The probability of z for a
given random model R is Pgr(z) = II._, P(z;). Then the
log-odd score of the sequence z, denoted E(z), is defined as

PM(z))
PR(x)

The log-odd score can be found for any pattern ;z;+1i+2
of £ by using the initial overall probabilities and setting

E(z) = log(



Table 1: Algorithm for Initial Pattern Discovery

while(]S,| < n) {
S, = S, U qualified pat(l, K, T, S — S)
}

return P,

qualified pat(l, K, E, S') {
Find P, (meet thresholds [, K,T) in sequence set S’ ;

S” top half of S’ ;

for each qualified pattern P ¢ S”,
Py = Py U{P};

return S”

Input: S // a set of sequences

Output: P // a set of patterns

P=¢ // a set of qualified patterns

Sr=¢ // sequence set represented by P, = ¢

Rank S’ according to the number of P, in each sequence ;

!l = 10. We consider all patterns of length 10 in the input
sequences and consider them statistically significant if their
log-odd score is greater than threshold 7', i.e. E(z) > T.
The second condition that patterns should be present in
a certain number of sequences can be simply enforced by
a support ratio K, the occurrence of a pattern in at least
K% of the sequences. This avoids the case that one pattern
occurs many times in one sequence, but rarely appears in
other sequences. So the support value is set to make sure
the qualified patterns are common features for the family.

2.1.2  Algorithm for Initial Pattern Discovery

At each iteration step, we rank the sequences according to
the number of qualified patterns they have, eliminate the top
half of the sequences and leave the rest half for the next iter-
ation step. Since patterns are sampled only from sequences
not represented by the current pattern set, it is ensured that
all sequences are represented by some patterns. The algo-
rithm used for initial pattern discovery is shown in Table
1. In the table, [ denotes the length of the subsequence, K
represents the support ratio as explained above and T is the
log-odds threshold above which a subsequence is considered
significant.

2.2 Subsequence Selection and Pairwise Align
ment

The set of patterns selected using the procedure in Sec-
tion 2.1 form the initial set of subsequences. These sub-
sequences are aligned using standard scoring matrix (e.g.
BLOSUMSG62). The scoring or weight matrix is a standard
method for representing the variation in a set of sequence
patterns in a multiple sequence alignment, and as a tool
for finding additional sequences with the same pattern in a
database search. The odds score at every possible match-
ing location along the subsequence may be used to find the
probability of each sequence location. FASTA algorithm[8]
is used to align those subsequences. The FASTA algorithm
runs quite fast and is ideally suited for aligning large number
of initial subsequences.

2.3 Clustering of Subsequences

Those aligned subsequences are then grouped into dif-
ferent clusters using our sequence clustering algorithm[5].

RANGE-TEST

Figure 1: The graph is iteratively refined until each
biconnected component has a common shared region
to all sequences in it.

Given a set of sequences, our clustering algorithm builds
a weighted graph based on similarities between those se-
quences. A node is created for each sequence s; and an edge
between two sequences, s; and sj, is created when the pair-
wise alignment score of s; and s; is more significant than a
preset threshold. The alignment score is associated with the
edge as weight so that clusters can be refined while increas-
ing cutoff for edges. Our algorithm uses two graph prop-
erties for sequence clustering: biconnected components and
articulation points. A biconnected component of a graph G
is a maximal subgraph where there exist at least two edge
disjoint paths for any pair of nodes, and an articulation point
is a node that disconnects the graph if it is removed. A bi-
connected component corresponds to a family of sequences
and an articulation point to a multi-domain protein. Each
biconnected component is tested whether all sequences share
a common shared region - this test is called RANGE-TEST.
If there is no common shared region in a component, the
cutoff score for the weight in the corresponding graph is
increased until the graph is split into multiple biconnected
components. The overall clustering procedure is depicted in
Figure 1.

The set of input subsequences § is split into multiple clus-
ters C1,C5,...C, based on the sequence similarity among
sequences in S using our clustering algorithm such that all
sequences in each cluster have a common shared region of
length L, by default L = 6 amino acids. In this way, sub-
sequences are grouped together according to their sequence
similarity defined by the scoring matrix, e.g., BLOSUMG62.

A sample of the clusters generated by our sequence clus-
tering algorithm is shown in Figure 2.

2.4 Extracting Conserved Regions

Our clustering algorithm produces clusters of these sub-
sequences depending on their match score. However, we
are not interested in all of these subsequences. The clus-
tering algorithm also gives us a list of ranges which all the
member subsequences of the cluster share. This eliminates
all the clusters that are split and may not consist of con-
served regions. Subsequence regions that are shared by all



CLUSTER 66 size= 5
LECC
INCTI
BNCC
EGCC
RGCC

ENDCLUSTER
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CLUSTER &7 size= 2
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VDCG
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CLUSTER &8 size= 2
VNCE ARTI
INCI ARTI

ENDCLUSTER

CLUSTER &9 size= 2
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lvan
ENDCLUSTER

Figure 2: Sample Clustering Output

the member subsequences of the cluster are extracted and
these are the conserved regions that we are interested in. A
sample output of shared ranges generated is shown in Fig-
ure 3. In the figure, shared regions of subsequences can be
aligned without gaps to create a position weight matrix or a
profile. Such shared regions can be determined by the start
and end positions of the range produced by our clustering
algorithm; the shared region starts at position 1 and ends at
position 5 for the subsequence ’'GFIKCV 1 5’ of the cluster
39.
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Figure 3: Sample shared ranges. Grayed areas show
the conserved regions.

An example of a motif model of length 10 is shown in Table
2. Given that sequence z' = zizh...x} is the it motif

Table 2: Example of a Motif Model of length 10.
To save page space, only five character probabilities
among 20 amino acids are shown for each colum.

[Amino Acid| Position 1] Position 2 [ Position 3] ... | Position 10 |
G Pg,1 Pg o Pg 3 Pg 10
A Py, Py Py s Py 10
L Pr 1 P> Pr3 Pr 10
M Py Pur2 Pz P10
T Pr Pr s Pr3 Pr 10

with sequence length W, P,,; represents the probability of
j** amino acid in sequence z; occuring in the respective

models.

2.5 Merge/Extend the conserved regions

The length of the subsequences used for clustering puts
an upper limit on the length of the motifs found above. It is
possible that the regions around the found motifs may also
be conserved. We take care of such situation by extending
the found motifs in both the directions. The entropy of the
original motif model is compared to that of the motif model
after extension and if there is an increase in the information
content, we extend the motif in that direction. This tech-
nique is similar to one used in CASTOR|[7] pattern discovery
program.

Let Eyotif denote the log-odds score of the found mo-
tif, calculated from the motif model or profile Myois of
length W (see Section 2.1.1 for exact definition). Similarly,
let Eyew represent the log-odds score of the model Moyotif+1
of length W + 1 found after extending the motif model by

one column. If EE"—‘ftl"f > 6, (where § denotes the threshold

ratio), then we accept that column as part of the consensus
region and Mot 41 forms the new motif model. This is re-
peated until there is no significant change in the information
content.

It might be possible that two different motif models are
overlapping or in close proximity to each other and we can
merge such models. The strategy is to merge two motif
models based on their correlation. The correlation between
motif model A and B is given by -

FAB:PAB(d)—PAPB (1)
where P4, Pp are the individual model probabilities and
P4p(d) is the probability of models A and B co-occuring at
a distance d in the input set. So, if the correlation between
two models is high, we merge them together to get a single
motif model.

2.6 Ranking of Conserved Regions

Information content can be used to measure the degree of
conservation at a site in a protein sequence alignment. The
fewer the choice between occurrence of different residues at
a site in the sequence, the more information it contains,
and the more discriminatory it is for distinguishing real
matches from random matches. The information content
of the model can be expressed in terms of its entropy com-
pared to that of the random model. The relative entropy
H of a motif model M, as against the random model R, is
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Figure 4: Average number of false-positives for various testcases

given by

H(M||R) = " P log(

M

Pw,j

PR

j=1zeAA @]

) (2)

where Paf\,/[j and PER,J- are the probability of the jt* nucleotide
in x; occurring in motif model M and random model R
respectively, and A A is the alphabet of 20 amino acids. This
favors longer sequence alignment because the information
content will be high for longer sequences due to the first
summation in the equation.

Besides, the support value of the models is also impor-
tant because the motif should be able to represent a large
number of input sequences. The support value (or quorum)
represents the number of sequences covered by the motif.

The models corresponding to the conserved regions, ex-
tracted from the shared ranges, are ranked based on their
support value (or quorum). More the support value, higher
is the rank of the motif. The models covering the same num-
ber of sequences are further ranked based on their relative
entropy.

2.7 Filter and select motifs

We further filter the predicted motifs based on their sup-
port weight. In a heterogenous dataset, one protein family
might have more sequences than another. In order to reduce
the bias towards larger families, we assign weights to each
sequence and calculate the weight for each motif using

W = Zw (3)

where W is the weight of the motif and w; is the weight of
sequence %, covered by the motif.

Initially all the sequences have similar weight(= 1). The
support weight is calculated for each motif, starting from
the top-ranked motif. If a sequence is covered by a motif, its
weight is reduced by half. So the subsequent motifs covering
the same sequences will have considerably lesser weight. We
discard motifs whose support weight W < 0.25N where N is

the number of sequences in the input set. Filtering based on
support weight helps to greatly reduce the number of false
positives when there is a high representaion from one of
the protein families. The motifs that remain are the actual
motifs found by the algorithm.

3. EXPERIMENTS

In order to evaluate the correctness and efficiency of our
proposed algorithm, the algorithm was applied on the col-
lections of various PROSITE[2] protein families.

We consider three different scenarios for our experiments:
Test family contains sequences from -

1. single protein family.
2. two different protein families.
3. three different protein families.

The protein families to be included in the test set is cho-
sen randomly. For each of the testfamily, we try to find
motifs using our subsequence clustering algorithm. To com-
pare our algorithm against other established motif-discovery
algorithms, we use Gibbs motif sampling algorithm[6] and
MEME]J1] on the same test set. Standard parameters are
used for both gibbs and MEME; the number of motifs spec-
ified during the runs was 1,2 and 3 for one family, two family
and three family scenarios respectively. Additional parame-
ters for Gibbs and MEME -

1. Length of each motif = 15

Following parameter values were used in our algorithm -
1. Length of subsequences, | = 10
2. Threshold for finding subsequences, T' = 0.01

w

. Support ratio for finding subsequences, K = 0.05

4. Cutoff value for clustering algorithm, C = 100
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bases

expression. The results of our experiments for one family,
two family and three family scenarios is shown in Figure 5,
Figure 6 and Figure 7 respectively. We also compare the
time taken by each algorithm to find motifs in the data set.
The comparisons are shown in Figure 8 through Figure 10.
The average number of false positives reported by the three
algorithms is plotted in Figure 4.

4. DISCUSSION

As is evident from the graphs, the outcome of the three

algorithms is comparable in case of single-family test cases.
However, as the heterogeneity of the input set increases,
results start showing a great deal of variation. The subse-
quence clustering approach is successful in discovering mo-
tifs representing the different families in more cases than
Gibbs and MEME algorithm. In two family test scenario,
our algorithm found motifs representing both families in 40%
of the test cases, whereas Gibbs and MEME succeeded in
only 5% of the test cases. The trend was similar in three
family scenario, where gibbs couldn’t find motif for all the
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three families in the input set in any of the test cases.

The average number of false positives produced by the
three algorithms in different test cases is similar. However,
we also emphasize that our method does not need to know
the number of motifs expected. This is quite advantageous
when there is no information available about the dataset.

As far as the runtime performance goes, our subsequence
clustering algorithm works a lot faster than MEME. It is
worth noting that subsequence clustering algorithm and gibbs
were run on 4-processor Linux machine having 4GB of mem-
ory whereas MEME was run parallely on 2 nodes (8-processor)
of IBM Scalable POWERparallel System (SP). The perfor-
mance of our algorithm was comparable to gibbs in one fam-
ily case and a little better in two and three family cases.

5. CONCLUSION

A motif discovery algorithm by clustering subsequences
has been presented. The performance of our motif algo-
rithm was measured using sequence families with patterns
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from PROSITE. The results of our algorithm were found
to be comparable to those of gibbs and MEME motif al-
gorithms and outperformed gibbs and MEME algorithms
when input set contains non-homogeneous sequences, i.e.,
two family test cases. Our algorithm also outputs multiple
conserved regions for the input sequence set without being
instructed on how many motifs should be discovered. This
is a very encouraging result and can prove to be very helpful
in cases when the input sequence set consists of sequences
from unknown protein families or from a collection of protein
families. This is a significant advantage over existing motif
discovery algorithms that essentially find only the specified
number of motifs.
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ABSTRACT

Identifying residue coupling relationships within a protein
family can provide important insights into the family’s evo-
lutionary record, and has significant applications in ana-
lyzing and optimizing sequence-structure-function relation-
ships. We present the first algorithm to infer an undi-
rected graphical model representing residue coupling in pro-
tein families. Such a model, which we call a residue coupling
network, serves as a compact description of the joint amino
acid distribution, focused on the independences among res-
idues. This stands in contrast to current methods, which
manipulate dense representations of co-variation and are fo-
cused on assessing dependence, which can conflate direct
and indirect relationships. Our probabilistic model provides
a sound basis for predictive (will this newly designed protein
be folded and functional?), diagnostic (why is this protein
not stable or functional?), and abductive reasoning (what if
I attempt to graft features of one protein family onto an-
other?). Further, our algorithm can readily incorporate,
as priors, hypotheses regarding possible underlying mech-
anistic/energetic explanations for coupling. The resulting
approach constitutes a powerful and discriminatory mech-
anism to identify residue coupling from protein sequences
and structures. Analysis results on the G-protein coupled
receptor (GPCR) and PDZ domain families demonstrate the
ability of our approach to effectively uncover and exploit
models of residue coupling.

Keywords

Residue coupling networks, graphical models, evolutionary
co-variation, sequence-structure-function relationships

1. INTRODUCTION

When studying a family of proteins that have evolved to
perform a particular function, a major goal of contemporary
biological research is to uncover constraints that appear to
be acting on the family, with an eye toward understanding
the molecular mechanisms imposing the constraints. For
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example, amino acid conservation has long been recognized
as an important indicator of structural or functional sig-
nificance [27]. In the 1990s, researchers began generaliz-
ing single-position conservation to correlated co-evolution
of amino acid pairs, thus revealing cooperativity and cou-
pling constraints (e.g., one early study focused on the HIV-1
envelope protein, with the aim of guiding peptide vaccine
design [16]). Such works boosted the discovery of coupled
residues, which could previously have been identified only by
painstaking in vitro approaches such as thermodynamic dou-
ble mutant analysis [11]. The next step was to summarize
information about correlated positions into pathways [15],
motifs [1, 20], and structural templates [20] in protein fami-
lies. Today, projects undertake ambitious large-scale recom-
bination [28] or site-directed and combinatorial mutagenesis
studies [23] to identify entire building blocks of proteins im-
portant to preserve function.

Knowing which pairs (or sets) of residues are coupled in
a protein family aids our understanding of many impor-
tant processes, e.g., conformational change and protein fold-
ing [21, 24], signaling [26], protein-protein interaction, and
even protein complex assembly [13]. Since the basis for cou-
pling can be structural and/or functional, information about
coupled residues can be used predictively for assessing pro-
tein structure [25], fold classification [9], or even to suggest
novel sequences for protein engineering [22].

While there are many computational techniques for study-
ing residue coupling [6], all methods begin by defining a
metric to quantify the degree to which two residues co-vary.
Global methods then determine pairs of coupled residues by
observing correlated mutations in the protein family multi-
ple sequence alignment (MSA) as a whole (e.g., [16]). The
state-of-the-art in understanding residue coupling is, how-
ever, a local method—so-called ‘perturbation-based’ analy-
sis [4] introduced by Lockless and Ranganathan [18]. The
basic idea is to subset the MSA according to some condi-
tion (e.g., containing a moderately conserved residue type
at a particular position) and observe the effect of the per-
turbation on residue distributions at other positions. If the
subsetting operation significantly alters the proportions of
amino acids at some other position, it is inferred to be cou-
pled to the perturbed position, according to the evolutionary
record. Even though this approach is purely sequence-based,
it has been shown to uncover structural networks of residues
underlying important allosteric communication pathways in
proteins [26].

A key missing ingredient to date is a formal probabilistic
model capturing the constraints inferred from residue cou-



pling studies. Such a model would help assess the feasibility
and significance of performing inference from coupling data,
including determining whether coupling is a persistent fea-
ture of a protein family or merely a hallucination. The pro-
cess of inferring such a model would help make explicit the
essential constraints underlying the family (e.g., by identi-
fying a small set of correlations that explain the data nearly
as well as the complete set). A model would enable the
careful combination of multiple information sources (e.g.,
by integrating priors from structural and functional studies
with correlations derived from sequence analysis). Finally,
the model would serve as a compact description of the joint
amino acid distribution, and could be used for predictive
(will this newly designed protein be folded and functional?),
diagnostic (why is this protein not stable or functional?),
and abductive reasoning (what if I attempt to graft features
of one protein family onto another?).

This paper addresses these needs by formulating and eluci-
dating the natural correspondence between residue coupling
(qualifying interdependence among residues) and a proba-
bilistic graphical model (summarizing interrelationships be-
tween random variables).

1. We present the first algorithm to infer an undirected
graphical model, which we call a residue coupling net-
work, representing coupling relationships in protein
families. We bring in ideas from the extensive liter-
ature on probabilistic models [3] to derive networks
that are meaningful as indicators of joint variation of
sequence positions and that also explain structural fea-
tures of protein families.

2. Unlike current correlated mutation algorithms that are
focused on assessing dependence (which can conflate
direct and indirect relationships) we focus on assessing
independence (which enables modular reasoning about
variation). We thus derive more compact descriptions
of underlying networks highlighting the most impor-
tant relationships.

3. We demonstrate how hypotheses regarding possible
underlying mechanistic/energetic explanations for cou-
pling can be used as priors for computational model
discovery. For instance, if we have reason to believe
that coupling in a given family would be only between
nearby residues, a representative contact graph can
be utilized as a valuable prior, benefiting algorithmic
complexity and ensuring biological interpretability of
the results.

BACKGROUND: CORRELATED MUTA-
TIONS AND RESIDUE COUPLING

We begin by providing some background about correlated
mutations and how they are used as indicators of residue
coupling. Typically, we are given a multiple sequence align-
ment (MSA) whose rows are the members of the family and
the columns are the aligned residue positions. Thus the
MSA can be thought of as a matrix A where the value in
row s and column j refers to the jth residue according to
sequence s. We ignore columns with more than 50% gaps
('gapful’ columns) and ignore in the calculations below the
remaining entries that are gaps.

A coupling constraint quantifies the degree to which two
positions in the family co-vary. Given positions i and k,
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information about amino acid occurrences contained in the
ith and kth column vectors of the MSA can be summarized
into 20-element vectors of frequencies, or probability distri-
butions P(i) and P(k). Essentially, this allows us to think of
residue positions as random variables over a discrete sample
space of 20 possibilities (recall that we ignore gaps). Cou-
pling can then be estimated by many information-theoretic
and statistical metrics; one example is the (global) mutual
information between P(i) and P(k), given by:

MI(i, k) = Z > P(i, k) log %

Notice that the mutual information is actually the KL diver-
gence [19] between the distributions P(i,k) and P(i)P(k);
it quantifies the margin of error in assuming that the joint
distribution P(i, k) is decomposable. M1 (i, k) is zero when
the underlying distributions are independent and non-zero
otherwise. Another way to think of MI(i,k) is as the dif-
ference

MI(i, k) = H(i) — H(i|k)

where H(i) is the entropy of the random variable i and
H(i|k) is the entropy of the probability distribution P(i|k).
If MI(i,k) = 0, then knowing the value of k does not re-
duce our uncertainty about i. A high score of MI(i,k) is
typically used as an indicator of coupling [16].

There are other ways to quantify coupling, e.g., using co-
variances and correlations; see [6]. In contrast to global
methods for assessing coupling, perturbation based methods
assess coupling between i and k by first selecting the rows of
A that have position i fixed to some residue and observing
the effect of this in silico perturbation on P(k) (notice the
asymmetry in this approach). Once again, we can assess
the difference between P (k) (before) and P(k) (after) using
a variety of metrics [4], including mutual information.

All metrics suffer from estimation problems under high
or low degrees of conservation. For instance, if position
is always alanine and position k is always glutamine, then
M1(i, k) would be assigned zero even though we have not ob-
served any variation in either! Similar problems arise with
residues that have low frequencies of certain amino acids.
It is hence well-recognized that ‘correlated mutation algo-
rithms must favor an intermediate level of conservation’ [6].

A typical use of a coupling study is to visualize the in-
ferred constraints in order to guide further experiments and
gain insights into the sequence-structure-function relation-
ship. For example, couplings have been organized into path-
ways of allosteric communication through the protein [15].
The discovery of such pathways has recently been reinvig-
orated with the work of [26] where the authors perform
perturbation-based analysis at numerous positions and sub-
sequently ‘cluster’ the pairs of coupled residues; this pro-
cedure has been shown to yield sparse, connected networks
in many protein families. Researchers have also used cou-
pling constraints as a basis to infer the contact map, since
coupled residues are known to often be spatially proximal.
This is still a popular way to validate correlated mutation
algorithms (e.g., see [4]). Others compare the constraints
to known energetic couplings inferred from double mutant
experiments [7].



3. LEARNING GRAPHICAL MODELS OF
RESIDUE COUPLING

If coupled residues indeed capture meaningful relation-
ships, then they must afford a probabilistic interpretation.
That is our working hypothesis for this paper and helps
highlight where all previous work falls short. All previ-
ous approaches to inferring networks from data do so by
direct incorporation of couplings as dependences and, as is
well known, such an approach cannot distinguish direct from
transitive dependences. It is also clear that (in)dependence
of random variables is a very conditional phenomenon: two
random variables may be correlated, become uncorrelated
in the presence of new evidence, become correlated again
when given further evidence, and so on. This means that
we must pay careful attention to conditioning contexts, es-
pecially when we employ perturbation-based correlated mu-
tation algorithms.

Our proposed approach is to directly learn a residue cou-
pling network, an undirected graphical model N(V, ) that
represents the residue coupling relationships. Such a model
encodes probabilistic independence between its vertices ac-

cordinﬁ' to an interpretation such as: )
e Pairwise: For every pair (a,b) of non-adjacent nodes,

a is conditionally independent of b, given every other
node;

e Local: A node is conditionally independent of all other
nodes, given its immediate neighbors; or

e Global: If a set of nodes c separates a from b, then a
is conditionally independent of b given c.

In asserting independence between a given pair of random
variables (nodes), notice that the Global interpretation uses
a smaller conditioning context than the Local, whose condi-
tioning context is even smaller than the Pairwise interpreta-
tion. For this reason, if a network satisfies the Global prop-
erty, then it will also satisfy the Local property. Similarly,
the Local property implies the Pairwise property. Symboli-

cally, Global = Local = Pairwise.
Concomitant with the above independence interpretations,
we can equally think of a network as representing a factoriza-
tion of the joint pdf of the random variables in V (residues):

rivh=2 I 1)

c € cliques(N)

e (ve)

Here, the ¢. are potential functions so that

Z = Z H de(ve)

v cé€cliques(N)

(2)

normalizes their product into a probability measure. In Eq. 1
and Eq. 2, v denotes instantiations of the joint sample space
of {V} whereas v. denotes instantiations over only those ran-
dom variables participating in the clique (¢). The structure
of the potential functions satisfies:

Hc P(UC)

e(ve) =
Ha € cliqueadj(N) P(’Ua)

c € cliques(N)

3)

In other words, the likelihood is given by the product of
marginals defined over the cliques of N divided by the prod-
uct of marginals defined over the clique adjacencies of N
(cliqueadj, which could be nodes, edges, or general sub-
graphs). In this view, each potential of Eq. 1 is either a
conditional or a joint marginal distribution. For instance,
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Figure 1: Residue coupling networks. (Top) A

graph expressing a prior over possible coupling re-
lationships. Omne source for a prior could be the
contact graph representation of a protein’s three-
dimensional structure; here, mechanistic explana-
tions for coupling posit either a direct interaction
between contacting residues, or an indirect (tran-
sitive) propagation of an interaction through net-
works of contacting residues. (Middle) The mul-
tiple sequence alignment for members of a protein
family provides evidence for dependence and inde-
pendence. In the example, positions i and k are
very correlated—when ¢ is a ‘filled in’ residue, k
tends to be as well; similarly when i is ‘empty,’ k
tends to agree. However, knowing j makes the posi-
tions rather independent. In the most common case
where j is filled in, we see the combinations of types
at i and k are more evenly distributed. This suggests
that i and k are conditionally independent, given
j- (Of course, even in this example, noise obscures
the degree of independence.) (Bottom) A graphical
model (darkened edges) captures conditional inde-
pendence. We construct such a model by selecting
edges from the prior that best decouple other rela-
tionships. For example, we see that the conditional
independence of i and k given j can be explained by
a transitive propagation of interaction along model
edges.



in an undirected network over three variables and two edges,
with adjacencies (a,b) and (b, ¢), the product of the poten-
tials is given by:

P(a,b) x P(b, ¢)

¢a,b¢b,c = P(b)

We can view ¢, to be the conditional (P}ﬁ‘(”g’)) and ¢, to

be the marginal (P(b, c)), or vice versa.

Two well-known theorems in the probabilistic models lit-
erature [17] reconcile the independence and factorization
viewpoints. First, if a distribution factorizes according to
Eq. 1, then it satisfies the Global interpretation (and hence,
the Local and Pairwise interpretations as well). Second, the
Hammersley-Clifford theorem [3] states that if a joint pdf is
positive everywhere (i.e., it has non-zero mass for all argu-
ments), then it factorizes according to Eq. 1 iff it satisfies the
Pairwise property (notice the bidirectionality of this theo-
rem). Combining the above two theorems, we have: if a jpdf
is positive everywhere, then the above three properties—
Pairwise, Local, and Global—are equivalent. Any one of
them holding true will imply the others.

In what follows, we adopt a statistical estimator of joint
probability that assigns non-zero probability mass to every
possible sequence. Thus, since the positivity assumption is
satisfied, we can adopt any of the above three interpreta-
tions to infer independence between residue positions. In
this case, the Local interpretation is easiest to operational-
ize. The Pairwise interpretation requires us to ‘fix’ (con-
dition on) all but one residue and it is unlikely that this
will retain a significant enough portion of the MSA to be
confident about any probability assessments. The Global in-
terpretation does not suffer from this drawback but makes
the independence assessment more complicated by relying
on a graph separation test.

If our MSA were sufficiently large and diverse enough to
represent the joint probability of the family, then it is clear
that the best unbiased estimator would be the maximum
likelihood estimator (i.e., simply take the frequencies from
the MSA). As the clique size grows, however, it is unlikely
that the MSA is sufficiently representative of every possible
clique value (i.e., set of residue types for the nodes). There-
fore, we must consider the possibility that a clique value
may not occur in the MSA but still be a member of the
family. To this end, we adopt the following estimator for
the probability of a clique value

aN

fle) + 20l
)= Nita)

P( (5)
Here f(c) is the frequency of the clique value in the MSA, N
is the total number of sequences in the MSA, |¢| is the size of
the clique and « is a parameter that weights the importance
of missing data. Notice that even when a particular clique
value does not appear in the MSA, it still has a positive (but
small) probability. This satisfies the desired positivity con-
straint. We are actively developing more sophisticated esti-
mators, but results show that Eq. 5 is effective in practice.
We employ a value of .1 for a but tests (data not shown)
indicate that results are similar for reasonable values of «
(between .01 and .25).

Uncovering graphical models from datasets is known to
be an NP-hard problem in the general case and researchers
typically restrict either the topology of the network (e.g., to
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function InferNetwork (G = (V, E))
Ve—V;E—0
s « Score(V, &)
C — {(e,s — Score(V,E U {e}))le € E}
repeat
e — argmaxecr—¢ C(e)
E—E&U{e}
for all ¢’ € E—E& such that e and ¢’ share a vertex
do
C(e') « C(e) — Score(V,EU{e'})
end for
until stopping criterion satisfied

Figure 2: Algorithm for inferring a residue coupling
network.

trees [14]) or adopt heuristics to search the space of possibil-
ities. In this paper, we assume the existence of a candidate
set of edges (a graph prior; see below) and propose heuris-
tics that sequentially infer conditional independences among
this set (rather than dependences as followed in prior work).
If we know that residues i and k£ become independent given
j, i.e., the conditional mutual information

MI(i, k|j) = H{(ilj) — H(ilk, j)

is zero, then it is easy to see that the removal of j and its
incident edges must separate i and k in the unknown network
N. This assessment is made in the context of a prior graph
G = (V,E), where we assume V = V and £ C E. This
approach is akin to the ‘sparse candidate’ algorithm [8] for
learning (directed) Bayesian networks.

Fig. 1 presents an example of such an inference. In at-
tempting to de-couple position 7 from k, we need only con-
sider neighbors of 7 (e.g., j) according to the graph prior. We
consider here two priors: the complete graph or a contact
graph. The complete graph is clearly an uninformative prior,
assuming that all possible interactions are equally likely.
The contact graph places edges between all pairs of resi-
dues that are “close-enough” (e.g., with some atoms within
some distance threshold) in the three-dimensional structure
of the protein. (Since structure is more conserved than se-
quence, we assume that all members of the family adopt
essentially the same contact graph and select one from the
PDB.) Physically speaking, this is a reasonable assumption
in seeking to uncover direct energetic interactions and in dis-
tinguishing indirect ones propagated transitively (e.g., one
residue ‘pushes’ another, which ‘pushes’ a third). We com-
pare here results from these two priors, but note that other
priors are possible, e.g., a graph accounting for functional
information, coupling via an intermediate (ligand binding),
or longer-range electrostatic coupling.

The score for a network, following the Local interpretation,
is given by:

Score(N(V,£)) = Y >

n€V m¢neighbors(n)

M I(n, m|neighbors(n))

In de-coupling a pair of positions ¢ and k given neighbor j,
rather than aiming for absolute independence (MI(i, k|j) =
0), we assess by how much the conditional mutual informa-
tion is decreased. We use the notion of network score to
define an edge score as the difference in score between the
network without the edge and the network with the edge.



Note that the score of an edge can be negative, if adding
the edge produces more coupling in the network. Given the
ability to evaluate the edges, we greedily grow a network by,
at each step, selecting the edge that scores best with respect
to the current network. Fig. 2 gives this algorithm. The al-
gorithm can be configured to utilize various greedy stopping
criteria  stop when the newly added edge’s contribution is
not significant enough, stop when a designated number of
edges have been added, or stop when the likelihood of the
model is within acceptable bounds.

The run-time of our algorithm depends on n, the number
of residues in the protein of interest and d, the maximum
degree of nodes in the prior. With an uninformative prior,
d is n. For stronger priors (e.g., a contact graph), we can
assume a bounded number of neighbors for any residue, so
d is O(1). The algorithm scores O(dn) edges at each iter-
ation. Naive execution of the algorithm requires that the
score of the network be computed for each edge at each it-
eration. Scoring a network requires O(n) MI computations
for each residue and there are n residues, so naive execution
requires O(dn®) MT computations at each iteration. Since
conditioning contexts change dynamically during the oper-
ation of the algorithm, we cannot perform any a priori pre-
processing to accumulate sufficient statistics (in contrast to
global methods where mutual information between all pairs
of residues can be computed in a single pass). However,
the cost of making fresh assessments is curtailed since con-
ditioning contexts are merely subsets of neighbors. Thus
by caching values efficiently we can improve the runtime by
a factor of O(n?) at each iteration. First, precompute the
score of every edge in consideration, requiring O(dn®) MT
computations. At each iteration, rather than recomputing
scores, pick the edge in the cache that improves the score of
the network the most. This requires O(n) time, but does not
require any M1 computations. The key observation is that
after an edge is added, the only edges whose scores change
are those incident to the edge just added. Since there are at
most O(d) of those that need to be updated, we need only
O(dn) MI computations, for a speedup of O(n?). Addi-
tional constant factor speedups can be achieved by remov-
ing at each step edges that produce statistically unsound
conditioning contexts.

4. EXPERIMENTS

We illustrate our algorithm for inferring residue coupling
networks with two protein families: GPCRs (G-protein cou-
pled receptors) and PDZ domains. GPCRs are membrane-
bound proteins critical in intracellular communication and
signaling, and a key target of molecular modeling in drug
discovery. Since ligand binding at the extracellular face ini-
tiates propagation of structural changes through the trans-
membrane helices and ultimately to the cytoplasmic do-
mains, GPCRs make an appropriate and compelling study
for network identification [26]. PDZ domains are protein-
protein interaction domains that occur in many proteins and
are involved in a wide variety of biological processes [10].
One role of PDZ domains is assisting in the formation of
protein complexes by binding to the C-termini of certain
ligands [10]. Through these two studies we aim to explore
many pertinent aspects of our approach, such as how to set
priors, studying the progress of the algorithm as new edges
are added, using the induced graphical model for classify-
ing protein sequences, and biological interpretation of the
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results.

4.1 Results

4.1.1 GPCRs

In the GPCR study, we evaluate the use of protein contact
graphs as priors and also explicitly relate the structure of our
identified networks with those previously identified [26]. We
first retrieved the multiple sequence alignment of 940 mem-
bers of the class A GPCR family, each with 348 residues, as
discussed in [26]. In order to explore contact graph priors,
we constructed a contact graph from the three-dimensional
structure of one prominent GPCR member, bovine rhodop-
sin (PDB id 1HZX), identifying 3161 pairs of residues with
atoms within 7 A. We verified that the residues previously
identified as belonging to networks [26] form connected sub-
graphs of this contact graph.

For this study, in testing conditional mutual information,
we only considered cases for which at least 15% of the orig-
inal set of sequences remained after subsetting to a particu-
lar residue type. That is, we only allowed a residue to pick
neighbors that, when restricted to their most common amino
acid type, retain at least 15% of the original sequences. As
discussed [18], such a bound is required in order to ensure
sufficient fidelity to the original MSA and allow for evo-
lutionary exploration. Our bound of 15% is roughly half
that used in [26], since our algorithm subsets according to
multiple residues, depending on the number of neighbors
available, whereas the previous algorithm subsets according
to only one residue. From extensive experiments with this
parameter (data not shown), we found that while there is
some variation in the edges with changes of this parameter,
many (> 70%) of the best edges are insensitive to the exact
threshold.

