NorthStar ${ }^{*}$

ADVANTAGE

 Technical Manual

North Star Computers, Inc.
14440 Catalina St., San Leandro, CA 94577 USA (415) 357-850O TWX/Telex (91O) 366-70O1

ADVANTAGE ${ }^{\text {M }}$
 Technical Manual

ADVANTAGE is a trademark of North Star Computers, Inc.
Z80A is a registered trademark of ZILOG Corporation MOLEX is a registered trademark of Molex Corporation

Copyright © 1981, by North Star Computers, Inc. All Rights Reserved

PREFACE

This manual contains all the technical information required to fully utilize the features of the North Star ADVANTAGE computer. Chapter 1 and 2 contain a brief introduction to the unit and a summary of the operating procedures. Chapter 3 provides the sophisticated user with the programming information and technical details required for writing application programs. Chapter 4 describes the theory of operation of the hardware, and Chapter 5 and 6 support maintenance personnel with maintenance procedures and instructions for using the diagnostic programs. The schematics for the main printed circuit board are found in the appendices, along with other support material.
Section Page
1 INTRODUCTION
1.1 General Description 1-1
1.2 Specifications 1-4
2 ADVANTAGE OPERATION
2.1 Preliminary Information 2-1
2.1.1 Keyboard 2-1
2.1.2 Rear Panel Controls 2-3
2.1.3 Diskette Loading/Unloading 2-4
2.1.4 Keyboard Reset 2-5
2.2 System Startup 2-6
2.2.1 Booting from Drive 1 2-6
2.2.2 Booting from Drive 2 2-6
2.2.3 Booting from Serial Port 2-7
3 IMPLEMENTING ADVANTAGE FEATURES
3.1 Microprocessor Control 3-1
3.2 Memory Control 3-1
3.2.1 Memory Mapping 3-1
3.2.2 Memory Parity 3-6
3.3 Interrupts 3-7
3.3.1 Maskable Interrupts 3-8
3.3.2 Non-Maskable Interrupts 3-8
3.4 Shared I/O Interface Registers 3-9
3.5. Keyboard Control 3-16
3.5.1 Reset 3-16
3.5.2 Interrupt or Polled 3-16
3.5.3 Read Keyboard 3-18
3.5.4 Cursor Lock 3-20
3.5.5 All Caps 3-20
3.5.6 Auto-Repeat 3-21
3.5.7 Character Overrun 3-21
3.6 Video Display Control 3-22
3.6.1 Screen Mapping 3-22
3.6.2 Forming Letters and Symbols 3-24
3.6.3 Display Flag 3-25
3.6.4 Screen Blanking 3-26
3.6.5 Video Driver 3-26
3.7 Floppy Disk Drive Control 3-30
3.7.1 Power-on Initialization 3-33
3.7.2 Motor Enable 3-33
3.7.3 Drive Selection 3-33
3.7.4 Seek 3-33
3.7.5 Sector Selection 3-34
3.7.6 Read Data 3-35
3.7.7 Write Data 3-36
3.8 Accessing the I/O Boards 3-37
3.8.1 Reset 3-38
3.8.2 Board ID 3-38
3.8.3 Byte Transfers 3-40
3.8.4 Interrupt 3-40

CONTENTS

Section

Page
3.9 SIO Board 3-41
3.9.1 Reset 3-41
3.9.2 Board ID 3-41
3.9.3 Data Transfers 3-42
3.9.4 Control 3-42
3.9.5 Status 3-44
3.9.6 Interrupt or Polled 3-45
3.9.7 SIO in Asynchronous Mode 3-45
3.9.8 SIO in Synchronous Mode 3-53
3.10 PIO Board 3-59
3.10.1 Reset 3-59
3.10.2 Board ID 3-60
3.10.3 Data Transfers 3-60
3.10.4 Control 3-60
3.10.5 Status 3-61
3.10.6 Interrupt or Polled 3-62
3.10.7 Programming Example 3-64
3.11 Speaker Control 3-64
3.12 Bootstrap Firmware 3-65
3.12.1 Startup 3-65
3.12.2 Boot from Disk Drive 3-66
3.12.3 Boot from Serial Port 3-68
4 THEORY OF OPERATION
4.1 Main PC Board 4-1
4.1.1 Central Processor 4-3
4.1.2 Main RAM 4-14
4.1.3 Boot Prom 4-17
4.1.4 Auxiliary Processor and Keyboard 4-17
4.1.5 Disk Controller 4-21
4.1.6 Dislay RAM and Video Generator 4-24
4.1.7 I/O Board Interface 4-35
4.1.8 Speaker Circuit 4-40
4.1.9 Voltage Regulators 4-40

CONTENTS

Section Page
4.2 SIO Board 4-42
4.3 PIO Board 4-46
5 PREVENTIVE MAINTENANCE 5-1
6 CORRECTIVE MAINTENANCE
6.1 Locating the Cause of Failure 6-1
6.2 The Diagnostic Programs 6-1
6.2.1 Single Block Mode 6-1
6.2.2 Disk Subsystem Test 6-2
6.2.3 Executable Memory Test 6-3
6.2.4 Video Memory Test 6-6
6.2.5 SIO Board Test 6-7
6.2.6 Keyboard Test 6-8
6.2.7 Display Monitor Test 6-17
6.3 Troubleshooting Chart 6-17
6.4 The Mini-Monitor 6-25
6.5 Assembly Removal and Installation Procedures 6-27
6.5.1 Tools Required 6-27
6.5.2 Opening and Closingthe ADVANTAGE Cabinet6-28
6.5.3 Removing and Installing the Keyboard 6-32
6.5.4 Removing and Installing the Main PCB 6-33
6.5.5 Removing and Installing a Disk Drive 6-37
6.5.6 Removing and Installing the Power Supply Components 6-38
6.5.7 Removing and Installing the CRT and Video PC Board 6-40
Appendix Page
A CHARACTER CODE TABLES A-1
B I/O ADDRESS SUMMARY B-1
C PC BOARD JUMPERS C-1
D ERROR MESSAGES D-1
E PARTS LISTS E-1
FGFULL ASSEMBLY DRAWINGSF-1
Z 80 MICROPROCESSOR DATA SHEET G-1
H 8251 USART DATA SHEET $\mathrm{H}-1$
I SCHEMATICS I-1
Figure Page
1-1 The ADVANTAGE Computer 1-1
l-2 Functional Block Diagram 1-3
2-1 The ADVANTAGE Keyboard 2-1
2-2 ADVANTAGE Rear View 2-3
2-3 Loading a Diskette 2-5
3-1 Memory Mapping Registers 3-3
3-2 The Three Shared I/O Interface Registers 3-10
3-3 Data Format In Display RAM 3-23
3-4 Disk Read/Write Timing 3-37
3-5 Asynchronous Modem Configuration Header 3-46
3-6 Asynchronous Terminal Configuration Header 3-47
3-7 Current. Loop Configuration Header 3-48
3-8 Current Loop Circuit 3-49
3-9 Buffer Full Modification 3-50
3-10 Synchronous Modem Clock Header 3-53
3-11 Synchronous Modem Configuration Header 3-53
3-12 Synchronous Terminal Clock Header 3-54
3-13 Synchronous Terminal Configuration Header 3-54
3-14 Standard PIO Configuration Header 3-59
4-1 The ADVANTAGE System Block Diagram 4-1
4-2 Central Processor Block Diagram 4-4
4-3 Main RAM Block Diagram 4-14
4-4 Main RAM Timing 4-16
4-5 Auxiliary Processor Block Diagram 4-18
4-6 Disk Controller Block Diagram 4-21
4-7 Display RAM and Video Generator 4-25
4-8 Horizontal Scan Timing 4-30
4-9 Vertical Scan Timing 4-34
4-10 I/O Board Interface Block Diagram 4-35
4-11 I/O Board Timing 4-39
4-12 Voltage Regulators Block Diagram 4-41
4-13 SIO Board Block Diagram 4-43
4-14 PIO Board Block Diagram 4-47
4-15 Standard PIO Configuration Header 4-47
Figure Page
6-1 Single Block Mode-Display Format 6-2
6-2 Disk Subsystem Test-Display Format 6-3
6-3 Executable Memory Test-Display Format 6-4
6-4 Locating a Defective Main RAM Chip 6-5
6-5 Locating a Defective Video RAM Chip 6-6
6-6 SIO Board Test-Display Format 6-7
6-7 Keyboard Test Modules \& Sections 6-9
6-8 N-Key Rollover Test 6-14
6-9 Keyboard Test Summary 6-15
6-10 Display Format for Display Monitor Test 6-17
6-11 Power Cord Removal 6-28
6-12 Bottom View of the ADVANTAGE 6-29
6-13 Cabinet Separation Sequence 6-30
6-14 Major Components Inside ADVANTAGE 6-31
6-15 Base Assembly 6-32
6-16 Cable Connections 6-33
6-17 Main PC Board Removal 6-35
6-18 Disk Drive Shield Removal 6-36
6-19 Disk Drive Cabeling 6-37
6-20 Disk Drive 1 Removal 6-38
6-21 Power Supply Components 6-39
6-22 Cover Assembly 6-41
6-23 Fan Cable Removal/Installation 6-41
6-24 Video Components 6-43
6-25 Video PC Board 6-44
6-26 CRT Removal 6-45
6-27 CRT Installation 6-46

Page

1-1 ADVANTAGE Specifications 1-4
2-1 ADVANTAGE Keys 2-2
2-2 Rear Panel Controls 2-4
3-1 256K Address Space Allocation 3-2
3-2 Memory Mapping I/O Addresses 3-4
3-3 Memory Mapping Register Configuration 3-5
3-4 Memory Parity I/O Address 3-6
3-5 Memory Parity Status and Control Bytes 3-7
3-6 Shared Register Addresses 3-9
3-7 I/O Control Register Format 3-11
3-8 I/O Commands 3-12
3-9 I/O Status Register 1 Format 3-14
3-10 I/O Status Register 2 Format 3-15
3-11 Sample Routine for Reading Characters 3-19
3-12 Video I/O Addresses 3-25
3-13 Video Driver Control Codes 3-27
3-14 Video Driver Data Block Format 3-28
3-15 Floppy Disk I/O Addresses 3-30
3-16 Drive Control Register Format 3-32
3-17 I/O Board Addreses 3-39
3-18 I/O Board Identification Codes 3-39
3-19 First Digit of I/O Address 3-42
3-20 SIO Interrupt Mask Format 3-43
3-21 Serial I/O Addresses 3-44
3-22 Asynchronous Baud Rate Selection 3-51
3-23 Sample Asynchronous Routines for SIO Board 3-52
3-24 Synchronous Baud Rate Selection 3-55
3-25 Sample Synchronous I/O Routines for SIO Board 3-56
3-26 PIO Interrupt Mask Format 3-61
3-27 PIO Status Byte Format 3-62
3-28 Parallel I/O Addresses 3-63
3-29 Sample Routine for Outputting PIO Data 3-64
3-30 Boot PROM CRC Routine 3-67TablePage
4-1 I/O Status Register l Format 4-7
4-2 I/O Address Decoder Signals 4-8
4-3 I/O Select Prom Summary 4-9
4-4 I/O Control Register Format 4-11
4-5 I/O Commands 4-12
4-6 I/O Status Register 2 Format 4-19
4-7 Disk I/O Instructions 4-22
4-8 Drive Control Register Format 4-23
4-9 HTIML Horizontal Scan PROM 4-27
4-10 HTIMH Horizontal Scan PROM 4-28
4-11 60 Hz Vertical Timing PROM 4-32
4-12 $\quad 50 \mathrm{~Hz}$ Vertical Timing PROM 4-33
4-13 I/O Board Pin Assignments 4-37
4-14 SIO Interrupt Mask Format 4-44
4-15 SIO Board I/O Instructions 4-45
4-16 PIO Board I/O Instructions 4-48
4-17 PIO Status Byte Format 4-49
4-18 PIO Interrupt Mask Format 4-50
5-1 Preventive Maintenance Schedule 5-1
6-1 Keyboard Test-Abbreviation Codes 6-11
6-2 Keyboard Test Control Keys 6-16
6-3 Main Board Input Power (Jll) 6-21
6-4 Main Board Video Interface (J7) 6-21
6-5 Main Board-Floppy Disk Power (Jl0) 6-25
6-6 Mini-Monitor Commands 6-26

1.1 GENERAL DESCRIPTION

The North Star ADVANTAGE is a high performance Z 80 based microcomputer system complete with keyboard, CRT and disk drives housed in a single cabinet. The ADVANTAGE computer is illustrated in Figure l-l.

Figure 1-1

The ADVANTAGE contains a 4 MHz Z80A microprocessor with 64 K bytes of dynamic RAM for program storage, a separate 20 K byte RAM to drive the bit-mapped display and an auxiliary 8035 microprocessor to control the keyboard and floppy disk drives. The display can be operated as a 1920 character display (24 lines by 80 characters) or as a 640×240 pixel bit-mapped display, where each pixel is controlled by one bit in the display RAM. The two integrated 5-1/4 inch floppy disks are double-sided, and double-density providing storage of 360 K bytes per drive. The keyboard contains 49 standard typewriter keys, 9 symbol or control keys, a 14 key numeric/cursor control pad and 15 userprogrammable function keys.

A functional block diagram of the ADVANTAGE computer is shown in Figure l-2. The blocks are described briefly below. A more detailed description of the ADVANTAGE can be found in Chapter 4, Theory of Operation.

- The Central Control Unit maintains primary control of the system. Contained herein are the Z 80 and 8035 processors and the controllers for the I/O devices.
- The 64 K Main RAM (Random Access Memory) provides temporary storage of programs and data. Programs are executed while residing in this RAM.
- The Video Monitor and 20 K Display RAM produce a high resolution display that can be used for graphics applications, or to display messages for the operator.
- The two Disk Drives use 5-1/4 inch floppy diskettes to store a total of 720 K bytes.
- The Speaker produces a tone used to signal the operator. The frequency and duration of the tone is controlled by the program.
- The Keyboard includes the standard typewriter configuration, a numeric keypad and 15 programmable function keys.
- The I/O Board Slots allow the ADVANTAGE to be customized for specific applications. There are six board slots which may contain interface boards for external devices or other boards which expand the computing power of the ADVANTAGE. Two types of boards are presently available for use in this area: the Serial Input/Output (SIO) Board and the Parallel Input/Output (PIO) Board.

1.2
 SPECIFICATIONS

The ADVANTAGE specifications are given in Table l-1.

Table l-1

ADVANTAGE Specifications

CABINET

$$
\begin{array}{ll}
\text { Dimensions } & 48 \mathrm{~cm} \text { wide } \times 51 \mathrm{~cm} \text { long } \times 31.5 \mathrm{~cm} \text { high } \\
& (18-3 / 4 \mathrm{in} \times 20 \mathrm{in} \times 12-1 / 2 \mathrm{in}) \\
\text { Net Weight } & 19.5 \mathrm{~kg}(43 \mathrm{lbs}) \\
\text { Composition } & \text { High impact structural foam }
\end{array}
$$

POWER REQUIREMENTS
External (with
Internal Line Filter)
Domestic 115 VAC, (95 to 135 VAC) $50 / 60 \mathrm{~Hz}$

International 115/230 VAC, (95 to $132 \mathrm{VAC} / 187$ to 265 VAC) $50 / 60 \mathrm{~Hz}$

Internal Supply ± 5 VDC $\pm 5 \%$
Voltages ± 12 VDC $\pm 5 \%$
Power 2 amps a 115 V
Consumption 1 amp @ 230 V

TEMPERATURE AND HUMIDITY
Operating: $\quad 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
(with diskette) $\quad\left(50^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
20\% to 80\% non-condensing
$\begin{array}{ll}\text { Non-operating } & -40^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right)\end{array}$
Shipping
$-40^{\circ} \mathrm{C}$ to $52^{\circ} \mathrm{C}$
$\left(-40^{\circ} \mathrm{F}\right.$ to $\left.125^{\circ} \mathrm{F}\right)$
5% to 95% non-condensing

Table 1-1 (continued)

PROCESSOR/MEMORY

CPU Z80 Microprocessor, operating speed: 4MHz 8035 auxiliary processor for keyboard
and disk

Memory $\quad 64 \mathrm{~K}$ byte Main RAM 20K byte Display RAM 2K byte Boot PROM

VIDEO
Screen $\quad 28 \mathrm{~cm}$ (ll in) diagonal P31 phosphor (green) High impact, non-glare safety shield

Grid 1920 character display, 24 lines by 80 characters
5×7 character in 8×10 dot matrix
Graphics
resolution
240 pixels high x 640 pixels wide
Refresh rate 50 or 60 Hz , depending on line frequency
CRT Anode $\quad 17$ KV maximum
Voltage

KEYBOARD

Keytops	Sculptured Selectric-compatible
	N-Key roll-over for fast data entry

Number of Keys: 87
Key Groups 49 Standard Typewriter Keys
14-key Numeric Pad with ENTER key
15 Programmable Function Keys
9 Additional Symbol/Control Keys
Other features Full Cursor control
Special Shift-Lock Keys
5 Shift Modes
Auto Repeat

Table 1-1 (continued)

DISK DRIVES

Number of drives	Two floppy disk drives housed in cabinet
Diskettes	Standard 5-1/4 in floppy diskettes.
	Recommended type: Dysan part No. 107/2D.
	512 bytes/sector, 10 (hard) sectors/ track 35 tracks/side, 2 sides/diskette
Storage	Quad (double-sided, double-density)
	360K bytes per diskette (formatted)
Transfer Rate	250K bits/second
Latency (average)	100 ms
Access Time Track-to-Track	5 ms
Track Density	48 tpi
Tracks per Side	
ERROR RATES	
Soft errors	1 per 10^{8} bits read
Hard errors	1 per 10^{11} bits read
Seek errors	1 per 10^{6} seeks
Disk speed	$300 \mathrm{rpm} \pm 3.0 \%$

INPUT/OUTPUT
I/O Bus Slots for up to six plug-in boards
Each board addressed by 16 I/O addresses
Serial I/O RS232 Serial Port
(SIO)
Current loop option
Asynchronous: 45 baud to 19.2 kilobaud
Synchronous: 2400 Baud to 51 kilobaud
Parallel I/O 8-bit data in and out with three handshake lines for each port

Maximum speed is limited by the processor.

2.1.1 Keyboard

Primary system control is maintained by entering commands and data from the ADVANTAGE keyboard. The keyboard is illustrated in Figure 2-1. There are 87 keys, described in Table 2-l. The keys generate standard ASCII codes, listed in Appendix A.

Display of characters entered from the keyboard is under program control. A program-maintained cursor, the rectangular shaped symbol, marks the position on the

The ADVANTAGE Keyboard

Figure 2-1.

Table 2-1

ADVANTAGE Keys		
Key Group	Keys	Description
CHARACTER	ABCDEFGHIJKLM	Alphabetic, numeric, and special
	NOPQRSTUVWXYZ	symbols. Numbers and three
	1234567890! @\#	symbols (.,-) are also available
	$\begin{aligned} & \$ \$_{n}^{\wedge} \& *()-=+;: \\ & 1 n^{\prime}, .\langle \rangle / ?[]\{ \} \end{aligned}$	on the numeric pad.
	(space)	
KEYBOARD CONTROL	SHIFT	Either of two identical keys
		which cause most of the other keys to shift into upper case
	ALL CAPS	Shifts only alphabetic characters to upper case. Key is a "push on-push off" type with LED to signal when function is active.
	RETURN	Carriage return.
	TAB	Position to next tab set on the line. Setting and releasing tabs is done under program control.
	<x	Character delete, backspace, or delete and backspace depending upon the program being used.
	ENTER	Numeric pad data entry key.
CURSOR CONTROL	8 direction arrows	All cursor activity is under program control.
	CURSOR LOCK	Shifts only cursor control keys
		(1-9 on numeric pad) to allow
		cursor positioning without using
		push off" type with LED to
		signal when key is active.

Table 2-1 (continued)

2.1.2 Rear Panel Controls

A rear view of the ADVANTAGE is shown in Figure 2-2. Table 2-2 describes the controls shown in the figure.

Figure 2-2

Table 2-2

Rear Panel Controls	
Control	Description
ON/OFF Switch	Applies/removes electrical power to the unit.
Power Cord	Mates with power cord to provide electric current from AC power source.
Fuse Holder	Contains the AC line fuse. Use $3 A$ fuse for 115 V operation and 1.5 A fuse for 230 V operation.
Reset Push Button	Resets and initializes the system. After reset, data in Main Memory is indeterminate but data on diskettes is not affected.
I/O Plate	Openings in plate allow access to I/O connectors on I/O Boards
Brightness Control	Controls brightness of the display screen. Turn clockwise to increase lightness.
2.1.3 $\begin{aligned} & \text { Diskette L } \\ & \\ & \text { To load a } \\ & \text { as follows } \\ & \text { 1. Open th } \\ & \text { 2. Hold th } \\ & \\ & \text { facing } \\ & \\ & \text { (see Fi }\end{aligned}$	oading/Unloading
	diskette into one of the disk drives, proceed
	(he latch on the front of the disk drive.
	e diskette on the label end, with the label up and the write protect notch on the left. gure 2-3).
	the diskette into the drive and push it all back until it contacts the rear of the disk
	the latch.

To unload a diskette, proceed as follows:

1. Wait until the red indicator light on the front of the disk drive goes out.
2. Open the latch on the front of the drive.
3. Grasp the edge of the diskette and pull it out.

2.1.4 Keyboard Reset

The ADVANTAGE system may be reset by pressing four keys simultaneously on the keyboard. The keys are: CMND, both SHIFT keys, and x. The effect of this reset is equivalent to pushing the Reset Pushbutton on the rear of the ADVANTAGE cabinet (see Section 2.1.2).

When power is first applied to the ADVANTAGE or after the Reset Pushbutton is pressed, the keyboard reset feature is enabled. Thereafter, the feature can be enabled and disabled by the program (see Section 3.3.2 and Table 3-6).

To load a program from disk drive l, proceed as follows:

1. If the ADVANTAGE power is already turned on, skip to step 4.
2. Insure that there are no diskettes in the disk drives. Turning power on or off with diskettes loaded may cause loss of data on the diskettes.
3. Turn on the ADVANTAGE by pressing the ON/OFF switch located at the rear of the cabinet.
4. Load the desired diskette into the upper drive (Drive 1) as described in Section 2.1.3. The diskette must be of the type that can be used for bootstrapping. Typically, a System Diskette or a Diagnostic Diskette is used.
5. Press the RESET button at the rear of the cabinet. The screen displays the message "LOAD SYSTEM" with a cursor positioned below it. This step is not necessary if the ADVANTAGE was just turned on, as the ADVANTAGE automatically resets on power-up.
6. Press the RETURN key. A program is read from Drive 1 and control is turned over to that program.

2.2.2 Booting From Drive 2

The procedure for booting from disk drive 2 is the same as for booting from disk drive 1 , except as follows:

1. Load the diskette into drive 2.
2. In step 6 instead of just pressing the RETURN key, press three keys in sequence: D2<RETURN>. Note that when booting from drive l, the format $D 1$ <RETURN> may also be used.

2.2.3 Booting From Serial Port

To load a program through a serial communication link, proceed as follows:

1. If the ADVANTAGE power is already turned on, skip to step 4.
2. Insure that there are no diskettes in the disk drives. Turning power on or off with diskettes loaded may cause loss of data on the diskettes.
3. Turn on the ADVANTAGE by pressing the ON/OFF switch located at the rear of the cabinet.
4. Press the RESET button at the rear of the cabinet. The screen displays the message "LOAD SYSTEM" with a cursor positioned below it. This step is not necessary if the ADVANTAGE was just turned on, as the ADVANTAGE automatically resets on power-up.
5. Press two keys in sequence: $S<R E T U R N>$.

This chapter provides programming information for the various sections of the ADVANTAGE, including the I/O devices. It also explains how to reconfigure the SIO and PIO boards to change their mode of operation.
3.1 MICROPROCESSOR CONTROL

The heart of the ADVANTAGE computer is the 280 processor. Refer to the Appendix G for the programming details of this integrated circuit.
3.2 MEMORY CONTROL

3.2.1 Memory Mapping

The ADVANTAGE computer uses a memory mapping scheme to expand its memory addressing capabilities from 64 K bytes to 256 K bytes. This effectively expands the Memory Address bus from 16 bits to 18 bits.

The addressing scheme divides the 256 K bytes into 16 pages of 16 K bytes each (see Table 3-l). The three major areas of memory in the ADVANTAGE: the Main RAM, the Display RAM, and the Boot PROM, are permanently assigned to the addresses shown in the table.

Table 3-1

256K Address Space Allocation		
Page	18-Bit Address	Contents
0	00000-03FFF	16 K bytes of Main RAM
1	04000-07FFF	16 K bytes of Main RAM
2	08000 - OBFFF	16 K bytes of Main RAM
3	0C000 - OFFFF	16 K bytes of Main RAM
4	10000-13FFF	
5	$14000-17 \mathrm{FFF}$	_ Not presently used
6	$18000-1 \mathrm{BFFF}$ $1 \mathrm{C} 000-1 \mathrm{FFFF}$	\int Not presently used
8	20000-23FFF	First l6K bytes of Display RAM
9	24000-27FFF	Last 4 K bytes of Display RAM repeated four times
A	28000-2BFFF	Not used
B	2C000-2FFFF	Not used
C	30000-33FFF	
D	34000-37FFF	- 2K-byte Boot PROM repeats
$\underset{\mathrm{F}}{\mathrm{E}}$	$38000-3 \mathrm{BFFF}$ $3 \mathrm{C} 000-3 \mathrm{FFFF}$	$\int \text { to fill } 64 \mathrm{~K} \text { bytes }$

Memory mapping is implemented by four Memory Mapping registers. Figure 3-1 shows how these registers work.

First, output instructions are used to load the register with the appropriate bits. Thereafter, each time the memory is accessed, the upper two bits of the program address automatically generate four bits of memory address by selecting one of the four Memory Mapping registers. The remaining 14 bits of the program address are passed through to the memory address without change.

With any one configuration of the Memory Mapping registers, the program has access to only four of the 16 possible pages. In order to change the four pages it wishes to access, the program must change one or more of the Mapping registers.

Memory Mapping Registers

Figure 3-1

The Memory Mapping registers are initialized or changed by executing output instructions. The registers are write-only; their contents cannot be read by the program. Memory mapping I / O addresses are summarized in Table 3-2.

Table 3-2

Memory Mapping I/O Addresses		
I/O Address (Hexadecimal)	Operation	Description
A0	OUTPUT only	Memory Map register
A1	OUTPUT only	Memory Map register
A2	Output only	Memory Map register
A3	OUTPUT only	Memory Map register
NOTES		
When these I / O addresses are decoded, bits 2 and 3 are ignored. This produces four addresses for each function that work equally well. For example, addresses A0, A4 and A8 all produce identical results.		
Attempting to read from any of the addresses listed in this table will read indeterminate data, and will load indeterminate data into the corresponding Memory Mapping register.		

The bits from the output byte that are used to load any of the Memory Mapping registers are bits 7,2,1 and 0. The format of the output byte is shown in Table 3.3.

As an example of programming the mapping registers, the Display RAM may be mapped into pages 0 and 1 (program addresses 0000 H through 4 FFFH by performing the following two steps:

1. Output 80 H to I / O address AOH .
2. Output 81H to I/O address AlH.

Table 3-3

Memory Mapping Register Configurations	
Bits of Output Byte 76543210	Memory Reference
$0 \times x x \times N N N$	
lxxxx00N	Main RAM page NNN
lxxxxlxx	Display RAM,$\mathrm{N}=0$ is page 8 $\mathrm{N}=1$ is page 9
NOTE: xx = ignored bits Prom	

MEMORY MAPPING IN INTERRUPT MODE

When programming the ADVANTAGE computer in interrupt mode, take care to configure the memory mapping registers so that the automatic branch to the interrupt serviceroutine is directed to the correct page of memory. Exactly how this is done depends how the Z 80 processor is programmed to respond to interrupts (see Appendix G). If the $Z 80$ processor is programmed for a "Mode 2" response, the I/O ports in the ADVANTAGE respond with an "FF" regardless of which port generated the interrupt.

The Main RAM has a parity bit associated with each memory location. The display and PROM memories do not have parity. The Main RAM parity bit is automatically written during a write operation and checked during a read operation. If an incorrect parity bit is encountered during a read operation the Parity Error flag is set. A parity error can occur because a memory location was read before any data was stored at that location.

The handling of parity errors can be controlled through the use of the status and control bytes shown in Table 3-5. The address of these bytes is given in Table 3-4..

Table 3-4

Memory Parity I/O Address		
I/O Address (Hexadecimal)	Operation	Description
60	READ	Read Memory Parity Status byte
60	WRITE	Load Memory Parity Control byte
NOTE: When I/O address 60 is decoded, address bits 0,1,2 and 3		
are work as well as 60.		

Table 3-5

3.3 INTERRUPTS

The $Z 80$ processor has two interrupt inputs: a Maskable Interrupt (INT) and a Non-Maskable Interrupt (NMI). Refer to the data sheet in Appendix G for information about how these inputs affect the $Z 80$ processor.

3.3.1 Maskable Interrupts

The sources of maskable interrupts are as follows:

1. The Keyboard. See Section 3.5.
2. The Video Controller. See Section 3.6.
3. I/O Boards. See Section 3.8.
4. Memory parity error. See Section 3.2.2.

A parity error in the Main RAM may cause a maskable interrupt or a non-maskable interrupt, depending upon jumper $W 4$ on the Main PC Board. As shipped, the parity error is connected to the maskable interrupt. North Star software does not support its connection to the non-maskable interrupt.

3.3.2 Non-Maskable Interrupts

The sources of non-maskable interrupts are as follows:

1. Power Reset. This reset occurs whenever power is turned on, or whenever power is interrupted. The power reset also resets the $\mathbf{Z 8 0}$ processor.
2. Reset Pushbutton. This control is located on the rear panel of the ADVANTAGE.
3. Keyboard Reset. This reset is under program control (see Section 2.1.4).
4. Memory Parity Error. See the paragraph above describing jumper $W 4$ on the Main PC Board.

3.4 SHARED I/O INTERFACE REGISTERS

The $Z 80$ processor uses several status and control registers in order to communicate with other system components. Most of these registers are dedicated to a particular I/O device, but three of them, the I/O Control register, Status register 1 and Status register 2 are shared by more than one device. Figure 3-2 shows the relationship of these registers to the devices which they serve.

These three 'shared registers' are introduced and briefly described in this section. Their use on a particular device such as the keyboard or video monitor is covered in the section for that device.

Table 3-6

Table 3-7

I/O Control Register Format		

The three shared registers are addressed as shown in Table 3-6. Their formats are given in Table 3-7, 3-9 and 3-10. Table 3-8 defines the I/O Commands, which are generated by the low-order three bits of the I/O Control register.

Table 3-8

I/O Commands		
Command Number	Bits 0-2 of Control Register	Description
0	000	Show Sector. Place disk sector number into bits 0-3 of I/O Status register 2. The sector number has a range of $0-9$, or one of two special codes: $E=$ disk drive motors off, and $F=$ index pulse detected. This function is also performed by command 5.
1	001	Show Char LSB's. Place low-order four bits of keyboard character into I/O Status register 2, bits 0-3.
2	010	Show Char MSB's. Place high-order four bits of keyboard character into I/O Status register 2, bits $0-3$. Reset Keyboard flag, bit 6 of the same register.
3	011	Keyboard MI Flag. Complement the state of the Keyboard Maskable Interrupt flag. Following execution of the command 3, the state of this flag appears in bit 0 of I/O Status register 2. One=on, zero=off. The KB MI flag allows the Keyboard Data flag, bit 6 of I/O Status register 2, to generate a maskable interrupt.

Table 3-8 (continued)

Command Number	Bits 0-2 of Control Register	Description
4	100	Cursor Lock. Change the state of the Curson Lock flag, and place that flag into bit 0 of I/O Status register 2. One $=$ on, zero $=$ off.
5	101	Start Disk Drive Motors. Turn on both disk drive motors. Motors remain on for 3 seconds after the command is removed. Also perform "Show Sector" command (see above).
6	110	Used only as part of the command 6, command 7 sequence (see below).
6,7	110,111	Keyboard NMI Flag. This 2-command sequence complements the state of the Keyboard Non-maskable Interrupt flag. Following execution of this command sequence, the KB NMI flag appears in bit 0 of $1 / O$ Status register 2. One=on, zero=off. When this flag is on, the keyboard reset feature is enabled (see Section 2.1.4).
7	111	All Caps. When used alone, this command changes the state of the All Caps flag, and places that flag in bit 0 of $1 / 0$ Status register 2. One $=$ on, zero $=$ off.
NOTE: In order for the I/O Commands to be effective, they must remain in the I/O Control register until the Command Acknowledge bit changes state. This bit is number 7 in I/O Status Register 2.		

Table 3-9

I/O STATUS REGISTER 1 FORMAT

$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Keyboard Interrupt. A one indicates that a valid keyboard entry has caused a maskable interrupt.

I/O Interrupt. A zero indicates that one or more of the I / O Boards is generating a maskable interrupt. The bit is is set by. clearing the interrupting condition.

Display Flag. This bit is set at the end of each vertical scan. It is cleared by accessing I/O address BOH. (see Section 3.6.1).

Non-Maskable Interrupt. A zero indicates that a non-maskable interrupt is present. See Section 3.3 for interrupting conditions.

Disk Write Protect. A one indicates that the selected disk drive is write protected. If no drives are selected or if the selected drive has no write protect option this bit is indeterminate.

Track 0. A one indicates that the selected disk drive is positioned at Track 0. If no drive is selected, this bit is indeterminate.

Sector Mark. This bit changes momentarily from a one to a zero at the end of each sector on the selected disk drive.

Disk Serial Data. This bit is connected directly to the serial data stream coming from the selected disk drive. It is used by the program to synchronize disk read operations (see Section 3.7).

Table 3-10

I/O STATUS REGISTER 2 FORMAT

3.5 KEYBOARD CONTROL

This section contains the programming information for the ADVANTAGE keyboard. Refer to the diagrams and tables in section 3.4 for the following discussion.
3.5.1 RESET

When the I / O Reset bit (I/O address $F O H$, bit 4) is set on, then off, it has the following effect on the operation of the keyboard.

1. If there is an active maskable interrupt from the keyboard, it is reset.
2. The Keyboard Maskable Interrupt flag is reset. This disables maskable interrupts from the keyboard.
3. The Keyboard Data flag is reset. This flag is bit 6 of I/O Status register 2.
4. The Cursor Lock feature is reset (see Section 3.5.4).
5. The All Caps feature is reset (see Section 3.5.5).
6. The Auto-Repeat flag is reset. This flag is bit 4 of I/O Status register 2.
7. The Character Overrun flag is reset. This flag is bit 5 of I/O Status register 2.
3.5.2 Interrupt or Polled

The keyboard may be serviced in the interrupt mode, or it may be polled by the program.

If the interrupt mode is used, the program must set the Keyboard Maskable Interrupt (KB MI) flag. The following procedure may be used for this purpose.

1. Input and record the state of the Command Acknowledge bit (I/O address DOH, bit 7).
2. Issue command 3 to the I/O control register (I/O address FOH).
3. Wait for the Command Acknowledge bit to complement. This delay is in the range of 0.5 to 1.5 milliseconds.
4. Input from I/O Status register 2 and check bit 0 . If this bit is on, the KB MI flag is already set.
5. If the $K B$ MI flag is reset, repeat step 2 above.

