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Outline

• Need to validate peptide assignments to 
MS/MS spectra 

• Statistical approach to validation
• Running PeptideProphet software
• Interpreting results of PeptideProphet
• Exercises



Most search results are wrong

• [M+2H]2+/[M+3H]3+ uncertainty (LCQ)
• Non-peptide noise
• Incomplete database
− e.g. post-translational modifications

• Multiple precursors
• Limitation of database search algorithm



Validation of Peptide Assignments
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• In the past, a majority of analysis time was devoted 
to identifying the minority of correct search results 
from the majority of incorrect results

• Required manual judgment
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Need for Objective Criteria

• Manual scrutiny of search results is not 
practical for large datasets common to high 
throughput proteomics

• As an alternative to relying on human judgment, 
many research groups employ search scores 
and properties of the assigned peptides to 
discriminate between correct and incorrect 
results



Traditional Filtering Criteria

• Each Mascot search result has:
– Ionscore, Identityscore, Homologyscore, NTT 

(number of tryptic termini)

• Accept all results that satisfy:
Ionscore > Identityscore
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Problems with Traditional Filtering

• Different research groups use different 
thresholds

• Divides data into correct and incorrect- no in 
between

• Unknown error rates (fraction of data passing 
filter that are incorrect)

• Unknown sensitivity (fraction of correct results 
passing filter)

• Appropriate threshold may depend on database, 
mass spectrometer type, sample, etc.



Use of Forward/Reverse Database to 
Estimate False Positive Error Rates

• Do search against single Forward/Reverse database 
containing usual entries along with their sequence-
reversed counterparts

• Forward and Reverse protein sequences each 
comprise 50% of the database peptides

• Incorrect results, taken at random from the database, 
are predicted to correspond with Reverse protein 
sequences on average 50% of the time

• Number of incorrect results passing any score filter 
calculated as twice the number of accepted results 
corresponding to Reverse proteins

• Search takes twice as long



Use of Separate Forward and Reverse 
Database Searches

• Do searches against Forward and Reverse 
databases separately

• Number of incorrect results in Forward search 
passing any score filter calculated as the number 
of results passing the same filter applied to the 
Reverse search

• Gives an overestimate of the number of incorrect 
results passing a filter since compares the 
Reverse search which has no correct results with 
the Forward search which may have up to 100% 
correct results

• Results of 2 searches must be analyzed in parallel



Statistical Approach

• Use search scores and properties of the 
assigned peptides to compute a probability that 
each search result is correct

• Desirable model properties:
– Accurate
– High power to discriminate correct and  incorrect 

results
– Robust



Training Dataset

• Want dataset of Mascot search results for which 
the true correct and incorrect peptide 
assignments are known

• Sample of 18 control proteins (bovine, yeast, 
bacterial)

• Collect ~40,000 MS/MS spectra, and search 
using Mascot vs. a Drosophila database 
appended with sequences of 18 control proteins 
and common sample contaminants



Training Dataset

• Peptides 
corresponding 
to Drosophila
proteins are 
incorrect

• Peptides 
corresponding 
to 18 control 
proteins or 
contaminants 
are correct*



Derive Discriminant Function

• Derive single search score best at discriminating 
correct from incorrect search results

• Derive separately for search results of each 
parent ion charge (1+, 2+, and 3+)

− Generally, can combine together multiple 
search engine scores, when available, into 
single linear combination score using Linear 
Discriminant Function Analysis (e.g.
SEQUEST’s Xcorr, DeltaCn, and SpRank)

– Use search engine score directly if only one



Mascot Discriminant Function

• Use (Ionscore – Identityscore) 
difference

• Secondarily, use (Ionscore –
Homologyscore) difference to 
penalize some predominantly 
incorrect results and improve 
discrimination
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Mascot Discriminant Function

• In particular, use the (Ionscore – Identityscore) 
difference adjusted for the Average Identityscore in 
the dataset for given parent ion charge

• Require (Ionscore – Identityscore) not exceed 
m*(Ionscore – Homologyscore) + b + err, where m, b, 
and err are correlation parameters learned from the 
data for each parent ion charge

• Discriminant Function, F = 0.1 * 
{(Ionscore – Identityscore) + 
Average Identityscore} – 3.0
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Compute Discriminant Score

