
I File No. S360-24 OS
Order No. GC28-6399-2

Systems Reference Library

IBM OS Pull American National Standard COBOL

Compiler and Library, Version 2

Programmer's Guide

Program Numbers 3605-CB-545
3605-LM-S46

This publication describes how to compile an
ArnericanNational Standard COBOL X3.23-1968
program using Version 2 of the OS Full American
National Standard COBOL compiler. It also
discusses how to link-edit or load and execute the
program under control of the operating System.
There is a description of the output of each of
these steps, i.e., compile, link-edit, load, and
execute. In addition, there is an explanation of
the features of the compiler and available options
of the operating system. Note that American
National Standard COBOL was formerly known as USA
Standard COBOL.

.,

Third Edition (July 1972)

This is a major revision of, and makes obsolete" GC28-6399-1 and
Technical Newsletters GN28-0422, GN28-0437, and GN28-0473.

This edition corresponds to Release 21.6 of the IBM Operating System.

changes are continually made to the specifications herein: any such
changes will be reported in subsequent revisions or Technical
Newsletters. Before using this publication in connection with the
operation of IBM systems, refer to the latest SRL Newsletter, Order
No. GN20-0360, for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM corporation, Programming Publications, 1271 Avenue of the Americas,
New York, New York 10020. comments become the property of IBM.

@Copyright International Business Machines corporation 1969, 1971, 1972

The purpose of this publication is to
enable programmers to compile, linkage
edit, and execute, or compile and load
American National Standard COBOL compiler
version 2 programs under control of the IBM
Systern/360 Operating System. The COBOL
language is described in the publication
IBM OS Full American National Standard
COBOL, Order No. GC28-6396, which is a
corequisite to this publication.

Programmers who are familiar with the
operating system and wish to know how to
run COBOL programs should read "Job Control
Statements" and "Data Set Requirements"
under "Job Control Procedures," and
"output." These chapters provide
information about the preparation of COBOL
proqrams for processing by the operating
system.

Programmers who are unfamiliar with the
concepts of the Operating System should
read "Introduction," "Job Control
Procedures," "Checklist for Job Control
Procedures," and "Using Cataloged
Procedures" in addition to the sections
listed above.

The chapters "Program Checkout" and
"Programming Techniques" are of special
interest, since they contain information
about debugging and efficient programming.
Other chapters discuss optional features of
the language and the operating system.
Some chapters include introductory
information about features of the operating
system that are described in detail in
other publications.

The machine configuration required for
system operations is described in the
chapter "Machine Considerations."

PREFACE

Wider and more detailed discussions of
the operating system are given in the
following publications:

IBM System/360 Operating System:
Concepts and Facilities, Order
No. GC28-6535

IBM System/360 Operating System: Job
Control Language Charts, Order
No. GC28-6632

IBM Systern/360 Operating System: System
Programmer's Guide, Order No. GC28-6550

IBM Systern/360 Operating System:
Supervisor Services, Order No. GC28-6646

IBM Sys~~~360_0perat!~g~~t~m~_~at~
~an~~~ent ~ery!ce~, Order No. GC26-3746

IBM Systern/360 Operating system:
Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

IBM Systern/360 Operating System:
Sort/Merge, Order No. GC28-6543

!BM_2ystern/160_Q~~~ti~~y~tem:_
Util~ties, Order No. GC28-6586

!BM SY2tem/360 Operating System: System
Generation, Order No. GC28-6554

IBM System/360 operating System:
programmer's Guide to Debugging, Order
No. GC28-6670

IBM System/360 Operating System:
Storage Estimates, Order No. GC28-6551

INTRODUCTION • • • • • • • • • • • • 13
13 Executing A COBOL Program

Compilation • • • 13
Linkage Editing •••• • • • 14
Loading • • • • • • • •
Execution • • • •

operating System Environments
Multiprogramming With A Fixed Number
Of Tasks • • • • • • • • • • • •
Multiprogramming With a Variable
Number Of Tasks

JOB CONTROL PROCEDURES
Control Statements • •

Job Management • • •
Preparing Control Statements

Name Field • • • •
Operation Field
Operand Field
Comments Field • •

14
14

• 14

• 14

• 14

15
• 17

17
17
18
18
18

Conventions for Character Delimiters •
Rules for Continuing Control

19
19

Statements • • • • • • • • • • • • • • 19
Notation for Describing Job Control
Statements • • • • • • • • • • • •

JOB Statement • • • • • • • • • •
Identifying the Job (jobname)

JOB Parameters • • • • • • •
Supplying Job Accounting
Information • • • • • •
Identifying the Programmer
Displaying All Control Statements,
Allocation, and Termination
Messages (MSGLEVEL) •••••
Specifying Conditions for Job
Termination (COND) • • • •
Requesting Restart for a Job (RD)
Resubmitting a Job for Restart
(RESTART) •••••••••••

Priority Scheduling Job Parameters
Setting Job Time Limits (TIME) •
Assigning a Job Class (CLASS)
Assigning Job Priority (PRTY)
Requesting a Message Class
(MSGCLASS) • • • • • • • • • •
Specifying Main Storage
Requirements for a Job (REGION)
Holding a Job for Later Execution
Specifying Additional Storage
(ROLL) • • • • • • • • • • • • •

20
21
21
22

22
22

22

23
• 23

24
25
25
25
25

26

26
• 27

27
EXEC statement • • • • • • • • • •• 27

Identifying the Step (stepname) 28
Positional Parameters • • • • • • • • 28

Identifying the Program (PGM) or
Procedure (PROC) • • • • • • • • • • 28

31

31

Keyword Parameters • • • • • • • •
Specifying Job Step Accounting
Information (ACCT) • • • •
Specifying Conditions for
Bypassing or Executing the Job
Step (COND) ••••••• • • • 31

CONTENTS.

Passing Information to the
Processing Program (PARM) 33
Options for the Compiler • 34
Options for the Linkage Editor • 36
Options for the Loader • • • • . 36
Requesting Restart for a Job Step
(RD) •••••••••••••••• 38
Priority Scheduling EXEC Parameters
Establishing a Dispatching
Priority (DPRTY) • • • • • • • • • .
Setting Job Step Time Limits (TIME)
Specifying Main Storage
Requirements for a Job Step

39

39
39

(REGION) • • • • • • • • • • • • • .. 40
Specifying Additional Main Storage
for a Job step (ROLL) •••••

DD Statement • • • • • • • • • • • •
Additional DD Statement Facilities •

JOBLIB And STEPLIB DD Statements •
SYSABEND And SYSUDUMP DO Statements

PROC Statement • •

41
41
55
55

• 5~

56
PEND Statement • • • • • • • • . 56
Command Statement
Delimiter Statement • • • •
Null Statement • • • •
Comment Statement
Data Set Requirements

Compiler • • • • • • •
SYSUT1, SYSUT2, SYSUT3. SYSUT4 •
SYSIN
SYSPRINT •
SYSPUNCH ••

56
56
56
56
56
56
57
57
57
57

SYSLIN •
SYSLIB •

• • • . 58

Linkage Editor •
SYSLIN •
SYSPRINT ••
SYSLMOD
SYSUTl •
SYSLIB •
User-Specified Data Sets •

LOADER • • • • • • • • • •
SYSLIN • • • • • • • • • .
SYSLIB •
SYSLOUT

Execution Time Data Sets •
DISPLAY Statement
ACCEPT Statement • • • •
EXHIBIT or TRACE Statement •
Abnormal Termination Dump

58
59
59
60
60
61
61
61
61
61
61
62
62
62
63
63
63

USER FILE PROCESSING • • • • • • 64
User-Defined Files • • • • • • • 64

File Names and Data Set Names 64
Specifying Information About a File • 65

File Processing Techniques •• • • • • • 65
Data Set Organization • • • • • • • • 65
Accessing a Standard Sequential File. 66
Direct File Processing • • • • • • • • 71

Dummy and Capacity Records • • • • . 74
Sequential Creation of Direct Data
Set • • • • • • • • • • • • • • • • 74

Random Creation of a Direct Data
Set .. • • • • • • • •
sequential Reading of Direct Data
Sets • • • • • • • • • • • • •
Random Reading, Updating, and
Adding to Direct Data Sets
Multivolume Data Sets
File Organization Field of the

• 77

• 78

• 78
79

• 80 System-Name • • • • •
Randomizing Techniques • • • • • 83

Relative File Processing •
Sequential Creation
Sequential Reading • • •
Random Access •• • • • •

Indexed File Processing • .. • •
Indexes •••••••
Indexed File Areas • •
Creating Indexed Files •

91
92

.. 93
93

• • .100
.101
.103
.104

Reading or Updating Indexed Files
sequentially •••••••••••• 108
Accessing an Indexed File Randomly .110

USING THE DD STATEMENT. • • • • • .112
Creating a Data Set • • • • • • .112

Creating Unit Record Data Sets .113
Creating Data Sets on Magnetic Tape 113
Creating Sequential (BSAM or QSAM)
Data Sets on Mass Storage Devices .114
Creating Direct (BDAM) Data Sets •• 115
Creating Indexed (BISAM and QISAM)
Data Sets ••••••••••••• 115
Creating Data Sets in the Output
Stream • • • • • • • • .. • • • .115
Examples of DD Statements Used To
Create Data Sets • • • • • • • • • .116

Retrieving Previously Created Data
Sets ••••••••••••••••• 119

Retrieving Cataloged Data Sets .119
Retrieving Noncataloged (KEEP)
Data Sets • • • • • • • • • •
Retrieving Passed Data Sets
Extending Data Sets With

.120

.120

Additional Output ••••••••• 120
Retrieving Data Through an Input
Stream. • • • • • • • •• • •• 120
Examples of DD Statements Used To
Retrieve Data Sets •••••••• • 122

DD Statements that Specify Unit Record
Devices • • • • • •• ••• • .123
Cataloging a Data Set ••••••• 123
Generation Data Groups •• 123
Naming Data Sets. • • • ••••• 124
Additional File Processing Information .124

Data Control Block. • • • • • • .124
/ Overriding DCB Fields ••••••• 125

Identifying DCB Information .125
Error Processing for COBOL Files ••• 125

System Error Recovery .125
INVALID KEY Option ••••••••• 126
USE AFTER ERROR Option. • •• 126

Volume Labeling • • • • • • • • .129
Standard Label Format ••• 130
STANDARD LABEL PROCESSING •• 130
STANDARD USER LABELS. • • •• 130

User Label Totaling ••• 131
NONSTANDARD LABEL FORMAT. • • •• 131
NONSTANDARD LABEL PROCESSING. .131
User Label Procedure. • • • .132

RECORD FORJ.VlATS • • • • • • • • • • M 134
Fixed-Length (Format F) Records •• 134
Unspecified (Format U) Records ••••• 135
Variable Length (Format V) Records ••• 135

APPLY WRITE-ONLY Clause •• 138
Spanned (Format S) Records. • • • .138

S-Mode Capabilities • • • • • • .139
Sequential S-Mode Files (QSAM) for
Tape or Mass Storage Devices. • .140

Source Language Considerations ••• 140
Processing Sequential S-Mode Files
(QSAM) • • • • • • • • • • • • • • • 141

Directly Organized S-Ivlode Files
(BDAM and BSAM) ••••••••••. 142

Source Language Considerations . 142
Processing Directly Organized
S-Mode Files (BDAM and BSAM) • • • . 143

OCCURS Clause with the DEPENDING ON
Option • • • • • • • • • • • •• • • 144

OUTPUT •
Compiler output

Object Module
Linkage Editor output

Comments on the Module Map and
Cross Reference List • •
Linkage Editor Messages • • • •

Loader Output • • • • • • •
COBOL Load Module Execution output •

Requests for output
Operator Messages

System Output • • • •

PROGRA.{\-l CHECKOUT
Debugging Language • • • • •

Following the Flow of Control
Displaying Data Values During
Execution • • • • • • • • • •
Testing a Program Selectively
Testing Changes and Additions to

• .147
• .147
• .153

.153

• .157
• .157

• 157
• .157
• • 160

.160
• • 160

• .161
• • 161
• .161

• . 162
• . 163

Programs ••••••••••••••. 164
Dumps • • • • • • • • • • • • • • • • . 164

Errors That Can Cause A Dump. • .165
Input/Output Errors • • •• • .165
Errors Caused by Invalid Data ••• 165
Other Errors • • • • • • • . 166

Completion Codes • • • • • • .167
Finding Location of Program
Interruption in COBOL Source
Program Using the Condensed Listing 169

Using the Abnormal Termination Dump .169
Finding Data Records in an Abnormal
Termination Dump •••••••••• 175
Locating Data Areas for Spanned
Records •• • • • • • • • •

Incomplete Abnormal Termination
Scratching Data Sets •

• • 182
• .183
.. .184

PROGRAMMING TECHNIQUES. • .185
General Considerations. • .185

Spacing the Source Program Listing .185
Environment Division. • .185

APPLY WRITE-ONLY Clause • • 185
QSAM Spanned Records. • • .185
APPLY RECORD-OVERFLOW Clause •• 185
APPLY CORE-INDEX Clause •• 185
BDAM-W File Organization.. • .185

Data Division • • • • • • • •• 186
Overall Considerations. • .186

Prefixes. • • • • • .186
Level Numbers • • • • • .186

File Section. • • • • • • • • • .186
RECORD CONTAINS Clause ••••••• 186

Working-Storage section ••••••• 187
Separate Modules. • • • •• 187
Locating the Working-Storage
Section in Dumps ••• 187

Data Description. • • .187
REDEFINES Clause. • •• 187
PICTURE Clause. • •• 188
USAGE Clause. • • • .190
SYNCHRONIZED Clause ••• 191
Special considerations for DISPLAY
and COMPUTATIONAL Fields. • •• 191
Data Formats in the Computer ••••. 192

Procedure Division ••••••••••• 194
Modularizing The Procedure Division .194

Main-Line Routine ••• 194
Processing Subroutines. .194
Input/Output Subroutines. • •• 194

Intermediate Results. • .194
Intermediate Results and Binary
Data Items. • • •• • • • 195
Intermediate Results and COBOL
Library Subroutines .195
Intermediate Results Greater than
30 Digits • • • • • .195
Intermediate Results and
Floating-Point Data Items .195
Intermediate Results and the ON
SIZE ERROR Option ••• 195

Verbs • • • • • • • • .195
ACCEPT Statement. • •••••• 195
CLOSE Statement ••• 195
COMPUTE Statement ••••• 196
IF Statement • • • • • • .196
MOVE Statement. • •••• 196
NOTE Statement • • • • • • • • 196
OPEN Statement •• 196
PERFORM Verb. • • •• 196
READ INTO and WRITE FROM Options •• 197
TRANSFORM Statement •• 197

Using The Report Writer Feature •• 197
REPORT Clause in FD •• 197
Summing Technique •• 197
Use of SUM • • • • • • • .198
SUM Routines •••••••••••• 198
Output Line Overlay •• 199
Page Breaks ••••• 199
WITH CODE Clause. • • • .200
Control Footings and Page Format •• 201
Floating First Detail Rule ••• 201
Report Writer Routines ••••••• 202

Table Handling Considerations •• 202
Subscripts. • • • • .202
Index-Names .202
Index Data Items. .202
OCCURS Clause .202
DEPENDING ON Option •••••••• 202
SET Statement ••• 203
SEARCH Statement. • •• 205
Building Tables .207

CALLING AND CALLED PROGRAMS
Specifying Linkage • • • • •

•• 208
•• 208

Linkage in a Calling COBOL Program •• 208
Linkage in a Called COBOL Program • • 208

correspondence of Identifiers in
Calling and Called Programs

Linkage in a Calling or Called
• • 209

Assembler-Language Program •••••• 209
Conventions Used in a Calling
Assembler-Language Program •
Conventions Used in a Called
Assembler- Language Program

File-Name and Procedure-Name

• • 209

• • 210

• . 211 Arguments • • • . • • •
Communication with Other Languages •• 211

Linkage Editing Programs •
Specifying Primary Input
Specifying Additional Input

INCLUDE Statement • • • •
LIBRARY Statement • • • •

Linkag~ Editor Processing • • • •
Example of Linkage Editor
Processing • • • • • • • • •

Overlay Structures • • • • • •
Considerations for Overlay •
Linkage Editing with Preplanned
Overlay • • • • • • • • • •
Dynamic Overlay Technique

Loading Programs • • • • • • • •
Specifying Primary Input • • •
Specifying Additional Input

• • 212
• • 213
• • 217
• .217
• .217
• . 217

• . 218
• . 218
• .218

• . 218
• • 219
• . 220
• . 220
• .220

LIBRARIES • • • • • • • • • •• • . 221
Kinds of Libraries • • • • • • • . 221

Libraries Provided by the system ••• 221
Link Library. • • • .221
Procedure Library .222
Sort Library. • • • .222
COBOL Subroutine Library • 222

Libraries Created by the User •• 222
Automatic Call Library • • •• • • 223
COBOL Copy Library • • • • • • • • • • 223

Entering Source Statements. • .223
Updating Source Statements. .224
Retrieving Source Statements •••• 224
COPY Statement. • ••• 224
BASIS Card • • • • •• • .22S

Job Library • • • • •• • . 226
Additional Input to Linkage Editor. 227

Creating and Changing Libraries •• 227

USING THE CATALOGED PROCEDURES ••••• 228
Calling Cataloged Procedures •• • • 228

Data Sets Produced by cataloged
Procedures • • • • • • • • •

Types of Cataloged Procedures
Programmer-Written Cataloged
Procedures • • • • • • • • • •

Testing Programmer-Written

• • 228
• • 229

• • 229

Procedures • • • • • • • • . 229
Adding Procedures to the Procedure
Library • • • • • • • • • • • • • • 229

IBM-Supplied Cataloged Procedures •• 230
Procedure Naming Conventions • • • • 231
step Names in Procedures.. • .231
Unit Names in Procedures.. • .231
Data Set Names in Procedures •• 231
COBUC Procedure •• 231
COBUCL Procedure • • 231
COBULG Procedure. • .232

COBUCLG Procedure •••••• 233
COBUCG Procedure. • ••••• 233

Modifying Existing Cataloged Procedures 234
overriding and Adding to Cataloged
Procedures. • • • • • • ••• 234

Overriding and Adding to EXEC
Statements. • • • • • • • •• 234

Examples of Overriding and Adding
to EXEC Statements ••••••••• 234

Testing ~ Procedure as an In-Stream
Procedure • • • • • • ••• 235
overriding and Adding to DD
Statements • • • • • • •

Examples of overriding and. Adding
to DD Statements • • •

Using The DDNAME Parameter • • • •
Examples of Using the DDNAME

• • 236

.236

.238

Parameter • • • •• • •••••• 238

USING THE SORT FEATURE • • • • .241
Sort DD Statements • • • • • • • • 241

Sort Input DD Statements. • .241
Sort Output DD Statements •• 241
Sort Work DD Statements •• 241

SORTWKnn Data Set Considerations •• 241
Input DD Statement. • • • .242
Output DD Statment • • • • •• 242
SORTWKnn DD Statements ••••••• 242

Additional DD Statements. • •• 242
Sharing Devices Between Tape Data Sets .243
Using More Than One SORT Statement In
A Job ••••••••••••••••• 243
SORT Program Example. • • • • • •• 243
cataloging SORT DD Statements ••••• 243
SORT Diagnostic Messages. • • • • .244
Linkage with the SORT/MERGE Program •• 244

Completion Codes. • • • • • • .244
Locating Sort Record Fields •• 244
Locating Last Record Released To Sort
By An Input Procedure ••••••••• 245
sort/Merge Checkpoint/Restart ••••• 245
Efficient Program Use ••••••••• 245

Data Set Size • • • • • • • • .245
Main Storage Requirements •••••• 245

Defining Variable-Length Records •• 246
sorting Variable-Length Records •• 246

USE OF SEGMENTATION FEATURE •••• 248
Using the PERFORM Statement in a
Segmented Program •••• 249
Operation • • • • • • • • • • •• 249
Compiler Output • • • •• • ••• 2S0
Job Control Considerations. • •• 250

USING THE CHECKPOINT/RESTART FEATURE •• 256
Taking A Checkpoint •• 256

Checkpoint Methods ••••••••• 256
DD Statement Formats. • • .256
Designing a Checkpoint. • .258
Messages Generated During Checkpoint .258

Restarting A Program. • .258
RD Parameter • • • • • • • • • • 258
Automatic Restart •••• 259
Deferred Restart. • •• 259

CHECKPOINT/RESTART DATA SETS ••••• 260

MACHINE CONSIDERATIONS • • • • ••• 262

Minimum Machine Requirements for the
COBOL COMPILER • • • • • • • • • • • • 262
Multiprogramming with a Variable
Number of Tasks (MVT) •••• • . 262

REGION Parameter. • • • • • • .262
Intermediate Data Sets Under MV'I' • • 263

Execution Time Considerations •• 264
Sort Feature Considerations •• 264

APPENDIX A: SAMPLE PROGRAM OUTPUT .265

APPENDIX B: COBOL LIBRARY SUBROUTINES
COBOL Library Conversion Subroutines •
COBOL Library Arithmetic Subroutines.
COBOL Library Input/Output Subroutines

.277
• 277
.277
.277

DISPLAY, TRACE, and EXHIBIT
Subroutine (ILBODSPO)
ACCEPT Subroutine (ILBOACPO)
BSAM Subroutine (ILBOSAMO) •
BSAM Subroutine (ILBOS~~O)
Error Intercept Subroutine
CILBOERRO) •••••••••
Printer Overflow Subroutine
(ILBOPTVO) •••• ~ • • • ..
Printer Spacing Subroutine

• .277
• • 277
• • 279
• • 279

• . 280

• .280

(ILBOSPAO) • • • • • • • •. • .280
Sort Feature Subroutine (ILBOSRTO) ••• 280
Cobol Library Subroutines ••••••• 280

COMPARE Subroutine (ILBOVCOOJ ••• 280
MOVE Subroutine (ILBOVMOO and
ILBOVM01) ••••••••••••• 280
TRANSFORM Subroutine (ILBOVTRO) •• 280
Class Test Subroutine (ILBOCLSO) •• 280
Segmentation Subroutine (ILBOSGMO) .280
SEARCH Subroutine (ILBOSCHO) •••. 280
STOP RUN Subroutine (ILBOSTPO) ••• 281
Date Subroutine (ILBODTEO) .•••• 281
Compare Figurative Constant
Greater Than One Character
Subroutine (ILBOIVLO, •••. 281
MOVE Data-name, Literal, or
Figurative Constant Subroutine
(ILBOANEO) • • • • • • • • • • • • • 281
MOVE Figurative Constant of More
Than One Character Subroutine
(ILBOANFO) • • • • .. • • • . • • .. • 281
Checkpoint Subroutine (ILBOCKPO) •• 281

APPENDIX C: FIELDS OF THE DATA CONTROL
BLOCK • • • • • • • • • • • • • .. 283

APPENDIX D: COMPILER OPTIMIZATION .289
Block Size for Compiler Data Sets .289
How Buffer Space Is Allocated to
Buffers 289

APPENDIX E: INVOCATION OF THE COBOL
COMPILER AND COBOL COMPILED PROGRAMS •• 291

Invoking the COBOL Compiler .291
Invoking COBOL compiled Programs ••• 292

APPENDIX F: SOURCE PROGRAM SIZE
CONSIDERATIONS • • • • • •

Compiler capacity
Minimum Configuration SOURCE
PROGRAM Size • • • • • • • •

Effective Storage Considerations
Linkage Editor Capacity

• • 293
• • •. 293

• . 293
• .293

.294

APPENDIX G: INPUT/OUTPUT ERROR
CONDITIONS • • • • • • • • • • • • 297

Standard Sequential, Direct, and
Relative File Processing Technique
(Sequential Access) •••••••• 297
Direct and Relative File Processing
Technique (Random Access) ••••• 297
Indexed File Processing Technique
<Sequential Access) •••••••• 297
Indexed File Processing Technique
(Random Access) •••••••• 298

APPENDIX H: CREATING AND RETRIEVING
INDEXED SEQUENTIAL DATA SETS. • • .299

creating an Indexed Data Set •••• 299
Retrieving an Indexed Data Set .301

APPENDIX I: CHECKLIST FOR JOB CONTROL
PROCEDURES. • • • • • • • •••• 303
compilation • • • • • • • • • • • 303

Case 1: Compile Only -- No Object
Module Produced ••••• 303
Case 2: Source Module from Card
Reader • • • • • • • • .303
Case 3: Object Module Is To Be
Punched •••••••••••••• 303
Case 4: Object Module Is To Be
Passed to Linkage Editor •••••• 303
Case 5: Object Module Is To Be
Saved ••••••••••••••• 304
Case 6: COPY Statement in COBOL
Source Module or a BASIS Card in
the Input Stream • • • • • • •

Linkage Editor • • • • • • • • •
Case 1: Input from Previous

.304

.304

Compilation in Same Job •••• 304
Case 2: Input from Card Reader •• 304

Case 3: Input Not from Compilation
in Same Job • • • •• •• 304
Case 4: Output To Be Placed in
Link Library • .. • • • • • • • • 305
Case 5: Output To Be Placed in
Private Library • • • • • • • • 305
Case 6: Output To Be Used Only in
This Job •••••••••••••• 305

Execution Time. • • • • • • • • • .305
Case 1: Load Module To Be
Executed Is in Link Library •• 305
Case 2: Load Module To Be
Executed Is a Member of Private
Library •••••••••••••• 305
Case 3: Load Module To Be
Executed Is Created in Previous
Linkage Editor Step in Same Job •• 306
Case 4: Abnormal Termination Dump .306
Case 5: DISPLAY Is Included in
Source Module ••••••••••• 306
Case 6: DISPLAY UPON SYSPUNCH Is
Included in Source Module •• 306
Case 7: ACCEPT Is Included in
Source Module ••••••••••• 306
Case 8: Debug Statements EXHIBIT
or TRACE Are Included in Source
Module • • • • • •

APPENDIX J: DIAGNOSTIC MESSAGES
Compiler Diagnostic Messages •
Object Time Messages

Diagnostic Messages -- MCS
Considerations • • • •

COBOL Object Program Unnumbered
Messages • • • • • • •

• .306

• .307
• • 307

• • • • 398

• .400

• .400

APPENDIX K: A SUMMARY OF COBOL LIMITS .401

INDEX .403

ILLUSTRATIONS

FIGURES

Figure 1. Job Control Procedure
Figure 2. Catalog Procedure

• 16
• 16

Figure 3. General Format of Control
statements • • • • • • • • • 18
Figure 4. JOB Statement • • • • • • • • 21
Figure 5. EXEC statement • • • • • • • 30
Figure 6. Compiler, Linkage Editor,
and Loader PARM options
Figure 7. The DD Statement (Part 1
of 2) • • • • • • • • • ••••
Figure 8. Device Class Names
Required for IBM-Supplied cataloged
Procedures •••••••••••
Figure 9. Determining the File
Processing Technique •••••
Figure 10. DD Statement Parameters
Applicable to Standard Sequential

• 37

42

47

66

OUTPUT Files • • • • • • • • • • • • • • 70
Figure 11. DD Statement Parameters
Applicable to Standard Sequential
INPUT and 1-0 Files • • • • • • • • • • 71
Figure 12. Directly Organized Data as
it Appears on a Mass Storage Device
Figure 13. Sample Format of the First

72

Two Tracks of a Direct File •••••• 74
Figure 14. Sample Space Allocation
for Sequentially Created Direct Files • 76
Figure 15. Sample Space Allocation
for Randomly Created Direct Files
Figure 16. Sample Program for a
Randomly Created Direct File (Part 1
of 2) •••••••••••••••
Figure 17. Relatively Organized Data

• 77

87

as it Appears on a Mass Storage Device • 92
Figure 18. Sample Format of Two
Tracks of a Relative File • • • • • 92
Figure 19. Sample Program for
Relative File Processing (Part 1 of 4) 95
Figure 20. Track Index • • • • • .101
Figure 21. Cylinder Index •• 102
Figure 22. Blocked Records on an
Indexed File. • • • • •••••• 102
Figure 23. Unblocked Records on an
Indexed File •••••••••• 103
Figure 24. Cylinder Overflow Area .104
Figure 25. Independent Overflow Area .104
Figure 26. DD Statement Parameters
Applicable to Indexed Files Opened as
output •••••••••••••••• 107
Figure 27. Example of DD Statements
for New Indexed Files ••••••••• 107
Figure 28. DD Statement Parameters
Applicable Indexed Files Opened ~s
INPUT or 1-0 •••••••••••••• 110
Figure 29. DD Statement Parameters
Frequently Used in Creating Data Sets .114
Figure 30. Parameters Frequently Used
in Retrieving Previously Created Data
Sets ••••••••••••••••• 119
Figure 31. Parameters Used To Specify
Unit Record Devices ••••••• 123

Figure 32. Links between the SELECT
Statement, the DD Statement, the Data
Set Label, and the Input/Output
Statements. • • • • • • • • • . • .125
Figure 33. Exit List Codes •• 133
Figure 34. Parameter List Formats ••. 133
Figure 35. Label Routine Returns
Codes • • • • • • • • • • • • .133
Figure 36. Fixed-Length (Format F)
Records •••••••••••••••. 134
Figure 37. Unspecified (Format U)
Records •••••••••••••••• 135
Figure 38. Unblocked V-Mode Records .136
Figure 39. Blocked V-Mode Records •• 136
Figure 40. Fields in Unblocked V-Mode
Reco~ds •••••••••••••••• 137
Figure 41. Fields in Blocked V-Mode
Records • • • • • • • • • • • .137
Figure 42. First Two Blocks of
VARIABLE-FILE-2 • • • • • • .138
Figure 43. Control Fields of an
S-Mode Record .". • • • • • • • • • • . 140
Figure 44. One Logical Record
Spanning Physical Blocks. • • • • .140
Figure 45. First F'our Blocks of
SPAN-FILE • • • • • • • • • • • • .141
Figure 46. Advantage of S-Mode
Records Over V-Mode Records •. 142
Figure 47. Direct and Sequential
Spanned Files on a Mass Storage Device 143
Figure 48. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON Option • • • • • • • .145
Figure 49. Examples of Compiler
Output (Part 1 of 3) ••••••••• 147
Figure 50. Linkage Editor Output
Showing Module Map and Cross Reference
List • •• • • • • • • • • • • • • • 155
Figure 51. Module Map Format Example .158
Figure 52. Execution Job Step Output .159
Figure 53. Example of Program Flow

• • • • • • • • • • • • • 163
Figure 54. Selective Testing of B ••• 164
Figure 55. COBOL Program with
Abnormal Termination Dump (Part 1 of
3) • • • • • • • • • .172
Figure 56.
5)

Sample Program (Part 1 of

Figure 57. Locating the QSAM Logical
.177

Record Area •••••••••••••• 182
Figure 58. Logical Record Area and
Segment Work Area for BDAM and BSAM
Spanned Records •••••••••••. 183
Figure 59. Sample Showing GROUP
INDICATE Clause and Resultant Execution
Output •••••••••••••••• 200
Figure 60. Format of a Report Record
When the CODE Clause Is Specified ••• 200
Figure 61. Storage Layout for Table
Reference Example ••••••••••. 204

Figure 62. Sample Linkage Coding Used
in a Calling Assembler Language
Proqram • • • • • • • • • • • •• 211
Figure 63. Save Area Layout and
Contents •••••••••••• .212
Figure 64. Sample Linkage Coding Used
in a Called Assembler-Language Program 214
Figure 65. Sample Coding Used for a
Calling Assembler-Language Program and
a Called COBOL Program ••••••••• 215
Figure 66. Specifying Primary and
Additional Input to the Linkage Editor 216
Figure 67. Sample Deck for Linkage
Editor Overlay structure ••••••• 219
Figure 68. Format of a Library .222
Figure 69. Entering Source Statements
into the COpy Library ••••••••• 223
Figure 70. Updating Source Statements
in a COPY Library ••••••••••• 224
Figure 71. COBOL Statements To Deduct
Old Age Tax • • • • • • • • • • •• 225
Figure 72. Programmer Changes to
Source Program. • • • • • • • • • .226
Figure 73. Changed COBOL Statements
to Source COpy Library Statements .226
Figure 74. Example of Adding
Procedures to the Procedure Library •• 230
Figure 75. Statements in the COBUC
Procedure ••••••••••••••• 232
Figure 76. Statements in the COBUCL
Procedure ••••••••••••••• 232
Figure 77. Statements in the COBULG
Procedure ••••••••••••••• 232

Figure 78. Statements in the COBUCLG
Procedure ••••••••••••••• 233
Figure 79. Statements in the COBUCG
Procedure ••••••••••••••• 233
Figure 80. Sort Feature Control Cards 243
Figure 81. Sorting Variable-Length
Records Whose File-Name Description and
Sort-File-Name Description Correspond .247
Figure 82. Segmentation of Program
SAVECORE •••••••• • 248
Figure 83. Storage Layout for
SAVECORE •••••••• • • 249
Figure 84. Sample Segmentation
Program (Part 1 of 5) •• 251
Figure 85. Restarting a Job at a
Specific Checkpoint Step ••••••• 260
Figure 86. Using the RD Parameter •• 261
Figu~e 87. Modifying Control
Statements Before Resubmitting for
Step Restart. • • • • • • •• • •• 261
Figure 88. Modifying Control
Statements Before Resubmitting for
Checkpoint Restart ••••• • .261
Figure 89. Creating an Indexed Data
Set ••••••••••••••• 300
Figure 90. Retrieving an Indexed Data
Set • • • • • • • • • • • • .302
Figure 91. General Job control
Procedure .for Compilation • • • • 303
Figure 92. General Job Control
Procedure for a Linkage Editor Job
step •••••••••••• • • • 305
Figure 93. General Job Control
Procedure for an Execution-Time Job
Step • • • • • • • • • • • • • • • • • . 306

TABLES

Table 1. Control Statements ••••• 17
Table 2. Significant Characters for
Various options • • • • • • • • • • • • 34
Table 3. Mass Storage Volume States • 51
Table 4. Data Set References • 52
Table 5. Data Sets Used for
Compilation • • • • • • • • • • 59
Table 6. Data Sets Used for Linkage
Editing •• • • • • • • • • 60
Table 7. COBOL Clauses for
Sequential File Processing • 67
Table 8. DEN Values • • • • • • • • 68
Table 9. Mass Storage Device
Overhead Formulas • • • • • • 81
Table 10. Mass Storage Device
capacities • • • • • • • • • • 81
Table 11. Mass Storage Device Track
Capacity • • • • • • • • • 82
Table 12. Partial List of Prime
Numbers •• • • • • • • • • • • • 85
Table 13. Direct File Processing on
Mass Storage Devices • • • • • • • • 89
Table 14. JCL Applicable to Directly
Organized Files • • • • • • • • • • • • 90
Table 15. Relative File Processing on
Mass Storage Devices • • • • 99
Table 16. JCL Applicable to
Relatively Organized Fil~s. .100
Table 17. Indexed File Processing on
Mass Storage Devices. • • • • • • .112
Table 18. Recovery from an Invalid
Key Condition or from an Input/Output
Error • • • • • • • • • • • • .127
Table 19. Input/Output Error
Processing Facilities ••••• • .128

Table 20. Glossary Definition and
Usage • • • • • • • • .153
Table 21. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information • • .154
Table 22. System Message
Identification Codes • • • • • • .160

.189 Table 23. Data Format Conversion
Table 24. Relationship of PICTURE to
storage Allocation • • • • • • • •
Table 25. Treatment of Varying Values

• 193

in a Data Item of PICTURE S9 •••••• 194
Table 26. Rules for the SET Statement .205
Table 27. Linkage Registers •••••• 210
Table 28. Functions of COBOL Library
Conversion Subroutine (Part 1 of 2) •. 278
Table 29. Functions of COBOL Library
Arithmetic Subroutines ••••••••• 219
Table 30. Data Control Block Fields
for Standard Sequential Files
Table 31. Data Control Block Fields

• .284

for Direct and Relative Files Accessed
Sequentially •••••••••••••• 285
Table 32. Data Control Block Fields
for Direct and Relative Files Accessed
Randomly • • • • • • • • • • • • • • • • 286
Table 33. Data Control Block Fields
for Indexed Files Accessed Sequentially 287
Table 34. Data Control Block Fields
for Indexed Files Accessed Randomly •• 288
Table 35. Area Arrangement for
Indexed Data Sets • • • • • • • • • • • 301
Table 36. General Limits for COBOL
Source Programs (Part 1 of 2) ••• 402
Table 31. Limits for Special Features
of COBOL • • • • • • • • • • • • • • • . 403

An American National Standard COBOL
program can be processed by the IBM
System/360 Operating System. The operating
system consists of a number of processing
programs and a control program.

The processing programs include the
COBOL compiler, service programs, and any
user-written programs.

The control program supervises the
execution or loading of the processing
programs; controls the location, storage,
and retrieval of data; and schedules jobs
for continuous processing.

A request to the operating system for
facilities and scheduling of program
execution is called a job. For example, a
job could consist of compiling a program by
utilizing the COBOL compiler. A job
consists of one or more job steps, each of
which specifies e~ecution of a program.
The programmer can make requests to the
operating system by using job control
statements.

Each job is headed by a JOB statement
that identifies the job. Each job step is
headed by an EXEC statement that describes
the job step and calls for execution.
Included in each job step are data
definition (DD) statements, which describe
data sets and request allocation of
input/output devices.

The data processed by execution of any
processing program must be in the form of a
data .. set. A data set is a named, organized
collection of one or more records that are
logically related. Information in a data
set mayor may not be restricted to a
specific type, purpose, or storage medium.
A data set may be, for example, a source
proqram, a library of subroutines, or a
group of data records that is to be
processed by a COBOL program.

A data set resides in one or more
volumes. A volume is a unit of external
storage that is accessible to an
input/output device. For example, a volume
may be a reel of tape or it may be a mass
storage device.

To facilitate retrieval of a data set,
the serial number of the volume upon which
it resides can be entered, along with the

INTRODUCTION

data set name, in the system catalog of
data sets. The catalog itself is a data
set residing on one or more mass storage
devices. It is organized into indexes that
relate each data set name to its location-
the volume in which it resides and its
?osition within the volume. Only the data
set name need be specified to identify a
cataloged data set to the system.

The catalog is originally created by a
utility program. Once the catalog exists,
any data set residing on either a mass
storage device or a magnetic tape volume
can be cataloged automatically by use of a
catalog subparameter in a DD statement that
refers to the data set.

Several input/output devices grouped
together and given a single name when the
system is generated constitute a device
class. Each device class can be referred
to-by a collective name. For example, one
device class called SYSDA could consist of
all the mass storage devices in the
installation; another called SYSSQ could
consist of all the mass storage devices and
tape devices.

EXECUTING A COBOL PROGRAM

Four basic operations are performed to
execute a COBOL program:

• Compilation

• Linkage editing

• Loading

• Execution

COMPILATION

Compilation is the process of
translating a COBOL source program into a
series of instructions comprehensible to
the computer, i.e., machine language. In
operating system terminology, the input
(source program) to the compiler is called
the source module. The output (compiled
source program) from the compiler is called
the object module.

Introduction 13

LINKAGE EDITING

The linkage editor is a service program
that prepares object modules for execution.
It can also be used to combine two or more
separately compiled object modules into a
format suitable for execution as a single
program. The executable output of the
linkage editor is called a load module,
which must always be stored as a member of
a partitioned data set.

In addition to processing object
modules, the linkage editor can combine
previously edited load modules, with or
without one or more object modules, to form
one load module.

During the process of linkage editing,
external references between different
modules are resolved.

LOADING

The Loader is a service program that
processes COBOL object and load modules,
resolves any references to subprograms, and
executes the loaded module. All these
functions are performed in one step. The
Loader cannot produce load modules for a
program library.

For detailed information on the Loader,
see the publication IBM System/360
Operating System: Linkage Editor and
Loader, where a discussion of invoking the
Loader can be found in "Using the Cataloged
Procedures."

EXECUTION

Actual execution is under supervision of
the control program, which obtains a load
module from a library, loads it into main
storage, and initiates execution of the
machine language instructions contained in
the load module.

14

OPERATING SYSTEM ENVIRONMENTS

The Operating System offers two control
programs. These are Multiprogramming with
a Fixed Number of Tasks (MFT) and
Multiprogramming with a Variable Number of
Tasks (MVT).

MULTIPROGRAMMING WITH A FIXED NUMBER OF
TASKS

The multiprogramming with a fixed number
of tasks (MFT) control program divides
storage into a number of discrete areas
called.partitions. Job steps are directed
to these partitions using a priority
scheduling system; that is, jobs are not
executed as encountered in the job stream
but according to a priority code. The MFT
control program provides for:

• Priority scheduling of jobs using the
class code

• Concurrent scheduling and execution of
up to 15 separately protected jobs

• Reading one or more input streams

For further information about the
various optional features of the MFT
control program, see the publication IBM
~stem/360 Operating System: Storage
Estimates.

MULTIPROGRAMMING WITH A VARIABLE NUMBER OF
TASKS

The multiprogramming with a variable
number of tasks (MVT) control program
divides storage into areas called regions.
Like MFT, the MVT control program uses a
priority scheduling system and provides for
concurrent execution of up to 15 jobs. In
addition, the MVT control program provides
for assignment of storage regions on a
variable basis according to a region code.

communication between the COBOL
proqrammer and the job scheduler is
effected through nine job control
statements (hereinafter called control
statements):

1. Job Statement

2. Execute Statement

3. Data Definition Statement

4. PROC Statement

5. PEND Statement

6. Command Statement

7. Delimiter Statement

8. Null Statement

9. Comment Statement

Parameters coded in these control
statements aid the job scheduler in
regulating the execution of jobs and job
steps, retrieving and disposing of data,
allocating input/output resources, and
communicating with the operator.

The job statement (hereinafter called
the JOB statement) marks the beginning of a
job and, when jobs are stacked in the input
stream, marks the end of the control
statements for the preceding job. It may
contain accounting information for use by
an installation's accounting routines, give
conditions for early termination of the
job, and regulate the display of job
scheduler messages. With priority
schedulers, additional parameters are used
to assign job priority, to request a
specific class for job scheduler messages,
to specify the amount of main storage to be
allocated to the job, and to hold a job for
later execution.

The execute statement (or EXEC
statement) marks the beginning of a job
step and identifies the program to be
executed or the cataloged procedure to be
used. It may also provide job step
accounting information, give conditions for
bypassing the job step, and pass control
information to a processinq program. With
priority schedulers, additional parameters
assign a time limit for the execution of
the job step and specify the amount of main
storage to be allocated.

The data definition statement (or DD
statement) describes a data set and
requests the allocation of input/output
resources. The DD statement parameters
identify the data set, give volume and unit
information and disposition, and describe
the labels and physical attributes of the
data set.

The ~gQ~_~tatem§~t appears as the first
control statement in a cataloged procedure
or an in-stream procedure and is used to
assign default values to symbolic
parameters defined in the procedure.

The PEND statement appears as the last
control statement in an in-stream procedure
and marks the end of the in-stream
procedure. For further information about
in-stream procedures, refer to the topic
"Testing a Procedure as an In-Stream
Procedure" in "Using the Cataloged
Procedures."

The ~2~~gg_~t~t~N§gt is used by the
operator to enter commands through the
input stream. commands can activate or
deactivate system input and output units,
request printouts and displays, and perform
a number of other operator functions.

The delimiter statement and the null
statement are markers in an input stream.
The delimiter statement is used, when data
is included in the input stream, to
separate the data from subsequent control
statements. The null statement can be used
to mark the end of the control statements
for certain jobs.

The comment statement can be inserted
before or-after-any-control statement and
can contain any information deemed helpful
by the person who codes the control
statements. Comments can be coded in
columns 4 through 80. The comment cannot
be continued onto another statement. If
the comment statement appears on a system
output listing, it can be identified by the
appearance of asterisks in columns 1
through 3.

The sequence of control statements
required to specify a job is called a job
£ontrol_QEoc§g~f~·

For example, the job control procedure
shown in Figure 1 could be placed in the
input stream to compile a COBOL source
module.

Job Control Procedures 15

r---,
1//JOBl JOB I
1//STEPl EXEC PGM=IKFCBLOO,PARM=DECK I
1//SYSUTl DD DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (40» I
1//SYSUT2 DD DSNAME=&&UT2,UNIT=SYSSQ,SPACE=(TRK, (40» I
1//SYSUT3 DD DSNAME=&&UT3,UNIT=SYSSQ,SPACE=(TRK, (40» I
1//SYSUT4 DD DSNAME=&&UT4,UNIT=SYSSQ,SPACE=(TRK, (40» I
I//SYSPRINT DD SYSOUT=A I
I//SYSPUNCH DO SYSOUT=B I
I//SYSIN OD * I
I (source deck) I
1/* I l ___ - _________________________________ J

Figure 1. Job Control Procedure

In the illustration, JOBl is the name of
the job. The JOB statement indicates the
beginning of a job.

STEPl is the name of the single job step
in the job. The EXEC statement specifies
that the IBM American National Standard
COBOL compiler (IKFCBLOO) is to execute the
job. The statement also specifies that a
card deck of the object module is to be
produced (PARM=OECK).

The SYSUT1, SYSUT2, SYSUT3, and SYSUT4
DO statements define utility data sets used
by the compiler to process the source
module. The names of the data sets defined
by SYSUT1, SYSUT2, SYSUT3, and SYSUT4 are
&&UT1, &&UT2, &&UT3, and &&UT4,
respectively. SYSUTl must be on a mass
storage device (UNIT=SYSOA). The system
will allocate 40 tracks of space to SYSUTl
[SPACE=(TRK, (40»]. The other three
utility data sets are assigned either to
any available tape, in which case the SPACE
parameter is ignored, or to a mass storage
unit (UNIT=SYSSQ).

The SYSPRINT OD statement defines the
data set that is to be printed. SYSOUT=A
is the standard designation for data sets
whose destination is the system output
device, usually indicating that the data
set is to be listed on a printer.

The SYSPUNCH DD statement defines the
data set that is to be punched. SYSOUT=B
designates a card punch.

The SYSIN DO statement defines the data
set (in this case, the source module) that
is to be used as input to the job step.
The asterisk (*) indicates that the input
data set follows in the input stream.

The delimiter (/*) statement separates
data from subsequent control statements in
the input stream.

Output from this job step includes any
diaqnostic messages associated with the

16

compilation. They are printed in the data
set specified by SYSPRINT.

Note: SYSDA, SYSSQ, A, and Bare
IBM-specified device class names. If they
are to be used, they must be incorporated
at system generation time. If SYSOUT=B is
to be used, the unit name SYSCP must be
specified at system generation.

To avoid rewriting these statements, and
the possibility of error, the programmer
may place frequently used procedures on a
system library called the procedure
library. A procedure contained in the
procedure library is called a £at~!2~~
2Eoc~~~E~. A cataloged procedure can be
called for execution by placing in the
input stream a simple procedure that may
require only the JOB and EXEC statements.

If slightly modified, the procedure in
the previous example can be cataloged,
i.e., placed in the procedure library. For
example, if it were cataloged and given the
name CATPROC, it could be called for
execution by placing the statements shown
in Figure 2 in the input stream.

r---,
1//JOB2 JOB 1

I//STEPA EXEC PROC=CATPROC I
1//STEP1.SYSIN DO * 1
1 (source deck) I

1/* 1 l ___ J

Figure 2. Catalog Procedure

In Figure 2, JOB2 is the name of the job.
STEPA is the name of the single job step.
The EXEC statement calls the cataloged
procedure containing STEPl to execute the
job step (PROC=CATPROC).

A procedure can be tested before it is
placed in the procedure library by

converting it into an in-stream procedure.
An in-stream procedure can be executed any
number of times during a job. For further
information about in-stream procedures,
refer to the topic "Testing a Procedure as
an In-stream Procedure" in "Using the
Cataloged Procedures."

"User File Processing" and "Appendix I:
Checklist for Job Control Procedures"
explain, with numerous examples, the
preparation of job control procedures.
"Data Set Requirements" describes required
and optional data sets for compilation,
linkage editing, and execution time job
steps. "Using Cataloged Procedures"
provides information about using and
modifying cataloged procedures.

"Control Statements," below, shows the
format and use of the parameters and
subparameters that can be specified for
each job control statement. Some
parameters of the statements are described
only briefly. For further information, see
the publication IBM System/360 Operating
System: Job Control Language Reference.
The syntactic format descriptions in this
chapter can be used as a reference for the
exact format and for the use of each
parameter.

CONTROL STATEMENTS

The COBOL programmer uses the control
statements shown in Table 1 to compile,
linkage edit, and execute programs.

JOB MANAGEMENT

Control statements are processed by a
group of operating system routines known
collectively as job management. These job
management routines interpret control
statements and commands, control the flow
of jobs, and issue messages to both the
operator and the programmer. Job
management comprises two major components:
a job scheduler and a master scheduler.

The job scheduler is a set of routines
that reads .input streams, analyzes control
statements, aliocates input/output
resources, issues diagnostic messages to
the programmer, and schedules job flow
through the system.

Table 1. Control Statements
r---------T-------------------------------,
\ Statement \ Function \
~---------+-----------------------~-------~
1 JOB \Indicates the beginning of a I
\ \ new job and describes that I
\ I job I
~~--------+-------------------------------~
\ EXEC \Indicates a job step and \
\ \ describes that job step; I
\ I indicates the load module or I
I I cataloged procedure to be I
I I executed I
~---------+-------------------------------~
\DD IDescribes data sets, and I
I I controls device and volume I
I I assignment I
~---------+-------------------------------~
Idelimiterlseparates data sets in the I
I I input stream from control I
I I statements; it must follow I
I I each data set that appears inl
\ \ the input stream, e.g., after\
\ \ a COBOL source module punched \
\ \ deck I
~---------+-------------------------------~
\ comment \Contains miscellaneous remarks I
\ I and notes written by the I
\ \ programmer; it may appear I
I \ anywhere in the job stream I
\ \ after the JOB statement \ L _________ ~ _______________________________ j

The master scheduler is a set of
routines~hat-acceptS-operator commands and
acts as the operator's agent within the
system. It relays system messages to the
operator, performs system functions at his
request, and responds to his inquiries
regarding the status of a job or of the
system. The master scheduler also relays
all communication between a processing
program and the operator.

Priority schedulers process complete
jobs according to their relative priority,
and available system resources. Systems
that provide multiprogramming (the MFT or
MVT environments) use priority schedulers.

PREPARING CONTROL STATEMENTS

Except for the comment statement,
control statements are identified by the
initial characters II or 1* in card columns
1 and 2. The comment statement is
identified by the initial characters 11* in
columns 1 through 3. Control statements
may contain four fields: name, operation,
operand, and comment, as shown in Figure 3.

Job Control Procedures 17

r----------------T-------T--,
I I Columns' Fields ,
I ~--T-T--t--~
I statement 1 11213 I 4 1
~----------------+--+-+--~--~
I Job 1 /I/Iname JOB operand1 comments 1 I
1 Execute I /1/lname1 EXEC operand comments1 1
1 Data Definition I /1/lname1 DD operand comments 1 1
1 Procedure 1 /1/lname1 PROC operand comments 1 1
/ Command '///1 operation (command) operand comrnents1 J
1 Delimiter I /1*1 comments 1 1
I Null I / 1 / 1 1
1 Comment I /1/1* comments 1
I Pend 1 /1/ Iname 1 PEND J

~----------------~--~-~---~
11 0ptional. I L ___ J

Figure 3. General Format of Control statements

Name. Field

The name contains from one through eight
alphanumeric characters, the first of which
must be alphabetic. The name begins in
card column 3. It is followed by one or
more blanks. The name is used, as follows:

• To identify the control statement to
the operating system

• To enable other control statements in
the job to refer to information
contained in the named statement

• To relate DD statements to files named
in a COBOL source program

Operation Field

The operation field is preceded and
followed by one or more blanks. It may
contain one of the following operation
codes:

JOB
EXEC
DD
PROC
PEND

If the statement is a delimiter statement,
there is no operation field and comments
may start after one blank.

18

The operand field is preceded and
followed by one or more blanks and may
continue through column 71 and onto one or
more continuation cards. It contains the
parameters or subparameters that give
required and optional information to the
operating system. Parameters and
subparameters are separated by commas. A
blank in the operand field causes the
system to treat the remaining data on the
card as a comment. There are two types of
parameters: positional and keyword
(Figures 4, 5, and 7).

Positional Parameters: Positional
parameters are the first parameters in the
operand field, and they must appear in the
specified sequence. If a positional
parameter is omitted and other positional
parameters follow, the omission must be
indicated by a comma. If other positional
parameters do not follow, no comma is
needed.

Keyword Parameters: A keyword parameter
may be placed anywhere in the operand field
following the positional parameters. A
keyword parameter consists of a keyword,
followed by an equal sign, followed by a
single value or a list of subparameters.
If there is a subparameter list, it must be
enclosed in parentheses or single quotation
marks; the subparameters in the list must
be separated by commas. Keyword parameters
may appear in any sequence.

Subparameters are either positional or
keyword. Positional and keyword
subparameters for job control statements
are shown in Figures 4, 5, and 7.
positional subpararneters appear first in
the parameter and must be in the specified
sequence. If a positional subparameter is

omitted and other positional subparameters
follow, a comma must indicate the omission.

comments Field

Optional comments must be separated from
the last parameter (or the /* in a
delimiter statement) by one or more blanks
and may appear in the remaining columns up
to and including column 71. An optional
comment may be continued onto one or more
continuation cards. Comments can contain
blanks.

Note: Comments in the optional comments
field follow different procedures from
those on the comment statement.

CONVENTIONS FOR CHARACTER DELIMITERS

Commas, parentheses, and blanks are
interpreted as character delimiters. If
they are not intended by the programmer to
be used as delimiters, the fields in which
they appear must be enclosed in single
quotation marks, indicating that the
enclosed information is to be treated as a
single field. When an apostrophe (or a
single quotation mark, since the same
character is used for either) is to be
contained within such a field, it must be
shown as two consecutive single quotation
marks (5-8 punch), not as a double
quotation mark (7-8 punch). For example,

Wm. O'Connor

should be shown as

·Wm. O"Connor'

This convention applies to three fields:
programmer's name in the JOB statement,
information in the PARM parameter of the
EXEC statement, and accounting information
in the JOB and EXEC statements.

RULES FOR CONTINUING CONTROL STATEMENTS

Except for the comment statement,
control statements are contained in columns

1 through 71 of cards or card images. If
the total length of a statement exceeds 71
columns, or if a parameter is to be placed
on separate cards, the operating system
continuation conventions must be used. To
continue an operand field:

1. Interrupt the field at the end of a
complete parameter or subparameter,
including the comma that follows it,
at or before column 71.

2. Include comments by following the
interrupted field with at least one
blank.

3. Optionally, code any nonblank
character in column 72. If a
character is not coded in column 72,
the job scheduler treats the next
statement as a continuation statement
as long as the conventions outlined in
items 4 and 5 are observed.

4. Code the identifying characters II in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any colUmn from 4 through
16.

Comments other than those on a comment
statement can be continued onto additional
cards after the operand has been completed.
To continue a comments field:

1. Interrupt the comment at a convenient
place.

2. Code a nonblank character in column
72.

3. Code the identifying characters II in
columns 1 and 2 of the following card
or card image.

4. continue the comments field beginning
in any column after column 3.

Any control statements in the input
stream that the job scheduler considers to
contain only continued comments will print
on a system output listing with a 11* in
columns 1 through 3. Comments written on a
comment statement cannot be continued.

Job Control Procedures 19

NOTATION FOR DESCRIBING JOB CONTROL
STATEMENTS

The notation used in this publication to
define the syntax of job control statements
is as follows:

1. The set of symbols below define
control statements, but they are never
written in an actual statement.

Name Symbol
hyphen

"or" symbol

braces { }

brackets []

ellipsis

superscript 1 2 3

20

Purpose
Joins lower-case
letters, words, and
symbols to form a
single variable

Indicates alternatives

Indicate that the
enclosed is a group of
related items, only
one of which is
required

Indicate that the
enclosed are optional
items. Brackets are
also used with
alternatives to
indic.ate that a
default is assumed if
no alternative is
listed

Indicates that the
preceding item or
group of items can be
repeated

Indicates a footnote
reference

2. Stacked items, enclosed in either
brackets or braces, represent
alternative items. No more than one
of the stacked items can be written by
the programmer.

3. Upper-case letters and words, numbers,
and the set of symbols listed below
are written in an actual control
statement exactly as shown in the
statement definition. (Any exceptions
to this rule are noted in the
definition of a control statement.)

Name
single quotation mark
asterisk
comma
equal sign
parentheses
period
slash

Symbol
•
*
=

/

4. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

~ote: Many of these defaults can be
changed at system generation time.

5. Lower-case letters, words, and symbols
appearing in a control statement
definition represent variables for
which specific information is
substituted in the actual statement.

6. Blanks are used in Figures 4, 5, 6,
and 7 to improve the readability of
control statement definitions. In
actual statements, blanks would be
interpreted as delimiters.

r----------T---------T--,
I Name I operation I Operand I
~----------t---------t--~

Positional Parameters

//jobname JOB [([account-number] [,accounting-information])1 2 3]

[,programmer-name]~ 5

[MSGLEVEL=(x,y)]6
[TIME=(minutes,seconds)]
[CLASS=jobclass]
[COND=«code,operator) [, (code,operator)] ••• 7)8]
[PRTY=job priorityl
[MSGCLASS=classname]
[REGION=(nnnnnxK[,nnnnnyK])]
[ROLL=(x,y)]
[TYPRUN:=HOLD]

:::::::::tl{:tepname l [, checkidl)]
stepname.procstepname)

~----------~---------~--~
I 1If the information specified <account-number and/or accounting-information) contains
I blanks, parentheses, or equal signs, the information must be delimited by single
I quotation marks instead of parentheses.
I 2If only account-number is specified, the delimiting parentheses may be omitted.
I 3The maximum number of characters allowed between the delimiting quotation marks is
I 142.
I ~If programmer-name contains any special characters other than the period, it must be
I enclosed within single quotation marks.
I 5The maximum number of characters allowed for programmer-name is 20.
I 6X = 0, 1, or 2 is the JCL message.
I y = 0 or 1 is the allocation message level.
I Note that the value 1 may be used in place of (1,1).
I 7The maximum number of repetitions allowed is 7.
I 8If only one test is specified, the outer pair of parentheses may be omitted. L __ _

Figure 4. JOB statement

JOB STATEMENT

The JOB statement is the first statement
in the sequence of control statements that
describe a job. The JOB statement can
contain the following information:

1. Name of the job.

2. Accounting information relative to the
job.

3. Programmer's name.

4. Indication of whether or not the job
control statements are to be printed
on the system output listing.

5. Conditions for terminating the
execution of the job.

6. For priority scheduling systems: job
priority assignment, job scheduler
message class, and for the MVT
environment, main storage region size.

Figure 4 is a general format of the JOB
statement.

Identifying the Job (jobname)

The jobname identifies the job to the
job scheduler. It must satisfy the
positional, length, and content
requirements for a name field. No two jobs
being handled by a priority scheduler
should have the same jobname.

Job Control Procedures 21

JOB PARAMETERS

Supplying Job Accounting Information

For job accounting purposes, the JOB
statement can be used to supply information
to an installation's accounting procedures.
To supply job accounting information, code
the positional parameter first in the
operand field.

r---,
I (acct#,additional accounting information) I l ___ J

Replace the term "acct#" with the account
number to which the job is charged; replace
the term "additional accounting
information" with other items required by
an installation's accounting routines. As
a system generation option with sequential
schedulers, the account number can be
established as a required subparameter.
With priority schedulers, the requirement
can be established with a cataloged
procedure for the input reader. Otherwise,
the account number is considered optional.

Notes:

• Subparameters of additional accounting
information must be separated by
commas.

• The number of characters in the account
number and additional accounting
information must not exceed a total of
142.

• If the list contains only an account
number, the programmer need not code
the parentheses.

• If the list does not contain an account
number, the programmer must indicate
its absence by coding a comma preceding
the additional accounting information.

• If the account number or any
subparameter of additional accounting
information contains any special
character (except hyphens), the
programmer must enclose the number or
subparameter in apostrophes (5-8
punch). The apostrophes are not passed
as part of the information.

Reference:

22

• To write an accounting routine that
processes job accounting information,
see·the section "Adding an Accounting
Routine to the Control Program" of the
publication IBM System/360 Operating
System: system Programmer's Guide.

Ident!fying the Programmer

The person responsible for a job codes
his name or identification in the JOB
statement, following the job accounting
information. This positional parameter is
also passed to an installation's routines.
As a system generation option with
sequential schedulers, the programmer's
name can be established as a required
parameter. With priority schedulers, the
requirement can be established with a
cataloged procedure for the input reader.
Otherwise, this parameter is considered
optional.

Notes:

• The number of characters in the name
cannot exceed 20.

• 1'f the name contains special characters
other than periods, it must be enclosed
in apostrophes. If the special
characters include apostrophes, each
must be shown as two consecutive
apostrophes, e.g., 'T.O"NEILL'.

• If the job accounting information is
not coded, the programmer must indicate
its absence by coding a comma preceding
the programmer-name.

• If neither job accounting information
nor programmer~name is present, the
programmer need not code commas to
indicate their absence.

Reference:

• To write a routine that processes the
programmer-name, see the section
"Adding an Accounting Routine to the
Control Program" of the publication IBM
§ystem/360 Operating System: System
Programmer's Guide.

Displaying All Control Statements,
Allocation, and Termination Messa~~~
(MSGL~y~~!..

The MSGLEVEL parameter indicates whether
or not the programmer wants control
statements and/or allocation and
termination messages to appear in his
output listing. To receive this output,
code the keyword parameter in the operand
field of the JOB statement.

r---,
I MSGLEVEL=(x,y) I l ___ J

The letter "x" represents a job control
language message code and can be assigned
the value 0, 1, or 2. When x = 0 is
specified, only the JOB statement,
incorrect control statements, and
associated diagnostic messages are
displayed. When x = 1 is specified, input
statements, cataloged procedure statements,
and symbolic substitution of parameters are
displayed. When x = 2 is specified, only
input statements are displayed.

The letter "y" represents an allocation
message code and can be assigned the value
o or 1. When y = 0 is specified, no
allocation, termination, or recovery
messages are displayed, unless an ABEND
occurs during problem program execution.
If an ABEND occurs, termination messages
are displayed. When y = 1 is specified,
all allocation, termination, and recovery
messages are displayed.

~:

• If the value 1 is selected for both
codes, the value may be specified once
without the parentheses; i.e.,
MSGLEVEL=l is the same as
MSGLEVEL=(l,l).

• The default values are taken from the
reader procedure.

• If an error occurs on a control
statement that is continued onto one or
more cards, only one of the
continuation cards is printed with the
diagnostic messages.

Specifying conditions for Job Termination
(COND)

To eliminate unnecessary use of
computing time, the programmer might want
to base the continuation of a job on the
successful completion of one or more of its
job steps. At the completion of each job
step, the processing program passes a
number to the job scheduler as a return
code. The COND parameter provides the
means to test each return code as many as
eight times. If anyone of the tests is
satisfied, subsequent steps are bypassed
and the job is terminated.

To specify conditions for job
termination, code the keyword parameter in
the operand field of the JOB statement.

r---,
ICOND=«code,operator), •• , (code,operator»I l ___ J

See the COND parameter on the EXEC
statement for a discussion of the operator
values and the codes issued by the compiler
and linkage editor at the end of a job
step.

• The subparameters EVEN and ONLY cannot
be specified as part of the COND
parameter on the JOB statement.

Requesting Restart for a Job (RD)

The restart facilities are used in order
to minimize the time lost in reprocessing a
job that abnormally terminates. These
facilities permit execution of jobs that
abnormally terminate to be aU'comatically
restarted.

Execution of a job can be automatically
restarted at the beginning of the job step
that abnormally terminated (step restart)
or within the step (checkpoint restart).
In order for checkpoint restart to occur,
the CHKPT macro instruction must have been
executed in the processing program prior to
abnormal termination. The CHKPT macro
instruction is activated by the COBOL
source language RERUN clause. The RD
parameter specifies that step restart can
occur or that the action of the CHKPT macro
instruction is to be suppressed.

To request that step restart be
permitted or to request that the action of
the RERUN clause be suppressed, code the
keyword parameter in the operand field of
the JOB statement.

r---,
I RD=request I l ___ J

Replace the word "request" with:

R to permit automatic step
restart

NC to suppress the action of the
CHKPT macro instruction and not
to permit automatic restart

NR to request that the CHKPT macro
instruction be allowed to
establish a checkpoint, but not
to permit automatic restart

RNC -- to permit step restart and to
suppress the action of the
CHKPT macro instruction

Job Control Procedures 23

Each of these requests is described in
greater detail in the following paragraphs.

RD=R: If the processing programs used by
the job do not include any CHKPT macro
instructions, RD=R allows execution to be
resumed at the beginning of the step that
causes abnormal termination. If any of the
proqrams do include one or more CHKPT macro
instructions, step restart can occur if a
step abnormally terminates before execution
of a CHKPT macro instruction; thereafter,
checkpoint restart can occur.

RD=NC or RD=RNC: RD=NC or RD=RNC should be
specified to suppress the action of all
CHKPT macro instructions included in the
proqrams. When RD=NC is specified, neither
step restart nor checkpoint restart can
occur. When RD=RNC is specified, step
restart can occur.

RD=NR: RD=NR permits a CHKPT macro
instruction to establish a checkpoint, but
does not permit automatic restart.
Instead, at a later time, the job can be
resubmitted and execution can begin at a
specific checkpoint. (Resubmitting a job
for restart is discussed later.)

Before automatic step restart occurs,
all data sets in the restart step with a
status of OLD or MOD, and all data sets
being passed to steps following the restart
step, are kept. All data sets in the
restart step with a status of NEW are
deleted. Before automatic checkpoint
restart occurs, all data sets currently in
use by the job are kept.

If the RD parameter is omitted and no
checkpoints are taken, automatic restart
cannot occur. If the RD parameter is
omitted but one or more checkpoints are
taken, automatic checkpoint restart can
occur.

Notes:

• When using a system with MVT or MFT,
restart can occur only if MSGLEVEL=l is
coded on the JOB statement.

• If step restart is requested, each step
must be assigned a unique step name.

• If no RERUN clause is specified in the
user's program, no checkpoints are
written regardless of the disposition
of the RD parameter.

Reference:

24

• For detailed information on the
checkpoint/restart facilities, see the
publication IBM System/360 Operating
System: Supervisor Services.

Resubmitting a Job for Restart (RESTART)

The restart facilities can be used if
the job is a.bnormally terminated and the
programmer wants to resubmit the job for
execution. These facilities reduce the
time required to execute the job since
execution of the job is resumed, not
repeated.

Execution of a resubmitted job can be
restarted at the beginning of a step (step
restart) or within a step (checkpoint
restart). In order for checkpoint restart
to occur, a program must previously have
had. a checkpoint record written. The
RESTART parameter specifies where execution
is to be restarted.

If execution is to be restarted at a
particular job step, code the keyword
parameter in the operand field of the JOB
statement before resubmitting the job.

r---,
I RESTART=stepname I L ___ J

Replace the word "stepname" with the name
of the step at which execution is to be
restarted. Replace stepname with an
asterisk (*) if execution is to be
restarted at the first job step.

If execution is to be restarted at a
particular checkpoint within a particular
job step, code the keyword parameter in the
operand field of the JOB statement before
resubmitting the job.

r---,
I RESTART=(stepname,checkid) I L ___ J

Replace the word stepname with the name of
the step in which execution is to be
restarted. Replace the term "checkid" with
the 1- to 16-character name that identifies
the checkpoint within the step.

If execution is to be restarted at a
checkpoint, the resubmitted job must
include an additional DD statement. This
DD statement defines the checkpoint data
set and has the ddname SYSCHK. Do not
include a SYSCHK DD statement if step
restart is to be performed.

If the RESTART parameter is not
specified on the JOB statement of the
resubmitted job, execution is repeated.

Notes:

• If execution is to be restarted at or
within a cataloged procedure step, give
both the name of the step that invokes
the procedure and the procedure step
name.

r---,
I RESTART=stepname.procstepname I l ___ J

• If step restart is performed,
generation data sets that were created
and cataloged in steps preceding the
restarted step must not be referred to
in the restart step orin steps
following the restart step by means of
the same relative generation numbers
that were used to create them. For
example, a generation data set assigned
a generation number of +1, would be
referred to as 0 in the restart step or
steps following the restart step.

• Backward references cannot be made to
steps that precede the restart step
using the following keyword parameters:
PGM, CONO, SUBALLOC, and VOLUME=REF,
unless in the last case the referenced
statement includes VOLUME=SER=(ser#).

Reference:

• For detailed information on the
checkpoint/restart facilities, see the
publication IBM System/360 Operating
System: Supervisor Services.

PRIORITY SCHEDULING JOB PARAMETERS

Setting Job Time Limits (TIME)

To assign a limit to the computing time
used by a job, code the keyword parameter
in the operand field.

r---,
I TIME=(minutes, seconds) I L ___ J

Such an assignment is useful in a
multiprogramming environment where more
than one job has access to the computing
system. The time is coded in minutes and
seconds to represent the maximum time for
execution of a job.

Notes:

• The number of minutes cannot exceed
1439 and the number of seconds cannot
exceed 59. If the job is not completed
in this time it is terminated.

• If the job requires use of the system
for more than 24 hours (1439 minutes)
specify TIME=1440. This number
suppresses job timing.

• If the time limit is given 1n minutes
only, the parentheses need not be
coded; e.g., TIME=5.

• If the time limit is given in seconds,
the comma must be coded to indicate the
absence of minutes; e.g., TIME=(,4S).

• If the TIME parameter is omitted, the
default job time is assumed.

Assign~~9-a Job Class (CLASS)

To assign a job class to a job, code the
keyword parameter in the operand field of
the JOB statement.

r---,
I CLASS=jobclass I L ___ J

Replace the term "jobclass" with an
alphabetic character A through o. The use
of this parameter and the meaning of the
character A through 0 are to be determined
by each installation.

If the CLASS parameter is omitted, or
CLASS=A is coded, the default job class of
A is assigned to the job.

Note:

• If an installation provides
time-slicing facilities in a system
with MFT, the CLASS parameter can be
used to make the job part of the group
of jobs to be time-sliced.
Time-slicing permits the processing of
tasks of equal priority so that each is
executed for its specified period of
time. At system generation, a group 6f
contiguous partitions are selected to
be used for time-slicing, and each
partition is assigned at least one job
class. If the job is to be
time-sliced, specify a class that was
assigned only to the partitions
selected for time-slicing.

Assigning Job Priority (PRTY)

To assign a priority other than the
default job priority (as established in the
input reader procedure), code the keyword
parameter in the operand field of the JOB
statement.

Job Control Procedures 25

r---,
I PRTY=nn I L ___ J

Replace the letters "nn" with a decimal
number from 0 through 13 (the highest
priority number is 13).

If an installation provides time-slicing
facilities in a system with MVT, the PRTY
parameter can be used to make the job part
of a group of jobs to be time-sliced. At
system generation, the priority of the
time-sliced group is selected. If the job
priority number specified corresponds with
the priority number selected for
time-slicing, then the job will be
time-sliced.

If the PRTY parameter is omitted, the
default job priority is assigned to the
job.

Note:

• Whenever possible, avoid using priority
13. This is used by the system to
expedite processing of jobs in which
certain errors were diagnosed. It is
also intended for other special uses by
future features of systems with
priority schedulers.

Requesting a Message Class (MSGCLASS)

With the quantity and diversity of data
in the output stream, an installation may
want to separate different types of output
data into different classes. Each class is
directed to an output writer associated
with a specific output unit. The MSGCLASS
parameter allows routing of all messages
issued by the job scheduler to an output
class other than the normal message
class, A.

To choose such a class, code the keyword
parameter in the operand field of the JOB
statement.

r---,
I MSGCLASS=x I L ___ J

Replace the letter "x" with an alphabetic
(A-Z) or numeric (0-9) character. An
output writer, which is assigned to process
this class, will transfer this data to a
specific device.

If the MSGCLASS parameter is omitted, or
coded MSGCLASS=A, job scheduler messages
are routed to the standard output class, A.

26

Reference:

• For a more detailed discussion of
output classes, see the publication IB~
System/360 Operating system:
operator's Reference, Form GC28-6691.

Specifying Main Storage Requirements for a
Job (REGION)
(MVT only)

For jobs that require an unusual amount
of main storage, the JOB statement provides
the REGION parameter. The REGION parameter
specifies:

• The maximum amount of main storage to
be allocated to the job. This amount
must include the size of those
components required by the user's
program that are not resident in main
storage.

• The amount of main storage to be
allocated to the job, and the storage
hierarchy or hierarchies in which the
space is to be allocated. This request
should be made only if main storage
hierarchy support has been specified
during system generation. If an IBM
2361 Core storage, Model 1 or 2, is
present in the system, processor
storage is referred to as hierarchy 0
and 2361 core storage is referred to as
hierarchy 1. If 2361 Core Storage is
not present but main storage hierarchy
support was specified in system
generation, a two-part region is
established in processor storage when a
region is defined to exist in two
hierarchies. The two parts are not
necessarily contiguous.

To specify a region size, code the
keyword parameter in the operand field of
the JOB statement.

r---,
I REGION=(nnnnnxK[,nnnnnyK]) I L ___ J

To request the maximum amount of main
storage required by the job, the term
"nnnnnx" should be replaced with the number
of 1024-byte areas allocated to the job,
e.g., REGION=52K. This number can range
from one to five digits and cannot exceed
16383.

To request a region size and the
hierarchy desired, the term nnnnnx is
replaced with the number of contiguous
1024-byte areas to be allocated to the job
in hierarchy 0; the term "nnnnny" is
replaced with the number of contiguous

1024-byte areas to be allocated in
hierarchy 1, e.g., REGION=(60K,200K). When
only processor storage is used to include
hierarchies 0 and 1, the combined values of
nnnnnx and nnnnny cannot exceed 16383. If
2361 Core Storage is present, nnnnnx cannot
exceed 16383 and, for a 2361 modell,
nnnnny cannot exceed 1024, or 2048 for a
2361 model 2. Each value specified should
be an even number. <If an odd number is
specified, the system treats it as the next
higher even number.)

If storage is requested only in
hierarchy 1, a comma must be coded to
indicate the absence of the first
subparameter, e.g., REGION=(,200K). If
storage is requested only in hierarchy 0,
or if hierarchy support is not present, the
parentheses need not be coded, e.g.,
REGION=10K.

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, it is assumed
that the default value is that established
by the input reader procedure.

Notes:

• Region sizes for each job step can be
coded by specifying the REGION
parameter in the EXEC statement for
each job step. However, if a REGION
parameter is present in the JOB
statement, it overrides REGION
parameters in EXEC statements.

• If main storage hierarchy support is
not included but regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

• For information on storage requirements
to be considered when specifying a
region size, see the publication IBM
System/360 Operating System: Storage
Estimates.

Holding a Job for Later Execution

To temporarily prevent a job from being
selected for processing, code the keyword
parameter in the operand field of the JOB
statement.

r---,
I ' TYPRUN=HOLD I L ___ J

The job is then held until a RELEASE
command is issued by the operator. This
specification is particularly useful when
one job must be run after another job has
terminated.

Specifying Additional Storage (ROLL)
(MVT only)

To allocate additional main storage to a
job step whose own region does not contain
any more available space, code the keyword
parameter in the operand field of the JOB
statement.

r---,
I ROLL=(x,y> I L ___ J

In order to allocate this additional space
to a job step, another job step may have to
be rolled out, i.e., temporarily
transferred to secondary storage. When x
is replaced with YES, each of the
programmer's job steps can be rolled out;
when ~ is replaced with NO, the job steps
cannot be rolled out. When y is replaced
with YES, each job step can cause rollout;
when y is replaced with NO, the job steps
cannot cause rollout. If additional main
storage is required for the job's steps,
YES must be specified for y. If this
parameter is omitted, ROLL=(YES, NO) is
assumed. ROLL parameters can also be coded
in EXEC statements, but are superseded by a
ROLL parameter coded in the JOB statement.

The EXEC statement defines a job step
and calls for its execution. It contains
the following information:

1. The name of a load module or the name
of a cataloged procedure that contains
the name of a load module that is to
be executed. The load module can be
the COBOL compiler, the linkage
editor, the loader, or any COBOL
program in load module form.

2. Accounting information for this job
step.

3. Conditions for bypassing the execution
of this job step.

4. For priority scheduling systems:
computing time for a job step or
cataloged procedure step, and main
storage region size.

Job Control Procedures 21

5. Compiler, linkage editor, or loader
options chosen for the job step.

Figure 5 is the general format of the
EXEC statement.

Note:

• If the information specified is
normally delimited by parentheses, but
contains blanks, parentheses, or equal
signs, it must be delimited by single
quotation marks instead of parentheses.

Identifying the Step (stepname)

The stepname identifies a job step
within a job. It must satisfy the
positional, length, and content
requirements for a name field. The
programmer must specify a stepname if later
control statements refer to the step or if
the step is going to be part of a cataloged
procedure. Each stepname in a job or
procedure must be unique.

POSITIONAL PARAMETERS

Identifying the Program (PGM) or Prq,cedure
(PROC)

The EXEC statement identifies the
program to be executed in the job step with
the PGM parameter. To specify the COBOL
compiler, code the positional parameter in
the first position of the operand field of
the EXEC statement.

r---,
I PGM=IKFCBLOO I L ___ J

It indicates that the COBOL compiler is the
processing program to be executed in the
job step.

To specify the linkage editor, code the
positional parameter in the first position
of the operand field of the EXEC statement.

r---,
I PGM=IEWL I L ___ J

This indicates that the linkage editor is
the processing program to be executed in
the job step.

28

The PGM parameter depends upon the type
of library in which the program resides.
If the job step uses a cataloged procedure,
the EXEC statement identifies it with the
PROC parameter, in place of the PGM
parameter.

1. Temporary libraries are temporary
partitioned data sets created to store
a program until it is used in a later
job step of the same job. This type
of library is particularly useful for
storing the program output of a
linkage editor run until it is
executed in a later job step. To
execute a program from a temporary
library, code the positional parameter
in the first position of the operand
field of the EXEC statement.

r---,
I PGM=*.stepname.ddname I L ___ J

The asterisk (*) indicates the current
job step. Replace the terms stepname
and ddname with the names of the job
step and the DD statement within the
procedure step, respectively, in which
the temporary library is created.

If the temporary library is created in
a catalogued procedure step, in order
to call it in a later job step outside
the procedure, give both the name of
the job step that calls the procedure
and the procedure stepname by coding
the positional parameter in the first
position of the operand field of the
EXEC statement.

r---,
I PGM=*.stepname.procstepname.ddname I L ___ J

2. The system library is a partitioned
data set named SYS1.LINKLIB that
contains nonresident control program
routines, and processor programs. To
execute a program that resides in the
system library, code the positional
parameter in the first position of the
operand field.

r---,
I PGM=progname I L ___ J

Replace the term progname with the
member name or alias associated with
this program. This same keyword
parameter can be used to execute a
program that resides in a private
!iQE~EY. Private libraries are made

available to a job with a special DO
statement (see "Additional OD
Statement Facilities").

3. Instead of executing a particular
program, a job step may use a
cataloged procedure. A cataloged
procedure can contain control
statements for several steps, each of
which executes a particular program.
Cataloged procedures are members of a
library named SYS1.PROCLIB. To
request a cataloged procedure, code
the positional parameter in the first
position of the operand field of the
EXEC statement.

r---,
I PROC=procname I L ___ J

Replace the term procname with the
unqualified name of the cataloged
procedure (see "Using the 00
Statement" for a discussion of
qualified names).

• A procedure may be tested before it is
placed in the procedure library by
converting it into an In-Stream
procedure and placing it within the job
step itself. In-Stream procedures are
discussed in the section, "Testing a
Procedure as an In-Stream Procedure" in
the chapter "Using the Cataloged
Procedures."

Job Control Procedures 29

r--------------T-----T--,
I lOper-I I
I Name I ation I Operand I
~--------------+-----+--i
I I Positional Parameters
I I
//[stepname]1 EXEC I(PGM=progname)

I)PGM=*.stepname.ddname (
I" PROC=procname '
I Jprocname (
I~PGM=*.stepname.procstep.ddname ,
I
I Keyword Parameters
I
'[5ACCT2 t 3 .. 5]
, fACCT.procstep 5 = (accounting-information)
I
'[5COND2 t 6 7J
, fCOND.procstep 5 = «code,operator[,stepname[.procstep]]) •••) ,
'[~PARM2 t 3 8 9 J
, fPARM.procstep 5 = (option[,optionl •••)
I

:D~=.procstep ~ = (minutes,seconds) J
I
'[5REGION t]
, fREGION.procstep ~ = nnnnnxK[,nnnnnyK]
I
'[5

ROLL
] I fROLL.procstep = (x,y)

I

I B:~. procstep ~ = request] ,
I[~DPRTY t]
t'tDPRTY.procstep 5 (value 1, value 2)

~--------------~-----~------------------------------------~-----------------------------~
1Stepname is required when information from this control statement is referred to in a
later job step.

2If this format is selected, it may be repeated in the EXEC statement once for each
step in the cataloged procedure.

3If the information specified contains any special characters except hyphens, it must
be delimited by single quotation marks instead of parentheses.

"If accounting-information contains any special characters except hyphens, it must be
delimited by single quotation marks.

5The maximum number of characters allowed between the delimiting quotation marks or
parentheses is 142.

6The maximum number of repetitions allowed is 7.
7If only one test is specified, the outer pair of parentheses may be omitted.
8If the only special character contained in the value is a comma, the value may be
enclosed in quotation marks.

9The maximum number of characters allowed between the delimiting quotation marks or
parentheses is 100. L-___ _

Figure 5. EXEC statement

3.0

KEYWORD PARAMETERS

Specifying Job step Accounting Information
(ACCT)

When executing a multistep job, or a job
that uses cataloged procedures, the
programmer can use this parameter so that
jobsteps are charged to separate accounting
areas. To specify items of accounting
information to the installation accounting
routines for this job step, code the
keyword parameter in the operand field of
the EXEC statement.

r---,
I ACCT=(accounting information) I l ___ J

Replace the term "accounting information"
with one or more subparameters separated by
commas. If both the JOB and EXEC
statements contain accounting information,
the installation accounting routines decide
how the accounting information shall be
used for the job step.

To pass accounting information to a step
within a cataloged procedure, code the
keyword parameter in the operand field of
the EXEC statement.

r---,
I ACCT.procstep=(accounting information) I l ___ J

Procstep is the name of the step in the
cataloged procedure. This specification
overrides the ACCT parameter in the named
procedure step, if one is present.

Specifying Conditions for Bypassing or
Executing the Job Step (COND)

The execution of certain job steps is
based on the success or failure of
preceding steps. The COND parameter
provides the means to:

• Make as many as eight tests on return
codes issued by preceding job steps or
cataloged procedure steps, which were
completed normally. If anyone of the
tests is satisfied, the job step is
bypassed.

• Specify that the job step is to be
executed even if one or more of the
preceding job steps abnormally
terminated or only if one or more of

the preceding job steps abnormally
terminated.

To specify conditions for bypassing a
job step, code the keyword parameter in the
operand field of the EXEC statement.

r---,
I COND=«code,operator, [stepname]), ••• , I
I (code, operator, [stepname]»)I l ___ J

The term "code" may be replaced by a
decimal numeral to be compared with the job
step return code. The return codes for
both the compiler and the linkage editor
are:

00 Normal conclusion

04 Warning messages have been listed,
but program is executable.

08 Error messages have been listed;
execution may fail.

12 Severe errors have occurred;
execution is impossible.

16 Terminal errors have occurred;
execution of the processor has been
terminated.

The compiler issues a return code of 16
when any of the following are detected:

• BASIS member-name is specified and no
member of that name is found

• COpy member-name is specified and no
SYSLIB statement is included

• Required device not available

• Not enough core storage is available
for the tables required for compilation

• A table exceeded its maximum size

• A permanent input/output error has been
encountered on an external device

The return codes have a correlation with
the severity level of the error messages.
With linkage editor messages, for example,
the rightmost digit of the message number
states the severity level; this number is
multiplied by 4 to get the appropriate
return code. With the COBOL compiler, 04,
08, 12, and 16 are equal to the severity
flags: W, C, E, and D, respectively.

The term "operator" specifies the test
to be made of the relation between the

Job Control Procedures 31

programmer-specified code and the job step
return code. Replace the term operator
with one of the following:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
LT (less than)
LE (less than or equal to)
NE (not equal to)

The term "stepname" identifies the
previously executed job step that issued
the return code to be tested and is
replaced by the name of that preceding job
step. If stepname is not specified, code
is compared to the return codes issued by
all preceding steps in the job.

Replace the term stepname with the name
of the preceding job step that issues the
return code to be tested.

If the programmer codes

COND=«4,GT,STEP1), (8,EQ,STEP2»)

the statement is interpreted as: "If 4 is
greater than the return code issued by
STEP1, or if STEP2 issues a return code of
8, this job step bypassed."

Notes:

• If only one test is made, the
programmer need not code the outer
parentheses, e.g., COND=(12,EQ,STEPX).

• If each return code test is made on all
preceding steps, the programmer need
not code the terms stepname, e.g.,
COND= ((4, GT) , (8, EQ)) •

• When the return code is issued by a
cataloged procedure step, the
programmer may want to test it in a
later job step outside of the
procedure. In order to test it, give
both the name of the job step that
calls the procedure and the procedure
stepname, e.g., COND=«code,operator,
stepname.procstep), •••).

Abnormal termination of a job step
normally causes subsequent steps to be
bypassed and the job to be terminated. By
means of the COND parameter, however, the
programmer can specify execution of a job
step after one or more preceding job steps
have abnormally terminated. For the COND
parameter, a job step is considered to
terminate abnormally if a failure occurs
within the user's program once it has
received control. (If a job step is
abnormally terminated during scheduling
because of failures such as job control

32

language errors or inability to allocate
space, the remainder of the job steps are
bypassed, whether or not a condition for
executing a later job step was specified.)

To specify the condition for executing a
job step, code the keyword parameter in the
operand field of the EXEC statement.

r---------------------{;;;;}----------------l
I COND= I
I ONLY I l ___ J

The EVEN or
exclusive.
be coded in
return code
between, or

ONLY subparameters are mutually
The subparameter selected can
combination with up to seven
tests, and can appear before,
after return code tests, e.g.,

COND=(EVEN,(4,GT,STEP3»

COND=«8,GE,STEP1),(16,GE),ONLY)

The EVEN subparameter causes the step to
be executed even when one or more of the
preceding job steps have abnormally
terminated. However, if any return code
tests specified in this job step are
satisfied, the step is bypassed. The ONLY
subparameter causes the step to be executed
only when one or more of the preceding job
steps have abnormally terminated. However,
if any return code tests specified in this
job step are satisfied, the step is
bypassed.

When a job step abnormally terminates,
the COND parameter on the EXEC statement of
the next step is scanned for the EVEN or
ONLY subparameter. If neither is speci
fied, the job step is bypassed and the EXEC
statement of the next step is scanned for
the EVEN or ONLY subparameter. If EVEN or
ONLY is specified, return code tests, if
any, are made on all previous steps
specified that executed and did not
abnormally terminate. If anyone of these
tests is satisfied, the step is bypassed.
Otherwise, the job step is executed.

If the programmer codes

COND=EVEN

the statement is interpreted as: "Execute
this step even if one or more of the
preceding steps abnormally terminated
during execution." If COND=ONLY is coded,
it is interpreted as: "Execute this step
only if one or more of the preceding steps
abnormally terminated during execution."

If the COND parameter is omitted, no
return code tests are made and the step

will be bypassed when any of the preceding
job steps abnormally terminate.

~:

• When a job step that contains the EVEN
or ONLY subparameter refers to a data
set that was to be created or cataloged
in a preceding step, the data set will
not exist if the step creating it was
bypassed.

• When a jobstep that contains the EVEN
or ONLY subparameter refers to a data
set that was to be created or cataloged
in a preceding step, the data set may
be incomplete if the step creating it
abnormally terminated.

• When the job step uses a cataloged
procedure, the programmer can establish
return code tests and the EVEN or ONLY
subparameter for a procedure step by
including, as part of the keyword COND,
the procedure stepname, e.g.,
COND.procstepname. This specification
overrides the COND parameter in the
named procedure step if one is present.
The programmer can code as many
parameters of this form as there are
steps in the cataloged procedure.

• To establish one set of return code
tests and the EVEN or ONLY subparameter
for all steps in a procedure, code the
COND parameter without a procedure
stepname. This specification replaces
all COND parameters in the procedure if
any are present.

Job steps following a step that
abnormally terminates are normally
bypassed. If a job step is to be executed
even if a preceding step abnormally
terminates, specify this condition, along
with up to seven return code tests:

r---,
1//STEP3 EXEC PGM=CONVERT, XI
1// COND=(EVEN,(4,EQ,STEP1»),... 1 L ___ J

Here, the step is executed if the return
code test is not satisfied, even if one or
more of the preceding job steps abnormally
terminated. If a job step is to execute
only when one or more of the preceding
steps abnornally terminate, replace EVEN in
the above example with ONLY.

If the EXEC statement calls a cataloged
procedure, the programmer can establish
return code tests and the EVEN or ONLY
subparameter for a procedure step by coding
the COND parameter followed by the name of
the procedure step to which it applies:

r---,
1//STEP4 EXEC ANALYSIS,COND. XI
1// REDUCE=«16,EQ,STEP4.LOOKUP),ONLY), ••• 1 L ___ J

Here, the cataloged procedure step named
REDUCE will be executed only if a preceding
job step has abnormally terminated and the
procedure step named LOOKUP does not issue
a return code of 16. The programmer can
code as many COND parameters of this type
as there are steps in the procedure.

Passi~ Information to the Processing
Program (PARM)

For processing programs that require
control information at the time they are
executed, the EXEC statement provides the
PARM parameter. To pass information to the
program, code the keyword parameter in the
operand field.

r---,
1 PARM=(option[,option) •••) 1 L ___ J

This will pass options to the compiler,
linkage editor, loader, or object program
when anyone of them is called by the PGM
parameter in the EXEC statement or to the
first step in a cataloged procedure.

To pass options to a compiler, the
linkage editor, loader, or the execution
step within the named cataloged procedure
step, code the keyword parameter in the
operand field.

r---,
I PARM.procstep=(option[,optionl •••) 1 L ___ J

Any PARM parameter already appearing in the
procedure step is deleted, and the PARM
parameter that is passed to the procedure
step is inserted.

A maximum of 100 characters may be
written between the parentheses or single
quotation marks that enclose the list of
options. The COBOL compiler selects the
valid options of the PARM field for
processing by looking for three significant
characters of each key option word. When
the keyword is identified, it is checked
for the presence or absence of the prefix
NO, as appropriate. The programmer can
make the most efficient use of the option
field by using the significant characters
instead of the entire option. Table 2
lists the significant characters for each

Job Control Procedures 33

option (see "Options for the Compiler" for
an explanation of each).

Table 2. Significant Characters for
Various Options

r------------------T----------------------,
I I Significant I
I Option I Characters I
~------------------+----------------------~

LINECNT
SEQ
FLAGE(W)
SIZE
BUF
SOURCE
DECK
LOAD
SPACE
DMAP
PMAP
SUPMAP
CLIST
TRUNC
APOST
QUOTE
XREF
LIB
VERB
ZWB

CNT
SEQ
LAG,LAGW
SIZ
BUF
SOU
DEC
LOA
ACE
DMA
PMA
SUP
CLI
TRU
APO
QUO
XRE
LIB
VER
ZWB

------------------~----------------------

Options for the Compiler

The IBM-supplied default options
indicated by an underscore in the following
discussion can be changed within each
installation at system generation time.
The format of the PARM parameter is
illustrated in Figure 6.

Note:

• When a subparameter contains an equal
sign, the entire information field of
the PARM parameter must be enclosed by
single quotation marks instead of
parentheses, e.g.,
PARM='SIZE=160000,PMAP'.

SIZE=yyyyyyy
indicates the amount of main storage,
in bytes, available for compilation
(see "Machine Considerations").

BUF=yyyyyy

34

indicates the amount of main storage
to be allocated to buffers. If both
SIZE and BUF are specified, the amount
allocated to buffers is included in
the amount of main storage available
for compilation (see "Appendix D:
Compiler Optimization" for information
about how buffer size is determined>.

Note: The SIZE and BUF compile-time
parameters can be given in multiples of K,
where K = 1024 decimal bytes. For example,
80K is 81,920 decimal bytes.

SOURCE
NOSOURCE

indicates whether or not the source
module is to be listed.

CLIST
NOCLIST

indicates whether or not a condensed
listing is to be produced. If
specified, the procedure portion of
the listing will contain generated
card numbers, verb references, and the
location of the first generated
instruction for each verb. CLIST and
PMAP are mutually exclusive options.

Note: In nonsegmented programs, verbs are
listed in source order. In segmented
programs, verbs are listed in source order
within each segment, with the root segment
last. If the VERB option is specified, the
verb-name is printed out. otherwise, only
the verb number (VERB1, VERB2, and so on)
is printed out.

DMAP
NODMAP
-----indicates whether or not a glossary is

to be listed.

PMAP
NOPMAP

LIB
NOLIB

indicates whether or not register
assignments, global tables, literal
pools and an assembler language
expansion of the source modules are to
be listed. CLIST and PMAP are
mutually exclusive options.

indicates that BASIS and/or COPY
statements are in the source program.
If either COpy or BASIS is present,
LIB must be in effect. If COpy and/or
BASIS statements are not present, use
of the NO LIB option yields more
efficient compiler processing.

~RB
NOVERB

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
PMAP or CLIST is in effect.

~
NOLOAD

indicates whether or not the object
module is to be placed on a mass
storage device or a tape volume so
that the module can be' used as input
to the linkage editor. If the LOAD
option is used, a SYSLIN DD statement
must be specified.

DECK
NODECK

indicates whether or not the object
module is to be punched. If the DECK
option is used, a SYSPUNCH DD
statement must be specified.

SEQ
NOSEQ

indicates whether or not the compiler
is to check the sequence of the source
module statements. If the statements
are not in sequence, a message is
printed.

LINECNT=nn

FLAGW
FLAGE

indicates the number of lines to be
printed on each page of the
compilation source card listing. The
number specified by nn must be a
2-digit integer from 01 to 99. If the
LINECNT option is omitted, 60 lines
are printed on each page of the output
listing. The first three lines of the
output listing are for the compiler
headings. (For example, if nn=55 is
specified, then 52 lines are printed
on each page of the output listing.)

indicates the type of messages that
are to be listed for the compilation.
FLAGW indicates that all warning and
diagnostic messages are to be listed.
FLAGE indicates that all diagnostic
messages are to be listed, but the
warning messages are not to be listed.

SUPMAP
NOSUPMAP

indicates whether or not the object
code listing, and object module and
link edit decks are to be suppressed
if an E-Ievel message is generated by
the compiler.

SPACE 1
SPACE 2
SPACE 3

indicates the type of spacing that is
to be used on the source card listing
generated when SOURCE is specified.
SPACE1 specifies single spacing,
SPACE2 specifies double spacing, and
SPACE3 specifies triple spacing.

TRUNC
NOTRUNC

is an option that applies only to
COMPUTATIONAL receiving fields in MOVE
statements and arithmetic expressions.
If TRUNC is specified, extra code is
generated to truncate the final
intermediate result of the arithmetic
expression, or the sending field in
the MOVE statement, to the number of
digits specified in the PICTURE clause
of the COMPUTATIONAL receiving field.
If NOTRUNC is specified, the compiler
assumes that the data being
manipulated conforms to PICTURE and
USAGE specifications. The compiler
then generates code to manipulate the
data based on the size of the field in
core (halfword, etc.). TRUNC conforms
to the American National Standard,
while NOTRUNC leads to more efficient
processing. This will occasionally
cause dissimilar results for various
sending fields because of the
different code generated to perform
the operation.

QUOTE
APOST.
-----indicates to the compiler that either

the double quote (") or the apostrophe
(I} is acceptable as the character to
delineate literals and to use that
character in the generation of
figurative constants.

XREF
NOXREF
------indicates whether or not a cross

reference listing is produced. If
XREF is specified, an unsorted listing
is produced with data-names and
procedure names appearing in two parts
in the order in which they are
referenced. Use of the XREF option
considerably increases compile time.
NOXREF will suppress any
cross-reference listing.

~!!~
NOZWB

indicates whether or not the compiler
generates code to strip the sign from
a signed external decimal field when
comparing this field to an
alphanumeric field. If ZWB is

Job Control Procedures 35

specified, the signed external decimal
field is moved to an intermediate
field, in which its sign is removed,
before it is compared to the
alphanumeric field.

Note: The default option cannot be
changed at system generation time.

For examples of what the SOURCE, PMAP,
DMAP, and SEQ options produce, see
"output."

Options for the Linkage Editor

MAP

XREF

LIST

OVLY

indicates that a map of the load
module is to be listed. If MAP is
specified, XREF cannot be specified,
but both can be omitted.

indicates th~t a cross reference list
and a module map are to be listed. If
XREF is specified, MAP cannot be
specified.

indicates that any linkage editor
control statements associated with the
job step are to be listed.

indicates that the load module is to
be in the format of an overlay
structure. This option is required
when the COBOL Segmentation feature is
used.

The format of the PARM parameter is
illustrated in Figure 6. For examples of
what the MAP, XREF, and LIST options

36

produce, see "Output." Linkage editor
control statements and overlay structures
are explained in "Calling and Called
Programs." There are other PARM options
for linkage editor processing that describe
additional processing options and special
attributes of the load module (see the
publication !~~£yst~~L1£Q_Qp~~~ting
Sys~~m: __ ~ink~~~di~Q~_~~g_~Q~der).

Options for the Loader

MAP
NOMAP
-----indicates whether or not a map of the

loaded module is to be produced that
lists external names and their
absolute addresses on the SYSPRINT
data set. If the SYSPRINT DD
statement is not used in the input
deck, this option is ignored. An
example of a module map is shown in
"Output."

RES
NORES

CALL

indicates whether or not an automatic
search of the link pack area queue is
to be made. This search is always
made after processing the primary
input (SYSLIN), and before searching
the SYLIB data set. When the RES
option is specified, the CALL option
is automatically set.

NOCALL (NCAL)
indicates whether or not an automatic
search of the SYSLIB data set is to be
made. If the SYSLIB DD statement is
not used in the input deck, this
option is ignored. The NOCALL option
causes an automatic NORES.

.--,
Compiler:

~PARM t
1 PARM. procstep f

=([SIZE=yyyyyyy] [,BUF=yyyyyy]
[,SOURCE] [,DMAP] [,PMAP]

, NOSOURCE , NODMAP , NOPMAP

[,SUPMAP] [,WAD] [,DECK] [,gQ] [, LINECNT=nn)
, NOSUPMAP , NOLOAD , NODECK , NOSEQ

[,TRUNC]
, NOTRUNC .

[,CLIST]
, NOCLIST

[,FLAGW]
,FLAGE

[,XREF]
, NOXREF

[,QUOTE]
,APOST

[
, SPACEl] [, !:!!~] [, ~g~] [, ~~~]) 1. 2 3

: ~~~~:~ , NOLIB , NOVERB , NOZWB

r---~
ILinkage Editor: I
I I

: fPARM t ([f MAP}) [, LIST) [, LET] [, OVLY]) :
I t PARM. procstep } 1 XREF I
~---~
I Loader: 1

III [,CALL] " jPARM t = [MAP] [,RES] [,LET] [,SIZE=100K]

I lpARM. procstep 5 NOMAP, NORES , NOCALL , NOLET , SIZE=size I
1 1
I I
1 [, PRINT] I I [, EP=name) -----) ,
I , NOPRINT 1
r---~
I1.If the information specified contains any special characters, it must be delimited by 1
1 single quotation marks instead of parentheses. 1
12If the only special character contained in the value is a comma, the value may be ,
1 enclosed in parentheses or quotation marks. 1
13 The maximum number of characters allowed between the delimiting quotation marks or I
I parentheses is 100. 1 L ___ J

Figure 6. Compiler, Linkage Editor, and Loader PARM options

LET
NOLET
-----indicates whether or not the loader

will try to execute the object program
when a severity level 2 error
condition is found.

SIZE=100K
SIZE=size

specifies the size, in bytes, of
dynamic main storage that can be used
by the loader. This storage must be
large enough to accommodate the object
program.

EP=name
specifies the external name to be
assigned as the entry point of the
loaded program.

PRINT
NOPRINT

indicates whether or not diagnostic
messages are to be produced on the
SYSLOUT data set.

The format of the PARM parameter is
illustrated in Figure 6. The default
options, indicated by an underscore, can be
changed at system generation with the
LOADER macro instruction.

Job Control Procedures 37

RequestinqRestartfor a Job Step (RD)

The restart facilities can be used in
order to minimize the time lost in
reprocessing a job that abnormally
terminates. These facilities permit the
automatic restart of jobs that were
abnormally terminated during execution.

The programmer uses this parameter to
tell the operating system: (1) whether or
not to take checkpoints during execution of
a program, and (2) whether or not to
restart a program that has been
interrupted.

A checkpoint is taken by periodically
recording the contents of storage and
registers during execution of a program.
The RERUN clause in the COBOL language
facilitates taking checkpoint readings.
Checkpoints are recorded onto a checkpoint
data set.

Execution of a job can be automatically
restarted at the beginning of a job step
that abnormally terminated (step restart)
or within the step (checkpoint restart).
In order for checkpoint restart to occur, a
checkpoint must have been taken in the
processing program prior to abnormal
termination. The RD parameter specifies
that step restart can occur or that the
action of the CHKPT macro instruction is to
be suppressed.

To request that step restart be
permitted or to request that the action of
the CHKPT macro instruction be suppressed
in a particular step, code the keyword
parameter in the operand field of the EXEC
statement.

r---,
I RD=request I L ___ J

Replace the word "request" with:

R

NC

NR

38

to permit automatic step restart.
The programmer must specify at
least one RERUN clause in order
to take checkpoints.

to suppress the action of the
CHKPT macro instruction and to
prevent automatic restart. No
checkpoints are taken; no RERUN
clause in the COBOL program is
necessary.

to request that the CHKPT macro
instruction be allowed to
establish a checkpoint, but to
prevent automatic restart. The
programmer must specify at least

one RERUN clause in order to take
checkpoints.

RNC -- to permit step restart and to
suppress the action of the CHKPT
macro instruction. No
checkpoints are taken; no RERUN
clause in the COBOL program is
necessary.

Each request is described in greater detail
in the following paragraphs.

RD=g: If the processing programs used by
this step do not include a RERUN statement,
RD=R allows execution to be resumed at the
beginning of this step if it abnormally
terminates. If any of these programs do
include one or more CHKPT macro
instructions (through the use of the RERUN
clause), step restart can occur if this
step abnormally terminates before execution
of a CHKPT macro instruction; thereafter,
checkpoint restart can occur.

RD=NC or RD=RNC: RD=NC or RD=RNC should be
specifIea-to suppress the action of all
CHKPT macro instructions included in the
programs used by this step. When RD=NC is
specified, neither step restart nor
checkpoint restart can occur. When RD=RNC
is specified, step restart can occur.

RD=NR: RD=NR permits a CHKPT macro
instruction to establish a checkpoint, but
does not permit automatic restarts.
However, a resubmitted job could have
execution start at a specific checkpoint.

Before automatic step restart occurs,
all data sets in the restart step with a
status of OLD or MOD, and all data sets
being passed to steps following the restart
step, are kept. All data sets in the
restart step with a status of NEW are
deleted. Before automatic checkpoint
restart occurs, all data sets currently in
use by the job are kept.

If the RD parameter is omitted and no
CHKPT macro instructions are executed,
automatic restart cannot occur. If the RD
parameter is omitted but one or more CHKPT
macro instructions are executed, automatic
checkpoint restart can occur.

• If the RD parameter is specified on the
JOB statement, RD parameters on the
job's EXEC statements are ignored.

• When using a system with MVT or MFT,
restart can occur only if MSGLEVEL=l is
coded on the JOB statement.

• If step restart is requested for this
step, assign the step a unique step
name.

• When this job step uses a cataloged
procedure, make restart request for a
single procedure step by including, as
part of the RD parameter, the procedure
stepname, i.e., RD.procstepname. This
specification overrides the RD
parameter in the named procedure step
if one is present. Code as many
parameters of this form as there are
steps in the cataloged procedure.

• To specify a restart request for an
entire cataloged procedure, code the RD
parameter without a procedure stepname.
This specification overrides all RD
parameters in the procedure if any are
present.

• If no RERUN clause is specified in the
user's program, no checkpoints are
written, regardless of the disposition
of the RD parameter.

Reference:

• For detailed information on the
checkpoint/restart facilities, refer to
the publication IBM System/360
Operating System: Supervisor Services.

Priority Scheduling EXEC Parameters

Establishing a Dispatching Priority (DPRTY)
(MVT only)

The DPRTY parameter allows the
programmer to assign to a job step, a
dispatching priority different from the
priority of the job. The dispatching
priority determines in what sequence tasks
use main storage and computing time. To
assign a dispatching priority to a job
step, code the keyword parameter in the
operand field of the EXEC statement.

r---,
I DPRTY=(value 1, value 2) I L ___ J

Both "value 1" and "value 2" should be
replaced with a number from 0 through 15.
"Value 1" represents an internal priority
value. "Value 2" added to "value 1"
represents the dispatching priority. The
higher numbers represent higher priorities.
A default value of 0 is assumed if no
number is assigned to "value 1." A default
value of 11 is assumed if no number is
assigned to "value 2."

• Whenever possible, avoid assigning a
number of 15 to "value 1." This number
is used for certain system tasks.

• If "value 1" is omitted, the comma must
be coded before "value 2" to indicate
the absence of "value 1," e.g.,
DPRTY=(, 14).

• If "value 2" is omitted, the
parentheses need not be coded, e.g.,
DPRTY=12.

• On an MVT system with time-slicing
facilities, the DPRTY parameter can be
used to make a job step part of a group
of job steps to be time-sliced. The
priorities of the time-sliced groups
are selected at system generation. To
cause the job step to be time-sliced,
assign to "value 1" a number that
corresponds to a priority number
selected for time-slicing. "Value 2"
is either omitted or assigned a value
of 11.

• When the step uses a cataloged
procedure, a dispatching priority can
be assigned to a single procedure step
by including the procedure step name in
the DPRTY parameter, i.e.,
DPRTY.procstepname=(value 1, value 2).
This parameter may be used £or each
step in the cataloged procedure.

• To assign a single dispatching priority
to an entire cataloged procedure, code
the DPRTY parameter without a procedure
step name. This specification
overrides all DPRTY parameters in the
procedure if there are any.

To assign a limit to the computing time
used by a single job step, a cataloged
procedure, or a cataloged procedure step,
code the keyword parameter in the operand
field of the EXEC statement.

r---,
I TIME=(minutes, seconds) I L ___ J

Such an assignment is useful in a
multiprogramming environment where more
than one job has access to the computing
system. Minutes and seconds represent the
maximum number of minutes and seconds
allotted for execution of the job step.

Job Control Procedures 39

Notes:

• If the job step requires use of the
system for 24 hours (1440 minutes) or
longer, the programmer should specify.
TIME=1440. Using this number
suppresses timing. The number of
seconds cannot exceed 59.

• If the time limit is given in minutes
only, the parentheses need not be
coded; e.g., TIME=5.

• If the time limit is given in seconds,
the comma must be coded to indicate the
absence of minutes; e.g., TIME=(,45).

• When the job step uses a cataloged
procedure, a time limit for a single
procedure step can be set by qualifying
the keyword TIME with the procedure
step name; i.e., TIME.procstep=
(minutes, seconds). This specification
overrides the TIME parameter in the
named procedure step if one is present.
As many parameters of this form can be
coded as there are steps in the
cataloged procedure.

• To set a time limit for an entire
procedure, the TIME keyword is left
unqualified. This specification
overrides all TIME parameters in the
procedure if any are present.

• If this parameter is omitted, the
standard job step time limit is
assigned.

Specifying Main Storage Requirements for a
Job Step (REGION)
(MVT only)

The REGION parameter permits the
programmer to specify the size of the main
storage region to be allocated to the
associated job step. The REGION parameter
specifies:

40

• The maximum amount of main storage to
be allocated to the job. This amount
must include the size of those
components required by the user's
program that are not resident in main
storage.

• The amount of main storage to be
allocated to the job, and the storage
hierarchy or hierarchies in which the
space is to be allocated. This request
should be made only if main storage
hierarchy support has been specified
during system generation. If an IBM
2361 Core Storage, Model 1 or 2, is
present in the system, processor
storage is referred to as hierarchy 0

and 2361 Core Storage is referred to as
hierarchy 1. If 2361 Core Storage is
not present but main storage hierarchy
support was specified in system
generation, a two-part region is
established in processor storage when a
region is defined to exist in two
hierarchies. The two parts are not
necessarily contiguous.

To specify a region size, code the
keyword parameter in the operand field of
the EXEC statement.

r---,
I REGION=(nnnnnxK[,nnnnnyK]) I L ___ J

To request the maximum amount of main
storage required by the job, replace the
term "nnnnnx" with the maximum number of
contiguous 1024-byte areas allocated to the
job step, e.g., REGION=52K. This number
can range from one to five digits and must
not exceed 16383.

To request a region size and the
hierarchy desired, the term nnnnnx is
replaced with the number of contiguous
1024-byte areas to be allocated to the job
in hierarchy 0; the term nnnnny is replaced
with the number of contiguous 1024-byte
areas to be allocated in hierarchy 1, e.g.,
REGION=(60K,200K). When only processor
storage is used to include hierarchies 0
and 1, the combined values of nnnnnx and
nnnnny cannot exceed 16383. If 2361 Core
Storage is present, nnnnnx cannot exceed
16383 and, for a 2361 modell, nnnnny
cannot exceed 1024, or 2048 for a 2361
model 2. Each value specified should be an
even number. (If an odd nurr~er is
specified, the system treats it as the next
higher even number.)

If storage is requested only in
hierarchy i., a comma must be coded to
indicate the absence of the first
subparameter, e.g., REGION=(,200K). If
storage is requested only in hierarchy 0,
or if hierarchy support is not present, the
parentheses need not be coded, e.g.,
REGION=70K.

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, it is assumed
that the default value is that established
by the input reader procedure.

• Region sizes for each job step can be
coded by specifying the REGION
parameter in the EXEC statement for
each job step. However, if a REGION
parameter is present in the JOB
statement, it overrides REGION
parameters in EXEC statements.

• If main storage hierarchy support is
not included but regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

• For information on storage requirements
to be considered when specifying a
region size, see the publication IBM
Systeml360 Operating System: Storage
Estimates.

Specifying Additional Main storage for a
Job.step (ROLL)
(MVT only>

To allocate additional main storage to a
job step whose own region does not contain
any more available space, code the keyword
parameter in the operand field of the EXEC
statement.

r---,
I ROLL=(x,y) I l ___ J

In order to allocate this additional space
to a job step, another job step may have to
be rolled out, i.e., temporarily
transferred to secondary storage. When x
is replaced with YES, the job step can be
rolled out; when x is replaced with NO, the
job step cannot be rolled out. When y is
replaced with YES, the job step can cause
rollout; when y is replaced with NO, the
job step cannot cause rollout. (If
additional main storage is required for the
job step, YES must be specified for y.) If
this parameter is omitted, ROLL=(YES,NO) is
assumed.

Notes:

• If the ROLL parameter is specified in
the JOB statement, the ROLL parameter
in the EXEC statements is ignored.

• When a job step uses a cataloged
procedure, it can be indicated whether
or not a single procedure step has the
ability to be rolled out and to cause
rollout of another job step. To
indicate this, the procedure stepname,
i.e., ROLL.procstepname, is included as
part of the ROLL parameter. This
specification overrides the ROLL
parameter in the named procedure step,
if one is present. As many parameters
of this form can be coded as there are
steps in the cataloged procedure.

• To indicate whether or not all of the
steps of a cataloged procedure have the
ability to be rolled out and to cause
rollout of other job steps, the ROLL
parameter can be coded without a
procedure stepname. This specification
overrides all ROLL parameters in the
procedure, if any are present.

DO STATEMENT

The data definition (DO) statement
identifies each data set that is to be used
in a job step, and it furnishes information
about the data set. The DO statement
specifies input/output facilities required
for using the data set; it also establishes
a logical relationship between the data set
and input/output references in the program
named in the EXEC statement for the job
step.

Figure 7 is a general format of the DD
statement.

Parameters used most frequently for
COBOL programs are discussed in detail.
The other parameters (e.g., SEP and AFF)
are mentioned briefly. For further
information, ·see the publication IBM
System/360 op~~~ig~£Y~~~~~ __ ~2Q-COll~~Q!
Languag~~efe~~£~.

Job Control Procedures 41

r------------------------T--------------.T-----------------------------------:;r
I Name I operation I Operand /

~~-fd~;;~---------~-~--i-;;-----------i-----~~~~-:~~:~-:::-::::-::::~---~
I rprocstep.ddname, I I . __ ~
l ________________________ ~ ______________ ~ _____________ -------------------------

r---,
I Operand2 I
~---~

Positional Parameters

[*] DATA
DUMMY

3

~ord Parameters .. 5

[DDNAME=ddname]

j DSNAME t
I DSN \

dsname
dsname(element)
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname
&&name
&&name(element)

11

[

dSname]
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

I. subparameter-listl l]

6

[
SEP=(SUbParameter list)7]
AFF=ddname

10

Positional Subparameters

[
UNIT=(name[, [n/P] [,DEFER]] [,SEP=(list of up to 8 ddnameS)])s]
UNIT=(AFF=ddname)

Positional Subparameters

10 12

SPACE=(j~~~ l
)averag~-reCord-length\

, (primary-quantity[,secondary-quantity],

[directory- or index-quantity]) [,RLSE]
[

, MXLG]
,ALX
,CCNTIG

[, ROUND])

SPACE=(ABSTR,(quantity,beginning-address[,directory- or index-quantity]»

SPLIT= (n,
1 CYL l
)average-record-lengthr

, (primary-quantity[,secondary-quantityl»

SUBALLOC=(
{

TRK } CYL
average-reccrd-length

, (prirnary-quantity[,secondary-quantityl

\ddnaroe }
[, directory-quanti tV]), ') stepname. ddname)

!stepnaroe.procstep.ddname L __ J

Figure 7. The DD statement (Part 1 of 2)

42

r---,
IOperand 2 <cont.) I
~---~

Positional Subparameters

\ VOLUME

) VOL
(:([PRIVATE), [RETAIN), [volume sequence number), [volume count))

Key~ord §gbparameters

[

,SER=<VOlume-serial-number[VOlume-seria l-number1 9 ••• >]
,REF= ~ ~~~~~:me (

*.stepname.ddname
*.stepname.procstep.ddname

[
LABEL=([data-set-sequence-number),) ~~ t

! NSL l
f SUL ,

DISP=([

NEW] OLD
SHR
MOD

SYSOUT=classname

[

,DELETE] ,KEEP
,PASS
, CATLG
,UNCATLG

[

,DELETE]
,KEEP
,CATLG
,UNCATLG

SYSOUT= (x[, program-name) [,form-no.)

[
, EXPD'I'=yyddd]
,RETPD=xxxx

[, PASSWORD))]

I
I
I
I
I
I
I
I
I
I
I

~---~
1The name field must be blank whe~ concatenating data sets. I
2All parameters are optional to allow a programmer flexibility in the use of the DD I
statement; however, a DD statement with a blank operand field is meaningless. I

3If the positional parameter is specified, keyword parameters other than DCB cannot bel
specified. I

4If subparameter-list consists of only one subparameter and no leading comma I
(indicating the omission of a positional subparameter) is required, the delimiting I
parentheses may be omitted.

5If subparameter-list is omitted, the entire parameter must be omitted.
6See "User-Defined Files" for the applicable subparameters.
7see the publication IBM System/360 O~Eati~~~~~~_JoQ Co~~rol_~~Qgua~_g~fer~~ce.
8If only name is specified, the delimiting parentheses may be omitted.
9If only one volume-serial-number is specified, the delimiting parentheses may be
omitted.

10The SEP and AFF parameters should not be confused with the SEP and AFF subparameters
of the UNIT parameter.

11The value specified may contain special characters if the value is enclosed in
apostrophes. If the only special character used is the hyphen, the value need not be
enclosed in apostrophes. If DSNAME is a qualified name, it may contain periods

I without being enclosed in apostrophes.
I 12The unit address may contain a slash, and the unit type number may contain a hyphen,
I without being enclosed in apostrophes, e.g., UNIT=293/S,UNIT=2400-2. I L ___ J

Figure 1. The DD statement (Part 2 of 2)

Job control Procedures 43

Name Field
ddname (Identifying the DD Statement)

is used:

• To identify data sets defined by
this DD statement to the compiler or
linkage editor (see "compiler Data
Set Requirements" and "Linkage
Editor Data Set Requirements").

• To relate the data sets defined in
this DD statement to a file
described in a COBOL source program
(see "User-Defined Files").

• To identify this DD statement to
other control statements in the
input stream.

procstep.ddname
is used to alter or add DD statements
in cataloged procedures. The step in
the cataloged procedure is identified
by procstep. The ddname identifies
either one of the following:

• A DD statement in the cataloged
procedure that is to be modified by
the DD statement in the input
stream.

• A DD statement that is to be added
to the DD statement in the procedure
step.

operand Field

* (Defining Data in an Input Stream)
indicates that data immediately
follows this DD statement in the input
stream. This parameter is used to
specify a source deck or data in the
input stream. If the EXEC statement
specifies execution of a program, only
one data set may be placed in the
input stream. The end of the data set
must be indicated by a delimiter
statement. The data cannot contain //
or /* in the first two characters of
any record. The DD * statement must
be the last DD statement of the job
step. In MVT, for a step with a
single input stream data set, DD * and
a /* statement are not required. The
system will supply bdth if missing.
The default DDNAME will be SYSIN.

DATA (Defining Data in an Input Stream)
also indicates a source deck or data
in the input stream. If the EXEC
statement specifies execution of a
program, only one data set may be
placed in the input stream. The end
of the data set must be indicated by a
delimeter statement. The data cannot
contain /* in the first two characters
of any record. The DD DATA statement

44

must be the last DD statement of the
job step. // may appear in the first
and second positions in the record,
for example, when the data consists of
control statements of a procedure that
is to be cataloged.

DUMMY (Bypassing Input/Output Operations on
the Data Set)
allows the user's processing program
to operate without performing
input/output operations on the data
set. The DUMMY parameter is valid
only for sequential data sets to which
reference is made by the basic
sequential or queued sequential file
processing techniques. If the DUMMY
parameter is specified, a read request
results in an end of data set exit. A
write request is recognized, but no
data is transmitted. No device
allocation, external storage
allocation, or cataloging takes place
for dummy data sets.

Note: For a file defined
program, this operand may
for a file opened OUTPUT.
the record area of a file
with DD DUMMY will result
results.

in a COBOL source
not be specified

Any reference to
opened OUTPUT
in unpredictable

In multiprogramming environments, data
in the input stream is temporarily
transferred to a direct-access device for
later high-speed retrieval. Normally, the
reader procedure assigns a blocking factor
for the data when it is placed on the
direct-access device. The programmer may
assign his own values through use of the
BLKSIZE parameter of the DCB parameter. He
may also indicate the number of buffers to
be assigned to transmitting the data,
through use of the BUFNO parameter. For
example, he may assign the following:

DCB=(BLKSIZE=800,BUFNO=2)

If the programmer omits these parameters or
assigns values greater than the capacity of
the input reader, it is assumed that the
established default values for the reader
are in effect.

DDNAME Parameter <Postponing the Definition
of a Data Set)

defines a pseudo data set that will
assume the characteristics of a real
data set if a subsequent DD statement
of the step is labeled with the
specified ddname. When the DDNAME
parameter is specified, it must be the
first parameter in the operand. All
other parameters are ignored and

should be omitted when the DDNAME
parameter appears (see "Using the
cataloged Procedures").

DDNAME Subparameter
ddname

names a DD statement that, if
present, supplies the attributes
of the data set. If it is not
present, the statement is
ignored.

DSNAME Parameter (Identifying the Data Set)
allows the programmer to specify the
name of the data set to be created or
to refer to a previously created data
set. Various types of names can be
specified (see "Using the DD
Statement" for a discussion of the
various names) as follows:

• Fully qualified names: For data
sets to be retrieved from or stored
in the system catalog.

• Generation data group names: For an
entire generation data group, or any
single generation thereof.

• Simple names: For data sets that
are not cataloged.

• Reference names: For data sets
whose names are given in the DSNAME
parameter of another DD statement in
the same job.

• Temporary .. names: For temporary data
sets that are to be named for the
duration of one job only.

If the DSNAME parameter is omitted,
the operating system assigns a unique
name to the data set. (This parameter
should be supplied for all except
temporary data sets to allow future
referencing of the data set.) DSNAME
may be coded DSN.

DSNAME Subparameters
dsname

specifies the fully qualified
name of a data set. This is the
name under which the data set can
be cataloged or otherwise
identified on the volume.

dsname(element)
specifies a particular generation of a
generated data group, a member of a
partitioned data set, or an area of an
indexed data set. To indicate a
generation of a generated data group,
the element is a zero or a signed
integer. To indicate a member of a
partitioned data set, the element is a
name. To indicate an area of an

indexed data set, the element is
PRIME, OVFLOW, or INDEX (see "Using
the DD Statement" for information
about generation data groups and
examples of partitioned data sets).

*.ddname
indicates that the DSNAME parameter
(only) is to be copied from a
preceding DD statement in the current
job step.

*.stepname.ddname
indicates that the DSNAME parameter
(only) is to be copied from the DD
statement, ddname, that occurred in a
previous step, stepname, in the
current job. If this form of the
subpararneter appears in a DO statement
of a cataloged procedure, stepname
refers to a previous step of the
procedure, or, if no such step is
found, to a previous step of the
current job.

*.stepname.procstep.ddname
indicates that the OSNAME parameter
(only) is to be copied from a DO
statement in a cataloged procedure.
The EXEC statement that called for
execution of the procedure, as well as
the step and DD statement of the
procedure, must be identified.

&&name
allows the programmer to supply a
temporary name for a data set that is
to be deleted at the end of the job.
The operating system substitutes a
unique symbol for this subparameter.
The programmer can use the temporary
name in other steps to refer to the
data set. The same symbol is
substituted for each recurrence of
this name within the job. Upon
completion of the job, the name is
dissociated from the data set. The
same temporary name can be used in
other jobs without ambiguity.

&&name(element}
allows the programmer to supply a name
for a member of a temporary
partitioned data set that will be
deleted at the end of the step.

DeB Parameter (Describin~th~~~tri£~~es of
the Data Set)

allows the programmer to specify at
execution time, rather than at
compilation time, information for
completing the data control block
associated with the data set (see
"Execution Time Data Set Requirements"
and "Additional File Processing
Information" for further information

Job Control Procedures 45

about the data control block and DCB
subparameters) •

The first subparameter of this
parameter may be used to copy DCB
attributes from the data set label of
a cataloged data set or from a
preceding DD statement (see the
publication IBM System/360 Operating
system: Supervisor and Data
Management Macro Instructions for
detailed information about DCB
subparameter).

SEP and AFF Parameters (Optimizing Channel
Usage)

allow the programmer to optimize the
use of channels among groups of data
sets. SEP indicates channel
separation and AFF indicates channel
affinity.

If neither parameter is supplied, any
available channel, consistent with the
UNIT parameter requirement, is
assigned. The affinity parameter
groups two or more data sets so that
they can be separated from another
data set requesting channel
separation. For indexed sequential
data sets these parameters are written
in the same way as those for any data
set. They can be used in succeeding
DD statements to refer to the first DD
statement defining an indexed
sequential data set. However, the
second and third DD statements cannot
request separation from or affinity to
one another because they are unnamed.
Thus, to establish channel separation
and affinity for all of the areas, the
name subparameter of the UNIT
parameter must be used to request
specific devices on specific channels.

UNIT Parameter (Requesting a Unit)
specifies the quantity and types of
input/output devices to be allocated
for use by the data set.

46

If the UNIT parameter is not specified
in the current DD statement, there are
several ways in which the unit
information may be inferred by the
system:

• If the current data set has already
been created and it is either being
passed to the current step, or if it
has been cataloged, any unit name
specified in this DD statement is
ignored.

• If the REF subparameter of the
VOLUME parameter is specified, the
current data set is given affinity

with the data set referred to; that
data set's defining DD statement
provides the unit information.

• If the current data set is to
operate in the split cylinder mode
with a previously defined data set,
it will reside on the unit specified
in the DD statement for the previous
data set.

• If the current data set is to use
space suballocated from that
assigned to a previously defined
data set, it will reside on the same
unit as the data set from which the
space is obtained.

• If the current data set is assigned
to the standard output class (SYSOUT
is specified), it is written on the
unit specified by the operator for
class A.

If the current data set is in the .input
stream (defined by a DD * or DD DATA
statement), the DD statement defining the
data set should not contain a UNIT
parameter.

If this parameter specifies a mass
storage device for a data set being
created, it is also necessary to reserve
the space the data set will occupy, using
another parameter of the DD statement.
Depending on the way in which the space
will be used, the SPACE, SPLIT, or SUBALLOC
parameter can be specified. These
parameters are discussed under individual
headings.

If the UNIT parameter specifies a tape
device, no SPACE, SPLIT, or SUBALLOC
parameters are required.