In order to evaluate the implications of restricting depen-
dences to structural neighbors, we compared the M I scores
for edges in the protein contact map against those for all
pairs of residues. This tested the hypothesis that the bulk
of the correlation could be explained as correlation between
structural (contact graph) neighbors. For every residue, we
identified both the best decoupler anywhere in the protein,
and the best decoupling contact graph neighbor. Fig. 3
shows the absolute differences between these values. No-
tice that in most cases, the best neighbor provides nearly as
much decoupling as the best residue elsewhere in the graph.
However, there are some nodes that incur a large penalty.
In general, these nodes are highly conserved and therefore
have small scores against all other nodes. However, since
the total number of residues is large, the sum of all these
small correlations becomes non-trivial. When a node is sub-
setted, making an originally highly conserved node become
perfectly conserved, the score for that node drops to 0. In
this case there is a large difference in improvement between
selecting a distant node and a node from the original prior
graph. It is important to keep these caveats in mind in the
discussion that follows.

Our first model inference test was to start with the pre-
viously identified network of Suel et al. [26], use its induced
subgraph of the contact graph as input to our algorithm, and
see if we could recover the network. There are 144 edges to
be considered. The algorithm constructed a model with 52
edges, after which point no other edge could be added with-
out making the score worse, so the algorithm terminated.



Fig. 5 (left) illustrates the 52-edge network identified by our
algorithm. Fig. 4 (red) shows the change in score as edges
are added to the network. Notice the score decreases as
edges are added and levels out toward the end (leading to
termination when any remaining edge would increase the
score).

To study the influence of the contact graph prior, we re-
ran our algorithm using an uninformative prior so that all
pairs of residues would be tested for inclusion. This time,
the algorithm considered 1080 edges and picked 67 of them
for inclusion before terminating with no edges available to
improve the score. The resulting network has a better score
than that of the network under the contact graph prior
(Fig. 4 (blue)), but does not have as nice a visualization
(Fig. 5 (right)).

Since the score differences between these two runs were
substantial, we investigated the best possible score achiev-
able for this protein family. Towards this end, we randomly
shuffled the columns of the MSA, yielding a new MSA hav-
ing the same level of conservation for each residue but with
correlation lost due to the independent shuffling. We mea-
sured the correlation in 2500 of these MSAs (which consisted
of just noise) by computing the score of the empty network
(one with no edges) on the MSA. The resulting scores were
normally distributed over a small range (63.5 to 65.1) with
mean value 64.3. This means that for the GPCR family, if
we accounted for all possible correlation we would expect a
score of about 64.3. The algorithm run with the uninfor-
mative prior scores 73.6, well within the margin of error we
would expect due to the greedy property of our algorithm
or the nature of the conditioning contexts.

‘While our modeling formulation is different in nature from
that of Suel et al. (independence vs. dependence, small num-
ber of parameters, etc.), our model that used the uninforma-
tive prior identifies many of the same biologically relevant
features. For example, Suel et al. identify coupling between
residues 296 and 265 that form “part of a linked network ex-
tending parallel to the plasma membrane from 296 to form
the bottom of the ligand-binding pocket.” Our algorithm
likewise identifies an edge between residues 296 and 265.
Several other identified interactions appear as indirect re-
lationships in our model. For example, coupling between
residue 296 and 293, identified as a “helical packing inter-
action” is identified by our model as being indirect. In this
case, residue 117 actually makes residues 296 and 293 con-
ditionally independent, lowering their mutual information
scores from .3347 to .0259. This is true also of the cou-
pling between residue 296 and residues 298 and 299. These
couplings are part of “a sparse but contiguous network of
inter-helical interactions linking the ligand-binding pocket
with the cytoplasmic surface.” Both 296/298 and 296/299
become conditionally independent in the presence of residue
117.

Although our algorithm does produce many of the rela-
tionships as identified by Suel et al., there are several differ-
ences between the models. For instance, our network does
not identify the coupling between residues 296 and 113 which
“makes a salt-bridge interaction with the protonated form
of the Schiff base,” as either direct or indirect. Nor does
our algorithm find the “inter-helical packing interaction” be-
tween residues 296 and 91. Conversely, our algorithm finds a
strong direct coupling between residues 296 and 117 as well
as between residues 90 and 91. Further investigation into
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Figure 3: Penalty for decoupling using a contact
graph neighbor rather than any residue (frequency
distribution). Lower score differences indicate that
neighbors perform as well as other residues.
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Figure 4: Improvement of M I score as edges are suc-
cessively added for the contact graph prior (red) and
uninformative prior (blue). The green line shows a
lower bound for the score for the GPCR MSA.

these strong couplings may be of interest to biologists (e.g.,
by mutagenesis studies). This illustrates the ability of our
approach to help formulate testable biological hypotheses.

4.1.2 PDZs

In the PDZ study, we demonstrate the utility in subse-
quent analyses of the graphical models learned by our algo-
rithm. We study the ability of our inferred residue coupling
networks to capture the ‘essence’ of a protein, namely in
classifying PDZ domains. Traditionally, PDZ domains have
been classified into two types according to which type of
ligand they bind. The first class of PDZ domains binds
to C termini with sequences S/T-X-® (® is a hydropho-
bic residue) while the second class targets sequences of the
form ®-X-®. Although the two classes in this protein fam-
ily may be defined by simple sequence motifs, we show that
coupling-based models provide more discriminatory power,
and we use this opportunity to subject our approach to a
rigorous evaluation in a maximum likelihood framework.

We obtained MSAs for the two classes of PDZ domains
from PDZBase [2] by querying according to the ligand type
and removing duplicate entries, thereby obtaining 95 class
I and 12 class II sequences. We ran our algorithm on the



Figure 5: GPCR network identification: three-dimensional structure of bovine rhodopsin with overlaid net-
work, and just the network for model inferred from (left) contact graph induced by the previously published
network and (right) uninformative prior comprising all pairs of edges. Edges are colored by score, with red
the strongest ‘decouplers’ and blue the weakest.

sequences in class I using an uninformative prior (no con-
tact graph). After adding 85 of a possible 5671 edges to our
model, the M score converged (as was previously demon-
strated with the GPCR family).

Using the estimator of Eq. 5, we compared the likelihoods
from proteins in class I and II against different models, in
a leave-one-out cross-validation test. Fig. 6 (top) shows
the evolution of likelihood scores as edges are added to our
model. On the far left of the plot is the likelihood based
solely on conservation (i.e., with no edges in the network).
As the network grows, so does its power to discriminate
classes. Thus we conclude that conservation alone does not
adequately represent the multiple sequence alignment. Once
40 edges are added to the network, the model has the power
to discriminate perfectly between the two classes. We could
continue to the limit by adding all edges to the network. In
this case, we would derive a clique, with a joint distribution
over all residues that would provide a reasonable score only
for sequences in the original alignment. The convergence of
the M score prevents our algorithm from overfitting in this
manner.

Fig. 6 (bottom) shows a receiver operating characteris-
tic (ROC) curve that illustrates the classifying power of the
conservation-based model and our inferred residue coupling
network. The figure shows that classification of proteins can
indeed be improved by moving beyond models that consider
conservation alone to models that properly account for cou-
pling relationships.

4.2 Comparison with Other Approaches

There are multiple dimensions along which our approach
can be compared to others. The graphical models uncovered
by our algorithm lie between a purely conservation-based
representation of a protein family, and a dense representa-
tion of all co-variation within that family. As our results
show quantitatively, we are able to account for the bulk of
the co-variation with a significantly smaller number of pa-
rameters than is required by the complete graph assumed by
other coupling studies. Thus our models should not over-
fit, but still account for significant coupling missed by pure
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conservation. Perhaps more importantly, while we employ
the same co-variation analysis at the heart of our algorithm,
none of the prior works results in a probabilistic model of
any form, and hence none of them can systematically de-
compose observed co-variation into a core set of functional
dependences, as is done here. This shortcoming holds even
for the pioneering work on perturbation analysis [18, 26],
since the ‘networks’ mined cannot be directly used as pre-
dictive models (e.g., from which new sequences belonging to
the family can be drawn) or even as statistical indicators
of variation (e.g., for assessing the likelihood of additional
sequences). The approach presented here clearly overcomes
these drawbacks by providing models that encode proba-
bilistic assumptions of data and which can be genuinely fal-
sified given appropriate data. We anticipate that this work
will serve as a catalyst for more model-driven research into
coupling networks.

S. DISCUSSION

This work marries research into residue co-variation with
probabilistic graphical models, producing a systematic and
sound algorithmic approach to inferring residue coupling
networks underlying protein families. Our use of condi-
tional mutual information as a criterion for growing a net-
work means that our algorithm can also be viewed as a
perturbation-based approach; however, in contrast to [26]
who infer coupling between the perturbed position and an-
other position, we infer independence between residues on
either side of the perturbed position. The results indicate
that independence of residues can be a good guiding princi-
ple for the discovery of evolutionarily conserved structure.

While there are other ways to infer networks from covari-
ation data (e.g., gaussian graphical models [5]) they either
require the specification of complete sets (e.g., all pairs) of
dependency information or must necessarily make assump-
tions about the parametric form of interrelationships. In
contrast, our approach employs the broader notion of inde-
pendences to situate the network. In addition, it models all
significant couplings and conditional independences, hence
capturing the essence of what it means to belong to a given
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Figure 6: Evolution of likelihood as edges are added
to the network. (Top) Sequences from class I (blue)
and class II (red) against the class I model. Each
plot shows the mean, maximum and minimum like-
lihood. The far left of the plot is the model based
only on conservation. As the number of edges grows,
more correlation is captured by the model. The far
right is the model that contains all the correlations
found by our algorithm. (Bottom) ROC curve show-
ing the power of classifying by likelihood using only
conservation (red) or the converged model produced
by our algorithm (blue, following the box bound-
ary).

family. This has tremendous applications in protein fold
classification and protein design.

An important feature of our approach is the ability to
make (selective) use of prior information towards a cou-
pling study. Some priors (e.g., the contact graph) aid inter-
pretability of the results but (as shown in our tests) might
not yield as good as a model. There may be other poten-
tial explanations for observed couplings (e.g., electrostat-
ics, ligand binding) that could be incorporated in the prior.
Conversely, in the course of the algorithm, edges could be
scored not only for reduction in M I but for consistency with
a background theory.

The success of the approach is dependent on the qual-
ity of the provided MSA. We would like to scale up our
algorithms to work with MSAs involving greater numbers
of sequences, and thus more complete samplings of families.
Inferring graphical models from such large datasets will ben-
efit from research aimed at scaling up model inference (e.g.,
see [12]) and we propose to consider these for inferring cou-
pled residues. We would also like to ensure fidelity of the
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alignment, particularly by using available structural infor-
mation. Eventually, we hope to integrate alignment and
model inference, perhaps employing shared hidden variables
so that they iteratively improve each other.

Since motifs can be viewed as a limiting case (conservation
only) of coupling relationships, we intend to build upon the
work in that domain on representing general traits. For in-
stance, we intend to relax our modeling of residues as distri-
butions over amino acids, and instead consider distributions
over classes of amino acids (e.g., polar, hydrophobic, small).
Since there are multiple, overlapping, taxonomies of amino
acids [27] we can even assume a hidden variable model (de-
noting an unknown relabeling of each residue) and attempt
to infer the network as well as the relabeling function from
a given MSA and contact map. An alternative is to employ
a scoring matrix in evaluating extent of co-variation [24].

Finally, we intend to explore applications in protein de-
sign. Sampling from an inferred model is a natural way to
generate new representatives of a family. Simultaneous con-
struction of models for multiple families could help define
their boundaries and thus even enable control over speci-
ficity in design.
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ABSTRACT

This paper asks whether susceptibility to early-onset (diag-
nosis before age 40) of a particularly deadly form of cancer,
Multiple Myeloma, can be predicted from single-nucleotide
polymorphism (SNP) profiles with an accuracy greater than
chance. Specifically, given SNP profiles for 80 Multiple My-
eloma patients — of which we believe 40 to have high sus-
ceptibility and 40 to have lower susceptibility — we train a
support vector machine (SVM) to predict age at diagnosis.
We chose SVMs for this task because they are well suited
to deal with interactions among features and redundant fea-
tures. The accuracy of the trained SVM estimated by leave-
one-out cross-validation is 71%, significantly greater than
random guessing. This result is particularly encouraging
since only 3000 SNPs were used in profiling, whereas several
million SNPs are known.

Categories and Subject Descriptors
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Keywords

supervised machine learning, support vector machines, sin-
gle-nucleotide polymorphism, multiple myeloma

1. INTRODUCTION

A significant contribution to the genetic variation among
individuals is the cumulative effect of a number of discrete,
single-base changes in the human genome that are relatively
easy to detect. These single positions of variation in DNA
are called single nucleotide polymorphisms, or SNPs. While
it is presently infeasible to obtain the sequence of all the
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DNA of a patient, it is feasible to quickly measure that pa-
tient’s SNP pattern — the particular DNA bases present at
a large number of these SNP positions [15].

Our case study employs support vector machines (SVMs)
to analyze this new and promising form of genetic data.
The authors present lessons for machine learning through-
out the paper. Some biological terminology is necessarily
used. Critical terms are defined for general machine learn-
ing (ML) readers; undefined terms are not critical to un-
derstand the ML lessons, but are used as needed to clarify
issues for computational biology readers.

One promise of SNP data is that this data may make
it possible to identify markers for genetic predisposition to
disease. In addition to providing patients with informa-
tion about their risk for disease, such markers may give re-
searchers insight into the genes involved in a disease process
and hence into proteins that may serve as targets for novel
pharmaceutical therapies. In order to find such markers,
the traditional approaches are to use linkage analysis and
association studies [17].

Linkage analysis requires obtaining data on families with
known pedigrees and disease histories. This requirement can
make accurate linkage analysis difficult since many family
members — including previous generations — are unavailable
for genetic testing. Also, since the results of linkage anal-
ysis studies often come from a small number of families,
they may not be generalizable to the rest of the population.
Association studies do not require known family pedigrees.
However, they do require a number of “candidate genes”
that are suspected to be important in the disease process of
interest. Thus, this method relies on the quality of the can-
didate genes, which are chosen based upon prior knowledge
about the disease.

Both of these traditional approaches have been very suc-
cessful when dealing with simple Mendelian or near-Mende-
lian disorders, but fail when attempting to identify disorders
controlled by quantitative trait loci (QTL) [17]. QTL are
genes, each of modest effect, whose combined effects cause
a particular complex, continuous trait [5]. To deal with the
complexities that QTL bring to this task, we will use an ML
algorithm that is well suited to tasks involving interactions
and redundant features.



First, we will divide the data points into two classes. Next,
we will use an ML or statistical modeling algorithm to con-
struct a classifier, or model, based upon all of the SNP
data that were collected. The accuracy of the model at pre-
dicting the class (e.g., susceptible vs. not susceptible) will
then be estimated using cross-validation. If the accuracy
of the model is significantly better than chance, one may
then study this model to gain insight into the disease. We
have chosen not to employ candidate genes, like in an as-
sociation study, because little is known about the genetics
of Myeloma and its epidemiology. The hypothesis is that
if there is an association between Myeloma and a particu-
lar gene, then a SNP in the haplotype block [4] containing
that gene will be discovered in the present study. Given
the general lack of knowledge about the etiology of this dis-
ease, we believe that using a candidate gene approach would
put unreasonable bias on the analysis and, in the end, may
fail and eventually cost more than doing a global search for
associations.

This same general methodology has been employed in nu-
merous cancer studies using microarray data [1, 6, 16, 18,
23]. A major advantage of using SNP data over microarray
data to study genetic predisposition is that, unlike microar-
ray data, a person’s SNP pattern is unlikely to change over
time. Loosely stated, the SNP pattern collected from a per-
son with a disease is likely to be the same pattern that would
have been collected from that person at birth or early in life.
Thus, we can use SNP data from patients at any stage of
their life and at any stage of their disease progression.

Single-nucleotide polymorphisms are extremely stable ov-
er evolutionary time [11]. Furthermore, relative to microsa-
tellite polymorphisms, which are susceptible to mutations
during the aging process [20], SNPs are much more sta-
ble and hence are unlikely to change over the lifetime of
an individual [3]. The DNA used to perform our study
is derived from peripheral blood mononuclear cells, which
should be a mixture of cells whose germline DNA has no
over-representation of any given clone containing any spe-
cific mutation. Thus, it is highly unlikely that the SNPs
discovered in this study to be associated with the age of
onset of Multiple Myeloma would be related to a SNP that
tends to be mutated as a person ages. As a result of these
arguments, SNP data has the potential to provide more in-
sight into genetic predisposition to Multiple Myeloma, as
well as many other diseases, than does microarray data.

A second major advantage of using SNP data is that the
data can be collected from any tissue in the body. With
microarray data, the mRNA samples for cancer patients
are taken from tumor tissue (e.g., from the colon), and the
mRNA samples for healthy donors are taken from healthy
tissue of the same type (e.g., colon again). SNP data, on
the other hand, is not taken directly from tumor samples,
but from any tissue in the body. The benefit of this is that,
in addition to being faster to obtain, SNP data is also easier
to obtain since less invasive procedures can be used. On the
other hand, when using SNP data, we do not expect to have
predictors of as high accuracy as we get with microarray
data. This is because microarray data is taken directly from
the tumor tissue. Since gene expression is greatly altered
in cancer, it is possible to obtain highly-accurate predic-
tive models for cancer vs. normal. While such models may
provide insight into the disease itself, they do not provide
information on genetic predisposition. When working with
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SNP data, we expect to gain more information about a per-
son’s genetic predisposition to a disease than we would gain
from microarray data; however, we do not expect to have
predictors of as high accuracy as we get with microarray
data.

Despite these advantages, SNP data does present three
major challenges for our approach. The first challenge of
SNP data is that there are now well over 1.8 million SNPs
known [22], but measuring them all is typically cost-prohibi-
tive. Hence, in contrast to microarray data where measure-
ments are recorded for a substantial fraction of the known
genes, SNP data contains measurements for only a small
fraction of the known SNPs — typically a few thousand.
Therefore, it is quite possible that, for a given classifica-
tion task, the features that would allow for highly accurate
prediction will be missing. Second, missing values are more
common in SNP data than in microarray data. This must
be taken into consideration when choosing a learning algo-
rithm, since some methods are more capable of handling
missing data than others. Third, and perhaps most inter-
esting, SNP data is “unphased.” Figure 1 illustrates this
issue. The result of SNP data being unphased is that this
additional, and potentially highly informative, phase infor-
mation is not available for model building. Algorithms for
haplotyping, or determining this phasing information, ex-
ist, but their solutions are not guaranteed to be correct.
Also, these algorithms typically require additional data on
related individuals and a large number of individuals relative
to the number of SNPs [12]. Thus, one may approach this
phasing problem either by estimating the phase information
and accepting the consequences of incorrect estimates, or by
working with the data in its unphased form. Because of the
inaccuracies inherent in haplotyping and lack of additional
data, we have elected to work with the data in its unphased
form. We believe that this decision will not adversely affect
our modeling algorithm since our research uses a relatively
sparse coverage of the genome. Thus, adjacent SNPs are not
linked strongly enough for phasing information to be infor-
mative. In future studies with a denser SNP coverage, this
information would be potentially more useful.

Phasing, or haplotypes, are potentially informative be-
cause within a haplotype block there is very little, if any,
meiotic recombination. Thus, the linkage of SNPs within
a given haplotype block will remain unchanged over time.
Once the haplotype map is established, it will be feasible
to use a single SNP to define a haplotype block just as
well as if one used all the SNPs within that block. It is
estimated that there are approximately 600,000 haplotype
blocks (there are currently some 300,000 defined) represent-
ing the millions of SNPs in the human genome [21]. These
haplotype blocks may eventually be used to define the en-
tire human genotype. When this occurs, haplotypes (defined
by a single SNP) that are found to be linked to a disease
could be searched for candidate genes and mutations within
candidate genes. This will eliminate the guesswork that is
inherent in the current candidate-based approaches which
rely on an investigator’s best guess or hunch.

This paper discusses the application of SVMs to SNP
data in order to study genetic predisposition to Multiple
Myeloma. Multiple Myeloma is a cancer of antibody secret-
ing plasma cells that grow and expand in the bone mar-
row. Although Multiple Myeloma is hypoproliferative (the
cancer cells replicate at a relatively low rate), the disease



Person 1:
C G C
v v \4
Copy 1
Copy 2
4 4 A
T A T
Person 2:
C A C
v v \4
Copy 1
Copy 2
A A A
C G T
Person 3:
T G C
v v v
Copy 1
Copy 2
A A A
T G C

(a) The true phased SNP patterns for
persons 1, 2 and 3.

SNP 1 SNP 2] SNP 3 Class
Person1 [C | T AT G C ] T | Diseased
Person2 | C| C Al G [[C] T | Healthy
Person3 [T | T G| G C | C | Diseased

(b) The unphased SNP data for persons 1, 2 and 3.

Figure 1: In a SNP data file (b), each example, or
data point, corresponds to a single person. The fea-
tures, or variables, used to describe the person are
the SNPs. A SNP position on one copy of a chro-
mosome typically can take one of two values; for
example, SNP 1 can be either C or T. But be-
cause every person has two copies of chromosomes
1 through 22, most SNP features can take one of
three values. For example, the feature labeled SNP
1 can be either heterozygous CT as for Person 1,
homozygous CC as for Person 2, or homozygous TT
as for Person 3. If both SNP 2 and SNP 3 are on
the same chromosome, then they can be arranged ei-
ther as for Person 1 or for Person 2. Although these
2 arrangements are distinct, they lead to the same
SNP pattern. The process of determining which of
these two cases holds is called phasing or haplotyp-
ing. Data for which the haplotypes are not known
is said to be unphased.

is incurable and usually progresses rapidly after diagnosis
— with bone demineralization, renal failure, anemia, and
secondary infections resulting from immunosuppression as
common causes of mortality [19].

Multiple Myeloma occurs with relatively high frequency
in adults over 70 (0.035% of the US population aged 70+)
compared with younger adults (0.002% of the US population
aged 30-54)'. We hypothesize that those who are diagnosed
with Multiple Myeloma at a young age (under 40) have a
genetic predisposition to the disease. If this is the case, then
it may be possible to see differences in SNP patterns between
Multiple Myeloma patients diagnosed before the age of 40

'Source: http://seer.cancer.gov
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(predisposed) and those diagnosed after the age of 70 (not
predisposed), and we can use these differences to gain insight
into the disease. If this hypothesis is false, then it should not
be possible to predict “predisposed” vs. “not predisposed”
with accuracy significantly better than chance.

2. METHODOLOGY

Our data set? consists of unphased SNP data for 80 pa-
tients, based on 3000 SNPs, taking the form shown in Fig-
ure 1(b). The class values are “predisposed” and “not pre-
disposed” as described at the end of Section 1. The 40 “pre-
disposed” patients were diagnosed with Multiple Myeloma
before age 40, while the 40 “not predisposed” patients were
diagnosed after age 70. High molecular weight DNA was
produced from peripheral blood lymphocytes from patients
with Multiple Myeloma using conventional methods. DNA
was subsequently sent to Orchid Biosciences?™ . SNP geno-
typing was performed using a proprietary SNP-ITTM primer-
extension technology. SNP-IT primer extension is a method
of isolating the precise location of the site of a suspected SNP
and utilizing the inherent accuracy of DNA polymerase to
determine the allele type or the absence of that SNP. In
order to conduct SNP-IT primer extension, a DNA primer
(SNP-IT Primer) is hybridized to the sample DNA one base
position short of the suspected SNP site. DNA polymerase
is then added and it inserts the appropriate complementary
terminating base at the suspected SNP location. Detection
of the single base extension is accomplished by conventional
methods. The result is a direct read-out method of detecting
SNPs that creates a simple binary “bit” of genetic informa-
tion. The SNPcode system couples SNP-IT genotyping tech-
nology with the Affymetrix GenFlex”™ platform to create a
versatile, high-density SNP scoring system. In the assay,
multiplex PCR is followed by solution phase SNP-IT primer
extension. The SNP-IT products are then hybridized to the
GenFlex chip — the sorting mechanism for the multiplexed
reactions [14]. In the present study, 3000 SNPs were investi-
gated on 80 patients. The SNPs were not selected based on
prior knowledge of genetic disposition to Multiple Myeloma;
rather, the SNPs were selected to give good overall coverage
of the human genome. SNPs were chosen so that they would
be evenly spaced at approximately every 1 megabase across
the human genome. A denser coverage would be desirable
but was cost-prohibitive.

We employed the approach of linear SVMs as our cho-
sen modeling algorithm. We chose SVMs for this task be-
cause they are well suited to deal with interactions among
features and redundant features. In particular, we used the
algorithm SVM'9"* [9]%. Because SVMs assume that all fea-
tures are numerical, we needed to convert the discrete fea-
tures from Figure 1(b) into continuous features. We will now
present a brief review of SVM technology to help our readers
understand the motivation behind our particular method of
converting SNP features into numerical values.

In its simplest form, a support vector machine is an algo-
rithm that attempts to find a linear separator between the
data points of two classes, as Figure 2 illustrates. SVMs
seek to maximize the margin, or the separation between the
two classes, in order to improve the chance of making accu-

2The new SNP data set is available online from the authors
at http://lambertlab.uams.edu/publicdata.htm.

3Publicly available at http://svmlight.joachims.org.
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Figure 2: A support vector machine for differentiat-
ing between two classes by maximizing the margin,
W. This is done in the N-dimensional space de-
fined by N numerical-valued features. In this sim-
ple example, there are only two features, X and Y,
so N = 2. Normally, however, N would be much
greater. In a higher-dimensional space, the linear
separator is a hyperplane rather than a line.

rate predictions on future data. Maximizing the margin can
be viewed as an optimization task solvable using linear or
quadratic programming techniques. Of course, in practice
there may be no good linear separator of the data. Support
vector machines based on kernel functions can efficiently
produce separators that are non-linear [2]. Nevertheless, the
output of a linear SVM is easier to understand and glean in-
sights from; effectively, features that get large coeflicients in
the function of the linear separator are more important than
those that get small coefficients. In addition, linear SVMs
have given better results than other kernel-based SVMs in
several studies of microarray data, including our prior work
with Multiple Myeloma. Therefore, for the present work we
use linear SVMs. Experimenting with SNP data using other
kernel functions is a direction for future work.

Each SNP feature in our data set takes one of three pos-
sible non-numerical values — either heterozygous or one of
two homozygous settings (see Figure 1) — but SVMs require
numerical features. Therefore we convert the three possible
values for a SNP feature to the values -1, 0 and +1, where 0
represents heterozygous. We arbitrarily choose one homozy-
gous case to set to -1 and the other to set to +1. As we see in
Figure 3, when using this method with a linear SVM, it will
be impossible to model the case where heterozygosity for a
particular SNP is indicative of one class while homozygosity
is indicative of the other, since it is not possible to separate
0 from both -1 and 1 with a single line. For example, it
is not possible to say that either CC or TT is indicative of
“predisposed” while CT is indicative of “not predisposed.”
Nevertheless, it is possible to distinguish having no copies
of C from having at least one copy, or to distinguish having
two copies of C from having zero or one copies (Figure 3).

Discriminating based upon the presence or absence of a
single base appears to be more biologically relevant than
discriminating solely based upon the presence or absence of
homozygosity. In order for a heterozygous feature to not
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Divide CC frnn; CT andTT Divide TT from CT and CC
Figure 3: Divisions between feature values that are
possible with the -1, 0, +1 encoding of SNP features.
Notice that it is not possible to divide both CC (-1)
and TT (41) from CT (0) with a linear SVM.

predispose cancer, whereas either of the two homozygous
states do, the gene products of either allelic variant would
be deleterious in sufficient quantities, but in the case of het-
erozygosity, neither would be present in sufficient quantities
to cause a negative effect. In this case, regardless of the
relative abundance of the two variants, a very large percent-
age of the population would be homozygous for one allelic
variant or the other. Thus this feature would not be very
informative and would not be incorporated into our model.
In order for a heterozygous feature to predispose cancer,
whereas either of the two homozygous states of that fea-
ture do not, the gene products of both alleles would need to
be present to cause a negative effect. If both allelic variants
were common in the general population, then heterozygosity
of this feature would be relatively common and would thus
not be very informative. If one allelic variant is relatively
rare, then a homozygote in this feature will be very rare
indeed. If such a rare person were to be found in our non-
predisposed group, they would not likely affect our model
significantly. Thus, it is very unlikely that the presence or
absence of homozygosity would play a significant role in de-
termining predisposition to a specific cancer. This supports
our decision to use the absence or presence of a particular
allele when building our model instead. This conclusion is
further evidenced by the fact that most known mechanisms
of inherited predisposition to cancers are dominant [10].

An alternative encoding that would permit all three possi-
ble distinctions between values would be to use two numeri-
cal features for each SNP. However, this leads to a doubling
of the number of features, and the performance of ML al-
gorithms tends to degrade as the number of features grows
relative to the number of examples. Another option, us-
ing SVMs based on kernel functions, can efficiently produce
separators that are non-linear [2]. Nevertheless, the output
of a linear SVM is easier to understand and glean insights
from; effectively, features that get large coefficients in the
function of the linear separator are more important than
those that get small coefficients. In addition, linear SVMs
have given better results than other kernel-based SVMs in
several studies of microarray data, including our prior work
with Multiple Myeloma. Our preliminary studies using ker-
nel functions to create a non-linear separator that can sepa-
rate between the absence and presence of homozygosity have
resulted in poorer performance than the simple linear sepa-
rator. Further experimentation with SNP data using kernel
functions is a direction for future work.



A major problem in ML applications is the “curse of di-
mensionality” — having many more features than examples.
SVMs are more robust than some other ML algorithms when
faced with high-dimensional data. Nevertheless, as with
other ML algorithms, SVMs typically benefit from feature
selection. Therefore, before training an SVM on our SNP
data, we eliminate 90% of the features. Specifically, we se-
lect the top 10% (300) of the features according to infor-
mation gain as described in the following paragraph. But
before discussing the details of this approach, an important
methodological point must be made. It is relatively com-
mon, though incorrect, to perform feature selection once
by looking at the entire data set, and then to run cross-
validation to estimate the accuracy of the learning algo-
rithm. The resulting accuracy estimate is typically higher
than will be achieved on new data, because the test data for
each fold of cross-validation played a role in the initial fea-
ture selection process; hence information has “leaked” from
the test cases into the training process. To avoid such an
over-optimistic accuracy estimate, we repeated the following
feature selection process on every fold of cross-validation,
using only the training data for that fold. We chose to use
cross-validation to assess the accuracy of our model since it
is robust to high-dimensional data.

For each SNP feature we compute the information gain of
the optimal split point, either between -1 and 0 or between
0 and 1. Information gain is defined as follows. The entropy
of a data set is —plog,p — (1 — p)log,(1 — p) where p is
the fraction of examples that belong to class “predisposed”
(either class could have been used). A split takes one data
set and divides it into two data sets: the set of examples for
which the SNP feature has a value below the split-point and
the set of data points for which the SNP feature has a value
above the split-point. The information gain of the split is the
entropy of the original data set minus the weighted sum of
entropies of the two data sets resulting from the split, where
these entropies are weighted by the fraction of data points in
each set. The SNP features are then ranked by information
gain, and the top-scoring 10% of the features are selected.
A natural variant to the preceding procedure would involve
making both splits, the split between -1 and 0 as well as
the split between 0 and +1, dividing the original data set
into three instead of two. The entropy and information gain
equations extend naturally to this case as well. We chose to
use binary splits to rank features because the linear SVM
that will use these features will effectively make binary splits
for each feature.

3. RESULTS AND DISCUSSION

We tested the approach described in the previous section
using leave-one-out cross-validation. The confusion matrix
is shown in Table 1. This yields an accuracy estimate of
71%, which is significantly better than random guessing.
While this accuracy is not nearly as high as the accuracies
we have grown accustomed to seeing for prediction of cancer
vs. normal from microarray data, it is nevertheless exciting
given that this prediction is based only on SNP data, which
does not change once the disease occurs, and given that we
had a relatively sparse covering of the genome with only
3000 SNPs.

To assess the significance of this result, we performed a
permutation test. Permutation testing assesses the depen-
dency of a classifier to the specific data set that is was de-
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Table 1: Confusion Matrix. This table shows how
the class values predicted by the SVM on the test
cases relate to the actual class values. This yields
an accuracy estimate of 71%.

Predicted
Not predisposed Predisposed
= Not predisposed 31 9
2
13
< Predisposed 14 26
signed for. This method is commonly used in situations

where data is limited to give an estimate on the error of a
classifier [8]. We performed the permutation test by ran-
domly permuting the labels — “predisposed” and “not pre-
disposed” — among the patients and running the entire cross-
validated learning process on this new dataset. This entire
procedure was repeated 10,000 times. The accuracy of these
10,000 classifiers very closely fits a normal distribution. The
results of this test can be seen in Figure 4 and illustrate that
our result of 71% is significant at the p < 0.05 level using a
two-tailed test of significance. A standard binomial test was
also performed and also established significance of the 71%
result at the p < 0.05 level (two-tailed).
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350 [~ k B
300 [~ i
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Figure 4: Results of a permutation test to estimate
error of the classifier. We performed the permuta-
tion test by randomly permuting the labels — “pre-
disposed” and “not predisposed” — among the pa-
tients and running the entire cross-validated learn-
ing process on this new dataset. This entire pro-
cedure was repeated 10,000 times. The accuracy
of these 10,000 classifiers very closely fits a normal
distribution. The 71% classifier is significant at the
p < 0.05 level (two-tailed).

