
COOKBOOK
Part 1: Developing TriMedia Applications

Part 2: Programming with Peripherals

Part 3: Bootstrapping TriMedia

Part 4: Optimizing TriMedia Applications

T R I M E D I A TM

S O F T WA R E

D E V E L O P M E N T

E N V I R O N M E N T

Philips
Semiconductors

© 1998 Philips Semiconductors

All rights reserved.

No part of this publication or the software described in it may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, mechanical, electronic, photocopying, recording, or otherwise,
without prior written permission of Philips Semiconductors, except in the normal use of the software or to
make a backup copy of the software. The same proprietary and copyright notices must be afÞxed to any
permitted copies as were afÞxed to the original. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies) may be sold, given, or loaned to
another person. Under the law, copying includes translating into another language or format. You may use the
software on any computer owned by you, but extra copies cannot be made for this purpose.

Intel is a registered trademark of Intel Corporation. Microsoft, MS-DOS, Windows, Windows NT, Windows 95,
and ActiveMovie are registered trademarks of Microsoft Corporation. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company Limited. MKS and MKS
Toolkit are registered trademarks of Mortice Kern Systems Inc. Apple, Mac OS, and QuickTime are trademarks
of Apple Computer, Inc. The following are trademarks of Integrated Systems, Inc.: DocumentIt, ESp,
HyperBuild, OpEN, OpTIC, pHILE+, pNA+, pREPC+, pRISM, pRISM+, pROBE+, pRPC+, pSET, pSOS, pSOS+,
pSOS+m, pSOSim, pSOSystem, pX11+, RealSim, SpOTLIGHT, SystemBuild, Xmath, ZeroCopy. Other product
and company names mentioned herein may be the trademarks of their respective owners.

No licenses, express or implied, are granted with respect to any of the technology described in this book.
Philips Semiconductors retains all intellectual property rights associated with the technology described in this
book.

Even though Philips Semiconductors has reviewed this manual, Philips Semiconductors makes no warranty or
representation, either express or implied, with respect to this manual, its quality, accuracy, merchantability, or
fitness for a particular purpose. As a result, this manual is sold Òas is,Ó and you, the purchaser, are assuming the
entire risk as to its quality and accuracy.

In no event will Philips be liable for direct, indirect, special, incidental, or consequential damages resulting from
any defect or inaccuracy in this manual, even if advised of the possibility of such damages.

The warranty and remedies set forth above are exclusive and in lieu of all others, oral or written, express or
implied.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you
speciÞc legal rights, and you may also have other rights which vary from state to state.

Printed in the United States of America

Documentation Services by
International Consulting Group
San Jose, California
(www.icg-sj.com)

Cookbook CKBKPREF.FM5 Page

iii

About The TriMedia SDE Cookbook

©1998 Philips Semiconductors 6/1/98 iii

Manual Contents

The TriMedia SDE Cookbook contains the following four parts:

Part 1: Developing TriMedia Applications
Developing TriMedia Applications describes the processes that users follow to compile,
link and test TriMedia applications.

Part 2: Programming with Peripherals
Programming with Peripherals describes the ways in which TriMedia libraries
demonstrate the use of the hardware peripherals on the TriMedia chip.

Part 3: Bootstrapping TriMedia
Bootstrapping TriMedia describes the steps that must be followed to boot TriMedia.

Part 4: Optimizing TriMedia Applications
Optimizing TriMedia Applications describes some tips and tricks which are useful when
optimizing applications to run on TriMedia.

Preface

Cookbook CKBKPREF.FM5 Page

iv

Conventions Used in This Manual

iv ©1998 Philips Semiconductors 6/1/98

This manual uses various conventions to present information. Words that require special
treatment appear in special fonts or font styles. Certain information (such as code listings)
appears in special formats so that you can scan it quickly.

Fonts and Colors
All code listings, command-line options, and names of structures and of functions are
shown in Courier.

Structure and function parameters are shown in Courier italics.

Filenames and Þlename extensions (for example, .c or .o) are shown in normal font.

All TriMedia commands are shown in boldface (for example, tmcc and tmdbg).

All these special font conventions do not apply to references in titles. All text in titles
appears in normal font.

Types of Notes
This manual contains several types of notes.

Note
A note such as this contains information that is interesting, but possibly
not essential to an understanding of the text. Notes can also tell you
where to look for a more detailed discussion of a particular topic. ◆

IMPORTANT

A note such as this contains information that is essential for an
understanding of the text. ▲

▲ W A R N I N G

Warnings such as this indicate potential problems you should be aware
of as you design your applications. Failure to heed these warnings could
result in system crashes or loss of data. ▲

Code listings and command line arguments are surrounded by gray boxes.

Ph i l ips Tr iMed ia SDE Cookbook

Part 1:
Developing TriMedia Applications
AB

SDE Cookbook
Part 1: Developing TriMedia Applications

Cookbook Part 1 000_CBK1.TOC Page iii

Table of Contents 1

Chapter 1 Compiling TriMedia Applications

Table of Contents
©1998 Philips Semiconductors 6/21/98

Introduction..1-2

Build and Execution Hosts...1-4

Build Hosts ...1-4

Execution Hosts..1-4

DeÞning the TCS Environment Variable...1-5

Using tmcc to Compile TriMedia Applications..1-6

Invoking tmcc..1-6

Using tmcc Options ..1-7

Specifying Execution Hosts ..1-7

Compiling TriMedia Applications to Run on the Simulator .1-8

Compiling TriMedia Applications to Run on the Chip.........1-8

Compiling Multiple Files..1-8

Specifying Endianness ...1-10

PredeÞned Macros ...1-10

Creating MakeÞles...1-11

Creating pSOS MakeÞles..1-13

Simple pSOS Application MakeÞle ...1-13

Porting This MakeÞle to nmake ..1-14

Linking With Other pSOS Libraries...1-15

Using the pSOS Monitor...1-16

Running TriMedia Applications ..1-17

Running TriMedia Applications with tmgmon....................................1-17

Dumping the Trace Buffer ...1-18

Example..1-18

Running TriMedia Applications with tmrun..1-20

Table of Contents

Cookbook Part 1 000_CBK1.TOC Page iv

Running TriMedia Applications with tmmon......................................1-20

iv ©1998 Philips Semiconductors 6/21/98

Running TriMedia Applications with tmdbg.......................................1-20

Running TriMedia Applications with tmmprun...................................1-20

Chapter 2 Creating a GUI Interface

Introduction..2-2

Windows Application Program ..2-2

MakeÞle ..2-3

Main Program...2-4

Callback Function..2-7

File Operation ..2-14

Initialization..2-14

Chapter 3 Programming With pSOS

Introduction..3-2

A pSOS Beginning ...3-2

The Root Function..3-2

Communication Using Semaphores...3-4

Communication Using Asynchronous Signals....................................3-4

A pSOS Ending ..3-5

A pSOS+ª Based Multiprocessor Example ...3-5

Starting Development ...3-6

Number of Executables to Build ...3-6

The Root Function..3-7

Buffer and Packet Management, Caching Issues...............................3-8

DMA Transfer..3-10

Table of Contents

Cookbook Part 1 000_CBK1.TOC Page v

Chapter 4 Using the Dynamic Loader on TriMedia

©1998 Philips Semiconductors 6/21/98 v

Introduction..4-2

Dynamic Loading Basics..4-2

Dynamic Loader Example...4-3

Starting Development ...4-3

The Root Function..4-3

The Application Shell..4-5

Running dynamic_loader_shell ..4-6

Table of Contents

Cookbook Part 1 000_CBK1.TOC Page vi
vi ©1998 Philips Semiconductors 6/21/98

Cookbook Part 1 01_CPLNG.FM5 Page

1-1

1: Compiling TriMedia Applications
1

Chapter 1
©1998 Philips Semiconductors 6/21/98 1-1

Compiling TriMedia Applications 1

Topic Page

Introduction 1-2

Build and Execution Hosts 1-4

Defining the TCS Environment Variable 1-5

Using tmcc to Compile TriMedia Applications 1-6

Creating Makefiles 1-11

Creating pSOS Makefiles 1-13

Running TriMedia Applications 1-17

Chapter 1:

Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page

1-2

Introduction

1-2 Introduction ©1998 Philips Semiconductors 6/21/98

Traditionally, real-time Digital Signal Processor (DSP) and multimedia applications have
been primarily implemented in assembly language. The TriMedia hardware architecture
enables you to implement applications not only in assembly language, but also in high-
level languages such as C and C++.

The TriMedia Compilation System (TCS) translates C and C++ programs and generates
code for a machine in the TriMedia architecture family. This cookbook addresses issues
related to developing applications for TriMedia in C or C++.

The TCS translates C and C++ programs and generates machine code for the TriMedia
architecture family. The TriMedia tmcc (tmCC for C++) compiler driver controls program
compilation and linking for the TriMedia processor. Figure 1-1 shows the stages in the
TriMedia compilation and simulation system, as well as the information ßow during the
stages.

The tmcc compiler driver provides a natural command-line interface that makes it
unnecessary for most users to understand the details of the TriMedia compiler. Some
features of the tmcc compiler driver are useful for system software developers who must
test drop-in replacements for TCS tools, while other features are useful for application
developers and system architects.

Chapter 1:

Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page

1-3

a.C a.cca.c
©1998 Philips Semiconductors 6/21/98 Introduction 1-3

Figure 1-1 TriMedia Compilation and Simulation System

C Preprocessor
(cpp)

C++ Front End
(tmcfe)

Core Compiler
(tmccom)

Scheduler
(tmsched)

Assembler
(tmas)

Linker
(tmld)

lib.dll

a.i a.c

a.s

a.t

a.o

Machine Description
File

Machine
Simulator
(tmsim)

Dynamic
Loader

a.out
Running
on host

a.out

Chapter 1:

Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page

1-4

Build and Execution Hosts

1-4 Build and Execution Hosts ©1998 Philips Semiconductors 6/21/98

The following two types of platforms use TriMedia applications:

■ Build hosts

■ Execution hosts

Build Hosts
You use build hosts to develop and compile TriMedia applications. (You must install the
TCS Þrst.) Following is a list of the build hosts:

■ Solaris

■ SunOS

■ HP-UX

■ Windows 95

■ Windows NT

Because the TCS works in the same way on each build host, selecting a host is a matter of
personal preference. For example, some developers prefer using a UNIX-based host
(Solaris, SunOS, and HP-UX) because of the following:

■ Availability

■ Higher performance

■ Extensive experience using UNIX-based hosts

On the other hand, other developers prefer using personal computers (PCs) for building
and running TriMedia applications. The choice of host is completely up to you.

Execution Hosts
You use execution (host) hosts to run TriMedia applications. Following is a list of the
execution hosts:

■ Windows 95

■ Windows NT

Chapter 1:

Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page

1-5

Note

Although you can use the Windows 95 host for both building and running

©1998 Philips Semiconductors 6/21/98 Defining the TCS Environment Variable 1-5

TriMedia applications, it is good practice to use different machines for
building and running. For example, you might build on Windows NT and
run on Windows 95. This helps you avoid problems with the building
environment if the TriMedia application you are trying to build crashes. ◆

Defining the TCS Environment Variable

The tmcc compiler driver typically uses default paths to Þnd the machine-description Þle,
libraries, header Þles, and tools needed by the driver. You can control the driver
conÞguration in several different ways.

By default, tmcc assumes that the TCS is installed in a directory tree rooted in the
directory speciÞed by the TCS environment variable. If the TCS is not set, tmcc uses the
directory where it was originally installed (usually /usr/local/tcs) as its default value.
Placing the TCS path in your system path enables you to call tmcc with no preÞxes.

The tmcc compiler driver reads a conÞguration Þle (by default, $TCS/tmconÞg) that
speciÞes default options passed to the various compilation stages. You can specify an
alternative location for the conÞguration Þle with the command-line option
-tmconfig=file. For more information, Chapter 5, ÒMan Pages,Ó in Part 2 of TriMedia
SDE Reference Manual I.

The tmconÞg conÞguration Þle can specify alternative locations for the compilation tools,
the machine-description Þle, the standard C runtime start off, and the standard C library.

The manual page for tmcc provides more information about the conÞguration Þle format.
You can specify alternative tool locations in the tmcc command line. For example, option
-tmccom=/u/george/bin/tmccom tells tmcc to use tmccom from the given location for
compilation.

Note
For best results, deÞne the TCS environment variable only inside
makeÞles. DeÞning the TCS environment variable in a startup script can
lead to great confusion when multiple versions of the TriMedia
Compilation System are resident on your computer. It is similarly wise to
explicitly specify the TCS variable when calling tmcc from a makeÞle
($(TCS)/bin/tmcc). ◆

Chapter 1:

Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page

1-6

Using tmcc to Compile TriMedia Applications
1-6 Using tmcc to Compile TriMedia Applications ©1998 Philips Semiconductors 6/21/98

This section describes how to use the TriMedia tmcc compiler driver.

IMPORTANT

The compiler front end (tmcfe) uses the Ò__0Ó preÞx when it converts C++
names into C format. Consequently, some ÒvalidÓ names may conßict with
previous declarations which appear to be unrelated. For example, the
following C++ program will not compile with tmcc:

float __0dDfooBx;

class foo {

 static int x;

};

This is because the mangled name for the static member of the class conßicts
with the ßoat declaration. We highly recommend that you follow the ANSI
standard, or at least not preÞx any identiÞers with the special string Ò__0Ó. ◆

Invoking tmcc

You can invoke the tmcc (tmCC for C++) compiler driver using either

or

The command line can specify options that affect the operation of tmcc and must specify
at least one Þle that tmcc processes. Each Þle argument must have one of the known
extensions listed below. In keeping with standard C usage, tmcc passes each unrecognized
argument to the tmld loader directly. Refer to the following table.

tmcc [<option> ...] <file> ...

tmCC [<option> ...] <file> ...

 Extension Description

.c C source Þle.

.C, .cc, or .cpp C++ source Þle (Windows 95 does not have case distinction.
The extension .cc or .cpp indicates a C++ program.)

.i Preprocessed C source Þle. Output of the C cpp preprocessor.

.t Intermediate representation (decision trees.) Output of the
tmccom core compiler.

.s Assembly code. Output of the tmsched instruction scheduler.

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-7

 Extension Description
©1998 Philips Semiconductors 6/21/98 Using tmcc to Compile TriMedia Applications 1-7

The only difference between tmcc and tmCC is that tmCC assumes that compilation
involves objects generated from C++ sources. Thus, tmCC always links with the standard
C++ (libC++.a) library.

The tmcc compiler driver also enables you to pass command-line arguments to speciÞed
compilation stages, as described in the next section.

Using tmcc Options

The tmcc compiler driver enables you to pass extra arguments to compilation stages
directly by specifying the name of the desired stage, followed by the desired arguments
with the special terminator Ò--Ó. For example, the command

compiles the foo.c program and adds the -pedantic argument to the options that tmcc
normally passes to the cpp C preprocessor. Similarly, you can pass arguments to other
compilation and linkage phases using the -cpp, -tmcfe, -tmccom, -tmsched, -tmas, or
-tmld options.

For more information about the tmcc options, Chapter 5, ÒMan Pages,Ó in Part 2 of
TriMedia SDE Reference Manual I.

Specifying Execution Hosts

In almost all circumstances, if you have a TriMedia board, you define the run time host as
the host computer of your board. However, you can get information out of the simulator
that you canÕt get out of the chip (for example, detailed analysis performance Þgures that
enable you to track very precisely the performance on the simulator), so you may
sometimes want to specify the simulator tmsim as execution host.

The conÞguration Þle deÞnes a HOST_DEFAULT default host. It also contains host-speciÞc
sections, each starting with HOST=host and ending with HOST_END. You can specify an
execution host with the -host option to tmcc, which allows host-speciÞc compilation. The
syntax is as follows:

This builds an executable suitable for the speciÞed host (for example, Win95 or tmsim)
by using the host-speciÞc parts of the tmconÞg conÞguration Þle.

.o Unlinked object module. Output of the tmas assembler.

a.out Linked executable. Output of the tmld linker.

.a Library Þle. Output of the tmar librarian.

tmcc -cpp -pedantic -- foo.c

tmcc -host host foo.c

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-8

Compiling TriMedia Applications to Run on the Simulator
1-8 Using tmcc to Compile TriMedia Applications ©1998 Philips Semiconductors 6/21/98

To compile the sample program hello.c (it prints the message Òhello, TriMedia worldÓ
on the screen), type the following:

When the Þle compiles successfully, use the tmsim command to run the resulting program
using the TriMedia simulator (tmsim) as follows:

The following message appears:

You can also compile C++ applications for the simulator in the same way.

When the Þle compiles successfully, run the resulting executable Þle with tmsim.

The following message appears:

Compiling TriMedia Applications to Run on the Chip

To compile for the chip, you must specify the execution host that contains the TM-1000
chip. You do this using the -host option (Win95 for a Windows 95 PC as shown in the
following example:

To run the resulting executable Þle, refer to ÒRunning TriMedia ApplicationsÓ on page
1-17 for more information.

When you specify Win95 as the execution host, tmcc selects various options from the
tmconÞg Þle. The tmconÞg Þle sets the default endianness to -el (little endian), and adds
a number of libraries that are Windows 95-speciÞc.

Compiling Multiple Files

The following command compiles two Þles (ave1.c and ave2.c) and produces an
executable ave, assuming no errors occur in any of the compilation stages:

tmcc -o hello hello.c

tmsim hello

hello, TriMedia world

tmcc -o hello2 hello2.cc

tmsim hello2

Hello, TriMedia C++ World!

tmcc -o hello -host Win95 hello.c

tmcc -o ave ave1.c ave2.c

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-9

The tmcc compiler driver expects Þlenames to have one of the extensions listed on page 1-
6. Its actions depend on the extension and the driver options speciÞed in the command
©1998 Philips Semiconductors 6/21/98 Using tmcc to Compile TriMedia Applications 1-9

line. For example, the command

causes tmcc to

■ Preprocess, compile, schedule, and assemble ave1.c to produce ave1.o

■ Compile, schedule, and assemble ave2.i to produce ave2.o

■ Schedule and assemble ave3.t to produce ave3.o

■ Assemble ave4.s to produce ave4.o

■ Link the Þve object Þles (ave1.o, ave2.o, ave3.o, ave4.o, and ave5.o) to produce the
executable ave.

The -D option deÞnes preprocessor macros as follows:

In the following example, the Þrst command line compiles a program with proÞling code
inserted (using the -p option). The second line simulates the resulting program a.out using
tmsim, which generates an execution profile in the file dtprof.out. The third recompiles
the program using the proÞle information (using the -r option).

The following example is identical to the previous example, except that the second
compilation uses the proÞle information to perform grafting (using the -G option):

tmcc -o ave ave1.c ave2.i ave3.t ave4.s ave5.o

tmcc -DMAX_LEN=1024 -DFOO -o ave ave1.c ave2.c

tmcc -p ave1.c ave2.c
tmsim a.out
tmcc -r -o ave ave1.c ave2.c

tmcc -p ave1.c ave2.c
tmsim a.out
tmcc -G -o ave ave1.c ave2.c

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-10

Specifying Endianness
1-10 Using tmcc to Compile TriMedia Applications ©1998 Philips Semiconductors 6/21/98

The host TM-1000 processor supports either big endian or little endian byte ordering,
depending on the BSX bit in the PCSW. (See the TM-1000 Data Book for details.) The
default is big endian. You can change the default by editing the conÞguration Þle; you can
override the default with the -eb or -el command-line option. In addition, you can
override the default endianness with tmccÕs -host option (-host Win95 uses -el by
default and -host MacOS uses -eb by default).

Predefined Macros

The tmcc compiler driver automatically deÞnes a few macros when it invokes either cpp
(C programs) or the C++ front end tmcfe (C++ programs). The following macros are
always deÞned:

Note
You can specify additional predeÞned macros for C source compilation
on the CPP_ARGS line of the tmconÞg conÞguration Þle. You can specify
additional predeÞned macros for C++ source compilation on the
TMCFE_ARGS line. ◆

Macro Description

 __TCS__ DeÞned during source Þle conditionalization to indicate source
code speciÞc to the TCS.

__STDC__ DeÞned to indicate compliance with the ANSI/ISO C Standard.

__BIG_ENDIAN__ DeÞned when compiling in big endian mode

__LITTLE_ENDIAN__ DeÞned when compiling in little endian mode.

__TCS__host__ DeÞned to indicate compilation for the given host host

__TCS__target__ DeÞned to indicate compilation for the given host target

__cplusplus DeÞned by tmcfe to indicate C++ compilation.

__TMSCHED__ DeÞned by tmcc with the -x option when preprocessing a Ò.tÓ
source Þle.

__TMAS__ DeÞned by tmcc with the -x option when preprocessing a Ò.sÓ
source Þle.

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-11

Creating Makefiles
©1998 Philips Semiconductors 6/21/98 Creating Makefiles 1-11

A makeÞle is a useful way to organize information about programs, especially if you have
complicated programs. It enables you to include device libraries and deÞne options that
you use frequently in your program without having to remember this information every
time you recompile your programs. Following is an example of a standard UNIX makeÞle
for compiling the hello.c sample program:

Note
The $@ symbols represent the program that you are trying to build (in this
case, hello.out or hello.o). This makeÞle runs transparently on a
Windows 95 platform using MicrosoftÕs NMAKE. ◆

To run this Þle, type make and press Enter.

CC=tmcc or CC=$(TCS)/bin/tmcc
CFLAGS=-host Win95

hello.out: hello.o
$(CC) $(CFLAGS) -o $@ hello.o

hello.o: hello.c
$(CC) $(CFLAGS) -c -o $@ hello.c

make
tmcc -host Win95 -c -o hello.o hello.c
tmcc -host Win95 -o hello hello.o

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-12

IMPORTANT

MakeÞles might not necessarily be portable across different build hosts.
1-12 Creating Makefiles ©1998 Philips Semiconductors 6/21/98

For example, UNIX makeÞles use forward slashes in path information,
while makeÞle utilities on the Windows platform, such as nmake and
gnumake, use back slashes (in addition to other differences). In the case
of simple makeÞles, you might be able to easily modify makeÞles to work
on one platform or the other. However, when dealing with long and
complicated makeÞles, Philips highly recommends that you use utilities
such as the Mortice Kern Systems (MKS) toolkit. This third-party utility
adds UNIX-compatible commands (including the make command) to the
PCÕs command line and recognizes forward slashes and backward
slashes equally. This enables you to run UNIX-based makeÞles on the
PC.

#
NMAKE compatible makefile for myecho
#
TCS = c:\tcs1.1
CC = $(TCS)\bin\tmcc
CFLAGS = -host Win95

myecho.out : myecho.o
$(CC) $(CFLAGS) -o $@ myecho.o

myecho.o : myecho.c
$(CC) $(CFLAGS) -c -o $@ myecho.c

clean :
del myecho.o
del myecho.out

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-13

Creating pSOS Makefiles
©1998 Philips Semiconductors 6/21/98 Creating pSOS Makefiles 1-13

Simple pSOS Application Makefile
The following is an example of a simple pSOS application makeÞle for use in the Unix-
like make environment, including the MKS toolkit on Windows. Minor changes can be
made to use it with MicrosoftÕs nmake.

Fill in these appropriately for your application and host configuration
HOST: Win95, WinNT, MacOS, tmsim, nohost
ENDIAN: el, eb

TCS = /usr/local/tcs
HOST = Win95
ENDIAN = el
APPLICATION = a.out
OBJECTS = root.o drv_conf.o
target: $(APPLICATION)

You normally should not need to change the following

PSOS_SYSTEM = $(TCS)/OS/pSOS/pSOSystem
PSOS_DEFS = -DSC_PSOS=YES -DSC_PSOSM=NO -DSC_PNA=NO -DSC_PPP=NO
CC = $(TCS)/bin/tmcc -host $(HOST) -$(ENDIAN) $(PSOS_DEFS)
LD = $(TCS)/bin/tmld
AR = $(TCS)/bin/tmar
CINCS = -I. -I$(PSOS_SYSTEM)/include
CFLAGS =
LDFLAGS = -bremoveunusedcode -bcompact -bfoldcode

$(APPLICATION): bsp.a $(OBJECTS) Makefile
 @ echo "Linking $(APPLICATION)"
 @ $(CC) \
 $(OBJECTS) $(PSOS_SYSTEM)/sys/os/psos_tm_$(ENDIAN).o

bsp.a \
 $(LDFLAGS) $(CFLAGS) -o $(APPLICATION)

bsp.a:
 @ make -f $(PSOS_SYSTEM)/configs/Makefile \
 PSOS_SYSTEM="$(PSOS_SYSTEM)" \
 AR="$(AR)" CC="$(CC)" CFLAGS="$(CFLAGS)"

%o: %c
 @ echo "Compiling $(*)c"
 @ $(CC) $(CFLAGS) $(CINCS) -c $(*)c -o $@

clean:
 rm -fr $(APPLICATION) *.o bsp.a

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-14

The macros that should be customized for a speciÞed build environment are TCS, HOST,
ENDIAN, APPLICATION, and OBJECTS. CINCS, CFLAGS, and LDFLAGS can also be
1-14 Creating pSOS Makefiles ©1998 Philips Semiconductors 6/21/98

customized, but it is not necessary.

This makeÞle assumes the TCS compiler tools are located at Ò/usr/local/tcs.Ó When using
MKS, it should be like ÒC:/TriMedia/binÓ, with forward slashes (/). It compiles the objects
root.o and drv_conf.o and links them with the appropriate pSOS library, for Win95 with
little endian. Its resulting executable is called Òa.outÓ in the local directory.

Porting This Makefile to nmake
To use this makeÞle with MicrosoftÕs nmake, follow the step listed below (also found in
$(TCS)/examples/psos/psos_demo1/MakeÞle.simple).

1. Copy this Þle to MakeÞle.win

2. In $(PSOS_SYSTEM)/conÞg, copy MakeÞle to MakeÞle.win

3. Replace all forward slashes (/) with back slashes (\) in both Þles

4. Change the default rule to

5. Change make command for target bsp.a below to

6. Change object Þle rule to

7. Make sure you take out all back slashes (\) for line separation

8. Invoke this makeÞle by typing at a MS-DOS prompt:

The resulting version of the above makeÞle is listed below.

 {$(SRC)\}.c.o:
 @ echo "Compiling $<"
 $(ECHO_OPTION) $(CC) -c $(CFLAGS) $(CINCS) -o $@ $<

 @ nmake /f $(PSOS_SYSTEM)\configs\Makefile.win
PSOS_SYSTEM="$(PSOS_SYSTEM)" APPDIR="." AR="$(AR)" CC="$(CC)"
CFLAGS="$(CFLAGS)"

 .c.o:
 @ echo "Compiling $*.c"
 @ $(CC) $(CFLAGS) $(CINCS) -c $*.c -o $@

 nmake /f Makefile.win

Fill in these appropriately for your application and host configuration
HOST: Win95, WinNT, MacOS, tmsim, nohost
ENDIAN: el, eb

TCS = C:\TriMedia\bin
HOST = Win95
ENDIAN = el
APPLICATION = a.out
OBJECTS = root.o drv_conf.o

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-15

target: $(APPLICATION)
©1998 Philips Semiconductors 6/21/98 Creating pSOS Makefiles 1-15

Notice that Steps 2, 3, 4, and 7 are also to be applied to the MakeÞle in
$(PSOS_SYSTEM)/conÞg. The resulting makeÞle there should also be called
MakeÞle.win.

Linking With Other pSOS Libraries
Note that only with care can this makeÞle be made to link with special pSOS libraries,
such as pSOS+m, dynamic linking, and pSOS networking modules (pNA, PPP). For such
advanced compilation, the comprehensive makeÞle in $(TCS)/examples/psos/psos_demo1/
MakeÞle should be used. Instructions to use that makeÞle are found in it. Below are a few
instructions on how to change this makeÞle to link with pSOS+m, dynamic linking, and
pSOS networking libraries.

To use pSOS+m, switch on pSOS+m and switch off pSOS in the deÞnition of PSOS_DEFS
(-DSC_PSOS=NO -DSC_PSOSM=YES). Then change psos_tm_$(ENDIAN).o to
psosm_tm_$(ENDIAN).o, under the rule for $(APPLICATION).

To use the pSOS library compiled for dynamic linking, replace $(PSOS_SYSTEM)/sys/os/
psos_tm_$(ENDIAN).o with -bimmediate $(PSOS_SYSTEM)/sys/os/

You normally should not need to change the following

PSOS_SYSTEM = $(TCS)\OS\pSOS\pSOSystem
PSOS_DEFS = -DSC_PSOS=YES -DSC_PSOSM=NO -DSC_PNA=NO -DSC_PPP=NO
CC = $(TCS)\bin\tmcc -host $(HOST) -$(ENDIAN) $(PSOS_DEFS)
LD = $(TCS)\bin\tmld
AR = $(TCS)\bin\tmar
CINCS = -I. -I$(PSOS_SYSTEM)\include
CFLAGS =
LDFLAGS = -bremoveunusedcode -bcompact -bfoldcode

$(APPLICATION): bsp.a $(OBJECTS) Makefile
 @ echo "Linking $(APPLICATION)"
 @ $(CC) $(OBJECTS) $(PSOS_SYSTEM)\sys\os\psos_tm_$(ENDIAN).o

bsp.a
$(LDFLAGS) $(CFLAGS) -o $(APPLICATION)

bsp.a:
 @ nmake /f $(PSOS_SYSTEM)\configs\Makefile.win
PSOS_SYSTEM="$(PSOS_SYSTEM)" APPDIR="." AR="$(AR)" CC="$(CC)"
CFLAGS="$(CFLAGS)"

.c.o:
 @ echo "Compiling $*.c"
 @ $(CC) $(CFLAGS) $(CINCS) -c $*.c -o $@

clean:
 rm -fr $(APPLICATION) *.o bsp.a

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-16

psos_tm_$(ENDIAN).dll. To use pSOS+m with dynamic linking, follow the steps above
for pSOS+m after applying the steps for dynamic linking.
1-16 Creating pSOS Makefiles ©1998 Philips Semiconductors 6/21/98

To use pNA, switch on the PNA ßag with -DSC_PNA=YES in the deÞnition of PSOS_DEFS,
and add $(PSOS_SYSTEM)/sys/os/pna_tm_$(ENDIAN).o after $(PSOS_SYSTEM)/sys/
os/psos_tm_$(ENDIAN).o. To use pNA with dynamic linking, instead of above, add -
bimmediate $(PSOS_SYSTEM)/sys/os/pna_tm_$(ENDIAN).dll.

Apply the same steps for PPP as for pNA.

Using the pSOS Monitor
To use compile this makeÞle with the pSOS monitor for debugging in tmdbg, follow the
steps below.

1. Add -g to CFLAGS.

2. Add $(TCS)/lib/$(ENDIAN)/psosmon.o to the link line of your application:

3. Remove linker optimizations in LDFLAGS.

Table 1-1 The Usage of pSOS in the Sample MakeÞle

PSOS_DEFS $(APPLICATION)

pSOS -DSC_PSOS=YES -DSC_PSOSM=NO $(PSOS_SYSTEM)/sys/os/
psos_tm_$(ENDIAN).o

pSOS+m -DSC_PSOS=NO -DSC_PSOSM=YES $(PSOS_SYSTEM)/sys/os/
psosm_tm_$(ENDIAN).o

dll,pSOS -DSC_PSOS=YES -DSC_PSOSM=NO -bimmediate$(PSOS_SYSTEM)/sys/os/
psos_tm_$(ENDIAN).dll

dll,pSOS+m -DSC_PSOS=NO -DSC_PSOSM=YES -bimmediate$(PSOS_SYSTEM)/sys/os/
psosm_tm_$(ENDIAN).dll

pNA add -DSC_PNA=YES add $(PSOS_SYSTEM)/sys/os/
pna_tm_$(ENDIAN).o

PPP add -DSC_PPP=YES add $(PSOS_SYSTEM)/sys/os/
ppp_tm_$(ENDIAN).o

pNA, dll add -DSC_PNA=YES add -bimmediate $(PSOS_SYSTEM)/sys/
os/pna_tm_$(ENDIAN).dll

PPP, dll add -DSC_PPP=YES add -bimmediate $(PSOS_SYSTEM)/sys/
os/ppp_tm_$(ENDIAN).dll

 @ $(CC) \
 $(OBJECTS) $(PSOS_SYSTEM)/sys/os/psos_tm_$(ENDIAN).o bsp.a \
 $(TCS)/lib/$(ENDIAN)/psosmon.o $(LDFLAGS) $(CFLAGS) -o
$(APPLICATION)

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-17

Running TriMedia Applications
©1998 Philips Semiconductors 6/21/98 Running TriMedia Applications 1-17

You can run TriMedia applications on PC hosts (running Windows 95 or Windows NT)
with any of the following tools:

■ tmgmon

■ tmrun

■ tmmon

■ tmdbg

■ tmmprun

Running TriMedia Applications with tmgmon
The tmgmon tool is a GUI-based Win32 application (built on top of tmmon) that uses the
TriMedia Manager Host Application Programming Interface (API). It provides an
interactive user interface for downloading and running TriMedia executables on the
TriMedia processor. You can access all options by selecting the appropriate option from
the window. Scrollable views are provided for the trace and memory window to aid in
debugging.

Note
To simplify matters, make sure that tmgmon and tmcons are in the
same directory as the program you are trying to run because tmgmon
always starts in the directory in which it resides. This way, it is easy to
locate the programs youÕre trying to run. ◆

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-18

Dumping the Trace Buffer
1-18 Running TriMedia Applications ©1998 Philips Semiconductors 6/21/98

The Win95 execution host provides the DP function to be used for real-time debugging.
This is described in Part 3: TriMedia Debugger in Reference Manual I. The tmgmon tool
enables you to dump the DP buffer. The Tracep button at the lower left of the tmgmon
TriMedia Monitor window initiates a dump.

If the DP buffer is small, you can dump the DP buffer to the scrollable buffer on screen. If
the DP buffer is large (greater than 64K), the on-screen buffer is too small and Philips
recommends dumping the DP buffer to a Þle. You can select Þle output by typing a
Þlename in the Trace File Þeld of the TriMedia Monitor window and checking the box to
its right.

Example

The following steps show you how to use tmgmon to run TriMedia programs and dump
the DP buffer:

1. Compile the program to run on Windows 95.

2. Enter the name of the program in the Filename Þeld.

3. Enter arguments in the Arguments Þeld.

4. Click Go.

5. Click Tracep.

#include <stdio.h>
#include <tmlib\dprintf.h>
main(int argc, char **argv)
{

int i;
DPmode(DP_PERSIST); /* for debugging */
DPsize(64000);
DP(("Debug Printf from myecho\n"));
printf("\nhello / goodbye from myecho: \n");
for (i=1; i<argc; i++)

printf("%s ", argv[i]);
return (0x47);

}
$ tmcc -o myecho -host Win95 myecho.c

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-19
©1998 Philips Semiconductors 6/21/98 Running TriMedia Applications 1-19

The ÒHello, goodbye from myechoÓ message appears on the screen.

You can also use tmgmon to pass arguments. For example, to run the sample program
Òmyecho,Ó type myecho in the Filename Þeld, enter the arguments in the Arguments Þeld,
and specify the standard output Þle (optional) in the Stdout Þeld.

For more information about tmgmon, Chapter 5, ÒMan Pages,Ó in Part 2 of TriMedia SDE
Reference Manual I.

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-20

Running TriMedia Applications with tmrun
1-20 Running TriMedia Applications ©1998 Philips Semiconductors 6/21/98

Use tmrun to download programs and run them on the TriMedia processor. This is a
Win32 console application that enables you to run programs in batch mode.

For example, to run the hello program, type the following:

For more information about tmrun, Chapter 5, ÒMan Pages,Ó in Part 2 of TriMedia SDE
Reference Manual I.

Running TriMedia Applications with tmmon
The tmmon tool is a Win32 console mode application that provides a command-based
interface for executing programs on the TriMedia processor. It performs its functions
through calls to the documented TriMedia Manager interface.

When the program ÒmyechoÓ compiles successfully, launch tmmon and load the program
using the ld command (type the arguments to pass after the program name).

For more information about tmmon, Chapter 5, ÒMan Pages,Ó in Part 2 of TriMedia SDE
Reference Manual I.

Running TriMedia Applications with tmdbg
You can run TriMedia applications using the tmdbg TriMedia debugger. Refer to Part 3 of
Reference Manual I for more information about using tmdbg

Running TriMedia Applications with tmmprun
The tmmprun application allows a multiprocessor application to be downloaded to a set
of IREF boards. This is a Win32 console application that enables you to run programs in
batch mode.

tmrun -b hello

Chapter 1: Compiling TriMedia Applications

1

Cookbook Part 1 01_CPLNG.FM5 Page 1-21

For example, to run the vivot demo application on the Þrst processor and fplay on a second
one, type the following:
©1998 Philips Semiconductors 6/21/98 Running TriMedia Applications 1-21

For more information about tmmprun, Chapter 5, ÒMan Pages,Ó in Part 2 of TriMedia
SDE Reference Manual I.

tmmprun -exec vivot -exec fplay

Chapter 1: Compiling TriMedia Applications

Cookbook Part 1 01_CPLNG.FM5 Page 1-22
1-22 Running TriMedia Applications ©1998 Philips Semiconductors 6/21/98

Cookbook Part 1 02_GUI.FM5 Page 2-1
2: Creating a GUI Interface
2

Chapter 2
©1998 Philips Semiconductors 6/21/98 2-1

Creating a GUI Interface 2

Topic Page

Introduction 2-2

Windows Application Program 2-2

MakeÞle 2-3

Main Program 2-4

Callback Function 2-7

File Operation 2-14

Initialization 2-14

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-2

Introduction
2-2 Introduction ©1998 Philips Semiconductors 6/21/98

The purpose of this program is to show how to create a GUI interface which is able to run
programs on TriMedia. This program is able to load, run, or stop the execution of a
program on the TriMedia. It offers the possibility of running four programs from the
example directory by a choice of menu buttons.

Windows Application Program

The program was developed with Microsoft Visual C++ 4.0 (MSVC++ 4.0) but it was
designed to be compiler independent. It should work with other Win32 compilers, for
example Borland C++ 5.0, without problems.

Figure 1 shows a bitmap view of a fractal image. The fractal image was loaded from a Þle
using the functionality provided in the example. In a full scale application, the fractal
image could have been generated on TriMedia to take advantage of SIMD processing.

Figure 2 shows how a resource editor can be used to structure an application. Each of the
objects in the window is identiÞed by a unique preÞx that is coded according to a
Windows convention. The menu selections (ID_OPEN, ID_SAVE, ID_SAVEAS, ID_EXIT)
are child windows of the File menu. Pressing a command button (dma, Þles, sine, patest)
causes a TriMedia program to be started.

The resource editor can greatly simplify the creation of the GUI interface. It is possible to
create a simple interface such as the one shown in an hour or less. If the presentation needs
to be adjusted no recompilation is necessary. The interface can be tested for usability even
without programming. To create the resource Þle shown, all that is necessary is knowledge
of a few MSVC++ commands. The user should have no difÞculty Þnding the necessary
information.

Figure 3 shows the dialog box that is generated when About is selected from the Help
menu. The information in the Window correspond to the processor state. For example, the
contents of this Window could be copied and pasted for transmission to customer support.

Real time and compute-intensive parts of the application can be very effectively off-loaded
from the main processor using TriMedia. However, to get the most beneÞt, it is essential
that the application contain a host part that conforms to Windows API and quality
standards. The purpose of the example program is to allow TriMedia programmers to
become proÞcient in programming a basic Windows GUI with a minimum of effort. This
will allow them to concentrate on obtaining the most added value from the power of
TriMedia.

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-3

Makefile
©1998 Philips Semiconductors 6/21/98 Makefile 2-3

The makeÞle of this program is detailed below.

This line allows you to specify the directory where you installed TriMedia. Even if host
application is being made, the header Þle (tmman32.h) and the library (tmman32.lib) is
needed to access tmman functions. tmman implements host/target communication.

These specify the compiler, linker, and resource compiler you are going to use. These are
the values which will run with MSVC++. The Microsoft C compiler is invoked from the
command line as ÔclÕ.

 The command line parameters are a bit different than other compilers. Note that the -I and
-LIBPATH options are used to specify the paths for includes and libraries for TriMedia.

The project consists of Þve C Þles, three H Þles, and one RC Þle.

##########################
GUI Windows App Makefile
##########################
TCS = C:\TriMedia
SDK = C:\msdev

CC = $(SDK)\bin\cl.exe
LD = $(SDK)\bin\link.exe
RC = $(SDK)\bin\rc.exe

CFLAGS = -c -I$(TCS)\include\Win95 -DSTRICT -Zp4 -G3 -Ow
LDFLAGS = -SUBSYSTEM:windows
GUILIBS = -DEFAULTLIB:user32.lib gdi32.lib winmm.lib comdlg32.lib
 comctl32.lib \
 -LIBPATH:$(TCS)\lib\Win95 tmman32.lib
RCFLAGS = -r -DWIN32

OBJ = about.obj communication.obj error.obj files.obj trimedia.obj

trimedia.exe: $(OBJ) trimedia.res
 $(LD) $(LDFLAGS) -OUT:$@ $(OBJ) trimedia.res $(GUILIBS)
about.obj: about.c trimedia.h resource.h
 $(CC) $(CFLAGS) about.c
communication.obj: communication.c trimedia.h
 $(CC) $(CFLAGS) communication.c
error.obj: error.c
 $(CC) $(CFLAGS) error.c
files.obj: files.c trimedia.h resource.h
 $(CC) $(CFLAGS) files.c
trimedia.obj: trimedia.c trimedia.h main.h resource.h
 $(CC) $(CFLAGS) trimedia.c
trimedia.res: trimedia.rc resource.h trimedia.ico
 $(RC) $(RCFLAGS) trimedia.rc

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-4

clean:
 del *.obj
2-4 Main Program ©1998 Philips Semiconductors 6/21/98

 A clean target has been added to remove unwanted Þles.

Main Program

Windows GUI applications are different from console applications because they are event-
driven. This means that the application reacts to messages coming from the OS rather than
controlling what goes on. For example, when the user clicks on a button this generates a
WM_COMMAND. All the possible messages are defined in the <windows.h> header file
supplied by Microsoft.

This means that any Windows GUI application is split in two parts. The WinMain (entry
point of a Windows GUI application) function performs initialization. The WndProc
function is a callback function which reacts to the events.

The main program in trimedia.c contains the entry point of the program. WinMain is the
equivalent of the main function in an ordinary C program.

The following part is very important. It is in this part that the characteristics of the
windows class (WNDCLASSEX struct) are set up. After that, we will be able to open as
many windows as we want based on this class.

This statement speciÞes the window message procedure which will be called by Windows
whenever an event happens. Windows uses Hungarian notation for names. The lower case
letters at the beginning of the name correspond to the type. lpfn means long pointer to
function in this case.

This statement allows the user to ask for more data for the class. ClsExtra is a count in
bytes.

 del trimedia.res
 del trimedia.exe

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
 {

 wndclass.cbSize = sizeof (wndclass) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc ;

 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = DLGWINDOWEXTRA ;

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-5

The difference between class and window is important. The class information is shared. In
this case, DGLWINDOWEXTRA extra bytes are reserved for each window but none for
©1998 Philips Semiconductors 6/21/98 Main Program 2-5

the class.

Windows GUI application can either be basic or Dialog based. Using a dialog based
application simpliÞes the code because it does not have to deal with as many messages.
However, more space is needed for the class. This value should be zero if the application is
not dialog based. The space which is allocated is needed by Windows and does not
concern the programmer.

An instance in Windows corresponds to a system object (a process). Objects in Windows
are normally referred to via a handle (a pointer to a pointer). The type (h) corresponds to
the Þrst letter. hInstance corresponds to the process ID in this case. It is given as a
parameter to WinMain. Handles are of integer type.

This gets a handle to the customized icon. Resources are identiÞed in the resource Þle by
integers to save space. The macro converts this to a string (ÒTriMedia in this caseÓ).

This gets a handle to the Windows default cursor.

This gets a handle to the background brush (grey in this case).

Windows identiÞes menu names with strings. In the resource Þle, these are represented by
integers to save space. The type is long pointer to zero terminated string (lpsz). This
corresponds to a normal C string.

A class is a sort of template for a window. Classes are also identiÞed by strings.

This statement is equivalent to the LoadIcon call above.

 wndclass.hInstance = hInstance ;

 wndclass.hIcon = LoadIcon (hInstance,
MAKEINTRESOURCE(IDI_TRIMEDIA)) ;

 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);

 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW) ;

 wndclass.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);

 wndclass.lpszClassName = "TriMedia" ;

 wndclass.hIconSm = LoadIcon (hInstance, "TriMedia") ;

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-6

At this point, all the resource aspects of the window have been speciÞed The icon is
deÞned in the Þle trimedia.ico, and the menu is deÞned in the resource Þle trimedia.rc.
2-6 Main Program ©1998 Philips Semiconductors 6/21/98

This communicates the template information to the OS. This is required before a window
can be created.

This creates a window of the class we previously deÞned. Handles of windows are a key
part of a window application.

The characteristics deÞned above are not enough to create an application with buttons, edit
boxes, etc. There are two ways to deal with this. They can be created on the ßy with some
calls to CreateWindow. In this case, a resource Þle was used instead. This is much easier,
especially with the resource editors available in most Win32 IDEs. IDD_TRIMEDIA
corresponds to the name ÒTriMediaÓ deÞned above. A convention for Windows
programming is being used here. Resources normally begin with ID with another letter to
specify the type. D stands for Dialog, I for Icon, M for menu, C for control (buttons, edit
boxes), etc. Figure 2-1 on page 2-6 shows what this resource looks like.

Figure 2-1

 RegisterClassEx (&wndclass) ;

 hwnd = CreateDialog (hInstance,
MAKEINTRESOURCE(IDD_TRIMEDIA), 0, NULL) ;

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-7
©1998 Philips Semiconductors 6/21/98 Callback Function 2-7

This speciÞes how to display the window (maximized, minimized) depending on the value
of icmdShow given as a parameter.

The effect of this function is to send to the callback function a WM_PAINT message.
This forces Windows to display the window.

It loads the customized accelerators which are deÞned in the resource Þle. Accelerators are
basically keystrokes which can be used as shortcuts. Standard shortcuts are supported by
this example (F1 to get help, Ctrl+O to open a Þle, Ctrl+S to save the Þle).

The last part of the WinMain is a busy loop which waits for messages from the Operating
System and then sends them to the window that is appropriate.

This terminates the main program.

Callback Function

The second part of the main program is the message callback function.

The Þrst parameter is the handle to the window.

ShowWindow (hwnd, iCmdShow) ;

 UpdateWindow(hwnd);

 hAccel = LoadAccelerators (hInstance,
MAKEINTRESOURCE(IDR_ACCELERATOR1));

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator(hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }

 return msg.wParam ;
 }

LRESULT CALLBACK WndProc (HWND hwnd,

 UINT iMsg,

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-8

This identiÞes the message to be processed (iMsg). These are numerous and are deÞned in
windows.h. All the system events are broadcast at least to the active window. An
2-8 Callback Function ©1998 Philips Semiconductors 6/21/98

application has to handle the messages it understands. Otherwise it should request the
default behavior.

The last two parameters, which allow the user to get more information about the
circumstances of the message.

The WM_CREATE message is used to for initialization. It is sent as soon as the window is
created. This message is usually a good
place to put initialization code.

Windows uses dynamically linked libraries (DLLs) instead of libraries that are linked with
the application. This loads the library from the Þlesystem. It searches in:

1. the directory from which the program was started

2. the directory where the program is stored

3. The Windows directory

4. The Windows system directory

5. from the PATH environment variable

Tmman32.dll is used for communication with the TriMedia board. It contains all the
functions needed to access the board.

We initiate the communication with the TriMedia (see communication.c).

This initializes the Þle handling (look at Þles.c).

This terminates processing for the message. The return value indicates that the message
has been handled and that no error was encountered.

 WPARAM wParam,
 LPARAM lParam)

{
switch (iMsg)
 {
 case WM_CREATE:

 Lib=LoadLibrary("tmman32.dll");

 errTriMedia = InitTriMedia();

 InitializeFile(hwnd);

 return 0;

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-9

To understand the next message, please refer to Figure 2-2. Menu number 2 (View) can be
conÞgured with one of three values (bitmap view, or BMP in this case).
©1998 Philips Semiconductors 6/21/98 Callback Function 2-9

Figure 2-2

lParam contains the number of the menu which is about to be opened.

This compares the position with the three possible values in the Þgure. A check mark is
added where appropriate.

 case WM_INITMENUPOPUP:
 switch(lParam)

 {
 case 2: /*View Menu */
 MyCheckMenuItem(ID_VIEW_TEXT,
 GUIFlags.View);
 MyCheckMenuItem(ID_VIEW_LINE,
 GUIFlags.View);
 MyCheckMenuItem(ID_VIEW_BMP,
 GUIFlags.View);
 break;

 case 1: /* Mode Menu */
 MyCheckMenuItem(ID_MODE_SEQ,
 GUIFlags.Mode);
 MyCheckMenuItem(ID_MODE_TASK,
 GUIFlags.Mode);
 break;

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-10

This does the same thing for the Mode Menu (not shown).
2-10 Callback Function ©1998 Philips Semiconductors 6/21/98

Menus number 0 (File) and 3 (Run) and 4 (Help) are not conÞgured with checkmarks, and
therefore do not need any special handling.

The WM_COMMAND message is very general. Windows sends it when a daughter window
(such as a button, an edit box, a combo box...) receives a message. The four following
IDC_EXAMPLEn cases correspond to the four buttons. We determine which is the example
to run, and then launch it. The #deÞne values are deÞned in main.h.

LOWORD(wParam) contains the ID (as defined in the resource file) of the daughter
windows. HIWORD(wParam) contains the name of the windows message (not used).

The IDC_EXAMPLEn values are codes for the programs to be launched.

The EXAMPLE_PATH directory contains the programs to be launched.

The Þrst example is the DMA test program.

The extension corresponds to that of a TriMedia executable.

 ...

The source code for the other examples is similar.

 default:
 break;

 }
 return 0;

 case WM_COMMAND:

 switch (LOWORD(wParam))
 {

 case IDC_EXAMPLE1:

 wsprintf(lpszExample,"%s\\%s%s",
 EXAMPLE_PATH,

 "dmatest",

 ".out");

 case IDC_EXAMPLE2:

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-11

The WM_COMMAND message is also used, when the user selects one of the items in the menu,
or when a keystroke is issued. The value is the same regardless of whether an accelerator
©1998 Philips Semiconductors 6/21/98 Callback Function 2-11

or a menu button has been selected. This corresponds to the following case.

The LoadFile and SaveFile functions are in Þles.c. The function displays a OpenFile
dialog box, and returns a Handle of bitmap from it.

With the STM_SETIMAGE message, the handle is assigned to the bitmap static box
(IDC_BITMAP). The message is routed through Windows to the application itself. It is
normal for a Windows application to generate as well as to receive messages. The
parameters of SendMessage are exactly those of the callback function (messages).

A bitmap handle also stores the bitmap data. It is especially important to delete the handle
as this is a lot of space. Under Windows, garbage collection is not handled automatically
and applications are required to clean up after themselves.

This calls the SaveFile function which just pops up the OpenFile dialog box. The
appropriate code can be added at this point.

 case ID_OPEN:
 hNewBitmap=LoadFile(hwnd, FileName,
 TitleName);

 if (hNewBitmap==NULL)
 break;
 hStaticBitmap = GetDlgItem

(hwnd, IDC_BITMAP);
 hBitmap=(HBITMAP)SendMessage

(hStaticBitmap,
STM_SETIMAGE,
(WPARAM)IMAGE_BITMAP,
(LPARAM)(HANDLE)hNewBitmap);

 if (hBitmap!=NULL)
 DeleteObject(hBitmap);
 hBitmap=hNewBitmap;
 break;

 case ID_SAVE:
 case ID_SAVEAS:
 SaveFile(hwnd, FileName, TitleName);
 break;

 case ID_ABOUT:
 DialogBox (hInstance,
 MAKEINTRESOURCE(IDD_ABOUT),
 hwnd,
 AboutDlgProc) ;
 break;

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-12

This creates a child dialog box, with IDD_ABOUT resource. The AboutDlgProc callback
function is deÞned in about.c. The function will not exit until the user closes the dialog
2-12 Callback Function ©1998 Philips Semiconductors 6/21/98

box.

Figure 2-3

These messages are sent when the user clicks on one of the menu items in the View, or the
Mode menu. The value is intercepted, so that we can internally store the current value in
the GUIFlags struct. The same values are used for the ID of the menu (ID_XXX_YYY), and
for the internal struct to simplify processing.

This case corresponds to an ÒexitÓ menu selection being made. A Windows program
cannot terminate by calling the exit function directly. A WM_CLOSE message must be sent

 case ID_MODE_SEQ:
 case ID_MODE_TASK:
 GUIFlags.Mode=LOWORD(wParam);
 break;
 case ID_VIEW_TEXT:
 case ID_VIEW_LINE:
 case ID_VIEW_BMP:
 GUIFlags.View=LOWORD(wParam);
 break;

 case ID_EXIT:
 SendMessage(hwnd,WM_CLOSE,0,0);
 break;

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-13

which results in many other messages. The last of these is WM_DESTROY (see below). The
Þrst parameter is the window. The two Þnal parameters must be zero.
©1998 Philips Semiconductors 6/21/98 Callback Function 2-13

All the resources must be freed when the WM_DESTROY message is processed.

This frees the space corresponding to the window (if any).

This liberates the DLL.

This terminates the c communication with TriMedia (see the ExitTriMedia function in
communication.c). This code is very important because Windows is unable to understand
just what resources need to be freed. For a library, Windows will not be able to get rid of it
as long as the process owns a lock (even if the process is dead). Also, the number of
handles for resources in Windows is limited. This can result in having to reboot the
system, because of resource exhaustion.

The PostQuitMessage is the Windows equivalent of the exit function.

This last line is very important. Although we cannot process every Windows message
(there are hundreds). we still have to tell windows to process the messages we chose not to
process.

 }
 return 0;

 case WM_DESTROY :

 if (hBitmap!=NULL)
 DeleteObject(hBitmap);

 FreeLibrary(Lib);

 if (errTriMedia==0)
 ExitTriMedia();

 PostQuitMessage (0) ;

 return 0 ;
 }
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-14

File Operation
2-14 File Operation ©1998 Philips Semiconductors 6/21/98

We will now explain how to create the standard FileOpen popup windows. If you have
used several applications, You will probably have noticed that the OpenFile dialog boxes
look the same. This is because they use the OPENFILENAME object which is deÞned in
<commdlg.h>. Font selection and color selection (Choose Font, Choose Color) are deÞned
in this Þle also. All the Þles operations are in the Þles.c Þle.

This declares an OPENFILENAME object. Since we are going to use it for Load and Save
operations, it is declared as global.

The Þle I/O can be done with the classic fopen/fclose functions. These functions are not
as high level as the Windows speciÞc ones. However, they do the job, and are a lot simpler.

Initialization

The initialization function is called from WndProc when a WM_CREATE message is received.
It loads the default values for the OPENFILENAME object.

This array corresponds to a standard format for the OpenFile function. The Þrst string
element corresponds to a menu selection by the user for the Þle type. The second is used
by Windows to display the appropriate Þles in the window. As many Þle types as necessary
can be supported.

Most of the members of the OPENFILENAME struct are zero by default.

static OPENFILENAME ofn;

void InitializeFile(HWND hwnd)
{

static char szFilter[] = "Bitmap Files (*.BMP)\0*.bmp\0" \
 "Text Files (*.TXT)\0*.txt\0" \
 "ASCII Files (*.ASC)\0*.asc\0" \
 "All Files (*.*)\0*.*\0\0" ;

memset((char *)&ofn, 0, sizeof(OPENFILENAME));

ofn.lStructSize = sizeof (OPENFILENAME) ;
ofn.hwndOwner = hwnd ;

Chapter 2: Creating a GUI Interface

2

Cookbook Part 1 02_GUI.FM5 Page 2-15

The Þrst two parameters correspond to the size of the structure and a handle for the
window.
©1998 Philips Semiconductors 6/21/98 Initialization 2-15

This speciÞes that the Þlter for Þlenames is the array deÞned above.

The Þrst value corresponds to the maximum path name length. The second corresponds to
the maximum Þle name length (name + extension). The values deÞned in stdio.h are used.

This speciÞes the extension by default (ÒbmpÓ). This corresponds to a bitmap.
The two following functions will do a speciÞc setup of the OPENFILENAME struct according
to whether we want to save or load a Þle.

This function will Þll the pstrFileName and the pstrTitleName according to the Þle that
the user selected. It also says, that the read-only Þles will not be displayed
(OFN_HIDEREADONLY), and that if the user type a Þle which is not in the list, a message box
will popup asking if he wants to create this Þle (OFN_CREATEPROMPT). Note that the Dialog
Box will be displayed only when the GetOpenFileName function is called. The return
value of GetOpenFileName is used to check if the user did not press the Cancel button.

ofn.lpstrFilter = szFilter ;

ofn.nMaxFile = _MAX_PATH ;
ofn.nMaxFileTitle = _MAX_FNAME + _MAX_EXT ;

ofn.lpstrDefExt = "bmp" ;
}

BOOL FileOpenDlg (HWND hwnd, PSTR pstrFileName, PSTR pstrTitleName)
{
ofn.hwndOwner = hwnd ;
ofn.lpstrFile = pstrFileName ;
ofn.lpstrFileTitle = pstrTitleName ;
ofn.Flags = OFN_HIDEREADONLY | OFN_CREATEPROMPT ;

return GetOpenFileName (&ofn) ;
}

BOOL FileSaveDlg (HWND hwnd, PSTR pstrFileName, PSTR pstrTitleName)
{
ofn.hwndOwner = hwnd ;
ofn.lpstrFile = pstrFileName ;
ofn.lpstrFileTitle = pstrTitleName ;
ofn.Flags = OFN_OVERWRITEPROMPT ;

return GetSaveFileName (&ofn) ;
}

Chapter 2: Creating a GUI Interface

Cookbook Part 1 02_GUI.FM5 Page 2-16

 This is similar to the previous function. Here, we use the OFN_OVERWRITEPROMPT ßag: the
user will be prompted whether he wants to overwrite the Þle he is specifying if the Þle
2-16 Initialization ©1998 Philips Semiconductors 6/21/98

already exists. Note that, in these two functions, we use GetSaveFileName and the
GetOpenFileName functions which are responsible for displaying the classic OpenFile
dialog box.

The following two functions, are the functions which are directly called from the main
program. These functions will call the two functions we have just explained. Note that we
check the return value of these functions, since if these functions return FALSE, it means a
problem occurred: the user may have pressed CANCEL, or did not want to overwrite a Þle
when prompted.

In these functions, you should add your own code. At this point, this code will load the
Þle, and display it in the edit box.

This document does not describe communication.c since this Þle deals with
communication with TriMedia. The setup and the use of the TriMedia are detailed in part
3 of the Cookbook, chapter 2: Bootstrapping TriMedia in Host-Assisted Mode. The
functions are basically the same. For further information refer to the source of
communication.c. This source is documented. For more information about creating a GUI,
the best place to start is Programming Windows 95, by Charles Petzold (Microsoft Press).

int LoadFile(HWND hwnd, char *FileName, char *TitleName)
{

...

if (FALSE==FileOpenDlg(hwnd, FileName,TitleName))
 return 1;
...

int SaveFile(HWND hwnd, char *FileName, char *TitleName)
{
...
if (FALSE==FileSaveDlg(hwnd,FileName,TitleName))
 return 1;
...

Cookbook Part 1 03_PSOS.FM5 Page 3-1
3: Programming With pSOS
3

Chapter 3
©1998 Philips Semiconductors 6/21/98 3-1

Programming With pSOS 3

Topic Page

Introduction 3-2

A pSOS+ª Based Multiprocessor Example 3-5

Chapter 3: Programming With pSOS

Cookbook Part 1 03_PSOS.FM5 Page 3-2

Introduction
3-2 Introduction ©1998 Philips Semiconductors 6/21/98

This section describes an example of a simple pSOS application that creates pSOS tasks
then uses semaphores and asynchronous signals for communication between the tasks.
The example can be found in the TCS release, in the following directory:

 $TCS/examples/psos/psos_demo1

A pSOS Beginning

This example demonstrates the communication between the root task and two other tasks
via semaphores and asynchronous signals.

Note

The pSOS system timer must be started with a call to de_init in order to use timed
events, timeslicing, or the system clock. The root task will then print ÒHello, worldÓ. ◆

The Root Function

The root task creates two tasks, task1 and task2, and two semaphores, sem_enter and
sem_exit. In this file, sem_enter and sem_exit are stored as global variables, so that the
other functions can use them without Þrst having to do sm_ident to get the semaphore
IDs. The two semaphores are initially set to 1 and decremented to 0 immediately by the
root task. Then task1 and task2 are started, which will produce the outputs ÒaaaaaaaÓ
from task1 and Òcatcher activeÓ from task2.

void root(void)
{
void *dummy;
ULONG rc, ioretval, iopb[4];

 int i;

ULONG task1, task2;

/*
* Start the pSOS system timer. This is almost
 * always necessary, since otherwise it is not
 * possible to use timed events and timeslicing,
* or the system clock:
 */
 de_init(DEV_TIMER, 0, &ioretval, &dummy);

 printf(ÒHello, world\n Ò);
 t_create(Òaaaa Ò,
 4,

Chapter 3: Programming With pSOS

3

Cookbook Part 1 03_PSOS.FM5 Page 3-3

 10000,
 10000,
©1998 Philips Semiconductors 6/21/98 Introduction 3-3

 0,
 &task1
);

 t_create(Òcatc Ò,
 100,
 10000,
 10000,
 0,
 &task2
);

 sm_create(
 Òsemp Ò,
 1,
 SM_PRIOR,
 &sem_enter
);

 sm_create(
 Òsemv Ò,
 1,
 SM_PRIOR,
 &sem_exit
);

 sm_p(sem_exit, SM_WAIT, 0);
 sm_p(sem_enter, SM_WAIT, 0);

 t_start(task1, T_PREEMPT | T_TSLICE | T_ASR | T_ISR, aaaa, 0);
 t_start(task2, T_PREEMPT | T_TSLICE | T_ASR | T_ISR, catch, 0);

 for (i=1; i<10; i++) {
 sm_p(sem_enter, SM_WAIT, 0);
 sm_v(sem_exit);
 printf(ÒTOKEN RECEIVED\n Ò);
 as_send(task1,1);
 as_send(task2,1);
 }

 sm_delete(sem_enter);
 sm_delete(sem_exit);

 printf(ÒGoodbye, world\n Ò);

 t_suspend(0L);
}

Chapter 3: Programming With pSOS

Cookbook Part 1 03_PSOS.FM5 Page 3-4

Communication Using Semaphores
3-4 Introduction ©1998 Philips Semiconductors 6/21/98

The root task and task1 (ÒaaaaÓ) will toggle back and forth ten times, as task1 increments
sem_enter and decrements sem_exit, and as the root task decrements sem_enter and
increments sem_exit. task1 prints ÒTOKEN SENTÓ and the root task prints ÒTOKEN
RECEIVEDÓ in each iteration.

Communication Using Asynchronous Signals
At the same time, the root task communicates with both tasks, ÒaaaaÓ and ÒcatÓ via
asynchronous signals. At each iteration of the above loop, the root task sends an
asynchronous signal to each task, which is caught by ÒhandlerÓ. The handler prints
ÒBOEMÓ and exits via as_return.

}

void aaaa()
{
 int err;

 printf(Òaaaaaaa\n Ò);
 as_catch(handler, T_PREEMPT | T_TSLICE | T_ASR | T_ISR);

 do {
 err = sm_v(sem_enter);
 err |= sm_p(sem_exit, SM_WAIT, 0);
 printf(ÒTOKEN SENT\n Ò);
 } while (!err);

 printf(Òbbbbbbb\n Ò);

 _psos_exit(0);
}

void handler()
{
 fprintf(stderr, Ò******************BOEM\n Ò);
 as_return();
}

void catch() {
 printf(Òcatcher active\n Ò);
 as_catch(handler, T_PREEMPT | T_TSLICE | T_ASR | T_ISR);
 t_suspend(0L);
}

Chapter 3: Programming With pSOS

3

Cookbook Part 1 03_PSOS.FM5 Page 3-5

A pSOS Ending
©1998 Philips Semiconductors 6/21/98 A pSOS+™ Based Multiprocessor Example 3-5

This demo ends when the root tasks comes out of the for loop and deletes the two
semaphores. task1 (ÒaaaaÓ) then get errors accessing sem_enter and sem_exit, and also
exits its do-while loop, indicated by its output ÒbbbbbbbÓ. After printing ÒGoodbye,
world,Ó the root task suspends itself, and task1 Þnishes the demo by calling _psos_exit,
so that pSOS will kill all tasks and exit.

A pSOS+™ Based Multiprocessor Example

This section will describe an example of a pSOS+ª based multiprocessor application that
uses pSOS queues and DMA for passing data streams between nodes. The example can be
found in the TCS release, in the following directory:

 $TCS/examples/misc/multiprocessing/data_streamer

The global structure of the application will be as follows. One of the nodes (number 0)
will serve as a producer of a stream of Þxed size packets. All other nodes will consume the
packets that they can get from this stream. Hence, the application can be run with any
number of processors larger than or equal to 2. Any additional processor will
automatically become a consumer. Figure 3-1 shows an N- node conÞguration.

Figure 3-1 N-Node ConÞguration

Producer at 0

Producer at 1

Producer at N-1

Producer at i

Chapter 3: Programming With pSOS

Cookbook Part 1 03_PSOS.FM5 Page 3-6

Starting Development
3-6 A pSOS+™ Based Multiprocessor Example ©1998 Philips Semiconductors 6/21/98

To start development, you must Þrst set up a pSOS+ª application. This is started by
copying directory $(TCS)/OS/pSOS/pSOSystem/apps/demo_1 into a new development
directory.

First, the MakeÞle is adapted to point to the used TCS installation by changing the TCS
macro: TCS = /t/qasoft/build/SunOS.

Next, the desired application name and multiprocessor pSOS are selected by setting:

Finally, a DMA transfer function is placed into a separate C Þle called transfer.c. Hence,
the corresponding object name is added to the OBJECTS macro so that it can be compiled
and linked in building the application.