The UNIT parameter must be specified if
VOLUME=SER is specified in the DD
statement.

name
specifies the name of an input/output
device, a single cell within a data
cell drive, a device class name, or
any meaningful combination of
input/output devices specified by an
installation. (Mass storage devices
and magnetic tape devices can be
combined. No other device type
combination is allowed.) Names and
device classes are defined at system
generation time. The device class
names that are required for IBM
cataloged procedures and are normally
used by most installations are shown
in Figure 8. These names can be
specified by the installation at
system generation time.

n

P

The block size specified in the source
program (in the BLOCK CONTAINS clause
or in the record description) must
notexceed the maximum blo,ck si ze
permitted for the device. For
example, the maximum block size for
the IBM 2311 is 3,625 characters, and
the maximum block size for the IBM
2400 series is 32,760 characters.

Note: When device-independence is
specified by use of UT as the device
class in the ASSIGN statement in the
Environment Division, the device
chosen by the system will be dependent
on the DD statement. Therefore, if
the user's installation has both an
IBM 2311 and an IBM 2302 that may be
used as utility devices, the user
should write

BLOCK CONTAINS 3625 CHARACTERS

(or any number smaller than 3625) to
ensure that the block can be contained
on one track.

specifies the number of devices to be
allocated to the data set. If this
parameter is omitted, 1 is assumed.

specifies parallel mount.

DEFER
indicates deferred mounting. Deferred
mounting cannot be specified for a new
output data set on a mass storage
device or for an indexed data set.

SEP=(list of up to 8 ddnames)
specifies unit separation.

AFF=ddname
specifies unit affinity.

r----------T---------------T--------------,
IClass NamelClass FunctionslDevice Type I
~----------+---------------+--------------~
ISYSSQ I writing Imass storage I
I I reading I magnetic tape I
~----------+---------------+--------------~
ISYSDA I writing Imass storage I
I I reading I I L __________ i _______________ i ______________ J

Figure 8. Device Class Names Required for
IBM-Supplied Cataloged
Procedures

SPACE Parameter (Allocating Mass Storage
Space)

specifies space to be allocated in a
mass storage volume. Although SPACE
has no meaning for tape volumes, if a
data set is assigned to a device class
that contains both mass storage
devices and tape devices, SPACE should
be specified.

Two forms of the SPACE parameter may
be used, with or without absolute
track address (ABSTR). The ABSTR
parameter requests that allocation
begin at a specific address.

l
SP~~T~u!2Ear~ete~ ~
T~ ,
CYL
average-record-length

specifies the unit of measurement in
which storage is to be assigned. The
units may be tracks (ABSTR or TRK),
cylinders (CYL>, or records
(average-record-length, expressed as a
decimal number). In addition, the
ABSTR subparameter indicates that the
allocated space is to begin at a
specific track address. If the
specified tracks are already allocated
to another data set, they will not be
reallocated to this data set.

Note: For indexed data sets, only the
CYL or ABSTR subparameter is
permitted. When an indexed data set
is defined by more than one DD
statement, all must specify either CYL
or ABSTR; if some statements contain
CYL and others ABSTR, the job will be
abnormally terminated.

(primary-quantity[,secondary-quantityl
[,directory- or index-quantity])

specifies the amount of space to be
allocated for the data set. The
primary quantity indicates the number
of records, tracks, or cylinders to be
allocated when the job step begins.
For indexed data sets, this
subparameter specifies the number of
cylinders for the prime, overflow, or
index area (see "Execution Time Data
Set Requirements"). The secondary
quantity indicates how much additional
space is to be allocated each time
previously allocated space is
exhausted. This subparameter must not
be specified when defining an indexed
data set. If a secondary quantity is
specified for a sequential data set,
the program may receive control when
additional space cannot be allocated
to write a record. The directory
quantity is used when initially
creating a partitioned data set (PDS),

Job Control Procedures 47

RLSE

and it specifies the number of
256-byte records to be reserved for
the directory of the PDS. It can also
specify the number of cylinders to be
allocated for an index area embedded
within the prime area when a new
indexed data set is being defined (see
the publication IBM system/360
Operating system: Job Control
Language Reference).

NQig: The directory contains the name
and the relative position, within the
data set, for each member of a
partitioned data set. The name
requires 8 bytes, the location 4
bytes. Up to 62 additional bytes can
be used for additional information.
For a directory of a partitioned data
set that contains load modules, the
minimum directory requirement for each
member is 34 bytes.

indicates that all unused external
storage assigned to this data set is
to be released when processing of the
data set is completed.

{
MXIG }

~~TIG

ROUND

qualifies the request for the space to
be allocated to the data set. MXIG
requests the largest single block of
storage that is greater than or equal
to the space requested in the primary
quantity. ALX requests the allocation
of additional tracks in the volume.
The operating system will allocate
tracks in up to five blocks of
storage, each block equal to or
greater than the primary quantity.
CONTIG requests that the space
indicated in the primary quantity be
contiguous.

If this subparameter is not
specified, or if any option cannot be
fulfilled, the operating system
attempts to assign contiguous space.
If there is not enough contiguous
space, up to five noncontiguous areas
are allocated.

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.
It can be used only when average
record length is specified as the
first subparameter.

quantity

48

specifies the number of tracks to be
allocated. For an indexed data set,
this quantity must be equivalent to an
integral number of cylinders: it

specifies the space for the prime,
overflow, or index area (see
"Execution Time Data set
Requirements") •

beginning address
specifies the relative number of the
track desired, where the first track
of a volume is defined as O. (Track 0
cannot be requested.) The number is
automatically converted to an address
based on the particular device
assigned. For an indexed data set
this number must indicate the
beginning of a cylinder.

directory quantity
defines the number of 256-byte records
to be allocated for the directory of a
new partitioned data set. It also
specifies the number of tracks to be
allocated for an index area embedded
within the prime area when a new
indexed data set is being defined. In
the latter case, the number of tracks
must be equivalent to an integral
number of cylinders (see the
publication IBM ~yst~~360_QE~~~~ing
~~tem: __ Job~~~~ol ~~gg~~g~
Ref~!:~!·

SPLIT Parameter (Allocating Mass Storage
Spa~~l.

is specified when other data sets in
the job step require space in the same
mass storage volume, and the user
wishes to minimize access-arm movement
by sharing cylinders with the other
data sets. The device is then said to
be operating in a split cylinder mode.
In this mode, two or more data sets
are stored so that portions of each
occupy tracks within every allocated
cylinder.

Note: SPLIT should not be used when
one of the data sets is an indexed
data set.

SPLIT Subparameters:
n

indicates the number of tracks per
cylinder to be used for this data set
if CYL is specified. If the average
record length is specified, g is the
percentage of the tracks per cylinder
to be used for this data set.

{
CYL }
average-record-length

indicates the units in which the space
requirements are expressed in the next
subparameter. The units may be
cylinders <CYL) or physical records
(in which case the average record
length in bytes is specified as a
decimal number not exceeding 65,535).
If the average record length is

given, and the data set is defined to
have a key, the key length must be
given in the DCB parameter of this DD
statement.

primary-quantity
defines the number of cylinders or
space for records to be allocated to
the entire group of data sets.

secondary-quantity
defines the number of cylinders or
space for records to b~ allocated each
time the space allocated to any of the
data sets in the group has been
exhausted and more data is to be
written. This quantity will not be
split.

A group of data sets that share
cylinders in the same device is
defined by a sequence of DD
statements. The first statement in
the sequence must specify all
parameters except secondary quantity,
which is optional. Each of the
statements that follow the first
statement must specify only ~, the
amount of space required.

SUBALLOC Parameter (Allocating Mass storage
Space)

permits space to be obtained from
another data set for which contiguous
space was previously allocated. This
enables data sets to be stored in a
single volume. Space obtained through
suballocation is removed from the
original data set, and may not be
further suballocated. The SUBALLOC
parameter should not be used to obtain
space for an indexed data set.

Except for the subparameters
described below, the subparameters in
the SUBALLOC parameter have the same
meaning as those described in the
SPACE parameter.

SUBALLOC Subparameters:
ddname

indicates that space is to be
suballocated from the data set defined
by the DD statement, ddname, that
appears in the current step.

stepname.ddname
indicates that space is to be
suballocated from the data set defined
by the DD statement, ddname, occurring
in a previous step, stepname. If this
form of the subparameter appears in a
DD statement in a cataloged procedure,
stepname refers to a previous step of
the procedure, or if no such step is
found, to a previous step of the
current job.

stepname.procstep.ddname
indicates that space is to be
suballocated from a data set defined
in a cataloged procedure. The first
term identifies the step that called
for execution of the procedure, the
second identifies the procedure step,
and the third identifies the DD
statement that originally requested
space.

VOLUME (VOL) Parameter (Specifying Volume
Information)
-----Specifies information about the

volume(s) on which an input data set
resides, or on which an output data
set will reside. A volume can be a
tape reel, or a mass storage device.
Volumes can be used most efficiently
if the programmer is familiar with the
states a volume can assume. Volume
states involve two criteria: the type
of data set the programmer is defining
and the manner in which the programmer
requests a volume.

Data sets can be classified as one
of two types, temp2E~EY or
~2~~~~por~EY. A temporary data set
exists only for the duration of the
step that creates it. A nontemporary
data set can exist after the job is
completed. The programmer indicates
that a data set is temporary by
coding:

• DSNAME=&&name

• No DSNAME parameter

• DISP=(NEW,DELETE), either explicitly
or implied, e.g., DISP=(,DELETE)

• DSNAME=reference, referring to a DD
statement that defines a temporary
data set.

All other data sets are considered
nontemporary. If the programmer
attempts to keep or catalog a passed
data set that was declared temporary,
the system changes the disposition to
PASS unless DEFER was specified in the

Job Control Procedures 49

50

UNIT parameter. Such a data set is
deleted at the end of the job.

The manner in which the programmer
requests a volume can be considered
specific or nonspecific. A specific
reference is implied whenever a volume
with a specific serial number is
requested. Anyone of the following
conditions denotes a specific volume
reference:

• The data set is cataloged or passed
from an earlier job step.

• VOLUME=SER is coded in the 00
statement.

• VOLUME=REF is coded in the 00
statement, referring to an earlier
specific volume reference.

All other types of volume references
are nonspecific. (Nonspecific
references can be made only for new
data sets, in which case the system
assigns a suitable volume.)

The state of a volume determines
when the volume will be demounted and
what kinds of data sets can be
assigned to it.

Mass Storage Volumes: Mass storage
volumes differ from tape volumes in
that they can be shared by two or more
data sets processed concurrently by
more than one job. Because of this
difference, mass storage volumes can
assume different volume states than
tape volumes. The volume state is
determined by one characteristic from
each of the following groups:

Mount
Characteristics
Permanently

Resident
Reserved
Removable

Allocation
Characteristics
Public

Private
Storage

permanently resident volumes are
always mounted. The permanently
resident characteristic applies
automatically to:

• All physically permanent volumes,
such as 2301 Drum Storage.

• The volume from which the system is
loaded (the IPL volume).

• The volume containing the system
data sets SYS1.LINKLIB,
SYS1.PROCLIB, and SYS1.SYSJOBQE.

• Other volumes can be designated as
permanently resident in a special
member of SYS1.PROCLIB named
PRESRES.

permanently resident volumes are
always public. The reserved
characteristic applies to volumes that
remain mounted until the operator
issues an UNLOAD command. They are
reserved by a MOUNT command referring
to the unit on which they are mounted
or by a PRESRES entry. The removable
characteristic applies to all volumes
that are neither permanently resident
nor reserved. Removable volumes do
not have an allocation characteristic
when they are not mounted. A reserved
volume becomes removable after an
UNLOAD command is issued for the unit
on which it resides.

The allocation characteristics,
public, private, and storage, indicate
the availability status of a volume
for assignment by the system to
temporary data sets, and, if the
volume is removable, when it is to be
demounted. A public volume is used
primarily for temporary data sets and,
if it is permanently resident, for
frequently used data sets. It must be
requested by a specific volume
reference if a data set is to be kept
or cataloged on it. If a public
volume is removable, it is demounted
only when its unit is required by
another volume. The programmer can
change a public volume to private
status by specifying VOLUME=PRIVATE.
A private volume must be requested by
a specific volume reference. A new
data set can be assigned to a private
volume by specifying VOLUME=PRIVATE.
If the volume is reserved, it remains
mounted until the operator issues an
UNLOAD command for the unit on which
it resides. If it is removable, it
will be demounted after it is used,
unless the programmer specifically
requested that it be retained
(VOLUME=,RETAIN) or passed
(DISP=,PASS). Once a removable volume
has been made private, it will
ultimately be demounted. To use it as
a public volume, it must be remounted.
A ~12E~g~ volume is used as an
extension of main storage, to keep or
catalog nontemporary data sets having
nonspecific volume requests. 'I'he
programmer can assign the PRIVATE
option to storage volumes.

Table 3 shows how mass storage
volumes are assigned their mount and
allocation characteristics.

Table 3. Mass Storage Volume states
r---------------T-------------------------,
, I Allocation I
, I Characteristic I
I Mount ~--------T--------T-------~
,Characteristic IPublic IPrivate I Storage I
~---------------+--------+--------+-------~
I Permanently IPRESRES IPRESRES IPRESRESI
,Resident I or' 1 I
I ,Default , I ,
~---------------+--------+--------+-------~
I Reserved IPRESRES IPRESRES IPRESRESI
, I or I or I or ,
I I MOUNT I MOUNT I MOUNT I
I Icommand Icommand I command I
~---------------+--------f--------f-------~
I Removable 'Default IVOLUME= I na I
I I IPRIVATE I I
~---------------~--------~--------~---~---~
Ina = Not applicable I
L_~---------------------------------------J

Magnetic Tape Volumes: The volume
state of a reel of magnetic tape is
also determined by a combination of
mount and allocation characteristics:

Mount
Characteristics
Reserved
Removable

Allocation
Characteristics
Private
Scratch

The reserved-scratch combination is
not a valid volume state. Reserved
tape volumes assume their state when
the operator issues a MOUNT command
for the unit on which they reside.
They remain mounted until the operator
issues a corresponding UNLOAD command.
Reserved tapes must be requested by a
specific volume reference.

A removable tape volume is assigned
the private characteristic when one of
the following occurs:

• It is requested with a specific
volume reference.

• It is requested for allocation to a
nontemporary data set.

• The VOLUME parameter is coded with
the PRIVATE option.

A removable-private volume is
demounted after its last use in the
job step, unless the programmer
requests that it be retained.

All other tape volumes are assigned
the removable~scratch state. The tape
volumes remain mounted until their
unit is required by another volume.

Volume Parameter Facilities: The
facilities of the VOLUME parameter
allow the programmer to:

• Request private volumes (PRIVATE)

• Request that private volumes remain
mounted until the end of the job
(RETAIN)

• Select volumes when the data set
resides on more than one volume
(volume-sequence-nurnber)

• Request more than one nonspecific
volume (volume-count)

• Identify specific volumes (SER and
REF)

These facilities are all optional.
The programmer can omit the VOLUME
parameter when defining a new data
set, in which case the system assigns
a suitable public or scratch volume.

VOLUME Subparameters:
PRIVATE

indicates that the volume on which
space is being allocated to the data
set is to be made private. If the
PRIVATE, SER, and REF subparameters
are omitted for a new output data set,
the system assigns the data set to any
suitable public or scratch volume that
is available.

RETAIN
indicates that this volume is to
remain mounted after the job step is
completed. Volumes are retained so
that data may be transmitted to or
from the data set, or so that other
data sets may reside in the VOlume.
If the data set requires more than one
volume, only the last volume is
retained: the other volumes are
previously dismounted. Another job
step indicates when to dismount the
volume by omitting RETAIN. If each
job step issues a RETAIN for the
volume, the retained status lapses
when execution of the job is
completed.

volume-sequence-number
is a 1- to 4-digit number that
specifies the sequence number of the
first volume of the data set that is
read or written. The volume sequence
number is meaningful only if the data
set is cataloged and earlier volumes
are omitted.

Job Control Procedures 51

volume-count

SER

REF

specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used this
subparameter is required for every
multivolume output data set.

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphanumeric characters.
If it contains fewer than six
characters, the serial number is left
justified and padded with blanks. If
SER is not specified and DISP is not
specified as NEW, the data set is
assumed to be cataloged, and serial
numbers are retrieved from the
catalog. A volume serial number is
not required for new output data sets.
Two volumes should not have the same
serial number. When the SER parameter
is included, the volume is treated as
PRIVATE commencing with allocation for
the current job step. If this
subparameter is specified, the UNIT
parameter must also be specified.

indicates that the data set is to
occupy the same volume(s) as the data
set identified by dsname *.ddname,
*.stepname.ddname, or *.stepname.
procstep.ddname. Table 4 shows the
data set references.

When the data set resides in a tape
volume and REF is specified, the data
set is placed in the same volume,
immediately behind the data set
referred to by this subparameter.
When the REF subparameter is used, the
UNIT parameter, if supplied, is
ignored.

Table 4. Data Set References

If SER or REF is not specified, the
control program will allocate any
nonprivate volume that is available.

¥ill~!!_~~E~met~L.iQ~e£!:ibin~Data Set Label)
specifies information about the label
or labels associated with the data
set. If a data set is passed from a
previous job step, label information
is retained from the DD statement that
specified DISP=<,PASS). A LABEL
parameter, if specified in the DD
statement receiving the passed data
set, is ignored. If the LABEL
parameter is omitted and the data set
is not being passed, standard labeling
is assumed. The operating system
verifies mounting when the label
parameter specifies standard labels
"(SL) or standard and user labels
(SUL). Nonstandard labels can be
specified only when
installation-written routines to write
and process nonstandard labels have
been incorporated into the operating
system (see "User Label Processing"
and the publication IBM System/360
Operating System: Systems
Programmer's Guide for information on
writing these routines).

~~~_£ubp~ra~~~~rs: 
data-set-sequence-nurnber 

is a 4-digit number that identifies 
the relative location of the data set 
with respect to the first data set in 
a tape volume. (For example, if there 
are three data sets in a magnetic tape 
volume, the third data set is 
identified by data set sequence number 
0003.) If the data set sequence 
number is not specified, the operating 
system assumes that it is 0001. (This 
option should not be confused with the 
volume sequence number, which 
represents a particular volume for a 
data set.) 

r------------------------------T--------------------------------------------------------, 
I Option I Refers to I 
~------------------------------+--------------------------------------------------------~ 
IREF=dsname la data set named dsname I 
~------------------------------+--------------------------------------------------------~ 
IREF=*.ddname la data set indicated by DD statement ddname in the I 
I I current job step I 
~------------------------------+--------------------------------------------------------~ 
I REF=*.stepname.ddname la data set indicated by DD statement ddname in the job I 
I I step stepname I 
~------------------------------+--------------------------------------------------------~ 
IREF=*.stepname.procstep.ddnamela data set indicated by DD statement ddname in the I 
I Icataloged procedure step procstep called in the job stepl 
I I stepname (see "Using the Cataloged Procedures n ) I L ______________________________ ~ ________________________________________________________ J 

52 



}~~Lt 
{·SUL~ 

specifies the kind of label used for 
the data set. NL indicates no labels. 
SL indicates standard labels. NSL 
indicates nonstandard label.· SUL 
indicates standard and user labels. 

EXPDT=yyddd 
RETPD=xxxx 

specifies how long the data set shall 
exist. The expiration date, 
EXPDT=yyddd, indicates the year <yy) 
and the day (ddd) that the data set 
can be deleted. The period of 
retention, RETPD=xxxx, indicates the 
period of time, in days, that the data 
set is to be retained. If neither is 
specified, the retention period is 
assumed to be zero. 

PASSWORD 
indicates that the data set is to be 
made accessible only when the correct 
password is issued by the operator. 
The operating system assigns security 
protection to the data set. In order 
to retrieve the data set, the operator 
must issue the password on the 
console. 

DISP-Parameter (Specifying Data Set Status 
and Disposition) 

describes the status of a data set and 
indicates what is to be done with it 
after its last use, or at the end of 
the job. The job scheduler executes 
the requested disposition functions at 
the completion of the associated job 
step. If the step is not executed 
because of an error found by the 
system before trying to initiate the 
step (e.g., an error in a job control 
language statement), the remaining 
statements are read and interpreted; 
however, none of the succeeding steps 
are executed, and the requested 
dispositions are not performed. This 
parameter can be omitted for data sets 
created and deleted during a single 
job step. Additional information 
about the relationship between the 
DISP parameter and the volume table of 
contents is contained in the chapter, 
"Additional File Processing 
Information." 

DISP Subparameters: 
NEW 

indicates that the data set is being 
generated in this step. If the status 
is omitted, the NEW subparameter is 
assumed. 

OLD 

SHR 

MOD 

indicates that the data set specified 
in the DSNAME parameter already 
exists. 

has meaning only in a multiprogramming 
environment for existing data sets 
that reside on mass storage volumes. 
This subparameter indicates that the 
data set is part of a job in which 
operations do not prevent simultaneous 
use of the data set by another job. 
Under the MVT or MFT option, for a 
data set that is to be shared, the DD 
statement DISP parameter should be 
specified as DISP=SHR for every 
reference to the data set in a job. 
Unless this is done, the data set 
cannot be used by a concurrently 
operating job, and the job will have 
to wait until the particular file is 
free. 

causes logical positioning after the 
last record in the data set. It 
indicates that the data set already 
exists and that it is to be added to, 
rather than read. When MOD is 
specified and neither the volume 
serial number is given nor the data 
set cataloged or passed from an 
earlier job step, MOD is ignored and 
NEW is assumed. If the volume serial 
number is given, it is assumed that 
the data set is on the specified 
volume. 

DELETE 

KEEP 

causes the space occupied by the data 
set to be released for other purposes 
at the end of the current step. If 
the data set is cataloged, and the 
catalog is used to locate it, 
reference to the data set is removed 
from the catalog. If it is on a mass 
storage device, all references are 
removed from the volume table of 
contents, and the device space is made 
available for use by other data sets. 
If the data set is on tape, the volume 
in which the data set resides is then 
available for use by other data sets. 

ensures that the data set remains 
intact until a DELETE parameter is 
exercised in either the current job or 
some sUbsequent job. If the data set 
is on a mass storage device, it 
remains tabulated in the volume table 
of contents after completion of the 
job. When the volume containing the 
data set is to be dismounted, the 
operator is advised of the 
disposition. 

Job Control Procedures 53 



PASS 
indicates that the data set is to be 
referred to in a later step of the 
current job, at which time its 
disposition may be determined. When a 
subsequent reference to this data set 
is encountered, its PASS status lapses 
unless another PASS is issued. The 
final disposition of the data set 
should be specified in the last DD 
statement referring to the data set 
within the current job. 

While a data set is in PASS status, 
the volume(s) on which it resides are, 
in effect, retained; that is, the 
system will attempt to avoid 
demounting them. If demounting is 
necessary, the system will ensure 
proper remounting, through operator 
messages. The unit name specified on 
the DD statement in the receiving step 
must be consistent with the unit name 
in the passing step. 

CATLG 
causes the creation, at the end of the 
job step, of an index entry in the 
system catalog pOinting to the data 
set. The data set can be referred to 
by name in subsequent jobs, without 
the need for volume serial number or 
device type information from the 
programmer. cataloging also implies 
KEEP. 

UNCATLG 
causes the index entry that points to 
this data set to be removed from the 
index structure at the end of this 
step. The data set is not deleted. 
If it is on a mass storage volume, 
reference to it remains in the volume 
table of contents. 

~: The absence of DELETE, KEEP, 
PASS, CATLG, and UNCATLG indicates 
that no special action is to be taken 
to alter the permanent or temporary 
status of this data set. If the data 
set was created in this job, it will 
be deleted at the end of the current 
step. If the data set existed before 
this job, it will be kept. 

The third subparameter indicates the 
disposition of the data set in the event 
the job step terminates abnormally. This 
is the conditional disposition 
subparameter. Explanations for DELETE, 
KEEP, CATLG, and UNCATLG are the same ~s 
those for normal termination. The 
following points should be noted when using 
the third subparameter. 

54 

• If a conditional disposition is not 
specified and the job step abnormally 

terminates, the requested disposition 
(the second subparameter) is performed. 

• Data sets that were passed but not 
received by subsequent steps because of 
abnormal termination will assume the 
conditional disposition specified the 
last time they were passed. If a 
conditional disposition was not 
specified at that time, all new data 
sets are deleted and all other data 
sets are kept • 

• A conditional disposition other than 
DELETE for a temporary data set is 
invalid and the system assumes that it 
is DELETE. 

SYSOUT Parameter (Routing Data Set through 
the Output Stream) 

schedules a printing or punching 
operation for the data set described 
by the DD statement. 

SYSOUT Subparameters: 
classname 

specifies the system output class on 
which the data set is to be written. 
A classname is an installation 
specified i-character name designating 
the output class to which the data set 
is to be written. Each classname is 
related to a particular output unit. 
Valid values for the SYSOUT parameter 
are A through Z and 0 through 9. A is 
the standard output class. Both data 
sets and system messages can be routed 
through the same output stream when 
using a priority scheduler. In this 
case, the output class selected for 
the data sets must be the same output 
class as that select~d for the 
MSGCLASS parameter in the JOB 
statement. 

~2~§: Classes 0 through 9 should not 
be used except in cases where the 
other classes are not sufficient. 
These classes are intended for future 
features of systems using priority 
schedulers. 

(x[,program-name) [,form-no)) 
is used for priority scheduling 
systems only. When priority 
schedulers are used, the data set is 
usually written on an intermediate 
mass storage device during program 
execution, and later routed through an 
output stream to a system output 
device. The x can be an alphabetic or 
numeric character specifying the 
system output class. Output writers 
route data from the output classes to 
system output devices. The DD 



statement for this data set can also 
include a unit specification 
describing the intermediate mass 
storage device and an estimate of the 
space required. If there is a special 
installation program to handle output 
operations, its program-name should be 
specified. Program-name is the member 
name of the program, which must reside 
in the system library. If the output 
data set is to be printed or punched 
on a specific type of output form, a 
4-digit form number should be 
specified. Form-no. is used to 
instruct the operator of the form to 
be used in a message issued at the 
time the data set is to be printed. 

Notes: 

• If both the program-name and form-no. 
are omitted, the delimiting parentheses 
can be omitted. 

• If the Direct SYSOUT Writer is used to 
write a data set, both the form-no. 
and program-name are ignored. All 
parameters on the DD statement, i.e., 
UNIT or SPACE, are also ignored. 

ADDITIONAL DD STATEMENT FACILITIES 

By specifying certain ddnames, the 
programmer can request the operating system 
to perform additional functions. The 
operating system recognizes these 
special-purpose ddnames: 

• JOBLIB and STEPLIB to identify private 
user libraries 

• SYSABEND and SYSUDUMP to identify data 
sets on which a dump may be written 

JOBLIB AND STEPLIB DD STATEMENTS 

The JOBLIB and STEPLIB DD statements are 
used to concatenate a user's private 
library with the system library 
(SYS1.LINKLIB). Use of JOBLIB results in 
the system library being combined with the 
private library for the duration of a job; 
use of STEPLIB, for the duration of a job 
step. During execution, the library 
indicated in these statements is scanned 
for a module before the system library is 
searched. 

The JOBLIB DD statement must appear 
immediately after the JOB statement and its 
operand field must contain at least the 
DSNAME and DISP parameters. The DISP 

parameter must contain PASS as the second 
subparameter if the library is to be made 
available to later job steps. Only one 
JOBLIB statement may be specified for a job 
but more than one library may be specified 
on a JOBLIB statement. The JOBLIB 
statement is meant to concatenate existing 
private libraries with the system library. 
It need not be specified for load modules 
created in the job or for permanent members 
of the system library (see "Checklist for 
Job Control Statements" and "Libraries" for 
examples). 

The STEPLIB DD statement may appear in 
any position among the DD stateme'nts for 
the job step. The library should be 
defined as OLD. If the library is to be 
passed to other job steps, the second 
subparameter of the DISP parameter should 
be coded PASS. A later job step may then 
refer to the library by coding its STEPLIB 
DD statement as follows: 

IISTEPLIB DD DSNAME=*.stepname.STEPLIB, X 
II DISP=(OLD,PASS> 

The STEPLIB statement overrides the 
JOBLIB statement if both are present in a 
job step. 

SYSABEND AND SYSUDUMP DD STATE~lliNTS 

The ddnames SYSABEND or SYSUDUMP 
identify a data set on which an abnormal 
termination dump may be written. The dump 
is provided for job steps subject to 
abnormal termination. 

The SYSABEND DD statement is used when 
the programmer wishes to include in his 
dump the problem program storage area, the 
system nucleus, and the trace table if the 
trace table option had been requested at 
system generation time. 

The SYSUDUMP DD statement is used when 
the programmer wishes to include only the 
problem program storage area. 

The programmer may rout the dump 
directly to an output writer by specifying 
the SYSOUT parameter on the DD statement. 
In a multiprogramming environment, the 
programmer may also define the intermediate 
direct-access device by specifying the UNIT 
and SPACE parameters. 

Job Control Procedures 55 



PROC STATEMENT 

The PROC statement may appear as the 
first control statement in a cataloged 
procedure and must appear as the first 
control statement in an in-stream 
procedure. The PROC statement must contain 
the term PROC in its operation field. For 
a cataloged procedure, the PROC statement 
assigns default values to symbolic 
parameters defined in the procedure; its 
operand field must contain symbolic 
parameters and their default values. The 
PROC statement marks the beginning of an 
in-stream procedure: its operand may 
contain symbolic parameters and their 
default values. 

PEND-STATEMENT 

The PEND statement must appear as the 
last control statement in an in-stream 
procedure and marks the end of the 
in-stream procedure. It must contain the 
term PEND in the operation field. The PEND 
statement is not used for cataloged 
procedures. For further information about 
in-stream procedures refer to the topic 
"Testing a Procedure as an In-Stream 
Procedure" in "Using the Cataloged 
Procedures." 

COMMAND STATEMENT 

The operator issues commands to the 
system via the console or a command 
statement in the input stream. Commands 
can also be issued to the system via a 
command statement in the input stream. 
However, this should be avoided since 
commands are executed as they are read and 
may not be synchronized with execution of 
job steps. Command statements must appear 
immediately before a JOB statement" an EXEC 
statement, a null statement, or another 
command statement. 

The command statement contains 
identifying characters (//) in columns 1 
and 2, a blank name field, a command, and, 
in most cases, an operand field. The 
operand field specifies the job name, unit 
name, or other information being 
considered. 

Note: A command statement cannot be 
continued, it must be coded on one card or 
card image. 

56 

DELIMITER STATEMENT 

The delimiter statement marks the end of 
a data set in the input stream. The 
identifying characters /* must be coded 
into columns 1 and 2, the other fields are 
left blank. Comments are coded as 
necessary. 

Note: When using a system with MFT or MVT, 
the end of a data set need not be marked in 
an input stream that is defined by a DD * 
statement. 

NULL STATEMENT 

The null statement is used to mark the 
end of certain jobs in an input stream. If 
the last DD statement in a job defines data 
in an input stream, the null statement 
should be used to mark the end of the job 
so that the card reader is effectively 
closed. The identifying characters // are 
coded into columns 1 and 2, and all 
remaining columns are left blank. 

The comment statement is used to enter 
any information considered helpful by the 
programmer. It may be inserted anywhere in 
the job control statement stream after the 
JOB Statement. (The comment statement 
contains a slash in columns 1 and 2, and an 
asterisk in column 3. The remainder of the 
card contains comments.) Comments are 
coded in columns 4 through 80, but a 
comment may not be continued onto another 
statement. 

When the comment statement is printed on 
an output listing, it is identified by the 
appearance of asterisks in columns 1 
through 3. 

DATA SET REQUIREMENTS 

COMPILER 

Nine data sets may be defined for a 
compilation job step: six of these (SYSUT1, 
SYSUT2, SYSUT3, SYSUT4, SYSIN, and 
SYSPRINT) are required. The other three 
data sets (SYSLIN, SYSPUNCH, and SYSLIB) 
are optional. 



Page of GC28-6399~2, Revised 4/15/73, by TNL 3N28-1038 

For compiler data sets other than 
utility data sets, a logical record size 
can be specified by using the LRECL and 
BLKSIZE subparameters of the DCB parameter. 
The values spedified must be permissible 
for the device on which the data set 
resides. LRECL equals the logical record 
size, and BLKSIZE equals LRECL multiplied 
by Qr where B is equal to the blocking 
factor. If this information is not 
specified in the DO statement, it is 
assumed that the logical record sizes for 
the unblocked data sets have the followi~ 
default values: 

Unblocked 
Data.Set 
SYSIN 
SYSLIN 
SYSPUNCH 
~YSLIB 
SYSPRINT 

Default 
Value (bytes) 

80 
80 
80 
80 

121 

~; When using the SYSUT1, SYSUT2, 
SYSUT3, SYSUT4, SYSPRINT, SYSPUNCH, or 
SYSLIN data sets, the followiRg should se 
considered: If the primary space allocate<i 
for the data set is insufficient when 
compiling large progra~s, an area of core 
storage may be used to complete processiHg. 
This area would be used for an extra data 
extent block (DEB) and would be in the 
middle of the co~iler's required core. 
Therefore, enough contiguous space may R:~ 
be availab~e ~o load a compiler phase. 
Such a condition will result in an abRormal 
termination of the job. The pro~rammer 
should therefore attempt to allocate 
sufficient primary space to eliminate the 
need for a secondary allocation of s~ac~. 
The RLSE subparameter of the SPACE 
parameter should never be specified for any 
of these data sets. 

The ddname that must be used in the 8D 
statement describing the dataset appears 
as the heading for each descriptioR tn·at 
follows. Table 5 lists the function, 
device requirements, and allowaele devic:e 
classes for each data set (see "Appendix D: 
Compiler Optimization" for further 
information 08 blocked compiler data sets 
other than utility data sets). 

SYSUT1, -SYSUT2, . SYSUT3, .. SYSUT4 

The DD statements using these ddnaHles 
define utility data sets that are used by 
the compiler when processing the s.oaree 
module. The data set defined by the SY5UTl 
DO statement must be on a mass storage 
device. These data sets are temporary ._ 
have no connection with any other job step. 
For example, the DD statement 

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(40,10» 

specifies that the data set is to be 
written on any available mass storage 
device, with a primary allocation of 40 
tracks. A4ditional tracks, if required, 
are to be allocated in groups of 10. The 
data set is to be deleted at the end of the 
job step (by default). 

The data set defined by the SYSIN DD 
statement contains the input for the 
compiler, i.e., the source module 
statements that are to be processed. The 
input/output device assigned to this data 
set can be either the device transmitting 
the input stream (the device designated as 
SYSIN at system generation time) or a 
device designated by the programmer. When 
using a cataloged procedure, the DO 
statement describing this data set usually 
appears in the input stream. For example, 

//SYSIN DD * 
specifies that the input data set follows 
in the input stream. If the 'asterisk or 
DATA convention is used, the SYSIN DD 
statement must be the last DO statement in 
the job step. 

5YSPRINT 

This data set is used by the compiler to 
'produce a listing. output may be directed 
to a printer, a mass storage device, or a 
magnetic-tape device. The listing will 
include the results of the default or 
specified options of the PARM parameter 
(i.e., diagnostic messages, the object code 
listing). For example, in the DD statement 

//SYSPRINT DD SYSOUT=A 

SYSOUT is the disposition for printer data 
sets, and A is the standard output class 
for printer data sets. 

Note: If SYSOUT=A is not specified for 
SYSPRINT, MOD must be specified in the OISP 
parameter. 

SYSPUNCH 

The data set defined by the SYSPUNCH DO 
statement is used to punch an object module 
a~ck. This data set can be directed to a 

Job Control Procedures 57 



Pacge of GC28-:63'9-2, R'evised 4/15./73, by TNL GN28-1038 

¢ardlp_d~, mass storage device, or 
tnag.netie tape. For example, in the DO 
statemeR~ 

//SYSPUNCH 90 SYSODT=B 

SYS0UT is the disposition for punch data 
sets·aila B is the standard output class for 
.• 'Wlch data sets. 

Note; If SYSF5NCH is defined as a 
part.itioned da,t.a set (PDS), then it must 
previously have been defined, and OISP=OLD 
must se specified. 

SYSLIN 

The d.evice defined by the SYSLIN 00 
statement is us'ed by the compiler to store 
an object mo~ule. It may be on a mass 
storaCJeor magnetic tape device. For 
example: 

//SYSLIN DO 
// 
// 
// 

DSNAME=&&GOFILE, 
DISP=(MOD,PASS), 
UNIT=SYSDA, 
SPACE=(TRK,(30,10» 

x 
X 
X 

The temrP0rary n.ame of the data set is 
GOFIlsE, the parameter DISP=(MOD,PASS) 
indicates tl:latthe data is to be created or 
aaaed to in this job step aDd is to be 
passed to another job step, which may be 
thf! linkage editor step. The device to be 

58 

assigned for storage isa mass storage 
device on which 30 tracks are initially 
allocated to the data set. If more space is 
needed, tracks are allocated 10 at a time. 

Note: If SYSLIN is defined as a 
partitioned data set (PDS), then it must 
previously have been defined, and DISP=OLO 
must be specified. 

SYSLIB 

The SYSLIB DO statement .defines the 
library (PDS) that contains the data 
requested by a COpy statement (in the 
source module) or by a BASIS card in the 
input stream. Note that more than one 
partitioned data set may be used for the 
library function by concatenating them with 
SYSLIB (see "Libraries" for an example). 
Libraries must always be on mass storage 
devices. Only one SYSLIB statement may be 
used in a compilation job step. For 
example, in the DO statement 

//SYSLIB DO OSNAME=USERLIB,DISP=OLD 

the name of the library is USERLIB, and 
DISP=OLD indicates that the library has 
been created in a previous job and is 
cataloged, or has been created in a 
previous step in this job. No other 
information need be given if the specified 
library has been cataloged. 



Table 5. Data Sets Used for Compilation 
r----------T--------~---T---------------------T--------------------T--------------------, 
I I I I Device I Allowable I 
I ddname I Type I Function I Requirements I Device Classes I 
~----------f------------f---------------------f--------------------f--------------------~ 
ISYSIN IInput/outputlReading the source Icard reader ISYSSQ, SYSDA, or thel 
I (required) I ,program IIntermediate storagelinput stream device I 
, I' I I (specified by DD * I 
I I I I lor DD DATA) I 
~----------~ ~---------------------f--------------------f--------------------~ 
ISYSPRINT , ,Writing the storage 1 Printer ISYSSQ, SYSDA, stand-I 
I (required) I ,map, listings, and IIntermediate storagelare output class A I 
I I I and messages, I , 
~----------~ ~---------------------+--------------------+--------------------~ 
ISYSPUNCH I lpunching the object ICard punch ISYSCP, SYSSQ, SYSDA, I 
I (optional) , Imodule deck IMass storage Istandard output , 
I 'I I Magnetic tape I class B I 
~----------~ ~---------------------f--------------------f--------------------~ 
ISYSLIN I ,Creating an object IMass storage \SYSSQ, SYSDA I 
\ (optional) \ Imodule data set as IMagnetic tape I \ 
I , loutput from the com- I \ , 
I I I piler and input to I I , 
I I Ithe linkage editor I I I 
~----------+------------+---------------------+--------------------f--------------------~ 
ISYSUTl I Utility IWork data set needed IMass storage \SYSDA \ 
I (required) \ Iby the compiler I I I 
I \ Iduring compilation I I \ 
~-------.---~ ~---------------------+--------------------f--------------------~ 
ISYSUT2 I IWork data set needed IMass storage ISYSSQ, SYSDA I 
I (required) , I by the compiler I Magnetic tape I I 
I I Iduring compilation I I I 
~----------~ ~---------------------+--------------------+--------------------~ 
ISYSUT3 I IWork data set needed IMass storage ISYSSQ, SYSDA I 
I (required) , Iby the compiler IMagnetic tape I , 
I I Iduring compilation I I I 
~----------~ ~---------------------+--------------------f--------------------~ 
ISYSUT4 I IWork data set needed IMass storage ISYSSQ, SYSDA , 
I (required) I I by the compiler I Magnetic tape I \ 
I , Iduring compilation I \ I 
~----------+------------+---------------------+--------------------+--------------------~ 
ISYSLIB I Library IOptional user source IMass storage ISYSDA I 
I (optional) I Iprogram library I \ I L __________ ~ ____________ ~ _____________________ ~ ____________________ ~ ____________________ J 

LINKAGE EDITOR 

Five data sets are required for linkage 
editor processing. Others may be necessary 
if secondary input is specified. In the 
following discussions, the ddname that must 
be used in the DD statement describing the 
data set appears as the heading for each 
description of the particular data set. 
For any user-defined data set, the ddname 
is defined by the programmer. Table 6 
lists the function, device requirements, 
and allowable device classes for each data 
set. 

SYSLIN 

The SYSLIN DD statement defines the data 
set that is primary input to linkage editor 
processing. Normally this data set 
consists of the output from a previous 
compilation job step. The primary input 
may also be linkage editor control 
statements, such as the INCLUDE, LIBRARY, 
or OVERLAY statements (see "Calling and 
Called Programs"). The input device 
assigned to this data set is either the 
device transmitting the input stream, if 

Job Control Procedures 59 



Table 6. Data Sets Used for Linkage Editing 
r--------------T-------T----------------------T--------------T--------------------------, 
! ! I I Device I Allowable I 
I ddname I Type I Function I Requirements I Device Classes I 
~--------------+-------+----------------------+--------------+--------------------------~ 
ISYSLIN IInput/ IPrimary input data, IMass storage ISYSSQ, SYSDA, or the input I 
I (required) !output I normally the output IMagnetic tape I stream device (specifiedl 
I I I of the compiler ICard reader I by DD * or DD DATA) I 
~--------------~ I----------------------t--------------t--------------------------~ 
!SYSPRINT I IDiagnostic messages I Printer ISYSSQ, standard output I 
I (required) I IInformative messages I Intermediate I class A I 
I I I Module map J storage I I 
I I ICross reference list I I I 
~--------------~ I----------------------t--------------t--------------------------~ 
!SYSLMOD I IOutput data set for IMass storage ISYSDA I 
I (required) I I the load module I I I 
~--------------t-------t----------------------t--------------t--------------------------~ 
I SYSUT1 I Utility I Work data set I Mass storage I SYSDA I 
I (required) I I I I I 
~--------------t-------t----------------------t--------------t--------------------------~ 
tSYSLIB lLibrarylAutomatic call librarylMass storage ISYSDA I 
I (required) I I (SYS1.COBLIB is the I I I 
I for COBOL I I name of the COBOL I I I 
I Library I I subroutine library) I I I 
I subroutines I I I I I 
~--------------+-------t----------------------+--------------+--------------------------~ 
I User-specified I IAdditional object IMass storage ISYSDA, SYSSQ I 
I (optional) I I modules and load IMagnetic tape I I 
I I I modules I I I L ______________ ~ _______ ~ ______________________ ~ ______________ ~ __________________________ J 

the input is an object module deck, or a 
device designated by the programmer. 
However, the data set may simply be passed 
from the previous compilation job step. 
For example, in the OD statement 

//SYSLIN 
// 

DO DSNAME=*.STEPNAME.SYSLIN, X 
OISP=(OLD,DELETE) 

the data set is defined in the SYSLIN DD 
statement contained in the compiler job 
step, STEPNAME. DISP=(OLD,DELETE) 
indicates that the data set was created in 
a previous job step and is to be deleted·at 
the end of this job step. 

SYSPRINT 

The data set defined by the SYSPRINT DO 
statement is used by the linkage editor to 
produce a listing. For example: 

//SYSPRINT DO SYSOUT=A 

Output may be directed to a printer or to 
magnetic tape. The listing may include any 
options specified'by the PARM parameter of 
the EXEC statement (a module map or cross 
reference list, diagnostic or informative 
messages, etc.). 

60 

The SYSLMOD DD statement defines the 
output data set, in this case the load 
module. The load module must be placed in 
a library as a named member. The library 
can be the Link Library (SYS1.LINKLIB) or a 
private user-defined library. Such 
libraries must always reside on a mass 
storage device, and space for the library 
is allocated when the library is created. 
For example, in the OD statement 

//SYSLMOD OD DSNAME=SYS1.LINKLIB(MEMBER) ,X 
// DISP=OLD 

the load module, MEMBER, is stored as a 
member of the link library. DISP=OLO 
indicates that the library is already 
created and additions are to be made to it. 

//SYSLMOO OD 
// 
// 
// 
// 

OSNAME=LIB1(BALANCE), 
DISP=(NEW, CATLG), 
VOLUME=SER=llllll, 
SPACE= (TRK, (40,,10,1) ), 
UNIT=SYSDA 

x 
X 
X 
X 

The load module, BALANCE, is to be a member 
of a library, LIB1, which is to be created 
in this job step, with BALANCE as its 



firstmember. The mass storage volume to 
which it is directed is identified by the 
serial number, 111111. A primary quantity 
of 40 tracks is allocated to the library 
with an additional allocation for one 
256-byte record to be used for the 
directory. If more space is needed for the 
library, tracks are added, 10 at a time. 
(However, no additional space can be 
allocated for the directory.) 

~: If the load module is placed in a 
private library, the JOBLIB DD statement 
must be specified in subsequent jobs that 
execute load modules from the library. 

SYSUTl 

The SYSUTl DD statement defines a 
utility data set used by the linkage editor 
when processing object modules and load 
modules. The data set must be on a mass 
storage device. It is a temporary data set 
and has no connection with any other job 
step. For example: 

//SYSUTl DD UNIT=SYSDA,SPACE=(TRK, (40,10» 

The data set is initially allocated 40 
tracks on any available mass storage 
device. If more space is needed, tracks 
are added, 10 at a time. A temporary name 
is assigned to the data set for the job 
step. 

SYSLIB 

The SYSLIB DD statement assigns the 
named partitioned data set to the automatic 
call library from which modules may be 
automatically obtained by the linkage 
editor to resolve external references. 

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR 

This statement assigns the COBOL subroutine 
library to the automatic call library. 
When there is a possibility that the 
compiler may have generated calls to any 
COBOL library subroutines, the SYSLIB 
statement must be specified (see "Appendix 
B: COBOL Library Subroutines" for a list 
of library subroutines, their functions., 
and entry points). 

Note: The SYSLIB statement can also define 
a-s€quential data set (see "Libraries"). 

~~~E=§Eecified Data Sets 

Additional data sets may be defined for
linkage editor processing. These data sets
may be used as additional input sources of
object modules or load modules. They may
also be concatenated with the primary input
data set or the automatic call library (see
"Libraries").

LOADER

One data set (SYSLIN) is required for
loader processing. Two are optional
(SYSLIB, SYSLOUT). (These ddnames can be
changed during system generation with the
LOADER macro instruction.) In addition,
any DD statements and data required by the
loaded program must be included in the
input deck.

In the following discussions, the
default ddname for the DD statement
describing the data set appears as the
heading for each description of the
particular data set.

The SYSLIN DD statement defines the data
set that is primary input to the loader.
This input can be either object modules
produced by the COBOL compiler or load
modules produced by the linkage editor, or
both. The loader allows both object module
and load module concatenation on SYSLIN.
The data sets defined by the SYSLIN DD
statements can be either sequential data
sets or members of a partitioned data set.

The SYSLIB DD statement defines the data
set containing IBM or user-written library
routines to be included in the loaded
program. The SYSLIB data set is searched
when unresolved references remain after
processing SYSLIN and, optionally,
searching the link pack area of MVT. The
library may contain either object modules
or load modules but not both. The data set
defined by the SYSLIB DD statement must be
a partitioned data set.

Job Control Procedures 61

SYSLOUT

The SYSLOUT DD statement defines the
data set used for error and warning
messages and for an optional map of
external references. The record format of
SYSLOUT must be FA, FBA, or FBSA.

EXECUTION TIME DATA SETS

Any number of data sets may be used for
execution time processing. These data
sets, or files, are identified in the
source program, and each must be described
by a DD statement. The ddname is used to
link the DD statement to the COBOL ASSIGN
clause in the source program that specifies
the ddname. DD statement requirements for
the DISPLAY, ACCEPT, EXHIBIT, and TRACE
statements are discussed in the following
text. A DD statement that specifies an
abnormal termination dump is also
discusse'd. Use of the Sort and RERUN
features require additional DD statements.
For information about these statements, see
"Using the Sort Feature" and "Using the
Checkpoint/Restart Feature."

DISPLAY Statement

The DISPLAY statement requires an
associated DD statement unless the data is
to be displayed on the console. If a DD
statement for a DISPLAY statement is not
specified, the DISPLAY statement becomes
null, and message IKF999I, "UNSUCCESSFUL
OPEN FOR SYSOUT" is issued. The DD
statements needed for each form of the
DISPLAY statement are as follows:

Example 1:

1
identif ier I·

DISPLAY ••• UPON SYSPUNCH
literal .

//SYSPUNCH DD applicable parameters

It is assumed that SYSPUNCH is an
unblocked data set that has a logical
record length of 80 characters. For
example:

//SYSPUNCH DD SYSOUT=B

However, the programmer can specify a
blocked data set by using the subparameters
of the DCB parameter as follows:

62

RECFM=FB,BLKSIZE=n*80

where:

g is the blocking factor

SYSPUNCH must be on a device where blocking
is permitted. For example:

//SYSPUNCH
//
//
//

DD UNIT=SYSSQ,
DCB=(RECFM=FB,
BLKSIZE=160),
LABEL= (, NL)

When the UPO~ option is omitted, SYSOUT is
the default option.

1• identifier~ ...
DISPLAY

literal

//SYSOUT DD applicable parameters

X
X
X

It is assumed that SYSOUT is an
unblocked data set that has a line width of
121 (i-byte per control character)
characters.

For example:

//SYSOUT DD SYSOUT=A

However, the programmer can specify an
alternate line width and/or a blocked data
set by using the DCB parameter. To specify
an alternate line width, the subparameters
of the DCB parameter are used as follows:

LRECL=line width+l,BLKSIZE=LRECL value

To specify a blocked data set, the
subparameters are used as follows:

RECFM=FBA" LRECL=line width+l,
BLKSIZE=n*(LRECL value),

where:

g is a blocking factor

SYSOUT must be on a device where blocking
is permitted. The extra character in LRECL
allows for the carriage control character.
For example, to specify an alternate line
width, the following SYSOUT statement can
be used.

//SYSOUT
//

DD SYSOUT=A, DCB= (LRECL=133 , X
BLKSIZE=133)

To specify a blocked data set, the
following SYSOUT statement can be used.

/ISYSOUT
//
/1
/1
/1
//

DD DSNAME=PR I NT OUT ,
UNIT=SYSDA, ••• ,
DCB=(RECFM=FBA,
LRECL=121,
BLKSIZE=60S),
VOLUME=SER=llllll

The DISPLAY statement can use a
mnemonic-name rather than a system-name.

Example.3:

x
X
X
X
X

DISPLAY ••• UPON mnemonic-name {
identifier}

literal

where mnemonic-name is associated with the
words SYSPUNCH or SYSOUT in the Environment
Division.

{
SYSPUNCB}

/1 DD applicable parameters
SYSOUT

ACCEPT Statement

The ACCEPT statement requires an
associated DD statement unless the data is
being accepted from the console. If a DD
statement for an ACCEPT statement is not
specified, the ACCEPT statement becomes
null, and message IKF999I nUNSUCCESSFUL
OPEN FOR SYSINn is issued. The DD
statements for each form of the ACCEPT
statement are as follows:

Example.l:

ACCEPT identifier

When the FROM option is omitted, SYSIN is
the default option.

/ISYSIN DD applicable parameters

Example. 2:

ACCEPT identifier FROM mnemonic-name

where mnemonic-name is associated with the
word SYSIN in the Environment Division.

//SYSIN DD applicable parameters

It is assumed that SYSIN is an unblocked
data set that has a logical record length
of 80 characters.

For example:

//SYSIN DD *
(data)

However, the programmer can specify a
blocked data set by using the subparameters
of the DCB parameter as follows:

RECFM=FB,BLKSIZE=n*80

where:

g is the blocking factor

SYSIN must be on a device where blocking is
permitted. For example:

//SYSIN
//
//
//

DD UNIT=2400, ••• ,
DCB= (RECFM= FB,
BLKSIZE=160) ,
LABEL= (,NL)

X
X
X

If a logical record length of othertnan 80
characters is desired, it must be specified
in the LRECL field 0-£ the DCB paramet-er.

The EXHIBIT or TRACE statement requires
a SYSOUT DD statement as discusses for
DISPLAY.

Note: If the job step a.lready includes a
SYSOUT DD statement for some other use,
another may not be inserted since all
SYSOUT output from any source in the jOb
step will be merged onto the one SYSOUT
data set defined for that job step.

To obtain a dump in case the job is
abnormally terminated, one of the fallowing
DD statements must be used:

//SYSABEND DD applicable parameters.

IISYSUDUMP DD applicable parameters.

The dump provided when the SYSABEND DO
statement is used includes the system
nucleus, the program storage area, and a
trace table, if the trace table option was
requested at system generation. The
SYSUDUMP DD statement provides a GUIllp·of
the program storage area. The applicable
parameters are those for a standard
sequential data set. If the dump is routes
through the output stream and written on a
system output device, the followin~ DO
statement may be used:

//SYSUDUMP DD SYSOUT=A

Job Control Procedures 63

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

USER-FILE PROCESSING'

USER~DEFINED FILES

Files that are processed in a COBOL
program must be described as data sets to
the operating system. Whenever a file is
specified in a program by the following
statement:

SELECT [OPTIONAL] file-name
ASSIGN TO system-name

this file must be described in an FD
file-name entry and in a DD statement in
the execution-time job step. The ddname in
the DO statement is a portion of the
system-name specified in the ASSIGN TO
clause. In the system-name

UT-2400-S-TAXRATE

TAXRATE is the ddname portion of the
system-name.

Note: The device-number specified in the
system-name is used by the compiler for
diagnostic purposes only, except for
spanned records [that is, for RECORDING
MODE S the block length for the file is
checked against the maximum block length
allowed for the particular device
specified, and the smaller of the two
lengths is used (placed in the DCB for the
job)]. Actual device allocation is a
function of the DD statement.

FILENAMES AND DATA SET NAMES

The terms "file" (COBOL usage) and "data
set" (operating system usage) have
essentially the same meaning. There may,
however, be a difference between the
file-name and the data set name. The data
set name always represents a specific data
set. The file-name can, at different
times, represent different data sets~ The
DD statement allows a programmer to select,
at the time his program is executed, the
specific data set that is to be associated
with a particular file-name. This facility
can be especially powerful when applied to
input data sets.

The file-name is a name known within the
COBOL program. Changing a file-name
requires changing input/output statements
and recompiling the program. Changing a DD
statement when a program is executed is a
simple procedure.

As an example, consider a COBOL program
that might be used in exactly the same way
for several different master files. It
might contain the clause

64

SELECT MASTER ASSIGN TO
DA-2302-D-MASTERA ••••

In that case, the following DD statements,
used at different times, would assign the
different named data sets to the program:

//MASTERA
//MASTERA
//MASTERA

DD DSNAME=MASTER1, •••
DD DSNAME=MASTER2, •••
DO DSNAME=MASTER3, •••

If the first DD statement appe9rs in the
job step that calls for execution of the
program, any reference within the program
to MASTER is a reference to the data set
named MASTER1; if the second DD statement
appears, the reference is to MASTER2i if
the third, the reference is to MASTER3.

However, if a file-name within a program
is always to be applicable to only a single
dat~ set, the names might be written as
follows:

SELECT TAXRATE ASSIGN TO
UT-2400-S-TAXRATE •••

The applicable DD statement might be:

//TAXRATE DO DSNAME=TAXRATE, •••

Of the names, the ddname portion of the
system-name that appears ,in the ASSIGN
clause and the ddname of the DD statement
must always be the same. The file-name and
the data set name may be the same, or they
may be different. (Of course, the
file-name in the SELECT sentence must be
the same as the FD name.)

If two or more files on direct-access
devices have the same ddname and are open
at the same time (i.e., the output from the
files is being merged into one data set),
the files must have no conflicting
attributes. The foregoing also applies to
SYSOUT data sets if they are written on an
intermediate direct-access device.

The use of the DISPLAY, EXHIBIT, or
READY TRACE verbs causes the compiler to
open its own file whose ddname is SYSOUT.
If the programmer has also assigned one of
his output files to SYSOUT, he must ensure
that he has opened, written', and closed, his
file before the first execution of any of
the aforementioned verbs. Additional
considerations when using the Sort feature
are detailed under "Additional DD
Statements" in the chapter entitled "Us'ing
the Sort Feature".

SPECIFYING INFORMATION ABOUT A FILE

Some of the information about the file
must always be specified in the FD entry,
SELECT sentence, APPLY, and other COBOL
clauses. Other information must be
specified in the OD statement. For
example, the amount of space allocated for
a mass storage output file must be
specified in the 00 statement by the SPACE,
SPLIT, or SUBALLOC parameters. Certain
characteristics of files cannot be
expressed in the COBOL language, and may be
specified on the OD statement for the file
by the OCBparameter. This parameter
allows the programmer to specify
information for completing the data control
block associated with the file (see
"Additional File Processing Information"
for a discussion of the data control block,
and "Appendix C: Fields of the Data
Control Block").

Each file used in the program must be
referred to by a particular file processing
technique. Four processing techniques are
discussed in this publication. They are
standard sequential (QSAM), direct (BSAM,
BDAM) , relative (BSAM, BDAM) , and indexed
(QISAM, BISAM).

A fifth processing technique, called
partitioned data organization (BPAM), is
discussed throughout the publication, when
it is used for program storage.

A partitioned data set (POS) is composed
of named, independent groups of sequential
data, each of which is called a member.
Each member has a simple name stored in a
directory that is part of the data set and
that contains the location of each member's
starting point. Partitioned data sets are
used to store programs, and are often
referred to as libraries.

The full range of facilities available
in BPAM are not available to the COBOL
programmer. A partitioned data set may be
referred to in COBOL only by treating it as
a standard sequential data set.

FILE PROCESSING TECHNIQUES

OATA SET ORGANIZATION

A data set used by a COBOL program can
have one of four types of organization:
standard sequential, direct, relative, and
indexed. The first type (sequential) may
be on any input/output device. All other
types must be on mass storage devices (see
Figure 9 for information in determining the
file processing technique to be used,
according to data set organization).

1. A standard sequential data set is one
in which records are organized solely
on the basis of their successive
physical positions.

2. A direct data set is one in which
records are referred to by use of
relative ~~~ addressing. An ACTUAL
KEY specifies the track relative to
the first track allocated to the data
set and identifies the record on the
track.

3. A relative data set is one in which
records-are referred to by use of
relative record addressing. A NOMINAL
KEY identifies the record location
relative to the first record in the
data set.

4. An indexed data set is one in which
recordS-are arranged on the tracks of
a mass storage device so as to permit
access in logical sequence (according
to a key that is part of every
record). A separate index or set of
indexes maintained by the system
indicates the location of each record.
This permits random, as well as
sequential, access to any record.

User File Processing 65

r---------------------T------------------T-----------------T-------------T--------------,
, , I Permissible I , I
, \ACCESS Clause and I Record Formats] I File I
, File Processing ,organization Field~-------T---------~ Device I Processing I
, Requirements I (N) in System-namelBlockedlUnblockedlRequirements I Technique ,
~---------------------f------------------f---~---f---------f-------------f--------------~
,Write, read, and ,ACCESS SEQUENTIAL IF,V,S IF,V,U JMass Storage IQSAM I
I update standard ,or ACCESS clause I I ,Magnetic Tapel I
, sequential file ,is omitted I I IUnit Record , I
I ,N=S I" I ,
~---------------------f------------------f-------f---------f-------------f--------------~
,Write and read a ,ACCESS SEQUENTIAL , IF IMass Storage ,BSAM ,
, mass storage file I or omitted I I , I ,
, with relative I N=R I 1 I , I
, record addressing , I I , , I
~---------------------f------------------f---~---f---------f-------------f--------------~
,Read and update I ACCESS RANDOM I I F I Mass Storage I BDAM I
I a mass storage IN=R I" , ,
I file with relative , 'I I I ,
I record addressing I 'I' I I
~---------------------f------------------f-------f---------f-------------f--------------~
,Create and read a ,ACCESS SEQUENTIAL I IF,V,U,S IMass Storage IBSAM I
I mass storage file , or omitted , I I I I
, with relative IN=D I I] I I
I track addressing I I I I , ,
~---------------------f------------------f-------f---------f-------------f--------------~
I Create, read, update, IACCESS RANDOM I JF,V,U,S IMass Storage IBDAM I
I and insert into a IN=D or W(REWRITE) I I I I I
I mass storage file I I I 1 I I
, with relative I 'I I , ,
, track addressing , I I J I I
~---------------------f------------------+-------+---------+-------------+--------------~
,Create a mass IACCESS SEQUENTIAL IF IF IMass Storage IQISAM I
, storage file with , or omitted I I I I I
, indexed sequential IN=I 'I I I I
I organization I I I I I I
~---------------------+------------------+-------+---------+-------------+--------------~
IRead and update IACCESS SEQUENTIAL IF IF IMass Storage IQISAM I
I a mass storage I or omitted I I J I I
I file with indexed I N=I I I I I I
,organization I 'I) I I
~---------------------+------------------+-------+---------+-------------+--------------~
I Read, update, IACCESS RANDOM I F I F I Mass Storage I BISAM I
I and insert into IN=I I I 1 I I
, a mass storage I I I I I I
I file with indexed I \ I J I I
I random , \ I I I I
,organization \ I I I \ I L _____________________ i __________________ i __ -_--_i _________ i _____________ i ______________ J

Figure 9. Determining the File Processing Technique

ACCESSING A STANDARD SEQUENTIAL FILE

A standard sequential file may only be
accessed sequentially, i.e., records are
read or written in the order they appear on
the file. The file processing technique
used to create and retrieve a standard
sequential file is QSAM <Queued Sequential
Access Method). Table 7 shows the COBOL
clauses that may be used with these files.
Special considerations for these clauses
are as follows:

1. The RESERVE clause can be used to
specify more buffer areas, allowing

66

overlap of input/output operations
with the processing of data. If this
clause is not used, additional buffers
may be specified by using the BUFNO
option in the DD statement. If no
additional buffer areas are specified,
two buffers are reserved by the
system. When the SAME AREA clause is
specified for the file, the number of
buffers used is determined from the
RESERVE clause or if the RESERVE
clause is not present, it is given a
default of two. The BUFNO option in
the DD statement is ignored if the
SAME AREA clause is specified.

Table 7. COBOL Clauses for Sequential File Processing

Data MIaqe-a DevIce ACcess KEY
Teehalquea Type Method a_

QSAM TAPE SEQUENTIAL NOT

ALLOWED

QSAM MASS SEQUENTIAL NOT
STORAGE ALLOWED

2. If the WRITE BEFORE/AFTER ADVANCING
statement or the WRITE AFTER
POSITIONING statement is used, the
record size specified in the FD entry
must allow for the carriage control or
stacker select character, even though
the character is not to be printed or
punched. For example, if the record
size specified in the FD entry is 121,
the actual record is 121 characters;
however, only 120 characters are
printed or punched.

Notes:

• If the immediate destination of the
record is a device that does not
recognize a carriage control or
stacker select character, the
system assumes that the control
character is the first character of
the data. If the WRITE
BEFORE/AFTER ADVANCING statement or
the WRITE AFTER POSITIONING
statement is not used, the first
byte of the record is treated as
data by the punch or printer.

OPEN Access CLOSE

Statement Verbs Stateme,at

INPUT READ [INTO) [REEL)

[REVERSEDJ AT END

[~ 1 NO REWIND NO REWIND

[LEAV']
POSITIONING

REREAD DISP

DISP

1----- --- - --------
OUTPUf WRITE [FROM)

[NOREWI~l [tEFOREt]
LEAVE

ADVANCING
AFTER .

REREAD

DISP [AFTER POSITIONING)

INPUT READ [INTO) [UNIT)

AT END [LOCK]

---- - - I- -- - - - -
OUTPUf WRITE [FROM)

INVALID KEY

WRITE [FROM]

[I BEFORE!] ADVANCING
AFTER

[AFTER POSITIONING) ------ - r----- --- -------
1-0 READ [INTO] [LOCK)

AT END

WRITE [FROM]

INVALID KEY

REWRITE [FROM]

INVALID KEY

• The compiler may direct extra
records, containing the appropriate
control characters, to the file to
effect printer spacing as specified
in the WRITE ••• ADVANCING statement.
These extra records are for spacing
purposes only and will not appear
externally if the file is assigned
to an online printer. However, if
the file is assigned to a device
that does not recognize the control
characters (for example, a tape or
a direct-access device), the extra
records are written onto the file.
These extra records are produced
only if ADVANCING more than three
lines is specified or if both the
BEFORE and AFTER options are
specified for a file.

3.~I\If the input device is the card

"

',Ireader, RECORDING MODE IS F should be
'specified. If RECORDING MODE IS V or
;, is specified, the first 8 bytes of
, he record will be interpreted as the

ontrol bytes required for files with
ormat V or S records.

User File Processing 67

I'f standard sequential files are on
~neti~ tai~' the record block size

ould e a least 18 bytes. Records
less than 18 bytes J:!i'l:eligl::h will be
read with no problems, unless a parity
check occurs. If a parity check
occurs while reading a record less
than 18 bytes, it will be treated as a
noise record and skipped over.

Figures 10 and 11 show the parameters in
the DD statement that may be used with
standard sequential files. All parameters
except the DCB are described in "Job
Control Procedures." Additional DCB
subparameters not shown in the illustration
are required for use with the Sort feature
(see "Using the Sort Feature" for
information on these parameters).

The DCB subparameters that can be
specified in the DD statement for standard
sequential files are as follows:

DCB=[DEN={01112131]
[,TRTCH={CIEITIET}]
[,PRTSP={0111213}]
[, MODE= { C IE}]
[, STACK={112}]
[,OPTCD={WICIWCIT}]
[,BLKSIZE=integerJ
[, BUFNO=integer]
[,EROPT={ACCISKPIABE}]

DEN={0111213}
can be used with magnetic tape, and
specifies a value for the tape
recording density in bits per inch as
listed in Table 8. If no value is
specified, 800 bits-per-inch is
assumed for 7-track tape, 800
bits-per-inch for 9-track tape without
dual density and 1600 bits-per-inch
for 9-track tape with dual density.

Table 8. DEN Values
r---------T-------------------------------,
I I Tape Recording Density I
I I (Bits per inch)--Model 2400 I
I ~---------------T---------------~
IDEN Value I 7 Track I 9 Track I
~---------+---------------~---------------~
I 0 I 200 I I
I 1 I 556 I I
I 2 I 800 I 800 I
I 3 I I 1600 I L _________ ~ ______ ~ ________ i _______________ J

68

TRTCH={CIEITIET}
is used with 7-track tape to specify
the tape recording technique, as
follows:

C - Specifies that the data-conversion
feature is to be used; if data
conversion is not available, only
format F and format U records are
supported by the control program.

E - specifies that even parity is to
be used; if omitted, odd parity is
assumed.

T - specifies that BCD to EBCDIC
conversion is required.

ET- Specifies that even parity is to
be used and BCD to EBCDIC
conversion is required.

PRTSP={011121 3 }
specifies the line spacing on a
printer as 0, 1, 2, or 3. If PRTSP is
not specified, 1 is assumed.

The PRTSP subparameter is valid
only if the unit specified for the
file is a printer. It is not valid if
the file is a report file, nor is it
valid if the WRITE statement with the
BEFORE/AFTER ADVANCING option or WRITE
AFTER POSITIONING is specified in the
COBOL source program. Single spacing
always is assumed for a printer unless
other information is supplied.

MODE={CIE}
can be used with a card reader, a card
punch or a card-read punch
and specifies the mode of operation
as follows:

C - Specifies card image (column
binary) mode.

E - Specifies EBCDIC code.

If this information is not supplied
by any source, E is assumed.

STACK={112}
can be used with a card reader, a card
punch, or a card-read punch, and it
specifies which stacker bin is to
receive the card. Either 1 or 2 is
specified. If this information is not
supplied by any source, 1 is assumed.

STACK should not be used when the
WRITE statement with the AFTER
ADVANCING or POSITIONING option is
used to specify pocket selection.

OPTCD={WICIWCIT}
requests an optional service provided
by the system as follows:

W - To perform a write validity check
(on mass storage devices only).

C - To process using the chained
scheduling method (see the
publication IBM System/360
operating. System: Data Management
Services).

WC- To perform a validity check and
use chained scheduling.

T - To request user totaling facility.

If this information is not supplied
by any source, none of the services
are provided, except in the case of
the IBM 2321 mass storage device where
OPTCD=W is specified by the operating
system.

Note: If the validity check is
specified, the system verifies that
each record transferred from main
storage to mass storage is written
correctly. Standard recovery
procedures are initiated if an error
is detected.

BLKSIZE=integer
is used to specify the block size.
This clause is used only when BLOCK
CONTAINS 0 RECORDS was specified at
compile time.

BUFNO=nurnber of buffers
is used to specify the number of
buffers to be assigned to the file
when neither the RESERVE nor the SAME
AREA clause is specified for the file
in the source program. The maximum
number is 255. However, the maximum
number allowed for an installation is
established at system generation time.

EROPT={ACCISKPIABE}
specifies the options to be executed
if an error occurs in writing or
reading a record as follows: '

ACC - To accept the error block for
processing.

SKP - To skip the error block.
ABE - To terminate the job.

There are two cases when the
subparameter can be specified:

• If no error processing declarative
(USE sentence) is specified, the
option is taken immediately.

• If an error processing declarative
is specified, the option is taken
after the error declarative returns
control via a normal exit <and only
if .that is the case).

If no option is specified, ABE is
assumed.

User File Processing 69

r---,
I Device Type ,

r---------------------f---------------------T---------------------T---------------------J

I Parameter J Mass Storage I Magnetic Tape) Unit Record ,
~---------------------+---------------------~---------------------~---------------------~
I DSNAME' as ,
~---------------------f---~
, UNIT I as I
~---------------------f---T---------------------~
I VOLUME I as I na I
~---------------------f---------------------T---------------------f---------------------~
I LABEL I SL I SL I NL I
I I SUL I NL , I
I I I NSL I I
I I I SUL I I
~---------------------f---------------------f---------------------~---------------------~
I SPACE I as I na I
~---------------------+---------------------f---~
I SUBALLOC I as I na I
~---------------------f---------------------f---~
I SPLIT I as I na I
~---------------------+---------------------~--------~------------T-----------~---------~
I DISP , {NEW} {' KEEP J I SYSOUT=A, B. • • ,
I I MOD, PASS J I
I I , CATLG' I
I I ,DELETE . J I
~---------------------+---------------------T---------------------+---------------------~
, DCB Device Dependent, OPTCD=W, WC ITRTCH, DEN I PRTSP, MODE, STACK ,
~---------------------f---------------------~---------------------f---------------------~
I DCB General I OPTCD=C/T, BUFNO, BLKSIZE, EROPT=ABE I EROPT=ACC I
I I I (printer only) I
I I) EROPT=ABE I
~---------------------~--~--~---------------------~
I as = Applicable subparameters ,
I na = Not applicable I L ___ J

Figure 10. DD Statement Parameters Applicable to Standard Sequential OUTPUT Files

70

r---,
I Device Type I

r---------------------+---------------------T---------------------T---------------------J

I Parameter I Mass Storage I Magnetic Tape I Unit Record I
~---------------------+---------------------~------~--------------~---------------------~
I DSNAME I as I
~---------------------+---------------------T---------------------T---------------------~ I UNIT I Not required I Not required 1 I
I I if cataloged I if cataloged] as I
~---------------------+---------------------+---------------------+---------------------~
I VOLUME I Not required I Not required I I
I I if cataloged I if cataloged I na I
~---------------------+---------------------+---------------------+---------------------~
I LABEL I SL I SL I na I
I I SUL I NL I I
I I I NSL I I
I I I SUL I I
~---------------------+---------------------~---------------------~---------------------~
I SPACE I na I
~---------------------+---~
I SUBALLOC I na I
~---------------------+---~
I SPLIT I na I
~---------------------+---i

I DISP : {~~~} I: ~~~ I I
I I. CATLG I
I I, UNCATLG I
I I ,DELETE I
~---------------------+---------------------T---------------------T---------------------~
I DCB Device Dependent I I TRTCH, DEN I MODE, STACK I
~---------------------+---------------------~---------------------~---------------------~
I DCB General I OPTCD=C/T, BLKSIZE, BUFNO, EROPT=ACC, SKP, ABE I
~---------------------~---~
I as = Applicable subparameters I
I na = Not applicable I L ___ J

Figure 11. DD Statement Parameters Applicable to Standard Sequential INPUT and I-O Files

DIRECT FILE PROCESSING

The direct file processing technique is
characterized by the use of the relative
track addressing scheme. When this
addressing scheme is used, the tracks of
mass storage devices are consecutively
numbered from 0 to n (where 0 equals the
first track of the file and n equals the
last track). The positioning of logical
records in a file is determined by the
ACTUAL KEY supplied by the user in the
Environment Division. The first part of
the key, called the track identifier,
specifies either the track on which space
for the record is first sought or the track
at which the search for a record is to

begin. The second part, called the record
icfentifier, serves as a unique identifier
for the record. Files with direct data
organization must be assigned to mass
storage devices.

r---,
I Format I
~---~
I I
IACTUAL KEY IS data-name I
I I L ___ J

User File Processing 71

Data-name may be any fixed item from 5
through 259 bytes in length and must be
defined in the File Section, Working
Storage Section, or Linkage Section. The
following considerations apply when
defining the ACTUAL KEY:

• Track Identifier
The first four bytes of data-name are
the track identifier. The identifier
is used to specify the relative track
address for the record and must be
defined as a 5-integer binary data item
whose maximum value does not exceed
65,535.

• Record Identifier
The remainder of data-name, which is 1
through 255 bytes in length, is the
record identifier. It represents the
symbolic portion of the key field used
to identify a particular record on a
track.

The following example illustrates the
use of the ACTUAL KEY clause:

r---,
ENVIRONMENT DIVISION.

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 THE-ACTUAL-KEY.

05 TRACK-IDENT PIC S9(5) COMP SYNC.
05 RECORD-IDENT PIC X(25). L ___ J

Not~: The same record identifier may
appear more than once in the same file when
using COBOL. However, using the same
record identifier is not recommended for
the following reasons:

a. If they appear on the same track, only
the first occurrence can be retrieved
(using BDAM).

b. If an extended search is used in
either creating or updating a file,
the position of records containing
duplicate record identifiers may be
unpredictable.

With direct file processing, records
must be unblocked and may be V-, U-, F-, or
S-mode records. Figure 12 illustrates
those parts of a directly organized file
that are of importance to a COBOL
programmer.

Each track contains the following:

Index Point
There is one index point to indicate
the physical beginning of each track.

r---,
I INDEX I
I POINT GAP I
I J I RO Rl R2 I
I I I ___________ I
I I I r-------, r~ r-----T---T----' r-:::-----T-~-T---=_=; I
I V V I TRACK I I CAPACITY I I I I I I I I I I
I G I ADDRESS I G IRECORD I G ICOUNTIKEYIDATAI G ICOUNTIKEYIDATAI G I I L _______ J L ________ J L _____ ~ ___ ~ ____ J L _____ ~ ___ ~ ____ J I

I I L ___ J

Figure 12. Directly Organized Data as it Appears on a Mass Storage Device

72

G (Gaps)
Gaps separate the different areas on
the track. certain equipment
functions take place as the gap is
rotating past the read/write head.
The length of the gap varies with the
device, the location of the gap, and
the length of the preceding area. For
instance, the gap that follows the
index point is a different length than
the g~p that follows the track
address. The length of the gap that
follows a record depends on the length
of that record.

Track Address
This field defines the physical
location of the track. It indicates
the cylinder in which the track is
located and the read/write head that
services the track.

RO (Capacity Record)
This field indicates the amount of
unused space available for additional
records on the track.

Ri, R2L ••• , Rn
These are physical records that
contain the following:

count area -- control information

the record identifier
(1-255 bytes) as
specified by the
programmer in the ACTUAL
KEY clause.

the data moved into the
FD before a WRITE
statement was executed.

The following example illustrates the
relationship between the ACTUAL KEY and the
positioning of records on a mass storage
device during the creation of a direct
file.

r---,
IENVIRONMENT DIVISION. I
I I
I I
1 \
I ACTUAL KEY IS THE-ACTUAL-KEY. I
\ \
\ I
1 I
\DATA DIVISION. I
\ FILE SECTION. I
IFD DIRECT-FILE I
I LABEL RECORDS ARE STANDARD. I
\01 REC-1 PIC X(200). \
I I
I I
\ \
\WORKING-STORAGE SECTION. I
\01 THE-ACTUAL-KEY. I
I 05 TRACK-IDENT PIC S9(5) COMP SYNC. I
I 05 RECORD-IDENT PIC X(3). I l ___ J

consider REC-i being written six times: the
contents of THE-ACTUAL-KEY varying with
each WRITE instruction:

THE-ACTUAL-KEY

TRACK I RECORD
IDENTIIDENT
r----+----,

WRITE 1 \ 0 I MAl
~----t----~

WRITE 2 \ 0 I CCCI
~----+----~

WRITE 3 I 0 I BBBI
~----+----~

WRITE 4 I 1 I DDDI
~----+----~

WRITE 5 I 1 I FFFI
~----+----~

WRITE 6 \ 1 I EEEI l ____ J. ____ J

Relative track 0 and relative track 1 of
the mass storage device will appear as
shown in Figure 13.

User File Processing 73

r---, I Count Key Data Count Key Data Count Key Data I
I r-----T---T-----' r-----T---T-----' r-----T---T-----' I
I TRACK 0 G I IAAAIREC-11 G I ICCCIREC-11 G I IBBBIREC-1I I I L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J I

I I
I r-----T---T-----' r-----T---T-----' r-----T---T----~' I
I TRACK 1 G I I DDDIREC-1 I G , IFFFIREC-11 G I IEEEIREC-11 I I L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J I

I I L ___ J

Figure 13. Sample Format of the First Two Tracks of a Direct File

When the WRITE statement is executed,
the system seeks the track that corresponds
to the number contained in TRACK-IDENT. It
then searches for the next available
position into which a record may be placed.
The system writes a count area, writes the
contents of RECORD-IDENT in the key area,
and writes the information contained in
REC-l in the data area.

Note: The record identifier is not
included in the level-Ol record description
(REC-1). It will, however, be moved into
the output buffer before being written on
the mass storage device. Buffer areas,
therefore, will be large enough to
accommodate both the contents of REC-l and
the record identifier.

Dummy and Capacity Records

Once a direct file has been created,
records can be added randomly on tracks
formatted sequentially. Unless a track is
already filled with data records, it is
formatted by the compiler via the writing
of dummy records (mode F) or of one
capacity record (mode U, V, or S).

In order to format tracks, a COBOL
subroutine executes instructions to write
dummy records for F-mode files or write
capacity records for V-, U-, or S-mode
files. Dummy records are identified by the
presence of the figurative constant
HIGH-VALUE in the first byte of the record
identifier portion of the ACTUAL KEY. This
indicates to the system that a record can
be added to the file in the space assigned
to the dummy record. (The user should not
attempt to retrieve a dummy record by
moving this configuration to the record
identifier because it is considered an
invalid key.) A capacity record is a
sinqle record at the physical beginning of
each track that indicates the amount of
space available for additional records. As
V-, U- , or S-mode records are added to a

74

track, the capacity record is written
accordingly. Capacity records are never
made available to the user.

When a file is created, it should
contain enough dummy records, or
appropriately written capacity records, to
allow for future expansion. Once the file
is closed, more space cannot be allocated
and the extent of the file cannot be
increased.

~ote: Tracks that have been assigned to a
file but are not formatted, are considered
"allocated." The user should not attempt
to write on tracks that have been allocated
but not formatted.

The file processing technique used to
create a direct file sequentially is BSAM
(Basic Sequential Access Method).

• The associated COBOL statements are
summarized in Table 13.

• The associated JCL parameters are
summarized in Table 14.

The ACTUAL KEY is required. It
specifies the relative track number on
which the record is to be written. Since
access is sequential, all records will be
written serially in the sequence in which
they are moved into the output buffer. It
is therefore necessary that all records to
be written on the first track (track
identifier = 0) be processed before records
to be written on the 2nd, 3rd, ••• , nth
track (track identifier = 1, 2, ••• ,-n-l)
are processed. -

When records are written sequentially,
the user need not update the contents of
the track identifier portion of the ACTUAL
KEY. A COBOL subroutine will update it as
follows:

• Records will be written on the first
available track until space is no
longer available. At such time, the
COBOL subroutine will increment the
track identifier by 1, and continue
writing on the next track.

• The value of track identifier used by
the system is made available to the
user in the track identifier portion of
the ACTUAL KEY after the record is
written.

• After a CLOSE or CLOSE UNIT statement
has been executed, the COBOL subroutine
places the relative track number of the
last track written on (for a data,
dummy, or capacity record) in the track
identifier of the ACTUAL KEY.

• If the user updates the contents of
track identifier and attempts to write
on track 2 when tracks 0 through 4 are
already full, the system will
automatically adjust the track
identifier to 5 (the next track with
available space).

If the user wishes to skip tracks, the
number of tracks, equal to the number of
tracks to be advanced, must be added to the
track identifier. The COBOL subroutine
will then add dummy records (F-mode) or
write capacity records (V-, U-, or S-mode)
to complete the intervening track(s) (see
"Dummy and capacity Records"). If the
value of track identifier for the initial
WRITE is not 0, the subroutine will
complete the preceding tracks with dummy or
capacity records.

SPACE ALLOCATION FOR SINGLE VOLUME FILES:
When a file is created sequentially, the
number of primary tracks specified on the
DD card must be available on the primary
volume. If this quantity is not available,
the job will not begin execution. Once
execution begins however, the final
allocation of space will not be made until
the file is closed.

The following discussion illustrates the
space allocated to a direct file created
using BSAM. Figure 14 is an example of a
user program that:

• Writes 350-1/2 tracks and then closes
the file.

• Specifies SPACE=(TRK, (200,100» on the
associated DD card.

TRACK-LIMIT Clause Specified:

1. If the TRACK-LIMIT clause specifies
TRACK-LIMIT = 500 and the file is
closed after writing only 350-1/2
tracks:

• A COBOL subroutine will format all
remaining tracks up to and including
the 500th track. This represents
150 extra tracks on which records
may be added.

2. If the TRACK-LIMIT clause specifies
TRACK-LIMIT = 300 and the program
continues writing all 350-1/2 tracks:

• The TRACK-LIMIT clause is ignored
and the system allocates and formats
as if no TRACK-LIMIT clause had been
specified.

TRACK-LIMIT Clause Not specified: If the
TRACK-LIMIT clause is not specified, the
system will allocate the primary extent
(i.e., 200 tracks) and up to 16 secondary
extents (i.e., 100 tracks each), as
required. In Figure 14, the system
allocates the first 200 tracks, all of
which are completed. The second
allocation, of 100 tracks, is also
completed. The next 100-track allocation
is, however, only partially used. The file
is closed after writing on 350-1/2 tracks.
At this time:

• A COBOL subroutine will format the rest
of the 351st track. (Note that 351
tracks are actually relative tracks 0
through 350)

• The balance of 49 tracks will remain
allocated but will not be formatted.

Note: In some of the foregoing cases, the
number of tracks allocated to the file
exceeds the number of tracks formatted by
the COBOL subroutine. If the excess space
was requested in track or block units, it
should be released by specifying the RLSE
option of the SPACE parameter.

User File Processing 75

r--T---,
1 Specified as TRACK-LIMIT=500 I TRACR-LIMIT Clause Not Specified 1
~---+---i

written on

formatted

r---------, l
I I
I I
I 200 1.)lst allocation
1 l'
~---------t-
I I} I 100 I 2nd allocation
~---------i I 51 I}
~---------~ 3rd allocation

) ~--l~~---1l
)1 1~4th allocation

~ ~---------~ ~
I I
I unused I
I I
~

I
I
I
I
I
I
I
I

written on
and/or

formatted

unformatted

r----------'l I I
I I

L--=:--J~ I I} I 100 I
I-----------~

J---~~---H
I-----------i
I I
I unused I

~l

I
I
1
1
I

1st allocation I
I
I
I

2nd allocation 1

3rd allocation

I
I

I--~---~ I a. SPACE=(TRR,(200,100» on a single volume I
I b. The user program writes 350-1/2 tracks before closing the file I L ___ J

Figure 14. sample Space Allocation for Sequentially Created Direct Files

76

r---,

Specified
as TRACK
LIMIT=950

A
r------,
1 1
I 1
1 300 I
1 1
1 1
I I
r-----~
I I
I 100 I
r-----~
I I
I 100 1 L ______ J

formatted

B

r-----'i
I Ii
I 100 I:
~------"!
I Ii
I 100 f
~------t
I I ~
1 100 I
~------f
I I
1 100 I L ______ J

formatted

C
r------,
1 50 I} formatted
r-----~
1 50 I} allocated
~------~
1 1
I unused I

~
r--~

TRACK-LIMIT
clause not
specified

A

r-----'
I :.)
I 300 I~
I I (
I I'
~------~.
I I
I unused I
1 1
1 I
~

formatted B
r------,
1 I}
1 100 I
~------~
I I
lunusedl
1 I

',.rA I ~~

formatted

C

r-----' I I}
1 100 I formatted
r-----"
I 1
1 unused I
1 I

~
~--t 1 SPACE=(TRK, (300,100» on Volumes A, B, and C 1 L--___ J

Figure 15. Sample Space Allocation for Randomly Created Direct Files

Random Creation of a Direct Data Set

The file processing technique used to
create a direct file randomly is BDAM
(Basic Direct Access Method).

• The associated COBOL statements are
summarized in Table 13.

• The associated JCL parameters are
summarized in Table 14.

Figure 16 (sample program) illustrates
the random creation of a direct data set.

The ACTUAL KEY is required. When a
direct file is created randomly, records
need not be written in any particular
sequence. The system seeks the track

specified in the track identifier portion
of the ACTUAL KEY and writes the record in
the next available position on that track.

When a file is created using BDAM, the
number of tracks specified in the primary
extent must be available on the primary
volume. If there are secondary volumes,
one secondary extent must be available on
each of the secondary volumes. If these
extents are not available, the job will not
begin execution. once execution begins,
the final allocation of space is determined
by the TRACK-LIMIT clause and the SPACE and
volume-count parameters of the DD card when
the file is opened as an output file.
Figure 15 illustrates the allocation and
formatting of space when the TRACK-LIMIT
clause is specified as well as when it is
not specified (see ·Dummy and Capacity
Records· for a definition of allocate and
format) •

User File Processing 77

1. When a TRACK-LIMIT clause is specifed
(Figure 15), the system will do the
following:

a. Allocate tracks, by blocks, until
the quantity specified by the
TRACK-LIMIT clause has been
equalled or just exceeded.

b. Format only the space specified in
the TRACK-LIMIT clause, even if
the space formatted is less than
the space allocated.

2. When a TRACK-LIMIT clause is not
specified (Figure 15), the first
volume will be allocated and formatted
according to the primary allocation
quantity, and any succeeding volumes
will be allocated and formatted from
the secondary quantity, one quantity
per volume.

Records cannot be written on those
tracks that were allocated but unformatted.
Any attempt to do so will have
unpredictable results. Unformatted tracks
can be released by specifying the RLSE
option in the SPACE parameter on the
corresponding DD statement. Only space
requested in track or block units can be
released. If the CYL subparameter was
specified, the unformatted tracks cannot be
released.

Unlike direct files created with BSAM,
the BDAM processing technique allocates and
formats tracks when the file is opened.
This is significant because the system will
not allocate secondary extents if the user
attempts to write on more tracks than the
quantity initially formatted.

~: The extended search option may be
used during random creation. See "Random
Reading, Updating, and Adding to Direct
Data Sets" for a detailed description.

sequential Readinq of Direct Data Sets

The file processing technique used to
read a direct file sequentially is BSAM
(Basic Sequential Access Method).

• The associated COBOL statements are
summarized in Table 13.

• The associated JCL parameters are
summarized in Table 14.

When a direct file is being read
sequentially, records are retrieved in
logical sequence. This logical sequence

78

corresponds exactly to the physical
sequence of the records on the mass storage
device. Dummy records, if present, are
also made available.

For reading a file sequentially, the
ACTUAL KEY clause need not be specified;
however:

• If the key is not specified, the user
will have no way of distinguishing
between real and dummy records (F-mode
only). Dummy records can be recognized
by testing for the presence of the
figurative constant "HIGH VALUE" in the
first position of the record
identifier.

• If the ACTUAL KEY clause is specified,
the record's key will be placed in the
record identifier portion of the ACTUAL
KEY during the execution of a READ
statement. The track identifier,
however, remains unchanged.

The file processing technique used to
read, update, and add to a direct file
randomly is BDAM (Basic Direct Access
Method) •

• The associated COBOL statements are
summarized in Table 13.

• The associated JCL parameters are
summarized in Table 14.

When records are being retrieved from a
direct file randomly, the ACTUAL KEY is
required to determine the track and to
locate a particular record on that track.
When a match is found, the data portion of
the record is read. For an add operation,
after locating the track, the system
searches for the next available position on
the track, and writes the new record. For
an update operation, after locating the
track, the system searches for the record
specified in the record identifier portion
of the ACTUAL KEY.

In all of the foregoing cases, the
specified track is the only one searched.
If the desired record cannot be found, or
room for an additional record cannot be
found, the search terminates with an
INVALID KEY condition. If the user wishes
to extend the search to a specific number
of tracks or to the entire file, the DCB
OPTCD and LIMCT subparameters should be
specified on the corresponding DD card.
(Figure 16 illustrates the use of extended
search.)

Multivolume Data sets

Multivolume data sets, like
single-volume data sets, may be created
either randomly or sequentially.

Sequential creation: When a file is
created sequentially, the number of tracks
specified in the primary extent must be
available on the primary volume and the
number of tracks specified in the secondary
extent must be available on each of the
secondary volumes. If extents are not
available, execution of the job will not
begin. Once execution begins, the primary,
and as many secondary allocations as
possible, are given to the first volume (up
to 16 extents per volume). Subsequent
volumes are allocated from the secondary
specification.

If the CLOSE UNIT statement is executed,
the current extent is formatted, volume
switching procedures are executed, and the
contents of ACTUAL KEY are updated to
reflect the relative track number of the
last track on the old volume. This is
illustrated in the following example.

consider the creation of a multivolume
file whose space is allocated by:

SPACE=(TRK, (300,100»

1. When execution begins, the system
allocates 300 tracks on the first
volume. When the 300 tracks are used
up, the system allocates 100 tracks
more. Up to 16 allocations of 100
tracks each are possible.

2. If, after writing on 450 tracks, a
CLOSE UNIT statement is executed, a
COBOL subroutine will format the
remaining 50 tracks of the current
allocation before making the next unit
available.

3. After the CLOSE UNIT statement is
executed, a COBOL subroutine places
the relative track number of the last
traek written on (for a data, dummy,
or capacity record) in the track
identifier of the ACTUAL KEY.

~: A CLOSE UNIT statement always
formats the tracks remaining on that unit
from the current allocation. The
formatting of tracks on the last unit. when
a CLOSE file-name statement is executed,
depends on the presence or absence of a
TRACK-LIMIT clause, just as it did for
single-volume files (see "Space Allocated
for Single- Volume Files"). The RLSE
option of the SPACE parameter applies only
to the unformatted tracks at the end of the
last unit.

Au!:om§!ti~Vol~-2~it£hinq: The user may
choose to permit volume switching to occur
automatically. This can be accomplished by
writing on all allocated tracks until no
more are available, or may be made
available. This procedure, however, does
not guarantee a specific distribution of
records over the volumes, the placement of
a particular record on a particular volume,
or whether the data set is, in fact,
multivolume.

Note: If the user permits system
controlled volume switching, but specifies
the file be created on more than· one volume
[e.g., VOL=SER=(Vl,V2,V3)]; the system may
write the entire file on the primary volume
if there is enough room. The next time an
attempt is made to open that file, since
the system expects it to reside on three
volumes, an ABEND will occur. This can be
avoided by specifying:

VOL=(",3,SER=(Vl,V2,V3»

This specifies the file be contained on one
or more volumes.

To create a file with records
distributed as evenly as posible over
several volumes, the programmer must
calculate the amount of space 'his file will
require (see "Determination of File Space")
and divide by the number of volumes. The
result of this calculation (rounded) should
be specified as both the primary and
secondary allocation of the SPACE parameter
of the associated DD statement. The
programmer should execute CLOSE UNIT before
the end of the initially allocated space on
the first volume (that is, execute the
CLOSE UNIT before writing the record that
is to be first on the second volume).

For example, to distribute 2232 SO-byte
records as evenly as posible on three 2311
volumes, 34 tracks per volume are required
and the SPACE parameter should specify
(34,34). After writing the 744th record
the programmer should execute CLOSE UNIT
and continue writing.

If the required space is overestimated
and the records do not fill the last
track(s), the compiler will write dummy
records to complete them. These records
are included in the record count and should
be taken into account when trying to
address records on subsequent volumes.

If the space required is underestimated,
automatic volume switching may occur before
the CLOSE UNIT is executed since space on
the first volume is filled. If this has
happened, the CLOSE UNIT starts a third
volume.

User File Processing 79

If no secondary allocation has been
specified and the program issues a CLOSE
UNIT statement, the job will terminate
abnormally, since the allocation of
subsequent volumes is taken from the
secondary allocation field of the SPACE
parameter.

In the creation of an output· file,
performance is improved by' specifying the
CONTIG subparameter of the SPACE parameter
in the DO statement. However, space
allocation is more efficient if CONTIG is
not specified.

Random Creation: When a file is created
randomly, space allocation and formatting
is done as described in "Random Creation of
a Direct Data Set" (Figure 15). It is
important to note that a CLOSE UNIT
statement is not permitted when creating a
file randomly.

The following description pertains to
Figure 15:

1. When the TRACK-LIMIT clause is
specified, the total extent of the
file is 950 tracks. The only valid
track identifiers are a through 949:

• Tracks 000 through 499 are contained
on volume A.

• Tracks 500 through 899 are contained
on volume B.

• Tracks 900 through 949 are contained
on volume C.

2. When the TRACK-LIMIT clause is not
specified, the total extent of the
file is 500 tracks. The only valid
track identifiers are 0 through 499:

• Tracks 000 through 299 are contained
on volume A.

• Tracks 300 through 399 are contained
on volume B.

• Tracks 400 through 499 are contained
on volume C.

File.Organization Field of the System-Name

The single character "0" or own,
specifying the file organization, must be
coded as part of the system-name. The user

80

should be aware of the following
differences:

• sequentially accessed files must specify
organization "on.

• Randomly accessed files may specify nO"
or "W". When opened input or output "0"
and own function identically.

1. Opened output ("0" and "W"):

WRITE adds a new record. If a
record containing the same key
already exists, the system will add
the record anyway. The result will
be records with duplicate keys.

2. Opened 1-0 ("W"):

a. REWRITE automatically searches
for a record with a matching
record identifier, and updates
it.

b. WRITE adds a new record to the
file whether or not a duplicate
key already exists.

3. Opened 1-0 (no"):

a. WRITE updates the file if the
preceding input/output statement
was a READ to the same record.

b. WRITE adds a new record to the
file, whether or not a duplicate
key already exist, if the
preceding READ was not to the
same record.

Note: When a file is opened 1-0 (BOAM
"0") the contents of ACTUAL KEY are
moved to a save area during the
execution of a READ statement. During
the execution of a WRITE statement, the
contents of ACTUAL KEY are compared to
the contents of the save area to
determine whether the system should add
or update a record. Opening a file 1-0
(BOAM "W") omits the save and compare
steps entirely. The system adds a
record when a WRITE statement is
executed and updates a record when a
REWRITE statement is executed. It is,
therefore, more efficient to use BOAM
"W" than it is to use BOAM "on if it is
known in advance whether the record
should be added or updated.

Determination of File Space: To determine
the amount of space a data set requires,
the following variables should be
considered:

Device Type
Track Capacity
Tracks per Volume
Cylinders per Volume
Data length (block size)
Key Length
Device Overhead

Device overhead refers to the space
required on each track for hardware data,
i.e., address markers, count areas,
inter-record gaps, Record 0, etc. Device
overhead varies with each device and also
depends on whether the blocks are written
with keys. The formulas in Table 9 may be
used to compute the actual space required
for each block, including device overhead.

Table 9. Mass storage Device OVerhead Formulas
r-----------T---, I I Bytes Required by Each Data Block I
, ~-------------------------------------T-------------------------------------~
I Device I Blocks With Keys I Blocks Without Keys I
I Type ~-----------------------T-------------+------------------T------------------~
I I Bi I Bn I Bi I Bn I
~-----------+-----------------------+-------------+------------------+------------------~
, 2311 I 81+1.049 (KL+DL) I 20+KL+DL 1 61+1.049 (DL) I DL I
I 2314(2319)1 146+1. 043 (KL+DL) I 45+KL+DL I 101+1. 043 (DL) I DL I
I 2302 I 81+1.049 (KL+DL) I 20+KL+DL I 61+1.049 (DL) I DL I
, 2303 I 146+KL+DL I 38+KL+DL I 108+DL I DL I
, 2301 1 186+KL+DL I 53+KL+DL I 133+DL I DL I
I 2321 I 100+1.049(KL+DL) I 16+KL+DL I 84+1.049(DL) I DL I
I 2305-1 I 634+KL+DL I 634+KL+DL 1 432+DL I 432+DL I
I 2305-2 I 289+KL+DL I 289+KL+DL I 198+DL I 198+DL I
I 3330 I 191+KL+DL I 191+KL+DL I 135+DL I 135+DL I
~-----------~-----------------------~-------------~------------------~------------------~
I Bi is any block but the last on the track. I
I Bn is the last block on the track. I
I DL is data length. I
I KL is key length. I l ___ J

Table 10. Mass Storage Device Capacities
r-----------T------------T-------------T--------------------T-------------T-------------,
I Device I Volume I Track I I Number of I Total I
I Type I Type I Capacity I Tracks per Cylinder I Cylinders I Capacity I
~-----------~------------+-------------+--------------------+-------------+-------------~
I 2311 I Disk I 3625 1 10 I 200 I 7,250,000 I
1 2314(2319)1 Disk I 7294 1 20 I 200 I 29,176,000 I
I 2302 I Disk 1 4984 1 46 I 246 1 56,398,944 I
I 2303 I Drum I 4892 I 10 I 80 I 3,913,600 I
I 2301 1 Drum I 20483 1 8 I 25** I 4,096,600 I
I 2321 1 Cell I 2000 1 20*** 1 980*** I 39,200,000 I
I 2305-1 I Drum I 14136 1 8 I 48 I 5,428,224 I
1 2305-2 I Drum I 14660 I 8 I 96 I 11,258,880 I
I 3330 I Disk 1 13030 1 19 1 404 I 101,751,270 I
~-----------~------------~-------------~--------------------~-------------~-------------~
I *Capacity indicated in bytes. I
I **There are 25 logical cylinders in a 2301 Drum. I
I ***A volume is equal to one bin in a 2321 Data Cell. I l ___ J

User File Processing 81

en

""

2311

3625
1740
1131

830
651

532
447
384
334
295

263
236
213
193
177

162
149
138
127
118

109
102

95
88
82

77
72
67
63
59

2314
(2319)

7294
3520
2298
1693
1332

1092
921
793
694
615

550
496
450
411
377

347
321
298
276
258

241
226
211
199
187

176
166
157
148
139

Maximum Bytes per Record
Formatted without Keys

2302 2303 2301 2321 2305-1

4984 4892 20483 2000 14136
2403 2392 10175 935 6852
1570 1558 6739 592 4424
1158 1142 5021 422. 3210

912 892 3990 320 2480

749 725 3303 253 1996
634 606 2812 205 1648
546 517 2444 169 1388
479 447 2157 142 1186
425 392 1928 119 1024

381 346 1741 101 892
344 308 1585 86 782
313 276 1452 73 688
286 249 1339 62 608
164 225 1241 53 538

244 204 1155 44 478
225 186 1079 37 424
209 169 1012 30 376
196 155 952 24 334
183 142 897 20 296

171 130 848 15 260
161 119 804 10 230
151 109 763 6 200
143 100 726 174
135 92 691 150

127 84 659 128
l,;l 77 630 106
114 70 603 88
108 64 577 70
102 58 554 52

Records
per

Track
2305-2 3330

14660 13030 1
7231 6447 2
4754 4253 3
3516 3156 4
2773 2498 5

2278 2059 6
1924 1745 7
1659 1510 8
1452 1327 9
1287 1181 10

1152 1061 11
1040 962 12

944 877 13
863 805 14
792 742 15

730 687 16
676 639 17
627 596 18
584 557 19
544 523 20

509 491 21
477 463 22
448 437 23
421 413 24
396 391 25

373 371 26
352 352 27
332 335 28
314 318 29
297 303 30

Maximum Bytes per Record
Formatted with Keys

2314 2311
(2319)

2302 2303 2301 2321 2305-1

3605 7249 4964 4854 20430 1984 13934
1720 3476 2383 2354 10122 920 6650
1111 2254 1505 1520 6686 576 4222
0811 1649 1139 1104 4968 406 3008

632 1288 893 854 3937 305 2278

512 1049 730 687 3250 238 1794
428 877 614 568 2759 190 1446
364 750 527 479 2391 154 1186
315 650 460 409 2104 126 984
275 571 406 354 1875 103 822

244 506 362 308 1688 85 690
217 452 325 270 1532 70 580
194 407 294 238 1399 58 486
174 368 267 211 1286 47 406
158 333 245 187 1188 38 336

143 304 224 166 1102 29 276
130 277 206 148 1026 21 222
119 254 190 131 959 15 174
108 233 176 117 899 9 132

99 215 163 104 844 94

90 198 152 92 795 58
82 183 142 81 751
76 168 132 71 710
69 156 123 62 673
63 144 116 54 638

58 133 108 46 606
53 123 102 39 577
48 114 95 32 550
44 105 89 26 524
40 96 83 20 501

2305-2 3330

14569 12974
7140 6391
4663 4197
3425 3100
2682 2442

2187 2003
1833 1689
1568 1454
1361 1271
1196 1125

1061 1005
949 906
853 821
772 749
701 686

639 631
585 583
536 540
493 501
453 467

418 435
386 407
357 381
330 357
305 335

282 315
261 2961
241 2791
223 262
206 247

8
III
tr
I-'
(I)

~
~ .
~
CIl
CIl

en
cT
o
Ii
III

I.Q
(I)

I:J
(I)
<l
o
CD

8
11
III
o
~

()
III

I"!j
III
o
cT
'<

Table 10 lists device storage capacity
and Table 11 lists capacity in records per
track for several mass storage devices.

Programmers who require more detailed
information on mass storage devices may
refer to the publication IBM System/360
component-Description-~2841 Storage
control, 2302 Disk Storage, Models 3 and 4.
2311 Disk StoragelDrive, Model 7 2321 Data
Call Drive 2303 Drum, Order No. A26-5988.

Component Summary -- 2835 Storage Control,
2305 Fixed Head Storage, Order No.
GA26-1589.

Component Summary -- 3830 Storage Control,
3330 Disk Storage, Order No. GA26-1592.

~: The programmer may use any of the
following devices with this compiler by
omitting the device-number in the
system-name: the 2305 (Models 1 and 2),
the 3330, and the 2319.

Randomizing Technigues

One method of determining the value of
the track identifier portion of the ACTUAL
KEY is called indirect addressing.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
possible 9999 numbers are currently
assigned. Indirect addressing can also be
used with nonnumeric keys. A nonnumeric
field (e.g., alphanumeric), when moved to a
computational field, will be packed and
then converted to binary notation. Since
packing eliminates the zone fields, the
final binary item will be numeric.

Indirect addressing means that the key
is converted to a value for the track
identifier by use of some algorithm
intended to limit the range of addresses.
Such an algorithm is called a randomizing
technigue. Randomizing techniques need not
produce a unique address for every record:
in fact, such techniques usually produce
synonyms. Synonyms are records whose keys
randomize to the same address.

Two objectives must be considered in
selecting a randomizing technique:

1. Every possible key in the file must
randomize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as possible.

Note that one way to minimize synonyms
is to allocate more space for the file than
is actually required to hold all the
records. For example, the percentage of
locations actually used might comprise only
80 to 85 percent of the allotted space.

Division/Remainder Method: One of the
simplest ways to address a directly
organized file indirectly is to use the
division/remainder method.

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20 percent of the
total space allotted to contain the
data file.

2. Select the nearest prime number that
is less than the total of step 1. A
prim~ number is a number divisible
only by itself and the integer 1.
Table 12 is a partial list of prime
numbers.

3. Clear any zones from the key that is
to be used to calculate the track
identifier of actual key. This can be
accomplished by moving the key to a
field described as COMPUTATIONAL.

4. Divide the key by the prime number
selected.

5. Ignore the quotient; utilize the
remainder as the relative location
within the data file.

For example, assume that a company is
planning to create an inventory file on a
2311 disk storage device. There are 8,000
different inventory parts, each identified
by an 8-character part number. Using a 20
percent packing factor, 10,000 record
positions are allocated to store the data
file.

Method A: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the
zones, we have 25463514. Dividing by 9913
a quotient of 2553 results with a remainder
of 2445. Thus, 2445 is the relative
location of the record within the data file
corresponding to part number 25DF3514. The
record address can be determined from the
relative location as follows:

1. Determine the number of records that
can be stored on a track (e.g., 12 per

User File Processing 83

track on a 2311, assuming each
inventory record is 200-bytes long).

Note: Because each data record has
nondata components, such as a count
area and inter-record gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
inter-record gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various sizes on a track (see Tables
9, 10, and 11).

2. Divide the relative number (2445) by
the number of records to be stored on
each track.

3. The result, quotient = 203, now
becomes the track identifier of the
actual key

84

Method B: Utilizing the same example,
another approach will also provide the
relative track address. Method B is
illustrated in Figure 16:

1. The number of records that may be
contained on one track is 12.
Therefore, if 10,000 record locations
are to be provided, 834 tracks must be
reserved.

2. The prime number nearest, but less
than 834, is 829.

3. Divide the zone-stripped key by the
prime value. (In the example,
25463514 divided by 829 provides a
quotient of 30715 and a remainder of
779. The remainder is the track
identifier.)

Table 12. Partial List of Prime Numbers Table 12. Partial List of Prime Numbers
<Part 1 of 2) (Part 2 of 2)

r-------------------T---------------------, r-------------------T---------------------,
I I Nearest Prime I I J Nearest Prime I
I I Number Less than I I I Number Less than I
I Number I Number I I Number I Number I
~-------------------+---------------------~ ~-------------------+---------------------~

500 499 I 6000 I 5987 I
600 599 I 6100 I 6091 I
700 691 I 6200 I 6199 I
800 797 I 6300) 6299 I
900 887 I 6400 I 6397 I

1000 997 1 6500 1 6491 I
1100 1097 I 6600 I 6599 I
1200 1193 I 6700 1 6691 I
1300 1297 I 6800 I 6793 I
1400 1399 I 6900 I 6899 I
1500 1499 I 7000 I 6997 I
1600 1597 I 7100 I 7079 I
1700 1699 I 7200 I 7193
1800 1789 1 7300 1 7297
1900 1889 I 7400 I 7393
2000 1999 I 7500 I 7499
2100 2099 I 7600 I 7591
2200 2179 1 7700 I 7699
2300 2297 I 7800 I 7793
2400 1 2399 I 7900 1 7883
2500 I 2477 I 8000 I 7993
2600 I 2593 I 8100 1 8093
2700 I 2699 I 8200 I 8191
2800 I 2797 1 8300 I 8297
2900 I 2897 I 8400 I 8389
3000 I 2999 I 8500 I 8467
3100 I 3089 I 8600 I 8599
3200 I 3191 I 8700 I 8699
3300 I 3299 I 8800 I 8793
3400 I 3391 I 8900 I 8899
3500 I 3499 I 9000 I 8899
3600 I 3593 I 9100 I 9091
3700 I 3697 I 9200 I 9199
3800 I 3797 I 9300 I 9293
3900 I 3889 I 9400 I 9397
4000 I 3989 I 9500 I 9497
4100 I 4099 I 9600 I 9587
4200 I 4177 I 9700 I 9697
4300 I 4297 I 9800 I 9791
4400 I 4397 I 9900 1 9887
4500 I 4493 I 10,000 I 9973
4600 I 4597 I 10,100 I 10,099
4700 I 4691 I 10,200 I 10,193
4800 I 4799 I 10,300 1 10,289
4900 I 4889 I 10,400 I 10,399
5000 I 4999 I 10,500 1 10,499
5100 I 5099 I 10,600 I 10,597
5200 I 5197

L ___________________ ~ _____________________ J

5300 I 5297
5400 I 5399
5500 I 5483
5600 I 5591
5700 I 5693
5800 I 5791

I 5900 I 5897 L ___________________ ~ _____________________ J

User File Processing 85

Figure 16 is a sample COBOL program that
creates a direct file using method B (see
"Randomizing Technique") and provides for
the possibility of synonym overflow.
Synonym overflow will occur if a record
randomizes to a track that is already full.
The following discussion highlights some
basic features. Circled numbers in the
program example refer to corresponding
numbers in the text that follows.

1. Since this randomizing technique Q)
employs the prime number 829 as its
divisor, the largest possible
remainder is 828. By the interaction
between the TRACK-LIMIT clause ® and
the SPACE parameter ® , the program
formats 830 tracks (i.e., relative
tracks 000-829). This establishes
track 829 as the only track that can
contain synonym overflow from track
828.

2. The DCB subparameter ® OPTCD=E is
specified. If a synonym overflow
condition arises, an extended search
will be employed, and the additional
record will be written in the first
available position on the following
track(s) •

86

3. The DCB subpararneter ® LIMCT=5 is
specified. This limits the extended
search to five tracks. If no room is
found within this limit, an invalid
key condition results. A value should
always be specified for the LIMCT
subparameter when OPTCD=E is
indicated. Otherwise the default
value of LIMCT, which is zero, will
result in an error that will be
treated as an exceptional input/output
condition.

Note: The randomizing technique chosen
should minimize the number of synonym
overflows for two reasons:

1. The more extended search is employed
during file creation, the more it will
be required during record retrieval.
Extended searches increase access time
proportionately.

2. When an extended search is employed,
the adjusted value of the track
identifier is not made available to
the user after the execution of a
WRITE statement. The user, therefore,
has no way of knowing the track on
which an overflow record is actually
written.

00001
00002
00003
OOOOQ
00005
00006
00001
00008
00009
00010
00011
00012
00013
0001Q
00015
000 Hi
00011
00018
00019
00020
00021
00022
00023
00024
00025
00026
00021
00028
00029
00030
00031
00032
00033
00034
000'35
00036
000'31
00038
00039
000"0
000"1
00042
000"3
00044
00045
00046
00041
00048
000"9
00050

00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00112

**OC103
00114
00115
00116
00111
00118
00119
00120
00121
00122
00201
00202
00203
00204
00205
00206

00207
00209
00210
00211
00212
00213
00214

00303
00304
00305
00306
00307
00308
00109
00310
00311
00312
00313
00314
00315
00316

IDBNTIPICATTnN DIVISTON.
PROGRAM-ID. Mr.THOD R.
ENVIRONMENT DTVISION.
CONPIGURATION SECTION.
SOURCE-CO"! PUTT"R. IB!1-3 flO.
OBJBCT-CO!'!PUTE~. IR/'l-160.
INPUT-OUTPUT SECTION.
PILE-CO~TROL.

SF-LECT D-FILE ASSIGN DA-2J14-D-MASTRR
ACCESS IS RANnO~ ACTUAL KEY IS ACT-KEYeD
TRACK-LIMIT IS 810. • .2
SELECT C-PTLF. ASSIGN UT-S-CARDS.

DATA DIVISION.
PILE SECTION.
PO D-PILE

LABEL RF.CORDS ARE STANDARD.
01 D-REC.

02 PART-NUM PTC X (8) •
02 NUM-ON-HAND PIC 9(4).
02 PRICE PIC 9(5)V99.
02 FILLFR PTC X(181).

PO C-PILE
LABEL RECORDS ARE OKITT~D.

01 C-REC.
02 PART-NUM PIC I (R) •
02 NUPI-ON-HAND PIC 9(Q).
02 PRIC~ PIC 9(~)V99.
02 PILLER PIC 1(61).

WORKING-STORAGE SECTTON.
17 SAVE PIC S9(8) COMP SYNC.
17 QUOTIENT PIC 59(5) CCKP SYNC.
01 ACT-KEY.

02 TRACK-IO PIC 59(5) COMP SYNC.
02 REC-ID PIC X(8).

PROCEDURE DIVISION.
OPEN INPUT C-PILE OUTPUT D-PILE.

READS.
READ C-FILE AT END GO TO EOJ.
"OVE CORRESPONDING C-REC TO D-REC.
"OVE PART-NU" OP C-REC TO REC-IO SAVE.
DIVIDE SAVE BY 829 GIVING QUOTIENT RE~AINDER

WRIT!S.
EIHIBIT NA~EO TRACK-ID C-REC.
~RITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

EOJ.
DISPLAY 'INVALID KEY 'TRACK-ID BEC-ID.

CLOSE C-PILE D-FILE.
STOP RUN.

T~ACK-ID.----(I)

Figure 16. Sample Program for a Randomly Created Direct File (Part 1 of 2)

User File Processing 87

STEP STEP2
I/STEP3 EXEC
IISTSOUT 00
//SYSUOUPIP DO
IIPlAST!R DD
II

T!R.HNITEO. TIftE 00.00 AR. RDRTH/AR * 00.00. :n.10 H~.IHN.SEC. HD~T!i/SFC.!)ATE 70.119
PG"=*.STEP2.SYSt~cO

SYSOUT=G t;\
STSOOT=A ~

SPICP= (TRK, (500,100) , RLSE) ,
DCB=(OPTCD=E,tIPlCT=5),UNtT=2314

/ICARDS OD. W 'CD II

TRICK-IO
TRICK-IO
T1UCK-IO
TRACK-IO
TRACK-ID
TRACK-IO =
TRACK-IO
TRACK-IO
TRACK-IO
TRACK-IO
TRACK-ID
TRACK-IO
TRICK-IO
TRACK-ID
TRACK-IO
TRACK-IO
tRACK-ID
TRACK-IO
TRACK-IO
TRACIf-IO
TRACK-ID
TRACK-IO
TRACK-TO
TRACK-TO
TRACK-ID
TRACK-IO
TRACK-TO
TRACK-IO
T~ACK-In

00801
00801
00801
00801
00031
00801
00801
00801
00801
00801
00801
00801
00801
00801
00801
00801
00801
00000
00801
00801
00801
00801
00809
00801
00801
00801
00801
00801

C-REC
C-REC
C-REC
C-REC
C-REC
C-REC
C-RlC
C-REC
C-REC
C-RfC
C-REC
C-REC
C-REC
C-REC
C-REC
C-REC
C-REC
C-RFC
C-REC
C-REC
C-RE'C
C-FEC
C-REC
C-REC
C-RE'C
C-REC
C-REC
C-REC

00801 C-R EC

82900801CD1
82900801CD2
82900801C03
82900801CD4
82900031
82900801CD5
82900801CD6
82900801CD7
82900801(D8
82900801C09
82900R01CD10
82900Q01CD11
82900801C012
82900801C013
82900801C014
82900~0'Cn15
82900801C016
829000003
82Q00801C017
82900801CD18
82900801CD19
82900801C020
82900809
82900801C021
82900801CD22
82Q00801C0223
82900801C024
82900801C025
82900801CD26

x

Figure 16. Sample Program for a Randomly Created Direct File (Part 2 of 2)

88

c
en
m
11

~
m
'tI
11
o o
m
en
en
=' 1.0

00
\0

--

File Data Management

Organization Techniques

BSAM

D BDAM

W BDAM

--
Access KEY OPEN

Method (lauses Statement

SEQUENTIAL ACTUAL INPUT

OUTPUT

RANDOM ACTUAL INPUT

OUTPUT

1---------
1-0

RANDOM ACTUAL 1-0

Access

Verbs

READ [INTO]

AT END

f--------
WRITE [FROM]

INVALID KEY

SEEK

READ [INTO]

INVALID KEY

SEElC

WRITE [FROM]

INVALID KEY

1--------
SEEK

READ [INTO]

INVALID KEY

WRITE [FROM]

INVALID KEY

SEEK

READ [INTO']

INVALID KEY

WRITE [FROM]

INVALID KEY

REWRITE [FROM]

INVALID KEY

CLOSE

Statement

[UNIT]

[WITH LOCK]

[WITH LOCK]

[WITH LOCK]

I

J

~
DI
t:r
I-'
m
1-\
W .
o
t1
m
o
rt

~
m
'tI

a
o
m
en
en
~
g
~
en
en
en
rt
o
t1
DI
.Q
m
o
m
<:
o
m
en

Table 14. JCL Applicable to Directly Organized Files
r---,
I I
I DD Statement Parameters Applicable to BSAM Input Files I
I I
~------T--------T----T-------T------T---------~----------T-----------------T------------~
I DSNAME I Device IUNITIVOLUME ILABEL I SPACE, SUBALLOC, SPLIT I DISP I DCB I
~------+--------+----~-------+------+--------------------+-----------------+------------~
I as I Mass 'not required I [SL or I '{OLD} l·' PASS '~I na I
I IStorage lif catalogedlSUL] I na I SHR ,KEEP I I
I I required I I I I ,CATLG I I
I I I I I I, DELETE. , I
I I I I I " UNCATLG I I
~------~--------~------------~------~--------------------~-----------------~------------~
~---~
I I
I DD Statement Parameters Applicable to BSAM Output Files ,
I I
~------T--------T----T-------T------T--------------------T-----------------T------------~
I DSNAMEIDevice IUNITIVOLUME ILABEL ISPACE SUBALLOC SPLIT I DISP I DCB I
~------+--------+----~-------+------+--------------------+-----------------+------------~
las IMass I as I [SL orlas as na I NEW {,KEEP } I [DSORG=DA] I
I IStorage I ISUL] IRLSE I ,CATLG 10PTCD=[W,T] I
I I required I I I I ,PASS I I
I I I I I I, DELETE I I
I I I I I I I I
I , I I I I Note: MOD not I I
, I I I I I meaningful I I
~------~--------~------------~------~--------------------~-----------------~------------1
~---~
I I
, DD Statement Parameters Applicable to BDAM Input and I-O Files I
, I
~------T--------T----T-------T------T--------------------T-----------------T------------~
I DSNAME I Device IUNITIVOLUME 'LABEL I SPACE, SUBALLOC, SPLIT I DISP , DCB ,
~------+--------+----~-------+------+--------------------+-----------------+------------~
, as I Mass I not required I [SL or I I {OLD} ~" PASS I' I as specified I
I IStorage lif catalogedlSUL] I na I SHR ,KEEP lat file I
, I required I I I I, CATLG I creation I
I I I I I I, UNCATLG I I
, , , I I I, DELETE I I
~------~--------~------------~------~--------------------~-----------------~------------~
~--~--~
I I
I DD Statement Parameters Applicable to BDAM Output Files I
I I
~------T--------T----T-------T------T--------------------T-----------------T------------~
I DSNAME I Device I UNIT I VOLUME ILABEL ISPACE SUBALLOC SPLITt DISP I DCB I
~------+--------+----~-------+------f--------------------+-----------------+------------~
las 'Mass , as I [SL orlas as na, NEW l'KEEP } I [DSORG=DAl I
I I Storage I ,SUB] I RLSE I, CATLG I OPTCD= [W, E] ,
I I required I I I I, PASS I LIMCT=n I
I I I I I I, DELETE I I
I I I I I I Note: MOD not I I
I I I I' , meaningful, I
~------~--------~------------i------~-----------------___ ~ _________________ ~ ____________ ~
las = Applicable subparameters I
Ina = Not applicable I L ___ J

90

RELATIVE FILE PROCESSING

Relative file processing is
characterized by the use of the relative
record addressing scheme. When this
addressing scheme is used, the position of
the logical records in a file is determined
relative to the first record of the file
starting with the initial value of zero. A
NOMINAL KEY is used to identify randomly
accessed records. Files with relative data
organization must be assigned to mass
storage devices.

r---,
I Format \
~---~
I \
\NOMINAL KEY IS data-name \
I \ L ___ J

Data-name must be defined as an
S-integer binary item whose value must not
exceed 16,771,215. NOMINAL KEY must be
defined in the Working-Storage Section.

The following example illustrates use of
the NOMINAL KEY clause:

r---,
IENVIRONMENT DIVISION.
I
I
I
I NOMINAL KEY IS THE-NOMINAL-KEY.
I
I
I
IDATA DIVISION. ,
I ,
,WORKING-STORAGE SECTION.
177 THE-NOMINAL-KEY PIC S9(S) COMP SYNC. L __ _

The relative file processing technique
supports only unblocked fixed-length
records.

Figure 17 illustrates those parts of a
relatively organized file that are of
importance to a COBOL programmer. The
track format is similar to the format
described for directly organized files (see
section "Direct File Processing"). The
following is a list of significant
differences:

1. The records (Rl, R2, ••• , Rn) are
formatted without a key area.

2. The COUNT area contains a record ID:

a. 2 bytes containing the cylinder
number

b. 2 bytes containing the read/write
head

c. 1 byte containing a record number
from 1 through 255

Records on mass storage devices will
always appear sequentially ranging from °
to g, where g equals the highest key
contained in the file.

The following example illustrates the
relationship between the NOMINAL KEY and
the positioning of records on a mass
storage device.

r---,
I ENVIRONMEN'I' DIVISION.
I
I
I
I NOMINAL KEY IS THE-NOMINAL-KEY.
I
I
I
IDATA DIVISION.
JFILE SECTION.
JFD RELATIVE-FILE
I LABEL RECORDS ARE STANDARD.
101 REC-l PIC X(SO).
I
J
I
\WORKING-STORAGE SECTION.
I ,
\
177 THE-NOMINAL-KEY PIC S9(S) COMP SYNC.
L ______ -----------------------------------

consider REC-l being written 50 times.
With each execution of the WRITE statement,
the content of THE-NOMINAL-KEY is
incremented by 1, from ° through 49. Since
a 2311 mass storage device has room for
only twenty-five SO-character records on
each track (see "Determination of File
Space" in "Direct File Processing") REC-l
will be written as follows:

• Relative records ° through 24 will be
on the first track.

• Relative records 25 through 49 will be
on the second track.

User File Processing 91

;---,
, INDEX I
, POINT GAP I
, I' RO R1 R2 I
I II ~~~ I
, I' r-------, r--------, r----------, r-----T----, I
, V I ITRACK I I CAPACITY I I I I I I I I
, G I ADDRESS , G IRECORD I G I COUNT I DATAl G I COUNT I DATAl G 1 I L _______ J L ________ J L _____ ~ ____ J L _____ ~ ____ J I

I I L ___ J

Figure 17. Relatively Organized Data as it Appears on a Mass Storage Device

r---, , , ,
I
11st TRACK
I
!
!
!
!2nd TRACK , ,

Count Data Count Data Count Data Count Data
r-------T-----' r-------T-----' ,------T-----' r-----~--T-----'

G 101,00,1IREC-11 G 101,00,2IREC-11 G 101,00,3IREC-1IG GI01,00,25IREC-11
I I (0) I 1 I (1) I I I (2) I I I (24) I l _______ ~ _____ J L _______ ~ _____ J l _______ ~ _____ J L ________ ~ _____ J

r-------T-----' r-------T-----' r-------T-----' r--------T-----'
G 101,Ol,1IREC-1! G 101,01,2IREC-11 G 101.01,3IREC-1IG GI01,01,25IREC-11

1 1(25) 1 I 1(26) 1 J 1(27) I 1 1(49) 1 L _______ ~ _____ J L _______ ~ _____ J L _______ ~ _____ J ••• L ________ ~ _____ J

l ___ J

Figure 18. Sample Format of Two Tracks of a Relative File

If the two tracks assigned to RELATIVE FILE
are "cylinder 01 track 00" and "cylinder 01
track 01," they would appear as shown in
Figure 18.

It is important to note that information
about the length of each record, the
capacity of each track and the relative
record number, as indicated by the NOMINAL
KEY is used by the system to determine the
exact location of each record. As
indicated in Figure 18, the system converts
each relative record number into a unique
cylinder number, head number, and record
number, which are written in the count area
of each physical record.

~: Since count areas do not appear in
1-0 buffers and there are no key areas,
buffer size need be only large enough to
accommodate data in REC-1.

Sequential Creation

Relative files must be created
sequentially using the file processing
technique BSAM (Basic Sequential Access
Method) •

92

• The associated COBOL statements are
summarized in Table 15.

• The associated JCL statements are
summarized in Table 16.

Figure 19 illustrates the creation of a
relative data set.

Records in relative files, are arranged
sequentially in the order in which they
were written. The first record written is
relative record 0, the second record is
relative record 1, the nth record written
is relative record n-1.- A file containing
1,000 records will thus contain relative
records 0 through 999. The clause that
allows the user to specify the relative
record needed is the NOMINAL KEY clause.

When a relative file is being created,
the NOMINAL KEY clause may be specified.

• If the NOMINAL KEY is specified and the
value in the NOMINAL KEY (when a WRITE
statement is executed) is greater than
the next sequential relative number,
the necessary number of dummy records
is written by the compiler so that the
actual record is written in the
specified relative position. If the
NOMINAL KEY for a WRITE statement is

less than the next sequential relative
record number, the key is ignored and
the record is written in the next
available position.