When the keyboard causes an interrupt, the program can verify the source of the interrupt by imputting from I/O address EOH and checking bit 0 . This bit is on if the keyboard is interrupting.

To clear the interrupt, the program must input keyboard characters (see Section 3.5.2) until the Keyboard Data flag is reset. This flag is bit 6 of I/O address DOH.

If the keyboard is to be polled rather than operated in interrupt mode, the KB MI flag must be reset. This flag is reset when the ADVANTAGE power is turned on, or when the ADVANTAGE Reset Button is pushed. The program may reset the $K B$ MI flag by executing the following sequence:

1. Input and record the state of the Command acknowledge bit (I/O address DOH, bit 7).
2. Issue command 3 to the I / O Control register (I/O address FOH).
3. Wait for the Command Acknowledge bit to complement. This dellay is in the range of 0.5 to 1.5 milliseconds.
4. Input from I / O Status register 2 and check bit 0 . If this bit is off, the KB MI flag is already reset.
5. If the $K B$ MI flag is set, repeat step 2 above.

The program polls the keyboard by periodically imputting from Status register 2 (I/O address DOH) and checking bit 6. If the bit is on, the program reads the keyboard character(s) as described below.

Characters are read from the keyboard by performing the sequence given below. A sample subroutine for reading keyboard data without using interrupts is given in Table 3-1l.

1. Input and record the state of the command Acknowledge bit (I/O address DOH, bit 7).
2. Issue command 1 to the I / O Control register (I/O address FOH).
3. Wait for the Command Acknowledge bit to complement. This delay is in the range of 0.5 to 1.5 milliseconds.
4. Input the low-order nibble of the character from I/O address DOH.
5. Issue command 2 to I/O address FOH .
6. Wait for the Command Acknowledge bit to toggle.
7. Input the high-order nibble of the character from I/O address DOH.

Keyboard character ASCII codes are given in Appendix A. There are six keys that affect the values received from other keys: Left SHIFT, right SHIFT, CONTROL, COMMAND, ALL CAPS and CURSOR LOCK. Combinations of none, one, or two of these keys produce the five variations of keyboard codes: Unshifted, Shifted, CONTROL, CONTROL- Shifted, and CMND, as sown in the table "Keyboard ASCII Codes by Key" of Appendix A.

TABLE 3-11

Cursor Lock

The CURSOR LOCK key alters the codes that are produced by some of the keys on the numeric keypad as defined in Appendix A.

The CURSOR LOCK key has a built-in light that indicates whether the feature is on or off. This feature can be set or reset by pressing the key, or by issuing a command from the program.

To change the state of the CURSOR LOCK feature, perform the following sequence:

1. Input and save the state of the Command Acknowledge bit (I/O address DOH, bit 7).
2. Issue command 4 to I / O address FOH .
3. Wait for the Command Acknowledge bit to complement. This delay is in the range of 0.5 to 1.5 milliseconds.
4. If desired, confirm the new state of CURSOR LOCK by inputting I / O address DOH and checking bit 4. One = on, zero = off.

3.5.5 All Caps

The ALL CAPS key alters the codes that are produced by the alphabetic keys as defined in Appendix A.

The ALL CAPS key has a built-in light that indicates whether the feature is on or off. This feature can be set or reset by pressing the key, or by issuing a command from the program.

To change the state of the ALL CAPS feature, perform the following sequence:

1. Input and save the state of the Command Acknowledge bit (I/O address DOH, bit 7).
2. Issue command 7 to FOH .
3. Wait for the Command Acknowledge bit to complement. This delay is in the range of 0.5 to 1.5 milliseconds.
4. If desired, confirm the new state of ALL CAPS by inputting I/O address DOH and checking bit 7. One = on, zero =off.
3.5.6 Auto-Repeat

If any key or legal combination of keys is held down for more than 800 milliseconds, the Auto-Repeat bit in Status register 2 is set. It will remain set until the key(s) is released. In addition, a special character (FFH) is inserted by the keyboard following the one that is to be repeated. The keyboard sends the character to be repeated only once.

If the program is to implement the Auto-Repeat feature, it should perform the following procedure:

1. Input I / O address $D O H$ and check bit 4. A "one" indicates repeat.
2. If this bit is set, start inputting keyboard characters until the FFH character is encountered.
3. When FFH is found, the preceeding character will be the one that should be repeated.
4. Discard the FFH character.
5. Continue to repeat the character until the AutoRepeat bit is reset.

If the program is not to implement the Auto-Repeat feature, it should simply discard the FFH character.
3.5.7 Character Overrun

I/O address DOH should be input and bit 5 checked each time a character is input from the keyboard. If the bit is a one, it indicates that the seven-character keyboard buffer was overfilled, resulting in the loss of one or more characters.

3.6.1 Screen Mapping

The video display consists of a matrix of contiguous dot positions that is 640 dots wide and 240 dots high. There is a one-to-one correspondence between each dot position and a bit in memory.

Data to be displayed on the screen is stored in the Display RAM. This RAM contains enough data to produce a display that is the same width as the screen format (640 dots) but is 256 dots high (see Figure 3-3).

The screen can be made to scroll vertically through the Display RAM in a wrap-around fashion. For example, if the screen is scrolled down so that the 50 th horizontal row of dots in the RAM format is displayed at the top of the screen, then row 51 will be next, then 52 , etc., until row 256 is encountered somewhere near the bottom of the screen. At that point the display continues with row 1 of dots in the RAM format, then row 2 , row 3, etc., until the bottom of the screen is encountered.

The Display RAM is physically located between memory addresses 20000 H and 24 FFFH . The actual program addresses used to access this RAM depend on the state of the Memory Mapping registers (see Section 3.2.1). For the purpose of this discussion, assume that the Display RAM has been mapped into pages 0 and l, i.e., 80 H has been output to I / O address AOH , and 81 H has been output to I / O address AlH.

The data in the Display RAM is organized as shown in Figure 3-3. To write into any dot or group of dots on the screen load the appropriate bit pattern into the correct locations of Display RAM, and insure that the screen is scrolled into position so that the bits are displayed.

Data Format in Display RAM

Represents 8 horizontal dots from one byte in the Display RAM. The leftmost dot is the most significant data bit. XXXX specifies the hexadecimal address of that byte, provided that the Display RAM is mapped into page 0.

NOTE: The shaded area indicates the data that would be displayed if the Start Scan register contained 02 H .

Figure 3-3

To scroll the screen, change the number in the Start Scan register. Table 3-12 gives the I/O addresses of the register. The binary number in this register indicates how far down the screen image will be positioned relative to the top of the Display RAM format (see Figure 3-3). For example, if 02H is output to this register, the data for the top row of dots on the screen will come from RAM locations $0002 \mathrm{H}, 0102 \mathrm{H}$, 0202H, etc.

3.6.2 Forming Letters and Symbols

The flexibility of the display screen format allows the user to form characters of virtually any style or size. For convenience, a set of standard character shapes is stored in the Boot PROM. When these characters are used, the display may contain 24 horizontal rows of characters with 80 characters per row. Instructions for accessing these characters are given in Section 3.6.5.

Table 3-12

Video I/O Addresses		
I/O Address (Hexadecimal)	Operation	Description
90 B0	OUTPUT INPUT or OUTFUT	Load Start Scan Register. This 8-bit register specifies which display line is to be on top of the screen. Clear Display Flag. This flag marks the period between automatic scans of the display screen (see Section 3.6.3 below).
NOTES - When these I/O addresses are decoded, address bits 0,1,2 and 3 are ignored. This produces 16 addresses for each function that work equally well. For example, addresses 90 through 9 F all produce identical results. - When inputting from address $B O$, the input data is indeterminate. - When outputting to address BO, the output data is ignored.		

3.6.3 Display Flag

The Display flag is bit 2 in I/O Status Register 1 (I/O address EOH). This flag allows the program to synchronize data transfers to the Display RAM. This prevents the momentary flicker which occurs when RAM data is changed while it is being refreshed on the screen.

The flag is set each time the automatic refresh circuitry completes a scan of the display screen, or approximately every 17 milliseconds. The flag is reset by the program (see Table 3-12). When the Display flag is set, it marks the beginning of a 0.50 millisecond period, during which time the screen is not being scanned. After this period, scanning resumes at the top of the screen and moves toward the bottom.

The Display flag causes a maskable interrupt each time it sets, if bit 7 is set in the I/O Control register (I/O address FOH).
3.6.4 Screen Blanking

The screen may be blanked by setting bit 5 of the $1 / 0$ Control register (I/O address FOH). Resetting the bit allows the screen to display again the contents of Display RAM.
3.6.5 The Video Driver

The Video Driver is a $Z 80$ processor subroutine within the Boot PROM. It is used to generate character templates for the video display and for controlling the cursor. The generated templates are 8 dots wide and 10 dots high, including the intercharacter and interline spaces.

The user supplies a list of parameters to the Video Driver that includes the current position of the cursor. The user then passes a single character to the Video Driver. If the character corresponds to one of the 96 displayable ASCII characters listed in Appendix A, it is displayed on the screen at the current cursor position. If the character corresponds to one of the control codes listed in Table 3-13, the Video Driver executes the appropriate command.

Table 3-13

Video Driver Control Codes		
Control Code	Hexadecimal Value	Description
CTRL-H	08	Backspace (cursor left)
CTRL-J	0A	Line Feed (cursor down)
CTRL-K	OB	Reverse Line Feed (cursor up)
CTRL-L	0 C	Forespace (cursor right)
CTRL-M	0D	Carriage Return
CTRL-N	0E	Clear to End of Line
CTRL-O	0 F	Clear to End of Screen
CTRL-X	18	Cursor On
CTRL-Y	19	Cursor Off
CTRL-	1 F	New Line
CTRL-^	1 E	Home Cursor (to upper left corner of screen)

Before using the Video Driver, map the Boot PROM into 8000 H and map the Display RAM into 0000 H and 4000 H (see Section 3.2.1). The Video Driver does not use the 280 processorstack pointer. A block of eleven bytes of data in main RAM must be set up before calling the Video Driver. The calling sequence is shown below and the data block format is shown in Table 3-9.

To invoke the Video Driver:

1. Set up the ll-byte RAM block as described in Table 3-9.
2. Set $Z 80$ processor IX Register to the start address of the RAM block.
3. Place the desired byte in the $\mathbf{Z 8 0}$ processor acumulator.
4. Jump to the Video Driver entry point (JMP 87FDH).

Table 3-14

Video Driver Data Block Format		
Byte	Name	Description
1	CURSX	Cursor Column Number. There are 80 columns on the screen numbered 00 H through 4FH. Each column is one byte wide.
2	CURSY	Cursor Line Number. There are 256 lines numbered 00 H through FFH. This number refers to the top line of the cursor template.
3-4	PIXEL	PIXEL Data Table Address. The standard Pixel Data Table is in the PROM at address 8561H.
5	SCRCT	Line Number. The line number which is currently at the top of the screen. This number is incremented or decremented by 10 (decimal) whenever a character causing a scroll is executed.
6	STATS	Status Byte: Bit 0 - Set by Driver if cursor is disabled. Bit 1 - Set by user to disable auto wraparound of display format. Bit 2 - Set by the user to disable scrolling. Also inhibits automatic carriage return of cursor. Bit 6 - Set by Driver if cursor reaches top of screen and scrolling is inhibited.

Table 3-14 (continued)

Bytes	Name	Description
		Bit 7 - Set by Driver if cursor reaches bottom of screen and scrolling is inhibited. Bits 3,4,5, Not used.
7-8	RETFP	Return Address. The Video Driver does not use the $\mathrm{Z80}$ stack. It returns to the calling program by jumping to the address stored in these two bytes.
9-10	CTEMP	Cursor Template Address. This address must be set up to the start of a lo-byte block containing the cursor template (normally all FHH's).
11	VIDEO	Normal/Reverse. Set this byte to 00 for normal video, FFH for reverse video.

Typical Default Values for RAM Block:

CURSX: DB 00
CURSY: DB 00
PIXEL: DW 8561H
SCRCT: DB 00
STATS: DB 00
RETFP: DW XXXX ; XXXX is return address from PROM
CTEMP: DW OFFFFH,OFFFFH,OFFFFH,OFFFFH,OFFFFH ; Cursor template
Note: CURSX, CURSY, SCRCT are automatically updated by the Video Driver.

FLOPPY DISK.DRIVE CONTROL
The Floppy Disk Drive Controller uses a minimum of hardware and requires a sophisticated program to read from and write to the disk drives. Some of the timing and motor control is determined by the program.

The program communicates with the Floppy Disk Controller in the following ways:

1. Through the Shared I/O Interface registers described in Section 3.4.
2. By outputting control bytes to the Drive Control register. The format for the register is shown in Table 3-16, and its I/O address is listed in Table 3-15.
3. By accessing the other $1 / O$ addresses given in Table 3-15.

Table 3-15

Floppy Disk I/O Addresses		
I/O Address (Hexadecimal)	Operation	Description
80 80	INPUT OUTPUT	Input Disk Data. Sets the processor into the wait state until the disk data is available, then reads the data. Inputting from this address when data is unavailable puts the processor into a continuous wait state. Output Disk Data. Sets the processor into the wait state until the Disk Controller writes the data to the diskette. Outputting to this address before setting the Disk Write flag puts the processor into a continuous wait state.

Table 3-15 (continued)

Table 3-16
Drive Control Register Format

B. During writing, this bit controls write precompensation.
1 = Use precompensation
$0=$ Use no precompensation.
Precompensation is required on the inside 20 tracks - track 15 through 34 on side 0 and tracks 35 through 49 on side 1 .

Diskette Side Select.
$0=$ Side 0
$1=$ Side 1
Not used

A disk operation involves selecting the drive, enabling the motor, performing a head seek, selecting a sector, and then performing the read or write operation. These operations are described separately in the following subsections.
3.7.1 Power-On Initialization

The data separation circuitry must be initialized after power is applied to the disk controller but before a read or write operation. This is done by alternately setting and clearing the Disk Read flag (I/O address 82H)) at approximately 100-millisecond intervals for five cycles.
3.7.2 Motor Enable

Both disk drive motors are turned on whenever a command 5 is received (Start Disk Drive Motors, see Table 3-8). If the command 5 is removed for three seconds, the value 0 EH is displayed as the sector number. After 100 microseconds both disk drive motors are turned off and the Drive Control register is reset to zeroes. The 100microsecond delay prevents the motors from being turned off in the middle of a read or write operation.
3.7.3 Drive Selection

After the drive motors are turned on, the program loads the Drive Control register (see Table 3-16) to select one of the two drives. At the same time the other bits of the register may be loaded in preparation for a head seek, read, or write.
3.7.4 Seek

The positioning of the disk drive read/write head is entirely under program control. The program must keep track of the position of the head and generate the timing pulses required to move the head from track to track.

The head is initialized (set on Track 0) by stepping it one track at a time toward the outside of the diskette, and after each step, inputting I/O Status register 1 (I/O address EOH). Bit 5 of the register is on when the selected drive has its head positioned on track 0 . There are 35 tracks per side.

The head is stepped by setting and then resetting bit 4 of the Drive Control register (I/O address 8lH). When the head is moved by more than one track in either direction, this bit must remain off for at least 5 milliseconds between step pulses. When the head reaches its destination, the program must delay at least 20 milliseconds to allow time for the head to settle.

Sector Selection
The sector number is read by performing the following sequence:

1. Input and record the state of the command Acknowledge bit (I/O address DOH, bit 7).
2. Issue command 5 to the I/O Control register (I/O address FOH , refer to section 3.4).
3. Wait for the command acknowledge bit to complement. This delay is in the range of 0.5 to 1.5 milliseconds.
4. Input the Sector Mark bit (I/O address EOH, bit 6) until it is found to be zero.
5. Input the sector number (I/O address DOH, bits 0 through 3). This number is valid while the Sector bit is zero, and for 50 microseconds thereafter.

The number obtained by following the above procedure is actually the number of the previous sector. For example, if sector 6 is to be accessed, the program must search for sector 5. If the desired sector is not found on the first attempt, repeat steps 4 and 5 above until it is found.

When the correct sector has been located, the program goes into a loop, waiting for the sector mark to go from a zero to a one. The read or write operation sequence must be initiated on this transition.

3.7.6 Read Data

After the proper sector number is found, the read sequence is as follows:

1. Wait 500 microseconds after the zero-to-one transition of the Sector Mark bit.
2. Set the Disk Read flag by outputting to I/O address 82 H .
3. Change the Acquire Mode flag to zero (bit 3 of I / O address FOH).
4. Wait 150 microseconds, then change the Acquire Mode flag to a one.
5. Wait until the Disk Serial Data bit (I/O address EOH, bit 7) changes to a one.
6. Input the sync byte (I/O address 81H). This byte should be FBH.
7. Input from I / O address $80 H$ for the remainder of the data. The next byte read is the second sync byte, which is the sector number plus 16 times the track number, truncated to eight bits. Following this are the 512 data bytes and the CRC byte. The CRC byte is not checked by hardware; a software routine is needed if checking is desired.
8. The program's task is complete at this point. The hardware will reset the Disk Write flag at the zero-to-one edge of the next sector mark. During the sector mark a new write sequence can be started

Read timing is illustrated in Figure 3-4A. Note that the timing of the Sector Mark bit is such that consecutive sectors may be read.

After the proper sector number is found, the write sequence is as follows:

1. Input the Write Protect bit (I/O address EOH, bit 4). The bit must be a zero to write on the diskette.
2. If writing to one of the inner tracks, set the Precompensation bit (I/O address 8lH, bit 5). Precompensation is required on tracks 15 through 34 on side 0 , and tracks 35 through 49 on side 1.
3. Set the Disk Write flag by outputting to I/O address 83H. This must be done within 150 microseconds after the zero-to-one transition of the Sector Mark bit (I/O address EOH, bit 6).
4. Output 33 consecutive bytes of zeros to I/O address 80 H . This forms the preamble of the sector.
5. Output two sync bytes to I / O address 80 H . The first contains the synchronization byte (0FBH), and the second contains the sector address (see READ DATA).
6. Output 512 data bytes to I / O address 80 H .
7. Output the CRC byte to I/O address 80 H . Note that the program must calculate the CRC byte.
8. The program's task is complete at this point. The hardware will reset the Disk Write flag at the zero-to-one edge of the next sector mark. During the sector mark a new write sequence can be started.

Note that it is possible to write contiguous sectors by waiting for the Sector Mark bit to return to zero, and starting again with step 3 above.

Write timing is illustrated in Figure 3-4B.

Disk Read/Write Timing

A-READ TIMING

B-WRITE TIMING

Figure 3-4

The ADVANTAGE computer interfaces with external I/O devices such as printers and communication links by means of printed circuit (PC) boards. These boards plug into the connectors at the rear of the Main PC Board. The connectors all share a common set of signals and a common set of commands which can be sent by the program.

There are two I/O boards which can be used in the I/O board slots: the PIO (Parallel I/O) and the SIO (Serial I/O). This section introduces the I/O commands which can be sent to these boards. The programming information for a particular board will be found in the section pertaining to that board.

3.8.1 Reset

The I / O boards are reset by changing bit number 4 of the I / O Control register first to a zero, then to a one. The I/O address of this register is FOH .
3.8.2 Board ID

A command may be sent to each of the I/O board slots requesting that the board inserted into that slot identify its board type. These commands take the form of I/O instructions. The I/O addresses corresponding to the board slots are given in Table 3-17. The I/O identification codes are given in Table 3-18.

There are six $1 / 0$ board slots, numbered 1 through 6 . Slot 1 is the left-hand board as seen from the rear of the unit. They are numbered in sequence from left to right.

Table 3-17

I/O Board Addresses

I/O Address (Hexadecimal)	Operation	Description	
$00-0 F$	INPUT/OUTPUT	Access I/O board in slot 6	
$10-1 F$	INPUT/OUTPUT	Access I/O board in slot 5	
$20-2 F$	INPUT/OUTPUT	Access I/O board in slot 4.	
$30-3 F$	INPUT/OUTPUT	Access I/O board in slot 3	
$40-4 F$	INPUT/OUTPUT	Access I/O board in slot 2	
$50-5 F$	INPUT/OUTPUT	Access I/O board in slot 1	
70 or 78			
71 or 79	INPUT	INPUT the ID from slot 6	
72 or 7A	INPUT	INPUT the ID from slot 5	
73 or 7B	INPUT	INPUT the ID from slot 4	
74 or 7C	INPUT	INPUT the ID from slot 3	
75 or 7D	INPUT	INPUT the ID from slot 2	
76 or 7E	INPUT	Currently unused. Returns all ones.	
77 or 7F	INPUT	Currently unused. Returns all ones.	

Table 3-18

I/O Board Identification Codes	
Identification Code (Hexadecimal)	I/O Board
7 F	
F7	FPB - Floating Point Board
BE	SIO - Serial Input/Output Board
DB	HDC - Hard Disk Controller Board
FF	PIO - Parallel Input/Output Board
	No board or board with no ID.

I/O instructions are used to transfer 8-bit bytes between the program and any one of the I/O boards. These bytes may be data bytes, control bytes or status bytes, depending upon the I / O address that is used and the particular I / O board that decodes the address.

Table 3-17 lists the $1 / 0$ addresses (00 through 5F) that are used to access a board for a single byte transfer. Each board slot is assigned to a group of 16 I/O addresses. The most significant digit of the address determines which board slot is accessed, and the least significant digit has a meaning determined by the particular board in that slot. The directin of the data transfer depends upon whether the program executes an input or an output instruction.

3.8.4 Interrupt

A maskable inter rupt may be generated from any of the I/O board slots. The program may detect this condition by inputting from $1 / O$ address $E O H$ and checking bit 1. The bit will be a zero if any of the I/O boards are interrupting. The boards must be polled individually to determine which board caused the interrupt.

The Serial Input/Output (SIO) Board provides a general facility for communicating with serial I/O devices. Synchronous and asynchronous operation are described in separate subsections. This section begins by describing those features of the board that are common to both synchronous and asynchronous operation.
3.9.1 Reset

When the I / O Reset bit (I/O address $F O H$, bit 4) is set on, then off, it has the following effect on the SIO Board:

1. The Interrupt Mask is cleared to zeros, preventing any interrupts from the board.
2. The Baud Rate register is cleared to zeros. Normally the register would now have to be reloaded to select the desired baud rate. See the appropriate section below.
3. The USART is reset, in preparation for reprogramming.

Note that the I / O Reset bit resets all I/O Boards simultaneously.
3.9.2 Board ID

The 8-bit identification code for the SIO Board is F7H. The I/O address used to input this code is determined by the board slot occupied by the SIO (see Table 3-17).

The I/O address used to transfer a data byte to or from the SIO Board is $X O H$, where X is determined by the board slot occupied by the SIO (see Table 3-19). The standard location for the SIO Board is slot 1.

Table 3-19

First Digit of I/O Address	
Board Slot	First Digit of I/O Address
6	0
5	1
4	2
3	3
2	4
1	5

3.9.4 Control

The operation of the SIO Board is controlled by specifying the Interrupt Mask and the baud rate, and by programming the 8251 USART IC (integrated circuit).

The format of the Interrupt Mask is shown in Table 320. A one in any of the bit positions 0 through 3 allows the SIO Board to generate a maskable interrupt if the stated condition occurs. The program defines this mask by outputting the appropriate bit pattern to I/O address XAH, where X is determined by the board slot occupied by the SIO Board (see Table 3-19).

The baud rate is specified by loading the Baud Rate register as described in the appropriate section: 3.9.7 for asynchronous mode, and 3.9.8 for synchronous mode.

Table 3-20

SIO Interrupt Mask Format

$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Tx Empty. Transmitter has finished sending characters.

Tx Ready. Buffer is ready to receive the next character.

Rx Ready. Receiver has a character ready.

Sync Detect. Synchronization has been achieved (synchronous mode only).

Unused.

NOTE: A one in any bit position 0 through 3 allows the stated condition to generate a maskable interrupt.

Programming the 8251 USART is done by resetting the SIO Board (see Section 3.9.1), then outputting a series of control bytes to the SIO. These bytes are output to I/O address XlH, where X depends upon the board slot occupied by the SIO Board. The control bytes necessary to configure the SIO for a particular mode of operation such as synchronous/asynchronous, number of bits per character, etc., are defined in the specification sheets for this IC, which can be found in Appendix H.

Status
A status byte may be read from the SIO Board by inputting I / O address $X 1 H$, where X depends upon the board slot occupied by the SIO Board (see Table 3-19). The composition of this status byte is given in the specification sheets for the 8251 USART, which can be found in Appendix H.

Table 3-21

Serial I/O Addresses		
I/O Address (Hexadecimal)	Operation	Description

3.9.6 Interrupt or Polled

The SIO Board may be serviced in the interrupt mode or it may be polled by the program.

If the interrupt mode is used, one or more bits of the Interrupt Mask must be set to allow the USART to generate interrupts. The Interrupt Mask is discussed in Section 3.9.4.

When the $S I O$ Board causes an interrupt, the program must determine the source of the interrupt. It does this by inputting from I / O address $E O H$ and checking bit 1. The bit is a zero if any of the I/O boards including the SIO are interrupting. The program then inputs the status of all I/O boards to determine which board(s) is interrupting.

The program decides whether the SIO Board has interrupted by comparing the status bits to the bits in the Interrupt mask. The program can respond by inputting or outputting a data byte, as appropriate, or by simply masking the interrupting condition.

If the SIO Board is to be polled, the Interrupt Mask must be loaded with zeros. The program polls the SIO by perodically reading the status byte from the 8251 USART (see Section 3.9.5) and taking appropriate action.
3.9.7 SIO in Asynchronous Mode
A. Asynchronous Modem Configuration

To establish a communication link between two electronic devices, one device must simulate a modem while the other simulates a terminal. If the ADVANTAGE is to communicate with a serial terminal such as an external CRT, a teletype, or a serial printer, the SIO must be configured to simulate a modem. Similarly, if the ADVANTAGE is to communicate with a modem, the SIO must simulate a terminal.

As shipped, the $S I O$ is configured as a modem; it is ready for immediate connection to an asynchronous RS232 terminal or a North Star-supplied printer. Connection to most asynchronous terminals and printers requires no configuration changes.

If the SIO has ever been reconfigured as a terminal, it can be restored to its original configuration as follows:

1. Remove the Clock Header in board locatin $1 A$, if one is present.
2. Remove the Configuration Header, board location $3 A_{\text {, }}$ and replace it with a l6-pin header wired as shown in Figure 3-5.

Asynchronous Modem Configuration Header

Figure 3-5
B. Asynchronous Terminal Configuration

If the ADVANTAGE is to communicate with a modem (or with another computer simulating a modem) the interfacing SIO port must be configured to simulate a terminal.

To configure the SIO as a terminal, proceed as follows:

1. Remove the Clock Header in board location lA, if one is present.
2. Remove the Configuration Header from board location $3 A$ and replace it with a l6-pin header wired as shown in Figure 3-6.

Asynchronous Terminal Configuration Header

Figure 3-6

Current Loop Operation
Whereas most computers, terminals, and printers use RS232 signal levels, some terminals, such as teletypes, use 20 mA current loop signals.

A teletype is a passive device; it does not supply current, but relies on current supplied by the SIO. The SIO is not equipped to accommodate active current loop devices such as computers that produce current loop signals.

As shipped, each SIO board is configured to use RS-232 signals.

To configure an SIO for current loop operation, perform the following procedure:

1. Remove the Configuration Header, board location 3A, and replace it with a l6-pin header wired as shown in Figure 3-7.

Current Loop Configuration Header

Figure 3-7
2. Remove the 1488 in location 4 A and replace it with the Current Loop circuit built on a 14-pin header. This circuit is shown in Figure 3-8 and is constructed as follows:
a. Connect a 2 N 3904 transistor to the 14 -pin header with the emitter (E) lead connected to pin 7, the base (B) lead connected to pin 5 and the collector (C) lead connected to pin 6.
b. Solder a 5.6 K ohm $1 / 4$ Watt resistor between pin 4 and pin 12 on the header.
c. Solder a 1 K ohm $1 / 4$ Watt resistor between pin 8 and pin 14 on the header.

Current Loop Circuit

Figure 3-8
3. Connect a 25-pin D-type connector to the terminal cable as follows:
pin 9 to the printer +lead pin 3 to the printer -lead pin 2 to the keyboard +lead pin 10 to the keyboard -lead

The procedure is then complete.

As noted earlier, most asynchronous printers can be connected to the SIO with no configuration changes. For a few printers, however, the buffer full status signal may be on an alternate pin.

The SIO supports printers that indicate buffer full status on Pin 20 (DTR) or on pin 19 (SCA). Consult the manual for your printer to determine which pin is used to indicate buffer full status. Depending on the manufacturer, this signal may be identified as "Printer Ready" or "Buffer Full."

As shipped, the SIO expects the buffer full signal on pin 20. If this signal is on pin 19, the SIO Board must be modified as shown in Figure 3-9.

E. Asynchronous Baud Rate Selection

The baud rate is selected by a combination of the USART command to "divide by 16" or to "divide by 64" and the value placed in the Baud Rate register. This register is loaded via I/O address X 8 H , where X is determined by the board slot occupied by the SIO board (see Table 319). Table 3-22 shows the values that produce the commonly used baud rates.

Table 3-22

Asynchronous Baud Rate Selection				
Baud Rate	USART set to $\div 16$		USART set to $\div 64$	
	Baud Rate Register		Baud Rate Register	
	Decimal	Hexadecimal	Decimal	Hexadecimal
19200	127	7 F	--	--
9600	126	7 E	--	--
4800	124	7C	127	7 F
2400	120	78	126	7 E
1200	112	70	124	7 C
600	96	60	120	78
300	64	40	112	70
200	32	20	104	68
150	0	00	96	60
110	--	--	84	54
75	--	--	64	40
50	--	--	32	20
45	--	--	22	16

Table 3-23

3.9.8 SIO in Synchronous Mode
A.

Synchronous Modem Configuration
As shipped, the SIO is configured for operation as an asynchronous modem. It can be reconfigured for synchronous operation as described below.

1. Wire an 8-pin header as shown in Figure 3-10, and install it in the Clock Header socket, board location lA.

Synchronous Modem Clock Header

Figure 3-10
2. Remove the Configuration Header, board location 3A, and replace it with a l6-pin header wired as shown in Figure 3-11.

Synchronous Modem Configuration Header

Figure 3-11

As shipped, the SIO is configured for operation as an asynchronous modem. It can be reconfigured as a synchronous terminal as described below.

1. Wire an 8-pin header as shown in Figure 3-12, and install it in the Clock Header socket, board location 1A.

Synchronous Terminal Clock Header

Figure 3-12
2. Remove the Configuration Header, board location 3A, and replace it with a l6-pin header wired as shown in Figure 3-13.

Synchronous Terminal Configuration Header

Figure 3-13

During synchronous operation, the receiving port speed is determined by the clock signal generated by the transmitting port. Thus, the SIO baud rate selection determines only the transmission speed for a particular port, not the receiving baud rate.

The baud rate is programmed by outputting a value to the Board Rate register. This register is loaded via I/O address X 8 H , where X is determined by the board slot occupied by the SIO Board (see Table 3-19). Table 3-24 shows the values that produce the commonly used baud rates. The lowest rate is 2400 baud and the highest rate is 5lk baud. Rates higher than 5lk baud should not be used as this exceeds the upper frequency limit of the 8251 USART.

Table 3-24

Synchronous Baud Rate Selection		
Baud Rate	Baud Rate Register	
	Decimal	Hexadecimal
	122	$7 A$
38400	120	78
19200	112	70
9600	96	60
4800	64	40
2400	0	00

D. Synchronous Programming Example

Table 3-25 provides an example of programming the SIO to communicate with a synchronous device.

Table 3-25

Sample Synchronous I/O Routines for SIO Board					
0000		;			
0000		;			
0000		;			
0000		;			
0000		;	INIT	itializes	the USART for synchronous operation.
0000					
0000		;	SYNI	ads a rec	eived message into RAM starting
0000				the addr	ess given in HL.
0000					
0000			SYNO t	ansmits a	message from RAM starting at the
0000				dress giv	en in HL. The number of bytes of
0000				messag	is given in $B C$.
0000		;			
0000		; As th	the data	transfer	red is binary and may contain any character,
0000		; an	scape	haracter	must be used to indicate the presence of
0000		; cont	rol ch	racters	uch as End-of-text, Start-of-text and Sync.
0000		; The	escape	character	used is DLE, 10H. If a DLE character
0000		; occu	rs in	de data th	this is replaced by two DLEs in sequence.
0000		;			
0000		;			
0002		SIX	EQU		; Start of text character
0003		EIX	EQU		; End of text character
0010		DLE	EQU	10H	; Data Link Escape character
0016		SYN	EQU	16H	; Sync character
0000		;			
0001		TXRDY	EQU	1	; USART status bits
0002		RXRDY	EQU	2	
0000		;			
0030		PORTA	EQU	$30 \mathrm{H}$; Set for SIO boardlet in slot three.
0038		BAJD	EQU	PORTA 8	; Set Baud rate for channel
0030		DATA	EQU	PORIA	; USART data address
0031		CIRL	EQU	PORTA +1	; USART control/status.
0000		;			
0078		BDRT	EQU	120	; Set Baud rate of 38.4 Khz
0000					
0000	3E78	INIT	MVI	A, BDRT	; Set Baud rate
0002	D338		OUT	BAUD	; for SIO boardlet
0004	3E80		MVI	A, 80H	; Ensure USART is cleared
0006	D331		OUT	CIRL	; as specified by manufacturers
0008	D331		OUT	CTRL	
000A	3 E 40		MVI	A, 40H	; do reset
000C	D331		OUT	CIRL	.
000E		;			
000E	3E0C		MVI	A, OCH	; Double sync, no parity
0010	D331		OUT	CIRL	
0012	3 E10		MVI	A, DLE	; Sync character \#l
0014	D331		OUT	CIRL	
0016	3 E16		MVI	$\mathrm{A}_{\mathbf{r}} \mathbf{S Y N}$; Sync character \#2
0018	D331		OUT	CTRL	
001A	3 EB7		MVI	A,0B7H	; Hunt,RTS, Error reset,RXE,DIR,TXE
001 C	D331		OUT	CIRL	
001E	DB30		IN	DATA	; Read junk
0020	C9		RET		
0021					
0021		; Sync	chronous	input rour	utine (RAM address in HL)
0021		${ }_{\text {i }}$ SYNI			; Set USART into hunt mode and
0024	$\begin{aligned} & \text { CD0000 } \\ & \text { CD5100 } \end{aligned}$		CALL	$\begin{aligned} & \text { INIT } \\ & \text { GEICH } \end{aligned}$; Set USART into hunt mode and ; reset errors

Table 3-25 (continued)

0027	FEl0		CPI	DLE	
0029	20F6		JRNZ	SYNI	; Wait for DLE to appear
002B	CD5100		CALL	GEICH	
002E	FE16		CPI	SYN	; If SYNC, try again
0030	28EF		JRZ	SYNI	
0032	FE02		CPI	STX	; Check for start of text,
0034	20EB		JRNZ	SYNI	; if bad, try again
0036	; Transfer message into RAM				
0036					
0036		; SDATA CALL GEICH			
0036	CD5100				
0039	FEl0		CPI	DLE	
003B	2010		JRNZ	RAMLD	; If not DLE then data
003D	CD5100		CALL	GEICH	; Get second char of DLE seq
0040	FE10		CPI	DLE	; If DLE-DLE then use one
0042	2809		JRZ	RAMLD	; of them as data
0044	FEl6		CPI	SYN	; Check for padding (SYNC chars)
0046	28EE		JR2	SDATA	; ignore if it is
0048	FE03		CPI	EIX	; End yet ?
004A	C8		RZ	;	; If not done, then bad DLE
004B	18E9		JR	SDATA	; sequence found, ignore it
004D		;			
004D	77	RAMLD	MOV	M, A	; Insert byte into RAM at (HL)
004E	23		INX	H	
004F	18E5		JR	SDATA	; Get next byte
0051		;			
0051	DB31	GEICH	IN	CIRL	; Get char from serial port
0053	E602		ANI	RXRDY	
0055	28FA		JRZ	GEICH	; Wait till done
0057	DB30		IN	DATA	
0059	C9		RET		
005A		; Synchronous output routine			
005A					
005A		; Outputs BC characters starting at address in HL			
005A		;			
005A	CD0000	SYNO	CALL	INIT	; Reset USART
005D	C5		PUSH	B	; Save byte count
005E	0600		MVI	B, 0	; Send 255 DLE-SYNCs
0060	3 ElO	HEADR	MVI	A, DLE	; before message
0062	CD9100		CALL	OPCH	
0065	3 E16		MVI	A,SYN	
0067	CD9100		CALL	OPCH	
006A	10F4		DJNZ	HEADR	
006C	Cl		POP	B	; Restore byte count
006D		Restore by count			
006D	3E10		MVI	A, DLE	; Send message header of
006F	CD9100		CALL	OPCH	; DLE STX
0072	3E02		MVI	A,STX	
0074	CD9100		CALL	OPCH	
0077		; Transfer message contents			
0077					
0077					
0077	7E	NCHO	MOV	A, M	
0078	CD9100		CALL	OPCH	; Output byte of data
007B	3E10		MVI	A, DLE	; DLE for comparison
007D	EDAl		CPII	-	; Check if char was DLE and count
007F	CC9100		CZ	OPCH	; Output second DLE if it was
0082	EA7700		JPE	NCHO	; Loop till done
0085	CD9100		CALL	OPCH	; Output DLE from A

Table 3-25 (continued)

The PIO (Parallel Input Output) Board is used to drive parallel printers and other devices requiring transfer of data in 8-bit parallel form.

