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Outline for Today

● Euler Tour Trees
● A data structure for dynamic connectivity in 

forests.

● Dynamic Graphs
● A data structure for dynamic connectivity in 

arbitrary undirected graphs.



  

The Dynamic Connectivity Problem



  

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so 
that queries of the form “are nodes u and v 

connected?”

Using Θ(m + n) preprocessing, can preprocess the 
graph to answer queries in time O(1).



  

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● This is a much harder problem!



  

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic 
connectivity problem:

Maintain an undirected forest F so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● Each deleted edge splits a tree in two; each added 
edge joins two trees and never closes a cycle.
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Dynamic Connectivity in Forests

● Goal: Support these three operations:

● link(u, v): Add in edge {u, v}. The 
assumption is that u and v are in separate 
trees.

● cut(u, v): Cut the edge {u, v}. The 
assumption is that the edge exists in the tree.

● are-connected(u, v): Return whether u and v 
are connected.

● The data structure we'll develop can perform 
these operations time O(log n) each.



  

Euler Tours



  

Euler Tours

● In a graph G, an Euler tour is a path through 
the graph that visits every edge exactly once.

● Mathematically formulates the “trace this 
figure without picking up your pencil or 
redrawing any lines” puzzles.
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Euler Tours on Trees

● Trees do not have Euler tours.

  

 

  

 
● Technique: replace each edge {u, v} 

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.
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Euler Tour Trees

● The first data structure we'll design today is 
called an Euler tour tree. It solves the 
dynamic connectivity problem in forests.

● High-level idea: Instead of storing the trees in 
the forest, store their Euler tours.

● Each edge insertion or deletion translates into 
a set of manipulations on the Euler tours of the 
trees in the forest.

● Checking whether two nodes are connected 
can be done by checking if they're in the same 
Euler tour.



  

Properties of Euler Tours

● The sequence of nodes visited in an Euler 
tour of a tree is closely connected to the 
structure of the tree.
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Properties of Euler Tours

● The sequence of nodes visited in an Euler 
tour of a tree is closely connected to the 
structure of the tree.

● Begin by directing all edges away from 
the first node in the tour.

● Claim: The sequences of nodes visited 
between the first and last instance of a 
node v gives an Euler tour of the subtree 
rooted at v.



  

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees 
depend on the root.

● In some cases, we will need to change the root of the tree.
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Rerooting a Tour

● Algorithm:
● Pick any occurrence of the new root r.
● Split the tour into A and B, where B is the 

part of the tour before r.
● Delete the first node of A and append r.
● Concatenate B and A.



  

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 
executing link(u, v) links the trees together by 
adding edge {u, v}.

● Watch what happens to the Euler tours:
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Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 
executing link(u, v) links the trees together by 
adding edge {u, v}.

● To link T₁ and T₂ by adding {u, v}:

● Let E₁ and E₂ be Euler tours of T₁ and T₂, 
respectively.

● Rotate E₁ to root the tour at u.
● Rotate E₂ to root the tour at v.
● Concatenate E₁, E₂, {u}.
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Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge 
{u, v} from the tree (assuming it exists).

● To cut T into T₁ and T₂ by cutting {u, v}:

● Let E be an Euler tour for T.
● Split E at (u, v) and (v, u) to get J, K, L, in that 

order.
● Delete the last entry of J.
● Then E₁ = K.
● Then E₂ = J, L



  

The Story So Far

● Goal: Implement link, cut, and are-
connected as efficiently as possible.

● By representing trees via their Euler tours, 
can implement link and cut so that only O(1) 
joins and splits are necessary per operation.

● Questions to answer:
● How do we efficiently implement these joins and 

splits?
● Once we have the tours, how do we answer 

connectivity queries?



  

Representation Issues

● We need a representation that lets us 
perform the following operations:
● Determine if two nodes are in the same 

sequence.
● Split a sequence at an arbitrary point.
● Join a sequence at an arbitrary point.
● Find where in a given sequence a particular 

edge is (for cut)
● Find where in a given sequence a particular 

node is (for rerooting at tour).