• If the NOMINAL KEY is not specified,
the system begins writing at relative
record 0 and increments the relative
record number by 1 for each additional
WRITE statement. When the key is not
specified, the user is responsible for
insertion of dummy records. The only
time the compiler will add dummy
records is during the execution of a
CLOSE or CLOSE UNIT statement.

Note: Dummy records are identified by
the presence of the figurative constant
HIGH-VALUE in the first position of the
record.

The relative block number of the last
record written is placed in the NOMINAL KEY
after a WRITE, CLOSE, or CLOSE UNIT
statement, if the key is specified.

Once a file is created, more space
cannot be allocated and the extent of the
file cannot be increased. The only way to
add records to an already existing file is
to replace dummy records. Therefore, to
allow for future additions, the user should
create the file with as many excess dummy
records as desired.

The allocation of space to a relative
file (both single-volume and multivolume)
is similar to the allocation of space
described for a sequentially created direct
file. Highlights and essential differences
are discussed below:

• The relative file processing technique
does not include a TRACK-LIMIT clause.
Space allocation and formatting will,
therefore, be determined by an
interaction between the SPACE parameter
of the DD card and the number of
records written.

• The total number of tracks formatted
will be determined when the file is
closed. Dummy records will be added to
complete the current track, if
necessary.

• Tracks that are allocated but
unformatted, and have been requested in
track or block units, can be released
by specifying the RLSE subparameter on
the DD statement.

• When a unit of a multivolume file is
closed, all tracks that have been
allocated on the current unit are
formatted (initialized with dummy
records) before the next unit is made

available. The RLSE subparameter of
the DD statement applies only to the
allocated tracks at the end of a data
set.

Note: In order to determine the amount of
space a data set requires, see Tables 9,
10, and 11.

Sequential Reading

The file processing technique used to
read a relative file sequentially is BSAM
(Basic Sequential Access Method).

• The associated COBOL statements are
summarized in Table 15.

• The associated JCL parameters are
summarized in Table 16.

When a relative file is being read
sequentially, the records are made
available in the sequence in which the
records were written. Dummy records are
also made available. The NOMINAL KEY, if
specified, will be ignored.

The file processing technique used to
read or update a relative file randomly is
BDAM (Basic Direct Access Method).

• The associated COBOL statements are
summarized in Table 15.

• The associated JCL statements are
summarized in Table 16.

Since a relative file cannot be created
randomly, the following restrictions exist:

1. The file cannot be opened as an output
file.

2. The WRITE verb is not permitted.

A relative file with BDAM can be opened
as input or 1-0. Records are made
available according to the contents of
NOMINAL KEY. If the user wishes to update
a file, it must be opened as I-O. Records
can then be read into a single buffer,
updated in that buffer, and rewritten from
that buffer. If the user wishes to add
records to a file, the file must have been
created with excess dummy records. If
dummy records are present, the file can be

User File Processing 93

opened as 1-0 and dummy records can be
replaced by the additions. If dummy
records are not present, additions cannot
be made.

Note: Records cannot be deleted, but can
be replaced by dummy records.

Figure 19 illustrates several basic
characteristics of the relative file
processing technique. It creates a
relative file (R-FILE) using a card file
(C-FILE) as input. C-FILE consists of 11
cards in the following sequence:

Card
Number Card contents

1 010 NAME 0 1
2 020 NAME 0 2
3 030 NAME 0 3
4 040 NAME 0 4
5 050 NAME 0 5
6 060 NAME 0 6
7 000 THIS CARD IS OUT OF SEQUENCE
8 070 NAME 0 7
9 080 NAME 0 8

10 090 NAME 0 9
11 100 NAME 1 0

The program, during creation, exhibits
the contents of NOMINAL KEY after the
execution of each WRITE statement. After
creation, the relative file is closed,
reopened as an input file, and written out
on the printer. The following discussion
highlights some basic features. Circled
numbers in the program example refer to
corresponding numbers in the text.

1. The nominal keys, GD , that have been
exhibited contain the relative record
numbers of real records on the file.
Relative records 10, 20, 30, 40, 50,
60, 61, 70, 80, 90, and 100 are real;
all others are dummy records formatted
by a COBOL subroutine. Note the

94

nominal key N-KEY = 61. The initial
value taken from C-FILE, card 7, was
000. This value, however, was not in
logical sequence since relative
records 000 through 060 had already
been written. Therefore, a COBOL
subroutine ignored the value 000 and
adjusted it to the next appropriate
relative record number (i.e., 61).

2. The contents of N-KEY for the first
WRITE, GD , was 10. This means that
a COBOL subroutine formatted relative
records 0 through 9, placing the
constand HIGH-VALUE in the first
position of each record.

Note: The constant HIGH-VALUE is
exhibited as a blank since FF is not a
printable character.

3. The contents of N-KEY for the second
WRITE, CD , was 20. Therefore, the
COBOL subroutine formatted relative
records 11 through 19.

4.

5.

The contents of N-KEY for the seventh
WRITE, QD , was initially 000. As
explained in step 1 ,N-KEY was
adjusted to 61 and the record was
written in the next available
position.

Since this file was created on a 2311
mass-storage device, the track
capacity for R-FILE is 25 record per
track. Relative record 100 is,
therefore, the first record written on
track 4 (remember: the first 5 tracks
of a file are actually relative tracks
o through 4). Since the file is
closed after writing relative record
100, the COBOL subroutine formats the
rest of track 4. In this case, it
means the addition of 24 dummy
records, CD

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051

00101
00102
00103
00104
00105
00106
00107
0010S
00109
00110
00111
00112
001125
001126
001127
00113
00114
00115
00116
00117
0011S
001184
001185
001186
00201
00202
00203
00204
002041
002042
002043
002044
002045
002046
00205
00206
00207
002 OS
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00230

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATER.
REMARKS. ILLUSTRATE CREATION OF A RELATIVE FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT R-FILE ASSIGN DA-2311-R-MASTER
ACCESS IS SEQUENTIAL
NOMINAL KEY IS N-KEY.

SELECT C-FILE ASSIGN UR-S-CARDS.
SELECT R-FILE2 ASSIGN DA-2311-R-MASTER.
SELECT PRTFILE ASSIGN UR-S-PRTOUT.

DATA DIVISION.
FILE SECTION.
FD R-FILE

LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
DATA RECORD IS DISK.

01 DISK PIC X(SO).
FD R-FILE2 LABEL RECORDS ARE STANDARD.
01 DISK2 PIC X(80).
FD C-FILE

LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.

01 CARD.
02 C-KEY PIC 9(3).
02 FILLER PIC X(77).

FD PRTFILE LABEL RECORDS ARE OMITTED.
01 PRT.

02 FILLER PIC X.
02 FIELDl PIC X(132).

WORKING-STORAGE SECTION.
77 N-KEY PIC S9(8) COMP SYNC.
PROCEDURE DIVISION.

OPEN INPUT C-FILE
OUTPUT.R-FILE.

Rl. READ C-FILE AT END GO TO EOJ1.
MOVE C-KEY TO N-KEY.
WRITE DISK FROM CARD.
EXHIBIT NAMED N-KEY. GO TO R1.

EOJ1.
CLOSE C-FILE R-FILE.
OPEN INPUT R-FILE2 OUTPUT PRTFILE.

R2. READ R-FILE2 AT END GO TO EOJ2.
MOVE DISK2 TO FIELD1.
WRITE PRT AFTER 1 LINES GO TO R2.

EOJ2.
CLOSE R-FILE2 PRTFILE. STOP RUN.

Figure 19. Sample Program for Relative File Processing (Part 1 of 4)

User File Processing 95

tEF2~~1 PPCCPISl PISSED
, IEf2@~I vel ~EP ~Cc. L~'~I'.
IEJ2P~1 ~~~6~lE~.1C?C.(?A~CCC.~Fllf.lll CElETEC
IEf28~t vel ~EP ~c~ •• ~1AES.
lEF28~1 cyc~qle~.Te3C~23.Avoee.~Ftlf.AJCe PISSEO
tfF2P~t VCl ~EF ~O~. ~i2222.
IEF28~1 ~YS1.(C!llr KEPT
IEF2f~t vel ~EP ~c~. lS'SI'.
tEF2e~1 5~5~~IE •• 1C?C~2?5~CCC.PFtlE.pCOCeO!2 5~SCLl
tEF2e5t vel ~EF ~OS. 2?1400.
lEF2e~1 ~~~~~lf~.lC?(423.A~coe.AFtlf.F~C~ [flETEC
IEF285t vel SEP NOS. ~~(22(.

cTEP CTEP2 TEA~t~'TfC. Tl~E cO.ce ~A.~[AT~/~R • CC.CO.18.08 ~A.~1~.SEC.HCA1H/SEC.C"E 6~.184
IISTFP3 fXEC P(~ ••• 5TfP2.~~~l~Ct
IlsvseUT CC 5~SC~T.'
IIcvelC~~p re eveCLT.'
II-'STEP or l~IT.2?11t~(lU~E.~EP.CAC28tSF'CE.('P~,(5,51"CC~TI(I,
II [S~'ME.PFtlE,C1SP.I~E_,KEEPI
IIPP'CL' cr e~e(lT.'
IlCAIICS ro
II
IEF23~t Allee. F(P AFtlE ~TEP!
IEF2?1t JCelle c~ 1~3
IEF2311 FC •••• CC C~ l~C

IEF2311 eYSel' e~ 23C
IfF231t ~'~LOl~F C~ i?~
IEF2311 MASTER C~ l~i
tfF2311 PA'fl' e~ 2!C
IfF2311 C'Ar~ C~ i?~

"-ICE Y . (C(CCelC
!I,i-IIFY .. ccecee H
~-ICEY .. eooroe3e
~-Kn ,. (CCCCC.C
",":kEY so eccccc~c CD "'-ICEY ,. ccoceete
N-kFY ,. ((C(CC~l

~-I(EY . ceecenc
"-lIfY ,. (cccoeee
~-I(FY ,. (ce((cCe
~-IIEv .. cocco lee

Ie ~A·ECI
10 ~A"HI

10 ~A"ECI
lC ~A"ECI
Ie ~A"Erl CD IC ~A"ECI
10 "A"Ee 1
10 ~A"ECI
10 ~A"EOI
lC ~A"Ee 1

010 "'''ECI
20 ~A"EC2

20 ~A"Ee2

(0 20 "A"ec 2
20 ~A"Ee2

20 ~A"EC2

20 ~"'EC2
2C "A"'E(2
2e """Ee 2
20 ~A"EC2

Figure 19. Sample Program for Relative File Processing (Part 2 of 4)

96

tJ(O 1\I""<tuz.
30 h'''En
30 "'''EC'!
30 ","EC'!
30 "''''EC~
30 "''''En
'!O "''''EC3
30 "'"EC~
'!O "'''EC3
30 "'''EC~

C3C "''''EC~
40 "''''E04
40 ""'E04
40 "'H04
4C ""H04
40 "''''E04
40 "''''E04
40 "'''E04
40 ""'E04
4C "'"E04

040 ""'IE04
'50 "I'''E05
'50 "''''E05
'50 "''''E05
'50 "'''E05
0;0 "'''E05
50 "'''E05
0;0 "'''E05
50 "'''EC5
'50 "''''E05

050 "'''E05
60 t.;''''EOe:
60 "'"E06
60 ""'EO~
60 "'''EC6
60 "'HC6
60 """E06
60 ""'EOf'
60 "'Hoe:
6C "'"EOe:

06(1 "'''Ee6 CD 000 nilS CAIIC IS CUl CF SEOUE"-CE
10 "'"E01
10 "''''E01
10 "'"E01
10 "'1'£01
10 "'"E01
10 "''''E01
10 ""'E01
10 "'"e01

C10 "'H01
80 "'"Eee
80 "'"E08
PO "'"E08
80 "''''E08
80 ""'E08
P.O "'"E08
80 "'''EC8
80 """EC8
8e "''''EC8

080 "'''EC8
<10 "'"EO<1
qO "~IIECCI
(l0 "'"eec;
c;e u"ecc;
<1~ ",lIeoCl

Figure 19. Sample Program for Relative File Processing (Part 3 of 4)

User File Processing 91

90 ~.",tO"
qO IIA/llEOq
qO ~A"EOC;
qO t.;AII,ECq

OqO "A"EOq
00 "AIiE10
00 ~A"'E10
00 "''''E10
00 "''''E10
00 I\A"'E 10
00 ~A"'E 10
00 I\AfilE10
00 l\A"'ElO
00 ~AfilE10

100 ~A"'E10
00 ~A"'ElO
00 ~A"'E10
00 ~AfilE10

00 l\A"'E10
00 ~AfilE10
00 ~AfilElO
00 ~AfilE10
00 I\AfilElO
00 "'filE 10
00 ~AfilElO
00 ~AfilElO
00 ~AfilElO
00 I\AfilElO
00 ~AfilElO

00 IlAfilElO
00 I\AfilE10
00 ~AfilElO

00 U"'ElO
00 ~AfilElO

00 ~A"'E10
00 U"'ElO
00 ~A"'E10
00 ~A"'E10
00 ~A"'ElO

Figure 19. Sample Program for Relative File Processing (Part 4 of 4)

98

c
en
CD
11

t'Zj
CD

It!
11
o o
CD
en
en
:I

I.Q

\0
\0

Data Management

Techniques

BSAM

BDAM

- -.-

Access KEY

Method Oauses

SEQUENTIAL [NOMINAL]

r----------

NOMINAL

RANDOM NOMINAL

OPEN Access

Statement Verbs

INPUT READ [INTO]

AT END

r-------- -------
OUTPUT WRITE [FROM]

INVALID KEY

INPUT READ {INTO]

INVALID KEY

~------ - ------

READ [INTO]
1-0

INVALID KEY

REWRITE [FROM]

INVALID KEY

- - - --------~-- ---- --- - - - ----

t-3
CLOSE III

tr
Statement

CD

~
(J1

[UNIT]

[WITH LOCK] :xl
CD
III
rt
<
CD

t'Zj
.....
CD

I

ttl
11
0

I
0
CD
en
en ... -
::s

I.Q
I'd

0 III
::s I.Q

CD

~ 0
en t-n
en

Cj}
til n
rt .t-..)

0 CO
11 I
III 0'1

I.Q w
CD \0

[WITH LOCK)
\0

t:I I
CD t-..)

<
0 :xl
CD CD en <

en
CD
QI

~

"'-
~
(J1

"'-...,J
w

tr
I<:

t-3
~--------.-------- 2:

t-t
Cj}
Z
t-..)

CO
I

P
0
W
CO

Table 16. JCL Applicable to Relatively Organized Files.
r-----------~---, , ,
, DD statement Parameters Applicable to BSAM Input Files I
, I
~------T--------T----T-------T------T--------------------T------------------T-----------1
I DSNAMEI Device ,UNITIVOLUME ILABEL ,SPACE,SUBALLOC,SPLITI DISP I DCB I
~------+--------+----~-------+------+--------------------+------------------+-----------1
las I Mass Inot requiredl [SL orl '{OLD} 1·'PA.SS (. I na I
, Istorage lif cataloged,SUL] I na ,SHR ,KEEP I ,
I I required I I I I·, CATLG, I
I , I I I "DELETE I I
I , , I I I, UNCATLG I I
~------~--------~------------~------~--------------------~------------------~-----------1
~---1
, I
I DD Statement Parameters Applicable to BSAM Output Files I
I I
~------T--------T----T-------T------T-----T--------T-----T-----~------------T-----------~
I DSNAME I Device I UNIT, VOLUME I LABEL I SPACE, SUBALLOC , SPLIT I DISP I DCB I

t~;----t~;;;----t----~~;-----t[~~-~~t;;---t~;------t~;---t.-;;~--~~~;;;--l---t~;;~~:{~~;}1
I I Storage I I SUL] I RLSE I I I ·,CATLG I [DSORG=mU I
I I required, I" " ,PASS I I
I , I 'I' " ., DELETE, I
, , I I" 'I 'I
, , , 'I' I I Note: MOD not I I
, I , I I I 'I meaningf ul I I
~------~--------~------------~------~-----~--------~-----~------------------~-----------1
~---1
I I
I DD Statement PARAMETERS Applicable to BDAM Input and 1-0 Files I
I I
~------T--------T----T-------T------T--------------------T------------------T-----------~
I DSNAMEIDevice IUNITIVOLUME II~EL ,SPACE,SUBALLOC,SPLITI DISP I DCB I

r~;----r~~~:::-r~~~:~~i~~:~r!~~:~~r--------------------r{-~~}---I:~~~~---l--r:=:~~~:~~~~1
I I required I I' na , ,CATLG I I
I I , I I I, UNCATLG I I
I , , I' I, DELETE I I
~------~--------~------------~------~--------------------~------------------~-----------1
las = Applicable subparameters I
Ina = Not applicable I L ___ J

INDEXED FILE PROCESSING

The indexed file processing technique
arranges records on the tracks of a
mass-storage device in a sequence
determined by keys. The key is a control
field that is a physical part of the record
(defined in the FD) and is specified by the
RECORD KEY clause in the Environment
Division. The RECORD KEY clause identifies
for the compiler the location and length of
that item within the data record that will
contain the key. It must always be
specified.

100

r---,
I Format I
~---~ , I
I RECORD KEY IS data-name ,
, I L _____________________ ~ ___________________ J

Data-name may be any fixed-length item
from 1 through 255 bytes in length.

When two or more record descriptions are
associated with a file, a similar field
must appear in each description, and must
be in the same relative position from the
beginning of the record, although the same
data-name need not be used for both files.

Data-name must be defined to exclude the
first byte of the record in the following
cases:

1. Files with unblocked records.

2. Files from which records are to be
deleted.

3. Files whose keys might start with a
delete-code character (HIGH-VALUE).

With these exceptions, the item
specified by data-name may appear anywhere
within the record.

The position of each logical record in a
file is determined by indexes created with
the file and maintained by the system. The
indexes are based on the RECORD KEYS and
provide the following capabilities:

• Write and later read or update logical
records in a sequential, ascending
order (using QISAM) based on the
collating sequence of the keys. This
is done in a manner similar to that for
sequential organization.

• Read or update individual logical
records in a random manner (using
BISAM). This method is somewhat slower
per record than reading according to a
collating sequence, since a search for
pOinters in indexes is required for the
retrieval of each record.

• Insert new logical records at any point
within the file (using BISAM). Using
the indexes, the system locates the
proper position for the new record and
makes all necessary adjustments so that
the sequence of the records, according
to the keys, is maintained.

There are two basic types of indexes:
track indexes and cylinder indexes. There
is 9ne track index for each cylinder in the
prime area (see "Indexed File Areas" for a
description of prime area). The track
index is written on the first track of the
cylinder that it indexes. Each entry in
the track index contains the identification
of a specific track in the cylinder and the
highest key on that track (Figure 20).

Figure 20 is the representation of a
track index with the following areas:

Home Address -- This field defines the
physical location of the track in
which the index appears. It
indicates the cylinder in which the
track is located and the read/write
head that services the track.

COCR (Cylinder Overflow Control Record)
-- When a cylinder overflow area is
specified (see "Indexed File Areas"
for a description of overflow
areas), RO of each track index is
used to keep track of overflow
records and space available in the
cylinder overflow area.

Normal Entry -- There is one normal and
one overflow entry for each usable
track in the cylinder. The Normal
Entry contains two areas:

• ~~ -- the key of the highest
record on the track specified in
the Data area

• Data -- the horne address of one of
the prime tracks in the cylinder

Figure 20 shows that the highest key
on track 1 is 10 and the highest key
on track 2 is 25.

overflo~Entry The overflow entry is
originally the same as the normal
entry. It is changed when an
a~tempt is made to add a ~ecord to a

r---,
I RO Normal Overflow Normal Overflow I
1 1
I r----' ~ ~, r~---~T~-"'" r~ {--.!':--;.~-, I
I 101001 ICOCRI 100010100011 100010100011 100025100021 100025100021 1 1 l ____ J l ____ J l _____ ~ ____ J L _____ ~ ____ J l _____ ~ ____ J l _____ ~ ____ J I

I Home Key Data Key Data Key Data Key Data 1
I Address I l ___ J

Figure 20. Track Index

User File Processing 101

prime track on which space is no
longer available. In this case, the
overflow entry keeps track of the
logical sequence of records although
physically the record may be added
to an overflow area.

r---,
I 1
1 r-----T----' r-----T----' r-----T----' I
1 100500 10000 I J 009451 00011 101550 100021 ••• I I L _____ ~ ____ J L _____ ~ ____ J L _____ ~ ____ J I

I Key Data Key Data Key Data J

! "CYlindJ address/ l
1 1 L ___ J

Figure 21. Cylinder Index

There is one cylinder index for each
file in which prime area data occupies more
than one cylinder. The cylinder index
contains one entry for each cylinder in the
prime area; each entry pointing to the
track index for a particular cylinder
(Figure 21).

The cylinder index is formatted in the
same fashion as the track index. Figure 21
shows that the highest key on cylinder 0 is
500, the highest key on cylinder 01 is 945,
the highest key in cylinder 02 is 1550,
etc.

Note: If an indexed file is being read
randomly, the system locates the given
record by its key after a search of the
cylinder index and the track index within
the indicated cylinder. If the file is
being read sequentially, starting, with the
first record, no index search is performed.

Records, in indexed files, may be either
blocked or unblocked; but must be F-mode
records. Figures 22 and 23 illustrate
blocked and unblocked records as they
appear on prime tracks of mass storage
devices.

BLOCKED RECORDS

~!: contains control information

Key: contains the key of highest record in
the block

Data(lL 2, ••• L~l: each contains the
information defined in the FD; including
its own record key.

r---~-------------,
I r-------T-----T-------T-------T-------, r-------T-----T-------T-------T-------, 1
I I COUNT I KEY 1 DATAl 1 DATA2 I DATA3 I 1 COUNT I KEY IDATA4 I DATA5 I DATA6 I 1
I L _______ ~ _____ ~ _______ ~ _______ ~ _______ J ~-----~-----~-------~-------~------.L I
I - ~ - ~ 1

I 1
I I
I 1st Block 2nd Block I L ___ J

Figure 22. Blocked Records on an Indexed File

102

r---,
I I
I r-----T---T-----' r-----T---T-----' \
I I COUNT I KEY I DATAl I I COUNT I KEY I DATA 2 \ I I L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J I

I I
I 1st Block 2nd Block I L ___ J

Figure 23. Unblocked Records on an Indexed
File

UNBLOCKED RECORDS

~: contains control information

Key: contains the key of the record that
is in the block.

Data (1), (2), etc.: each contains the
information defined in the FDi including
its own record key.

Indexed File Areas

The programmer specifies the structure
of an indexed file and space to be
allocated for it in the DD statement for
the file when the file is created. In some
instances, more than one DD statement is
required. (These DD statements are
described in "Using the DD Statements
Single Volume Files.") The space being
allocated must be divided into one, two, or
three areas, depending on the needs of the
programmer. These areas are: prime area,
index area, and overflow area. The
overflow area is optional.

Prime Area: The prime area is the area in
which data records are written when the
file· is created or reorganized. These
records are in a sequence determined by the
record keys. The track indexes also use a
portion of the reserved prime area. To
reserve prime area space so that new
logical records may be inserted without
forcing records into an overflow area
(described below), dummy records (records
containing the figurative constant
HIGH-VALUE in the first character position)
may be written when the file is being
created. The prime area may· span multiple
volumes and may consist of several
noncontiguous areas.

Index Area: The index area contains the
cylinder indexes and, if requested, master
indexes <described later) for the file.
This area exists for any file that has a

prime area on more than one cylinder.
Space for this area will be allocated
separately from the prime area if
specifically requested. The index area
must be contained within one volume, but
that volume need not be the same device
type as the prime area volume. If not
specifically requested, the index area will
automatically be constructed in the
independent overflow area, or, if there is
no independent overflow area, it is
constructed in the prime area.

Overf low Area: The overf low area i.s the
areaiil which space is allocated for
records forced from their original <prime)
tracks by the insertion of new records.
The fact that some records are stored in
these areas, physically out of sequence,
does not change the ability of QISAM to
read the file in a logical sequence. An
overflow area need not be specified if
records are either not going to be added to
the file, or sufficient space was
originally reserved by writing dummy
records in the prime area.

There are three ways in which space for
an overflow area may be allocated:

1. Cylinder Overflow (Figure 24). Tracks
on each cylinder can be reserved to
hold the overflow of that cylinder
(cylinder overflow option).

2. Independent Overflow (Figure 25).
Space may be requested for an
independent overflow area, using the
dsname (OVFLOW) DD statement, either
on the same volume or on a separate
volume of the same device type as that
of the prime areft.

3. If the prime area is not filled when
the file is created, the space
remaining on the last cylinder on
which data has been written will be
designated as an independent overflow
area (even though it is not requested
directly) •

Additional information about indexed
file structure is contained in the
publication IBM System/360 Operating
System: Data Management Services.

User File Processing 103

r---,
I I I I I I I I
ICYLOICYL11CYL21CYL31CYL41CYLSICYL61
~----+----+----+----f----+----+----~
I I ITrack Indexes I I I
~----+----+----+----+----+----+----~
I I I I I I I I
I I I I I I I I
I Prime Area I
I I I I I I I
I I I I I I I
I I I I I I I I
I I I I I I I I
.----+----+----+----+----+----f----~
I I I I I I I I
I Cylinder Overflow Area I
I I I I I I I I L ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

___ J

Figure 24. Cylinder Overflow Area

An advantage of having a cylinder overflow
area is that additional seek operations are
not required to locate overflow records. A
disadvantage is that there will be unused
space if additions are unevenly distributed
throughout the file.

r---,
I I I I I I I I
I I I I I I I I
ICYLOICYL11CYL21CYL31 ICYLX ICYLY I
t----+----+----+----~ ~-----+-----~
I Track Indexes I I i I
~----+----+----+----~ I I I
I I I I I I I I
I Prime Area I I Independent I
I I I I I I Overflow I
I I I I I I Area I
J I I I I I I I L ____ ~ ____ ~ ____ ~ ____ J L _____ ~ _____ J

Figure 25. Independent Overflow Area

An advantage of having an indepenaent
overflow area is that less space need be
reserved for overflows. A disadvantage is
that accessing overflow records requires
additional seek operations.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflows caused by
additions and an independent overflow area
to be used as the cylinder overflow areas
are filled.

104

creating Indexed Files

Indexed files must be created
sequentially using QISAM (Queued Indexed
sequential Access Method). Records must be
arranged and written in ascending order
according to the contents of RECORD KEY.
If a WRITE statement is executed and the
current contents of RECORD KEY is less than
or equal to the previous contents of RECORD
KEY, an INVALID KEY condition will result.

The structure of an indexed file, and
the space to be allocated to it, is
specified in a OD statement(s). The space,
which can be allocated in several different
ways, ,must be sufficient for all areas of
the file.

DO STATEMENT REQUIREMENTS FOR INDEXED
FILES: The special parameter requirements
for OD statements that define new indexed
files are discussed below. The discussion
is oriented to indexed files on one volume.
Many of the parameters used for creating
multivolume files are not discussed here.
For more detailed information about
parameters for both single-volume and
multivolume files, see the publication IB~
§ystem/~£Q~rating system: Job Control
1~g!!§!g~gef~~ or IBM §.y§'tem/360
Ope~~~!~System: Job Control Lan9ua9~
Proqramm~~~_§!!ide.

ddname (name field)
The name field of the first or only OD
statement defining the indexed
sequential file can contain the
symbolic identification ddname or
procstep.ddname. Succeeding OD
statements for the file must not be
named.

DSNAME (DSN)
This parameter must be specified and
is coded as follows:

{
DSNAME} =

DSN {
dSname,}

&&name
[(element)]

The first subparameter, dsname, or
&&name must be the same in all the OD
statements defining one data set. The
element subparameter, INDEX, PRIME, or
OVFLOW, indicates the type of area
defined by the DO statement. If more
than one DD statement is used to
define a file, the order in which the
statements should be placed in the
input stream is as follows:

DD OSNAME=dsname(INOEX)
DD DSNAME=dsname(PRIME)
DD DSNAME=dsname(OVFLOW)

Deviation from this sequence results
in abnormal termination of the job.
If the element subparameter is omitted
PRIME is assumed. Note that an
indexed file cannot be specified by
statements containing only index and
overflow elements. .

SPACE
This parameter specifies the space to
be allocated for each of the separate
areas on the device and must be
included. Only cylinder (CYL) or
absolute track (ABSTR) requests are
permitted, and with ABSTR the
designated tracks must encompass an
integral number of cylinders. All the
DO statements defining one indexed
file must specify the same
subparameter, either CYL or ABSTR.
When all the DO statements specify
CYL, all must also specify or omit
CONTIG, depending on whether the space
allocated is to be contiguous or
noncontiguous. The directory or index
quantity subparameter of the SPACE
parameter is used to request the
~umber of cylinders to be allocated
for an index area embedded within the
prime area (see "Space Parameter" in
"Job Control Procedures"). An
embedded index resides in the ~ddle
of a track and saves searching time by
first determining which half of the
track contains the requested record.

SPLIT

DISP

DCB

This parameter should never be
specified for an indexed file, either
for sharing a cylinder with indexed
files or for sharing it with an
indexed file and another type of file.

This parameter is written as it would
be for any new file that cannot be
cataloged. The CATLG subparameter
must not be specified unless only one
DO statement is used to allocate the
file space (see "Cataloging Files" for
additional information about
cataloging indexed files).

This parameter must be specified for
eachDD statement and is coded as
follows:

DCB=(DSORG=IS
[, BUFNO=integer]
[,OPTCD={YIIIR\WIL\MIU,NTM=integer}]
[,BLKSIZE=integer])

The DSORG=IS subparameter is required
and indicates that the organization of
the file is sequential. The DCB
subparameters of all the DO statements
defining one file must not conflict.

For example, if the OPTCD=Y
subparameter appears in the first DO
statement, the subsequent DO
statements should also contain
OPTCD=Y. To avoid any errors, code
all the DCB subparameters on tpe first
OD statement. Code OCB=*.ddname on
the remaining statements; ddname is
the name of the DO statement that
contains the DCB subparameters. The
subparameters are discussed below.

BUFNO=number of buffers
This subparameter is used to specify
the number of buffers to be assigned
to the file if no RESERVE or SAME AREA
clause is specified for the file in
the source program. The maximum
number is 255; however, the maximum
number allowed for an installation may
differ and is established at system
generation time.

OPTCD=options
This subparameter is used to tell the
system that certain additional
facilities are to be provided for this
file. Any combination of the
following options can be specified for
the OPTCD subparameter. If more than
one option is specified, the options
are written as a character string
(i.e., without intervening commas or
blanks). Note that if certain of
these options are used, an additional
subparameter must also be specified as
indicated. In addition to the
information supplied, the following
default services are provided:
(1) the COBOL compiler will supply
OPTCD=L; and (2) in the case of an IBM
2321 mass storage device, the
operating system will supply OPTCD=W.

• OPTCD=L: This option requests
that the control program delete
marked records. Marked records
will be deleted when space for
new records is required.

• OPTCD=Y: This option requests
that a cylinder overflow area be
created. It specifies that a
certain number of tracks on each
cylinder are to be reserved to
contain any overflow records
from other tracks on that
cylinder. Another DCB
subparameter, CYLOFL=xx, must
also be written. The xx
specifies the number of tracks
on the cylinder to be reserved
for the overflow area. The
maximum number is 99.

• OPTCD=I: This option requests
that an independent overflow
area be reserved. It is used in

User File Processing 105

conjunction with DSNAME=dsname
(OVFLOW) parameter in the DO
statement used to allocate the
independent area.

• OPTCD=M: This option requests
that a master index be created
(see "Master Index" for a
discussion of master indexes).
Another DCB subparameter,
NTM=xx, must also be written.
It specifies the maximum number
of tracks to be contained in the
cylinder index before a higher
level index is created. The
maximum value that can be
specified is 99.

• OPTCD=R: This option requests
reorganization criteria
feedback, as described in
"Reorganizing Files."

• OPTCD=W: This option requests
the system to perform a write
validi ty check.

• OPTCD=U: This option requests
that track index entries be
accumulated in core storage
until there are enough entries
to fill a track. When the track
is full all the entries will be
written out. If enough core
storage cannot be obtained
entries will be written two at a
time.

The following is an example of how
the OPTCD subparameter can be used:

DCB= (DSORG=IS,OPTCD=M, NTM=20)

The foregoing example requests that a
master index be created when the
cylinder index exceeds 20 tracks.

BLKSIZE=integer
specifies the blocksize. This clause
is used only if BLOCK CONTAINS 0
RECORDS was specified at compile time.

Note: Figure 26 shows the parameters that
may be used in a DO statement when
processing indexed files opened as output.
Additional information about indexed file
structure is contained in the publication
IBM System/360 Operating System: Data
Management Services.

106

Qsi~~ the DO Statements -- Single-Volume
Files: The following examples refer to
files that can be contained on one volUme.
Additional information about DO statements,
including details on multivolume file
allocation, can be found in the publication
IBM System/360 Operating System: Job
Control Language Reference.

All three areas for an indexed file can
be contained on a single volume if they are
small enough. If such is the case and the
programmer elects to allow the system to
subdivide storage into the prime and index
areas when the file is created, he need
only code the following 00 statement:

//ddname DO
//
//
//

DSNAME=dsname(PRIME),
SPACE=(CYL, (no. of
cylinders»),UNIT=unit,
OCB=(DSORG=IS, •••)

x
X
X

The 00 statement given will produce a prime
area with the index area occupying the last
cylinder(s) of the space in the prime area.
If any track(s) remain on the last cylinder
after the index area, they are used as an
independent overflow area; if no track(s)
remain, an overflow area does not exist.

If the programmer definite~y wants an
independent overflow area, he must provide
a second 00 statement as follows:

//ddname
//
//
//
//
//
//
//
//
//

DO DSNAME=dsname(PRI~~),
SPACE=(CYL, (no. of
cylinders»,UNIT=unit,
VOLUME=SER=222222,
DCB=(OSORG=IS,OPTCO=I, •••)

DO DSNAME=dsnameCOVFLOW),
SPACE=(CYL, (no. of
cylinders»,UNIT=unit,
VOLUME=SER=222222,
DCB=*.ddname

X
X
X
X

X
X
X
X

These 00 statements will produce a prime
area and a separate overflow area with the
index area at the end of the overflow area.
All three areas reside on the same volume.

Note: When more than on DO statement is
used, only the first can be named. The
others must not have a data definition name
(ddname) but all must have the same data
set name (dsname).

r--------T--------------------------------,
lddname I ddname used only for first DD I
I I statement of each file \

~--------~--------------------------------~ I DSNAME I {dsname} (INDEX) I
I (DSN) I "name (PRIME) I
I I (OVFLOW) I
I I Note: If more than one DD I
I lstatement is used, elements I
I lmust be in this order. ,

~--------+--------------------------------~
I Device IMaSs storage required I
~--------+--------------------------------~
I UNIT I DEFER not permitted I
~--------+--------------------------------~
ISEP, AFFIRestricted, see "Job Control ,
I I Procedures" ,
~--------~--------------------------------~
'VOLUME IV01ume sequence number subparam-\
I I eter not applicable I
~--------~----~---------------------------~
,LABEL ISL ,
~--------f--------------------------------~
I SPACE I rCYL 1 , ••• [, r CONTIG] I
I , lABSTRJ ,
~--------+--------------------------------~
ISUBALLOC,Not applicable ,
~--------~--------------------------------~
I SPLIT INot applicable I
~--------+--------------------------------~
IDISP I [, KEEP J ' I , NEW~ ,PASS ,
I I ,DELETE,
~--------f--------------------------------~ I DCB2 I Required: DSORG=IS ,
I I Optional: BUFNO=xxx BLKSIZE=xxxxl
I I OPTCD= {W, M, Y, I , R' L , U} I
~--------~--------------------------------~
I~MOD not meaningful. CATLG allowed only,
I if all areas are allocated with a single I
I DD statement ,
12The DCB parameter should be the same fori
I each DD statement I L ___ J

Figure 26. DD Statement Parameters
Applicable to Indexed Files
Opened as Output

If the programmer desires more control
in the placement of the index area, he can
subdivide storage before the data set is

created by providing another DD statement
as follows:

Iiddname
II
II
II
II
II
II
II
II
II

DD DSNAME=dsname(INDEX),
SPACE=(CYL,(no. of
cy1inders»),UNIT=unit,
VOLUME=SER=333333,
DCB=(DSORG=IS, •••)

DD DSNAME=dsname(PRIME),
SPACE=(CYL, (no. of
cylinders».UNIT=unit,
VOLUME=SER=333333,
DISP=(disp),DCB=*.ddname

These DD statements will produce two
separate areas: index and prime. Each
area is on the same volume.

x
X
X
X

X
X
X
X

If, along with more contr01 of his
index, the programmer wishes an independent
overflow area, a third DD statement
(OVFLOW) can be specified, as detai1ed
earlier. The sequence will be:

Iiddname DD
II DD
II DD

DSNAME=dsname(INDEX), •••
DSNAME=dsname(PRlME), •••
DSNAME=dsname(OVFLOW), •••

These DD statements will produce three
separate areas: index, prime, and
overflow.

Note that the OPTCD subparameter of the
DCB parameter in each of the DD statements
must specify an independent overflow area
(OPTCD=I). All three areas reside on the
same v01ume if so specified in the VOLUME
parameter.

Note: The sequence of the DSNAP~ parameter
e1ements in all of the foregoing examples
must be fOllowed when placing the DD
statements into the input stream, or an
abnormal termination of the job will
result.

The example in Figure 27 defines a new
indexed fi1e that consists of three
separate areas. All three areas reside on
the same volume. The volume is on an IBM
2311 Disk Storage Drive.

r---,
I IIFILE DD DSNAME=ISM(INDEX),UNIT=2311,SPACE=(CYL, (1»), X I
I II VOLUME=SER=111111,DCB=<DSORG=IS,OPTCD=I, •••), X I
I II DISP=(,KEEP) I
I II DD DSNAME=ISM(PRlME},UNIT=2311,SPACE=<CYL, (5»), X I
I II VOLUME=SER=111111,DISP=(,KEEP),DCB=*.FILE I
I II DD DSNAME=ISM<OVFLOW),UNIT=2311,SPACE=<CYL, (1», X I
I II VOLUME=SER=111111,DISP=(,KEEP),DCB=*.FILE I L ___ J

Figure 27. Example of DD Statements for New Indexed Files

User File Processing 107

Cataloging Files: An indexed file can be
cataloged if:

• All the areas of the file are allocated
with a single DD statement. Such a
file is cataloged in the usual manner
by specifying the DISP parameter in the
DD statement:

DISP=(NEW,CATLG)

• The areas are allocated with more than
one DD statement, but all volumes are
on the same type of device. Such a
file is cataloged using the IEHPROGM
utility program (see the publication
IBM System/360 Operating System:
Utilities).

An indexed file that is being created
cannot be cataloged if its areas are on
different device types. An existing
indexed file cannot be cataloged through
the specification of the CATLG subparameter
of the DISP parameter in the DD statement.

Note: The DD statement(s) defining a new
or existing indexed file can appear in
cataloged procedures.

Calculating Space Requirements: To
determine the number of cylinders required
for an indexed file, the programmer must
consider the number of records that will
fit on a cylinder, the number of records
that will be processed, and the amount of
space required for indexes and overflow
areas. In making the computations,
additional space is also required for
device overhead.

Note: The allocation of space to the
different areas of an indexed file is
permanent. New allocations can be achieved
only by recreating the file. It is,
therefore, important to remember:

• Unused space on the last cylinder on
which data was written, in the prime
area, is converted to an independent
overflow area. Space allocated in
excess of this cannot be released and
will be wasted.

• Excess space allocated to overflow or
index areas cannot be released.

Detailed information on space allocation
can be found in the publication IBM
System/360 Operating System: Da~
Management Services.

Master Index: QISAM provides a master
index facility to avoid inefficient serial
searches of large cylinder indexes. The
master index provides an index to the

108

cylinder index. The programmer can specify
with the DCB parameter in his DD
statement(s) (see "DD Statement
Requirements for Indexed Files" in
"creating Indexed Files") that a master
index be built if the size of a cylinder
index exceeds a certain number of tracks.
Each entry in the master index points to a
track of the cylinder index. If the size
of the master index exceeds the number of
tracks specified in the NTM parameter of
the DD statement, the master index is
automatically indexed by a higher level
master index. Three such higher level
master indexes can be constructed.

COBOL Considerations: When creating
indexed files, the QISAM file processing
technique is used. The following COBOL
programming considerations should be noted:

• RECORD KEY Clause. The RECORD KEY
clause in the SELECT sentence of the
Environment Division is required. It
is used to specify the location of the
key within the record itself. If the
RECORD KEY clause has a PICTURE clause
that specifies that the item is binary
(COMPUTATIONAL), zero is the lowest
number acceptable as the first record.
A negative key is considered to be
larger than a positive key; therefore,
if a record is inserted into the file,
a negative key would place the record
after those records with positive keys.

• Dummy Records. To reserve space for
records to be added at a later time,
when creating indexed files, dummy
records can be written with the delete
code (the figurative constant
HIGH-VALUE) in the first byte. Dummy
records and their deletion are
described in "Using the WRITE
Statement."

• Required and optional COBOL statements
are summarized in Table 17.

Reading or Updating Indexed Files
Sequentially

QISAM can be used to read or update an
existing indexed file. Adding a record to
an already existing file, however, can be
done only with BISAM (see "Accessing an
Indexed File Randomly").

When QISAM is used to read an input
file, the READ statement makes available
one logical record at a time in an
ascending sequence determined by the record
keys. Dummy records are not made
available. If there are records in the
overflow area, this sequence will not

correspond exactly to the physical sequence
of the records in the file. The file must
have been created using QISAM.

When QISAM is used to update an 1-0
file, the READ and REWRITE statements
permit updating-in-place or deletion of a
logical record. Logical records are read
sequentially and may be either updated and
rewritten, or rewritten unaltered, from the
same area. Alteration of record length or
insertion of new records is not permitted.
A logical record is marked for deletion by
moving the figurative constant HIGH-VALUE
into the first character position of the
record and then using the REWRITE
statement. Records in the file that
contain this deletion code are not made
available on input.

The discussion that follows is primarily
concerned with indexed files that can be
contained on a single volume. Additional
information about processing existing
indexed files accessed sequentially,
including multivolume files, can be found
in the publication IBM System/360~ratig~
System: Job Control Language Reference.

Parameter Requirements: In the DD
statement(s) indicating an existing indexed
file, the following differences and
requirements should be noted:

DCB
The DSORG=IS subparameter must be
specified, whereas the BUFNO
subparameter is optional. The OPTCD
field must not be specified again.
Any OPTCD subparameter facilities that
were specified when the file was
created are in effect as long as the
data set exists. For example, if the
programmer specified the
write-validity check option (OPTCD=W)
when he created the file, the option
is still in effect at the time of any
subsequent WRITE statement. The
BLKSIZE subparameter must not be
specified.

DSNAME (DSN)

DISP

This parameter is written
DSNAME=dsname. The element
subparameters (INDEX, PRIME, OVFLOW>.
must not be written.

The first subparameter must be OLD.
The second subparameter cannot be
CATLG or UNCATLG (see "Cataloging
Files" above for more information on
cataloging indexed files).

Note: For further information about
Indexed parameters, see "DD statement
Requirements for Indexed Files" in
"Creating Indexed Files."

Only one DO statement is needed to
specify an existing file if all of the
areas are on one volume. The following is
an example of a DO statement that can be
used when processing a single-volume QISAM
file.

Iiddname DD
II
II

DSNAME=dsname,
DCB=(DSORG=IS ••••).
UNIT=unit,DISP=OLD

Further details about DO statements for
existing single-volume and multivolume
indexed files can be found in the
publication !~~_£Y~!~m/3~Q_QQ~~~t~~~
£Y~t~ml __ ~QQ_£Qg!~2!_~~~~~~~_g~£~~~~£~·

X
X

NO!~: Figure 28 shows the parameters that
may be used in a DO statement when
processing indexed files opened as input or
1-0. Additional information about indexed
file structure is contained in the
publication !~~_£Y~!~~L1~Q_Q~~~tig~
£Y~!~ml __ Q~!~_~~g~~m~nt_£~~y~£~~.

Reorganizing Files: As new records are
added to an indexed file. chains of records
may be created in the overflow area if one
exists. The access time for retrieving
records in an overflow area is greater than
that required for retrieving records in the
prime area. Input/output performance is,
therefore, sharply reduced when many
overflow records develop. For this reason,
an indexed file can be reorganized as soon
as the need becomes evident. The system
maintains a set of statistics to assist the
programmer when reorganization is desired.
These statistics are maintained as fields
of the file's data control block. They are
made available when APPLY REORG-CRITERIA is
specified. If these statistics are
desired, the OPTCD subparameter of the DCB
parameter must have included the OPTCD=R
parameter in each of the DD statements when
the file was created. Additional
information about reorganizing files is
contained in the publication IBM Systeml360
Q~E~~ig~_£ystem: Data Management
seEYi£~~·

Sequential Retrieval Using the START
Statement: For indexed INPUT and 1-0
files, retrieval starts with the first
nondurnmy record in the file. If the
programmer wishes to begin processing at a
point other than the beginning of the file,
he can do so through the use of the START
verb. When the START statement is used,
the retrieval starts sequentially from the
record specified in the NOMINAL KEY.

Note: If SETL is to be issued from a
user-written assembler language program
against a QISAM file opened by a COBOL
program, either a null START statement
which has never been branched to should

User File Processing 109

appear in the COBOL program, or an
assembler language program should be called
before the file is opened. This program
must set the MACRF field of the DCB to
ensure loading of the SETL and ESETL
routines.

r--------y--------------------------------,
Iddname I ddname used only for first DD I
I I statement of each file I
~--------+--------------------------------~
I DSNAME I dsname I
I I I
I INote: Element subparameter must I
I Inot be used. I
~--------+--------------------------------~
I Device IMass storage required I
~--------+--------------------------------~
I UNIT IApplicable subparameter I
I I I
I INote: Not needed if file is I
I I cataloged. I
~--------+--------------------------------~
ISEP, AFFIRestricted; see "Job Control I
I I Procedures" I
~--------+--------------------------------~
I VOLUME IApplicable subparameters I
~--------+--------------------------------~
I LABEL ISL I
~--------+--------------------------------~
I SPACE INot applicable I
~--------+--------------------------------~
ISUBALLOCINot applicable I
~--------+--------------------------------~
I SPLIT INot applicable I
~--------+--------------------------------~
I DISP I [, KEEP] I
I I OLD1 , PASS I
I I ,DELETE I
~--------+--------------------------------~
IDCB I Required: DSORG=IS I
I I I
I 10ptional: BUFNO=xxx (not allowed I
I I for BISAM) I
~--_-----i--------------------------------~
11CATLG UNCATLG not permitted I L ___ J

Figure 28. DO Statement Parameters
Applicable Indexed Files Opened
as INPUT or 1-0

COBOL Considerations: When processing an
already existing file with QISAM, the
following COBOL programming considerations
should be noted:

• RECORD KEY Clause. The RECORD KEY
always in the SELECT sentence of the
Environment Division is required, just
as it is when creating the file. Note
other record key considerations under
"Accessing an Indexed File Randomly."

110

Delete Option. In order to keep the
number of records in the overflow area
to a minimum, and to eliminate
unnecessary records, an existing record
may be marked for deletion. This is
done by moving the figurative constant
HIGH-VALUE into the first character
position of the record. The record is
not physically deleted unless it is
forced off its prime track by the
insertion of a new record (see "Using
the WRITE Statement" in "Accessing an
Indexed File Randomly"), or if the file
is reorganized. Records marked for
deletion may be replaced (using BISAM)
by new records containing equivalent
keys. Execution of the READ statement
in QISAM does not make available a
record marked for deletion, whether the
record has, been physically deleted or
'not. Dummy records and deletion are
discussed fUrther in "Accessing an
Indexed File Randomly."

The file processing technique used for
random retrieval of a logical record, the
random updating of a logical record, and/or
the random insertion of a record is BISAM
(Basic Indexed Sequential Access Method).
When accessing an indexed file randomly,
both NOMINAL KEY and RECORD KEY must be
specified. The format of the NOMINAL KEY
is described briefly below:

r---,
I Format I
~---~
I I
I NOMINAL KEY IS data-name I
I I L ___ J

Data-name may be any fixed-length
Working Storage item from 1 through 255
bytes in length. If it is part of a
logical record, it must be at a fixed
displacement from the beginning of that
record description (see the publication !~~
System/360 Operating_~~~gm~ __ ~~!!_~g~~£~~
National Standard COBOL for additional
informatron)~----------

Since a RECORD KEY is used to identify a
record to the system, the record keys
associated with the logical records of the
file may be thought of as a table of
arguments. When a record is read or
written, the contents of NOMINAL KEY is
used as a search argument that is compared
to the record keys of the file.

The following example illustrates the
use of the NOMINAL KEY clause.

ENVIRONMENT DIVISION.

NOMINAL KEY IS NOM-KEY
RECORD KEY IS REC-KEY.

DATA DIVISION.
FILE SECTION.
FD INDEXED-FILE

LABEL RECORDS ARE STANDARD.
01 REC-l,.

02 DELETE-CODE PIC X.
02 REC-KEY PIC 9(5).

WORKING-STORAGE SECTION.
77 NOM-KEY PIC 9(5).

Because of their complementary use of
the indexed file organization, much of the
information discussed above for QISAM also
applies to BISAM. Differences are noted
below.

Using the WRITE-Statement: The programmer
can use the WRITE statement to add a new
record into an indexed file. The record is
added on the basis of the value specified
in the NOMINAL KEY. The contents of the
NOMINAL KEY are used to locate the two
records in the file between which the new
record is to be inserted. The records
sought are those that have values less than
and greater than the values in the nominal
key field. Two methods can be used to add
records.

In the first method, the key to be added
is a new key value. The record is inserted
in place so that the sequence of the keys
is maintained. If an overflow area exists,
the insertion may cause records to be
forced off the prime track into the
overflow area. Dummy records forced off
the track in this way are physically
deleted and are not written in the overflow
area.

In the second method, the key of the
record to be added has the same value as
that of a known dummy record. If the dummy
record has not been physically deleted, it
is replaced by the new record. If it has
been physically deleted, the record is
inserted as though it had a new key value.
If the key of the record to be added has
the same value as a record other then a
dummy record, an INVALID KEY condition will
result.

Note:

• Records with a key higher (or lower)
than the current highest (or lowest)
key of the file may be added.

• Whenever a WRITE statement is executed
the contents of RECORD KEY and NOMINAL
KEY must be identical. Except in the
case of dummy records, this value must
be unique in the file.

Using the REWRITE Statement: If a record
is to be updated, the indexed file should
be opened as 1-0 and the REWRITE statement
should be used. All REWRITE statements
must be preceded by a READ statement.
However, a READ statement can be followed
by either a WRITE, REWRITE, or another
READ.

Note: Whenever a REWRITE statement is
executed the value contained in NOMINAL KEY
and RECORD KEY must be identical.

Using the READ Statement: Records are
retrieved on the basis of the value
specified in the NOMINAL KEY. If the key
of a record marked for deletion is
specified and the record has not been
physically deleted, it will be produced.
If the record has been physically deleted.
the READ statement will cause an INVALID
KEY condition and control will go to the
INVALID KEY routine if specified.

Note: Although the RECORD KEY clause must
be specified, no value need be moved to the
record key field before the execution of
the READ statement. The search for the
desired record is based on the contents of
NOMINAL KEY.

COBOL Considerations: When processing an
indexed file randomly, the following COBOL
programming considerations should be noted:

• RECORD KEY Clause and NOMINAL KEY
Clause. The RECORD KEY and NOMINAL KEY
clauses in the SELECT sentence of the
Environment Division are required. The
RECORD KEY clause is used to specify
the location of the key within the
record itself. The NOMINAL KEY is used
as a search argument to locate the
proper record, and must not be defined
within the file being processed. Note
that since a RECORD KEY is defined
within a record, the contents of EECORD
KEY are not available after a WRITE
statement has been executed for that
record.

User File Processing 111

Page of GC28-6399-2, Revised 4/15/13, by TNL GN28-1038

Table 17. Indexed File Processing bn Mass Storage Devices

Data Management Access KEY OPEN Access CLOSE
Techniques Method aauses Statement Verbs Statement

QISAM SEQUENTIAL RECORD INPUT READ [INTO] [WITH LOCK]
NOMINAL AT END

START
INVALID
KEY

~----- I- - ------
OUTPUT WRITE [FROM]

INVALID KEY
~-- -----------

1-0 READ [INTO]
AT END

START
INVALID
KEY

REWRITE [FROM]
INVALID KEY

BISAM RANDOM RECORD INPUT READ [INTO] [WITH LOCK]
NOMINAL INVALID KEY

f------- I-- - -- - - -

• TRACK-AREA Clause. Specifying the
clause results in a considerable im
provement in efficiency when a record
is added to the file. If a record is
added and the TRACK-AREA clause was not
specified for the file, the contents of
the NOMINAL KEY field are unpredictable
after the WRITE statement is executed.
In this case, the key must be reiniti
alized before the next WRITE statement
is executed. Even if TRACK-AREA is
specified, if the. addition of a record
causes another record to be bumped off
the track into the overflow area, the
contents of the NOMINAL KEY are unpre
dictable after a WRITE.

• APPLY REORG-CRITERIA Clause. If the
OPTCD=R parameter was specified on the
DO card for an indexed file when it was
created, the APPLY REORG-CRITERIA
clause can be used to obtain the reor
ganization statistics when the file is
closed. These statistics are moved
from the data control block to the
identifier specified in the clause when
a CLOSE statement is executed for the
file.

• APPLY CORE-INDEX Clause. This clause
specifies that the highest level index
will reside in core storage during
input/output operations. Otherwise,
the index will be searched on the
volume, and processing time will be
longer.

• Required and optional COBOL statements
are summarized in Table 17.

USING TBEOO.STATEMENT

Each data set that is defined by a DD
statement is either to be created, or has

112

1-0 READ [INTO]
INVALID KEY

WRITE [FROM]
INVALID KEY

REWRITE [FROM]
INVALID KEY

been previously created and is to be retri
eved. In either case, the data set must
have a disposition; for example, if the
data set is being created, the disposition
must indicate whether the data set is to be
cataloged, kept, or deleted. Other DD
parameters may simply indicate that the
data set is in the input stream or that
ultimately the data set is to be pririted or
punched.

The following sections summarize the DD
statement parameters and show examples for
various uses of the DD statement. These
sections include information about catalog
ing data sets and creating or referring to
generation data groups; examples of cata
loged data sets and partitioned data sets
are included. For additional information
about partitioned data sets see
"Libraries." Also see "Appendix I: Check
list for Job Control Procedures" for addi
tional examples of the DD statement used in
job control.procedures.

CREATING A DATA SET

When creating a data set, the programmer
ordinarily will be concerned with the fol
lowing parameters:

1. The data set name (DSNAME) parameter,
which assigns a name to the data set
being created.

2. The unit (UNIT) parameter, which
allows the programmer to state the
type and quantity of input/output
devices to be allocated for the data
set.

3. The volume (VOLUME) parameter, which
allows specification of the volume in
which the data set is to reside. This
parameter also gives instructions to
the system about volume mounting.

4. The space (SPACE), split cylinder
(SPLIT), and suballocation (SUBALLOC)
parameters, for mass storage devices
only, which permit the specification
of the type and amount of space
required to accommodate the data set.

5. The label (LABEL) parameter, which
specifies the type and some of the
contents of the label associated with
the data set.

6. The disposition (DISP) parameter,
which indicates what is to be done
with the data set by the system when
the job step is completed.

7. The DCB parameter, which allows the
programmer to specify additional
information to complete the DCB
associated with the data set (see
"User-Defined Files"). This allows
additional information to be specified
at execution time to complete the DCB
constructed by the compiler for a data
set defined in the source program.

Figure 29 shows the subparameters that
are frequently used in creating data sets.
Additional subparameters are discussed in
"Job Control Procedures."

Creating Unit Record Data Sets

r
Data sets whose destination is a printer

or card punch are created with the DD
statement parameters UNIT and DCB.

UN~T: Required. Code unit information
us~ng the 3-digit address (e.g., UNIT=OOE),
the type (e.g., UNIT=1403), or the
system-generated group name (e.g.,
UNIT=PRINTER) •

DCB: Required only if the data control
block is not completed in the processing
program. Valid DCB subparameters are

listed in "Appendix C: Fields of the Data
Control Block."

Creating Data sets on Magnetic Tape

Tape data sets are created using
combinations of the DD statement parameters
UNIT, LABEL, DSNAME, DCB, VOLUME, and DISP.

UNIT: Required, except when volumes are
requested using VOLUME=REF. A unit can be
assigned by specifying its address, type,
or group name, or by requesting unit
affinity with an earlier data set.
Multiple output units and defer volume
mounting can also be requested with this
parameter.

LABEL: Required when the tape has user
labels or does not have standard labels,
and when the data set does not reside first
on the reel. It is also used to assign a
retention period and password protection.

DSNAME: Required for data sets that are to
be cataloged or used by a later job.

DCB: Required only when data control block
information cannot be specified in COBOL.
Usually, such attributes as the logical
record length (LRECL) and buffering
technique (BFTEK) will have been specified
in the processing program. Other
attributes, such as the OPTCD field and the
tape recording technique (TRTCH), are more
appropriately specified in the DD
statement. Valid DCB subparameters are
listed in "Appendix C: Fields of the Data
Control Block."

VOLUME: Optional, this parameter is used
to request specific volumes. If VOLUME=REF
is specified, and the existing data sets on
the specified volume(s) are to be saved,
indicate the data set sequence number in
the LABEL parameter.

DISP: Required for data sets that are to
be-cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
parameter to indicate how the data set is
to be treated if the job step abnormally
terminates.

User File Processing 113

.--,

\

DSNAME} {dSname) = dsname(element)~
DSN "name (

"name (element)J

UNIT= (name [, n])

{
VOLUME}

=([PRIVATE] [,RETAIN] [,volume-sequence-number] [,volume-count]
VOL

t
· .. ,SER=(Volume-serial-numb. er[,VOlume-serial-nUmberl •••)]

: dsname
*.ddname)

·,REF= *.stepname.ddname
*.stepname.procstep.ddname

SPACE=(~~~ }
taverage-record-Iength

, (primary-quantity[,secondary-quantity)

[,directory-quantity]»

SPLIT=(n,
[

CYL J [,(primary-quantity,[secondary-quantity))
average-record-Iength

LABEL=([data-set sequence-number].
(NL) [,EXPDT=yYdd1);SL ~ .) t

i
::} , RETPD=xxxx

DISP=(

[.

,DELETE] ,KEEP
,PASS
,CATLG

DCB=(subparameter-list)

[.
,DELETE]
,KEEP)
,CATLG

L ___ _

Figure 29. DD Statement Parameters Frequently Used in Creating Data Sets

Creating Sequential (BSAM or QSAM) Data
Sets on Mass Storage Devices

Sequential data sets are created using
combinations of the DD statements
parameters UNIT, DSNAME, VOLUME, LABEL,
DISP, DCB, and one of the space allocation
parameters SP~CE, SPLIT, or SUBALLOC.

UNIT: Required, except when volumes are
requested using VOLUME=REF or space is
allocated using SPLIT or SUBALLOC. Assign
a unit by specifying its address, type, or
group name, or by requestinq unit affinity.

114

DSNAME: Required for all but temporary
data sets.

Label: Required to specify label type and
to assign a retention period or password
protection.

DCB: Required only when data control block
information is not completely specified in
the processing program. Usually, such
attributes as the logical record length
(LRECL) and buffering technique (BFTEK)
will have been specified in the processing
program. Other attributes, such as the
OPTCD field are more appropriately
specified in the DD statement. Valid DCB

subparameters are listed in "Appendix C:
Fields of the Data Control Block."

VOLUME: Optional. This parameter requests
specific volumes (SER and REF), specific
volumes when the data set resides on more
than one volume (seq #), multiple
nonspecific volumes (volcount), private
volumes (PRIVATE), or private volumes that
are to remain mounted until the end of the
job (RETAIN).'

DISP: Required for data sets that are to
be cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
parameter to indicate how the data set is
to be treated if the job step abnormally
terminates.

SPACE, SPLIT, SUBALLOC: One of these is
required for all new mass storage data
sets.

Creating Direct (BDAM) Data Sets

Direct (BDAM) data sets are created
using the same subset of DD statement
parameters as sequential data sets, with
the exception of the SPLIT parameter.
Valid DCB subparameters for BDAM data sets
are listed in "Appendix C: Fields of the
Data Control Block."

Creating Indexed (BISAM and QISAM) Data
Sets

Indexed (ISAM) data sets are created
using combinations of the DD statement
parameters UNIT, DSNAME, VOLUME, LABEL,
DISP, DCB, and SPACE. The ISAM data sets
occupy three areas of storage: an index
~-that contains master and cylinder
indexes, a prime area that contains the
data records and track indexes, and an
optional overflow area to hold additional
records when the prime area is exhausted.
Detailed information on creating and
retrieving indexed data sets is presented
in "Appendix H: Creating and Retrieving
Indexed Sequential Data Sets."

Creating Data Sets in the Output Stream

New data sets can be written on a system
output device in much the same way as
messages. When using a sequential
scheduler, a data set is directed to the
output stream with the SYSOUT and DCB
parameters.

SYSOUT: Required. The output class
through which the data set is routed must
be specified. output classes are
identifi~d by a single alphanumeric
character.

DC~: Required only if complete data
control block information has not been
specified in the processing program.

When using a priority scheduler, data
sets are not routed directly to a system
output device. They are stored by the
processing program on an intermediate mass
storage device and later written on a
system output device. In addition' to the
SYSOUT and DCB parameters, DD statements
defining a data set of this type can also
contain UNIT and SPACE parameters. All
other parameters must be absent.

~X~QQ~: Required. The output class
through which the data set is routed must
be specified. Output classes are
identified by a single alphanumeric
character. (Do not use classes 0 through 9
except in cases where the other classes are
not sufficient.)

DC~: Required only if complete data
control block information has not been
specified in the processing program. Data
control block information is used when the
data set is written on an intermediate mass
storage volume and read by the output
writer. However, the output writer's own
DCB attributes are used when the data set
is written on the system output device.
Valid DCB parameters are listed in
"Appendix C: Fields of the Data Control
Block."

UNIT: Optional. An intermediate mass
storage device is assigned if UNIT is
specified. A default device is assigned if
this parameter is omitted.

~~~~~: Optional. Estimate the amount of 
mass storage space required. A default 
estimate is assumed if this parameter is 
omitted. 

Note: When a Direct SYSOUT Writer is used, 
the-priority scheduler functions as a 
sequential scheduler. The SYSOUT data sets 
of the particular output class from any of 
the elegible job classes are not stored on 
an intermediate storage device, but are 
written directly to the system output 
device. When Direct SYSOUT Writer is used, 
all the parameters on the DD card are 
ignored. For detailed information on 
Direct SYSOUT Writer, see the publication 
±~~_~y~~~~~36Q_QP~E~~igg_~y~~~~~ 
Qp~E~~QE~_g~f~E~gf~' Order No. GC28-6691. 

User File Proces~ing 115 



Examples of DD statements Used To Create Data Sets 

The following examples show various ways of specifying DD statements 
for data sets that are to be created. In general, the number of 
parameters and subparameters that are specified depend on the 
disposition of the data set at the end of the job step. If a data set 
is used only in the job step in which it is created and is deleted at 
the end of the job step, a minimum number of parameters are required. 
However, if the data set is to be cataloged, more parameters should be 
specified. 

Example 1: Creating a data set for the current job step only. 

//SYSUTl DD UNIT=SYSDA,SPACE=(TRK,(SO,10») 

This example shows the basic required DD statement for creating and 
storing a data set on a mass storage device. The UNIT parameter is 
required unless the unit information is available from another source. 
If the data set were to be stored on a unit record or a tape device, the 
SPACE parameter would not be needed. The operating system assigns a 
temporary data set name and assumes a disposition of (NEW, DELETE). 

Example 2: creating a data set that is used only for the current job. 

//SYSLIN 
// 

DD DSNAME=&&TEMP,DISP=(MOD,PASS>,UNIT=SYSSQ, 
SPACE=(TRK, (50» 

x 

This example shows a DD statement that creates a data set for use in 
more than one step of a job. The system assigns a unique symbol for the 
name, and this same symbol is substituted for each recurrence of the 
&&TEMP name within the job. The data set is allocated space on any 
available mass storage or tape device. If a tape device is selected, 
the SPACE parameter is ignored. The disposition specifies that the data 
set is either new or is to be added to (MOD), and is to be passed to the 
next job step (PASS>. This DD statement can be used for specifying the 
data set that is created as output from the compiler and that is to be 
used as input to the linkage editor. By specifying MOD, separately 
compiled object modules can be placed in sequence in the same data set. 

Note: If MOD is specified for a data set that does not already exist, 
the job may be abnormally terminated when a volume reference name, a 
volume serial number, or the disposition CATLG is specified or when the 
dsname is indicated by a backwards reference. 

Example 3: Creating a data set that is to be kept but not cataloged. 

//TEMPFILE DD DSN=FILEA,DISP=(,KEEP),SPACE=(TRK, (30,10», 
// UNIT=DIRECT,VOL=(,RETAIN,SER=AA70) 

x 

The example shows a DD statement that creates a data set that is kept 
but not cataloged. The data set name is FILEA. The disposition (,KEEP) 
specifies that the data set is being created in this job step and is to 
be kept. It is kept until a disposition of DELETE is specified on 
another DD statement. The KEEP parameter implies that the volume is to 
be treated as private. Private implies that the volume is unloaded at 
the end of the job step but because RETAIN is specified, the volume is 
to remain mounted until the end of the job unless another reference to 
it is encountered. The DIRECT parameter is a hypothetical device class, 
containing only mass storage devices. The volume with serial number 
AA70, mounted on a device in this class, is assigned to the data set. 

116 



Space for the data set is allocated as specified in the SPACE parameter. 
The data set has standard labels since it is on a mass storage volume. 

If the volume serial number were not specified in the foregoing 
example, the system would allocate space in an available nonprivate 
volume. Because KEEP is specified, the volume becomes private. 
(Another data set cannot be stored on a private volume unless its volume 
serial number is specified or affinity with a data set on the volume is 
stated.) The volume serial number of the volume assigned, if 
applicable, is included in the disposition message for the data set. 
Disposition messages are messages from the job scheduler, generated at 
the end of the job step. 

Example 4: Creating a data set and cataloging it. 

//DDNAMEA 
// 
// 
// 

DD DSNAME=INVENT.PARTS,DISP=(NEW,CATLG), 
LABEL=("EXPDT=69031),UNIT=DACLASS, 
VOLUME=(,REF=*.STEP1.DD1), 
SPACE=(CYL, (5,1)"CONTIG) 

x 
X 
X 

This example shows a DO statement that creates a data set named 
INVENT. PARTS and catalogs it in the previously created system catalog. 
The data set is to occupy the same volume as the data set referred to in 
the DO statement named DDl occurring in the job step named STEP1. The 
UNIT parameter is ignored since REF is specified. Five cylinders are 
allocated to the data set, and if this space is exhausted, more space is 
allocated, one cylinder at a time. The five cylinders are to be 
contiguous. The disposition (CATLG), implies that the volume is to be 
private. The INVENT. PARTS is to have standard labels. The expiration 
date is the 31st day of 1969. 

Example 5: Adding a member to a previously created library. 

//SYSLMOD DO DSNAME=SYS1.LINKLIB(INVENT),DISP=OLD 

This DO statement adds a member named INVENT to the link library 
(SYS1.LINKLIB). When a member is added to a previously created data 
set, OLD should be specified. The member INVENT takes on the 
disposition of the library. 

Example 6: Creating a library and its first member. 

//SYSLMOD 
// 

DO DSNAME=USERLIB(MYPROG),DISP=(,CATLG), 
SPACE=(TRK,(50,30,3»,UNIT=2311,VOLUME=SER=111111 

X 

This DO statement creates a library, USERLIB, and places a member, 
MYPROG, in it. The disposition (,CATLG) indicates that the data set is 
being created in this job step (NEW is the default condition for the 
DISP parameter and is indicated by the comma) and is to be cataloged. 
The data set is to have standard labels. Space is allocated for the 
data set in a volume on a mass storage device that is an IBM 2311 unit. 
Initially, 50 tracks are allocated to the data set, but when this space 
is exhausted, more tracks are added, 30 at a time. The SPACE parameter 
must be specified when the library is created, and it must include 
allocation of space for the directory. SPACE cannot be specified when 
new members are added. If additional space is required when new members 
are added, the secondary allocation, if specified, will be used. Three 
256-byte records are to be used for the directory. The volume serial 
number of the volume on which the library is to reside, is 111111. 

User File Processing 117 



Example 7: Replacing a member of an existing library. 

//SYSLMOD DD DSNAME=MYLIB(CASE3),DISP=OLD 

This DD statement replaces the member named CASE3 with a new member 
with the same name. If the named member does not exist in the library, 
the member is added as a new member. In the foregoing example, the 
library is cataloged. 

Example 8: Creating and adding a member to a library used only for the 
current job. 

//SYSLMOD 
// 

DD DSNAME=&&USERLIB(MYPROG),DISP=(,PASS),UNIT=SYSDA, 
SPACE=(TRK, (50,,1» 

This DD statement creates and adds a member to a temporary library. 

x 

It is similar to the DD statement shown in Example 6, except that a 
temporary name is used and the data set is not cataloged nor kept but is 
simply passed to the next job step. Since the data set is to be used 
only for this one job, it is not necessary to specify VOLUME and LABEL 
information. This statement can be used for a linkage edit job step in 
which the module is to be passed to the next step. 

Note: If DISP=(,DELETE) is specified for a library, the entire library 
will be deleted. 

118 



RETRIEVING PREVIOUSLY CREATED DATA SETS 

The parameters that must be specified in 
a DD statement to retrieve a previously 
created data set depend on the information 
that is available to the system about the 
data set. For example, 

1. If a data set on a magnetic-tape or 
mass storage volume was created and 
cataloged in a previous job or job 
step, all information for the data 
set, such as volume, space, etc., is 
stored in the catalog and data set 
label. This information need not be 
repeated. Only the dsname and 
disposition parameters need be 
specified. 

2. If the data set was created and kept 
in a previous job but has not been 
cataloged, information concerning the 
data set, such as space, record 
format, etc., is stored in the data 
set label. However, the unit and 
volume information must be specified 
unless available elsewhere. 

3. If the data set was created in the 
current job step, or in a previous job 
step in the current job, the 
information in the previous DD 
statement is available to the system 
and is accessible by referring to the 
previous DD statement. Only the 
dsname and disposition parameters need 
be specified. 

Note: A programmer may wish to change the 
previous disposition of a data set. For 
example, if KEEP was specified when the 
data set was created, the DD statement that 
retrieves the data set may change the 
disposition by specifying CATLG. 

Figure 30 shows the parameters that are 
used to retrieve previously created data 
sets. 

Retrieving Cataloged Data Sets 

Input data sets, assigned a disposition 
of CATLG or cataloged by the IEHPROGM 
utility program, are retrieved using the DD 
statement parameters DSNAME, DISP, LABEL, 
and DCB. The device type, volume serial 
number, and data set sequence number (if 
tape) are stored in the catalog. 

r-----------------------------------------, 

{

DSNAMEt 

'DSN ) 
= ~ dsname t 

dsname(element) 
*.ddname 

t
*·stepname.ddname~ 
& & name 
& & name (element) 

UNIT= (name [, n]) 

DCB=(subparameter-list) 

DISP=( [~i~J [:~T] 
MOD ,CATLG 

,UNCATLG 

LABEL=(subparameter-list) 

[

,DELETE] ,KEEP 
,CATLG 
,UNCATLG 

~VOLUME} = (subparameter-list> 
tVOL 

L-_______________________________________ _ 

Figure 30. Parameters Frequently Used in 
Retrieving Previously Created 
Data Sets 

I 
I. 

DSNAME: Required. The data set must be 
identified by its cataloged name. If the 
catalog contains more than one index level, 
the data set name must be fully qualified. 

DIS~: Required. The status <OLD or SHR) 
of the data set must be given and an 
indication made as to how it is to be 
treated after its use, unless it is to 
remain cataloged. The programmer can 
specify as the third term in the DISP 
parameter a conditional disposition to 
indicate how the data set is to be treated 
if the job step abnormally terminates. 

LABEL: Required only if the data set does 
not-have a standard label. 

DCB: Required only if complete data 
control block information is not specified 
by the processing program and the data set 
label. To save recoding time, DCB 
attrLbutes can be copied from an existing 
DCB parameter and modified if necessary_ 
Valid DCB subparameters are listed in 
"Appendix C: Fields of the Data Control 
Block. " 

Note: In addition to the disposition 
UNCATLG, a cataloged data set can be passed 
to a later step (PASS> or deleted (DELETE). 

User File Processing 119 



Retrieving Noncataloged (KEEP) Data Sets 

Input data sets that were assigned a 
disposition of KEEP are retrieved by their 
tabulated name and location, using the DD 
statement parameters DSNAME, UNIT, VOLUME, 
DISP, LABEL, and DCB. 

DSNAME: Required. The data set must be 
identified by the name assigned to it when 
it was created. 

UNIT: Required, unless VOLUME=REF is used. 
The unit must be identified by its address, 
type, or group name. If the data set 
requires more than one unit, give the 
number of units. Deferred volume mounting 
and unit separation can be requested with 
this parameter. 

VOLUME: Required. The volume(s) must be 
identified with serial numbers or, if the 
data set was retrieved earlier in the same 
job, with VOLUME=REF. If the volume is to 
be PRIVATE, it must be so designated. If a 
private volume is to remain mounted until a 
later job step uses it, RETAIN should be 
designated. 

DISP: Required. The status (OLD or SHR) 
of the data set must be given and an 
indication made as to how it is to be 
treated after its use. The programmer can 
specify conditional disposition as the 
third term in the DISP parameter to 
indicate how the data set is to be treated 
if the job step abnormally terminates. 

LABEL: Required if the data set does not 
have a standard label. If the data set 
resides with others on tape, its sequence 
number must be given. 

DCB: Required for all indexed data sets. 
otherwise, required only if complete data 
control block information is not supplied 
by the processing program and the data set 
label. To save recoding time, copy DCB 
attributes from an existing DeB parameter, 
and modify them if necessary. Valid DCB 
subparameters are listed in Appendix C. 

Retrieving Passed Data sets 

Input data sets used in a previous job 
step and passed are retrieved using the DD 
statement parameters DSNAME, DISP, and 
UNIT. The data set's unit type, volume 
location, and label information remain 
available to the system from the original 
DD statement. 

120 

DSNAME: Required. The original data set 
must be identified by either its name or 
the DD statement reference term 
*.stepname.ddname. If the original DD 
statement occurs in a cataloged procedure, 
the procedure stepname must be included in 
the reference term. 

DISP: Required. The data set must be 
identified as OLD, and an indication made 
as to how it is to be treated after its 
use. The programmer can specify 
conditional disposition as the third term 
in the DISP parameter to indicate how the 
data set is to be treated if the job step 
abnormally terminates. 

UN!!: Required only if more than one unit 
is allocated to the data set. 

Extending Data sets With Additional oU~~i 

A processing program can extend an 
existing data set by adding records to it 
instead of reading it as input. such a 
data set is retrieved using the same 
subsets of DD statement parameters 
described under the preceding three topics, 
depending on whether it was cataloged, 
kept, or passed when created. In each 
case, however, the DISP parameter must 
indicate a status of MOD. When MOD is 
specified, the system positions the 
appropriate read/write head after the last 
record in the data set. If a disposition 
of CATLG for an extended data set that is 
already cataloged is indicated, the system 
updates the catalog to reflect any new 
volumes caused by the extension. 

When extending a multivolume data set 
where number of volumes might exceed the 
number of. units used, the progranuner should 
either specify a volume count or deferred 
mounting as part of the volume information. 
This ensures data set extension to new 
volumes. 

Retrieving Data Through an InE~i_~i~~~ill 

Data sets in the form of decks of cards 
or groups of card images can be introduced 
to the system through an input stream by 
interspersing them with control statements. 
To define a data set in the input stream, 
mark the beginning of the data set with a 
DD statement and the end with a delimiter 
statement. The DD statement must contain 
one of the parameters * or DATA. Use DATA 
if the data set contains job control 
statements and an * if it does not. Two 
DCB subparameters can also be coded when 



defining a data set in the input stream. 
In systems with MFT or MVT, data in the 
input stream is temporarily transferred to 
a mass storage device. The DCB 
subparameters BLKSIZE and BUFNO allow 
blocking of this data as it is placed on 
the mass storage device. 

When using a sequential scheduler: 

• The input stream must be on a card 
reader or magnetic tape. 

• Each job step and procedure step can be 
associated with only one data set in 
the input stream. 

• The DD statement must be the last in 
the job step or procedure step. 

• The records must be unblocked, and 
80-characters in length. 

• The characters in the records must be 
coded in BCD or EBCDIC. 

When using a priority scheduler: 

• The input stream can be on any device 
supported by QSAM. 

• Each job step and procedure step can be 
associated with several data sets in an 
input stream. All such data sets 
except the first in the job must be 
preceded by DD * or DD .DATA statements. 

• The characters in the records must be 
coded in BCD or EBCDIC. 

User File Processing 121 



Examples of DD statements Used To Retrieve Data Sets 

Example 1: Retrieving a cataloged data set. 

//CALC DD DSNAME=PROCESS, DISP=(OLD, PASS, KEEP) 

This DD statement retrieves a cataloged data set named PROCESS. No 
UNIT or VOLUME information is needed. Since PASS is specified, the 
volume in which the data set is written is retained at the end of the 
job step. PASS implies that a later job step will refer to the data 
set. The last step in the job referring to the data set should specify 
the final disposition. If no other DD statement refers to the data set, 
it is assumed that the status of the data set is as it existed before 
this job. In the event of an abnormal termination, the KEEP disposition 
explicitly states the disposition of the data set. 

Example 2: Retrieving a data set that was kept but not cataloged. 

//TEMPFILE DD DSNAME=FILEA,UNIT=DIRECT,VOLUME=SER=AA70,DISP=OLD 

This DD statement retrieves a kept data set named FILEA. (This data 
set is created by the DD statement shown in Example 3 for creating data 
sets.) The data set resides on a device in a hypothetical device class, 
DIRECT. The volume serial number is AA70. 

Example 3: 

//SAMPLE 
//STEP1 

//SYSLIN 
//STEP2 
//SYSLIN 

Referring to a data set in a previous job step. 

JOB 
EXEC PGM=IKFCBLOO,PARM=DECK 

DD DSNAME=ALPHA,DISP=(NEW,PASS),UNIT=SYSSQ 
EXEC PGM=IEWL 
DD *.STEP1.SYSLIN, DISP= (OLD, DELETE) 

The DD statement SYSLIN in STEP2 refers to the data set defined in 
the DD statement SYSLIN in STEP1. 

Example 4: Retrieving a member of a library. 

//BANKING DD DSNAME=PAYROLL(HOURLY),DISP=OLD 

The DD statement retrieves a member, HOURLY, from a cataloged 
library, PAYROLL. 

122 



DDSTATEMENTS THAT SPECIFY UNIT RECORD 
DEVICES 

A DD statement may simply indicate that 
data follows in the input stream or that 
the data set is to be punched or printed. 
Figure 31 shows the parameters of special 
interest for these purposes. 

r-----------------------------------------, 
I I 

! { ~ATA } ! 
I SYSOUT=A I 
I I 
I UNIT=name I 
I I 
I DCB=(subparameters) I 
I I 
~-----------------------------------------~ 
I Note: The DCB parameter can be I 
I specified, where permissible, for data I 
I sets on unit record devices. For I 
I example, it can be specified for I 
I compiler data sets (other than SYSUT1, I 
I SYSUT2, SYSUT3, and SYSUT4) and data I 
I sets specified by the DD statements I 
I required for the ACCEPT and DISPLAY I 
I statements, when any of these data sets I 
I are assigned to unit-record devices. I L _________________________________________ J 

Figure 31. Parameters Used To Specify 
unit Record Devices 

Example 1: Specifying data in the card 
reader. 

//SYSIN DD * 

The asterisk indicates that data follows 
in the input stream. This statement must W 
be the last DD statement for the job step." 
The data must be followed by a delimiter 
statement. 

Example 2: Specifying a printer data set. 

//SYSPRINT DD SYSOUT=A 

SYSOUT is the system output parameter; A 
is the standard device class for printer 
data sets. 

~~~illP!~_l: Specifying a card punch. 

//SYSPUNCH DD SYSOUT=B

B is the standard device class for punch
devices.

CATALOGING A DATA SET

A data set is cataloged whenever CATLG
is specified in the DISP parameter of the
DD statement that creates or uses it. This
means that the name and volume
identification for the data set are placed
in a system index called the catalog. (See
"Processing with QISAM" in the section
"Execution Time Data Set Requirements" for
information about cataloging indexed data
sets.) The information stored in the
catalog is always available to the system;
consequently, only the data set name and
disposition need be specified in subsequent
DD statements that retrieve the data set.
See Example 4 in "Creating Data Sets," and
Example 1 in "Retrieving Data sets."

If DELETE is specified for a cataloged
data set, any reference to the data set in
the catalog is deleted unless the DD
statement containing DELETE retrieves the
data set in some way other than by using
the catalog. If UNCATLG is specified for a
cataloged data set, only the reference in
the catalog is deleted; the data set itself
is not deleted.

Note: A "cataloged data set" should not be
confused with a "cataloged procedure" (see
"Using the Cataloged Procedures").

It is sometimes convenient to save data
sets as elements or generations of a
generation data group
(DSNAME=dsname(element». A generation
data group is a collection of successive
historically related data sets.
Identification of data sets that are
elements of a generation data group is
based upon the time the data set is added
as an element. That is, a generation
number is attached to the generation data
group name to refer to a particular
element. The name of each element is the
same, but the generation number changes as
elements are added or deleted. The most
recent element is 0, the element added
previous to 0 is -1, the element added
previous to -1 is -2, etc. A generation
data group must always be cataloged.

User File Processing 123

For example, a data group named PAYROLL
might be used for a weekly payroll. The
elements of the group are:

PAYROLL(O)
PAYROLL(-l)
PAYROLL (-2)

where PAYROLL(O) is the data set that
contains the information for the most
current weekly payroll and is the most
recent addition to the group.

When a new element is added, it is
called element(+n), where n is an integer
greater than O. For example, when adding a
new element to the weekly payroll, the DD
statement defines the data set to be added
as PAYROLL(+l)i at the end of the job the
system changes its name to PAYROLL(O). The
element that was PAYROLL(O) at the
beginning of the job becomes PAYROLL(-l) at
the end of the job, and so on.

If more than one element is being added
in the same job, the first is given the
number (+1), the next (+2) and so on.

NAMING DATA SETS

Each data set must be given a name. The
name can consist of alphanumeric characters
and the special characters, hyphen and the
+0 (12-0 multipunch). The first character
of the name must be alphabetic. The name
can be assigned by the system, it can be
given a temporary name, or it can be given
a user-assigned name. If no name is
specified on the DD statement that creates
the data set, the system assigns to the
data set a unique name for the job step.
If a data set is used only for the duration
of one job, it can be given a temporary
name (DSNAME=&&name). If a data set is to
be kept but not cataloged, it can be given
a simple name. If the data set is to be
cataloged it should be given a fully
qualified data set name. The fully
qualified data set name is a series of one
or more simple names joined together so
that each represents a level of
qualification. For example, the data set
name DEPT999.SMITH.DATA3 is composed of
three simple names that are separated by
periods to indicate a hierarchy of names.
Starting from the left, each simple name
indicates an index or directory within
which the next simple name is a unique
entry. The rightmost name identifies the
actual location of the data set.

Each s~mple name consists of one to
eight characters, the first of which must
be alphabetic. The special character
period (.) separates simple names from

124

each other. Including all simple names and
periods, the length of a data set name must
not exceed 44 characters. Thus, a maximum
of 21 qualification levels is possible for
a data set name.

Programmers should not use fully
qualified data set names that begin with
the letters SYS and that also have a P as
the nineteenth character of the name.
Under certain conditions, data sets with
the above characteristics will be deleted.

The following topics are discussed in
this section: the data control block,
error processing for COBOL files, and
volume and data set labels.

More information about input/output
processing is contained in the publication
IBM ~y~~~m/36Q_QE~E~ti~~~y~£g~~ __ Q~£~
~an~g~ill~nt_~~Evi2~~·

DATA CONTROL BLOCK

Each data set is described to the
operating system by a data control block
(DCB). A data control block consists of a
group of contiguous fields that provide
information about the data set to the
system for scheduling and executing
input/output operations. The fields
describe the characteristics of the data
set (e.g., data set organization) and its
processing requirements (e.g., whether the
data set is to be read or written). The
COBOL compiler creates a skeleton DCB for
each data set and inserts pertinent
information specified in the Environment
Division, FD entry, and input/output
statements in the source program. 'rhe DCB
for each file is part of the object module
that is generated. Subsequently, other
sources can be used to enter information
into the data control block fields. The
process of filling in the data control
block is completed at execution time.

Additional information that completes
the DCB at execution time may come from the
DD statement for the data set and, in
certain instances, from the data set label
when the file is opened.

overriding DCB Fields

Once a field in the DCB is filled in by
the COBOL compiler, it cannot be overridden
by a DD statement or a data set label. For
example, if the buffering factor for a data
set is specified in the COBOL source
program by the RESERVE clause, it cannot be
overridden by a DD statement. In the same
way, information from the DD statement
cannot be overridden by information
included in the data set label.

Identifying DCB Information

The links between the DCB, DD statement,
data set label, and input/output statements
are the filename, the system name in the
ASSIGN clause of the SELECT statement, the
ddname of the system-name, and the dsname
(Figure 32).

1. The filename specified in the SELECT
statement and in the FD entry of the
COBOL source program is the name
associated with the DCB.

2. Part of the system-name specified in
the ASSIGN clause of the source
program is the ddname link to the DD
statement. This name is placed in the
DCB.

3. The dsname specified in the DO
statement is the link to the physical
data set.

The fields of the data control block are
described in the tables in Appendix C.
They identify those fields for which
information must be supplied by the source

program, by a DD statement, or by the data
set label. For further information about
the data control block, see the discussion
of the DCB macro instruction for the
appropriate file processing technique in
the publication IBM System/360 Ope~~£ing
System: Data Mana~~~g~~~~Yi£~~.

ERROR PROCESSING FOR COBOL FILES

During the processing of a COBOL file,
data transmission to or from an
input/output device may not be successful
the first time it is attempted. If it is
not successful, standard error recovery
routines, provided by the operating system,
attempt to clear the failure and allow the
program to continue uninterrupted.

If an input/output error cannot be
corrected by the system, an abnormal
termination (ABEND) of the program may
occur unless the programmer has specified
some means of error analysis. Error
processing routines initiated by the
programmer are discussed in the following
paragraphs, and in "Appendix G:
Input/Output Error Conditions."

For sequential files, the programmer can
specify a DD statement option (EROPT) that
specifies the type of action to be taken by
the system if an error occurs. This option
can be specified whether or not a
declarative is written. If a declarative
is specified, the DD statement option is
executed when a normal exit is taken from
the declarative. See "Accessing a Standard
Sequential File" for further information.

r--------------------, r------------------,

r-----------
I
I
I Other

I SELECT I
I Statement I

I Input/Output

I Data Set I
I Label I

I
DD I

I
I ___________ J

I Statements I I Statement I L _____________________ J L ___________________ J

Figure 32. Links between the SELECT Statement, the DO Statement, the Data Set Label, and
the Input/Output Statements

User File Processing 125

INVALID KEY Option

INVALID KEY errors may occur for files
accessed randomly, or for output files
accessed sequentially. A test to determine
these errors may be made by using the
INVALID KEY option of the READ, WRITE,
REWRITE, or START verb.

Note: Secondary space allocation must be
specified when the INVALID KEY option is
used in a WRITE statement for QSAM and
BSAM.

USE AFTER ERROR Option

The programmer may specify the USE AFTER
ERROR option in the declarative section of
the Procedure Division to determine the
type of the input/output error. with the
USE AFTER ERROR option, the programmer can
pass control to an error-processing routine
to investigate the nature of the error. If
the GIVING option of the USE AFTER ERROR
declarative is specified, data-name-1 will
contain information about the error
condition. Data-name-2, if specified, will
contain the block in error if the last
input/output operation was a read. If the
file was opened as output, data-name-2 in
the GIVING option cannot be referenced.

Data-name-2 of the GIVING option
contains valid data only if data was
actually transferred on the last
input/output operation. For example, if
the declarative is entered after execution
of a START verb for a QISAM file on which
no INVALID KEY option was present, an
attempt to access data-name-2 results in an
abnormal termination, because no transfer
of data has taken place. If data-name-2 is
specified in other than the Linkage
Section, an abnormal termination will occur
on entry to the USE ERROR declarative, if
the declarative is invoked by an I/O
request other than a READ (or any READ
error in which no data transfer has taken
place). Therefore, data-name-2 should be
specified in the Linkage section, and
should be referred to only if the error is
a READ error in which data transfer took
place. This can be determined by examining
data-name-1.

Either or both the INVALID KEY clause
and the USE AFTER ERROR declarative may be
specified for a file. If both have been
specified and an INVALID KEY error occurs,
the imperative-statement specified in the
INVALID KEY option will be executed. If

126

both have been specified and any other type
of input/output error occurs the USE AFTER
ERROR declarative will be entered. For a
file other than standard sequential, if an
I/O error occurs which is not INVALID KEY,
and the USE ERROR declarative is not active
for the file, the execution will be
terminated in a manner equivalent to a STOP
RUN. However, if such an error occurs in a
sort, input, or output procedure, the
execution will abnormally terminate. Tab~e
18 is a generalized summary of the means
available for recovery from an invalid key
condition or an input/output error. Table
19 lists the error processing facilities
available for each type of file
organization. The following discussion
summarizes the action taken by each
facility for each type. For further
information on the USE AFTER ERROR option,
see the publication IBM System/360
Operating System: Full American National
Standard COBOL.

STANDARD SEQUENTIAL

• Operating System: If the error cannot
be corrected (read only), the program
will ABEND in the absence of a DD
statement option, USE AFTER STANDARD
ERROR declarative, or INVALID KEY
option. If both the DD statement
option and USE section are specified,
the control program will execute the
USE declarative first and then the DD
option if normal exit is taken from the
declarative section. If no EROPT
subparameter is indicated, or if ABS is
specified and a USE AFTER STANDARD
ERROR declarative exists, the
declarative will receive control.
After a normal exit, the job will
abnormally terminate.

• DD Statement Option: The EROPT
subparameter in the DCB parameter
specifies one of three actions: accept
the error block (ACC), skip the error
block (SKP), or terminate the job
(ABE).

• INVALID KEY: A transfer of control to
the procedure indicated in the INVALID
KEY phrase occurs if additional space
cannot be allocated to write the record
requested. This condition occurs when
either no more space is available or 16
extents have already been allocated on
the last volume assigned to the data
set. The transfer of control occurs
only if a secondary-quantity is
specified in the DD statement SPACE,
SPLIT, or SUBALLOC parameter. If no
secondary-quantity is specified, the
primary-quantity is assumed to be the
exact amount of space required for the
data set, and any attempt to write a
record beyond the storage allocated

causes the program to end abnormally.
When an INVALID KEY error occurs, the
file can be closed so that it may
subsequently be reopened for retrieval
as INPUT or 1-0.

• USE AFTER STANDARD ERROR: The
programmer may specify this option in
order to display the cause of the
error. Control goes to the declarative
section; the programmer can then
display a message indicating the error
and execute his DD statement option on
a normal exit from the declarative
section.

INDEXED (RANDOM)

• INVALID KEY: If the error is caused by
an invalid key, recovery is possible.
If the error is not an invalid key and
the USE AFTER ERROR option is not
specified, the program is terminated.

• USE AFTER STANDARD ERROR: Control goes
to the declarative section. The
programmer can check the error type in
the section by specifying data-name-l
in the GIVING option. If the error is
caused by a key error or the "no space
found" condition, recovery is possible.
On a READ error, the block can be
skipped by executing additional READ
statements. If the error persists
(more bad READ statements than the
blocking factor), processing is limited
to a CLOSE statement. Any other error
cannot be corrected. The program may

continue executing, but processing of
the file is limited to CLOSE. If the
programmer closes the file, he may do
so in either the declarative section or
in the main body of his program.

INDEXED (SEQUENTIAL)

A. WRITE (load mode)

• Operating System: If the error
cannot be corrected, the program
will ABEND unless an error
processing option is specified.

• INVALID KEY: If the error is caused
by an invalid key, recovery is
possible. (The programmer may
attempt to reconstruct the key and
retry the operation, or may bypass
the error record.)

• USE AFTER STANDARD ERROR: Control
goes to the declarative section.
The programmer can check the error
type in the section by specifying
data-name-l in the GIVING option.
If the error is the result of a key
error, recovery is possible. If the
error is not a key error, the error
cannot be corrected. The program
may continue executing, but
processing of the file is limited to
CLOSE. If the programmer closes the
file, he may do so in either the
declarative section or in the main
body of his program.

Table 18. Recovery from an Invalid Key Condition or from an Input/Output Error

I I Error ignored; I
I Inext sequential I

invalidlGo to user's IGO to invalidlinstruction I I
key routine I routine I key routine I executed I Abend I
~---.---.-------+--------------+-------------+---------------+--------------~

IGo to user's IGO to user's IReturn to I I
system I routine I routine I system I Abend I _____________ i ______________ i _____________ i _______________ i ______________ J

User File Processing 127

Table 19. Input/Output Error Processing Facilities

x I X I Note 1 I X 1
--------------f-----------------f------------f-------------------~

I I I I
I I I I

X I I X I X I
X I I Note 2 I X I

--------------f-------------~---f------------f-------------------~
Note 3 I I X I X I

---"---,------,----f-----------------+------------f-------------------~
I I I I
I I I I

X I I Note 1 I X I
--------------f-----------------f------------f-------------------~

X 1 I X 1 X 1
1 I I 1

-------------~-----------------~------------~-------------------~
INotes:
11. Holds only for WRITE.

1
I
1
I
1

12. Error cannot be caused by an invalid key.
13. No system error processing facility is available. If errors occur, they are
I ignored and processing continues, unless a programmer-specified error processing
I routine is specif ied. I L ___ J

B. READ, REWRITE (scan mode)

128

• Operating System: If the error
cannot be corrected, the program
will ABEND unless an error
processing option is specified.

• INVALID KEY: The error cannot be
caused by an invalid key. A source
program coding error is implied and
a compiler diagnostic message is
generated.

• USE AFTER STANDARD ERROR: The
programmer may specify this option
in order to display the cause of the
error. Control goes to the
declarative section. The programmer
can check the error type in the
section by specifying data-name-l in
the GIVING option. Since the error
cannot be caused by an invalid key,
processing of the file is limited to
CLOSE. If the programmer elects to
close the file, he may do so in
either the declarative section or in
the main body of his program.

DIRECT or RELATIVE (RANDOM)

• Operating System: If the error cannot
be corrected, the program will ABEND
unless an error processing option is
specified.

• INVALID KEY: If the error is caused by
an invalid key, recovery is possible.

• USE AFTER STANDARD ERROR: Control goes
to the declarative section. The
programmer can check the error type in
the section by specifying data-name-l
in the GIVING option. If the error is
the result of a key error or the "no
space found within the search limit"
condition, recovery is possible. Any
other error cannot be corrected. The
program may continue executing, but
processing of the file is limited to
CLOSE. If the programmer closes the
file, he may do so in either the
declarative section or in the main body
of his program.

DIRECT or RELATIVE (SEQUENTIAL)

• Operating System: If no error
processing option is specified, a
message is written to the console
providing identification of the file
and type of input/output error. Then
control is returned to the system. For
sequential data sets, if EROPT has SKP
or ACC (as specified in the JCL for the
data set), an ABEND will not occur and
processing will continue.

• INVALID KEY: A transfer of control to
the procedure indicated in the rNVALID
KEY phrase occurs if additional space
cannot be allocated to write the record
requested. This condition occurs when
either no more space is availabLe or 16
extents have already been allocated on
the last volume assigned to the data
set. The transfer of control occurs
only if a secondary-quantity is
specified in the DD statement SPACE,
SPLIT, or SUBALLOC parameter. rf no
secondary-quantity is specified, the
primary-quantity is assumed to be the
exact amount of space required for the
data set, and any attempt to write a
record beyond the storage allocated
causes the program to end abnormally.
When an INVALID KEY error occurs, the
file can be closed so that it may
subsequently be reopened for retrieval
as INPUT or 1-0.

• USE AFTER STANDARD ERROR: The
programmer may specify this option in
order to display the cause of the
error. Control goes to the decLarative
section. The programmer can check the
error type in the section by specifying
data-name-1 in the GIVING option. If
the error is not the result of an
invalid key" processing of the file is
limited to CLOSE. If the programmer
elects to close the file, he may do so
in either the declarative section or in
the main body of his program.

Notes: The user should consider the
following points when a relatively Large
number of INVALID KEY exits or declarative
sequences (with GO TO exits) are to be
executed:

1. The distinction between error
processing via an error declarative
and the INVALID KEY clause. ~en an
input/output operation is requested, a
storage area (called an input/output
block, or lOB) is allocated until the
request is satisfied (or, in the event
of an error, until return from the
user-provided error-handling routine).
If the error declarative is used, a
normal exit from the declarative
returns control to the system and

frees the lOB. When the INVALID KEY
routine is used, however, the syste7:'.
does not regain control, and the If B
is not freed.

2. The error declarative dynamically
allocates storage for a register save
area upon entry. If a GO TO statement
is used to exit from the declarative,
neither this save area nor the lOB is
freed. To make the maximum space
available to other users, the
programmer should rely on the
declarative as much as possible,
taking a normal exit from it.
Otherwise, it is recommended that the
programmer specify a larger region.

VOLUME LABELING

Various groups of labels may be used in
secondary storage to identify magnetic-tape
and mass storage volumes, as well as the
data sets they contain. The labels are
used to locate the data sets and are
identified and verified by label processing
routines of the operating system.

There are two different kinds of labels,
standard and nonstandard. Magnetic tape
volumes can have standard or nonstandard
labels, or they can be unlabeled. The
type(s) of label processing for tape
volumes to be supported by an installation
is selected during the system generation
process. Mass storage volumes are
supported with standard labels only.

Standard labels consist of volume labels
and groups of data set labels. The volume
label group precedes or follows data on the
volume; it identifies and describes the
volume. The data set label groups precede
and follow each data set on the volume, and
identify and describe the data set.

• The data set labels that precede the
data set are called header labels.

• The data set labels that follow the
data set are called trailer labels.
They are almost identical to the header
labels.

• The data set label groups can
optionally include standard user labels
except for ISAM files.

• The volume label groups can optionally
include standard user labels for QSAM
files.

Nonstandard labels can have any format
and are processed by routines provided by

User File Processing 129

the programmer. Unlabeled volumes contain
only data sets and tapemarks. In the job
control statements, a DD statement must be
provided for each data set to be processed.
The LABEL parameter of the DD statement is
used to describe the data set's labels.

Specific information about the contents
and physical location of labels is
contained in the publications IBM
System/360 Operating System: Data
Management Services and IBM System/36 0
Operating System: Tape Labels, Order
No. GC2S-66S0.

STANDARD LABEL FORMAT

Standard labels are SO-character records
that are recorded in EBCDIC and odd parity
on 9-track tape; or in BCD and even parity
on 7-track tape. The first four characters
are always used to identify the labels.
These identifiers are:

VOLl volume label
HDRl and HDR2 data set header

labels
EOVl and EOV2 data set trailer

labels (end-of-volume)
EOFl and EOF2 data set trailer labels

(end-of-data set)
UHLl to UHLS user header labels
UTLl to UTLS user trailer labels

The format of the mass storage volume
label group is the same as the format of
the tape volume label group, except one of
the data set labels of the initial volume
label consists of the data set control
block (DSCB). The DSCB appears in the
volume table of contents (VTOC) and
contains the equivalent of the tape data
set header and trailer information, in
addition to space allocation and other
control information.

STANDARD LABEL PROCESSING

Standard label processing as performed
by the system consists of the following
basic functions:

• Checking the labels on input data sets
to ensure that the correct volume is
mounted, and to identify, describe, and
protect the data set being processed.

• Checking the existing labels on output
data sets to ensure that the correct
volume is mounted and to prevent
overwriting of vital data.

130

• Creating and writing new labels on
output data sets.

When a data set is opened for input, the
volume label and the header labels are
processed. For an input end-o£-data
condition, the trailer labels are processed
when a CLOSE statement is executed. For an
input end-of-volume condition, the trailer
labels on the current volume are processed,
and then the volume label and header labels
on the next volume are processed.

When a data set is opened for output,
the existing volume label and HDRl label
are. checked, and new header labels are
written. For an output end-of-volume
condition, trailer labels are written on
the current volume, the existing volume
labels and header labels on the next volume
are checked, and then new header labels are
written on the next volume. When an output
data set is closed, trailer labels are
written.

STANDARD USER LABELS

Standard user labels contain
user-specified information about the
associated data set. User labels are
optional within the standard label groups.
The format used for user header labels
(UHL1-S) and user trailer labels (UTL1-S)
consists of a label SO characters in length
recorded in EBCDIC on 9-track tape units,
or in BCD on 7-track tape units. The first
three bytes consist of the characters that
identify the label: UHL for a user header
label (at the beginning of a dataset) or
UTL for a user trailer label (at the
end-of-volume or end-of-data set). The
next byte contains the relative position of
this label within a set of labels of the
same type and can be any number from 1
through S. The remaining 76 bytes consist
of user-specified information.

User labels are generally created,
examined, or updated when the beginning or
end of a data set or volume (reel) is
reached. User labels are applicable for
sequential, direct, and relative data sets.
For sequentially processed data sets, end
or beginning of volume exits are allowed
(i.e., "intermediate" trailers and headers
may be created or examined). For direct or
relative data sets, user label routines
will be given control only during OPEN or
CLOSE condition for a file opened as INPUT,
OUTPUT, or 1-0. Trailer labels for files
opened as INPUT or 1-0 are processed when a
CLOSE statement is executed for the file
that has reached an AT END condition.
Thus, for standard sequential data sets,

the user may create, examine, or update up
to eight header labels and eight trailer
labels on each volume of the data set,
whereas for direct or relative data sets
the user may create, examine, or update up
to eight header labels during OPEN and up
to eight trailer labels during CLOSE. Note
that these labels reside on the initial
volume of a multi-volume data set. This
volume must be mounted at CLOSE if trailer
labels are to be created, examined, or
updated.

When standard user label processing is
desired, the user must specify the label
type of the standard and user labels (SUL)
on the DD statement that describes the
dataset. For mass storage volumes~
specification of a LABEL subparameter of
SUL results in a separate track being
allocated for use as a user-label track
when the data set is created. This
additional track is allocated at initial
allocation and for sequential data sets at
end-of-volume (volume switch) time. The
user-label track (one per volume of a
sequential data set) will contain both user
header and user trailer labels.

User Label Totaling
(BSAM and QSAM only)

When creating or processing a data set
with user labels on a sequential file, the
programmer may develop control totals to
obtain exact information about each volume
of the data set. This information can be
stored in his user labels. For example, a
control total accumulated as the data set
is created, can be stored in a user label
and later compared with a total accumulated
while processing a volume. The user
totaling facility enables the programmer to
synchronize the control data that he has
created while processing a data set with
records physically written on a volume. In
this way, he can tell exactly what records
were written. This information can also be
used for accurately labeling tape reels
(i.e., assigning physical adhesive labels).

To request this option, specify OPTCD=T
in the DCB parameter of the DD statement.
The user's TOTALING area, where control
data is accumulated, is provided by the
user. In this area, the user can store
information on each record he writes. When
an input/output operation is scheduled, the
control program sets up a user TOTALED save
area that preserves an image of the
information in the user's TOTALING area.
When the output USE LABEL declarative is
entered, the values accumulated in the
user's TOTALING area corresponding to the
last record actually written on the volume
are stored in the TOTALED area. These
values can be included in user labels.

When using this facility for an output
data set (i.e., when creating the data
set), the programmer must update his
control data in the TOTALING area prior to
issuing a WRITE instruction. When
subsequently using this data set for input,
the programmer can accumulate the same
information as each record is read. These
values can be compared with the ones
previously stored in the user label when
the records were created.

variable length records with APPLY
WRITE-ONLY or records with SAME RECORD AREA
specified require special considerations
when using the TOTALING option. Since the
control program determines whether a
variable-length record will fit in a buffer
after a WRITE instruction has been issued,
the values accumulated may include one more
record than is actually written on the
volume. In this case, the programmer must
update his TOTALING area after issuing a
WRITE instruction.

User label totaling is not available
with S-mode records.