Number of Executables to Build
Although the multiprocessor data streamer application can be run with an arbitrary
number of processors, it is not necessary to create more than two executables. We need
one executable deÞning the producer and one generic executable deÞning all of the
consumers. In this two-executable conÞguration, we would be able to start execution by
loading the producer at node 0 and copies of the consumer at all other nodes.

The following example shows the tmmprun command that starts a 3-node system with
two such executables. This command allocates three TM-1000 processors (deÞned by the
number of -exec options numbers them 0, 1 and 2), and starts them with the speciÞed
executables:

APPLICATION = data_streamer.out

PSOS = psosm

 OBJECTS= \

 $(OBJDIR)/root.o \

 $(OBJDIR)/drv_conf.o \

 $(OBJDIR)/transfer.o

tmmprun -exec producer.out -exec consumer.out -exec consumer.out

Chapter 3: Programming With pSOS

3

Cookbook Part 1 03_PSOS.FM5 Page 3-7

Note
©1998 Philips Semiconductors 6/21/98 A pSOS+™ Based Multiprocessor Example 3-7

The node numbering provided by tmmprun is only a logical numbering: producer.out runs
at node 0 only because it was named in the Þrst exec option. Similarly, the two consumers
run at nodes 1 and 2. ◆

In this example, however, only one executable will be developed. This executable will
make use of the global variable _node_number, which is set by tmmprun in the
downloaded executable for each of the nodes, in order to hold its own logical node number.

Based on the node number, the executable will conÞgure itself as the producer, or as one
of the consumers. Note that the advantage of this decision is that only one executable need
be maintained, but at the cost of some redundant code on each node (producer nodes will
have unused consumer code loaded, and vice versa). The tmmprun command for one
generic executable will be as follows:

The Root Function

The decisions in the previous section will shape the root function as listed below. Only one
task is needed per node, so the root function does not create tasks. Instead, the root task
itself will do the producing/consuming work (note that one copy of pSOS including the
root task will be started for each of the nodes).

For communication and synchronization, two pSOS queues are needed. One queue will be
Þlled with produced packets by node 0; all other nodes will obtain their packets by reading
from this queue. The second queue is used for returning the emptied packets to node 0.
During initialization, the empty queue is pre-Þlled with a Þxed number of packets.

Node 0 will create the two queues, each as a Q_GLOBAL, because they need to be accessed
from other nodes. Specifying Q_GLOBAL in q_create will register the queue names in the
pSOS global name table, so that other nodes can look them up using q_ident. Note that
the producer nodes start with polling until the queues have been created by node 0.

tmmprun -exec data_streamer.out -exec data_streamer.out -exec

data_streamer.out

extern Int _node_number;

 static ULONG full_packets;
 static ULONG empty_packets;

 void root()
 {
 void *dummy;
 ULONG ioretval;

 de_init(DEV_TIMER, 0, &ioretval, &dummy);

Chapter 3: Programming With pSOS

Cookbook Part 1 03_PSOS.FM5 Page 3-8
3-8 A pSOS+™ Based Multiprocessor Example ©1998 Philips Semiconductors 6/21/98

Buffer and Packet Management, Caching Issues

Although pSOS queues can be used for data transfer, they are not recommended for high
volume data streams. For this reason, only pointers to packet buffers are passed in this
example. Packet buffers are allocated in the SDRAM of node 0, and it is the responsibility
of the consuming nodes to copy the packet buffer in their own efÞcient way after they have
read a buffer address from the global queue. As will be described in the next section, they
will use the tmDMA device library for this.

Because the packet buffers will be read over the PCI bus from node 0's SDRAM by the
consuming nodes, node 0 must take care to ßush its data cache each time after having
ÒÞlledÓ a buffer. In case it would forget to do so, part of the data written to the buffer
might remain pending in node 0Õs data cache, resulting in stale data being read by the
consumer who gets the buffer.

Conversely, because the consumers are going to use DMA for transferring the packet data
to their local copy buffers, these local buffers must be cache-invalidated. The TM-1000
DMA engine transfers to SDRAM without informing the data cache. Failing to invalidate
the cache of the local buffers might result in stale data cache contents being read instead of
the new SDRAM contents.

 if (_node_number == 0) {
 /*
 * Create queues named "EMPT" and "FULL" on node #0:
 */
 q_create("EMPT", 0, Q_GLOBAL | Q_NOLIMIT | Q_FIFO,
&empty_packets);
 q_create("FULL", 0, Q_GLOBAL | Q_NOLIMIT | Q_FIFO,
&full_packets);

 create_empty_packets();
 produce();

 } else {
 /*
 * On all other nodes: wait until the send/receive
 * queues have been received:
 */
 while (q_ident("EMPT", 0, &empty_packets)
 || q_ident("FULL", 0, &full_packets)
);

 consume();
 }

 /* never terminates */
 }

Chapter 3: Programming With pSOS

3

Cookbook Part 1 03_PSOS.FM5 Page 3-9

Flushing and invalidating the data cache contents that correspond to a memory range can
be performed using TCS library functions _cache_copyback and _cache_invalidate.
©1998 Philips Semiconductors 6/21/98 A pSOS+™ Based Multiprocessor Example 3-9

These functions are only allowed for memory ranges that do not share data cache pages
with system data, or data from other pSOS tasks.

A safe way to obtain such memory ranges is by function _cache_malloc. Therefore, the
producer node uses _cache_malloc for creating the packet buffers, and for similar
reasons, the consumer nodes use this function for allocating their local copy buffers.

This gives rise to the following implementation of the packet create function, and of the
producer-and-consumer loop. The producer continuously gets an empty packet from the
empty packet queue, ÒÞllsÓ it, ßushes the data cache, and puts the packet address on to the
full packet queue. Each consumer continuously gets the address of a next full packet on
node 0, ÒtransfersÓ its contents to its local copy buffer, and ÒusesÓ it. The next section
describes how quick, DMA-based ÒtransferÓ can be accomplished. Functions ÒÞllÓ and
ÒuseÓ are not described any further in this document (the example program ÒÞllsÓ with
dummy data, while ÒuseÓchecks whether the proper data has been received).

Further note that q_send actually sends a 4-word message. Since this example only sends
pointers, only the Þrst word of the message is used.

static void create_empty_packets()
 {
 Int i;

 for (i=1; i<=NROF_PACKETS; i++) {
 ULONG message[4];

 message[0]= (ULONG)_cache_malloc(PACKET_SIZE);

 q_send(empty_packets, message);
 }
 }

 static void produce()
 {
 while (True) {
 ULONG message[4];
 Char *packet_ptr;

 q_receive (empty_packets, Q_WAIT, 0, message);

 packet_ptr= (Char*)message[0];

 fill (packet_ptr);
 _cache_copyback (packet_ptr, PACKET_SIZE);

 q_send (full_packets, message);
 }
 }

Chapter 3: Programming With pSOS

Cookbook Part 1 03_PSOS.FM5 Page 3-10
3-10 A pSOS+™ Based Multiprocessor Example ©1998 Philips Semiconductors 6/21/98

DMA Transfer

This section concludes with a specialized DMA transfer function for this multiprocessing
example. It is specialized, because it makes the following assumptions:

1. The parameter local is an address in the SDRAM of the processor calling this function.

2. The parameter remote is an address in the PCI space of the processor calling this
function.

3. The memory range deÞned by parameters local and size does not have a pending
write in the data cache.

4. The memory range deÞned by parameters local and size can be invalidated by this
function (e.g, it has been obtained by _cache_malloc).

Note

The example uses this function according to these assumptions. Particularly, assumption 3
is fulÞlled because the local copy buffer is invalidated immediately after allocation, and is
never written to afterwards. ◆

If the memory range deÞned by parameters local and size does not have a pending write
in the data cache cannot be guaranteed, a cache invalidation is necessary also before the
DMA dispatch, because otherwise a data cache page replacement could cause memory

 static void consume()
 {
 Char *local_buffer;

 local_buffer= (Char*)_cache_malloc(PACKET_SIZE);

 _cache_invalidate(local_buffer,PACKET_SIZE);

 while (True) {
 ULONG message[4];
 Char *packet_ptr;

 q_receive (full_packets, Q_WAIT, 0, message);

 packet_ptr= (Char*)message[0];

 transfer(local_buffer, packet_ptr, PACKET_SIZE);
 use (local_buffer);

 q_send (empty_packets, message);
 }
 }

Chapter 3: Programming With pSOS

3

Cookbook Part 1 03_PSOS.FM5 Page 3-11

contents which was just placed into SDRAM by the DMA engine to be overwritten by
stale memory updates.
©1998 Philips Semiconductors 6/21/98 A pSOS+™ Based Multiprocessor Example 3-11

 static Int dma_instance;

 static Bool dma_opened= False;

 void transfer(Char *local, Char *remote, Int size)

 {

 dmaRequest_t request;

 if (!dma_opened) {

 dmaOpen(&dma_instance);

 dma_opened= True;

 }

 request.slack_function = Null;

 request.completion_function = Null;

 request.nr_of_descriptions = 1;

 request.mode = dmaSynchronous;

 request.done = False;

 request.descriptions->direction = dmaPCI_TO_SDRAM;

 request.descriptions->source = remote;

 request.descriptions->destination = local;

 request.descriptions->length = size;

 request.descriptions->nr_of_transfers = 1;

 dmaDispatch(dma_instance, &request);

 _cache_invalidate(local,size);

 }

Chapter 3: Programming With pSOS

Cookbook Part 1 03_PSOS.FM5 Page 3-12
3-12 A pSOS+™ Based Multiprocessor Example ©1998 Philips Semiconductors 6/21/98

Cookbook Part 1 04_DYNAM.FM5 Page 4-1
4: Using the Dynamic Loader
4

Chapter 4

©1998 Philips Semiconductors 6/21/98 4-1

Using the Dynamic Loader on TriMedia 4

Topic Page

Introduction 4-2

Dynamic Loading Basics 4-2

Dynamic Loader Example 4-3

Chapter 4: Using the Dynamic Loader on TriMedia

Cookbook Part 4 04_DYNAM.FM5 Page 4-2

Introduction
4-2 Introduction ©1998 Philips Semiconductors 6/21/98

This section describes an example of an application using dynamic loading, in the form of
a simple pSOS-based command dispatcher. The example can be found in the TCS release,
in the following directory:

 $ (TCS) /examples/misc/dynamic_loader_shell

Dynamic Loading Basics

A dynamic loading code segment is speciÞed by passing -btype dynboot to tmld. When
-btype is not specified, tmld produces a boot code segment by default. All TriMedia
programs that do not use dynamic loading are boot code segments.

To use dynamic loading, specify -btype dynboot as an option to tmcc when you
compile a TriMedia executable. When you use dynamic loading with pSOS, Þrst set the
macro DYNAMIC in the pSOS application makeÞle to dynamic. This will add an option:

-bembed $ (PSOS_SYSTEM) /sys/os/ $ (PSOS) _tm_$ (ENDIAN).dll

to tmcc when linking the executable, which will automatically specify -btype dynboot.
(Refer to $ (TCS) /examples/misc/dynamic_loader_shell/MakeÞle).

A dynboot code segment has the ability to load app and dll code segments, whereas a
boot code segment cannot. The difference between an app and a dll is that an app must
be explicitly loaded, while a dll is implicitly loaded when its exported symbols are
accessed from another code segment (dynboot, app, or dll).

A dynboot code segment can load app code segments explicitly by a call to
DynLoad_load from the DownLoader API specified in tmlib/DownLoader.h. Similarly, a
call to DynLoad_unload will unload the app code segment. (Refer to $ (TCS) /examples/
misc/dynamic_loader_shell/root.c).

Note

Code segments for dynamic loading (dynboot, app, dll) cannot be compiled with -g for
debugging because tmdbg does not currently support dynamic loading. ◆

Chapter 4: Using the Dynamic Loader on TriMedia

4

Cookbook Part 4 04_DYNAM.FM5 Page 4-3

Dynamic Loader Example
©1998 Philips Semiconductors 6/21/98 Dynamic Loader Example 4-3

This demo contains a simple pSOS based command dispatcher (root.c), in addition to
three sample demo commands (latency.c, task_demo.c and print_args.c).

Root.c will be compiled and linked with pSOS into a code segment of type dynboot, and
is able to load, run, and unload code segments of type app. The app programs have an
entry point similar to main (argc,argv), and are not self-contained; they must be loaded
by a tm1 program (a dynboot code segment) that is currently running. (Refer to the
implementation of latency, task_demo, and print_args.) The app programs cannot be
loaded and run directly using tmsim or tmmon. Note that apps lack all of the system
libraries (libraries for I/O using printf, or the pSOS library). For example, tmsize on
print_args will reveal that its text segment contains only 512 bytes, which is
considerably smaller than normal executables of type boot or dynboot. System libraries
are contained by the command dispatcher, and will be connected during dynamic loading.
After they are connected, they can be used normally by the application.

Starting Development

Since dynamic_loader_shell is a pSOS application, dynamic loading can be set up by
setting the macro DYNAMIC to dynamic in the MakeÞle (as shown below).

The macro value dynamic links in the dynamic loader, allowing the command dispatcher
to dynamically load the application Þles.

The app code segments to be dynamically loaded are print_args, task_demo, and
latency. They are compiled with -btype app as options to tmcc, which will pass it
directly to tmld.

The Root Function

In the root function, the command dispatcher repeatedly accepts a command string, and
interprets the Þrst word in this string as the name of an object Þle ending with a .app

DYNAMIC = dynamic

print_args.app: $ (OBJDIR) /print_args.o MakeÞle
@ echo ÒLinking print_args.appÓ
$ (CC) $ (CINCS) -btype app
$ (OBJDIR) /print_args.o \
$ (LDFLAGS) $ (CFLAGS) -o print_args.app

Chapter 4: Using the Dynamic Loader on TriMedia

Cookbook Part 4 04_DYNAM.FM5 Page 4-4

extension. A task is created for running the command, and the command string is passed in
argc/argv format to this task.
4-4 Dynamic Loader Example ©1998 Philips Semiconductors 6/21/98

◆ Note: Code is continued on the next page.

void

root(void)

{

 void *dummy;

 ULONG rc, ioretval, iopb[4];

 Int i;

 ULONG task1, task2;

 /*

 * Start the pSOS system timer. This is almost always necessary,

 * since otherwise it is not possible to use timed events and

 * timeslicing, or the system clock:

 */

 de_init(DEV_TIMER, 0, &ioretval, &dummy);

 while (1) {

 ULONG task;

 ULONG arguments[4];

 Char buffer[200];

 Int argc;

 String *argv;

 /* Retrieve next command */

 printf(Ò> Ò);

 fflush(stdout);

 gets(buffer);

 strcpy(&buffer[strlen(buffer)], Ò Ò);

 /* Count number of arguments on command line */

 argc = count_words(buffer);

 if (argc > 0) {

Chapter 4: Using the Dynamic Loader on TriMedia

4

Cookbook Part 4 04_DYNAM.FM5 Page 4-5
©1998 Philips Semiconductors 6/21/98 Dynamic Loader Example 4-5

The Application Shell

The task started by root for each command entered is application_shell. After it starts,
it will attempt to load the code from argv[0], and when it succeeds, it will call its main
function with argc/argc. When application_shell terminates, the exit status is
printed, and the corresponding code is unloaded. In case pSOS tasks are created by the

 /*

 * Allocate space for argv plus a copy of the command

 * string; this will be passed to the application

 * shell task, and can be deallocated as one unit

 */

 argv = (Pointer) malloc(argc * sizeof (Pointer) +

strlen(buffer));

 strcpy((Pointer) (argv + argc), buffer);

 get_words((Pointer) (argv + argc), argv);

 /*

 * After that, create a new task for the command to

 * run on, and pass it the argc/argv pair; Give it a

 * priority of 231, which is higher than this root

 * task, otherwise the task will never run in tmsim

 * with its blocking input. the 10000's are the

 * required sizes for user- and system stack:

 */

 arguments[0] = (ULONG) argc;

 arguments[1] = (ULONG) argv;

 t_create(Òaaaa Ò, 231, 10000, 10000, 0, &task);

 t_start(task, T_PREEMPT | T_TSLICE | T_ASR | T_ISR,

 application_shell, arguments);

 }

 }

 _psos_exit(0);

}

Chapter 4: Using the Dynamic Loader on TriMedia

Cookbook Part 4 04_DYNAM.FM5 Page 4-6

loaded command, it is the responsibility of the command itself to make sure that all tasks
have been deleted (and certainly are not still executing) before root terminates.
4-6 Dynamic Loader Example ©1998 Philips Semiconductors 6/21/98

Running dynamic_loader_shell

In addition to the three .app programs provided in this example, (print_args.app,
task_demo.app, and latency.app), any .app Þle in the other examples can be started using
the command dispatcher; the .app Þle will run in parallel with applications that have
previously started (but have not yet terminated), and will be scheduled by pSOS. When
running one or more applications, the interrupt latencies can be sampled by running the
provided latency.app for a speciÞed number of seconds (default duration is 10 seconds):

> latency.app 100

will check the interrupt latency for 100 seconds.

The following are more examples on how to run .app Þles in this command dispatcher:

> vivot.app

and

> patest.app

Refer to the dynlink_demo in the $ (TCS) /examples/psos/psos_dynlink_demo, as well.

void

application_shell(Int argc, String * argv)

{

 Int run_status;

 DynLoad_Status load_status;

 DynLoad_Code_Segment_Handle module;

 load_status = DynLoad_load(argv[0], &module);

 if (load_status != DynLoad_OK) {

 printf(Ò** loading of `%s` failed with status %d\n Ò,

 argv[0], load_status);

 }

 else {

 run_status = ((Main_Function) module->start) (argc, argv);

 printf(Ò** `%s` done with status %d\n Ò, argv[0], run_status);

 DynLoad_unload(module->name);

 }

 free(argv);

 t_delete(0);

}

Ph i l ips Tr iMed ia SDE Cookbook

Part 2:
Programming with Peripherals
AB

SDE Cookbook
Part 2: Programming With Peripherals

Cookbook Part 2 000_CBK2.TOC Page iii

Table of Contents 1

Chapter 1 Programming TriMedia Video Applications

Table of Contents
©1998 Philips Semiconductors 6/21/98 iii

Introduction...1Ð2

TSSA Video Modules..1Ð2

The Video Digitizer ..1–2

The Video Renderer ..1–3

The exolVrendVO Example Program ..1–3

Include Files...1–3

Definitions ..1–4

Specifying the Packet Format ..1–4

Static Parameters and Function Prototypes1–5

The Main Program ...1–5

Variables ..1–6

DP Debug Information ...1–6

Check Capabilities ...1–7

Read Command Line Parameters ...1–7

Open the Components...1–7

Make the Connection Between the Two Components1–8

Setup the Video Digitizer and Renderer1–10

Starting the Component Instances ..1–11

User Input ..1–12

Stop and Shutdown ...1–13

TriMedia Video-In Operation ..1Ð15

Full-Resolution Capture Mode...1–15

Full-Resolution Capture Mode...1–16

Half-Resolution Capture Mode ..1–16

Raw Capture Mode..1–16

Message-Passing Mode ..1–17

Table of Contents

Cookbook Part 2 000_CBK2.TOC Page iv

TriMedia Video-Out Operation ...1Ð17

iv ©1998 Philips Semiconductors 6/21/98

Image Transfer Mode...1–18

Data Transfer Modes ...1–18

Data-Streaming Mode..1–18

Message-Passing Mode ..1–19

Using the TriMedia Video-In/Video-Out Device Library1Ð19

Guidelines for Use of the Video-In/Video-Out APIs1–20

Vivot Demonstration Program Overview..1Ð20

C Program Includes ...1–21

Main Program ..1–21

Vivot Demonstration Program (Vivorun)1–22

Image Representation...1–22

Buffer Allocation (vivoAlloc) ..1–23

Cache Management..1–23

viOpenAPI - level 1 initialization for VI1–25

voOpenAPI - level 1 initialization for VO1–26

Field Capture versus Frame Capture.....................................1–27

Running in CIF Resolution (vivoRunCIF)...............................1–27

Running in Full Resolution (vivoRunFullRes)1–29

Initialization With Alpha Overlay (vivoRunOverlay)1–29

Setup Input and Begin Capture (viYUVOpenAPI)1–31

Start Outputting an Image To Video Out (voYUVAPI)1–32

Initialize Overlay Mode (voOverlayAPI)1–35

Inputting an Image for Display on VO (readYUVfiles)1–36

ICP Setup ..1–37

Buffer Processing for Full Resolution and CIF1–39

Buffer Processing for Overlay (mmOvlyBufUpdate)...............1–39

VI Interrupt Service Routine (viTestISR)................................1–40

Querying the Configuration..1–43

Chapter 2 Programming TriMedia Video Applications Using the ICP TSSA API

Introduction...2Ð2

Table of Contents

Cookbook Part 2 000_CBK2.TOC Page v

The exolVtransICP Example Program ..2Ð3

©1998 Philips Semiconductors 6/21/98 v

Include Files ..2–3

Definitions..2–4

Static Variables ..2–5

Specifying the Packet Format..2–5

Specifying the Output Format..2–6

Packet Defines and Function Prototypes...2–7

Variables..2–8

Initialization..2–10

Get Capabilities ...2–11

Make the Connection Between the Two Components2–12

Create the Video Transformer Control Descriptor............................2–13

Setup the Video Digitizer ...2–13

Setup the Video Transformer ...2–15

Starting the Component Instances..2–16

User Input ..2–17

Stop and Shutdown ...2–21

Application Progress Function...2–22

Application Completion Function...2–22

Chapter 3 Programming TriMedia Audio Applications

Introduction...3Ð2

TSSA Audio Modules ...3Ð3

The Audio Renderer ..3–3

Check Capabilities: ..3–6

Open the Components:..3–6

Make the Connection Between Each Pair of Components:3–7

Setup the File Reader..3–8

Setup the Audio Renderer ...3–8

Start ...3–8

Stop and Shutdown ...3–9

Table of Contents

Cookbook Part 2 000_CBK2.TOC Page vi

Advanced Features..3–10

vi ©1998 Philips Semiconductors 6/21/98

Audio Digitizer ...3–11

CopyAudio Example ..3–12

Create the Components:..3–12

Create and Populate the Queues ..3–13

Set Up the Components ..3–14

Modifying the Copy Component: ...3–14

Audio Mixer..3–15

Audio Decoders ...3–15

Audio Device Library..3Ð16

Audio Hardware Overview...3–16

Capture/Transmission by DSPCPU3–16

Using the TriMedia Audio-In/Audio-Out API.....................................3–17

Guidelines for Use of the Audio-In/Audio-Out APIs3–17

Restrictions..3–18

Demonstration Programs...3–18

Playing an Audio File ...3–19

Interrupt Routine fplayISR ...3–20

Recording an Audio File ..3–22

sthru Demonstration Program..3–22

Setting Audio Parameters ..3–23

Board Support Package...3Ð27

Cookbook Part 2 01_VIDEO.FM5 Page

1-1

1: Video Apps, Programming TriMedia
1

Chapter 1
©1998 Philips Semiconductors 6/21/98 1-1

Programming TriMedia Video Applications 1

Topic Page

Introduction 1-2

TSSA Video Modules 1-2

TriMedia Video-In Operation 1-15

TriMedia Video-Out Operation 1-17

Using the TriMedia Video-In/Video-Out Device Library 1-19

Vivot Demonstration Program Overview 1-20

Chapter 1:

Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page

1-2

Introduction

1-2 Introduction ©1998 Philips Semiconductors 6/21/98

This chapter describes how to write video applications using several programming
interfaces available on TriMedia. For a detailed description of these APIs, refer to
Reference Manuals I and II of the Philips TriMedia SDE.

This chapter begins by describing the high level interface to the Video-In and Video-Out
peripherals. These interfaces are provided using the Video Digitizer and Video Renderer
components and enable an application to be written without requiring knowledge of the
underlying hardware peripherals. An overview of the operation of the TriMedia Video-In
and Video-Out units is then presented. This provides background material which is useful
when understanding the use of the low-level Video-In/Video-Out device libraries which
will then be described.

TSSA Video Modules

The high level interface is supported using modules which conform to the TriMedia
Streaming Software Architecture (TSSA). This software architecture is documented in
Reference manual I, Part 4. There are several TSSA compliant modules which support
video data; examples of interest include the Video Digitizer, the Video Renderer, and the
Video Transformer. The Video Digitizer and Video Renderer will be discussed in this
chapter, while the Video Transformer is discussed in the next chapter.

The Video Digitizer

The video digitizer supports video capture using data streaming (pull mode) operation; it
is described in more detail in Chapter 9, ÒTriMedia Video Digitizer APIÓ, of Reference
Manual II Part 2. In the pull mode of operation, the component obtains an empty packet
using the datain callback function from an operating system message queue (the empty
queue). It then captures a video frame, and using the same datain callback function, places
the full packet onto another message queue (the full queue). This streaming operation is
supported in both the AL and OL layers; the AL API layer assumes no operating system
dependencies, while the OL API layer does.

The application can specify parameters which include the video standard (NTSC, PAL, or
SECAM), the adaptor type (CVBS or SVIDEO), and the size of the frame to capture.

The exolVrendVO example demonstrates how the Video Digitizer can be used to capture
video data. This example will be described in detail after the reader has been introduced to
the Video Renderer component.

Chapter 1:

Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page

1-3

The Video Renderer

©1998 Philips Semiconductors 6/21/98 TSSA Video Modules 1-3

The VrendVO Video Renderer component is used to display video images using the
TriMedia Video-Out peripheral. The component supports non-streaming (push mode) and
streaming (pull mode) operation in the AL Layer. It also supports streaming operation in
the OL Layer. In push mode, the application calls a Video Renderer function which will
display the frame, i.e. the application pushes the frame to the renderer.

The Video Renderer supports several video standards and adaptor types. It is also capable
of combining the main video with an overlay image with alpha blending. The
exolVrendVO example shows the use of this component and will be described next.

The exolVrendVO Example Program

The exolVrendVO example demonstrates the use of the OL Layer Video Digitizer and
Video Renderer. As it uses OL versions of the APIs, data streaming is used to transfer data
packets between components. The example simply connects an instance of the Video
Digitizer to an instance of the Video Renderer. The digitizer captures live data using the
Video-In device while the renderer displays these images using the Video-Out device. The
example enables the user to specify parameters such as the video standard (NTSC or
PAL), the adaptor type (CVBS or SVIDEO), and whether to use full resolution or SIF
resolution images.

The source code for this example is contained within the examples/exolVrendVO
directory of the application tree. This example will now be described in detail.

Include Files

The tmAvFormats.h Þle contains deÞnitions for the packets which are used to store the
video data. The tmos.h Þle abstracts the underlying operating system; this enables the
code to be ported to different operating systems by simply changing this Þle. The type
deÞnitions and function prototypes for the two video components are deÞned in the
tmolVrendVO.h and tmolVdigVI.h files respectively.

#include <tm1/tmAvFormats.h>
#include "tmos.h"
#include "tmolVrendVO.h"
#include "tmolVdigVI.h"
#include <stdio.h>
#include <tmlib/dprintf.h> /* for debugging with DP(()) */
#include "sys_conf.h"

Chapter 1:

Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page

1-4

Definitions

1-4 TSSA Video Modules ©1998 Philips Semiconductors 6/21/98

The size of the captured and displayed video frame height is deÞned. Note that the
IMAGE_STRIDE is larger than the IMAGE_WIDTH. This is because the stride must be a
multiple of 64 bytes; as the image width is 720 bytes, the nearest 64 byte multiple which is
greater than or equal to this is 768.

NUM_PACKETS defines the number of packets which will be used to transfer data between
the two components. The NEW_PARAMETER is used in the user interface code to determine
if a new command should be processed.

Specifying the Packet Format

This structure deÞnes the format of the data contained in the packets. The hash and
referenceCount fields must be set to zero, and should never be modified by the
application. They are used by the format manager which ensures that connected
components are compatible.

The dataClass and dataType must always be set to avdcVideo and vtfYUV. These
specify that the class of data is video and is YUV. The dataSubtype is set to
vdfYUV422Planar and specifies the sub-type of YUV data. The Video Digitizer can
capture either vdfYUV422Planar or vdfYUV422Interspersed video; both types store
the Y, U, and V components in separate buffers. The vdfYUV422Planar sub-type has the
chrominance samples co-sited with the luminance data, while vdfYUV422Interspersed
has the chrominance located mid-way between luminance samples.

#define IMAGE_NTSC_HEIGHT 480
#define IMAGE_PAL_HEIGHT 576
#define IMAGE_WIDTH 720
#define IMAGE_STRIDE 768
#define NUMPACKETS 4
#define NEW_PARAMETER 0

static tmVideoFormat_t digitizer_format = {
 sizeof(tmVideoFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV422Planar, /* dataSubtype */
 vdfInterlaced, /* description */
 IMAGE_WIDTH, /* imageWidth */
 IMAGE_NTSC_HEIGHT, /* imageHeight */
 IMAGE_STRIDE /* imageStride */
};

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-5

The description Þeld is set to vdfInterlaced to indicate that the Video Digitizer is
capturing interlaced video. The digitizer will store the two Þelds in a single buffer, with
©1998 Philips Semiconductors 6/21/98 TSSA Video Modules 1-5

the top Þeld being on the even lines.

Finally, the size of the video frame is speciÞed.

Static Parameters and Function Prototypes

The global variables used for the video conÞguration are declared and initialized. These
are used to enable the user to change the conÞguration by entering commands on the
console. The default settings for the video standard and adaptor are NTSC and CVBS. The
digitizer will capture full resolution images, and the renderer will perform no upscaling on
the output.

The function prototypes are for the user interface code. This will not be described.

The Main Program

The following code is contained within the main{} function.

static tmVideoAnalogStandard_t vidStd = vasNTSC;
static tmVideoAnalogAdapter_t vidAdapter = vaaCVBS;

extern int __argc;
extern char **__argv;

/* ------ function prototypes ------ */
static int DoCommand (char *command);
static int CheckArgcv(int argc, char **argv);
static void PrintUsage(void);

/* setup parameters */
int vResolution = viFULLRES;
int acquStartX = 0;
int acquStartY = 0;
int scaleUp = False;
int voStartX = 0;
int voStartY = 0;

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-6

Variables
1-6 TSSA Video Modules ©1998 Philips Semiconductors 6/21/98

The rval variable is used to store the value returned whenever a call is made to the Video
Digitizer, Video Renderer, or tsaDefaults API. The returned value is always of type
tmLibappErr_t and will have a value of TMLIBAPP_OK if there is no error. It is
important to check the returned value whenever a call to a component API is made.

The digitizerInstance and vrendInstance variables are used to store the instance
idÕs when the digitizer and renderer instances are opened. These idÕs are unique and must
be used whenever the application calls a component API function.

The ins[80] character array is used to store user command typed in at the keyboard.

Before two components are connected together to form a data ßow, the application uses
the format manager to determine if they are compatible. Each component has a
capabilities structure which speciÞes what formats it can understand. The digCap and
rendCap variables are used to point to these capabilities structures.

Each component must also be setup before it is used. The vrend_inst_setup and
digitizer_inst_setup are pointers to the instance setup structures.

The connection between two component instances is described using a tsaInOutDescriptor.
When a descriptor is created, it requires a setup structure which speciÞes information
about the two components being connected and the packets which will be used. The
iodSetup variable is used to point to this setup information.

DP Debug Information

The TriMedia SDE provides a mechanism where debug information can be written to
SDRAM by the application and component libraries. This can then be read either during
execution if the debugger is being used, or after the program has completed.

tmLibappErr_t rval;
Int digitizerInstance;
Int vrendInstance;
char ins[80];
ptmolVdigVICapabilities_t digCap;
ptmolVrendVOCapabilities_t rendCap;
ptmolVrendVOInstanceSetup_t vrend_inst_setup;
ptmolVdigVIInstanceSetup_t digitizer_inst_setup;
ptsaInOutDescriptorSetup_t iodSetup;
ptsaInOutDescriptor_t iod;

DPmode(DP_PERSIST);
DPsize(1024*1024);

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-7

Check Capabilities
©1998 Philips Semiconductors 6/21/98 TSSA Video Modules 1-7

The capabilities of the two components to be connected together are obtained using the
respective GetCapabilities functions. This information will be used by the format manager
to ensure the two components are compatible. The versions of the two components are
printed on the console.

Read Command Line Parameters

The multitasking operating system is initialized and the command line arguments are
checked.

Open the Components

Before a component can be used, it must Þrst be opened using the respective open
function. The relevant function will open an instance of the component, and store a unique
instance id in the pointer parameter. The application must use the instance id when calling
the components API. It is important to check the return value to ensure that an error did

rval = tmolVdigVIGetCapabilities(&digCap);
rval = tmolVrendVOGetCapabilities(&rendCap);

printf("TriMedia OS Video Renderer Demo. v1.0\n");
printf("\nThis program uses the video digitizer v%d.%d.%d\nand video
renderer v%d.%d.%d\n",
digCap->defaultCapabilities->version.majorVersion,
digCap->defaultCapabilities->version.minorVersion,
digCap->defaultCapabilities->version.buildVersion,
rendCap->defaultCapabilities->version.majorVersion,
rendCap->defaultCapabilities->version.minorVersion,
rendCap->defaultCapabilities->version.buildVersion);
printf("to pass video from video-in to video-out.\n");

tmosInit();

if (CheckArgcv(__argc, __argv) != 0)
 tmosExit(0);

rval = tmolVdigVIOpen(&digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolVrendVOOpen(&vrendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-8

not occur during the open operation. For example, the Video Digitizer and Video Renderer
only support a single instance to be open, if the application incorrectly tries to open a
1-8 TSSA Video Modules ©1998 Philips Semiconductors 6/21/98

second instance then the function will return an error.

Make the Connection Between the Two Components

The dataßow path connecting two components is speciÞed using an InOutDescriptor.
Before this descriptor is created, a structure specifying the connection must be initialized
with information which describe the capabilities of the two components and information
about the packets which will be placed in the queue.

The Þrst step is to create the setup structure using the standard malloc function. The
amount of the memory requested is equal to the size of the
tsaInOutDescriptorSetup_t structure plus the number of buffers per packet minus
one. As the packets store YUV data, three buffers are required per packet, so the
application needs to add two extra UInt32 Þelds to the allocated memory which will be
used to store the U and V buffer sizes. By default, the tsaInOutDescriptorSetup_t
has space for one buffer size.

The format of the packets which will be placed in the full queue are speciÞed by passing
the address of the digitizer_format structure. This information is used by the format
manager to check that the components can accept this type of packet. It will also be placed
automatically on packets when the sender instance (the Video Digitizer in this case) places
a packet onto the full queue.

iodSetup = (ptsaInOutDescriptorSetup_t)
 malloc(sizeof(tsaInOutDescriptorSetup_t)+2*sizeof(UInt32));
iodSetup->format = (ptmAvFormat_t)&digitizer_format;
iodSetup->flags = tsaIODescSetupFlagCacheMalloc;
iodSetup->fullQName = "full";
iodSetup->emptyQName = "mpty";
iodSetup->queueFlags = tmosQueueFlagsStandard;
iodSetup->senderCap = digCap->defaultCapabilities;
iodSetup->receiverCap = rendCap->defaultCapabilities;
iodSetup->senderIndex = VDIGVI_MAIN_OUTPUT;
iodSetup->receiverIndex = VRENDVO_MAIN_INPUT;
iodSetup->packetBase = 0;
iodSetup->numberOfPackets = NUMPACKETS;
iodSetup->numberOfBuffers = 3;
iodSetup->bufSize[0] = IMAGE_STRIDE * IMAGE_PAL_HEIGHT;
iodSetup->bufSize[1] = IMAGE_STRIDE * IMAGE_PAL_HEIGHT / 2;
iodSetup->bufSize[2] = IMAGE_STRIDE * IMAGE_PAL_HEIGHT / 2;
rval = tsaDefaultInOutDescriptorCreate(&iod, iodSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-9

The flags parameter is set to tsaIODescSetupFlagCacheMalloc. This indicates to
the tsaDefaultInOutDescriptorCreate() function that the packet buffers which it
©1998 Philips Semiconductors 6/21/98 TSSA Video Modules 1-9

creates must be cache aligned.

Information concerning the queues which will be automatically created are then
initialized. The full and empty queues are given names which can be used during
debugging; any four letter name can be used. The queueFlags parameter provides
information which will be used when the full and empty queues are created. The
tmosQueueFlagsStandard specifies that the queues will be local to the processor (i.e.
they do not connect processors) and there is no limit to the number of messages which can
be placed on them.

The capabilities of the two components which will be connected together will be checked
by the format manager to ensure that they are compatible. The senderCap is set to the
address of the digitizer capabilities, while the receiverCap is set to the renderer
capabilities. The component capabilities were obtained previously using the
tmolVdigVIGetCapabilities() and tmolVrendVOGetCapabilities() functions.

The senderIndex and receiverIndex Þelds specify the output and input pins which
will be used for the connection. Each component instance uses input and/or output pins for
communication to neighboring component instances; each pin represents the full/empty
message queue where packets are exchanged. The Video Digitizer has a single output pin
referenced by the index value VDIGVI_MAIN_OUTPUT. The Video Renderer has two input
pins, one for the main video input (VRENDVO_MAIN_INPUT) and one for the overlay input
(VRENDVO_OVERLAY_INPUT). The receiverIndex is set to VRENDVO_MAIN_INPUT as
this pin will receive the video packets for display.

The next set of Þelds will be used to provide information about the packets which will be
automatically created. The packetBase Þeld is used to specify an identiÞcation number
to the packets that are placed in the queues. The application can use any number; the Þrst
packet will contain this value, with subsequent packets containing idÕs with ascending
values. In the example, the Þrst packet will have an id of zero, the second packet will be
one, the third will be two, and the forth packet will have an id of three. This can be useful
for debugging to identify where the packets are being held. The numberOfPackets
speciÞes the number of packets which must be created and stored in the empty queue. The
numberOfBuffers specifies the number of data buffers per packet. As the components
are using YUV data, three buffers are required per packet to store the Y, U, and V data.
Each buffer has a corresponding buffSize value which speciÞes the size of the buffer. As
the packets are hold YUV data, the Þrst bufferSize is set to the size of the luminance
component, with the subsequent bufferSize values set to the size of the Chrominance
components. As the data is YUV422, the chrominance is half the size of the luminance.

Finally, the InOutDescriptor is created using tsaDefaultInOutDescriptorCreate().
This creates the descriptor, the message queues, and the associated packets.

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-10

Setup the Video Digitizer and Renderer
1-10 TSSA Video Modules ©1998 Philips Semiconductors 6/21/98

Before an instance of a component is used it must Þrst be setup. The Þrst step is to obtain
a pointer to the instance setup structure; this is achieved by calling the
tmolVdigVIGetInstanceSetup() and tmolVrendVOGetInstanceSetup()
respectively.

The Video Digitizer structure is setup Þrst. The instances output descriptor is set to point
to the InOutDescriptor which was created in the last section of code. The input
videoStandard specifies either PAL or NTSC; by default, this is set to NTSC. The input
videoAdaptor indicates the adaptor type and can be CVBS or SVIDEO, with the CVBS
being set by default. The capSizeFlag indicates whether to perform full resolution or
half resolution video capture; by default this will be full resolution. Finally, the startX
and startY Þelds are used to specify the location in the incoming Þeld where video
capture will start. The two values are zero by default.

The Video Renderer parameters are then initialized. The instances main image input
descriptor is set to the InOutDescriptor which was created before. The output video

rval = tmolVdigVIGetInstanceSetup(digitizerInstance,
 &digitizer_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolVrendVOGetInstanceSetup(vrendInstance,
 &vrend_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);

digitizer_inst_setup->instSetup>outputDescriptors[VDIGVI_MAIN_OUTPUT]
 = iod;
digitizer_inst_setup->videoStandard = vidStd;
digitizer_inst_setup->videoAdapter = vidAdapter;
digitizer_inst_setup->capSizeFlag = vResolution;
digitizer_inst_setup->startX = acquStartX;
digitizer_inst_setup->startY = acquStartY;

vrend_inst_setup->instSetup->inputDescriptors[VRENDVO_MAIN_INPUT]
 = iod;
vrend_inst_setup->videoStandard = vidStd;
vrend_inst_setup->adapterType = vidAdapter;
vrend_inst_setup->scaleUp = scaleUp;
vrend_inst_setup->imageHorzOffset = voStartX;
vrend_inst_setup->imageVertOffset = voStartY;

rval = tmolVdigVIInstanceSetup(digitizerInstance, digitizer_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("digitizer initialized.\n");

rval = tmolVrendVOInstanceSetup(vrendInstance, vrend_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("renderer initialized.\n");

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-11

standard and adaptor type are setup in similar fashion to the Video Digitizer. The scaleUp
ßag is used to specify that the input image should be scaled up by the video-out hardware.
©1998 Philips Semiconductors 6/21/98 TSSA Video Modules 1-11

If full resolution images are captured, this value should be set to false. Half resolution
images may be scaled up to full resolution by setting this value to true. Finally, the
imageHorzOffset and imageVertOffset specify the starting pixel and line in the
active output video area where the image will be displayed. These are set to zero by
default.

Once the setup structures have been initialized, the tmolVdigVIInstanceSetup() and
tmolVrendVoInstanceSetup() functions are called to pass the information to the two
instances.

Starting the Component Instances

Data streaming between the two component instances will begin once both have been
started. The tmolVdigVIStart() and tmolVrendVOStart() functions will initiated
data streaming for each instance. Both components execute in interrupt service routines.

DP(("\nStarting Video Renderer\n"));
rval = tmolVrendVOStart(vrendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("renderer started.\n");

DP(("\nStarting Video Digitizer\n"));
rval = tmolVdigVIStart(digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("digitizer started.\n");

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-12

User Input
1-12 TSSA Video Modules ©1998 Philips Semiconductors 6/21/98

The example enables the user to enter commands via the console which alter the digitizer
and renderer parameters. while the two video instances are streaming data, the default task
will wait for the user to type a command. Once a valid command has been entered, the two

printf("\nVideo Renderer demo started.\nVideo input is being echoed to
video output.\n");
PrintUsage();
printf("Enter Command:\n");

while (1)
{
 printf(">");
 gets(ins);
 rval = DoCommand(ins);
 if (rval == NEW_PARAMETER) {
 if (rval = tmolVdigVIStop(digitizerInstance))
 printf("exolVrendVO: tmolVdigVIStop error %s\n",rval);
 if (rval = tmolVrendVOStop(vrendInstance))
 printf("exolVrendVO: tmolVrendVOStop error %s\n",rval);
 digitizer_inst_setup->videoStandard = vidStd;
 digitizer_inst_setup->videoAdapter = vidAdapter;
 digitizer_inst_setup->capSizeFlag = vResolution;
 digitizer_inst_setup->startX = acquStartX;
 digitizer_inst_setup->startY = acquStartY;
 vrend_inst_setup->videoStandard = vidStd;
 vrend_inst_setup->adapterType = vidAdapter;
 vrend_inst_setup->scaleUp = scaleUp;
 vrend_inst_setup->imageHorzOffset = voStartX;
 vrend_inst_setup->imageVertOffset = voStartY;
 tsaDefaultInstallFormat(iod,
 (ptmAvFormat_t)&digitizer_format);
 if (rval = tmolVdigVIInstanceSetup(digitizerInstance,
 digitizer_inst_setup))
 printf("exolVrendVO: tmolVdigVIInstanceSetup error %s\n", rval);
 if (rval = tmolVrendVOInstanceSetup(vrendInstance,
 vrend_inst_setup))
 printf("exolVrendVO: tmolVrendVOInstanceSetup error %s\n",rval);
 if (rval = tmolVrendVOStart(vrendInstance))
 printf("exolVrendVO: tmolVrendVOStart error %s\n",rval);
 if (rval = tmolVdigVIStart(digitizerInstance))
 printf("exolVrendVO: tmolVdigVIStart error %s\n",rval);
 }
 else if (rval == -1){
 continue;
 }
 else {
 break;
 }
}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-13

instances are stopped by calling tmolVdigVIStop() and tmolVrendVOStop()
respectively; this will terminate data streaming. The new instance values are then assigned
©1998 Philips Semiconductors 6/21/98 TSSA Video Modules 1-13

to the respective instance setup structures and each component instance is setup. Finally,
data streaming is restarted for both the digitizer and renderer.

If the user types ÔexitÕ at the console, then the ÔwhileÕ processing loop with be exited, and
the shutdown sequence of command will be executed.

Stop and Shutdown

Component instances should be stopped before they are closed. The tmolVdigVIStop()
and tmolVrendVOStop() functions will cause the two instances to stop data streaming
and return any packets that they may be holding. The low level video-in and video-out
devices will also be stopped within these functions.

After use, each component instance should be closed. For the Video Digitizer and
Renderer which only allow one instance to be opened, this will enable other applications
or tasks to use the components. The tmolVdigVOClose() amd tmolVrendVOClose()
will free any memory that was being used by the instances.

The InOutDescriptor full and empty queues can be checked using the
tsaDefaultCheckQueues() function. This function should be used during debugging
and checks the queues to ensure that the correct number of packets have been returned to
them.

 printf("\nStopping Everything:\n");
 DP(("\nStopping Everything:\n"));
 rval = tmolVdigVIStop(digitizerInstance);
 tmAssert((rval == TMLIBAPP_OK), rval);
 rval = tmolVrendVOStop(vrendInstance);
 tmAssert((rval == TMLIBAPP_OK), rval);
 rval = tmolVdigVIClose(digitizerInstance);
 tmAssert((rval == TMLIBAPP_OK), rval);
 rval = tmolVrendVOClose(vrendInstance);
 tmAssert((rval == TMLIBAPP_OK), rval);

 rval = tsaDefaultCheckQueues(iod);
 tmAssert((rval == TMLIBAPP_OK), rval);
 printf("tsaDefaultCheckQueues returned 0x%x\n", rval);

 printf("Destroying InOutDescriptor\n");
 rval = tsaDefaultInOutDescriptorDestroy(iod);
 tmAssert((rval == TMLIBAPP_OK), rval);

 DP(("Demo Complete.\n"));
 printf("Demo Complete. \n");
 tmosExit(0);
}

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-14

Finally, the InOutDescriptor should be destroyed by calling
tsaDefaultInOutDescriptorDestroy(). This will remove the packets contained
1-14 TSSA Video Modules ©1998 Philips Semiconductors 6/21/98

within the queues, free the memory allocated to the packets, and free the memory
allocated to the InOutDescriptor.

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-15

TriMedia Video-In Operation
©1998 Philips Semiconductors 6/21/98 TriMedia Video-In Operation 1-15

The TriMedia Video-In unit provides digital video input in YUV 4:2:2 with 8-bit
resolution, multiplexed in CCIR656 format from a digital camera or CCIR656-capable
video decoder (such as a Philips SAA7111), across an 8-bit wide interface.

The Video-In unit can operate in any one of the following modes:

■ Full-resolution capture

■ Half-resolution capture

■ Raw capture (raw8, raw10s, and raw10u)

■ Message passing

An operation in each of these modes is given below. For more information, refer to
chapters 6 and 7 of the Data Book.

Full-Resolution Capture Mode
In Full-resolution Capture mode, the Video-In unit receives all three video components (Y,
U, and V), as well as synchronization information, on the 8-bit wide interface in CCIR656
format. The Y, U, and V video components are separated into three different streams. Each
component is written in packed form into Y, U, and V buffers in the SDRAM. This is
commonly called a planar format.

The DSPCPU initiates capture by setting the CAPTURE_ENABLE ßag to 1. The Video-In unit
captures video data and stores it in the SDRAM, at the locations deÞned by the storage
parameters deÞned in the MMIO registers. When capture is complete (that is, any internal
Video-In buffers have been ßushed and the entire captured image is in local SDRAM),
Video-In sets the STATUS register ßag to CAPTURE_COMPLETE. This causes a DSPCPU
interrupt to be requested. The Video-In unit resumes capture as soon as the DSPCPU
acknowledges the previously captured image by deactivating CAPTURE_COMPLETE.

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-16

You can program the Y_THRESHOLD Þeld to generate pre-completion (or post-completion)
interrupts. Whenever CUR_Y reaches the Y_THRESHOLD, the THRESHOLD_FLAG in the status
1-16 TriMedia Video-In Operation ©1998 Philips Semiconductors 6/21/98

register is set. If enabled in the Video-In control register, this event causes a DSPCPU
interrupt request.

If the Video-In internal buffers overßow because of insufÞcient internal data-highway
bandwidth allocation, the HIGHWAY_BANDWIDTH_ERROR condition is raised in the Video-In
status register (VI_STATUS). If enabled, this causes a DSPCPU interrupt request. Capture
continues at the correct memory address as soon as the internal buffers can be written to
memory, but one or more pixels may be lost, and the corresponding memory locations are
not written.

Full-Resolution Capture Mode
Full-Resolution Capture mode is illustrated in the vivot example that follows.

Half-Resolution Capture Mode
Half-Resolution Capture mode is identical in operation to full-resolution capture mode,
except that horizontal resolution is reduced by a factor of 2 on both luminance and
chrominance data.

Half-Resolution Capture mode is used for CIF format in the vivot example that follows.

Raw Capture Mode
All Raw Capture modes (raw8, raw10s, and raw10u) behave similarly. The video data is
captured at the rate of the senderÕs clock, without interpretation or start/stop on the basis
of the data values.

The DSPCPU initiates capture by providing two empty buffers and putting their base
addresses and sizes in the BASEn and SIZEn registers. It does so by writing a base address
and size to MMIO control Þelds. After two buffers are assigned, capture is enabled by
setting CAPTURE_ENABLE to 1. The Video-In unit starts capturing video data in buffer1
(the active buffer). It continues until capture is disabled or buffer1 Þlls up. If buffer1
Þlls up, capture continues (without missing a sample) in buffer2. At the same time,
BUF1FULL is asserted, which causes an interrupt on the DSPCPU.

buffer2 then becomes the active buffer and the loop repeats. In normal operation, the
DSPCPU before buffer2 Þlls up, the DSPCPU must assign a new, empty buffer BASE1,
SIZE1 and perform an ACK1 operation. If the DSPCPU fails to assign a new buffer1
before buffer2 Þlls up, the OVERRUN condition is raised, bringing a temporary halt to
capture. Capture resumes as soon as the DSPCPU makes one or more new buffers
available through an ACK1 or ACK2 operation.

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-17

If insufÞcient bandwidth is allocated from the internal data highway, the Video-In internal
buffers might overßow. This leads to assertion of the HIGHWAY BANDWIDTH ERROR
©1998 Philips Semiconductors 6/21/98 TriMedia Video-Out Operation 1-17

condition. One of more data samples are lost. Capture resumes at the correct memory
address as soon as the internal buffer is written to memory.

Message-Passing Mode
In Message-Passing mode, the Video-In unit receives 8-bit message data across the 8-bit
wide interface. It writes the message data in packed form (four 8-bit message bytes per 32-
bit word) to the SDRAM. Message data capture starts on receipt of a START event and
continues until either the receive buffer is full, or the EndOfMessage event is received.
OVERFLOW is raised if a receive buffer is full and no EndOfMessage event has been
received. If enabled, it generates a DSPCPU interrupt. Detection of overßow leads to total
halt of capture of this message. Capture resumes in the next buffer on receipt of the next
START event.

The TriMedia Video-In APIs provide the necessary interface for video applications to
access the TriMedia Video-In unit hardware.

TriMedia Video-Out Operation

The TriMedia Video-Out unit connects to an off-chip video subsystem, such as a digital
video encoder chip (DENC), a digital video recorder, or the video input of another
TriMedia system through a CCIR656-compatible byte-parallel video interface.

The Video-Out unit outputs digital video in YUV 4:2:2 co-sited format with 8-bit
resolution multiplexed in CCIR656 format. It can drive a CCIR656-compatible digital
video encoder across an 8-bit wide interface. It can also drive other CCIR656-compatible
devices, such as digital video cassette recorders (VCRs) and the Video-In unit of other
TriMedia chips. For example, in Video-In Diagnostic Mode, the Video-Out unit of one
TriMedia supplies video data to the Video-In unit of a second TriMedia system.

The Video-Out unit can operate in either image transfer or data transfer (data streaming or
message-passing) mode. The TriMedia DSPCPU programs the Video-Out unit by setting
the Mode Þeld to the appropriate transfer mode, setting the appropriate addresses, address
deltas, image-timing registers, and associated control bits in the control register. Setting
VO_ENABLE in the VO_CNTRL register starts the Video-Out unit, which transfers the image
or messages as commanded.

In image-transfer and data-streaming modes, the Video-Out unit runs continuously. It
issues an interrupt to the DSPCPU at the end of each Þeld. To maintain continuous video
output, the DSPCPU updates the Video-Out image data pointers with pointers to the next
Þeld during the vertical blanking interval. In message-passing mode, the Video-Out unit
runs until the message has been transferred.

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-18

Image Transfer Mode
1-18 TriMedia Video-Out Operation ©1998 Philips Semiconductors 6/21/98

In Image Transfer mode, the Video-Out unit continuously transfers an image from the
SDRAM to the Video-Out port. The mode Þeld in the VO_CTL register deÞnes the image
input data format and whether or not the Video-Out unit is to perform horizontal
upscaling. The Video-Out unit accepts memory image data in YUV 4:2:2 co-sited, YUV
4:2:2 interspersed, and YUV 4:2:0 co-sited image output streams.

During image transfer, the YTR bits are set in the status register when the Image Line
Counter reaches the Y THRESHOLD value. When an image Þeld has been transferred, the
BFR1_EMPTY bit is set in the status register. The DSPCPU is interrupted when either the
YTR or the BFR1_EMPTY ßag is set and its corresponding interrupt is enabled.

To maintain continuous transfer of image Þelds, the DSPCPU supplies new pointers for
the Þeld following each BFR1_EMPTY interrupt. If the DSPCPU does not supply new
pointers before the next Þeld, the URUN bit is set, and the Video-Out unit uses the same
pointer values until they are updated.

Image Transfer mode is illustrated in the vivot example that follows.

Data Transfer Modes
There are two modes for transferring data:

■ Data-Streaming mode

■ Message-Passing mode

Data-Streaming Mode

In the Data-Streaming mode, the Video-Out unit generates a continuous stream of byte
data using internal or external clocking. Dual buffers facilitate continuous data streaming
by allowing the DSPCPU to set up the next buffer while the Þrst one is being emptied by
the Video-Out unit.

The data is stored in the DRAM in two buffer tables. When the Video-Out unit has
transferred the contents of one table, it interrupts the DSPCPU and begins transferring the
contents of the second table. The DSPCPU supplies pointers to both tables. The Video-Out
unit supplies a continuous stream of data to the video device, provided the DSPCPU
updates the pointer to the next table before the Video-Out starts transferring data from the
next table.

When each buffer has been transferred, the corresponding buffer empty bit is set in the
status register. The DSPCPU is interrupted if the buffer empty interrupt is enabled. To
maintain continuous transfer of data, the DSPCPU supplies new pointers for the next data
buffer following each buffer empty interrupt. If the DSPCPU does not supply new pointers

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-19

before the next Þeld, the Video-Out unit uses the same pointer values until they are
updated.
©1998 Philips Semiconductors 6/21/98 Using the TriMedia Video-In/Video-Out Device Library 1-19

Message-Passing Mode

In the Message-Passing mode, messages can be sent to one or more TriMedia Video-In
units. Start and end-of-message signals are provided in this mode to synchronize message
passing to the other TriMedia message receivers. Video data is stored in the DRAM in one
buffer table.

Setting VO_ENABLE in the VO_CNTRL register starts the Video-Out in Message-Passing
mode. The Video-Out unit sends a Start condition on VO_IO1. When the Video-Out unit
has transferred the contents of the buffer table, it sends an End condition on VO_IO2, sets
the BFR1_EMPTY bit, and interrupts the DSPCPU. The Video-Out unit stops. No further
operation takes place until the DSPCPU sets VO_ENABLE for another message or another
Video-Out operation.

The TriMedia Video-Out APIs provide the necessary interface for video applications to
access the TriMedia Video-Out unit hardware.

Examples of the use of Raw and Message-Passing modes are to be found in the Power On
Self Test (POST) sources.

Using the TriMedia Video-In/Video-Out Device Library

The APIs provided in the TriMedia Video-In/Video-Out Device Library enable you to
access both the Video-In and Video-Out hardware units of TriMedia. The Video-In/Video-
Out device library provides functions for controlling video encoders and decoders. It can
be linked with other programs, providing you with total control of the hardware by
enabling you to

■ Optimize ISRs to meet application requirements.

■ Create vendor-speciÞc initialization and conÞguration routines for on-board chips (such
as a decoder that works with the TriMedia Video-In component and an encoder that
works with the TriMedia Video-Out component).

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-20

Guidelines for Use of the Video-In/Video-Out APIs
1-20 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

General guidelines for using the TriMedia Video-In/Video-Out APIs are as follows:

■ Use the archive version (libdev.a), rather than building the library yourself. (The Video-
In/Video-Out device library is archived in libdev.a).

The source for the Video-In/ Video-Out device library is included in the TCS. This
makes it easier to incorporate new versions of the library as they become available.

■ Pass the speciÞc instance when making subsequent calls.

The Video-In/Video-Out Device Library operates as an exclusive device driver, and, as
such, can service only one task at a time. This is enforced through the instance
identiÞer, which is returned by all the initialization functions.

■ Modify the functions, viOpen() and voOpen() using interfaces provided in the Board
Support API.

The viOpen() and voOpen() functions call the initialization routines for the analog I/O
hardware on the board. The board library provides support for default boards (For
example, the TriMedia debug board and IREF board).

It provides the initialization routine for the decoder on the debug board (SAA7111) and
IREF board (SAA7111A), and for the encoder on the debug board (SAA7185) and
IREF board (SAA7125).

For more information about the Board Support API, refer to Reference Manual II of the
Philips TriMedia SDE.

■ Check the error values returned by the initialization functions. Most of the Video
library functions return zero on success, or nonzero error codes.

■ Use the debug version of the libdev.a library during development. Many functions
check and report the use of sizes and alignments that the hardware cannot support.

Vivot Demonstration Program Overview

The vivot example is intended as an example to allow the user to gain familiarity with the
techniques necessary to program the video capabilities of the TM-1000 architecture. The
program demonstrates how the video input and output modes can be reprogrammed
dynamically on Trimedia.

First, the image captured on VI is converted to CIF and a quarter sized image on the
middle of the screen (vivoRunCIF).

Next, a full screen image is displayed and captured (vivoRunFullres). These two
processes are executed for 1000 frames each.

Finally, a quarter sized image is displayed on the middle of the screen on top of the
Trimedia logo (vivoRunOverlay), thus illustrating the overlay feature.

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-21

It is useful to know a certain number of Òvideo programming tricksÓ when using
TriMedia; for example, CIF conversion, as well as general device issues on TriMedia
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-21

(such as buffer alignment, or cache coherency). The data book provides the functionalities
but it does not go into detail. The purpose of this is to explain them.

The programmer needs to be aware of a certain number of implementation choices while
studying the code. For example, the buffer scheme being used indexes buffers from a table
and references them circularly using modulo addressing. Using a linked list of buffers can
be preferable. Optimizing the code could reduce the buffer space requirements or
execution time. For example, a single buffer can be used for Video-In (VI) and Video-Out
(VO). This was not done for clarity reasons. (For example, the overlay buffer is used for
the captured frames and the VO buffer for the logo). Busy waiting is used for buffer and
ICP processing, instead of a semaphore.

C Program Includes

Most C programs include <stdio.h> and <stdlib.h>. Trimedia-speciÞc C library
functions are in <tmlib/tmlibc.h>. The standard C header Þles such as <assert.h> and
<ctype.h> can be included also. MMIO registers are deÞned in <tm1/mmio.h>.

Custom ops are deÞned in <ops/custom_defs.h>. Multimedia formats (such as vaaNTSC,
vaaPAL, vaaCVBS, vaaSvideo) are defined in <tm1/tmAvFormats.h>.

A program that uses VO should include <tm1/tmVO.h> and <tm1/tmVOmmio.h>. To use
the Image Co-Processor (ICP), include <tm1/tmICP.h>. A program that uses VI should
include <tm1/tmVI.h> and <tm1/tmVImmio.h>.

To Þnd out the clock speed or the processor type, include <tm1/tmProcessor.h>
(procGetCapabilities) and/or <tm1/tmBoard.h>.

For deÞnitions associated with interrupts, include <tm1/tmInterrupts.h>. To use the DP
debug printing facility of tmgmon, include <tmlib/dprintf.h>

Main Program

The Þrst line initializes the DP printing facility of tmgmon. The next two lines print a start-
up message, using DP and printf. The call to Reportsys is to Þnd out the processor clock
frequency and the version of the processor (for work-arounds).

Video out bug 21727 was present in versions of the processor prior to TM1S1.1. Video out
bug 3056 is less important but the two exacerbate each other. The call to
vivoDetectworkarounds detects which of these bugs are present and positions the flag
DummyCode. We will assume in what follows that DummyCode is zero.

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-22

The call to vivoCheckArgcV sets the adapter type (S-video, composite) and the video
standard (PAL or NTSC). The call to vivoRun contains the main program.
1-22 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

Vivot Demonstration Program (Vivorun)

■ Buffer allocation is ensured by vivoAlloc.

■ vivoOpenAPI calls viOpenAPI and voOpenAPI for API initialization.

■ vivoCloseAPI frees the buffers (the name is a misnomer).

The code for vivoRun is shown below.

Image Representation

The output format is deÞned by the width, the height, and the stride. The stride is different
from the width because lines need not be contiguous and because of alignment of lines to
cache boundaries.

int

main(int argc, char **argv)

{

SetDP();

DP((Header));

 printf(Header);

 reportSys();

 vivoDetectworkarounds();

#ifndef __TCS_nohost__

 vivoCheckArgcv(argc, argv);

#endif

 vivoRun();

 exit(0);

}

vivoRun()

{

 vivoAlloc();

 vivoOpenAPI();

 vivoRunCIF();

 vivoRunFullRes();

 vivoRunOverlay();

 vivoCloseAPI();

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-23

The dimensions are 352 x 240 for CIF (cifWidth, cifHeight) and 720 x 480 (full Width,
full Height) for full resolution. The image buffer sizes are 384 x 240 for CIF and 768 x
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-23

576 for full resolution.

The strides (cifStride, fullStride) differ from the widths because VI requires that
image lines begin on a cache line (modulo 64 bytes) boundary. The image is represented in
planar format using separate Y, U, and V pointers in the vbuf structure.

Buffer Allocation (vivoAlloc)

VivoAlloc calls allocCif422, allocFullres, and allocBkBuf to allocate the CIF, full
resolution, and overlay buffers.

Table 1-1 summarizes the buffer allocation in the demonstration program.

■ The buffer allocation scheme is Þxed and there is no sharing.

■ Buffers are addressed via an index modulo the total number (4).

■ The buffers are circulated between VI, VO and processing.

■ Pointer advancement corresponds to inputs and completion of processing.

■ The ßag Þeld of the vbuf structure identiÞes the state at any given point in time
(VID_RDY_VI, VID_RDY_VO, VID_RDY_MM).

■ 5 megabytes of memory are required for the buffers in total.

■ The dimensions in full resolution are large enough to contain either a

PAL (704 x 576) or NTSC (720 x 480) image.

Cache Management

Cache coherency between the DSPCPU and the peripheral units is managed in software on
the TM-1000. The program contains routines to allocate a buffer, to update the cache to
memory, and to remove stale data.

These routines deal with cache lines (blocks whose sizes are a multiple of 64 bytes
beginning at a modulo 64 boundary). allocSz calls the library routine _cache_malloc
(Refer to code insert below).

Table 1-1 Buffer Allocation in Demonstration Program

CIF 384 240 2 4 737280

full res 768 576 2 4 3538944

overlay 768 576 2 4 884736

Total 5160960

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-24

The second parameter indicates the set number from which to allocate (0-31 or -1 if any is
acceptable). Refer to Chapter 3 of the Trimedia Software Cookbook for information about
1-24 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

the incidence of this on performance.

The pointer returned by _cache_malloc begins at a modulo 64 boundary. The size is
rounded up also.

UInt32

allocSz(int bufSz)

{

 UInt32 temp;

 int i;

 if ((temp = (UInt32) _cache_malloc(bufSz, -1)) == Null)

 my_abort("_cache_malloc", 0);

 memset(temp, 0, bufSz);

 _cache_copyback(temp, bufSz);;

 return temp;

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-25

viOpenAPI - level 1 initialization for VI
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-25

The code for viOpenAPI is shown in two sections below. The call to viOpen acquires the
peripheral; accesses to a peripheral have to be exclusive. This returns an ÒinstanceÓ in
viInst corresponding to the peripheral.

The call to viInstanceSetup programs the 7111 and associates the interrupt service
routine viTestISR at interrupt priority level 3 with the device.

void viOpenAPI()

 tmLibdevErr_t err;

 if (err = viOpen(&viInst))

 my_abort("viOpen", err);

memset((char *) (&viInstSup), 0, sizeof (viInstanceSetup_t));

 viInstSup.interruptPriority = intPRIO_3;

 viInstSup.isr = viTestISR;

 viInstSup.videoStandard = videoStandard;

 viInstSup.adapterType = adapterType;

 if (err = viInstanceSetup(viInst, &viInstSup))

 my_abort("viInstanceSetup", err);

}

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-26

voOpenAPI - level 1 initialization for VO
1-26 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

The code for voOpenAPI follows the same general structure as viOpenAPI. An instance is
allocated and then setup.

The interrupt service routine is voTestISR and the interrupt is at level 6. The Highway
Bandwidth Error (HBE) interrupt is enabled. This corresponds to VO not getting data from
the highway in time to continue transfer. The Underrun interrupt is enabled. This
corresponds to the CPU not updating the buffer pointer in time (excessive interrupt
latency). For more information on these, refer to section 7.12.3 of the data book.

