o
Atmet APPLICATION NOTE

Getting Started with SAM V71 Microcontrollers

Atmel | SMART SAM V71 Series

Scope

This application note is aimed at helping the reader become familiar with the
Atmel® | SMART ARM® Cortex®-M7 based SAM V71 microcontrollers.

It describes in detail a simple project that uses several important features present
on SAM V71 chips. This includes how to set up the microcontroller prior to
executing the application, as well as how to add the functionalities themselves.
After going through this guide, the reader should be able to successfully start a
new project from scratch.

This document also explains how to set up and use different toolchains GNU, 1AR,
and MDK in order to compile and run a software project.

To be able to use this document efficiently, the reader should be experienced in
using the ARM core. For more information about the ARM core architecture,
please refer to the relevant documents available from www.arm.com.

Reference Documents

Type Title Atmel Lit. No.
Datasheet SAM V71 Datasheet 44003

A t L® S\Jfg ™ Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16
)\
meL SiMART

http://www.arm.com

Table of Contents

L. REQUITEMENTS 1
2. Getting Started 2
2.1 SPECIfICALION o 2
2.2 Xplained Ultra Board.ot e 3
2.3 Implementation 6
3. Running the EXxamples ... 16
3.1 GNU . 16
3.2 IAR Embedded WOrkbench. 19
3.3 M K- ARM . . . 24
4. ReVISION HiStOrY ... 29
i Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] Atmel

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

1. Requirements

The cross-development environment is shown in Figure 1-1.

Figure 1-1. Development Environment

SAM-ICE
'\——— SWD

- EDEG

| USE Cable i

SAMVTL Xplained Ultra

The software referenced in this application note requires several components:
e SAMV71 Xplained Ultra Evaluation Kit
e One PC running Windows® 7 or higher
One of the following development tools:
— 1AR Embedded Workbench for ARM (later than V7.30.3)
— MDK-ARM (later than V5.12)
— GNU Tools for ARM Embedded Processors (later than V4.8.4)
Note: MinGW (later than VO0.6.2) is necessary for GNU.
e One of the following debuggers:
— SAM-ICE™ (J-Link) (later than V8.0)
SEGGER J-Link software & documentation pack (later than V4.96)
— EDBG (this unit offers SWD and USART port)
AtmelUSBInstaller.exe (later than 6.2.342)
— ULINKpro™ and ULINK2" for MDK
In this document, examples are used to guide you in setting up development environments for these tools.

In addition, target programming can also be done using SAM-BA® tools V2.15 or later. For more details, refer to
the User Guide available in the SAM-BA package available on www.atmel.com.

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 1

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

http://www.atmel.com

2. Getting Started

This section describes how to program a basic application that helps you to become familiar with SAM V71
devices. It covers three main sections: the specification of the example (what it does, what peripherals are used),
how to set up hardware development environment and how to control relevant peripherals.

2.1 Specification

2.1.1 Features

The demonstration program makes two LEDs on the board blink at a fixed rate. This rate is generated by using a
timer for the first LED; a Wait function based on a 1 ms tick generates the rate for the second LED.

While this software may look simple, it uses several peripherals which make up the basis of an operating system.
As such, it serves as a good starting point to become familiar with the SAM V71 microcontroller series.

2.1.2 Peripherals

In order to perform the operations described in the previous section, the software example uses the following set of

peripherals:
e Parallel Input/Output (PIO) controller
e Timer Counter (TC)
e System Timer (SysTick)
e Nested Vectored Interrupt Controller (NVIC)

e Serial Port

LEDs and buttons on the board are connected to standard input/output pins of the chip; those are managed by a
P10 controller. In addition, it is possible to have the controller generate an interrupt when the status of one of its
pins changes; buttons are configured to have this behavior.

The TC and SysTick are used to generate two time bases, in order to obtain the LED blinking rates. They are both
used in interrupt mode: the TC triggers an interrupt at a fixed rate, each time toggling the LED state (on/off). The
SysTick triggers an interrupt every millisecond, incrementing a variable by one tick; the Wait function monitors this
variable to provide a precise delay for toggling the second LED state.

Using the NVIC is required to manage interrupts. It allows the configuration of a separate vector for each source.
Three different functions are used to handle P1O, TC and SysTick interrupts.

Finally, an additional peripheral is used to output debug traces on a serial line and is helpful in debugging the
program.

2 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

2.2 Xplained Ultra Board
2.2.1 Xplained Ultra Board Overview

Figure 2-1. Xplained Ultra Board Overview
DEBUG PORT (USART1+SWD)

e TARGET USB
LEDO
Leon SWD+ETM
SAMV71 DEBUG —
J201 —] J200

2.2.2 Hardware Setup
The following instructions show how to set up the hardware development environment.

1. Jumpers setting: Open all jumpers on the board except J201.
2. Debugger tool connection: Connect the target board with PC through a programmer or debugger tool, EDBG
or SAM-ICE.
SAM-ICE (J-Link)
When downloading and debugging through SWD via SAM-ICE or J-Link, SEGGER J-Link software &
documentation pack needs to be installed on PC. This is available on https://www.segger.com.
Connect the SAM-ICE JTAG connector to the 20-pin connector SAMV71 DEBUG (SWD) on the board, and
connect the PC with SAM-ICE via the USB cable, as shown in Figure 2-2.
EDBG
1. Run AtmelUSBInstaller.exe to install the Atmel USB driver. This is available on
https://gallery.atmel.com.
2. Connect the target board with PC via a Micro-AB USB cable.

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 3

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

The following devices will show in Device Manager.

By Atrmel
. EDBG Data Gateway
L. 'ﬁ EDBG Debugger

4 Y5 Ports (COM & LPT)

f?’ Communications Port (COM1)
P ECP Printer Port (LPT1)

‘Z EDBG Virtual COM Part (COMI)|

The USB driver for Atmel and Segger tools makes DEBUG PORT work as both a debugging port and a
serial port.

e Serial port connection: necessary for debug information display in the terminal window on PC.

USART1 can be used as a serial port, which is recognized as EDBG Virtual COM Port (COMx) in Device
Manager. Open a serial debug terminal (such as Putty), and configure the relevant COM port as 115200-8-
1-N-N.

e The board is powered on by USB.

Note: External power is required when the 500 mA through the USB connector is not enough in some
applications. Plug the 5V power supply adaptor in VIN Jacket.

Figure 2-2 shows the completed hardware set connection.

Figure 2-2. Hardware Connection

2.2.3 Booting

The SAM V71 devices feature up to 2048 Kbytes of embedded Flash and up to 384 Kbytes of internal SRAM. The
Getting Started example can be compiled and downloaded to both memories.

The SRAM is accessible over the system Cortex-M bus at address 0x2040 0000 and the base address of the
Flash is 0x0040 0000.

4 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] Atmel

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

2.2.4 Erasing Flash
The user can close the jumper J200, wait for at least five seconds and then re-power the board to chiperase
SAM V71,
The ERASE pin on J200 is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all
bits read as logic level 1). It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left
unconnected for normal operations.
When the ERASE pin is tied high during less than 100 ms, it is not taken into account. The pin must be tied high
during more than 220 ms to perform a Flash erase operation.
To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE
pin as GPIO or enter Wait mode with Flash in Deep Power-down mode before the ERASE pin assertion time has
elapsed. For more details, refer to the SAM V71 datasheet.

225 LEDs
There are two general-purpose LEDs (yellow) on the SAM V71 Xplained Ultra board. They are wired to pins PA23
and PC9. Setting a logical low or high level on the corresponding PIO lines turns the LEDs on and off.
The example application uses both LEDs (PA23 and PC9).

2.2.6 Serial Port
On SAM V71, the default serial port which is used to print debug information and monitor input is USART1. The
port uses pins PA21 and PB04 for the RXD1 and TXD1 signals, respectively.

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 5

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

2.3 Implementation

As stated previously, the example defined above requires the use of several peripherals. It must also provide the
necessary code for starting up the microcontroller. Both aspects are described in detail in this section, with
commented source code when appropriate.

2.3.1 Initialization Before ‘main’

After the board is powered on, ROM code will run and carry out some necessary initialization. The ROM code
process will not be discussed in detail here.

Most of the code of an embedded application is written in C. This makes the program easier to understand, more
portable and modular.

When downloading the application via the J-link GDB server, users can set the registers of PC and stack pointer to
0x2040 0000 and 0x2040 0004 respectively in the GDB script for SAM V71 Xplained Ultra. Before you run the
application, you might still want to:

e Provide exception vectors

e Initialize critical peripherals

e Initialize memory segments

These initialization requirements are described in the next sections.