For further information on user label
totaling, see the publication !~~
~~~~mLJ2Q_QE~ratinq S~~~m~_~~ll ~~~i£~g 
~at!on!!-2~ang~g CO~Q~. 

NONSTANDARD LABEL FORMAT 

Nonstandard labels do not conform to the 
standard label formats. They are designed 
by programmers and are written and 
processed by programmers. Nonstandard 
labels can be any length less than 4096 
bytes. There are no requirements as to the 
length, format, contents, and number of 
nonstandard labels, except that the first 
record on the volume cannot be a standard 
volume label. In other words, the first 
record cannot be 80 characters in length 
with the identifier VOLl as its first four 
characters. 

NONSTANDARD LABEL PROCESSING 

To use nonstandard labels (NSL) , the 
programmer must: 

• Create nonstandard label processing 
routines for input header labels, input 
trailer labels, output header labels, 
and output trailer labels. 

• Insert these routines into the 
operating system as part of the SVC 
library (SYS1.SVCLIB). 

User File Processing 131 



• Code NSL in the LABEL parameter of the 
DD statement at execution time. 

The system verifies that the tape has a 
nonstandard label. Then if NSL is 
specified in the LABEL parameter, it loads 
the appropriate NSL routines into transient 
areas. These NSL routines are entered at 
OPEN, CLOSE, and END-OF-VOLUME conditions 
by the respective executors. 

For a data set opened as output, the NSL 
routines entered include: 

• At OPEN time, a header routine to check 
the old header and/or create the new 
header; 

• At CLOSE time, a trailer-creation 
routine; 

• At EOV time, a trailer-creation routine 
and a header routine. 

For a data set opened as input essentially 
the same types of routines are required. 

Note: The NSL routines must observe the 
following conventions: 

1. Follow Type-IV SVC routine 
conventions. 

2. Use GETMAIN and FREEMAIN for work 
areas. 

3. Be reentrant load modules of 1024 
bytes each. 

4. Use EXCP for I/O operations and XCTL 
for passing control among load modules 
and then returning to the I/O-support 
routines. 

5. Begin with the letters NSL if the 
system branches to them directly. 
(Other user-written modules having to 
do with nonstandard labels must begin 
with the letters IGC.) 

6. Have as their entry points the first 
byte in each load module. 

In addition, the NSL routines must write 
their own tapemarks, do all I/O operations 
necessary (via EXCP), determine when all 
labels have been processed, and take care 

132 

of data set positioning. These routines 
may communicate at the LABEL source level 
with USE BEFORE LABEL PROCEDURE 
declaratives by means of linkage described 
under "User Label Procedures." 

USER LABEL PROCEDURE 

The USE ••• LABEL PROCEDURE statement 
provides the user with label handling 
procedures at the COBOL source level to 
handle nonstandard or user labels. The 
BEFORE option indicates processing of 
nonstandard labels. The AFTER option 
indicates processing of standard user 
labels. The labels must be listed as 
data-names in the LABEL RECORDS clause in 
the File Description entry for the file. 
When the file is opened as input, the label 
is read in and control is passed to the USE 
declarative if a USE ••• LABEL PROCEDURE is 
specified for the OPEN option or for the 
file. If the file is opened as output, a 
buffer area for the label is provided and 
control is passed. to the USE declarative if 
a USE ••• LABEL PROCEDURE is specified for 
the OPEN option or for the file. For files 
opened as INPUT or I-O, control is passed 
to the USE declarative to process trailer 
label$ when a CLOSE statement is executed 
for the file that has reached the AT END 
condition. A more detailed discussion of 
the USE ••• LABEL PROCEDURE statement is 
contained in the publication IBM System/360 
Oper~~!~~tem: American National 
Standard COBOL. 

One of the concerns of the programmer is 
linkage between the nonstandard label SVC 
routine and the USE BEFORE LABEL PROCEDURE 
section. Other problems related to writing 
nonstandard label SVC routines are 
discussed in the publication IB~_~~~~~~~~ 
Opera~!~§~~m~_-2Y§te~~§_~ro~ra~~~~~ 
Gui~~. 

When the nonstandard label SVC routine 
has determined that a particular DCB has 
nonstandard labels, the nonstandard label 
routine must inspect the DCB exit list for 
an active entry to'ensure that there is a 
USE BEFORE ••• LABEL section for this DCB and 
for that type of label processing. The DCB 
field EXLST contains a pointer to this exit 
list. An active entry is defined as a 
1-byte code other than X'OO' or X'80' 
followed by a 3-byte address of the 
appropriate label section (Figure 33). 



r-----T-----------------------------------, 
,Code, Exit List I 
~-----+-----------------------------------~ 
, 1 ,(USE section for header labels) , , , , 
, 2 ,(USE section for trailer labels) I 
, I I 
I I I 
I I , 
~-----~-----------------------------------~ 
I Note: , 
I Code 1 is set to X'Ol' indicating , 
, INPUT, or X'02' : indicating OUTPUT. , 
, code 2 is set to 'X'OD' indicating , 
I INPUT, or X'04' :indicating OUTPUT. I L _________________________________________ J 

Figure 33. Exit List Codes 

Once the nonstandard label SVC routine 
tests that the exit list confirms an 
appropriate active entry, it must pass the 
address of a parameter list in register 1. 

The parameter list (Figure 34) must have 
the following format. 

r-------------T------------------, 
, 1 byte , 3 bytes , 

r--------+-------------+------------------~ 
, Byte 0 , 0 I A (label buffer) I 
I Byte 4 I Flag byte I A (DCB) , 
, Byte 8 , Error flag , I 
L~-------~-------------~------------------J 
Figure 34. Parameter List Formats 

The A <label buffer) is the address of 
the label record on input and the address 
where the label will be created on output. 

The A <DCB> is the address of the DCB. 
The DCB contains a pointer to the DEB. The 
nonstandard label SVC routine must test the 
EOF bit in the OFLGS field of the DEB (data 
extend block) to determine whether to 
return control to the EOV or CLOSE module. 
Control is given to the CLOSE module only 
at EOF. 

The error flag byte will have bit 0 set 
to 1 if an input/output error occurs when 
reading or writing a label. 

r-------------T-----------T---------------, 
IRoutine Type IReturn CodelApplicable Note, 
~-------------+-----------+---------------~ 
IInput header I 0 I 1 I 
land/or I 4 I 2 I 
I trailer I 16 I 3 I 
~-------------+-----------+---------------~ 
I Out put header I 4 I 1 I 
land/or I 8 I 2 I 
I trailer , , I 
~-------------+-----------+---------------~ 
IUpdate header I 8 I 1 I 
land/or , 12 I 2 , 
I trailer I 16 I 3 I 
~-------------~-----------~---------------~ 

Notes: 
~or output mode, the label is 
written or rewritten. For input mode, 
normal processing is resumed; any 
additional user labels are ignored. 
2. Another label is read (for input 
mode) and control is returned to the USE 
BEFORE LABEL PROCEDURE section. For 
output mode, the labels should be 
written and control should be returned 
to the USE BEFORE LABEL PROCEDURE 
section. When control is returned to 
the nondeclarative portion, either 
normal processing will continue or the 
label section will be re-entered, 
depending on whether the return code is 
4 or 8. 
3. A return code of 16 indicates that 
the USE BEFORE LABEL PROCEDURE section 
has determined that an incorrect volume 
was mounted. When LABEL-RETURN is set 
to a nonzero value, the return code is 
set to 16. _________________________________________ J 

Figure 35. Label Routine Returns Codes 

When the USE BEFORE LABEL PROCEDURE 
section returns control to the nonstandard 
label SVC routine, it will pass a return 
code that will indicate whether or not more 
labels are to be processed (Figure 35). 
This return code is set by assigning a 
value to the special register LABEL-RETURN. 

The maximum size of the label record is 
stored on a halfword boundary at the 
EXITLIST address +38. 

The user's nonstandard label routines 
are responsible for all tape positioning. 
For multifile volumes, the user may specify 
a file sequence number in the LABEL 
parameter on the DD card. The nonstandard 
label routines can inspect this information 
in the JFCB and position the files 
accordingly. For additional information, 
see the §y~~~m/36Q_QEerating System: 
System Programmer's Guide. 

User File Processing 133 



RECORD FORMATS 

Logical records may be in one of four 
formats: fixed-length (format F), 
variable-length (format V), unspecified 
(format U), or spanned (format S). F-mode 
files must contain records of equal 
lengths. Files containing records of 
unequal lengths must be V-mode, U-mode, or 
S-mode. Files containing logical records 
that are longer than physical records must 
be S-mode. 

The record format is specified in the 
RECORDING MODE clause in the Data Division. 
If this clause is omitted, the compiler 
determines the record format from the 
record descriptions associated with the 
file. If the file is to be blocked, the 
BLOCK CONTAINS clause must be specified in 
the Data Division. 

The prime consideration in the selection 
of a record format is the nature of the 
file itself. The programmer knows the type 
of input his program will receive and the 
type of output it will produce. The 
selection of a record format is based on 
this knowledge as well as an understanding 
of the type of input/output devices on 
which the file is written and of the access 
method used to read or write the file. 

FIXED-LENGTH (FORMAT F) RECORDS 

Format F records are fixed-length 
records. The programmer specifies format F 
records by including RECORDING MODE IS F in 
the file description entry in the Data 
Division. If this clause is omitted and 
both of the following are true: 

• All records in the file are the same 
size 

• BLOCK CONTAINS [integer-l TO] 
integer-2 ••• does not specify 
integer-2 less than the length of the 
maximum level-01 record 

the compiler determines the recording mode 
to be F. All records in the file are the 
same size if there is only one record 
description associated with the file and it 
contains no OCCURS clause with the 
DEPENDING ON option; or if multiple record 
descriptions are all the same length. 

134 

The number of logical records within a 
block (blocking factor) is normally 
constant for every block in the file. When 
fixed-length records are blocked, the 
programmer specifies the BLOCK CONTAINS 
clause in the file description (FD) entry 
in the Data Division. 

In unblocked format F, the logical 
record constitutes the block. The BLOCK 
CONTAINS clause is unnecessary for 
unblocked records. 

Format F records are shown in Figure 36. 
The optional control character, represented 
by the letter C in Figure 36 is used for 
stacker selection and carriage control. 
When carriage control or stacker selection 
is desired, the WRITE statement with the 
ADVANCING or POSITIONING option is used to 
write records on the output file. In this 
case, one character position must be 
included as the first character of the 
record. This position will be 
automatically filled in with the carriage 
control or stacker select character. The 
carriage control character never appears 
when the file is written on the printer or 
punched on the card punch. 

Note: Illustrations of unblocked Format F 
records do not take into account the key 
field required when direct organization is 
used. 

r-----------------------------------------, 
Logical Record 

r---T------------------------, 
I C I Data I L ___ ~ ________________________ J 

Blocked Records 
r-----------7-----------7-----------, 
I Logical t Logical I Logical I 
I Record I Record I Record I L ___________ ~ ___________ ~ ___________ J 

<------------Fixed Length-----------> 

Unblocked Record 
r-----------------------------------, 
I Logical Record I L ___________________________________ J 

<------------Fixed Length-----------> 

Figure 36. Fixed-Length (Format F) Records 



UNSPECIFIED (FORMAT U) RECORDS 

Format U is provided to permit the 
processing of any blocks that do not 
conform to F, V, or S formats. Format U 
records are shown in Figure 37. The 
optional control character C, as.discussed 
under "Fixed-Length (Format F) Records," 
may be used in each logical record. 

The programmer specifies format U 
records by including RECORDING MODE IS U in 
the 'file description (FD) entry in the Data 
Division. U-mode records may be specified 
only for direct or standard sequential 
files. 

If the RECORDING MODE clause is omitted, 
and BLOCK CONTAINS [integer-l TO] 
integer- 2. • • d'oes not specify integer- 2 
less than the maximumlevel-Ol record, the 
compiler determines the recording mode to 
be U if the file is direct and one of the 
following conditions exist: 

• The FD entry contains two or more 
level-01 descriptions of different 
lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• A RECORD CONTAINS clause specifies a 
range of record lengths. 

Each block on the external storage media 
is treated as a logical record. There are 
no record-length or block-length fields. 

When a READ INTO statement is used for a 
U-mode file, the size of the longest record 
for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

Note: Illustrations of Format U records do 
~take into account the key field 
required when direct organization is used. 

r-----------------------------------------, 
I Logical Record I 
I r---T----------------------, I 
I I C I Data I I I L ___ ~ ______________________ J I 

I I 
I Format U Record I 
I r---------------------------------, I 
I I Logical Record I I I L _________________________________ J I 

I I L _________________________________________ J 

Figure 37. Unspecified (Format U) Records 

VARIABLE LENGTH (FORMAT V) RECORDS 

The programmer specifies format V 
records by including RECORDING MODE IS V in 
the file description entry in the Data 
Division. V-mode records may be specified 
only for direct or standard sequential 
files. If the RECORDING MODE clause is 
omitted and BLOCK CONTAINS [integer-1 TO] 
integer-2 ••• does not specify integer-2 
less than the maximum level-01 record, the 
compiler determines the recording mode to 
be format V if the file is standard 
sequential and one of the following 
conditions exist: 

• The FD entry contains two or more 
level-01 descriptions of different 
lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• The RECORD CONTAINS clause specifies a 
range of record lengths. 

V-mode records, unlike U-mode or F-mode 
records, are preceded by fields containing 
control information. These control fields 
are illustrated in Figures 38 and 39. 

The first four bytes of each block 
contain control information (CC): 

LL -- represents two bytes designating 
the length of the block (including 
the ICC' field). 

BB -- represents two bytes reserved for 
system use. 

The first four bytes of each logical 
record contain control information (cc): 

11 -- represents two bytes designating 
the logical record length 
(including the ICC' field). 

bb -- represents two bytes reserved for 
system use. 

For unblocked V-mode records (Figure 
38)~ the Data portion + CC + cc constitute 
the block. 

For blocked V-mode records (Figure 39), 
the Data portion of each record + the cc of 
each record + CC constitute the block. 

Record Formats 135 



Pag·e af GC28-6399-2, Revised 4/15/13, by TNL GN28-1038 

r--------------~--------------------------, 
1 I 
1 I 
1 4 4 variable I 
1 < ... -by.tes-><--bytes--><------bytes-------> I 
I r----T----T·----T----T-----:...-------------, I 
I ILI,. I SB I 11 I bb I Data I I 
:. ~~~~±::;;;:::~~-------------------J I 
I • ec' " cc' I 
I . I 
~ ____ -_--__ -----_-------------------------J 
FiCJu.,.e 3'S. Vnblocked V-Mode .Records 

Variable-length record descriptions, for 
io'put and O\ltput files,. must not define 
spa;Cfa for the control bytes. Control bytes 
al;'e autamatically provided when a record is 
wr.itten and are not communicated to the 
use·r when a file is read. Although they do 
not apt;>ear ia the descriptions of logical 
re,(l'!0.rds, control bytes do appear in the 
buffe·r areas of main storage. The compiler 
a~tQmatic·ally allocates input and output 
bQf'fe,rs tt:lat are large enough to contain 
the requireQcontrol bytes. 

Wh~ variable-length records are written 
on 14nit record d:evices, control bytes are 
neither printed nor punched. They do 
ap.p$ar,. ):lswever, on other external storage 
device.s. V';'mode records moved from an 
input b1,l:ffer to a'working storage area will 
be moved without the control bytes. 

~; When a READ INTO statement is used 
fQr a V-mode or S-mode file, the size of 

.1 the c1i~rent record for that file is used as 
the :SQurce field length in the MOVE 
state.ment. All other rules of the MOVE 
statament apply. 

E!tmele~l: 

CGlllsider the following· standard 
se~.eQtial file consisting of unblocked 
V-m~lie.reoora$: 

FD VARIABLE-FILE-1 
RECORDING MODE IS V 

01 

BLOCK CONTAINS 35 TO 80 CHARAcrERS 
RECORD CONTAINS 21 TO 12 CHARACTERS 
DATA RECORD IS VARIABLE-RECORD-1 
LABEL RECORDS ARE STANDARD. 

VARIABLE-RECORD-1. 
LOGICAL RECORD 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC 99. 
05 FIELD-C OCCURS 1 TO 10 TIMES 

DEPENDING ON 
FIELD-B PIC 9(5). 

The LABEL RECORDS clause is always 
required. The DATA RECORD(S) clause is 
never required. If the RECORDING MODE 
clause is omitted, the compiler determines 
the mode as V since the record associated 
with VARIABLE-FILE-1 varies in length 
depending on the contents of FIELD-B. rhe 
RECORD CONTAINS clause is never required. 
The compiler determines record sizes from 
the record description entries. The BLOCK 
CONTAINS clause is also not required, since 
the compiler assumes unblocked records if 
the clause is omitted. Record length 
calculations are affected by the following: 

• when the BLOCK CONTAINS clause with the 
RECORDS option is used, the conpiler 
adds four bytes to the logical record 
length and four more bytes to the block 
length. 

• When the BLOCK CONTAINS clause with the 
CHARACTERS option is used, the user 
must include each cc + CC in the length 
calculation. In the definition of 
VARIABLE-FILE-1, the BLOCK CONrAINS 
clause specifies 8 more bytes than does 
the RECORD CONTAINS clause. Four of 
these bytes are the logical record 
control bytes and the other four are 
the block control bytes. 

r----~------~----~-----------------------------------~----------------------------------, 
I 1st 2nd 3rd I 
I Logical Record Logical Record Logical Record I 
I __.ns:r ,.A. - .... ,......... 4 __ /'- - I 
I ~----T----~-T--T----T-----------T----T----T----------i----T----T----------, I 
I I LL I BB I'll 1 bbl DATA-1 I 11 I bb I DATA-2 1 11 I bb 1 DATA-3 I I 
I ~~JPC~~~~~~-----------~--;=~~--~----------~:;;::=;;;;-----_____ J I 

t ·cc· ~ 'cc' ~ I 
I (}i)l0ck oentrol '. . ~record control-------- I 
I aytes) bytes) I 
L ______________ --------~-___ ~------------_------------__________________________________ J 

Fi~e 39. Blocked V-Mode Records 

136 



In Example 1, assume that FIELD-B 
contains the value 02 for the first record 
of a file and FIELD-B contains the value 03 
for the second record of the file. The 
first two records will appear on an 
external storage device and in buffer areas 
of main storage as shown in Figure 40. 

If the file described in Example 1 had a 
blocking factor of 2, the first two records 
would appear on an external storage medium 
as shown in Figure 41. 

Example 2: 

If VARIABLE-FILE-2 is blocked, with 
space allocated for three records of 
maximum size per block, the following FD 
entry could be used when the file is 
created: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 3 RECORDS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 

VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(SO). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

As mentioned previously, the RECORDING 
MODE, RECORD CONTAINS, and DATA RECORDS 
clauses are unnecessary. By specifying 
that each block contains three records, the 
programmer allows the compiler to provide 
space for three records of maximum size 
plus additional space for the required 
control bytes. Hence, 316 character 
positions are reserved by the compiler for 
each output buffer. If this size is other 
than that required, the BLOCK CONTAINS 
clause with the CHARACTERS option should be 
specified. If the block size is to be 
specified at execution time by use of the 
BLKSIZE subparameter on an associated DO 
card, BLOCK CONTAINS 0 CHARACTERS must be 
specified. 

~ote: Blocked variable-length records are 
permitted only when the file processing 
technique is standard sequential. 

In Example 2, assume that the first six 
records written are five 100-character 
records followed by one 20-character 
record. The first two blocks of 
VARAIBLE-FILE-2 will appear on the external 
storage device as shown in Figure 42. 

r------------------------------------------------------------------------------------------------_, 
I 1st Block 2nd Block I I _ ____ _ ./'-.-... I 
I r----T--T----T--T-------T--T-------T-------T----T--T----T--T-------T--T-------T-------T-------, I 
Ilo040IBBI0036IbbIFIELD-AI02IFIELD-cIFIELD-cI0045IBBIO041IbbIFIELD-AI03IFIELD-cIFIELD-cIFIELD-cl I IL ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~_---~--~-------~--~------_~ _______ ~ _______ J I 

: Note: Lengths appear in decimal notation for illustrative purposes. I 
I I L _____________________________________________________ ----------------------------------__________ J 

Figure 40. Fields in Unblocked V-Mode Records 

r---------------------------------------------------------------------------------------, 
I 1st Record 2nd Record I 
I ~ ./'-..... I 
I r----T--T TTl I , ,-----r T T T T T ====., I 
I 100SlIBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0041IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CII I L ____ ~ __ ~ ___ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ _______ J I 

I I 
I Lengths appear in decimal notation for illustrative purposes. I 
I I L _______________________________________________________________________________________ J 

Figure 41. Fields in Blocked V-Mode Records 

Record Formats 137 



r-------------------------------------------------------------------------------------------------, I 1st Block 2nd Block I 
I ___ ----- --- ___ I 
I I 
I 13161BBl104 I I L-__ ~_J.__ I 
I I 
I Notez Lengths appear in decimal notation for illustrative purposes. I 
I I L _________________________________________________________________________________________________ J 

Figure 42. First Two Blocks of VARIABLE-FILE-2 

The buffer for the second block is 
truncated after the sixth WRITE statement 
is executed since there is not enough space 
left for a maximum size record. Hence, 
even if the seventh WRITE to 
VARIABLE-FILE-2 is a 20-character record, 
it will appear as the first record in the 
third block. This condition can be 
eliminated by using the APPLY WRITE-ONLY 
clause when creating files of 
variable-length blocked records. 

Note: Illustrations of unblocked Format V 
records do not take into account the key 
field required when direct organization is 
used. 

APPLY WRITE-ONLY Clause 

The APPLY WRITE-ONLY clause is used to 
make optimum use of buffer space when 
creating a standard sequential file with 
blocked V-mode records. 

Suppose VARIABLE-FILE-2 is being created 
with the following file description entry: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 316 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 

VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(80). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

The first three WRITE statements to the 
file create one 20-character record 
followed by two 100-character records. 
Without the APPLY WRITE-ONLY clause, the 
buffer is truncated after the third WRITE 

138 

statement is executed since the maximum 
size record no longer fits. The block is 
written as shown below: 

r---T--T--T--T----T---T--T----T---T--T----' 
12361bbl24 1bbiData ll041bbiData ll041 bbiDatai L ___ J. __ J. __ J. __ J. ____ J. ___ J. __ J. ____ J. ___ J. __ J. ____ J 

Using the APPLY WRITE-ONLY clause causes 
a buffer to be turncated only when the next 
record does not fit in the buffer. That 
is, if the next three WRITE statements to 
the file specify VARIABLE-RECORD-2, the 
block is created containing six logical 
records, as shown below: 

Note: When using the APPLY WRITE-ONLY 
clause, records must not be constructed in 
buffer areas. An intermediate work area 
must be used with a WRITE FROM statement. 

A spanned record is a logical record 
that may be contained in one or more 
physical blocks. Format S records may be 
specified for direct (BDAM, BSAM) files and 
for standard sequential (QSAM) files 
assigned to magnetic tape or to mass 
storage devices. 

When creating files with S-mode records, 
if a record is larger than the remaining 
space in a block, a segment of the record 
is written to fill the block. The 
remainder of the record is stored in the 
next block or blocks, as required. 



When retrieving a file with S-mode 
records, only complete records are made 
available to the user. 

Spanned records are preceded by fields 
containing control information. Figure 43 
illustrates the control fields. 

BDF (Block Descriptor Field): 

LL ~- represents 2 bytes designating the 
length of the physical block 
(including the block descriptor 
field itself). 

BB -- represents 2 bytes reserved for 
system use. 

SDF (segment Descriptor Field): 

11 -- represents 2 bytes designating the 
length of the record segment 
(including the segment descriptor 
field itself). 

bb -- represents 2 bytes reserved for 
system use. 

Note: There is only one block descriptor 
field at the beginning of each physical 
block. There is, however, one segment 
descriptor field for each record segment 
within the block. 

Each segment of a record in a block, 
even if it is the entire record, is 
preceded by a segment descriptor field. 
The segment descriptor field also indicates 
whether the segment is the first, the last, 
or an intermediate segment. Each block 
includes a block descriptor field. These 
fields are not described in the Data 
Division; provision is automatically made 
for them. These fields are not available 
to the user. 

A spanned blocked file may be described 
as a file composed of physical blocks of 
fixed length established by the programmer. 
The logical records may be either fixed or 
variable in length and that size may be 
smaller, equal to, or larger than the 
physical block size. There are no required 
relationships between logical records and 
physical block sizes. Records of a spanned 
file may only be blocked when organization 
is sequential (QSAM). 

A spanned unblocked file may be 
described as a file composed of physical 
blocks each containing one logical record 
or one segment of a logical record. The 
logical records may be either fixed or 
variable in length. When the physical 
block contains one logical record, the 
length of the block is determined by the 

logical record size. When a logical record 
has to be segmented, the system always 
writes the largest physical block possible. 
The system segments the logical record when 
the entire logical record cannot fit on the 
track. 

Figure 44 is an illustration of blocked 
spanned records of SFILE. SFILE is 
described in the Data Division with the 
following file description entry: 

FD SFILE 
RECORD CONTAINS 250 CHARACTERS 
BLOCK CONTAINS 100 CHARACTERS 

Figure 44 also illustrates the concept 
of record segments. Note that the third 
-block contains the last 50 bytes of REC-l 
and the first 50 bytes of REC-2. Such 
portions of logical records are called 
record segments. It is therefore correct 
to say that the third block contains the 
last segment of REC-l and the first segment 
of REC-2. The first block contains the 
first segment of REC-l and the second block 
contains an intermediate segment of REC-l. 

S-MODE CAPABILITIES 

Formatting a file in the S-mode allows 
the user to make the most efficient use of 
external storage while organizing data 
files with logical record lengths most 
suited to his needs. 

1. Physical record lengths can be 
designated in such a manner as to make 
the most efficient use of track 
capacities on mass storage devices. 

2. The user is not required to adjust 
logical record lengths to maximum 
physical record lengths and their 
device-dependent variants when 
designing his data files. 

3. The user has greater flexibility in 
transferring logical records across 
DASD types. 

Spanned record processing will support 
the 2400 tape series, the 2311 and 2314 
disk storage devices, and the 2321 data 
cell drive. 

Record Formats 139 



r-----------------~---------------------------------------------------------------------, 
I I 
I <--4 bytes---> <--4 bytes--> <----------------Variable bytes------------------> I 
I r------T------T------T------T-------------------------------------------------, I 
I I LL I BB I 11 I bb I Data Record or Segment I I I L ______ ~ ______ i ______ i ______ ~-----------------________________________________ J I 

I "'" I 
I BDF SDF I 
I I L ________________ - ____________________________________ --___________ ---------____________ J 

Figure 43. Control Fields of an S-Mode Record 

r---------------------------------------------------------------------------------------, 
I I 
I <--------100 bytes-------> <--------100 bytes-------> <-50 bytes-> <-50 bytes-> I 
I r------------------------1 r------------------------, r-~--------T------------, I 
I I REC-1 I G I REC-1 I G I REC-1 I REC-2 I I I L ________________________ J L ________________________ J L ___________ ~ ____________ J I 

I 1st Block 2nd Block 3rd Block I 
I I L _______________________________________________________________________________________ J 

Figure 44. One Logical Record Spanning Physical Blocks 

SEQUENTIAL S-MODE FILES (QSAM) FOR TAPE OR 
MASS STORAGE DEVICES 

When the spanned format is used for QSAM 
files, the logical records may be either 
fixed or variable in length and are 
completely independent of physical record 
length. A logical record may span physical 
records. A physical record may contain one 
or more logical records and/or segments of 
logical records. 

Source Language .. Considerations 

The user specifies S-mode by describing 
the file with the following clauses in the 
file description (FD) entry of his COBOL 
program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-1 TO] 
integer-2 CHARACTERS 

• RECORDING MODE IS S 

The size of the physical record must be 
specified using the BLOCK CONTAINS clause 
with the CHARACTERS option. Any block size 
may be specified. Block size is 
independent of logical record size. 

140 

The size of the logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

Format S may be specified by the 
RECORDING MODE IS S clause. If this clause 
is omitted, the compiler will set the 
recording mode to S if the BLOCK CONTAINS 
inteter-2 CHARACTERS clause was specified 
and either of the following conditions 
exist: 

• Integer-2 is less than the largest 
fixed-length level-01 FD entry. 

• Integer-2 is less than the maximum 
length of a variable level-01 FD entry 
(i.e., an entry containing one or more 
OCCURS clauses with the DEPENDING ON 
option) • 

Except for the APPLY WRITE-ONLY, APPLY 
RECORD-OVERFLOW, WRITE BEFORE ADVANCING, 
WRITE AFTER ADVANCING, or WRITE AFTER 
POSITIONING clauses, all the options for a 
variable file apply to a spanned file. 



Processing Sequential S-Mode Files (QSAM) 

Suppose a file has the following file 
description entry: 

FD SPAN-FILE 
BLOCK CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS DATAREC. 

01 DATAREC. 
05 FIELD-A PIC X (100). 
05 FIELD-B PIC X (50). 

Figure 45 illustrates the first four 
blocks of· SPAN-FILE as they would appear on 
external storage devices (i.e., tape or 
mass storage) or in buffer areas of main 
storage. 

1. The RECORDING MODE clause is not 
specified. The compiler determines 
the recording mode to be S since the 
block size is less than the record 
size. 

2. The length of each physical block is 
100 bytes, as specified in the BLOCK 

CONTAINS clause. All required control 
fields, as well as data, must be 
contained within these 100 bytes. 

3. No provision is made for the control 
fields within the level-Ol entry 
DATAREC. 

The preceding discussion dealt with 
S-mode records which were larger than the 
physical blocks that contained them. It is 
also possible to have S-mode records which 
are equal to or smaller than the physical 
blocks that contain them. In such cases, 
the RECORDING MODE clause must specify S 
(if so desired) since the compiler cannot 
determine this by comparing block size and 
record size. 

One advangage of S-mode records over 
V-mode records is illustrated by a file 
with the following characteristics: 

1. RECORD CONTAINS 50 TO 150 CHARACTERS 

2. BLOCK CONTAINS 350 CHARACTERS 

3. The first five records written are 
150, 150, 150, 100, and 150 characters 
in length. 

r---------------------------------------------------------------------------------------------------------, 
4 4 92 4 4 58 4 30 

<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><---bytes---><-bytes-><--bytes---> 
'--T---T---T----T------------------------------, r---T---T---T----T-------------T---T----T-----------, 
ILL IBB III I bb I DATAREC (1) I L ___ ~ ___ ~ __ ~ ____ ~ ______________________________ J ILL IBB III I bb I DATAREC (1) III I bb IDATAREC (2) I L-__ ~ __ ~ ___ ~ ____ ~ ____________ ~ __ ~ ___ ~ __________ J 

1st Block 2nd Block 

4 4 92 4 4 28 4 60 
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><--bytes---><-bytes-><---bytes---->I 
r---T---T---T----T------------------------------, r---T---T---T----T-----------T---T----T-------------,I 
ILL IBB III I bb I DATAREC (2) I ILL IBB III I bb IPATAREC (2)111 I bb I DATAREC (3) II L ___ ~ ___ ~ __ ~ ____ ~ ______________________________ J L-__ ~ __ ~ ___ ~ ____ ~ __________ ~ __ ~ ___ ~ _____________ J I 

I 
3rd Block 4th Block I 

L _________________________________________________________________________________________________________ J 

Figure 45. First Four Blocks of SPAN-FILE 

Record Formats 141 



r----------------~-------------------------T---------------------------------~----------1 
I RECORDING MODE IS V I RECORDING MODE IS S I 
~------------------------------------------+--------------------------------------------~ 
I I I 
I I I 
I r-----T-----' r-----T-----' r-----' I r-----T-----T-----' r-----T-----T-----' I 
I I 150 I 150 I G I 150 I 100 I G I 150 I I I 150 I 150 I 50 I G I 100 I 100 I 150 I I I I.~.L~_J ~ L..:::.:.:::.:.:J : L_____ _ ____ J L ____ ... .L-----~-:;.:_..;_~ I 
I Rl R2 R3 R4 R5 I R1 R2 R3 R4 RS I 
I I I 
I I I 
~------------------------------------------.L----------__________________________________ ~ 
I~: The enclosed diagrams are for illustrative purposes only. Neither takes into I 
laccount the space required for control fields. I L __________________________________________________________________________ ~ ____________ J 

Figure 46. Advantage of S-Mode Records Over V-Mode Records 

For V-mode records, buffers are 
truncated if the next logical record is too 
large to be completely contained in the 
block (Figure 46). This results in more 
physical blocks and more inter-record gaps 
on the external storage device. 

~: For V-mode records, buffer 
truncation occurs: 

1. when the maximum level-Ol record is 
too large. 

2. if APPLY WRITE-ONLY or SAME RECORD 
AREA is specified and the actual 
logical record is too large to fit 
into the remainder of the buffer. 

For S-mode records, all blocks are 350 
bytes long and records that are too large 
to fit entirely into a block will be 
segmented. This results in more efficient 
use of external storage devices since the 
number of inter-record gaps are minimized 
(Figure 46). 

A second advangage of S-mode processing 
over that of V-mode is that the user is no 
longer limited to a record length that does 
not exceed the track of the mass storage 
device selected. Records may span tracks, 
cylinders, extents, and volumes. 

QSAM spanned records differ from other 
QSAM record formats because of an 
allocation of an area of main storage known 
as the "Logical Record Area." If logical 
records span physical blocks, COBOL will 
use this Logical Record Area to assemble 
complete logical records. If logical 
records do not span blocks (i.e., they are 
contained within a single physical block) 
the Logical Record Area is not used. 
Regardless, only complete logical records 
are made available to the user. Both READ 
and WRITE statements should be thought of 
as manipula t·ing complete logical records 
not record segments. 

142 

The allocation of a Logical Record Area 
may be a disadvantage to the COBOL user. 
Additional main storage, consisting of 36 
bytes + the maximum record length, will 
always be required. The Logical Record 
Area is discussed in detail in "Finding 
Data Records in an Abnormal Termination 
Dump. " 

DIRECTLY ORGANIZED S-MODE FILES (BDAM AND 
BSAM) 

When S-mode is used for directly 
organized files, only unblocked records are 
permitted. Logical records may be either 
fixed or variable in length. A logical 
record will span physical records if, and 
only if, it spans tracks. A physical 
record will contain only one logical record 
or a segment of a logical record. A track 
may contain a segment of a logical record, 
or segments of two logical records and/or 
whole logical records. Records may span 
tracks, cylinders, and extents, but not 
volumes. 

Source Language Considerations 

The user specifies S-mode by describing 
the file with the following clauses in the 
file description (FD) entry of his COBOL 
program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-1 TO] 
integer-2 CHARACTERS 

• RECORDING MODE IS S 



r---------------------------------------------------------------------------------------, 
sequential File 3 Direct File 

r-----T---------T-------------, r-----' r---------, r-------, 
I R1 I R2 I R3 I ••• 1st track ••• I R1 I G I R2 I G I R3 I L _____ ~ _________ ~ _____________ J L _____ J L _________ J L _______ J 

r-----------------------------, r-------------------------------, 
I R3 I ••• 2nd track ••• I R3 I L _____________________________ J L _______________________________ J 

r-----------T-----------------, r-----------------l r---------, 
I R3 I R4 I ••• 3rd track ••• I R3 I G I R4 I L ___________ ~ _________________ J L _________________ J L _________ J 

r-------, 
••• 4th track ••• I R4 I L _______ J 

L ______________________________________________________________________________________ _ 

Figure 47. Direct and Sequential Spanned Files on a Mass Storage Device 

The size of a logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

The spanned format may be specified by 
the RECORDING MODE IS S clause. If this 
clause is omitted, the compiler will set 
the recording mode to S if the BLOCK 
CONTAINS integer-2 CHARACTERS clause was 
specified and integer-2 is less than the 
greatest logical record size. This is the 
only use of the BLOCK CONTAINS clause. It 
is otherwise treated as comments. 

The physical block size is determined by 
either: 

1. the logical record length. 

2. the track capacity of the device being 
used. 

If, for example, the track capacity of a 
mass storage device is 3,625 characters, 
any record smaller than 3,625 characters 
may be written as a single physical block. 
If a logical record is greater than 3,625 
characters, the record is segmented. The 
first segment may. be contained in a 
physical block of up to 3,625 bytes, and 
the remaining segments must be contained in 
succeeding blocks. In other words, a 
logical record will span physical blocks 
if, and only if, it spans tracks. 

Figure 47 illustrates four 
variable-length records (R1, R2. R3, and 
R4) as they would appear in direct and 
sequential files on a mass storage device. 
In both cases, control fields have been 
omitted for illustrative purposes. For 
both files, assume: 

1. BLOCK CONTAINS 3625 CHARACTERS (track 
capacity = 3,625) 

2. RECORD CONTAINS 500 TO 5000 CHARACTERS 

In the sequential file,. each physical 
block is 3,625 bytes in length and is 
completely filled with logical records. 
The file consists of three physical blocks, 
occupies three tracks, and contains no 
inter-record gaps. 

In the direct file, the physical blocks 
vary in length. Each block contains only 
one logical record or one record segment. 
Logical record R3 spans physical blocks 
only because it spans tracks. The file 
consists of seven physical blocks, occupies 
more than three tracks, and contains three 
inter-record gaps. 

Processing Directly Organized S-Mode Files 
(BDAM and BSAM) 

When processing directly organized 
files, there are two advantages spanned 
format has over the other record formats: 

1. Logical record lengths may exceed the 
length restriction of the track 

Record Formats 143 



capacity of the mass storage device. 
If, for example, the track capacity of 
a mass storage device is 2,000 bytes, 
this does not represent the maximum 
length of the logical record that can 
be specified (even when the device 
does not have a Track Overflow 
feature) • 

Note: Even when the spanned format is 
used, the COBOL restriction on the 
length of logical records must be 
adhered to (i.e., a maximum length of 
32,767 characters). 

2. S-mode records give the user the same 
facility as the Track Overflow 
feature. If neither RECORDING MODE IS 
S nor APPLY RECORD-OVERFLOW is 
specified, only complete logical 
records can be written on any single 
track. This means that when a track 
has only 900 unoccupied bytes and a 
record of 1,000 bytes is to be added, 
it will be written on the next 
available track. This is inefficient, 
since a 900 byte segment could be 
added to the current track by means of 
either APPLY RECORD-OVERFLOW or 
RECORDING MODE IS S. 

Note: If a choice exists between 
Track Overflow and S-mode records, 
neither has any particular advantage 
over the other with regard to the 
efficient use of storage space. 

The disadvantage of BSAM and BDAM 
spanned records is similar to that 
mentioned for QSAM. A segment work area is 
always allocated which occupies additional 
main storage. 

Like QSAM, the processing of BSAM and 
BDAM spanned records relies on an 
interaction between buffers, segment work 
areas, and Logical Record Areas. For QSAM, 
input-output buffers are used as the 
segment work area and complete logical 
records are assembled in a Logical Record 
Area before being made available to the 
user if the record is segmented. If the 
record is not segmented, the logical record 
is made available to the user within the 
buffer unless the SAME AREA clause is 
specified. For BSAM and BDAM, input-output 
buffers are used as a Logical Record Area 
and a separate segment work area must be 
allocated. Segment work areas and Logical 
Record Areas are described fully in 
"Finding Data Records in an Abnormal 
Termination Dump." 

144 

OCCURS CLAUSE WITH THE DEPENDING ON OPTION 

If a record description contains an 
OCCURS CLAUSE WITH THE DEPENDING ON option, 
the record length is variable. This is 
true for records described in an FD as well 
as in the Working-Storage section. The 
previous sections discussed four different 
record formats. Three of them, V-mode, 
U-mode, and S-mode, may contain one or more 
OCCURS clauses with the DEPENDING ON 
option. 

The following section discusses some 
factors that affect the manipulation of 
records containing OCCURS clauses with the 
DEPENDING ON option. The text indicates 
whether the factors apply to the File (FD) 
or Working-Storage sections, or both. 

The compiler calculates the length of 
records containing an OCCURS clause with 
the DEPENDING ON option at two different 
times, as follows (the first applies to FD 
entries only: the second to both FD and 
Working-Storage entries): 

1. When a file is read and the object of 
the DEPENDING ON option is within the 
record. 

2. When the object of the DEPENDING ON 
option is changed as a result of a 
move to it or to a group that contains 
it. (The length is not calculated 
when a move is done to an item which 
redefines or renames it.) 

consider the following example: 

WORKING-STORAGE SECTION. 

77 CONTROL-l 
77 WORKAREA-l 

PIC 99. 
PIC 9(6)V99. 

01 SALARY-HISTORY. 
05 SALARY OCCURS 0 TO 10 TIMES 

DEPENDING 
ON CONTROL-l PIC 9(6)V99. 

The ·Procedure Division statement MOVE 5 
TO CONTROL-l will cause a recalculation of 
the length of SALARY-HISTORY. MOVE SALARY 
(5) TOWORKAREA-l will not cause the length 
to be recalculated. 

The compiler permits the occurrence of 
more than one level-Ol record, containing 
the OCCURS clause with the DEPENDING ON 
option, in the same FD entry (Figure 48). 



r-------------------------------------------------------------------------------------~-1 
FD INPUT-FILE 

DATA RECORDS ARE RECORD-l RECORD-2 RECORD-3. 

01 RECORD-i. 
02 CONTROL-l PIC 99. 
02 FIELD-l OCCURS o TO 10 TIMES DEPENDING ON CONTROL-l PIC 9(5). 

01 RECORD-2. 
02 CONTROL-2 PIC 99. 
02 FIELD-2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9(4). 

01 RECORD-3. 
02 FILLER PIC XX. 
02 CONTROL-3 PIC 99. 
02 FIELD-3 OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-3 PIC X(4). 

Figure 48. Calculating Record Lengths When Using the OCCURS Clause with the DEPENDING ON 
Option 

If the BLOCK CONTAINS clause is omitted, 
the buffer size is calculated from the 
longest level-Ol record description entry. 
In Figure 48, the buffer size is determined 
by the description of RECORD-l (RECORD-l 
need not be the first record description 
under the FD). 

During the execution of a READ 
statement, the length of each level-Ol 
record description entry in the FD will be 
calculated (Figure 48). The length of the 
variable portions of each record will be 
the product of the numeric value contained 
in the object of the DEPENDING ON option 
and the length of the subject of the OCCURS 
clause. In Figure 48, the length of 
FIELD-l is calculated by multiplying the 
contents of CONTROL-l by the length of 
FIELD-li the length of FIELD-2, by the 
product of the contents of CONTROL-2 and 
the length of FIELD-2i the length of 
FIELD-3 by the contents of CONTROL-3 and 
the length of FIELD-3. 

Since the execution of a READ statement 
makes available only one record type (i.e., 
RECORD-l type, RECORD-2 type, or RECORD-3 
type), two of the three record descriptions 
in Figure 48 will be inappropriate. In 
such cases, if the contents of the object 
of the DEPENDING ON option does not conform 
to its picture, the length of the 
corresponding record will not be 
calculated. For the contents of an item to 
conform to its picture: 

• An item described as USAGE DISPLAY must 
contain decimal data. 

• An item described as USAGE 
COMPUTATIONAL-3 must contain internal 
decimal data. 

• An item described as USAGE 
COMPUTATIONAL must contain binary data. 

The following example illustrates the 
length calculations made by the system when 
a READ statement is executed: 

FD 

01 RECORD-l. 
05 A PIC 99. 
05 B PIC 99. 
05 C PIC 99 OCCURS 5 TIMES 

DEPENDING ON A. 

01 RECORD-2. 
05 D PIC XX. 
05 EPIC 99. 
05 F PIC 99. 
05 G PIC 99 OCCURS 5 TIMES 

DEPENDING ON F. 

WORKING-STORAGE SECTION. 

01 TABLE-3. 
05 H OCCURS 10 TIMES DEPENDING ON B. 

01 TABLE-4. 
05 I OCCURS 10 TIMES DEPENDING ON E. 

Record Formats 145 



When a record is read, lengths are 
determined as follows: 

1. The length of RECORD-l is calculated 
using the contents of field A. 

2. The length of RECORD-2 is calculated 
using the contents of field F. 

3. The length of TABLE-3 is calculated 
using the contents of field B. 

4. The length of TABLE-4 is calculated 
using the contents of field E. 

The user should be aware of several 
additional factors that affect the 
successful manipulation of variable-length 
records. The following example illustrates 
a group item (i.e., REC-l) whose 
subordinate items contain an OCCURS clause 
with the DEPENDING ON option and the object 
of that DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 REC-l. 

05 FIELD-l 
05 FIELD-2 OCCURS 5 

FIELD-l 

01 REC-2. 
05 REC-2-DATA 

PIC 9. 
TIMES DEPENDING ON 
PIC XeS). 

PIC X(SO). 

The results of executing a MOVE to the 
group item REC-l will be affected by the 
following: 

• The length of REC-l may have been 
calculated at some time prior to the 
execution of this MOVE statement. The 
user should be sure that the current 
length of REC-l is the desired one. 

• The length of REC-l may never have been 
calculated at all. In this case, the 
result of the move will be 
unpredictable. 

• After the move, since the contents of 
FIELD-l have been changed, an attempt 
will be made to recalculate the length 
of REC-l. This recalculation, however, 

146 

will be made only if the new contents 
of FIELD-l conform to its picture. In 
other words, if FIELD-l does not 
contain an external decimal item, the 
length of REC-l will not be 
recalculated. 

Note: According to the COBOL description, 
FIELD-2 can occur a maximum of five times. 
If, however, FIELD-l contains an external 
decimal item whose value exceeds five, the 
length of REC-l will still be calculated. 
One possible consequence of this invalid 
c~lculation will be encountered if the user 
attempts to initialize REC-l by moving 
zeros or spaces to it. This initialization 
would inadvertently delete part of the 
adjacent data stored in REC-2. 

The following example applies to 
updating a record containing an OCCURS 
clause with the DEPENDING ON opti.on and at 
least one other subsequent entry. In this 
case, the subsequent entry is another 
OCCURS clause with the DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 VARIABLE-REC. 

05 FIELD-A PIC X(10). 
05 CONTROL-l PIC 99. 
05 CONTROL-2 PIC 99. 
05 VARY-FIELD-l OCCURS 10 TIMES 

DEPENDING ON CONTROL-l PIC XeS). 
05 VARY-FIELD-2 OCCURS 10 TIMES 

DEPENDING ON CONTROL-2 PIC X(9). 

01 STORE-VARY-FIELD-2. 
05 VARY-FLD-2 OCCURS 10 TIMES 

DEPENDING ON CONTROL-2 PIC X(9). 

Assume that CONTROL-l contains the value 
5 and VARY-FIELD-l contains 5 entries. 

In order to add a sixth field to 
VARY-FIELD-l, the following steps are 
required: 

MOVE VARY-FIELD-2 TO STORE-VARY-FIELD-2. 
ADD 1 TO CONTROL-l. 
MOVE 'additional field' TO 

VARY-FIELD-l <CONTROL-l). 
MOVE STORE-VARY-FIELD-2 TO VARY-FIELD-2. 



The compiler, linkage editor, COBOL load 
module, and other system components can 
produce output in the form of printed 
listings, punched card decks, diagnostic or 
informative messages, and data sets 
directed to tape or mass storage devices. 
This chapter describes the output listings 
that can be used to document and debug 
programs and the format of the output 
modules. The same COBOL program is used 
for each example. "Appendix A: Sample 
Program output" shows the output formats in 
the context of a complete listing generated 
by a sample program. 

COMPILER OUTPUT 

The output of the compilation job step 
may include: 

• A printed listing of the job control 
statements 

• Device allocation messages from the job 
scheduler 

• A printed listing of the statements 
contained in the source module 

• A glossary of compiler generated 
information about data 

• A printed listing of the object code 

• Compiler diagnostic messages 

• System messages 

• Disposition messages from the job 
scheduler 

• An object module 

• A cross reference listing 

• A condensed listing containing source 
card numbers and the location of the 
generated instruction for each verb 

• Compiler statistics 

Diagnostic messages associated with the 
compilation of the source program are 
automatically generated as output. The 
other forms of output may be requested in 
the PARM parameter in the EXEC statement. 
The level of diagnostic messages printed 
depends upon the FLAGW or FLAGE options. 

All output to be listed is written on 
the device specified by the SYSPRINT DD 
statement. Line spacing of the source 
listing and the number of lines per page 
can be controlled by the SPACEn and LINECNT 
options. 

Figure 49 contains a portion of the 
compiler output listing shown in "Appendix 
A: Sample Program Output." Each type of 
output is numbered, and each format within 
each type is lettered. The text following 
Figure 49 is an explanation of the 
illustration. 

(IITEST JOB NY1609C101,'SCHOEN 1',MSGIEVFL=1,CIASS=C 
)IIJOBL1E tr rSN=PFOtTIST,[1SP=SHF 

IISTEP1 EXEC PGM=1KPCEIOO,PAP~='r~AP,PMAP,XREF,OUOTE~,~EGION=86K 
) IISYSUT1 DD ~SNA~E=&&UT1,UN1T=SYStA,SFACE=(~FK,(100,10» 
(1ISYSUT2 DD DSNAME=g&UT2,UN1~=SY~rA,SFACE=(TFK, (100,10» 
IISYSU~3 DD DSNAME=&&UT3,UN1T=SYSrA,SPACE=(TPK,(100,10» 
IISYSUTQ DD DSNAME=&&UT4,UN1T=SYSrA,SPACE=(~FK,(100,10» 
IISYSL1N 00 DSNAME=&&FNCH,UN1T=SYSDA,SPACE=(TPK, (100,10», 
II 01SP= (NEW,PASS) 
IISYSP~1N~ DO SlSOU~=A 

IISYS1N DD * 

{ 

1EP23EI ALLOC. FOR ~ES'I 
1EF2371 234 ALLCCA~ED ~O 

1EF2371 190 J.LLOCA~Er TO 
1PF2371 230 ALLOCA~ED ~O 
1EF2371 190 ALLOCATED TO 
1EF2371 235 ALLOCATED ~O 
1EF2371 190 ALLOCA~ID TO 
1EF2371 OOC ALLOCA~ED TO 

STEP1 
JOBI1B 
SYSUT1 
SYSUT2 
SYSO'I3 
SYSU'!4 
SYSIIN 
SYS1N 

Figure 49. Examples of Compiler Output (Part 1 of 3) 

x 

Output 147 



00018 100180 DATA DIVISICN. 
00019 100190 FILE SECTION. 
00020 100200 FD FIlE-1 
00021 100210 LABEL RECORDS ARE eMITTED 
00022 100220 BICC~ CCNTAINS 100 CEARACTERS 
00023 100225 RECORD CON1AINS 20 CHARAC1ER9 
00024 100230 RECCBDING MetE IS F 
00025 100240 DATA RECORD IS RECORD-1. 
00026 100250 01 FEc:CFI:-1 .• 

CD 00027 100260 02 FIELD-A PICTURE IS X(20). 
00028 100270 FD FILE-2 

00074 100730 STEP-6. READ FILE-2 RECORD INTO WCEK-RECORD AT END GO TO STEP-8. 
00075 100740 STEP-7. IF NC-CF-DEPENDEN1S IS ECUAL TO "0" MOVE HZ" TO 
00076 100750 NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-FECORD. GC TO 
00077 100760 STEF-6. 
00078 10077C STEP-8. CLOSE FILE-2. 
00079 100780 STOP RUN. 

A B C 0 E F 
LVL SOUBCE NAME BASE DISPL I NTRNI NAME f I NTHNL NA" DNM=1-148 FD FILE-1 DCE=O 1 DNM=1-148 o DNM=1-167 01 HCOED-1 BL=1 000 DNM=1-167 

DNM=1-188 02 FIELD-A BL=1 000 DNM=1-188 
DNM=1-205 FD FILE-2 
DNM=1-224 01 FFCOED-2 

A 
MEMORY MAP 

TGT 

SAVE AREA 
SWITCH 
TALLY 
SORT SAVE 
ENTRY-SAVE 

B 
LITERAL FOOL (HEX) 

004A8 (LIT+O) 
004CO (LIT+24) 
004D8 (LIT+48) 

004805EF 
E~CH 1103 
40200001 

DISPLAY LITERALS (ECD) 

00230 

00230 
00278 
0027C 
00280 
00284 

00228000 
40D6D7C5 
cooooce1 

004EC (lTL+68) 'WCRK-EECCR1:' 

C 
PGT 

OVERFLCW CElLS 
VIRTUAL CELLS 
PROCEDURE NAME CELLS 
GENERATED NAME CELLS 

~ 
REGISTER ASSIGNMENT 

CD REG 6 BL =3 
REG 7 BL =1 
REG 8 BL =2 

A 8 
55 *BEGIN 

c 

001158 

001158 
001158 
0011611 
001178 

D 

C9D2C6F9 
D540C6D6 
00114800 

E 

DCE=02 
BL=2 

F9F9C940 
D9400000 
FOE90000 

DNM=1-205 
000 DNM=1-224 

E4D5E2E4 
00000000 
COOOOOOO 

F 

C3C3C5E2 
00000200 

0004F8 
0004F8 
0004FC 
0004FE 
000501 
0005C8 

S1AFT EQU * 

55 
58 

REAt! 
*STEP-1 

00050C 
000510 
000512 
000515 

58 FO C 004 
O~ 1F 
OC0140 
04F5F5404040 
96 40 D 048 

5~ FO C 004 
05 11 
000140 
04F5F8404040 

L 
EALR 
DC 
DC 
C1 

I 
EAIR 
DC 
DC 

15,004 (0,12) 
1,15 
X'000140' 
X'04F5F5404040' 
048 (13) , X'40' 

15,004(0,12) 
1,15 
X'000140' 
X'04F5F8404040' 

Figure 49. Examples of Compiler Output (Part 2 of 3) 

148 

G H 
DEFINITION US AGE F 0 Q M 

QSAM F 
1:S OCL20 GROUP 
DS 20C DISF 

QSAM F 
DS OCL20 GROUP 

G 

V (ILBOOSPO) 

SWT+O 

V (IlBODSPO) 



r.'\ {* S'IATISTICS* SOURCE HCCFtS 79 rATA CIVISION STATEMENTS = 22 F~OCEDURI CIVISION STATF.KENTS = 21 \!J *OPTIONS IN EFFECT* SIZE = 819~0 EUF 2768 LINECN'I = 57 SPACE1, FLAG~, SEt, SCuqCF 
*OFTICNS IN EFFECT* DKAP, PI'lAP, NCClIST, NCSUPI'IAF, XFEF, LCAD, NOtECK, QUOTE, NOTRUNC, LIB, VERB,ZWB 

CRCSS-REFEFENCE [TCTICNAFY 

DATA NAMES DEFN REFE.!lENCE 

FILE-1 
RECORD-1 
FTLE-2 
PECORt-2 

00016 
00C26 
00017 
00034 

ooose ooose 00066 00066 00071 00071 
OOC66 
00071 00071 00074 00074 0007e CC078 
C0074 

B C o 
ERROR MESSAGE 

\ A , 
® I CARD 

IKF1100l-1i 1 SEQUENCE ERROF TN SCUFCE PROGRAM. 

(IEF2851 

® )IEP2851 
11 lHF2851 

, IEF285I 

PRCD'IEST 
VOL SIR NOS= OSAS • 
SYS7C027.TC919~6.RP001.'IES'I.UT1 
VOL SFF NOS= 2~1'00. 

PASSED 

DHET:-:n 

Figure 49. Examples .of Compiler Output (Part 3 of 3) 

1. Listing of. job control.statements 
associated.with.this job step. These 
statements are listed because 
MSGLEVEL=l is specified in the JOB 
statement. 

2. Allocation .. messages from the job 
scheduler. These messages provide 
information about the deYi~e 
allocation for the data sets in the 
job step. They appear after the job 
control statements in the compile, 
linkage edit, and execution "job steps. 
For example: 

IEF237I 190 ALLOCATED TO SYSUT1 

indicates that the data set for SYSUT1 
has been assigned to the device 190. 

3. Source module listing. The statements 
in the source module are listed 
exactly as submitted except that a 
compiler-generated card number is 
listed in the first column of each 
line. This number is referred to in 
diagnostic messages, on the XREF 
listing, and in the object code 
listing. The source module is not 
listed when the NOSOURCE opt~on is 
specified. 

The following notations mayap;pear (".1 
the listing: 

C Denotes that the statement was 
inserted with a COpy statement. 
statements copied will not be listed 
if SUPPRESS is indicated. 

•• 

I 

Denotes that the caJ;d is out of 
sequence. 

Denotes that the card was inserted 
with an INSERT card. 

If DATE-COMPILED is specified in the 
Identification Division, any sentences in 
that paragraph are replaced in the listing 
by the date of compilation in the follq)wi~g 
format: 

DATE-COMPILED. moath day year 

4. Glossarv: The glossary is list.eel ",ben 
the DMAP option is specified. rne 
glossary contains informat.iona,~o1,lot 
names in the COBOL source pregJ:am. 

A and F. The internal name' 9&nK"Cl:teci 
by the compiler. This ilame is 
used in the compil~~ object code 
listing to represent tpe name used 
in the source program. It is 
repeated for readability_ 

Output 149 



Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038 

150 

B. A normalized level humber. This 
level number is determined by the 
compiler as follows: (1) the 
first level number of any 
hierarchy is always 01, and 
increments for other levels are 
always by one; (2) only level 
numbers 03 through 49 are affected 
-- level numbers 66, 77, as well 
as 88 and FD, SD, and RD 
indicators are not changed. 

C. The data name that is used in the 
source module. 

Note that the following Report Writer 
internally generated data-names can 
appear under the SOURCE NAME column: 

CTL.LVL -Used to coordinate control 
break activities. 

GRP.IND -Used by coding generated for 
GROUP INDICATE clause. 

TER.COD -Used by coding generated for 
TERMINATE statement. 

FRS.GEN -Used by coding generated for 
GENERATE statement. 

-nnnn -Generated report record 
associated with the file 
on which the report is to 
be printed. 

RPT.RCD -Build area for print record 
CTL.CHR -First or second position of 

RPT.RCD. Used for 
carriage control 
character. 

RPT.LIN ~Beginning of actual 
information that will &e 
displayed. Second ~r 
third position of RPT.RCD. 

CODE-CELL-Used to· hold code specified 
in CODE clause. 

E.nnnn -Name generated from, COLUMN 
clause in a level-02 
statement. 

S.nnnn -Used for elementary level 
with SUM clause, but not 
with data-name. 

N.nnnn -Used to save the total 
number of lines used bya 
report group when relative 
line numbering is 
specified. 

D and E. For data names, these 
columns contain information about 
the address in the form of a base 
and displacement. For file names, 
the column-contains information 
about the associated DCB and DECB, 
if any •.. 

G. This column defines storage for 
each data item. It is represented 
in assembler-like terminology. 
Table 20 refers to information in 
this column. 

H. Usage of the data name. For FD 
entries, the file processing 
technique is identified (e.g. 
QSAM, BDAM, etc.). For group 
items, GROUP is identified. 'For 
elementary items, the information 
in its USAGE clause is identified, 
or the USAGE that was specified on 
its group. 

I. A letter under column: 

R-Indicates that the data-name 
redefines" another data-name. 

a-Indicates that an OCCURS clause 
has been specified for that 
data-name. 

Q-Indicates that the data-name is 
the object or contains the 
object of the DEPENDING ON 
option of the OCCURS clause. 

M-IRdicates that the format of the 
records of the file is: 

F = fixed 
V ::: variable 
U undefined 
S spanned 

5. Glob.l Tables and Literal Poel: The 
global table is listed when the PMAP 
option is specified unless SUPMAP is 
also specified and an E-Ievel 
diagnostic message is" generated. A 
gl00al table contains easily 
addressable information needed by the 
"object program for execution. For 
example, in the Procedure Division 
source coding (3), the address of the 
first instruction under STEP ... 6, 
namely: 

READ FILE-b. 

would be found in the PROCEDURE NAME 
CELLS entry of the Program Global 
Table (PGT). 

A. Task Global Table (TGT). This 
table consists of switches, 
addresses, and work areas whose 
information changes durin~ 
execution of the program. 

B. Literal Pool. The lit.eral pool 
lists the collection of the 
literals in the program, ~ith 
duplications eliminated. These 
literals include those specified 
by the programmer (e.g., MOVE 
"ABC" TO DATA-NAME) and those 
generated by the compiler (e.g., 
to align decimal points in 
arithmetic computation). The 
literals are divided into two 
groups: those that are referred 
to by instructions (marked 
"LITERAL POOL") and those that are 



Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038 

referred to by the calling 
sequences to object time 
subroutines (marked "DISPLAY 
LITERALS"). 

C. Program Global Table (PGT). This 
table contains the remaining 
addresses and the literals used by 
the object program. 

6. Register Assignment: This lists the 
register assigned to each base locator 
in the object program. 

7. Object Code.Listing: The object code 
listing is produced when the PMAP 
option is specified unless SUPMAP is 
also specified and an E-Ievel error is 
encountered. The actual object code 
listing contains: 

A. The compiler-generated card 
number. The number refers to the 
COBOL statement in the source 
module that contains the verb 
which is listed under column B. 

B. The COBOL procedure~name and the 
COBOL verb. The procedure-name is 
indicated by an asterisk. 

The statement within which the 
COBOL verb appears determines the 
information under columns C, D, F, 
and G. 

C. The relative location, in 
hexadecimal notation, of the 
object code instruction in the 
module. 

D. The actual object code instruction 
in hexadecimal notation. 

E. The procedure-name number. A 
number is assigned only to those 
procedure-names to which reference 
is made in other Procedure 
Division statements. 

F. The object code instruction in the 
form that closely resembles 
assembler language (displacements 
are in hexadecimal notation). 

G. Compiler-generated information 
about the operands of the 
generated instruction. This 
includes names and relative 
locations of literals. Table 21 
refers to information in this 
column. 

Note: The programmer can produce a 
condensed listing by specifying CLIS~ 
as an option in place of MAP or PMAP. 
The CLIST option produces only the 

54 
51 
61 

source card number, the EBCDIC 
representation of the verb-name if the 
VERB option is in effect, and the 
location of the first generated 
instruction, as follows: 

READY 
MOVE 
ADD 

000380 
0003B8 
000450 

51 
61 
61 

OPEN 
ADD 
MOVE 

000394 
000444 
00045C 

8. Statistics: The compiler statistics 
list the options in effect for this 
run and the number of Data Division 
and Procedure Division statements 
specified. Each level number is 
counted as one statement in the Data 
Division. Each verb is counted as one 
statement in the Procedure Division. 

9. Cross Reference Dictionary: The XREF 
dictionary is produced when the XREF 
option is specified. It consists of 
two parts: 

A. The XREF dictionary for data names 
followed by the generated number 
of the card on which the statement 
begins. For condition names the 
data name of the conditional 
variable appears in the XREF 
dictionary. 

B. The XREF dictionary for procedure 
names followed by the generated 
number of the card on which the 
statement begins. 

All the names appear in the order in 
which they are defined in the source 
program. The number of references 
appearing for a given name is based on 
the number of times the name °is 
referred to in the generated code. 

10. Diagnostic messages: The diagnostic 
messages associated with the 
compilation are always listed. The 
format of the diagnostic message is: 

A. Compiler-generated line humber. 
This is the number of a line in 
the source module related to the 
error. 

B. Message identification. The 
message identification for COBOL 
compiler diagnostic messages 
always begins with the symbols 
IKF. 

Output 151 



152 

C. severity level. There are four 
severity levels as follows: 

W Warning -- This severity level 
indicates that an error was 
made in the source program .• 
However, it is not serious 
enough to ,hinder the execution 
of the program. These warning 
messages are listed only if 
FLAGW is specified. 

C Conditional -- This severity 
level indicates that an error 
was made but the compiler makes 
an assumption, which in some 
cases corrects the error. The 
statement containing the error 
is retained. Execution can be 
attempted for its debugging 
value. 

E Error -- This severity level 
indicates that a serious error 
has been detected. Usually the 
compiler makes no corrective 
assumption. The statement or 
operand containing the error is 
dropped. Execution of the 
program should not be 
attempted. 

D Disaster -- This severity level 
indicates that a serious error 
was made. Compilation is not 
completed. Results are 
unpredictable. 

There is a correlation between 
severity level and the return 
codes referred to by the COND 
parameter. For example, a 
compilation in which aD-level 
error is detected will generate a 
return code of 16. 

D. Message text. The text identifies 
the condition that caused the 
error and indicates the action 
taken by the compiler. 

Since Report Writer generates a 
number of internal data items and 
procedural statements, some error 
messages may reflect internal 
names. In cases where the error 
manifests itself mainly in these 
generated routines, the error 
messages may indicate the card 
number of the RD entry for the 
report under consideration. In 
addition, there are errors that 
may indicate the card number of 
the card upon which the statement 
containing the error ends rather 
than the card upon which the error 
occurred. Messages for errors in 
the files refer to the card number 
of the associated SELECT clause. 

Internal name formats for 
Report Writer are discussed in the 
"Glossary." 

A complete list of compiler 
diagnostic messages is contained 
in "Appendix J: Diagnostic 
Messages." Multiple console 
support considerations for console 
messages are discussed there also. 

11. Disposition messaqes from the job 
scheduler: These messages contain 
information about the disposition of 
the data sets, including volume serial 
numbers of volumes in which the data 
sets resides. 



Table 20. Glossary Definition and Usage 
r-----------------------------T--------------------------T------------------------------, 
I Type I Definition:L I Usage I 
~-----------------------------+--------------------------+------------------------------~ 

Group Fixed Length DS OCLN I GROUP 
Alphabetic DS NC I DISP 
Alphanumeric DS NC I DISP 
Alphanumeric Edited DS NC I AN- EDIT 
Group Variable Length DS VLI=N I GROUP 
Numeric edited DS NC I NM-EDIT 
Sterling Report DS NC I RPT-ST 
External Decimal DS NC I DISP-NM 
External Floating Point DS NC I DISP-FP 
Internal Floating Point DS lF2 or 4C I COMP-l 

DS lD2 or BC I COMP-2 
Binary DS lH2,lF2,2F2,2C,4C,SCI COMP 
Internal Decimal DS NP I COMP- 3 
Sterling Non-Report DS NC 1 DISP-ST 
Index-Name BLANK I INDEX-NAME 
File (FD) BLANK I FILE PROCESSING TECHNIQUE 
Condition (SS) BLANK I BLANK 
Report Definition (RD) BLANK I BLANK 
Sort Definition (SD) BLANK I BLANK 

~-----------------------------~--------------------------~--------------------~---------~ 
I:LIn this column, N = size in bytes, except in group variable length where it is a I 
Ivariable-length cell number. I 
121f the SYNCHRONIZED clause appears, these fields are used. I L _______________________________________________________________________________________ J 

OBJECT MODULE 

The object module contains the external 
symbol dictionary, the text of the program, 
and the relocation dictionary. It is 
followed by an END statement that marks the 
end of the module. For more detailed 
information about the external symbol 
dictionary, text, and relocation dictionary 
see the publication IBM System/360 
Operating system: Linkage Editor and 
Loader. 

An object module deck is punched if the 
DECK option is specified unless SUPMAP is 
specified and an E-Ievel diagnostic message 
is generated, and if a SYSPUNCH DD 
statement is included. An object module is 
written in an output volume if the LOAD 
option is specified unless SUPMAP is 
specified and an E-Ievel diagnostic message 
is generated, and if a SYSLIN DD statement 
is included. 

LINKAGE EDITOR OUTPUT 

The output of the linkage editor job 
step may include: 

• A printed listing of the job control 
statements 

• A map of the load module after it has 
been processed by the linkage editor 

• A cross reference list 

• Informative messages 

• Diagnostic messages 

• Disposition messages 

• A listing of the linkage editor control 
statements 

• A load module that must be assigned to 
a library 

output 153 



Table 21. Symbols Used in the Listing and Glossary to Define Compiler-Generated 
Information 

r--------------------------T----------------------~-------------------------------------, 
I Symbol I Definition I 
~--------------------------+------------------------------------------------------------~ 

DNM I Source Data Name 
SAV I Save Area Cell 
SAV2 I Input/Output Error Save Cell 
SAV3 OPEN Parameter 
SWT Switch Cell 
TLY Tally Cell 
WC Working Cell 
TS Temporary Storage Cell 
TS2 Temporary Storage (Non-Arithmetic) 
TS3 Temporary Storage (Synchronization) 
TS4 Temporary Storage (Table-Handling) 
VLC Variable Length Cell 
SBL Secondary Base Locator 
BL Base Locator 
BLL Base Locator for Linkage Section 
ON On Counter 
PFM Perform Counter 
PSV Perform Save 
VN Variable Procedure Name 
DEC DECB Address 
SBS Subscript Address 
XSW Exhibit Switch 
XSA Exhibit Save Area 
PRM Parameter 
PN Source Procedure Name 
GN Generated Procedure Name 
DCB DCB Address 
VNI Variable Name Initialization 
LTL Literal 
INX Index Cell 
V (BCDNAME) Virtual 
RSV Report Save Area 
SSV Sort Save Area 
CKP Checkpoint Counter L __________________________ ~ ____________________________________________________________ J 

154 



'PGI!=IEIIL, PAl,K=' XREF' , REGICN=9611 

t
/ISTEP2 EXEC 
IISISUT1 DD CD IISISLKOD DD 
II 

DS NAI!E=&& U'I 1, UNl'I=SI SEA, SPACE= ('IBK, (100,10) ) 
DSNA!E=&&GJCB(GO) .UNI'I=SYStA.SF1CE=(TRK,(100.10,1». 
DISP= (NEil, PASS) 

x 

{

IEF2361 ALLOC. FCR 'lEST S'IEP2 Ii' IEF2371 23q ALLOCA'I!D 'IO JCELIB 
\!J IEl237I 190 ALLOCA'IEI TO SlSUTl 

IEl237I 230 ALLOCA'IED 'IO SlSlKOD 

(;\ {FSB-LEVEL LINKAGE EDI'IOR OPTIONS SPECIFIED IREF o Vl.RIABLE OPTIONS USH - SIZE=(153600.51200) DEFAULT CPTICN(~ USED 

CROSS REFERENCE TABLE 
A B 

CONTROL SECTION ENTRY 

CD NAKE ORIGIN LENGTH NAKE LOCATION NAME LOCATION NAME LOCATION· NAME LOCATION 

TESTRUN 00 SSC 
ILBODSFO* 890 691 
ILBOSTPO* F30 l1C 

ILEOSTPl 1016 PDTSZE 10llB 

01 A B C 
LOCATION REFERS TO SYMBOL IN CONTROL SICTION 

1158 ILEOS'IPO IlBCSHO 

LOCATION REFERS TO SYMBCL IN CONTROL SECTION 

ILBODSPO ILBODSPO 
Q60 ILECSTPl IlECSTPO 

®{ C ENTRY AI:tU:SS 00 
0 TOTAL LENGTH 1050 

****GO tOES NOT EXIS'I EO'I HAS EEEN ADDED TO DA'I1 SET 

! IEF285I 
fj\ IEF2851 
\!.J IEl285I 

IEF285I 

PROD'IEST FASSED 
VOL SER NOS= USAS • 
SYS10021.TC91926.RP001.TES'I.OTl 
VOL SEF NOS= 231100. 

D:ElETED 

Figure 50. Linkage Editor Output Showing Module Map and Cross Reference List 

Any diagnostic messages or informative 
messages associated with the linkage editor 
are automatically generated as output. The 
other forms of output may be requested by 
the PARM parameter in the EXEC statement. 
All output to be listed is written in the 
data set specified by the SYSPRINT DD 
statement. 

Figure 50 is an example of linkage 
editor output listing. It shows the job 
control statements, informative messages, 
and module map. The different types of 
output are numbered and each type to be 
explained is lettered. The text following 
Figure 50 is an explanation of the 
illustration. 

Output 155 



1. The job control statements. These 
statements are listed because 
MSGLEVEL=l is specified on the JOB 
statement for this job, shown in 
Figure 49. 

2. Allocation messages from the job 
scheduler. These messages provide 
information about the device 
allocation for the data sets in the 
job step. For example, the message 

IEF2371 190 ALLOCATED TO SYSUT1 

indicates that the data set for SYSUT1 
has been assigned to the device 190. 

3. Linkage editor informative message. 
This message lists the PARM options 
that were specified. 

4. Linkage editor informative message. 
This is a disposition message 
describing the disposition of the load 
module. 

A. Name of the load module specified 
in the DSNAME parameter of the 
SYSLMOD DD statement 

B. Text of message 

5. Module map. The module map is listed 
when either the XREF or the MAP option 
is specified in linkage editor 
processing. The module map shows all 
control sections in the output module 
and all entry names in each control 
section. The control sections are 
arranged in ascending order according 
to their assigned origins. All entry 
names are listed below the control 
section in which they are defined. 
Each COBOL program is a control 
section, and any COBOL library 
subroutine is a separate control 
section (except as noted under 
segmentation) • 

156 

A. Control section. Under this 
heading the name, origin, and 
length of each control section is 
listed. 
Name. The name of the control 
section. This name is the 
PROGRAM-ID name in the main COBOL 
program or a called program. Each 
control section that is obtained 
from a library by an automatic 
library call is indicated by an 
asterisk. 
Origin. The relative origin in 
hexadecimal notation. 
Length. The number of bytes in 

each control section in 
hexadecimal notation. 

B. Entry. The entry names within 
each control section and their 
relative location. A ca·lled 
program may have more than one 
entry point. For a called COBOL 
program, the entry points are the 
same as the names specified by the 
ENTRY statements in the source 
program. 

C. Entry address. The relative 
address of the instruction with 
which processing of the module 
begins. It will always be INIT1 
if the COBOL program is the main 
program of the load module. 

D. Total length. The total number of 
bytes, in hexadecimal notation, of 
the load module. It is the sum of 
the lengths of all control 
sections. 

6. Cross reference list. The cross 
reference list, as well as a module 
map, is listed if the XREF option is 
specified. The MAP and XREF options 
should not be specified together. The 
cross reference list provides the 
following information: 

A. Location. The relative location 
in the program where another 
program is called. 

B. Symbol reference. The name of the 
entry point of the called program. 

C. In control section. The control 
section that contains the entry 
point. 

For example, 460 is the location where 
another program is called. ILBOSTP1 
is the entry point of the called 
program. ILBOSTPO is the control 
section that contains the entry point, 
ILBOSTP1. 

If XREF is specified, the cross 
reference list appears before the 
Entry Address. 

7. Q!sposi~!Q!Lmes§~L~!:Qm the_iob 
scheduler. These messages contain 
information about the disposition of 
the data sets. 



Comments on the Module Map and Cross 
Reference List 

The severity of linkage editor 
diagnostic messages may affect the 
production of the module map and the cross 
reference list. 

since various processing options will 
affect the structure of the load module, 
the text of the module map and cross 
reference list will sometimes provide 
additional information. For example, the 
load module may have an overlay structure. 
In this case, a module map will be listed 
for each segment in the overlay structure. 
The cross reference list is the same as 
that previously discussed, except that 
segment numbers also are listed to indicate 
the segment in which each symbol appears. 

Listing the Linkage Editor Control 
statements: If t.he LIST option is 
specified, linkage editor control 
statements, such as OVERLAY and LIBRARY, 
are listed. 

Linkage Editor Messages 

The linkage editor may generate 
informative or diagnostic messages. A 
complete list of these messages is included 
in the publication IBM System/360 Operating 
System Linkage Editor and Loader. 

LOADER OUTPUT 

Loader output consists of a collection 
of diagnostic and error messages, and, if 
MAP is specified, a storage map of the 
loaded prqgram. The output data set, 
SYSLOUT is sequential and blocked as 
specified by the user in the DCB. For 
better performance, the user can also 
specify the number of buffers to be 
allocated. 

Diagnostic messages include a loader 
heading and a list of options requested by 
the user. The error messages, identifying 
the source of error, will be written when 
the error is detected. After processing is 
complete, an explanation of the error will 
be written. A complete list of loader 
diagnostic messages is found in the 
publication IBM System/360 Operating 
system: Linkage Editor and Loader. 

The map includes the name and absolute 
address for each control section and entry 

point defined in the program. It is 
written on SYSLOUT concurrently with input 
processing so it appears in order of input 
ESD items. The total size and storage 
extent also are included. Figure 51 is an 
example of a module map. 

The output generated by program 
execution (in addition to data written in 
program output files) can include: 

• Data displayed on the console, or on 
the printer 

• Cards 

• Messages to the operator 

• System informdtive messages 

• System diagnostic message 

• A system dump 

A dump as well as system diagnostic 
messages are generated automatically if a 
program contains errors that cause abnormal 
termination. 

Figure 52 shows an example of output 
from the execution job step. The following 
text is an explanation of the illustration. 

1. ~h~_i2~£Qn~~Q!_~~~~~~~n£~. These 
statements are listed because 
MSGLEVEL=l is specified in the JOB 
statement for this job. 

2. The job allocation messag~~~£Q~_£h~ 
job scheduler. These messages 
indicate the device that is allocated 
for each data set defined for the job 
step. 

3. Disposition messages from the job 
scheduler. These messages are 
contaIned in the publication !~~ 
System/360 Oper~~!~g_~~~~~~ __ ~~~~~~~ 
~~~CoQ~~. 

4. Program output on printer. The
results of execution of the TRACE and
EXHIBIT NAMED statements appear on
program listing.

5. Console output. Data is printed on
console as a result of execution of
DISPLAY UPON CONSOLE.

Output 157

~ ~ OS/360 LOAOER
U'I 1-1.
0) I.Q OPTIONS USEO - PRINT,MAP,NOLET,CALL,NORES,SIZE=424176 c:

t1
m
U'I NAME TYPE AOOR NAME TYPE AOOR NAME TYPE AOOR NAME TYPE AOOR NAME TYPE AOOR
~ .

SAMPL2B SO 161EO SAMPL2BA SO 16EC8 IHEMAIN SO 17CF8 IHENTRY SO 17000 IHESPRT SO 17010
SYSIN SO 17048 IHEVQC • SO 17080 IHEVQCA • LR 17080 IHEVQB • SO 17F08 IHEVQBA • LR 17F08

~ IHEOIA • SO 183CO IHEOIAA • LR 183CO IHEOIAB • LR 183C2 IHEVPE • SO 18608 IHEVPEA • LR 18608
~ IHEVPA • SO 18870 IHEVPAA • LR 18870 IHEVFC • SO 18900 IHEVFCA • LR 18900 IHEVPC • SO 189F8
c: IHEVPCA • LR 189F8 IHEVFE • SO 18BE8 IHEVFEA • LR 18BE8 IHEVSC • SO 18C08 IHEVSCA • LR 18C08 IHEONC • SO 18CB8 IHEONCA • LR 18CB8 IHEOOA • SO 18F30 IHEOOAA • LR 18F30 IHEOOAB • LR 18F32 m

IHEOMA • SO 19010 IHEOMAA • LR 19010 IHEVFO • SO 19108 IHEVFOA • LR 19108 IHEVFA • SO 19160
s: IHEVFAA • LR 19160 IHEVPB • SO 19248 IHEVPBA • LR 19248 IHEXIS • SO 193FO IHEXISO • LR 193FO
PI IHEIOB • SO 19488 IHEIOBA • LR 19488 IHEIOBB • LR 19490 IHEIOBC • LR 19498 IHEIOBO • LR 194AO '0

IHESARC • LR 1A9C8 IHES,ADD • LR 1A90E IHESAFF • LR 1AA18 IHEPRT • SO 1AB70 IHEPRTA • LR 1AB70
~ IHEBEGA • LR 1AE2S IHEERR • SO 1AE68 IHEERRD • LR 1AE68 IHEERRC • LR 1AE72 IHEERRB • LR 1AE7C 0
t1 IHEERRA • LR 1AE86 IHEERRE • LR 1B4E2 IHEIOF • SO 1 B5-80 IHEIOFB • LR 1B580 IHEIOFA • LR 1B582

m IHEIT~ • LR 1B81E IHEITAX • LR 1B82A IHEITAA • LR 1B83E IHEOCN • SO 1B860 IHEOCNA • LR 1B860
rt IHEDCNB • LR 1B862 IHEIOD • SO 1BA50 IHEIODG • LR 1BA50 IHEIOOP • LR 1BA52 IHEIOOT • LR 1BB4A

IHEVTB • SO 1BCFO IHEVTBA • LR 1BCFO IHEVQA • SO 1B078 IHEVQAA • LR 1BD78
tzj
H
PI

~
m IHEQINV PR 00 IHEQERR PR 4 SAMPL2BB PR 8 SAMPL2BC PR C IHEQSPR PR 10

SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR 1C I HEQLW 1 PR 20 IHEQLW2 PR 24
IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR 30 IHEQLCA PR 34 IHEQVOA PR 38
IHEQFVD PR 3C IHEQCFL PR 40 IHEQFOP PR 48 IHEQADC PR 4C IHEQXLV PR 50
IHEQEVT PR 58 IHEQSLA PR 60 IHEQSAR PR 64 IHEQLWF PR 68 IHEQRTC PR 6C
IHEQSFC PR 70

IEW1001 IHEUPBA
IEW1001 IHEUPAA
IEW1001 IHETERA
IEW1001 IHEM91C
IEW1001 IHEM91B
IEW1001 IHEM91A
IEW1001 IHEDDOO
IEW1001 IHEVPFA
IEW1001 IHEVPDA
IEW1001 IHEDBNA
IEW1001 IHEVSFA
IEW1001 IHEVSBA
IEW1001 IHEVCAA
IEW1001 IHEVSAA
IEW1001 IHEDNBA
IEW1001 IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

TOTAL LENGTH 5068
ENTRY ADDRESS 17000

IEW1001 WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

CD

//STEP3 EXEC PG~=*.STEE2.SYSL~CE
//SYSOUT DD SYSOUT=A
//SYSUDUMP DI: SYSOUt=A
//SAMFLE DD UNIT=2400,IAEF.I=(,NL)

IEF236I ALLOC. FOR iESt S1EP3
1EF237I 234 A11CCA!!E TO JOBlIB
IEF231I 230 ALlOCA~!D TC PGM=*.Dt
IEF2371 183 J.LLOCA!Et TO SA~FlE

PRODTEST IEF2851
IEF2851
IEF285I
IEF285I
IEF285I
IF.:F285I
IEF285I
IEF285I

VO~ SER NOS= USAS •
SYS70021.T091926.RP001.TEST.GJOB
VOL SFP NOS= 231400.
SYSOUT
'VOL S"''P NOS=
~YS10021.T091926.RP001.TEST.ROOOOOO~
VOL SF'P NOS= 100001.

66
62
66
71
74
75
WCRK-RECOR!) A 0001 NYC Z
74
75
W CRK-REColU E 0002 NYC
74
75
WORK-RECORD C 0003 NYC 2
74
75
WCRK-RECORE r 0004 NYC 3
74
75
WORK-RECORD E 0005 NYC 4
74
75
WORK-RECDRt F 0006 NYC Z
74
75
WORK-RECOIn: G 0001 NYC
74
75
WCRK-RECORE H oooe NYC 2
74
75
WORK-RECORD I 0009 NYC 3
14
75
WCRK-RECORr J 0010 NYC 4
14
75
WORK-RECOED = K 00'1 NYC 'l

IEAOOOA INT REQ,00C,02,OEOO,1000
t EAOOOA TNl REQ, OOC, 02, OEOO, 0800
IEF233A M 181,SCRTCH,NL,TEST,STEP3
A 0001 ~YC 0
B 0002 NYC 1
C 0003 NYC 2
o 0004 NYC 3
E 0005 NYC 4
F OOOG NYC 0
G 0007 NYC 1
H 0008 NYC 2

Figure 52. Execution Job Step Output

FASSED

FASSED

SYSCUT

DELETED

Program Checkout 159

REQUESTS FOR OUTPUT

1. The programmer can request data to be
displayed by using the DISPLAY
statement.

2. Messages to the operator can also be
displayed on the console when
requested in the source program
(DISPLAY UPON CONSOLE).

3. The programmer can request a full
dump, in case his program is
terminated abnormally, by including

//SYSABEND DD SYSOUT=A

in the job control procedure.

Note: Under MVT, the SPACE parameter
should also be included in the DD
statement. For example:

//SYSABEND DD SYSOUT=A, X
// SPACE=(125,(200,1000),RLSE)

Dumps are explained in "Program Checkout."

OPERATOR MESSAGES

The COBOL load module may issue operator
messages. A complete list of these
messages and required operator responses
can be found in "Appendix J: Diagnostic
Messages" under the heading "Object Time
Messages." Multiple console support
considerations are discussed there also.

160

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during execution of
any job step. Further information about
these messages is found in the publication
!~~_§Y2temL360_QE~rati~§y~t~~~~~~ges
~~~-f2~es. 

Each of these messages contains an 
identification code in the first three 
columns of the message to indicate the 
portion of the operating system that 
generated the message. Table 22 lists 
these codes, a.long with an identification 
of each. 

Table 22. System Message Identification 
Codes 

r-----T-----------------------------------, 
ICode I Identification I 
~-----+-----------------------------------~ 
IlEA I An on-line console message from I 
I I the supervisor. I 
IIEC I An on-line console message from 1 
1 1 data management. I 
lIEF I A message from the job scheduler. 1 
IIKF I A message from the COBOL compiler. I 
IIER I A message from the Sort program. 1 
IIET I A message from the assembler. I 
IIEW I A message from the linkage editor. 1 
IIHB I A message from the supervisor and I) 
I 1 data management. I L _____ ~ ___________________________________ J 



A programmer using the COBOL compiler 
under the System/360 Operating System has 
several methods available to him for 
testing and debugging his programs or 
revising them for increased efficiency of 
operation. 

The COBOL debugging language can be used 
by itself or in conjunction with other 
COBOL statements. A dump can also be used 
for program checkout. 

DEBUGGING LANGUAGE 

The COBOL debugging language is designed 
to aid the COBOL programmer in producing an 
error-free program in the shortest possible 
time. The sections that follow discuss the 
use of the debugging language and other 
methods of program checkout. 

The three debugging language statements 
are TRACE, EXHIBIT, and ON. Anyone of 
these statements can be used as often as 
necessary. They can be interspersed 
throughout a COBOL source program, or they 
can be in a packet in the input stream to 
the compiler. 

Program debugging statements may not be 
desired after testing is completed. A 
debugging packet can be removed after 
testing. This allows elimination of the 
extra object program coding generated for 
the debugging statements. 

The output produced by the TRACE and 
EXHIBIT statements is listed on the system 
logical output device (SYSOUT). If these 
statements are used, the SYSOUT DD 
statement must be specified in the 
execution time job step. 

The following discussions describe ways 
to use the debugging language. 

FOLLOWING THE FLOW OF CONTROL 

The READY TRACE statement causes the 
compiler generated card numbers for each 
section and paragraph name to be listed on 
the system output unit when control passes 
to that point. The output appears as a 
list of card numbers. 

PROGRAM CHECKOUT 

To reduce execution time, a trace can be 
stopped with a RESET TRACE statement. The 
READY TRACE/RESET TRACE cOmbination is 
helpful in examining a particular area of 
the program. The READY TRACE statement can 
be coded so that the trace begins before 
control passes to that area. The RESET 
TRACE statement can be coded so that the 
trace stops when the program has passed the 
area. The two trace statements can be used 
together where the flow of control is 
difficult to determine, e.g., with a series 
of PERFORM statements or with nested 
conditionals. 

Another way to control the amount of 
tracing, so that it is done conditionally, 
is to use the ON statement with the TRACE 
statement. When the COBOL compiler 
encounters an ON statement, it sets up a 
mechanism such as a counter that is 
incremented during execution whenever 
control passes through the ON statement. 
For example, if an error occurs when a 
specific record is processed, the ON 
statement can be used to isolate the 
problem record. The statement should be 
placed where control passes only once for 
each record that is read. When the 
contents of the counter equal the number of 
the record (as specified in the ON 
statement), a trace can be taken on that 
record. The following example shows a way 
in which the processing of the 200th record 
could be selected for a TRACE statement. 

Col. 
1 8 

r DEBUG 

RD-REC. 

RD-REC 
PARA-NM-l. ON 200 READY TRACE. 

ON 201 RESET TRACE. 

If the TRACE statement were used without 
the ON statement, the processing of every 
record would be traced. 

A common program error could be 
(1) failing to break a loop or 
(2) unintentionally creating a loop. If 
many iterations of the loop are required 
before it can be determined that there is a 
program error, the ON statement can be used 
to initiate a trace only after the expected 
number of iterations has been completed. 

Program Checkout 161 



Note: If an error occurs in an ON 
statement, the diagnostic message may refer 
to the previous statement number. 

DISPLAYING DATA VALUES DURING EXECUTION 

A programmer can display the value of a 
data item during program execution by using 
the EXHIBIT statement. The three forms of 
this statement display (1) the names and 
values of the identifiers or nonnumeric 
literals listed in the EXHIBIT statement 
(EXHIBIT NAMED) whenever the statement is 
encountered during execution, (2) the 
values of the items listed in this 
statement only if the value has changed 
since the last execution (EXHIBIT CHANGED), 
and, (3) the names and values of the items 
listed in the statement only if the values 
have changed since the previous execution 
(EXHIBIT CHANGED NAMED). 

Note: The combined total length of all 
items displayed with EXHIBIT CHANGED and 
EXHIBIT CHANGED NAMED cannot exceed 32,767 
bytes. The length of anyone operand must 
be less than or equal to 256 bytes. The 
length of a "NAME" must be less than or 
equal to 120 characters. 

Data can be used to check the accuracy 
of the program. For example, the 
programmer can display specified fields 
from records, work the calculations 
himself, and compare his calculations with 
the output from his program. The coding 
for a payroll problem could be: 

Col. 
1 8 

GROSS-PAY-CALC. 
COMPUTE GROSS-PAY 
RATE-PER-HOUR * (HRSWKD 
+ 1.5 * OVERTIMEHRS). 

NET-PAY-CALC. 

DEBUG NET-PAY-CALC 

162 

SAMPLE-l. ON 10 AND 
EVERY 10 EXHIBIT NAMED 
RATE-PER-HOUR, HRSWKD, 
OVERTIMEHRS, GROSS-PAY. 

This coding will cause the values of the 
four fields to be listed for every tenth 
data record before net pay calculations are, 
made. The output could appear as: 

RATE-PER-HOUR = 4.00 HRSWKD = 40.0 
OVERTIMEHRS = 0.0 GROSS-PAY = 160.00 

RATE-PER-HOUR = 4.10 HRSWKD = 40.0 
OVERTIMEHRS = 1.5 GROSS-PAY = 173.23 

RATE-PER-HOUR = 3.35 HRSWKD = 40.0 
OVERTIMEHRS = 0.0 GROSS-PAY = 134.00 

Note: Decimal points are included in this 
example for clarity, but actual printouts 
depend on the data description in the 
program. 

The preceding is an example of checking 
at regular intervals (every tenth record). 
A check of any unusual conditions can be 
made by using various combinations of COBOL 
statements in the debug packet. For 
example: 

IF OVERTIMEHRS GREATER THAN 2.0 
EXHIBIT NAMED PAYRGDHRS 

In connection with the previous example, 
this statement could cause the entire pay 
record to be displayed whenever an unusual 
condition (overtime exceeding two hours) is 
encountered. 

The EXHIBIT CHANGED statement also can 
be used to monitor conditions that do not 
occur at regular intervals. The values of 
the items are listed only if the value has 
changed since the last execution of the 
statement. For example, suppose the 
program calculates postage rates to various 
cities. The flow of the program might be 
as shown in Figure 53. 



r-----------------------------------------, 

~~~~-~~:~j; <------~ 
CITY

---T---
I
I
V

r-----------,
I CALCULATE I
I RATE FOR I
I CITY I
L-----T-----J

I
I
V

r-----------,
I EXHIBIT I
I CHANGED I
L-----T-----J

I
I
V

I
I YES
I
I
V

NO
----->®

Figure 53. Example of Program Flow

The EXHIBIT CHANGED statement in the
program could be:

EXHIBIT CHANGED STATE CITY RATE

The output from the EXHIBIT CHANGED
statement could appear as:

01 01 10
02 15
03
04 10

02 01
02 20
03 15
04

03 01 10

The £irst column contains the code for a
state, the second column contains the code
for a city, and the third column contains
the code for the postage rate. The value
of an item is listed only if it is changed
since the previous execution. For example,
since the postage rate to city 02 and 03 in
state 01 are the same, the rate is not
printed for city 03.

The EXHIBIT CHANGED NAMED statement
lists the name of the data item and the
value of that item if the value has
changed. For example, the program might
calculate the cost of various methods of
shipping to different cities. After the
calculations are made, the following
statement could be in the program:

EXHIBIT CHANGED NAMED STATE CITY RAIL
BUS TRUCK AIR

The output from this statement could appear
as:

STATE = 01 CITY = 01 RAIL = 10
BUS = 14 TRUCK = 12 AIR = 20

CITY 02

CITY = 03 BUS = 06 AIR = 15

CITY = 04 RAIL = 30 BUS = 25
TRUCK = 28 AIR 34

STATE = 02 CITY = 01 TRUCK = 25

CITY 02 TRUCK 20 AIR = 30

Note that the name of the item and its
value are listed only if the value has
changed since the previous execution.

TESTING A PROGRAM SELECTIVELY

A debug packet allows the programmer to
select a portion of the program for
testing. The packet can include test data
and can specify operations the programmer
wants performed. When the testing is
completed, the packet can be removed. The
flow of control can be selectively altered
by the inclusion of debug packets, as shown
in Figure 54.

Program Checkout 163

r---,
r---------,
I I
I START I
I I
L ____ ,. ____ J

I L ________________ ,

r---------,
I I
I A I
I I L _________ J

I
V

r---------,
I DEBUG I
I PACKET I
I FOR A I
L----T----J

I
r----------------J
I
V

r---------,
I I
I B I
I I
L----T----J

I
L----------------1

r---------,
I I
I C I
I I
L _________ J

I
V

r---------,
I DEBUG I
I PACKET I
I FOR C I
L----T----J

I
I

r----------------J
I
V

r---------,
I I
I STOP I
I RUN I L _________ J

L __ _

Figure 54. Selective Testing of B

In this program, A creates data, B
processes it, and C prints it. The debug
packet for A simulates test data. It is
first in the program to be executed. In
the packet, the last statement is GO TO B,
which permits A to be bypassed. After B is
executed with the test data, control passes
to the debug packet for C, which contains a
GO TO statement that transfers control to
the end of the program, bypassing C.

TESTING CHANGES AND ADDITIONS TO PROGRAMS

If a program runs correctly but changes
or additions can make it more efficient, a
debug packet can be used to test changes
without modifying the original source
program.

164

If the changes to be incorporated are in
the middle of a paragraph, the entire
paragraph, with the changes included, must
be written in the debug packet. The last
statement in the packet should be a GO TO
statement that transfers control to the
next procedure to be executed.

There are usually several ways to
perform an operation. Alternative methods
can be tested by putting them in debug
packets.

The source program library facility can
be used for program checkout by placing a
source program in a library (see
"Libraries"). Changes or additions to the
program can be tested by using the BASIS
card and any number of INSERT and DELETE
cards. Such changes or additions remain in
effect only for the duration of the run.

A debug packet can also be used in
conjunction with the BASIS card to debug a
program or to test deletions or additions
to it. The debug packet is inserted in the
input stream immediately following the
BASIS card and any INSERT or DELETE cards.

If a serious error occurs during
execution of a program, the job is
abnormally terminated; any remaining steps
are bypassed, and a dump is generated. The
programmer can use the dump for program
checkout. (However, any pending transfers
to an external device may not be completed.
For example, if a READY TRACE statement is
in effect when the job is abnormally
terminated, the last card number may not
appear on the external device.) In cases
where the abnormal termination does not go
to completion, a dump is not produced.
This situation may cause duplicate name
definition when the next job is run, and is
discussed at the end of" this section.

If a SYSUDUMP DD statement has been
included in the execution-time job step,
the system will provide the programmer with
a printout, in hexadecimal and EBCDIC
format, of main storage. Those areas
occupied by the problem program and its
data at the time the error occurred, will
be included. This printout is called an
abnQrmal termination dump and is identified
by the heading

*** ABDUMP REQUESTED ***
If a SYSABEND DD statement is specified,
the contents of the nucleus are also
printed.

If neither a SYSUDUMP nor a SYSABEND DD
statement is included in the execution-time
job step, or its specification has been
destroyed, an indicative dump is produced.
This dump does not contain a printout of
main storage and is not given under MVT.

All dumps include a completion code
designating the condition that caused the
termination. The completion code consists
of a system code and a user code. Only one
of the codes is nonzero. A nonzero system
code indicates that the control program
detected the error.

A dump cannot be requested in the COBOL
language. The explanation of the
system-generated completion codes and a
complete description of the dumps are
contained in the publication IBM Systeml360
operating System: Programmer's Guide to
Debugging.

ERRORS THAT CAN CAUSE A DUMP

Following is a discussion of some error
conditions that can cause a program to be
abnormally terminated and a dump to be
listed.

Input/Output Errors

Errors can occur while a COBOL file is
being processed. For example, during data
transmission, an input/output error may
occur that cannot be corrected. If the
file being processed is organized
sequentially and no error-processing
declarative or INVALID KEY option has been
specified for the file, the job is
terminated. If it is a QSAM file, the job
will be terminated when there is no
declarative or INVALID KEY option and the
EROPT=ABE option in the DD statement has
been specified.

Data in the record area of a file can be
accessed only if the file is OPEN. If the
file is opened as INPUT or 1-0, the last
1-0 operation to the file must have been a
READ. For example, if a READ is followed
by WRITE, REWRITE, START, or CLOSE
{REEL/UNIT}, the record area of the file
can be accessed only after another READ is
successfully executed.

In different cases, varying results
occur; for example, abnormal termination,
the program itself could be overlayed,
other records on the file could be
overlayed, etc.

Another error that can cause termination
is an attempt to read a file whose records
are of a different size than those
described in the source program. The
section "Additional File Processing
Information" contains more information
about input/output errors.

Abnormal termination of a job occurs
when a data item with an invalid format is
processed in the Procedure Division.

Some of the program errors are:

1. A data item in the Working-Storage
Section is not initialized before it
is used, causing invalid data to be
picked up.

2. For an item whose usage is
COMPUTATIONAL, COMPUTATIONAL-l, or
COMPUTATIONAL-2, either the alignment
is incorrect, or the description of
the item does not specify the proper
alignment. Some examples are:

a. A redefining entry contains one or
more of the above items and the
redefined entry is not properly
aligned. Alignment will not be
performed for items that cause the
starting address of the redefining
item to be changed.

b. A record in the Linkage Section of
a called program is described by
an 01 entry and contains one or
more of the above items, and the
corresponding argument in the
calling program is not properly
aligned.

c. A file, containing one or more of
the above items, is blocked, but
the required inter-record slack
bytes were not inserted when the
file was created. If the file is
later read as an input file, the
alignment may not be correct.

3. An input file contains invalid data or
data incorrectly defined by its data
description. For example, the
contents of the sign position of an
internal or external decimal data item
in the file may be invalid. The
compiler does not generate a test to
check the sign position for a valid
configuration before the item is used
as an operand.

Program Checkout 165

4. If a group item is moved to a group
item and the subordinate data
descriptions are incompatible, the new
data in the receiving field may not
match the corresponding data
descriptions. (Conversion or editing
is not performed in a move involving a
group item.)

5. The ,SIZE ERROR option is not specified
for the COMPUTE statement and the
result of the calculation is larger
than the specified resultant
COMPUTATIONAL data name. Using the
result in a subsequent calculation
might cause an error.

6. The SIZE ERROR option is not specified
for a DIVIDE statement, and an attempt
is made to divide by zero.

7. The USAGE specified for a redefining
data item is different from the USAGE
specified for the redefined item. An
error results when the item is
referred to by the wrong name for the
current content.

8. A record containing a data item
described by an OCCURS clause with the
DEPENDING ON data-name option, may
cause data items in the record to be
affected by a change in the value of
data-name during the course of program
execution. This may result in
incorrectly described data.
Additional information about how to
correct this situation is included in
"Programming Techniques."

9. The data description in the Linkage
Section of a called program does not
correctly describe the data defined in
the calling program.

10. Blanks read into data fields defined
as numeric generate an invalid sign.

11. Some common errors that occur when
clearing group items in storage are:

166

a. Moving ALL ZEROS to a group level
item to clear several counters
causes an invalid sign to be
generated in all of the elementary
fields except the lowest order
field.

b. Moving SPACES to a group level
item will put invalid data in any
numeric field in that group.

c. Moving 0 to a group level item
moves one zero and pads the rest
of the fields with blanks.

12. Failure to initialize counters
produces incorrect results. No
initial values are generated by the
compiler unless specifically
instructed to do so with a VALUE
clause. If such fields are defined as
decimal, internal or external, invalid
signs may result in addition to
unpredictable initial values. If
defined as binary, they will cause
unpredictable results and, further, if
used in subscripting, may exceed the
range of the associated OCCURS clause
and cause data to be fetched or stored
erroneously. An addressing exception
may occur if the uninitialized
subscript generates a bad address.

13. Not testing to insure that a subscript
or index does not exceed the range of
the associated OCCURS clause may lead
to fetching and storing data from and
to some incorrect locations.

14. Failure to initialize an index
produces incorrect results. No
initial values are generated by the
compiler unless a SET statement is
executed. When indexing is then
specified, the range of the OCCURS
clause may be exceeded and cause data
to be fetched or stored erroneously.
An addressing exception may occur if
the initialized index generates an
address outside the range of the
machine, or a protection exception if
data is stored outside the partition
of this program.

15. A subscript or index set at zero will
address data outside the range of the
table.

16. If either HIGH-VALUE or LOW-VALUE is
moved to internal or external decimal
fields and those fields are used for
comparisons, computations, or
subscripting, a data exception will
occur. HIGH-VALUE and LOW-VALUE are
the hexadecimal values X'FF' and
X'OO'~ respectively.

Other Errors

1. No DD statement is included for a file
described in the source program and an
attempt is made to access the file.
When an OPEN statement for the file is
executed, the system console message
is written. The programmer can elect
to direct the operator to continue
processing his program, but any READ
or WRITE associated with the unlocated
file will result in an ABEND. A
similar situation exists when a file

Page of GC28-6399-2, Revised 4/15/73, by TNL 3N28-Y038

is closed WITH LOCK and an attempt is
made to reopen it. (see "Appendix G:
Compiler Diagnostic Messages" for the
format of the generated error
message).

2. A file is not opened and execution of
a READ or WRITE statement for the file
is attempted, or a MOVE to a record
area in the file is attempted.

3. A GO TO statement, with no procedure
name following it, is not properly
initialized with an ALTER statement
before the first execution of the GO
TO statement.

4. Reference is made to an item in a tile
after end of data. This includes the
use of the TERMINATE statement of the
Report Writer feature, if the CONTROL
FOOTING, PAGE FOOTING, or REPORT
FOOTING contain items that are in the
file (e;g., SOURCE data-name, where
data-name refers to an item in the
file).

5. Block size for an F-format file is not
an integral multiple ~f the record
length.

6. In a blocked and/or multiple-buffered
file, information in a record is
unavailable after a WRITE.

7. A READ is issued for a data set
referenced on a DD DUMMY statement.
The AT END condition is sensed
immediately and any reference to a
record in the data set produces
unpredictable results.

8.

9.

Under MVT, a STOP RUN statement is
executed before all files are closed.

A SORT did not execute successfully.
The programmer may check SORT-RETURN.

10. An input/output statement is issued
for a file after the AT END branch is
taken, without closing and reopening
the file.

In addition to errors that can result in
an abnormal termination, errors in the
source program can occur that cause parts
of the program to be overlaid and the
corresponding object code instructions to
become invalid. If an attempt is then made
to execute one of these instructions, an
abnormal termination may result because the
operation code of the instruction is
invalid, the instruction results in a
branch to an area containing invalid
instructions, or the instruction results in

a branch to an area outside the program,
such as an address protected area.

Some COBOL source program errors that
can cause this overlaying are:

1. Using a subscript whose value exceeds
the maximum specified in the
associated OCCURS clause.

2. Using a data-name as a counter whose
value exceeds the maximum value valid
for that counter.

COMPLETION CODES

The following cases represent some of
the errors that can occur in a COBOL
program and the interrupt or completion
code associa.te~ with them. These errors do
not necessarily cause an abnormal
termination at the time they are recognized
and do not always hold true.

1. F13--Check register 2 of registers at
the entry to ABEND. This address
points to the DCB in conflict.

2. OC1--0peration Exception:

a. When the interrupt is at 000048 or
at 004800, look for a missing DD
card or an unopened file.

b. When the interrupt is
look at register 1 'of
registers at entry to
hexadecimal 28 to the
found in register 1.
point to theDD name
DD statement.

at 000050,
the
ABEND. Add
address
This should

of 'a missing

c. When the interrupt is at 00004A,
the programmer should look for a
missing card, i.e.,

//SYSOUT DD SYSOUT=A

any missing JCL card, or the wrong
name of a JCL card. Add
hexadecimal 28 to the address
found in register 1 at entry to
ABEND. This should point to the
DD name of the DD statement in
error.

d. When interrupt is at 00004F, look
for inconsistent JCL or check the
system-name in the COBOL program.

Program Checkout 161

3. OC4--Protection Exception:

a. Check for the block size and
record size being equal for
variable record input or output.

b. Check for missing SELECT
statement.

c. If interrupt is at 004814, check
for an attempt to READ an unopened
input file or a missing DO· card.

d. Check for an uninitialized index
or subscript.

4. OC5 and OC6--Addressing and
Specification Exception:

a. Subscript or index value may have
exceeded maximum and instruction
or table area was overlaid.

b. Check for an improper exit from a
procedure being operated on by a
PERFORM statement.

c. Check for duplicate close of an
input or output file if DS
formatting discontinued.

d. A sort is being attempted with an
incorrect catalog procedure.

e. Attempting to reference an
input/output area before a READ or
OPEN statement, respectively.

f. Alignment for COMPUTATIONAL data
is incorrect when record is
blocked, and inter-record slack
bytes were not inserted.

g. Check for initialized subscript or
index value.

5. OC7--Data Exception:

168

a. Data field was not initialized.

b. Input record numeric field
contains blanks.

c. Subscript or index value exceeded
maximum and invalid data was
referenced.

d. Data was moved from the DISPLAY
field to the COMPUTATIONAL or
COMPUTATIONAL-3 field at group
level. Therefore, no conversion
was provided.

e. The figurative constants ZERO or
LOW-VALUE moved to a group level
numeric field.

f. Omission of USAGE clause or
erroneous USAGE clause.

g. Incorrect Linkage Section data
definition, passing parameters in
wrong order, omission or inclusion
of a parameter,failure to carry
over a USAGE clause when
necessary, or defining the length
of a parameter incorrectly.

6. 001--1/0 Error:

a. Register 1 of the SVRB points to
the DCB which caused the
input/output problem. Look for
input record and blocking errors.
That is, the input does not agree
with the record and blocking
descriptions in the DCB, the COBOL
file description, or the DD
statement LRECL parameter.

b. Attempted to READ after EOF has
been sensed.

7. 002--Register 2 of registers at the
entry to ABEND contains the
address of the DCB for the file
causing the input/output problem.
Check the DCB list for the
specific file .• '

8. 213--Error during execution of OPEN
statement for data set on mass
storage device, as follows:

a. DISP parameter of DO statement
specified OLD for output data set.

b. Input/output error carmot be
corrected when reading or writing
the DSCB. Recreate the data set
or resubmit the job# check
register 14 of the registers at
entry to ABEND. This address
points to the file that has no
DSCB.

9. 214--Error during CLOSE for data set
on tape; there is an input/output
error that cannot be corrected
either in tape positioning or
volume disposition. Resubmit the
job and inform the field engineer
if error persists.

10. 237--Error at EOV:

a. Incorrect volume serial number
specified in SER subparamete+ of
VOLUME parameter of DO statement.

b. Incorrect volume mounted.

c. Incorrect labels.

11. 400--If this completion code is
generated during a compile step,
the member to be compiled has not
been extracted from the source
library for compilation.

12. 413--Error during execution of an OPEN
statement for a data set on tape:

a. Volume serial number was not
specified for input data set.

b. Volume could not be mounted on the
allocated device.

c. There is an input/output error in
reading the volume label that
cannot be corrected.

13. 80A--Insufficient contiguous core
storage for linkage to some phase
of the compiler. The programmer
should look to see if secondary
data-set allocation has caused an
extra DEB to be built at lower
core addresses within the region.
If so, this problem can be
corrected by assigning sufficient
primary extents for the data set
in question. See "Data Set
Requirements" for further
information.

14. 813--Error during execution of an OPEN
statement in verification of
labels:

a. Volume serial number specified in
VOLUME parameter of DO statement
is incorrect.

b. Data set name specified in DSNAME
parameter is incorrect.

c. Wrong volume is mounted.

Finding Location of Program Interruption in
COBOL Source Program Using the Condensed
Listing

To determine the location of the
interruption, the programmer should proceed
as follows:

1. From first page of dump:

a. Get completion code and program
interruption storage location.

b. Determine the starting address of
the program (PRB address+20).

2. From linkage editor listing:

a. Determine storage address for each
module. Add starting address of
the program to origin of each
module.

b. Determine module in which
interrupt storage location falls.

c. Determine relative address.
Subtract module storage address
from interrupt location.

3. From Procedure Division map:

a. Find the highest previous relative
address in the condensed listing.
That statement is in error.

b. Get line number and verb of COBOL
source statement.

4. From source listing find the line
number and verb of source statement
causing program interruption.

USING THE ABNORMAL TERMINATION DUMP

The programmer can also determine the
cause of an abnormal termination with the
following material:

1. The COBOL program object code listing.

2. A knowledge of the layout of the COBOL
object module.

3. The full abnormal termination dump in
conjunction with the linkage editor
map or cross reference list.

A description of the linkage editor
output and of the COBOL object code listing
is found in "Output." Figure 49 shows the
layout of the COBOL program object module.

Note: The information in this section
about the use of the abnormal termination
dump applies only when running under MFT.
For information about the abnormal
termination dumps under MVT. see the
publication !~~~y~te~/3~Q_Qp~~~~!gg
Sys~~m~_~roq~a~~~~~_~uig~_to_Qeb~gg!~g.
Note that under the MVT option no
indicative dumps are given.

The abnormal termination dump provides
the address at which the load module has
been loaded (load address) and the address
of the instruction that caused the
interrupt. The programmer computes the

Program Checkout 169

load module area by adding the load address
to the load module length, as shown in the
linkage editor output. It is now possible
to determine whether the instruction falls
within the load module. If it does not,
the interrupt could have resulted from an
improper branch to a point outside the load
module or an error occurring in another
part of the system.

If the instruction does fall within the
load module, the programmer now determines
in which part: the main program, a COBOL
library subroutine, or a called program.
The ranges of the various parts are
determined by adding their relative
origins, as shown in the linkage editor
output, to the load address.

If the instruction occurred in an object
module generated for a COBOL program,
(i.e., the main program), the programmer
can determine whether or not the
instruction was one of the generated object
code instructions. He can determine the
address of the first instruction in the
Procedure Division (as found in the object
code listing) by adding its relative .
location to the location of the object
module (load address plus relative origin).
If it was one of the object code
instructions, a similar technique can
used to locate the exact instruction.
it was not one of these instructions,
error has occurred in another part of
object module. Control possibly went
because of an improper branch.

be
If

the
the
there

If the instruction that initiated the
dump occurred in a COBOL library
subroutine, or if the original program
called another program and the instruction
occurred in the called program, the
instruction can be located by a similar
technique. The linkage editor cross
reference list indicates the locations
where the call to the program or subroutine
in question was made.

The following general rules can be used
to determine the cause of the dump and the
error.

1. Determine the COBOL statement that
generated the code leading to the
program check.

110

a. The top of the system dump will
tell the address of the PC
(Program Check) instruction and
the type of PC. Locate the
instruction in the core dump.

b. Determine the relocation factor of
the program from the linkage
editor map. subtract the
relocation factor from the address
of the invalid instruction.

c. The address that results may be
located in the procedure division
map generated by the MAP option.
(The coding shown at this location
of the map should correspond to
the instruction located in step
one.)

d. Preceding the address and code
found in step three, find the
sequence number of the
corresponding COBOL statement in
the listing and the number of the
element in the sentence that
generated the code.

2. Be sure the COBOL statement is coded
properly.

3. If the statement is coded properly, go
back to the core dump and determine
the type of PC.

a. If it is a data exception, the
programmer will probably find that
the instruction is a decimal
instruction, and that one of the
fields either will not have a
valid sign or will contain digits
other than 0 to 9. To determine
this, it will be necessary to find
the fields in core storage.
Inspect bits 4 through 7 of the
low-order byte for a valid sign (A

through F). If one is not
present, this is the cause of the
PC.

If one or both of the fields
being operated on are defined as
external decimal, the programmer
will find one or more pack
instructions immediately ahead of
the PC instruction. From these
determine the address of the
external decimal field that
generated the invalid sign.
several common causes of data
exceptions are given in "Errors
Caused by Invalid Data."

b. If it is a protection exception,
one possible cause is that a base
register used in the instruction
has not been initialized. Base
registers in COBOL are initialized
at different times. For input
files, the register is not
initialized until the first
successful read; it is not

initialized when the file is
opened. For output files, the
registers are initialized during
the processing of the OPEN
statement. When faced with a
protection exception, the
programmer should go to the COBOL
source program to ascertain that
no data has been moved prior to
the time when base registers are
initialized.

c. If an addressing or specification
exception occurs, the programmer
may find upon inspection (but not
always) that registers have been
unexpectedly modified and the
problem becomes one of finding out
how. Two possible approaches are:

(1) Check the addresses in
registers 14 and 15 against
the address of the PC
instruction. If the address
of the PC instruction is equal
to or slightly larger than the
address in register 15, the
address probably is in a
subroutine, and the address in
register 14 should be the
return address. A BAL or BALR
instruction probably will
precede the return address.
The programmer should look for
this particularly when the
problem is not with a COBOL
statement. If the PC

instruction has an address
equal to or a bit larger tha~
the address in register 14,
then the programmer probably
has just returned from a
subroutine, and register 15
should still be pointing to
the entry address of the
subroutine. The programmer
should check the coding to see
if this could reasonably be
so, and check the entry points
listed on the linkage editor
map. If this approach bears
further action, a listing of
the subroutine would be needed
or the instructions from the
dump must be interpreted.

(2) If the foregOing step does not
locate the error, the
programmer should check back
through. the dump to see what
exists between the PC
instruction and the last
unconditional branch in order
to determine the possible
course of events.

The sample COBOL program, and its output
shown in Figure 55, illustrates in detail
how an object code listing, cross reference
list, and abnormal termination dump can be
used together. Circled numbers in the
example refer to the corresponding numbers
in the text that follows. Note that all
values are expressed in hexadecimal format.

Program Checkout 171

00001 IDENTIFICATION DIVISION.
00002 PRO GR AM- ID. ABEND.
00003 REMARKS.
000011 THIS IS A PROGRAM TO ILLUSTRATE THE AENCFMAl TERMINATION.
00005 ENVIRONf!ENT DIVISION.
00006 CONFIGURATION SECTION.
00001 SOURCE-CO 1'1 FUT E};. IBI1-360-H!:0.
00009 OBJECT-COMPUTER. IBM-36C-H50.
00009 DATA DIVISICN.
00010 WORKING- STORA GE SEC'IION.
00011 01 FECC};DA.
00012 02 A PICTURE !:9 (4) VALUE 12311. CD 00013 02 B FEr:E~INES A PICTURE S9 (7) COMPUTATIONAL-3.
000111 PROCEDURE DIVISION.

CD 00015 COMFUTF E = E + 1.
00016 STOP RUN.

15 COMFUTE 000272 0 S'IART EQU * 000272 1'8 70 D 1eo C 008 ([) ZAP 1CO(8,13) ,008 (1,12) TS=01 LIT+O
000278 FA 113 D 1C3 E COO 7 AI' 1c3 (5,13) ,000 (4,6) TS=04 DNM=1-63
00027E F8 33 6 000 r: 1C4 ZAP 000 (11,6) ,1C4(1I,13) DNM=1-63 TS=01l+1

16 STOP 000284 58 FO C 004 L 15,0011(0,12) V (ILBOST!'1)
000288 07 FF ECR 15,15
00028A 05 FO EALR 1S,0
00028C 91 10 D 0118 '!'M 0118 (13) , X' 10' SWT+O
1)00290 47 EO l' 012 EC 111,012 (0,15)
000294 94 EF D G4R NI 048(13) ,X'EFt SWT+O
000298 S8 FO C 004 1 15,004(0,12) V (ILBOS'IP1)
00029C 07 F1' ECP 15,15
00029E 58 FO :> 1BO 1 15, 1BO (0, 13)
0002A2 90 OF. 1" 038 STM 0,14,038 (15)
0002A6 48 FO 0 OSC LH 15, 05C (0, 13)
0002AA SE DO D C04 1 13,0011 (0, 13)
0002 At: 98 oc D 014 UI 0,12,0111(13)
000282 5E Ee D oac 1 14,00C(0,13)
0002B6 J7 FF. l.'CF 15,14
0002B8 SO DO 0013 INIT2 ST 13,008(0,5)
0002BC 5C 5C D 0011 ST 5,0011 (0,13)
0002CO 50 1'0 D 054 ST 14,054(0,13)
0002C4 5E FC C OCO i 15,000(0,12) VIR=1
n002ce 05 H EALF 14,1'i
0002CA 12 00 LT? 0,0
0002CC 07 E9 ECP 8,9
0002CF. 96 10 o 048 CT 048 (13) ,X'10' SWT+O
0002D2 05 FO INT'I3 EAiR 15,0
0002D4 91 20 D 048 T!'l 048 (13) ,X'20' S~)T+O

000n8 47 Fa F 016 EC 14,016(0,15)
0002DC 9E 2D B 040 1M 2,13,040(11)
ooono 58 00 E 038 L 0,038(0,11)
0002 E4 "8 ~O n 054 1 14,054(0,13)
0002EE 07 FE £lCt; 1'5,14
0002F.A 96 20 D 048 01 048 (13) ,X'20' SWT+O
0OO2EE 41 6C 0 004 lA E,004(0,0)
0002F2 41 80 D HC 1A 8, 1 EC (0 , 13) OVF= 1
OOo;n'f) 41 70 D 1BF LA 7,1B'!'(0,13) 1S=01-1
0002FA O~ 10 EAIP 1,0
00021'C 5f< 00 8 000 L 0,000 (0,8)
OC030C 1E 03 H" 0,11
000302 50 CC 000 S'l' 0,000(0;8)
000306 87 86 000 EXL ~ 8,6,000 (1)

Figure 55. COBOL Program with Abnormal Termination Dump (Part 1 of 3)

172

CBCSS FEFERENCF. TABLE

CONTROL SECTION

NAME

ABEND
ILBOSTPO*

ORIGIN LENGTH

00
318

314 CD
35

ENTRY

NAME lCCATI01\

ILBOSTP1 32E

LOCATION REPERS TO SY~BCL IN CONTBOL SECTION

268 ILBOSTPO ILBOSTPO

FN'I'RY ADDRESS
TOTAL LENGTH

CG
350

****GO DOES NOT EXIST EUT HAS EFEN AtDED TO DATA SET

NAME LOCATION NAME LOCATION NAME

LOCATION REFERS TO SYMBOL IN CONTROL SECTIO~

26C ILBCSTP1 ILBOSTPO

Figure 55. COBOL Program with Abnormal Termination Dump (Part 2 of 3)

LOCATION

Program Checkout 173

• • • A P DUM PRE 0 U E S ~ E D * • •
JOB JOBl STH STH3 TII'!F Oq035q rATE 69105

CCMPLETION COtE SYSTEK = OC7 (!)
PROGRAM IN'!'ER~UPTION (DA'U) A'I LOCATION 01CA98

INTF.RRUPT AT 010A9E (!)
PSW AT ENTRY TO ABEND 800C7000 00000000

TCB 000180 RB 0007FE~0
/'lSS 00005918
FSA OQ07FFBQ

ACTIVE RBS

PRB 010800 NM GO

SVRB 07n:00 Ni'l SVC-401C

PIE OCOOOOOO
PR/FLG 10910408
TCB oeeooooo

SZ/STAB 006EOOCO

SZ/STAE 0012r072
RG 0-7 000108AO S0010E1C
RG 8-1S OC01CA7C 0OO10AF2

SVRB 07.FBEO Ni'l SVC-l0SA SZ/STAE 000cr072
RG 0-7 00010B70 00010BC8
RG 8-1S 000CS91e 00010C3E

PIP STORAGE BCUNDARIES 00010800 TO OC080000

FPEE AREAS

010E70
07FBBO

S]ZE

0006ECAO
00000030

SAVE AREA TRACE

GO WAS ENTFRED

SA 07FFB4 iDl 00000H1
Rl 0007FF18
R7 00000080

SA 0108BO iDl 00000000
Rl 00000000
R7 00000000

PROCEEDING BACK VIA REG 13

HSA 00000000
R2 0000006C
R8 00000078

HSA 0007FFBQ
R2 00000000
R8 00000000

LSA
R3
R9

ISA
R3
R9

DEB 0007FB6C TICT 0007FFQ8
~LG 00000000 LLS 00000000
'II"E 0000592C

CMP 800C7000
JLB 0007FE90

TRN 00000000
JSE 00000000

USE/EP 00010820 pSw FF1S000D E0010A9E Q 000000 iT/LNK 00000180

USE/EP 00003U8 PSW FFOQ0033 QOOO366C Q E003EO iT/LNK 00010800
0000006C 00000181 000068FO 0007FFBQ 000108AO 00010A6F
00010820 00010820 00010A88 000108BO 00010A92 SOO10AF4

USE/EP 000034A8 PSW FF04000F 8000CQPC Q E003EO WT/LNK 0007FEOO
000036C8 400034AA 00000000 00000000 00010B70 8000365A
oe08COOO 00000180 00000180 00010ED8 SOO036FO 2001 OA 98

000108BO RET OOOOS3E8 EPA 70010820 PO 00000030
00000181 R4 000068FO F5 0007FFSC R6 00005398
€00260E2 Rl0 0007FF08 Rll 0000S3"98 E12 00000180

00000000 RET 00000000 !FA 00000000 RO 00000000
00000000 R4 00000000 RS 00000000 R6 00000000
OOOCOOOO Rl0 00000000 Rll 00000000 R12 00000000

Figure 55. COBOL Program with Abnormal Termination Dump (Part 3 of 3)

174

1. The completion code, <D, in the dump
indicates the condition causing the
abnormal termination. If the system
part of the code is nonzero, the
explanation is found in the
publication IBMSystem/360 Operating
System: -Programmer's Guide to
Debugging. In this example, invalid
data is the reason for termination.

2. The PROGRAM INTERRUPTION (DATA) AT
LOCATION hhhhhh entry, 0. gives the
hexadecimal address of the instruction
following the instruction that
initiated the interrupt and caused the
dump. This address can be used to
determine the relative location of the
instruction in the load module (see
item 4 below). In the example, the
address is 10A9E.

3. To determine the main storage area
occupied by the load module, add the
t~~ length of the module, in
hexadecimal format, to its load
address. The load address can be
obtained from the USE/EP entry" ®, of
the first ACTIVE RBS (Request Blocks)
specification. The last six digits of
this entry are the address of the '
entry point (INIT1) in the COBOL
program. In this case, the address is
10820 in hexadecimal format.

The total length of the load module
is indicated in the TOTAL LENGTH
entry. ®, in the linkage editor
output (350, in the example). The
highest location in the load module
is:

10820 + 350 = 10B70

Thus, the range is from 10820 to
10B10. Since the 10A9E address falls
within this range, the instruction
initiating the dump must be within the
load module.

4. To determine the relative location
within the load module of the
instruction indicated in the
INTERRUPTION entry, subtract the load
address from the address of the
instruction. In the example, this
becomes:

10A9E - 10820 = 21E

5. To determine whether or not the
instruction occurred in the object
module generated for the program,
compare its relative location (27E)
with the total length, ®, of the
object module. If the relative
location were greater than the size of
the object module, then the error
would riot be part of this program. A

relative loca~on between the size of/
the program,~, and the total length
would indicate that the abnormal
termination had occurred in one of the
COBOL library subroutines. Such an
error could be located by comparing
the relative location with the
relative origin of the subroutines.
In this example, 27E is less than the
program size (314), so the instruction
occurred in the main program.

6. To determine whether or not the
instruction was one of the object code
instructions generated as a result of
a statement in the Procedure Division
of the source program, compare its
relative location with the relative
location of the first generated
instruction in the Procedure Division,
QD. In this example, the relative
location of the instruction is greater
than that of the first generated
instruction (27E > 212), and so it can
be found by locating the corresponding
relative location. The immediately
preceding object code instruction then
is th~nstruction that initiated the
dump,~. In this example, it is an
instruction generated as a result of a
COMPUTE statement. Checking back to
the source program listiwn the
corresponding statement, 8 , is
located and 'B' is seen t be the
data-name that caused the ~ouble.
Data item B is defined at~, as a
COMPUTATIONAL-3 or packed decimal
item, but the value at B is there as a
result of a VALUE clause for A, the
item that B redefines. This value is
in zoned decimal format since there is
no USAGE clause specified. The
configuration of A is invalid for B
and results in an interrupt.

The glossary, listed when the DMAP
option is specified, contains information
about all data-names described in the COBOL
source program. The location assigned to a
given data-name may be found by using the
BL number and displacement specified for
that entry in the glossary.

Since the sample problem program shoWfr
in Figure 56 was interrupted because of a
data exception, the programmer should
locate the contents of field B at the time
of the interrupt. The circled numbers in
the explanation that follows refer to the
corresponding numbers in the sample
program.

Program Checkout 115

1. Locate data-name B, Q) , in the
glossary. It appears under the column
headed SOURCE-NAME. Source-name B has
been assigned to base locator 3 (i.e.,
BL=3) with a displacement of 050. The
sum of the value of base locator 3 and
the hexadecimal displacement value 50
is the address of data-name B.

2. The Register Assignment table, GD ,
lists the registers assigned to each
base locator. Register 6 has been
assigned to BL=3.

3. The contents of the 16 general
registers at the time of the interrupt
are dis~ayed at the beginning of the
dump, Q1. Register 6 contains the
address 000141FO.

4. The location of data-name B, GU , can
now be determined by adding the
contents of register 6 and the
hexadecimal displacement value 50.

176

The result, 14240, is the address of
the leftmost byte of the 4-byte
field B.

Note: Field B contains F1F2F3C4. This is
external decimal representation and does
not correspond to the USAGE COMPUTATIONAL-3
defined in the source listing.

Some program errors may destroy the
contents of the general registers referred
to above. In such cases, an alternate
method of locating data-names is useful.

The location assigned to a given
data-name may also be found by using ~e BL
CELLS pointer in the TGT Memory Map, ~
The location of the BL cells is found by
adding 003E4 (from the TGT table> to the
load point address, 14020, of the object
module, ~. In this example, the,BL cells
begin at location 14404:

003E4 + 14020 = 14404

The first four bytes are the first BL cell,
the second four bytes are the second BL
cell, etc. Note that the third BL cell,~
contains the value 141FO. This is the same
value as that contained in register 6.

00001
00002
00003
00004
00005
00006
00001
00008
00009
00010
00011
00012
00013
00014
00015
00016
00011
00018
00019
00020
00021
00022
00023
00024
00025
00026
00021
00028
00029
00030
00031
00032
00033
00034
00035
00036
00031
00038
00039
00040
00041
00042
00043
00044
00045
00046
00041
00048
00049
00050
00051
00052
00053
00054
00055
00056
00051

000010
000020
000030
000040
000050
000060
000010
000080
000090
000100
000110
000120
000130
000140
000150
000160
000110

··000110
000190
000200
000210
000220
000230
000240
000250
000255
000260
000210
000280
000290
000300
000310
000320
000330
000340
000350
000360
000310
000380
000390
000400
000410
000420
000430
000440
000450
000460
000410
000480
000490
000500
000510
000520
000530
000534
000535
000536

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTRUN.

AUTHOR. PROGRAMMER NAME.
INSTALLATION. NEW YORK PROGRAMMING CFNTER.
DATE-WRITTEN. SEPTEMBER 10, 1968.

DATE-COMPILED. MAY 16,1910
REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS
INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-H50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-l ASSIGN TO UT-S-PRTOUT.
SELECT FILE-2 ASSIGN TO UT-S-PRTOUT.

DATA DIVISION.
FILE SECTION.
FD FILE-l

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
DATA RECORD IS RECORD-l.

01 RECORD-l.
05 FIELD-A PIC X(20).

FD FILE-2
LABEL RECORDS ARE STANDARD

BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
DATA RECORD IS RECORD-2.

01 RECORD- 2.
05 FIELD-A PIC X(20).

WORKING-STORAGE SECTION.
01 FILLER.

02 COUNT PIC S99 COMP SYNC.
02 ALPHABET PIC X(26) VALUE IS ftABCDEFGHIJKLMNOPQRSTUVWXYZft.
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TIMES.
02 NUMBR PIC S99 COMP SYNC.
02 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340".
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES.

01 WORK-RECORD.
05 NAME-FIELD PIC X.
05 FILLER PIC X.
05 RECORD-NO PIC 9999.
05 FILLER PIC X VALUE IS SPACE.
05 LOCATION PIC AAA VALUE IS "NYC".
05 FILLER PIC X VALUE IS SPACE.
05 NO-OF-DEPENDENTS PIC XX.
05 FILLER PIC X(1) VALUE IS SPACES.

01 RECORDA.
02 A PICTURE S9(4) VALUE 1234.
02 B REDEFINES A PICTURE S9(1) COMPUTATIONAL-3.

Figure 56. Sample Program (Part 1 of 5)

Program Checkout 177

00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
000P2
00083
00084

000540
000550
000560
000570
000580
000590
000600
000610
000620
000630
000640
000645
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000180
000790

PROCEDURE DIVISION.
BEGIN. READY TRACE.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE '10 BE CREATED
AND INITIALIZES COUNTERS.

STEP-l. OPEN OUTPUT FILE-1. MOVE ZERO TO COUNT, NUMPR.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS
THeM ON THE CONSOLE.

STEP-2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (COUNT) TO
NAMF.-FIELD.

COMPUTE B = B + 1.
MOVE DEPEND (COUNT) TO NO-OF-DEPENDENTS.
MOVF NUMBR TO RECORD-NO.

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-1 FROM
WORK-RECORD.

$TEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS
IT AS INPUT.

STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLOYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-So
STEP-1. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOVE "Z" TO

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6.
STEP-8. CLOSE FILE-2.

STOP RUN.

INTRNL NAME LVL SOURCE NAME BASE DISPL INTRNL NAME
DNM=1-148 FD FILE-1 DCB=Ol DNM=1-148
DNM=1-167 01 RECORD-1 BL=l 000 DNM=1-161
DNM=1-188 02 FIELD-A BL=l 000 DNM=1-188
DNM=1-205 FD FILE-2 DCB=02 DNM=1-205
DNM=1-224 01 RECORD-2 BL=2 000 DNM=1-224
DNM=1-245 02 FIELD-A BL=2 000 DNM=1-245
DNM=1-265 01 FILLER BL=3 000 DNM=1-265
DNM=1-284 02 COUNT BL=3 000 DNM=1-284
DNM=1-299 02 ALPHABET BL=3 002 DNM=1-299
DNM=l- 311 02 ALPHA BL=3 002 DNM=1-317
DNM=1-335 02 NUMBR BL=3 01C DNM=1-335
DNM=1-350 02 DEPENDENTS BL=3 OlE DNM=1-350
DNM=1-310 02 DEPEND 8L=3 OlE DNM=1-370
DNM=1-386 01 WORK-RECORD 8L=3 038 DNM=1-386
DNM=1-410 02 NAME-FIELD 8L=3 038 DNM=1-410
DNM=1-430 02 FILLER 8L=3 039 DNM=1-430
DNM=1-449 02 RECORD-NO BL=3 03A DNM=1-449
DNM=1-468 02 FILLER 8L=3 03E DNM=1-468
DNM=1-481 02 LOCATION 8L=3 03F DNM=1-481
DNM=2-000 02 FILLER 8L=3 042 DNM=2-000
DNM=2-019 02 NO-OF-DEPENDENTS 8L=3 043 DNM=2-019
DNM=2-045 02 FILLER 8L=3 045 DNM=2-045
DNM=2-064 01 RECORDA 8L=3 050 DNM=2-064
DNM=2-084 02 A 8L=3 050 DNM=2-084
DNM=2-095 02

BCD
BL=3 050 DNM=2-095

Figure 56. Sample Program (Part 2 of 5)

178

DEFINITION USAGE R 0 <.:! M
QSAM F

DS OCL20 GROUP
DS 20C DISP

QSAM F
DS OCL20 GROUP
DS 20C DISP
DS OCL56 GROUP
DS 1H COMP
DS 26C DISP
DS lC DISP R 0
DS lH COMP
DS 26C DISP
DS lC DISP R 0
DS OCL20 GROUP
DS 1C DISP
DS 1C DISP
DS 4C DISP-NM
DS 1C DISP
DS 3C DISP
DS lC DISP
DS 2C DISP
DS 7C DISP
DS OCL4 GROUP
DS 4C DISP-NM
DS 4P COMP-3 R

MEMORY MAP

TGT

SAVE AREA
SWITCH
TALLY
SORT SAVE
ENTRY-SAVE
SORT CORE SIZE
RET CODE
SORT RET
WORKING CELLS
SORT FILE SIZE
SORT MODE SIZE
PGT-VN TBL
TGT-VN TBL
VCONPTR
LENGTH OF VN TBL
LABEL RET
UNUSED
INIT1 ADCON
UNUSED

~OVERFLOW CELLS
~BL CELLS

DECBADR CELLS
TEMP STORAGE
TEMP STORAGE-2
TEMP STORAGE-3
TEMP STORAGE;-4
BLL CELLS
VLC CELLS
SBL CELLS
INOEX CELLS
SUBADR CELLS
ONCTL CELLS
PFMCTL CELLS
PFMSAV CELLS
VN CELLS
SAVE AREA :2
SAVE AREA :3
XSASW CELLS
XSA CELLS
PARAM CELLS
RPTSAV AREA
CHECKPT CTR
VCON TBL

LITERAL POOL (HEX)

004AO (LIT+O)
004B8 (LIT+24)
00400 (LIT+48)

004805EF
E2C6E403
40200001

DISPLAY LITERALS (BCD)

00228000
40D6D7C5
00000001

004E4 (LTL+68) I WORK-RECORD I

00228

00228
00270
00274
00278
0027C
00280
00284
00286
00288
003B8
003BC
003CO
003C4
003C8
003CC
003CE
003CF
003D8
0030C
003E4
003E4
003FO
003FO
003F8
00428
00428
00428
00430
00430
00430
00430
00430
00430
00430
00434
00438
00438
00440
00440
00440
00444
00444
00448

C902C6F9
D540C6D6
1C00001A

Figure 56. Sample Program (Part 3 of 5)

F9F9C940
09400000
4800FOE9

E4D5E2E4
00000000
COOOOOOO

C3C3C5E2
00000200

Program Checkout 179

PGT

OVERFLOW:' CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENERATED NAME CELLS
DCB ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS

REGISTER ASSIGNMENT

REG 6 BL =3--0
REG 7 BL =1
REG 8 BL =2

60 *BEGIN

00450

00450
00450
0045C
00470
00490
00498
004AO
004£4

0004FO START EQU *
0004FO 58 FO C 004 L 15,004(0,12)
0004F4 05 1F BALR 1,15
0004F6 000140 DC X'OO0140'
0004F9 04F6F0404040 DC X'04F6F0404040'

60 READY 000500 96 40 D 048
63 *STEP-1

01 048(13),X'40'

000504 58 FO C 004 L 15,004(0,12)
000508 05 1F BALR 1,15
00050A 000140 DC X'000140'
00050D 04F6F3404040 DC X'04F6F3404040'

* ABDUMP REQUESTED *

JOB BUFFERS STEP GO TIME 064255 DATE 70136

COMPLETION CODE SYSTEM OC7

PROGRAM INTERRUPTION (DATA) AT LOCATION 0145D2

INTERRUPT AT 0145D8

PSW AT ENTRY TO ABEND FF25000D E0014508

TCB 0053D8

ACTIVE RBS

RB 00030068
MSS 00005460
FSA 180307BO
USER 00000000

PIE 00000000
PK/FLG 20912408
TCB 00000000

DEB 0002FFEC
FLG 000003F8
TME 00005488

~

TrOT 00030520
LLS 00000000
PIB E0009FCO

V(ILBODSPO)

SWT+O

V(ILBODSPO)

CMP 800C7000
JLB 00030778
NSTAE 00000000

TRN 00060000
JSE 00000000
TCT 00004600

PRB 014000 NM RUN SZ/STAB 01F100CO USE/EP 00014020 PSW FF25000D F00145D8 Q 000000 WT/LNK 000053D8

SVRB 030490 NM SVC-401C SZ/STAB 00120172 USE/EP 000041A8 PSW FF040033 40004370 Q E803E8 WT/LNK 00014000
RG 0-7 00000030 000145A2 00000001 00000001 000141F2 50014870 000141FO 00030130
RG 8-15 00014020 00014844 00014020 00014020 00014470 00014248 7001457E 000148BO

SVRB 030068 NM SVC-105A SZ/STAB 000CD172 USE/EP 000041A8 PSW FF040235 8000D53C Q C803C8 WT/LNK 00030490
RG 0-7 00014F88 00014FEO 000012CO 400041AA 00000000 00000000 00014F88 8000435E
RG P-15 0000545E 00015056 00030800 000053D8 000053D8 00014FFO 600043F'A 200145D2

P/P STORAGE BOUNDARIES 00014000 TO 00030800

Figure 56. Sample Program (Part 4 of 5)

180

REGS AT ENTRY TO ABEND

FL. PT. REGS 0- 6 00.000000 00000000 00.000000 00000000

REGS 0-7
REGS 8-15

PIP STORAGE

014000 D9E4D540
014020 070090EC
014040 00014020
014060 00080009
014080 OFFFFFFF
0140AO 00000000
0140CO 00000000
0140EO 00004000
014100 06000001
014120 ')0000000
014140 OOE3E5F1
014160 00000001
014180 00000000
0141AO 02000000
0141CO 00000014
0141EO 00000000
014200 D6D7D8D9

~F3F4FOF1
01424 F1F2F3C4
014260 9200CCCO
014280 00000079
0142AO 00000000
0142CO 2070104C
0142EO 1004484C
014300 70204048
014320 00705003
014340 05F04845
014360 000140C8
014380 00014020
0143AO (J0014807
0143CO 48078148
0143EO OC489280
014400 50307010

00000030
00014020

40404040
DOOC185D
00014020
OOOMOOB
FFFEFFFD
00000000
80000000
00000001
00090064
0000DE68
D7E3E5F2
00000001
00000001
00000000
00000000
00000000
E2E3E4E5
F2F3F4FO
40E3E8D7
00000030
900149AC
00000000
484B2070
40701006
0.AGA4842
48423070
0001459A
00030800
00014020
0001459A
4740703(l
70300448
00030130

000145A2
00014844

00000001
00014020

00000001
00014020

01F100CO 00014020 FF25000D EOO145D8
05F0989F F01207FF 96021034 07FE41FO
00014470 00014248 00014510 00014826
OOOCOOOE 000F0010 0012001C 001D001E
FFFCFFFB D2000002 03004940 FFFFFFFF
00000000 00000000 00000000 00014036
00000000 00000000 00000000 00000000
46000001 900140AO 00400048 00030224
28012828 420300C8 00030194 00030144
05EFOOOO 00000000 00000000 00000000
00000000 00000000 00000000 OOOOO(}()O
00000000 80000000 00000000 00000000
00004000 00000001 42000001 90014148
00000001 00000064 00000000 00000000
00000000 00000000 00000000 00000000
00000000 ODC9D3C2 0001C1C2 C3C4C5C6
E6E7E8E9 0001FOF1 F2F3F4FO F1F2F3F4
C1E3C9D5 C74040D5 E8C3404B C9404040
007EC66B 000307BO E3C87E4D 340040E2
8F0306EO 000140C8 00030800 0001459C
6000CD10 0000CF58 7000004B 00000000
004805EF 48480070 30464811 13480AOA
10524850 2070104C 48581070 20144896
48410070 40084841 10701000 480AOA48
30705001 48883070 00084842 30705000
10014888 30700008 48423070 10004890
000140C8 01000048 7001457E 000148BO
D204A45C 50014870 000141FO 00030130
00014470 000145A2 000148BO 00000030
48077148 47C07030 08481424 48078148
OA485850 70300C48 58105COO 00485010
40107030 06485A30 70104C48 4B307010
00014020 000141FO 1COO0280 00000348

cD

Figure 56. Sample Program (Part 5 of 5)

00.000000 00000000 ~OO.OOOOOO 00000000

000141F2 50014870 000141FO 00030130
00014470 00014248 7001457E 000148BO

00000000 000053D8 *RUN .1 •••• •••••••• Q ••••••• Q*
000107FE 00014844 * ••••••••• 0 •• 0 •••••••••• 0 •••••••• *
00030005 00060007 * •••
0020003C 007AOOFF *•.....•..•............ *
E3C5E2E3 D9E4D540 * •••••••••••. K •••••• •••• 'IES'IrtUN *
00000001 00000001 *••.......•........•.. *
00818300 02030128 * •••••••••••••••••••.•••••••••••.•
9200CCCO 0000CF58 * •••
00000014 00000001 * ••.••••••••..•• H •••••••••••••••• •
00000000 00000000 * •....•....•.........•..•.•..•.•••
00000000 00014036 *.TV1PTV2 •••••••••••••••••••••• ..
00000000 00000000 *•.•
D7D9E3D6 E4E34040 * •...•..... ••••••••••••• PRTOUT •
00000000 00000000 *•
00000000 00000000 * •••••••.••••••••••..•••.•••••••••
c7CeC9D1 D2D3D4D5 •••••••••••••• ILB •• ABCDEFGHIJKLMN·
FOF1F2F3 F4FOF1F2 .OPQRSTUVWXYZ •• 012340123401234012.
40404040 4040D9c5 ·34012340ATING NYC • I RE*
D6D9E340 50014B3A *123D TYP •• F ••••• TH •••• SORT •••••
00000004 000303A1 * •••••••••••••• H •••••••••••••••• *
00000000 00014510 * •.................•..•..........•
48501070 30404858 * ••••••••••••••••••••••••••••• •• *
01702017 48484070 * •••...........•..•..•.....•.•. • *
48007020 46485810 * •••• • • • • • • • • •• • •• • • • • •• *
48920070 50024892 * •• •• •• • • • • • • •• • • • • • • •• • •••• • • •• *
EC70DOOC 48185D48 * •.•..•••.••.•.••..•••••.•..••••. *
00000030 000145A2 *. 0 •••••••• H •••••••••••••••••••• *
00014020 00014844 * •• H •••• K •••••••••• 0 •••••• ••••• *
8F0306EO 000140C8 * •• H*
07414847 8070300A *•.........•.. Ii *
00000000 00000000 * •.•.. •••••••••••••••••••• ' •••••• *
00014020 70104C48 ~ • •••• *
4110641C 0001481E * •••••••••. • ••• O •••••••••••••••• *

Program Checkout 181

r---,
21 24 I

r----------T----------T-------------------------}
I DCBBUFCB I

----------~----T-----~-------------------------
DCB

I
r---------------J
I
V 8 12

Buffer r-----------T--------T-------------------------,
Area I I A (Area) I Buffers I

L-----------~---T----~-------------------------J
<-----BUFCB-----+---->
r---------------J
I
V 5 6 24 32

Logical
Record
Area

r-------T---T------------T--------T-------------l
I I I I I L _______ ~ ___ ~ ____________ ~ ________ ~ ____________ _

~I\ ~

I
control I
data I

I
I

displacement
field

variable
data record
origin

Figure 57. Locating the QSAM Logical Record Area

Locating Data Areas for Spanned Records

QSAM: QSAM (sequential) spanned records
allocate a Logical Record Area in which
complete logical records may be assembled
(see "Record Formats"). Figure 57
illustrates the relationship between the
DCB, the Buffer Areas, and the Logical
Record Area.

1. The DCB contains the DCBBUFCB field at
a displacement of 21 bytes from the
origin of the DCB. The contents of
DCBBUFCB points to the origin of the
Buffer Control Block (BUFCB) in the
Buffer Area.

2. The BUFCB field contains an
Area-Address (A(Area») at a
displacement of 8 bytes from the
origin of the Buffer Area. The

182

Area-Address points to the origin of
the Logical Record Area.

3. The Logical Record Area contains a
displacement field at a displacement
of 5 bytes from its origin. This
field contains a value from 0 to 8
indicating the number of bytes the
record has been displaced. The
contents of this 1-7 byte field must
be added to the value 24 (the first
byte in the variable data record
origin area) in order to locate the
beginning of the logical data record
within the Logical Record Area. Note
that the first 4 bytes of the Logical
Record Area are control data
indicating the length of the Logical
Record Area (including the 4 bytes of
control data).

Note: The Logical Record Area is not
allocated for QSAM records formatted in V,
U, or F mode.

I
I
I
I
I
I
I
I
I

r---,
variable 4 variable

<----bytes----><-bytes-><----------bytes---------->
r--------------T----T--T--------------------------J
I REC-ID I LL 1111 Maximum 01 L ______________ ~ ____ ~ __ ~ _________________________ _

Logical Record Area

18 variable 4 variable
<--------bytes-------> <--bytes--><-bytes-><--------bytes-------->
r----------------------T---------T----T----T---------------------1
I BUFCB I REC-ID I LL I 111 Data Segment L ______________________ ~ _________ ~ ____ ~ ____ ~ ____________________ _

-- --.......-= -------- ~ ~
Buffer

Control Block
Segment Work Area

___ J

Figure 58. Logical Record Area and Segment Work Area for BDAM and BSAM Spanned Records

BSAM.and BDAM: BSAM and BDAM (direct)
spanned records allocate a Segment Work
Area. This work area is used for temporary
storage of record segments before a
complete logical record is assembled in the
Logical Record Area. Figure 58 illustrates
the Logical Record Area and the Segment
Work Area.