The initialization of the DDS frequency merits some explanation. Section 7.4 of the data
book deÞnes the clock frequency at the output by the following equation:

The value for fdds is twice the video clock frequency of 13.5 Mhz. The input divider for
the clock frequency divides by two (see Table 7-7 of the data book, default values for the

void

voOpenAPI()

{

 tmLibdevErr_t err;

 pprocCapabilities_t procCap;

 if (err = voOpen(&voInst))

 my_abort("voOpen", err);

 memset((char *) (&voInstSup), 0, sizeof (voInstanceSetup_t));

 voInstSup.interruptPriority = intPRIO_6;

 voInstSup.isr = voTestISR;

 voInstSup.videoStandard = videoStandard;

 voInstSup.adapterType = adapterType;

 procGetCapabilities(&procCap);

 /* see formula on VO, Figure 7.6 in the data book */

 voInstSup.ddsFrequency = (unsigned int)

 (0.5 + (1431655765.0 * 27000000 / procCap->cpuClockFrequency));

 voInstSup.hbeEnable = True;

 voInstSup.underrunEnable = True;

 if (err = voInstanceSetup(voInst, &voInstSup))

 my_abort("voInstanceSetup", err);

}

f DDS

3 FREQUENCY f DSPCPUCLK´´

2
32

--=

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-27

PLL Þelds in VO_CTL). The frequency of 27 Mhz corresponds for PAL to an image
format of 864 pixels, 625 lines, at a 25 Hz frame rate (50 Hz interlaced). The image format
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-27

parameters for NTSC vary, but the clock frequency is identical. So the value for fdds
needs to be 27 Mhz.

The code in voOpen corresponds to a rearrangement of the terms to obtain the
ddsfrequency of the equation above.

The number 1,431,655,765 (referenced in the code above) equals

Field Capture versus Frame Capture

The dimensions of image being captured depend on the output resolution. In full
resolution, the two Þelds are assembled together to form a frame. Consecutive lines from
different Þelds are assembled together to form an image by using a stride equal to twice
the line stride and setting buffer pointers.

In CIF resolution, the buffer consists of a single Þeld and has half the height of the image.
The frame rate for output is the same as in full resolution since one of out two Þelds is
discarded. For the horizontal resolution the HALFRES mode of the Video Out unit is used.

Running in CIF Resolution (vivoRunCIF)

The code for vivoRunCIF begins by initializing the capture buffer pointers.

voInstSup.ddsFrequency = (unsigned int)

 (0.5 + (1431655765.0 * 27000000 / (float) procCap-

>cpuClockFrequency));

void

vivoRunCIF()

{

 tmLibdevErr_t err;

 printf("\nStarting CIF resolution mode\n");

 cpGenBuf(cif422Buf, VID_NUMBUFS, VID_RDY_VI);

 viNum = mmNum = voNum = 0;

2
32

3

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-28

The resolution for U and V strides are half that of Y so the stride must be divided by two
also.
1-28 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

Setting capfield tells viTestISR not to assemble Þelds into frames. This has the effect of
dividing by two the vertical resolution.

The arguments to viYUVAPI indicate that the image is being captured starting at line 11,
pixel 4, with Þeld capture. The HALFRES mode is used, dividing in effect by two the
horizontal resolution.

The arguments to voYUVAPI indicate that the image is offset to line 64, pixel 128. The
output format is in 4:2:2 format with cosited sampling for luminance and chrominance.

This corresponds to the format used by VI (CCIF 656 standard). The VO unit has the
capacity to upscale the image by two but this is not used.

1000 frames are copied from VI to VO. This corresponds to approximately 33 seconds at
60 Hz.

 After 1000 frames, we shut down image display and capture.

yFieldStride = cifStride;

 uvFieldStride = (cifStride >> 1);

 overlayFieldStride = 0;

capField = True;

 firstField = False;

viYUVAPI(viHALFRES, cifWidth, cifHeight, cifStride, 1, 4, 11,

 (Pointer) (cif422Buf[0].Y),

 (Pointer) (cif422Buf[0].U),

 (Pointer) (cif422Buf[0].V));

voYUVAPI(vo422_COSITED_UNSCALED, cifWidth, cifHeight, cifStride, 64, 128,

 (Pointer) cif422Buf[0].Y,

 (Pointer) cif422Buf[0].U,

 (Pointer) cif422Buf[0].V);

for (voISRCount = 0; voISRCount < loopCount;) {

 mmBufUpdate();

 }

if (err = viStop(viInst))

 my_abort("viStop", err);

 if (err = voStop(voInst))

 my_abort("voStop", err);

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-29

Running in Full Resolution (vivoRunFullRes)
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-29

In full resolution, two Þelds are assembled to form a frame together. The global variables
ScanWidth and uvScanWidth. These values are used in the ISR to adjust the buffer
pointers for the second Þeld of capture. They correspond to the offset in bytes between
Þelds for the Y and U, V buffers.

This corresponds to forming the frame by reassembling consecutive lines from different
Þelds together. The arguments to viYUVAPI indicate that the image is being captured
starting at line 21, pixel 0, with a frame mode of capture, (as explained previously).

The arguments to voYUVAPI correspond to those used in CIF mode except that the image
is offset at (0, 0).

Initialization With Alpha Overlay (vivoRunOverlay)

In overlay mode the TM-1 logo is displayed on video out. The image from video in is
converted to overlay mode and output.

yScanWidth = fullStride;

 uvScanWidth = (fullStride >> 1);

viYUVAPI(viFULLRES, fullWidth, fullHeight, fullStride, 0, 0, 21,

 (Pointer) (fullResBuf[0].Y),

 (Pointer) (fullResBuf[0].U),

 (Pointer) (fullResBuf[0].V));

voYUVAPI(vo422_COSITED_UNSCALED, fullWidth, fullHeight, fullWidth, 0, 0,

 (Pointer) fullResBuf[0].Y,

 (Pointer) fullResBuf[0].U,

 (Pointer) fullResBuf[0].V);

void vivoRunOverlay()

{

 tmLibdevErr_t err;

 printf("\nStarting overlay mode\n");

 cpGenBuf(cif422Buf, VID_NUMBUFS, VID_RDY_VI);

 runningOverlay = True;

 cpUsize = ((cifStride * cifHeight) >> 1);

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-30

The image is captured starting at line 12 (hex C), pixel 12, with Þeld capture.
1-30 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

The output format is the same as in full resolution mode.

voOverlayAPI is then called. The buffer pointer corresponds to the first CIF buffer. In
overlay mode, the VO buffer points to the TriMedia logo. The overlaid zone is at offset
(64, 128) from the left hand corner of the active video area and has the width and height a
CIF image (350 x 240).

The stride value of a single alpha value of 64 (50 percent) is used over the entire display
image. The CIF buffer Y pointer points to the converted overlaid image. A single pointer is
used as the overlaid image is in YVYU format.

The stride of 1408 is four times the width of the image because in the buffer both the even
and odd Þelds and the luminance and chrominance data are interspersed.

1000 buffers are copied from VI to VO.

Image capture and display are stopped as previously.

viYUVAPI(viHALFRES, cifWidth, cifHeight, cifStride, 1,

 0xc, /* x offset */

 0xc, /* y offset */

 (Pointer) (cif422Buf[0].Y),

 (Pointer) (cif422Buf[0].U),

 (Pointer) (cif422Buf[0].V));

 voYUVAPI(vo422_COSITED_UNSCALED, fullWidth, fullHeight, fullWidth, 0, 0,

 (Pointer) fullResBuf[0].Y,

 (Pointer) fullResBuf[0].U,

 (Pointer) fullResBuf[0].V);

voOverlayAPI(64, 128, 352, 120, 64, 64, 1408, (Pointer) cif422Buf[0].Y);

for (voISRCount = 0; voISRCount < loopCount;) {

 mmOvlyBufUpdate();

 }

 if (err = viStop(viInst))

 my_abort("viStop", err);

 if (err = voStop(voInst))

 my_abort("voStop", err);

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-31

Setup Input and Begin Capture (viYUVOpenAPI)
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-31

The beginning of the code for viYUVAPI is shown below. The VI unit has two interrupt
modes corresponding to when a scan line is reached (thresholdReached) and to capture
complete (end of an image, beginning of vertical sync interval). The capture mode is used.
Cosited sampling is used.

The threshold register is set to line 0. The startx, and startY values correspond to the
line and pixel number to begin image capture. The width parameter corresponds to the
number of pixels after the starting pixel for line capture

The next three instructions initialize the VIÕs units buffers pointers.

Depending on whether the captured image is in full resolution, or in CIF mode, it must be
assembled from Þelds to frames by the VI ISR.

void

viYUVAPI(int mode, int width, int height, int stride, int fieldBuf,

 int startx, int starty, Pointer yBase, Pointer uBase, Pointer vBase)

{

 tmLibdevErr_t err;

 memset((char *) (&viYUVSup), 0, sizeof (viYUVSetup_t));

 viYUVSup.thresholdReachedEnable = False;

 viYUVSup.captureCompleteEnable = True;

 viYUVSup.cositedSampling = True;

 viYUVSup.mode = viFULLRES;

 viYUVSup.yThreshold = 0;

 viYUVSup.startX = startx;

 viYUVSup.startY = starty;

 viYUVSup.width = width;

viYUVSup.yBase = yBase;

 viYUVSup.uBase = (DummyCode) ? (Pointer) MMIO(DRAM_BASE) : uBase;

 viYUVSup.vBase = vBase;

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-32

The Þrst case corresponds to CIF mode. Interlacing is used in this mode to divide the
vertical resolution and the second Þeld is eliminated. The delta values for U and V are
1-32 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

divided because they have half the resolution.

ÒDeltaÓ corresponds to the difference between the last pixel of a line and the Þrst pixel of
the following line. This corresponds to the difference between ÒstrideÓ and ÒwidthÓ (the
space necessary so that the next line can begin on a mod 64 boundary).

The Ò+1Ó comes from the deÞnition of Delta (the pointer stops incrementing at the last
pixel). The second case corresponds to full resolution mode. The value for height
corresponds to the number of lines in a Þeld (half that of a full image). The extra space of
ÒstrideÓ bytes corresponds to the corresponding line from the other Þeld of the image.

The viYUVSetup routine initializes the video parameters.

 The viStart routine initializes image capture.

Start Outputting an Image To Video Out (voYUVAPI)

The routine begins by initializing the video mode. The VO unit supports three output
modes: cosited 4:2:2, interspersed 4:2:2, and 4:2:0 (see section 7-8 of the data book).

In cosited 4:2:2, the chrominance values (U and V) correspond to the Þrst of two
luminance values. In interspersed 4:2:2, they correspond to the midpoint between the two
pixels. In 4:2:0 mode, there are four times fewer U and V than Y values (half as many as in

if (fieldBuf) {

 viYUVSup.height = height;

 viYUVSup.yDelta = (stride - width) + 1;

 viYUVSup.uDelta = ((stride - width) >> 1) + 1;

 viYUVSup.vDelta = ((stride - width) >> 1) + 1;

 }

 else {

 viYUVSup.height = (height >> 1);

 viYUVSup.yDelta = (stride - width) + stride + 1;

 viYUVSup.uDelta = ((stride - width) >> 1) + (stride >> 1) + 1;

 viYUVSup.vDelta = ((stride - width) >> 1) + (stride >> 1) + 1;

 }

if (err = viYUVSetup(viInst, &viYUVSup))

 my_abort("viYUVSetup", err);

if (err = viStart(viInst))

 my_abort("viStart", err);

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-33

4:2:2). The chrominance values correspond to the point in the center of the square formed
by consecutive horizontal and vertical pictures.
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-33

The VO unit has two interrupt modes. An interrupt can be generated at the end of the
image area or when the scan line reaches a given value. The Þrst is used.

The next three lines set the Y, U, and V image pointers.

The imageVertOffset and imageHorzOffset correspond to the offset of the image

from the top left hand corner of the active video area (see Þgure 7-12 of the data book).

The image height needs to be divided by two for interlaced scan. Lines of one Þeld are
interspersed with lines of another, so the stride needs to be doubled. The stride for U and
V is half that for the Y pixels.

void

voYUVAPI(voYUVModes_t mode,

 int imageWidth, int imageHeight, int imageStride,

 int imageVertOffset, int imageHorzOffset,

 Pointer yBase, Pointer uBase, Pointer vBase)

{

 tmLibdevErr_t err;

 memset((char *) (&voYUVSup), 0, sizeof (voYUVSetup_t));

 voYUVSup.mode = mode;

 voYUVSup.buf1emptyEnable = True;

 voYUVSup.yThresholdEnable = False;

 voYUVSup.yThreshold = False;

voYUVSup.yBase = yBase;

 voYUVSup.uBase = uBase;

 voYUVSup.vBase = vBase;

 voYUVSup.imageVertOffset = imageVertOffset;

 voYUVSup.imageHorzOffset = imageHorzOffset;

 voYUVSup.imageHeight = (imageHeight >> 1);

 voYUVSup.yStride = (2 * imageStride);

 voYUVSup.uStride = imageStride;

 voYUVSup.vStride = imageStride;

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-34

The mode supplied to voYUVSetup is a combination of the VO mode and the use of 2x
horizontal upscaling. The width of the image is halved in the presence of scaling.
1-34 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

The call to voYUVSetup programs the 7185 registers.

The call to voStart begins image display.

switch (mode) {

case vo422_COSITED_UNSCALED:

 case vo422_INTERSPERSED_UNSCALED:

 case vo420_UNSCALED:

 voYUVSup.imageWidth = imageWidth;

 break;

 case vo422_COSITED_SCALED:

 case vo422_INTERSPERSED_SCALED:

 case vo420_SCALED:

 default:

 voYUVSup.imageWidth = imageWidth << 1;

 break;

 }

 if (err = voYUVSetup(voInst, &voYUVSup))

 my_abort("voYUVSetup", err);

 if (err = voStart(voInst))

 my_abort("voStart", err);

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-35

Initialize Overlay Mode (voOverlayAPI)
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-35

voOverlayAPI copies the arguments into a structure and calls voOverlaySetup.

 The TM-1000 VO unit allows the display buffer to be overlaid with a raster in memory
using alpha blending. Since the TM-1000 uses a raster overlay the user has full control
over the contents. For example, the overlay can contain a graphic logo as well as
characters for teletext. The dimensions and position of the overlay with respect to the
active image area are programmable.

The degree of blending is determined by the top three bits of two eight bit registers
(GLOBAL ALPHA 0, GLOBAL ALPHA 1), as indicated in Table 7-4 of the data book.
The TM-1000 display buffer has separate Y, U, and V planes but the overlay raster is
interspersed. Overlay images are stored in YVYU format. Figure 7-20 of the data book
shows the format. The U and V values are the same for the two Y pixels.

The low order bit of U determines the alpha value for (Y0, U, V) (ALPHA 1, ALPHA 0)
The low order bit of V determines the alpha value for (Y1, U, V) similarly.

The arguments to voOverlayAPI are the offset of the overlay from the left hand corner
(sLine, sPixel), the size of the overlay (width, height), the values for alpha blending
(alpha0, alpha1).

Because the overlaid image data is interspersed there is a single buffer pointer and stride
(base and offset).

voOverlayAPI(int sLine, int sPixel, int width, int height,

 UInt alpha0, UInt alpha1, int offset, Pointer base)

{

 tmLibdevErr_t err;

 memset((char *) (&voOverlaySup), 0, sizeof (voOverlaySetup_t));

 voOverlaySup.overlayEnable = True;

 voOverlaySup.overlayStartY = sLine;

 voOverlaySup.overlayStartX = sPixel;

 voOverlaySup.overlayWidth = width;

 voOverlaySup.overlayHeight = height;

 voOverlaySup.alpha0 = alpha0;

 voOverlaySup.alpha1 = alpha1;

 voOverlaySup.overlayStride = offset;

 voOverlaySup.overlayBase = base;

 if (err = voOverlaySetup(voInst, &voOverlaySup))

 my_abort("voOverlaySetup", err);

}

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-36

Inputting an Image for Display on VO (readYUVfiles)
1-36 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

There are no VO alignment constraints in image mode.

 vivoAlloc calls readYUVfiles to read a 720 x 480 image in ÒtmlogoÓ into bkbuf.

The size of the UV buffer is half that of the Y buffer after conversion.

The Y data is in Òtmlogo.yÓ The Þle is opened in binary mode.

The data is read into the buffer. For VO lines do not need to be aligned on cache line
boundaries.

The data is ßushed back to the cache.

 err = readYUVFiles("tmlogo", 720, 480,

 bkBuf[0].Y, bkBuf[0].U, bkBuf[0].V);

readYUVFiles(char *baseName, int hsize, int vsize,

 UInt32 ybuf, UInt32 ubuf, UInt32 vbuf)

{

 int count, ySize, uvSize, row;

 char fn[80];

 unsigned char *pb;

 FILE *fp;

 ySize = hsize * vsize;

 uvSize = (ySize >> 1);

sprintf(fn, "%s.y", baseName);

 fp = fopen(fn, "rb");

 if (!fp)

 return (4);

count = fread((char *) ybuf, 1, ySize, fp);

 fclose(fp);

_cache_copyback(ybuf, ySize);

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-37

The U data is read from Òtmlogo.uÓ in a similar fashion.
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-37

There are half as many lines on the Þle as for the Y data. This is because the data is in
4:2:0 format.

There are half as many pixels per line as for the Y data also.

The data from the odd Þeld is reproduced for the even Þeld also. The pointer is
incremented to point to the next image. The data is ßushed back for the cache.

The code for reading the V data is the same as for the U data. The function returns zero to
indicate successful completion.

ICP Setup

A color conversion Þlter is used to convert the captured image to overlay format. The input
image is in CIF with the strides corresponding. The output stride is double the input stride
because of 2x upscaling.

ICP setup requires opening an ICP instance (icpOpen) and associating an interrupt with it
(icpInstanceSetup).

 sprintf(fn, "%s.u", baseName);

 fp = fopen(fn, "rb");

 if (!fp)

 return (4);

 pb = (unsigned char *) ubuf;

 count = 0;

for (row = 0; row < (vsize >> 1); row++) {

 count += fread(pb, 1, (hsize >> 1), fp);

 memcpy(pb + (hsize >> 1), pb, (hsize >> 1));

 pb += hsize;

 }

 _cache_copyback(ubuf, uvSize);

 fclose(fp);

 return (0);

}

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-38

1-38 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

The stride for Y is twice that for U and V since the image is in 4:2:2 format. The output
stride is double that of the input since we are upscaling horizontally from 352 to 704.

The filterBypass Þeld can be icpFILTER or icpBYPASS. Bypass mode corresponds to
simply picking the nearest pixel in the input for the output.

The output is interspersed and the input is planar. The byte ordering is little endian on a
Windows host, otherwise it is big endian. Output is to the SDRAM.

static void

SetupICP()

{

 tmLibdevErr_t err;

 if (err = icpOpen(&icpInst))

 my_abort("icpOpen", err);

 memset((char *) &icpInstSup, 0, sizeof (icpInstanceSetup_t));

 icpInstSup.interruptPriority = intPRIO_4;

 icpInstSup.isr = NULL;

 if (err = icpInstanceSetup(icpInst, &icpInstSup))

 my_abort("icpInstanceSetup", err);

memset((char *) &icpImage, 0, sizeof (icpImageColorConversion_t));

 icpImage.yInputStride = cifStride;

 icpImage.uvInputStride = (cifStride >> 1);

 icpImage.inputHeight = cifHeight;

 icpImage.inputWidth = cifWidth;

 icpImage.outputStride = cifWidth<<1;

 icpImage.outputHeight = cifHeight;

 icpImage.outputWidth = cifWidth;

icpImage.filterBypass = icpFILTER;

icpImage.outputPixelOffset = 0;

 icpImage.inFormat = vdfYUV422Planar;

 icpImage.outputDestination = icpSDRAM;

#ifdef __TCS_Win95__

 icpImage.littleEndian = True;

#else

 icpImage.littleEndian = False;

#endif

 icpImage.outFormat = vdfYUV422Sequence;

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-39

Buffer Processing for Full Resolution and CIF
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-39

Buffer processing is performed at the main level. The mmBufUpdate routine is called to
process a captured image. the routine mmBufUpdate is used. It is called in the main level
busy wait loop. mmBufUpdate Þrst checks for a buffer ready.

The output buffer is made available for VO and the pointer is advanced to the next buffer.
it is made available for VO

Buffer Processing for Overlay (mmOvlyBufUpdate)

mmOvlyBufUpdate first checks for a buffer.

The arguments to the color conversion Þlter are the Y U and V pointers of the input buffer.

The input image in buffer mmNum+1 is in planar format.

void

mmBufUpdate()

{

 int mmtmpNum;

 mmtmpNum = (mmNum + 1) % VID_NUMBUFS;

If the buffer is ready

 if (genBuf[mmtmpNum].flag == VID_RDY_MM)

 {

 genBuf[mmNum].flag = VID_RDY_VO;

 mmNum = mmtmpNum;

 }

void

mmOvlyBufUpdate()

{

 int mmtmpNum;

 tmLibdevErr_t err;

mmtmpNum = (mmNum + 1) % VID_NUMBUFS;

 if (genBuf[mmtmpNum].flag == VID_RDY_MM) {

icpImage.yBase = (Pointer)genBuf[mmtmpNum].Y;

 icpImage.uBase = (Pointer)genBuf[mmtmpNum].U;

 icpImage.vBase = (Pointer)genBuf[mmtmpNum].V;

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-40

The output image in buffer mmNum is in interspersed format. A color conversion Þlter is
used to converts. A busy wait loop is used to check for termination.
1-40 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

The output buffer is made available for VO and the pointer is advanced to the next buffer.

VI Interrupt Service Routine (viTestISR)

The code has been edited to remove work-arounds for bugs for clarity. The function of
viTestISR is to position a captured frame in the circular queue as ready for processing
(VID_RDY_MM) as long as there is a buffer available for capture.

The VI interrupt service routine is a non interruptible handler.

We determine whether the Þeld is an even or an oddField.

Potential interrupt sources include capture complete, under run, and highway bandwidth
error. If this is a highway bandwidth error, we return without doing anything.

icpImage.outputImage = (Pointer)genBuf[mmNum].Y;

 if (err = icpColorConversion(icpInst, &icpImage))

 my_abort("icpColorConversion", err);

 while (icpCheckBUSY());

 genBuf[mmNum].flag = VID_RDY_VO;

 mmNum = mmtmpNum;

 }

}

void

viTestISR()

{

 unsigned long vi_status = MMIO(VI_STATUS);

 int oddField;

 int vitmpNum;

#pragma TCS_handler

oddField = viExtractODD(vi_status);

 if (viHBE(vi_status)) {

 viAckHBE_ACK();

 return;

 }

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-41

capField corresponds to CIF capture and overlay. If capField is non zero the even field
is eliminated, effectively dividing by two the vertical resolution. The buffer pointer is
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-41

advanced on reception of the odd Þeld as long as there is an available buffer.

The captured buffer is acknowledged terminating interrupt processing.

The rest of the routine corresponds to capField being zero. The code depends on whether
we are processing the Þrst (odd) or second (even) Þeld of a frame. The following code
corresponds to the case of an odd Þeld.

The Þeld ßag is toggled.

The if corresponds to a dropped Þeld, which is an exception. This is the case if
firstField and oddField differ. If this is so, the field is dropped, synchronizing the VI
unit and the software.

if (capField) {

 vitmpNum = (viNum + 1) % VID_NUMBUFS;

 if (oddField & (genBuf[vitmpNum].flag == VID_RDY_VI)) {

 genBuf[viNum].flag = VID_RDY_MM;

 viNum = vitmpNum;

 viYUVChangeBuffer(viInst,

 genBuf[viNum].Y,

 genBuf[viNum].U,

 genBuf[viNum].V);

 }

 viAckCAP_ACK();

 return;

 }

 if (firstField) {

 firstField = False;

 if (!oddField) {

 /* skip even field to get sync */

 firstField = True;

 } else {

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-42

The buffer pointers for the odd and even Þelds have a separation of one scan line.
1-42 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

The else case corresponds to the case of an even Þeld. The buffer pointer is advanced if
there is an available buffer.

The buffer pointers are reset to the beginning of the buffer

The Þeld ßag is toggled.

The capture is acknowledged ending interrupt processing.The video out interrupt source
routine is similar to the one explained in the ICP example.

The video out interrupt service routine is similar to the one explained in the ICP example.

 /* always start with odd field */

 viYUVChangeBuffer(viInst,

 genBuf[viNum].Y + yScanWidth,

 genBuf[viNum].U + uvScanWidth,

 genBuf[viNum].V + uvScanWidth);

 }

 }

 else {

 vitmpNum = (viNum + 1) % VID_NUMBUFS;

 if (genBuf[vitmpNum].flag == VID_RDY_VI) {

 genBuf[viNum].flag = VID_RDY_MM;

 viNum = vitmpNum;

 }

 viYUVChangeBuffer(viInst,

 genBuf[viNum].Y,

 genBuf[viNum].U,

 genBuf[viNum].V);

 firstField = 1;

 }

 viAckCAP_ACK();

}

Chapter 1: Programming TriMedia Video Applications

1

Cookbook Part 2 01_VIDEO.FM5 Page 1-43

Querying the Configuration
©1998 Philips Semiconductors 6/21/98 Vivot Demonstration Program Overview 1-43

Reportsys calls the HAL functionality procGetCapabilities to identify the processor
type. procGetCapabilities(&procCap); The following structure is returned.

The Þelds of the data structure identify the processor type (TM1000, TM1100), the
processor version (TM1000, TM1100), the revision ID, and the clock frequency in hertz.

By Trimedia API convention, there are two types that are deÞned (for the structure and for
a pointer); the version number is the Þrst word of each structure. The last three Þelds
identify the type of host and the processor conÞguration, for a multiprocessor.

This terminates the vivot example. Examples of how to use VI and VO in raw and
message-passing modes are available in the Power on Self Test (POST). The following
chapter contains more information on how to use the video units with the ICP and VGA
cards.

typedef struct

{

 tmVersion_t version; /* version of this sw module */

 procDevice_t deviceID; /* for implemented functionality */

 procRevision_t revisionID; /* for bugs, performance, etc. */

 UInt32 cpuClockFrequency; /* in Hz */

 UInt32 nodeNumber; /* node number in case of multiple

TMs */

 UInt32 numberOfNodes; /* number of TMs in system */

 tmHostType_t hostID; /* tmInvalidHost, tmNoHost,

tmTmSimHost,

 tmWin32Host, or tmMacOSHost */

} procCapabilities_t, *pprocCapabilities_t;

Chapter 1: Programming TriMedia Video Applications

Cookbook Part 2 01_VIDEO.FM5 Page 1-44
1-44 Vivot Demonstration Program Overview ©1998 Philips Semiconductors 6/21/98

Cookbook Part 2 02_ICP.FM5 Page 2-1
2: Video Apps Using the ICP API, Programming TriMedia
2

Chapter 2
©1998 Philips Semiconductors 6/21/98 2-1

Programming TriMedia Video Applications
Using the ICP TSSA API 2

Topic Page

Introduction 2-2

The exolVtransICP Example Program 2-3

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-2

Introduction
2-2 Introduction ©1998 Philips Semiconductors 6/21/98

This chapter describes how to write video applications using the ICP-based Video
Transformer. For a detailed description of this API, refer to Chapter 15-1 ÒTriMedia Image
Co-Processor (ICP) APIÓ of Reference Manual II.

The Video Transformer is designed to simplify the use of the Image Co-Processor (ICP)
peripheral. This component offers a number of advantages over the tmICP device library.
Several tasks may each open an instance of the Video Transformer and issue requests for
video Þltering; the component library will queue up the requests and issue them one by
one to the ICP. The required vertical, horizontal, and color conversion Þlter operations to
perform a transformation are automatically calculated and issued to the ICP. All buffers
required to store scaled intermediate images are created and destroyed automatically. The
component also supports antißicker Þltering for DSPCPU generated graphics and
deinterlacing for interlaced to progressive scan conversion.

The AL layer supports non-data streaming (push mode), while the OL layer supports data
streaming (pull mode).

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-3

The exolVtransICP Example Program
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-3

The exolVtransICP example demonstrates the use of the OL layer of the Video
Transformer. The example simply connects an instance of the Video Digitizer to an
instance of the Video Transformer. The digitizer captures live data using the video-in
device while the transformer scales the image, converts it from YUV to RGB, and then
displays it on the PC screen via the PCI interface. The user may specify parameters on the
console to enable antißicker Þltering and deinterlacing.

The source code for this example is contained within the examples/exolVtransICP
directory of the application tree. The example will now be described, with emphasis
placed on the Video Transformer aspects. We recommend that you Þrst read Chapter 1
ÒProgramming TriMedia Video ApplicationsÓ as it describes the use of the Video Digitizer.
Chapter 10 ÒTriMedia Video Transformer APIÓ of Reference Manual II, Part 2 provides
additional information on this example and a separate AL layer example (examples/
exalVtransICP).

Include Files

The tmAvFormats.h Þle contains the deÞnitions for the packets which are used to store
video data. The type deÞnitions and function prototypes for the Video Transformer are
deÞned in tmolVtransICP.h.

#include <tm1/tmAvFormats.h>

#include "tmos.h"

#include "tmolVtransICP.h"

#include "tmolVdigVI.h"

#include <stdio.h>

#include <tmlib/dprintf.h> /* for debugging with DP(()) */

#include "sys_conf.h"

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-4

Definitions
2-4 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

The default address of the PCI video card, the stride of the video card, and the RGB
format are deÞned. Note that these are simply the default parametersÑthe user must
specify the correct parameters via the command line.

The height, width, and stride of the captured image are deÞned using the INPUT_HEIGHT,
INPUT_WIDTH, and INPUT_STRIDE respectively. Note that the stride must be a multiple
of 64 bytes. This is a requirement of the ICP device when it is performing any vertical
Þltering (vertical scaling, deinterlace, or antißicker).

The OUTPUT_WIDTH and OUTPUT_HEIGHT specify the size of the image which will be
displayed on the PC screen. The OUTPUT_STRIDE will be equal to the stride of the PCI
video card.

#define VIDEO_ADDR 0xe0000000 /* Default Start address of the screen */
#define VIDEO_STRIDE 2048 /* For 24 bit video it is 3x screen width */
#define VIDEO_MODE 3 /* RGB15+Alpha */

/*
 * video in image format
 */
#define INPUT_HEIGHT 480
#define INPUT_WIDTH 720
#define INPUT_STRIDE 768

/*
 * Video out image format
 */
#define OUTPUT_HEIGHT 360
#define OUTPUT_WIDTH 540
#define OUTPUT_STRIDE VIDEO_STRIDE

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-5

Static Variables
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-5

The __argc and __argv variables are used to pass command line arguments to the
application. These arguments will consist of the PCI video card address, the display stride,
and the display RGB format.

The video standard is stored in the vidStd variable, which is NTSC by default. This may
be changed to vasPAL for PAL cameras.

The vidAdaptor variable stores the video adaptor type and may be either vaaCVBS or
vaaSvideo.

Finally, framesPerSecond speciÞes the capture rate used by the video digitizer.

Specifying the Packet Format

This structure deÞnes the format of the packets used to transfer data between the Video
Digitizer and Video Transformer. The hash and referenceCount Þelds are used
exclusively by the format manager, and must be set to zero.

/*
 * These command line args come from the modified sysinit.c
 * which allows the task to read the required parameters.
 */
extern int __argc;
extern char **__argv;

/*
 * ------ locals ------
 */
static tmVideoAnalogStandard_t vidStd = vasNTSC;
static tmVideoAnalogAdapter_t vidAdapter = vaaCVBS;
static int framesPerSecond = 30;

 static tmVideoFormat_t digitizerFormat = {
 sizeof(tmVideoFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV422Planar, /* dataSubtype */
 vdfInterlaced, /* description */
 INPUT_WIDTH, /* imageWidth; */
 INPUT_HEIGHT, /* imageHeight; */
 INPUT_STRIDE, /* imageStride; */
};

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-6

The dataClass and dataSubtype must be set to avdcVideo and vtfYUV respectively.
The dataSubtype may be set to either vdfYUV422Planer or vdfYUV420Planer. For
2-6 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

this example, YUV422 video is used.

The description Þeld speciÞes that the data stored in the packet buffers is interlaced.
The even and odd Þelds are stored in the same buffer using an interleaved format.

Finally, the captured frame height, width, and stride are deÞned.

Specifying the Output Format

The outputFormat structure speciÞes the format of the Video Transformer output. The
component is capable of writing its output to either SDRAM or PCI. For output to
SDRAM, the processed data will be placed in a packet. For output to PCI, the data will be
stored in the PCI video card memory and no packet will be used. In either case, the output
format must be speciÞed using a tmVideoFormat_t structure.

The dataClass Þeld must always be set to avdcVideo. The dataType Þeld may be
either vtfYUV or vtfRGB when the output is to SDRAM. When writing to PCI, the output
must be vtfRGB.

The dataSubtype depends upon the dataType Þeld. For YUV data it can be
vdfYUV422Planer, vdfYUV420Planer, vdfYUV422Sequence, or
vdfYUV422SequenceAlpha. For RGB, it can be vdfRGB8A_233, vdfRGB8R_332,
vdfRGB15Alpha, vdfRGB16, vdfRGB24, or vdfRGB24Alpha. As the Video Transformer
will be writing to the PC screen, the output must be RGB. The subtype will be speciÞed by
the user via the command arguments.

The description Þeld is set to zero as the component does not use this value on its
output.

Finally, the output height, width, and stride are speciÞed.

static tmVideoFormat_t outputFormat = {

 sizeof(tmVideoFormat_t), /* size */

 0, /* hash */

 0, /* referenceCount */

 avdcVideo, /* dataClass */

 vtfRGB, /* dataType */

 vdfRGB15Alpha, /* dataSubtype */

 0, /* description */

 OUTPUT_WIDTH, /* imageWidth; */

 OUTPUT_HEIGHT, /* imageHeight; */

 OUTPUT_STRIDE, /* imageStride; */

};

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-7

Packet Defines and Function Prototypes
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-7

The example uses four packets (NUMPACKETS) to exchange video frames between the
digitizer and transformer. Each packet contains three buffers (NUMBUFFERS) which store
the Y, U, and V data.

The get_parameters() function is used to obtain the user-speciÞed command line
arguments. This function will not be described.

The tmalVtransICPProgress() and tmalVtransICPCompletion() callback
functions will be used by the Video Transformer to report information to the application.
These will be described later.

#define NUMPACKETS 4

#define NUMBUFFERS 3 /* Y, U, V */

/*

 * ------ function prototypes ------

 */

extern void

get_parameters(Int argc, Char * argv[],

 Int * disp_addr, Int * stride, Int * mode);

extern tmLibappErr_t

tmalVtransICPProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args);

extern tmLibappErr_t

tmalVtransICPCompletion(Int instId, UInt32 flags,

 ptsaCompletionArgs_t args);

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-8

Variables
2-8 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

The rval variable is used to store the values returned by calls to the Video Digitizer,
Video Transformer, and tsaDefaults library. Error values are deÞned in tmLibappErr.h,
with a return value of TMLIBAPP_OK indicating no error.

The digitizerInstance variable is used to store the instance id of the Video Digitizer,
while digitizerInstSetup is a pointer to the setup structure which will be used to
conÞgure the digitizer.

The vtrans0Instance variable will be used to store the instance id of the Video
Transformer. The component enables up to four instances to be open. The
vtransInstSetup variable points to the componentÕs setup structure and will be used to
conÞgure the instance. The vtransCommand variable is a pointer to a control descriptor.
The Video Transformer allows the application to send conÞguration commands to it while
it is streaming data. The control descriptor is used to specify the message interface
between the application and the instance of the transformer. The csetup structure
speciÞes parameters that are used when the control descriptor is created.

void tmosMain()

{

 tmLibappErr_t rval;

 Int digitizerInstance;

 ptmolVdigVIInstanceSetup_t digitizerInstSetup;

 Int vtrans0Instance;

 ptmolVtransICPInstanceSetup_t vtransInstSetup;

 ptsaControlDescriptor_t vtransCommand;

 tsaControlDescriptorSetup_t csetup;

 ptsaInOutDescriptor_t iodesc;

 ptsaInOutDescriptorSetup_t ioSetup;

 ptmolVdigVICapabilities_t digitizerCap;

 ptmolVtransICPCapabilities_t vtransCap;

 char ins[80];

 Int pciAddress;

 Int pciStride;

 Int OutputFormat;

 Int videoMode;

 tsaControlArgs_t controlArgs;

 Bool quitDetected = False;

 Bool antiflickerEnable = False;

 Bool deinterlaceEnable = False;

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-9

The connection between the Video Digitizer and Video Transformer is speciÞed using a
tsaInOutDescriptor. This describes the connection and the packets that will be used to
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-9

transfer data.

The capabilities of the two components will be pointed to using digitizerCap and
vtransCap. These will be used by the format manager to ensure that the two components
can communicate with each other.

The ins[80] char array is used to store character commands entered by the user.

The pciAddress, pciStride, OutputFormat, and videoMode are used to store
information concerning the PCI video card. These will be initialized via the command
arguments.

The controlArgs structure is used to pass control information from the application to
the component instance. This will be described in more detail in the section ÒUser InputÓ
beginning on page 2-17.

Finally, the quitDetected, antiflickerEnable, deinterlaceEnable are boolean
ßags. The quitDetected ßag is used to indicate that the user has typed an exit
command. The antiflickerEnable and deinterlaceEnable are ßags that indicate
whether the antißicker Þlter and deinterlace Þlter are enabled.

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-10

Initialization
2-10 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

The DPmode() and DPsize() functions are used to specify the debug print buffer. This
buffer faciliates debugging and stores information that is written to it by either the
application or the component instances.

The tmosInit() function will initialize the multi-tasking operating system. In this
example, the application executes in the default task, while a separate task will be created
automatically for the Video Transformer instance. The Video Digitizer is an interrupt-
based component and, therefore, does not have a separate task.

The command line parameters are read from arguments passed down to the example
program. The user must specify the PCI video address, the PCI stride, and the PCI screen
mode. The user will enter the screen mode as a value from one to four and this is re-
mapped to the corresponding tmAvFormat_t type.

 DPmode(DP_PERSIST);

 DPsize(1024*1024);

 tmosInit();

 printf("TriMedia OS Video Transformer Demo. v1.0\n");

 printf("\nThis program uses the video digitizer and video

transformer\n");

 printf("to pass video in to the PCI video.\n");

 printf("The program is compiled to support NTSC and CVBS.\n");

 printf("Recompile to change this.\n\n");

 /*

 * get parameters from the command line

 */

 get_parameters(__argc, __argv, &pciAddress, &pciStride, &videoMode);

 if (videoMode == 1)

 outputFormat.dataSubtype = vdfRGB24Alpha;

 else if (videoMode == 2)

 outputFormat.dataSubtype = vdfRGB24;

 else if (videoMode == 3)

 outputFormat.dataSubtype = vdfRGB15Alpha;

 else if (videoMode == 4)

 outputFormat.dataSubtype = vdfRGB16;

 outputFormat.imageStride = pciStride;

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-11

Get Capabilities
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-11

The capabilities of the two components must be obtained before the tsaInOutDescriptor
is created. This information will be used to ensure that they are compatible.

 printf("Getting VdigVI Capabilities\n");

 if(rval = tmolVdigVIGetCapabilities(&digitizerCap)) {

 printf("Error in tmolVdigVIGetCapabilities: 0x%x\n",rval);

 tmosExit(-1);

 }

 printf("Getting VtransICP Capabilities\n");

 if(rval = tmolVtransICPGetCapabilities(&vtransCap)) {

 printf("Error in tmolVtransICPGetCapabilities: 0x%x\n",rval);

 tmosExit(-1);

 }

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-12

Make the Connection Between the Two Components
2-12 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

A tsaInOutDescriptor setup structure is created and initialized. This is similar to the
connection setup described in the section ÒMake the Connection Between the Two
ComponentsÒ described in Chapter1. The difference being that the Video Transformer
capabilities are passed as the receiverCap. Note that the packets that will be placed in
the empty queue will have an id beginning with 0x100; i.e. the four packets will have the
following idÕs: 0x100, 0x101, 0x102, and 0x103.

 ioSetup = (ptsaInOutDescriptorSetup_t)

 malloc(sizeof(tsaInOutDescriptorSetup_t)

 +(NUMBUFFERS-1)*sizeof(UInt32));

 ioSetup->format = (ptmAvFormat_t)(&digitizerFormat);

 ioSetup->flags = tsaIODescSetupFlagCacheMalloc;

 ioSetup->fullQName = "VDF0";

 ioSetup->emptyQName = "VDE0";

 ioSetup->queueFlags = tmosQueueFlagsStandard;

 ioSetup->senderCap = digitizerCap->defaultCapabilities;

 ioSetup->receiverCap = vtransCap->defaultCapabilities;

 ioSetup->senderIndex = VDIGVI_MAIN_OUTPUT;

 ioSetup->receiverIndex = VTRANSICP_MAIN_INPUT;

 ioSetup->packetBase = 0x100;

 ioSetup->numberOfPackets = NUMPACKETS;

 ioSetup->numberOfBuffers = NUMBUFFERS;

 ioSetup->bufSize[0] = INPUT_HEIGHT * INPUT_STRIDE; /* Y */

 ioSetup->bufSize[1] = INPUT_HEIGHT * INPUT_STRIDE / 2; /* U */

 ioSetup->bufSize[2] = INPUT_HEIGHT * INPUT_STRIDE / 2; /* V */

 /*

 * Create InOutDescriptor

 */

 printf("Creating InOutDescriptor\n");

 if(rval = tsaDefaultInOutDescriptorCreate(&iodesc, ioSetup)) {

 printf("Error in tsaDefaultInOutDescriptorCreate: 0x%x\n",rval);

 tmosExit(-1);

 }

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-13

Create the Video Transformer Control Descriptor
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-13

The application may send conÞguration commands to the Video Transformer using a
control descriptor. A setup structure must Þrst be initialized before the descriptor is
created. The commandQName and responseQName Þelds specify a four letter name which
will be associated with the command and response queues; this may be used for
debugging purposes. The queueFlags specify information used for message queue
creation. The tmolQueueFlagsStandard ßags specify that the queues will be local to
the processor, and there is no limit to the number of messages which can be placed on
them. The flags Þeld is currently unused and should be set to zero.

The tsaDefaultControlDescriptorCreate() function will allocate memory for the
control descriptor, initialize the relevant values, and create the message queues.

Setup the Video Digitizer

An instance of the Video Digitizer is Þrst opened. It is important that the application check
the return value of this function. A typical error would be

 csetup.commandQName = "vt0C";

 csetup.responseQName = "vt0R";

 csetup.queueFlags = tmosQueueFlagsStandard;

 csetup.flags = 0;

 if(rval = tsaDefaultControlDescriptorCreate(&vtransCommand, &csetup)) {

 tmAssert((rval == TMLIBAPP_OK), rval);

 }

 /*

 * setup video input digitizer

 */

 rval = tmolVdigVIOpen(&digitizerInstance);

 tmAssert((rval == TMLIBAPP_OK), rval);

 rval = tmolVdigVIGetInstanceSetup(digitizerInstance,

 &digitizerInstSetup);

 tmAssert((rval == TMLIBAPP_OK), rval);

 digitizerInstSetup->instSetup->outputDescriptors[VDIGVI_MAIN_OUTPUT] =

 iodesc;

 rval = tmolVdigVIInstanceSetup(digitizerInstance, digitizerInstSetup);

 tmAssert((rval == TMLIBAPP_OK), rval);

 printf("digitizer initialized.\n");

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-14

TMLIBAPP_ERR_MODULE_IN_USE, which indicates that another task has already opened
an instance. The digitizer supports only a single instance.
2-14 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

The tmolVdigVIGetInstanceSetup() function should be called to obtain a pointer to
the instance setup structure. This will be used to conÞgure the instance. The output
descriptor is set to point to the InOutDescriptor created previously.

Finally, the tmolVdigVIInstanceSetup() function is called to conÞgure the instance.

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-15

Setup the Video Transformer
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-15

An instance of the Video Transformer is opened. Up to four instances may be open at any
instant of time. The instance setup structure is obtained by calling
tmolVtransICPGetInstanceSetup() and this is used to specify the initial
conÞguration. The main image input descriptor is set to the InOutDescriptor that was
created before. In the example, the overlay input is not used and, therefore, no setup
information is speciÞed. The controlDescriptor is initialized with the control
descriptor.

 rval = tmolVtransICPOpen(&vtrans0Instance);

 tmAssert((rval == TMLIBAPP_OK), rval);

 rval = tmolVtransICPGetInstanceSetup(vtrans0Instance,

 &vtransInstSetup);

 tmAssert((rval == TMLIBAPP_OK), rval);

 /*

 * Queues have to be initialized. We are using only the main input, but

 * no overlay inputs. As we are using the PCI for output we have no

 * output queue/pin. By default, unused pins will are set to Null.

 */

 vtransInstSetup->defaultSetup->inputDescriptors[VTRANSICP_MAIN_INPUT] =

 iodesc;

 vtransInstSetup->defaultSetup->controlDescriptor = vtransCommand;

 vtransInstSetup->defaultSetup->progressFunc = tmalVtransICPProgress;

 vtransInstSetup->defaultSetup->completionFunc =

 tmalVtransICPCompletion;

 /*

 * setup the PCI output image parameters

 */

 vtransInstSetup->outputFormat = outputFormat;

 vtransInstSetup->outputDest = tmalVtransICPPCI;

 vtransInstSetup->outputPCIAddr = (UInt8 *) pciAddress;

 vtransInstSetup->deinterlaceEnable = False;

 vtransInstSetup->antiflickerEnable = False;

 rval = tmolVtransICPInstanceSetup(vtrans0Instance, vtransInstSetup);

 tmAssert((rval == TMLIBAPP_OK), rval);

 printf("transformer instance 0 initialized.\n");

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-16

The progressFunc and completionFunc callback functions are set to point to
functions contained within the example program. The Video Transformer will call the
2-16 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

applicationÕs progress function when an image transformation request has been placed on
the ICP queue. The completion function will be called once the transformation request has
been processed. These callback functions are optional.

The output parameters specify the output format and the destination of the video
transformation. In this example, the output is to PCI, so it is necessary for the application
to specify the outputDestination as tmalVtransICPPCI, and the outputPCIAddr
to the address of the PCI video memory. It is also necessary to initialize the output format
as this speciÞes the image output parameters.

If the output was to SDRAM, then an InOutDescriptor must be created which connects the
output of the Video Transformer to the input of another component. The
outputDestination should be set to tmalVtransICPSDRAM, with the
outputPCIAddr and outputFormat set to Null. In this mode, the instance will obtain
the output format from the output descriptor.

The deinterlaceEnable and antiflickerEnable ßags are set to disabled for the
initial conÞguration.

Finally, the tmolVtransICPInstanceSetup() function is called to transfer the setup
parameters to the instance.

Starting the Component Instances

Data streaming is initiated by calling the start function for the two instances. These
functions are tmolVdigVIStart() and tmolVtransICPStart() respectively. The
Video Digitizer executes entirely in an interrupt service routine, while the Video
Transformer instance executes within its own task.

 DP(("\nStarting Video transformer\n"));

 rval = tmolVtransICPStart(vtrans0Instance);

 tmAssert((rval == TMLIBAPP_OK), rval);

 printf("transformer started.\n");

 DP(("\nStarting Video Digitizer\n"));

 rval = tmolVdigVIStart(digitizerInstance);

 tmAssert((rval == TMLIBAPP_OK), rval);

 printf("digitizer started.\n");

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-17

User Input
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-17

The user may enter commands via the console to control the operation of the Video
Transformer. The ÔAÕ key will toggle the antißicker Þlter, the ÔDÕ key will toggle the
deinterlace Þlter, and the ÔIÕ key will disable the antißicker and deinterlace Þlters if they
are enabled. The ÔQÕ key will cause the program to exit.

The input parsing uses a simple switch statement to interpret the commands.

 printf("\nVideo transformer demo started.\n");

 printf("Video input is being echoed to video output.\n");

 printf("\nThe following commands are available:\n");

 printf("\tA - toggle antiflicker filter\n");

 printf("\tD - toggle deinterlace filter\n");

 printf("\tI - disable both antiflicker and deinterlace filters\n");

 printf("\tQ - quit\n");

 printf("Press return after entering the required option \n");

 while (!quitDetected) {

 gets(ins);

 switch(ins[0]) {

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-18
2-18 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

When the antißicker key is entered, a check is made to see if the deinterlace Þlter is
enabled. If it is, the application will disable it. Note that this is not a restriction of the
Video Transformer component, which is able to do both deinterlacing and antißicker
ÞlteringÑit is simply made to be mutually exclusive in the application. Deinterlacing will
be disabled by setting up a controlArgs structure with the relevant command and
command parameter. The command is VTRANS_CONFIG_DEINTERLACE_ENABLE in this
case, and the parameter will be the deinterlaceEnable ßag, which was set to false. The
timeout Þeld speciÞes the time the conÞguration function should wait before returning a
time-out error. In this case, the value of zero indicates that the function should wait until it
receives a response. It then calls the tmolVtransICPInstanceConfig() function to
perform the conÞguration.

 case ÕaÕ:

 case ÕAÕ:

 /*

 * disable the deinterlace if it is enabled

 */

 if (deinterlaceEnable) {

 deinterlaceEnable = False;

 controlArgs.command = VTRANS_CONFIG_DEINTERLACE_ENABLE;

 controlArgs.parameter = (Pointer) &deinterlaceEnable;

 controlArgs.timeout = 0;

 rval = tmolVtransICPInstanceConfig(vtrans0Instance,

 tsaControlWait,

 &controlArgs);

 tmAssert(rval == TMLIBAPP_OK, rval);

 printf("Disabled Deinterlace filter\n");

 }

 antiflickerEnable ^= 1;

 controlArgs.command = VTRANS_CONFIG_ANTIFLICKER_ENABLE;

 controlArgs.parameter = (Pointer) &antiflickerEnable;

 controlArgs.timeout = 0;

 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,

 &controlArgs);

 tmAssert(rval == TMLIBAPP_OK, rval);

 if (antiflickerEnable) {

 printf("Enabled antiflicker filter\n");

 }

 else {

 printf("Disabled antiflicker filter\n");

 }

 break;

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-19

The antiflickerEnable ßag is toggled, and the control arguments structure initialized.
The command Þeld is set to VTRANS_CONFIG_ANTIFLICKER_ENABLE and a call is made
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-19

to tmolVtransICPInstanceConfig().

The deinterlace toggle operates in a similarly to the antißicker toggle. If the antißicker
Þlter is enabled, it is switched off using the tmolVtransICPInstanceConfig()
function.

The deinterlace enable ßag is then toggled and the VTRANS_CONFIG_DEINTERLACE_
ENABLE command is sent to the transformer instance.

 case ÕdÕ:

 case ÕDÕ:

 /*

 * Disable antiflicker if it is enabled

 */

 if (antiflickerEnable) {

 antiflickerEnable = False;

 controlArgs.command = VTRANS_CONFIG_ANTIFLICKER_ENABLE;

 controlArgs.parameter = (Pointer) &antiflickerEnable;

 controlArgs.timeout = 0;

 rval = tmolVtransICPInstanceConfig(vtrans0Instance,

 tsaControlWait,

 &controlArgs);

 tmAssert(rval == TMLIBAPP_OK, rval);

 printf("Disabled antiflicker filter\n");

 }

 deinterlaceEnable ^= 1;

 controlArgs.command = VTRANS_CONFIG_DEINTERLACE_ENABLE;

 controlArgs.parameter = (Pointer) &deinterlaceEnable;

 controlArgs.timeout = 0;

 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,

 &controlArgs);

 tmAssert(rval == TMLIBAPP_OK, rval);

 if (deinterlaceEnable) {

 printf("Enabled Deinterlace filter\n");

 }

 else {

 printf("Disabled Deinterlace filter\n");

 }

 break;

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-20
2-20 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

The ÔinterlaceÕ command simply switches off both the antiflicker and deinterlace filters
using two calls to the tmolVtransICPInstanceConfig() function. In this mode, the
Video Transformer instance will only perform scaling and color conversion on the
captured video frames.

Once the user enters the quit command from the console, the quitDetected ßag will be
set, which causes the main while loop to be exited.

 case ÕiÕ:

 case ÕIÕ:

 /*

 * Disable antiflicker and deinterlace (ie. display interlaced)

 */

 antiflickerEnable = False;

 controlArgs.command = VTRANS_CONFIG_ANTIFLICKER_ENABLE;

 controlArgs.parameter = (Pointer) &antiflickerEnable;

 controlArgs.timeout = 0;

 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,

 &controlArgs);

 tmAssert(rval == TMLIBAPP_OK, rval);

 printf("Disabled antiflicker filter\n");

 deinterlaceEnable = False;

 controlArgs.command = VTRANS_CONFIG_DEINTERLACE_ENABLE;

 controlArgs.parameter = (Pointer) &deinterlaceEnable;

 controlArgs.timeout = 0;

 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,

 &controlArgs);

 tmAssert(rval == TMLIBAPP_OK, rval);

 printf("Disabled Deinterlace filter\n");

 break;

 case ÕqÕ:

 case ÕQÕ:

 DP(("User requested to quit the example\n"));

 quitDetected = True;

 break;

 default:

 break;

 }

 }

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

2

Cookbook Part 2 02_ICP.FM5 Page 2-21

Stop and Shutdown
©1998 Philips Semiconductors 6/21/98 The exolVtransICP Example Program 2-21

Data streaming is terminated by calling the stop functions of each component. When
tmolVtransICPStop() is called, the Video Transformer instance will return any packets
it may have in its possession, it then calls the completion function, and suspends its task.
When tmolVdigVIStop() is called, it will stop video capture and return the packet that
it had in its possession.

 printf("\nStopping video transformer instance 0\n");

 DP(("\nStopping video transformer instance 0\n"));

 rval = tmolVtransICPStop(vtrans0Instance);

 tmAssert(rval == TMLIBAPP_OK, rval);

 printf("\nStopping video digitiser\n");

 DP(("\nStopping video digitiser\n"));

 rval = tmolVdigVIStop(digitizerInstance);

 tmAssert(rval == TMLIBAPP_OK, rval);

 tmolVdigVIClose(digitizerInstance);

 rval = tmolVtransICPClose(vtrans0Instance);

 tmAssert(rval == TMLIBAPP_OK, rval);

 /*

 * Check we have the correct number of packets left in the queues

 */

 rval = tsaDefaultCheckQueues(iodesc);

 printf("tsadefaultCheckQueues() returned 0x%x\n", rval);

 /*

 * Destroy InOutDescriptors and command queues

 */

 printf("Destroying InOutDescriptors\n");

 if(rval = tsaDefaultInOutDescriptorDestroy(iodesc)) {

 printf("Error in tsaDefaultInOutDescriptorDestroy: 0x%x\n",rval);

 tmosExit(-1);

 }

 rval = tsaDefaultControlDescriptorDestroy(vtransCommand);

 tmAssert(rval == 0, rval);

 DP(("Demo Complete.\n"));

 printf("Demo Complete. \n");

 tmosExit(0);

}

Chapter 2: Programming TriMedia Video Applications Using the ICP TSSA API

Cookbook Part 2 02_ICP.FM5 Page 2-22

The two instances are then closed by calling tmolVdigVIClose() and
tmolVtransICPClose() respectively. Closing the Video Transformer will destroy the
2-22 The exolVtransICP Example Program ©1998 Philips Semiconductors 6/21/98

transformer instances task.

We recommend that the application call the tsaDefaultCheckQueues() function to
ensure that the correct number of packets has been left in the InOutDescriptor.

Calling tsaDefaultInOutDescriptorDestroy() will remove all packets from the
descriptor queues, free up their data buffers, and free the space allocated for the descriptor.

Finally, the Video Transformer control descriptor should be destroyed by calling the
tsaDefaultControlDescriptorDestory() function.

Application Progress Function

The application may supply a progress function to the Video Transformer instance. This
function will be called by the Video Transformer once a packet has been placed on the ICP
request queue. The example progress function simply prints a message to the DP debug
buffer.

Application Completion Function

The application may supply a completion function to the transformer instance. This
function will be called once a frame has been processed by the ICP. It will also be called
after the instance has been asked to stop. The example completion function prints a
message to the DP debug buffer.

tmLibappErr_t

tmalVtransICPProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args)

{

 DP(("tmalVtransICPProgress[%x]: inside callback!\n", instId));

 return (TMLIBAPP_OK);

}

tmLibappErr_t

tmalVtransICPCompletion(Int instId, UInt32 flags,

 ptsaCompletionArgs_t args)

{

 DP(("tmalVtransICPCompletion[%x]: inside callback!\n", instId));

 return (TMLIBAPP_OK);

}

Cookbook Part 2 03_AUDIO.FM5 Page 3-1
3: Audio Apps, Programming TriMedia
3

Chapter 3
©1998 Philips Semiconductors 6/21/98 3-1

Programming TriMedia Audio Applications 3

Note
Whenever you see this icon in the text, you can click it to view an
animation that helps explain the accompanying text. These animations
require QuickTime to play.

Topic Page

Introduction 3-2

TSSA Audio Modules 3-3

Audio Device Library 3-16

Board Support Package 3-27

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-2

Introduction
3-2 Introduction ©1998 Philips Semiconductors 6/21/98

This chapter describes how to write an audio application using the range of programming
interfaces available on TriMedia. For a detailed description of these APIs, refer to
Reference Manuals I and II of the Philips TriMedia SDE, especially the sections on the
audio renderer, audio digitizer, and the audio device library.

This chapter begins by describing a high level interface to the audio system. The audio
renderer and the audio digitizer modules provide a high level interface to TriMedia audio
services. These are fully compatible with other useful libraries, such as the Dolby AC3 and
ProLogic decoders, and the audio mixers.

Next the reader is introduced to the audio device libraries that underlie the renderer and
digitizer. Finally, the foundation provided by the board support library is brießy discussed.

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-3

TSSA Audio Modules
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-3

TriMedia software modules are constructed to a speciÞcation known as the TriMedia
Streaming Software Architecture (TSSA). This software architecture is documented in
Reference Manual I, Part 4. While the present chapter is easily intelligible without a
background in TSSA, users will Þnd it helpful to read about TSSA before starting serious
programming.

The audio system on TriMedia is built in layers. Since the highest layer has the most
functionality, this discussion will start at the top and work its way down.

A number of audio modules are available for use on TriMedia. These include the audio
renderer and audio digitizer, which are used for audio playback and capture, respectively.
A Dolby AC3 decoder and a Dolby ProLogic decoder are available. An example of a
simple audio mixer is provided with source code. And the DTV demonstration application
includes an audio system that connects all of these together. In addition, MPEG audio
decoders and G.723 audio codecs are available as portions of the DVD player and the
Video Phone packages, respectively. The DTV demonstration is constructed using TSSA-
compatible libraries. The DVD and Video Phone libraries are not yet TSSA-compliant.

The Audio Renderer
This chapter is an overview of the audio renderer. A detailed reference to the API of the
audio renderer is provided in Chapter 6, ÒTriMedia Audio Renderer API,Ó of Reference
Manual II Part 2.

The audio renderer is designed to make it easy to play audio on TriMedia. The audio
renderer installs an interrupt service routine and uses it to play buffers of audio. The audio
renderer is a high level interface that is uniform across different hardware implementations.

The audio renderer can, in fact, be run in two different modes. These are sometimes
known as push mode and pull mode. In the push mode, no operating system dependencies
exist, and a simple function is used to copy audio to the output. This is the push, from
application to renderer. While this model is easy to understand, it does not lend itself to
expansion. In particular, many details of operation are left to the application. A higher
level interface standardizes many of the details of data exchange in order to eliminate the
duplication of code. A demonstration of the push model is available in the exalArendAO
demonstration program.

When the pull model is used to render audio, the producer of audio places buffers full of
data into a queue. Empty packets are available in another queue. Since the application is
driven by the need for empty packets, we say that it ÒpullsÓ packets from the empty queue.
Several demonstration programs illustrate the use of the audio renderer in this mode. We
will Þrst discuss the one known as exolArendAO.

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-4

It is easiest to demonstrate the audio renderer by connecting it to a Þle reader. This lets
you play audio Þles. An illustration of the code used for this task is shown in its entirety
3-4 TSSA Audio Modules ©1998 Philips Semiconductors 6/21/98

below. Directly following, each part of code is examined and discussed.

void ARendFilePlay(char *fileName){
 tmLibappErr_t err;
 Int readerInstance, arendInstance;
 Char ins[80];
 ptmolArendAOInstanceSetup_t arSetup;
 ptmolFreadInstanceSetup_t frSetup;
 ptmAudioFormat_t paf;
 tmAudioFormat_t audioFormat;
 ptmolFreadCapabilities_t frCaps;
 ptmolArendAOCapabilities_t arCaps;
 tsaInOutDescriptorSetup_t iodSetup;
 ptsaInOutDescriptor_t iod;

 /* find out what formats are supported */
 tmolFreadGetCapabilities(&frCaps);
 tmolArendAOGetCapabilities(&arCaps);
 if (!(paf->dataSubtype & apfStereo16)) {
 printf("Stereo audio playback not supported on this board.\n");
 return;
 }

 /* Open the components involved and get their setup structures */
 err = tmolFreadOpen(&readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadGetInstanceSetup(readerInstance, &frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 err = tmolArendAOOpen(&arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOGetInstanceSetup(arendInstance, &arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 /* describe the connection between the two components */
 /* assemble audio format */
 audioFormat.size = sizeof(tmAudioFormat_t);
 audioFormat.hash = audioFormat.referenceCount = 0;
 audioFormat.dataClass = avdcAudio;
 audioFormat.dataType = atfLinearPCM;
 audioFormat.dataSubtype = apfStereo16;
 audioFormat.description = 16;
 audioFormat.sampleRate = sRate;
 /* create an InOutDescriptor */
 iodSetup.format = (ptmAvFormat_t)&audioFormat;
 iodSetup.flags = tsaIODescSetupFlagCacheMalloc;
 iodSetup.fullQName = "full";
 iodSetup.emptyQName = "mpty";
 iodSetup.queueFlags = tmosQueueFlagsStandard;
 iodSetup.senderCap = frCaps->defaultCapabilities;
 iodSetup.receiverCap = arCaps->defaultCapabilities;
 iodSetup.senderIndex = 0;

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-5

 iodSetup.receiverIndex = 0;
 iodSetup.packetBase = 0;
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-5

 iodSetup.numberOfPackets = NUMBER_OF_PACKETS;
 iodSetup.numberOfBuffers = 1;
 iodSetup.bufSize[0] = 2 * sizeof(Int16) * BUFSIZE;
 err = tsaDefaultInOutDescriptorCreate(&iod, &iodSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 /* setup file reader */
 frSetup->defaultSetup->outputDescriptors[0] = iod;
 frSetup->defaultSetup->priority = READER_PRIORITY;
 frSetup->fileName = fileName;
 printf("Opening %s for playback\n", frSetup->fileName);
 err = tmolFreadInstanceSetup(readerInstance, frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 /* setup audio renderer */
 arSetup->defaultSetup->inputDescriptors[0] = iod;
 arSetup->defaultSetup->errorFunc = arend_error_func;
 arSetup->maxBufferSize = 2 * sizeof(Int16) * BUFSIZE;
 err = tmolArendAOInstanceSetup(arendInstance, arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 /* now everything is ready: Start the renderer */
 err = tmolArendAOStart(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadStart(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);

 printf("file %s playing as stereo audio. \n", frSetup->fileName);
 printf("Press return to stop\n");
 gets(ins);

 /* Stop the File everything. */
 err = tmolFreadStop(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOStop(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 printf("All stopped.\n");
 err = tsaDefaultInOutDescriptorDestroy(iod);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadClose(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOClose(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);

 return;
}

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-6

Check Capabilities:
3-6 TSSA Audio Modules ©1998 Philips Semiconductors 6/21/98

The capabilities function allows you to Þnd out what formats are supported by the system.
The capabilities of each component are required for setup. Hence these calls are made at
the start of the program. Ultimately, the board support package is responsible for setting
the capabilities of the audio system. The audio formats returned by the renderer are
retrieved through the board support package (see ÒBoard Support PackageÓ starting on
page 3-27).

Open the Components:

Each component that will be used must be opened. This creates an instance of the
component for you to use. The GetCapabilities function is called to retrieve a setup
structure that has been initialized to default values. Notice the use of tmAssert. Like the
ANSI assert(), tmAssert() will halt the program and print the Þle name and line number on
an error condition. In addition, tmAssert() prints the error code, and it prints it all both to
STDOUT and to the DP buffer. This assert mechanism is used liberally throughout TM
audio code. It is invaluable in the identiÞcation of programming errors. And when the
program is running, it is easy to turn off the tmAssert checking. Compilation with the ßag
Ò-DNO_DEBUGÓ removes all of the assertion checking. In this way, the assert checking
provides strong error checking when appropriate, and it has no run time impact when the
code is released.

 /* find out what formats are supported */
 tmolFreadGetCapabilities(&frCaps);
 tmolArendAOGetCapabilities(&arCaps);
 if (!(paf->dataSubtype & apfStereo16)) {
 printf("Stereo audio playback not supported on this board.\n");
 return;
 }

 err = tmolFreadOpen(&readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadGetInstanceSetup(readerInstance, &frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 err = tmolArendAOOpen(&arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOGetInstanceSetup(arendInstance, &arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-7

Make the Connection Between Each Pair of Components:
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-7

Each pair of TSSA components are connected by a structure called an InOutDescriptor.
The function tsaDefaultInOutDescriptorCreate() is used to create one of these connections.
The parameters that must be speciÞed are illustrated here. In this example, a valid format
structure is passed in when the connection is created. It is also possible to pass in Null.
The format can be speciÞed later using the tsaDefaultInstallFormat() command, or it can
even be determined after the receiving component has started. This might be more
convenient when using a decoder that Þnds the format in the data stream only after it has
decoded some data. In this case, the format is passed in the data packet that travels through
the queue inside of the InOutDescriptor.

The CreateInOutDescriptor function can also create the data packets that are used to
stream data between the Þle reader and the audio renderer. These are initially placed in the
empty queue. Setting the numberOfPackets Þeld to zero will bypass this step, if you have
some special reason to create your own packets. This code illustrates a fairly typical
approach to the problem.