The PIO Board contains a configuration header which allows it to adapt to many different device interfaces. This header changes the way that the components on the board are connected. Since the header can be wired in many ways, only one configuration is discussed here, i.e., with the header wired as shown in Figure 3-14.

Standard PIO Configuration Header

Figure 3-14

This is the standard North Star configuration. To determine the affect that other configurations would have on the operation and programming of the PIO board, refer to the PIO board schematic in Appendix I.

3.10.1 Reset

When the I/O Reset bit (I/O address FOH, bit 4) is set on, then off, its only effect on the PIO Board is to reset the Interrupt Mask to all zeros. See CONTROL heading below. Note that the I/O Reset bit resets all I/O boards simultaneously.

The 8-bit identification code for the PIO board is DBH. The I/O address used to input this code depends on the board slot occupied by the PIO board (see Table 3-19).
3.10.3 Data Transfers

The I/O address used to transfer a data byte to or from the PIO board is XOH, where X is determined by the board slot occupied by the PIO (see Table 3-9). The standard location for the PIO Board is slot 2.
3.10.4 Control

The operation of the PIO Board is controlled by specifying the Interrupt Mask, and by setting and resetting the Input and Output flags. These flags are input as part of the status byte and may be used to generate maskable interrupts.

The format of the Interrupt Mask is shown in Table 326. A one in any of the bit positions 4 through 7 enables the PIO Board to generate a maskable interrupt if the stated condition is true. The program defines this mask by outputting the appropriate bit pattern to I/O address X 2 H , where X is determined by the board slot occupied by the PIO Board (see Table 3-19).

The program initializes the Input flag by resetting it. The input device sets the flag when an input byte is ready at the device interface. After the byte is input, the program again resets the flag, and the cycle is repeated.

The Input flag is reset by accessing I/O address X6H, where X is determined by the board slot occupied by the PIO Board (see Table 3-l9). In the standard configuration of the PIO Board, the Input flag is not normally set by the program. The flag could be set by accessing I/O address X 7 H , where X is determined in the same manner as for resetting the flag.

The program initalizes the Output flag by resetting it. The output device sets the flag when it is ready to receive a byte. After the byte is transferred, the program again resets the flag, and the cycle is repeated.

PIO Interrupt Mask Format

NOTE: A one in any bit position 4 through 7 allows the stated condition to generate a maskable interrupt.

The Output flag is reset by accessing I/O address X 4 H , where X is determined by the board slot occupied by the PIO Board (see Table 3-19). In this configuration of the PIO Board, the Output flag is not normally set by the program, although it could be set by accessing I/O address X 5 H , where X is determined in the same manner as for resetting the flag.

3.10.5 Status

A status byte may be read from the PIO Board by inputting from I/O address XlH, where X is determined by the board slot occupied by the PIO Board, (see Table 3-19). Table 3-27 shows the format of the Status byte. The operation of the Input and output flags is discussed under the CONTROL heading above.

Table 3-27

3.10.6 Interrupt or Polled

The PIO Board may be serviced in the interrupt mode or it may be polled by the program.

If the interrupt mode is used, one or more bits of the Interrupt Mask must be set on to allow the PIO Board to generate interrupts. The Interrupt Mask is discussed in Section 3.10.4.

When the PIO Board causes an interrupt, the program must determine the source of the interrupt. It does this by inputting from I/O address EOH and checking bit 1. The bit is a zero if any of the I/O boards including the PIO is interrupting. The program then inputs the status of all I/O boards to determine which board(s) is interrupting. The program decides that the PIO Board has interrupted if one of the four status bits is a one, and the corresponding bit in the Interrupt Mask is also a one.

If the PIO Board is to be polled, the Interrupt Mask must be loaded with zeros. The program polls the PIO by perodically reading the board status and taking appropriate action.

Table 3-28

Parallel I/O Addresses		
I/O Address (Hexadecimal)	Operation	Description
XO	INPUT	Input Data Byte.
x 0	OUTPUT	Output Data Byte.
XI	INPUT	Input Status Byte (see format in Table 3-27).
x 2	OUTPUT	Output to Interrupt Mask (see format in Table 3-26).
X3		Not used.
X4	INPUT/OUTPUT	Reset Output flag.
X5	INPUT/OUTPUT	Set Output flag.
X 6	INPUT/OUTPUT	Reset Input flag.
X 7	INPUT/OUTPUT	Set Input flag.
NOTES		
The first digit of these $1 / 0$ addresses is determined by the board slot occupied by the PIO board (see Table 3-19).		
- Addresses X 8 through XF function the same as addresses XO through $X 7$ respectively.		

3.10.7 Programming Example

The subroutine in Table 3-29 provides an example of programming the standard configuration PIO Board to output data.

Table 3-29

Sample Routine For Outputting PIO Data						
1	0040	=	PIO	==	40H	; PIO BASE PORT ADDRESS
2	0040	==	PDATA	==	PIO	; PIO DATA PORT ADDRESS
3	0041	==	PSTAT	==	PIO+1	; PIO STATUS PORT ADDRESS
4	0004	==	POBIT	=	4	; PO FLAG BIT MASK
5	0044	$=$	RSFLG	==	PIO+4	; ADDR RO RESET OUTPUT FLAG
6			L			
7	0000'	DB41	POUT:	IN	PSTAT	; PIO STATUS
8	0002'	E604		ANI	POBIT	; TEST OUTPUT
9	0004'	28FA		JRZ	POUT	; WAIT FOR DEVICE READY
10	0006'	D344		OUT	RSFLG	; RESET OUTPUT FLAG
11	0008'	78		MOV	A, B	; CHARACTER TO SEND
12	0009'	F680		ORI	80 H	; SET Strobe bit false
13	000B'	D340		OUT	PDATA	; SET UP DATA
14	000D'	EE80		XRI	80H	; TOGGLE STROBE
15	000F'	D340		OUT	PDATA	
16	0011'	EE80		XRI	80H	; TOGGLE STROBE
17	0013'	D340		OUT	PDATA	
18	0015'	E67F		ANI	7FH	; CLEAR STROBE BIT
19	0017^{\prime}	C9		RET		
20			;			
21				. END		

3.11 Speaker Control

The speaker produces sounds that are used to signal the operator of the ADVANTAGE. The program can either produce a standard 'beep' sound, or a programmable sound.

The standard 'beep' sound is a 1920 Hz tone with a duration of one-half second. This sound is produced by inputting from I/O address 83H. The input data is indeterminate.

The programmable sound is produced by manipulating bit 6 of the I/O Control register (I/O address OFH). When this bit is complemented at the proper rate, a tone is produced in the speaker. For example, complementing the bit once every millisecond will produce a 500 Hz tone. The tone is maintained as long as the bit is being complemented. Note that complex sounds may be generated by complementing the bit at an irregular rate.
3.12 BOOTSTRAP FIRMWARE

The Bootstrap program is contained in the Boot PROM (see Section 4.1.3). The Bootstrap program loads other programs from diskette or from a serial port via an SIO Board.

3.12.1 Startup

The Bootstrap program may be entered by generating a non-maskable interrupt (see Section 3.3.2), or by executing the following two instructions:

1. Output 84 H to I / O address A 2 H .
2. Jump to address 8066H.

When the Bootstrap program is entered, it performs the following sequence:

1. The $Z 80$ processor registers are pushed into the existing stack in the following sequence: $A F, B, D, H$, alternate $A F$, alternate B, alternate D, alternate H, alternate IX and alternate IY. Finally, the interrupt vector is pushed.
2. The stack pointer is put in register IY. If the Bootstrap program was entered as the result of a power reset, register IY contains 0001H.
3. The Display RAM is mapped into 0000 H through 7 FFFH, the Boot PROM is mapped into 8000 H through BFFFH, and the first l6K bytes of Main RAM are mapped into COOOH through FFFFH.
4. A beep sounds, and the message 'LOAD SYSTEM' is displayed.

The Bootstrap program then waits for instructions entered from the keyboard. These instructions may cause it to boot from drive 1 , boot from drive 2, or boot from a serial port (see Section 2.2).

3.12.2 Boot from Disk Drive

If the Bootstrap program is directed to boot from one of the disk drives, it performs the following sequence:

1. Sectors $4,5,6$ and 7 on track 0 are read into Main RAM. The first data byte in sector 4 determines the starting location of the area in Main RAM in which the program is stored.

For example, if the first data byte is COH , this byte is stored in location C 000 H , and remaining data bytes in sectors $4,5,6$ and 7 are stored sequentially from that point. This first byte must be in the range COH through F 8 H .
2. The first 16 K bytes of Main RAM are mapped into 0000 H through 3777 H and 4000 H through 7 FFFH .
3. A jump is made to the load address + 10. This location must contain the op code for a jump instruction.

If the boot attempt is unsucessful, a beep sounds and the 'LOAD SYSTEM' message is redisplayed. There are five ways that a failure may occur:

1. Diskette not loaded.
2. Machine malfunction.
3. Uncorrectable read error (wrong CRC byte). The CRC byte is calculated by the routine shown in Table 3-30.
4. Wrong sync byte. The first sync byte is FBH. The second sync byte is the sector number plus 16 times the track number, truncated to eight bits.
5. The first byte of sector 4 is not in the range COH through FBH , or the tenth byte of sector 4 is not C3H.

Table 3-30

Boot PROM CRC Routine				
814 E	DB80	READL	IN	RDATA ;GET BYTE
8150	FECO		CPI	0 COH
8152	D8		RC	
8153	FEF9		CPI	OFSH
8155	D0		RNC	
8156	57		MOV	D,A ; MSB OF STORE ADDRESS
8157	12		STAX	D ; STORE IT ALSO
8158	13		INX	D
8159	07		RLC	
815A	4 F		MOV	C,A ; START OF CRC VALUE
815B	216581		LXI	H,BLOOP ; SET NEW RETURN ADDRESS
815E	DB80		IN	RDATA ; GET SECOND BYTE
8160	12		STAX	D
8161	13		INX	D
8162	A9		XRA	C
8163	07		RLC	; CRC CALC
8164	4F		MOV	C, A
8165	DB80	BLOOP	IN	RDATA ; READ DAtA LOOP
8167	12		STAX	D
8168	A9		XRA	C ; FORM CRC
8169	07		RLC	
816A	4F		MOV	C, A
816B	13		INX	D ; UPDATE STORE ADDRESS
816 C	DB80		IN	RDATA ; SECOND BYTE
816 E	12		STAX	D
816F	A9		XRA	C
8170	07		RLC	
8171	4F		MOV	C, A
8172	13		INX	D
8173	10 FO		DJNZ	BLOOP
8175		; HAVE	COMPLE	D A BLOC, GET CRC
8175	DB80		IN	RDATA ; CRC BYTE
8177	A9		XRA	C ; SEE IF IT MATCHES COMPUTED CRC
8178	DB82		IN	RENBL ; CLEAR READ ENABLE
817A	20Al		JRNZ	READA ; IF NOT, GO READ AGAIN

In order to use this feature, an SIO board must be installed in I/O slot 3, and the board ID must be in the range FOH through F 7 H . The board must be connected to a synchronous communication link.

If the Bootstrap program is directed to boot from serial port, it configures the USART as follows:

Synchronous Mode 2400 baud
Two sync bytes - DLE,SYN Eight bits per word Two stop bits Parity off

After the USART is configured, it should be receiving sync bytes. If sync is not detected within 1 second, a beep sounds and 'LOAD SYSTEM' is redisplayed. If sync is detected, the following 'diaglogue' should occur:

Other system:DLE,SYN,ENQ,PAD "WHAT DO YOU WANT? ADVANTAGE:DLE,SYN,EOT,NUM,ENQ PAD "I WANT THE PROGRAM" Other system:STX,<data>,ETX,SUMLO, "HERE IT IS" SUMHI, PAD
$S T X=02 \mathrm{H}, \mathrm{ETX}=03 \mathrm{H}, \mathrm{EOT}=04 \mathrm{H}, \mathrm{ENQ}=05 \mathrm{H}, \mathrm{DLE}=10 \mathrm{H}, \mathrm{SYN}=16 \mathrm{H}, \mathrm{PAD}=\mathrm{OFFH}$ NUM = boot type number (01H for the ADVANTAGE) SUMHI,SUMLO=checksum computed as((sum of all data bytes) +l) mod 65536

The Boot program can wait indefinitely for the "What do you want?" message. When it is received, it sends the "I want the program" message. Then it can wait indefinitely for the STX. When the STX arrives, the Boot program assumes that subsequent data is the program.

The first byte after the STX determines the starting location of the area in Main RAM into which the program is loaded. For example, if the first byte is COH this byte is stored in location C 000 H , and the remainder of the program is stored sequentially from that point. This first byte must be in the range COH through F 8 H .

The DLE character has special significance in the data stream as follows:

1. Two DLE's in a row are stored as one DLE.
2. Pairs of sync bytes DLE, SYN are dropped.
3. DLE,DLE,SYN is stored as DLE,SYN.
4. Single DLE's not followed by SYN or ETX are dropped.
5. The pair DLE,ETX signals end of program and is not stored.

Only those bytes that are stored in the RAM are included in the checksum. The checksum is computed as ((sum of all data bytes)+l) mod 65536. If the computed checksum does not match the checksum in the message, a beep sounds and the message 'LOAD SYSTEM' is redisplayed. If the checksums match, the first 16 K bytes of Main RAM is mapped into locations 0000 H through $3 F F F H$ and 4000 H through 7 FFFH , and a jump is made to the load address +10 .

This chapter discusses the theory of operation of the Main PC Board, the Serial Input Output (SIO) Board and the Parallel Input Output (PIO) Board.

The block diagrams in the chapter are coordinated with the schematics in Appendix I. Each block that represents circuitry on a PC board corresponds to a page of the schematics or to a shaded section of a page. In addition, the names used in the blocks are the same as those used in the schematics.
4.1 MAIN PC BOARD

Figure 4-1 is a block diagram of the ADVANTAGE computer system. The shaded blocks represent the elements of the system which are on the Main PC Board.

The Central Processor is in primary control of the ADVANTAGE system. It controls the flow of data between the I/O devices and the Main RAM. It also checks status on these devices, issues commands, and responds to interrupts.

The Central Processor performs its duties by executing the programs residing in the Boot PROM and the Main RAM. The programs contain 880 processor instructions. See Appendix G for a list of these instructions and a description of the 280 microprocessor.

The Boot PROM contains the bootstrap routine that loads programs into the Main RAM. Programs may be loaded from diskette or from a serial port connected to the I/O board interface. The Boot PROM also contains a video driver routine and a monitor routine. See Sections 3.6.5 and 6.4 for additional information on these routines.

The Main RAM is used to store programs and data. The storage capacity is 64 K bytes by nine bits including parity. Parity checking is used to insure the integrity of the stored information.

The Display RAM stores data to be displayed on the Video Monitor. The capacity of this RAM is 20 K bytes by eight bits with no parity. The Display Controller serializes the data and sends it to the Video Monitor. It also provides the Monitor with horizontal and vertical sync signals.

The Disk Controller performs most of the control functions for the disk drives. It selects the drive, selects a side of the diskette, positions the read/write head, and performs the read or write operation.

The Auxiliary Processor performs the remaining disk operations. It turns the drive motors on and off, keeps track of the sector number, and determines the width of the sector pulse. The Auxiliary processor also controls the keyboard. It scans the keyboard, converts the scanning information to the correct character code, and notifies the Central Processor when keyboard data is available.

The Speaker is a small audio transducer located on the Main PC Board. The Speaker circuit can produce either a standard 'beep' sound or a programmable sound. The I/O Board Interface consists of six PC board connectors and associated bus drivers and command decoders. The PC boards used in this area can interface external I/O devices to the Central Processor, or they can expand the computing power of the Central Processor.

The voltage regulators receive DC power from the Power Supply and produce four regulated DC supply voltages that are used throughout the ADVANTAGE system. The voltages are: +12, $-12,+5$ and -5 .

4.1.1 Central Processor

A block diagram of the Central Processor is shown in figure 4-2. The Central Processor uses two address buses and three data buses. Multiple buses are required because the 780 processor interfaces with a large number of circuits.

Any address placed on the Address (ADR) bus automatically appears on the Buffered Address (BA) bus. The same is true of data placed on the Data bus - it automatically appears on the RAM data (RD) bus. Transfers between the Data bus and the Buffered Data (BD) are controlled by the I/O Select PROM, and depend upon the direction of data flow.

The 280 processor is the heart of the Central Processor. When it fetches instructions it places the instruction address on the Address bus and reads the instruction from the Data bus. It reads status by inputting from the I/O controller, the Auxiliary Processor and I/O Status register 1. It issues commands by outputting to the I / O controllers, and to the I / O Control Register. See Appendix G for more information about this microprocessor.

Central Processor Block Diagram

Figure 4-2

The Memory Mapping registers expand the memory addressing capabilities of the ADVANTAGE computer from 64 K bytes to 256 K bytes. See Section 3.2 .1 for detailed information on their use.

The Memory Mapping registers are implemented by a 74LS670 scratch pad RAM. The RAM contains four locations with four bits per location. Each location represents one mapping register.

When data is written into a register, the $B A$ bus selects the register, and the $B D$ bus contains the data to be written. When data is read from a register, the ADR bus selects the register, and the contents of the register are used to select the 16 K section of memory to be accessed. Note that it is possible to select a non-existent section of memory, because some of the allocated address space is not used (see Table 3-1).

The Control Logic maintains the Display flag, and controls the wait input signal to the 280 processor.

The Display flag is set at the end of each vertical scan (signal $P L$ SYNC) and reset when the program executes an input or output instruction to I/O address BOH .

Two conditions may cause the 280 processor to go into a wait state:

1. The program has initiated an access to the Display RAM and data is not yet available (signal WAIT A).
2. The program has initiated a disk operation and the Disk Controller has not completed the operation (signal WAIT I, WAIT 2 and WAIT 3).

The maskable interrupt circuitry generates a maskable interrupt to the 280 processor if any of the following conditions are true:

1. Keyboard data is available (signal KB INT).
2. The Display flag is set.
3. One of the I / O boards is interrupting.
4. A parity error occurs in Main RAM (signal PINT).

The non-maskable interrupt circuitry generates a nonmaskable interrupt to the 280 processor when any of the following conditions are true:

1. Power has just been turned on, or power has been interrupted (signal PWR RES).
2. The reset pushbutton is pressed. This is the momentary contact switch located on the rear panel of the ADVANTAGE cabinet (signal PNMI).
3. The keyboard reset is active (signal INT 48). This reset is under program control (see Section 2.1.4).

The Main RAM parity error can be made to generate a non-maskable interrupt instead of a maskable interrupt by changing the position of jumper $W 4$ on the Main PC Board, but this connector is not supported by North Star software.

I/O status register 1 is an 8 -bit bus driver through which eight status signals are input from various parts of the system. When an input instruction is executed from any of the I / O addresses EOH through EFH, the status signals are transferred to the BD bus and from there into the $\mathbf{Z 8 0}$ processor. Table 4-1 defines the signals that are input.

Table 4-1

I/O Status Register 1 Format

The Clock Generator consists of a crystal oscillator, two flip flops, and a divide-by-l6 counter. These circuits generate the following clocks which are used throughout the Main PC board: $8 \mathrm{MHz}, 4 \mathrm{MHz}, 2 \mathrm{MHz}, 0.5$ $\mathrm{MHz}, 0.25 \mathrm{MHz}$ and 0.125 MHz .

The I/O Address Decoder produces some of the individual signals required to carry out I/O instructions. These signals are listed in Table 4-2 along with the corresponding decoder output.

Table 4-2
I/O Address Decoder Signals

Output	Description
0	Partial decode of disk I/O instructions and instruction to produce the standard 'beep' sound.
1	Load Start Scan register located in the Video Generator.
2	Load Memory Mapping register. Bits 0 and 1 of the BA bus specify which register is loaded.
4	Clear Display flag. 5
7	Input from I/O Status Register 2 located in the Auxiliary Processor.
7	Lnput from I/O Status Register 1.

The I/O Select PROM produces four control signals which make data available to the 280 processor by transferring data to the Data bus. Each control signal transfers the data from a different source. Table 4-3 defines the contents of this PROM and summarizes its input and outputs. The four output signals are described below.

Table 4-3

I/O Select PROM Summary

1. $\overline{R D ~ P R O M . ~ T r a n s f e r s ~ d a t a ~ f r o m ~ t h e ~ B o o t ~ P R O M ~ t o ~ t h e ~}$ Data bus. The $Z 80$ processor supplies the address of the data. This transfer can occur if the Memory Mapping registers select the Boot PROM, or if a nonmaskable interrupt occurs.
2. $\overline{R D}$ RAM. Transfers data from the Main RAM to the Data bus. The $Z 80$ processor supplies the address of the data.
3. $\bar{I} / 0$ to 880 . Transfers data from the I/O board interface to the Data bus. This transfer occurs when the Z 80 processor executes an input I/O instruction addressed to an I/O board. It also occurs when the Z80 processor is responding to a maskable interrupt (mode 2 response) and is reading the address vector from the I/O board interface. Note that the address vector from the I/O boards is always FFH.
4. $\overline{B D}$ to Z80. Transfers data from the $B D$ bus to the Data bus. This transfer occurs when the z 80 processor reads from the Display RAM, or when the Z 80 processor executes an input instruction addressed to the Disk Controller, to Status Registers 1 or to Status Register 2.

The I/O Control register stores commands that are used throughout the ADVANTAGE system. When the program executes an output instruction to any I/O address from FOH through FFH , the eight control bits are transferred from the Z 80 processor, through the $B D$ bus and into the I/O Control register.

Table 4-4 defines the bits of the I/O Control register. The low-order three bits of the register form a command code which is sent to the Auxiliary Processor. The commands are defined in Table 4-5.

Table 4-4
I/O Control Register Format

Table 4-5
I/O Commands

Command Number	Bits 0-2 of Control Register	Description
0	000	Show Sector. Place disk sector number into bits 0-3 of I/O Status register 2.
1	001	Show Char LSB's. Place low-order four bits of keyboard character into I/O Status register 2, bits 0-3.
2	010	Show Char MSB's. Place high-order four bits of keyboard character into I/O Status register 2 , bits $0-3$. Reset Keyboard flag, bit 6 of the same register.
3	011	Keyboard MI Flag. Complement the state of the Keyboard Maskable Interrupt flag. Following execution of the command 3, the state of this flag appear in bit 0 of I/O Status register 2. One=on, zero=off. The KB MI flag allows the Keyboard Data flag, bit 6 of I/O Status register 2, to generate a maskable interrupt.
4	100	Cursor Lock. Change the state of the Cursor Lock flag, and place that flag into bit zero of I/O Status register 2. One $=$ on, Zero $=0 f f$.

Table 4-5 (continued)

Command Number	Bits 0-2 of Control Reg.	Description
5	101	Start Disk Drive Motors. Turn on both disk drive motors. Motors remain on for 3 seconds after the command is removed. Also perform "Show Sector" command (see above).
6	110	Command Prefix. Used only as part of the command 6, command 7 sequence (see below).
6,7	110,111	Keyboard NMI Flage This 2command sequence complements the state of the Keyboard Nonmaskable Interrupt flag. Following execution of this command sequence, the KB NMI flag appears in bit 0 of I/O Status register 2. One $=$ on, Zero = off. When this flag is on, the keyboard reset feature is enabled (see Section 2.1.4)
7	111	All Caps. When used alone, this command changes the state of the Cap Lock flag, and places that flag in bit zero of $1 / 0$ Status register 2. One $=$ on, zero $=$ off.

4.1.2 Main RAM

The Main RAM is a dynamic memory array with a storage capacity of 64 K bytes. Each byte contains nine bits, eight for data and one for parity. The parity is odd.

A block diagram of the Main RAM is shown in Figure 4-3.
The address muX outputs 14 bits of memory address to the RAM, seven bits at a time. These l4 bits select four memory locations, one in each 16 K section of the RAM. The Control Logic completes the address decode by selecting one of the four l6K sections. Expressed in terms of the RAM integrated circuits (ICs) the Control Logic selects one of four rows of ICs: row F, row G, row H and row J.

When the RAM is accessed for a read or a write, the address bits are latched into the RAM in two steps. First, the seven most significant address bits are latched with the row address strobe (RAS) signals. Then the seven least significant address bits are latched with the column address strobe (CAS) signals.

The RMBWR signal determines whether data is read from or written into the RAM. If this signal is high, data is read from the RAM and placed into an 8-bit latch. The RD RAM signal transfers this data to the Data bus. When RMBWR is low, data is written into the RAM. Data enters the RAM from the RD bus.

Figure 4-4 shows the Main RAM timing for an op code fetch and for a non-op code memory read.

The Main RAM is refreshed only after an op code fetch. The second half of Figure 4-4 shows the timing of the refresh cycle. During refresh, the 780 supplies the refresh address, and all RAS signals are active,thereby selecting all the RAM ICs simultaneously.

The Resistor Network removes electrical noise from the data imputs of the Main RAM and the Display RAM. This network filters the signals as they pass from the RD bus to the MD bus.

The Parity Logic automatically stores a parity bit in the RAM each time data is written, and checks the parity each time data is read. The Parity Logic may be programmed to generate an interrupt if a parity is detected (see Section 3.2.2).

When a byte is written into the RAM, the Parity Logic computes parity on the $R D$ bus and supplies an odd parity bit to the RAM. When a byte is read from the RAM the Parity Logic computes parity on nine bits-eight bits from the RD bus, and the single parity bit from the RAM. At this time the RD bus contains data read from the RAM, because the RD bus is always a direct copy of the Data bus.

If a parity error is detected, the Parity Error flag is set. If the Parity Logic is programmed to generate interrupts, the Parity Error flag will generate either a maskable or a non-maskable interrupt depending upon the connection of jumper W4. The standard connection for $W 4$ is to allow maskable interrupts. North Star software does not support the alternate connection.

The Parity Error flag may be tested and/or reset by the program (see Section 3.2.2).

Main Ram Timing

MAIN RAM TIMING DURING OPCODE FETCH AND MEMORY REFRESH

MAIN RAM TIMING DURING NON-OPCODE MEMORY READ

NOTE 1-DATA REQUIRED 50ns BEFORE MREQ GOES POSITIVE

Figure 4-4

Boot Prom
The storage capacity of the Boot Prom is 2 K bytes. Contained in the PROM are the Bootstrap routine, the Mini Monitor and the Video Driver.

The Bootstrap routine performs the primary function of the Boot PROM, i.e., to load programs from the disk or from the serial port. Programming information relating to the Bootstrap routine is given in Section 3.12.

The Mini Monitor allows the operator of the ADVANTAGE to perform some elementary commands from the keyboard, such as examining a single location in Main RAM. The operating instructions for the Mini Monitor are in Section 6.4.

The Video Driver controls the position of the cursor and provides a set of standard templates for forming character images on the screen. The Video Driver is described in Section 3.6.5.
4.1.4 Auxiliary Processor and Keyboard

The Auxiliary Processor interfaces the keyboard to the Central Processor, and controls some of the disk drive functions.

A block diagram of the Auxiliary Processor is shown in Figure 4-5. The heart of the Auxiliary Processor is the 8035 microprocessor, which executes the fixed program located in the Auxiliary PROM. The 8035 operates as a slave to the Central Processor. It responds to commands from the Central Processor and responds to data input from the keyboard.

The 8035 maintains a 7-character buffer for storing keyboard characters. It also maintains various status bits associated with the keyboard and debounces the keyboard signals.

Figure 4-5

The Auxiliary Register stores four control bits which are output by the 8035. Two of them, SPWl and SPW2, are used by the Disk Controller to determine the width of the sector pulse. The third bit turns the disk drive motors on and off, and the fourth bit causes a maskable interrupt in the Central Processor when keyboard data is available.

I/O Status register 2 stores data and control bits which are loaded by the 8035 and read by the Central Processor. Table 4-6 shows the format of this register.

The 8035 performs the following functions:

1. It monitors the sector pulse signal from the Disk Controller, SPULSE, and sends two signals back to the controller that are used to determine the width of the sector pulse. These signals pass through the Auxiliary Register.
2. It scans the keyboard to determine if any key(s) is pressed. Keyboard scanning proceeds as follows:

The 8035 outputs a repeating sequence of addresses to the keyboard on signals KBD DO/ADO through KBD D3/AD3. As each new address is output, it is accompanied by a pulse on the KBD STB signal. If a key is pressed, the keyboard responds by placing the code for the active key onto signals KBD DO/ADO through KBD D7, immediately after the KBD STB signal expires. The 8035 pauses momentarily to input the code and then proceeds to scan.

If the entered key is a data key, the 8035 stores the appropriate ASCII code in its 7-character buffer. If the data key is pressed for more than 800 milliseconds, the 8035 also stores a special repeat code in the buffer.

If the entered key is the CURSOR LOCK or ALL CAPS key, the 8035 interrupts the scan momentarily to change the state of the light in the corresponding key. It does this by pulsing one of four signals (KBD D4 through KBD D7) coincident with the KBD STB signal. These four signals allow for four commands: cursor lock on, cursor lock off, all caps on and all caps off.
4. It executes the command indicated by signals CIO through CI2. These signals form a 3-bit command code which originates in the Central Processor. The commands are defined in Table 4-5.

When the Central Processor changes the command code the 8035 executes the new command, and acknowledges that the command has been performed by changing the state of the Command Acknowledge bit, bit 7 of I/O Status register 2 (see Table 4-6). The time interval between a change in the Command Code and a change in the Command Acknowledge bit is in the range of 0.5 to 1.5 milliseconds.

The Disk Controller performs most of the control functions for the disk drives. It selects the drive, selects a side on the diskette, positions the read/write head and performs the read or write operation.

The Auxiliary Processor performs the remaining disk operations, controlling of the disk motors and keeping track of the sector number.

A block diagram of the Disk Controller is shown in Figure 4-6.

The Data Separation Circuitry receives a signal from the selected disk drive which contains both data and clocks. It synchronizes with the clocks, removes the clocks from the signal, and sends the data in serial form to the Control Logic. Three major signals control the Data Separation Circuitry: DISK READ FLAG, ACQUIRE and BUFACQUIRE. The DISK READ FLAG enables the Data Separation Circuitry. The ACQUIRE and BUFACQUIRE signals are set only during the preamble of the sector when there are clock pulses but no data pulses. They allow the phase lock loop in the Data Separation circuitry to quickly synchronize with the clock.

The Control Logic responds to the eight I/O instructions listed in Table 4-7. The Control Logic detects these instructions by comparing bits 0 and 1 of the BA bus, and signals $\overline{W R}, \quad \overline{R D}$ and DISK I/O from the Central Processor. 8-bit bytes are transferred between the Control Logic and the Central Processor via the BD bus.

Disk I/O Instructions		
I/O Address (Hexadecimal)	Operation	Description
80	INPUT	Input disk data.
80	OUTPUT	Output disk data.
81	INPUT	Input sync byte.
81	OUTPUT	Load drive control register.
82	INPUT	Clear Disk Read flag.
82	OUTPUT	Set Disk Read Flag.
83	INPUT	Produce the standard 'beep' sound. The decoded signal is sent to the Speaker Circuit (see Figure 4-1).
83	OUTPUT	Set Disk Write flag.

The Drive Control Register stores a control byte which comes from the Central Processor and is sent directly to the disk drives. Table 4-8 shows the format of the register.

Table 4-8
Drive control Register Format

Not used.

The Precompensation circuit changes the timing of the data and clock pulses that are written on the inside tracks of the diskette. The pulse timing must be changed because of the higher density of the data on these tracks.

4.1.6 Display RAM and Video Generator

The Display RAM has a storage capacity of 20 K bytes, with 8 bits per byte. This RAM stores the data displayed on the ADVANTAGE video monitor. Section 3.6.1 explains the correlation between the bits in memory and the dots (pixels) on the screen.

The Video Generator serializes the data in the Display RAM and sends this data to the Video Monitor, along with horizontal and vertical sync pulses. It also allows the Central Processor to gain access to the Display RAM, and implements vertical scrolling of the displayed data.

Figure 4-7 shows a block diagram of the Display RAM and Video Generator. All blocks in the diagram are part of the Video Generator except the one marked 'RAM'.

When the Central Processor writes data into the Display RAM, the Address Mux (multiplexer) directs address bits from the BA and ADR buses to the RAM. The data to be written enters the RAM from RD bus.

When the Central Processor reads data from the RAM, the Address MUX again directs the address bits from the BA and ADR buses to the RAM, but the data from the RAM is placed on the BD bus.

The RAM is automatically refreshed as a result of reading video data during generation of the video signal.

Display RAM and Video Generator

Figure 4-7

When the RAM is supplying data to the Video Monitor, the Address Mux takes RAM address bits from the Vertical Scan Counter and from the Horizontal Dot Counter and sends them to the RAM. These two counters increment as the display screen is scanned so that the correct data is always being sent to the Video Monitor. The RAM data passes through a serial to parallel converter before going to the Video Monitor.

The Start Scan Register controls the vertical position of data on the display screen. When data is output to this register, the data enters the register from the BD bus. At the start of each vertical scan, the number in the Start Scan Register is loaded into the Vertical Scan Counter. This number determines the starting address that is sent to the RAM at the beginning of each vertical scan. The Vertical Scan Counter increments once each horizontal cycle.