Although SNPs are highly unlikely to change within a
single person as that person ages, it is true that certain SNPs
will be underrepresented in certain age populations. For
instance, a SNP that is associated with a gene responsible
for causing a massive heart attack at age 50 will be present in
a much higher proportion of 40-year-old patients than of 70-
year-old patients. This emphasizes the need for the model
that we build to be interpretable so that we can examine
the SNPs that the model uses for prediction and determine



their potential role in the disease mechanism.

In order to show that our learning algorithm is not bas-
ing its model on the age of the patients, we obtained SNP
data on 28 unrelated persons without Myeloma from the
SNP consortium?. 14 persons were older than 70 years-of-
age and 14 were younger than 40 years-of-age at the time
of SNP analysis. For each person, 2911 SNPs were cho-
sen to provide broad genome coverage [13], just as the 3000
SNPs used with our “predisposed” and “not predisposed”
patients were. Using the exact same procedure as we used
for the “predisposed” and “not predisposed” data, we built
a model using SVM'9"* after feature selecting the top 10%
of features and using leave-one-out cross validation. The re-
sulting accuracy was 46% and the confusion matrix can be
seen in Table 2. Although the 2911 SNPs chosen were a dif-
ferent set of SNPs than the 3000 used with our patients, we
believe that this result does provide evidence that the 71%
accuracy we are obtaining with our model is unlikely to be
from merely predicting age well. Our future work will in-
clude obtaining SNP data on persons such as these 28 using
the same set of SNPs to further validate this conclusion.

Table 2: Confusion Matrix for Control Data. This
table shows how the class values predicted by the
SVM on the test cases relate to the actual class val-
ues. This yields an accuracy estimate of 46%.

Predicted
Over 70  Under 40
r Over 70 6 8
=]
5
13}
< Under 40 7 7

From the data in Table 1, we can compute the true pos-
itive and false positive rates for our model. The true pos-
itive rate is calculated as the fraction of the “predisposed”
patients who are correctly classified as “predisposed.” The
false positive rate is calculated as the fraction of the “not
predisposed” patients who are incorrectly classified as “pre-
disposed.” Using this method, we see that our model has a
true positive rate of 65% and a false positive rate of 22.5%.
However, because Myeloma is relatively rare in the general
population, a false positive rate of 22.5% would result in
a large number of patients being misdiagnosed as “predis-
posed.” This is because our model was built with the naive
assumption that both types of misclassification errors (clas-
sifying “predisposed” as “not predisposed” and classifying
“not predisposed” as “predisposed”) are equally bad. In or-
der to have the freedom to vary the relative misclassification
costs of these two types of errors, we have plotted a Receiver
Operator Characteristic (ROC) curve. An ROC curve is a
standard way of assessing the accuracy of a model at vary-
ing degrees of conservativeness. As we see in Figure 5, if
we choose a more conservative model that bounds our false
positive rate to 5%, we are still able to achieve a true posi-
tive rate of 42.5%. This is very encouraging considering the
limited data on which this model was based.

From these results we conclude that SNP data does indeed
provide predictive ability for cancer susceptibility. That is

“http://snp.cshl.org
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Figure 5: The ROC curve shows that linear SVMs
(solid line) perform significantly better than random
guessing (dotted line). It also shows the accuracy if
we tune the SVM model to bound the false positive
rate (since Myeloma is relatively rare in the general
population). The point (5%, 42.5%) is noted with
an O. The point without tuning (22.5%, 65%) is
noted with an X. The true positive rate is calculated
as the fraction of the “predisposed” patients who
are correctly classified as “predisposed.” The false
positive rate is calculated as the fraction of the “not
predisposed” patients who are incorrectly classified
as “predisposed.”

the primary conclusion of this paper. The next question is
whether the resulting SVM model can provide any insight
into the disease. Ideally the SVM model would be based
on only one or a few SNPs; that is to say, all but a few
SNPs would have coefficients of zero in the equation for the
separating hyperplane. Unfortunately, the model gives over
150 SNPs with non-zero coefficients. The maximum cross-
validation accuracy that can be obtained for this data-set
using a single SNP alone (using this SNP as a single vot-
ing attribute instead of using an SVM) is 61%, which is
obtained using SNP 739514; a SNP on chromosome 4 at a
location of 150,853,009 bp from the telomere of the p arm.
If we instead use the top 3 SNPs (as determined by infor-
mation gain) in unweighted majority-voting, we can achieve
72.5% accuracy (using SNPs 739514, 521522, 994532). In-
vestigation of the full list of 150 SNPs is under way, but
at this point we cannot claim that the model has provided
useful insight into the disease. Although SVMs can accu-
rately model the relative significance of features and their
interactions, compared to some other algorithms such as de-
cision trees and naive Bayesian networks, their models are
not easily interpretable.

After finishing analysis of the linear SVM results, we re-
ran our experiments using a few other standard ML al-
gorithms. None of the algorithms that we tried — poly-
nomial SVMs, decision trees (with and without boosting)
and naive Bayesian networks — performed significantly bet-
ter than chance. Thus, we see that our choice of linear
SVMs was a good one for this dataset and that the choice of
algorithm can be very important when modeling biological
datasets.

The only difference between linear and polynomial SVMs
in this model is that polynomial SVMs are able to sepa-
rate between the absence and presence of homozygosity (see



Figure 3) which, as we discussed in Section 2, is not biologi-
cally relevant. Thus, it is likely that polynomial SVMs were
led astray by irrelevant correlations whereas linear SVMs
were not able to be similarly led astray. Like polynomial
SVMs, naive Bayesian networks and decision trees are not
well suited to this dataset. Because it appears likely that
susceptibility to Myeloma is controlled by QTL and is not
a simple Mendelian or near-Mendelian disorder, the feature
independence assumption of naive Bayes is strongly violated
in our dataset. Decision trees are not robust with high-
dimensional data and may have been led astray like polyno-
mial SVMs since they too can separate absence and presence
of homozygosity.

4. ONGOING AND FUTURE RESEARCH

Ongoing and future work is focused in three directions.
First, we are cross-tabulating the SNP results with gene ex-
pression microarray results for Multiple Myeloma [7]. We
are interested in whether any SNPs appear in or near genes
that are differentially expressed in Myeloma vs. normal mR-
NA samples. We have found 11 SNPs that appear within
1Mbp of one of the top 1% informative (by information gain)
genes for predicting Myeloma vs. normal from mRNA. We
are also interested in whether any SNPs appear in or near
genes that are differentially expressed in Myeloma vs. MGUS
(a benign form of Myeloma) mRNA samples. We have found
7 SNPs that appear within 1Mbp of one of the top 1% infor-
mative (by information gain) genes for predicting Myeloma
vs. MGUS from mRNA. We use a tolerance of +1Mbp
for two reasons. First, we see this breadth of deviation
in SNP locations when using different information sources,
e.g. NCBI and GeneCards. Second, research into haplotype
blocks has revealed that large regions of DNA see very little
recombination and tend to remain conserved, while recom-
bination is largely isolated to certain “hot spots.” Hence a
SNP allele could be informative of a gene allele even if the
SNP does not occur within the gene but only near it.

The second direction for ongoing and future work is to
further tune the linear SVM algorithm as well as experi-
menting with other types of SVMs, such as Gaussian kernel
SVMs (also available with SVM'*9"* for example), and with
other types of modeling algorithms from ML and statistics.
The goal of this work is to find a model for predicting pre-
disposition for Myeloma that uses a smaller set of features
for classification. This will allow us to gain a better insight
into those regions that are important for conferring suscep-
tibility.

Our final direction for future work is to repeat these exper-
iments on a larger pool of participants, and using a denser
coverage of SNPs, in order to further validate all of the find-
ings of this study. We plan to do this in the next year or
two when a sufficient number of the “predisposed” popula-
tion (relatively rare) are referred to our center. In addition,
we will look at the allele frequencies of the highly predictive
SNPs in another similarly aged matched cohort.
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ABSTRACT

As a potential alternative to current wet-lab technologies,
DNA sequencing-by-hybridization (SBH) has received much
attention from different research communities. In order to
deal with real applications, experiment environments should
not be considered as error-free. Previously, under the as-
sumption of random independent hybridization errors, Leong
et al. [9] presented an algorithm for sequence reconstruction
which exhibits graceful degradation of output accuracy as
the error rate increases. However, as the authors also ad-
mitted, a notable downside of their method is its too high
computational cost. In this paper, we show that the poor
efficiency of [9] is due to its mixing-up of situations with
widely different characteristics and treating everything in
the safest but also slowest way. Our new algorithm addresses
this problem and pushes analysis down to a finer level where
a more effective solution is proposed. As demonstrated by
experimentations on real human genome datasets, this new
methodology yields significant performance improvements
and at the same time guarantees almost the same degree of
output accuracy.

Keywords

Sequencing-by-Hybridization, Noise, Algorithmic Efficiency,
Clues from the Genome

1. INTRODUCTION

DNA sequencing-by-hybridization (SBH) was proposed by
several research groups [1, 12, 3, 13, 16, 20, 14] around 1988
as a potential alternative to wet-lab technologies. In 1991,
Strezoska et al. successfully sequenced a 100bp DNA sam-
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ple. To reconstruct a DNA sequence by SBH, two steps are
needed: biochemical and combinatorial. At first, the tar-
get DNA sequence is brought in contact with a microarray
chip of short-length nucleotide sequences (probes), so that
the whole subset of probes binding to the target, called its
sequence spectrum, is determined by some biomedical mea-
surements. Then during the second stage, a combinatorial
algorithm is applied on the spectrum to rebuild the whole
sequence.

Challenges for SBH-based sequencing methods reside in
both steps, we shall look at the combinatorial one in the
first place. Due to the limitation of microarray technolo-
gies, researchers have been quite interested in the question
that given a small probe set, what is the mazimum length of a
DNA string which can be reconstructed. [16, 15, 20] observed
that by using length-k oligonucleotide probes, the expected
length of unambiguously reconstructible sequences is O(2),
a bound of the same order was also proven in [6]. From
O(2%) to the information theoretical bound O(4%), a real
breakthrough was brought out by [18, 19], adopting gapped
(universal) bases in probe designs. For state-of-the-art en-
vironments (k = 8), strategy in [19] can reconstruct several
thousand bps, compared to several hundred bps previously
studied.

All above analysis is based on two fundamental assump-
tions about the biochemical nature of DNA sequences:

1. The DNA sequences under examination are drawn from
an independently identical distribution (iid) of sym-
bols, which acts as the basic mathematical model for
theoretical reasonings.

2. Sequence spectrum is perfect, no false positives or false
negatives exist.

However, in reality, perfect experimental condition is only
an ideal situation, especially after gapped probes are in-
troduced which further complicates the biochemical pro-
cess. This oversimplified assumption needs to be reexam-
ined. In the past, [4, 16, 10, 15] included some redundancy
in the probing scheme for error control. More recently, [2, 9]
adopted a formalized random process generating false posi-
tives and false negatives in the following way.

1. Any spectrum probe can be suppressed with a fixed
probability e; (false negatives).

2. Any probe at Hamming distance 1 from a correct probe
can be added to the spectrum with fixed probability
€2 (false positives).



3. Hybridization noise is expressed in terms of error rates
€1 and e2.

Under this model, Doi and Imai [2], based mainly on ex-
perimental studies, reached at a very negative conclusion
that the performance of algorithms suggested in [18, 19]
drops dramatically when errors exist. In a following work,
Leong et al. [9] argued that the poor performance of [2] was
caused by an inadequate recovery of false negatives. They
showed that proper adaptation of the reconstruction algo-
rithm leads to an acceptably graceful performance degrada-
tion. However, Leong et al. also admitted that the goal of
preserving reconstruction effectiveness is achieved at a very
high price of algorithmic efficiency.

Recently, another effort [17] on the theoretical frontier of
SBH was published, proposing a seemingly more appropri-
ate analog signal model based on thermodynamics of the
hybridization process. Viewpoint of [17] is set from a differ-
ent angle. The author discriminates between {A4,T} (weak
bases) and {G, C} (strong bases), then an analog spectrum of
the target sequence is captured by comparing measurements
with differentiated thresholds suggested by thermodynamic
mechanisms, which ends up with a decreased number of false
positives. This is in strong contrast to all previous studies
adopting a digital spectrum model, where a uniform cut-off
value is applied and less information is made available to
the combinatorial step.

As we will explain in following sections, false negatives are
much more detrimental to the reconstruction process than
false positives. To cope with these probes not seen in the
spectrum, lots of computing resources need to be devoted.
Authors of both [9] and [17] realized this, they pointed out in
their papers that, algorithmic inefficiency is a serious prob-
lem for SBH methods dealing with hybridization errors, es-
pecially false negatives. However, lab measurements are in-
evitable to generate something wrong.

In this paper, we reexamine this topic under the same
random error model used in [2, 9], and then propose a novel
algorithm which is able to greatly cut down such inefficien-
cies. As demonstrated by extensive experimentations, our
technique yields very significant performance improvements
compared to previous methods successfully taking care of
errors, e.g., the one suggested in [9].

The rest of the paper is organized as follows. Section
2 briefly reviews probing schemes and reconstruction algo-
rithms in previous works, considering both cases, i.e., with
and without errors. Section 3 describes our method for se-
quence reconstruction, which is able to achieve much higher
efficiency and in the meantime guarantee almost the same
degree of output accuracy. Section 4 presents experimen-
tal results done on real DNA sequences extracted from the
human genome. Section 5 concludes the paper.

2. PRELIMINARIES

Definition 1. A universal base * [11] serves as a “wild-
card” in subsequence matching. Two strings of identical
length coincide if they agree on positions which are not x*.

Definition 2. A probing pattern is a binary string (0[1)”
that begins and ends with 1, where 1 denotes the posi-
tion of a natural base (can be substituted by any one in
{A,T,G,C}), and 0 denotes the position of a universal base
(*).

Definition 3. An (s,r)-probing scheme with probe length
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v = (r +1)s uses probing pattern 1°(0°~*1)". The spectrum
of a given target sequence St under this scheme is the collec-
tion of all probes conforming to the chosen probing pattern
that can find exact matches in St.

A reconstruction algorithm step-wise constructs a puta-
tive sequence p by adding one base to the end of p at a
time, the reconstruction process is successful only if the
completed putative sequence exactly coincides with the tar-
get sequence. This sequencing procedure outlined above re-
quires some “seed” symbols to serve as contexts when “boot-
strapping” and “finalizing” the task, some methods to get
such “seeds” are given elsewhere in [18].

Definition 4. A probe is said to be a feasible extension of
putative sequence p if its (v — 1)-prefix coincides with the
corresponding suffix of p.

The reconstruction algorithm of [19] works in the error-
free scenario. In the following of this paper, we shall refer
to it as BASIC.

1. With putative sequence p up to the position (i — 1) of
the target sequence, run a spectrum query to get the
set of feasible extensions. Note that this set cannot be
empty when p is right, since no false negatives exist.

2. If only one probe is returned, goto 3, else goto 4.

3. Extension mode. Add last symbol of the returned
probe to the end of p.

4. Branch mode. Now we have an ambiguous point where
all the possible branches need to be searched deeper.
Considering in a graph-theoretic way, extension mode
in step 3 deterministically nurtures one single path;
whereas branch mode here spawns two or more com-
peting paths simultaneously. Subsequently, based on
feasible extensions, a breadth-first style growth of all
paths is performed: for one path, if there is no way to
further extend it, simply kill it. The construction of
such a path tree rooted at the position (¢ — 1) is pur-
sued up to a maximum depth H, whose meaning we
will make clear soon, unless somewhere in the middle
it is detected that all surviving paths have a common
prefix. In the latter case, this prefix is added to the
end of p, and whole procedure is switched back to ex-
tension mode where iterations continue (i.e. goto 3);
otherwise, reconstruction fails, as ambiguity cannot be
solved within H steps.

Definition 5. A fooling probe is a feasible extension whose
last symbol corresponds to position 4 of the target sequence
S, but its existence in the spectrum is caused by a length-v
subsequence ending at somewhere else j (j # ¢) in Sr.

Fooling probes are the causes of reconstruction failures.
With them, the sole authentic path cannot be distinguished
from other spurious paths. However, things are not that
bad. In [19], based on iid DNA sequence model, it was
proven that the probability of a spurious path pgp., whose
presence relies on a strand of consecutive fooling probes,
decreases fast when the path grows longer. Thus, what we
need to do is setting an appropriately large H to make pspy
negligibly small (generally speaking, 2v should be enough).
Of course, the above reasonings are based on the condition
that target sequence is not too long so that its spectrum is
also not densely populated. In fact, this density is just the



controlling factor deciding the maximum length of a DNA
sequence BASIC can reconstruct with high possibility [17].
For details of an extensive analysis of fooling probes, we
refer interested readers to [19, 8].

The method of Leong et al. [9] is indeed a small variation
of BASIC that always operates in the branch mode: due to
its breadth-first nature, we will call the algorithm as BF
hereafter.

Before examining full details of BF, we will spend some
time pondering on the different roles false positives and false
negatives play in reconstruction, as promised. Going back
to BASIC, a false negative directly ends the extension of
authentic path, while a false positive only adds one entry
to the spectrum whose effect is as same as a fooling probe.
With a reasonably large H and a not so large e», the presence
of some false positives is really not a big matter.

This property was clearly realized in [2, 9] and reexam-
ined more carefully by [17]. In BF, only false negatives are
considered:

1. All four extensions (A,T,G,C) are considered possi-
ble. If one symbol is not reflected as feasible in the
spectrum, add 1 to the error score of the correspond-
ing path; otherwise, the score holds without change.

2. The algorithm always works in branch mode. At each
step, check the error score of each path: one path is
killed only if its error score is at least # more than that
of the path which has a smallest error score among all
surviving paths.

Clearly, # = 1 corresponds to the ordinary path-pruning
strategy depicted in BASIC. If 0 is set to be greater than 1,
things will be quite different. In the probabilistic sense, if
false negatives are distributed in a relatively uniform way,
i.e., lack of fooling probes for spurious paths is more likely
than the occurrence of closely spaced false negatives on the
sole authentic path [9], then it is very probable that the
initial part of target sequence will be among those paths
with a smallest error score (corresponding to least number
of false negatives caused by extending paths in such specified
ways). Readers interested in full details of a formal proof
are referred to the appendix of the original paper.

The good reconstruction performance of [9] is based on the
choice of § = 2, which represents a sufficient recovery of false
negatives, compared to [2]. More accurate reconstruction
can be achieved by setting a larger §. However, this will
lead to even more computing resource consumptions, and
now BF is already quite slow.

In below, we will follow the model used in [9] with e2 = 0,
and propose a novel algorithm which greatly cut down BF’s
inefficiencies almost without sacrificing any degree of output
accuracy. In the same way, we believe that inclusion of false
positives should only minutely complicates the analysis.

3. FAST RECONSTRUCTION OF DNA SE
QUENCES

Before describing our methodology, let us first take a closer
look at BF and try to dig out the origin of its inefficiency.
For the purpose of safe and adequate recovery of false neg-
atives, BF maintains the following two types of fairness.

In the horizontal (breadth) direction, fairness in choosing
different paths for further ertensions: when reconstruction
is up to one position of the target, all paths are equally
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extended by one additional symbol, without precedence of
trying one choice before another. This strategy is safe but
intrinsically very slow, because it treats every surviving path
as equal and extensively searches all the possibilities, though
there are some paths that are much more likely (hinting
us to look at them first) whereas some other paths nearly
impossible (which can somehow be pruned out).

In the vertical (depth) direction, fairness in treating ev-
ery position of the target sequence: no matter what spot we
are at during the whole procedure, a four-way ambiguity
(A, T,G,C) is always assumed. Indeed, this design is neces-
sary because false negatives exist: somewhere in the authen-
tic path, we need seemingly “impossible” symbols (probe not
seen in the spectrum) to make a further extension. However,
errors are not that prevalent: For instance, if the false neg-
ative rate €1 is 0.01, then on average there will be only 1
error per ﬁ = 100 probes. Errors are very rare events;
and even in the situation of encountering errors, we can of-
ten get through by using a more efficient strategy (details
will be expanded later). BF assumes that completely check-
ing all four choices at all positions is the only way to get
out, but in fact this is only true for a very limited portion
of all cases.

In the following, we will try to propose a different frame-
work which successfully addresses the limitations of BF in
the above two aspects. Our main idea is that, although
BF can guarantee high reconstruction accuracy, in most cir-
cumstances it is too conservative and inefficient. According
to our approach, we abandon fairness and make differenti-
ations, based on this, the most suitable way is selected for
reaction.

In the horizontal direction, our algorithm characterizes
the differences among four extensions and utilizes an aggres-
sive branch pruning technique based on the consideration
that few errors exist (interestingly, this is a hint by observ-
ing on the vertical direction). After all these have been done,
the search space becomes much smaller and is subsequently
explored with the guidance of a high-probability-first heuris-
tic, which further boosts the efficiency. Due to the bold and
depth-first property of this method, we name it as BDF.

BDF runs fast; however, the search space BDF enumer-
ates may potentially be too small to include the sole authen-
tic path. There are two major reasons for it. Apart from
the one discussed above (indeed a necessary price paid for
being adventurous), there is another point which is related
to guaranteeing BDF’s correctness. The latter will be the
main focus of subsection 3.3.

Considering all the above factors, one needs to come up
with a good solution. As what has been mentioned, BF
treats every position of the target in the same and most
primitive way, i.e., simply obtains the authentic path by
greatly enlarging the search space.

In comparison to this naive scheme, our algorithm again
tries to abandon fairness on the vertical direction. It decides
different regions during reconstruction and then applies a
divide-and-conquer paradigm.

1. Rush at full speed whenever possible (BDF).

2. Make necessary slow-downs and be meticulous while
sequencing some specific subparts of the target (BF).

As shown by comprehensive experimental results, case 1 is
a dominant existence, and substantial acceleration can be
achieved.



3.1 Probabilistic differences among four ex
tensions

Different paths are of varying probabilistic strengths. Nat-
urally, such bias is a very useful guide when ambiguities
are encountered during reconstruction. Compared to the
breadth-first style BF, BDF has a nice feature that, if along
one path the target is successfully sequenced, then we do
not need to go back to the branching point and consider
other remaining paths. In principle, the bigger the bias is,
the more effective BDF will be.

We now turn to a more formal modelling of the notion
brought out above. Previously, information from the biomed-
ical step is used in an obvious and minimal way: presence of
one probe in the spectrum is treated as individual units,
without combining any neighbor (other probes) or back-
ground (classification of the target sequence with regard to
different categories of genomes) information, which are very
useful clues.

For ease of illustration, we assume a (4, 4)-probing scheme
in the remainder of the paper. This assumption is a good
representation for the state-of-art microarray technology and
has been frequently considered in many previous studies [18,
19, 2, 8]. However, our methodology is not confined to this
narrow situation.

Let us first look at the interactions existing among mul-
tiple probes in the spectrum. As Figure 1 depicts, when
the symbol at position ¢ needs to be decided, i.e., the pu-
tative sequence is up to the position ¢ — 1, we can align 5
probes {bo,b1,--- ,bs} in the shown manner, with b; ending
at position 3; =i+4j (j=0,1,--- ,4).

Denote the symbol at position 7 to be s;, then given a spe-
cific setting of (Ss, Siy, Sis, Sig, Sis ), all five probes {bo, b1, b2,
bs, bs} must be included in an error-free spectrum, since they
are necessary proofs for such an assignment of symbols.

Definition 6. If the spectrum contains five probes {bo, b1, b2,
bs, ba} whose mutual alignment is the same as what Figure 1
depicts, then (i, Si;, Sig, Sig; Siy) is called a length-5 feasible
extension.

When false negatives are not considered, things are rela-
tively straightforward:
P(siy = z0)
= D Plsip =05, =@1, " ,8i, = Ta)

T, ,T4

Ignoring the situation that different length-5 feasible ex-
tensions may have different a prior probabilities (we will
examine it later), and let

P(x0a$17 T ,.’E4)
= P(Sio =X0,8i; = L1, " ,8iy = 1‘4)
we have:
1
P(.'E(),.’I}l,--- 3234) = ﬁ
if (zo,x1, -+ ,x4) is a length-5 feasible extension, whereas

N is the total number of length-5 feasible extensions; and

P(.’L‘(),xl,--- ,234) :0

otherwise.

Figure 2 shows a small example of above formula. Under

the circumstance depicted there, we have P(s; = A) = 2
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Figure 1: Switch 4 positions right and count number
of paths: circle — natural base, square — universal
base; here, {bo,b1,b2,b3,bs} must coincide on those
“circles”, while “squares” are indeed “don’t cares”

Figure 2: An example tree showing feasible length-
5 extensions: cross — failure to find a probe in the
spectrum corresponding to that position

and P(s; = G) = 1. What is better, based on our expe-
riences, we may have P(s; = ) = 1 in many cases, which
means ambiguity can sometimes be solved by aligning more
than one probes together. In [19], this nice property was
also noticed.

Some minor revisions are needed to treat false negatives.
In Figure 2, false negatives can possibly occur at a posi-
tion where one cross is placed. As a remedy here, now the
corresponding branch will not be ended anymore, i.e., all
length-5 extensions are considered to be feasible. But as we
have described earlier, false negatives are very rare events.
To formally model this concept, we have: for one specific as-
signment of (i, Siy, Sia, Sig, Sis ), if f(f < 5) probes (among
{bo, b1,b2,b3,bs}) necessary to support its validity are miss-
ing from the spectrum, then e/ is considered to be a strength
(or weight) w of the length-5 extension when summing up
probabilities in the formula, and

€1 X target sequence length

= T
denotes an approximation of the probability that one probe
not present in spectrum is indeed a real false negative.

After integrating the strength of different length-5 exten-
sions, the probability calculation formula becomes:
P(siq = m0)
Eml,--- 24 Weo,z1,0 wa P(T0, 1, , 24)

>
Zmo,xl,--- Jzq Weo, 21, 7’w4P($03 L1y a$4)

3.2 Clues from the genome

Besides what has been elucidated, there is another im-
portant observation leading to different modelling of length-
5 extensions’ strengths: a species’ genome is not uniform,



P | p(mean) | o(std)
A 0.282 0.096
T 0.288 0.086
G 0.212 0.121
C| 0.218 0.085

Table 1: Human Chromosome 7 is found to be not
uniform

as opposed to the first assumption mentioned in section 1,
which is taken for granted in many previous works.

Taking Human Genome Chromosome 7 for instance (ap-
proximately 150 million bases long), we simply calculate the
association between one symbol and seven symbols preced-
ing it, i.e., P(si|si—18i—2---8i—7), which is in fact a rela-
tively simple Markov DNA sequence model [7]. Below is the
result we found:

1. we calculate P(s;|s;—18i—2 - s;—7) for all 16384 possi-
bilities of s;_18;—2 -+ - si—7, then get averages and stan-
dard deviations, which is shown in Table 1.

2. If we set t = 0.4 to be a threshold level, then among
all 16384 different cases, there are 3982 with predicted
probability of one particular symbol higher than ¢. It
is better to think like this: say the symbol is A, then
A’s probability is on average a double of T' (or G, C)’s
probability, i.e., 0.4 = 2 x =24, and the usefulness of

such a bias should be non-trivial in analysis.

However, during experimentation, we did not observe any
significant improvement by integrating the background in-
formation in such a primitive way. One possible reason is
that, in noisy situations, the bias introduced here is less vis-
ible when compared with the ones mentioned in 3.1. Nev-
ertheless, using clues from the background is still a ma-
jor motivation for us to do this work, and thus we choose
to use real human genome dataset instead of synthetic se-
quences generated by iid distributions. Our belief is that
more expert knowledge on how to utilize the information
more accurately, e.g., distinguishing between exons and in-
trons and train models separately [7] or a Hidden Markov
Model (HMM) for DNA sequences [5], can definitely help
further promote the reconstruction algorithm’s performance.

3.3 Controlling the accuracy of BDF

Talking about accuracy, we may have two kinds of errors:
type I and type II. In the sequence reconstruction problem
examined here, a type I error happens if we wrongly kill
the authentic path while search space is being pruned; a
type II error happens if the algorithm finishes and reports a
spurious path. In below of this subsection, we first discuss
in detail some aspects of BDF which can possibly generate
type I and type II errors, and then move on to a technique
fighting against type I errors, a design aiming at minimizing
the number of type II errors is explained last.

In our algorithm, there are two potential sources of type
I errors:

1. Termination of path extension. In case of unsatisfying
path growth, i.e. too many probes necessary to sup-
port putative sequence p’s validity are missing from the
spectrum, BDF chooses to backtrack and p is pruned
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out. This decision can be made with regard to p’s
length ! and €1, where mean(e) = e1l.

2. Branch selection. In subsection 3.1, we mainly dis-
cussed a way to rank {A,T,G,C} according to each
of them’s probability, so that a high-probability-first
heuristic can be utilized. Furthermore, in order to
make the whole space substantially smaller, we also
want to aggressively prune out some choices. These
branches, though possible, are of negligible likelihoods.

The optimization we adopt here is: for one specific
assignment of (8i,, Si;, Siz, Sig, Sis), f (defined in 3.1)
should be no more than 1, i.e. f <1.

There are also two situations for type II errors:

1. To avoid unnecessary inefficiencies, we want to fix one
ambiguous position 4 after successfully progressing H’
steps, and BDF will not backtrack beyond ¢ in later
phases. The basic thinking here is that, if symbol 7
is wrongly guessed, then the probability that many
fooling probes will appear to support this length-H’
spurious path is very low. The same notion is behind
the design of H in BASIC.

2. By “successfully progressing”, we mean no backtrack-
ings can be triggered. Thus, type II errors can also
happen if the backtracking condition is too relaxed.

Then things are much clearer: If position ¢ is wrongly fixed
(type II error), there is no way for BDF to get it right later;
in comparison, if we wrongly kill the authentic path (type
I error) and backtrack to a fixed position, i.e., BDF cannot
get through and is about to fail, BF comes as a backup.
Since the search space of BF is much larger, the strategy in
overall is able to fight against type I errors, at least as well
as pure BF can. Different regions of reconstruction is now
finally characterized. A newer version of BDF is as follows.

NBDF: while the end of target is not reached:

1. Perform depth-first search following probability prece-
dences and aggressive pruning. If backtracking con-
dition is not triggered, go deeper in the branch: Af-
ter successfully progressing H' steps, fix a previously
guessed position. Otherwise, kill the path and move
backwards.

2. When the depth-first search is backtracked to a previ-
ously fixed position, instead of failure, call BF _Helper(),
a variant of BF which runs for Dpr steps. Then the
path with the least number of errors is picked out and
appended to the end of current putative sequence p.
Dgr is chosen to trade off between accuracy and ef-
ficiency: with larger Dpr, the algorithm is closer to
pure BF, which is safe but slow. In our program, we
set it to be 80 without very careful tuning.

3. Switch back to depth-first, i.e., goto 1.

NBDF'’s design offers the advantage that we can treat type
I and type II errors in a biased way. Previously, designing
a successful backtrack condition is difficult, because it is re-
lated to both error types and from hypothesis testing we
know that a gap surely exists. Now because of BF’s backup,
we can choose to minimize the number of type II errors, i.e.,



0.001 0.002 0.005 0.01 0.02
NBDF
1000 4.0s 4.2s 5.3s 6.5s 33.8s
1500 9.7s 9.7s 11.3s 24.7s 60.5s
2000 13.3s 17.2s 28.9s 59.4s 175.0s
2500 16.6s 22.4s 35.0s 129.5s | 402.2s
3000 42.0s 38.1s 90.1s 213.1s 576.8s
BF
1000 35.1s 36.8s 48.7s 37.6s 57.0s
1500 144.0s 135.0s 134.0s 132.1s 151.2s
2000 578.6s 560.8s | 480.4s 514.9s | 471.1s
2500 1007.7s | 1055.6s | 958.5s 914.4s 873.4s
3000 2264.3s | 1454.3s | 1557.8s | 1927.0s | 1293.2s
NBDF/BF

1000 11.4% 11.3% 10.9% 17.3% 59.3%
1500 6.7% 7.2% 8.4% 18.7% 40.0%
2000 2.3% 3.1% 6.0% 11.5% 37.1%
2500 1.6% 2.1% 3.7% 14.2% 46.0%
3000 1.9% 2.6% 5.8% 11.1% 44.6%

Table 2: NBDF and BF’s computation time com-
parison w.r.t. (L,e1)

the reason for backtracking is: “we have to do it, otherwise
the probability of correctly fixing one previously guessed po-
sition after H' steps will be low”; but not “current putative
path p is very unlikely to be the authentic one”, which aims
at controlling type I errors.

According to the proof of Theorem 1 in [19], there are
three error events if we wrongly set one ambiguous position
after H' steps (there, BASIC’s focus is on H): E; is due to
probabilistic extensions using fooling probes, E> and E3 are
related to deterministic extensions caused by two identical
subsequences in the target. Since only E: depends on the
choice of H' while E> and Ej reflects the data property, we
will discuss E; in detail here. More descriptions of the rest
two are not repeated and can be found elsewhere in previous
literature [19, 9].

Assume that a spurious path, starting at position i, is
extended to position i + H'. Let P, be the probability of
extending up to position i + h, then clearly Py = 1. If the
extension from ¢+ h to ¢+ h+1 is caused by a fooling probe,
then the situation is the same as that in [19]:

m
4k71 + %(L + 451—1

cr

)

Phit1 < Py X Pfoor = Pp X (

Now we calculate the probability of an extension caused
by false negative recovery, i.e., no supporting probes are
seen in the spectrum. According to our aggressive way of
branch selection (f < 1), a guess can be placed if and only if
four additional switches are supported by probes seen in the
spectrum, i.e., there will be totally 5 positions (including
the guess position) specified without other choices. On the
other hand, Probability Pyycss that four additional probes
support the guess is given by Lemma 2 in [19]:

1

+3x4s—1)

m
Pguess = 4(4_k
where the “4” outside parenthesis means that all four sym-
bols (4,7, G, C) are possible.