 /* assemble audio format */
 audioFormat.size = sizeof(tmAudioFormat_t);
 audioFormat.hash = audioFormat.referenceCount = 0;
 audioFormat.dataClass = avdcAudio;
 audioFormat.dataType = atfLinearPCM;
 audioFormat.dataSubtype = apfStereo16;
 audioFormat.description = 16;
 audioFormat.sampleRate = sRate;
 /* create an InOutDescriptor */
 iodSetup.format = (ptmAvFormat_t)&audioFormat;
 iodSetup.flags = tsaIODescSetupFlagCacheMalloc;
 iodSetup.fullQName = "full";
 iodSetup.emptyQName = "mpty";
 iodSetup.queueFlags = tmosQueueFlagsStandard;
 iodSetup.senderCap = frCaps->defaultCapabilities;
 iodSetup.receiverCap = arCaps->defaultCapabilities;
 iodSetup.senderIndex = 0;
 iodSetup.receiverIndex = 0;
 iodSetup.packetBase = 0;
 iodSetup.numberOfPackets = NUMBER_OF_PACKETS;
 iodSetup.numberOfBuffers = 1;
 iodSetup.bufSize[0] = 2 * sizeof(Int16) * BUFSIZE;
 err = tsaDefaultInOutDescriptorCreate(&iod, &iodSetup);
 tmAssert((err == TMLIBAPP_OK), err);

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-8

Setup the File Reader
3-8 TSSA Audio Modules ©1998 Philips Semiconductors 6/21/98

The Þle reader is a TSSA component that provides a streaming interface to a Þle. It takes
packets from its empty queue, reads from the disk to Þll them, and then places the packets
in its full queue. As a default, the Þle reader loops back to the beginning when it reaches
the end of the Þle. More information about the Þle reader can be found in Chapter 3,
ÒTriMedia File Reader API,Ó in Reference Manual II Part 2.

Given the already initialized Þle reader setup structure that was retrieved after open, the
Þle reader is very simple to setup. A Þle name is clearly required. The InOutDescriptor is
required. And a priority is assigned for the pSOS task that will be created.

The amount of data read in each packet is determined by the bufSize Þeld in the header of
each packet. This was initialized when the packets were created and the memory was
allocated by tsaDefaultInOutDescriptorCreate().

Setup the Audio Renderer

The audio renderer is implemented as an interrupt service routine. It is not a task. Like the
reader, a partially initialized setup structure was obtained after the component was opened.
The user must specify an InOutDescriptor, and a maximum buffer size. The error reporting
function is optional. The format of the audio data stream is speciÞed as part of the
InOutDescriptor. After the call to tmolArendInstanceSetup(), we are ready for start.

Start

The calls to the start functions (tmolArendAOStart, and tmolFreadStart) cause these
two independent components to begin exchanging data. The audio renderer runs in an

 frSetup->defaultSetup->outputDescriptors[0] = iod;
 frSetup->defaultSetup->priority = READER_PRIORITY;
 frSetup->fileName = fileName;
 printf("Opening %s for playback\n", frSetup->fileName);
 err = tmolFreadInstanceSetup(readerInstance, frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 arSetup->defaultSetup->inputDescriptors[0] = iod;
 arSetup->defaultSetup->errorFunc = arend_error_func;
 arSetup->maxBufferSize = 2 * sizeof(Int16) * BUFSIZE;
 err = tmolArendAOInstanceSetup(arendInstance, arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

err = tmolFreadStart(readerInstance);

err = tmolArendAOStart(arendInstance);

printf("file %s playing as stereo audio.\n", frSetup->fileName);
printf("Press return to stop\n");
gets(ins);

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-9

interrupt service routine. Under current pSOS rules, this uses the stack of the currently
running task. The Þle reader is started as an autonomous task. Since buffers start in the
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-9

empty queue, the Þle reader will immediately begin to Þll these buffers, and packets will
bunch up in the full queue. The audio renderer will be activated after each buffer has
played. If these buffers contain 256 samples of stereo audio (1024 bytes), and the sample
rate is 44100, the audio renderer will request a new packet every 5.8ms. The renderer
requests a new packet from the full queue. In steady state operation, it also places the
previous packet in the empty queue. Since the reader task is blocked waiting for a empty
buffer, the reader is now ready to run and the cycle can continue.

The printf and gets provide a simple and convenient development interface. Since this
code is in a thread separate from the reader and the renderer, the fact that this thread is
blocked has no effect on the other threads.

Stop and Shutdown

When it is time to stop the process, the stop functions are called. The operation of each
stop function is synchronous; that is, the stop function will not return until the component
being stopped has actually completed its work. Under TSSA, stop means Òreturn all your

 err = tmolFreadStop(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOStop(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 printf("All stopped.\n");
 err = tsaDefaultInOutDescriptorDestroy(iod);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadClose(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOClose(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);

Processor RendererDigitizer

EMPTY EMPTY

FULL

Sample Application

FULL

OUTOUTOUT OUTOUTOUTOUTINININ ININININ

ANIMATION

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-10

memory and exit your processing loop.Ó Hence at the end of the stop procedure, all of the
packets should be returned to the queues.
3-10 TSSA Audio Modules ©1998 Philips Semiconductors 6/21/98

Advanced Features

The audio renderer is a reasonably mature interface. It supports the basic features well,
and it also provides some advanced features. One of these is the progress callback
function. The progress callback function can be called at every interrupt service routine.
This can be used to implement synchronization functions like that required to lock the
output to a digital audio input.

Another advanced feature of the audio renderer is its handling of time-stamped packets. If
the renderer is set up with a clock reference, and if its packets are time-stamped, the
renderer will attempt to present these packets at the correct time. If the packet arrives too
early, the renderer will hold onto it until its presentation time arrives. If it is too late, the
packet will be returned immediately so as to catch up. This mechanism can be used to
implement AV (ÒlipÓ) sync. It assumes that once sync is achieved, the audio and video will
remain in sync. If that is not the case, then the DDS should be used to vary the audio clock
so as to achieve long term sync.

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-11

Audio Digitizer
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-11

The audio digitizer is an interface to audio input. Like all TSSA components, a section of
the API reference manual is devoted to it. Some example programs such as exolAIO are
provided as well. The following code illustrates the basic operation of the audio digitizer:

/* Get Capabilities */
rval = tmolAdigAIGetCapabilities(&AdigAICap);
rval = tmolArendAOGetCapabilities(&ArendAOCap);

/* Open components */
rval = tmolAdigAIOpen(&digitizerInstance);
rval = tmolArendAOOpen(&arendInstance);

/* Get setup variables */
rval = tmolAdigAIGetInstanceSetup(digitizerInstance, &digitizerSetup);
rval = tmolArendAOGetInstanceSetup(arendInstance, &arendSetup);

/* create the I/O descriptor to connect components */
descriptorSetup.format = (ptmAvFormat_t)&audioFormat;
descriptorSetup.flags = tsaIODescSetupFlagCacheMalloc;
descriptorSetup.fullQName = "AIOQ";
descriptorSetup.emptyQName = "AOIQ";
descriptorSetup.queueFlags = 0;
descriptorSetup.senderCap = AdigAICap->defaultCapabilities;
descriptorSetup.receiverCap = ArendAOCap->defaultCapabilities;
descriptorSetup.senderIndex = 0;
descriptorSetup.receiverIndex = 0;
descriptorSetup.packetBase = 0x100;
descriptorSetup.numberOfPackets = MAX_PACKETS;
descriptorSetup.numberOfBuffers = 1;
descriptorSetup.bufSize[0] = bytesPerPacket;
rval = tsaDefaultInOutDescriptorCreate(&iod, &descriptorSetup))

/* setup components */
digitizerSetup->defaultSetup->errorFunc = digitizer_error_func;
digitizerSetup->defaultSetup->outputDescriptors[0] = iod;
rval = tmolAdigAIInstanceSetup(digitizerInstance, digitizerSetup);

arendSetup->defaultSetup->inputDescriptors[0] = iod;
arendSetup->defaultSetup->errorFunc = renderer_error_func;
arendSetup->maxBufferSize = bytesPerPacket;
rval = tmolArendAOInstanceSetup(arendInstance, arendSetup);

/* now everything is ready: Start */
rval = tmolArendAOStart(arendInstance);
rval = tmolAdigAIStart(digitizerInstance);

printf("Press return to stop\n");
gets(ins);

* Stop everything. */
rval = tmolAdigAIStop(digitizerInstance);
rval = tmolArendAOStop(arendInstance);

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-12

rval = tmolAdigAIClose(digitizerInstance);
rval = tmolArendAOClose(arendInstance);
3-12 TSSA Audio Modules ©1998 Philips Semiconductors 6/21/98

You can see the similarity to the setup of other TSSA components. The sequence of Open,
GetInstanceSetup, InOutDescriptorCreate, InstanceSetup, Start is very common.
Like the audio renderer, the audio digitizer runs in an interrupt service routine.

One interesting feature of the audio digitizer is its second output. The digitizer has two
outputs. This allows the output to be simultaneously routed to a Þle writer and to the audio
renderer as a monitor.

CopyAudio Example
The copyAudio example program connects the audio digitizer to a simple data copier and
through to the audio renderer. This is can easily serve as a starting point for the
development of new TriMedia audio modules.

Figure 3-1 Example of the flow of a simple audio copy

As you might guess from looking at the picture, this will consist of code to create the
modules, create the queues, and connect the modules.

Create the Components:

Of course the return values must be checked.

rval = tsaDefaultInOutDescriptorDestroy(iod);

tmolAdigAIOpen(&digitizerInstance);
tmolCopyIOOpen(©Instance);
tmolArendAOOpen(&arendInstance);

CopyIO RendererDigitizer

Empty Empty

Full Full

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-13

Create and Populate the Queues
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-13

The error checking is removed from this example, but the important points are illustrated.
aFormat is a statically initialized tmAudioFormat_t structure. It determines the buffer
size to be used as well as the sample rate. The CreateInOutDescriptor function is used to
create the queues and the packets. After these calls, MAX_PACKETS valid packets have
been placed in the empty queues. When the components are started, these packets will
begin to ßow. The number of packets is up to the application. A queue full of packets
performs a buffering function, but it also increases the delay, or latency through the system.

/* Get Capabilities */
rval = tmolAdigAIGetCapabilities(&digitizerCap);
rval = tmolCopyIOGetCapabilities(©Cap);
rval = tmolArendAOGetCapabilities(&arendCap);

/* Setup iosetups */
iosetup1.format = (ptmAvFormat_t)&aFormat;
iosetup1.flags = tsaIODescSetupFlagCacheMalloc;
iosetup1.fullQName = "digF";
iosetup1.emptyQName = "digE";
iosetup1.queueFlags = 0;
iosetup1.senderCap = digitizerCap->defaultCapabilities;
iosetup1.receiverCap = copyCap->defaultCapabilities;
iosetup1.senderIndex = 0;
iosetup1.receiverIndex = 0;
iosetup1.packetBase = 0x100;
iosetup1.numberOfPackets = MAX_PACKETS;
iosetup1.numberOfBuffers = 1;
iosetup1.bufSize[0] = BUFSIZE * 2 * sizeof(Int16);

iosetup2.format = (ptmAvFormat_t)&aFormat;
iosetup2.flags = tsaIODescSetupFlagCacheMalloc;
iosetup2.fullQName = "renF";
iosetup2.emptyQName = "renE";
iosetup2.queueFlags = 0;
iosetup2.senderCap = copyCap->defaultCapabilities;
iosetup2.receiverCap = arendCap->defaultCapabilities;
iosetup2.senderIndex = 0;
iosetup2.receiverIndex = 0;
iosetup2.packetBase = 0x200;
iosetup2.numberOfPackets = MAX_PACKETS;
iosetup2.numberOfBuffers = 1;
iosetup2.bufSize[0] = BUFSIZE * 2 * sizeof(Int16);

/* Create InOutDescriptors */
rval = tsaDefaultInOutDescriptorCreate(&iodesc1, &iosetup1);
rval = tsaDefaultInOutDescriptorCreate(&iodesc2, &iosetup2);

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-14

Set Up the Components
3-14 TSSA Audio Modules ©1998 Philips Semiconductors 6/21/98

That is all that there is to the component setup. All that remains is to start:

Modifying the Copy Component:

The CopyIO component makes a very good starting point for the creation of your own
audio processing component. Before you jump in and start to hack up the CopyIO
component, we recommend that you read Chapter 9 ÒTSSA Component InternalsÓ of
Reference Manual I Part 4. The TSA architecture chapter will give you the background to
understand a componentÕs framework. The core of the copyIO component is found in the
function tmalCopyIOCopyPacket. There youÕll Þnd this code:

You can replace the memcopy with your audio processing routine. Other things that you
may need to change include the allocation and freeing of memory. That should be done in
the Open and Close functions. Initial parameter setting is done in the InstanceSetup
function. When you come to this point, youÕll see how the AL layer interfaces with the OL
layer in the InstanceSetup function.

This approach will get your component up and running quickly. But as your component
becomes more mature, you will want to adopt more of the TSA conventions that are
illustrated in the audio mixer code below.

/* setup audio digitizer */
rval = tmolAdigAIGetInstanceSetup(digitizerInstance, &digitizerSetup);
digitizerSetup->defaultSetup->outputDescriptors[0] = iodesc1;
rval = tmolAdigAIInstanceSetup(digitizerInstance, digitizerSetup);

/* setup copy component */
rval = tmolCopyIOGetInstanceSetup(copyInstance, ©Setup);
copySetup->defaultSetup->inputDescriptors[0] = iodesc1;
copySetup->defaultSetup->outputDescriptors[0] = iodesc2;
rval = tmolCopyIOInstanceSetup(copyInstance, copySetup);

/* initialize audio renderer */
rval = tmolArendAOGetInstanceSetup(arendInstance, &arendSetup);
arendSetup->defaultSetup->inputDescriptors[0] = iodesc2;
arendSetup->defaultSetup->errorFunc = renderer_error_func;
arendSetup->maxBufferSize = bytesPerPacket;
rval = tmolArendAOInstanceSetup(arendInstance, arendSetup);

tmolAdigAIStart(digitizerInstance);
tmolArendAOStart(arendInstance);
tmolCopyIOStart(copyInstance);

for(i=0; i<outpacket->allocatedBuffers; i++) {
 memcpy(outpacket->buffers[i].data, inpacket->buffers[i].data,
 inpacket->buffers[i].dataSize);
 outpacket->buffers[i].dataSize = inpacket->buffers[i].dataSize;
}

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-15

Audio Mixer
©1998 Philips Semiconductors 6/21/98 TSSA Audio Modules 3-15

The example program known as exolAmixSimple demonstrates the use of a simple audio
mixer. The simple mixer is supplied complete with source. Out of the box, it accepts three
stereo inputs and mixes them into one stereo output. This simple audio mixer demonstrates
the concepts involved in the construction of a mixer. It is a simpliÞed version of the mixer
used with the TriMedia Digital Television (DTV) system. The source for the library
illustrates several important concepts:

■ The mixer supports a conÞguration function with a queued interface.

■ The mixer demonstrates how to handle multiple input pins. The principles are similar
for multiple output pins.

■ The mixer separates the tmal and tmol layers using a subdirectory. This is done to make
it easier to isolate the valuable intellectual property that exists in your code at the AL
layer. It is common practice to guard the AL layer source. By making the OL layer
source available, it is possible for a client to change the operating system without
accessing your private source.

Audio Decoders
A number of audio decoders are available for use with TriMedia. These include decoders
for Dolby AC3 and Dolby ProLogic. Each of these are delivered as TSSA-compatible
modules. Since a separate licensing fee is required for these decoders, you are advised to
contact your TriMedia sales representative for more information. Code is also available to
decode MPEG 1 layer 2 audio, and G.723, although it is not packaged as a TSSA module.

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-16

Audio Device Library
3-16 Audio Device Library ©1998 Philips Semiconductors 6/21/98

If for some reason the TSSA audio interface is not appropriate, a lower level of access is
available. It is this Òdevice libraryÓ interface that is used to construct the audio renderer
and the audio digitizer. The TSSA interface solves many problems that have deliberately
been left unaddressed at the device library level. But of course, there are other ways to
solve the same problems.

Audio Hardware Overview

The TriMedia Audio-In unit connects to an off-chip stereo analog-to-digital (A/D)
converter subsystem through a ßexible bit-serial bus. It provides all signals needed to
interface to high-quality, low-cost oversampling (analog-to-digital) A/D converters,
including a precisely programmable oversampling A/D system clock.

The TriMedia Audio-Out unit connects to an off-chip stereo digital-to-analog (D/A)
converter subsystem through a ßexible bit-serial interface. It provides an interface to high-
quality, low-cost oversampling D/A converters and a precisely programmable
oversampling D/A system clock.

The Audio-In /Audio-Out unit implements a double-buffering scheme, ensuring that no
samples are lost even if the DSPCPU is highly loaded and slow to respond to interrupts.

The Audio-In /Audio-Out unit is reset by writing a 0x80000000 to the AI_CONTROL/
AO_CONTROL) register. This disables capture/transmission by setting the CAP_ENABLE /
TRANS_ENABLE) flag to 0, and makes buffer1 the active buffer by setting BUF1_ACTIVE
ßag to 1.

Capture/Transmission by DSPCPU

1. The DSPCPU initiates capture/transmission by providing two empty/full buffers and
putting their base addresses and sizes in the BASEn and COUNTn/SIZEn registers. It does
so by writing a base address and size to MMIO control Þelds.

2. After two valid local memory buffers are assigned, capture/transmission is enabled by
setting CAP_ENABLE/TRANS_ENABLE to 1.

3. The Audio-In /Audio-Out unit hardware then Þlls/empties buffer1 by reading input/
transmitting output samples. After buffer1 Þlls/empties, BUF1_FULL/ BUF1_EMPTY is
asserted and capture/transmission continues without interruption in buffer2.

4. Before buffer2 Þlls up, the DSPCPU must assign a new, empty/full buffer to BASE1,
COUNT1/SIZE1, and perform an ACK1. BUF2_FULL/BUF2_EMPTY is asserted when
buffer2 fills up/empties, and capture/transmission continues in/from the new buffer1,
and so forth.

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-17

5. Upon receipt of an ACK, the Audio-In /Audio-Out hardware removes the interrupt line
assertion at the next DSPCPU clock edge. Refer to the interrupt controller
©1998 Philips Semiconductors 6/21/98 Audio Device Library 3-17

documentation for details about interrupt handler programming.

In normal operation, the DSPCPU and the Audio-In /Audio-Out hardware continuously
exchange buffers without losing a sample.

However, timing is important in the Audio-In unit. If, for example, the DSPCPU fails to
provide a new buffer in time, the OVERRUN error ßag is raised, causing a temporary halt to
input sampling. Sampling resumes as soon as the DSPCPU makes one or more new
buffers available through an ACK1 or ACK2 operation.

Timing is important in the Audio-Out unit, as well. If, for example, the DSPCPU fails to
provide a new buffer in time, the UNDERRUN error ßag is raised, and the last valid sample or
sample pair is repeated until a new buffer of data is assigned by ACK1 or ACK2.

The TriMedia Audio-In/Out APIs provide the necessary interface for audio applications to
access the TriMedia Audio-In/Out unit hardware.

Using the TriMedia Audio-In/Audio-Out API
The functions provided in the TriMedia Audio-In/Audio-Out API enable you to access
both the Audio-In and Audio-Out hardware units of TriMedia. The Audio-In/Audio-Out
device library provides functions to control audio coders-encoders (codecs) attached to the
TM-1000, as well as support for the audio mixer and other audio subsystems.

The interface provided by the Audio-In/Audio-Out device library is simple to use. To
access the Audio-In or Audio-Out unit, the application program Þrst opens the unit and
sets a few parameters, and then initiates capturing or transmission by removing the pause
condition. The audio is then serviced by interrupts. After the audio is running, its volume,
sample rate, and input selection are controlled by the APIs provided in the Audio-In/Audio-
Out device library.

Guidelines for Use of the Audio-In/Audio-Out APIs

General guidelines for using the TriMedia Audio-In/Audio-Out APIs are as follows:

■ Include the <tm1/tmAI.h> and <tm1/tmAO.h> header Þles.

■ Use the archive version (libdev.a), rather than building the library yourself. (The Audio-
In/Audio-Out device library is archived in libdev.a.)

The source for the Audio-In/Audio-Out device library is included in the TriMedia
Compilation System (TCS). This makes it easier to incorporate new versions of the
library as they become available.

■ Pass the speciÞc owner ID when making subsequent calls.

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-18

The Audio-In/Audio-Out device library operates as an exclusive device driver, and, as
such, can service only one task at a time. This is enforced through the owner Þeld of the
3-18 Audio Device Library ©1998 Philips Semiconductors 6/21/98

control data structure, which is returned by all the initialization functions.

■ Check the error values returned by the initialization functions. Most of the Audio-In/
Audio-Out device library functions return zero on success, or nonzero error codes.
Many functions check and report the use of sizes and alignments that the hardware
cannot support.

Restrictions

Because of hardware or software limitations, the Audio-In/Audio-Out device library has
the following restrictions:

■ The buffers must be 64-byte aligned, and buffer sizes must be a multiple of 64 samples.

■ Calculation of the sample rate is based on the TriMedia cycle clock. The software gets
its deÞnition of this clock from the tmman.ini Þle residing in the current directory. You
must ensure the value of tmman.ini matches your hardware.

■ When setting sample rates, consider that the value for the DDS control register is
computed in 32-bit math. This might lead to inaccuracies because of truncation. The
problem will be Þxed in future releases.

Demonstration Programs

Included with the Audio-In/Audio-Out device library are six demonstration programs:

■ fplay

■ fplay6

■ sine

■ sthru

■ avio

■ patest

If you want to develop audio applications for TriMedia, you can use these demonstration
programs to gain an understanding of how to use Audio-In/Audio-Out device library APIs
within your applications.

IMPORTANT

You will achieve a greater level of compatibility with other TriMedia
software modules through the use of the TSSA audio interface.

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-19

Playing an Audio File
©1998 Philips Semiconductors 6/21/98 Audio Device Library 3-19

The following example demonstrates the role Audio-Out APIs play in an audio Þle by
using the Audio-Out unit. The code is taken from the fplay demonstration program that is
provided with the Audio-In/Audio-Out device library.

static void
fPlay(char *waveFile, float srate)
{
 aoInstanceSetup_t ao;
 FILE *fp;
 Int instance, i;
 char ins[80];

 samples = (int *) malloc(MAX_SAMPLE_SIZE * 4);
 if (!samples) {
 printf("FATAL ERROR: Error getting sample memory\n");
 exit(1);
 }

 printf("loading sound file %s...\n", waveFile);
 fp = fopen(waveFile, "rb");
 if (!fp) {
 printf("FATAL ERROR: Failed to open sound file.\n");
 exit(2);
 }
 sample_bytes = fread(samples, 1, MAX_SAMPLE_SIZE, fp);
 printf("sample size is %d bytes.\n", sample_bytes);
 fclose(fp);

 pbuf1 = (int *) (((unsigned long) buf1 + 63) & ~63U);
 pbuf2 = (int *) (((unsigned long) buf2 + 63) & ~63U);

 memset(pbuf1, 0, BUF_SIZE * 4);
 memset(pbuf2, 0, BUF_SIZE * 4);

 for (i = 0; i < BUF_SIZE; i += 16) {
 _cache_copyback(pbuf1, BUF_SIZE);
 _cache_copyback(pbuf2, BUF_SIZE);
 }

 ao.isr = fPlayISR;
 ao.interruptPriority = intPRIO_3;
 ao.audioTypeFormat = atfLinearPCM;
 ao.audioSubtypeFormat = apfStereo16;
 ao.srate = srate;
 ao.size = BUF_SIZE;
 ao.base1 = pbuf1;
 ao.base2 = pbuf2;
 ao.underrunEnable = True;
 ao.hbeEnable = True;
 ao.buf1emptyEnable = True;
 ao.buf2emptyEnable = True;

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-20

 LIBDEV(aoOpen(&instance));
 LIBDEV(aoInstanceSetup(instance, &ao));
3-20 Audio Device Library ©1998 Philips Semiconductors 6/21/98

Before initializing the audio output hardware, the fplay demonstration program must do
the following:

■ Align the buffers on a 64-byte boundary.

■ Call the _cache_copyback() function to ensure cache coherency. This is done because
the Audio hardware reads from SDRAM and not from Cache. The
_cache_copyback() function uses an optimized algorithm to flush the cache.

■ Set the audio out parameters. The Interrupt Service Routine (ISR) pointer is set to
fPlayISR (see the following example).

■ The fplay demonstration program then initializes the Audio-Out hardware by calling
the aoOpen function, which assigns the audio control block to the owner for exclusive
use. LIBDEV checks the return value of the aoOpen function before proceeding.

The format and the interrupt parameters are initialized from the values in AO. The
endianness is set to little endian to conform to the Þle format.

The procedure halts until a console line is read. Wave Þle playback is interrupt driven.
After the input, the AO unit is stopped and closed.

Interrupt Routine fplayISR

The following is a description of the interrupt routine fplayISR, which is followed by
code excerpts that illustrate sequential operations.

The pragma tells the compiler to save and restore the interrupt state. The routine Þrst
checks for data underrun and highway bandwidth error conditions and acknowledges them.

There are two Audio Out buffers, with empty status bits for each. If the second is empty, it
is Þlled with the data in ÒsampleÓ (a circular buffer). The data read is copied back to
memory and the interrupt is acknowledged. If buffer 1 is empty, it is handled in the same
manner as buffer 2.

 aoEnableLITTLE_ENDIAN();

 LIBDEV(aoStart(instance));

 printf("wave file playing: Press return to stop.\n");
 gets(ins);

 LIBDEV(aoStop(instance));
 LIBDEV(aoClose(instance));

 exit(0);
}

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-21

The pragma at the end of the function forces a decision tree jump. This is to allow
sufÞcient time between the acknowledgment and the return from interrupt.
©1998 Philips Semiconductors 6/21/98 Audio Device Library 3-21

The code for the interrupt routine fplayISR is shown below.

1. Check for underrun and highway bandwidth errors.

2. Next, it copies data to AO buffer 2, if it is empty, and it resets the pointer if it is at the
end of the buffer.

3. Next, it forces the cache to write data to memory and it acknowledges the interrupt

4. fplayISR uses the same code for AO buffer 1 that it used with buffer 2:

5. Next, it resets the pointer if it is at the end of the circular buffer.

static void
fPlayISR(void)
{
#pragma TCS_handler

 int i;
 UInt stat = MMIO(AO_STATUS);

if (aoUNDERRUN(stat))
 aoAckACK_UDR();
 if (aoHBE(stat))
 aoAckACK_HBE();

 if (aoBUF2_EMPTY(stat)) {
 for (i = 0; i < BUF_SIZE; i++) {
 pbuf2[i] = samples[sample_pos];
 if (sample_pos++ >= (sample_bytes >> 2))
 sample_pos = 0;
 }

 for (i = 0; i < BUF_SIZE; i += 16)
 _cache_copyback(pbuf2, BUF_SIZE);
 aoAckACK2();
 }

 if (aoBUF1_EMPTY(stat)) {
 for (i = 0; i < BUF_SIZE; i++) {
 pbuf1[i] = samples[sample_pos];

 if (sample_pos++ >= (sample_bytes >> 2))
 sample_pos = 0;
 }
 for (i = 0; i < BUF_SIZE; i += 16)
 _cache_copyback(pbuf1, BUF_SIZE);
 aoAckACK1();
 }

#pragma TCS_break_dtree
}

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-22

Recording an Audio File
3-22 Audio Device Library ©1998 Philips Semiconductors 6/21/98

The following example demonstrates the use of Audio-In APIs to create an audio Þle by
reading audio data from the Audio-In unit. The code is taken from the sthru demonstration
program, which is provided with the Audio-In/Audio-Out device library.

sthru Demonstration Program

The Þrst part of the sthru demonstration program allocates and clears the capture buffer
and the data buffers. (This code is not shown).

On receiving the interrupt, the DSPCPU executes the interrupt service routine inISR (see
the following example). The interrupt routine Þrst reads the newly captured data from the
inactive buffer pointer using aiGetBase and then writes a new pointer to the buffer that is
ready for capture data using aiChangeBuffer. Because the captured data is not cache-
coherent, stale data is removed from the buffer using invalidate. Finally, the ISR
acknowledges the interrupt by clearing the bit in the status register.

void sCapture(float srate)
{

AUDIO_CB in_a;
int i, j;
FILE *fp;
int retval;
int *p1,*p2;

ptr = rawPtr;
capCount = 0;

/* setup control structure */
in_a.format = AIO_FORMAT_STEREO_16;
in_a.sRate_hz = srate;
in_a.size_samples = BUFSIZE;
in_a.flags = 0;
in_a.isr = capISR;

retval = aiOpen(&in_a, &in_owner);
if (0 != retval)
{

printf("aiOpen failed with %d. Aborting...\n", retval);
return;

}
if (0 != aiSetBufferSize(in_owner, in_a.size_samples))

printf("aiSetBufferSize failed (illegal size?)\n");

p1 = (int *) (((int) ptr + 63) & 0xFFFFFFC0);
p2 = &p1[BUFSIZE];
ptr += BUFSIZE;
if (0 != aiSetBuffer1Base(in_owner, p1))

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-23

printf("aiSetBuffer1Base failed (illegal alignment?

0x%x)\n", p1);
©1998 Philips Semiconductors 6/21/98 Audio Device Library 3-23

Setting Audio Parameters

After the audio is running (capture or transmission), you can change the volume (left and
right gain), sample rate, and input source by using the APIs provided in the Audio-In/
Audio-Out device library.

The following examples demonstrate the use of these APIs. All of the code is taken from a
demonstration program, which is provided with the Audio-In/Audio-Out device library.

The following code uses the aiSetSampleRate and aoSetSampleRate APIs to set the
Audio-In and Audio-Out sample rates.

For analog input/output devices (such as the AD1847), both the audio input and audio
output are performed by the same chip. Therefore, both the input and output use the same
sample rate. In such cases, you can use either function.

printf("aiSetBuffer2Base failed (illegal alignment?

0x%x)\n", p2);
printf("\nCapturing %d seconds of audio input..\n",

(mallocSize>>2)/ (int)srate);

aiUnpause(in_owner);

while (capCount < ((mallocSize>>2)/BUFSIZE -2))
 if ((capCount % 192) == 0)

 printf("..\n");
printf("writing data to 'capture.bin'...\n");
aiPause(in_owner);
aiClose(in_owner);

fp = fopen("capture.bin", "wb");
if (!fp)
{

printf("Failed to open capture file.\n");
return;

}
printf("Wrote %d words into capture.bin. \n", fwrite(rawPtr,

sizeof(int), mallocSize>>2, fp));
fclose(fp);

printf("capture Test completed\n");
}

aoSetSampleRate(out_owner, srate);
aiSetSampleRate(in_owner, srate);

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-24

Audio-In and Audio-Out each have an instance setup structure. These are initialized with
the interrupt parameters and formats.
3-24 Audio Device Library ©1998 Philips Semiconductors 6/21/98

1. The following code shows the call to the open routines (aoOpen, aiOpen) to acquire
an instance, and the instance setup routines (aoInstanceSetup, aiInstanceSetup) are
then called with the instance value and the appropriate parameters.

The initialization code, argument checking code, and buffer setup is not shown.

2. The following code sets up the audio formats.

3. Set up the interrupt service routine and the priority level

4. Set up the sampling rate, and the size and buffer pointers (for AO).

5. Set up the interrupt enable ßags for AO.

6. Setup the buffer pointers and the interrupt enable ßags for AI.

 int main(int argc, char **argv)
{
 aoInstanceSetup_t ao;
 aiInstanceSetup_t ai;
 char ins[80];
 int i;
 int *buf;
 FILE *fp;

 /* setup control structure */
 ai.audioTypeFormat = ao.audioTypeFormat = atfLinearPCM;
 if (monoFlag)
 ai.audioSubtypeFormat = ao.audioSubtypeFormat = apfMono16;
 else
 ai.audioSubtypeFormat = ao.audioSubtypeFormat = apfStereo16;

ao.isr = outISR;
ai.isr = inISR;
ao.interruptPriority = ai.interruptPriority = intPRIO_3;

ao.srate = ai.srate = sRate;
ao.size = ai.size = BUFSIZE;
ao.base1 = b[0];
ao.base2 = b[1];

ao.underrunEnable = True;
ao.hbeEnable = True;
ao.buf1emptyEnable = True;
ao.buf2emptyEnable = True;

ai.base1 = b[2];
ai.base2 = b[3];
ai.overrunEnable = True;
ai.hbeEnable = True;
ai.buf1fullEnable = True;
ai.buf2fullEnable = True;

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-25

7. Open AO and AI and conÞgure the device.
©1998 Philips Semiconductors 6/21/98 Audio Device Library 3-25

8. The input and output volumes (left and right channels) are set in hundredths of DB. A
negative value corresponds to attenuation and a positive value to gain. Note that the
input volume must be positive or zero and the output volume must be negative or zero.
The input is set to the line input of the microphone.

9. Set the input to the line or to the mike.

10. Pause until the user types the following:

11. Stop and close AI and AO.

12. Write the data to capture.bin (binary mode).

13. After receiving the interrupt, the CPU executes the inISR ISR. (See the following
example).

ERROR_REPORT(aoOpen(&ao_instance));
ERROR_REPORT(aoInstanceSetup(ao_instance, &ao));
ERROR_REPORT(aiOpen(&ai_instance));
ERROR_REPORT(aiInstanceSetup(ai_instance, &ai));

aoSetVolume(ao_instance, outputVolume * 100, outputVolume * 100);
aiSetVolume(ai_instance, inputVolume * 100, inputVolume * 100);

 if (mode == MODE_MIC) {
 ERROR_REPORT(aiSetInput(ai_instance, aaaMicInput));
 else
 ERROR_REPORT(aiSetInput(ai_instance, aaaLineInput));
 ERROR_REPORT(aiStart(ai_instance));
 ERROR_REPORT(aoStart(ao_instance));

<CR>
 printf("Audio Pass Thru is running. Press return to exit :\n");

ERROR_REPORT(aoStop(ao_instance));
ERROR_REPORT(aiStop(ao_instance));
ERROR_REPORT(aoClose(ai_instance));
ERROR_REPORT(aiClose(ai_instance));

 if (captureFlag) {
 printf("Writing %d samples of captured data to "
 "capture.bin...\n", CAPSIZE);
 fp = fopen("capture.bin", "wb");
 if (!fp) {
 printf("FATAL ERROR: capture.bin fopen failed\n");
 exit(2);
 }
 fwrite(capBuffer, 1, CAPSIZE * 4, fp);
 fclose(fp);
 printf("Done!\n");
 }
 exit(0);
}

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-26

The ISR Þrst determines which buffer is inactive by using the aoBuf1Active macro
(deÞned in tmAO.h). It then Þlls the inactive buffer with new audio data, ßushes the cache,
3-26 Audio Device Library ©1998 Philips Semiconductors 6/21/98

and Þnally acknowledges the interrupt by clearing the bit in the status register.

14. Increment the input buffer pointer modulo 4.

15. Read the AI status. Check for exceptional conditions.

16. If buffer 2 is full, set foo to the pointer. Switch to the next available buffer.

17. If buffer one is full, set foo to the pointer. Switch to the next available buffer. The two
buffers should never be full simultaneously.

18. Invalidate any stale data in the cache.

19. Copy the data into the capture buffer.

There are decision tree breaks previously, so this one is actually unnecessary.

static void
inISR(void)
{
#pragma TCS_handler

 int *foo;
 int i;
 UInt stat;

inBuf++;
inBuf &= 0x3;

stat = MMIO(AI_STATUS);
if (aiOVERRUN(stat))
aiAckACK_OVR();
if (aiHBE(stat))
aiAckACK_HBE();

if (aiBUF2_FULL(stat)) {
foo = (int *) aiGetBASE2();
aiChangeBuffer2(ai_instance, b[inBuf]);
aiAckACK2();
}

if (aiBUF1_FULL(stat)) {
 foo = (int *) aiGetBASE1();
 aiChangeBuffer1(ai_instance, b[inBuf]);
 aiAckACK1();
}
for (i = 0; i < BUFSIZE; i += 16)
 INVALIDATE((char *) &foo[i], 1);

 for (i = 0; i < BUFSIZE; i++) {
 if (capPtr >= CAPSIZE)
 break;
 capBuffer[capPtr++] = foo[i];
 }

Chapter 3: Programming TriMedia Audio Applications

3

Cookbook Part 2 03_AUDIO.FM5 Page 3-27

Board Support Package
©1998 Philips Semiconductors 6/21/98 Board Support Package 3-27

The board support package is an integral part of the TriMedia audio system. It is the
lowest functional level of the interface. It is at this level that the actual capabilities of the
system are determined.

The board support package delivered with the TriMedia developers kit includes support
for a number of boards. These include the standard ÒIREFÓ board, as well as Philips
reference boards for DTV. The board support package detects which board is in use and
selects the appropriate function tables to drive that board. This mechanism is explained in
some depth in Chapter 10 ÒTriMedia TMBoard APIÓof Reference Manual II, Part 1.

Some examples of the types of capabilities that can be supported through the board
support package are:

■ The IREF hardware cannot support simultaneous stereo input and six channel output.
This is coded into the board support package.

■ The DTV board supports 8 channels of 20-bit audio output. This is done using an
external FPGA with the audio clock running at double speed. All of the setup for this
conÞguration is in the board support package.

■ The AD1847 on the IREF board supports volume control. This is accessible because it
is supported in the board support package.

■ The DTV board supports digital audio input. The code to control this resides in the
board support package.

Chapter 3: Programming TriMedia Audio Applications

Cookbook Part 2 03_AUDIO.FM5 Page 3-28
3-28 Board Support Package ©1998 Philips Semiconductors 6/21/98

Ph i l ips Tr iMed ia SDE Cookbook

Part 3:
Bootstrapping TriMedia
AB

SDE Cookbook
Part 3: Bootstrapping TriMedia

Cookbook Part 3 000_CBK3.BOKTOC Page i

Table of Contents 1

Chapter 1 Bootstrapping TriMedia in Autonomous Mode

Table of Contents
©1998 Philips Semiconductors 6/21/98 i

Introduction..1-2

Overview of Stand-Alone Boot...1-2

Creating an EEPROM image..1-2

EEPROM Header ...1-2

L1 Boot Program...1-3

Sample Programs..1-5

makefile.unix...1-6

makefile.win..1-8

l1main.c ..1-10

l1rom.c..1-13

l1start.trees...1-19

Chapter 2 Bootstrapping TriMedia in Host-Assisted Mode

TriMedia Initialization in Host Assisted Mode...2-2

Overview ..2-3

Plug and Play BIOS..2-4

BIU and Interrupt Initialization ..2-6

Putting the processor in reset...2-8

Taking the processor out of reset ...2-9

tmmprun - multiprocessor download program..................................2-10

Makefile ..2-10

Header files ..2-11

tmmprun main program ..2-12

Using the downloader library..2-16

Table of Contents

Cookbook Part 3 000_CBK3.BOKTOC Page ii

tmcrt.c...2-22
ii ©1998 Philips Semiconductors 6/21/98

Shutting down the RPC server ...2-25

Implementation of POSIX system functions2-26

Cookbook Part 3 01_AUTO.FM5 Page

1-1

1: Autonomous Mode, Bootstrapping TriMedia in
1

Chapter 1
©1998 Philips Semiconductors 6/21/98 1-1

Bootstrapping TriMedia in Autonomous
Mode 1

Topic Page

Introduction 1-2

Overview of Stand-Alone Boot 1-2

Sample Programs 1-5

Chapter 1:

Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page

1-2

Introduction

1-2 Introduction ©1998 Philips Semiconductors 6/21/98

Bringing up TM1000 in stand-alone mode involves a number of steps. This chapter
outlines the essential steps common to different stand-alone conÞgurations. It also
includes sample programs that you can modify to suit your needs.

In order to fully understand this chapter, you must be familiar with the TM1000
architecture and you will need to have read Chapter 12 of the TM1000 Preliminary Data
Book (April 1997): ÒSystem Boot,Ó which is the ofÞcial document on both stand-alone and
host-assisted boot procedures.

All the examples in this chapter refer to TCS software tools released in August 1997, or
later.

Overview of Stand-Alone Boot

During power-on reset, TM1000 boot block reads some conÞguration information from
the EEPROM through I2C. The contents of the EEPROM determine, among other things,
whether TM1000 continues to boot from the EEPROM or expects another processor (such
as a PC or a Mac) to complete the TM1000 boot sequence. In a host-assisted boot, the
EEPROM contains just 10 bytes that set a few parameters such as TRI_CLKIN, PCI Sub-
system Id, Vendor Id, MM_CONFIGs, and PLL_RATIOs. The task of downloading an
application to SDRAM and taking TM1000 out of reset is left to a host-based program
(such as tmmon on the PC or Mac).

In a stand-alone boot, the EEPROM contains, in addition, the initial boot program whose
size is restricted to 2K bytes. This initial boot program, called L1 boot program, is
transferred by the TMs1000 boot block from EEPROM to SDRAM and then executed. It
is the responsibility of the L1 boot program to load other programs (we will call them L2
programs) from any attached device, such as on-board UVEPROMs (or ßash) or networks
and to execute them.

Creating an EEPROM image

The L1 boot EEPROM consists of a 47-byte header followed by the L1 boot program.

EEPROM Header

Contents of the EEPROM header are documented in Chapter 12 of the TM1000
Preliminary Data Book (April 1997 edition): ÒSystem Boot.Ó The memory system
parameters are documented in Chapter 11 of the TM1000 Preliminary Data Book:
ÒSDRAM Memory System.Ó

Chapter 1:

Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page

1-3

This chapter includes a sample program

l1rom.c

, which creates an EEPROM image Þle
(binary) of the L1 boot program. The l1rom.c program adds a 47-byte header to the given

©1998 Philips Semiconductors 6/21/98 Overview of Stand-Alone Boot 1-3

L1 boot program and swaps the bytes of the L1 boot program when creating the EEPROM
image. l1rom.c uses Þxed values for TRI_CLKIN, PLL clock ratios, and so on. Stand-alone
system developers need to examine and change the Þrst 8 bytes of the EEPROM header in
l1rom.c, if necessary, to suit their system. The EEPROM header bytes are documented in
Chapters 11 and 12 of the TM1000 Preliminary Data Book (April 1997 edition).

L1 Boot Program

L1 boot code needs to do some initialization of TM1000, such as setting the PCSW,
BIU_CTRL, setting up stack and frame pointers, initializing PCI devices (if any) and
copying the L2 code to SDRAM. It then jumps to the beginning of L2 code.

The sample L1 program consists of two Þles:

■ l1start.trees

This Þle deÞnes a function __start() which initializes PCSW and BIU_CTRL; sets
up SP (stack pointer), FP (frame pointer), and RP (return pointer); and calls L1main().
On return from L1main, it jumps to the L2 load address returned by L1main().

■ l1main.c

The function L1main() simply copies L2 code from a PCI-slave UVEPROM to
SDRAM. After copying L2 code to SDRAM, the data cache is ßushed and then
invalidated. After that, the instruction cache is cleared. L1main() returns the L2 load
address to the caller, __start().

Note
If you are using TM1000 chips earlier than revision 1s1.1, I2C might be in
some stuck state after autoboot. The l1main.c file contains a simple
workaround.

On the TM1000 debug board, the UVEPROM is located at (PCI) address 0xFFC00000.
The sample L1 boot code loads the sample L2 code from (PCI) address 0xFFC0000 to
(SDRAM) address 0x840 (the Þrst cache aligned address after 2 K, because L1 code can
be at most, 2K bytes).

Steps in creating an EEPROM image.

1. Compile l1start.trees and l1main.c as follows.

cp l1start.trees l1start.t

tmcc -x -v -c -eb -DL2_LOAD_ADDR=0x840 \

 -DL2_CODE_SIZE=200000 \

 -DL2_ROM_DEV_ADDR=0xFFC00000 \

 l1start.t l1main.c

Chapter 1:

Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page

1-4

The L1 boot program needs to know the size of L2 code. The

tmcc

 option

-

DL2_CODE_SIZE=150000

 defines

L2_CODE_SIZE

. The sample L2 code fits within

1-4 Overview of Stand-Alone Boot ©1998 Philips Semiconductors 6/21/98

200000 bytes. L1 boot code sets up SP and FP starting at MEMORY_SIZE (deÞned to be 8
MB, because IREF boards have 8 MB memory). For stand-alone systems, MMIO_BASE
is deÞned to be 0xEFE0000. This value must agree with that used in l1rom.c as part of
the 47-byte EEPROM header.

2. Link l1start.o and l1main.o and verify the executable size.

You cannot use the tmcc compiler driver to link the L1 boot code, because tmcc adds a
number of options and libraries by default to the linker command line. This step just
veriÞes that the sum of text, data, data1, and bss section sizes is less than 2K bytes.

IMPORTANT

It is important that l1start.o appears first in the link command before
all other files that are linked. ▲

3. Relocate the executable and produce a memory image.

The executable l1.out produced in Step 2 has text, data, data1, and bss sections. In
addition, it contains information about the executable itself. To generate a memory
image, you must specify the load start address and the memory size and pass the -mi
option to tmld. This concatenates the text, data, data1, and bss sections and produces a
memory image. You must also deÞne __clock_freq_init, __MMIO_base_init,
and __begin_stack_init as download parameters (-bdownload
__clock_freq_init etc.) and then define their values (-tm_freq 100000000 defines
the TM1000 clock frequency as 100 MHz). If you use a TM1 IREF board with an 80
MHz TM1.1 chip, change this option to -tm_freq 80000000. Ensure that l1start.o is
the Þrst Þle in the list of Þles linked. This is because TM1000 starts execution at
SDRAM BASE) and you want the startup code __start to be located at that address.

In the above example, memory starts at 0 and the size is 8 MB.

tmld -eb -o l1.out l1start.o l1main.o

tmsize l1.out

tmld -eb -o "l1.mi" -bdownload __clock_freq_init -mi \

-bdownload __MMIO_base_init \

-bdownload __begin_stack_init \

-exec -start=__L1start -tm_freq 100000000 \

-mmio_base 0xEFE00000 \

-load=0,0x800000 l1start.o l1main.o

Chapter 1:

Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page

1-5

Note

__clock_freq_init is required because the TM1000 device libraries rely on
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-5

this definition of the clock frequency to determine things like the number
of ticks in a microsecond or the proper control value to set the video
clock to 27MHz.

4. Add a 47-byte header to the memory image, swap the bytes in the L1 boot program,
and produce the L1 EEPROM image. Swapping bytes of the L1 boot program is always
needed because of the way the boot block transfers bytes from EEPROM to SDRAM.
The l1rom.c sample program has hard-coded values for the 47-byte header. You might
want to modify l1rom.c and change the Þrst 8 bytes to suit your system. The command
l1rom l1.mi produces the l1.eeprom EEPROM image file, which is a binary file that
you can use to program an EEPROM part such as ATML646 24c16, using an EEPROM
programmer such as BP 1200.

Sample Programs

This chapter includes the following sample programs:

Sample
Programs Description

makefile.unix Makefile for SunOS and HP-UX. It is used to create L1 boot code,
L2 code, EEPROM image, etc. The TCS and CC macros need to
be customized for the particular compilation host platform.

makefile.win Makefile for MKS Make on Windows 95/NT. It is used to create L1
boot code, L2 code, EEPROM image, etc. The TCS and CC
macros need to be customized for the particular compilation host
platform.

l1start.trees
These 2 files form the L1 boot code.

l1main.c

l1rom.c This program is built as a host shell command. It is used to create
the L1 EEPROM image.

vivot.c This file forms the L2 code (plus standard device libraries).

seeval.c If you are using the SEEVAL EEPROM programmer, you need this.
If not, ignore this file.

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-6

makefile.unix
1-6 Sample Programs ©1998 Philips Semiconductors 6/21/98

--
L2 program must be compiled to have a load address of
L2_LOAD_ADDR, since L2_LOAD_ADDR is used in l1main.c
--

CP = /bin/cp
MV = /bin/mv
RM = /bin/rm
CC = /t/lang/acc

TCS = /t/qasoft/build/tcs1.1z/1054/SunOS
TMCC = $(TCS)/bin/tmcc
TMLD = $(TCS)/bin/tmld
TMSIZE = $(TCS)/bin/tmsize

L1ROM = l1rom

MMIO_BASE = 0xefe00000
SDRAM_BASE = 0x0
SDRAM_LIMIT = 0x800000
TM_FREQ = 100000000

--
L1 boot program can be 2048 bytes long atmost.
L2_LOAD_ADDR is the next cache aligned address, i.e 2112
--

L2_LOAD_ADDR = 2112
L2_CODE_SIZE = 150000
L2_ROM_DEV_ADDR = 0xffc00000

ENDIAN = -el

L1_CFLAGS = -v $(ENDIAN) -host nohost \
 -DL2_LOAD_ADDR=$(L2_LOAD_ADDR) \
 -DL2_CODE_SIZE=$(L2_CODE_SIZE) \
 -DL2_ROM_DEV_ADDR=$(L2_ROM_DEV_ADDR)

L1_LDFLAGS = $(ENDIAN) -btype boot \
 -bdownload __clock_freq_init \
 -bdownload __MMIO_base_init \
 -bdownload __begin_stack_init \
 -exec -start=__start

L1_MIFLAGS = $(ENDIAN) \
 -bdownload __clock_freq_init \
 -bdownload __MMIO_base_init \
 -bdownload __begin_stack_init \
 -mi -exec -start=__start \
 -tm_freq $(TM_FREQ) \
 -mmio_base $(MMIO_BASE) \
 -load=$(SDRAM_BASE),$(SDRAM_LIMIT)

L2_CFLAGS = -v $(ENDIAN) -I$(TCS)/include/Win95 \
 -host nohost \

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-7

 -DMMIO_BASE_ADDR=$(MMIO_BASE)
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-7

L2_MIFLAGS = $(ENDIAN) \
 -bdownload __clock_freq_init \
 -mi -exec -start=__start \
 -tm_freq $(TM_FREQ) \
 -mmio_base $(MMIO_BASE) \
 -load=$(L2_LOAD_ADDR),$(SDRAM_LIMIT)

--

l1.out: l1start.trees l1main.c
 @echo ""
 @echo making $@
 $(RM) -f l1start.t
 $(CP) l1start.trees l1start.t
 $(TMCC) -x $(L1_CFLAGS) -c l1start.t l1main.c
 $(TMLD) $(L1_LDFLAGS) -o $@ l1start.o l1main.o
 $(TMSIZE) $@

l1.mi: l1start.trees l1main.c
 @echo ""
 @echo making $@
 $(RM) -f l1start.t
 $(CP) l1start.trees l1start.t
 $(TMCC) -x $(L1_CFLAGS) -c l1start.t l1main.c
 $(TMLD) -o $@ $(L1_MIFLAGS) l1start.o l1main.o

l1.eeprom: l1.mi $(L1ROM)
 @echo ""
 @echo "Adding 47 bytes autoboot protocol header and swapping bytes"
 $(L1ROM) l1.mi

$(L1ROM): l1rom.c
 @echo ""
 @echo making $@
 $(CC) -o $@ -DSDRAM_BASE=$(SDRAM_BASE) -DSDRAM_LIMIT=$(SDRAM_LIMIT)

l1rom.c

--

vivot.out: vivot.c
 $(TMCC) $(L2_CFLAGS) -o $@ vivot.c

vivot.mi: vivot.c
 $(TMCC) $(L2_CFLAGS) -o $@ -tmld $(L2_MIFLAGS) -- vivot.c

--

clean:
 $(RM) -f $(L1ROM) *.o *.t *.i *.s *.eeprom *.out *.mi *.dump

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-8

makefile.win
1-8 Sample Programs ©1998 Philips Semiconductors 6/21/98

--
L2 program must be compiled to have a load address of
L2_LOAD_ADDR, since L2_LOAD_ADDR is used in l1main.c
--

CP = cp
MV = mv
RM = rm
CC = cc

TCS = C:/TriMedia
TMCC = $(TCS)/bin/tmcc
TMLD = $(TCS)/bin/tmld
TMSIZE = $(TCS)/bin/tmsize
L1ROM = l1rom.exe

MMIO_BASE = 0xefe00000
SDRAM_BASE = 0x0
SDRAM_LIMIT = 0x800000
TM_FREQ = 100000000

--
L1 boot program can be 2048 bytes long atmost.
L2_LOAD_ADDR is the next cache aligned address, i.e 2112
--

L2_LOAD_ADDR = 2112
L2_CODE_SIZE = 150000
L2_ROM_DEV_ADDR = 0xffc00000

ENDIAN = -el

L1_CFLAGS = -v $(ENDIAN) -host nohost \
 -DL2_LOAD_ADDR=$(L2_LOAD_ADDR) \
 -DL2_CODE_SIZE=$(L2_CODE_SIZE) \
 -DL2_ROM_DEV_ADDR=$(L2_ROM_DEV_ADDR)

L1_LDFLAGS = $(ENDIAN) -btype boot \
 -bdownload __clock_freq_init \
 -bdownload __MMIO_base_init \
 -bdownload __begin_stack_init \
 -exec -start=__start

L1_MIFLAGS = $(ENDIAN) \
 -bdownload __clock_freq_init \
 -bdownload __MMIO_base_init \
 -bdownload __begin_stack_init \
 -mi -exec -start=__start \
 -tm_freq $(TM_FREQ) \
 -mmio_base $(MMIO_BASE) \
 -load=$(SDRAM_BASE),$(SDRAM_LIMIT)

L2_CFLAGS = -v $(ENDIAN) -I$(TCS)/include/Win95 \
 -host nohost \
 -DMMIO_BASE_ADDR=$(MMIO_BASE)

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-9

L2_MIFLAGS = $(ENDIAN) \
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-9

 -bdownload __clock_freq_init \
 -mi -exec -start=__start \
 -tm_freq $(TM_FREQ) \
 -mmio_base $(MMIO_BASE) \
 -load=$(L2_LOAD_ADDR),$(SDRAM_LIMIT)

--

l1.out: l1start.trees l1main.c
 @echo ""
 @echo making $@
 $(RM) -f l1start.t
 $(CP) l1start.trees l1start.t
 $(TMCC) -x $(L1_CFLAGS) -c l1start.t l1main.c
 $(TMLD) $(L1_LDFLAGS) -o $@ l1start.o l1main.o
 $(TMSIZE) $@

l1.mi: l1start.trees l1main.c
 @echo ""
 @echo making $@
 $(RM) -f l1start.t
 $(CP) l1start.trees l1start.t
 $(TMCC) -x $(L1_CFLAGS) -c l1start.t l1main.c
 $(TMLD) -o $@ $(L1_MIFLAGS) l1start.o l1main.o

l1.eeprom: l1.mi $(L1ROM)
 @echo ""
 @echo "Adding 47 bytes autoboot protocol header and swapping bytes"
 $(L1ROM) l1.mi

$(L1ROM): l1rom.c
 @echo ""
 @echo making $@
 $(CC) -o $@ -DSDRAM_BASE=$(SDRAM_BASE) -DSDRAM_LIMIT=$(SDRAM_LIMIT)

l1rom.c

--

vivot.out: vivot.c
 $(TMCC) $(L2_CFLAGS) -o $@ vivot.c

vivot.mi: vivot.c
 $(TMCC) $(L2_CFLAGS) -o $@ -tmld $(L2_MIFLAGS) -- vivot.c

--

clean:
 $(RM) -f $(L1ROM) *.obj *.o *.t *.i *.s *.eeprom *.out *.mi *.dump

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-10

l1main.c
1-10 Sample Programs ©1998 Philips Semiconductors 6/21/98

/*
 * +---+
 * | Copyright (c) 1995,1996,1997 by Philips Semiconductors. |
 * | |
 * | This software is furnished under a license and may only be used |
 * | and copied in accordance with the terms and conditions of such a |
 * | license and with the inclusion of this copyright notice. This |
 * | software or any other copies of this software may not be provided |
 * | or otherwise made available to any other person. The ownership |
 * | and title of this software is not transferred. |
 * | |
 * | The information in this software is subject to change without |
 * | any prior notice and should not be construed as a commitment by |
 * | Philips Semiconductors. |
 * | |
 * | This code and information is provided "as is" without any |
 * | warranty of any kind, either expressed or implied, including but |
 * | not limited to the implied warranties of merchantability and/or |
 * | fitness for any particular purpose. |
 * +---+
 *
 * Module name : l1main.c
 *
 * Module type : IMPLEMENTATION
 *
 * Title : L1 boot code
 *
 * Last update : 15 July 1997
 *
 * Description :
 *
 * L1 boot code.
 * Copies L2 code from a PCI-slave UVEPROM
 */

#include <tm1/mmio.h>

/* downloader symbols */
/* Patched when creating a memory image file using tmld */

extern long _clock_freq_init[];
extern unsigned int _begin_stack_init[];
extern unsigned int _MMIO_base_init[];

/* MACROS */

#define CACHE_BL_SIZE 64
#define VO_FREQUENCY 27000000.0 /* 27 MHz */

/* globals */

unsigned long _clock_freq = (unsigned long) _clock_freq_init;
volatile UInt32 *_MMIO_base = (volatile UInt32 *) _MMIO_base_init;

custom_op void dcb (unsigned, int);

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-11

custom_op void dinvalid (unsigned, int);
custom_op void iclr (void);
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-11

/* local variables */

volatile static unsigned int dummy;

/*
 * copyback_dcache (unsigned addr, int nbytes)
 * 1. addr must be cache aligned.
 * This function flushes nbytes starting at addr to memory.
 *
 * L1 boot code copies L2 code from some device
 * This needs to be flushed to memory before jumping to the
 * L2 load address
 *
 */

static void
copyback_dcache(unsigned addr, int n)
{
 int i;

 for (i = 0; i < n; i = i + CACHE_BL_SIZE)
 dcb(0, addr + (unsigned) i);

}

/*
 * iclr is in a separate function to ensure that it is in a
 * dtree by itself
 */

static void
clear_icache(void)
{
 iclr();
}

/* Copies L2 code via JTAG to SDRAM */

unsigned int L1main ()
{

 int i;
 unsigned char byte;
 unsigned int *base_addr = (unsigned int *) L2_ROM_DEV_ADDR;
 unsigned char *load_addr = (unsigned char *) L2_LOAD_ADDR;

#if 0

 /* Not needed for TM1s 1.1 chip.
 * In previous versions, autoboot leaves IIC in stuck state.
 * Steps 1, 2, and 3 will reset IIC.
 */

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-12

 /* Step 1: Set up VO clock */
 MMIO(VO_CLOCK) = (unsigned int) (0.5 + (1431655765.0 *
1-12 Sample Programs ©1998 Philips Semiconductors 6/21/98

 VO_FREQUENCY / _clock_freq));
 MMIO(VO_CTL) = 0x02700000;

 /* and wait for vo clock to stabilize */
 for (i = 0; i < 1000 * 1000; i++)

dummy++;

 /* Step 2. Toggle I2C control */
 MMIO(IIC_CTL) = 0;
 MMIO(IIC_CTL) = 0x03c00001;

 /* Step 3. Single I2C read and throw away */
 MMIO(IIC_AR) = 0x71000100;
 dummy = MMIO(IIC_DR);

#endif

 /* Load L2 code from an attached PCI device */

 /* start copying of L2 code to sdram */
 /* Assumes TM1 debug board schematics.
 * Assumes L2 program is in a single UVEPROM plugged into
 * byte 3 slot. The other 3 slots (which supply bytes 0, 1, and 2
 * of a word loaded from PCI) are empty.
 */

 for (i=0; i < L2_CODE_SIZE; i++) {
#ifdef __BIG_ENDIAN__
 byte = base_addr[i] & 0xFF;
#else
 byte = (base_addr[i] >> 24) & 0xFF;
#endif
 load_addr[i] = byte;
 }

 /* flush data cache */
 copyback_dcache(L2_LOAD_ADDR, L2_CODE_SIZE);

 /* clear any interrupts */
 MMIO(ICLEAR) = 0xffffffff;

 clear_icache();
 /*
 * Return from L1main() causes L2 code to be executed.
 */
 return L2_LOAD_ADDR;
}

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-13

l1rom.c
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-13

/*
 * copyright (c) 1995,1996,1997 by Philips Semiconductors
 *
 * +---+
 * | This software is furnished under a license and may only be used |
 * | and copied in accordance with the terms and conditions of such |
 * | a license and with the inclusion of the this copy right notice. |
 * | this software or any other copies of this software may not be |
 * | provided or otherwise made available to any other person. The |
 * | ownership and title of this software is not transferred. |
 * +---+
 *
 * Module name:
 * l1rom.c
 *
 * Author:
 * Renga Sundararajan
 * renga.sundararajan@sv.sc.philips.com
 *
 * Description:
 * Generates an EEPROM image (binary file)
 *
 * Input:
 * f.mi - generated using -mi option of tmld
 *
 * Output:
 * f.eeprom
 * f.eeprom contains 47 header bytes as required by
 * TM1 autoboot protocol, followed by the program bytes
 * (bytes are swapped as required by boot)
 *
 * Assumption:
 * 1. f.mi contains less than 2001 bytes, divisible by four
 * (as required by the boot protocol).
 * 2. short is 2 bytes.
 *
 * Update History:
 * May 23, 1998 Modify to accept SDRAM_BASE and SDRAM_LIMIT
 * macros values from the Makefile.
 * rudy.wang@sv.sc.philips.com
 */

#if defined(__sun)
#include <unistd.h>
#endif
#include <sys/stat.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>

#if !defined(SDRAM_BASE) || !defined(SDRAM_LIMIT)

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-14

#error "Macros SDRAM_BASE and SDRAM_LIMIT have to be defined for this file to

build"
1-14 Sample Programs ©1998 Philips Semiconductors 6/21/98

#endif

#define MAX_FILE_SIZE 2000
#define MAX_EPROM_SIZE (1024 * 2)
#define BUF_SIZE MAX_EPROM_SIZE
#define NUM_HEADER_BYTES 47

#define MSB_1ST(n) (unsigned char)(((n) >> 24) & 0xff)
#define MSB_2ND(n) (unsigned char)(((n) >> 16) & 0xff)
#define MSB_3RD(n) (unsigned char)(((n) >> 8) & 0xff)
#define MSB_4TH(n) (unsigned char)((n) & 0xff)

static void
basename(char *fname, char *bname)
{
 char *ptr, *ptr2;
 int i;

 if ((ptr = strrchr(fname, '.')) == NULL) {
 strcpy(bname, fname);
 }
 else {
 for (ptr2 = fname, i = 0; ptr2 != ptr; ptr2++, i++) {
 bname[i] = *ptr2;
 }
 bname[i] = '\0';
 }
}

int
read_file(unsigned char *buffer, char *filename)
{
 FILE *L1fp;
 int L1fd, n, nbytes;
 struct stat file_stat;

 if ((L1fd = open(filename, O_RDONLY)) == -1) {
 fprintf(stderr, "Unable to open file: %s\n", filename);
 fprintf(stderr, "File doesn't exist or not readable\n");
 exit(1);
 }

 if (fstat(L1fd, &file_stat)) {
 fprintf(stderr, "Unable to fstat file: %s\n", filename);
 exit(1);
 }
 nbytes = (unsigned long)file_stat.st_size;
 close(L1fd);

 if ((L1fp = fopen(filename, "rb")) == NULL) {
 fprintf(stderr, "Unable to open file: %s\n", filename);
 fprintf(stderr, "File doesn't exist or not readable\n");
 exit(1);
 }

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-15

 if (nbytes > MAX_FILE_SIZE) {
 fprintf(stderr, "File has %5d bytes. must be less than %5d bytes\n",
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-15

 nbytes, MAX_FILE_SIZE);
 exit(1);
 }

 n = fread(buffer, 1, nbytes, L1fp);
 if (n != nbytes) {
 fprintf(stderr, "Unable to read %5d bytes, error no: %5d\n",
 nbytes, errno);
 exit(1);
 }

 fprintf(stderr, " Program Size: %5d bytes\n", nbytes);
 return nbytes;
}

/*
 * Header bytes are hard-coded. Read the TM-1 boot block paper
 * to see what needs to go in here for AUTO boot.
 */
int
output_eeprom_header(int nbytes, unsigned char obuffer[])
{
 int i = 0;

 /* Output eeprom header bytes 0 thru 46, as per
 * Chapter 12 of TM 1000 Data Book (April 1997 edition).
 * These go into output array index 0 onwards
 */

 /* 0xc8 for 50 and 40 MHz TRI_CLKIN. 0xcc for 33 MHz */

 obuffer[i++] = 0xc8; /* 0 */

 /* Sub-system Id */

 obuffer[i++] = 0x00; /* 1 */
 obuffer[i++] = 0x03; /* 2 */

 /* Sub-system Vendor Id */

 obuffer[i++] = 0x11; /* 3 */
 obuffer[i++] = 0x31; /* 4 */

 /* Bytes 5 6 7: MM Config register */

 /*
 * Byte 6 and 4 bits of byte 7 determine refresh rate.
 * The refresh rate is 4c4 for 80MHz sdram clock, 384 for 60 Mhz.
 * Use Table 11-10 Refresh Intervals of TM 1000 Preliminary Data
 * for other SDRAM clock speeds and interpolate for speeds not
 * mentioned in that table
 */

 obuffer[i++] = 0x00; /* 5 */
 obuffer[i++] = 0x4c; /* 6 */

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-16

 obuffer[i++] = 0x44; /* 7 */
1-16 Sample Programs ©1998 Philips Semiconductors 6/21/98

 /* Byte 8: PLL Ratios */

 obuffer[i++] = 0x00; /* 8 */

 /*
 * Byte 9: Most significant bit is 1 for stand-alone boot
 * Least 3 bits of byte 9 and 8 bits of byte 10 determine
 * L1 boot program code size. 11 bits == 2K bytes at most
 */

 obuffer[i++] = (0x80 | ((nbytes >> 8) & 0x7));
 obuffer[i++] = (nbytes & 0xfc);

 /* MMIO base register address, MSB first */
 obuffer[i++] = 0xef; /* 11 */
 obuffer[i++] = 0xf0; /* 12 */
 obuffer[i++] = 0x04; /* 13 */
 obuffer[i++] = 0x00; /* 14 */
 /* MMIO base register value, MSB first */
 obuffer[i++] = 0xef; /* 15 */
 obuffer[i++] = 0xe0; /* 16 */
 obuffer[i++] = 0x00; /* 17 */
 obuffer[i++] = 0x00; /* 18 */

 /* DRAM base register address, MSB first */
 obuffer[i++] = 0xef; /* 19 */
 obuffer[i++] = 0xf0; /* 20 */
 obuffer[i++] = 0x00; /* 21 */
 obuffer[i++] = 0x00; /* 22 */
 /* DRAM base register value, MSB first */
 obuffer[i++] = MSB_1ST(SDRAM_BASE); /* 23 */
 obuffer[i++] = MSB_2ND(SDRAM_BASE); /* 24 */
 obuffer[i++] = MSB_3RD(SDRAM_BASE); /* 25 */
 obuffer[i++] = MSB_4TH(SDRAM_BASE); /* 26 */

 /* DRAM limit register address, MSB first */
 obuffer[i++] = 0xef; /* 27 */
 obuffer[i++] = 0xf0; /* 28 */
 obuffer[i++] = 0x00; /* 29 */
 obuffer[i++] = 0x04; /* 30 */
 /* DRAM limit register value, MSB first */
 obuffer[i++] = MSB_1ST(SDRAM_LIMIT); /* 31 */
 obuffer[i++] = MSB_2ND(SDRAM_LIMIT); /* 32 */
 obuffer[i++] = MSB_3RD(SDRAM_LIMIT); /* 33 */
 obuffer[i++] = MSB_4TH(SDRAM_LIMIT); /* 34 */

 /* DRAM cacheable limit reg address, MSB first */
 obuffer[i++] = 0xef; /* 35 */
 obuffer[i++] = 0xf0; /* 36 */
 obuffer[i++] = 0x00; /* 37 */
 obuffer[i++] = 0x08; /* 38 */
 /* DRAM cacheable limit reg value, MSB first */
 obuffer[i++] = MSB_1ST(SDRAM_LIMIT); /* 39 */ /* assumes to be the same as

SDRAM_LIMIT */
 obuffer[i++] = MSB_2ND(SDRAM_LIMIT); /* 40 */

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-17

 obuffer[i++] = MSB_3RD(SDRAM_LIMIT); /* 41 */
 obuffer[i++] = MSB_4TH(SDRAM_LIMIT); /* 42 */
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-17

 /* DRAM base reg value, MSB first */
 obuffer[i++] = MSB_1ST(SDRAM_BASE); /* 43 */
 obuffer[i++] = MSB_2ND(SDRAM_BASE); /* 44 */
 obuffer[i++] = MSB_3RD(SDRAM_BASE); /* 45 */
 obuffer[i++] = MSB_4TH(SDRAM_BASE); /* 46 */

 if (i != NUM_HEADER_BYTES) {
 fprintf(stderr, "Error: header bytes count = %5d, shd be %5d\n",
 i, NUM_HEADER_BYTES);
 exit(1);
 }
 fprintf(stderr, "EEPROM Header Size: %5d bytes\n", NUM_HEADER_BYTES);

 return i;
}

int
main(int argc, char **argv)
{
 int i, j, file_size;
 int header_bytes;
 FILE *fp;
 char *o_file_name, *cp;
 unsigned char ibuffer[BUF_SIZE] = {0};
 unsigned char obuffer[BUF_SIZE] = {0};

 if (argc < 2) {
 fprintf(stderr, "Usage: l1prom file.mi \n");
 exit(1);
 }

 /* find output file name */

 i = strlen(argv[1]);

 /* .eeprom extension needs 7+1 chars */
 o_file_name = (char *)malloc(i+8);
 if (o_file_name == NULL) {
 fprintf(stderr, "unable to malloc\n");
 exit(1);
 }

 /* skip all directory names */

 if ((cp = strrchr(argv[1], '/')) == NULL) {
 cp = argv[1];
 }
 basename(cp, o_file_name);
 i = strlen(o_file_name);
 o_file_name[i++] = '.';
 o_file_name[i++] = 'e';
 o_file_name[i++] = 'e';
 o_file_name[i++] = 'p';
 o_file_name[i++] = 'r';

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-18

 o_file_name[i++] = 'o';
 o_file_name[i++] = 'm';
1-18 Sample Programs ©1998 Philips Semiconductors 6/21/98

 o_file_name[i++] = '\0';

 if ((fp = fopen(o_file_name, "wb")) == NULL) {
 fprintf(stderr, "Could not open (binary) file %s for write\n",
 o_file_name);
 exit(1);
 }

 file_size = read_file(ibuffer, argv[1]);

 header_bytes = output_eeprom_header(file_size, obuffer);

 /*
 * Output 4 bytes at a time.
 * Swap the byte ordering since boot block expects
 * words in eeprom to have MSB first and LSB last.
 */

 for (i = header_bytes; i < file_size + header_bytes; i += 4) {
 obuffer[i] = ibuffer[i+3-header_bytes];
 obuffer[i+1] = ibuffer[i+2-header_bytes];
 obuffer[i+2] = ibuffer[i+1-header_bytes];
 obuffer[i+3] = ibuffer[i-header_bytes];
 }

 j = fwrite(obuffer, sizeof(char), file_size + header_bytes, fp);
 if (j != file_size + header_bytes) {
 fprintf(stderr, "Unable to write %5d bytes. Wrote %5d \n",
 file_size + header_bytes);
 exit(1);
 }

 close(fp);
 return 0;
}

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-19

l1start.trees
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-19

(*

 * +---+

 * | Copyright (c) 1995,1996,1997 by Philips Semiconductors. |

 * | |

 * | This software is furnished under a license and may only be used |

 * | and copied in accordance with the terms and conditions of such a |

 * | license and with the inclusion of this copyright notice. This |

 * | software or any other copies of this software may not be provided |

 * | or otherwise made available to any other person. The ownership |

 * | and title of this software is not transferred. |

 * | |

 * | The information in this software is subject to change without |

 * | any prior notice and should not be construed as a commitment by |

 * | Philips Semiconductors. |

 * | |

 * | This code and information is provided "as is" without any |

 * | warranty of any kind, either expressed or implied, including but |

 * | not limited to the implied warranties of merchantability and/or |

 * | fitness for any particular purpose. |

 * +---+

 *)

(*

 * Module name : l1.trees

 *

 * Title : L1 startup code

 *

 * Last update : Tue Jul 15 09:53:10 PDT 1997

 *

 *)

(*---*)

(* Copy this file to l1start.t and then compile as tmcc -x l1start.t *)

(* Compile this file with tmcc -x

 * The -x flag tells tmcc to run cpp on this file before assembly.