2.3.1.1 Entry Point
For GNU toolchain, PC points to the start address of Reset_Handler at the beginning.
For IAR and MDK, PC points to the start address of __iar_program_start and Reset_Handler, respectively.
The purpose of the entry point is to:

e Setup a C environment

e Set the vector table base address
e Perform the low-level initialization
e Jump to the main application

2.3.1.2 Low-Level Initialization
Starting from the LowLevellnit interface, three toolchains share program flowcharts.
The first step of the low-level initialization process is to configure critical peripherals:

e Main oscillator and its PLL
e MPU
e TCM

The LowLevellnit function is shown as follows.

extern WEAK void LowLevel Init(void)
{
Systemnit();
_Set upMenor yRegi on() ;
#i f def ENABLE_TCM
FLASHD O ear GPNVM 8) ;
FLASHD Set GPNVM 7) ;
TCM Enabl e() ;
#el se
TCM Di sabl e();
#endi f
}

6 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

23.13

23.1.4

The following sections explain why these peripherals are considered critical, and detail the required operations to
configure them properly.

Low-Level Initialization: SystemInit

The main function of Systemlnit is to complete the processor clock and master clock configuration.

After reset, the Main RC oscillator is enabled with the 12 MHz frequency selected and it is selected as the source
of MAINCK. MAINCK is the default clock selected to start the system.

The Main oscillator and its Phase Lock Loop A (PLLA) must be configured in order to run at full speed. Both can be
configured in the Power Management Controller (PMC). For details, refer to the SAM V71 datasheet.

In the example, the processor clock and master clock are 300 MHz and 150 MHz respectively by default. Example
values on the SAMV71 Xplained Ultra (12 MHz crystal):

#def i ne SYS BOARD PLLAR (CKGR PLLAR ONE I\
CKGR_PLLAR MULA(0x18U) I\
CKGR_PLLAR_PLLACOUNT(0x3fU) |\
CKGR_PLLAR DI VA(0x1U))

#define SYS BOARD MCKR (PMC_MCKR PRES_CLK_1 I\
PMC_MCKR CSS_PLLA CLK |\
PMC_MCKR_MDI V_PCK_DI V2)

Here:
finput = 12 MHz
MAINCK = 12 MHz
PLLACK = MAINCK * MULA / DIVA=(12* (0 x 18 + 1) / 1) MHz = 300 MHz
HCLK = PLLACK / PRES = (300 / 1) MHz = 300 MHz
MCK = PLLACK / PRES / MDIV =(300/ 1/ 2) MHz = 150 MHz

In addition, the user must set the number of wait states of the embedded Flash depending on the system
frequency. When MCK is 4 MHz and FWS is 0, the number of cycles for Read/Write operations is 1.

In the example, defining FWS as 5 enables six cycles access, which is done as shown below:
EFC- >EEFC_ FMR = EEFC_FMR_FWS(5) ;

For more details, see the “Embedded Flash Wait State” table in the SAM V71 datasheet.

Low-Level Initialization: Memory Protection Unit (MPU)

The SAM V71 devices supply MPU with 16 zones as a component for memory protection.

Users can use the MPU to enforce privilege rules, separate processes and enforce access rules.

The _SetupMemoryRegion function completes the memory mapping by setting MPU Region Base Address
Register (RBAR) and MPU Region Attribute and Size Register (RASR).

The MPU_RASR.ATTRS field defines the memory type, the cacheable and shareable properties, and the access
and privilege properties of the memaory region.

The System Handler Control and State Register is settled to enable memory management fault, Bus Fault, and
Usage Fault exception.

At the end of the function, MPU region is enabled by setting MPU Control register.

In the example, memory regions such as ITCM, internal Flash, DTCM, SRAM, peripheral memory, SDRAM, QSPI
memory and USBHS_RAM are all configured in this function.

The SRAM, for example, is divided into two parts with the same attributes.

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 7

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

voi d MPU_Set Regi on(ui nt32_t dwRegi onBaseAddr, uint32_t dwRegi onAttr)

{
MPU- >RBAR = dwRegi onBaseAddr ;
MPU- >RASR = dwRegi onAttr;

}

voi d _SetupMenoryRegi on(void)

{

ui nt 32_t dwRegi onBaseAddr ;
uint32_t dwRegi onAttr;

dwRegi onBaseAddr =
SRAM PRI VI LEGE_START_ADDRESS |
MPU_REG ON_VALID |
MPU_DEFAULT_PRAM REG ON; //4
dwRegi onAttr =
MPU_AP_FULL_ACCESS |
| NNER_NORMAL_WVB_NWA_TYPE(NON_SHARABLE) |
MPU_Cal MPURegi onSi ze(SRAM PRI VI LEGE_END ADDRESS -
SRAM PRI VI LEGE_START_ADDRESS) |
MPU_REG ON_ENABLE;

MPU_Set Regi on(dwRegi onBaseAddr, dwRegi onAttr);

dwRegi onBaseAddr =
SRAM UNPRI VI LEGE_START_ADDRESS |
MPU_REG ON_VALI D |
MPU_DEFAULT_UPRAM REGI ON; //5

dwRegi onAttr =
MPU_AP_FULL_ACCESS |
| NNER_NORVAL_WB_NWA TYPE(NON_SHARABLE) |
MPU_Cal MPURegi onSi ze(SRAM UNPRI VI LEGE_END ADDRESS -
SRAM _UNPRI VI LEGE_START_ADDRESS) |
MPU_REG ON_ENABLE;

MPU_Set Regi on(dwRegi onBaseAddr, dwRegi onAttr);

/* Enabl e the nmenory nmanagenent fault, Bus Fault, Usage Fault exception */
SCB- >SHCSR | = (SCB_SHCSR_MEMFAULTENA_Msk | SCB_SHCSR BUSFAULTENA_ Msk |
SCB_SHCSR_USGFAULTENA_MsK) ;
/* Enable the MPU region */

MPU_Enabl e(MPU_ENABLE | MPU_BGENABLE);
}

The user can configure a new memory region or adjust the attributes of some regions in the function, such as the
cacheable properties.

2.3.1.5 Low-Level Initialization: Tightly Coupled Memory (TCM)
The SAM V71 devices embed Tightly Coupled Memory (TCM) running at processor speed.

ITCM is a single 64-bit interface, based at 0x0000 0000 (code region) and DTCM is composed of dual 32-bit
interfaces interleaved, based at 0x2000 0000 (data region).

ITCM is disabled by default at reset. DTCM is enabled by default at reset with the size programmed in GPNVM bits
[8:7]. When enabled, ITCM is located at 0x0000 0000, overlapping ROM or Flash depending on the general-

8 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

purpose NVM bit 1 (GPNVM). The TCM configuration can be modified with GPNVM bits [8:7]. The user can
program them through the “Clear GPNVM Bit” and “Set GPNVM Bit” commands of the EEFC User Interface.

Use the following codes to configure TCM to 32 Kbytes and enable it:

FLASHD Ol ear GPNVM 8) ;
FLASHD_ Set GPNVM 7) ;
TCM Enabl e() ;

Accesses made to TCM regions when the relevant TCM is disabled and accesses made to the Code and SRAM
region above the TCM size limit are performed on the AHB matrix, i.e., on internal Flash or on ROM depending on
remap GPNVM bit.

Accesses made to the SRAM above the size limit will not generate aborts.
The Memory Protection Unit (MPU) can be used to protect these areas as mentioned in Section 2.3.1.4.

Note that internal SRAM and TCM share the same memory space, which means that when TCM is enabled, the
size available as internal SRAM is reduced proportionally.

After carrying out all of the above initialization actions, the program can jump to the main application.