Combining the above two, the probability that the exten-
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0.001 | 0.002 | 0.005 | 0.01 | 0.02
NBDF
1000 a7 | 47 | 47 a7 a7
1500 45 45 45 45 2
2000 46 46 a4 44 33
2500 45 a1 44 38 27
3000 37 | 38 37 37 21
BF
1000 a8 48 49 438 46
1500 15 5 45 46 45
2000 a7 | 47 | 46 45 36
2500 a7 | 47 | 46 a1 30
3000 39 41 37 33 21
NBDF/BF

1000 98% | 98% | 96% | 98% | 102%~
1500 100% | 100% | 100% | 98% | 93%
2000 98% | 98% | 96% | 98% | 92%
2500 96% | 94% | 96% | 93% | 90%
3000 95% | 93% | 100% | 112%* | 100%

Table 3: NBDF and BF’s reconstruction accuracy
comparison w.r.t. (L,€;)

sion can be made up to H' with at most e guesses is upper
bounded by:

PH’ < (Pfool)H e X (Pguess)e

In our implementation, H' is chosen as 60 and e is set as
as 2, which means that BDF will not backtrack if in 60 steps
there are less than 3 positions not supported by any probe in
the spectrum. Given this reasonably large H' and relatively
small e, the probability of Fi, i.e., Py, is negligible.

4. EXPERIMENTAL EVALUATIONS

In this section, we compare our NBDF algorithm with
the BF algorithm defined in [9], which is known to be a suc-
cessful strategy dealing with SBH under noisy conditions,
especially for false negatives. We evaluate the performance
of these two algorithms using real DNA datasets downloaded
from www.ensembl.org: Human Chromosome 7. All experi-
ments were implemented by Microsoft Visual C++ 6.0 and
run using a 3GHz Pentium IV machine with 1GB main mem-
ory.

4.1 Experiment settings

We mainly compare the speed and accuracy performance
of NBDF and BF with regard to sequence length L and
false negative rate €1, because they are two major factors
governing the hardness of reconstruction problem. The same
testing strategy was used in [9].

For a given choice of testing configuration (L, €1), we pick
50 contigs from the dataset, obtain each sequence’s spectrum
and subsequently modify it by suppressing the existence of
some probes with a uniform probability of €;. Initiation and
termination steps of the reconstruction, i.e., getting first and
last several symbols, are separated from NBDF and BF’s ex-
ecutions, which is reasonable because there have been some
ways proposed to complete this task [18].

Now NBDF and BF can be run for all configurations.
Sequencing success will be reported only when the target
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memory

sequence completely coincides with the algorithms’ output.

4.2 Superiority of NBDF

The behaviors of NBDF and BF are summarized: Tables
2-3 are the complete speed and accuracy specs of these two
algorithms for all testing configurations, whereas Figures 3,
4, 6 and 7 directly compare NBDF and BF’s performance
with regard to one aspect while the other is fixed to a “mod-
erate” value, i.e., L = 2000 or €; = 0.005.

From empirical studies, two things are clear:

1. NBDF is orders of magnitude faster, especially when
€1 is low and L is high. Reasons are obvious for such
situations: if €; is low, then most part of the target
sequence is “easy” to reconstruct; if L is high, since
BF’s search breadth will in general grow wider and
wider towards the end of the sequence, extending one
symbol in foreground means more paths to be checked
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Figure 8: Number of overflows w.r.t. memory up-
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in background. Thus, BF’s unnecessary waste of time
is high.

2. NBDF’s output is almost of the same quality as BF.
For most cases, within 50 contigs, NBDF and BF’s
accuracy difference is one sequence or two sequences
sometimes.

There are some other interesting patterns shown in the
results.

1. BF’s time curve w.r.t. false negative rate is relatively
“flat”, implying that a non-discriminative brute-force
strategy is used.

2. Memory size is crucial for BF’s performance. As L and
€1 become larger, the general case is that BF has to
keep more parallelling paths in storage. Given a fixed
upperbound (in our experiments it is 10000 paths),



sooner or later it may blow up. In comparison, NBDF
calls BF Helper() only when necessary and the sub-
routine executes within a short range, which is a more
suitable and robust way of doing things, especially
when error rate is not so high and the sequence re-
ally can be reconstructed. For instance, BF got 33
sequences on (L = 3000,e; = 0.01) while NBDF got
37 (see those entries with a “*” in Table 3). Figures
5 and 8 depict such circumstances and compare two
algorithms’ performance with regard to a preset mem-
ory upperbound. We also tested a couple of sequences
with L = 5000, and a same situation is observed, ex-
cept that BF is even slower and overflows almost on
every test case. Even if we can surely assign more
memory to BF, it is not an ultimate solution because
of the drastic processing time.

3. From the charts, it seems queer that BF’s running time
sometimes drops as the error rate increases, which is
indeed natural because less time needs to be spent
when BF overflows and gets out before reaching the
end of target.

S.  CONCLUSIONS

In this paper, we carefully examined the SBH problem
under a random hybridization error model and showed with
extensive analysis that the previously suggested strategy us-
ing pure breadth-first search is too simple to be efficient. It
is safe but intrinsically very slow.

Then, we proposed a different divide-and-conquer tech-
nique NBDF which calls safe BF (a variant of the previous
algorithm) to solve those “hard” portions and fast BDF to
tackle the rest. Due to BDF’s depth-first nature, we need
to define a good backtracking condition so that both type
I and type II errors can be avoided with high possibility.
The hypothesis testing gap between these two types is fi-
nally solved by focusing on type II, for which we gave a
theoretical bound of the error probability. And when type
I errors indeed happen, a “hard” region in front is noticed,
where BF is executed to exert its ability of searching a much
larger space (though slower).

Finally, we conducted a comprehensive empirical study
on real human DNA sequences. It turned out that NBDF is
orders of magnitude faster, while the output accuracy is also
guaranteed. Another notable advantage of our technique
compared to the previous one is that it does not necessarily
require a very large main memory size to avoid potential
overflows.
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ABSTRACT

Microarray data provides a perfect riposte to the original
assumption underlying association rule mining — large but
sparse transaction sets. In a typical microarray the number
of columns (genes) is an order of magnitude larger than the
number of rows (experiments). A new family of row enu-
merated rule mining algorithms have emerged to facilitate
mining in dense sets. However, to date, all the algorithms
proposed to mine expression relationships alone rely on the
support measure to prune the search space. This is a major
shortcoming as it results in the pruning of many potentially
interesting rules which have low support but high confidence.
In this paper we propose the MAXCONF algorithm which ex-
ploits the weak downward closure of confidence to directly
mine for high confidence rules. We also provide a means
to evaluate the biological significance of the gene relation-
ships identified. An evaluation of MAXCONF with RERII
on the database BIND shows that their recall is 94% and
.15% respectively.

Keywords

Microarray, Association Rules, Row-Enumeration, Maximum
Confidence

1. INTRODUCTION

The increasing volume of biological data collected in re-
cent years has prompted considerable interest in developing
advanced and efficient bioinformatic tools for genomic and
proteomic data analysis. The microarray is considered rev-
olutionary in the biological domain as it allows one to study
the behaviour of all the genes within a cell in only one ex-
periment. One main objective of biologists is to develop a
deeper understanding of how cells regulate gene expression
and other cellular tasks. These mechanisms can be depicted
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in gene networks. However still today most genes known to
be involved in a particular process are identified in painstak-
ing molecular and genetic wet-lab experiments which allow
only a few genes to be studied at a time. This is mainly due
to the large volumes of data that microarray experiments re-
turn to biologist who have very limited ways for extracting
useful information.

Association rule mining is a foundational technique which
allows for the simultaneous discovery of potentially inter-
esting relationships. Mining algorithms have the potential
to extract interesting patterns from microarray expression
data which may aid in the identification of gene networks,
where the expression of a gene can depend on the expression
of others:

Genel = Gene2 (support 10%, confidence 90%)

The above rule states that when Genel is expressed 90%
of the time Gene2 is also expressed, and Genel and Gene2
are expressed together in 10% of the experiments.

Association rule mining has been shown to be very effec-
tive for analysing microarray data. For instance, Creighton
and Hanash [9] applied Apriori rule mining [1] to the pop-
ular Hughes et al. [13] microarray dataset of S.cerevisiae.
Many of the rules generated were consistent with biolog-
ical knowledge, and other rules revealed numerous unex-
pected relationships that warranted further biological inves-
tigation. The associations generated revealed correlations
between many genes that were not identified from cluster-
ing methods [9].

When datasets consist of a large set of items and far less
transactions as is the case for microarrays, Apriori style al-
gorithms suffer from itemset explosion, often rendering them
inappropriate for data analysis. Both [15] and [17] showed
that by searching the row enumeration space, the complete
set of frequent closed itemsets can be obtained avoiding
itemset explosion. Compared to item enumeration methods
like Apriori, row enumeration is a top-down approach start-
ing with each transaction being a candidate itemset and iter-
atively removing items to form smaller candidates of greater
support. Cong et al. [6] presented RERII, an efficient row
enumeration based algorithm best suited to datasets where
the number of items greatly outweighs the number of trans-
actions.

Recently row enumeration methods like FARMER, have
been developed with the intent to construct rule based clas-
sifiers [8, 7]. Such classification methods differ to the one we



propose here (MAXCONF) in that they require a predeter-
mined class for each experiment which becomes the conse-
quent of the rules. MAXCONF on the other hand can gener-
ate rules from unclassified microarrays, with no consequent
restriction. MAXCONF was designed with the intention to
analyse perturbation microarray data to aid the construc-
tion of gene networks on a global genome scale, compared
to previous algorithms such as Boolean Networks which are
restricted to the number of genes that can be incorporated
into the analysis [2, 3].

However there is a fundamental issue related to the limi-
tation of support-based pruning that previous algorithms do
not address. Namely, many rules that a biologist would con-
sider of high interest are pruned (because of support prun-
ing), leaving them undiscovered. One of the main objectives
of this paper is to propose a technique to lift this limitation,
to aid in future gene network construction.

Despite the rapid introduction of many association rule al-
gorithms to analyse microarray data, little research has been
directed to the validation of the resulting rule sets. For this
reason, most analyses have been directed to performance
studies with respect to time and space requirements. For
example [6] restricted their analysis to performance compar-
isons with state of the art Apriori style methods, CHARM
[19] and CLOSET [16]. This forms the basis for our second
objective; to introduce and encourage the use of publically
available biological databases to validate relationships. We
take on this approach to further evaluate our MAXCONF
algorithm.

1.1 Main Contributions

1. A confidence based top-down algorithm MAXCONF for
identifying interesting gene relationships on a global
scale is proposed and implemented. This algorithm ef-
ficiently identifies high confident rules without support
pruning achieving significant recall improvements.

2. We have designed a systematic framework to validate
the rules discovered using two highly regarded biolog-
ical databases, BIND[5] and the Gene Ontology [18].
These databases allow us to compare our results with
previous methods with respect to recall, precision and
biological significance. On the BIND database the re-
call of MAXCoNF and RERII is 94% and 0.15% re-
spectively.

1.2 Preliminary

When applying association rule mining to a microarray
dataset D, the set of items I refers to the set of genes stud-
ied on the microarray, and each transaction ¢ corresponds to
an individual experiment. An association rule R of the form
I, = I, where I, I, C I may be generated from D. As de-
fined in [1], the antecedent and consequent of R correspond
to I and I, which we denote by ante(R) and cons(R) re-
spectively. Further we represent the support of an itemset
I as supp([) and the confidence of the rule R as conf(R).

The rest of this paper is as follows. In Section 2 we will
briefly introduce an association rule mining method designed
to specifically mine high confident rules. In Section 3 we
build the core machinery for directly discovering high con-
fidence rules. A series of definitions and their elementary
properties will culminate in Algorithm 1 - the MAXCONF
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algorithm. In Section 4 we will compare the MAXCONF al-
gorithm with RERII in three dimensions - running time for
different combinations of support, confidence and number
of rules generated. In Section 5 we detail our approach to
analyse the biological significance of the gene relationships
(rules) we discover. We conclude in Section 6 with a sum-
mary and directions for future work.

2. HIGH CONFIDENCE RULES

In this section we introduce a previous approach (Apriori-
MaxPI) designed to address the fundamental shortcoming of
support based mining.

2.1 Apriori MaxPI

The support based techniques deem infrequent itemsets
unfavourable (unsupported), resulting in them being pruned
during frequent itemset generation. Therefore in the fol-
lowing iteration, only a subset of confident rules will be
mined. However it is often the high confidence rules that
occur with low frequency which present interesting charac-
teristics within the dataset.

The Mazimal Participation Inder (maxPI) was introduced
in [12] to mine co-location patterns from spatial datasets. It
excludes the support threshold from the search, allowing all
confident rules to be identified.

DEFINITION 1 (MAXIMAL PARTICIPATION INDEX).
Given an itemset I the mazimal participation index of I is
defined as the maximal participation ratio (pr) of all items
i€ 1.

maxzPI(I) = maxci{pr(I,i)} where
pr(li) = conf(i = (I]i))
supp(I)
supp(4)

From Definition 1 it is clear that the maxPI of an itemset
is the maximum confidence a generated rule can have. If
the maxPT of an itemset is below the confidence threshold it
cannot generate any confident rules. Unlike support, maxPI
is not monotonic with respect to itemset containment rela-
tions. However, maxPI does exhibit a weak monotonic prop-
erty (Definition 2). Applying this property an Apriori style
algorithm (which we call Apriori-maxPI) to mine confident
itemsets is possible. Based on this property, if a k-itemset is
maxPI frequent, then at most one of its subsets with (k-1)
items is not confident.

DEFINITION 2 (MAXPI WEAK MONOTONICITY). Let I3
be a k-itemset. Then there exists at most one (k-1) subsets
I, where Iy C I such that mazPI(I>) < mazPI(I;).

One drawback of using maxPI is that no single itemsets
can be pruned in the first phase of Apriori as they all have
a confidence of 100%. Therefore Apriori-maxPI must deal
with all the singleton candidate itemsets and the |Z|? 2-
itemsets. It is not until 3-itemset candidates are generated
that pruning can be applied. Based on support alone, if
any (k-1)-itemset of a k-itemset is not frequent, then the k-
itemset can not be frequent, and thus can be pruned without
a need to do support counting. With respect to maxP]I, a k-
itemset is only guaranteed to not be maxPI frequent (maxPI



> minimum confidence) if more than k-2 (k-1)-subsets are
not. Therefore maxPI pruning is not as stringent as that
using support.

This property works against Apriori, which works effi-
ciently on the assumption that the number of frequent item-
sets is low. Further with a large number of items in microar-
ray data, Apriori-maxPI approaches suffer from itemset ex-
plosion.

Unfortunately there is no property of maxPI that can be
exploited by a top-down approach, without potentially los-
ing confident rules. Motivated by this issue, we have identi-
fied a property of confidence that can be utilised by a top-
down algorithm which we describe in the following section.

3. MAXCONF

The main challenge in devising a top-down algorithm to
mine high confidence rules is that no support pruning can
take place. A naive approach in a top-down manner would
be to grow the entire row enumeration tree until no itemsets
can be generated. This would be equivalent to generating
all closed itemsets (including those that are not frequent
with respect to support). From these all confident rules
may be generated. Concerning microarrays (and other dense
datasets), the set of closed itemsets is already extremely
large, many of which cannot generate confident rules and
as such the naive approach requires unnecessary expensive
computations and memory. We applied this naive approach,
which reported an error after using up all available memory,
when only 30% of the transactions had been processed.

In this section we introduce our top-down approach to
mining mazimal confident rules efficiently. Our algorithm
MAaXCONF (Algorithm 1) addresses the main shortcomings
of association rule mining. MAXCONF exploits two pruning
methods each based on confidence allowing us to prune the
row-enumeration tree without losing any rules. It is further
enhanced to only mine all mazimal confident rules, reducing
the final rule set size inline. Each of these methods are
explained in the following subsections.

3.1 Level 1 Confidence Pruning

This pruning is based on an observation of the structure
of the row enumeration tree and is performed on line 11. At
any point in the row enumeration tree we can predict the
maximum support [6] and confidence an itemset can exhibit,
based on its location within the tree. From this property our
first pruning technique is possible, which is detailed in the
following definitions.

DEFINITION 3 (MAXIMUM SUPPORT). Given a node N
with k child nodes, N1, ..., Ny, for any child node N; the
maximum support of N; or any of its potential child nodes
18!

mazimum supp = Nj.initial_supp +k —1

DEFINITION 4  (MINIMUM FEATURE). Given an itemset

1, the item i1 € I is the minimum feature if:
minimum feature = supp(i1) < supp(iz)|Viz € I

DEFINITION 5
a rule v spans I if

(SPANNING RULE). Given an itemset I,

ante(r) U cons(r) =1

lante(r)| =1
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Algorithm 1 MaxConf - maximal confident rule mining

1: for all transactions ¢t € D do

2:  // No single item set pruning

3 N:=0

4:  n := new Node(items = t.items, support = 1)
5:  N.append(n)

6: MR := 0 // set of maximal confident rules

7: MaxConf_depthfirst(N)

8: Procedure: MaxConf_depthfirst(IN)

9: for all node n; € N do

10: Children := 0

11:  if n; cannot be confident then

12: continue // Level 1 pruning

13:  Determine support of m;, populate Children, and
prune based on closure only as in RERII.

14:  M:= getMaxFeatures(n;) // Line 27

15:  if M #0 then

16: for all m € M do

17: if m ¢ n;.maxFeatures then

18: MR.append(m = {n;.items \ m})

19: for all child ¢ € Children do

20: if ¢ C M then

21: delete ¢ // Level 2 pruning

22: else

23: c.maxFeatures.insert(n;.maxFeatures)

24: c.maxFeatures.insert(c U M)

25:  if Childen # () then

26: MaxConf(Children)

27: Procedure: getMaxFeatures(n)
28: M := () // set of maximal features
29: for all items ¢ € n.items do

30:  if support(n) / support(i) > min_confidence then
31: M.insert(z)
32: return M

DEFINITION 6  (MAXIMUM CONFIDENCE). Given a node
N, let o be the mazimum support of N and i be the minimum
feature of N. The mazimum confidence of any spanning rule
of N is:

o

mazimum confidence = ———=
supp(i)

If we know that the maximum confidence of a node’s itemset
(i.e. maximum confidence of the rule which spans the node)
is less than the confidence threshold, it can be pruned, as
any further enumeration below the node will only generate
less or equally confident child itemsets.

3.2 Level 2 Confidence Pruning

We identified the weak downward closure property of the
confidence measure, which we can exploit during the enu-
meration tree generation process, to effectively prune nodes
which will provide no new information. This pruning is per-
formed on lines 19-21 and is based on the following defini-
tions:

DEFINITION 7 (MAX FEATURES). Given an itemset I,
let Ry be the set of all confident rules {x = y } where xUy =
I and |z| = 1. The set of max features My is ante(Ry).

LEMMA 1 (CONF. WEAK DOWNWARD CLOSED). Let M;
be the set of mazx features derived from I. Then any subset



of I which contains an element of M will have a confident
rule whose confidence is lower bounded by all rules in Rr.

PROOF 1. Let 1 € I N M. Let r be a rule from I such
that ante(r) =i then the rule i = IN cons(r) is a confident
rule because:

supp((I N cons(r)) U 7)
supp(4)

supp(cons(r) U 1)
supp(4)

DEFINITION 8  (SUB-RULES). Given an itemset I, let Ry
be the set of all rules {x = y} where x Uy = I. The set
of sub-rules SubR; is the set of all rules generated from the
itemset I such that:

I CIy and
For each s € SubR; :

ante(s) € ante(Rr)
conf(s) > conf(R)

For example, the rule A = B (confidence 90%) is a sub-
rule of A= B,C,D (confidence 80%).

By extension of Lemma 1, if the set of max features M
of a node N is not empty, we can prune all child nodes of
N whose itemsets are subsets of M, as we are guaranteed
that such a child will only produce sub-rules of the rules
generated by N.

3.3 Maximal Confident Rules

So far our approach has focused on identifying high confi-
dence rules. We now present another property of confident
rules which can be exploited to reduce the number of rules
generated, without any information loss. If the set of con-
fident rules can be restricted to that of Mazimal Confident
Rules (Definition 10), the number of rules can be signifi-
cantly reduced. This approach can only be performed inline
in a top-down algorithm as it exploits the way in which child
nodes are constructed.

DEFINITION 9  (SUPER-RULES). Given an itemset I, let
R; be the set of all rules {x = y} where x Uy = I. The set
of super-rules SupRyr is the set of all rules generated from
the itemset Iy such that:

I, C I and
For each s € SupRy:

ante(s) € ante(Ry)
conf(s) < conf(Rr)
SupRi, = 0

For ezample, the rule A = B,C (90% confidence) is a
super-rule of A = B (100% confidence). However if the
rule A= B,C,D (80% confidence) exists then A = B,C is
not a super-rule.

DEFINITION 10  (MAXIMAL CONFIDENT RULES). Let R
be the set of confident rules from a dataset D. The set MR
of maximal confident rules is the set of confident rules whose
super-rules are not confident. For example if the rule A =
B,C,D is not confident, but the rule A = B,D is, then the
second rule is a mazimal confident rule.

40

During MAXCONF, the first node NV down a path which
has a max feature set M of cardinality > 1 generates the
maximal confident rules R. Let Ca be all child nodes of
N with itemsets ¢ such that ¢ C M. Each child node ¢ €
Cwm will generate a confident rule (not maximal) which is
bounded below by the confidence of R (from Lemma 1).
At this point MAXCONF outputs the confident rules of N
(line 18), performs any child pruning (lines 19-21) and then
continues in a depth first manner. If there remains any
child nodes ¢ € C after pruning, all items from M are not
considered for rule generation from ¢ (lines 23-24 and 11).
Such rules are contained within R and thus can be ignored.
Following this procedure, only Maximal Confident Rules will
ever be generated.

3.4 MaxConf Example

In this subsection we provide a small example of MAX-
CONF applied to the dataset in Table 1. The complete row-
enumeration tree without any pruning is shown in Figure
1(a). Incorporating the standard closure pruning (without
support pruning) of RERII the tree in Figure 1(b) is pro-
duced.

Transaction | Items

ABCDEG
ACDEG
CDEFGHI
BCDEG
ACEGI
ADI

DIJ
ABCDG

OO T W

Table 1: Example transaction dataset

Suppose confidence = 2/3. Confidence Level 1 pruning
will occur on Nodes AI, ADI and ACDG. For example, the
support of the itemset ADI needs to be > 2.6 for this node
to form any confident rules, as the minimum feature I has a
support of 4.

Level 2 pruning occurs on node CEG. The parent node of
CEG (CDEG) forms 3 confident rules generating the max-
imal feature set M = {CEG}. Therefore we know CEG
will be confident as with any child nodes it may generate,
and thus it can be pruned, in which case the node CG will
not be created. Now suppose the support threshold is >
3. Using RERII, no rules from nodes CEGI, DI, BCDEG,
DI1J, ACDEG, BCDEG or ABCDG will be generated based
on support alone. Furthermore the single itemsets B, F, H
and I would be immediately pruned in the first pass (unsup-
ported). The final MAXCONF tree is shown in Figure 1(c).
Table 2 shows the various rules identified by MAXCONF that
can and cannot be identified using RERII with support > 3.
Note due to confidence pruning, MAXCONF will not identify
the rule C = EG. However this information is contained
within the first rule in Table 2.

4. MAXCONF EVALUATION

In this section we concentrate on the general effectiveness
of MAXCONF compared to previous methods, demonstrating
the importance of pruning without support.



(a) No pruning

(c) Confidence and closure pruning

Figure 1: MaxConf row enumeration trees

4.1 Experimental Setup

We evaluate our approach using the popular Hughes Com-
pendium [13] of S.cerevisiae consisting of expression val-
ues for 6316 genes in 300 experiments (transactions) each
corresponding to individual gene mutations or environment
changes. For each transaction each gene’s expression level is
discretized into three categories: down-regulated (gene_up),
up-regulated (gene_down) and neither up or down (gene_no),
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MaXCoNF Rule | Confidence | Support | RERII Found

C = DEG /6 7 Y
E = CDG 4/5 4 Y
G = CDE 4/4 4 Y
A = CG 4/5 4 Y
C = AG 4/6 4 Y
G = AC 4/6 4 Y
A=D 4/5 4 Y
B = CDEG 2/3 2 N
B = CDG 3/3 3 N
I=D 3/4 3 N
J = DI 1/1 1 N
F = CDEGHI 1/1 1 N
H = CDEFGI 1/1 1 N

Table 2: Rules identified by MaxConf and RERII

by binning an expression value based on the approach de-
scribed in [9]. In our experiments each gene is assigned
one of two individual items (gene_up and gene_down) within
each transaction. Thus if in a given transaction a gene’s ex-
pression level is assigned gene_no, it is not considered as an
item. In total, our resulting transaction dataset consisted of
8678 different items. All experiments were performed on a
PC with Pentium 4 Xeon, 1MB cache, 3.2Ghz and 4G RAM.
For simplicity, all results concerning RERII are performed
with support 5% unless otherwise stated. Furthermore we
distinguish between MAXCONF with and without the max-
imal restriction as simply MAXCONF and MAXCONF+ re-
spectively.

4.2 Experiments

The main down fall of RERII is its inability to extract
many possible association rules that meet the confidence
threshold due to its support pruning. Indeed using the
Hughes Compendium with 8678 items and 300 transactions,
96.5% of the single items are pruned in the first stage with a
support of 10%, leaving only 301 items to be considered to
form frequent itemsets and then confident rules. Without
any support cut-off necessary MAXCONF mines rules con-
sidering all 8678 items, and as such is capable of detecting
many more rules with high confidence. Furthermore, we
compared the effectiveness of mining only mazimal confi-
dent rules (MAXCONF+) to mining all high confident rules
(MaxCoNF). As expected with a lower confidence thresh-
old, fewer rules are generated as more maximal rules are
identified. These results are summarised in Table 3.

Figure 2 provides a more detailed comparison between
RERII and MAXCONF, with respect to support, confidence
and the maximal rule restriction. Figure 2(a) clearly high-
lights the drastic effects of support pruning on rule gener-
ation. When the support of RERII is lowered to zero (in
an attempt to find all confident rules), no rules were ever
generated as the program required too much memory. The
difference in the number of rules generated by MAXCONF
with and without the maximal rule restriction is only mod-
erate (Table 3), with only a 11% reduction with 85% con-
fidence. The amount of reduction (as with any pruning)
is bounded by the characteristics of the dataset. Table 4
further indicates the significant improvement of MAXCONF
over RERII, specifically it’s capability to identify more high
confident rules with a much wider support range.

Figure 2(b) shows the scalability of RERII and MAX-



# Rules
Conf.(%) RERII | MaXxCoNF | MAXCONF+
80 8083 21448 19090
85 3161 13181 12424
90 927 8445 8296
95 277 7229 7214
100 65 7067 7067
Table 3: Effect of confidence pruning
Supp. Range
Conf.(%) RERII | MaxConF | MaxConrF+
80 5-30.4|03-304 0.3 - 30.4
85 5-30 0.3-30 0.3-30
90 5-25 0.3-25 0.3-25
95 5-25 0.3-25 0.3-25
100 5-17 0.3-17 0.3-17

Table 4: Range of rule supports

CONF. Intuitively, with respect to support pruning, the
higher the support is set, more pruning is possible and thus
the run time is decreased.

Surprisingly there was a significant improvement in run
time with MAXCONF both with and without the maximal
restriction over RERII. This was unexpected as previous
approaches to pruning with confidence such as the maxPI
algorithm are often less efficient then their support based
alternative. The improvement is likely due to the nature of
Level 2 pruning. In RERII, to generate rules satisfying con-
fidence the complete path from the top nodes to the bottom
needs to be constructed, regardless of whether a node’s item-
set is supported or not. However in MAXCONF, when a node
satisfies Level 2 pruning, all child nodes are pruned and thus
it is impossible for the tree to extend further. This is indeed
significantly advantageous in this case. As expected impos-
ing the maximal restriction on MAXCONF slightly increases
run time, due to the extra checking required, however this
approach is still more efficient than RERII.

5. RULE ANALYSIS FRAMEWORK

In this section we focus on the biological relevance of the
rules we identify. We detail how biological databases can be
used to validate microarray analysis algorithms, especially
those designed to help generate gene networks. Firstly we
concentrate on how effective our approach is in detecting
known direct biological interactions in BIND. Secondly we
show that many of our rules contain other gene relation-
ships with respect to the Gene Ontology using GOstat. Fi-
nally as an example we address the iron uptake pathway in
S.cerevisiae. 'We present some sample rules identified by
MaxCoNF that correctly describe gene relationships in this
system, which indicates the appropriateness of MAXCONF
to help predict gene networks.

5.1 Analysis with BIND

The Biomolecular Interaction Network Database (BIND)
[5] is an online database that archives pairwise information
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Figure 2: Scalability and number of rules discovered
with RERII, MaxConf and MaxConf+

about direct! interactions which can occur between two bi-
ological entities, including RNA, proteins and genes. All
interactions documented are determined using traditional
wet-lab experiments. Thus BIND is especially useful for
analysing gene networks predicted from microarray data.
Here we provide a brief overview of how our system ex-
tracts relevant data from BIND and utilises it to evaluate
our rules. Firstly we determine the percentage of rules we
generate that exhibit direct interactions between at least two
of their items i.e. precision (Definition 11). The intuition
behind this analysis is based on the observation that it is
highly probable that for a direct interaction between two or
more gene products (proteins) to occur, the expression of
the genes are correlated, and hence will be present together

'a direct interaction refers to two biological entities physi-
cally binding together to allow some function



# | Association Rule | Supp (%) | Conf (%)
1 | EUGL = BNA2, GSC2, PDH1, TFS1, THI5, THIL1, THII3, YGRO043C, YMLI31W | 1.30 100
2 | SIL1 = AFR1, GSC2, YPS1, YOR280W 2.67 100
3 | FRE6 = SIT1, ARN1, ARN2, ENBI, FIT2, FIT3 4.33 100
4 | AKR1 = CCC2, SIT1, FTR1, ARN1, ARN2, FET3, ENB1, FIT2, FIT3 3.33 90
5 | MAC1 = FRET7 0.33 100
6 | MEP2 = GLK1, GLC3, DMC1, HSP12, PRY1, NCA3, TFS1, MSC1 ,PGM2, YGP1 1 100

Table 5: Example association rules extracted using MaxConf

in at least one rule. Further we analysed the effectiveness
of our approach to identify all possible interactions from the
dataset, i.e. recall (Definition 12).

DEFINITION 11  (PRECISION). Let R be the set of rules
identified by a mining algorithm. Let B be the set of pairwise
direct interactions in the microarray dataset, in the form of
rules. The percentage of rules which contain a direct inter-
action 1s:

# rulesin R N B

Precision = -
# rules in R

DEFINITION 12 (RECALL). Let R be the set of rules iden-
tified by a mining algorithm. Let B be the set of pairwise
direct interactions in the microarray dataset, in the form of
rules. The recall of direct interactions in R is:

# rulesin R N B

Recall = # rules in B

The following steps detail how our system extracts inter-
actions from BIND and calculates both precision and recall.

1. Extract the entire BIND dataset (BD) for the organ-
ism studied from the current exports of BIND2. The
dataset consists of entity pairs (z,y) mapping each en-
tity x to at least one entity y that it binds.

2. For each experiment ¢ in the microarray, generate all
possible® gene interactions (GI).

(a) For each gene z in t that is up-regulated, extract
all relationships from BD that z is involved in
(Iz). Note that a protein interaction will only
occur if its corresponding gene is expressed.

(b) For all genes y in I, that are also up-regulated
add the pair (z,y) to GI. In total in the Hughes
Compendium there are 1354 possible unique di-
rect interactions.

3. Precision For each rule r :

(a) If any pair of items in r are mapped to each other
in GI than the precision count increases by 1.

4. Recall For each interaction (z,y) in GI:

(a) If the items x and y appear together in at least one
rule, the interaction (z,y) is said to be extracted
(recalled) from the microarray experiments.

2ftp:/ /ftp.bind.ca/pub/BIND/data/datasets/taxon/
a possible interaction is one that can occur under the set
of experimental conditions
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BIND analysis results are summarised in Table 6 and
clearly show the effectiveness of MAXCONF+ over support
based mining methods. The extremely high recall (94%) is
superior compared to that obtained using RERII (0.15%).

Precision (%) Recall(%)
Conf. (%) "RERII | MaxConrt | RERIL | MAXCONFT
80 29.8 80.1 0.15 94.0
85 37.9 82.5 0.15 94.0
90 23.3 84.1 0.15 94.0
95 26.8 84.1 0.15 94.0
100 18.2 84.1 0.15 94.0
Table 6: Direct interactions identified in rules

The low recall of RERII was surprising considering the
percentage of rules found that contained at least one di-
rect interaction (37.9% with 85% confidence). After fur-
ther inspection of these rules it was clear that many of the
interactions were not detected as 96.5% of the genes were
immediately pruned based on support during preprocessing.

Examples of rules displaying direct interactions are shown
in Table 7. Both Rules 1 and 3 in Table 7 would not be iden-
tified unless the support threshold for RERII was decreased
significantly (if possible). Rule 3 with 100% confidence cor-
rectly describes the relationships between the genes (CSE1
binds PCL5, which in-turn PCL5 is able to bind CRM1).
Rule 2 with its high support, is the most common rule pub-
lished to validate previous approaches [9]. Inspection of the
rules generated by RERII showed that the majority of rules
containing a direct interaction contained the items SNO1
and SNZ1.

# | Association Rule | Supp (%) | Conf (%) | BIND

1 FMP17 = ERG28 0.60 100 ERG28:
ERG25 ERG25

2 CTF13 = SNO1 21.0 80.8 SNO1:SNZ1
SNZ1

3 CSE1l = CRMl1 0.33 100 PCL5:CSE1
PCL5 PCL5:CRM1

Table 7: Association rules exhibiting direct interac-
tions in S.cerevisiae

Many extracted association rules contain genes which in-
teract indirectly via other genes and their products. Table
5 shows two of these rules identified using MAXCONF.

In Rule 1 of Table 5 the proteins encoded by the genes
GSC2, TFS1 and YGR043C all bind NUP100. THI11 binds
directly to SNZ2 which binds PRP20. Each of the remain-
ing genes bind directly to protein PRP20. Additionally, each
gene in Rule 1 is involved in cellular metabolism, with the



genes BNA2, THI5, THI11 and THI13 being specifically in-
volved in water soluble vitamin biosynthesis [18] (refer to
GOstat analysis).