The Horizontal Dot Counter increments as the display is scanned in a horizontal direction. It is reset at the beginning of each horizontal scan, and advances once for each dot position. This counter is used in the following ways:

1. It supplies RAM address bits to the Address Mux.
2. It assists the Control Logic in generating certain signals which must repeat in the same way in each horizontal cycle.
3. It provides a clock signal for the Vertical Timing and Control section.

The Control Logic performs the following functions:

1. It controls the Address Mux.
2. It responds to Central Processor request for access to the RAM (signal $\overline{280}$ DIS REQ) and grants the request with signal z 80 CYC.
3. It generates the row address and column address strobes for the RAM (signals $\overline{R A S A}, \overline{R A S B}, \overline{C A S A}$ and CASB).
4. It generates the 'load' signal for the Parallel to Serial Converter.
5. It generates the HORIZ SYNC signal. This signal keeps the Video Monitor horizontal sweep circuits in synchronization with the serial video data.
6. It blanks the display when the Central Processor DISP ON signal is high.
7. It generates a synchronization signal (PS SYNC) for the Ramp Generator in the Voltage Regulator section (see Section 4.1.9).

The Control Logic contains two PROMs, HTIML and HTIMH which are used to generate a repeating pattern of signals. The PROM address is supplied by the Horizontal Dot Counter. The contents of these PROMs is defined in Tables 4-9 and 4-10. Figure 4-8 shows the timing of the signals derived from the PROMs.

Table 4-9
HTIML Horizontal Scan PROM

Address (Hexadecimal)	PD3	Output PD2	$t \underset{\text { PDI }}{ }$	PDO	Description
00	0	0	0	0	ENDIS-Get display data
01	0	0	0	0	Wait
02	0	0	1	1	LDVSR-Load Shift Register
03	0	0	1	0	ENDIS-Get display data
04	0	0	0	0	Wait
05	0	0	0	1	ENZ80-Allow Z80 memory cycle
06 07	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	LDVSR-Load Shift register Wait
08 $\stackrel{+}{\text { ¢ }}$ $\stackrel{\text { F }}{ }$					$\left\{\begin{array}{l} \text { The above pattern } \\ \text { repeated } 31 \text { times. } \end{array}\right.$

HTIMH Horizontal Scan PROM

Address (Hexadecimal)	Output Bits PD2				PDI
PD					

Table 4-10 (continued)

98	0	0	0	0	Wait
99	0	0	0	0	Wait
9A	0	0	0	0	Wait
9B	0	0	0	0	Wait
9C	0	0	0	0	Wait
9D	0	0	0	1	ENZ80-Allow 280 memory cycle
9E	0	0	0	0	Wait
9F	0	0	0	0	Wait
A0	0	0	0	0	Wait
Al	0	0	0	0	Wait
A2	0	0	0	0	Wait
A3	0	0	0	0	Wait
A4	0	0	0	0	Wait
A5	0	0	0	1	
A6	0	0	0	0	Wait
A 7	0	0	0	0	Wait
A8	0	0	0	0	Wait
A9	0	0	0	0	Wait
AA	0	0	0	0	Wait
AB	0	0	0	0	Wait
AC	0	0	0	0	Wait
AD	0	0	0	0	Wait
AE	0	0	0	0	Wait
AF	1	0	0	0	Clear Horizontal Column Counter
B0	1	1	1	1	
Bl $\stackrel{-}{\text { - }}$ $\stackrel{\text { FF }}{ }$					The above pattern repeated 79 times

Figure 4-8

The Vertical Timer performs the following functions:

1. It generates the vertical sync (VSYNC) signal. This signal keeps the Video Monitor vertical sweep circuits in synchronization with the serial video data.
2. It generates the vertical blanking (VBL) signal. This signal causes the serial video data to be all zeros during vertical retrace.
3. It generates a synchronization signal, PL SYNC, that is used by the Phase Locked Loop and by the Control Processor. In the Central Processor it sets the Display flag.
4. It loads the contents of the Start Scan Register into the Vertical Scan Counter at the beginning of each vertical scan.

The repetitive control signals required to perform these four functions are generated by means of one of two PROMS: VTM60 or VTM50. The first of these PROMs is used when the power line frequency is 60 Hz and the second PROM is used when the power line frequency is 50 Hz . Table 4-ll and 4-12 define the contents of the PROMs. Figure 4-9 shows the timing of the generated signals.

The Phase Locked Loop keeps the Video Generator in synchronization with the power line frequency. It compares signal PL SYNC from the Vertical Timer with the power frequency, and generates an output signal, CELL CLK, which varies in frequency according to the phase of the two compared signals. CELL CLK drives the Horizontal Dot Counter which in turn drives the Vertical Timer, establishing the feedback loop.

Table 4-11
60Hz Vertical Timing PROM (VTIM60)

Address (Hexadecimal)	Output Bits				Description
	VD3	VD2	VD1	VD0	
00	0	0	1	0	
.	0	0	1	0	
-	0	0	1	0	PLSYNC on for 100 lines
32	0	0	1	0	
32			1	0	
33	0	0	0	0	
-	0	0	0	0	
-	0	0	0	0	Wait for 139 lines
7	0	0	0	0	
77	0	0	0	0	
78	1	0	1	0	VBL + PLSYNC
79	1	1	1	0	VBL + PLSYNC + VSYNC
7A	1	1	1	0	VBL + PLSYNC + VSYNC
7B	1	1	1	0	VBL + PLSYNC + VSYNC
7C	1	1	1	0	VBL + PLSYNC + VSYNC
7D	1	1	1	0	VBL + PLSYNC + VSYNC
7 E	1	1	1	0	VBL + PLSYNC + VSYNC
7 F	1	1	1	0	VBL + PLSYNC + VSYNC
80	1	0	1	0	VBL + PLSYNC
81	1	0	1	0	VBL + PLSYNC
82		0	1	1	```VBL + PLSYNC + Load Vertical Scan Counter```
83	1	1	1	1	
84					
-					\} The above pattern
$\stackrel{\cdot}{\text { FF }}$					\int repeated 124 times

Table 4-12
50Hz Vertical Timing PROM (VTIM50)

Address (Hexadecimal)	Output Bits VD3 VD2 VD1 VD0				Description
00	0	0	1	0	
.	0	0	1	0	
-	0	0	1	0	PLSYNC on for 96 lines
	0	0	1	0	
29	0	0	1	0	
2A	0	0	0	0	
.	0	0	0	0	
-	0	0	0	0	Wait for 156 lines
77	0	0	0	0	
77	0	0	0	0	
78	1	0	1	0	VBL + PLSYNC
79	1	1	1	0	VBL + PLSYNC + VSYNC
7A	1	1	1	0	VBL + PLSYNC + VSYNC
7B	1	1	1	0	VBL + PLSYNC + VSYNC
7 C	1	1	1	0	VBL + PLSYNC + VSYNC
7 E	1	1	1	0	VBL + PLSYNC + VSYNC
7F	1	1	1	0	VBL + PLSYNC + VSYNC
80	1	0	1	0	VBL + PLSYNC + VSYNC
.	1	0	1	0	VBL + PLSYNC + VSYNC
-	1	0	1	0	VBL + PLSYNC + VSYNC
	1	0	1	0	VBL + PLSYNC + VSYNC
9A	1	0	1	0	VBL + PLSYNC + VSYNC
9B				1	$\mathrm{VBL}+$ PLSYNC + Load Vertical Scan Counter
9C	1	1		1	
-					\} The above pattern
$\stackrel{\text { FF }}{ }$					¢ repeated 99 times

4.1.7 I/O Board Interface

The I/O Board Interface consists of six PC board connectors and associated bus drivers and decoders. The I/O boards inserted in these connectors respond to I/O instructions from the Central Processor. The boards may communicate only with the Central Processor, or they may interface the Central Processor to an external device.

Figure 4-10 is a block diagram of the I/O Board Interface.

I/O Board Interface Block Diagram

The Board Enable Decoder decodes the upper four bits of the I / O address, taken from the BA bus. It provides each of the board connectors with an enable signal (ENA I/O l through ENA I / O 6). Each board must complete the decoding of the I / O address and the recognition of $1 / O$ instructions by comparing signals sent to it from the Bus Driver.

The Board ID Decoder responds to I/O instructions with an I/O address of 70 through 75 and 78 through 7D. These instructions input the identification code of the board in a particular board connector. The decoder provides one ID REQ signal for each connector. The ID code returns to the Central Processor via the IOD and DATA buses.

The Bus Driver continually transfers the lower four bits of the address bus and four control and timings signals from the Central Processor to all board connectors. The I/O boards use these signals, in conjunction with those sent from the Board Enable Decoder and the Board ID Decoder to complete the recognition of specific I/O instructions.

The Bus transceiver transfers 8-bit bytes of data between the Central Processor and the I/O Boards. The Central Processor controls the direction of data flow.

The I/O Boards use the $\overline{I / O}$ INT signal to send interrupt requests to the Central Processor.

The signals on the six I/O Board connectors are defined in Table 4-13. All signals are common to all connectors, except the signals on pin 3 and pin 29. These are the individual 'board select' signals from the Board Enable Decoder and the Board ID Decoder.

Table 4-13
I/O Board Pin Assignments

Pin	Signal Name	$\begin{gathered} \text { Signal } \\ \text { Direction } \end{gathered}$	Function
1	Ground		Power/signal ground
2			Not used.
3	$\overline{\text { ID REQ }}$	OUTPUT	Input board identification code
4	+5V	OUTPUT	DC power
5	+12V	OUTPUT	DC power
6			Not used
7	$\overline{\text { IO INT }}$	INPUT	Maskable interrupt request
8			Not used
9	I0A2	OUTPUT	Buffered Address bus, bit 2
10	IOAI	OUTPUT	Buffered Address bus, bit 3
11	IOAI	OUTPUT	Buffered Address bus, bit 1
12	Ground		Power/signal ground
13	$\overline{\text { BRD }}$	OUTPUT	Buffered 280 processor $\overline{R D}$ signal
14	IOAO	OUTPUT	Buffered Address bus, bit 0
15	I08MHz	OUTPUT	8 MHz clock
16	BWR	OUTPUT	Buffered 280 processor $\overline{W R}$ signal
17	IOD3	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 3
18	$\overline{\text { BIORES }}$	OUTPUT	Resets I/O boards
19	IOD2	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 2
20	IOD4	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 4

Table 4-13 (continued)

Pin	Signal Name	Signal Direction	Function
21	Ground		Power/signal ground
22	IOD5	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 5
23	IOD6	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 6
24	IOD1	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 1
25	IODO	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 0
26	-12V	OUTPUT	DC power
27	+5V	OUTPUT	DC power
28	IOD7	$\begin{aligned} & \text { BIDIREC- } \\ & \text { TIONAL } \end{aligned}$	I/O Data bus, bit 7
29	$\overline{\text { ENA } 1 / O}$	OUTPUT	Selects board for I/O operation
30	Ground		Power/signal ground

Figure 4-ll shows the timing of the I/O Board signals. Both read and write cases are shown, although the WR and DATA OUT signals would only be active during an output instruction and the RD and DATA IN signals would only be active during an input instruction.

Figure 4-11

The speaker is a small transducer located on the Main PC Board.

The speaker circuit produces two kinds of sounds in the speaker: a standard 'beep' sound with a fixed pitch and duration, and a programmable sound which can be varied in pitch and duration.

The standard beep sound is triggered when signal TRIG BEEP pulses low. This fires a one-shot which allows a free-running oscillator to produce a 1920 Hz tone for one-half second.

The programmable sound is generated from signal SPK DATA which represents bit 6 of the I/O Control Register. To produce the sound, the program turns the bit on and off at an audible rate. The program can produce any desired tone and maintain it for any length of time.

4.1.9 Voltage Regulators

There are five DC voltage regulators on the Main PC Board that provide regulated DC power for the ADVANTAGE system. These regulators are shown in Figure 4-12, along with their associated circuits.

The +12 V and Main +5 V regulators receive power from the unregulated $+23 V$ supplied to the Main PC Board. These regulators are of the switching type and use transistors and op amps as active elements.

The Ramp Generator produces a pulse which synchronizes the +12 V and +5 V regulators so that they switch on during the horizontal retrace of the Video Monitor. The pulse is triggered by the positive going edge of the PS SYNC signal.

The Ramp Generator receives a signal from the Video Generator (PS SYNC) and from it develops a pulse that synchronizes the +12 V and +5 V regulators. The regulators are triggered to switch on during the horizontal retrace of the Video Monitor in order to minimize the effect of switching noise on the display screen.

Figure 4-12

The Auxiliary +5 V regulator is an integrated circuit linear regulator and is used only by the Video Phase Locked Loop circuit.

The Power-on Reset circuit and the Power Fail circuit both monitor the unregulated +23 V input to the Main PC Board. The Power-on Reset circuit produces the PWR RES signal when power is first turned on. This signal resets the ADVANTAGE system. The Power Fail circuit produces the PWR FAIL signal if the +23 V power is interrupted.

The Over-Voltage (OV) Protection circuit monitors the output of the Main +5 V regulator. It pulls the +5 V line to ground and blows the Main PC Board fuse if +5V rises above +7.8 V .

The -12V regulator receives power from the unregulated $-23 V$ supplied to the Main PC Board. The -5V regulator receives power from the -12v regulator. Both of these are integrated circuit linear regulators.

4.2 SIO BOARD

The SIO (Serial Input/Output) Board interfaces the Main PC Board with serial printers and communication links. The board's serial interface can be configured to support the RS232 standard or current loop operation. A block diagram of the SIO Board is shown in Figure 4-13.

The heart of the SIO board is the 8251 USART. Refer to the manufacturer's data sheet in Appendix H for information concerning this integrated circuit.

The Main Board Interface responds to I/O instructions from the Main PC Board. All but one of these instruction are listed in Table 4-14. The unlisted instruction is directed to the I / O board connector rather than the SIO board. It requests that the board in that connector place its board ID code on the IOD bus. When this instruction is active, the ID REQ signal goes low. The ID code for the SIO Board is F7H.

The Interrupt Mask is a 4-bit register contained in the Main Board Interface. It determines the conditions under which a maskable interrupt is sent to the Main PC Board. Each bit of the register is associated with an output bit of the USART. When the mask bit is a one and the associated USART signal is true, the interrupt is generated. Figure 4-15 shows the format of the register.

Table 4-14
SIO Board I/O Instructions

I/O Address (Hexadecimal)	Operation	Description
x0	INPUT	Transfer a data byte from the USART to the Main PC Board.
x0	OUTPUT	Transfer a data byte from the Main PC Board to the USART.
X1	INPUT	Transfer a status byte from the USART to the Main PC Board.
X1	OUTPUT	Transfer a control byte from the Main PC Board to the USART.
X8 or X 9	OUTPUT	Load the Baud Rate register.
XA or XB	OUTPUT	Load the Interrupt Mask register.
NOTE: The first digit of these I/O addresses selects one of the six I/O board connectors. If the connector is enabled, signal ENA IO is low.		

The Baud Rate Control section provides two clocks for the USART: the USART clock and the baud clock.

The USART clock is the fixed frequency basic clock signal for the USART. It is produced by dividing the Main PC Board 8 MHz clock signal by 4.33 .

The baud clock is used by the USART to determine its transmitting and receiving frequency. The baud clock is generated by a combination of the Baud Rate register and a 9-bit counter. The Baud Rate register provides the pre-load value for the low order 8 bits of the counter. The counter clock is developed by dividing the Main PC Board 8 MHz clock signal by 13.

Table 4-15

SIO Interrupt Mask Format

The Clock Header is an 8-pin jumper plug which mates with an 8-pin IC socket on the SIO board. This header is used only for synchronous operation. It allows the receive and transmit clocks to be rerouted so the receive clock originates from the serial device (connector Jl) and the transmit clock is supplied to that device.

The Configuration Header is a l6-pin jumper plug which mates with a l6-pin IC socket on the SIO board. This header allows the interface signals between the USART and the serial device to be wired so as to conform to the requirements of the device.

4.3 PIO BOARD

The PIO (Parallel Input Output) Board interfaces the Main PC Board with devices that input or output data in 8-bit parallel form.

A block diagram of the PIO Board is shown in Figure 414.

The Control Logic contains a programmable configuration header which allows the PIO Board to adapt to many different I / O devices. The configuration header is a 16pin jumper plug which mates with a l6-pin IC connector on the PIO Board. The header determines the routing of critical control signals in the Control Logic.

This discussion is based on a PIO Board with a standard configuration header, i.e, one that is wired as shown in Figure 4-15. For other possible configurations, consult the schematic drawings in Appendix I.

The Control Logic responds to I / O instructions from the Main PC Board. All but one of these instruction are listed in Table 4-16. The unlisted instruction is directed to the I/O board connector rather than the PIO board. It requests that the board in that connector place its board ID code on the IOD bus. When this instruction is active, the ID REQ signal goes low. The ID code for the PIO Board is DBH.

PIO Board Block Diagram

Figure 4-14

The I/O flags are used by the Main PC Board and the I/O device to signal the availability of data. The I/O device sets the Input flag when an input byte has been place on the PI bus. The Main PC Board resets this flag when it inputs the data. Similarly, the Main PC Board resets the Output flag when an output byte has been placed on the PO bus. The I/O device sets the Output flag when it accepts the data.

Standard PIO Configuration Header

Figure 4-15

PIO Board I/O Instructions

I/O Address (Hexadecimal)	Operation	Description
X0 or X8	INPUT	Input a data byte from the I/O device to the Main PC Board via the $P I$ register.
x 0 or X 8	OUTPUT	Output a data byte from the Main PC Board to the I/O device via the PO register.
XI or X 9	INPUT	Input a status byte from the Control Logic. The format of the Status Byte is shown in Table 4-16.
X 2 or XA	OUTPUT	Load the Interrupt Mask register in the Control Logic. The format of this register is shown in Table 4-17.
X3 or $X B$		Not used.
X 4 or XC	INPUT/ OUTPUT	Reset the Output flag.
X 5 or XD	INPUT/ OUTPUT	Set the Output flag.
X6 or XE	INPUT/ OUTPUT	Reset the Input flag.
$\mathrm{X7}$ or XF	INPUT/ OUTPUT	Set the Input flag.
NOTE: The first digit of these I/O addresses selects one of the six I / O board connectors. If the connector is enabled, signal ENA I/O is low.		

Table 4-17
PIO Status Byte Format

Table 4-18
PIO Interrupt Mask Format

NOTE: A one in any of the bit positions 4 through 7 allows the stated condition to generate a maskable interrupt.

The ADVANTAGE requires only minimal preventive maintenance for long-term operation. Suggested preventive maintenance procedures are listed in Table 5-1. Instructions for opening the ADVANTAGE cabinet can be found in Section 6.5.2.

WARNING

ALWAYS UNPLUG THE POWER CORD FROM THE BACK OF THE UNIT BEFORE OPENING THE CABINET.

Table 5-1

Preventive Maintenance Schedule		
Activity	Schedule *	Comments
Clean exterior of cabinet	As needed	Dust with a soft cloth. Clean CRT screen with glass cleaner. For persistent dirt use a damp sponge or towel. Do not allow cleaning water to drip down into unit.
Examine/replace diskettes	Weekly or after approximately 150 hours of use.	Examine diskettes for excessive wear. A new disk has a smooth surface of magnetic film. As it wears, concentric lines appear on the magnetic surface. Replace any diskette that appears worn by copying the data to a new diskette and discarding the old one. The standard life of a diskette varies by brand, handling, and other usage factors.

Table 5-1 (continued)

Clean printed circuit boards	During drive servicing or as needed	Clean printed circuit boards with compressed air or similar means.
Check internal connections	During drive servicing	Visually check all interior wires and connectors, making sure connectors are properly seated.
Run Diagnostic programs	Monthly	The Diagnostic programs may detect the beginning of a maintenance problem before it has become evident to the operator. Diagnostic programs are described in Section 6.2.

6.1 LOCATING THE CAUSE OF FAILURE

This chapter describes how to locate and replace a failed part at the subassembly level. If the system is operating minimally, the extensive diagnostic programs can be used to test the machine. These programs are described in Section 6.2. If the failure is serious enough to prevent diagnostic programs from being loaded, the troubleshooting procedure in Section 6.3 or the Mini Monitor in Section 6.4 can be used. When the failed subassembly is located, it may be replaced by using the procedures provided in Section 6.5 .
6.2 THE DIAGNOSTIC PROGRAMS

The ADVANTAGE diagnostic programs provide comprehensive testing of the ADVANTAGE system. They are loaded from the Dealer Diagnostics Diskette and may be run at three different levels:

1. Integrity Test. Automatically performs low level testing when cold starting the system from any ADVANTAGE System Diskette.
2. Default Mode, User-level diagnostic. More extensive than the Integrity Test, but requires only minimal operator interaction.
3. Single Block Mode. Most detailed diagnostic level level. Provides individual tests of ADVANTAGE subassemblies.

The remainder of this section describes how to run the diagnostics in Single Block mode. Note that the diagnostic programs are self-prompting; this description is included for general reference.
6.2.1 Single Block Mode

1. Load the Dealer Diagnostic diskette as described in Section 2.2. The screen will display "North Star Test System - Option Menu" with a version number ending in ' B ' and the following menu:
[l] Run the Default test
[2] Go into Single Block mode
2. Press the '2' key to enter Single Block mode. Data is read from the diskette and the screen changes to the format shown in Figure 6-1.
3. To select one of the tests, press the corresponding key (l through 6). A diagnostic monitor loads the selected test. Control is returned to the monitor when the test is completed.
Single Block Mode - Display Format
North Star Test System - Ver. l.0-A
SINGLE BLOCK MENU
Please make your choice from the following:
[1] Disk Subsystem Test
[2] Executable Memory Test
[3] Video Memory Test
[5] Keyboard Test
[6] Display Monitor Test
Input your desired choice:
Ctl-C to exit
(c) NorthStar Computers, inc. 1981
6.2.2 Disk Subsystem Test

The Disk Subsystem Test requires two 'scratch' diskettes, one for each of the two disk drives. They must be in very good condition to ensure the validity of the test. They may be formatted, although this is not required.

CAUTION

This test destroys any data that was previously stored on the scratch diskettes.

The diskettes are inserted according to machine prompt. When the test is started, the screen will display a format similar to that shown in Figure 6-2. The test begins immediately and runs continuously on both drives, incrementing the pass number, track number, etc. and indicating any errors.

Three passes represent a complete test. To terminate the test, press CONTROL-C and the display returns to the Single Block Menu.

6.2.3 Executable Memory Test

This test exercises the Executable Memory (Main RAM) by writing various test patterns, reading them back and checking for discrepancies. This not only tests for failures of individual bits, but checks for cross-talk between the address bits and the data bits. In addition, the memory is tested for its ability to contain a running program.

The test is composed of six sections. The first five sections are identical, except that each of these uses a different test pattern. The sixth section verifies that instructions can be executed from the portion of memory under test.

When the Executable Memory Test is loaded, the screen displays a format similar to Figure 6-3. The pattern of Ms and *s in the center of the screen represents the total area of Main RAM (64 K). Each vertical column of single characters represents a lk portion of the memory, starting with the lowest portion on the left (physical address 0000 H) and going in ascending order to the highest portion on the right (physical address OFFFH). The horizontal rows of characters each represent a different bit in the memory, starting with bit zero on the top, and going down in order to bit 7 on the bottom. The portions of memory marked by Ms are tested by the program. The portions marked by *s are not tested, as they are needed to store the GDOS program, the test program, and various parameter fields.

As the test is running, the display indicates which section of the test is currently being executed. During section 6, a row of characters is displayed across the bottom half of the screen, one character at a time, from left to right. Each new character marks the current lK portion of memory that is being tested. Each time section 6 is completed, the pass counter is incremented. The counter advances thusly: $A A, A B, A C$, etc.

Executable Memory Test - Display Format

NORTH STAR TEST SYSTEM - VER. 1.0 - B

MODE: | Single \quad BLOCK: Executable |
| :--- |
| Block |
| Memory | SECT: 4

Block
Continuous

Memory

PASS: AA

RAM MATRIX
ММММММММ ММММММ*M ММММММММ ММММММММ ММММММММ ММММММММ M*M*MMMM ********
 ММММММММ ММММММ*М ММММММММ ММММММММ ММММММММ ММММММММ ${ }^{\text {M*M*MMMM } * * * * * * * * ~}$ MМММММММ ММММММ*M ММММММММ ММММММММ ММММММММ MMMMMMMM M*M*MMMM ******** ММММММММ ММММММ*М ММММММММ ММММММММ ММММММММ ММММММММ M*M*MMMM ********
 MMMMММММ ММММММ*M MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM M*M*MMMM ******** ММММММММ ММММММ*М ММММММММ ММММММММ ММММММММ ММММММММ ${ }^{\text {M }}$ (M*MMMM ********

CTL-C to exit
(c) NorthStar Computers Inc. 1981

Figure 6-3.

If a failure occurs, and the program does not jump sequence, a question mark (?) replaces one of the Ms in the displayed RAM MATRIX, and a exclamation mark (!) is displayed next to the pass count.

Figure 6-4 can be used to find the PC board location of the failing RAM chip. First, note the position of the (?) in the display. Then, read the coordinates of that position from the figure. These coordinates indicate the PC board location of the RAM chip. Figure 6-4 indicates a bad chip at board location J7.

The Executable Memory Test runs continuously, completing a pass approximately every four minutes. To exit from the test and return to the diagnostic monitor, press CONTROL-C.

Locating a defective Main RAM Chip

Figure 6-4.

6.2.4 Video Memory Test

The Video Memory Test exercises the portion of memory (Video RAM) that provides data for the video screen. It operates as described above for the Executable Memory Test, with the following exceptions:

1. There is no section 6 (Instruction Fetch Test), since instructions are never fetched from the Video RAM.
2. The test patterns used to exercise the memory are displayed on the screen. They move across the screen from left to right as the testing proceeds.
3. The 'RAM MATRIX" displayed in the center of the screen is 20 columns wide instead of 64.

If an error occurs, a question mark replaces one of the Ms in the displayed RAM MATRIX. Figure 6-5 may be used to locate the defective RAM chip. The figure indicates a bad chip at board location 5 K .

Locating a Defective Video RAM Chip

K		L		$\begin{aligned} & \text { PC BOARD } \\ & \text { COORDINATES } \end{aligned}$
	\bigcirc	$\xrightarrow{ }$	1	
MMMMMMMM	MMMMMMMM	MMMM	9	
ММММММММ	МММММММММ	MMMM	8	
ММММММММ	ММММММММ	MMMM	7	
MMMMMMMM	МММММММММ	MMMM	6	
MMMMMMMM	МММММ ? M	MMMM	5	
ММММММММ	МММММММММ	MMMM	4	
МММММММММ	МММММММММ	MMMM	3	
MMMMMMMM	MМММММММ	MMMM	2	

Figure 6-5.
The SIO Test Diagnostic checks for the presence of an SIO Board and performs rudimentary testing. Before running this diagnostic, connect a special test plug to the RS-232 connector of the SIO Board. This connector is located on the rear panel of the ADVANTAGE. The test plug can be made with a male RS-232 connector as follows:
Connect: pin 2 to pin 3 (RxD to TxD) pin 4 to pin 5 (DSR to DTR) pin 8 to pin 20 (CTS low)
A sample display is shown in Figure 6-6, indicating one SIO Board in connector J5.

```
SIO Board Test - Display Format
NO SIO BOARD IN SLOT 6
TESTING SIO BOARD IN SLOT 5
    BOARD PASSED AT 9600 BAUD
NO SIO BOARD IN SLOT 4
NO SIO BOARD IN SLOT 3
NO SIO BOARD IN SLOT 2
NO SIO BOARD IN SLOT I
I'm done now!
Type any character to continue.
```

Figure 6-6.

The Keyboard Test confirms the operation of every function of the keyboard: that the scan lines are functional; that there is no cross-talk and that N-key rollover is operational; that the auto repeat function is in working order; that all the shift modes scan properly; that the ALL CAPS and CURSOR LOCK lights work correctly. If desired, the Keyboard Test can test every character code which can be generated.

The Keyboard Test is divided into modules, which are in turn divided into sections (see Figure 6-7). The modules and sections are normally executed in the order shown in the figure by following video prompts. However, it is possible to jump to other areas of the test from any given section, as shown by the arrows leaving the '3rd Row' segment of module 'CASE III". This option is discussed in a later section titled 'Changing Sequence'.

Figure 6-7

A description of the modules in the Keyboard Test is given below:
A.

Case I - Lower Case
The Case I through Case VII modules verify correct ASCII coding from the keyboard. The Case I module takes three to six minutes, depending on the speed of the operator.

Specified keys are pressed in a left-to-right sequence, one row at a time, and the characters are echoed on the screen. The abbreviation codes used to represent the characters on the screen are listed in Table 6-1. The Case I module requires the entry of four rows of keys.

The easiest way to input a line of keys is to glide the finger across the keytops from left to right for the designated row. Be sure to include the first indicated key, be it "l", "ESC", etc.

There is a short beep after each line has been entered correctly and its codes verified. If there is an error, a longer beep sounds. This usually indicates that one or more keys in the row was hit incorrectly; a question mark is displayed under the incorrect key entry on the screen display. The Keyboard Test allows three chances to input a row correctly. Then it logs the error, which appears in the summary display at the end of the test, and proceeds to the next row. You cannot correct an error when keying in a row. Quickly finish the row with dummy entries (e.g., spaces) and re-enter the line on the next try. If this was the last try, go to the beginning of the section and try again.

Table 6-1

B. Case II - Upper Case

This is the same as Case I, except that the SHIFT key is held down while the other keys are entered.
C. Case III - Control, Lower Case

This is the same as Case 1 , except that the CONTROL key is held down while the other keys are entered.
D. Case IV - Control, Upper Case

This is the same as Case I, except that the CONTROL and SHIFT keys are held down while the other keys are entered.

```
E. Case V - Command
```

This is the same as Case I, except that the CMND key is held down while the other keys are entered.
F. Case VI - All Caps

This module requires that the operator verify the correct operation of the ALL CAPS light and key in two rows for code verification.
G. Case VII - Cursor Lock

This module requires that the operator verify the correct operation of the CURSOR LOCK light and key in two rows on the numeric key pad for code verification.
H. $\quad \mathrm{N}$-Key Rollover

This module checks for interference between keyboard signals when multiple keys are pressed. The module is summarized in Figure 6-8. The test procedure is given below:

1. Four keys must be held down with the left hand while pressing a sequence of keys with the right hand. First,starting with the little finger of the left hand, press and hold down the "2" on the main keyboard, then with the next finger press and hold down the "E", and so forth with the "F" and "B" keys. The display will show a repeating sequence of:

BBBBBBBBBBBB...
2. While keeping the '2EFB' keys pressed, with the right hand press the RETURN key several times until blanks are printed on the screen:
(spaces)...
3. While still keeping the '2EFB' keys pressed, with the right hand press these four keys on the main keyboard once each, releasing each in turn: nine "9", oh "o", el "l" and RETURN.
4. Now, repeat the procedure, except that four keys on the numeric pad must be held down with the right hand while pressing a sequence of keys with the left hand. Starting with the index finger of the right hand, press the "7", "5", and "3" keys, then with the thumb press the zero "0" key--all on the numeric pad. The display will show a repeating sequence of:
0000000000...
5. While keeping the '7530' keys pressed, with the left hand press the RETURN key several times until blanks are indicated on the screen:
(spaces)...
6. While still keeping the '7530' keys pressed, press and release each of these four keys with the left hand: nine "9", oh "o", el "l" and RETURN.

Each of the two parts (main keyboard test and numeric pad test) may be repeated up to three times if errors were made in performing the test. If the test was performed successfully, the following message is printed:

N-KEY ROLLOVER Passed
I. Auto Repeat

For this test simply press and hold down any key, as instructed by the video prompts. There are three tries to perform this function.

B

D

2.
Press and release
in sequence
(L): $9, O, L, R E T U R N$

1.
Continue to
hold down
(R): $7,5,3,0$

Figure 6-8.

On completion of the auto repeat module, a summary of the Keyboard Test Diagnostic is displayed. A sample display is shown in Figure 6-9. This display consists of a matrix that represents the main keyboard and numeric pad with a "status matrix" to the right indicating which cases were tested for which rows (the *s show what was tested.)

The keyboard matrix is composed of squares representing individual keys. The squares enclose either a question mark ("?") or a number. The question mark means that that key was never tested for any case. The numbers indicate the number of errors received at each key for the cases indicated on the status matrix to the right. They should all be zeroes for a good keyboard.

If there are any errors, a message is printed in the summary directly after the keyboard matrix, and the suspect keys are shown in the matrix itself. Errors are also announced during the test procedure.

Keyboard Test Summary

Figure 6-9.
K. Changing Sequence

Instead of executing the sections of the Keyboard Test in their normal sequence, it is possible to execute only the desired sections (or modules) in any sequence. Figure 6-2 illustrates the possible moves that can be made from any given section. They are:

1. Skip to previous module (in this case, the 'Case II' module, section 'lst Row').
2. Repeat current module.
3. Skip to previous section.
4. Repeat current section.
5. Skip to next section.
6. Skip to next module.
7. Skip to Test Summary.

In order to perform any of these moves, the Keyboard Test must be waiting for the first response to any test for that section.) At this point, when the CONTROL - C or 'left arrow' is entered, control returns to the Shell Monitor, and any of the control keys listed in Table 6-2 may be entered to perform the desired move. Note that return may be easily made to the Single Block Menu by pressing CONTROL - C twice, then pressing any other key.

Table 6-2

Keyboard Test Control Keys		
DESIRED MOVE	KEY (S)	ALTERNATE KEY(S)
Return to Shell Monitor	CONTROL-C	\leftarrow or Shifted \leftarrow (row section only)
AFTER RETURNING TO SHELL MONITOR		
Skip to previous module	Shifted \uparrow	
Repeat current module	Shifted \rightarrow	M R
Skip to previous section	Unshifted \uparrow	S U
Repeat current section	Unshifted \rightarrow	S R
Skip to next section	Unshifted \downarrow	S D
Skip to next module	Shifted \downarrow	M D
Skip to Test Summary	CONTROL-C	

6.2.7 Display Monitor Test

The Display Monitor Diagnostic Test is used primarily to check resolution, screen rippling, blooming and distortion of the screen or characters.

This test places a pattern on the screen along with some text (see Figure 6-10 for text). It then performs a series of disk accesses to instigate screen rippling (if any), after which it reverses the screen five times to bring out blooming (if any). This pattern is repeated continuously until the operator terminates the test.

Display Format for Display Monitor Test


```
#################################################################################
###############################################################################
###############################################################################
#################################################################################
#####
###### Display Monitor Test - Ver. 1.0-B - 04/20/81 #####
#####
##### Please check this display for: #####
##### 1) Good Resolution #####
##### 2) Low distortion - esp. in corners #####
##### 3) Minimal Blooming on Reverse Video #####
##### 4) No Changing Shapes or Ripple #####
##### 5) No Erratic Dots on the Screen #####
##### #####
##### HIT RETURN TO EXIT #####
##### #####
##### #####
#####
###############################################################################
######### ######################################################################
#################################################################################
```



```
###############################################################################
```

Figure 6-10
6.3 TROUBLESHOOTING CHART

The troubleshooting chart on the following pages is intended to assist service personnel in isolating a machine failure to a replaceable subassembly. The troubleshooting chart is used when the machine failure is serious enough to prevent loading of the diagnostic programs.