 * The -el or -eb option causes tmcc to define cpp flag

 * __LITTLE_ENDIAN__ or __BIG_ENDIAN__

 * and the right INITIAL_PCSW_VALUE and INITIAL_BIU_CTL_VALUE get used.

 *

 * Running cpp on this file (via tmcc) also causes

 * symbolic constants such as BIU_CTL etc to be resolved

 * (these are defined in TCS_INSTAL_DIR/tm1/mmio.h).

 *)

#define __TMAS__

#include <tm1/mmio.h>

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-20

(*---*)
1-20 Sample Programs ©1998 Philips Semiconductors 6/21/98

#ifdef __BIG_ENDIAN__

#define INITIAL_PCSW_VALUE 0x0800 (* S *)

#define INITIAL_BIU_CTL_VALUE 0x0200 (* Host nable *)

#else

#define INITIAL_PCSW_VALUE 0x0A00 (* CS + Byte Sex *)

#define INITIAL_BIU_CTL_VALUE 0x0201 (* Host Enable + Byte Swap Enable *)

#endif

(*--*)

.text

.global __start

 .global _L1main (* defined in l1main.c *)

__start:

___start_DT_0:

entree(0)

.treeinfo regmask "0x00000000000000000fffffffffffffff";

 (* iclr just to be sure *)

10 iclr;

 20 uimm (INITIAL_PCSW_VALUE);

 21 uimm (-1);

 22 writepcsw 20 21;

(* set up stack: FP and SP *)

30 uimm (__begin_stack_init);

 33 wrreg (3) 30;

 34 wrreg (4) 30;

(* set up return pointer *)

 40 uimm(___start_DT_1);

 41 wrreg (2) 40;

(* configure BIU CTL *)

 50 uimm (BIU_CTL);

51 uimm (__MMIO_base_init);

 52 iadd 50 51;

 53 uimm (INITIAL_BIU_CTL_VALUE);

 54 st32 52 53;

gotree {_L1main}

endtree

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

1

Cookbook Part 3 01_AUTO.FM5 Page 1-21

(* Control returns to ___start_DT_1 when L1main() is done with loading
©1998 Philips Semiconductors 6/21/98 Sample Programs 1-21

 * L2 code into SDRAM. Jump to L2_LOAD_ADDR

 * returned in register 5

 *)

___start_DT_1:

entree(0)

.treeinfo regmask "0x00000000000000000fffffffffffffff";

 12 rdreg (5); (* L2 Load Address *)

 cgoto 12

endtree

Chapter 1: Bootstrapping TriMedia in Autonomous Mode

Cookbook Part 3 01_AUTO.FM5 Page 1-22
1-22 Sample Programs ©1998 Philips Semiconductors 6/21/98

Cookbook Part 3 02_HOST.FM5 Page 2-1
2: Host-Assisted Mode, Bootstrapping TriMedia in
2

Chapter 2
©1998 Philips Semiconductors 6/21/98 2-1

Bootstrapping TriMedia in Host-Assisted
Mode 2

Topic Page

TriMedia Initialization in Host Assisted Mode 2-2

Overview 2-3

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-2

TriMedia Initialization in Host Assisted Mode
2-2 TriMedia Initialization in Host Assisted Mode ©1998 Philips Semiconductors 6/21/98

The purpose of this document is to explain how the IREF board gets initialized in host
assisted mode. In this mode the program is downloaded using the PCI bus. Host processor
control over the program is ensured by writing to the PCI bus using the MMIO registers.
Host assisted mode corresponds to a tmcc command line with the -host Win95, -host
WinNT, or -host MacOS options.

The TriMedia processor begins in reset and is initialized as a result of actions by the host.
The initial state of the processor is deÞned by the Þrst 10 bytes of the EEPROM.

The processor state is initialized as the result of actions in several places. These include:
the plug and play BIOS, the OS conÞguration manager, a kernel driver, and the user
program. On Windows 95, the kernel driver is vtmman.vxd and the user program is
tmgmon.exe.

The information in this document is useful for anyone that needs to understand the
TriMedia processor at a systems level.

For more information about the TM-1000 implementation of PCI, refer to chapter 10 of
the databook. Figure 10-2 explains the PCI conÞguration registers. Chapter 12 describes
the boot process. You may want to refer to the sections on the host assisted boot and on the
EEPROM format.

You may also want to refer to the document PCI design Issues for Windows 95, and
Windows NT, Microsoft Corporation, 1/25/95 (rev 1.0) for more information on PCI
conÞguration in a PC environment.

For more information about the PCI local bus, refer to the PCI Local Bus SpeciÞcation,
version 2.1, available from the PCI consortium, tel: (503) 797 4207, fax (503) 234 6762.

For information about Microsoft Visual C++ (MSVC++) command line options, type:

For information about Microsoft LINK command line options, type:

For information about the downloader library, see <tmlib/TMDownloader.h>.

For information about the TMMAN API read the TriMedia Software Reference. You can
also refer to the <Win95/tmman32.h> and <Win95/tmwincom.h> header Þles in the
release.

For information about the object Þle format and section types, refer to the tmld man page.

cl /help

link /help

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-3

Overview
©1998 Philips Semiconductors 6/21/98 Overview 2-3

Figure 2-1

Figure 2-1 gives an overview of a typical host assisted system. The BIU (Bus Interface
Unit) and the PCI chipset on the IREF board are equivalents.

In a host assisted system, the TM-1000 is initialized over the PCI bus. A Pentium is being
used in the example above.

Essentially, booting TriMedia in host assisted mode requires nothing more than loading a
boot image into memory and taking the processor out of reset. This can be done by
clearing BIU set reset and setting clear reset. However, several things do complicate
matters.

First of all, the base address of the DRAM on the board and the MMIO registers is not
Þxed but determined at system startup. This is because of the plug and play nature of the
PCI bus and it is done in the BIOS and the OS. Finding out the actual addresses assigned
requires querying the OS conÞguration manager. Under Windows this is done by tmman.

Secondly, the DRAM and the MMIO on the board needs to be mapped in virtual memory
for the Pentium processor to access it. Under Windows, this requires a kernel mode driver.

Thirdly, the TriMedia downloader library must be used to construct the boot image. There
are three reasons for this.

■ The linker output is relocatable and needs to be made absolute.

Extension Cards Motherboard IREF Card

Pentium MMU
L1 Cache

L2 Cache

PCI Chipset

DIMMs
Host

SDRAM

VGAEthernet

Target SDRAM

(Cache)
TM-1000 CPU

(BIU)

7111

7125

PCI Bus

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-4

■ Symbols in the boot image needs to be patched for it to work. For example, for the
processor to access its own registers MMIO_base needs to be patched.
2-4 Overview ©1998 Philips Semiconductors 6/21/98

■ Special treatment is needed for cache locked and uncacheable memory and for shared
sections for multiprocessors.

The downloader library depends on the object format library to read the executable. The
same downloader is used to load boot images, applications and TriMedia dynamic linked
libraries (dlls). For multiprocessors, processors are loaded individually and a shared
section table is used for global addresses.

 TM-1000 ANSI POSIX Microsoft C I/O
 C library C runtime
 Application Model server

 RPC Client TM1 IF
 TM1 IF RPC Serv
 tmman tmman

 <------------ PCI bus ----------------->

Figure 2-2

Fourthly, more functionality is required for system services (Þles, I/O) Figure 2 shows
how system calls on the host are implemented.

I/O calls in the ANSI C library are mapped to system calls. They are transmitted as remote
procedure calls (RPCs) using tmman to the host. On the host, the call is executed using the
C run time server. Microsoft I/O is used for access to console windows and for Þles that
can be redirected. Implementing RPC requires the ability to install an interrupt handler on
the host.

The IPENDING, IMASK, and ICLEAR MMIO registers can be programmed on the host
to generate a host -> TriMedia interrupt dynamically. The interrupt vectors can be
reprogrammed also. Interrupt pin A is used for TriMedia -> host interrupts. For more
information, see chapters 3 and 10 of the databook.

The way downloading works means that a boot image that has been constructed in
memory can be written to disk and executed simply by restoring and clearing reset.

Plug and Play BIOS
The PC BIOS allocates base addresses and interrupts for all cards using

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-5

a technique called "plug and play". The interrupt vector is allocated by the plug and
play BIOS also.
©1998 Philips Semiconductors 6/21/98 Overview 2-5

The following elements of the PCI conÞguration are signiÞcant. For retrieving these
parameters, please refer to the PCI speciÞcation. The command DOSPCI in the bin
directory of the Win95 release can be used to read the PCI registers. Here is an example.

The PCI speciÞcation identiÞes peripherals using a device ID, vendor ID. The device ID
identiÞes the silicon. The device for TM-1000 is 5400 and the vendor ID is 1131 (Philips).

The 8 lower bits identify the CPU version (TM1, TM1S). Bits 7-6 indicate the fab. ST
(Crolles) is 00, MOS4 is 01, TSMC, is 10, and 11 is unused. Bits 5-4 indicates the all layer
revision. CTC/TM1 is 00, TM1S is 01, TM1C is 10, and 11 is unused. The four last bits
indicates the metal layer revision. 0000 is revision 0.

During startup, the card is accessed using the slot number of the PCI board in PCI
conÞguration space. This is because the address is not allocated yet. PCI cards can have up
to six base addresses. The TM-1000 IREF card has two (MMIO_BASE) and DRAM_BASE,
corresponding to registers 4 and 5, above).

The necessary address range is determined as follows. The BIOS writes all 1's to these
registers. The values that are read back tell the BIOS how much memory needs to be
allocated, and the alignment to use. For example, writing FFFFFFFF and reading back
FF000000 means that 16 megabytes need to be allocated. Natural alignment is enforced
(e.g. 16 megabytes need to be allocated on a 16 megabyte boundary).

Win16 and DOS apps can query the PCI conÞguration space registers using the call int
1A. For more information, refer to the PCI BIOS speciÞcation. Kernel mode applications

 [C:/Trimedia/bin] dospci

 PCI Configuration Tool - Copyright (c) Philips Semiconductors 1996
 PCI VendorID [1131] : DeviceID [5400] : Bus#[00] : Dev#[0e] : Func#[0]
 PCI Reg#[00] : Offset[00] : Value [54001131]
 PCI Reg#[01] : Offset[04] : Value [02000116]
 PCI Reg#[02] : Offset[08] : Value [04800091]
 PCI Reg#[03] : ...

 [C:/Trimedia/bin]

PCI Register 0, bits 0 .. 16 : vendor ID
 bits 16 .. 31 : Device ID

Register 2, bits 0 .. 7 : Revision ID register

Register 4, bits 0 .. 31 : SDRAM Base Physical Address
 Register 5, bits 0 .. 31 : MMIO Base Physical Address

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-6

can query the Win95 conÞguration manager. tmman provides an API to query the address
ranges (tmDSPGetCaps).
2-6 Overview ©1998 Philips Semiconductors 6/21/98

These two Þelds identify the manufacturer and subsystem ID (board ID). They correspond
to bytes 1-4 of the EEPROM. They can be used by software to distinguish between
different boards. Board manufacturers should request a SubSystem Vendor ID from Philips.

To Þnd out how to obtain a board ID, contact TriMedia Customer Support. Once an ID has
been maintained, management of the subsystem space is the board manufacturers
responsibility.

This determines the value to use for host interrupts. Note that TMMAN does not support
sharing of interrupts.

The value in registers 4 and 5, and F are allocated by the PCI BIOS as part of the setup.
The values allocated by the BIOS are used by the Win95 conÞguration manager. The exact
way this is done is documented in "PCI Design Issues for Windows 95 and Windows NT"
(Microsoft Corporation, 1/25/95) (document is available from Microsoft).

Depending on the BIOS, and exact PC conÞguration, plug and play may not always work.
In this case, the conÞguration needs to be changed so that these are not allocated
automatically. This is done using the Windows 95 Device Manager (Start -> Settings ->
Control Panel -> System -> Device Manager). To disable automatic selection of the base
address, the Resources menu needs to be selected and changed. Both the base address and
the interrupt number may need to be allocated manually.

BIU and Interrupt Initialization
The TM-1 processor comes up in big endian mode. Depending on the endianness of the
host processor, the BIU control register needs to be reconÞgured. After this write, all
further accesses should be done in big endian format.

Register B, bits 0 .. 15 SubSystem Vendor ID
 bits 16 .. 31 Subsystem ID

 Register f, bits 0 .. 7 : Interrupt line register.

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-7

On a little endian processor, this write has to be done in big endian format. The BYTESWAP
macro converts the ordering.
©1998 Philips Semiconductors 6/21/98 Overview 2-7

This initializes pointers to the MMIO registers of the different peripherals.

The Windows 95 driver checks whether the BIU control register HE and SE bits are set. If
these bits are not set, it assumes that we are just doing a reboot and that none of the
registers needs to be initialized.

This turns on the BIU byte swap enable bit, host enable, and set reset bits.

The DRAM Limit and DRAM Cacheable Limit registers are set to the end of memory.

Writing zeroes to the IMASK registers ensures that all interrupts are off. Note that if
interrupts need to be generated from the host to the TM processor, then the relevant bits in
IMASK need to be set. Writing all ones to the ICLEAR register ensures that all the pending
interrupts are cleared. For more information. see Figure 3-7 of the databook.

#define BYTESWAP(x)
 ((x) << 24 | ((x) &0xFF00) << 16 | ((x) & 0xFF0000) >> 8 | \
 ((x) & 0xFF000000) >> 24)

VOID halRegisterInit (PVOID pvObject, DWORD dwSDRAMPhys,
DWORD dwSDRAMCacheLimit, DWORD dwMMIOPhys)

{

MMIO.pVIC= dwMMIOBase + 0x100800;
MMIO.pTimers= dwMMIOBase + 0x100c00;
MMIO.pDebug= dwMMIOBase + 0x101000;
MMIO.pBIU= dwMMIOBase + 0x103004;
MMIO.pAudioIn= dwMMIOBase + 0x101c00;
MMIO.pAudioOut = dwMMIOBase + 0x102000;
MMIO.pCache= dwMMIOBase + 0x100000);

 FirstTimeReset = !(MMIO.pBIU->dwBIUControl &(BIU_SE|BIU_HE));

 if (FirstTimeReset)
 MMIO.pBIU->dwBIUControl = BYTESWAP (BIU_SE | BIU_HE | BIU_SR);

 MMIO.pCache->dwDRAMCacheableLimit = dwSDRAMPhys + dwSDRAMSize;
 MMIO.pCache->dwDRAMLimit = dwSDRAMPhys + dwSDRAMSize;

 MMIO.pVIC->dwIMask = 0;
 MMIO.pVIC->dwIClear = 0xFFFFFFFF;

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-8

Putting the processor in reset
2-8 Overview ©1998 Philips Semiconductors 6/21/98

In what follows, Þgure references are to the databook.

The following code from <tmhal.c> puts the processor in a reset state.

Interrupts are masked and pending interrupts are cleared (Figure 3-7 of databook).
Turning off CR (clear reset) and turning on set reset clears the reset.

This resets audio out. PDWORD is a Windows type for a pointer to a double word (32
bits). See Figure 9-6.

This resets audio in. Generally speaking, the most signiÞcant bit in the control register for
a peripheral is reset. See Figure 8-5.

This resets video in and video out. See Figures 6-11 and 7-26.

The Þrst instruction resets the Synchronous Serial Interface (SSI). The two upper most bits
correspond to Transmitter reset and receiver reset. The second leaves the phone on hook
after reset. See Þgure 16-1.

The following code resets the ICP. The loop is executed 10 times, just to make sure.

VOID halDSPStop (PVOID pvObject) {
 MMIO.pVIC->dwIMask = (0x0);
 MMIO.pVIC->dwIClear = 0xffffffff;
 MMIO.pBIU->dwBIUControl &= (~BIU_CR);
 MMIO.pBIU->dwBIUControl |= BIU_SR;

 *((PDWORD)(MMIO.pSpace + AO_CTL)) = 0x80000000;
 *((PDWORD)(MMIO.pSpace + AO_FREQ)) = 0;

 /* audio in AI_CTL */
 *((PDWORD)(MMIO.pSpace + AI_CTL)) = 0x80000000;
 *((PDWORD)(MMIO.pSpace + AI_FREQ)) = 0;

 *((PDWORD)(MMIO.pSpace + VI_CTL)) = 0x00080000;
 *((PDWORD)(MMIO.pSpace + VI_CLOCK)) = 0;
 *((PDWORD)(MMIO.pSpace + VO_CTL)) = 0x80000000;
 *((PDWORD)(MMIO.pSpace + VO_CLOCK)) = 0;

 *((PDWORD)(MMIO.pSpace + SSI_CTL)) = 0xc0000000;
 *((PDWORD)(MMIO.pSpace + SSI_CTL)) = (1 << 18);

 for (Idx= 0 ; Idx < 10 ; Idx ++) {
 if ((*((PDWORD)(MMIO.pSpace + ICP_SR)) & 0x01))
 break;
 (*((PDWORD)(MMIO.pSpace + ICP_SR))) = 0x80;
 }

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-9

The least signiÞcant bit (LSB) corresponds to ICP busy. If the ICP is busy executing
microcode there is no reset. The assignment resets the ICP internal registers on reset. See
©1998 Philips Semiconductors 6/21/98 Overview 2-9

Figure 13-17.

The IIC bus is disabled (Þgure 15-2 of the databook).

The writes a reset command with a count of 1 to the VLD. See Chapter 14.

The RUN bit is turned off in the four timer control registers.

The instruction and data breakpoints are turned off See Figures 3-10 and 3-13.
of the databook).

The JTAG data registers and full bits are cleared. The JTAG interface is put in sleepless
mode. See Þgure 17-3 of the databook.

Taking the processor out of reset
Once the program has been loaded, the following code from tmhal.c will begin
initialization.

This disables interrupts and clear all pending interrupts See Figure 3-7.

 *((PDWORD)(MMIO.pSpace + IIC_CTL)) = 0;

 *((PDWORD)(MMIO.pSpace + VLD_COMMAND)) = 0x00000401;

 *((PDWORD)(MMIO.pSpace + TIMER1_TCTL)) &= ~0x1;
 *((PDWORD)(MMIO.pSpace + TIMER2_TCTL)) &= ~0x1;
 *((PDWORD)(MMIO.pSpace + TIMER3_TCTL)) &= ~0x1;
 *((PDWORD)(MMIO.pSpace + SYSTIMER_TCTL)) &= ~0x1;

 *((PDWORD)(MMIO.pSpace + BICTL)) = 0;
 *((PDWORD)(MMIO.pSpace + BDCTL)) = 0;

 *((PDWORD)(MMIO.pSpace + JTAG_DATA_IN))= 0x0;
 *((PDWORD)(MMIO.pSpace + JTAG_DATA_OUT))= 0x0;
 *((PDWORD)(MMIO.pSpace + JTAG_CTL))= 0x04;

VOID halDSPStart (PVOID pvObject)
{

 MMIO.pVIC->dwIMask = 0;
 MMIO.pVIC->dwIClear = 0xFFFFFFFF;

 MMIO.pBIU->dwBIUControl &= ~BIU_SR;
 MMIO.pBIU->dwBIUControl |= BIU_CR;

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-10

Turning off SR (set reset) and turning on CR (clear reset) in the Bus Interface Unit (BIU)
takes the processor out of reset See Figure 10.6.4.
2-10 Overview ©1998 Philips Semiconductors 6/21/98

The following code determines whether the TriMedia processor is running or not.

tmmprun - multiprocessor download program
tmmprun is intended to run as an independent executable to be started from a PC
command line. Its Þrst argument is the name of a TM-1 executable to be downloaded,
started, and which is passed all additional command line arguments. Between starting the
executable and receiving its termination message, the module behaves as a server for the
HostCall interface.

tmmprun is the driver for the host part of the PC version of the Level 2 Remote
Procedure Call Server (RPCserv). An implementation of this is needed for each particular
host of a TM-1 board which uses TCS's generic ANSI C library.

The tmmprun source consists of three C source Þles, tmmprun.c, tmcrt.c, and unixlib.c.
This is a simpliÞed version of the tmmprun source in the examples directory.

Makefile
The MakeÞle for tmmprun.exe uses the NMAKE utility from Microsoft. Source code for
the makeÞle is shown below. The TCS variable needs to be set to point to the 1.1Y release.
This MakeÞle was designed for Microsoft Visual C++ 4.0 TriMedia Developers Kit.

BOOL halIsTMRunning (void) {
return ((MMIO.pBIU->dwBIUControl & BIU_SR) == 0);

}

SDK = c:\msdev
SDKBIN = $(SDK)\bin
CL = $(SDKBIN)\cl
LINK = $(SDKBIN)\link

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-11

The MakeÞle assumes that Microsoft C++ is installed in C:\msdev (the default location).
©1998 Philips Semiconductors 6/21/98 Overview 2-11

Header files
The Þle <tmlib/tmtypes.h> deÞnes type naming conventions for TriMedia. The Þles
<tmlib/HostCall.h> <tmlib/RPCServ.h>, <tmcrt.h>, <tmif.h>, and <TM1IF.h> are used to
implement access via the C run time library to Þles on the host. The Þle <Win95/
tmman32.h> and <Win95/tmwincom.h> are for access to TMMAN functions. Compiling
the tmmprun application requires header Þles from both Microsoft C and the 1.1Y release.
The Þles <windows.h>, <stdio.h>, <io.h>, <time.h>, <sys\stat.h>, <windows.h>, and
<fcntl.h> are from Microsoft C.

CFLAGS = -W3 -Gs -Zi -Zp4 -c -Od -Ze -nologo

LIBS = kernel32.lib $(TCS)\lib\Win95\tmman32.lib \
 $(TCS)\lib\Win95\host_comm.lib libcmt.lib \
 $(TCS)\lib\Win95\libload.lib

OBJS = tmmprun.obj tmcrt.obj unixlib.obj

tmmprun.exe : $(OBJS)
 $(LINK) @<<tmmprun.lnk

-nodefaultlib
-nologo
-machine:i386
-debug
-debugtype:both
-out:tmmprun.exe
-map:tmmprun.map
-pdb:none
-subsystem:console
-libpath:$(SDK)\lib
$(OBJS)
$(LIBS)

<<

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-12

tmmprun main program
2-12 Overview ©1998 Philips Semiconductors 6/21/98

The main program for tmmprun is shown below.

The syntax is as follows:

With this, Þrst.out will be run on board 0 and second.out on board 1, with arguments
"arg1 arg2 arg3".

Before starting, the version of the TMMAN library (tmman.dll) must be checked for
compatibility. It needs to be present in the search path.

A control C handler is installed to free the resources allocated.

The following code counts the number of DSPs to download to. This corresponds to the
number of "-execs" in the command line.

The tmDSPOPEN call returns a handle for accessing the jth processor. The function can be
called more than once. All future accesses use the handle returned.

int
main(int argc, char *argv[])
{

STATUS Status;
COORD ConsoleSize;
DWORD IdxNode;
CRunTimeParameterBlock CRTParam;
TMSTD_VERSION_INFO Version;
int i, j;

if (argc<3 || _stricmp(argv[1], "-exec"))
 fatal ("bad usage\n");

 tmmprun -exec first.out arg1 arg2 arg3 -exec second.out arg4 arg5

Version.dwMajor = TMMAN_DEFAULT_VERSION_MAJ;
Version.dwMinor = TMMAN_DEFAULT_VERSION_MIN;
if ((Status = tmNegotiateVersion(TMMAN_DEFAULT, &Version))

 != TMOK)
fatal ("**Error: tmNegotiateVersion failed

 (0x%x).\n", Status);

SetConsoleCtrlHandler(tmrunControlHandler, TRUE);

j = 0;

for (i = 1 ; i < argc; i++) {
 if (!_stricmp(argv[i], "-exec")) {
 if (tmDSPOpen(j, &DSPHandle[j]) != TMOK)
 fatal("tmDSPOpen failed, status %x\n", Status);

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-13
©1998 Philips Semiconductors 6/21/98 Overview 2-13

The tmDSPGetCaps call returns the hardware capabilities of the board.

The following structure is deÞned in <Win95/tmman32.h>.

szPCIName is initialized with the ASCII name of the PCI device. dwCPUVersion is
initialized with the revision ID register (see above). Possible values are as follows (hex).
 Fab
 Crolles MOS4 TSMC
 TM1 00 40 80
 TM1.1 01 41 81
 TM1S 10 50 90
 TM1.1S 11 51 91
 TM1C 20 70 A0
 TM1.1C 21 71 A1

The SDRAM and MMIO Þelds deÞne where the Trimedia memory and I/O registers are
mapped. The TMSTD_MEMORY_BLOCK structure is deÞned in <Win95/tmwincom.h>. There
are three values for each (TM-1000 address, Windows address, size).

TMMAN allocates a 4K user page for host target communication. DSPnumber corresponds
to the parameter passed to tmDSPOPEN.

The program to be downloaded needs to be patched with the MMIO addresses of all the
other processors. MMIO.dwPhysical equals MMIO_BASE and PCI conÞguration register 5.
SDRAM.dwPhysical equals DRAM_BASE and PCI conÞguration register 4.

 tmDSPGetCaps (DSPHandle[DSPCount] , &DSPCaps);

typedef struct_TMMAN_DSP_CAPS
{

CHAR szPCIName[TMSTD_NAME_LENGTH];
DWORD dwHWVersion;
DWORD dwCPUVersion;

DWORD dwROMVersion;
TMSTD_MEMORY_BLOCK SDRAM;
TMSTD_MEMORY_BLOCK MMIO;

TMSTD_MEMORY_BLOCK User;
DWORD DSPNumber;

} TMMAN_DSP_CAPS, *PTMMAN_DSP_CAPS;

 MMIOPhysicalAddressArray[DSPCount] =
 DSPCaps.MMIO.dwPhysical;

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-14

SDRAM.dwLinear and MMIO.dwLinear correspond to the address in Windows virtual
memory where these are mapped. SDRAM.dwsize is just DRAM_LIMIT-DRAM_BASE and
2-14 Overview ©1998 Philips Semiconductors 6/21/98

MMIO.dwSize is 2 megabytes.

A shared section table needs to be allocated for downloading to work. The way shared
variables are allocated is to the Þrst processor in the command line order.

The following loop loads a boot image in SDRAM for all processors.

The CreateEvent parameters correspond to not running on workstation 4.0, auto reset
event, initial state is not signalled.

Standard input, output, and error are treated specially.

 j ++;
 }
}

DSPCOUNT = j;
TMDwnLdr_create_shared_section_table(&SharedSections);

cruntimeInit();
IdxNode = 0;

for (i = 2 ; i < argc;) {

 EventArray[IdxNode] = CreateEvent(NULL, FALSE, FALSE,
 NULL);

 assert (EventArray[IdxNode] != INVALID_HANDLE_VALUE) ;

 CRTParam.OptionBitmap = 0;
 CRTParam.StdHandle[0] =

 (DWORD)GetStdHandle(STD_INPUT_HANDLE);
 CRTParam.StdHandle[1] =

 (DWORD)GetStdHandle(STD_OUTPUT_HANDLE);
 CRTParam.StdHandle[2] =

 (DWORD)GetStdHandle(STD_ERROR_HANDLE);

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-15

The next argument should be the Þlename. The program is loaded into memory.
©1998 Philips Semiconductors 6/21/98 Overview 2-15

A RPC server for the node is set up.

At this point code has been copied to the memory of the IREF boards and an RPC client
has been created.

The following loop begins execution on all boards.

 for (j = i; j<argc && _stricmp (argv[j], "-exec"); j++);
 argv[j] = 0;
 Status= tmDSPExecutableLoadEx (

 DSPHandle[IdxNode],
 argv[i],
 DSPCount,
 SharedSections,
 MMIOPhysicalAddressArray);

 if (Status != TMOK)
 fatal ("**Error:

 Can't load %s. (0x%x) \n", argv[i], Status);

 CRTParam.OptionBitmap |=
 constCRunTimeFlagsUseSynchObject;

 CRTParam.SynchronizationObject =
 (DWORD) EventArray[IdxNode];

 CRTParam.VirtualNodeNumber = IdxNode;

 if (!cruntimeCreate
 (IdxNode, j-i, &argv[i],
 &CRTParam, &CRTHandle[IdxNode]))

fatal("\r\nTMRun: ERROR :
 Cannot Initialize C Run Time Server");

 IdxNode++;
 i = j + 1;

}

for (IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++) {
TMMAN_TMCONS_PARAMS TMConsControl;

TMConsControl.fRedirectedStdin = FALSE;
TMConsControl.fRedirectedStdout = FALSE;
TMConsControl.fRedirectedStderr = FALSE;
TMConsControl.fUseWindowSize = FALSE;
TMConsControl.fIgnoreTMCons = TRUE;
TMConsControl.fUseTMMonWindow = FALSE;

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-16

The tmDSPExecutableRun routine just corresponds to a call to the halDSPStart
routine explained above.
2-16 Overview ©1998 Philips Semiconductors 6/21/98

The WaitForMultipleObjects function waits for all the processors to terminate.
shutDown frees the resources that have been allocated.

Using the downloader library
The tmDSPExecutableLoadex routine loads the executable.

The default clock speed is 100 Mhz. The default cache option is to
leave caching to the downloader.

Status = tmDSPExecutableRun
 (DSPHandle[IdxNode],TMMAN_DEFAULT,

&TMConsControl);

if (Status != TMOK)
 fatal("Cannot Start Target

 Executable (0x%x) \n", Status);
}

WaitForMultipleObjects (DSPCount,
 EventArray, TRUE, INFINITE);

shutDown(0);
return 0;

}

STATUS tmDSPExecutableLoadEx (
DWORD DSPHandle,
PCHAR pszImagePath,
DWORD NumberOfDSPs,
TMDwnLdr_SharedSectionTab_Handle SharedSections,
PDWORD MMIOPhysicalAddressArray)

{
PTMSTD_MEMORY_BLOCKpSDRAM;
TMMAN_DSP_CAPS DSPCaps;
TMMAN_DSP_INFO DSPInfo;
TMDwnLdr_Status LoaderStatus;

STATUS Status = TMOK;
DWORD ImageSize;
DWORD Alignment;
DWORD AlignedDownloadAddress;
TMDwnLdr_Object_HandleObjectHandle;
Endian endian;
CHAR szDeviceName[0x10];

DWORD ClockSpeed = 0x5f5e100;/* 100,000,000 */
DWORD CacheOption = TMDwnLdr_LeaveCachingToDownloader;

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-17

The tmDSPGetMiscInfo function gets TMMAN software parameters.
The variable points to the SDRAM address.
©1998 Philips Semiconductors 6/21/98 Overview 2-17

The executable object is loaded into the host processors from the object Þle deÞned by the
Þrst parameter. This loads the object from the Þle. The Þrst parameter is the Þlename. The
object handle is initialized with a pointer to the shared section created in the main
program. If the function is successful, the return value is zero.

The endianness is encoded in the object Þle (big or little endian). TriMedia supports both.
The Windows host is always little endian.

The Windows implementation requires that the program to be executed be little endian.

Communication between the host and the target is done using shared variables. The
function call patches the TMMANSharedPatch variable in the TriMedia executable to point
to a communications area in host memory. This is used for system calls.

tmDSPGetCaps (DSPHandle , &DSPCaps);
tmDSPGetMiscInfo (DSPHandle , &DSPInfo);
pSDRAM = &DSPCaps.SDRAM;

 LoaderStatus = TMDwnLdr_load_object_from_file
 (pszImagePath, SharedSections,
 &ObjectHandle)

if (LoaderStatus)
goto done;

LoaderStatus = TMDwnLdr_get_endian (ObjectHandle, &endian);
if LoaderStatus)

goto unload;

if (endian != LittleEndian) {
 TMDwnLdr_unload_object (ObjectHandle);

return TM_STATUS
 (TMMAN32_ERR_IMAGENOTLITTLEENDIAN);

}

LoaderStatus = TMDwnLdr_resolve_symbol
 (ObjectHandle,
 "_TMMANSharedPatch",
 DSPInfo.TMMANSharedPhys)

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-18

The software status is updated to indicate whether the symbol was found.
2-18 Overview ©1998 Philips Semiconductors 6/21/98

The image size and alignment are extracted from the executable.

The base address of SDRAM is rounded up to the required alignment. The program will
normally be read in at SDRAM base as reset starts there.

The clock speed is read in from tmman.ini. DSPNumber corresponds to the number of the
processor.

The caching options are read in.

DSPInfo.Flags &= ~TMIF_DSPMISCINFO_SYMBOLNOTPATCHED;
if (LoaderStatus)

DSPInfo.Flags |=
 TMIF_DSPMISCINFO_SYMBOLNOTPATCHED;

tmDSPSetMiscInfo (DSPHandle, &DSPInfo);

LoaderStatus = TMDwnLdr_get_image_size
 (ObjectHandle, &ImageSize, &Alignment);

if (LoaderStatus)
goto unload;

AlignedDownloadAddress =
 ((DSPCaps.SDRAM.dwPhysical + Alignment -1) &
 (~(Alignment - 1)));

sprintf (szDeviceName, "Device.%x", DSPCaps.DSPNumber);
ClockSpeed = GetPrivateProfileInt

 (szDeviceName, "ClockSpeed",
 ClockSpeed, "tmman.ini");

CacheOption = GetPrivateProfileInt
 (szDeviceName,"CacheOption",
 CacheOption, "tmman.ini");

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-19

The following function relocates the executable and patches the downloader symbols. The
downloader symbols begin with an underscore ('_') and end with (_init). The symbols are
©1998 Philips Semiconductors 6/21/98 Overview 2-19

patched with the values below.

_begin_stack_init base address of stack
_begin_heap_init base address of heap
_MMIO_base_init MMIO base for the current processor
_MMIO_base<n>_init MMIO base for processor <n>
_host_type_init host type

 (Windows 32 host, standalone, tmsim)
_clock_freq_init clock frequency in Mhz
_segment_list_init segment list
_node_number_init number from 0 to total # of processors - 1
_number_of_nodes_init total # of processors
_do_section_lock locked sections are activated
_locked_data_addr base address of locked sections (data)
_locked_data_size size of locked section (data)
_locked_text_addr base address of locked sections (text)
_locked_text_size size of locked section (text)
_cacheable_limit starting address of non cached memory
_begin_mem this corresponds the beginning load address

 (DRAM BASE)
_end_mem this corresponds the end of memory

 (DRAM limit)

tmWin32Host corresponds to the host_type symbol above.

The array of MMIO base addresses is used to patch the MMIO_base and MMIO_base<n>
symbols (see above)

LoaderStatus = TMDwnLdr_multiproc_relocate (
 ObjectHandle,
 tmWin32Host,

(Address*)MMIOPhysicalAddressArray,

DSPCaps.DSPNumber,
NumberOfDSPs,

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-20

These correspond to node_number and number_of_nodes symbols above.
2-20 Overview ©1998 Philips Semiconductors 6/21/98

These correspond to clock_freq, begin_mem and end_mem symbols above.

The last parameter tells the processor how to relocate. The cache options are the same as
the values deÞned in <TMDownLoader.h>. This corresponds to the enumerated type
<TMDwnLdr_CacheingSupport>. 0 means cachelocked regions and cacheable limit are
entirely under control of the downloader, which will let the downloaded program run with
'cache off'. 1 means the cacheable limit and cachelocked regions are entirely under control
of the user and the downloader/boot code won't touch it. 2 means cachelocked regions
and cachable limit are entirely under control of the downloader, which will use this control
to intelligently map the different cached/uncached/cachelocked sections within the
speciÞed SDRAM, partitioned in different caching property regions, and let the
downloaded program set cacheable limit and cachelocked.

The memory image for the processor is constructed in host memory. The
get_memory_image function copies the data into the SDRAM of the target.

Finally, all resources allocated for the executable are freed. Extracted section group
images and extracted symbol tables are unaffected. The error status is returned, if any.

Unload:

Done:

ClockSpeed,
(Address)AlignedDownloadAddress,
DSPCaps.SDRAM.dwSize,

CacheOption);

 if (LoaderStatus)
goto unload;

LoaderStatus = TMDwnLdr_get_memory_image
 (ObjectHandle,

 (Address)tmPhysToLin
 (AlignedDownloadAddress,
 &DSPCaps.SDRAM);

 TMDwnLdr_unload_object (ObjectHandle);

return TM_STATUS
(TMERR(TM_STATUS_HCOMP_TMLD, LoaderStatus));

}

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-21

The Control C handler code is shown below. It signals the event so that the main program
can terminate. Cleaning up:
©1998 Philips Semiconductors 6/21/98 Overview 2-21

shutDown is called on termination or when an error occurs.

The following call corresponds to the halDSPStop routine explained previously. The loop
is executed for the number of processors.

The RPC server is shut down for the node.

The call to TM1IF_term shuts down RPC entirely.

The shared section table is freed if required.

BOOL WINAPI
tmrunControlHandler(DWORD dwCtrlType)
{
 int IdxNode;

 for (IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++)
 SetEvent(EventArray[IdxNode]);
 return TRUE;
}

void shutDown(status)
{
 DWORD IdxNode;

 for (IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++) {

 tmDSPExecutableStop(DSPHandle[IdxNode]);

 cruntimeDestroy(CRTHandle[IdxNode]);
 if (EventArray[IdxNode])
 CloseHandle(EventArray[IdxNode]);
 if (MMIOPhysicalAddressArray[IdxNode])
 tmDSPClose (DSPHandle[IdxNode]);
 }

 TM1IF_term();

 if (SharedSections)
 TMDwnLdr_unload_shared_section_table(SharedSections);

 SetConsoleCtrlHandler(tmrunControlHandler, FALSE);
 fprintf(stdout, "\nTMRun:Press a key to close server >>");
 getchar();
 exit(status);
 return;
}

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-22

tmcrt.c
2-22 Overview ©1998 Philips Semiconductors 6/21/98

The code to initialize the C runtime library is shown below. The code declares a Þxed
number of entry points which will be called for the corresponding system call.

The following instruction starts the server.

The following routine creates a C runtime instance.

Bool cruntimeInit (void)
{

BOOL ok;
memset(GlobalContext, 0, sizeof(GlobalContext));
if (TM1IF_init(
 (RPCServ_OpenFunc) OpenFunc,
 (RPCServ_OpenDllFunc) OpenDLLFunc,
 (RPCServ_CloseFunc) CloseFunc,
 (RPCServ_ReadFunc) ReadFunc,
 (RPCServ_WriteFunc) WriteFunc,
 (RPCServ_SeekFunc) LseekFunc,
 (RPCServ_IsattyFunc) IsattyFunc,
 (RPCServ_FstatFunc) FstatFunc,
 (RPCServ_FcntlFunc) FcntlFunc,
 (RPCServ_StatFunc) StatFunc,
 (RPCServ_ExitFunc) ExitCodeFunc,
 True /* no big endian support yet */) != True)

return False;

ok = TM1IF_start_serving() != TM1IF_Serving_Failed
if (!ok)

TM1IF_term();
 return ok;
}

UInt32 cruntimeCreate(unsigned nproc,
 unsigned argc,
 char **argv,
 CRunTimeParameterBlock* Parameters,
 unsigned int *CRTHandlePointer)
{

DWORD Written;
UInt32 PathIdx;
static TMCRT_CONTEXT CRT;
PTMCRT_CONTEXT pCRT = &crt;
DWORD ServerStatus;
TMMAN_DSP_CAPS Caps;
CHAR Key[0x10];
CHAR Path[TMSTD_PATH_LENGTH];
TMCRT_STD_HANDLE StdHandle[3];

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-23

Standard input, output and error are common to all processors. The command lines are
processor speciÞc.
©1998 Philips Semiconductors 6/21/98 Overview 2-23

A synchronization object is used to await for all processors to terminate.

tmDSPOpen can be called more than once. Here it is called to get the handle. Calling
tmDSPOpen increments a reference count which tmDSPClose decrements.

The following code creates a console Window, if required.

Standard input, output and error are redirected to the console window.

GlobalContext[Parameters->VirtualNodeNumber] = pCRT;
pCRT->OptionBitmap = Parameters->OptionBitmap;
pCRT->DSPNumber = nproc;
pCRT->StdInHandle = (HANDLE)Parameters->StdInHandle;
pCRT->StdOutHandle = (HANDLE)Parameters->StdOutHandle;
pCRT->StdErrHandle = (HANDLE)Parameters->StdErrHandle;
pCRT->VirtualNodeNumber = Parameters->VirtualNodeNumber;
pCRT->ArgumentCount = argc;
pCRT->ArgumentVector = argv;

pCRT->SynchObject =
 (HANDLE)Parameters->SynchronizationObject;

pCRT->fServerLoaded = FALSE;
pCRT->fTargetExited = FALSE;
pCRT->ExitCode = ~0;

tmDSPOpen (pCRT->DSPNumber , &pCRT->DSPHandle);
tmDSPGetCaps (pCRT->DSPHandle, &Caps) ;
tmDSPClose (pCRT->DSPHandle);

if (pCRT->OptionBitmap & constCRunTimeFlagsAllocConsole) {
AllocConsole();

SetConsoleTitle("TriMedia Console");
if (pCRT->OptionBitmap &

 constCRunTimeFlagsUseWindowSize) {
COORD Coord;
Coord.Y = (WORD)Parameters->WindowSize;
Coord.X = 80;
SetConsoleScreenBufferSize (

 GetStdHandle(STD_OUTPUT_HANDLE), Coord);

}

pCRT->StdHandle[0] = GetStdHandle(STD_INPUT_HANDLE);
pCRT->StdHandle[1] = GetStdHandle(STD_OUTPUT_HANDLE);
pCRT->StdHandle[2] = GetStdHandle(STD_ERROR_HANDLE);

}

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-24

An event is created to signal exit.
2-24 Overview ©1998 Philips Semiconductors 6/21/98

The handle for a Þle descriptor is an integer. Files that are named explicitly via open are
identiÞed using a small integer. Standard input, output, and error are special because each
processor can have its own console window and because of redirection.

For these, the handle is a bit Þeld structure encoding the Þle descriptor (3 bits), the DSP
number (5 bits), and a 24 bit magic value. The following loop initializes the values.

The following call initializes the RPC server. The return value should be non zero.

The RPC server is initialized with the standard I/O Þle descriptors.
TM1IF_add_node_info creates TMMAN message queue for communication to the host.
The parameters are copied into a table entry for the node. The Hostcall protocol is used. At
this point the RPC server is initialized.

if (!(pCRT->ExitObject =
 CreateEvent (NULL, TRUE, FALSE, NULL))) {

if (pCRT->OptionBitmap & constCRunTimeFlagsAllocConsole)
FreeConsole();

return FALSE;
}

for (i = 0; i<=2; i++) {
StdHandle[i].Magic = 0x005a5a5a;
StdHandle[i].StdType = i;
StdHandle[i].DSPNumber = pCRT->VirtualNodeNumber;

}

assert(TM1IF_add_node_info(nproc, argc, argv,
&StdHandle[0], &StdHandle[1], &StdHandle[2],
Caps.SDRAM.dwLinear - Caps.SDRAM.dwPhysical,
Caps.SDRAM.dwPhysical,
Caps.SDRAM.dwPhysical + Caps.SDRAM.dwSize,
(void*)pCRT->DSPNumber) != 0);

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-25

During execution, dlls can be loaded using the downloader also.The DLL search path is
initialized from tmman.ini.
©1998 Philips Semiconductors 6/21/98 Overview 2-25

Shutting down the RPC server

RPCServ should have created a thread by now so we block here on the global event to be
signalled.

The console window is closed, if necessary.

The RPC server is shut down for this node.

pCRT->fServerLoaded = TRUE;
for (PathIdx = 0; PathIdx < MAX_PATH_INDEX ; PathIdx++) {

sprintf (Key, "%u", PathIdx);
GetPrivateProfileString (
 "DLLPath", Key, "DEFAULT", Path,

 TMSTD_PATH_LENGTH, "tmman.ini");
if (!_stricmp (Path, "DEFAULT"))

break;
OpenDll_add_dll_path (Path);

}
*CRTHandlePointer = (UInt32)pCRT;
return True;

}

UInt32 cruntimeDestroy (
UInt32 CRTHandle)

{
PTMCRT_CONTEXT pCRT= (PTMCRT_CONTEXT)CRTHandle;

 UInt32 ExitCode;

if ExitProcess = TRUE;

SetEvent (pCRT->ExitObject);
CloseHandle (pCRT->ExitObject);
ExitCode = pCRT->ExitCode;

if (pCRT->OptionBitmap & constCRunTimeFlagsAllocConsole)
FreeConsole();

TM1IF_remove_node_info(pCRT->VirtualNodeNumber);
GlobalContext[pCRT->VirtualNodeNumber] = NULL;

 return ExitCode;
}

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-26

Implementation of POSIX system functions
2-26 Overview ©1998 Philips Semiconductors 6/21/98

POSIX I/O calls are implemented in unixlib.c.

Code for the write system call is show below.

Handles for standard input, standard output and standard error, are encoded using the
TMCRT_STDE_HANDLE type. The 24 lower bits encode a special value.

If the descriptor is stdin, stdout, or stderr, the Windows WriteFile call is used. The Þrst
statement extracts the C runtime context for the processor.

Otherwise the POSIX _write call is used.

Code for the read system call is shown below.

If the process has terminated via exit, we return immediately.

DWORD WriteFunc (DWORD Handle, PVOID pBuffer, DWORD Count)
{

PTMCRT_STD_HANDLE EncodedHandle = (PTMCRT_STD_HANDLE)&Handle;
DWORD BytesWritten;

if (EncodedHandle->Magic == 0x005a5a5a) {
PTMCRT_CONTEXT pCRT = (PTMCRT_CONTEXT)
 GlobalContext[EncodedHandle->DSPNumber];
handle = pCRT->StdHandle[EncodedHandle->StdType]
if (!WriteFile (handle, pBuffer,

 Count, &BytesWritten, NULL))
 return 0;
else
 return BytesWritten;

 }

return _write (Handle, pBuffer, Count);
}

DWORD ReadFunc (DWORD Handle, PVOID pBuffer, DWORD Count) {
PTMCRT_STD_HANDLE EncodedHandle = (PTMCRT_STD_HANDLE)&Handle;
DWORD BytesRead;
int handle;
HANDLE Objects[2];
DWORD ObjectSignalled;

 if (fExitProcess == TRUE)
 return 0;

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

2

Cookbook Part 3 02_HOST.FM5 Page 2-27

If the descriptor is standard in, standard out, or standard error Microsoft event based I/O is
used.
©1998 Philips Semiconductors 6/21/98 Overview 2-27

We wait for the read to complete or the process to terminate via exit.

If the process terminated via exit return, zero is returned.

At this point the data is available.The Microsoft ReadFile API is used to read it.

TriMedia and UNIX use LF (linefeed) for end of line and Windows uses CR/LF. The
StripCR routine removes unnecessary carriage returns from text Þles (not shown).

Otherwise, a POSIX API is used.

Code for the exit system call is shown below.

if (EncodedHandle->Magic == 0x005a5a5a) {
PTMCRT_CONTEXT pCRT = (PTMCRT_CONTEXT)

 GlobalContext[EncodedHandle->DSPNumber];
BOOL Status;

handle = pCRT->StdHandle[EncodedHandle->StdType]
Objects[0] = handle;
Objects[1] = pCRT->ExitObject;
ObjectSignalled = WaitForMultipleObjects (2, Objects,

FALSE, INFINITE);

if ((ObjectSignalled - WAIT_OBJECT_0) == 1) {
 return 0;

Status = ReadFile (pCRT->StdInHandle,
pBuffer, Count, &BytesRead, NULL);

if (GetFileType (pCRT->StdInHandle) == FILE_TYPE_CHAR)
 StripCR (pBuffer, &BytesRead);

 return Status == TRUE ? BytesRead : 0;
}

}

return _read (Handle, pBuffer, Count);
}

DWORD ExitCodeFunc (DWORD DSPNumber, DWORD ExitCode) {
PTMCRT_CONTEXTp CRT = (PTMCRT_CONTEXT)GlobalContext[DSPNumber];
DWORD BytesWritten;
CHAR szTemp[0x80];

Chapter 2: Bootstrapping TriMedia in Host-Assisted Mode

Cookbook Part 3 02_HOST.FM5 Page 2-28

SynchObject is used to dedicate that all the processors have terminated. ExitObject is
used to shut down this instance of the C runtime server.
2-28 Overview ©1998 Philips Semiconductors 6/21/98

Code for the other calls is straightforward.

if (pCRT->OptionBitmap & constCRunTimeFlagsUseSynchObject)
SetEvent (pCRT->SynchObject);

pCRT->fTargetExited = TRUE;
pCRT->ExitCode = ExitCode;
SetEvent (pCRT->ExitObject);
return 0;

}

Ph i l ips Tr iMed ia SDE Cookbook

Part 4:
Optimizing TriMedia Applications
AB

SDE Cookbook
Part 4: Optimizing TriMedia Applications

Cookbook Part 4 000_CBK4.BOKTOC Page i

Table of Contents 1

Chapter 1 Porting and Optimizing Programs

Table of Contents
©1998 Philips Semiconductors 6/21/98 i

Introduction..1-2

Porting Considerations...1-2

Library and System-Calls Support ...1-2

Floating-Point Computations ..1-3

File I/O..1-3

Performance Tuning ..1-4

ProÞle-Driven Compilation..1-6

Grafting Based on ProÞle Information ..1-7

Graft-Tuning Parameters ..1-11

Loop Optimization ..1-12

Remove If Statements and Conditional Expressions..............1-13

Collapse Mutually Exclusive if Statements1-17

Use MUX and FMUX Pseudo Operations1-18

Parallel Reduction Loops..1-19

Use MUX on Variable Length Loops.......................................1-20

Apply Strength Reduction ...1-22

Move Externals and Reference Parameters to Locals............1-26

Remove Function Calls...1-28

Pay Attention to Compile Time..1-30

Use #pragma TCS_break_dtree ...1-32

Use Goto for Loops with a Trailing if Statement1-34

Loop Fusion ..1-35

Replace || by | ...1-36

Replace && by & or IZERO...1-36

Using Software Pipelining...1-37

Use Trimedia Style Booleans in Critical Parts of the Code1-38

Table of Contents

Cookbook Part 4 000_CBK4.BOKTOC Page ii

Loop Unrolling ..1-38

ii ©1998 Philips Semiconductors 6/21/98

Loop Unrolling Versus Grafting...1-40

Using Restricted Pointers ...1-42

Using Custom Operators ..1-46

Using the Global Optimizer...1-49

Using ProÞling and Grafting..1-57

Using Unsafe Alias Analysis...1-59

Using a Dirty Float..1-63

Using Cache Optimization..1-64

Vary the Right-Most Array Index in the Inner Loop1-64

Pack Data as Tightly as Possible ..1-66

Trade CPU Cycles for Cache Cycles1-67

Watch for Cache Set Hotspots..1-69

Blocking ..1-70

Two-Level Blocking ...1-72

Watch for Data Cache Bank Conßicts.....................................1-73

Try -noloadspec When Thrashing ...1-74

Summary ..1-76

Chapter 2 System Programming Support

Programming Support ..2-2

Interrupt Service Routines and Exception Handlers2-2

User View ...2-2

Saving/Restoring Behavior ...2-5

Declaring Interrupt Service Routines ...2-5

Usage Notes...2-6

Interrupt-Latency Support ..2-7

Supporting the Machine Level Simulator: tmsim -il2-7

Breaking Decision Trees: #pragma TCS_break_dtree........................2-8

Supporting Cache Control ..2-9

Using MMIO Locations..2-11

Table of Contents

Cookbook Part 4 000_CBK4.BOKTOC Page iii

Chapter 3 Case Studies

©1998 Philips Semiconductors 6/21/98 iii

Introduction..3-2

Special-Purpose Block Filter..3-2

Fixed-Point Arithmetic ..3-4

IFIR16 Custom Operations ...3-5

Dual-Phase Loop ...3-6

Critical Path..3-8

Algebraic Transformation ...3-9

Balancing the Critical Path ...3-10

More Unrolling ...3-11

Matrix Transpose ...3-12

Divide and Conquer ..3-14

Using Custom Operations ..3-15

Inlining and Shrink-Wrapping ..3-16

Cache Alignment ...3-19

Chapter 4 Performance Analysis on the Hardware

Overview ..4-2

Terminology ...4-3

Reasons for Long Interrupt Latencies...4-5

Clearing the IEN...4-6

Changing the Global Interrupt Priority..4-7

Individual Disabling ..4-7

Preventing Task Preemption...4-7

Interrupt Latency Sampling..4-8

Using the Sampler...4-9

Detection of Latency Violators ...4-9

Latency Sampler Code..4-10

Chapter A Shell Scripts

tmprof.select ... A-1

select ... A-1

Cookbook Part 4 01_PRTNG.FM5 Page

1-1

1: Porting and Optimizing Programs
1

Chapter 1
©1998 Philips Semiconductors 6/21/98 1-1

Porting and Optimizing Programs 1

Topic Page

Introduction 1-2

Porting Considerations 1-2

Performance Tuning 1-4

Summary 1-76

Chapter 1:

Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page

1-2

Introduction

1-2 Introduction ©1998 Philips Semiconductors 6/21/98

This chapter provides guidelines for porting and optimizing performance tuning. It
describes various optimization methods supported by the TriMedia Compilation System as
well as techniques for exploiting the Þne-grain parallelism of the TriMedia architecture.

Porting Considerations

You should use ANSI Standard C when developing applications for TriMedia processors.
The implementation of the TriMedia C compiler is based on the following standards:

■ American National Standard for Programming Languages - C, ANS X3.159-1989 and
ISO/IEC 9899:1990

■ Amendment 1 (1994) to ISO/IEC 9899:1990

■ Technical Corrigendum 1 (1994) to ISO/IEC 9899:1990

Additionally, the compiler supports the concept of restricted pointers, as proposed by the
Numerical C Extensions Group in X3J11/95-049, WG 14/N448

This document is available from ftp: //ftp.dmk.com.DMK/sc22wg14/c9x/aliasing. Chapter
1 of ÒProgramming Languages and File FormatsÓ discusses compatibility issues, C
language extensions, and implementation-dependent features.

Library and System-Calls Support
The language implementation supports the standard C library, as deÞned in the ANSI/ISO
C Standard. No other libraries are supported. For example, programs using X11 libraries
or Sun-speciÞc libraries do not compile with the TriMedia Compilation System.

The following library and system calls are implemented as traps by simulator tmsim; that
is, tmsim uses the corresponding library and system call routine on the host processor to
simulate the routine.

The system call names all begin with Ò_Ó because of ANSI C Standard name space
requirements. Because many traditional C programs use system call names without a
leading Ò_Ó (for example, read() rather than _read()), the C library includes stubs that
perform the desired renaming (for example, deÞning read(), which simply executes
_read()). You should always include the appropriate header file (<fcntl.h> for open(),
<sys/stat.h> for fstat(), and <unistd.h> for the remaining system calls) when compiling
a program that uses system calls directly.

close, _fstat, _isatty, _link, _lseek, _mktemp,

open, _read, _unlink, _write, getenv, time

Chapter 1:

Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page

1-3

Floating-Point Computations

©1998 Philips Semiconductors 6/21/98 Porting Considerations 1-3

All ßoating-point data types (float, double, and long double) are single precision and
have the same range of values in the current compiler and TM-1000 processor. Therefore,
you should use float instead of double or long double.

You should be aware that the results of ßoating-point computations performed on a Sparc
or other workstation can differ from the results of computations performed on a TriMedia
processor or simulator. Many compilers automatically convert float to double during
expression evaluations and function calls, especially when the compiler cannot Þnd the
function prototype.

File I/O
Applications should employ batch processing and use only Þle-based input. Output can be
sent to the standard output stream, to the standard error stream, or to Þles.

Interactive programs are not supported currently. To avoid distorting proÞle information,
avoid gathering and printing unnecessary output.

Chapter 1:

Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page

1-4

Performance Tuning

1-4 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Use the following techniques and tools to improve program execution times:

■ ProÞle-driven compilation

■ Decision-tree grafting

■ Loop optimization

■ Loop unrolling

■ Restricted pointers

■ Custom operators

■ Fine tuning of grafting

■ Global optimizer

■ Unsafe alias analysis

■ Dirty ßoat option

■ Cache optimization

■ Cache instructions

The simple function in Figure 1-1 computes the convolution of integer arrays a and b of
lengths 400 and 8, respectively. Although faster algorithms for computing the convolution
exist, the code demonstrates the utility of proÞling, grafting, loop unrolling, and custom
operators. A number of different transformations of this convolution function using the
listed techniques for improving the performance are presented throughout this chapter. The
full program, including the different versions of the convolution function, is included in
the software release directory examples.

We start by making optimal use of the processorÕs computing resources. In particular, we
increase the level of parallelism by enlarging the number of operations in decision trees
and by removing irrelevant dependencies between these operations. The required
techniques are grafting, loop unrolling, and improving the compilerÕs alias analysis with
restricted pointers.

When you use these techniques, you might reach the stage at which the processor is
saturated. The processorÕs computing resourcesÑthe number and conÞguration of the
available functional unitsÑlimit application performance.

This performance limit applies to the application only as it is formulated by you and
compiled by the compiler. To further improve performance, you must either Þnd another
implementation (change the formulation of the algorithm) or invoke the global optimizer
(change the way the application is compiled).

Chapter 1:

Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page

1-5

/* fir1.c -- (part)
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-5

Figure 1-1 Convolution Example (Part of Example Þrl.c)

 *

 * convolution of two 8 bit integer arrays a and b, of length 400 and 8, respectively.

 * Rough pictorial description of the process.

 *

 * |--------|--------|--------|--------| a[400]

 *

 * |--------| b[8]

 *

 * |--------|--------|--------|--------| a

 *

 * |--------| time reversed b

 *

* |--------|--------|--------|--------| a

 *

 * |--------| time reversed

 * and sliding b

 *

 * Increase the length of array a so that vector of length 8 could be

 * prepended and appended. With this additional zeros, separate handling

 * of beginning and end of data is avoided.

 *

 * |00000000|---------|---------|---------|---------|00000000|

 *

 * |<-- Original length 400 array a --->|

 *

 * These arrays hold the result of convolutions. Actual required

 * output array length = 400 + 8 - 1 = 407, but our modified algorithm

 * calculates one unnecessary element. To handle this, output

 * array length has been increased by 1

 */

#define NROF_SAMPLES400

void

direct_convolution(char *a, char *b, int *c)

{

int k, j;

for(k = 0; k < NROF_SAMPLES; k++) {

c[k] = 0;

for(j = 0; j < 8; j++)

c[k] += b[j] * a[k - j];/* a is shifted 8 in the call*/

}

}

Chapter 1:

Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-6

Profile-Driven Compilation
1-6 Performance Tuning ©1998 Philips Semiconductors 6/21/98

The TriMedia Compilation and Simulation system facilitates the compile-proÞle-
recompile cycle of performance tuning. First, you compile the program using the compiler
driver tmcc with the -p option (write proÞling information to Þle dtprof.out). Next, you
simulate program execution using the machine-level simulator tmsim. Then, you
recompile the program with tmcc, using either the -r option (proÞle-driven compilation)
or the -G option (proÞle-driven compilation with grafting).

The Þrst optimization step is to obtain proÞle information about the program and identify
the critical sections. After the critical sections are identiÞed, you can perform grafting and
loop unrolling and can use restricted pointers to remove spurious dependencies. (Function
inlining is not currently supported.)

The following procedure illustrates both how to perform proÞling, and how to use tmprof
to summarize execution statistics:

1. Compile the source modules using tmcc with the -p option. Do not use the -G and -r
options at this stage. (With the -p option, the compiler instruments the user program
with code to determine decision-tree execution counts and branch probabilities. Use
tmsim to simulate the instrumented program, which generates the profile information
in Þle dtprof.out. Use the option -nomm to switch off the simulation of the memory
model and save execution time.)

2. Recompile the source modules with the -r option and without the -p option. This
causes the generated decision trees to be free of proÞling code. Assuming the input was
representative, recompilation based on proÞling adds branch probabilities in the new
decision-trees Þle. It is important not to change the source code because the proÞling
information is based on the control-ßowgraph of the program. When this changes
during the generate-proÞle and read-proÞle compilations, the two do not match because
the proÞle is ignored.)

3. Run tmsim with the -statfile option to save the execution statistics and since -nomm
is not used, memory mode is simulated.

4. Run tmprof with the -func option to generate a report for each function in the
program. The -scale 1 option tells tmprof to report the cycle count without scaling.