In Rule 2 genes LSM8 and LSM2 connect genes YPS1 and
SIL1 indirectly. The protein products of LSM8 and LSM2
bind directly to each other. LSMS8 then directly interacts
with SIL1 and LSM2 directly interacts with YPS1. There-
fore, Rule 2 has successfully identified the indirect interac-
tion between genes SIL1 and YPS1 via LSM8 and LSM2 re-
spectively. Further analysis of Rule 2 also shows that each
of the remaining proteins directly bind to the protein of
STE12.

5.2 Analysis with GOstat

The Gene Ontology (GO) [18] is an international standard
to annotate genes organised by their molecular function, bi-
ological process and cellular components. For every gene
in the GO database there is a link to its associated gene
ontologies that define its functions. The GO has a hierar-
chical structure starting with top level ontologies to specific
descriptions with increasing depth.

GOstat [4] is a web-based query engine wrapper of the GO
database where by for a group of genes as input along with
various other parameters, GO annotations that are statis-
tically over-represented within the group can be obtained.
This tool provides a useful method for analysing the gene re-
lationships we identify. To take full advantage of this query
engine we developed an automated process using Python
and CGI scripts to scrape the HTML results produced by GO-
stat for each individual itemset that generated at least one
confident rule.

The number of itemsets that formed rules which contained
at least two genes that were considered to be statistically
over-represented by a GO are shown in Table 8. As ex-
pected, MAXCONF was able to identify many more relation-
ships.

An example of the information scraped from GOstat for
Rule 6 (Table 5) is shown in Table 9. This individual rule
is separated into four gene groups consisting of genes whose
functions are biologically related. For instance, the genes
DMC1 and MSC1 both belong to the same ontology class
meotic recombination which has a depth of 9 within the en-
tire GO.

Cont. (% #Itemsets with GO % Itemsets with GO
onf- (%) "RERTI | MaxConrt | RERIT | MAXCONF 1
80 323 899 635 74.9
85 187 773 65.6 78.3
90 69 693 59.4 82.7
95 34 690 60.7 82.9
100 7 690 63.6 82.9

Table 8: GO clusters identified in itemsets

5.3 Iron Uptake Pathway

In this section we further accentuate the usefulness of
MaxCoNF for extracting correct gene relationships that de-
pict gene networks (pathways). S.cerevisiae has two differ-
ent mechanisms to take up iron from the external environ-
ment for it to use in other processes, which combined form
the iron uptake pathway [10, 11]. Rules 3 - 5 in Table 5
correspond to a small sample of the rules identified by our
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system applicable to this pathway.

One system of the iron uptake pathway depends on a
group of proteins, specifically a family of high-affinity trans-
porters encoded by the genes ARN1, ARN2, SIT1 and ENBI1.
Therefore for this uptake sub-system to function each of
those genes need to be co-expressed. Another sub-system
of iron uptake requires some if not all the proteins FRE1-
6, FET3, FIT2-3 and FTR1 [11]. MAXCONF was able to
detect such biological significant patterns two of which are
shown in Table 5 (Rules 3 and 4). These two rules would not
have been detected using the bottom-up Apriori approach
to frequent itemset mining as they would have needed to be
pruned with respect to support to reduce the search space.

Rule 5 in Table 5 is one of the many relationships which
indicates the applicability of our approach to perturbation
microarray experiments. The gene MAC1 was one of the
genes chosen to be mutated in the Hughes Compendium
[13]. While extracting many other gene relationships, MAX-
CONF was able to detect relationships that Boolean networks
attempt to identify. Indeed Rule 3 correctly describes the
relationship between the genes MAC1 and FRET7, that is
MACI1 is required to activate FRE7. Therefore FRE7 will
only ever be present if MAC1 is prior [14].

6. CONCLUSIONS

A top-down algorithm MAXCONF to directly discover high
confidence rules was proposed. This algorithm lifts the lim-
itation afflicting all support-based pruning methods which
are unable to explore the space of low-support high confi-
dence rules. A head to head comparison with RERII shows
that MAXCONF can efficiently discover more high confidence
and potentially interesting rules. We provide a means to
utilise biological databases for validating the relationships
extracted by microarray analysis algorithms. Using this
technique we highlight the importance of mining without
support pruning. For example the recall of MAXCONF on
the biological database BIND is very high - 94% compared
to 0.15% of RERII. Potential directions for future work in-
clude an analysis of the False Discovery Rate of MAXCONF
and the construction of gene networks from the discovered
rules.
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ABSTRACT

Microarrays generally measure gene expressions from a mix-
ture of cell subpopulations in different stages of a biological
process. However, little or no information about these sub-
populations is actually incorporated in existing data anal-
yses. Estimation of these subpopulation proportions is im-
portant for measuring the extent of synchrony in the entire
population. Based upon the gene expression specific to indi-
vidual subpopulations, genes can be clustered and assigned
functions. The relative abundance of the cellular subpopu-
lations also reveals phenotypic information of mutant pop-
ulations that is valuable for studies of genetic diseases such
as cancer. Thus, the quantification of subpopulation pro-
portions is important, not only as a reliability measure of
microarray data but also because of its potential relevance
to functional analysis and biomedical and clinical applica-
tions.

In this paper, we describe a novel approach to model a
biological process that provides (i) a maximum a posteriori
(MAP) estimate of the subpopulations given the gene ex-
pression, (ii) stage-specific gene expression values and (iii)
a gene clustering method based on their stage-specific ex-
pression. We have applied our approach to model the yeast
cell-cycle and have extracted profiles of the population dy-
namics for different stages of the cell-cycle. Evaluation of
statistical validity of our results using bootstrapped confi-
dence tests reveals that our model captures significant tem-
poral dynamics of the data. Our results are in agreement
with existing biological knowledge and are reproducible in
multiple runs of our algorithm.
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Population deconvolution, Cell subpopulations, Biological
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1. INTRODUCTION

Typically, gene-expression analysis of linear or cyclic bi-
ological processes is carried out using what are assumed to
be synchronized populations of cells. Synchronized popula-
tions are obtained by arresting cells in a particular stage of
the cellular life-cycle using a variety of techniques includ-
ing chemical arrest, conditional mutation and nutrient star-
vation [8]. Synchronization is critical to the examination
of pure stages that occur sequentially during the process.
Unfortunately, perfect synchronization of cell populations is
usually either technically difficult or impossible. As a re-
sult, most microarray analyses detect gene expression from
mixtures of cells in pure stages, present as subpopulations.

Because genomic analysis of major developmental pro-
cesses holds such promise, the ability to identify and an-
alyze pure stages is crucial. The pure stage of a process
gives insight into physiological changes that may affect dis-
ease prognosis and treatment. Determination of the subpop-
ulation proportion of each pure stage provides information
about the degree of synchrony, which provides insight into
the arrest, recovery and initiation of a process.

Development of mathematical models for cell population
deconvolution (CPD) from microarray data is very challeng-
ing since microarray data is extemely noisy and sparse. Fur-
thermore, since very little is known about the true charac-
teristics of pure stages and the gene expressions in these
stages, these models have to be learnt in an unsupervised
manner that makes minimal assumptions. This complicates
the learning algorithms for these models, making them pos-
sibly intractable.

In this paper, we present an unsupervised, data-driven,
probabilistic approach for mining timeseries microarray data
that provides new insights about pure stages. Our approach
models the biological process as a hidden-state space sys-
tem, using a combination of particle filters [1, 12, 7] and
expectation maximization [6], and estimates proportions of
subpopulations in pure stages of a process, and the stage-
specific gene expression. Using the yeast cell-cycle microar-
ray data, we demonstrate that our approach recovers high
quality estimates of the temporal evolution of the pure cell-



cycle stages and the stage-specific gene expressions, which
agree well with the existing biological knowledge of the cell-
cycle stages and specific genes expressed in these stages.

2. RELATED WORK

One approach to CPD, developed by Lu et. al, [13], con-
sidered the observed gene expression at any point in time
to be a linear combination of gene expressions from pure
stages of the cell-cycle. This approach assumed that the
gene expressions for a pure cell-cycle stage corresponds to a
specific timepoint from an existing microarray experiment,
[23], at which a required gene for that stage, had the highest
expression. Therefore, this approach assumed that perfect
population synchrony was maintained at those timepoints
even though there were only two or three timepoints for the
cell-cycle phases that usually last for 20 minutes or more.

This approach ignores the fact that cell-cycle stages ex-
tend over several minutes and therefore cannot be captured
by a single timepoint. This approach may also be lim-
ited in practice due to its dependence on perfect synchro-
nization and knowledge of such few genes. A purely data-
driven approach that does not assume perfect synchroniza-
tion and that provides a probabilistic estimate of the pure
gene expressions is likely to be more biologically accurate
and adaptable to other timeseries datasets.

Another approach developed by Bar-Joseph et. al, [2], is
relevant to population deconvolution. This approach com-
putes the rate of loss of synchrony and uses it to deconvolve
the observed gene expression profile into pure gene expres-
sion profiles. This allows a better identification of cycling
genes. However, this approach is directed towards finding
cycling genes and is limited to data from cyclic biological
processes such as the cell-cycle. Our approach is more gen-
eral since it does not require the microarray data to be from
a cyclic process.

Non-computational methods have also been used to pro-
vide measures of population synchronicity. Fluorescent acti-
vated cell sorting (FACS) allows qualitative analysis of popu-
lation synchrony by measuring the DNA content of the cells
in the population [19]. Another method uses image anal-
ysis of budding yeast images [18]. These methods can be
time consuming and do not provide any information about
gene expression. However, these methods can be used in
concert with computational approaches to provide evidence
to support predictions from mathematical models of gene
expression data.

Overall, our approach has the following advantages: (a)
model formulation that exploits temporal dependencies of
the timeseries microarray data, (b) estimation of subpopu-
lation proportions that provides insight into the temporal
dynamics of evolving populations, (c) estimation of proba-
bility distributions of gene expression in pure stages, (d) the
ability to cluster genes on the basis of stage-specific gene
expression and (e) the applicability to timeseries data from
both cyclic and non-cyclic biological processes, thus enabling
the extraction of a wide variety of interesting gene expres-
sion dynamics including cyclic behaviour.

3. A PROBABILISTIC MODEL FOR CPD

3.1 Rationale for our model
The biological process to be modeled was considered as an
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ordered series of stages. In this paper, we are concerned with
modeling the cell-cycle [20], although our method should
generalize to other processes, such as sporulation, [5] and
exit from quiescence, [16]. The cell-cycle comprises four
phases: Gapl (G1), Synthesis (5), Gapll (G2) and Mito-
sis (M). A stage for the cell-cycle was assumed to be either
a phase or a transition between phases. Based upon prior
studies by Breeden et. al, a possible set of stages for the cell-
cycle is, {G1, S, G2/M, M, M/G1}, where G2/M implies
transition between G2 and M, and M/G1 implies transition
between M and G1.

We assume that each subpopulation is in one of the stages
of the biological process. Hence, stage and subpopulation
are analogous to each other. We assume that cells transition
from one stage to another causing a change in the subpop-
ulation proportions as a function of time. These changing
proportions, in turn, affect the overall gene expression pat-
tern. The observed gene expression at every timepoint, then,
is a function of (a) the pure or stage-specific gene expression
from cells in each subpopulation and (b) the proportion of
that subpopulation.

To model the biological process, we need to specify the
mechanism by which the proportions change with time, i.e.,
the process model, and the function which determines the ob-
served gene expression from the proportions, i.e., the obser-
vation model. After fixing the forms of the process and ob-
servation models, we use unsupervised learning based on the
combination of particle filters and expectation maximiza-
tion, to probabilistically estimate the subpopulation propor-
tions and the stage-specific gene expressions, based solely
on the observed timeseries data. Thus, we solve the CPD
problem with an unsupervised approach that makes minimal
assumptions and does not heavily rely on prior knowledge.

3.2 Model overview

Our approach models the biological process as a dynamic
hidden state-space system, that estimates the posterior prob-
ability distribution of the hidden state given the observed
expression data. Similar to standard dynamic state-space
systems [22], our approach specifies (a) a process model for
modeling the state transition between successive timepoints,
(b) an observation model for modeling the relationship be-
tween state and observation (gene expression) at each time-
point, and (c) a prior probability distribution for the hidden
state at each timepoint. Thus, given the prior and the obser-
vation at every timepoint, the solution to the CPD problem
is the posterior distribtion of the hidden state.

Unlike in well understood systems such as hidden Markov
models (HMMs) [21] and Kalman filters [9], the hidden state
in our approach is constrained to be a multinomial vector
that specifies the percentages or proportions of subpopula-
tions in pure stages of a process. A natural choice for a prior
distribution for multinomials is a Dirichlet [17]. From our
recent work we have found that the analytical form of the
resulting posterior is a mixture of Dirichlet distributions,
wherein the number of components increases exponentially.
This crucial point that the hidden state of our model is
a multinomial rather than a discrete scalar (HMMs) or an
unconstrained vector (Kalman filters), results in difficult pa-
rameter estimation and inference problems.

To render these problems tractable we (a) assume a Dirich-
let prior distribution over the hidden state at each timepoint
[17]; (b) employ a particle filter based algorithm for inferring



the hidden state posterior distribution [1, 12, 7]; (c) assume
that individual gene expressions are Gaussianly distributed
and independent given the hidden state; and (d) use the
Expectation Maximization (EM) algorithm for parameter
estimation [6)].

3.3 A generative model of microarray data

The microarray time series data in our analysis was first
transformed to intensity ratios from the logarithm of the
intensity ratios. Hereafter we refer to gene expression as
the intensity ratio for a single gene and an ezpression vector
as the ratios for all the genes at a specific timepoint. We
use the terms, stage, biological stage and pure stage to imply
the same thing: a stage of a biological process.

Let z; denote the hidden state vector at time ¢, for 1 <
t < T, where T denotes the total number of timepoints
in the microarray timeseries. The n components of z:, de-
noted by z:(k) for 1 < k < n, quantify the proportions of
the subpopulations in the n different stages of the biologi-
cal process at time t. For example, for the cell-cycle, z+(k)
corresponds to a subpopulation in one of the stages, G1,
S, G2/M, M or M/G1. Even though n, or the number of
stages, is known prior to our training process, we do not
know which z:(k) corresponds to which stage, i.e. our re-
sults are unique only up to label (name of a biological stage)
permutations. The mechanism of determining the actual bi-
ological stage names is described in Section 5.3. Since xz;
takes the form of a multinomial vector, it obeys the con-
straints, 0 < z4(k) < 1;VE, and ), z4(k) = 1.

Let y; denote the expression vector. The m components
of y: are the expression ratios of the m individual genes,
denoted y:(j) for j = 1,...,m. The CPD problem, then,
is: given a time series of expression vectors, {y1,...,yr},
estimate the hidden state describing the subpopulation dis-
tribution at every timepoint, {z1,...,zr}.

We assumed that the hidden state, z;, is conditionally
dependent only on the preceeding state, z:—1 and that the
observed gene expression g, is conditionally dependent only
on the corresponding hidden state, x;. This yields a tempo-
ral process similar in statistical structure to a hidden Markov
model, with a first-order Markov process model, P(z¢|z¢—1)
and an observation model, P(y:|z¢).

The observation model (Section 3.3.3) specifies the stage-
specific gene expression for every gene, j in a pure stage, k
by a Gaussian, N(uj,07), where p, and o}, are the mean
and standard deviation for the expression of j** gene in the
k" stage. The process model (Section 3.3.2), is specified by
a transition matrix, A. Thus our complete model is specified
by the parameters: stage dependent Gaussians for the gene
expression and the transition matrix.

The learning algorithm for the model parameters is based
on Expectation Maximization (EM) (Section 5). The algo-
rithm uses a “forward step” to estimate P(z¢|y1,...,¥:) and
a “backward step” to estimate P(x¢|yi+1,...,yr). These
two estimates are combined to derive the transition proba-
bilities in A. The Gaussian parameters for the stage depen-
dent gene expressions are assigned their maximum likelihood
estimates. However, the algorithm needs to account for the
complex form of the hidden state distribution that arises
because the hidden state is a multinomial vector. Hence,
we use particle filters (Section 4), which allows us to ap-
proximate the probability distributions in the forward and
backward step by a set of weighted samples (Section 5.1).
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After running the EM procedure to convergence, we have
a complete model of the biological process. The solution
to our original deconvolution problem: the proportions of
the individual subpopulations for every timepoint ¢, is then
specified by the expected value of hidden state posterior
distribution, P(z¢|y1,...,y:). Different components of our
model are detailed in the following sections.

3.3.1 Modeling the hidden state posterior:

The posterior distribution of hidden state, P(z+|yl,--- ,y:)
is approximated by a set of samples, {z},...,z{ }, and the
set of sample weights, {w},...,w; }, where N denotes the
total number of samples and is specified by the user. These
samples are generated from a probability distribution of a
known parameterized form.

3.3.2 Process model:

The process model specifies P(z:41]|z:), the conditional
probability distribution of the next state, z;4+1, given the
current state, z:. We assume that the mechanism by which
x¢ transforms to x:y1 is dependent on the probability with
which a cell in the k* pure stage at time, ¢, transitions
to the I** pure stage at time, t + 1. This stage transition
probability is specified by the transition matrix, A. Hence,
the element, A(l, k) specifies the probability with which a
cell in the k** stage makes a transition to the I** stage at
the next timepoint, where / and k£ denote a row and a column
respectively.

Given the sample set, {z}, ...,z } that approximates the
probability distribution over z;, we use the process model to
obtain the sample set, {x{,q,...,zhy1} that approximates
the probability distribution over x;41. This is done by pro-
jecting every sample, zi, to zi,; = Axl.

3.3.3  Observation model.:

The observation model specifies P(y:|x:), the conditional
probability distribution of the current observation, y:, given
the current state, z;. The expression of the j* gene, in the
kth pure stage, is assumed to be modeled by a Gaussian,
N(u),,01). Since the actual population from which mRNA is
extracted, is a mixture of subpopulations, the observed gene
expression is modeled by a mixture of Gaussians. Hence,
P(ye(9)le) = Y=y Te(k)P(ys(5) |1k 07,), where yy(j) is the
observed expression ratio of the j** gene at time ¢ and z; (k)
is the contribution of the k** Gaussian for the subpopulation
in the k** stage.

We further assumed a naive Bayes model for the gene ex-
pressions — expression of a gene is dependent only on the
stage of the cell. Given the stage, the gene expressions are
conditionally independent of each other. The conditional
probability, P(y:|x:), is then a product of probabilities of in-
dividual gene expressions, i.e., P(y:|z:) = [Tj~; P(y:(j)|z+).
These assumptions may not be ideal for modeling gene ex-
pressions, but our current focus is to identify cell populations
in different stages and modeling gene relations within a stage
is unlikely to effect our deconvolution results. However, we
are considering better models such as tree-augmented net-
works for future work.

4. PARTICLE FILTERS

Particle filters are used to approximate probability distri-
butions that have an unknown or complex analytical form,
by a set of weighted samples, and can be used for the hidden



state inference in non-linear dynamic systems [1]. Samples
are drawn from a parameterized probability density called
the importance density. The weight of each sample is pro-
portional to the likelihood of the observed data given that
sample. In the following subsections we describe the particle
filter used in our approach, the importance density selection
and the sample weight calculation.

4.1 Sample Importance Resampling filter

A well known particle filter for hidden state-space systems
is Sample Importance Resampling (SIR) filter [10], wherein
the prior, P(z:41|z¢), is chosen as the importance density.
The SIR filter begins with a set of samples, {x},..., =} },
drawn from the importance density, followed by the calcu-
lation of the sample weights, {wi,...,w)}. The sample
weight, wj is determined by the likelihood, P(y:|x}), of the
observation, y;, given the i*" sample, z:. The posterior dis-
tribution of the hidden state given the observation is repre-
sented by a subset of these samples, chosen by a re-sampling
step. The probability that a sample is selected by the re-
sampling step is proportional to its weight. The chosen sam-
ples are then projected using a projection step, determined
by the process dynamics.

4.1.1 Sample degeneration

One of the problems that we encountered with the SIR
filter was rapid sample degeneration. This was because a
small subset of the entire sample set had very high weights
compared to the rest. The re-sampling step repeatedly se-
lected these samples, resulting in the degeneration of all or
most of the samples to single points. This is a known issue
with the SIR filter and there are several smoothing strategies
to alleviate this problem [4, 24].

We employed the jittering technique to handle sample im-
poverishment. We added a small amount of perturbation to
every sample, i, selected by the re-sampling step. This
perturbation was a sample drawn from a Gaussian, N(0, w).
Thus if ! were selected p times, it would be represented by a
Gaussian, N(z¢,w), estimated from the p different samples.
The value of w controls the extent of jitter and is chosen ex-
perimentally so as to solve the degeneracy problem and yet
prevent the system from diverging from its true behaviour.
We found 0.05 < w < 0.1 to be a reasonable range of values
for the jitter.

4.2 Importance density

Since z: is a multinomial vector, a natural choice of the
importance density is a Dirichlet. Choosing a Dirichlet has
the added advantage of allowing the incorporation of bio-
logical knowledge of the cell population. For example, the
Dirichlet parameters for the prior state distribution at time,
t = 1, can be assigned on the basis of existing knowledge
that populations are synchronized to 80% or more.

4.3 Sample weight calculation

The sample weight, w{, of the sample, z}, is P(y;|xi) and
is given by the observation model as follows:

z=1‘[2mt YP(y () i 7] (1)

This is similar to P(y¢|z+) in Section 3.3.3, with z+ being
replaced by z;. The rationale for replacing x; by x; is that
while x; represents the exact hidden state, x; represents a
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possible description of it: z} is a sample from the posterior
distribution that measures the uncertainty about xj.

Algorithm 1 Forward particle filtering algorithm

1. For t = 1, draw samples from the Dirichlet prior that
is initialized either randomly or on the basis of known
information of cell populations.

2. Calculate weights of samples at ¢ using eqn. (1).

3. Execute the re-sampling step to select samples
based on the sample weights. These samples estimate
P(xilys, .5 ye)-

4. Execute the projection step using the process model to
obtain samples for the next timestep, ¢ + 1.

5. Increment ¢ by 1.

6. Repeat steps 2-5 for all t < T

5. MODEL TRAINING AND PARAMETER
ESTIMATION

As described in the preceeding sections, the model param-
eters are the transition matrix, A, for the process model and
the Gaussian parameters, N (7, 0]’?), which specify the ob-
servation model. Parameter estimation is done using a learn-
ing procedure based on Expectation Maximization (EM),
comprising an Expectation (E) step and a Maximization (M)
step.

5.1 Expectation (E) step

The hidden variables in the system are the state variables,
z¢. During the E step we use the model parameters and ob-
tain the expected values for z;. The E step is similar to the
expectation step of the Baum-Welch (BW) algorithm [21],
and comprises a forward step and a backward step. Unlike
the HMM that uses discrete, univariate random variables
for state and observation, our learning problem is compli-
cated by the fact that z: and y: are multivariate continuous
random variables and that z; is a multinomial. To handle
this problem, all probability densities in both the forward
and backward steps are represented by the weighted samples
from the particle filter.

5.1.1 Forward step:

The forward step (Algorithm 1) estimates the conditional
probability of a state, x¢, given the observations, {y1,...,¥:},
i.e., P(z¢|y1,...,y:). This differs from the forward step of
BW, which calculates the joint probability of a state at time,
t and the set of observations upto time ¢.

5.1.2 Backward step:
The backward step (Algorithm 2) estimates the condi-

tional probability of a state, ¢, given the observations {y¢41, .. .

i.e.,, P(x¢|yt+1,---,yr). Again, our backward step is differ-
ent from BW since the latter calculates the conditional prob-
ability of the partial observation sequence, {yt+1,...,yr}
given a state at time ¢. Recall that the k** component of
x4, z+(k), is the probability of being in the k** pure stage of
the blologlcal process.

Let Z; represent the samples which approximate P(xt|yt+1, e

Given Zi,;, the it" backward sample from time, ¢t + 1, Z¢
is recursively obtained in two steps. In the first step, each

YT}

Y1)



Zi(k) is calculated using eqn. (2),

zi(k) = Xn:A(L k)ei(t + 1)Zi41 (1)

=1

(2)

where e; is a multinomial distribution describing the emis-

sion probability for the T' expression vectors for the I stage.
Every element, e;(t) is calculated using:
1 & o
a(t) = - [ Pw)lul, o)) (3)
j=1

where Z is a normalization term. In the second step, each
Zy(k) is normalized by >~7_; Z;(k) to result in a multinomial
vector.

Algorithm 2 Backward particle filtering algorithm

1. Generate samples from a uniform Dirichlet (all parame-
ters set to 1) for time, t =T'.

2. Calculate weights for the samples using eqn. (1);
resample according to weights.

3. Decrement ¢ by 1.

4. Obtain samples for ¢, Zi, from the selected samples,
Fipy, at t + 1 using eqn. (2). These samples estimate
P(zt|ys1,. .., yr).

5. Repeat steps 2-4 for all ¢.

5.2 Maximization (M) step

The M step uses the expected values of x; to estimate the
model parameters A, 7 and 0,1 <k<mnand1<j<m.

5.2.1 Estimation of A:

Every element, A(l, k), specifies the probability with which
a cell in the k" stage at time, ¢, makes a transition to the
I** stage at time ¢t 4+ 1. Our technique for estimating A is a
slight modification of the standard HMM.

Estimation of A requires two variables, &%;(t) and ~i(t).
&5, (t) specifies the probability of a cell being in the k" stage
at time, ¢, and the I** stage at time, ¢t + 1. ~i(t) specifies
the probability of a cell being in the k** stage at time, ¢.
The superscript, ¢ indicates that these variables need to be
estimated for every sample. Assuming that A is initialized
to some value, £5;(t) is calculated from the components of
forward sample, z¢, and the backward sample, a’cf_,_l as fol-
lows:

(4)

where, Z' is a normalization term and e;(t+1) is the emission
probability of the observation, y; from the k" stage. Given
621(0, 'ﬁc(t) IS then: E?:l gllcl (t)

Once the £;,;(t)’s and the «;(t)’s have been calculated for
each of the N samples, the element, A(l, k) is calculated as
follows:

€l = ol (B) AU KL (Der(t +1)

EtT:1 vazl 51@1(75)
Ef:l va=1 'Ylic (t)

This is followed by normalizing every column A(:, k) such
that it is a probability vector.

Al k) = (5)

5.2.2 Estimation of ;ﬂ; and ai:
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The Gaussian parameters, p{c and a{;, which specify the
stage-specific gene expression, are set to their maximum like-
lihood (ML) estimates for a mixture of Gaussians [11]. ul,
the mean expression of the j* gene in the k" pure stage
is estimated from the observed expression ratio of the j
gene, y:(j), and the forward samples, x%, for all timepoints,
1 <t < T. The component z}(k) specifies the contribu-
tion of the k** Gaussian to the observed expression, y:(j).
Hence, i, is given by

Nj _ ZtT:I vazl i (k)y: (5)

k= - .
EtT=1 va=1 zi (k)

ai is calculated using a similar modification to the standard

ML formula.

(6)

5.3 Training convergence

The EM algorithm is said to have converged when the
log likelihood of the observed data, L = P(y1,y2,...,Yyr),
changes only by some small value, e. Using the chain rule,
L = P(y))TI;—, P(%¢|y1,...,yt—1). Then using an approx-
imation described in [7], the first term is calculated us-
ing P(y1) = Ef\;l P(y1]|z})P(x%). The rest of the prod-
uct is calculated as P(y:|y1, ..., ye—1) = Efvzl P(ys|zd)wi_,
where, ! is the normalized sample weight for z:.

Once the training algorithm converges, we have the sam-
ple set, {zf,...,z{ }, which is an approximation of posterior
distribution, P(x¢|y1,...,y:); and the probability density of
stage-specific gene expressions, N(y3,,07,). The mean value
of {zf,...,2]}, &, is then used as our estimate of the sub-
population proportions of the stages at every timestep, t,
for I<t<T.

The stage-specific gene expression is used for assigning a
gene to one of the n stages. The §** gene is assigned to
the stage k = arg maxy], that is the stage with the high-

l

est mean value of all the stage-specific expressions for that
gene. Genes associated with the same stage (member genes)
are therefore clustered together based on their stage-specific
expression value.

6. RESULTS

We applied our approach to perform population deconvo-
lution on microarray timeseries of the yeast cell-cycle (Ta-
ble 1). The yeast cell-cycle is a well-studied biological pro-
cess required for cell growth and cell division [20]. Since it
is a cyclic biological process, it is an ordered set of stages
that are repeating in the order, G1 — S — G2/M — M —
M/G1, at periodic time intervals (the cell-cycle).

For all three datasets, the number of stages, n, was set
to 5, corresponding to the cell-cycle phases, G1, S and M
and the transition between phases, G2/M and M/G1. The
number of genes, m, was at most 712. Of the 712 genes, 696
genes were studied by [13]. The remaining 16 genes were
added on the basis of biological literature.

Recall from Section 3.3 that each component of z;, z+(k),
specifies the subpopulation proportion for the k** stage at
time, t. The mapping from index, 1 < k < n, to cell-cycle
stages, {G1, S, G2, M, M/G1}, however is unknown. This
is the result of the unsupervised learning method that we
employ — the deconvolution results are unique only up to a
label (name of a biological stage) permutation. To resolve
this ambiguity, we use additional biological knowledge, [23,



Table 1:

Yeast cell-cycle datasets

Dataset Experimenter  Synchronizing method Genes Timepoints Time interval
Sa Paul Spellman a-factor 712 18 Tmin
L, Linda Breeden a-factor 706 13 10min
Se Paul Spellman  cdc15-2 710 24 Some at 10min and some at 20min

L, and S, did not have expression measurements for 6 and 2 genes respectively

Table 2: Number of known, required cell-cycle genes
Biological Stage Number of genes

G1 19
S 21
G2/M 12
M 7
M/G1 19
1
0.5
0
A 1 3 5 7 9 11 13 15 17
M/G1
M
G2/M
s
G1
B 0% 50% 100%

Figure 1: A. Multinomial vectors for subpopulation
distributions for all 18 timepoints from S, (a-factor
experiment done by Spellman et. al). B. Percentage
of known genes present in different member gene
sets.

3, 14, 15], about genes known to be highly expressed in
the cell-cycle stages (Table 2). The k'* stage represents a
specific cell-cycle stage, if the member gene set of the k**
stage has the largest percentage of the known genes for that
cell-cycle stage.

The deconvolution results for the datasets, S,, L, and
Sc are presented in Figs. 1, 2 and 3, and analyzed in Sec-
tions 6.1, 6.2 and 6.3 respectively. Each figure comprises
two parts, A and B. A is a column graph of the subpopu-
lation proportions (y-axis) for the five stages (different col-
ors) at every timepoint (z-axis). The proportion for the k‘*
subpopulation at time, ¢ is specified by the k** component,
Z+(k), of the sample mean, ;. B shows the percentages of
known genes for a cell-cycle stage that were present in the
member genes for each of the five stages. The percentages
and the cell-cycle stages are along the z-axis and the y-axis
respectively. For example, Fig. 1C shows that of the 19
genes known for G1, 16% were present in the member genes
of the blue stage, 74% were present in the member genes of
the red stage and so on.

6.1 Results using S,:
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We identified subpopulations for five stages that exhibited
cyclic patterns, Fig. 1A. The subpopulation proportions of
individual stages peaked at certain timepoints, indicating
that at that time, cells in that stage represent the largest
subpopulation, e.g. blue peaked att =1 and ¢t = 9. The rel-
ative proportions also illustrated that none of the timepoints
had completely synchronous populations with all cells in one
pure stage. We found that known genes for the phases,
G1, S and M were predominantly present in member genes
from three different stages (= 74% (red), 71% (green) and
71% (black) respectively), Fig. 1B. Majority of the known
genes for G2/M and M/G1 were distributed between mem-
ber genes of two stages (green and black for G2/M and black
and orange for M/G1). This allowed the following mapping
between the stages in our model and the cell-cycle stages:
red: G1, green:S, green and black: G2/M, black: M, blue and
orange:M/G1. The ordering of the peaks for the stages,
was in agreement with the known ordering of the cell-cycle
stages, further supporting the biological relevance of our re-
sults.

The inability to assign a single subpopulation for G2/M
and M/G1 may indicate that there is so much overlap be-
tween the corresponding phases (G2 and M, M and G1),
that they cannot be distinguished into separate stages of
our model.

The most significant Gene Ontology (GO) processes (http:
//wwu .yeastgenome.org/) for member genes of the orange
stage were related to a-factor response. The same stage also
had a peak at timepoint, ¢ = 1. This implied that the ma-
jor contributor of the observed gene expression at ¢t = 1 is
the subpopulation of cells responding to a-factor. This is
biologically significant since the synchronizing method was
a-factor.

Lu et. al, [13] used the timepoints, ¢t = 3,5,6,7 and 10,
from this dataset to represent pure gene expression for the
cell-cycle stages, G1, S, G2, M, M /G1 respectively. However,
our results indicate that the observed expression vector at
all timepoints are derived from mixed subpopulations. Thus
the assumption of these timepoints representing pure cell-
cycle expression is unlikely to be accurate, especially since
these stages extend over several minutes.

6.2 Results using L,:

We identified cyclic profiles for five subpopulations, Fig. 2A.
All cell-cycle stages other than G2/M and M/G1 separated
into different stages of our model, Fig. 2B, resulting in a
similar association between the stages of our model and the
cell-cycle stages as in S,. The ordering of the cell-cycle
stages was preserved in the ordering of the peaks, Also, ma-
jority of the cells at ¢ = 1 were involved in a-factor response.

6.3 Results using S.:
We identified cyclic profiles for five subpopulations in dif-
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Figure 2: A. Multinomial vectors for subpopulation
distributions for all 13 timepoints from L, (a-factor
experiment done by Dr. Breeden’s laboratory). B.
Percentage of known genes present in different mem-
ber gene sets.

ferent biological stages, Fig. 3A. The peak at timepoint,
t = 1, corresponded to the blue stage with member genes
involved in M and M/G1. This makes biological sense
since cdclb arrests cells in late M phase. However, most
of our predicted subpopulations overlapped with two cell-
cycle stages, Fig. 3B. This maybe due to lesser synchrony in
this dataset as compared to S, or L,.