2. The DECB address plus 12 bytes points
to the beginning of the Logical Record
Area.

1. The DECB address plus 12 bytes points
to the beginning of the Segment Work

Note: The segment work area is not Area.
allocated for BSAM and BDAM records
formatted in v, U, or F mode.

The following discussion illustrates the
relationship between the DCB, the Logical
Record Area, and the Segment Work Area as
shown in,Figure 58.

1. The DeB address plus 100 bytes points
to the beginning of the BUFCB (Buffer
Control Block).

2. The contents of the BL assigned to the
level-Ol entry in an FD points to the
Logical Record Area labeled "Maximum
01" in Figure 58 (see Figure 56 for an
example of the BL pointer.)

BSAM.output

1. The DCB address plus 76 bytes points
to the beginning of the BUFCB (Buffer
Control Block).

2. The DCB address plus 100 bytes points
to the beginning of the Logical Record
Area.

INCOMPLETE ABNORMAL TERMINATION

If a job is abnormally terminated and
the abnormal termination process goes to
completion, the following procedures are
carried out:

• A dump (ABDUMP) is produced by the
system.

• The data sets in the job steps are
disposed of as specified in the DISP
parameter (i.e., kept, deleted, etc.).
This is indicated in the job scheduler
disposition messages produced for the
job step.

• Temporary data sets, including those
passed from previous job steps, are
deleted.

Program Checkout 183

When the abnormal termination process
does not go to completion (i.e., no end of
dump message is present), none of these
procedures will be carried out. Those data
sets in the job step that were in existence
previous to the point at which the error
condition occurred will remain in effect.
For data sets on direct access volumes, the
names will remain tabulated in the Volume
Table of Contents (VTOC) of the volume (see
"Additional File Processing Information"
for details on the VTOC). The result of an
incomplete abnormal termination is that
space needed by a subsequent job will be
unavailable, or, if the same job is then
rerun, duplicate name definition will
result for those data sets that are newly
created in the job step. This is true for
temporary data sets for which the system
has assigned the name, as well as data
sets for which the programmer has assigned
the name.

SCRATCHING OATA SETS

To avoid dupl~cate name definition and
to ensure that space will be available for
newly created data sets, the programmer can
scratch his direct-access volume data sets
by using the utility program IEHPROGM. To
scratch such a data set means to remove its
data set label (which includes its name)
from the VTOC and to make the space
assigned to it available for reallocation.
Scratching does not uncatalog any cataloged
data sets. This is done by the UNCATLG
option of the IEHPROGM.

~: The information in this section
about scratching data sets applies only
when running under MFT. Under the MVT
option, direct-access volume data sets are
scratched automatically. For use of the
system utilities under MVT, see the
publication IBM System/360 Operating
System: utilities.

If a OSNAME parameter has been specified
in the 00 statement for the data set, the
IEHPROGM utility program requires the name
of the data set. For data sets named by
the programmer, the specified name is the
dsname. For data sets for which the
OSNAME=&&name convention has been used, an
internal name

name.jobname

is assigned by the system, where iobname is
the name of the job and ~ is from the
&&name. If no OSNAME parameter is
specified, an internal name is aSSigned by
the system. For data sets with no OSNAME

184

parameter there exists an opt-ion by which
the-programmer can specify that all such
data sets on the volume be scratched,
without having to specify their names.

If the programmer wishes to obtain a
listing of the names of all the data sets
on a volume, including system-assigned
internal names, he can use the utility
program IEHLIST. This program provides a
listing of the VTOC of the volume.

Information on how to use these utility
programs is contained in the publication
IBM Svstem/360 Operating System:
Vtilities. The following example
illustrates the job control statements that
might be used to scratch temporary data
sets:

//SCR
//STEPl
//SYSPRINT
//001
//002
//

//SYSIN

/*

JOB
EXEC
DO
00
DO

, SCRATCH, MSGLEVEL=l
PGM=IEHPROGM
SYSOUT=A
UNIT=231l,OISP=OLO
UNIT=23ll,OISP=OLO,
VOLUME=SER=222222

DO *

X

SCRATCH OSNAME=GOJOB. TEMP, X
VOL=23ll=222222,PURGE

SCRATCH VTOC,VOL=23ll=222222,X
SYS, PURGE

In this example, the SYSPRINT DD
statement specifies the output data set for
the listing and the DOl DO statement
specifies the system residence volume. The
other 00 statements specify the volume
serial number of the volumes that can be
mounted on which the data sets have been
written. These DO statements are needed to
allocate the required devices. The first
SCRATCH statement eliminates a data set for
which OSNAME=&&TEMP had been specified on
the DO statement, and the second SCRATCH
statement eliminates all data sets on the
volume for which no OSNAME parameter had
been specified.

Note that the possibility of duplicate
name definition also applies to cataloged
procedures in which temporary data sets are
used.

For those procedures that are executed
often, the programmer may wish to include,
at the beginning of his job, a procedure to
scratch all temporary data sets.

Some techniques for increasing the
efficiency of a COBOL program are described
in this chapter. It is divided into six
parts. The first four parts deal in
general with coding a COBOL program. The
fifth is concerned with the Report Writer
feature and the last with Table Handling.

GENERAL CONSIDERATIONS

Spacing the Source Program Listing

There are four statements that can be
coded in any or all of the four divisions
of a source program: SKIP1, SKIP2, SKIP3,
and EJECT. These statements provide the
user with the ability to control the
spacing of a source listing and thereby
improve its readability.

ENVIRONMENT DIVISION

APPLY WRITE-ONLY Clause

To make optimum use of buffer space
allocated when creating a standard
sequential file with blocked V-mode
records, the programmer may use the APPLY
WRITE-ONLY clause for the file. Use of
this option causes a buffer to be truncated
only when the next record does not fit in
the buffer. (If the APPLY WRITE-ONLY
clause is not specified, the buffer is
truncated when the maximum size record will
not fit in the space remaining in the
buffer.) When using APPLY WRITE-ONLY, all
the WRITE statements must have FROM
options. None of the subfields of the
associated records may be referred to by
procedure statements and they may not be
the object of the DEPENDING ON option in an
OCCURS clause.

QSAM Spanned Records

Except for APPLY WRITE-ONLY, ADVANCING,
POSITIONING, and APPLY RECORD-OVERFLOW, all
the options for variable length record
files apply to spanned records.

PROGRAMMING TECHNIQUES

APPLY RECORD-OVERFLOW Clause

The APPLY RECORD-OVERFLOW clause makes
more efficient use of direct access storage
space by using the Track Overflow feature.
If APPLY RECORD-OVERFLOW is specified, a
record that does not fit on a track will be
partially written on that track and the
remainder will be written on the next
available track.

The use of the APPLY RECORD-OVERFLOW
option requires that Track Overflow be
specified at system generation time.

To minimize processing time with indexed
files accessed randomly, the programmer
should use the APPLY CORE-INDEX clause.
Use of this option causes the highest level
index to be brought into core storage for
input/output operations. This speeds
processing by eliminating the extra time
needed to search the index on the volume.

The use of BDAM-W for file organization
results in less system generated coding
than for BDAM-D. When BDAM-D is used and a
WRITE statement is issued, extra code must
be generated to compare the contents of the
ACTUAL KEY of the WRITE statement with the
key of the preceding READ statement to
determine whether the sys~cem should add or
update a record. If the keys are the same
the record is updated. If the keys are
different the record is added.

BDAM-W eliminates this comparison step.
The system adds a record when a WRITE
statement is issued and updates a record
when a REWRITE statement is issued.

Programming Techniques 185

DATA-DIVISION

OVERALL CONSIDERATIONS

Prefixes

Assign a prefix to each level-Ol item in
a program, and use this prefix on every
subordinate item (except FILLER) to
associate a file with its records and
work-areas. For example, MASTER is the
prefix used here:

FILE SECTION.
FD MASTER-INPUT-FILE

01 MASTER-INPUT-RECORD.

WORKING-STORAGE SECTION.
01 MASTER-WORK-AREA.

05 MASTER-PAYROLL PICTURE 9(3).
05 MASTER-SSNO PICTURE 9(9).

If files or work-areas have the same
fields, use the prefix to distinguish
between them. For example, if three files
all have a date field, instead of DATE,
OAT, and DA-TE, use MASTER-DATE,
DETAIL-DATE, and REPORT-DATE. Using a
unique prefix for each level-Ol and all
subordinate fields makes it easier for a
person unfamiliar with the program to find
fields in the program listing, and to know
which fields are logically part of the same
record or area.

When using the MOVE statement with the
CORRESPONDING option and referring to
individual fields, redefine or rename
"corresponding" names with the prefixed
unique names. This technique eliminates
excessive qualifying. For example:

01 MST-WORK-AREA.

186

05 SAME-NAMES. (***)
10 LAST-NAME PIC •••
10 FIRST-NAME PIC •••
10 PAYROLL PIC •••

05 DIFF-NAMES REDEFINES SAME-NAMES.
10 MST-LAST-NAME PIC •••
10 MST-FIRST-NAME PIC •••
10 MST-PAYROLL PIC •••

01 RPT-WORK-AREA.
05 SAME-N~iliS. (***>

10 PAYROLL PIC •••
10 FILLER PIC •••
10 FIRST-NAME PIC •••
10 FILLER PIC •••
10 LAST-NAME PIC •••

PROCEDURE DIVISION.

IF MST-PAYROLL IS EQUAL TO HDQ-PAYROLL
AND MST-LAST-NAME
IS NOT EQUAL TO PRRV-LAST-NAME
MOVE CORRESPONDING
MST-WORK-AREA
TO RPT-WORK-AREA.

Note: Fields marked with a triple asterisk
(***> in the foregoing listing must have
exactly the same names for their
subordinate fields in order to be
considered corresponding. The same names
must not be the redefining ones, or they
will not be considered to correspond.

The programmer should use widely
incremented level numbers, i.e., 01, 05,
10, 15, etc., instead of 01, 02, 03, 04,
etc., in order to allow room for future
insertions of group levels. For
readability, indent level numbers. Use
level-88 numbers for codes. Then, if the
codes must be changed, the Procedure
Division coding for tests need not be
changed.

FILE SECTION

The programmer should use the RECORD
CONTAINS integer CHARACTERS clause in order
to save himself as well as any future
programmer the task of counting the data
record description positions. Also, the
compiler can then diagnose errors if the
data record description conflicts with the
RECORD CONTAINS clause.

WORKING-STORAGE SECTION

Separate Modules

In a large program, the programmer
should plan ahead for breaking the programs
into separately compiled modules, as
follows:

1. When employing separate modules, an
attempt should be made to combine
entries of each Working-Storage
section into a single level-Ol record
(or one level-Ol record for each 32K
bytes). Logical record areas can be
indicated by use of level-02, level-03
etc., entries. A CALL statement with
the USING option is more efficient
when a single item is passed than when
many level-Ol and/or level-77 items
are passed. When this method is
employed, mistakes are more easily
avoided.

2. Areas that do not have VALUE clauses
should be separated from areas that do
need VALUE clauses. VALUE clauses
(except for level-88 items, are
invalid in the Linkage Section.

3. When the Working-Storage Section is
one level-Ol item with no VALUE
clauses, the COpy statement can easily
be used to include the item as the
description of a Linkage Section in a
separately compiled module.

4. See "Use of Segmentation Feature" for
more information on how to modularize
the Procedure Division of a COBOL
program.

Locating the Working-Storage Section in
Dumps

A simple method of locating the
Working-storage Section of a program in
object-time dumps is to include the two
following statements as the first and last
Working-Storage statements, respectively,
in the program.

77 FILLER PICTURE X(44), VALUE "PROGRAM
XXXXXXXX WORKING-STORAGE BEGINS HERE".

01 FILLER PICTURE X(42), VALUE "PROGRAM
XXXXXXXX WORKING-STORAGE ENDS HERE".

These two nonnumeric literals will
appear in all dumps of the program,
delineating the Working-Storage Section.
The program-name specified in the

PROG.RAM-ID clause should replace the
XXXXXXXX in the literal.

DATA DESCRIPTION

The Procedure Division operations that
most often require adjustment of data items
include the MOVE statement, the IF
statement when used in a relation test, and
arithmetic operations. Efficient use of
data description clauses, such as
REDEFINES, PICTURE, and USAGE, avoids the
generation of extra code.

REDEFINES Clause

REUSING DATA AREAS: The main storage area
can be used more efficiently by writing
different data descriptions for the same
data area. For example, the coding that
follows shows how the same area can be used
as a work area for the records of several
input files that are not processed
concurrently:

WORKING-STORAGE SECTION.
01 WORK-AREA-FILE1.

(largest record description for FILE1)

01 WORK-AREA-FILE2 REDEFINES
WORK-AREA-FILE1.

(largest record description for FILE2)

ALTERNATE GROUPINGS AND DESCRIPTIONS:
Program data can often be described more
efficiently by providing alternate
groupings or data descriptions for the same
data. For example, a program refers to
both a field and its subfields, each of
which is more efficiently described with a
different usage. This can be done with the
REDEFINES clause as follows:

01 PAYROLL-RECORD.
05 EMPLOYEE-RECORD PICTURE X(28).
05 EMPLOYEE-FIELD REDEFINES

EMPLOYEE RECORD.
10 NAME PICTURE X(23).
10 NUMBERX PICTURE S9(5) COMPo

05 DATE-RECORD PICTURE X(10).

As an example of different data
descriptions specified for the same data,
the following illustrates how a table
(TABLEA) can be initialized:

Programming Techniques 187

05 VALUE-A.
10 Al PICTURE S9(9) COMPUTATIONAL

VALUE IS ZEROES.
10 A2 PICTURE S9(9) COMPUTATIONAL

VALUE IS 1.

10 Al00 PICTURE S9(9)
COMPUTATIONAL VALUE IS 99.

05 TABLEA REDEFINES VALUE-A
PICTURE S9(9) COMPUTATIONAL

OCCURS 100 TIMES.

Note: Caution should be exercised when
redefining a subscript, for if the value of
the redefining data item is changed in the
Procedure Division, no new calculation for
the subscript is performed.

PICTURE Clause

DECIMAL-POINT ALIGNMENT: Procedure
Division operations are most efficient when
the decimal positions of the data items
involved are aligned. If they are not, the
compiler generates instructions to align
the decimal positions before any operations
involving the data items can be executed.
This is referred to as scaling.

Assume, for example, that a program
contains the following instructions:

WORKING-STORAGE SECTION.
77 A PICTURE S999V99.
77 B PICTURE S99V9.

PROCEDURE DIVISION.

ADD A TO B.

Time and internal storage space are
saved by defining Bas:

77 B PICTURE S99V99.

If it is inefficient to define B differ
ently, a one-time conversion can be done,
as explained in "Data Format Conversion."

FIELDS OF UNEQUAL LENGTH: When a data item
is moved to another data item of a
different length, the following should be
considered:

• If the items are external decimal
items, the compiler generates
instructions to insert zeros in the
high-order positions of the receiving
field when it is the larger.

188

• If the items are nonnumeric, the
compiler generates instructions to
insert spaces in the low-order
positions of the receiving field (or
the high-order positions if the
JUSTIFIED RIGHT clause is specified.
This generation of extra instructions
can be avoided if the sending field is
described with a length equal to or
greater than the receiving field.

Use_2f_2igg: The absence or presence of a
plus or minus sign in the description of an
arithmetic field often can affect the
efficiency of a program. The following
paragraphs discuss some of the
considerations.

Decimal Items: The sign position in an
internal or external decimal item can
contain:

1. A plus or minus sign. If S is
specified in the PICTURE clause, a
plus or minus sign is inserted when
either of the following conditions
prevail:

a. The item is in the Working-Storage
section and a VALUE clause has
been specified

b. A value for the item is assigned
as a result of an arithmetic
operation during execution of the
program

If an external decimal item is
punched, printed, or displayed, an
overpunch will appear in the low-order
digit. In EBCDIC, the configuration
for low-order zeros normally is a non
printable character. Low-order digits
of positive values will be represented
by one of the letters A through I
(digits 1 through 9); low-order digits
of negative values wilt be represented
by one of the letters J through R
(digits 1 through 9).

2. A hexadecimal F. If S is not
specified in the PICTURE clause, an F
is inserted in the sign position when
either of following conditions
prevail:

a. The item is in the Working-Storage
Section and a VALUE clause has
been specified

b. A value for the item is developed
during the execution of the
program

An F is treated as positive, but is
not an overpunch.

Table 23. Data Format Conversion
r---------T------~-----T---------T-----------------T-----------T------------------------,
I I I I I Converted I I
I I 1 Boundary I 1 f or I \
\ I Bytes I Alignment I IArithmetic I \
\ Usage I Required \ Required, Typical Use IOperations I Special Characteristics '\
~---------+------------+---------+-----------------+-----------+------------------------~
I DISPLAY 11 per digit I No IInput from cards, 1 Yes IMay be used for numeric \
\ (external 1 (except for I I output to I 1 fields up to 18 digits I
I decimal) IV) I I cards, listings I 1 long. I
\ I I' I IFields over 15 digits I
I I I I I I require extra in- 1
\ 1 I I I 1 structions if used in I
\ I I I I I computations. ,
~---------+------------t---------t-----------------t-----------+------------------------~
I DISPLAY 11 per char- I No IInput from cards, I Yes Iconverted to ,
I (external I acter I I output to II COMPUTATIONAL-2 I
Ifloating I (except for I I cards, listings I I format via COBOL ,
I point) IV) I I I I library sUbroutine. I
~---------t------------t---------t-------------~---t-----------+-------~----------------~
ICOMP-3 1 byte per I No IInput to a reportlsometimes IRequires less space than
I (internal 2 digits I I item Iwhen a I DISPLAY.
decimal) plus 1 byte I I IsmaIl

for the low-I IArithmetic fieldslCOMP-3 Convenient form for
decimal alignment. order digit I I litem is

and sign I I lused with
I IWork areas la small Can b~ used in
'I 1 COMP ari thmetic computa-
'I litem. tions without
I I I conversion.
I I 1 Fields over 15 digits
I I I require a subroutine
1 I 1 when used in
I I I computations.

~---------+------------t---------t-----------------+-----------t------------------------~
COMP 2 if 1~N~4 halfword Subscripting I Sometimes IRounding and testing for
(binary) Ifor both I the ON SIZE ERROR con-

4 if 5~N~9 fullword Arithmetic fieldslmixed and I dition are cumbersome

8 if 10~N~18
where N is
the number
of 9s in the
PICTURE
clause

fullword
lunmixed I if calculated result
1 usages 1 is greater than 9(9).
1 IExtra instructions are
I 1 generated for binary
1 I computations if the
1 I SYMCHRONIZED clause is
I I not specified.
I IFields of over 9 digits
1 1 require more handling.

~---------+------------t---------t-----------------t-----------+------------------------~
ICOMP-l 14 (short- Ifullword IFractional expo- I No ITends to produce less I
I (internallprecision) I I nentiation I I accuracy if more than I
,floating I I I I' 17 significant digits ,
I point) I I I I I are required and if \
I I I I I I the exponent is big. ,
I I I I I I Requires floating- 1
I I I I I I point £eature. I
I I I I I I Extra instructions are I
I I I I I I generated if the I
I I I I I I SYNCHRONIZED clause isl
I , I' 'I not specified. ,
~---------+------------+---------+------------~----+-----------+------------------------~
'COMP-2 18 (long- I double- IFractional expo- I No ISame as COMPUTATIONAL-l I
I (internal I precision) 1 word I nentiation when I I ,
I floa ting I I I more precision I I I
I point) I I I is required I I I l _________ ~ ____________ ~ _________ ~ _________________ ~ ___________ ~ ________________________ J

Programming Techniques 189

3. An invalid configuration. If an
internal or external decimal item
contains an invalid configuration in
the sign position, and if the item ~s
involved in a Procedure Division
operation, the program will be
abnormally terminated.

Items for which no S has been specified
(unsigned items) are treated as absolute
values. Whenever a value (signed or
unsigned) is stored in, or moved in an
elementary move to an unsigned item, a
hexadecimal F is stored in the sign
position of the unsigned item. For
example, if an arithmetic operation
involves signed operands and an unsigned
result field, compiler-generated code will
insert an F in the sign position of the
result field when the result is stored.

For internal and external decimal items
used as input, it is the user's
responsibility to ensure that the input
data is valid. The compiler does not
generate a test to ensure that the
configuration in the sign position is
valid.

r- When a group item is involved in a ~,
the data is moved without regard to the
level structure of the group items
involved. The possibility exists that the
configuration in the sign position of a
subordinate numeric item may be destroyed.
Therefore, caution should be exercised in
moves involving group items with
subordinate numeric fields or with other

t.:roup operations such as READ or ACCEPT.

USAGE Clause

This clause should be written at the
highest level possible.

DATA-FORMAT CONVERSION: Operations
involving mixed, elementary numeric data
formats require conversion to a common
format. This usually means that additional
storage is used and execution time is
increased. The code generated must often
move data to an internal work area, perform
any necessary conversion, and then execute
the indicated operation. often, too, the
result may have to be converted in the same
way (see Table 23).

If it is impractical to use the same
data formats throughout a program, and if
two data items of different formats are
frequently used together, a one-time
conversion can be effected. For example,
if A is defined as a COMPUTATIONAL item and
B as a COMPUTATIONAL-3 item, A can be moved
to a work area that has been defined as

190

COMPUTATIONAL-3. This move causes the data
in A to be converted to COMPUTATIONAL-3.
Whenever A and B are used in a Procedure
Division operation, reference can be made
to the work area rather than to A. Using
this technique, the conversion is performed
only once, instead of each time an
operation is performed.

The following eight cases show how data
conversions are handled on mixed elementary
items for names, data comparisons, and
arithmetic operations. Moves to and from
group items, without the CORRESPONDING
option, as well as comparisons involving
group items, are done without conversion.

~umeric DISPLAY to COMPUTATIONAL-3:

To Move Data: Converts DISPLAY data to
COMPUTATIONAL-3 data.

To Compare Data: Converts DISPLAY data
to COMPUTATIONAL-3 data.

To Perform Arithmetic QE~~~~!Qg~:
Converts DISPLAY data to COMPUTATIONAL-3
data.

Numeric DISPLAY to COMPUTATIONAL:

To Move Data: Converts DISPLAY data to
COMPUTATIONAL-3 data and then to
COMPUTATIONAL data.

To_~omp~~~_Data: Converts DISPLAY to
COMPUTATIONAL-3 and then to
COMPUTATIONAL or converts both DISPLAY
and COMPUTATIONAL data to
COMPUTATIONAL-3 data.

To Perform Arithmetic Operations:
Converts DISPLAY data to COMPUTATIONAL-3
or COMPUTATIONAL data.

COMPUTATIONAL-3 to COMPUTATIONAL:

TO_~QY~_Q~~~: Moves COMPUTATIONAL-3
data to a work field and then converts
COMPUTATIONAL-3 data to COMPUTATIONAL
data.

To Compare Data: Converts COMPUTATIONAL
data to COMPUTATIONAL-3 or vice versa,
depending on the size of the field.

~Q_~~rfQrm_Ar!thme~ic QE~~~~!on~:
Converts COMPUTATIONAL data to
COMPUTATIONAL-3 or vice versa, depending
on the size of the field.

Page of GC28-6399-2, Revised 4/15/73, by TNL 3N28-1038

COMPUTATIONAL to.COMPUTATIONAL-3:

To Move Data: Converts COMPUTATION~L
data to COMPUTATIONAL-3 data in a work
field, then moves the work field.

To Compare Data; Converts COMPUTATIONAL
to COMPUTATIONAL-3 data or vice versa,
depending on the size of the field.

To Preform Arithmetic Operations:
Converts COMPUTATIONAL to
COMPUTATIONAL-3 data or vice versa,
depending on the size of the field.

COMPUTATIONAL.to-Numeric DISPLAY:

To . Move Data': Converts COMPUTATION~L
data to COMPUTATIONAL-3 data and then to
DISPLAY data.

To Compare-Data: Converts DISPLAY to
COMPUTATIONAL or both COMPUTATIONAL and
DISPLAY data to COMPUTATIONAL-3 ,data,
depending on the size of the field.

To Perform.Arithmetic Operations:
Depending on the size ot the field,
converts DISPLAY data to COMPUTATIONAL
data, or both DISPLAY and COMPUTATIONAL
data to COMPUTATIONAL-3 data in which
case the ~esult is generated in a
COMPUTATIONAL-3 work area and th~n
converted and moved to the DISPLAY
result field.

COMPUTATIONAL-3-to-Numeric DISPLAY:

To Move Data; Converts COMPUTATIONAL-3
data to DISPLAY data.

To Compare.Data: Converts DISPLAY data
to COMPUTATIONAL-3 data.

T9 Perform.Arithmetic Operations:
Converts DISPLAY data to COMPUTATIONAL-3
data. The result is generated in a
COMPUTATIONAL-3 work area and is then
converted and moved to the DISPLAY
result field. '

*- Nu.meric -DISPLAY -to .. Numeric DISPLAY:

To Perform Arithmetic Operations:
Converts all DISPLAY data to
COMPUTATIONAL-3 data. The result is
generated in a COMPUTATIONAL-3 work area
and is then converted to DISPLAY and
moved to the DISPLAY result field.

External Floating-Point. to Any Other:

When an external floating-point item is
to be used in an arithmetic operation or in
data manipulation, precision errors may
occur due to required conversions.

Internal Floating-Point to Any Other:

When an item described as
COMPUTATIONAL-lor COMPUTATIONAL-2
(internal floating-point) is used in an
operation with another data format, the
item in the other data format is always
converted to internal floating-point. If
necessary, the internal floating-point
result is then converted to the format of
the other data item.

SYNCHRONIZED Clause

DATA FORMATS: As shown in Table 23,
COMPUTATIONAL, COMPUTATIONAL-1, and
COMPUTATIONAL-2 items,have specific
boundary alignment requirements. ro ensure
correct alignment, either the prog~ammer or
the compiler may have to add slack bytes,
or the compiler must generate instructions
to move the item to a correctly aligned
work area when reference is made to the
item.

The SYNCHRONIZED clause may be used at
the elementary level to specify the,
automatic alignment of elementary items on
their proper boundaries or at level-01 to
synchronize all elementary items within the
group. For COMPUTATIONAL items, if ·the
PICTURE is in the range of S9 through
S9 (4), the item is aligned on a halfword.
boundary. If the PICTURE is in the range.
of S9(5) through S9(18), the item is
aligned on a fullword boundary. For·
COMPUTATIONAL-1 items, the item is aligned
on a fullword boundary. For
COMPUTATIONAL-2 items, the item is aligned
on a double~word boundary. The
SYNCHRONIZED clause and slack bytes are
fully discussed in the publication IBM ~
System/360 Operating System: Full ~merican
National Standard COBOL.

Special Considerations for DISPLAY and
COMPUTATIONAL Fields

NUMERIC DISPLAY FIELDS: Zeros are not
inserted into numeric DISPL~Y fields by the_
instruction set. When numeri~ DISPL~Y data
is moved, the compiler generates
instructions that insert any necessary
zeros into the DISPLAY fields. When
numeric DISPLAY data is compared, and one
field is smaller than the other, the
compiler generates instructions to move the
smaller item to a work area where zeros are
inserted.

Programming Techniques 191

COMPUTATIONAL FIELDS: COMPUTATIONAL fields
can be aligned on either a halfword or
fullword boundary. If an operation
involves COMPUTATIONAL fields of different
lengths, the halfword field is
automatically expanded to a full word field.
Therefore, mixed halfword and fullword
fields require no additional operations.

COMPUTATIONAL-lAND COMPUTATIONAL-2 FIELDS:
If an arithmetic operation involves a
mixture of short-precision and
long-precision fields, the compiler
generates instructions to expand the
short-precision field to a long-precision
field before the operation is executed.

COMPUTATIONAL-3FIELDS: The compiler does
not have to generate instructions to insert
high-order zeros for ADD and SUBTRACT
statements that involve COMPUTATIONAL-3
data. The zeros are inserted by the
instruction set.

Data-Formats in-the computer

The various COBOL data formats and how
they appear in the computer in EBCDIC
<Extended Binary-Coded-Decimal Interchange
Code) format are illustrated by the
following examples. More detailed
information about these data formats
appears in the publication IBM System/360
Principles of Operation, Order
No. A22-6821.

Numeric DISPLAY (External Decimal):
Suppose the value of an item is -1234, and
the PICTURE and USAGE are:

PICTURE 9999 DISPLAY.

or

PICTURE S9999 DISPLAY.

The item appears in the computer in the
following forms respectively:

I Fl I F2 I F3 I F4 I L ____ ~ ____ ~ ____ ~ ____ J

~

Byte

I Fl I F2 I F3 I D4 I L ____ ~ ____ ~ ____ ~ ____ J

'-v--'

Byte

Hexadecimal F is treated arithmetically as'
plus in the_Iow-order byte. The
hexadecimal character D represents a
negative sign.

192

COMPUTATIONAL~3 (Internal Decimal):
suppose-the-Value-of-an-Item-Is-;1234, and
its PICTURE and USAGE are:

PICTURE 9999 COMPUTATIONAL-3.

or

PICTURE S9999 COMPUTATIONAL-3.

The item appears in the computer in the
following forms, respectively:

I 01 I 23 I 4F I L ____ ~ ____ ..L ____ J

'-v--'

Byte

I 01 I 23 I 4C I
L ____ ..L ____ ..L ____ J

'-v--'

Byte

Hexadecimal F is treated arithmetically as
positive. The hexadecimal character C
represents a plus sign.

Note: Since the low-order byte of an
internal decimal number always contains a
sign field, an item with an odd number of
digits can be stored more efficiently than
an item with an even number of digits.
Note that a leading zero is inserted in the
foregoing example.

QQ~Q!~!!Q~~~_~!gary~: Suppose the value
of an item is 1234, and its PICTURE and
USAGE are:

PICTURE S9999 COMPUTATIONAL.

The item appears in the computer in the
following form:

I 0000 I 0100 I 1101 I 0010 I L ______ ..L ______ ..L ______ ..L ______ J

. t
s~gn

position

A O-bit in the sign position means the
number is positive. Negative numbers are
represented in two's complement form: thus,
the sign position of a negative number will
always contain a I-bit.

For example -1234 would appear as
follows:

I 1111 I 1011 I 0010 I 1110 I L ______ ..L ______ ..L ______ ..L ______ J

. t
s~gn

position

Binary Item Manipulation: A binary item is
allocated storage ranging from one halfword
to two words, depending on the number of 9s
in its PICTURE. Table 24 is an
illustration of how the compiler allocates
this storage. Note that it is possible for
a value larger than that implied by the
PICTURE to be stored in the item. For
example, PICTURE S9(4) implies a maximum
value of 9,999, although it could actually
hold the number 32,767.

Because most binary items are
manipulated according to their allotted
storage capacity, the programmer can ignore
this situation. For the following reasons,
however, there are some cases where he must
be careful of his data:

1. When the ON SIZE ERROR option is used,
the size test is made on the basis of
the maximum value allowed by the
picture of the result field. If a
size error condition exists, the value
of the result field is not altered and
control is given to the imperative
statements specified by the error
option.

2. When a binary item is displayed or
exhibited, the value used is a
function of the number of 9s specified
in the PICTURE clause.

3. When the actual value of a positive
number is significantly larger than
its picture value, a 1 could result in
the sign pos.ition of the item, causing
the item to be treated as a negative
number in subsequent operations.

Table 25 illustrates three binary
manipulations. In each case, the result

field is an item described as PICTURE S9
COMPUTATIONAL. One halfword of storage has
been allocated; and no ON SIZE ERROR option
is involved. Note that if the ON SIZE
ERROR option had been specified, it would
have been executed for cases Band C.

COMPUTATIONAL-lor COMPUTATIONAL-2
(Floating Point): Suppose the value of an
item is +1234, and that its USAGE is
COMPUTATIONAL-1, the item appears in the
computer in the following form:

101100 001110100 1101 0010 0000 0000 00001
L_~ _________ ~ _____________________________ J

S 1 7 8 31

S is the sign position of the number.

A O-bit in the sign position indicates
that the sign is plus.

A 1-bit in the sign position indicates
that the sign is minus.

Bits 1 through 7 are the exponent
(characteristic) of the number.

Bits 8 through 31 are the fraction
(mantissa) of the number.

This form of data is referred to as
floating-point. The example illustrates
short-precision floating-point data
(COMPUTATIONAL-i). In long-precision
<COMPUTATIONAL-2), the fraction length is
56 bits. (For a detailed explanation of
floating-point representation, see the
publication !~~~yst~mLl60_~fi~£ipl~~_Qf
Opef~tiQ!!·

Table 24. Relationship of PICTURE to Storage Allocation
r------------------------T----------------------------T---------------------------------,
1 PICTURE 1 Maximum Working Value 1 Assigned Storage 1
~------------------------+----------------------------+---------------------------------~
IS9 through S9(4) 1 32,7671 one halfword 1
1 I I 1
IS9(5) through S9(9) I 2,147,483,6471 one fullword I
I 1 I I
IS9(10) through S9(18) 1 9,223,372,036,854,775,8071 two fullwords 1 L ________________________ ~ _____________________ -------~ _________________________________ J

Programming Techniques 193

Table 25. Treatment of Varying Values in a Data Item of PICTURE S9
r------T------------------------T-------------T-------------------------T---------------,
I I Hexadecimal Result of I Decimal I Actual Decimal Value I Display or I

I Case I Binary Calculation I Equivalent I in Halfword of Storage I Exhibit Value I

~------f------------------------f-------------f-------------------------f---------------~
I A I 0008 I 8 I +8 I 8 I

~------f------------------------+-------------+-------------------------+---------------~
I B I OOOA I 10 I +10 I 0 I
~------+------------------------f-------------+-------------------------f---------------~
I C I C350 I 50000 I -15536 I 6 I L ______ ~ ________________________ ~ _____________ ~ _________________________ ~ _______________ J

PROCEDURE DIVISION

A program can often be made more
efficient or easier to debug in the
Procedure Division with some of the
techniques described below.

MODULARIZING THE PROCEDURE DIVISION

When the Procedure Division is
modularized, programs are easier to
maintain and document. In addition,
modularization makes it simple to break
down a program using the segmentation
feature, thereby resulting in a more'
efficient segmented program.
Modularization of the Procedure Division
involves organizing it into at least three
functional levels: a main-line routine,
processing subroutines, and input/output
subroutines.

Main-Line Routine

This routine should be short, simple,
and contain all the major logical decisions
of the program. This routine controls
which second-level subroutines are executed
and in what order. All second-level
subroutines should be invoked from the
main-line routine by PERFORM statements.

Processing Subroutines

These should be broken down into as many
functional levels as necessary, depending
on the complexity of the program. These
must be completely closed subroutines, with
one entry point and one exit point. The
entry point should be the first statement
of the subroutine. The exit point should
be the EXIT statement. The processing
subroutines can perform only lower level
subroutines; return to the higher level
subroutine (processing subroutine) must be

194

made by a GO TO statement, which references
the EXIT statement.

These should be the lowest level
subroutines, since all higher level
subroutines should have access to them.
There should be one OPEN subroutine and one
CLOSE subroutine for the program, and only
one functional (READ or WRITE) subroutine
for each file. One READ or WRITE
subroutine per file, which is always
performed, has several advantages:

1. Coding can be added to count records
on a file, transform blanks into
zeros, check for 9s padding, etc.

2. Input and output files can be
reformatted without changing the logic
of the program.

3. DEBUG statements can be added during
testing to create input or to DISPLAY
formatted output, instead of having to
create a test file.

INTERMEDIATE RESULTS

The compiler treats arithmetic
statements as a succession of operations
and sets up intermediate result fields to
contain the results of these operations.
Examples of such statements are the
arithmetic statements, and statements
containing arithmetic expressions. In the
publication IBM S~~~m/3~Q_QE~~~~!~g
2Yst~m~_~~II_Am~~ican ~~~!Qg~!_§i~g~~~~
COBQ~, the section "Appendix A:
Intermediate Results" describes the
algorithms used by the compiler to
determine the number of places reserved for
intermediate result fields.

Intermediate Results and Binary Data Items

If an operation involving binary
operands requires an intermediate result
greater than 18 digits, the compiler
converts the operands to internal decimal
before performing the operation. If the
result field is binary, the result will be
converted from internal decimal to binary.

If an intermediate result will not be
greater than pine digits, the operation is
performed most efficiently on binary data
fields. '

Intermediate Results and COBOL Library
Subroutines

If a decimal multiplication operation
requires an intermediate result greater
than 30 digits, a COBOL library subroutine
is used to perform the multiplication. The
result of this multiplication is then
truncated to 30 digits.

A COBOL library subroutine is used to
perform division if:

1. the scaled divisor is greater than 15
digits.

2. the length of the scaled divisor plus
the length of the scaled dividend is
greater than 16 bytes. The lengths of
the operands are internal decimal.

3. the scaled dividend is greater than 30
digits (a scaled dividend is a number
that has been multiplied by a power of
ten in order to obtain the desired
number of decimal places in the
quotient).

Intermediate Results Greater than 30 Digits

Whenever the number of digits in a
decimal intermediate result is greater than
30, the field is truncated to 30 digits. A
warning message will be generated at
compile time, and program flow will not be
interrupted at execution time. This
truncation may cause a result to be
incorrect.

If binary or internal decimal data is in
accord with its data description, no
interrupt can occur because of an overflow
condition in an intermediate result. This
is due to the truncation described in the
preceding paragraph.

If the possibility exists that an
intermediate result field may exceed 30
digits, truncation can be avoided by the
specification of floating-point operands
(COMPUTATIONAL-lor COMPUTATIONAL-2)i
however, accuracy may not be maintained.

Intermediate Results and Floating-Point
Data_!~~ms

If a floating-point operand has an
intermediate result field in which exponent
overflow occurs, the job will be abnormally
terminated.

Intermediate Results and the ON SIZE ERROR
QEtiQ~------------------------------------

The ON SIZE ERROR option applies only to
the final calculated results and not to
intermediate result fields.

VERBS

If end-of-file is reached on SYSIN, no
further I-O requests will be made for the
file, and if the number of records existing
is not enough to fill it, that portion of
the receiving field exceeding the current
capacity of the input records will remain
as it was before the ACCEPT statement.

There are two ways in which to use the
CLOSE statement when closing several files:

CLOSE DETAIL-FILE MASTER-FILE.

or

CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.

Each CLOSE statement for a file requires
the use of a storage area that is directly
proportional to the number of files being
closed. ClQsing more than one file w~h
the same statement is~ than when
us1ng a se~arate &~aL ent for each file.
However, separate statements require less
storage.
~

Programming Techniques 195

COMPUTE statement

The use of the COMPUTE statement
generates more efficient coding than does
the use of individual arithmetic statements
because the compiler can keep track of
internal work areas and does not have to
store the results of intermediate
calculations. It is the user's
responsibility, however, to insure that the
data is defined with the level of
significance required in the answer.

IF Statement

Nested and compound IF statements should
be avoided as the logic is difficult to
debug.

\

Performing an IF operation for an item
greater than 256 bytes in length requires
the generation of more instructions than
are required for that of an IF operation
for an item of 256 bytes or less.

The ALL figurative constant can be used
in an IF statement to generate a CLI
instruction rather than a CLC instruction
if the field being tested is a one-byte
field. For example, the statement

IF FIELD-1 IS EQUAL TO ALL '1' GO TO PARA-1

will generate a CLI instruction. The same
statement without the ALL figurative
constant will generate a CLC instruction.

MOVE Statement

Performing a MOVE operation for an item
greater than 256 bytes in length requires
the generation of more instructions than
are required for that of a MOVE operation
for an item of 256 bytes or less.

When a MOVE statement with the
CORRESPONDING option is executed, data
items are considered CORRESPONDING only if
their respective data names are the same,
including all implied qualification, up to,
but not including, the data-names used in
the MOVE statement itself.

For example,

01 AA 01 XX
05 BB 05 BB

10 CC 10 CC
10 DD 10 DD

05 EE 05 YY
10 FF 10 FF

196

The statement MOVE CORRESPONDING AA TO XX
will result in moving CC and DD but not FF
because FF of EE does not correspond to FF
of YY.

The compiler assumes that the data being
moved conforms to PICTURE and USAGE
specifications. If it does not, dissimilar
results will occasionally occur because of
the different code generated for various
sending and receiving fields. This fact is
most apparent when the sending field is
COMPUTATIONAL, the value in the item
exceeds the number of digits specified in
the PICTURE clause, and the option NOTRUNC
is in effect.

Note: The other rules for MOVE
CORRESPONDING, of course, must still be
satisfied.

NOTE Statement

An asterisk <*> should be used in place
of the NOTE statement, because there is the
possibility that when NOTE is the first
sentence in a paragraph, it will
inadvertently cause the whole paragraph to
be treated as part of the NOTE.

OPEN Statement

There are two ways in which to use the
OPEN statement when opening several files:

OPEN INPUT INFILE UPDATES OUTPUT OUTFILE

or

OPEN INPUT INFILE
OPEN INPUT UPDATES
OPEN OUTPUT OUTFILE

Each OPEN statement for a file requires
the use of a storage area that is directly
proportional to the number of files being
opened. Opening more than one file with
the same statement is faster than using a
separate statement for each file. However,
separate statements require less-sto.rage-;

PERFORM Verb

PERFORM is a useful verb if the
programmer adheres to the following rules:

1. Always execute the last statement of a
series of routines being operated on

Page of GC28-6399-2, Revised 4/15/73, by TNL 3N28-1038

by a PERFORM statement. When
branching out of the routine, make
sure control will eventually return to
the last statement of the routine.
This statement should be an EXIT
statement. Although no code is
generated, the EXIT statement allows a
programmer to recognize immediately
the extent of a series of routines
within the range of a PERFORM
statement ..

2. Always either PERFORM routine-name
THRU routine-name-exit, or PERFORM
section-name. ·A PERFORM
paragraph-name can cause trouble for
the programmer trying to maintain the
program.. For example, if a paragraph
must be broken into two paragraphs,
the programmer must examine every
statement to determine whether or not
th,is paragraph is within the range of
the PER.FORM statement. Then all
statements referencing the
paragraph-name must be changed to
PERFORM THRU statements.

READ-INTO and WRITE FROM Options

Use READ INTO and WRITE FROM, and do all
processing in the working~Storage section.
This is suggested for two reasons:

1. Debugging is much simpler.
Working-storage areas are easier to
locate in a dump than are buffer
areas. And, if files are blocked, it
is much easier to determine which
record in a block was being processed
when the abnormal termination
occurred.

2. Trying to access a record area after
the AT END condition has occurred (for
example, AT END MOVE HIGH-VALUE TO
INPUT-RECORD) can cause problems if
the record area is only in the File
Section.

~; The programmer should be aware that
additional time is used to execute the move
operation involved in each READ INTO or
WRITE FROM instruction.

USING THE REPORT WRITER FEATURE

REPORT Clause in FD

A given report-name may appear in a
maximum of two file description entries.
The file description entries need not have
the same characteristics. If the same
report-name is specified in two file
description entries, the ~eport will be
written on both !iles~ For example:'

ENVIRONMENT DIVISION.
SELECT FILE-1 ASSIGN UR-1403-S-PRTOUT.
SELECT FILE-2 ASSIGN UT-2400-S-SYSUT1.

DATA DIVISION.
FD FILE-1 RECORDING MODE F

RECORD CONTAINS 121 CHARACTERS
REPORT IS REPORT-A.

FD FILE-2 RECORDING MODE V
RECORD CONTAINS 101 CHARACTERS
REPORT IS REPORT-A.

For each GENERATE statement, the records
for REPORT-A will be written on FILE-l and
FILE-2, respectively. The records on
FILE-2 will not contain columns 102 through
121 of the corresponding records on FILE-i.

Summing Technique

The object program can be made more
efficient with respect to execution time by
keeping in mind the fact that Report writer
source coding is treated as though the
programmer had written the program in COBOL
without the Report Writer feature.
Therefore, a complex source statement or
series of statements will generally be
executed faster than simple statements that
perform the same function. Theexample
below shows two coding techniques for the
Report Section of the Data Division.
Method 2 uses the more complex statements.

RD ••• CONTROLS ARE YEAR MONTH WEEK DAY

Programming Techniques 197

Method-I:

01 TYPE CONTROL FOOTING YEAR.
05 SUM COST.

01 TYPE CONTROL FOOTING MONTH.
05 SUM COST.

01 TYPE CONTROL FOOTING WEEK.
05 SUM COST.

01 TYPE CONTROL FOOTING DAY.
05 SUM COST.

Method. 2:

01 TYPE CONTROL FOOTING YEAR.
05 SUM A.

01 TYPE CONTROL FOOTING MONTH.
05 A SUM B.

01 TYPE CONTROL FOOTING WEEK.
05 B SUM C.

01 TYPE CONTROL FOOTING DAY.
05 C SUM COST.

Method 2 will execute faster. One addition
will be performed for each day, one more
for each week, and one for each month. In
Method 1, four additions will be performed
for each day.

Use-of.SUM

Unless each identifier is the name of a
SUM counter in a TYPE CONTROL FOOTING
report group at an equal or lower position
in the control hierarchy, the identifier
must be defined in the File,
Working-Storage or Linkage Secti,ons, as
well as in a TYPE DETAIL report group as a
SOURCE item. A SUM counter is
algebraically incremented just before
presentation of the TYPE DETAIL report
group in which th~ item being summed
appears as a source item or. the item being
summed appeared in a SUM clause that
contained an UPON option for this DETAIL
report group. This is known as SOURCE-SUM
correlation. In the following example,
SUBTOTAL is incremented only when DETAIL-l
is generated:

FILE SECTION.

05 NO-PURCHASES PICTURE 99.

198

REPORT SECTION.
01 DETAIL-l TYPE DETAIL.

05 COLUMN 30 PICTURE 99 SOURCE
NO-PURCHASES.

01 DETAIL-2 TYPE DETAIL.

01 DAY TYPE CONTROL FOOTING
LINE PLUS 2.

05 SUBTOTAL COLUMN 30 PICTURE 999
SUM NO-PURCHASES.

01 MONTH TYPE CONTROL FOOTING
LINE PLUS 2 NEXT GROUP
NEXT PAGE.

SUM Routines

A SUM routine is generated by the Report
writer for each DETAIL report group of the
report. The operands included for summing
are determined as follows:

1. The SUM operand(s) also appears in a
SOURCE clause(s) for the DETAIL report
group.

2. The UPON detail-name option was
specified in the SUM clause. In this
case, all the operands are included in
the SUM routine for only that DETAIL
report group, even if the operand
appears in a SOURCE clause in other
DETAIL report groups.

When a GENERATE detail-name statement is
executed, the SUM routine for that DET~IL
report group is executed in its logical
sequence. When a GENERATE report-name
statement is executed and the report
contains more than one DETAIL report group,
the SUM routine is executed for each one.
The SUM routines are executed in the
sequence in which the DETAIL report groups
are specified.

The following examples show the SUM
routines that are generated by the Report
Writer. Example 1 illustrates how operands
are selected for inclusion in the routine
on the basis of simple SOURCE-SUM
correlation. Example 2 illustrates how
operands are selected when the UPON
detail-name option is specified.

EXAMPLE 1: The following statements are
coded in the Report Section:

01 DETAIL-l TYPE DE •••
05 ••• SOURCE A.

01 DETAIL-2 TYPE DE •••
05 SOURCE B.
05 ••• SOURCE C.

01 DETAIL-3 TYPE DE •••
05 ••• SOURCE B.

01 TYPE CF •••
05 SUM-CTR-l ••• SUM A, B, C.

01 TYPE CF •••
05 SUM-CTR-2 ••• SUM B.

One SUM routine is generated for each
DETAIL report group, as follows:

SUM Routine for DETAIL-l

REPORT-SAVE
ADD A TO SUM-CTR-l.

REPORT-RETURN

SUM Routine for DETAIL-2

REPORT-SAVE
ADD B TO SUM-CTR-l.
ADD C TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

SUM Routine for DETAIL-3

REPORT-SAVE
ADD B TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

EXAMPLE 2: In this example, the same
coding is used as in Example 1, with one
exception: the UPON detail-name option is
used for SUM-CTR-l, as follows:

01 TYPE CF •••
05 SUM-CTR-l ••• SUM A, B, C UPON

DETAIL-2.

The following SUM routines would then be
generated instead of those resulting from
the calculations in Example 1.

SUM_Routine for D~TAIL-l

REPORT-SAVE
REPORT-RETURN

SUM Routine for DETAIL-2

REPORT-SAVE
ADD A TO SUM-CTR-l.
ADD B TO SUM-CTR-l.
ADD C TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

REPORT-SAVE
ADD B TO SUM-CTR-2.

REPORT-RETURN

Output Line Overlay

The Report Writer output line is put
together with an internal REDEFINES
specification, indexed by ig~~g~~=!. No
check is made to prevent overlay on any
line. For example:

05 COLUMN 10 PICTURE X(23)
VALUE "MONTHLY SUPPLIES REPORT".

05 COLUMN 12 PICTURE X(9)
SOURCE CURRENT-MONTH.

the length of 23 in column 10, followed by
a specification for column 12 will cause
field overlay.

The Report Writer page break routine
operates independently of the routines that
are executed after any control breaks
(except that a page break will occur as the
result of a LINE NEXT PAGE clause). Thus,
the programmer should be aware of the
following facts:

1. A Control Heading is not printed after
a Page Heading except for first
generation. If the programmer wishes
to have the equivalent of a Control
Heading at the top of each page, he
must include the information and data
to be printed as part of the Page
Heading. But since only one Page
Heading may be specified for each
report, he should be selective in
considering his Control Heading
because this "Control Heading" will be
the same for each page, and may be

Programming Techniques 199

printed at inopportune times (see
"Control Footings and Page Format," in
this chapter.)

2. GROUP INDICATE items are printed after
page and control breaks. Figure 59
contains a GROUP INDICATE clause and
shows the execution output.

r---,
REPORT SECTION.

01 DETAIL-LINE TYPE IS DETAIL LINE
NUMBER IS PLUS 1.
05 COLUMN IS 2 GROUP INDICATE

PICTURE IS A (9) SOURCE IS
MONTHNAME OF RECORD-AREA (MONTH).

(Execution Output)

)
I

~---i
I I
I JANUARY 15 AOO... I
I A02.. • I
I I
IPURCHASES AND COST... I
I I
~---~
I I
I JANUARY 21 A03... I
I A03. • • I
I I L ___ J

Figure 59. sample Showing GROUP INDICATE
Clause and Resultant Execution
Output

WITH CODE Clause

When more than one report is being
written on a file and the reports are to be
selectively written, a unique l-character
code must be given for each report. A
mnemonic-name is specified in the RD-Ievel
entry for each report and is associated
with the code in the Special-Names
paragraph of the Environment Division.

Note: If a report is written with the CODE
option, the report should not be written
directly to a printer device.

200

This code will be written as the first
character of each record that is written on
the file. When the programmer wishes to
write a report from this file, he needs
merely to read a record, check the first
character for the desired code, and have it
printed if the desired code is found. The
record should be printed starting from the
third character, as illustrated in Figure
60.

n

Figure 60. Format of a Report Record When
the CODE Clause Is Specified

The following example shows how to
create and print a report with a code of A.
A Report Writer program contains the
following statements:

ENVIRONMENT DIVISION.

SPECIAL-NAMES. 'A' IS CHR-A
'B' IS CHR-B.

DATA DIVISION.
FILE SECTION.
FD RPT-OUT-FILE

RECORDS CONTAIN 122 CHARACTERS
LABEL RECORDS ARE STANDARD
REPORTS ARE REP-FILE-A REP-FILE-B.

REPORT SECTION.
RD REP-FILE-A CODE CHR-A •••

RD REP-FILE-B CODE CHR-B •••

The RPT-OUT-FILE must be written on a tape
or mass storage device. A second program
could then be used to print only the report
with the code of ~, as follows:

DATA DIVISION.
FD RPT-IN-FILE

RECORD CONTAINS 122 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RPT-RCD.

01 RPT-RCD.
05 CODE-CHR PICTURE X.
05 PRINT-PART.

10 CTL-CHR PICTURE X.
10 RECORD-PART PICTURE X(120).

FD PRINT-FILE
RECORD CONTAINS 121 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINT-REC.

01 PRINT-REC.
05 FILLER PICTURE X(121).

PROCEDURE DIVISION.

LOOP. READ RPT-IN-FILE AT END
GO TO CONTINUE.
IF CODE-CHR = "A"
WRITE PRINT-REC FROM

PRINT-PART
AFTER POSITIONING CTL-CHR

LINES.
GO TO LOOP.

CONTINUE.

Control Footings and Page Format

Depending on the number and size of
Control Footings (as well as the page depth
of the report), all of the specified
Control Footings may not be printed on the
same page if a control break occurs for a
high-level control. When a page condition
is detected before all required Control
Footings are printed, the Report Writer
will print the Page Footing (if specified),
skip to the next page, print the Page
Heading (if specified), and then continue
to print Control Footings.

If the programmer wishes all of his
Control Footings to be printed on the same
page, he must format his page in the
RD-Ievel entry for the report (by setting
the LAST DETAIL integer to a sufficiently
low line number) to allow for the necessary
space.

RD EXPENSE-REPORT CONTROLS ARE FINAL,
MONTH, DAY

01 TYPE CONTROL FOOTING DAY
LINE PLUS 1 NEXT GROUP
NEXT PAGE.

01 TYPE CONTROL FOOTING MONTH
LINE PLUS 1 NEXT GROUP
NEXT PAGE.

(Execution Output)

EXPENSE REPOR.T

January 31 ••••••••• 29.30
(Output for CF DAY)

January total ••••• 131.40
(Output for CF MONTH)

Note: The NEXT GROUP NEXT PAGE clause for
the-control footing DAY is not activated.

The first presentation of a body group
(PH, PF, CH, CF, or DE) that contains a
relative line as its first line, will have
its relative line spacing suppressed, and
the first line will be printed on either
the value of FIRST DETAIL or INTEGER PLUS 1
of a NEXT GROUP clause from the preceding
page. For example:

A. If the following body g·roup was the
last to be printed on a page

01 TYPE CF NEXT GROUP NEXT PAGE

Then this next body group

01 TYPE DE LINE PLUS 5

would be printed on value of FIRST
DETAIL (in PAGE clause).

B. If the following body group was the
last to be printed on a page

01 TYPE CF NEXT GROUP LINE 12

Programming Techniques 201

and after printing, line-counter 40,
then this next BODY GROUP

01 TYPE DETAIL LINE PLUS 5

would be printed on line 12 + 1 (i.e.,
line 13).

Report Writer Routines

At the end of the analysis of a report
description entry (RD), the Report Writer
routines are generated, based on the
contents of the RD. Each routine refers to
the compiler-generated card number of its
respective RD. This is reflected when
either PMAP or CLIST is in effect.

TABLE HANDLING CONSIDERATIONS

Subscripts

If a subscript is represented by a
constant and if the subscripted item has a
fixed length, the location of the
subscripted data item within the table or
list is resolved at compile time.

If a subscript is represented by a
data-name, the location is resolved at
execution time. The most efficient format,
in this case, is COMPUTATIONAL, with
PICTURE size less than five integers.

The value contained in a subscript is an
integer that represents an occurrence
number within a table. Every time a
subscripted data-name is referenced in a
program, the compiler generates up to 16
instructions to calculate the correct
displacement. Therefore, if a subscripted
data-name is to be processed extensively,
move the subscripted item to an
unsubscripted work area, do all necessary
processing, and then move the item back
into the table. Even when subscripts are
described as computational, subscripting
takes time and core storage.

Index-Names

Index-names are compiler-generated
items, one fullword in length, assigned
storage in the TGT. An index-name is
defined by the INDEXED BY clause. The
value in an index-name represents an actual
displacement from the beginning of the

202

table that corresponds to an occurrence
number in the table. Address calculation
for a direct index takes a maximum of four
instructions; address calculation for a
relative index takes a few more.
Therefore, the use of index-names in
referencing tables is more efficient than
the use of subscripts. The use of direct
indexes is faster than the use of relative
indexes.

Index-names can only be referenced in
the PERFORM, the SEARCH, and the SET
statements.

Index data items are compiler-generated
storage positions, one fullword in length,
that are assigned storage within the COBOL
program area. An index data item is
defined by the USAGE IS INDEX clause. The
programmer can use index data items to save
values of index-names for later reference.

Great care must be used when setting
values of index data items. Since an index
data item is not part of any table, the
compiler places the value contained in the
index-name or other index data item into
the index data item (see the example given
in "SET Statement"). Index data items can
only be referenced in SEARCH and SET
statements.

A table element is represented by the
subject of an OCCURS clause, and is
equivalent to one level of a table. If
indexing is to be used to reference a table
element, and the Format 2 (SEARCH ALL)
statement is also to be used, the KEY
option must be specified in the OCCURS
clause. The table element must then be
ordered upon the key(s) data-name(s)
specified.

DEPENDING ON op~!Q~

If a data item described by an OCCURS
clause with the DEPENDING ON data-name
option1 is followed by nonsubordInate-data
items, a change in the value of g~t~-nam~

1For a discussion of the use of the OCCURS
DEPENDING ON clause in a sort program, see
"Sorting Variable-Length Records."

during the course of program execution will
have the following effects:

1. The size of any group described by or
containing the related OCCURS clause
will reflect the new value of
data-name.

2. Whenever a MOVE to a field containing
an OCCURS clause with the DEPENDING ON
option is executed, the MOVE is made
on the basis of the current contents
of the object of the DEPENDING ON
option.

3. The location of any nonsuhordinate
items following the item described
with the OCCURS clause will be
affected by the new value of
data-name. If the user wishes to
preserve the contents of these items,
the following procedure can be used:
prior to the change in data-name, move
all nonsubordinate items following the
variable item to a work area; after
the change in data-name, move all the
items back.

Note: The value of data-name may change
because a move is made to it or to the
group in which it is contained; or the
value of data-name may change because the
group in which it is contained is a record
area that has been changed by execution of
a READ statement.

For example, assume that the Data
Division of a program contains the
following cOding:

01 ANYRECORD.
05 A PICTURE S999 COMPUTATIONAL-3.
05 TABLEA PICTURE S999 OCCURS 100

TIMES DEPENDING ON A.
05 GROUPB.

(Subordinate data items.)

(End of record.)

GROUPB items are not subordinate to TAB LEA ,
which is described by the OCCURS clause.
Assuming that WORKB is a work area with the
same data structure as GROUPB, the
following procedural coding could be used:

1. MOVE GROUPB TO WORKB

2. Calculate new value of A

3. MOVE WORKB TO GROUPB

The above statements can be avoided by
putting the OCCURS clause with the
DEPENDING ON option at the end of the
record.

Note: Data-name can also change because of
a change in the value of an item that
redefines it. In this case, the group size
and the location of nonsubordinate items as
described in the two preceding paragraphs
cannot be determined.

If the value of an object of OCCURS
DEPENDING ON is changed because of a change
in the value of an item that either
redefines the object, is redefined by the
object, or is subordinate to such an item,
the group sizes and the locations of items
affected by the OCCURS DEPENDING ON clause
are unpredictable.

SET Statement

The SET statement is used to assign
values to index-names and to index data
items.

When the SET statement assigns to an
index-name the value of a literal,
identifier, or an index-name from another
table element, it is set to an actual
displacement from the beginning of the
table element that corresponds to the
occurrence number indicated by the .second
operand in the SET statement. The compiler
performs all the necessary calculations.
If the SET statement is used to assign an
index-name to another index-name for the
same table element, the compiler need make
no conversion of the actual displacement
value contained in the second operand.

However, when an index data item is set
to another index data item or to an
index-name, or when an index-name is set to
an index data item, the compiler is unable
to change any displacement value it finds,
since an index data item is not part of any
table. Thus, no conversion of values can
take place. If the programmer forgets
this, programming errors can occur.

For example, suppose that a table has
been defined as:

01 A.
02 B OCCURS 2 INDEXED BY 11, 15.

03 C OCCURS 2 INDEXED BY 12, 16.
04 D OCCURS 3 INDEXED BY 13, 14.

05 E PIC X (20) •
05 F PIC 9(5).

Programming Techniques 203

r---,
By tel
No.

r--------------------T----' 0

~D (1, 1, 1) I E IF I
~--------------------+----~ 25

C (1, 1)

~:
(1, 1, 2) I E IF I

~--------------------+----~ 50
(1, 1, 3) I E IF I

B (1) ~--------------------+----~ 75

~D (1, 2, 1) I E IF I
~--------------------+----~ 100

C (1, 2) r (1, 2, 2) I E IF I
~--------------------+----~ 125

,D (1, 2, 3) I E IF I
~--------------------+----~ 150

A
\D

(2, 1, 1) I E IF I
~--------------------+----~ 175

C (2, 1) l: (2, 1, 2) I E IF I
~--------------------+----~ 200

(2, 1, 3) I E IF I
B (2) ~--------------------+----~ 225

1:
(2, 2, 1) I E IF I

~--------------------+----~ 250
C (2, 2) (2, 2, 2) I E IF I

~--------------------+----~ 275
(2, 2, 3) I E IF I l ____________________ ~ ____ J

3001 l ___ J

Figure 61. storage Layout for Table Reference

Figure 61 shows how the table is laid
out in main storage.

Now, suppose it is necessary to
reference D (2,2,3). The following steps
are incorrect:

SET I3 TO 2.
SET INDX-DATA-ITM TO I3.
SET I2, Il TO INDX-DATA-ITM.
SET I3 UP BY 1.
MOVE D(Il, I2, I3) TO WORKAREA.

The value contained in I3 after the first
SET statement is 25, which represents the
beginning point (in bytes) of the second
occurrence of o. When the second SET
statement is executed, the value 25 is
placed in INOX-DATA-ITM, and the third SET
statement moves the value 25 into 12 and
11. The fourth SET statement increases the
value in I3 to 50. The calculation for the
address D (Il, 12, I3) would then be as
follows:

204

(address of D(l,l,l» + 25 + 25 + 50
(address of 0(1,1,1» + 100

Example

where 0(1,1,1) represents the first
occurrence of o. This is gQ~ the address
of D (2,2,3).

The following steps will find the
co!:!:~£~ address:

SET 13 TO 2.
SET 12, 11 TO 13. SET 13 UP BY 1.

In this case, the first SET statement
places the value 25 in 13. Since the
compiler is able to calculate the lengths
of Band C, the second SET statement places
the value 75 in 12, and the value 150 in
11. The third SET statement places the
value 50 in 13. The correct address
calculation will be:

(address of 0(1,1,1» + 150 + 75 + SO
(address of 0(1,1,1» + 275.

The rules for the SET statement are
shown in Table 26.

Table 26. Rules for the SET Statement
---------------------T--------------------T---------------------T----------------------,

I Sending I I I I
I I I I Identifier I
I Receiving I Index-name I Index Data Item I or Literal I
~--------------------- --------------------f---------------------f----------------------1
I Index-name I set to value I Move without I Set to value I
I I corresponding I conversion I corresponding I
I I to occurrence I I to occurrence I
I I number:L I I number I
~---------------------f--------------------f---------------------f----------------------1
I Index Data I Move without I Move without I I
I Item I conversion I conversion I I
~---------------------f--------------------f---------------------f----------------------i
I Identifier I Set to occur-' I I
I I rence number I I I
I I represented by I I I
1 1 index-name I I 1
~---------------------~--------------------~---------------------~----------------------i
I:LIf index-name refer to the same table element move without conversion I L ___ J

SEARCH Statement

Only one level of a table (a table
element) can be referenced with one SEARCH
statement. Note that SEARCH statements
cannot be nested, since an
imperative-statement must follow the WHEN
condition, and the SEARCH statement is
itself conditional.

There are two formats for the SEARCH
statement. Format 1, SEARCH, is used for a
serial search. Format 2, SEARCH ALL, is
used for a binary search.

Format 1 SEARCH statements perform a
serial search 9f a table element. If the
programmer knows that the "found" condition
will come after some intermediate point in
the table element, to speed up execution,
he can use the SET statement to set the
index-names at that point and search only
part of the table element. If the table
element is large, and must be searched from
the first occurrence to the last, the use
of Format 2 (SEARCH ALL) is more efficient
than Format 1, since it uses a binary
search technique; however, the table must
then be ordered.

In Format 1, the VARYING option allows
the programmer to:

• Vary an index-name other than the first
index-name stated for this table
element. Thus, with two SEARCH
statements each using a different
index-name, reference can be made to
more than one value in the same table
element for comparisons, etc.

• Vary an index-name from another table
element. In this case, the first
index-name specified for this table
element is used for the search, and the
index-name specified in the VARYING
option is incremented at the same time.
Thus, it is possible to step through
two table elements at once.

In Format 1, the WHEN condition can be
any relation condition, and can be
multiple. If multiple WHEN conditions are
stated, the implied logical connective is
OR -- that is, if anyone of the WHEN
conditions is satisfied, the
imperative-statement following the WHEN
condition is executed. If all conditions
of the SEARCH statement are to be satisfied
before exiting from the search, a compound
WHEN condition with an AND logical
connective must be written.

In Format 2, the SEARCH ALL statement,
the table must be ordered on the KEY(S)
specified in the OCCURS clause. Any KEY
may be specified in the WHEN condition, but
all preceding data-names in the KEY option
must also be tested. The test must be an
"equal to" (=) condition, and the KEY
data-name must be either the subject or
object of the condition, or the name of a
conditional variable with which the tested
condition-name is associated. The WHEN
condition can also be a compound condition,
formed from one of the simple conditions
listed above, with AND as the only logical
connective. The KEY and its object of
comparison must be compatible, as given in
the rules of the relation test.

To write a series of statements that
will search the three-dimensional table

Programming Techniques 205

discussed in the section "The SET
statement", the programmer could write:

77 COMPARANDl PIC XeS).
77 COMPARAND2 PIC 9(5).
01 A.

OS B OCCURS 2 INDEXED BY 11 IS.
10 C OCCURS 2 INDEXED BY 12 16.

lS D OCCURS 3 INDEXED BY 13, 14.
20 E PIC XeS).
20 F PIC 9(5).

(initialize comparandl and comparand2)

PERFORM SEARCH-TESTl THRU SEARCH-EXIT1
VARYING 11 FROM 1 BY 1 UNTIL 11 GREATER
THAN 2 AFTER 12 FROM 1 BY 1 UNTIL 12
GREATER THAN 2.

ENTRY-NOENTRY1. GO TO ERROR-RECOVERY1.

SEARCH-TEST1. SET 13 TO 1.
SEARCH D WHEN E (11, 12, 13) =

COMPARAND1 AND
F (11, 12, 13) = COMPARAND2
SET IS TO 11
SET 16 TO 12
SET 12 TO 3
SET 11 TO 3
ALTER ENTRY-NOENTRY1 TO PROCEED TO
ENTRY-PROCESSING1.

SEARCH-EXIT1. EXIT.

ERROR-RECOVERY1.

ENTRY-PROCESSING1.
MOVE E(IS, 16, 13) TO OUT-AREAl.
MOVE F(IS, 16, 13) TO OUT-AREA2.

The PERFORM statement varies the indexed
(11 and 12) associated with table elements
Band C; the SEARCH statement varies 13,
which is associated with table element D.

The values of 11 and 12 that satisfy the
WHEN conditions of the SEARCH statement are
saved in IS and 16. 11 and 12 are then
both set to 3 using the SET statement, so
that upon return from the SEARCH statement
control will fall through the PERFORM
statement to the GO TO statement.

Subsequent references to the desired
occurrence of table elements E and F make

206

use of the index-names IS and 16 in which
the correct value was saved.

For example, a user-defined table may be
the following:

01 TABLE.
OS ENTRY-IN-TABLE OCCURS 90 TIMES

ASCENDING KEY-1, KEY-2
DESCENDING KEY-3·
INDEXED BY INDEX-1.
10 PART-1 PICTURE 9(2).
10 KEY-l PICTURE 9(5).
10 PART-2 PICTURE 9(6).
10 KEY-2 PICTURE 9(4).
10 PART-3 PICTURE 9(33).
10 KEY-3 PICTURE 9(5).

A search of the entire table can be
initiated with the following instruction:

SEARCH ALL ENTRY-IN-TABLE AT
END GO TO NOENTRY

WHEN KEY-l (INDEX-1) = VALUE-1 AND
KEY-2 (INDEX-1) = VALUE-2
AND KEY-3 (INDEX-1) = VALUE-3

MOVE PART-1 (INDEX-1) TO
OUTPUT-AREA.

The foregoing instructions will execute
a search on the given array TABLE which
contains 90 elements of S5 bytes and 3
keys. The primary and secondary keys
(KEY-1 and KEY-2) are in ascending order
whereas the least significant key (KEY-3)
is in descending order. If an entry is
found in which three keys are equal to the
given values (i.e., VALUE-1, VALUE-2
VALUE-3) PART-1 of that entry will be moved
to OUTPUT-AREA. If matching keys are not
found in any of the entries in TABLE, the
NOENTRY routine is entered.

If a match is found between a table
entry and the given values, the index
(INDEX-l) is set to a value corresponding
to the relative position within the table
of the matching entry. If no match is
found, the index remains at the setting it
had when execution of the SEARCH ALL
statement began.

Compilation is faster if KEY(S) are
tested in the SEARCH statement in the same
order they appear in the KEY option.

Note that if KEY entries within the
table do not contain valid values, then the
results of the binary search will be
unpredictable.

Building Tables

When reading in data to build an
internal table:

1. Check to make sure the data does not
exceed the space allocated for the
table.

2. If the data must be in sequence, check
the sequence.

3. If the data contains the subscript
determining its position in the table,
check the subscript for a valid range.

When testing for the end of a table, use
a named value giving the item count, rather
than using a literal. Then, if the table
must be expanded, only one value need be
changed, instead of all references to a
literal.

Programmdng Techniques 201

CALLING AND CALLED PROGRAMS

A COBOL program can refer to and pass
control to other COBOL programs, or to
programs written in other languages. A
program in another language can refer to
and pass control to a COBOL program. A
program that refers to another program is a
calling program. A program that is
referred to is a called program. Control
is returned from a called program to the
first instruction following the calling
sequence in the calling program.

A called program can also be a calling
program; that is, a called program can, in
turn, call another program. However, a
called program cannot call the program that
called it, an earlier calling program, or
itself. control is returned in the same
order of calling; that is, a called program
returns control to its own calling program,
not to an earlier calling program.
Compiler generated switches, e.g., ON and
ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in the last executed state.

All called and calling programs to be
executed as a single job step must be
linkage edited together; they must all be
included in the same load module.

This chapter describes the accepted
linkage conventions for calling and called
programs in both COBOL and assembler
language and discusses how such programs
are linkage edited. In addition, it
includes a discussion of overlay design in
which different called programs may, at
different times, occupy the same area in
main storage.

SPECIFYING LINKAGE

Whenever a program calls another
program, a link must be established between
the two. The calling program must state ~
the entry pOint of the called program and •
must specify any identifiers to be passed.
The called program must have an entry' point 4
and must be able to accept the identifiers. I
In addition, the called program must
establish the linkage for the return of
control to the calling program. See Figure
64.1 for an example of the linkage
statements required in a typical calling/
called situation.

208

LINKAGE IN A CALLING COBOL PROGRAM

A calling COBOL program must contain the
following statement at the point at which
another program is to be called:

CALL literal-1
[USING identifier-listl.

Literal-l is the name of the entry point in
the called program to which control is to
be transferred. The first eight characters
of literal-l are used to make the
correspondence between the calling and the
called programs. The identifier-list is
one or more data names, called identifiers
and separated by blanks, that are to be
passed to the called program.

If the called program is an
assembler-language program, the identifier
may also be a file-name or a
procedure-name. If the identifier is a
file-name, the COBOL compiler passes the
address of the DCB for a queued file, or
the address of the DECB for a basic file,
as this entry of the identifier-list. This
can be used to test bits in the DCB or DECB
or to enter some options in the DCB.
However, when changing a field of the DCB,
precautions should be taken not to
contradict the information in other fields
or the information in the object code
supplied by the compiler, job control
language, or other sources. When the
identifier is a procedure-name, the value
passed is the beginning address of the
procedure. If no identifiers are passed,
the USING clause is omitted.

LINKAGE IN A CALLED COBOL PROGRAM

A called COBOL program must contain two
statements.

One of the following statements must be
inserted to name the point where the
program is to be entered:

ENTRY literal-l
[USING identifier-list].

or

PROCEDURE DIVISION
[USING identifier-~istl.

The literal-lor PROGRAM-ID is the name of
the entry point in the called program. It
is the same name that appears in the CALL
statement of the program that calls this
program that the compiler uses. The
identifier-list is one or more data-names
that correspond to the identifier-list of
the CALL statement of the calling program.
Each data name of the identifier-list must
be defined in the Linkage Section of the
Data Division and must have a level number
of 01 or 77.

One of the following statements must be
inserted at the point at which control is
to be returned to the calling program:

GOBACK.

or

EXIT PROGRAM.

The GOBACK or EXIT PROGRAM statement
enables restoration of necessary registers
and returns control to the point in the
calling program immediately following the
calling sequence.

Note: The GOBACK and EXIT PPOCRl'!M' j
statements may be used in a main program, "
with the result that any COBOL program ca~
be used as either a calling or a called
program, if written with this end in mind.
If a GOBACK statement appears within the)
main program, control is retnrned /
immedi ate] y to the system; if an"!yT (.
P~ statement appears, it is simply)
regarded as a null instruction.

~

A called program may pass a completion
code to its caller by storing a value in
RETURN-CODE. The calling program may
interrogate RETURN-CODE after a return is
made from a called program to determine the
completion code.

Note: RETURN-CODE may also be used to pass
a-completion code to the system at the end
of a run unit.

Correspondence of Identifiers in CalliQg
and Called Programs

The number of data-names in the
identifier list of a calling program must
be the same as the number of data-names, in
the identifier list of the called program.
There is a one-to-one correspondence; that
is, the first identifier of the calling
program is passed to the first identifier
of the called program, the second
identifier of the calling program is passed
to the second identifier of the called
program, and so forth.

Only the address of an identifier list
is passed. Consequently, the data-name
that is an identifier of the calling
program and the data-name that is the
corresponding identifier of the called
program both refer to the same locations in
main storage. The pair of names, however,
need not be identical, but the data
descriptions must be equivalent. For
example, if an identifier of the calling
program is a level-77 data-name of a
character string of length 30, its
corresponding identifier of the called
program could also be a level-77 data-name
of a character string of length 30, or the
identifier of the called program could be a
level-Ol name with subordinate names
representing character strings whose
combined length is 30.

Although all identifiers of the called
program in the ENTRY statement must be
described with level numbers of 01 or 77,
there is no such restriction made for
identifiers of the calling program in the
CALL statement. An identifier of the
calling program may be a qualified name or
a subscripted name. When a group item with
a level number other than 01 is specified
as an identifier of the calling program,
proper word-boundary alignment is required
if subordinate items are described as
COMPUTATIONAL, COMPUTATIONAL-l, or
COMPUTATIONAL-2. If the identifier of the
calling program corresponds to a level-Ol
identifier'of the called program,
doubleword alignment is required.

LINKAGE IN A CALLING OR CALLED
ASSEMBLER-LANGUAGE PROGRAM

In a COBOL program, the expansions of
the linkage statement provide the save and
return coding that is necessary to
establish linkage between the calling and
the called programs. Assembler-language
programs must be prepared in accordance
with the basic linkage conventions of the
operating system. Table. 27 shows the
conventions for use of general registers as
linkage registers.

Conventions Used in a Calling
Assembler-Language Program

A calling assembler-language program
must reserve a save area of 18 words,
beginning on a fullword boundary, to be
used by the called program for saving
registers. It must load the address of

, this area into register 13. If the program
is to pass identifiers, an identifier list

Calling and Called Programs 209

Table 27. Linkage Registers
r----------T------------T---,
, Register, Register , I
, Number I Use I contents I
~----------f------------f---~
, 1 I Identifier ,Address of the list that is passed to the called program. I
, I , I
I 13 'Save Area ,Address of an area (of 18 fullwords) to be used by the called I
I , , program to save registers. I
, I , ,
, 14 ,Return , Address of the location in the calling program to which I
I I I control should be returned after execution of the called I
I I I program. I
I I , ,
I 15 IEntry Point1 , Address of ~he entry point in the called program to which I
, I I control is to be transferred. ,
~----------~------------~---~
I 1Register 15 is also used as a return code register. The return code indicates I
, whether or not any exceptional conditions occurred during execution of the called I
I program. I l ___ J

must be prepared, and the address of the
identifier list must be loaded into
register 1. The calling program must load
the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

The identifier list is a group of
contiguous fullwords, each of which is an
address of a data item to be passed to the
called program. The identifier list must
begin on a fullword boundary. The
high-order bit of the last identifier, by
convention, is set as a flag of one to
indicate the end of the list. Figure 62
shows a portion of an assembler-language
program that illustrates the conventions
used in a calling program.

A GOBACK statement or a STOP RUN
statement issued within a COBOL program
will (always for STOP RUN, but only in a
main program for GOBACK) reference the
COBOL library subroutine ILBOSTPO.
Furthermore, the STOP RUN statement will
end the run unit, which is assumed to begin
with the highest-level COBOL program
called. To circumvent this assumption, a
higher-level assembler language program
must call the COBOL library subroutine
ILBOSTPO before making any calls to other
COBOL programs. This should be done as
soon as possible after entry to the

210

assembler-language program, as part of the
program's initialization procedure.

Conventions Used in a Called Assembler
Language Program

A called assembler-language program must
save the registers and store other
pertinent information in the save area
passed to it by the calling program (the
layout of the save area is shown in Figure
63). A called program must also contain a
return routine that (1) loads the address
of the save area back into register 13;
(2) restores the contents of other
registers, loading the return address in
register 14; (3) optionally, sets flags in
the high-order eight bits of word 4 of the
save area to l's to indicate that the
return occurred (branching to the address
in register 14 to complete the return); and
places a return code 08 or zero, in
register 15.

Figure 64 shows a portion of an
assembler-language program that illustrates
the conventions used in called programs.
Figure 65 shows the JCL suggested for
compiling, link-editing, and executing a
calling assembler-language program and a
called COBOL program.

r---,
I
I

(Calling Sequence)
I
I
I
I
I
I

LA 1,ARGLST Loads into register 1 the address of the identifier list
to be passed.

LA 13, AREA Loads into register 13 the address of the save area to be
passed.

CALL CALLED Transfers control to the entry point of the called
program. (The CALL macro instruction generates coding
that loads a v-type address constant -- CALLED
into register 15 and that places into register 14 the
return address, that is, the address of the first
byte following the macro expansion.)

(Save Area)
AREA DC 18F'0' Reserves the save area of 18 fullwords to be passed to thel

called program. I
(Identifier List)

ARGLIST DC A(ARG1,ARG2) Creates address constants for the first two identifiers
the identifier list (called ARGl and ARG2).

Sets to 1 the first bit of the next word.

I
ofl

I
I DC

DC
X' 80'
AL3(ARG3) Creates an address constant for this identifier and stores I

it in the last three bytes of the word. Since the firstl
bit of the first byte of the word is a 1, this third \
identifier is specified to be the last identifier of the\
list. I

~---~ I Note: Since the calling program containing this coding could have previously been I
I called by another program, it also could establish linkage between the save area it I
I has received and the save area it passes to the called program. It would store in I
I word three of the old save area the address of the new save area, and it would store \
\ in word two of the new save area the address of the old save area. 1 L ___ J

Figure 62. Sample Linkage Coding Used in a Calling Assembler Language Program

FILE-NAME AND PROCEDURE-NAME ARGUMENTS

A calling COBOL program that calls an
assembler-language program can pass
file-names and procedure-names, in addition
to data-names, as identifiers. In the
actual identifier list that the compiler
generates, the procedure-name is passed as
the address of the procedure. For a queued
file, the file-name is passed as the
address of the DCB (the data control
block); for a basic file, the file-name is
passed as the address of the DECB (the data
event control block).

COMMUNICATION WITH OTHER LANGUAGES

An American National Standard COBOL
program may communicate at object time with
programs written in other source program
languages, such as COBOL F, PL/l, FORTRAN,
and, as in the foregoing discussion,
assembler language. The relatively few
problems that may arise in using American
National Standard COBOL with COBOL F
usually have to do with slightly different

boundary alignments, slack-byte insertion,
different meanings for the same reserved
word, and so on.

There is a greater disparity between
American National standard COBOL and
FORTRAN, much of it stemming from the basic
differences in the applications for which
these languages were developed. (FORTRAN
is process oriented and does comparatively
little file processing; COBOL, on the other
hand, is definitely file oriented and is
not mathematically self-sufficient.) Care
must be taken, therefore, in attempting to
pass arguments between American National
Standard COBOL and FORTRAN programs.

The use of COBOL and PL/l together
presents such a large number of problems
that a considerable amount of study is
necessary to implement anything but the
most basic application. For further
information, see the publications IBM
System/360 QE~~at!gg_~~~~~~ __ ~ink~~~
Editor and Loader, Order No. GC28-6538; and
!~~_~~te~l~Q_QE~~~i!~g_~Y~i~~~ __ ~~~!_i~~
Pr2g~~~~~~_§~id§, Order No. GC28-6594.

Calling and Called Programs 211

r---,
I Word Area I
INO. No. contents I
~---~

1 AREA Not used by COBOL or assembler language programs.

2 AREA +4 Address (passed by the calling program) of the save area used by .the
calling program. This is the address of a save area that was
passed to the called program by the program that called the called
program.

3 AREA +8 Address (stored by the called program) of the next save area, that
is, the save area that the called program provides for a program
that it calls. The called program need not reserve a save area if
it does not, in turn, call another program.

4 AREA +12 Return address (contents of register 14) stored by the called
program.

5 AREA +16 Entry point address (contents of register 15) stored by the called
program.

6 AREA +20 Contents of register 0 (stored by the called program).

7 AREA +24 Contents of register 1 (stored by the called program); that is, the
address of the identifier list passed to the called program.

8 AREA +28

Contents of registers 2 through 12 (stored by the called program).

18 AREA +68

Figure 63. Save Area Layout and Contents

LINKAGE EDITING PROGRAMS

Each time an entry point is specified in
a called program, an external name is
defined. An external name is a name that
can be referred to by another separately
compiled or assembled program. Each time
an entry name is specified in a calling
program, an external reference is defined.
An external referenc~ is a symbol that is
defined as an external name in another
separately compiled or assembled program.
The linkage editor resolves external names
and references and combines calling and
called programs into a format suitable for
execution together, i.e., as a single load
module.

Load modules of both calling and called
programs are used as input to the linkage
editor. There are two kinds of input,
primary and additional. Primary input
consists of a sequential data set that
contains one or more separately compiled
object modules and/or linkage editor
control statements. The primary input can
contain object modules that are either

212

calling or called programs or both.
Additional input consists of object modules
or-load-modules that are not part of the
primary input data set but are to be
included in the load module. The
additional input may be in the form of (1)
a sequential data set consisting of one or
more,object modules with or without linkage
editor control statements, or (2) libraries
containing object modules with or without
linkage editor control statements, or (3)
libraries consisting of load modules. Note

~hat the secondary input (all libraries
l~and/o~ data sets) must be composed of

eithe~ all QQj~£~ modules or all lQ~g
modules, .but it cannot contain both types.
The additional input is specified by
linkage editor control statements in the
primary input and a DD statement for each
additional input data set. Additional
input may contain either calling or called
programs or both.

Not~: Each additional input data set may
itself contain external references or names
and linkage editor control statements that
specify more additional input.

SPECIFYING PRIMARY INPUT

The primary input data set is specified
for linkage editor processing by the SYSLIN
DD statement. The linkage editor must
always have a primary input data set
specified by a SYSLIN DD statement whether
or not there are called or calling programs
and even if the primary input data set

contains only linkage editor control
statements. The SYSLIN DD statement that
specifies the primary input is discussed in
"Linkage Editor Data Set Requirements n (see
"Example of Linkage Editor Processing" for
a discussion of how to specify a primary
input data set that contains more than one
object module along with linkage editor
control statements).

calling and called Programs 213

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

r---,

CALLED

ENTRY CALLED

(Save Routine)

SAVE (14,10)

LR 2,13

LM 3,5,0(1)

(Return Routine)

LR 13,2

I
I
I

Establishes CALLED as an external name that can be I
referred to in another program. I

Stores the contents of registers 14, 15, 0, and 1
in words 4, 5, 6, and 1 of the save area. These
are conventional linkage registers. Registers 2
through 10, which are not actually used for
linkage, are saved in subsequent words of the

I
I
I
I
I
I
I
I

save area. The implication in not saving I
registers 11 and 12 is that they will not be usedl
in this program. Consequently, there is no need I
to save them since- their contents will be I
unchanged when control is returned. The expanded
code of the SAVE macro instruction uses register
13, which contains the address of the save area,
in effecting the storage of registers.

Loads the address of the save area into register 2,
which subsequently will be used to refer to the
save area.

Loads into registers 3, 4, and 5 the addresses of
the three identifiers passed to the program. rhe
address of the identifier list always is passed
in register 1, which here is used as the base
register to get the addresses. Subsequent
references to the first identi- fier will use I
register 3 as the base register for that address. I
References to the second and third identifiers I
will use registers 4 and 5. (If a variable I
length identifier list could be used in calling I
this program, each identifier would be tested fori
a one in the high-order bit.) I

Loads into register 13 the address of the save area
that was passed to this program.

I

RETURN (14,10),T,RC=(15) This RETURN macro instruction restores the saved
registers (14, 15, and ° through 10). The return
address is restored to register 14, and the
expansion includes a branch to that instruction.
The T in the RETURN macro instruction causes the
eight high-order bits of word 4 of the save area
to be set to ones as an indication that the
return occurred. Specification of RC=(15)
indicates that a return code has been placed in I
register 15. I

~---~---------------------~
I Note: If the called program containing this coding also calls another program, it I
I would contain the calling sequence" and it would establish linkage between the save I
larea it had received and the save area it passes to the called program. I L _____________ ~ ___ J

Figure 64. Sample Linkage Coding Used in a Called Assembler-Language Program

214

r---,
I / /CALLPROG JOB I
1//STEPl EXEC PGM=IKFCBLOO, PARM=(LOAD, NODECK) I
I I
I I
I I
I//SYSLIN DD DSN=&&TEMPLIB1,UNIT=SYSSQ,DISP=(NEW, PASS> , X I
1// SPACE=(TRK, (10,1» I
I//SYSIN DD *
I (Source module for COBSUB, a called COBOL program)
1/*
//STEP2
//
//SYSGO
/ISYSIN

/*
//STEP3
1/

EXEC PGM=IEUASM,PARM=(LOAD,NODECK),
COND=(9,LT,STEP1)~

DD DSN=&&TEMPLIB1,UNIT=SYSSQ, DISP=(MOD, PASS)
DD *

(Source module for ASSMMAIN, a calling assembler
language program)

EXEC PGM=IEWL,PARM=(LIST,XREF,LET),
COND=«9,LT,STEP1),(5,LT,STEP2»

x

X

I
//PROGLIBl DD DSN=&&TEMPLIB1,DISP=OLD I
/ /SYSLIN DD * I

INCLUDE PROGLIB12 I
ENTRY ASSMMAIN3 I

/* I
//STEP4 EXEC PGM=*.STEP3.SYSLMOD,COND=«9,LT,STEP1), X 1
/ / (5, LT, STEP2) , (5, LT, STEP3)) I
/ /SYSOUT DD SYSOUT=A I
~------~--~
I~This example was chosen to illustrate the testing of condition codes. I
12See the discussion under the INCLUDE statement. I
13Because the COBOL program is compiled first and the linkage editor cannot identify thel
I proper entry point, the ENTRY statement must be included. I L ___ J

Figure 65. Sample Coding Used for a Calling Assembler-Language Program and a Called
COBOL Program

Calling and Called Programs 215

r---,
//JOBX JOB '
//STEP1 EXEC PGM=IKFCBLOO,PARM=LOAD

f

//SYSLIN
//SYSIN

/*
//STEP2

//SYSLIN
//SYSIN

/*
//STEP3

//SYSLIN
//SYSIN

1/*
1//STEP4
I
1
1
1
I//SYSLIB
I//SYSLMOD
I//ADDLIB
I//SYSLIN
1//
1
I
1/*

DD
DD

DSNAME=&&GOFILE,DISP=(MOD,PASS),UNIT=SYSSQ

*
(Source module for MAIN, a calling program)

EXEC

DD
DD

PGM=IKFCBLOO,PARM=LOAD

DSNAME=*. STEP1. SYSLIN,DISP=(MOD, PASS)

*
(Source module for ADD, a called program)

EXEC

DO
00

PGM=IKFCBLOO,PARM=LOAD

DSNAME=*.STEP2.SYSLIN,DISP=(MOD,PASS)

*
(Source module for SUBTRACT, a called program)

EXEC

DD
DD
DD
DD
DD
INCLUDE
LIBRARY

PGM=IEWL

DSNAME=SYS1.COBLIB,DISP=OLD
DSNAME=PROGLIB(CALC>,DISP=OLD
DSNAME=MYLIB,DISP=OLD
DSNAME=&&GOFILE,DISP=OLD

* ADDLIB(A)
ADDLIB <X,Y,Z>

L __ _

Figure 66. Specifying Primary and Additional Input to the Linkage Editor

216

SPECIFYING ADDITIONAL INPUT

Additional input data sets are specified
by linkage editor control statements and a
DD statement for each additional input data
set.

The linkage editor control statements
that specify additional input are INCLUDE
and LIBRARy.1 A primary input data set may
consist entirely of such statements. The
INCLUDE and LIBRARY statements may be
placed before, between, or after· object
modules or other control statements in
either primary or additional input data
sets. One meth9d of using these statements
is shown in Figure 66.

Note: Additional input often contains
members of libraries (see "Specifying
Libraries as Additional Input" in
"Libraries").

INCLUDE Statement

The INCLUDE statement is used to include
an additional input data set that is either
a member of a library or a sequential data
set. Its format is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+-----------------------------i
I INCLUDE I ddname[(member-name I
I I [,member-name] •••)] I
I I [,ddname(member-name I
I I [,member-name •••])]]... I L ___________ ~ _____________________________ J

where ddname indicates the name of the DD
statement that specifies the library or
sequential data set, and member-name is the
name of the library member that is to be
included. Member-name is not used when the
additional input data set is not a member
of a partitioned data set.

LIBRARY-statement

The LIBRARY statement is used to include
additional input that may be required to
resolve external references.

1The operation field in a linkage editor
control statement must start after col
umn 1. The operand field must be preceded
by at least one blank.

The format is:

r-----------T------------·-----------------,
I Operation I Operand I
~-----------+-----------------------------~
I LIBRARY I ddname(member-name I
1 1 [, member-name] •••) I
1 1 [,ddname(member-name I
I I [,member-name ••.])]... I
L __ ---------~-----------------------------J

where ddname indicates the name of the DD
statement that specifies the library, and
member-name is the name of the member of
the library.

The LIBRARY statement differs from the
INCLUDE statement in that libraries
specified in the LIBRARY statement are not
searched for additional input until all
other processing, except references
reserved for the automatic library call, is
completed by the -linkage editor. Any
additional module specified by_ an INCLUDE
statement is incorporated immediately,
whenever the INCLUDE statement is
encountered.

LINKAGE EDITOR PROCESSING

The linkage editor first processes the
primary input and any additional input
specified by INCLUDE statements. All
external references in the primary that
refer only to other modules in the included
input are resolved first. -If there are
still unresolved references after this
input is processed, the automatic call
library, which includes libraries specified
by the SYSLIB DD statement and by the
LIBRARY statements, is searched to resolve
the references. The automatic call library
generally will contain the COBOL library
subroutines. (External references to these
subroutines are generated by the COBOL
compiler when statements in the source
module require certain functions to be
performed, such as some data conversions.)

If the additional input contains
external references and/or linkage editor
control statements, the references are
resolved in the same way. Data sets
specified by the INCLUDE statement are
incorporated when the statement is
encountered. Data sets specified by the
LIBRARY statement are used only when there
are unresolved references after all of the
other processing is completed.

Calling and Called Programs 217

Page of GC28-6399-2, Revised 4/15/13, by TNL GN28-1038

Example.of~Linkage-Editor Processing

Figure 66 shows the control statements
for a job that separately compiles three
source modules (one is a calling program
and two are called programs) and places
them in one data set as primary input for
the linkage editor. The linkage editor
then links them together with additronal
input (called programs that are members of
the specified library) to form one load
module.

STEPl compiles a source module called
MAIN, STEP2 compiles a source module called
ADD, and STEP3 compiles a source module
called SUBTRACT. The object module from
each step is placed in the sequential data
set called &&GOFILE. (Since MOD and PASS
are specified for &&GOFILE in the SYSLIN DD
statement in STEP1, the object modules ADD
and SUBTRACT are placed in the data set
behind the object module, MAIN.)

In STEP4, the linkage editor uses the
&&GOFILE data set as primary input, and the
cataloged libraries MYLIB and SYS1.COBLIB
as additional input. (The INCLUDE and
LIBRARY statements become.part'of the
primary input through the DD * statement
following the SYSLIN DD statement.)

The object modules of the data set
&&GOFILE and the member A of MYLIB are
processed first. If there are unresolved
references after this input is processed,
the linkage editor searches the automatic
call library, which includes the COBOL
subroutine library and members X, Y, and Z
of MYLIB, to resolve these references.
MYLIB is specified in the ADDLIB DO
statement.

After linkage editor processing is
completed, the load module CALC is added as
a member to the existing, cataloged library
PROGLIB. CALC now contains MAIN, SUBTRACT,
ADD, A, and, possibly, COBOL subroutines,
and X, Y, and Z.

OVERLAY.STRUCTURES

If the called programs needed to execute
one COBOL source program do not all fit
into main storage at the same time, it is
still possible to use them with the overlay
technique or with the use of the
segmentation feature. Called programs that
do not need to be in main storage at the
same time can be given the same relative
storage address and then loaded at
different times during execution when they
are needed. In this way, the same storage

218

space can be used for more than one called
program. The use of segmentation is
discussed in "Using the Segmentation
Feature."

Considerations for Overlay

Assume a COBOL main program, called
COBMAIN, exists that calls at one or more
points in its logic the COBOL subprograms:
CSUB1, CSUB2, CSUB3, CSUB4, and CSUB5.
Also assume that the load module sizes for
the main program and the subprograms are
given as follows:

r-------------T---------------------------,
I Program I Module Size (in Bytes) I
~-------------+---------------------------i
I COBMAIN I 20,000 I
I CSUBl I 4,000 I
I CSUB2 I 5,000 I
I CSUB3 I 6,000 I
I CSUB4 I 3,000 I
I CSUB5 I 4,000 I L _____________ i ___________________________ J

Through the linkage mechanism, CALL
SUB1 ••• , all subprograms plus COBMAIN must
be linkage edited together to form one
module 42,000 bytes in size. Therefore,
COBMAIN would require 42,000 bytes of
storage in order to be executed.

If the subprograms needed do not fit
into main storage, the following three
techniques of overlay are available to the
COBOL programmer:

• Preplanned overlay using the linkage
editor

• Dynamic overlay using macro
instructions during execution

• Segmentation Feature

Note: The largest load module that can be
processed by Fetch is 524,248 bytes. If a
load module exceeds this limit, it. should
be divided.

Linkage Editing with Preplanned Overl~

The preplanned linkage editor facility
permits the reuse of storage locations
already 9ccupied. By judiciously
modularizing a program and using the
linkage editor overlay facility, a program
that is too large to fit into storage at
one time can be executed.

In using the preplanned overlay
technique, the programmer specifies to the
linkage editor which subprograms are to
overlay each other. The subprograms
specified are processed as part of the
program by the linkage editor, so they can
be automatically placed in main storage for
execution when requested by the program.
The resulting output of the linkage editor
is called an overlay structure.

It is possible, at linkage edit time, to
set up an overlay structure by using the
COBOL source language linkage statement and
the linkage editor OVERLAY statement.
These statements enable a user to call a
subprogram that is not actually in storage.
The details for setting up the linkage
editor control statements for accomplishing
this procedure can be found in the
publication IBM-Systern/360 Operating
System: Linkage Editor.and.Loader.

In a linkage editor run, the programmer
specifies the overlay points in a program
by using OVERLAY statements. The linkage
editor treats the entire input as one
program, resolving all symbols and
inserting tables into the program. These
tables are used by the control program to
bring the overlay subprograms into storage
automatically when called.

Figure 67 shows the deck arrangement for
an overlay structure using preplanned
linkage editor overlay. The OVERLAY
statements specify to the linkage editor
that the overlay structure to be
established is one in which SUBPROG A,
SUBPROG B, and SUBPROG C overlay each other
when called during execution.

Dynamic Overlay Technique

In preparation for the dynamic overlay
technique, each part of the program that is
brought into storage independently should
be processed separately by the linkage
editor. (Hence, each part must be
processed as a separate load module.) To
execute the entire program, the programmer
must:

1. Specify the main program in the EXEC
statement •.

2. Bring the separately processed load
modules into storage when they are
required, by using the appropriate
supervisor linkage macro instructions.
This is accompli~hed during execution.

Figure 67. Sample Deck for Linkage Editor
Overlay Structure

The dynamic overlay technique can be
used to overlay subprograms during
execution. To accomplish dynamic overlay
of subprograms, the programmer must write
an assembler language subprogram that
employs the LINK macro instruction to call
each COBOL subprogram. For a detailed
description of the LINK macro instruction,
see the publication IBM System/360
Operating System: Supervisor and Data
Management Macro Instructions.

In using the dynamic overlay technique,
the main program communicates with the
assembler language subprogram by using the
COBOL language CALL statement. The CALL
statement can be used to pass the name of
the COBOL subprogram (to be linked) and the
specified parameter list to the assembler
language subprogram. This procedure is the
same for each CALL used in the main
program. Hence, each CALL results in
linking with a subprogram through the
assembler language subprogram.

When the COBOL subprogram is finished
executing, it returns control to the
assembler language subprogram, which in
turn returns to the main program. The
process is repeated for each CALL to the
assembler language subprogram.

Dynamic overlay requires that a
programmer have detailed knowledge of the
linkage conventions, assembler language,

calling and Called Programs 219

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

and the LINK macro instruction with its
features and restrictions.

Beyond this, the programmer must ensure
that the COBOL subprogram modules exist in
a private library (PDS) which is defined by
a //JOBLIB DD statement in the job control
language for execution of the main program.

~; In structuring a program with either
the preplanhed overlay technique or the
dynamic overlay technique, special
consideration must be given to the presence
of the TRANSFORM table and the class test
tables, which are members of the COBOL
object-time library (see "Appendix B:
COBOL Library Subroutines"). The TRANSFORM
table is link-edited with a COBOL program
if the TRANSFORM statement is used.
Similarly, one or more of the class test
tables is present in a COBOL load module if
a class test is performed or if the OCCURS
DEPENDING ON option is used.

For these tables, which contain no
executable code and are not branched to but
are merely referenced, the compiler
designates A-type address constants
(ADCONs) and EXTRN references rather than
V-type address constants (VCONs).
Accordingly, the overlay structure segment
containing the table(s) must be either the
root segment or a segment that is higher in
the same leg as the segment containing the
reference(s) to the table(s). This
requirement has no effect on the COBOL
segmentation feature (see the chapter "Use
of the segmentation Feature"), since
(1) all members of the object-time
subroutine library are link-edited into the
root segment, and (2) American National
Standard COBOL subprograms may not be
segmented.

In addition, the library routine
ILBOSTPO should always be link-edited into
the root segment, or a segment higher than
any which contain COBOL load modules. This
is necessary because all calls (explicit or
implicit) to this routine should reference
the same copy.

220

LOADING PROGRAMS

The loader resolves external names and
references and combines calling and called
programs into a format suitable for
execution as a single load module. For
information on invoking the loader see
"Using the Cataloged Procedures."

Load modules of both calling and called
programs are used as input to the loader.
There are two kinds of input, primary and
additional. Primary input consists of one
or more separately compiled object modules
and/or load modules. Additionalinput
consists of object modules or load modules
that are not part of primary input data
sets but are to be included in the load
module. The additional input may be in the
form of (1) libraries containing object
modules, or (2) libraries containing load
modules. Additional input may contain
either calling or called programs or both.

SPECIFYING PRIMARY INPUT

The primary input data set is specified
for loader processing by the SYSLIN DO
statement. The loader must always have a
primary input data set whether or not there
are called or calling programs. The SYSLIN
DD statement that specifies primary input
is discussed in the section "Data Set
Requirements."

SPECIFYING ADDITIONAL INPUT

Additional input data sets are specified
by the SYSLIB DD statement. The SYSLIB DD
statement is discussed in the section "Data
Set Requirements."

Note: Neither the overlay facility nor the
segmentation feature can be used with the
loader.

Libraries are an integral part of the
operating system. Some libraries have
system-supplied names and system-supplied
data. Other libraries have system-supplied
names, but the data they contain may be
specified by a user. Still other libraries
have user-supplied names and user-supplied
data.

Libraries, in general, are made up of
partitioned data sets. Any library with a
user-supplied name and user-supplied data
always is a single partitioned data set,
which is a collection of independent sets
of sequentially organized data, called
members. All of the members within a
partitioned data set have the same
characteristics as that of record format.
When used to store programs, ,a partitioned
data set containing load modules can
contain only load modules; it cannot
contain both load modules and object
modules.

Each partitioned data set is headed by a
directory of entries pointing to the
members that make up the library. Each
member has a unique member name. A
partitioned data set must reside on a
single mass storage device, but some
libraries can consist of a concatenation of
more than one partitioned data set.

Figure 68 shows the format of a library
that is a single partitioned data set of
four members. Space for the members of
such a library and its directory is
requested in the SPACE parameter of the DD
statement when the library is created.
Additional members can be added to a
library at a later time. If additional
space is required to store a member,
allocation will be made in the amount
specified by the secondary allocation in
the SPACE parameter of the DD statement
that was used when the library and its
first member were created. Additional
~~ cannot be allocated fo~:tbe
1rectory, however. Directory space is

allocated for the entire library when the
library is created. If the original
allocation was not lar.ge enough, the
IEHMOVE utility program can be used to
expand the directory size. If the
directory is filled, no additional members
can be added to the library. Following is
an example of a DO statement that might be
used to create a library:

//DD1
//
//
//
//

DD DSNAME=FILELIB(FILE1), X
DISP=(NEW,CATLG), X
UNIT=2311, &> X
SPACE=(TRK, (40,10 3.>. , X
VOLUME=SER=111111 - "'--". ..

".

This statement specifies that a library \
named FILELIB is to be created and \
cataloged in this job step. Its first I
member is named FILE1. Initial space I
allocated for data sets is to be 40 tracks, i
with additional allocation to be made, as I
necessary, in units of 10 tracks. In ~'
addition, space for three 256-byte records
is to be allocated for the directory. The
voiume ser1aI Iiwubet is 111111.

A member of a partitioned data set can
be replaced or deleted. The system
actually accomplishes this by modifying or
deleting the directory pointer to the
member. The space occupied by the original
member is not available for reuse until the
MOVE or COpy control statement of the
IEHMOVE utility program is used. The space
previously occupied by the replaced or
deleted member is thus made available.
(For further details, see the publication
IBM System/360 Operating system:
utilities.)

KINDS OF LIBRARIES

A programmer can use libraries already
provided by the system, or he can create
libraries of his own. In addition, certain
library names recognized by the system may
be assigned to partitioned data sets
provided by the system, by the prog£ammer,
or both. These libraries and their uses
are discussed in the following paragraphs.

LIBRARIES PROVIDED BY THE SYSTEM

Link Library

The link library is a partitioned data
set that contains load modules to be
executed. Unless specified otherwise, a
load module name in an EXEC statement is to
be fetched from the link library.
Operating system programs, such as the
COBOL compiler, are usually contained in
this library.

Libraries 221

Directory

Library
Members

r------------T-------------T-------------T-------------T--------------,
1
1 Entry for I Entry for I Entry for I Entry for I I
I Member A I Member B I Member C I Member K I Note 1 I
~------------~-------------~-------------~-------------~-------T------~
I I I
I Member C I Note 21
~--T-------------T-------~------~
I I I I
I Note 2 I Member B I Member K I
~--~-------------~--------------~
I I
I Member K 1

~--------------------------------T------------------------------------~
I 1 1
I Member K 1 Member A I
~------------T-------------------~------------------------------------~
I I I
I Member A I Note 3 I
~------------~--~
I I
I Note 3 I L ___ J

Notes:
~pace available in directory.
2. Space available from deleted member after data set has been

compressed.
3. Space available in library.

Figure 68. Format of a Library

The link library can be used by the
programmer to store executable load modules
at linkage editor time. The technique for
doing this is described in "Linkage Editor
Data Set Requirements."

The link library is identified in a job
control statement as SYS1.LINKLIB.

Procedure Library

The procedure library is a partitioned
data set whose members are the cataloged
procedures at an installation. They
include the cataloged procedures provided
by IBM. Procedures written at the
installation can be added to the procedure
library with the IEBUPDTE utility program
(see "Using the Cataloged Procedures").

The system name for the procedure
library is SYS1.PROCLIB.

Sort Library

The sort library is a partitioned data
set that contains load modules from which
the sort program is produced.

222

It is identified by the name
SYS1.S0RTLIB (see "Using the Sort
Feature").

COBOL Subroutine Library

The COBOL subroutine library is a
partitioned data set that contains the
COBOL library subroutines in load module
form. These subroutines are included in a
COBOL load module to perform such functions
as data conversion and double precision
arithmetic. The COBOL programmer does not
refer directly to these subroutines:
calling sequences to them are generated at
compile time from certain Procedure
Division statements, and they are
incorporated into the load module at
linkage editor time. A listing of
subroutine names, functions, entry points,
and size is given in Appendix B.

The system name for the COBOL subroutine
library is SYS1.COBLIB.

LIBRARIES CREATED BY THE USER

A programmer can create members of the
link library, the procedure library, and

the job library. He can also create
partitioned data sets for use in the copy
library, the automatic call library, and
the job library. In addition, he can
create partitioned data sets to be used as
libraries for additional input to the
linkage editor, and he can create libraries
whose members are source program entries.

AUTOMATIC CALL LIBRARY

The automatic call library, defined by
the SYSLIB DD statement in the linkage
editor job step, contains load modules or
object modules that may be used as
secondary input to the linkage editor. If
the library contains object modules, it may
also contain control statements. External
symbols that are undefined after all
primary input has been processed cause the
automatic library call mechanism to search
the automatic call library for modules that
will resolve the references. The COBOL
subroutine library must be specified for
the automatic call library if any of the
subroutines will be needed to resolve
external references. Other partitioned
data sets may be concatenated as shown in
the following example:

//SYSLIB
//

DD DSNAME=SYS1.COBLIB,DISP=OLD
DD DSNAME=MYLIB,DISP=OLD

In this case, both the COBOL subroutine
library and the partitioned data set named
MYLIB are available to the automatic
library call.

Note: If the partitioned data set named in
the SYSLIB DD statement contains load
modules, any data set concatenated with it
must also be a load module partitioned data
set. If the first contains object modules,
the others must also contain object
modules.

The linkage editor LIBRARY control
statement has the effect of concatenating
any specified member names with the
automatic call library.

COBOL COPY LIBRARY

The COBOL copy library is a user-created
library consisting of statements or entire
COBOL programs frequently used by the
programmer. The programmer can include
these statements or programs into a program
at compile time. He calls them with the
COBOL COpy statement or BASIS card.

To enter or update source statements in
the copy library, a utility program must be
used. IEBUPDTE is the IBM-supplied utility
program used to catalog procedures. A full
discussion of the statements used in this
program may be found in the publication !~~
System/360 Operating System: Utilities.

Figure 69 illustrates the method to
insert source statements into a copy
library member.

The ./ ADD statement is a utility
statement that copies CFILEA into the

r---,
//CATALOG JOB
// EXEC PGM=IEBUPDTE,PARM=(NEW)

DSNAME=COPYLIB,UNIT=2311,
DISP=(NEW,KEEP) ,
VOLUME=SER=llllll,
SPACE=(TRK,(15,10,2»,

//SYSUT2 DD
//
//
//
//
//SYSPRINT
//SYSIN
./
./

./
1/*

DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
DD SYSOUT=A
DD *
ADD NAME=CFILEA,LEVEL=OO,SOURCE=O,LIST=ALL
NUMBER NEW1=10,INCR=5

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

ENDUP

X
X
X
X

L __ _

Figure 69. Entering Source Statements into the COpy Library

Libraries 223

r---,
//UPDATE JOB
// EXEC
//SYSUT1 DD
//
//
//
//SYSUT2
//

DD

DD

PGM=IEBUPDTE, PARM= (MOD)
DSNAME=COPYLIB,UNIT=2311,

DISP=(OLD,KEEP),
VOLUME=SER=llllll,
DCB=(RECFM=F,BLKSIZE=80)

DSNAME=COPYLIB,UNIT=2311,
DISP=(OLD,KEEP),
VOLUME=SER=llllll

SYSOUT=A
//
//SYSPRINT
//SYSIN DD *

X
X
X

X
X
X

CHANGE NAME=CFILEA,LEVEL=Ol,SOURCE=O,LIST=ALL

./
1/*

BLOCK CONTAINS 20 RECORDS
END UP

00000010

L __ _

Figure 70. Updating Source Statements in a COpy Library

//SYSLIB DD
//
//

DSNAME=COPYLIB,
VOLUME=SER=llllll,
DISP=OLD,UNIT=2311

Retr~~y~~ Source Statements

X
X

library called COPYLIB. CFILEA describes
an FD entry. The NUMBER statement assigns
a sequential numbering system to the
statements in the library. The first
statement is assigned number 10 and each
succeeding statement is incremented hy 5.
The entries following the utility
statements are the actual source statements
to be cataloged. The ENDUP statement
signals the end of the entries to be
inserted.

Members of the cataloged library can be
retrieved using the COpy statement or BASIS
card.

This same procedure can be used to
catalog entire source programs.

Updating Source Statements

Figure 70 illustrates the method to
update source statements in a copy library
member inserted in the previous example.

SYSUT1 and SYSUT2 describe the data
sets. Note that changes may be made on the
same data set (identified on the DSNAME
parameter). The utility statement CHANGE
indicates that the new entry of CFILEA
replaces the old entry. The sequence
number of the altered statement must be
supplied. This number, 00000010, is
indicated in columns 73 through 80 of the
replacement source statement. Note that,
although in the insert example (see Figure
68 -- NUMBER statement) the number was
coded as 10 without leading zeros, the
program assigns an 8-character field to a
sequence number and pads with leading zeros
if necessary. When updating a sequence
number in a library, these leading zeros
must be included.

At compile time, COPYLIB is identified
on a SYSLIB DD statement, as follows:

224

The COPY statement permits the
programmer to include cataloged source
statements into the Data or Environment
Divisions. If the programmer wishes to
retrieve the member, CFILEA, cataloged in
the previous examples, he writes the
statement:

FD FILEA COPY CFILEA

The compiler translates this instruction to
read:

FD FILEA BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

Note that CFILEA itself does not appear in
the statement. CFILEA is a name
identifying the entries. It acts as a
header record but is not itself retrieved.
The compiler source listing, however, will
print out the COpy statement as the
programmer wrote it.

The COpy statement also permits the
programmer to include previously cataloged
source statements into the Procedure
Division.

Assume a procedure named DOWORK was
cataloged with the following statements:

.1 ADD NAME=DOWORK,LEVEL=OO,
SOURCE=O,LIST=ALL

• 1 NUMBER SEQ1=400,INCR=10
COMPUTE QTY-ON-HAND =

TOTAL-USED-NUMBER-ON-HAND.
MOVE-QTY-ON-HAND TO PRINT-AREA.

.1 ENDUP

To retrieve the cataloged member, DOWORK,
the programmer writes:

paragraph-name. COpy DOWORK.

The statements included in the DOWORK
procedure will immediately follow the
paragraph-name, replacing the words COpy
DOWORK.

BASIS Card

Frequently used source programs, such as
a payroll program, can be inserted into the
copy library. The BASIS card brings in an
entire source program at compile time.
Calling in a program eliminates the need
for the programmer to handle a program each
time he wants to compile it. The
programmer may, however, alter any
statement in the source program by

referring to its COBOL sequence number with
an INSERT or DELETE statement. The INSERT
statement will add new source statements
after the sequence number indicated. The
DELETE statement will eliminate the
statements indicated by the sequence
numbers. The programmer may delete a
single statement with one sequence number,
or may delete more than one statement with
the first and last sequence numbers to be
deleted separated by a hyphen •

Not~: The COBOL sequence number is the
six-digit number that the programmer
assigns in columns 1 through 6 of the
source cards. This sequence number has
nothing to do with the sequence numbers
assigned in simulated columns 13 through 80
by the IEBUPDTE utility program. The
sequence numbers assigned by IEBUPDTE are
used to update source statements in the
copy library. Changes made using these
numbers are intended to be permanent
changes. The COBOL sequence numbers are
used to update COBOL source statements at
compile time. Such changes are in effect
for the one run only.

Assume that a company payroll program is
kept as a source program in the copy
library. The name of the program is
PAYROLL. During a particular year, old age
tax is taken out at a rate of two and a
half percent each week for all personnel
until earnings exceed $6600. The coding to
accomplish this is shown in Figure 71.

Now, however, due to a change in the old
age tax laws, tax is to be taken out until
earnings exceed $7800 and a new percentage
is to be placed. The programmer can code
these changes as shown in Figure 72.

r---,
COBOL IEBUPDTEI
Sequence Sequence 1
Numbers Numbers 1
000730 IF ANNUAL-PAY GREATER THAN 6600 GO TO PAY-WRITE. 000001051
000735 IF ANNUAL-PAY GREATER THAN 6600 - BASE-PAY GO TO LAST-TAX. 000001101
000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .025 000001151
000750 MOVE TAX-PAY TO OUTPUT-TAX. 000001201
000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. 000001251
000770 ADD BASE-PAY TO ANNUAL-PAY. 000001301

1
1
1

1000850 STOP RUN. 000002401 L ___ J

Figure 11. COBOL Statements To Deduct Old Age Tax

Libraries 225

r---,
1 1
1 1
1 1
IBASIS PAYROLL 1
IDELETE 000730-000740 1
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-TAX. 1
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .044. I L ___ J

Figure 72. Programmer Changes to Source Program

r---,
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-TAX. 1
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .044. I
1000750 MOVE TAX-PAY TO OUTPUT-TAX. 1
1000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. I
1000770 ADD BASE-PAY TO ANNUAL-PAY. I
1 1
1 1
1 I
1000850 STOP RUN. I L __ ~ ______ J

Figure 73. Changed COBOL Statements to Source COPY Library Statements

The altered program will contain the
coding shown in Figure 73.

Note that changes made through use of
the INSERT and DELETE statements remain in
effect for the one run only.

Note: If both the BASIS card and the COPY
statement are used, the library containing
the member specified in the BASIS card must
be defined first. The COpy libraries ---
concatenated with the BASIS library may be
defined and referenced in any order (see
"Appendix I: Check List for Job Control
Procedures") •

JOB LIBRARY

The job library consists of one or more
partitioned data sets that contain load
modules to be executed. It is specified by
the JOBLIB DD statement that must precede
the EXEC statement of the first step of a
job. Partitioned data sets assigned to the
job library are concatenated with the link
library so that any load module is obtained
automatically when its name appears in the
PGM= parameter of the EXEC statement. The
following statements illustrate how three

226

partitioned data sets can be assigned to
the job library:

//MYJOB
//JOBLIB
//
//
//STEPl

//STEP2

JOB
DD DSNAME=MYLIB1, DISP=(OLD, PASS)
DD DSNAME=MYLIB2,DISP=(OLD,PASS>
DD DSNAME=MYLIB3,DISP=(OLD,PASS)
EXEC

EXEC

These statements specify that the job
library containing the data sets MYLIB1,
MYLIB2, and MYLIB3 is to be concatenated
with the link library. When a load module
is named in an EXEC statement in any step
of the job, the directories of the job
library will be searched for the name.
When a job library is specified for a job,
the link library is searched for a named
load module only when the module is not
found in the job library.

Partitioned data sets used in the job
library can be created by specifying the
partitioned data set name and the member
name in the SYSLMOD DD statement when each
member is processed by the linkage editor.

Additional Input to Linkage Editor

Libraries of object modules (with or
without linkage editor control statements)
and libraries of load modules can be used
as additional input to the linkage editor.
Members are specified by use of the INCLUDE
and LIBRARY linkage editor control
statements.

A library of object modules and control
statements can be created by use of the
IEBUPDTE utility program.

A library of load modules can be created
by use of the SYSLMOD DO statement in the
linkage editor job step, as discussed in
"Job Library."

CREATING AND CHANGING LIBRARIES

A programmer can create or change a
partitioned data set in one of three ways:
(1) through the use of 00 statements, (2)
through the use of utility programs, and
(3) through the use of certain linkage
editor control statements.

The DO statement can be used to create
libraries as is discussed at the beginning
of this chapter. In addition, DD
statements can be used to add members to
existing libraries, including the link
library, and to retrieve members of
existing libraries.

Utility programs can be used to create
libraries such as those used in the copy
library or as secondary input to the
linkage editor. In addition, utility
programs can be used to move, copy, and
replace members of an existing library; to
add, delete, and renumber the records
within an existing library; and to assign
sequence numbers to the records of a new
library.

Linkage editor control statements can be
used to make changes to members of a
library of load modules. The name of a
member can be changed or additional names
can be specified. Additional entry points
can be identified, existing entry points
can be deleted, and portions of a load
module can be deleted or replaced. For
further information, see the publication
IBM System/360 Operating System: Linkage
Editor and Loader.

Libraries 227

USING THE CATALOGED PROCEDURES

A cataloged procedure is a set of job
control statements that has been placed in
a partitioned data set called the procedure
library (SYS1.PROCLIB). It can be
retrieved from the library by using its
member name in an EXEC statement of a job
step in the input stream. Frequently used
procedures, such as those used for
compiling and linkage editing, can be
cataloged to simplify their subsequent use.

A cataloged procedure can contain
statements for the processing of an entire
job, or it can contain statements to
process one or more steps of a job, with
the remaining steps defined by job control
statements in the input stream. A job can
use several cataloged procedures, each
processing one or more of the job steps. A
job can also call for execution of the same
cataloged procedure in more than one job
step.

This chapter describes the following:

• How to call cataloged procedures

• The types of cataloged procedures,
including those supplied by IBM for use
with COBOL source programs

• How to add procedures to the procedure
library

• How to modify existing procedures for
the current job step only

• How to override and add to cataloged
procedures

• How to use the DDNAME parameter in
cataloged procedures

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream. The job
must consist of a JOB statement and an EXEC
statement that specifies the cataloged
procedure name in the positional parameter
(either procname or PROC=procname). For
example:

//STEPQ EXEC COBUC
//STEPQ EXEC PROC=COBUC

Either of these EXEC statements could be
used to call the IBM-supplied cataloged

228

procedure COBUC to process the job step
STEPQ.

A job step that calls for execution of a
cataloged procedure can also contain DD
statements that are applicable to the job
steps of the cataloged procedure. A job
that calls for execution of a cataloged
procedure may, in other steps, call for
execution of other cataloged procedures,
call for other executions of the same
cataloged procedure, or call directly for
execution of load modules. The following
example shows a job control procedure that
calls both cataloged procedures and load
modules.

//JOBl
//STEPA
//COB.SYSIN

JOB
EXEC
DD

COBUC

*
(source module)

/*
//STEPL EXEC PGM=IEWL

(DD statements for the linkage editor)

//STEPE EXEC PGM=*.STEPL.SYSLMOD

(DD statements for user-defined files)

The IBM-supplied cataloged procedure
COBUC for compilation is used to process
STEPA. TheCOB.SYSIN DD statement is
required to define the input to the
compiler. The remaining statements in the
procedure refer to execution of the linkage
editor and the subsequent load module.

Data Sets Produced by Cataloged Procedures

Data sets produced during execution of a
cataloged procedure can be us~d in
subsequent job steps. They can also be
called as follows:

//jobname JOB 1234,J.SMITH
//STEPA EXEC PROCED
//PROC1.SYSIN DD *

(source module)

/*
//stepname EXEC PGM=*.STEPA.PROC2.SYSLMOD

(DD statements for user-defined files)

The cataloged procedure PROCED is
composed of two job steps, PROCl and PROC2,
that compile and linkage edit the source
module.

TYPES OF CATALOGED PROCEDURES

The programmer can write his own
procedures and catalog them, or he can use
the four COBOL cataloged procedures
provided by IBM.

PROGRAMMER-WRITTEN CATALOGED PROCEDURES

The programmer can write cataloged
procedures, consisting of EXEC and DD
statements, which incorporate job control
procedures he uses frequently. For
example, the programmer may wish to catalog
an EXEC statement and the associated DD
statements for a job step that specifies
execution of a program. In this way the DD
statements need not be specified each time
the program is executed.

In writing a procedure for cataloging,
the programmer must follow these rules:

• Another cataloged procedure cannot be
referred to, i.e., only the
PGM=progname form in an EXEC statement
can be used.

Note, however, that a cataloged
procedure may contain a DD statement
that refers to a cataloged data set.

• SYSABEND or SYSUDUMP DD statements
should not be cataloged because they
cannot be overridden.

• The following statements cannot be used
in a cataloged procedure:

. 1. The JOB statement

2. A DD statement with JOBLIB in the
name field

3. A DD statement with an * in the
operand field

4. A DD statement with DATA in the
operand field

5. The delimiter statement

Testing Programmer-Written Procedures

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure
and executing it any number of times during
a job. For further information about
in-stream procedures, refer to the section
"Testing a Procedure as an In-Stream
Procedure" •

The IEBUPDTE utility program is used to
add procedures to the procedure library. A
description of the use of this program is
given in the publication !~~_§y~temLl~Q
opera~!Q9-Sys~~m~ __ Q~!liti~~.

In Figure 74, two procedures are added
to the procedure library (SYS1.PROCLIB).
All control statements are in the input
stream.

The first procedure is for a COBOL
compilation. Mass storage volumes are
specified for the four utility data sets,
and 100 tracks are allocated for each
utility data set. This cataloged procedure
is named COBDA.

The second procedure is also for a COBOL
compilation. Unlabeled tape volumes are
specified for three utility data sets; for
the fourth, SYSUT1, a mass storage device
must be specified. This cataloged
procedure is named COBTP.

Job control statements: the EXEC card
specifies that the IEBUPDTE program is to
be executed, and PARM=NEW is used because
all data is read from one source, i.e., the
input stream.

utility statements: the ADD statement
specifies the member name of the procedure,
the level modification (00, first run) and
the source of the modification (0,
user-supplied). The NUMBER statement

Using the Cataloged Procedures 229

specifies the sequence numbers for records
in the member. The first record of the
cataloged procedure is numbered 00000010,
and subsequent records are incremented by
tens.

Note that leading zeros in the NUMBER
statement are not necessary, as indicated
in the example for the COBTP procedure.

IBM-SUPPLIED CATALOGED PROCEDURES

IBM distributes cataloged procedures
with the operating system, which can be
incorporated when the system is generated.

Five of the procedures are for use with
COBOL programs.

1. COBUC provides for compilation.

2. COBUCL provides compilation and
linkage editing.

3. COBULG provides linkage editing and
execution.

4. COBUCLG providing compilation, linkage
editing, and execution.

5. COBUCG providing compilation and
loading.

These procedures may be used with any of
the job schedulers rel~ased as part of the
System/360 Operating System. When
parameters required by a particular
scheduler are encountered by another
scheduler that does not require those
parameters, either they are ignored or
alternative parameters are substituted
automatically.

The five cataloged procedures are shown
in Figures 75, 76, 77, 78, and 79. (Space
allocations in these procedures are in
terms of record lengths on the 2311 disk
storage device.) Note that when DSNAME=&&
is used in a DD statement the specified
data set is given a unique name by the
operating system, and it is assumed to be a
temporary data set that will be deleted
when the job is completed. If the data set
is to be kept, the DO statement can be
overridden with a permanent data set name,
and the appropriate parameters can be
specified.

r---,
Job //ADPROC JOB 1234,J.DUBOB
Control //STEP1 EXEC PGM=IEBUPDTE,PARM=NEW
Language //SYSPRINT DD SYSOUT=A
Statements //SYSUT2 DO DSNAME=SYS1.PROCLIB,DISP=OLD

//SYSIN DD DATA

Utility ./ ADD NAME=COBDA, LEVEL = 0 0 , SOURCE=O
Statements ./ NUMBER NEW1=00000010,INCR=00000010

//COB EXEC PGM=IKFCBLOO
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (100,10»
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (100,10»

First //SYSUT3 DD UNIT=SYSOA,SPACE=(TRK, (100,10»
Procedure //SYSUT4 DO UNIT=SYSDA,SPACE=(TRK, (100,10»

//SYSPRINT DO SYSOUT=A
//SYSPUNCH DO SYSOUT=B

Utility ./ ADD NAME=COBTP,LEVEL=OO,SOURCE=O
statements ./ NUMBER NEW1=10,INCR=10

//COB EXEC PGM=IKFCBLOO
//SYSUT1 DO UNIT=SYSDA,SPACE=(TRK,(100,10»

Second //SYSUT2 OD UNIT=2400,LABEL=(,NL)
Procedure //SYSUT3 OD UNIT=2400,LABEL=(,NL)

//SYSUT4 DO UNIT=2400,LABEL=(,NL)
//SYSPRINT DO SYSOUT=A
//SYSPUNCH DO SYSOUT=B

Delimi ter • / ENDUP
I statements /* L __ ---

Figure 74. Example of Adding Procedures to the Procedure Library

230

Note: If the compiler options are not
explicitly supplied with the procedure,
default options established at the
installation apply. The programmer can
override these default options by using an
EXEC statement that includes the desired
options (see "Overriding and Adding to EXEC
Statements" and "overriding Cataloged
Procedures Using Symbolic Parameters").