The following commands generate a summary report for the program Þr1.c:

tmcc -p fir1.c -o fir1 /* Generate program with profiling turned on.*/

tmsim -nomm fir1 /* Simulate intermediate code and produce

dtprof.out. */

tmcc -r fir1.c -o fir1 /* Recompile using profile information.*/

tmsim -statfile fir1.stat fir1 /* Simulate and collect accurate cycle

information.*/

tmprof -scale 1 -func fir1.stat /* Output is sent to stdout.*/

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-7

The report produced by this sequence of commands is as follows. Note that the values
printed differ depending on the version on the TCS:
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-7

The report shows all functions that executed, including the startup and library functions,
the total number of cycles executed for each function, and the stall cycle contribution of
both the instruction-cache and data-cache.

Because the function direct_convolution in the source module Þr1.c takes about 90%
of the total cycles, it is the one to be optimized. The next sections show how to get a
further performance gain.

Grafting Based on Profile Information

Grafting increases parallelism within decision trees. As a result, the program size
increases. This technique replaces any jump with a copy of the destination tree and thus
ÒgrowsÓ larger decision trees.

The core compiler tmccom generates an intermediate representation of a program known
as a decision-tree representation1. Decision trees are derived from basic blocks. A basic
block is a sequence of instructions with no jumps into it, except to the Þrst instruction and

1. You can generate an example decision tree by compiling a program using tmcc with the -t option.
tmcc -t foo.c produces a file foo.t with machine-like operations, see Chapter 2 of ÒPrograming
Languages and File Formats.Ó

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --------

direct_convolution 1 34170 89.34% 85 875

initialize 1 2867 7.50% 261 84

exit 1 193 0.50% 145 22

main 1 153 0.40% 136 3

_clear_all_regs_1 1 129 0.34% 116 0

_clear_all_regs 1 129 0.34% 116 0

_pre_start 1 120 0.31% 65 45

_profile_write 1 114 0.30% 92 11

_start_1 1 89 0.23% 67 15

_start_second 1 64 0.17% 58 0

_return_custom_begin 1 62 0.16% 58 0

_default_exit_2 1 43 0.11% 0 38

_default_exit_1 1 36 0.09% 29 3

_exit 1 33 0.09% 29 0

_custom_begin 1 33 0.09% 29 0

_default_exit 1 6 0.02% 0 0

_return_custom_end 1 4 0.01% 0 0

_custom_end 1 4 0.01% 0 0

total/average 38249 100.00% 1286 1096

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-8

no jumps out except at the last instruction. Basic blocks are connected to one another by
conditional or unconditional jumps. It is well known that not much parallelism within
1-8 Performance Tuning ©1998 Philips Semiconductors 6/21/98

basic blocks exists to be exploited. Furthermore, frequent branching behavior would result
in underutilization of processor resources.

A decision tree is similar to a basic block in that the decision tree can be entered only at
the beginning. However, a decision tree can have multiple exits. (Chapter 2 of
ÒPrograming Languages and File FormatsÓ deÞnes the syntax and semantics of decision
trees.) Decision trees are larger than basic blocks and potentially have more Þne-grain
parallelism that can be exploited during optimization

Figure 1-2 shows a decision tree ending in a branch. The actual operations in the tree are
not important for this example. The decision tree __ip_DT_1 has two exits, one leading
back to itself (gotree {__ip_DT_1}) and the other leading to another decision tree
(gotree {__ip_DT_2}).

Figure 1-2 Example of a Decision Tree Ending in a Branch

Notice the back edge from __ip_DT_1 to itself has a probability of 0.98. This statistic is
derived from a proÞling run. The compiler can do a better job of grafting if it has
information about decision-tree execution counts and branch probabilities. In this case, the
decision tree __ip_DT_1 has an execution count of 50 (the Þrst number after the label). If

{__ip_DT_1:}

tree (50)

 2 rdreg (12);

 1 ld32 2;

 4 rdreg (11);

 6 rdreg (10);

 7 ld32x 6 4;

 9 rdreg (9);

 10 ld32x 9 4;

 11 imul 7 10;

 12 iaddi(1) 11

 13 st32 2 12

 after 10 7 1;

 14 iaddi (1) 4;

 15 wrreg (11) 14

 after 4;

 16 ilesi (50) 14;

 if 16 (0.980000) then

 gotree {__ip_DT_1}

 else (16)

 gotree {__ip_DT_2}

 end (16)

endtree (*__ip_DT_1*)

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-9

grafting is enabled, the compiler replaces the instruction Ògotree {__ip_DT_1}Ó with a
copy of the tree __ip_DT_1, doubling the size of the decision tree __ip_DT_1.
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-9

Figure 1-3 shows a schematic of the same tree after it is grafted. The scheduler can decide
where to place code and when to use guarded execution if it has information about branch
probabilities. You can also guide the compiler in its grafting decisions, discussed later in
the section.

Figure 1-3 Decision Tree After it is Grafted

It is important to note that grafting is a code-replication technique that eliminates branches
but increases the code size. It is a technique similar to loop unrolling, but does not reduce
the overhead of the loop as manual loop unrolling can. This is shown later on.

IP_DT_0

F

Original Decision Tree

Grafted Decision Tree

 F T

Copy of the

F T

T

Probability of

IP_DT_0

execution 0.02
Probability of
execution 0.92

 Original Tree

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-10

You can improve performance of program Þr1.c by grafting after proÞling. The following
procedure performs the compile-proÞle-recompile cycle with grafting enabled after
1-10 Performance Tuning ©1998 Philips Semiconductors 6/21/98

proÞling.

The report produced is as follows:

We discover that the execution time of the grafted version of Þr1 improved by 18% over
the ungrafted version. However, the number of stall cycles in the instruction cache
increased, which is due to the increase in code size. We discover this when we list the size
information of Þr1.o with tmsize the text size increased from 5952 bytes to 6912 bytes. It
appears that grafting is a valuable tool for easy performance increments, but that a trade-
off has to be made between performance gain and code size increase. ÒGraft-Tuning
ParametersÓ on page 1-11 describes how grafting can be customized with a grafting
parameter Þle.

tmcc -p fir1.c -o fir1 /* Generate program with profiling turned on.*/

tmsim -nomm fir1 /* Simulate intermediate code and produce

dtprof.out.*/

tmcc -G fir1.c -o fir1 /* Recompile using profile information and perform

grafting.*/

tmsim -statfile fir1.stat fir1 /* Simulate and collect cycle accurate

information.*/

tmprof -scale 1 -func fir1.stat /* Output is sent to stdout.*/

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --------

direct_convolution 1 29559 91.95% 302 847

initialize 1 1376 4.28% 493 84

exit 1 193 0.60% 145 22

main 1 153 0.48% 136 3

_clear_all_regs_1 1 129 0.40% 116 0

_clear_all_regs 1 129 0.40% 116 0

_pre_start 1 120 0.37% 65 45

_profile_write 1 114 0.35% 92 11

_start_1 1 89 0.28% 67 15

_start_second 1 64 0.20% 58 0

_return_custom_begin 1 62 0.19% 58 0

_default_exit_2 1 43 0.13% 0 38

_default_exit_1 1 36 0.11% 29 3

_exit 1 33 0.10% 29 0

_custom_begin 1 33 0.10% 29 0

_default_exit 1 6 0.02% 0 0

_return_custom_end 1 4 0.01% 0 0

_custom_end 1 4 0.01% 0 0

total/average 32147 100.00% 1735 1068

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-11

Graft-Tuning Parameters
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-11

You can guide the grafting decision of the compiler through a grafting parameters Þle. The
graft-tuning Þle allows specifying a number of conditions on decision tree grafting on a
function by function basis. You can specify graft parameters for some functions and use a
default applicable to all functions that were not explicitly listed in the graft parameters Þle.
The parameters that govern grafting decisions are as follows. See the man page for
tmccom for the current default values for these parameters.

■ Graft EnableÐThis is a boolean ßag enabling or disabling grafting for a particular
function.

■ Maximum Code Replication FactorÐThis limits the factor by which the code size for a
function can be expanded due to grafting. Note that although grafting might initially
increase code size, many optimizations are performed after grafting and these reduce
code size.

■ Maximum Graft DepthÐThis limits how many times grafting is performed along a
particular execution path in the current decision tree. This restricts how much grafting
is allowed on a tree.

■ Minimum Probability ThresholdÐThis speciÞes the minimum probability of execution
of a branch to allow grafting for that branch.

■ Minimum Execution Count ThresholdÐA decision tree is not a candidate for grafting if
its execution count is below this threshold.

A graft-tuning Þle can contain different parameters for different functions and at most one
default set of parameters for all functions that are not listed explicitly in the Þle. The
default values for the graft tuning parameters are as follows:

The tmprof output shows that the stall cycles from the cache misses increased during the
optimization stages. First loop unrolling was done, followed by grafting. These are similar
techniques, and possibly the code expansion of the two was too much for the default
grafting parameters. When limiting the grafting for the already unrolled function, a better
cache characteristic can be obtained. The graftfile with the following parameters is
used on the example:

This graftfile is included in the following sequence of commands to compile Þr4.c.

#function name enabled codesize depth probability-

threshold execution-count-threshold

<default> 1 20.0 20 0.4 10.0

#function enabled codesize depth prob. threshold exec. count threshold

<default> 1 4.0 2 0.4 10.0

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-12

tmcc -p fir4.c -o fir4
1-12 Performance Tuning ©1998 Philips Semiconductors 6/21/98

The tmprof report is as follows:

The performance improvement by tuning the graft Þle is mainly due to the reduction in the
instruction cache stall cycles.

Loop Optimization
You perform loop optimization by moving critical code off the control ßow path so that
the inner loops of the program can be reduced to a single decision tree. This section
describes several techniques, such as loop nesting, using gotos, and dtree breaks, to
achieve loop optimization. Most of the techniques described here are automatically

tmsim -nomm fir4

tmcc -G -tmccom -graft_tuning_file graftfile -- fir4.c -o fir4

/* Recompile using profile information,

perform grafting*/

tmsim -statfile fir4.stat fir4 /* Simulate & collect cycle accurate

information.*/

tmprof -scale 1 -func fir4.stat /* Output is sent to stdout.*/

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --------

initialize 1 1423 36.95% 290 79

custom_ops_direct_convolu 1 1178 30.59% 331 107

exit 1 193 5.01% 145 22

main 1 153 3.97% 136 3

_clear_all_regs_1 1 129 3.35% 116 0

_clear_all_regs 1 129 3.35% 116 0

_pre_start 1 120 3.12% 65 45

_profile_write 1 114 2.96% 92 11

_start_1 1 89 2.31% 67 15

_start_second 1 64 1.66% 58 0

_return_custom_begin 1 62 1.61% 58 0

_default_exit_2 1 43 1.12% 0 38

_start 1 38 0.99% 29 5

_default_exit_1 1 36 0.93% 29 3

_custom_begin 1 33 0.86% 29 0

_exit 1 33 0.86% 29 0

_default_exit 1 6 0.16% 0 0

_return_custom_end 1 4 0.10% 0 0

_custom_end 1 4 0.10% 0 0

total/average 3851 100.00% 1590 328

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-13

performed by the compiler. We provided the information to give you control over the
number of decision trees when required.
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-13

Remove If Statements and Conditional Expressions

Figure 1-4 shows a C program that Þnds the maximum element of a 100-element vector.
1494 instruction cycles are necessary for the call to vecmax with global optimization.

Figure 1-4 The vexmax.c Program

 1 2 3

 12345678901234567890123456789012345

1 float vecmax(float *a, int size) {

2 float max = a[0];

3 int i;

4 for (i=1; i<size; i++) {

5 if (a[i] > max)

6 max = a[i];

7 }

8 return max;

9 }

10

11 main() {

12 float a[100];

13 int i;

14 for (i=0; i<100; i++)

15 a[i] = rand();

16 (void)vecmax(a, 100);

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-14

You can determine the decision-tree ßow in vecmax using tmdtprof.
1-14 Performance Tuning ©1998 Philips Semiconductors 6/21/98

The numbers underlined correspond to the source line and column number. The line
numbers are indicated in the margins of Figure 1-4. The vecmax2 corresponds to the if
statement of line 5. The vecmax3 corresponds to the incrementation and test of the for
(line 4).

The numbers in boldface correspond to the ßow of control from one decision tree to
another. There are two paths from vecmax3 and from vecmax2. One is taken 96 times and
one is executed three times. There is more than one path because of the if. There is a
control ßow join at vecmax3. This causes a decision tree break. The number of decision
trees and the control ßow overhead is doubled.

The two paths out of vecmax2 correspond to the vector element either replacing the
maximum or being smaller. It is much more likely that the vector element is smaller
assuming the elements are randomly ordered. This is because the accumulated maximum
only gets bigger. The element is smaller than the maximum 96 out of 99 times in the
example. Figure 1-5 shows how to remove the decision tree break. An additional level of
for nesting is added. The if is moved out of the critical inner loop.

$ tmcc -t -p vecmax.c

$ tmtsim vecmax.t

$ tmdtprof dtprof.out

(...)

dt(0)1/1 ops(11) exits(2)

0 -> dt(1) exec count(1)

1 -> dt(1) exec count(0)

dt(1)2/18 ops(7) exits(2)

0 -> dt(2) exec count(1)

1 -> dt(4) exec count(0)

dt(2)5/11 ops(6) exits(2)

0 -> dt(3) exec count(3)

1 -> dt(3) exec count(96)

dt(3)4/22 ops(5) exits(2)

0 -> dt(2) exec count(98)

1 -> dt(4) exec count(1)

dt(4)8/10 ops(3) exits(1)

0 -> dt(-1) exec count(1)

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-15

float vecmax(float *a, int size)
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-15

Figure 1-5 Program to Find Maximum

The programs of Figure 1-4 and Figure 1-5 are equivalent, but the program of Figure 1-5
executes faster. In Figure 1-5 the 1153 instructions are necessary as opposed to 1494
previously. This corresponds to an overhead per element of 11.53 instructions per vector.
The comparative performances are summarized in Table 1-1.

Frequently, you can transform code to eliminate if statements. For example

can be replaced by

There is a conditional expression in the following preprocessor macro:

Table 1-1 Time to Calculate 100 Element Vector Maximum (Floating Point)

Total Cycles Per Element

if Statement in Inner Loop 1494 14.94

if Statement in Outer Loop 1159 11.59

{

 float max = a[0];

 int i;

 for (i=1; i<size; i++) {

 for (; i<size & a[i] <= max ; i++)

 ;

 if (i < size)

 max = a[i];

 }

 return max;

}

if (p->data < v)

cnt = cnt + 1;

icnt = cnt + (p->data < v).

#define abs(v) ((v) < 0 ? -(v) : (v))

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-16

You can eliminate it by using a TriMedia custom operation as follows:
1-16 Performance Tuning ©1998 Philips Semiconductors 6/21/98

The following preprocessor macro clips a ßoating point value between 10-38 and 1038:

Assuming the values are positive, you can eliminate the conditional expressions as follows:

Table 1-2 provides a list of such transformations. Some transformations are applied
automatically by the compiler and more will be applied in the future.

Table 1-2 Code Transformation

Original Code Transformed code Notes

if (e1) v += e2 v += INONZERO(e1, e2) 1,2,4

if (e1 < e2) v += 1 v += e1 < e2 1, 2,5,6

if (e1) v = 0; v = INONZERO(e1, v) 1,2

(e1 ? e2 : 0) INONZERO(e1,e2)

if (e1) v = e2 v = INONZERO(e1,v-(e2)) + (e2) 1,2

(e1 ? e2 : e3) (e2 + INONZERO(e1,(e3)-(e2))) 1,2

if (e1) v = -v; v = IFLIP(e1,v)

(e1!=0 ? -e2 : e2) IFLIP(e1, e2)

if (v < 0) v = -v v = IABS(v)
v = FABS(v)

(e1<0 ? -e1 : e1) IABS(e1)
FABS(e1)

#include <ops/custom_defs.h>

...

#define abs(v) IABS(v)

#define THRESHLO 1e-38

#define THRESHHI 1e-38

#define MINFLOAT(x, y) ((x) < (y) ? (x) : (y))

#define MAXFLOAT(x, y) ((x) > (y) ? (x) : (y))

#define CLIP(x) MAXFLOAT(MINFLOAT(x, THRESHI), THRESHLO)

#include <ops/custom_defs.h>

...

#define MINFLOAT(x, y) FMIN(x, y)

#define MAXFLOAT(x, y) FMAX(x, y)

#define CLIP(x) MAXFLOAT(MINFLOAT(x, THRESHI), THRESHLO)

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-17

Table 1-2 Code Transformation (continued)
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-17

NOTE
(1) e2 should not contain side effects.
(2) v must contain no side effects. If it is an indirection, the address must be valid.
(3) ßoat e1, e2. Values must be non-negative.
(4) idem -=, *=, &=, |=, <<=, >>=, ...
(5) idem -=, *=, <<=, >>=, ++, --.
(6) idem >, >=, <=, ==, !=, &&, ||.
(7) unsigned e1, e2.
(8) Clips to ~e2 .. e2.

Collapse Mutually Exclusive if Statements
Figure 1-6 shows two ways to calculate the minimum and maximum of an array. In the
program on the left, there is a control ßow join after the Þrst if, which adds a decision
tree. The 2088 instruction cycles are necessary to calculate the minimum and maximum of
a 100-element, sorted vector with global optimization.

Figure 1-6 Vector Minimum and Maximum

(e1<e2 ? e1 : e2) IMIN(e1, e2)

FMIN(e1, e2)

for values
must be
positive

(e1>e2 ? e1 : e2) IMAX(e1, e2)
FMAX(e1, e2)

UMAX(e1, e2)

for FMAX
values must
be positive
7

max(min(e1,e2), ~e2) ICLIPI(e1,e2) 8

Original Code Transformed code Notes

void minmax(float *a, int size, float *res)

{

 int i;

 float min, max;

 min = max = a[0];

 for (i=1; i<size; i++) {

 if (a[i] > max)

 max = a[i];

 if (a[i] < min)

 min = a[i];

 }

 res[0] = min;

 res[1] = max;

}

void minmax(float *a, int size, float

*res)

{

 int i;

 float min, max;

 min = max = a[0];

 for (i=1; i<size; i++) {

 if (a[i] > max)

 max = a[i];

 else if (a[i] < min)

 min = a[i];

 }

 res[0] = min;

 res[1] = max;

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-18

The two if statements are never true simultaneously. In the program on the right, they have
been folded into a single decision tree. 1494 cycles are necessary to calculate the
1-18 Performance Tuning ©1998 Philips Semiconductors 6/21/98

minimum and maximum of the vector after transformation. Table 1-3 summarizes the
performances of the two programs with and without grafting.

Use MUX and FMUX Pseudo Operations

The TriMedia C compiler eliminates some decision trees corresponding to simple if-
statements and conditional (?:) expressions. This is done using MUX and FMUX pseudo
operations. The transformation is not possible in some cases, for example, if there is a
store through a pointer. The transformation also depends on the number of operations and
on the size of the decision tree. The tmccom option -max_if_size can be used to control
the size. You can eliminate the decision trees corresponding to the if statements in Figure
1-3 and Figure 1-4 by compiling with the options -O3 -tmccom -max_if_size 10 -
dirty_float --. For more information, see the manual pages for tmcc and tmccom in
Chapter 7 of ÒProgramming and Development Tools.Ó

You can use MUX and FMUX directly. MUX and FMUX select between the second and
third arguments depending on the value of the Þrst argument. Use MUX for values of
integer and FMUX for values of ßoating point type. Figure 1-7 shows how to recode the
program using FMUX. 603 instruction cycles are necessary as compared to 1459 for using
an if statement. Table 1-4 compares performance of the program with FMUX and the
unoptimized program. The header Þle <ops/custom_defs.h> must be included to use such
operations.

Table 1-3 Time to Calculate the Minimum and Maximum of 100 Elements (Floating
Point, Cycles)

Elements Without Grafting With Grafting

Two Independent if statements 2088 602

if .. else if 1494 382

Table 1-4 Time to Calculate Maximum of 100 Element Vector

Loops Total Cycles Per Element

Loop with if 1494 11.59

Loop with FMUX 603 6.03

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-19

#include <stdio.h>
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-19

Figure 1-7 Maximum with FMUX

Parallel Reduction Loops

The loop of Figure 1-7 is called a reduction because it reduces the dimension of a vector.
Many loops in multimedia and DSP applications are reductions. Operations such as
computing a vector sum or product are reductions. Scalar product computations are
reductions also.

Unrolling is of limited effectiveness on reduction loops because of the loop-carried
dependence on the scalar variable (for example, max). Unrolling the loop of Figure 1-7
four times produces less improvement in performance than using grafting (384 versus 338
cycles). You can optimize reductions by using the mathematical laws of commutativity and
associativity to reorganize the order of computation.

In the program of Figure 1-8, four copies have been introduced for the reduction variable.
Four independent maximums are computed on four slices of the vector. You can reduce the
four results to a single operation using three FMUX operations. Table 1-5 compares the
performance of the two loops.

#include <ops/custom_defs.h>

float vecmax(float *a, int size) {

 float max = a[0];

 int i;

 for (i=1; i<size; i++) {

 max = fmux(a[i] > max, a[i], max);

 }

 return max;

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-20

#include <ops/custom_defs.h>
1-20 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-8 Reduction Variable Copying

If you know the vector values to be non-negative use FMIN, FMAX and IMIN, IMAX instead
of FMUX and MUX; this saves instructions. Calculate integer minimum and maximum
using IMIN and IMAX.

Floating point addition is not associative. You should not optimize reductions using
ßoating point addition if the result of the transformation must be bit exact.

Use MUX on Variable Length Loops

The program of Figure 1-8 was unrolled four times. If the vector length n is not a multiple
of the loop step m, the program does not work. There are a number of variable elements
equal to the remainder, n mod m.

You can deal with the variable elements by exploiting the mathematical properties of a
group. The identity i of a group is such that x op i = x for all elements. The intent is to
round up the number of elements to the loop step by appending values equal to the identity
element. For example, if a vector sum is being computed we round up by appending
trailing zeroes (x + 0 = x). If a vector product is being computed, we round up by
appending trailing ones (x * 1 = x). To round up the vector, n - (n mod m) elements need
to be added.

Table 1-5 Time to Calculate Maximum of 100 Element Vector (-O3)

Total Cycles Per Element

Reduction Using one FMUX 603 6.03

Reduction Using four FMUX 228 2.28

float vecmax(float *a, int size) {

 float max0 = a[0], max1 = a[1], max2 = a[2], max3 = a[3];

 int i;

 for (i=4; i<size; i+=4) {

 max0 = fmux(a[i] > max0, a[i], max0);

 max1 = fmux(a[i+1] > max1, a[i+1], max1);

 max2 = fmux(a[i+2] > max2, a[i+2], max2);

 max3 = fmux(a[i+3] > max3, a[i+3], max3);

 }

 max0 = fmux(max0 > max1, max0, max1);

 max2 = fmux(max2 > max3, max2, max3);

 return fmux(max0 > max2, max0, max2);

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-21

#include <ops/custom_defs.h>
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-21

Figure 1-9 Unrolling Variable-Length Loops

For a loop step of four, this corresponds to one to four elements. Figure 1-9 shows code
for calculating the maximum of a vector of arbitrary length. For each of the reduction
variables (max0, max1, max2, max3), you need to make a selection between an element at
the end of the vector and the identity element. You can do this with an FMUX. The
initialization code before the for does this. The identity for the operation being calculated
(the maximum) is negative inÞnity (max(x-) = x). The identity for the minimum is
(+).

In Figure 1-9, the loop step is a power of two. This allows a bitwise and (&) to replace a
modulus operation. The & has a single cycle latency. The number of iterations needs to be
rounded down to a multiple of the loop step. You can do this with an & also. Integer
division and modulus are 50 times slower.

Many DSP kernels are sum reductions for which the identity is zero. In such cases, you
should use the Trimedia custom operation IZERO to initialize the reduction variables
(max0, max1, max2, max3) instead of MUX and FMUX. It selects between zero and a value in
one instruction. Use FZERO for ßoating point types.

#include <float.h>

#define STEP 4

float vecmax(float *a, int size) {

 int i, adj;

 float max0, max1, max2, max3;

 adj = size & (STEP-1);

 size &= ~ (STEP-1);

 max0 = fmux(adj>0, a[size], -FLT_MAX);

 max1 = fmux(adj>1, a[size+1], -FLT_MAX);

 max2 = fmux(adj>2, a[size+2], -FLT_MAX);

 max3 = -FLT_MAX;

 for (i=0; i<size; i+=STEP) {

 max0 = fmux(a[i] > max0, a[i], max0);

 max1 = fmux(a[i+1] > max1, a[i+1], max1);

 max2 = fmux(a[i+2] > max2, a[i+2], max2);

 max3 = fmux(a[i+3] > max3, a[i+3], max3);

 }

 max0 = fmux(max0 > max1, max0, max1);

 max2 = fmux(max2 > max3, max2, max3);

 return fmux(max0 > max2, max0, max2);

}

¥
¥

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-22

Table 1-6 compares performances of a 100-element vector maximum for a four-way
unrolled loop. Twelve cycles of overhead are necessary to deal with the remaining
1-22 Performance Tuning ©1998 Philips Semiconductors 6/21/98

elements.

Apply Strength Reduction

Figure 1-10 shows two procedures to normalize a vector. In the program to the left, the
individual elements are divided by the sum of values. For 100-vector elements, 2713
instruction cycles are necessary for the program with global optimization. Floating point
division requires 17 cycles on TriMedia. The divisions correspond to 1700 of the cycles.

Figure 1-10 Vector Normalization Procedures

Floating point multiplication requires only three cycles. In the program to the right, the
division is replaced by a multiplication by the reciprocal. Doing so saves 14 cycles (14=17-
3) per division. You can calculate the reciprocal using a single division outside the loop. 99
of the 100 divisions can be replaced by a multiplication. This corresponds to a reduction in
the total execution time of 1386 cycles (99*14). An optimization such as this, which
replaces a costly operator by a less expensive one, is called strength reduction. The result
of the reciprocal followed by the multiplication can vary from the division in the low order
bit.

Table 1-7 compares the performance of vector normalization with division, with
multiplication, and with and without grafting. Grafting produces only a limited
performance improvement in the presence of division. This is because there is one divide
unit and a division can be issued only once every 17 cycles. Grafting more than doubles

Table 1-6 Time to Calculate Maximum of 100 Element Vector (-O3,four-way unrolled
loop)

Total Cycles Per Element

Length a Multiple of Four 228 2.28

Arbitrary Length 240 2.40

norm(float *a, int size) {

 int i;

 float sum = 0.0;

 for (i=0; i<size; i++)

 sum = sum + a[i];

 for (i=0; i<size; i++)

 a[i] = a[i] / sum;

}

norm(float *a, int size) {

 int i;

 float sum = 0.0, invsum;

 for (i=0; i<size; i++)

 sum = sum + a[i];

 invsum = 1.0 / sum

 for (i=0; i<size; i++)

 a[i] = a[i] * invsum;

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-23

the performance with multiplication. There are two multiply units and an instruction can
issue each cycle.
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-23

Figure 1-11 shows two procedures that sum a 12 x 12 matrix by column. The element (i, j)
of a n x m matrix is at offset (n*i+j) elements from the base. In the program on the right,
strength reduction has been applied to replace the multiplication by an addition. The
program on the left requires 141 cycles at optimization level -O3. The program on the
right requires 101 cycles at optimization level -O2.

Figure 1-11 Two procedures to sum a 12 x 12 matrix by column

Figure 1-12 shows two programs to calculate the greatest common divisor (g.c.d.). The
program on the left calculates the g.c.d. using integer arithmetic.

Table 1-7 Time to Normalize 100 Elements (Floating Point)

Number of Instruction Cycles

Without Grafting With Grafting

Normalization Using Division 2713 2090

Normalization by Multiplication by
the Reciprocal

1327 559

int matrix[12][12];

int colsum(int col) {

 int i, sum = 0;

 for (i=0; i<12; i++)

 sum += matrix[i][col];

 return sum;

}

int matrix[12][12];

int colsum(int col) {

 int i, sum = 0, *pcol;

 pcol = &matrix[0][col];

 for (i=0; i<12; i++) {

 sum += *pcol;

 pcol += 12;

 }

 return sum;

}

Treename Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- ---------

__rt_imod 10 490 67.59% 0 0

__gcd_DT_3 10 50 6.90% 0 0

__gcd_DT_2 10 40 5.52% 0 0

 (...)

 exact total machine cycles is 725 cycles.

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-24

The tmprof output is generated without the -func option. The tmprof output from running
it is shown below:
1-24 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-12 Two programs to calculate greatest common divisor

There are 580 cycles necessary to calculate the g.c.d. Most of the time is spent in the
subroutine _rt_imod. This subroutine calculates the remainder for signed integers. 49
cycles are necessary for each execution of rt_imod (490 cycles for ten calls), not
including call overhead. The rt_umod subroutine calculates the remainder for unsigned
integers.

The program to the right uses ßoating point arithmetic. Calculating the remainder in
ßoating point requires 24 cycles. Seventeen cycles are required for the division, three are
required for the ßoating-point-to integer conversion, three are required for the
multiplication, and one is required for the subtraction. You need 334 cycles to calculate the
g.c.d. There is a saving of 254 (254=580-334) cycles for ten remainders (25.4 cycles per
remainder) using ßoating point.

The g.c.d. of 12,381,203 and 41,231,207 is one. Both algorithms give the correct value.
The g.c.d. of 268,435,454 and 268,435,582 is two. The algorithm to the right of Figure 4-8
calculates a g.c.d. of 128. The value is incorrect because the values are outside the range [-
224, 224] (ßoating-point numbers are represented in 24 bits).

Figure 1-14 shows two ways to subsample a vector with a 2:3 ratio. In the program to the
left, the array index is calculated uses an integer division and multiplication. The tmprof
output for subsampling a 100-element vector is as shown below.

gcd(int u, int v) {

 unsigned t;

 if (u > v) { t = u; u = v; v = t; }

 while (u > 0) {

 t = u;

 u = v % u;

 v = t;

 }

 return v;

}

main() {

 (void) gcd(12381203, 41231207);

}

gcd(int u, int v) {

 int t;

 if (u > v) { t = u; u = v; v = t; }

 while (u > 0) {

 t = u;

 u = v - (int)((float)v/u) * u;

 v = t;

 }

 return v;

}

main() {

 (void) gcd(12381203, 41231207);

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-25

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-25

Figure 1-13 Two ways to subsample a vector with a 2:3 ratio

Most of the time is spent in the subroutine rt_idiv. This subroutine implements division
for signed integers. 45 cycles are needed per call, not including call overhead. rt_udiv
implements division for unsigned integers.

Using the algorithm to the right, 1310 cycles are necessary to subsample a 100-element
vector. The two algorithms compute the same value for n < 224.

The execution time is reduced by only 400 cycles (7%) when grafting is applied to the
program to the left. The subroutine call for the division limits the effectiveness of grafting
while it reduces the time for the program to the right from 1310 to 511 cycles. This
corresponds to a saving of 61 percent in the execution time (799 cycles). Table 1-8
compares performance, with and without grafting.

For a variable of signed type, replacing a division by 2n by a shift (>>) eliminates three
operations from the program and saves three cycles. The result differs by one from that of
the division operator (/) if it is negative and there is a remainder. Replacing x%2n by (x &
(2n - 1)) eliminates three instructions and saves three cycles. The result is positive or
zero. Integer remainder produces a negative or zero result if the result of the division is
negative. If the variable is known to be non-negative, changing the type to unsigned
obtains the same effect automatically. The results of >> and & correspond to the
mathematical deÞnitions of division and remainder.

Table 1-8 Time to Subsample 100-Element Vector

Number of Instruction Cycles

Without Grafting With Grafting Reduction (%)

Subsampling with Integer
Divide and Multiply

5611 5211 7.2

Subsampling Using
Floating Point

1310 511 60.9

_rt_idiv 100 4500 79.70% 0 0

subsample 1 1011 17.91% 0 0

(...)

subsample(char *a, char *b, int n) {

 int i;

 for (i=0; i<n; i++)

 a[i] = b[i*2/3];

}

subsample(char *a, char *b, int n) {

 int i;

 for (i=0; i<n; i++)

 a[i] = b[(int)(i*(2.0/3))];

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-26

Move Externals and Reference Parameters to Locals
1-26 Performance Tuning ©1998 Philips Semiconductors 6/21/98

You cannot allocate external variables to registers and require memory references.
Accesses have a latency of three cycles. Copying an external variable to a local variable
can improve performance substantially in time-critical parts of the code. Figure 1-14
shows two ways of writing a program to push an array onto a stack. The stack pointer is
contained in the external variable stackp. 1911 instruction cycles are necessary to push
100 words. 1644 cycles are necessary using -A2 (relaxed alias analysis). Only 1256 cycles
are necessary if stackp is copied to a local variable.

The function of Figure 1-15 takes binary data as input, with one bit per byte. The result is
packed into a 32-bit word. A pointer to the current pointer in the input is passed by
reference. For the program on the left, 202 cycles are necessary to pack 32 bytes of data
with global optimization. Most of this time is spent in the decision tree corresponding to
the Òfor: pacbkits1Ó. There are 145 cycles necessary after grafting. The -statfile
output for packbits with grafting is given below:

After grafting, the loop is executed eight times as compared to 32 times. This corresponds
to a grafting factor of four. For each iteration, 17 cycles (=136/8) are necessary to execute
46 (368/8) operations. This corresponds to an ILP of 2.70.

tree name execs instc isopers exopers

__packbits_DT_1 8 136 368 368

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-27

int *pusha(int nargs, int *p) int *pusha(int nargs, int *p)
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-27

Figure 1-14 Pushing an Array Onto a Stack

In the program on the right, the reference parameter bytepp has been copied to a local.
This allows a store through a pointer to be removed from the loop. 145 cycles are
necessary with global optimization and without grafting. 92 cycles are necessary with
grafting. The tmprof output for packbits with grafting follows:

For each iteration, about ten (83/8) cycles are necessary to execute 42 (=336/8) operations.
The four (46-42) operations are store instructions. This corresponds to an ILP of 4.04.
There are fewer cycles in the loop because four loads can proceed in parallel. In the
program on the left, the loads need to be ordered with respect to the stores.

{

 int *oldstkp;

 extern int *stackp, stack[NSTACK];

 /* save the old stack pointer */

 oldstkp = stackp;

 /* save each node pointer */

 while (nargs--) {

 if (stackp <= stack)

 abort("evaluation stack

overflow");

 *--stackp = *p++;

 }

 /* return the old stack pointer */

 return oldstkp;

}

{

 int *newstkp, *oldstkp;

 extern int *stackp, stack[NSTACK];

 /* save the old stack pointer */

 oldstkp = stackp;

 newstkp = stackp;

 /* save each node pointer */

 while (nargs--){

 if (newstkp <= stack)

 abort("evaluation stack

overflow");

 *--newstkp = *p++;

 }

 stackp = newstkp;

 /* return the old stack pointer */

 return oldstkp;

}

tree name execs instc isopers exopers

__packbits_DT_1 8 83 336 336

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-28

Table 1-9 summarizes the performances with and without grafting.
1-28 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-15 Program to Pack Bytes in a Word

Remove Function Calls

Figure 1-16 shows two programs that calculate the square of the distance from the origin
for a collection of points, (xi, yi). For the program to the left, 326 cycles are necessary with
global optimization alone. 245 instruction cycles are necessary with global execution and
grafting. The execution time is reduced only by 25 percent with grafting. This is because
of the function call. Grafting does not cross function call boundaries. Each invocation of a
function also adds a decision tree. In the program on the right, the function call has been
inlined using the C preprocessor, cpp. 224 cycles are necessary without grafting and 78
are necessary with grafting (a reduction of 78%).

In the program of Figure 1-15, the function call to abort corresponds to an error (stack
overßow). This occurs very rarely. Although the function does not return, the compiler
does not know this. In Figure 1-17 the function call has been moved outside the loop. This
removes a join node, allowing the loop to be represented by one decision tree. The 622

Table 1-9 Effect of Copying Externals and Pointer References to Locals (-O3)

Without Grafting With Grafting

Figure 1-14

External Variable in Loop 1610 760

Local Copy in Loop 1111 548

Figure 1-15

Call By Reference Parameter in Loop 265 145

Local Copy in Loop 201 92

packbits(unsigned char**bytepp,int

count){ int i ;

unsignedresult = 0 ;

for (i = 0 ; i < count ; i ++) {

result |= **bytepp << i ;

(*bytepp) ++ ;

}

return result ;

}

packbits(unsigned char**bytepp,int

count){ int i ;

unsignedresult = 0 ;

char *bytep = *bytepp;

for (i = 0 ; i < count ; i ++) {

result |= *bytep << i ;

 bytep++;

}

*bytepp = bytep;

return result ;

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-29

instruction cycles are necessary with global optimization and without grafting, compared
to 1111 previously. The 418 instruction cycles are necessary with grafting.
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-29

The ILP is still limited because of the stores through pointers. Adding the restrict qualiÞer
to the deÞnitions of newstkp and p reduces the execution time to 320 cycles with grafting.
This corresponds to a reduction of 24%. The performances are summarized in Table 1-10.

Note
An inline directive will be supported in a future version of the TCS ◆

Figure 1-16 Program to Calculate Distance Vector

Table 1-10 Performance Summaries

Without
Grafting

With
Grafting

Call + Local Copy in Loop (Table 1-9) 1111 548

Local Copy in Loop + Call Outside (Figure 1-14) 622 418

Local Copy in Loop + Call Outside + Restrict 622 320

Call in Loop (Figure 1-16, Left) 265 145

Inlining (Figure 1-16, Right) 201 92

float hypot(float x, float y) {

 return x*x + y*y;

}

main() {

 float x[20], y[20], rad[20];

 int i;

 for (i=0; i<20; i++)

 rad[i] = hypot(x[i], y[i]);

}

#define hypot(x, y) (x)*(x) + (y)*(y)

main() {

 float x[20], y[20], rad[20];

 int i;

 for (i=0; i<20; i++)

 rad[i] = hypot(x[i], y[i]);

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-30

int *pusha(int nargs, int *p)
1-30 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-17 Program to Push Arguments on the Stack

Pay Attention to Compile Time

Figure 1-19 shows a program that multiples a 40 x 10 matrix by a 10 x 20 matrix, giving a
40 x 20 result (c = a*b). The source program is 29 lines long. Six minutes, ten seconds are
necessary to compile the program.

Figure 1-18 Matrix Multiply Program matmul_1.c

{

 int *newstkp, *oldstkp;

 extern int *stackp, stack[NSTACK];

 /* save the old stack pointer */

 oldstkp = stackp;

 newstkp = stackp;

 /* save each node pointer */

 while (nargs-- && newstkp>stack){

 *--newstkp = *p++;

 }

 if (newstkp <= stack)

 abort("evaluation stack overflow");

 stackp = newstkp;

 /* return the old stack pointer */

 return oldstkp;

 return oldstkp;

}

int a[40][10], b[10][20], c[40][20];

main() {

 int i;

 for (i=0; i<40; i++) {

 c[i][0] = a[i][0]*b[0][0] + a[i][1]*b[1][0] + ... + a[i][9]*b[9][0];

 c[i][1] = a[i][0]*b[0][1] + a[i][1]*b[1][1] + ... + a[i][9]*b[9][1];

 c[i][2] = a[i][0]*b[0][2] + a[i][1]*b[1][2] + ... + a[i][9]*b[9][2];

 c[i][3] = a[i][0]*b[0][3] + a[i][1]*b[1][3] + ... + a[i][9]*b[9][3];

 (...)

 c[i][18] = a[i][0]*b[0][18] + a[i][1]*b[1][18] + ... + a[i][9]*b[9][18];

 c[i][19] = a[i][0]*b[0][19] + a[i][1]*b[1][19] + ... + a[i][9]*b[9][19];

 }

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-31

The -vtimes option of tmcc reports on the execution times of the individual phases. The -
K option tells tmcc to keep intermediate output files around (that is, matmul_1.t,
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-31

matmul_1.s, and matmul_1.o). In this case, almost all the time can be observed to be spent
in the TriMedia scheduler tmsched. On WindowsNT and Windows 95, the program
running is shown in the menu bar.

Almost all the execution time in the program is spent in the decision tree corresponding to
the for, main1. You can determine the number of operations in the decision tree by
examining the trees output Þle tmsim.t produced by the tmcc command. Scheduling time
is nonlinear with respect to the number of operations. There are 1018 operations in main1.

Unusually long scheduling times are typically the consequence of feeding tmsched a
decision tree with too many operations. In the program below, the two inner loops of the
multiplication have been completely unrolled. Decision trees that are too long result in
reduced performance due to scheduler spilling. Compile time is a performance indicator.

In the program, each iteration reads a row of matrix.a (10 accesses). The matrix b is read
entirely (10 x 20 accesses) and a single element ci,j is computed for each column (20
accesses). There are 40 (200 + 10) reads and 20 writes for each of the 40 iterations. The
9200 memory accesses are necessary in total (8400 reads and 800 writes). You can
determine the actual number of memory accesses by using tmsim with the -v option.

$ tmcc -vtimes -K matmul_1.c

cpp: 0.033

tmccom: 0.967

tmsched:360.719

 ...

total: 363.035

$ tmsim -v a.out

 (...)

data cache statistics: size 16 kB, blocksize 64 b, associativity 8

nr of accesses: 21946

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-32

There are 12746 (=21946- 9200) more operations than expected. Almost all the accesses
are 32-bit accesses in the decision tree corresponding to the for. You can differentiate
1-32 Performance Tuning ©1998 Philips Semiconductors 6/21/98

spills from nonspills as follows:

The number of nonspill accesses is given by subtracting the spill accesses from the
number of total accesses. There are 210 (= 324 - 114) nonspill loads, and 20 (=224 - 204)
nonspill stores per iteration. This corresponds to 9200 accesses in total, as expected.
Spilling is responsible for 318 (=114 + 204) memory accesses per iteration. 12720 (=318 x
40) accesses correspond to scheduler spills.

Use #pragma TCS_break_dtree

The interrupt mechanism of TriMedia is discussed in the TM-1000 Data Book. Interrupts
only occur when control passes from one decision tree to another. Decision-tree breaks
(#pragma TCS_break_dtree) limit the length of a decision tree, allowing control over
interrupt latency.

They can also be used to improve the performance of a program. Spilling in case of
program in Figure 1-18 is a result of excessive register pressure due to the high degree of
unrolling. In Figure 1-19, the compiler pragma TCS_break_dtree is used to remove
spilling. The loop is split into two decision trees.

$ grep ld32 matmul_1.s | wc -l

 324

$ grep st32 matmul_1.s | wc -l

 224

$ grep "ld32.*-- SPILL" matmul_1.s | wc -l

 114

$ grep "st32.*-- SPILL" matmul_1.s | wc -l

 204

$ grep ld32 matmul_1.s | wc -l

 324

$ grep st32 matmul_1.s | wc -l

 224

$ grep "ld32.*-- SPILL" matmul_1.s | wc -l

 114

$ grep "st32.*-- SPILL" matmul_1.s | wc -l

 204

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-33

The performances are summarized in Table 1-11. Introducing a decision tree break
completely removes the spills. The extra nonspill loads are because a matrix a row of a
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-33

(ten elements) needs to be reread.

Figure 1-19 Matrix Multiply Program mtmul_1.c Compiler Pragma TCS_break_dtree
added

You can also use decision tree breaks to prune infrequently executed branches from a
decision tree. In the program of Figure 1-20, the trailing return statement is included in the
decision-tree for the loop. The computations for the return increase the length of the
critical path. Inserting a decision-tree break at the end of the loop reduces the execution
time per iteration from seven to six cycles.

Table 1-11 Effect of Decision Tree Break on Unrolled Matrix Multiply (per iteration)

Non-Spill
Loads

Non-Spill
Stores Spill Loads

Spill
Stores

without TCS_break_dtree 210 20 114 204

with TCS_break_dtree 220 20 0 0

int a[40][10], b[10][20], c[40][20];

main() {

int i;

for (i=0; i<40; i++) {

c[i][0] = a[i][0]*b[0][0] + a[i][1]*b[1][0] + ... + a[i][9]*b[9][0];

c[i][1] = a[i][0]*b[0][1] + a[i][1]*b[1][1] + ... + a[i][9]*b[9][1];

...

c[i][8] = a[i][0]*b[0][8] + a[i][1]*b[1][8] + ... + a[i][9]*b[9][8];

#pragma TCS_break_dtree

c[i][9] = a[i][0]*b[0][9] + a[i][1]*b[1][9] + ... + a[i][9]*b[9][9];

 (...)

c[i][18] = a[i][0]*b[0][18] + a[i][1]*b[1][18] + ... + a[i][9]*b[9][18];

c[i][19] = a[i][0]*b[0][19] + a[i][1]*b[1][19] + ... + a[i][9]*b[9][19];

}

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-34

void compare(int *a, int *b, int size, int *pcount)
1-34 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-20 Loop Pruning

Use Goto for Loops with a Trailing if Statement

The TriMedia core compiler tmccom transforms for and while loops into do while loops
by peeling off the Þrst iteration. This pushes the loop condition from the root of the
decision tree to the end of the loop. If the loop contains a trailing if statement, there is an
extra join for the loop condition after the if statement. There is an extra decision tree. You
can avoid this by using goto. You can represent simple loops containing a trailing if or
if else statement in one decision tree. Figure 1-21 shows the program of Figure 1-6
programmed with goto. Several tricks are used. i is post-incremented to reduce latency. A
copy is made in t in parallel. The goto is replicated to avoid creating a decision tree
having only a jump. Table 1-12 compares performances. You should take care when
applying this. As the table shows, there is a slight performance degradation with grafting.

Figure 1-21 Vector Minimum and Maximum(goto)

{

 int i;

 int count;

 count = 0;

 i = 1;

 do {

 count = count + (a[i]==b[i]);

 } while (i++ < size);

#pragma TCS_break_dtree

 *pcount = count;

}

void minmax(float *a, int size, float *res) {

 int t , i = 1; float min = a[0], max = a[0];

loop: t = i;

 if (i++ < size)

 if (a[t] > max) {

 max = a[t]; goto loop;

 } else if (a[t] < min) {

 min = a[t]; goto loop;

 }

 res[0] = min; res[1] = max;

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-35
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-35

Loop Fusion

The program of Figure 1-22 calculates the mean and variance for an array of n elements.
The mean is equal to the sum of array values divided by the array size. The variance is
equal to the sum of squares divided by the array size minus the square of the mean. The
Þrst loop calculates the sum of values. The second loop calculates the sum of squares.
Loop fusion merges two loops that are executed the same number of times into a single
loop. Loop fusion eliminates half the overhead. The program on the right illustrates the
application of fusion. Table 1-13 compares performances for an array of 100 elements.
The overhead per element is reduced by 28% without grafting and by 23% with grafting.

Figure 1-22 Loop Fusion

Table 1-12 Cycles to Calculate Minimum and Maximum of 100-Element Vector
(Floating Point)

Without Grafting With Grafting

for Loop (Figure 1-6) 905 365

if .. goto Loop (Figure 1-21) 1395 357

Table 1-13 Effect of Loop Fusion on Calculation of Mean and Variance (Instructions/
Element)

Without
Grafting

With
Grafting

Separate Loops to Calculate Mean and Variance 15.26 7.10

Fusion of Two Loops 11.11 5.48

float meanvar(float *a,int n,float

*var){

 float sum = 0, sumsq = 0, mean,

ninv;

 int i;

 for (i=0; i<n; i++)

 sum = sum + a[i];

 for (i=0; i<n; i++)

 sumsq = sumsq + a[i]*a[i];

 ninv = 1/n;

 mean = sum * ninv;

 *var = sumsq*ninv - mean*mean;

 return mean;

}

void vecnorm(float *a, int size) {

 int i;

 float sum = 0.0, invsum;

 for (i=0; i<size; i++)

 sum = sum + a[i];

 invsum = 1.0/sum;

 for (i=0; i<size; i++)

 a[i] = a[i] * invsum;

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-36

Replace || by |
1-36 Performance Tuning ©1998 Philips Semiconductors 6/21/98

C has a number of constructs, including the &&, ||, and ?: operators, that were designed
for efÞcient execution on a sequential processor. Their operands cannot be evaluated in
parallel. Use of these operators can increase the number of decision trees.

You can replace the expression (E1 || E2) by (E1 | E2) if two conditions are satisÞed. It
must be evaluated for its effects on control ßow. E1 and E2 must have no side effects. If the
expression is being evaluated for its value, it can be replaced by (E1 | E2)!= 0. Boolean or
(||) operators add a decision tree to the program both when used in a control statement
(if, while, for, or do while) and inside a ?: expression.

Replace && by & or IZERO

The IZERO custom operation has a value 0 if its Þrst operand is zero; otherwise, it has the
value of its second operand. You can replace a boolean and operator (&&) by IZERO if the
expression has no side effects and it is being evaluated for its effect on control ßow.

Boolean and operators add a decision tree when used in a ?: expression or a two-sided if
statement but not inside an else less if statement or as the condition of a for or while.

If the value of the expression is needed, it can be replaced by IZERO(E1, E2!=0) or
IZERO(E1, E2)!= 0, depending on which has the better critical path.

The program of Figure 1-23 counts the number of alphabetic characters and underscores in
a string. If the operands of a && operation are constrained to a boolean (0/1) value t you
can use a bitwise ÒandÓ (&) operator. The operands in the Þgure are relationals with a
boolean value. Replacing the && and || operators by & and | reduces the execution time
from 1484 to 693 cycles.

Table 1-14 Effect of Eliminating && and || Operators (Instruction Cycles)

Program of Fig. 4-19 with && and || Operators 1347

Program with & and | Operators 556

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-37

#define alpha(c) (((c) >= 'a' && c<='z') ||
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-37

Figure 1-23 Character Count

Using Software Pipelining

Typically, the three instructions after a jump operation are mostly unused. Data that is
needed in the next iteration can be preloaded in these slots. This is called software
pipelining. Figure 1-24 shows the C string comparison routine strcmp, before and after
software pipelining. Eight cycles are needed for the loop for the program on the left with
global optimization. Software pipelining allows the loop to execute in Þve cycles. You can
also schedule long-latency operations (for example, ßoating point) in these slots.

A simple form of software pipelining is implemented by the global optimizer if grafting is
not enabled.

(c>='A' && c<='Z') || c=='_')

int alphacount(char *s)

{

 int c, count;

 count = 0;

 while (c = *s++)

 count = count + alpha(c);

 return count;

}

main()

{

 alphacount("Now is the time for all good men to come to the aid of

their country");

}

strcmp(char *p, char *q)

{

 int c, c1;

 while ((c = *p++) == *q++ && c)

 ;

 return c - q[-1];

}

strcmp(char *p, char *q)

{

 int c, c1, cont;

 c = *p++;

 c1 = *q++;

 cont = (c == c1) & (c != 0);

 loop: if (cont) {

 c = *p++;

 c1 = *q++;

 cont = (c == c1) & (c != 0);

 goto loop;

 }

 return c - c1;

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-38

Figure 1-24 Example of Software Pipelining
1-38 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Use Trimedia Style Booleans in Critical Parts of the Code

In C, true and false are represented by nonzero and zero, respectively. TM-1000 uses the
low-order (guard) bit of a register to determine whether a condition is true or false. Even if
the expression being tested is compared against zero, a comparison operator is required.
Typically, Þve cycles are required for a conditional jump.

If the value of the expression is known to depend only on the low order bit, the
comparison is not necessary. The TriMedia C compiler recognizes expressions of the form
(E1&1) or !(E1&1). Using these instead of (E1!=0) or (E1==0) generates better code.
Expressions such as (E1&2n) and !(E1&2n) are optimized also.

You can use Trimedia style booleans with MUX and FMUX. If the guard is known to depend
on the Þrst order bit, you can use the machine level pseudo operations mux and fmux
instead. For example, if the variable v is constrained to a 0/1 value, you can replace
MUX(v!=0,E1,E2) by mux(v,E1,E2), saving a cycle.

Loop Unrolling
You can perform loop unrolling manually. The loop in Figure 1-1 is shown unrolled in
Figure 1-25, where the inner for loop is completely unrolledÑthat is, replaced with eight
assignment statements. The outer for loop is unrolled four times. Replacing the
convolution function with unrolled_direct_convolution gives us the new program
Þr2.c.

Note that loop unrolling is a specialized version of grafting. In loop unrolling, a
conditional jump from a decision tree exit back to itself is replaced with the code for the
decision tree. The main difference is that grafting replaces the jump part of the conditional
jump with the destination decision tree but leaves the condition in place, which causes
control dependence between one iteration of the loop to the next.

For example, the grafting shown in Figure 1-3 is essentially loop unrolling, and it can be
seen that the grafted code is still governed by a condition. Without data-ßow analysis, such
conditions cannot be removed and thus result in a lower performance, compared to manual
unrolling.

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-39

void
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-39

Figure 1-25 Convolution Example Ð Loop Unrolled (Example Þr2.c)

The following sequence of commands compiles Þr2.c with proÞling but without grafting.

The performance of the unrolled loops is as shown in the following tmprof report below.
The size of text section of the object code is 6400 bytes, which is somewhat more than
the ungrafted, unrolled program Þr1.c. The execution time of Þr2.c is about 3.4 times
faster than that of Þr1.c and about 2.9 times faster than Þr1.c with grafting enabled. From
this we can see that grafting is not the solution to all performance problems. It helps on
large parts of the code that are not very critical but still interesting, but the most critical
parts can better be optimized by hand.

unrolled_direct_convolution(char *a, char *b, int *c)

{

int k, j;

for(k = 0; k < NROF_SAMPLES; k += 4) {

c[0] = b[0]*a[0] + b[1]*a[-1] + b[2]*a[-2] + b[3]*a[-3]

 + b[4]*a[-4] + b[5]*a[-5] + b[6]*a[-6] + b[7]*a[-7];

c[1] = b[0]*a[1] + b[1]*a[0] + b[2]*a[-1] + b[3]*a[-2]

 + b[4]*a[-3] + b[5]*a[-4] + b[6]*a[-5] + b[7]*a[-6];

c[2] = b[0]*a[2] + b[1]*a[1] + b[2]*a[0] + b[3]*a[-1]

 + b[4]*a[-2] + b[5]*a[-3] + b[6]*a[-4] + b[7]*a[-5];

c[3] = b[0]*a[3] + b[1]*a[2] + b[2]*a[1] + b[3]*a[0]

 + b[4]*a[-1] + b[5]*a[-2] + b[6]*a[-3] + b[7]*a[-4];

a += 4;

c += 4;

}

}

tmcc -p fir2.c -o fir2 /* Generate program with profiling turned on */

tmsim -nomm fir2 /* Simulate intermediate code and produce

dtprof.out. */

tmcc -r fir2.c -o fir2 /* Recompile using profile information. */

tmsim -statfile fir2.stat fir2 /* Simulate & collect cycle accurate information. */

tmprof -scale 1 -func fir2 /* statOutput is sent to stdout. */

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-40

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles
1-40 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Loop Unrolling Versus Grafting
You should apply grafting at the last stage of optimization because it is impossible to
understand what is happening after grafting. You should apply loop unrolling only if it
produces better performance then grafting. Consider, for example, the program in
Figure 1-26, which initializes a symbol table with the list of C keywords. When compiled
and run using the global optimizer (-O3), 1830 instruction cycles are necessary for 30
calls to definesym (62 cycles per call). 48 cycles per call are spent in the character copy
loop. This corresponds to six cycles per copied byte.

--------------- ---------- ----------------- --------- --------

unrolled_direct_convoluti 1 7153 63.68% 300 843

initialize 1 2867 25.53% 261 84

exit 1 193 1.72% 145 22

main 1 153 1.36% 136 3

_clear_all_regs 1 129 1.15% 116 0

_clear_all_regs_1 1 129 1.15% 116 0

_pre_start 1 120 1.07% 65 45

_profile_write 1 114 1.01% 92 11

_start_1 1 89 0.79% 67 15

_start_second 1 64 0.57% 58 0

_return_custom_begin 1 62 0.55% 58 0

_default_exit_2 1 43 0.38% 0 38

_default_exit_1 1 36 0.32% 29 3

_exit 1 33 0.29% 29 0

_custom_begin 1 33 0.29% 29 0

_default_exit 1 6 0.05% 0 0

_custom_end 1 4 0.04% 0 0

_return_custom_end 1 4 0.04% 0 0

total/average 11232 100.00% 1501 1064

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-41

#define NSYM 8
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-41

Figure 1-26 Symbol Table Initialization

The number of times the for loop in definesym is executed is known in advance. Grafting
replicates the condition (i<8). For this reason, it is better to use loop unrolling.
Figure 1-27 shows code for the unrolled loop. Six cycles are necessary per byte using a
loop. You can estimate the time corresponding to the unrolled loop as 3.25 cycles.

#define NFREE 100

struct symbol {

 struct symbol *next;

 char name[NSYM];

 int value;

} *avail, *symlist;

#define freesym(sym) { struct symbol *t = (sym); t->next = avail;

avail = t; }

char*keywords[] = {

 "void","char","short", "int", "long", "float", "double", "struct",

 "union", "enum", "unsigned", "auto", "extern", "static", "register",

 "goto", "switch", "case", "default", "return", "if", "else", "while",

 "do", "break", "continue", "for", "typedef", "sizeof"

"const","volatile", 0};

struct symbol *definesym(char *str, int value) {

int i;

struct symbol *res = avail;

avail = avail->next;

for (i=0; i<NSYM; i++)

 res->name[i] = str[i];

res->value = value;

res->next = symlist;

symlist = res;

return res;

}

main() {

 int i;

 for (i=0; i<NFREE; i++)

 freesym((struct symbol *)malloc(sizeof(struct symbol)));

 for (i=0; keywords[i]; i++)

 definesym(keywords[i], i);

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-42

struct symbol *definesym(char *str, int value)
1-42 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-27 Unrolled Loop

Using Restricted Pointers
C programs make heavy use of loads and stores through pointers. The C language does not
allow the compiler to make any assumptions about pointers. Consider the following two
assignment statements in the for loop of program Þr2.c:

Since a, b, and c are pointer parameters to the function unrolled_direct_convolution,
in the absence of inter-procedural analysis the compiler assumes that they might refer to
the same or overlapping memory locations; that is, be aliased to each other. In other
words, the second assignment statement might be data dependent on the Þrst statement.
This implies that the operations of the two statements cannot be executed in parallel.
However, you know that a, b, and c always are distinct arrays and thus never alias. You can
convey this information to the compiler by declaring these pointers to be restricted.

Declaring pointers as restricted is a hint to the compiler that these pointers point to
separate objects in memory that do not overlap with any known variable in the current
context or with such an object related to any other restricted pointer. Based on this
information, the compiler decides that different variables and/or restricted pointers do not
alias. Note that it is your responsibility to verify that the assertion is true: proper use of
restricted pointers reduces the amount of dependencies and, therefore, increases potential

{

int i;

struct symbol *res = avail;

avail = avail->next;

res->name[0] = str[0]; res->name[1] = str[1];

 res->name[2] = str[2]; res->name[3] = str[3];

 res->name[4] = str[4]; res->name[5] = str[5];

res->name[6] = str[6]; res->name[7] = str[7];

res->value = value;

res->next = symlist;

symlist = res;

return res;

}

c[0] = b[0]*a[0] + b[1]*a[-1] + b[2]*a[-2] + b[3]*a[-3] + b[4]*a[-4] +

 b[5]*a[-5] + b[6]*a[-6] + b[7]*a[-7];

c[1] = b[0]*a[1] + b[1]*a[0] + b[2]*a[-1] + b[3]*a[-2] + b[4]*a[-3] +

 b[5]*a[-4] + b[6]*a[-5] + b[7]*a[-6];

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-43

parallelism. However, declaring pointers to overlapping memory regions as restricted
results in an incorrect program. In our running example, we assign the type qualiÞer
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-43

restrict to the declarations of a, b, and c, as shown in Figure 1-28.

Figure 1-28 Convolution Example - Restricted Pointers (example Þr3.c)

The following sequence of commands compiles, proÞles, and recompiles the program, and
then produces a report.

The output of tmprof is as follows:

restrict_direct_convolution(

char * restrict a,

char * restrict b,

int * restrict c)

{

int k, j;

for(k = 0; k < NROF_SAMPLES; k += 4) {

c[0] = b[0]*a[0] + b[1]*a[-1] + b[2]*a[-2] + b[3]*a[-3]

 + b[4]*a[-4] + b[5]*a[-5] + b[6]*a[-6] + b[7]*a[-7];

c[1] = b[0]*a[1] + b[1]*a[0] + b[2]*a[-1] + b[3]*a[-2]

 + b[4]*a[-3] + b[5]*a[-4] + b[6]*a[-5] + b[7]*a[-6];

c[2] = b[0]*a[2] + b[1]*a[1] + b[2]*a[0] + b[3]*a[-1]

 + b[4]*a[-2] + b[5]*a[-3] + b[6]*a[-4] + b[7]*a[-5];

c[3] = b[0]*a[3] + b[1]*a[2] + b[2]*a[1] + b[3]*a[0]

 + b[4]*a[-1] + b[5]*a[-2] + b[6]*a[-3] + b[7]*a[-4];

a += 4;

c += 4;

}

}

tmcc -p fir3.c -o fir3 /* Generate program with profiling turned on.*/

tmsim -nomm fir3 /* Simulate intermediate code and produce

dtprof.out.*/

tmcc -r fir3.c -o fir3 /* Recompile using profile information. */

tmsim -statfile fir3.stat fir3 /* Simulate and collect cycle accurate

information.*/

tmprof -scale 1 -func fir3.stat /* Output is sent to stdout.*/

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-44

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles
1-44 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Notice that the execution speed of the unrolled loop improves by about 50% when
restricted pointers are used, compared to program Þr2.c. This latest version of the loop
executes about 4.5 times faster than the original version in program Þr1.c.

As one more improvement, we use grafting along with unrolling and restricted pointers.
The following commands are used for compiling program Þr3.c.

Grafting again gains performance, mainly due to the effect on other functions. The text
section of the object code has a size of 7552 bytes, which is about 27% more than the
original code size.

--------------- ---------- ----------------- --------- ---------

restrict_direct_convoluti 1 3051 42.79% 174 467

initialize 1 2867 40.21% 261 84

exit 1 193 2.71% 145 22

main 1 153 2.15% 136 3

_clear_all_regs 1 129 1.81% 116 0

_clear_all_regs_1 1 129 1.81% 116 0

_pre_start 1 120 1.68% 65 45

_profile_write 1 114 1.60% 92 11

_start_1 1 89 1.25% 67 15

_start_second 1 64 0.90% 58 0

_return_custom_begin 1 62 0.87% 58 0

_default_exit_2 1 43 0.60% 0 38

_default_exit_1 1 36 0.50% 29 3

_custom_begin 1 33 0.46% 29 0

_exit 1 33 0.46% 29 0

_default_exit 1 6 0.08% 0 0

_return_custom_end 1 4 0.06% 0 0

_custom_end 1 4 0.06% 0 0

total/average 7130 100.00% 1375 688

tmcc -p fir3.c -o fir3 /* Generate program with profiling turned on.*/

tmsim -nomm fir3 /* Simulate intermediate code & produce

dtprof.out.*/

tmcc -G fir3.c -o fir3 /* Recompile using profile information, perform

grafting.*/

tmsim -statfile fir3.stat fir3 /* Simulate & collect cycle accurate information.*/

tmprof -scale 1 -func fir3.stat /* Output is sent to stdout.*/

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-45

Funcname Executions Total Cycles (%) I$Cycles D$Cycles

--------------- ---------- ----------------- --------- --------
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-45

The pointers str, avail, and symlist in Figure 1-27 could have identical values or
differing values. They could even overlap. Because of this, the compiler must order stores
through pointers with respect to other loads and it stores in strict program order. There are
11 loads and 13 stores in the procedure definesym. Issuing these operations in strict
program order limits the ILP.

The str points to an array of characters and avail points to a symbol table entry. It seems
clear they differ given the types. avail points to a list of available nodes and symlist
points to a list of nodes on the symbol table. These two sets should be independent. All but
two (the uses of symlist) of the 24 memory references can be shown to differ. The other
accesses can be performed in parallel.

Figure 1-29 shows how to modify the program to use restricted pointers. 360 instruction
cycles are needed for definesym, as compared to 1830 before and 1440 after unrolling.
This corresponds to 12 instructions per call to the function. Table 1-15 summarizes the
performances with restricted pointers and loop unrolling and before optimization.

restrict_direct_convoluti 1 2865 52.65% 576 476

initialize 1 1376 25.28% 493 84

exit 1 182 3.34% 145 11

main 1 153 2.81% 136 3

_clear_all_regs 1 129 2.37% 116 0

_clear_all_regs_1 1 129 2.37% 116 0

_pre_start 1 120 2.21% 65 45

_profile_write 1 114 2.09% 92 11

_start_1 1 89 1.64% 67 15

_start_second 1 64 1.18% 58 0

_return_custom_begin 1 62 1.14% 58 0

_default_exit_2 1 43 0.79% 0 38

_default_exit_1 1 36 0.66% 29 3

_custom_begin 1 33 0.61% 29 0

_exit 1 33 0.61% 29 0

_default_exit 1 6 0.11% 0 0

_return_custom_end 1 4 0.07% 0 0

_custom_end 1 4 0.07% 0 0

total/average 5442 100.00% 2009 686

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-46

struct symbol *definesym(char * restrict str, int value) {
1-46 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-29 Using Restricted Pointers

Be aware that unwarranted use of restricted pointers can introduce subtle bugs.

The implementation of the restrict keyword is based on the paper Restricted Pointers in
C by the Numerical C Extensions Group of ANSI X3J11. This paper (X3J11/94-019, Draft
2) can be found at http://www.lysator.liu.se/c/restrict.html. To the best of our knowledge,
restricted pointers will be in the future ANSI C standard.

Using Custom Operators
The TriMedia hardware architecture provides special operations for DSP applications.
They are made available through the custom_op declaration. In fact, all machine
operations are available through the custom_op mechanism, but not all of them are of use
to you. The most important ones are deÞned in the include Þle custom_defs.h1. We
recommend that you use only the custom operators deÞned in custom_defs.h. By using
only these, you can develop and execute on the host platform because a special library
with the implementation of the custom operators is provided.

1. The real declaration of the custom operators is done in include Þle custom_ops.h. The Þle
custom_defs.h is an abstraction from the custom operators to enable you to develop and execute
on the host platform with use of the TriMedia custom_ops.