6.4 Statistical validation of results

To judge the statistical significance of our results, we
tested our algorithm for consistency of results and preserva-
tion of temporal dependencies. To check for consistency of
the predicted subpopulation proportions, we trained r dif-
ferent models for every dataset z, z € {Sa, Lq, Sc}, result-
ing in r predictions for each subpopulation. The standard
deviations of these predictions (< 0.08) for a particular z
indicated that they were reasonably close.

To test whether our approach preserves temporal depen-
dencies, we used the bootstrapped confidence test [11]. Let
Q@ represent a model trained on data with temporal depen-
dencies, i.e. z, and let R represent a model trained on ran-
domly shuffled data zs, where z, is obtained by reordering
the observation vectors in z. To compare @ and R, we cal-
culated the log likelihood of the observed data, z (refer to
Section 5.3), for both @ and R. Let p. and 7. denote the
average likelihood and standard deviation from @ for a par-
ticular dataset z,z € Z. Let p,, and 7., denote the average
likelihood and standard deviation of z from R. These av-
erages are obtained by starting with different initializations
of the model parameters at the beginning of the EM train-
ing. We found that p,, was significantly smaller than p.,
indicating that the incorporation of temporal dependencies
makes @ a better model for the observed data as compared
to R. Table 3 describes the results for the confidence test.

7. CONCLUSION

In this paper we have described a particle filter based
framework for extracting meaningful infomation about sub-
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Figure 3: A. Multinomial vectors for the subpop-
ulation distributions for all 24 timepoints from S,
(cdc15-2 experiment done by Spellman et. al). B.
Percentage of known genes present in different mem-
ber gene sets.

Table 3: Likelihood mean and standard deviations

z Pz Tz Pzs Tzs

S.  -738.7503 130.7760 -2612.045 286.0214
Sy -6392.7 132.87563 -8371.642 332.229
L, 2915.2406 23.2397 -1033.535 627.773

z refers to a dataset, p, and 7, are mean and stdevs
for original 2, p., and 7., are mean and stdevs for shuffled
z.

populations from microarray data. The key ideas in our
approach are (i) formulation of CPD as a dynamic hidden-
state system that models the temporal dependencies in the
timeseries data and (ii) constraining the hidden state to be
a multinomial vector, thus allowing the direct quantification
of subpopulation proportions. Our learning algorithm uses
a combination of particle filters and Expectation Maximiza-
tion. On convergence we have the estimate of the hidden
state distributions and the pure stage-specific gene expres-
sions.

The application of our approach to the yeast cell-cycle
data demonstrated that (i) we could obtain cyclic profiles
of subpopulations corresponding to cell-cycle stages, (ii) we
could characterize these stages in terms of probability dis-
tributions of pure gene expression, and (iii) none of the mi-
croarray timeseries were composed of completely synchronous
populations. Although the biological validation of our re-
sults is somewhat preliminary, inspite of the unsupervised
nature of the decovolution problem and the limited knowl-
edge of the true nature of pure populations, the outcome of
the statistical validation tests are encouraging.

8. FUTURE WORK

We want to further investigate the analytical form of the
hidden state posterior distribution and provide error bounds
between its approximate and true value. We want to ap-
ply our approach to characterize subpopulations from other
biological processes such as sporulation ,[5], and exit from
quiescence, [16]. Preliminary work in this direction has been



very encouraging. We also want to use results from in-vivo
experiments in concert with our method to provide more bi-
ological insight into our results. One such experiment pro-
vides the budding index count that rises dramatically at the
onset of the Synthesis phase of the cell-cycle.

All of these future goals are highly relevant to biological
data mining since they will enable us to reinterpret single
timepoint expression data in terms of the pure stages from
different biological processes. The knowledge gained from
the relative abundance of subpopulations from such datasets
will provide valuable insight for analyzing aberrant gene ex-
pression patterns in human diseases.
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ABSTRACT

Designing highly effective and gene-specific short interfer-
ing RNA (siRNA) sequences is crucial for any biological ap-
plications involving RNA interference (RNAi). A critical
requirement for applying RNAi process in therapeutic ap-
plications is the ability to predict and to avoid side effect
interactions with unintended transcripts (messager RNA, or
mRNA). In this paper, we propose a flexible framework for
detecting siRNA off-target effects. The framework can also
be extended with minor changes to other applications such
as selecting PCR primers or microarray nucleotide probes.

Based on the framework, we have developed and imple-
mented a new homology sequence search program — siRNA
Off-target Search (SOS). SOS uses a hybrid, g-gram based
approach, combining two filtering techniques using overlap-
ping and non-overlapping g-grams. This approach considers
three types of imperfect matches based on biological exper-
iments: G:U wobbles, mismatches, and bulges. The three
main improvements over existing methods are: 1) introduce
a more general cost model (an affine bulge cost model) for
siRNA-mRNA off-target alignment; 2) use separate searches
for alignments with and without bulges that enables effi-
cient discovery of potential off-target candidates in the fil-
tration phase; and 3) achieve better performance, in terms
of speed and recall /precision, than BLAST in detecting po-
tential siRNA off-targets.

General Terms

Algorithms, Experimentation

Keywords

RNA Interference, siRNA Off-target Search, Approximate
Pattern Matching, and Sequence Alignment

*This work was supported by NIH Grant Number
1P20RR 18754 from the Institutional Development Award
Program of the National Center for Research Resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

BIOKDD ’2005 Chicago, IL USA

Copyright 2005 ACM 1-59593-213-5 ...$5.00.

54

Terran Lane
University of New Mexico
Department of Computer Science
Albuquerque, NM 87131 0001

terran@cs.unm.edu

1. INTRODUCTION

RNA interference (RNAI) is a recently discovered post-
transcriptional gene silencing (PTGS) mechanism that seems
to play both regulatory and immunological roles in the eu-
karyotic genetic system [1, 9, 17, 23]. RNAIi has aroused a
great deal of excitement in both therapeutic and genomic
experimental communities because of its potential for treat-
ment of a wide spectrum of diseases such as HIV [11]; Hunt-
ington’s diseases [25]; and certain classes of cancers [3, 9],
in addition to its demonstrated use in functional genomic
studies via controlled gene knockdown [5, 14]. A critical
requirement for the use of RNAIi process in therapeutic ap-
plications is the ability to predict and to avoid side effect
interactions with unintended genes. We develop a flexible
siRNA off-target search program for detecting potential off-
target reactions with unintended genes.

At the heart of the RNAIi cleavage event is the degree
of similarity between the target messager RNA (mRNA)
and an initiator molecule, known as a short-interfering RNA
(siRNA). By introducing a siRNA into a cell, we can induce
the cellular machinery into degrading the mRNA product
of a targeted gene and prevent further translation of the
mRNA into protein. Thus, we can suppress the function of
a specific (e.g., disease-related) gene. Early RNAi studies in-
dicated that RNAI process is highly specific [7, 8]. However,
recent experimental results strongly suggest that siRNAs
with imperfect matches can still knock down unintended
mRNAs with high silencing efficacy [10, 19, 21]. Three types
of imperfect matches have been studied in biological exper-
iments: mismatches [10, 20], G:U wobbles [12, 20], and in-
ternal bulges [6]. In some cases, siRNAs can tolerate several
mismatches to the target sequence [10]. A recent study [13]
shows that about 75% of 359 published siRNAs have a risk
of non-specific effects.

Designing highly effective and specific siRNAs is crucial
for therapeutic or genomic applications of the RNAi process.
siRNA efficacy has been studied extensively and design rules
have been established for selecting effective siRNAs (e.g.,
[18, 23]). However, there is an urgent need to evaluate the
significance of siRNA off-target reactions with unintended
sequences. Since a siRNA recognizes its targets by sequence
complementarity, potential off-targets can be predicted by
approximate sequence matching. However, this requires a
pairwise sequence alignment between the siRNA and ev-
ery gene in the genome, which can be very expensive for
traditional sequence alignment algorithms such as dynamic
programming.



Several programs that employ filtering techniques have
been developed, including BLAST [2], PatternHunter [15],
and QUASAR [4]. BLAST and PatternHunter filter out un-
related regions using contiguous and gapped seeds, respec-
tively. They run much faster than dynamic programming,
but both use lossy filtering techniques and thus frequently
overlook off-target candidates [13]. QUASAR uses a g-gram
based lossless filtering technique, but is limited to Hamming
or Levenshtein distance alignments. There are also algo-
rithms specific for siRNA selection (e.g., [13, 26]), but most
deal only with mismatches.

We are interested in developing fast and lossless methods
for detecting potential siRNA off-target reactions using ap-
proximate sequence matching. Our major contribution is
the development and implementation of a new homology se-
quence search program — siRNA Off-target Search (SOS) —
which uses a hybrid, g-gram based approach, combining two
filtering techniques using overlapping and non-overlapping
g-grams. The three main improvements over existing meth-
ods are:

e SOS introduces a more general cost model (an affine
bulge cost model) for siRNA-mRNA off-target align-

ment;

e SOS uses separate searches for alignments with and
without bulges that enables more efficient discovery of
potential off-target candidates; and

e SOS is faster and more accurate in finding off-target
candidates than BLAST, which is commonly used for
siRNA off-target detection.

The rest of the paper is organized as follows. We introduce
an affine bulge cost model as a measure for siRNA-mRNA
off-target alignments in Section 2. In Section 3, we discuss
two g-gram based filtering techniques for determining the
search criteria which allow us to locate potential off-target
candidates efficiently. We describe our computational exper-
iments and report preliminary results in Section 4. Finally,
we conclude and describe future work in Section 5.

2. SIRNA MRNA OFF TARGET ALIGNMENT

Consider a siRNA p, target gene g; and mRNA g; € G,
where G is the collection of genes in the genome. We de-
fine a semi-global alignment (alignment for short) between a
siRNA and a mRNA to be a 5-tuple A = (d, w, m, Bs, Bp,),
where d, w, and m are the numbers of identical matches, G:U
wobbles, and mismatches in the alignment; and B, = {bs}
and B, = {bn} are the two sets of bulges on the siRNA
and on the mRNA, respectively.

An affine bulge cost model is defined for computing the
alignment score.

DEFINITION 1. Let A = (d,w,m,Bs,B;,) be an align-
ment. The affine alignment score for alignment A, s(A),
can be calculated as follows:

s(A) =datw+my+ Y (p+bd)+ Y (p+bmd),
bs€Bs bm €Bm

where a, B, vy are the per-nucleotide scores for identity, G:U
wobble, and mismatch; and p and & are the scores for bulge
creation and extension.
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Let Ns =33, cp, bs and Npw =3, 5 bm be the total
number of nucleotides in bulges on the siRNA and mRNA,
respectively. We can rewrite the above formula as s(A) =

We assume that o < 8 <+ and 0 < é < p hold for typical
distance-based affine bulge cost models. A sample affine
bulge cost model for siRNA off-target alignments is shown in
Table 1. Based on the experimental results available in the
literature [6, 10, 12, 20], the parameters here are manually
selected to reflect the effects of different types of imperfect
matches on siRNA activities in RNAi process. We use this
cost model throughout the paper unless otherwise specified.

Table 1: A sample affine bulge cost model for siRNA
off-target alignments

Feature Symbol | Score
Identity «a 0
G:U wobble B 5
Mismatch ¥ 10
Bulge creation p 20
Bulge extension [ 3

The typical length for a siRNA is 19-23 nucleotides long,
while mRNAs are ~2000 nucleotides long. Only a small por-
tion of nucleotides in the mRNA contributes to an off-target
alignment. The semi-global alignment for off-target detec-
tion does not penalize terminal bulges on the mRNA, but
does penalize terminal bulges on the siRNA. Therefore, we
define an effective subsequence of a mRNA in an alignment
as follows:

DEFINITION 2. Given an alignment A between a siRNA
and a mRNA, the effective subsequence of the mRNA in A
is a portion of the contiguous nucleotides that aligns with
the siRNA. The length of the effective subsequence is L =
N + N,, — Ns, where N is the length of the siRNA.

The following example is an illustration of semi-global off-
target alignments between a siRNA and a mRNA.

ExXAMPLE 1. Consider two off-target alignments between
a siRNA and a mRNA, as shown in Figure 1. The off-
target alignment scores for alignment Ai: s(41) =18-0+
0-5+1-10+(20+2-3)+0 = 36, and for alignment
Az: 9(A2) =19-0+1-5+1-104+0+ (20+2-3) = 41.
The two effective subsequences of the mRNA in alignments
A1 and Az are shaded, and the effective lengths for the two
alignments are 19 and 23, respectively.

Let A = {A]A is an alignment between a siRNA and
a mRNA} be the set of all possible alignments between
the siRNA and the mRNA. The off-target score between
them, s, is defined to be the minimum alignment score, or
s = minacas(A). Currently, the off-target score is used
as a first cut for siRNA off-target detection; further inves-
tigation on thermodynamic properties and target structural
accessibility is underway.

3. Q GRAM BASED FILTERING

Most fast sequence alignment algorithms use a two-phase
approach: a filtration phase followed by a verification phase.
A filter is a fast algorithm that discards large portions of
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Figure 1: Semi-global alignments between a siRNNA and a mRNA.

the sequence according to some filtering criterion, leaving
the remaining part to be checked in the verification phase.
Many filters in approximate sequence matching are based
on ¢-grams: substrings of length q. Given a sequence S,
a positional g-gram q; of S is defined to be the substring
of length ¢ that starts at position ¢ in the sequence; ¢ =
1,2,...,|S|—q+1. The basic idea behind g-gram based fil-
tration is that the g-gram similarity between two sequences
can be captured by the number of g-gram hits shared by
them. A hit is a g-gram match between two sequences:

DEFINITION 3. A hit h(i,j) between a siRNA p and a
mRNA g is defined to be an exact, nucleotide-for-nucleotide
match between g-gram g; in p and g-gram g; in g.

Alignments between a siRNA and a mRNA may or may
not have bulges. The score of a bulge in a typical affine
bulge cost model is higher than that of a G:U wobble or
a mismatch, so alignments with bulges require more identi-
cal matches than those without bulges in order to maintain
the same alignment score. Therefore, the minimum number
of g-gram hits that a potential off-target candidate must
share with the siRNA is higher for alignments with bulges.
By separating the searches for alignments with and without
bulges, we raise the filtering criterion for searching align-
ments with bulges, thus reducing the number of potential
off-target candidates to be checked in the verification phase.
Based on this observation, we divide all alignments between
a siRNA and a mRNA into two disjoint classes: one for
alignments without bulges Ay, and the other for alignments
with at least one bulge Ay, and A = A, U As.

For a given siRNA p, we first generate positional g-grams
from p, q1,...,9-.. We use a lookup table to locate all g-
gram hits in the genome for each g-gram ¢; in p. Then
we use hit-processing techniques to analyze the g-gram hit
lists to determine potential off-target candidates. A good
way of doing that is to use a sliding window of length W,
and examine g-gram hits within the region of W contiguous
nucleotides in the mRNA each time. A region is considered
a potential off-target candidate if there are a certain number
of g-gram hits within a sliding window.

The basic procedure for searching siRNA off-targets con-
sists of the following four phases:

1. Lookup table creation phase: Build as an indexing struc-
ture a suffix array over a sequence database G. Given
the length ¢ of g-grams, compute the start indexes of
the hit lists for all g-grams in G. This step is performed
once for G.

2. g-gram hit lists generation phase:
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a) Alignments without bulges: Generate non-overlapping
g-grams for the selected siRNA, and search for the hit
list for each g-gram.

b) Alignments with at least one bulge: Generate over-
lapping g-grams for the selected siRNA, and search for
the hit list for each g-gram.

3. Filtration phase:

a) Use pigeonhole principle based approach (Corollary
1 in Section 3.1) along with hit-processing techniques
to locate potential off-target candidates in G based on
the g-gram hit lists from 2.a.

b) Use g-gram lemma based approach (Corollary 2 in
Section 3.2) along with hit-processing techniques to
locate potential off-target candidates in G based on
the g-gram hit lists from 2.b.

4. Verification phase: Potential off-target candidates from
3.a and 3.b are further checked using dynamic pro-
gramming.

In the following sections, we describe the two ¢-gram
based approaches with overlapping and non-overlapping q-
grams, respectively, for determining the filtering criteria for
potential off-target candidates.

3.1 Filtering based on alignments without bulges

For simplicity, we represent an alignment without bulges
as A’ = (d',w',m'), and the alignment score s(A') = d'a +
w' B +m'y.

To find the filtering criterion for potential off-target can-
didates based on alignments without bulges, we apply a non-
overlapping g-gram based approach that is based on the pi-
geonhole principle lemma.

LEMMA 1. (Pigeonhole principle lemma [16]) Let s1 and
sy be two sequences of the same length | with Hamming
distance k. 1If both s1 and s2 are divided into [é] non-
overlapping q-grams, then the number of g-gram hits between
s1 and 82 15 ty > [éj — k.

Here we extend the pigeonhole principle lemma to the new
cost model for siRNA-mRNA off-target alignments without
bulges.

LEMMA 2. Let A" = (d',w',m’) be an alignment between
a siRNA and a mRNA. If both the siRNA and the effective
subsequence of the mRNA (i.e., with length of N in this
case) are divided into [%J non-overlapping q-grams, then
the number of g-gram hits between them is t., > L%J —(w'+
m'), where N is the length of the siRNA.



With respect to g-grams, a G:U wobble is the same as a
mismatch, so the total Hamming distance is just (w' +m').

Given an off-target threshold, the following lemma gives
an upper bound for the total number of G:U wobbles and
mismatches (w' + m’).

LEMMA 3. Let A' = (d',w',m') be an alignment between
a siRNA and a mRNA with s(A") < T. The mazimum
number of G:U wobbles and mismatches in the alignment is

(m' +uw') < [%J, where € > 0 is the ratio of the

number of G:U wobbles to the number of mismatches.!

Proof: A’ = (d',w',m’) is an alignment without bulges,
so the alignment score s(A’') = d'a + w'8 + m'y. Since
d +w' +m' =N, we have d = N —w' —m’. Substituting
d' and w' = m/e into the alignment score, we have s(A') =
(N —m'e —m/)a+m'eB +m'y.

Rearranging the above equation yields m’ = c BS(AI)fNO‘

B-a)et(y—a)’
som +w' = (1+em' = %. Since s(A') < T,

AF)T=No). ! and w' are both inte-
(?;+a))?;(71;a; ’
gers, som’ +w' < | =Gl .

we have m' +w' <

COROLLARY 1. Given an alignment A’ = {d',w’,m') be-
tween a siRNA and a mRNA with s(A') < T, the number of
non-overlapping g-gram hits between the siRNA and the ef-
fective subsequence of the mRNA ist, > [%J—L(B_a)e_,’_(,y_a)

Corollary 1 directly follows Lemmas 2 & 3, and can be
used as a filtering criterion for determining potential off-
target candidates based on alignments without bulges.

ExAMPLE 2. Consider an alignment A’ = {(d',w’,m’) be-
tween a mRNA and a siRNA with length of N = 21 nu-
cleotides. For a given off-target threshold T, the minimum
number of g-gram hits t., between the siRNA and the effec-
tive subsequence of the mRNA can be computed according to
Corollary 1. The final results for the length of g-gram q =3
are listed in Table 2.

Table 2: The minimum number of non-overlapping
g-gram hits ¢,,, where N =21, ¢ =3, and ¢ =0.2.

Off-target q | tw
threshold T
0

10

20

30

40

50

WWwwWwwwW
DWW OTOY

3.2 Filtering based on alignments with at least
one bulge
To find the filtering criterion for potential off-target can-
didates based on alignments with bulges, we apply an over-
lapping g-gram based approach that is based on the g-gram
lemma.

'Tn this paper, we assume a uniform distribution among the
four nucleotides in genomes, therefore the average value for
€ is around 0.2. Work on more general model of G:U wobble
is ongoing.

(1+e)(T—Na)

.
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LEMMA 4. (The g-gram lemma[24]) Let p be a pattern
and S be a target sequence with Levenshtein distance k. The
number of overlapping g-gram hits between p and S is tp >
lp| — (kK +1)g+ 1.

Here we extend the g-gram lemma to the affine bulge cost
model for siRNA-mRNA off-target alignments with bulges.

LEMMA 5. Given an alignment A = (d,w, m,Bs, Bn,)
between a siRNA and a mRNA, the number of overlapping
g-gram hits between the siRNA and the effective subsequence
of the mRNA isty > N—qg+1— (w+m)g—[|Bs|(g—1) +
Ns] = [Bm|(g — 1).

The above formula can be split into four parts. The first
part, N — q + 1, is the total number of g-grams (or valid
g-gram hits) in the siRNA. The second part means that
a single mismatch or G:U wobble, in the worst case, can
invalidate up to ¢ g-gram hits. The third and fourth parts
represent the maximum numbers of g-grams that can be
invalidated due to bulges on the siRNA and on the mRNA,
respectively.

Given an off-target threshold, the following lemma gives
an upper bound for the total number of G:U wobbles and
mismatches (w + m).

LEMMA 6. Let A = (d,w, m, Bs, Bp) be an alignment be-
tween a siRNA and a mRNA with s(A) <T. The mazimum

number of G:U wobbles and mismatches in the alignment is

14€)[T—(N—=Ns)a—(B|+|B' )p— (Ns+Nm)é
(m+w) < |_( )T—( ([32a§|5+‘(7‘7a|)p ( ) ]J, where

€ > 0 is the ratio of the number of G:U wobbles to the num-
ber of mismatches.

Proof: A = (d,w,m, By, By,) is an alignment, so the align-
ment score s(A) = da+ wfB + mvy+ (|Bs| + |Bm|)p + (Ns +
Np,)d. Since d+w+m+Ns = N, we haved = N—w—m—N5.
By substituting d and w = me into the alignment score, we
get s(A) = (N — me — m — N;)a + mef + my + (|Bs| +
[Bunl)p + (e + N ).

Rearranging the above equation yields
m = A =(N=-Nsjo—(|Bs|+|Bm Dpt(Ns +Nm)§ o
- (B—a)et+(y—a) ’

mAw = (1+€)m = QFOA)=(N=N)a= (B, |+ Bm o+ (Na +Nom)5],

(B—a)e+(y—a)
Since s(A) < T, we have
A4e)[T=(N=Ns)a—=(|Bs|+|Bm|)p+(Ns+Nm)d]
m+tw<  (B-a)et(-a
m and w are both integers, so
A4e)[T=(N=Ns)a=(|Bs|+|Bm|)p+(Ns+Nm)d]
mtw<]| (F—a)e+(r—a) )

O

COROLLARY 2. Given an alignment A = (d, w, m, Bs, Bp,)
between a siRNA and a mRNA with s(A) < T, the number of
overlapping g-gram hits between the siRNA and the effective
subsequence of the mRNA isty, > (N — Ny) — (|Bs| + |Bm|+

1+4+€)[T—(N—Ns)a—(|Bs|+|Bm No+Npm)é
D(g—-1)— [( +)T—( S()g_él)e_'_l(i-l_a) De+(Ns+Nom) ]Jq.

Corollary 2 directly follows Lemmas 5 & 6, and can be
used as a filtering criterion for determining potential off-
target candidates based on alignments with at least one
bulge.

Given an affine bulge cost model, an off-target threshold
T, and the length g of g-grams, the minimum number of
overlapping g-gram hits ¢, between a siRNA and an effec-
tive subsequence of a mRNA depends on the following four
parameters: |B;|,|Bm|, Ns, and Np,. Therefore, we define
(ts)min to be the minimum number of overlapping g-gram



hits ¢, over all possible combinations of the four parameters.
(Ns)maz and (Nm)maz are the maximum Ny and maximum
Np,, respectively, such that ¢, > 0.

Table 3: The maximum N;, maximum N,,, and the
minimum number of overlapping g-gram hits (t;)min,
where N = 21, g =4, and € = 0.2 (Note that (N;)maz
and (Nm)maz need not be equal.).

Oﬁ"target q (Ns)maac (Nm)maa: (tb)mzn
threshold T

0, 10, 20 I N/A N/A N/A
30 4 3 3 12
40 4 6 6 8
50 4 10 10 4

EXAMPLE 3. Consider an alignment A = (d, w, m, Bs, Bp,)
between a« mRNA and a siRNA with length of N = 21 nu-
cleotides. For a given off-target threshold T, the minimum
number of g-gram hits (tp)min between the siRNA and the
effective subsequence of the mRNA can be computed accord-
ing to Corollary 2. The final results for the length of q-gram
q = 4 are listed in Table 8, along with the (Ng)maz and
(Nm)mam-

4. COMPUTATIONAL RESULTS

We have developed and implemented the siRNA Off-target
Search (SOS) in Java. The online version of SOS program
can be found at http://rnai.cs.unm.edu/off Target. Figure 2
shows the screenshot of the SOS user interface.

2 siRNA Off target Search - Microsoft Internet Explorer
Fie Edt Vew Favortes Took

siRNA Off-target Search
with Hybrid q-gram Based Filtration Techniques

SIRNA and Target Organism

siRNA Sequence (21 nt):  gosgaassgragasangse

Target Organism: C elegans

Off-target Threshold 5

‘Without Bulges

et Search
Distance-based Affine Bulge Cost Model
Identity G:U Wobble Mismatch

Bulge Creation Bulge Extension

&) oone 4 My Computer

& jfo 10mpm

Figure 2: A screenshot of user interface for
the online version of SOS.

We performed all tests on a 3.0GH z Pentium IV machine
running Linux with 1GB main memory. We applied our
methods to the cDNA sequences of C. elegans, which contain
22,168 genes (database size: 30MB) from release WS110 of
the Wormbase at Sanger Institute [22]. We first examined
the performance of our SOS program, and then compared it
with BLAST, a computer program commonly used for off-
target detection. BLAST is downloaded from the NCBI ftp
site.
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Experiments were conducted to compare the number of
potential off-target candidates and runtime for searching
alignments with bulges with those for searching alignments
without bulges. In addition, we examined the effects of sep-
arate searches for alignments with and without bulges on the
overall performance of the SOS. During the experiments, we
collected both the number of potential off-target candidates
after the filtration phase, which is an indicator of filtration
efficiency, as well as the execution time. Each experiment
was repeated with 100 randomly picked siRNAs, and each
data point in the figures represents the average value of the
results from those tests.

Here we report the results of our computational exper-
iments. Figure 3 compares the numbers of potential off-
target candidates between searches for alignments with and
without bulges. We can see that the numbers of potential
off-target candidates increase with the off-target score for
both cases. At lower off-target scores there are more po-
tential off-target candidates with no bulges, while at higher
off-target scores there are comparable number of potential
off-target candidates for the two cases.

The number of potential off-target candidates is very low
(less than 1000) at lower off-target scores, so the execution
time in the filtration phase dominates. However, the num-
ber of potential off-target candidates gets much higher at
higher off-target scores, so the execution time in the verifi-
cation phase dominates. This is consistent with the results
shown in Figure 4. At lower off-target scores the runtimes
are comparable for the two cases, while at higher off-target
scores the runtime for searching potential off-targets with
bulges dominates. The reason is that verifying an off-target
candidate with bulges is much more time-consuming than
verifying an off-target candidate without bulges.

Figure 5 shows the effect of separate searches for align-
ments with and without bulges on the number of poten-
tial off-target candidates per siRNA. It can be seen that at
lower off-target scores, separation of searches increases the
potential off-target candidates, and the filtration efficiency
decreases slightly. At higher off-target scores, separation of
searches results in a ~90% decrease of potential off-target
candidates — the filtration efficiency increases dramatically.

The number of potential off-target candidates affects the
overall performance only at higher off-target scores, where
the runtime of the verification phase dominates. This is
supported by the fact that the total runtime with separate
searches is consistently, for all off-target scores, almost one
order of magnitude lower than that with no separation of
searches, as shown in Figure 6.

We compared SOS with BLAST for siRNA off-target de-
tection. SOS performs better than BLAST when matching a
short sequence with a much longer sequence as in the siRNA
off-target search problem. For a typical case (e.g., off-target
threshold 7' = 30), SOS takes less than 0.2 second to finish
the potential off-target search, as shown in Figure 6. Based
on the execution time of 100 siRNA trials, BLAST takes an
average of over 10 seconds for each siRNA with the default
settings, which is at least one order of magnitude higher
than that for SOS. Furthermore, BLAST missed a certain
percentage of potential off-target sequences, as shown in Ta-
ble 4. Similar results have been seen for other genes as well.
Both higher off-target threshold T and longer word length w
contribute towards a higher rate of undetected off-targets.
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candidates: One uses separate searches for
alignments with and without bulges, and the
other does not.

5. CONCLUSIONS AND FUTURE WORK

We have developed and implemented the siRNA Off-target
Search (SOS) program. It uses a hybrid, g-gram based ap-
proach, combining two filtering techniques based on over-
lapping and non-overlapping g-grams. This approach intro-
duces an affine bulge cost model to measure siRNA-mRNA
off-target alignment. We have demonstrated with experi-
ments that at higher off-target scores the runtime for search-
ing alignments with bulges dominates. By separating searches
for alignments with and without bulges, we raise the filtering
criterion for searching alignments with bulges, and subse-
quently reduce the number of potential off-target candidates
to be checked in the verification phase. Therefore, using
separate searches for alignments with and without bulges
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Figure 4: Runtime: One searches alignments
with bulges, and the other searches alignments
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rate searches for alignments with and without
bulges, and the other does not.

significantly improves the performance of the SOS. Over-
all, SOS achieves better performance, in terms of speed and
recall/precision, than BLAST in detecting potential siRNA
off-targets.

There are three major foci in our ongoing and future re-
search: 1) Develop a specific method for G:U wobble detec-
tion in the filtration phase; 2) Use a more robust cost model
considering positional information of imperfect matches; and
3) Apply gapped or partially matched g-grams in SOS.
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ABSTRACT

Genome wide protein networks have become reality in recent
years due to high throughput methods for detecting protein
interactions. Recent studies show that a networked repre-
sentation of proteins provides a more accurate model of bio-
logical systems and processes compared to conventional pair-
wise analyses. Complementary to the availability of protein
networks, various graph analysis techniques have been pro-
posed to mine these networks for pathway discovery, func-
tion assignment, and prediction of complex membership. In
this paper, we propose using random walks on graphs for
the complex/pathway membership problem. We evaluate
the proposed technique on three different probabilistic yeast
networks using a benchmark dataset of 27 complexes from
the MIPS complex catalog database and 10 pathways from
the KEGG pathway database. Furthermore, we compare the
proposed technique to two other existing techniques both in
terms of accuracy and running time performance, thus ad-
dressing the scalability issue of such analysis techniques for
the first time. Our experiments show that the random walk
technique achieves similar or better accuracy with more than
1,000 times speed-up compared to the best competing tech-
nique.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics|: Graph Theory—graph al-
gorithms, network problems; J.3 [Life and Medical Sci-
ences|: Biology and Genetics
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protein networks; random walks on graphs; complex mem-
bership; pathway membership
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Recent developments in genome projects have shown that
the complex biological functions of higher organisms are
due to combinatorial interactions between their proteins.
Therefore, in recent years much effort has gone into find-
ing the complete set of interacting proteins in an organ-
ism [22]. Genome-scale protein networks have been realized
with the help of high throughput methods, like yeast-two-
hybrid (Y2H) [8, 19] and affinity purification with mass spec-
trometry (APMS) [6, 7]. However, as later studies show, the
results from high throughput screens may contain significant
number of false positive interactions [22]. Asthana et al. [1]
assign probabilistic confidence values to experimentally de-
rived interactions using the manually curated catalogs of
known complexes in MIPS (Munich Information Center for
Protein Sequences) [15] as a trusted reference set. In ad-
dition, information integration techniques that utilize indi-
rect genomic evidence have provided both increased genome
coverage by predicting new interactions and more accurate
associations with multiple supporting evidence [4, 9, 12, 21].

Complementary to the availability of genome-scale protein
networks, various graph analysis techniques have been pro-
posed to mine these networks for pathway discovery [3, 17,
24], function assignment [11, 13, 18], and prediction of com-
plex membership [1]. The intrinsic cluster structure of a pro-
tein network provides more accurate biological insights com-
pared to local pairwise comparisons. Bader and Hogue [2]
propose a clustering algorithm to detect densely connected
regions in a protein interaction network for discovering new
molecular complexes.

A biologically motivated problem is to predict new mem-
bers of a partially known protein complex or pathway. In
this problem, a particular core set of proteins is known, but
the biologists are not confident that this core set is com-
plete. The goal is to find a list of candidate proteins, prefer-
ably ranked by probability of membership in the partially
known complex. As a solution to this problem, Asthana
et al. [1] proposed a network reliability based technique to
find close proximity proteins. They approximate the reliabil-
ity between two nodes using Monte Carlo simulation, since
the exact solution to the network reliability problem is NP-
hard [20]. However, the proposed approximation technique
is still computationally expensive as the number of samples
for accurate reliability estimation of distant nodes can be
very high. Therefore, this technique does not scale well for
large protein-protein interaction networks. In this paper,
as a computationally more efficient alternative, we propose



using random walks on graphs for the complex membership
problem.

The random walk technique exploits the global structure
of a network by simulating the behavior of a random
walker [14]. The random walker starts on an initial node,
i.e., the query node, and moves to a neighboring node based
on the probabilities of the connecting edges. The random
walker may also choose to teleport to the start node with
a certain probability, called the restart probability. The
walking process is repeated at every time tick for a certain
amount of time. At the end, the percentage of time spent
on a node gives a notion of its proximity to the query node.
Google search engine uses a similar technique to exploit the
global hyperlink structure of the Web and produce better
rankings of search results [5]. Weston et al. [23] use the ran-
dom walk technique on a protein sequence similarity graph
created using PSI-BLAST scores to provide better rankings
for a given query protein sequence.

The solution to the problem of finding final rankings of a
random walk process can be formulated as an iterative ma-
trix multiplication that provably converges [23]. In addition
to providing a computationally much efficient alternative,
the matrix formulation also allows for the random walker to
start from a set of nodes instead of a single node. Therefore,
by using the proteins of a partially known complex as the
start set, the random walk technique ranks the remaining
proteins in the network with respect to their proximity to
the query complex. This makes the random walk technique
a suitable solution for complex membership problem.

