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Abstract

Let X1; X2; : : : ; Xn be n random variables with an arbitrary n-variate distribution. We say that the X ’s are maximally (resp.
minimally) stable of order j (j∈{1; 2; : : : ; n}), if the distribution F(j) of max{Xk1 ; : : : ; Xkj} (resp. G(j) of min{Xk1 ; : : : ; Xkj})
is the same, for any j-subset {k1; : : : ; kj} of {1; 2; : : : ; n}. Under the assumption of maximal (resp. minimal) stability of
order j, sharp upper (resp. lower) bounds are given for the distribution Fk:n of the kth order statistic Xk:n, in terms of
F(j) (resp. G(j)), and the corresponding expectation bounds are derived. Moreover, some expectation bounds in the case
of j-independent-F samples (i.e., when each j-tuple Xk1 ; : : : ; Xkj is independent with a common marginal distribution F)
are given. c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

Let X1; X2; : : : ; Xn be a sample of arbitrary, possibly dependent, random variables, with possibly di9erent
marginal distributions, and let us denote by X1:n6X2:n6 · · ·6Xn:n the corresponding order statistics. Assume
that for some j∈{1; 2; : : : ; n}, the distribution of max{Xk1 ; : : : ; Xkj} is the same for all 16 k1¡ · · ·¡kj6 n,
denoted by F(j) (this condition is satis:ed, for example, when the X ’s are exchangeable). In this case, we say
that the X ’s are maximally stable of order j. Observe that this condition always holds for j= n. On the other
hand, for j=1, the condition is equivalent to the fact that the X ’s are identically distributed with common
marginals F(1).
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In this note it is proved that, if the X ’s are maximally stable of order j, then for any k¿ j, the distribution
Fk:n of Xk:n satis:es the inequality

Fk:n(x)6min
{
1;
(n)j
(k)j

F( j)(x)
}

; (1)

where (s)j = s(s−1) · · · (s−j+1). Furthermore, it is proved that (1) is attainable for any given F( j). Similarly,
if the distribution G( j) of min{Xk1 ; : : : ; Xkj} is the same for all 16 k1¡ · · ·¡kj6 n (in which case we say
that the X ’s are minimally stable of order j), then the inequality

Fk:n(x)¿max
{
0; 1− (n)j

(n+ 1− k)j
(1− G( j)(x))

}
(2)

holds for any k6 n+ 1− j, and the bound (2) is attainable for any given G( j).
It should be noted that for j=1, bounds (1) and (2) are known; in this case, G(1) =F(1) is the common

marginal of X ’s, and the corresponding inequalities were established by Rychlik (1992) and Caraux and
Gascuel (1992).
In Section 3, we derive the relative expectation bounds, and compare them with the corresponding results for

j=1, given by Rychlik (1992) and Gascuel and Caraux (1992). Finally, in Section 4 we derive some moment
inequalities for order statistics in the case of j-independent-F samples (i.e., when each j-tuple Xk1 ; : : : ; Xkj is
independent with a common marginal distribution F), and compare our results with the corresponding ones
obtained by Kemperman (1997).

2. Distribution bounds

The upper bound is given in the following theorem.

Theorem 2.1. If the X’s are maximally stable of order j and

F( j)(x)=P[X16 x; : : : ; Xj6 x]; (3)

then (1) holds for all k¿ j. Conversely; for any distribution function F( j) and any k¿ j; there are ex-
changeable random variables X1; X2; : : : ; Xn for which (3) holds and the equality is attained in (1).

Proof. As in Caraux and Gascuel (1992), for any :xed x, consider the non-negative random variable

Nj(x)=
∑

16k1¡···¡kj6n

I(Xk16 x; : : : ; Xkj 6 x);

where I((Y1; : : : ; Yj)∈A) is the indicator function of the event {(Y1; : : : ; Yj)∈A}, for any random vector
(Y1; : : : ; Yj) and arbitrarily measurable A in Rj. By (3) and maximal stability of order j, it follows that

ENj(x)=
(

n
j

)
F( j)(x):

Therefore, for k¿ j, Markov’s inequality yields

Fk:n(x)=P
[
Nj(x)¿

(
k
j

)]
6

(
n
j

)
F( j)(x)