Instructions for opening the ADVANTAGE cabinet and removing subassemblies are in Section 6.5.

1. IS UNIT PLUGGED IN?
2. CHECK LINE FUSE
3. CHECK FOR AC POWER AT AC CONNECTOR OR TRANSFORMER PRIMARY

COMMENTS

Message consists of the words "LOAD SYSTEM" accompanied by a cursor. The rest of the screen is blank.

Fuse is located in right rear corner of board.

See Appendix F, Main PCB Schematic.

Table 6-3

Main Board Input Power (Jll)	
Pin Number	Description
1	-23 VDC $\pm 10 \%$
2	Not Used
3	+23 VDC $\pm 10 \%$
4	Power/signal ground
5	Chassis ground
6	17 VAC $\pm 10 \%$

Table 6-4

Main Board Video Interface (J7)	
Pin Number	Description
1	Power/signal ground
2-4	Not used.
5	Power/signal ground
6	Horizontal sync. Positive going pulses at TTL levels.
7	+12 VDC $\pm 10 \%$
8	Video data at TTL levels. High=light, low=dark.
9	Vertical sync. Negative going pulses at TTL levels.
10	Power/signal ground

COMMENTS

Ensure that the video cable is properly plugged into J7 of the Main Board and into the Video PCB. See warning below.

Raster is present when there is a uniform brightness throughout most of the screen area. If the brightness is turned all the way up, periodic lines of higher intensity can also be seen

The Video PCB contains various potentiometers which can be used to adjust display width, vertical linearity, etc.

WARNING
WHEN REACHING INSIDE THE VIDEO MONITOR, KEEP HANDS AWAY FROM THE RED HIGH VOLTAGE WIRE ON THE SIDE OF THE CRT. THIS WIRE CARRIES A POTENTIALLY FATAL CHARGE OF 10,000 VOLTS.

COMMENTS

F401 is a 2A miniature fuse located on the Video PCB.

WARNING
WHEN REACHING INSIDE THE VIDEO MONITOR, KEEP HANDS AWAY FROM THE RED HIGH VOLTAGE WIRE ON THE SIDE OF THE CRT. THIS WIRE CARRIES A POTENTIALLY FATAL CHARGE OF 10,000 VOLTS.

Table 6-5.

Main Board - Floppy Disk Power (Jlo)	
Pin Number	Description
1	$+12 \mathrm{VDC} \pm 10 \%$
2	Ground
3	Not used
4	Ground
5	+5 VDC $\pm 10 \%$
7	+12 VDC $\pm 10 \%$
8	Ground
9	Ground
	+5 VDC $\pm 10 \%$

6.4 THE MINI-MONITOR

The Mini-Monitor is a primitive diagnostic routine located in the Boot PROM. It provides the ability to examine and change individual bytes of RAM, execute single input and output instructions, and jump to a memory location. When the Mini-Monitor is entered (see Section 2.2) an asterisk (*), used as a prompt, appears on the screen. Commands may then be entered to the Mini-Monitor. The commands are listed in Table 6.6.

There is practically no error checking of the commands. If a hexadecimal digit is expected but some other character is received, the results are unpredictable. However, CTRL-C can be used to abort entry of a command before the RETURN key is pressed. The command letters must be given in upper case only; lower case letters are not recognized.

Table 6-6

Mini-Monitor Commands		
Command	Name	Description
DXXXX IXX Oyyxx R JXXXX Q	DISPLAY INPUT OUTPUT READ JUMP QUIT	Display contents of address xxxx. When the byte is displayed, type: YY $\quad=$ Replace in $x \times x x$ and display next byte <RETURN> = Exit from command Read data byte from Port $x x$ amd display it. Write data byte yy to Port xx. Read program from the DIAGNOSTIC board slot 3. Go to address xxxx. Before jumping, the Mini Monitor loads the address of its re-entry point into the $\mathrm{Z80} \mathrm{H}$ and L registers. Exit from Mini-Monitor. A beep sounds and the message 'LOAD SYSTEM' is redisplayed.
NOTES - $\operatorname{xxxx}=4$-digit hexadecimal number $x x=2$-digit hexadecimal number yy $=2$-digit data byte in hexadecimal - Control-c can be used to cancel a command if entered before <RETURN>.		

6.5 ASSEMBLY REMOVAL AND INSTALLATION PROCEDURES

SUMMARY OF PRECAUTIONS

1. Service should be performed only by trained personnel.
2. Before servicing the ADVANTAGE, disconnect the power source by disconnecting the power cord from the back of the unit.
3. Handle PC boards carefully, as the underside has sharp pin protrusions.
4. Be extremely careful of the high voltage lead on the CRT; be sure to discharge it properly before disconnecting the high voltage connector. Instructions for discharging the high voltage lead are given in Section 6.5.7.
5. Be extremely careful not to bump the CRT, which is attached to the Cover Assembly. Pay particular attention to this when opening and closing the ADVANTAGE cabinet (Section 6.5.2). Handle the CRT with extreme care. If the glass is fractured, the CRT may implode and create a hazard because of flying glass.

6.5.1 Tools Required

The following tools are used in the removal and installation procedures:

- Screwdrivers: One 6-inch flatblade

One 4-inch flatblade One 4-inch Phillips (disk only) One 90-degree angled Phillips One small thin flatblade (I/O boards only)

- One insulated grounding probe (video only)
- Safety goggles (video only)
6.5.2 Opening and Closing the ADVANTAGE Cabinet

To open the ADVANTAGE cabinet, proceed as follows:

1) Disconnect the AC power source. Turn the Power ON/OFF switch to OFF. Unplug the power cord from the back of the machine, as shown in Figure 6-11.

WARNING

MAKE SURE THAT THE AC POWER SOURCE IS DISCONNECTED BEFORE PROCEEDING.

2) Disconnect any I/O cables which may be connected to the rear of the ADVANTAGE cabinet.
3) Remove mounting screws. To reach the mounting screws on the bottom of the ADVANTAGE grasp the unit firmly and carefully turn it upside down. Unscrew the four mounting screws near the front of the base (l through 4 in Figure 6-12). Unscrew the remaining two mounting screws, which are recessed at the back of the unit (5 and 6 in the figure). When the screws are removed, grasp the unit firmly and carefully return it to the upright position.

4) Clear away the area behind the ADVANTAGE cabinet, to provide space for the Cover Assembly (see Figure 6-13d).

CAUTION

While performing the next 2 steps, do not allow the Cover Assembly to drift too far to the left or right, as the CRT tube socket may be damaged by striking other internal components.
5) Carefully lift the Cover Assembly straight up to the position shown in Figure 6-13b.
6) Carefully rotate the Cover Assembly toward the rear, and allow it to rest on its rear surface, with the CRT screen facing up (Figure 6-13d).

When the Base Assembly and the Cover Assembly have been separated, the major components of the system are exposed. These components are shown in figure 6-14.

Inside the Base Assembly are four major components:

1. Main PC Board
2. Keyboard
3. Disk Drive Assembly
4. Transformer

The Cover Assembly holds three major components:

1. CRT
2. Video PC Board
3. Fan

The procedure for closing the ADVANTAGE cabinet is essentially the reverse of the procedure for opening it.

1) Open the ADVANTAGE cabinet as described in Section 6.5.2.
2) Lift the keyboard out of the Base Assembly and place it in front of the Base Assembly as shown in Figure 6-15.

3) Disconnect the keyboard cable from J8 on the Main PC Board (see Figure 6-16). To remove the cable, pull straight up on the cable connector.
4) Remove the keyboard, which is now free.

To install the keyboard, reverse the above procedure.
6.5.4 Removing and Instaling The Main PC Board

Refer to figure 6-16 for the positions of the components referenced in this procedure.

Figure 6-16

To remove the Main PC Board, proceed as follows:

1) Open the ADVANTAGE cabinet as described in Section 6.5.2.
2) Remove the keyboard as described in Section 6.5.3.
3) Disconnect the video cable from J7 on the Main PC Board (see Figure 6-16). To remove the cable, pull straight up on the cable connector.
4) If any I/O Boards are installed in the Main PC Board, record their slot positions. When they are reinstalled, they must be returned to these same positions.
5) Remove the I/O Boards. For each board, remove the retaining screw (if any). Gently pull board toward the front of the system and upward, removing it from its connector.
6) Remove the Main PC Board mounting screws. Unscrew the retaining screws located along the front edge of the main PC board (see Figure 6-15).
7) Lift up the front edge of the Main PC Board as shown in Figure 6-17a, and pull forward until the rear edge of the PC board is free of the base plate. (The cables along the right-hand edge of the PB board are still connected at this time.)
8) Maneuver the Main PC Board into the position shown in Figure 6-17b.
9) Remove the connectors from J8 through Jll by pulling them straight up. Do not pull on the wires.
10) The Main PC Board can now be lifted out of the base plate.
B. To install the Main PC Board, proceed as follows:
11) Place the Main PC Board in the position shown in Figure 6-17a.
12) Clear away any cables or connectors that may be under the PC board.
13) Slide the rear edge of the Main PC Board under the three tabs at the rear of the base plate.

Main PC Board Removal

Figure 6-17
4) Lower the PC board to the horizontal position.
5) Install the cables in $J 7$ through Jll as shown in Figure 6-16.
6) Install the two Main PC Board mounting screws at the locations shown in Figure 6-15, and tighten the screws.
7) Reinstall the I/O Boards (if any). Insert them into their connectors at the left rear corner of the Main PC Board. These boards must be returned to the same connectors from which they were removed. Reinstall the retaining screws (if any) associated with any of these boards.
8) Install the keyboard as described in Section 6.5.3.
9) Close the ADVANTAGE cabinet as described in Section 6.5.2.

The following steps cover the removal of the upper disk drive. To remove the lower disk drive apply these instructions to the corresponding parts of the lower drive.

1) Open the ADVANTAGE cabinet as described in Section 6.5.2.
2) Remove the two screws securing the Disk Drive Shield, and remove the shield (see Figure 6-18). Avoid dropping the screws into the base plate, as they may roll under the Main PC Board and be difficult to retrieve.

3) Disconnect the power connector shown in Figure 6-19. Hold onto the edge of the Drive PC Board while pulling down on this connector.
4) Disconnect the ribbon cable connector shown. in Figure 6-19 by pulling the connector straight off the rear of the drive PC board.
5) Remove the drive mounting screws. There are four screws, two at each side, holding the drive to the drive mounting bracket.
6) Remove the upper drive by sliding it forward as shown in Figure 6-20.

The installation procedure for either disk drive is essentially the reverse of the procedure given for its removal, except that the position of the drive may have to be adjusted, so that the front panel of the drive mates properly with the front of the cabinet.
6.5.6 Removing and Installing the Power Supply Components

This section explains how to remove and install the diode bridge and capacitor located behind and below the disk drives (see Figure 6-2l). To remove either of these components proceed as follows:

1) Open the ADVANTAGE cabinet as described in Section 6.5.2.
2) Remove both disk drives following the procedure described in Section 6.5.5. The drives must be removed to gain access to the mounting bracket for the power supply components.
3) From the top of the chassis, remove the two screws which secure the power supply mounting bracket shown in Figure 6-21.
4) Remove the wires from the desired component (either the diode bridge or the capacitor), carefully marking their location so that they may be reconnected later.
5) Remove the component from its mounting bracket.

To install either of the power supply components, reverse the above procedure. When installing the diode bridge, insure that the (+) and (-) corners of the bridge are positioned as shown in Figure 6-21.

6.5.7 Removing and Installing the CRT and Video PC Board

If either the CRT or the Video PC board needs to be replaced, then both of these assemblies should be replaced. The CRT and Video PC Board are factory aligned and stocked as matched pairs. Replacing just one assembly may result in a misaligned video display.

WARNING

THIS PROCEDURE SHOULD BE PERFORMED ONLY BY QUALIFIED PERSONNEL.

WEAR SAFETY GLASSES OR EQUIVALENT EYE PROTECTION WHEN PERFORMING THIS PROCEDURE.

BE EXTREMELY CAREFUL NOT TO STRIKE ANY OBJECT AGAINST THE CRT, OR TO PUT PRESSURE ON THE NECK OF THE CRT. IF THE CRT IS BROKEN IT MAY IMPLODE AND CREATE A HAZARD BECAUSE OF FLYING GLASS.
A. To remove these assemblies proceed as follows:

1) Open the ADVANTAGE cabinet as described in Section 6.4.2. The video components described in this section are shown in Figures 6-22, 6-23 and 6-24.
2) Disconnect the two wires from the fan by grasping the wire terminals and pulling them off as shown in Figure 6-23.

Fan Cable Removal/Installation

Figure 6-23
3) Disconnect the Video Cable by pulling the cable connector off the Video PC Board (see Figure 6-24).
4) On completion of step 3, the Cover Assembly is completely separated from the Base Assembly. Turn the Cover Assembly upside down so that the Video PC Board is in the horizontal position

WARNING
THE RED SUCTION CUP/CLIP CONNECTED TO THE SIDE OF THE CRT IS THE HIGH VOLTAGE CONNECTOR, WHICH MAY CARRY A POTENTIALLY FATAL CHARGE OF 10,000 VOLTS, EVEN WITH THE POWER TURNED OFF. THE HIGH VOLTAGE CONNECTOR MUST BE DISCHARGED BEFORE DISCONNECTING IT FROM THE CRT. THIS CAN ONLY BE DONE BY A QUALIFIED TECHNICIAN.
5) Discharge the high voltage connector. Connect one end of a well insulated grounding probe to the wire loop on the side of the CRT (see Figure 6-24). Push the other end of the probe down between the side of the CRT and the high voltage connector until the probe touches the metal contact.
6) Disconnect the high voltage lead. Peel back the rubber portion of the high voltage connector and observe the two metal contacts underneath. Slide the connector to the side and pull to release the first contact. Slide the connector in the opposite direction to release the second contact.
7) Remove the CRT socket cable by pulling the cable connector straight off the end of the CRT neck (see Figure 6-24).

Figure 6-24
8) Disconnect the CRT yoke cable from the Video PC Board by removing the connector attached to the PC board (see Figure 6-24)
9) Remove the Video PC Board mounting screws. Unscrew the five retaining screws shown in Figure 6-25.

10) Pull the Video PC Board away from the brightness knob, until the brightness knob shaft disengages from the brightness potentiometer (see Figure 6-25).
11) The Video PC Board is now completely free and may be lifted out of the Cover Assembly.
12) Place the Cover Assembly on the edge of a work bench as shown in Figure 6-26. Use padding on the work bench to prevent the cabinet from being scratched.

CAUTION

The following two steps are best performed by two people, one person to steady the Cover Assembly and the other person to remove the CRT.

Handle the CRT yoke with care, to avoid breaking the tiny magnets glued to the outside of the yoke. The yoke is shown in Figure 6-24.

WARNING
BE SURE TO WEAR SAFETY GLASSES OR
EQUIVALENT EYE PROTECTION WHEN
PERFORMING THIS PROCEDURE.
INSURE THAT NOTHING STRIKES THE CRT
WHILE IT IS BEING REMOVED OR PLACED
ON A WORK BENCH. IF THE CRT ISS
BROKEN, IT MAY IMPLODE AND CREATE A
HAZARD BECAUSE OF FLYING GLASS.

13) Remove the four mounting screws which secure the CRT to the Cover Assembly.
14) The CRT is now free, and can be lifted carefully out of the cover.
B. To install the $C R T$ and Video PC Board, proceed as follows:
15) Place the Cover Assembly on the edge of a work bench as shown in Figure 6-27. Use padding on the work bench to avoid scratching the cabinet.

16) Find four $1 / 4$ inch standoffs in the CRT mounting hardware. Place these standoffs on the four CRT mounting posts (see Figure 6-27).

CAUTION

The following two steps are best performed by two people, one person to steady the Cover Assembly and the other person to install the CRT.

Handle the CRT yoke with care, to avoid breaking the tiny magnets glued to the outside of the yoke. The yoke is shown in Figure 6-24.

WARNING
BE SURE TO WEAR SAFETY GLASSES OR
EQUIVALENT EYE PROTECTION WHEN
PERFORMING THIS PROCEDURE.
INSURE THAT NOTHING STRIKES THE CRT
WHILE IT IS BEING INSTALLED. IF THE
CRT IS BROKEN IT MAY IMPLODE AND
CREATE A HAZARD BECAUSE OF FLYING
GLASS.

3) Carefully place the CRT in the Cover Assembly so that the CRT high voltage connector is on the right hand side and the mounting tabs on the CRT rest on top of the $1 / 4$ inch standoffs.
4) Slide a locking washer and a flat washer onto each of the four mounting screws. Drop these screws into the four mounting holes and start the screws by hand.
5) Adjust the position of the CRT so that it is centered on the mounting posts.
6) Tighten the four CRT mounting screws.
7) Rotate the Cover Assembly to the horizontal position, with the CRT facing to the side.
8) Lower the Video PC Board into the Cover Assembly and position it as shown in Figure 6-25.
9) Position the Video PC Board so that the hole in the brightness potentiometer presses lightly against the shaft of the brightness knob.
10) Rotate the brightness knob until the shaft clicks into position in the brightness potentiometer.
ll) Press the brightness potentiometer and the brightness knob together so that the shaft is fully engaged in the potentiometer.
11) Install and tighten the five mounting screws for the Video PC Board (see Figure 6-25).
12) Connect the CRT yoke cable (see Figure 6-24). Align pin 1 on the cable connector with pin 1 on the PC board connector, and push the cable connector straight down onto the board.
13) Connect the CRT socket cable (See Figure 6-24). Align the seven pins on the CRT with the seven holes in the socket and press the socket onto the CRT.
14) Connect the high voltage lead (see Figure 6-24). Observe the two metal contacts on the high voltage connector. Hook these contacts into the hole in the side of the CRT, one contact at a time.
15) Place the Cover Assembly behind the Base Assembly as shown in Figure 6-13d.
16) Install the video cable (see Figure 6-22 and 624). Align pin 1 on the cable connector with pin 1 on the PC board connector and push the cable connector straight down onto the board.
17) Install the fan cable (see Figure 6-16 and 6-23). Push the cable connectors straight onto the fan terminals.
18) Close the ADVANTAGE cabinet as described in Section 6.5.2.
This appendix contains the following sections:
1. KEYBOARD PHYSICAL LAYOUT
2. KEYBOARD ASCII CODES BY KEY
3. KEYBOARD ASCII CODES IN NUMERIC ORDER
4. DECIMAL-HEX-BINARY-ASCII CONVERSION TABLE

NOTES:

1. A DASH (-) IN THE 5th LOCATION MEANS IGNORE CMND KEY IF DEPRESSED.
2. ONLY THOSE KEYS WITH AN ASTERISK (*) ARE AFFECTED BY THE ALL CAPS KEY ONLY THOSE KEYS WITH AN ASTERISK (*) ARE AFFECTED BY THE ALL CAPS K
WHEN ALL CAPS IS OFF THE CODES ARE AS SHOWN. WHEN ALL CAPS IS ON THE "JUST KEY" CODE CHANGES TO THE "SHIFT + KEY" CODE.
3. ONLY THOSE KEYS WITH \ddagger ARE AFFECTED BY THE CURSOR LOCK KEY. WHEN CURSOR LOCK IS OFF THE CODES ARE AS SHOWN. WHEN CURSOR LOCK IS ON THE "JUST KEY" CODES CHANGE TO THE "SHIFT + KEY" CODES.

KEY	NORMAL	SHIFT	CONTROL	$\begin{aligned} & \text { CONTROL/ } \\ & \text { SHIFT } \\ & \hline \end{aligned}$	CMND
TAB	09	09	09	09	-
RETURN	0D	OD	OD	OD	-
ESC	1B	1B	1B	1B	-
Space	20	20	20	20	-
0)	30	29	30	29	-
1 !	31	21	31	21	-
2 a	32	40	32	00	-
3 \#	33	23	33	23	-
4 \$	34	24	34	24	-
5%	35	25	35	25	-
6 ^	36	5 E	36	1 E	-
7 \&	37	26	37	26	-
8 *	38	2A	38	2A	-
9 (39	28	39	28	-
"	27	22	27	22	-
, <	2C	3 C	2C	3 C	-
-	2D	5 F	2D	1 F	-
>	2E	3E	2E	3E	-
1 ?	$2 \mathrm{~F}^{\circ}$	3F	2 F	3F	-
	3B	3A	3B	3A	-
= +	3D	2B	3D	2B	-
A	61	41	01	01	Cl
B	62	42	02	02	C2
C	63	43	03	03	C3
D	64	44	04	04	C4
E	65	45	05	05	C5
F	66	46	06	06	C6
G	67	47	07	07	C7
H	68	48	08	08	C8
I	69	49	09	09	C9
J	6A	4A	0A	0A	CA
K	6B	4B	OB	OB	CB
L	6C	4C	OC	OC	CC
M	6D	4D	OD	OD	CD
N	6 E	4E	OE	OE	CE
0	6F	4 F	OF	OF	CF
P	70	50	10	10	D0
Q	71	51	11	11	D1
R	72	52	12	12	D2
S	73	53	13	13	D3
T	74	54	14	14	D4
U	75	55	15	15	D5
V	76	56	16	16	D6
W	77	57	17	17	D7

KEY	NORMAL	SHIFT	CONTROL	$\begin{aligned} & \text { CONTROL/ } \\ & \text { SHIFT } \\ & \hline \end{aligned}$	CMND
X	78	58	18	18	D8
Y	79	59	19	19	D9
Z	7A	5A	1A	1 A	DA
[\{	5B	7B	1B	7B	-
] \}	5D	7D	1D	7D	-
1	7C	60	7 C	60	-
\sim	7 E	5 C	7 E	1 C	-
-	7 F	7F	7F	7 F	-
,	2C	2C	2C	2 C	-
-	2D	2D	2D	2D	-
-	2 E	2E	2E	2E	-
0	30	30	30	30	-
$1 \swarrow$	31	84	91	91	FA
$2 \downarrow$	32	8A	92	92	FB
$3>$	33	83	93	93	FC
$4 \leftarrow$	34	88	94	94	FD
5	35	85	95	95	BA
$6 \rightarrow$	36	86	96	96	BB
7 R	37	87	97	97	BC
8 个	38	82	98	98	8D
9 入	39	89	99	99	BE
Enter	OD	OD	OD	OD	-
Fl	DB	EA	DB	EA	9 B
F2	DC	EB	DC	EB	9 C
F3	DD	EC	DD	EC	9D
F4	DE	ED	DE	ED	9 E
F5	DF	EE	DF	EE	9 F
F6	E0	EF	E0	EF	A0
F7	E1	F0	El	F0	Al
F8	E2	F1	E2	F1	A2
F9	E3	F2	E3	F2	A3
F10	E4	F3	E4	F3	A4
F11	E5	F4	E5	F4	A5
F12	E6	F5	E6	F5	A6
F13	E7	F6	E7	F6	A7
F14	E8	F7	E8	F7	A8
F15	E9	F8	E9	F8	A9

* Single dash means ignore CMND key if pressed.
* The ALL CAPS key only affects the 26 alphabetic keys. When the light in the ALL CAPS key is on, the alphabetic keys produce the codes shown in the SHIFT column.
* The CURSOR LOCK key only affects keys l through 9 on the numeric keypad. When the light in the CURSOR LOCK key is on, keys 1 through 9 produce the codes shown in the SHIFT column.

ASCII CODE \qquad	KEY(S)	$\begin{aligned} & \text { ASCII } \\ & \text { CODE } \\ & \text { (HEX) } \end{aligned}$	KEY (S)
$\begin{aligned} & 00 \\ & 01 \end{aligned}$	CTL @	11	CTL qCTL
	CTL a		
	CTL A	12	CTL r
02	CTL b		CTL R
	CTL B	13	CTL s
03	CTL C		CTL S
	CTL C	14	CTL t
04	CTL d		CTL T
	CTL D	15	CTL u
05	CTL e		CTL U
	CTL E	16	CTL v
06	CTL f		CTL V
	CTL F	17	CTL w
07	CTL g		CTL W
	CTL G	18	CTL x
08	CTL h		CTL X
	CTL H	19	CTL Y
09	CTL i		CTL Y
	CTL I	1 A	$\begin{array}{ll} \text { CTL } \\ \text { CTL } \\ Z \end{array}$
	TAB		
	SHIFT TAB	1B	ESC
	CTL TAB		SHIFT ESC
	CTL-SHIFT TAB		CTL ESC
0A	CTL ${ }^{\text {j }}$		CTL-SHIFT ESC
	CTL J		CTL [
OB	CTL k	1 C	CTL 1
	CTL K	1D	
OC	CTL 1	1 E	CTL ^
	CTL L	1 F	CTL -
OD	CTL m	20	SPACE
	CTL M		SHIFT SPACE
	RETURN		CTL SPACE
	SHIFT RETURN		CTL-SHIFT SPACE
	CTL RETURN	21	
	CTL-SHIFT RETURN		${ }_{n}^{\text {CTL }}$!
	ENTER	22	
	SHIFT ENTER		CTL "
	CTL ENTER	23	\#
	CTL-SHIFT ENTER		CTL \#
OE	CTL n	24	$\$$
	CTL N		CTL \$
OF	CTL 0	25	
	CTL 0		CTL \%
10	CTL p	26	$\stackrel{\text { CTL }}{\text { ¢ }}$
	CTL P		

ASCII CODE (HEX)	KEY (S)	$\begin{aligned} & \text { ASCII } \\ & \text { CODE } \\ & \text { (HEX) } \\ & \hline \end{aligned}$	KEY (S)
27	1	3D	$=$
	CTL		CTL $=$
28	(3E	>
	CTL (CTL >
29)	3F	?
	CTL)		CTL ?
2A	*	40	@
	CTL *	41	A
2B	$+$	42	B
	CTL +	43	C
2C	,	44	D
	CTL	45	E
2D	-	46	F
	CTL -	47	G
2E		48	
	CTL	49	I
2F	1	4A	J
	CTL /	4B	K
30	0	4C	L
	SHIFT 0 (numeric pad)	4D	M
	CTL 0	4E	N
	CTL-SHIFT 0 (numeric pad)	4F	0
31	1 l	50	P.
	CTL 1 (typewriter key)	51	Q
32	2	52	R
	CTL 2 (typewriter key)	53	S
33	3 (typ	54	T
	CTL 3 (typewriter key)	55	U
34	4 (${ }^{\text {c }}$	56	V
	CTL 4 (typewriter key)	57 58	W
35	5 (5 (typewriter key)	58	X
	CTL 5 (typewriter key)	59	Y
36	6	5A	2
	CTL 6 (typewriter key)	5B	[
37	7	5 C	1
	CTL 7 (typewriter key)	5 D]
38	8 (8	5E	
	CTL 8 (typewriter key)	5F	
39	9 CTL 9 (typewriter key)	60	CTL
3A	:	61	a
	CTL :	62	b
3B	;	63	c
	CTL ;	64	d
3 C	く	65	e
	CTL <	66	f

ASCII CODE （HEX）	KEY（S）	ASCII CODE （HEX）	KEY（S）
67	g	8F	
68	h	90	
69	i	91	CTL \swarrow
6A	j	92	CTL \downarrow
6B	k	93	CTL 】
6C	1	94	CTL \leftarrow
6D	m	95	CTL ${ }^{\circ}$
6E	n	96	$\mathrm{CTL} \rightarrow$
6F	\bigcirc	97	CTL 「
70	p	98	CTL \uparrow
71	q	99	CTL 7
72	r	9A	
73	s	9B	CMND Fl
74	t	9 C	CMND F2
75	u	9D	CMND F3
76	v	9 E	CMND F4
77	w	9 F	CMND F5
78	x	A0	CMND F6
79	Y	Al	CMND F7
7A	z	A2	CMND F8
7B	\｛	A3	CMND F9
	CTL \｛	A4	CMND Fl0
7 C		A5	CMND Fll
	CTL i	A6	CMND Fl2
7D	$\}$	A7	CMND F13
	CTL $\}$	A8	CMND Fl4
7 E	\sim	A9	CMND F15
	CTL～	AA	
7 F	x	AB	
	SHIFT X	AC	
	CTL X	AD	
	CTL－SHIFT X	AE	
80		AF	
81		B0	
82	\uparrow	B1	CTL 1 （numeric pad）
83	\geq	B2	CTL 2 （numeric pad）
84	\checkmark	B3	CTL 3 （numeric pad）
85	\bigcirc	B4	CTL 4 （numeric pad）
86	\vec{k}	B5	CTL 5 （numeric pad）
87	κ	B6	CTL 6 （numeric pad）
88	\leftarrow	B7	CTL 7 （numeric pad）
89	入	B8	CTL 8 （numeric pad）
8A	\downarrow	B9	CTL 9 （numeric pad）
8B		BA	CMND 5 （numeric pad）
8C		BB	CMND 6 （numeric pad）
8 D		BC	CMND 7 （numeria pad）
8E		BD	CMND 8 （numeric pad）

ASCII CODE (HEX)	KEY (S)	ASCII CODE \qquad (HEX)	KEY (S)
BE	CMND 9 (numeric pad)	E5	Fll
BF			CTL Fll
CO		E6	F12
C1	CMND a		CTL Fl2
C2	CMND b	E7	F13
C3	CMND c		CTL Fl3
C4	CMND d	E8	Fl4
C5	CMND e		CTL Fl4
C6	CMND f	E9	F15
C7	CMND g		CTL Fl5
C8	CMND h	EA	SHIFT Fl
C9	CMND i		CTL-SHIFT FI
CA	CMND j	EB	SHIFT F2
CB	CMND k		CTL-SHIFT F2
CC	CMND 1	EC	SHIFT F3
CD	CMND m		CTL-SHIFT F3
CE	CMND n	ED	SHIFT F4
CF	CMND 0		CTL-SHIFT F4
DO	CMND p	EE	SHIFT F5
D1	CMND q		CTL-SHIFT F5
D2	CMND r	EF	SHIFT F6
D3	CMND s		CTL-SHIFT F6
D4	CMND t	FO	SHIFT F7
D5	CMND u		CTL-SHIFT F7
D6	CMND v	Fl	SHIFT F8
D7	CMND w		CTL-SHIFT F8
D8	CMND x	F2	SHIFT F9
D9	CMND Y		CTL-SHIFT F9
DA	CMND z	F3	SHIFT F10
DB	Fl		CTL-SHIFT F10
	CTL Fl	F4	SHIFT Fll
DC	F2		CTL-SHIFT Fll
	CTL F2	F5	SHIFT Fl2
DD	F3		CTL-SHIFT Fl2
	CTL F3	F6	SHIFT Fl3
DE	F4		CTL-SHIFT F13
	CTL F4	F7	SHIFT 14
DF	F5		CTL-SHIFT Fl4
	CTL F5	F8	SHIFT 15
EO	F6		CTL-SHIFT 15
	CTL F6	F9	
E1	F7	FA	CMND 1 (numeric pad)
	CTL F7	FB	CMND 2 (numeric pad)
E2	F8	FC	CMND 3 (numeric pad)
	CTL F8	FD	CMND 4 (numeric pad)
E3	F9	FE	
	CTL F9	FF	
E4	Fl0		
	CTL Fl0		

CONVERSION TABLE

DECIMAL-ASCII-HEX-BINARY CONVERSION TABLE

The following table is intended to ease the task of conversion between the various numeric representations commonly used in programming, as well as between numbers (of any kind) and the ASCII character code.

Note that the ASCII character set only goes as far as decimal 127 ($7 \mathrm{FH}, 01111111$ B). Also, many "characters" in ASCII are nonprinting CONTROL CHARACTERS. Whenever a code corresponds to a printable character, that will be given. In the case of control characters, a description or name for the special character will be given in parentheses.