We evaluate the random walk technique on three prob-
abilistic yeast networks using a benchmark dataset of 27
complexes from the MIPS complex catalog database [15]
and 10 pathways from the KEGG [10] pathway database.
Our experiments show that the ranking results provided by
the random walk technique is as accurate as the network re-
liability technique [1] with more than 1,000 times speed-up.

The rest of the paper is organized as follows. In Section
2, we give technical details of the random walk method for
the complex membership problem. In Section 3, we evaluate
the proposed technique on three probabilistic yeast networks
and present comparative analysis results. We conclude in
Section 4.

2. METHODS

In this section, we describe the complex membership prob-

lem and present the random walk algorithm as a solution to
this problem. We also discuss the competing techniques that
are used in the comparative analysis.
Complex membership problem: Given a set of core pro-
teins in a protein complex, the complex membership prob-
lem is defined as the problem of finding a set of candidate
proteins, ranked according to the probability that each con-
nects to the core complex. A good solution to this problem
provides better targets for in vivo screening of candidate
members of a protein complex. The same solution can be
used for predicting candidate members of a partially known
pathway if the underlying network captures functional asso-
ciations as well as protein-protein interactions.

2.1 Random walks on graphs
Let G = (V, E) be the graph representing a protein-protein

interaction network, where V is the set of nodes (proteins),
and E is the set of weighted undirected edges, where the
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Input: the similarity network G = (V| E);
a start node s;
restart probability c;

Output: the proximity vector ps(V);

Let 75 (V') be the restart vector with 0 for all its entries
except a 1 for the entry denoted by node s;
Let A be the column normalized adjacency matrix
defined by E;
Initialize p (V) := 75(V);
while (ps (V') has not converged)
ps(V) := (1 — )Aps (V) + ers(V);

Figure 1: The iterative algorithm to compute the
proximity of all the nodes in the graph to a given
start node s.

weight shows the probability of interaction (or functional
association) between protein pairs. We define the proximity
of a node v to a start node s, ps(v), as follows:

DEFINITION 2.1. p,(v) is the steady state probability that
a random walk starting at node s will end at node v.

Random walk method simulates a random walker that
starts on a source node, s (or a set of source nodes simulta-
neously). At every time tick, the walker chooses randomly
among the available edges (based on edge weights), or goes
back to node s with probability ¢. The restart probabil-
ity c enforces a restriction on how far we want the random
walker to get away from the start node s. In other words, if
c is close to 1, the affinity vector reflects the local structure
around s, and as c¢ gets close to 0, a more global view is
observed.

The probability ps(v)(), describes the probability of find-
ing the random walker at node v at time ¢. The steady state
probability ps(v) gives a measure of proximity to node s,
and can be computed efficiently using iterative matrix oper-
ations. Figure 1 shows the iterative algorithm, which prov-
ably converges [23]. The number of iterations to converge is
closely related to the restart probability c. As ¢ gets smaller
the diameter of the observed neighborhood increases, thus
the number of iterations to converge gets larger. The con-
vergence check requires the L;-norm between consecutive
ps(V)s to be less than a small threshold, e.g., 10~'2. In our
experiments, for ¢ = 0.30 the average number of iterations
to converge is around 55. We give the running time perfor-
mance of the random walk method for different ¢ values in
Section 3.

The details of the random walk method can be found
in [14]. The main advantage of the random walk method
is that it is very fast and therefore applicable to large pro-
tein networks. Another advantage is that, the method can
be used to compute the proximity of a node to a set of source
nodes (not just a single source node). This property is espe-
cially beneficial when a core set of members of a pathway or
complex is known and the network is queried for candidate
members.

2.2 Other techniques for the complex mem
bership problem

Network reliability using Monte Carlo simulation:

The solution to the two-terminal network reliability problem

can be used to predict functional associations between pro-
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Figure 2: Associations between four members of the Ribonucleoside-diphosphate reductase complex in (a)
ProNet, (b) ConfidentNet, and (c) PIT-Network. The edge weights for ProNet are probabilities with prior
probability of interaction 0.007. The edge weights for ConfidentNet and PIT-Network are products of like-
lihoods of individual data sources. The likelihoods of these networks are not directly comparable since they
are built using different number of data sources. For the network reliability technique, these likelihoods are

normalized to range [0,1].

teins. In the reliability problem, we have a graph of connec-
tions between nodes in which each connection is weighted by
the probability that the corresponding wire (edge) is func-
tioning at a given time. The probability that some path of
functioning wires connects the two terminals at a given time
gives a measure of proximity between these terminals. The
same idea can be extended to discover neighboring proteins
in a protein network. The exact solution to the network reli-
ability problem is NP-hard [20]. Monte Carlo simulation [1]
is one of the approximation methods proposed for this prob-
lem. In this method, a sample of N binary networks from
the probabilistic network is created according to a Bernoulli
trial on each edge based on its probability. Then, breadth-
first search is used to determine the existence of a path be-
tween a node in the network and the core complex/pathway.
For each protein p in the network, the fraction F; of sampled
networks in which there exists a path between ¢ and the core
complex/pathway is counted. This process provides a rank-
ing of all the proteins in the network. Unlike the random
walk technique, this method does not normalize the incom-
ing edges of a node when computing the connectivity of a
protein to the core complex/pathway. The two parameters
that affect the accuracy of the results and the computa-
tional efficiency of the technique are the choice of N (the
number of samples) and the maximum depth for breadth-
first search. In Section 3, we give accuracy and running time
performance results for different values of V.

Markov random field: Markov random field method is
based on belief propagation and is used to analyze pro-
tein networks by Letovsky and Kasif [13]. The method is
originally proposed for function prediction but can be used
to predict new members of a partially known complex or
pathway. At every iteration, each node receives information
about its neighbors’ labels and their beliefs on the label.
Each node then updates its own belief based on the distri-
bution of its neighbors’ beliefs. The updated belief is the
probability of having k of M neighbors having the label.
Since the belief propagation is an iterative process, nodes
may mutually enhance their beliefs in the case of cycles in
the network. To avoid such traps, Letovsky and Kasif pro-
pose resetting the beliefs every two iterations. The resetting
is accomplished by labeling only the nodes with probability
higher than some threshold (e.g., 0.8). The Markov ran-
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dom field method is very fast, and the underlying idea of
belief propagation is very intuitive. However, there are a
number of disadvantages for practical use of this method for
the complex membership problem: 1) there are too many
parameters to adjust, 2) no formal proof of belief bounds
exist, 3) the method needs a large negative label set to sup-
press propagation of belief to all of the network, and 4) the
result provided by the Markov random field is not a rank-
ing but a set of nodes that are predicted to be candidate
members of the core complex.

Diffusion kernels: Diffusion kernels provide a global sim-
ilarity metric for the nodes of a graph. The computation of
a diffusion kernel is based on the Gaussian radial basis func-
tion kernel [16, 18]. The advantages of the diffusion kernels
are: 1) they are suitable for integration of multiple data
sources and 2) existing kernel methods, e.g., support-vector
machines, can be used for classification. The main disadvan-
tage is that it is a measure between two nodes; therefore, a
decision as to which metric should be used to compute sim-
ilarity of a set of nodes to a single node (e.g., max, average,
sum, etc.) is needed. The other disadvantages are: 1) com-
putation of the diffusion kernel is expensive, 2) the only
parameter (3 is not as intuitive as the restart probability in
random walks, and 3) the effect of the edge weights on the re-
sulting kernel is unclear. Our efforts to use diffusion kernels
for the complex membership problem with default parame-
ters were not successful as the accuracy of the results were
very low compared to those of random walk, network relia-
bility, and Markov random field techniques. Kernel methods
work best with the optimum parameters whose discovery
can be tedious. Therefore, we do not compare the proposed
random walk method to the diffusion kernel technique.

In the next section, we evaluate the random walk tech-
nique on three probabilistic yeast networks and provide com-
parative results for the complex membership problem.

3. RESULTS

Many biological studies for identification of functional in-
teractions between proteins have targeted the model organ-
ism yeast due to its small genome, extensive genetic in-
formation, and well-known biochemistry. Therefore, due
to the availability of extensive experimental data, most of



Table 1: KEGG pathways used in the experiments.

KEGG pathway id: | Number of pathway members: | Pathway description:
sce00030 27 Pentose phosphate pathway
sce00193 30 ATP synthesis
sce00510 30 N-Glycan biosynthesis
sce00513 15 High-mannose type N-glycan biosynthesis
sce00600 18 Glycosphingolipid metabolism
sce03020 29 RNA polymerase
sce03022 23 Basal transcription factors
sce03030 21 DNA polymerase
sce03050 32 Proteasome
sce03060 10 Protein export

the computational studies on construction of protein net-
works have been on the yeast genome. Below, we describe
the probabilistic yeast networks used in our experiments.
The first network, ProNet (Asthana et al. [1]), is a proba-
bilistic network derived from the results of four large scale
experimental interaction detection techniques [6, 7, 8, 19].
ProNet contains 3,112 yeast proteins and 12,594 undirected
probabilistic interactions, i.e., edges. The second network,
ConfidentNet (Lee et al. [12]), is a probabilistic functional
network of yeast genes. The associations between proteins
are predicted using a Bayesian approach by combining five
different information sources: mRNA coexpression, gene-
fusions, phylogenetic profiles, co-citation, and protein in-
teraction experiments. ConfidentNet contains 4,681 yeast
proteins and 34,000 undirected probabilistic associations.
The third network, PIT-Network (probabilistic interactome-
total) (Jansen et al. [9]), is a combination of predicted and
experimental interaction networks using a naive Bayesian
approach. The predicted network is constructed using
mRNA expression, GO processes, MIPS function, and essen-
tiality data. The experimental network is constructed with
the same data sources used in ProNet, but by using a fully
connected Bayesian network. PIT-Network contains 2,879
yeast proteins and 24,820 interactions. To illustrate the dif-
ferences between the three networks, Figure 2 shows associa-
tions between the members of a Ribonucleoside-diphosphate
reductase complex in ProNet, ConfidentNet, and PIT-
Network respectively.

In order to evaluate the performance of the random walk
technique for the complex membership problem, we used the
27 MIPS [15] complexes examined by Asthana et al. [1] and
10 selected pathways from the KEGG pathway database [10].
Table 1 shows the KEGG pathways used in our experiments.
We used the leave-one-out benchmark to assess the accuracy
of the analysis techniques. In this benchmark, for each of
the complexes and pathways examined, one member protein
is left out in turn and the remaining set of member proteins
is used as the core complex or the partially known pathway
in a membership query. The rank of the left out protein as
given by the query results provides a measure of accuracy.
A successful analysis method should report the left out pro-
tein in top ranks. Therefore, in the accuracy result graphs
given below, the fraction of leave-one-out queries in which
the left-out protein was found above a threshold rank & is
assessed.

Figure 3 and Figure 4 show the comparison results for
MIPS complex queries and KEGG pathway queries
on ProNet respectively. The result of the Markov random
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Figure 3: Comparison of analysis methods for pro-
tein complex queries on ProNet. The x-axis shows
the rank threshold for the left out protein and the
y-axis shows the percentage of complex queries (for
a total of 121 left-out complex proteins) that the left
out protein is found at (or below) the specified rank
threshold.
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Figure 4: Comparison of analysis methods for
KEGG pathway queries on ProNet.
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Figure 9: Running time performance of the random
walk technique for varying restart probability. The
queries are performed on ProNet and the time on y-
axis shows the total time to complete all 121 MIPS
complex leave-one out queries.

field (MRF) method is depicted as a constant height bar,
because MRF method does not return a ranked list, but a
set of genes predicted to be members of the complex or the
pathway. The size of the set returned by the MRF method
is approximately 300 for the protein networks we consider in
this paper. The accuracy ratio indicates the percentage of
left out proteins that are correctly predicted to be a mem-
ber of the core complex/pathway. The results show that the
random walk technique has similar or better accuracy com-
pared to the network reliability technique for both complex
and pathway queries. In these tests, restart probability of
0.50 was used for the random walk method and sampling
size of 10,000 was used for the network reliability by Monte
Carlo sampling technique. The slight decrease in the accu-
racy values for pathway queries is because ProNet captures
only direct interactions but not functional associations.

It is clear that the accuracy of any analysis method de-
pends also on the quality of the probabilistic network. There-
fore, we performed the same benchmark tests for random
walk and network reliability on ConfidentNet and PIT-
Network (Figures 5 to 8). These results indicate that, re-
gardless of the network used, random walk technique
achieves similar results similar to those of the network relia-
bility technique for the complex/pathway membership prob-
lem. One interesting observation is that the network reliabil-
ity technique performs significantly worse than the random
walk technique on the PIT-Network. A possible reason for
this finding may be the breadth-first search threshold of 4
that is specially tuned for ProNet. The network reliabil-
ity technique will perform poorly for graphs on which
complex/members are placed farther apart.

Next, we analyze the effect of the restart probability for
the random walk method and sample size for the Monte
Carlo sampling technique (network reliability) on ProNet
for MIPS complex queries. Running time behaviors of these
methods on other networks are similar. Also, the running
time of Markov random field method is close to that of the
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Figure 10: Running time performance of the Monte
Carlo sampling approximation to the network re-
liability problem for varying sample size. Both
axes are shown in log scale for better illustration
of wide range of values. The queries are performed
on ProNet and the time on y-axis shows the total
time to complete all 121 MIPS complex leave-one
out queries.

random walk method.

Figure 9 and Figure 10 show the running time perfor-
mances of the random walk method and network reliability
by Monte Carlo sampling method respectively. In order to
compare the timing results effectively, one needs to find the
optimum parameters that gives best accuracy results. Fig-
ure 11 and Figure 12 present accuracy results with respect
to varying restart probability and sample size (Figure 12 is
depicted as a bar graph in order show variable scale values
of sample sizes more clearly). Figure 11 shows that the ac-
curacy of the random walk technique is not sensitive to the
value of restart probability. The random walk method at-
tains the best accuracy of 54% for restart probability 0.5.
On the other hand, the Monte Carlo sampling technique has
the best accuracy of 51% for sample sizes 5,000 and 10,000.
The running time at sample size of 5,000 is approximately
6 hours for the Monte Carlo sampling technique, whereas
random walk technique achieves a better accuracy in only
9.4 seconds. This gives a speed-up of more than 2,000. Even
with small sampling sizes, such as 100, where network relia-
bility has acceptable accuracy, random walk is much faster
than the Monte Carlo sampling technique, i.e. 9.4 seconds
versus 437.81 seconds.

4. CONCLUSIONS

In this paper, we proposed using random walks on protein-
protein interaction networks for the complex membership
problem. We assessed the accuracy of the random walk tech-
nique on three different probabilistic yeast networks using a
benchmark dataset of 27 complexes from the MIPS complex
catalog database and 10 pathways from the KEGG pathway
database. We showed that the random walk method is suit-
able for predicting candidate members of a core complex or
partially known pathway. The most prominent property of
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Figure 11: Accuracy of the random walk technique
for varying restart probability for top-5 queries. The
queries are performed on ProNet and using MIPS
complexes.

the random walk technique is its computational efficiency.
Our experiments showed that the random walk technique
achieves similar or better accuracy with more than 1,000
times speed-up compared to the best competing technique.
Therefore, it is a promising method that can scale well for
large, genome-scale protein networks.
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ABSTRACT

Finding protein functional modules in protein interaction
networks amounts to finding densely connected subgraphs.
Standard methods such as cliques and k-cores produce very
small subgraphs due to highly sparse connections in most
protein networks. Furthermore, standard methods are not
applicable on weighted protein networks. We propose a
method to identify cliques on weighted graphs. To overcome
the sparsity problem, we introduce the concept of transitive
closure on weighted graphs which is based on enforcing a
transitive affinity inequality on the connection weights, and
an algorithm to compute them. Using protein network from
TAP-MS experiment on yeast, we discover a large number
of cliques that are densely connected protein modules, with
clear biological meanings as shown on Gene Ontology anal-
ysis.

Categories and Subject Descriptors

1.2 [ARTIFICIAL INTELLIGENCE]; 1.2.6 [Learning]:
Data mining; G.2 [DISCRETE MATHEMATICS]; G.2.2
[Graph Theory]: Cliques

1. INTRODUCTION

Proteins carry out cellular functions and processes in a

modular fashion, involving multiple interacting proteins. Iden-

tification of protein functional modules becomes an urgent
research topic. Fortunately, there is a large body of genome-
wide comprehensive experiments on protein interaction net-
works. The two-hybrid genetic screen yield binary interac-
tion data [12, 21]. Recent high throughput methods com-
bine tagged “bait” proteins and protein-complex purifica-
tion schemes with mass spectrometric measurements to yield
physiologically relevant data on intact multi-protein com-
plexes [10, 6]. Genome-wide interaction screen has been
performed for several organisms, including the yeast Sac-
charomyces cerevisiae [25, 12], vaccinia virus [14], hepati-
tis C virus [7], and Helicobacter pylori [20]. However, these
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high-throughout experiments are often associated with large
false-positives [16]. For example, interaction data obtained
in two independent experiments [12, 11] and [25] only over-
lap less than four percent of the interactions.

A number of computational methods have been proposed
for the prediction of protein interaction networks. These in-
clude gene fusion/Rosetta method [5, 13], protein sequence-
based method[2], protein structure [17], phylogenetic profile
[19], protein homology [8], and comparative analysis [22].

A different type method is to detect the densely connected
subgraph in the protein interaction networks. The most in-
tuitive and also simple definition of densely connected sub-
graph is clique, a completely connected subgraph in the pro-
tein network. One difficulty with this approach is that pro-
tein interactions are typically very sparse. Thus the cliques
identified are very small. One way to overcome this prob-
lem is to use k-core [10, 1], where each protein only interacts
with a fraction of other proteins in the subgraph. While this
relaxes the strict definition of clique, it introduces another
issue of how to choose the parameter k. Density based de-
tection is also proposed[l, 23]. A recent approach is to use
data mining association rule approach to find tightly associ-
ated proteins [27]. This approach require a transaction type
data and cannot be applied directly on a graph.

The above module identification methods are on uniformly
weighted (unweighted) protein interaction network where
the interaction strength is either 1 or 0. This “either 1 or 0”
interaction characterization is a crude description. More re-
fined characterization would use a weighted graph, assigning
a probability or level of certainty that two proteins interact.
Thus the methods of identifying densely connected subgraph
need to be generalized to weighted graphs.

In this paper, we address the above clique finding, net-
work sparsity and weighted graph issues. First, we address
the issue of how to define the clique in a weighted graph.
‘We use the Motzkin-Straus theorem which relates the clique
identification of an unweighted graph to the optimization of
a quadratic continuous function with L; type linear con-
straints. The Motzkin-Straus approach can be generalized
to weighted graphs. The key feature is that the L; type
constraints ensure the sparsity of the solution vector, and
therefore, small sizes of the resulting cliques. This defini-
tion of clique involves no parameters. (see §2).

Second, we propose a generalization of transitive closure
of unweighted graphs to weighted graphs. The key idea is
to show that the transitivity of similarity or affinity met-
ric satisfies a “transitive affinity inequality” which, in some
sense, is analogous to triangle inequality of distance mea-



sures. Using this transitive closure, previously less densely
connected subgraph now become a “clique” and thus can be
identified. This helps to resolve the sparsity problem of the
protein interaction networks (see §3, §4).

In §5 and §6, we apply the proposed methods to the
yeast protein interaction data, the TAP-MS experiment of
multi-protein complexes. In §5, we explain how to construct
weighted interaction graph from multi-protein complexes.
In §6, we present the functional modules/cliques identified.
The results show the advantage of transitive closure over
the original sparse interaction network. The discovered pro-
tein modules have clear biological significances, as verified
by Gene Ontology analysis.

2. FINDING CLIQUES IN A WEIGHTED
GRAPH

We generalize the concept of clique to weighted graphs
and introduce an algorithm to compute them. The general-
ization is based on the theorem due to Motzkin and Straus
[15] which relates maximal cliques of an unweighted undi-
rected graph to the optimization of a quadratic function.

Let G = (V, E) be an unweighted undirected graph of n =
|V| vertices and |E| edges with adjacency matrix A. Define
a vector X = (%1,---,%n)" on the vertices, i.e., x € R™.
Consider the optimization problem:

_ T
max J(x) =x Ax (1)
where x is restricted to the unit simplex S, defined as
Sn: it Hzp=1,2; >0, Vi. (2)

The nonzero elements in the solution vector x play impor-
tant role. In particular, we define a characteristic vector
of a subset C of vertices as x© (x§,--- ,25)", where
z§ =1/|C| if i € C, z§ = 0 otherwise. The following theo-
rem make the connection between vertices corresponding to
nonzero elements to maximal cliques.

Theorem 1[Motzkin and Straus]. (1) Subset C'is the largest
maximal clique if and only if its characteristic vector is a
global optimal solution of the optimization problem; (2)
Subset C' is a maximal clique if and only if its characteristic
vector is a local optimal solution of the above optimization
problem.

2.1 Generalization to weighted graphs

Motzkin-Straus Theorem provides a convenient formalism
for generalize the concept of cliques to weighted graphs. We
propose the following definition of generalized cliques:
Generalized cliques in a weighted graph with adjacency
matrix A. The subset of vertices corresponding to the nonzero
elements in the optimal solution x* form a clique in A.

The key to this generalization is the recognition of the
L;-type constraint of Eq.(3) in the quadratic programming

problem of Eq.(1) (The L,-norm of a vector x in n-dimensional

space is defined as |[x|[, = (3_7_, lz;[P)/?, 1 < p<oo.) It
is well-known (see [24, 9]) that this Li-type constraint leads
to sparse solutions, i.e., many if not most of entries in the
final optimal solution x* are zero. In contrast, a Ls-type
constraint, such as

R,: i+ +zi=12>0, Vi

3)

will lead to dense solution vector x*, i.e., most if not all
elements in x* are nonzero.
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This sparsity property of the solution is the theoretical
basis for our generalization of the Motzkin-Straus formalism
to define cliques in weighted graphs.

2.2 Algorithm

The quadratic programming problem of Eq.(1) can be
solved using a standard optimization package. However,
there is a simple method developed in the biological evo-
lution field [18]. The method is an iterative algorithm by
updating a current solution vector using:

(Ax)l .

A’ Vi. (4)
One can easily see the feasibility of the solution: if the
initial x € S, [defined in Eq.(2)], it will remain in S,,
since Y,z = >, xi(Ax);/(xTAx) = 1. We can also prove
the convergence of the algorithm, by showing that the La-
grangian function for constraint optimization

L(x) =x"Ax — /\(Z z; — 1)

T < I

(5)

is monotonically increasing (or non-decreasing) under the
above update rule: L(xY) < Jx®) < -... The La-
grangian multiplier X is to enforce the constraint ), z; = 1.
Since L(x) is bounded above, the updating algorithm con-
verges. The proof is skipped here.

If adjacency matrix A is positive definite, the objective
J is a convex function and the optimal maxima is also the
global maxima. Unfortunately, for many applications, A is
in generally indefinite. There are a large number of local
maximas, each representing a densely connected subgraph.

We use the above updating algorithm to solve for cliques.
After one local optimal solution is obtained, the clique cor-
responding to non-zero entries in the solution vector is ex-
tracted; these nodes are eliminated from the graph. We
solve for another local optimal solution and its correspond-
ing clique, etc. This completes the description of our graph
algorithm for computing cliques in weighted graphs.

3. TRANSITIVE CLOSURE OF A WEIGHTED

GRAPH

In the above, we consider densely connected subgraphs as
cliques, and generalize the concept of clique on unweighted
graphs to weighted graphs.

We note that the sparsity of protein interaction networks
cause the cliques detected to be rather small. We seek to
resolve the sparsity problem by using transitive closure idea.
Here we generalize the concept of transitive closure on un-
weighted graphs to weighted graphs.

3.1 Transitivity and associativity

For protein networks, the weight on an edge measures the
“affinity” (or interaction strength, similarity) between two
proteins. We wish to study the transitivity of the affinity.
Suppose we have three proteins p;,p;,pr. Let w;; be the
interaction strength between proteins p;,p;. Suppose p; in-
teracts strongly with p; and p; interact strongly with py.
With these conditions, there is a certain probability that
protein p; also interact with protein pg.

Proteins interact in many ways: physical contact, syner-
gystic interaction, etc. Here we make an assumption that
protein interactions are transitive. In reality, the transitiv-
ity holds only approximately. For example, for 3 persons



A /B, C. If A is related to B and B is related to C, we
perceive that A is likely to be related to C. The transitiv-
ity assumption is a simplification that we use to resolve the
sparse interaction problem.

When the “affinity” is quantified by real nonnegative weights,

{w;;}, we have a number of choices to define them. If p;
interact strongly with p;, say ws; = 0.7 and p; interact
strongly with px, say wjr = 0.9. By our transitivity assump-
tion, protein p; and protein pi should also interact, i.e., w;k
should be significantly larger than 0, somewhere between 0.7
and 0.9. The transitive affinity may be reasonably defined
in the following three ways,

Tmaz(Wik, Wej ) = max(wik, we;) = 0.9, (6)
Tavg(Wik, wrj) = (wir + we;)/2 = 0.8, (7N
Tomin(wik, wkj) = min(w;, U)kj) =0.7. (8)

For the transitive affinity to be consistent along a path of
(4,4, k,1), we require it has the associativity:

(9)

With the associativity, T(wij, wjk, wr:) is uniquely defined.
One can easily extend this to longer paths. It is clear that
T,vg does not satisfy associativity, this rules out Tqyg. Both
Trmaez and Ty, satisfy associativity. Because Tinq, implies
an very strong type of transitivity, we choose the moderate
transitivity of Tmin. In Tiin, transitivity is regulated by
the weakest link on the path, which is consistent with our
general intuition. In the rest of this paper, we study the
transitivity associated with Ti,. The transitive affinity on
the path (¢, P, j) = (3, k1, - - , km,J) is therefore

T(T(wij, wik), wkt) = T(wij, T(wjk, wi))

tip; = Min(Wi gy, Why ko " > Whyy_ ks Whi i) (10)

3.2 Maximal transitive affinity

In general, fixing vertices i, j, the transitive affinity on
different paths connecting 4, j are different. For this reason,
we define maximal transitive affinity between i, j as

(11)

where P is any possible path between i,j. Given a graph,
the maximal transitive affinity between any pair of vertices
is uniquely defined. We can show that

hij = m}gx tipj,

(12)

hi; > wij, Vi, j.

Furthermore, we can prove that

Theorem 2. For any weighted graph, maximal transitive
affinity between any pair of vertices satisfy the following
transitive affinity inequality relationship

hi; > min(hig, hyj) Vi, j, k. (13)

Now, if we replace the original weight w;; by the maximal
transitive affinity h;;, the new graph are thus more consis-
tent with the idea of transitivity of similarity relationship.
We therefore call {h;;} as transitive closure of the weighted
undirected graph with weights W.

Consider the case when the initial weights already satisfy
the transitive affinity inequality. If we follow the above steps
to compute the transitive closure, would we get something
new?

Theorem 3. Suppose the initial edge weights {w;; } satisfy
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transitive affinity inequality. The computed maximal tran-
sitive affinity {h; } will be identical to the initial weights:

Theorems 2 and 3, together, show that the transitive affin-
ity inequality and maximal transitive affinity are consistent
definitions.

4. TRANSITIVE AFFINITY AND ULTRA
METRIC INEQUALITY

In above, we derive the transitive affinity inequality from
the concept of maximal transitive affinity and show it is a
consistent definition (Theorems 2 and 3).

Here we show that the transitive affinity inequality is iden-
tical to the ultra-metric of a distance metric, and therefore,
a general principle. Given an affinity metric, we discuss how
to compute the new weights to conform with transitive affin-
ity inequality. The importance of these results is that the
transitivity can be computed as a transitive closure and an
efficient algorithm is proposed.

We recall the definition of the metric space. A function
d(zi,z;) = d;; on all pairs of objects in the space, i.e.,
pairwise dissimilarities, is a metric, if (m1) nonnegativity:

di; > 0 Vi,j. (m2) identity: d;j; = 0 ifz; = z;. (m3)
symmetry: d;; = dj;. (m4) triangle inequality
dij < dik + dij. (14)

A metric function preserve the important notions of dis-
tance. Metric space has a large number of properties and
useful for many problems. A special case of metric space is
ultra-metric space, where the triangle inequality is replaced
by a stronger ultra-metric inequality

dij < max(dik, dr;)- (15)

A dissimilarity function satisfying the ultra-metric inequal-
ity also satisfy the triangle inequality; however, not all met-
ric functions satisfy ultra-metric inequality.

To our knowledge, so far there is no formal metric space
properties based on similarity functions (instead of dissimi-
larity functions). Part of the reason, we believe, is that there
is no clear counterpart of the triangle inequality for similar-
ity function. However, the transitive affinity inequality we
proposed in previous function is identical to the ultra-metric
inequality, as we show below.

First, we note that similarity is an decreasing (nonincreas-

ing) function of distance: the more similar the two objects
are, the larger their distance is. Thus s;; = f(di;), where
f(-) is a monotonic decreasing function (more precisely, a
nonincreasing function).
Theorem 4. The distance-based ultra-metric inequality is
identical to the similarity-based transitive affinity inequal-
ity, assuming that s;; = f(d;;) is a nonincreasing function.
Proof. By definition, we have

sij = f(dij)
> f( max(dik,dx;) ) (16)
= min(f(dik), f(dx;)) (17

In Eq.(16), we replace d;; by a possibly bigger number

max(dik,d;) [due to the ultra-metric inequality Eq.(15)];
and the fact that f(-) is nonincreasing gives the inequality.
From Eq.(16) to Eq.(17), the equality is ensured since f(-)
is nonincreasing. Substituting the definition of s;; = f(d;;),
we obtain the transitive inequality s;; > min(s;k, Sk;). O



Therefore, we can think of transitive affinity inequality as
a general principle and enforce edge weights conformity with
transitive affinity inequality.
Definition 5. The transitive closure of weighted graph G.
For every possible (3,7, k), the edge weights are increased
such that transitive affinity inequality are satisfied.

Note that the transitive closure defined above is not unique.

Let {fi; } be a solution to the transitive closure problem. We
may selectively increase a subset of {fi;j} such that {fi;}
continue to satisfy the transitive affinity inequality. Some
simple example are {2f;;} , {3fi; + 9i;} , where gi;; = 0
for all edges except e1 on which f;; reach maximum and
ge; = 1.

This non-uniqueness can be resolved by requiring the so-
lution to be minimal, i.e., among all possible solutions {f;;},
we pick the one that the net increase of edge weights

Aw® = (£ —wij)
ij

is minimal. We can show that this minimal solution is
unique:
Theorem 5. The minimal solution for the transitive closure
is unique.

The proof Theorem 5 rely on the properties of the solu-
tions for the transitive closure problem:
Proposition 6. Let {f;;} and {gi;} be two different solu-
tions for the transitive closure problem. We have

fij 2 gij, Vi, . (18)
or the other way around:
fiz < 95, Vi, §. (19)

The basic reason for this property is that if for some edges,
fi; < gij and edges for some other dges, fi; > gi;, we would
have contradiction.

Therefore, the problem become finding the minimal solu-
tion for the transitive closure problem.

Clearly to verify whether a given graph weights satisfy the
transitive closure, we need to go through all possible trian-
gles to check the transitive affinity inequality. The number
of all possible triangles is (7) = 22=0=2) = O(n?). This
is the minimal computational cost.

4.1 Modified Floyd Warshall algorithm

This transitive closure can be computed in O(n?) time
by a slight modification of the well-known Floyd-Warshall
algorithm for all-pair shortest paths.

Assume W is the weight matrix of a graph G = (V, E)
with vertex set V and edge set E. Edge e;; has initial weight
w;;. The algorithm computes the maximal transitive affinity
as the following:

Floyd-Warshall(W)
1 N < rows(W)

2 H<W

3 fork<1toN

4 dofori<=1to N
5 dofor j <=1to N

6 hi; = max(hij,min(hik,hkj))
7 return H

The modification is on updating h;;, which uses Eq.(13) for
satisfying transitive affinity ity inequality.

4.2 Generalization to distance based edge weights

In §3 and §4, the weight on an edge measures the affinity
(or similarity) between two nodes. These concepts and re-
sults can be equivalently generalized to the graphs where the
weight on an edge measures the “distance” (or dis-similarity).
Here, the “transitive distance” use Tmax in §3.1; the max-
imal transitive affinity in Eq.(11) is replaced by “minimal
transitive distance”, (close the concept of “shortest distances”
between two nodes), which can be shown to satisfy the ultra-
metric inequality Eq.(15).

5. CONVERTING UNWEIGHTED MULTI

PROTEIN COMPLEX DATA TO WEIGHTED

PROTEIN INTERACTION NETWORKS

At present, two datasets summarizing high-throughput
analysis of multi-protein complexes are available for the yeast
S. Cerevisiae[6, 10]. Coupling different purification (im-
munoprecipitation and tandem affinity purification (TAP))
and labeling schemes with mass spectrometry (MS) both
studies used bait proteins to identify physiologically intact
protein complexes . Two independent studies[3, 26] showed
that the TAP-MS dataset by Gavin, et al. [6] had the high-
est accuracy for predicting protein functions. Hence we have
chosen this dataset.

We need to convert the protein complex data to a weighted
protein interaction network (graph). A protein complex is
an assembly of a small number of proteins in permanent
contact and is usually perform a clear and specific biological
function. A multi-protein complex can be represented as
a bipartite graph. This representation allows us to infer a
number of important quantities.

A bipartite graph has two type of nodes: p-nodes, p1,- -, pm,
denoting proteins; and c-nodes, ¢1,- - - , ¢n, denoting protein
complexes A protein complex (c-node) has edges connecting
to each of its constituent proteins (p-nodes) The entries of
bipartite graph adjacency matrix B = (b;;) is

1 if protein p; is in protein complex c;
bij = { P Pi P plex c; (20)

0 otherwise

i.e., a protein complex is represented by a column in B,
and a protein represented by a row in B. Starting from the
bipartite graph, we can naturally obtain the following two
weighted interaction networks [4].