/(
k
j

)
;

proving (1). We now show the existence of n exchangeable variables satisfying (3) and attaining equality
in (1). Since for k = n one can trivially take X1 =X2 = · · ·=Xn with distribution F( j), we may assume that
16 j6 k ¡n. For any :xed distribution F( j), let

t= inf
{
x: F( j)(x)¿

(k)j
(n)j

}
:=F−1

( j)

(
(k)j
(n)j

)
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and consider independent random variables Y; Z with distributions

FY (x)=min
{
1;
(n)j
(k)j

F( j)(x)
}

and FZ(x)=max
{
0;
(n)jF( j)(x)− (k)j
(n)j − (k)j

}
:

It follows that Y 6 t6Z a.s. Therefore, the order statistic Yk:n of the random vector (Y1; : : : ; Yn) with
Y1 = · · ·=Yk =Y; Yk+1 = · · ·=Yn=Z , satis:es Yk:n=Y a.s. We de:ne

(X1; X2; : : : ; Xn)= (Y�(1); Y�(2); : : : ; Y�(n));

where (�(1); �(2); : : : ; �(n)) is stochastically independent of the X ’s and uniformly distributed over the n!
permutations of (1; 2; : : : ; n). Then, it is easily veri:ed that the X ’s are exchangeable (and thus, maximally
stable of order j), and that they satisfy (3). Furthermore, since Xk:n=Yk:n=Y a.s., the distribution of Xk:n

attains the desired equality in (1) by de:nition.

The lower bound can be derived from Theorem 2.1.

Corollary 2.1. If the X’s are minimally stable of order j and

G( j)(x)= 1− P[X1¿x; : : : ; Xj ¿x]; (4)

then (2) holds for all k6 n + 1 − j: Conversely; for any distribution function G( j) and any k6 n + 1 − j;
there are exchangeable random variables X1; X2; : : : ; Xn for which (4) holds and the equality is attained
in (2).

Proof. Let Yi=−Xi; i=1; 2; : : : ; n. Since the X ’s are minimally stable of order j, it follows immediately that
the Y ’s are maximally stable of the same order, and F( j)(−x)= 1 − G( j)(x−). Then, for n + 1 − k¿ j, (1)
yields

1− Fk:n(x−) = FYn+1−k:n(−x)6min
{
1;

(n)j
(n+ 1− k)j

F( j)(−x)
}

=min
{
1;

(n)j
(n+ 1− k)j

(1− G( j)(x−))
}

;

that is,

Fk:n(x−)¿max
{
0; 1− (n)j

(n+ 1− k)j
(1− G( j)(x−))

}
;

from which (2) follows on taking right limits. Conversely, from Theorem 2.1 it follows that for any :xed
k6 n+ 1− j and any distribution function F( j), there are exchangeable random variables Y1; Y2; : : : ; Yn such
that F( j)(x)=P[Y16 x; : : : ; Yj6 x] and

FYn+1−k:n(x)=min
{
1;

(n)j
(n+ 1− k)j

F( j)(x)
}

:

Therefore, taking F( j)(x)= 1 − G( j)(−x−) and Xi= − Yi for i=1; 2; : : : ; n, we conclude that the X ’s are
exchangeable and satisfy

G( j)(x−)= 1− P[X1¿ x; : : : ; Xj¿ x]

and

Fk:n(x−)=max
{
0; 1− (n)j

(n+ 1− k)j
(1− G( j)(x−))

}
:

The desired result follows on taking right limits in the last two expressions.



24 N. Papadatos / Statistics & Probability Letters 54 (2001) 21–31

3. Expectation bounds

For any distribution function H , we denote its left-continuous inverse by H−1(u)= inf{x: H (x)¿ u};
0¡u¡ 1. Then, we have the following result.

Theorem 3.1. (i) If the random variables X1; X2; : : : ; Xn are maximally stable of order j and Emax
{0; X1; : : : ; Xj}¡∞; then for any k¿ j;

EXk:n¿
1
a

∫ a

0
F−1
( j) (u) du; (5)

where a=(k)j=(n)j and F( j) is given by (3). Moreover; the bound (5) is attainable.
(ii) Assume that the random variables X1; X2; : : : ; Xn are minimally stable of order j; and let b=(n+ 1−

k)j=(n)j. If Emin{0; X1; : : : ; Xj}¿−∞; then for any k6 n+ 1− j;

EXk:n6
1
b

∫ 1

1−b
G−1
( j) (u) du; (6)

where G( j) is given by (4). Moreover; the bound (6) is attainable.