2.3.2 Generic Peripheral Usage
2.3.2.1 Initialization
Most peripherals are initialized by performing the following actions:
e Disabling or reprogramming watchdog
e Enabling cache if necessary
e Enabling the peripheral clock in the PMC if necessary
e Enabling the control of the peripheral on PIO pins
e Enabling the interrupt source at the peripheral level
2.3.3 Disabling or Reprogramming Watchdog Timer (WDT)
2.3.3.1 Purpose
The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a deadlock. It
features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It
can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in
debug mode or idle mode.
After a processor reset, the value of Watchdog Counter Value (WDV) is OxFFF, which corresponds to the
maximum value of the counter with the external reset generation enabled (bit WDT_MR.WDRSTEN at 1 after a
backup reset). This means that a default watchdog is running at reset, i.e., at power-up. The user can either
disable the WDT by setting bit WDT_MR.WDDIS or reprogram the WDT to meet the maximum watchdog period
the application requires.
2.3.3.2 Initialization
In the example, the user can disable WDT with the WDT_Disable function as follows.
WDT_Di sabl e(WOT) ;
The operation is done by setting WDT_MR as follows.
pWDT- >WDT_MR = WDT_MR WDDI S;
/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 9

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

234

2341

2.34.2

2343

2.3.5

2351

2.35.2

10

Enabling Cache If Necessary

Purpose

The SAM V71 devices support 16 Kbytes of ICache and 16 Kbytes of DCache with Error Code Correction (ECC).
All caches are disabled at reset and enabling cache benefits the performance. The user can turn on |-Cache and
D-Cache if necessary.

Initialization

The user can enable cache as follows:

SCB_Enabl el Cache();
SCB_Enabl eDCache();

The details of the SCB_EnablelCache function is shown below as an example.

SCB->| Cl ALLU = 0; /! Invalidate |-Cache
SCB->CCR | = SCB_CCR_IC Msk;// Enable I-Cache

To make some regions cacheable, the following conditions should all be met:

e Enable cache as described above in the application.
e Set the attributes of the relevant regions as cacheable in _SetupMemoryRegion function (refer to Section

2.3.1.4).
Cache Coherency
Enabling cache may cause breakdown when:
e Memory locations are updated by other agents in the system.
e Memory updates made by the application code must be made visible to other agents in the system.

For example, in a system with a DMA that reads memory locations held in the data cache of a processor, a
breakdown of coherency occurs when the processor has written new data in the data cache, but the DMA reads
the old data held in memory.

In situations where a breakdown in coherency occurs, the software must manage the caches by using cache
maintenance operations. The Clean, Invalidate and Clean, and Invalidate operations can address these issues.

Take DCache as an example, these operations are realized in several functions such as:

static inline void SCB_I nval i dat eDCache();
static inline void SCB_C eanDCache ();
static inline void SCB_C eanl nval i dat eDCache ();

Using the Nested Vectored Interrupt Controller (NVIC)

Purpose

The NVIC provides configurable interrupt handling abilities to the processor. It facilitates low-latency exception and
interrupt handling, and controls power management.

The NVIC supports up to 240 interrupts, each with up to 256 levels of priority. The user can change the priority of
an interrupt dynamically. The NVIC and the processor core interface are closely coupled, to enable low-latency
Interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the
stacked, or nested interrupts to enable tail-chaining of interrupts.

Initialization

The SAM V71 uses hardware to save and restore key context state on exception entry and exit, and use a table of
vectors to indicate the exception entry points.

The vector table contains the initialization values for the stack pointer, and the entry point addresses of each
exception handler. The vector table is defined as the constant of ‘exception_table’ for GNU toolchain.

Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

Part of the constant is shown as follows:

__attribute__ ((section(".vectors")))
const Devi ceVectors exception_table = {
.pvStack = (void*) (& estack),

. pf nReset _Handl er
. pf N(NM _Handl er
. pf nHar dFaul t _Handl er

(voi d*) Reset_Handl er,
(voi d*) NM _Handl er,
(voi d*) HardFaul t _Handl er,

©
ﬁ
>
<
()]
=
(@]
-
I
o
Qo
D
=
I

(voi d*) SysTi ck_Handl er,

=4
S
_|
8
>
=
=
@
1

(voi d*) TCO_Handl er,

On reset, the processor initializes the vector table base address to an IMPLEMENTATION DEFINED address. The
software can find the current location of the table, or relocate the table, using the Vector Table Offset Register
(VTOR) as shown below.

pSrc = (uint32_t *) & _sfixed,;

SCB->VTOR = ((uint32_t) pSrc & SCB VTOR TBLOFF_MsK);
The _sfixed symbol points to the vectors section which saves the vectors table. The SCB_VTOR_TBLOFF_Msk is
equal to OXFFF FFF8 on SAM V71 and bits [6:0] are RAZ (Read as Zero).
The VTOR holds the vector table address.
The processor and the NVIC prioritize and handle all exceptions. When handling exceptions, all exceptions are
handled in Handler mode, and processor state is automatically stored to the stack on an exception, and

automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in
parallel to the state saving, enabling efficient interrupt entry.

Configuring an interrupt source requires six steps:
1. Implement interrupt handler if necessary.

The first step is to re-implement the interrupt handler with the same name as the default interrupt handler in
the vector table as just mentioned if necessary, so that when the corresponding interrupt occurs, the
reimplemented interrupt handler will be executed instead of the default interrupt handler.

2. Disable the interrupt if it was enabled.

An interrupt triggering before its initialization completion may result in unpredictable behavior of the system.
To disable the interrupt, the Interrupt Clear-Enable Register (ICER) of the NVIC must be written with the
interrupt source ID to mask it. The following interface can be used directly:
static inline void NVIC Disabl el R I RQh_Type | RQ);
3. Clear any pending interrupt.
Setting the Interrupt Clear-Pending Register bit puts the corresponding pending interrupt in the inactive
state. It is also written with the interrupt source ID to mask it. The following interface can be used directly:
static inline void NVIC O earPendi ngl RQ | RQn_Type | RQn);
4. Configure the interrupt priority.
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four
interrupts). Priorities are maintained according to the ARMv7-M prioritization scheme. The following
interface can be used directly:
static inline void NVIC SetPriority(l RQn_Type IR, uint32_t priority);
5. Enable the interrupt at peripheral level.
6. Enable the interrupt at NVIC level.

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 11

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

The interrupt source can be enabled, both on the peripheral (in a mode register usually) and in the Interrupt
Set-Enable Register (ISER) of the NVIC. On the side of NVIC, the following interface can be called directly:
static inline void NVIC _Enabl el RQ | RQn_Type | RQn);

Refer to core_cm?7.h for more interfaces about NVIC which can be used directly.

2.3.6 Using the Timer Counter (TC)

2.3.6.1 Purpose

Timer Counters on SAM devices can perform several functions, e.g., frequency measurement, pulse generation,
delay timing, and Pulse Width Modulation (PWM).

In this example, a single Timer Counter (TC) channel is going to provide a fixed-period delay. An interrupt is
generated each time the timer expires, toggling the associated LED on or off. This makes the LED blink at a fixed
rate.

2.3.6.2 Initialization

In order to reduce power consumption, most peripherals are not clocked by default. Writing the ID of a peripheral in
the PMC Peripheral Clock Enable Register (PMC_PCERX) activates the peripheral clock.

The TC initialization sequence is the following:

1. Write the ID of the TC in the PMC Peripheral Clock Enable Register (PMC_PCERX):
PMC_Enabl ePeri pheral (1 D_TCO);

2. Configure TC as 4 Hz frequency by calling the function TC_FindMckDivisor which will find the best MCK
divisor. The best divisor depends on the timer frequency and MCK.

TC_Fi ndMckDi vi sor (4, BOARD _MCK, &div, &t cclks, BOARD MXK);

3. Configure the TC Channel Mode Register (TC_CMRX). TC channels can operate in different modes. In the
example, set the TC in Capture mode by clearing the WAVE bit and enable RC Compare Trigger by setting
the CPCTRG bit, , which is done in the internal TC_Configure function:

TC Configure(TCO, 0, tcclks | TC_CVR _CPCTRG);

4. Configure the interrupt whenever the counter reaches the value programmed in RC. The interrupt priority is
level 0 as default. At the TC level, this is done by setting the CPCS bit of the TC Interrupt Enable Register
(TC_IERX):

NVI C_d ear Pendi ngl RQ(TCO_I RQ) ;
NVI C_Enabl el RQ TCO_I RQn) ;
TCO->TC CHANNEL[0].TC IER = TC | ER CPCS ;

At the end of the sequence, the program starts the counter if LED1 is enabled as shown below:

if (bLedlActive) {
TC Start(TCO, 0);
}
2.3.6.3 Interrupt Handler
The interrupt handler for TCO interrupt is ‘TCO_Handler’ and the main purpose is to toggle the state of LED.