Table 1-15 Instruction Cycles Per Procedure Call

Call To definesym

No Optimization 62

Loop Unrolling 40

Loop Unrolling + Restricted Pointers 12

struct symbol * restrict res = avail;

avail = avail->next;

res->name[0] = str[0]; res->name[1] = str[1];

res->name[2] = str[2]; res->name[3] = str[3];

res->name[4] = str[4]; res->name[5] = str[5];

res->name[6] = str[6]; res->name[7] = str[7];

res->value = value;

res->next = symlist;

symlist = res;

return res;

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-47

void
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-47

Figure 1-30 Convolution Example - Custom Operators

custom_ops_direct_convolution(

char * restrict a,

char * restrict b,

int * restrict c)

{

int i, ib0, ib1, i0, i1, i2;

int * restrict ia;

ia = (int *) a;

/*

 * Copy b, in a new array called rev_b in time reversed order.

 * ib points this array as an integer pointer.

 * Let A = |abcd| and B = |pqrs| with where a,b,c,d,p,q,r, and s are

 * all 8 bit integers. Then

 * PACKBYTES(A,B) = |ds] and

 * PACK16LSB(A,B) = |cdrs|

 */

ib0 = PACK16LSB(PACKBYTES(b[7], b[6]), PACKBYTES(b[5], b[4]));

ib1 = PACK16LSB(PACKBYTES(b[3], b[2]), PACKBYTES(b[1], b[0]));

for(i = 0; i < NROF_SAMPLES/4; i++) {

/*

 * Let A = |abcd| and B = |pqrs| where a,b,c,d,p,q,r, and s are

 * all 8 bit integers. Then

 * FUNSHIFT1(A,B) = |bcdp|

 * FUNSHIFT2(A,B) = |cdpq|

 * FUNSHIFT3(A,B) = |dpqr|

 * IFIR8II(A,B) = a*p + b*q + c*r + d*s

 */

i0 = ia[i - 2];

i1 = ia[i - 1];

i2 = ia[i];

c[0] = IFIR8II(ib0, FUNSHIFT1(i0, i1)) +

 IFIR8II(ib1, FUNSHIFT1(i1, i2));

.....

c[3] = IFIR8II(ib0, i1) + IFIR8II(ib1, i2);

c += 4;

}

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-48

Of special interest for the example are the custom_ops FUNSHIFT and IFIR8II. Let A =
|abcd| and B = |pqrs| where a, b, c, d, p, q, r, s, are all 8-bit integers. Then,
1-48 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Four multiplications and three additions in the inner loop of program Þr3.c are replaced by
one FUNSHIFT and one IFIR8II operation. Other usage of custom operators in the Þr
program are selecting bytes or half words and merging them into one word (PACKBYTES
and PACK16LSB). To use these custom operators, the program must include the header
Þle custom_defs.h. You can Þnd this include Þle in the directory $TCS/include/ops. This
directory is in the default include path for the compiler driver. Most custom operators
directly map to hardware operations. Access via the include Þle custom_defs.h ensures
that your program can still run on the host system, because a library of custom operator
implementation for the host system is provided.

Figure 1-30 shows the modiÞed function, still using restricted pointers. Compiling the
program Þr4.c while grafting using the following commands and running tmprof shows
the performance gain due to custom operators:

FUNSHIFT1(A,B) = |bcdp|

FUNSHIFT2(A,B) = |cdpq|

FUNSHIFT3(A,B) = |dpqr|

IFIR8II(A,B) = a*p + b*q + c*r + d*s

tmcc -p fir4.c -o fir4 /* Generate program with profiling turned on. */

tmsim -nomm fir4 /* Simulate intermediate code and produce

dtprof.out. */

tmcc -G fir4.c -o fir4 /* Recompile using profile information, perform

grafting */

tmsim -statfile fir4.stat fir4 /* Simulate and collect cycle accurate

information.*/

tmprof -scale 1 -func fir4.stat /* Output is sent to stdout.*/

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-49

The output of tmprof shows
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-49

The unrolled version of the loop now is already 7.8 times as fast as the original version,
because of the use of custom operators, grafting, and restricted pointers.

Using the Global Optimizer
You can enable the global optimizer feature of the TCS to gain performance
improvements. A general observation is that you should use the global optimizer with care
when the program is already hand-optimized. On some functions there can be an
improvement, on others a degradation. This is due to the nature of the parallel architecture.
The global optimizer hoists computations out of loops, which means they become dtree
global computations, that is, the values are produced in one and used in another dtree.
These values end up in global registers because they have to be preserved across dtree
jumps. This is in contrast to the dtree local variables used by the scheduler, which are only
alive within the decision tree.

Use of global registers adds save-and-restore code to the program. If there is not much
parallelism in the loop, the hoisted expression could have been recalculated in the loop at
no extra cost. The current global optimizer does not know about this trade-off because it

total/average 4965 100.00% 1972 1260

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --------

custom_ops_direct_convolu 1 1581 37.58% 591 211

initialize 1 1376 32.71% 493 84

exit 1 193 4.59% 145 22

main 1 153 3.64% 136 3

_clear_all_regs_1 1 129 3.07% 116 0

_clear_all_regs 1 129 3.07% 116 0

_pre_start 1 120 2.85% 65 45

_profile_write 1 114 2.71% 92 11

_start_1 1 89 2.12% 67 15

_start_second 1 64 1.52% 58 0

_return_custom_begin 1 62 1.47% 58 0

_default_exit_2 1 43 1.02% 0 38

_start 1 38 0.90% 29 5

_default_exit_1 1 36 0.86% 29 3

_custom_begin 1 33 0.78% 29 0

_exit 1 33 0.78% 29 0

_default_exit 1 6 0.14% 0 0

_return_custom_end 1 4 0.10% 0 0

_custom_end 1 4 0.10% 0 0

total/average 4207 100.00% 2053 437

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-50

can only be made after scheduling. For this reason, you can use pragmas to turn the global
optimizer on and off selectively per function.
1-50 Performance Tuning ©1998 Philips Semiconductors 6/21/98

The main opportunities for the global optimizer in Þr4.c are the reuse of the values a[i-1],
a[i] and FUNSHIFTx(i1,i2) from the previous loop iteration. The global optimizer is
enabled using ßag -O3.

The following sequence of commands is used to recompile Þr4.c:

Figure 1-31 shows a C program that sorts a table using the insertion sort algorithm. The
procedure insertion is derived from one in the book ÒAlgorithms in CÓ by Robert
Sedgewick (published by Addison-Wesley). Before sorting, the table is in reverse order.

tmcc -p fir4.c -o fir4 /* Generate program with profiling turned on.*/

tmsim -nomm fir4 /* Simulate intermediate code & produce

dtprof.outtmcc -G -O3 -tmccom

-graft_tuning_file graftfile -- fir4.c -o

fir4 recompile using profile information,

perform grafting, and use the global

optimizer.*/

tmsim -statfile fir4.stat fir4 /* Simulate & collect cycle accurate

information. */

tmprof -scale 1 -func fir4.stat /* Output is sent to stdout.*/

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --------

initialize 1 1516 39.70% 206 274

custom_ops_direct_convolu 1 1053 27.57% 259 131

exit 1 193 5.05% 145 22

main 1 153 4.01% 136 3

_clear_all_regs_1 1 129 3.38% 116 0

_clear_all_regs 1 129 3.38% 116 0

_pre_start 1 120 3.14% 65 45

_profile_write 1 114 2.99% 92 11

_start_1 1 89 2.33% 67 15

_start_second 1 64 1.68% 58 0

_return_custom_begin 1 62 1.62% 58 0

_default_exit_2 1 43 1.13% 0 38

_start 1 38 1.00% 29 5

_default_exit_1 1 36 0.94% 29 3

_custom_begin 1 33 0.86% 29 0

_exit 1 33 0.86% 29 0

_default_exit 1 6 0.16% 0 0

_return_custom_end 1 4 0.10% 0 0

_custom_end 1 4 0.10% 0 0

total/average 3819 100.00% 1434 547

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-51

1 #include <stdio.h>
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-51

Figure 1-31 Insertion Sort

The program is compiled and executed as follows (user input is in italics):

The Þrst command compiles the program using the TriMedia compiler driver tmcc with
the default optimization level two (decision-tree optimization only). The output is placed
in the Þle a.out. Local optimization is performed by the TriMedia core compiler, tmccom.
The optimizations are copy propagation, common subexpression elimination, constant
folding, and load elimination. They are local to a decision tree (the scheduling unit on
TriMedia). Decision trees are deÞned in Chapter 2 of ÒPrograming Languages and File
Formats.Ó The local optimizer implements alias analysis and orders the scheduling of
loads and stores.

2 #defineSIZE100

3

4 void insertion(int *a, int n)

5 {

6 int i, j, v;

7

8 for (i=1; i<n; i++) {

9 v = a[i];

10 for (j = i; j>0 && a[j-1] > v; j--)

11 a[j] = a[j-1];

12 a[j] = v;

13 }

14 }

15

16 main()

17 {

18 int a[SIZE], i;

19 for (i = 0; i < SIZE; i++)

20 a[i] = SIZE-i;

21 insertion(a, SIZE);

22 }

$ tmcc insertion_sort.c

$ tmsim -v -nomm ins1

tmsim v19.5 of 1.0f1SunOS (Jul 10 1996 14:37:55)

-------------------- starting batch execution --------------

-------------------- end of batch execution ----------------

nr of cycles: 71240

$

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-52

The second command runs the program using the Trimedia machine-level simulator
tmsim. The -v option tells the simulator to give statistics on the execution time. The
1-52 Performance Tuning ©1998 Philips Semiconductors 6/21/98

release version and build date is reported by -V. Both instruction execution and the caches
of TM-1000 are simulated by default by tmsim. The -nomm option tells tmsim to only
count the number of instructions (cache is not simulated). The 71240 instructions are
necessary to sort a 100-element table.

The program is compiled and run using the global optimizer, as follows:

tmccom has a global optimizer that performs the same optimizations as the local
optimizer over the whole procedure. It is invoked from tmcc using the -O3 option.

51335 instructions are necessary to execute the program. This corresponds to 513.4
microseconds on a 100-Mhz TM-1000, not counting cache. The execution times without
and with global optimization are compared in Table 1-16.

Understanding a difference in performance requires analyzing the programÕs time
behavior. To Þnd out where the program spends most of its time, Þrst generate two
executable Þles, ins.O2 and ins.O3, with and without global optimization.

Obtain the statistics on the behavior of individual decision trees by using tmsim with the -
statfile option:

Extract a function-level proÞle of the behavior with local optimization by using tmprof:

Table 1-16 Execution Times

Time to Sort a 100 Element Table (msec)

Without Global Optimizer With Global Optimizer

712.4 513.4

$ tmcc -O3 insertion_sort.c

$ tmsim -v -nomm a.out

tmsim v19.5 of 1.0f1SunOS (Jul 10 1996 14:37:55)

-------------------- starting batch execution --------------

-------------------- end of batch execution ----------------

nr of cycles: 51335

$

$ tmcc -o ins.O2 -O2 insertion_sort.c

$ tmcc -o ins.O3 -O3 insertion_sort.c

$ tmsim -statfile ins.O2.stat ins.O2

$ tmsim -statfile ins.O3.stat ins.O3

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-53

$ tmprof -scale 1 -func ins.O2.stat
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-53

The -scale option sets the scale to a clock cycle (the default scale is 1000 cycles). The -
func option produces a report in which each line corresponds to a function (by default the
report is by decision tree).

The overall behavior is summarized in the Þnal line. 72506 cycles are necessary to execute
the program. The difference between this Þgure and that reported by tmsim (-nomm
option) corresponds to the cache overhead, as reported in the last two columns.

The output of tmprof is in decreasing execution time order. 97% of the execution time of
the program is spent in the procedure insertion. A breakdown by decision tree of the
time spent there can be obtained as follows:

Funcname Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --

insertion 1 70671 97.47% 174 0

main 1 750 1.03% 104 31

exit 1 184 0.25% 145 13

_clear_all_regs 1 129 0.18% 116 0

_clear_all_regs_1 1 129 0.18% 116 0

_pre_start 1 120 0.17% 65 45

_profile_write 1 115 0.16% 90 14

_start_1 1 89 0.12% 67 15

_start_second 1 64 0.09% 58 0

_return_custom_begin 1 62 0.09% 58 0

_default_exit_2 1 43 0.06% 0 38

_default_exit_1 1 36 0.05% 29 3

_exit 1 34 0.05% 30 0

_custom_begin 1 33 0.05% 29 0

_start 1 33 0.05% 29 0

total/average 72506 100.00% 1110 159

$ tmprof.select insertion ins.O2.stat -scale 1

Treename Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- --

insertion_DT_2 4950 68566 97.02% 58 0

insertion_DT_1 99 1019 1.44% 29 0

insertion_DT_4 99 594 0.84% 0 0

insertion_DT_3 99 425 0.60% 29 0

insertion 1 34 0.05% 29 0

insertion_DT_5 1 33 0.05% 29 0

total/average 70671 100.00% 174 0

 (...)

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-54

The where tmprof.select function is a simple shell script that applies tmprof to a
particular function. The breakdown of time in the function with global optimization can be
1-54 Performance Tuning ©1998 Philips Semiconductors 6/21/98

obtained similarly:

The difference in execution time can be seen to come from decision tree number two of
the procedure insertion. In what follows, the notation insertion2 is used for decision
tree number two of insertion. This corresponds to the inner loop of the algorithm and
takes about ten (49144/4950) cycles per iteration. Execution times for the inner loop
without and with global optimization are shown in Table 1-17. The improvement in the
performance is due to better alias analysis using the global optimizer.

The function tmprof does not report all the information about the execution behavior
contained in the statistics Þle. The line of the statistics Þle corresponding to insertion2
with global optimization can be obtained as follows:

The select function is another simple shell script to select the lines corresponding to a
function. The TM-1000 processor can execute up to Þve operations per instruction cycle.
The last two Þelds correspond to the number of issued operations and executed operations.
These can vary due to speculation and guarding. You can Þnd information on these in the
TM-1000 Data Book.

Table 1-17 Execution Times

Clock Cycles for Inner Loop

Without Global Optimizer With Global Optimizer

13.85 9.92

$ tmprof.select insertion -scale 1 ins.O3.stat

Treename Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- ------ ---------

insertion_DT_2 4950 49144 96.81% 29 11

insertion_DT_1 99 920 1.81% 29 0

insertion_DT_3 99 633 1.25% 39 0

insertion 1 34 0.07% 29 0

insertion_DT_4 1 33 0.07% 29 0

total/average 50764 100.00% 155 11

$ select insertion_DT_2 ins.O3.stat

tree name execs instc istallc dstallc cpbacks cnflctc isopers

exopers

__insertion_DT_2 4950 49104 29 11 0 0

79002 79002

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-55

The second and third Þelds correspond to the number of times the decision tree is executed
(execs) and the number of cycles not including cache overhead (instc). The other Þelds
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-55

give a breakdown of cache overhead.

Roughly ten instructions on average are executed per iteration of the loop (=49104/4950).
About 16 operations on average are executed per iteration (=79002/4950). The average
Instruction Level Parallelism (ILP) is 1.6 operations per instruction, which is fairly low
compared to the Þve operations per cycle available.

Jumps and memory references limit ILP. The TM-1000 processor has more processing
power, but it needs the same balance of processor and memory as a conventional
processor. The ILP of a decision tree can also be limited by the length of the critical path.

A summary of the memory behavior can be obtained using tmsim:

The ratio of instructions to data accesses is 0.29 (=51333/15279) on average. This is high
for TM-1000. When a signiÞcant percentage of the time spent in a program is in a decision
tree with low ILP, it is a good idea to look at the generated code. The assembler output
corresponding to insertion2 is shown below. It has been condensed for layout purposes.

$ tmsim -v ins.O3

 (...)

nr of cycles: 52573

nr of executed instructions: 51332

CPI: 1.024

instruction cache statistics: size 32 kB, blocksize 64 b, associativity

8

nr of accesses: 51333

nr of hits: 51297

hitrate: 100 %

CPI: 0.022

data cache statistics: size 16 kB, blocksize 64 b, associativity 8

(hierarchical lru)

nr of accesses: 15279

nr of hits: 15265

hitrate: 100 %

dconflictrate: 0 %

CPI: 0.003

I/D overlap CPI: 0.001

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-56

__insertion_DT_2:
1-56 Performance Tuning ©1998 Philips Semiconductors 6/21/98

There are two unused cycles after the load instructions (ld32r) in cycles two and seven.
The three cycles after the jump operations (jmpt, jmpf) in cycle ten are wasted. When

 (* cycle 0 *)

 asli(0x2) r34 -> r124 , isubi(0x1) r34 -> r125 ,

uimm(__insertion_DT_3) -> r126 ,

 uimm(__insertion_DT_2) -> r127 , nop ;

(* cycle 1 *)

 asli(0x2) r125 -> r125 , isubi(0x4) r124 -> r122 ,igtri(0) r125 -> r123 ,

 iadd r35 r124 -> r124 , iadd r0 r125 -> r34 ;

(* cycle 2 *)

isubi(0x4) r125 -> r125 ,ijmpf r123 r126 ,nop ,

ld32r r35 r122 -> r122 ,nop ;

(* cycle 3 *)

 nop , nop, nop, nop, nop;

(* cycle 4 *)

nop , nop, nop, nop, nop ;

(* cycle 5 *)

 nop , nop, nop, h_st32d(0) r122 r124 , nop ;

(* cycle 6 *)

 nop , nop , nop , ld32r r35 r125 -> r125 , nop ;

(* cycle 7 *)

nop, nop, nop, nop, nop ;

(* cycle 8 *)

 nop, nop, nop, nop, nop ;

(* cycle 9 *)

 igtr r125 r33 -> r125 , nop, nop, nop, nop ;

(* cycle 10 *)

 nop , IF r123 ijmpf r125 r126 , IF r123 ijmpt r125 r127 , nop, nop ;

(* cycle 11 *)

 nop, nop, nop, nop, nop ;

(* cycle 12 *)

 nop, nop, nop, nop, nop ;

(* cycle 13 *)

 nop, nop, nop, nop, nop ;

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-57

unused cycles are observed in a section of code like this, it is a good idea to use proÞling
and grafting.
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-57

Using Profiling and Grafting
The Trimedia compiler can generate more parallel code by being trained about the
behavior of the program. First, it is necessary to compile the program with the -p
(profile option):

This tells the compiler to add code to generate statistics to the program. Running it using
tmsim produces a file dtprof.out containing more decision tree information. It can be read
using tmdtprof:

The underlined information gives the correspondence between a decision tree and the Þle
and line in the source program. For example, the procedure insertion starts at column
six of line four of Òinsertion_sort.c.Ó The insertion3 function begins at line nine, column
six (the for condition of Figure 1-31). The -> lines are the exit paths (jumps) out of the
decision tree. For example, on path zero, insertion3 loops to itself 4,851 times. On the
Þrst path it goes 99 times to insertion4, and the second path is never taken.

The compiler implements an optimization called grafting to reduce jump latency and
increase ILP. Grafting copies a decision tree at the place of a jump. The compiler selects
the most frequently executed decision trees as candidates for grafting from the information
in dtprof.out. Grafting takes place when there is a high frequency and probability of ßow

$ tmcc -p insertion_sort.c

$ tmdtprof dtprof.out

insertion_sort.c:main() calls = 1 operations = 1241

insertion_sort.c:insertion() calls = 1 operations = 76345

Function count = 2

path: insertion_sort.c main() 16/1 (dtree count = 5)

 (...)

path: insertion_sort.c insertion() 4/6 (dtree count = 7)

dt(0)4/1 ops(11) exits(2)

0 -> dt(1) exec count(1)

1 -> dt(1) exec count(0)

(...)

dt(3)11/17 ops(15) exits(3)

0 -> dt(3) exec count(4851)

1 -> dt(4) exec count(0)

2 -> dt(4) exec count(99)

(...)

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-58

along a path. For example, it is worthwhile to graft insertion3 onto itself several times
because the loop is frequently reentered.
1-58 Performance Tuning ©1998 Philips Semiconductors 6/21/98

You can compile and run the -G option tells the compiler to use grafting. The program can
be compiled and run with grafting as follows:

Table 1-18 compares the inner loop behavior at -O3 with and without grafting. 78% of the
branches (1128 versus 4950) are eliminated due to grafting (the loop is grafted four times).
The ILP increases from 1.60 to 3.36. The issued and executed operations correspond to the
isopers and exopers fields of the statfile (see above).

Table 1-18 Inner Loop Behavior at -O3 with and without Grafting

Executions of
Decision Tree 2

Instruction
Cycles

Issued
Operations

Executed
Operations

Ops/InstÕn
(ILP)

No Grafting 4950 49104 79002 79002 1.60

Grafting 1128 16638 56068 55718 3.36

$ tmcc -G -O3 -O ins.O3.graft insertion_sort.c

$ tmsim -v -statfile ins.O3.graft.stat ins.O3.graft

 (...)

nr of cycles: 20866

nr of executed instructions: 19142

CPI: 1.090

instruction cache statistics: size 32 kB, blocksize 64 b, associativity 8

nr of accesses: 19143

nr of hits: 19091

hitrate: 100 %

CPI: 0.083

data cache statistics: size 16 kB, blocksize 64 b, associativity 8

nr of accesses: 10388

nr of hits: 10373

(...)

$ select insertion_DT_2 ins.O3.graft.stat

tree name execs instc istallc dstallc cpbacks cnflctc isopers

exopers

--

__insertion_DT_2 1128 16638 87 0 0 0

56068 55718

 __clearregs_DT_ 1 32 192 58 16 0 6

512 511

 __clearregs_DT_ 1 32 928 58 24 0 1

832 831

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-59

Table 1-19 compares the overall behavior. The number of memory accesses is about the
same with and without global optimization. However, there is a reduction of one third
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-59

when using both global optimization and grafting.

Using Unsafe Alias Analysis
The earlier section ÒUsing Restricted PointersÓ on page 1-42 describes how you can use
restricted pointers to help the compiler in alias analysis1. Good alias analysis is one of the
key techniques for obtaining parallelism and the best optimization. The alias analyzer
weakens the ordering of memory operations (all assignments and uses of values in C
terms). A weaker ordering allows more operations to go in parallel. In C, it is important
not to use pointers unless it is necessary because an unknown pointer aliases with all
nonlocal nonexposed variables2. Also, the use of global variables limits the abilities of the
alias analyzer to disambiguate two memory locations.

The compiler currently has three levels of alias analysis. Level zero is perfectly safe, that
is, no assumptions are made on any use of the ANSI C language. The two higher levels do
make assumptions on the use of the language and are safe in most programs. However,
when using unsafe alias analysis, it is very important to understand the details of the
program and the use of all memory references.

You can specify unsafe alias analysis with the option -A[012] to the compiler. The default
level is level one. You can use the pragmas to change the alias level function per function.

1. Alias analysis is the technique used in the compiler to determine whether two memory locations are
the same or whether they overlap.

2. Local variables are variables declared within a function scope. Nonexposed variables are variables
of which the address is never taken. The compiler knows that if the address is never taken that it
cannot be stored to any pointer variable and, thus, does not alias with any pointer indirection. In the
absence of inter-procedural analysis, the nonexposed property can only be determined for local
variables.

Table 1-19 Overall Behavior At Different Levels of Optimization

Optimizations Instructions Memory Accesses Total Cycles

Local Optimization 71237 15180 72534

Global Optimization 51332 15279 52573

Grafting and Global
Optimization

19142 10373 20855

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-60

Level one makes the following two assumptions:
1-60 Performance Tuning ©1998 Philips Semiconductors 6/21/98

1. The memory object referred to by a certain pointer does not contain the same pointer.
This means that when p points to a struct, it is assumed that there is no Þeld f in the
struct such that p->f==p. Also, when p points to an array of pointers, it is assumed that
there is no index i such that p[i]==p. Similar assumptions are made for arbitrary
nesting of arrays and structs within the memory objects that p refers to. See Figure 1-
32, for example.

2. It is assumed that it is senseless to address outside any variable, and that it is impossible
to ÔreachÕ a variable through a pointer that does not already ÔpointÕ somewhere in the
same variable. This means that no assumptions are made on the relative positions at
which the variables are mapped in memory, and that no attempt is made during
execution to determine these relative positions.

These assumptions are used by the alias analyzer when trying to determine possible
aliasing in case of a memory reference through a pointer (with a certain offset) and to a
variable: if, given that the pointer points ÔsomewhereÕ in the variable, the memory
reference via the pointer and with the given offset would result in addressing (partially)
outside that variable, no aliasing is assumed. In mathematical terms: if p is a pointer and a
is a variable the memory region [*p + sizeof(a), *p + sizeof(*p)] does not alias with a. See
Figure 1-33.

Level two assumes everything from level one and globals are modiÞed only by accessing
the global itself; that is, the address of a global is never taken. See Figure 1-34 for an
example.

Note
Level two is only implemented with global optimizations on, that is,
optimization level three (-O3). ◆

Figure 1-32 Example of Point One for Unsafe Alias Analysis Level One

int *p, *q;

program fragment:

*p = 3;

q = p;

At unsafe alias analysis level -A1, we assume that *p != p, so the value of p does

not have to be reloaded after the assignment *p = 3.

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-61

typedef struct some_type{
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-61

Figure 1-33 Example of Point Two for Unsafe Alias Level One

At any program point, p->c and p->s will alias with a (for instance when we initialize
p = (struct some_type)&a), but p->i will not alias with any load or store to a at unsafe
alias -A1. This is because ÒaÓ can not be packed into a larger object (like *p). However,
due to the casting possibility in C, the compiler still lets both objects alias at the start (or at
the address) of the object.

Note that the assumption that p->i and a do not alias is not valid when we initialize
p = (some_type *)(&a-1). But then a store to *b would arbitrarily overwrite something
in memory. Program constructs like this do occur, but rarely.

Figure 1-34 Example of Point Three for Unsafe Alias Level Two

a and *p will not alias at unsafe alias level -A2 (in -O3) because the compiler assumes that
the address of a is never taken and can thus never have been assigned to p.

Figure 1-35 shows a program that initializes four arrays. Decision tree statistics for the
loop at -O3 are shown.

char c;

short s;

int i;

} ;

int a;

struct some_type *p;

int *p;

int a;

tree name execs instc istallc dstallc cpbacks cnflctc isopers exopers

__clearregs_DT_ 1 32 928 58 24 0 1 832 831

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-62

#define NREG 32
1-62 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-35 Initializing Four Arrays

The loop is executed 32 times and there are four stores per iteration. This corresponds to
128 memory accesses. The compiler does not know whether the addresses of the external
variables (max_qty, qty_first_reg, qty_last_reg, qty_const, qty_const_insn) have
been assigned to a pointer. For example, the loop is executed 32 times. However,
qty_first_reg could point to max_qty at the start of the loop. If this is true, the loop
should only be executed once. Five load accesses are necessary per loop iteration because
of the pointer aliasing. 160 memory accesses are added to the program.

The -A2 option of tmcc relaxes the rules for alias analysis. The compiler can assume that
the accesses to extern and static variables do not alias with stores through pointers. The
option -O3 must be speciÞed if the -A2 option is to have effect. The decision tree statistics
with -A2 are shown below:

typedef struct rtl *rtx;

int *qty_first_reg, *qty_last_reg, max_qty = NREG;

rtx *qty_const, *qty_const_insn;

main()

{

 qty_first_reg = (int *)malloc(NREG * sizeof(int));

 qty_last_reg = (int *)malloc(NREG *sizeof(int));

 qty_const = (rtx *) malloc(NREG * sizeof(rtx));

 qty_const_insn = (rtx *) malloc(NREG * sizeof(rtx));

 clearregs();

}

clearregs()

{

 int i;

 for (i = 0; i < max_qty; i++) {

 qty_first_reg[i] = i;

 qty_last_reg[i] = i;

 qty_const[i] = 0;

 qty_const_insn[i] = 0;

 }

}

tree name execs instc istallc dstallc cpbacks cnflctc isopersexopers

__clearregs_DT_ 1 32 192 58 16 0 6 512 511

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-63

Table 1-20 compares the performance with and without relaxed aliasing. Six instruction
cycles (=192/32) are necessary per loop iteration with the -A2 option. 29 instruction cycles
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-63

(=928/32) are necessary without the -A2 option. There are Þve variables and a load of each
requires two operations. This corresponds to the ten (=5x2) fewer operations in the loop
using relaxed aliasing. Only 272 cycles, as opposed to 1011 including cache overhead, are
necessary with relaxed aliasing.

Take care when using relaxed aliasing. Do not use it if a global variableÕs address is taken.
Figure 1-36 shows how to use relaxed alias analysis for an individual procedure or
function.

Figure 1-36 Locally Relaxed Aliasing

Using a Dirty Float
Usually compiler optimizations on ßoating point expressions are illegal. This is because
all commutative and associative properties that hold for integer operations like addition
and multiply do not hold for ßoating point operations. You can give the compiler more
freedom in expression optimizations and program transformations by using the
dirty_float option.

Table 1-20 Performance With And Without Relaxed Aliasing

Instruction
Cycles
Per Loop Operations

Memory
Accesses ILP

Total
Cycles

Without Relaxed
Aliasing
(no -A2 option)

6 16 128 2.66 1011

With Relaxed Aliasing
(-A2 option)

29 26 288 0.89 272

clearregs()

{

 int i;

#pragma TCS_A2

 for (i = 0; i < max_qty; i++) {

 qty_first_reg[i] = i;

 qty_last_reg[i] = i;

 qty_const[i] = 0;

 qty_const_insn[i] = 0;

 }

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-64

You can give the option on the command line with dirty_float <nn> or with pragmaÕs
TCS_dirty_float0, .., TCS_dirty_float2. There are three levels with the following
1-64 Performance Tuning ©1998 Philips Semiconductors 6/21/98

meaning:

■ At level zero there are no optimizations performed on ßoating point expressions.

■ At level one the compiler folds constant ßoating point expressions and introduces
conversions for if statements containing ßoating point expressions. Expressions
remain ordered against read and write to PCSW

■ At level two, besides the operations performed at level one, the compiler performs tree
height reduction and reordering of ßoating point expressions to increase parallelism.
Also, otherwise illegal optimizations like rewriting the expression d != d (check for
NaN) to false are performed.

Note
This option only has an effect at optimization level three, and might
cause incorrect results. ◆

Using Cache Optimization
Several of the techniques discussed in the preceding sections, including the use of
grafting, loop unrolling, and inlining, result in an increase in the size of the program code,
which in turn, increases the number of instruction cache stalls. You must pay attention to
the code size because the I-cache stalls can become an important factor. This section
addresses techniques to enhance data cache utilization, thereby improving the overall
program performance.

Vary the Right-Most Array Index in the Inner Loop

The program on the left of Figure 1-37 zeroes a byte array. tmprof output from running it
is shown below:

Most of the execution time (619015 out of 735686 cycles) is lost in data cache stalls.
Almost all the stall cycles are in the decision tree main2. This corresponds to the inner for
loop. It is executed 19200 (64 x 300) times.

Treename Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- ---------

__main_DT_2 19200 734120 99.79% 29 618827

__main_DT_1 64 256 0.03% 0 0

_exit 1 178 0.02% 132 37

 (...)

total/average 735686 100.00% 1022 619015

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-65

The stalls in the program of Figure 1-37 are data cache write miss stalls. Figure 1-38
shows code that you can use to instrument the program. The list of events is in Chapter 3
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-65

of the TM-1000 Data Book. You must add two lines before the Þrst for to generate and
count data cache write missed events:

You also need to add instrumentation code after execution of the relevant section of the
program:

The instrumentation reports 19200 data cache write misses. There is a cache miss for
every access.

In C, the rightmost subscript of a multidimensional array varies fastest as elements are
accessed in storage order. Each execution of the inner loop clears a single byte.
Consecutive accesses by the program of Figure 1-37 are spaced by 64 bytes. This is the
size of a cache line. Each cache miss corresponds to 64 bytes, only one of which is used.

The program on the right is equivalent to the program on the left, with the order of the for
loops interchanged. 124320 cycles are necessary to execute the program on the right. Only
4314 cycles are lost in data cache stalls. Instrumentation allows the number of data cache
stalls in the program on the right to be measured also. Measurement shows 300 data cache
stalls. 300 data cache lines correspond to 19200 (=300 x 64) bytes of data. This
corresponds to all the data in the array. Each miss costs 14.38 (=4314/300) cycles,
compared to 32.24 cycles previously. This is because the misses can be overlapped with
the execution of the program. The program on the left of Figure 1-37 generates too many
stalls, so no overlap is possible after the Þrst miss. Table 1-21 summarizes the effects of
interchanging the loops.

_MMIO_base[MEMORY_EVENTS>>2] = MM_WRTMISS;

monitor(TMR_CACHE1);

printf("cache misses = %d\n", events());

#include <stdio.h>

#include "tm1/mmio.h"

chara[300][64];

main()

{

 int k, l;

 for (l=0; l<64; l++)

 for (k=0; k<300; k++)

a[k][l] = 0;

}

#include <stdio.h>

#include "tm1/mmio.h"

chara[300][64];

main()

{

 int k, l;

 for (k=0; k<300; k++)

 for (l=0; l<64; l++)

 a[k][l] = 0;

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-66

Figure 1-37 Loop Interchange
1-66 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-38 Instrumentation Code

Pack Data as Tightly as Possible

Figure 1-39 shows a procedure to look up the name of the city closest to a point. A city is
represented by a data structure containing the x and y coordinates (2 x 4 bytes) and the
name of the city (64 bytes).

Table 1-21 Data Cache Write Misses Clearing a 64 x 300 Array of Characters

Write Misses Write Miss Stall Cycles

First Index Varies in Inner Loop 19200 619015

Second Index Varies in Inner Loop 300 4314

#include "tm1/mmio.h"

#define TMR_RUN 1

#define TMR_CACHE1 6

#define MM_WRTMISS 4

struct timer { int modulus, value, ctl; } ;

#define TIMER ((struct timer *)((char *)_MMIO_base + TIMER1))

#define events()(TIMER->value)

void monitor(int event) {

 struct timer * tp = TIMER;

 tp->ctl = 0; tp->value = 0;

 tp->modulus = -1; tp->ctl = event << 8 | TMR_RUN;

}

#define distance(x1, y1, x2, y2) ((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))

#define NCITY 256

struct city { int x; int y; char name[64]; } cities[NCITY];

char * closest(int x, int y) {

 int max, dist, here = 0, i; CITY *ap;

 max = dist(x, y, cities->x, cities->y);

 for (i = 1, ap = &cities[1]; ap<&cities[NCITY]; ap++, i++) {

 dist = distance(x, y, ap->x, ap->y);

 if (max > dist) { max = dist; here = i; }

 }

 return cities[here].name;

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-67

Figure 1-39 Linear Search
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-67

The distance needs to be computed from each city. The key Þelds (x, y) of the data
structure are referenced 256 times for each call. The name of the city is consecutive with
those in memory. The cache brings both into memory. However, the name is referenced
only once at the end of the procedure. Each access during the search accesses 64 bytes,
only eight (=2 x 4) of which are used. 6251 cycles are necessary in the procedure, of
which 3365 correspond to data cache miss stalls.

In Figure 1-40, the data structure has been modiÞed so that the Þelds not accessed during
the search are stored apart. The key Þelds (x,y) have also been packed into shorts (2 x 2
bytes). The 3571 cycles are necessary after data restructuring. The 656 cycles are data
cache stalls. Table 1-22 summarizes the effect.

Figure 1-40 ModiÞed Data Structure

Trade CPU Cycles for Cache Cycles

Figure 1-41 shows two programs to calculate the sieve of Erasosthenes. The program on
the left represents the sieve by an array of bytes. The program on the right represents the
sieve by a bit vector. Using a bit vector saves space but requires more operations to set and
test an element.

Table 1-23 compares performance for calculating the 6542 primes between one and
65536. The Þgures shown correspond to the number of instruction cycles and cache stall
cycles for the inner loop. Even though the program on the right is more complex, the
number of instructions is identical. This is because there is spare processing power
available. The store to sieve in the program on the right is more complex, but it can be
executed partially in parallel. At the end of most decision trees there are available slots.
Part of the store also executes in these slots.

Only 8K bytes are necessary to represent 65536 primes using a bit vector. Represented this
way, the sieve Þts in the cache. Represented as an array of bytes, it does not Þt in the
cache. This explains the difference in performance. Five opportunities are lost to issue

Table 1-22 Data Cache Performance for a 256-Element Linear Search

Write Miss Stall Cycles

Key and Value Stored Together (8 Bytes of Key) 3571

Key and Value Stored Separately (4 Bytes of Key) 656

struct city { short x; short y; } cities[NCITY];

char city_names[NCITY][64];

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-68

operations for every stall cycle. It is worth increasing the number of instructions if the
working set Þts in the cache as a result.
1-68 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-41 Sieve of Erasosthenes

Table 1-23 Inner Loop of Sieve of Erasosthenes (Primes from one to 65536)

Instruction Cycles Data Cache Cycles

Sieve Represented as a Byte Vector 992975 1722483

Sieve Represented as a Bit Vector 992975 0

#define MAXPRIME 1000000

charsieve[MAXPRIME+1];

main(int argc, char *argv[])

{

 int i, j, sum, maxprime;

 maxprime = atoi(argv[1]);

 for (i=2; i<=maxprime; i++)

 sieve[i] = 1;

 sieve[0] = sieve[1] = 0;

 for (i=2; i <= maxprime>>1; i++){

 if (sieve[i]) {

 for (j=2*i;j<=maxprime;j+=i){

sieve[j] = 0;

 }

 }

 }

}

#define MAXPRIME 1000000

charsieve[(MAXPRIME+7)/8];

main(int argc, char *argv[])

{

 int i, j, sum, maxprime;

 maxprime = atoi(argv[1]);

 for (i=0; i<=(maxprime+7)/8; i++)

 sieve[i] = -1;

 sieve[0] &= ~3; /* 0 and 1 arenÕt

prime */

 for (i=2; i <= maxprime>>1; i++) {

 if ((sieve[i>>3] >> (i&7)) & 1) {

 for (j=2*i; j<=maxprime; j+=i) {

sieve[j>>3] &= ~(1 << (j&7));

 }

 }

 }

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-69

Watch for Cache Set Hotspots
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-69

Figure 1-42 shows a procedure that sums up a column of an n x 128-element matrix.
Performance Þgures for different values of n are given in Table 1-24. They correspond to
16 consecutive columns.

Figure 1-42 Column of n x 128-Element Matrix

The percentage of data cache stall cycles varies depending on the row dimension in a ratio
from one to Þfteen. Accesses to an array in row order, address consecutive bytes. In
column order the accesses are separated by a stride equal to the size of the element
multiplied by the row length. For example, for a 256 x 1040 array of integers, column
accesses are separated by 4160 bytes.

There are 256 lines in the cache of 64 bytes each. These are organized into 32 sets capable
of holding eight elements each. The set number is given by address bits six through
eleven. The byte offset inside a line is given by bits zero to Þve.

The accesses in Table 1-24 are separated by a stride of more than 64 bytes. Each
references a different line. The contents are reused only after an entire column has been
traversed. Satisfactory performance for this program requires that 128 lines be held in the
cache.

Table 1-24 Performance Figure for Values of N

Matrix Dimensions Stride Data Cache Stall Cycles % Total Cycles

128 x 64 256 22752 62

128 x 65 260 3048 18

128 x 80 320 1574 10

128 x 512 2048 22679 62

128x 513 2052 23868 63

128 x 1040 4160 1594 10

nt colsum(int col, int step) {

 int i, sum = 0;

 int *pcol;

 pcol = &matrix[0][col];

 for (i=0; i<128; i++) {

 sum += *pcol;

 pcol += step;

 }

 return sum;

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-70

For a 256 x 64 matrix, imagine that the Þrst access hits a particular set (say 29). The stride
is an exact multiple of the line size (256 = 4 x 64). The next access hits the set number + 4
1-70 Performance Tuning ©1998 Philips Semiconductors 6/21/98

modulo 32 (say 1). After referencing eight elements the accesses wrap around to set 29.
The 128 accesses only use 64 (8 x 8) of the 256 lines of the cache. The working set of the
program is 128 lines. This explains the poor performance. The performance is the same
regardless of the starting set.

For a 256 x 1040 matrix, imagine that the Þrst access also hits set 29. The stride is also an
exact multiple of the line size. (4160 = 65 x 64). The next access hits set 30 (94 modulo
32). The next access hits set 31. The 128 accesses can fully use the cache. Again, the
performance does not depend on the number of the Þrst set.

For a 256 x 65 matrix, the stride (260) is not an exact multiple of 64 bytes. Accesses are
made to set numbers separated by four (260/64). However, every 16 accesses (64 / (260
mod 64)), the set number is also incremented. This allows the 128 accesses to be
distributed among all the sets.

For a 256 x 513 matrix, every 16 accesses the set number is also incremented by one (260
mod 64 = 2052 mod 64). However, accesses are made to set numbers separated by 32
(2052/64), so the 16 accesses all hit the same set. The 128 accesses are distributed among
only eight of the 256 lines of the cache.

Figure 1-43 Dot Product Matrix Multiply

Blocking

Figure 1-43 and Figure 1-44 show different algorithms to multiply two 96 x 96 square
matrices. ai,j is used as shorthand for a[i][j] in the Þgures. The algorithm of Figure 1-
43 uses an unrolled dot product. This gives a high degree of parallelism. However, the
blocked algorithm has better register and cache reuse.

A 96-element row of the array a is brought into memory to be multiplied with a column of
the array b. The values cannot be reused until the entire dot product has been calculated.
The blocked algorithm works using 6 x 6 pieces of the two matrices. 72 (2 x 6 x 6) values
need to be brought in from memory.

float a[96][96], b[96][96], c[96][96];

main()

{

 int i, j;

 for (i=0; i<96; i++)

 for (j=0; j<96; j++)

 ci,j = ai,0*b0,j + ai,1*b1,j + ai,2*b2,j + ... + ai,94*b94,j+

ai,95*b95,j;

}

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-71

There are 216 (63) product terms with a total of 432 (2 x 216) operands. Each input value
can be reused six (432/72) times. Blocking allows
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-71

5/6ths of the load instructions to be eliminated.

This also gives better cache locality. This is because the dot product reads 96 elements of b
in column order. The effect of this is limited here because the elements can Þt in the cache.

Figure 1-44 Matrix Multiply with Blocking

Table 1-25 compares the performance of the blocking and the dot product algorithms.

Table 1-25 Performance of Blocking and Dot Product Algorithms

Instruction
Cycles

Memory
Accesses

 Misses
(Data Cache)

Miss Cycles
(Data Cache)

ILP
(Inner
Loop)

Dot Product 966710 1778714 56549 10024263 4.74

Blocking 613710 589878 19053 306674 4.63

void block(float (*restrict a)[96], float (*restrict b)[96], (float

(*restrict c)[95]){

float (*restrict d)[96];

d = c;

 c0,0 = c0,0+a0,0*b0,0+a0,1*b1,0+a0,2*b2,0+a0,3*b3,0+a0,4*b4,0+a0,5*b5,0;

d0,1 = d0,1+a0,0*b0,1+a0,1*b1,1+a0,2*b2,1+a0,3*b3,1+a0,4*b4,1+a0,5*b5,1;

(...)

d0,5 = d0,5+a0,0*b0,5+a0,1*b1,5+a0,2*b2,5+a0,3*b3,5+a0,4*b4,5+a0,5*b5,5;

c1,0 = c1,0+a1,0*b0,0+a1,1*b1,0+a1,2*b2,0+a1,3*b3,0+a1,4*b4,0+a1,5*b5,0;

(...)

d5,5 = d5,5+a5,0*b0,5+a5,1*b1,5+a5,2*b2,5+a5,3*b3,5+a5,4*b4,5+a5,5*b5,5;

}

float a[96][96], b[96][96], c[96][96];

main() {

 int i, j, k;

 memset(c, 0, sizeof(c));

 for (i=0; i<96; i+=6)

 for (j=0; j<96; j+=6)

 for (k=0; k<96; k+=6)

 block(&a[i][k], &b[k][j], &c[i][j]);

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-72

Two-Level Blocking
1-72 Performance Tuning ©1998 Philips Semiconductors 6/21/98

The blocking algorithm of Figure 1-44 brings in 144 bytes (6 x 6 x 4) of the a and b arrays
into memory. Blocks of the b array are read in column order. By adding a second level of
blocking, you can improve the cache locality. Figure 1-45 gives the algorithm. You can use
the block procedure of Figure 1-44 (just change the dimension).

Three levels of loops, corresponding to the iteration variables (i, j, k) have been added
inside the loop. The innermost (k) loop has been unrolled to reduce overhead. The three
outer loops process 30 x 30 square blocks. The inner loops process 6 x 6 subsquares. The
order (i, j, k) of the inner loops should be the same as the outer loops so that the c result
is accumulated in the same order. Floating point addition is not associative. Comparative
performance for single-and two-level blocking is given in Table 1-26. Although the extra
loop levels increase the number of instructions, the overall performance is nearly doubled.

Figure 1-45 Blocking Matrix Multiplication

Table 1-26 Performance for Single and Two-Level Blocking

Instruction
Cycles

Memory
Accesses

 Misses
(Data Cache)

Miss Cycles
(Data Cache) ILP CPI

One
Level
Blocking

9555784 9216056 635049 9576916 4.39 2.002

Two Level
Blocking

11029758 11061102 54423 1095367 4.52 1.099

void block(float(*restrict a)[262],float (*restrict b)[262],(float

(*restrict c)[262);

float a[262][262], b[262][262], c[262][262];

main() {

 int i, j, k,, ii, jj;

 memset(0, c, sizeof(c));

 for (i=0; i<240; i+=30)

 for (j=0; j<240; j+=30)

 for (k=0; k<240; k+=30)

for (ii=i; ii<i+30; ii+=6)

 for (jj=j; jj<j+30; jj+=6) {

 block(&a[ii][k], &b[k][jj], &c[ii][jj], &c[ii][jj]);

 block(&a[ii][k+1], &b[k+1][jj], &c[ii][jj], &c[ii][jj]);

 block(&a[ii][k+2], &b[k+2][jj], &c[ii][jj], &c[ii][jj]);

 block(&a[ii][k+3], &b[k+3][jj], &c[ii][jj], &c[ii][jj]);

 block(&a[ii][k+4], &b[k+4][jj], &c[ii][jj], &c[ii][jj]);

 block(&a[ii][k+5], &b[k+5][jj], &c[ii][jj], &c[ii][jj]);

 }

 }

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-73

Watch for Data Cache Bank Conflicts
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-73

The parameters to the program in Figure 1-46 are sets represented as bit vectors. The
program tests whether one vector is included in another. 2958 cycles are necessary to test
for inclusion of a 1024-word vector in another. 1024 of these are data cache stalls. The
tmsim statfile line corresponding to the loop is given below:

The cnflctc column of the statÞle is for data cache bank conßicts. All the stalls are bank
conßicts.

There is a bank conßict whenever two memory accesses are made in the same cycle and
bits two to four of the address are identical. This is the case in the program of Figure 1-46.
The procedure malloc returns a pointer whose value is four mod 2n, 2n being the power of
two immediately greater than or equal to the size. The pointers to p and q are, therefore,
equal mod 212. The same index is used inside subset to reference both arrays. The two
loads are scheduled in the same instruction because of scheduling latency constraints. A
cycle is added for every access to the two arrays as a result. Adjusting the addresses of p
and q by allocating an extra word and incrementing one of them so that bits two to four
differ eliminates the conßicts.

tree name execs instc istallc dstallc cpbacks cnflctc isopersexopers

--

-

_subset_DT_1 128 1792 87 1024 0 1024 5888 5887

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-74

int subset(int *b, int *a, int size)
1-74 Performance Tuning ©1998 Philips Semiconductors 6/21/98

Figure 1-46 Set Inclusion

Try -noloadspec When Thrashing

A program that initializes a hash table is shown in Figure 1-47. The table is heavily loaded
(4000 out of 7300 values) and its size is bigger than the data cache. The tmprof output
from compiling the program with proÞling and grafting is shown below:

The TriMedia scheduler speculates load instructions because of latency. The effect of this
is accentuated with grafting. This degrades the performance in this example because the
data cache is already thrashing. The scheduler option -noloadspec prevents load
speculation. The tmprof output from compiling the program with -noloadspec is shown
below. Using the option saves about 50000 cycles. Note that a signiÞcant number of cache
misses are attributed to main even though the memory accesses are not performed there.
This is because the load of val[i] at the end of hash terminates after returning from the
function.

{

 int i, result = 1;

 for (i=0; i<size; i+=8)

 result &= !(b[0] & ~a[0]) & !(b[1] & ~a[1]) & !(b[2] & ~a[2]) &

!(b[3] & ~a[3]) &

 !(b[4] & ~a[4]) & !(b[5] & ~a[5]) & !(b[6] & ~a[6]) &

!(b[7] & ~a[7]) ;

 return result;

}

main()

{

 (void)subset((int*)malloc(1024*sizeof(int)),

 (int*)malloc(1024*sizeof(int)),

 1024);

}

Treename Executions Total Cycles (%) I$ Cycles D$ Cycles

--------------- ---------- ----------------- --------- ---------

___rt_umod_DT_0 4000 185685 39.79% 132 1553

__lookup_DT_1 4000 152565 32.69% 155 99101

__lookup_DT_4 1490 61097 13.09% 126 40906

__main_DT_1 4000 49052 10.51% 59 2499

(...)

total/average 466655 100.00% 1578 166757

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-75

Treename Executions Total Cycles (%) I$ Cycles D$ Cycles
©1998 Philips Semiconductors 6/21/98 Performance Tuning 1-75

Figure 1-47 Initializing a Hash Table

--------------- ---------- ----------------- --------- ---------

___rt_umod_DT_0 4000 185463 43.77% 132 1331

__lookup_DT_1 4000 116778 27.56% 180 59939

__lookup_DT_4 1490 52101 12.30% 145 30318

__main_DT_1 4000 51137 12.07% 59 27078

_lookup 4000 16058 3.79% 58 0

(...)

total/average 423696 100.00% 1622 118831

#define HSIZE 7300

#define HINCR 421

int key[HSIZE];

int val[HSIZE];

int lookup(unsigned k, short v) {

 int *keyp = key, *valp = val;

 int i = k % HSIZE;

loop: if (keyp[i] == k)

 return valp[i];

 else if (keyp[i]) {

 i += HINCR;

 if (i >= HSIZE)

 i -= HSIZE;

 goto loop;

 }

 keyp[i] = k; valp[i] = v; return v;

}

main() {

 unsigned i, seed = 0;

 for (i = 0; i < 4000; i++) {

 (void) lookup(seed, i); seed = seed*31415927U + 2818281;

 }

}

Chapter 1: Porting and Optimizing Programs

Cookbook Part 4 01_PRTNG.FM5 Page 1-76

Summary
1-76 Summary ©1998 Philips Semiconductors 6/21/98

The TriMedia Compilation System is geared toward proÞle-based program optimization
methods. Some methods, such as grafting, are done automatically by the compiler taking
into account the user directives in the form of grafting parameters. Other techniques, such
as manual loop unrolling, the use of restricted pointers, and custom operators, currently
need user intervention. It is expected that future versions of the compiler will include
interprocedural optimization, source to source transformations, automated loop unrolling
methods, and better alias analysis. However, mechanisms like restricted pointers to pass
speciÞc user knowledge to the compiler, and the use of custom operators to exploit the
TriMedia architecture to the maximum extent are likely to remain in the application
programmerÕs domain.

To get started in optimization, you should Þrst compile the program and run it with the -
O3 and -p (profile) option to make the decision tree frequencies and probabilities appear in
the tree code. It is a good idea to look at the assembly code and because cache misses are a
signiÞcant performance factor in most applications. You can then Þnd the hotspots using
tmprof. The C source and the tree file (.t) and assembler (.s) output corresponding to the
hotspots should be examined together.

An important number of after keywords in the tree code for loads and stores usually
indicates a need to use restricted pointers. The shape of the decision trees (number of
leaves, branch structure, probabilities) provides important information about program
restructuring. Frequently executed decision trees containing only a few operations indicate
a control ßow problem.

You must also pay attention to the memory behavior of the program. Unfortunately,
memory statistics are only provided on a global basis by the current version of the SDE.
You can recognize problems in the critical path, including aliasing, from sequences of
nops in the assembler code.

You should restructure the C code, compile it with proÞling, run it again with tmprof, and
recompile and analyze it as many times as necessary. You need to apply grafting last
because it is impossible to understand what is happening after grafting. You should apply
loop unrolling only if it produces better performance than grafting. To determine this,
measurement is necessary. It is a good idea to prepare a sample input smaller than the full
set so as not to lose time running tmsim. On a Sparcstation 20, the ratio of real time to
simulated time is about 36000 to 1. Understanding the instruction set helps in
optimization. The ILP factors reported in the statÞle and by tmprof can include operations
that become redundant after optimization. These Þgures should be taken as estimates.

There are tools for performance analysis not mentioned in this chapter. For instance, there
are tools to investigate produced schedules in detail by report options to tmsched and use
of the tool tmcritpath to investigate the critical path of a schedule.

Chapter 1: Porting and Optimizing Programs

1

Cookbook Part 4 01_PRTNG.FM5 Page 1-77

Besides the support for optimizing programs, the TriMedia Compilation System offers
support for system level programming. Interrupt service routines can be programmed in C
©1998 Philips Semiconductors 6/21/98 Summary 1-77

and support is added for using the most interesting cache instructions.

Cookbook Part 4 02_SYSUP.FM5 Page 2-1
2: System Programming Support
2

Chapter 2
©1998 Philips Semiconductors 6/21/98 2-1

System Programming Support 2

Topic Page

Programming Support 2-2

Interrupt Service Routines and Exception Handlers 2-2

Using MMIO Locations 2-11

Chapter 2: System Programming Support

Cookbook Part 4 02_SYSUP.FM5 Page 2-2

Programming Support
2-2 Programming Support ©1998 Philips Semiconductors 6/21/98

The TriMedia Compilation System offers system level programming at the C level. For
instance, interrupt service routines and Þne control of the data cache are supported. The
toolset comprises interrupt latency inspection and offers support for interrupt latency
control. This section describes what the toolset offers to programmers needing one of
these features.

Interrupt Service Routines and Exception Handlers

The TriMedia C compiler allows the implementation of interrupt service routines
(handlers, for short) and exception handlers entirely in C. The distinction between
interrupt handlers and exception handlers is made clear in the next section, ÒUser View.Ó
First, we talk about the general mechanism and do not distinguish between the two types
of handlers.

The compiler allows maximal ßexibility in handlers, and transparently generates code that
uses the appropriate return address and does the additional register saving that is required
for certain types of handlers. Additionally, just as in the case of normal functions, the
compiler attempts to minimize the calling overhead of handlers. Because handlers are
nonstandard, this section contains some implementation detail to explain what you can
expect from them.

User View
For your purpose, the only difference between handlers and functions is the way in which
they are activated. You must explicitly call functions, whereas you must activate handlers
upon an interrupt. Note that the compiler checks the type and parameter list of a handler
but does not check erroneous calling of interrupt handlers. Normal functions which
attempt to mimic a handler cause failures under certain conditions, because handlers have
different register saving requirements.

Except from the fact that handlers are not allowed to return a result, there are no further
differences between functions and handlers. Any legal resultless function with the
speciÞed number of parameters can be declared as a handler and therefore, the handlerÕs
body can range from simple updates to some ßag in shared memory to complex control
ßow using conditionals, loops, and calls to other functions. However, as is the case for any
C function, the calling overhead is strongly dependent on the complexity of the handler.
See also the description of the calling sequences generated by the compiler for functions
and handlers in ÒDeclaring Interrupt Service RoutinesÓ on page 2-5.

Chapter 2: System Programming Support

2

Cookbook Part 4 02_SYSUP.FM5 Page 2-3

Handlers come in three varieties: interruptible, non-interruptible, and exception. The Þrst
two are interrupt handlers that you can use for any of the vectored interrupts speciÞed for
©1998 Philips Semiconductors 6/21/98 Interrupt Service Routines and Exception Handlers 2-3

the TriMedia processor. You can use an exception handler for any type of exception, such
as misaligned store exception, ßoating point exceptions, and so on. The interrupt handlers
have no parameters and come in a noninterruptible and an interruptible form. The
difference is that interruptible handlers allow service of new interrupts of any kind during
their invocation (that is, nested interrupts), while noninterruptible handlers clear the
interrupt enable bit (IEN) in the processor status word during their invocation and,
therefore, can only be interrupted by nonmaskable interrupts (NMIs). This simple
distinction between interrupt handlers is useful in many cases. However, sometimes you
might require a Þner level of interrupt masking. You must explicitly code such Þner level
masking using saving, modifying and restoring of the IMASK. For details on this, see TM-
1000 Data Book.

Exception handlers are interruptible and get one parameter, the value of spc (saved
program counter). You should install exception handlers with care because they might
interfere with the exception handler installed by the debugger. The debugger uses an
exception handler to single-step (dtree steps) through a program. So any user program
should be certain not to destroy the debuggerÕs handler.

Handlers make use of the stack of the process that was active at the moment of the
interrupt. There is no automatic escape to a system stack.

Chapter 2: System Programming Support

Cookbook Part 4 02_SYSUP.FM5 Page 2-4

 #include <tm1/MMIO.h>
2-4 Interrupt Service Routines and Exception Handlers ©1998 Philips Semiconductors 6/21/98

Figure 2-1 Sample Interrupt Handler

 volatile int s;

 void handler1(void)

 {

 #pragma TCS_handler

 s++;

 }

 void handler2(void)

 {

 #pragma TCS_handler

 int i;

 for (i=0; i<100; i++)

s += i;

 }

 void handler3 (void)

 {

 #pragma TCS_interruptible_handler

 do_the_work_while_allowing_interrupts();

 }

 /* --- */

 void install_handler(

 int nr,

 handler_type handler)

 {

 base_of_mmio[INT_VECS + nr] = handler;

 }

 /* --- */

 main() {

install_handler(1,handler1);

install_handler(2,handler2);

install_handler(3,handler3);

 }

{_handler1:}
{__handler1_DT_0:}

3 uimm (_s);
2 ld32 3;
4 iaddi (1) 2;
5 st32 3 4

after 2;
6 readdpc;
cgoto 6;

endtree (*__handler1_DT_0*)

Chapter 2: System Programming Support

2

Cookbook Part 4 02_SYSUP.FM5 Page 2-5

Saving/Restoring Behavior
©1998 Philips Semiconductors 6/21/98 Interrupt Service Routines and Exception Handlers 2-5

Similar to functions, handlers save and restore all the callee-saved registers that they use
(including the frame pointer). Contrary to functions, handlers obtain their return address
from the processorÕs destination program counter (DPC). In case a nested interrupt is
possible during the execution of the handler, the DPC is also saved at entry.

Unlike normal functions, caller-saved registers that might be modiÞed by executing the
handler are also saved and restored at the handlerÕs entry and exit. For handlers that call
other functions, this means that the entire set of caller-saved registers is saved and
restored. For handlers that do not call other functions, this means that caller- saved
registers are treated as callee-saved registers, that is, only saved and restored when used by
the handler itself. Note that argument registers and the return pointer register are special
cases of caller-saved registers.

Additionally, the code generated for noninterruptible handlers can save and restore the
interrupt enable bit (IEN) in the processor status word. Any other change to the processor
state during the handlerÕs invocation remains visible after termination of the handler. This
especially holds for the source program counter (SPC), which is used during exception
processing to determine the decision tree in which the exception occurred.

Declaring Interrupt Service Routines
Interrupt handlers must be deÞned as parameterless, resultless functions, with either
pragma #pragma TCS_handler, or #pragma TCS_interruptible_handler (as
appropriate) in the beginning of the function body. By default (that is, declared as
TCS_handler), handlers are noninterruptible.

You must deÞne exception handlers as a resultless function with a single void * parameter,
using the pragma #pragma TCS_exception_handler. Remember the warning that any
explicit installation of an exception handler might cause the debugger to malfunction.

Figure 2-1 shows some examples of handlers, and of a simple generic function that is used
to install them in the interrupt vector region of the MMIO space. See the TM-1000 Data
Book and ÒUsing MMIO LocationsÓ on page 2-11.

Included in the Þgure is a sample translation to decision-tree intermediate code of a very
simple handler.

Chapter 2: System Programming Support

Cookbook Part 4 02_SYSUP.FM5 Page 2-6
2-6 Interrupt Service Routines and Exception Handlers ©1998 Philips Semiconductors 6/21/98

Figure 2-2 Use Volatile Shared Variables

Usage Notes
You must be aware that interruptible handlers, allowing nested interrupts, require some
additional care. First, you must make reentrant, a nested invocation of a same handler does
not corrupt the invocation state of the interrupted one. Second, with the possibility of
nested interrupts, it has become essential to guarantee that the occurrence rate of interrupts
does not exceed the systemÕs capacity to service them for any longer amount of time.
Where such a situation only results in slow response or the loss of events in systems that
do not allow nesting of interrupts, it might cause a crash in systems that do.

Any data that is shared between handlers and the mainstream program, or between
handlers and other handlers, must be declared volatile to prevent surprising effects caused
by optimizations. The optimizer might decide to replace loads from nonvolatile variables
by earlier results, which might not be desired for shared data. An example is shown in
Figure 2-2, which shows an illegal way for synchronization on an event: because the
shared variable s is nonvolatile, the optimizer propagates the earlier assigned value 0 to
the loop test condition. This results in a never ending loop, even when the handler is
triggered.

int s;

void raise_s(void)

{

#pragma TCS_handler

 s = 1;

}

main ()

{

 s = 0;

 while (!s) {}

 printf("terminated \n");

}

Does not work!

Chapter 2: System Programming Support

2

Cookbook Part 4 02_SYSUP.FM5 Page 2-7

Interrupt-Latency Support
©1998 Philips Semiconductors 6/21/98 Interrupt Service Routines and Exception Handlers 2-7

Real-time system programmers have to be sure that the interrupts that occur during
execution are handled within a certain number of cycles. Because on TriMedia decision
trees are executed as large chunks of critical sections (noninterruptible code), special care
is taken in the hardware as well as in the toolset. This section discusses how you can Þnd
out interrupt latencies for your particular program. No automatic support to guarantee a
certain interrupt latency is given1.

This section also addresses how you can Þnd out whether the interrupt latency is more
than a given threshold and how you can modify the code to reduce the interrupt latency.
The support offered is threefold. First, there is a means to inspect violations of a certain
threshold of cycles executed between interruptible jumps. Second, there are statistics from
the simulator that produce a raw data histogram describing how many dtrees are executed
with a certain number of cycles between interruptible jump. Also, the last dtree that
executed that many cycles is shown. Third, there is a pragma, TCS_break_dtree, honored
by the compiler with which you can force the compiler to create smaller critical sections.

Supporting the Machine Level Simulator: tmsim -il
To get more insight into interrupt latency of a program, you can run the simulator tmsim
with the option -il. This produces a report of the following form (in the reportÞle when
speciÞed, otherwise on standard output).

1. The rationale for this is that automatic support has to be based on worst-case assumptions for all
instructions executed. This is a very unrealistic situation, especially when assuming each load/store
leads to cache miss, on top of losing the maximum number cycles for arbitration and the maximum
number of requests serviced before getting the bus. Our experiments with a major application like
MPEG-1 + RTOS showed that the number of cycles executed between two interruptible jumps was
worst case 30ms, while the TM-1000 hardware survives 300ms. The TM-1000 DMA-based peripherals
have no short-term real-time constraints (order of several milliseconds) and the most critical
peripheral is the synchronous serial interface SSI.

Chapter 2: System Programming Support

Cookbook Part 4 02_SYSUP.FM5 Page 2-8

tmsim -il -mm a.out
2-8 Interrupt Service Routines and Exception Handlers ©1998 Philips Semiconductors 6/21/98

The Þrst column in the report is the number of cycles between two interruptible jumps.
The second column is the number of times a dtree was executed with that number of
cycles. The last column names the dtree and address of the exit from the dtree last
executed for the given number of cycles between interruptible jumps. For example, the last
line means that the execution of the tree __foo_DT_0 required 758 cycles and the number
of cycles between two interruptible jumps of 758 was seen only once during the execution
of the program. Similarly, during the execution of the entire program there were 462
instances where the number of cycles between two interruptible jumps was equal to 9.
Among these, the last time this happened was while executing the dtree at
__vfprintf_DT_34.

Breaking Decision Trees: #pragma TCS_break_dtree
When you Þnd the interrupt latency is too high, you can control the latency by changing
the way the program gets compiled. A high interrupt latency implies a large decision tree.
The reason for the presence of a large decision tree could be too much grafting, or it could
be a large decision tree even without grafting, where you might have hand unrolled loops
to gain performance, something that is not too uncommon in DSP programming.

If grafting is the cause of large interrupt latency, you can use grafting parameters to reduce
the amount of grafting performed. Because this might have a performance impact, you
should exercise care in achieving a balance between performance and interrupt latency.

If the code has large decision trees even without grafting, you can use the pragma
TCS_break_dtree to break the dtree at appropriate places. This also might have a
performance impact. You must take special care to minimize the number of values living
across the break of the dtree. These values now have to be stored in the global register set
of the compiler with the accompanying save and restore code.

interrupt latency distribution

000004 002644 __vfprintf_DT_16 + 1c

000005 002592 ____sinit_DT_0 + 1b84

000006 000799 ____swrite_DT_2 + 28

000007 000173 __fflush_DT_3 + 26

000008 002584 __vfprintf_DT_10 + 39

000009 000462 __vfprintf_DT_34 + 5c

*** several lines deleted

000223 000001 ___fwalk_DT_0 + 106

000289 000001 __latency_isr_DT_0 + 10b

000411 000001 ___fwalk_DT_4 + 17b

000419 000001 __memchr_DT_2 + 304

000758 000001 __foo_DT_0 + 457

Chapter 2: System Programming Support

2

Cookbook Part 4 02_SYSUP.FM5 Page 2-9

Supporting Cache Control
©1998 Philips Semiconductors 6/21/98 Interrupt Service Routines and Exception Handlers 2-9

You can use the cache operations as speciÞed in the TM-1000 Data Book, dcb, dinvalid,
iclr, rdstatus, and rdtag through the custom_op mechanism discussed in ÒUsing
Custom OperatorsÓ on page 1-46. However, these custom_ops are not available through
the custom_defs.h include Þle and are not directly supported by the compiler. This means
that when you use these instructions directly (through a custom_op declaration), the
ordering of memory accesses and the cache custom operations does not work.