Example:
Peptide = LSISGTYDLK
Precursor Ion Charge = 2
Ionscore = 50.91 Identityscore = 46
Homologyscore = 37 Ave. Identityscore = 47
Corr. Slope = 0.53, Intercept = -6.99, Error = 10
(Ionscore – Identityscore) = 50.91 – 46 = 4.91
(Ionscore – Identityscore) not allowed to exceed 

0.53 * (Ionscore – Homologyscore) – 6.99 + 10, 
or 0.53 * (50.91 – 37) – 6.99 + 10 = 10.38

F =  0.1 * {4.91 + 47}  – 3.0 = 2.19



Discriminant Score Distributions

no.
of 
spectra

discriminant score (F)

correct (+)

incorrect (-)

Training dataset [M+2H]2+ spectra



Computing probabilities from 
discriminant score distributions

no.
of 
spectra

discriminant score (F)

correct (+)

incorrect (-)

Probability of being correct, given discriminant score Fobs, is:

Number of correct search results with Fobs
p = 

Total number of search results with Fobs

p = 0.5



Computing probabilities from 
discriminant score distributions

Model Correct 
results as 
Normal
Distribution

no.
of 
spectra

discriminant score (F)

correct (+)

incorrect (-)

Probability of being correct, given discriminant score Fobs, is:

Normalμ,σ(Fobs)  * Total correct
p = 

Normalμ,σ(Fobs) * Total correct + EVDβ,μ(Fobs)  * Total incorrect

p = 0.5

Model Incorrect 
results as 
Extreme Value
Distribution 
(EVD)



Employing peptide properties

• Properties of the assigned peptides, in addition to 
search scores, are useful information for 
distinguishing correct and incorrect results.

• For example, in unconstrained Mascot searches 
with MS/MS spectra collected from trypsinized
samples, a majority of correct assigned peptides 
have 2 tryptic termini (preceded by K,R), whereas 
a majority of incorrect assigned peptides have 0 
tryptic termini.



Number of Tryptic Termini (NTT)

NTT can equal 0, 1, or 2:

G.HVEQLDSSS.D NTT = 0

K.HVEQLDSSS.D NTT = 1
G.HVEQLDSSR.D NTT = 1

K.HVEQLDSSR.D NTT = 2



Number of Tryptic Termini (NTT)

For the same value of F, assigned peptides with 
higher NTT values are more likely to be correct

Example: training dataset
Correct: 0.03 NTT=0, 0.28 NTT=1, 0.69 NTT=2
Incorrect: 0.80 NTT=0, 0.19 NTT=1, 0.01 NTT=2

Probability of being correct, given discriminant score Fobs with NTT=2 is:

Normalμ,σ(Fobs)  * Total corr * 0.69
p = 

Normalμ,σ(Fobs) * Total corr * 0.69 + EVDβ,μ(Fobs)  * Total incorr * 0.01

Fobs: p = 0.5 without NTT becomes p=0.99 using NTT



Number of Tryptic Termini (NTT)

For the same value of F, assigned peptides with 
lower NTT values are less likely to be correct

Example: training dataset
Correct: 0.03 NTT=0, 0.28 NTT=1, 0.69 NTT=2
Incorrect: 0.80 NTT=0, 0.19 NTT=1, 0.01 NTT=2

Probability of being correct, given discriminant score Fobs with NTT=0 is:

Normalμ,σ(Fobs)  * Total corr * 0.03
p = 

Normalμ,σ(Fobs) * Total corr * 0.03 + EVDβ,μ(Fobs)  * Total incorr * 0.80

Fobs: p = 0.5 without NTT becomes p=0.04 using NTT



Additional Peptide Properties

• Number of missed tryptic cleavages (NMC)

• Mass difference between precursor ion and peptide

• Presence of light or heavy cysteine (ICAT)

• Presence of N-glyc motif (N-glycosylation capture)

• Calculated pI (FFE)

Incorporate similar to NTT above, assuming 
independence of peptide properties and search 
scores among correct and incorrect results



Computed Probabilities

Given training dataset distributions of F, NTT, NMC, 
Massdiff, ICAT, N-glyc, and pI among correct and 
incorrect search results,…

…then the probability of any search result with Fobs, 
NTTobs, NMCobs, Massdiffobs, ICATobs, N-glycobs, 
and pIobs can be computed as described above, 
with terms for each piece of information

• Accurate

• Discriminating



Robust Model

One cannot rely on the training dataset
distributions of F, NTT, NMC, Massdiff, ICAT, N-
glyc, and pI among correct and incorrect search 
results

These distributions are expected to vary depending 
upon:

• Database used for search
• Mass spectrometer
• Spectrum quality
• Sample preparation and purity



vs. training dataset [M+2H]2+ spectra

Variations in Discriminant Score 
Distributions

Different proportion of correct results in dataset

no
of 
spectra

discriminant score (F)

correct (+)

incorrect (-)



vs. training dataset [M+2H]2+ spectra

Variations in Discriminant Score 
Distributions

Different distribution means

no
of 
spectra

discriminant score (F)

correct (+)

incorrect (-)



EM Algorithm

• PeptideProphet learns the distributions of F and 
peptide properties among correct and incorrect 
search results in each dataset

• It then uses the learned distributions to compute 
probabilities that each search result is correct

• Expectation-Maximization (EM) algorithm:  
unsupervised learning method that iteratively
estimates the distributions given probabilities that 
each search result is correct, and then computes 
those probabilities given the distributions

• Initial settings help guide algorithm to good 
solution



EM Algorithm Details

Search Result    F     NTT     prob 1-prob
A                        3.0    2          1.0        0.0
B                        2.0    1          0.5        0.5
C                        1.0    1         0.5         0.5
D                        0.0    0         0.0        1.0

P(NTT=0|+) = (0.0) / (1.0 + 0.5 + 0.5 + 0.0) = 0.0
P(NTT=1|+) = (0.5 + 0.5) / (1.0 + 0.5 + 0.5 + 0.0) = 0.5
P(NTT=2|+) = (1.0)/(1.0 + 0.5 + 0.5 + 0.0) = 0.5

P(NTT=0|-) = (1.0) / (0.0 + 0.5 + 0.5 + 1.0) = 0.5
P(NTT=1|-) = (0.5 + 0.5) / (0.0 + 0.5 + 0.5 + 1.0) = 0.5
P(NTT=2|-) = (0.0)/(0.0 + 0.5 + 0.5 + 1.0) = 0.0

1.  Initial estimates of result probabilities

P(F|+): m = (3.0)(1.0) + (2.0)(0.5) + (1.0)(0.5) + (0.0)(0.0)
= 2.25

1.0       +      0.5     +       0.5      +      0.0

P(F|-): m = (3.0)(0.0) + (2.0)(0.5) + (1.0)(0.5) + (0.0)(1.0)
= 0.75

0.0       +      0.5     +       0.5      +      1.0

2.  Update F value distributions among correct and incorrect results

3.  Update NTT distributions among correct and incorrect results

4.  Recompute result probabilities using updated distributions, and iterate
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Accuracy of the Model

100 spectra with
computed p ~ 0.9

90% of them (90) 
should be correct

Observed 
probability is 
around 0.9

Model is accurate

p=0.9

~ 0.9

test data:  A. Keller et al. OMICS 6, 207 (2002)

model

ideal



Discriminating Power 
of Computed Probabilities

Sensitivity: 
fraction of all 
correct results
passing filter

Error: 
fraction of all
results passing
filter that are
incorrect

Ideal Spot
test data:  A. Keller et al. OMICS 6, 207 (2002)
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Sensitivity: 
fraction of all 
correct results
passing filter

Error: 
fraction of all
results passing
filter that are
incorrect

Discriminating Power 
of Computed Probabilities

test data:  A. Keller et al. OMICS 6, 207 (2002)
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Discriminating Power 
Example: p ≥ 0.9

Sensitivity: 
fraction of all 
correct results
passing filter

Error: 
fraction of all
results passing
filter that are
incorrect
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test data:  A. Keller et al. OMICS 6, 207 (2002)
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Discriminating Power 
Example: p ≥ 0.5

observed predicted
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test data:  A. Keller et al. OMICS 6, 207 (2002)
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Sensitivity: 
fraction of all 
correct results
passing filter

Error: 
fraction of all
results passing
filter that are
incorrect



Use of PeptideProphet Probabilities 
to Compare Searches

• False positive error rate predicted by PeptideProphet
is an objective criterion for comparing different 
searches

• Compare the number of results of each search 
passing its minimum probability threshold to achieve 
a fixed predicted false positive error rate

– Sample preparation and LC/MS/MS
– Search conditions
– Search engine

– Reflects both search engine and PeptideProphet
performance



From Peptide to Protein Level Analysis

• When the identification of proteins rather than 
peptides is of interest, it is unnecessary in practice 
to filter search results based on probabilities