The first action to do in the handler is to acknowledge the pending interrupt from the peripheral. Otherwise, the
latter continues to assert the IRQ line. In the case of a TC channel, acknowledging is done by reading the
corresponding TC Status register (TC_SRx). The code is shown as below.

dunmmy = TCO->TC CHANNEL[0].TC_SR;
It toggles the state (on or off) of one of the blinking LEDs by programming the P1O controller.
LED Toggle(1);
Refer to Section 2.3.8.3 for more details.

12 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

2.3.7 Using the System Timer (SysTick)
2.3.7.1 Purpose
The system timer, SysTick, provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a
flexible control mechanism.
This Getting Started example uses the SysTick to provide a 1 ms time base. Each time the interrupt is triggered, a
32-bit counter is added. A Wait function uses this counter to provide a precise way for an application to suspend
itself for a specific amount of time.
2.3.7.2 Initialization
Initialization is done with the following line of code:
SysTi ck_Config(Pck/1000);
In this example, the SysTick clock source is the processor clock and PCK = BOARD_MCK*2. The function
initializes the system timer and its interrupt, and starts the System Timer.
2.3.7.3 Interrupt Handlers
The handler for system timer is shown as follows:
static volatile uint32_t _dwli ckCount = O ;
voi d SysTick_Handl er(void)
{
_dwTi ckCount ++;
}
Using a 32-bit counter may not always be appropriate, depending on how long the system should stay up and on
the tick period. In this example, a 1 ms tick overflows the counter after about 50 days; this may not be enough for a
real application. In that case, a larger counter can be implemented.
2.3.7.4 Wait Function
Using the global counter, it is very easy to implement a wait function taking a number of milliseconds as its
parameter. Read the code for more details.
When called, the function first saves the current value of the global counter in a local variable. It adds the
requested number of milliseconds which has been given as an argument. Then, it simply loops until the global
counter becomes equal to or greater than the computed value.
The interface can be called directly to wait for several milliseconds. In this example, it is called as follows to wait for
1000 ms:
Wi t (1000) ;
2.3.8 Using the Parallel Input/Output Controller (PIO)
2.3.8.1 Purpose
The SAM V71 devices support up to five PIO controllers and each one controls up to 32 lines. Each line can be
assigned to one of four peripheral functions: A, B, C or D.
In this example, the PIO controller manages two LEDs.
2.3.8.2 Configuring LEDs
The two P1Os connected to the LEDs must be configured as output, in order to turn them on or off. First, the PIOs
control must be enabled in PIO Enable Register (PIO_PER) by writing the value corresponding to a logical OR
between the two LED IDs.
/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 13

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

P10 direction is controlled by two registers: Output Enable Register (PIO_OER) and Output Disable Register
(PIO_ODR). Since in this case the two PIOs must be output, the same value as before shall be written in
PIO_OER.

Note that there are individual internal pull-ups on each PIO pin. These pull-ups are enabled by default. Since they
are useless for driving LEDs, they should be disabled, as this reduces power consumption. This is done in the PIO
Pull-Up Disable Register (PIO_PUDR).

In this example, LEDs are wired to pins PA23 and PC9. They are described in the following macros:

#define PIN.LED 0 {PIO PA23, PIOA |D PIOA PO OQUTPUT 0, Pl O DEFAULT}
#define PIN.LED 1 {PIOPCO , PIOCC, ID PIOC, PIO QUTPUT 0, Pl O DEFAULT}

Here is the code for LED configuration:

LED Configure(0) ;
LED Configure(1) ;

P10O_Configure will be called as shown below:
Pl O Configure(&pinsLeds[dwLed], 1);

For LEDO wired to pin PA23, the program will run PIO_SetPeripheralA function. More details are available from the
source code.

When programming the PIO, it is recommended to call PIO_Configure with proper parameters directly. So, the
definition of relevant pins such as PIN_LED_0 and PIN_LED_1 is primary.
2.3.8.3 Controlling LEDs

LEDs are turned on or off by changing the level on the PIOs to which they are connected. After those PIOs have
been configured, their output values can be changed by writing the pin IDs in the PIO Set Output Data Register
(P1IO_SODR) and the PIO Clear Output Data Register (PIO_CODR).

In addition, the PIO Pin Data Status Register (PIO_PDSR) indicates the current level on each pin. It can be used to
create a toggle function, i.e., when the LED is ON according to PIO_PDSR, then it is turned off, and vice-versa.
The function is described below. PIO_GetOutputDataStatus returns the value of PIO_PDSR. The relevant
interfaces which can be called directly are listed as follows:

unsi gned char Pl O _Get Qut put Dat aSt at us(const Pin *pin);
void PIO dear(const Pin *pin);
void Pl O Set(const Pin *pin);

Refer to pio.c or pio.h for more interfaces that can be used directly.

2.3.9 Using the Serial Ports

2.3.9.1 Purpose
As mentioned before, the default serial port used as output is USART1 on the SAM V71 Xplained Ultra board.

Run AtmelUSBInstaller.exe to make sure that the PC recognizes the port as a serial port and then connect the
board with the PC via a Micro-AB USB cable.

The example application uses USARTL to print debug information and monitor input.

2.3.9.2 Initialization
The common interfaces which can be called directly are listed as below.:

extern void DBG PutChar(uint8_t c);
extern uint32_t DBG GetChar(void);

Their purpose is to output a character and input a character via the serial port, respectively. At the first of these
functions, the program will check whether the console has been initialized by a static variable
‘_uclsConsolelnitialized'. If not, DBG_Configure function will be called and finishes initialization and configuration.

14 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

if (! _uclsConsolelnitialized)

{
}

It is configured with a baudrate of 115200, 8 bits of data, no parity, one stop bit and no flow control as default.

DBG_Conf i gur e(CONSOLE_BAUDRSATE, BOARD_MCK)

2.3.9.3 Redirecting printf
The function printf is redirected to the serial port in software package.
For IAR toolchain, putchar is called by printf, so putchar is redefined by calling DBG_PutChar which outputs a
character on the serial port as shown below:

extern WEAK signed int putchar(signed int c)

{
DBG PutChar(¢) ;
return c ;

}

For MDK toolchain, the relevant interface is fputc. It is performed as follows:
int fputc(int ch, FILE *f)

{
if ((f == stdout) || (f == stderr))
{
DBG_Put Char (ch) ;
return ch ;
}
el se
{
return EOF ;
}
}

For GNU toolchain, the relevant interface is _write. It is performed as follows:

extern int wite(int file, char *ptr, int len)

{
int ilndex ;
for (ilndex=0 ; ilndex < len ; ilndex++ ptr++)
{
DBG Put Char (*ptr) ;
}
return il ndex ;
}
/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 15

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

3. Running the Examples

The required software tools for building the project and downloading the binary files are introduced in Section 1.
The hardware development environment setup is described in Section 2.2.2.

3.1 GNU

To generate the binary file to be downloaded into the target, we use the GNU Tools for ARM Embedded
Processors.

3.1.1 Setup aDevelopment and Debug Environment

3.1.1.1 Setting up Development Tools

Note: For GNU toolchain, GNU Tools for ARM Embedded Processosr and MinGW are necessary as mentioned
above. These tools are available on https://launchpad.net/gcc-arm-embedded/+download and
http://sourceforge.net/projects/mingw/files/, respectively.

3.1.1.2 Setting up Necessary Tools

In this section, choose SAM-ICE (J-Link) as the debugger and J-Link GDB Server will be used.

When downloading and debugging via SAM-ICE (J-Link), SEGGER J-Link software & documentation pack must
be installed on your PC.

3.1.2 Generating and Downloading Binary file

3.1.2.1 Building and Downloading
Makefile is the most important file while building the code.

The Makefile contains rules indicating how to assemble, compile and link the project source files to create a binary
file ready to be downloaded on the target.

The makefile is divided into two parts, one for variables settings, and the other for rules implementation.
Variables

The first part of the Makefile contains variables (uppercase), used to set up some environment parameters, such
as the compiler toolchain prefix and program names, and options to be used with the compiler.

For example,
TRACE_LEVEL = 4
e Defines trace level used for compilation.
OPTIM ZATION = -Q0

e Level of optimization used during compilation. It is recommended to set as OPTIMIZATION = -
00 when debugging.

C _OBJECTS += board_| ow evel . 0

C OBJECTS += main.o

e List of object files. The user should add corresponding C_OBJECTS variable here if *.c needs
to be added.

16 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

https://launchpad.net/gcc-arm-embedded/+download

Rules

The second part of the Makefile contains rules. Each rule is composed on the same line by a target name, and the
files needed to create this target.