Proof. We shall only prove (i) because (ii) is similar. If 16 j6 k = n, (5) is trivial, and the equality is at-
tained when X1 =X2 = · · ·=Xn and the distribution of X1 is F( j). Therefore, we may assume that j6 k ¡n. In
this case, a∈ (0; 1). Consider a random variable Y with distribution given by the RHS of (1). By Theorem 2.1,
Y is stochastically smaller than Xk:n and thus, EXk:n¿ EY (note that the condition Emax{0; X1; : : : ; Xj}¡∞
implies that −∞6 EXk:n6 EXn:n ¡∞). On the other hand, Y 6 t a.s., where t=F−1

( j) ((k)j=(n)j)=F−1
( j) (a)

(:nite). Therefore,

E[Xk:n − t]¿ E[Y − t] =−
∫ 0

−∞
P[Y − t6 x] dx=−

∫ t

−∞
P[Y 6 x] dx:

By using the identity (cf. Arnold, 1980, and Gascuel and Caraux, 1992)

F−1(y)− 1
y

∫ F−1(y)

−∞
F(x) dx=

1
y

∫ y

0
F−1(u) du; (7)

which holds for any distribution F and any y∈ (0; 1) (in the sense that either both sides are −∞ or they are
:nite and equal; for a proof of a more general result see Lemma 4.1, below), we conclude that

EXk:n¿F−1
( j) (a)−

1
a

∫ F−1
( j) (a)

−∞
F( j)(x) dx=

1
a

∫ a

0
F−1
( j) (u) du;

which is (5). Finally, it is obvious that the equality is attained in (5) when Xk:n is distributed like Y , and
Theorem 2.1 shows that this can be achieved for any :xed F( j) and any :xed k (k¿ j). This completes the
proof.

The results are illustrated by two examples.
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Example 1. Let X1; X2; : : : ; Xn be jointly distributed so that the joint distribution of any two random variables
(Xi; Xr) (i �= r) is uniform over (0; 1)2; in other words, the X ’s are 2-independent standard uniform variables.
It follows that the X ’s are maximally and minimally stable of order 2, and F(2)(x)= x2, G(2)(x)= 1− (1−x)2,
0¡x¡ 1: In this case, Theorem 3.1 yields

2
3

√
k(k − 1)
n(n− 1) 6 EXk:n6 1− 2

3

√
(n+ 1− k)(n− k)

n(n− 1) ;

for 26 k6 n− 1. Observe that for 36 k6 n− 2, these bounds dominate the corresponding ones for j=1,
given by Gascuel and Caraux (1992) and Rychlik (1992), namely

k
2n
6 EXk:n6

1
2
+

k − 1
2n

:

If n=2m − 1 and one uses the sample median Dm=Xm:2m−1 as an estimator of the true population median
�= 1

2 , the bound for j=2 shows that for any �¿ 0; 1
3−�¡ EDm ¡ 2

3 +� for all suMciently large m. For j=1
we can only conclude that asymptotically, 14 − �¡ EDm ¡ 3

4 + �. More generally, if the X ’s are j-independent
standard uniform variables for some :xed j, then it can be easily shown with the use of Theorem 3.1 that,

j
2(j + 1)

6 lim inf
m→∞ EDm6 lim sup

m→∞
EDm6

j + 2
2(j + 1)

and thus, the asymptotic absolute bias of Dm is no greater than (2(j + 1))−1. However, this result is not
optimal; see Example 3, below.

Example 2. If the X ’s are pairwise independent standard exponential, then they are minimally stable of order 2,
and G(2)(x)= 1− exp(−2x) for x¿ 0. Thus, for any k6 n− 1, (6) yields

EXk:n6
1
2

(
1 + log

n
n+ 1− k

+ log
n− 1
n− k

)
;

which is better than the upper bound obtained for j=1, namely,

EXk:n6 1 + log
n

n+ 1− k
:

4. The case of j-independent samples

A special case, where maximal and minimal stability of order j follows automatically, is the following (see
Examples 1 and 2): Assume that there exists a distribution F and some :xed j∈{1; 2; : : : ; n} such that for
any j-subset {k1; : : : ; kj} of {1; 2; : : : ; n}, the random variables Xk1 ; : : : ; Xkj are independent with distribution
F ; i.e., the X ’s form a j-independent-F sample. In particular, the X ’s are maximally and minimally stable
of any order i6 j, with F(i) =Fi and G(i) = 1 − (1 − F)i, 16 i6 j. Obviously, for j= n, this condition is
equivalent to the fact that the X ’s are i.i.d. with distribution F (and thus, Fk:n is uniquely speci:ed from F).
The other extremal case j=1 reduces to the fact that the X ’s are identically distributed with distribution F
(and the known bounds for j=1, given by Rychlik (1992) and Caraux and Gascuel (1992), are attainable).
For 1¡j¡n, however, the bounds discussed in Section 1 are not attainable by j-independent-F samples,
except in some trivial cases; this is an implication of Theorem 2.1, since from (1) we have that for all k¿ j,

Fk:n(x)6 min
06i6j

{
(n)i
(k)i

Fi(x)
}
=
(n)i
(k)i

Fi(x); if ai+16F(x)6 ai; i=0; 1; : : : ; j; (8)
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where a0 = 1; ai=(k +1− i)=(n+1− i); i=1; : : : ; j; aj+1 =0. Observe that (8) is usually strictly better than
(1), which implies that (5) is not attainable in this case.
Kemperman (1997) established an e9ective method for obtaining sharp distribution bounds on order statistics

from j-independent-F samples, exploiting some interesting relations between the joint factorial moments of a
multinomial distribution and those of a multinomial random vector, de:ned by some events associated with
the initial sample and a partition of the real line (for more details, see Theorem 1 in Kemperman (1997)).
However, the resulting sharp bounds are quite complicated for 1¡j¡n and, thus, diMcult to work with; for
instance, a careful reading of the pairwise independent case (j=2; see pp. 302, 303 in Kemperman’s paper)
yields the bound (holding for all 16 k6 n; n¿ 2):

max
F(2;n;F)

Fk:n(x)=




nF(x)((n− 1)F(x)− 2r) + r(r + 1)
(k − r)(k − r − 1) if F(x)¡ ;

F(x) + n−1
k F(x)(1− F(x)) if  6F(x)¡�;

1 if F(x)¿ �;

(9)

where  =(k − 1)=(n − 1); �= k=(n − 1); F(j; n;F) denotes the space of j-independent-F samples of size
n, and r= r(k; n;F(x)) is the greatest integer of {0; : : : ; k − 2} less than or equal to nF(x)(k − 1 − (n − 1)
F(x))=(k − nF(x)) (provided that k¿ 2 and F(x)¡ (k − 1)=(n− 1)):
Bound (8) enables us to calculate some (non-attainable, in general) expectation bounds in terms of F−1.

For this reason, we :rst need to prove the following identities, perhaps of some independent interest.

Lemma 4.1. Let F be a distribution function and F−1 its left-continuous inverse.
(i) For any n=1; 2; : : : and y∈ (0; 1),∫ F−1(y)

−∞
Fn(x) dx=ynF−1(y)− n

∫ y

0
un−1F−1(u) du: (10)

(ii) If; furthermore; for some y∈ (0; 1)∫ y

0
F−1(u) du¿−∞;

then for any a∈ (0; 1); and n=2; 3; : : : ;

(n− 1)
∫∫

0¡u¡v¡a
un−2(F−1(v)− F−1(u)) dv du=

∫ a

0
un−2(nu− (n− 1)a)F−1(u) du: (11)

Proof. (i) Let X1; : : : ; Xn be an i.i.d. sample from F and set

Y =min{Xn:n; F−1(y)}=Xn:nI(Xn:n6F−1(y)) + F−1(y)I(Xn:n ¿F−1(y));

where Xn:n=max{X1; : : : ; Xn}. Since the distribution of Y is FY (x)=Fn(x)I(x¡F−1(y))+ I(x¿F−1(y)), it
follows that

EY =F−1(y)−
∫ F−1(y)

−∞
Fn(x) dx

is either :nite or −∞. On the other hand, if Un:n is the maximum of n independent standard uniform variables,
it follows that Y has the same distribution as