• Instead, all search results and their computed 
probabilities are passed to the ProteinProphet
program which infers sample proteins by combining 
together the peptide evidence for each protein
– Initially adjusts the PeptideProphet probabilities based on 

whether a peptide corresponds to a single-hit or multi-hit 
protein

– Then apportions shared peptides among all their 
corresponding proteins in such a way to derive the simplest 
list of proteins that explain the observed peptides

– Computes accurate protein probabilities



PeptideProphet Software Tutorial

• How to run PeptideProphet through 
the TPP Web Interface

• Interpretation of analysis results

• User options



Getting started with PeptideProphet

• Input:  pepXML files (file1.xml, file2.xml…)

• XInteract program first merges files together into 
single file interact.xml, then PeptideProphet
runs model, computes probabilities, and writes 
probabilities as first column

• Combine together runs that are similar (sample, 
database, search constraints, mass spectrometer)



Getting started with PeptideProphet

Specify search engine and select Analysis Pipeline

1

2



Getting started with PeptideProphet

Select peptide level analysis



Getting started with PeptideProphet

Specify search results to analyze



Getting started with PeptideProphet

Navigate data directories



Getting started with PeptideProphet

Add each search run pepXML included in analysis



Getting started with PeptideProphet

Specify output file name and minimum probability filter, opt to 
run PeptideProphet



Getting started with PeptideProphet

Specify PeptideProphet optional parameters and run analysis



Getting started with PeptideProphet

Click on links to view 
results of analysis



PeptideProphet ResultsPeptideProphet Results



PeptideProphet Results: Model Summary



Reasonable Learned Discriminant
Score Distributions



Suspicious Looking Learned 
Discriminant Score Distributions



PeptideProphet Results: Model SumaryPeptideProphet Results: Model Summary



Good

Not so 
good

PeptideProphet Results: Model Summary
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PeptideProphet Results: Predicted 
Numbers of Correct Peptides



PeptideProphet Results: Contributing 
Score and Peptide Properties

2+ search result discriminant
score value



PeptideProphet [M+2H]2+ vs [M+3H]3+

Precursor Ions

Spectrum searched as both 2+ and 3+ 
precursor received significant probability



PeptideProphet Results: Incomplete 
Analysis

Model incomplete for results of 1+ precursor ions



PeptideProphet Results: Incomplete 
Analysis

Model incomplete for results of 1+ precursor ions

In general, if analysis of results of 
precursor ion charge N is incomplete, 
results are partitioned into those 
unlikely to be correct (assigned 
probability ‘0’), and those possibly 
correct (assigned probability ‘-N’).  
These estimates are made using 
learned distributions for an adjacent 
charge when available, otherwise 
using training dataset distributions



Sort Data by Computed Probability



Filter Data by Mascot Ionscore



Select and Color Specified AA’s



Pep3D and Analysis Summary Links

Raw Data

Details of Peptide Analysis



User Options for PeptideProphet

Rename Output File (e.g. to interact-noicat.xml):



Use of Supplemental Discriminating Information

• PeptideProphet automatically uses ICAT information 
when it thinks appropriate

• Nevertheless, you can explicitly set whether or not ICAT 
information is utilized 

Use additional discriminating information, including 
ICAT or N-glyc, when relevant



Ionscore* Example

• Search results are marked with asterisked Ionscore when runner up 
peptide(s) share at least 75% sequence identity with top peptide



There are three ways asterisked Ionscores can be 
treated by PeptideProphet:

• Penalize (the default option, halves Ionscore values)
• Leave alone (suitable for the context of homologues)
• Exclude (the most conservative, assigns probability 0)

Ionscore* Options



Run/Don’t Run PeptideProphet



• Optimize for various additional mass spectrometers
– New discriminant function

• Adapt to additional methods for assigning peptides to 
tandem mass spectra

– SEQUEST
– COMET
– ProbID
– SpectraST
– X!Tandem
– Others

Ongoing Developments 
for PeptideProphet



• Accuracy of computed probabilities

• Utility of conventional Mascot score 
thresholds and PeptideProphet analysis

• Model results for ICAT data analyzed with 
and without ICAT information

• Model results for Mystery dataset

Exercises with PeptideProphet



Exercise Datasets

Many of the exercises utilize Mascot search results 
of HaloICAT datasets for which correct results are 
independently known:

The pepXML Viewer is pre-configured for this class 
to automatically color all HaloICAT correct 
corresponding proteins red!

• MS/MS spectra generated from Halobacterium
ICAT sample searched against a 
halobacterium_plus_human protein sequence 
database