The first rule, ‘all’, is the default rule used by the make command if none is specified in command line.
Both SRAM and Flash configurations are compiled and binaries are generated.
all: $(BIN $(0BJ) $(MEMORIES)

The rule, ‘$(1)’, describes how to compile source files, and link object files and library together to generate one
binary file per configuration: program running in FLASH and program running in SRAM.

$(1): $$(ASM OBIECTS $(1)) $$(C_OBIECTS_$(1))

When debugging the example with GDB, the user can use the ‘debug_$(1)’ directly. The rule will use a script
named "samv7-ek-sram.gdb" which is provided in the package.

debug $(1): $(1)
The rule, ‘clean’, is also supplied in the default makefile. The user can adjust makefile as required.
In the GDB example, for SRAM mode, follow the steps below to build, download and debug via J-Link GDB Server.

1. Connectthe PC and the board via SAM-ICE with one USB cable and one 20-pin JTAG cable.
2. Serial Port connection: for printing debug information in the terminal on PC.
3. Power on the board.
4. Open the J-Link GDB Server on PC with proper configurations as follows.
SEGGER J-Link GD (oS
— Connection to J-Link
i IS [~ Serial No.
i TCRAP
— Target device
ICortex-M? J
— Target interface
SwD A
—Speed
i+ Auto zelection
 Adaptive clocking
|4 ~| kHz
— Command line option
I-select USE -device Cortex-M7 -f WD -speed auto
[u:s I Cancel
/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 17

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

18

Click ‘OK’. The option “J-Link” and “CPU" in the GDB Server window will display “Connected” and “Cortex-

M7”, with green indicators.

File Help

v Localhost only

GDE | aiting for connection I Initial S0 speed |Auto > [T Stayontop

CPU [CortexM7 B zz=vj [Little endian ~ |

Lag output: Clear log

- [v Shaw log window
J-Link |Connected I Current 5D spged (2000 kHz [~ Generate laghle
[~ Werify download
[Init regs on start

Connecting to J-Link

J-Link is connected

Firmwvare: J-Link ARHM ¥8 compiled Aug 18 2014 17:28:09
Hardware: W& .00

SAN-ICE found |

S/oN: 28010796

OEH: SaH-ICE

Feature(=): REDI

Checking target woltage

Target wvoltage: 3.29 ¥

Listening on TCP-IP port 2331

Connecting to target Connected to target
Waiting for GDE connection

Fl

0 Bytes downloaded 1ITAG device

m

5. Go to the “\..\examples\getting-started\build\gcc\" directory and build the example by typing “make

debug_sram”. The binary is then generated and downloaded into the

B8 Administrator: C:\windows\system32\cmd.exe - make debug_sram

Writing register (PC = BxZB48B?FC)>
Bx8
8x@
axe
Bx8
8x@
axe
Bx8
8x@
axe
Bx8
8x@
axe
Bx8
Bx20486eal Bx20406ead
OxfFEEFEFF 4294967295
Bx2B8480000 Bx28488088 <{exception_table>
Bx1@ 16777216
Bx20486ea8 541993544
BxB a
8x@
axe
Bx8
Bx8

board.

= | ftin

The program starts running and will stop at the entry point of the program. At this time, the “GDB” indicator

in the J-Link GDB Server window turns green.

File Help
2
GOB [1 client @ 127.0.0.1 0 Initial SwD sked [t -l r
7
-Link | Cornected I Current SWD speed | 2000 kHz r
CPU [Cortex M7, Halted B zav]] [Litie: endian - | l';

Log output: T og

Localhost only
Stay on top
Show log window
Generate logfile
“erify dawnload
Init regs on start

Downloading 8 bytes @ address 0xZ0407E7E

Writing register (PC = 0=20400000)

Read 4 bytes @ addres= 0x20400000 (Data = 0xZ0406E7S)
Downloading 4 bytes @ address 0x400E1800

Reading all registers

Read 4 bytes @ addre=s= 0=x20400000 (Data = 0xZ2040RE7E)
Writing register (SP = 0=xZ20406E78)

Read 4 bytes @ address 0=20400004 (Data = 0xz204009D9)
Downloading 4 bytes @ address 0xz20400004

Reading all registers

Read 4 bytes @ addres= 0x20400000 (Data = 0xZ0406E7S)
Writing register (PC = 0x204009D8)

F

19 KB downloaded 1 JTAG device

Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE]

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

m

Atmel

3.2

3.21

3.2.11

3.2.1.2

3.2.2

3.22.1

6. Type commands to debug. For example, “c” to continue, “b main” to set a breakpoint before the main
function.

If the program continues running without breakpoints, you will see LEDs blinking, which can be controlled by Serial
Port input. Press ‘1’ to Start/Stop the LEDO blinking and press ‘2’ to Start/Stop the LED1 blinking.

For more detailed information, refer to relevant documents from gcc.gnu.org.

IAR Embedded Workbench
Note that the Getting Started example has already been ported and included in IAR® EWARM.

Set up a Development and Debug Environment

Setting up Development Tools
e Install IAR Embedded Workbench. This is available at www.iar.com.
e Install the software package by running SAMV71_softpack_x.x_for_ewarm_7.30.exe.

Now, the user can generate binary corresponding to SAM V71 devices via IAR.

Setting up Necessary Tools
In this section, choose EDBG or SAM-ICE (J-Link) as the debugger.
When EDBG is selected, AtmelUSBInstaller should be installed to enable EDBG SWD port.

When downloading and debugging via SAM-ICE (J-Link), SEGGER J-Link software & documentation pack needs
to be installed on PC.

Generating and Downloading Binary File

Building the Project
Before building the project, it is necessary to check the project configuration.
Follow the steps below:
1. Open the workspace “getting-started.eww” in directory:
\..\examples\Atmel\samv7-xPlained\examples\getting-started\build\ewarm\.
2. Select Flash or SRAM

Two modes (flash and sram) can be selected in the drop-down menu at the up-left corner of the project
window shown as below.

b4
‘sram V'

Workspace
[flash_ | I

3. Check the configurations. The key settings are shown as follows:

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 19

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

https://gcc.gnu.org

e “General Options™: select “Atmel SAMV71Q21” as Device (or select “Cortex-M7” as Core). Select “VFPv5
double-precision” as FPU setting.

Options for node "getting-started™

iy

Category,

Runtime Chedking
CfC++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger

Simulator
Angel

L CMSIS DAP

i GDB Server

IAR ROM-monitor

I4et/ITAGjet

IHink/3-Trace

T1 Stellaris

Macraigor

PE micro

RDI

ST-LINK

| Third-Party Driver

¥D5100/200/1C01

Target | Qutput | Library Configuration | Library Options | MISRAC:200 * |+

Py CyEiEnt

©Core |CotexM7

©Dewe AmdSAWTGZ
Endian mode FFU
@ Litle VFPv5 double-precision
Big
BE32
@ BEB

e “C/C++ Compiler”: select Optimizations setting as required.

Options for node "getting-started™

sty

Category

Runtime Checking
++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
DB Server
IAR ROM-monitor
I4et/ITAGjet
IHink/3-Trace
T1 Stellaris
Macraigor
PE micro
RDI
ST-LINK
Third-Party Driver
¥DS100/200/1C0T

General Options

[Multi-file Compilation

Discard Unused Publics

Factary Settings

Language 1 LanguageZlCode |Opt\miza1ions Output | List Fluda |

No size constraints

Enabled transformations

[Comman subexpression elimination
[F] Loap unralling

[E1] Function inlining

[Code motion

[Type-based zlias analysis

[Static clustering

[E Instruction scheduling

[F] Vectorization

20 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE]

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

Atmel

e "Linker”: Linker configuration file must be “flash.icf’ (when in Flash mode) or “sram.icf” (when in sram mode).