Procedure Naming Conventions

Procedure names begin with the
abbreviated name of the processor program,
which, in the case of the COBOL procedures,
is COB.

The processor's abbreviated name is
followed by the processor's level indicator
(U) and then by C (compile), L (linkage
edit>, G (go -- i.e., execute), or
combinations of them. Hence, procedure
COBUC is a single-step procedure that
compiles a program using the COBOL
processor; COBUCLG is a three-step
procedure wherein the first step compiles a
program using COBOL, the second step
linkage edits the output of the first step,
and the third step executes the output of
the linkage editor.

Step Names in Procedures

In a cataloged procedure, the step name
is the same as the abbreviated processor
name (LKED). The step that executes a
compiled and linkage edited program is
named GO.

For example, in the procedure named
COBUCLG, the first step is named COB, the
second step is named LKED, and the third
step is named GO.

Unit Names in Procedures

The two unit names used in IBM-supplied
cataloged procedures are, as follows:

SYSSQ

SYSDA

any magnetic tape or mass
storage device

any mass storage device

A pool of units must be assigned to
these unit names during the system
generation procedure. For example, only
2311 Disk Storage Drives might be assigned
to the SYSSQ name. Then again, both 2400

Magnetic Tape Units and 2311 Disk Storage
Drives might be assigned to the SYSSQ name.
Once a pool of devices is assigned to these
classes, device selection is done by the
Job Scheduler.

When DSNAME=&&name is used in a 00
statement, the specified data set is given
a unique name by the scheduler, and it is
assumed to be a temporary data set that
will be deleted when the job terminates.
If the data set is to be retained, the DD
statement must be overridden with a
permanent data set name and appropriate
DISP parameters.

The COBUC procedure is a single-step
procedure to execute the COBOL compiler.
It produces a punched object deck. Figure
75 shows the statements that make up the
COBUC cataloged procedure.

The following 00 statement must be
supplied in the input stream:

//COB.SYSIN DO * (or appropriate
parameters defining an
input data set)

If the DD * statement is used under MFT,
the delimiter statement (/*> must follow
the source module. Under MVT, the /*
statement is not required.

The COBUCL procedure is a two-step
procedure to compile and linkage edit using
the COBOL compiler. Figure 76 shows the
statements that make up the cataloged
procedure.

The COB job step produces an object
module that is input to the linkage editor.
Other object modules may be added as
illustrated in Example 5 under "Using the
DDNAME Parameter."

The following DD statement, indicating
the location of the source module, must be
supplied in the input stream:

//COB.SYSIN DD * (or appropriate
parameters)

Using the Cataloged Procedures 231

COBULG Procedure

The COBULG cataloged procedure is a
two-step procedure to linkage edit and
execute the output of a COBOL compilation.
Figure 77 shows the statements that make up
the procedure.

The following DD statement indicating
the location of the object module must be
supplied in the input stream:

//LKED.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN i.n
the execution step, the following DD
statement must also be supplied and must be
the last of the //GO, cards.

//GO.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to other
data sets in the execution step such as
~ser-defined files, DD statements that
define these data sets must also be
provided.

r--~------------------------,
I//COB EXEC PGM=IKFCBLOO,PARM='DECK,NOLOAD,SUPMAP',REGION=S6K 1
I//SYSPRINT DD SYSOUT=A I
1/ /SYSPUNCH DD SYSOUT=B I
1//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100» I
1//SYSUT2 DD DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460,(700,100» I
1//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460,(700,100» I
1//SYSUT4 DD DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460,(700,100» I L ___ J

Figure 75. statements in the COBUC Procedure

r---,
//COB EXEC PGM=IKFCBLOO,REGION=S6K
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSNAME=&'SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100»
//SYSUT2 DD DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460, (700,100»
//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460,(700,100»
//SYSUT4 DD DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460,(700,100»
//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, X
// SPACE=(SO,(500,100»
//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET',COND=(S,LT,COB), X
// REGION=96K
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET,DISP=(NEW,PASS),UNIT=SYSDA, X
// SPACE=(1024,(50,20,1»
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», X
// SPACE=(1024, (50,20»

I//SYSPRINT DD SYSOUT=A L __ _

Figure 16. statements in the COBUCL Procedure

r---,
I//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET',REGION=96K I
1/ /SYSLIN DD DDNAME=SYSIN 1
I//SYSLMOD DD DSNAME=&&GOSET(GO),DISP=(NEW,PASS),UNIT=SYSDA, X 1
1// SPACE=(1024,(50,20,1» I
I//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR I
1//SYSUTl DD DSNAME=&&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», X I
1// SPACE=(1024,(50,20» I
1/ /SYSPRINT DD SYSOUT=A I
I//GO EXEC PGM=*.LKED.SYSLMOD,COND=(5,LT,LKED) I L ___ J

Figure 71. statements in the COBULG Procedure

232

r---,
l//COB EXEC PGM=IKFCBLOO,PARM=SUPMAP,REGION=S6K I
l//SYSPRINT DD SYSOUT=A I
//SYSUTl DO DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100» 1
/ /SYSUT2 DO DSNAME=&&SYSUT2, UNIT=SYSDA, SPACE=t460, (700,100)) I
//SYSUT3 DO DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460, (700,100» I
/ /SYSUT4 DO DSNAME=& &SYSUT4, UNIT=SYSDA, SPACE= (460, (700,100)) 1
//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, X I
// SPACE=(SO, (500,100» I
//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET',COND=(S,LT,COB), X
// REGION=96K
//SYSLIN DO DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DO DSNAME=SYSIN
//SYSLMOD DO DSNAME=&&GOSET(GO),DISP=(NEW,PASS),UNIT=SYSDA, X
// SPACE=(1024,(SO,20,1»
//SYSLIB DO DSNAME=SYS1.COBLIB,DISP=SHR
//SYSUTl DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», X
// SPACE=(1024, (50,20»
//SYSPRINT DD SYSOUT=A

I//GO EXEC PGM=*.LKED.SYSLMOD,COND=«S,LT,COB), (S,LT,LKED» L __ _

Figure 7S. statements in the COBUCLG Procedure

r---,
I//COB EXEC PGM=IKFCBLOO,PARM='LOAD',REGION=S6K
I//SYSPRINT DO SYSOUT=A
1//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100»
1//SYSUT2 DD DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460, (700,100»
1//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460, (700,100»
1//SYSUT4 DD DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460, (700,100»
l//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS), X
1// UNIT=SYSDA,SPACE=(SO, (500,100»
I//GO EXEC PGM=LOADER,PARM='MAP,LET',COND=(S,LT,COB),REGION=106K
l//SYSLIN DO DSNAME=*.COB.SYSLIN,DISP=(OLD,DELETE)
I//SYSLOUT DD SYSOUT=A
I//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR L ___ J

Figure 79. Statements in the COBUCG Procedure

COBUCLG Procedure

The COBUCLG procedure is a three-step
procedure to compile, linkage edit, and
execute using the COBOL compiler. Figure
76 shows the statements that make up the
procedure.

The COB job step produces an object
module that is input to the linkage editor.
Other object modules may be added as
illustrated in Example 5 under "Using the

.DDNAME Parameter."

The following DD statement, indicating
the location of the source module, must be
supplied in the input stream:

//COB.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN,
the following DD statement indicating the

location of the input data set must also be
supplied:

//GO.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to other
data sets, DO statements that define these
data sets must also be supplied.

COBUCG Procedure

The COBUCG procedure is a two-step
procedure to compile and load using the
COBOL compiler. Figure 79 shows the
statements that make up the procedure.

The COB job step produces an object
module that is input to the loader.

using the Cataloged Procedures 233

The following DD statement, indicating
the location of the source module, must be
supplied in the input stream:

//COB.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN,
the following DD statement indicating the
location of the input data set must also be
supplied:

//GO.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to other
data sets, the DD statements that define
these data sets must also be supplied.

MODIFYING EXISTING CATALOGED PROCEDURES

Existing cataloged procedures can be
permanently mOdified by using the IEBUPDTE
utility program described in the
publication IBM System/360 Operating
system: Utilities.

OVERRIDING AND ADDING TO CATALOGED
PROCEDURES

Any parameter in a cataloged procedure
except the PGM=progname parameter in the
EXEC statement can be overridden.
Parameters or statements not specified in
the procedure can also be added. When a
cataloged procedure is overridden or added
to, the changes apply only during one
execution.

OVERRIDING AND ADDING TO EXEC STATEMENTS

An EXEC statement can be overridden or
added to in one of two ways:

1. Specify, in the operand field of the
EXEC statement calling the procedure,
the keyword, the procedure step-name
and the subparameters, for example:

234

COND.procstep=(subparameters)
If a multistep procedure is being
modified, parameters in the calling
EXEC statement must be specified step
by step: i.e., the parameters for one
step must be specified before those of
the next step. If the return code of
a cataloged procedure step is to be
tested, the name of the step in the

procedure (procstep) must be qualified
by the name of the step that called
for execution of the cataloged
procedure (stepname).

2. Specify in the operand field of the
EXEC statement calling the procedure
only the keyword parameters and
subparameters, for example:

COND=(subparameters)
If a multistep procedure is being
called, the specified parameters (with
the exception of PARM) apply to all
steps in the procedure. The PARM
keyword subparameters override the
first EXEC statement and nullify any
subsequent PARM keyword subparameters.
The COND and ACCT parameters apply to
all steps in the procedure. To
override PARM parameters in job steps
other than the first, the previous
method can be used.

Note: A parameter in an EXEC statement
cannot be partly overridden: it must be
overridden in its entirety. Any parameter
not overridden remains as originally
defined.

Examples of Overriding_ang_~ggi~~tQ_~!~£
Statements

This section contains examples of
overriding and adding to the EXEC
statement. The procedures overridden or
added to are the IBM procedures shown in
Figures 15, 16, 18, and 19.

Example 1: The following example shows the
overriding of one parameter in the EXEC
statement of the one procedure step in the
IBM-supplied COBUC procedure. The
statements appear in the input stream as
follows:

//jobname
//STEPA
//
//
//COB.SYSIN

/*

JOB 1234,J.SMITH
EXEC COBUC,PARM.COB='DECK,

NOLOAD,BUF=4000,
SIZE=9600'

DD *
(source module)

X
X

~: In actual use the PARM.COB parameter
cannot be continued in this manner. In the
PARM parameter that is overridden, the DECK
and NOLOAD options were specified. They
are included again since the parameter must
be overridden in its entirety. The
information is here enclosed in single
quotation marks, since subparameters that
contain equal signs must be enclosed in
this manner.

Example 2: The following example shows the
overriding of two parameters and the adding
of another in the EXEC statement of one
procedure step of the IBM-supplied COBUCLG
procedure. The statements appear in the
input stream as shown:

//jobname JOB 1234,J.SMITH
//STEPA EXEC COBUCLG,COND.LKED= X
// (9,LT,STEPA.COB), X
// PARM.LKED=(MAP,LIST), X
// ACCT=(1234)
//COB.SYSIN DD *

(source module)

/*

Note: In actual use the COND.LKED and
PARM~LKED parameters cannot be continued in
this manner. For the linkage editor job
step in the above example, the COND and
PARM parameters have been overridden and
the ACCT parameter added.

Example 3: The following example shows the
overriding of individual parameters in more
than one procedure step of the IBM-supplied
COBUCLG procedure. The statements appear
in the input stream as shown.

//jobname
//stepname
//
//
//
//COB.SYSIN

/*

JOB
EXEC

DD

1234,J.SMITH
COBUCLG,PARM.LKED=OVLY, X
COND.GO=«S,EQ, X
stepname.COB), X
(S,EQ,stepname.LKED»

*
(source module)

Note: In actual use the COND.GO statement
cannot be continued in this manner. The
PARM option OVLY replaces the PARM
subparameters of the linkage edit job
step. The COND option EQ (equal to) replaces
the option LT (less than) in the execution
job step.

Note that all overriding parameters for
one step of the procedure must be specified
before those for the next step.

Exampl~~: The following example shows the
overriding of parameters on all EXEC
statements in the IBM-supplied COBUCLG
procedure. The statements 'appear in the
input stream as shown:

//jobname JOB 1234,J.SMITH
//stepname EXEC COBUCLG, X
// PARM=(LOAD,PMAP), X
// COND= (3, LT) , X
// ACCT=(1234S6,DEPTQ)
//COB.SYSIN DO *

(source module)

/*

The PARM options are added to the procedure
step COB and nullify the PARM options in
the LKED and GO steps. The COND and ACCT
parameters apply to all steps in the
procedure.

TESTING A PROCEDURE AS AN IN-STREAM
PROCEDURE

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure
and executing it any number of times during
a job. In-stream procedures are described
in detail in the publication !~~~~~~m/~~~
operati~_~Y§~~ __ ~QQ_~Qg~~Q!_~~g~~~q~
Ref~!:enQ~.

An in-stream procedure is a series of
job control language statements enclosed
within a PROC statement and a PEND
statement. The following example shows how
to convert the COBUC procedure (Figure 75)
into an in-stream procedure and execute it
twice:

Using the cataloged Procedures 235

//CONVERT JOB 1234,YOURNAME
//INSTREAM PROC
//COB EXEC PGM=IKFCBLOO,PARM=' DECK. X

NOLOAD,SUPMAP',REGION=86K
//SYSPRINT DO SYSOUT=A
//SYSPUNCH DO SYSOUT=B
//SYSUTl DO DSNAME=&&SYSUT1, X

UNIT=SYSDA, X
SPACE=(460,(700,100»

//SYSUT2 DO DSNAME=&&SYSUT2, X
UNIT=SYSDA, X
SPACE=(460,(700,100»

//SYSUT3 DD DSNAME=&&SYSUT3, 'X
UNIT=SYSDA, X
SPACE=(460, (700,100»

//SYSUT4 DD DSNAME=&&SYSUT4, X
UNIT=SYSDA, X
SPACE=(460,(700,100»

//ENDPROC PEND
// EXEC I NSTREAM
//COB.SYSIN DD *

(input data)

/*
// EXEC INSTREAM
//COB.SYSIN DO *

(input data)

/*

OVERRIDING AND ADDING TO DO STATEMENTS

A DD statement can be overridden or
added to by using a DD statement whose name
is composed of the procedure step-name that
qualifies the ddname of the DD statement
being overridden, as follows:

//procstep.ddname DD (appropriate
parameters)

Entire DD statements can also be added.

There are rules that must be followed
when overriding or adding a DD statement
within a step in a procedure.

• Overriding DD statements must be in the
same order in the input stream as they
are in the cataloged procedure.

• DD statements to be added must follow
overriding DD statements.

236

• A DD statement with an * in the operand
field terminates processing of
subsequent.DD statements in both the
procedure and the input stream for the
job step, but not necessarily for the
job.

There are some, special cases that should
be kept in mind when overriding a DD
statement.

• All parameters are overridden in their
entirety, except for the DCB parameter.
Within the DCB parameter, individual
subparameters may be overridden.

• To nullify a keyword parameter (except
the· DCB parameter), write, in the
overriding DD statement, the keyword
and an equal sign followed by a COmma.
For example, to nullify the use of the
UNIT parameter, specify UNIT=, in the
overriding DD statement.

• A parameter can be nullified by
specifying a mutually exclusive
parameter. For example, the SPACE
parameter can be nullified by
specifying the SPLIT parameter in the
overriding DD statement.

• The DUMMY parameter can be nullified by
omitting it and specifying the DSNAME
parameter in the overriding DD
statement.

• To override DD statements in a
concatenation of data sets, the
programmer must provide one DD
statement for each data set in the
concatenation. Only the first DD
statement in the concatenation should
be named. However, if a DD statement
to be changed follows one (or more) DD
statement(s) to be left intact, the
first overriding statement(s) should
have a blank operand.

• If the DDNAME=ddname parameter is
specified in a cataloged procedure, it
cannot be overridden; rather it can
refer to a DD statement supplied at the
time of execution.

Examples of Overriding_~gg_~ggig~2-QQ
Statements

This section 'contains examples of
overriding and adding to parameters in DD
statements. The procedures overridden or
added to are the IBM procedures shown in
Figures 75, 77, 78, and 79.

The DDNAME parameter is not used in
these examples, although it can be useful
with the cataloged procedures. The use of
the DDNAME parameter is described in deto.il
later in this chapter.

Example 1: The following example shows the
overriding of DD statements in the
IBM-supplied COBUCLG procedure.

//jobname
//stepname
//COB.SYSLIN
//COB.SYSIN

JOB 1234,J.SMITH
EXEC COBUCLG
DD DSNAME=GOFILE
DD *

(source module)

/*
//LKED.SYSLIN DD
//

/*

DSNAME=*.COB.SYSLIN,
DISP=(OLD,CATLG)

(other DD statements for
user-defined files)

X

The name of the data set in SYSLIN in the
procedure step COB is changed to GOFILE.
The name of the data set of SYSLIN in the
procedure step LKED is changed to a
reference to the SYSLIN DD statement in the
COB procedure step, and the data set name
GOFILE is cataloged.

Example 2: The following example shows the
adding of DD statements to the IBM-supplied
COBUCLG procedure. Note that if the
statement DD * or the statement DD DATA is
used, it must be the last to appear in a
series of DD statements.

//jobname
//stepname
//
//COB.SYSPUNCH
//COB.SYSIN

JOB 1234,J.SMITH
EXEC COBUCLG,

PARMCOB=(DECK,LOAD,PMAP)
DD SYSOUT=B
DD *

(source module)

/*
//GO.TRANSACT DD DSNAME=JUNE,DISP=OLD

(other DD statements for
user-defined files)

X

NO~~: In the foregoing example TRANSACT is
a cataloged data set. When a data set is
cataloged, it is sufficient to refer to it
by DSNAME and DISP=OLD.

The PARM.COB option DECK and the SYSPUNCH
DD statement are added to obtain a punched
object module. The PARM option PMAP is
added to obtain a listing of the assembler
language expansion of the source module.

ExamEle.-l: The following example shows
overriding and adding to DD statements at
the same time in the IBM-supplied COBUC
procedure. Note that overriding statements
must be in the same sequence as they appear
in the procedure and must precede those
statements being added.

//jobname
//stepname
//COB.SYSUT2
//COB.SYSLIN
//
//
//COB.SYSIN

/*

JOB
EXEC
DD
DD

DD

1234,J.SMITH
COBUC,PARM.COB=(LOAD)
SPACE=,UNI~SYSSQ

DSNAME=&&GOFILE,

*

DISP=(MOD, PASS),
UNIT=SYSSQ

(source module)

(subsequent job steps)

The device class on the COB.SYSUT2 DD
statement is changed to SYSSQ, and the
SPACE parameter is nullified. Therefore,
mass storage devices cannot be allocated.
Any tape volumes to be assigned must have
standard labels. The COB.SYSLIN DD
statement is changed so that it passes the
object module to subsequent job steps.

X
X

Example 4: The following example shows how
to concatenate a data set with a data set
defined in the COBULG procedure.

//jobname
//stepname

JOB 1234,J.SMITH
EXEC COBULG

//LKED.SYSLIB DD
// DD

[blank operand field]
[parameters]

/*

Instead of the blank operand field,
parameters could have been used to override
the SYSLIB statement; the data set defined
by the unnamed DO statement would then be

Using the Cataloged Procedures 237

concatenated to the data set that was
redefined by overriding.

Note that any number of libraries could
be concatenated to the SYSLIB data set.
For example:

//LKED.SYSLIB DD
// DD
// DD

DSNAME=USERLIB,DISP=OLD
DSNAME=MYLIB,DISP=OLD

USING THE DDNAME PARAMETER

The DDNAME parameter is used to define a
dummy data set that can assume the
characteristics of an actual data set,
defined by a subsequent DD statement within
the step. If a matching DD statement is
found, its characteristics, with the
exception of its ddname, replace those of
the statement using the DDNAME parameter.
If a matching DD statement is not found
within the step, the data set defined by
the DDNAME parameter remains a dummy.

This section contains examples showing
the use of the DDNAME parameter with
cataloged procedures.

The rules for using the DDNAME parameter
are as follows:

• A backward reference (e.g., *.ddname)
to a DD statement referred to by a
DDNAME parameter cannot be used because
the statement that is referred to loses
its identity.

• A backward reference to a statement
conta~ning a DDNAME parameter can be
used, but only after the statement to
which the DDNAME parameter refers has
been encountered. If a backward
reference is used before the dummy data
set (defined by DDNAME) has been given
real characteristics, these real char
acteristics will not be transferred to
the DD statement that contains the
backward reference. For example, if
DCB=*.ddname is used (where ddname is
the name of a statement containing an
unresolved DDNAME parameter), the DCB
fields that are transferred are blank.

238

• Unnamed DD statements can be placed
after a statement containing the DDNAME
parameter (indicating concatenation),
but unnamed DD statements cannot be
placed after a statement referred to by
a DDNAME parameter.

• The DDNAME parameter can be used a
maximum of five times in a step, but
each DDNAME parameter must refer to a
different statement.

• The DDNAME parameter cannot be used in
a JOBLIB statement.

When using the DDNAME parameter, the
following should also be kept in mind.

• The name of the DD statement referred
to does not replace the name of the
referencing statement.

• If a statement that contains the DDNAME
parameter is overridden, it is
nullified.

• If overriding is performed with a
statement that contains the DDNAME
parameter, all parameters in the
overridden statement are nullified.

The following DD statements:

//Sl
//D1
//D2
//D3

EXEC PGM=progname
DD DDNAME=D3
DD (parameters X,Y,Z)
DD (parameters U,T,V)

will result in the same data definition
produced by the following statements.

//Sl
//D1
//D2

EXEC PGM=progname
DD (parameters U,T,V)
DD (parameters X,Y,Z)

EXAMPLES OF USING THE DDNAME PARAMETER

Example 1: The following example shows how
to override the first DD statement in a
cataloged procedure with a DD * statement,
and allow subsequent statements to be proc
essed. Without the DDNAME parameter,
replacing the first DD statement with a DD
* statement would terminate processing of
subsequent statements in the job step. The
cataloged procedure (PROC3) is as follows:

//STEPl
//DD1

//DD2

EXEC PGM=progname
DD (any parameters except

DATA or *)
DD (any parameters except

DATA or *)

The job procedure in which the overriding
takes place appears in the input stream as
follows:

//JOBl JOB 1234,J.SMITH
//Sl EXEC PROC3
//STEP1.DDl DD DDNAME=Dl
//Dl DD *

The STEP1.DDl statement overrides the
DDl statement; the DD2 statement is proc
essed; then the Dl statement is processed.

Example 2: The following example shows how
to override the first DD statement in a
cataloged procedure with a DD * statement
and how to add a DD statement. The
cataloged procedure (PROC3) is as follows:

//STEPl
//DDl

//DD2

EXEC PGM=progname
DD (any parameters except

DATA or *)
DD (any parameters except

DATA or *)

The job procedure in which the overriding
takes place appears in the input stream as
follows:

IIJOB2 JOB 1234,J.SMITH
I/Sl EXEC PROC3
I/STEP1.DDl DD DDNAME=DD4
//STEP1.DD3 DD (any parameters except

DATA or *)
11004 DD *

The DD4 statement effectively overrides
the DOl statement, after the 002 statement
has been processed and the 003 statement
has been added.

Example 3: The following example shows how
to concatenate a data set in the input
stream with a data set defined by a DD

statement in a cataloged procedure. The
cataloged procedure (PROC3) is as follows:

//STEPl
//DDl

//DD2

EXEC PGM=progname
DO (any parameters except

DATA or *)
DD (any parameters except

DATA or *)

The job procedure in which the
concatenation takes place appears in the
input stream as follows:

//JOB3
//Sl
//STEP1.DDl
//
//DD3

JOB
EXEC
DD
DO
DD

1234,J.SMITH
PROC3
(blank operand field)
DDNAME=DD3

*

The data set in the input stream is
concatenated with the data set defined by
the DDl statement after the DD2 statement
has been processed.

Example 4: The following example shows how
to concatenate a data set in the input
stream with a data set defined by a DD
statement in a cataloged procedure and how
to add a DD statement. The cataloged
procedure (PROC3) is as follows:

IISTEPl EXEC PGM=progname
/1001 DD (any parameters except

DATA or *)
IIDD2 DD (any parameters except

DATA or *)

The job procedure in which the concate
nation takes place appears in the input
stream as follows:

//JOB4
//Sl
//STEP1.DD2
II
/ISTEP1.DD3

/IDD4

JOB
EXEC
DD
OD
DD

DD

1234, J.SMITH
PROC3
(blank operand field)
DDNAME=DD4
(any parameters except
DATA or *>

*

Using the 'Cataloged Procedures 239

Example 5: The following example shows how
the statement DD DDNAME=SYSIN in the
IBM-supplied COBUCLG procedure can be used
to add more object modules as input to the
linkage editor. The statements appear in
the input stream as follows:

//jobname
//stepname

JOB 1234,J.SMITH
EXEC COBUCLG

//COB.SYSIN DD *
(source deck)

/*
//LKED.SYSIN DD *

(first object module)

(last object module)

(//GO. cards>

240

The COBUCLG procedure contains the
following two statements in the linkage
edit step:

//SYSLIN DD DSNAME=& &LOADSET,
// DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

x

The result of concatenating SYSIN with
SYSLIN is that when SYSLIN (input to
linkage editor) is read, SYSIN is also read
and linked with it. For example, if
ILBODSPO is one of the object modules in
the SYSIN stream, it will be linked with
SYSLIN. The ILBODSPO module from
SYS1.COBLIB will not be used.

In order to use the IBM System/360
operating System Sort/Merge program, Sort
feature statements are written in the COBOL
source program. These statements are
described in the publication IBM System/36 0
Operating System: Full American.National
Standard COBOL. The Sort/Merge program
itself is described in the publication IBM
System/3600perating System: Sort/Merge
Program. In this publication, the system
requirements when the Sort feature is used
are discussed in "Machine Considerations."

DD statements must be written in the
execution-time job steps of the procedure
to describe the data sets used by the sort
program. DD statements for data sets used
during the sort process are described in
the section "Sort DD Statements."

~: The Sort/Merge Checkpoint Restart
feature is available to the programmer who
uses the COBOL SORT statement through the
use of the RERUN statement.

SORT DD STATEMENTS

Three types of data sets can be defined
for the sort program in the execution time
job step: input, output, and work. In
addition, data sets must be defined for the
use of the system during the sorting
operation.

SORT INPUT DD STATEMENTS

The input data set is associated with a
ddname that appears as the ddname portion
of the system-name in an ASSIGN clause in
the COBOL source program. When the USING
option is specified, the compiler will
generate an input procedure that will open
the data set,read the records, release the
records and close the data set.

SORT OUTPUT DD STATEMENTS

The output data set is associated with a
ddname that appears as the ddname portion
of the system-name in an ASSIGN clause in
the COBOL source program. When the GIVING
option is specified, the compiler will
generate an output procedure that will open
the data set, return the records, write the
records, and close the data set.

SORT WORK DD STATEMENTS

The sort program requires at least three
work data sets. The ddname for each DD
statement is in the form SORTWKnn, where nn
is a decimal number. The ddnames for the
required data sets must be SORTWK01,
SORTWK02, and SORTWK03. Additional work
data sets may be defined, but their ddnames
must be consecutively numbered, beginning
with 04.

SORTWKnn Data Set Considerations

Intermediate data sets (i.e., SORTWKnn
data sets) for a sort may be assigned to
either magnetic tape or mass storage
devices. All of the intermediate storage
for one sort must be assigned to the same
device type. These may not be on both
7-track and 9-track tape units in the same
sort. Anyone of the following devices may
be used for intermediate storage.

IBM 2400-series Magnetic Tape Unit
(7-track)

IBM 2400-series Magnetic Tape Unit
(9-track)

IBM 2311 Disk storage Drive
IBM 2314 Disk Storage Drive
IBM 2301 Drum storage
IBM 3330 Disk Storage1

The publication IBM System/360 OpeE~~in~
System: Sort/Merg~ Proqr~~, contains
detailed information about these devices.

Since spanned records can be input to
and output from the sorting operation, it
is the user's responsibility to assign the
sort work files to mass storage devices
whose track sizes are larger than the
logical record size of the records being
sorted. An S-mode file whose logical
record length is greater than its track
size may be sorted by assigning the work
files to a magnetic tape unit.

If data sets not involved in the sorting
operation are assigned to tape units, these
tape units may be used as sort work files
by using the UNIT=AFF parameter. For
example, if PAYROLL is specified as the
ddname of the ASSIGN clause in a SELECT
statement, the tape unit assigned to

10nly the 5734-SM1 Sort/Merge Program
Product supports this device.

Using the Sort Feature 241

PAYROLL could be used as a sort work file
by using the following pO statement:

//PAYROLL DO UNIT=2400, •••
//SORTWK02 DO UNIT=AFF=PAYROLL •••

Input DO statement

The input data set must reside on a
physical device, a magnetic tape unit, a
mass storage device, or in the system input
stream. The following example shows DO
statement parameters that could be used to
define a cataloged input data set.

//INSORT
//

DO DSNAME=INPT,
OISP=(OLO,DELETE)

x

These parameters cause the system to search
the catalog for a data set named INPT
(OSNAME parameter). When found, the data
set is associated with the ddname INSORT
and used by the sort program. The control
program obtains the unit assignment and
volume serial number from the catalog, and
displays a mounting message to the
operator. The DISP parameter indicates
that the data set has already been created
(OLD). It also indicates that the data set
should be deleted (DELETE) after the
current job step.

output DD Statment

The ou.tput DO statement must define all
of the eharacteristics of the output data
set. 'the following example shows DO
statement parameters that could be used to
characterize an output data set:

//OOTSOR'r DD
//

DSNAME=OUTPT,UNIT=2400,
DISP=(NEW,CATLG)

The DISP parameter indicates that the data
s~i8unknown to the operating system
(NtW) aAd that it should be cataloged
(CATLG) \mder the name OUTPT (DSNAME
parameter). The UNIT parameter specifies
that the data set is on a 2400-series tape
unit.

@OIMAn.· DO Statements

x

SORTW!nn data sets may be contained on
tape or mass storage volumes. When mass
storage space is assigned, only the primary
allocation is used by the sort, and it must
be oontiquous.

Note that the SORTWKnn data sets:

1. May not be on 1-track tape when the
input data set is on 9-track tape.

2. May be on 7-track tape when the
output data set is on 9-track tape.

3. Cannot use the data conversion feature
if they are on 7-track tape. The
TRTCH subparameter must reflect this.

4. May be on 9-track tape when the input
data set is on 7-track tape.

20R~~!!!l_~~~!!!Ele~: The following DO
statement parameters could be used to
define a tape intermediate storage data
set:

//SORTWK01 DO
//

UNIT=2400,LABEL=(,NL),
VOLUME=SER=OUMMY

x

These parameters specify an unlabeled data
set on a 2400-series tape unit. since the
DSNAME parameter is omitted, the system
assigns a unique name to the data set. The
omission of the DISP parameter causes the
system to assume that the data set is new
and that it should be deleted at the end of
the current job step. The 2400 series tape
units are explicitly of the 9-track format.

SORTWKnn Example B: The following DO
statement parameters could be used to
define a mass storage intermediate storage
data set:

//SORTWK01 DO
//

UNIT=SYSOA,
SPACE=(TRK, (200)"CONTIG)

x

These parameters specify a mass storage
data set with a standard label (LABEL
parameter default value). The SPACE
parameter specifies that the data set is
be allocated 200 contiguous tracks. The
system assigns a unique name to the data
set and deletes it at the end of the job
step.

to

ADDITIONAL DO STATEMENTS

The sort program requires two additional
DO statements:

//SYSOUT DO SYSOUT=A

which defines the system output data set.

//SORTLIB DO
//

DSNAME=SYS1.S0RTLIB,
DISP=SHR

x

which defines the library containing the
SORT modules.

Note: At system generation time, the
programmer can designate that SORT
diagnostic messages be printed either on
the console or on the unit designated
SYSOUT. If the system is generated to
writ~ SORT messages on SYSOUT, these
messages may overprint any COBOL output
assigned to SYSOUT. For example, if the
programmer has selected SYSOUT on which to
print a report in the output procedure
associated with the execution of the COBOL
SORT st~tement, any SORT messages will be
interspersed within that report. If it is
not possible to assign the SORT messages to
the console, the programmer should assign
his COBOL output to temporary files and
p~int the reports at a later time.

In addition, since COBOL and the
sort/Merge Program use certain different
DCB parameters (such as RECFM, LRECL,
etc.), abnormal termination may result if
SYSOUT is used jointly (usually an 001 or
60A ABEND).

SHARING -DEVICES . BETWEEN .. TAPE DATA SETS

A single tape unit may be assigned to
two sort data sets when the data sets are
one of the following pairs:

• The input data set and the first
intermediate storage data set
(SORTWK01).

• The input data set and the output data
set.

The AFF subparameter of the UNIT
parameter can be used to associate the
input data set with either the SORTWKOl
data set or the output data set. The
subparameter can appear in the DO statement
for SORTWKOl or output.

USING MORE THAN-ONE SORT STATEMENT IN A JOB

More than one SORT statement may be used
in a single program or in two or more
programs that are combined into a single
load module.

SORT-PROGRAM EXAMPLE

The control cards in Figure 80 could be
used with the sample program that

illustrates the Sort feature. A
description of the Sort Feature can be
found in the publication IBM System/360
Operating System: Full American National
Standard COBOL.

r---,
//SORTEST JOB NY838670165, XI
/ / • J. SMITH' , X I
// MSGLEVEL=l I
//SORTJS3 EXEC COBUCLG I
//COB.SYSIN DD * I

I
I
I
I

(COBOL source program) I
I
I
I

/IGO.SORTWKOl DO UNIT=2311, XI
1/ SPACE=(TRK,(200), XI
/1 ,CONTIG) I
/IGO.SORTWK02 DD UNIT=2311, XI
1/ SPACE= (TRK, (200) , XI
/ I , CONTIG) I

\/IGO.SORTWK03 DO UNIT=2311, XI
1/1 SPACE=(TRK,(200)~ XI
1// ,CONTIG) I
\IIGO.OUTSORT DO UNIT=183, XI
1/1 LABEL=(,NL), XI
1/1 VOLUME=SER=NONE I
\/IGO.SYSOUT DO SYSOUT=A I
I//GO.SORTLIB DO DSNAME=SYS1.SORTLIB,XI
1/1 DISP=SHR I
I/IGO.INFILE 00 UNIT=182, XI
1/1 LABEL=(,NL), XI
1/1 VOLUME=SER=DUMMY \ L ___ J

Figure 80. Sort Feature Control Cards

The minimum nurr~er of SORTWKnn data sets
are used; the sort operation can be
optimized by using additional work data
sets (see the publication IBM System/360
Operating system: Sort/Merge).

CATALOGING SORT DD STATEMENTS

Since repeated use of the Sort feature
often involves the same execution time 00
statements, the user may wish to catalog
them (see "Using the Cataloged
Procedures").

When using the COBOL RERUN feature, all
SORT messages are written on the console.

Using the Sort Feature 243

Page of GC28'-6399-2, Revised 4/15/73, by TNL GN28-1038

SORT-DIAGNOSTIC-MESSAGES

The messages generated by the Sort
Feature are listed in the publications IBM
Systemt360.0perating.System: . Sort/Merge,
and IBM System/360-0perating-System:
Messages.and.Completion-Codes. The
identifying characters in a sort-message
are IER.

LINKAGE·- WITH .. THE -SORT/MERGE -PROGRAM

Communication between the Sort/Merge
program and the COBOL program is maintained
by the COBOL library subroutine ILBOSRTO.

ILBOSRTO dynamically executes a LINK to
the Sort/Merge program using the linkage
name 'IERRCOOO'.

If t~e INPUT PROCEDURE option of the
SORT statement is specified, exit E150f
the Sort/Merge program is used. The return
code indicating "insert records n is issued
when a RELEASE statement is encountered,
and the return code indicating ."do not
return" is issued when the end of the
procedure is encountered.

If the OUTPUT PROCEDURE option is
specified, exit E35 of the Sort/Merge
pr&gram ~s used. The return code
indicating "delete records" is issued when
a RETURN statement is encountered, and the
return code i:p.dicating "do not return" is
issued when the end of the procedure is
encountered.

Completion.Codes

The Sort/Merge program returns a
completion code upon termination. This
code may be interrogated by the COBOL
program. The codes are:

o Successful completion of Sort/Merge
16 -- Unsuccessful completion of

Sort/Merge

SUCCESSFUL.COMPLETION; When a Sort/Merge
application has been successfully executed,
a completion code of zero is returned and
the sort terminates.

UNSUCCESSFUL.COMPLETION: If the sort,
during execution, encounters an error that
will not allow it to complete successfully,
it returns a completion code of 16 and
terminates. (Possible errors include an
out-of-sequence condition or an
input/output error that cannot be
corrected. The publication IBM.System/360
Operating-System:--Sort/,Merge contains a

244

detailed description of the conditions
under which, this termination will occur.

The returned completion code is stored
in a special register called SORT-RETURN by
the COBOL library subroutine: an
unsuccessful termination of the sort may
then be tested for and appropriate action
specified. Note that the contents of
SORT-RETURN will change with the execution
of a SORT statement. The following is an
example of the use of SORT-RETURN with the
sort feature:

SORT SALES-RECORDS ON ASCENDING KEY
CUSTOMER-NUMBER, DESCENDING KEY DATE,
USING FN-l, GIVING FN-2.

IF SORT-RETURN NOT EQUAL TO ZERO,
DISPLAY 'SORT UNSUCCESSFUL' UPON
CONSOLE, STOP RUN.

If no references to SORT-RETURN are made in
a program, an unsuccessful sort will
generate the following message:

IKF888'I- UNSUCCESSFUL SORT FOR SO name

See "Appendix J: Diagnostic Messages" for
a description of action to be taken.

A normal SORT operation will produce the
following messages from the Sort/Merge
Program:

IER036I
IER0371
IER0381
IER045I

IER0491
IER055I
IER054I
IER052I

Others may appear depending on COBOL
options specified.

LOCATING SORT RECORD FIELDS

Records defined under a COBOL SO are
assigned a BLL (Base Locator for Linkage
section), rather than a BL (Base Locator)
as is done with other records. Location af
a given data item in an object-time dump
when the record in which it is contained
references a BLL can be determined as
follows:

1. From the compilation listing,
determine:

a. The displacement of the item (see
Data Division Map).

b. The relative address of the BLL
CELLS (see the Memory Map Table).

c. The BLL number.

2. From the dump, determine the
relocation factor (USE/EP).

3. Add the relative address of the BLL
CELLS to the relocation factor to
obtain the absolute BLL CELLS address
in the dump.

4. Each BLL is 4 bytes long: they are
located in ascending sequence,
beginning in the dump at the address
computed in Step 3 BLL=1 is the first
4 bytes, BLL=2 is the second 4 bytes,
etc. Find the appropriate 4 bytes.

5. The 4 bytes obtained in step 4 contain
the absolute base address of the
desired record. Add the item's
displacement to it to obtain the
absolute address of the leftmost byte
of the field in the dump.

LOCATING LAST RECORD RELEASED TO SORT BY AN
INPUT PROCEDURE

For debugging purposes, it is sometimes
useful to determine the last input record
released to the Sort program. The
following procedure should be used:

1. From the Data Division map, determine
the BLL number of the SORT file being
processed at the time of program
termination. Assume it is BLLn.

2. From the Task Global Table map"
determine the location of the BLL
cells in the COBOL object program.

3. The nth BLL in the core dump will
point to the last record released to
SORT.

Note: This BLL is initialized when control
is first transferred to the input
procedure. Thus, if the program terminates
before control ever goes to the input
procedure, the BLL will not be initialized.

SORT/MERGE CHECKPOINT/RESTART

The CHECKPOINT/RESTART feature is
available to the programmer using the COBOL
SORT statement. In order to initiate a
checkpoint, the programmer uses DD
statements and the RERUN clause. The DD
statement for use in taking a checkpoint is
discussed in "Using th~ Checkpoint/Restart
Feature. °

The RERUN clause is used to indicate
that checkpoints are written, at logical
intervals determined by the sort program,

during the execution of all SORT statements
in the program. This RERUN clause is fully
described in the publication IBM Systeml360
QEerating System: Full American National
Standard COBOL.

The information you give the Sort/Merge
program about the application it is to
perform helps the sort and merge phases to
produce a fast, efficient sort or merge.
When you do not supply information such as
data set size and record format, the
program must make assumptions, which, if
incorrect, lead to ineffiency.

DATA SET SIZE

The most important information one can
give is an accurate data set size using the
SORT-FILE-SIZE special register. If the
exact number of records in the input data
set is known, that number should be used as
the value. If the exact number is not
known, an estimate should be made.

When the Sort/Merge program has accurate
information about data set size, it can
make the most efficient use of both main
storage and intermediate storage.

MAIN STORAGE REQUIREMENTS

If the maximum amount of main storage to
be used by the Sort/Merge program was not
specified at system generation time, the
program assumes a maximum of 15,500 bytes.
The sort program requests 12,000 bytes
leaving 3,500 bytes for system functions.
Performance usually improves as the program
is given more main storage. Approximately
44K bytes of main storage are needed for
efficient execution of the sort/merge
program, and performance increases as more
main storage is made available.

If the amount of main storage was
specified at system generation time, it is
the programmer's responsibility to ensure
that the Sort/Merge program has at least
that much core storage available in
addition to the space needed for Data
Management and the COBOL program. If this
amount of core storage is not available,
the program will terminate abnormally.

Using the Sort Feature 245

The programmer can override the amount
of main storage specified at system
generation time by using the SORT-CORE-SIZE
special register.

The value in SORT-CORE-SIZE is the
amount of main storage (in bytes) with
which the programmer would want to operate.
It cannot be less than 12,000, and at this
value, some combinations of input/output
devices and record lengths make a
successful sort impossible. The main
storage value is changed only for the
current job step; afterwards, the value
reverts to the one specified at system
generation time.

Changing the main storage allocation is
useful when a sort/merge application in a
multiprogramming environment. By reducing
the amount of main storage allocated to
sort, so that other programs can have the
storage they need to operate
simultaneously, the performance of sort is
impaired. By increasing the allocation, a
large sort application runs more
efficiently but the performance of other
jobs sharing the multiprogramming
environment is impaired.

Defining Variable-Length Records

If the input records used are
variable-length, the record length that
occurs most frequently in the input data
set (modal length) should be put into the
special register SORT-MODE-SIZE. This
value is used to help define a data set
based on a particular length. If a value
is not specified, the SORT program assumes
it is equal to the average of the maximum
and minimum record lengths in the input
data set. If, for example, the data set
contains mostly small records and just a
few long records, the SORT program would
assume a high modal length and would
allocate a larger record storage area than
necessary. Conversely, if the data set
contains just a few short records and many
long records, the SORT program would assume
a low modal length and might not allocate a
large enough record storage area to sort
data.

If a sort record contains an item with
an OCCURS DEPENDING ON clause, and the size
of the sort record description with the
minimum number of occurrences of the item
represents the smallest sort record, the

246

m~n~mum sort record length is not reflected
in the minimum record length parameter
passed to sort. This may result in
inefficient sort performance.

TO avoid this problem, specify a dummy
sort record of a fixed length, with no
OCCURS DEPENDING ON clauses, with the size
of the smallest sort record described in
OCCURS DEPENDING ON clauses.

For a complete discussion, see the
publication IBM System/360 Operating
System: Sort/Merge Program.

Sorting Variable-Leng~h-R~£2E~~

Figure 81 illustrates one way to sort
variable-length records described by the
OCCURS clause with the DEPENDING ON option.
If the FDls (file-name description) and the
SD's (sort-file-name description) are
defined as in this figure, where the record
descriptions of the FD's and the SD
correspond, possibilities for error arise.
It is suggested, therefore, that the user
consider the following:

1. Specification of the statement

SORT SORT-FILE USING INPUT-FILE ••••

would probably lead to incorrect
results. This statement implies a
READ ••• INTO... statement; that is,
after INPUT-FILE has been read, the
record is moved to AAA. However,
because the user must set the length
of this receiving field prior to
moving A to AAA but cannot do so, the
compiler may use an incorrect length
that results in abnormal termination.
Instead, the user should substitute an
input procedure for the USING option,
as in the section of code labeled
PARA2B in the example.

2. Similarly, the statement

SORT SORT-FILE... GIVING OUTPUT-FILE

would probably yield incorrect
results. Before OUTPUT-FILE is
written out, the record is moved to
AA. The correct length of this
receiving field must be set before the
move, but use of the GIVING option
precludes this. To avoid error, the
user should substitute an output
procedure for the GIVING option, as in
section PARA3B of the example.

Part 1
r---,
IIDENTIFICATION DIVISION.
IPROGRAM-ID. VLSORT.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL'.

SELECT
SELECT ••••
SELECT ••••

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE OMITTED
DATA RECORD IS A.

01 A.
02 B PIC 99.
02 C OCCURS 1 TO 10 TIMES

DEPENDING ON B.
03 D PIC 99.
03 E PIC XX.

FD OUTPUT-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS AA.

01 AA.
02 BB PIC 99.
02 CC OCCURS 1 TO 10 TIMES

DEPENDING ON BB.
03 DD PIC 99.
03 EE PIC XX.

SD SORT-FILE
DATA RECORD IS AAA.

101 AAA.
I 02 BBB PIC 99.
I 02 CCC OCCURS 1 TO 10 TIMES
I DEPENDING ON BBB.
I 03 DDD PIC 99.
I 03 EEE PIC XX. L __ _

Part 2
r---,
IPROCEDURE DIVISION.
PARl SECTION

SORT SORT-FILE ASCENDING KEY BBB
INPUT PROCEDURE PAR2
OUTPUT PROCEDURE PAR3

STOP RUN
PAR2 SECTION.
PAR2A.

OPEN INPUT INPUT-FILE.
PAR2B.

READ INPUT-FILE AT END GO TO PAR2C
MOVE B TO BBB
RELEASE AAA FROM A1
GO TO PAR2B.

PAR2C.
CLOSE INPUT-FILE.

PAR2-EXIT.
EXIT.

PAR3 SECTION.
PAR3A.

OPEN OUTPUT OUTPUT-FILE.
PAR3B.

RETURN SORT-FILE AT END GO TO PAR3C 2
MOVE BBB TO BB
WRITE AA FROM AAA
GO TO PAR3B.

PAR3C.
CLOSE OUTPUT-FILE.

IPAR3-EXIT.
I EXIT.
I
I
I
I
I
I L __ _

1When using a sort input procedure, the RELEASE ••• FROM clause, which implies a MOVE
and then a RELEASE, should always be preceded by a MOVE that sets the length of the
receiving field (AAA, in this example).

2When using a sort output procedure, the RETURN... INTO... clause, which implies the
RETURN and then a MOVE, should never be used. There is no way for the user to set the
correct length of the receiving field.

Figure 81. sorting Variable-Length Records Whose File-Name Description and
Sort-File-Name Description Correspond

Using the Sort Feature 247

USE OF SEGMENTATION FEATURE.

Segmentation is a facility that provides
a means of accomplishing object time
overlay as a result of specifications made
at the source language level. The
programmer may divide the Procedure
Division of a source program into sections.
Through the use of a system of priority
numbers, certain sections are designated as
permanently resident in core and other
sections as overlayable fixed segments
and/or independent segments. Thus, a large
program can be executed in a defined area
of core storage by limiting the number of
segments in the program that are
permanently resident in core storage.

Note: The segmentation feature is not
available when the loader is used.

Suppose that because of core storage
limitations, the program SAVECORE is
segmented as shown in- Figure 82. Only
those segments that have priority numbers
less than or equal to the segment limit of
15 are designated as permanently resident.

Assuming that 12K is available for the
program SAVECORE, Figure 83 shows that
manner in which core storage would be
utilized. Sections 3 and 6, and sections 5
and 1 are considered logical units since
they have the same priority numbers.
Sections 3 and 6 can be in core together
but cannot have section 1 at the same time.
Likewise, sections 5 and 1 can be in core
together but cannot have section 3 at the
same 'time.

Sections in the permanent segment
(SECTION-l, SECTION-2, and SECTION-4) are
those that must be available for reference
at all times, or those to which reference
is made frequently. They are distinguished
here by the fact that they have been
assigned priority numbers less than the
segment limit.

Sections in the overlayable fixed
segment are sections that are less
frequently used. These sections are always
made available in the state in which they
were last used. They are distinguishable
here by the fact that they have been
assigned priority numbers greater than the
segment limit but less than 50.

sections in the independent segment can
overlay, and be overlaid by, either an
overlayable fixed segment or another
independent seg~ent. Independent segments

248

are those assigned priority numbers greater
than 49 and less than 100. These
independent segments are returned to their
initial state when they are brought into
core storage.

r---,
IDENTIFICATION DIVISION.

PROGRAM-ID. SAVECORE.

ENVIRONMENT DIVISION.

OBJECT-COMPUTER. IBM-360-H50
SEGMENT-LIMIT-IS 15.

DATA DIVISION.

PROCEDURE DIVISION.
SECTION-l SECTION 8.

SECTION-2 SECTION 8.

SECTION-3 SECTION 16.

SECTION-4 SECTION 8.

SECTION-5 SECTION 50.

SECTION-6 SECTION 16.

SECTION-7 SECTION 50.

Figure 82. Segmentation of Program
SAVECORE

Page of GC28-6399-2, Revised 4/15/73, by TNL 3N28-1038

r-------~--~----------------------------------,
I I
I r------------------------------, control information I
I I data-buffers, global table, I (permanently in I
I I etc. (lk) I core storage) I
I ~------------------------------~ I
I Fixed I SECTION-l (2K) I I
I portion ~------------------------------~ I
I (7K) I SECTION-2 (2K) I permanent segment I
I ~------------------------------~ (segment limit < 15)
I Total I SECTION-4 (2K) I
I Available ~------------------------------
I Core I SECTION-3 (3K) SECTION-5 (2K)
storage Core I

(12K) Storage I
Available I

for I
Overlay I

(5K) I
I
I
I
I SECTION-6 (2K) _ SECTION-7 (lK) I
.::=-----------::;--:::---------~ ...::::.:::::::-----------:::::::;::--..... ------:--:!.

SECTION-3 and SECTION-6
are overlayable fixed
segments

SECTION-5 and SECTION-7
are independent segments
(49 < segment limit < 100)

(14 < segment limit < 50) ~ __ J

Figure 83. Storage Layout for SAVECORE

USING THE PERFORM STATEMENT IN A SEGMENTED
PROGRAM

When the PERFORM statement is used in a
segmented program, the programmer should be
aware of the following:

• A PERFORM statement that appears in a
section whose priority-number is less
than the segment limit can have within
its range only (a) sections with
priority-numbers less than 50, and (b)
sections wholly contained in a single
segment whose priority-number is
greater than 49.

Note: As an extension to American
National Standard COBOL, the OS Full
American National Standard COBOL
Compiler allows sections with any
priority-number to fall within the
range of a PERFORM statement.

• A PERFORM statement that appears in a
section whose priority-number is equal
to or greater than the segment limit
can have within its range only (a)
sections with the same priority-number
as the section containing the PERFORM

statement, and (b) sections with
priority-numbers that are less than the
segment limit.

Note: As an extension to American
National Standard COBOL, the OS Full
American National Standard COBOL
Compiler allows sections with any
priority-number to fall within the
range of a PERFORM statement.

• When, a procedure-name in a segment with
a priority-number less than the segment
limit is referred to by a PERFORM
statement in a segment with a
priority-number greater than the
segment limit, the independent segment
will be reinitialized upon exit from
the PERFORM.

OPERATION

Execution of the object program begins
in the root segment; i.e., the first
segment in the permanent segment. If the
program contains no permanent segments, or
if the first section to be executed in the

Use of segmentation Feature 249

program is not part of the root segment,
the compiler generates a dummy segment that
will initiate the execution of the first
overlayable or independent segment. All
global tables, literals, and data areas are
part of the root segment. Called
object-time subroutines are also part of
the root segment. Called subprograms are
loaded with the fixed portion of the main
program and assigned a priority of zero,.
Otherwise, the program executes just as if
it were not segmented.

COMPILER OUTPUT

The output produced by the compiler is
an overlay structure consisting of multiple
object modules preceded by linkage editor
control statements. Segments whose
priority is greater than the segment limit
(or 49, if no SEGMENT-LIMIT clause is
specified) consist of executable
instructions only. The PMAP contains no

250

procedure-name or verbs and is given in
this sequence: all sections with
priorities greater than the segment limit
are listed first in ascending order by
priority number, followed by the root
segment.

If the CLIST option is specified for a
condensed listing, the word VERB will be
printed in place of the actual verb.

Figure 84 shows the output of a sample
segmentation program.

JOB CONTROL CONSIDERATIONS

In order to execute a segmented program,
the programmer must specify OVLY in the
parameter field of the linkage editor EXEC
statement. Note that when using the
IBM-supplied cataloged procedures, the LIST
and LET parameters must be respecified.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
0001'3
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
o 0 OL~ 8
00049
00050
00051
00052
00053
00054

000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
0003,00
000310
000320
000330
000340
000350
0003EO
00039 C
000400
000410
000420
000430
000440
000450
000460
00047 C
000480
0004S0
0005eo
000510
000520
000530
000540
000550
000560
000570
000580
0005S0
000600
000610

IDENTIFICATION tIVISICN.
PROGRAM-It. SEG-SAMPLE.
AU'IHCB. fFOGFA~rHli-NA[H.

REMARKS.
SPECIAL OFEFA~OR INS~RUCTIONS - NONE.
INFUT FECUIFEt - NONE.
PURPOSE

TO CREATE A SINGLE FILE ON tISK USING
QSAM/DTFSD, AND REAt IT BACK.
PROGRAM USES SEG~EN~A~ION

~ITH FILE PROCESSING SFREAD OVER
THE PERMANENT, OVERlAYABlE FIXED,
ANt INtEFENtENT SEGMENTS.

EXPECTED RESULTS
START 'IES'I SEG-SA~FlE

(EACH SEGMENT tISFLAYS ITS SEGMENT NUMBER
AND FUNCTION)
END TEST SEG-SAMPLE SUCCESSFUL RUN.
SECTIONS wHILE ~RITING AFFEAR
IN CFDEli 80, 20, 30, 60, 40.
SECTIONS wHILE READING APFEAR
IN CFDEll 80, 60, 30, 40, 2C.

ERROR INDICATIONS
EFROE tISK SEC 1/0
ERROR END OF EX1EN'I WRITING AFTER (RECORD)
**EFRGli UNEXPECTEI EOF REAtING AFTER

RECOFD (RECNC)**
ERROR EOP NO'I FCU~D

**RECCFr IS (EECNC)
SHOULD BE (RECNC) **

PROGRAM CONTAINS PERFORMS FFOM BASE SECTION
TC PEFMANENT, OVEFLAYAELE FJXEJ::, ANt INLEPENDENT
SEGMEN'IS.
ALSO CCNTAINS PERFORMS FROM INDEPENDENT TO PERMANENT
AND FROM OVERIAYAEIE FIXED 'IC FEF~ANENT SEGMENTS.
AlSC CCNTAINS FERFORMS ENTIFELY WITHIN A SEGMEN'I IN
IN EACH CATEGORY.

ENVIRONMENT DIVISION.
CONFIGURA'IION SEC'IION.
SOURCE-ccrHUTEF. IEM-3EO-40.
OBJECT-COMPUTER. IEM-360-40

MEMORY SIZE 64000 CHAFACTERS
SEGMENT-LIMIT IS 2:.

INPUT-OUTPUT SEC'IION.
FIlE-CCNTFCI.

SELEC'I FILE-1 ASSIGN 'IO
DATA DIVISICN.
FILE SECTICN.
FD FILE-1

RECCliDING MOJ::E IS F
LABEL RECORDS OMITTED
DA'IA RECORD IS RECFD1.

01 RECFJ::1 FICTURE X(83}n
WORKING-S'IORAGE SEC'IICN.

DA-2311-S-DKSQ01A.

Figure 84. Sample Segmentation Program (Part 1 of 5)

Use of segmentation Feature 251

00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111

000620
000630
000640
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000780
000790
000800
000810
000820
000830
000840
000850
000860
000870
000880
000890
000900
000910
000920
000930
000940
000950
000960
.000970
000980
000990
001000
001010
001020
001030
001040
0010':0
001060
001070
001080
001090
001100
001110
001120
001130
001140
001150
001160
001170
001 HO

77 ERBOB5W PlC A VALUE~~FACE.
77 ERC~PL PIC 599 VALUE ZERC.
77 ft5GHDR PIC X(22) VALUE '**ERROR DISK SEQ 1/0**'.
77 ft5GEOX PIC X(36)

VALUE '**EEROR EN[OF EXTENT WRITING AFTER '.
77 M5GECF FIC X(37)

VALUE '**EBROR UNEXPECTED ECP READING AFTER '.
77 ftSGNEF PIC X(23) VALUE '**ERROR EOF NO~ FOUND**'.
01 REC1.

02 REC-It.
03 REC-Ht PIC X(4) VALUE 'Incr'.
03 REC-NO PIC 59(4) VALUE ZERC.
02 FILLER PIC A(75) VALUE SPACES.
66 RECIO RENAftES REC-ID.

01 VER-REC.
02 VER-ID.
03 VER-HD PIC X(4) VALUE 'RECt'.
03 VER-NO PIC 59(4) VALUE ZERO.

PROCEDURE tIVISION.
BASE-SECTION SECTION O.

DISPLAY 'S~ARi ~ESi SEG-SA~PIE'.

CPEN CUT PUT FILE-1.
PERFOR~ W-80-0 iHRU ~-8C-9.
PERFORM W-30-0 ~HFU ~-30-9.
FERFCFM W-60-0 THFU W-60-9.
PERFORM W-40-0 tHRU ~-4C-9.

BASE-50.
CLOSE FILE-1.
OPEN INFUT FILE-1.
PERFORM R-80-0 tHEU R-8e-9.
GO TO B-60 -0.

BASE-60.
PERFORM R-40-0 THFU F-4C-9.
READ FIlE-1 INTO REC1 Al END GO TO BASE-70.
DIS FLAY MSGHtR DISFIAY MSGNEF
MOVE 'E' TO ERRORSW.

BASE-70.
CLOSE FILE-1.

BASE- 90.
IF ERROFSW IS EeUAL TO 'E'
DISPLAY 'END TESl SEG-SA~FIE UNSUCCESSFUL RUN' ELSE
DISPLAY 'ENt TEST SEG-SAMPLE SUCCESSFUL RUN'.
STOP RUN.

SECTION-~O SECiION 20.
W-20-0.

DISPLAY 'SECtION 20 wRItE'.
Naif ENTEBED EY PERFCFM FRCM W-80-0.
FEEFOFM W-21-0 THBU W-21-9 5 TIMES.

W-20-9.
EXIT.

W-21-0.
WFITE RECFt1 FRCM BEC1 INVALID KEY
DISPLAY MSGHDR
DISPLAY MSGEOX RECID
MCVE 'E' TC EHCFSW
GO TO EASE-50.
ADD 0001 lC FEC-NC.

Figure 84. Sample Segmentation Program (Part 2 of 5)

252

00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
002611
00265
00266
00267
00268
00269
00270
00271
00212
00273
00274

002440
002450
002460
00247C
OC2480
002490
00250C
002510
002520
002530
002540
002550
002560
002570
0025EO
002590
002600
002610
002620
002630
002640
002650
002660
00267C
002680
002690
002700
002710
002720
002730
002740
002750
002760
00277C
002780
002190
002800
002810

SECTION-80 SEC~ION 80.
W-80-0.

DISFlAY 'SECTICN SO WRITE'.
NO~E ENTERED EY PERFCB~ FFCM BASE-SECTICN.
FEFFCFM W-S1-0 TEEU W-81-9 7 ~IMES.
PERFORM W-20-0 THRU W-20-9.

W-80-9.
IXIT.

W-81-0.
WRITE RECFt1 FROM RIC1 INVALID KEY
DISPLAY MSGHDR
DISPLAY MSGEOX RECIO
MOVE 'E' TC IEBOESW
GO TO BASE-50.
ADD OC01 ~C EEC-NC.

W-81-9.
EXI~.

R-80-0.
DISPLAY 'SECTION 80 READ'.
NCTE EN~EEEt EY PERFORM FRCM BASE-50.
FERFCRM E-81-0 THEU E-81-9 17 TIMES.

R-80-9.
EXIT.

R-81-0.
REAt FILE-1 INTC EEC1 AT END
DISFLAY MSGHDR DISFIAY MSGEOF
ADD 4 TO ERC~FL MOVE 'E' ~C EBRCRSW
GO TC B-81-9.
IF BEC-ID IS N01 EQUAL 1C VEE-ID
DISFIAY MSGHDR DISFLAY 'EXPECTEr ' VER-ID ' FOUND' REC-ID
ADt 1 ~O EBCTFL MOVE 'E' 1C ERRCRSW
MCVE EEC-It ~C VEE-It.
ADD 1 TC VEE-NC.

R- 81-8.
IF IRCTFL IS GREATER THAN 3
GO 10 EASE-1C.

R-81-9.
EXIT.

Figure 84. Sample Segmentation Program (Part 3 of 5)

Use of segmentation Feature 253

Cl1OSS-REFEBENCE DICTIONARY

DA'IA NAMES DUN EEFERINCE

FILE-1 00046 00076 00076 00082 0008.2 00083 00083 00088
00106 00121 00121 00141 00141 00155 CC155
00211 00211 00225 00225 00246 00246 00261

RECFD1 00C53 00088 00106 00121 00141 00155 00175 OC191
ERRORSIf 00055 00090 00094 001 C9 00123 00127 00144 00157

00214 00227 00231 00249 00263 00267
ERCTFL 00056 00123 00123 00127 00127 00131 00157 00157

00193 00197 00197 00201 00227 OC227 00231
00267 00261 00271

MSGHDR 00C57 00089 00107 00122 00126 00142 00156 0016C
00226 0023C 00247 00262 00266

MSGEOX 00C5E 001 C8 00143 00177 00213 00248
MSGEOF 00()60 00122 00156 00192 00226 00262

PROCEDURE NAMES I:UN EEHRENCE

EAS E-50 00081 00110 00145 00179 00215 C0250
BASE-60 00CI:6 00153
BASE-70 00091 00088 00132 00166 00202 00236 00272
W-20-0 00C99 00242
W-21-0 00105 00102
R-20-0 00114 00187
R-21-0 00120 00117
R-21-9 00130 00124
SECTION-30 00133 00132
W-30-0 00134 00078
W-31-0 00140 00137
R-30-0 00149 00223
R-31-0 00154 00152
R-31-9 00164 00158

F88-LEVEL LINKAGE EDI!CR OP!IONS SPECIFIED CVIY,XFEF,lIST
VARIABLE CFTICNS USEI: - SIZE=(153600,51200)

INSERT SEGOSAMP
DFFA ULT CPTION (S) USED

IEWOOOO
IEWOOOO
IEWOOOO
IFWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO
IEWOOOO

OVERLAY A
INSERT SEGOSA30
OVERlAY A
INSEE! SEGOSA40
OVERLAY A
INSERT SEGCSA60
OVERLAY A
INSERT SEGOSA80
ENTRY SEGOSAMP

Figure 84. Sample Segmentation Program (Part 4 of 5)

254

00088 00092 00092 00106
00175 00175 00191 00191
00261
00211 00225 00246 00261
00161 00178 00193 00197

00161 00161 00165 00193
00231 00235 00263 00263

00176 00192 00196 00212

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENG'IH SEG. NO. liA ME lOCATION NAME LCCATION NAME LOCATION NAME l.OG1T.IOlt

$SEGTAB 00 2C
SEGOSAMP 30 DAE
ILBOI:SPO* DEO 5E2
ILBOERRO* 13C8 20E

ILBCEllR1 13C8 ILEOERli2 140A ILEOERM 144C !LBOERR3 146S
lLEOERF5 1402

ILBOSGMO* 15D8 n4
CUFSEGM 16A9

ILBOSTPO* 16EO 35
ILROS'IP1 16C6

$ENTAB 16F8 3C

LGCATION FEFERS TO SYIIEOL IN CONTRCI SECTION SEG. NO. LOCATION REFERS TO SlI'lBCL IN CeN'IROL S EeTION SFq~)to.

4FO SEGCSA30 SEGOSA30 2 4F8 SEGOSA40 SEGOSA40 3
500 SEGOSA60 SHCS A6 0 4 508 SEGCSA80 SEGOSA eo 5
110 ILBOERR 1 IlECEFRO 1 510 ILBCS'IFO ILBOSTPO 1
514 ILBODSPO IlBCDSFO 1 518 ILEOSGMO ILBOSGl'lO 1
51C ILECSTP1 IlECSTPO 1 50 SEGOSA30 SEGOSA30 2

CONTFOL SECTICN FNTl\Y

NAME OEIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCA'IION NAME lOCATION NAME LOCa!IO'

SEGOSA80 1728 18A 5

LOCATION FEFEFS TO SYMBOL IN CON'IROI SECTION SEG. NC. LOCATICN REfERS TO. SYMBOL IN CON'IROL SECTION SIG. 10.

ENTFY AtDRESS 30
TOTAL LENGTH 19B8

****RoN DOES NOT EXIST EoT HAS BEEN ADDED TO DATA SET

Figure 84. Sample Segmentation Program (Part 5 of 5)

Use of Segmentation Feature 255

USING THE CHECKPOINT/RESTART FEATURE

The IBM System/360 Operating System
Checkpoint/Restart feature is designed to
be used with programs running for an
extended period of time when interruptions
may halt processing before the end of the
job. The feature is available with both
sequential and priority scheduling systems.
The feature may be used when the programmer
anticipates any type of interruption, i.e.,
interruptions caused by machine
malfunctions, input/output errors, or
intentional operator intervention, etc. It
allows the interrupted program to be
restarted at the job step or at a point
other than at the beginning of the job
step. The feature consists of two
routines: Checkpoint and Restart.

The Checkpoint routine is invoked from
the COBOL load module containing the user's
program. It moves information stored in
registers and in main storage into a
checkpoint record at user-designated points
during execution of the program. The
programmer specifies these points using the
COBOL RERUN clause in ~he Environment
Division.

The Restart routine restarts an
interrupted program. Restart can occur at
the beginning of a job step, or at a
checkpoint if a checkpoint record has been
written. The checkpoint record will
contain all information necessary to
restart the program. Restart can be
initiated at any time after the program was
interrupted; that is, it may be run
immediately after the interrupt has
occurred, as an automatic restart, or at a
later time convenient to the programmer, as
a deferred restart.

The COBOL RERUN clause provides linkage
to the system checkpoint routine. Hence,
any cautions and restrictions on the use of
the system checkpoint/restart feature also
applies to the use of the RERUN clause.

The Checkpoint/Restart feature is fully
described in the publication IBM System/360
Operating System: Supervisor Services.

TAKING A CHECKPOINT

In order to initiate a checkpoint, the
programmer uses job control statements and
COBOL RERUN clause. The programmer
associates each RERUN clause with a
particular COBOL file. The RERUN clause

256

indicates that a checkpoint record is to be
written onto a checkpoint data set whenever
a specified number of records on that file
is processed or when end of volume is
reached while processing a file. The
programmer decides when he wants the
checkpoints taken when he codes the RERUN
clause. The checkpoint records are written
on the checkpoint data set defined by the
DD.statement and are referenced by
system-name in the RERUN clause. The DD
statement describes both a checkpoint data
set and a checkpoint method.

Note: If checkpoints are to be taken
during a sorting operation, a DD statement
called SORTCKPT must be added when the
program is executed.

The programmer may elect to store single
or multiple checkpoints.

Single: Only one checkpoint record exists
at ,any given time. After the first
checkpoint record is written, any
succeeding checkpoint record overlays the
previous one. This method is acceptable
for most programs. It offers the advantage
of saving space on the checkpoint data set
and allows the programmer to restart his
program at the latest checkpoint.

Multiple (multiple contiguous):
Checkpoints are recorded and numbered
sequentially. Each checkpoint is saved.
This method is used when the programmer may
wish to restart a program at a checkpoint
other than the latest one taken.

DD STATEMENT FORMATS

The programmer records checkpoints on
tape or direct access devices. Following
are the DD formats to define checkpoint
data sets.

For Tape:
r---,
I//ddname DO DSNAME=data-set-name, XI
1// VOLUME=SER=volser, XI
1// UNIT=deviceno, XI
:// DISP=({NEW} ,PASS>, xl
1 MOD . I
1// DCB=(TRTCH=C),LABEL=(,NL) I L ___ J

Note: The DCB parameter is necessary only
for 7-track tape conversion; for 9-track
tape it is not used.

For Mass Storage:
r---,
I//ddname DO DSNAME=data-set-name, XI
1// VOLUME=(PRIVATE,RETAIN, XI
1// SER=volser), XI
1// UNIT=deviceno, XI

!~~ :::::~c{s~~a}r~:::S)'KEEP' ::
1 MOD 1 L ___ J

where:

ddname is the same as the ddname portion of
the system-name used in the COBOL RERUN
clause to provide a link to the DO
statement.

data-set-name is the name given to each
particular data set used to write
checkpoint records. This name
identifies the checkpoint data set to
the Restart procedure (see "Restarting a
Program").

volser identifies the volume by serial
number.

deviceno identifies the device. For tape
it indicates the device number for
7-track or 9-track tape. For mass
storage, it indicates the device number
for disk or drum.

subparms specifies the amount of track
space needed for the data set.

MOD is specified for the multiple
contiguous checkpoint method.

NEW is specified for the single checkpoint
method.

PASS is specified in order to prevent
deletion of the data set at the
successful completion of the job step,
unless it is the last step in the job.
If it is the last step, the data set
will be deleted with PASS.

KEEP is specified in order to keep the data
set if the job step abnormally
terminated and may be restarted.

The following listings are examples that
define checkpoint data sets.

• To write single checkpoint records
using tape:

//CHECKPT
//

DD DSNAME=CHECK1,
VOLUME=SER=N0003,
UNIT=2400,DISP=<NEW,KEEP),
LABEL= (, NL)

X
X
X //

//

ENVIRONMENT DIVISION.

RERUN ON UT-2400-S-CHECKPT EVERY
5000 RECORDS OF ACCT-FILE.

• To write single checkpoint records
using disk (note that more than one
data set may share the same
external-name):

//CHEK DD
//

DSNAME=CHECK2, X
VOLUME= (PRIVATE, RETAIN, X

//
//
//

SER=DB030, X
UNIT=2314,DISP=(NEW,KEEP>, X
SPACE=(TRK,300)

ENVIRONMENT DIVISION.

RERUN ON UT-2314-S-CHEK EVERY
20000 RECORDS OF PAYCODE.
RERUN ON UT-2314-S-CHEK EVERY
30000 RECORD OF IN-FILE.

• To write multiple contiguous checkpoint
records (on tape):

//CHEKPT DD
//

DSNAME=CHECK3,
VOLUME=SER=llllll,
UNIT~2400,DISP=(MOD,PASS),
LABEL= (, NL)

X
X
X //

//

ENVIRONMENT DIVISION.

RERUN ON UT-2400-S-CHEKPT EVERY
10000 RECORDS OF PAY-FILE.

Note: A checkpoint data set must be
sequential.

Using the Checkpoint/Restart Feature 257

DESIGNING A CHECKPOINT

The programmer should design his
checkpoints at critical points in his
program so that data may be easily
reconstructed. For example, in a program
using mass storage files, changes to
records in these files will replace
previous information; thus the programmer
should be sure he can identify previously
processed records. Assume that a mass
storage file contains loan records that
periodically are updated for interest due.
If a checkpoint is taken, records are
updated, and then the program is
interrupted, the records updated after the
last checkpoint will be updated a second
time in error unless the programmer
controls this condition. (He may set up a
date field for each record and update the
date each time the record is processed.
Then, after the restart, by investigating
the date field he can determine whether or
not the record was previously processed.)
For efficient repositioning of a print
file, the programmer should take
checkpoints on that file only after
printing the last line of a page. At
system generation time, those ABEND codes
for which the checkpoints are desired
(DEFAULT) must be specified.

MESSAGES GENERATED DURING CHECKPOINT

The system checkpoint routine advises
the operator of the status of the
checkpoints taken by displaying informative
messages on the console.

When a checkpoint has been successfully
completed, the following message will be
displayed:

[IHJ004I jobname (ddname,unit,volser)
CHKPT checkidl

where checkid is the identification name of
the checkpoint taken. Checkid is assigned
by the control program as an 8-digit
number. The first digit is the letter C,
followed by a decimal number indicating the
checkpoint. For example, checkid C0000004
indicates the fourth checkpoint taken in
the job step.

RESTARTING A PROGRAM

The system Restart routine retrieves the
information recorded in a checkpoint
record, restores the contents of main
storage and all registers.

258

The Restart routine can be initiated in
one of two ways:

• Automatically at the time an
interruption stopped the program

• At a later time as a deferred restart

The type of restart is determined by the RD
parameter of the job control language.

RD Parameter

The RD parameter may appear on either
the JOB or the EXEC statement. If coded on
the ~OB statement, the parameter overrides
any RD parameters on the EXEC statement.
If the programmer wishes to have his
program restart automatically, he codes
RD=R or RD=RNC. RD=R indicates that
restart is to occur at the latest
checkpoint. The programmer should specify
the RERUN clause for at least one data set
in his program in order to record
checkpoints. If no checkpoint is taken
prior to interruption, restart occurs at
the beginning of the job step. RD=RNC
indicates that no checkpoint is to be
written and any restart will occur at the
beginning of the job step. In this case,
RERUN clauses are unnecessary; if any are
present, they are ignored. If the RD
parameter is omitted, the CHKPT macro
instruction remains activated, and
checkpoints may be taken during processing.
If an interrupt occurs after the first
checkpoint, automatic restart will occur.
Thus, if the user does not want automatic
restart, he should always include the RD
parameter with a code of either RD=NR or
RD=NC, both of which suppress the automatic
restart procedure.

If the programmer wishes his program to
be restarted on a deferred basis, he should
code the RD parameter as RD=NR. This form
of the parameter suppresses automatic
restart but allows a checkpoint record to
be written provided a RERUN clause has been
specified. At restart time, the programmer
may choose to restart his program at a
checkpoint other than at the beginning of
the job step.

The programmer may also elect to
suppress both restart and writing
checkpoints. By coding RD=NC, the
programmer, in effect, is ignoring the
features of the Checkpoint/Restart
facility.

Automatic Restart

Automatic Restart occurs only at the
latest checkpoint taken. (If no checkpoint
was taken before interruption, Automatic
Restart occurs at the beginning of the job
step) •

In order to restart automatically, a
program must satisfy the following
conditions.

• A program must request restart by using
the RD parameter or by taking a
checkpoint.

• An ABEND that terminated the job must
return a code eligible to cause
restart. (For further discussion on
this requirement, see the publication
IBM Systern/3600peratinq system:
supervisor Services.)

• The operator authorizes the restart,
with the following procedure:

The system displays the following
message to request authorization of the
restart:

xxIEF225D SHOULD
jobname.stepname.procstep
RESTART [checkid]

The operator must reply in the
following form:

REPLY xx, '{YES I NO I HOLD}"

where YES authorizes restart, NO
prevents restart, and HOLD defers
restart until the operator issues a
RELEASE command, at which time restart
will occur. The HOLD option is
applicable only in a multiprogramming
environment.

Whenever automatic restart is to occur,
the system will reposition all devices
except unit-record machines.

Deferred Restart

Deferred restart may occur at any
checkpoint, not necessarily the latest one
taken.

The programmer requests a deferred
restart by means of the RESTART parameter
on the JOB card and a SYSCHK DO statement
to identify the checkpoint data set. The
formats for these statements are as
follows:

//jobname JOB
//
//SYSCHK DO
//
//

where:

, MSGLEVEL=l,
RESTART=(request, [checkid])
DSNAME=data-set-name,
DISP=OLD,UNIT-deviceno,
VOLUME=SER=volser

MSGLEVEL=l (or MSGLEVEL=(l,y) where y is
either 0 or 1)

x

x
X

is required if restart is to occur in an
MVT environment.

RESTART=(request, [checkid])
identifies the particular checkpoint at
which restart is to occur. Request may
take one of the following forms:

• * to indicate restart at the
beginning of the job

• stepname to indicate restart at the
beginning of a job step

• stepname.procstep to indicate
restart at a procedure step within
the jobstep

checkid
identifies the checkpoint where restart
is to occur.

SYSCHK
is the DDNAME used to identify a
checkpoint data set to the control
program. The SYSCHK DD statement must
immediately precede the first EXEC
statement of the resubmitted job, and
must follow any JOBLIB statement.

data-set-name
must be the same name that was used when
the checkpoint was taken. It identifies
the checkpoint data set

deviceno and volser
identify the device number and the
volume serial number containing the
checkpoint data set.

As an example illustrating the use of
these job control statements, a restart of
the GO step of a COBUCLG procedure, at
checkpoint identifier (CHECKID) C0000003,
might appear as follows:

//jobname JOB
//
//
//SYSCHK DO
//
//

, MSGLEVEL=l,
RESTART=

(stepname.GO,C0000003)
DSNAME=CHEKPT,
DISP=OLD,UNIT=2400,
VOLUME=SER=111111

{DD statements similar to original deck}

X
X

X
X

Using the Checkpoint/Restart Feature 259

The Restart routine uses information
from DD statements in the resubmitted job
to reset files for use after restart;
therefore, care should be taken with any DD
statements that may affect the execution of
the restarted job step. Attention should
be paid to the following:

• During the original execution, a data
set meant to be deleted at the end of a
job step should conditionally be
defined as PASS rather than DELETE in
order to be available if an
interruption forces a restart. If the
restart is at the beginning of a step,
a data set created in the original
execution (defined as NEW on a DD
statement) must be scratched prior to
the restart. If the data set is not
deleted, the DD statement must be
changed to define it as OLD.

• At restart time, input data sets on
cards should be positioned as they were
at the time of the checkpoint. Input
data sets on tape or direct access
devices will be automatically
repositioned by the system.

• At restart time, the EXEC statement
parameters PGM and COND, and the DD
statement parameters SUBALLOC and
VOLUME=REF must not be used in steps
following the restart step if they
contain the form stepname or
stepname.procstep referring to a step
preceding the restart step. However,
if these parameters are used, the
preceding step referred to must be
specified in the resubmitted deck.

When a deferred restart has been
successfully completed, the system will
display the following message on the
console:

IHJ0081 jobname RESTARTED

Control is then given to the user's program
that executes in a normal manner.

CHECKPOINT/RESTART DATA SETS

If the RERUN clause was executed during
the original execution of the processing
program, checkpoint entries were written on
a checkpoint data set. To resubmit a job
for restart when execution is to be resumed
at a particular checkpoint, an additional
DD statement must be included. This DD
statement describes the data set on which
the checkpoint entry was written and it
must have the ddname SYSCHK. The SYSCHK DD
statement must immediately precede the
first EXEC statement of the resubmitted job
and must follow the DD statement named
JOBLIB, if one is present.

For both deferred and automatic
checkpoint/restart, if Direct SYSOUT Writer
for the restarted job was active at the
time the checkpoint was was taken, it must
be available for the job to restart. For
further information, see the publication
IBM ~~~emL36Q_QE~rai!rrg_2Y~iem~_
QE~ra~Q!'$_g~f~nc~, Order No. GC28-6691.

If the checkpoint data set is
multivolume, the sequence number of the
volume on which the checkpoint entry was
written must be included in the VOLUME
parameter. If the checkpoint data set is
on a 7-track magnetic tape with nonstandard
labels or no labels, the SYSCHK DD
statement must contain DCB=(TRTCH=C, •••).

Figure 85 illustrates a sequence of
control statements for restarting a job.
If a SYSCHK DD statement is present 1n a
job and the JOB statement does not contain
the RESTART parameter, the SYSCHK DD
statement is ignored. If a RESTART
parameter without the CHECKID subparameter
(as in Figure 84) is included in a job, a
SYSCHK DD statement must !!Q~ appear before
the first EXEC statement for a job.

Figure 86 illustrates the use of the RD
parameter. Here, the RD parameter requests
step restart for any abnormally terminated
job step. The DD statement DDCKPNT defines
a checkpoint data set. For this step, once
a RERUN clause is executed, only automatic
checkpoint restart can occur, unless a
CHKPT cancel is issued.

r--~--------,
I//PAYROLL JOB MSGLEVEL=1,REGION=80K,RESTART=(STEP1,CHECKPT4) I
I//JOBLIB DD DSNAME=PRIV.LIB3,DISP=OLD I
I//SYSCBK DD DSNAME=CHKPTLIB,UNIT=2311,VOL=SER=456789, X I
1// DISP=(OLD,KEEP) I
1//STEPl EXEC PGM=PROG4,TlME=5 I L ___________ ~ ___ J

Figure 85. Restarting a Job at a Specific Checkpoint Step

260

r---,
1//J1234 JOB 386, SMITH, MSGLEVEL=l, RD=R I
1/ /Sl EXEC MYPROG I
\//INDATA DD DSNAME=INVENT,UNIT=2400,DISP=OLD,VOLUME=SER=91468, X I
1// LABEL~RETPD=14 I
I//REPORT DD SYSOUT=A I
I//WORK DD DSNAME=T91468,DISP=("KEEP),UNIT=SYSDA, X I
1// SPACE=(3000, (SOOO,SOO»),VOLUME=(PRIVATE,RETAIN,,6) I
I//DDCKPNT DD UNIT=2400,DISP=(MOD, PASS,CATLG), DSNAME=C91468 I L ___ J

Figure 86. Using the RD Parameter

r------------------------------~--,
1//J3412 JOB 386, SMITH,MSGLEVEL=l,RD=R, RE START= * I
1/ /Sl EXEC MYPROG 1
I//INDATA DD DSNAME=INVENT,UNIT=2400,DISP=OLD,VOLUME=SER=91468, X I
1// LABEL=RETPD=14 I
1 / /REPORT DD SYSOUT=A I
I//WORK DD DSNAME=S91468,DISP=("KEEP)',UNIT=SYSDA, X I
1// SPACE=(3000, (SOOO,SOO»,VOLUME=(PRIVATE,RETAIN,,6) I
I//DDCHKPNT DD UNIT=2400,DISP=(MOD, PASS,CATLG), DSNAME=R91468 I L ___ J

Figure 87. Modifying Control Statements Before Resubmitting for Step Restart

r---,
1//J3412 JOB 386,SMITH,MSGLEVEL=1,RD=R,RESTART=(*.C0000002) 1
1/ /Sl EXEC MYPROG \
I//SYSCHK DD DSNAME=C91468,DISP=OLD I
I//INOATA DO DSNAME=INVENT,UNIT=2400,DISP=OLD, X \
1// VOLUME=SER=91468,LABEL=RETPO=14 1
I//REPORT DD SYSOUT=A I
I//WORK DD DSNAME=T91468,DISP=("KEEP),UNIT=SYSDA, X I
1// SPACE=(3000,(SOOO,SOO»,VOLUME=(PRIVATE,RETAIN,,6) I
I//DOCKPNT DD UNIT=2400,DISP=(MOD,KEEP,CATLG),DSNAME=C91468 I L ___ J

Figure 88. Modifying Control statements Before Resubmitting for Checkpoint Restart

Figure 87 illustrates those
mOdifications that might be made to control
statements before resubmitting the job for
step restart. The job name has been
changed to distinguish the original job
from the restarted job. The RESTART
parameter has been added to the JOB
statement and indicates that restart is to
begin with the first job step. The DD
statement WORK originally assigned a
conditional disposition of KEEP for this
data set. If this step did not abnormally
terminate during the original execution,
the data set was deleted and no
modifications need be made to this
statement. If the step did abnormally
terminate, the data set was kept. In this
case, define a new data set as shown in
Figure 87, or change the data set's status
to OLD before resubmitting the job. A new
data set has also been defined as the
checkpoint data set.

Figure 88 illustrates those
modifications that might be made to control

statements before resubmitting the job for
checkpoint restart.

The job name has been changed to
distinguish the original job from the
restarted job. The RESTART parameter has
been added to the JOB statement and
indicates that restart is to begin with the
first step at the checkpoint entry named
C0000002. The DD statement DDCKPNT
originally assigned a conditional
disposition of CATLG for tbe checkpoint
data set. If this step did not abnormally
terminate during the original execution,
the data set was kept. In this case, the
SYSCHK DD statement must contain all of the
information necessary to retrieve the
checkpoint data set. If the job did
abnormally terminate, the data set was
cataloged. In this case, the only
parameters required on the SYSCHK DD
statement, as shown in Figure 88, are the
DSNAME and DISP parameters.

Using the Checkpoint/Restart Feature 261

MACHINE CONSIDERATIONS

This chapter contains information
concerning system requirements for the
COBOL compiler, execution time, and the
sort feature. Additional information for
use in estimating the main and auxiliary
storage requirements is contained in the
publication IBMSystem/360 Operating
System: Storage Estimates.-

MINIMUM MACHINE REQUIREMENTS FOR THE COBOL
COMPILER

The basic system requirements for use of
the COBOL compiler are:

• A System/360 (at least a Model 40) or a
System/370 model, with a minimum of 80K
(81,920) bytes of main storage
available to the compiler, and the
standard and decimal instruction sets.
The floating-point instruction set is
required if floating-point data items
and fractional exponents are used in
the program.

262

At least 80K (81,920) bytes should
be allocated in the SIZE option of the
EXEC job control card that requests
execution of the compiler. If less
than this is specified, the system
assumes the default value of SOK. If
more storage is allocated, the compiler
will run more efficiently.

Notes: Before deciding on a value for
the SIZE option, the programmer should
consider all of the following:

1. The value of compiler data set
SPACE parameters. Given limited
storage under MFT, if the primary
space allocation for compiler data
sets is too small and secondary
extents are needed, the system
must often use the compiler
linkage area for the respective
data extent block. Such action
often results in either an 80A
abnormal termination, if the space
limitations are encountered when
an attempt is made to load a
compiler phase, or diagnostic
message IKF0020I-D, if more
extensive core has to be allocated
for table space for compiler
processing.

2. The size and/or complexity of the
program to be compiled. A large
or complex program requires more
table space than a small or simple
one. Accordingly, this table
space must be relected in the SIZE
parameter chosen. (For fUrther
discussion of table requirements,
see "Table Handling
Considerations.")

3. The blocking factors used for
compiler data sets. The SIZE
parameter (and BUF parameter)
reflect the increased buffer size
needed to handle blocked compiler
data sets (see "Appendix D:
Compiler Optimization.")

• Compiler Work Files -- Four utility
data sets named SYSUT1, SYSUT2, SYSUT3,
and SYSUT4. At least one mass storage
device, such as an IBM 2311 Disk
Storage Drive, for residence of the
operating system and SYSUT1. Both the
operating system and SYSUT1 may reside
on the same volume. SYSUT2, SYSUT3,
and SYSUT4 can reside on tape or on
mass storage. If they reside on tape,
there must be a tape volume for each
data set. If they reside on mass
storage, there must be enough space on
the volume to accommodate the data
sets.

• A device, such as the 1052
Printer-Keyboard, for direct operator
communication.

• A device, such as a card reader or a
tape unit, for the job input stream.

• A printer or tape unit for the system
output file.

MULTIPROGRAMMING WITH A VARIABLE NUMBER OF
TASKS (MVT)

REGION Parameter

COMPILATION: If the compiler is being
executed--Under the MVT control program
of the System/360 Operating System, the
REGION parameter, specified as 86K bytes in
the COBUC and COBUCLG cataloged procedures,
becomes significant (see the section "Using
the Cataloged Procedures"). If the
programmer wishes to override this value,

he can specify a region size in either the
JOB statement or in the EXEC statement of
the compiler. The size specified should
not be less than the value of SIZE in the
PARM field of the EXEC statement, rounded
to the next highest 2K multiple, plus 6K.

The following examples illustrate both
the default and the override cases:

Example 1

//JOBl JOB
//STEPl EXEC

1234,J.SMITH
COBUC

In Example 1, the programmer accepts
the REGION default value of 86K
specified in the COBUC cataloged
procedure.

Example 2

//JOB2 JOB
//STEPl EXEC
//

1234,J.SMITH
COBUCLG,REGION=134K, X
PARM.COB='SIZE=130000'

In Example 2, the REGION default value
is overridden. Rounding 130000 to the
next highest 2K multiple, it becomes
131072, or 128K. Thus, the correct
region size is 128K+6K=134K (where
K=1024 bytes).

EXECUTION: Priority schedulers require
that the REGION parameter be specified for
execution of object programs, unless the
programmer is willing to accept default
region size. The default value is
established in the input reader procedure.
The region size needed for the execution of
the object program is the sum of the
following values:

1. The size of the object module after it
has been linkage edited with all of
the necessary object time subroutines.

2. The size of the input/output buffers
being used, multiplied by the blocking
factor (standard sequential files are
double buffered if no blocking factor
is specified).

3. The size of the data management
routines and control blocks that are
used (see the publication IBM
System/360 Operating System: storage
Estimates).

4. Any GETMAIN macro instruction executed
for USE LABELS, etc.

5. An additional 4K bytes.

6. If the Sort feature is used, 15,360
bytes plus any additional core storage
assigned via the SORT-CORE-SIZE
special register.

Except when the Direct SYSOUT Writer is
used, SYSIN and SYSOUT data sets reside in
intermediate direct-access data sets.
These data sets are used by the system to
temporarily hold all of the job's input and
output data.

SYSIN-SYSOUT CHARACTERISTICS: The input
and output data set characteristics are
determined by the system, but can be
altered by the programmer if necessary.
The procedure used to alter the default
values depends on whether the data set is
used for input or output, as follows:

• Fo~_SY~!~_da~~ -- the programmer must
request, at the time the job is
submitted, that the operator use one of
the several reader procedures
available. Reader procedures are
cataloged procedures that control the
reader and vary according to the
blocking factor specified.

• For SYSOUT data -- the programmer must
use override statements as described in
"Using the Cataloged Procedures."

When a job is being run in an MFT or MVT
environment, the SPACE parameter assumes
added importance. output is placed in the
SYSOUT intermediate data set, except when
the Direct SYSOUT Writer is used. When the
Direct SYSOUT Writer is used, output goes
directly to the printer, punch, or tape as
in systems with the primary control
program. Since nothing is written out
until the completion of the job, the
programmer must make sure that the SYSOUT
data set is large enough to hold all of the
possible output data of his program. The
SPACE parameter of the DD statement is
specified for SYSOUT with a specified
default value. If the programmer
determines that his output will exceed the
default value, he can do either or both of
two things:

1. Specify blocking of his data set with
the DCB parameter of an override DD
statement

Machine Considerations 263

2. Override the compilation step of a
compiled procedure by specifying the
SPACE parameter. An example of a
statement that can be used is:

/ICOB.SYSPRINT DD SPACE=(121, (500,50»

Note: If the TRK or CYL subparameters of
the SPACE parameter are used, the
programmer should be aware that requests
will differ depending upon the mass storage
device used (2301, 2303, 2311, ••• , etc.).
To avoid this consideration, the average
record-length subparameter can be used.

MULTIPLE OPEN AND CLOSE STATEMENTS: Under
the MVT control program, input data
following the DD * or DD DATA card becomes
a single data set. Once a CLOSE statement
is encountered. The data set is
repositioned to the beginning of the data
set. To avoid errors, the programmer
should keep this in mind when using more
than one OPEN and CLOSE statement for a
data set assigned to SYSIN.

Note: Under MVT, a file must be closed
before the STOP RUN or EXIT PROGRAM
statement is executed. Failure to do this
results in an abnormal termination.

EXECUTION TIME CONSIDERATIONS

The amount of main storage must be
sufficient to accommodate at least:

264

• The control program

• Data management support

• The load module to be executed

The input/output device requirements for
execution of the problem program are
determined from specifications made in the
Environment Division of the source program.

SORT FEATURE CONSIDERATIONS

The basic requirements for use of the
Sort feature are:

• A System/360 model or Systeml370 with
sufficient main storage to accommodate
the load module to be executed plus a
minimum of 15,360 bytes for execution
of the sort program and any additional
core storage assigned to the sort
program via the SORT-CORE-SIZE special
register.

• At least one mass storage device <which
may be the system residence device> for
residence of SYS1.SORTLIB.

• At least three tape units or one mass
storage device for intermediate
storage.

The following is a sample COBOL program
and the output listing resulting from its
compilation, linkage editing, and
execution. The program creates a blocked,
unlabeled, standard sequential file, writes
it out on tape, and then reads it back in.
It also does a check on the field called
NO-OF-DEPENDENTS. All data records in the
file are displayed. Those with a zero in
the NO-OF-DEPENDENTS field are displayed
with the special character Z. The records
of the file are not altered from the time

IITEST JOB NY16090101,'SCHOEN 1',!1SGLEVEL=1,CLASS=C
IIJOBLIB DD DSN=PRODTEST,DTSP=SHF

APPENDIX A: SAMPLE PROGRAM OUTPUT

of creation, despite the fact that the
NO-OF-DEPENDENTS field is changed for
display purposes. The individual records
of the file are created using the
subscripting technique. TRACE is used as a
debugging aid during program execution.

The output formats illustrated in the
listing are described in "Output."
Individual parts of the listing are
numbered in accordance with the numbers
used in the chapter "Output."

IISTEP1 EXFC PGM=IKFCBLOO,PARM='D~AP,PMAP,XREF,QUOTE',REGION=86K
IISYSUT1 .DD DSNAl'!E=&&UT1, UNI'l'=SYSDA, SPACE= (TP.K, (100,10),
IISYSUT2 DD DSNAME=&&UT2,UNIT=SYSDA,SPACE=(TRK,(100,10»
IISYSUT3 DD DSNAME=&&UT3,UNIT=SYSDA,SPACE=(TRK,(100,10»
IISYSUTQ .DD DSNAME=&&UTQ,UNIT=SYSDA,SP!CE= (TFK, (100,10»
IISYSLIN DD DSNAME=&&FNCH,UNIT=SYSDA,SPACE=(TRK,(100,10», x
II DISP=(NFW,PASS)
IISYSPRINT DD SYSOUT=A
IISYSIN DD *
IEF236I ALLOC. FOR TEST STEP1
IFF237I 23Q ALLOCATED TO JOBLIB
n'F237r 230 ALLOCATED '10 SYSUT1
IEF237I 190 ALLOCATED TO SYSUT2
IEF237T 235 ALLOCAT~D TO SYSUT3
IEF237T 190 ALLOCATED TO SYSUT4
I~F237T 230 ALLOCATED TO SYSLIN
TEF237I OOC ALLOCATED TO SYSIN

IDENTIFICATION DIVISION.
PROGRAM-It. TESTRUN.

AUTHOR. P~OGRAMMER NAME.
INSTALlATION. NEW YORK PROGRAMMING CENTEF.
DATE-WRITTEN. JULY 12, 1968.

DATE-CO~PILED. JAN 27,1970

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
ooon

100010
100020
100030
100040
100050
100060
100070
100080
100090
100100
100110
100120
100130
100140
100150
100160
100170

REMARKS. THIS PROGRAM HAS BEEN WFITTEN AS A SAMPI,E PFOGFAM FOR
COBOL USERS. IT CRFATES AN OUTPUT FILE AND READS IT BACK AS
INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPU~ER. IEM-360-H50.
OBJECT-COMPUTER. IEM-360-H50.

INPUT-OUTPUT SECTION.
FILE-CONTFOL.

SELECT FILE-1 ASSIGN TO UT-2QOO-S-SAMPI.E.
SELECT FIIE-2 ASSIGN TO UT-2QOO-S-SAMPLE.

Appendix A: Sample Program Output 265

00018
00019
00020
00021
00022
00023
0002Q
00025
00026
00027
00028
00029
00030
00031
00032
00033
0003Q
00035
00036
00037
00038
00039
OOOQO
000Q1
000Q2
000Q3
OOOQQ
000Q5
000"6
000Q7
00048
000Q9
00050
0,0051
00052
00053
0005Q
00055
00056
000<;7
00058
00059
00060
00061
00062
00063
0006Q
00065
00066
00067
00068
00069
00070
00071
00072
00073
0007Q
00075
00076
00077
00078
00079

266

100180
100190
100200
100210
100220
100225
100230
1002QO
100250
100260
100270
100280
100290
100300
100310
100320
100330
1003QO
100350
100360
100370
100375

** 00380
100395
1 OOQ 05
100Q10-
100 Q20
100QQO
100Q50
100Q60
100Q70
100Q80
100Q90
100500
100510
100520
100530
1005QO
100550
100560
100570
100580
100590
100600
100610
100620
100630
1006QO
100650
100660
100670
100680
100690
100700
100710
100720
100730
1007QO
100750
100760
100770
100780

DATA DIVISION.
FILE SECTION.
FD F!I.E-1

LAB!1 RECORDS ARE O~ITTED
BLOCK CONTAINS 100 CHARACTERS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
DATA RFCOFD IS FECORD-1.

o 1 R ECOR D- 1 •
02 FIELD-A PICTURE IS X(20).

FD FILE-2
LABEL ~ECORDS AFE O~ITTED
BLOCK CONTA·INS 5 RECOlmS
~ECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
DATA RECORD IS FECORD-2.

01 RECORD-2.
02 FIFLD-A PICTURE IS X(20).

WORKING-STORAGE SECTION.
77 COUN~ PICTURE S99 COMP SYNC.
77 NOMBER PICTURE S99 COMP SYNC.

01 FILlER.
02 ALPHABET PICTURE X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 ~IMES.
02 DEPENDENTS PICTURE X(261 VALUE "0123Q0123Q0123Q0123Q0123Q
"0" .
02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TI~ES.

01 WCRR-RECORD.
02 NAME-FIELD PICTURE X.
02 FILLER PICTURE X VALUE SPACE.
02 RECORD-NO PICTURE 9999.
02 FIllER PICTURE X VALUE SPACE.
02 LOCATION PICTURE AAA VALUE "NYC".
02 FILLER PIC~URE X VALUE SPACE.
02 NO-OF-DEPENDFN!S PICTURE XX.
02 FILLER PICTURE X(7) VALUE SPACES.

PROCEDURE DIVISION.
BEGIN. READY TRACE.

NOTE THAT TH~ FOLLOWING OPENS THE OUTPUT FILE ~O BF CFEATED
AND INITIALIZES COUNTERS.

STEP-1. OPEN OUTPUT FILE-1. KOVE ZERO TO COUNT NOMB~R.
NOn !HAT THE FOlLCWING CREATES INTERNALLY THE RECORDS TO 'BE
CONTAINED IN THE FILE, WRITES TFEM ON TAPE, AND DISPLAYS
THEK ON THE CONSC'tF.

STEP-2. ADD 1 TO COUNT, ADD 1 TO NOMBER, MOVE ALPHA (COUNT) TO
N AI'II-FIELD.
MOVE DEPEND (COUNT) TO NO-OF-DEPENDENTS.
MOVE NOKBER TO FECORD-NO.

STEP-3. DISPLAY WORK-RECORD UPCN CONSOLE. WRITE RECORD-1 FROM
WCRR-RECORD.

STEP-Q. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26.
NOTE THAT THE FCIIOWING CLOSES OUTPUT AND REOPENS IT AS
INPUT.

STFP-5. CLOSE FIIE-1. OPEN TNPUT FILE-2.
NOTE THAT THE 'FOLLOWING READS BACK THE FILE AND SINGLES OUT
EMPLOYEES WIT~ NC DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WOR~-RECORD AT END GO TO STEP-8.
STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOVE HZ" TO

NO-OF-DEPENDENTS. EXHIBIT NAKED WOR~-RECORD. GO TO
ST1':P-6.

STEP-8. ClOSE FIlF-2.
STOP RUN.

LVI SOURCE NAlfE
PD FILE-1
01 RECORD-1
02 P'IELD-A
n FlLF-2
01 'RECORD-2
02 FIELD-A
77 COUNT
77 NOl'lBn
01 FILl.ER
02 ALPHABET
02 ALPHA
02 DEPENDENTS
02 DEPEND
01 WORt<'-RECORD
02 NA!IIE-PIELD
02 FILLER
02 RECORD-NO
02 FILLP'll
02 LOCATION
02 FILl'ER

INTRNL NUIE
DNK=1-1Q8
DNK=1-167
DNl'!=1-188
DNl'!=1-205
DNl'l=1-22Q
DNl'!=1-2Q5
DNK=1-265
DNK=1-280
DNl'I=1-296
DNI'I=1-315
DNl'I=1-333
DNl'I=1-351
DNK=1-371
DNK=1-387
DtiK=1-Q11
DNl'I=1-Q31
DNl'I=1-Q50
DN!II=1-Q69
DN!II=1-Q88
DNl'I=2-000
DN!II=2-019
DNl'I=2-0Q5

02 NO-OF-DEPFNDENTS
02 FILI,1m

TG'l

SAV'F AREA
SWI"'Cll
TALLY

ME!'IORY KAP

SORT SAVE
ENTRY-SAVE
SORT CORE SIZE
RF.T CODE
SORT RET
WORKING CELIS
SORT FIL E SIZE
SOR'" l'IODE SIZE
PGT-VN TBL
'IGT-VN TBL
VCONPTR
LENGTH OF VN TBL
LABn RET
UNUSED
INIT1 ADCON
UNUSED
OVERFLOW CELLS
BL CELLS
DECBAtR CFLT,S
TEMP STORAGE
TEl'IP STORAGE-2
TE1'!P STORAGE-3
TEl'IP STORAGE-Q
BIL CFLIS
VLC CELLS
SEL CELLS
INDEX CELLS
SUl'lADl! CEllS
ONCTL CELLS
PFMCTL CELIS
PFMSAV CELLS
VN CEllS
SAVE AREA =2
SAVE AREA =3
XSASW CELLS
XSA CFLIS
PARAl'I CELLS
RPTSAV AFE!
CHECKPT CTR
VCON TBL

LITEPAL ~OOL (HEX)

00QA8 (LIT+O)
OOQCO (LIT+2Q)
00QD8 (LIT+Q8)

00Q805EF
E2C6EQD3
Q0200001

DISPLAY LITERAlS (BCD)

00228000
QOD6D7C5
00000001

OOQEC (L'1't+68) 'WOHK-RECORD~

00230

00230
00278
0027C
00280
0028Q
00288
0028C
0028E
00290
003CO
003CQ
003C8
003CC
003DO
0031)Q
003D6
003D7
003FO
003FQ
003EC
oo:n:c
003'F8
003'11'8
OOQOO
00Q30
00Q30
00Q30
OOQ38
00Q38
00Q38
00Q38
00Q38
00Q38
00Q38
00Q3C
OOQQO
OOQQO
00QQ8
00QQ8
00QQ8
OOQQC
OOQQC
00Q50

C9D2C6F9
D5QOC6D6
001AQ800

BASE DISPL
DCB=Q1

BL=1 000
BL=1 000

DCB=02

F9F9C9QO
D9QOOOOO
FOE90000

BL=2 000
BL=2 000
BL=3 000
BL=3 002
BL=3 OOR
BL=3 008
BL=3 008
BL=3 022
BL=3 022
BL=3 OQO
l1L=3 OQO
BL=3 OQ1
BL=3 OQ2
BL=3 OQ6
BL=3 OQ7
BL=3 OQA
BL=3 OQB
BL=3 OQD

FQD5F2EQ
00000000
COOOOOOO

TNTRNL NAKE
D!-TI'I=1-1 Q8
DNl'l=1-167
DNI'J=1-188
DNI'I=1-205
DNl'l=1-22Q
DNM=1-2Q5
DNM=1-265
DNI'I=1-280
DNl'l=1-296
DNI'I=1-315
DNI'J=1.;..333
DNM=1 351
DNI'I=1-371
DNM=1-387
DNM=1-Q11
DNI'I=1-Q31
DNM=1-Q50
DNI'I=1-Q69
DNl'I=1-Q88
DNM=2-000
DNI'I=2-019
DNl'l=2-0Q5

C3C3C5E2
00000200

Appendix A:

DEFINITION

DS OCL20
DS 20C

DS OCL20
DS 20C
DS 111
DS 1H
DS OCL52
DS 26C
DS 1C
DS 26C
DS 1C
DS OCL20
DS 1C
DS 1C
DS QC
DS 1C
DS 3C
DS 1C
DS 2C
DS 7C

USAGE
QSA!'I
GROUP
DISP
OSAl'I
GROUP
DISP
COMP
COMP
GROUP
DISP
DISP
DISP
DTSP
GROUP
DISP
DISP
DISP-NI'I
DISP
DISP
DISP
DISP
DISP

R 0 .0 l'l
F

F

R 0

R 0

Sample Program Output 267

PG'r 00458

OVE~~lCW CEII~ 00458
VIPTUAL CELLS 001158
l=POCEDUFE NAMF CELT S 00464
GFN,p~TFD NAMF CELIS 00478
rCB ArrRESS CELLS 00498
VNI CF.LlS 004AO
L 1TF~ ALS 004A8
D 15PL A Y LITERA L S 004EC

PEGTST1':ll ASSIGNMENT

~EG 6 BL =3
RFG 7 Ill.. = 1
R'EG 8 BT" =2

55 *BEG1~

0004F8 START EQU *
0004F8 58 FO C 004 L 15,004(0,12) V (1IBOtlSPO)
0004FC 05 11" BAtR 1,15
0004FF 000140 DC X'000140'
000501 04F5~C;404040 DC X'04F5F5404040'

55 ~E'ADY 000508 96 40 D 048 OT 048(13) ,X'40' SW"'+O
58 *STFP-1

00050C 58 FO C 004 t 15,004(0,12) V(IIBODSPO)
000510 05 1F BAl..P 1,15
000512 000140 DC X'000140'
000515 o 4f.' 5F 84 (4040 DC X'04F5F81101l040'

58 OPFN 00051C 58 10 C 040 L 1,040(0,12) nCB=1
000520 D2 01 1 032 C 050 MVC 032(2,1) ,050(12) L1'l'+O
000526 D2 01 1 060 C 052 MVC 060 (2,1) ,052(12) I1T+2
00052C 50 10 D 210 ST 1,210(0,13) SAV3
000530 92 8~ D 210 MVI 210 (13) ,X'8F' SAV3
000534 41 10 D 210 LA 1 , 21 0 (0, 1 3) SAV3
000538 OA 13 SVC 19
C0053A 58 10 C 040 I 1,040 (0,12) DCB=1
00053E 58 20 C 03" L 2,03"(0,12) GN=06
0005"2 91 10 1 030 TI1 030(1),X'10'
0005"6 07 12 BCR 1,2
000548 D2 2D D 1DO C 05" MVC 1DO("6,13) ,05" (12) TS2=1 LTT+q
00054E D2 07 D 1F2 1 028 MVC 1F 2 (8,13) , 028 (1) TS2=35
000554 q1 10 D 1DO I,A 1,1DO(0,13) '1'S2=1
000558 OA 23 SVC 35
00055A GN=06 EQU *
00055A 58 10 C 040 I 1,040(0,12) DCE=1
00055F 18 21 IF 2, 1
000560 58 FO 030 1 15,030(0,1)
000564 05 ~p BALR 1 q, 15
000566 50 10 D 1BC ST 1, 1EC (0,13) BI =1
00056A 58 70 D 1BC T 7 ,1 BC (0,13) BI =1

1)8 MOV'" 00056E D2 01 6 000 C 076 MVC 000(2,6) ,076(12) DNM=1-265 L1T+38
000574 D2 01 6 002 C 076 MVC 002 (2,6) ,016 (12) tNM=1-280 L1T+38

62 *ST'PP-2
00057A PN=01 FQU *
00057A 58 FO C 004 L 15,004 (0, 12) V (IIBODSPO)
00057E 05 1'" BAL~ 1,15
000580 000140 DC X'000140'
000583 04F6~2404040 DC X' 04F6F2404 04 0'

62 UD 00058A 48 30 C 082 IH 3,082 (0,12) L1T+50
00058E 4A 30 6 000 AR 3,000 (0,6) DNM=1-265
000592 40 30 6 000 STH 3,000(0,6) tlNM=1-265

62 ADD 000596 48 30 C 082 IE 3,082 (0,12) I.1T+50
00059A 4A 30 6 002 AE 3,002(0,6) DNM=1-280
00059l!' 40 30 6 002 ST" 3,002(0,6) tNM=1-280

62 ~on 0005A2 41 40 6 008 lA 4,008(0,6) DNM=1-333
0005A6 4E 20 6 000 IE 2~000(0,6) DNM=1-265
0005AA 4C 20 C 082 ME 2,082 (0,12) 11'1'+50
0005AF 1A 42 AR 4,2
0005EO 5B 40 C 08Q S 4 , 08" (0, 12) L1T+52
0005B4 D2 00 6 040 4 000 MVC 040(1,6),000(") DNM=1-411

268

MOVE 0005BA 41 20 6 022 LA ~,022(0,6) DN1'I=1-371
0005BF 48 10 6 000 HI 1,000(0,6) DNM=1-265
0005C2 4C 10 C 082 MH 1,O82(0,12} l1'l'+50
0005C6 1A 21 AR 2, ,
0005C8 5B 20 C 084 S 2,084(0,12} LIT+52
0005CC D2 00 6 04B 2 000 MVC 04B (1 ,6) ,000 (2) DN~=2-19
0005D2 92 40 6 OQC MVI OQe (6) ,X' 40' tNM=2-19+1

65 MOVE 0005D6 Q8 30 6 002 LH 3,002(0,6} DNM=1-280
0005DA QE 30 D 1C8 CVD 3, , C8 (0,13) TS=01
0005DE 1"3 31 6 OQ2 D 1CE UNPK 042 (Q,6), 1CF(2,13} DN1'1=1-Q50 TS=07
0005EQ 96 1"0 6 OQ5 01 OQ5(6) ,X'FO' DNM=1-Q50+3

66 *STEP-3
0005E8 58 1"0 C 004 L 15,004{0,12} V (1IBODSPO)
0005EC 05 11" PALF 1 ,'5
0005EF 000140 DC X'0001QO'
00051"1 OQF6'1i'6QC4040 DC X'04F6F64040QO'

66 DISPLAl 00051"8 58 1"0 C 004 1 15, OOQ (0, 12) V (ILBODSPO)
00051"C 05 1'" EHR 1,15
OOOSFE 0002 DC X'0002'
000600 00 DC X' 00'
000601 00001Q DC X'000014'
000604 ODOO01C4 DC X'ODOO01C4' BL =3
000608 0040 DC 'Y'0040'
00060A FFF"F DC 'Y'F"FFF'

66 WRITE 00060C D2 13 "] 000 6 040 MVC 000{20,7} ,OQO(6) DNM=1-167 DNM=1-387
000612 58 10 C OQO L 1,040 (0,12) DCB=1
000616 18 21 Ul 2,1
000618 58 10 C 040 L 1,040 (0,12) DCE=1
00061C 58 00 1 OQC L O,OQC .(0, 1)
000620 58 1"0 1 030 1 15,030(0,1)
000624 QQ 00 1 060 FX 0, OfiO (0,1)
000628 50 10 D 1BC ST 1,1BC(0,13) BJ~ =1
00062C 58 70 D 1BC 1 7,1 BC (0,13) BL =1
000630 GN=01 'FOU *
000630 58 10 D 20C L 1,20C(0,13) Vl-l=01
000634 07 "'1 PCR 15,1

68 *STFP-Q
000636 PN=02 FOU *
000636 58 1"0 C OOQ 1 15,004 (0, 1 2) V (IIBODSPO)
00063A 05 11" BAL~ 1,15
00063C 000140 DC X'000140'
00063'" 04'1"6'1"8404040 DC X'04F6F8404040'

68 PEFFORM 000646 c::.8 00 D 20C 1 0,20C(0,1~) VN=01
000!)4A 50 0.0 D 208 ST 0,208(0,13) PSV=1
OOOEQE 58 00 C 024 1 0,024(0,12) GN=02
000652 50 00 D 20C ST 0,20C(0,11} VN=01
000656 GN=02 EOU *
000656 Q8 30 6 000 IH 3,000 (0,6) DNM=1-265
00065A 49 30 C 088 CH 3,O88(0,12} LIT+56
00065E 58 1"0 C 028 L 15,028 (0,12) G!-1=03
000662 01 81" BCR 8,15
000664 58 10 C OOC 1 1 ,OOC (0,12) PN=01
000E68 07 1"1 BCR 15, 1
00066A GN=03 rou *
00066A 58 00 1) 208 1 0,208(0,B) PSV=1
00066F 50 00 D 20e ST 0,20C(0,13) VN=01

,1 *STFP-5
000672 58 "'0 C 004 L 1",00Q(0,12) V (TLRODSPO)
000676 C5 1'" BALR 1,15
000678 000140 DC Y'0001QO'
00067B 04F7F14C4040 DC Y'04F7F140QOQO'

'1 CLOS~ 000682 58 10 C OQO L 1 , 0 QO (0, 12) DCB=1
000686 58 30 1 02C 1 3,02C(0~1)

00068A 91 OF 3 oce TM 00C(3),'r'OF'
00068F 05 50 BAl~ 5,0
000690 47 "'0 5 010 PC H,010{0,"i}
00069Q 58 20 1 OQC 1 2, OQC (0, 1)
000698 4B 20 1 052 SH 2,052 (0, 1)
00069C 50 20 1 OQC ST 2,04C(0,1)
0006AO 58 10 C 040 1 1, OQO (0, 12) DCB=1
0006A4 50 10 D 210 ~T 1,210(0,13} SAV3
0006A8 92 CO D 210 f/lVT 210(13),Y'CO' SAV3
0006AC Q1 10 D 210 LA 1,210(0,13) SAV3

Appendix A: Sample Program Output 269

0006BO 01\ 14 ~VC 20
0006B2 58 20 C 040 1 2,040{0,12) DCB='
000EE6 58 10 2 014 1,014 (O,?)
0006B1\ of) 01 2 on OT On(2),X'01'
0006BE 48 40 1 004 I'll 4,004 (0, 1)
0006C2 4C 40 1 006 MH 4,006 (0,1)
0006C6 41 00 4 008 IA 0,008 (0,4)
0006CA 41 10 1 ceo LA. 1,000(0,1}
0006CE 01\ 01\ SVC 10

71 O'OFN 0006DO 58 10 C 044 L 1 , 044 (0, 12) DCB=?
0006D4 D2 01 1 032 C 08A MVC 032(2,1) ,08A(12) LI'1'+58
0006DA 50 10 D 210 ST 1,210(0,13) SAV3
0006DE 92 80 D 210 MVT 2 1 0 (1 3) , X ' 8 0 ' SAV3
0006E2 41 10 D 210 LA 1,210(0,13} SAV3
0006F6 OA 13 SVC 10
0006E8 58 10 C 044 1 1,044(0,12) DCB=2
0006EC 58 '20 C 038 1 2,03R(0,12) GN=07
0006?0 91 10 1 030 '1'liJ 030 (1) ,X'10'
00061'4 07 12 BCR 1,2
000fi?6 D2 2D D 1DO C 0"i4 MVC 1DO (46, 13) ,054 (12) 'rS2=1 lIN 4
0006FC D2 07 n 11"2 1 028 MVC 11"2(8,13) ,028(1} TS2=35
000702 41 10 D 1DO IA 1,1DO(0,13) TS2=1
000706 01\ 23 SVC 35
000708 GN=07 FOU *

74 *ST1<'P-6
000708 PN=03 PQU *
000708 58 1"0 C 004 1 15,004(0,12} v (ILBODSPO)
C0070C 05 11<' EALT:! 1,15
00070F 000140 DC "'000140'
000711 o flF 7F'Q4 C404 0 DC X ' 041" 7F 4 4 04 04 0 '

74 'RFAD 000718 58 10 C 044 I 1,044(0,12} DCB=2
00071C 18 21 IR 2,1
00071E 1'2 02 2 021 C 021) PlVC 021 (3,2) ,02D(12} GN=04+1
000724 58 1"0 1 030 L 1'1,030(0,1)
000728 05 FF BALR 14,15
00072A 50 10 D 1 CO ST 1,1CO(0,13} Bl =2
00072F 58 80 D 1CO I 8, 1CO (0,13) B1 =2
000732 D? 13 6 040 8 000 filVC 040(20,6),000(8) DNM=1-387 DNM= 1-224
000138 58 50 C 018 I 5,018 (0, 12) PN=04
00073C 07 l"5 BCR 15,5

74 GO 00073!' GN=04 FQU *
00073!' 58 10 C 01C L 1 ,01C (0, 12) PN=05
000742 07 1"1 BCR 15,1

15 *ST1"P-1
000744 PN=04 FOU *
000744 58 1'0 C 004 I 15,004 (0,12) v (llBODSPO)
000148 05 11<' BALR 1,15
00074A 000140 DC X'000140'
00074D 041"7,..51104040 DC X'04F7F5404040'

75 1:1" 000754 58 10 C 03C I 1,03C(0,12) GN=08
000158 «)8 20 C 030 I 2,030 (0,12) GN=05
00075C D5 00 C 08C 6 04B etc 08C(1,12) ,04B(fi} L IT+60 DN 1'1=2-10
000762 07 72 BCR 7,2
000764 95 40 6 04C CLI 04C(6) ,X'40' DNM=2-19+1
000768 07 72 BCR 7,2

7C, MOV'!! 00076A GN=08 FQU *
00076A D2 00 04B C 08D MVC 04B(1,6) ,08D(12} I:NPI=2-19 LIT+61
000770 92 40 04C MVT 04C(6),X'40' DNM=2-19+1

76 EXHIBIT 000774 GN=05 FQU *
000774 58 10 C 090 L 1,090(0,12) 1.IT+64
000778 50 10 D 218 ST 1 , 218 (0, 13) PPM=1
00017C 41 20 D 218 1A 2,218 (0,13) PRM=1
000780 58 1"0 C OOq I 15,004(0,12) V (ILBODSPO)
000784 05 1'1" BALF 1,15
000786 8001 DC X'8001'
000788 10 DC Y'10'
000789 OOOOOB DC X'OOOOOB'
00078C OCOOO094 DC X'OCOOO094' LT'r+68
000790 0000 DC X'OOOO'
000792 00 DC X' 00'
000793 000014 DC X'OOO014'
000796 ODOO01Cq DC X'ODOOO1C4' BL =3
00019A 0040 DC X'0040'
00079C F1"FF DC ~'FFFF'

270

76 GO 00079E 58 10 C 011$ J 1,011$(0,12) PN=03
0007A2 07 1"1 PCR 15,1

78 1<ST1"P-8
0007Aq PN=05 FQU * 0007AQ "i8 FO C 001$ 1 15,00Q (0, 12) V (II.BODSPO)
0007A8 05 1'" BAH 1, '5
0007AA 0001qO DC X'0001qO'
OOO?!!) OQF7"'8qCqOqO DC X' OQF1'F8QOQOqO'

78 CLOS'E 0007EQ 58 10 C OQq L 1 , OQ 1$ (0,12) DCE=2
0007F18 58 30 1 02C L 3,02C(0,1)
0007BC 9' 0'" 3 OOC 'J'M 00C(3) ,X'OF'
0007CO 05 50 BALF 5,0
0007C2 Q7 1"0 5 0'0 BC 1Q,010(0,"i)
0007C6 58 20 1 CQC L 2, OQC (0,1)
0007CA 4F1 20 1 052 SH 2,052(0,1)
0007C'E 50 20 1 04C ST 2,OQC(0,,)
0007D2 58 10 C 04Q L 1 ,0Qq (0,12) DCE=2
00071:6 50 10 D 210 ST 1,210 (0,13) SAV3
0007DA 92 CO D 210 MVT 210 <1 3), X 'CO' SAV3
0007DE 1.11 10 D 210 JA 1,210(0,13) SAV3
0001'E2 OA 11$ SVC 20
0007E4 58 20 C OQQ I 2 , 01$ 1$ (0, 12) DCB=2
0007F8 58 10 2 01Q L 1,01Q(0,2)
OOOTEC 96 01 2 017 01 017(2),X'01'
ooono Qe 1$0 1 001$ Lli 1$,001$ (0,1)
00071"Q qC QO 1 006 ME q,OOfi (0,1)
0007F8 Q1 00 Q C08 LA 0,008(0,Q)
00071"C Q1 10 1 000 LA 1,000 (0,1)
00C800 OA OA SVC 10

79 STOP 000802 58 1"0 C 008 L 15,008 (0, 12) V (1LBOSTP1)
00080E 07 FF BC'R 15,15
000808 50 DO 5 OC8 1N1'J'2 ST 13,008(0,'))
00080C 50 50 D OOQ ST 5,004(0,13)
00C810 50 EO D 051$ ST 1Q,05Q(0,13)
00C81Q 58 1"0 C 000 L 15,000(0,12) VIP=1
000818 05 "£1" BALP 1Q,15
0008H 12 00 ITF 0,0
00081C 07 89 BCF 8,9
00081E 96 10 D OQ8 OT OQ8 (13) ,X'10' S~T+O

000822 05 FO INT'!'3 PI\T,T) 15,0
000824 91 20 l) OQ8 'l'M 048 (13) ,'X'20' SW'l'+O
000828 47 1"0 1" 016 flC 1Q,OH(0,15)
00082C Cl8 2D B 040 LM 2,13, OQO (11)
000830 58 00 FI 038 I 0,038(0,'1)
0008'3Q 58 EO D 05Q 1 1 Q, 054 (0,13)
000838 07 1"1" BCR 15,11$
00C83A 96 20 D 048 OT 048 (1 3) , X ' ? 0 ' S~T+O

00083E 41 60 0 001$ 11\ 6,001$ (0,0)
000842 1.11 10 C OOC H. 1 , OOC (0, 12) PN=01
00081$6 41 70 C 050 lA 7,050 (0,12) L1'!+O
00084A 06 70 PCTF 7,0
00084C 05 50 BALR 5,0
00084F 58 40 000 L 4,000 (0,1)
000852 1E 4R AU Q,11
000854 50 40 1 000 ST Q,000(0,1)
000858 87 16 5 000 BX1'R 1,6,000(5)
00085C Q1 80 D 1BC lA 8 , 1 BC (0, 1 3) OVF=1
000860 41 70 D 1C7 11\ 7,1C7(0,13) 'J'S=01-1
000864 05 10 BAL~ 1,0
000866 58 00 8 000 1 0,000 (0,8)
00086A 1E OB AlB 0,11
00086C 50 00 8 000 ST 0,000(0,8)
000870 87 86 1 000 BYLF 8,6,000 (1)
OOC874 D2 03 r. 20C C 048 I-1VC 20C(4,13) ,048(12) VN=01 VNI=1
0008?! 58 EO D 1C4 L 6,1C4(0,13) EI =3
000871" 58 70 D 1BC 1 7, 1"RC (0,13) BI, =1
000882 58 eo D 1CO 1 8,1 CO (0, 13) I'lL =2
000886 58 EO n 054 1 14,054(0,13)
OOOP8A 07 F"F' PCll 15,14

Appendix A: Sample Program Output 271

000000 07 00 INIT1 BCR 0,0
000002 90 EC D OOC STI'I 1 II, 12, OOC (13)
000006 18 5D LR 5,13
000008 05 1"0 EALR 15,0
OOOOOA 98 91" F 012 LM 9 , 15 , 0 1 2 (15)
OOOOOE 07 1"1" BCR 15,15
000010 96 02 0311 01 03 q (1) , X ' 02'
0000111 07 F'E BCR 15,111
000016 111 1"0 0 001 IA 15,001(0,0)
oooon 07 FE BC~ 15,111
00001C 00000822 ADCON 1,4 (INIT3)
000020 00000000 ADCON L4 (INIT1)
0000211 00000000 ADCON 1,4 (INIT1)
000028 00000458 ADCON L4 (PGT)
00002C 00000230 ADCON 1,q (TGT)
000030 00000111"8 ADCON L4 (STAIlT)
000034 00000808 ADCON 1,4 (INIT2)
000038 DS 15F
0000711 FFFFFFFF DC X'FFFFFFFF'
000078 E3C~E2I3DSE4D540 DC X'E3C5E2E3D9E4D5QO'

STATISTICS SOURCE RECOFDS 79 DATA DIVISION STATEMENTS 22 PROCEDURE DIVISION STATEMENTS = 21
OPTIONS IN EFFECT SIZE = 81920 BUF 2768 LINECNT = 57 SPACE1, FLAGW, SEQ, SOURCE
OPTIONS IN EFFECT DMAP, PI'IAP, NOCLIST, NOSUPMAP, XREF, LOAD, NODECK, QUO'IE_, NOTRUNC, LIB, VERB, ZWB

CROSS-REFERENCE DICTIONARY

DATA NAMES DEFN FFFERFNCE

FILE-1 00016 00058 00058 00066 00066 00071 00071
RECOPD-1 00026 00066
FIFID-A 00027
FIIE-2 00017 00071 00071 00074 00074 00078 00078
FECORD-2 00034 00074
FlnD-A 00035
COUNT 00037 00058 00062 00062 00062 00064 00068
NOl'lBFIl 00038 00058 00062 00062 00065
FILLER 00039
ALPHABET 00040
UPH A o C041 00062
DEPENDENTS 00042
DEP'FND 00044 00064
WOrlK-RECORD 00045 00066 00066 00074 00076
NAl'IE-FIEI.D 00046 00062
FILLFR 00041
RECORD-NO ooolia 00065 00065
FILJ"ER 00049
LOCATION CC050
l>ILI..FR 00051
NO-OF-DIPENDENTS 00052 00064 00064 00075 00075 00075 00075 FTLT.FR 00053

PROCFDUFE NAl'/ES DEFN REFERENCE

BEGIN 00055
STFP-1 00058
,STFP-2 00062 00068
STEP-3 00066
STFp..:.q C0068
STFP-r; 00071
ST~P-6 000711 00076
STEP-7 00075
ST'F'P-8 00078 00074

272

CARD ERROR MESSAGE

IK~1100I-W 1 SFQUENCE ERReR IN SOURCE PROGRAM.