DECIMAL	HEX	BINARY	ASCII
0	00 H	00000000	(NUL)
1	O1H	00000001	(CONTROL-A)
2	02 H	00000010	(CONTROL-B)
3	03 H	00000011	(CONTROL-C)
4	04 H	-0000100	(CONTROL-D)
5	65H	00000101	(CONTROL-E)
6	06 H	00000110	(CONTROL-F)
7	07H	00000111	(CONTROL-G, RINGS BELL)
8	08H	00001000	(CONTROL-H, BACKSPACE)
9	09 H	00001001	(CONTROL-I, TAB)
10	0 AH	00001010	(CONTROL-J, LINEFEED)
11	0 BH	00001011	(CONTROL-K)
12	0 CH	00001100	(CONTROL-L, FORMFEED)
13	0 DH	00001101	(CONTROL-M, CARRIAGE RETURN)
14	QEH	00001110	(CONTROL-N)
15	0 FH	00001111	(CONTROL-O)
16	10 H	00010000	(CONTROL-P)
17	11H	00010001	(CONTROL-Q)
18	12 H	00010010	(CONTROL-R)
19	13H	00010011	(CONTROL-S)
20	14 H	00010100	(CONTROL-T)
21	15H	00010101	(CONTROL-U)
22	16H	00010110	(CONTROL-V)
23	17H	00010111	(CONTROL-W)
24	18H	00011000	(CONTROL-X)
25	19H	00011001	(CONTROL-Y)
26	1 AH	00011010	(CONTROL-Z)
27	1 BH	00011011	(ESCAPE)
28	1 CH	00011100	(NON-PRINTING)
29	1DH	00011101	(NON-PRINTING)
30	1EH	00011110	(NON-PRINTING)
31	1 FH	00011111	(NON-PRINTING)
32	20 H	00100000	(SPACE)
33	21H	00100001	!
34	22H	00100010	*
35	23H	00100011	\#
36	24 H	00100100	\$
37	25H	00100101	8
38	26H	00100110	
39	27H	00100111	

Conversion Table continued

DECIMAL	HEX	BINARY	ASCII
40	28H	00101000	(
41	29H	00101001)
42	2AH	00101010	*
43	2BH	00101011	+
44	2.CH	00101100	,
45	2DH	00101101	$\underline{1}$
46	2EH	00101110	.
47	2 FH	00101111	/
48	30H	00110000	0
49	31 H	00110001	1
50	32H	00110010	2
51	33H	00110011	3
52	34 H	00110100	4
53	35 H	00110101	5
54	36H	00110110	6
55	37 H	00110111	7
56	38 H	00111000	8
57	39 H	00111001	9
58	3AH	00111010	:
59	3BH	00111011	;
60	3 CH	00111100	$<$
61	3DH	00111101	$=$
62	3EH	00111110	>
63	3 FH	00111111	?
64	40 H	01000000	@
65	41H	01000001	A
66	42 H	01000010	B
67	43H	01000011	C
68	44H	01000100	D
69	45H	01000101	E
70	46H	01000110	F
71	47H	01000111	G
72	48H	01001000	H
73	49H	01001001	I
74	4AH	01001010	J
75	4 BH	01001011	K
76	4 CH	01001100	L
77	4DH	01001101	M
78	4EH	01001110	N
79	4 FH	01001111	0
80	50 H	01010000	P
81	51H	01010001	Q
82	52 H	01010010	R
83	53 H	01010011	S
84	54 H	01010100	T
85	55H	01010101	U
86	56H	01010110	V
87	57H	01010111	W
88	58H	01011000	X
89	59H	01011001	Y
90	5 AH	01011010	2
91	5BH	01011011	l
92	5 CH	01011100	1
93	5DH	01011101]

Conversion Table continued

DECIMAL	HEX	BINARY	ASCII
94	5EH	01011110	T OR ${ }^{-}$
95	5 FH	01011111	
96	60H	01100000	\bigcirc
97	61H	01100001	a
98	62H	01100010	b
99	63 H	01100011	c
100	64 H	01100100	d
101	65H	01100101	e
102	66H	01100110	f
103	67H	01100111	g
104	68H	01101000	h
105	69H	01101001	i
106	6 AH	91101010	j
107	6BH	01101011	k
108	6 CH	01101100	1
109	6DH	01101101	m
110	6EH	01101110	n
111	6 FH	01101111	0
112	70H	01110000	p
113	71H	01110001	9
114	72H	01110010	\dot{r}
115	73H	01110011	s
116	74H	01110100	t
117	75H	01110101	u
118	76H	01110110	v
119	77H	01110111	w
120	78H	01111000	x
121	79H	01111001	Y
122	7AH	01111010	z
123	7BH	01111011	\{
124	7 CH	01111100	1
125	7DH	01111101	\}
126	7EH	01111110	2
127	7 FH	01111111	(DELETE, RUB OUT)
128	80 H	10000000	
129	81H	10000001	
130	82H	10000010	
131	83H	10000011	
132	84 H	10000100	
133	85H	10000101	
134	86H	10000110	
135	87H	10000111	
136	88H	10001000	
137	89H	10001001	
138	8AH	10001010	
139	8BH	10001011	
140	8 CH	10001100	
141	8DH	10001101	
142	8EH	10001110	
143	8 FH	10001111	
144	90H	10010000	
145	91H	10010001	
146	92 H	10010010	
147	93H	10010011	

Conversion Table continued

	DECIMAL	HEX	BINARY	ASCII
	148	94H	10010100	
	149	95 H	10010101	
	150	96 H	10010110	
	151	97 H	10010111	
	152	98H	10011000	
	153	99 H	10011001	
	154	9 AH	10011010	
	155	9 BH	10011011	
	156	9 CH	10011100	
	157	9DH	10011101	
,	158	9 EH	10011110	
	159	9 FH	10011111	
	160	AOH	10100000	
	161	AlH	10100001	
	162	A2H	10100010	
	163	A3H	10100011	
	164	A 4 H	10100100	
	165	A5H	10100101	
	166	A6H	10100110	
	167	A 7 H	10100111	
	168	A8H	10101000	
	169	A9H	10101001	
	170	AAH	10101010	
	171	ABH	10101911	
	172	ACH	10101100	
	173	ADH	10101101	
	174	AEH	10101110	
	175	AFH	10101111	
	176	BOH	10110000	
	177	BlH	10110001	
	178	B2H	10110010	
	179	B3H	10110011	
	180	B4H	10110100	
	181	B5H	10110101	
	182	B6H	10110110	
	183	B7H	10110111	
	184	B8H	10111000	
	185	B9 H	10111001	
	186	BAH	10111010	
	187	BBH	10111011	
	188	BCH	10111100	
	189	BDH	10111101	
	190	BEH	10111110	
	191	BFH	10111111	
	192	COH	11000000	
	193	ClH	11000001	
	194	C 2 H	11000010	
	195	C3H	11000011	
	196	C4H	11000100	
	197	C 5 H	11000101	
	198	C6H	11000110	
	199	C7H	11000111	
	200	C 8 H	11001000	
	201	$\mathrm{C9H}$	11001001	

Conversion Table continued

DECIMAL	HEX	BINARY	ASCII
202	CAH	11001010	
203	CBH	11001011	
204	CCH	11001100	
205	CDH	11001101	
206	CEH	11001110	
207	CFH	11001111	
208	DøH	11010000	
209	D1H	11010001	
210	D2H	11010010	
211	D3H	11010011	
212	D4H	11010100	
213	D5H	11010101	
214	D6H	11010110	
215	D7H	11010111	
216	D8H	11011000	
217	D9H	11011001	
218	DAH	11011010	
219	DBH	11011011	
220	DCH	11011100	
221	DDH	11011101	
222	DEH	11011110	
223	DFH	11011111	
224	EOH	11100000	
225	ElH	11100001	
226	E2H	11100010	
227	E3H	11100011	
228	E4H	11100100	
229	E5H	11100101	
230	E6H	11100110	
231	E7H	11100111	
232	E8H	11101000	
233	E9H	11101001	
234	EAH	11101010	
235	EBH	11101011	
236	ECH	11101100	
237	EDH	11101101	
238	EEH	11101110	
239	EFH	11101111	
240	FOH	11110000	
241	F1H	11110001	
242	F2H	11110010	
243	F3H	11110011	
244	F4H	11110100	
245	F5H	11110101	
246	F6H	11110110	
247	F7H	11110111	
248	F8H	11111000	
249	F9H	11111001	
250	FAH	11111010	
251	FBH	11111011	
252	FCH	11111100	
253	FDH	11111101	
254	FEH	11111110	
255	FFH	11111111	

This appendix lists all I/O addresses that can be used in $Z 80$ processor INPUT or OUTPUT instructions when programming the ADVANTAGE computer. The addresses are listed in numeric order. More detailed programming information can be found in Chapter 3.

I/O ADDRESS SUMMARY		
Hexadecimal Address	Operation	Description
00-0F	INPUT/OUTPUT	Access I/O board in slot 6. The first digit of these addresses defines the board slot being accessed. The second digit has a meaning defined by the type of board in that slot. Refer to Section 3.9, 3.10, or 3.11 .
10-1F	INPUT/OUTPUT	Access I/O board in slot 5. The first digit of these addresses defines the board slot being accessed. The second digit has a meaning defined by the type of board in that slot. Refer to Section 3.9, 3.10, or 3.11 .
$20-2 F$	INPUT/OUTPUT	Access I/O board in slot 4. the first digit of these addresses defines the board slot being accessed. The second digit has a meaning defined by the type of board in that slot. Refer to Section 3.9, 3.10, or 3.11 .

$30-3 \mathrm{~F}$	INPUT/OUTPUT	Access I/O board in slot 3 . The first digit of these addresses defines the board slot being accessed. The second digit has a meaning defined by the type of board in that slot. Refer to Section 3.9, 3.10, or 3.11 .
40-4F	INPUT/OUTPUT	Access I/O board in slot 2. The first digit of these addresses defines the board slot being accessed. The second digit has a meaning defined by the type of board in that slot. Refer to Section 3.9, 3.10, or 3.11 .
$50-5 \mathrm{~F}$	INPUT/OUTPUT	Access I/O board in slot 1. The first digit of these addresses defines the board slot being accessed. The second digit has a meaning defined by the type of board in that slot. Refer to Section 3.9, 3.10, or 3.11.
60	INPUT	Input Main RAM Parity Status byte. The byte format is shown below.
60	OUTPUT	Output Main RAM Parity Control byte. The byte format is shown below.
$61-6 F$	INPUT/OUTPUT	Same as I/O address 60.

MEMORY PARITY STATUS BYTE

Hexadecimal Address	Operation	Description
70	INPUT only	Input the ID code for board in slot 6. The ID codes are shown below.
71	INPUT only	Input the ID code for board in slot 5. The ID codes are shown below.
72	INPUT only	Input the ID code for board in slot 4. The ID codes are shown below.
73	INPUT only	Input the ID code for board in slot 3. The ID codes are shown below.
74	INPUT only	Input the ID code for board in slot 2. The ID codes are shown below.
75	INPUT only	Input the ID code for board in slot l. The ID codes are shown below.
76		Unused. Inputting from this address returns all ones.
77		Unused. Inputting from this address returns all ones.
78-7D	INPUT only	Same as I/O addresses 70 through 75 respectively.
7 E		Unused. Inputting from this address returns all ones.
7F		Unused. Inputting from this address returns all ones.

ID CODES:

```
7F - Floating Point Board
F7 - SIO Board
BE - Hard Disk Controller Board
DB - PIO Board
FF - No board installed.
```

Hexadecimal Address	Operation	Description
80	INPUT	Input a data byte from the selected disk drive.
80	OUTPUT	Output a data byte to the selected disk drive.
81	INPUT	Input a sync byte from the selected disk drive.
81	OUTPUT	Load the Drive Control register. The format of the register is shown below.
82	INPUT	Clear Disk Read flag.
82	OUTPUT	Set Disk Read flag.
83	INPUT	Produce a 'beep' sound.
83	OUTPUT	Set Disk Write flag.
84-8F		Same as I/O Addresses 80 through 83 respectively.

DRIVE CONTROL REGISTER

Hexadecimal Address	Operation	Description
90 $91-9 F$	OUTPUT only	Load Start Scan register. Inputting from this address returns indeterminate data and loads indeterminate data into the Start Scan register. Same as I/O address 90.
A0 - A3	OUTPUT only	Memory Mapping registers 0 through 3 respectively. The format of the output byte is shown below. Inputting from any of these addresses returns indeterminate data and loads indeterminate data into the corresponding Memory Mapping register. Same as I/O addresses AO through A3 respectively.

MAPPING REGISTER OUTPUT BYTE

$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ $\square \square$

O X X X X N N N
1 X X X X O O N

1 X X X X I X X

Main RAM page NNN
Display RAM, $N=0$ for page 8 $\mathrm{N}=1$ for page 9

Boot PROM

I/O STATUS REGISTER l

I/O STATUS REGISTER 2

I/O CONTROL REGISTER

This appendix lists the jumpers on the printed circuit boards that allow the connection of certain signals to be modified. Some signals are open-circuited by removing a jumper plug from the board. Other signals are re-routed by cutting a trace and soldering a wire to the board.

1. MAIN PC BOARD JUMPERS

Jumper Number	```Board```	Description
Wl	1L	Determines the polarity of the vertical sync pulse going to the Video Monitor. The PC board trace makes the connection for positive sync pulses. The alternate connection produces negative sync pulses.
W2	1 L	Determines the polarity of the video data going to the Video Monitor. The PC board trace causes one bits to produce positive data pulses. The alternate connection causes one bits to produce negative data pulses.
W3	1L	Determines the polarity of the horizontal sync pulse going to the Video Monitor. The PC board trace makes the connection for negative sync pulses. The alternate connection produces positive sync pulses.
W4	9 E	If parity errors are allowed to generate interrupts (see Section 3.2.2) this jumper determines whether they will be maskable or non-maskable. The PC board trace makes the connection for maskable interrupts. The alternate connection produces non-maskable interrupts.

Jumper Number	Board Location	Description
W5	18C	Determines the type of integrated circuit used for the Auxiliary Processor at board location 18C. The PC board trace is used with an 8035 processor. The alternate connection is used with an 8048 or 8049 processor.
W6	11K	This jumper plug determines the type of integrated circuit used for the Boot PROM at board location llk. The plug isinserted in the position farthest from the PROM if the PROM is a type 2716. The plug is inserted in the position closest to the PROM if it is a type 2732.
W7	17C	This jumper plug is removed for testing purposes. It disconnects the sector pulse signal from the Auxiliary Processor.
W8	17D	When this jumper plug is inserted, it allows the simultaneous depression of four keys on the keyboard to generate a non-maskable interrupt (see Section 2.1.4). When the jumper plug is removed, the interrupt is not generated.
W9 W10 W11	16 K 16 K 16 K	These jumper plugs are removed for testing purposes. They disconnect the output of the +5 V regulator.
Wl2	10M	This jumper plug is removed for testing purposes. It disconnects +12 V power from the I/O interface connectors.
W13	10M	This jumper plug is removed for testing purposes. It disconnects input power from the $-5 V$ regulator.
Wl4	18K	This jumper plug is removed for testing purposes. It disconnects +12 V power from the Speaker Circuit and from the Disk Data Separation Circuit.

2. SIO BOARD JUMPERS

JUMPER NUMBER	BOARD LOCATION	DESCRIPTION

3. PIO BOARD JUMPERS

JUMPER NUMBER	$\begin{gathered} \text { BOARD } \\ \text { LOCATION } \end{gathered}$	DESCRIPTION
J1	3A	These jumpers improve the ground
J2	3A	connection to the output device by
J3	3A	connecting ground to pins 13,14, and 15
		of the output device cable. One or more of these jumpers may be disconnected so
		that the corresponding pin(s) may be
		used to supply power to the output device.
J4	3D	These jumpers improve the ground
J5	3D	connection to the input device by
J6	3D	connecting ground to pins 13,14, and 15
		of the input device cable. One or more
		of these jumpers may be disconnected so
		that the corresponding pin(s) may be
		used to supply power to the input
		device.

DISK SUBSYSTEM TEST

CRC Error

No Index Pulse Error

Read Error

Seek Error

No Sync Byte Found Error

Verify Compare Error

Write Protect Error

DISPLAY TEST
No error messages visual assessment only

Cyclic Redundance check: drive may not be working; media may be bad; possible programming error.

No index pulses are coming from selected drive.

Data read was not as expected: read/write circuitry failure or bad media.

Goes to track and reads data; from data determines that track is wrong. If accompanied by read error, may indicate bad media. Seek stepping motor may be bad. Diskette may be stuck at a single track if usual accessing clicks are not audible.

Errors may indicate improper read, write, or bad media.

Indicates probable write error: write circuitry may be defective, or media may be bad.

Write protect switch may be bad.

Cursor fails to flash
approximately every 5 sec
! after PASS counter
? in RAM MATRIX

KEYBOARD TEST
Long beep - audio message Not to be confused with short beep indicating successful completion of row
? under key entry on screen

SIO TEST

Bad Character

Detected a board in portbut it looks like home is there

SIO board in port won't get ready to receive at character \qquad (between 0 and 255)

SIO board in port won't get ready to transmit at character _(between 0 and 255)

There were \qquad bad
characters (maximum of 255)

Test has died at section and pass indicated.

Defective Memory (see below).

Defective Memory. Indicates location of bad RAM chip.

Defective key or wrong key pressed

Defective key or wrong key pressed. Next to (?) displays actual character entered.

Character received does not agree with character transmitted. Insure that SIO is in the standard configuration (see Section 3.9.1)

Another board in machine with wrong address set on it; or possible problem with shorting, or open wires on data bus to that port.

Could be SIO board is bad; USART bad; receive circuitry incorrect; strobe signal bad.

If bad character message also occurs could be bad SIO circuitry, or test jumper wired wrong.
! after PASS counter
? in RAM MATRIX

Stationary vertical bar

Defective memory (see below).
Defective memory: indicates suspected location of bad RAM.

Defective memory

MAIN PARTS LIST

ITEM	P / N	QTY	DESCRIPTION	REF
1	00113	1	SIO PCB ASSY	
2	38064	3	SCREWLOCK ASSEMBLY, FEMALE	1 EA FOR SIO
			(SET CONTAINS 2 JACK SCREWS,	2 EA FOR PIO
3	38065-04	6	WASHER, FLAT, \#4	(2)SIO, (4)PIO
4	38065-10	6	WASHER, FLAT, \#10	BASE TO COVER
5	38075-10	6	WASHER, \#10 SPLIT LOCK	BASE TO COVER
6	38091-10	6	SCREW, MACHINE, \#10-32 X 5/8 PAN HEAD, XREC	BASE TO COVER
7	49002	2	QUAD DISK DRIVES	
8	00353	1	SHIELD, DISK DRIVE	
9	00333	1	CABLE, DISK DRIVE POWER	
10	00335	1	CABLE, DISK DRIVE SIGNAL	
11	38065-06	10	WASHER, \#6 FLAT	DRIVE TO BRKT (8)
12				SHIELD TO BRKT (2)
13	38036-	10	SCREW, \#6-32 X 3/8", PHMS XREC, SEMS	
14	00102	1	MAIN PCB ASSEMBLY	
15	00347	1	PLATE, DRIVE CABLE	
16	00352	1	BRACKET, DISK DRIVES MOUNTING	
17	00355	1	BASE, FAB	
18	00356	1	PLATE, I/O MOUNTING	
19	00357	1	KEYBOARD	
20	00358	1	CABLE, KEYBOARD	
21	00364	1	LABEL, MODEL \& SERIAL NUMBER	
22	00370	4	FEET, RUBBER	BASE (4),
23	38007	4	WASHER, FLAT \#10	XRMR-BASE
24	38009	2	NUT, HEX, \#4-40	HOLE COVER
25	38083-08	4	SCREW, MACHINE, PH, BLACK, \#4-40 X 1/2"	I/O PLATECOVER
26	38065-08	4	WASHER, FLAT, \#8	DRV BKT-BASE
27	38071	4	SCREW, BLUNT PT, \#6 X 3/8"	MAINT PCB-BASE(2) RECT BKT-BASE (2)
28	38074-06	3	WASHER,LOCK,BLACK, \#6	I/O PLATE (2)
				PWR PANEL (1)
29	38075-04	4	WASHER,LOCK,SPLIT,\#4	I/O PLATE
30	38075-06	2	WASHER,LOCK,SPLIT,\#6	COVER ${ }^{\text {RECT. }}$ BKT-BASE
31	38075-10	4	WASHER,LOCK,SPLIT, \#10	XRMR-BASE

MAIN PARTS LIST (continued)

ITEM	P/N	QTY	DESCRIPTION	REF
32	38082-08	3	SCREW, MACHINE, BLACK	I/O PLATE (2)
			\#6-32 $\times 1 / 2^{\prime \prime}$	PWR PANEL (1)
33				
			\#4-40 X 1/2"	
34	38084-06	3	WASHER, FLAT, BLACK, \#6	I/O PLATE (2)
				PWR PANEL(1)
35	38089-10	4	SCREW,MACHINE, \#8 X 5/8"	DRV BKT-BASE
36	38091-08	4	SCREW, MACHINE, \#10-32 X 1/2"	XFMR-BASE
37	77045	4	BRACKET,MOUNTING,CABLE TIE, 3/4 SQ. ADHESIVE BACK	
38	77046	1	CABLE TIE, 5.5" LONG	
39	00336	1	CABLE MONITOR	
40	00363	1	LOGO, NORTH STAR	
41	00365	1	CRT \& VIDEO PCB	
42	00366	1	TOP FAB	
43	00368	1	BEZEL, FAB	
44	00369	2	TAPE, SELF-ADHESIVE FOAM	
45	31001	1	FAN	
46	38007	9	WASHER, \#10 FLAT	CRT MTG.
47	38065-06	4	WASHER, \#6 FLAT	
48	38075-06	4	WASHER, \#6 LOCK, SPLIT	
49	38075-10	9	WASHER, \#10 LOCK, SPLIT	CRT MTG.
50	38091-08	5	SCREW, \#10-32 X 1/2"	
51	38091-12	4	SCREW, \#10-32 X 3/4"	
52	38082-12	4	SCREW, \#6-32 X 3/4" BLACK	
53	38071	5	SCREW, \#6 X 3/8" PAN HEAD	
54	38010	4	NUT, \#6-32 HEX	
55		4	SPACER, 1/4" THICK	
56	77045	2	CABLE TIE, 3/4" BRACKET	(1) MONITOR CABLE
57	77046	2	CABLE TIE, 5.5" LONG, 40 LB	(1) CRT LEAD
58	00372	1	KNOB, CONTROL	BRIGHTNESS CNTR.
59	00154	1	TRANSFORMER, POWER	
60	00334	1	HARNESS, SEC. POWER SUPPLY	
61	38075-06	1	WASHER, LOCK, SPLIT, \#6	PWR PNL GND
62		2	SCREW, \#6-32 X 3/8"	CAPACITOR
63	38088-12	1	SCREW, MACHINE, \#6-32 X 3/4"	PWR PNL GND
64	68016	1	FUSE, 3A, FAST BLOW	PWR PNL
65	77097-10	2	WIRE, \#20 AWG,STRANDED,BLACK, 16" LG.	XMFR TO FAN
66	13067	2	TERMINAL FISO, 3/16" X . 032	XFMR
67	13098	2	TERMINAL FISO, . 110 X .020	FAN
68	00359	1	POWER PANEL ASSEMBLY	
69	00360	1	PLATE, POWER	

MAIN PARTS LIST (continued)

ITEM	P / N	QTY	DESCRIPTION	REF
70	34006	1	FILTER, LINE	LFI
71	68007	1	SWITCH, POWER	Sl
72	00361	1	HARNESS, PRIMARY POWER SUPPLY	
73	38088-08	1	SCREW, \#6-32 X 1/2"	PWR PNL
74	38083-08	2	SCREW, \#4-40 X 1/2", BLACK	LINE FILTER
75	38075-04	2	WASHER, \#4 LOCK, SPLIT	LINE FILTER
76	38075-06	1	WASHER, \#6 LOCK, SPLIT	PWR PNL
77	38009	2	NUT, \#4 HEX	LINE FILTER
78	00373	1	RECTIFIER AND CAPACITOR ASSEMBLY	
79	00354	1	RECT. \& CAP. MTG. BRACKET	
80	01052	1	CAPACITOR, $12000 \mathrm{uF}, 30$ WVDC	
81	65001	1	RECTIFIER, BRIDGE, 100V, 25A	
82	13097	1	ADAPTER, TERMINAL, 1 TO 2 TABS	RECTIFER
83	38059	1	CLAMP, CAPACITOR	
84	38088-06	1	SCREW, MACH. PH, \#6-32 X 3/8"	CAPACITOR
85	38088-12	1	SCREW, MACH. PH.,\#6-32 X 3/4"	RECTIFIER
86	38075-06	2	WASHER, LOCK, SPLIT, \#6	CAP \& RECT
87	00148	1	PIO PCB ASSY	
88	00393	1	I/O MTG PLATE COVER	
89	38075	4	WASHER,LOCK,SLIT, \#8	DRIVE BKTBASE
90	00105	1	COVER ASSY	
91	00372-02	1	RING, CONTROL KNOB RETAINING	BRIGHTNESS CTRL

MAIN PC BOARD PARTS LIST

ITEM	P / N	QTY	DESCRIPTION	REF
110	01001	59	CAP, 0.047uF, CERAMIC DISK	$\begin{aligned} & \text { *BYPASS, C39, C40, } \\ & \text { C50 } \end{aligned}$
111	01012	1	33 pF , DIPPED MICA	C20
112	01013	2	100 pF	C24, Cl 16
113	01015	2	" 330 pF	C22, C 28
114	01016	2	470 pF , DIPPED MICA	Cl5, C19
115	01018	3	0.047uF, DIPPED MYLAR	C4, C14, 25
116	01020	4	0.0luF, DIPPED MYLAR	C17, $233, \mathrm{C} 26, \mathrm{C} 27$
117	10300	3	" 820uF, 15 V , LOW ESR	C6, C10, Cll
118	01039	72	" 0.0luF, $16 \mathrm{~V}, 20 \%$, CERAMIC	$\begin{aligned} & \text { *BYPASS,C7,C9, } \\ & \text { C43-47 } \end{aligned}$
119	01041	8	n $22 \mathrm{uF}, 20 \mathrm{~V}$, DIPPMED TANTALUM	$\begin{aligned} & \text { C } 37,31,32,33,34, \\ & 35,36,41 \end{aligned}$
120	04043	2	2.2uF, 35V	C48, C42
121	01044	1	" $62 \mathrm{pF}, 300 \mathrm{~V}, 5 \%$	C13
122	01045	1	" 0.0033uF, 100V,10\%	Cl2
123	01046	1	$0.015 \mathrm{uF}, 100 \mathrm{~V}, 10 \%$	C2
124	01047	1	820pF, 300 V	C3
125	01038	1	1000uF, 35V	C8
126	01014	2	" $200 \mathrm{pF}, 15 \mathrm{~V}, 5 \%$, MICA	C29, C30
127	01050	2	$0.1 \mathrm{LFF}, 50 \mathrm{~V}$	Cl, C 5
128	01053	1	10pF, $50 \mathrm{VDC},+/-0.5 \mathrm{pF}$	C38
129	01056	1	. $47 \mathrm{uF}, 35 \mathrm{~V}$, DIPPED TANT.	Cl8
130	01055	1	" . 22uF, 10\%, SOLID DIELETRIC	C21
131	13024	1	SOCKET, IC-8 PIN	14 MB
132	13028	60	" " -16 PIN	$\begin{aligned} & 1 \mathrm{~F}-9 \mathrm{~F}, 1 \mathrm{G}-9 \mathrm{G}, \\ & 1 \mathrm{H}-9 \mathrm{H}, 1 \mathrm{~J}-9 \mathrm{~J}, \\ & 1 \mathrm{~K}-9 \mathrm{~K}, 1 \mathrm{~L}-9 \mathrm{~L}, \\ & \mathrm{~J}, 10 \mathrm{~B}, 13 \mathrm{D}, \\ & 13 \mathrm{M}, 4 \mathrm{~B}, 15 \mathrm{~J}, \\ & 16 \mathrm{~J}, 1 \mathrm{~A} \end{aligned}$
133	13030	1	" -20 PIN	17 F
134	13032	2	" -24 PIN	11K,18F
135	13036	2	SOCKET, IC-40 PIN	13K,18C
136	13081	1	CONNECTOR, 34 PIN	J9
137	13084	6	" EDGE-30 PIN	J1-J6
138	13094	1	6POST, 1.56CTR,L/R	Jll
139	13087	9	PCB-"MINI JUMPERS"	W6-Wl 4
140	13093	1	CONNECTOR,9POST, 1.56CTR, L/R	J10
141	13091	8	HEADER, SINGLE ROW - 2 PIN	W7-W14
142	13095	1	CONNECTOR, 10POST, 0.1CTR, L/R	J7
143	15002	1	CRYSTAL, 8MHZ	Y1
144	43001	2	IC, 74 LS 00	10A
145	43002	2	" 74 LS 02	14E, 4E

MAIN PC BOARD PARTS LIST (continued)

ITEM	P / N	QTY	DESCRIPTION	REF
146	43004	5	IC 74 LS 04	$\begin{aligned} & 10 \mathrm{~K}, 2 \mathrm{~A}, 9 \mathrm{C}, \\ & 14 \mathrm{D}, 15 \mathrm{C} \end{aligned}$
147	43006	1	74 LS 08	12E
148	43009	1	74 LS 14	16G
149	43012	4	74 LS 32	9A,12B, 17H,7C
150	43015	6	74 LS 74	$\begin{aligned} & 3 \mathrm{~A}, 7 \mathrm{~A}, 14 \mathrm{C} \\ & 16 \mathrm{~B}, 16 \mathrm{C}, 17 \mathrm{C} \end{aligned}$
151	43018	1	" 74 LS 123	9B
152	43021	2	74 LS 138	9,5L,12C
153	43022	1	74 LS 139	6C
154	43027	6	74 LS 161	$\begin{aligned} & 14 \mathrm{H}, 11 \mathrm{C}, 14 \mathrm{G}, \\ & 14 \mathrm{~J}, 15 \mathrm{G}, 15 \mathrm{H} \end{aligned}$
155	43028	1	74 LS 164	13G
156	43031	3	74 LS 175	11B,13E,15A
157	43034	4	74 LS 253	12H,12J,13H,13J
158	43039	1	74 LS 273	17G
159	43043	4	74 LS 373	9D,10D,10F,17E
160	43044	2	74 LS 393	8B, 14A
161	43045	4	74 S 00	8A,11H,13A,1E
162	43046	1	74 S 08	11 J
163	43050	6	74 S 74	$\begin{aligned} & 7 \mathrm{~B}, 7 \mathrm{D}, 10 \mathrm{C}, 11 \mathrm{~A}, \\ & 13 \mathrm{~B}, 15 \mathrm{~B} \end{aligned}$
164	43059	1	", 7438	16E,18H,18J,6E
165	43025	2	74 LS 157	11G,12G
166	43068	1	Z80A	13K
167	43069	1	LF356	17A-A
168	43073	1	CA3080	17A-B
169	43136	1	", 74L5123 (MFG TI)	17B
170	43079	1	" PROM-DWE	10B
171	43106	1	74 LS 20	8 C
172	43109	3	LM393N	16D,16L, 14MB
173	43110	1	LM358N	14 MA
174	43112	9	74 LS 244	10E,10M,11E, llF,11M,12M, 13F,13K,16F
175	43114	1	" 74 LS 279	13 C
176	43115	3	74 LS 374	14F,15F,17F
177	42116	1	74 LS 670	13D
178	43117	1	74 S 04	6B
179	43118	1	74 S 86	1K
180	43120	2	74 S 139	12D,17J
181	42121	2	74 S 174	12A, 16H
182	00145	1	PROM, 'F-KYBD	18 F
183	43123	1	8035	18C

MAIN PC BOARD PARTS LIST (continued)

ITEM	P / N	QTY	DESCRIPTIO		REF
184	43124	52	IC 4116		$\begin{aligned} & 1 \mathrm{~F}-9 \mathrm{~F}, 1 \mathrm{G}-9 \mathrm{G} \\ & 1 \mathrm{H}-9 \mathrm{H}, 1 \mathrm{~J}-9 \mathrm{~J}, \\ & 2 \mathrm{~K}-9 \mathrm{~K}, 2 \mathrm{~L}-9 \mathrm{~L} \end{aligned}$
185	00117	1	" PROM,	2716-1	11K
186	43139	1	" PROM,	HTIMH	$16 J$
187	43140	1	PROM,	HTIML	15J
188	43141	1	PROM,	IOSEL	13M
189	43142	PBO	PROM,	VTIM	14 B
190	43143	PBO	PROM,	VTIM50	14 B
191	43144	1	" 74 LS	156	1M
192	61002	3	RES NET, 1	1K, SIP, 10 PIN	RN4,RN6,RN6
193	61003	1	" \quad, 2	2.2K, SIP, 6 PIN	RN3
194	61004	1	", 2	2.2K, SIP, 10 PIN	RN7
195	61007	4	$\cdots \quad n, 4$	47K, DIP, 10 PIN	$\begin{aligned} & \text { RN10G, } 10 \mathrm{H}, \\ & 10 \mathrm{~J}, 10 \mathrm{~L} \end{aligned}$
196	61009	1	RESISTOR,	3.3, 1/4W, 5\%	R56
197	61010	2	\%	22, 1/4W, 5\%	R6, R37
198	61011	10	\%	100 "	$\begin{aligned} & \mathrm{R} 62-65, \mathrm{Rl} 1 \\ & 78,79,80,81 \\ & 82 \end{aligned}$
199	61014	1	n	330 "	R42
200	61015	1	"	470 "	R24, 39, 40, 48,53
201	61018	13	\%	1K *	$\begin{aligned} & \mathrm{R} 38, \mathrm{R} 69-73, \mathrm{R} 75, \\ & \mathrm{R} 76, \mathrm{R} 92-\mathrm{R} 95, \mathrm{R} 97 \end{aligned}$
202	61021	2	\%	3.3K "	R52,R88
203	61022	1	"	3.6K "	R50
204	61024	8	n	$4.7 \mathrm{~K}{ }^{\text {n }}$	$\begin{aligned} & R 25, R 1,12,21, \\ & 34,36,41,45 \end{aligned}$
205	61025	2	\%	$5.6 \mathrm{~K}{ }^{\prime \prime}$	R51,R55
206	61026	2	n	$6.8 \mathrm{~K}{ }^{\prime \prime}$	R60,R61
207	61027	1	\%	9.1 K "	R43
208	61028	4	"	10 K " 10\%	R7,R17, R22,R85
209	61029	2	\%	13 K " 5\%	R18,R58
210	61030	2	"	15K " ${ }^{\text {\% }}$	R10,R23
211	61032	5	"	27 K "	$\begin{aligned} & \mathrm{R} 86, \mathrm{R} 46, \mathrm{R} 49, \\ & \mathrm{R} 54, \mathrm{R} 59 \end{aligned}$
212	61034	3	n	$47 \mathrm{~K}{ }^{\text {- }}$	R5, R3, R74
213	61038	2	n	6.19K, 1\%, RN55D	R47,R57
214	61042	2	"	220K, 1/4W, 5\%	R35,R77
215	61054	1	n	33 "	R9
216	61055	2	"	120 "	R2,R13
217	61056	1	n	2.7 K " "	R8
218	61057	1	"	30K	R27
219	61058	2	"	56K " "	R29,R84
220	61060	2	n	680, 1W, 10\%	R3, R15

MAIN PC BOARD PARTS LIST (continued)

ITEM	P / N	QTY	DESCRIPTION	REF
221	61061	2	RESISTOR, 3.3 .1/2W, 10\%	R4.R15
222	61064	1	4.99K, 1\%. RN55D	420
223	61065	1	6.98K. 1\%. RN55D	R19
224	61067	2	47 , 1/4W, 5\%	R66.R67
225	61068	1	RES NET.150, SIP. 8 PIN	RN2
226	61073	3	RESISTOR, 470K, 1/4W, 5\%	R33.R44.R83
227	61017	2	RESISTOR. 680, 1/4W, 5\%	R68,R101
228	61078	1	RES NET. $1 \mathrm{~K}, \mathrm{SIP}$, 8 PIN	RN1
229	61079	1	RESISTOR. 620. 1/4W. 5\%	R28
230	61082	1	330K	R16
231	61059	1	360K	R87
232	61031	1	$18 \mathrm{~K} \quad$ "	R89
233	61063	1	1.96K.1/8W. 1\%	R90
234	61071	1	2.87K,	R91
235	61088	1	22K, 1/4W, 5\%	R30
236	61087	1	100, 1/2W, 20%	R96
237	61085	1	POTENTIOMETER, 5K.MULTI TURN	R26
238	61089	1	RES NET. 100, DIP-16 PIN	7 E
239	38002	3	WASHER, LOCK - \#6	
240	38010	3	NUT. HEX \#6-32	
241	38041	2	HEAT SINK. \#6030	
242	38043	1	HEAD SINK, \#6107	
243	38073	3	SCREW.MACH.\#6-32X3/8.PAN HD	
244	65002	1	REGULATOR, 7805	VR3
245	65006	1	REGULATOR. 79L05	VR2
246	65009	15	DIODE. 1N4148	$\begin{aligned} & \text { CR4.CR5, } \\ & \text { CR7-CR19 } \end{aligned}$
247	65014	5	TRANSISTOR, 2N2222A	$\begin{aligned} & \text { Q3.07.08, } \\ & 010.011 \end{aligned}$
248	65015	2	TRANSISTOR, 2N2907A	Q4,09
249	65018	1	REGULATOR, 7912 (TO-220)	VR1
250	65020	2.	TRANSISTOR.D44H5.GE	Q1, Q5
251	65021	2	TRANSISTOR.D45C5,GE	Q2,06
252	65022	1	RECTIFIER,Cl22F,GE SCR	SCRI
253	65024	2	DIODE.M4820.50V, 8A	CR1, CR3
254	65025	2	DIODE, IN823.6.2V,ZENER	CR6.CR2
255	68004	1	FUSE, 5AMP, FAST-BLOW	FI
256	68013	2	CLIP, FUSE-BUSSMAN	
25%	68015	1	SWITCH, PUSH BUTTON TOGGLE	Sl
258	74007	2	INDUCTOR, 250uH, 10\%. 5A	L1, L2
2.59	74009	1	INDUCTOR. 3.3uH, 10\%	L3
260	82017	1	LOUDSPEAKER, MINI	ISI
261	38081	2	SPACER. NYLON PUSH	

MAIN PC BOARD PARTS LIST (continued)

ITEM	P / N	QTY	DESCRIPTION	REF
262	77046	1	CABLE TIE, 5.5" LONG, 40LBS	
263	43017	1	IC, 74 LS 109	2E
264	43040	1	74 LS 280	8E
265	43146	2	```" }74\mathrm{ LS 166 (NOTE: 74166 IS ALTERNATE. #43063)```	8D,11D
266	43147	1	IC. 74 Sl 24	1A
267	13092-03	1	HEADER.sinale row-3 pin	W6
268	01061	76	CAP, 0.luf. 16V,20\%, ceramic	**BYPASS
269	01022	1	CAP, 6.8uf. 35 V , TANTALUM	C49
270	68016	1	FUSE,3A,20MM X 5MM	
271	68017	1	FUSE.1.5A.20MM X 5MM	
272	00364-02	1	LABEL, POWER RATING ($115 \mathrm{~V}, 60 \mathrm{HZ}$)	
273	00364-04	1	LABEL, POWER RATING ($230 \mathrm{~V}, 50 \mathrm{HZ}$)	
274	00364-05	1	LABEL. POWER RATING ($230 \mathrm{~V}, 60 \mathrm{HZ}$)	

SIO BOARD PARTS LIST

ITEM	P / N	QTY	DESCRIPTION	REF
280	01001	10	CAP, .047uF - CERAMIC	* BY PASS
281	01005	4	470pf - CERAMIC	
282	01022	3	6.8uF - TANTALUM 35V	C1.C2.C3
283	13017	1	CONNECTOR, "D" TYPE-RIGHT ANGLE, 25 PIN	P1
284	13025	1	SOCKET. IC - 8 PIN	1 A
285	13026	1	-14 PIN	4A
286	13029	1	" -16 PIN	3A
287	13034	1	-28 PIN	4E
288	13064	1	SHUNT, 16 PIN (CONFIG)	3A
289	43001	1	IC, 74 LS 00	3B
290	43003	1	" 74 LS 03	3D
291	43004	1	74 LS 04	2B
292	43017	1	74 LS 109	3 C
293	43021	1	74 LS 138	2 C
294	43027	3	74 LS 161	1B,1C.1D
295	43030	1	74 LS 174	1 E
296	43031	1	74 LS 175	2D
297	43070	1	MC 1488	4A
298	43071	1	MC 1489	2A
299	43095	1	8251. USART	4E
300	43135	2	74 LS 243	2E.3E
301	61013	1	RESISTOR. 220, 1/4W, 5\%	R3
302	61016	1	560	R2
303	61019	1	1.2K	R1
304	61025	1	5.6K	R5
305	61027	1	9.1K	R4
306	61035	1	1K , 1/2W, 5\%	R6
307	61024	1	4.7K. l/4W, 5\%	R7

POWER PANEL ASSEMBLY

RECTIFIER AND CAPACITOR ASSEMBLY

PIO BOARD ASSEMBLY

SIO BOARD ASSEMBLY

Z80 MICROPROCESSOR DATA SHEET

Reproduced by permission copyright 1979, 1980, 1981 by Zilog, Inc. This material shall not be reproduced without the written consent of Zilog, Inc.