F−1(Un:n)I(F−1(Un:n)6F−1(y)) + F−1(y)I(F−1(Un:n)¿F−1(y))
=F−1(Un:n)I(Un:n6F(F−1(y))) + F−1(y)I(Un:n ¿F(F−1(y)));
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where the equality holds because the sets {u∈ (0; 1): F−1(u)6 t} and {u∈ (0; 1): u6F(t)} are identical for
each :nite t. Therefore,

EY = n
∫ F(F−1(y))

0
un−1F−1(u) du+ F−1(y)(1− Fn(F−1(y))):

Equating the above two expressions for EY , we get∫ F−1(y)

−∞
Fn(x) dx= n

∫ F(F−1(y))

0
un−1(F−1(y)− F−1(u)) du:

Since y6F(F−1(y)) for each y∈ (0; 1) and F−1(u)=F−1(y) for all u∈ [y; F(F−1(y))], (10) follows.
(ii) It suMces to observe that both sides of (11) present the same :nite non-negative quantity

an

n
E[F−1(Vn:n)− F−1(Vn−1:n)];

where V1:n ¡ · · ·¡Vn:n is the ordered sample corresponding to n independent uniform (0; a) random variables.
This completes the proof.

It should be noted that several methods can be used for proving (10). For example, integrating, by parts,
the LHS of (10) and setting F−1(u)= x yields the RHS of (10); another proof can be given by writing

Fn(x)=
∫
Rn

n∏
j=1

I(tj6 x) d(F(t1)× · · · × F(tn))

and using Tonelli’s Theorem. However, we used the present ‘non-parametric’ approach, because the identity
(10) follows as a natural property satis:ed by an ordered sample. Also note that (10) with n=1 yields (7).

Lemma 4.2. Let X1; : : : ; Xn be i.i.d. with E|X1|¡∞. Then; for s=0; : : : ; n− 1;

EXn−s:n=
n∑

j= s+1

s+ 1
j
E[Xj−s:j − Xj−s−1:j]; (12)

where X1:j6 · · ·6Xj:j are the order statistics of X1; : : : ; Xj, j= s+ 1; : : : ; n; and X0:s+1 ≡ 0.

Proof. Let F−1 be the inverse of the distribution of X1. Writing the RHS of (12) as

(s+ 1)
∫ 1

0
F−1(u)

n∑
j=s+1

1
j
(gj−s:j(u)− gj−s−1:j(u)) du;

where

gr:j(u)=
%(j + 1)

%(r)%(j + 1− r)
ur−1(1− u)j−r ; 0¡u¡ 1;

for j= s+1; : : : ; n and r= j− s− 1; j− s (with g0:s+1 ≡ 0), the desired result follows on verifying the simple
algebraic identity

(s+ 1)
n∑

j= s+1

1
j
(gj−s:j(u)− gj−s−1:j(u))= gn−s:n(u):

We are now in a position to prove the main result of this section.
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Theorem 4.1. Assume that X1; : : : ; Xn is a j-independent-F sample (16 j6 n) with E|X1|¡∞. Then; we
have the following bounds.
(i) For k¿ j;

EXk:n¿
n
k

∫ a1

0
F−1(u) du+

j∑
i=2

(i − 1)(n)i
(k)i

∫∫
0¡u¡v¡ai

ui−2(F−1(v)− F−1(u)) dv du; (13)

where ai= ai(k; n)= (k + 1− i)=(n+ 1− i); i=1; : : : ; j.
(ii) For k6 n+ 1− j,

EXk:n6
n

n+ 1− k

∫ 1

1−b1
F−1(u) du

−
j∑

i=2

(i − 1)(n)i
(n+ 1− k)i

∫∫
1−bi¡u¡v¡1

(1− v)i−2(F−1(v)− F−1(u)) dv du; (14)

where bi= bi(k; n)= (n− k + 2− i)=(n+ 1− i); i=1; : : : ; j.