Options for node "getting-started™ u

Categony: Factory Settings

General Options
Runtime Checking

C{C++ Compiler
Assembler Corfig | Library [Input | Optimizations | Advanced [Output [st [+][>
QOutput Converter
Custom Build Linker corfiguration file
Build Actions 3
Overide defaut —
Debugger 3TOOLK\T_D\Fls\cnnﬂg\lwnker\ﬁﬂmel\samvﬂqmﬁm \dI D
Simulator
s
CMSIS DAP
GDB Server Configuration file symbol definitions: {one per ling)

AR ROM-monitor
Ijet/ITAGet
JHink/I-Trace

TI Stellaris
Macraigor

PE micro

RDI

STLINK
Third-Party Driver
XD5100/200/IC0T

e "Debugger”: either SAM-ICE or EDBG can be selected as the debugger to download the binary file

generated by IAR. The corresponding configurations are shown below respectively.
— Using SAM-ICE (J-Link) as the debugger

Cptions for node "getting-started™ | £ |

Categany: Factom Settings

General Options
Runtime Checking

CfC++ Compiler

Assembler Setup ‘ Download I \magal Exdra Optlonsl Mutticore | Fluglnsl

Output Converter

Custom Build Driver [F] Runta

Pl hctns o Jevel

Linker

Seupmaces

Simulator [T Use macro file(s)
;QSEI‘S Dap SPROJ_DIRS". . \ibraries libboard_samv 7-ek\resources’
GDEB Server

TAR ROM-monitor
I-4et/ITAGjet
MHink/J-Trace

I Stelaris [Override defaut

Macraigor STOOLKIT_DIRS\CONFIG\debugger' Atmel\SAMV7 1021 ddf
PE micro

RDI

ST-LINK
Third-Party Driver

XD5100/200{1C01

Device description file

Options for node "getting-started™ M

Category Factory Settings

General Options

Runtime Chedking
CfC++ Compiler
Assembler - Connection | Brealpoints
Output Converter i
Custom Build
Build Actions
Linker

| | Debugger IPaddress: [asabbbeccddd | Serial o

Simulator

Angel Interface JTAG scan chain

CMSIS DAP & ITAG JTAG scan chain with muttiple targets
GDB Server - TAP rumber |0

IAR ROM-monitor
Iet/ITAGjet Scan chain contains non-ARM devices
J-Linky:

T1 Stellaris
Macraigar [Log commurication
PE micro

RDI

ST-LINK

Third-Party Driver

|| | psooz2001con |

Device 0 ¥ | Serial no:

IF address

ace Preceeding bits: |0

SPROJ_DIRS\cspycomm log

AtmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE]

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

21

— Using EDBG as the debugger

Options for node "getting-started™ u

r

Category: Factory Settings |

General Options

Runtime Checking
CJC++ Compiler
Assembler Setup |Duwnluad | Images. | Extra Options | Mulﬁwrel F‘\ugins‘ (]
Qutput Converter
Custom Build Driver [CRunta

Build Actions CMSIS DAP - low Jovelint
Linker
Setup macros

Simulator [T Use macro file(s)
Angel

CMSIS DAP

GDB Server

LAR ROM-manitar
Ljet/ITAGjet Device description file '
I-ink{1-Trace "
1 Stellaris [Cvenide default

Macraigor STOOLKIT_DIRS\CONFIG\debugger\Atmel\SAMV 71021 ddf
PE micra

RDIL

STHLINK
Third-Party Driver
¥D5100/200/1CDL

$PROJ_DIRS\.\. NN Nibrares\ibboard_samv7-ek'resources| |

Options for node "getting-started™

=

i
Categany: Factory Settings
General Options
Runtime Checking
C{C++ Compiler
Assembler ATAG/SWD | Breakpaints
Output Converter Probe corfig Probe configuration file
Custom Build @ Ovemide defautt
Build Actions @ Ato
Linker () From file
Debugger © Bplicit CPL: Select
Simulator
Angel Interface Explict probe corfiguration
© IThG Mutitarget dsbug system
GDB Server - . p
1AR ROM-moritor @ SWD Target number [TAP or Multidrop D) | 0
I-jet/ITAGjet Target with multiple CPUs
JHink/]-Trace CPU number on target: |0
T Stellaris JTAG/SWD speed
Macraigor
PE micro frbogdrinciany
RDI
ST-LINK
Third-Party Driver
¥D5100/200,/ICDI

In addition, make sure the 20-pin SAMV71 DEBUG (SWD) connector is unconnected when EDBG is used
as the debugger.

4. Build the Project
5]]
Click the Make button +# or click Make after right-clicking the project name to build the project.

The executable binary files: sram.bin and sram.out will be generated in directory:

22 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] Atmel

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

\..\getting-started\build\ewarm\sram\bin\.

3.2.2.2 Downloading the Code
After generating binary files, run the project by clicking the Download and Debug button &
After the code is downloaded to the corresponding memory (Flash/SRAM), the buttons on debug tool bar are

available as shown below.

& getting-started - IAR Embedded Workbench IDE

Messages
prmc.c
startup_sam.c
supC.c
system_sam.c
oo

timetick.c
frace.c

uartc

welh.o
xdma_hardware_interace.c
xdmac.c
welmad.c
Linking
sram.out
Comseting

Total number of errors: 0

Build | Debug Log

e

File Edit View Project Debug Disassembly CMSIS-DAP Tools Window Help

D@ & R~

AR AL LY AL LY Y

P BRI

: o s

Workspace * 1R Gontey For ARM | b coreole .« [T main{) + » Disassembly

[Sfﬁm ~ _ % \return Unused (ANSI-C compatibility). Gote v | Memory
- v Di b

Files _ & By extern int main(void | isassembly

=l [getting-started -sram [« [| 0x2040lcds: 0x36203c20 DCaz 908082208

= 3 documentation 022040120 02000000 htas o1

1l ["_‘Hlbrﬁr\es /# Disable watchdog #/ __iar program_start

|-@ Caresources & :

main.c -

L@ (3 Outout /* Output exampls information */ 0x20401cs8: Dx46c0 MOV RS, EB
printf{ "\n\r-- Getting Started Example %3 ——\n\r", O0x20401lcea: Oxdbch HOV RS, RB
printf{ "-- $s\n\r", BORRD NAME) ; 0x2040lcec: Oxf7ff Oxff22 EL 7nain
printf("-- Compiled: &s %3 --\m\r", _DATE_, _TI 73

0=20401cf0: Dx25202d2d DC32 622865709
SCB EnableICache(): 0x20401cf4: 0x000d0a73 DC32 854643
SCB_EnableDCache () ; punLeds
l . . 0x20401cf8: 0x00000002 DC32 2
/% Configure systick for 1 ms. */ e 7
TimeTick_Cont: H = e
| imeTick_tonfigure () Dx204010fc . Dx003d0%00 nCaz wnanan
printf("Configure IED PIOS.AmME") : 0x20401d00: 0x00000101 DC32 257
Confiqureleds() ; SystenCorsClock
[- 0x20401d04: 0x98f7eecd DC32 -1711804732
Il printi("Configure TC.\R\z" }; bled0Active:
_ConfigureTe() ; 0x20401d08: Dxbb DCS 182
0x20401d09: Dxs6 DCB 230
| #ifndef NO_FUSHBUTION E 0x20401d0a: Dxbdcl DC16 16273
| printf("Configure buttons with debouncing.\m\r") _alntSources
_ConfigureButtons() ; 0=20401d0c: Dxedec 1D RS, {R2. R3.

getting-started

.

b

Thu Jan 22. 2015 13:24 57 —————— execlJserResat ——
Thu Jan 22, 2015 13:2457. LowlLevelResetthardware, delay 0)
[Thu Jan 22, 2015 13:24:58: CPU status - IN RESET
I Thu Jan 22, 2015 13:24:68: CPU status OK
g
E KN i]
2

Ready

Then we can see LEDs blinking, which can be controlled by Serial Port input. Press ‘1’ to Start/Stop the LEDO

blinking and press ‘2’ to Start/Stop the LED1 blinking.

Atmel

Ln 331, Col 24

NUM

Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE]

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

[y

3.3 MDK-ARM

Note that the Getting Started example has already been ported and included in Keil® MDK, but MDK-ARM V5.12
does not support SAM V71 devices so far. Refer to www.keil.com.

After installing MDK-ARM, if you find that the MDK installed on your PC does not support SAM V71 devices, you
will need to install the packages MDK5_Atmel_SAMXx7_JLink_AddOn.exe and Keil. SAMx7_DFP.1.0.1.pack to
make sure that MDK supports SAM V71 devices. These are available from www.keil-compiler.de. More details are
shown below.

3.3.1 Set up a Development and Debug Environment

3.3.1.1 Setting up Development Tools
e |Install MDK-ARM IDE.

e Install two packages Keil. SAMx7_DFP.1.0.1.pack and MDK5_Atmel_SAMx7_JLink_AddOn.exe to make
sure MDK supports SAM V71 devices.

e Install the software package by running SAMV71_softpack_x.x_for_mdk_5.x.exe.
Now, the user can generate binary corresponding to SAM V71 devices via MDK.