TFF285I PRODTEST PASSED
IEF285T VOL SER NOS= USAS
!~P2A51 SYS70027.T092817.RP002.~EST.UT1 DEIE~ED

I~F2A5I VOL SER NOS= 231400.
I~F285T SYS70027.T092817.RP002.TEST.UT2 DELETED
IFF285T VOL SEF NOS= 231'00.
IEF2851 SYS70027.T092817.RF002.TFST.UT3 DELETF.D
1~F2851 VOL SFR NOS= 231401.
IFF285! SYS70027.T092817.RP002.TEST.UT4 DELETED
1~F285I VOL S~R NOS= 231'00.
1FF2851 SYS70027.T092817.RP002.TEST.PNCH PASSED
1FF285I VOL SER NOS= 231400.
IFF285I SYSOUT SYSOOT
TFF285T VOL SER NOS=
STEP STEP1 TERMINATFD. TIME 00.02 ER.HDRTH/HR * 00.01.35.22 HR.MIN.SEC.HDRTH/SEC*DA~F 70.0?7
IIS~EP2 EXEC PGM=IFWl,FARM='XREF' ,FEG10N=96K
IISYSUT1 DD DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK,(100,'0»
IISYSIMOD DD DSNAME=&&GJOB(GO),UNI!=SYSDA,SPACE=(TRK,(100,10,1»), X
II DISP= (NEW,FASS)
IISYSIIB DD DSN=SYS1.COEUIIB,UN1T=2314,VOL=SER=USAS,DISP=SHR
IISYSPRTNT DD SYSOUT=A
IISYSLIN DD DSNAME=&&PNCH,DISP=(OLD,DELETE)
IFF236I ALLOC. FO~ TEST STEP2
1FF237T 234 ALLOCATED TO JOBL1B
IEF237I 190 ALLOCATED TO SYSUT1
1EF2371 190 ALLOCATED TO SYSLMOD
IFF237T 234 ALLOCATED TO SYSLTB
IEF2371 230 ALLOCATED TO SYSL1N

Appendix A: Sample Program Output 273

F88-LEVEL LINKAGE EDITCR OP~IONS SPECIFIED X~EF
VARIABLE CPTICNS USED - SIZE=(153600,51200}

CROSS REFERFNCE ~ABLE

CONTROL SECTION ENTRY

NAME ORIGIN I,1!NGTH NAPIE LOCATION NAME

TFST~UN 00 88C
n BODSPO* 890 69A
ILBOSTPO* F30 1,C

ILBOSTP1 1016 PDTSZE

DEFAULT OPTTON(S) USED

LOCATION NAI'I! LOCATION NUE

104B

LOCATTCN REFERS TO SYMBOL IN ceNTROL SECTION LOCATION RFFERS TO SYMBOL TN CONTROL SECTION

458
460

EN'!'RY ADD~ESS
TOTAl LENGTH

ILEOSTPO
TLBOSTP1
00

1050

lLBOSTPO
ILBOSTPO

****GO DOES NOT EXIST BUT HAS EEEN ADDED TO DATA SF'!'

I~F2851 PRODTEST ~ASS~D
I~F785I VOL SER NOS= USAS
1~F285I SYS70027.T092817.RP002.TEST.UT' DELETED
IEF285I VOL SER NOS= 231'00.
IFF285I SYS70027.T092817.RP002.TEST.GJOB PASSED
TEF285I VOL SER NOS= 231'00.
TEF285T SYS1.COBULIB KFPT
IFF285T VOL SER NOS= USAS
IEF285I SYSOUT SYSOUT
IEF285T VOL SFF ~OS=
I~F285T SYS70027.T092817.RP002.TEST.PNCH DELETED
IEF285T VOL SER NOS= 231400.

45C ILBODSPO

STEP STEP2 TEFI'IINATFD. TI~E 00.00 HR.HDRTH/HR * 00.00.23.58 HR.MIN.SEC.HDRTH/SEC*DATE 70.027
//STEP3 FXEC PGM=*.STEP2.SYSLMOD
//SYSOUT DD SYSOUT=A
I/SYSUDUMP DD SYSOUT=A
I/SAMPLE DO UNIT=2400,lABEL=(,N~)
IEF236I ALLOC. FOR TEST STEP3
IE~237I 234 nLOCATED TO JOBLIB
IEF237I 190 ALLOCA~ED TO PGPI=*.DD
IEF237I 183 ALLOCATED TO SAPIPLE

<;8
6?
66
68
fi2
66
62
66

(Repeat 21 times)

62
66
62
66
71
74
75

274

ILBODSPO

LOCATION

WO~K-'R'ECORD A 0001 NYC Z
7q
75
WORK-1HCORt E 0002 NYC
"7q
75
WO~K-RECO~D C OOO~ NYC 2
7q
75
WORK-FECORD t OOOq NYC 3
7q
75
WORK-RECORD F 0005 NYC q
7q
75
WORK-RECORD ! 0006 NYC 'Z
"111
75
WORK-RECORD G 0007 NYC
711
7c;
WORK-RECORD H 0008 NYC 2
74
7C,
WORK-RECORD I 0009 NYC 3
74
75
WORK-RECORD = J 0010 NYC 4
711
7<:"
WO~K-RECOFD K 0011 NYC Z
711
75
WCRK-FFCORD L 0012 NYC
711
75
WORY-RECORD !1 0013 NYC 2
711
75
WORK-RECORt N 00111 NYC 3
711
75
l'TORK-RECORD 0 0015 NYC q
74
75
WCRK-BECORD P 0016 NYC 'Z
74
7<:"
~ORK-RECO-qD Q 0017 NYC
74
75
WORY-RECORD R 0018 NYC 2
,q
7<:"
WORK-RECORD S 0019 NYC 3
74
75
WCRY-FECOFD T 0020 WYC II
7q
75

Appendix A: Sample Program Output 275

lJORK-RFCOPD U 0021 NYC
7"
7"1
WORK-RECORD V 0022 NYC
7"
7~
TolOllf{-P'ECO'RD W 0023 NYC 2
7"
"7~

WCRK-FECOPD X 002" NYC 3
"7"
7~
WOPK-PFCORD Y 0025 NYC 4
74
75
WCRK-liECORD Z 0026 NYC Z
7"
78

IEF285I PRODTFST PASSED
IFF2851 VOL SEF NOS= USAS
T~F2851 SYS70027.T092817.RP002.~EST.GJOB PASSED
TEF28SI VO~ SFR NOS= 231100.
:IEF28ST SYSOUT, SYSOUT
IEF285I VOL SER NOS= •
IEF28SI SYS70027.T092817.RP002.TEST.'R0000006 DELETED
IFF28S1 VOL SIR NOS= L00101.
STEP STEP~ TFRMINATED. TIME 00.02 HR.HDRTH/HR * 00.01.1S.71 HR.MIN.SEC.HDRTH/SEC*DATE 70.027
IEF285I PRODTFST KEPT
IEF285I VOL SER NOS= USAS
I'PF28ST SYS7002'1.T092817.RP002.TEST.GJOB DELE'T'FD
IEF28SI VOL SER NOS= 231100.
JOB TEST TERMINATED. TIME OO.OS H'R.HDRTH/HR * 00~03.19.51 HR.MIN.SEC.HDRTH/SEC*DATF 10.021* START 09.Q7 END 09.52
****** THIS JOB WAS RUN ON MODE1 SOD ******

276

COBOL library subroutines perform
operations that require ~uch extensive
coding that it would be inefficient to
place the coding in the object module each
time it is needed.

COBOL library subroutines are stored in
the COBOL library (SYS1.COBLIB). The
required subroutines are inserted in load
modules by the linkage editor.

There are several major categories of
COBOL library subroutines:

• Checkpoint feature

• Conversion routines

• Segmentation feature

• Arithmetic verb routines

• Input/output verb routines

• Sort feature interface routines

• Other verb routines

In addition, Q routines, which are not
classified as COBOL library subroutines,
are used to calculate the length of
variable-length fields and the location of
variably located fields resulting from an
OCCURS clause with a DEPENDING ON option.

COBOL LIBRARY CONVERSION SUBROUTINES

Eight numeric data formats are permitted
in COBOL; five external (for input and
output) and three internal. (for internal
processing) •

The five external formats are:
(1) external or zoned decimal, (2) external
floating-point, (3) sterling display,
(4) numeric edited, and (5) sterling
report. The three internat formats are:
(1) internal or packed decimal, (2) binary,
and (3) internal floating-point.

The conversions from internal decimal to
external decimal, from external decimal to
internal decimal, and from internal decimal
to numeric edited are done in-line. The
other conversions are performed by the
COBOL library subroutines shown in
Table 28.

Most arithmetic operations are performed
in-line. However, involved calculations,
such as exponentiation, and calculations
with very large numbers, such as decimal
multiplication of two 30-digit numbers, are
performed by COBOL library subroutines.
These subroutine names and their functions
are given in Table 29.

The input/output subroutines are for the
verbs DISPLAY (TRACE and EXHIBIT), ACCEPT,
WRITE and CLOSE, I/O errors, printer
spacing, and printer overflow.

DISPLAY, TRACE, and EXHIBIT Subroutine
(ILBODSPO)

The ILBODSPO subroutine is used to
print, punch, or type data, usually in
limited amounts, on an output unit. TRACE
and EXHIBIT are kinds of DISPLAY.

The acceptable forms of data for this
subroutine are:

1. Display

2. External decimal

3. Internal decimal (converted by the
subroutine to external decimal)

4. Binary <converted by the subroutine to
external decimal)

5. External floating-point

Internal floating-point numbers must be
converted to external floating-point
numbers before the subroutine is called.

ACCEPT Subroutine (ILBOACPO)

The ILBOACPO subroutine is called to
read from SYSIN or from the operator's
console at execution time. For SYSIN, a
logical record size of 80 is assumed. If
the size of the data item being accepted is

Appendix B: COBOL Library Subroutines 277

less than 80 characters, the data must
appear as the first set of characters
within the input record. If the size of
the data item is greater than 80
characters, as many records as necessary
are read until the storage area allocated
to the data item is filled. If the data
item is greater than 80 characters, but is
not an exact multiple of 80, the remainder
of the last logical record is not

accessible. For the console, a maximum of
114 characters are accepted and either 114
characters or the length of the item,
whichever is smaller, is moved to the
operand named in the ACCEPT statement.

If end-of-file is reached on SYSIN, no
further activity is performed on the file,
even if further ACCEPT statements are
issued.

Table 28. Functions of COBOL Library Conversion Subroutine (Part 1 of 2)
r-----------------------T---,
I I Conversion I
I Subroutine Name ~-------------------------------T-------------------------------~
I and I I I
I Entry Points I From I To I
~-----------------------+-------------------------------+-------------------------------~
I ILBOEFL2 I External Floating-Point I Internal Decimal I
I I I I
I ILBOEFLl I External Floating-Point I Binary I
I I I I
I ILBOEFLO I External Floating-Point I Internal Floating-Point I
~-----------------------f-------------------------------f-------------------------------~
I ILBOBID01 I Binary I Internal Decimal I
I I I I
I ILBOBID11 I I I
I I I I
I ILBOBID21 I I I
~-----------------------f-------------------------------+-------------------------------~
I ILBOBIE01 I Binary I External Decimal I
I I I I
I ILBOBIE11 I I I
I I I I
I ILBOBIE21 I I I
~-----------------------f-------------------------------f-------------------------------~
I ILBOBII02 I Binary I Internal Floating-Point I
I I I I
I ILBOBII1 2 I I I
~-----------------------+-------------------------------+-------------------------------i
I ILBOTEF02 I Binary I External Floating-Point I
I I I I
I I LBOTEFl 2 I I I
I I I I
I ILBOTEF2 I Internal Decimal I External Floating-Point I
I I I I
I IFBOTEF3 I Internal Floating-Point I External Floating-Point I
~-----------------------~------------------------------~-------------------------------i
11The entry points used depend on whether the double-precision number is in registers 0 I
I and 1, or 2 and 3, or 4 and 5, respectively. I
12The entry points are for single-precision binary and double-precision binary, I
I respectively. I L ___ J

278

Table 28. Functions of COBOL Library Conversion Subroutines (Part 2 of 2)
r-----------------------T---,
I I Conversion I
I Subroutine Name ~-------------------------------T-------------------------------~
I and I I I
I Entry Points I From I To I
~-----------------------t-------------------------------t-------------------------------~
I ILBOIBDO I Internal Decimal I Binary I
I I I I
I ILBOIDB1 I External Decimal I Binary I
r-----------------------t-------------------------------+-------------------------------~
I ILBODCI1 I Internal Decimal I Internal Floating-Point I
I I I I
I ILBODCIO I External Decimal I Internal Floating-Point I
r-----------------------t-------------------------------t-------------------------------~
I ILBOIFDO I Internal Floating-Point I Internal Decimal I
I I I I
I ILBOIFD1 I Internal Floating-Point I External Decimal I
r-----------------------t-------------------------------+--------~----------------------~
I ILBOIFB1 I Internal Floating-Point I Binary integer and a pow€r I
I I I of 10 exponent I
I ILBOIFB2 3 I I I
I ILBOIFB03 I Internal Floating-Point I Binary I
r-----------------------f-------------------------------f-------------------------------~
I ILBOIDRO I Internal Decimal I Sterling Report I
r-----------------------t-------------------------------+-------------------------------~
I ILBOIDTO I Internal Decimal I Sterling Non-Report I
r-----------------------f-------------------------------+-------------------------------~
I ILBOSTIO I Sterling Non-Report I Internal Decimal I
r-----------------------~-------------------------------~-------------~-----------------~
1 3 This entry point is used for calls from other COBOL library subroutines. I L ___ J

Table 29. Functions of COBOL Library Arithmetic Subroutines
r---------------T---,
I Subroutine Name I Function I
r---------------t---~
IILBOXMUO I Internal Decimal Multiplication (30 digits * 30 digits = 60 digits) I
r---------------t---~
IILBOXDIO I Internal Decimal Division (60 digits/30 digits = 60 digits) I
r---------------f-----------------------,--~
IILBOSPRO I Exponentiation of an Internal Decimal Base by a Binary Exponent I
t---------------t----------------------~--~
IILBOFPWO I Floating-Point Exponentiation I
r---------------f---~
IILBOGPW01 I Floating-Point Exponentiation I
~---------------~---~
11The ILBOGPWO entry point is used if the exponent has a picture specifying an integer. I
I The ILBOFBWO entry point is used in all other cases. I L ___ J

BSAM.Subroutine (ILBOSAMO)

The ILBOSAMO routine processes
input/output statements for direct or
relative files accessed sequentially. It
also handles OPEN statements and CLOSE
statements with the REEL option for
directly organized output files accessed
randomly.

BSAM Subroutine (ILBOSAMRO)

The BSAM read routine reads segments of
a logical record and assembles them into a
complete logical record. The routine is
called by a compiler-generated READ code
for a spanned record direct BSAM file.

Appendix B: COBOL Library Subroutines 279

Error Intercept Subroutine (ILBOERRO)

The ILBOERRO subroutine is used to test
for various error conditions and passes
control to the interpretive-statement
specified in the INVALID KEY option phrase
or to the USE FOR ERROR declarative section
depending on the type of error and error
handling options specified. The entry
points used for error processing by
ILBOERRO are:

ILBOERRl
ILBOERR2

ILBOERR3

ILBOERR4

ILBOERR5

Standard Sequential Files
Direct and Relative Files
Accessed Sequentially

Indexed Files Accessed
sequentially

Direct and Relative Files
Accessed Randomly

Indexed Files
Accessed Randomly

Printer Overflow Subroutine (ILBOPTVO)

The ILBOPTVO subroutine is used to
control printer overflow testing and page
ejection.

Printer Spacing Subroutine (ILBOSPAO)

The ILBOSPAO subroutine is used to
control printer spacing.

SORT. FEATURE SUBROUTINE (ILBOSRTO)

The ILBOSRTO routine acts as an
interface between the COBOL calling program
and the Sort/Merge program.

COBOL LIBRARY SUBROUTINES

'There are also COBOL library subroutines
for the comparisons, the verbs MOVE and
TRANSFORM, and other features of the CPBOL
language.

COMPARE Subroutine (ILBOVCOO)

The ILBOVCOO subroutine compares two
operands, one or both of which is variable
in length. They may exceed 256 bytes.

280

MOVE Subroutine (ILBOVMOO and ILBOVM01)

The MOVE subroutine is used when one or
both operands is variable in length. They
may exceed 256 bytes. The MOVE subroutine
is also used for READ and WRITE statements
processed in conjunction with the SAME
RECORD AREA clause. The subroutine has two
entry points, depending on the type of
move: ILBOVMOO (left-justified) and
ILBOVMOl (right-justified).

TRANSFORM Subroutine (ILBOVTRO)

The ILBOVTRO subroutine translates
variable-length items.

Class Test Subroutine (ILBOCLSO)

The ILBOCLSO subroutine is used to
perform class tests for variable-length
items and those fixed-length items over 256
bytes long.

~ot~: The following tables are placed in
the library for use by the in-line coding
generated and the subroutines called for by
both class test and TRANSFORM:

ILBOATBO--alphabetic class test
ILBOETBO--external decimal class test
ILBOITBO--internal decimal class test
ILBOTRNO--transforrnation
ILBOUTBO--unsigned internal decimal

class test
ILBOWTBO--unsigned external decimal

class test

The ILBOSGMO subroutine is used to load
segments of a program that are not in core
storage and to pass control from one
segment to the other.

SEARCH Subroutine (ILBOSCHO)

The ILBOSCHO subroutine performs a
binary search on a specified level of a
table. It is used for the SEARCH ALL
statement.

STOP.RUN Subroutine (ILBOSTPO)

The ILBOSTPO subroutine controls exiting
from the program and is entered when a
program receives initial control. ILBOSTP1
is entered at the termination of a program.

Date .. Subroutine (ILBODTEO)

The ILBODTEO subroutine retrieves the
time of day and the date from the system
and stores the information in the receiving
field of the specified MOVE stateme~t.

Compare Figurative Constant Greater Than
One Character Subroutine (ILBOIVLO)

The ILBOIVLO subroutine is used in
comparisons of the ALL 'literal' where
literal is a figurative constant greater
than one character in length.

MOVE Data-name, Literal, or Figurative
Constant Subroutine (ILBOANEO)

The ILBOANEO subroutine moves a
data-name, literal, or figurative constant
into a right or left adjusted alphanumeric
edited field.

MOVE Figurative Constant of More Than One
Character Subroutine (ILBOANFO)

The ILBOANFO sunroutine moves a
figurative constant of more than one
character into a nonnumeric receiving
field. The result may be right or left
justified.

Checkpoint Subroutine (ILBOCKPO)

The ILBOCKPO subroutine is used when
checkpoints are taken in the program.

Appendix B: COBOL Library Subroutines 281

In this appendix, each field of the data
control block is listed by the name of the
operand of the assembler-language macro
instruction that can specify a value for
that field. Tables 30 through 34
illustrate the data control blocks for
sequential, direct, relative, and indexed
files. Some of the data control block
fields can be referred to with the DCB
parameter of the DD statement. However,
any field filled in by the COBOL compiler
cannot be overridden except for the indexed
file OPTCD field in which the
L-subparameter is set by the compiler using
DCB exit.

Values for fields for which no entry
appears in the column headed "COBOL Source"
may be s.upplied by the DD statement or by
the data set label.

For information concerning the
specification of values for data control
block fields, see the DCB macro instruction
for the different file processing
techniques in the publication IBM
System/360 QE~~ating_§yst~~~ __ ~~~~Y~~Q~
an~Qat~_~~n~~me~t~~crQ_!n~t~~ct~on~.

Note: The DCB subparameters are discussed
under "User Defined Files" in the chapter
"User File Processing."

Appendix C: Fields of the Data Control Block 283

Table 30. Data Control Block Fields for Standard Sequential Files
r------------T-------------------------T-------------------------T----------------------,
I I I I Applic.able I
IData Control I I I DO Statement I
I Block Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+-------------------------+-------------------------+----------------------~
BFALN Alignment (COBOL specifies double- I

word boundary) I

BFTEK

BLKSIZE

BUFCB

BUFL

BUFNO

DO NAME

DSORG

EODAD

EROPT

EXLST

LRECL

MACRF

OPTCD

Buffering technique
<S or E)

Maximum length of block

Address of buffer pool

Length of each buffer

Number of buffers
assigned to DCB

Name of DD statement

Access method

(COBOL specifies S)

BLOCK CONTAINS
Data record description

SAME AREA

RESERVE

ASSIGN clause

ASSIGN clause
ACCESS clause

Address of user1s end-of- READ ••• AT END
data-set exit routine
for input data set

Error option

Address of exit list

Logical record length

Used by the compiler for
USE ••• LABEL, etc.

FD entry

Type of macro instruction OPEN INPUT, READ
OPEN OUTPUT, WRITE

Optional service provided
by control program

OPEN 1-0, READ, WRITE
REWRITE

RECFM ICharacteristics of RECORDING MODE
I records in data set Record description
I ADVANCING
I POSITIONING
I BLOCK CONTAINS
I APPLY RECORD-OVERFLOW

SYNAD IAddress of error exit Used by compiler for
I routine INVALID KEY and
I USE AFTER ERROR

BLKSIZE

BUFNO=N(default=2)

(EROPT=[ACCISKPIABE])

(OPTCD=[WICIWCIT)

L ____________ ~ _________________________ ~ _________________________ ~ _____________________ _

284

I
I
I
I

Table 31. Data Control Block Fields for Direct and Relative Files Accessed Sequentially
r------------T--------------------------T------------------------T------------------~---,
I I I I Applicable I
IData Control I I I DD Statement I
IBlock Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+--------------------------+------------------------+----------------------~
BLKSIZE Maximum length of block I Data record description

I
DDNAME Name of DD statement I ASSIGN clause

I
DSORG Access method I ASSIGN clause

I ACCESS clause
I

EODAD Address of end-of-data-set READ ••• AT END

EXLST

KEYLEN

LRECL

MACRF

OPTCD

RECFM

exit (input)

Address of exit list

Length of key

Logical record length

Type of macro instruction

Optional service to be
provided by control
program

Characteristics of
records in data set

USE ••• LABEL PROCEDURE

ACTUAL KEY1
(length of
ACTUAL KEY - 4)

FD entry

OPEN INPUT, READ
OPEN OUTPUT,
WRITE (DIRECT ONLY)

RECORDING MODE
Record description
APPLY RECORD-OVERFLOW

SYNAD Address of error exit USE AFTER ERROR
routine INVALID KEY

[OPTCD=WIT]

~------------~--------------------------~------------------------~----------------------~
11 Direct files only; for relative files, the field is O. I L ___ J

Appendix C: Fields of the Data Control Block 285

Table 32. Data Control Block Fields for Direct and Relative Files Accessed Randomly
r------------T---------------------------T-------------------------T--------------------,
I I I I Applicable I
I Data Control I I I DD Statement I
I Block Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+---------------------------f-------------------------f--------------------~
BLKSIZE IMaximum length of block Data record description

DDNAME

DSORG

EXLST

KEYLEN

LIMCT

MACRF

OPTCD

RECFM

I
IName of DD statement
I
IAccess method
I
I
Address of exit list

Length of key for each
physical record

Search limits

Type of macro instruction

Option service to be
provided by the control
program

Characteristics of
records of data set

ASSIGN clause

ASSIGN clause
ACCESS clause

USE ••• LABEL, etc.

ACTUAL KEY1.
(length of
ACTUAL KEY - 4)

OPEN INPUT, READ
OPEN OUTPUT,
WRITE (DIRECT ONLY)
OPEN 1-0, READ,
WRITE (DIRECT ONLY),
REWRITE

RECORDING MODE
APPLY RECORD-OVERFLOW
Record description

SYNAn Address of error exit Used by compiler for
routine INVALID KEY and

USE AFTER ERROR

LIMCT=n <OPTCD=E
must be specified)

OPTCD=E/W

~------------~---------------------------~-------------------------~--------------------~
I1.Direct files only, for relative files this field is o. I L ___ J

286

Table 33. Data Control Block Fields for Indexed Files Accessed Sequentially
r------------T---------------------------T-------------------------T--------------------,
I I I I Applicable I
I Data control I I I DO Statement I
IBlock Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+---------------------------+-------------------------+--------------------~
BFALN Buffer alignment (F or D) (COBOL specifies D)

BKLSIZE

BUFCB

BUFNO

CYLOFL

DO NAME

DSORG

EODAD

EXLST

KEYLEN

LRECL

MACRF

NTM

OPTCD

RECFM

RKP

Maximum length of block BLOCK CONTAINS

Address of buffer pool SAME AREA

Number of buffers assigned RESERVE
to DCB

Number of overflow tracks
for each cylinder

Name of DD statement

Access method

Address of user's end-of
data-set exit routine
for input data set

Address of exit list

Length of key for each
logical record

Logical record length

Type of macro instruction

Maximum number of
cylinder index tracks

Optional services

Characteristics of
records in data set

Relative position of
record key in logical
record

ASSIGN clause

ACCESS clause
ASSIGN clause

READ ••• AT END

Used by the compiler

RECORD KEY

FD entry

OPEN INPUT, READ, START
OPEN OUTPUT, WRITE
OPEN 1-0, READ, START,

REWRITE

RECORDING MODE
RECORD DESCRIPTION
BLOCK CONTAINS

RECORD KEY

ISYNAD Address of error exit Used by the compiler for
I routine INVALID KEY,
I USE AFTER ERROR

BLKSIZE

BUFNO=N(default=2)

CYLOFL=XX

NTM=XX

OPTCD=IIRIWIYIMIUIL
(must also have
NTM=M)

L ____________ ~ ___________________________ ~ _________________________ ~ ____________________ J

Appendix C: Fields of the Data Control Block 281

Table 34. Data Control Block Fields for Indexed Files Accessed Randomly
r-------------T---------------------------T--------------------------T------------------,
I I I I Applicable I
IData Control I I I DD Statement I
IBlock Field I Explanation of Field I COBOL Source IDCB Subparameters I
~-------------+---------------------------+--------------------------+------------------~
BFALN IBuffer alignment (F or D) (COBOL specifies D) I

I I
DDNAME IName of DD statement ASSIGN clause I

\1 I
DSORG Access method ACCESS clause

EXLST

KEYLEN

LRECL

MACRF

MSHI

MSWA

SMSI

ASSIGN clause

Address of exit list Used by the compiler

Key length NOMINAL KEY

Logical record length FD entry

Type of macro instruction OPEN. INPUT, READ
OPEN I-a, READ,
WRITE, REWRITE,

Address of area for APPLY CORE-INDEX
highest level index
of data set

Address of area reserved TRACK-AREA
for control program.
Required for variable
length records

Size for area provided for APPLY CORE-INDEX
highest level index of
the data set

ISMSW Number of bytes reserved TRACK-AREA
I for main storage
I work area L _____________ ~ ___________________________ ~ __________________________ ~ __________________ J

288

In general, compilation is faster when:

1. Options in the EXEC statement are
specified to:

a. make more main storage available
(the SIZE option)

b. optimize the space available for
buffers (the BUF option)

c. suppress output (the NOSOURCE,
NODECK, NOLOAD, and the SUPMAP
options)

2. The maximum block size for a compiler
data set is specified.

3. A disk con~iguration and separate
channels for utility data sets are
used.

4. ·Separate devices (i. e.
"

not the same
mass storage unit) on the same channel
are used.

Compilation time is also affected by the
speed of the devices allocated to the data
sets. For example', a tape device is faster
than a printer for printed output. The
blocking information that follows applies
to both MFT and MVT.

BLOCK SIZE FOR COMPILER DATA SETS

The blocking factor specified for
compiler data sets other than utility data
sets must be permissible for the device the
data set is on. In addition, for the
SYSLIN data set, it must be permissible for
the linkage editor used. (Any block size
specified for a utility data set in a DD
statement is overridden by the compiler.)
If a block size other than the default
option is needed, it can be requested by
specifying the BLKSIZE subparameter of the
DCB parameter in the DD statement for the
data sets. The format of the subparameter
is:

DCB=(,BLKSIZE=nnn)

where nnn is equal to ,N times the logical
record size in bytes, and 1 ~ N ~ M. M is
equal to the blocking factor permissible
for the device, and, in the case of SYSLIN,
to the blocking factor permissible for the
linkage editor used.

If blocking is desired, the record
format for SYSPRINT [DCB=(,RECFM=nnn)]

APPENDIX D: COMPILER OPTIMIZATION

should be specified as FBA. The record
format for SYSIN, SYSLIN, SYSPUNCH, and
SYSLIB should be specified as FB.

The logical record size for SYSPRINT is
121 bytes. The logical record size for
SYSIN, SYSLIN, SYSPUNCH, and SYSLIB is 80
bytes.

Note: For compile, linkage edit, and
execute cases when labeled volumes are
used, RECFM and BLKSIZE must be given for
SYSLIN in the compile step only. If
BLKSIZE is specified for SYSPUNCH, LRECL
must also be specified. The 44K version of
the linkage editor supports input data sets
with a blocking factor of up to 40
specified.

HOW BUFFER SPACE IS ALLOCATED TO BUFFERS

Once the amount of space available for a
compilation is determined, the compiler
subtracts the amount required for itself.
From the space remaining, it then computes
the space available for utility and
input/output data set buf.fers. If space
still remains, the compiler makes use of it
for internal processing.

Once the amount of space available for
buffers is determined, the compiler
calculates how this space is to be divided.
First, it computes the amount of 'space
required for the buffers of the
input/output data sets. From the space
remaining, it determines the maximum buffer
size, and hence block size, possible for a
utility data set. The utility data sets
all have the same block size. Thus, the
block size of a utility data set is
dependent on the amount of space available
for buffers. If a block size has been
specified on a DD statement for a utility
data set, it is overridden.

A larger buffer size for a utility data
set allows for faster processing. However,
if the-program that is being compiled takes
up a large amount of the available storage,
a smaller space for buffers enables the
compiler to use more main storage for
internal processing.

The following describes how the space
available for buffers is determined and how
it is allocated for buffers.

Appendix D: compiler Optimization 289

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

Let A represent the space that can be
allocated to these buffers. It is
determined as follows:

1. If neither the BUF nor the SIZE option
of the PARM parameter of the EXEC
statement is specified, A equals the
default value for buffer space. This
value is specified at system
generation time. The minimum value is
2768 bytes.

2. If the SIZE option is specified, but
BUF is not, A equals (SIZE - 80K) / 4
plus the default value for buffer
space.

3. If BUF is specified (whether or not
SIZE is specified), A equals the value
specified for BUF.

Note: The minimum difference between
SIZE and BUF must always be equal to
or greater than the difference between
the minimum SIZE value and the minimum
BUF value (that is, 81920 bytes - 2768
bytes). -

4. If BUF is smaller than 2168 bytes (the
minimum value), a warning message is
printed and the minimum value is
assumed. If BUF is too large to allow
minimum table space for compilation, a
warning message is printed and the
default value (or the minimum value,
if the default value is also too
large) is assumed.

The programmer must make sure that the
amount of buffer space allocated by the
system is sufficient, taking into consid
eration the block sizes specified for the
compiler data sets. The allocated buffer
space is divided as follows:

1. Let B represent the amount of buffer
space to be allocated for input/output
data sets. B is computed as either
equal to:

290

2 times the block size of SYSPRINT +
SYSIN + SYSLIB

or

2 times the block size of SYSPRINT +
SYSPUNCH + SYSLIN

whichever is larger. The maximum
allowable value of B is A - 1280
bytes. If" the computed value is
greater than the maximum allowable
value, a diagnostic message is printed
and compilation is abandoned.

If the block sizes are not
specified in the DD statements, the
following default values are assumed:

Data Set
SYSIN
SYSLIN
SYSPUNCH
SYSLIB
SYSPRINT

Default
Value (bytes)

80
80
80
80

121

2. Let C represent the amount of buffer
space to be allocated for each utilit~
data set. Therefore, C equals the
block size of dat~ sets, SYSUrl,
SYSUT2, SYSUT3, and SYSUT4,
respectively.

A - B
If A S 6B, then C

5

A
If A > 6B, then C

6

If C > maximum block size permittee
for any device a utility data set is
on, then the maximum block size is thE
value chosen for C. The minimum bloc~
size for a utility data set is 255
bytes. .

The programmer may, at times, want to
determine minimum buffer, SIZE, and REGION
parameters from the block sizes of
input/output data sets.

Assume that the block sizes of the
input/output data sets are as follows:

Data Set
SYSIN
SYSLIN
SYSPUNCH
SYSLIB
SYSPRINT

Block Size (Bytes)
80

240
320
160
484

Since B equals two times the block size of
SYSPRINT + SYSIN + SYSLIB or two times the
block size of SYSPRINT + SYSPUNCH + SYSLIN 1

whichever is greater, by substituting the
block sizes of the appropriate files for
this example we have

B = 2(484 + 80 + 160)

or

B = 2(484 + 320 + 240)

Page of GC28-6399-2, Revised 4/15/73, by TNL 3N28-1038

The greater value is 2088 bytes, therefore
the minimum buffer parameter in this case
is B + 1280 or 3368.

Referring to the note in item number 3
above, we can calculate a suitable SIZE
parameter as follows:

SIZE - BUF = SIZE - 3368 = 79152

SIZE = 19152 + 3368 = 82520 (Minimum)

The minimum REGION is 6K greater than
the SIZE parameter. In this example, the
minimum REGION size is approximately 81K.

Minimum values with respect to SIZE do
not always yield the most efficient
processing. Not every program will compile

successfully in minimum core. Additional
code may have to be generated in the case
where core is limited. The amount of
physical I/O might increase because of
small utility data set buffers. The above
example must be used with this
consideration in mind.

A guideline for calculating the SIZE
parameter once the buffer parameter is
known is to increase the minimum SIZE
parameter value by the amount that the
buffer parameter has exceeded its minimum.
If the SIZE'and buffer parameters are known
for a particular program and the user
wishes to increase his buffer parameter
value, the SIZE parameter should be
increased by the same amount.

Appendix 0: Compiler Optimization 290.1

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

APPENDIX E: - INVOCATION OF THE COBOL COMPILER AND COBOL COMPILED PROGRAMS

The COBOL compiler can be invoked by a
problem program at execution time through
the use of the ATTACH or LINK macro
instruction, i.e., dynamic invocation.
Dynamic invocation of COBOL compiled
programs can be accomplished through the
use of the LINK or LOAD macro instruction.

INVOKING THE COBOL COMPILER

The problem program must supply the
following information to the COBOL
compiler:

• The options to be specified for the
compilation

• The ddnames of the data sets to be used
during processing by the COBOL compiler

• The header to appear on each page of
the listing

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I [symboll I LINK I EP=IKFCBLOO, I
I I ATTACH IPARAM=(optionlist I
I I I [, ddnamelistl , I
I I I [,headerlistl),VL=l I L ________ ~ _________ ~ ______________________ J

where:

EP
specifies the symbolic name of the COBOL
compiler. The entry point at which
execution is to begin is determined by
the control program (from the library
directory entry).

PARAM
specifies, as a sublist, address
parameters to be passed from the problem
program to the COBOL compiler. The
first fullword in the address parameter
list contains the address of the COBOL
option list. The second fullword
contains the address of ddname list. If
standard ddnames are to be used and no
header list is specified~ this list may
be omitted. If standard ddnames are to
be used and a header list is specified,
this entry should contain the address of
a word of binary zeros, aligned on.a
halfword. The last full word contains
the address of the header list. This
list may be omitted.

option list
specifies the address of a variable
length list containing the COBOL options
specified for compilation. For
additional details, see the description
of the EXEC statement "Job Control
Procedures." This address must be
written even though no list is provided.

The option list must begin on a halfword
boundary. The two high-order bytes
contain a count of the number of bytes
in the remainder of the list. If no
options are specified, the count must be
zero. The option list is free form with
each field separated from the next by a
comma. No blanks or zeros should appear
in the list.

ddname list
specifies the address of a variable
length list containing alternative
ddnames for the data sets used during
COBOL compiler processing. If standard
ddnames are used, this operand may be
omitted.

The ddname list must begin on a halfword
boundary. The two high-order bytes
contain a count of the number of bytes
in the remainder of the list. ~ach name
of less than eight bytes must be left
justified and padded with blanks. If an
alternate ddname is omitted from the
list, the standard name will be assumed.
If the name is omitted within the list,
the 8-byte entry must contain binary
zeros. Names can be omitted from the
end merely by shortening the list.

All utility data sets (SYSUT1/2/3/4)
passed to the compiler must be physical
sequential; that is, DSORG=PS must be
their type of organization.

The sequence of the a-byte entries in
the ddname list is as follows:

ddname
8-byte Entry

1
2
3
4
5
6
7
a
9

10
11

Name for
Which Substituted

SYSLIN
not applicable
not applicable
SYSLIB
SYSIN
SYSPRINT
SYSPUNCH
SYSUT1
SYSUT2
SYSUT3
SYSUT4

Appendix E: Invocation of the COBOL Compiler and COBOL Compiled Programs 291

header list

VL

specifies the address of a
variable-length list containing
information to be included in the
heading on each page of the listing.
The list must begin on a halfword
boundary. The two high-order bytes
should contain a coant of the number
of bytes in the new heading
information; the next four bytes of
the list should contain the page
number at which the heading is to
start, in EBCDIC format.

specifies that the sign bit is to be
set to 1 in the last fullword of the
address parameter list.

when the COBOL compiler completes
processing, a return code is placed in

292

register 15. For additional details, see
the discussion of the COND parameter in
"Job Control Procedures."

INVOKING COBOL COMPILED PROGRAMS

Linkage editor control cards should be
specified as follows:

1. For the PROGRAM-ID program-name, a
NAME card.

2. For each ENTRY literal-l, an ALIAS
card should be specified in a COBOL
program that is to be dynamically
invoked.

APPENDIX F: SOURCE PROGRAM SIZE CONSIDERATIONS

Limitations on the size of a COBOL
source program should be considered in
relation to the capacities of both the
COBOL compiler and the various linkage
editors. This appendix contains
information to aid the programmer in
determining how his source program affects
usage of space at compilation time and
linkage editing time.

COMPILER CAPACITY

The capacity of the COBOL compiler is
limited by two general conditions: (1) the
total contiguous space available must be
sufficient for compilation and (2) an
individual table may not have a length
greater than 32,767 bytes, with the
exception of the ADCON and cross-reference
tables. If either of these conditions are
not met during compilation, one of the
following error messages will be issued:

IKF0001I-D SIZE PARAMETER TOO SMALL FOR
THIS PROGRAM.

IKF0010I-D A TABLE HAS EXCEEDED THE MAXIMUM
PERMISSIBLE SIZE.

In either case, compilation is terminated.
However, in the first case, the program may
be recompiled with a larger SIZE parameter.
The size of the ADCON and cross-reference
tables is not limited to 32,767 bytes.

If a table overflows, the following error
message will be generated, and the user
will need to rerun the program in a larger
region.

IKF6007I-D TABLE OVERFLOW. PMAP LOAD
MODULE OR DECK WILL BE
INCOMPLETE. INCREASE SIZE
PARAMETER.

Minimum Configuration SOURCE PROGRAM Size

The compiler will accept and compile a
1500 card program in the minimum machine
configuration (SOK). Within an SOK byte
environment, the user should not specify
buffer size for the compiler files. Of
course, the various reader procedures may
affect the value required for SIZE and BUF
parameters. The compiler will allocate the
minimum required amounts that are 256 bytes
for each of the 4 intermediate files, SO
bytes for each system file with the

exception of SYSOUT for which 120 bytes are·
allocated. Double buffering will be
assumed.

Within this configuration, assuming no
REPORT SECTION, the compiler will accept:

• 300 procedure references assuming an
average procedure-name length of 12
characters

• 25 OCCURS clauses with the DEPENDING ON
option

• Ten files assuming an average of three
subordinate record entries

• 400 literals assuming an average of S
bytes

EFFECTIVE STORAGE CONSIDERATIONS

The amount of core storage within the
compiler's partition and the limitation on
the size of an individual internal table
are two factors that limit the capacity of
the compiler. The limitation on the size
of internal tables can, in some instances,
be overcome by the spilling over of some
tables onto external devices. However,
spilling over may cause a severe
degradation of performance. The core
storage limitation should not be reached by
any reasonable use of the language.
However, within a limited storage capacity
excessive use of certain features and
combination of features in the language
could make compilation impossible. Some of
the features that significantly affect
storage usage are:

1. ADCON Table

Each entry occupies S bytes. This
table is not limited to the maximum
size of 32,767 bytes. Entries are
based on:

• Number of 4096-byte segments in the
Working-Storage Section

• Number of 4096-byte segments in a
file buffer area

• Number of referenced procedure-names

• Number of implicit procedure-name
references such as those generated
by IF, SEARCH, and GENERATE

Appendix F: Source Program Size Considerations 293

statements, ON SIZE ERROR, INVALID
KEY, and AT END options, the OCCURS
clause with the DEPENDING ON option,
USE sentences, and the Segmentation
feature.

• Number of files

2. Procedure-name Table

This table contains the number of
definitions written in a section and
unresolved procedure references.
Procedure references are resolved at
the end of a section if the definition
of the procedure-name is in that
section or a preceding section.
Therefore, forward references beyond a
section impact space. Approximately
900 unqualified entries are possible.
A maximum number of 16,255 entries may
be specified.

3. OCCURS DEPENDING ON Table

This table contains an entry for
each unique object of an OCCURS clause
with the DEPENDING ON option. The
size of an entry is 2 + length of name
+ length of each qualifier bytes.

4. Index Table

An entry is made for each INDEXED
BY clause consisting of 11 bytes for
each index.

5. File Table

An entry is made for each file
specified in the program. Each entry
occupies 60 bytes of storage.

6. Report Writer Tables

A considerable amount of
information is maintained concerning
each RD such as controls, sums,
headings, footings, routines to be
generated, etc. The contents of the
table is increased by the existence of
qualification and subscripting in the
Report Section. Approximately 30
reports can be processed, without
exceeding the limit of the table.

7. Dictionary Table

294

An entry is made for each
procedure-name and each data-name in
the program. A procedure entry
consists of (7 or 9 + length of name)
bytes. A data entry consists of
(length of name + n) bytes, where n is
determined by the attributes of the
data item. Some of the features that
contribute to the value ~ are:

• One byte for each character in a
numeric edited or alphanumeric
edited item picture

• Five bytes for an elementary item
with a sterling Report picture
clause

• Three bytes for an item subordinate
to an OCCURS clause.

8. Literal Tables

The total length of all literals
may not exceed 32511 bytes. No more
than 16255 literals may be specified.

The existence of the following
items causes entries to be made into
tables that impact the total space
required for compilation.

• SAME [RECORD] AREA clause
• Subscripting
• Intermediate Arithmetic Results
• Complex Arithmetic Expressions
• Complex Logical Expressions
• APPLY clauses
• Special-Names
• RERUN clauses
• Error messages
• XREF
• segmentation feature

LINKAGE EDITOR CAPACITY

Some COBOL program and linkage editor
considerations are listed below as a
fUrther guide in preparing a source
program. Consult the publication IB~
~stern/360 Operating System: Linkagg
Editor and Loader, for additional
information on linkage editor capacities
and processing.

1. All COBOL object programs, with the
exception of segmented programs,
consist of a single CSECT (control
section). The size of the object
module may be determined by looking at
the location of the last instruction
in INIT3 in the object code listing
(see the section entitled "Output") or
from the END card.

2. The size of the object module is
greatly increased by any of the
following:

a. The blocking factor and alternate
area reservation of randomly
accessed files

b. The specification of the SAME AREA
clause for sequentially accessed
files

3. RLD (Relocation List Dictionary) cards
are part of the load module, and are
used by the linkage editor to compute
the address constants for the load
module. The number of RLDs produced
by the compiler can be determined by
the following formula:

number of RLDs = number of unique
subprograms called + number of COBOL
library routines called + number of
nonresident segments

4. The output text of the compiler is
written out in a sequence that differs
from the order indicated by the
location counters contained in each
output item. This sequence difference
may result in a strain on the
facilities of the linkage editor.

5. VALUE clauses in the Working-Storage
section may result in many
discontinuous text records.

6. The object module produced by the
COBOL compiler may not be sorted prior
to the linkage editor step.

Appendix F: Source Program Size considerations 295

Page of GC28-6399-2, Revised 4/15/73, by TNL 3N28-1038

This appendix contains a brief summary
of input/output (I/O) error conditions for
each of the file processing techniques.
More detailed information on error
conditions can be found in the publications
IBM,System/3600perating System:
Supervisor and-Data Management Macro
Instructions, and IBM System/360 Operating
system: - System Control Blocks.

Standard Sequential, Direct, and Relative
File-Processing Technigue (Sequential
Access)

Register 1 contains error bits detailing
the exact cause of an error. Conditions
causing input/output errors and suggested
user responses are as follows:

I/O-Error,Condition:

1. Input Error

2. Output E'rror

3. Invalid Request (BSAM only)

suggested User Response:

For BSAM, display the error message.
processing of the file is limited to CLOSE.
For QSAM, display the error message and
then execute the EROPT option in the DD
statement. Note that the EROPT option
gives the user three choices:

ACC - accept the error block and
continue processing

SKP - skip to the next block.

ABE - terminate the job.

Direct and Relative File processing
Technique (Random Access)

The DECB contains two error condition
bytes at location DECB + 4. Conditions
causing input/ou~put errors and suggested
user responses are as follows:

I/O-Error,Condition:

APPENDIX G: INPUT/OUTPUT ERROR CONDITIONS

1. Invalid Request

a. Requested block outside data set.

b. Attempt to add fixed-length record
with key beginning with
hexadecimal FF.

Suggested User Response:

condition caused by invalid key.
processing of the file may be continued.

I/O Error Condition:

1. Space Not Found.

2. Record not found.

suggested User Response:

Processing of the file may be continued.
CLOSE, READ, or REWRITE statements may be
executed for the file.

I/O Error Condition:

1. Uncorrectable I/O Error

2. Uncorrectable Error, Not I/O

Suggested User Response:

'Processing of the file is limited to CLOSE.

Indexed File processing Technique
<sequential Access)

The DCB contains two error condition
bytes named EXCD1 and EXCD2, at location
DCB + 80. Conditions causing I/O errors
and suggested user responses are as
follows:

I/O Error Condition:

1. Sequence Check

2. Duplicate Record

Suggested Use~ Response:

Condition caused by invalid key.
Processing of the file may be continued.

Appendix G: Input/Output Error Conditions 297

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

I/O Error-condition:

1. Space Not Found

2. Uncorrectable Output Error

3. Unreachable Block (Input)

4. Unreachable Block (Update)

Suggested-user-Response:

Processing of the file is limited to CLOSE.

I/O-Error Condition:

Uncorrectable Input Error

Suggested User Response:

The user may attempt to bypass the block
containing the error. If, in reading the
next block, the error does not recur, he
may continue processing without closing the
file. If the error persists, processing of
the file is limited to CLOSE.

Indexed-File processing Technique (Random
Access)

The DECB contains an error condition
byte at location DECB + 24. Conditions
causing I/O errors and suggested user
responses are as follows:

I/O-Error Condition:

1. Record Not Found

2. Duplicate Record

Suggested User Response:

Condition caused by invalid key.
Processin9 of the file may be continued.

I/O Error Condition:

Space Not Found

Suggested User Response:

Processing of the file may be continued.
The record may be written after changing
the keys and executing a WRITE statement if
a cylinder overflow area is available for

298

the new value of the keys. CLOSE or READ
may be executed for the file.

I/O Error Condition:

Invalid Request

Suggested User Response:

Processing of the file is limited to CLOSE.

I/O Error Condition:

1. Uncorrectable I/O Error.

2. Unreachable Block--Index Cannot Be
Read.

Suggested User Response:

Processing of the file is limited to CLOSE.
The user can try to execute the instruction
again. If the error persists, he can close
the file or perform file recovery
procedures.

Determining Causes of 1-0 Errors

To determine the cause of an 1-0 erro~
by means of the information presented in
the error declarative, specify the GIVING
option of the USE sentence. The system
will insert a 136-byte formatted message
into data-name-1 for inspection, printing,
etc. This is not a COBOL function. The
contents and format of this area are
entirely system-defined.

The portion of data-name-1 referred to
as error description (bytes 91-105) may be
inspected, since it contains a short prose
description of the error. The exact
wording of this description is somewhat
Release-dependent, and is contained in a
module in SYS1.SVCLIB. A good technique
for keeping up to date on the possible
contents of this area is to maintain a copy
of the microfiche of IGC0006H (up to and
including Release 20.0) or IGC0006H,
IGC106H, IGC206H, IGC306H, IGC406H,
IGC506H, IGC606H, IGC706H, IGC806H, or
IGC906H (Release 20.1 and later) for this
purpose. Alternatively, lMASPZAP may be
used to obtain a current dump of the
modules. Inspection of these modules will
provide the necessary information.

APPENDIX H: CREATING AND RETRIEVING INDEXED SE2Q~~!!AL_Q~!~_SE!§

Indexed data sets are created and
retrieved using special subsets of DD
statement parameters and subparameters.
They can occupy up to three different areas
of space:

• Prime Area -- This area contains data
records and related track indexes. It
exists for all indexed data sets.

• Overflow Area -- This area contains
overflow from the prime area when new
data records are added. It is
optional.

• Index Area -- This area contains master
and cylinder indexes associated with
the data set. It exists for any
indexed data set that has a prime area
occupying more than one cylinder.

Indexed data sets must reside on mass
storage volumes. Because an Indexed data
set can be associated with more than one
type of unit, it is not usually cataloged.

Creating an Indexed Data Set

Indexed data sets are created with from
one to three DD statements. One of the
statements must define the prime area. DD
statements must define the areas in a
specific sequence:

1. Index area

2. Prime area

3. Overflow area

This order must be maintained if one of the
statements is absent. The first or only DD
statement defining the data set can contain
a name field. Other statements must have a
blank name field.

The subset of DD statement parameters
used to create an indexed data set excludes
the asterisk, DATA, DUMMY, DDNAME, SYSOUT,
SUBALLOC, and SPLIT. The remaining DD
statement parameters -- DSNAME, UNIT,
VOLUME, LABEL, DCB, DISP, SPACE, and SEP
and AFF -- are all valid. However, certain
restrictions must be followed in using
these parameters.

DS~AM§: Required. In addition to g~v~ng
the data set name, the DSNAME parameter
identifies the area being defined, i.e.,
DSNAME=name(INDEX), DSNAME=name(PRIME) ,
and DSNAME=name(OVERFLOW).

• If the data set is temporary, name
is replaced with &&name.

• If only one DD statement is used to
define the entire data set,
DSNAME=name(PRIME) or DSNAME=name
should be used.

QNIT: Required, unless VOLUME=REF is used.
The first subparameter identifies a mass
storage unit. If separate statements
for the prime and index areas are
included, request the same number of
units for the prime area as there are
volUmes. The DEFER subparameter cannot
be specified on any of the statements.
Another way of requesting units is by
using the unit affinity sobparameter,
AFF.

• DD statements for prime and overflow
areas must indicate the same type of
unit.

• The DD statement for the index area
can indicate a unit type different
than the others.

~OLU~: Optional. Can be used to request
private volumes (PRIVATE), retain
private volumes (RETAIN), or to make
specific volume references (SER or REF).

LABEL: Optional. Can be used to specify a
---retention period (EXPDT or RETPD) and

password protection (PASSWORD).

DCB: Required. Can be used to complete
---the data control block if it has not

been completed by the processing
program. DSORG=IS or DSORG=lSU must be
included in the list of attributes, even
though this attribute was provided in
the processing program. If more than
one DD statement is used to define the
data set, the DCB parameters in the
statements must not contain conflicting
attributes.

Appendix H: creating and Retrieving Indexed sequential Data Sets 299

DISP: optional. Must be coded to keep the
----data set CKEEP), catalog it CCATALG), or

pass it to a later job step (PASS). An
indexed data set can be cataloged using
CATLG only if all three areas are
defined by the same DD statement.

Note:

• Indexed data sets defined by more
than one DD statement can be
cataloged by using the system
utility program IEHPROGM, provided
all volumes reside on the same type
of unit. The utility program
IEHPROGM is described in the
publication IBM System/360 Operati~
System: Utilities.

SPACE: Required. Space must be requested
using either the recommended nonspecific
allocation technique or the more
restricted absolute track (ABSTR)
technique. If more than one DD
statement is used to define the data
set, all must request space using the
same technique.

If the nonspecific space allocation
technique is used, space must be
requested in units of cylinders CCYL).
The quantity of space requested is
assigned to the area identified in the
DSNAME parameter. If more than one unit
is requested, this quantity of space is
allocated on each volume used by the
data set. Incremental space cannot be
requested for indexed data sets. If one
DD statement is used to define both the
index and prime areas, the size of the
index must be indicated in the SPACE
parameter of the DD statement that
defines the prime area. The
subparameters RLSE, MXIG, ALX, and ROUND
cannot be used. Contiguous space can be
requested on each of the volumes
occupied by the data set with the
subparameter CONTIG. If CONTIG is coded

on one of the statements, it must be
coded on all of them.

If the absolute track technique of
allocating space is used, the number of
tracks must be equivalent to an integral
number of cylinders. The address of the
beginning track must correspond with the
first track of a cylinder other than the
first cylinder on a volume. If more
than one unit is requested, space is
allocated beginning at the specified
address and continuing through the
volume and onto the next volume until
the request has been satisfied. If one
DD statement is used to define both the
index and prime areas, indicate the size
of the index (in tracks) in the SPACE
parameter of the DD statement defining
the prime area. This number must also
be equivalent to an integral number of
cylinders.

• The first volume to be allocated for
the prime area of an indexed data
set cannot be the volume from which
the system is loaded (the IPL
volume) •

• Space can be requested on more than
one volume only on the DD statement
that defines the prime area.

§~~_~~Q_AF~: optional. Channel separation
from earlier data sets can be requested
on any of the DD statements in the
group. In order to have areas of an
indexed data set written using separate
channels, units should be requested by
their actual address, e.g., UNIT=190.

Figure 89 illustrates a valid set of DD
statements for creating an indexed data
set. Note that each area is defined by a
separate DD statement.

r---,
1//OUTPUT4 DD DSNAME=MHBCINDEX),UNIT=2301,DCB=CDSORG=IS,OPTCD=1), X I
1// SPACE=(CYL,lO, ,CONTIG) ,DISP=C,KEEP) I
I I

11// DD DSNAME=MHB(PRIME),DCB=(DSORG=IS,OPTCD=1),UNIT=(2311,2), X 1
1// VOLUME=SER=C334,335),DISP=C,KEEP), X I
1// SPACE=CCYL,25"CONTIG) 1
I I

11// DD DSNAME=MHB(OVFLOW),DCB=(DSORG=IS,OPTCD=1),UNIT=2311, X I
1// VOLUME=SER=336,SPACE=CCYL,25"CONTIG),DISP=C,KEEP) 1 L ___ J

Figure 89. Creating an Indexed Data Set

300

Table 35. Area Arrangement for Indexed Data Sets
r--T-----~----------------T---------------------,
I CRITERIA I Restrictions on I I
~---------------T---------------T----------~ Unit Types and I Resulting I
I Number of I Types of IIndex Sizel Number of Units I Arrangement ,
I DD Statements , DD Statements I Coded?, Requested , of Areas I
~---------------+---------------+----------+----------------------+---------------------~
I 3 I INDEX I I PRIME and OVFLOW I Separate index. I
, 'PRIME I Imust specify the same ,prime, and overflow ,
, 'OVFLOW I ,unit type. I areas. I
~---------------+---------------+----------+----------------------+---------------------~
, 2 'INDEX I , None I Separate prime and I
I I PRIME I' loverflow areas, with I
, I 'I Ian index at the end I
I I I I lof the prime area. I
~---------------+---------------+----------+----------------------+---------------------~
, 2 I PRIME I No I Both statements must I Prime area and over- I
I I OVFLOW I Ispecify the same type Iflow area with an I
I I I lof unit. lindex at its end. I
~---------------+---------------+----------+----------------------+---------------------~
I 2 I PRIME I Yes I Both statements must I Prime area with em- I
, I OVFLOW I Ispecify the same unit Ibedded index and I
I I I I type. The statement loverflow area. I
I I I Idefining the prime I ,
I , , larea cannot request I ,
, \ I \more than one unit. I \
~---------------+---------------+----------+----------------------+---------------------~
I 2 \ PRIME 'NO I None I Prime area with index'
I , 'I , at its end. Un us ed I
I , " ,index areas, if any, ,
I , 'I \used for overflow. I
~---------------+---------------+----------+----------------------+---------------------~
I 1 I PRIME I Yes \ Cannot request I Prime area with ,
, I I Imore than one unit. ,embedded index area. , L _______________ ~ _______________ ~ __________ ~ ______________________ ~ _____________________ J

The manner in which the areas of an
indexed data set are arranged is based
primarily on two criteria:

• The number of DD statements used to
define the data set.

• The types of DD statements used (as
reflected in the DSNAME parameter).

An additional criterion arises when a DD
statement is not included for the index
area:

• The index size and whether or not it
has been coded in the SPACE parameter
of the DD statement defining the prime
area.

Table 35 illustrates the arrangements
resulting from various permutations of the
foregoing criteria. In addition, it points
out restrictions on the number and type of
units that can be requested for each
permutation.

Retrieving an Indexed Data Set

Indexed data sets are retrieved with the
DD statement parameters DSNAME, UNIT,
VOLUME, DCB, and DISP. Channel separation
requests can be made using the SEP and AFF
parameters. If all areas of the data set
reside on the same type of unit, the entire
data set can be retrieved with one DD
statement. If the index resides on a
different type of unit, two DD statements
must be used.

DSNAME: Required. Identify the data set
----by-its name. If it was passed from a

previous step, identify it by a backward
reference or its temporary name. Do not
include the terms INDEX, PRIME, or
OVFLOW.

UNIT: Required, unless the data set was
passed on one volume. Identify the unit
type. If the data set resides on more
than one volume and all units are the
same type, request the total number of
units required by all areas. If the

Appendix H: Creating and Retrieving Indexed sequential Data Sets 301

index area resides on a different type
of unit, use two DD statements, each
indicating the number of units of the
specified type required.

VOLUME: Required, unless the data set was
passed on one volume. Identify the
volumes by their serial numbers (SER) ,
listed in the same seqfience as they were
when the data set was created.

DCB: Required, unless the data set was
---passed. This parameter is used to

complete the data control block if it

was not completed in the program.
Include either DSORG=IS or DSORG=ISU.

DIS~: Required. Identify the data set as
OLD or MOD and give its new disposition,
to change its disposition.

Figure 90 shows how to retrieve the
indexed data set created by the
illustration in Figure 86.

r---,
1 I
I//INPUT DD DSNAME=MHB,DCB=DSORG=IS,UNIT=2301,DISP=OLD I
1// DD DSNAME=MHB,DCB=DSORG=IS,UNIT=(2311,3),DISP=OLD, X I
1// VOLUME=SER=(334,335,336) 1
1 I L ___ J

Figure 90. Retrieving an Indexed Data Set

302

APPENDIX I: CHECKLIST FOR JOB CONTROL PROCEDURES

This checklist illustrates general job
control procedures for compiler, linkage
editor, and execution processing. More
than one example may be used for a job
step. The checklist is intended as an aid
to preparing procedures, not as an
inclusive list of the options and
parameters.

COMPILATION

Figure 91 shows a general job control
procedure for a compilation job step. The
following cases show how to add to or
modify the general procedure to obtain
various processing options.

Case 1: Compile Only -- No Object Module
Produced

The general procedure should be used. A
listing is produced. It will include the
default or specified options of the PARM
parameter that affect output. Any
diagnostic messages are listed, unless
listing of warning messages is suppressed
by the FLAGE option of the PARM parameter
and only warning messages are produced.

Case 2: Source Module from Card Reader

Modify the end of the procedure as
follows:

//SYSIN DD *
(source module)

If the DD * convention is used, the
SYSIN DD statement must be the last DO
statement for the job step. and the source
module must follow. If another job step
follows the compilation. the EXEC statement
for that step follows the /* statement.

Case 3: Object Module Is To Be Punched

Add the statement:

//SYSPUNCH DO SYSOUT=B

Note: If DECK is not the installation
default condition, it must be specified in
the PARM parameter of the EXEC statement.

Case 4: Object Module Is To Be Passed to
Linkage Editor

Add the statement:

//SYSLIN
//
//
//

DO DSNAME=(subparms).
UNIT=SYSDA,
SPACE=(subparms),
DISP=(MOD,PASS)

X
X
X

r---,
\ \
\//jobname JOB acctno,name,MSGLEVEL=l \
\//stepname EXEC PGM=IKFCBLOO,PARM=(options) I
\//SYSUT1 DD UNIT=SYSDA,SPACE=(subparms) I
1//SYSUT2 DO UNIT=SYSDA,SPACE=(suhparms) \
1//SYSUT3 DD UNIT=SYSOA,SPACE=(subparms) \
\//SYSUT4 DD UNIT=SYSDA,SPACE=(subparms) 1
I//SYSPRINT DO SYSOUT=A t
I//SYSIN DO DSNAME=dsname,UNIT=SYSSQ,VOLUME=(subparms), X \
1// DISP=(OLD,OELETE) I
I I L ___ J

Figure 91. General Job Control Procedure for Compilation

Appendix I: Checklist for Job Control Procedures 303

Note: If LOAD is not the installation
default condition, it must be specified in
the PARM parameter of the EXEC statement.

Case-5: Object Module Is To Be Saved

The object module can be saved by
cataloging it, by keeping it, or by adding
it as a member of a library. Add the
SYSLIN statement as follows:

A. Cataloging

//SYSLIN

//

//
//

//

//

DD

B. Keeping

//SYSLIN DD

//

//

DSNAME{=~~~a}me ,
DISP=(,CATLG),

MOD
VOLUME=(subparms),

LABEL={!~~~ia}rms),
UNIT=' ,

{

SPACE SY}SSQ
SPLIT = (subparms)
SUBALLOC

DSNAME{~~1me.
DISP=(,KEEP),

MOD
VOLUME=(subparms),

X

X

X
X

X

X

X

X
// LABE~~~~~i}rms). X

// UNIT= , X tPACE s~rQ
// SPLIT =(subparms)

SUBALLOC

C. Adding a Member to an Existing Library

//SYSLIN DD DSNAME=dsname(member) , X
// DISP=OLD

Case-6: COpy Statement in COBOL Source
Module or a BASIS.Card in the Input Stream

Add- the SYSLIB DD card(s), as follows:

A. COpy

//SYSLIB DD DSNAME=copylibname,DISP=SHR

B. BASIS Card

//SYSLIB DD DSNAME=basislibname,DISP=SHR

304

C. Both BASIS and COpy

//SYSLIB DD DSNAME=basislibname,DISP=SHR

// DD DSNAME=copylibname,DISP=SHR

(DD statements for additional copylibs may
follow.)

LINKAGE EDITOR

Figure 92 shows a general job control
procedure for a linkage editor job step.
The following cases show how to add to or
modify the procedure to obtain various
processing options.

Change the SYSLIN statement to

//SYSLIN DD DSNAME=*.stepname.SYSLIN, X
// DISP=(OLD,DELETE)

where stepname is the name of the previous
compilation job step and ddname is SYSLIN.
If the input is to be saved, specify KEEP
rather than DELETE.

Case 2: Input from Card Reader

Change SYSLIN statement and the end of
the procedure as follows:

//SYSLIN DD *
(object module(s»

If the DD * convention is used, the
SYSLIN DD statement must be the last DD
statement in the job step. If another job
step follows the link edit step, the EXEC
statement for that job step follows the /*
statement.

Case 3: Input Not from Compilation in Same
~QQ

Specify in the SYSLIN DD statement where
the object modules to be used as input are
stored. (Only one member of a library can
be specified in the SYSLIN DO statement.)

r---,
Illjobname JOB acctno,name,MSGLEVEL=ll
I I
I I
I I
Illstepname EXEC PGM=IEWL,PARM=(options) I
IIISYSPRINT DD SYSOUT=A I
IIISYSLMOD DO DSNAME=&&name(member) ,UNIT=SYSDA, DISP= (NEW, PASS) , X I
III SPACE=(subparms) I
IIISYSLIB DD DSNAME=SYS1.COBLIB,DISP=OLD I
IIISYSUT1 DD UNIT=SYSDA,SPACE=(subparms) I
IIISYSLIN DD DSNAME=dsname,DISP=OLD I L ___ J

Figure 92. General Job Control Procedure for a Linkage Editor Job Step

Case - 4 : Output .. To Be Placed in Link
Library

Change the SYSLMOD statement as follows:

IISYSLMOO DD DSNAME=SYS1.LINKLIB(member) ,X
II DISP=OLD

where member is the name of the load module
that is to be added to the link library.
No other information is needed in the
statement.

Case.S: Output.TO Be Placed in Private
Library

Change the SYSLMOD statement as follows:

IISYSLMOD DD DSNAME=dsname(member) , X
1/ DISP=OLD

where member is the name of the load module
to be added, and dsname is the name of an
existing library. If the library is not
cataloged, UNIT and VOLUME parameters must
be specified.

Note: See nUsing the DO Statementn for an
example of creating a new library and
storing the load module as its first
member.

Case-6: Output-TO Be Used Only in This Job

The general procedure should be used.
The load module is stored in a temporary
library.

Figure 93 shows a general job control
procedure for an execution-time job step.
The following cases show how to add to or
modify the general procedure to obtain
various processing options.

Case 1: Load Module To Be Executed Is in
Link Library

Use the general procedure, where
progname in the EXEC statement is the
member name of the load module.

Case 2: Load Module To Be Executed Is a
Member of Private Library

The JOBLIB statement must follow the JOB
statement, as in the following statements:

IIJOBl
IIJOBLIB
II
//STEP1

IISTEP2

JOB
DD DSNAME=MYLIB,

DISP=(OLD,PASS)
EXEC PGM=PAYROLL

EXEC PGM=ACCOUNT

x

Appendix I: Checklist for Job control Procedures 305

r---,
I//stepname EXEC PGM=progname I
I//ddname DD (parameters for user-specified data sets) I
I I
I I
I I l ___ J

Figure 93. General Job Control Procedure for an Execution-Time Job step

The JOBLIB statement defines the private
library MYLIB. No volume or unit
parameters are given since the library is
cataloged. Since JOBLIB has the
disposition PASS, both steps can execute
members of the library named in the JOBLIB
statement. If only the first step executes
a load module from the library, the
disposition PASS on the JOBLIB statement
need not be included.

Case-3: Load Module To Be Executed Is
Created in Previous Linkage Editor Step in
Same Job

Change the EXEC statement as follows:

//stepname EXEC PGM=*.stepname.SYSLMOD

where stepname following PGM is the name of
the linkage editor job step that created
the load module.

Case 4: Abnormal Termination Dump

Add the statement:

//SYSABEND DD SYSOUT=A

This statement requests a full dump if
abnormal termination occurs during
execution.

Case-5: DISPLAY Is Included in Source
Module

Add the statement:

//SYSOUT DD SYSOUT=A

306

Case 6: DISPLAY UPON SYSPUNCH Is Included
in Source Module

Add the statement:

//SYSPUNCH DD SYSOUT=B

Case 7: ACCEPT Is Included in Source
~2~~!~-------------------------------

If the data is in the input stream, add
the statement:

//SYSIN DD *
(data)

/*

(See Case 2 under "General Job Control
Procedures for a Compilation Job Step" for
a discussion of the DD * convention.)

Case 8: Debug Statements EXHIBIT or TRACE
Are Included in Source Module

Use the statement (unless it is already
included) :

//SYSOUT DD SYSOUT=A

Note: If the job step already includes a
SYSOUT DD statement for some other use,
another need not be inserted.

APPENDIX J: DIAGNOSTIC MESSAGES

This section describes diagnostic messages generated by the system.
Compiler messages and object time messages are discussed.

COMPILER DIAGNOSTIC MESSAGES

The COBOL compile-time message that follows serves as an example of
the format of COBOL compiler messages.

005 IKF4046I-E ILLEGAL TO *****/***** FILE *****. STATEMENT
DISCARDED ••

The code "005" at the very left is the card number of the statement in
which the error has occurred. Some errors may not be discovered until
information from various sections of the program is combined. For this
reason, the source card number in the error message may not be exact.
IKF identifies this as a COBOL compiler message. 4046 is the
identifying number of the message. The symbol "I" means that this is a
message to the programmer for his action. E is a level of severity in
the error codes that follow. The five consecutive asterisks that appear
in some of the messages (including the example above) indicate a message
that varies with the program being compiled.

W warning -- indicates that an error was made in the source
program. However, it is not serious enough to hinder the
execution of the program.

C Conditional -- indicates that an error was made but that the
compiler usually makes a corrective assumption. The statem§nt
containing the error is retain~. Execution can be attempted for
the debugging value.

E Error -- indicates that a serious error was made. Usually the
compiler makes no corrective assumption. The statement
containing the error is dropped. Execution of program should not
be attempted.

D Disaster -- indicates that a serious error was made. Compilation
is not completed. Results are unpredictable.

The severity level of the messages is correlated with the return code
issued by the compiler at the end of compilation.

severity Level
(No messages)

W
C
E
D

Return Code
o
4
8

12
16

The return code indicated is the most severe level occurring in the
messages. This code can be tested by the programmer with the COND
parameter in the EXEC statement.

The message text is usually composed of two sentences. The first
describes the error; the second describes what the compiler has done as
a result of the error. Thus, most of the messages are self-explanatory,
except in two situations:

Appendix J: Diagnostic Messages 307

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

1. When no compiler action is given. These messages are numbered in
the 3000 series. They appear in combination with other messages
that do have the compiler action described.

2. When messages describe errors that require an explanation too long
to include in a message. These explanations appear in text under
the messages.

Words in a message that must vary according to the program being
compiled are denoted by five asterisks (*****> in the messages printed
below. When diagnostic messages are printed, the programmer will find
that wherever there are three asterisks C***> in the printout the
compiler has encountered unrecognizable information.

Unless otherwise indicated, all these messages appear in the compiler
output listing. MessagesIKF00011 through IKF00151 and IKF60011 through
IKF60071 may be interspersed in the compiler output llsting. In'
addition, message IKF00031 appears on the chief operator's consol~.
Messages IKF10011 through IKF50171 are grouped together following the
compiler output listing. .

IKF0001I-D SIZE PARAMETER TOO SMALL FOR THIS PROGRAM.

Explanation: compiler was unable to allocate sufficient
table space for the source program.

Programmer Response: Probable user error. Specify a larger
amount of main storage in the SIZE option of the PARM
parameter in the EXEC statement, or divide the program into
smaller segments and utilize the overlay feature of the
linkage editor.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF0002I-D INVALID BASIS LIBRARY NAME OR LIB OPTION NOT SPECIFIED.

IKF0003I-

308

COMPILATION ABANDONED.

Explanation: Library name given on the BASIS card or in the
COpy statement does not exist, or the LIB option is not in
effect.

Proqrammer Response: Probable user error. Check that a
SYSLIB DD statement is present that defines a library which
contains the member whose name is specified in the BASIS
statement.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Jobname, stepname, unit address, device type, ddname,
operation attempted, error description. Each of the
following fields if printed will vary in length:

UNIT RECORD--Access method
MAGNETIC TAPE--Relative block number (decimal), access

method
DIRECT ACCESS--Actual track address and block number

Programmer Response: Provide the additional control
information required; then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

'Page of GC28-6399-2, Revised 4/15/13, by TNL GN28-1038

IKF0005I-W ***** INVALID BLOCKSIZE. DEFAULT USED.

Explanation: Blocksize specified on DD card is not an
integral multiple of record length, or blocking factor is
too large.

Programmer Response: Probable user error. Change blocksize
parameter on DD card or accept default action.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 308.1

IKF0006I-D ***** DATASET NOT USABLE. JOB STEP CANNOT EXECUTE.

Explanation: Data set required by the compiler cannot be
opened. Program cannot be compiled.

Programmer Response: Probable user error. Check DD card.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF0007I-W SYSLIN NOT USABLE. LOAD OPTION CANCELLED.

Explanation: SYSLIN cannot be opened.

Programmer Response: Probable user error. Check DD card.
I

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
cO~~IQl._G,£l~z.::?S, and comf??:.!,~_:r::: .. _q~:t.PYJ:..

IKF0008I-W SYSPUNCH NOT USABLE. DECK OPTION CANCELLED.

IKF0009I-W

Explanation: SYSPUNCH cannot be opened.

Programmer Response: Probable user error. Check DD. card.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

SIZE
PARAMETER IGNORED. DEFAULT USED.

BUF

Explanation: Value of parameters is inadequate to calculate
table and dictionary space for compilation purposes, or BUF
parameter is less than minimum required.

Programmer Response: Probable user error. If the default
value is unsuitable, increase the value for the SIZE
parameter or decrease the BUF parameter.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF0010I-D A TABLE HAS EXCEEDED THE MAXIMUM PERMISSIBLE SIZE.

Programmer Response: Probable user error. Check all tables
for features that significantly affect storage usage before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF0015I-D BUF SUBPARAMETER IN PARM FIELD TOO SMALL FOR DD CARD BLKSIZE
SUBPARAMETERS. COMPILATION ABANDONED.

Explanation: The size of the buffer used for SYSPUNCH,
SYSLIN, SYSIN, SYSPRINT, and SYSLIB exceeds BUF-1280 bytes.

Appendix J: Diagnostic Messages 309

Programmer Response: Probable user error. Increase the BUF
parameter in the EXEC card or decrease the BLKSIZE values
specified in the DD cards for SYSPRINT, SYSLIN, SYSLIB,
SYSPUNCH, or SYSIN.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF0020I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: A logic error or a machine error occurred in
table handling.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF0030I-D FRAGMENTED CORE. RUN IN LARGER REGION SIZE.

Programmer Response: Probable user error. Increase the
amount of main storage requested.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1001I-C NUMERIC LITERAL NOT RECOGNIZED AS LEVEL NUMBER BECAUSE *****
ILLEGAL AS USED. SKIPPING TO NEXT LEVEL, SECTION OR
DIVISION.

Programmer Response: Probable user error. Check the item
indicated, as well as the statements preceding it, for
possible error; then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1002I-W ***** SECTION HEADER MISSING. ASSUMED PRESENT.

Programmer Response: Probable user error. Supply section
header, or if present, correct its syntax (check for a
margin error or a misspelling) before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1003I-W ***** PARAGRAPH NAME MISSING. ASSUMED PRESENT.

Programmer Response: Probable user error. Supply paragraph
name, or if present, correct its syntax (check for a margin
error or a misspelling) before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1004I-E INVALID WORD *****. SKIPPING TO NEXT RECOGNIZABLE WORD.

310

Programmer Response: Probable user error. Correct invalid
word or syntax error before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1005I-E INVALID ORDER IN ENVIRONMENT DIVISION. SKIPPING TO NEXT
DIVISION.

Programmer Response: Probable user error. Correct the
order of sections and/or paragraphs in the Environment
Division before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1006I-E DECLARATIVES SECTION WITHOUT USE SENTENCE. SECTION CAN
NEVER BE EXECUTED.

Programmer Response: Probable user error. Supply USE
sentence before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1007I-W ***** NOT PRECEDED BY A SPACE. ASSUME SPACE.

Programmer Response: Probable user error. Check syntax,
supply space where needed, and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1008I-W RIGHT PAREN SHOULD NOT BE PRECEDED BY SPACE.

Programmer Response: Probable user error. Delete space
preceding right parenthesis and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1009I-E COpy MUST BE PRECEDED BY PROCEDURE-NAME. IGNORED.

Programmer Response: Probable user error. Supply
procedure-name, or if present, correct its syntax (check for
a margin error or a misspelling) before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1010I-W LEFT PAREN SHOULD NOT BE FOLLOWED BY SPACE.

Programmer Response: Probable user error. Delete space
following left parenthesis and recompile if necessary_

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 311

IKF10llI-C RECORDING MODE SPECIFICATION IS INVALID. ASSUMED VARIABLE.

Programmer Response: Probable user error. Correct
RECORDING MODE specification to agree with record
description before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1012I-E FILE-NAME NOT UNIQUE. USING FIRST DEFINITION.

Programmer Response: Probable user error. Correct the
duplication either by deleting a redundant SELECT sentence
or by replacing a misspelled file-name in a SELECT sentence
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1013I-E CHARACTER LENGTH IN SPECIAL-NAMES MUST BE ONE.

Programmer Response: Probable user error. Change length of
nonnumeric literal to one before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1014I-W 'FILE' : NOT PRESENT IN MULTIPLE FILE CLAUSE. ASSUMED
PRESENT.

Programmer Response: Probable user error. Put the key word
'FILE' in the MULTIPLE FILE TAPE clause and recompile if
necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler,output.

IKF1015I-E EXTERNAL NAME IN SYSTEM-NAME ***** INVALID. SYSTEM-NAME
IGNORED.

Programmer Response: Probable user error. Correct
external-name in system-name.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1016I-E MORE THAN ONE ***** CLAUSE. SKIPPING TO NEXT CLAUSE.

Programmer Response: Probable user error. Delete multiple
occurrence of clause from entry before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1017I-E •••• * INVALID IN ***** CLAUSE. SKIPPING TO NEXT CLAUSE.

312

Programmer Response: Probable user error. Replace or
delete the invalid specification before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1018I-E COpy CLAUSE INVALID IN A COPY LIBRARY OR LIB OPTION NOT
SPECIFIED. IGNORED.

Programmer Response: Probable user error. Correct library
member or specify the LIB option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1019I-E NO LIBRARY NAME. COpy CLAUSE IGNORED.

Programmer Response: Probable user error. Supply
library-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1020I-E ***** MUST BE PROCEDURE-NAME FOLLOWING DEBUG. *****.

Programmer Response: Probable user error. Add or correct
word following DEBUG to conform to rules for a valid
procedure-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1021I-E ***** DOES NOT BELONG ON DEBUG CARD. SKIPPING TO NEXT CARD.

Programmer Response: Probable user error. Delete invalid
specification from DEBUG card before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1022I-W PERIOD DOES NOT BELONG ON DEBUG CARD. DELETED.

Programmer Response: Probable user error. Delete period
from DEBUG card and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1023I-E INVALID FILE-NAME. USE IGNORED.

Programmer Response: Probable user error. supply valid
file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1024I-E UNDEFINED FILE-NAME. USE IGNORED.

Programmer Response: Probable user error. Supply .valid
SELECT sentence for file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 313

IKF1025I-C REDEFINES CLAUSE NOT FIRST CLAUSE FOLLOWING DATA-NAME.
ASSUMED FIRST.

Programmer Response: Probable user error. Make REDEFINES
clause first clause following data-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1026I-W TOTALED AND TOTALING AREA CLAUSES MUST BOTH BE SPECIFIED.

Programmer Response: Probable user error. Amend the source
statement to include either TOTALED or TOTALING, whichever
has been omitted from the LABEL RECORDS clause. Then
recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1027I-W FILE WITH TOTALED AREA CLAUSE AND NONSTANDARD LABELS MAY NOT
BE OPENED OUTPUT.

Programmer Response: Probable user error. When the TOTALED
AREA clause is associated with a file opened as output, you
must be processing user labels (i.e., LABEL RECORDS are
data-name-l ••••). Change the source statement(s) as
warranted; then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1028I-E ***** SENTENCE IMPROPERLY WRITTEN. SENTENCE IGNORED.

Programmer Response: Probable user error. Correct syntax
of sentence before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1029I-E ***** IN ***** SENTENCE NOT DEFINED AS FILE-NAME. NAME
IGNORED.

Programmer Response: Probable user error. Make sure that
file-name is validly defined in a SELECT sentence before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1030I-E ***** IN ***** SENTENCE IS INVALID. WORD IGNORED.

314

Programmer Response: Probable user error. Supply valid
word before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1031I-C USE SENTENCE NOT PRECEDED BY SECTION-NAME. SECTION-NAME
ASSUMED.

Programmer Response: Probable user error. Supply
section-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1032I-E ***** INCORRECTLY USED IN USE SENTENCE. SENTENCE IGNORED.

Programmer Response: Probable user error. Correct syntax
of USE sentence before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1033I-W ***** FILE-NAME ALREADY ASSIGNED THIS 'SAME' CLAUSE OPTION.
USING FIRST ONE.

Programmer Response: Probable user error. Delete duplicate
SAME clause, specify correct SAME clause option, or correct
a misspelled file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF11034I-W ***** CLAUSE IN ***** LEVEL IS TREATED AS COMMENTS IN OS.
NEXT CLAUSE.

Programmer Response: Probable user error. Correct data
item description entry before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1035I-W INTEGER NOT PRESENT IN MULTIPLE FILE CLAUSE.

Programmer Response: Probable user error. Indicate
position of file by specifying the "POSITION integer-n"
option.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1036I-C QUALIFIED NAME INVALID AFTER LEVEL NUMBER. USING LOWEST
NAME.

Programmer Response: Probable user error. Correct
data-name following level number before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1037I-E ***** INVALID IN DATA DESCRIPTION. SKIPPING TO NEXT CLAUSE.

programmer Response: Probable user error. Correct or
delete invalid clause in data description entry before
recompiling.

Appendix J: Diagnostic Messages 315

If the problem recurs, have the following available
before calling IBlVl for programming support: source deck,
control cards, and compiler output.

IKF1038I-E ***** INVALID AFTER LEVEL NUMBER. SKIPPING TO NEXT LEVEL.

Programmer ResQQ~~~: Probable user error. Correct
data-name followinq level number before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1039I-W DATA-NAME IN ***** CLAUSE NEED NOT BE QUALIFIED. USING
LOWEST NAf.'iE.

Programmer ResEQnse: Probable user error. Remove
qualification of data-name and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1040I-E IMPROPER LEVEL NUMBER FOR FILE-SECTION.

~~Qq£~m~~~_Rp.~EQns~: Probable user error. Correct invalid
level numbers (77's) in the File Section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1041I-E ***** INVALID AS USED IN ***** SECTION. SKIPPING TO NEX1
LEVEL, SECTION OR DIVISION.

Progran~er Res2Q~~~: Probable user error. Correct invalid
specification by deleting it or moving it to its proper
place in source program before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1042I-E ASSIGN CLlmSE MISSING IN SELECT. CON'rINUING.

Programmer ResQQ~~~: Probable user error. Supply ASSIGN
clause for file before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1043I-W END OF SENTENCE SHOULD PRECEDE *****. ASSUMED PRESENT.

316

Programmer Response: Probable user error. Supply period to
terminate sentence and recompile if necessary.

If the problem recurs, have the following available
before callina IBM for programming support: source deck,
control cards, and compiler output.

IKF1044I-E INVALID WORD *****. SKIPPING TO NEXT LEVEL, SECTION OR
DIVISION.

Programmer Response: Probable user error. Check the syntax
of the source statement for a possible misspelling or
transposition or an invalidly formed word before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1045I-E INVALID ORDER IN ***** SECTION.

Programmer Response: Probable user error. Correct order of
paragraphs before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1046I-E MEMBER NOT FOUND IN LIBRARY. IGNORING COPY.

Programmer Response: Probable user error. Correct
misspelled library-name or make sure member is in the
library before recompiling.

If the problem recurs, do the following before calling
IBM for programming support. Have source deck, control
cards, compiler output, and listing of source statement
library available.

IKF1047I-E LIBRARY NOT FOUND ON SYSTEM. IGNORING COPY.

Programmer Response: Probable user error. Ensure that the
source statement library is assigned before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1048I-E LIBRARY MEMBER HAS BAD TRACK. IGNORING REST OF COPY.

Programmer Response: Probable user error. Recreate library
on a good device before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1049I-W ***** FILE-NAME ALREADY ASSIGNED THIS MULTIPLE FILE CLAUSE
OPTION. USING FIRST ONE.

Programmer Response: Probable user error. Delete duplicate
mention of file-name or correct a misspelled file-name
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 317

IKF10S0I-C ***** FILE ALREADY ASSIGNED THIS APPLY OPTION. FILE-NAME
IGNORED.

Programmer Response: Probable user error. Delete duplicate
APPLY option for file-name or correct a misspelled file-name
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF10S1I-E NO DATA-NAME IN USE SENTENCE. SENTENCE IGNORED.

Programmer Response: Probable user error. Include
data-name in USE sentence before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF10S2I-E ***** ILLEGALLY USED IN USE SENTENCE. END SENTENCE,
RESCANNING AT NEXT REGOGNIZABLE WORD.

Programmer Response: Probable user error. Check syntax of
USE statement and supply a valid data-name before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1053I-E ***** CLAUSE INVALID. CLAUSE IGNORED.

Programmer Response: Probable user error. Correct invalid
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1054I-E OPERAND FOR INITIATE NOT FOUND OR ILLEGAL. OPERAND DROPPED.

Programmer Response: Probable user error. Supply valid
operand for INITIATE statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF105SI-E VALID FILE-NAME NOT PRESENT. DESCRIPTION IGNORED.

Programmer Response: Probable user error. Supply valid
file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1056I-E FILE-NAME NOT DEFINED IN A SELECT. DESCRIPTION IGNORED.

318

Programmer Response: Probable user error. Check that the
SELECT sentence has not been discarded due to a syntax error
or correct a misspelled file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1057I-E FIRST WORD IN REPORT SECTION NOT RD. IGNORED.

Programmer Response: Probable user error. Correct syntax
of Report section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1058I-E NO REPORTS CLAUSE IN FILE SECTION. REPORT SECTION IGNORED.

Programmer Response: Probable user error. Ensure that a
valid REPORT clause is included in File section before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1059I-E NO REPORT CLAUSE FOR RD. RD IGNORED.

Programmer Response: Probable user error. Ensure that the
report-name is specified in a REPORT clause in the File
Section for the file on which the report is to be written
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1060I-E INVALID WORD IN REPORT WRITER STATEMENT. IGNORED.

Programmer Response: Probable user error. Correct invalid
word before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1061I-E DUPLICATE CLAUSE. DROPPED.

Programmer Response: Probable user error. Delete one of
duplicate clauses before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1062I-E ***** IN COpy REPLACING STATEMENT INVALID AS BCD NAME.

Programmer Response: Probable user error. Replace
indicated word with valid configuration before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1063I-E DUPLICATE ENTRY IN PAGE CLAUSE. DROPPED.

Proqrammer Response: Probable user error. Remove one of
duplicate entries before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 319

IKF1064I-E NO TYPE CLAUSE SPECIFIED. SKIPPING TO NEXT 01.

Programmer Response: Probable user error. Supply TYPE
clause for this report group before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1065I-E INTEGER MISSING IN PAGE CLAUSE. ENTRY IGNORED.

Programmer Response: Probable user error. Ensure that an
integer is specified for each PAGE clause entry before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1066I-E INVALID WORD IN PAGE CLAUSE. SKIPPING TO NEXT RECOGNIZABLE
WORD.

Programmer Response: Probable user error. Correct spelling
of PAGE clause entries before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1067I-E INVALID HEADER. SKIPPING TO NEXT RECOGNIZABLE WORD.

Programmer Response: Probable user error. Supply valid
header before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1068I-E OPERAND FOR GENERATE NOT FOUND. CLAUSE DROPPED.

Programmer Response: Probable user error. Supply GENERATE
clause operand before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1069I-E INVALID TYPE CLAUSE. SKIPPING TO NEXT 01.

Programmer Response: Probable user error. Correct TYPE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1070I-C FLT-PT LIT MANTISSA EXCEEDS 16 DIGITS. TRUNCATED TO 16.

320

Programmer Response: Probable user error. Specify a
mantissa of no more than 16 digits before recompiling.

If the problem recurs, have the following available
before .calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1071I-C FLT-PT LIT EXPONENT EXCEEDS 2 DIGITS. TRUNCATED TO 2.
RESCANNING.

Programmer Response: Probable user error. Specify an
exponent of no more than 2 digits before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1072I-C FLT-PT LIT EXPONENT FOLLOWED BY NON-BLANK. RESCANNING AT
NON-BLANK.

Programmer Response: Probable user error. Ensure that a
blank follows exponent before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: soprce deck,
control cards, and compiler output.

IKF1013I-C FLT-PT LIT E FOLLOWED BY INVALID CHARACTER. RESCANNING AT
E.

Programmer Response: Probable user error. Supply valid
character to follow E before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1014I-C FLT-PT LIT SIGN FOLLOWED BY INVALID CHARACTER. RESCANNING
AT E.

Programmer Response: Probable user error. Supply valid
character to follow sign before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1075I-C FLT-PT LIT EXCEEDS LIMIT. ASSUME MAX OR MIN PER SIGN OF
EXPONENT.

Programmer Response: Probable user error. Respecify valid
literal before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1016I-C ALPHANUMERIC LIT EXCEEDS 120 CHARACTERS. TRUNCATED TO 120.

Programmer Response: Probable user error. Ensure that
alphanumeric literal contains no more than 120 characters
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1071I-C ALPHANUMERIC LIT CONTINUES IN A-MARGIN. ASSUME B-MARGIN.

Programmer Response: Probable user error. Correct syntax
of continuation line and recompile if necessary.

Appendix J: Diagnostic Messages 321

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1078I-W ALPHA-LITERAL CONTINUED WITH MISSING HYPHEN OR QUOTE.
ASSUMED.

Programmer Response: Probable user error. Supply
continuation character and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1079I-C ALPHANUMERIC LIT HAS ZERO LENGTH. ASSUME ONE SPACE.

Programmer Response: Probable user error. Specify valid
alphanumeric literal before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1080I-W PERIOD PRECEDED BY SPACE. ASSUME END OF SENTENCE.

Programmer Response: Probable user error. Ensure that no
spaces precede period and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1081I-W PERIOD NOT FOLLOWED BY SPACE. ASSUME END OF SENTENCE.

Programmer Response: Probable user error. Either delete
period or f9llow it with a space, whichever is appropriate,
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1082I-C NUMERIC LIT EXCEEDS 18 DIGITS. TRUNCATED TO 18.

Programmer Response: Probable user error. Supply a numeric
literal of no more than 18 digits before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1083I-C ILLEGAL CHARACTER. SCAN RESUMED AT NEXT VALID CHARACTER.

Programmer Response: Probable user error. Remove or
replace invalid character before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1084I-W COMMA SHOULD NOT BE PRECEDED BY SPACE.

322

Programmer Response: Probable user error. Ensure that no
spaces precede comma and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1085I-C WORD OR PICTURE EXCEEDS 30 CHARACTERS. TRUNCATED TO 30
CHARACTERS.

Programmer Response: Probable user error. Supply a word or
PICTURE of no more than 30 characters before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1086I-W ***** SHOULD BEGIN A-MARGIN.

Programmer Response: Probable user error. Begin indicated
word in A-margin before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1087I-W '~****' SHOULD NOT BEGIN A-MARGIN.

Programmer Response: Probable user error. Begin indicated
word in B-margin before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1088I-E MISSING FIRST INSERT OR DELETE CARD. PASS CARDS UNTIL
FOUND. *****.

Programmer Response: Probable user error. Supply INSERT or
DELETE card before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1089I-E INSERT OR DELETE NUMBER OUT OF SEQUENCE. SKIPPING TO NEXT
INSERT OR DELETE NUMBER. *****.

Programmer Response: Probable user error. Correct sequence
of inserted or deleted numbers before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1090I-E DELETE THRU NUMBER OUT OF SEQUENCE. PASS CARDS UNTIL NEXT
INSERT OR DELETE. *****.

Programmer Response: Probable user error. Resequence
statement numbers of cards following DELETE and ensure that
sequence numbers specified on DELETE card appear in source
program before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 323

IKFi09iI-C ***** IN A-MARGIN NOT VALID AS PROC-NM. ASSUME B-MARGIN.

Programmer Response: Probable user error. If indicated
name is a procedure-name, correct formation before
recompiling. If indicated name is not a procedure-name,
ensure that it begins in B-margin and recompile if
necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFi092I-E DECLARATIVES DO NOT FOLLOW PROCEDURE DIVISION. IGNORED.

Programmer Response: Probable user error. Ensure that
Declaratives Section immediately follows Procedure Division
header before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFi093I-E NO DECLARATIVES SECTION. END DECLARATIVES IGNORED.

Programmer Response: Probable user error. Depending upon
the logic of the program, eithe.r remove END DECLARATIVES
statement and recompile if necessary, or add a Declaratives
Section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFi094I-E INTEGER IN 'NEXT GROUP' CLAUSE DOES NOT CONFORM TO PAGE
CLAUSE SPECIFICATIONS. CONTINUING.

Programmer Response: Probable user error. Supply an
"integer" in NEXT GROUP clause that is compatible with PAGE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFi095I-W WORD 'SECTION' OR 'DIVISION' MISSING. ASSUMED PRESENT.

Programmer Response: Probable user error. Add missing word
and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFi096I-E THE DATA-NAME IN THE UPON CLAUSE HAS NOT BEEN SPECIFIED AS A
DATA-NAME FOR A TYPE DETAIL REPORT GROUP. UPON OPTION
IGNORED.

324

Programmer Response: Probable user error. Ensure that the
TYPE DETAIL clause is specified for the data-name at the
01-level before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1097I-E PROGRAM-ID MISSING OR MISPLACED. IF PROGRAM-ID DOES NOT
IMMEDIATELY FOLLOW IDENTIFICATION DIVISION, IT WILL BE
IGNORED.

Programmer Response: Probable user error. Ensure that the
PROGRAM-ID clause immediately follows IDENTIFICATION
DIVISION header before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1098I-E ALPHA LITERAL NOT CONTINUED WITH HYPHEN AND QUOTE. END
LITERAL ON LAST CARD.

Programmer Response: Probable user error. Insert a hyphen
in column 7 of the continuation line, and a quotation mark
preceding the continuation of the literal anywhere in Column
B before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1099I-E ***** IS INVALID AS USED. IGNORED.

Programmer Response: Probable user error. Correct
indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll00I-W ***** SEQUENCE ERRORS IN SOURCE PROGRAM.

Programmer Response: Probable user error. Correct sequence
errors and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll01I-E NEXT PAGE NOT IN FIRST LINE CLAUSE. IGNORED.

Programmer Response: Probable user error. Correct
placement of NEXT PAGE option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll02I~C INCOMPLETE ELEMENTARY ITEM. ASSUME VALUE SPACES.

Programmer Response: Probable user error. Correct
description of elementary item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll03I-E GROUP TYPE ALLOWED ONCE FOR RD. IGNORED.

Programmer Response: Probable user error. Remove duplicate
TYPE option before recompiling.

Appendix J: Diagnostic Messages 325

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFII04I-E CONTROL NAME NOT SPECIFIED IN RD. SKIPPING TO NEXT 01.

Programmer Response: Probable user error. Ensure that
identifier is specified in a CONTROL clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFII05I-W ELEMENTARY ITEM EXPECTED. ASSUMED.

Programmer Response: Probable user error. Supply
elementary item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1106I-E OPERAND FOR TERMINATE NOT FOUND OR ILLEGAL. OPERAND
DROPPED.

Programmer Response: Probable user error. supply missing
operand or correct invalid one.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFI107I-C 'NEXT GROUP" CLAUSE IS ILLEGAL FOR THIS REPORT GROUP.
IGNORED.

Programmer Response: Probable user error. Remove NEXT
GROUP clause from PH, PF, or CF report group entry before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll08I-E ***** IS NOT A POSITIVE INTEGRAL NUMBER. ASSUMED ONE.

Programmer Response: Probable user error. Supply a valid
positive integer before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll09I-E DUPLICATE USE OF CONTROL NAME. SKIPPING TO NEXT 01.

326

Programmer Response: Probable user error. Eliminate
duplication before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFlll0I-E INVALID USE OF SUM CLAUSE. CLAUSE IGNORED.

Programmer Response: Probable user error. Correct invalid
use of SUM clause and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFllllI-W ELEMENTARY LEVEL WITHOUT COLUMN OR SUM CLAUSE.

Programmer Response: Probable user error. If entry is not
to be suppressed, supply COLUMN clause before recompiling.
If sum counter is to be referenced elsewhere in the program,
supply SUM clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl112I-E ***** ALREADY SPECIFIED IN TWO FILE DESCRIPTION ENTRIES.
IGNORED.

Programmer Response: Probable user error. Ensure that a
given r~port-name appears in no more than two REPORT clauses
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll13I-E EXPECTING 6-DIGIT SEQUENCE NUMBER. SKIPPING TO NEXT INSERT
OR DELETE NUMBER. *****.

Programmer Response: Probable user error. Correct
sequence-number-field before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1114I-C EXTRANEOUS COMMA OR HYPHEN ON DELETE CARD. IGNORED.

Programmer Response: Probable user error. Correct syntax
of INSERT or DELETE card and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll15I-E NO BLANK, COMMA OR HYPHEN FOLLOWING SEQUENCE NUMBER. ASSUME
BLANK. *****.

Programmer Response: Probable user error. Provide valid
sequence number separator before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1116I-E EXPECTING 6-DIGIT SEQUENCE NUMBER AFTER HYPHEN. IGNORING
DELETE FROM THRU NUMBER. *****.

Programmer Response: Probable user error. Supply six-digit
sequence number before recompiling.

Appendix J: Diagnostic Messages 327

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll17I-E DELETE NUMBER GREATER THAN LAST SEQUENCE NUMBER. STOP
INSERT AND DELETE. *****.

Programmer Response: Probable user error. Ensure that
DELETE sequence number is within library entry before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll18I-E INSERT NUMBER GREATER THAN LAST SEQUENCE NUMBER. STOP
INSERT AND DELETE. *****.

Programmer Response: Probable user error. Ensure that
INSERT sequence number is within library entry before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFll19I-E INTEGER IN 'LINE CLAUSE' DOES NOT CONFORM TO PAGE CLAUSE
SPECIFICATIONS. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Ensure that LINE
clause is compatible with PAGE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl120I-W COMMA NOT FOLLOWED BY SPACE. ASSUMED SPACE.

Programmer Response: Probable user error. Insert a space
after comma and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1121I-W PERIOD OR COMMA INVALID AS USED IN PICTURE CLAUSE.

Programmer Response: Probable user error. Supply valid
PICTURE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl122I-E EXTERNAL-NAME IN RERUN CLAUSE MUST NOT BE THE SAME AS SYSTEM
NAME USED IN ASSIGN CLAUSE. SENTENCE IGNORED.

328

Programmer Response: Probable user error. Correct
duplicate use of name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl123I-E NUMBER IS ZERO OR NEGATIVE. SENTENCE IGNORED.

Programmer Response: Probable user error. Supply valid
positive integer before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl124I-E NUMBER TOO LARGE FOR RERUN. SENTENCE IGNORED.

Programmer Response: Probable user error. Provide a number
no larger than allowable maximum before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl125I-C '*****' FILE-NAME USED IN PREVIOUS RERUN. USING FIRST ONE.

Proqrammer Response: Probable user error. Ensure that a
given file-name appears in only one RERUN clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl126I-E '.****' FILE-NAME SPECIFIED IN BOTH RERUN AND USING OR
GIVING OPTION. RERUN IGNORED.

Programmer Response: Probable user error. Specify
file-name only in using or giving option.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

ILFl127I-E ***** INVALID IN ***** SENTENCE. REST OF SENTENCE IGNORED.

Programmer Response: Probable user error. Correct invalid
entry in indicated sentence before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control pards, and compiler output.

IKF1128I-W FOUND *****. EXPECTING ENVIRONMENT. ALL ENV. DIV.
STATEMENTS IGNORED.

Proqrammer Response: Probable user error. Ensure that
ENVIRONMENT DIVISION header precedes Environment Division
statements before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl129I-C ID DIV. HEADER MISSING OR MISPLACED. ASSUMED PRESENT.

Proqrammer Resp~: Probable user error. Ensure that an
IDENTIFICATION DIVISION header appears as first source
statement in program and recompile if necessary.

Appendix J: Diagnostic Messages 329

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl130I-E ***** DIV. HEADER MISSING. WORDS IN ***** STATEMENT ARE
INVALID.

Programmer Response: Probable user error. Supply indicated
division header before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl131I-W INVALID PRIORITY NUMBER. ZERO ASSUMED.

Programmer Response: Probable user error. Supply a valid
priority number before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl132I-E INVALID SYSTEM-NAME. SKIPPING TO NEXT CLAUSE.

Programmer Response: Probable user error. Correct
system-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl133I-C MORE THAN 1 USE ON STANDARD ERROR SPECIFIED FOR SAME FILE ON
OPEN OPTION. USE IGNORED.

Programmer Response: Probable user error. Ensure that a
given file-name is not referred to implicitly or explicitly
in more than one USE AFTER STANDARD ERROR procedure before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl134I-E USE SPECIFIED FOR '*****' : WITH LABEL RECORDS OMITTED OR
STANDARD. SENTENCE IGNORED.

Programmer Response: Probable user error. Either specify
the LABEL RECORDS clause with the data-name option or remove
USE procedure for labels before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1135I-W INTEGER-l OUTSIDE OF ALLOWABLE LIMITS. 1 ASSUMED.

330

Programmer Response: Probable user error. Correct
integer-lspecification before recompiling.

If the problem recurs, have the following available
befOre calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl136I-E DATA-NAME ALREADY SPECIFIED FOR A TYPE DETAIL REPORT GROUP.
SKIPPING TO NEXT 01, RD, OR SECTION.

Programmer Response: Probable user error. Ensure that each
DETAIL report group has a unique data-name at level-Ol in
the report before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1137I-W MINIMUM NUMBER OF OCCURRENCES IN OCCURS CLAUSE NOT LESS THAN
MAXIMUM NUMBER. CONTINUING.

Programmer Response: Probable user error. Correct the
OCCURS clause to ensure that integer-1 is less than
integer-2 before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1138I-W APPLY ***** IS A FUNCTION OF JCL IN os.

Programmer Response: Probable user error. Ensure that the
APPLY option is handled via JCL before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1139I-E ***** DUPLICATELY DEFINED SECTION. SECTION NAME IGNORED.

Programmer Response: Probable user error. Remove
duplication of indicated section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1140I-C NUMERIC LITERAL ***** EXCEEDS MAXIMUM. SUBSTITUTING 32768.

Programmer Response: Probable user error. Supply a literal
no larger than 32768 before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1141I-C FILE ORGANIZATION FIELD INVALID IN SYSTEM-NAME. SEQUENTIAL
ASSUMED.

Programmer Response: Probable user error. Supply a valid
organization field in system-name of ASSIGN clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl142I-E USE FOR STANDARD ERROR OR LABEL PROCEDURE SPECIFIED FOR FILE
AND OPEN OPTION. USE FOR OPEN OPTION IGNORED.

Programmer Response: Probable user error. Ensure that a
given file-name is not referred to, implicitly or
explicitly. in more than one USE for error or label
processing declarative before recompiling.

Appendix J: Diagnostic Messages 331

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl143I-E USE STATEMENTS IMPLY STANDARD AND NON-STANDARD LABELS. USE
IGNORED.

Programmer Response: Probable user error. Ensure that if a
USE BEFORE label procedure is specified for the file, a USE
AFTER is not also specified for the same file, and vice
versa, before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl144I-W WRITE AFTER POSITIONING AND WRITE BEFORE ADVANCING ILLEGALLY
USED FOR 1 FILE.

Programmer Response: Probable user error. Ensure that the
ADVANCING and POSITIONING options are not both specified for
the same file before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl145I-C ***** DUPLICATELY DEFINED IN SPECIAL NAMES PARAGRAPH.
SENTENCE IGNORED.

Programmer Response: Probable user error. Eliminate
duplicate definition of indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl147I-W SD FILE ILLEGALLY SPECIFIED IN SAME AREA CLAUSE. CLAUSE FOR
SD IGNORED.

Programmer Response: Probable user error. Ensure that a
sort-file-name does not appear in a SAME AREA clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl148I-C INVALID SEGMENT LIMIT. FIFTY ASSUMED.

332

Programmer Response: Probable user error. Supply a valid
segment limit before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl149I-W FILES IN SAME AREA CLAUSE DO NOT ALL APPEAR IN THE SAME
SORT/RECORD AREA CLAUSE. '*****' NOT GIVEN SAME AREA
NUMBERS.

Programmer Response: Probable user error. Ensure that if
one or more file-names of a SAME AREA clause appear in a
SAME SORT/RECORD AREA clause, all file-names in former
clause appear in latter clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl150I-W FILES IN SAME SORT/RECORD AREA CLAUSE ARE NOT ALL SPECIFIED
IN THE SAME 'SAME AREA' : CLAUSE. ,~****' :NOT GIVEN SAME
RECORD SORT NUMBER.

Programmer Response: Probable user error. Simply verify
that for your purposes there is no need to specify in the
SAME AREA clause all the file-names given in the SAME RECORD
AREA clause. Otherwise, change the source statement as
necessary and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl151I-E ILLEGAL CHARACTER USE IN CURRENCY SIGN CLAUSE. CLAUSE
IGNORED.

Programmer Response: Probable user error. Correct literal
in CURRENCY SIGN clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl154I-W 2 DIFFERENT LABEL PROCEDURES FOR EOF AND EOV WITH 'BEFORE'
OPTION. EOV LABEL PROCEDURE IGNORED.

Programmer Response: Probable user error. Ensure that a
'file is ~not. referenced, implicitly or explicitly, in more
than one USE statement with the BEFORE option before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl155I-W DEVICE CLASS INVALID IN SYSTEM-NAME. SKIPPING TO NEXT
FIELD.

Programmer Response: Probable user error. Supply a valid
device-class field in system-name of ASSIGN clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl156I-W DEVICE NUMBER INVALID IN SYSTEM-NAME. '*****' ASSUMED.

Programmer Response: Probable user error. Supply a valid
device-number field in system-name of ASSIGN clause and
recompile if necessary.

Appendix J: Diagnostic Messages 333

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl157I-E EXTERNAL NAME NOT PRESENT IN SYSTEM-NAME.

Programmer Response: Probable user error. Include in the
system-name a name field of one to eight characters
specifying the external-name by which the file is known to
the system. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source 'deck,
control cards, and compiler output.

IKFl158I-W '*****' IN ENTRY STATEMENT IS SAME AS PROGRAM-ID. '*****'
IGNORED FOR ENTRY VERB.

Programmer Response: Probable user error. Ensure that the
literal specified in the ENTRY statement is not the same
name as the PROGRAM-ID before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl159I-W PAGE LIMIT INTEGER-l NOT SPECIFIED OR INVALID. ASSUME HIGH
VALUE.

Programmer Response: Probable user error. Specify
integer-l if other than relative LINE NUMBERS are to be used
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl160I-E CONTINUATION OF WORD FOUND IN A-MARGIN.

Programmer Response: Probable user error. Begin continued
word in B-margin before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl161I-W RESERVED WORD MISSING. ASSUMED PRESENT.

Programmer Response: Probable user error. Correct syntax
of clause and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl162I-E INTEGER IN LINE CLAUSE IS LESS THAN PREVIOUS VALUE.
IGNORED.

Programmer Response: Probable user error. Ensure that LINE
NUMBER entries are given in ascending order before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl163I-E ABSOLUTE LINE NUMBER IS PRECEDED BY A RELATIVE LINE NUMBER.
IGNORED.

334

Programmer Response: Probable user error. Check the source
statement to be sure that the absolute LINE NUMBER entries
appear in ascending order and that no relative LINE NUMBER
precedes an absolute LINE NUMBER. Change the source
statement if necessary and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl164I-E NO PAGE CLAUSE SPECIFIED. ALL LINE CLAUSES MUST BE 'LINE
PLUS INTEGER'. IGNORED.

Programmer Response: Probable user error. Specify the PAGE
LIMIT clause if other than relative LINE NUMBER entries are
desired before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl165I-E 'HEADING' EQUALS 'FIRST DETAIL' IN PAGE CLAUSE. PAGE
HEADING IS ILLEGAL. CONTINUING.

Programmer Response: Probable user error. Correct PAGE
LIMIT clause so that FIRST DETAIL integer is greater than
HEADING integer before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl166I-E 'FOOTING" EQUALS 'PAGE LIMIT' IN PAGE CLAUSE. PAGE FOOTING
IS ILLEGAL. CONTINUING.

Programmer Response: Probable user error. Ensure that the
line number of the FOOTING is less than the integer
specified in the PAGE LIMIT clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl167I-E 'LINE NEXT PAGE' CLAUSE IS ILLEGAL FOR THIS REPORT GROUP.
IGNORED.

Programmer Response: Probable user error. Ensure that LINE
NEXT PAGE is not specified for RH, PH, or PF report groups,
or for report groups within reports with no PAGE LIMIT
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl168I-E DUPLICATE REPORT-NAME. SKIPPING TO NEW RD.

Programmer Response: Probable user error. Ensure that each
report-name is unique before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl170I-E DETAIL REPORT GROUP SPECIFIED WITH NO DATA-NAME.
CONTINUING.

Appendix J: Diagnostic Messages 335

Programmer Response: Probable user error. Ensure that SUM
clause operand appears as a source item in indicated DETAIL
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl171I-E INTEGERS IN PAGE CLAUSE ARE NOT IN ASCENDING ORDER.
CONTINUING.

Programmer Response: Probable user error. Ensure that PAGE
LIMIT integers (integer-2 through integer-S) are in
ascending order before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl172I-E WORD INVALID AS REPORT NAME. RD IGNORED.

Programmer Response: Probable user error. Correct
formation of report-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1173I-E GROUP INDICATE IS ILLEGAL FOR THIS REPORT GROUP. IGNORED.

Programmer Response: Probable user error. Remove GROUP
INDICATE clause from all report groups except DETAIL before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl174I-E NO LINE CLAUSE SPECIFIED IN PRECEDING REPORT GROUP. NO
OUTPUT GENERATED.

Programmer Response: Probable user error. For each report
group, specify a LINE clause either at the report group
level or prior to or for the first elementary item in the
line before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl175I-E DATA-NAME FOR THIS REPORT GROUP IS NOT UNIQUE. SKIPPING TO
NEW 01, RD, OR SECTION.

Programmer Response: Probable user error. Ensure that each
report group data-name is a unique 01-level item before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKFl178I-E RESET CLAUSE SPECIFIED, AND IS EITHER ILLEGAL FOR THIS
REPORT GROUP, OR ELEMENTARY ITEM DOES NOT CONTAIN A SUM
CLAUSE. CLAUSE IGNORED.

336

Programmer Response: Probable user error. Ensure that the
RESET clause is used in conjunction with the SUM clause and
is associated with a CF report g'roup before recompiling.

If the problem recurs, have the following available
before calling IBM for programming" support: source deck,
control cards, and compiler output.

IKF1179I-E COLUMN NUMBER ILLEGAL. ASSUME COLUMN 1.

Programmer Response: Probable user error. Ensure that the
column number does not exceed the record size before
recompiling_

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF1180I-W SYNTAX OF COMMENT IS INCORRECT. SKIPPING TO NEXT CLAUSE.

IKFl189-W

IKFl190-E

Programmer Response: Probable user error. Correct syntax
of invalid comment before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

'TO' PORTION OF APPLY CORE-INDEX CLAUSE IGNORED.

Programmer Response: Probable user error. Correct syntax
of clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

'OF FILENAME'PORTION OF RERUN CLAUSE MISSING. RERUN
IGNORED.

Programmer Response: Probable user error. Supply missing
portion of clause before recompiling_

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2001I-W OPEN OPTION IS ILLEGAL FOR THIS ACCESS METHOD.

Programmer Response: Probable user error. Ensure that 1-0
option is not specified for direct or relative files with
sequential access before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2002I-W DEVICE MUST BE DIRECT-ACCESS FOR OPEN 1-0.

Programmer Response: Probable user error. If the OPEN
statement specifies the 1-0 option, you must specify either
UT or DA in the system-name portion of the ASSIGN clause.
Change the source statements as necessary, and then
recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2003I-W DEVICE MUST BE DIRECT-ACCESS FOR THIS ACCESS METHOD.

Appendix J: Diagnostic Messages 337

Programmer Response: Probable user error. Ensure that
device-class field of system-name in ASSIGN is DA before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2004I-C RECORDING MODE OPTION ILLEGAL FOR THIS ACCESS METHOD.
CLAUSE IGNORED.

Programmer Response: Probable user error. Change recording
mode statement to comply with sequential or random access
method before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2005I-W 'APPLY RECORD OVERFLOW' CLAUSE ILLEGAL FOR THIS ACCESS
METHOD. CLAUSE IGNORED.

Programmer Response: Probable user error. Check to see
that a sequential access method or a direct access method
with fixed-length records is specified.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2006I-E BLOCK CONTAINS CLAUSE WITH RECORDING MODE ·u· ILLEGAL.
CLAUSE IGNORED.

Programmer Response: Probable user errdr. Either change
recording mode or delete the BLOCK CONTAINS clause from the
source program before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2007I-W 'APPLY REORG-CRITERIA' CLAUSE ILLEGAL FOR THIS ACCESS METHOD
CLAUSE IGNORED.

Programmer Response: Probable user error. Ensure that the
APPLY REORG-CRITERIA option is specified only for indexed
files accessed randomly before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2008I-E APPLY WRITE-ONLY ILLEGAL FOR THIS ACCESS METHOD. IGNORED.

Programmer Response: Probable user error. If the APPLY
WRITE-ONLY clause is specified, check to see that a standard
sequential file with blocked V-mode records is being
created. If not, change the source statement(s) necessary;
then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2009I-W LABEL RECORDS OPTION INCOMPATIBLE WITH DEVICE TYPE.

338

Programmer Response: Probable user error. If you indicated
UR as the device class in the ASSIGN statement, you must

specify the OMITTED option in the LABEL RECORDS clause.
Change the source statement(s) as necessary, and then
recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2010I-E OBJECT OF REDEFINES CLAUSE IS OCCURS DEPENDING ON SUBJECT.
REDEFINES IGNORED.

Programmer Response: Probable user error. Delete DEPENDING
ON option from OCCURS clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2011I-E AN INDEX DATA ITEM MAY NOT BE A CONDITIONAL VARIABLE. 88
DISCARDED.

Programmer Response: Probable user error. Depending on the
logic of your program, either supply appropriate level
numbers or remove level-88 items before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2012I-E INDEX NAMES AND/OR KEYS IGNORED FOR TABLE WITH ILLEGAL
SUBJECT.

Programmer Response: Probable user error. Supply valid
subject for table before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2013I-E TRACK-LIMIT CLAUSE ILLEGAL FOR THIS ACCESS METHOD. CLAUSE
IGNORED.

Programmer Response: Probable user error. Either delete
the TRACK-LIMIT clause from the statement indicated or
specify another access method; then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2014I-W TRACK-LIMIT SPEC'D AND FILE NOT OPENED AS OUTPUT. CLAUSE
IGNORED.

Programmer Response: Probable user error. For the
TRACK-LIMIT clause to be valid, you must have opened the
file as OUTPUT. Change the source statement(s) as
necessary, and then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2015I-W 'RESERVE ALTERNATE AREA' CLAUSE TREATED AS COMMENTS FOR THIS
ACCESS METHOD.

Programmer Response: Probable user error. For the 'RESERVE
ALTERNATE AREA' clause to be valid, the access method must

Appendix J: Diagnostic Messages 339

be sequential. Correct the access method or remove the
RESERVE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2016I-W DATA RECORD SIZE IS VARIABLE, BUT 'RECORDING MODE IS F'

Programmer Response: Probable user error. Ensure that the
record is associated with a valid FD; then correct the
RECORDING MODE clause or record description before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2017I-E IF THE SUBJECT OF AN INDEXED BY CLAUSE IS AN ELEMENTARY ITEM
ONLY THAT ITEM ITSELF MAY BE SPECIFIED IN THE KEY CLAUSE.
REST OF KEYS DISCARDED.

Programmer Response: Probable user error. Remove all keys
from ASCENDING/DESCENDING KEY option except subject of
INDEXED BY clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2018I-E OBJECT OF RENAMES CLAUSE WAS NOT FOUND OR NON-UNIQUE IN
LOGICAL RECORD.

Programmer Response: Probable user error. Supply a data
description entry for the data-name being used as the object
of the RENAMES clause, delete or qualify a duplicate use of
the same data-name, or correct a misspelled data-name before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2019I-W BLOCK CONTAINS CLAUSE TREATED AS COMMENTS FOR THIS ACCESS
METHOD. CLAUSE IGNORED.

Programmer Response: Probable user error. Ensure that if
BLOCK CONTAINS 0 has been specified, the access method is
sequential before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2020I-C TRACK-AREA CLAUSE ILLEGAL FOR THIS ACCESS METHOD. CLAUSE
IGNORED.

Programmer Response: Probable user error. Delete
TRACK-AREA clause if the desired access method for the file
is sequential, and recompile if necessary. Otherwise,
specify ACCESS MODE IS RANDOM before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2021I-C PICTURE DUPLICATION FACTOR TRUNCATED TO 5 SIGNIFICANT
DIGITS.

340

Programmer Response: Probable user error. Correct picture
duplication factor before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2022I-E THE OBJECT OF THE RENAMES OR RENAMES THRU CLAUSE CANNOT BE
AN 01, 66, 77 OR 88. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct the
object of the RENAMES or RENAMES THRU clause or its level
number before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2023I-E AN ***** KEY WAS NOT SPECIFIED FOR THIS FILE.

Programmer Response: Probable user error. Supply indicated
key for file or check that the desired combination of
organization and access method has been specified before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2024I-E ***** KEY IS ILLEGAL FOR THIS ACCESS METHOD. CLAUSE
IGNORED.

Programmer Response: Probable user error. Remove indicated
key clause or check that the desired file organization has
been specified in the ASSIGN clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2025I-E WRITE ADVANCING OR POSITIONING OPTION WAS SPEC'D AND FILE
WAS NOT OPENED OUTPUT OR ACCESS METHOD NOT STANDARD
SEQUENTIAL. WRITES WILL NOT HAVE AFTER ADVANCING OPTION
FOR THIS FILE.

Programmer Response: Probable user error. Remove AFTER
ADVANCING option from write statement.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2026I-W TOTALING AREA, TOTALED AREA IGNORED FOR FILE WITH RECORDING
MODE S.

Programmer Response: Probable user error. Check to be sure
that TOTALING and TOTALED AREA has not been specified in the
LABEL RECORDS clause for a file with S-mode records.
Correct the LABEL RECORDS clause or recording mode and
recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2027I-C APPLY CORE-INDEX ILLEGAL FOR THIS ACCESS METHOD. CLAUSE
IGNORED.

Appendix J: Diagnostic Messages 341

Programmer Response: Probable user error. Remove APPLY
CORE-INDEX clause or, if random access is desired, correct
ACCESS MODE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2028I-C REORG-CRITERIA DATA-NAME NOT FOUND OR NON-UNIQUE. CLAUSE
IGNORED.

Programmer Response: Probable user error. Check the source
statement to see if the data-name has been omitted or
misspelled. Ensure that a unique .data-name is present
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2029I-C FIRST NON 77, 88 ITEM IN SECTION IS NOT AN 01. THIS ITEM
WAS CHANGED TO 01.

Programmer Response: Probable user error. Correct entry to
ensure that a level-Ol entry precedes subsequent levels of
data description before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2030I-C 77 ITEM PRECEDED BY AN 01-49 ITEM OR 77 IN FILE SECTION. 77
CHANGED TO 01.

Programmer Response: Probable user error. Change 77 to a
valid level number or rearrange items in Working-Storage
Section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2031I-C 88 ITEM MUST BE PRECEDED BY 01-49 OR 77 ITEM. 88 CHANGED TO
01.

Programmer Response: Probable user error. Correct entry so
that condition-name (88) is subordinate to a conditional
variable with a valid level number before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2032I-E 88 ITEM CONTAINED A CLAUSE OTHER THAN VALUE CLAUSE. CLAUSE
DELETED.

Programmer Response: Probable user error. Delete clauses
other than VALUE from condition-name (88) entry or correct
level-number of entry before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2033I-C ITEM'S USAGE INCOMPATIBLE WITH USAGE OF GROUP IT BELONGS TO.
USAGE CHANGED TO GROUP'S USAGE.

342

Programmer Response: Probable user error. Correct USAGE
clause on group or elementary level before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2034I-E GROUP ITEM HAS PICTURE CLAUSE. CLAUSE DELETED.

Programmer Response: Probable user error. Delete PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2035I-E GROUP ITEM HAS BLANK WHEN ZERO CLAUSE. CLAUSE DELETED.

Programmer Response: Probable user error. Delete BLANK
WHEN ZERO clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2036I-E GROUP ITEM HAS JUSTIFIED CLAUSE. CLAUSE DELETED.

Programmer Response: Probable user error. Delete JUSTIFIED
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2031I-E BLANK WHEN ZERO CLAUSE USED INCORRECTLY. CLAUSE IGNORED.

Programmer RespQnse: Probable user error. Correct syntax
of BLANK WHEN ZERO clause or check compatibility of clause
with data type of item being described before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2038I-W TOTALING AREA, TOTALED AREA IGNORED FOR THIS ACCESS METHOD.

Programmer Response: Probable user error. Check to be sure
that TOTALING and TOTALED AREA are used only for standard
sequential files. Correct the LABEL RECORDS clause or the
organization field of system-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2039I-C PICTURE.CONFIGURATION ILLEGAL. PICTURE CHANGED TO 9 UNLESS
USAGE IS 'DISPLAY-ST', THEN L(6)BDZ9BDZ9.

Programmer RespQnse: Probable user error. Correct PICTURE
configuration before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2040I-E JUSTIFIED CLAUSE SPEC'D FOR NON-ALPHABETIC OR
NON-ALPHANUMERIC ITEM. CLAUSE DELETED.

Appendix J: Diagnostic Messages 343

Programmer Response: Probable user error. Delete JUSTIFIED
clause or change PICTURE to alphabetic or alphanumeric
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2041I-E CONDITION NAME UNDER GROUP HAS VALUE CLAUSE THAT IS NUMERIC.
88 DISCARDED.

Programmer Response: Probable user error. Change group
item's usage to ensure that values associated with
condition-names refer to a conditional variable whose USAGE
IS DISPLAY before recompiling. .

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2042I-E THIS ITEM CAUSES OVER 3 LEVELS OF SUBSCRIPTING. OCCURS
CLAUSE DROPPED FOR THIS ITEM.

Programmer Response: Probable user error. Delete OCCURS
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2043I-E 01 OR 77 LEVEL HAS AN OCCURS CLAUSE. CLAUSE DELETED.

Programmer Response: Probable user error. Delete OCCURS
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2044I-E DUPLICATE SD. IGNORED.

Programmer Response: Probable user error. Delete duplicate
or correct misspelled sort-file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2045I-E REPORT CONTROL NAME UNDEFINED.

Programmer ResPQ~: Probable user error. Define the
identifier specified in the CONTROL clause. in the File,
Working-Storage, or Linkage Section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2046I-E REPORT CONTROL NAME NOT FIXED LENGTH.

344

Programmer Response: Probable user error. Correct the data
description entry for the report control name before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2047I-E MORE THAN 12 INDEX NAMES SPECIFIED FOR TABLE. FIRST 12
ACCEPTED.

Programmer Response: Probable user error. Delete all
index-names in excess of 12 before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2048I-E NONSTANDARD USER LABEL SIZE GREATER THAN 4095 BYTES.

Programmer Response: Probable user error. Ensure that the
description of the nonstandard label (data-name-1 in the
LABEL RECORDS clause) does not exceed a length of 4096
bytes. Correct the data description as appropriate and
recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2049I-C NO OPEN CLAUSE FOUND FOR FILE.

Programmer Response: Probable user error. Supply valid or
missing OPEN statement for file before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2050I-W BLOCK SIZE GREATER THAN 32760. WARNING - CANNOT WRITE BLOCK
OF THIS SIZE.

Programmer Response: Probable user error. Check the block
size specified in either the BLOCK CONTAINS clause or the
record description. Ensure that the block size is less than
32,760 characters. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2051I-W TRACK-AREA DATA-NAME IS NON-UNIQUE OR UNDEFINED. CLAUSE
IGNORED.

Programmer Response: Probable user error. Check the source
program to be sure that the data-name has been defined once
and only once. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2052I-E MORE THAN 12 KEYS SPECIFIED FOR TABLE. FIRST 12 ACCEPTED.

Programmer Response: Probable user error. Adjust block
size for file to a size compatible with the device type
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 345

IKF2053I-E NOMINAL KEY IS NON-UNIQUE OR UNDEFINED. CLAUSE IGNORED.

Programmer Response: Probable user error. Check the source
program to see if the NOMINAL KEY has been defined once and
only once. Then recompile the program.

If the problem reG9rS, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2054I-W NOMINAL KEY PICTURE OR USAGE NOT LEGAL.

Programmer Response: Probable user error. Ensure that the
US~GE of the NOMINAL KEY is neither DISPLAY, COMP-l nor
COMP-2. If an indexed file is being processed, the PICTURE
clause can not represent a length greater than 225. If a
relative file is being processed, the PICTURE clause must
specify a binary length of 8 integers. Make necessary
corrections before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2055I-C STERLING NON-REPORT PICTURE - SIGN IN POUND FIELD MUST BE ON
HI OR LO ORDER DIGIT. PICTURE REPLACED BY 90807.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2056I-C STERLING NON-REPORT PICTURE - 9 IN ILLEGAL POSITION.
PICTURE REPLACED BY 9D8D7.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2057I-C STERLING NON-REPORT PICTURE - SIGN IN SHILLING FIELD
ILLEGAL. PICTURE REPLACED BY 9D8D7.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2058I-C STERLING NON-REPORT PICTURE - 8 IN ILLEGAL POSITION.