Proof. (i) If j=1; we simply ignore the sum of integrals in the RHS of (13), yielding the known bounds
discussed before for the identically distributed case. Next, we assume that 26 j6 k6 n. If k = n then
a1 = · · ·= aj =1, and (13) is equivalent to

EXn:n¿ E[F−1(U1)] +
j∑

i=2

1
i
E[F−1(Ui:i)− F−1(Ui−1:i)]; (15)

where U1; : : : ; Uj are independent standard uniform variables and U1:i ¡ · · ·¡Ui:i are the order statistics corre-
sponding to U1; : : : ; Ui; i=2; : : : ; j. Since X1 and F−1(U1) have the same distribution and, by j-independence,
the random vectors (Xi−1:i ; Xi:i) and (F−1(Ui−1:i); F−1(Ui:i)) are identically distributed for each i=2; : : : ; j,
it follows that (15) is equivalent to the obvious inequality

EXn:n¿
j∑

i=1

1
i
E[Xi:i − Xi−1:i] = EXj:j

(the last equality is a consequence of (12) with n= j and s=0, since X1; : : : ; Xj are i.i.d.). This proves
(13) when k = n. Finally, we assume that 26 j6 k ¡n. In this case, we consider the points  i; ti; with
 0 = 0;  i=(k − j+ i)=(n− j+ i); i=1; : : : ; j, and ti=F−1( i). Clearly, 0=  0¡ 1¡ · · ·¡ j ¡ 1 and thus,
−∞= t0¡t16 · · ·6 tj ¡∞ (note that  i= aj+1−i for i=1; : : : ; j). Let Y be a random variable with distri-
bution given by the RHS of (8). Obviously Y 6 tj a.s., and hence, proceeding as in the proof of Theorem
3.1, we have

EXk:n¿ tj −
∫ tj

−∞
P[Y 6 x] dx

= tj −
j∑

i=1

(n)i
(k)i

∫ tj+1−i

tj−i

F i(x) dx

= tj − n
k

∫ tj

−∞
F(x) dx +

j∑
i=2

(
(n)i−1
(k)i−1

∫ tj+1−i

−∞
Fi−1(x) dx − (n)i

(k)i

∫ tj+1−i

−∞
Fi(x) dx

)
:

Since tj+1−i=F−1( j+1−i)=F−1(ai) and
(n)i−1
(k)i−1

ai−1
i =

(n)i
(k)i

ai
i;
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applying identity (10) to each integral yields

EXk:n¿
n
k

∫ k=n

0
F−1(u) du+

j∑
i=2

(n)i
(k)i

∫ ai

0
ui−2(iu− (i − 1)ai)F−1(u) du (16)

and one more application of identity (11) completes the proof.

(ii) This follows easily by applying (13) to the j-independent-G sample Yi= − Xi; i=1; 2; : : : ; n, noting
that Xk:n=− Yn+1−k:n; G(x)= 1− F(−x−); and G−1(u)=− F−1((1− u)+), which is equal to −F−1(1− u)
a.e. in (0; 1).
Observe that (16) is a version of (13) containing only single integrals. Similarly, the upper bound (14) can

be written as a sum of single integrals. Obviously, as j increases, the lower bound in (13) increases and the
upper bound in (14) decreases (the ai’s and bi’s do not depend on j), yielding improved estimates. It should
be noted, however, that the present approach is neither sharp nor complete for the general j-independent-
F sample with j¿ 2 (e.g., (8) and (13) do not provide any bounds for Xk:n when k ¡ j). Also note that, by
construction, Kemperman’s (1997) distribution bounds are sharp, and thus

Gk:n;j(x)6Hk:n;j(x); for all x;

where Hk:n;j is the distribution in the RHS of (8) and Gk:n;j is the corresponding one described implicitly
by Kemperman (1997, pp. 301–302). Therefore, by using Hk:n;j in place of Gk:n;j in Theorem 4.1, one could
derive considerably better expectation bounds; this procedure, however, seems to be intractable, since no
closed form is available for Gk:n;j (e.g., see the form of Gk:n;2 given in (9)), in contrast to the relatively
simple form of Hk:n;j discussed here.
Perhaps the most interesting case arises when the n-variate distribution consists of pairwise i.i.d. marginals;

this is the case of a 2-independent-F sample. Taking j=2 in Theorem 4.1, we can immediately derive the
corresponding expectation bounds as follows: for k¿ 2,

EXk:n¿
n
k

∫ k=n

0
F−1(u) du+

n(n− 1)
k(k − 1)

∫∫
0¡u¡v¡(k−1)=(n−1)