3.3.1.2 Setting up Necessary Tools
In this section, choose SAM-ICE (J-Link), ULINK2 or ULINKpro as the debugger.

When downloading and debugging via SAM-ICE (J-Link), SEGGER J-Link software & documentation pack needs
to be installed on PC.

ULINK2 is configured as a Human Interface Device (HID) and is, therefore, directly supported by Windows
operating systems. Thus no specific drivers are required when using ULINK2 as the debugger.

ULINKpro uses a specific Keil USB driver, which is part of the Keil tools. When connecting ULINKpro for the first
time to the PC, Windows detects the new hardware. Follow the instructions to install the driver.

3.3.2 Generating and Downloading Binary File

3.3.2.1 Building the Project
Before building the project, it is necessary to check the project configuration.
Follow the steps below:
1. Open the workspace “getting-started.uvprojx” in directory:
\..\examples\Atmel\samv7-xPlained\examples\getting-started\build\mdk\.
2. Select Flash or SRAM.
Two modes (flash & sram) can be selected in the drop-down menu as follows.

| |5ram E Fid

flash

-

3. Check the configurations. The key default settings are shown as follows:

24 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] AtmeL

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

“Device”: select “Atmel SAMV71Q21" as Device.

Device |Targe1 | Output | Listing | User | C/C++ | Asm | Linker | Debug | Utiities |

Vendor: Atmel

oolset:

Search

ISuﬂware Packs

Device: ATSAMVTIQZ21

=l

Pack: IKa«I SANx7_DFP 101

URL:

Software Pack
’V hitp:/www keil.com/pack

——

4

€1 aTsamvILZL
1 ATSAMVIINI
1 ATSAMVTLNZO
€1 ATSAMVTINGL
8 ATsAMVTIQ19
1 ATSAMVTLQ20

ECN ATsAMVTIQ2

The Atmel SAMVY series is a member of a family of Flash
microcontrollers based on the high performance 32-bit ARM
Cortex-M processor. i operates at 3 maxdimum speed of 300 MHz
features up to 2048 Kbytes of Flash and up to 384

Kbytes of SRAM. The peripheral set includes a High Speed USB
Device port and a High Speed USB Host port sharing

=]

Sensor Interface, a High Speed MCl for
SDIO/SD/MMC, an Bxtemal Bus Interface featuring a SORAM
Controller and a Static Memory Controller providing

Flash, 3x USARTs, 5¢ UARTSs, 3x TWls, one Quad
14D SPI, 2¢ SPle, an 125, as well as a Ethemet MAL supporting
IEEE1588, 802 1Gbb. 802 3az, 802 1AS and 802 1Qav.

s

an embedded transceiver, 8 MedialB Device interface, an Image

connection to SRAM, PSRAM. NOR Fash, LCD Module and NAND

two PWM timers, 4x three channel generalpurpose TG—b‘n timers (with .

and

[]
mode).

o]

Cancel I Defaults I

Help

“Linker”: Linker configuration file must be “flash.sct” (when in Flash mode) or “sram.sct” (when in SRAM

K Options for Target 'sram’

(=]

Devicel Targetl Outputl hslingl User I C/'C-Hl Asm
™ Use Memory Layout from Target Diglog
[~ Make RW Sections Position Independent
[~ Make RO Sections Postion Indspendent
[™ Dont Search Standard Libraries
[V Report ‘might fail' Condtions as Emors

Linker I Debug I Ltilities I

®/0 Base
R/O Base: |(<00000000
R/W Base (120400000

disable Wamings I

Scatter
File

—
I..\ \..\..\Iibr:mes\libboard_samv?ek\:esuurces\mdl\smm.sd I

| e |

Misc
controls

Linker
control
sting

—cpu Cortex-M7 "0
—strict —scatter .\ .\ Mibraries\libboard_samv7-ek\resources\mdk’\sram sct”

Ok | Cancel | Dcfauts |

Help

"Debug”: SAM-ICE, ULINK2 or ULINKpro can be selected as the debugger to download the binary file

generated by MDK. The corresponding configurations are shown below respectively.

" Use Simulator
™ Limit Speed to

Real-Time

Using SAM-ICE (J-Link) as the debugger

Device | Target | Outpus | Usting | User | C/Co+ | Asm | Linker Debug | uities |

Settings

+ Use: IJ—LINK # J-TRACE Cortex

_vi Settings I

Initialization File:

¥ Load Application at Startup

¥ Run to main(¥ Load Application at Startup

Initialization File:

Restore Debug Session Settings

[Run to mainf)

I\..\..\ Mibraries\libboard_samv 7-ek'\resc J Edit |

Restore Debug Session Settings
[V Breakpoints ¥ Toolbox ¥ Breakpoints W Toolbax
[V Watch Windows & Peformance Analyzer ¥ Watch Windows
¥ Memary Display [System Viewer ¥ Memary Display ¥ System Viewer
CPUDLL: Parameter. Driver DLL. Parameter:

|SAHMCM3 DLL | -REMAF -MPU

|5ARMCM3.DLL |-MPU

Dialog DLL. Parameter. Dialog DLL: Parameter:
IDCM DLL |1:CM7 ITCM DLL IaCM?
0K | Cancel | Defauts | Help

Atmel

Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE]

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

25

Cortex JLink/Trace Target Driver Setup

Debug |T|Hce I Flash Duwnloadl

HW - v8.00 dil:| V4.95a

W J-Link ARM V& compiled Aug

Max Clock
| w1 e =1

% putomatic Detection
= Manual Corfiguration

rJ-Link / J-Trace Adapter —SW Device
SN: 2801 0756] ;I IDCODE | Device Name |
Device: SANHCE L

ID CODE
Device Hame:
IR ler

Down

foeve:
[15]
[

Auto Ck | pad | | Delete | | Updaie |
Connect & Reset Options————— [Cache Options Download Options
Cornect: [Nomal »| Reset: [Nomal ||| ¥ CacheCode | | I Verfy Code Dowrload
[V Reset after Connect [¥ Cache Memory | | I Download to Flash
rInterface TCP/AP Misc
@ USB " TCRAP | | [Network Seltings
P-Address Pot (Auto: () | fulodetect s 1
Sean | 2.0 .0 .1 [o
. PFing JLink Cmd
State: ready —I —I

o]

Cancel | Apply |

— Using ULINK2 as the debugger.

Options for Target 'sram’

" Use Simulator
™ Limit Speed to Real-Time

Settings

Device | Target | Output | Lising | User | C/C++| Asm | Linker Debug | Utities |

¥ Load Application at Startup
Initialization File:

M Run to main{)

[Fe |

W Load Application at Startup
Inttizlization File

[Runto main(

I..\..\ M. Nibraries\libboard_samv7-ek'resc J Edit...

Restore Debug Session Settings Restore Debug Session Settings
|
W Breakpoints ™ Toolbox [V Breakpoirts [Toolbax
¥ Watch Windows & Performance Analyzer [V Watch Windows
¥ Memory Display W System Viewer ¥ Memary Display [System Viewer
CPUDLL: Parameter: Driver DLL: Parameter.
[SARMCHM3.DLL |-REMAP -MPU [SARMCM3.DLL |-MPU
b
I
1l Dialog DLL: Parameter: Diglog DLL: Parameter.
IDCM DLL |1:CM7 ITCM DLL |1:CM7
Ok | Cacdl | Defaks | Help

Cortex-M Target Driver Setup = % S e WG e

i

Debug ITmce | Fash Down\uadl

~ ULINK USB - JTAG/SW Adapter

Serial No: [[IEEIRE]

ULINK Version: [ULINKZ
Device Family: W
Firmware: Version: W

Max Clock: [1MHz =

SW Device
IDCODE | Device Name | Marve
SWDIO | @ (x0BD11477 ARM CoreSight SW-DP Up

% putomatic Detection

= Manual Corfiguration

Add | Delelel Updatsl

1D CODE:
Device Name:

AP: |00

~ Debug
Connect & Reset Options

————————————— ~Cache Options Download Optiens
Connect: [Nomnal ~_v| Reset: [Atodetect | | | ¥ Cache Code I Verfy Code Download
¥ Reset after Connect ¥ Cache Memory | | [~ Download to Flash

coes

26 Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE]

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

Atmel

— Using ULINKpro as the debugger.