  

Representation Issues

● Idea: Rather than storing the tour as a series of 
nodes, store it as a series of edges.
● This makes it easy to locate edges in the cut step.

● Add, for each node v, an edge (v, v) that's 
included in whatever tour contains v.
● This gives us a way of identifying “some copy” of a 

node v when rerooting a tour.

● With this representation, each link or cut 
requires only O(1) sequence splits and sequence 
joins.



  

Representing Sequences

● Idea: Represent each sequence as a red/black tree 
augmented with order statistics information.

● These are not binary search trees. We're using the 
shape of a red/black tree to ensure balance.

a b d b c e c b a f g f

(a, a)

(b, d)

(a, b)

(d, d)

(d, b)

(b, c)

(c, c)

(c, e)
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(e, c)

(c, b)

(b, a)

(f, g)

(g, g)

(g, f)

(f, f)(b, b)



  

Representing Sequences

● Observation: If nodes store pointers to their 
parents, can answer is-connected(u, v) in time 
O(log n) by seeing if u and v are in the same tree.

a b d b c e c b a f g f

(a, a)

(b, d)

(a, b)

(d, d)

(d, b)

(b, c)

(c, c)

(c, e)

(e, e)

(e, c)

(c, b)

(b, a)

(f, g)

(g, g)

(g, f)

(f, f)(b, b)



  

Euler Tour Trees

● The data structure:
● Represent each tree as an Euler tour.
● Store those sequences as balanced binary 

trees.
● Each node in the balanced trees stores a 

pointer to its parent.
● Store an auxiliary BST holding pointers to 

each node and each edge so that they can be 
located efficiently.

● link, cut, and is-connected queries take 
time only O(log n) each.



  

Time-Out for Announcements!



  

Midterm Grading

● You're done with the midterm! Woohoo!
● We're going to be grading exams over 

the weekend. We'll release grades as 
soon as they're ready.

● Although we don't curve individual exam 
scores, we do curve raw total grades – 
and we anticipate having a pretty 
generous curve this quarter.



  

Final Project Logistics

● As a reminder, your final project paper is due 24 hours 
before your presentation.

● Your paper should be an accessible, engaging, and 
technically precise introduction to the data structure.
● Give some background – why should we care about the data 

structure? Who invented it?
● Describe it in as accessible a manner as possible. What are the 

key ideas driving it? Intuitively, why would you expect them to 
work? Then get more specific – how does each operation work?

● Argue correctness and runtime, proving non-obvious results 
along the way and providing a good intuition.

● Then, describe your “interesting” component, and make it 
shine! Tell us why what you did was interesting and what 
you learned in the process.



  

Final Project Logistics

● Final project presentations start next week.
● Presentations should run around 15 minutes. We may 

have to cut you off if you run much more than this 
because we need to factor in setup and cleanup time.

● Your presentation won't be long enough to present 
everything from your paper, and you shouldn't try to do 
that. Instead, focus on what's important and interesting. 
Convey the major ideas, intuitions, and why the data 
structure is so cool!

● We'll ask a few questions at the end of the presentation, 
so be prepared to discuss things in a bit more detail.

● Please arrive around five minutes early so that you can 
get set up.



  

Back to CS166!



  

Fully-Dynamic Connectivity



  

The Challenge

● Numerous issues arise in scaling up from 
forests to complete graphs:
● In a forest, a link connects two distinct trees. In a 

general graph, the endpoints of a link might already 
be connected.

● In a forest, a cut splits one tree into two. In a 
general graph, a cut might not change connectivity.

● In a forest, there is a unique path between any two 
nodes in each tree. In a general graph, there can be 
many.

● As of 2016, there is no known Euler-tour-like 
approach for maintaining dynamic connectivity.



  

The Basic Idea

● Let G be an undirected graph and let  be a ℱ
spanning forest for G.

● Observation: Two nodes u and v are 
connected in G if they are connected in .ℱ

● Idea: Try to maintain a spanning forest  for ℱ
G, represented as Euler tour trees.