(F−1(v)− F−1(u)) dv du (17)

and similarly, for k6 n− 1,
EXk:n6

n
n+ 1− k

∫
(k−1)=n

F−1(u) du

− n(n− 1)
(n+ 1− k)(n− k)

∫∫
(k−1)=(n−1)¡u¡v¡1

(F−1(v)− F−1(u)) dv du: (18)

Bound (17) is obviously sharper than (5) for both j=1 and j=2, and the bounds coincide only in some very
particular cases: for j=1 they coincide i9 there exists some constant c such that P[X1 = c]¿ (k − 1)=(n− 1)
and P[X1¡c] = 0; for j=2 the bounds are identical i9 k = n or k ¡n and there exists some constant c such
that P[X1¡c]6 (k − 1)=(n− 1) and P[X16 c]¿ k=n. The relation between all these expectation bounds is
illustrated in the following example.

Example 3. For pairwise independent standard uniform variables and 26 k6 n− 1; (17) and (18) yield
k
2n
+

n(k − 1)2
6k(n− 1)2 6 EXk:n6 1− n+ 1− k

2n
− n(n− k)2

6(n+ 1− k)(n− 1)2 ;

which is better than both bounds of Example 1. Using Kemperman’s distribution bound (9), one :nds that
for n¿ 3,

EX2:n¿
13n− 19
12(n− 1)2 =

13
12

n−1 + o(n−1)



30 N. Papadatos / Statistics & Probability Letters 54 (2001) 21–31

and for n¿ 4,

EX3:n¿
31n− 46
18(n− 1)2 =

31
18

n−1 + o(n−1):

Hence, as n → ∞, these bounds are of the same order as those presented in Theorem 4.1. The situation is
completely di9erent, however, if k is large. For instance, (17) yields the (almost trivial) lower bound

EXn:n¿ 2
3 ;

while Kemperman’s bound (arising from (9)) is

EXn:n¿ 1 +
5n− 2
3(n− 1)2 −

n
(n− 1)2

n∑
i=1

1
i
=1− n−1 log n+O(n−1):

Kemperman’s assertions (stated without proof) imply that, in general, if k=n → p as n → ∞ with 0¡p¡ 1;
then (using the notation of (9))

lim
n→∞ min

F(2;n;F)
EXk:n= lim

n→∞ max
F(2;n;F)

EXk:n=p;

where F is the standard uniform distribution. This result is, clearly, much stronger than those presented
in this example and in Example 1; this happens, however, because our results are based on the notion of
maximal stability of order j rather than on j-independence, and the former condition is much weaker than the
latter. Moreover, the present approach enables us to derive closed expressions for the bounds in the case of
j-independent-uniform samples (as in Example 1). For instance:

EXk:n¿
j∑

i=1

1
i(i + 1)

(n)i
(k)i

(
k + 1− i
n+ 1− i

)i+1

;

for any k¿ j. If, however, k=n → p as n → ∞, then the resulting bound approaches pj=(j + 1) (as in
Example 1), which is again poor.

5. Concluding remarks

If the random variables X1; X2; : : : ; Xn are non-negative, Rk:n(x)= 1−Fk:n(x) is the reliability of the k-out-of-n
system with (possibly dependent) components X1; X2; : : : ; Xn, and Xk:n is the corresponding failure time. There-
fore, (1), (2) and (5), (6) provide sharp bounds for the reliability and the mean time to failure for systems
of this kind, provided that the components of the system are maximally (minimally) stable of order j; this
occurs if any j of the components creates the same parallel (serial) system (i.e., the reliability of any j-parallel
(serial) system does not vary).
It should be noted that any sample X1; X2; : : : ; Xn can be translated to an exchangeable sample Y1; Y2; : : : ; Yn

with the same order statistics (for example, take Yi=X�(i); i=1; 2; : : : ; n, here (�(1); �(2); : : : ; �(n)) is a ran-
dom permutation of (1; 2; : : : ; n), as in the proof of Theorem 2.1). Then we can apply the results of Sections 2
and 3 (for all j), observing that

F( j)(x)=
(

n
j

)−1 ∑
16k1¡···¡kj6n

P[Xk16 x; : : : ; Xkj 6 x];

and, similarly,

G( j)(x)= 1−
(

n
j

)−1 ∑
16k1¡···¡kj6n

P[Xk1 ¿x; : : : ; Xkj ¿ x]:
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