28400
 280° CPU Central Processing Unit

Zilog

Product Specification

Features

- The instruction set contains 158 instructions The 78 instructions of the 8080A are included as a subset; 8080A software compatibility is maintained.
- Six MHz, 4 MHz and 2.5 MHz clocks for the Z80B, Z80A, and Z80 CPU result in rapid instruction execution with consequent high data throughput.
- The extensive instruction set includes string, bit, byte, and word operations. Block searches and block transfers together with indexed and relative addressing result in the most powerful data handling capabilities in the microcomputer industry.
- The $\mathbf{Z 8 0}$ microprocessors and associated family of peripheral controllers are linked by a vectored interrupt system. This system
may be daisy-chained to allow implementation of a priority interrupt scheme. Little, if any, additional logic is required for daisy-chaining
- Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of system software through single-context switching, background-foreground programming, and single-level interrupt processing. In addition, two 16 -bit index registers facilitate program processing of tables and arrays.
- There are three modes of high speed interrupt processing: 8080 compatible, non-Z80 peripheral device, and Z80 Family peripheral with or without daisy chain.
- On-chip dynamic memory refresh counter.

Figure 1. Pin Functions

Figure 2. Pin Assignments

General Description

The Z80, Z80A, and Z80B CPUs are thirdgeneration single-chip microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable secondand third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six generalpurpose registers which may be used individually as either 8 -bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may
be reserved for very fast interrupt response.
The Z80 also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5 V power source, all output signals are fully decoded and timed to control standard memory or peripheral circuits, and is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the Z 80 processors. Subsequent text provides more detail on the Z80 I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

Figure 3. 280 CPU Block Diagram

280 Microprocessor Family

The Zilog Z 80 microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficient and cost-effective microcomputerbased systems.
Zilog has designed five components to provide extensive support for the Z 80 microprocessor. These are:

- The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be configured to interface with standard parallel peripheral devices such as printers, tape punches, and keyboards.
- The CTC (Counter/Timer Circuit) features four programmable 8 -bit counter/timers,
each of which has an 8 -bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode.
- The DMA (Direct Memory Access) controller provides dual port data transfer operations and the ability to terminate data transfer as a result of a pattern match.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable modes for both synchronous and asynchronous communication, including Bi-Synch and SDLC.
- The DART (Dual Asynchronous Receiver/ Transmitter) device provides low cost asynchronous serial communication. It has two channels and a full modem control interface.

Z80 CPU Registers

Figure 4 shows three groups of registers within the Z80 CPU. The first group consists of duplicate sets of 8 -bit registers: a principal set and an alternate set (designated by ' [prime], e.g., A^{\prime}). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instruc-- tions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-
foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Refresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

Figure 4. CPU Registers

Z 80 CPU Registers (Continued)	Registor		Size (Bits)	Remarks
	A, A^{\prime}	Accumulator	8	Stores an operand or the results of an operation.
	F, F^{\prime}	Flags	8	See Instruction Set.
	B, B^{\prime}	General Purpose	8	Can be used separately or as a 16 -bit register with C .
	C, C^{\prime}	General Purpose	8	See B, above.
	D, D^{\prime}	General Purpose	8	Can be used separately or as a 16 -bit register with E .
	E, E'	General Purpose	8	See D, above.
	H, H^{\prime}	General Purpose	8	Can be used separately or as a 16 -bit register with L .
	L, L^{\prime}	General Purpose	8	See H, above.
				Note: The (B, C), (D, E), and (H, L) sets are combined as follows: B - High byte C - Low byte D - High byte E - Low byte H - High byte L - Low byte
	I	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
	R	Refresh Register	8	Provides user-transparent dynamic memory refresh. Automatically incremented and placed on the address bus during each instruction fetch cycle.
	IX	Index Register	16	Used for indexed addressing.
	IY	Index Register	16	Same as IX, above.
	SP	Stack Pointer	16	Stores addresses or data temporarily. See Push or Pop in instruction set.
	PC	Program Counter	16	Holds address of next instruction.
	$\mathrm{IFF}_{1}-\mathrm{IFF}_{2}$	Interrupt Enable	Flip-Flops	Set or reset to indicate interrupt status (see Figure 4).
	$\mathrm{IMFa}-\mathrm{IMFb}$	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

Table 1. 280 CPU Registors

Interrupts: General Operation

The CPU accepts two interrupt input signals: $\overline{\mathrm{NMI}}$ and INT. The $\overline{\mathrm{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\mathrm{INT}}$ is a lower priority interrupt since it requires that interrupts be enabled in software in order to operate. Either NMI or INT can be connected to multiple peripheral devices in a wired-OR configuration.

The Z 80 has a single response mode for interrupt service for the non-maskable interrupt. The maskable interrupt, INT, has three programmable response modes available.
These are:

- Mode 0 - compatible with the 8080 microprocessor.
- Mode 1 - Peripheral Interrupt service, for use with non-8080/Z80 systems.
- Mode 2 - a vectored interrupt scheme, usually daisy-chained, for use with Z80 Family and compatible peripheral devices. The CPU services interrupts by sampling the $\overline{\mathrm{NMI}}$ and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Non-Maskable Interrupt ($\overline{\text { NMII }}$). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at at all times by the CPU. $\overline{\mathrm{NMI}}$ is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066 H. Normally, software starting at this address contains the interrupt service routine.
Maskable Interrupt (ㄷNT). Regardless of the interrupt mode set by the user, the Z80 response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt processing cycle begins. This is a special fetch (M1) cycle in which IORQ becomes active rather than $\overline{M R E Q}$, as in a normal M1 cycle. In addition, this special M1 cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request and to place the interrupt vector on the bus.
Mode 0 Interrupt Operation. This mode is compatible with the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus, which is then acted on six times by the CPU. This is normally a Restart Instruction, which will initiate an unconditional jump to the selected one of eight restart locations in page zero of memory.
Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the $\overline{\text { NMI. The }}$ principal difference is that the Mode 1 interrupt has a vector address of 0038 H only.
Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z 80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8 -bit address vector on the data bus during the interrupt acknowledge cycle. The high-order byte of the interrupt service routine address is supplied by the I (Interrupt) register. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available
location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_{0}) must be a zero.
Interrupt Priority (Daisy Chaining and Nested Interrupts). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain configuration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEI input hardwared to a High level. The first device has highest priority, while each succeeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.

The interrupting device disables its IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.

The Z80 CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.
Interrupt Enable/Disable Operation. Two flip-flops, IFF_{1} and IFF_{2}, referred to in the register description are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual and Z80 Assembly Language Manual.

Action	$\mathbf{I F F}_{1}$	IFF_{2}	Comments
CPU Reset	0	0	Maskable interrupt INT disabled
DI instruction execution	0	0	Maskable interrupt INT disabled
EI instruction execution	1	1	Maskable interrupt INT enabled
LD A, I instruction execution	-	-	$\mathrm{IFF}_{2} \rightarrow$ Parity flag
LD A,R instruction execution	-	-	IFF_{2} - Parity flag
Accept $\overline{\text { NMI }}$	0	IFF_{1}	$\mathrm{IFF}_{1} \rightarrow \mathrm{IFF}_{2}$ (Maskable interrupt INT disabled)
RETN instruction execution	IFF2	-	$\mathrm{IFF}_{2}-\mathrm{IFF}_{1}$ at completion of an NMI service routine.

Table 2. State of Flip-Flops

Instruction Set

The Z 80 microprocessor has one of the most powerful and versatile instruction sets available in any 8 -bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the Z80 instruction set and shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. The Z80 CPU Technical Manual (03-0029-01) and Assembly Language Programming Manual (03-0002-01) contain significantly more details for programming use.
The instructions are divided into the following categories:
$\square 8$-bit loads
16-bit loads
Exchanges, block transfers, and searches 8-bit arithmetic and logic operations
General-purpose arithmetic and CPU control
\square 16-bit arithmetic operationsRotates and shiftsBit set, reset, and test operations
Jumps
Calls, returns, and restarts
Input and output operations
A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:
\square Immediate
\square Immediate extended
\square Modified page zero
\square Relative
Extended
Indexed
Register
Register indirect
Implied
\square Bit

8-Bit Load	Mnomonic	Symbolic Operation	s			$\begin{aligned} & \text { Flage } \\ & \text { H } \end{aligned}$	P/V	N	c	$\begin{aligned} & \text { Opcode } \\ & 76543210 \end{aligned}$	Hox	No.ot Bytes	No.of M Cycles	No.of T States	Comments
Group	${ }_{\text {LD }}^{\text {LD r, } \mathrm{r}^{\prime}}$	$r-r^{\prime}$ $r-n$	-				!	-	:	$\begin{array}{ccc}01 & \mathrm{r} & \mathrm{r}^{\prime} \\ 00 & \mathrm{r} & 110\end{array}$		$\frac{1}{2}$	$\frac{1}{2}$	4	r, r^{\prime} 000 Req.
	LD r, n	$\mathrm{r}-\mathrm{n}$	-		$\text { - } \mathrm{x}$	- x		-	-			2	2	7	$\begin{array}{ll} \\ \hline 000 & B \\ 001 & C \end{array}$
	LD r, (HL)	$\mathrm{r}-\mathrm{HL}$)	-		x	- x	-	-	-	$\begin{array}{llll}01 & \mathrm{r} & 110\end{array}$		1		7	010 D
	LD r. (IX + d)	$r-(\mathrm{IX}+\mathrm{d})$	-		- x	- x	-	-	-	11011101	DD	3	5	19	011 E
										${ }_{01}{ }_{-d}{ }^{\text {r }} 101$					$\begin{array}{ll}100 \\ 101 & \mathrm{H} \\ 1\end{array}$
	LD r, (IY + d)	$\mathrm{r}-(\mathrm{IY}+\mathrm{d})$	-	-	- x	- x	-	-	-	$\begin{array}{ccc} 11 & -a r & - \\ 01 & 110 \\ 01 & r & 110 \end{array}$	FD	3	5	19	111 A
	LD (HL) , r	(HL) - r	-		- x	- x	-	-	-	${ }_{01}^{-110}{ }^{-1 / 2}$		1	2	7	
	LD ($\mathrm{X} \times \mathrm{d}$) , r	(IX +d$)-\mathrm{r}$	-		- x	- x	-	,	-	11011101 $01110 \mathrm{r}$	DD	3	5	19	
	LD (IY + d), r	(IY + d) - r	-		-	- X	-	-	-	$\begin{array}{lll} 1 & -d & - \\ 11 & 111 & 101 \\ 01 & 110 & r \end{array}$	FD	3	5	19	
	LD (HL), n	(HL) -n	-		x	- x	-	-	-	00110110	36	2	3	10	
	LD ($\mathrm{IX}+\mathrm{d}$) , n	($\mathrm{X} \times \mathrm{d}$) -n	-		x	x	-	-	-	$\begin{gathered} 100 n-101 \\ 00110110 \\ -d . \end{gathered}$	$\begin{aligned} & \text { DD } \\ & 36 \end{aligned}$	4	5	19	
	$L D(1 Y+d), n$	(IY + d) - n	-	-	x	- x	-	-	-	$\begin{gathered} 11111-101 \\ 00110 \\ 0 \\ -d-10 \end{gathered}$	$\begin{aligned} & \text { FD } \\ & 36 \end{aligned}$	4	5	19	
	LD A, (BC)	A - (BC)	-	-	x		-	-	-	00001010	OA	1	2	7	
	LD A, (DE)	A - (DE)	-		x	- x	-	-	-	00011010	1A	1	2	7	
	LD A. (n)	A - (nn)	-	-	x	- x	-	-		$0<111010$	3A	3	4	13	
	LD (BC), A	(BC) - A	-	-	x		-	-	-	$00000{ }^{-n} 0$	02	1	2	7	
	LD (DE), A	(DE) - A	-	-	X	- ${ }^{\text {x }}$	-	-	-	00010010	12	$\frac{1}{3}$	4	7	
	LD (nn), A	$(\mathrm{nn})-\mathrm{A}$	-		x	- x		-		$\begin{aligned} & 00110010 \\ & -n-1 \end{aligned}$	32	3	4	13	
	LD A, 1	A-1	t	t	x	0 x	IFF ${ }^{\circ}$	0	-	1110101	ED	2	2	9	
	LD A, R	A - R	1	1	X	0 X	IFF	0	-		5D	2	2	9	
	LD 1, A	1-A	-	.	X	- x	.	.	.	$\begin{array}{lll}01 & 011 & 111 \\ 11 & 101 \\ 1 & 101\end{array}$	${ }_{\text {ED }}^{\text {SF }}$	2	2	9	
										01000 ll	47				
	LD R, A	$\mathrm{R}-\mathrm{A}$	-	-	x	x		-	-	$\begin{array}{lll} 11 & 101 & 101 \\ 01 & 001 & 111 \end{array}$	$\begin{aligned} & \text { ED } \\ & 4 \mathrm{~F} \end{aligned}$	2	2	9	

[^0]

NOTES: : reprosente the extension in the reiative addrosang mode.

- is a aigned two's complement number in the range < $-i 26.129>$.
- -2 in the opcode provides an effective address of $p c+\theta$ as $P C$ is incremented
- -2 in the opcoco provides an effective address of $\mathrm{pc}+\bullet$ as PC is incremented
by 2 prior to the addition of 0 .

NOTE: 'RETN $^{\text {loads }} \mathrm{IFF}_{2}-\mathrm{IFF}_{1}$

NOTE: (1) If the result of $B-1$ is zero the Z flag is set, otherwise it is reset.

Pin $\quad \mathbf{A}_{\mathbf{0}}-\mathbf{A}_{\mathbf{1 5}}$. Address Bus (output, active High,

Descriptions 3 -state). $\AA_{0}-\AA_{15}$ form a 16 -bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64 K bytes) and for I/O device exchanges.
BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, $\overline{\mathrm{IORQ}}$, RD, and WR have entered their highimpedance states. The external circuitry can now control these lines.
BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals $\overline{M R E Q}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ to qo to a highimpedance state so that other devices can control these lines. BUSREQ is normally wireORed and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.
D_{0} - D_{7}. Data Bus (input/output, active High, 3 -state). $\mathrm{D}_{0}-\mathrm{D}_{7}$ constitute an 8 -bit bidirectional data bus, used for data exchanges with memory and I/O.
HALT. Halt State (output, active Low). $\overline{\text { HALT }}$ indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.
INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal softwarecontrolled interrupt enable flip-flop (IFF) is enabled. INT is normally wire-ORed and requires an external pullup for these applications.
IORQ. Input/Output Request (output, active Low, 3-state). $\overline{\mathrm{IORQ}}$ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. $\overline{\mathrm{IORQ}}$ is also generated concurrently with $\overline{\mathrm{Ml}}$ during an interrupt acknowledge cycle to indicate that an interrupt response vector can be
placed on the data bus.
$\overline{\text { M1. Machine Cycle One (output, active Low). }}$ M1, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. M1, together with $\overline{\mathrm{IORQ}}$, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3 -state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.
$\overline{\text { NMI. }}$. Non-Maskable Interrupt (input, active Low). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066 H .
$\overline{\mathrm{RD}}$. Memory Read (output, active Low, 3 -state). $\overline{\mathrm{RD}}$ indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.
$\overline{\text { RESET. Reset (input, active Low). } \overline{\text { RESET }}}$ initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0 . During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.
 together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.
WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly.
$\overline{\text { WR. Memory Write (output, active Low, }}$ 3 -state). $\overline{\mathrm{WR}}$ indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, $\overline{M R E Q}$ goes active. The falling edge of $\overline{M R E Q}$ can be used directly as a Chip Enable to dynamic memories. When active, $\overline{R D}$ indicates that the memory data can be enabled onto the CPU
data bus.
The CPU samples the $\overline{\text { WAIT }}$ input with the rising edge of clock state T3. During clock states T3 and T4 of an M1 cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

NOTE: T_{w}-Want cycle added when necessary for slow ancilhary devices.

Figure 5. Instruction Opcode Fetch

CPU

Timing

(Continued)

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch ($\overline{\mathrm{MI} \text {) cycle. }}$ The MREQ and $\overline{\mathrm{RD}}$ signals function exactly as in the fetch cycle. In a memory write cycle, $\overline{M R E Q}$ also becomes active when the address
bus is stable, so that it can be used directly as a Chip Enable for dynamic memories. The WR line is active when the data bus is stable, so that it can be used directly as an R / \bar{W} pulse to most semiconductor memories.

Figure 6. Memory Read or Write Cycles

CPU
Timing
(Continued)

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically
inserts a single Wait state (T_{w}). This extra Wait state allows sufficient time for an I/O port to decode the address and the port address lines.

NOTE: $\mathrm{T}_{\mathrm{w}}{ }^{\boldsymbol{*}}=$ One Wait cycle automatically inserted by CPU.

Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special M1 cycle is generated.

During this $\overline{\mathrm{Ml}}$ cycle, $\overline{\mathrm{IORQ}}$ becomes active (instead of $\overline{M R E Q}$) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

NOTE: 1) $T_{L}=$ Last state of previous instruction.
2) Two Wat cycles automatically inserted by CPU(*).

Figure 8. Interrupt Request/Acknowledge Cycle

CPU
 Timing
 (Continued)
 Non-Maskable Interrupt Request Cycle.
 $\overline{\mathrm{NMI}}$ is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to

that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the NMI service routine located at address 0066H (Figure 9).

Although NMI is an asynchronous input, to quarantee its being recognized on the tollowing machine cycle, NMI's falling edge
must occur no later than the rising edge of the clock cycle preceding $\mathrm{T}_{\mathrm{LAST}}$.

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, $\overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$
lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

Figure 10. Bus Request/Acknowledge Cycle

CPU

Timing

(Continued)

Halt Acknowledge Cycle. When the CPU receives a $\overline{H A L T}$ instruction, it executes NOP states until either an $\overline{\text { INT }}$ or NMI input is
received. When in the Halt state, the $\overline{\text { HALT }}$ output is active and remains so until an interrupt is processed (Figure 11).

Figure 11. Halt Acknowledge Cycle

Reset Cycle. $\overline{\text { RESET must be active for at least }}$ three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes
inactive, two internal T cycles are consumed before the CPU resumes normal processing operation. $\overline{R E S E T}$ clears the PC register, so the first opcode fetch will be to location 0000 (Figure 12).

Figure 12. Reset Cycle

AC Characteristics	Number Symbol		Parameter	$\underset{\substack{\text { Min } \\(\mathrm{ns})}}{280}$	CPU Max (ns)	$\underset{(\mathrm{ns})}{\operatorname{Ming}}$	$\underset{\substack{\text { Max } \\ \text { (ns) }}}{\text { CPU }}$	$\begin{gathered} \text { 280B } \\ \underset{(\mathrm{ns})}{\text { Min }} \end{gathered}$	$\underset{\substack{\text { Max } \\ \text { (ns) }}}{\text { CPU }}$	
	1	TcC	Clock Cycle Time	400^{*}		250*		165^{*}		
	2	TwCh	Clock Pulse Width (High)	180^{*}		$110 *$		65^{*}		
	3	TwCl	Clock Pulse Width (Low)	180	2000	110	2000	65	2000	
	4	TfC	Clock Fall Time	-	30	-	30	-	20	
	TrC		Clock Rise Time		-30		-30		20	
	6	$\mathrm{TdCr}(\mathrm{A})$	Clock 1, to Address Valid Delay	-	145	-	110	-	90	
	7	TdA(MREQf)	Address Valid to MREQ 1 Delay	125*	-	65^{*}	-	35^{*}	-	
	8	TdCf(MREQf)	Clock 1 to MREQ \\| Delay	-	100	-	85	-	70	
	9	TdCr (MREQr)	Clock 1 to MREQ 1 Delay	-	100	-	85	-	70	
	10 - TwMREQh		$\overline{\text { MREQ Pulse Width (High) }}$	-170*		110*		65*		
		TwMREQ1	$\overline{\text { MREQ Pulse Width (Low) }}$	360^{*}	-	$220 *$	-	135*	-	
	12	TdCf(MREQr)	Clock 1 to MREQ I Delay	-	100	-	85	-	70	
	13	TdCf(RDf)	Clock 1 to $\overline{\mathrm{RD}}$ \| Delay	-	130	-	95	-	80	
	14	$\mathrm{TdCr}(\mathrm{RDr})$	Clock 1 to $\overline{\mathrm{RD}}$ i Delay	-	100	-	85	-	70	
	15 -	TsD(Cr)	Data Setup Time to Clock 1	50		35		30		
	16	ThD(RDr)	Data Hold Time to $\overline{\mathrm{RD}}$ I	-	0	-	0	-	0	
	17	TsWAIT(Cf)	WAIT Setup Time to Clock 1	70	-	70	-	60	-	
	18	ThWAIT(Cf)	WAIT Hold Time after Clock !	-	0	-	0	-	0	
	19	$\mathrm{TdCr}(\mathrm{Mlf})$	Clock 1 to $\overline{\mathrm{M} 1}$ I Delay	-	130	-	100	-	80	
	20 -	$\mathrm{TdCr}(\mathrm{Mlr})$	Clock 1 to $\overline{\mathrm{Ml}}$! Delay	-	130		100		80	
	21	TdCr (RFSHf)	Clock 1 to $\overline{\mathrm{RFSH}}$ \ Delay	-	180	-	130	-	110	
	22	$\mathrm{TdCr}(\mathrm{RFSHr})$	Clock I to $\overline{\mathrm{RFSH}}$ \| Delay	-	150	-	120	-	100	
	23	TdCf(RDr)	Clock 1 to $\overline{\mathrm{RD}}$! Delay	-	110	-	85	-	70	
	24	TdCr (RDf)	Clock 1 to $\overline{\mathrm{RD}}$! Delay	-	100	-	85	-	70	
	25 -	TsD(Cf)	Data Setup to Clock 1 during M_{2}, M_{3}, M_{4} or M_{5} Cycles			50		40		
	26	TdA(IORQf)	Address Stable prior to $\overline{\mathrm{IORQ}} 1$	$320 *$	-	180*	-	110*	-	
	27	$\mathrm{TdCr}(\mathrm{IORQ}$)	Clock 1 to $\overline{\text { IORQ }}$! Delay	-	90	-	75	-	65	
	28	TdCf(ORQR)	Clock 1 to $\overline{\text { IORQ }}$ i Delay	-	110	-	85	-	70	
	29	TdD(WRf)	Data Stable prior to $\overline{\mathrm{WR}} \mathrm{l}$	190*	-	80*	-	25^{*}	-	
	$30-$	TdCf(WRf) -	Clock 1 to $\overline{\mathrm{WR}}$! Delay		90		80		70	
	31	TwWR	$\overline{\text { WR Pulse Width }}$	$360 *$	-	220^{*}	-	$135 *$	-	
	32	$\mathrm{TdCt}(\mathrm{WRr})$	Clock 1 to $\overline{W R}$ I Delay	-	100	-	80	-	70	
	33	TdD(WRf)	Data Stable prior to $\overline{\mathrm{WR}}$!	20^{*}	-	-10^{*}	-	-55*	-	
	34	TdCr (WRf)	Clock \dagger to $\overline{\mathrm{WR}}$! Delay	-	80	-	65	-	60	
	35 -	TdWRr(D) -	Data Stable from $\overline{W R}$	120		60^{*}		$30 *$		
	36	TdCf(HALT)	Clock 1 to $\overline{\text { HALT }}$) or 1		300	-	300	-	260	
	37	TwNMI	$\overline{\text { NMI Pulse Width }}$	80	-	80	-	70	-	
	38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock 1	80	-	50	-	50	-	

- For clock periods other than the minimums shown in the table,
calculate parameters using the expressions in the table on the
following page.

AC Characteristics (Continued)	Number SYmbol		Parameter	$\underset{\text { Min }}{280 \mathrm{CPU}}$		$\underset{\text { Min }}{\text { (ns) }}$ (280A	$\underset{\text { Max }}{\underset{\text { (ns) }}{\text { CPU }}}$	Z80B CPU	$\begin{aligned} & \text { CPU } \\ & \text { Max } \\ & \text { (ns) } \end{aligned}$
	39	ThBUSREQ(Cr)	BUSREQ Hold Time after Clock 1	0	-	0	-	0	-
	40 -	TdCr (BUSACKf)-	Clock 1 to $\overline{\text { BUSACK }}$ I Delay						90
	41	TdCf(BUSACKr)	Clock 1 to $\overline{\text { BUSACK }}$ I Delay	-	110	-	100	-	90
	42	$\mathrm{TdCr}(\mathrm{Dz})$	Clock 1 to Data Float Delay	-	90	-	90	-	80
	43	$\mathrm{TdCr}(\mathrm{CTz})$	Clock 1 to Control Outputs Float Delay (MREQ, $\overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and WR)	-	110	-	80	-	70
	44	$\operatorname{TdCr}\left(\mathrm{Az}^{\prime}\right)$	Clock 1 to Address Float Delay	-	110	-	90	-	80
	45 -	$\operatorname{TdCTr}(\mathrm{A})$	Address Stable atter $\overline{\text { MREQ }}$ 1, $\overline{\mathrm{IORQ}} 1, \overline{\mathrm{RD}} 1$, and $\overline{W R} \mathrm{I}$	160^{*}		80		35	
	46	TsRESET(Cr)	$\overline{\text { RESET }}$ to Clock 1 Setup Time	90	-	60	-	60	-
	47	ThRESET(Cr)	$\overline{\text { RESET }}$ to Clock 1 Hold Time	-	0	-	0	-	0
	48	Tsintif($\mathrm{Cr}_{\text {) }}$	$\overline{\mathrm{INT}}$ to Clock 1 Setup Time	80	-	80	-	70	-
	49	ThinTr (Cr)	INT to Clock 1 Hold Time	-	0	-	0	-	0
	50 -	TdMlf(IORQt) -	$\overline{\mathrm{M} 1}$! to $\overline{\mathrm{IORQ}}$! Delay	920*		$565 *$		$365 *$	
	51	TdCf(IORQf)	Clock I to $\overline{\text { IORQ }}$ - Delay	-	110	-	85	-	70
	52	TdCf(IORQr)	Clock 1 to $\overline{\overline{O R Q}}$ i Delay	-	100	-	85	-	70
	53	$\mathrm{TdCf}(\mathrm{D})$	Clock 1 to Data Valid Delay	-	230	-	150	-	130

*For clock periods other than the minimums shown in the table,
calculate parameters using the following expressions. Calculated
values above assumed $\mathrm{TrC}=\mathrm{TfC}=20 \mathrm{~ns}$.

Footnotes to AC Characteristics

Number	Symbol	280	Z80A	280B
1	TcC	$\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$	$\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TfC}$	$\mathrm{TwCh}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{TtC}$
2	TwCh	Although static by design, TwCh of greater than $200 \mu \mathrm{~s}$ is not guaranteed	Although static by design, TwCh of greater than $200 \mu \mathrm{~s}$ is not guaranteed	Although static by design, TwCh of greater than $200 \mu \mathrm{~s}$ is not guaranteed
7 - TdA (MREQf) - TwCh + TfC - 75			TwCh + TfC - 65	$\begin{aligned} & \mathrm{TwCh}+\mathrm{TfC}-50 \\ & \mathrm{TwCh}+\mathrm{TfC}-20 \end{aligned}$
10	TwMREQh	TwCh + TfC - 30	TwCh + TfC - 20	
11	TwMREQ1	TcC-40	TcC-30	TcC-30
26	TdA(IORQf)	TcC - 80	TcC-70	TcC-55
29	TdD (WRf)	$\mathrm{Tc} \mathrm{C}-210$	TcC - 170	TcC - 140
31	TwWR	TcC - 40	TcC-30	TcC - 30
33	TdD (WRf)	$\mathrm{TwCl}+\mathrm{TrC}-180$	TwCl + TrC - 140	$\mathrm{TwCl}+\mathrm{TrC}-140$
35	TdWRr(D)	$\mathrm{TwCl}+\mathrm{TrC}-80$	$\mathrm{TwCl}+\mathrm{TrC}-70$	$\mathrm{TwCl}+\mathrm{TrC}-55$
45	$\mathrm{TdCTr}(\mathrm{A})$	$\mathrm{TwCl}+\mathrm{TrC}-40$	$\mathrm{TwCl}+\mathrm{TrC}-50$	$\mathrm{TwCl}+\mathrm{TrC}-50$
50	TdMlf(IORQf)	$2 \mathrm{TcC}+\mathrm{TwCh}+\mathrm{TfC}-.80$	2 Tc C + TwCh + TfC - 65	2 Tc C + TwCh + TfC - 50

```
AC Test Conditons:
    V
    V
    V
```

 \(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}\)
 \(\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}\)
 $\mathrm{FLOAT}= \pm 0.5$
$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V} \quad$ FLOAT $= \pm 0.5 \mathrm{~V}$

Absolute Maximum Ratings	Storage Temperature $\ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Temperature under BiasSpecified operating range Voltages on all inputs and outputs with respect to ground . -0.3 V to +7 V Power Dissipation 1.5 W		Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.			
Standard Test Conditions	The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0 V). Positive current flows into the referenced pin. Available operating temperature ranges are:$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & +4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & +4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \\ & +4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V} \end{aligned}$		All ac parameters assume a load capacitance of 50 pF . Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.			
DC Characteristics	Symbol	Parameter	Min	Max	Unit	Test Condition
	$\mathrm{V}_{\text {ILC }}$	Clock Input Low Voltage	-0.3	0.45	V	
	$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	$\mathrm{v}_{\mathrm{CC}}-6$	$\mathrm{V}_{\mathrm{CC}}+.3$	V	
	$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.8	v	
	V_{IH}	Input High Voltage	2.0	V_{CC}	V	
	$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}$
	V_{OH}	Output High Voltage	2.4		V	$\mathrm{IOH}=-250 \mu \mathrm{~A}$
	I_{CC}			$\begin{aligned} & 150^{1} \\ & 200^{2} \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	
	I_{LI}	Input Leakage Current		10	${ }_{\mu}$ A	$\mathrm{V}_{\text {IN }}=0$ to V_{CC}
	$\mathrm{I}_{\text {LEAK }}$	3-State Output Leakage Current in Float	-10	10^{3}	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4$ to $\mathrm{V}_{\text {CC }}$
	1. For military grade parts. LCC is 200 mA . 2. Typical rate for 280 A is 90 mA .		3. $\mathrm{A}_{15}-\mathrm{A}_{0}, \mathrm{D}_{7}-\mathrm{D}_{0}, \overline{\mathrm{MREQ}}$. $\overline{\mathrm{ORO}}$. $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$.			
Capacitance	Symbol	Parameter	Min	Max	Unit	Note
	$\mathrm{C}_{\text {CLOCK }}$	Clock Capacitance		35	pF	
	$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF	Unmeasured pins
	$\mathrm{C}_{\text {Out }}$	Output Capacitance		10	pF	

Ordering Information	Product Number	Package/ Temp	Speed	Description	Product Number	Package/ Temp	Speed	Description
	28400	CE	2.5 MHz	280 CPU (40-pin)	Z8400A	DE	4.0 MHz	Z80A CPU (40-pin)
	28400	CM	2.5 MHz	Same as above	Z8400A	DS	4.0 MHz	Same as above
	28400	CMB	2.5 MHz	Same as above	28400A	PE	4.0 MHz	Same as above
	28400	CS	2.5 MHz	Same as above	Z8400A	PS	4.0 MHz	Same as above
	Z8400	DE	2.5 MHz	Same as above	Z8400B	CE	6.0 MHz	Z80B CPU (40-pin)
	Z8400	DS	2.5 MHz	Same as above	Z8400B	CM	6.0 MHz	Same as above
	28400	PE	2.5 MHz	Same as above	Z8400B	CMB	6.0 MHz	Same as above
	28400	PS	2.5 MHz	Same as above	28400B	CS	6.0 MHz	Same as above
	Z8400A	CE	4.0 MHz	Z80A CPU (40-pin)	Z8400B	DE	6.0 MHz	Same as above
	28400A	CM	4.0 MHz	Same as above	28400B	DS	6.0 MHz	Same as above
	28400A	CMB	4.0 MHz	Same as above	28400B	PE	6.0 MHz	Same as above
	Z8400A	CS	4.0 MHz	Same as above	28400B	PS	6.0 MHz	Same as above

NOTES: $\mathrm{C}=$ Ceramic, $\mathrm{D}=$ Cerdip. $\mathrm{P}=$ Plastic; $\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{MB}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with MIL-STD-883 Class B processing. $S=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

8251/8251A USART

 DATA SHEET
PROGRAMMABLE COMMUNICATION INTERFACES

DESCRIPTION The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters (USARTs) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the 8080A or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TXE and SYNDET, is available to the processor at any time.

