Crochemore's algorithm for repetitions revisited - computing runs

F. Franek, M. Jiang
Computing and Software
McMaster University
Hamilton, Ontario

Israel Stringology Conference Bar-Ilan University, Tel-Aviv

March-April 2009

- Why we are interested in Crochemore's repetition algorithm
- A brief description of our implementation of Crochemore's algorithm.
- A simple modification of Crochemore's algorithm to compute runs (worsening the complexity to $O\left(n \log ^{2}(n)\right)$
- A modification of Crochemore's algorithm to compute runs while preserving the complexity $O(n \log (n))$
- Conclusion

Why we are interested in Crochemore's repetition algorithm

A run captures the notion of a maximal non-extendible repetition in a string \boldsymbol{x}

$$
(\mathrm{s}, \mathrm{p}, \mathrm{e}, \mathrm{t})
$$

Alternative: (s,p,end)

$$
\begin{aligned}
& \mathrm{e}=(\text { end }-\mathrm{s}+1) / \mathrm{p} \\
& \mathrm{t}=(\mathrm{end}-\mathrm{s}+1) \% \mathrm{p}
\end{aligned}
$$

e power, exponent
irreducible generator

Computing runs in linear time

Main (1989) introduced runs and gave the following algorithm to compute the leftmost occurrence of every run of a string x :
(1) Compute a suffix tree for \boldsymbol{x} (linear, using Farach's algorithm)
(2) using the suffix tree, compute Lempel-Ziv factorization of \boldsymbol{x} (linear, Lempel-Ziv)
(3) using the Lempel-Ziv factorization, compute the leftmost runs (linear, Main)

Lempel-Ziv factorization can be computed in linear time using suffix array (Abouelhoda, Kurtz, \& Ohlebusch 2004)

Suffix array can be computed in linear time (Kärkkäinen, Sanders 2003, Ko, Aluru 2003)

Chen, Puglisi, \& Smyth 2007, using suffix array and the lcp array (lcp can be computed from suffix array in linear time, Kasai et al 2001):) it computes Lempel-Ziv factorization in linear time using Ukkonen's on-line approach.

All these approaches are complicated and elaborate, and the implementations into code are not readily available.

Also, they do not lend themselves well to parallelization (see slide 9 -- the refinement of the classes can be done naturally in parallel as the refinement of one class is independent from the refinement of another class.)

We have a good and "space efficient" implementation of Crochemore's algorithm, that naturally lends itself to parallelization.

A brief description of our implementation of
 Crochemore's algorithm

Israel Stringology Conference, Bar-Ilan
slide $9 / 24$

0	1	2	3	4	5	6	$\cdots \cdots \cdots$	N
indexes								

RefStack

Refine[]

Total this slide $5^{*} \mathrm{~N}$ subtotal 11*N

Total this slide $4 * \mathrm{~N}$ overall total $15 * \mathrm{~N}$

CMember[]
Total this slide $4 * \mathrm{~N}$ subtotal 4*N

0	1	2	3	4	5	6	\cdots	N
indexes								

CEmptyStack

Memory multiplexing

RefStack \longleftarrow SelQueue

Refine[]
Refine[] is virtualized over FNext[], FPrev[], and FStart[]
Total this slide 2*N subtotal 6*N

FMember[]
Refine[] is virtualized over \square
Total this slide $4 * \mathrm{~N}$ overall total $10 * \mathrm{~N}$

Total this slide 4*N overall total $14 * \mathrm{~N}$

Though the repetitions are reported level by level, they are not reported in any appreciable order (caused by the manipulations of GapList)

> abaababaabasbab\$
> 0123456789101112131415

$(10,1,2)$	a b a a b a b a a b a a b a b \$
$(7,1,2)$	$\mathrm{ab} a \mathrm{ab} a \mathrm{~b} a \mathrm{ab} a \mathrm{a} b \mathrm{a} b \mathbb{\$}$
$(2,1,2)$	$\mathrm{a} b \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{a} \mathrm{b} \mathrm{\$}$
$(11,2,2)$	a b a a b a b a ab a a b a ${ }^{\text {S }}$
$(3,2,2)$	a b a a b a b a a b a a b a b \$
$(4,2,2)$	
$(6,3,2)$	a b a a b a b a ab a a b a b \$
$(5,3,3)$	ab a a b a b a aba a b a b \$
$(0,3,2)$	abaababa aba a b a b \$
$(7,3,2)$	$a \mathrm{ba} a \mathrm{baba} a \mathrm{~b}$ a a b a b \$
$(0,5,2)$	
$(1,5,2)$	

A simple modification of Crochemore's algorithm to compute runs (worsening the complexity to $O\left(n \log ^{2}(n)\right)$

We have to collect repetitions and "join" them into runs.
Collecting, "joining", and reporting level by level, basically in a binary search tree:

RunLeft[] (reuse FNext[])
RunRight[] (reuse FPrev[])
Run_s[] (reuse FMember[])
Run_end[] (reuse FStart[])
Complexity: need $O(\log (n))$ for each repetition to place it in the tree, overall $O\left(n \log ^{2}(n)\right)$

Collecting and "joining" in a binary search tree, reporting at the end: the same complexity $O\left(n \log ^{2}(n)\right)$, memory requirement increased by $5 * \mathrm{~N}$
 overall total $19 * \mathrm{~N}$

Points to the "root" of the search tree for runs of period p .

A modification of Crochemore's algorithm to compute runs while preserving the complexity $O(n \log (n))$

Collecting into buckets, "joining" and reporting at the end.

points to the last run with period p 2 , so we know with what to join the incoming repetition with (if at all), as we sweep from left to right.

Complexity: $O(n \log (n))$
Memory: $15 * \mathrm{~N}+O(\mathrm{n} \log (\mathrm{n}))$
To avoid dynamic allocation of memory, we are using allocation from arena technique.

Conclusion

- Crochemore's algorithm is fast, though memory demanding
- Our implementation is as memory efficient as possible
- Great potential for parallel implementation
- Preliminary test very positive
- Further research
(1) to compare performance with linear time algorithms (problem - lack of code)
(2) to implement parallel version with little communication overhead