● The challenge will be eficiently maintaining .ℱ



  

Maintaining a Forest
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Maintaining a Forest

Every edge is either a 
tree edge in the forest  or ℱ
an auxiliary edge running 
between two nodes in the 

same tree in .ℱ

Every edge is either a 
tree edge in the forest  or ℱ
an auxiliary edge running 
between two nodes in the 

same tree in .ℱ
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Maintaining a Forest



  

The Challenge

● Goal: Devise a way of storing edges such that 
we don't repeatedly rescan the same edges 
trying to glue trees together.

● Idea: Associate a “specificity” with each edge, 
initially 0.

● Edges with higher specificity refer to more 
restricted regions of the graph.

● Edges with lower specificity refer to more 
general regions of the graph.

● Adjust the specificity of edges in response to 
deletions.



  

Edge Specificity
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The Approach

● To delete a tree edge {u, v} with specificity k:

● Let Tu and Tv be the resulting trees.

● Push all edges of specificity k in Tu up to specificity 
k + 1.

● For all edges incident to Tu of specificity k:

– If that edge connects Tu to Tv, add it to  and stop.ℱ

– Otherwise, it connects Tu to itself, so increase its specificity.

● If the previous iteration didn't reconnect Tu and Tv, 
repeat the above loop on specificity k – 1.



  

The Runtime Analysis



  

The Representation

● Store a series of forests ₀, ₁, ₂, …, ℱ ℱ ℱ .
● Forest ℱₖ stores all edges at specificities 

k or greater.
● Thus ₀ =  and ₀ ⊇ ₁ ⊇ …ℱ ℱ ℱ ℱ

● This enables us to query whether two 
nodes are connected by edges of level k 
or greater.
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The Representation

● We can now think about our operations in terms of 
the hierarchical ℱₖ forests. 

● Inserting a new tree edge can be done in time 
O(log n) by linking the endpoints in the overall 
tree ₀.ℱ

● Pushing a tree edge e of specificity k up to level 
k + 1 can be done in time O(log n) linking the 
endpoints of e in ℱₖ₊₁.

● No need to cut them in ℱₖ; the forests are 
structured so that ℱₖ₊₁ ⊆ ℱₖ.



  

Details We'll Ignore

● I'm going to gloss over some details, but 
you can trust me on these:
● Auxiliary edges are stored in auxiliary data 

structures. Insertion or deletion takes time 
O(log n) each.

● It's possible to iterate across all edges of level 
k incident to a given tree “eficiently.”

● Check the original paper for details; it's 
not really worth focusing on right now.



  

Runtime Analysis

● Connectivity queries can be answered in 
time O(log n) by querying ₀.ℱ

● Inserting an edge takes time O(log n).
● Deleting an auxiliary edge takes time 

O(log n) (due to bookkeeping overhead.) 



  

Analyzing Deletions

● Deleting a tree edge requires the following:
● Deleting that tree edge from each of the forests in total 

time O(r log n), where r is the number of forests.
● Possibly push up k edges from one layer to the next in 

total time O(k log n).
● Possibly insert a new edge at some level l, which 

requires it to be inserted at levels 0, 1, 2, …, l for a cost 
of O(r log n) if there are r total levels.

● Total cost: O(r log n + k log n).
● This can be pretty large – we don't have a bound on 

r, and k can be Θ(m).
● Can we do better?
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Analyzing Deletions

Deleting a tree edge requires the following:
● Deleting that tree edge from each of the forests in total 

time O(r log n), where r is the number of forests.
● Possibly push up k edges from one layer to the next in 

total time O(k log n).
● Possibly insert a new edge at some level l, which 

requires it to be inserted at levels 0, 1, 2, …, l for a cost 
of O(r log n) if there are r total levels.

Total cost: O(r log n + k log n).

This can be pretty large – we don't have a bound on 
r, and k can be Θ(m).

Can we do better?

Ideally, we'd like to minimize 
the number of edges we push 
up from one layer to the next.

Ideally, we'd like to minimize 
the number of edges we push 
up from one layer to the next.
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Analyzing Deletions

Deleting a tree edge requires the following:

Deleting that tree edge from each of the forests in total 
time O(r log n), where r is the number of forests.

Possibly push up k edges from one layer to the next in 
total time O(k log n).