346

PICTURE REPLACED BY 9D8D7.

Programmer ResEQns~: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2059I-C STERLING NON-REPORT PICTURE - SIGN IN PENCE FIELD ILLEGAL.
PICTURE REPLACED BY 908D7.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2060I-C STERLING NON-REPORT PICTURE - 6 OR 7 IN ILLEGAL POSITION.
PICTURE REPLACED BY 908D7.

Programmer Response:, Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2061I-C STERLING NON-REPORT PICTURE - USAGE NOT DISPLAY-ST. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Specify USAGE IS
DISPLAY-ST before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2062I-C STERLING NON-REPORT PICTURE - V IN ILLEGAL POSITION.
PICTURE REPLACED BY 90807.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2063I-C STERLING NON-REPORT PICTURE - S IN ILLEGAL POSITION.
PICTURE REPLACED BY 9D8D7.

Programmer Resp~: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2064I-C STERLING NON-REPORT PICTURE - DIGIT LENGTH GT 18. PICTURE
REPLACED BY 9D8D7.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 347

IKF2065I-C STERLING NON-REPORT PICTURE - SHILLING FIELD GT 2. PICTURE
REPLACED BY 90807.

Programmer Response: Probable user error. check the
programmer-defined shilling field. If it includes more than
two characters, redefine this field. Then recompile the
program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2066I-C STERLING NON-REPORT PICTURE - PENCE FIELD GT 2. PICTURE
REPLACED BY 90807.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2067I-C STERLING NON-REPORT PICTURE - NO POUND SEPARATOR. PICTURE
REPLACED BY 90807.

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2068I-C ONLY THE RENAMES CLAUSE MAY BE SPECIFIED FOR A LEVEL 66
ENTRY. CLAUSE IGNORED.

Programmer Response: Probable user error. Delete all
clauses except RENAMES clause for level-66 item and
recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2069I-C NUMERIC PICTURE - SIGN IN ILLEGAL POSITION. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2070I-C NUMERIC PICTURE - P IN ILLEGAL POSITION. PICTURE REPLACED
BY 9 (1).

348

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2071I-C NUMERIC PICTURE - V IN ILLEGAL POSITION. PICTURE REPLACED
BY 9 (1).

Programmer ResEQnse: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2072I-C NUMERIC PICTURE - NO 9 IN PICTURE. PICTURE REPLACED BY
9(1).

Programmer Response: Probable user error. Correct PICTURE'
clause for item or change USAGE clause to match PICTURE
clause before recompiling.

If the problem recurs" have the following available
before calling IBM for programming support: source deck.
control cards, and compiler output.

IKF2073I-C NUMERIC PICTURE - P ENCLOSED BY 9'S. PICTURE REPLACED BY
9(1).

Programmer ResEQ~: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2074I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Minor code for RENAMES entry is invalid.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF2075I-C NUMERIC PICTURE - DIGIT LENGTH GT 18. PICTURE REPLACED BY
9(1).

Programmer ResEQnse: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2076I-C NUMERIC PICTURE - DIGIT LENGTH + SCALE GT 18. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 349

IKF2077I-C EXTERNAL FLOATING-POINT PICTURE - USAGE NOT DISPLAY.
PICTURE CHANGED TO 9.

Programmer ResE~: Probable user error. Supply USAGE IS
DISPLAY clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2078I-W EXTERNAL FLOATING-POINT PICTURE - MORE THAN 1 SIGN. CHANGED
TO 1.

Programmer Response: Probable user error. Correct PICTURE
clause for item and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2079I-C EXTERNAL FLOAXING-POINT PICTURE - SIGN IN ILLEGAL POSITION.
PICTURE CHANGED TO +9.E+99.

Programmer Res~~: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2080I-C EXTERNAL FLOATING-POINT PICTURE - SIGN MISSING. ASSUME
MINUS SIGN.

Programmer Res~onse: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2081I-C EXTERNAL FLOATING-POINT PICTURE - REQUIRED CHARACTER BEFORE
EXPONENT MISSING. PICTURE CHANGED TO +9.E+99.

Programmer ResEonse: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2082I-W EXTERNAL FLOATING-POINT PICTURE - NO DECIMAL-POINT IN
MANTISSA. ASSUME IMPLIED V.

Programmer ResEonse: Probable user error. Correct PICTURE
clause for item and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2083I-C EXTERNAL FLOATING-POINT PICTURE - MANTISSA LENGTH GT 16.

350

PICTURE CHANGED TO +9.E+99.

Programmer Re~onse: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2084I-C EXTERNAL FLOATING-POINT PICTURE - TOTAL LENGTH GT 21.
PICTURE CHANGED TO +9.E+99.

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2085I-C EXTERNAL FLOATING-POINT PICTURE - EXPONENT LENGTH NOT 2
DIGITS. ASSUME 2 DIGITS.

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2086I-C NUMERIC EDITED PICTURE - TWO FIXED DOLLAR SIGNS, +, - OR
FIXED AND FLOATING DOLLAR SIGN. PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2087I-W TOTALING AREA SIZE GREATER THAN 4095 BYTES. 4095 BYTES
ASSUMED.

Proqrammer Response: Probable user error. Ensure TOTAL
AREA size does not exceed 4095 bytes.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2089I-C NUMERIC EDITED PICTURE ~ 9, Z OR * PRECEDES FLOATING STRING.
PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2090I-C NUMERIC EDITED PICTURE - P IN ILLEGAL POSITION. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 351

IKF2091I-C NUMERIC EDITED PICTURE - TWO DIFFERENT FLOATING STRING
CHARACTERS. PICTURE REPLACED BY 9(1).

Programmer Res~~: Probable user error. Check the
floating string characters specified. If more than one
character is indicated, correct the source statement to
include only the one desired. Then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2092I-C NUMERIC EDITED PICTURE - Z AND * IN PICTURE. PICTURE
REPLACED BY 9(1).

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2093I-C NUMERIC EDITED PICTURE - 9 PRECEDES * OR Z. PICTURE
REPLACED BY 9(1).

Proqrammer Response: Probable user error. Correct the
order in the PICTURE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2094I-C NUMERIC EDITED PICTURE - FLOATING STRING PRECEDES * OR Z.
PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Correct order of
PICTURE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2095I-W NUMBER OF CHARACTERS IN BLOCK CONTAINS CLAUSE ON FORMAT F
FILE NOT MULTIPLE OF RECORD LENGTH. ASSUMING BLOCK SIZE
TO BE CLOSEST MULTIPLE.

Programmer Response: Probable user error. Check the value
in the BLOCK CONTAINS clause for a multiple of the record
length. If necessary, respecify this value and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2096I-C DECIMAL POINT MAY ONLY APPEAR ONCE IN A PICTURE CHARACTER
STRING. PICTURE REPLACED BY 9(1).

352

Programmer Response: Probable user error. Delete all but
one decimal point from PICTURE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2097I-C NUMERIC EDITED PICTURE - DECIMAL POINT OR V CONTRADICTORY TO
P. PICTURE REPLACED BY 9(1).

Programmer ResEQ~: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2098I-C INDEXED BY AND/OR KEY CLAUSE IS ILLEGAL FOR ITEM SUBORDINATE
TO GROUP THAT HAS OCCURS BUT NO INDEXED BY CLAUSE. CLAUSE
IGNORED.

Programmer ResEQ~: Probable user error. Supply INDEXED
BY clause on group item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2099I-C NUMERIC EDITED PICTURE - CR OR DB AND SIGN BOTH USED.
PICTURE REPLACED BY 9(1).

Programmer ResQ~: Probable user error. Delete duplicate
sign symbol before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2100I-C NUMERIC EDITED PICTURE - CR OR DB NOT LAST TWO CHARACTERS IN
PICTURE. PICTURE REPLACED BY 9(1).

Programmer ResQQnse: Probable user error. Correct PICTURE
clause so that either CR or DB are the last two characters
in the string before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
cont"rol cards, and compiler output.

IKF2101I-C NUMERIC EDITED PICTURE - SIGN IS NOT FIRST OR LAST CHARACTER
IN PICTURE. PICTURE REPLACED BY 9(1).

Programmer ResEQns~: Probable user error. Make sign
leftmost or rightmost character in PICTURE clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2102I-C NUMERIC EDITED PICTURE - NUMERIC CHARACTERS AFTER DECI~~L
POINT ARE NOT THE SAME. PICTURE REPLACED BY 9(1).

Programmer Response: Probable user error. Supply valid
numeric characters as suppression symbols after the decimal
point before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 353

IKF2103I-C NUMERIC EDITED PICTURE - TOTAL LENGTH GT 127. PICTURE
REPLACED BY 9(1).

Pro~~_Respo~se: Probable user error. Reduce total
length to 127 or less before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2104I-C NUMERIC EDITED PICTURE - NUMERIC LENGTH GT 18. PICTURE
REPLACED BY 9(1).

Proqrammer Response: Probable user error. Reduce the
number of digit positions represented to 18 or less before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compi.ler output.

IKF2105I-E ONLY ONE KEY MAY BE SPECIFIED IF SUBJECT OF TABLE IS A KEY.
REST OF KEYS DISCARDED.

Programmer Response: Probable user error. Eliminate all
keys except table subject before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2106I-E THE RENAMES CLAUSE MUST BE THE LAST ENTRY IN A LOGICAL
RECORD. SKIPPING TO NEXT LEVEL, SECTION OR DIVISION.

Programmer Response: Probable user error. Correct
placement of level-66 item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2107I-W EDITED PICTURE - USAGE NOT DISPLAY. PICTURE CHANGED TO 9.

Programmer Response: Probable user error. Remove USAGE
clause from item or from group to which it belong's before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2108I-E KEYS IGNORED FOR ITEM WITH NO INDEXED BY CLAUSE.

Programmer Response: Probable user error. Supply INDEXED
BY' clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2109I-C TRACK-AREA INTEGER NOT MULTIPLE OF 8. ROUNDED DOWN TO
MULTIPLE OF 8.

354

Programmer ResPQ~: Probable user error. Ensure
TRACK-AREA integer is multiple of 8.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2110I-C APPLY WRITE-ONLY CLAUSE ILLEGALLY USED. IGNORED.

Programmer Res22~~~: Probable user error. Check the source
statement identified for any of the following error
possibilities:

• That the recording mode is not v.

• That the files are not standard sequential.

• That at least one WRITE statement associated with the
file does not use the FROM identifier option •

• That either at least one subfield of the identifier
specified in the FROM option is referred to in a
procedure statement or the identifier is the object of
an OCCURS DEPENDING ON clause.

• That the WRITE statement is used when the same file is
opened for 1-0.

If any of these errors are present, correct the source
statement and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2111I-C TOTALING AREA SIZE VARIABLE. MAXIMUM SIZE ASSUMED.

Programmer Res2onse: Probable user error. Ensure that the
TOTALING AREA data-name represents a fixed-length item and
then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2112I-C ***** IN KEY CLAUSE NOT DEFINED.

Programmer Res22nse: Probable user error. Ensure that the
data-name specified in the key clause is defined in the
appropriate section of the Data Division, and then recompile
the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2113I-W ITEM WITH USAGE OF COMPUTATIONAL-lOR COMPUTATIONAL-2 HAS
PICTURE CLAUSE. CLAUSE IGNORED.

Programmer Res2onse: Probable user error. Delete PICTURE
clause and recompile if necessary, or correct USAGE clause
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 355

IKF2114I-E ONLY THE SYNCHRONIZED CLAUSE IS ALLOWED FOR A USAGE IS INDEX
ITEM. CLAUSE IGNORED.

Programmer Response: Probable user error. Delete illegal
clause(s) before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler Qutput.

IKF2115I-E GROUP ITEM SIZE IS GT 32K.

Programmer Resp~: Probable user error. Ensure that
total length of group item does not exceed 32K, and then
recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2116I-E FIXED LENGTH GROUP ITEM IN WORKING-STORAGE OR LINKAGE
SECTION IS GT·131K.

Programmer Response: Probable user error. Ensure that
fixed-length group item does not exceed 131K, and recompile
the program.

If the problem recurs, have the following available
before call~ng IBM for programming support: source deck,
control cards, and compiler output.

IKF2117I-E INVALID REPORT CHARACTER. PICTURE CHANGED TO 9.

Programmer Response: Probable user error. Supply valid
numeric edited character before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2118I-C LENGTH OF REDEFINES SUBJECT GREATER THAN LENGTH OF
REDEFINES OBJECT. SUBJECT LENGTH USED.

Programmer Response: Probable user error. Ensure that
length of redefined item is greater than or equal to length
of item that redefines it before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2119I-E VALUE CLAUSE SPECIFIED FOR AN ITEM IN A REDEFINES GROUP.

356

CLAUSE IGNORED.

Programmer Response: Probable user error. Delete VALUE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2120I-E OBJECT OF REDEFINES CLAUSE UNDEFINED OR ILLEGAL. CLAUSE
IGNORED.

Programmer Response: Probable user error. Correct object
of REDEFINES clause before recompiling.

If the problem recurs. have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2121I-W SUBJECT OF REDEFINES IS VARIABLE LENGTH.

Programmer Resp~: Probable user error. Remove DEPENDING
ON option from OCCURS clause which describes subject of
REDEFINES clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2122I-E REDEFINES SUBJECT LEVEL NUMBER NOT EQUAL TO REDEFINES OBJECT
LEVEL NUMBER OR OBJECT NOT IMMEDIATELY PRECEDING SUBJECT.
CLAUSE IGNORED.

Programmer Response: Probable user error. Correct
placement or level number of entry containing REDEFINES
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2123I-W OBJECT OF REDEFINES IS SUBSCRIPTED.

Programmer Response: Probable user error. Remove OCCURS
clause from description of object of REDEFINES or use method
other than REDEFINES statement to achieve desired purpose.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2124I-E OBJECT OF REDEFINES IS VARIABLE LENGTH GROUP ITEM.
REDEFINES CLAUSE IGNORED.

Programmer Response: Probable user error. Correct
definition of REDEFINES clause or use method other than
REDEFINES statement to achieve desired purpose.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
cont~ol cards, and compiler output.

IKF2125I-W VALUE CLAUSE TREATED AS COMMENTS FOR ITEMS IN FILE SECTION
AND LINKAGE SECTION.

Programmer Response: Probable user error. Remove VALUE
clause from items other than level-SS in File or Linkage
Section and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 357

IKF2126I-C VALUE CLAUSE LITERAL TOO LONG. TRUNCATED TO PICTURE SIZE.

Programmer ResEonse: Probable user error. Depending upon
the logic of the program, either correct length of PICTURE
or of the literal specified in the VALUE clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2121I-C NUMERIC VALUE CLAUSE SPECIFIED FOR GROUP ITEM. CLAUSE
IGNORED.

Programmer ResE~: Probable user e~ror. Specify a
nonnumeric literal or a figurative constant in the VALUE
clause or remove VALUE clause from group level and define
initial values at the elementary level before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2128I-C VALUE CLAUSE LITERAL DOES NOT CONFORM TO PICTURE. CHANGED
TO BLANKS.

Programmer ResQQnse: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2129I-C VALUE CLAUSE LITERAL DOES NOT CONFORM TO PICTURE. CHANGED
TO ZERO.

Programmer ResQonse: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2130I-E ITEM CANNOT HAVE VALUE CLAUSE. CLAUSE IGNORED.

Programmer ResE~: Probable user error. Delete VALUE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2131I-E RECORD KEY UNDEFINED OR NON-UNIQUE. KEY IGNORED.

358

Programmer ResEonse: Probable user error. Check the source
program for the possibility that either no data-name has
been specified for the RECORD KEY or the data-name has been
defined more than once. Correct the source statement(s) as
necessary, and then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2132I-E RECORD KEY LENGTH GREATER THAN 255 BYTES. USING FIRST 255
BYTES.

Programmer Response: Probable user error. Ensure that
RECORD KEY length does not exceed 255 bytes.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2133I-W LABEL RECORDS CLAUSE MISSING. DD CARD OPTION WILL BE TAKEN.

Programmer Response: Probable user error. Check to see
whether the LABEL RECORDS clause has been left out or if
another compiler error has caused the compiler to ignore
this card. Correct the source program and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2134I-C VALUE FOR SCALING CHARACTER SHOULD BE ZERO. CHANGED TO
ZERO.

Programmer ResPQ~: Probable user error. Change value to
zero before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2135I-C RECORD DESCRIPTION VARIABLE FOR INDEXED OR RELATIVE FILE.
ASSUMED FIXED SIZE TAKEN FROM MAXIMUM RECORD SIZE.

Programmer Response: Probable user error. Correct record
descriptions associated with the file so that each is the
same length before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2136I-E NOMINAL KEY LENGTH FOR INDEXED FILES GREATER THAN 255 BYTES.
KEY IGNORED.

Programmer RespQnse: Probable user error. Correct PICTURE
clause of data-name specified in the NOMINAL KEY clause to
reflect a length of 255 bytes or less before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2137I-E DATANAME-3 IS SUBORDINATE TO DATANAME-2 IN THE RENAMES THRU
CLAUSE. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct RENA¥~S
THRU clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 359

IKF2138I-W ITEM LENGTH GREATER THAN 32K. TRUNCATED TO 32K.

Programmer Response: Probable user error. Ensure that item
length does not exceed 32K.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2139I-W APPLY OVERFLOW CLAUSE ILLEGAL FOR V OR U MODE DIRECT FILES.
CLAUSE IGNORED.

Programmer Response: Probable user error. Delete APPLY
OVERFLOW clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2140I-E VALUE CLAUSE SPECIFIED ON BOTH GROUP AND ELEMENTARY ITEM OR
SUBORDINATE GROUP. SECOND ITEMtS VALUE CLAUSE IGNORED.

Programmer Resp~: Probable user error. Correct record
description to ensure that a VALUE clause does not appear
both on the group level and on a level subordinate to the
group level before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2141I-C LENGTH OF LITERAL IS MORE OR LESS THAN LENGTH OF GROUP.
LENGTH OF LITERAL ASSUMED.

Programmer Response: Probable user error. Either alter the
length of the group by correcting PICTURE clause
specifications or respecify VALUE clause for group before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2142I-E ALPHABETIC OR ALPHANUMERIC ITEM HAS ILLEGAL USAGE. PICTURE
CHANGED TO 9.

Programmer Response: Probable user error. Correct either
PICTURE or USAGE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2143I-W STERLING NON-REPORT PICTURE - MORE THAN ONE V OR S, ASSUMED
ONE.

360

Programmer Response: Probable user error. Correct PICTURE
clause for sterling non-report item and recompile if
necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2144I-W NUMERIC PICTURE - MORE THAN ONE V OR S. ASSUMED ONE.

Programmer Re~onse: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2145I-E ALPHABETIC OR ALPHANUMERIC ITEM LENGTH GREATER THAN 32767.
TRUNCATED TO 32767.

Programmer Response: Probable user error. Correct PICTURE
clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: ~ource deck,
control cards, and compiler output.

IKF2146I-W RECORD SIZE IN RECORD-CONTAINS CLAUSE DISAGREES WITH
COMPUTED RECORD SIZE. USING MAXIMUM COMPUTED SIZE.

Programmer Response: Probable user error. Correct RECORD
CONTAINS clause and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2147I-W 'RECORD CONTAINS INTEGER-l' IS NOT MINIMUM.

Programmer Response: Probable user error. Ensure 'RECORD
CONTAINS integer-l' is minimum before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2148I-W ON AN 01(77) COpy LIBRARY-NAME CLAUSE, LIBRARY DID NOT HAVE
AN 01(77) AS FIRST CARD.

Programmer Response: Probable user error. Correct first
entry of library member before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2149I-E VALUE CLAUSE SPECIFIED FOR ITEM WITH OCCURS OR FOR ITEM
SUBORDINATE TO AN ITEM WITH OCCURS. CLAUSE IGNORED.

Programmer ResPQnse: Probable user error. Delete VALUE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2150I-E VALUE CLAUSE SPECIFIED FOR ITEM IN VARIABLE LENGTH PORTION
OF A WORKING-STORAGE RECORD. CLAUSE IGNORED.

Programmer Response: Probable user error. Delete VALUE
clause before recompiling.

Appendix J: Diagnostic Messages 361

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2151I-C ELEMENTARY ITEMS NOT INTERNAL FLOATING-POINT MUST HAVE
PICTURE. PICTURE ASSUMED 9.

Programmer Response: Probable user error. Supply PICTURE
clause for item before recomp"iling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2152I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

~xplanation: Phase 2 input is unrecognizable. Skipping to
next phase.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF2153I-W DATA-NAME OF TRACK-AREA CLAUSE IS NOT AN ITEM OF LEVEL 01 OR
71 IN WORKING-STORAGE. CLAUSE IGNORED.

Programmer Response: Probable user error. Ensure data-name
of track-area clause is a level-11 or -01 item.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2154I-C THE AREA BEING REDEFINED IS NOT IMMEDIATELY PRECEDING THE
ENTRY WHICH REDEFINES IT OR THE LEVEL NUMBERS OF THE
SUBJECT AND OBJECT OF THE REDEFINES ARE NOT THE SAME. THE
OBJECT OF THE REDEFINES IS ASSUMED TO BE THE LAST ENTRY
WITH SAME LEVEL NUMBER AS SUBJECT OF REDEFINES.

Programmer Response: Probable user error. Correct level
number of subject and/or object of the REDEFINES clause, or,
if correct, check placement of object of REDEFINES to ensure
that it and its subordinate entries immediately precede the
subject before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2155I-C ILLEGAL STERLING NON-REPORT PICTURE CHARACTER. PICTURE
REPLACED BY 90801.

362

Programmer Response: Probable user error. Correct PICTURE
of sterling non-report item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2156I-W PICTURE DOES NOT CONTAIN A SIGN. SIGN DROPPED FROM VALUE
CLAUSE LITERAL.

Programmer Res2Qnse: Probable user error. Include sign in
PICTURE clause before recompiling, or remove sign from
literal and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2157I-W NOMINAL KEY FOR A RELATIVE ORGANIZATION FILE MUST BE S9(8)
COMPUTATIONAL.

Programmer Response: Probable user error. Ensure nominal
key is S9(S) computational before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF215SI-D OCCURS DEPENDING ON VARIABLE IS IN VARIABLE PORTION OF A
RECORD. PROGRAM MAY NOT EXECUTE.

Programmer Response: Probable user error. Ensure that
DEPENDING ON variable is not in variable portion of record
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2159I-C OBJECT OF REDEFINES CLAUSE NOT DEFINED. PREVIOUS 01 ASSUMED
TO BE OBJECT.

Programmer Response: Probable user error. Define object of
REDEFINES clause and ensure that it and its subordinate
fiel4s immediately precede the subject before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2160I-E THE OBJECT OF THE RENAMES OR RENAMES THRU CLAUSE CANNOT
CONTAIN AN OCCURS OR OCCURS DEPENDING ON CLAUSE NOR MAY IT
BE SUBORDINATE TO AN ITEM THAT HAS ONE OF THESE CLAUSES.
STATEMENT DISCARDED.

Programmer Response: Probable user error. Supply a valid
RENAMES or RENAMES THRU object before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2161I-C PICTURE INVALID. ADJACENT C DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 363

IKF2162I-C PICTURE INVALID. ADJACENT D DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2163I-C PICTURE INVALID. MORE THAN 2 DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2164I-C PICTURE INVALID. NO STERLING DELIMITERS. ASSUMED PICTURE
L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2165I-C PICTURE INVALID. ONLY 1 STERLING DELIMITER. ASSUME PICTURE
L(6)9BDZ9BDZ9.

Programmer RespQnse: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2166I-C PICTURE INVALID. ERROR IN SHILLING FIELD. ASSUMED SHILLING
PICTURE Z9B.

Programmer Resp~: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2167I-C PICTURE INVALID. NUMBER OF POUND DIGITS EXCEEDS 15.
ASSUMED PICTURE L(6)9BD.

Programmer ResPQnse: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2168I-C PICTURE INVALID. ERROR IN WHOLE PENCE FIELD. ASSUMED PENCE
PICTURE Z9.

364

Programmer ResPQnse: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2169I-C PICTURE INVALID. ERROR IN DECIMAL PENCE FIELD. DECIMAL
FIELD TRUNCATED.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the foliowing available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2170I-C PICTURE INVALID. ERROR IN POUND FIELD. ASSUMED POUND
PICTURE L(6)9B.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2171I-C PICTURE INVALID. NUMBER OF POUND DIGITS PLUS NUMBER OF
PENCE DECIMAL EXCEEDS 15. DECIMAL PENCE DROPPED.

Programmer Respons~: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2172I-C PICTURE INVALID. SIZE OF REPORT FIELD EXCEEDS 127 BYTES.
ASSUMED PICTURE L(6)9BDZ9BDZ9.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2173I-C PICTURE INVALID. CR OR DB NOT VALID WITH LEADING SIGN.

IKF2174I-C

DECIMAL FIELD TRUNCATED.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

PICTURE INVALID.
LEADING SIGN.

SIGN IN DECIMAL PENCE FIELD NOT VALID WITH
DECIMAL FIELD TRUNCATED.

Programmer Response: Probable user error. Correct PICTURE
clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 365

IKF2175I-W TRACK-AREA EXCEEDS AND IS REDUCED TO 32,760 BYTES.

Programmer Response: Probable user error. Correct integer
specification in TRACK-AREA clause and recompile if
necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2176I-W DATA-NAME OF TRACK-AREA CLAUSE EXCEEDS 32,767 BYTES IN
LENGTH. CLAUSE IGNORED.

Programmer ResQ2nse: Probable user error. Ensure data-name
does not exceed 32,767 bytes before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2177I-W DATA-NAME OF TRACK-AREA CLAUSE IS NOT FIXED-LENGTH. CLAUSE
IGNORED.

Programmer RespQnse: Probable user error. Ensure data-name
is fixed length before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2178I-E RECORD KEY IS NOT WITHIN FILE RECORD.

Programmer Response: Probable user error. Ensure that the
data-name specified in the RECORD KEY clause is defined
within the file record before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2179I-E RECORD KEY IS NOT FIXED LENGTH.

Programmer Response: Probable user error. Define the
data-name specified in the RECORD KEY clause as a fixed
length item before recompiling.

If the problem recurs, have the following available
before calling I.BM for programming support: source deck,
control cards, and compiler output.

IKF2180I-E RECORD KEY FOR UNBLOCKED FILE INCLUDES FIRST BYTE OF RECORD.

Programmer Response: Probable user error. For an unblocked
file, correct the placement of the description of the
data-name specified in the RECORD CONTAINS clause so that it
excludes the first byte of the record before recompiling.
If blocked records are desired, add or correct the BLOCK
CONTAINS clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2181I-E NOMINAL OR ACTUAL KEY IS DEFINED WITHIN THE FILE.

366

Programmer Response: Probable user error. Define the
data-name specified in the NOMINAL KEY clause in the
Working-Storage Section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2182I-W APPLY WRITE-ONLY IS MEANINGLESS WHEN RECORDING MODE IS F OR
U. CLAUSE IGNORED.

Programmer Response: Probable user error. Delete APPLY
WRITE-ONLY and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2183I-W NO 01 LEVEL SD OR FD.

Programmer Response: Probable user error. Supply a valid
record description entry for the FD or SD before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2184I-E VALUE CLAUSE LITERAL DOES NOT CONFORM TO PICTURE. CLAUSE
IGNORED.

Programmer Response: Probable user error. Supply valid
literal before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2185I-E DATA-NAME-3 EITHER PRECEDES DATA-NAME-2 OR IS DATA-NAME-2 IN
THE RENAMES THRU CLAUSE. STATEMENT DISCARDED.

Programmer RespQnse: Probable user error. Supply valid
objects of RENAMES clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
~ontrol cards, and compiler output.

'IKF2186I-C PICTURE DUPLICATION FACTOR IS ZERO. ASSUMING ONE OCCURRENCE
OF PICTURE CHARACTER.

Programmer Response: Probable user error. If a PICTURE
duplications factor is required, supply a non-zero integer
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control ~ards, and compiler output.

IKF2187I-E OBJECT OF RENAMES CLAUSE OR RENAMES THRU CLAUSE IS NOT IN
THE SAME LOGICAL RECORD. STATEMENT DISCARDED.

Programmer Response: Probable user error. Supply valid
objects of the REN~MES clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 367

IKF2188I-C EXTERNAL FLOATING-POINT PICTURE ILLEGAL WHEN CURRENCY SIGN
IS E. PICTURE CHANGED TO 9.

I IKF2189I-W

Programmer Response: Probable user error. Supply valid
PICTURE clause before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

'BLOCK CONTAINS 0' OPTION ILLEGAL FOR BISAM OR WITH 'SAME
AREA' CLAUSE. 'BLOCK CONTAINS' CLAUSE IGNORED.

Programmer Response: Probable user error. Delete 'BLOCK
CONTAINS 0 RECORDS' or 'SAME AREA' clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2190I-W PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED
POSITIVE.

Programmer Response: Probable user error. If a negative
value is intended, respecify the VALUE clause before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2191I-C THE SYNCHRONIZED CLAUSE SHOULD NOT BE SPECIFIED WHEN 88'S
ARE UNDER GROUP. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Remove
SYNCHRONIZED clause from group with which condition-names
(88's) are associated before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2192I-C ONLY USAGE IS DISPLAY SHOULD BE SPECIFIED WHEN A VALUE
CLAUSE IS ASSOCIATED WITH A GROUP ITEM.

Programmer Response: Probable user error. Remove clauses
other than USAGE IS DISPLAY and VALUE from group level
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2195I-E UNIT RECORD DEVICE ILLEGAL FOR RECORDING MODE S. RECORDING
MODE V ASSUMED.

368

Programmer Resp~: Probable user error. Ensure unit
record device is compatible with recording mode and
recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2199I-W ZERO SUPPRESSION CHARACTER WILL OVERRIDE BLANK WHEN ZERO
CLAUSE. CLAUSE IGNORED.

Programmer Res2Qnse: Probable user error. Delete 'BLANK
WHEN ZERO' clause and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2200I-W INVALID ALPHANUMERIC EDITED CHARACTER. STATEMENT ACCEPTED
AS WRITTEN.

Programmer Res2Qnse: Probable user error. Check the source
statement to be sure that use of the PICTURE character
string is restricted to combinations of the symbols 'A',
'X', '9', 'B', and '0'. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2201I-C SYNCHRONIZED ITEM NOT ON PROPER BOUNDARY. NO ALIGNMENT
PERFORMED BECAUSE STARTING ADDRESS OF THE REDEFINING ITEM
WOULD HAVE TO BE CHANGED.

Programmer Response: Probable user error. Ensure
synchronized item is on proper boundary before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2203I-C NUMERIC EDITED PICTURE - NO NUMERIC CHARACTERS IN PICTURE.
PICTURE CHANGED TO 9(1).

Programmer ResEQ~: Probable user error. Ensure PICTURE
is correct and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2223I-C PICTURE LENGTH WOULD CAUSE OVERFLOW FROM REPORT LINE AT
SPECIFIED COLUMN. TRUNCATED TO AVAILABLE SIZE.

Programmer Response: Probable user error. Redefine PICTURE
length for the item indicated, and then recompile the
program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2224I-C 'OCCURS 0 TIMES' (WITH OR WITHOUT THE 'DEPENDING ON' OPTION)
-IS ILLEGAL. 1 OCCURRENCE ASSUMED.

Programmer ResEonse: Probable user error. Correct the
source so that the integer representing the number of
occurrences is greater than zero and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 369

IKF2226I-E TOTALING AREA DATA NAME NOT FOUND.

Programmer Response: Probable user error. Ensure that the
TOTALING AREA data name is defined in the COBOL source
statements.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF2227I-E TOTALING AREA DATA NAME NOT DEFINED IN WORKING-STORAGE
SECTION.

Programmer Response: Probable user error. Ensure that the
data name associated with the TOTALING AREA option is
defined in the WORKING-STORAGE Section of the COBOL source
statements ..

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3001I-E ***** NOT DEFINED.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Define the
indicated name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3002I-E ***** NOT UNIQUE.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Remove
duplication by qualification or by substituting another name
for the indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3003I-E HIGHEST LEVEL QUALIFIER ***** NOT DEFINED.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Define the
qualifier indicated before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3004I-W QUALIFYING NAME NOT UNIQUE. DISCARDED.

370

Explanation: This message always appears in conjunction
with another message.

Programmer ResPQ~: Probable user error. Remove
duplication by substituting another name for indicated item
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3005I-E ***** NOT A VALID QUALIFIER.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Correct
indicated name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3006I-E ***** NOT DEFINED AS PART OF *****.

Explanation: This message always appears in conjunction
with another message.

Programmer Response: Probable user error. Define indicated
name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3007I-W ***** NOT UNIQUELY QUALIFIED BY *****.

Explanation: This message always appears in conjunction
with another message.

Programmer ResEQnse: Probable user error. Correctly
qualify indicated name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF300BI-E ***** NOT VALID AS IDENTIFIER-l IN ***** CORRESPONDING
STATEMENT.

Programmer Response: Probable user error. Correct invalid
item in the indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source dec~,
control cards, and compiler output.

IKF3009I-E ***** NOT VALID AS IDENTIFIER-2 IN ***** CORRESPONDING
STATEMENT.

Programmer ResP2ns~: Probable user error. Correct
identifier-2 in the indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3010I-W SUPERFLUOUS 'TO' IGNORED IN ***** CORRESPONDING STATEMENT.

Programmer Response: Probable user error. Remove
superfluous TO from indicated statement and recompile if
necessary.

Appendix J: Diagnostic Messages 371

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3011I-W NO CORRESPONDENCE FOUND BETWEEN IDENTIFIER-l AND *****.

Programmer Response: Probable user error. Set up the
correct correspondence between the identifiers before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3012I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: No matched DCB in QFILE table.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF3013I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: The dictionary pointer is less than the QVAR
entry for elementary item.

Programmer ResPQ~: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF3014I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: No match has been found in QVAR table for
elementary item.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF3016I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Error in processing CORRESPONDING option.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM 'for programming support: source deck, control cards,
and compiler output.

IKF3017I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

372

Explanation: Minor code is invalid.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF3018I-E SPECIAL REGISTERS TlME-OF-DAY OR CURRENT-DATE MAY ONLY BE
USED IN THE MOVE STATEMENT.

Programmer Response: Probable user error. Remove
references to TIME-OF-DAY and CURRENT-DATE from statements
other than MOVE before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3019I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Invalid level found while processing glossary.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF3020I-E REPORT NAME ILLEGAL AS USED. DISCARDED.

Explanation: Report name is invalid as used.

Programmer Response: Probable user error. Report-name may
be specified only in the GENERATE, INITIATE, or TERMINATE
statements. Remove all other references before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3021I-C ***** NOT UNIQUE IN ITS GROUP. DISCARDED.

Programmer Response: Probable user error. Eliminate
duplication of indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3022I-E ***** NOT VALID AS IDENTIFIER-l IN SEARCH STATEMENT.

Programmer Response: Probable user error. Correct
identifier-l before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3023I-W ITEMS CONTAINING THE USAGE IS INDEX, REDEFINES, RENAMES OR
OCCURS CLAUSES DO NOT QUALIFY AS CORRESPONDING DATANAMES.

Programmer Response: Probable user error. Make any
necessary corrections before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3024I-E NO KEYS WERE SPECIFIED FOR *****. STATEMENT DISCARDED.

Programmer ResPQnse: Probable user error. Define keys
specified as identifier-l in SEARCH statement before
recompiling.

Appendix J: Diagnostic Messages 373

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3025I-E AN ERROR WAS DETECTED PROCESSING THE KEYS FOR *****.

Programmer Response: Probable user error. For a SEARCH ALL
statement, check if the KEY option appears in the OCCURS
clause of identifier-l; for a SEARCH statement, ensure that
INDEXED BY option is specified. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3026I-E DATANAME-2 OMITTED IN ***** CORRESPONDING STATEMENT.

Programmer Response: Probable user error. Supply
data-name-2 in indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3027I-W DATANAME UNDER LABEL RECORD IS NON-UNIQUE. LAST DATA
DESCRIPTION OF ***** IS ASSUMED.

Programmer Response: Probable user error. Eliminate
duplicate use of data-name and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3028I-E SPECIAL REGISTERS MAY NOT BE USED WITH ACCEPT DISPLAY OR
EXHIBIT VERBS. *****.

Programmer Response: Probable user error. Check the use of
special registers as operands. None may be used with either
DISPLAY or EXHIBIT; only TALLY may be used with ACCEPT.
Change the source statement(s) as necessary, and then
recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF3029I-E OCCURS DEPENDING ON OBJECT NOT DEFINED FOR *****.

Programmer Response: Probable user error. Ensure that the
object of the OCCURS DEPENDING ON clause is defined within
the COBOL program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4001I-C OUTCOME OF A PRECEDING CONDITION LEADS TO NON-EXISTENT 'NEXT
SENTENCE'. 'GOBACK' INSERTED.

374

Programmer Response: Probable user error. Add a sentence
after IF statement before recompiling, or if a "NOT TRUE"
evaluation of condition leads to a logical end of a program,
add a GOBACK statement and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4002I-E ***** STATEMENT INCOMPLETE. STATEMENT DISCARDED.

Programmer Response: Probable user erroro complete
indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4003I-E EXPECTING NEW STATEMENT. FOUND *****. DELETING TILL NEXT
VERB OR PROCEDURE NAME.

Programmer ResEonse: Probable user error. Replace
indicated item with a valid statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4004I-E *****1***** IS ILLEGALLY USED IN ***** STATEMENT.
DISCARDED.

Programmer ResPQ~: Probable user error. Replace
invalidly used items before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4005I-E ***** AND ***** VIOLATE RULE ABOUT LENGTH OF TRANSFORM
OPERANDS. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct length
of TRANSFORM statement operands before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4006I-C ***** STATEMENT CONTAINS UNPAIRED LEFT PARENTHESES.
OUTERMOST IGNORED.

Programmer Response: Probable user error. Ensure that a
corresponding right parenthesis appears for each left
parenthesis before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4007I-C ***** MISSING OR MISPLACED IN ***** STATEMENT. ASSUMED IN
REQUIRED POSITION.

Programmer Response: Probable user error. Supply missing
or misplaced item in indicated statement and recompile if
necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 375

IKF4008I-W SUPERFLUOUS ***** FOUND IN ***** STATEMENT. IGNORED.

Programmer Response: Probable user error. Remove
superfluous item from indicated statement before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4009I-E EXAMINE STATEMENT REQUIRES FIGURATIVE CONSTANT, SINGLE
ALPHANUMERIC CHARACTER OR l-DIGIT UNSIGNED NUMERIC
INTEGRAL LITERAL. FOUND *****. STATEMENT DELETED.

Programmer ResPQ~: Probable user error. Correct EXAMINE
statement operand before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4010I-C ***** STATEMENT CONTAINS UNPAIRED RIGHT PARENTHESES.
OUTERMOST IGNORED.

Proqrammer Response: Probable user error. Ensure that a
corresponding left parenthesis appears for each right
parenthesis before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4011I-E ***** IS NOT AN ALLOWABLE CHARACTER FOR *****. STATEMENT
DISCARDED.

Programmer Response: Probable user error. Correct
indicated statement or option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4012I-E COMPARISON BETWEEN TWO LITERALS IS ILLEGAL. TEST DISCARDED.

Programmer Respons~: Probable user error. Correct operands
of comparison before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4013I-C RELATIONAL MISSING IN IF OR CONDITIONAL STATEMENT. ASSUMED
EQUAL.

376

Programmer Response: Probable user error. Supply desired
relational operator in IF or conditional statement before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4014I-E EXAMINE STATEMENT REQUIRES DATA-NAME WHOSE USAGE IS DISPLAY.
FOUND *****/*****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Supply valid
EXAMINE statement operand before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4015I-E 'GO TO.' IS ILLEGAL UNLESS ALTERED. STATEMENT DISCARDED.

Programmer Response: Probable user error. Insert proper
ALTER statement and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4016I-C OPERAND OF ***** APPEARS IN WRONG SEGMENT OF PROGRAM.
STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Place operand of
indicated statement in the proper segment before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4017I-E ELSE UNMATCHED BY CONDITION IS DISCARDED.

Programmer ResPQ~: Probable user error. Correct logic of
nested IF condition before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4018I-E SET STATEMENT HAS AN ILLEGAL OPERAND BEFORE 'TO' :OR
INCOMPATIBLE OPERANDS. OPERAND BEFORE 'TO' DISCARDED.

Programmer Response: Probable user error. Correct SET
statement operand(s) before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4019I-E *****/***** MAY NOT BE USED AS ARITHMETIC OPERAND IN *****
STATEMENT. ARBITRARILY SUBSTITUTING *****.

Programmer Response: Probable user error. Correct item in
indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4020I-C SIGN BEFORE ***** IS DISCARDED.

Programmer Response: Probable user error. Remove illegal
sign from indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 377

IKF4021I-W MINUS SIGN FOLLOWED BY SPACE ACCEPTED AS REVERSING SIGN OF
FOLLOWING LITERAL.

Programmer Response: Probable user error. Delete space
after minus sign and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4022I-C EXIT MUST BE SINGLE-WORD PARAGRAPH PRECEDED BY A
PROCEDURE-NAME. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct syntax
of EXIT statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4023I-E STORE-FIELD WHEN USED IN COMPUTATION MUST BE NUMERIC
DATA-NAME, OTHERWISE IT MUST BE REPORT ITEM OR NUMERIC
DATA-NAME. FOUND *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Respecify item
as numeric or replace name of store field before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4024I-E TWO OPERANDS ARE REQUIRED BEFORE 'GIVING'. STATEMENT
DISCARDED.

Programmer Response: Probable user error. Correct syntax
of arithmetic statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4026I-E *****/***** IS ILLEGALLY USED IN ***** TEST. TEST
DISCARDED.

Programmer Response: Probable user error. Correct
operand(s) of indicated test before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4027I-C RIGHT TERM OF A CONDITION MAY NOT BE NEGATED. NEGATION IS
APPLIED TO THE RELATIONAL.

Programmer Response: Probable user error. Correct
placement of NOT operator in relation condition before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4028I-C TWO 'NOT'S' IN SUCCESSION ILLEGAL. ACCEPTED AS CANCELLING
EACH OTHER.

378

Programmer Response: Probable user error. Remove one of
NOT operators in relation condition before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck
control cards, and compiler output.

IKF4029I-E *****/***** MAY NOT BE COMPARED WITH *****/*****. TEST
DISCARDED.

Prograwmer Response: Probable user error. Correct operands
of relation condition before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4030I-E FOUND '*****' AFTER CONDITION, EXPECT 'OR', 'AND', OR VERB
TO IMMEDIATELY FOLLOW CONDITION. DELETING TILL ONE OF
THESE IS FOUND.

Programmer Response: Probable user error. Ensure that
either OR, AND, or an imperative-statement follows condition
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4031I-E PROCEDURE-NAME NOT THAT OF A SINGLE GO PARAGRAPH MAY NOT BE
ALTERED. STATEMENT DISCARDED.

Programmer RespQnse: Probable user error. Correct operand
of ALTER statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4032I-C NO ACTION INDICATED IF PRECEDING CONDITION IS TRUE. NEXT
SENTENCE ASSUMED.

Proqrammer RespQnse: Probable user error. Correct
formation of IF statement before recompiling.

If the problem recurs, have the following available,
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4033I-E PROCEDURE-NAME WHICH IS THE END-OF-RANGE OF A PERFORM
STATEMENT MAY NOT BE ALTERED. STATEMENT DISCARDED.

Programmer RespQnse: Probable user error. Correct operand
of ALTER statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4034I-C GO DEPENDING ON MUST BE FOLLOWED BY INTEGRAL IDENTIFIER LESS
THAN OR EQUAL TO 4 DIGITS IN LENGTH. FOUND *****.
STATEMENT DISCARDED.

Programmer Response: Probable user error. Supply valid
operand of DEPENDING ON option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 379

IKF4035I-W NO MORE THAN 3 DATA-NAMES SHOULD BE VARIED IN PERFORM
STATEMENT. STATEMENT ACCEPTED AS WRITTEN.

Explanation: This compiler can normally handle a program
varying more than three data-names, but the practice is
invalid under standard COBOL language rules and is not
recommended.

Programmer Response: If desired, limit number of operands
of VARYING option and recompil~if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4036I-W PERFORM RANGE IS FROM ***** TO *****, WHICH PRECEDES IT.
STATEMENT ACCEPTED AS WRITTEN.

Explanation: This compiler can normally handle the perform
range indicated, but the practice is not recommended.

Programmer Response: If desired, change operands of PERFORM
statement and re~ompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards" and compiler output.

IKF4037I-E SYNTAX REQUIRES PROCEDURE-NAME TO FOLLOW 'THRU'. FOUND
*****. ***** OPTION DISCARDED.

Programmer Response: Probable user error. Correct syntax
of PERFORM statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4038I-E VARYING OPTION REQUIRES NUMERIC DATA-NAME. FOUND LITERAL.
ARBITRARILY SUBSTITUTING *****

Programmer Response: Probable user error. Correct operand
of VARYING option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4039I-E *****/***** IN VARYING/TIMES OPTION IS NOT NUMERIC.

380

ARBITRARILY SUBSTITUTING *****.

Programmer ResEonse: Probable user error. Correct operand
of VARYING or TIMES option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4040I-E ***** FILE ***** MAY NOT BE OPENED ***** AND IS DISCARDED.

Programmer Response: Probable user error. Correct OPEN
option for indicated file before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4041I-E SYNTAX REQUIRES 'INPUT', 'OUTPUT', OR 'I/O' AFTER OPEN.
FOUND *****. DELETING TILL ONE OF THESE IS FOUND.

Programmer Response: Probable user error. Correct syntax
of OPEN statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4042I-E SYNTAX REQUIRES FILE-NAME IN ***** STATEMENT. FOUND *****.
DELETING TILL LEGAL ELEMENT FOUND.

Programmer Response: Probable user error. Supply valid
file-name in indicated statement before recompilipg.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4043I-W REWRITE STATEMENT SHOULD NOT BE USED WITH A DIRECT BDAM-D
FILE. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Ensure that if
REWRITE is used for a direct file, the system-name in the
ASSIGN clause contains a 'W' in the organization field.
Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4044I-C .~****. SHOULD NOT BE MOVED TO NUMERIC FIELD. SUBSTITUTING
*****.

Programmer Response: Probable user error. Either correct
usage of items moved to numeric field or correct usage of
field before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4045I-C 'ADVANCING' OPTION MUST BE FOLLOWED BY MNEMONIC NAME,
NUMERIC INTEGRAL DATANAME OR INTEGER LESS THAN 100. FOUND
*****. SUBSTITUTING *****.

Programmer Response: Probable user error. Include as
identifier-2 in the WRITE statement a mnemonic name, a
numeric integral data-name, or an integer less than 100.
Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 381

IKF4046I-E iLLEGAL TO *****/***** FILE *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. correct the
invalid specification for the indicated file before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4047I-E READ OR WRITE VERB ILLEGAL FOR LABEL RECORDS. STATEMENT
DISCARDED.

Programmer Response: Probable user error. Ensure that if
data-names specified in the LABEL RECORDS clause are
described in the Linkage Section, all READ and WRITE
statements for the file are in the program that contains the
Linkage Section.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4048I-E USE VERB MAY NOT APPEAR EXCEPT IN DECLARATIVES SECTION.
STATEMENT DISCARDED.

Programmer Response: Probable user ~rror. Remove USE
statement from non-declarative portion of Procedure Division
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4049I-W INAPPROPRIATE OPTIONAL COBOL WORDS PRECEDING ***** IGNORED.

Programmer ResPQnse: Probable user error. Remove
inappropriate words preceding indicated entry before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IRF4050I-E SYNTAX REQUIRES *****. FOUND *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct syntax
of statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4051I-E 'AFTER POSITIONING' REQUIRES i-CHARACTER ALPHANUMERIC DATA
NAME OR INTEGER LESS THAN 4. FOUND *****. SUBSTITUTING
*****.

382

Programmer Response: Probable user error. Check the WRITE
statement with the AFTER POSITIONING option. If necessary,
rewrite the statement to include either identifier-2 as
PICTURE X or the integer 0, 1, 2, or 3. Then recompile the
program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler o·utput.

IKF4052I-E *****/***** MAY NOT BE TARGET FIELD FOR *****/***** IN *****
STATEMENT, AND IS DISCARDED.

Programmer Response: Probable user error. Correct operands
of indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4053I-E POSITIONING VALID FOR CLOSE REEL WHILE DISP VALID FOR CLOSE.
***** FILE SKIPPED.

Programmer Response: Probable. user error. Use either the
CLOSE statement with the DISP option or the CLOSE statement
with both the REEL option and the POSITIONING option.
Rewrite the source statement as necessary; then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4054I-E SYNTAX REQUIRES SORT-FILE NAME. FOUND *****. STATEMENT
DISCARDED.

Programmer RespQnse: Probable user error. Supply valid
sort-file-name before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4055I-C SORT SEQUENCE NOT SPECIFIED. ASCENDING ASSUMED.

Programmer ResPQnse: Probable user error. Specify
ASCENDING and/or DESCENDING option and recompile if
necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4056I-E SYNTAX REQUIRES *****. FOUND *****. DISCARDED.

Programmer Response: Probable user error. Correct syntax
of statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4057I-E NUMBER OF SORT KEYS EXCEEDS MAXIMUM OR TOTAL KEY LENGTH
EXCEEDS 256 BYTES. ***** DISCARDED.

Programmer ResPQnse: Probable user error. Ensure that the
number of sort keys is no more than 12 and the total length
of all keys does not exceed 256 bytes before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 383

IKF4058I-E SYNTAX REQUIRES 'USING' ('GIVING') TO BE FOLLOWED BY
STANDARD SEQUENTIAL FILE-NAME DEFINED UNDER AN FD. FOUND
*****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct syntax
to include standard sequential file-name and recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4059I-E SORT-KEY MUST BE NON-SUBSCRIPTED ~IXED-LENGTH DATA-NAME
DEFINED UNDER AN SD. FOUND *****. DISCARDED.

Programmer Response: Probable user error. Correct type
and/or position of sort key before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4060I-C ***** IS NOT A POSITIVE NUMERIC INTEGRAL LITERAL OF REQUIRED
LENGTH. ***** OPTION DISCARDED.

Programmer Response: Probable user error. Correct operand
of indicated option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4061I-W NEITHER NAMED NOR CHANGED SPECIFIED. STATEMENT ACCEPTED.
WILL BE TREATED AS FORMATTED DISPLAY.

Programmer Response: Probable user error. Specify an
EXHIBIT statement option before recompiling.

If the proble~ recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4062I-W "NAMED CHANGED' : ACCEPTED AS 'CHANGED NAMED'.

Programmer Response: Probable user error. Correct EXHIBIT
statement option and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4063I-W PREVIOUS DEBUG PACKET REFERS TO SAME PROCEDURE-NAME. CARD
DELETED AND FOLLOWING STATEMENTS ATTACHED TO IMMEDIATELY
PRECEDING PACKET.

384

Programmer Response: Probable user error. Ensure that only
one DEBUG packet refers to a given location in program
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4064I-E ***** IS NOT A POSITIVE NUMERIC INTEGRAL LITERAL OF REQUIRED
LENGTH. SUBSTITUTING *****.

Programmer Response: Probable user error. Correct
indicated entry before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4065I-W NUMERIC LITERAL IN EXAMINE STATEMENT SHOULD BE UNSIGNED.
SIGN IGNORED.

Programmer Response: Probable user error. Remove sign from
numeric literal and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4066I-E SYNTAX REQUIRES 01 LEVEL SD DATA-NAME IN RELEASE STATEMENT.
FOUND*****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct RELEASE
statement operand before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4067I-W ALL CHARACTER SHOULD NOT BE USED AS LITERAL IN EXAMINE
STATEMENT. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Supply valid
literal in EXAMINE statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4068I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Undefined data attribute.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF4069I-C SYNTAX REQUIRES DEVICE-NAME. FOUND ***** IN *****
STATEMENT. SYSTEM UNIT ASSUMED.

Programmer Response: Probable user error. Specify a valid
device-name or mnemonic-name associated with a device-name
in the SPECIAL-NAMES paragraph before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 3.85

IKF4070I-C 'AT-END' CLAUSE REQUIRED HERE. 'AT-END-NEXT-SENTENCE'
ASSUMED.

Programmer Response: Probable user error. Insert in the
source statement at AT END option followed by an imperative
statement. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4071I-E ***** EXCEEDS LEGAL LENGTH. DISCARDED.

Programmer Response: Probable user error. Correct length
of indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4072I-W EXIT FROM ***~* PROCEDURE ASSUMED BEFORE *****.

Programmer Response: Probable user error. Ensure that END
DECLARATIVES, a section-name within the declaratives
section, or the end of the range of the PERFORM exists
following routine before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4073I-W ***** SHOULD NOT APPEAR IN DECLARATIVE SECTION. STATEMENT
ACCEPTED AS WRITTEN.

Explanation: The statement will be compiled, but its use is
illegal under standard COBOL rules and is not recommended.

Programmer Response: Probable user error. Remove indicated
statement from declarative section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4074I-C STATEMENT CONTAINS FLOATING POINT DATA ITEMS. REMAINDER
IGNORED.

Programmer Response: Probable user error. If the REMAINDER
option of the DIVIDE statement is required, ensure that none
of the operands are floating-point items before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4015I-C 'NEXT SENTENCE' ILLEGAL AND DISCARDED. BOTH ***** AND NOT
***** WILL CAUSE EXECUTION OF NEXT VERB.

386

Programmer Response: Probable user error. Remove illegal
NEXT SENTENCE specification from AT END, ON SIZE ERROR, or
END-OF-PAGE options before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4076I-E ~**** REQUIRES ***** LEVELS OF SUBSCRIPTING OR INDEXING.
SUBSTITUTING FIRST OCCURRENCE OF *****.

Programmer Response: Probable user error. Providerequired
level of subscripting or indexing for indicated item before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4077I-E ***** MAY NOT BE USED AS A SUBSCRIPT SINCE IT REQUIRES
SUBSCRIPTING ITSELF. SUBSTITUTING FIRST OCCURRENCE OF
*****.

Programmer Response: Probable user error. Provide a
subscript that itself requires no subscripting before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4078I-E SUBSCRIPT MUST BE INTEGRAL DATA-NAME OR LITERAL. FOUND
NON-INTEGER *****. SUBSTITUTING FIRST OCCURRENCE OF
*****.

Programmer Response: Probable user error. Ensure that
subscript is either a data-name representing an integral
value or a literal before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4079I-E ***** FOUND AMONG SUBSCRIPTS. SUBSTITUTING FIRST OCCURRENCE
OF *****.

Programmer Response: Probable user error. Substitute valid
subscript for indicated item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4080I-W DEBUG CARD MAY NOT REFER TO A PROCEDURE NAME WHICH ITSELF IS
IN A DEBUG PACKET. CARD DELETED AND FOLLOWING STATEMENTS
ATTACHED TO IMMEDIATELY PRECEDING PACKET.

Programmer Response: Probable user error. Ensure that the
location specified on one DEBUG card is neither used on any
other DEBUG card, nor is a location within any other DEBUG
packet before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
eontrol cards, and compiler output.

IKF4081I-C ***** EXCEEDS ***** CHARACTERS. UP TO 114 ACCEPTED.

Programmer Response: Probable user error. Correct length
of operand before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 387

IKF4082I-E ***** IS NOT DEFINED AS SUBSCRIPTED OR INDEXED. SUBSCRIPTS
DISCARDED.

Programmer Response: Probable user error. Specify required
options of OCCURS clause for item before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4083I-E OCCURS-DEPENDING-ON VARIABLE MUST BE INTEGRAL
NON-SUBSCRIPTED DATA-NAME. FOUND *****. ARBITRARILY
SUBSTITUTING *****.

Programmer ResQQnse: Probable user error. Correct operand
of DEPENDING ON option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4084I-C ILLOGICAL USE OF PARENTHESES ACCEPTED WITH DOUBTS AS TO
MEANING.

Programmer Response: Probable user error. Check logic
behind use of parentheses before recompiling.

If the 'problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4085I-E RECORD DESCRIPTION FOR FILE ***** MISSING OR ILLEGAL.
STATEMENT DISCARDED.

Programmer Response: Probable user error. Ensure that any
errors detected by compiler during Data Division scan on
indicated file's record description are corrected before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4086I-C ***** CONDITION USED WHERE ONLY IMPERATIVE STATEMENTS ARE
LEGAL MAY CAUSE ERRORS IN PROCESSING.

Programmer Response: Probable user error. Ensure that
conditional statements do not appear where
imperative-statements are required before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4087I-E 'END DECLARATIVES' MISSING OR MISPLACED. PROGRAM CANNOT BE
EXECUTED.

388

Programmer Response: Probable user error. Ensure that the
end of the Declaratives Section has been indicated by an END
DECLARATIVES statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4088I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: I-C text count field is o. Skipping to phase
5.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for progra~ng support: source deck, control cards,
and compiler output.

IKF4089I-W *****/***** SHOULD NOT BE TARGET FIELD FOR *****/***** IN
***** STATEMENT. STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Correct operand
being used as target field in indicated statement before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4090I-E SORT-KEY MUST BE IN FIXED POSITION NOT MORE THAN 4092 BYTES
FROM START OF RECORD. ***** DISCARDED.

Programmer Response: Probable user error. Correct position
of sort key within record before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4091I-E SYNTAX REQUIRES OPERAND. FOUND *****. TEST DISCARDED.

Programmer Response: Probable user error. Supply a valid
operand for statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4092I-W EXTERNAL DECIMAL NAME USED IN TRANSFORM STATEMENT.
STATEMENT ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Ensure that
TRANSFORM statement operands are either alphabetic,
alphanumeric, or numeric edited items (identifier-3 only>,
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4093I-C ALL WRITE STATEMENTS FOR ***** SHOULD HAVE ***** OPTION.
***** ***** 1 LINE ASSUMED.

Programmer Response: Probable user error. Ensure that if a
WRITE statement with the ADVANCING or POSITIONING option is
written for a record in a file, every WRITE statement for
the file specifies the same option. Then recompile the
program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 389

IKF4094I-W ***** IS IN A RECORD OF AN APPLY-WRITE-ONLY FILE, AND
REFERRING TO IT MAY CAUSE ERRORS IF FILE IS OPENED AS
OUTPUT WHEN ***** STATEMENT IS EXECUTED.

Programmer Response: Probable user error. Referring to
subfields of records of a file for which APPLY WRITE-ONLY
has been specified is not recommended. Make any necessary
changes before recompiling.

If the program does not execute properly, and if after
taking out references the problem recurs, do the following
before calling IBM for programming support. Have source
deck, control cards, and compiler output available.

IKF4095I-E WRITE FROM IDENTIFIER REQUIRED FOR *****, TO WHICH
WRITE-ONLY IS APPLIED. STATEMENT DISCARDED.

Programmer Response: Probable user error. Specify WRITE
with the FROM option for files for which APPLY WRITE-ONLY
has been specified.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4096I-W ***** STATEMENT WILL NEVER BE EXECUTED.

Explanation: The logic of the COBOL source program prevents
the computer from executing the statement noted. The
compiler, however, accepts the statement as written.

Programmer Response: Probable user error. Check placement
of statement and recompile if necessary.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4097I-C UNIT(REEL) OPTION ILLEGAL FOR *****. DISCARDED.

Programmer Response: Probable user error. Remove illegal
option from indicated statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4098I-E 'ALTER' STATEMENT REFERS TO A GO ~O IN A DIFFERENT
INDEPENDENT SEGMENT. IGNORED.

Programmer Response: Probable user error. Ensure that the
operand of the ALTER statement refers to a paragraph-name
within an independent segment of the same priority as the
segment containing the ALTER statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4099I-E NO EXIT SPECIFIED BEFORE END OF THIS DECLARATIVE SECTION.

390

CONTROL WILL FALL THROUGH TO NEXT SECTION.

Programmer Response: Probable user error. Correct logic of
statements within Declaratives Section before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4100I-W IDENTIFIER FOLLOWING INTO (FROM) IN READ (WRITE) STATEMENT
SHOULD NOT BE DEFINED UNDER SAMEFD AS RECORD NAME.
STATEMENT ACCEPTED AS WRITTEN.

Programmer ResEQ~: Probable user error. Ensure that the
operand of the FROM or INTO option is an identifier that is
the name of a Working-Storage or Linkage Section item, or a
record of another file before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4101I-E SET STATEMENT REQUIRES OPERAND AFTER 'UP' OR 'DOWN' TO BE
NUMERIC INTEGRAL DATA-NAME OR POSITIVE INTEGRAL NUMERIC
LITERAL. FOUND *****. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct operand
of UP or DOWN option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4102I-E SET STATEMENT REQUIRES OPERAND AFTER 'TO' TO BE INDEX NAME,
INDEX DATA ITEM, NUMERIC INTEGRAL DATA-NAME OR INTEGRAL
NUMERIC LITERAL GREATER THAN ZERO. FOUND *****.
STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct operand
of TO option before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4103I-C ALL MUST BE FOLLOWED BY ALPHANUMERIC LITERAL. FOUND *****.
'ALL' DISCARDED.

Programmer Response: Probable user error. Correct
formation of figurative constant before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4104I-E SEARCH OR SEARCH ALL STATEMENT HAS EITHER SUBSCRIPTED OR
INDEXED IDENTIFIER-lOR ILLEGAL OPERAND. SCANNING TIL 'AT
END' OR 'WHEN' DELETING TIL ONE OF THESE IS FOUND.

Programmer Response: Probable user error. Correct operand
of SEARCH or SEARCH ALL statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 391

IKF410SI-E DATA-NAME CANNOT BE BOTH INDEXED AND SUBSCRIPTED IN *****
STATEMENT. SUBSCRIPTS DISCARDED.

Programmer Response: Probable user error. Correct
qualification of data-name in indicated statement before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4106I-E DATA-NAME MUST BE INDEXED BY INDEX NAME OR INDEX NAME PLUS
OR MINUS AN INTEGRAL NUMERIC·LITERAL. SUBSTITUTING FIRST
OCCURRENCE OF *****.

Programmer Response: Probable user error. Correct manner
in which data-name is indexed before recomp'iling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4107I-E ***** ILLEGAL FOR SORT FILE. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct invalid
specification indicated before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4108I-E CALLED PROGRAM MAY NOT BE SEGMENTED. ENTRY STATEMENT
IGNORED.

Programmer Response: Probable user error. Ensure that all
restrictions on subprogram linkage are followed before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4109I-E KEY IN SEARCH-ALL FLOATING POINT OR STERLING STATEMENT
CHANGED TO SEARCH STATEMENT.

Programmer Response: Probable user error. Ensure that keys
are either DISPLAY, COMPUTATIONAL, or COMPUTATIONAL-3 items
before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4110I-E CONDITION IN SEARCH ALL STATEMENT TESTS KEY WITHOUT TESTING
ALL PRECEDING KEYS. STATEMENT DISCARDED.

392

Programmer Response: Probable user error. Ensure that the
condition specified in the SEARCH ALL statement tests all
keys before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4111I-E INVALID CONDITION OR INVALID FORMULA IN CONDITION IN
SEARCH-ALL STATEMENT. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct
condition in SEARCH ALL statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4112I-W SET UP OR DOWN SHOULD NOT INCREMENT INDEX-NAME BY INDEX DATA
ITEM. ACCEPTED AS WRITTEN.

Programmer Response: Probable user error. Correct SET
statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4113I-E LABEL DECLARATIVE ILLEGAL FOR ISAM FILE *****. FILE
SKIPPED.

Programmer Response: Probable user error. Ensure that the
USE statement for labels associated with an indexed file
specifies only options compatible with standard label
processing. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4114I-E LABEL DECLARATIVE FOR BDAM FILE SHOULD NOT HAVE UNIT OR REEL
OPTION. • •••• FILE SKIPPED.

Programmer Response: Probable user error. Correct USE
statement associated with BDAM file before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4115I-E ***** STATEMENT REQUIRES IDENTIFIER WHOSE USAGE IS DISPLAY.
FOUND SPECIAL REGISTER. STATEMENT DISCARDED.

Programmer Response: Probable user error. For the
statement indicated, remove special register as an operand
and provide an identifier whose USAGE IS DISPLAY; then
recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF4141I-W IN A QSAM OR QISAM REWRITE, THE INVALID KEY CLAUSE HAS NO
MEANING AND IS IGNORED.

Programmer Response: Delete the INVALID KEY clause from the
statement indicated before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Appendix J: Diagnostic Messages 393

IKF5001I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: An unrecoverable compiler logic error or
machine error has occurred while trying to assign a double
register.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output with PMAP and DMAP.

IKF5002I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: An unrecoverable compiler logic error or
machine error occurred while processing a subscripted or
indexed data-name.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output with PMAP and DMAP.

IKF5003I-C A DIVISOR IS A ZERO CONSTANT. RESULT OF DIVIDE WILL BE SET
TO ALL 9'S.

IKF5004I-W

Programmer Response: Probable user error. Correct divisor
to prevent division by zero before recompiling.

If the problem recurs,do the following before calling
IBM for programming support. Have source deck, control
cards, and compiler output with PMAP and DMAP available.

ALPHANUMERIC SENDING FIELD EXCEEDS MAXIMUM PERMISSIBLE
SIZE. 18 LOW ORDER BYTES USED.

Programmer Response: Probable user error. Correct length
of alphanumeric sending field or receiving field before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support. Have source deck, control
cards, and compiler output with PMAP and DMAP available.

IKF5005I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: An unrecoverable compiler logic error or
machine error occurred while processing a move.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output with PMAP and DAMP.

IKF5006I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

394

Explanation: Unexpected input to the move or store
processor.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for prograrnndng support: source deck, control cards,
and compiler output with PMAP and DMAP.

IKF5007I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Unexpected input to the arithmetic code
generator.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue processing.
If the problem recurs, have the following available before
calling IBM for programming support: source deck, control
cards, and compiler output with PMAP and DMAP.

KF5008I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Unexpected input to the floating-point
arithmetic routine 'FPCVBH'~

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output with PMAP and DMAP.

IKF5009I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Lost subscript or index 10 in table ·XSSNT'.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output with PMAP and DMAP.

IKF5010I-C A CONSTANT INTERMEDIATE RESULT HAD TO HAVE ITS HIGH ORDER
DIGIT POSITION TRUNCATED.

Programmer Response: Probable user error. If high order
truncation is not desired, make necessary corrections before
recompiling.

If the problem recurs, do the following before calling
IBM for programming support. Have source deck, control
cards, and compiler output with PMAP and DMAP available.

IKF5011I-W AN INTERMEDIATE RESULT OR A SENDING FIELD MIGHT HAVE ITS
HIGH ORDER DIGIT POSITION TRUNCATED.

Programmer Response: Probable user error. If high order
truncation is not desired, make necessary corrections before
recompiling. If after making necessary correction, high
order truncation occurs, have the following available before
calling IBM for programming support: source deck, control
cards, and compiler output with PMAP and DMAP.

IKF5012I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Lost intermediate result attributes in 'XINTR'
table.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output with PMAP and DMAP.

I~5013I-C ILLEGAL COMPARISON OF TWO NUMERIC LITERALS. STATEMENT
DISCARDED.

Programmer Response: Probable user error. Correct operands
of the comparision before recompiling.

Appendix J: Diagnostic Messages 395

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output with PMAP and DMAP.

IKF5014I-E KEY IN SEARCH ALL AT INVALID OFFSET. STATEMENT DISCARDED.

Programmer Response: Probable user error. Correct offset
of key in SEARCH ALL statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output with PMAP and DMAP.

IKF5015I-E INVALID USE OF SPECIAL REGISTER. STATEMENT DISCARDED.

Programmer Response: Probable user error. Check
data-names, procedure-names, etc., to ensure that a special
register has not been used in an illegal capacity before
recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output with PMAP and DMAP.

IKF5016I-D MORE THAN 255 SUBSCRIPT ADDRESS CELLS USED. PROGRAM CANNOT
EXECUTE PROPERLY.

Programmer Response: The compiler has reached a point in
its processing where it has encountered an unrecoverable
error. If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output with PMAP and DMAP.

IKF5017I-W EXHIBIT CHANGED OPERAND GREATER THAN 256 BYTES. LENGTH OF
256 ASSUMED.

Programmer Response: Probable user error. Specify an
operand with length less than the 256 bytes for the EXHIBIT
CHANGED statement: then recompile.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output with PMAP and DMAP.

IKF5018I-W NAME OF IDENTIFIER IN EXHIBIT STATEMENT EXCEEDS MAXIMUM.
TRUNCATED TO 120.

Programmer Response: Probable user error. Correct operand
length in EXHIBIT statement before recompiling.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output with PMAP and DMAP.

Note: The preceding messages are grouped in the compiler output
listing. The following messages may be interspersed in the compiler
output listing.

IKF6001I-C ERROR FOUND PROCESSING FILE 4 TEXT. 00 CODE IN LISTING
TEXT.

396

Programmer Response: Probable user error. Correct the
other errors indicated in your source statements: then
recompile the program.

Page of GC28-6399-2, Revised 4/15/73, by TNL GN28-1038

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF6002I-C ERROR FOUND PROCESSING F4 TEXT. END OF LISTING TEXT
REACHED.

Programmer Response: Probable user error. Correct the
other errors indicated in your source statements; then
recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF6003I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

Explanation: Error found processing F4 text. Unknown data
A-TEXT code.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

IKF6004I-C ERROR FOUND PROCESSING FILE 4 TEXT. EOF REACHED WHILE
PROCESSING LISTING TEXT.

Programmer Response: Probable user error. Correct the
other errors indicated in your source statements; then
recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF6005I-D COMPILER ERROR. COMPILATION WILL NOT BE COMPLETE.

I IKF6006I-E

Explanation: Error found processing Fl text.

Programmer Response: The compiler has reached a point in
its processing where it is unable to continue. If the
problem recurs, have the following available before calling
IBM for programming support: source deck, control cards,
and compiler output.

SUPMAP SPECIFIED AND E-LEVEL DIAGNOSTIC HAS OCCURRED. P~P

LOAD DECK IGNORED.

Programmer Response: Probable user error. If even with a
severity level of E you want to take advantage of the
options indicated, as well as have the object code printed,
either replace SUPMAP with NOSUPMAP or let the compiler
default to it. Then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

IKF6007I-D TABLE HAS EXCEEDED MAXIMUM SIZE. PMAP, LOAD MODULE AND DECK
WILL BE INCOMPLETE. INCREASE SIZE PARAMETER.

Programmer Response: Probable user error. Increase the
size parameter, and then recompile. If the problem recurs,
have the following available before calling IBM for
programming support: source deck; control cards, and
compiler output.

Appendix J: Diagnostic Messages 397

OBJECT TIME MESSAGES

The following messages are preceded by a system-generated 2-character
numeric field, which is used to identify the program issuing the message
and may be required in the operator response.

IKFOOOA- xxx

IKF003I-

IKFlllI-

398

Explanation: This message is generated by the STOP
statement with the 'literal' option. The message text is
supplied by the object program and may indicate alternative
action to be taken.

System Action: The object program enters wait state.

Programmer Response: Probable user error. Check message
text supplied by the object program on alternative action to
be taken.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Operator Response: Probable user error. Follow
instructions given by the programmer when program was
submitted for execution. If the job step is to be resumed,
enter

REPLY xx, 'y'

where y is any single character. Processing continues.

Jobname, stepname, unit address, device type, ddname,
operation attempted, error description. Each of the
following fields if printed will vary in length:

UNIT RECORD--Access method
MAGNETIC TAPE--Relative block number (decimal), access

method
DIRECT ACCESS--Actual track address and block number

Programmer Respons~: Provide the additional control
information required; then recompile the program.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

EXCEPTIONAL I/O CONDITION SENSED PROCESSING ddname.

Explanation: This message is issued when a permanent
input/output error or some other exceptional input/output
condition has occurred and no provisions were made to handle
it within the COBOL program. The data set is not closed and
control is returned to the next higher level program.

Programmer Response: Probable user error. Include an
input/output error declarative for the appropriate file to
process the error condition.

If the problem recurs, have the following available
before call~ng IBM for programming support: source deck,
control cards, and compiler output.

Operator Response: Probable user error. Supply the
programmer with the console message.

IKF888I-

IKF990D-

IKF999I-

UNSUCCESSFUL SORT FOR SORT-FILE-NAME.

Explanation: The Systeml360 Operating System Sort/Merge
program has returned a nonzero code to the COBOL program and
the user has not specified the special register SORT-RETURN.

Programmer Response: Probable user error. Specify the
special register .SORT-RETURN and rerun the job.

If the problem recurs, have the following available
before calling IBM for programming support: source deck,
control cards, and compiler output.

Operator Response: Probable user error. User should have
indicated whether or not the job should be cancelled. The
user should not assume that any portion of the sort (e.g.,
Input or output Procedure) has been performed.

AWAITING REPLY

Explanation: This message is generated by an ACCEPT
statement with the FROM CONSOLE option.

Operator Response: Probable user error. Issue a REPLY
command. The contents of the text field should be supplied
by the programmer.

UNSUCCESSFUL OPEN FOR ddname.

Explanation: The operating system could not find a
corresponding ddname on a DO statement for a file assigned
in a SELECT clause or a file previously closed with LOCK.
DDNAME replaced by DDNAME of the file.

operator Response: Probable user error. User should have
indicated either to continue processing or to cancel the
job. Note that if the user elects to continue processing,
any READ or WRITE encountered for the file will result in a
ABEND.

Appendix J: Diagnostic Messages 399

DIAGNOSTIC MESSAGES -- MCS CONSIDERATIONS

All console messages issued by this compiler or its object code
include parameters for multiple console support. A description of these
parameters follows:

1. DISPLAY statement with the ON CONSOLE option (unnumbered) and all
object time write-to-operator (IKFlllI, IKF888I, IKF999I) messages
are assigned:

• a routing code of 2,11 (chief operator information/write
to-programmer)

• a descriptor code of 7 (problem program/processor message).

2. STOP 'literal' (IKFOOOA) and ACCEPT statement with the FROM CONSOLE
option (IKF990D) messages are assigned:

• a routing code of 2,11 (chief operator information/write
to-programmer)

• a descriptor.code of 2 (immediate action required).

3. Compiler console messages (IKF0003I) are assigned:

• a routing code of 2,11 (chief operator information/write
to-programmer)

• a descriptor code of 7 (problem program/processor message).

Each message includes the write-to-programmer parameter and uses a
system message block which then becomes unavailable until after the
message is printed. Since a maximum number of these system message
blocks must be specified by the installation's system programmer at the
time of system generation, it is possible for the number of messages
requiring system message blocks to exceed the number of blocks
available. If this occurs, the programmer is warned of the condition,
but all succeeding messages are ignored.

COBOL OBJECT PROGRAM UNNUMBERED MESSAGES

xxx •••

400

Explanation: This message is written on the console and is
recognizable because it is not preceded by a message code and
action indicator. It is generated by a DISPLAY statement with
the ON CONSOLE option. The message text is supplied by the
object program and may indicate alternative action to be
taken.

System Action: The job continues.

Operator Response: Operator response, if any is needed, is
determined by the message text.

This appendix contains a summary of the
major COBOL limits. Each limit is
categorized as applicable to a COBOL source
program in general or to one of several

APPENDIXK: A SUMMARY OF COBOL LIMITS

special features of this COBOL compiler.
In a number of cases, as indicated in the
summary, several factors together determine
the effective COBOL limits.

Table 36. General Limits for COBOL Source Programs (Part 1 of 2)
r-----------------------T--------------------------------T------------------------------,
I I User Specification I Limit I
~-----------------------f--------------------------------f------------------------------~

INumber of files per program 1255 minus the number of sort I
I Ifiles referred to in a SAME I
I IRECORD AREA clause. (See alsol
I IWorking-Storage Section.) I
I I I

Input-Output section INumber of records per file INo effective limit. I
I I I
INumber of characters per record IRecord length limits, which I
I lare set by data management, I
I lare affected by such file I
I Icharacteristics as device I
I I type, file type, and so on. I

~----------------~------f--------------------------------f------------------------------~ I ISize of numeric literal 118 digits. I
I I 1 I
I ISize of non-numeric literal 1120 characters. I
I I I I
IData Division ISize of a PICTURE 130 characters. I
I 1 I I
I I Number of data -names per I 1
I I program INo effective limit. I
~-----------------------f--------------------------------f------------------------------~ I ISize of Working-Storage IThe product of 4096 and (the I
I I Inumber 255 minus the number ofl
I I Ifile descriptions). I
I I I I
IWorking-Storage SectionlNumber of 01-level entries INo effective limit. I
I I I I
I ISize of a PICTURE 130 characters. I
~-----------------------+--------------------------------+---~--------------------------~
I INumber of paragraphs per 65,535 or less, depending on 1
I I program the length of paragraph-names I
I and section-names. I
I 1
I Number of statements per Set by the number of internal I
I program counters. For example, there I
I can be a maximum of 65,535 I
I generated names. I
I I
I Size of statements No effective limit. I
I I
IProcedure Division Size of operand in ACCEPT or 131,011 characters. I
I DISPLAY statement I
I I
I Size of non-numeric op~rand in 131,011 characters. I
I a comparison I
I I
I Size of numeric operand in a 18 digits. I
I comparison I L _______________________ ~ ________________________________ ~ ______________________________ J

Appendix K: A Summary of COBOL Limits 401

Table 36. General Limits for COBOL Source Programs (Part 2 of 2)
r---~-------------------T--------------------------------T------------------------------, I 1 User specification 1 Limi t 1
~-.---.-------------------+.--------------------------------+------------------------------1
IPr'ocedure Division INumber of nested conditions INo effective limit. I
I (continued) Iper sentence I 1
I I I 1
I INumber of receiving fields in a INo effective limit. I
I IMOVE sequence I I
~--~-------------------f--------------------------------f------------------------------~ I I Literals 116,255; the total length of I
I 1 lall literals may not exceed 1
I I 132,511 bytes. I L __ • ______ • _____________ ~ ________________________________ ~ ______________________________ J

'I'able 37. Limits for Special Features of COBOL
r----~------------------T--------------------------------T------------------------------,
I I User Specification I Limit I
~~-~-------------------+--------------------------------+------------------------------~
I Source Program 1 Number of COpy statements 1 No effective limit. I
I Li~ary 1 per program 'I 1
~----- .. --------------------+--------------------------------+------------------------------~
1 INumber of sections per 165,535 including both 1
1 I program Isection-names and 1
I 1 paragraph-names. I
1 1 1
I Segmentation INumber of paragraphs per Subject to the restrictions on
1 1 section the number of sections,
I 1 paragraphs, and statements in
1 1 a COBOL program.
I 1
1 INumber of segments per program
1 1
1 1
1 I
I 1
I 1 Number of statements per
I I segment

100 unique segment numbers;
the number of segments with
the same segment number is
unlimited.

No effective limit.

~-----------------------+--------------------------------+------------------------------~
ITable Handling INumber of tables per program 165,535 one-dimensional tables, I
I 1 leach with one index-name. 1
I I IThere is no effective limit onl
I 1 Ithe number of subscripted I
I 1 I tables. I
I I I 1
I ISize of a table 1131,071 characters I L_· ___ . ___________________ ..1. ________________________________ ~ ______________________________ J

402'

Page of GC28-6399-2, Revised Q/15/73, by TNL:. 3N28-1038

(Where more than one page reference is given, tne major reference appears first.)

special Character-Subjects

&&name 5ubparameter 45,Q2,114
*.ddname subparameter 45,42,114
*.procstep subparameter 45,42,114
*.stepname subparameter 45,4;,114
/*statement

description 17,56
under MVT 232

//* 56,44,19,20

A, as a device class 17,26,54
ABDUMP (see dumps)
abnormal termination

causes 164-169
for COBOL files 125-129
completion code 167-169
COND parameter 32-34
dump

of data sets 55
definition 164
example 172-174
finding records in 175-181
how to use 168-175
including problem program storage
area 55

including system nucleus 55
requesting 63
using 164
with spanned records 182-183

errors causing 165-169
EVEN subparameter 33-34
incomplete 183-184
INVALID KEY clause 126-129
ONLY subparameter 33-34

restarting a job 23-25
restarting a job step 38
resubmitting a job 24
size errors causing 293
USE AFTER ERROR declarative 126-129

ABSTR subparamet~r
description 47
in QISAM 105,300

ACCEPT statement 195
ACCEPT statement, relationship to SYSIN DO I

statement 63
ACCEPT subroutine 277-278
ACCT parameter 31,22
accessing

a direct file
randomly 78-79,80
sequentially 78,80

an,indexed file
randomly 110-112
sequentially 104-110

a relative file
randomly 91,93-94
sequentially 93

a standard sequential file 66-70
accounting information

EXEC statement 31,16
JOB statement 23,16

actual key 65,73-75
(see also ACTUAL KEY clause)

ACTUAL KEY clause
(see also actual key)
in BDAM 65,71-74,77-80
in BSAM 65,71,74-76,78
in file processing techniques 285,286
randomizing techniques 83-86

division/remainder method 83,86
indirect addressing 83-84
synonym overflow 83

ADCON TABL8 293
ADDRESS CONSTANT TABLE 293
AFF parameter 46,42
allocating mass storage space

SPACE parameter 47,48
SPLIT parameter 48,49
SUBALLOC parameter 49

allocation messages 147,149,156-159
ALX subparameter 48
APosr option 35
APPLY CORE-INDEX clause 185,112
APPLY RECORD-OVERFLOW clause 185
APPLY WRITE-ONLY clause 138,140,185
arguments

data-name passed as 209-211
file-name passed as 211
procedure-name passed as 211

arithmetic subroutines 277-279
assembler language

programs, linkage to 209-211,214
using EXEC statement 34

ASSIGN clause
in BDAM 64,87,99
in BSAM 64,99,87
in QSAM 67
relationship to DO statement 64
in Sort feature 241

assigning values to index names 202-204
ATTACH macro instruction 293
automatic call library 223,61
automatic res~art

(see also Checkpoint-Restart)
at beginning of job step

EXEC statement 38,39
JOB statement 24-25

within a job step 259
automatic volume switching 79~80
average record-length sUbparameter

for SPACE 47
for SPLIT 49

Index 403

Page of GC28-6399-2, Revised 4/15/73, by TNL: GN2S-1038

B, as a device class 17,64
base and displacement 150
BASIS card

with a debug packet 164
error messages involving 308,32
use of 225-226,304

BCD 130
BDAM

data sets 115
DO statement parameters 90,100
defining a data set in 66
definition 65
direct organization 71-73,77-80,115
error processing for 126-128,297
relative organization 91-92,93-94
permissible COBOL clauses 99,89
programming techniques 185
with spanned records 142-143,183

beginning address of a file 48
beginning address of a word 48
binary

(see also computation fields)
intermediate results 195
search of a table 205-207
subroutines 278-279

BISAM
(see also QISAM)
consideration when using 110-112,101
data sets 115
defining a data set in 66
definition 65
error processing for 126-128,298
processing with 108-112,101,115

blanks, in job control notation 20
BLKSIZE

with data sets 61-63
in file processing
techniques 67-69,284-287,289

in QSAM 106
BLOCK CONTAINS clause 46,47

description 46-47
in QSAM 67

block length (see BLKSIZE)
block size

causing errors 167
description 46,47
for utility data sets 289,290

blocked records
fixed-length 134
spanned 138
variable length 135,137

braces 20
brackets 2{)
BSAM

data sets 114-115
DD statement parameters 90,100
defining a data set in 66
definition 65,71-73
with direct file 65,71-73,74-75,78,80
error processing for 126-128,297
permissible COBOL clauses 89,99
with relative file 91-92,93
subroutine 279
user label totaling 131,68
with spanned records 140-141,183

BUF option 34,37,290
buffers

allocating space to 289,290

404

for indexing files 105
for standatd sequential files 69

truncating 182
BUFNO subparameters 66-69,105,289,290

C (conditional severity level) 152,32,307
CALL

option 36
statement 208

called programs
additional input 216,217,220
identifiers 209,212
input

additional 216,217,220
primary 212,61,220

linkage 208-209,210
primary input 212,61,220

calling programs
additional input 216,217,220
identifiers 209,212
input

additional 216,217,220
primary 212,61,220

linkage 208-209,210
primary input 212,220

capacity records 74-75,78
CATALG subparameter 54
catalog, system 13
cataloged data sets

creating 116
description 123
retrieving 119
on a volume 129

cataloged procedure
adding to the procedure library 228
bypassing steps within 32
calling 228
COBUC 230,231,232
COBUCG 230,233
COBUCL 230,231,-232
COBUCLG 230,232,233
COBULG 230,232
with COND parameter 24,32-34
data sets produced by 228-229,231
DO statements 44
d·efini tion 17
dispatching priority 39
IBM-supplied 230-231
limiting execution time of 39,40
modifying 234-235
naming 231
overriding 234-238
PROC statement 56
programmer-written 229
relationship to SYS1.PROCLIB 116
required device class names for 45,46
restarting programs with 24,25,38,39
return code 32,33
using the DO statement 229-234
using the EXEC statement 30,229,230,235

CATLG paramete~ 119,123
character delimiters 20
checkid 24,258
checklist for job control

procedures 303-306

Page of GC28-6399-2, Revised 4/15/73, by TNL: 3N28-1038

checkpoint
(see also Checkpoint/Restart)
CHKPT macro instruction 23,38,257,258
considerations 257-258
data set 25
how taken 38,256
initiating 256
in a job 24-26
in a job step 38-39
messages 258
multiple 256
RERUN clause 24-25,38,256-258
restart 38-39,256-261

(see also Restart)
single 256

Checkpoint-Restart
checkpoint 256-261

(see also Checkpoint)
data sets 260-261
DD statements 256
designing 258
in a job 24-25
in a job step 38-39
messages 258
methods 256
RD parameter

with checkpoint 258
for a job 23-25
in a job step 38-39

restart 258-261
(see also Restart)

with Sort/Merge 245
subroutine 281
SYSCHK DD statement 260-261

CHKPT macro instruction 23-25,38,257,258
CLASS parameter 25,22
class test subroutine 280
classname subparameter 54
CLIST option 34
CLOSE statement

BSAM subroutine 279
creating multivolume files

with direct organization 79-80
with relative organization 92-93

efficient use 195
with error processing 126,127,128

CLOSE REEL statement 67
CLOSE UNIT statement 75,79,80,93
COBOL copy library

COBOL sequence numbers 225
entering source statements 223,224
IEBUPDTE sequence numbers 225
retrieving source statements

BASIS card 225,226
COpy statement 223,224

updating source statements 224
COBOL file processing (see file, processing
techniques)

COBOL library subroutines 222,277-281
(see also library)

COBOL RERUN clause 24,25,38,256-258
COBOL sample program 265-276
COBOL sequence numbers 225,226
COBOL subroutine library 222,277-281

(see also library)
COBUC 230,231,232
COBUCG 230,233
COBUCL 230,231-232

COBUCLG 230,232,233
cobulg 230,232
CODE clause 200
command statement 56,15
comments

continuing 19
field 19
statement 56,15

communication with other languages 211
COMPARE subroutine 280
compilation

(see also compiler)
cataloged procedure 230,231
checklist for job control

procedures 303,304
data set requirements 56-59
definition of 13
example of job control
statements 303,304

invoking compiler at execution time 291
sample program 265-276
source program size assuming minimun
configuration 293

using the REGION parameter 262
compiler

(see also compilation)
blocking factor for data sets 289
buffer space 289,290
calling 291,292
capacity 293,294
data set requirements 56-58
diagnostic messages 307-397
internal name 149
invoking 291,292
machine requirements 262
optimization 289,290
options 34-36,37
output

allocation messages 149
cross reference dictionary 151
diagnostic messages 151-152
global table 150-151
glossary 149-150
job control statements 149
object code 151
object module 152
sample output 147-149
source module 149

PARM option 33-37
se~mentation output 251
specifying in EXEC statement 29

completion codes
description 167-169
in Sort program 244

computational fields
conversions involving 189-191
conversion subroutines 277
description 189,190

COMPUTE statement 196
COND parameter

correlation with compiler return
codes 307

EVEN, ONLY subparameter 33,34
in cataloged procedures 234
in EXEC statement 32-34
in JOB statement 23,22

condensed listing, using CLIST 34

Index 405

Page of GC28-6399-2, Revised 4/15/73, by TNL: GN28-1038

conditional, as a severity level
(C) 152,32,307

conditions terminating execution 23,32-34
CONTIG subparameter

description 48
with direct files 80
with indexed files 105

continuation of job control statements 20
control program 13
control statements

character delimiters 20
command statement 56,15
comment statement 56,15
continuing 20
DO statement 41-55,15
delimiter statement 56,15
EXEC statement 27-41,15
fields 19
JOB statement 22-28,15
notation used for 21
null statement 56,15
preparing 19,20
PROC statement 56,15
processing 18
use 15

control tranfer (see calling programs and
called programs)

conversion subroutines 277
copy library (see COBOL copy library)
COpy statement

DO statement requirements 304
use 224,226,31

core storage (see main storage)
creating a file

direct 60,63,74-78,115,79,80
indexed 104-107,115,299-301
relative 65-68,91-94,115
standard sequential 57-60,112-115

cross reference
dictionary 151,35

description 152,153
used in dumps 171-175

CYL subparameter
for SPACE

consideration for indexed files 105
description 47

for SPLIT 48
cylinder overflow area 101-103

o (disaster severity level) 152,32,307
data alignment 190-193
data control block

(see also DCB parameter)
description 124,125
fields 283-288
identifying 125
overriding fields 125

data conversion 189-191
data definition 41-55,15

(see also DO statement)
data description 187-194
Data Division, programming
techniques 186-194

406

data formats 192-193
DATA parameter

in DO statement 44,42
restriction with UNIT parameter 46

data set control block 129,45-54
data set labels

description 125-131
relationship to DO statement 125

data set member 65
data sets

adding records to 53
(see also MOD subparameter)

allocating space for 47-49
blocked 62
cataloging

description 54,121
indexed files 106

checkpoint 256,258
concatenating 236-240
creating 112-118
definition 13
deletion of 53,123
delimiting in input stream 56
describing attributes of 45
direct 65,74-80,115
disposition of

after abnormal termination 184-189
description 52,54

errors involving 165-167
execution time 62-63
extending 120
generation data groups 123,124
identifying

description 45
for compilation or linkage
editing 44

indexed 100-104,110-112,115
in the input stream 44,56,120,123
in the output stream 54-55,56-58,115
intermediate, under Mvr 263
labels 52,129-133
magnetic tape 113-115
names

description 124
relationship to file names 64

nontemporary 49
organization 65
partitioned 221-227
postponing definition of 44,45
produced by cataloged
procedures 228-231

relative 65,91-98
retaining 53-54
requirements

for compilation 56-58
for execution 61-63
for linkage editing 59-61
for loading 61,62

retrieving 119-122
scratching 184
sharing 53
standard sequential 65-70
system catalog of 13
temporary 49,50
unit record 113
used by Checkpoint/Restart 256,258
used by Sort 241-243

DArE-COMPILED paragraph 149

Page of GC28-6399-2, Revis.ed 4/15/73, by TNL: 3N28-1038

date subroutine 281
DCB macro instruction 283
DCB parameter

(see also data control block)
for defining checkpoint data
sets 256,258

description 124,125
error processing with 125,126,297
identifying information in 125
ret.rieving previously created data
sets 119,120

subparameters
for direct files

accessed randomly 286
accessed sequentially 285

for indexed files
accessed randomly 110-112,288
accessed
sequentially 104-107,285,287

for relative files
accessed randomly 286
accessed sequentially 93,285

for standard sequential
files 66-70,284

DO statement
adding to a cataloged procedure

description 16,41
error recovery option, for standard
sequential files 126-128

format 42,43
overriding in cataloged
procedures 235,236-240

parameters 41-55
requirements for

compilation, job step 303,304
compiler data sets 56-59
changing a library with 227
direct files 90
execution, job step 305,306
execution time data sets 120
extending data sets 120
indexed files 104-112,299-301
job run -in MVT environment 263
linkage editing

data sets 59-61
job step 305,306

loader data sets 61,62
relative files 100
retrieving data sets 119-121
standard sequential files 68-70
unit record devices 123
using cataloged procedures 231-232
using COBOL copy library 223,224
using the Sort feature 241-244

relationship to ACCEPT statement 63
relationship to SELECT statement 125
Sort feature, used in 241-244
used to complete the DCB 123,125

DDNAME parameter
in cataloged procedures 237-240
ddname subparameter 45

(see also ddname subparameter)
description 42,44,45
error message

use of 42,44,45,237,240
ddname subparameter

and calling and called programs 28,29
and cataloged procedures 237-240

checklist of use in JCL
procedures 304i305

with Checkpoint/Restart 256,257
and creating files 114
in DO statement format 42,43
as DDNAME sUbparameter 45

(see also DDNAME parameter)
as DSNAME

subparameter 45,104,105,120,121,123
in EXEC statement format 28
as INCLUDE operand 217
and indexed files 104~109
as LIBRARY operand 217
in name field of DD
statement 42-44,64,105-109,117,235-240
,256,257

28,2.9
119,120,121

234-236

as PGM subparameter
and retrieving files
as stepname qualifier
as SUBALLOC parameter
and subprogram linkage
used to allocate space

DEBUG card 161

49
214,215
49

debugging language 161-164
(see also TRACE statement and EKHIBIT
statement)

debugging packet 163-164
debugging a program

(see program debugging)
DECB

error conditions 297,298
linking with 208

decimal point alignment in PICTURE
clause 188

DECK option 35,37,303,153
Declaratives, USE AFTER ERRC>R
option 126-128

DEFER subparameter 47
deferred restart 259
DELETE statement 118
DELETE sUbparameter

and cataloged data sets 123
definition 53

delimiter, Job Control Language
character 20

delimiter, job control statement 15,56
DEN subparameter 68
DEPENDING ON option, programming
techniques 202

determining file space 81
data set labels, specification of 52
describing files 64-148
device allocation 149
device class

blocking restrictions 46-47
and compiler data sets 56-58
definition 13
examples of names 17
and execution time data sets 63
and linkage editing data sets 59,61
and UNIT parameter 46,47

diagnostic messages
compilation 151,152,307,327,147
linkage editing 157,153
object time 398-399
with ON statement 161
summary of 307

dictionary, cross reference 151

Index 407

Page of GC28-6399-2, Revised 4/15/73, by TNL: GN28-1038

direct access (see mass storage)
direct data sets

creating 114,74-75
description 71-73

direct file
creating 74-80,114

randomly 77-79,80
sequentially 74-76

description 71-72,80-81
error processing 125
multivolume 79-80
randomizing technique 83
reading

randomly 78-79
sequentially 78,80

sample program 87-88
Direct SYSOUT Writer 115
directory-quantity JCL subparameter 47,48
disaster, as a severity level

(D) 152,32,307
disk (see mass storage)
DISP parameter

data set uses
cataloging 123
creating 113-115
retrieving 119-123

default values of 54
description 53-54
in JOBLIB DD statement 55
in Sort feature 242-244
subparameters 53-54

displacement and base 150
DISPLAY option of USAGE clause

and comparisons and moves 191,192
and data format conversion 189~191
external decimal format 191

DISPLAY statement
and COBOL output files 64
conversions involving 191-192
relationship to DD statement 62-63
use of 160

DISPLAY subroutine 277
disposition messages from job
scheduler 157~159

division/remainder method for
randomizing 83

DMAP compiler option 34,37,149
DPRTY parameter 39
DSNAME parameter

definition 45
and file creation 112
and file processing techniques

direct 90
indexed 104,109,107
relative 100
standard sequential 70

format of 42,43
and single-volume files 106-108
subparameters 45

DSORG
direct files 88
indexed files 107,110
relative files 100

DUMMY parameter
definition 44
format 42

dummy records
in direct files 74,75,76

408

in relative files 93,94,95
dumps

completion codes 165,167-169
DO statements to request 55,63
definition 55
determining location of error 169-171
locating records in 175-181
locating working storage in 186
requesting

using SYSABEND DO statement 63,55
using SYSUDUMP DD statement 63,55

types of
abnormal termination 164-165
indicative 165

use of 165,166

E (error severity level) 152,32,307
EBCDIC 68,130,165
efficient programming (see programming
techniques)

ellipsis 20
entry name 211
entry-point

of called programs 211
of loaded programs 37

Environment Division, programming
techniques 183

environments, operating system 15
EP option 37
EROPT subparameter 125,126
error

completion codes
conditions

input/output
invalid data

with 26,167-169

165-169
165-166

messages
condition code 31
compile time 307-397,151-152,160
linkage editor 157
loader 157
object time 398-399,160
system 160,152,31
severity codes 151-152,32,307

recovery
COBOL ERROR declarative 125-127
DD statement option 125,126
direct file 128
indexed file 125-127
relative file 128
standard sequential file 125
system 125,126,128
table 127

as a severity level (E) 152,32,307
ESD (see external symbol dictionary)
establishing a priority

for a job (PRTY) 25
for a job step

(DPRTY) 39
EVEN subparameter 32-33
EXEC statement

accounting information (ACCT) 31
additional storage (ROLL) 41
bypass/execution conditions

(COND) 32-34
compiler options of PARM
parameter 33-37

definition 15

Page of GC28-b399-2, Revised 4/15/73, by TNL: 3N28-103B

dispatching priority (DPRTY) 39
identifying

procedure (PROC) 29-30
program (PGM) 28-30
step (stepname) 28-30

linkage editing options of PARM
parameter 36-37

loader options of PARM parameter 36-37
PARM parameter 33-37
passing information between

programs 33-37
setting time limit (TIME) 39-40
specifying region size (REGION) 40,41
requesting restart (RD) 38-39

execution time
data sets 62-63
definition 14
job control checklist 304-305
output example 161,265-276
storage allocation 263,264
with REGION parameter 262

EXHIBIT statement
and program debugging 162,163
and required DD statement 63

EXHIBIT subroutine 277
exit list codes 131
EXIT PROGRAM 208
EXPDT subparameter 53
external decimal subroutines 278,279
external floating-point subroutines 278
external name 211
external reference 211
external symbol dictionary (ESO) 154

FD
programming techniques 186
relationship to DCB 283-288
with WRITE ADVANCING 67

file
beginning address of 48
and COBOL
clauses 65,67,89,99,108-112,182,192-19
3

and DD
statement 65,68-70,90,100,103-106

defini'tion 64
name 64,80-81
processing techniques 65-113

direct 11-89,65
indexed 65,100-121
partitioned 65,221,228
relative 65,91-99
standard sequential 65-69

and SELECT sentence 65
space allocation
for 47-51,65,105-108,14,75,76

user defined 64-133
file-name

argument in calling program 211
definition 64
prefixes used with 186
relationship with DD statement 64

File Section, programming techniques 186
fixed-length records 134
FLAGE option 35,37
FLAGW option 35,37

floating-point
subroutines 279,280

floating-point data items
(see also computational fields)
intermediate results 195

gaps 73
generation data set 123,124,45
GIVING option of Sort feature 241
global t.able

description 150
MAP option 35,37

glossary •
description 149,150
requesting through EXEC statement 35,37

GOBACK statement 209
GO TO statement

causing errors 166
in debug packet 164

header labels 130-133
hierarchy

COBOL data description 186
system storage 26-27

holding a job 27

I/O (see input/output)
IBM-supplied cataloged procedures 230-234
identifiers in linkage argument
list 208-210,211

IEBUPDTE subroutine 224,225,167
IER sort messages 244
IF statement, programming techniques 196
IKF messages 307-399
IKFCBLOO routine 215
ILB subroutines 217-281
INCLUDE statement 217,227
incomplete abnormal termination 183
independent overflow area 101,103,104
index

area 101,103
cylinder 101,102
data item 202

assigning values to 204
master 108
names 202,203

assigning values to 204
overflow area 101,103,104
prime area 103
quantity SPACE parameter 47
track 101

indexed access methods (see BISAM, QISAM)
indexed data sets (see indexed files)
indexed files

(see also BISAM,QISAM)
adding to 110-111
creation of 104-108,115
DO statements required 104-107
description 100-115
error subroutine 279,280
index area 103-106
overflow area 103,104
prime area 103

Index 409

Page of GC28-6399-2, Revised 4/15/73, by TNL: GN28-1038

random access 110
RECORD KEY clause 100,101
reorganizing 109
sequential access 108,109
updating 108,111

indexed sequential data sets (see indexed
files)

indexing a table 203-207
index point 72
indicative dump

description 165
restriction for MVT 167

indirect addressing 82,83
informative messages 151,152
input/output

bypassing of 44
device allocation 46,47
error conditions

completion codes for 167-169
INVALID KEY 126-129
standard error 126-129
summary of 297,298
USE AFTER ERROR declarative 126-129

facilities described in DD
statement 41-55

subroutines 277-281
input stream

control statements for 17,44
defing data in 44

INSERT statement 225,226
instruction addressing causing
interrupt 167,168

In-Stream procedures 56,30
intermediate results 194
internal decimal subroutines 278,279
internal floating-point
subroutines 278,279

interrupt address, examples 167-171
invalid data causing abnormal
termination 165-167

invalid key error conditions 126-129
INVALID KEY option 126-129
invoking the COBOL compiler 291,292

job
accounting information 23
class assignment 26
control statement display 23-24
definition 13
holding for later execution 27
indentifying 22
library 226,227
priority assignment 26
request for restart 23-24
setting time limits 25
storage specification 26-27
termination 23

Job Control Language
character delimiters 20
coding 18-21

410

examples of
compilation 147
linkage editing 155

fields of
comments 19
name 18

operand 18
operation 18

notation 20
statement continuation 19
types of statements

command statement 56,16
comment statement 56,16
DD statement 41-55,16
delimiter statement 56,16
EXEC statement 27-41,16
JOB statement 22-27,16
null statement 56,16
PROC statement 56,16

job control procedures 15-63,303-306
cataloged procedures 228-229
checklist for 303-306
Checkpoint/Restart 256-261
definition 15
libraries 221,223,224-227
seqmentation 248
sort 241-244
for user files (see file, processin~
techniques)

job management routines 17
job schedulers

description 17
disposition messages from 157-159

JOB statement 21-29
accounting information 23
definition 21,15
format 21
parameters

CLASS 25
COND 23
MSGCLASS 26
MSGLEVEL 22-23
PRTY 26
RD 23-24
REGION '26-27
RESTART 24-25
ROLL 27
TIME 25
TYPRUN 27

programmer identification 22
job step

bypassing
using JOB statement 24
using EXEC statement 31-33
definition 13
dispatching priority 39
restarting 38-39

JOBLIB DD statement
description 55
example of use 305
restriction with cataloged

procedures 229
restirction with DDNAME

parameter 238,239
jobname 21

KEEP subparameter 53
KEY clauses (see ACTUAL KEY clause and

RECORD KEY clause)
keyword parameters 18-19

Page of GC28-6399-2, Revised 4/15/73, by TNL: 3N28-103b

ABEL parameter
for creating data sets 113-114
definition 52
for retrieving data sets 119,120
for volume labeling 129
subparameters 52-53

abels
data set 129
nonstandard 129,131-132
standard 130,131
standard user 130-131
user 130-131
user totaling 131
volume

nonstandard 131-132
standard 126

lET option 37
.evel numbers 186
lIB option 34,37
.ibrary

automatic call 217,61,223
charging 227
COBOL copy 223
COBOL subroutine 222,277-281
compilation, use of 59-60
concatenating 55,59
copy 223 .
creating 227
directory 221
job 226
link 221-222,60
partitioned data set 65
for PGM parameter 28-29
private 30,55
procedure 29-30,222
for program checkout 164
relationship to JOBLIB DD
statement 55,61

relationship to SYSLIB DD
statement 58,59

sort 222
source program 223
subroutines

arithmetic 277
COBOL 222
conversion 277
input/output 277
intermediate results 194-195

system 28-29
temporary 28
user 222-223,55

LIBRARY statement 217
LINECNT option 35,37
link library 221-222,60
LINK macro instruction 220,291
linkage conventions 208-210
linkage editor

additional input 211,218
calling compiled programs 292
capacity 294-295
checklist 304
data set requirements 59-61
definition 14
external names 211
input

additional 216,211
primary 212,216

with libraries 226-227

LIBRARY control statement 223
messages 159
options 36,37
output 153-151
PARM options 36,37
with preplanned overlay 218-219
primary input 212,216
processing 211-218
user-specified data sets 61

linkage registers 210
LINKLIB 60,221-222
LIST option 34,37,157
literal pool 150
literals, size considerations 294
LOAD macro instruction 291
load module

definition 14
as input to linkage editor 212,214,215
length of 115
output 157,160
specification in EXEC statement 29-30

LOAD option 35,37,153
Loader

cataloged procedure 234
data set requirements 61,22C
definition 219,220
invoking 233
input

additional 220
primary 61,62,220
requirements 61-62

module map 157,158
PARM options 36-37

loading programs
additional input 22C
cataloged procedure 234
primary output 61,220

Logical Record Area 142,144,183
logical record length 57,284-288,289
logical record size

for SYSIN 289
for SYSLIB 289
for SYSPRINT 289
for SYSPUNCH 289

LRECL 57,284-288

machine considerations 262-264
macro instructions

ATTACH 291
CHKPT 249
DCB 275
LINK 219,291
LQAD 291

magnetic tape
data sets

sharing devices 243
using DEN and TRTCH
subparameyers 68,69

devices
compiler optimization using 289
labels 129,130
in sort feature 241,243,264

Index 411

Page of GC28-6399-2, Revised 4/15/73, by TNL: GN28-1038

volume
private 50,51,52
removable 49-51
reserv:ed 50,51
scratch 50,51

main line routines 194
main storage

(see also storage allocation and storage
considerations)

additional for MVT (ROLL) 41
hierarchy support

hierarchy 0 26-27
hierarchy 1 26-27

REGION parameter 40-41,26-27
requirements for Sort/Merge 245-246

map
loader storage 157,158
memory
module

MAP option

153
156-157

for linkage editor 36,37,156
for loader 36,37,157,158

mass storage
device 82-83
space allocation

SPACE parameter 47-48
SPLIT parameter 48-49
SUBALLOC parameter 49

volume labels 129
volume status 49-51
volumes 49-51

master index 108
master schedulers 17
memory map 148
message class! requesting 26
messages

allocation
compiler 151
linkage editor 156-157

checkpoint 258
compiler, summary of 307-397,151,152
disposition

compiler 152
linkage editor 156

format of, defined 307
identification codes 160
linkag~ editor 157,158
object time 398-399
operator 160
severity level of

compiler 32
linkage editor 32-33

sort 237
summary of 307-400

MFT (see Multiprogramming with a fixed
number of tasks)

MOD subparameter 53
in Checkpoint/Restart 258
in compilation 58
definition 53

MODE subparameter 68
modular levels 194
module map 155-158
MOVE statement 196
MOVE subroutine 280
MSGCLASS parameter 26-27,22
MSGLEVEL parameter

description 22-23

412

on JOB card 22
with restart 258

multiple checkout 256
multiple console support 224-225,160
multiple OPEN and CLOSE statements 264
Multiprogramming with a fixed number of
tasks

assigning job class 25
data sets

marking end of 56
scratching 184
sharing 57

definition 15
holding a job 27
JOB statement parameters 26-28
priority scheduler 18

Multiprogramming with a variable number of
tasks

assigning a job class 26
bypassing I/O 44
causing errors 165
Checkpoint/Restart 256-261
data sets

intermediate 263
marking end of 56
scratching 184

definition' 15
EXEC statement parameters 39-41
holding a job 28
input stream in 44
JOB statement parameters 22-28
job step

additional storage for 41
dispatching priority 39
time limits 39-40

machine considerations 262
main,storagerequirements 26-27,40
with multiple OPEN and CLOSE
statements 264

priority scnedulers 18
region code 15
REGION pa~ameter 26-27,40,262,263
restart 24-25,38,258-261
ROLL parameter 27,41
SPACE parameter 160

multistep job 32
multivolume data sets

for direct files 79-80
for "relative file 92-93
volume switching 79

MVT (see Multiprogramming with a variable
number of tasks)

MXIG subparameter 48

name field 18,44
name subparameter 45
names

cataloged procedure 44
data set, conventions used in 124
generation 44
procedure 293,294
qualification of 44,294
temporary 45

NEw subparameter 53

Page of GC28-6399-2, Revised 4/15/73, by TNL: 3N28-1038

NL subparameter 53
NOCALL option 36
NOCLIST option 34,37
NODECK option 35,37
NODMAP option 34,37
NOLET option 37
NOLIB option 34,37
NOLOAD option 35,37
NOMAP option 36,37
NOMINAL KEY 65
nonstandard labels 131,132
NOPMAP option 35,37
NOPRINT option 37
NORES option 36,37
NOSEQ option 35,37
NOSOURCE option 34,37,289
NOSUPMAP option 35,37
NOTE statement 196
NOTRUNC option 35,37
NOVERB option 34,37
NOXREF option 35,37
NOZWB option 35,37
NSL subparameter 53
null statement 15,56

object code listing 151
object module

contents 153
deck 153
definition 13
dumps using 169-174
error messages 398-399
listing 153
size considerations 294

object time error messages 398-399
object time overlay 248
ODCURS clause

causing errors 166
DEPENDING ON option 202-203

OCCURS DEPENDING ON
clause 202-203,277,144-146

OLD subparameter 53,60
ON SIZE ERROR option

binary items 195
intermediate results 194-195

ON statement 161,162
ONLY subparameter 32-33-
OPEN statement

causing errors 165
multiple use of 263
for several files 196

operand field
bypassing I/O 44
on control statement 18
data definition 44

operating system environment
primary control program 13
Multiprogramming with a fixed number of
tasks 14

Multiprogramming with a variable number
of tasks 14

operation field 18
operator

commands 56

messages 160
OPTCD subparameter 69,284,285
optimization, compiler 289,290
optional services (see OPTeD subparaneter)
options

for compilation 34-37
for linkage editing 36-37
for laoder 36-37

output
classes 26
compiler 147-152
definition 13
displaying control statements 22
linkage editor 153-160
loader 157
MAP option 35,37
requests for 160
sample program 262-276
storage on library 29-30
stream data sets 115
suppressing 289
SYSOUT parameter 54-55
system 160

overflow
area (see QISAM)
index 101,103
synonym 83,86

overlay
dynamic 219
preplanned 218-219
statement 218-219
structures 218

overriding DD statements 236-237
OVFLOW 103,104,107,109
OVLY option 36,37

page breaks, optimizing in Report
writer 199

PARM parameter
compiler options 33-36,37
with equal sign 33
job card. 38
linkage editor options 36,37
restrictions 33-34
significant characters 34

parameters
compared to arguments 209
keyword 18-19
positional 18
subparameters 18

partitioned data set
description 65
directory 221,48
member 65,221
primary quantity for 48-49
secondary quantity for 48-49
temporary libraries 28

partitions 15
PASS subparameter 54,49-50
PASSWORD subparameter 53
PDS (see partitioned data set)
PEND statement 15,56
PERFORM statement 196,249
permanently resident volumes 50-51
PGM 28-29

IndeK 413

Page of GC28-6399-2, Revised 4/15/73, byTNL: GN28-1038

PGT (see program global table)
physical records, size restriction 48-49
PICTURE clause 188

efficient use of 188
error messages 317
storage allocation 188

PMAP option 34,37
prefixes 186
preplanned linkage editor 218-219
PRESRES, member of SYS1.PROCLIB 50-51
primary input, for called and calling

programs 213
PRIME, in QISAM 103,104
prime area (see QISAM)
prime number list 83
PRINT option 37
printer, determining line spacing 68
priority, assigning

for a job 27
for a job step 39

priority schedulers 17
priority scheduling system

EXEC statement parameters 27-30,39-40
JOB statement parameters 22,25-28,16
relationship to multiprogramming

enivronments 15,8
sharing data sets 53-54
SYSOUT parameter for 55

PRIVATE SUBPARAMETER 51
PRIVATE VOLUME 50-51
PROC statement 15,56,18
Procedure Division

intermediate results 194-195
modular levels 194
programming techniques 194-207
segmentation 248,249
verbs 195-196

procedure library 17,222,228
procedures, in-stream 56,29
processing programs 13
processing subroutines 194
procstep.ddname 44
procstep subparameter 49
program

.called 208
calling 208,292
checkout 161-185
debugging

414

completion code 167
dumps 164-165,169-171
errors

I/O 165
invalid data 165-166
other 166-169

I/O errors 165
incomplete abnormal
termination 183-184

invalid data errors 165-166
language 161
other errors 166~169

execution
multistep job 32
from private library 28
from system library 28
from temporary library 2e-29

interrupt 166
linkage editing 212,213
output, sample 249-268

sample 265-277
selective testing of 163-164
techniques (see programming techniques:

program global table 150
programmer identification 23
programming techniques

(see also program)
Data Division 186-188
Environment Division 185
general 185
Procedure Division 194-197
Report Writer 197-202
Sort Feature 245
Table Handling 202-207

PRTSP subparameter 68
PRTY parameter 25,21
pseudo data set 44
public volume 50,51

Q routines 277
QISAM

considerations when using 108-111
data control block 44,109-110
data sets

creating 101,104-108
definition 65
deleting records in 110
reorganizing 109-110

DD statement parameters 44,109-110
error processing for 126-128,297-298
indexes, description 101,103
master index 108
overflow area, description 101,103,104
prime area, description 103
single volume file 109-110

QSAM
data control block 44,109,110
data set 114,115,65
DD statement pa:rameters 104-107
description 66-70
error processing for 126,297
sort feature, uses of 241
user label totaling 130
with spanned records 138-141,182

QUOTE option 35,37

randomizing techniques 83-89
RD parameter

with checkpoint 258
for a job 23-24
for a job step 38-39

READ INTO option 197
READ statement

in BISAM 111,108
causing errors 167
in QISAM 108-111

READY TRACE verb 64,161
RECFM subparameter

Page of GC28-6399-2, Revised 4/15/73, by rNL: 3N28-1038

in compilation 289
in DISPLAY statement 62-63

record
addressing 66,65
blocked 62
capacity 74,75
dummy 74,75
duplicate 297
fields 244
formats 66

fixed-length 134
spanned 138-143
unspecified 135
variable-length 135-137,139-141

segments 138,139
size, logical

for SYSIN 289
for SYSLIB 289
for SYSPRINT 289
for SYSPUNCH 289

size restriction, physical 48-49
RECORD CONTAINS clause 186
RECORD KEY clausse

in BISAM 110-111
in QISAM 110

REDEFINES clause 187
REF parameter 43
REF subparameter 46,52
referencing tables 202-207
REGION parameter

in EXEC statement 40
in JOB statement 26-27
main storage 26-27
for MVT 26-27,40,262-264
used in compilation 262
used in execution 262-264

relative file
accessing 91
allocating space for 91
COBOL clauses for 97
creating 91-92
error processing 128
Job Control Language for 100
NOMINAL KEY, use of 91
sample program 95-98

releasing a job (RELEASE) 28
relocation list dictionary 153,154,295
removable volumes 50,51
Report Group descriptions 197-198
Report Writer

CODE clause 200-201
floating first detail 201
output floatings 201
output line overlay 199
size considerations 294,295
SUM 198

requesting a message class 26
requesting a unit 46
RERUN clause 256-258,24,38
RERUN subroutine 281
RES option 36,37
RESERVE clause 66
reserved volumes 50-51
RESET TRACE 161
restart

(see also Checkpoint/Restart)
automatic 259
for cataloged procedure 38-39

checkpoint 258-261
(see also Checkpoint)

deferred 259-260
initiating 258,259
in a job 24-25
in a job step 38-39
RD parameter 258
system routine 258

RESTART parameter (see RO parameter)
RETAIN subparameter 51
RETPD subparameter 53
retrieving data sets

cataloged 119
example of 122
noncataloged 120
passed 120
through an input stream 120-121
with additional output 120

return code 32-33,152,210,214,307
RETURN-CODE 210
return register 210
REWRITE statement

in BISAM 111
in QISAJ.\1 109

RLD (see relocation list dictionary>
RLSE subparameter 48
ROLL parameter

in EXEC statement 41
in JOB statement 41
for MVT 27,41

ROUND subparameter 48
run unit 210

sample program output 265-276
save area layout 212
Schedulers

job 17
master 17
priority 17
sequential 17

SEARCH statement 205-206
searching a table

binary method 205-206
serially 206

secondary quantity subparameter
for SPACE 47
for SPLIT 48-49

Segment Work Area 139,144
segmentation feature 248
SELECT sentence

relationship to DD statement 125,64
with user files 64

SEP parameter 46,42
SEQ option 35,37
sequential data sets

DUMMY parameter 44
on mass storage devices 114-115

sequential schedulers 17
serial search of a table 205-206
SER subparameter 52,43
SET s'tatement 203-204
setting time limits

on a job 25
on a job step 39-40

severity levels 152,32,307
sharing data sets 53

Index 415

Page of GC28-6399-2, Revised 4/15/73, by TNL: GN28-1038

SHR subparameter 53
sign, efficient use of 188,189
single checkpoint 256
SIZE ERROR option 166
SIZE option

for compiler 34,37,290
for loader 37

SL subparameter 53
Sort feature

cataloging 243
with Checkpoint/Restart 245
completion codes 244
considerations 264
data sets 244
DD statements 241-244
diagnostic messages 244
linkage with SORT/MERGE 244
main storage requirements 245
multiple statements 243
program example 243
record fields 244-245
sharing devices 243
spanned records with 241
storage allocation 210
variable-length records with 24&

sort library 222
SORT/MERGE 245-246
sort subroutine 280
SORTLIB DD statement 242,243
SORTWORKnn 241
SORTWORKnn DD statement 242-244
source module 13,149
SOURCE, option 34,37
source program library 224

(see also COBOL copy library)
SOURCE-SUM correlation 198-199
SPACE parameter

in BSAM 70,71
in creating data sets 113-118,105
in MVT 263,160
in QISAM 105
in Sort feature 242
SPACEn option 36,37
subparameters 47-48

SPACEn option 35,37
spacing 182
spanned records

blocked 138
description 138-144
direct processing 142-144
formatting 138
locating in dumps 179-180
logical record area 142,144
segment work area 139,142
SELECT clause with 64
sequential processing 141
with Sort 241

special characters in job control
language 34,35

specifying data set status and
disposition 53-54

specifying loader input 61,214
SPLIT parameter

in creating data sets 113,114,115
description 42,48-49
in QISAM 105

SPLIT subparameter 48-49
STACK subparameter 68

416

stacked items, in job control notation 20
standard labels 130
standard sequential file

accessing 66-69
error processing 125

standard user labels 130-132
statistics 151
step restart

in a job 25-26
in a job step 38-39

STEPLIB DD statement 55
stepname 32,49
STOP RUN statement, under MVT 264
storage allocation

(see also main storage and storage
considerations)

for compilation 56-57,262,293,294
for execution, job step 40,263
for linkage editing 294-295
for overlay processing 219,220
for Sort feature 242,245,246,264
for source program 293,294

storage considerations 293
(see also main storage and storage
allocation)

storage map, for loader 157-158
storage, mass (see mass storage)
storage volume 50-53
SUBALLOC parameter 49
SUBALLOC subparameter

in creating data sets 113,115
description 42,49

subparameters 20
subroutine library (see library)
subroutines

(see also library)
arithmetic 277,279
conversion 277,278-279
input/output 277

SUL subparameter 53
SUM statement 198-199
superscript 20
SUPMAP option 35,37,151,153,289
SYNCHRONIZED clause 191
synonym overflow 83,86
SYSABEND DD statement 55,63,164
SYSCHK DD statement 259-260
SYSCP 17
SYSDA 17,47,60,231
SYSIN DD statement

in cataloged procedures 232,236-238
for compilation 57,59
concatenating with SYSLIN 240
logical record size for 289
relationship to ACCEPT $tatement 63
under MVT 263

SYSIN-SYSOUT 263
SYSLIB DD statement

in cataloged procedures 238
for compilation 58-59
for linkage editing 61,60
for loading 61
logical reecord size for 289

SYSLIN DD statement
for compilation 58
concatenating with SYSIN 240
for linkage editing 59-60
for loading 61,220

Page of GC28-6399-2, Revised 4/15/73, by TNL: 3N28-1038

logical record size for 289
SYSLMOD DO statement

with job library 226
for linkage editing 60-61

SYSLOUT DD statement
for loading 61,62

SYSOUT parameter
relationship to DISPLAY statement 62-63
in Sort feature 242-243
subparameters 54-55
under IvlVT 254
use of 54-55,43,58,60,115

SYSPRINT DO statement
for compiler 57,59,147
for linkage editor 60
for loading 62,157-158
logical record size for 289

SYSPUNCH DO statement
for compiler 57-58,59
logical record size for 28
relationship to DISPLAY statement 62-63
SYSSQ 17,47,60

system catalog, creating 13
system diagnostic messages 157
system error recovery 125
system generation 34
system-name clause 64
system output messages 160
system restart routine 258
SYSUDUMP 55,63,164,231
SYSUTl

for compilation 56-57,262
for linkage editing 61,60

SYSUT2 (see SYSUT1)
SYSUT3 (see SYSUT1)
SYSUT4 (see SYSUTU)
SYS1.COBLIB 222,277
SYS1.LINKLIB 60,222
SYS1.PROCLIB

adding procedures to 229
description 228,222

SYS1.S0RTLIB
description 222
storage allocation for 264

table elements 202-207
tables

building 207
handling considerations 202-207
storage limitations 293,294
subscripts 202

tape (see magnetic tape)
tape volume state 51-52
task global table 150
temporary data set

creating 116
description 49-50

temporary library 28-29
temporary names 45
temporary partitioned data sets 28-29
terminal error messages 31
termination of job 23
TGT (see task global table)
TIME parameter

for a job 25
for a job step 39-40

totaling, user label 131
TRACE statement

description 161-162
relationship to SYSOUT DD statement 63

TRACE subroutine 277
track

addressing 65,70-72
capacity 81,82
identifier 72,74
index 100
space for 75,76,77,79,81,105,107

TRACK-AREA clause
in BSAM 112

TRACK-LIMIT clause 75,76,80,79
trailer labels 130-131
TRANSFORM subroutine 280,220
TRK subparameter 47
TRTCH subparameter 68
TRUNC option 35,37
two part region 27

unblocked records
fixed-length 134
permissible file techniques 66
spanned 138
variable-length 135,137

UNCATLG subparameter 54
undefined length record~

(see unspecified length records)
unequal fields 188
UNIT parameter

creating data sets with 112-118
description 46,42
multivolume data sets using 79-80
retrieving data sets with 120
sort programs using 242,243
subparameters 46,47

unit record data set 113
unit record device, DD statement for 123
unit, requesting 46
unspecified length records 133
USAGE clause

causing errors 166
efficient use of 188
example 150

USE AFTER ERROR option
description 126
in file processing techniques 284-288

user-defined files 64-65
user file processing

error processing 126-128
file processing techniques 65
labels 130-132
user-defined files 64-65

user label
procedure 130-132
totaling 131

user labels 130-132
user libraries 222-223,55
user-specified data sets 61
USING option 241
utility data sets

for compilation 56-57
for linkage editing 59

utility programs
IEBUPDTE 164,223,226

Index 417

Page of GC28-6399-2, Revised 4/15/7~, by TNL: GN28-1038

IEHLIST
IEHMOVE
IEHPROGM
ILBDSRTO

184
221

184
243

variable-length
records 133-137,139-141,239-240

VERB option 34,37
verbs 195-197
volume

definition 13
labels

nonstandard 131-132
standard 126-127

magnetic tape 51
mass storage 50,51
nonspecific 50
parameter (see VOLUME parameter)
permanently resident 50-51
private 50
public 50
reference

nonspecific 50
specific 50
removable 50
specific 50
state
allocation 50-51
magnetic tape 51
mass storage 50,51
mount 51

storage 49-51
volume

labeling 129
switching 78,79

volume-count subparameter 52

418

VOLUME parameter
creating data sets with 113-115
description 49,50
retrieving data setswit.h 120
subparameters 51-52
with UNIT parameter 46

volume-sequence number subparameter 51

W <warning severity level) 152,32,307
warning, used as a severity level

00 152,32,307
word, beginning address of 48
Working Storage

locating in dumps 187
READ INTO option 197
separate modules 187
WRITE FROM option 197

WRITE AFTER ADVANCING option
restriction with PRTSP parameter 68
use of 67

WRITE AFTER POSITIONING option
restriction with PRTSP parameter 68
use of 67

WRITE FROM option 197
WRITE statement, causing errors with 166

XREF option
for compilation 35,37
for linkage editing 36,37,156

ZWB option 35,37

READER'S COMMENTS

TITLE: I BM OS Full American National Standard
COBOL Compiler and Library, Version 2
Programmer's Guide

ORDER NO. GC28-6399-2

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the re~ponse. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6399-2

fold fold

• c: : ~
: ~
• c
• :;:l
• (Jl;

: E
• rIJ
: 5 · ~

•• 0 •••

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

.'

:OJ
.~

'0
.CJ')

• "Tl
• c:

.»

.Z
• CJ')
.()
'0
·OJ
'0
.r
.<
• I\)

'iJ :0
.~

••• ~ •• : ::l

• r-+
fold fold : ~

.' International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

· :;'
'e
'en .J>
.G)
.()

I\)
.CO

m
w

.<0
o <0
or\.)

.GC28-6399-2

international Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

;.~

to
s:
0
en
"T1
c::

):>
Z
en
("')
0
to
0
r
<
I'V

"'tI
(;)

"'tI
~

3'
.-+
(1)

a.
;:,

c
en
~

G>
("')
I'V
00
a,
w co
co
r\J