Options for Target 'sram’ Cx]
De\ricel Target | Oulpull Lisiingl User | C/CH' Asm | Linker Debug IUt\I'mesl
© Use Simulator Settings | |(5‘ Use: [UILINK Fro Cortex Debugger ;ll Settings |
I™ Limit Speed to Real-Time
¥ Load Application at Startup v Run to main() [V Load Application at Startup ™ Runto main{)
Inttizlization File Inttizlization File:
I J Edi... I..\ S Mibrareshlibboard_samv7-ekresc J Edit... |
Restore Debug Session Settings ———————————————— Restore Debug Session Seftings—————————————————
¥ Breskpoints ¥ Toolbox ™ Breakpoirts W Toolbox:
¥ Watch Windows & Performance Analyzer ¥ Watch Windows ¥ Tracepoirts
¥ Memary Display ¥ System Viewer ¥ Memory Display W System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
[SARMCM3.DLL |-REMAP -MPU [sARMCM3.DLL [-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|pcm.DLL [ocH7 TCmDLL [ecM7
ok | Cacel | Ocfauks | wp ||

Cortex-M Target Driver Setup — T — - g
Debug ITlace | Fash Download |
~ ULINK USB - JTAG/SW Adapter SW Device
Serial Mo: LI IDCODE | Device Name I Mave
ULINK Version: [ILNFera SWDIO | 3 0BD11477 ARM CoreSight SW-DP il
Device Family: [Cortex-M MI

Fimware Version: [V1.57 1| | # Automatic Detection 0 copE: [

I ¥ SWJ Port:|sw £ Manual Configuration Dievice Name: I—
Max Clock: [1MHz add | [Delete | [Update AP; [oa0

- Debug

Conned & Reset Options ————————————— ~Cache Options Download Options
Comnect: [Nomal | Reset:[Amodetect x| | | ¥ Cache Code I Verfy Code Download
¥ Reset after Connect ¥ Cache Memory | | I~ Download to Flash

cres_|

|4

4. Build the Project
Click the Build button

The executable binary files: getting-started.axf will be generated in directory:

or click Build target after right-clicking the project name to build the project.

\..\examples\getting-started\build\mdk\Objects\.

Build Output

compiling board lowlevel.c

compiling board memoTie
compiling dbg_console.c...

compiling led.c...

compiling trace.c...

linking...

Program Size: Code=6416 RO-data=552 RW-data=44 ZI-data=12344
".\Cbjects\getting-started.axf"” - 0 Error(s), 0 Wazning(s).

«

AtmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 27

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

3.3.2.2 Downloading the Code
e Flash Programming

LoAD
Click the Download button ** | or click “Flash -> Download” on the Menu bar to download the code to Flash

memory.

Build Output

Flash Load finished at 14:56:26

al . 1

Then you can reset the board to run the program.
e Debugging in SRAM
SRAM mode is only for debugging. After generating executable files, download and debug the project by clicking

the Debug button .
The IDE window is displayed as shown below:

i etting- vprojx - |

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Nod@| s od|sc|es|rrAn = | @ Hae|@ e oo el
A NE R R N (G - S-@- 0 @ e
Project 3 [@ Disassembly 1B\
=% Project: getting-started 323: WDT Disable(WDT) ; -
=45 srom 323:
= . 324: /* Qutput example information */ D
g8 application 0X20401848 4826 LDR 10, [bc, $152] ; @0x204018E4 a
] workaround.s i S e -
1 mainc
@3 libchip |] mainc] retargete | | dbg console.c |] startup_sam.c |] timeticke] core_emZ.h v X
= libboard 317 L o=/ m
[board lowlevel.c gig :xtam int main(void)
] board_memories.c o
[dbg_console.c 321 /* Disable watchdog */
[lede [=22 WDI_Disable(WDT) :
] tracec 323
324 /* Output example information */
@ 325 printf{ "\n\r-- Getting Started Example s --\n\r", SOFTPACK_VERSION } :
326 printf("-- %s\n\r", BOARD NAME) ;
327 printf{ "-- Compiled: %s %= —-\n\z", _DATE , _TIME) : m
328
329 SCB_EnableICache();
330 SCB EnableDCache(): s
[Project | S reqisters « m 0
Command R [@ Callstack = Locals 13
’ “ | Name Location/Value Type
// File Name : samv7-sram.ini °
// Object : Generic Macro File for KEIL (o 0x20401848 int 0
I
SP = *((unsigned int *) 0x20400000):
BC = #{(unsigned int *) 0x2040000%);
BS \\getting_started\../../main.c\325]
B5 \\getting_started\../../main.c\322 s
T . e e T L . - i
>
BSSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess | {5 Call Stack + Locals | B Memory 1

J-LINK / J-TRACE Cortex 11: 0.00000000 sec L322 C1 CAP NUM SCRL

Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] Atmel

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

4. Revision History

Table 4-1. Getting Started with SAM V71 Microcontrollers Application Note — Revision History

Doc. Rev.
44031A Changes

Section 1. “Requirements”: modified reference to SAM-BA document.
08-Apr-16 Section 2.3.1.3 “Low-Level Initialization: SystemInit”; Main RC oscillator default frequency corrected to 12 MHz.
Section 2.3.1.5 “Low-Level Initialization: Tightly Coupled Memory (TCM)": corrected TCM states at startup.

16-Mar-15 First issue

/ItmeL Getting Started with SAM V71 Microcontrollers [APPLICATION NOTE] 29

Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16

/ltmeL Enabling Unlimited Possibilities® numo

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-44031B-ATARM-Getting-Started-with-SAM-V71-Microcontrollers-ApplicationNote_18-Apr-16.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/106109247591403112418/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

	Scope
	Reference Documents
	Table of Contents
	1. Requirements
	2. Getting Started
	2.1 Specification
	2.1.1 Features
	2.1.2 Peripherals

	2.2 Xplained Ultra Board
	2.2.1 Xplained Ultra Board Overview
	2.2.2 Hardware Setup
	2.2.3 Booting
	2.2.4 Erasing Flash
	2.2.5 LEDs
	2.2.6 Serial Port

	2.3 Implementation
	2.3.1 Initialization Before ‘main’
	2.3.1.1 Entry Point
	2.3.1.2 Low-Level Initialization
	2.3.1.3 Low-Level Initialization: SystemInit
	2.3.1.4 Low-Level Initialization: Memory Protection Unit (MPU)
	2.3.1.5 Low-Level Initialization: Tightly Coupled Memory (TCM)

	2.3.2 Generic Peripheral Usage
	2.3.2.1 Initialization

	2.3.3 Disabling or Reprogramming Watchdog Timer (WDT)
	2.3.3.1 Purpose
	2.3.3.2 Initialization

	2.3.4 Enabling Cache If Necessary
	2.3.4.1 Purpose
	2.3.4.2 Initialization
	2.3.4.3 Cache Coherency

	2.3.5 Using the Nested Vectored Interrupt Controller (NVIC)
	2.3.5.1 Purpose
	2.3.5.2 Initialization

	2.3.6 Using the Timer Counter (TC)
	2.3.6.1 Purpose
	2.3.6.2 Initialization
	2.3.6.3 Interrupt Handler

	2.3.7 Using the System Timer (SysTick)
	2.3.7.1 Purpose
	2.3.7.2 Initialization
	2.3.7.3 Interrupt Handlers
	2.3.7.4 Wait Function

	2.3.8 Using the Parallel Input/Output Controller (PIO)
	2.3.8.1 Purpose
	2.3.8.2 Configuring LEDs
	2.3.8.3 Controlling LEDs

	2.3.9 Using the Serial Ports
	2.3.9.1 Purpose
	2.3.9.2 Initialization
	2.3.9.3 Redirecting printf

	3. Running the Examples
	3.1 GNU
	3.1.1 Set up a Development and Debug Environment
	3.1.1.1 Setting up Development Tools
	3.1.1.2 Setting up Necessary Tools

	3.1.2 Generating and Downloading Binary file
	3.1.2.1 Building and Downloading

	3.2 IAR Embedded Workbench
	3.2.1 Set up a Development and Debug Environment
	3.2.1.1 Setting up Development Tools
	3.2.1.2 Setting up Necessary Tools

	3.2.2 Generating and Downloading Binary File
	3.2.2.1 Building the Project
	3.2.2.2 Downloading the Code

	3.3 MDK-ARM
	3.3.1 Set up a Development and Debug Environment
	3.3.1.1 Setting up Development Tools
	3.3.1.2 Setting up Necessary Tools

	3.3.2 Generating and Downloading Binary File
	3.3.2.1 Building the Project
	3.3.2.2 Downloading the Code

	4. Revision History