The TriMedia C library has two entry points cache_copyback and cache_invalidate that
allow you to maintain software coherency between the SDRAM and the data cache.

However, the TriMedia C library supports a more Ôuser viewÕ model for using the most
interesting custom operations at the C level, for example, copying back, allocating, or
invalidating a piece of memory.

As an example, take the entry point _cache_invalidate. The semantics are: invalidate
the piece of memory [address, address + size1). The entire contents of the cache blocks in
the range will disappear. Any dirty data will be lost. Calls to _cache_invalidate are
translated to tissues of the appropriate number of dinvalids. The object referenced by the
pointer should be cache aligned with respect to its upper and lower bounds.

The _cache_copyback entry point ßushes dirty data back to the cache. This can be used
prior to starting DMA or before a cache_invalidate if required. Unlike invalidates,
copybacks are not destructive and the range does not need to be aligned. The
_cache_allocate entry point resets the dirty bit in all data in the range. The memory
range should be cache aligned.

The same routines are available as custom operators. These should only be used for
extremely time critical code. A code explosion is possible if the area is of signiÞcant size.
The second argument is the number of dinvalid operations. They are made available
through the include Þle <ops/custom_defs.h>, as custom operators ALLOCATE,
INVALIDATE, and COPYBACK. The ordering of all memory operations that alias with the
memory region (address, address + number_of_cache_blocks * size_of_cache_line) is
respected.

The example from Figure 2-3 compiled with tmcc -O3 -t example.c translates into the
trees code in Figure 2-4. In the example, note that *c = 3; aliases with all other memory
locations because the address of c is unknown. The INVALIDATE call at the C level is
translated into two dinvalid operations, which are ordered among all aliasing memory
operations. The store to value a[1] is ordered only against the Þrst dinvalid operation,

1. Currently, the cache block size is 64 bytes.

void _cache_invalidate(void *address, int size);

void _cache_copyback(void *address, int size);

void _cache_allocate(void *address, int size);

Chapter 2: System Programming Support

Cookbook Part 4 02_SYSUP.FM5 Page 2-10

because the compiler assumes1 it overlaps only with the Þrst cache line. In general, the
input ordering of all cache operations is maintained. Note that the assignment b[10] = 3;
2-10 Interrupt Service Routines and Exception Handlers ©1998 Philips Semiconductors 6/21/98

is free to move across the dinvalid operations.

Figure 2-3 Example of Use of Cache custom_ops

1. Note that the assumption might not be true when the address (the Þrst parameter to the invalidate
call) is not cache-block aligned, as in this case!

#include <custom_defs.h>

chara[1000];

charb[1000];

char*c;

foo()

{

*c = 3;

b[10] = 4;

INVALIDATE(a, 2);

a[1] = 1;

return a[1];

}

Chapter 2: System Programming Support

2

Cookbook Part 4 02_SYSUP.FM5 Page 2-11

The other cache operations are completely analogous to the invalidate custom_op and
are not discussed any further.
©1998 Philips Semiconductors 6/21/98 Using MMIO Locations 2-11

Figure 2-4 Intermediate Representation for Cache custom_op Example

Using MMIO Locations

Writes to MMIO locations do not take effect immediately. For example, if there is a write
to the IPENDING location in cycle i that generates an interrupt, the interrupt is not triggered
if an ijmpi operation is executed in cycle i+1. The interrupt is taken if the ijmpi
operation was executed in cycle i+2. The amount of delay required for a write to an
MMIO location is dependent on the location, this data will be available soon. In the next
full release, automatic support will be given for the scheduling delays.

{_foo:}

{__foo_DT_0:}

entree (0)

2 uimm (_c);

1 ld32 2;

4 iimm (0x3);

3 st8 1 4 (* *c = 3; *)

after 1;

6 uimm (_b);

8 iimm (0x4);

7 st8d (10) 6 8(* b[10] = 4; *)

after 3;

10 uimm (_a);

11 uimm (0x40);

9 dinvalid(0) 10(* invalidate [a, a+64) *)

after 3;

12 uimm (64 + _a);

13 dinvalid(0) 12(* invalidate [a+64, a+128) *)

after 9 3;

16 rdreg (1);

15 st8d (1) 10 16(* a[1] = 1; *)

after 9;

18 wrreg (5) 16;

19 rdreg (2);

cgoto 19

endtree (*__foo_DT_0*)

Cookbook Part 4 03_CASE.FM5 Page 3-1
3: Case Studies
3

Chapter 3
©1998 Philips Semiconductors 6/21/98 3-1

Case Studies 3

Topic Page

Introduction 3-2

Special-Purpose Block Filter 3-2

Fixed-Point Arithmetic 3-4

IFIR16 Custom Operations 3-5

Dual-Phase Loop 3-6

Critical Path 3-8

Algebraic Transformation 3-9

Balancing the Critical Path 3-10

More Unrolling 3-11

Matrix Transpose 3-12

Divide and Conquer 3-14

Using Custom Operations 3-15

Inlining and Shrink-Wrapping 3-16

Cache Alignment 3-19

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-2

Introduction
3-2 Introduction ©1998 Philips Semiconductors 6/21/98

Figure 3-1 shows the source code for a block FIR Þlter with ßoating-point arithmetic. The
Þlter has been structured as a general-purpose library routine. The array of Þlter
coefÞcients are supplied in an argument. The Þlter components are computed element by
element. A separate function dotap is used to compute an element.

Figure 3-1 General-Purpose Block Filter

Special-Purpose Block Filter

TM-1000 speed is critical when writing a routine that is specialized for a particular
purpose. Implementation of a Þlter requires memorization of state information. You must
use an array to represent the state if the size is arbitrary. Fixing the length allows it to be
stored in scalars. These can be allocated to registers. The TM-1000 has 128 general-
purpose registers. If the length is variable, a loop is needed to evaluate the output value.
This adds a control dependence that limits ILP. By Þxing the state length beforehand, you
can use a closed form expression. This has more ILP. In the example of Figure 3-1, the
program is divided into two functions. This interferes with the optimizing ability of the
compiler.

void blkfir(float *input, float *state, float *coeff, float *output,

 int npoints, int ntaps)

{

 int i;

 for (i=0; i<npoints; i++) {

 output[i] = dotap(input[i], state, coeff, ntaps);

 }

}

float dotap(float input, float *state, float *coeff, ntaps)

{

 int i;

 float sum = 0.0

 state[0] = input;

 for (i = ntaps; i>0; i--) {

 state[i] = state[i-1];/* slide window */

 sum = sum + state[i] * coeff[i];

 }

 return sum;

}

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-3

In the program of Figure 3-1, the array coeff is provided as a parameter. Only two
accesses to memory can be made per instruction on TM-1000. If the routine is specialized
©1998 Philips Semiconductors 6/21/98 Special-Purpose Block Filter 3-3

for a particular set of coefÞcients, these can be placed as constants in the instruction
stream. This reduces memory accesses and eliminates latency.

Figure 3-2 Specialized Filter

Figure 3-2 shows a specialized version of the routine for a state length of eight and a Þxed
set of coefÞcients. Eight scalar variables are used to represent the state. The two functions
have been collapsed into one. Table 3-1 compares the performance of the two programs.
After elimination of the loop and the arrays for coeff and state, only 1129 instruction
cycles are necessary, compared to 5611 previously.

Figure 3-3 Filter with Fractional Arithmetic

void blkfir(float *input, float *output, npoints)

{

 int i, j;

 float state1, state2, state3, state4, state5, state6, state7, state8;

 state2 = state3 = state4 = state5 = state6 = state7 = state8 = 0.0;

 for (i=0; i<npoints; i++) {

 state1 = input[i];

 output[i] = state1 * 0.5 + state2*0.25 + state3*0.125 + state4*0.0625 +

 state5*0.03125 + state6*0.015625 + state7*0.0078125 + state8*0.00390625 ;

 state8 = state7; state7 = state6; state6 = state5; state5 = state4;

 state4 = state3; state3 = state2; state2 = state1;

 }

}

void blkfir(int *input, int *output, npoints)

{

 int state1 = 0, state2 = 0, state3 = 0, state4 = 0;

 int state5 = 0, state6 = 0, state7 = 0, state8 = 0;

 for (i=0; i<npoints; i++) {

 state1 = input[i];

 output[i] = IMULM(state1, 0x10000000) + IMULM(state2, 0x08000000) +

 IMULM(state3, 0x04000000) + IMULM(state4, 0x02000000) +

 IMULM(state5, 0x01000000) + IMULM(state6, 0x00800000) +

 IMULM(state7, 0x00400000) + IMULM(state8, 0x00200000);

 state8 = state7; state7 = state6; state6 = state5; state5 = state4;

 state4 = state3; state3 = state2; state2 = state1;

 }

}

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-4
3-4 Fixed-Point Arithmetic ©1998 Philips Semiconductors 6/21/98

Fixed-Point Arithmetic

Seven additions are necessary for each iteration of the loop of Figure 3-2. These have a
latency of three cycles. Floating-point addition is commutative but not associative, for
example, 108 + (-108 + 1) is not the same as (108 + - 108) + 1. The C language requires
that, in the absence of parentheses, ßoating-point arithmetic be executed in strict left to
right order. In the program of Figure 3-2, this means that the additions must be executed in
sequential order. A total of 21 cycles (7 x 3) is necessary to sum the seven products in
sequential order using ßoating point.

Integer addition is both commutative and associative, so the compiler can balance the
chain of additions in a tree, reducing dependences and increasing parallelism. Seven
addition operations can be represented in a binary tree of height three. Integer addition has
a latency of only one cycle. Three cycles (3 x 1) are necessary to sum the seven products
in parallel. You can use integer arithmetic can be used by changing to a Þxed point
representation.

You can represent Þxed point numbers in what is called Q.n representation. The binary
point is after the nth least signiÞcant bit. The bits to the right of the binary point
correspond to the fractional part of the number. The most signiÞcant bit corresponds to the
sign. The number of bits available for the integer part depends on the word length (16, 32,
or 64 bits).

For this Þlter, the inputs are speciÞed to be between -1 and +1. You can represent them in
Q.31 form. The coefÞcients are between 0 and 1. The output of the Þlter is a sum of eight
products between -1 and +1. It is between -8 and +8. Three bits are sufÞcient to represent
the integer part (Q.28 form). The product of two numbers in Q.n and Q.m form is in
Q.n+m form. If we represent the coefÞcient in Q.29 form and the input in Q.31 form, the
64-bit product is in Q.60 form. The high order 32 bits are given by the TM-1000 IMULM
instruction. This gives us a result in Q.28 form (60-32), as desired. You can use IMULM2 as
a custom operation in the program by including the header Þle <ops/custom_defs.h>.

Table 3-1 Special-Purpose Versus General-Purpose Filter

ILP Instruction Cycles

Per Tap Per Input Total

General Purpose Filter 1.06 17.5 140 5611

Special Purpose Filter 1.42 3.52 28.2 1129

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-5

Figure 3-3 shows the source program after recoding to use fractional arithmetic. Table 3-2
shows the improvement due to the introduction of Þxed-point arithmetic. Execution time is
©1998 Philips Semiconductors 6/21/98 IFIR16 Custom Operations 3-5

more than doubled, as is the ILP.

IFIR16 Custom Operations

Changing to a Þxed-point representation permits use of data-parallel custom operations.
You can compute the sum of two products in a single IFIR16 instruction. Recoding the
algorithm to use IFIR16 involves changing the representation from 32 to 16 bits. You must
represent the inputs in Q.15 form, the outputs in Q.12 form, and the coefÞcients in Q.13
form. The smallest coefÞcient is 2-8, which Þts in 13 bits. The state and coefÞcients are
represented in halfword pairs. The high order halfword corresponds to the Þrst element
and the low order halfword corresponds to the second element of the pair.

Representing elements in halfwords complicates the handling of the state. When there is a
variable per-state element, shifting the state corresponds to seven register moves and one
load. Up to Þve register moves can execute in parallel on TM-1000. When each register
has two elements, shifting the state requires matching up the second element of each pair
with the Þrst element of the next. This corresponds to extracting the middle 32 bits of the
64-bit concatenation of the two pairs. This is possible with the TM-1000 FUNSHIFT2
instruction.

Figure 3-4 shows the source program after recoding to use IFIR16 and FUNSHIFT2. To
increase efÞciency, the coefÞcient constants have been moved to registers. Table 3-3 shows
the comparative performance with and without IFIR16. The number of instruction cycles
is reduced by 40%.

Table 3-2 Fixed Versus Floating Point Arithmetic

ILP (Inner Loop) Instruction Cycles

Special Purpose + Floating Point 1.42 1129

Special Purpose + Fixed Point 3.33 489

Table 3-3 Comparative Performance

ILP (Inner Loop) Instruction Cycles

Special Purpose + Fixed Point 3.33 489

Special Purpose + Fixed Point + Ifir16 3.28 289

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-6

void blkfir(short *input, int *output, int npoints)
3-6 Dual-Phase Loop ©1998 Philips Semiconductors 6/21/98

Figure 3-4 Filter with Custom Operations

Dual-Phase Loop

Several factors still limit the performance of the inner loop. The key factor is the 16-bit
alignment of the state because of IFIR16. Shifting the state using FUNSHIFT2 is
cumbersome and slow. Only a halfword of data is read per cycle. A minimum of Þve
cycles is necessary per output element because of the loop. You cannot reduce the
overhead by unrolling because there is a dependence on the state.

{

 int i;

 int state01 = 0, state23 = 0, state45 = 0, state67 = 0;

 int coeff01 = 0x10000800, coeff23 = 0x04000200, coeff45 = 0x01000080,

 coeff67 = 0x00400020;

 for (i=0; i<npoints; i++) {

 state01 = FUNSHIFT2(input[i],state01); /* state1 = state0 */

 /* state0 = inputi */

 output[i] = IFIR16(state01, coeff01) + IFIR16(state23, coeff23) +

IFIR16(state45, coeff45) + IFIR16(state67, coeff67);

 state67 = FUNSHIFT2(state45, state67);/* state67 = state56 */

 state45 = FUNSHIFT2(state23, state45);/* state45 = state34 */

 state23 = FUNSHIFT2(state01, state23);/* state23 = state12 */

 }

}

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-7

void blkfir(int *input, int *output)
©1998 Philips Semiconductors 6/21/98 Dual-Phase Loop 3-7

Figure 3-5 Two-Phase Loop

You can sidestep all these restrictions by separating the execution of the loop into two
phases. The x phase corresponds to the even-numbered outputs (output0, output2,
output4). The second phase corresponds to the odd-numbered outputs (output1,
output3, output5). Each has its own state. The state of the y phase corresponds to the
state of the x phase shifted one input element. Two elements are processed per loop
iteration. This allows register copies to be used instead of FUNSHIFT2 for the state.
Doubling the number of elements divides jump overhead by two. One half as many
memory accesses (1 x 32 bits instead of 2 x 16) are made in the dual phase loop. Figure 3-
5 shows the source program after recoding. Table 3-4 compares performances of the single
and dual-phase loops.

Table 3-4 Single- and Dual-Phase Loop Comparison

ILP (Inner Loop)
Instruction
Cycles

Special Purpose + Fixed Point + Ifir16 3.28 289

Special Purpose + Fixed Point + Ifir16
+ Dual-Phase Loop

4.61 173

{

 int coeff01 = 0x10000800, coeff23 = 0x04000200, coeff45 = 0x01000080,

 coeff67 = 0x00400002;

 int x01, x23, x45, x67, y01, y23, y45, y67, i, statenew;

 y01 = *input++; y23 = y34 = y56 = 0; /* y2..7 = 0 ; y1 = input1 ; y0 = input0 */

 x01 = PACK16MSB(y12, 0); x23 = x45 = x67 = 0; /* x1..7 = 0 ; x0 = input0 */

 for (i=0; i<npoints; i+=2) { /* npoints must be even */

 statenew = *input++;

 *output++ = IFIR16(x01, coeff01) + IFIR16(x23, coeff23) +

 IFIR16(x45, coeff45) + IFIR16(x67, coeff67);

 *output++ = IFIR16(y01, coeff01) + IFIR16(y23, coeff23) +

 IFIR16(y56, coeff45) + IFIR16(y67, coeff67);

 y67 = y45; y45 = y23; y23 = y01; y01 = statenew;

/* y2..7 = y0..5 ; y1 = inputi+1 ; y0 = inputi */

 x67 = x45; x45 = x23; x23 = x01; x01 = PACK16MSB(y01, y23<<16);

/* x2..7 = x0..5 ; x0 = y1 ; x1 = y2 */

 }

}

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-8

Table 3-5 summarizes the improvements in performance due to successive reÞnements of
the program. There is a reduction by a factor of 32 in the execution time. The Þnal
3-8 Critical Path ©1998 Philips Semiconductors 6/21/98

program has more than 90% issue-slot utilization.

Critical Path

HornerÕs algorithm for evaluating a polynomial is shown in Figure 3-6. The array P gives
the coefÞcients. P(x) = (x+1) 20. Thus, P(-1) = 0, P(0) = 1, and P(1) = 220.

Figure 3-6 Polynomial Evaluation Using HornerÕs Algorithm

You can estimate the degree of ILP in the program by running tmsim with the -statfile
option and examining the resulting Þle. Table 3-6 gives the line of the Þle corresponding
to the while loop of the function poly_eval. Without grafting, the issue-slot utilization
of 1.49 (=188/126) is very low.

Table 3-5 Performance Improvements by Program ReÞnement

ILP Instruction Cycles

Per Tap Per Input Total

General Purpose + Floating Point 1.06 17.5 140.2 5611

Special Purpose + Floating Point 1.42 3.5 28.2 1129

Special Purpose + Fixed Point 3.33 1.52 12.2 489

Special Purpose + Fixed Point + Ifir16 3.28 0.90 7.2 289

Special Purpose + Fixed Point + Ifir16 +
Dual-Phase Loop

4.61 0.54 4.3 173

#include <stdio.h>

#define DEGREE20

float P[DEGREE+1] = {

 1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756,

 167960, 125970, 77520, 38760, 15504, 4845, 1140, 190, 20, 1

};

float poly_eval(float *a, int size, float x) {

float result = 0;

while (size >= 0) {

 result = result * x + a[size];

 --size;

}

return result;

}

main() { printf("y = %f\n", poly_eval(P, DEGREE, 1.0)); }

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-9

With grafting, the issue slot utilization is 1.61 (208/129), so it seems there is more ILP.
However, more instructions are necessary to do the same task (129 versus 126).
©1998 Philips Semiconductors 6/21/98 Algebraic Transformation 3-9

The ILP is limited here by the length of the critical path. In the loop, the critical path
corresponds to the calculation of a new value for the variable result. Each calculation
requires a ßoating point multiplication, a ßoating point addition, and a coefÞcient load.
The multiplication and the load both have a latency of three cycles. However, they can
proceed in parallel. The addition has a latency of three cycles and depends on the other
two operations. It is the lsum of latencies (3 + 3 = 6) that determines the execution time.
126 cycles are necessary to execute 21 iterations of the loop.

Grafting reduces execution time when the ILP is limited by control ßow. In this case, the
three extra cycles with grafting are due to speculative evaluation during the Þnal iteration.
There are 21 values per result and two are evaluated per iteration.

Algebraic Transformation

HornerÕs algorithm is optimal in terms of the number of operations, but it is inherently
sequential. By means of an algebraic transformation, you can multiply the parallelism by
two. You can decompose polynomial P(x) into the sum of two polynomials, Q(x) and
QÕ(x), corresponding to the even and odd powers of x, respectively. It is then possible to
substitute x * R(x) for QÕ(x), where R(x) is a polynomial having only even powers of x
also. At this point, we can substitute y = x2 in Q(x) and R(x), because both polynomials
contain only even powers of x. For example:

P(x) = a0*x0 + a1*x1 + a2*x2 + a3*x3 + a4*x4 + a5*x5
Q(y) = a0*y0 + a2*y1+ a4*y2
R(y) = a1*y0 + a3*y1 + a5*y2

You can evaluate the polynomials Q(x) and R(x) in parallel using HornerÕs rule, doubling
the parallelism. Figure 3-7 shows source for a parallel version of poly_eval. An
adjustment is necessary for the case where there is an odd number of coefÞcients (in this
case, Q and QÕ have differing degrees). This corresponds to a problem that occurs
frequently when programming an unrolled loop with a variable size input in TriMedia.
There is a reduction in the number of cycles from 129 to 101 for the parallel version. This
is somewhat disappointing.

Table 3-6 Line of the File Corresponding to the while Loop of the Function
poly_eval

Execs Instc Istallc Dstallc Cpbacks Cnßctc Isopers Exopers

No Grafting 21 126 29 24 0 0 189 188

Grafting 6 129 88 31 0 0 211 208

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-10

float poly_eval(float *a, int size, float x)
3-10 Balancing the Critical Path ©1998 Philips Semiconductors 6/21/98

Figure 3-7 Parallel Polynomial Evaluation

Balancing the Critical Path

Looking at Figure 3-7, note that result1 and result2 are calculated from a[size] and
a[size-1]. The reference to a[size] corresponds to the scaled index addressing mode on
TM-1000. Calculating a[size-1] requires one more cycle for the subtraction. The critical
path is unbalanced as a result. There are several ways to balance the critical path. You can
use pairs of index variables (a[size], a[size1]), for example. In this case, the best
solution is to adapt the algorithm to use pointers instead of indices for the arrays. The
modiÞed source code is shown in Figure 3-8. The references to ap[0] and ap[-1]
correspond to the displacement addressing mode on TM-1000. Using pointers, only 81,
compared to 101, cycles are necessary.

{

float result1, result2, y;

int adj;

y = x * x;

adj = (size+1) & 1;

size -= adj;

result1 = IZERO(adj, a[size+1]);

result2 = 0;

while (size > 0) {

 result1 = result1 * y + a[size-1];

 result2 = result2 * y + a[size];

 size -= 2;

}

return result1 + result2 * x;

}

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-11

float poly_eval(float *a, int size, float x)
©1998 Philips Semiconductors 6/21/98 More Unrolling 3-11

Figure 3-8 Balanced Critical Path

More Unrolling

Figure 3-9 shows the source for poly_eval when the loop has been unrolled to evaluate
four polynomials in parallel. With unrolling, only 61, as compared to 81 cycles, are
necessary to evaluate the polynomial. If the coefÞcients and degree of a polynomial are
Þxed in advance, more reduction in execution time is possible. Only 31 cycles are
necessary to evaluate a polynomial of degree 20 on TM-1000. Source is given in Figure 3-
10. Table 3-7 summarizes the time required to evaluate (x+1)20, depending on the
algorithm.

Table 3-7 Time Required to Evaluate (x+1)20

Calculation Of 21-Point Polynomial Instruction Cycles

HornerÕs Algorithm (Figure 3-6) 126

Two-Way Parallel (Figure 3-7) 101

Two-Way Parallel with Pointers (Figure 3-8) 81

Four-Way Parallel with Pointers (Figure 3-9) 61

Fixed (x+1)20 Algorithm (Figure 3-10) 31

{

float result1, result2, y, *ap;

int adj;

y = x * x;

adj = (size+1) & 1;

size -= adj;

ap = &a[size];

result1 = IZERO(adj, ap[1]);

result2 = 0;

while (ap > a) {

 result1 = result1 * y + ap[0];

 result2 = result2 * y + ap[-1];

 ap -= 2;

}

return result1 + result2*x;

}

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-12

float poly_eval(float *a, int size, float x)
3-12 Matrix Transpose ©1998 Philips Semiconductors 6/21/98

Figure 3-9 Balanced Critical Path

Figure 3-10 Source

Matrix Transpose

Computing the transpose of a matrix is useful in image processing. If the row and
horizontal indices correspond to the x and y axis, transposition corresponds to a reßection
about the x-y diagonal. Figure 3-11 shows a program. The dimension is coded as a power
of two. The routine is used as follows:

Table 3-8 Instruction Cycles by Calculation

Calculation of 21-point polynomial Instruction Cycles

Þxed (x+1)20 Algorithm (Figure 3-9) 31

{

float result1, result2, y, *ap;

int adj;

y = x * x;

adj = (size+1) & 1;

size -= adj;

ap = &a[size];

result1 = IZERO(adj, ap[1]);

result2 = 0;

while (ap > a) {

 result1 = result1 * y + ap[0];

 result2 = result2 * y + ap[-1];

 ap -= 2;

}

return result1 + result2*x;

}

float poly_eval(float x) {

float result1, result2, result3, result4;

float x2 = x*x, x3 = x2*x, x4 = x2*x2, x8 = x4*x4;

result1 = 1 + x4*4845 + x8*125970 + x4*x8*125970 + x8*(x8*4845 + x8*x4);

result2 = 20 + x4*15504 + x8*167960 + x8*x4*77520 + x8*x8*1140;

result3 = 190 + x4*38760 + x8*184756 + x8*x4*38760 + x8*x8*190;

result4 = 1140+ x4*77520 + x8*167960 + x8*x4*15504 + x8*x8*20;

return (result1 + result2*x) + (result3*x2 + result4*x3);

}

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-13

#define SIZE 4 /* for a 16 by 16 matrix */
©1998 Philips Semiconductors 6/21/98 Matrix Transpose 3-13

Table 3-9 indicates performance Þgures for different sizes. They were obtained with
tmprof and tmsim.

The total execution time is the sum of the instruction cycles, the data cache miss cycles,
and the instruction cache overhead (about 1000 cycles). The number of instructions and
the number of memory accesses grows with the square of the image size. This is as
expected. However, there is an explosion in the data cache overhead for a matrix of size
256 x 256. This is because the inner loop accesses the array in both row and column order.
Each access to a byte in a row of the array brings in 63 other bytes. For the column order
accesses, the data is used only after a full iteration of the outer loop. For n=256, an
iteration of the outer loop overßows the 16K data cache. Also, each access only fetches a
byte, even though 32 bits are available. This means that 75% of the memory bandwidth is
wasted. Memory bandwidth is the critical limiting factor of this application. Accesses have
a latency of three cycles. Cache misses have a latency of about 11 cycles for the critical
word and about 30 cycles for the whole line.

Figure 3-11 Iterative Matrix Transposition

Table 3-9 Performance Figures by Size

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 574 1271 205

32 x 32 2142 4191 476

64 x 64 8350 15408 1420

128 x 128 33054 59344 5929

256 x 256 131614 233232 983218

char matrix[1<<SIZE][1<<SIZE];

...

transpose(matrix);.

void transpose(char *in)

{

 int i, j, t;

 for (i=0; i< (1<<SIZE); i++)

 for (j=0; j<i; j++) {

 t = in[(i<<SIZE) + j];

 in[(i<<SIZE) + j] = in[(j<<SIZE) + i];

 in[(j<<SIZE) + i] = t;

 }

}

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-14

Divide and Conquer
3-14 Divide and Conquer ©1998 Philips Semiconductors 6/21/98

Two problems have to be dealt with. In a case where both the number of cache misses and
the number of instructions need to be reduced, you should address the cache issues Þrst
because reducing cache overhead requires rethinking the algorithm. Figure 3-12 shows a
solution to the matrix transposition problem, using the divide and conquer approach.

Figure 3-12 Recursive Matrix Transposition

The matrix is divided into four equal-sized squares. The two squares along the diagonal
are transposed in place. The two other squares are interchanged and transposed. On the
initial call, the entire matrix is transposed in place:

For the recursive step, the two squares along the x-y diagonal are transposed in place. The
two squares along the other diagonal are interchanged and transposed.

Table 3-10 Performance Figures by Size

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 2534 2830 382

32 x 32 9654 10406 889

64 x 64 37718 40150 3380

128 x 128 149142 158006 11113

256 x 256 592045 627155 57520

void transpose(char * in, char * out, int step)

{

 if (step == 0) {

 int t = in[0];

 in[0] = out[0];

 out[0] = t;

 } else {

 transpose(in, out, --step);

 transpose(&in[(SIZE + 1) << step], &out[(SIZE + 1) << step], step);

 transpose(&in[1<<step], &out[SIZE<<step], step);

 if (in != out)

 transpose(&in[SIZE<<step], &out[1<<step], step);

 }

}

transpose(matrix, matrix, SIZE);

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-15

The parameter step indicates the array dimensions as a power of two. This is a naive
algorithm that simply recurses until a 1 x 1 matrix is found. Table 3-11 indicates
©1998 Philips Semiconductors 6/21/98 Using Custom Operations 3-15

performance Þgures for different image sizes. For a 16 x 16 matrix, there are about Þve
times as many memory accesses and 2.5 times as memory instruction accesses, compared
to the iterative algorithm. However, the execution time is better for a 256 x 256 matrix
because of better locality.

Using Custom Operations

The TM-1000 has instructions that merge and pack bytes in registers in parallel. You can
apply one of these instructions in this case to speed up the manipulation of bytes that are
packed into words. Imagine that our task is to transpose a four-by-four matrix.

Figure 3-13 4 X 4 Transpose

Figure 3-13 shows how you can use custom operations. Figure 3-14 extends the solution to
a 2n x 2n matrix. The elementary step is on four machine words. Table 3-12 shows the
performance of the routine. For a 256 x 256 array, the overall execution time is ten times
less than the iterative algorithm. For a 16 x 16 matrix, the execution time is two times less.

Table 3-11 Performance Figures by Size

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 362 448 237

32 x 32 1218 1252 949

64 x 64 4466 4268 3028

128 x 128 17106 16274 9292

256 x 256 65871 65948 43819

a
e
i

m

b
f
j
n

c
g
k
o

d
h
l
p

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

Row Major Column Major

mergemsb

mergemsb

a e b f

i m j n

mergelsb

mergelsb

c g d h

k o l p

pack16msb

pack16lsb

pack16msb

pack16lsb

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-16

#include <ops/custom_defs.h>
3-16 Inlining and Shrink-Wrapping ©1998 Philips Semiconductors 6/21/98

Figure 3-14 2n x 2n Matrix

Inlining and Shrink-Wrapping

The algorithm reads and writes the entire matrix once. For a 256 x 256 byte matrix, there
are 16,384 word accesses for reads and 16,384 word accesses for writes (=256 x 256/4). A
total of 32,768 memory accesses are necessary. The 65,871 memory accesses are
necessary running the program. Most of the other 33,103 accesses are spills of registers to
the stack. These are generated by tmccom, the TriMedia core compiler.

You can use two techniques to reduce the number of stack spills. Inlining one level of
recursion reduces the function call overhead by a factor of about three. You can remove the
spills for applications of the elementary step using a technique known as shrink-wrapping.

Shrink-wrapping works by splitting a function into two parts. The Þrst part contains the
part of the function that calls other functions or itself (the nonleaf part). The second part
contains the part of the function that corresponds to a leaf. This code is placed in a
separate function. The compiler can use caller-saved registers instead of caller-saved
registers here because it is a leaf. Overhead is also reduced in the nonleaf part because
only its variables need to be spilled. The function call overhead in the leaf part is minimal.

#define WSZ(SIZE/sizeof(int))

void transpose(int * in, int * out, int step) {

 if (step == 0) {

 int im0 = MERGEMSB(in[0*WSZ], in[1*WSZ]), im1 = MERGEMSB(in[2*WSZ], in[3*WSZ]),

 im2 = MERGELSB(in[0*WSZ], in[1*WSZ]), im3 = MERGELSB(in[2*WSZ], in[3*WSZ]);

 int om0 = MERGEMSB(out[0*WSZ], out[1*WSZ]), im1 = MERGEMSB(out[2*WSZ],

out[3*WSZ]),

 om2 = MERGELSB(out[0*WSZ], out[1*WSZ]), im3 = MERGELSB(out[2*WSZ],

out[3*WSZ]);

 out[0*WSZ] = PACK16MSB(im0, im1); out[1*WSZ] = PACK16LSB(im0, im1);

 out[2*WSZ] = PACK16MSB(im2, im3); out[3*WSZ] = PACK16LSB(im2, im3);

 in[0*WSZ] = PACK16MSB(om0, om1); in[1*WSZ] = PACK16LSB(om0, om1);

 in[2*WSZ] = PACK16MSB(om2, om3); in[3*WSZ] = PACK16LSB(om2, om3);

} else {

 transpose(in, out, --step);

 transpose(&in[(SIZE + 1) << step], &out[(SIZE + 1) << step], step);

 transpose(&in[1<<step], &out[SIZE<<step], step);

 if (in != out)

 transpose(&in[SIZE<<step], &out[1<<step], step);

 }

}

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-17

You can use different techniques to inline a function, including using a preprocessor such
as KAP, using the C preprocessor, and hand inlining. Both using the C preprocessor and
©1998 Philips Semiconductors 6/21/98 Inlining and Shrink-Wrapping 3-17

hand inlining were tried with this example. Naively using the C preprocessor gave poor
code.

The elementary step in transpose calls transpose_leaf. It operates on an 8 x 8 matrix.
The code in transpose is as follows:

Figure 3-15 shows source for transpose_leaf. Figure 3-16 shows the C preprocessor
macros used to operate on 4 x 4 submatrices. READ4 reads a submatrix into four temporary
variables. WRITE4 writes out the transposed result. MERGE4 corresponds to the intermediary
step.

Table 3-12 shows the performance of the routine after inlining and shrink-wrapping have
been applied. For a 256 x 256 array, 8194 out of 40962 memory accesses can be attributed
to spills. This corresponds to an overhead of 25%, which is acceptable. Eliminating spills
divides the number of instructions by almost a factor of two.

Table 3-12 Performance After Inlining and Shrink-Wrapping

Memory Accesses Instruction Cycles
D-Cache Miss
Cycles

16 x 16 262 294 207

32 x 32 768 684 1084

64 x 64 2834 2320 2757

128 x 128 10594 8864 9363

256 x 256 40962 36464 45202

if (step==1)

 transpose_leaf(in, out);

else { ..

Chapter 3: Case Studies

Cookbook Part 4 03_CASE.FM5 Page 3-18

void transpose_leaf(int * in, int * out) {
3-18 Inlining and Shrink-Wrapping ©1998 Philips Semiconductors 6/21/98

Figure 3-15 Source for transpose_leaf

Table 3-13 compares the performances of the original and Þnal versions of the program, in
cycles. An instruction cache overhead of 1000 cycles in both cases is assumed. Depending
on the size of the input, the improvement in performance varies between 1.6 and 16.

Figure 3-16 C Preprocessor Macros Used To Operate On 4 X 4 Submatrices

 int i0, i1, i2, i3;

 int im0, im1, im2, im3, im4, im5, im6, im7;

 int im8, im9, im10, im11, im12, im13, im14, im15;

 READ4(&in[0]); MERGE4(im0, im1, im2, im3);

 READ4(&in[1]); MERGE4(im4, im5, im6, im7);

 READ4(&in[4*WSZ]); MERGE4(im8, im9, im10, im11);

 READ4(&in[4*WSZ+1]); MERGE4(im12, im13, im14, im15);

 READ4(&out[0]); WRITE4(&out[0], im0, im1, im2, im3);

 MERGE4(im0, im1, im2, im3); WRITE4(&in[0], im0, im1, im2, im3);

 READ4(&out[1]); WRITE4(&out[1], im8, im9, im10, im11);

 MERGE4(im8, im9, im10, im11);

 READ4(&out[4*WSZ]); WRITE4(&out[4*WSZ], im4, im5, im6, im7);

 MERGE4(im4, im5, im6, im7);

 WRITE4(&in[1], im4, im5, im6, im7);

 WRITE4(&in[4*WSZ], im8, im9, im10, im11);

 READ4(&out[4*WSZ+1]); WRITE4(&out[4*WSZ+1], im12, im13, im14, im15);

 MERGE4(im12, im13, im14, im15);

 WRITE4(&in[4*WSZ+1], im12, im13, im14, im15);

}

#define READ4(x) i0 = (x)[0*WSZ]; i1 = (x)[1*WSZ]; i2 = (x)[2*WSZ]; i3 =

(x)[3*WSZ];

#define MERGE4(i,j) v0 = MERGEMSB(i0, i1); v1 = MERGEMSB(i2, i3); \

 v2 = MERGELSB(i0, i1); v3 = MERGELSB(i2, i3);

#define WRITE4(x,i,j,k,l) (x)[0*WSZ] = PACK16MSB(i, j); (x)[1*WSZ] = PACK16LSB(i, j);\

 (x)[2*WSZ] = PACK16MSB(k, l); (x)[3*WSZ] = PACK16MSB(k, l);

Chapter 3: Case Studies

3

Cookbook Part 4 03_CASE.FM5 Page 3-19
©1998 Philips Semiconductors 6/21/98 Cache Alignment 3-19

Cache Alignment

Cache accesses have a granularity of 64 bytes and are aligned at 64-byte boundaries in
memory. Fetching a structure of 64 bytes aligned at 64-byte boundary requires a single
cache access compared to two for an unaligned access. Fetching an unaligned 32-byte
structure requires one and one half cache accesses on average, compared to one for an
aligned access. If the matrix is allocated on the heap, it can be aligned to a cache
boundary. The number of memory accesses increases from 44041 to 68162 for a 256 x 256
matrix if it is not cache-aligned. The TriMedia C library routine _cache_malloc can be
used for this. Code for the transposition routine to align the matrix is shown below. The
second argument is the set number (0-31, -1 means any cache set).

Table 3-13 Performance of Original and Final Versions

Original Program Final Program

16 x 16 2476 1504

32 x 32 5667 2675

64 x 64 16828 5419

128 x 128 65634 17410

256 x 256 1226450 74336

#define LINESIZE 64

a = (char *)_cache_malloc(SIZE*SIZE , -1);

 < ... initialize matrix >

transpose((int *)a, (int *)a, STEP);

Cookbook Part 4 04_LTCY.FM5 Page 4-1
4: Performance Analysis on the Hardware
4

Chapter 4
©1998 Philips Semiconductors 6/21/98 4-1

Performance Analysis on the Hardware 4

Topic Page

Overview 4-2

Terminology 4-3

Reasons for Long Interrupt Latencies 4-5

Clearing the IEN 4-6

Changing the Global Interrupt Priority 4-7

Individual Disabling 4-7

Preventing Task Preemption 4-7

Interrupt Latency Sampling 4-8

Using the Sampler 4-9

Detection of Latency Violators 4-9

Latency Sampler Code 4-10

Chapter 4: Performance Analysis on the Hardware

Cookbook Part 4 04_LTCY.FM5 Page 4-2

Overview
4-2 Overview ©1998 Philips Semiconductors 6/21/98

Like in any other real time system, TM-1000 based multimedia applications are mostly
driven by time critical events. Such events are passed between the application and its
environment by means of interrupts, which often also announce or request data. For
instance, an MPEG-2 decoder is continuously reacting on interrupts announcing new
MPEG data to decode, on interrupts requesting new frames to display, on interrupts
notifying that a VLD- or ICP operation or a DMA transfer has completed, or on interrupts
providing real time synchronization.

For many interrupts it is extremely important that they are handled and acknowledged in
time. There are a number of reasons for this: Þrst, contrary to software, which can
implement various buffering schemes to overcome transient timing problems (jitter),
hardware is relatively simple in nature. When an interrupt is not served in time, input data
might get lost or a device might go into error because it did not get instructions on what to
do next. As second reason for timely handling interrupts, especially in high frequency
systems: any delay in handling the interrupt reduces the time available for processing the
related event, thereby increasing the probability of real time problems Ôhigher upÕ the
chain.

The meaning of the term Ôin timeÕ, and the severity of the Ôreal time problemsÕ is strongly
de-pendent on the application and the devices which it uses. For example, in video
capturing, all timings are related to the input frame rate so that Ôin timeÕ will probably be
in the order of magnitude of several milliseconds, which is in contrast to e.g. an ssi
interrupt, which must be served strictly within a few hundred microseconds. Similarly, the
penalty of occasional timing problems in displaying video might only be some short,
hardly noticeable reduction in video quality, while an occasional timing problem in an
audio renderer might enrage the listener.

This appnote deals with interrupt latencies, as being an important concept in application
timing. It describes a mechanism to measure interrupt latencies, giving insight in the
timing aspects of applications. It also describes how to Þnd the cause of long latencies,
and concludes with latency information of a number of Trimedia applications and libraries.

Chapter 4: Performance Analysis on the Hardware

4

Cookbook Part 4 04_LTCY.FM5 Page 4-3

Terminology
©1998 Philips Semiconductors 6/21/98 Terminology 4-3

The following terminology is related to interrupt handling and application timing:

■ An interrupt handler is a parameterless C function that is triggered by an interrupt. It
should be compiled with a #pragma TCS_handler or #pragma
TCS_interruptible_handler, and installed as corresponding to a specific interrupt
using the tmInterrupts functions in the TriMedia device library. The difference between
these two pragmas is that the TCS_handler causes the interrupt enable bit to be cleared
for the duration of the handler, thereby disabling nested interrupts, while a
TCS_interruptible_handler runs with interrupts on.

■ Decision trees (dtrees) are TM-1000 instruction sequences generated by the compiler
which terminate in jump instructions (to the beginning of other dtrees). Interrupts will
never take control during execution of a dtree. Instead, pending interrupts may take
control only during jumps to other dtrees.

■ More precisely, interrupts may take control only during the interruptible jump
instructions generated by default by the TriMedia C compiler. Interrupt handling can be
prevented even while jumping to other dtrees by using noninterruptible jump
instructions. This special class of jump instructions is sometimes used in hand-coded
assembly, e.g. to allow loop pipelining. See also TM-1000 Data Book, Chapter 3.

■ Grafting is a technique, exploited by the TriMedia C compiler, to enlarge dtrees by
merging it with copies of jump targets. It increases instruction level parallelism at the
cost of (moderately) longer dtrees.

■ The interrupt enable bit (IEN) in the TM-1000 processor status word (PCSW)
determines whether asserted interrupts are kept pending, or lead to invocation of their
interrupt handler at the next jump instruction. The IEN controls all interrupts of
interrupt priority 6 and lower (see further). It has no effect on interrupts of priority 7.

■ An interrupt priority is a number in the range 0..7 (on the TM-1000) assigned to each
interrupt, and which controls the relative importance of the interrupt as follows. First,
the hardware guarantees that, when multiple interrupts are pending at a particular jump
instruction, an interrupt with highest priority value is selected for taking control.
Second, the tmInterrupts functions of the TriMedia device library implements a scheme
on top of the IMASK (see further) by which all interrupts of a speciÞc priority or lower
can be disabled Òen masseÓ while leaving the higher priority interrupts enabled, by
setting a global interrupt priority level.

■ The IMASK is a bitvector on the TM-1000 by which interrupts can be speciÞcally
enabled or disabled. It should be accessed only via the tmInterrupts functions of the
TriMedia device library. Contrary to the IEN bit, also interrupts of priority 7 can be
disabled using the IMASK.

■ Anon maskable interrupt (NMI) is an interrupt of priority 7. It is called this way
because it cannot be disabled via the IEN. Because it is common practice to Ôdisable all

Chapter 4: Performance Analysis on the Hardware

Cookbook Part 4 04_LTCY.FM5 Page 4-4

interruptsÕ using the IEN, nonmaskable interrupts should only be used with extreme
care.
4-4 Terminology ©1998 Philips Semiconductors 6/21/98

■ Disabling an interrupt is deÞned as any measure by which the interruptÕs handler is
prevented from taking control. Taking control is then postponed, and the interrupt
remains pending. A particular interrupt is disabled (or masked, or blocked) during any
of the following:

Ñ During execution of a dtree

Ñ During a noninterruptible jump

Ñ When the IEN is cleared and when the interruptÕs priority is lower than 7.

Ñ When the corresponding bit in the IMASK is cleared. In terms of the tmInterrupts
library, this is the case when the interrupt is not yet opened, or otherwise when the
interrupt has been individually disabled or when the global interrupt priority level is
larger than the interruptÕs own priority.

■ A latency of an interrupt is the difference in time between the moment at which the
interrupt is asserted and the moment at which its handler starts executing. In other
words, it is the time after asserting at which the interrupt handler is started. Any
(noticeable) latency is caused by the application, by having disabled the particular
interrupt.

■ An overrun is a condition in which input data of a particular device (typically
announced via an interrupt) is not timely consumed, and overwritten by subsequent
data. Overruns are generally caused by interrupt latency problems.

■ An underrun is a condition in which output data has not been given in time to a
particular output device, causing the device to halt, or to continue with old, stale, or
undeÞned data. Similar to overruns, underruns are generally caused by interrupt latency
problems, for instance because response to a previous data request interrupt from the
device was too late.

Summarized, using above terminology, longer latencies in an application may be harmful,
since they reduce real time response. This may result in overrun errors of input devices, in
which captured data is lost because the processor was notiÞed to late to timely read it
away and process it; or it may result in output device underrun errors in which no new
output data has been made available in time because the processor has been too slow in
reacting on a previous device notiÞcation.

Chapter 4: Performance Analysis on the Hardware

4

Cookbook Part 4 04_LTCY.FM5 Page 4-5

Reasons for Long Interrupt Latencies
©1998 Philips Semiconductors 6/21/98 Reasons for Long Interrupt Latencies 4-5

Interrupt latencies in the order of magnitude of about 10 microseconds and higher may
theoretically be caused by long dtrees, especially in grafted code generated by the
compiler.

However, it appears that such latencies very often are caused just by the application itself,
by carelessly disabling and enabling interrupts.

Disabling all interrupts, or disabling one or several particular interrupts speciÞcally, is
generally applied to create critical sections for accessing global data structures which
might also be accessed by interrupt handlers or by other tasks. This is best illustrated by
means of a toy example:

In this example, several tasks and an interrupt handler each modify a Ôglobal data
structureÕ, g_count. The classical problem is that this modiÞcation involves a read of the
old value, followed by a write of a new (incremented) value, and that a race condition
results when this sequence is interrupted by one of the others between the read and the
write. The following interruptions are possible:

■ Task1 by Task 2, due to a pSOS timer interrupt which ends Task 1Õs time slice in favor
of Task 2,

■ Task 2 by Task 1 in a similar way

■ Task 1, or Task 2, by Handler due to occurrence of its interrupt

Both tasks and the handler prevent such interruptions from happening during g_countÕs
update by simply disabling ÔallÕ interrupts; the tasks by calling the functions intended for
this in the tmInterrupts library, and the handler by making use of compiler support via the
TCS_handler pragma. This interrupt disabling is very effective, since it prevents time
slicing because the pSOS timer interrupt is disabled, and it prevents the handler from
interrupting the tasks and from interrupting itself (via a nested interrupt) because the
handler interrupt is disabled.

Note that it is good practice to not simply enable the interrupts again at the end of a
critical section which is started with a intClearIEN; rather, the old IEN should be restored
because one can not always be sure that the interrupts were not already disabled. Also note
that also handlers can create critical sections using intClearIEN and intRestoreIEN: use of

volatile int g_count;

#pragma TCS_handler

g_count = g_count+1;

Int ien = intClearIEN();

g_count = g_count+1;

Int ien = intClearIEN();

g_count = g_count+1;

Task 1 Task 2Handler

Chapter 4: Performance Analysis on the Hardware

Cookbook Part 4 04_LTCY.FM5 Page 4-6

these functions, in combination with pragma TCS_interruptible_handler, allow Þner grain
interrupt disabling in longer interrupt handlers. Especially note the following:
4-6 Clearing the IEN ©1998 Philips Semiconductors 6/21/98

WARNING
it is not disallowed to call other functions when interrupts are disabled,
but never call a function which might deschedule the current task when
running under a multitasking operating system like pSOS. ◆

Although interrupt disabling as described above is extremely effective for creating critical
sections, it is also a very course method which should be avoided for critical sections
longer than a few microseconds. The reason of this is that it might also lock out unknown
interrupts with possible stringent latency requirements. Such an interrupt probably will not
interfere at all with the critical section, and disabling it might unnecessarily increase its
latency. The following sections go over the different mechanisms by which interrupts can
be disabled. Some of these are more selective, and should be considered as an alternative.

Clearing the IEN

As mentioned above, disabling of an interrupt may be achieved by clearing the IE bit in
the PCSW. Massively disabling all interrupts in this way, and later enabling them again is
the usual way to achieve without much overhead a critical section in which a device, or
global data structure can be accessed without the danger of a task context switch or a new
intervening interrupt. Manipulating the IEN can be explicitly performed using the
functions intClearIEN, intSetIEN and intRestoreIEN exported by the tmInterrupts device
library. Two compiler- sup-ported mechanisms provide an effect similar to clearing the
IEN:

■ DeÞning an interrupt handler as using a pragma TCS_handler (in contrast to a
TCS_interruptible_handler). The generated code for such a handler clears the IEN at
the start, to be enabled at the end of the handler.

■ DeÞning a function or handler as a TCS_atomic. For these functions, the compiler will
generate non-interruptible jumps.

NOTE
further that explicit use of non-interruptible jumps in handcoded assembly
also locks out interrupts in an similar way. ◆

Chapter 4: Performance Analysis on the Hardware

4

Cookbook Part 4 04_LTCY.FM5 Page 4-7

Changing the Global Interrupt Priority
©1998 Philips Semiconductors 6/21/98 Changing the Global Interrupt Priority 4-7

Interrupt disabling can also be achieved by raising the global interrupt priority to a higher
value. This mechanism is generally used in interrupt handlers, to let serving not be
disturbed by Ôless urgent` interrupts, while still allowing Ômore urgentÕ ones. So while the
IEN is generally used to achieve atomicity, disabling based on interrupt priority is used to
(temporarily) allocate processor cycles only to a certain minimal urgency. Although
similar to clearing the IEN, raising the interrupt priority might also lock out unknown
interrupts, it selects on a notion of urgency and for this reason it is less likely that
interrupts with stringent latency requirements will be involuntarily locked out.

The global interrupt priority can be modiÞed by means of a call to intSetPriority from the
tmInterrupts library.

Individual Disabling

Interrupts can also be individually disabled. For instance, using a call to intInstanceSetup
from the tmInterrupts library, interrupt intVIDEOIN can be individually disabled;
regardless of its priority, and it has no effect on other interrupts.

Preventing Task Preemption

Individual disabling, and raising the global interrupt priority level may be used to lock out
all interrupts which might interfere with a particular critical section. However, it provides
no control over task preemption. In other words, even with all ÒnastyÓ interrupts locked
out, the current task might still be preempted by pSOS in favor of another which might
enter the same critical section. Note that the actual problem here is that the identity of the
pSOS timer interrupt and its priority are hidden.

Task preemption can be (temporarily) prevented by means of the pSOS function t_mode.
This function does not disable any interrupt at all, but just prevents scheduling. In libraries
or applications which may run either under pSOS or in stand-alone mode, it is better to use
the AppModel functions, which can be used to abstract from the currently running
operating system, as follows:

#include <tmlib/AppModel.h>;

...

AppModel_suspend_scheduling();

g_count= g_count+1;

AppModel_resume_scheduling()

Task 1

#include <tmlib/AppModel.h>;

...

AppModel_suspend_scheduling();

g_count= g_count+1;

AppModel_resume_scheduling()

Task 2

Chapter 4: Performance Analysis on the Hardware

Cookbook Part 4 04_LTCY.FM5 Page 4-8

Interrupt Latency Sampling
4-8 Interrupt Latency Sampling ©1998 Philips Semiconductors 6/21/98

Applications might encounter interrupt latency- related problems, even in case interrupts
have been disabled with extreme care. Libraries might have to be certiÞed on ÒdecentÓ
interrupt latency behavior. And both applications and libraries might be investigated on the
(timing) effects of running them together with other applications or libraries. This section
describes a sampling method which can be used for all these situations for gaining
interrupt latency information. See also the source listing in Appendix A, and a toy
demonstration program which samples latencies during generation of a cosine table, in
Appendix B. This source is copied from a corresponding example provided with the
TriMedia SDE, in $TCS/examples/ misc/latency_sampler.

The latency sampling method records the interrupt latencies encountered by a periodic
timer interrupt over a speciÞed duration of time while the sampled application is running.
Using a timer-based interrupt has the pleasant property that the times at which it is raised
are known exactly (up to a few cycles), so that the latency can be easily obtained by
subtracting this time from the actual time of handler invocation. The obtained timer
interrupt latencies are recorded in a bucket array, where each bucket represents the number
of timer interrupt latencies encountered during sampling. After termination of sampling, a
latency histogram can be obtained by printing the values in the bucket array.

Although the latencies are measured for the timer interrupt only, they can be interpreted
more generally: each measured latency would have been the latency of any interrupt which
was also enabled at the moment at which the timer interrupt occurred.The sampler as
shown installs the timer interrupt at (lowest) priority 0, and hence, for any interrupt i
which is not individually disabled: i is enabled whenever the timer interrupt is enabled,
and this means that at any moment, iÕs latency is smaller than the timer interrupt latency.
In other words, the measured interrupt latencies form a lowerbound, or worst case
information, on the interrupt latency of any interrupt which is not individually disabled.
This lowerbound could be tightened by running the timer interrupt at a higher interrupt
level, thereby disregarding interrupt latencies encountered by non time critical interrupts.

In an application with one time critical, high priority interrupt, the sampled latencies are
lowerbounds also in another sense: a measured latency could be caused by the high
priority interrupt handler itself, because it was invoked at elapse of the sample timer. In
this case the latency which was encountered by the timer interrupt would obviously not
have been encountered by the high priority interrupt itself.

By the above, the described sampling method can be used to obtain information on
interrupt latencies encountered by interrupts which have not been individually disabled.

Chapter 4: Performance Analysis on the Hardware

4

Cookbook Part 4 04_LTCY.FM5 Page 4-9

Using the Sampler
©1998 Philips Semiconductors 6/21/98 Using the Sampler 4-9

Sampling can be performed simply by compiling and linking the listed C code to the
application, and by calling function init_latency when sampling should start. This function
clears the bucket array, allocates a timer, and sets it up to start sampling. After ÒsomeÓ
time, sampling can be stopped by term_latency, which deallocates the timer and prints the
histogram on the standard output.

Note that, being sampling based, the reliability of the obtained information is dependent
on the sample frequency, the sample duration, and the code coverage of the application
during sampling. For instance, no guarantee is given that the largest measured latency
indeed is the theoretical worst case latency.

No analysis is made in this document on this reliability.

Detection of Latency Violators

The listed sampler can also be used to detect the causes of long latencies, as follows: upon
any sampled latency larger than NROF_BUCKETS * 2 LOGS, the function
LATENCY_VIOLATOR_DETECTED is called. This can be used to detect the part of the
application which was responsible for this long latency, by placing a breakpoint in this
function using the TriMedia debugger tmdbg. When hitting this breakpoint, the application
completely stops with all interrupts disabled. A stack traversal will reveal the function
which ended the violating critical section.

Chapter 4: Performance Analysis on the Hardware

Cookbook Part 4 04_LTCY.FM5 Page 4-10

Latency Sampler Code
4-10 Latency Sampler Code ©1998 Philips Semiconductors 6/21/98

/*----------------------------- includes ----------------------------*/
#include <tm1/tmTimers.h>
#include <tm1/tmTimersmmio.h>
#include <tm1/mmio.h>
/*------------------------- local definitions -----------------------*/
#define NROF_BUCKETS 1000 /* number of sample buckets */
#define LOGS 4 /* binary logarithm of sample bucket size */
#define SAMPLE_PERIOD 1000 /* cycles */
static Int buckets[NROF_BUCKETS];
static Int sample_timer;
static Int last_tick;
custom_op Int cycles(void);
/*------------------------- utility functions -----------------------*/
LATENCY_VIOLATOR_DETECTED()
{
intClearIEN();
/* Place a breakpoint here */
intSetIEN();
}
static void
sampler(void)
{
#pragma TCS_handler
Int now = cycles();
Int sample_timer_value = timGetVALUE(sample_timer);
Int this_tick = now - sample_timer_value;
Int latency = now - last_tick - SAMPLE_PERIOD;
Int bucket_nr = latency >> LOGS;
last_tick = this_tick;
if (bucket_nr >= NROF_BUCKETS) {
buckets[NROF_BUCKETS - 1]++;
LATENCY_VIOLATOR_DETECTED();
}
else if (bucket_nr < 0) {
buckets[0]++;
}
else {
buckets[bucket_nr]++;
}
}
Bool
init_latency()
{
timInstanceSetup_t setup;
if (timOpen(&sample_timer) != TMLIBDEV_OK) {
return False;
}
else {
memset((Pointer) buckets, 0, sizeof (buckets));

Chapter 4: Performance Analysis on the Hardware

4

Cookbook Part 4 04_LTCY.FM5 Page 4-11

last_tick = cycles();
setup.source = timCLOCK;
©1998 Philips Semiconductors 6/21/98 Latency Sampler Code 4-11

setup.prescale = 1;
setup.modulus = SAMPLE_PERIOD;
setup.running = True;
setup.handler = sampler;
setup.priority = intPRIO_0;
timInstanceSetup(sample_timer, &setup);
return True;
}
}
void
term_latency()
{
Int i;
timClose(sample_timer);
for (i = 0; i < NROF_BUCKETS; i++) {
if (buckets[i]) {
printf(Ò %7d : %7d\nÓ, i << LOGS, buckets[i]);
}
}
}
Appendix B: Sample Sampled Application
/*----------------------------- includes ----------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/*------------------------------ functions --------------------------*/
main()
{
int i;
init_latency();
for (i = 1; i < 1000; i++) {
printf(Òcos(%d)= %e\nÓ, i, cos(i));
}
term_latency();
exit(0);
}

Chapter 4: Performance Analysis on the Hardware

Cookbook Part 4 04_LTCY.FM5 Page 4-12
4-12 Latency Sampler Code ©1998 Philips Semiconductors 6/21/98

Cookbook Part 4 APP_A.FM5 Page A-1
A: Shell Scripts
A

Appendix A
©1998 Philips Semiconductors 6/21/98 A-1

Shell Scripts A

tmprof.select

select

sed -n -e "1,2p; /$1/p" <$2 >/tmp/ts.$$

shift

shift

tmprof $* /tmp/ts.$$

rm /tmp/ts.$$

sed -n -e "1,2p; /$1/p" <$2

	Find in this section
	Local Search...
	About The TriMedia SDE Cookbook
	==
	Philips TriMedia SDE Cookbook
	Part 1: Developing TriMedia Applications
	Table of Contents
	1: Compiling TriMedia Applications
	Introduction
	Build and Execution Hosts
	Build Hosts
	Execution Hosts

	Defining the TCS Environment Variable
	Using tmcc to Compile TriMedia Applications
	Invoking tmcc
	Using tmcc Options
	Specifying Execution Hosts
	Compiling Multiple Files
	Specifying Endianness

	Predefined Macros

	Creating Makefiles
	Creating pSOS Makefiles
	Simple pSOS Application Makefile
	Porting This Makefile to nmake
	Linking With Other pSOS Libraries
	Using the pSOS Monitor

	Running TriMedia Applications
	Running TriMedia Applications with tmgmon
	Dumping the Trace Buffer
	Example

	Running TriMedia Applications with tmrun
	Running TriMedia Applications with tmmon
	Running TriMedia Applications with tmdbg
	Running TriMedia Applications with tmmprun

	2: Creating a GUI Interface
	Introduction
	Windows Application Program
	Makefile
	Main Program
	Callback Function
	File Operation
	Initialization

	3: Programming With pSOS
	Introduction
	A pSOS Beginning
	The Root Function
	Communication Using Semaphores
	Communication Using Asynchronous Signals
	A pSOS Ending

	A pSOS+™ Based Multiprocessor Example
	Starting Development
	Number of Executables to Build
	The Root Function
	Buffer and Packet Management, Caching Issues
	DMA Transfer

	4: Using the Dynamic Loader
	Introduction
	Dynamic Loading Basics
	Dynamic Loader Example
	Starting Development
	The Root Function
	The Application Shell
	Running dynamic_loader_shell

	Part 2: Programming with Peripherals
	Table of Contents
	1: Video Apps, Programming TriMedia
	Introduction
	TSSA Video Modules
	The Video Digitizer
	The Video Renderer
	The exolVrendVO Example Program
	Include Files
	Definitions
	Specifying the Packet Format
	Static Parameters and Function Prototypes
	The Main Program
	Variables
	DP Debug Information
	Check Capabilities
	Read Command Line Parameters
	Open the Components
	Make the Connection Between the Two Components
	Setup the Video Digitizer and Renderer
	Starting the Component Instances
	User Input
	Stop and Shutdown

	TriMedia Video-In Operation
	Full-Resolution Capture Mode
	Full-Resolution Capture Mode
	Half-Resolution Capture Mode
	Raw Capture Mode
	Message-Passing Mode

	TriMedia Video-Out Operation
	Image Transfer Mode
	Data Transfer Modes
	Data-Streaming Mode
	Message-Passing Mode

	Using the TriMedia Video-In/Video-Out Device Libra...
	Guidelines for Use of the Video-In/Video-Out APIs

	Vivot Demonstration Program Overview
	C Program Includes
	Main Program
	Vivot Demonstration Program (Vivorun)
	Field Capture versus Frame Capture
	Running in CIF Resolution (vivoRunCIF)
	Running in Full Resolution (vivoRunFullRes)
	Initialization With Alpha Overlay (vivoRunOverlay)...
	Setup Input and Begin Capture (viYUVOpenAPI)
	Start Outputting an Image To Video Out (voYUVAPI)...
	Initialize Overlay Mode (voOverlayAPI)
	Inputting an Image for Display on VO (readYUVfiles...
	ICP Setup
	Buffer Processing for Full Resolution and CIF
	Buffer Processing for Overlay (mmOvlyBufUpdate)
	VI Interrupt Service Routine (viTestISR)
	Querying the Configuration

	2: Video Apps Using the ICP API, Programming TriMe...
	Introduction
	The exolVtransICP Example Program
	Include Files
	Definitions
	Static Variables
	Specifying the Packet Format
	Specifying the Output Format
	Packet Defines and Function Prototypes
	Variables
	Initialization
	Get Capabilities
	Make the Connection Between the Two Components
	Create the Video Transformer Control Descriptor
	Setup the Video Digitizer
	Setup the Video Transformer
	Starting the Component Instances
	User Input
	Stop and Shutdown
	Application Progress Function
	Application Completion Function

	3: Audio Apps, Programming TriMedia
	Introduction
	TSSA Audio Modules
	The Audio Renderer
	Check Capabilities:
	Open the Components:
	Make the Connection Between Each Pair of Component...
	Setup the File Reader
	Setup the Audio Renderer
	Start
	Stop and Shutdown
	Advanced Features

	Audio Digitizer
	CopyAudio Example
	Create the Components:
	Create and Populate the Queues
	Set Up the Components
	Modifying the Copy Component:

	Audio Mixer
	Audio Decoders

	Audio Device Library
	Audio Hardware Overview
	Capture/Transmission by DSPCPU

	Using the TriMedia Audio-In/Audio-Out API
	Guidelines for Use of the Audio-In/Audio-Out APIs
	Restrictions

	Demonstration Programs
	Playing an Audio File
	Interrupt Routine fplayISR

	Recording an Audio File
	sthru Demonstration Program
	Setting Audio Parameters

	Board Support Package

	Part 3: Bootstrapping TriMedia
	Table of Contents
	1: Autonomous Mode, Bootstrapping TriMedia in
	Introduction
	Overview of Stand-Alone Boot
	Creating an EEPROM image
	EEPROM Header
	L1 Boot Program

	Sample Programs
	makefile.unix
	makefile.win
	l1main.c
	l1rom.c
	l1start.trees

	2: Host-Assisted Mode, Bootstrapping TriMedia in
	TriMedia Initialization in Host Assisted Mode
	Overview
	Plug and Play BIOS
	BIU and Interrupt Initialization
	Putting the processor in reset
	Taking the processor out of reset
	tmmprun - multiprocessor download program
	Makefile
	Header files
	tmmprun main program
	Using the downloader library
	tmcrt.c
	Shutting down the RPC server
	Implementation of POSIX system functions

	Part 4: Optimizing TriMedia Applications
	Table of Contents
	1: Porting and Optimizing Programs
	Introduction
	Porting Considerations
	Library and System-Calls Support
	Floating-Point Computations
	File I/O

	Performance Tuning
	Profile-Driven Compilation
	Grafting Based on Profile Information
	Graft-Tuning Parameters
	Loop Optimization
	Remove If Statements and Conditional Expressions

	Collapse Mutually Exclusive if Statements
	Use MUX and FMUX Pseudo Operations
	Parallel Reduction Loops
	Use MUX on Variable Length Loops
	Apply Strength Reduction
	Move Externals and Reference Parameters to Locals
	Remove Function Calls
	Pay Attention to Compile Time
	Use #pragma TCS_break_dtree
	Use Goto for Loops with a Trailing if Statement
	Loop Fusion
	Replace || by |
	Replace && by & or IZERO
	Using Software Pipelining
	Use Trimedia Style Booleans in Critical Parts of t...

	Loop Unrolling
	Loop Unrolling Versus Grafting
	Using Restricted Pointers
	Using Custom Operators
	Using the Global Optimizer
	Using Profiling and Grafting
	Using Unsafe Alias Analysis
	Using a Dirty Float
	Using Cache Optimization
	Vary the Right-Most Array Index in the Inner Loop
	Pack Data as Tightly as Possible
	Trade CPU Cycles for Cache Cycles
	Watch for Cache Set Hotspots
	Blocking
	Two-Level Blocking
	Watch for Data Cache Bank Conflicts
	Try -noloadspec When Thrashing

	Summary

	2: System Programming Support
	Programming Support
	Interrupt Service Routines and Exception Handlers
	User View
	Saving/Restoring Behavior
	Declaring Interrupt Service Routines
	Usage Notes
	Interrupt-Latency Support
	Supporting the Machine Level Simulator: tmsim -il
	Breaking Decision Trees: #pragma TCS_break_dtree
	Supporting Cache Control

	Using MMIO Locations

	3: Case Studies
	Introduction
	Special-Purpose Block Filter
	Fixed-Point Arithmetic
	IFIR16 Custom Operations
	Dual-Phase Loop
	Critical Path
	Algebraic Transformation
	Balancing the Critical Path
	More Unrolling
	Matrix Transpose
	Divide and Conquer
	Using Custom Operations
	Inlining and Shrink-Wrapping
	Cache Alignment

	4: Performance Analysis on the Hardware
	Overview
	Terminology
	Reasons for Long Interrupt Latencies
	Clearing the IEN
	Changing the Global Interrupt Priority
	Individual Disabling
	Preventing Task Preemption
	Interrupt Latency Sampling
	Using the Sampler
	Detection of Latency Violators
	Latency Sampler Code

	A: Shell Scripts
	tmprof.select
	select