FEATURES - Asynchronous or Synchronous Operation

- Asynchronous:

Five 8-Bit Characters Clock Rate - 1, 16 or $64 \times$ Baud Rate Break Character Generation
Select 1, 1-1/2, or 2 Stop Bits
False Start Bit Detector
Automatic Break Detect and Handling (μ PD8251A)

- Synchronous:

Five 8-Bit Characters
Internal or External Character Synchronization
Automatic Sync Insertion
Single or Double Sync Characters

- Baud Rate (1X Mode) - DC to 56K Baud (μ PD8251)
- DC to 64K Baud (μ PD8251A)
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080A/8085/ μ PD780 (Z80TM)
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply, $\pm 10 \%$
- Separate Device Receive and Transmit TTL Clocks
- 28 Pin Plastic DIP Package
- N-Channel MOS Technology

μ PD8251/8251A

The μ PD8251 and μ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters are designed specifically for 8080 microcomputer systems but work with most 8 -bit processors. Operation of the μ PD8251 and μ PD8251A, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the μ PD8251 or μ PD8251A converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

The μ PD8251A is an advanced design of the industry standard 8251 USART. It operates with a wide range of microprocessors, including the 8080, 8085, and μ PD780 (Z80 TM). The additional features and enhancements of the μ PD8251A over the μ PD8251 are listed below.

1. The data paths are double-buffered with separate I/C registers for control, status, Data In and Data Out. This feature simplifies control programming and min. imizes processor overhead.
2. The Receiver detects and handles "break" automatically in asynchronous operations, which relieves the processor of this task.
3. The Receiver is prevented from starting when in "break" state by a refined Rx initialization. This also prevents a disconnected USART from causing unwanted interrupts.
4. When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
5. The Tx Disable command is prevented from halting transmission by the T_{x} Enable Logic enhancement, until all data previously written has been transmitted. The same logic also prevents the transmitter from turning off in the middle of a word.
6. Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is provided through a flip-flop which clears itself upon a status read.
7. The possibility of a false sync detect is minimized by:

- ensuring that if a double sync character is programmed, the characters be contiguously detected.
- clearing the Rx register to all Logic 1s (VOH) whenever the Enter Hunt command is issued in Sync mode.

8. The $\overline{R D}$ and $\overline{W R}$ do not affect the internal operation of the device as long as the μ PD8251A is not selected.
9. The μ PD8251A Status can be read at any time, however, the status update will be inhibited during status read.
10. The μ PD8251A has enhanced AC and DC characteristics and is free from extraneous glitches, providing higher speed and improved operating margins.
11. Baud rate from DC to 64 K .

$\mathbf{C} / \overline{\mathbf{D}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{C S}}$	
0	0	1	0	μ PD8251 $/ \mu$ PD8251A \rightarrow Data Bus
0	1	0	0	Data Bus $\rightarrow \mu$ PD8251 $/ \mu$ PD8251A
1	0	1	0	Status \rightarrow Data Bus
1	1	0	0	Data Bus \rightarrow Control
X	X	X	1	Data Bus $\rightarrow 3$-State
X	1	1	0	

TM:Z80 is a registered trademark of Zilog.

FUNCTIONAL DESCRIPTION
μ PD8251A FEATURES AND ENHANCEMENTS

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*	Operating Temperature	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Ali Output Voltages	-0.5 to +7 Volts
	All Input Voltages	-0.5 to +7 Volts
	Supply Voltages	-0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS					UNIT	TEST CONDITIONS
		μ PD8251			$\underline{\mu P D 8251 A}$			
		MIN	TYP	MAX	MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	0.5	0.8	\checkmark	
Input High Voltage	$V_{1 H}$	2.0		$\mathrm{V}_{\text {CC }}$	2.0	V_{CC}	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.45		0.45	V	$\begin{aligned} \mu \text { PD8251: } 1 \mathrm{OL}=1.7 \mathrm{~mA} \\ \mu \text { PD8251A: } \mathrm{IOL}_{\mathrm{L}}=2.2 \mathrm{~mA} \end{aligned}$
Output High Voltage	VOH	2.4			2.4		V	μ PD8251: $\quad 1 O H=-10 C \mu A$ μ PD8251A: ${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$
Data				-50		-10		$V_{\text {OUT }}=0.45 \mathrm{~V}$
				10		10		$V_{\text {OUT }}=V_{\text {CC }}$
Input Load Current	$1 / 12$			10		10	$\mu \mathrm{A}$	At 5.5 V
Power Supply Current	${ }^{1} \mathrm{CC}$		45	80		100	mA	μ PD8251A: All Outputs $=$ Logic 1

CAPACITANCE
$T_{a}=25^{\circ} \mathrm{C}: V_{C C}=G N D=O V$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
1/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to GND

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		μ PD8251		μ PD8215A			
		MIN	MAX	MIN	MAX		
READ							
Address Stable betore $\overline{\mathrm{READ}}$, ($\overline{C S}, \overline{\mathrm{C} / \bar{D}}$)	IAR	50		0		ns	
Address Hotd Time tor $\overline{\text { READ }}$. CSS, CD)	tra	5		0		ns	
$\overline{\text { READ Pulse Widit }}$	${ }^{\text {'RR }}$	430		250		ns	
Data Delay from $\overline{\text { READ }}$	${ }^{\text {'RD }}$		350		200	ns	$\begin{array}{lll} \hline \mu \mathrm{PD} 8251 \mathrm{C} & 100 \mathrm{pF} \\ \\ \mu \mathrm{PD} 8251 \mathrm{~A} & \mathrm{C}_{\mathrm{L}} & 150 \mathrm{pF} \\ \hline \end{array}$
$\overline{\text { READ to Data Floating }}$	${ }^{\text {' }} \mathrm{DF}$	25	200	10	100	ns	$\begin{array}{ll} \mu \text { PD8251 } & \begin{array}{l} C_{L}: 100 \mathrm{pF} \\ C_{L} \end{array} \cdot 15 \mathrm{pF} \\ \hline \end{array}$
WRITE							
Address Stabie betore $\overline{\text { WRITE }}$	${ }^{1}$ AW	20		0		$n{ }^{\text {n }}$	
Address Hold Time for WRITE	${ }^{\text {T}}$ WA	20		0		ns	
WRITEE Pulse Width	${ }^{\text {TWW }}$	400		250		ns	
Data Set Up Time for $\overline{\text { WRITE }}$	'0w	200		150		ns	
Data Hold Time for WRTTE	two	40		0		ns	
Recovery Time Between WRITES (2)	IRV	6		6		${ }^{\text {t }} \mathrm{C}$	
OTHER TIMING							
Clock Period (3)	${ }^{1} \mathrm{Cr}$	0420	135	032	135	$\mu 5$	
Clock Pulse Width High	${ }^{\text {cow }}$	220	071 Cy	120	${ }^{\text {t Cry }} 90$	ns	
Clock Pulse Width Low	tow			90		ns	
Clock Rise and Fall Time	'8.tF	0	50	5	20	ns	
T×D Delay trom Falling Edge of T×C	${ }^{\text {t OTx }}$		1		1	us	${ }_{\mu P D 8251 ~}^{\text {c }} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Rx Data Set Up Time to Sampling Pulse	${ }_{\text {'SR }}$	2		2		$\mu \mathrm{s}$	
R× Data Hold Time to Sampling Pulse	${ }_{\text {IHRX }}$	2		2		$\mu \mathrm{s}$	
Transmitter input Clock Frequency $1 \times$ Baud Rate 16× Baud Rate $64 \times$ Baud Rate	${ }^{\text {T }}$ \%	DC	56		64	kHz_{2}	
		DC	520		310	$\mathrm{kH2}_{2}$	
		DC	520		615	kHz^{2}	
$\begin{aligned} & \text { iransinitter InDui Clock Fulse Width } \\ & \text { 1 } \times \text { Baud Rate } \\ & 16 \mathrm{X} \text { and } 64 \times \text { Baud Rate } \end{aligned}$	'TPW	12		12		${ }^{\text {t }} \mathrm{C} \mathrm{Cy}$	
Transmitter Input Clock Pulse Delay $1 \times$ Baud Rate 16X and $64 \times$ Baud Rate		1		1		${ }^{1} \mathrm{CY}$	
	${ }^{\text {t }}$ TPD	15		15		${ }^{1} \mathrm{C} Y$	
		3		3		${ }^{\text {c }} \mathrm{C}$	
Receiver Input Clock Frequency 1× Baud Rate $16 \times$ Baud Rate $64 \times$ Baud Rate	${ }^{\text {f }}$ x	DC	56		64	kHz	
		DC	520		310	${ }^{\mathrm{kHz}}$	
		DC	520		615	kHz^{2}	
Receiver Input Clock Puise Width $1 \times$ Baud Rate $16 \times$ and $64 \times$ Baud Rate	${ }^{\text {tr PRW }}$	12		12		$\frac{\text { icy }}{\text { icy }}$	-
Receiver Input Clock Pulse Delay 1X Baud Rate 16 X and $64 \times$ Baud Rate	${ }^{\text {tr PPD }}$	15 3		15		TCy icy 1 cy	
TxRDY Delay from Center of Data Bit	${ }^{1 T x}$		16		8	${ }^{\text {t }} \mathrm{CY}$	$\mu \mathrm{PD8251} \mathrm{C}_{L} 50 \mathrm{pF}$
RxRDY Delay from Center of Data Bit Internat SYNDET Delay trom Center of Data Bit	$\begin{aligned} & \text { 'RX } \\ & \text { is } \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{CY} \\ & { }^{\mathrm{C}} \mathrm{CY} \end{aligned}$	
Externat SYNDET Set Up Time before Falling Edge of RxC	${ }^{\text {t }}$ ES		16		16	${ }^{1} \mathrm{Cr}$	
TxEMPTY Delay from Center of Data Bit	${ }^{1} 1 \times$ E		16		20	${ }^{1} \mathrm{CY}$	$\mu \mathrm{PD} 8251 \mathrm{C} \mathrm{C}_{\text {L }} 50 \mathrm{pF}$
Control Delay from Rising Edge of WRITE (TXE, DTR, RTS)	${ }^{\text {I W }}$ (16		8	${ }^{\text {'Cr }}$	
Control to READ Set Un Time ($\overline{\mathrm{DSR}}, \overline{\mathrm{CTS}}$)	${ }^{\text {t }} \mathrm{CR}$		16		20	${ }^{1} \mathrm{Cr}$	

Notes (1) $A C$ timings measured at $V_{O H}=20, V_{O L}=08$, and with load circuit of Figure 1
(2) This recovery time is for initialization only, when MODE, SYNC1, SYNC2. COMMAND and first DATA BYTES are written into the USART Subsequent writing of both COMMAND and DATA are only allowed when TXRDY = 1
(3) The $T_{X C}$ and $R_{x C}$ frequencies have the following limitations with respect to CLK For $1 \times$ Baud Rate, ${ }^{\prime} T x$ or ${ }^{\prime} R_{x} \leqslant 1 /\left(30^{\circ} \mathrm{CY}\right)$
For 16 X and 64 X Baud Rate. $\mathrm{T}_{\mathrm{T}} \mathrm{X}$ or $\mathrm{f}_{\mathrm{Rx}} \leqslant 1 /\left(45 \mathrm{t}^{\mathrm{C}} \mathrm{CY}\right)$
(4) Reset Pulse Width $=6{ }^{\circ} \mathrm{CY}$ minimum.

Figure 1.

\triangle CAPACITANCE (pF)
Typical Δ Output
Delay Versus Δ Capacitance (pF)

RECEIVER CLOCK AND DATA

WRITE DATA CYCLE (PROCESSOR \rightarrow USART)

TIMING WAVEFORM (CONT.)

READ CONTROL OR INPUT PORT CYCLE (PROCESSOR \leftarrow USART)

(1) ${ }^{W}$ Includes the response tuming of a control byte
(2) $T_{C R}$ includes the offoct of $C T S$ on the $T_{x E N B L}$ circuitry

TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

TIMING WAVEFORM (CONT.)

RECEIVER CONTROL AND FLAG TIMING

 (ASYNC MODE)

EXAMPLE FORMAT = 5 BIT CHARACTER WITH PARITY ANO 2 SYNC CHARACTERS

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)

RECEIVER CONTROL AND FLAG TIMING
(SYNC MODE)

Notes: (1) Internal sync, 2 sync characters, 5 bits, with parity. 2) External sync, 5 bits, with parity.

							PIN		FUNCTION

TRANSMIT BUFFER

The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

PIN IDENTIFICATION
 (CONT.)

PIN			FUNCTION
NO.	SYMBOL	NAME	
Transmit Control Logic			The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.
15	TXRDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets TxRDY, on the leading edge.
18	TxE	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further characters to transmit. TXE is automatically reset upon receiving a data character from the processor. In half-duplex, TXE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TxE. In the Synchronous mode, a "one" on this output indicates that a Sync character or characters are about to be automatically.transmitted as "fillers" because the next data character has not been loaded.
9	$\overline{\mathrm{TxC}}$	Transmitter Clock	The Transmitter Clock controls the serial charac ter transmission rate. In the Asynchronous mode, the $\overline{T \times C}$ frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruction select the multiple to be $1 \mathrm{x}, 16 \mathrm{x}$, or 64 x the Baud Rate. In the Synchronous mode, the $\overline{T \times C}$ frequency is automatically selected to equal the actual Baud Rate. Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{T \times C}$.
19	T×D	Transmister Data	The Transmit Control Logic outputs the composite serial data stream on this pin.

μ PD8251 AND μ PD8251A INTERFACE TO 8080 STANDARD SYSTEM BUS

μ PD8251/8251A

The Receive Buffer accepts serial data input at the $\overline{\mathrm{RxD}}$ pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the μ PD8251 and μ PD8251A set the extra bits to "zero."

PIN			FUNCTION
NO.	SYMBOL	NAME	
Receiver Control Logic			This block manages all activities related to incoming data.
14	R×RDY	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check RxRDY using a Status Read or RxRDY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets R×RDY.
25	$\overline{\mathrm{R} \times \mathrm{C}}$	Receiver Clock	The Receiver Clock determines the rate at which the incoming character is received. In the Asynchronous mode, the $\overline{R \times C}$ frequency may be 1.16 or 64 times the actual Baud Rate but in the Synchronous mode the $\overline{R \times C}$ frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at $1 x, 16 x$ or $64 x$ or Synchronous operation at $1 \times$ the Baud Rate. Unlike $\overline{T \times C}$, data is sampled by the $\mu P D 8251$ and μ PD8251 A on the rising edge of $\overline{R \times C}$. (1)
3	$R \times D$	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin.
16	SYNDET (μ PD8251)	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The μ PD8251 may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the μ PD8251 has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the μ PD8251 to start assembling data character on the next falling edge of $\overline{R \times C}$. The length of the SYNDET input should be at least one $\overline{R \times C}$ period, but may be removed once the μ PD8251 is in SYNC.
16	SYNDET/BD (μ PD8251A)	Sync Detect/ Break Detect	The SYNDET/BD pin is used in both Siynchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the Break Detect output will go high when an all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit.

Note: (1) Since the μ PD8251 and μ PD8251A will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. $\overline{R \times C}$ and $\overline{T \times C}$ then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.
Examples: If the Baud Rate equals 110 (Async): If the Baud Rate equals 300
$\overline{R \times C}$ or $\overline{T \times C}$ equals $110 \mathrm{~Hz}(1 \times)$
$\overline{R \times C}$ or $\overline{T \times C}$ equals $1.76 \mathrm{KHz}(16 x)$
$\overline{R x C}$ or $\overline{T x C}$ equals $300 \mathrm{~Hz}(1 x) A$ or S
$\overline{R \times C}$ or $\overline{T \times C}$ equals 4800 Hz (16x) A only
$\overline{\mathrm{RXC}}$ or $\overline{\mathrm{TXC}}$ equals $7.04 \mathrm{KHz}(64 x) \quad \overline{\mathrm{RxC}}$ or $\overline{\mathrm{T} \times \mathrm{C}}$ equals $19.2 \mathrm{KHz}(64 x) \mathrm{A}$ only

OPERATIONAL DESCRIPTION

A set of control words must be sent to the μ PD8251 and μ PD8251A to define the desired mode and communications format. The control words will specify the BAUD rate factor ($1 x, 16 x, 64 x$), character length (5 to 8), number of STOP bits (1, 1-1/2, 2) Asynchronous or Synchronous mode, SYNDET (IN or OUT), parity, etc.

After receiving the control words, the $\mu \mathrm{PD} 8251$ and $\mu \mathrm{PD} 8251 \mathrm{~A}$ are ready to communicate. $T \times R D Y$ is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the μ PD8251 and μ PD8251A may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset R×RDY.

Note: The μ PD8251 and μ PD8251A may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction ($R \times E$). A dummy read is recommended to clear faulty RxRDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The μ PD8251 and μ PD8251A cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the $\overline{\mathrm{CTS}}$ (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new control words.

USART PROGRAMMING
The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A RESET (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C / \bar{D}=1$) followed by a software reset command instruction (40 Hex) can be used to initialize the μ PD8251 and μ PD8251A.

There are two control word formats:

1. Mode Instruction
2. Command Instruction

MODE INSTRUCTION

This control word specifies the general characteristics of the interface regarding the Synchronous or Asynchronous mode, BAUD rate factor, character length, parity, and number of stop bits. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.

This control word will be interpreted as a SYNC character definition if immediately preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character(s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

The second SYNC character is skipped if MODE instruction has programmed the μ PD8251 and μ PD8251A to stngle character Internal SYNC Mode. Both SYNC characters are skipped if MODE instruction has programmed the μ PD8251 and μ PD8251A to ASYNC mode.

The μ PD8251 and μ PD8251A can operate in either Asynchronous or Synchronous communication modes. Understanding how the Mode Instruction controls the functional operation of the USART is easiest when the device is considered to be two separate components (one asynchronous and the other synchronous) which share the same support circuits and package. Although the format definition can be changed at will or "on the fly", the two modes will be explained separately for clarity.

When a data character is written into the μ PD8251 and μ PD8251A, the USART automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bit(s), as specified by the Mode Instruction. Then, depending on $\overline{\mathrm{CTS}}$ and TXEN, the character may be transmitted as a serial data stream at the $T \times D$ output. Data is shifted out by the falling edge of $\overline{T \times C}$ at $\overline{T \times C}, \overline{T \times C} / 16$ or $\overline{T \times C} / 64$, as defined by the Mode Instruction.

If no data characters have been loaded into the μ PD8251 and μ PD8251A, or if all available characters have been transmitted, the TxD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TxD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

The R×D input line is normally held "high" (marking) by the transmitting device. A falling edge at $R \times D$ signals the possible beginning of a START bit and a new character. The START bit is checked by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected again, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the $R \times D$ pin with the rising edge of $\overline{\mathrm{RxC}}$. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After a valid STOP bit, the input character is loaded into the parallel Data Bus Buffer of the μ PD8251 and μ PD8251A and the $\mathrm{R} \times$ RDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and the overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.

RECEIVER INPUT
PROCESSOR BYTE (5-8 BITS/CHAR)

ASSEMBLED SERIAL DATA OUTPUT (T×D)

TRANSMISSION FORMAT

PROCESSOR BYTE (5-8 BITS/CHAR) (3)

RECEIVE FORMAT

Notes
Generated by μ PD8251/82:51 A
Does not appear on the Data Bus.
(3) If character length is defined as 5,6 , or 7 bits, the unused bits are set to "zero."

μ PD8251/8251A

As in Asynchronous transmission, the TXD output remains "high" (marking) until the μ PD8251 and μ PD8251A receive the first character (usually a SYNC TRANSMISSION character) from the processor. After a Command Instruction has set TXEN and after Clear to Send ($\overline{\mathrm{CTS}}$) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{\mathrm{TxC}}$ and the same rate as $\overline{\mathrm{TxC}}$.

Once transmission has started, Synchronous Mode format requires that the serial data stream at $T_{x D}$ continue at the $\overline{T x C}$ rate or SYNC will be lost. If a data character is not provided by the processor before the μ PD8251 and μ PD8251A Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the μ PD8251 and μ PD8251A become empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TXEMPTY is automatically reset by the next character from the processor.

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit

SYNCHRONOUS RECEIVE

Incoming data on the RxD input is sampled on the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$, and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the μ PD8251 and μ PD8251A leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\mathrm{R} \times \mathrm{C}}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.

MODE INSTRUCTION FORMAT SYNCHRONOUS MODE

TRANSMIT/RECEIVE FORMAT SYNCHRONOUS MODE

COMMAND INSTRUCTION

 FORMATSTATUS READ FORMAT

PARITY ERROR

After the functional definition of the μ PD8251 and μ PD8251A has been specified by the Mode Instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.
After the Mode Instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" ($C / \bar{D}=1$) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the μ PD8251 and μ PD8251A to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.

It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The μ PD8251 and μ PD8251A have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the C/ $\overline{\mathrm{D}}$ input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the μ PD8251 and μ PD8251A to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of 16 clock periods in the μ PD8251 and 28 clock periods in the μ PD8251A.

OVERRUN ERROR
If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.

If a valid STOP bit is not detected at the end of a character, the FE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.

Note: (1) ASYNC mode on! y .

ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD

ASYNCHRONOUS INTERFACE TO TELEPHONE LINES

SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE

SYNCHRONOUS INTERFACE TO TELEPHONE LINES

Plastic

ITEM	MILLIMETERS	INCHES
A	38.0 MAX.	1496 MAX.
B	249	0.098
C	2.54	0.10
D	$05: 0.1$	$0.02 \div 0.004$
E	33.02	13
F	1.5	0059
G	2.54 MIN	0.10 MIN.
H	05 MIN.	0.02 MIN.
I	5.22 MAX.	0.205 MAX.
J	5.72 MAX.	0225 MAX.
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$

Ceramic

ITEM	MILLIMETERS	INCHES
A	51.5 MAX.	2.03 MAX.
B	1.62 MAX.	0.06 MAX.
C	2.54 ± 0.1	0.1 ± 0.004
D	0.5 ± 0.1	0.02 ± 0.004
E	48.26 ± 0.1	1.9 ± 0.004
F	1.02 MIN.	0.04 MIN.
G	3.2 MIN.	0.13 MIN.
H	1.0 MIN.	0.04 MIN.
I	3.5 MAX.	0.14 MAX.
J	4.5 MAX.	0.18 MAX.
K	15.24 TYP.	0.6 TYP.
L	14.93 TYP.	0.59 TYP.
M	0.25 ± 0.05	0.01 ± 0.0019

This appendix contains electrical schematics for the following ADVANTAGE PC boards.

1. Main Board
2. SIO Board
3. PIO Board
4. Keyboard
5. Disk Drive
6. Video

The schematic for the Keyboard PC Board is reprinted herein with the permission from the Key Tronics Corporation.

The schematics for the Disk Drive PC Boards are reprinted herein with permission from the Tandon Corporation.

The schematics for the Video PC Board is reprinted herein with permission from the Elston Electronics Corporation.


```
8035, 1-1, 1-2, 1-5, 4-17, 4-18, 4-19, 4-20
8251, 3-42, 3-55, 4-42, see also USART
        technical data, H-1
Access Time, disk, l-6
Acquire Mode, disk, 3-1l
Acquire Mode, disk, 4-1l
ADVANTAGE Cabinet, opening and closing of, 6-28
All Caps Flag, 3-13, 3-16, 3-20, 4-13, 4-20
All Caps Key, 3-13, 4-13
ASCII Code, 4-20
Asynchronous Mode, 3-45
Auto-Repeat Feature, 3-15, 3-21, 4-19
Auto-Repeat Flag, 3-16
Auxiliary Processor, 1-5, 4-3, 4-10, 4-1l, 4-2l
    theory of operation, 4-17
Auxiliary PROM, 4-17
Backspace, 3-27
Baud Rate Register, 3-41, 3-42, 3-44, 3-51, 3-55, 4-44
Baud Rate, programming for asynchronous, 3-51
synchronous, 3-55
Beep, 3-64, 3-65, 4-3, 4-8, 4-22, 4-40, see Speaker BFH Character, 3-31
Board ID, 3-38, 4-42
PIO, 3-60
SIO, 3-41
Boot PROM, 1-5, 3-1, 3-24, 3-26, 3-65, 3-66, 3-67, 4-2, 4-17
Bootstrap Firmware, 3-65
Bootstrap Program, 3-68
Bootstrap Routine, 4-2, 4-17
Bootstrap, use of, 3-65
Bootstrapping, 2-6, 2-8
Brightness Control, 2-4
Buffer Full Signal, 3-50
```


INDEX (continued)

Carriage Return, 3-27
Character Codes, A-1
Central Processor, 4-2, 4-3
Character Overrun keyboard, 3-15, 3-21, 4-19
Character Overrun, Flag, 3-16
Character Templates, 3-26
Checksum, serial port, 3-69
Cleaning Instructions, general, 5-1
Clock Generator, Central Processor, 4-8
Clock Header, SIO, 3-46, 3-53, 3-54, 4-46
Codes, character A-1
Command Acknowledge Bit, 3-13, 3-15, 4-19, 4-20
Command Code, 4-20
Configuration Header
PIO, 3-59
SIO, 3-46, 3-47, 3-48, 3-53, 3-54
Control Byte
SIO, 4-44
Controls, rear panel, 2-4
CPU, 1-5
CRC, 3-66, 3-67
CRT, 1-1, 3-45
removal and installation of, 6-40
Current Loop, 1-7, 3-47, 3-48, 3-49, 4-42
Cursor, 2-1, 2-2, 3-26
Cursor Lock Key, 3-16, 3-20, 4-12, 4-20
Cursor Lock Flag, 3-13, 4-12
Cursor Template, 3-29
Data Separation Circuitry, 4-21
Dealer Diagnostics Diskette, 6-1 see also Diagnostic Diskette
Default Mode, diagnostic programs, 6-1
Diagnosing Hardware Failures, 6-17
Diagnostic Diskette, 2-6 see also Dealer Diagnostic Diskette
Diagnostic Programs, 5-2, 6-1
disk, 6-2
Display RAM, 6-6
keyboard, 6-8
Main RAM, 6-3
SIO Board, 6-7
Video Monitor, 6-17
Disk Drives, l-1
Disk Controller, 4-2, 4-5
theory of operation, 4-21

Disk Drive, 2-4, 2-5, 2-6, 3-14, 3-32, 4-21, 4-23 removal and installation of, 6-37
Disk Drive Motors, 3-13, 3-33, 4-13
Disk Drives, 1-2, 1-6
programming the, 3-30
Disk Read, programming for, 3-35
Disk Sector Number, 3-12
Disk Subsystem Test, 6-2
Disk Write, programming for, 3-36
Diskettes, l-6
replacement of, 5-1
Display Flag, 3-14, 3-25, 3-26, 4-5, 4-6, 4-7, 4-8
Display Interrupt, 3-11, 4-11
Display Monitor Test, 6-17
Display RAM, 1-1, 1-2, 1-5, 3-1, 3-5, 3-11, 3-22, 3-25,
3-26, 3-66, 4-5, 4-11
theory of operation, 4-24
Display RAM test, 6-6
DLE Character, 3-69
Drive Control Register, 3-30, 3-31, 3-33, 4-22, 4-23 Format Of, 3-32

Executable Memory Test, 6-3
FBH character, 3-67
FFH Character, 3-21
Fuse, main, 2-4
Graphics Resolution, 1-5
Home Cursor, 3-27
I/O Address Decoder, 4-8
I/O Addresses B-l
I/O Board Interface, 4-3, 4-11
theory of operation, 4-35
I/O Board Slots, 1-2
I/O Boards, 2-4, 3-8, 3-11, 3-14, 3-62, 4-6
programming the, 3-38
I/O Commands, 3-11, 3-12, 4-11
I/O Control Register, 3-9, 3-12, 4-3, 4-8, 4-10, 4-11
format of, 3-11
I/O Interface Registers, 3-9, 3-30
I/O Interrupt, 3-14, 4-7
I/O Port Addresses B-1
I/O Reset, 3-11, 3-16, 3-41, 3-59, 4-11

```
I/O Select PROM, 4-8, 4-9
I/O Status Register 1, 4-3, 4-6, 4-7, 4-8
    format of, 3-14
I/O Status Register 2, 4-8, 4-18, 4-19.
    format of, 3-15
Installation procedures for assemblies, 6-27
Integrity Test, 6-1
Interrupt, 3-7, 3-12, 3-16, 3-17, 3-26, 3-40, 3-42
\(3-43,3-45,3-60,3-61,3-62,3-65,4-6,4-7,4-11\),
4-12, 4-15, 4-18, 4-36
    PIO, 3-59, 3-60, 3-61, 3-62, 3-63, 4-48, 4-50
    SIO, 3-41, 3-42, 3-43, 3-44, 3-45, 4-43, 4-44,
    4-45, 4-46
Interrupt Mode, 3-5
Interrupt Service Routine, 3-5
Interrupts
    sources of, 3-7
IPL, see Bootstrapping
Jumper W4, 3-8, 4-6, 4-15
Jumpers, PC board C-1
Keyboard, 1-1, 1-2, 1-5, 3-8, 3-12, 3-17, 3-18, 4-3
4-6, 4-12, 4-20
    removal and installation of, 6-32
    theory of operation, 4-17
    use Of, 2-l
Keyboard Buffer, 3-15, 3-21, 4-19, 4-20
Keyboard Data, 3-18
Keyboard Data Flag, 3-12, 3-15, 3-16, 3-17, 4-12, 4-19
Keyboard Interrupt, 3-14, 4-7
Keyboard Maskable Interrupt Flag, 3-12, 3-16, 4-12
Keyboard Non-maskable Interrupt Flag, 3-13, 4-13
Keyboard Reset Feature, 2-5, 3-8, 3-13, 4-6
Keyboard Test, 6-8
Keyboard, programming the, 3-16
Latency, disk, 1-6
Line Feed, 3-27
Main PC Board, 3-8
    removal and installation of, 6-33, 6-34
    theory of operation, 4-1
Main RAM, 1-2, 1-5, 3-1, 3-6, 3-8, 3-66, 4-6
    Theory Of Operation, 4-14
Main RAM Parity, 4-15
Main RAM test, 6-3
```

Maintenance, corrective, 5-1 Maintenance, preventive, 6-1
Maskable Interrupt, 4-6
Maskable Interrupts, 3-8
Memory Mapping, 3-1
Memory Mapping Registers, 3-2, 4-8
theory of operation, 4-5
Memory Parity Error, 3-8
Memory Parity, programming for, 3-6
Messages, error D-1
Mini-Monitor, 4-17, 6-1, 6-25
Monitor Routine, 4-2
Non-Maskable Interrupt, 3-14, 4-6, 4-7, 4-8
Non-Maskable Interrupts, 3-8
Numeric Keypad, 1-2
Numeric Pad, 1-5, 2-2
Parity, 4-2, 4-14
Parity Error, 3-8, 4-6, 4-15
programming for, 3-6
Parity Error Flag, 3-6, 4-15
Parts List E-l
Phase Locked Loop, 4-31, 4-42
PIO Board, l-2
theory of operation, 4-46 programming the, 3-59
Power Consumption, ADVANTAGE, 1-4
Power Reset, 3-8, 3-65, 4-42
Power Supply Components, removal and installation6-38
Precompensation, disk write, 3-32, 4-23
Preventive Maintenance, 5-1
Printer, 3-45, 3-50, 3-59
Programming Information, 3-1
Refresh Rate video, 1-5
Removal and Installation Procedures
CRT, 6-40
disk drive, 6-37
keyboard, 6-32
Main PC Board, 6-33, 6-34
power supply components, 6-38
Video PC Board, 6-40
Removal procedures for assemblies, 6-27
Reset Pushbutton, 2-4, 2-5, 3-8, 3-17, 4-6
RS-232, 1-7, 3-45, 3-47, 4-42

Schematics, I-l
Screen Blanking, 3-26
Screen Format, 3-22
Screen Mapping, 3-22
Sector Mark, 3-14, 3-31, 3-35, 4-7
Sector Number, 4-19
Sector Pulse, 4-18, 4-19
Sector Selection, 3-34
Seek, disk head, 3-33
Serial Port, 4-2
Single Block Mode, 6-1
SIO Board, 1-2
programming the, 3-41
theory of operation, 4-42
SIO Board Test, 6-7
Speaker, 1-2, 3-11, 4-3, 4-11, 4-22
theory of operation, 4-40
programming the, 3-64
Specifications of the ADVANTAGE, 1-4
Stack Pointer, Z80, 3-65
Start Scan Register, 3-24, 3-25, 4-8, 4-26, 4-31
Status Byte
PIO, 3-61, 3-62, 3-63, 4-48, 4-49
SIO, 3-44, 4-45
Status Register 1, 3-9
Status Register 2, 3-9
Step Pulse, disk head, 3-32, 4-23
Sync Byte
Disk, 3-31, 3-67
Serial Port, 3-68
Synchronous Mode, 3-53
System Diskette, 2-6
Teletype, 3-45, 3-47
Theory of operation, ADVANTAGE, 4-1
Tone, 3-11, 3-65, 4-40, see also Speaker
Tools required for service, 6-27
Track 0, 3-14, 4-7
Troubleshooting,
system hardware, 6-17, 6-25
USART, 3-41, 3-42, 3-44, 3-45, 3-51, 3-55, 3-68, 4-42, see also 8251

INDEX

```
Video
    blanking, 3-1l, 3-26, 4-11, 4-27
    programming the, 3-22
    scan, 3-26
    scrolling, 3-22
Video Characters, standard, 3-24
Video Driver, 3-26, 4-2, 4-17
Video Generator, 4-8
    theory of operation, 4-24
Video Memory Test, 6-6
Video Monitor, 1-2, 4-2, 4-24, 4-27, 4-31
Video PC Board,
    removal and installation of, 6-40
Video Test, 6-17
Voltage Regulators, 4-3
    theory of operation, 4-40
VTM50, 4-31
VTM60, 4-31
Write Protect, disk, 3-14, 4-7
Z 80, 1-1, 1-2, 1-5, 3-1, 3-7, 3-8, 3-65, 4-2, 4-3, 4-6
    technical data, G-1
```

Please use this mailer to send your comments on this manual and the program it describes. We will carefully consider your suggestions for incorporation in future versions. If you require more space for your comments, please attach a separate sheet.

NAME OF PROGRAM \qquad VERSION NO.

MANUAL PART NO. \qquad MANUAL SERIAL NO. \qquad
What features of the program do you like?
\qquad
\qquad

What features of the program don't you like or what features do you feel are missing?
\qquad
\qquad

Are there specific points in the manual that need clarification or correction? Give details with page and paragraph references.
\qquad
\qquad

Did you find the manual easy to use and understand? Do you think certain aspects should be organized differently? Was any necessary material omitted or was any material unnecessary?
\qquad
\qquad

Did you find sufficient information provided in the manual for proper system set up and installation?
\qquad
\qquad
\qquad
Additional comments: \qquad
\qquad
\qquad
\qquad
NAME DATE \qquad
COMPANY OR ORGANIZATION \qquad
tYpe of business \qquad
STREET \qquad
CITY, STATE, ZIP
If you want a reply, check here \square

BUSINESS REPLY MAIL

North Star Computers, Inc.
14440 Catalina Street
San Leandro, CA 94577 USA

NorthStar

North Star Computers, Inc.
14440 Catalina St., San Leandro, CA 94577 USA
(415) 357-850O TWX/Telex (91O) 366-7001

[^0]: NOTES. $\begin{aligned} & \text { r. } \mathrm{r} \text { ' means any of the registers A, B, C, D, E. H, } \mathrm{L} \\ & \text { IFF }\end{aligned}$
 IFF the content of the interrupt enable flip-flop. (IFF) is
 copied into the P/V flag
 mnemonic tatles, see Symbolic Notation section
 following tables