● Possibly insert a new edge at some level l, which 
requires it to be inserted at levels 0, 1, 2, …, l for a cost 
of O(r log n) if there are r total levels.

Total cost: O(r log n + k log n).

This can be pretty large – we don't have a bound on 
r, and k can be Θ(m).

Can we do better?

We'd also like to keep the 
number of layers as low as 

possible.

We'd also like to keep the 
number of layers as low as 

possible.



  

Fixing the Problem

● When we cut a tree edge at some level k, we'll split some 
tree T at level k into two trees T₀ and T₁.

● Idea: Push the edges of the smaller of T₀ and T₁ to the 
next level.

● Claim 1: Every edge will be pushed up at most O(log n) 
times.
● Think back to PS4's analysis of building weight-balanced trees: 

always charging the work to the smaller component is often a 
good idea.

● Claim 2: The maximum number of levels is now O(log n).
● This follows from claim 1.



  

The Final Analysis

● Deleting a tree edge requires the following:
● Deleting that tree edge from each of the lg n forests in total 

time O(log2 n).
● Possibly push up k edges from one layer to the next in total 

time O(k log n).
● Possibly insert an edge into lg n forests in total time O(log2 n).

● Total cost: O(log2 n + k log n)
● Claim: We can amortize the k log n term away.

● Each edge gets pushed up at most O(log n) times. What if we 
pay for those insertions up front?

● Idea: When we add an edge, place O(log n) credits on it. Each 
credit can pay for pushing the edge up one layer.

● Amortized cost of a delete: O(log2 n).



  

The Final Analysis

● Insertions have a base cost of O(log n).
● As part of our amortization scheme, we 

place O(log n) credits on each inserted 
edge.

● Each credit pays for the O(log n) work of 
inserting an edge at a higher level.

● Amortized cost: O(log2 n).



  

The Final Analysis

● Deletions have cost O(log2 n + k log n), 
where k is the number of edges 
promoted.

● Can spend one credit from each edge as 
it's promoted; won't run out of credits.

● Amortized cost: O(log2 n).



  

The Final Analysis

● The dynamic graph data structure 
supports the following operations in the 
indicated amortized runtimes:
● is-connected: O(log n)
● insert: O(log2 n)
● delete: O(log2 n)

● This is significantly better than the naïve 
solution!

● Can we do better?



  

One Quick Speedup

● Recall: Each Euler tour tree is represented by a balanced 
BST.

● Lookup times in Euler tour trees is proportional to the tree 
height.
● Walk from each node up to the root and compare whether the 

roots are the same.

● If we represent ₀ (and just ₀) using a B-tree of order ℱ ℱ
Θ(log n), queries can be answered in time

O(loglog n n) = O(log n / log log n)

while insertions take time

O(log2 n / log log n),

which doesn't afect the overall runtime.



  

The Final Analysis

● The dynamic graph data structure, with 
the B-tree modification, supports the 
following operations in the indicated 
amortized runtimes:
● is-connected: O(log n / log log n)
● insert: O(log2 n)
● delete: O(log2 n)



  

Going Forward

● Since this data structure was developed in 1999, 
there have been some new developments.

● If randomization is allowed, we can get these 
bounds:

● is-connected: O(log n / log log log n)
● insert: O(log n · (log log n)3) amortized
● delete: O(log n · (log log n)3) expected amortized

● A lower-bound of Ω(log n) per insert or deletion is 
known to exist, and there's still a gap!



  

More Dynamic Problems

● Many other dynamic graph problems exist:
● Maintaining an MST; can do in O(log4 n) time per 

insertion or deletion.
● Maintaining single-source or all-pairs shortest paths.
● Maintaining reachability in a directed graph.

● All of these problems were solved in the static case 
40+ years ago.

● We have somewhat decent solutions to the dynamic 
cases.

● This is an active area of research!



  

Next Time

● The Big Picture
● Wow, we covered a lot! What exactly did we 

see in this class?

● Your Questions
● What didn't we cover that you wanted to 

learn in this class?

● Where to Go From Here
● Next steps in theory (and in life?)