Protein-Protein Interactions. The interaction strength
between two proteins p;, p; is

( BB T)ij _ ( # of protein complexes )

containing both proteins p;,p;

Note (BB")ii = 3_; bi; = the number of protein complexes
that protein p; is involved.

Complex - Complex Associations. The interaction strength

between two protein complexes c;, ¢; is

(BTB)i]‘ _ ( # of proteins shared by )

protein complexes c;, ¢;
Note that (B"B);; = >, b;; = the number of proteins con-

tained in the protein complex c;.

6. APPLICATION TO PROTEIN COMPLEX
DATA



‘We present the results of applying clique finding algorithm
on original protein complex data set and on their transitive
closure. We demonstrate that the cliques found are biologi-
cally meaningful based on the Gene Ontology analysis. This
also provide annotations for a number of previously unchar-
acterized proteins.

As explained in §5, the TAP-MS dataset by Gavin, et
al. [6] for yeast had the highest accuracy for predicting
protein functions. Hence we have chosen this dataset. There
are total 1,440 distinct proteins within 232 multi-protein
complexes.

We use the protein - protein interactions induced by the
bipartite graph as in §5. To see clearly the net effects of the
transitive closure, we run the clique finding algorithm on
two network weights: the original network W = BB7T and
its transitive closure Wrc. We obtain two sets of cliques
C and Cr¢ as the results, corresponding to W and Wr¢
respectively. These cliques are shown in Figure la for the
original sparse protein interaction network and in Figure
1b for the dense protein interaction network produced by
the transitive closure. The obtained cliques are summarized
below:

# of cliques Avg-Size
C 296 4
Cro 82 15

int-weight ext-weight
0.59 0.014
0.68 0.010

Figure 1: Weights and cliques in the weighted protein-
protein interaction network. Top: original graph. Bot-
tom: transitive closure.
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On the original network, the resulting C contains 296
cliques. On the transitive closure, the resulting Crc con-
tains 82 cliques. The original network is very sparse thus
we get a larger number of cliques with rather small sizes.
The transitive closure is much more densely connected, thus
we get a smaller number of cliques with larger sizes. These
cliques also have higher average edge weight within the clique
(measured in the original weight W) and lower average strength
between different cliques. These indicate that proteins in
the cliques detected based on the transitive closure are more
densely connected with each other, meanwhile the average
connectivities between different cliques are sparser. Both of
these features are desirable for a protein module discovery
from protein interaction networks.

We pick top 10 largest cliques and list them in Table 1.
They also have large average weights on the original weight
W, thus representing dense regions in the interaction net-
work.

Clique GO Annotation

Emgl Imp3 Imp4 Kre31 Mppl0 Nopl4
Sofl YMRO093W YPR144C

snoRNA binding

Cusl Msll Prp3 Prp9 Smel Smx2 Smx3
Yhcl YIJR084W

RNA binding

Fyv4 Mrpl Mrpl0 Mrpl13 Mrpl7 Mrp21
Mrp4 Mrp51 Mrps9 Nam9 Pet123 Rsm10
Rsm19 Rsm22 Rsm23 Rsm24 Rsm25
Rsm26 Rsm27 Trf4 Ubpl0 YDRO036C
YGR150C YMR158W  YMR188C
YNL306W YOR205C YPL013C

structural constituent of
ribosome

Atpll Cafl130 Caf40 Ccr4 Cdc36
Cdc39 Fas2 Not3 Notb Pop2 Sigl
YDR214W

3-5’
activity

-exoribonuclease

Apcl Apc2 Cdcl6 Cdc23 Cde27 Docl

ubiquitin-protein ligase
& protein binding

Sec65 Srpl4 Srp21 Srp54 Srp68 Srp72

signal sequence binding

Csl4 Mtr3 Rrp42 Rrp43 Rrp45 Rrp6 Ski6
Ski7

3’-5’ exonuclease activ-
ity

Cft2 Fipl Papl Pfs2 Ptal Ref2 Rnal4
YGR156W Yshl

cleavage and polyadeny-
lylation

Lsm1 Lsm2 Lsmb Lsm6 Lsm7 Patl Prp24
Prp38 Snu23

RNA binding

Apll Apl3 Apl5 Apl6 Apm3 Apm4 Aps2

(see Fig.3 right panel)

Aps3

Table 1: Ten cliques identified by our algorithm.

Figure 2 shows the GO annotations corresponding to clique
1 (left), clique 3 (middle) and to clique 10 (right) in Table 1.
Clearly the protein cliques represented by these GO annota-
tions perform specific biological functions, namely, snoRNA
binding, structural constituent of ribosome, etc. This demon-
strates that these represent tightly connected cliques are
meaningful protein modules.

In Fig. 3, we show an example of the effects due to tran-
sitive closure. Two smaller cliques [shown in Fig. 3 (b) and
(c)] in the original interaction network W are merged into
one big clique in the transitive closure Wr¢. GO annota-
tions show that cliques (b) and (c) have the same function as
the merged clique: structural constituent of ribosome. This
example shows why we obtain much less number of cliques
on the transitive closure Wr¢, but the sizes of these cliques
are much larger. Since the larger cliques have the same func-
tion as the smaller merged ones, the cliques on the transi-
tive closure are biologically more relevant (complete) protein
modules.

Note that there are a number of uncharacterized proteins
in GO (boldface protein names in Table 1). Since the GO



molecular funcrion

snoRMNA binding
TIT.24e-16

I

molecular function

structural molecule activity

stractural constituent
of ribosome
2212.82e-28

Emgl Imp3 Kre3l Nopl<
Sotl Y MROI3W Y PR 144C

Mrpl MrplO Mrpl3 Mrpl7 Mrp21 Mrp4
Mrp51 Mrps9 Nam9 Pet123 Rsm10 Rsml9
Rsm22 Rsm23 Rsm24 Rsm23 Rsm26 Rsm27
YMR158W YMR 188C YNL306W YPLOL3C

biological process

physiological process I cellular process

cellular physiological process

vesicle-mediated transport
7/6.75e-10

Apll Apl3 Apl5 Apl6é Apm3 Aps2 Aps3

Figure 2:

GO annotations for first clique in Table 1 (left), 3rd clique (middle), 10th clique (right). Proteins are

listed in square box. Also shown are the number of proteins and the p-values assuming these proteins are placed there

randomly.

annotation give a clear biological function for most other
proteins in the clique, we infer that these uncharacterized
proteins should have similar functions. Thus our approach
has the additional benefit of protein annotation.

7. SUMMARY

‘We propose methods to identify cliques as functional mod-
ules in a non-uniformly weighted protein interaction network
by (1) a generalization of Motzkin-Straus approach for iden-
tifying cliques on weighted interaction networks, and (2)
generalization of transitive closure to weighted graphs, to
overcome sparsity problem of protein interaction networks.
All these methods are clean cut in that there are no ad-
justable parameters involved. Cliques detected using this
approach from the yeast protein network based on the TAP-
MS experiment are shown to be densely connected protein
modules which have clear biological function from Gene On-
tology analysis.
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ABSTRACT

The task of biomedical named-entity recognition is to identify
technical terms in the domain of biology that are of special
interest to domain experts. While numerous algorithms have
been proposed for this task, biomedical named-entity
recognition remains a challenging task and an active area of
research, as there is still a large accuracy gap between the best
algorithms for biomedical named-entity recognition and those
for general newswire named-entity recognition. The reason for
such discrepancy in accuracy results is generally attributed to
inadequate feature representations of individual entity
recognition systems and external domain knowledge.

In order to take advantage of the rich feature representations and
external domain knowledge used by different systems, we
propose several Meta biomedical named-entity recognition
algorithms that combine recognition results of various
recognition systems. The proposed algorithms — majority vote,
unstructured exponential model and conditional random field —
were tested on the GENIA biomedical corpus. Empirical
results show that the F score can be improved from 0.72, which
is attained by the best individual system, to 0.96 by our Meta
entity recognition approach.

Categories & Subject Descriptors:

H.3.3 [Information Search and Retrieval]: Text Mining

General Terms: Algorithms

Keywords: Biomedical named-entity recognition; Meta
recognition
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Biomedical literature contains a rich set of biomedical entities
and information regarding the relationships and interactions
among these entities. These entities and their relationships are
especially useful for biologists in their quest for information
[11]. The exponential growth of available biomedical literature
on the Web and publicly accessible databases requires intelligent
information systems that help researchers to search and analyze
information. Therefore, the use of computational techniques to
automatically extract useful information from biomedical texts
has received increasing attention. Furthermore, to perform
higher level biomedical information extraction tasks such as
event extraction, summarization and question answering, most
systems first identify technical terms in the domain of molecular
biology that are of special interests to domain experts [11]. This
is called named-entity recognition in natural language
processing community [6].

The named-entity recognition task for general-purpose domain
such as newswire data has been studied for a long time [3,6,22].
Both handcrafted linguistic rule based methods and machine
learning based methods have been proposed for this task.
Machine learning based methods [3,6] have attracted particular
interest as they avoid the laborious task of manually deriving
linguistic rules, and also because they can be easily adapted to
new domains and new languages. Good progress has been made
in named-entity recognition of newswire data and best
algorithms can now achieve ‘near human’ performance (e.g., F
score of about 0.95) [3,6,22].

The named-entity recognition task in the biomedical domain has
different characteristics from that in the newswire domain.
Authors tend to use more diverse notations for biomedical
entities. In addition, biomedical named-entities usually have
much more diverse capitalization patterns than those in
newswire domain. A richer set of features, therefore, should be
used to represent biomedical entities [11].

A large body of machine learning algorithms has been proposed
for biomedical named-entity recognition such as hidden Markov
model (HMM) [8,17,19,24,25], support vector machine (SVM)
[4,13,16,19,23,25], maximum entropy markov model (MEMM)
[7,14] and conditional random field (CRF) [12,15,20,23]. In
order to capture the diverse characteristics of biomedical
entities, different sets of features such as lexical features, affix
information, orthographic features or even external resources
such as gazetteers [7,25] or WWW [7,20] have been
incorporated into different algorithms.



However, biomedical named-entity recognition still remains a
challenging problem [11]. Despite the near-perfect performance
of named-entity recognition in newswire data, similar methods
do not work so well in biomedical domain and there is a large
accuracy gap of about 20 points in the F score [6,9,11,25]. This
problem suggests that individual biomedical named-entity
systems may not cover entity representations with enough rich
features and no single type of algorithm is optimal to achieve the
best performance.

One natural idea of boosting performance of biomedical
named-entity recognition is to combine the results of multiple
biomedical entity recognition systems. This approach provides
us the opportunity to combine results from multiple systems that
collectively use rich and diverse feature representations and also
take the advantage of utilizing multiple algorithms for achieving
higher recognition accuracy.

Similar approach of combining results from multiple systems
has been successfully applied in information retrieval
community [1], where retrieved ranked lists from multiple
information retrieval systems are combined together into a final
ranked list. Empirical evidence has demonstrated that Meta
retrieval approach substantially improves retrieval accuracy.
However, Meta retrieval method is different from Meta entity
recognition method as Meta retrieval method combines
unstructured results of ranked lists while Meta entity recognition
combines structured results from different named-entity
recognition systems.

In this paper we propose three methods for Meta biomedical
named-entity recognition. The first method uses majority vote
from a set of entity recognition systems to produce combined
results. This simple method does not require any training data.
The second method trains an unstructured exponential model
and uses the recognition results from individual systems as
features to predict the correct recognition result for each word in
test sentence separately. Finally, a more sophisticated structured
line chain conditional random field model [12] is applied. This
model utilizes structure information regarding transition among
different types of entities. Although some of these techniques
have been applied in other applications, to our knowledge they
have never been used for Meta biomedical entity recognition.

An extensive set of empirical study has been conducted on the
GENIA 'corpus [10,11] with the task of identifying five
different types of biomedical named-entities. Entity recognition
results from eight different systems are considered in the Meta
recognition system for combination. The best single system
achieves an F score of 0.72 on the GENIA corpus [25], while the
Meta recognition system with the linear chain conditional
random field model achieves an F score of about 0.96. This
large improvement demonstrates the power of combining
multiple results for the biomedical named-entity recognition
task. Furthermore, a careful comparison among different Meta
recognition algorithms shows that the supervised methods of
unstructured exponential model and linear conditional random
field method are more effective than the simple majority vote
algorithm. The structured conditional random field model
achieves higher accuracy than the unstructured exponential
model, which demonstrates the advantage of utilizing structure
information among named-entity recognition results.

! http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
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In the next section we discuss prior research related to
biomedical name-entity recognition algorithms and Meta
retrieval technology in information retrieval. In Section 3 we
describe the three proposed Meta entity recognition algorithms
--- majority vote, unstructured exponential model and structured
conditional random field model. We outline the experimental
methodology in Section 4 and finally present the results of our
empirical study in Section 5. In Section 6 we conclude by
summarizing our work and pointing out a few future research
directions.

2. RELATED WORK

The approach proposed in this paper combines results from
multiple biomedical named-entity recognition systems. In the
next subsection we discuss specific algorithms for Bio-Entity
recognition, and in the subsequent subsection we describe Meta
retrieval algorithms used in information retrieval.

2.1 Algorithms for Bio-Entity Recognition

Biomedical named-entity recognition is still an active research
topic, and numerous algorithms have been proposed using
different feature representations. For example, in the JNLPBA
[10,11] shared task of Bio-entity recognition task, eight entity
recognition systems utilize different learning algorithms and
different sets of features. The algorithms include variants of
Support Vector Machine (SVM) [4,13,16,19,23,25], Hidden
Markov Model (HMM) [8,17,19,24,25], Maximum Entropy
Markov Model (MEMM) [7,14] and Conditional Random Field
(CRF) Model [12,15,20,23].

Besides learning algorithms, feature representation has been
recognized as a crucial factor to get good performance in
Bio-Entity recognition. In the JNLPBA task [10,11], lexical
features are widely used among many systems as biomedical
named-entities generally have a different vocabulary from
general English words. When SVM-based systems have trouble
to incorporate large size of lexical features, different
generalization of lexical features such as prefixes or suffixes
(e.g., suffixes as ~in or ~ase for protein names) are utilized.
Furthermore, some general features such as part of speech tags
or word shapes as well as domain specific features such as gene
sequences are also utilized in different systems. More detail can
found in [11].

In addition to using features from the biomedical document
itself, many systems tend to use gazetteers and other external
resources for better generalization performance. Some systems
use gene names from biomedical websites such as LocusLink
[7] or Gene Ontology [7,13], while some other systems use the
Web and construct lexicon [19,20] by collecting words that
frequently appear in context with known biomedical
named-entities.

To summarize, a large body of learning algorithms is available
for biomedical named-entity recognition. They utilize diverse
feature representations. It can be expected that the recognition
results from these systems are also diverse and complementary.
In the light of these facts, we believe that a good Meta
biomedical named-entity recognition algorithm can take



advantage of the diversity of the results from multiple systems
and improve the results further.

2.2 Meta Retrieval Algorithm

The approach of combining results from multiple systems has
been successfully utilized in the information retrieval
community [1,5,18].

Simple methods like Borda Count [1] do not require training
data and favor documents that are retrieved by more individual
systems against documents that are retrieved by fewer or no
systems. More sophisticated algorithms that utilize training data
include Naive Bayesian method [1] and logistic regression
model [5]. The Naive Bayesian method makes an independence
assumption among results from multiple systems, which may be
inaccurate in many cases. The logistic regression model does not
make the independence assumption and uses retrieved results
from multiple systems as features to predict the probability of
relevance for each document candidate. It has been shown that
this method achieves satisfactory Meta combination results.

Although some Meta retrieval algorithms have been proposed
for information retrieval, they cannot be directly used for the
Meta biomedical named-entity recognition task. In particular,
Meta retrieval algorithms treat only the binary case -- relevance
or irrelevance of any retrieved document -- while biomedical
named-entity recognition generally involves multiple types of
named-entities. In addition, information retrieval systems
provide unstructured ranked lists while name-entity recognition
systems provide structured results of annotated sentences. These
characteristics of Meta biomedical named-entity recognition task
are investigated in the next section in detail.

3. ALGORITHMS FOR META BIO-ENTITY
RECOGNITION

In this section, we present three algorithms for Meta biomedical
named-entity recognition. All the three algorithms deal with
recognition of multiple types of biomedical named-entities. The
first algorithm is a simple majority vote algorithm that requires
no training; the second is an unstructured exponential model that
learns relative weights but does not incorporate structure
information, and the third is a conditional random field model
that takes full advantage of the structure information among
biomedical named-entities and learns relative weights.

We now introduce the formal notation used in this paper. Let an

annotated sentence be composed of words of w; and annotated

entities ;. The training data is comprised of / annotated

sentences: D ={(w1,51),(w2,52)  (wi,s7)} , where the

pair (:vi,gi)denotes the ith annotated sentence. We assume
that the ith annotated sentence contains N, words and denote
the jth surface word and the corresponding named-entity
by (w;,s;). We associate a category value for each type of
named-entity and an additional “Non-entity” category for
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general English words. Each s, can attain any of the K category

values. Assume that L annotated results are provided from L
biomedical named-entity recognition systems. Thus, for the ith
sentence the /th system’s candidate results are denoted as:

{c/ asCr ipsenn .C;_iv,} » where each item has a category

value out of K choices. Finally, the task of Meta named-entity
recognition algorithm is to combine the L candidate entity

recognition results into a single result s, for each test sentence
t.

3.1 Simple Majority Vote Algorithm

The majority vote algorithm assumes that named-entities are
correctly recognized by most individual systems, while different
systems make mistakes at different places [1].

indicator feature function

Let us introduce the binary

S (k,c¢, ;) which has a value 1 when the /th entity recognition

system annotates the jth word in the test sentence as the entity of
type k, and O when this is not true. Then the recognition rule of
majority vote algorithm can be described formally as follows:

A

S,j = arg max Zf(k,cuj) 6))
k [

A

where 7 represents the test sentence and S, is the annotated

entity result for the jth word in the test sentence.

One particular issue about majority vote is that votes from
inaccurate entity recognition systems may not be reliable and
may deteriorate the final results. Therefore, a variant of majority
vote algorithm, which only considers votes from top few
accurate systems, is often used in practice. This algorithm is also
considered in this paper.

3.2 Unstructured Model

Algorithm

Exponential

One problem with the majority vote algorithm is that it treats the
votes from different entity recognition systems equally.
However, it is clear that more accurate systems should have
more influence for the final decision than less accurate systems.
The unstructured exponential model algorithm automatically
derives appropriate weights for different systems from the
training data, which means that those systems that are more
accurate on training data are assigned with larger weights to
recognize entities on test data. This type of bias is reasonable as
long as the training data is representative.

biomedical

Formally, the Ith individual

recognition system is associated with a weight A, and the

named-entity

probability of assigning entity of category k to the jth word in ith
sentence is calculated as:



Figure 1. Graphical representation of unstructured exponential

model (shared part is observed ¢ ;8 features from multiple

s

entity recognition systems). Given the entity candidate features
from multiple systems and model parameters, the named-entities
are generated for each word separately.

exp(Q)_A f(k.c; ;)
— l
i) D expQ ALK, ;)
kK 1

Note that no feature from the surface word itself is used in the
current formulation yet. It may be useful to incorporate surface
word features for more complicated combination strategy.
However, empirical study in Section 5 demonstrates that this
model can achieve very good performance with very limited
amount of training data. Adding a lot of surface word features
may cause overfitting problem with limited amount of data.

P(S; =kl{w;,c. )

In fact, the exponential model can be seen as a multi-category
extension of the logistic regression model for Meta retrieval
system of information retrieval [1,5]. The graphical
representation of this probabilistic model is shown in Figure 1. It
can be seen from Figure 1 that given the entity features from
multiple systems and model parameters, the named-entities are
generated for each word separately without any interaction. That
is why this model is called unstructured model.

The training criterion of this model is to maximize the
conditional log-likelihood of the training data. Formally the
parameter estimation problem is:

—*

A= arggnaxZP(Sij =k)logP(S,; =kl{w;.c. ;})  (3)

i,j.k

Where P(S; =k)is the empirical probability distribution for

different types of named-entities of a specific word. It is 1 for
one type of name-entity and zero for all the others.

The objective function in Equation (3) is a convex function and
the optimization method of iterative scaling is used to obtain
optimal parameter value. More detailed information about the
iterative scaling method can be found in [2].

3.3 Conditional Random Field Algorithm
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Figure 2. Graphical representation of linear conditional random

field model (shadowed part is observed F* . as features from

multiple entity recognition systems.) Given the entity candidate
features from multiple systems and model parameters, the
named-entities within a sentence are generated with interaction.

One important piece of useful information that is missing in the
unstructured exponential model is the structure information. The
named-entities assigned to nearby words are actually correlated
with each other. If the previous word is recognized as a part of
protein name, it is likely that the current word has a higher
probability to be a part of protein entity than a cell_line entity.
Conditional random field method [12] can be used to model the
correlation between biomedical named-entities.

More specifically, the conditional random field model calculates
conditional probabilities for whole annotated sentences instead
of individual entities. In this paper, a linear chain conditional
random field model is used. This is formally represented as:

—

P(Sl. ={kl,...,kj,...,kN’_}IE,C*J*})
exp(zzﬂ‘m\fm (kj—l s kj.c*, i* ))
j m

2 expQD A Sk oKpc )

Ko k.

“

In particular, each feature function is associated with two
concatenated entities and the corresponding candidate entity
results from multiple entity recognition systems. The graphical
model of linear chain conditional random field is shown in
Figure 2. It can be seen that adjacent named-entities are
associated with each other. This characteristic allows the
conditional random field method to take advantage of structure
information among entities.

The training criterion of conditional random field has a similar
objective function to that of unstructured exponential model:

—

A =argmax Y log(P(s; 1{w;.c. ,-}) )
i i

The conditional likelihood function involves a sentence-scale
normalization factor as indicated in Equation (4); the training
computational complexity is much larger than that of
unstructured exponential model. Quasi-Newton optimization
method [21] has been shown to be more efficient than several
other alternatives such as conjugate gradient and iterative
scaling. This method is used in this work to train the linear chain



Protein DNA RNA Cell_type Cell_line All
Num of occurrences 5,067 1,056 118 1,921 500 8,602
Percent of total words 12.5% 2.6% 0.3% 4.8% 1.2% 21.4%

Table 1. Num of occurrences and percentage of total words for five types of biomedical named-entities in the corpus.

Zho [25] | Fin[7] Set [20] | Son[23] | Zha[24] | R&s[19] | Par[16] | Lee[13]
Recall 0.760 0.716 0.703 0.678 0.691 0.674 0.665 0.508
Precision 0.694 0.686 0.693 0.648 0.610 0.610 0.598 0.476
F-Score 0.726 0.701 0.698 0.663 0.648 0.640 0.630 0.491

Table 2. Performance of individual systems. Systems are ranked by their F scores from the highest (Left) to the lowest (Right).

conditional random field model for Meta biomedical

named-entity recognition.

Given the estimated model, the recognition step of conditional
random field is also more complicated than that of exponential
model. A dynamic programming solution is utilized here to
calculate the most likely named-entity sequence given the test
sentence. Specially, a forward-backward inference algorithm

like that for HMM is applied. The ‘forward value’ a (S, = k)

is defined as the probability of being in entity of type k at jth
position given the observation up to time j and [ (S, =k)is

the probability of being in entity of type k at jth position given
the observation after time j. Recursive steps are applied to
calculate the whole set of forward and backward values:

a;, (S, = k)
= ;aj (kYexpQ A, f,, (k' k, Ce yjar))
B;(S; =k)
= Zexp(zﬂ‘mfm (k’k" C*_’/“ ))ﬂjﬂ (k')

(6)

Viterbi algorithm is applied with forward and backward values
and finally the optimal sequence of named-entities is computed.

4. EXPERIMENTAL METHODOLOGY

We used the entity recognition results from eight different
biomedical named-entity recognition systems that participated in
the JNLPBA competition 2. In the JNLPBA competition [11],
each entity recognition system is required to recognize five
types of entities as protein, DNA, RNA, cell_type and cell_line
within documents in the GENIA corpus [10]. We utilize these
results to construct Meta biomedical entity recognition system in
this paper.

The recognition results are evaluated using the F score. F score
is defined as: F =(2PR)/(P+ R) , where P denotes Precision,

which is the ratio of the number of correctly recognized
named-entities to the number of recognized named-entities. R
denotes Recall, which is the ratio of the number of correctly
recognized entities to the number of true entities [11].

“http://www-tsujii.is.s.u-tokyo.ac jp/GENIA/ERtask/report.html
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Since the eight systems provide results only on the test set of
JNLPBA task that contains 404 documents of the GENIA
corpus, we split the test data of INLPBA into training and test
data for our experiments. There are altogether 404 Medline
abstracts, which are composed of 4260 sentences. The
biomedical entity distribution is tabulated in Table 1. In order to
fully investigate the behavior of different Meta recognition
algorithms, two different training configurations were used in
this work: i) 10 annotated documents for training and ii) 5
annotated documents for training. The 5 (or 10) documents that
contain all the five types of annotated biomedical named-entities
were randomly chosen from the 404 abstracts as training data
and the remaining documents were used as test data. The
training set has about 50 (or 100) sentences with about 1,250 (or
2,500) words. The random split process was repeated five times
for each experiment and the evaluation results were averaged.

The performance of eight different systems on the whole corpus
(404 abstracts and no training) is shown in Table 2. Three out of
eight systems achieve F score around 0.7 while the F-score of
other systems ranges from 0.5 to 0.65.

5. EXPERIMENTAL RESULTS

In this section we present the results of applying the proposed
Meta biomedical named-entity recognition algorithms on the
GENIA corpus and compare these results to individual systems.
Two particular issues are investigated by the empirical study in
this section:

1. Whether Meta biomedical named-entity recognition
approach improves recognition accuracy over individual
systems, and how do different Meta biomedical entity
recognition algorithms compare against each other?

2. Detailed analysis for different types of named-entities is
provided to carefully compare the results from individual
systems and different Meta recognition algorithms.

5.1 Overall Recognition Accuracy

The first set of experiments was conducted to study the
effectiveness of the simple majority vote algorithm. In order to
show the full spectrum of its behavior, we vary the number of
systems that are considered for voting. In particularly, we sort
all the systems by their F scores as shown in Table 2 and use the
simple majority vote algorithm to combine the results from best



B1 M_2 M_3 M_4 M_5 M_6 M_7 M_8

Recall 0.761 0.876 0.859 0.850 0.786 0.797 0.770 0.778
Precision 0.696 0.739 0.802 0.771 0.724 0.727 0.712 0.707
F-Score 0.727 0.802 0.830 0.808 0.754 0.761 0.740 0.741

Table 3. Performance (in F score) of simple majority vote algorithms compared with the best single system (10 documents are used for training and
results are averaged by five random splits). Simple majority vote algorithms combine results from different number of top systems (B1: best single
system; M_2 means combination of two most accurate systems and so on).

B1 M_8 M_3 EXP CRF
(Baseline) F Score | Impr(%) | F Score | Impr(%) | F Score Std Impr(%) | F Score Std Impr(%)
Recall 0.761 0.778 (+2.2%) 0.859 (+12.9%) 0.926 0.016 (+21.7%) 0.956 0.012 (+25.6 %)
Precision 0.696 0.707 (+1.6%) 0.802 (+15.2%) 0.920 0.021 (+32.2%) 0.971 0.010 (+39.5%)
F-Score 0.727 0.741 (+1.9%) 0.830 (+14.2%) 0.923 0.015 (+27.0%) 0.964 0.011 (+32.6%)

Table 4. Performance of Meta biomedical named-entity systems compared with the best single system (10 documents are used for training and
results are averaged by five random splits; F Score: F measure; Std: standard deviation across 5 random splits; Impr(%): Relative improvement
over baseline ). B1: Best single system; M_8: majority vote from eight systems; M_3: majority vote from best three systems; EXP: unstructured
exponential model: CRF: conditional random field. (Standard deviation of M_8 and M_3 are not reported as they are very small)

B1 M_8 M_3 EXP CRF
(Baseline) F Score | Impr(%) | F Score | Impr(%) | F Score Std Impr(%) | F Score Std Impr(%)
Recall 0.759 0.777 (+2.4%) 0.858 (+13.0%) 0.907 0.026 (+19.4%) 0.921 0.024 | (+21.3%)
Precision 0.694 0.706 (+1.7%) 0.801 (+15.4%) 0.879 0.035 (+26.7%) 0.953 0.018 | (+37.3%)
F-Score 0.725 0.740 (+2.0%) 0.829 (+14.3%) 0.893 0.030 (+23.3%) 0.937 0.021 (+29.2%)

Table 5. Performance of Meta biomedical named-entity systems compared with the best single system (5 documents are used for training and results

are averaged by five random splits; F Score: F measure; Std: standard deviation across 5 random splits; Impr(%):

baseline ). Algorithm descriptions are the same as the above.

Percentage improvement over

two systems (M_2), best three systems (M_3) and so on. The
detailed experiments are shown in Table 3. While the majority
vote algorithm does not have to be trained, we made the
experimental setup identical to that used for the trainable Meta
algorithms to make the evaluation results comparable: 10
documents were held for training in each of the five random
splits and the remaining 394 documents were used for test (the
results when 5 documents were used for training are almost
identical with these results and are not shown). The majority
voting algorithms did not use the 10 (and 5) training documents
— only the trainable algorithm made use of them.

Note a particular issue of simple majority vote algorithm is tie
breaking. If the votes from multiple systems are the same for
some entities, the preference is given in the order to protein,
DNA, RNA, cell_ type, cell_line and “Non-entity”.

It can be seen from Table 3 that simple majority vote algorithm
does achieve more accurate result than single best system.
However, its performance varies with the number of systems of
combination. The best results are achieved when top three or
four systems are considered for voting and the accuracy drops
significantly when more and more low accuracy systems are
added into the combination. This behavior suggests that
appropriate weights should be assigned to individual systems in
order to achieve optimal performance of Meta named-entity
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recognition; and this is exactly the goal of the unstructured
exponential model and conditional random field model

More experiments were conducted to study four types of Meta
biomedical entity recognition algorithms. The algorithms are:
M_8 (majority vote algorithm form all of the eight individual
systems); M_3 (majority vote algorithm from three most
accurate individual systems as Zho [25], Fin [7] and Set [20]);
EXP (unstructured exponential model) and CRF (conditional
random field model). Both the EXP and CRF algorithms take
advantage of training data. Table 4 shows the results when 10
documents were available for training. It can be seen that EXP
and CRF achieve a significant improvement over the best single
system and also are much more accurate than the simple
majority algorithm. More careful analysis shows that EXP and
CRF algorithms automatically assign appropriate weights for
individual systems. For example, EXP assigns more weights to
the top three systems than the other systems. Furthermore, CRF
algorithm generates more accurate results than the EXP
algorithm. This demonstrates the power of utilizing the structure
information among entities.

Another set of experiments was designed to test the behavior of
different Meta entity recognition algorithms with more limited
amount of training data. The experiments shown in Table 5 use
only 5 documents as training data. It can be seen from Table 5
that the performance of M_8 and M_3 algorithms remain at
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Figure 3. Performance of best single systems and Meta recognition algorithms for different types of biomedical named entities. (a) is the
case with 10 documents for training while (b) is the case with 5 documents for training. For B1, system from Zho [21] is used to predict
protein, DNA, cell_type and cell_line while the system from Fin [5] is used to predict RNA.

about the same level as those in Table 4 since these algorithms system. Unstructured exponential model and conditional random
do not utilize training data and their accuracy does not depend field model achieve better result than other algorithms in most
on the size of training data. The accuracy of EXP and CRF cases by assigning appropriate weights to the results from
algorithms drops slightly with more limited amount of training multiple systems. In fact, the weights of different systems are
data. However, their advantage over best single system or also varied for the recognition of different types of entities.
simple majority vote recognition algorithm is still very large. Furthermore, the CRF method provides the most accurate results
This set of experiments suggests that Meta biomedical in most cases, which again demonstrates the power of utilizing
named-entity recognition algorithms can acquire very accurate structure information.

results even with very limited amount of training data (i.e.,

sbout 50 traiing sentences). 6. CONCLUSION AND FUTURE WORK
Other configurations with more training data have also been

studied. When 15, 20 or more documents are used for training, Due to the large vocabulary and very diverse notations of
the accuracy of EXP and CRF methods increase. However, the biomedical entities, the performance of current biomedical
improvement over the results of less training data (i.e., 5 or 10 named-entity recognition systems is still not satisfactory.
documents.) is small due to the high performance of EXP and Possible reasons are inadequate feature representations of
CRF methods with limited amount of training data. individual systems and ineffectiveness of individual algorithms.
Both unstructured exponential algorithm and conditional random This paper proposes a Meta biomedical named-entity
algorithm are very efficient. They are implemented using recognition approach by combining results from multiple
Matlab. It takes about 30 seconds to train the exponential model systems. Three types of Meta recognition algorithms are
and about 2 minutes to train the conditional random field model proposed. Empirical study shows that Meta biomedical
in the case of 10 training documents. It only takes about 30 named-entity methods can substantially improve recognition
seconds for CRF to generate combined results for 394 accuracy over individual systems. The best results are obtained
documents while several seconds for the exponential model. with a conditional random field method that takes the advantage

of structure information for recognition. With a small amount

5.2 Recognition Accuracy for Different Types

of Biomedical Named Entities only 0.72 [11,25]

This set of experiments shows how Meta entity recognition As more and more trainable biomedical named-entity systems

algorithms improve the recognition accuracy for each type of are available, we will apply the Meta entity recognition

biomedical named entity. approach on other biomedical corpus for more complete
evaluation. Training data can be used to train both individual

Figure 3 shows the performance of best single system and Meta named-entity recognition systems and the Meta recognition

recognition algorithms for different types of biomedical named- system. Furthermore, more sophisticated model which considers

entities. Note that different individual systems may be optimal surface word features to combine results will be investigated in

for different types of biomedical named-entities. For example, future work.

the system by Fin [7] has a better performance for RNA entities
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